xref: /linux-6.15/net/socket.c (revision 6482f554)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <[email protected]>
7  *		Ross Biro
8  *		Fred N. van Kempen, <[email protected]>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 
92 #include <asm/uaccess.h>
93 #include <asm/unistd.h>
94 
95 #include <net/compat.h>
96 #include <net/wext.h>
97 #include <net/cls_cgroup.h>
98 
99 #include <net/sock.h>
100 #include <linux/netfilter.h>
101 
102 #include <linux/if_tun.h>
103 #include <linux/ipv6_route.h>
104 #include <linux/route.h>
105 #include <linux/sockios.h>
106 #include <linux/atalk.h>
107 
108 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
109 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
110 			 unsigned long nr_segs, loff_t pos);
111 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
112 			  unsigned long nr_segs, loff_t pos);
113 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
114 
115 static int sock_close(struct inode *inode, struct file *file);
116 static unsigned int sock_poll(struct file *file,
117 			      struct poll_table_struct *wait);
118 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
119 #ifdef CONFIG_COMPAT
120 static long compat_sock_ioctl(struct file *file,
121 			      unsigned int cmd, unsigned long arg);
122 #endif
123 static int sock_fasync(int fd, struct file *filp, int on);
124 static ssize_t sock_sendpage(struct file *file, struct page *page,
125 			     int offset, size_t size, loff_t *ppos, int more);
126 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
127 				struct pipe_inode_info *pipe, size_t len,
128 				unsigned int flags);
129 
130 /*
131  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
132  *	in the operation structures but are done directly via the socketcall() multiplexor.
133  */
134 
135 static const struct file_operations socket_file_ops = {
136 	.owner =	THIS_MODULE,
137 	.llseek =	no_llseek,
138 	.aio_read =	sock_aio_read,
139 	.aio_write =	sock_aio_write,
140 	.poll =		sock_poll,
141 	.unlocked_ioctl = sock_ioctl,
142 #ifdef CONFIG_COMPAT
143 	.compat_ioctl = compat_sock_ioctl,
144 #endif
145 	.mmap =		sock_mmap,
146 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
147 	.release =	sock_close,
148 	.fasync =	sock_fasync,
149 	.sendpage =	sock_sendpage,
150 	.splice_write = generic_splice_sendpage,
151 	.splice_read =	sock_splice_read,
152 };
153 
154 /*
155  *	The protocol list. Each protocol is registered in here.
156  */
157 
158 static DEFINE_SPINLOCK(net_family_lock);
159 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
160 
161 /*
162  *	Statistics counters of the socket lists
163  */
164 
165 static DEFINE_PER_CPU(int, sockets_in_use);
166 
167 /*
168  * Support routines.
169  * Move socket addresses back and forth across the kernel/user
170  * divide and look after the messy bits.
171  */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
213 		      int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 static struct kmem_cache *sock_inode_cachep __read_mostly;
239 
240 static struct inode *sock_alloc_inode(struct super_block *sb)
241 {
242 	struct socket_alloc *ei;
243 
244 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
245 	if (!ei)
246 		return NULL;
247 	ei->socket.wq = kmalloc(sizeof(struct socket_wq), GFP_KERNEL);
248 	if (!ei->socket.wq) {
249 		kmem_cache_free(sock_inode_cachep, ei);
250 		return NULL;
251 	}
252 	init_waitqueue_head(&ei->socket.wq->wait);
253 	ei->socket.wq->fasync_list = NULL;
254 
255 	ei->socket.state = SS_UNCONNECTED;
256 	ei->socket.flags = 0;
257 	ei->socket.ops = NULL;
258 	ei->socket.sk = NULL;
259 	ei->socket.file = NULL;
260 
261 	return &ei->vfs_inode;
262 }
263 
264 
265 static void wq_free_rcu(struct rcu_head *head)
266 {
267 	struct socket_wq *wq = container_of(head, struct socket_wq, rcu);
268 
269 	kfree(wq);
270 }
271 
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 	struct socket_alloc *ei;
275 
276 	ei = container_of(inode, struct socket_alloc, vfs_inode);
277 	call_rcu(&ei->socket.wq->rcu, wq_free_rcu);
278 	kmem_cache_free(sock_inode_cachep, ei);
279 }
280 
281 static void init_once(void *foo)
282 {
283 	struct socket_alloc *ei = (struct socket_alloc *)foo;
284 
285 	inode_init_once(&ei->vfs_inode);
286 }
287 
288 static int init_inodecache(void)
289 {
290 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
291 					      sizeof(struct socket_alloc),
292 					      0,
293 					      (SLAB_HWCACHE_ALIGN |
294 					       SLAB_RECLAIM_ACCOUNT |
295 					       SLAB_MEM_SPREAD),
296 					      init_once);
297 	if (sock_inode_cachep == NULL)
298 		return -ENOMEM;
299 	return 0;
300 }
301 
302 static const struct super_operations sockfs_ops = {
303 	.alloc_inode	= sock_alloc_inode,
304 	.destroy_inode	= sock_destroy_inode,
305 	.statfs		= simple_statfs,
306 };
307 
308 static int sockfs_get_sb(struct file_system_type *fs_type,
309 			 int flags, const char *dev_name, void *data,
310 			 struct vfsmount *mnt)
311 {
312 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
313 			     mnt);
314 }
315 
316 static struct vfsmount *sock_mnt __read_mostly;
317 
318 static struct file_system_type sock_fs_type = {
319 	.name =		"sockfs",
320 	.get_sb =	sockfs_get_sb,
321 	.kill_sb =	kill_anon_super,
322 };
323 
324 /*
325  * sockfs_dname() is called from d_path().
326  */
327 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
328 {
329 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
330 				dentry->d_inode->i_ino);
331 }
332 
333 static const struct dentry_operations sockfs_dentry_operations = {
334 	.d_dname  = sockfs_dname,
335 };
336 
337 /*
338  *	Obtains the first available file descriptor and sets it up for use.
