xref: /linux-6.15/net/socket.c (revision 81f0cd97)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <[email protected]>
7  *		Ross Biro
8  *		Fred N. van Kempen, <[email protected]>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92 
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95 
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99 
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102 
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110 
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115 
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119 
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 			      struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 			      unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 			     int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 				struct pipe_inode_info *pipe, size_t len,
133 				unsigned int flags);
134 
135 /*
136  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137  *	in the operation structures but are done directly via the socketcall() multiplexor.
138  */
139 
140 static const struct file_operations socket_file_ops = {
141 	.owner =	THIS_MODULE,
142 	.llseek =	no_llseek,
143 	.read =		new_sync_read,
144 	.write =	new_sync_write,
145 	.read_iter =	sock_read_iter,
146 	.write_iter =	sock_write_iter,
147 	.poll =		sock_poll,
148 	.unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150 	.compat_ioctl = compat_sock_ioctl,
151 #endif
152 	.mmap =		sock_mmap,
153 	.release =	sock_close,
154 	.fasync =	sock_fasync,
155 	.sendpage =	sock_sendpage,
156 	.splice_write = generic_splice_sendpage,
157 	.splice_read =	sock_splice_read,
158 };
159 
160 /*
161  *	The protocol list. Each protocol is registered in here.
162  */
163 
164 static DEFINE_SPINLOCK(net_family_lock);
165 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
166 
167 /*
168  *	Statistics counters of the socket lists
169  */
170 
171 static DEFINE_PER_CPU(int, sockets_in_use);
172 
173 /*
174  * Support routines.
175  * Move socket addresses back and forth across the kernel/user
176  * divide and look after the messy bits.
177  */
178 
179 /**
180  *	move_addr_to_kernel	-	copy a socket address into kernel space
181  *	@uaddr: Address in user space
182  *	@kaddr: Address in kernel space
183  *	@ulen: Length in user space
184  *
185  *	The address is copied into kernel space. If the provided address is
186  *	too long an error code of -EINVAL is returned. If the copy gives
187  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
188  */
189 
190 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
191 {
192 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
193 		return -EINVAL;
194 	if (ulen == 0)
195 		return 0;
196 	if (copy_from_user(kaddr, uaddr, ulen))
197 		return -EFAULT;
198 	return audit_sockaddr(ulen, kaddr);
199 }
200 
201 /**
202  *	move_addr_to_user	-	copy an address to user space
203  *	@kaddr: kernel space address
204  *	@klen: length of address in kernel
205  *	@uaddr: user space address
206  *	@ulen: pointer to user length field
207  *
208  *	The value pointed to by ulen on entry is the buffer length available.
209  *	This is overwritten with the buffer space used. -EINVAL is returned
210  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
211  *	is returned if either the buffer or the length field are not
212  *	accessible.
213  *	After copying the data up to the limit the user specifies, the true
214  *	length of the data is written over the length limit the user
215  *	specified. Zero is returned for a success.
216  */
217 
218 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
219 			     void __user *uaddr, int __user *ulen)
220 {
221 	int err;
222 	int len;
223 
224 	BUG_ON(klen > sizeof(struct sockaddr_storage));
225 	err = get_user(len, ulen);
226 	if (err)
227 		return err;
228 	if (len > klen)
229 		len = klen;
230 	if (len < 0)
231 		return -EINVAL;
232 	if (len) {
233 		if (audit_sockaddr(klen, kaddr))
234 			return -ENOMEM;
235 		if (copy_to_user(uaddr, kaddr, len))
236 			return -EFAULT;
237 	}
238 	/*
239 	 *      "fromlen shall refer to the value before truncation.."
240 	 *                      1003.1g
241 	 */
242 	return __put_user(klen, ulen);
243 }
244 
245 static struct kmem_cache *sock_inode_cachep __read_mostly;
246 
247 static struct inode *sock_alloc_inode(struct super_block *sb)
248 {
249 	struct socket_alloc *ei;
250 	struct socket_wq *wq;
251 
252 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
253 	if (!ei)
254 		return NULL;
255 	wq = kmalloc(sizeof(*wq), GFP_KERNEL);
256 	if (!wq) {
257 		kmem_cache_free(sock_inode_cachep, ei);
258 		return NULL;
259 	}
260 	init_waitqueue_head(&wq->wait);
261 	wq->fasync_list = NULL;
262 	RCU_INIT_POINTER(ei->socket.wq, wq);
263 
264 	ei->socket.state = SS_UNCONNECTED;
265 	ei->socket.flags = 0;
266 	ei->socket.ops = NULL;
267 	ei->socket.sk = NULL;
268 	ei->socket.file = NULL;
269 
270 	return &ei->vfs_inode;
271 }
272 
273 static void sock_destroy_inode(struct inode *inode)
274 {
275 	struct socket_alloc *ei;
276 	struct socket_wq *wq;
277 
278 	ei = container_of(inode, struct socket_alloc, vfs_inode);
279 	wq = rcu_dereference_protected(ei->socket.wq, 1);
280 	kfree_rcu(wq, rcu);
281 	kmem_cache_free(sock_inode_cachep, ei);
282 }
283 
284 static void init_once(void *foo)
285 {
286 	struct socket_alloc *ei = (struct socket_alloc *)foo;
287 
288 	inode_init_once(&ei->vfs_inode);
289 }
290 
291 static int init_inodecache(void)
292 {
293 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
294 					      sizeof(struct socket_alloc),
295 					      0,
296 					      (SLAB_HWCACHE_ALIGN |
297 					       SLAB_RECLAIM_ACCOUNT |
298 					       SLAB_MEM_SPREAD),
299 					      init_once);
300 	if (sock_inode_cachep == NULL)
301 		return -ENOMEM;
302 	return 0;
303 }
304 
305 static const struct super_operations sockfs_ops = {
306 	.alloc_inode	= sock_alloc_inode,
307 	.destroy_inode	= sock_destroy_inode,
308 	.statfs		= simple_statfs,
309 };
310 
311 /*
312  * sockfs_dname() is called from d_path().
313  */
314 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
315 {
316 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
317 				dentry->d_inode->i_ino);
318 }
319 
320 static const struct dentry_operations sockfs_dentry_operations = {
321 	.d_dname  = sockfs_dname,
322 };
323 
324 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
325 			 int flags, const char *dev_name, void *data)
326 {
327 	return mount_pseudo(fs_type, "socket:", &sockfs_ops,
328 		&sockfs_dentry_operations, SOCKFS_MAGIC);
329 }
330 
331 static struct vfsmount *sock_mnt __read_mostly;
332 
333 static struct file_system_type sock_fs_type = {
334 	.name =		"sockfs",
335 	.mount =	sockfs_mount,
336 	.kill_sb =	kill_anon_super,
337 };
338 
339 /*
340  *	Obtains the first available file descriptor and sets it up for use.
341  *
342  *	These functions create file structures and maps them to fd space
343  *	of the current process. On success it returns file descriptor
344  *	and file struct implicitly stored in sock->file.
345  *	Note that another thread may close file descriptor before we return
346  *	from this function. We use the fact that now we do not refer
347  *	to socket after mapping. If one day we will need it, this
348  *	function will increment ref. count on file by 1.
349  *
350  *	In any case returned fd MAY BE not valid!
351  *	This race condition is unavoidable
352  *	with shared fd spaces, we cannot solve it inside kernel,
353  *	but we take care of internal coherence yet.
354  */
355 
356 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
357 {
358 	struct qstr name = { .name = "" };
359 	struct path path;
360 	struct file *file;
361 
362 	if (dname) {
363 		name.name = dname;
364 		name.len = strlen(name.name);
365 	} else if (sock->sk) {
366 		name.name = sock->sk->sk_prot_creator->name;
367 		name.len = strlen(name.name);
368 	}
369 	path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
370 	if (unlikely(!path.dentry))
371 		return ERR_PTR(-ENOMEM);
372 	path.mnt = mntget(sock_mnt);
373 
374 	d_instantiate(path.dentry, SOCK_INODE(sock));
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (unlikely(IS_ERR(file))) {
379 		/* drop dentry, keep inode */
380 		ihold(path.dentry->d_inode);
381 		path_put(&path);
382 		return file;
383 	}
384 
385 	sock->file = file;
386 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
387 	file->private_data = sock;
388 	return file;
389 }
390 EXPORT_SYMBOL(sock_alloc_file);
391 
392 static int sock_map_fd(struct socket *sock, int flags)
393 {
394 	struct file *newfile;
395 	int fd = get_unused_fd_flags(flags);
396 	if (unlikely(fd < 0))
397 		return fd;
398 
399 	newfile = sock_alloc_file(sock, flags, NULL);
400 	if (likely(!IS_ERR(newfile))) {
401 		fd_install(fd, newfile);
402 		return fd;
403 	}
404 
405 	put_unused_fd(fd);
406 	return PTR_ERR(newfile);
407 }
408 
409 struct socket *sock_from_file(struct file *file, int *err)
410 {
411 	if (file->f_op == &socket_file_ops)
412 		return file->private_data;	/* set in sock_map_fd */
413 
414 	*err = -ENOTSOCK;
415 	return NULL;
416 }
417 EXPORT_SYMBOL(sock_from_file);
418 
419 /**
420  *	sockfd_lookup - Go from a file number to its socket slot
421  *	@fd: file handle
422  *	@err: pointer to an error code return
423  *
424  *	The file handle passed in is locked and the socket it is bound
425  *	too is returned. If an error occurs the err pointer is overwritten
426  *	with a negative errno code and NULL is returned. The function checks
427  *	for both invalid handles and passing a handle which is not a socket.
428  *
429  *	On a success the socket object pointer is returned.
430  */
431 
432 struct socket *sockfd_lookup(int fd, int *err)
433 {
434 	struct file *file;
435 	struct socket *sock;
436 
437 	file = fget(fd);
438 	if (!file) {
439 		*err = -EBADF;
440 		return NULL;
441 	}
442 
443 	sock = sock_from_file(file, err);
444 	if (!sock)
445 		fput(file);
446 	return sock;
447 }
448 EXPORT_SYMBOL(sockfd_lookup);
449 
450 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
451 {
452 	struct fd f = fdget(fd);
453 	struct socket *sock;
454 
455 	*err = -EBADF;
456 	if (f.file) {
457 		sock = sock_from_file(f.file, err);
458 		if (likely(sock)) {
459 			*fput_needed = f.flags;
460 			return sock;
461 		}
462 		fdput(f);
463 	}
464 	return NULL;
465 }
466 
467 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
468 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
469 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
470 static ssize_t sockfs_getxattr(struct dentry *dentry,
471 			       const char *name, void *value, size_t size)
472 {
473 	const char *proto_name;
474 	size_t proto_size;
475 	int error;
476 
477 	error = -ENODATA;
478 	if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
479 		proto_name = dentry->d_name.name;
480 		proto_size = strlen(proto_name);
481 
482 		if (value) {
483 			error = -ERANGE;
484 			if (proto_size + 1 > size)
485 				goto out;
486 
487 			strncpy(value, proto_name, proto_size + 1);
488 		}
489 		error = proto_size + 1;
490 	}
491 
492 out:
493 	return error;
494 }
495 
496 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
497 				size_t size)
498 {
499 	ssize_t len;
500 	ssize_t used = 0;
501 
502 	len = security_inode_listsecurity(dentry->d_inode, buffer, size);
503 	if (len < 0)
504 		return len;
505 	used += len;
506 	if (buffer) {
507 		if (size < used)
508 			return -ERANGE;
509 		buffer += len;
510 	}
511 
512 	len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
513 	used += len;
514 	if (buffer) {
515 		if (size < used)
516 			return -ERANGE;
517 		memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
518 		buffer += len;
519 	}
520 
521 	return used;
522 }
523 
524 static const struct inode_operations sockfs_inode_ops = {
525 	.getxattr = sockfs_getxattr,
526 	.listxattr = sockfs_listxattr,
527 };
528 
529 /**
530  *	sock_alloc	-	allocate a socket
531  *
532  *	Allocate a new inode and socket object. The two are bound together
533  *	and initialised. The socket is then returned. If we are out of inodes
534  *	NULL is returned.
