xref: /linux-6.15/rust/kernel/alloc.rs (revision 8a799831)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Extensions to the [`alloc`] crate.
4 
5 #[cfg(not(test))]
6 #[cfg(not(testlib))]
7 mod allocator;
8 pub mod box_ext;
9 pub mod vec_ext;
10 
11 /// Indicates an allocation error.
12 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
13 pub struct AllocError;
14 use core::{alloc::Layout, ptr::NonNull};
15 
16 /// Flags to be used when allocating memory.
17 ///
18 /// They can be combined with the operators `|`, `&`, and `!`.
19 ///
20 /// Values can be used from the [`flags`] module.
21 #[derive(Clone, Copy)]
22 pub struct Flags(u32);
23 
24 impl Flags {
25     /// Get the raw representation of this flag.
26     pub(crate) fn as_raw(self) -> u32 {
27         self.0
28     }
29 }
30 
31 impl core::ops::BitOr for Flags {
32     type Output = Self;
33     fn bitor(self, rhs: Self) -> Self::Output {
34         Self(self.0 | rhs.0)
35     }
36 }
37 
38 impl core::ops::BitAnd for Flags {
39     type Output = Self;
40     fn bitand(self, rhs: Self) -> Self::Output {
41         Self(self.0 & rhs.0)
42     }
43 }
44 
45 impl core::ops::Not for Flags {
46     type Output = Self;
47     fn not(self) -> Self::Output {
48         Self(!self.0)
49     }
50 }
51 
52 /// Allocation flags.
53 ///
54 /// These are meant to be used in functions that can allocate memory.
55 pub mod flags {
56     use super::Flags;
57 
58     /// Zeroes out the allocated memory.
59     ///
60     /// This is normally or'd with other flags.
61     pub const __GFP_ZERO: Flags = Flags(bindings::__GFP_ZERO);
62 
63     /// Allow the allocation to be in high memory.
64     ///
65     /// Allocations in high memory may not be mapped into the kernel's address space, so this can't
66     /// be used with `kmalloc` and other similar methods.
67     ///
68     /// This is normally or'd with other flags.
69     pub const __GFP_HIGHMEM: Flags = Flags(bindings::__GFP_HIGHMEM);
70 
71     /// Users can not sleep and need the allocation to succeed.
72     ///
73     /// A lower watermark is applied to allow access to "atomic reserves". The current
74     /// implementation doesn't support NMI and few other strict non-preemptive contexts (e.g.
75     /// raw_spin_lock). The same applies to [`GFP_NOWAIT`].
76     pub const GFP_ATOMIC: Flags = Flags(bindings::GFP_ATOMIC);
77 
78     /// Typical for kernel-internal allocations. The caller requires ZONE_NORMAL or a lower zone
79     /// for direct access but can direct reclaim.
80     pub const GFP_KERNEL: Flags = Flags(bindings::GFP_KERNEL);
81 
82     /// The same as [`GFP_KERNEL`], except the allocation is accounted to kmemcg.
83     pub const GFP_KERNEL_ACCOUNT: Flags = Flags(bindings::GFP_KERNEL_ACCOUNT);
84 
85     /// For kernel allocations that should not stall for direct reclaim, start physical IO or
86     /// use any filesystem callback.  It is very likely to fail to allocate memory, even for very
87     /// small allocations.
88     pub const GFP_NOWAIT: Flags = Flags(bindings::GFP_NOWAIT);
89 }
90 
91 /// The kernel's [`Allocator`] trait.
92 ///
93 /// An implementation of [`Allocator`] can allocate, re-allocate and free memory buffers described
94 /// via [`Layout`].
95 ///
96 /// [`Allocator`] is designed to be implemented as a ZST; [`Allocator`] functions do not operate on
97 /// an object instance.
98 ///
99 /// In order to be able to support `#[derive(SmartPointer)]` later on, we need to avoid a design
100 /// that requires an `Allocator` to be instantiated, hence its functions must not contain any kind
101 /// of `self` parameter.
102 ///
103 /// # Safety
104 ///
105 /// - A memory allocation returned from an allocator must remain valid until it is explicitly freed.
106 ///
107 /// - Any pointer to a valid memory allocation must be valid to be passed to any other [`Allocator`]
108 ///   function of the same type.