339  *
340  *	These functions create file structures and maps them to fd space
341  *	of the current process. On success it returns file descriptor
342  *	and file struct implicitly stored in sock->file.
343  *	Note that another thread may close file descriptor before we return
344  *	from this function. We use the fact that now we do not refer
345  *	to socket after mapping. If one day we will need it, this
346  *	function will increment ref. count on file by 1.
347  *
348  *	In any case returned fd MAY BE not valid!
349  *	This race condition is unavoidable
350  *	with shared fd spaces, we cannot solve it inside kernel,
351  *	but we take care of internal coherence yet.
352  */
353 
354 static int sock_alloc_file(struct socket *sock, struct file **f, int flags)
355 {
356 	struct qstr name = { .name = "" };
357 	struct path path;
358 	struct file *file;
359 	int fd;
360 
361 	fd = get_unused_fd_flags(flags);
362 	if (unlikely(fd < 0))
363 		return fd;
364 
365 	path.dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
366 	if (unlikely(!path.dentry)) {
367 		put_unused_fd(fd);
368 		return -ENOMEM;
369 	}
370 	path.mnt = mntget(sock_mnt);
371 
372 	path.dentry->d_op = &sockfs_dentry_operations;
373 	d_instantiate(path.dentry, SOCK_INODE(sock));
374 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
375 
376 	file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
377 		  &socket_file_ops);
378 	if (unlikely(!file)) {
379 		/* drop dentry, keep inode */
380 		atomic_inc(&path.dentry->d_inode->i_count);
381 		path_put(&path);
382 		put_unused_fd(fd);
383 		return -ENFILE;
384 	}
385 
386 	sock->file = file;
387 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
388 	file->f_pos = 0;
389 	file->private_data = sock;
390 
391 	*f = file;
392 	return fd;
393 }
394 
395 int sock_map_fd(struct socket *sock, int flags)
396 {
397 	struct file *newfile;
398 	int fd = sock_alloc_file(sock, &newfile, flags);
399 
400 	if (likely(fd >= 0))
401 		fd_install(fd, newfile);
402 
403 	return fd;
404 }
405 EXPORT_SYMBOL(sock_map_fd);
406 
407 static struct socket *sock_from_file(struct file *file, int *err)
408 {
409 	if (file->f_op == &socket_file_ops)
410 		return file->private_data;	/* set in sock_map_fd */
411 
412 	*err = -ENOTSOCK;
413 	return NULL;
414 }
415 
416 /**
417  *	sockfd_lookup - Go from a file number to its socket slot
418  *	@fd: file handle
419  *	@err: pointer to an error code return
420  *
421  *	The file handle passed in is locked and the socket it is bound
422  *	too is returned. If an error occurs the err pointer is overwritten
423  *	with a negative errno code and NULL is returned. The function checks
424  *	for both invalid handles and passing a handle which is not a socket.
425  *
426  *	On a success the socket object pointer is returned.
427  */
428 
429 struct socket *sockfd_lookup(int fd, int *err)
430 {
431 	struct file *file;
432 	struct socket *sock;
433 
434 	file = fget(fd);
435 	if (!file) {
436 		*err = -EBADF;
437 		return NULL;
438 	}
439 
440 	sock = sock_from_file(file, err);
441 	if (!sock)
442 		fput(file);
443 	return sock;
444 }
445 EXPORT_SYMBOL(sockfd_lookup);
446 
447 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
448 {
449 	struct file *file;
450 	struct socket *sock;
451 
452 	*err = -EBADF;
453 	file = fget_light(fd, fput_needed);
454 	if (file) {
455 		sock = sock_from_file(file, err);
456 		if (sock)
457 			return sock;
458 		fput_light(file, *fput_needed);
459 	}
460 	return NULL;
461 }
462 
463 /**
464  *	sock_alloc	-	allocate a socket
465  *
466  *	Allocate a new inode and socket object. The two are bound together
467  *	and initialised. The socket is then returned. If we are out of inodes
468  *	NULL is returned.
469  */
470 
471 static struct socket *sock_alloc(void)
472 {
473 	struct inode *inode;
474 	struct socket *sock;
475 
476 	inode = new_inode(sock_mnt->mnt_sb);
477 	if (!inode)
478 		return NULL;
479 
480 	sock = SOCKET_I(inode);
481 
482 	kmemcheck_annotate_bitfield(sock, type);
483 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
484 	inode->i_uid = current_fsuid();
485 	inode->i_gid = current_fsgid();
486 
487 	percpu_add(sockets_in_use, 1);
488 	return sock;
489 }
490 
491 /*
492  *	In theory you can't get an open on this inode, but /proc provides
493  *	a back door. Remember to keep it shut otherwise you'll let the
494  *	creepy crawlies in.
495  */
496 
497 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
498 {
499 	return -ENXIO;
500 }
501 
502 const struct file_operations bad_sock_fops = {
503 	.owner = THIS_MODULE,
504 	.open = sock_no_open,
505 };
506 
507 /**
508  *	sock_release	-	close a socket
509  *	@sock: socket to close
510  *
511  *	The socket is released from the protocol stack if it has a release
512  *	callback, and the inode is then released if the socket is bound to
513  *	an inode not a file.