535  */
536 
537 static struct socket *sock_alloc(void)
538 {
539 	struct inode *inode;
540 	struct socket *sock;
541 
542 	inode = new_inode_pseudo(sock_mnt->mnt_sb);
543 	if (!inode)
544 		return NULL;
545 
546 	sock = SOCKET_I(inode);
547 
548 	kmemcheck_annotate_bitfield(sock, type);
549 	inode->i_ino = get_next_ino();
550 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
551 	inode->i_uid = current_fsuid();
552 	inode->i_gid = current_fsgid();
553 	inode->i_op = &sockfs_inode_ops;
554 
555 	this_cpu_add(sockets_in_use, 1);
556 	return sock;
557 }
558 
559 /**
560  *	sock_release	-	close a socket
561  *	@sock: socket to close
562  *
563  *	The socket is released from the protocol stack if it has a release
564  *	callback, and the inode is then released if the socket is bound to
565  *	an inode not a file.
566  */
567 
568 void sock_release(struct socket *sock)
569 {
570 	if (sock->ops) {
571 		struct module *owner = sock->ops->owner;
572 
573 		sock->ops->release(sock);
574 		sock->ops = NULL;
575 		module_put(owner);
576 	}
577 
578 	if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
579 		pr_err("%s: fasync list not empty!\n", __func__);
580 
581 	if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
582 		return;
583 
584 	this_cpu_sub(sockets_in_use, 1);
585 	if (!sock->file) {
586 		iput(SOCK_INODE(sock));
587 		return;
588 	}
589 	sock->file = NULL;
590 }
591 EXPORT_SYMBOL(sock_release);
592 
593 void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags)
594 {
595 	u8 flags = *tx_flags;
596 
597 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
598 		flags |= SKBTX_HW_TSTAMP;
599 
600 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
601 		flags |= SKBTX_SW_TSTAMP;
602 
603 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_SCHED)
604 		flags |= SKBTX_SCHED_TSTAMP;
605 
606 	if (sk->sk_tsflags & SOF_TIMESTAMPING_TX_ACK)
607 		flags |= SKBTX_ACK_TSTAMP;
608 
609 	*tx_flags = flags;
610 }
611 EXPORT_SYMBOL(__sock_tx_timestamp);
612 
613 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
614 {
615 	int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
616 	BUG_ON(ret == -EIOCBQUEUED);
617 	return ret;
618 }
619 
620 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
621 {
622 	int err = security_socket_sendmsg(sock, msg,
623 					  msg_data_left(msg));
624 
625 	return err ?: sock_sendmsg_nosec(sock, msg);
626 }
627 EXPORT_SYMBOL(sock_sendmsg);
628 
629 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
630 		   struct kvec *vec, size_t num, size_t size)
631 {
632 	iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
633 	return sock_sendmsg(sock, msg);
634 }
635 EXPORT_SYMBOL(kernel_sendmsg);
636 
637 /*
638  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
639  */
640 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
641 	struct sk_buff *skb)
642 {
643 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
644 	struct scm_timestamping tss;
645 	int empty = 1;
646 	struct skb_shared_hwtstamps *shhwtstamps =
647 		skb_hwtstamps(skb);
648 
649 	/* Race occurred between timestamp enabling and packet
650 	   receiving.  Fill in the current time for now. */
651 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
652 		__net_timestamp(skb);
653 
654 	if (need_software_tstamp) {
655 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
656 			struct timeval tv;
657 			skb_get_timestamp(skb, &tv);
658 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
659 				 sizeof(tv), &tv);
660 		} else {
661 			struct timespec ts;
662 			skb_get_timestampns(skb, &ts);
663 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
664 				 sizeof(ts), &ts);
665 		}
666 	}
667 
668 	memset(&tss, 0, sizeof(tss));
669 	if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
670 	    ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
671 		empty = 0;
672 	if (shhwtstamps &&
673 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
674 	    ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
675 		empty = 0;
676 	if (!empty)
677 		put_cmsg(msg, SOL_SOCKET,
678 			 SCM_TIMESTAMPING, sizeof(tss), &tss);
679 }
680 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
681 
682 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
683 	struct sk_buff *skb)
684 {
685 	int ack;
686 
687 	if (!sock_flag(sk, SOCK_WIFI_STATUS))
688 		return;
689 	if (!skb->wifi_acked_valid)
690 		return;
691 
692 	ack = skb->wifi_acked;
693 
694 	put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
695 }
696 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
697 
698 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
699 				   struct sk_buff *skb)
700 {
701 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
702 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
703 			sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
704 }
705 
706 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
707 	struct sk_buff *skb)
708 {
709 	sock_recv_timestamp(msg, sk, skb);
710 	sock_recv_drops(msg, sk, skb);
711 }
712 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
713 
714 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
715 				     size_t size, int flags)
716 {
717 	return sock->ops->recvmsg(sock, msg, size, flags);
718 }
719 
720 int sock_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
721 		 int flags)
722 {
723 	int err = security_socket_recvmsg(sock, msg, size, flags);
724 
725 	return err ?: sock_recvmsg_nosec(sock, msg, size, flags);
726 }
727 EXPORT_SYMBOL(sock_recvmsg);
728 
729 /**
730  * kernel_recvmsg - Receive a message from a socket (kernel space)
731  * @sock:       The socket to receive the message from
732  * @msg:        Received message
733  * @vec:        Input s/g array for message data
734  * @num:        Size of input s/g array
735  * @size:       Number of bytes to read
736  * @flags:      Message flags (MSG_DONTWAIT, etc...)
737  *
738  * On return the msg structure contains the scatter/gather array passed in the
739  * vec argument. The array is modified so that it consists of the unfilled
740  * portion of the original array.
741  *
742  * The returned value is the total number of bytes received, or an error.
743  */
744 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
745 		   struct kvec *vec, size_t num, size_t size, int flags)
746 {
747 	mm_segment_t oldfs = get_fs();
748 	int result;
749 
750 	iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
751 	set_fs(KERNEL_DS);
752 	result = sock_recvmsg(sock, msg, size, flags);
753 	set_fs(oldfs);
754 	return result;
755 }
756 EXPORT_SYMBOL(kernel_recvmsg);
757 
758 static ssize_t sock_sendpage(struct file *file, struct page *page,
759 			     int offset, size_t size, loff_t *ppos, int more)
760 {
761 	struct socket *sock;
762 	int flags;
763 
764 	sock = file->private_data;
765 
766 	flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
767 	/* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
768 	flags |= more;
769 
770 	return kernel_sendpage(sock, page, offset, size, flags);
771 }
772 
773 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
774 				struct pipe_inode_info *pipe, size_t len,
775 				unsigned int flags)
776 {
777 	struct socket *sock = file->private_data;
778 
779 	if (unlikely(!sock->ops->splice_read))
780 		return -EINVAL;
781 
782 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
783 }
784 
785 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
786 {
787 	struct file *file = iocb->ki_filp;
788 	struct socket *sock = file->private_data;
789 	struct msghdr msg = {.msg_iter = *to,
790 			     .msg_iocb = iocb};
791 	ssize_t res;
792 
793 	if (file->f_flags & O_NONBLOCK)
794 		msg.msg_flags = MSG_DONTWAIT;
795 
796 	if (iocb->ki_pos != 0)
797 		return -ESPIPE;
798 
799 	if (!iov_iter_count(to))	/* Match SYS5 behaviour */
800 		return 0;
801 
802 	res = sock_recvmsg(sock, &msg, iov_iter_count(to), msg.msg_flags);
803 	*to = msg.msg_iter;
804 	return res;
805 }
806 
807 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
808 {
809 	struct file *file = iocb->ki_filp;
810 	struct socket *sock = file->private_data;
811 	struct msghdr msg = {.msg_iter = *from,
812 			     .msg_iocb = iocb};
813 	ssize_t res;
814 
815 	if (iocb->ki_pos != 0)
816 		return -ESPIPE;
817 
818 	if (file->f_flags & O_NONBLOCK)
819 		msg.msg_flags = MSG_DONTWAIT;
820 
821 	if (sock->type == SOCK_SEQPACKET)
822 		msg.msg_flags |= MSG_EOR;
823 
824 	res = sock_sendmsg(sock, &msg);
825 	*from = msg.msg_iter;
826 	return res;
827 }
828 
829 /*
830  * Atomic setting of ioctl hooks to avoid race
831  * with module unload.
832  */
833 
834 static DEFINE_MUTEX(br_ioctl_mutex);
835 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
836 
837 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
838 {
839 	mutex_lock(&br_ioctl_mutex);
840 	br_ioctl_hook = hook;
841 	mutex_unlock(&br_ioctl_mutex);
842 }
843 EXPORT_SYMBOL(brioctl_set);
844 
845 static DEFINE_MUTEX(vlan_ioctl_mutex);
846 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
847 
848 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
849 {
850 	mutex_lock(&vlan_ioctl_mutex);
851 	vlan_ioctl_hook = hook;
852 	mutex_unlock(&vlan_ioctl_mutex);
853 }
854 EXPORT_SYMBOL(vlan_ioctl_set);
855 
856 static DEFINE_MUTEX(dlci_ioctl_mutex);
857 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
858 
859 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
860 {
861 	mutex_lock(&dlci_ioctl_mutex);
862 	dlci_ioctl_hook = hook;
863 	mutex_unlock(&dlci_ioctl_mutex);
864 }
865 EXPORT_SYMBOL(dlci_ioctl_set);
866 
867 static long sock_do_ioctl(struct net *net, struct socket *sock,
868 				 unsigned int cmd, unsigned long arg)
869 {
870 	int err;
871 	void __user *argp = (void __user *)arg;
872 
873 	err = sock->ops->ioctl(sock, cmd, arg);
874 
875 	/*
876 	 * If this ioctl is unknown try to hand it down
877 	 * to the NIC driver.
878 	 */
879 	if (err == -ENOIOCTLCMD)
880 		err = dev_ioctl(net, cmd, argp);
881 
882 	return err;
883 }
884 
885 /*
886  *	With an ioctl, arg may well be a user mode pointer, but we don't know
887  *	what to do with it - that's up to the protocol still.
