1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <[email protected]> 7 * Ross Biro 8 * Fred N. van Kempen, <[email protected]> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/if_bridge.h> 73 #include <linux/if_frad.h> 74 #include <linux/if_vlan.h> 75 #include <linux/ptp_classify.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 #include <linux/xattr.h> 92 93 #include <asm/uaccess.h> 94 #include <asm/unistd.h> 95 96 #include <net/compat.h> 97 #include <net/wext.h> 98 #include <net/cls_cgroup.h> 99 100 #include <net/sock.h> 101 #include <linux/netfilter.h> 102 103 #include <linux/if_tun.h> 104 #include <linux/ipv6_route.h> 105 #include <linux/route.h> 106 #include <linux/sockios.h> 107 #include <linux/atalk.h> 108 #include <net/busy_poll.h> 109 #include <linux/errqueue.h> 110 111 #ifdef CONFIG_NET_RX_BUSY_POLL 112 unsigned int sysctl_net_busy_read __read_mostly; 113 unsigned int sysctl_net_busy_poll __read_mostly; 114 #endif 115 116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to); 117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from); 118 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 119 120 static int sock_close(struct inode *inode, struct file *file); 121 static unsigned int sock_poll(struct file *file, 122 struct poll_table_struct *wait); 123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 124 #ifdef CONFIG_COMPAT 125 static long compat_sock_ioctl(struct file *file, 126 unsigned int cmd, unsigned long arg); 127 #endif 128 static int sock_fasync(int fd, struct file *filp, int on); 129 static ssize_t sock_sendpage(struct file *file, struct page *page, 130 int offset, size_t size, loff_t *ppos, int more); 131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 132 struct pipe_inode_info *pipe, size_t len, 133 unsigned int flags); 134 135 /* 136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 137 * in the operation structures but are done directly via the socketcall() multiplexor. 138 */ 139 140 static const struct file_operations socket_file_ops = { 141 .owner = THIS_MODULE, 142 .llseek = no_llseek, 143 .read = new_sync_read, 144 .write = new_sync_write, 145 .read_iter = sock_read_iter, 146 .write_iter = sock_write_iter, 147 .poll = sock_poll, 148 .unlocked_ioctl = sock_ioctl, 149 #ifdef CONFIG_COMPAT 150 .compat_ioctl = compat_sock_ioctl, 151 #endif 152 .mmap = sock_mmap, 153 .release = sock_close, 154 .fasync = sock_fasync, 155 .sendpage = sock_sendpage, 156 .splice_write = generic_splice_sendpage, 157 .splice_read = sock_splice_read, 158 }; 159 160 /* 161 * The protocol list. Each protocol is registered in here. 162 */ 163 164 static DEFINE_SPINLOCK(net_family_lock); 165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly; 166 167 /* 168 * Statistics counters of the socket lists 169 */ 170 171 static DEFINE_PER_CPU(int, sockets_in_use); 172 173 /* 174 * Support routines. 175 * Move socket addresses back and forth across the kernel/user 176 * divide and look after the messy bits. 177 */ 178 179 /** 180 * move_addr_to_kernel - copy a socket address into kernel space 181 * @uaddr: Address in user space 182 * @kaddr: Address in kernel space 183 * @ulen: Length in user space 184 * 185 * The address is copied into kernel space. If the provided address is 186 * too long an error code of -EINVAL is returned. If the copy gives 187 * invalid addresses -EFAULT is returned. On a success 0 is returned. 188 */ 189 190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr) 191 { 192 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 193 return -EINVAL; 194 if (ulen == 0) 195 return 0; 196 if (copy_from_user(kaddr, uaddr, ulen)) 197 return -EFAULT; 198 return audit_sockaddr(ulen, kaddr); 199 } 200 201 /** 202 * move_addr_to_user - copy an address to user space 203 * @kaddr: kernel space address 204 * @klen: length of address in kernel 205 * @uaddr: user space address 206 * @ulen: pointer to user length field 207 * 208 * The value pointed to by ulen on entry is the buffer length available. 209 * This is overwritten with the buffer space used. -EINVAL is returned 210 * if an overlong buffer is specified or a negative buffer size. -EFAULT 211 * is returned if either the buffer or the length field are not 212 * accessible. 213 * After copying the data up to the limit the user specifies, the true 214 * length of the data is written over the length limit the user 215 * specified. Zero is returned for a success. 216 */ 217 218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen, 219 void __user *uaddr, int __user *ulen) 220 { 221 int err; 222 int len; 223 224 BUG_ON(klen > sizeof(struct sockaddr_storage)); 225 err = get_user(len, ulen); 226 if (err) 227 return err; 228 if (len > klen) 229 len = klen; 230 if (len < 0) 231 return -EINVAL; 232 if (len) { 233 if (audit_sockaddr(klen, kaddr)) 234 return -ENOMEM; 235 if (copy_to_user(uaddr, kaddr, len)) 236 return -EFAULT; 237 } 238 /* 239 * "fromlen shall refer to the value before truncation.." 240 * 1003.1g 241 */ 242 return __put_user(klen, ulen); 243 } 244 245 static struct kmem_cache *sock_inode_cachep __read_mostly; 246 247 static struct inode *sock_alloc_inode(struct super_block *sb) 248 { 249 struct socket_alloc *ei; 250 struct socket_wq *wq; 251 252 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 253 if (!ei) 254 return NULL; 255 wq = kmalloc(sizeof(*wq), GFP_KERNEL); 256 if (!wq) { 257 kmem_cache_free(sock_inode_cachep, ei); 258 return NULL; 259 } 260 init_waitqueue_head(&wq->wait); 261 wq->fasync_list = NULL; 262 RCU_INIT_POINTER(ei->socket.wq, wq); 263 264 ei->socket.state = SS_UNCONNECTED; 265 ei->socket.flags = 0; 266 ei->socket.ops = NULL; 267 ei->socket.sk = NULL; 268 ei->socket.file = NULL; 269 270 return &ei->vfs_inode; 271 } 272 273 static void sock_destroy_inode(struct inode *inode) 274 { 275 struct socket_alloc *ei; 276 struct socket_wq *wq; 277 278 ei = container_of(inode, struct socket_alloc, vfs_inode); 279 wq = rcu_dereference_protected(ei->socket.wq, 1); 280 kfree_rcu(wq, rcu); 281 kmem_cache_free(sock_inode_cachep, ei); 282 } 283 284 static void init_once(void *foo) 285 { 286 struct socket_alloc *ei = (struct socket_alloc *)foo; 287 288 inode_init_once(&ei->vfs_inode); 289 } 290 291 static int init_inodecache(void) 292 { 293 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 294 sizeof(struct socket_alloc), 295 0, 296 (SLAB_HWCACHE_ALIGN | 297 SLAB_RECLAIM_ACCOUNT | 298 SLAB_MEM_SPREAD), 299 init_once); 300 if (sock_inode_cachep == NULL) 301 return -ENOMEM; 302 return 0; 303 } 304 305 static const struct super_operations sockfs_ops = { 306 .alloc_inode = sock_alloc_inode, 307 .destroy_inode = sock_destroy_inode, 308 .statfs = simple_statfs, 309 }; 310 311 /* 312 * sockfs_dname() is called from d_path(). 313 */ 314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 315 { 316 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 317 dentry->d_inode->i_ino); 318 } 319 320 static const struct dentry_operations sockfs_dentry_operations = { 321 .d_dname = sockfs_dname, 322 }; 323 324 static struct dentry *sockfs_mount(struct file_system_type *fs_type, 325 int flags, const char *dev_name, void *data) 326 { 327 return mount_pseudo(fs_type, "socket:", &sockfs_ops, 328 &sockfs_dentry_operations, SOCKFS_MAGIC); 329 } 330 331 static struct vfsmount *sock_mnt __read_mostly; 332 333 static struct file_system_type sock_fs_type = { 334 .name = "sockfs", 335 .mount = sockfs_mount, 336 .kill_sb = kill_anon_super, 337 }; 338 339 /* 340 * Obtains the first available file descriptor and sets it up for use. 341 * 342 * These functions create file structures and maps them to fd space 343 * of the current process. On success it returns file descriptor 344 * and file struct implicitly stored in sock->file. 345 * Note that another thread may close file descriptor before we return 346 * from this function. We use the fact that now we do not refer 347 * to socket after mapping. If one day we will need it, this 348 * function will increment ref. count on file by 1. 349 * 350 * In any case returned fd MAY BE not valid! 351 * This race condition is unavoidable 352 * with shared fd spaces, we cannot solve it inside kernel, 353 * but we take care of internal coherence yet. 354 */ 355 356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname) 357 { 358 struct qstr name = { .name = "" }; 359 struct path path; 360 struct file *file; 361 362 if (dname) { 363 name.name = dname; 364 name.len = strlen(name.name); 365 } else if (sock->sk) { 366 name.name = sock->sk->sk_prot_creator->name; 367 name.len = strlen(name.name); 368 } 369 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name); 370 if (unlikely(!path.dentry)) 371 return ERR_PTR(-ENOMEM); 372 path.mnt = mntget(sock_mnt); 373 374 d_instantiate(path.dentry, SOCK_INODE(sock)); 375 376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 377 &socket_file_ops); 378 if (unlikely(IS_ERR(file))) { 379 /* drop dentry, keep inode */ 380 ihold(path.dentry->d_inode); 381 path_put(&path); 382 return file; 383 } 384 385 sock->file = file; 386 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 387 file->private_data = sock; 388 return file; 389 } 390 EXPORT_SYMBOL(sock_alloc_file); 391 392 static int sock_map_fd(struct socket *sock, int flags) 393 { 394 struct file *newfile; 395 int fd = get_unused_fd_flags(flags); 396 if (unlikely(fd < 0)) 397 return fd; 398 399 newfile = sock_alloc_file(sock, flags, NULL); 400 if (likely(!IS_ERR(newfile))) { 401 fd_install(fd, newfile); 402 return fd; 403 } 404 405 put_unused_fd(fd); 406 return PTR_ERR(newfile); 407 } 408 409 struct socket *sock_from_file(struct file *file, int *err) 410 { 411 if (file->f_op == &socket_file_ops) 412 return file->private_data; /* set in sock_map_fd */ 413 414 *err = -ENOTSOCK; 415 return NULL; 416 } 417 EXPORT_SYMBOL(sock_from_file); 418 419 /** 420 * sockfd_lookup - Go from a file number to its socket slot 421 * @fd: file handle 422 * @err: pointer to an error code return 423 * 424 * The file handle passed in is locked and the socket it is bound 425 * too is returned. If an error occurs the err pointer is overwritten 426 * with a negative errno code and NULL is returned. The function checks 427 * for both invalid handles and passing a handle which is not a socket. 428 * 429 * On a success the socket object pointer is returned. 