xref: /linux-6.15/net/socket.c (revision ef6243ac)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <[email protected]>
7  *		Ross Biro
8  *		Fred N. van Kempen, <[email protected]>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 #include <linux/nospec.h>
93 
94 #include <linux/uaccess.h>
95 #include <asm/unistd.h>
96 
97 #include <net/compat.h>
98 #include <net/wext.h>
99 #include <net/cls_cgroup.h>
100 
101 #include <net/sock.h>
102 #include <linux/netfilter.h>
103 
104 #include <linux/if_tun.h>
105 #include <linux/ipv6_route.h>
106 #include <linux/route.h>
107 #include <linux/sockios.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static __poll_t sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read_iter =	sock_read_iter,
144 	.write_iter =	sock_write_iter,
145 	.poll =		sock_poll,
146 	.unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 	.compat_ioctl = compat_sock_ioctl,
149 #endif
150 	.mmap =		sock_mmap,
151 	.release =	sock_close,
152 	.fasync =	sock_fasync,
153 	.sendpage =	sock_sendpage,
154 	.splice_write = generic_splice_sendpage,
155 	.splice_read =	sock_splice_read,
156 };
157 
158 /*
159  *	The protocol list. Each protocol is registered in here.
160  */
161 
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164 
165 /*
166  * Support routines.
167  * Move socket addresses back and forth across the kernel/user
168  * divide and look after the messy bits.
169  */
170 
171 /**
172  *	move_addr_to_kernel	-	copy a socket address into kernel space
173  *	@uaddr: Address in user space
174  *	@kaddr: Address in kernel space
175  *	@ulen: Length in user space
176  *
177  *	The address is copied into kernel space. If the provided address is
178  *	too long an error code of -EINVAL is returned. If the copy gives
179  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
180  */
181 
182 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
183 {
184 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
185 		return -EINVAL;
186 	if (ulen == 0)
187 		return 0;
188 	if (copy_from_user(kaddr, uaddr, ulen))
189 		return -EFAULT;
190 	return audit_sockaddr(ulen, kaddr);
191 }
192 
193 /**
194  *	move_addr_to_user	-	copy an address to user space
195  *	@kaddr: kernel space address
196  *	@klen: length of address in kernel
197  *	@uaddr: user space address
198  *	@ulen: pointer to user length field
199  *
200  *	The value pointed to by ulen on entry is the buffer length available.
201  *	This is overwritten with the buffer space used. -EINVAL is returned
202  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
203  *	is returned if either the buffer or the length field are not
204  *	accessible.
205  *	After copying the data up to the limit the user specifies, the true
206  *	length of the data is written over the length limit the user
207  *	specified. Zero is returned for a success.
208  */
209 
210 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
211 			     void __user *uaddr, int __user *ulen)
212 {
213 	int err;
214 	int len;
215 
216 	BUG_ON(klen > sizeof(struct sockaddr_storage));
217 	err = get_user(len, ulen);
218 	if (err)
219 		return err;
220 	if (len > klen)
221 		len = klen;
222 	if (len < 0)
223 		return -EINVAL;
224 	if (len) {
225 		if (audit_sockaddr(klen, kaddr))
226 			return -ENOMEM;
227 		if (copy_to_user(uaddr, kaddr, len))
228 			return -EFAULT;
229 	}
230 	/*
231 	 *      "fromlen shall refer to the value before truncation.."
232 	 *                      1003.1g
233 	 */
234 	return __put_user(klen, ulen);
235 }
236 
237 static struct kmem_cache *sock_inode_cachep __ro_after_init;
238 
239 static struct inode *sock_alloc_inode(struct super_block *sb)
240 {
241 	struct socket_alloc *ei;
242 	struct socket_wq *wq;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
248 	if (!wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&wq->wait);
253 	wq->fasync_list = NULL;
254 	wq->flags = 0;
255 	ei->socket.wq = wq;
256 
257 	ei->socket.state = SS_UNCONNECTED;
258 	ei->socket.flags = 0;
259 	ei->socket.ops = NULL;
260 	ei->socket.sk = NULL;
261 	ei->socket.file = NULL;
262 
263 	return &ei->vfs_inode;
264 }
265 
266 static void sock_destroy_inode(struct inode *inode)
267 {
268 	struct socket_alloc *ei;
269 
270 	ei = container_of(inode, struct socket_alloc, vfs_inode);
271 	kfree_rcu(ei->socket.wq, rcu);
272 	kmem_cache_free(sock_inode_cachep, ei);
273 }
274 
275 static void init_once(void *foo)
276 {
277 	struct socket_alloc *ei = (struct socket_alloc *)foo;
278 
279 	inode_init_once(&ei->vfs_inode);
280 }
281 
282 static void init_inodecache(void)
283 {
284 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
285 					      sizeof(struct socket_alloc),
286 					      0,
287 					      (SLAB_HWCACHE_ALIGN |
288 					       SLAB_RECLAIM_ACCOUNT |
289 					       SLAB_MEM_SPREAD | SLAB_ACCOUNT),
290 					      init_once);
291 	BUG_ON(sock_inode_cachep == NULL);
292 }
293 
294 static const struct super_operations sockfs_ops = {
295 	.alloc_inode	= sock_alloc_inode,
296 	.destroy_inode	= sock_destroy_inode,
297 	.statfs		= simple_statfs,
298 };
299 
300 /*
301  * sockfs_dname() is called from d_path().
302  */
303 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
304 {
305 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
306 				d_inode(dentry)->i_ino);
307 }
308 
309 static const struct dentry_operations sockfs_dentry_operations = {
310 	.d_dname  = sockfs_dname,
311 };
312 
313 static int sockfs_xattr_get(const struct xattr_handler *handler,
314 			    struct dentry *dentry, struct inode *inode,
315 			    const char *suffix, void *value, size_t size)
316 {
317 	if (value) {
318 		if (dentry->d_name.len + 1 > size)
319 			return -ERANGE;
320 		memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
321 	}
322 	return dentry->d_name.len + 1;
323 }
324 
325 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
326 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
327 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
328 
329 static const struct xattr_handler sockfs_xattr_handler = {
330 	.name = XATTR_NAME_SOCKPROTONAME,
331 	.get = sockfs_xattr_get,
332 };
333 
334 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
335 				     struct dentry *dentry, struct inode *inode,
336 				     const char *suffix, const void *value,
337 				     size_t size, int flags)
338 {
339 	/* Handled by LSM. */
340 	return -EAGAIN;
341 }
342 
343 static const struct xattr_handler sockfs_security_xattr_handler = {
344 	.prefix = XATTR_SECURITY_PREFIX,
345 	.set = sockfs_security_xattr_set,
346 };
347 
348 static const struct xattr_handler *sockfs_xattr_handlers[] = {
349 	&sockfs_xattr_handler,
350 	&sockfs_security_xattr_handler,
351 	NULL
352 };
353 
354 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
355 			 int flags, const char *dev_name, void *data)
356 {
357 	return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
358 				  sockfs_xattr_handlers,
359 				  &sockfs_dentry_operations, SOCKFS_MAGIC);
360 }
361 
362 static struct vfsmount *sock_mnt __read_mostly;
363 
364 static struct file_system_type sock_fs_type = {
365 	.name =		"sockfs",
366 	.mount =	sockfs_mount,
367 	.kill_sb =	kill_anon_super,
368 };
369 
370 /*
371  *	Obtains the first available file descriptor and sets it up for use.
372  *
373  *	These functions create file structures and maps them to fd space
374  *	of the current process. On success it returns file descriptor
375  *	and file struct implicitly stored in sock->file.
376  *	Note that another thread may close file descriptor before we return
377  *	from this function. We use the fact that now we do not refer
378  *	to socket after mapping. If one day we will need it, this
379  *	function will increment ref. count on file by 1.
380  *
381  *	In any case returned fd MAY BE not valid!
382  *	This race condition is unavoidable
383  *	with shared fd spaces, we cannot solve it inside kernel,
384  *	but we take care of internal coherence yet.
385  */
386 
387 /**
388  *	sock_alloc_file - Bind a &socket to a &file
389  *	@sock: socket
390  *	@flags: file status flags
391  *	@dname: protocol name
392  *
393  *	Returns the &file bound with @sock, implicitly storing it
394  *	in sock->file. If dname is %NULL, sets to "".
395  *	On failure the return is a ERR pointer (see linux/err.h).
396  *	This function uses GFP_KERNEL internally.
397  */
398 
399 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
400 {
401 	struct file *file;
402 
403 	if (!dname)
404 		dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
405 
406 	file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
407 				O_RDWR | (flags & O_NONBLOCK),
408 				&socket_file_ops);
409 	if (IS_ERR(file)) {
410 		sock_release(sock);
411 		return file;
412 	}
413 
414 	sock->file = file;
415 	file->private_data = sock;
416 	return file;
417 }
418 EXPORT_SYMBOL(sock_alloc_file);
419 
420 static int sock_map_fd(struct socket *sock, int flags)
421 {
422 	struct file *newfile;
423 	int fd = get_unused_fd_flags(flags);
424 	if (unlikely(fd < 0)) {
425 		sock_release(sock);
426 		return fd;
427 	}
428 
429 	newfile = sock_alloc_file(sock, flags, NULL);
430 	if (likely(!IS_ERR(newfile))) {
431 		fd_install(fd, newfile);
432 		return fd;
433 	}
434 
435 	put_unused_fd(fd);
436 	return PTR_ERR(newfile);
437 }
438 
439 /**
440  *	sock_from_file - Return the &socket bounded to @file.
441  *	@file: file
442  *	@err: pointer to an error code return
443  *
444  *	On failure returns %NULL and assigns -ENOTSOCK to @err.
445  */
446 
447 struct socket *sock_from_file(struct file *file, int *err)
448 {
449 	if (file->f_op == &socket_file_ops)
450 		return file->private_data;	/* set in sock_map_fd */
451 
452 	*err = -ENOTSOCK;
453 	return NULL;
454 }
455 EXPORT_SYMBOL(sock_from_file);
456 
457 /**
458  *	sockfd_lookup - Go from a file number to its socket slot
459  *	@fd: file handle
460  *	@err: pointer to an error code return
461  *
462  *	The file handle passed in is locked and the socket it is bound
463  *	to is returned. If an error occurs the err pointer is overwritten
464  *	with a negative errno code and NULL is returned. The function checks
465  *	for both invalid handles and passing a handle which is not a socket.
466  *
467  *	On a success the socket object pointer is returned.
468  */
469 
470 struct socket *sockfd_lookup(int fd, int *err)
471 {
472 	struct file *file;
473 	struct socket *sock;
474 
475 	file = fget(fd);
476 	if (!file) {
477 		*err = -EBADF;
478 		return NULL;
479 	}
480 
481 	sock = sock_from_file(file, err);
482 	if (!sock)
483 		fput(file);
484 	return sock;
485 }
486 EXPORT_SYMBOL(sockfd_lookup);
487 
488 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
489 {
490 	struct fd f = fdget(fd);
491 	struct socket *sock;
492 
493 	*err = -EBADF;
494 	if (f.file) {
495 		sock = sock_from_file(f.file, err);
496 		if (likely(sock)) {
497 			*fput_needed = f.flags;
498 			return sock;
499 		}
500 		fdput(f);
501 	}
502 	return NULL;
503 }
504 
505 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
506 				size_t size)
507 {
508 	ssize_t len;
509 	ssize_t used = 0;
510 
511 	len = security_inode_listsecurity(d_inode(dentry), buffer, size);
512 	if (len < 0)
513 		return len;
514 	used += len;
515 	if (buffer) {
516 		if (size < used)
517 			return -ERANGE;
518 		buffer += len;
519 	}
520 
521 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
522 	used += len;
523 	if (buffer) {
524 		if (size < used)
525 			return -ERANGE;
526 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
527 		buffer += len;
528 	}
529 
530 	return used;
531 }
532 
533 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
534 {
535 	int err = simple_setattr(dentry, iattr);
536 
537 	if (!err && (iattr->ia_valid & ATTR_UID)) {
538 		struct socket *sock = SOCKET_I(d_inode(dentry));
539 
540 		if (sock->sk)
541 			sock->sk->sk_uid = iattr->ia_uid;
542 		else
543 			err = -ENOENT;
544 	}
545 
546 	return err;
547 }
548 
549 static const struct inode_operations sockfs_inode_ops = {
550 	.listxattr = sockfs_listxattr,
551 	.setattr = sockfs_setattr,
552 };
553 
554 /**
555  *	sock_alloc - allocate a socket
556  *
557  *	Allocate a new inode and socket object. The two are bound together
558  *	and initialised. The socket is then returned. If we are out of inodes
559  *	NULL is returned. This functions uses GFP_KERNEL internally.
560  */
561 
562 struct socket *sock_alloc(void)
563 {
564 	struct inode *inode;
565 	struct socket *sock;
566 
567 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
568 	if (!inode)
569 		return NULL;
570 
571 	sock = SOCKET_I(inode);
572 
573 	inode->i_ino = get_next_ino();
574 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
575 	inode->i_uid = current_fsuid();
576 	inode->i_gid = current_fsgid();
577 	inode->i_op = &sockfs_inode_ops;
578 
579 	return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582 
583 /**
584  *	sock_release - close a socket
585  *	@sock: socket to close
586  *
587  *	The socket is released from the protocol stack if it has a release
588  *	callback, and the inode is then released if the socket is bound to
589  *	an inode not a file.