888  */
889 
890 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
891 {
892 	struct socket *sock;
893 	struct sock *sk;
894 	void __user *argp = (void __user *)arg;
895 	int pid, err;
896 	struct net *net;
897 
898 	sock = file->private_data;
899 	sk = sock->sk;
900 	net = sock_net(sk);
901 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
902 		err = dev_ioctl(net, cmd, argp);
903 	} else
904 #ifdef CONFIG_WEXT_CORE
905 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
906 		err = dev_ioctl(net, cmd, argp);
907 	} else
908 #endif
909 		switch (cmd) {
910 		case FIOSETOWN:
911 		case SIOCSPGRP:
912 			err = -EFAULT;
913 			if (get_user(pid, (int __user *)argp))
914 				break;
915 			f_setown(sock->file, pid, 1);
916 			err = 0;
917 			break;
918 		case FIOGETOWN:
919 		case SIOCGPGRP:
920 			err = put_user(f_getown(sock->file),
921 				       (int __user *)argp);
922 			break;
923 		case SIOCGIFBR:
924 		case SIOCSIFBR:
925 		case SIOCBRADDBR:
926 		case SIOCBRDELBR:
927 			err = -ENOPKG;
928 			if (!br_ioctl_hook)
929 				request_module("bridge");
930 
931 			mutex_lock(&br_ioctl_mutex);
932 			if (br_ioctl_hook)
933 				err = br_ioctl_hook(net, cmd, argp);
934 			mutex_unlock(&br_ioctl_mutex);
935 			break;
936 		case SIOCGIFVLAN:
937 		case SIOCSIFVLAN:
938 			err = -ENOPKG;
939 			if (!vlan_ioctl_hook)
940 				request_module("8021q");
941 
942 			mutex_lock(&vlan_ioctl_mutex);
943 			if (vlan_ioctl_hook)
944 				err = vlan_ioctl_hook(net, argp);
945 			mutex_unlock(&vlan_ioctl_mutex);
946 			break;
947 		case SIOCADDDLCI:
948 		case SIOCDELDLCI:
949 			err = -ENOPKG;
950 			if (!dlci_ioctl_hook)
951 				request_module("dlci");
952 
953 			mutex_lock(&dlci_ioctl_mutex);
954 			if (dlci_ioctl_hook)
955 				err = dlci_ioctl_hook(cmd, argp);
956 			mutex_unlock(&dlci_ioctl_mutex);
957 			break;
958 		default:
959 			err = sock_do_ioctl(net, sock, cmd, arg);
960 			break;
961 		}
962 	return err;
963 }
964 
965 int sock_create_lite(int family, int type, int protocol, struct socket **res)
966 {
967 	int err;
968 	struct socket *sock = NULL;
969 
970 	err = security_socket_create(family, type, protocol, 1);
971 	if (err)
972 		goto out;
973 
974 	sock = sock_alloc();
975 	if (!sock) {
976 		err = -ENOMEM;
977 		goto out;
978 	}
979 
980 	sock->type = type;
981 	err = security_socket_post_create(sock, family, type, protocol, 1);
982 	if (err)
983 		goto out_release;
984 
985 out:
986 	*res = sock;
987 	return err;
988 out_release:
989 	sock_release(sock);
990 	sock = NULL;
991 	goto out;
992 }
993 EXPORT_SYMBOL(sock_create_lite);
994 
995 /* No kernel lock held - perfect */
996 static unsigned int sock_poll(struct file *file, poll_table *wait)
997 {
998 	unsigned int busy_flag = 0;
999 	struct socket *sock;
1000 
1001 	/*
1002 	 *      We can't return errors to poll, so it's either yes or no.
1003 	 */
1004 	sock = file->private_data;
1005 
1006 	if (sk_can_busy_loop(sock->sk)) {
1007 		/* this socket can poll_ll so tell the system call */
1008 		busy_flag = POLL_BUSY_LOOP;
1009 
1010 		/* once, only if requested by syscall */
1011 		if (wait && (wait->_key & POLL_BUSY_LOOP))
1012 			sk_busy_loop(sock->sk, 1);
1013 	}
1014 
1015 	return busy_flag | sock->ops->poll(file, sock, wait);
1016 }
1017 
1018 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1019 {
1020 	struct socket *sock = file->private_data;
1021 
1022 	return sock->ops->mmap(file, sock, vma);
1023 }
1024 
1025 static int sock_close(struct inode *inode, struct file *filp)
1026 {
1027 	sock_release(SOCKET_I(inode));
1028 	return 0;
1029 }
1030 
1031 /*
1032  *	Update the socket async list
1033  *
1034  *	Fasync_list locking strategy.
1035  *
1036  *	1. fasync_list is modified only under process context socket lock
1037  *	   i.e. under semaphore.
1038  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1039  *	   or under socket lock
1040  */
1041 
1042 static int sock_fasync(int fd, struct file *filp, int on)
1043 {
1044 	struct socket *sock = filp->private_data;
1045 	struct sock *sk = sock->sk;
1046 	struct socket_wq *wq;
1047 
1048 	if (sk == NULL)
1049 		return -EINVAL;
1050 
1051 	lock_sock(sk);
1052 	wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1053 	fasync_helper(fd, filp, on, &wq->fasync_list);
1054 
1055 	if (!wq->fasync_list)
1056 		sock_reset_flag(sk, SOCK_FASYNC);
1057 	else
1058 		sock_set_flag(sk, SOCK_FASYNC);
1059 
1060 	release_sock(sk);
1061 	return 0;
1062 }
1063 
1064 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1065 
1066 int sock_wake_async(struct socket *sock, int how, int band)
1067 {
1068 	struct socket_wq *wq;
1069 
1070 	if (!sock)
1071 		return -1;
1072 	rcu_read_lock();
1073 	wq = rcu_dereference(sock->wq);
1074 	if (!wq || !wq->fasync_list) {
1075 		rcu_read_unlock();
1076 		return -1;
1077 	}
1078 	switch (how) {
1079 	case SOCK_WAKE_WAITD:
1080 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1081 			break;
1082 		goto call_kill;
1083 	case SOCK_WAKE_SPACE:
1084 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1085 			break;
1086 		/* fall through */
1087 	case SOCK_WAKE_IO:
1088 call_kill:
1089 		kill_fasync(&wq->fasync_list, SIGIO, band);
1090 		break;
1091 	case SOCK_WAKE_URG:
1092 		kill_fasync(&wq->fasync_list, SIGURG, band);
1093 	}
1094 	rcu_read_unlock();
1095 	return 0;
1096 }
1097 EXPORT_SYMBOL(sock_wake_async);
1098 
1099 int __sock_create(struct net *net, int family, int type, int protocol,
1100 			 struct socket **res, int kern)
1101 {
1102 	int err;
1103 	struct socket *sock;
1104 	const struct net_proto_family *pf;
1105 
1106 	/*
1107 	 *      Check protocol is in range
1108 	 */
1109 	if (family < 0 || family >= NPROTO)
1110 		return -EAFNOSUPPORT;
1111 	if (type < 0 || type >= SOCK_MAX)
1112 		return -EINVAL;
1113 
1114 	/* Compatibility.
1115 
1116 	   This uglymoron is moved from INET layer to here to avoid
1117 	   deadlock in module load.
1118 	 */
1119 	if (family == PF_INET && type == SOCK_PACKET) {
1120 		static int warned;
1121 		if (!warned) {
1122 			warned = 1;
1123 			pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1124 				current->comm);
1125 		}
1126 		family = PF_PACKET;
1127 	}
1128 
1129 	err = security_socket_create(family, type, protocol, kern);
1130 	if (err)
1131 		return err;
1132 
1133 	/*
1134 	 *	Allocate the socket and allow the family to set things up. if
1135 	 *	the protocol is 0, the family is instructed to select an appropriate
1136 	 *	default.
1137 	 */
1138 	sock = sock_alloc();
1139 	if (!sock) {
1140 		net_warn_ratelimited("socket: no more sockets\n");
1141 		return -ENFILE;	/* Not exactly a match, but its the
1142 				   closest posix thing */
1143 	}
1144 
1145 	sock->type = type;
1146 
1147 #ifdef CONFIG_MODULES
1148 	/* Attempt to load a protocol module if the find failed.
1149 	 *
1150 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1151 	 * requested real, full-featured networking support upon configuration.
1152 	 * Otherwise module support will break!
1153 	 */
1154 	if (rcu_access_pointer(net_families[family]) == NULL)
1155 		request_module("net-pf-%d", family);
1156 #endif
1157 
1158 	rcu_read_lock();
1159 	pf = rcu_dereference(net_families[family]);
1160 	err = -EAFNOSUPPORT;
1161 	if (!pf)
1162 		goto out_release;
1163 
1164 	/*
1165 	 * We will call the ->create function, that possibly is in a loadable
1166 	 * module, so we have to bump that loadable module refcnt first.
1167 	 */
1168 	if (!try_module_get(pf->owner))
1169 		goto out_release;
1170 
1171 	/* Now protected by module ref count */
1172 	rcu_read_unlock();
1173 
1174 	err = pf->create(net, sock, protocol, kern);
1175 	if (err < 0)
1176 		goto out_module_put;
1177 
1178 	/*
1179 	 * Now to bump the refcnt of the [loadable] module that owns this
1180 	 * socket at sock_release time we decrement its refcnt.
1181 	 */
1182 	if (!try_module_get(sock->ops->owner))
1183 		goto out_module_busy;
1184 
1185 	/*
1186 	 * Now that we're done with the ->create function, the [loadable]
1187 	 * module can have its refcnt decremented
1188 	 */
1189 	module_put(pf->owner);
1190 	err = security_socket_post_create(sock, family, type, protocol, kern);
1191 	if (err)
1192 		goto out_sock_release;
1193 	*res = sock;
1194 
1195 	return 0;
1196 
1197 out_module_busy:
1198 	err = -EAFNOSUPPORT;
1199 out_module_put:
1200 	sock->ops = NULL;
1201 	module_put(pf->owner);
1202 out_sock_release:
1203 	sock_release(sock);
1204 	return err;
1205 
1206 out_release:
1207 	rcu_read_unlock();
1208 	goto out_sock_release;
1209 }
1210 EXPORT_SYMBOL(__sock_create);
1211 
1212 int sock_create(int family, int type, int protocol, struct socket **res)
1213 {
1214 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1215 }
1216 EXPORT_SYMBOL(sock_create);
1217 
1218 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1219 {
1220 	return __sock_create(&init_net, family, type, protocol, res, 1);
1221 }
1222 EXPORT_SYMBOL(sock_create_kern);
1223 
1224 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1225 {
1226 	int retval;
1227 	struct socket *sock;
1228 	int flags;
1229 
1230 	/* Check the SOCK_* constants for consistency.  */
1231 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1232 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1233 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1234 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1235 
1236 	flags = type & ~SOCK_TYPE_MASK;
1237 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1238 		return -EINVAL;
1239 	type &= SOCK_TYPE_MASK;
1240 
1241 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1242 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1243 
1244 	retval = sock_create(family, type, protocol, &sock);
1245 	if (retval < 0)
1246 		goto out;
1247 
1248 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1249 	if (retval < 0)
1250 		goto out_release;
1251 
1252 out:
1253 	/* It may be already another descriptor 8) Not kernel problem. */
1254 	return retval;
1255 
1256 out_release:
1257 	sock_release(sock);
1258 	return retval;
1259 }
1260 
1261 /*
1262  *	Create a pair of connected sockets.
1263  */
1264 
1265 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1266 		int __user *, usockvec)
1267 {
1268 	struct socket *sock1, *sock2;
1269 	int fd1, fd2, err;
1270 	struct file *newfile1, *newfile2;
1271 	int flags;
1272 
1273 	flags = type & ~SOCK_TYPE_MASK;
1274 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1275 		return -EINVAL;
1276 	type &= SOCK_TYPE_MASK;
1277 
1278 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1279 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1280 
1281 	/*
1282 	 * Obtain the first socket and check if the underlying protocol
1283 	 * supports the socketpair call.
1284 	 */
1285 
1286 	err = sock_create(family, type, protocol, &sock1);
1287 	if (err < 0)
1288 		goto out;
1289 
1290 	err = sock_create(family, type, protocol, &sock2);
1291 	if (err < 0)
1292 		goto out_release_1;
1293 
1294 	err = sock1->ops->socketpair(sock1, sock2);
1295 	if (err < 0)
1296 		goto out_release_both;
1297 
1298 	fd1 = get_unused_fd_flags(flags);
1299 	if (unlikely(fd1 < 0)) {
1300 		err = fd1;
1301 		goto out_release_both;
1302 	}
1303 
1304 	fd2 = get_unused_fd_flags(flags);
1305 	if (unlikely(fd2 < 0)) {
1306 		err = fd2;
1307 		goto out_put_unused_1;
1308 	}
1309 
1310 	newfile1 = sock_alloc_file(sock1, flags, NULL);
1311 	if (unlikely(IS_ERR(newfile1))) {
1312 		err = PTR_ERR(newfile1);
1313 		goto out_put_unused_both;
1314 	}
1315 
1316 	newfile2 = sock_alloc_file(sock2, flags, NULL);
1317 	if (IS_ERR(newfile2)) {
1318 		err = PTR_ERR(newfile2);
1319 		goto out_fput_1;
1320 	}
1321 
1322 	err = put_user(fd1, &usockvec[0]);
1323 	if (err)
1324 		goto out_fput_both;
1325 
1326 	err = put_user(fd2, &usockvec[1]);
1327 	if (err)
1328 		goto out_fput_both;
1329 
1330 	audit_fd_pair(fd1, fd2);
1331 
1332 	fd_install(fd1, newfile1);
1333 	fd_install(fd2, newfile2);
1334 	/* fd1 and fd2 may be already another descriptors.