109 ///
110 /// - Implementers must ensure that all trait functions abide by the guarantees documented in the
111 ///   `# Guarantees` sections.
112 pub unsafe trait Allocator {
113     /// Allocate memory based on `layout` and `flags`.
114     ///
115     /// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout
116     /// constraints (i.e. minimum size and alignment as specified by `layout`).
117     ///
118     /// This function is equivalent to `realloc` when called with `None`.
119     ///
120     /// # Guarantees
121     ///
122     /// When the return value is `Ok(ptr)`, then `ptr` is
123     /// - valid for reads and writes for `layout.size()` bytes, until it is passed to
124     ///   [`Allocator::free`] or [`Allocator::realloc`],
125     /// - aligned to `layout.align()`,
126     ///
127     /// Additionally, `Flags` are honored as documented in
128     /// <https://docs.kernel.org/core-api/mm-api.html#mm-api-gfp-flags>.
129     fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> {
130         // SAFETY: Passing `None` to `realloc` is valid by its safety requirements and asks for a
131         // new memory allocation.
132         unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags) }
133     }
134 
135     /// Re-allocate an existing memory allocation to satisfy the requested `layout`.
136     ///
137     /// If the requested size is zero, `realloc` behaves equivalent to `free`.
138     ///
139     /// If the requested size is larger than the size of the existing allocation, a successful call
140     /// to `realloc` guarantees that the new or grown buffer has at least `Layout::size` bytes, but
141     /// may also be larger.
142     ///
143     /// If the requested size is smaller than the size of the existing allocation, `realloc` may or
144     /// may not shrink the buffer; this is implementation specific to the allocator.
145     ///
146     /// On allocation failure, the existing buffer, if any, remains valid.
147     ///
148     /// The buffer is represented as `NonNull<[u8]>`.
149     ///
150     /// # Safety
151     ///
152     /// - If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation
153     ///   created by this [`Allocator`]; if `old_layout` is zero-sized `p` does not need to be a
154     ///   pointer returned by this [`Allocator`].
155     /// - `ptr` is allowed to be `None`; in this case a new memory allocation is created and
156     ///   `old_layout` is ignored.
157     /// - `old_layout` must match the `Layout` the allocation has been created with.
158     ///
159     /// # Guarantees
160     ///
161     /// This function has the same guarantees as [`Allocator::alloc`]. When `ptr == Some(p)`, then
162     /// it additionally guarantees that:
163     /// - the contents of the memory pointed to by `p` are preserved up to the lesser of the new
164     ///   and old size, i.e. `ret_ptr[0..min(layout.size(), old_layout.size())] ==
165     ///   p[0..min(layout.size(), old_layout.size())]`.
166     /// - when the return value is `Err(AllocError)`, then `ptr` is still valid.
167     unsafe fn realloc(
168         ptr: Option<NonNull<u8>>,
169         layout: Layout,
170         old_layout: Layout,
171         flags: Flags,
172     ) -> Result<NonNull<[u8]>, AllocError>;
173 
174     /// Free an existing memory allocation.
175     ///
176     /// # Safety
177     ///
178     /// - `ptr` must point to an existing and valid memory allocation created by this [`Allocator`];
179     ///   if `old_layout` is zero-sized `p` does not need to be a pointer returned by this
180     ///   [`Allocator`].
181     /// - `layout` must match the `Layout` the allocation has been created with.
182     /// - The memory allocation at `ptr` must never again be read from or written to.
183     unsafe fn free(ptr: NonNull<u8>, layout: Layout) {
184         // SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this
185         // allocator. We are passing a `Layout` with the smallest possible alignment, so it is
186         // smaller than or equal to the alignment previously used with this allocation.
187         let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), layout, Flags(0)) };
188     }
189 }
190 
191 #[allow(dead_code)]
192 /// Returns a properly aligned dangling pointer from the given `layout`.
193 pub(crate) fn dangling_from_layout(layout: Layout) -> NonNull<u8> {
194     let ptr = layout.align() as *mut u8;
195 
196     // SAFETY: `layout.align()` (and hence `ptr`) is guaranteed to be non-zero.
197     unsafe { NonNull::new_unchecked(ptr) }
198 }
199