590  */
591 
592 static void __sock_release(struct socket *sock, struct inode *inode)
593 {
594 	if (sock->ops) {
595 		struct module *owner = sock->ops->owner;
596 
597 		if (inode)
598 			inode_lock(inode);
599 		sock->ops->release(sock);
600 		sock->sk = NULL;
601 		if (inode)
602 			inode_unlock(inode);
603 		sock->ops = NULL;
604 		module_put(owner);
605 	}
606 
607 	if (sock->wq->fasync_list)
608 		pr_err("%s: fasync list not empty!\n", __func__);
609 
610 	if (!sock->file) {
611 		iput(SOCK_INODE(sock));
612 		return;
613 	}
614 	sock->file = NULL;
615 }
616 
617 void sock_release(struct socket *sock)
618 {
619 	__sock_release(sock, NULL);
620 }
621 EXPORT_SYMBOL(sock_release);
622 
623 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
624 {
625 	u8 flags = *tx_flags;
626 
627 	if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
628 		flags |= SKBTX_HW_TSTAMP;
629 
630 	if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
631 		flags |= SKBTX_SW_TSTAMP;
632 
633 	if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
634 		flags |= SKBTX_SCHED_TSTAMP;
635 
636 	*tx_flags = flags;
637 }
638 EXPORT_SYMBOL(__sock_tx_timestamp);
639 
640 /**
641  *	sock_sendmsg - send a message through @sock
642  *	@sock: socket
643  *	@msg: message to send
644  *
645  *	Sends @msg through @sock, passing through LSM.
646  *	Returns the number of bytes sent, or an error code.
647  */
648 
649 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
650 {
651 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
652 	BUG_ON(ret == -EIOCBQUEUED);
653 	return ret;
654 }
655 
656 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
657 {
658 	int err = security_socket_sendmsg(sock, msg,
659 					  msg_data_left(msg));
660 
661 	return err ?: sock_sendmsg_nosec(sock, msg);
662 }
663 EXPORT_SYMBOL(sock_sendmsg);
664 
665 /**
666  *	kernel_sendmsg - send a message through @sock (kernel-space)
667  *	@sock: socket
668  *	@msg: message header
669  *	@vec: kernel vec
670  *	@num: vec array length
671  *	@size: total message data size
672  *
673  *	Builds the message data with @vec and sends it through @sock.
674  *	Returns the number of bytes sent, or an error code.
675  */
676 
677 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
678 		   struct kvec *vec, size_t num, size_t size)
679 {
680 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
681 	return sock_sendmsg(sock, msg);
682 }
683 EXPORT_SYMBOL(kernel_sendmsg);
684 
685 /**
686  *	kernel_sendmsg_locked - send a message through @sock (kernel-space)
687  *	@sk: sock
688  *	@msg: message header
689  *	@vec: output s/g array
690  *	@num: output s/g array length
691  *	@size: total message data size
692  *
693  *	Builds the message data with @vec and sends it through @sock.
694  *	Returns the number of bytes sent, or an error code.
695  *	Caller must hold @sk.
696  */
697 
698 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
699 			  struct kvec *vec, size_t num, size_t size)
700 {
701 	struct socket *sock = sk->sk_socket;
702 
703 	if (!sock->ops->sendmsg_locked)
704 		return sock_no_sendmsg_locked(sk, msg, size);
705 
706 	iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
707 
708 	return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
709 }
710 EXPORT_SYMBOL(kernel_sendmsg_locked);
711 
712 static bool skb_is_err_queue(const struct sk_buff *skb)
713 {
714 	/* pkt_type of skbs enqueued on the error queue are set to
715 	 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
716 	 * in recvmsg, since skbs received on a local socket will never
717 	 * have a pkt_type of PACKET_OUTGOING.
718 	 */
719 	return skb->pkt_type == PACKET_OUTGOING;
720 }
721 
722 /* On transmit, software and hardware timestamps are returned independently.
723  * As the two skb clones share the hardware timestamp, which may be updated
724  * before the software timestamp is received, a hardware TX timestamp may be
725  * returned only if there is no software TX timestamp. Ignore false software
726  * timestamps, which may be made in the __sock_recv_timestamp() call when the
727  * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
728  * hardware timestamp.
729  */
730 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
731 {
732 	return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
733 }
734 
735 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
736 {
737 	struct scm_ts_pktinfo ts_pktinfo;
738 	struct net_device *orig_dev;
739 
740 	if (!skb_mac_header_was_set(skb))
741 		return;
742 
743 	memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
744 
745 	rcu_read_lock();
746 	orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
747 	if (orig_dev)
748 		ts_pktinfo.if_index = orig_dev->ifindex;
749 	rcu_read_unlock();
750 
751 	ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
752 	put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
753 		 sizeof(ts_pktinfo), &ts_pktinfo);
754 }
755 
756 /*
757  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
758  */
759 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
760 	struct sk_buff *skb)
761 {
762 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
763 	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
764 	struct scm_timestamping_internal tss;
765 
766 	int empty = 1, false_tstamp = 0;
767 	struct skb_shared_hwtstamps *shhwtstamps =
768 		skb_hwtstamps(skb);
769 
770 	/* Race occurred between timestamp enabling and packet
771 	   receiving.  Fill in the current time for now. */
772 	if (need_software_tstamp && skb->tstamp == 0) {
773 		__net_timestamp(skb);
774 		false_tstamp = 1;
775 	}
776 
777 	if (need_software_tstamp) {
778 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
779 			if (new_tstamp) {
780 				struct __kernel_sock_timeval tv;
781 
782 				skb_get_new_timestamp(skb, &tv);
783 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
784 					 sizeof(tv), &tv);
785 			} else {
786 				struct __kernel_old_timeval tv;
787 
788 				skb_get_timestamp(skb, &tv);
789 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
790 					 sizeof(tv), &tv);
791 			}
792 		} else {
793 			if (new_tstamp) {
794 				struct __kernel_timespec ts;
795 
796 				skb_get_new_timestampns(skb, &ts);
797 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
798 					 sizeof(ts), &ts);
799 			} else {
800 				struct timespec ts;
801 
802 				skb_get_timestampns(skb, &ts);
803 				put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
804 					 sizeof(ts), &ts);
805 			}
806 		}
807 	}
808 
809 	memset(&tss, 0, sizeof(tss));
810 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
811 	    ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
812 		empty = 0;
813 	if (shhwtstamps &&
814 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
815 	    !skb_is_swtx_tstamp(skb, false_tstamp) &&
816 	    ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
817 		empty = 0;
818 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
819 		    !skb_is_err_queue(skb))
820 			put_ts_pktinfo(msg, skb);
821 	}
822 	if (!empty) {
823 		if (sock_flag(sk, SOCK_TSTAMP_NEW))
824 			put_cmsg_scm_timestamping64(msg, &tss);
825 		else
826 			put_cmsg_scm_timestamping(msg, &tss);
827 
828 		if (skb_is_err_queue(skb) && skb->len &&
829 		    SKB_EXT_ERR(skb)->opt_stats)
830 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
831 				 skb->len, skb->data);
832 	}
833 }
834 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
835 
836 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
837 	struct sk_buff *skb)
838 {
839 	int ack;
840 
841 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
842 		return;
843 	if (!skb->wifi_acked_valid)
844 		return;
845 
846 	ack = skb->wifi_acked;
847 
848 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
849 }
850 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
851 
852 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
853 				   struct sk_buff *skb)
854 {
855 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
856 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
857 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
858 }
859 
860 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
861 	struct sk_buff *skb)
862 {
863 	sock_recv_timestamp(msg, sk, skb);
864 	sock_recv_drops(msg, sk, skb);
865 }
866 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
867 
868 /**
869  *	sock_recvmsg - receive a message from @sock
870  *	@sock: socket
871  *	@msg: message to receive
872  *	@flags: message flags
873  *
874  *	Receives @msg from @sock, passing through LSM. Returns the total number
875  *	of bytes received, or an error.
876  */
877 
878 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
879 				     int flags)
880 {
881 	return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
882 }
883 
884 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
885 {
886 	int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
887 
888 	return err ?: sock_recvmsg_nosec(sock, msg, flags);
889 }
890 EXPORT_SYMBOL(sock_recvmsg);
891 
892 /**
893  *	kernel_recvmsg - Receive a message from a socket (kernel space)
894  *	@sock: The socket to receive the message from
895  *	@msg: Received message
896  *	@vec: Input s/g array for message data
897  *	@num: Size of input s/g array
898  *	@size: Number of bytes to read
899  *	@flags: Message flags (MSG_DONTWAIT, etc...)
900  *
901  *	On return the msg structure contains the scatter/gather array passed in the
902  *	vec argument. The array is modified so that it consists of the unfilled
903  *	portion of the original array.
904  *
905  *	The returned value is the total number of bytes received, or an error.
906  */
907 
908 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
909 		   struct kvec *vec, size_t num, size_t size, int flags)
910 {
911 	mm_segment_t oldfs = get_fs();
912 	int result;
913 
914 	iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
915 	set_fs(KERNEL_DS);
916 	result = sock_recvmsg(sock, msg, flags);
917 	set_fs(oldfs);
918 	return result;
919 }
920 EXPORT_SYMBOL(kernel_recvmsg);
921 
922 static ssize_t sock_sendpage(struct file *file, struct page *page,
923 			     int offset, size_t size, loff_t *ppos, int more)
924 {
925 	struct socket *sock;
926 	int flags;
927 
928 	sock = file->private_data;
929 
930 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
931 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
932 	flags |= more;
933 
934 	return kernel_sendpage(sock, page, offset, size, flags);
935 }
936 
937 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
938 				struct pipe_inode_info *pipe, size_t len,
939 				unsigned int flags)
940 {
941 	struct socket *sock = file->private_data;
942 
943 	if (unlikely(!sock->ops->splice_read))
944 		return generic_file_splice_read(file, ppos, pipe, len, flags);
945 
946 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
947 }
948 
949 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
950 {
951 	struct file *file = iocb->ki_filp;
952 	struct socket *sock = file->private_data;
953 	struct msghdr msg = {.msg_iter = *to,
954 			     .msg_iocb = iocb};
955 	ssize_t res;
956 
957 	if (file->f_flags & O_NONBLOCK)
958 		msg.msg_flags = MSG_DONTWAIT;
959 
960 	if (iocb->ki_pos != 0)
961 		return -ESPIPE;
962 
963 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
964 		return 0;
965 
966 	res = sock_recvmsg(sock, &msg, msg.msg_flags);
967 	*to = msg.msg_iter;
968 	return res;
969 }
970 
971 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
972 {
973 	struct file *file = iocb->ki_filp;
974 	struct socket *sock = file->private_data;
975 	struct msghdr msg = {.msg_iter = *from,
976 			     .msg_iocb = iocb};
977 	ssize_t res;
978 
979 	if (iocb->ki_pos != 0)
980 		return -ESPIPE;
981 
982 	if (file->f_flags & O_NONBLOCK)
983 		msg.msg_flags = MSG_DONTWAIT;
984 
985 	if (sock->type == SOCK_SEQPACKET)
986 		msg.msg_flags |= MSG_EOR;
987 
988 	res = sock_sendmsg(sock, &msg);
989 	*from = msg.msg_iter;
990 	return res;
991 }
992 
993 /*
994  * Atomic setting of ioctl hooks to avoid race
995  * with module unload.
996  */
997 
998 static DEFINE_MUTEX(br_ioctl_mutex);
999 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1000 
1001 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1002 {
1003 	mutex_lock(&br_ioctl_mutex);
1004 	br_ioctl_hook = hook;
1005 	mutex_unlock(&br_ioctl_mutex);
1006 }
1007 EXPORT_SYMBOL(brioctl_set);
1008 
1009 static DEFINE_MUTEX(vlan_ioctl_mutex);
1010 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1011 
1012 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1013 {
1014 	mutex_lock(&vlan_ioctl_mutex);
1015 	vlan_ioctl_hook = hook;
1016 	mutex_unlock(&vlan_ioctl_mutex);
1017 }
1018 EXPORT_SYMBOL(vlan_ioctl_set);
1019 
1020 static DEFINE_MUTEX(dlci_ioctl_mutex);
1021 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1022 
1023 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1024 {
1025 	mutex_lock(&dlci_ioctl_mutex);
1026 	dlci_ioctl_hook = hook;
1027 	mutex_unlock(&dlci_ioctl_mutex);
1028 }
1029 EXPORT_SYMBOL(dlci_ioctl_set);
1030 
1031 static long sock_do_ioctl(struct net *net, struct socket *sock,
1032 			  unsigned int cmd, unsigned long arg)
1033 {
1034 	int err;
1035 	void __user *argp = (void __user *)arg;
1036 
1037 	err = sock->ops->ioctl(sock, cmd, arg);
1038 
1039 	/*
1040 	 * If this ioctl is unknown try to hand it down
1041 	 * to the NIC driver.
1042 	 */
1043 	if (err != -ENOIOCTLCMD)
1044 		return err;
1045 
1046 	if (cmd == SIOCGIFCONF) {
1047 		struct ifconf ifc;
1048 		if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1049 			return -EFAULT;
1050 		rtnl_lock();
1051 		err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1052 		rtnl_unlock();
1053 		if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1054 			err = -EFAULT;
1055 	} else {
1056 		struct ifreq ifr;
1057 		bool need_copyout;
1058 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1059 			return -EFAULT;
1060 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1061 		if (!err && need_copyout)
1062 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1063 				return -EFAULT;
1064 	}
1065 	return err;
1066 }
1067 
1068 /*
1069  *	With an ioctl, arg may well be a user mode pointer, but we don't know
1070  *	what to do with it - that's up to the protocol still.
