1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <[email protected]> 7 * Ross Biro 8 * Fred N. van Kempen, <[email protected]> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 #include <linux/magic.h> 90 #include <linux/slab.h> 91 92 #include <asm/uaccess.h> 93 #include <asm/unistd.h> 94 95 #include <net/compat.h> 96 #include <net/wext.h> 97 #include <net/cls_cgroup.h> 98 99 #include <net/sock.h> 100 #include <linux/netfilter.h> 101 102 #include <linux/if_tun.h> 103 #include <linux/ipv6_route.h> 104 #include <linux/route.h> 105 #include <linux/sockios.h> 106 #include <linux/atalk.h> 107 108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 110 unsigned long nr_segs, loff_t pos); 111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 112 unsigned long nr_segs, loff_t pos); 113 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 114 115 static int sock_close(struct inode *inode, struct file *file); 116 static unsigned int sock_poll(struct file *file, 117 struct poll_table_struct *wait); 118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 119 #ifdef CONFIG_COMPAT 120 static long compat_sock_ioctl(struct file *file, 121 unsigned int cmd, unsigned long arg); 122 #endif 123 static int sock_fasync(int fd, struct file *filp, int on); 124 static ssize_t sock_sendpage(struct file *file, struct page *page, 125 int offset, size_t size, loff_t *ppos, int more); 126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 127 struct pipe_inode_info *pipe, size_t len, 128 unsigned int flags); 129 130 /* 131 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 132 * in the operation structures but are done directly via the socketcall() multiplexor. 133 */ 134 135 static const struct file_operations socket_file_ops = { 136 .owner = THIS_MODULE, 137 .llseek = no_llseek, 138 .aio_read = sock_aio_read, 139 .aio_write = sock_aio_write, 140 .poll = sock_poll, 141 .unlocked_ioctl = sock_ioctl, 142 #ifdef CONFIG_COMPAT 143 .compat_ioctl = compat_sock_ioctl, 144 #endif 145 .mmap = sock_mmap, 146 .open = sock_no_open, /* special open code to disallow open via /proc */ 147 .release = sock_close, 148 .fasync = sock_fasync, 149 .sendpage = sock_sendpage, 150 .splice_write = generic_splice_sendpage, 151 .splice_read = sock_splice_read, 152 }; 153 154 /* 155 * The protocol list. Each protocol is registered in here. 156 */ 157 158 static DEFINE_SPINLOCK(net_family_lock); 159 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 160 161 /* 162 * Statistics counters of the socket lists 163 */ 164 165 static DEFINE_PER_CPU(int, sockets_in_use); 166 167 /* 168 * Support routines. 169 * Move socket addresses back and forth across the kernel/user 170 * divide and look after the messy bits. 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr, 213 int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 static struct kmem_cache *sock_inode_cachep __read_mostly; 239 240 static struct inode *sock_alloc_inode(struct super_block *sb) 241 { 242 struct socket_alloc *ei; 243 244 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 245 if (!ei) 246 return NULL; 247 ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL); 248 if (!ei->socket.wq) { 249 kmem_cache_free(sock_inode_cachep, ei); 250 return NULL; 251 } 252 init_waitqueue_head(&ei->socket.wq->wait); 253 ei->socket.wq->fasync_list = NULL; 254 255 ei->socket.state = SS_UNCONNECTED; 256 ei->socket.flags = 0; 257 ei->socket.ops = NULL; 258 ei->socket.sk = NULL; 259 ei->socket.file = NULL; 260 261 return &ei->vfs_inode; 262 } 263 264 265 static void wq_free_rcu(struct rcu_head *head) 266 { 267 struct socket_wq *wq = container_of(head, struct socket_wq, rcu); 268 269 kfree(wq); 270 } 271 272 static void sock_destroy_inode(struct inode *inode) 273 { 274 struct socket_alloc *ei; 275 276 ei = container_of(inode, struct socket_alloc, vfs_inode); 277 call_rcu(&ei->socket.wq->rcu, wq_free_rcu); 278 kmem_cache_free(sock_inode_cachep, ei); 279 } 280 281 static void init_once(void *foo) 282 { 283 struct socket_alloc *ei = (struct socket_alloc *)foo; 284 285 inode_init_once(&ei->vfs_inode); 286 } 287 288 static int init_inodecache(void) 289 { 290 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 291 sizeof(struct socket_alloc), 292 0, 293 (SLAB_HWCACHE_ALIGN | 294 SLAB_RECLAIM_ACCOUNT | 295 SLAB_MEM_SPREAD), 296 init_once); 297 if (sock_inode_cachep == NULL) 298 return -ENOMEM; 299 return 0; 300 } 301 302 static const struct super_operations sockfs_ops = { 303 .alloc_inode = sock_alloc_inode, 304 .destroy_inode = sock_destroy_inode, 305 .statfs = simple_statfs, 306 }; 307 308 static int sockfs_get_sb(struct file_system_type *fs_type, 309 int flags, const char *dev_name, void *data, 310 struct vfsmount *mnt) 311 { 312 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 313 mnt); 314 } 315 316 static struct vfsmount *sock_mnt __read_mostly; 317 318 static struct file_system_type sock_fs_type = { 319 .name = "sockfs", 320 .get_sb = sockfs_get_sb, 321 .kill_sb = kill_anon_super, 322 }; 323 324 /* 325 * sockfs_dname() is called from d_path(). 326 */ 327 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 328 { 329 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 330 dentry->d_inode->i_ino); 331 } 332 333 static const struct dentry_operations sockfs_dentry_operations = { 334 .d_dname = sockfs_dname, 335 }; 336 337 /* 338 * Obtains the first available file descriptor and sets it up for use. 339 * 340 * These functions create file structures and maps them to fd space 341 * of the current process. On success it returns file descriptor 342 * and file struct implicitly stored in sock->file. 343 * Note that another thread may close file descriptor before we return 344 * from this function. We use the fact that now we do not refer 345 * to socket after mapping. If one day we will need it, this 346 * function will increment ref. count on file by 1. 347 * 348 * In any case returned fd MAY BE not valid! 349 * This race condition is unavoidable 350 * with shared fd spaces, we cannot solve it inside kernel, 351 * but we take care of internal coherence yet. 352 */ 353 354 static int sock_alloc_file(struct socket *sock, struct file **f, int flags) 355 { 356 struct qstr name = { .name = "" }; 357 struct path path; 358 struct file *file; 359 int fd; 360 361 fd = get_unused_fd_flags(flags); 362 if (unlikely(fd < 0)) 363 return fd; 364 365 path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 366 if (unlikely(!path.dentry)) { 367 put_unused_fd(fd); 368 return -ENOMEM; 369 } 370 path.mnt = mntget(sock_mnt); 371 372 path.dentry->d_op = &sockfs_dentry_operations; 373 d_instantiate(path.dentry, SOCK_INODE(sock)); 374 SOCK_INODE(sock)->i_fop = &socket_file_ops; 375 376 file = alloc_file(&path, FMODE_READ | FMODE_WRITE, 377 &socket_file_ops); 378 if (unlikely(!file)) { 379 /* drop dentry, keep inode */ 380 atomic_inc(&path.dentry->d_inode->i_count); 381 path_put(&path); 382 put_unused_fd(fd); 383 return -ENFILE; 384 } 385 386 sock->file = file; 387 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 388 file->f_pos = 0; 389 file->private_data = sock; 390 391 *f = file; 392 return fd; 393 } 394 395 int sock_map_fd(struct socket *sock, int flags) 396 { 397 struct file *newfile; 398 int fd = sock_alloc_file(sock, &newfile, flags); 399 400 if (likely(fd >= 0)) 401 fd_install(fd, newfile); 402 403 return fd; 404 } 405 EXPORT_SYMBOL(sock_map_fd); 406 407 static struct socket *sock_from_file(struct file *file, int *err) 408 { 409 if (file->f_op == &socket_file_ops) 410 return file->private_data; /* set in sock_map_fd */ 411 412 *err = -ENOTSOCK; 413 return NULL; 414 } 415 416 /** 417 * sockfd_lookup - Go from a file number to its socket slot 418 * @fd: file handle 419 * @err: pointer to an error code return 420 * 421 * The file handle passed in is locked and the socket it is bound 422 * too is returned. If an error occurs the err pointer is overwritten 423 * with a negative errno code and NULL is returned. The function checks 424 * for both invalid handles and passing a handle which is not a socket. 425 * 426 * On a success the socket object pointer is returned. 427 */ 428 429 struct socket *sockfd_lookup(int fd, int *err) 430 { 431 struct file *file; 432 struct socket *sock; 433 434 file = fget(fd); 435 if (!file) { 436 *err = -EBADF; 437 return NULL; 438 } 439 440 sock = sock_from_file(file, err); 441 if (!sock) 442 fput(file); 443 return sock; 444 } 445 EXPORT_SYMBOL(sockfd_lookup); 446 447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 448 { 449 struct file *file; 450 struct socket *sock; 451 452 *err = -EBADF; 453 file = fget_light(fd, fput_needed); 454 if (file) { 455 sock = sock_from_file(file, err); 456 if (sock) 457 return sock; 458 fput_light(file, *fput_needed); 459 } 460 return NULL; 461 } 462 463 /** 464 * sock_alloc - allocate a socket 465 * 466 * Allocate a new inode and socket object. The two are bound together 467 * and initialised. The socket is then returned. If we are out of inodes 468 * NULL is returned. 