1335 	 * Not kernel problem.
1336 	 */
1337 
1338 	return 0;
1339 
1340 out_fput_both:
1341 	fput(newfile2);
1342 	fput(newfile1);
1343 	put_unused_fd(fd2);
1344 	put_unused_fd(fd1);
1345 	goto out;
1346 
1347 out_fput_1:
1348 	fput(newfile1);
1349 	put_unused_fd(fd2);
1350 	put_unused_fd(fd1);
1351 	sock_release(sock2);
1352 	goto out;
1353 
1354 out_put_unused_both:
1355 	put_unused_fd(fd2);
1356 out_put_unused_1:
1357 	put_unused_fd(fd1);
1358 out_release_both:
1359 	sock_release(sock2);
1360 out_release_1:
1361 	sock_release(sock1);
1362 out:
1363 	return err;
1364 }
1365 
1366 /*
1367  *	Bind a name to a socket. Nothing much to do here since it's
1368  *	the protocol's responsibility to handle the local address.
1369  *
1370  *	We move the socket address to kernel space before we call
1371  *	the protocol layer (having also checked the address is ok).
1372  */
1373 
1374 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1375 {
1376 	struct socket *sock;
1377 	struct sockaddr_storage address;
1378 	int err, fput_needed;
1379 
1380 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1381 	if (sock) {
1382 		err = move_addr_to_kernel(umyaddr, addrlen, &address);
1383 		if (err >= 0) {
1384 			err = security_socket_bind(sock,
1385 						   (struct sockaddr *)&address,
1386 						   addrlen);
1387 			if (!err)
1388 				err = sock->ops->bind(sock,
1389 						      (struct sockaddr *)
1390 						      &address, addrlen);
1391 		}
1392 		fput_light(sock->file, fput_needed);
1393 	}
1394 	return err;
1395 }
1396 
1397 /*
1398  *	Perform a listen. Basically, we allow the protocol to do anything
1399  *	necessary for a listen, and if that works, we mark the socket as
1400  *	ready for listening.
1401  */
1402 
1403 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1404 {
1405 	struct socket *sock;
1406 	int err, fput_needed;
1407 	int somaxconn;
1408 
1409 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1410 	if (sock) {
1411 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1412 		if ((unsigned int)backlog > somaxconn)
1413 			backlog = somaxconn;
1414 
1415 		err = security_socket_listen(sock, backlog);
1416 		if (!err)
1417 			err = sock->ops->listen(sock, backlog);
1418 
1419 		fput_light(sock->file, fput_needed);
1420 	}
1421 	return err;
1422 }
1423 
1424 /*
1425  *	For accept, we attempt to create a new socket, set up the link
1426  *	with the client, wake up the client, then return the new
1427  *	connected fd. We collect the address of the connector in kernel
1428  *	space and move it to user at the very end. This is unclean because
1429  *	we open the socket then return an error.
1430  *
1431  *	1003.1g adds the ability to recvmsg() to query connection pending
1432  *	status to recvmsg. We need to add that support in a way thats
1433  *	clean when we restucture accept also.
1434  */
1435 
1436 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1437 		int __user *, upeer_addrlen, int, flags)
1438 {
1439 	struct socket *sock, *newsock;
1440 	struct file *newfile;
1441 	int err, len, newfd, fput_needed;
1442 	struct sockaddr_storage address;
1443 
1444 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1445 		return -EINVAL;
1446 
1447 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1448 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1449 
1450 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1451 	if (!sock)
1452 		goto out;
1453 
1454 	err = -ENFILE;
1455 	newsock = sock_alloc();
1456 	if (!newsock)
1457 		goto out_put;
1458 
1459 	newsock->type = sock->type;
1460 	newsock->ops = sock->ops;
1461 
1462 	/*
1463 	 * We don't need try_module_get here, as the listening socket (sock)
1464 	 * has the protocol module (sock->ops->owner) held.
1465 	 */
1466 	__module_get(newsock->ops->owner);
1467 
1468 	newfd = get_unused_fd_flags(flags);
1469 	if (unlikely(newfd < 0)) {
1470 		err = newfd;
1471 		sock_release(newsock);
1472 		goto out_put;
1473 	}
1474 	newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1475 	if (unlikely(IS_ERR(newfile))) {
1476 		err = PTR_ERR(newfile);
1477 		put_unused_fd(newfd);
1478 		sock_release(newsock);
1479 		goto out_put;
1480 	}
1481 
1482 	err = security_socket_accept(sock, newsock);
1483 	if (err)
1484 		goto out_fd;
1485 
1486 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1487 	if (err < 0)
1488 		goto out_fd;
1489 
1490 	if (upeer_sockaddr) {
1491 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1492 					  &len, 2) < 0) {
1493 			err = -ECONNABORTED;
1494 			goto out_fd;
1495 		}
1496 		err = move_addr_to_user(&address,
1497 					len, upeer_sockaddr, upeer_addrlen);
1498 		if (err < 0)
1499 			goto out_fd;
1500 	}
1501 
1502 	/* File flags are not inherited via accept() unlike another OSes. */
1503 
1504 	fd_install(newfd, newfile);
1505 	err = newfd;
1506 
1507 out_put:
1508 	fput_light(sock->file, fput_needed);
1509 out:
1510 	return err;
1511 out_fd:
1512 	fput(newfile);
1513 	put_unused_fd(newfd);
1514 	goto out_put;
1515 }
1516 
1517 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1518 		int __user *, upeer_addrlen)
1519 {
1520 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1521 }
1522 
1523 /*
1524  *	Attempt to connect to a socket with the server address.  The address
1525  *	is in user space so we verify it is OK and move it to kernel space.
1526  *
1527  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1528  *	break bindings
1529  *
1530  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1531  *	other SEQPACKET protocols that take time to connect() as it doesn't
1532  *	include the -EINPROGRESS status for such sockets.
1533  */
1534 
1535 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1536 		int, addrlen)
1537 {
1538 	struct socket *sock;
1539 	struct sockaddr_storage address;
1540 	int err, fput_needed;
1541 
1542 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1543 	if (!sock)
1544 		goto out;
1545 	err = move_addr_to_kernel(uservaddr, addrlen, &address);
1546 	if (err < 0)
1547 		goto out_put;
1548 
1549 	err =
1550 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1551 	if (err)
1552 		goto out_put;
1553 
1554 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1555 				 sock->file->f_flags);
1556 out_put:
1557 	fput_light(sock->file, fput_needed);
1558 out:
1559 	return err;
1560 }
1561 
1562 /*
1563  *	Get the local address ('name') of a socket object. Move the obtained
1564  *	name to user space.
1565  */
1566 
1567 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1568 		int __user *, usockaddr_len)
1569 {
1570 	struct socket *sock;
1571 	struct sockaddr_storage address;
1572 	int len, err, fput_needed;
1573 
1574 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1575 	if (!sock)
1576 		goto out;
1577 
1578 	err = security_socket_getsockname(sock);
1579 	if (err)
1580 		goto out_put;
1581 
1582 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1583 	if (err)
1584 		goto out_put;
1585 	err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1586 
1587 out_put:
1588 	fput_light(sock->file, fput_needed);
1589 out:
1590 	return err;
1591 }
1592 
1593 /*
1594  *	Get the remote address ('name') of a socket object. Move the obtained
1595  *	name to user space.
1596  */
1597 
1598 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1599 		int __user *, usockaddr_len)
1600 {
1601 	struct socket *sock;
1602 	struct sockaddr_storage address;
1603 	int len, err, fput_needed;
1604 
1605 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1606 	if (sock != NULL) {
1607 		err = security_socket_getpeername(sock);
1608 		if (err) {
1609 			fput_light(sock->file, fput_needed);
1610 			return err;
1611 		}
1612 
1613 		err =
1614 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1615 				       1);
1616 		if (!err)
1617 			err = move_addr_to_user(&address, len, usockaddr,
1618 						usockaddr_len);
1619 		fput_light(sock->file, fput_needed);
1620 	}
1621 	return err;
1622 }
1623 
1624 /*
1625  *	Send a datagram to a given address. We move the address into kernel
1626  *	space and check the user space data area is readable before invoking
1627  *	the protocol.
1628  */
1629 
1630 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1631 		unsigned int, flags, struct sockaddr __user *, addr,
1632 		int, addr_len)
1633 {
1634 	struct socket *sock;
1635 	struct sockaddr_storage address;
1636 	int err;
1637 	struct msghdr msg;
1638 	struct iovec iov;
1639 	int fput_needed;
1640 
1641 	err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1642 	if (unlikely(err))
1643 		return err;
1644 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1645 	if (!sock)
1646 		goto out;
1647 
1648 	msg.msg_name = NULL;
1649 	msg.msg_control = NULL;
1650 	msg.msg_controllen = 0;
1651 	msg.msg_namelen = 0;
1652 	if (addr) {
1653 		err = move_addr_to_kernel(addr, addr_len, &address);
1654 		if (err < 0)
1655 			goto out_put;
1656 		msg.msg_name = (struct sockaddr *)&address;
1657 		msg.msg_namelen = addr_len;
1658 	}
1659 	if (sock->file->f_flags & O_NONBLOCK)
1660 		flags |= MSG_DONTWAIT;
1661 	msg.msg_flags = flags;
1662 	err = sock_sendmsg(sock, &msg);
1663 
1664 out_put:
1665 	fput_light(sock->file, fput_needed);
1666 out:
1667 	return err;
1668 }
1669 
1670 /*
1671  *	Send a datagram down a socket.
1672  */
1673 
1674 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1675 		unsigned int, flags)
1676 {
1677 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1678 }
1679 
1680 /*
1681  *	Receive a frame from the socket and optionally record the address of the
1682  *	sender. We verify the buffers are writable and if needed move the
1683  *	sender address from kernel to user space.
1684  */
1685 
1686 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1687 		unsigned int, flags, struct sockaddr __user *, addr,
1688 		int __user *, addr_len)
1689 {
1690 	struct socket *sock;
1691 	struct iovec iov;
1692 	struct msghdr msg;
1693 	struct sockaddr_storage address;
1694 	int err, err2;
1695 	int fput_needed;
1696 
1697 	err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1698 	if (unlikely(err))
1699 		return err;
1700 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1701 	if (!sock)
1702 		goto out;
1703 
1704 	msg.msg_control = NULL;
1705 	msg.msg_controllen = 0;
1706 	/* Save some cycles and don't copy the address if not needed */
1707 	msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1708 	/* We assume all kernel code knows the size of sockaddr_storage */
1709 	msg.msg_namelen = 0;
1710 	if (sock->file->f_flags & O_NONBLOCK)
1711 		flags |= MSG_DONTWAIT;
1712 	err = sock_recvmsg(sock, &msg, iov_iter_count(&msg.msg_iter), flags);
1713 
1714 	if (err >= 0 && addr != NULL) {
1715 		err2 = move_addr_to_user(&address,
1716 					 msg.msg_namelen, addr, addr_len);
1717 		if (err2 < 0)
1718 			err = err2;
1719 	}
1720 
1721 	fput_light(sock->file, fput_needed);
1722 out:
1723 	return err;
1724 }
1725 
1726 /*
1727  *	Receive a datagram from a socket.
1728  */
1729 
1730 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1731 		unsigned int, flags)
1732 {
1733 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1734 }
1735 
1736 /*
1737  *	Set a socket option. Because we don't know the option lengths we have
1738  *	to pass the user mode parameter for the protocols to sort out.