1071  */
1072 
1073 /**
1074  *	get_net_ns - increment the refcount of the network namespace
1075  *	@ns: common namespace (net)
1076  *
1077  *	Returns the net's common namespace.
1078  */
1079 
1080 struct ns_common *get_net_ns(struct ns_common *ns)
1081 {
1082 	return &get_net(container_of(ns, struct net, ns))->ns;
1083 }
1084 EXPORT_SYMBOL_GPL(get_net_ns);
1085 
1086 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1087 {
1088 	struct socket *sock;
1089 	struct sock *sk;
1090 	void __user *argp = (void __user *)arg;
1091 	int pid, err;
1092 	struct net *net;
1093 
1094 	sock = file->private_data;
1095 	sk = sock->sk;
1096 	net = sock_net(sk);
1097 	if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1098 		struct ifreq ifr;
1099 		bool need_copyout;
1100 		if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1101 			return -EFAULT;
1102 		err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1103 		if (!err && need_copyout)
1104 			if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1105 				return -EFAULT;
1106 	} else
1107 #ifdef CONFIG_WEXT_CORE
1108 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1109 		err = wext_handle_ioctl(net, cmd, argp);
1110 	} else
1111 #endif
1112 		switch (cmd) {
1113 		case FIOSETOWN:
1114 		case SIOCSPGRP:
1115 			err = -EFAULT;
1116 			if (get_user(pid, (int __user *)argp))
1117 				break;
1118 			err = f_setown(sock->file, pid, 1);
1119 			break;
1120 		case FIOGETOWN:
1121 		case SIOCGPGRP:
1122 			err = put_user(f_getown(sock->file),
1123 				       (int __user *)argp);
1124 			break;
1125 		case SIOCGIFBR:
1126 		case SIOCSIFBR:
1127 		case SIOCBRADDBR:
1128 		case SIOCBRDELBR:
1129 			err = -ENOPKG;
1130 			if (!br_ioctl_hook)
1131 				request_module("bridge");
1132 
1133 			mutex_lock(&br_ioctl_mutex);
1134 			if (br_ioctl_hook)
1135 				err = br_ioctl_hook(net, cmd, argp);
1136 			mutex_unlock(&br_ioctl_mutex);
1137 			break;
1138 		case SIOCGIFVLAN:
1139 		case SIOCSIFVLAN:
1140 			err = -ENOPKG;
1141 			if (!vlan_ioctl_hook)
1142 				request_module("8021q");
1143 
1144 			mutex_lock(&vlan_ioctl_mutex);
1145 			if (vlan_ioctl_hook)
1146 				err = vlan_ioctl_hook(net, argp);
1147 			mutex_unlock(&vlan_ioctl_mutex);
1148 			break;
1149 		case SIOCADDDLCI:
1150 		case SIOCDELDLCI:
1151 			err = -ENOPKG;
1152 			if (!dlci_ioctl_hook)
1153 				request_module("dlci");
1154 
1155 			mutex_lock(&dlci_ioctl_mutex);
1156 			if (dlci_ioctl_hook)
1157 				err = dlci_ioctl_hook(cmd, argp);
1158 			mutex_unlock(&dlci_ioctl_mutex);
1159 			break;
1160 		case SIOCGSKNS:
1161 			err = -EPERM;
1162 			if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1163 				break;
1164 
1165 			err = open_related_ns(&net->ns, get_net_ns);
1166 			break;
1167 		case SIOCGSTAMP_OLD:
1168 		case SIOCGSTAMPNS_OLD:
1169 			if (!sock->ops->gettstamp) {
1170 				err = -ENOIOCTLCMD;
1171 				break;
1172 			}
1173 			err = sock->ops->gettstamp(sock, argp,
1174 						   cmd == SIOCGSTAMP_OLD,
1175 						   !IS_ENABLED(CONFIG_64BIT));
1176 			break;
1177 		case SIOCGSTAMP_NEW:
1178 		case SIOCGSTAMPNS_NEW:
1179 			if (!sock->ops->gettstamp) {
1180 				err = -ENOIOCTLCMD;
1181 				break;
1182 			}
1183 			err = sock->ops->gettstamp(sock, argp,
1184 						   cmd == SIOCGSTAMP_NEW,
1185 						   false);
1186 			break;
1187 		default:
1188 			err = sock_do_ioctl(net, sock, cmd, arg);
1189 			break;
1190 		}
1191 	return err;
1192 }
1193 
1194 /**
1195  *	sock_create_lite - creates a socket
1196  *	@family: protocol family (AF_INET, ...)
1197  *	@type: communication type (SOCK_STREAM, ...)
1198  *	@protocol: protocol (0, ...)
1199  *	@res: new socket
1200  *
1201  *	Creates a new socket and assigns it to @res, passing through LSM.
1202  *	The new socket initialization is not complete, see kernel_accept().
1203  *	Returns 0 or an error. On failure @res is set to %NULL.
1204  *	This function internally uses GFP_KERNEL.
1205  */
1206 
1207 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1208 {
1209 	int err;
1210 	struct socket *sock = NULL;
1211 
1212 	err = security_socket_create(family, type, protocol, 1);
1213 	if (err)
1214 		goto out;
1215 
1216 	sock = sock_alloc();
1217 	if (!sock) {
1218 		err = -ENOMEM;
1219 		goto out;
1220 	}
1221 
1222 	sock->type = type;
1223 	err = security_socket_post_create(sock, family, type, protocol, 1);
1224 	if (err)
1225 		goto out_release;
1226 
1227 out:
1228 	*res = sock;
1229 	return err;
1230 out_release:
1231 	sock_release(sock);
1232 	sock = NULL;
1233 	goto out;
1234 }
1235 EXPORT_SYMBOL(sock_create_lite);
1236 
1237 /* No kernel lock held - perfect */
1238 static __poll_t sock_poll(struct file *file, poll_table *wait)
1239 {
1240 	struct socket *sock = file->private_data;
1241 	__poll_t events = poll_requested_events(wait), flag = 0;
1242 
1243 	if (!sock->ops->poll)
1244 		return 0;
1245 
1246 	if (sk_can_busy_loop(sock->sk)) {
1247 		/* poll once if requested by the syscall */
1248 		if (events & POLL_BUSY_LOOP)
1249 			sk_busy_loop(sock->sk, 1);
1250 
1251 		/* if this socket can poll_ll, tell the system call */
1252 		flag = POLL_BUSY_LOOP;
1253 	}
1254 
1255 	return sock->ops->poll(file, sock, wait) | flag;
1256 }
1257 
1258 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1259 {
1260 	struct socket *sock = file->private_data;
1261 
1262 	return sock->ops->mmap(file, sock, vma);
1263 }
1264 
1265 static int sock_close(struct inode *inode, struct file *filp)
1266 {
1267 	__sock_release(SOCKET_I(inode), inode);
1268 	return 0;
1269 }
1270 
1271 /*
1272  *	Update the socket async list
1273  *
1274  *	Fasync_list locking strategy.
1275  *
1276  *	1. fasync_list is modified only under process context socket lock
1277  *	   i.e. under semaphore.
1278  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1279  *	   or under socket lock
1280  */
1281 
1282 static int sock_fasync(int fd, struct file *filp, int on)
1283 {
1284 	struct socket *sock = filp->private_data;
1285 	struct sock *sk = sock->sk;
1286 	struct socket_wq *wq;
1287 
1288 	if (sk == NULL)
1289 		return -EINVAL;
1290 
1291 	lock_sock(sk);
1292 	wq = sock->wq;
1293 	fasync_helper(fd, filp, on, &wq->fasync_list);
1294 
1295 	if (!wq->fasync_list)
1296 		sock_reset_flag(sk, SOCK_FASYNC);
1297 	else
1298 		sock_set_flag(sk, SOCK_FASYNC);
1299 
1300 	release_sock(sk);
1301 	return 0;
1302 }
1303 
1304 /* This function may be called only under rcu_lock */
1305 
1306 int sock_wake_async(struct socket_wq *wq, int how, int band)
1307 {
1308 	if (!wq || !wq->fasync_list)
1309 		return -1;
1310 
1311 	switch (how) {
1312 	case SOCK_WAKE_WAITD:
1313 		if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1314 			break;
1315 		goto call_kill;
1316 	case SOCK_WAKE_SPACE:
1317 		if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1318 			break;
1319 		/* fall through */
1320 	case SOCK_WAKE_IO:
1321 call_kill:
1322 		kill_fasync(&wq->fasync_list, SIGIO, band);
1323 		break;
1324 	case SOCK_WAKE_URG:
1325 		kill_fasync(&wq->fasync_list, SIGURG, band);
1326 	}
1327 
1328 	return 0;
1329 }
1330 EXPORT_SYMBOL(sock_wake_async);
1331 
1332 /**
1333  *	__sock_create - creates a socket
1334  *	@net: net namespace
1335  *	@family: protocol family (AF_INET, ...)
1336  *	@type: communication type (SOCK_STREAM, ...)
1337  *	@protocol: protocol (0, ...)
1338  *	@res: new socket
1339  *	@kern: boolean for kernel space sockets
1340  *
1341  *	Creates a new socket and assigns it to @res, passing through LSM.
1342  *	Returns 0 or an error. On failure @res is set to %NULL. @kern must
1343  *	be set to true if the socket resides in kernel space.
1344  *	This function internally uses GFP_KERNEL.
1345  */
1346 
1347 int __sock_create(struct net *net, int family, int type, int protocol,
1348 			 struct socket **res, int kern)
1349 {
1350 	int err;
1351 	struct socket *sock;
1352 	const struct net_proto_family *pf;
1353 
1354 	/*
1355 	 *      Check protocol is in range
1356 	 */
1357 	if (family < 0 || family >= NPROTO)
1358 		return -EAFNOSUPPORT;
1359 	if (type < 0 || type >= SOCK_MAX)
1360 		return -EINVAL;
1361 
1362 	/* Compatibility.
1363 
1364 	   This uglymoron is moved from INET layer to here to avoid
1365 	   deadlock in module load.
1366 	 */
1367 	if (family == PF_INET && type == SOCK_PACKET) {
1368 		pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1369 			     current->comm);
1370 		family = PF_PACKET;
1371 	}
1372 
1373 	err = security_socket_create(family, type, protocol, kern);
1374 	if (err)
1375 		return err;
1376 
1377 	/*
1378 	 *	Allocate the socket and allow the family to set things up. if
1379 	 *	the protocol is 0, the family is instructed to select an appropriate
1380 	 *	default.
1381 	 */
1382 	sock = sock_alloc();
1383 	if (!sock) {
1384 		net_warn_ratelimited("socket: no more sockets\n");
1385 		return -ENFILE;	/* Not exactly a match, but its the
1386 				   closest posix thing */
1387 	}
1388 
1389 	sock->type = type;
1390 
1391 #ifdef CONFIG_MODULES
1392 	/* Attempt to load a protocol module if the find failed.
1393 	 *
1394 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1395 	 * requested real, full-featured networking support upon configuration.
1396 	 * Otherwise module support will break!
1397 	 */
1398 	if (rcu_access_pointer(net_families[family]) == NULL)
1399 		request_module("net-pf-%d", family);
1400 #endif
1401 
1402 	rcu_read_lock();
1403 	pf = rcu_dereference(net_families[family]);
1404 	err = -EAFNOSUPPORT;
1405 	if (!pf)
1406 		goto out_release;
1407 
1408 	/*
1409 	 * We will call the ->create function, that possibly is in a loadable
1410 	 * module, so we have to bump that loadable module refcnt first.
1411 	 */
1412 	if (!try_module_get(pf->owner))
1413 		goto out_release;
1414 
1415 	/* Now protected by module ref count */
1416 	rcu_read_unlock();
1417 
1418 	err = pf->create(net, sock, protocol, kern);
1419 	if (err < 0)
1420 		goto out_module_put;
1421 
1422 	/*
1423 	 * Now to bump the refcnt of the [loadable] module that owns this
1424 	 * socket at sock_release time we decrement its refcnt.
1425 	 */
1426 	if (!try_module_get(sock->ops->owner))
1427 		goto out_module_busy;
1428 
1429 	/*
1430 	 * Now that we're done with the ->create function, the [loadable]
1431 	 * module can have its refcnt decremented
1432 	 */
1433 	module_put(pf->owner);
1434 	err = security_socket_post_create(sock, family, type, protocol, kern);
1435 	if (err)
1436 		goto out_sock_release;
1437 	*res = sock;
1438 
1439 	return 0;
1440 
1441 out_module_busy:
1442 	err = -EAFNOSUPPORT;
1443 out_module_put:
1444 	sock->ops = NULL;
1445 	module_put(pf->owner);
1446 out_sock_release:
1447 	sock_release(sock);
1448 	return err;
1449 
1450 out_release:
1451 	rcu_read_unlock();
1452 	goto out_sock_release;
1453 }
1454 EXPORT_SYMBOL(__sock_create);
1455 
1456 /**
1457  *	sock_create - creates a socket
1458  *	@family: protocol family (AF_INET, ...)
1459  *	@type: communication type (SOCK_STREAM, ...)
1460  *	@protocol: protocol (0, ...)
1461  *	@res: new socket
1462  *
1463  *	A wrapper around __sock_create().
1464  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1465  */
1466 
1467 int sock_create(int family, int type, int protocol, struct socket **res)
1468 {
1469 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1470 }
1471 EXPORT_SYMBOL(sock_create);
1472 
1473 /**
1474  *	sock_create_kern - creates a socket (kernel space)
1475  *	@net: net namespace
1476  *	@family: protocol family (AF_INET, ...)
1477  *	@type: communication type (SOCK_STREAM, ...)
