1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <[email protected]> 7 * Ross Biro 8 * Fred N. van Kempen, <[email protected]> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 #include <linux/nospec.h> 93 94 #include <linux/uaccess.h> 95 #include <asm/unistd.h> 96 97 #include <net/compat.h> 98 #include <net/wext.h> 99 #include <net/cls_cgroup.h> 100 101 #include <net/sock.h> 102 #include <linux/netfilter.h> 103 104 #include <linux/if_tun.h> 105 #include <linux/ipv6_route.h> 106 #include <linux/route.h> 107 #include <linux/sockios.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static __poll_t sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read_iter = sock_read_iter, 144 .write_iter = sock_write_iter, 145 .poll = sock_poll, 146 .unlocked_ioctl = sock_ioctl, 147 #ifdef CONFIG_COMPAT 148 .compat_ioctl = compat_sock_ioctl, 149 #endif 150 .mmap = sock_mmap, 151 .release = sock_close, 152 .fasync = sock_fasync, 153 .sendpage = sock_sendpage, 154 .splice_write = generic_splice_sendpage, 155 .splice_read = sock_splice_read, 156 }; 157 158 /* 159 * The protocol list. Each protocol is registered in here. 160 */ 161 162 static DEFINE_SPINLOCK(net_family_lock); 163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 164 165 /* 166 * Support routines. 167 * Move socket addresses back and forth across the kernel/user 168 * divide and look after the messy bits. 169 */ 170 171 /** 172 * move_addr_to_kernel - copy a socket address into kernel space 173 * @uaddr: Address in user space 174 * @kaddr: Address in kernel space 175 * @ulen: Length in user space 176 * 177 * The address is copied into kernel space. If the provided address is 178 * too long an error code of -EINVAL is returned. If the copy gives 179 * invalid addresses -EFAULT is returned. On a success 0 is returned. 180 */ 181 182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 183 { 184 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 185 return -EINVAL; 186 if (ulen == 0) 187 return 0; 188 if (copy_from_user(kaddr, uaddr, ulen)) 189 return -EFAULT; 190 return audit_sockaddr(ulen, kaddr); 191 } 192 193 /** 194 * move_addr_to_user - copy an address to user space 195 * @kaddr: kernel space address 196 * @klen: length of address in kernel 197 * @uaddr: user space address 198 * @ulen: pointer to user length field 199 * 200 * The value pointed to by ulen on entry is the buffer length available. 201 * This is overwritten with the buffer space used. -EINVAL is returned 202 * if an overlong buffer is specified or a negative buffer size. -EFAULT 203 * is returned if either the buffer or the length field are not 204 * accessible. 205 * After copying the data up to the limit the user specifies, the true 206 * length of the data is written over the length limit the user 207 * specified. Zero is returned for a success. 208 */ 209 210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 211 void __user *uaddr, int __user *ulen) 212 { 213 int err; 214 int len; 215 216 BUG_ON(klen > sizeof(struct sockaddr_storage)); 217 err = get_user(len, ulen); 218 if (err) 219 return err; 220 if (len > klen) 221 len = klen; 222 if (len < 0) 223 return -EINVAL; 224 if (len) { 225 if (audit_sockaddr(klen, kaddr)) 226 return -ENOMEM; 227 if (copy_to_user(uaddr, kaddr, len)) 228 return -EFAULT; 229 } 230 /* 231 * "fromlen shall refer to the value before truncation.." 232 * 1003.1g 233 */ 234 return __put_user(klen, ulen); 235 } 236 237 static struct kmem_cache *sock_inode_cachep __ro_after_init; 238 239 static struct inode *sock_alloc_inode(struct super_block *sb) 240 { 241 struct socket_alloc *ei; 242 struct socket_wq *wq; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 248 if (!wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&wq->wait); 253 wq->fasync_list = NULL; 254 wq->flags = 0; 255 ei->socket.wq = wq; 256 257 ei->socket.state = SS_UNCONNECTED; 258 ei->socket.flags = 0; 259 ei->socket.ops = NULL; 260 ei->socket.sk = NULL; 261 ei->socket.file = NULL; 262 263 return &ei->vfs_inode; 264 } 265 266 static void sock_destroy_inode(struct inode *inode) 267 { 268 struct socket_alloc *ei; 269 270 ei = container_of(inode, struct socket_alloc, vfs_inode); 271 kfree_rcu(ei->socket.wq, rcu); 272 kmem_cache_free(sock_inode_cachep, ei); 273 } 274 275 static void init_once(void *foo) 276 { 277 struct socket_alloc *ei = (struct socket_alloc *)foo; 278 279 inode_init_once(&ei->vfs_inode); 280 } 281 282 static void init_inodecache(void) 283 { 284 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 285 sizeof(struct socket_alloc), 286 0, 287 (SLAB_HWCACHE_ALIGN | 288 SLAB_RECLAIM_ACCOUNT | 289 SLAB_MEM_SPREAD | SLAB_ACCOUNT), 290 init_once); 291 BUG_ON(sock_inode_cachep == NULL); 292 } 293 294 static const struct super_operations sockfs_ops = { 295 .alloc_inode = sock_alloc_inode, 296 .destroy_inode = sock_destroy_inode, 297 .statfs = simple_statfs, 298 }; 299 300 /* 301 * sockfs_dname() is called from d_path(). 302 */ 303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 304 { 305 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 306 d_inode(dentry)->i_ino); 307 } 308 309 static const struct dentry_operations sockfs_dentry_operations = { 310 .d_dname = sockfs_dname, 311 }; 312 313 static int sockfs_xattr_get(const struct xattr_handler *handler, 314 struct dentry *dentry, struct inode *inode, 315 const char *suffix, void *value, size_t size) 316 { 317 if (value) { 318 if (dentry->d_name.len + 1 > size) 319 return -ERANGE; 320 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1); 321 } 322 return dentry->d_name.len + 1; 323 } 324 325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 328 329 static const struct xattr_handler sockfs_xattr_handler = { 330 .name = XATTR_NAME_SOCKPROTONAME, 331 .get = sockfs_xattr_get, 332 }; 333 334 static int sockfs_security_xattr_set(const struct xattr_handler *handler, 335 struct dentry *dentry, struct inode *inode, 336 const char *suffix, const void *value, 337 size_t size, int flags) 338 { 339 /* Handled by LSM. */ 340 return -EAGAIN; 341 } 342 343 static const struct xattr_handler sockfs_security_xattr_handler = { 344 .prefix = XATTR_SECURITY_PREFIX, 345 .set = sockfs_security_xattr_set, 346 }; 347 348 static const struct xattr_handler *sockfs_xattr_handlers[] = { 349 &sockfs_xattr_handler, 350 &sockfs_security_xattr_handler, 351 NULL 352 }; 353 354 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 355 int flags, const char *dev_name, void *data) 356 { 357 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops, 358 sockfs_xattr_handlers, 359 &sockfs_dentry_operations, SOCKFS_MAGIC); 360 } 361 362 static struct vfsmount *sock_mnt __read_mostly; 363 364 static struct file_system_type sock_fs_type = { 365 .name = "sockfs", 366 .mount = sockfs_mount, 367 .kill_sb = kill_anon_super, 368 }; 369 370 /* 371 * Obtains the first available file descriptor and sets it up for use. 372 * 373 * These functions create file structures and maps them to fd space 374 * of the current process. On success it returns file descriptor 375 * and file struct implicitly stored in sock->file. 376 * Note that another thread may close file descriptor before we return 377 * from this function. We use the fact that now we do not refer 378 * to socket after mapping. If one day we will need it, this 379 * function will increment ref. count on file by 1. 380 * 381 * In any case returned fd MAY BE not valid! 382 * This race condition is unavoidable 383 * with shared fd spaces, we cannot solve it inside kernel, 384 * but we take care of internal coherence yet. 385 */ 386 387 /** 388 * sock_alloc_file - Bind a &socket to a &file 389 * @sock: socket 390 * @flags: file status flags 391 * @dname: protocol name 392 * 393 * Returns the &file bound with @sock, implicitly storing it 394 * in sock->file. If dname is %NULL, sets to "". 395 * On failure the return is a ERR pointer (see linux/err.h). 396 * This function uses GFP_KERNEL internally. 397 */ 398 399 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 400 { 401 struct file *file; 402 403 if (!dname) 404 dname = sock->sk ? sock->sk->sk_prot_creator->name : ""; 405 406 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname, 407 O_RDWR | (flags & O_NONBLOCK), 408 &socket_file_ops); 409 if (IS_ERR(file)) { 410 sock_release(sock); 411 return file; 412 } 413 414 sock->file = file; 415 file->private_data = sock; 416 return file; 417 } 418 EXPORT_SYMBOL(sock_alloc_file); 419 420 static int sock_map_fd(struct socket *sock, int flags) 421 { 422 struct file *newfile; 423 int fd = get_unused_fd_flags(flags); 424 if (unlikely(fd < 0)) { 425 sock_release(sock); 426 return fd; 427 } 428 429 newfile = sock_alloc_file(sock, flags, NULL); 430 if (likely(!IS_ERR(newfile))) { 431 fd_install(fd, newfile); 432 return fd; 433 } 434 435 put_unused_fd(fd); 436 return PTR_ERR(newfile); 437 } 438 439 /** 440 * sock_from_file - Return the &socket bounded to @file. 441 * @file: file 442 * @err: pointer to an error code return 443 * 444 * On failure returns %NULL and assigns -ENOTSOCK to @err. 445 */ 446 447 struct socket *sock_from_file(struct file *file, int *err) 448 { 449 if (file->f_op == &socket_file_ops) 450 return file->private_data; /* set in sock_map_fd */ 451 452 *err = -ENOTSOCK; 453 return NULL; 454 } 455 EXPORT_SYMBOL(sock_from_file); 456 457 /** 458 * sockfd_lookup - Go from a file number to its socket slot 459 * @fd: file handle 460 * @err: pointer to an error code return 461 * 462 * The file handle passed in is locked and the socket it is bound 463 * to is returned. If an error occurs the err pointer is overwritten 464 * with a negative errno code and NULL is returned. The function checks 465 * for both invalid handles and passing a handle which is not a socket. 466 * 467 * On a success the socket object pointer is returned. 468 */ 469 470 struct socket *sockfd_lookup(int fd, int *err) 471 { 472 struct file *file; 473 struct socket *sock; 474 475 file = fget(fd); 476 if (!file) { 477 *err = -EBADF; 478 return NULL; 479 } 480 481 sock = sock_from_file(file, err); 482 if (!sock) 483 fput(file); 484 return sock; 485 } 486 EXPORT_SYMBOL(sockfd_lookup); 487 488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 489 { 490 struct fd f = fdget(fd); 491 struct socket *sock; 492 493 *err = -EBADF; 494 if (f.file) { 495 sock = sock_from_file(f.file, err); 496 if (likely(sock)) { 497 *fput_needed = f.flags; 498 return sock; 499 } 500 fdput(f); 501 } 502 return NULL; 503 } 504 505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 506 size_t size) 507 { 508 ssize_t len; 509 ssize_t used = 0; 510 511 len = security_inode_listsecurity(d_inode(dentry), buffer, size); 512 if (len < 0) 513 return len; 514 used += len; 515 if (buffer) { 516 if (size < used) 517 return -ERANGE; 518 buffer += len; 519 } 520 521 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 522 used += len; 523 if (buffer) { 524 if (size < used) 525 return -ERANGE; 526 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 527 buffer += len; 528 } 529 530 return used; 531 } 532 533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr) 534 { 535 int err = simple_setattr(dentry, iattr); 536 537 if (!err && (iattr->ia_valid & ATTR_UID)) { 538 struct socket *sock = SOCKET_I(d_inode(dentry)); 539 540 if (sock->sk) 541 sock->sk->sk_uid = iattr->ia_uid; 542 else 543 err = -ENOENT; 544 } 545 546 return err; 547 } 548 549 static const struct inode_operations sockfs_inode_ops = { 550 .listxattr = sockfs_listxattr, 551 .setattr = sockfs_setattr, 552 }; 553 554 /** 555 * sock_alloc - allocate a socket 556 * 557 * Allocate a new inode and socket object. The two are bound together 558 * and initialised. The socket is then returned. If we are out of inodes 559 * NULL is returned. This functions uses GFP_KERNEL internally. 560 */ 561 562 struct socket *sock_alloc(void) 563 { 564 struct inode *inode; 565 struct socket *sock; 566 567 inode = new_inode_pseudo(sock_mnt->mnt_sb); 568 if (!inode) 569 return NULL; 570 571 sock = SOCKET_I(inode); 572 573 inode->i_ino = get_next_ino(); 574 inode->i_mode = S_IFSOCK | S_IRWXUGO; 575 inode->i_uid = current_fsuid(); 576 inode->i_gid = current_fsgid(); 577 inode->i_op = &sockfs_inode_ops; 578 579 return sock; 580 } 581 EXPORT_SYMBOL(sock_alloc); 582 583 /** 584 * sock_release - close a socket 585 * @sock: socket to close 586 * 587 * The socket is released from the protocol stack if it has a release 588 * callback, and the inode is then released if the socket is bound to 589 * an inode not a file. 590 */ 591 592 static void __sock_release(struct socket *sock, struct inode *inode) 593 { 594 if (sock->ops) { 595 struct module *owner = sock->ops->owner; 596 597 if (inode) 598 inode_lock(inode); 599 sock->ops->release(sock); 600 sock->sk = NULL; 601 if (inode) 602 inode_unlock(inode); 603 sock->ops = NULL; 604 module_put(owner); 605 } 606 607 if (sock->wq->fasync_list) 608 pr_err("%s: fasync list not empty!