469 */ 470 471 static struct socket *sock_alloc(void) 472 { 473 struct inode *inode; 474 struct socket *sock; 475 476 inode = new_inode(sock_mnt->mnt_sb); 477 if (!inode) 478 return NULL; 479 480 sock = SOCKET_I(inode); 481 482 kmemcheck_annotate_bitfield(sock, type); 483 inode->i_mode = S_IFSOCK | S_IRWXUGO; 484 inode->i_uid = current_fsuid(); 485 inode->i_gid = current_fsgid(); 486 487 percpu_add(sockets_in_use, 1); 488 return sock; 489 } 490 491 /* 492 * In theory you can't get an open on this inode, but /proc provides 493 * a back door. Remember to keep it shut otherwise you'll let the 494 * creepy crawlies in. 495 */ 496 497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 498 { 499 return -ENXIO; 500 } 501 502 const struct file_operations bad_sock_fops = { 503 .owner = THIS_MODULE, 504 .open = sock_no_open, 505 }; 506 507 /** 508 * sock_release - close a socket 509 * @sock: socket to close 510 * 511 * The socket is released from the protocol stack if it has a release 512 * callback, and the inode is then released if the socket is bound to 513 * an inode not a file. 514 */ 515 516 void sock_release(struct socket *sock) 517 { 518 if (sock->ops) { 519 struct module *owner = sock->ops->owner; 520 521 sock->ops->release(sock); 522 sock->ops = NULL; 523 module_put(owner); 524 } 525 526 if (sock->wq->fasync_list) 527 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 528 529 percpu_sub(sockets_in_use, 1); 530 if (!sock->file) { 531 iput(SOCK_INODE(sock)); 532 return; 533 } 534 sock->file = NULL; 535 } 536 EXPORT_SYMBOL(sock_release); 537 538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags) 539 { 540 *tx_flags = 0; 541 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE)) 542 *tx_flags |= SKBTX_HW_TSTAMP; 543 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE)) 544 *tx_flags |= SKBTX_SW_TSTAMP; 545 return 0; 546 } 547 EXPORT_SYMBOL(sock_tx_timestamp); 548 549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 550 struct msghdr *msg, size_t size) 551 { 552 struct sock_iocb *si = kiocb_to_siocb(iocb); 553 int err; 554 555 sock_update_classid(sock->sk); 556 557 si->sock = sock; 558 si->scm = NULL; 559 si->msg = msg; 560 si->size = size; 561 562 err = security_socket_sendmsg(sock, msg, size); 563 if (err) 564 return err; 565 566 return sock->ops->sendmsg(iocb, sock, msg, size); 567 } 568 569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 570 { 571 struct kiocb iocb; 572 struct sock_iocb siocb; 573 int ret; 574 575 init_sync_kiocb(&iocb, NULL); 576 iocb.private = &siocb; 577 ret = __sock_sendmsg(&iocb, sock, msg, size); 578 if (-EIOCBQUEUED == ret) 579 ret = wait_on_sync_kiocb(&iocb); 580 return ret; 581 } 582 EXPORT_SYMBOL(sock_sendmsg); 583 584 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 585 struct kvec *vec, size_t num, size_t size) 586 { 587 mm_segment_t oldfs = get_fs(); 588 int result; 589 590 set_fs(KERNEL_DS); 591 /* 592 * the following is safe, since for compiler definitions of kvec and 593 * iovec are identical, yielding the same in-core layout and alignment 594 */ 595 msg->msg_iov = (struct iovec *)vec; 596 msg->msg_iovlen = num; 597 result = sock_sendmsg(sock, msg, size); 598 set_fs(oldfs); 599 return result; 600 } 601 EXPORT_SYMBOL(kernel_sendmsg); 602 603 static int ktime2ts(ktime_t kt, struct timespec *ts) 604 { 605 if (kt.tv64) { 606 *ts = ktime_to_timespec(kt); 607 return 1; 608 } else { 609 return 0; 610 } 611 } 612 613 /* 614 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 615 */ 616 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 617 struct sk_buff *skb) 618 { 619 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP); 620 struct timespec ts[3]; 621 int empty = 1; 622 struct skb_shared_hwtstamps *shhwtstamps = 623 skb_hwtstamps(skb); 624 625 /* Race occurred between timestamp enabling and packet 626 receiving. Fill in the current time for now. */ 627 if (need_software_tstamp && skb->tstamp.tv64 == 0) 628 __net_timestamp(skb); 629 630 if (need_software_tstamp) { 631 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 632 struct timeval tv; 633 skb_get_timestamp(skb, &tv); 634 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, 635 sizeof(tv), &tv); 636 } else { 637 skb_get_timestampns(skb, &ts[0]); 638 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, 639 sizeof(ts[0]), &ts[0]); 640 } 641 } 642 643 644 memset(ts, 0, sizeof(ts)); 645 if (skb->tstamp.tv64 && 646 sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) { 647 skb_get_timestampns(skb, ts + 0); 648 empty = 0; 649 } 650 if (shhwtstamps) { 651 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) && 652 ktime2ts(shhwtstamps->syststamp, ts + 1)) 653 empty = 0; 654 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) && 655 ktime2ts(shhwtstamps->hwtstamp, ts + 2)) 656 empty = 0; 657 } 658 if (!empty) 659 put_cmsg(msg, SOL_SOCKET, 660 SCM_TIMESTAMPING, sizeof(ts), &ts); 661 } 662 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 663 664 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) 665 { 666 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount) 667 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL, 668 sizeof(__u32), &skb->dropcount); 669 } 670 671 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, 672 struct sk_buff *skb) 673 { 674 sock_recv_timestamp(msg, sk, skb); 675 sock_recv_drops(msg, sk, skb); 676 } 677 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops); 678 679 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock, 680 struct msghdr *msg, size_t size, int flags) 681 { 682 struct sock_iocb *si = kiocb_to_siocb(iocb); 683 684 sock_update_classid(sock->sk); 685 686 si->sock = sock; 687 si->scm = NULL; 688 si->msg = msg; 689 si->size = size; 690 si->flags = flags; 691 692 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 693 } 694 695 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 696 struct msghdr *msg, size_t size, int flags) 697 { 698 int err = security_socket_recvmsg(sock, msg, size, flags); 699 700 return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags); 701 } 702 703 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 704 size_t size, int flags) 705 { 706 struct kiocb iocb; 707 struct sock_iocb siocb; 708 int ret; 709 710 init_sync_kiocb(&iocb, NULL); 711 iocb.private = &siocb; 712 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 713 if (-EIOCBQUEUED == ret) 714 ret = wait_on_sync_kiocb(&iocb); 715 return ret; 716 } 717 EXPORT_SYMBOL(sock_recvmsg); 718 719 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg, 720 size_t size, int flags) 721 { 722 struct kiocb iocb; 723 struct sock_iocb siocb; 724 int ret; 725 726 init_sync_kiocb(&iocb, NULL); 727 iocb.private = &siocb; 728 ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags); 729 if (-EIOCBQUEUED == ret) 730 ret = wait_on_sync_kiocb(&iocb); 731 return ret; 732 } 733 734 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 735 struct kvec *vec, size_t num, size_t size, int flags) 736 { 737 mm_segment_t oldfs = get_fs(); 738 int result; 739 740 set_fs(KERNEL_DS); 741 /* 742 * the following is safe, since for compiler definitions of kvec and 743 * iovec are identical, yielding the same in-core layout and alignment 744 */ 745 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 746 result = sock_recvmsg(sock, msg, size, flags); 747 set_fs(oldfs); 748 return result; 749 } 750 EXPORT_SYMBOL(kernel_recvmsg); 751 752 static void sock_aio_dtor(struct kiocb *iocb) 753 { 754 kfree(iocb->private); 755 } 756 757 static ssize_t sock_sendpage(struct file *file, struct page *page, 758 int offset, size_t size, loff_t *ppos, int more) 759 { 760 struct socket *sock; 761 int flags; 762 763 sock = file->private_data; 764 765 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 766 if (more) 767 flags |= MSG_MORE; 768 769 return kernel_sendpage(sock, page, offset, size, flags); 770 } 771 772 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 773 struct pipe_inode_info *pipe, size_t len, 774 unsigned int flags) 775 { 776 struct socket *sock = file->private_data; 777 778 if (unlikely(!sock->ops->splice_read)) 779 return -EINVAL; 780 781 sock_update_classid(sock->sk); 782 783 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 784 } 785 786 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 787 struct sock_iocb *siocb) 788 { 789 if (!is_sync_kiocb(iocb)) { 790 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 791 if (!siocb) 792 return NULL; 793 iocb->ki_dtor = sock_aio_dtor; 794 } 795 796 siocb->kiocb = iocb; 797 iocb->private = siocb; 798 return siocb; 799 } 800 801 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 802 struct file *file, const struct iovec *iov, 803 unsigned long nr_segs) 804 { 805 struct socket *sock = file->private_data; 806 size_t size = 0; 807 int i; 808 809 for (i = 0; i < nr_segs; i++) 810 size += iov[i].iov_len; 811 812 msg->msg_name = NULL; 813 msg->msg_namelen = 0; 814 msg->msg_control = NULL; 815 msg->msg_controllen = 0; 816 msg->msg_iov = (struct iovec *)iov; 817 msg->msg_iovlen = nr_segs; 818 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 819 820 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 821 } 822 823 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 824 unsigned long nr_segs, loff_t pos) 825 { 826 struct sock_iocb siocb, *x; 827 828 if (pos != 0) 829 return -ESPIPE; 830 831 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 832 return 0; 833 834 835 x = alloc_sock_iocb(iocb, &siocb); 836 if (!x) 837 return -ENOMEM; 838 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 839 } 840 841 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 842 struct file *file, const struct iovec *iov, 843 unsigned long nr_segs) 844 { 845 struct socket *sock = file->private_data; 846 size_t size = 0; 847 int i; 848 849 for (i = 0; i < nr_segs; i++) 850 size += iov[i].iov_len; 851 852 msg->msg_name = NULL; 853 msg->msg_namelen = 0; 854 msg->msg_control = NULL; 855 msg->msg_controllen = 0; 856 msg->msg_iov = (struct iovec *)iov; 857 msg->msg_iovlen = nr_segs; 858 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 859 if (sock->type == SOCK_SEQPACKET) 860 msg->msg_flags |= MSG_EOR; 861 862 return __sock_sendmsg(iocb, sock, msg, size); 863 } 864 865 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 866 unsigned long nr_segs, loff_t pos) 867 { 868 struct sock_iocb siocb, *x; 869 870 if (pos != 0) 871 return -ESPIPE; 872 873 x = alloc_sock_iocb(iocb, &siocb); 874 if (!x) 875 return -ENOMEM; 876 877 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 878 } 879 880 /* 881 * Atomic setting of ioctl hooks to avoid race 882 * with module unload. 