1478  *	@protocol: protocol (0, ...)
1479  *	@res: new socket
1480  *
1481  *	A wrapper around __sock_create().
1482  *	Returns 0 or an error. This function internally uses GFP_KERNEL.
1483  */
1484 
1485 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1486 {
1487 	return __sock_create(net, family, type, protocol, res, 1);
1488 }
1489 EXPORT_SYMBOL(sock_create_kern);
1490 
1491 int __sys_socket(int family, int type, int protocol)
1492 {
1493 	int retval;
1494 	struct socket *sock;
1495 	int flags;
1496 
1497 	/* Check the SOCK_* constants for consistency.  */
1498 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1499 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1500 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1501 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1502 
1503 	flags = type & ~SOCK_TYPE_MASK;
1504 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1505 		return -EINVAL;
1506 	type &= SOCK_TYPE_MASK;
1507 
1508 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1509 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1510 
1511 	retval = sock_create(family, type, protocol, &sock);
1512 	if (retval < 0)
1513 		return retval;
1514 
1515 	return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1516 }
1517 
1518 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1519 {
1520 	return __sys_socket(family, type, protocol);
1521 }
1522 
1523 /*
1524  *	Create a pair of connected sockets.
1525  */
1526 
1527 int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1528 {
1529 	struct socket *sock1, *sock2;
1530 	int fd1, fd2, err;
1531 	struct file *newfile1, *newfile2;
1532 	int flags;
1533 
1534 	flags = type & ~SOCK_TYPE_MASK;
1535 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1536 		return -EINVAL;
1537 	type &= SOCK_TYPE_MASK;
1538 
1539 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1540 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1541 
1542 	/*
1543 	 * reserve descriptors and make sure we won't fail
1544 	 * to return them to userland.
1545 	 */
1546 	fd1 = get_unused_fd_flags(flags);
1547 	if (unlikely(fd1 < 0))
1548 		return fd1;
1549 
1550 	fd2 = get_unused_fd_flags(flags);
1551 	if (unlikely(fd2 < 0)) {
1552 		put_unused_fd(fd1);
1553 		return fd2;
1554 	}
1555 
1556 	err = put_user(fd1, &usockvec[0]);
1557 	if (err)
1558 		goto out;
1559 
1560 	err = put_user(fd2, &usockvec[1]);
1561 	if (err)
1562 		goto out;
1563 
1564 	/*
1565 	 * Obtain the first socket and check if the underlying protocol
1566 	 * supports the socketpair call.
1567 	 */
1568 
1569 	err = sock_create(family, type, protocol, &sock1);
1570 	if (unlikely(err < 0))
1571 		goto out;
1572 
1573 	err = sock_create(family, type, protocol, &sock2);
1574 	if (unlikely(err < 0)) {
1575 		sock_release(sock1);
1576 		goto out;
1577 	}
1578 
1579 	err = security_socket_socketpair(sock1, sock2);
1580 	if (unlikely(err)) {
1581 		sock_release(sock2);
1582 		sock_release(sock1);
1583 		goto out;
1584 	}
1585 
1586 	err = sock1->ops->socketpair(sock1, sock2);
1587 	if (unlikely(err < 0)) {
1588 		sock_release(sock2);
1589 		sock_release(sock1);
1590 		goto out;
1591 	}
1592 
1593 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1594 	if (IS_ERR(newfile1)) {
1595 		err = PTR_ERR(newfile1);
1596 		sock_release(sock2);
1597 		goto out;
1598 	}
1599 
1600 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1601 	if (IS_ERR(newfile2)) {
1602 		err = PTR_ERR(newfile2);
1603 		fput(newfile1);
1604 		goto out;
1605 	}
1606 
1607 	audit_fd_pair(fd1, fd2);
1608 
1609 	fd_install(fd1, newfile1);
1610 	fd_install(fd2, newfile2);
1611 	return 0;
1612 
1613 out:
1614 	put_unused_fd(fd2);
1615 	put_unused_fd(fd1);
1616 	return err;
1617 }
1618 
1619 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1620 		int __user *, usockvec)
1621 {
1622 	return __sys_socketpair(family, type, protocol, usockvec);
1623 }
1624 
1625 /*
1626  *	Bind a name to a socket. Nothing much to do here since it's
1627  *	the protocol's responsibility to handle the local address.
1628  *
1629  *	We move the socket address to kernel space before we call
1630  *	the protocol layer (having also checked the address is ok).
1631  */
1632 
1633 int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1634 {
1635 	struct socket *sock;
1636 	struct sockaddr_storage address;
1637 	int err, fput_needed;
1638 
1639 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640 	if (sock) {
1641 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1642 		if (!err) {
1643 			err = security_socket_bind(sock,
1644 						   (struct sockaddr *)&address,
1645 						   addrlen);
1646 			if (!err)
1647 				err = sock->ops->bind(sock,
1648 						      (struct sockaddr *)
1649 						      &address, addrlen);
1650 		}
1651 		fput_light(sock->file, fput_needed);
1652 	}
1653 	return err;
1654 }
1655 
1656 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1657 {
1658 	return __sys_bind(fd, umyaddr, addrlen);
1659 }
1660 
1661 /*
1662  *	Perform a listen. Basically, we allow the protocol to do anything
1663  *	necessary for a listen, and if that works, we mark the socket as
1664  *	ready for listening.
1665  */
1666 
1667 int __sys_listen(int fd, int backlog)
1668 {
1669 	struct socket *sock;
1670 	int err, fput_needed;
1671 	int somaxconn;
1672 
1673 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674 	if (sock) {
1675 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1676 		if ((unsigned int)backlog > somaxconn)
1677 			backlog = somaxconn;
1678 
1679 		err = security_socket_listen(sock, backlog);
1680 		if (!err)
1681 			err = sock->ops->listen(sock, backlog);
1682 
1683 		fput_light(sock->file, fput_needed);
1684 	}
1685 	return err;
1686 }
1687 
1688 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1689 {
1690 	return __sys_listen(fd, backlog);
1691 }
1692 
1693 /*
1694  *	For accept, we attempt to create a new socket, set up the link
1695  *	with the client, wake up the client, then return the new
1696  *	connected fd. We collect the address of the connector in kernel
1697  *	space and move it to user at the very end. This is unclean because
1698  *	we open the socket then return an error.
1699  *
1700  *	1003.1g adds the ability to recvmsg() to query connection pending
1701  *	status to recvmsg. We need to add that support in a way thats
1702  *	clean when we restructure accept also.
1703  */
1704 
1705 int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1706 		  int __user *upeer_addrlen, int flags)
1707 {
1708 	struct socket *sock, *newsock;
1709 	struct file *newfile;
1710 	int err, len, newfd, fput_needed;
1711 	struct sockaddr_storage address;
1712 
1713 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1714 		return -EINVAL;
1715 
1716 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1717 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1718 
1719 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720 	if (!sock)
1721 		goto out;
1722 
1723 	err = -ENFILE;
1724 	newsock = sock_alloc();
1725 	if (!newsock)
1726 		goto out_put;
1727 
1728 	newsock->type = sock->type;
1729 	newsock->ops = sock->ops;
1730 
1731 	/*
1732 	 * We don't need try_module_get here, as the listening socket (sock)
1733 	 * has the protocol module (sock->ops->owner) held.
1734 	 */
1735 	__module_get(newsock->ops->owner);
1736 
1737 	newfd = get_unused_fd_flags(flags);
1738 	if (unlikely(newfd < 0)) {
1739 		err = newfd;
1740 		sock_release(newsock);
1741 		goto out_put;
1742 	}
1743 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1744 	if (IS_ERR(newfile)) {
1745 		err = PTR_ERR(newfile);
1746 		put_unused_fd(newfd);
1747 		goto out_put;
1748 	}
1749 
1750 	err = security_socket_accept(sock, newsock);
1751 	if (err)
1752 		goto out_fd;
1753 
1754 	err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1755 	if (err < 0)
1756 		goto out_fd;
1757 
1758 	if (upeer_sockaddr) {
1759 		len = newsock->ops->getname(newsock,
1760 					(struct sockaddr *)&address, 2);
1761 		if (len < 0) {
1762 			err = -ECONNABORTED;
1763 			goto out_fd;
1764 		}
1765 		err = move_addr_to_user(&address,
1766 					len, upeer_sockaddr, upeer_addrlen);
1767 		if (err < 0)
1768 			goto out_fd;
1769 	}
1770 
1771 	/* File flags are not inherited via accept() unlike another OSes. */
1772 
1773 	fd_install(newfd, newfile);
1774 	err = newfd;
1775 
1776 out_put:
1777 	fput_light(sock->file, fput_needed);
1778 out:
1779 	return err;
1780 out_fd:
1781 	fput(newfile);
1782 	put_unused_fd(newfd);
1783 	goto out_put;
1784 }
1785 
1786 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1787 		int __user *, upeer_addrlen, int, flags)
1788 {
1789 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1790 }
1791 
1792 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1793 		int __user *, upeer_addrlen)
1794 {
1795 	return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1796 }
1797 
1798 /*
1799  *	Attempt to connect to a socket with the server address.  The address
1800  *	is in user space so we verify it is OK and move it to kernel space.
1801  *
1802  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1803  *	break bindings
1804  *
1805  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1806  *	other SEQPACKET protocols that take time to connect() as it doesn't
1807  *	include the -EINPROGRESS status for such sockets.
1808  */
1809 
1810 int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1811 {
1812 	struct socket *sock;
1813 	struct sockaddr_storage address;
1814 	int err, fput_needed;
1815 
1816 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1817 	if (!sock)
1818 		goto out;
1819 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1820 	if (err < 0)
1821 		goto out_put;
1822 
1823 	err =
1824 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1825 	if (err)
1826 		goto out_put;
1827 
1828 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1829 				 sock->file->f_flags);
1830 out_put:
1831 	fput_light(sock->file, fput_needed);
1832 out:
1833 	return err;
1834 }
1835 
1836 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1837 		int, addrlen)
1838 {
1839 	return __sys_connect(fd, uservaddr, addrlen);
1840 }
1841 
1842 /*
1843  *	Get the local address ('name') of a socket object. Move the obtained
1844  *	name to user space.
1845  */
1846 
1847 int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1848 		      int __user *usockaddr_len)
1849 {
1850 	struct socket *sock;
1851 	struct sockaddr_storage address;
1852 	int err, fput_needed;
1853 
1854 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1855 	if (!sock)
1856 		goto out;
1857 
1858 	err = security_socket_getsockname(sock);
1859 	if (err)
1860 		goto out_put;
1861 
1862 	err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1863 	if (err < 0)
1864 		goto out_put;
1865         /* "err" is actually length in this case */
1866 	err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1867 
1868 out_put:
1869 	fput_light(sock->file, fput_needed);
1870 out:
1871 	return err;
1872 }
1873 
1874 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1875 		int __user *, usockaddr_len)
1876 {
1877 	return __sys_getsockname(fd, usockaddr, usockaddr_len);
1878 }
1879 
1880 /*
1881  *	Get the remote address ('name') of a socket object. Move the obtained
1882  *	name to user space.
1883  */
1884 
1885 int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1886 		      int __user *usockaddr_len)
1887 {
1888 	struct socket *sock;
1889 	struct sockaddr_storage address;
1890 	int err, fput_needed;
1891 
1892 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893 	if (sock != NULL) {
1894 		err = security_socket_getpeername(sock);
1895 		if (err) {
1896 			fput_light(sock->file, fput_needed);
1897 			return err;
1898 		}
1899 
1900 		err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1901 		if (err >= 0)
1902 			/* "err" is actually length in this case */
1903 			err = move_addr_to_user(&address, err, usockaddr,
1904 						usockaddr_len);
1905 		fput_light(sock->file, fput_needed);
1906 	}
1907 	return err;
1908 }
1909 
1910 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1911 		int __user *, usockaddr_len)
1912 {
1913 	return __sys_getpeername(fd, usockaddr, usockaddr_len);
1914 }
1915 
1916 /*
1917  *	Send a datagram to a given address. We move the address into kernel
1918  *	space and check the user space data area is readable before invoking
1919  *	the protocol.
1920  */
1921 int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1922 		 struct sockaddr __user *addr,  int addr_len)
1923 {
1924 	struct socket *sock;
1925 	struct sockaddr_storage address;
1926 	int err;
1927 	struct msghdr msg;
1928 	struct iovec iov;
1929 	int fput_needed;
1930 
1931 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1932 	if (unlikely(err))
1933 		return err;
1934 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935 	if (!sock)
1936 		goto out;
1937 
1938 	msg.msg_name = NULL;
1939 	msg.msg_control = NULL;
1940 	msg.msg_controllen = 0;
1941 	msg.msg_namelen = 0;
1942 	if (addr) {
1943 		err = move_addr_to_kernel(addr, addr_len, &address);
1944 		if (err < 0)
1945 			goto out_put;
1946 		msg.msg_name = (struct sockaddr *)&address;
1947 		msg.msg_namelen = addr_len;
1948 	}
1949 	if (sock->file->f_flags & O_NONBLOCK)
1950 		flags |= MSG_DONTWAIT;
1951 	msg.msg_flags = flags;
1952 	err = sock_sendmsg(sock, &msg);
1953 
1954 out_put:
1955 	fput_light(sock->file, fput_needed);
1956 out:
1957 	return err;
1958 }
1959 
1960 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1961 		unsigned int, flags, struct sockaddr __user *, addr,
1962 		int, addr_len)
1963 {
1964 	return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1965 }
1966 
1967 /*
1968  *	Send a datagram down a socket.