\n", __func__); 609 610 if (!sock->file) { 611 iput(SOCK_INODE(sock)); 612 return; 613 } 614 sock->file = NULL; 615 } 616 617 void sock_release(struct socket *sock) 618 { 619 __sock_release(sock, NULL); 620 } 621 EXPORT_SYMBOL(sock_release); 622 623 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags) 624 { 625 u8 flags = *tx_flags; 626 627 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 628 flags |= SKBTX_HW_TSTAMP; 629 630 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 631 flags |= SKBTX_SW_TSTAMP; 632 633 if (tsflags & SOF_TIMESTAMPING_TX_SCHED) 634 flags |= SKBTX_SCHED_TSTAMP; 635 636 *tx_flags = flags; 637 } 638 EXPORT_SYMBOL(__sock_tx_timestamp); 639 640 /** 641 * sock_sendmsg - send a message through @sock 642 * @sock: socket 643 * @msg: message to send 644 * 645 * Sends @msg through @sock, passing through LSM. 646 * Returns the number of bytes sent, or an error code. 647 */ 648 649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 650 { 651 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 652 BUG_ON(ret == -EIOCBQUEUED); 653 return ret; 654 } 655 656 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 657 { 658 int err = security_socket_sendmsg(sock, msg, 659 msg_data_left(msg)); 660 661 return err ?: sock_sendmsg_nosec(sock, msg); 662 } 663 EXPORT_SYMBOL(sock_sendmsg); 664 665 /** 666 * kernel_sendmsg - send a message through @sock (kernel-space) 667 * @sock: socket 668 * @msg: message header 669 * @vec: kernel vec 670 * @num: vec array length 671 * @size: total message data size 672 * 673 * Builds the message data with @vec and sends it through @sock. 674 * Returns the number of bytes sent, or an error code. 675 */ 676 677 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 678 struct kvec *vec, size_t num, size_t size) 679 { 680 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 681 return sock_sendmsg(sock, msg); 682 } 683 EXPORT_SYMBOL(kernel_sendmsg); 684 685 /** 686 * kernel_sendmsg_locked - send a message through @sock (kernel-space) 687 * @sk: sock 688 * @msg: message header 689 * @vec: output s/g array 690 * @num: output s/g array length 691 * @size: total message data size 692 * 693 * Builds the message data with @vec and sends it through @sock. 694 * Returns the number of bytes sent, or an error code. 695 * Caller must hold @sk. 696 */ 697 698 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg, 699 struct kvec *vec, size_t num, size_t size) 700 { 701 struct socket *sock = sk->sk_socket; 702 703 if (!sock->ops->sendmsg_locked) 704 return sock_no_sendmsg_locked(sk, msg, size); 705 706 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size); 707 708 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg)); 709 } 710 EXPORT_SYMBOL(kernel_sendmsg_locked); 711 712 static bool skb_is_err_queue(const struct sk_buff *skb) 713 { 714 /* pkt_type of skbs enqueued on the error queue are set to 715 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do 716 * in recvmsg, since skbs received on a local socket will never 717 * have a pkt_type of PACKET_OUTGOING. 718 */ 719 return skb->pkt_type == PACKET_OUTGOING; 720 } 721 722 /* On transmit, software and hardware timestamps are returned independently. 723 * As the two skb clones share the hardware timestamp, which may be updated 724 * before the software timestamp is received, a hardware TX timestamp may be 725 * returned only if there is no software TX timestamp. Ignore false software 726 * timestamps, which may be made in the __sock_recv_timestamp() call when the 727 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a 728 * hardware timestamp. 729 */ 730 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp) 731 { 732 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb); 733 } 734 735 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb) 736 { 737 struct scm_ts_pktinfo ts_pktinfo; 738 struct net_device *orig_dev; 739 740 if (!skb_mac_header_was_set(skb)) 741 return; 742 743 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo)); 744 745 rcu_read_lock(); 746 orig_dev = dev_get_by_napi_id(skb_napi_id(skb)); 747 if (orig_dev) 748 ts_pktinfo.if_index = orig_dev->ifindex; 749 rcu_read_unlock(); 750 751 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb); 752 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO, 753 sizeof(ts_pktinfo), &ts_pktinfo); 754 } 755 756 /* 757 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 758 */ 759 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 760 struct sk_buff *skb) 761 { 762 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 763 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW); 764 struct scm_timestamping_internal tss; 765 766 int empty = 1, false_tstamp = 0; 767 struct skb_shared_hwtstamps *shhwtstamps = 768 skb_hwtstamps(skb); 769 770 /* Race occurred between timestamp enabling and packet 771 receiving. Fill in the current time for now. */ 772 if (need_software_tstamp && skb->tstamp == 0) { 773 __net_timestamp(skb); 774 false_tstamp = 1; 775 } 776 777 if (need_software_tstamp) { 778 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 779 if (new_tstamp) { 780 struct __kernel_sock_timeval tv; 781 782 skb_get_new_timestamp(skb, &tv); 783 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW, 784 sizeof(tv), &tv); 785 } else { 786 struct __kernel_old_timeval tv; 787 788 skb_get_timestamp(skb, &tv); 789 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD, 790 sizeof(tv), &tv); 791 } 792 } else { 793 if (new_tstamp) { 794 struct __kernel_timespec ts; 795 796 skb_get_new_timestampns(skb, &ts); 797 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW, 798 sizeof(ts), &ts); 799 } else { 800 struct timespec ts; 801 802 skb_get_timestampns(skb, &ts); 803 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD, 804 sizeof(ts), &ts); 805 } 806 } 807 } 808 809 memset(&tss, 0, sizeof(tss)); 810 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 811 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0)) 812 empty = 0; 813 if (shhwtstamps && 814 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 815 !skb_is_swtx_tstamp(skb, false_tstamp) && 816 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) { 817 empty = 0; 818 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) && 819 !skb_is_err_queue(skb)) 820 put_ts_pktinfo(msg, skb); 821 } 822 if (!empty) { 823 if (sock_flag(sk, SOCK_TSTAMP_NEW)) 824 put_cmsg_scm_timestamping64(msg, &tss); 825 else 826 put_cmsg_scm_timestamping(msg, &tss); 827 828 if (skb_is_err_queue(skb) && skb->len && 829 SKB_EXT_ERR(skb)->opt_stats) 830 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS, 831 skb->len, skb->data); 832 } 833 } 834 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 835 836 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 837 struct sk_buff *skb) 838 { 839 int ack; 840 841 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 842 return; 843 if (!skb->wifi_acked_valid) 844 return; 845 846 ack = skb->wifi_acked; 847 848 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 849 } 850 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 851 852 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 853 struct sk_buff *skb) 854 { 855 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 856 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 857 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 858 } 859 860 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 861 struct sk_buff *skb) 862 { 863 sock_recv_timestamp(msg, sk, skb); 864 sock_recv_drops(msg, sk, skb); 865 } 866 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 867 868 /** 869 * sock_recvmsg - receive a message from @sock 870 * @sock: socket 871 * @msg: message to receive 872 * @flags: message flags 873 * 874 * Receives @msg from @sock, passing through LSM. Returns the total number 875 * of bytes received, or an error. 876 */ 877 878 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 879 int flags) 880 { 881 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags); 882 } 883 884 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags) 885 { 886 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags); 887 888 return err ?: sock_recvmsg_nosec(sock, msg, flags); 889 } 890 EXPORT_SYMBOL(sock_recvmsg); 891 892 /** 893 * kernel_recvmsg - Receive a message from a socket (kernel space) 894 * @sock: The socket to receive the message from 895 * @msg: Received message 896 * @vec: Input s/g array for message data 897 * @num: Size of input s/g array 898 * @size: Number of bytes to read 899 * @flags: Message flags (MSG_DONTWAIT, etc...) 900 * 901 * On return the msg structure contains the scatter/gather array passed in the 902 * vec argument. The array is modified so that it consists of the unfilled 903 * portion of the original array. 904 * 905 * The returned value is the total number of bytes received, or an error. 906 */ 907 908 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 909 struct kvec *vec, size_t num, size_t size, int flags) 910 { 911 mm_segment_t oldfs = get_fs(); 912 int result; 913 914 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size); 915 set_fs(KERNEL_DS); 916 result = sock_recvmsg(sock, msg, flags); 917 set_fs(oldfs); 918 return result; 919 } 920 EXPORT_SYMBOL(kernel_recvmsg); 921 922 static ssize_t sock_sendpage(struct file *file, struct page *page, 923 int offset, size_t size, loff_t *ppos, int more) 924 { 925 struct socket *sock; 926 int flags; 927 928 sock = file->private_data; 929 930 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 931 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 932 flags |= more; 933 934 return kernel_sendpage(sock, page, offset, size, flags); 935 } 936 937 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 938 struct pipe_inode_info *pipe, size_t len, 939 unsigned int flags) 940 { 941 struct socket *sock = file->private_data; 942 943 if (unlikely(!sock->ops->splice_read)) 944 return generic_file_splice_read(file, ppos, pipe, len, flags); 945 946 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 947 } 948 949 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 950 { 951 struct file *file = iocb->ki_filp; 952 struct socket *sock = file->private_data; 953 struct msghdr msg = {.msg_iter = *to, 954 .msg_iocb = iocb}; 955 ssize_t res; 956 957 if (file->f_flags & O_NONBLOCK) 958 msg.msg_flags = MSG_DONTWAIT; 959 960 if (iocb->ki_pos != 0) 961 return -ESPIPE; 962 963 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 964 return 0; 965 966 res = sock_recvmsg(sock, &msg, msg.msg_flags); 967 *to = msg.msg_iter; 968 return res; 969 } 970 971 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 972 { 973 struct file *file = iocb->ki_filp; 974 struct socket *sock = file->private_data; 975 struct msghdr msg = {.msg_iter = *from, 976 .msg_iocb = iocb}; 977 ssize_t res; 978 979 if (iocb->ki_pos != 0) 980 return -ESPIPE; 981 982 if (file->f_flags & O_NONBLOCK) 983 msg.msg_flags = MSG_DONTWAIT; 984 985 if (sock->type == SOCK_SEQPACKET) 986 msg.msg_flags |= MSG_EOR; 987 988 res = sock_sendmsg(sock, &msg); 989 *from = msg.msg_iter; 990 return res; 991 } 992 993 /* 994 * Atomic setting of ioctl hooks to avoid race 995 * with module unload. 996 */ 997 998 static DEFINE_MUTEX(br_ioctl_mutex); 999 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 1000 1001 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 1002 { 1003 mutex_lock(&br_ioctl_mutex); 1004 br_ioctl_hook = hook; 1005 mutex_unlock(&br_ioctl_mutex); 1006 } 1007 EXPORT_SYMBOL(brioctl_set); 1008 1009 static DEFINE_MUTEX(vlan_ioctl_mutex); 1010 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 1011 1012 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 1013 { 1014 mutex_lock(&vlan_ioctl_mutex); 1015 vlan_ioctl_hook = hook; 1016 mutex_unlock(&vlan_ioctl_mutex); 1017 } 1018 EXPORT_SYMBOL(vlan_ioctl_set); 1019 1020 static DEFINE_MUTEX(dlci_ioctl_mutex); 1021 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 1022 1023 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 1024 { 1025 mutex_lock(&dlci_ioctl_mutex); 1026 dlci_ioctl_hook = hook; 1027 mutex_unlock(&dlci_ioctl_mutex); 1028 } 1029 EXPORT_SYMBOL(dlci_ioctl_set); 1030 1031 static long sock_do_ioctl(struct net *net, struct socket *sock, 1032 unsigned int cmd, unsigned long arg) 1033 { 1034 int err; 1035 void __user *argp = (void __user *)arg; 1036 1037 err = sock->ops->ioctl(sock, cmd, arg); 1038 1039 /* 1040 * If this ioctl is unknown try to hand it down 1041 * to the NIC driver. 