430 */ 431 432 struct socket *sockfd_lookup(int fd, int *err) 433 { 434 struct file *file; 435 struct socket *sock; 436 437 file = fget(fd); 438 if (!file) { 439 *err = -EBADF; 440 return NULL; 441 } 442 443 sock = sock_from_file(file, err); 444 if (!sock) 445 fput(file); 446 return sock; 447 } 448 EXPORT_SYMBOL(sockfd_lookup); 449 450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 451 { 452 struct fd f = fdget(fd); 453 struct socket *sock; 454 455 *err = -EBADF; 456 if (f.file) { 457 sock = sock_from_file(f.file, err); 458 if (likely(sock)) { 459 *fput_needed = f.flags; 460 return sock; 461 } 462 fdput(f); 463 } 464 return NULL; 465 } 466 467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname" 468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX) 469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1) 470 static ssize_t sockfs_getxattr(struct dentry *dentry, 471 const char *name, void *value, size_t size) 472 { 473 const char *proto_name; 474 size_t proto_size; 475 int error; 476 477 error = -ENODATA; 478 if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) { 479 proto_name = dentry->d_name.name; 480 proto_size = strlen(proto_name); 481 482 if (value) { 483 error = -ERANGE; 484 if (proto_size + 1 > size) 485 goto out; 486 487 strncpy(value, proto_name, proto_size + 1); 488 } 489 error = proto_size + 1; 490 } 491 492 out: 493 return error; 494 } 495 496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer, 497 size_t size) 498 { 499 ssize_t len; 500 ssize_t used = 0; 501 502 len = security_inode_listsecurity(dentry->d_inode, buffer, size); 503 if (len < 0) 504 return len; 505 used += len; 506 if (buffer) { 507 if (size < used) 508 return -ERANGE; 509 buffer += len; 510 } 511 512 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1); 513 used += len; 514 if (buffer) { 515 if (size < used) 516 return -ERANGE; 517 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len); 518 buffer += len; 519 } 520 521 return used; 522 } 523 524 static const struct inode_operations sockfs_inode_ops = { 525 .getxattr = sockfs_getxattr, 526 .listxattr = sockfs_listxattr, 527 }; 528 529 /** 530 * sock_alloc - allocate a socket 531 * 532 * Allocate a new inode and socket object. The two are bound together 533 * and initialised. The socket is then returned. If we are out of inodes 534 * NULL is returned. 535 */ 536 537 static struct socket *sock_alloc(void) 538 { 539 struct inode *inode; 540 struct socket *sock; 541 542 inode = new_inode_pseudo(sock_mnt->mnt_sb); 543 if (!inode) 544 return NULL; 545 546 sock = SOCKET_I(inode); 547 548 kmemcheck_annotate_bitfield(sock, type); 549 inode->i_ino = get_next_ino(); 550 inode->i_mode = S_IFSOCK | S_IRWXUGO; 551 inode->i_uid = current_fsuid(); 552 inode->i_gid = current_fsgid(); 553 inode->i_op = &sockfs_inode_ops; 554 555 this_cpu_add(sockets_in_use, 1); 556 return sock; 557 } 558 559 /** 560 * sock_release - close a socket 561 * @sock: socket to close 562 * 563 * The socket is released from the protocol stack if it has a release 564 * callback, and the inode is then released if the socket is bound to 565 * an inode not a file. 566 */ 567 568 void sock_release(struct socket *sock) 569 { 570 if (sock->ops) { 571 struct module *owner = sock->ops->owner; 572 573 sock->ops->release(sock); 574 sock->ops = NULL; 575 module_put(owner); 576 } 577 578 if (rcu_dereference_protected(sock->wq, 1)->fasync_list) 579 pr_err("%s: fasync list not empty!\n", __func__); 580 581 if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags)) 582 return; 583 584 this_cpu_sub(sockets_in_use, 1); 585 if (!sock->file) { 586 iput(SOCK_INODE(sock)); 587 return; 588 } 589 sock->file = NULL; 590 } 591 EXPORT_SYMBOL(sock_release); 592 593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) 594 { 595 u8 flags = *tx_flags; 596 597 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE) 598 flags |= SKBTX_HW_TSTAMP; 599 600 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE) 601 flags |= SKBTX_SW_TSTAMP; 602 603 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED) 604 flags |= SKBTX_SCHED_TSTAMP; 605 606 if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK) 607 flags |= SKBTX_ACK_TSTAMP; 608 609 *tx_flags = flags; 610 } 611 EXPORT_SYMBOL(__sock_tx_timestamp); 612 613 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg) 614 { 615 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg)); 616 BUG_ON(ret == -EIOCBQUEUED); 617 return ret; 618 } 619 620 int sock_sendmsg(struct socket *sock, struct msghdr *msg) 621 { 622 int err = security_socket_sendmsg(sock, msg, 623 msg_data_left(msg)); 624 625 return err ?: sock_sendmsg_nosec(sock, msg); 626 } 627 EXPORT_SYMBOL(sock_sendmsg); 628 629 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 630 struct kvec *vec, size_t num, size_t size) 631 { 632 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size); 633 return sock_sendmsg(sock, msg); 634 } 635 EXPORT_SYMBOL(kernel_sendmsg); 636 637 /* 638 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 639 */ 640 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 641 struct sk_buff *skb) 642 { 643 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 644 struct scm_timestamping tss; 645 int empty = 1; 646 struct skb_shared_hwtstamps *shhwtstamps = 647 skb_hwtstamps(skb); 648 649 /* Race occurred between timestamp enabling and packet 650 receiving. Fill in the current time for now. */ 651 if (need_software_tstamp && skb->tstamp.tv64 == 0) 652 __net_timestamp(skb); 653 654 if (need_software_tstamp) { 655 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 656 struct timeval tv; 657 skb_get_timestamp(skb, &tv); 658 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 659 sizeof(tv), &tv); 660 } else { 661 struct timespec ts; 662 skb_get_timestampns(skb, &ts); 663 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 664 sizeof(ts), &ts); 665 } 666 } 667 668 memset(&tss, 0, sizeof(tss)); 669 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) && 670 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0)) 671 empty = 0; 672 if (shhwtstamps && 673 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) && 674 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) 675 empty = 0; 676 if (!empty) 677 put_cmsg(msg, SOL_SOCKET, 678 SCM_TIMESTAMPING, sizeof(tss), &tss); 679 } 680 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 681 682 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, 683 struct sk_buff *skb) 684 { 685 int ack; 686 687 if (!sock_flag(sk, SOCK_WIFI_STATUS)) 688 return; 689 if (!skb->wifi_acked_valid) 690 return; 691 692 ack = skb->wifi_acked; 693 694 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack); 695 } 696 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status); 697 698 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, 699 struct sk_buff *skb) 700 { 701 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount) 702 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 703 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount); 704 } 705 706 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 707 struct sk_buff *skb) 708 { 709 sock_recv_timestamp(msg, sk, skb); 710 sock_recv_drops(msg, sk, skb); 711 } 712 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 713 714 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 715 size_t size, int flags) 716 { 717 return sock->ops->recvmsg(sock, msg, size, flags); 718 } 719 720 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size, 721 int flags) 722 { 723 int err = security_socket_recvmsg(sock, msg, size, flags); 724 725 return err ?: sock_recvmsg_nosec(sock, msg, size, flags); 726 } 727 EXPORT_SYMBOL(sock_recvmsg); 728 729 /** 730 * kernel_recvmsg - Receive a message from a socket (kernel space) 731 * @sock: The socket to receive the message from 732 * @msg: Received message 733 * @vec: Input s/g array for message data 734 * @num: Size of input s/g array 735 * @size: Number of bytes to read 736 * @flags: Message flags (MSG_DONTWAIT, etc...) 737 * 738 * On return the msg structure contains the scatter/gather array passed in the 739 * vec argument. The array is modified so that it consists of the unfilled 740 * portion of the original array. 741 * 742 * The returned value is the total number of bytes received, or an error. 743 */ 744 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 745 struct kvec *vec, size_t num, size_t size, int flags) 746 { 747 mm_segment_t oldfs = get_fs(); 748 int result; 749 750 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size); 751 set_fs(KERNEL_DS); 752 result = sock_recvmsg(sock, msg, size, flags); 753 set_fs(oldfs); 754 return result; 755 } 756 EXPORT_SYMBOL(kernel_recvmsg); 757 758 static ssize_t sock_sendpage(struct file *file, struct page *page, 759 int offset, size_t size, loff_t *ppos, int more) 760 { 761 struct socket *sock; 762 int flags; 763 764 sock = file->private_data; 765 766 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 767 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */ 768 flags |= more; 769 770 return kernel_sendpage(sock, page, offset, size, flags); 771 } 772 773 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 774 struct pipe_inode_info *pipe, size_t len, 775 unsigned int flags) 776 { 777 struct socket *sock = file->private_data; 778 779 if (unlikely(!sock->ops->splice_read)) 780 return -EINVAL; 781 782 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 783 } 784 785 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to) 786 { 787 struct file *file = iocb->ki_filp; 788 struct socket *sock = file->private_data; 789 struct msghdr msg = {.msg_iter = *to, 790 .msg_iocb = iocb}; 791 ssize_t res; 792 793 if (file->f_flags & O_NONBLOCK) 794 msg.msg_flags = MSG_DONTWAIT; 795 796 if (iocb->ki_pos != 0) 797 return -ESPIPE; 798 799 if (!iov_iter_count(to)) /* Match SYS5 behaviour */ 800 return 0; 801 802 res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags); 803 *to = msg.msg_iter; 804 return res; 805 } 806 807 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from) 808 { 809 struct file *file = iocb->ki_filp; 810 struct socket *sock = file->private_data; 811 struct msghdr msg = {.msg_iter = *from, 812 .msg_iocb = iocb}; 813 ssize_t res; 814 815 if (iocb->ki_pos != 0) 816 return -ESPIPE; 817 818 if (file->f_flags & O_NONBLOCK) 819 msg.msg_flags = MSG_DONTWAIT; 820 821 if (sock->type == SOCK_SEQPACKET) 822 msg.msg_flags |= MSG_EOR; 823 824 res = sock_sendmsg(sock, &msg); 825 *from = msg.msg_iter; 826 return res; 827 } 828 829 /* 830 * Atomic setting of ioctl hooks to avoid race 831 * with module unload. 832 */ 833 834 static DEFINE_MUTEX(br_ioctl_mutex); 835 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 836 837 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 838 { 839 mutex_lock(&br_ioctl_mutex); 840 br_ioctl_hook = hook; 841 mutex_unlock(&br_ioctl_mutex); 842 } 843 EXPORT_SYMBOL(brioctl_set); 844 845 static DEFINE_MUTEX(vlan_ioctl_mutex); 846 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 847 848 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 849 { 850 mutex_lock(&vlan_ioctl_mutex); 851 vlan_ioctl_hook = hook; 852 mutex_unlock(&vlan_ioctl_mutex); 853 } 854 EXPORT_SYMBOL(vlan_ioctl_set); 855 856 static DEFINE_MUTEX(dlci_ioctl_mutex); 857 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 858 859 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 860 { 861 mutex_lock(&dlci_ioctl_mutex); 862 dlci_ioctl_hook = hook; 863 mutex_unlock(&dlci_ioctl_mutex); 864 } 865 EXPORT_SYMBOL(dlci_ioctl_set); 866 867 static long sock_do_ioctl(struct net *net, struct socket *sock, 868 unsigned int cmd, unsigned long arg) 869 { 870 int err; 871 void __user *argp = (void __user *)arg; 872 873 err = sock->ops->ioctl(sock, cmd, arg); 874 875 /* 876 * If this ioctl is unknown try to hand it down 877 * to the NIC driver. 