883 */ 884 885 static DEFINE_MUTEX(br_ioctl_mutex); 886 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg); 887 888 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 889 { 890 mutex_lock(&br_ioctl_mutex); 891 br_ioctl_hook = hook; 892 mutex_unlock(&br_ioctl_mutex); 893 } 894 EXPORT_SYMBOL(brioctl_set); 895 896 static DEFINE_MUTEX(vlan_ioctl_mutex); 897 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 898 899 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 900 { 901 mutex_lock(&vlan_ioctl_mutex); 902 vlan_ioctl_hook = hook; 903 mutex_unlock(&vlan_ioctl_mutex); 904 } 905 EXPORT_SYMBOL(vlan_ioctl_set); 906 907 static DEFINE_MUTEX(dlci_ioctl_mutex); 908 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 909 910 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 911 { 912 mutex_lock(&dlci_ioctl_mutex); 913 dlci_ioctl_hook = hook; 914 mutex_unlock(&dlci_ioctl_mutex); 915 } 916 EXPORT_SYMBOL(dlci_ioctl_set); 917 918 static long sock_do_ioctl(struct net *net, struct socket *sock, 919 unsigned int cmd, unsigned long arg) 920 { 921 int err; 922 void __user *argp = (void __user *)arg; 923 924 err = sock->ops->ioctl(sock, cmd, arg); 925 926 /* 927 * If this ioctl is unknown try to hand it down 928 * to the NIC driver. 929 */ 930 if (err == -ENOIOCTLCMD) 931 err = dev_ioctl(net, cmd, argp); 932 933 return err; 934 } 935 936 /* 937 * With an ioctl, arg may well be a user mode pointer, but we don't know 938 * what to do with it - that's up to the protocol still. 939 */ 940 941 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 942 { 943 struct socket *sock; 944 struct sock *sk; 945 void __user *argp = (void __user *)arg; 946 int pid, err; 947 struct net *net; 948 949 sock = file->private_data; 950 sk = sock->sk; 951 net = sock_net(sk); 952 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 953 err = dev_ioctl(net, cmd, argp); 954 } else 955 #ifdef CONFIG_WEXT_CORE 956 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 957 err = dev_ioctl(net, cmd, argp); 958 } else 959 #endif 960 switch (cmd) { 961 case FIOSETOWN: 962 case SIOCSPGRP: 963 err = -EFAULT; 964 if (get_user(pid, (int __user *)argp)) 965 break; 966 err = f_setown(sock->file, pid, 1); 967 break; 968 case FIOGETOWN: 969 case SIOCGPGRP: 970 err = put_user(f_getown(sock->file), 971 (int __user *)argp); 972 break; 973 case SIOCGIFBR: 974 case SIOCSIFBR: 975 case SIOCBRADDBR: 976 case SIOCBRDELBR: 977 err = -ENOPKG; 978 if (!br_ioctl_hook) 979 request_module("bridge"); 980 981 mutex_lock(&br_ioctl_mutex); 982 if (br_ioctl_hook) 983 err = br_ioctl_hook(net, cmd, argp); 984 mutex_unlock(&br_ioctl_mutex); 985 break; 986 case SIOCGIFVLAN: 987 case SIOCSIFVLAN: 988 err = -ENOPKG; 989 if (!vlan_ioctl_hook) 990 request_module("8021q"); 991 992 mutex_lock(&vlan_ioctl_mutex); 993 if (vlan_ioctl_hook) 994 err = vlan_ioctl_hook(net, argp); 995 mutex_unlock(&vlan_ioctl_mutex); 996 break; 997 case SIOCADDDLCI: 998 case SIOCDELDLCI: 999 err = -ENOPKG; 1000 if (!dlci_ioctl_hook) 1001 request_module("dlci"); 1002 1003 mutex_lock(&dlci_ioctl_mutex); 1004 if (dlci_ioctl_hook) 1005 err = dlci_ioctl_hook(cmd, argp); 1006 mutex_unlock(&dlci_ioctl_mutex); 1007 break; 1008 default: 1009 err = sock_do_ioctl(net, sock, cmd, arg); 1010 break; 1011 } 1012 return err; 1013 } 1014 1015 int sock_create_lite(int family, int type, int protocol, struct socket **res) 1016 { 1017 int err; 1018 struct socket *sock = NULL; 1019 1020 err = security_socket_create(family, type, protocol, 1); 1021 if (err) 1022 goto out; 1023 1024 sock = sock_alloc(); 1025 if (!sock) { 1026 err = -ENOMEM; 1027 goto out; 1028 } 1029 1030 sock->type = type; 1031 err = security_socket_post_create(sock, family, type, protocol, 1); 1032 if (err) 1033 goto out_release; 1034 1035 out: 1036 *res = sock; 1037 return err; 1038 out_release: 1039 sock_release(sock); 1040 sock = NULL; 1041 goto out; 1042 } 1043 EXPORT_SYMBOL(sock_create_lite); 1044 1045 /* No kernel lock held - perfect */ 1046 static unsigned int sock_poll(struct file *file, poll_table *wait) 1047 { 1048 struct socket *sock; 1049 1050 /* 1051 * We can't return errors to poll, so it's either yes or no. 1052 */ 1053 sock = file->private_data; 1054 return sock->ops->poll(file, sock, wait); 1055 } 1056 1057 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 1058 { 1059 struct socket *sock = file->private_data; 1060 1061 return sock->ops->mmap(file, sock, vma); 1062 } 1063 1064 static int sock_close(struct inode *inode, struct file *filp) 1065 { 1066 /* 1067 * It was possible the inode is NULL we were 1068 * closing an unfinished socket. 1069 */ 1070 1071 if (!inode) { 1072 printk(KERN_DEBUG "sock_close: NULL inode\n"); 1073 return 0; 1074 } 1075 sock_release(SOCKET_I(inode)); 1076 return 0; 1077 } 1078 1079 /* 1080 * Update the socket async list 1081 * 1082 * Fasync_list locking strategy. 1083 * 1084 * 1. fasync_list is modified only under process context socket lock 1085 * i.e. under semaphore. 1086 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1087 * or under socket lock 1088 */ 1089 1090 static int sock_fasync(int fd, struct file *filp, int on) 1091 { 1092 struct socket *sock = filp->private_data; 1093 struct sock *sk = sock->sk; 1094 1095 if (sk == NULL) 1096 return -EINVAL; 1097 1098 lock_sock(sk); 1099 1100 fasync_helper(fd, filp, on, &sock->wq->fasync_list); 1101 1102 if (!sock->wq->fasync_list) 1103 sock_reset_flag(sk, SOCK_FASYNC); 1104 else 1105 sock_set_flag(sk, SOCK_FASYNC); 1106 1107 release_sock(sk); 1108 return 0; 1109 } 1110 1111 /* This function may be called only under socket lock or callback_lock or rcu_lock */ 1112 1113 int sock_wake_async(struct socket *sock, int how, int band) 1114 { 1115 struct socket_wq *wq; 1116 1117 if (!sock) 1118 return -1; 1119 rcu_read_lock(); 1120 wq = rcu_dereference(sock->wq); 1121 if (!wq || !wq->fasync_list) { 1122 rcu_read_unlock(); 1123 return -1; 1124 } 1125 switch (how) { 1126 case SOCK_WAKE_WAITD: 1127 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1128 break; 1129 goto call_kill; 1130 case SOCK_WAKE_SPACE: 1131 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1132 break; 1133 /* fall through */ 1134 case SOCK_WAKE_IO: 1135 call_kill: 1136 kill_fasync(&wq->fasync_list, SIGIO, band); 1137 break; 1138 case SOCK_WAKE_URG: 1139 kill_fasync(&wq->fasync_list, SIGURG, band); 1140 } 1141 rcu_read_unlock(); 1142 return 0; 1143 } 1144 EXPORT_SYMBOL(sock_wake_async); 1145 1146 static int __sock_create(struct net *net, int family, int type, int protocol, 1147 struct socket **res, int kern) 1148 { 1149 int err; 1150 struct socket *sock; 1151 const struct net_proto_family *pf; 1152 1153 /* 1154 * Check protocol is in range 1155 */ 1156 if (family < 0 || family >= NPROTO) 1157 return -EAFNOSUPPORT; 1158 if (type < 0 || type >= SOCK_MAX) 1159 return -EINVAL; 1160 1161 /* Compatibility. 1162 1163 This uglymoron is moved from INET layer to here to avoid 1164 deadlock in module load. 1165 */ 1166 if (family == PF_INET && type == SOCK_PACKET) { 1167 static int warned; 1168 if (!warned) { 1169 warned = 1; 1170 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1171 current->comm); 1172 } 1173 family = PF_PACKET; 1174 } 1175 1176 err = security_socket_create(family, type, protocol, kern); 1177 if (err) 1178 return err; 1179 1180 /* 1181 * Allocate the socket and allow the family to set things up. if 1182 * the protocol is 0, the family is instructed to select an appropriate 1183 * default. 1184 */ 1185 sock = sock_alloc(); 1186 if (!sock) { 1187 if (net_ratelimit()) 1188 printk(KERN_WARNING "socket: no more sockets\n"); 1189 return -ENFILE; /* Not exactly a match, but its the 1190 closest posix thing */ 1191 } 1192 1193 sock->type = type; 1194 1195 #ifdef CONFIG_MODULES 1196 /* Attempt to load a protocol module if the find failed. 1197 * 1198 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1199 * requested real, full-featured networking support upon configuration. 1200 * Otherwise module support will break! 1201 */ 1202 if (net_families[family] == NULL) 1203 request_module("net-pf-%d", family); 1204 #endif 1205 1206 rcu_read_lock(); 1207 pf = rcu_dereference(net_families[family]); 1208 err = -EAFNOSUPPORT; 1209 if (!pf) 1210 goto out_release; 1211 1212 /* 1213 * We will call the ->create function, that possibly is in a loadable 1214 * module, so we have to bump that loadable module refcnt first. 1215 */ 1216 if (!try_module_get(pf->owner)) 1217 goto out_release; 1218 1219 /* Now protected by module ref count */ 1220 rcu_read_unlock(); 1221 1222 err = pf->create(net, sock, protocol, kern); 1223 if (err < 0) 1224 goto out_module_put; 1225 1226 /* 1227 * Now to bump the refcnt of the [loadable] module that owns this 1228 * socket at sock_release time we decrement its refcnt. 1229 */ 1230 if (!try_module_get(sock->ops->owner)) 1231 goto out_module_busy; 1232 1233 /* 1234 * Now that we're done with the ->create function, the [loadable] 1235 * module can have its refcnt decremented 1236 */ 1237 module_put(pf->owner); 1238 err = security_socket_post_create(sock, family, type, protocol, kern); 1239 if (err) 1240 goto out_sock_release; 1241 *res = sock; 1242 1243 return 0; 1244 1245 out_module_busy: 1246 err = -EAFNOSUPPORT; 1247 out_module_put: 1248 sock->ops = NULL; 1249 module_put(pf->owner); 1250 out_sock_release: 1251 sock_release(sock); 1252 return err; 1253 1254 out_release: 1255 rcu_read_unlock(); 1256 goto out_sock_release; 1257 } 1258 1259 int sock_create(int family, int type, int protocol, struct socket **res) 1260 { 1261 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1262 } 1263 EXPORT_SYMBOL(sock_create); 1264 1265 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1266 { 1267 return __sock_create(&init_net, family, type, protocol, res, 1); 1268 } 1269 EXPORT_SYMBOL(sock_create_kern); 1270 1271 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol) 1272 { 1273 int retval; 1274 struct socket *sock; 1275 int flags; 1276 1277 /* Check the SOCK_* constants for consistency. */ 1278 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1279 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1280 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1281 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1282 1283 flags = type & ~SOCK_TYPE_MASK; 1284 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1285 return -EINVAL; 1286 type &= SOCK_TYPE_MASK; 1287 1288 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1289 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1290 1291 retval = sock_create(family, type, protocol, &sock); 1292 if (retval < 0) 1293 goto out; 1294 1295 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1296 if (retval < 0) 1297 goto out_release; 1298 1299 out: 1300 /* It may be already another descriptor 8) Not kernel problem. */ 1301 return retval; 1302 1303 out_release: 1304 sock_release(sock); 1305 return retval; 1306 } 1307 1308 /* 1309 * Create a pair of connected sockets. 