1042 */ 1043 if (err != -ENOIOCTLCMD) 1044 return err; 1045 1046 if (cmd == SIOCGIFCONF) { 1047 struct ifconf ifc; 1048 if (copy_from_user(&ifc, argp, sizeof(struct ifconf))) 1049 return -EFAULT; 1050 rtnl_lock(); 1051 err = dev_ifconf(net, &ifc, sizeof(struct ifreq)); 1052 rtnl_unlock(); 1053 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf))) 1054 err = -EFAULT; 1055 } else { 1056 struct ifreq ifr; 1057 bool need_copyout; 1058 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1059 return -EFAULT; 1060 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1061 if (!err && need_copyout) 1062 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1063 return -EFAULT; 1064 } 1065 return err; 1066 } 1067 1068 /* 1069 * With an ioctl, arg may well be a user mode pointer, but we don't know 1070 * what to do with it - that's up to the protocol still. 1071 */ 1072 1073 /** 1074 * get_net_ns - increment the refcount of the network namespace 1075 * @ns: common namespace (net) 1076 * 1077 * Returns the net's common namespace. 1078 */ 1079 1080 struct ns_common *get_net_ns(struct ns_common *ns) 1081 { 1082 return &get_net(container_of(ns, struct net, ns))->ns; 1083 } 1084 EXPORT_SYMBOL_GPL(get_net_ns); 1085 1086 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 1087 { 1088 struct socket *sock; 1089 struct sock *sk; 1090 void __user *argp = (void __user *)arg; 1091 int pid, err; 1092 struct net *net; 1093 1094 sock = file->private_data; 1095 sk = sock->sk; 1096 net = sock_net(sk); 1097 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) { 1098 struct ifreq ifr; 1099 bool need_copyout; 1100 if (copy_from_user(&ifr, argp, sizeof(struct ifreq))) 1101 return -EFAULT; 1102 err = dev_ioctl(net, cmd, &ifr, &need_copyout); 1103 if (!err && need_copyout) 1104 if (copy_to_user(argp, &ifr, sizeof(struct ifreq))) 1105 return -EFAULT; 1106 } else 1107 #ifdef CONFIG_WEXT_CORE 1108 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 1109 err = wext_handle_ioctl(net, cmd, argp); 1110 } else 1111 #endif 1112 switch (cmd) { 1113 case FIOSETOWN: 1114 case SIOCSPGRP: 1115 err = -EFAULT; 1116 if (get_user(pid, (int __user *)argp)) 1117 break; 1118 err = f_setown(sock->file, pid, 1); 1119 break; 1120 case FIOGETOWN: 1121 case SIOCGPGRP: 1122 err = put_user(f_getown(sock->file), 1123 (int __user *)argp); 1124 break; 1125 case SIOCGIFBR: 1126 case SIOCSIFBR: 1127 case SIOCBRADDBR: 1128 case SIOCBRDELBR: 1129 err = -ENOPKG; 1130 if (!br_ioctl_hook) 1131 request_module("bridge"); 1132 1133 mutex_lock(&br_ioctl_mutex); 1134 if (br_ioctl_hook) 1135 err = br_ioctl_hook(net, cmd, argp); 1136 mutex_unlock(&br_ioctl_mutex); 1137 break; 1138 case SIOCGIFVLAN: 1139 case SIOCSIFVLAN: 1140 err = -ENOPKG; 1141 if (!vlan_ioctl_hook) 1142 request_module("8021q"); 1143 1144 mutex_lock(&vlan_ioctl_mutex); 1145 if (vlan_ioctl_hook) 1146 err = vlan_ioctl_hook(net, argp); 1147 mutex_unlock(&vlan_ioctl_mutex); 1148 break; 1149 case SIOCADDDLCI: 1150 case SIOCDELDLCI: 1151 err = -ENOPKG; 1152 if (!dlci_ioctl_hook) 1153 request_module("dlci"); 1154 1155 mutex_lock(&dlci_ioctl_mutex); 1156 if (dlci_ioctl_hook) 1157 err = dlci_ioctl_hook(cmd, argp); 1158 mutex_unlock(&dlci_ioctl_mutex); 1159 break; 1160 case SIOCGSKNS: 1161 err = -EPERM; 1162 if (!ns_capable(net->user_ns, CAP_NET_ADMIN)) 1163 break; 1164 1165 err = open_related_ns(&net->ns, get_net_ns); 1166 break; 1167 case SIOCGSTAMP_OLD: 1168 case SIOCGSTAMPNS_OLD: 1169 if (!sock->ops->gettstamp) { 1170 err = -ENOIOCTLCMD; 1171 break; 1172 } 1173 err = sock->ops->gettstamp(sock, argp, 1174 cmd == SIOCGSTAMP_OLD, 1175 !IS_ENABLED(CONFIG_64BIT)); 1176 break; 1177 case SIOCGSTAMP_NEW: 1178 case SIOCGSTAMPNS_NEW: 1179 if (!sock->ops->gettstamp) { 1180 err = -ENOIOCTLCMD; 1181 break; 1182 } 1183 err = sock->ops->gettstamp(sock, argp, 1184 cmd == SIOCGSTAMP_NEW, 1185 false); 1186 break; 1187 default: 1188 err = sock_do_ioctl(net, sock, cmd, arg); 1189 break; 1190 } 1191 return err; 1192 } 1193 1194 /** 1195 * sock_create_lite - creates a socket 1196 * @family: protocol family (AF_INET, ...) 1197 * @type: communication type (SOCK_STREAM, ...) 1198 * @protocol: protocol (0, ...) 1199 * @res: new socket 1200 * 1201 * Creates a new socket and assigns it to @res, passing through LSM. 1202 * The new socket initialization is not complete, see kernel_accept(). 1203 * Returns 0 or an error. On failure @res is set to %NULL. 1204 * This function internally uses GFP_KERNEL. 1205 */ 1206 1207 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1208 { 1209 int err; 1210 struct socket *sock = NULL; 1211 1212 err = security_socket_create(family, type, protocol, 1); 1213 if (err) 1214 goto out; 1215 1216 sock = sock_alloc(); 1217 if (!sock) { 1218 err = -ENOMEM; 1219 goto out; 1220 } 1221 1222 sock->type = type; 1223 err = security_socket_post_create(sock, family, type, protocol, 1); 1224 if (err) 1225 goto out_release; 1226 1227 out: 1228 *res = sock; 1229 return err; 1230 out_release: 1231 sock_release(sock); 1232 sock = NULL; 1233 goto out; 1234 } 1235 EXPORT_SYMBOL(sock_create_lite); 1236 1237 /* No kernel lock held - perfect */ 1238 static __poll_t sock_poll(struct file *file, poll_table *wait) 1239 { 1240 struct socket *sock = file->private_data; 1241 __poll_t events = poll_requested_events(wait), flag = 0; 1242 1243 if (!sock->ops->poll) 1244 return 0; 1245 1246 if (sk_can_busy_loop(sock->sk)) { 1247 /* poll once if requested by the syscall */ 1248 if (events & POLL_BUSY_LOOP) 1249 sk_busy_loop(sock->sk, 1); 1250 1251 /* if this socket can poll_ll, tell the system call */ 1252 flag = POLL_BUSY_LOOP; 1253 } 1254 1255 return sock->ops->poll(file, sock, wait) | flag; 1256 } 1257 1258 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1259 { 1260 struct socket *sock = file->private_data; 1261 1262 return sock->ops->mmap(file, sock, vma); 1263 } 1264 1265 static int sock_close(struct inode *inode, struct file *filp) 1266 { 1267 __sock_release(SOCKET_I(inode), inode); 1268 return 0; 1269 } 1270 1271 /* 1272 * Update the socket async list 1273 * 1274 * Fasync_list locking strategy. 1275 * 1276 * 1. fasync_list is modified only under process context socket lock 1277 * i.e. under semaphore. 1278 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1279 * or under socket lock 1280 */ 1281 1282 static int sock_fasync(int fd, struct file *filp, int on) 1283 { 1284 struct socket *sock = filp->private_data; 1285 struct sock *sk = sock->sk; 1286 struct socket_wq *wq; 1287 1288 if (sk == NULL) 1289 return -EINVAL; 1290 1291 lock_sock(sk); 1292 wq = sock->wq; 1293 fasync_helper(fd, filp, on, &wq->fasync_list); 1294 1295 if (!wq->fasync_list) 1296 sock_reset_flag(sk, SOCK_FASYNC); 1297 else 1298 sock_set_flag(sk, SOCK_FASYNC); 1299 1300 release_sock(sk); 1301 return 0; 1302 } 1303 1304 /* This function may be called only under rcu_lock */ 1305 1306 int sock_wake_async(struct socket_wq *wq, int how, int band) 1307 { 1308 if (!wq || !wq->fasync_list) 1309 return -1; 1310 1311 switch (how) { 1312 case SOCK_WAKE_WAITD: 1313 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags)) 1314 break; 1315 goto call_kill; 1316 case SOCK_WAKE_SPACE: 1317 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags)) 1318 break; 1319 /* fall through */ 1320 case SOCK_WAKE_IO: 1321 call_kill: 1322 kill_fasync(&wq->fasync_list, SIGIO, band); 1323 break; 1324 case SOCK_WAKE_URG: 1325 kill_fasync(&wq->fasync_list, SIGURG, band); 1326 } 1327 1328 return 0; 1329 } 1330 EXPORT_SYMBOL(sock_wake_async); 1331 1332 /** 1333 * __sock_create - creates a socket 1334 * @net: net namespace 1335 * @family: protocol family (AF_INET, ...) 1336 * @type: communication type (SOCK_STREAM, ...) 1337 * @protocol: protocol (0, ...) 1338 * @res: new socket 1339 * @kern: boolean for kernel space sockets 1340 * 1341 * Creates a new socket and assigns it to @res, passing through LSM. 1342 * Returns 0 or an error. On failure @res is set to %NULL. @kern must 1343 * be set to true if the socket resides in kernel space. 1344 * This function internally uses GFP_KERNEL. 1345 */ 1346 1347 int __sock_create(struct net *net, int family, int type, int protocol, 1348 struct socket **res, int kern) 1349 { 1350 int err; 1351 struct socket *sock; 1352 const struct net_proto_family *pf; 1353 1354 /* 1355 * Check protocol is in range 1356 */ 1357 if (family < 0 || family >= NPROTO) 1358 return -EAFNOSUPPORT; 1359 if (type < 0 || type >= SOCK_MAX) 1360 return -EINVAL; 1361 1362 /* Compatibility. 1363 1364 This uglymoron is moved from INET layer to here to avoid 1365 deadlock in module load. 1366 */ 1367 if (family == PF_INET && type == SOCK_PACKET) { 1368 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1369 current->comm); 1370 family = PF_PACKET; 1371 } 1372 1373 err = security_socket_create(family, type, protocol, kern); 1374 if (err) 1375 return err; 1376 1377 /* 1378 * Allocate the socket and allow the family to set things up. if 1379 * the protocol is 0, the family is instructed to select an appropriate 1380 * default. 1381 */ 1382 sock = sock_alloc(); 1383 if (!sock) { 1384 net_warn_ratelimited("socket: no more sockets\n"); 1385 return -ENFILE; /* Not exactly a match, but its the 1386 closest posix thing */ 1387 } 1388 1389 sock->type = type; 1390 1391 #ifdef CONFIG_MODULES 1392 /* Attempt to load a protocol module if the find failed. 1393 * 1394 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1395 * requested real, full-featured networking support upon configuration. 1396 * Otherwise module support will break! 1397 */ 1398 if (rcu_access_pointer(net_families[family]) == NULL) 1399 request_module("net-pf-%d", family); 1400 #endif 1401 1402 rcu_read_lock(); 1403 pf = rcu_dereference(net_families[family]); 1404 err = -EAFNOSUPPORT; 1405 if (!pf) 1406 goto out_release; 1407 1408 /* 1409 * We will call the ->create function, that possibly is in a loadable 1410 * module, so we have to bump that loadable module refcnt first. 1411 */ 1412 if (!try_module_get(pf->owner)) 1413 goto out_release; 1414 1415 /* Now protected by module ref count */ 1416 rcu_read_unlock(); 1417 1418 err = pf->create(net, sock, protocol, kern); 1419 if (err < 0) 1420 goto out_module_put; 1421 1422 /* 1423 * Now to bump the refcnt of the [loadable] module that owns this 1424 * socket at sock_release time we decrement its refcnt. 1425 */ 1426 if (!try_module_get(sock->ops->owner)) 1427 goto out_module_busy; 1428 1429 /* 1430 * Now that we're done with the ->create function, the [loadable] 1431 * module can have its refcnt decremented 1432 */ 1433 module_put(pf->owner); 1434 err = security_socket_post_create(sock, family, type, protocol, kern); 1435 if (err) 1436 goto out_sock_release; 1437 *res = sock; 1438 1439 return 0; 1440 1441 out_module_busy: 1442 err = -EAFNOSUPPORT; 1443 out_module_put: 1444 sock->ops = NULL; 1445 module_put(pf->owner); 1446 out_sock_release: 1447 sock_release(sock); 1448 return err; 1449 1450 out_release: 1451 rcu_read_unlock(); 1452 goto out_sock_release; 1453 } 1454 EXPORT_SYMBOL(__sock_create); 1455 1456 /** 1457 * sock_create - creates a socket 1458 * @family: protocol family (AF_INET, ...) 1459 * @type: communication type (SOCK_STREAM, ...) 1460 * @protocol: protocol (0, ...) 1461 * @res: new socket 1462 * 1463 * A wrapper around __sock_create(). 1464 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1465 */ 1466 1467 int sock_create(int family, int type, int protocol, struct socket **res) 1468 { 1469 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1470 } 1471 EXPORT_SYMBOL(sock_create); 1472 1473 /** 1474 * sock_create_kern - creates a socket (kernel space) 1475 * @net: net namespace 1476 * @family: protocol family (AF_INET, ...) 1477 * @type: communication type (SOCK_STREAM, ...) 1478 * @protocol: protocol (0, ...) 1479 * @res: new socket 1480 * 1481 * A wrapper around __sock_create(). 1482 * Returns 0 or an error. This function internally uses GFP_KERNEL. 