514  */
515 
516 void sock_release(struct socket *sock)
517 {
518 	if (sock->ops) {
519 		struct module *owner = sock->ops->owner;
520 
521 		sock->ops->release(sock);
522 		sock->ops = NULL;
523 		module_put(owner);
524 	}
525 
526 	if (sock->wq->fasync_list)
527 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
528 
529 	percpu_sub(sockets_in_use, 1);
530 	if (!sock->file) {
531 		iput(SOCK_INODE(sock));
532 		return;
533 	}
534 	sock->file = NULL;
535 }
536 EXPORT_SYMBOL(sock_release);
537 
538 int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
539 {
540 	*tx_flags = 0;
541 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
542 		*tx_flags |= SKBTX_HW_TSTAMP;
543 	if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
544 		*tx_flags |= SKBTX_SW_TSTAMP;
545 	return 0;
546 }
547 EXPORT_SYMBOL(sock_tx_timestamp);
548 
549 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
550 				 struct msghdr *msg, size_t size)
551 {
552 	struct sock_iocb *si = kiocb_to_siocb(iocb);
553 	int err;
554 
555 	sock_update_classid(sock->sk);
556 
557 	si->sock = sock;
558 	si->scm = NULL;
559 	si->msg = msg;
560 	si->size = size;
561 
562 	err = security_socket_sendmsg(sock, msg, size);
563 	if (err)
564 		return err;
565 
566 	return sock->ops->sendmsg(iocb, sock, msg, size);
567 }
568 
569 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
570 {
571 	struct kiocb iocb;
572 	struct sock_iocb siocb;
573 	int ret;
574 
575 	init_sync_kiocb(&iocb, NULL);
576 	iocb.private = &siocb;
577 	ret = __sock_sendmsg(&iocb, sock, msg, size);
578 	if (-EIOCBQUEUED == ret)
579 		ret = wait_on_sync_kiocb(&iocb);
580 	return ret;
581 }
582 EXPORT_SYMBOL(sock_sendmsg);
583 
584 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
585 		   struct kvec *vec, size_t num, size_t size)
586 {
587 	mm_segment_t oldfs = get_fs();
588 	int result;
589 
590 	set_fs(KERNEL_DS);
591 	/*
592 	 * the following is safe, since for compiler definitions of kvec and
593 	 * iovec are identical, yielding the same in-core layout and alignment
594 	 */
595 	msg->msg_iov = (struct iovec *)vec;
596 	msg->msg_iovlen = num;
597 	result = sock_sendmsg(sock, msg, size);
598 	set_fs(oldfs);
599 	return result;
600 }
601 EXPORT_SYMBOL(kernel_sendmsg);
602 
603 static int ktime2ts(ktime_t kt, struct timespec *ts)
604 {
605 	if (kt.tv64) {
606 		*ts = ktime_to_timespec(kt);
607 		return 1;
608 	} else {
609 		return 0;
610 	}
611 }
612 
613 /*
614  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
615  */
616 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
617 	struct sk_buff *skb)
618 {
619 	int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
620 	struct timespec ts[3];
621 	int empty = 1;
622 	struct skb_shared_hwtstamps *shhwtstamps =
623 		skb_hwtstamps(skb);
624 
625 	/* Race occurred between timestamp enabling and packet
626 	   receiving.  Fill in the current time for now. */
627 	if (need_software_tstamp && skb->tstamp.tv64 == 0)
628 		__net_timestamp(skb);
629 
630 	if (need_software_tstamp) {
631 		if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
632 			struct timeval tv;
633 			skb_get_timestamp(skb, &tv);
634 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
635 				 sizeof(tv), &tv);
636 		} else {
637 			skb_get_timestampns(skb, &ts[0]);
638 			put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
639 				 sizeof(ts[0]), &ts[0]);
640 		}
641 	}
642 
643 
644 	memset(ts, 0, sizeof(ts));
645 	if (skb->tstamp.tv64 &&
646 	    sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) {
647 		skb_get_timestampns(skb, ts + 0);
648 		empty = 0;
649 	}
650 	if (shhwtstamps) {
651 		if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
652 		    ktime2ts(shhwtstamps->syststamp, ts + 1))
653 			empty = 0;
654 		if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
655 		    ktime2ts(shhwtstamps->hwtstamp, ts + 2))
656 			empty = 0;
657 	}
658 	if (!empty)
659 		put_cmsg(msg, SOL_SOCKET,
660 			 SCM_TIMESTAMPING, sizeof(ts), &ts);
661 }
662 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
663 
664 inline void sock_recv_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
665 {
666 	if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
667 		put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
668 			sizeof(__u32), &skb->dropcount);
669 }
670 
671 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
672 	struct sk_buff *skb)
673 {
674 	sock_recv_timestamp(msg, sk, skb);
675 	sock_recv_drops(msg, sk, skb);
676 }
677 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
678 
679 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
680 				       struct msghdr *msg, size_t size, int flags)
681 {
682 	struct sock_iocb *si = kiocb_to_siocb(iocb);
683 
684 	sock_update_classid(sock->sk);
685 
686 	si->sock = sock;
687 	si->scm = NULL;
688 	si->msg = msg;
689 	si->size = size;
690 	si->flags = flags;
691 
692 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
693 }
694 
695 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
696 				 struct msghdr *msg, size_t size, int flags)
697 {
698 	int err = security_socket_recvmsg(sock, msg, size, flags);
699 
700 	return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
701 }
702 
703 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
704 		 size_t size, int flags)
705 {
706 	struct kiocb iocb;
707 	struct sock_iocb siocb;
708 	int ret;
709 
710 	init_sync_kiocb(&iocb, NULL);
711 	iocb.private = &siocb;
712 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
713 	if (-EIOCBQUEUED == ret)
714 		ret = wait_on_sync_kiocb(&iocb);
715 	return ret;
716 }
717 EXPORT_SYMBOL(sock_recvmsg);
718 
719 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
720 			      size_t size, int flags)
721 {
722 	struct kiocb iocb;