878 */ 879 if (err == -ENOIOCTLCMD) 880 err = dev_ioctl(net, cmd, argp); 881 882 return err; 883 } 884 885 /* 886 * With an ioctl, arg may well be a user mode pointer, but we don't know 887 * what to do with it - that's up to the protocol still. 888 */ 889 890 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 891 { 892 struct socket *sock; 893 struct sock *sk; 894 void __user *argp = (void __user *)arg; 895 int pid, err; 896 struct net *net; 897 898 sock = file->private_data; 899 sk = sock->sk; 900 net = sock_net(sk); 901 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 902 err = dev_ioctl(net, cmd, argp); 903 } else 904 #ifdef CONFIG_WEXT_CORE 905 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 906 err = dev_ioctl(net, cmd, argp); 907 } else 908 #endif 909 switch (cmd) { 910 case FIOSETOWN: 911 case SIOCSPGRP: 912 err = -EFAULT; 913 if (get_user(pid, (int __user *)argp)) 914 break; 915 f_setown(sock->file, pid, 1); 916 err = 0; 917 break; 918 case FIOGETOWN: 919 case SIOCGPGRP: 920 err = put_user(f_getown(sock->file), 921 (int __user *)argp); 922 break; 923 case SIOCGIFBR: 924 case SIOCSIFBR: 925 case SIOCBRADDBR: 926 case SIOCBRDELBR: 927 err = -ENOPKG; 928 if (!br_ioctl_hook) 929 request_module("bridge"); 930 931 mutex_lock(&br_ioctl_mutex); 932 if (br_ioctl_hook) 933 err = br_ioctl_hook(net, cmd, argp); 934 mutex_unlock(&br_ioctl_mutex); 935 break; 936 case SIOCGIFVLAN: 937 case SIOCSIFVLAN: 938 err = -ENOPKG; 939 if (!vlan_ioctl_hook) 940 request_module("8021q"); 941 942 mutex_lock(&vlan_ioctl_mutex); 943 if (vlan_ioctl_hook) 944 err = vlan_ioctl_hook(net, argp); 945 mutex_unlock(&vlan_ioctl_mutex); 946 break; 947 case SIOCADDDLCI: 948 case SIOCDELDLCI: 949 err = -ENOPKG; 950 if (!dlci_ioctl_hook) 951 request_module("dlci"); 952 953 mutex_lock(&dlci_ioctl_mutex); 954 if (dlci_ioctl_hook) 955 err = dlci_ioctl_hook(cmd, argp); 956 mutex_unlock(&dlci_ioctl_mutex); 957 break; 958 default: 959 err = sock_do_ioctl(net, sock, cmd, arg); 960 break; 961 } 962 return err; 963 } 964 965 int sock_create_lite(int family, int type, int protocol, struct socket **res) 966 { 967 int err; 968 struct socket *sock = NULL; 969 970 err = security_socket_create(family, type, protocol, 1); 971 if (err) 972 goto out; 973 974 sock = sock_alloc(); 975 if (!sock) { 976 err = -ENOMEM; 977 goto out; 978 } 979 980 sock->type = type; 981 err = security_socket_post_create(sock, family, type, protocol, 1); 982 if (err) 983 goto out_release; 984 985 out: 986 *res = sock; 987 return err; 988 out_release: 989 sock_release(sock); 990 sock = NULL; 991 goto out; 992 } 993 EXPORT_SYMBOL(sock_create_lite); 994 995 /* No kernel lock held - perfect */ 996 static unsigned int sock_poll(struct file *file, poll_table *wait) 997 { 998 unsigned int busy_flag = 0; 999 struct socket *sock; 1000 1001 /* 1002 * We can't return errors to poll, so it's either yes or no. 1003 */ 1004 sock = file->private_data; 1005 1006 if (sk_can_busy_loop(sock->sk)) { 1007 /* this socket can poll_ll so tell the system call */ 1008 busy_flag = POLL_BUSY_LOOP; 1009 1010 /* once, only if requested by syscall */ 1011 if (wait && (wait->_key & POLL_BUSY_LOOP)) 1012 sk_busy_loop(sock->sk, 1); 1013 } 1014 1015 return busy_flag | sock->ops->poll(file, sock, wait); 1016 } 1017 1018 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1019 { 1020 struct socket *sock = file->private_data; 1021 1022 return sock->ops->mmap(file, sock, vma); 1023 } 1024 1025 static int sock_close(struct inode *inode, struct file *filp) 1026 { 1027 sock_release(SOCKET_I(inode)); 1028 return 0; 1029 } 1030 1031 /* 1032 * Update the socket async list 1033 * 1034 * Fasync_list locking strategy. 1035 * 1036 * 1. fasync_list is modified only under process context socket lock 1037 * i.e. under semaphore. 1038 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1039 * or under socket lock 1040 */ 1041 1042 static int sock_fasync(int fd, struct file *filp, int on) 1043 { 1044 struct socket *sock = filp->private_data; 1045 struct sock *sk = sock->sk; 1046 struct socket_wq *wq; 1047 1048 if (sk == NULL) 1049 return -EINVAL; 1050 1051 lock_sock(sk); 1052 wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk)); 1053 fasync_helper(fd, filp, on, &wq->fasync_list); 1054 1055 if (!wq->fasync_list) 1056 sock_reset_flag(sk, SOCK_FASYNC); 1057 else 1058 sock_set_flag(sk, SOCK_FASYNC); 1059 1060 release_sock(sk); 1061 return 0; 1062 } 1063 1064 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1065 1066 int sock_wake_async(struct socket *sock, int how, int band) 1067 { 1068 struct socket_wq *wq; 1069 1070 if (!sock) 1071 return -1; 1072 rcu_read_lock(); 1073 wq = rcu_dereference(sock->wq); 1074 if (!wq || !wq->fasync_list) { 1075 rcu_read_unlock(); 1076 return -1; 1077 } 1078 switch (how) { 1079 case SOCK_WAKE_WAITD: 1080 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1081 break; 1082 goto call_kill; 1083 case SOCK_WAKE_SPACE: 1084 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1085 break; 1086 /* fall through */ 1087 case SOCK_WAKE_IO: 1088 call_kill: 1089 kill_fasync(&wq->fasync_list, SIGIO, band); 1090 break; 1091 case SOCK_WAKE_URG: 1092 kill_fasync(&wq->fasync_list, SIGURG, band); 1093 } 1094 rcu_read_unlock(); 1095 return 0; 1096 } 1097 EXPORT_SYMBOL(sock_wake_async); 1098 1099 int __sock_create(struct net *net, int family, int type, int protocol, 1100 struct socket **res, int kern) 1101 { 1102 int err; 1103 struct socket *sock; 1104 const struct net_proto_family *pf; 1105 1106 /* 1107 * Check protocol is in range 1108 */ 1109 if (family < 0 || family >= NPROTO) 1110 return -EAFNOSUPPORT; 1111 if (type < 0 || type >= SOCK_MAX) 1112 return -EINVAL; 1113 1114 /* Compatibility. 1115 1116 This uglymoron is moved from INET layer to here to avoid 1117 deadlock in module load. 1118 */ 1119 if (family == PF_INET && type == SOCK_PACKET) { 1120 static int warned; 1121 if (!warned) { 1122 warned = 1; 1123 pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1124 current->comm); 1125 } 1126 family = PF_PACKET; 1127 } 1128 1129 err = security_socket_create(family, type, protocol, kern); 1130 if (err) 1131 return err; 1132 1133 /* 1134 * Allocate the socket and allow the family to set things up. if 1135 * the protocol is 0, the family is instructed to select an appropriate 1136 * default. 1137 */ 1138 sock = sock_alloc(); 1139 if (!sock) { 1140 net_warn_ratelimited("socket: no more sockets\n"); 1141 return -ENFILE; /* Not exactly a match, but its the 1142 closest posix thing */ 1143 } 1144 1145 sock->type = type; 1146 1147 #ifdef CONFIG_MODULES 1148 /* Attempt to load a protocol module if the find failed. 1149 * 1150 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1151 * requested real, full-featured networking support upon configuration. 1152 * Otherwise module support will break! 1153 */ 1154 if (rcu_access_pointer(net_families[family]) == NULL) 1155 request_module("net-pf-%d", family); 1156 #endif 1157 1158 rcu_read_lock(); 1159 pf = rcu_dereference(net_families[family]); 1160 err = -EAFNOSUPPORT; 1161 if (!pf) 1162 goto out_release; 1163 1164 /* 1165 * We will call the ->create function, that possibly is in a loadable 1166 * module, so we have to bump that loadable module refcnt first. 1167 */ 1168 if (!try_module_get(pf->owner)) 1169 goto out_release; 1170 1171 /* Now protected by module ref count */ 1172 rcu_read_unlock(); 1173 1174 err = pf->create(net, sock, protocol, kern); 1175 if (err < 0) 1176 goto out_module_put; 1177 1178 /* 1179 * Now to bump the refcnt of the [loadable] module that owns this 1180 * socket at sock_release time we decrement its refcnt. 1181 */ 1182 if (!try_module_get(sock->ops->owner)) 1183 goto out_module_busy; 1184 1185 /* 1186 * Now that we're done with the ->create function, the [loadable] 1187 * module can have its refcnt decremented 1188 */ 1189 module_put(pf->owner); 1190 err = security_socket_post_create(sock, family, type, protocol, kern); 1191 if (err) 1192 goto out_sock_release; 1193 *res = sock; 1194 1195 return 0; 1196 1197 out_module_busy: 1198 err = -EAFNOSUPPORT; 1199 out_module_put: 1200 sock->ops = NULL; 1201 module_put(pf->owner); 1202 out_sock_release: 1203 sock_release(sock); 1204 return err; 1205 1206 out_release: 1207 rcu_read_unlock(); 1208 goto out_sock_release; 1209 } 1210 EXPORT_SYMBOL(__sock_create); 1211 1212 int sock_create(int family, int type, int protocol, struct socket **res) 1213 { 1214 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1215 } 1216 EXPORT_SYMBOL(sock_create); 1217 1218 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1219 { 1220 return __sock_create(&init_net, family, type, protocol, res, 1); 1221 } 1222 EXPORT_SYMBOL(sock_create_kern); 1223 1224 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1225 { 1226 int retval; 1227 struct socket *sock; 1228 int flags; 1229 1230 /* Check the SOCK_* constants for consistency. */ 1231 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1232 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1233 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1234 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1235 1236 flags = type & ~SOCK_TYPE_MASK; 1237 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1238 return -EINVAL; 1239 type &= SOCK_TYPE_MASK; 1240 1241 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1242 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1243 1244 retval = sock_create(family, type, protocol, &sock); 1245 if (retval < 0) 1246 goto out; 1247 1248 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1249 if (retval < 0) 1250 goto out_release; 1251 1252 out: 1253 /* It may be already another descriptor 8) Not kernel problem. */ 1254 return retval; 1255 1256 out_release: 1257 sock_release(sock); 1258 return retval; 1259 } 1260 1261 /* 1262 * Create a pair of connected sockets. 