1483 */ 1484 1485 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res) 1486 { 1487 return __sock_create(net, family, type, protocol, res, 1); 1488 } 1489 EXPORT_SYMBOL(sock_create_kern); 1490 1491 int __sys_socket(int family, int type, int protocol) 1492 { 1493 int retval; 1494 struct socket *sock; 1495 int flags; 1496 1497 /* Check the SOCK_* constants for consistency. */ 1498 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1499 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1500 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1501 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1502 1503 flags = type & ~SOCK_TYPE_MASK; 1504 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1505 return -EINVAL; 1506 type &= SOCK_TYPE_MASK; 1507 1508 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1509 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1510 1511 retval = sock_create(family, type, protocol, &sock); 1512 if (retval < 0) 1513 return retval; 1514 1515 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1516 } 1517 1518 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1519 { 1520 return __sys_socket(family, type, protocol); 1521 } 1522 1523 /* 1524 * Create a pair of connected sockets. 1525 */ 1526 1527 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec) 1528 { 1529 struct socket *sock1, *sock2; 1530 int fd1, fd2, err; 1531 struct file *newfile1, *newfile2; 1532 int flags; 1533 1534 flags = type & ~SOCK_TYPE_MASK; 1535 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1536 return -EINVAL; 1537 type &= SOCK_TYPE_MASK; 1538 1539 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1540 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1541 1542 /* 1543 * reserve descriptors and make sure we won't fail 1544 * to return them to userland. 1545 */ 1546 fd1 = get_unused_fd_flags(flags); 1547 if (unlikely(fd1 < 0)) 1548 return fd1; 1549 1550 fd2 = get_unused_fd_flags(flags); 1551 if (unlikely(fd2 < 0)) { 1552 put_unused_fd(fd1); 1553 return fd2; 1554 } 1555 1556 err = put_user(fd1, &usockvec[0]); 1557 if (err) 1558 goto out; 1559 1560 err = put_user(fd2, &usockvec[1]); 1561 if (err) 1562 goto out; 1563 1564 /* 1565 * Obtain the first socket and check if the underlying protocol 1566 * supports the socketpair call. 1567 */ 1568 1569 err = sock_create(family, type, protocol, &sock1); 1570 if (unlikely(err < 0)) 1571 goto out; 1572 1573 err = sock_create(family, type, protocol, &sock2); 1574 if (unlikely(err < 0)) { 1575 sock_release(sock1); 1576 goto out; 1577 } 1578 1579 err = security_socket_socketpair(sock1, sock2); 1580 if (unlikely(err)) { 1581 sock_release(sock2); 1582 sock_release(sock1); 1583 goto out; 1584 } 1585 1586 err = sock1->ops->socketpair(sock1, sock2); 1587 if (unlikely(err < 0)) { 1588 sock_release(sock2); 1589 sock_release(sock1); 1590 goto out; 1591 } 1592 1593 newfile1 = sock_alloc_file(sock1, flags, NULL); 1594 if (IS_ERR(newfile1)) { 1595 err = PTR_ERR(newfile1); 1596 sock_release(sock2); 1597 goto out; 1598 } 1599 1600 newfile2 = sock_alloc_file(sock2, flags, NULL); 1601 if (IS_ERR(newfile2)) { 1602 err = PTR_ERR(newfile2); 1603 fput(newfile1); 1604 goto out; 1605 } 1606 1607 audit_fd_pair(fd1, fd2); 1608 1609 fd_install(fd1, newfile1); 1610 fd_install(fd2, newfile2); 1611 return 0; 1612 1613 out: 1614 put_unused_fd(fd2); 1615 put_unused_fd(fd1); 1616 return err; 1617 } 1618 1619 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1620 int __user *, usockvec) 1621 { 1622 return __sys_socketpair(family, type, protocol, usockvec); 1623 } 1624 1625 /* 1626 * Bind a name to a socket. Nothing much to do here since it's 1627 * the protocol's responsibility to handle the local address. 1628 * 1629 * We move the socket address to kernel space before we call 1630 * the protocol layer (having also checked the address is ok). 1631 */ 1632 1633 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1634 { 1635 struct socket *sock; 1636 struct sockaddr_storage address; 1637 int err, fput_needed; 1638 1639 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1640 if (sock) { 1641 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1642 if (!err) { 1643 err = security_socket_bind(sock, 1644 (struct sockaddr *)&address, 1645 addrlen); 1646 if (!err) 1647 err = sock->ops->bind(sock, 1648 (struct sockaddr *) 1649 &address, addrlen); 1650 } 1651 fput_light(sock->file, fput_needed); 1652 } 1653 return err; 1654 } 1655 1656 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1657 { 1658 return __sys_bind(fd, umyaddr, addrlen); 1659 } 1660 1661 /* 1662 * Perform a listen. Basically, we allow the protocol to do anything 1663 * necessary for a listen, and if that works, we mark the socket as 1664 * ready for listening. 1665 */ 1666 1667 int __sys_listen(int fd, int backlog) 1668 { 1669 struct socket *sock; 1670 int err, fput_needed; 1671 int somaxconn; 1672 1673 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1674 if (sock) { 1675 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1676 if ((unsigned int)backlog > somaxconn) 1677 backlog = somaxconn; 1678 1679 err = security_socket_listen(sock, backlog); 1680 if (!err) 1681 err = sock->ops->listen(sock, backlog); 1682 1683 fput_light(sock->file, fput_needed); 1684 } 1685 return err; 1686 } 1687 1688 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1689 { 1690 return __sys_listen(fd, backlog); 1691 } 1692 1693 /* 1694 * For accept, we attempt to create a new socket, set up the link 1695 * with the client, wake up the client, then return the new 1696 * connected fd. We collect the address of the connector in kernel 1697 * space and move it to user at the very end. This is unclean because 1698 * we open the socket then return an error. 1699 * 1700 * 1003.1g adds the ability to recvmsg() to query connection pending 1701 * status to recvmsg. We need to add that support in a way thats 1702 * clean when we restructure accept also. 1703 */ 1704 1705 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1706 int __user *upeer_addrlen, int flags) 1707 { 1708 struct socket *sock, *newsock; 1709 struct file *newfile; 1710 int err, len, newfd, fput_needed; 1711 struct sockaddr_storage address; 1712 1713 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1714 return -EINVAL; 1715 1716 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1717 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1718 1719 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1720 if (!sock) 1721 goto out; 1722 1723 err = -ENFILE; 1724 newsock = sock_alloc(); 1725 if (!newsock) 1726 goto out_put; 1727 1728 newsock->type = sock->type; 1729 newsock->ops = sock->ops; 1730 1731 /* 1732 * We don't need try_module_get here, as the listening socket (sock) 1733 * has the protocol module (sock->ops->owner) held. 1734 */ 1735 __module_get(newsock->ops->owner); 1736 1737 newfd = get_unused_fd_flags(flags); 1738 if (unlikely(newfd < 0)) { 1739 err = newfd; 1740 sock_release(newsock); 1741 goto out_put; 1742 } 1743 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1744 if (IS_ERR(newfile)) { 1745 err = PTR_ERR(newfile); 1746 put_unused_fd(newfd); 1747 goto out_put; 1748 } 1749 1750 err = security_socket_accept(sock, newsock); 1751 if (err) 1752 goto out_fd; 1753 1754 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false); 1755 if (err < 0) 1756 goto out_fd; 1757 1758 if (upeer_sockaddr) { 1759 len = newsock->ops->getname(newsock, 1760 (struct sockaddr *)&address, 2); 1761 if (len < 0) { 1762 err = -ECONNABORTED; 1763 goto out_fd; 1764 } 1765 err = move_addr_to_user(&address, 1766 len, upeer_sockaddr, upeer_addrlen); 1767 if (err < 0) 1768 goto out_fd; 1769 } 1770 1771 /* File flags are not inherited via accept() unlike another OSes. */ 1772 1773 fd_install(newfd, newfile); 1774 err = newfd; 1775 1776 out_put: 1777 fput_light(sock->file, fput_needed); 1778 out: 1779 return err; 1780 out_fd: 1781 fput(newfile); 1782 put_unused_fd(newfd); 1783 goto out_put; 1784 } 1785 1786 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1787 int __user *, upeer_addrlen, int, flags) 1788 { 1789 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags); 1790 } 1791 1792 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1793 int __user *, upeer_addrlen) 1794 { 1795 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1796 } 1797 1798 /* 1799 * Attempt to connect to a socket with the server address. The address 1800 * is in user space so we verify it is OK and move it to kernel space. 1801 * 1802 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1803 * break bindings 1804 * 1805 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1806 * other SEQPACKET protocols that take time to connect() as it doesn't 1807 * include the -EINPROGRESS status for such sockets. 1808 */ 1809 1810 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen) 1811 { 1812 struct socket *sock; 1813 struct sockaddr_storage address; 1814 int err, fput_needed; 1815 1816 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1817 if (!sock) 1818 goto out; 1819 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1820 if (err < 0) 1821 goto out_put; 1822 1823 err = 1824 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1825 if (err) 1826 goto out_put; 1827 1828 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1829 sock->file->f_flags); 1830 out_put: 1831 fput_light(sock->file, fput_needed); 1832 out: 1833 return err; 1834 } 1835 1836 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1837 int, addrlen) 1838 { 1839 return __sys_connect(fd, uservaddr, addrlen); 1840 } 1841 1842 /* 1843 * Get the local address ('name') of a socket object. Move the obtained 1844 * name to user space. 1845 */ 1846 1847 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1848 int __user *usockaddr_len) 1849 { 1850 struct socket *sock; 1851 struct sockaddr_storage address; 1852 int err, fput_needed; 1853 1854 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1855 if (!sock) 1856 goto out; 1857 1858 err = security_socket_getsockname(sock); 1859 if (err) 1860 goto out_put; 1861 1862 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0); 1863 if (err < 0) 1864 goto out_put; 1865 /* "err" is actually length in this case */ 1866 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len); 1867 1868 out_put: 1869 fput_light(sock->file, fput_needed); 1870 out: 1871 return err; 1872 } 1873 1874 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1875 int __user *, usockaddr_len) 1876 { 1877 return __sys_getsockname(fd, usockaddr, usockaddr_len); 1878 } 1879 1880 /* 1881 * Get the remote address ('name') of a socket object. Move the obtained 1882 * name to user space. 1883 */ 1884 1885 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1886 int __user *usockaddr_len) 1887 { 1888 struct socket *sock; 1889 struct sockaddr_storage address; 1890 int err, fput_needed; 1891 1892 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1893 if (sock != NULL) { 1894 err = security_socket_getpeername(sock); 1895 if (err) { 1896 fput_light(sock->file, fput_needed); 1897 return err; 1898 } 1899 1900 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1); 1901 if (err >= 0) 1902 /* "err" is actually length in this case */ 1903 err = move_addr_to_user(&address, err, usockaddr, 1904 usockaddr_len); 1905 fput_light(sock->file, fput_needed); 1906 } 1907 return err; 1908 } 1909 1910 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1911 int __user *, usockaddr_len) 1912 { 1913 return __sys_getpeername(fd, usockaddr, usockaddr_len); 1914 } 1915 1916 /* 1917 * Send a datagram to a given address. We move the address into kernel 1918 * space and check the user space data area is readable before invoking 1919 * the protocol. 1920 */ 1921 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags, 1922 struct sockaddr __user *addr, int addr_len) 1923 { 1924 struct socket *sock; 1925 struct sockaddr_storage address; 1926 int err; 1927 struct msghdr msg; 1928 struct iovec iov; 1929 int fput_needed; 1930 1931 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1932 if (unlikely(err)) 1933 return err; 1934 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1935 if (!sock) 1936 goto out; 1937 1938 msg.msg_name = NULL; 1939 msg.msg_control = NULL; 1940 msg.msg_controllen = 0; 1941 msg.msg_namelen = 0; 1942 if (addr) { 1943 err = move_addr_to_kernel(addr, addr_len, &address); 1944 if (err < 0) 1945 goto out_put; 1946 msg.msg_name = (struct sockaddr *)&address; 1947 msg.msg_namelen = addr_len; 1948 } 1949 if (sock->file->f_flags & O_NONBLOCK) 1950 flags |= MSG_DONTWAIT; 1951 msg.msg_flags = flags; 1952 err = sock_sendmsg(sock, &msg); 1953 1954 out_put: 1955 fput_light(sock->file, fput_needed); 1956 out: 1957 return err; 1958 } 1959 1960 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1961 unsigned int, flags, struct sockaddr __user *, addr, 1962 int, addr_len) 1963 { 1964 return __sys_sendto(fd, buff, len, flags, addr, addr_len); 1965 } 1966 1967 /* 1968 * Send a datagram down a socket. 