1739  */
1740 
1741 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1742 		char __user *, optval, int, optlen)
1743 {
1744 	int err, fput_needed;
1745 	struct socket *sock;
1746 
1747 	if (optlen < 0)
1748 		return -EINVAL;
1749 
1750 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1751 	if (sock != NULL) {
1752 		err = security_socket_setsockopt(sock, level, optname);
1753 		if (err)
1754 			goto out_put;
1755 
1756 		if (level == SOL_SOCKET)
1757 			err =
1758 			    sock_setsockopt(sock, level, optname, optval,
1759 					    optlen);
1760 		else
1761 			err =
1762 			    sock->ops->setsockopt(sock, level, optname, optval,
1763 						  optlen);
1764 out_put:
1765 		fput_light(sock->file, fput_needed);
1766 	}
1767 	return err;
1768 }
1769 
1770 /*
1771  *	Get a socket option. Because we don't know the option lengths we have
1772  *	to pass a user mode parameter for the protocols to sort out.
1773  */
1774 
1775 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1776 		char __user *, optval, int __user *, optlen)
1777 {
1778 	int err, fput_needed;
1779 	struct socket *sock;
1780 
1781 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1782 	if (sock != NULL) {
1783 		err = security_socket_getsockopt(sock, level, optname);
1784 		if (err)
1785 			goto out_put;
1786 
1787 		if (level == SOL_SOCKET)
1788 			err =
1789 			    sock_getsockopt(sock, level, optname, optval,
1790 					    optlen);
1791 		else
1792 			err =
1793 			    sock->ops->getsockopt(sock, level, optname, optval,
1794 						  optlen);
1795 out_put:
1796 		fput_light(sock->file, fput_needed);
1797 	}
1798 	return err;
1799 }
1800 
1801 /*
1802  *	Shutdown a socket.
1803  */
1804 
1805 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1806 {
1807 	int err, fput_needed;
1808 	struct socket *sock;
1809 
1810 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1811 	if (sock != NULL) {
1812 		err = security_socket_shutdown(sock, how);
1813 		if (!err)
1814 			err = sock->ops->shutdown(sock, how);
1815 		fput_light(sock->file, fput_needed);
1816 	}
1817 	return err;
1818 }
1819 
1820 /* A couple of helpful macros for getting the address of the 32/64 bit
1821  * fields which are the same type (int / unsigned) on our platforms.
1822  */
1823 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1824 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1825 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1826 
1827 struct used_address {
1828 	struct sockaddr_storage name;
1829 	unsigned int name_len;
1830 };
1831 
1832 static int copy_msghdr_from_user(struct msghdr *kmsg,
1833 				 struct user_msghdr __user *umsg,
1834 				 struct sockaddr __user **save_addr,
1835 				 struct iovec **iov)
1836 {
1837 	struct sockaddr __user *uaddr;
1838 	struct iovec __user *uiov;
1839 	size_t nr_segs;
1840 	ssize_t err;
1841 
1842 	if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1843 	    __get_user(uaddr, &umsg->msg_name) ||
1844 	    __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1845 	    __get_user(uiov, &umsg->msg_iov) ||
1846 	    __get_user(nr_segs, &umsg->msg_iovlen) ||
1847 	    __get_user(kmsg->msg_control, &umsg->msg_control) ||
1848 	    __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1849 	    __get_user(kmsg->msg_flags, &umsg->msg_flags))
1850 		return -EFAULT;
1851 
1852 	if (!uaddr)
1853 		kmsg->msg_namelen = 0;
1854 
1855 	if (kmsg->msg_namelen < 0)
1856 		return -EINVAL;
1857 
1858 	if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1859 		kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1860 
1861 	if (save_addr)
1862 		*save_addr = uaddr;
1863 
1864 	if (uaddr && kmsg->msg_namelen) {
1865 		if (!save_addr) {
1866 			err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1867 						  kmsg->msg_name);
1868 			if (err < 0)
1869 				return err;
1870 		}
1871 	} else {
1872 		kmsg->msg_name = NULL;
1873 		kmsg->msg_namelen = 0;
1874 	}
1875 
1876 	if (nr_segs > UIO_MAXIOV)
1877 		return -EMSGSIZE;
1878 
1879 	kmsg->msg_iocb = NULL;
1880 
1881 	return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1882 			    UIO_FASTIOV, iov, &kmsg->msg_iter);
1883 }
1884 
1885 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1886 			 struct msghdr *msg_sys, unsigned int flags,
1887 			 struct used_address *used_address)
1888 {
1889 	struct compat_msghdr __user *msg_compat =
1890 	    (struct compat_msghdr __user *)msg;
1891 	struct sockaddr_storage address;
1892 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1893 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1894 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1895 	/* 20 is size of ipv6_pktinfo */
1896 	unsigned char *ctl_buf = ctl;
1897 	int ctl_len;
1898 	ssize_t err;
1899 
1900 	msg_sys->msg_name = &address;
1901 
1902 	if (MSG_CMSG_COMPAT & flags)
1903 		err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1904 	else
1905 		err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1906 	if (err < 0)
1907 		return err;
1908 
1909 	err = -ENOBUFS;
1910 
1911 	if (msg_sys->msg_controllen > INT_MAX)
1912 		goto out_freeiov;
1913 	ctl_len = msg_sys->msg_controllen;
1914 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1915 		err =
1916 		    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1917 						     sizeof(ctl));
1918 		if (err)
1919 			goto out_freeiov;
1920 		ctl_buf = msg_sys->msg_control;
1921 		ctl_len = msg_sys->msg_controllen;
1922 	} else if (ctl_len) {
1923 		if (ctl_len > sizeof(ctl)) {
1924 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1925 			if (ctl_buf == NULL)
1926 				goto out_freeiov;
1927 		}
1928 		err = -EFAULT;
1929 		/*
1930 		 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1931 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1932 		 * checking falls down on this.
1933 		 */
1934 		if (copy_from_user(ctl_buf,
1935 				   (void __user __force *)msg_sys->msg_control,
1936 				   ctl_len))
1937 			goto out_freectl;
1938 		msg_sys->msg_control = ctl_buf;
1939 	}
1940 	msg_sys->msg_flags = flags;
1941 
1942 	if (sock->file->f_flags & O_NONBLOCK)
1943 		msg_sys->msg_flags |= MSG_DONTWAIT;
1944 	/*
1945 	 * If this is sendmmsg() and current destination address is same as
1946 	 * previously succeeded address, omit asking LSM's decision.
1947 	 * used_address->name_len is initialized to UINT_MAX so that the first
1948 	 * destination address never matches.
1949 	 */
1950 	if (used_address && msg_sys->msg_name &&
1951 	    used_address->name_len == msg_sys->msg_namelen &&
1952 	    !memcmp(&used_address->name, msg_sys->msg_name,
1953 		    used_address->name_len)) {
1954 		err = sock_sendmsg_nosec(sock, msg_sys);
1955 		goto out_freectl;
1956 	}
1957 	err = sock_sendmsg(sock, msg_sys);
1958 	/*
1959 	 * If this is sendmmsg() and sending to current destination address was
1960 	 * successful, remember it.
1961 	 */
1962 	if (used_address && err >= 0) {
1963 		used_address->name_len = msg_sys->msg_namelen;
1964 		if (msg_sys->msg_name)
1965 			memcpy(&used_address->name, msg_sys->msg_name,
1966 			       used_address->name_len);
1967 	}
1968 
1969 out_freectl:
1970 	if (ctl_buf != ctl)
1971 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1972 out_freeiov:
1973 	kfree(iov);
1974 	return err;
1975 }
1976 
1977 /*
1978  *	BSD sendmsg interface
1979  */
1980 
1981 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1982 {
1983 	int fput_needed, err;
1984 	struct msghdr msg_sys;
1985 	struct socket *sock;
1986 
1987 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1988 	if (!sock)
1989 		goto out;
1990 
1991 	err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
1992 
1993 	fput_light(sock->file, fput_needed);
1994 out:
1995 	return err;
1996 }
1997 
1998 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1999 {
2000 	if (flags & MSG_CMSG_COMPAT)
2001 		return -EINVAL;
2002 	return __sys_sendmsg(fd, msg, flags);
2003 }
2004 
2005 /*
2006  *	Linux sendmmsg interface
2007  */
2008 
2009 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2010 		   unsigned int flags)
2011 {
2012 	int fput_needed, err, datagrams;
2013 	struct socket *sock;
2014 	struct mmsghdr __user *entry;
2015 	struct compat_mmsghdr __user *compat_entry;
2016 	struct msghdr msg_sys;
2017 	struct used_address used_address;
2018 
2019 	if (vlen > UIO_MAXIOV)
2020 		vlen = UIO_MAXIOV;
2021 
2022 	datagrams = 0;
2023 
2024 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2025 	if (!sock)
2026 		return err;
2027 
2028 	used_address.name_len = UINT_MAX;
2029 	entry = mmsg;
2030 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2031 	err = 0;
2032 
2033 	while (datagrams < vlen) {
2034 		if (MSG_CMSG_COMPAT & flags) {
2035 			err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2036 					     &msg_sys, flags, &used_address);
2037 			if (err < 0)
2038 				break;
2039 			err = __put_user(err, &compat_entry->msg_len);
2040 			++compat_entry;
2041 		} else {
2042 			err = ___sys_sendmsg(sock,
2043 					     (struct user_msghdr __user *)entry,
2044 					     &msg_sys, flags, &used_address);
2045 			if (err < 0)
2046 				break;
2047 			err = put_user(err, &entry->msg_len);
2048 			++entry;
2049 		}
2050 
2051 		if (err)
2052 			break;
2053 		++datagrams;
2054 	}
2055 
2056 	fput_light(sock->file, fput_needed);
2057 
2058 	/* We only return an error if no datagrams were able to be sent */
2059 	if (datagrams != 0)
2060 		return datagrams;
2061 
2062 	return err;
2063 }
2064 
2065 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2066 		unsigned int, vlen, unsigned int, flags)
2067 {
2068 	if (flags & MSG_CMSG_COMPAT)
2069 		return -EINVAL;
2070 	return __sys_sendmmsg(fd, mmsg, vlen, flags);
2071 }
2072 
2073 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2074 			 struct msghdr *msg_sys, unsigned int flags, int nosec)
2075 {
2076 	struct compat_msghdr __user *msg_compat =
2077 	    (struct compat_msghdr __user *)msg;
2078 	struct iovec iovstack[UIO_FASTIOV];
2079 	struct iovec *iov = iovstack;
2080 	unsigned long cmsg_ptr;
2081 	int total_len, len;
2082 	ssize_t err;
2083 
2084 	/* kernel mode address */
2085 	struct sockaddr_storage addr;
2086 
2087 	/* user mode address pointers */
2088 	struct sockaddr __user *uaddr;
2089 	int __user *uaddr_len = COMPAT_NAMELEN(msg);
2090 
2091 	msg_sys->msg_name = &addr;
2092 
2093 	if (MSG_CMSG_COMPAT & flags)
2094 		err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2095 	else
2096 		err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2097 	if (err < 0)
2098 		return err;
2099 	total_len = iov_iter_count(&msg_sys->msg_iter);
2100 
2101 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2102 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2103 
2104 	/* We assume all kernel code knows the size of sockaddr_storage */
2105 	msg_sys->msg_namelen = 0;
2106 
2107 	if (sock->file->f_flags & O_NONBLOCK)
2108 		flags |= MSG_DONTWAIT;
2109 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2110 							  total_len, flags);
2111 	if (err < 0)
2112 		goto out_freeiov;
2113 	len = err;
2114 
2115 	if (uaddr != NULL) {
2116 		err = move_addr_to_user(&addr,
2117 					msg_sys->msg_namelen, uaddr,
2118 					uaddr_len);
2119 		if (err < 0)
2120 			goto out_freeiov;
2121 	}
2122 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2123 			 COMPAT_FLAGS(msg));
2124 	if (err)
2125 		goto out_freeiov;
2126 	if (MSG_CMSG_COMPAT & flags)
2127 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2128 				 &msg_compat->msg_controllen);
2129 	else
2130 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2131 				 &msg->msg_controllen);
2132 	if (err)
2133 		goto out_freeiov;
2134 	err = len;
2135 
2136 out_freeiov:
2137 	kfree(iov);
2138 	return err;
2139 }
2140 
2141 /*
2142  *	BSD recvmsg interface
2143  */
2144 
2145 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2146 {
2147 	int fput_needed, err;
2148 	struct msghdr msg_sys;
2149 	struct socket *sock;
2150 
2151 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2152 	if (!sock)
2153 		goto out;
2154 
2155 	err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2156 
2157 	fput_light(sock->file, fput_needed);
2158 out:
2159 	return err;
2160 }
2161 
2162 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2163 		unsigned int, flags)
2164 {
2165 	if (flags & MSG_CMSG_COMPAT)
2166 		return -EINVAL;
2167 	return __sys_recvmsg(fd, msg, flags);
2168 }
2169 
2170 /*
2171  *     Linux recvmmsg interface
2172  */
2173 
2174 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2175 		   unsigned int flags, struct timespec *timeout)
2176 {
2177 	int fput_needed, err, datagrams;
2178 	struct socket *sock;
2179 	struct mmsghdr __user *entry;
2180 	struct compat_mmsghdr __user *compat_entry;
2181 	struct msghdr msg_sys;
2182 	struct timespec end_time;
2183 
2184 	if (timeout &&
2185 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2186 				    timeout->tv_nsec))
2187 		return -EINVAL;
2188 
2189 	datagrams = 0;
2190 
2191 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2192 	if (!sock)
2193 		return err;
2194 
2195 	err = sock_error(sock->sk);
2196 	if (err)
2197 		goto out_put;
2198 
2199 	entry = mmsg;
2200 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2201 
2202 	while (datagrams < vlen) {
2203 		/*
2204 		 * No need to ask LSM for more than the first datagram.