723 	struct sock_iocb siocb;
724 	int ret;
725 
726 	init_sync_kiocb(&iocb, NULL);
727 	iocb.private = &siocb;
728 	ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
729 	if (-EIOCBQUEUED == ret)
730 		ret = wait_on_sync_kiocb(&iocb);
731 	return ret;
732 }
733 
734 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
735 		   struct kvec *vec, size_t num, size_t size, int flags)
736 {
737 	mm_segment_t oldfs = get_fs();
738 	int result;
739 
740 	set_fs(KERNEL_DS);
741 	/*
742 	 * the following is safe, since for compiler definitions of kvec and
743 	 * iovec are identical, yielding the same in-core layout and alignment
744 	 */
745 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
746 	result = sock_recvmsg(sock, msg, size, flags);
747 	set_fs(oldfs);
748 	return result;
749 }
750 EXPORT_SYMBOL(kernel_recvmsg);
751 
752 static void sock_aio_dtor(struct kiocb *iocb)
753 {
754 	kfree(iocb->private);
755 }
756 
757 static ssize_t sock_sendpage(struct file *file, struct page *page,
758 			     int offset, size_t size, loff_t *ppos, int more)
759 {
760 	struct socket *sock;
761 	int flags;
762 
763 	sock = file->private_data;
764 
765 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
766 	if (more)
767 		flags |= MSG_MORE;
768 
769 	return kernel_sendpage(sock, page, offset, size, flags);
770 }
771 
772 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
773 				struct pipe_inode_info *pipe, size_t len,
774 				unsigned int flags)
775 {
776 	struct socket *sock = file->private_data;
777 
778 	if (unlikely(!sock->ops->splice_read))
779 		return -EINVAL;
780 
781 	sock_update_classid(sock->sk);
782 
783 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
784 }
785 
786 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
787 					 struct sock_iocb *siocb)
788 {
789 	if (!is_sync_kiocb(iocb)) {
790 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
791 		if (!siocb)
792 			return NULL;
793 		iocb->ki_dtor = sock_aio_dtor;
794 	}
795 
796 	siocb->kiocb = iocb;
797 	iocb->private = siocb;
798 	return siocb;
799 }
800 
801 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
802 		struct file *file, const struct iovec *iov,
803 		unsigned long nr_segs)
804 {
805 	struct socket *sock = file->private_data;
806 	size_t size = 0;
807 	int i;
808 
809 	for (i = 0; i < nr_segs; i++)
810 		size += iov[i].iov_len;
811 
812 	msg->msg_name = NULL;
813 	msg->msg_namelen = 0;
814 	msg->msg_control = NULL;
815 	msg->msg_controllen = 0;
816 	msg->msg_iov = (struct iovec *)iov;
817 	msg->msg_iovlen = nr_segs;
818 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
819 
820 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
821 }
822 
823 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
824 				unsigned long nr_segs, loff_t pos)
825 {
826 	struct sock_iocb siocb, *x;
827 
828 	if (pos != 0)
829 		return -ESPIPE;
830 
831 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
832 		return 0;
833 
834 
835 	x = alloc_sock_iocb(iocb, &siocb);
836 	if (!x)
837 		return -ENOMEM;
838 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
839 }
840 
841 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
842 			struct file *file, const struct iovec *iov,
843 			unsigned long nr_segs)
844 {
845 	struct socket *sock = file->private_data;
846 	size_t size = 0;
847 	int i;
848 
849 	for (i = 0; i < nr_segs; i++)
850 		size += iov[i].iov_len;
851 
852 	msg->msg_name = NULL;
853 	msg->msg_namelen = 0;
854 	msg->msg_control = NULL;
855 	msg->msg_controllen = 0;
856 	msg->msg_iov = (struct iovec *)iov;
857 	msg->msg_iovlen = nr_segs;
858 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
859 	if (sock->type == SOCK_SEQPACKET)
860 		msg->msg_flags |= MSG_EOR;
861 
862 	return __sock_sendmsg(iocb, sock, msg, size);
863 }
864 
865 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
866 			  unsigned long nr_segs, loff_t pos)
867 {
868 	struct sock_iocb siocb, *x;
869 
870 	if (pos != 0)
871 		return -ESPIPE;
872 
873 	x = alloc_sock_iocb(iocb, &siocb);
874 	if (!x)
875 		return -ENOMEM;
876 
877 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
878 }
879 
880 /*
881  * Atomic setting of ioctl hooks to avoid race
882  * with module unload.
883  */
884 
885 static DEFINE_MUTEX(br_ioctl_mutex);
886 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
887 
888 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
889 {
890 	mutex_lock(&br_ioctl_mutex);
891 	br_ioctl_hook = hook;
892 	mutex_unlock(&br_ioctl_mutex);
893 }
894 EXPORT_SYMBOL(brioctl_set);
895 
896 static DEFINE_MUTEX(vlan_ioctl_mutex);
897 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
898 
899 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
900 {
901 	mutex_lock(&vlan_ioctl_mutex);
902 	vlan_ioctl_hook = hook;
903 	mutex_unlock(&vlan_ioctl_mutex);
904 }
905 EXPORT_SYMBOL(vlan_ioctl_set);
906 
907 static DEFINE_MUTEX(dlci_ioctl_mutex);
908 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
909 
910 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
911 {
912 	mutex_lock(&dlci_ioctl_mutex);
913 	dlci_ioctl_hook = hook;
914 	mutex_unlock(&dlci_ioctl_mutex);
915 }
916 EXPORT_SYMBOL(dlci_ioctl_set);
917 
918 static long sock_do_ioctl(struct net *net, struct socket *sock,
919 				 unsigned int cmd, unsigned long arg)
920 {
921 	int err;
922 	void __user *argp = (void __user *)arg;
923 
924 	err = sock->ops->ioctl(sock, cmd, arg);
925 
926 	/*
927 	 * If this ioctl is unknown try to hand it down
928 	 * to the NIC driver.
929 	 */
930 	if (err == -ENOIOCTLCMD)
931 		err = dev_ioctl(net, cmd, argp);
932 
933 	return err;
934 }
935 
936 /*
937  *	With an ioctl, arg may well be a user mode pointer, but we don't know
938  *	what to do with it - that's up to the protocol still.