1969 */ 1970 1971 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1972 unsigned int, flags) 1973 { 1974 return __sys_sendto(fd, buff, len, flags, NULL, 0); 1975 } 1976 1977 /* 1978 * Receive a frame from the socket and optionally record the address of the 1979 * sender. We verify the buffers are writable and if needed move the 1980 * sender address from kernel to user space. 1981 */ 1982 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags, 1983 struct sockaddr __user *addr, int __user *addr_len) 1984 { 1985 struct socket *sock; 1986 struct iovec iov; 1987 struct msghdr msg; 1988 struct sockaddr_storage address; 1989 int err, err2; 1990 int fput_needed; 1991 1992 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1993 if (unlikely(err)) 1994 return err; 1995 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1996 if (!sock) 1997 goto out; 1998 1999 msg.msg_control = NULL; 2000 msg.msg_controllen = 0; 2001 /* Save some cycles and don't copy the address if not needed */ 2002 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 2003 /* We assume all kernel code knows the size of sockaddr_storage */ 2004 msg.msg_namelen = 0; 2005 msg.msg_iocb = NULL; 2006 msg.msg_flags = 0; 2007 if (sock->file->f_flags & O_NONBLOCK) 2008 flags |= MSG_DONTWAIT; 2009 err = sock_recvmsg(sock, &msg, flags); 2010 2011 if (err >= 0 && addr != NULL) { 2012 err2 = move_addr_to_user(&address, 2013 msg.msg_namelen, addr, addr_len); 2014 if (err2 < 0) 2015 err = err2; 2016 } 2017 2018 fput_light(sock->file, fput_needed); 2019 out: 2020 return err; 2021 } 2022 2023 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 2024 unsigned int, flags, struct sockaddr __user *, addr, 2025 int __user *, addr_len) 2026 { 2027 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len); 2028 } 2029 2030 /* 2031 * Receive a datagram from a socket. 2032 */ 2033 2034 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 2035 unsigned int, flags) 2036 { 2037 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 2038 } 2039 2040 /* 2041 * Set a socket option. Because we don't know the option lengths we have 2042 * to pass the user mode parameter for the protocols to sort out. 2043 */ 2044 2045 static int __sys_setsockopt(int fd, int level, int optname, 2046 char __user *optval, int optlen) 2047 { 2048 int err, fput_needed; 2049 struct socket *sock; 2050 2051 if (optlen < 0) 2052 return -EINVAL; 2053 2054 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2055 if (sock != NULL) { 2056 err = security_socket_setsockopt(sock, level, optname); 2057 if (err) 2058 goto out_put; 2059 2060 if (level == SOL_SOCKET) 2061 err = 2062 sock_setsockopt(sock, level, optname, optval, 2063 optlen); 2064 else 2065 err = 2066 sock->ops->setsockopt(sock, level, optname, optval, 2067 optlen); 2068 out_put: 2069 fput_light(sock->file, fput_needed); 2070 } 2071 return err; 2072 } 2073 2074 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 2075 char __user *, optval, int, optlen) 2076 { 2077 return __sys_setsockopt(fd, level, optname, optval, optlen); 2078 } 2079 2080 /* 2081 * Get a socket option. Because we don't know the option lengths we have 2082 * to pass a user mode parameter for the protocols to sort out. 2083 */ 2084 2085 static int __sys_getsockopt(int fd, int level, int optname, 2086 char __user *optval, int __user *optlen) 2087 { 2088 int err, fput_needed; 2089 struct socket *sock; 2090 2091 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2092 if (sock != NULL) { 2093 err = security_socket_getsockopt(sock, level, optname); 2094 if (err) 2095 goto out_put; 2096 2097 if (level == SOL_SOCKET) 2098 err = 2099 sock_getsockopt(sock, level, optname, optval, 2100 optlen); 2101 else 2102 err = 2103 sock->ops->getsockopt(sock, level, optname, optval, 2104 optlen); 2105 out_put: 2106 fput_light(sock->file, fput_needed); 2107 } 2108 return err; 2109 } 2110 2111 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 2112 char __user *, optval, int __user *, optlen) 2113 { 2114 return __sys_getsockopt(fd, level, optname, optval, optlen); 2115 } 2116 2117 /* 2118 * Shutdown a socket. 2119 */ 2120 2121 int __sys_shutdown(int fd, int how) 2122 { 2123 int err, fput_needed; 2124 struct socket *sock; 2125 2126 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2127 if (sock != NULL) { 2128 err = security_socket_shutdown(sock, how); 2129 if (!err) 2130 err = sock->ops->shutdown(sock, how); 2131 fput_light(sock->file, fput_needed); 2132 } 2133 return err; 2134 } 2135 2136 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 2137 { 2138 return __sys_shutdown(fd, how); 2139 } 2140 2141 /* A couple of helpful macros for getting the address of the 32/64 bit 2142 * fields which are the same type (int / unsigned) on our platforms. 2143 */ 2144 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 2145 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 2146 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 2147 2148 struct used_address { 2149 struct sockaddr_storage name; 2150 unsigned int name_len; 2151 }; 2152 2153 static int copy_msghdr_from_user(struct msghdr *kmsg, 2154 struct user_msghdr __user *umsg, 2155 struct sockaddr __user **save_addr, 2156 struct iovec **iov) 2157 { 2158 struct user_msghdr msg; 2159 ssize_t err; 2160 2161 if (copy_from_user(&msg, umsg, sizeof(*umsg))) 2162 return -EFAULT; 2163 2164 kmsg->msg_control = (void __force *)msg.msg_control; 2165 kmsg->msg_controllen = msg.msg_controllen; 2166 kmsg->msg_flags = msg.msg_flags; 2167 2168 kmsg->msg_namelen = msg.msg_namelen; 2169 if (!msg.msg_name) 2170 kmsg->msg_namelen = 0; 2171 2172 if (kmsg->msg_namelen < 0) 2173 return -EINVAL; 2174 2175 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 2176 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 2177 2178 if (save_addr) 2179 *save_addr = msg.msg_name; 2180 2181 if (msg.msg_name && kmsg->msg_namelen) { 2182 if (!save_addr) { 2183 err = move_addr_to_kernel(msg.msg_name, 2184 kmsg->msg_namelen, 2185 kmsg->msg_name); 2186 if (err < 0) 2187 return err; 2188 } 2189 } else { 2190 kmsg->msg_name = NULL; 2191 kmsg->msg_namelen = 0; 2192 } 2193 2194 if (msg.msg_iovlen > UIO_MAXIOV) 2195 return -EMSGSIZE; 2196 2197 kmsg->msg_iocb = NULL; 2198 2199 return import_iovec(save_addr ? READ : WRITE, 2200 msg.msg_iov, msg.msg_iovlen, 2201 UIO_FASTIOV, iov, &kmsg->msg_iter); 2202 } 2203 2204 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 2205 struct msghdr *msg_sys, unsigned int flags, 2206 struct used_address *used_address, 2207 unsigned int allowed_msghdr_flags) 2208 { 2209 struct compat_msghdr __user *msg_compat = 2210 (struct compat_msghdr __user *)msg; 2211 struct sockaddr_storage address; 2212 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 2213 unsigned char ctl[sizeof(struct cmsghdr) + 20] 2214 __aligned(sizeof(__kernel_size_t)); 2215 /* 20 is size of ipv6_pktinfo */ 2216 unsigned char *ctl_buf = ctl; 2217 int ctl_len; 2218 ssize_t err; 2219 2220 msg_sys->msg_name = &address; 2221 2222 if (MSG_CMSG_COMPAT & flags) 2223 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 2224 else 2225 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 2226 if (err < 0) 2227 return err; 2228 2229 err = -ENOBUFS; 2230 2231 if (msg_sys->msg_controllen > INT_MAX) 2232 goto out_freeiov; 2233 flags |= (msg_sys->msg_flags & allowed_msghdr_flags); 2234 ctl_len = msg_sys->msg_controllen; 2235 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 2236 err = 2237 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 2238 sizeof(ctl)); 2239 if (err) 2240 goto out_freeiov; 2241 ctl_buf = msg_sys->msg_control; 2242 ctl_len = msg_sys->msg_controllen; 2243 } else if (ctl_len) { 2244 BUILD_BUG_ON(sizeof(struct cmsghdr) != 2245 CMSG_ALIGN(sizeof(struct cmsghdr))); 2246 if (ctl_len > sizeof(ctl)) { 2247 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 2248 if (ctl_buf == NULL) 2249 goto out_freeiov; 2250 } 2251 err = -EFAULT; 2252 /* 2253 * Careful! Before this, msg_sys->msg_control contains a user pointer. 2254 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 2255 * checking falls down on this. 2256 */ 2257 if (copy_from_user(ctl_buf, 2258 (void __user __force *)msg_sys->msg_control, 2259 ctl_len)) 2260 goto out_freectl; 2261 msg_sys->msg_control = ctl_buf; 2262 } 2263 msg_sys->msg_flags = flags; 2264 2265 if (sock->file->f_flags & O_NONBLOCK) 2266 msg_sys->msg_flags |= MSG_DONTWAIT; 2267 /* 2268 * If this is sendmmsg() and current destination address is same as 2269 * previously succeeded address, omit asking LSM's decision. 2270 * used_address->name_len is initialized to UINT_MAX so that the first 2271 * destination address never matches. 2272 */ 2273 if (used_address && msg_sys->msg_name && 2274 used_address->name_len == msg_sys->msg_namelen && 2275 !memcmp(&used_address->name, msg_sys->msg_name, 2276 used_address->name_len)) { 2277 err = sock_sendmsg_nosec(sock, msg_sys); 2278 goto out_freectl; 2279 } 2280 err = sock_sendmsg(sock, msg_sys); 2281 /* 2282 * If this is sendmmsg() and sending to current destination address was 2283 * successful, remember it. 2284 */ 2285 if (used_address && err >= 0) { 2286 used_address->name_len = msg_sys->msg_namelen; 2287 if (msg_sys->msg_name) 2288 memcpy(&used_address->name, msg_sys->msg_name, 2289 used_address->name_len); 2290 } 2291 2292 out_freectl: 2293 if (ctl_buf != ctl) 2294 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 2295 out_freeiov: 2296 kfree(iov); 2297 return err; 2298 } 2299 2300 /* 2301 * BSD sendmsg interface 2302 */ 2303 2304 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2305 bool forbid_cmsg_compat) 2306 { 2307 int fput_needed, err; 2308 struct msghdr msg_sys; 2309 struct socket *sock; 2310 2311 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2312 return -EINVAL; 2313 2314 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2315 if (!sock) 2316 goto out; 2317 2318 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0); 2319 2320 fput_light(sock->file, fput_needed); 2321 out: 2322 return err; 2323 } 2324 2325 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 2326 { 2327 return __sys_sendmsg(fd, msg, flags, true); 2328 } 2329 2330 /* 2331 * Linux sendmmsg interface 2332 */ 2333 2334 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2335 unsigned int flags, bool forbid_cmsg_compat) 2336 { 2337 int fput_needed, err, datagrams; 2338 struct socket *sock; 2339 struct mmsghdr __user *entry; 2340 struct compat_mmsghdr __user *compat_entry; 2341 struct msghdr msg_sys; 2342 struct used_address used_address; 2343 unsigned int oflags = flags; 2344 2345 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2346 return -EINVAL; 2347 2348 if (vlen > UIO_MAXIOV) 2349 vlen = UIO_MAXIOV; 2350 2351 datagrams = 0; 2352 2353 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2354 if (!sock) 2355 return err; 2356 2357 used_address.name_len = UINT_MAX; 2358 entry = mmsg; 2359 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2360 err = 0; 2361 flags |= MSG_BATCH; 2362 2363 while (datagrams < vlen) { 2364 if (datagrams == vlen - 1) 2365 flags = oflags; 2366 2367 if (MSG_CMSG_COMPAT & flags) { 2368 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2369 &msg_sys, flags, &used_address, MSG_EOR); 2370 if (err < 0) 2371 break; 2372 err = __put_user(err, &compat_entry->msg_len); 2373 ++compat_entry; 2374 } else { 2375 err = ___sys_sendmsg(sock, 2376 (struct user_msghdr __user *)entry, 2377 &msg_sys, flags, &used_address, MSG_EOR); 2378 if (err < 0) 2379 break; 2380 err = put_user(err, &entry->msg_len); 2381 ++entry; 2382 } 2383 2384 if (err) 2385 break; 2386 ++datagrams; 2387 if (msg_data_left(&msg_sys)) 2388 break; 2389 cond_resched(); 2390 } 2391 2392 fput_light(sock->file, fput_needed); 2393 2394 /* We only return an error if no datagrams were able to be sent */ 2395 if (datagrams != 