1263 */ 1264 1265 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1266 int __user *, usockvec) 1267 { 1268 struct socket *sock1, *sock2; 1269 int fd1, fd2, err; 1270 struct file *newfile1, *newfile2; 1271 int flags; 1272 1273 flags = type & ~SOCK_TYPE_MASK; 1274 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1275 return -EINVAL; 1276 type &= SOCK_TYPE_MASK; 1277 1278 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1279 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1280 1281 /* 1282 * Obtain the first socket and check if the underlying protocol 1283 * supports the socketpair call. 1284 */ 1285 1286 err = sock_create(family, type, protocol, &sock1); 1287 if (err < 0) 1288 goto out; 1289 1290 err = sock_create(family, type, protocol, &sock2); 1291 if (err < 0) 1292 goto out_release_1; 1293 1294 err = sock1->ops->socketpair(sock1, sock2); 1295 if (err < 0) 1296 goto out_release_both; 1297 1298 fd1 = get_unused_fd_flags(flags); 1299 if (unlikely(fd1 < 0)) { 1300 err = fd1; 1301 goto out_release_both; 1302 } 1303 1304 fd2 = get_unused_fd_flags(flags); 1305 if (unlikely(fd2 < 0)) { 1306 err = fd2; 1307 goto out_put_unused_1; 1308 } 1309 1310 newfile1 = sock_alloc_file(sock1, flags, NULL); 1311 if (unlikely(IS_ERR(newfile1))) { 1312 err = PTR_ERR(newfile1); 1313 goto out_put_unused_both; 1314 } 1315 1316 newfile2 = sock_alloc_file(sock2, flags, NULL); 1317 if (IS_ERR(newfile2)) { 1318 err = PTR_ERR(newfile2); 1319 goto out_fput_1; 1320 } 1321 1322 err = put_user(fd1, &usockvec[0]); 1323 if (err) 1324 goto out_fput_both; 1325 1326 err = put_user(fd2, &usockvec[1]); 1327 if (err) 1328 goto out_fput_both; 1329 1330 audit_fd_pair(fd1, fd2); 1331 1332 fd_install(fd1, newfile1); 1333 fd_install(fd2, newfile2); 1334 /* fd1 and fd2 may be already another descriptors. 1335 * Not kernel problem. 1336 */ 1337 1338 return 0; 1339 1340 out_fput_both: 1341 fput(newfile2); 1342 fput(newfile1); 1343 put_unused_fd(fd2); 1344 put_unused_fd(fd1); 1345 goto out; 1346 1347 out_fput_1: 1348 fput(newfile1); 1349 put_unused_fd(fd2); 1350 put_unused_fd(fd1); 1351 sock_release(sock2); 1352 goto out; 1353 1354 out_put_unused_both: 1355 put_unused_fd(fd2); 1356 out_put_unused_1: 1357 put_unused_fd(fd1); 1358 out_release_both: 1359 sock_release(sock2); 1360 out_release_1: 1361 sock_release(sock1); 1362 out: 1363 return err; 1364 } 1365 1366 /* 1367 * Bind a name to a socket. Nothing much to do here since it's 1368 * the protocol's responsibility to handle the local address. 1369 * 1370 * We move the socket address to kernel space before we call 1371 * the protocol layer (having also checked the address is ok). 1372 */ 1373 1374 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1375 { 1376 struct socket *sock; 1377 struct sockaddr_storage address; 1378 int err, fput_needed; 1379 1380 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1381 if (sock) { 1382 err = move_addr_to_kernel(umyaddr, addrlen, &address); 1383 if (err >= 0) { 1384 err = security_socket_bind(sock, 1385 (struct sockaddr *)&address, 1386 addrlen); 1387 if (!err) 1388 err = sock->ops->bind(sock, 1389 (struct sockaddr *) 1390 &address, addrlen); 1391 } 1392 fput_light(sock->file, fput_needed); 1393 } 1394 return err; 1395 } 1396 1397 /* 1398 * Perform a listen. Basically, we allow the protocol to do anything 1399 * necessary for a listen, and if that works, we mark the socket as 1400 * ready for listening. 1401 */ 1402 1403 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1404 { 1405 struct socket *sock; 1406 int err, fput_needed; 1407 int somaxconn; 1408 1409 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1410 if (sock) { 1411 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1412 if ((unsigned int)backlog > somaxconn) 1413 backlog = somaxconn; 1414 1415 err = security_socket_listen(sock, backlog); 1416 if (!err) 1417 err = sock->ops->listen(sock, backlog); 1418 1419 fput_light(sock->file, fput_needed); 1420 } 1421 return err; 1422 } 1423 1424 /* 1425 * For accept, we attempt to create a new socket, set up the link 1426 * with the client, wake up the client, then return the new 1427 * connected fd. We collect the address of the connector in kernel 1428 * space and move it to user at the very end. This is unclean because 1429 * we open the socket then return an error. 1430 * 1431 * 1003.1g adds the ability to recvmsg() to query connection pending 1432 * status to recvmsg. We need to add that support in a way thats 1433 * clean when we restucture accept also. 1434 */ 1435 1436 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1437 int __user *, upeer_addrlen, int, flags) 1438 { 1439 struct socket *sock, *newsock; 1440 struct file *newfile; 1441 int err, len, newfd, fput_needed; 1442 struct sockaddr_storage address; 1443 1444 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1445 return -EINVAL; 1446 1447 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1448 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1449 1450 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1451 if (!sock) 1452 goto out; 1453 1454 err = -ENFILE; 1455 newsock = sock_alloc(); 1456 if (!newsock) 1457 goto out_put; 1458 1459 newsock->type = sock->type; 1460 newsock->ops = sock->ops; 1461 1462 /* 1463 * We don't need try_module_get here, as the listening socket (sock) 1464 * has the protocol module (sock->ops->owner) held. 1465 */ 1466 __module_get(newsock->ops->owner); 1467 1468 newfd = get_unused_fd_flags(flags); 1469 if (unlikely(newfd < 0)) { 1470 err = newfd; 1471 sock_release(newsock); 1472 goto out_put; 1473 } 1474 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name); 1475 if (unlikely(IS_ERR(newfile))) { 1476 err = PTR_ERR(newfile); 1477 put_unused_fd(newfd); 1478 sock_release(newsock); 1479 goto out_put; 1480 } 1481 1482 err = security_socket_accept(sock, newsock); 1483 if (err) 1484 goto out_fd; 1485 1486 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1487 if (err < 0) 1488 goto out_fd; 1489 1490 if (upeer_sockaddr) { 1491 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1492 &len, 2) < 0) { 1493 err = -ECONNABORTED; 1494 goto out_fd; 1495 } 1496 err = move_addr_to_user(&address, 1497 len, upeer_sockaddr, upeer_addrlen); 1498 if (err < 0) 1499 goto out_fd; 1500 } 1501 1502 /* File flags are not inherited via accept() unlike another OSes. */ 1503 1504 fd_install(newfd, newfile); 1505 err = newfd; 1506 1507 out_put: 1508 fput_light(sock->file, fput_needed); 1509 out: 1510 return err; 1511 out_fd: 1512 fput(newfile); 1513 put_unused_fd(newfd); 1514 goto out_put; 1515 } 1516 1517 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1518 int __user *, upeer_addrlen) 1519 { 1520 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1521 } 1522 1523 /* 1524 * Attempt to connect to a socket with the server address. The address 1525 * is in user space so we verify it is OK and move it to kernel space. 1526 * 1527 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1528 * break bindings 1529 * 1530 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1531 * other SEQPACKET protocols that take time to connect() as it doesn't 1532 * include the -EINPROGRESS status for such sockets. 1533 */ 1534 1535 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1536 int, addrlen) 1537 { 1538 struct socket *sock; 1539 struct sockaddr_storage address; 1540 int err, fput_needed; 1541 1542 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1543 if (!sock) 1544 goto out; 1545 err = move_addr_to_kernel(uservaddr, addrlen, &address); 1546 if (err < 0) 1547 goto out_put; 1548 1549 err = 1550 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1551 if (err) 1552 goto out_put; 1553 1554 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1555 sock->file->f_flags); 1556 out_put: 1557 fput_light(sock->file, fput_needed); 1558 out: 1559 return err; 1560 } 1561 1562 /* 1563 * Get the local address ('name') of a socket object. Move the obtained 1564 * name to user space. 1565 */ 1566 1567 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1568 int __user *, usockaddr_len) 1569 { 1570 struct socket *sock; 1571 struct sockaddr_storage address; 1572 int len, err, fput_needed; 1573 1574 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1575 if (!sock) 1576 goto out; 1577 1578 err = security_socket_getsockname(sock); 1579 if (err) 1580 goto out_put; 1581 1582 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1583 if (err) 1584 goto out_put; 1585 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len); 1586 1587 out_put: 1588 fput_light(sock->file, fput_needed); 1589 out: 1590 return err; 1591 } 1592 1593 /* 1594 * Get the remote address ('name') of a socket object. Move the obtained 1595 * name to user space. 1596 */ 1597 1598 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1599 int __user *, usockaddr_len) 1600 { 1601 struct socket *sock; 1602 struct sockaddr_storage address; 1603 int len, err, fput_needed; 1604 1605 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1606 if (sock != NULL) { 1607 err = security_socket_getpeername(sock); 1608 if (err) { 1609 fput_light(sock->file, fput_needed); 1610 return err; 1611 } 1612 1613 err = 1614 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1615 1); 1616 if (!err) 1617 err = move_addr_to_user(&address, len, usockaddr, 1618 usockaddr_len); 1619 fput_light(sock->file, fput_needed); 1620 } 1621 return err; 1622 } 1623 1624 /* 1625 * Send a datagram to a given address. We move the address into kernel 1626 * space and check the user space data area is readable before invoking 1627 * the protocol. 1628 */ 1629 1630 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1631 unsigned int, flags, struct sockaddr __user *, addr, 1632 int, addr_len) 1633 { 1634 struct socket *sock; 1635 struct sockaddr_storage address; 1636 int err; 1637 struct msghdr msg; 1638 struct iovec iov; 1639 int fput_needed; 1640 1641 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter); 1642 if (unlikely(err)) 1643 return err; 1644 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1645 if (!sock) 1646 goto out; 1647 1648 msg.msg_name = NULL; 1649 msg.msg_control = NULL; 1650 msg.msg_controllen = 0; 1651 msg.msg_namelen = 0; 1652 if (addr) { 1653 err = move_addr_to_kernel(addr, addr_len, &address); 1654 if (err < 0) 1655 goto out_put; 1656 msg.msg_name = (struct sockaddr *)&address; 1657 msg.msg_namelen = addr_len; 1658 } 1659 if (sock->file->f_flags & O_NONBLOCK) 1660 flags |= MSG_DONTWAIT; 1661 msg.msg_flags = flags; 1662 err = sock_sendmsg(sock, &msg); 1663 1664 out_put: 1665 fput_light(sock->file, fput_needed); 1666 out: 1667 return err; 1668 } 1669 1670 /* 1671 * Send a datagram down a socket. 1672 */ 1673 1674 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1675 unsigned int, flags) 1676 { 1677 return sys_sendto(fd, buff, len, flags, NULL, 0); 1678 } 1679 1680 /* 1681 * Receive a frame from the socket and optionally record the address of the 1682 * sender. We verify the buffers are writable and if needed move the 1683 * sender address from kernel to user space. 1684 */ 1685 1686 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1687 unsigned int, flags, struct sockaddr __user *, addr, 1688 int __user *, addr_len) 1689 { 1690 struct socket *sock; 1691 struct iovec iov; 1692 struct msghdr msg; 1693 struct sockaddr_storage address; 1694 int err, err2; 1695 int fput_needed; 1696 1697 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter); 1698 if (unlikely(err)) 1699 return err; 1700 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1701 if (!sock) 1702 goto out; 1703 1704 msg.msg_control = NULL; 1705 msg.msg_controllen = 0; 1706 /* Save some cycles and don't copy the address if not needed */ 1707 msg.msg_name = addr ? (struct sockaddr *)&address : NULL; 1708 /* We assume all kernel code knows the size of sockaddr_storage */ 1709 msg.msg_namelen = 0; 1710 if (sock->file->f_flags & O_NONBLOCK) 1711 flags |= MSG_DONTWAIT; 1712 err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags); 1713 1714 if (err >= 0 && addr != NULL) { 1715 err2 = move_addr_to_user(&address, 1716 msg.msg_namelen, addr, addr_len); 1717 if (err2 < 0) 1718 err = err2; 1719 } 1720 1721 fput_light(sock->file, fput_needed); 1722 out: 1723 return err; 1724 } 1725 1726 /* 1727 * Receive a datagram from a socket. 