xref: /linux-6.15/rust/kernel/alloc.rs (revision e8c6ccdb)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Extensions to the [`alloc`] crate.
4 
5 #[cfg(not(any(test, testlib)))]
6 pub mod allocator;
7 pub mod kbox;
8 pub mod vec_ext;
9 
10 #[cfg(any(test, testlib))]
11 pub mod allocator_test;
12 
13 #[cfg(any(test, testlib))]
14 pub use self::allocator_test as allocator;
15 
16 pub use self::kbox::Box;
17 pub use self::kbox::KBox;
18 pub use self::kbox::KVBox;
19 pub use self::kbox::VBox;
20 
21 /// Indicates an allocation error.
22 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
23 pub struct AllocError;
24 use core::{alloc::Layout, ptr::NonNull};
25 
26 /// Flags to be used when allocating memory.
27 ///
28 /// They can be combined with the operators `|`, `&`, and `!`.
29 ///
30 /// Values can be used from the [`flags`] module.
31 #[derive(Clone, Copy)]
32 pub struct Flags(u32);
33 
34 impl Flags {
35     /// Get the raw representation of this flag.
36     pub(crate) fn as_raw(self) -> u32 {
37         self.0
38     }
39 }
40 
41 impl core::ops::BitOr for Flags {
42     type Output = Self;
43     fn bitor(self, rhs: Self) -> Self::Output {
44         Self(self.0 | rhs.0)
45     }
46 }
47 
48 impl core::ops::BitAnd for Flags {
49     type Output = Self;
50     fn bitand(self, rhs: Self) -> Self::Output {
51         Self(self.0 & rhs.0)
52     }
53 }
54 
55 impl core::ops::Not for Flags {
56     type Output = Self;
57     fn not(self) -> Self::Output {
58         Self(!self.0)
59     }
60 }
61 
62 /// Allocation flags.
63 ///
64 /// These are meant to be used in functions that can allocate memory.
65 pub mod flags {
66     use super::Flags;
67 
68     /// Zeroes out the allocated memory.
69     ///
70     /// This is normally or'd with other flags.
71     pub const __GFP_ZERO: Flags = Flags(bindings::__GFP_ZERO);
72 
73     /// Allow the allocation to be in high memory.
74     ///
75     /// Allocations in high memory may not be mapped into the kernel's address space, so this can't
76     /// be used with `kmalloc` and other similar methods.
77     ///
78     /// This is normally or'd with other flags.
79     pub const __GFP_HIGHMEM: Flags = Flags(bindings::__GFP_HIGHMEM);
80 
81     /// Users can not sleep and need the allocation to succeed.
82     ///
83     /// A lower watermark is applied to allow access to "atomic reserves". The current
84     /// implementation doesn't support NMI and few other strict non-preemptive contexts (e.g.
85     /// raw_spin_lock). The same applies to [`GFP_NOWAIT`].
86     pub const GFP_ATOMIC: Flags = Flags(bindings::GFP_ATOMIC);
87 
88     /// Typical for kernel-internal allocations. The caller requires ZONE_NORMAL or a lower zone
89     /// for direct access but can direct reclaim.
90     pub const GFP_KERNEL: Flags = Flags(bindings::GFP_KERNEL);
91 
92     /// The same as [`GFP_KERNEL`], except the allocation is accounted to kmemcg.
93     pub const GFP_KERNEL_ACCOUNT: Flags = Flags(bindings::GFP_KERNEL_ACCOUNT);
94 
95     /// For kernel allocations that should not stall for direct reclaim, start physical IO or
96     /// use any filesystem callback.  It is very likely to fail to allocate memory, even for very
97     /// small allocations.
98     pub const GFP_NOWAIT: Flags = Flags(bindings::GFP_NOWAIT);
99 
100     /// Suppresses allocation failure reports.
101     ///
102     /// This is normally or'd with other flags.
103     pub const __GFP_NOWARN: Flags = Flags(bindings::__GFP_NOWARN);
104 }
105 
106 /// The kernel's [`Allocator`] trait.
107 ///
108 /// An implementation of [`Allocator`] can allocate, re-allocate and free memory buffers described
109 /// via [`Layout`].
110 ///
111 /// [`Allocator`] is designed to be implemented as a ZST; [`Allocator`] functions do not operate on
112 /// an object instance.
113 ///
114 /// In order to be able to support `#[derive(SmartPointer)]` later on, we need to avoid a design
115 /// that requires an `Allocator` to be instantiated, hence its functions must not contain any kind
116 /// of `self` parameter.