1310 */ 1311 1312 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol, 1313 int __user *, usockvec) 1314 { 1315 struct socket *sock1, *sock2; 1316 int fd1, fd2, err; 1317 struct file *newfile1, *newfile2; 1318 int flags; 1319 1320 flags = type & ~SOCK_TYPE_MASK; 1321 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1322 return -EINVAL; 1323 type &= SOCK_TYPE_MASK; 1324 1325 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1326 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1327 1328 /* 1329 * Obtain the first socket and check if the underlying protocol 1330 * supports the socketpair call. 1331 */ 1332 1333 err = sock_create(family, type, protocol, &sock1); 1334 if (err < 0) 1335 goto out; 1336 1337 err = sock_create(family, type, protocol, &sock2); 1338 if (err < 0) 1339 goto out_release_1; 1340 1341 err = sock1->ops->socketpair(sock1, sock2); 1342 if (err < 0) 1343 goto out_release_both; 1344 1345 fd1 = sock_alloc_file(sock1, &newfile1, flags); 1346 if (unlikely(fd1 < 0)) { 1347 err = fd1; 1348 goto out_release_both; 1349 } 1350 1351 fd2 = sock_alloc_file(sock2, &newfile2, flags); 1352 if (unlikely(fd2 < 0)) { 1353 err = fd2; 1354 fput(newfile1); 1355 put_unused_fd(fd1); 1356 sock_release(sock2); 1357 goto out; 1358 } 1359 1360 audit_fd_pair(fd1, fd2); 1361 fd_install(fd1, newfile1); 1362 fd_install(fd2, newfile2); 1363 /* fd1 and fd2 may be already another descriptors. 1364 * Not kernel problem. 1365 */ 1366 1367 err = put_user(fd1, &usockvec[0]); 1368 if (!err) 1369 err = put_user(fd2, &usockvec[1]); 1370 if (!err) 1371 return 0; 1372 1373 sys_close(fd2); 1374 sys_close(fd1); 1375 return err; 1376 1377 out_release_both: 1378 sock_release(sock2); 1379 out_release_1: 1380 sock_release(sock1); 1381 out: 1382 return err; 1383 } 1384 1385 /* 1386 * Bind a name to a socket. Nothing much to do here since it's 1387 * the protocol's responsibility to handle the local address. 1388 * 1389 * We move the socket address to kernel space before we call 1390 * the protocol layer (having also checked the address is ok). 1391 */ 1392 1393 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen) 1394 { 1395 struct socket *sock; 1396 struct sockaddr_storage address; 1397 int err, fput_needed; 1398 1399 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1400 if (sock) { 1401 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1402 if (err >= 0) { 1403 err = security_socket_bind(sock, 1404 (struct sockaddr *)&address, 1405 addrlen); 1406 if (!err) 1407 err = sock->ops->bind(sock, 1408 (struct sockaddr *) 1409 &address, addrlen); 1410 } 1411 fput_light(sock->file, fput_needed); 1412 } 1413 return err; 1414 } 1415 1416 /* 1417 * Perform a listen. Basically, we allow the protocol to do anything 1418 * necessary for a listen, and if that works, we mark the socket as 1419 * ready for listening. 1420 */ 1421 1422 SYSCALL_DEFINE2(listen, int, fd, int, backlog) 1423 { 1424 struct socket *sock; 1425 int err, fput_needed; 1426 int somaxconn; 1427 1428 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1429 if (sock) { 1430 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1431 if ((unsigned)backlog > somaxconn) 1432 backlog = somaxconn; 1433 1434 err = security_socket_listen(sock, backlog); 1435 if (!err) 1436 err = sock->ops->listen(sock, backlog); 1437 1438 fput_light(sock->file, fput_needed); 1439 } 1440 return err; 1441 } 1442 1443 /* 1444 * For accept, we attempt to create a new socket, set up the link 1445 * with the client, wake up the client, then return the new 1446 * connected fd. We collect the address of the connector in kernel 1447 * space and move it to user at the very end. This is unclean because 1448 * we open the socket then return an error. 1449 * 1450 * 1003.1g adds the ability to recvmsg() to query connection pending 1451 * status to recvmsg. We need to add that support in a way thats 1452 * clean when we restucture accept also. 1453 */ 1454 1455 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr, 1456 int __user *, upeer_addrlen, int, flags) 1457 { 1458 struct socket *sock, *newsock; 1459 struct file *newfile; 1460 int err, len, newfd, fput_needed; 1461 struct sockaddr_storage address; 1462 1463 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1464 return -EINVAL; 1465 1466 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1467 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1468 1469 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1470 if (!sock) 1471 goto out; 1472 1473 err = -ENFILE; 1474 newsock = sock_alloc(); 1475 if (!newsock) 1476 goto out_put; 1477 1478 newsock->type = sock->type; 1479 newsock->ops = sock->ops; 1480 1481 /* 1482 * We don't need try_module_get here, as the listening socket (sock) 1483 * has the protocol module (sock->ops->owner) held. 1484 */ 1485 __module_get(newsock->ops->owner); 1486 1487 newfd = sock_alloc_file(newsock, &newfile, flags); 1488 if (unlikely(newfd < 0)) { 1489 err = newfd; 1490 sock_release(newsock); 1491 goto out_put; 1492 } 1493 1494 err = security_socket_accept(sock, newsock); 1495 if (err) 1496 goto out_fd; 1497 1498 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1499 if (err < 0) 1500 goto out_fd; 1501 1502 if (upeer_sockaddr) { 1503 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1504 &len, 2) < 0) { 1505 err = -ECONNABORTED; 1506 goto out_fd; 1507 } 1508 err = move_addr_to_user((struct sockaddr *)&address, 1509 len, upeer_sockaddr, upeer_addrlen); 1510 if (err < 0) 1511 goto out_fd; 1512 } 1513 1514 /* File flags are not inherited via accept() unlike another OSes. */ 1515 1516 fd_install(newfd, newfile); 1517 err = newfd; 1518 1519 out_put: 1520 fput_light(sock->file, fput_needed); 1521 out: 1522 return err; 1523 out_fd: 1524 fput(newfile); 1525 put_unused_fd(newfd); 1526 goto out_put; 1527 } 1528 1529 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr, 1530 int __user *, upeer_addrlen) 1531 { 1532 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1533 } 1534 1535 /* 1536 * Attempt to connect to a socket with the server address. The address 1537 * is in user space so we verify it is OK and move it to kernel space. 1538 * 1539 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1540 * break bindings 1541 * 1542 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1543 * other SEQPACKET protocols that take time to connect() as it doesn't 1544 * include the -EINPROGRESS status for such sockets. 1545 */ 1546 1547 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr, 1548 int, addrlen) 1549 { 1550 struct socket *sock; 1551 struct sockaddr_storage address; 1552 int err, fput_needed; 1553 1554 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1555 if (!sock) 1556 goto out; 1557 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1558 if (err < 0) 1559 goto out_put; 1560 1561 err = 1562 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1563 if (err) 1564 goto out_put; 1565 1566 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1567 sock->file->f_flags); 1568 out_put: 1569 fput_light(sock->file, fput_needed); 1570 out: 1571 return err; 1572 } 1573 1574 /* 1575 * Get the local address ('name') of a socket object. Move the obtained 1576 * name to user space. 1577 */ 1578 1579 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr, 1580 int __user *, usockaddr_len) 1581 { 1582 struct socket *sock; 1583 struct sockaddr_storage address; 1584 int len, err, fput_needed; 1585 1586 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1587 if (!sock) 1588 goto out; 1589 1590 err = security_socket_getsockname(sock); 1591 if (err) 1592 goto out_put; 1593 1594 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1595 if (err) 1596 goto out_put; 1597 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1598 1599 out_put: 1600 fput_light(sock->file, fput_needed); 1601 out: 1602 return err; 1603 } 1604 1605 /* 1606 * Get the remote address ('name') of a socket object. Move the obtained 1607 * name to user space. 1608 */ 1609 1610 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr, 1611 int __user *, usockaddr_len) 1612 { 1613 struct socket *sock; 1614 struct sockaddr_storage address; 1615 int len, err, fput_needed; 1616 1617 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1618 if (sock != NULL) { 1619 err = security_socket_getpeername(sock); 1620 if (err) { 1621 fput_light(sock->file, fput_needed); 1622 return err; 1623 } 1624 1625 err = 1626 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1627 1); 1628 if (!err) 1629 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1630 usockaddr_len); 1631 fput_light(sock->file, fput_needed); 1632 } 1633 return err; 1634 } 1635 1636 /* 1637 * Send a datagram to a given address. We move the address into kernel 1638 * space and check the user space data area is readable before invoking 1639 * the protocol. 