xref: /linux-6.15/rust/kernel/alloc.rs (revision 58eff8e8)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 //! Extensions to the [`alloc`] crate.
4 
5 #[cfg(not(any(test, testlib)))]
6 pub mod allocator;
7 pub mod kbox;
8 pub mod kvec;
9 pub mod layout;
10 pub mod vec_ext;
11 
12 #[cfg(any(test, testlib))]
13 pub mod allocator_test;
14 
15 #[cfg(any(test, testlib))]
16 pub use self::allocator_test as allocator;
17 
18 pub use self::kbox::Box;
19 pub use self::kbox::KBox;
20 pub use self::kbox::KVBox;
21 pub use self::kbox::VBox;
22 
23 pub use self::kvec::IntoIter;
24 pub use self::kvec::KVVec;
25 pub use self::kvec::KVec;
26 pub use self::kvec::VVec;
27 pub use self::kvec::Vec;
28 
29 /// Indicates an allocation error.
30 #[derive(Copy, Clone, PartialEq, Eq, Debug)]
31 pub struct AllocError;
32 use core::{alloc::Layout, ptr::NonNull};
33 
34 /// Flags to be used when allocating memory.
35 ///
36 /// They can be combined with the operators `|`, `&`, and `!`.
37 ///
38 /// Values can be used from the [`flags`] module.
39 #[derive(Clone, Copy)]
40 pub struct Flags(u32);
41 
42 impl Flags {
43     /// Get the raw representation of this flag.
44     pub(crate) fn as_raw(self) -> u32 {
45         self.0
46     }
47 }
48 
49 impl core::ops::BitOr for Flags {
50     type Output = Self;
51     fn bitor(self, rhs: Self) -> Self::Output {
52         Self(self.0 | rhs.0)
53     }
54 }
55 
56 impl core::ops::BitAnd for Flags {
57     type Output = Self;
58     fn bitand(self, rhs: Self) -> Self::Output {
59         Self(self.0 & rhs.0)
60     }
61 }
62 
63 impl core::ops::Not for Flags {
64     type Output = Self;
65     fn not(self) -> Self::Output {
66         Self(!self.0)
67     }
68 }
69 
70 /// Allocation flags.
71 ///
72 /// These are meant to be used in functions that can allocate memory.
73 pub mod flags {
74     use super::Flags;
75 
76     /// Zeroes out the allocated memory.
77     ///
78     /// This is normally or'd with other flags.
79     pub const __GFP_ZERO: Flags = Flags(bindings::__GFP_ZERO);
80 
81     /// Allow the allocation to be in high memory.
82     ///
83     /// Allocations in high memory may not be mapped into the kernel's address space, so this can't
84     /// be used with `kmalloc` and other similar methods.
85     ///
86     /// This is normally or'd with other flags.
87     pub const __GFP_HIGHMEM: Flags = Flags(bindings::__GFP_HIGHMEM);
88 
89     /// Users can not sleep and need the allocation to succeed.
90     ///
91     /// A lower watermark is applied to allow access to "atomic reserves". The current
92     /// implementation doesn't support NMI and few other strict non-preemptive contexts (e.g.
93     /// raw_spin_lock). The same applies to [`GFP_NOWAIT`].
94     pub const GFP_ATOMIC: Flags = Flags(bindings::GFP_ATOMIC);
95 
96     /// Typical for kernel-internal allocations. The caller requires ZONE_NORMAL or a lower zone
97     /// for direct access but can direct reclaim.
98     pub const GFP_KERNEL: Flags = Flags(bindings::GFP_KERNEL);
99 
100     /// The same as [`GFP_KERNEL`], except the allocation is accounted to kmemcg.
101     pub const GFP_KERNEL_ACCOUNT: Flags = Flags(bindings::GFP_KERNEL_ACCOUNT);
102 
103     /// For kernel allocations that should not stall for direct reclaim, start physical IO or
104     /// use any filesystem callback.  It is very likely to fail to allocate memory, even for very
105     /// small allocations.
106     pub const GFP_NOWAIT: Flags = Flags(bindings::GFP_NOWAIT);
107 
108     /// Suppresses allocation failure reports.
109     ///
110     /// This is normally or'd with other flags.
111     pub const __GFP_NOWARN: Flags = Flags(bindings::__GFP_NOWARN);
112 }
113 
114 /// The kernel's [`Allocator`] trait.
115 ///
116 /// An implementation of [`Allocator`] can allocate, re-allocate and free memory buffers described
117 /// via [`Layout`].
118 ///
119 /// [`Allocator`] is designed to be implemented as a ZST; [`Allocator`] functions do not operate on
120 /// an object instance.
121 ///
122 /// In order to be able to support `#[derive(SmartPointer)]` later on, we need to avoid a design
123 /// that requires an `Allocator` to be instantiated, hence its functions must not contain any kind
124 /// of `self` parameter.