1969  */
1970 
1971 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1972 		unsigned int, flags)
1973 {
1974 	return __sys_sendto(fd, buff, len, flags, NULL, 0);
1975 }
1976 
1977 /*
1978  *	Receive a frame from the socket and optionally record the address of the
1979  *	sender. We verify the buffers are writable and if needed move the
1980  *	sender address from kernel to user space.
1981  */
1982 int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1983 		   struct sockaddr __user *addr, int __user *addr_len)
1984 {
1985 	struct socket *sock;
1986 	struct iovec iov;
1987 	struct msghdr msg;
1988 	struct sockaddr_storage address;
1989 	int err, err2;
1990 	int fput_needed;
1991 
1992 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1993 	if (unlikely(err))
1994 		return err;
1995 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1996 	if (!sock)
1997 		goto out;
1998 
1999 	msg.msg_control = NULL;
2000 	msg.msg_controllen = 0;
2001 	/* Save some cycles and don't copy the address if not needed */
2002 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2003 	/* We assume all kernel code knows the size of sockaddr_storage */
2004 	msg.msg_namelen = 0;
2005 	msg.msg_iocb = NULL;
2006 	msg.msg_flags = 0;
2007 	if (sock->file->f_flags & O_NONBLOCK)
2008 		flags |= MSG_DONTWAIT;
2009 	err = sock_recvmsg(sock, &msg, flags);
2010 
2011 	if (err >= 0 && addr != NULL) {
2012 		err2 = move_addr_to_user(&address,
2013 					 msg.msg_namelen, addr, addr_len);
2014 		if (err2 < 0)
2015 			err = err2;
2016 	}
2017 
2018 	fput_light(sock->file, fput_needed);
2019 out:
2020 	return err;
2021 }
2022 
2023 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2024 		unsigned int, flags, struct sockaddr __user *, addr,
2025 		int __user *, addr_len)
2026 {
2027 	return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2028 }
2029 
2030 /*
2031  *	Receive a datagram from a socket.
2032  */
2033 
2034 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2035 		unsigned int, flags)
2036 {
2037 	return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2038 }
2039 
2040 /*
2041  *	Set a socket option. Because we don't know the option lengths we have
2042  *	to pass the user mode parameter for the protocols to sort out.
2043  */
2044 
2045 static int __sys_setsockopt(int fd, int level, int optname,
2046 			    char __user *optval, int optlen)
2047 {
2048 	int err, fput_needed;
2049 	struct socket *sock;
2050 
2051 	if (optlen < 0)
2052 		return -EINVAL;
2053 
2054 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2055 	if (sock != NULL) {
2056 		err = security_socket_setsockopt(sock, level, optname);
2057 		if (err)
2058 			goto out_put;
2059 
2060 		if (level == SOL_SOCKET)
2061 			err =
2062 			    sock_setsockopt(sock, level, optname, optval,
2063 					    optlen);
2064 		else
2065 			err =
2066 			    sock->ops->setsockopt(sock, level, optname, optval,
2067 						  optlen);
2068 out_put:
2069 		fput_light(sock->file, fput_needed);
2070 	}
2071 	return err;
2072 }
2073 
2074 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2075 		char __user *, optval, int, optlen)
2076 {
2077 	return __sys_setsockopt(fd, level, optname, optval, optlen);
2078 }
2079 
2080 /*
2081  *	Get a socket option. Because we don't know the option lengths we have
2082  *	to pass a user mode parameter for the protocols to sort out.
2083  */
2084 
2085 static int __sys_getsockopt(int fd, int level, int optname,
2086 			    char __user *optval, int __user *optlen)
2087 {
2088 	int err, fput_needed;
2089 	struct socket *sock;
2090 
2091 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2092 	if (sock != NULL) {
2093 		err = security_socket_getsockopt(sock, level, optname);
2094 		if (err)
2095 			goto out_put;
2096 
2097 		if (level == SOL_SOCKET)
2098 			err =
2099 			    sock_getsockopt(sock, level, optname, optval,
2100 					    optlen);
2101 		else
2102 			err =
2103 			    sock->ops->getsockopt(sock, level, optname, optval,
2104 						  optlen);
2105 out_put:
2106 		fput_light(sock->file, fput_needed);
2107 	}
2108 	return err;
2109 }
2110 
2111 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2112 		char __user *, optval, int __user *, optlen)
2113 {
2114 	return __sys_getsockopt(fd, level, optname, optval, optlen);
2115 }
2116 
2117 /*
2118  *	Shutdown a socket.
2119  */
2120 
2121 int __sys_shutdown(int fd, int how)
2122 {
2123 	int err, fput_needed;
2124 	struct socket *sock;
2125 
2126 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2127 	if (sock != NULL) {
2128 		err = security_socket_shutdown(sock, how);
2129 		if (!err)
2130 			err = sock->ops->shutdown(sock, how);
2131 		fput_light(sock->file, fput_needed);
2132 	}
2133 	return err;
2134 }
2135 
2136 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2137 {
2138 	return __sys_shutdown(fd, how);
2139 }
2140 
2141 /* A couple of helpful macros for getting the address of the 32/64 bit
2142  * fields which are the same type (int / unsigned) on our platforms.
2143  */
2144 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2145 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
2146 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
2147 
2148 struct used_address {
2149 	struct sockaddr_storage name;
2150 	unsigned int name_len;
2151 };
2152 
2153 static int copy_msghdr_from_user(struct msghdr *kmsg,
2154 				 struct user_msghdr __user *umsg,
2155 				 struct sockaddr __user **save_addr,
2156 				 struct iovec **iov)
2157 {
2158 	struct user_msghdr msg;
2159 	ssize_t err;
2160 
2161 	if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2162 		return -EFAULT;
2163 
2164 	kmsg->msg_control = (void __force *)msg.msg_control;
2165 	kmsg->msg_controllen = msg.msg_controllen;
2166 	kmsg->msg_flags = msg.msg_flags;
2167 
2168 	kmsg->msg_namelen = msg.msg_namelen;
2169 	if (!msg.msg_name)
2170 		kmsg->msg_namelen = 0;
2171 
2172 	if (kmsg->msg_namelen < 0)
2173 		return -EINVAL;
2174 
2175 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2176 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2177 
2178 	if (save_addr)
2179 		*save_addr = msg.msg_name;
2180 
2181 	if (msg.msg_name && kmsg->msg_namelen) {
2182 		if (!save_addr) {
2183 			err = move_addr_to_kernel(msg.msg_name,
2184 						  kmsg->msg_namelen,
2185 						  kmsg->msg_name);
2186 			if (err < 0)
2187 				return err;
2188 		}
2189 	} else {
2190 		kmsg->msg_name = NULL;
2191 		kmsg->msg_namelen = 0;
2192 	}
2193 
2194 	if (msg.msg_iovlen > UIO_MAXIOV)
2195 		return -EMSGSIZE;
2196 
2197 	kmsg->msg_iocb = NULL;
2198 
2199 	return import_iovec(save_addr ? READ : WRITE,
2200 			    msg.msg_iov, msg.msg_iovlen,
2201 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
2202 }
2203 
2204 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2205 			 struct msghdr *msg_sys, unsigned int flags,
2206 			 struct used_address *used_address,
2207 			 unsigned int allowed_msghdr_flags)
2208 {
2209 	struct compat_msghdr __user *msg_compat =
2210 	    (struct compat_msghdr __user *)msg;
2211 	struct sockaddr_storage address;
2212 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2213 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
2214 				__aligned(sizeof(__kernel_size_t));
2215 	/* 20 is size of ipv6_pktinfo */
2216 	unsigned char *ctl_buf = ctl;
2217 	int ctl_len;
2218 	ssize_t err;
2219 
2220 	msg_sys->msg_name = &address;
2221 
2222 	if (MSG_CMSG_COMPAT & flags)
2223 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2224 	else
2225 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2226 	if (err < 0)
2227 		return err;
2228 
2229 	err = -ENOBUFS;
2230 
2231 	if (msg_sys->msg_controllen > INT_MAX)
2232 		goto out_freeiov;
2233 	flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2234 	ctl_len = msg_sys->msg_controllen;
2235 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2236 		err =
2237 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2238 						     sizeof(ctl));
2239 		if (err)
2240 			goto out_freeiov;
2241 		ctl_buf = msg_sys->msg_control;
2242 		ctl_len = msg_sys->msg_controllen;
2243 	} else if (ctl_len) {
2244 		BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2245 			     CMSG_ALIGN(sizeof(struct cmsghdr)));
2246 		if (ctl_len > sizeof(ctl)) {
2247 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2248 			if (ctl_buf == NULL)
2249 				goto out_freeiov;
2250 		}
2251 		err = -EFAULT;
2252 		/*
2253 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2254 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2255 		 * checking falls down on this.
2256 		 */
2257 		if (copy_from_user(ctl_buf,
2258 				   (void __user __force *)msg_sys->msg_control,
2259 				   ctl_len))
2260 			goto out_freectl;
2261 		msg_sys->msg_control = ctl_buf;
2262 	}
2263 	msg_sys->msg_flags = flags;
2264 
2265 	if (sock->file->f_flags & O_NONBLOCK)
2266 		msg_sys->msg_flags |= MSG_DONTWAIT;
2267 	/*
2268 	 * If this is sendmmsg() and current destination address is same as
2269 	 * previously succeeded address, omit asking LSM's decision.
2270 	 * used_address->name_len is initialized to UINT_MAX so that the first
2271 	 * destination address never matches.
2272 	 */
2273 	if (used_address && msg_sys->msg_name &&
2274 	    used_address->name_len == msg_sys->msg_namelen &&
2275 	    !memcmp(&used_address->name, msg_sys->msg_name,
2276 		    used_address->name_len)) {
2277 		err = sock_sendmsg_nosec(sock, msg_sys);
2278 		goto out_freectl;
2279 	}
2280 	err = sock_sendmsg(sock, msg_sys);
2281 	/*
2282 	 * If this is sendmmsg() and sending to current destination address was
2283 	 * successful, remember it.
2284 	 */
2285 	if (used_address && err >= 0) {
2286 		used_address->name_len = msg_sys->msg_namelen;
2287 		if (msg_sys->msg_name)
2288 			memcpy(&used_address->name, msg_sys->msg_name,
2289 			       used_address->name_len);
2290 	}
2291 
2292 out_freectl:
2293 	if (ctl_buf != ctl)
2294 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2295 out_freeiov:
2296 	kfree(iov);
2297 	return err;
2298 }
2299 
2300 /*
2301  *	BSD sendmsg interface
2302  */
2303 
2304 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2305 		   bool forbid_cmsg_compat)
2306 {
2307 	int fput_needed, err;
2308 	struct msghdr msg_sys;
2309 	struct socket *sock;
2310 
2311 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2312 		return -EINVAL;
2313 
2314 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2315 	if (!sock)
2316 		goto out;
2317 
2318 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2319 
2320 	fput_light(sock->file, fput_needed);
2321 out:
2322 	return err;
2323 }
2324 
2325 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2326 {
2327 	return __sys_sendmsg(fd, msg, flags, true);
2328 }
2329 
2330 /*
2331  *	Linux sendmmsg interface
2332  */
2333 
2334 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2335 		   unsigned int flags, bool forbid_cmsg_compat)
2336 {
2337 	int fput_needed, err, datagrams;
2338 	struct socket *sock;
2339 	struct mmsghdr __user *entry;
2340 	struct compat_mmsghdr __user *compat_entry;
2341 	struct msghdr msg_sys;
2342 	struct used_address used_address;
2343 	unsigned int oflags = flags;
2344 
2345 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2346 		return -EINVAL;
2347 
2348 	if (vlen > UIO_MAXIOV)
2349 		vlen = UIO_MAXIOV;
2350 
2351 	datagrams = 0;
2352 
2353 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2354 	if (!sock)
2355 		return err;
2356 
2357 	used_address.name_len = UINT_MAX;
2358 	entry = mmsg;
2359 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2360 	err = 0;
2361 	flags |= MSG_BATCH;
2362 
2363 	while (datagrams < vlen) {
2364 		if (datagrams == vlen - 1)
2365 			flags = oflags;
2366 
2367 		if (MSG_CMSG_COMPAT & flags) {
2368 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2369 					     &msg_sys, flags, &used_address, MSG_EOR);
2370 			if (err < 0)
2371 				break;
2372 			err = __put_user(err, &compat_entry->msg_len);
2373 			++compat_entry;
2374 		} else {
2375 			err = ___sys_sendmsg(sock,
2376 					     (struct user_msghdr __user *)entry,
2377 					     &msg_sys, flags, &used_address, MSG_EOR);
2378 			if (err < 0)
2379 				break;
2380 			err = put_user(err, &entry->msg_len);
2381 			++entry;
2382 		}
2383 
2384 		if (err)
2385 			break;
2386 		++datagrams;
2387 		if (msg_data_left(&msg_sys))
2388 			break;
2389 		cond_resched();
2390 	}
2391 
2392 	fput_light(sock->file, fput_needed);
2393 
2394 	/* We only return an error if no datagrams were able to be sent */
2395 	if (datagrams != 0)
2396 		return datagrams;
2397 
2398 	return err;
2399 }
2400 
2401 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2402 		unsigned int, vlen, unsigned int, flags)
2403 {
2404 	return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2405 }
2406 
2407 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2408 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2409 {
2410 	struct compat_msghdr __user *msg_compat =
2411 	    (struct compat_msghdr __user *)msg;
2412 	struct iovec iovstack[UIO_FASTIOV];
2413 	struct iovec *iov = iovstack;
2414 	unsigned long cmsg_ptr;
2415 	int len;
2416 	ssize_t err;
2417 
2418 	/* kernel mode address */
2419 	struct sockaddr_storage addr;
2420 
2421 	/* user mode address pointers */
2422 	struct sockaddr __user *uaddr;
2423 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2424 
2425 	msg_sys->msg_name = &addr;
2426 
2427 	if (MSG_CMSG_COMPAT & flags)
2428 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2429 	else
2430 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2431 	if (err < 0)
2432 		return err;
2433 
2434 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2435 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2436 
2437 	/* We assume all kernel code knows the size of sockaddr_storage */
2438 	msg_sys->msg_namelen = 0;
2439 
2440 	if (sock->file->f_flags & O_NONBLOCK)
2441 		flags |= MSG_DONTWAIT;
2442 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2443 	if (err < 0)
2444 		goto out_freeiov;
2445 	len = err;
2446 
2447 	if (uaddr != NULL) {
2448 		err = move_addr_to_user(&addr,
2449 					msg_sys->msg_namelen, uaddr,
2450 					uaddr_len);
2451 		if (err < 0)
2452 			goto out_freeiov;
2453 	}
2454 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2455 			 COMPAT_FLAGS(msg));
2456 	if (err)
2457 		goto out_freeiov;
2458 	if (MSG_CMSG_COMPAT & flags)
2459 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2460 				 &msg_compat->msg_controllen);
2461 	else
2462 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2463 				 &msg->msg_controllen);
2464 	if (err)
2465 		goto out_freeiov;
2466 	err = len;
2467 
2468 out_freeiov:
2469 	kfree(iov);
2470 	return err;
2471 }
2472 
2473 /*
2474  *	BSD recvmsg interface
2475  */
2476 
2477 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2478 		   bool forbid_cmsg_compat)
2479 {
2480 	int fput_needed, err;
2481 	struct msghdr msg_sys;
2482 	struct socket *sock;
2483 
2484 	if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2485 		return -EINVAL;
2486 
2487 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2488 	if (!sock)
2489 		goto out;
2490 
2491 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2492 
2493 	fput_light(sock->file, fput_needed);
2494 out:
2495 	return err;
2496 }
2497 
2498 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2499 		unsigned int, flags)
2500 {
2501 	return __sys_recvmsg(fd, msg, flags, true);
2502 }
2503 
2504 /*
2505  *     Linux recvmmsg interface
2506  */
2507 
2508 static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2509 			  unsigned int vlen, unsigned int flags,
2510 			  struct timespec64 *timeout)
2511 {
2512 	int fput_needed, err, datagrams;
2513 	struct socket *sock;
2514 	struct mmsghdr __user *entry;
2515 	struct compat_mmsghdr __user *compat_entry;
2516 	struct msghdr msg_sys;
2517 	struct timespec64 end_time;
2518 	struct timespec64 timeout64;
2519 
2520 	if (timeout &&
2521 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2522 				    timeout->tv_nsec))
2523 		return -EINVAL;
2524 
2525 	datagrams = 0;
2526 
2527 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2528 	if (!sock)
2529 		return err;
2530 
2531 	if (likely(!(flags & MSG_ERRQUEUE))) {
2532 		err = sock_error(sock->sk);
2533 		if (err) {
2534 			datagrams = err;
2535 			goto out_put;
2536 		}
2537 	}
2538 
2539 	entry = mmsg;
2540 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2541 
2542 	while (datagrams < vlen) {
2543 		/*
2544 		 * No need to ask LSM for more than the first datagram.