1640 */ 1641 1642 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len, 1643 unsigned, flags, struct sockaddr __user *, addr, 1644 int, addr_len) 1645 { 1646 struct socket *sock; 1647 struct sockaddr_storage address; 1648 int err; 1649 struct msghdr msg; 1650 struct iovec iov; 1651 int fput_needed; 1652 1653 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1654 if (!sock) 1655 goto out; 1656 1657 iov.iov_base = buff; 1658 iov.iov_len = len; 1659 msg.msg_name = NULL; 1660 msg.msg_iov = &iov; 1661 msg.msg_iovlen = 1; 1662 msg.msg_control = NULL; 1663 msg.msg_controllen = 0; 1664 msg.msg_namelen = 0; 1665 if (addr) { 1666 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1667 if (err < 0) 1668 goto out_put; 1669 msg.msg_name = (struct sockaddr *)&address; 1670 msg.msg_namelen = addr_len; 1671 } 1672 if (sock->file->f_flags & O_NONBLOCK) 1673 flags |= MSG_DONTWAIT; 1674 msg.msg_flags = flags; 1675 err = sock_sendmsg(sock, &msg, len); 1676 1677 out_put: 1678 fput_light(sock->file, fput_needed); 1679 out: 1680 return err; 1681 } 1682 1683 /* 1684 * Send a datagram down a socket. 1685 */ 1686 1687 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len, 1688 unsigned, flags) 1689 { 1690 return sys_sendto(fd, buff, len, flags, NULL, 0); 1691 } 1692 1693 /* 1694 * Receive a frame from the socket and optionally record the address of the 1695 * sender. We verify the buffers are writable and if needed move the 1696 * sender address from kernel to user space. 1697 */ 1698 1699 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size, 1700 unsigned, flags, struct sockaddr __user *, addr, 1701 int __user *, addr_len) 1702 { 1703 struct socket *sock; 1704 struct iovec iov; 1705 struct msghdr msg; 1706 struct sockaddr_storage address; 1707 int err, err2; 1708 int fput_needed; 1709 1710 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1711 if (!sock) 1712 goto out; 1713 1714 msg.msg_control = NULL; 1715 msg.msg_controllen = 0; 1716 msg.msg_iovlen = 1; 1717 msg.msg_iov = &iov; 1718 iov.iov_len = size; 1719 iov.iov_base = ubuf; 1720 msg.msg_name = (struct sockaddr *)&address; 1721 msg.msg_namelen = sizeof(address); 1722 if (sock->file->f_flags & O_NONBLOCK) 1723 flags |= MSG_DONTWAIT; 1724 err = sock_recvmsg(sock, &msg, size, flags); 1725 1726 if (err >= 0 && addr != NULL) { 1727 err2 = move_addr_to_user((struct sockaddr *)&address, 1728 msg.msg_namelen, addr, addr_len); 1729 if (err2 < 0) 1730 err = err2; 1731 } 1732 1733 fput_light(sock->file, fput_needed); 1734 out: 1735 return err; 1736 } 1737 1738 /* 1739 * Receive a datagram from a socket. 1740 */ 1741 1742 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1743 unsigned flags) 1744 { 1745 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1746 } 1747 1748 /* 1749 * Set a socket option. Because we don't know the option lengths we have 1750 * to pass the user mode parameter for the protocols to sort out. 1751 */ 1752 1753 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname, 1754 char __user *, optval, int, optlen) 1755 { 1756 int err, fput_needed; 1757 struct socket *sock; 1758 1759 if (optlen < 0) 1760 return -EINVAL; 1761 1762 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1763 if (sock != NULL) { 1764 err = security_socket_setsockopt(sock, level, optname); 1765 if (err) 1766 goto out_put; 1767 1768 if (level == SOL_SOCKET) 1769 err = 1770 sock_setsockopt(sock, level, optname, optval, 1771 optlen); 1772 else 1773 err = 1774 sock->ops->setsockopt(sock, level, optname, optval, 1775 optlen); 1776 out_put: 1777 fput_light(sock->file, fput_needed); 1778 } 1779 return err; 1780 } 1781 1782 /* 1783 * Get a socket option. Because we don't know the option lengths we have 1784 * to pass a user mode parameter for the protocols to sort out. 1785 */ 1786 1787 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname, 1788 char __user *, optval, int __user *, optlen) 1789 { 1790 int err, fput_needed; 1791 struct socket *sock; 1792 1793 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1794 if (sock != NULL) { 1795 err = security_socket_getsockopt(sock, level, optname); 1796 if (err) 1797 goto out_put; 1798 1799 if (level == SOL_SOCKET) 1800 err = 1801 sock_getsockopt(sock, level, optname, optval, 1802 optlen); 1803 else 1804 err = 1805 sock->ops->getsockopt(sock, level, optname, optval, 1806 optlen); 1807 out_put: 1808 fput_light(sock->file, fput_needed); 1809 } 1810 return err; 1811 } 1812 1813 /* 1814 * Shutdown a socket. 1815 */ 1816 1817 SYSCALL_DEFINE2(shutdown, int, fd, int, how) 1818 { 1819 int err, fput_needed; 1820 struct socket *sock; 1821 1822 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1823 if (sock != NULL) { 1824 err = security_socket_shutdown(sock, how); 1825 if (!err) 1826 err = sock->ops->shutdown(sock, how); 1827 fput_light(sock->file, fput_needed); 1828 } 1829 return err; 1830 } 1831 1832 /* A couple of helpful macros for getting the address of the 32/64 bit 1833 * fields which are the same type (int / unsigned) on our platforms. 1834 */ 1835 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1836 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1837 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1838 1839 /* 1840 * BSD sendmsg interface 1841 */ 1842 1843 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags) 1844 { 1845 struct compat_msghdr __user *msg_compat = 1846 (struct compat_msghdr __user *)msg; 1847 struct socket *sock; 1848 struct sockaddr_storage address; 1849 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1850 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1851 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1852 /* 20 is size of ipv6_pktinfo */ 1853 unsigned char *ctl_buf = ctl; 1854 struct msghdr msg_sys; 1855 int err, ctl_len, iov_size, total_len; 1856 int fput_needed; 1857 1858 err = -EFAULT; 1859 if (MSG_CMSG_COMPAT & flags) { 1860 if (get_compat_msghdr(&msg_sys, msg_compat)) 1861 return -EFAULT; 1862 } else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1863 return -EFAULT; 1864 1865 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1866 if (!sock) 1867 goto out; 1868 1869 /* do not move before msg_sys is valid */ 1870 err = -EMSGSIZE; 1871 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1872 goto out_put; 1873 1874 /* Check whether to allocate the iovec area */ 1875 err = -ENOMEM; 1876 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1877 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1878 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1879 if (!iov) 1880 goto out_put; 1881 } 1882 1883 /* This will also move the address data into kernel space */ 1884 if (MSG_CMSG_COMPAT & flags) { 1885 err = verify_compat_iovec(&msg_sys, iov, 1886 (struct sockaddr *)&address, 1887 VERIFY_READ); 1888 } else 1889 err = verify_iovec(&msg_sys, iov, 1890 (struct sockaddr *)&address, 1891 VERIFY_READ); 1892 if (err < 0) 1893 goto out_freeiov; 1894 total_len = err; 1895 1896 err = -ENOBUFS; 1897 1898 if (msg_sys.msg_controllen > INT_MAX) 1899 goto out_freeiov; 1900 ctl_len = msg_sys.msg_controllen; 1901 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1902 err = 1903 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1904 sizeof(ctl)); 1905 if (err) 1906 goto out_freeiov; 1907 ctl_buf = msg_sys.msg_control; 1908 ctl_len = msg_sys.msg_controllen; 1909 } else if (ctl_len) { 1910 if (ctl_len > sizeof(ctl)) { 1911 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1912 if (ctl_buf == NULL) 1913 goto out_freeiov; 1914 } 1915 err = -EFAULT; 1916 /* 1917 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1918 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1919 * checking falls down on this. 1920 */ 1921 if (copy_from_user(ctl_buf, 1922 (void __user __force *)msg_sys.msg_control, 1923 ctl_len)) 1924 goto out_freectl; 1925 msg_sys.msg_control = ctl_buf; 1926 } 1927 msg_sys.msg_flags = flags; 1928 1929 if (sock->file->f_flags & O_NONBLOCK) 1930 msg_sys.msg_flags |= MSG_DONTWAIT; 1931 err = sock_sendmsg(sock, &msg_sys, total_len); 1932 1933 out_freectl: 1934 if (ctl_buf != ctl) 1935 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1936 out_freeiov: 1937 if (iov != iovstack) 1938 sock_kfree_s(sock->sk, iov, iov_size); 1939 out_put: 1940 fput_light(sock->file, fput_needed); 1941 out: 1942 return err; 1943 } 1944 1945 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg, 1946 struct msghdr *msg_sys, unsigned flags, int nosec) 1947 { 1948 struct compat_msghdr __user *msg_compat = 1949 (struct compat_msghdr __user *)msg; 1950 struct iovec iovstack[UIO_FASTIOV]; 1951 struct iovec *iov = iovstack; 1952 unsigned long cmsg_ptr; 1953 int err, iov_size, total_len, len; 1954 1955 /* kernel mode address */ 1956 struct sockaddr_storage addr; 1957 1958 /* user mode address pointers */ 1959 struct sockaddr __user *uaddr; 1960 int __user *uaddr_len; 1961 1962 if (MSG_CMSG_COMPAT & flags) { 1963 if (get_compat_msghdr(msg_sys, msg_compat)) 1964 return -EFAULT; 1965 } else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr))) 1966 return -EFAULT; 1967 1968 err = -EMSGSIZE; 1969 if (msg_sys->msg_iovlen > UIO_MAXIOV) 1970 goto out; 1971 1972 /* Check whether to allocate the iovec area */ 1973 err = -ENOMEM; 1974 iov_size = msg_sys->msg_iovlen * sizeof(struct iovec); 1975 if (msg_sys->msg_iovlen > UIO_FASTIOV) { 1976 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1977 if (!iov) 1978 goto out; 1979 } 1980 1981 /* 1982 * Save the user-mode address (verify_iovec will change the 1983 * kernel msghdr to use the kernel address space) 1984 */ 1985 1986 uaddr = (__force void __user *)msg_sys->msg_name; 1987 uaddr_len = COMPAT_NAMELEN(msg); 1988 if (MSG_CMSG_COMPAT & flags) { 1989 err = verify_compat_iovec(msg_sys, iov, 1990 (struct sockaddr *)&addr, 1991 VERIFY_WRITE); 1992 } else 1993 err = verify_iovec(msg_sys, iov, 1994 (struct sockaddr *)&addr, 1995 VERIFY_WRITE); 1996 if (err < 0) 1997 goto out_freeiov; 1998 total_len = err; 1999 2000 cmsg_ptr = (unsigned long)msg_sys->msg_control; 2001 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 2002 2003 if (sock->file->f_flags & O_NONBLOCK) 2004 flags |= MSG_DONTWAIT; 2005 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, 2006 total_len, flags); 2007 if (err < 0) 2008 goto out_freeiov; 2009 len = err; 2010 2011 if (uaddr != NULL) { 2012 err = move_addr_to_user((struct sockaddr *)&addr, 2013 msg_sys->msg_namelen, uaddr, 2014 uaddr_len); 2015 if (err < 0) 2016 goto out_freeiov; 2017 } 2018 