939  */
940 
941 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
942 {
943 	struct socket *sock;
944 	struct sock *sk;
945 	void __user *argp = (void __user *)arg;
946 	int pid, err;
947 	struct net *net;
948 
949 	sock = file->private_data;
950 	sk = sock->sk;
951 	net = sock_net(sk);
952 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
953 		err = dev_ioctl(net, cmd, argp);
954 	} else
955 #ifdef CONFIG_WEXT_CORE
956 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
957 		err = dev_ioctl(net, cmd, argp);
958 	} else
959 #endif
960 		switch (cmd) {
961 		case FIOSETOWN:
962 		case SIOCSPGRP:
963 			err = -EFAULT;
964 			if (get_user(pid, (int __user *)argp))
965 				break;
966 			err = f_setown(sock->file, pid, 1);
967 			break;
968 		case FIOGETOWN:
969 		case SIOCGPGRP:
970 			err = put_user(f_getown(sock->file),
971 				       (int __user *)argp);
972 			break;
973 		case SIOCGIFBR:
974 		case SIOCSIFBR:
975 		case SIOCBRADDBR:
976 		case SIOCBRDELBR:
977 			err = -ENOPKG;
978 			if (!br_ioctl_hook)
979 				request_module("bridge");
980 
981 			mutex_lock(&br_ioctl_mutex);
982 			if (br_ioctl_hook)
983 				err = br_ioctl_hook(net, cmd, argp);
984 			mutex_unlock(&br_ioctl_mutex);
985 			break;
986 		case SIOCGIFVLAN:
987 		case SIOCSIFVLAN:
988 			err = -ENOPKG;
989 			if (!vlan_ioctl_hook)
990 				request_module("8021q");
991 
992 			mutex_lock(&vlan_ioctl_mutex);
993 			if (vlan_ioctl_hook)
994 				err = vlan_ioctl_hook(net, argp);
995 			mutex_unlock(&vlan_ioctl_mutex);
996 			break;
997 		case SIOCADDDLCI:
998 		case SIOCDELDLCI:
999 			err = -ENOPKG;
1000 			if (!dlci_ioctl_hook)
1001 				request_module("dlci");
1002 
1003 			mutex_lock(&dlci_ioctl_mutex);
1004 			if (dlci_ioctl_hook)
1005 				err = dlci_ioctl_hook(cmd, argp);
1006 			mutex_unlock(&dlci_ioctl_mutex);
1007 			break;
1008 		default:
1009 			err = sock_do_ioctl(net, sock, cmd, arg);
1010 			break;
1011 		}
1012 	return err;
1013 }
1014 
1015 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1016 {
1017 	int err;
1018 	struct socket *sock = NULL;
1019 
1020 	err = security_socket_create(family, type, protocol, 1);
1021 	if (err)
1022 		goto out;
1023 
1024 	sock = sock_alloc();
1025 	if (!sock) {
1026 		err = -ENOMEM;
1027 		goto out;
1028 	}
1029 
1030 	sock->type = type;
1031 	err = security_socket_post_create(sock, family, type, protocol, 1);
1032 	if (err)
1033 		goto out_release;
1034 
1035 out:
1036 	*res = sock;
1037 	return err;
1038 out_release:
1039 	sock_release(sock);
1040 	sock = NULL;
1041 	goto out;
1042 }
1043 EXPORT_SYMBOL(sock_create_lite);
1044 
1045 /* No kernel lock held - perfect */
1046 static unsigned int sock_poll(struct file *file, poll_table *wait)
1047 {
1048 	struct socket *sock;
1049 
1050 	/*
1051 	 *      We can't return errors to poll, so it's either yes or no.
1052 	 */
1053 	sock = file->private_data;
1054 	return sock->ops->poll(file, sock, wait);
1055 }
1056 
1057 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1058 {
1059 	struct socket *sock = file->private_data;
1060 
1061 	return sock->ops->mmap(file, sock, vma);
1062 }
1063 
1064 static int sock_close(struct inode *inode, struct file *filp)
1065 {
1066 	/*
1067 	 *      It was possible the inode is NULL we were
1068 	 *      closing an unfinished socket.
1069 	 */
1070 
1071 	if (!inode) {
1072 		printk(KERN_DEBUG "sock_close: NULL inode\n");
1073 		return 0;
1074 	}
1075 	sock_release(SOCKET_I(inode));
1076 	return 0;
1077 }
1078 
1079 /*
1080  *	Update the socket async list
1081  *
1082  *	Fasync_list locking strategy.
1083  *
1084  *	1. fasync_list is modified only under process context socket lock
1085  *	   i.e. under semaphore.