0) 2396 return datagrams; 2397 2398 return err; 2399 } 2400 2401 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2402 unsigned int, vlen, unsigned int, flags) 2403 { 2404 return __sys_sendmmsg(fd, mmsg, vlen, flags, true); 2405 } 2406 2407 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2408 struct msghdr *msg_sys, unsigned int flags, int nosec) 2409 { 2410 struct compat_msghdr __user *msg_compat = 2411 (struct compat_msghdr __user *)msg; 2412 struct iovec iovstack[UIO_FASTIOV]; 2413 struct iovec *iov = iovstack; 2414 unsigned long cmsg_ptr; 2415 int len; 2416 ssize_t err; 2417 2418 /* kernel mode address */ 2419 struct sockaddr_storage addr; 2420 2421 /* user mode address pointers */ 2422 struct sockaddr __user *uaddr; 2423 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2424 2425 msg_sys->msg_name = &addr; 2426 2427 if (MSG_CMSG_COMPAT & flags) 2428 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2429 else 2430 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2431 if (err < 0) 2432 return err; 2433 2434 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2435 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2436 2437 /* We assume all kernel code knows the size of sockaddr_storage */ 2438 msg_sys->msg_namelen = 0; 2439 2440 if (sock->file->f_flags & O_NONBLOCK) 2441 flags |= MSG_DONTWAIT; 2442 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags); 2443 if (err < 0) 2444 goto out_freeiov; 2445 len = err; 2446 2447 if (uaddr != NULL) { 2448 err = move_addr_to_user(&addr, 2449 msg_sys->msg_namelen, uaddr, 2450 uaddr_len); 2451 if (err < 0) 2452 goto out_freeiov; 2453 } 2454 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2455 COMPAT_FLAGS(msg)); 2456 if (err) 2457 goto out_freeiov; 2458 if (MSG_CMSG_COMPAT & flags) 2459 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2460 &msg_compat->msg_controllen); 2461 else 2462 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2463 &msg->msg_controllen); 2464 if (err) 2465 goto out_freeiov; 2466 err = len; 2467 2468 out_freeiov: 2469 kfree(iov); 2470 return err; 2471 } 2472 2473 /* 2474 * BSD recvmsg interface 2475 */ 2476 2477 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags, 2478 bool forbid_cmsg_compat) 2479 { 2480 int fput_needed, err; 2481 struct msghdr msg_sys; 2482 struct socket *sock; 2483 2484 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT)) 2485 return -EINVAL; 2486 2487 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2488 if (!sock) 2489 goto out; 2490 2491 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2492 2493 fput_light(sock->file, fput_needed); 2494 out: 2495 return err; 2496 } 2497 2498 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2499 unsigned int, flags) 2500 { 2501 return __sys_recvmsg(fd, msg, flags, true); 2502 } 2503 2504 /* 2505 * Linux recvmmsg interface 2506 */ 2507 2508 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2509 unsigned int vlen, unsigned int flags, 2510 struct timespec64 *timeout) 2511 { 2512 int fput_needed, err, datagrams; 2513 struct socket *sock; 2514 struct mmsghdr __user *entry; 2515 struct compat_mmsghdr __user *compat_entry; 2516 struct msghdr msg_sys; 2517 struct timespec64 end_time; 2518 struct timespec64 timeout64; 2519 2520 if (timeout && 2521 poll_select_set_timeout(&end_time, timeout->tv_sec, 2522 timeout->tv_nsec)) 2523 return -EINVAL; 2524 2525 datagrams = 0; 2526 2527 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2528 if (!sock) 2529 return err; 2530 2531 if (likely(!(flags & MSG_ERRQUEUE))) { 2532 err = sock_error(sock->sk); 2533 if (err) { 2534 datagrams = err; 2535 goto out_put; 2536 } 2537 } 2538 2539 entry = mmsg; 2540 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2541 2542 while (datagrams < vlen) { 2543 /* 2544 * No need to ask LSM for more than the first datagram. 2545 */ 2546 if (MSG_CMSG_COMPAT & flags) { 2547 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2548 &msg_sys, flags & ~MSG_WAITFORONE, 2549 datagrams); 2550 if (err < 0) 2551 break; 2552 err = __put_user(err, &compat_entry->msg_len); 2553 ++compat_entry; 2554 } else { 2555 err = ___sys_recvmsg(sock, 2556 (struct user_msghdr __user *)entry, 2557 &msg_sys, flags & ~MSG_WAITFORONE, 2558 datagrams); 2559 if (err < 0) 2560 break; 2561 err = put_user(err, &entry->msg_len); 2562 ++entry; 2563 } 2564 2565 if (err) 2566 break; 2567 ++datagrams; 2568 2569 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2570 if (flags & MSG_WAITFORONE) 2571 flags |= MSG_DONTWAIT; 2572 2573 if (timeout) { 2574 ktime_get_ts64(&timeout64); 2575 *timeout = timespec64_sub(end_time, timeout64); 2576 if (timeout->tv_sec < 0) { 2577 timeout->tv_sec = timeout->tv_nsec = 0; 2578 break; 2579 } 2580 2581 /* Timeout, return less than vlen datagrams */ 2582 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2583 break; 2584 } 2585 2586 /* Out of band data, return right away */ 2587 if (msg_sys.msg_flags & MSG_OOB) 2588 break; 2589 cond_resched(); 2590 } 2591 2592 if (err == 0) 2593 goto out_put; 2594 2595 if (datagrams == 0) { 2596 datagrams = err; 2597 goto out_put; 2598 } 2599 2600 /* 2601 * We may return less entries than requested (vlen) if the 2602 * sock is non block and there aren't enough datagrams... 2603 */ 2604 if (err != -EAGAIN) { 2605 /* 2606 * ... or if recvmsg returns an error after we 2607 * received some datagrams, where we record the 2608 * error to return on the next call or if the 2609 * app asks about it using getsockopt(SO_ERROR). 2610 */ 2611 sock->sk->sk_err = -err; 2612 } 2613 out_put: 2614 fput_light(sock->file, fput_needed); 2615 2616 return datagrams; 2617 } 2618 2619 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, 2620 unsigned int vlen, unsigned int flags, 2621 struct __kernel_timespec __user *timeout, 2622 struct old_timespec32 __user *timeout32) 2623 { 2624 int datagrams; 2625 struct timespec64 timeout_sys; 2626 2627 if (timeout && get_timespec64(&timeout_sys, timeout)) 2628 return -EFAULT; 2629 2630 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32)) 2631 return -EFAULT; 2632 2633 if (!timeout && !timeout32) 2634 return do_recvmmsg(fd, mmsg, vlen, flags, NULL); 2635 2636 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2637 2638 if (datagrams <= 0) 2639 return datagrams; 2640 2641 if (timeout && put_timespec64(&timeout_sys, timeout)) 2642 datagrams = -EFAULT; 2643 2644 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32)) 2645 datagrams = -EFAULT; 2646 2647 return datagrams; 2648 } 2649 2650 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2651 unsigned int, vlen, unsigned int, flags, 2652 struct __kernel_timespec __user *, timeout) 2653 { 2654 if (flags & MSG_CMSG_COMPAT) 2655 return -EINVAL; 2656 2657 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL); 2658 } 2659 2660 #ifdef CONFIG_COMPAT_32BIT_TIME 2661 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg, 2662 unsigned int, vlen, unsigned int, flags, 2663 struct old_timespec32 __user *, timeout) 2664 { 2665 if (flags & MSG_CMSG_COMPAT) 2666 return -EINVAL; 2667 2668 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout); 2669 } 2670 #endif 2671 2672 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2673 /* Argument list sizes for sys_socketcall */ 2674 #define AL(x) ((x) * sizeof(unsigned long)) 2675 static const unsigned char nargs[21] = { 2676 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2677 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2678 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2679 AL(4), AL(5), AL(4) 2680 }; 2681 2682 #undef AL 2683 2684 /* 2685 * System call vectors. 2686 * 2687 * Argument checking cleaned up. Saved 20% in size. 2688 * This function doesn't need to set the kernel lock because 2689 * it is set by the callees. 2690 */ 2691 2692 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2693 { 2694 unsigned long a[AUDITSC_ARGS]; 2695 unsigned long a0, a1; 2696 int err; 2697 unsigned int len; 2698 2699 if (call < 1 || call > SYS_SENDMMSG) 2700 return -EINVAL; 2701 call = array_index_nospec(call, SYS_SENDMMSG + 1); 2702 2703 len = nargs[call]; 2704 if (len > sizeof(a)) 2705 return -EINVAL; 2706 2707 /* copy_from_user should be SMP safe. */ 2708 if (copy_from_user(a, args, len)) 2709 return -EFAULT; 2710 2711 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2712 if (err) 2713 return err; 2714 2715 a0 = a[0]; 2716 a1 = a[1]; 2717 2718 switch (call) { 2719 case SYS_SOCKET: 2720 err = __sys_socket(a0, a1, a[2]); 2721 break; 2722 case SYS_BIND: 2723 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2724 break; 2725 case SYS_CONNECT: 2726 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2727 break; 2728 case SYS_LISTEN: 2729 err = __sys_listen(a0, a1); 2730 break; 2731 case SYS_ACCEPT: 2732 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2733 (int __user *)a[2], 0); 2734 break; 2735 case SYS_GETSOCKNAME: 2736 err = 2737 __sys_getsockname(a0, (struct sockaddr __user *)a1, 2738 (int __user *)a[2]); 2739 break; 2740 case SYS_GETPEERNAME: 2741 err = 2742 __sys_getpeername(a0, (struct sockaddr __user *)a1, 2743 (int __user *)a[2]); 2744 break; 2745 case SYS_SOCKETPAIR: 2746 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2747 break; 2748 case SYS_SEND: 2749 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2750 NULL, 0); 2751 break; 2752 case SYS_SENDTO: 2753 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3], 2754 (struct sockaddr __user *)a[4], a[5]); 2755 break; 2756 case SYS_RECV: 2757 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2758 NULL, NULL); 2759 break; 2760 case SYS_RECVFROM: 2761 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2762 (struct sockaddr __user *)a[4], 2763 (int __user *)a[5]); 2764 break; 2765 case SYS_SHUTDOWN: 2766 err = __sys_shutdown(a0, a1); 2767 break; 2768 case SYS_SETSOCKOPT: 2769 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3], 2770 a[4]); 2771 break; 2772 case SYS_GETSOCKOPT: 2773 err = 2774 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2775 (int __user *)a[4]); 2776 break; 2777 case SYS_SENDMSG: 2778 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1, 2779 a[2], true); 2780 break; 2781 case SYS_SENDMMSG: 2782 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], 2783 a[3], true); 2784 break; 2785 case SYS_RECVMSG: 2786 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1, 2787 a[2], true); 2788 break; 2789 case SYS_RECVMMSG: 2790 if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME)) 2791 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2792 a[2], a[3], 2793 (struct __kernel_timespec __user *)a[4], 2794 NULL); 2795 else 2796 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1, 2797 a[2], a[3], NULL, 2798 (struct old_timespec32 __user *)a[4]); 2799 break; 2800 case SYS_ACCEPT4: 2801 err = __sys_accept4(a0, (struct sockaddr __user *)a1, 2802 (int __user *)a[2], a[3]); 2803 break; 2804 default: 2805 err = -EINVAL; 2806 break; 2807 } 2808 return err; 2809 } 2810 2811 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2812 2813 /** 2814 * sock_register - add a socket protocol handler 2815 * @ops: description of protocol 2816 * 2817 * This function is called by a protocol handler that wants to 2818 * advertise its address family, and have it linked into the 2819 * socket interface. The value ops->family corresponds to the 2820 * socket system call protocol family. 2821 */ 2822 int sock_register(const struct net_proto_family *ops) 2823 { 2824 int err; 2825 2826 if (ops->family >= NPROTO) { 2827 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2828 return -ENOBUFS; 2829 } 2830 2831 spin_lock(&net_family_lock); 2832 if (rcu_dereference_protected(net_families[ops->family], 2833 lockdep_is_held(&net_family_lock))) 2834 err = -EEXIST; 2835 else { 2836 rcu_assign_pointer(net_families[ops->family], ops); 2837 err = 0; 2838 } 2839 spin_unlock(&net_family_lock); 2840 2841 pr_info("NET: Registered protocol family %d\n", ops->family); 2842 return err; 2843 } 2844 EXPORT_SYMBOL(sock_register); 2845 2846 /** 2847 * sock_unregister - remove a protocol handler 2848 * @family: protocol family to remove 2849 * 2850 * This function is called by a protocol handler that wants to 2851 * remove its address family, and have it unlinked from the 2852 * new socket creation. 2853 * 2854 * If protocol handler is a module, then it can use module reference 2855 * counts to protect against new references. If protocol handler is not 2856 * a module then it needs to provide its own protection in 2857 * the ops->create routine. 