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT), 2019 COMPAT_FLAGS(msg)); 2020 if (err) 2021 goto out_freeiov; 2022 if (MSG_CMSG_COMPAT & flags) 2023 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2024 &msg_compat->msg_controllen); 2025 else 2026 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr, 2027 &msg->msg_controllen); 2028 if (err) 2029 goto out_freeiov; 2030 err = len; 2031 2032 out_freeiov: 2033 if (iov != iovstack) 2034 sock_kfree_s(sock->sk, iov, iov_size); 2035 out: 2036 return err; 2037 } 2038 2039 /* 2040 * BSD recvmsg interface 2041 */ 2042 2043 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg, 2044 unsigned int, flags) 2045 { 2046 int fput_needed, err; 2047 struct msghdr msg_sys; 2048 struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed); 2049 2050 if (!sock) 2051 goto out; 2052 2053 err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0); 2054 2055 fput_light(sock->file, fput_needed); 2056 out: 2057 return err; 2058 } 2059 2060 /* 2061 * Linux recvmmsg interface 2062 */ 2063 2064 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen, 2065 unsigned int flags, struct timespec *timeout) 2066 { 2067 int fput_needed, err, datagrams; 2068 struct socket *sock; 2069 struct mmsghdr __user *entry; 2070 struct compat_mmsghdr __user *compat_entry; 2071 struct msghdr msg_sys; 2072 struct timespec end_time; 2073 2074 if (timeout && 2075 poll_select_set_timeout(&end_time, timeout->tv_sec, 2076 timeout->tv_nsec)) 2077 return -EINVAL; 2078 2079 datagrams = 0; 2080 2081 sock = sockfd_lookup_light(fd, &err, &fput_needed); 2082 if (!sock) 2083 return err; 2084 2085 err = sock_error(sock->sk); 2086 if (err) 2087 goto out_put; 2088 2089 entry = mmsg; 2090 compat_entry = (struct compat_mmsghdr __user *)mmsg; 2091 2092 while (datagrams < vlen) { 2093 /* 2094 * No need to ask LSM for more than the first datagram. 2095 */ 2096 if (MSG_CMSG_COMPAT & flags) { 2097 err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry, 2098 &msg_sys, flags, datagrams); 2099 if (err < 0) 2100 break; 2101 err = __put_user(err, &compat_entry->msg_len); 2102 ++compat_entry; 2103 } else { 2104 err = __sys_recvmsg(sock, (struct msghdr __user *)entry, 2105 &msg_sys, flags, datagrams); 2106 if (err < 0) 2107 break; 2108 err = put_user(err, &entry->msg_len); 2109 ++entry; 2110 } 2111 2112 if (err) 2113 break; 2114 ++datagrams; 2115 2116 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */ 2117 if (flags & MSG_WAITFORONE) 2118 flags |= MSG_DONTWAIT; 2119 2120 if (timeout) { 2121 ktime_get_ts(timeout); 2122 *timeout = timespec_sub(end_time, *timeout); 2123 if (timeout->tv_sec < 0) { 2124 timeout->tv_sec = timeout->tv_nsec = 0; 2125 break; 2126 } 2127 2128 /* Timeout, return less than vlen datagrams */ 2129 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0) 2130 break; 2131 } 2132 2133 /* Out of band data, return right away */ 2134 if (msg_sys.msg_flags & MSG_OOB) 2135 break; 2136 } 2137 2138 out_put: 2139 fput_light(sock->file, fput_needed); 2140 2141 if (err == 0) 2142 return datagrams; 2143 2144 if (datagrams != 0) { 2145 /* 2146 * We may return less entries than requested (vlen) if the 2147 * sock is non block and there aren't enough datagrams... 2148 */ 2149 if (err != -EAGAIN) { 2150 /* 2151 * ... or if recvmsg returns an error after we 2152 * received some datagrams, where we record the 2153 * error to return on the next call or if the 2154 * app asks about it using getsockopt(SO_ERROR). 2155 */ 2156 sock->sk->sk_err = -err; 2157 } 2158 2159 return datagrams; 2160 } 2161 2162 return err; 2163 } 2164 2165 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg, 2166 unsigned int, vlen, unsigned int, flags, 2167 struct timespec __user *, timeout) 2168 { 2169 int datagrams; 2170 struct timespec timeout_sys; 2171 2172 if (!timeout) 2173 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL); 2174 2175 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys))) 2176 return -EFAULT; 2177 2178 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys); 2179 2180 if (datagrams > 0 && 2181 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys))) 2182 datagrams = -EFAULT; 2183 2184 return datagrams; 2185 } 2186 2187 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2188 /* Argument list sizes for sys_socketcall */ 2189 #define AL(x) ((x) * sizeof(unsigned long)) 2190 static const unsigned char nargs[20] = { 2191 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3), 2192 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6), 2193 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3), 2194 AL(4), AL(5) 2195 }; 2196 2197 #undef AL 2198 2199 /* 2200 * System call vectors. 2201 * 2202 * Argument checking cleaned up. Saved 20% in size. 2203 * This function doesn't need to set the kernel lock because 2204 * it is set by the callees. 2205 */ 2206 2207 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args) 2208 { 2209 unsigned long a[6]; 2210 unsigned long a0, a1; 2211 int err; 2212 unsigned int len; 2213 2214 if (call < 1 || call > SYS_RECVMMSG) 2215 return -EINVAL; 2216 2217 len = nargs[call]; 2218 if (len > sizeof(a)) 2219 return -EINVAL; 2220 2221 /* copy_from_user should be SMP safe. */ 2222 if (copy_from_user(a, args, len)) 2223 return -EFAULT; 2224 2225 audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2226 2227 a0 = a[0]; 2228 a1 = a[1]; 2229 2230 switch (call) { 2231 case SYS_SOCKET: 2232 err = sys_socket(a0, a1, a[2]); 2233 break; 2234 case SYS_BIND: 2235 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2236 break; 2237 case SYS_CONNECT: 2238 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2239 break; 2240 case SYS_LISTEN: 2241 err = sys_listen(a0, a1); 2242 break; 2243 case SYS_ACCEPT: 2244 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2245 (int __user *)a[2], 0); 2246 break; 2247 case SYS_GETSOCKNAME: 2248 err = 2249 sys_getsockname(a0, (struct sockaddr __user *)a1, 2250 (int __user *)a[2]); 2251 break; 2252 case SYS_GETPEERNAME: 2253 err = 2254 sys_getpeername(a0, (struct sockaddr __user *)a1, 2255 (int __user *)a[2]); 2256 break; 2257 case SYS_SOCKETPAIR: 2258 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2259 break; 2260 case SYS_SEND: 2261 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2262 break; 2263 case SYS_SENDTO: 2264 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2265 (struct sockaddr __user *)a[4], a[5]); 2266 break; 2267 case SYS_RECV: 2268 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2269 break; 2270 case SYS_RECVFROM: 2271 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2272 (struct sockaddr __user *)a[4], 2273 (int __user *)a[5]); 2274 break; 2275 case SYS_SHUTDOWN: 2276 err = sys_shutdown(a0, a1); 2277 break; 2278 case SYS_SETSOCKOPT: 2279 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2280 break; 2281 case SYS_GETSOCKOPT: 2282 err = 2283 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2284 (int __user *)a[4]); 2285 break; 2286 case SYS_SENDMSG: 2287 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2288 break; 2289 case SYS_RECVMSG: 2290 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2291 break; 2292 case SYS_RECVMMSG: 2293 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3], 2294 (struct timespec __user *)a[4]); 2295 break; 2296 case SYS_ACCEPT4: 2297 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2298 (int __user *)a[2], a[3]); 2299 break; 2300 default: 2301 err = -EINVAL; 2302 break; 2303 } 2304 return err; 2305 } 2306 2307 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2308 2309 /** 2310 * sock_register - add a socket protocol handler 2311 * @ops: description of protocol 2312 * 2313 * This function is called by a protocol handler that wants to 2314 * advertise its address family, and have it linked into the 2315 * socket interface. The value ops->family coresponds to the 2316 * socket system call protocol family. 2317 */ 2318 int sock_register(const struct net_proto_family *ops) 2319 { 2320 int err; 2321 2322 if (ops->family >= NPROTO) { 2323 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2324 NPROTO); 2325 return -ENOBUFS; 2326 } 2327 2328 spin_lock(&net_family_lock); 2329 if (net_families[ops->family]) 2330 err = -EEXIST; 2331 else { 2332 net_families[ops->family] = ops; 2333 err = 0; 2334 } 2335 spin_unlock(&net_family_lock); 2336 2337 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2338 return err; 2339 } 2340 EXPORT_SYMBOL(sock_register); 2341 2342 /** 2343 * sock_unregister - remove a protocol handler 2344 * @family: protocol family to remove 2345 * 2346 * This function is called by a protocol handler that wants to 2347 * remove its address family, and have it unlinked from the 2348 * new socket creation. 2349 * 2350 * If protocol handler is a module, then it can use module reference 2351 * counts to protect against new references. If protocol handler is not 2352 * a module then it needs to provide its own protection in 2353 * the ops->create routine. 2354 */ 2355 void sock_unregister(int family) 2356 { 2357 BUG_ON(family < 0 || family >= NPROTO); 2358 2359 spin_lock(&net_family_lock); 2360 net_families[family] = NULL; 2361 spin_unlock(&net_family_lock); 2362 2363 synchronize_rcu(); 2364 2365 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2366 } 2367 EXPORT_SYMBOL(sock_unregister); 2368 2369 static int __init sock_init(void) 2370 { 2371 /* 2372 * Initialize sock SLAB cache. 2373 */ 2374 2375 sk_init(); 2376 2377 /* 2378 * Initialize skbuff SLAB cache 2379 */ 2380 skb_init(); 2381 2382 /* 2383 * Initialize the protocols module. 2384 */ 2385 2386 init_inodecache(); 2387 register_filesystem(&sock_fs_type); 2388 sock_mnt = kern_mount(&sock_fs_type); 2389 2390 /* The real protocol initialization is performed in later initcalls. 