1728 */ 1729 1730 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size, 1731 unsigned int, flags) 1732 { 1733 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1734 } 1735 1736 /* 1737 * Set a socket option. Because we don't know the option lengths we have 1738 * to pass the user mode parameter for the protocols to sort out. 1739 */ 1740 1741 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1742 char __user *, optval, int, optlen) 1743 { 1744 int err, fput_needed; 1745 struct socket *sock; 1746 1747 if (optlen < 0) 1748 return -EINVAL; 1749 1750 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1751 if (sock != NULL) { 1752 err = security_socket_setsockopt(sock, level, optname); 1753 if (err) 1754 goto out_put; 1755 1756 if (level == SOL_SOCKET) 1757 err = 1758 sock_setsockopt(sock, level, optname, optval, 1759 optlen); 1760 else 1761 err = 1762 sock->ops->setsockopt(sock, level, optname, optval, 1763 optlen); 1764 out_put: 1765 fput_light(sock->file, fput_needed); 1766 } 1767 return err; 1768 } 1769 1770 /* 1771 * Get a socket option. Because we don't know the option lengths we have 1772 * to pass a user mode parameter for the protocols to sort out. 1773 */ 1774 1775 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1776 char __user *, optval, int __user *, optlen) 1777 { 1778 int err, fput_needed; 1779 struct socket *sock; 1780 1781 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1782 if (sock != NULL) { 1783 err = security_socket_getsockopt(sock, level, optname); 1784 if (err) 1785 goto out_put; 1786 1787 if (level == SOL_SOCKET) 1788 err = 1789 sock_getsockopt(sock, level, optname, optval, 1790 optlen); 1791 else 1792 err = 1793 sock->ops->getsockopt(sock, level, optname, optval, 1794 optlen); 1795 out_put: 1796 fput_light(sock->file, fput_needed); 1797 } 1798 return err; 1799 } 1800 1801 /* 1802 * Shutdown a socket. 1803 */ 1804 1805 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1806 { 1807 int err, fput_needed; 1808 struct socket *sock; 1809 1810 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1811 if (sock != NULL) { 1812 err = security_socket_shutdown(sock, how); 1813 if (!err) 1814 err = sock->ops->shutdown(sock, how); 1815 fput_light(sock->file, fput_needed); 1816 } 1817 return err; 1818 } 1819 1820 /* A couple of helpful macros for getting the address of the 32/64 bit 1821 * fields which are the same type (int / unsigned) on our platforms. 1822 */ 1823 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1824 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1825 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1826 1827 struct used_address { 1828 struct sockaddr_storage name; 1829 unsigned int name_len; 1830 }; 1831 1832 static int copy_msghdr_from_user(struct msghdr *kmsg, 1833 struct user_msghdr __user *umsg, 1834 struct sockaddr __user **save_addr, 1835 struct iovec **iov) 1836 { 1837 struct sockaddr __user *uaddr; 1838 struct iovec __user *uiov; 1839 size_t nr_segs; 1840 ssize_t err; 1841 1842 if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) || 1843 __get_user(uaddr, &umsg->msg_name) || 1844 __get_user(kmsg->msg_namelen, &umsg->msg_namelen) || 1845 __get_user(uiov, &umsg->msg_iov) || 1846 __get_user(nr_segs, &umsg->msg_iovlen) || 1847 __get_user(kmsg->msg_control, &umsg->msg_control) || 1848 __get_user(kmsg->msg_controllen, &umsg->msg_controllen) || 1849 __get_user(kmsg->msg_flags, &umsg->msg_flags)) 1850 return -EFAULT; 1851 1852 if (!uaddr) 1853 kmsg->msg_namelen = 0; 1854 1855 if (kmsg->msg_namelen < 0) 1856 return -EINVAL; 1857 1858 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage)) 1859 kmsg->msg_namelen = sizeof(struct sockaddr_storage); 1860 1861 if (save_addr) 1862 *save_addr = uaddr; 1863 1864 if (uaddr && kmsg->msg_namelen) { 1865 if (!save_addr) { 1866 err = move_addr_to_kernel(uaddr, kmsg->msg_namelen, 1867 kmsg->msg_name); 1868 if (err < 0) 1869 return err; 1870 } 1871 } else { 1872 kmsg->msg_name = NULL; 1873 kmsg->msg_namelen = 0; 1874 } 1875 1876 if (nr_segs > UIO_MAXIOV) 1877 return -EMSGSIZE; 1878 1879 kmsg->msg_iocb = NULL; 1880 1881 return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs, 1882 UIO_FASTIOV, iov, &kmsg->msg_iter); 1883 } 1884 1885 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg, 1886 struct msghdr *msg_sys, unsigned int flags, 1887 struct used_address *used_address) 1888 { 1889 struct compat_msghdr __user *msg_compat = 1890 (struct compat_msghdr __user *)msg; 1891 struct sockaddr_storage address; 1892 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1893 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1894 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1895 /* 20 is size of ipv6_pktinfo */ 1896 unsigned char *ctl_buf = ctl; 1897 int ctl_len; 1898 ssize_t err; 1899 1900 msg_sys->msg_name = &address; 1901 1902 if (MSG_CMSG_COMPAT & flags) 1903 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov); 1904 else 1905 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov); 1906 if (err < 0) 1907 return err; 1908 1909 err = -ENOBUFS; 1910 1911 if (msg_sys->msg_controllen > INT_MAX) 1912 goto out_freeiov; 1913 ctl_len = msg_sys->msg_controllen; 1914 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1915 err = 1916 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl, 1917 sizeof(ctl)); 1918 if (err) 1919 goto out_freeiov; 1920 ctl_buf = msg_sys->msg_control; 1921 ctl_len = msg_sys->msg_controllen; 1922 } else if (ctl_len) { 1923 if (ctl_len > sizeof(ctl)) { 1924 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1925 if (ctl_buf == NULL) 1926 goto out_freeiov; 1927 } 1928 err = -EFAULT; 1929 /* 1930 * Careful! Before this, msg_sys->msg_control contains a user pointer. 1931 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1932 * checking falls down on this. 1933 */ 1934 if (copy_from_user(ctl_buf, 1935 (void __user __force *)msg_sys->msg_control, 1936 ctl_len)) 1937 goto out_freectl; 1938 msg_sys->msg_control = ctl_buf; 1939 } 1940 msg_sys->msg_flags = flags; 1941 1942 if (sock->file->f_flags & O_NONBLOCK) 1943 msg_sys->msg_flags |= MSG_DONTWAIT; 1944 /* 1945 * If this is sendmmsg() and current destination address is same as 1946 * previously succeeded address, omit asking LSM's decision. 1947 * used_address->name_len is initialized to UINT_MAX so that the first 1948 * destination address never matches. 1949 */ 1950 if (used_address && msg_sys->msg_name && 1951 used_address->name_len == msg_sys->msg_namelen && 1952 !memcmp(&used_address->name, msg_sys->msg_name, 1953 used_address->name_len)) { 1954 err = sock_sendmsg_nosec(sock, msg_sys); 1955 goto out_freectl; 1956 } 1957 err = sock_sendmsg(sock, msg_sys); 1958 /* 1959 * If this is sendmmsg() and sending to current destination address was 1960 * successful, remember it. 1961 */ 1962 if (used_address && err >= 0) { 1963 used_address->name_len = msg_sys->msg_namelen; 1964 if (msg_sys->msg_name) 1965 memcpy(&used_address->name, msg_sys->msg_name, 1966 used_address->name_len); 1967 } 1968 1969 out_freectl: 1970 if (ctl_buf != ctl) 1971 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1972 out_freeiov: 1973 kfree(iov); 1974 return err; 1975 } 1976 1977 /* 1978 * BSD sendmsg interface 1979 */ 1980 1981 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 1982 { 1983 int fput_needed, err; 1984 struct msghdr msg_sys; 1985 struct socket *sock; 1986 1987 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1988 if (!sock) 1989 goto out; 1990 1991 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL); 1992 1993 fput_light(sock->file, fput_needed); 1994 out: 1995 return err; 1996 } 1997 1998 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags) 1999 { 2000 if (flags & MSG_CMSG_COMPAT) 2001 return -EINVAL; 2002 return __sys_sendmsg(fd, msg, flags); 2003 } 2004 2005 /* 2006 * Linux sendmmsg interface 2007 */ 2008 2009 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2010 unsigned int flags) 2011 { 2012 int fput_needed, err, datagrams; 2013 struct socket *sock; 2014 struct mmsghdr __user *entry; 2015 struct compat_mmsghdr __user *compat_entry; 2016 struct msghdr msg_sys; 2017 struct used_address used_address; 2018 2019 if (vlen > UIO_MAXIOV) 2020 vlen = UIO_MAXIOV; 2021 2022 datagrams = 0; 2023 2024 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2025 if (!sock) 2026 return err; 2027 2028 used_address.name_len = UINT_MAX; 2029 entry = mmsg; 2030 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2031 err = 0; 2032 2033 while (datagrams < vlen) { 2034 if (MSG_CMSG_COMPAT & flags) { 2035 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry, 2036 &msg_sys, flags, &used_address); 2037 if (err < 0) 2038 break; 2039 err = __put_user(err, &compat_entry->msg_len); 2040 ++compat_entry; 2041 } else { 2042 err = ___sys_sendmsg(sock, 2043 (struct user_msghdr __user *)entry, 2044 &msg_sys, flags, &used_address); 2045 if (err < 0) 2046 break; 2047 err = put_user(err, &entry->msg_len); 2048 ++entry; 2049 } 2050 2051 if (err) 2052 break; 2053 ++datagrams; 2054 } 2055 2056 fput_light(sock->file, fput_needed); 2057 2058 /* We only return an error if no datagrams were able to be sent */ 2059 if (datagrams != 0) 2060 return datagrams; 2061 2062 return err; 2063 } 2064 2065 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg, 2066 unsigned int, vlen, unsigned int, flags) 2067 { 2068 if (flags & MSG_CMSG_COMPAT) 2069 return -EINVAL; 2070 return __sys_sendmmsg(fd, mmsg, vlen, flags); 2071 } 2072 2073 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg, 2074 struct msghdr *msg_sys, unsigned int flags, int nosec) 2075 { 2076 struct compat_msghdr __user *msg_compat = 2077 (struct compat_msghdr __user *)msg; 2078 struct iovec iovstack[UIO_FASTIOV]; 2079 struct iovec *iov = iovstack; 2080 unsigned long cmsg_ptr; 2081 int total_len, len; 2082 ssize_t err; 2083 2084 /* kernel mode address */ 2085 struct sockaddr_storage addr; 2086 2087 /* user mode address pointers */ 2088 struct sockaddr __user *uaddr; 2089 int __user *uaddr_len = COMPAT_NAMELEN(msg); 2090 2091 msg_sys->msg_name = &addr; 2092 2093 if (MSG_CMSG_COMPAT & flags) 2094 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov); 2095 else 2096 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov); 2097 if (err < 0) 2098 return err; 2099 total_len = iov_iter_count(&msg_sys->msg_iter); 2100 2101 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2102 