125 ///
126 /// # Safety
127 ///
128 /// - A memory allocation returned from an allocator must remain valid until it is explicitly freed.
129 ///
130 /// - Any pointer to a valid memory allocation must be valid to be passed to any other [`Allocator`]
131 ///   function of the same type.
132 ///
133 /// - Implementers must ensure that all trait functions abide by the guarantees documented in the
134 ///   `# Guarantees` sections.
135 pub unsafe trait Allocator {
136     /// Allocate memory based on `layout` and `flags`.
137     ///
138     /// On success, returns a buffer represented as `NonNull<[u8]>` that satisfies the layout
139     /// constraints (i.e. minimum size and alignment as specified by `layout`).
140     ///
141     /// This function is equivalent to `realloc` when called with `None`.
142     ///
143     /// # Guarantees
144     ///
145     /// When the return value is `Ok(ptr)`, then `ptr` is
146     /// - valid for reads and writes for `layout.size()` bytes, until it is passed to
147     ///   [`Allocator::free`] or [`Allocator::realloc`],
148     /// - aligned to `layout.align()`,
149     ///
150     /// Additionally, `Flags` are honored as documented in
151     /// <https://docs.kernel.org/core-api/mm-api.html#mm-api-gfp-flags>.
152     fn alloc(layout: Layout, flags: Flags) -> Result<NonNull<[u8]>, AllocError> {
153         // SAFETY: Passing `None` to `realloc` is valid by its safety requirements and asks for a
154         // new memory allocation.
155         unsafe { Self::realloc(None, layout, Layout::new::<()>(), flags) }
156     }
157 
158     /// Re-allocate an existing memory allocation to satisfy the requested `layout`.
159     ///
160     /// If the requested size is zero, `realloc` behaves equivalent to `free`.
161     ///
162     /// If the requested size is larger than the size of the existing allocation, a successful call
163     /// to `realloc` guarantees that the new or grown buffer has at least `Layout::size` bytes, but
164     /// may also be larger.
165     ///
166     /// If the requested size is smaller than the size of the existing allocation, `realloc` may or
167     /// may not shrink the buffer; this is implementation specific to the allocator.
168     ///
169     /// On allocation failure, the existing buffer, if any, remains valid.
170     ///
171     /// The buffer is represented as `NonNull<[u8]>`.
172     ///
173     /// # Safety
174     ///
175     /// - If `ptr == Some(p)`, then `p` must point to an existing and valid memory allocation
176     ///   created by this [`Allocator`]; if `old_layout` is zero-sized `p` does not need to be a
177     ///   pointer returned by this [`Allocator`].
178     /// - `ptr` is allowed to be `None`; in this case a new memory allocation is created and
179     ///   `old_layout` is ignored.
180     /// - `old_layout` must match the `Layout` the allocation has been created with.
181     ///
182     /// # Guarantees
183     ///
184     /// This function has the same guarantees as [`Allocator::alloc`]. When `ptr == Some(p)`, then
185     /// it additionally guarantees that:
186     /// - the contents of the memory pointed to by `p` are preserved up to the lesser of the new
187     ///   and old size, i.e. `ret_ptr[0..min(layout.size(), old_layout.size())] ==
188     ///   p[0..min(layout.size(), old_layout.size())]`.
189     /// - when the return value is `Err(AllocError)`, then `ptr` is still valid.
190     unsafe fn realloc(
191         ptr: Option<NonNull<u8>>,
192         layout: Layout,
193         old_layout: Layout,
194         flags: Flags,
195     ) -> Result<NonNull<[u8]>, AllocError>;
196 
197     /// Free an existing memory allocation.
198     ///
199     /// # Safety
200     ///
201     /// - `ptr` must point to an existing and valid memory allocation created by this [`Allocator`];
202     ///   if `old_layout` is zero-sized `p` does not need to be a pointer returned by this
203     ///   [`Allocator`].
204     /// - `layout` must match the `Layout` the allocation has been created with.
205     /// - The memory allocation at `ptr` must never again be read from or written to.
206     unsafe fn free(ptr: NonNull<u8>, layout: Layout) {
207         // SAFETY: The caller guarantees that `ptr` points at a valid allocation created by this
208         // allocator. We are passing a `Layout` with the smallest possible alignment, so it is
209         // smaller than or equal to the alignment previously used with this allocation.
210         let _ = unsafe { Self::realloc(Some(ptr), Layout::new::<()>(), layout, Flags(0)) };
211     }
212 }
213 
214 #[allow(dead_code)]
215 /// Returns a properly aligned dangling pointer from the given `layout`.
216 pub(crate) fn dangling_from_layout(layout: Layout) -> NonNull<u8> {
217     let ptr = layout.align() as *mut u8;
218 
219     // SAFETY: `layout.align()` (and hence `ptr`) is guaranteed to be non-zero.
220     unsafe { NonNull::new_unchecked(ptr) }
221 }
222