2391 */ 2392 2393 #ifdef CONFIG_NETFILTER 2394 netfilter_init(); 2395 #endif 2396 2397 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 2398 skb_timestamping_init(); 2399 #endif 2400 2401 return 0; 2402 } 2403 2404 core_initcall(sock_init); /* early initcall */ 2405 2406 #ifdef CONFIG_PROC_FS 2407 void socket_seq_show(struct seq_file *seq) 2408 { 2409 int cpu; 2410 int counter = 0; 2411 2412 for_each_possible_cpu(cpu) 2413 counter += per_cpu(sockets_in_use, cpu); 2414 2415 /* It can be negative, by the way. 8) */ 2416 if (counter < 0) 2417 counter = 0; 2418 2419 seq_printf(seq, "sockets: used %d\n", counter); 2420 } 2421 #endif /* CONFIG_PROC_FS */ 2422 2423 #ifdef CONFIG_COMPAT 2424 static int do_siocgstamp(struct net *net, struct socket *sock, 2425 unsigned int cmd, struct compat_timeval __user *up) 2426 { 2427 mm_segment_t old_fs = get_fs(); 2428 struct timeval ktv; 2429 int err; 2430 2431 set_fs(KERNEL_DS); 2432 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv); 2433 set_fs(old_fs); 2434 if (!err) { 2435 err = put_user(ktv.tv_sec, &up->tv_sec); 2436 err |= __put_user(ktv.tv_usec, &up->tv_usec); 2437 } 2438 return err; 2439 } 2440 2441 static int do_siocgstampns(struct net *net, struct socket *sock, 2442 unsigned int cmd, struct compat_timespec __user *up) 2443 { 2444 mm_segment_t old_fs = get_fs(); 2445 struct timespec kts; 2446 int err; 2447 2448 set_fs(KERNEL_DS); 2449 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts); 2450 set_fs(old_fs); 2451 if (!err) { 2452 err = put_user(kts.tv_sec, &up->tv_sec); 2453 err |= __put_user(kts.tv_nsec, &up->tv_nsec); 2454 } 2455 return err; 2456 } 2457 2458 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32) 2459 { 2460 struct ifreq __user *uifr; 2461 int err; 2462 2463 uifr = compat_alloc_user_space(sizeof(struct ifreq)); 2464 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2465 return -EFAULT; 2466 2467 err = dev_ioctl(net, SIOCGIFNAME, uifr); 2468 if (err) 2469 return err; 2470 2471 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq))) 2472 return -EFAULT; 2473 2474 return 0; 2475 } 2476 2477 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32) 2478 { 2479 struct compat_ifconf ifc32; 2480 struct ifconf ifc; 2481 struct ifconf __user *uifc; 2482 struct compat_ifreq __user *ifr32; 2483 struct ifreq __user *ifr; 2484 unsigned int i, j; 2485 int err; 2486 2487 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf))) 2488 return -EFAULT; 2489 2490 if (ifc32.ifcbuf == 0) { 2491 ifc32.ifc_len = 0; 2492 ifc.ifc_len = 0; 2493 ifc.ifc_req = NULL; 2494 uifc = compat_alloc_user_space(sizeof(struct ifconf)); 2495 } else { 2496 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) * 2497 sizeof(struct ifreq); 2498 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len); 2499 ifc.ifc_len = len; 2500 ifr = ifc.ifc_req = (void __user *)(uifc + 1); 2501 ifr32 = compat_ptr(ifc32.ifcbuf); 2502 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) { 2503 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq))) 2504 return -EFAULT; 2505 ifr++; 2506 ifr32++; 2507 } 2508 } 2509 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf))) 2510 return -EFAULT; 2511 2512 err = dev_ioctl(net, SIOCGIFCONF, uifc); 2513 if (err) 2514 return err; 2515 2516 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf))) 2517 return -EFAULT; 2518 2519 ifr = ifc.ifc_req; 2520 ifr32 = compat_ptr(ifc32.ifcbuf); 2521 for (i = 0, j = 0; 2522 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len; 2523 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) { 2524 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq))) 2525 return -EFAULT; 2526 ifr32++; 2527 ifr++; 2528 } 2529 2530 if (ifc32.ifcbuf == 0) { 2531 /* Translate from 64-bit structure multiple to 2532 * a 32-bit one. 2533 */ 2534 i = ifc.ifc_len; 2535 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq)); 2536 ifc32.ifc_len = i; 2537 } else { 2538 ifc32.ifc_len = i; 2539 } 2540 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf))) 2541 return -EFAULT; 2542 2543 return 0; 2544 } 2545 2546 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32) 2547 { 2548 struct ifreq __user *ifr; 2549 u32 data; 2550 void __user *datap; 2551 2552 ifr = compat_alloc_user_space(sizeof(*ifr)); 2553 2554 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2555 return -EFAULT; 2556 2557 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2558 return -EFAULT; 2559 2560 datap = compat_ptr(data); 2561 if (put_user(datap, &ifr->ifr_ifru.ifru_data)) 2562 return -EFAULT; 2563 2564 return dev_ioctl(net, SIOCETHTOOL, ifr); 2565 } 2566 2567 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32) 2568 { 2569 void __user *uptr; 2570 compat_uptr_t uptr32; 2571 struct ifreq __user *uifr; 2572 2573 uifr = compat_alloc_user_space(sizeof(*uifr)); 2574 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2575 return -EFAULT; 2576 2577 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu)) 2578 return -EFAULT; 2579 2580 uptr = compat_ptr(uptr32); 2581 2582 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc)) 2583 return -EFAULT; 2584 2585 return dev_ioctl(net, SIOCWANDEV, uifr); 2586 } 2587 2588 static int bond_ioctl(struct net *net, unsigned int cmd, 2589 struct compat_ifreq __user *ifr32) 2590 { 2591 struct ifreq kifr; 2592 struct ifreq __user *uifr; 2593 mm_segment_t old_fs; 2594 int err; 2595 u32 data; 2596 void __user *datap; 2597 2598 switch (cmd) { 2599 case SIOCBONDENSLAVE: 2600 case SIOCBONDRELEASE: 2601 case SIOCBONDSETHWADDR: 2602 case SIOCBONDCHANGEACTIVE: 2603 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq))) 2604 return -EFAULT; 2605 2606 old_fs = get_fs(); 2607 set_fs(KERNEL_DS); 2608 err = dev_ioctl(net, cmd, &kifr); 2609 set_fs(old_fs); 2610 2611 return err; 2612 case SIOCBONDSLAVEINFOQUERY: 2613 case SIOCBONDINFOQUERY: 2614 uifr = compat_alloc_user_space(sizeof(*uifr)); 2615 if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ)) 2616 return -EFAULT; 2617 2618 if (get_user(data, &ifr32->ifr_ifru.ifru_data)) 2619 return -EFAULT; 2620 2621 datap = compat_ptr(data); 2622 if (put_user(datap, &uifr->ifr_ifru.ifru_data)) 2623 return -EFAULT; 2624 2625 return dev_ioctl(net, cmd, uifr); 2626 default: 2627 return -EINVAL; 2628 } 2629 } 2630 2631 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd, 2632 struct compat_ifreq __user *u_ifreq32) 2633 { 2634 struct ifreq __user *u_ifreq64; 2635 char tmp_buf[IFNAMSIZ]; 2636 void __user *data64; 2637 u32 data32; 2638 2639 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]), 2640 IFNAMSIZ)) 2641 return -EFAULT; 2642 if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data)) 2643 return -EFAULT; 2644 data64 = compat_ptr(data32); 2645 2646 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64)); 2647 2648 /* Don't check these user accesses, just let that get trapped 2649 * in the ioctl handler instead. 2650 */ 2651 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0], 2652 IFNAMSIZ)) 2653 return -EFAULT; 2654 if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data)) 2655 return -EFAULT; 2656 2657 return dev_ioctl(net, cmd, u_ifreq64); 2658 } 2659 2660 static int dev_ifsioc(struct net *net, struct socket *sock, 2661 unsigned int cmd, struct compat_ifreq __user *uifr32) 2662 { 2663 struct ifreq __user *uifr; 2664 int err; 2665 2666 uifr = compat_alloc_user_space(sizeof(*uifr)); 2667 if (copy_in_user(uifr, uifr32, sizeof(*uifr32))) 2668 return -EFAULT; 2669 2670 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr); 2671 2672 if (!err) { 2673 switch (cmd) { 2674 case SIOCGIFFLAGS: 2675 case SIOCGIFMETRIC: 2676 case SIOCGIFMTU: 2677 case SIOCGIFMEM: 2678 case SIOCGIFHWADDR: 2679 case SIOCGIFINDEX: 2680 case SIOCGIFADDR: 2681 case SIOCGIFBRDADDR: 2682 case SIOCGIFDSTADDR: 2683 case SIOCGIFNETMASK: 2684 case SIOCGIFPFLAGS: 2685 case SIOCGIFTXQLEN: 2686 case SIOCGMIIPHY: 2687 case SIOCGMIIREG: 2688 if (copy_in_user(uifr32, uifr, sizeof(*uifr32))) 2689 err = -EFAULT; 2690 break; 2691 } 2692 } 2693 return err; 2694 } 2695 2696 static int compat_sioc_ifmap(struct net *net, unsigned int cmd, 2697 struct compat_ifreq __user *uifr32) 2698 { 2699 struct ifreq ifr; 2700 struct compat_ifmap __user *uifmap32; 2701 mm_segment_t old_fs; 2702 int err; 2703 2704 uifmap32 = &uifr32->ifr_ifru.ifru_map; 2705 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name)); 2706 err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2707 err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2708 err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2709 err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq); 2710 err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma); 2711 err |= __get_user(ifr.ifr_map.port, &uifmap32->port); 2712 if (err) 2713 return -EFAULT; 2714 2715 old_fs = get_fs(); 2716 set_fs(KERNEL_DS); 2717 err = dev_ioctl(net, cmd, (void __user *)&ifr); 2718 set_fs(old_fs); 2719 2720 if (cmd == SIOCGIFMAP && !err) { 2721 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name)); 2722 err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start); 2723 err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end); 2724 err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr); 2725 err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq); 2726 err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma); 2727 err |= __put_user(ifr.ifr_map.port, &uifmap32->port); 2728 if (err) 2729 err = -EFAULT; 2730 } 2731 return err; 2732 } 2733 2734 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32) 2735 { 2736 void __user *uptr; 2737 compat_uptr_t uptr32; 2738 struct ifreq __user *uifr; 2739 2740 uifr = compat_alloc_user_space(sizeof(*uifr)); 2741 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq))) 2742 return -EFAULT; 2743 2744 if (get_user(uptr32, &uifr32->ifr_data)) 2745 return -EFAULT; 2746 2747 uptr = compat_ptr(uptr32); 2748 2749 if (put_user(uptr, &uifr->ifr_data)) 2750 return -EFAULT; 2751 2752 return dev_ioctl(net, SIOCSHWTSTAMP, uifr); 2753 } 2754 2755 struct rtentry32 { 2756 u32 rt_pad1; 2757 struct sockaddr rt_dst; /* target address */ 2758 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */ 2759 struct sockaddr rt_genmask; /* target network mask (IP) */ 2760 unsigned