2545 		 */
2546 		if (MSG_CMSG_COMPAT & flags) {
2547 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2548 					     &msg_sys, flags & ~MSG_WAITFORONE,
2549 					     datagrams);
2550 			if (err < 0)
2551 				break;
2552 			err = __put_user(err, &compat_entry->msg_len);
2553 			++compat_entry;
2554 		} else {
2555 			err = ___sys_recvmsg(sock,
2556 					     (struct user_msghdr __user *)entry,
2557 					     &msg_sys, flags & ~MSG_WAITFORONE,
2558 					     datagrams);
2559 			if (err < 0)
2560 				break;
2561 			err = put_user(err, &entry->msg_len);
2562 			++entry;
2563 		}
2564 
2565 		if (err)
2566 			break;
2567 		++datagrams;
2568 
2569 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2570 		if (flags & MSG_WAITFORONE)
2571 			flags |= MSG_DONTWAIT;
2572 
2573 		if (timeout) {
2574 			ktime_get_ts64(&timeout64);
2575 			*timeout = timespec64_sub(end_time, timeout64);
2576 			if (timeout->tv_sec < 0) {
2577 				timeout->tv_sec = timeout->tv_nsec = 0;
2578 				break;
2579 			}
2580 
2581 			/* Timeout, return less than vlen datagrams */
2582 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2583 				break;
2584 		}
2585 
2586 		/* Out of band data, return right away */
2587 		if (msg_sys.msg_flags & MSG_OOB)
2588 			break;
2589 		cond_resched();
2590 	}
2591 
2592 	if (err == 0)
2593 		goto out_put;
2594 
2595 	if (datagrams == 0) {
2596 		datagrams = err;
2597 		goto out_put;
2598 	}
2599 
2600 	/*
2601 	 * We may return less entries than requested (vlen) if the
2602 	 * sock is non block and there aren't enough datagrams...
2603 	 */
2604 	if (err != -EAGAIN) {
2605 		/*
2606 		 * ... or  if recvmsg returns an error after we
2607 		 * received some datagrams, where we record the
2608 		 * error to return on the next call or if the
2609 		 * app asks about it using getsockopt(SO_ERROR).
2610 		 */
2611 		sock->sk->sk_err = -err;
2612 	}
2613 out_put:
2614 	fput_light(sock->file, fput_needed);
2615 
2616 	return datagrams;
2617 }
2618 
2619 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2620 		   unsigned int vlen, unsigned int flags,
2621 		   struct __kernel_timespec __user *timeout,
2622 		   struct old_timespec32 __user *timeout32)
2623 {
2624 	int datagrams;
2625 	struct timespec64 timeout_sys;
2626 
2627 	if (timeout && get_timespec64(&timeout_sys, timeout))
2628 		return -EFAULT;
2629 
2630 	if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2631 		return -EFAULT;
2632 
2633 	if (!timeout && !timeout32)
2634 		return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2635 
2636 	datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2637 
2638 	if (datagrams <= 0)
2639 		return datagrams;
2640 
2641 	if (timeout && put_timespec64(&timeout_sys, timeout))
2642 		datagrams = -EFAULT;
2643 
2644 	if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2645 		datagrams = -EFAULT;
2646 
2647 	return datagrams;
2648 }
2649 
2650 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2651 		unsigned int, vlen, unsigned int, flags,
2652 		struct __kernel_timespec __user *, timeout)
2653 {
2654 	if (flags & MSG_CMSG_COMPAT)
2655 		return -EINVAL;
2656 
2657 	return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2658 }
2659 
2660 #ifdef CONFIG_COMPAT_32BIT_TIME
2661 SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2662 		unsigned int, vlen, unsigned int, flags,
2663 		struct old_timespec32 __user *, timeout)
2664 {
2665 	if (flags & MSG_CMSG_COMPAT)
2666 		return -EINVAL;
2667 
2668 	return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2669 }
2670 #endif
2671 
2672 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2673 /* Argument list sizes for sys_socketcall */
2674 #define AL(x) ((x) * sizeof(unsigned long))
2675 static const unsigned char nargs[21] = {
2676 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2677 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2678 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2679 	AL(4), AL(5), AL(4)
2680 };
2681 
2682 #undef AL
2683 
2684 /*
2685  *	System call vectors.
2686  *
2687  *	Argument checking cleaned up. Saved 20% in size.
2688  *  This function doesn't need to set the kernel lock because
2689  *  it is set by the callees.
2690  */
2691 
2692 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2693 {
2694 	unsigned long a[AUDITSC_ARGS];
2695 	unsigned long a0, a1;
2696 	int err;
2697 	unsigned int len;
2698 
2699 	if (call < 1 || call > SYS_SENDMMSG)
2700 		return -EINVAL;
2701 	call = array_index_nospec(call, SYS_SENDMMSG + 1);
2702 
2703 	len = nargs[call];
2704 	if (len > sizeof(a))
2705 		return -EINVAL;
2706 
2707 	/* copy_from_user should be SMP safe. */
2708 	if (copy_from_user(a, args, len))
2709 		return -EFAULT;
2710 
2711 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2712 	if (err)
2713 		return err;
2714 
2715 	a0 = a[0];
2716 	a1 = a[1];
2717 
2718 	switch (call) {
2719 	case SYS_SOCKET:
2720 		err = __sys_socket(a0, a1, a[2]);
2721 		break;
2722 	case SYS_BIND:
2723 		err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2724 		break;
2725 	case SYS_CONNECT:
2726 		err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2727 		break;
2728 	case SYS_LISTEN:
2729 		err = __sys_listen(a0, a1);
2730 		break;
2731 	case SYS_ACCEPT:
2732 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2733 				    (int __user *)a[2], 0);
2734 		break;
2735 	case SYS_GETSOCKNAME:
2736 		err =
2737 		    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2738 				      (int __user *)a[2]);
2739 		break;
2740 	case SYS_GETPEERNAME:
2741 		err =
2742 		    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2743 				      (int __user *)a[2]);
2744 		break;
2745 	case SYS_SOCKETPAIR:
2746 		err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2747 		break;
2748 	case SYS_SEND:
2749 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2750 				   NULL, 0);
2751 		break;
2752 	case SYS_SENDTO:
2753 		err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2754 				   (struct sockaddr __user *)a[4], a[5]);
2755 		break;
2756 	case SYS_RECV:
2757 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2758 				     NULL, NULL);
2759 		break;
2760 	case SYS_RECVFROM:
2761 		err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2762 				     (struct sockaddr __user *)a[4],
2763 				     (int __user *)a[5]);
2764 		break;
2765 	case SYS_SHUTDOWN:
2766 		err = __sys_shutdown(a0, a1);
2767 		break;
2768 	case SYS_SETSOCKOPT:
2769 		err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2770 				       a[4]);
2771 		break;
2772 	case SYS_GETSOCKOPT:
2773 		err =
2774 		    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2775 				     (int __user *)a[4]);
2776 		break;
2777 	case SYS_SENDMSG:
2778 		err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2779 				    a[2], true);
2780 		break;
2781 	case SYS_SENDMMSG:
2782 		err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2783 				     a[3], true);
2784 		break;
2785 	case SYS_RECVMSG:
2786 		err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2787 				    a[2], true);
2788 		break;
2789 	case SYS_RECVMMSG:
2790 		if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2791 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2792 					     a[2], a[3],
2793 					     (struct __kernel_timespec __user *)a[4],
2794 					     NULL);
2795 		else
2796 			err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2797 					     a[2], a[3], NULL,
2798 					     (struct old_timespec32 __user *)a[4]);
2799 		break;
2800 	case SYS_ACCEPT4:
2801 		err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2802 				    (int __user *)a[2], a[3]);
2803 		break;
2804 	default:
2805 		err = -EINVAL;
2806 		break;
2807 	}
2808 	return err;
2809 }
2810 
2811 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2812 
2813 /**
2814  *	sock_register - add a socket protocol handler
2815  *	@ops: description of protocol
2816  *
2817  *	This function is called by a protocol handler that wants to
2818  *	advertise its address family, and have it linked into the
2819  *	socket interface. The value ops->family corresponds to the
2820  *	socket system call protocol family.
2821  */
2822 int sock_register(const struct net_proto_family *ops)
2823 {
2824 	int err;
2825 
2826 	if (ops->family >= NPROTO) {
2827 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2828 		return -ENOBUFS;
2829 	}
2830 
2831 	spin_lock(&net_family_lock);
2832 	if (rcu_dereference_protected(net_families[ops->family],
2833 				      lockdep_is_held(&net_family_lock)))
2834 		err = -EEXIST;
2835 	else {
2836 		rcu_assign_pointer(net_families[ops->family], ops);
2837 		err = 0;
2838 	}
2839 	spin_unlock(&net_family_lock);
2840 
2841 	pr_info("NET: Registered protocol family %d\n", ops->family);
2842 	return err;
2843 }
2844 EXPORT_SYMBOL(sock_register);
2845 
2846 /**
2847  *	sock_unregister - remove a protocol handler
2848  *	@family: protocol family to remove
2849  *
2850  *	This function is called by a protocol handler that wants to
2851  *	remove its address family, and have it unlinked from the
2852  *	new socket creation.
2853  *
2854  *	If protocol handler is a module, then it can use module reference
2855  *	counts to protect against new references. If protocol handler is not
2856  *	a module then it needs to provide its own protection in
2857  *	the ops->create routine.
2858  */
2859 void sock_unregister(int family)
2860 {
2861 	BUG_ON(family < 0 || family >= NPROTO);
2862 
2863 	spin_lock(&net_family_lock);
2864 	RCU_INIT_POINTER(net_families[family], NULL);
2865 	spin_unlock(&net_family_lock);
2866 
2867 	synchronize_rcu();
2868 
2869 	pr_info("NET: Unregistered protocol family %d\n", family);
2870 }
2871 EXPORT_SYMBOL(sock_unregister);
2872 
2873 bool sock_is_registered(int family)
2874 {
2875 	return family < NPROTO && rcu_access_pointer(net_families[family]);
2876 }
2877 
2878 static int __init sock_init(void)
2879 {
2880 	int err;
2881 	/*
2882 	 *      Initialize the network sysctl infrastructure.