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2103 2104 /* We assume all kernel code knows the size of sockaddr_storage */ 2105 msg_sys->msg_namelen = 0; 2106 2107 if (sock->file->f_flags & O_NONBLOCK) 2108 flags |= MSG_DONTWAIT; 2109 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2110 total_len, flags); 2111 if (err < 0) 2112 goto out_freeiov; 2113 len = err; 2114 2115 if (uaddr != NULL) { 2116 err = move_addr_to_user(&addr, 2117 msg_sys->msg_namelen, uaddr, 2118 uaddr_len); 2119 if (err < 0) 2120 goto out_freeiov; 2121 } 2122 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2123 COMPAT_FLAGS(msg)); 2124 if (err) 2125 goto out_freeiov; 2126 if (MSG_CMSG_COMPAT & flags) 2127 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2128 &msg_compat->msg_controllen); 2129 else 2130 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2131 &msg->msg_controllen); 2132 if (err) 2133 goto out_freeiov; 2134 err = len; 2135 2136 out_freeiov: 2137 kfree(iov); 2138 return err; 2139 } 2140 2141 /* 2142 * BSD recvmsg interface 2143 */ 2144 2145 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags) 2146 { 2147 int fput_needed, err; 2148 struct msghdr msg_sys; 2149 struct socket *sock; 2150 2151 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2152 if (!sock) 2153 goto out; 2154 2155 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2156 2157 fput_light(sock->file, fput_needed); 2158 out: 2159 return err; 2160 } 2161 2162 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg, 2163 unsigned int, flags) 2164 { 2165 if (flags & MSG_CMSG_COMPAT) 2166 return -EINVAL; 2167 return __sys_recvmsg(fd, msg, flags); 2168 } 2169 2170 /* 2171 * Linux recvmmsg interface 2172 */ 2173 2174 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2175 unsigned int flags, struct timespec *timeout) 2176 { 2177 int fput_needed, err, datagrams; 2178 struct socket *sock; 2179 struct mmsghdr __user *entry; 2180 struct compat_mmsghdr __user *compat_entry; 2181 struct msghdr msg_sys; 2182 struct timespec end_time; 2183 2184 if (timeout && 2185 poll_select_set_timeout(&end_time, timeout->tv_sec, 2186 timeout->tv_nsec)) 2187 return -EINVAL; 2188 2189 datagrams = 0; 2190 2191 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2192 if (!sock) 2193 return err; 2194 2195 err = sock_error(sock->sk); 2196 if (err) 2197 goto out_put; 2198 2199 entry = mmsg; 2200 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2201 2202 while (datagrams < vlen) { 2203 /* 2204 * No need to ask LSM for more than the first datagram. 2205 */ 2206 if (MSG_CMSG_COMPAT & flags) { 2207 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry, 2208 &msg_sys, flags & ~MSG_WAITFORONE, 2209 datagrams); 2210 if (err < 0) 2211 break; 2212 err = __put_user(err, &compat_entry->msg_len); 2213 ++compat_entry; 2214 } else { 2215 err = ___sys_recvmsg(sock, 2216 (struct user_msghdr __user *)entry, 2217 &msg_sys, flags & ~MSG_WAITFORONE, 2218 datagrams); 2219 if (err < 0) 2220 break; 2221 err = put_user(err, &entry->msg_len); 2222 ++entry; 2223 } 2224 2225 if (err) 2226 break; 2227 ++datagrams; 2228 2229 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2230 if (flags & MSG_WAITFORONE) 2231 flags |= MSG_DONTWAIT; 2232 2233 if (timeout) { 2234 ktime_get_ts(timeout); 2235 *timeout = timespec_sub(end_time, *timeout); 2236 if (timeout->tv_sec < 0) { 2237 timeout->tv_sec = timeout->tv_nsec = 0; 2238 break; 2239 } 2240 2241 /* Timeout, return less than vlen datagrams */ 2242 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2243 break; 2244 } 2245 2246 /* Out of band data, return right away */ 2247 if (msg_sys.msg_flags & MSG_OOB) 2248 break; 2249 } 2250 2251 out_put: 2252 fput_light(sock->file, fput_needed); 2253 2254 if (err == 0) 2255 return datagrams; 2256 2257 if (datagrams != 0) { 2258 /* 2259 * We may return less entries than requested (vlen) if the 2260 * sock is non block and there aren't enough datagrams... 2261 */ 2262 if (err != -EAGAIN) { 2263 /* 2264 * ... or if recvmsg returns an error after we 2265 * received some datagrams, where we record the 2266 * error to return on the next call or if the 2267 * app asks about it using getsockopt(SO_ERROR). 2268 */ 2269 sock->sk->sk_err = -err; 2270 } 2271 2272 return datagrams; 2273 } 2274 2275 return err; 2276 } 2277 2278 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2279 unsigned int, vlen, unsigned int, flags, 2280 struct timespec __user *, timeout) 2281 { 2282 int datagrams; 2283 struct timespec timeout_sys; 2284 2285 if (flags & MSG_CMSG_COMPAT) 2286 return -EINVAL; 2287 2288 if (!timeout) 2289 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2290 2291 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2292 return -EFAULT; 2293 2294 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2295 2296 if (datagrams > 0 && 2297 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2298 datagrams = -EFAULT; 2299 2300 return datagrams; 2301 } 2302 2303 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2304 /* Argument list sizes for sys_socketcall */ 2305 #define AL(x) ((x) * sizeof(unsigned long)) 2306 static const unsigned char nargs[21] = { 2307 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2308 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2309 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2310 AL(4), AL(5), AL(4) 2311 }; 2312 2313 #undef AL 2314 2315 /* 2316 * System call vectors. 2317 * 2318 * Argument checking cleaned up. Saved 20% in size. 2319 * This function doesn't need to set the kernel lock because 2320 * it is set by the callees. 2321 */ 2322 2323 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2324 { 2325 unsigned long a[AUDITSC_ARGS]; 2326 unsigned long a0, a1; 2327 int err; 2328 unsigned int len; 2329 2330 if (call < 1 || call > SYS_SENDMMSG) 2331 return -EINVAL; 2332 2333 len = nargs[call]; 2334 if (len > sizeof(a)) 2335 return -EINVAL; 2336 2337 /* copy_from_user should be SMP safe. */ 2338 if (copy_from_user(a, args, len)) 2339 return -EFAULT; 2340 2341 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2342 if (err) 2343 return err; 2344 2345 a0 = a[0]; 2346 a1 = a[1]; 2347 2348 switch (call) { 2349 case SYS_SOCKET: 2350 err = sys_socket(a0, a1, a[2]); 2351 break; 2352 case SYS_BIND: 2353 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2354 break; 2355 case SYS_CONNECT: 2356 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2357 break; 2358 case SYS_LISTEN: 2359 err = sys_listen(a0, a1); 2360 break; 2361 case SYS_ACCEPT: 2362 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2363 (int __user *)a[2], 0); 2364 break; 2365 case SYS_GETSOCKNAME: 2366 err = 2367 sys_getsockname(a0, (struct sockaddr __user *)a1, 2368 (int __user *)a[2]); 2369 break; 2370 case SYS_GETPEERNAME: 2371 err = 2372 sys_getpeername(a0, (struct sockaddr __user *)a1, 2373 (int __user *)a[2]); 2374 break; 2375 case SYS_SOCKETPAIR: 2376 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2377 break; 2378 case SYS_SEND: 2379 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2380 break; 2381 case SYS_SENDTO: 2382 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2383 (struct sockaddr __user *)a[4], a[5]); 2384 break; 2385 case SYS_RECV: 2386 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2387 break; 2388 case SYS_RECVFROM: 2389 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2390 (struct sockaddr __user *)a[4], 2391 (int __user *)a[5]); 2392 break; 2393 case SYS_SHUTDOWN: 2394 err = sys_shutdown(a0, a1); 2395 break; 2396 case SYS_SETSOCKOPT: 2397 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2398 break; 2399 case SYS_GETSOCKOPT: 2400 err = 2401 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2402 (int __user *)a[4]); 2403 break; 2404 case SYS_SENDMSG: 2405 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2406 break; 2407 case SYS_SENDMMSG: 2408 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]); 2409 break; 2410 case SYS_RECVMSG: 2411 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]); 2412 break; 2413 case SYS_RECVMMSG: 2414 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2415 (struct timespec __user *)a[4]); 2416 break; 2417 case SYS_ACCEPT4: 2418 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2419 (int __user *)a[2], a[3]); 2420 break; 2421 default: 2422 err = -EINVAL; 2423 break; 2424 } 2425 return err; 2426 } 2427 2428 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2429 2430 /** 2431 * sock_register - add a socket protocol handler 2432 * @ops: description of protocol 2433 * 2434 * This function is called by a protocol handler that wants to 2435 * advertise its address family, and have it linked into the 2436 * socket interface. The value ops->family corresponds to the 2437 * socket system call protocol family. 2438 */ 2439 int sock_register(const struct net_proto_family *ops) 2440 { 2441 int err; 2442 2443 if (ops->family >= NPROTO) { 2444 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO); 2445 return -ENOBUFS; 2446 } 2447 2448 spin_lock(&net_family_lock); 2449 if (rcu_dereference_protected(net_families[ops->family], 2450 lockdep_is_held(&net_family_lock))) 2451 err = -EEXIST; 2452 else { 2453 rcu_assign_pointer(net_families[ops->family], ops); 2454 err = 0; 2455 } 2456 spin_unlock(&net_family_lock); 2457 2458 pr_info("NET: Registered protocol family %d\n", ops->family); 2459 return err; 2460 } 2461 EXPORT_SYMBOL(sock_register); 2462 2463 /** 2464 * sock_unregister - remove a protocol handler 2465 * @family: protocol family to remove 2466 * 2467 * This function is called by a protocol handler that wants to 2468 * remove its address family, and have it unlinked from the 2469 * new socket creation. 2470 * 2471 * If protocol handler is a module, then it can use module reference 2472 * counts to protect against new references. If protocol handler is not 2473 * a module then it needs to provide its own protection in 2474 * the ops->create routine. 2475 */ 2476 void sock_unregister(int family) 2477 { 2478 BUG_ON(family < 0 || family >= NPROTO); 2479 2480 spin_lock(&net_family_lock); 2481 RCU_INIT_POINTER(net_families[family], NULL); 2482 spin_unlock(&net_family_lock); 2483 2484 synchronize_rcu(); 2485 2486 pr_info("NET: Unregistered protocol family %d\n", family); 2487 } 2488 EXPORT_SYMBOL(sock_unregister); 2489 2490 static int __init sock_init(void) 2491 { 2492 int err; 2493 /* 2494 * Initialize the network sysctl infrastructure. 2495 */ 2496 err = net_sysctl_init(); 2497 if (err) 2498 goto out; 2499 2500 /* 2501 * Initialize skbuff SLAB cache 2502 */ 2503 skb_init(); 2504 2505 /* 2506 * Initialize the protocols module. 2507 */ 2508 2509 init_inodecache(); 2510 2511 err = register_filesystem(&sock_fs_type); 2512 if (err) 2513 goto out_fs; 2514 sock_mnt = kern_mount(&sock_fs_type); 2515 if (IS_ERR(sock_mnt)) { 2516 err = PTR_ERR(sock_mnt); 2517 goto out_mount; 2518 } 2519 2520 /* The real protocol initialization is performed in later initcalls. 