2858 */ 2859 void sock_unregister(int family) 2860 { 2861 BUG_ON(family < 0 || family >= NPROTO); 2862 2863 spin_lock(&net_family_lock); 2864 RCU_INIT_POINTER(net_families[family], NULL); 2865 spin_unlock(&net_family_lock); 2866 2867 synchronize_rcu(); 2868 2869 pr_info("NET: Unregistered protocol family %d\n", family); 2870 } 2871 EXPORT_SYMBOL(sock_unregister); 2872 2873 bool sock_is_registered(int family) 2874 { 2875 return family < NPROTO && rcu_access_pointer(net_families[family]); 2876 } 2877 2878 static int __init sock_init(void) 2879 { 2880 int err; 2881 /* 2882 * Initialize the network sysctl infrastructure. 2883 */ 2884 err = net_sysctl_init(); 2885 if (err) 2886 goto out; 2887 2888 /* 2889 * Initialize skbuff SLAB cache 2890 */ 2891 skb_init(); 2892 2893 /* 2894 * Initialize the protocols module. 2895 */ 2896 2897 init_inodecache(); 2898 2899 err = register_filesystem(&sock_fs_type); 2900 if (err) 2901 goto out_fs; 2902 sock_mnt = kern_mount(&sock_fs_type); 2903 if (IS_ERR(sock_mnt)) { 2904 err = PTR_ERR(sock_mnt); 2905 goto out_mount; 2906 } 2907 2908 /* The real protocol initialization is performed in later initcalls. 2909 */ 2910 2911 #ifdef CONFIG_NETFILTER 2912 err = netfilter_init(); 2913 if (err) 2914 goto out; 2915 #endif 2916 2917 ptp_classifier_init(); 2918 2919 out: 2920 return err; 2921 2922 out_mount: 2923 unregister_filesystem(&sock_fs_type); 2924 out_fs: 2925 goto out; 2926 } 2927 2928 core_initcall(sock_init); /* early initcall */ 2929 2930 #ifdef CONFIG_PROC_FS 2931 void socket_seq_show(struct seq_file *seq) 2932 { 2933 seq_printf(seq, "sockets: used %d\n", 2934 sock_inuse_get(seq->private)); 2935 } 2936 #endif /* CONFIG_PROC_FS */ 2937 2938 #ifdef CONFIG_COMPAT 2939 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2940 { 2941 struct compat_ifconf ifc32; 2942 struct ifconf ifc; 2943 int err; 2944 2945 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2946 return -EFAULT; 2947 2948 ifc.ifc_len = ifc32.ifc_len; 2949 ifc.ifc_req = compat_ptr(ifc32.ifcbuf); 2950 2951 rtnl_lock(); 2952 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq)); 2953 rtnl_unlock(); 2954 if (err) 2955 return err; 2956 2957 ifc32.ifc_len = ifc.ifc_len; 2958 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2959 return -EFAULT; 2960 2961 return 0; 2962 } 2963 2964 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2965 { 2966 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2967 bool convert_in = false, convert_out = false; 2968 size_t buf_size = 0; 2969 struct ethtool_rxnfc __user *rxnfc = NULL; 2970 struct ifreq ifr; 2971 u32 rule_cnt = 0, actual_rule_cnt; 2972 u32 ethcmd; 2973 u32 data; 2974 int ret; 2975 2976 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2977 return -EFAULT; 2978 2979 compat_rxnfc = compat_ptr(data); 2980 2981 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2982 return -EFAULT; 2983 2984 /* Most ethtool structures are defined without padding. 2985 * Unfortunately struct ethtool_rxnfc is an exception. 2986 */ 2987 switch (ethcmd) { 2988 default: 2989 break; 2990 case ETHTOOL_GRXCLSRLALL: 2991 /* Buffer size is variable */ 2992 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2993 return -EFAULT; 2994 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2995 return -ENOMEM; 2996 buf_size += rule_cnt * sizeof(u32); 2997 /* fall through */ 2998 case ETHTOOL_GRXRINGS: 2999 case ETHTOOL_GRXCLSRLCNT: 3000 case ETHTOOL_GRXCLSRULE: 3001 case ETHTOOL_SRXCLSRLINS: 3002 convert_out = true; 3003 /* fall through */ 3004 case ETHTOOL_SRXCLSRLDEL: 3005 buf_size += sizeof(struct ethtool_rxnfc); 3006 convert_in = true; 3007 rxnfc = compat_alloc_user_space(buf_size); 3008 break; 3009 } 3010 3011 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 3012 return -EFAULT; 3013 3014 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc; 3015 3016 if (convert_in) { 3017 /* We expect there to be holes between fs.m_ext and 3018 * fs.ring_cookie and at the end of fs, but nowhere else. 3019 */ 3020 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 3021 sizeof(compat_rxnfc->fs.m_ext) != 3022 offsetof(struct ethtool_rxnfc, fs.m_ext) + 3023 sizeof(rxnfc->fs.m_ext)); 3024 BUILD_BUG_ON( 3025 offsetof(struct compat_ethtool_rxnfc, fs.location) - 3026 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 3027 offsetof(struct ethtool_rxnfc, fs.location) - 3028 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 3029 3030 if (copy_in_user(rxnfc, compat_rxnfc, 3031 (void __user *)(&rxnfc->fs.m_ext + 1) - 3032 (void __user *)rxnfc) || 3033 copy_in_user(&rxnfc->fs.ring_cookie, 3034 &compat_rxnfc->fs.ring_cookie, 3035 (void __user *)(&rxnfc->fs.location + 1) - 3036 (void __user *)&rxnfc->fs.ring_cookie)) 3037 return -EFAULT; 3038 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3039 if (put_user(rule_cnt, &rxnfc->rule_cnt)) 3040 return -EFAULT; 3041 } else if (copy_in_user(&rxnfc->rule_cnt, 3042 &compat_rxnfc->rule_cnt, 3043 sizeof(rxnfc->rule_cnt))) 3044 return -EFAULT; 3045 } 3046 3047 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL); 3048 if (ret) 3049 return ret; 3050 3051 if (convert_out) { 3052 if (copy_in_user(compat_rxnfc, rxnfc, 3053 (const void __user *)(&rxnfc->fs.m_ext + 1) - 3054 (const void __user *)rxnfc) || 3055 copy_in_user(&compat_rxnfc->fs.ring_cookie, 3056 &rxnfc->fs.ring_cookie, 3057 (const void __user *)(&rxnfc->fs.location + 1) - 3058 (const void __user *)&rxnfc->fs.ring_cookie) || 3059 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 3060 sizeof(rxnfc->rule_cnt))) 3061 return -EFAULT; 3062 3063 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 3064 /* As an optimisation, we only copy the actual 3065 * number of rules that the underlying 3066 * function returned. Since Mallory might 3067 * change the rule count in user memory, we 3068 * check that it is less than the rule count 3069 * originally given (as the user buffer size), 3070 * which has been range-checked. 3071 */ 3072 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 3073 return -EFAULT; 3074 if (actual_rule_cnt < rule_cnt) 3075 rule_cnt = actual_rule_cnt; 3076 if (copy_in_user(&compat_rxnfc->rule_locs[0], 3077 &rxnfc->rule_locs[0], 3078 rule_cnt * sizeof(u32))) 3079 return -EFAULT; 3080 } 3081 } 3082 3083 return 0; 3084 } 3085 3086 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 3087 { 3088 compat_uptr_t uptr32; 3089 struct ifreq ifr; 3090 void __user *saved; 3091 int err; 3092 3093 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq))) 3094 return -EFAULT; 3095 3096 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 3097 return -EFAULT; 3098 3099 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc; 3100 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32); 3101 3102 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL); 3103 if (!err) { 3104 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved; 3105 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq))) 3106 err = -EFAULT; 3107 } 3108 return err; 3109 } 3110 3111 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 3112 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 3113 struct compat_ifreq __user *u_ifreq32) 3114 { 3115 struct ifreq ifreq; 3116 u32 data32; 3117 3118 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ)) 3119 return -EFAULT; 3120 if (get_user(data32, &u_ifreq32->ifr_data)) 3121 return -EFAULT; 3122 ifreq.ifr_data = compat_ptr(data32); 3123 3124 return dev_ioctl(net, cmd, &ifreq, NULL); 3125 } 3126 3127 static int compat_ifreq_ioctl(struct net *net, struct socket *sock, 3128 unsigned int cmd, 3129 struct compat_ifreq __user *uifr32) 3130 { 3131 struct ifreq __user *uifr; 3132 int err; 3133 3134 /* Handle the fact that while struct ifreq has the same *layout* on 3135 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data, 3136 * which are handled elsewhere, it still has different *size* due to 3137 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit, 3138 * resulting in struct ifreq being 32 and 40 bytes respectively). 3139 * As a result, if the struct happens to be at the end of a page and 3140 * the next page isn't readable/writable, we get a fault. To prevent 3141 * that, copy back and forth to the full size. 3142 */ 3143 3144 uifr = compat_alloc_user_space(sizeof(*uifr)); 3145 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 3146 return -EFAULT; 3147 3148 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 3149 3150 if (!err) { 3151 switch (cmd) { 3152 case SIOCGIFFLAGS: 3153 case SIOCGIFMETRIC: 3154 case SIOCGIFMTU: 3155 case SIOCGIFMEM: 3156 case SIOCGIFHWADDR: 3157 case SIOCGIFINDEX: 3158 case SIOCGIFADDR: 3159 case SIOCGIFBRDADDR: 3160 case SIOCGIFDSTADDR: 3161 case SIOCGIFNETMASK: 3162 case SIOCGIFPFLAGS: 3163 case SIOCGIFTXQLEN: 3164 case SIOCGMIIPHY: 3165 case SIOCGMIIREG: 3166 case SIOCGIFNAME: 3167 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 3168 err = -EFAULT; 3169 break; 3170 } 3171 } 3172 return err; 3173 } 3174 3175 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 3176 struct compat_ifreq __user *uifr32) 3177 { 3178 struct ifreq ifr; 3179 struct compat_ifmap __user *uifmap32; 3180 int err; 3181 3182 uifmap32 = &uifr32->ifr_ifru.ifru_map; 3183 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 3184 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3185 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3186 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3187 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 3188 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 3189 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 3190 if (err) 3191 return -EFAULT; 3192 3193 err = dev_ioctl(net, cmd, &ifr, NULL); 3194 3195 if (cmd == SIOCGIFMAP && !err) { 3196 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 3197 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 3198 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 3199 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 3200 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 3201 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 3202 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 3203 if (err) 3204 err = -EFAULT; 3205 } 3206 return err; 3207 } 3208 3209 struct rtentry32 { 3210 u32 rt_pad1; 3211 struct sockaddr rt_dst; /* target address */ 3212 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 3213 struct sockaddr rt_genmask; /* target network mask (IP) */ 3214 unsigned short rt_flags; 3215 short rt_pad2; 3216 u32 rt_pad3; 3217 unsigned char rt_tos; 3218 unsigned char rt_class; 3219 short rt_pad4; 3220 short rt_metric; /* +1 for binary compatibility! */ 3221 /* char * */ u32 rt_dev; /* forcing the device at add */ 3222 u32 rt_mtu; /* per route MTU/Window */ 3223 u32 rt_window; /* Window clamping */ 3224 unsigned short rt_irtt; /* Initial RTT */ 3225 }; 3226 3227 struct in6_rtmsg32 { 3228 struct in6_addr rtmsg_dst; 3229 struct in6_addr rtmsg_src; 3230 struct in6_addr rtmsg_gateway; 3231 u32 rtmsg_type; 3232 u16 rtmsg_dst_len; 3233 u16 rtmsg_src_len; 3234 u32 rtmsg_metric; 3235 u32 rtmsg_info; 3236 u32 rtmsg_flags; 3237 s32 rtmsg_ifindex; 3238 }; 3239 3240 static int routing_ioctl(struct net *net, struct socket *sock, 3241 unsigned int cmd, void __user *argp) 3242 { 3243 int ret; 3244 void *r = NULL; 3245 struct in6_rtmsg r6; 3246 struct rtentry r4; 3247 char devname[16]; 3248 u32 rtdev; 3249 mm_segment_t old_fs = get_fs(); 3250 3251 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 3252 struct in6_rtmsg32 __user *ur6 = argp; 3253 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 3254 3 * sizeof(struct in6_addr)); 3255 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 3256 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 3257 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3258 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3259 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3260 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3261 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3262 3263 r = (void *) &r6; 3264 } else { /* ipv4 */ 3265 struct rtentry32 __user *ur4 = argp; 3266 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3267 3 * sizeof(struct sockaddr)); 3268 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3269 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3270 