1086  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1087  *	   or under socket lock
1088  */
1089 
1090 static int sock_fasync(int fd, struct file *filp, int on)
1091 {
1092 	struct socket *sock = filp->private_data;
1093 	struct sock *sk = sock->sk;
1094 
1095 	if (sk == NULL)
1096 		return -EINVAL;
1097 
1098 	lock_sock(sk);
1099 
1100 	fasync_helper(fd, filp, on, &sock->wq->fasync_list);
1101 
1102 	if (!sock->wq->fasync_list)
1103 		sock_reset_flag(sk, SOCK_FASYNC);
1104 	else
1105 		sock_set_flag(sk, SOCK_FASYNC);
1106 
1107 	release_sock(sk);
1108 	return 0;
1109 }
1110 
1111 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1112 
1113 int sock_wake_async(struct socket *sock, int how, int band)
1114 {
1115 	struct socket_wq *wq;
1116 
1117 	if (!sock)
1118 		return -1;
1119 	rcu_read_lock();
1120 	wq = rcu_dereference(sock->wq);
1121 	if (!wq || !wq->fasync_list) {
1122 		rcu_read_unlock();
1123 		return -1;
1124 	}
1125 	switch (how) {
1126 	case SOCK_WAKE_WAITD:
1127 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1128 			break;
1129 		goto call_kill;
1130 	case SOCK_WAKE_SPACE:
1131 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1132 			break;
1133 		/* fall through */
1134 	case SOCK_WAKE_IO:
1135 call_kill:
1136 		kill_fasync(&wq->fasync_list, SIGIO, band);
1137 		break;
1138 	case SOCK_WAKE_URG:
1139 		kill_fasync(&wq->fasync_list, SIGURG, band);
1140 	}
1141 	rcu_read_unlock();
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL(sock_wake_async);
1145 
1146 static int __sock_create(struct net *net, int family, int type, int protocol,
1147 			 struct socket **res, int kern)
1148 {
1149 	int err;
1150 	struct socket *sock;
1151 	const struct net_proto_family *pf;
1152 
1153 	/*
1154 	 *      Check protocol is in range
1155 	 */
1156 	if (family < 0 || family >= NPROTO)
1157 		return -EAFNOSUPPORT;
1158 	if (type < 0 || type >= SOCK_MAX)
1159 		return -EINVAL;
1160 
1161 	/* Compatibility.
1162 
1163 	   This uglymoron is moved from INET layer to here to avoid
1164 	   deadlock in module load.
1165 	 */
1166 	if (family == PF_INET && type == SOCK_PACKET) {
1167 		static int warned;
1168 		if (!warned) {
1169 			warned = 1;
1170 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1171 			       current->comm);
1172 		}
1173 		family = PF_PACKET;
1174 	}
1175 
1176 	err = security_socket_create(family, type, protocol, kern);
1177 	if (err)
1178 		return err;
1179 
1180 	/*
1181 	 *	Allocate the socket and allow the family to set things up. if
1182 	 *	the protocol is 0, the family is instructed to select an appropriate
1183 	 *	default.
1184 	 */
1185 	sock = sock_alloc();
1186 	if (!sock) {
1187 		if (net_ratelimit())
1188 			printk(KERN_WARNING "socket: no more sockets\n");
1189 		return -ENFILE;	/* Not exactly a match, but its the
1190 				   closest posix thing */
1191 	}
1192 
1193 	sock->type = type;
1194 
1195 #ifdef CONFIG_MODULES
1196 	/* Attempt to load a protocol module if the find failed.
1197 	 *
1198 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1199 	 * requested real, full-featured networking support upon configuration.
1200 	 * Otherwise module support will break!
1201 	 */
1202 	if (net_families[family] == NULL)
1203 		request_module("net-pf-%d", family);
1204 #endif
1205 
1206 	rcu_read_lock();
1207 	pf = rcu_dereference(net_families[family]);
1208 	err = -EAFNOSUPPORT;
1209 	if (!pf)
1210 		goto out_release;
1211 
1212 	/*
1213 	 * We will call the ->create function, that possibly is in a loadable
1214 	 * module, so we have to bump that loadable module refcnt first.
1215 	 */
1216 	if (!try_module_get(pf->owner))
1217 		goto out_release;
1218 
1219 	/* Now protected by module ref count */
1220 	rcu_read_unlock();
1221 
1222 	err = pf->create(net, sock, protocol, kern);
1223 	if (err < 0)
1224 		goto out_module_put;
1225 
1226 	/*
1227 	 * Now to bump the refcnt of the [loadable] module that owns this
1228 	 * socket at sock_release time we decrement its refcnt.
1229 	 */
1230 	if (!try_module_get(sock->ops->owner))
1231 		goto out_module_busy;
1232 
1233 	/*
1234 	 * Now that we're done with the ->create function, the [loadable]
1235 	 * module can have its refcnt decremented
1236 	 */
1237 	module_put(pf->owner);
1238 	err = security_socket_post_create(sock, family, type, protocol, kern);
1239 	if (err)
1240 		goto out_sock_release;
1241 	*res = sock;
1242 
1243 	return 0;
1244 
1245 out_module_busy:
1246 	err = -EAFNOSUPPORT;
1247 out_module_put:
1248 	sock->ops = NULL;
1249 	module_put(pf->owner);
1250 out_sock_release:
1251 	sock_release(sock);
1252 	return err;
1253 
1254 out_release:
1255 	rcu_read_unlock();
1256 	goto out_sock_release;
1257 }
1258 
1259 int sock_create(int family, int type, int protocol, struct socket **res)
1260 {
1261 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1262 }
1263 EXPORT_SYMBOL(sock_create);
1264 
1265 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1266 {
1267 	return __sock_create(&init_net, family, type, protocol, res, 1);
1268 }
1269 EXPORT_SYMBOL(sock_create_kern);
1270 
1271 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1272 {
1273 	int retval;
1274 	struct socket *sock;
1275 	int flags;
1276 
1277 	/* Check the SOCK_* constants for consistency.  */
1278 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1279 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1280 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1281 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1282 
1283 	flags = type & ~SOCK_TYPE_MASK;
1284 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1285 		return -EINVAL;
1286 	type &= SOCK_TYPE_MASK;
1287 
1288 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1289 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1290 
1291 	retval = sock_create(family, type, protocol, &sock);
1292 	if (retval < 0)
1293 		goto out;
1294 
1295 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1296 	if (retval < 0)
1297 		goto out_release;
1298 
1299 out:
1300 	/* It may be already another descriptor 8) Not kernel problem. */
1301 	return retval;
1302 
1303 out_release:
1304 	sock_release(sock);
1305 	return retval;
1306 }
1307 
1308 /*
1309  *	Create a pair of connected sockets.