2521 */ 2522 2523 #ifdef CONFIG_NETFILTER 2524 err = netfilter_init(); 2525 if (err) 2526 goto out; 2527 #endif 2528 2529 ptp_classifier_init(); 2530 2531 out: 2532 return err; 2533 2534 out_mount: 2535 unregister_filesystem(&sock_fs_type); 2536 out_fs: 2537 goto out; 2538 } 2539 2540 core_initcall(sock_init); /* early initcall */ 2541 2542 #ifdef CONFIG_PROC_FS 2543 void socket_seq_show(struct seq_file *seq) 2544 { 2545 int cpu; 2546 int counter = 0; 2547 2548 for_each_possible_cpu(cpu) 2549 counter += per_cpu(sockets_in_use, cpu); 2550 2551 /* It can be negative, by the way. 8) */ 2552 if (counter < 0) 2553 counter = 0; 2554 2555 seq_printf(seq, "sockets: used %d\n", counter); 2556 } 2557 #endif /* CONFIG_PROC_FS */ 2558 2559 #ifdef CONFIG_COMPAT 2560 static int do_siocgstamp(struct net *net, struct socket *sock, 2561 unsigned int cmd, void __user *up) 2562 { 2563 mm_segment_t old_fs = get_fs(); 2564 struct timeval ktv; 2565 int err; 2566 2567 set_fs(KERNEL_DS); 2568 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2569 set_fs(old_fs); 2570 if (!err) 2571 err = compat_put_timeval(&ktv, up); 2572 2573 return err; 2574 } 2575 2576 static int do_siocgstampns(struct net *net, struct socket *sock, 2577 unsigned int cmd, void __user *up) 2578 { 2579 mm_segment_t old_fs = get_fs(); 2580 struct timespec kts; 2581 int err; 2582 2583 set_fs(KERNEL_DS); 2584 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2585 set_fs(old_fs); 2586 if (!err) 2587 err = compat_put_timespec(&kts, up); 2588 2589 return err; 2590 } 2591 2592 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2593 { 2594 struct ifreq __user *uifr; 2595 int err; 2596 2597 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2598 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2599 return -EFAULT; 2600 2601 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2602 if (err) 2603 return err; 2604 2605 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2606 return -EFAULT; 2607 2608 return 0; 2609 } 2610 2611 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2612 { 2613 struct compat_ifconf ifc32; 2614 struct ifconf ifc; 2615 struct ifconf __user *uifc; 2616 struct compat_ifreq __user *ifr32; 2617 struct ifreq __user *ifr; 2618 unsigned int i, j; 2619 int err; 2620 2621 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2622 return -EFAULT; 2623 2624 memset(&ifc, 0, sizeof(ifc)); 2625 if (ifc32.ifcbuf == 0) { 2626 ifc32.ifc_len = 0; 2627 ifc.ifc_len = 0; 2628 ifc.ifc_req = NULL; 2629 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2630 } else { 2631 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2632 sizeof(struct ifreq); 2633 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2634 ifc.ifc_len = len; 2635 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2636 ifr32 = compat_ptr(ifc32.ifcbuf); 2637 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2638 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2639 return -EFAULT; 2640 ifr++; 2641 ifr32++; 2642 } 2643 } 2644 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2645 return -EFAULT; 2646 2647 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2648 if (err) 2649 return err; 2650 2651 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2652 return -EFAULT; 2653 2654 ifr = ifc.ifc_req; 2655 ifr32 = compat_ptr(ifc32.ifcbuf); 2656 for (i = 0, j = 0; 2657 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2658 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2659 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2660 return -EFAULT; 2661 ifr32++; 2662 ifr++; 2663 } 2664 2665 if (ifc32.ifcbuf == 0) { 2666 /* Translate from 64-bit structure multiple to 2667 * a 32-bit one. 2668 */ 2669 i = ifc.ifc_len; 2670 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2671 ifc32.ifc_len = i; 2672 } else { 2673 ifc32.ifc_len = i; 2674 } 2675 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2676 return -EFAULT; 2677 2678 return 0; 2679 } 2680 2681 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2682 { 2683 struct compat_ethtool_rxnfc __user *compat_rxnfc; 2684 bool convert_in = false, convert_out = false; 2685 size_t buf_size = ALIGN(sizeof(struct ifreq), 8); 2686 struct ethtool_rxnfc __user *rxnfc; 2687 struct ifreq __user *ifr; 2688 u32 rule_cnt = 0, actual_rule_cnt; 2689 u32 ethcmd; 2690 u32 data; 2691 int ret; 2692 2693 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2694 return -EFAULT; 2695 2696 compat_rxnfc = compat_ptr(data); 2697 2698 if (get_user(ethcmd, &compat_rxnfc->cmd)) 2699 return -EFAULT; 2700 2701 /* Most ethtool structures are defined without padding. 2702 * Unfortunately struct ethtool_rxnfc is an exception. 2703 */ 2704 switch (ethcmd) { 2705 default: 2706 break; 2707 case ETHTOOL_GRXCLSRLALL: 2708 /* Buffer size is variable */ 2709 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt)) 2710 return -EFAULT; 2711 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32)) 2712 return -ENOMEM; 2713 buf_size += rule_cnt * sizeof(u32); 2714 /* fall through */ 2715 case ETHTOOL_GRXRINGS: 2716 case ETHTOOL_GRXCLSRLCNT: 2717 case ETHTOOL_GRXCLSRULE: 2718 case ETHTOOL_SRXCLSRLINS: 2719 convert_out = true; 2720 /* fall through */ 2721 case ETHTOOL_SRXCLSRLDEL: 2722 buf_size += sizeof(struct ethtool_rxnfc); 2723 convert_in = true; 2724 break; 2725 } 2726 2727 ifr = compat_alloc_user_space(buf_size); 2728 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8); 2729 2730 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2731 return -EFAULT; 2732 2733 if (put_user(convert_in ? rxnfc : compat_ptr(data), 2734 &ifr->ifr_ifru.ifru_data)) 2735 return -EFAULT; 2736 2737 if (convert_in) { 2738 /* We expect there to be holes between fs.m_ext and 2739 * fs.ring_cookie and at the end of fs, but nowhere else. 2740 */ 2741 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) + 2742 sizeof(compat_rxnfc->fs.m_ext) != 2743 offsetof(struct ethtool_rxnfc, fs.m_ext) + 2744 sizeof(rxnfc->fs.m_ext)); 2745 BUILD_BUG_ON( 2746 offsetof(struct compat_ethtool_rxnfc, fs.location) - 2747 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) != 2748 offsetof(struct ethtool_rxnfc, fs.location) - 2749 offsetof(struct ethtool_rxnfc, fs.ring_cookie)); 2750 2751 if (copy_in_user(rxnfc, compat_rxnfc, 2752 (void __user *)(&rxnfc->fs.m_ext + 1) - 2753 (void __user *)rxnfc) || 2754 copy_in_user(&rxnfc->fs.ring_cookie, 2755 &compat_rxnfc->fs.ring_cookie, 2756 (void __user *)(&rxnfc->fs.location + 1) - 2757 (void __user *)&rxnfc->fs.ring_cookie) || 2758 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt, 2759 sizeof(rxnfc->rule_cnt))) 2760 return -EFAULT; 2761 } 2762 2763 ret = dev_ioctl(net, SIOCETHTOOL, ifr); 2764 if (ret) 2765 return ret; 2766 2767 if (convert_out) { 2768 if (copy_in_user(compat_rxnfc, rxnfc, 2769 (const void __user *)(&rxnfc->fs.m_ext + 1) - 2770 (const void __user *)rxnfc) || 2771 copy_in_user(&compat_rxnfc->fs.ring_cookie, 2772 &rxnfc->fs.ring_cookie, 2773 (const void __user *)(&rxnfc->fs.location + 1) - 2774 (const void __user *)&rxnfc->fs.ring_cookie) || 2775 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt, 2776 sizeof(rxnfc->rule_cnt))) 2777 return -EFAULT; 2778 2779 if (ethcmd == ETHTOOL_GRXCLSRLALL) { 2780 /* As an optimisation, we only copy the actual 2781 * number of rules that the underlying 2782 * function returned. Since Mallory might 2783 * change the rule count in user memory, we 2784 * check that it is less than the rule count 2785 * originally given (as the user buffer size), 2786 * which has been range-checked. 2787 */ 2788 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt)) 2789 return -EFAULT; 2790 if (actual_rule_cnt < rule_cnt) 2791 rule_cnt = actual_rule_cnt; 2792 if (copy_in_user(&compat_rxnfc->rule_locs[0], 2793 &rxnfc->rule_locs[0], 2794 rule_cnt * sizeof(u32))) 2795 return -EFAULT; 2796 } 2797 } 2798 2799 return 0; 2800 } 2801 2802 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2803 { 2804 void __user *uptr; 2805 compat_uptr_t uptr32; 2806 struct ifreq __user *uifr; 2807 2808 uifr = compat_alloc_user_space(sizeof(*uifr)); 2809 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2810 return -EFAULT; 2811 2812 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2813 return -EFAULT; 2814 2815 uptr = compat_ptr(uptr32); 2816 2817 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2818 return -EFAULT; 2819 2820 return dev_ioctl(net, SIOCWANDEV, uifr); 2821 } 2822 2823 static int bond_ioctl(struct net *net, unsigned int cmd, 2824 struct compat_ifreq __user *ifr32) 2825 { 2826 struct ifreq kifr; 2827 mm_segment_t old_fs; 2828 int err; 2829 2830 switch (cmd) { 2831 case SIOCBONDENSLAVE: 2832 case SIOCBONDRELEASE: 2833 case SIOCBONDSETHWADDR: 2834 case SIOCBONDCHANGEACTIVE: 2835 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2836 return -EFAULT; 2837 2838 old_fs = get_fs(); 2839 set_fs(KERNEL_DS); 2840 err = dev_ioctl(net, cmd, 2841 (struct ifreq __user __force *) &kifr); 2842 set_fs(old_fs); 2843 2844 return err; 2845 default: 2846 return -ENOIOCTLCMD; 2847 } 2848 } 2849 2850 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */ 2851 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd, 2852 struct compat_ifreq __user *u_ifreq32) 2853 { 2854 struct ifreq __user *u_ifreq64; 2855 char tmp_buf[IFNAMSIZ]; 2856 void __user *data64; 2857 u32 data32; 2858 2859 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2860 IFNAMSIZ)) 2861 return -EFAULT; 2862 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2863 return -EFAULT; 2864 data64 = compat_ptr(data32); 2865 2866 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2867 2868 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2869 IFNAMSIZ)) 2870 return -EFAULT; 2871 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2872 return -EFAULT; 2873 2874 return dev_ioctl(net, cmd, u_ifreq64); 2875 } 2876 2877 static int dev_ifsioc(struct net *net, struct socket *sock, 2878 unsigned int cmd, struct compat_ifreq __user *uifr32) 2879 { 2880 struct ifreq __user *uifr; 2881 int err; 2882 2883 uifr = compat_alloc_user_space(sizeof(*uifr)); 2884 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2885 return -EFAULT; 2886 2887 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2888 2889 if (!err) { 2890 switch (cmd) { 2891 case SIOCGIFFLAGS: 2892 case SIOCGIFMETRIC: 2893 case SIOCGIFMTU: 2894 case SIOCGIFMEM: 2895 case SIOCGIFHWADDR: 2896 case SIOCGIFINDEX: 2897 case SIOCGIFADDR: 2898 case SIOCGIFBRDADDR: 2899 case SIOCGIFDSTADDR: 2900 case SIOCGIFNETMASK: 2901 case SIOCGIFPFLAGS: 2902 case SIOCGIFTXQLEN: 2903 case SIOCGMIIPHY: 2904 case SIOCGMIIREG: 2905 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2906 err = -EFAULT; 2907 break; 2908 } 2909 } 2910 return err; 2911 } 2912 2913 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2914 struct compat_ifreq __user *uifr32) 2915 { 2916 struct ifreq ifr; 2917 struct compat_ifmap __user *uifmap32; 2918 mm_segment_t old_fs; 2919 int err; 2920 2921 