2205 		 */
2206 		if (MSG_CMSG_COMPAT & flags) {
2207 			err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2208 					     &msg_sys, flags & ~MSG_WAITFORONE,
2209 					     datagrams);
2210 			if (err < 0)
2211 				break;
2212 			err = __put_user(err, &compat_entry->msg_len);
2213 			++compat_entry;
2214 		} else {
2215 			err = ___sys_recvmsg(sock,
2216 					     (struct user_msghdr __user *)entry,
2217 					     &msg_sys, flags & ~MSG_WAITFORONE,
2218 					     datagrams);
2219 			if (err < 0)
2220 				break;
2221 			err = put_user(err, &entry->msg_len);
2222 			++entry;
2223 		}
2224 
2225 		if (err)
2226 			break;
2227 		++datagrams;
2228 
2229 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2230 		if (flags & MSG_WAITFORONE)
2231 			flags |= MSG_DONTWAIT;
2232 
2233 		if (timeout) {
2234 			ktime_get_ts(timeout);
2235 			*timeout = timespec_sub(end_time, *timeout);
2236 			if (timeout->tv_sec < 0) {
2237 				timeout->tv_sec = timeout->tv_nsec = 0;
2238 				break;
2239 			}
2240 
2241 			/* Timeout, return less than vlen datagrams */
2242 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2243 				break;
2244 		}
2245 
2246 		/* Out of band data, return right away */
2247 		if (msg_sys.msg_flags & MSG_OOB)
2248 			break;
2249 	}
2250 
2251 out_put:
2252 	fput_light(sock->file, fput_needed);
2253 
2254 	if (err == 0)
2255 		return datagrams;
2256 
2257 	if (datagrams != 0) {
2258 		/*
2259 		 * We may return less entries than requested (vlen) if the
2260 		 * sock is non block and there aren't enough datagrams...
2261 		 */
2262 		if (err != -EAGAIN) {
2263 			/*
2264 			 * ... or  if recvmsg returns an error after we
2265 			 * received some datagrams, where we record the
2266 			 * error to return on the next call or if the
2267 			 * app asks about it using getsockopt(SO_ERROR).
2268 			 */
2269 			sock->sk->sk_err = -err;
2270 		}
2271 
2272 		return datagrams;
2273 	}
2274 
2275 	return err;
2276 }
2277 
2278 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2279 		unsigned int, vlen, unsigned int, flags,
2280 		struct timespec __user *, timeout)
2281 {
2282 	int datagrams;
2283 	struct timespec timeout_sys;
2284 
2285 	if (flags & MSG_CMSG_COMPAT)
2286 		return -EINVAL;
2287 
2288 	if (!timeout)
2289 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2290 
2291 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2292 		return -EFAULT;
2293 
2294 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2295 
2296 	if (datagrams > 0 &&
2297 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2298 		datagrams = -EFAULT;
2299 
2300 	return datagrams;
2301 }
2302 
2303 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2304 /* Argument list sizes for sys_socketcall */
2305 #define AL(x) ((x) * sizeof(unsigned long))
2306 static const unsigned char nargs[21] = {
2307 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2308 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2309 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2310 	AL(4), AL(5), AL(4)
2311 };
2312 
2313 #undef AL
2314 
2315 /*
2316  *	System call vectors.
2317  *
2318  *	Argument checking cleaned up. Saved 20% in size.
2319  *  This function doesn't need to set the kernel lock because
2320  *  it is set by the callees.
2321  */
2322 
2323 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2324 {
2325 	unsigned long a[AUDITSC_ARGS];
2326 	unsigned long a0, a1;
2327 	int err;
2328 	unsigned int len;
2329 
2330 	if (call < 1 || call > SYS_SENDMMSG)
2331 		return -EINVAL;
2332 
2333 	len = nargs[call];
2334 	if (len > sizeof(a))
2335 		return -EINVAL;
2336 
2337 	/* copy_from_user should be SMP safe. */
2338 	if (copy_from_user(a, args, len))
2339 		return -EFAULT;
2340 
2341 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2342 	if (err)
2343 		return err;
2344 
2345 	a0 = a[0];
2346 	a1 = a[1];
2347 
2348 	switch (call) {
2349 	case SYS_SOCKET:
2350 		err = sys_socket(a0, a1, a[2]);
2351 		break;
2352 	case SYS_BIND:
2353 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2354 		break;
2355 	case SYS_CONNECT:
2356 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2357 		break;
2358 	case SYS_LISTEN:
2359 		err = sys_listen(a0, a1);
2360 		break;
2361 	case SYS_ACCEPT:
2362 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2363 				  (int __user *)a[2], 0);
2364 		break;
2365 	case SYS_GETSOCKNAME:
2366 		err =
2367 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2368 				    (int __user *)a[2]);
2369 		break;
2370 	case SYS_GETPEERNAME:
2371 		err =
2372 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2373 				    (int __user *)a[2]);
2374 		break;
2375 	case SYS_SOCKETPAIR:
2376 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2377 		break;
2378 	case SYS_SEND:
2379 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2380 		break;
2381 	case SYS_SENDTO:
2382 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2383 				 (struct sockaddr __user *)a[4], a[5]);
2384 		break;
2385 	case SYS_RECV:
2386 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2387 		break;
2388 	case SYS_RECVFROM:
2389 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2390 				   (struct sockaddr __user *)a[4],
2391 				   (int __user *)a[5]);
2392 		break;
2393 	case SYS_SHUTDOWN:
2394 		err = sys_shutdown(a0, a1);
2395 		break;
2396 	case SYS_SETSOCKOPT:
2397 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2398 		break;
2399 	case SYS_GETSOCKOPT:
2400 		err =
2401 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2402 				   (int __user *)a[4]);
2403 		break;
2404 	case SYS_SENDMSG:
2405 		err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2406 		break;
2407 	case SYS_SENDMMSG:
2408 		err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2409 		break;
2410 	case SYS_RECVMSG:
2411 		err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2412 		break;
2413 	case SYS_RECVMMSG:
2414 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2415 				   (struct timespec __user *)a[4]);
2416 		break;
2417 	case SYS_ACCEPT4:
2418 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2419 				  (int __user *)a[2], a[3]);
2420 		break;
2421 	default:
2422 		err = -EINVAL;
2423 		break;
2424 	}
2425 	return err;
2426 }
2427 
2428 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2429 
2430 /**
2431  *	sock_register - add a socket protocol handler
2432  *	@ops: description of protocol
2433  *
2434  *	This function is called by a protocol handler that wants to
2435  *	advertise its address family, and have it linked into the
2436  *	socket interface. The value ops->family corresponds to the
2437  *	socket system call protocol family.
2438  */
2439 int sock_register(const struct net_proto_family *ops)
2440 {
2441 	int err;
2442 
2443 	if (ops->family >= NPROTO) {
2444 		pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2445 		return -ENOBUFS;
2446 	}
2447 
2448 	spin_lock(&net_family_lock);
2449 	if (rcu_dereference_protected(net_families[ops->family],
2450 				      lockdep_is_held(&net_family_lock)))
2451 		err = -EEXIST;
2452 	else {
2453 		rcu_assign_pointer(net_families[ops->family], ops);
2454 		err = 0;
2455 	}
2456 	spin_unlock(&net_family_lock);
2457 
2458 	pr_info("NET: Registered protocol family %d\n", ops->family);
2459 	return err;
2460 }
2461 EXPORT_SYMBOL(sock_register);
2462 
2463 /**
2464  *	sock_unregister - remove a protocol handler
2465  *	@family: protocol family to remove
2466  *
2467  *	This function is called by a protocol handler that wants to
2468  *	remove its address family, and have it unlinked from the
2469  *	new socket creation.
2470  *
2471  *	If protocol handler is a module, then it can use module reference
2472  *	counts to protect against new references. If protocol handler is not
2473  *	a module then it needs to provide its own protection in
2474  *	the ops->create routine.
2475  */
2476 void sock_unregister(int family)
2477 {
2478 	BUG_ON(family < 0 || family >= NPROTO);
2479 
2480 	spin_lock(&net_family_lock);
2481 	RCU_INIT_POINTER(net_families[family], NULL);
2482 	spin_unlock(&net_family_lock);
2483 
2484 	synchronize_rcu();
2485 
2486 	pr_info("NET: Unregistered protocol family %d\n", family);
2487 }
2488 EXPORT_SYMBOL(sock_unregister);
2489 
2490 static int __init sock_init(void)
2491 {
2492 	int err;
2493 	/*
2494 	 *      Initialize the network sysctl infrastructure.
2495 	 */
2496 	err = net_sysctl_init();
2497 	if (err)
2498 		goto out;
2499 
2500 	/*
2501 	 *      Initialize skbuff SLAB cache
2502 	 */
2503 	skb_init();
2504 
2505 	/*
2506 	 *      Initialize the protocols module.
2507 	 */
2508 
2509 	init_inodecache();
2510 
2511 	err = register_filesystem(&sock_fs_type);
2512 	if (err)
2513 		goto out_fs;
2514 	sock_mnt = kern_mount(&sock_fs_type);
2515 	if (IS_ERR(sock_mnt)) {
2516 		err = PTR_ERR(sock_mnt);
2517 		goto out_mount;
2518 	}
2519 
2520 	/* The real protocol initialization is performed in later initcalls.