2883 	 */
2884 	err = net_sysctl_init();
2885 	if (err)
2886 		goto out;
2887 
2888 	/*
2889 	 *      Initialize skbuff SLAB cache
2890 	 */
2891 	skb_init();
2892 
2893 	/*
2894 	 *      Initialize the protocols module.
2895 	 */
2896 
2897 	init_inodecache();
2898 
2899 	err = register_filesystem(&sock_fs_type);
2900 	if (err)
2901 		goto out_fs;
2902 	sock_mnt = kern_mount(&sock_fs_type);
2903 	if (IS_ERR(sock_mnt)) {
2904 		err = PTR_ERR(sock_mnt);
2905 		goto out_mount;
2906 	}
2907 
2908 	/* The real protocol initialization is performed in later initcalls.
2909 	 */
2910 
2911 #ifdef CONFIG_NETFILTER
2912 	err = netfilter_init();
2913 	if (err)
2914 		goto out;
2915 #endif
2916 
2917 	ptp_classifier_init();
2918 
2919 out:
2920 	return err;
2921 
2922 out_mount:
2923 	unregister_filesystem(&sock_fs_type);
2924 out_fs:
2925 	goto out;
2926 }
2927 
2928 core_initcall(sock_init);	/* early initcall */
2929 
2930 #ifdef CONFIG_PROC_FS
2931 void socket_seq_show(struct seq_file *seq)
2932 {
2933 	seq_printf(seq, "sockets: used %d\n",
2934 		   sock_inuse_get(seq->private));
2935 }
2936 #endif				/* CONFIG_PROC_FS */
2937 
2938 #ifdef CONFIG_COMPAT
2939 static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2940 {
2941 	struct compat_ifconf ifc32;
2942 	struct ifconf ifc;
2943 	int err;
2944 
2945 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2946 		return -EFAULT;
2947 
2948 	ifc.ifc_len = ifc32.ifc_len;
2949 	ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2950 
2951 	rtnl_lock();
2952 	err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2953 	rtnl_unlock();
2954 	if (err)
2955 		return err;
2956 
2957 	ifc32.ifc_len = ifc.ifc_len;
2958 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2959 		return -EFAULT;
2960 
2961 	return 0;
2962 }
2963 
2964 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2965 {
2966 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2967 	bool convert_in = false, convert_out = false;
2968 	size_t buf_size = 0;
2969 	struct ethtool_rxnfc __user *rxnfc = NULL;
2970 	struct ifreq ifr;
2971 	u32 rule_cnt = 0, actual_rule_cnt;
2972 	u32 ethcmd;
2973 	u32 data;
2974 	int ret;
2975 
2976 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2977 		return -EFAULT;
2978 
2979 	compat_rxnfc = compat_ptr(data);
2980 
2981 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2982 		return -EFAULT;
2983 
2984 	/* Most ethtool structures are defined without padding.
2985 	 * Unfortunately struct ethtool_rxnfc is an exception.
2986 	 */
2987 	switch (ethcmd) {
2988 	default:
2989 		break;
2990 	case ETHTOOL_GRXCLSRLALL:
2991 		/* Buffer size is variable */
2992 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2993 			return -EFAULT;
2994 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2995 			return -ENOMEM;
2996 		buf_size += rule_cnt * sizeof(u32);
2997 		/* fall through */
2998 	case ETHTOOL_GRXRINGS:
2999 	case ETHTOOL_GRXCLSRLCNT:
3000 	case ETHTOOL_GRXCLSRULE:
3001 	case ETHTOOL_SRXCLSRLINS:
3002 		convert_out = true;
3003 		/* fall through */
3004 	case ETHTOOL_SRXCLSRLDEL:
3005 		buf_size += sizeof(struct ethtool_rxnfc);
3006 		convert_in = true;
3007 		rxnfc = compat_alloc_user_space(buf_size);
3008 		break;
3009 	}
3010 
3011 	if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3012 		return -EFAULT;
3013 
3014 	ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3015 
3016 	if (convert_in) {
3017 		/* We expect there to be holes between fs.m_ext and
3018 		 * fs.ring_cookie and at the end of fs, but nowhere else.
3019 		 */
3020 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3021 			     sizeof(compat_rxnfc->fs.m_ext) !=
3022 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
3023 			     sizeof(rxnfc->fs.m_ext));
3024 		BUILD_BUG_ON(
3025 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
3026 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3027 			offsetof(struct ethtool_rxnfc, fs.location) -
3028 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3029 
3030 		if (copy_in_user(rxnfc, compat_rxnfc,
3031 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
3032 				 (void __user *)rxnfc) ||
3033 		    copy_in_user(&rxnfc->fs.ring_cookie,
3034 				 &compat_rxnfc->fs.ring_cookie,
3035 				 (void __user *)(&rxnfc->fs.location + 1) -
3036 				 (void __user *)&rxnfc->fs.ring_cookie))
3037 			return -EFAULT;
3038 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3039 			if (put_user(rule_cnt, &rxnfc->rule_cnt))
3040 				return -EFAULT;
3041 		} else if (copy_in_user(&rxnfc->rule_cnt,
3042 					&compat_rxnfc->rule_cnt,
3043 					sizeof(rxnfc->rule_cnt)))
3044 			return -EFAULT;
3045 	}
3046 
3047 	ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3048 	if (ret)
3049 		return ret;
3050 
3051 	if (convert_out) {
3052 		if (copy_in_user(compat_rxnfc, rxnfc,
3053 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3054 				 (const void __user *)rxnfc) ||
3055 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3056 				 &rxnfc->fs.ring_cookie,
3057 				 (const void __user *)(&rxnfc->fs.location + 1) -
3058 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
3059 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3060 				 sizeof(rxnfc->rule_cnt)))
3061 			return -EFAULT;
3062 
3063 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3064 			/* As an optimisation, we only copy the actual
3065 			 * number of rules that the underlying
3066 			 * function returned.  Since Mallory might
3067 			 * change the rule count in user memory, we
3068 			 * check that it is less than the rule count
3069 			 * originally given (as the user buffer size),
3070 			 * which has been range-checked.
3071 			 */
3072 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3073 				return -EFAULT;
3074 			if (actual_rule_cnt < rule_cnt)
3075 				rule_cnt = actual_rule_cnt;
3076 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
3077 					 &rxnfc->rule_locs[0],
3078 					 rule_cnt * sizeof(u32)))
3079 				return -EFAULT;
3080 		}
3081 	}
3082 
3083 	return 0;
3084 }
3085 
3086 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3087 {
3088 	compat_uptr_t uptr32;
3089 	struct ifreq ifr;
3090 	void __user *saved;
3091 	int err;
3092 
3093 	if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3094 		return -EFAULT;
3095 
3096 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3097 		return -EFAULT;
3098 
3099 	saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3100 	ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3101 
3102 	err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3103 	if (!err) {
3104 		ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3105 		if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3106 			err = -EFAULT;
3107 	}
3108 	return err;
3109 }
3110 
3111 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3112 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3113 				 struct compat_ifreq __user *u_ifreq32)
3114 {
3115 	struct ifreq ifreq;
3116 	u32 data32;
3117 
3118 	if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3119 		return -EFAULT;
3120 	if (get_user(data32, &u_ifreq32->ifr_data))
3121 		return -EFAULT;
3122 	ifreq.ifr_data = compat_ptr(data32);
3123 
3124 	return dev_ioctl(net, cmd, &ifreq, NULL);
3125 }
3126 
3127 static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3128 			      unsigned int cmd,
3129 			      struct compat_ifreq __user *uifr32)
3130 {
3131 	struct ifreq __user *uifr;
3132 	int err;
3133 
3134 	/* Handle the fact that while struct ifreq has the same *layout* on
3135 	 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3136 	 * which are handled elsewhere, it still has different *size* due to
3137 	 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3138 	 * resulting in struct ifreq being 32 and 40 bytes respectively).
3139 	 * As a result, if the struct happens to be at the end of a page and
3140 	 * the next page isn't readable/writable, we get a fault. To prevent
3141 	 * that, copy back and forth to the full size.
3142 	 */
3143 
3144 	uifr = compat_alloc_user_space(sizeof(*uifr));
3145 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3146 		return -EFAULT;
3147 
3148 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3149 
3150 	if (!err) {
3151 		switch (cmd) {
3152 		case SIOCGIFFLAGS:
3153 		case SIOCGIFMETRIC:
3154 		case SIOCGIFMTU:
3155 		case SIOCGIFMEM:
3156 		case SIOCGIFHWADDR:
3157 		case SIOCGIFINDEX:
3158 		case SIOCGIFADDR:
3159 		case SIOCGIFBRDADDR:
3160 		case SIOCGIFDSTADDR:
3161 		case SIOCGIFNETMASK:
3162 		case SIOCGIFPFLAGS:
3163 		case SIOCGIFTXQLEN:
3164 		case SIOCGMIIPHY:
3165 		case SIOCGMIIREG:
3166 		case SIOCGIFNAME:
3167 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3168 				err = -EFAULT;
3169 			break;
3170 		}
3171 	}
3172 	return err;
3173 }
3174 
3175 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3176 			struct compat_ifreq __user *uifr32)
3177 {
3178 	struct ifreq ifr;
3179 	struct compat_ifmap __user *uifmap32;
3180 	int err;
3181 
3182 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
3183 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3184 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3185 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3186 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3187 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3188 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3189 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3190 	if (err)
3191 		return -EFAULT;
3192 
3193 	err = dev_ioctl(net, cmd, &ifr, NULL);
3194 
3195 	if (cmd == SIOCGIFMAP && !err) {
3196 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3197 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3198 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3199 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3200 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3201 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3202 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3203 		if (err)
3204 			err = -EFAULT;
3205 	}
3206 	return err;
3207 }
3208 
3209 struct rtentry32 {
3210 	u32		rt_pad1;
3211 	struct sockaddr rt_dst;         /* target address               */
3212 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3213 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
3214 	unsigned short	rt_flags;
3215 	short		rt_pad2;
3216 	u32		rt_pad3;
3217 	unsigned char	rt_tos;
3218 	unsigned char	rt_class;
3219 	short		rt_pad4;
3220 	short		rt_metric;      /* +1 for binary compatibility! */
3221 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
3222 	u32		rt_mtu;         /* per route MTU/Window         */
3223 	u32		rt_window;      /* Window clamping              */
3224 	unsigned short  rt_irtt;        /* Initial RTT                  */
3225 };
3226 
3227 struct in6_rtmsg32 {
3228 	struct in6_addr		rtmsg_dst;
3229 	struct in6_addr		rtmsg_src;
3230 	struct in6_addr		rtmsg_gateway;
3231 	u32			rtmsg_type;
3232 	u16			rtmsg_dst_len;
3233 	u16			rtmsg_src_len;
3234 	u32			rtmsg_metric;
3235 	u32			rtmsg_info;
3236 	u32			rtmsg_flags;
3237 	s32			rtmsg_ifindex;
3238 };
3239 
3240 static int routing_ioctl(struct net *net, struct socket *sock,
3241 			 unsigned int cmd, void __user *argp)
3242 {
3243 	int ret;
3244 	void *r = NULL;
3245 	struct in6_rtmsg r6;
3246 	struct rtentry r4;
3247 	char devname[16];
3248 	u32 rtdev;
3249 	mm_segment_t old_fs = get_fs();
3250 
3251 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3252 		struct in6_rtmsg32 __user *ur6 = argp;
3253 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3254 			3 * sizeof(struct in6_addr));
3255 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3256 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3257 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3258 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3259 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3260 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3261 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3262 
3263 		r = (void *) &r6;
3264 	} else { /* ipv4 */
3265 		struct rtentry32 __user *ur4 = argp;
3266 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3267 					3 * sizeof(struct sockaddr));
3268 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3269 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3270 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3271 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3272 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3273 		ret |= get_user(rtdev, &(ur4->rt_dev));
3274 		if (rtdev) {