1310  */
1311 
1312 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1313 		int __user *, usockvec)
1314 {
1315 	struct socket *sock1, *sock2;
1316 	int fd1, fd2, err;
1317 	struct file *newfile1, *newfile2;
1318 	int flags;
1319 
1320 	flags = type & ~SOCK_TYPE_MASK;
1321 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1322 		return -EINVAL;
1323 	type &= SOCK_TYPE_MASK;
1324 
1325 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1326 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1327 
1328 	/*
1329 	 * Obtain the first socket and check if the underlying protocol
1330 	 * supports the socketpair call.
1331 	 */
1332 
1333 	err = sock_create(family, type, protocol, &sock1);
1334 	if (err < 0)
1335 		goto out;
1336 
1337 	err = sock_create(family, type, protocol, &sock2);
1338 	if (err < 0)
1339 		goto out_release_1;
1340 
1341 	err = sock1->ops->socketpair(sock1, sock2);
1342 	if (err < 0)
1343 		goto out_release_both;
1344 
1345 	fd1 = sock_alloc_file(sock1, &newfile1, flags);
1346 	if (unlikely(fd1 < 0)) {
1347 		err = fd1;
1348 		goto out_release_both;
1349 	}
1350 
1351 	fd2 = sock_alloc_file(sock2, &newfile2, flags);
1352 	if (unlikely(fd2 < 0)) {
1353 		err = fd2;
1354 		fput(newfile1);
1355 		put_unused_fd(fd1);
1356 		sock_release(sock2);
1357 		goto out;
1358 	}
1359 
1360 	audit_fd_pair(fd1, fd2);
1361 	fd_install(fd1, newfile1);
1362 	fd_install(fd2, newfile2);
1363 	/* fd1 and fd2 may be already another descriptors.
1364 	 * Not kernel problem.
1365 	 */
1366 
1367 	err = put_user(fd1, &usockvec[0]);
1368 	if (!err)
1369 		err = put_user(fd2, &usockvec[1]);
1370 	if (!err)
1371 		return 0;
1372 
1373 	sys_close(fd2);
1374 	sys_close(fd1);
1375 	return err;
1376 
1377 out_release_both:
1378 	sock_release(sock2);
1379 out_release_1:
1380 	sock_release(sock1);
1381 out:
1382 	return err;
1383 }
1384 
1385 /*
1386  *	Bind a name to a socket. Nothing much to do here since it's
1387  *	the protocol's responsibility to handle the local address.
1388  *
1389  *	We move the socket address to kernel space before we call
1390  *	the protocol layer (having also checked the address is ok).
1391  */
1392 
1393 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1394 {
1395 	struct socket *sock;
1396 	struct sockaddr_storage address;
1397 	int err, fput_needed;
1398 
1399 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1400 	if (sock) {
1401 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1402 		if (err >= 0) {
1403 			err = security_socket_bind(sock,
1404 						   (struct sockaddr *)&address,
1405 						   addrlen);
1406 			if (!err)
1407 				err = sock->ops->bind(sock,
1408 						      (struct sockaddr *)
1409 						      &address, addrlen);
1410 		}
1411 		fput_light(sock->file, fput_needed);
1412 	}
1413 	return err;
1414 }
1415 
1416 /*
1417  *	Perform a listen. Basically, we allow the protocol to do anything
1418  *	necessary for a listen, and if that works, we mark the socket as
1419  *	ready for listening.
1420  */
1421 
1422 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1423 {
1424 	struct socket *sock;
1425 	int err, fput_needed;
1426 	int somaxconn;
1427 
1428 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1429 	if (sock) {
1430 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1431 		if ((unsigned)backlog > somaxconn)
1432 			backlog = somaxconn;
1433 
1434 		err = security_socket_listen(sock, backlog);
1435 		if (!err)
1436 			err = sock->ops->listen(sock, backlog);
1437 
1438 		fput_light(sock->file, fput_needed);
1439 	}
1440 	return err;
1441 }
1442 
1443 /*
1444  *	For accept, we attempt to create a new socket, set up the link
1445  *	with the client, wake up the client, then return the new
1446  *	connected fd. We collect the address of the connector in kernel
1447  *	space and move it to user at the very end. This is unclean because
1448  *	we open the socket then return an error.
1449  *
1450  *	1003.1g adds the ability to recvmsg() to query connection pending
1451  *	status to recvmsg. We need to add that support in a way thats
1452  *	clean when we restucture accept also.
1453  */
1454 
1455 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1456 		int __user *, upeer_addrlen, int, flags)
1457 {
1458 	struct socket *sock, *newsock;
1459 	struct file *newfile;
1460 	int err, len, newfd, fput_needed;
1461 	struct sockaddr_storage address;
1462 
1463 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1464 		return -EINVAL;
1465 
1466 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1467 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1468 
1469 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1470 	if (!sock)
1471 		goto out;
1472 
1473 	err = -ENFILE;
1474 	newsock = sock_alloc();
1475 	if (!newsock)
1476 		goto out_put;
1477 
1478 	newsock->type = sock->type;
1479 	newsock->ops = sock->ops;
1480 
1481 	/*
1482 	 * We don't need try_module_get here, as the listening socket (sock)
1483 	 * has the protocol module (sock->ops->owner) held.
1484 	 */
1485 	__module_get(newsock->ops->owner);
1486 
1487 	newfd = sock_alloc_file(newsock, &newfile, flags);
1488 	if (unlikely(newfd < 0)) {
1489 		err = newfd;
1490 		sock_release(newsock);
1491 		goto out_put;
1492 	}
1493 
1494 	err = security_socket_accept(sock, newsock);
1495 	if (err)
1496 		goto out_fd;
1497 
1498 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1499 	if (err < 0)
1500 		goto out_fd;
1501 
1502 	if (upeer_sockaddr) {
1503 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1504 					  &len, 2) < 0) {
1505 			err = -ECONNABORTED;
1506 			goto out_fd;
1507 		}
1508 		err = move_addr_to_user((struct sockaddr *)&address,
1509 					len, upeer_sockaddr, upeer_addrlen);
1510 		if (err < 0)
1511 			goto out_fd;
1512 	}
1513 
1514 	/* File flags are not inherited via accept() unlike another OSes. */
1515 
1516 	fd_install(newfd, newfile);
1517 	err = newfd;
1518 
1519 out_put:
1520 	fput_light(sock->file, fput_needed);
1521 out:
1522 	return err;
1523 out_fd:
1524 	fput(newfile);
1525 	put_unused_fd(newfd);
1526 	goto out_put;
1527 }
1528 
1529 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1530 		int __user *, upeer_addrlen)
1531 {
1532 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1533 }
1534 
1535 /*
1536  *	Attempt to connect to a socket with the server address.  The address
1537  *	is in user space so we verify it is OK and move it to kernel space.