2521 	 */
2522 
2523 #ifdef CONFIG_NETFILTER
2524 	err = netfilter_init();
2525 	if (err)
2526 		goto out;
2527 #endif
2528 
2529 	ptp_classifier_init();
2530 
2531 out:
2532 	return err;
2533 
2534 out_mount:
2535 	unregister_filesystem(&sock_fs_type);
2536 out_fs:
2537 	goto out;
2538 }
2539 
2540 core_initcall(sock_init);	/* early initcall */
2541 
2542 #ifdef CONFIG_PROC_FS
2543 void socket_seq_show(struct seq_file *seq)
2544 {
2545 	int cpu;
2546 	int counter = 0;
2547 
2548 	for_each_possible_cpu(cpu)
2549 	    counter += per_cpu(sockets_in_use, cpu);
2550 
2551 	/* It can be negative, by the way. 8) */
2552 	if (counter < 0)
2553 		counter = 0;
2554 
2555 	seq_printf(seq, "sockets: used %d\n", counter);
2556 }
2557 #endif				/* CONFIG_PROC_FS */
2558 
2559 #ifdef CONFIG_COMPAT
2560 static int do_siocgstamp(struct net *net, struct socket *sock,
2561 			 unsigned int cmd, void __user *up)
2562 {
2563 	mm_segment_t old_fs = get_fs();
2564 	struct timeval ktv;
2565 	int err;
2566 
2567 	set_fs(KERNEL_DS);
2568 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2569 	set_fs(old_fs);
2570 	if (!err)
2571 		err = compat_put_timeval(&ktv, up);
2572 
2573 	return err;
2574 }
2575 
2576 static int do_siocgstampns(struct net *net, struct socket *sock,
2577 			   unsigned int cmd, void __user *up)
2578 {
2579 	mm_segment_t old_fs = get_fs();
2580 	struct timespec kts;
2581 	int err;
2582 
2583 	set_fs(KERNEL_DS);
2584 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2585 	set_fs(old_fs);
2586 	if (!err)
2587 		err = compat_put_timespec(&kts, up);
2588 
2589 	return err;
2590 }
2591 
2592 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2593 {
2594 	struct ifreq __user *uifr;
2595 	int err;
2596 
2597 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2598 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2599 		return -EFAULT;
2600 
2601 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2602 	if (err)
2603 		return err;
2604 
2605 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2606 		return -EFAULT;
2607 
2608 	return 0;
2609 }
2610 
2611 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2612 {
2613 	struct compat_ifconf ifc32;
2614 	struct ifconf ifc;
2615 	struct ifconf __user *uifc;
2616 	struct compat_ifreq __user *ifr32;
2617 	struct ifreq __user *ifr;
2618 	unsigned int i, j;
2619 	int err;
2620 
2621 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2622 		return -EFAULT;
2623 
2624 	memset(&ifc, 0, sizeof(ifc));
2625 	if (ifc32.ifcbuf == 0) {
2626 		ifc32.ifc_len = 0;
2627 		ifc.ifc_len = 0;
2628 		ifc.ifc_req = NULL;
2629 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2630 	} else {
2631 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2632 			sizeof(struct ifreq);
2633 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2634 		ifc.ifc_len = len;
2635 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2636 		ifr32 = compat_ptr(ifc32.ifcbuf);
2637 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2638 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2639 				return -EFAULT;
2640 			ifr++;
2641 			ifr32++;
2642 		}
2643 	}
2644 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2645 		return -EFAULT;
2646 
2647 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2648 	if (err)
2649 		return err;
2650 
2651 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2652 		return -EFAULT;
2653 
2654 	ifr = ifc.ifc_req;
2655 	ifr32 = compat_ptr(ifc32.ifcbuf);
2656 	for (i = 0, j = 0;
2657 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2658 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2659 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2660 			return -EFAULT;
2661 		ifr32++;
2662 		ifr++;
2663 	}
2664 
2665 	if (ifc32.ifcbuf == 0) {
2666 		/* Translate from 64-bit structure multiple to
2667 		 * a 32-bit one.
2668 		 */
2669 		i = ifc.ifc_len;
2670 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2671 		ifc32.ifc_len = i;
2672 	} else {
2673 		ifc32.ifc_len = i;
2674 	}
2675 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2676 		return -EFAULT;
2677 
2678 	return 0;
2679 }
2680 
2681 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2682 {
2683 	struct compat_ethtool_rxnfc __user *compat_rxnfc;
2684 	bool convert_in = false, convert_out = false;
2685 	size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2686 	struct ethtool_rxnfc __user *rxnfc;
2687 	struct ifreq __user *ifr;
2688 	u32 rule_cnt = 0, actual_rule_cnt;
2689 	u32 ethcmd;
2690 	u32 data;
2691 	int ret;
2692 
2693 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2694 		return -EFAULT;
2695 
2696 	compat_rxnfc = compat_ptr(data);
2697 
2698 	if (get_user(ethcmd, &compat_rxnfc->cmd))
2699 		return -EFAULT;
2700 
2701 	/* Most ethtool structures are defined without padding.
2702 	 * Unfortunately struct ethtool_rxnfc is an exception.
2703 	 */
2704 	switch (ethcmd) {
2705 	default:
2706 		break;
2707 	case ETHTOOL_GRXCLSRLALL:
2708 		/* Buffer size is variable */
2709 		if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2710 			return -EFAULT;
2711 		if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2712 			return -ENOMEM;
2713 		buf_size += rule_cnt * sizeof(u32);
2714 		/* fall through */
2715 	case ETHTOOL_GRXRINGS:
2716 	case ETHTOOL_GRXCLSRLCNT:
2717 	case ETHTOOL_GRXCLSRULE:
2718 	case ETHTOOL_SRXCLSRLINS:
2719 		convert_out = true;
2720 		/* fall through */
2721 	case ETHTOOL_SRXCLSRLDEL:
2722 		buf_size += sizeof(struct ethtool_rxnfc);
2723 		convert_in = true;
2724 		break;
2725 	}
2726 
2727 	ifr = compat_alloc_user_space(buf_size);
2728 	rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2729 
2730 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2731 		return -EFAULT;
2732 
2733 	if (put_user(convert_in ? rxnfc : compat_ptr(data),
2734 		     &ifr->ifr_ifru.ifru_data))
2735 		return -EFAULT;
2736 
2737 	if (convert_in) {
2738 		/* We expect there to be holes between fs.m_ext and
2739 		 * fs.ring_cookie and at the end of fs, but nowhere else.
2740 		 */
2741 		BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2742 			     sizeof(compat_rxnfc->fs.m_ext) !=
2743 			     offsetof(struct ethtool_rxnfc, fs.m_ext) +
2744 			     sizeof(rxnfc->fs.m_ext));
2745 		BUILD_BUG_ON(
2746 			offsetof(struct compat_ethtool_rxnfc, fs.location) -
2747 			offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2748 			offsetof(struct ethtool_rxnfc, fs.location) -
2749 			offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2750 
2751 		if (copy_in_user(rxnfc, compat_rxnfc,
2752 				 (void __user *)(&rxnfc->fs.m_ext + 1) -
2753 				 (void __user *)rxnfc) ||
2754 		    copy_in_user(&rxnfc->fs.ring_cookie,
2755 				 &compat_rxnfc->fs.ring_cookie,
2756 				 (void __user *)(&rxnfc->fs.location + 1) -
2757 				 (void __user *)&rxnfc->fs.ring_cookie) ||
2758 		    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2759 				 sizeof(rxnfc->rule_cnt)))
2760 			return -EFAULT;
2761 	}
2762 
2763 	ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2764 	if (ret)
2765 		return ret;
2766 
2767 	if (convert_out) {
2768 		if (copy_in_user(compat_rxnfc, rxnfc,
2769 				 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2770 				 (const void __user *)rxnfc) ||
2771 		    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2772 				 &rxnfc->fs.ring_cookie,
2773 				 (const void __user *)(&rxnfc->fs.location + 1) -
2774 				 (const void __user *)&rxnfc->fs.ring_cookie) ||
2775 		    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2776 				 sizeof(rxnfc->rule_cnt)))
2777 			return -EFAULT;
2778 
2779 		if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2780 			/* As an optimisation, we only copy the actual
2781 			 * number of rules that the underlying
2782 			 * function returned.  Since Mallory might
2783 			 * change the rule count in user memory, we
2784 			 * check that it is less than the rule count
2785 			 * originally given (as the user buffer size),
2786 			 * which has been range-checked.
2787 			 */
2788 			if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2789 				return -EFAULT;
2790 			if (actual_rule_cnt < rule_cnt)
2791 				rule_cnt = actual_rule_cnt;
2792 			if (copy_in_user(&compat_rxnfc->rule_locs[0],
2793 					 &rxnfc->rule_locs[0],
2794 					 rule_cnt * sizeof(u32)))
2795 				return -EFAULT;
2796 		}
2797 	}
2798 
2799 	return 0;
2800 }
2801 
2802 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2803 {
2804 	void __user *uptr;
2805 	compat_uptr_t uptr32;
2806 	struct ifreq __user *uifr;
2807 
2808 	uifr = compat_alloc_user_space(sizeof(*uifr));
2809 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2810 		return -EFAULT;
2811 
2812 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2813 		return -EFAULT;
2814 
2815 	uptr = compat_ptr(uptr32);
2816 
2817 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2818 		return -EFAULT;
2819 
2820 	return dev_ioctl(net, SIOCWANDEV, uifr);
2821 }
2822 
2823 static int bond_ioctl(struct net *net, unsigned int cmd,
2824 			 struct compat_ifreq __user *ifr32)
2825 {
2826 	struct ifreq kifr;
2827 	mm_segment_t old_fs;
2828 	int err;
2829 
2830 	switch (cmd) {
2831 	case SIOCBONDENSLAVE:
2832 	case SIOCBONDRELEASE:
2833 	case SIOCBONDSETHWADDR:
2834 	case SIOCBONDCHANGEACTIVE:
2835 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2836 			return -EFAULT;
2837 
2838 		old_fs = get_fs();
2839 		set_fs(KERNEL_DS);
2840 		err = dev_ioctl(net, cmd,
2841 				(struct ifreq __user __force *) &kifr);
2842 		set_fs(old_fs);
2843 
2844 		return err;
2845 	default:
2846 		return -ENOIOCTLCMD;
2847 	}
2848 }
2849 
2850 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2851 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2852 				 struct compat_ifreq __user *u_ifreq32)
2853 {
2854 	struct ifreq __user *u_ifreq64;
2855 	char tmp_buf[IFNAMSIZ];
2856 	void __user *data64;
2857 	u32 data32;
2858 
2859 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2860 			   IFNAMSIZ))
2861 		return -EFAULT;
2862 	if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2863 		return -EFAULT;
2864 	data64 = compat_ptr(data32);
2865 
2866 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2867 
2868 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2869 			 IFNAMSIZ))
2870 		return -EFAULT;
2871 	if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2872 		return -EFAULT;
2873 
2874 	return dev_ioctl(net, cmd, u_ifreq64);
2875 }
2876 
2877 static int dev_ifsioc(struct net *net, struct socket *sock,
2878 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2879 {
2880 	struct ifreq __user *uifr;
2881 	int err;
2882 
2883 	uifr = compat_alloc_user_space(sizeof(*uifr));
2884 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2885 		return -EFAULT;
2886 
2887 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2888 
2889 	if (!err) {
2890 		switch (cmd) {
2891 		case SIOCGIFFLAGS:
2892 		case SIOCGIFMETRIC:
2893 		case SIOCGIFMTU:
2894 		case SIOCGIFMEM:
2895 		case SIOCGIFHWADDR:
2896 		case SIOCGIFINDEX:
2897 		case SIOCGIFADDR:
2898 		case SIOCGIFBRDADDR:
2899 		case SIOCGIFDSTADDR:
2900 		case SIOCGIFNETMASK:
2901 		case SIOCGIFPFLAGS:
2902 		case SIOCGIFTXQLEN:
2903 		case SIOCGMIIPHY:
2904 		case SIOCGMIIREG:
2905 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2906 				err = -EFAULT;
2907 			break;
2908 		}
2909 	}
2910 	return err;
2911 }
2912 
2913 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2914 			struct compat_ifreq __user *uifr32)
2915 {
2916 	struct ifreq ifr;
2917 	struct compat_ifmap __user *uifmap32;