short rt_flags; 2761 short rt_pad2; 2762 u32 rt_pad3; 2763 unsigned char rt_tos; 2764 unsigned char rt_class; 2765 short rt_pad4; 2766 short rt_metric; /* +1 for binary compatibility! */ 2767 /* char * */ u32 rt_dev; /* forcing the device at add */ 2768 u32 rt_mtu; /* per route MTU/Window */ 2769 u32 rt_window; /* Window clamping */ 2770 unsigned short rt_irtt; /* Initial RTT */ 2771 }; 2772 2773 struct in6_rtmsg32 { 2774 struct in6_addr rtmsg_dst; 2775 struct in6_addr rtmsg_src; 2776 struct in6_addr rtmsg_gateway; 2777 u32 rtmsg_type; 2778 u16 rtmsg_dst_len; 2779 u16 rtmsg_src_len; 2780 u32 rtmsg_metric; 2781 u32 rtmsg_info; 2782 u32 rtmsg_flags; 2783 s32 rtmsg_ifindex; 2784 }; 2785 2786 static int routing_ioctl(struct net *net, struct socket *sock, 2787 unsigned int cmd, void __user *argp) 2788 { 2789 int ret; 2790 void *r = NULL; 2791 struct in6_rtmsg r6; 2792 struct rtentry r4; 2793 char devname[16]; 2794 u32 rtdev; 2795 mm_segment_t old_fs = get_fs(); 2796 2797 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */ 2798 struct in6_rtmsg32 __user *ur6 = argp; 2799 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst), 2800 3 * sizeof(struct in6_addr)); 2801 ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type)); 2802 ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len)); 2803 ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len)); 2804 ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric)); 2805 ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info)); 2806 ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags)); 2807 ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex)); 2808 2809 r = (void *) &r6; 2810 } else { /* ipv4 */ 2811 struct rtentry32 __user *ur4 = argp; 2812 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst), 2813 3 * sizeof(struct sockaddr)); 2814 ret |= __get_user(r4.rt_flags, &(ur4->rt_flags)); 2815 ret |= __get_user(r4.rt_metric, &(ur4->rt_metric)); 2816 ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu)); 2817 ret |= __get_user(r4.rt_window, &(ur4->rt_window)); 2818 ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt)); 2819 ret |= __get_user(rtdev, &(ur4->rt_dev)); 2820 if (rtdev) { 2821 ret |= copy_from_user(devname, compat_ptr(rtdev), 15); 2822 r4.rt_dev = devname; devname[15] = 0; 2823 } else 2824 r4.rt_dev = NULL; 2825 2826 r = (void *) &r4; 2827 } 2828 2829 if (ret) { 2830 ret = -EFAULT; 2831 goto out; 2832 } 2833 2834 set_fs(KERNEL_DS); 2835 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r); 2836 set_fs(old_fs); 2837 2838 out: 2839 return ret; 2840 } 2841 2842 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE 2843 * for some operations; this forces use of the newer bridge-utils that 2844 * use compatiable ioctls 2845 */ 2846 static int old_bridge_ioctl(compat_ulong_t __user *argp) 2847 { 2848 compat_ulong_t tmp; 2849 2850 if (get_user(tmp, argp)) 2851 return -EFAULT; 2852 if (tmp == BRCTL_GET_VERSION) 2853 return BRCTL_VERSION + 1; 2854 return -EINVAL; 2855 } 2856 2857 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock, 2858 unsigned int cmd, unsigned long arg) 2859 { 2860 void __user *argp = compat_ptr(arg); 2861 struct sock *sk = sock->sk; 2862 struct net *net = sock_net(sk); 2863 2864 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) 2865 return siocdevprivate_ioctl(net, cmd, argp); 2866 2867 switch (cmd) { 2868 case SIOCSIFBR: 2869 case SIOCGIFBR: 2870 return old_bridge_ioctl(argp); 2871 case SIOCGIFNAME: 2872 return dev_ifname32(net, argp); 2873 case SIOCGIFCONF: 2874 return dev_ifconf(net, argp); 2875 case SIOCETHTOOL: 2876 return ethtool_ioctl(net, argp); 2877 case SIOCWANDEV: 2878 return compat_siocwandev(net, argp); 2879 case SIOCGIFMAP: 2880 case SIOCSIFMAP: 2881 return compat_sioc_ifmap(net, cmd, argp); 2882 case SIOCBONDENSLAVE: 2883 case SIOCBONDRELEASE: 2884 case SIOCBONDSETHWADDR: 2885 case SIOCBONDSLAVEINFOQUERY: 2886 case SIOCBONDINFOQUERY: 2887 case SIOCBONDCHANGEACTIVE: 2888 return bond_ioctl(net, cmd, argp); 2889 case SIOCADDRT: 2890 case SIOCDELRT: 2891 return routing_ioctl(net, sock, cmd, argp); 2892 case SIOCGSTAMP: 2893 return do_siocgstamp(net, sock, cmd, argp); 2894 case SIOCGSTAMPNS: 2895 return do_siocgstampns(net, sock, cmd, argp); 2896 case SIOCSHWTSTAMP: 2897 return compat_siocshwtstamp(net, argp); 2898 2899 case FIOSETOWN: 2900 case SIOCSPGRP: 2901 case FIOGETOWN: 2902 case SIOCGPGRP: 2903 case SIOCBRADDBR: 2904 case SIOCBRDELBR: 2905 case SIOCGIFVLAN: 2906 case SIOCSIFVLAN: 2907 case SIOCADDDLCI: 2908 case SIOCDELDLCI: 2909 return sock_ioctl(file, cmd, arg); 2910 2911 case SIOCGIFFLAGS: 2912 case SIOCSIFFLAGS: 2913 case SIOCGIFMETRIC: 2914 case SIOCSIFMETRIC: 2915 case SIOCGIFMTU: 2916 case SIOCSIFMTU: 2917 case SIOCGIFMEM: 2918 case SIOCSIFMEM: 2919 case SIOCGIFHWADDR: 2920 case SIOCSIFHWADDR: 2921 case SIOCADDMULTI: 2922 case SIOCDELMULTI: 2923 case SIOCGIFINDEX: 2924 case SIOCGIFADDR: 2925 case SIOCSIFADDR: 2926 case SIOCSIFHWBROADCAST: 2927 case SIOCDIFADDR: 2928 case SIOCGIFBRDADDR: 2929 case SIOCSIFBRDADDR: 2930 case SIOCGIFDSTADDR: 2931 case SIOCSIFDSTADDR: 2932 case SIOCGIFNETMASK: 2933 case SIOCSIFNETMASK: 2934 case SIOCSIFPFLAGS: 2935 case SIOCGIFPFLAGS: 2936 case SIOCGIFTXQLEN: 2937 case SIOCSIFTXQLEN: 2938 case SIOCBRADDIF: 2939 case SIOCBRDELIF: 2940 case SIOCSIFNAME: 2941 case SIOCGMIIPHY: 2942 case SIOCGMIIREG: 2943 case SIOCSMIIREG: 2944 return dev_ifsioc(net, sock, cmd, argp); 2945 2946 case SIOCSARP: 2947 case SIOCGARP: 2948 case SIOCDARP: 2949 case SIOCATMARK: 2950 return sock_do_ioctl(net, sock, cmd, arg); 2951 } 2952 2953 /* Prevent warning from compat_sys_ioctl, these always 2954 * result in -EINVAL in the native case anyway. */ 2955 switch (cmd) { 2956 case SIOCRTMSG: 2957 case SIOCGIFCOUNT: 2958 case SIOCSRARP: 2959 case SIOCGRARP: 2960 case SIOCDRARP: 2961 case SIOCSIFLINK: 2962 case SIOCGIFSLAVE: 2963 case SIOCSIFSLAVE: 2964 return -EINVAL; 2965 } 2966 2967 return -ENOIOCTLCMD; 2968 } 2969 2970 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2971 unsigned long arg) 2972 { 2973 struct socket *sock = file->private_data; 2974 int ret = -ENOIOCTLCMD; 2975 struct sock *sk; 2976 struct net *net; 2977 2978 sk = sock->sk; 2979 net = sock_net(sk); 2980 2981 if (sock->ops->compat_ioctl) 2982 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2983 2984 if (ret == -ENOIOCTLCMD && 2985 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 2986 ret = compat_wext_handle_ioctl(net, cmd, arg); 2987 2988 if (ret == -ENOIOCTLCMD) 2989 ret = compat_sock_ioctl_trans(file, sock, cmd, arg); 2990 2991 return ret; 2992 } 2993 #endif 2994 2995 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2996 { 2997 return sock->ops->bind(sock, addr, addrlen); 2998 } 2999 EXPORT_SYMBOL(kernel_bind); 3000 3001 int kernel_listen(struct socket *sock, int backlog) 3002 { 3003 return sock->ops->listen(sock, backlog); 3004 } 3005 EXPORT_SYMBOL(kernel_listen); 3006 3007 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 3008 { 3009 struct sock *sk = sock->sk; 3010 int err; 3011 3012 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 3013 newsock); 3014 if (err < 0) 3015 goto done; 3016 3017 err = sock->ops->accept(sock, *newsock, flags); 3018 if (err < 0) { 3019 sock_release(*newsock); 3020 *newsock = NULL; 3021 goto done; 3022 } 3023 3024 (*newsock)->ops = sock->ops; 3025 __module_get((*newsock)->ops->owner); 3026 3027 done: 3028 return err; 3029 } 3030 EXPORT_SYMBOL(kernel_accept); 3031 3032 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 3033 int flags) 3034 { 3035 return sock->ops->connect(sock, addr, addrlen, flags); 3036 } 3037 EXPORT_SYMBOL(kernel_connect); 3038 3039 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 3040 int *addrlen) 3041 { 3042 return sock->ops->getname(sock, addr, addrlen, 0); 3043 } 3044 EXPORT_SYMBOL(kernel_getsockname); 3045 3046 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 3047 int *addrlen) 3048 { 3049 return sock->ops->getname(sock, addr, addrlen, 1); 3050 } 3051 EXPORT_SYMBOL(kernel_getpeername); 3052 3053 int kernel_getsockopt(struct socket *sock, int level, int optname, 3054 char *optval, int *optlen) 3055 { 3056 mm_segment_t oldfs = get_fs(); 3057 char __user *uoptval; 3058 int __user *uoptlen; 3059 int err; 3060 3061 uoptval = (char __user __force *) optval; 3062 uoptlen = (int __user __force *) optlen; 3063 3064 set_fs(KERNEL_DS); 3065 if (level == SOL_SOCKET) 3066 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen); 3067 else 3068 err = sock->ops->getsockopt(sock, level, optname, uoptval, 3069 uoptlen); 3070 set_fs(oldfs); 3071 return err; 3072 } 3073 EXPORT_SYMBOL(kernel_getsockopt); 3074 3075 int kernel_setsockopt(struct socket *sock, int level, int optname, 3076 char *optval, unsigned int optlen) 3077 { 3078 mm_segment_t oldfs = get_fs(); 3079 char __user *uoptval; 3080 int err; 3081 3082 uoptval = (char __user __force *) optval; 3083 3084 set_fs(KERNEL_DS); 3085 if (level == SOL_SOCKET) 3086 err = sock_setsockopt(sock, level, optname, uoptval, optlen); 3087 else 3088 err = sock->ops->setsockopt(sock, level, optname, uoptval, 3089 optlen); 3090 set_fs(oldfs); 3091 return err; 3092 } 3093 EXPORT_SYMBOL(kernel_setsockopt); 3094 3095 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 3096 size_t size, int flags) 3097 { 3098 sock_update_classid(sock->sk); 3099 3100 if (sock->ops->sendpage) 3101 return sock->ops->sendpage(sock, page, offset, size, flags); 3102 3103 return sock_no_sendpage(sock, page, offset, size, flags); 3104 } 3105 EXPORT_SYMBOL(kernel_sendpage); 3106 3107 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 3108 { 3109 mm_segment_t oldfs = get_fs(); 3110 int err; 3111 3112 set_fs(KERNEL_DS); 3113 err = sock->ops->ioctl(sock, cmd, arg); 3114 set_fs(oldfs); 3115 3116 return err; 3117 } 3118 EXPORT_SYMBOL(kernel_sock_ioctl); 3119 3120 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 3121 { 3122 return sock->ops->shutdown(sock, how); 3123 } 3124 EXPORT_SYMBOL(kernel_sock_shutdown); 3125