117 ///
118 /// # Safety
119 ///
120 /// - A memory allocation returned from an allocator must remain valid until it is explicitly freed.
121 ///
122 /// - Any pointer to a valid memory allocation must be valid to be passed to any other [`Allocator`]
123 ///   function of the same type.
124 ///
125 /// - Implementers must ensure that all trait functions abide by the guarantees documented in the
126 ///   `# Guarantees` sections.
127 pub unsafe trait Allocator {
128     /// Allocate memory based on `layout` and `flags`.
129     ///
130     /// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout
131     /// constraints (i.e. minimum size and alignment as specified by `layout`).
132     ///
133     /// This function is equivalent to `realloc` when called with `None`.
134     ///
135     /// # Guarantees
136     ///
137     /// When the return value is `Ok(ptr)`, then `ptr` is
138     /// - valid for reads and writes for `layout.size()` bytes, until it is passed to
139     ///   [`Allocator::free`] or [`Allocator::realloc`],
140     /// - aligned to `layout.align()`,
141     ///
142     /// Additionally, `Flags` are honored as documented in
143     /// <https://docs.kernel.org/core-api/mm-api.html#mm-api-gfp-flags>.
144     fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> {
145         // SAFETY: Passing `None` to `realloc` is valid by its safety requirements and asks for a
146         // new memory allocation.
147         unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags) }
148     }
149 
150     /// Re-allocate an existing memory allocation to satisfy the requested `layout`.
151     ///
152     /// If the requested size is zero, `realloc` behaves equivalent to `free`.
153     ///
154     /// If the requested size is larger than the size of the existing allocation, a successful call
155     /// to `realloc` guarantees that the new or grown buffer has at least `Layout::size` bytes, but
156     /// may also be larger.
157     ///
158     /// If the requested size is smaller than the size of the existing allocation, `realloc` may or
159     /// may not shrink the buffer; this is implementation specific to the allocator.
160     ///
161     /// On allocation failure, the existing buffer, if any, remains valid.
162     ///
163     /// The buffer is represented as `NonNull<[u8]>`.
164     ///
165     /// # Safety
166     ///
167     /// - If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation
168     ///   created by this [`Allocator`]; if `old_layout` is zero-sized `p` does not need to be a
169     ///   pointer returned by this [`Allocator`].
170     /// - `ptr` is allowed to be `None`; in this case a new memory allocation is created and
171     ///   `old_layout` is ignored.
172     /// - `old_layout` must match the `Layout` the allocation has been created with.
173     ///
174     /// # Guarantees
175     ///
176     /// This function has the same guarantees as [`Allocator::alloc`]. When `ptr == Some(p)`, then
177     /// it additionally guarantees that:
178     /// - the contents of the memory pointed to by `p` are preserved up to the lesser of the new
179     ///   and old size, i.e. `ret_ptr[0..min(layout.size(), old_layout.size())] ==
180     ///   p[0..min(layout.size(), old_layout.size())]`.
181     /// - when the return value is `Err(AllocError)`, then `ptr` is still valid.
182     unsafe fn realloc(
183         ptr: Option<NonNull<u8>>,
184         layout: Layout,
185         old_layout: Layout,
186         flags: Flags,
187     ) -> Result<NonNull<[u8]>, AllocError>;
188 
189     /// Free an existing memory allocation.
190     ///
191     /// # Safety
192     ///
193     /// - `ptr` must point to an existing and valid memory allocation created by this [`Allocator`];
194     ///   if `old_layout` is zero-sized `p` does not need to be a pointer returned by this
195     ///   [`Allocator`].
196     /// - `layout` must match the `Layout` the allocation has been created with.
197     /// - The memory allocation at `ptr` must never again be read from or written to.
198     unsafe fn free(ptr: NonNull<u8>, layout: Layout) {
199         // SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this
200         // allocator. We are passing a `Layout` with the smallest possible alignment, so it is
201         // smaller than or equal to the alignment previously used with this allocation.
202         let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), layout, Flags(0)) };
203     }
204 }
205 
206 #[allow(dead_code)]
207 /// Returns a properly aligned dangling pointer from the given `layout`.
208 pub(crate) fn dangling_from_layout(layout: Layout) -> NonNull<u8> {
209     let ptr = layout.align() as *mut u8;
210 
211     // SAFETY: `layout.align()` (and hence `ptr`) is guaranteed to be non-zero.
212     unsafe { NonNull::new_unchecked(ptr) }
213 }
214