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3271 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3272 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3273 ret |= get_user(rtdev, &(ur4->rt_dev)); 3274 if (rtdev) { 3275 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3276 r4.rt_dev = (char __user __force *)devname; 3277 devname[15] = 0; 3278 } else 3279 r4.rt_dev = NULL; 3280 3281 r = (void *) &r4; 3282 } 3283 3284 if (ret) { 3285 ret = -EFAULT; 3286 goto out; 3287 } 3288 3289 set_fs(KERNEL_DS); 3290 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3291 set_fs(old_fs); 3292 3293 out: 3294 return ret; 3295 } 3296 3297 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3298 * for some operations; this forces use of the newer bridge-utils that 3299 * use compatible ioctls 3300 */ 3301 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3302 { 3303 compat_ulong_t tmp; 3304 3305 if (get_user(tmp, argp)) 3306 return -EFAULT; 3307 if (tmp == BRCTL_GET_VERSION) 3308 return BRCTL_VERSION + 1; 3309 return -EINVAL; 3310 } 3311 3312 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3313 unsigned int cmd, unsigned long arg) 3314 { 3315 void __user *argp = compat_ptr(arg); 3316 struct sock *sk = sock->sk; 3317 struct net *net = sock_net(sk); 3318 3319 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3320 return compat_ifr_data_ioctl(net, cmd, argp); 3321 3322 switch (cmd) { 3323 case SIOCSIFBR: 3324 case SIOCGIFBR: 3325 return old_bridge_ioctl(argp); 3326 case SIOCGIFCONF: 3327 return compat_dev_ifconf(net, argp); 3328 case SIOCETHTOOL: 3329 return ethtool_ioctl(net, argp); 3330 case SIOCWANDEV: 3331 return compat_siocwandev(net, argp); 3332 case SIOCGIFMAP: 3333 case SIOCSIFMAP: 3334 return compat_sioc_ifmap(net, cmd, argp); 3335 case SIOCADDRT: 3336 case SIOCDELRT: 3337 return routing_ioctl(net, sock, cmd, argp); 3338 case SIOCGSTAMP_OLD: 3339 case SIOCGSTAMPNS_OLD: 3340 if (!sock->ops->gettstamp) 3341 return -ENOIOCTLCMD; 3342 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD, 3343 !COMPAT_USE_64BIT_TIME); 3344 3345 case SIOCBONDSLAVEINFOQUERY: 3346 case SIOCBONDINFOQUERY: 3347 case SIOCSHWTSTAMP: 3348 case SIOCGHWTSTAMP: 3349 return compat_ifr_data_ioctl(net, cmd, argp); 3350 3351 case FIOSETOWN: 3352 case SIOCSPGRP: 3353 case FIOGETOWN: 3354 case SIOCGPGRP: 3355 case SIOCBRADDBR: 3356 case SIOCBRDELBR: 3357 case SIOCGIFVLAN: 3358 case SIOCSIFVLAN: 3359 case SIOCADDDLCI: 3360 case SIOCDELDLCI: 3361 case SIOCGSKNS: 3362 case SIOCGSTAMP_NEW: 3363 case SIOCGSTAMPNS_NEW: 3364 return sock_ioctl(file, cmd, arg); 3365 3366 case SIOCGIFFLAGS: 3367 case SIOCSIFFLAGS: 3368 case SIOCGIFMETRIC: 3369 case SIOCSIFMETRIC: 3370 case SIOCGIFMTU: 3371 case SIOCSIFMTU: 3372 case SIOCGIFMEM: 3373 case SIOCSIFMEM: 3374 case SIOCGIFHWADDR: 3375 case SIOCSIFHWADDR: 3376 case SIOCADDMULTI: 3377 case SIOCDELMULTI: 3378 case SIOCGIFINDEX: 3379 case SIOCGIFADDR: 3380 case SIOCSIFADDR: 3381 case SIOCSIFHWBROADCAST: 3382 case SIOCDIFADDR: 3383 case SIOCGIFBRDADDR: 3384 case SIOCSIFBRDADDR: 3385 case SIOCGIFDSTADDR: 3386 case SIOCSIFDSTADDR: 3387 case SIOCGIFNETMASK: 3388 case SIOCSIFNETMASK: 3389 case SIOCSIFPFLAGS: 3390 case SIOCGIFPFLAGS: 3391 case SIOCGIFTXQLEN: 3392 case SIOCSIFTXQLEN: 3393 case SIOCBRADDIF: 3394 case SIOCBRDELIF: 3395 case SIOCGIFNAME: 3396 case SIOCSIFNAME: 3397 case SIOCGMIIPHY: 3398 case SIOCGMIIREG: 3399 case SIOCSMIIREG: 3400 case SIOCBONDENSLAVE: 3401 case SIOCBONDRELEASE: 3402 case SIOCBONDSETHWADDR: 3403 case SIOCBONDCHANGEACTIVE: 3404 return compat_ifreq_ioctl(net, sock, cmd, argp); 3405 3406 case SIOCSARP: 3407 case SIOCGARP: 3408 case SIOCDARP: 3409 case SIOCATMARK: 3410 return sock_do_ioctl(net, sock, cmd, arg); 3411 } 3412 3413 return -ENOIOCTLCMD; 3414 } 3415 3416 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3417 unsigned long arg) 3418 { 3419 struct socket *sock = file->private_data; 3420 int ret = -ENOIOCTLCMD; 3421 struct sock *sk; 3422 struct net *net; 3423 3424 sk = sock->sk; 3425 net = sock_net(sk); 3426 3427 if (sock->ops->compat_ioctl) 3428 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3429 3430 if (ret == -ENOIOCTLCMD && 3431 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3432 ret = compat_wext_handle_ioctl(net, cmd, arg); 3433 3434 if (ret == -ENOIOCTLCMD) 3435 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3436 3437 return ret; 3438 } 3439 #endif 3440 3441 /** 3442 * kernel_bind - bind an address to a socket (kernel space) 3443 * @sock: socket 3444 * @addr: address 3445 * @addrlen: length of address 3446 * 3447 * Returns 0 or an error. 3448 */ 3449 3450 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3451 { 3452 return sock->ops->bind(sock, addr, addrlen); 3453 } 3454 EXPORT_SYMBOL(kernel_bind); 3455 3456 /** 3457 * kernel_listen - move socket to listening state (kernel space) 3458 * @sock: socket 3459 * @backlog: pending connections queue size 3460 * 3461 * Returns 0 or an error. 3462 */ 3463 3464 int kernel_listen(struct socket *sock, int backlog) 3465 { 3466 return sock->ops->listen(sock, backlog); 3467 } 3468 EXPORT_SYMBOL(kernel_listen); 3469 3470 /** 3471 * kernel_accept - accept a connection (kernel space) 3472 * @sock: listening socket 3473 * @newsock: new connected socket 3474 * @flags: flags 3475 * 3476 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0. 3477 * If it fails, @newsock is guaranteed to be %NULL. 3478 * Returns 0 or an error. 3479 */ 3480 3481 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3482 { 3483 struct sock *sk = sock->sk; 3484 int err; 3485 3486 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3487 newsock); 3488 if (err < 0) 3489 goto done; 3490 3491 err = sock->ops->accept(sock, *newsock, flags, true); 3492 if (err < 0) { 3493 sock_release(*newsock); 3494 *newsock = NULL; 3495 goto done; 3496 } 3497 3498 (*newsock)->ops = sock->ops; 3499 __module_get((*newsock)->ops->owner); 3500 3501 done: 3502 return err; 3503 } 3504 EXPORT_SYMBOL(kernel_accept); 3505 3506 /** 3507 * kernel_connect - connect a socket (kernel space) 3508 * @sock: socket 3509 * @addr: address 3510 * @addrlen: address length 3511 * @flags: flags (O_NONBLOCK, ...) 3512 * 3513 * For datagram sockets, @addr is the addres to which datagrams are sent 3514 * by default, and the only address from which datagrams are received. 3515 * For stream sockets, attempts to connect to @addr. 3516 * Returns 0 or an error code. 3517 */ 3518 3519 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3520 int flags) 3521 { 3522 return sock->ops->connect(sock, addr, addrlen, flags); 3523 } 3524 EXPORT_SYMBOL(kernel_connect); 3525 3526 /** 3527 * kernel_getsockname - get the address which the socket is bound (kernel space) 3528 * @sock: socket 3529 * @addr: address holder 3530 * 3531 * Fills the @addr pointer with the address which the socket is bound. 3532 * Returns 0 or an error code. 3533 */ 3534 3535 int kernel_getsockname(struct socket *sock, struct sockaddr *addr) 3536 { 3537 return sock->ops->getname(sock, addr, 0); 3538 } 3539 EXPORT_SYMBOL(kernel_getsockname); 3540 3541 /** 3542 * kernel_peername - get the address which the socket is connected (kernel space) 3543 * @sock: socket 3544 * @addr: address holder 3545 * 3546 * Fills the @addr pointer with the address which the socket is connected. 3547 * Returns 0 or an error code. 3548 */ 3549 3550 int kernel_getpeername(struct socket *sock, struct sockaddr *addr) 3551 { 3552 return sock->ops->getname(sock, addr, 1); 3553 } 3554 EXPORT_SYMBOL(kernel_getpeername); 3555 3556 /** 3557 * kernel_getsockopt - get a socket option (kernel space) 3558 * @sock: socket 3559 * @level: API level (SOL_SOCKET, ...) 3560 * @optname: option tag 3561 * @optval: option value 3562 * @optlen: option length 3563 * 3564 * Assigns the option length to @optlen. 3565 * Returns 0 or an error. 3566 */ 3567 3568 int kernel_getsockopt(struct socket *sock, int level, int optname, 3569 char *optval, int *optlen) 3570 { 3571 mm_segment_t oldfs = get_fs(); 3572 char __user *uoptval; 3573 int __user *uoptlen; 3574 int err; 3575 3576 uoptval = (char __user __force *) optval; 3577 uoptlen = (int __user __force *) optlen; 3578 3579 set_fs(KERNEL_DS); 3580 if (level == SOL_SOCKET) 3581 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3582 else 3583 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3584 uoptlen); 3585 set_fs(oldfs); 3586 return err; 3587 } 3588 EXPORT_SYMBOL(kernel_getsockopt); 3589 3590 /** 3591 * kernel_setsockopt - set a socket option (kernel space) 3592 * @sock: socket 3593 * @level: API level (SOL_SOCKET, ...) 3594 * @optname: option tag 3595 * @optval: option value 3596 * @optlen: option length 3597 * 3598 * Returns 0 or an error. 3599 */ 3600 3601 int kernel_setsockopt(struct socket *sock, int level, int optname, 3602 char *optval, unsigned int optlen) 3603 { 3604 mm_segment_t oldfs = get_fs(); 3605 char __user *uoptval; 3606 int err; 3607 3608 uoptval = (char __user __force *) optval; 3609 3610 set_fs(KERNEL_DS); 3611 if (level == SOL_SOCKET) 3612 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3613 else 3614 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3615 optlen); 3616 set_fs(oldfs); 3617 return err; 3618 } 3619 EXPORT_SYMBOL(kernel_setsockopt); 3620 3621 /** 3622 * kernel_sendpage - send a &page through a socket (kernel space) 3623 * @sock: socket 3624 * @page: page 3625 * @offset: page offset 3626 * @size: total size in bytes 3627 * @flags: flags (MSG_DONTWAIT, ...) 3628 * 3629 * Returns the total amount sent in bytes or an error. 3630 */ 3631 3632 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3633 size_t size, int flags) 3634 { 3635 if (sock->ops->sendpage) 3636 return sock->ops->sendpage(sock, page, offset, size, flags); 3637 3638 return sock_no_sendpage(sock, page, offset, size, flags); 3639 } 3640 EXPORT_SYMBOL(kernel_sendpage); 3641 3642 /** 3643 * kernel_sendpage_locked - send a &page through the locked sock (kernel space) 3644 * @sk: sock 3645 * @page: page 3646 * @offset: page offset 3647 * @size: total size in bytes 3648 * @flags: flags (MSG_DONTWAIT, ...) 3649 * 3650 * Returns the total amount sent in bytes or an error. 3651 * Caller must hold @sk. 3652 */ 3653 3654 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset, 3655 size_t size, int flags) 3656 { 3657 struct socket *sock = sk->sk_socket; 3658 3659 if (sock->ops->sendpage_locked) 3660 return sock->ops->sendpage_locked(sk, page, offset, size, 3661 flags); 3662 3663 return sock_no_sendpage_locked(sk, page, offset, size, flags); 3664 } 3665 EXPORT_SYMBOL(kernel_sendpage_locked); 3666 3667 /** 3668 * kernel_shutdown - shut down part of a full-duplex connection (kernel space) 3669 * @sock: socket 3670 * @how: connection part 3671 * 3672 * Returns 0 or an error. 3673 */ 3674 3675 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3676 { 3677 return sock->ops->shutdown(sock, how); 3678 } 3679 EXPORT_SYMBOL(kernel_sock_shutdown); 3680 3681 /** 3682 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket 3683 * @sk: socket 3684 * 3685 * This routine returns the IP overhead imposed by a socket i.e. 3686 * the length of the underlying IP header, depending on whether 3687 * this is an IPv4 or IPv6 socket and the length from IP options turned 3688 * on at the socket. Assumes that the caller has a lock on the socket. 3689 */ 3690 3691 u32 kernel_sock_ip_overhead(struct sock *sk) 3692 { 3693 struct inet_sock *inet; 3694 struct ip_options_rcu *opt; 3695 u32 overhead = 0; 3696 #if IS_ENABLED(CONFIG_IPV6) 3697 struct ipv6_pinfo *np; 3698 struct ipv6_txoptions *optv6 = NULL; 3699 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3700 3701 if (!sk) 3702 return overhead; 3703 3704 switch (sk->sk_family) { 3705 case AF_INET: 3706 inet = inet_sk(sk); 3707 overhead += sizeof(struct iphdr); 3708 opt = rcu_dereference_protected(inet->inet_opt, 3709 sock_owned_by_user(sk)); 3710 if (opt) 3711 overhead += opt->opt.optlen; 3712 return overhead; 3713 #if IS_ENABLED(CONFIG_IPV6) 3714 case AF_INET6: 3715 np = inet6_sk(sk); 3716 overhead += sizeof(struct ipv6hdr); 3717 if (np) 3718 optv6 = rcu_dereference_protected(np->opt, 3719 sock_owned_by_user(sk)); 3720 if (optv6) 3721 overhead += (optv6->opt_flen + optv6->opt_nflen); 3722 return overhead; 3723 #endif /* IS_ENABLED(CONFIG_IPV6) */ 3724 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */ 3725 return overhead; 3726 } 3727 } 3728 EXPORT_SYMBOL(kernel_sock_ip_overhead); 3729