2918 	mm_segment_t old_fs;
2919 	int err;
2920 
2921 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2922 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2923 	err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2924 	err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2925 	err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2926 	err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2927 	err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2928 	err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2929 	if (err)
2930 		return -EFAULT;
2931 
2932 	old_fs = get_fs();
2933 	set_fs(KERNEL_DS);
2934 	err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2935 	set_fs(old_fs);
2936 
2937 	if (cmd == SIOCGIFMAP && !err) {
2938 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2939 		err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2940 		err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2941 		err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2942 		err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2943 		err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2944 		err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2945 		if (err)
2946 			err = -EFAULT;
2947 	}
2948 	return err;
2949 }
2950 
2951 struct rtentry32 {
2952 	u32		rt_pad1;
2953 	struct sockaddr rt_dst;         /* target address               */
2954 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2955 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2956 	unsigned short	rt_flags;
2957 	short		rt_pad2;
2958 	u32		rt_pad3;
2959 	unsigned char	rt_tos;
2960 	unsigned char	rt_class;
2961 	short		rt_pad4;
2962 	short		rt_metric;      /* +1 for binary compatibility! */
2963 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2964 	u32		rt_mtu;         /* per route MTU/Window         */
2965 	u32		rt_window;      /* Window clamping              */
2966 	unsigned short  rt_irtt;        /* Initial RTT                  */
2967 };
2968 
2969 struct in6_rtmsg32 {
2970 	struct in6_addr		rtmsg_dst;
2971 	struct in6_addr		rtmsg_src;
2972 	struct in6_addr		rtmsg_gateway;
2973 	u32			rtmsg_type;
2974 	u16			rtmsg_dst_len;
2975 	u16			rtmsg_src_len;
2976 	u32			rtmsg_metric;
2977 	u32			rtmsg_info;
2978 	u32			rtmsg_flags;
2979 	s32			rtmsg_ifindex;
2980 };
2981 
2982 static int routing_ioctl(struct net *net, struct socket *sock,
2983 			 unsigned int cmd, void __user *argp)
2984 {
2985 	int ret;
2986 	void *r = NULL;
2987 	struct in6_rtmsg r6;
2988 	struct rtentry r4;
2989 	char devname[16];
2990 	u32 rtdev;
2991 	mm_segment_t old_fs = get_fs();
2992 
2993 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2994 		struct in6_rtmsg32 __user *ur6 = argp;
2995 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2996 			3 * sizeof(struct in6_addr));
2997 		ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2998 		ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2999 		ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3000 		ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3001 		ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3002 		ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3003 		ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3004 
3005 		r = (void *) &r6;
3006 	} else { /* ipv4 */
3007 		struct rtentry32 __user *ur4 = argp;
3008 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3009 					3 * sizeof(struct sockaddr));
3010 		ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3011 		ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3012 		ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3013 		ret |= get_user(r4.rt_window, &(ur4->rt_window));
3014 		ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3015 		ret |= get_user(rtdev, &(ur4->rt_dev));
3016 		if (rtdev) {
3017 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3018 			r4.rt_dev = (char __user __force *)devname;
3019 			devname[15] = 0;
3020 		} else
3021 			r4.rt_dev = NULL;
3022 
3023 		r = (void *) &r4;
3024 	}
3025 
3026 	if (ret) {
3027 		ret = -EFAULT;
3028 		goto out;
3029 	}
3030 
3031 	set_fs(KERNEL_DS);
3032 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3033 	set_fs(old_fs);
3034 
3035 out:
3036 	return ret;
3037 }
3038 
3039 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3040  * for some operations; this forces use of the newer bridge-utils that
3041  * use compatible ioctls
3042  */
3043 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3044 {
3045 	compat_ulong_t tmp;
3046 
3047 	if (get_user(tmp, argp))
3048 		return -EFAULT;
3049 	if (tmp == BRCTL_GET_VERSION)
3050 		return BRCTL_VERSION + 1;
3051 	return -EINVAL;
3052 }
3053 
3054 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3055 			 unsigned int cmd, unsigned long arg)
3056 {
3057 	void __user *argp = compat_ptr(arg);
3058 	struct sock *sk = sock->sk;
3059 	struct net *net = sock_net(sk);
3060 
3061 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3062 		return compat_ifr_data_ioctl(net, cmd, argp);
3063 
3064 	switch (cmd) {
3065 	case SIOCSIFBR:
3066 	case SIOCGIFBR:
3067 		return old_bridge_ioctl(argp);
3068 	case SIOCGIFNAME:
3069 		return dev_ifname32(net, argp);
3070 	case SIOCGIFCONF:
3071 		return dev_ifconf(net, argp);
3072 	case SIOCETHTOOL:
3073 		return ethtool_ioctl(net, argp);
3074 	case SIOCWANDEV:
3075 		return compat_siocwandev(net, argp);
3076 	case SIOCGIFMAP:
3077 	case SIOCSIFMAP:
3078 		return compat_sioc_ifmap(net, cmd, argp);
3079 	case SIOCBONDENSLAVE:
3080 	case SIOCBONDRELEASE:
3081 	case SIOCBONDSETHWADDR:
3082 	case SIOCBONDCHANGEACTIVE:
3083 		return bond_ioctl(net, cmd, argp);
3084 	case SIOCADDRT:
3085 	case SIOCDELRT:
3086 		return routing_ioctl(net, sock, cmd, argp);
3087 	case SIOCGSTAMP:
3088 		return do_siocgstamp(net, sock, cmd, argp);
3089 	case SIOCGSTAMPNS:
3090 		return do_siocgstampns(net, sock, cmd, argp);
3091 	case SIOCBONDSLAVEINFOQUERY:
3092 	case SIOCBONDINFOQUERY:
3093 	case SIOCSHWTSTAMP:
3094 	case SIOCGHWTSTAMP:
3095 		return compat_ifr_data_ioctl(net, cmd, argp);
3096 
3097 	case FIOSETOWN:
3098 	case SIOCSPGRP:
3099 	case FIOGETOWN:
3100 	case SIOCGPGRP:
3101 	case SIOCBRADDBR:
3102 	case SIOCBRDELBR:
3103 	case SIOCGIFVLAN:
3104 	case SIOCSIFVLAN:
3105 	case SIOCADDDLCI:
3106 	case SIOCDELDLCI:
3107 		return sock_ioctl(file, cmd, arg);
3108 
3109 	case SIOCGIFFLAGS:
3110 	case SIOCSIFFLAGS:
3111 	case SIOCGIFMETRIC:
3112 	case SIOCSIFMETRIC:
3113 	case SIOCGIFMTU:
3114 	case SIOCSIFMTU:
3115 	case SIOCGIFMEM:
3116 	case SIOCSIFMEM:
3117 	case SIOCGIFHWADDR:
3118 	case SIOCSIFHWADDR:
3119 	case SIOCADDMULTI:
3120 	case SIOCDELMULTI:
3121 	case SIOCGIFINDEX:
3122 	case SIOCGIFADDR:
3123 	case SIOCSIFADDR:
3124 	case SIOCSIFHWBROADCAST:
3125 	case SIOCDIFADDR:
3126 	case SIOCGIFBRDADDR:
3127 	case SIOCSIFBRDADDR:
3128 	case SIOCGIFDSTADDR:
3129 	case SIOCSIFDSTADDR:
3130 	case SIOCGIFNETMASK:
3131 	case SIOCSIFNETMASK:
3132 	case SIOCSIFPFLAGS:
3133 	case SIOCGIFPFLAGS:
3134 	case SIOCGIFTXQLEN:
3135 	case SIOCSIFTXQLEN:
3136 	case SIOCBRADDIF:
3137 	case SIOCBRDELIF:
3138 	case SIOCSIFNAME:
3139 	case SIOCGMIIPHY:
3140 	case SIOCGMIIREG:
3141 	case SIOCSMIIREG:
3142 		return dev_ifsioc(net, sock, cmd, argp);
3143 
3144 	case SIOCSARP:
3145 	case SIOCGARP:
3146 	case SIOCDARP:
3147 	case SIOCATMARK:
3148 		return sock_do_ioctl(net, sock, cmd, arg);
3149 	}
3150 
3151 	return -ENOIOCTLCMD;
3152 }
3153 
3154 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3155 			      unsigned long arg)
3156 {
3157 	struct socket *sock = file->private_data;
3158 	int ret = -ENOIOCTLCMD;
3159 	struct sock *sk;
3160 	struct net *net;
3161 
3162 	sk = sock->sk;
3163 	net = sock_net(sk);
3164 
3165 	if (sock->ops->compat_ioctl)
3166 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
3167 
3168 	if (ret == -ENOIOCTLCMD &&
3169 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3170 		ret = compat_wext_handle_ioctl(net, cmd, arg);
3171 
3172 	if (ret == -ENOIOCTLCMD)
3173 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3174 
3175 	return ret;
3176 }
3177 #endif
3178 
3179 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3180 {
3181 	return sock->ops->bind(sock, addr, addrlen);
3182 }
3183 EXPORT_SYMBOL(kernel_bind);
3184 
3185 int kernel_listen(struct socket *sock, int backlog)
3186 {
3187 	return sock->ops->listen(sock, backlog);
3188 }
3189 EXPORT_SYMBOL(kernel_listen);
3190 
3191 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3192 {
3193 	struct sock *sk = sock->sk;
3194 	int err;
3195 
3196 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3197 			       newsock);
3198 	if (err < 0)
3199 		goto done;
3200 
3201 	err = sock->ops->accept(sock, *newsock, flags);
3202 	if (err < 0) {
3203 		sock_release(*newsock);
3204 		*newsock = NULL;
3205 		goto done;
3206 	}
3207 
3208 	(*newsock)->ops = sock->ops;
3209 	__module_get((*newsock)->ops->owner);
3210 
3211 done:
3212 	return err;
3213 }
3214 EXPORT_SYMBOL(kernel_accept);
3215 
3216 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3217 		   int flags)
3218 {
3219 	return sock->ops->connect(sock, addr, addrlen, flags);
3220 }
3221 EXPORT_SYMBOL(kernel_connect);
3222 
3223 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3224 			 int *addrlen)
3225 {
3226 	return sock->ops->getname(sock, addr, addrlen, 0);
3227 }
3228 EXPORT_SYMBOL(kernel_getsockname);
3229 
3230 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3231 			 int *addrlen)
3232 {
3233 	return sock->ops->getname(sock, addr, addrlen, 1);
3234 }
3235 EXPORT_SYMBOL(kernel_getpeername);
3236 
3237 int kernel_getsockopt(struct socket *sock, int level, int optname,
3238 			char *optval, int *optlen)
3239 {
3240 	mm_segment_t oldfs = get_fs();
3241 	char __user *uoptval;
3242 	int __user *uoptlen;
3243 	int err;
3244 
3245 	uoptval = (char __user __force *) optval;
3246 	uoptlen = (int __user __force *) optlen;
3247 
3248 	set_fs(KERNEL_DS);
3249 	if (level == SOL_SOCKET)
3250 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3251 	else
3252 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3253 					    uoptlen);
3254 	set_fs(oldfs);
3255 	return err;
3256 }
3257 EXPORT_SYMBOL(kernel_getsockopt);
3258 
3259 int kernel_setsockopt(struct socket *sock, int level, int optname,
3260 			char *optval, unsigned int optlen)
3261 {
3262 	mm_segment_t oldfs = get_fs();
3263 	char __user *uoptval;
3264 	int err;
3265 
3266 	uoptval = (char __user __force *) optval;
3267 
3268 	set_fs(KERNEL_DS);
3269 	if (level == SOL_SOCKET)
3270 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3271 	else
3272 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3273 					    optlen);
3274 	set_fs(oldfs);
3275 	return err;
3276 }
3277 EXPORT_SYMBOL(kernel_setsockopt);
3278 
3279 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3280 		    size_t size, int flags)
3281 {
3282 	if (sock->ops->sendpage)
3283 		return sock->ops->sendpage(sock, page, offset, size, flags);
3284 
3285 	return sock_no_sendpage(sock, page, offset, size, flags);
3286 }
3287 EXPORT_SYMBOL(kernel_sendpage);
3288 
3289 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3290 {
3291 	mm_segment_t oldfs = get_fs();
3292 	int err;
3293 
3294 	set_fs(KERNEL_DS);
3295 	err = sock->ops->ioctl(sock, cmd, arg);
3296 	set_fs(oldfs);
3297 
3298 	return err;
3299 }
3300 EXPORT_SYMBOL(kernel_sock_ioctl);
3301 
3302 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3303 {
3304 	return sock->ops->shutdown(sock, how);
3305 }
3306 EXPORT_SYMBOL(kernel_sock_shutdown);
3307