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2922 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2923 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2924 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2925 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2926 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq); 2927 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma); 2928 err |= get_user(ifr.ifr_map.port, &uifmap32->port); 2929 if (err) 2930 return -EFAULT; 2931 2932 old_fs = get_fs(); 2933 set_fs(KERNEL_DS); 2934 err = dev_ioctl(net, cmd, (void __user __force *)&ifr); 2935 set_fs(old_fs); 2936 2937 if (cmd == SIOCGIFMAP && !err) { 2938 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2939 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2940 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2941 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2942 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq); 2943 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma); 2944 err |= put_user(ifr.ifr_map.port, &uifmap32->port); 2945 if (err) 2946 err = -EFAULT; 2947 } 2948 return err; 2949 } 2950 2951 struct rtentry32 { 2952 u32 rt_pad1; 2953 struct sockaddr rt_dst; /* target address */ 2954 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2955 struct sockaddr rt_genmask; /* target network mask (IP) */ 2956 unsigned short rt_flags; 2957 short rt_pad2; 2958 u32 rt_pad3; 2959 unsigned char rt_tos; 2960 unsigned char rt_class; 2961 short rt_pad4; 2962 short rt_metric; /* +1 for binary compatibility! */ 2963 /* char * */ u32 rt_dev; /* forcing the device at add */ 2964 u32 rt_mtu; /* per route MTU/Window */ 2965 u32 rt_window; /* Window clamping */ 2966 unsigned short rt_irtt; /* Initial RTT */ 2967 }; 2968 2969 struct in6_rtmsg32 { 2970 struct in6_addr rtmsg_dst; 2971 struct in6_addr rtmsg_src; 2972 struct in6_addr rtmsg_gateway; 2973 u32 rtmsg_type; 2974 u16 rtmsg_dst_len; 2975 u16 rtmsg_src_len; 2976 u32 rtmsg_metric; 2977 u32 rtmsg_info; 2978 u32 rtmsg_flags; 2979 s32 rtmsg_ifindex; 2980 }; 2981 2982 static int routing_ioctl(struct net *net, struct socket *sock, 2983 unsigned int cmd, void __user *argp) 2984 { 2985 int ret; 2986 void *r = NULL; 2987 struct in6_rtmsg r6; 2988 struct rtentry r4; 2989 char devname[16]; 2990 u32 rtdev; 2991 mm_segment_t old_fs = get_fs(); 2992 2993 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2994 struct in6_rtmsg32 __user *ur6 = argp; 2995 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2996 3 * sizeof(struct in6_addr)); 2997 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2998 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2999 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 3000 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 3001 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 3002 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 3003 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 3004 3005 r = (void *) &r6; 3006 } else { /* ipv4 */ 3007 struct rtentry32 __user *ur4 = argp; 3008 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 3009 3 * sizeof(struct sockaddr)); 3010 ret |= get_user(r4.rt_flags, &(ur4->rt_flags)); 3011 ret |= get_user(r4.rt_metric, &(ur4->rt_metric)); 3012 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu)); 3013 ret |= get_user(r4.rt_window, &(ur4->rt_window)); 3014 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt)); 3015 ret |= get_user(rtdev, &(ur4->rt_dev)); 3016 if (rtdev) { 3017 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 3018 r4.rt_dev = (char __user __force *)devname; 3019 devname[15] = 0; 3020 } else 3021 r4.rt_dev = NULL; 3022 3023 r = (void *) &r4; 3024 } 3025 3026 if (ret) { 3027 ret = -EFAULT; 3028 goto out; 3029 } 3030 3031 set_fs(KERNEL_DS); 3032 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 3033 set_fs(old_fs); 3034 3035 out: 3036 return ret; 3037 } 3038 3039 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 3040 * for some operations; this forces use of the newer bridge-utils that 3041 * use compatible ioctls 3042 */ 3043 static int old_bridge_ioctl(compat_ulong_t __user *argp) 3044 { 3045 compat_ulong_t tmp; 3046 3047 if (get_user(tmp, argp)) 3048 return -EFAULT; 3049 if (tmp == BRCTL_GET_VERSION) 3050 return BRCTL_VERSION + 1; 3051 return -EINVAL; 3052 } 3053 3054 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 3055 unsigned int cmd, unsigned long arg) 3056 { 3057 void __user *argp = compat_ptr(arg); 3058 struct sock *sk = sock->sk; 3059 struct net *net = sock_net(sk); 3060 3061 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 3062 return compat_ifr_data_ioctl(net, cmd, argp); 3063 3064 switch (cmd) { 3065 case SIOCSIFBR: 3066 case SIOCGIFBR: 3067 return old_bridge_ioctl(argp); 3068 case SIOCGIFNAME: 3069 return dev_ifname32(net, argp); 3070 case SIOCGIFCONF: 3071 return dev_ifconf(net, argp); 3072 case SIOCETHTOOL: 3073 return ethtool_ioctl(net, argp); 3074 case SIOCWANDEV: 3075 return compat_siocwandev(net, argp); 3076 case SIOCGIFMAP: 3077 case SIOCSIFMAP: 3078 return compat_sioc_ifmap(net, cmd, argp); 3079 case SIOCBONDENSLAVE: 3080 case SIOCBONDRELEASE: 3081 case SIOCBONDSETHWADDR: 3082 case SIOCBONDCHANGEACTIVE: 3083 return bond_ioctl(net, cmd, argp); 3084 case SIOCADDRT: 3085 case SIOCDELRT: 3086 return routing_ioctl(net, sock, cmd, argp); 3087 case SIOCGSTAMP: 3088 return do_siocgstamp(net, sock, cmd, argp); 3089 case SIOCGSTAMPNS: 3090 return do_siocgstampns(net, sock, cmd, argp); 3091 case SIOCBONDSLAVEINFOQUERY: 3092 case SIOCBONDINFOQUERY: 3093 case SIOCSHWTSTAMP: 3094 case SIOCGHWTSTAMP: 3095 return compat_ifr_data_ioctl(net, cmd, argp); 3096 3097 case FIOSETOWN: 3098 case SIOCSPGRP: 3099 case FIOGETOWN: 3100 case SIOCGPGRP: 3101 case SIOCBRADDBR: 3102 case SIOCBRDELBR: 3103 case SIOCGIFVLAN: 3104 case SIOCSIFVLAN: 3105 case SIOCADDDLCI: 3106 case SIOCDELDLCI: 3107 return sock_ioctl(file, cmd, arg); 3108 3109 case SIOCGIFFLAGS: 3110 case SIOCSIFFLAGS: 3111 case SIOCGIFMETRIC: 3112 case SIOCSIFMETRIC: 3113 case SIOCGIFMTU: 3114 case SIOCSIFMTU: 3115 case SIOCGIFMEM: 3116 case SIOCSIFMEM: 3117 case SIOCGIFHWADDR: 3118 case SIOCSIFHWADDR: 3119 case SIOCADDMULTI: 3120 case SIOCDELMULTI: 3121 case SIOCGIFINDEX: 3122 case SIOCGIFADDR: 3123 case SIOCSIFADDR: 3124 case SIOCSIFHWBROADCAST: 3125 case SIOCDIFADDR: 3126 case SIOCGIFBRDADDR: 3127 case SIOCSIFBRDADDR: 3128 case SIOCGIFDSTADDR: 3129 case SIOCSIFDSTADDR: 3130 case SIOCGIFNETMASK: 3131 case SIOCSIFNETMASK: 3132 case SIOCSIFPFLAGS: 3133 case SIOCGIFPFLAGS: 3134 case SIOCGIFTXQLEN: 3135 case SIOCSIFTXQLEN: 3136 case SIOCBRADDIF: 3137 case SIOCBRDELIF: 3138 case SIOCSIFNAME: 3139 case SIOCGMIIPHY: 3140 case SIOCGMIIREG: 3141 case SIOCSMIIREG: 3142 return dev_ifsioc(net, sock, cmd, argp); 3143 3144 case SIOCSARP: 3145 case SIOCGARP: 3146 case SIOCDARP: 3147 case SIOCATMARK: 3148 return sock_do_ioctl(net, sock, cmd, arg); 3149 } 3150 3151 return -ENOIOCTLCMD; 3152 } 3153 3154 static long compat_sock_ioctl(struct file *file, unsigned int cmd, 3155 unsigned long arg) 3156 { 3157 struct socket *sock = file->private_data; 3158 int ret = -ENOIOCTLCMD; 3159 struct sock *sk; 3160 struct net *net; 3161 3162 sk = sock->sk; 3163 net = sock_net(sk); 3164 3165 if (sock->ops->compat_ioctl) 3166 ret = sock->ops->compat_ioctl(sock, cmd, arg); 3167 3168 if (ret == -ENOIOCTLCMD && 3169 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 3170 ret = compat_wext_handle_ioctl(net, cmd, arg); 3171 3172 if (ret == -ENOIOCTLCMD) 3173 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 3174 3175 return ret; 3176 } 3177 #endif 3178 3179 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 3180 { 3181 return sock->ops->bind(sock, addr, addrlen); 3182 } 3183 EXPORT_SYMBOL(kernel_bind); 3184 3185 int kernel_listen(struct socket *sock, int backlog) 3186 { 3187 return sock->ops->listen(sock, backlog); 3188 } 3189 EXPORT_SYMBOL(kernel_listen); 3190 3191 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3192 { 3193 struct sock *sk = sock->sk; 3194 int err; 3195 3196 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3197 newsock); 3198 if (err < 0) 3199 goto done; 3200 3201 err = sock->ops->accept(sock, *newsock, flags); 3202 if (err < 0) { 3203 sock_release(*newsock); 3204 *newsock = NULL; 3205 goto done; 3206 } 3207 3208 (*newsock)->ops = sock->ops; 3209 __module_get((*newsock)->ops->owner); 3210 3211 done: 3212 return err; 3213 } 3214 EXPORT_SYMBOL(kernel_accept); 3215 3216 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3217 int flags) 3218 { 3219 return sock->ops->connect(sock, addr, addrlen, flags); 3220 } 3221 EXPORT_SYMBOL(kernel_connect); 3222 3223 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3224 int *addrlen) 3225 { 3226 return sock->ops->getname(sock, addr, addrlen, 0); 3227 } 3228 EXPORT_SYMBOL(kernel_getsockname); 3229 3230 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3231 int *addrlen) 3232 { 3233 return sock->ops->getname(sock, addr, addrlen, 1); 3234 } 3235 EXPORT_SYMBOL(kernel_getpeername); 3236 3237 int kernel_getsockopt(struct socket *sock, int level, int optname, 3238 char *optval, int *optlen) 3239 { 3240 mm_segment_t oldfs = get_fs(); 3241 char __user *uoptval; 3242 int __user *uoptlen; 3243 int err; 3244 3245 uoptval = (char __user __force *) optval; 3246 uoptlen = (int __user __force *) optlen; 3247 3248 set_fs(KERNEL_DS); 3249 if (level == SOL_SOCKET) 3250 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3251 else 3252 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3253 uoptlen); 3254 set_fs(oldfs); 3255 return err; 3256 } 3257 EXPORT_SYMBOL(kernel_getsockopt); 3258 3259 int kernel_setsockopt(struct socket *sock, int level, int optname, 3260 char *optval, unsigned int optlen) 3261 { 3262 mm_segment_t oldfs = get_fs(); 3263 char __user *uoptval; 3264 int err; 3265 3266 uoptval = (char __user __force *) optval; 3267 3268 set_fs(KERNEL_DS); 3269 if (level == SOL_SOCKET) 3270 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3271 else 3272 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3273 optlen); 3274 set_fs(oldfs); 3275 return err; 3276 } 3277 EXPORT_SYMBOL(kernel_setsockopt); 3278 3279 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3280 size_t size, int flags) 3281 { 3282 if (sock->ops->sendpage) 3283 return sock->ops->sendpage(sock, page, offset, size, flags); 3284 3285 return sock_no_sendpage(sock, page, offset, size, flags); 3286 } 3287 EXPORT_SYMBOL(kernel_sendpage); 3288 3289 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3290 { 3291 mm_segment_t oldfs = get_fs(); 3292 int err; 3293 3294 set_fs(KERNEL_DS); 3295 err = sock->ops->ioctl(sock, cmd, arg); 3296 set_fs(oldfs); 3297 3298 return err; 3299 } 3300 EXPORT_SYMBOL(kernel_sock_ioctl); 3301 3302 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3303 { 3304 return sock->ops->shutdown(sock, how); 3305 } 3306 EXPORT_SYMBOL(kernel_sock_shutdown); 3307