3275 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3276 			r4.rt_dev = (char __user __force *)devname;
3277 			devname[15] = 0;
3278 		} else
3279 			r4.rt_dev = NULL;
3280 
3281 		r = (void *) &r4;
3282 	}
3283 
3284 	if (ret) {
3285 		ret = -EFAULT;
3286 		goto out;
3287 	}
3288 
3289 	set_fs(KERNEL_DS);
3290 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3291 	set_fs(old_fs);
3292 
3293 out:
3294 	return ret;
3295 }
3296 
3297 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3298  * for some operations; this forces use of the newer bridge-utils that
3299  * use compatible ioctls
3300  */
3301 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3302 {
3303 	compat_ulong_t tmp;
3304 
3305 	if (get_user(tmp, argp))
3306 		return -EFAULT;
3307 	if (tmp == BRCTL_GET_VERSION)
3308 		return BRCTL_VERSION + 1;
3309 	return -EINVAL;
3310 }
3311 
3312 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3313 			 unsigned int cmd, unsigned long arg)
3314 {
3315 	void __user *argp = compat_ptr(arg);
3316 	struct sock *sk = sock->sk;
3317 	struct net *net = sock_net(sk);
3318 
3319 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3320 		return compat_ifr_data_ioctl(net, cmd, argp);
3321 
3322 	switch (cmd) {
3323 	case SIOCSIFBR:
3324 	case SIOCGIFBR:
3325 		return old_bridge_ioctl(argp);
3326 	case SIOCGIFCONF:
3327 		return compat_dev_ifconf(net, argp);
3328 	case SIOCETHTOOL:
3329 		return ethtool_ioctl(net, argp);
3330 	case SIOCWANDEV:
3331 		return compat_siocwandev(net, argp);
3332 	case SIOCGIFMAP:
3333 	case SIOCSIFMAP:
3334 		return compat_sioc_ifmap(net, cmd, argp);
3335 	case SIOCADDRT:
3336 	case SIOCDELRT:
3337 		return routing_ioctl(net, sock, cmd, argp);
3338 	case SIOCGSTAMP_OLD:
3339 	case SIOCGSTAMPNS_OLD:
3340 		if (!sock->ops->gettstamp)
3341 			return -ENOIOCTLCMD;
3342 		return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3343 					    !COMPAT_USE_64BIT_TIME);
3344 
3345 	case SIOCBONDSLAVEINFOQUERY:
3346 	case SIOCBONDINFOQUERY:
3347 	case SIOCSHWTSTAMP:
3348 	case SIOCGHWTSTAMP:
3349 		return compat_ifr_data_ioctl(net, cmd, argp);
3350 
3351 	case FIOSETOWN:
3352 	case SIOCSPGRP:
3353 	case FIOGETOWN:
3354 	case SIOCGPGRP:
3355 	case SIOCBRADDBR:
3356 	case SIOCBRDELBR:
3357 	case SIOCGIFVLAN:
3358 	case SIOCSIFVLAN:
3359 	case SIOCADDDLCI:
3360 	case SIOCDELDLCI:
3361 	case SIOCGSKNS:
3362 	case SIOCGSTAMP_NEW:
3363 	case SIOCGSTAMPNS_NEW:
3364 		return sock_ioctl(file, cmd, arg);
3365 
3366 	case SIOCGIFFLAGS:
3367 	case SIOCSIFFLAGS:
3368 	case SIOCGIFMETRIC:
3369 	case SIOCSIFMETRIC:
3370 	case SIOCGIFMTU:
3371 	case SIOCSIFMTU:
3372 	case SIOCGIFMEM:
3373 	case SIOCSIFMEM:
3374 	case SIOCGIFHWADDR:
3375 	case SIOCSIFHWADDR:
3376 	case SIOCADDMULTI:
3377 	case SIOCDELMULTI:
3378 	case SIOCGIFINDEX:
3379 	case SIOCGIFADDR:
3380 	case SIOCSIFADDR:
3381 	case SIOCSIFHWBROADCAST:
3382 	case SIOCDIFADDR:
3383 	case SIOCGIFBRDADDR:
3384 	case SIOCSIFBRDADDR:
3385 	case SIOCGIFDSTADDR:
3386 	case SIOCSIFDSTADDR:
3387 	case SIOCGIFNETMASK:
3388 	case SIOCSIFNETMASK:
3389 	case SIOCSIFPFLAGS:
3390 	case SIOCGIFPFLAGS:
3391 	case SIOCGIFTXQLEN:
3392 	case SIOCSIFTXQLEN:
3393 	case SIOCBRADDIF:
3394 	case SIOCBRDELIF:
3395 	case SIOCGIFNAME:
3396 	case SIOCSIFNAME:
3397 	case SIOCGMIIPHY:
3398 	case SIOCGMIIREG:
3399 	case SIOCSMIIREG:
3400 	case SIOCBONDENSLAVE:
3401 	case SIOCBONDRELEASE:
3402 	case SIOCBONDSETHWADDR:
3403 	case SIOCBONDCHANGEACTIVE:
3404 		return compat_ifreq_ioctl(net, sock, cmd, argp);
3405 
3406 	case SIOCSARP:
3407 	case SIOCGARP:
3408 	case SIOCDARP:
3409 	case SIOCATMARK:
3410 		return sock_do_ioctl(net, sock, cmd, arg);
3411 	}
3412 
3413 	return -ENOIOCTLCMD;
3414 }
3415 
3416 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3417 			      unsigned long arg)
3418 {
3419 	struct socket *sock = file->private_data;
3420 	int ret = -ENOIOCTLCMD;
3421 	struct sock *sk;
3422 	struct net *net;
3423 
3424 	sk = sock->sk;
3425 	net = sock_net(sk);
3426 
3427 	if (sock->ops->compat_ioctl)
3428 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3429 
3430 	if (ret == -ENOIOCTLCMD &&
3431 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3432 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3433 
3434 	if (ret == -ENOIOCTLCMD)
3435 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3436 
3437 	return ret;
3438 }
3439 #endif
3440 
3441 /**
3442  *	kernel_bind - bind an address to a socket (kernel space)
3443  *	@sock: socket
3444  *	@addr: address
3445  *	@addrlen: length of address
3446  *
3447  *	Returns 0 or an error.
3448  */
3449 
3450 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3451 {
3452 	return sock->ops->bind(sock, addr, addrlen);
3453 }
3454 EXPORT_SYMBOL(kernel_bind);
3455 
3456 /**
3457  *	kernel_listen - move socket to listening state (kernel space)
3458  *	@sock: socket
3459  *	@backlog: pending connections queue size
3460  *
3461  *	Returns 0 or an error.
3462  */
3463 
3464 int kernel_listen(struct socket *sock, int backlog)
3465 {
3466 	return sock->ops->listen(sock, backlog);
3467 }
3468 EXPORT_SYMBOL(kernel_listen);
3469 
3470 /**
3471  *	kernel_accept - accept a connection (kernel space)
3472  *	@sock: listening socket
3473  *	@newsock: new connected socket
3474  *	@flags: flags
3475  *
3476  *	@flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3477  *	If it fails, @newsock is guaranteed to be %NULL.
3478  *	Returns 0 or an error.
3479  */
3480 
3481 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3482 {
3483 	struct sock *sk = sock->sk;
3484 	int err;
3485 
3486 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3487 			       newsock);
3488 	if (err < 0)
3489 		goto done;
3490 
3491 	err = sock->ops->accept(sock, *newsock, flags, true);
3492 	if (err < 0) {
3493 		sock_release(*newsock);
3494 		*newsock = NULL;
3495 		goto done;
3496 	}
3497 
3498 	(*newsock)->ops = sock->ops;
3499 	__module_get((*newsock)->ops->owner);
3500 
3501 done:
3502 	return err;
3503 }
3504 EXPORT_SYMBOL(kernel_accept);
3505 
3506 /**
3507  *	kernel_connect - connect a socket (kernel space)
3508  *	@sock: socket
3509  *	@addr: address
3510  *	@addrlen: address length
3511  *	@flags: flags (O_NONBLOCK, ...)
3512  *
3513  *	For datagram sockets, @addr is the addres to which datagrams are sent
3514  *	by default, and the only address from which datagrams are received.
3515  *	For stream sockets, attempts to connect to @addr.
3516  *	Returns 0 or an error code.
3517  */
3518 
3519 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3520 		   int flags)
3521 {
3522 	return sock->ops->connect(sock, addr, addrlen, flags);
3523 }
3524 EXPORT_SYMBOL(kernel_connect);
3525 
3526 /**
3527  *	kernel_getsockname - get the address which the socket is bound (kernel space)
3528  *	@sock: socket
3529  *	@addr: address holder
3530  *
3531  * 	Fills the @addr pointer with the address which the socket is bound.
3532  *	Returns 0 or an error code.
3533  */
3534 
3535 int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3536 {
3537 	return sock->ops->getname(sock, addr, 0);
3538 }
3539 EXPORT_SYMBOL(kernel_getsockname);
3540 
3541 /**
3542  *	kernel_peername - get the address which the socket is connected (kernel space)
3543  *	@sock: socket
3544  *	@addr: address holder
3545  *
3546  * 	Fills the @addr pointer with the address which the socket is connected.
3547  *	Returns 0 or an error code.
3548  */
3549 
3550 int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3551 {
3552 	return sock->ops->getname(sock, addr, 1);
3553 }
3554 EXPORT_SYMBOL(kernel_getpeername);
3555 
3556 /**
3557  *	kernel_getsockopt - get a socket option (kernel space)
3558  *	@sock: socket
3559  *	@level: API level (SOL_SOCKET, ...)
3560  *	@optname: option tag
3561  *	@optval: option value
3562  *	@optlen: option length
3563  *
3564  *	Assigns the option length to @optlen.
3565  *	Returns 0 or an error.
3566  */
3567 
3568 int kernel_getsockopt(struct socket *sock, int level, int optname,
3569 			char *optval, int *optlen)
3570 {
3571 	mm_segment_t oldfs = get_fs();
3572 	char __user *uoptval;
3573 	int __user *uoptlen;
3574 	int err;
3575 
3576 	uoptval = (char __user __force *) optval;
3577 	uoptlen = (int __user __force *) optlen;
3578 
3579 	set_fs(KERNEL_DS);
3580 	if (level == SOL_SOCKET)
3581 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3582 	else
3583 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3584 					    uoptlen);
3585 	set_fs(oldfs);
3586 	return err;
3587 }
3588 EXPORT_SYMBOL(kernel_getsockopt);
3589 
3590 /**
3591  *	kernel_setsockopt - set a socket option (kernel space)
3592  *	@sock: socket
3593  *	@level: API level (SOL_SOCKET, ...)
3594  *	@optname: option tag
3595  *	@optval: option value
3596  *	@optlen: option length
3597  *
3598  *	Returns 0 or an error.
3599  */
3600 
3601 int kernel_setsockopt(struct socket *sock, int level, int optname,
3602 			char *optval, unsigned int optlen)
3603 {
3604 	mm_segment_t oldfs = get_fs();
3605 	char __user *uoptval;
3606 	int err;
3607 
3608 	uoptval = (char __user __force *) optval;
3609 
3610 	set_fs(KERNEL_DS);
3611 	if (level == SOL_SOCKET)
3612 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3613 	else
3614 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3615 					    optlen);
3616 	set_fs(oldfs);
3617 	return err;
3618 }
3619 EXPORT_SYMBOL(kernel_setsockopt);
3620 
3621 /**
3622  *	kernel_sendpage - send a &page through a socket (kernel space)
3623  *	@sock: socket
3624  *	@page: page
3625  *	@offset: page offset
3626  *	@size: total size in bytes
3627  *	@flags: flags (MSG_DONTWAIT, ...)
3628  *
3629  *	Returns the total amount sent in bytes or an error.
3630  */
3631 
3632 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3633 		    size_t size, int flags)
3634 {
3635 	if (sock->ops->sendpage)
3636 		return sock->ops->sendpage(sock, page, offset, size, flags);
3637 
3638 	return sock_no_sendpage(sock, page, offset, size, flags);
3639 }
3640 EXPORT_SYMBOL(kernel_sendpage);
3641 
3642 /**
3643  *	kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3644  *	@sk: sock
3645  *	@page: page
3646  *	@offset: page offset
3647  *	@size: total size in bytes
3648  *	@flags: flags (MSG_DONTWAIT, ...)
3649  *
3650  *	Returns the total amount sent in bytes or an error.
3651  *	Caller must hold @sk.
3652  */
3653 
3654 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3655 			   size_t size, int flags)
3656 {
3657 	struct socket *sock = sk->sk_socket;
3658 
3659 	if (sock->ops->sendpage_locked)
3660 		return sock->ops->sendpage_locked(sk, page, offset, size,
3661 						  flags);
3662 
3663 	return sock_no_sendpage_locked(sk, page, offset, size, flags);
3664 }
3665 EXPORT_SYMBOL(kernel_sendpage_locked);
3666 
3667 /**
3668  *	kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3669  *	@sock: socket
3670  *	@how: connection part
3671  *
3672  *	Returns 0 or an error.
3673  */
3674 
3675 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3676 {
3677 	return sock->ops->shutdown(sock, how);
3678 }
3679 EXPORT_SYMBOL(kernel_sock_shutdown);
3680 
3681 /**
3682  *	kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3683  *	@sk: socket
3684  *
3685  *	This routine returns the IP overhead imposed by a socket i.e.
3686  *	the length of the underlying IP header, depending on whether
3687  *	this is an IPv4 or IPv6 socket and the length from IP options turned
3688  *	on at the socket. Assumes that the caller has a lock on the socket.
3689  */
3690 
3691 u32 kernel_sock_ip_overhead(struct sock *sk)
3692 {
3693 	struct inet_sock *inet;
3694 	struct ip_options_rcu *opt;
3695 	u32 overhead = 0;
3696 #if IS_ENABLED(CONFIG_IPV6)
3697 	struct ipv6_pinfo *np;
3698 	struct ipv6_txoptions *optv6 = NULL;
3699 #endif /* IS_ENABLED(CONFIG_IPV6) */
3700 
3701 	if (!sk)
3702 		return overhead;
3703 
3704 	switch (sk->sk_family) {
3705 	case AF_INET:
3706 		inet = inet_sk(sk);
3707 		overhead += sizeof(struct iphdr);
3708 		opt = rcu_dereference_protected(inet->inet_opt,
3709 						sock_owned_by_user(sk));
3710 		if (opt)
3711 			overhead += opt->opt.optlen;
3712 		return overhead;
3713 #if IS_ENABLED(CONFIG_IPV6)
3714 	case AF_INET6:
3715 		np = inet6_sk(sk);
3716 		overhead += sizeof(struct ipv6hdr);
3717 		if (np)
3718 			optv6 = rcu_dereference_protected(np->opt,
3719 							  sock_owned_by_user(sk));
3720 		if (optv6)
3721 			overhead += (optv6->opt_flen + optv6->opt_nflen);
3722 		return overhead;
3723 #endif /* IS_ENABLED(CONFIG_IPV6) */
3724 	default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3725 		return overhead;
3726 	}
3727 }
3728 EXPORT_SYMBOL(kernel_sock_ip_overhead);
3729