1538  *
1539  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1540  *	break bindings
1541  *
1542  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1543  *	other SEQPACKET protocols that take time to connect() as it doesn't
1544  *	include the -EINPROGRESS status for such sockets.
1545  */
1546 
1547 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1548 		int, addrlen)
1549 {
1550 	struct socket *sock;
1551 	struct sockaddr_storage address;
1552 	int err, fput_needed;
1553 
1554 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1555 	if (!sock)
1556 		goto out;
1557 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1558 	if (err < 0)
1559 		goto out_put;
1560 
1561 	err =
1562 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1563 	if (err)
1564 		goto out_put;
1565 
1566 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1567 				 sock->file->f_flags);
1568 out_put:
1569 	fput_light(sock->file, fput_needed);
1570 out:
1571 	return err;
1572 }
1573 
1574 /*
1575  *	Get the local address ('name') of a socket object. Move the obtained
1576  *	name to user space.
1577  */
1578 
1579 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1580 		int __user *, usockaddr_len)
1581 {
1582 	struct socket *sock;
1583 	struct sockaddr_storage address;
1584 	int len, err, fput_needed;
1585 
1586 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1587 	if (!sock)
1588 		goto out;
1589 
1590 	err = security_socket_getsockname(sock);
1591 	if (err)
1592 		goto out_put;
1593 
1594 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1595 	if (err)
1596 		goto out_put;
1597 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1598 
1599 out_put:
1600 	fput_light(sock->file, fput_needed);
1601 out:
1602 	return err;
1603 }
1604 
1605 /*
1606  *	Get the remote address ('name') of a socket object. Move the obtained
1607  *	name to user space.
1608  */
1609 
1610 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1611 		int __user *, usockaddr_len)
1612 {
1613 	struct socket *sock;
1614 	struct sockaddr_storage address;
1615 	int len, err, fput_needed;
1616 
1617 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1618 	if (sock != NULL) {
1619 		err = security_socket_getpeername(sock);
1620 		if (err) {
1621 			fput_light(sock->file, fput_needed);
1622 			return err;
1623 		}
1624 
1625 		err =
1626 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1627 				       1);
1628 		if (!err)
1629 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1630 						usockaddr_len);
1631 		fput_light(sock->file, fput_needed);
1632 	}
1633 	return err;
1634 }
1635 
1636 /*
1637  *	Send a datagram to a given address. We move the address into kernel
1638  *	space and check the user space data area is readable before invoking
1639  *	the protocol.
1640  */
1641 
1642 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1643 		unsigned, flags, struct sockaddr __user *, addr,
1644 		int, addr_len)
1645 {
1646 	struct socket *sock;
1647 	struct sockaddr_storage address;
1648 	int err;
1649 	struct msghdr msg;
1650 	struct iovec iov;
1651 	int fput_needed;
1652 
1653 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1654 	if (!sock)
1655 		goto out;
1656 
1657 	iov.iov_base = buff;
1658 	iov.iov_len = len;
1659 	msg.msg_name = NULL;
1660 	msg.msg_iov = &iov;
1661 	msg.msg_iovlen = 1;
1662 	msg.msg_control = NULL;
1663 	msg.msg_controllen = 0;
1664 	msg.msg_namelen = 0;
1665 	if (addr) {
1666 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1667 		if (err < 0)
1668 			goto out_put;
1669 		msg.msg_name = (struct sockaddr *)&address;
1670 		msg.msg_namelen = addr_len;
1671 	}
1672 	if (sock->file->f_flags & O_NONBLOCK)
1673 		flags |= MSG_DONTWAIT;
1674 	msg.msg_flags = flags;
1675 	err = sock_sendmsg(sock, &msg, len);
1676 
1677 out_put:
1678 	fput_light(sock->file, fput_needed);
1679 out:
1680 	return err;
1681 }
1682 
1683 /*
1684  *	Send a datagram down a socket.
1685  */
1686 
1687 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1688 		unsigned, flags)
1689 {
1690 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1691 }
1692 
1693 /*
1694  *	Receive a frame from the socket and optionally record the address of the
1695  *	sender. We verify the buffers are writable and if needed move the
1696  *	sender address from kernel to user space.
1697  */
1698 
1699 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1700 		unsigned, flags, struct sockaddr __user *, addr,
1701 		int __user *, addr_len)
1702 {
1703 	struct socket *sock;
1704 	struct iovec iov;
1705 	struct msghdr msg;
1706 	struct sockaddr_storage address;
1707 	int err, err2;
1708 	int fput_needed;
1709 
1710 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1711 	if (!sock)
1712 		goto out;
1713 
1714 	msg.msg_control = NULL;
1715 	msg.msg_controllen = 0;
1716 	msg.msg_iovlen = 1;
1717 	msg.msg_iov = &iov;
1718 	iov.iov_len = size;
1719 	iov.iov_base = ubuf;
1720 	msg.msg_name = (struct sockaddr *)&address;
1721 	msg.msg_namelen = sizeof(address);
1722 	if (sock->file->f_flags & O_NONBLOCK)
1723 		flags |= MSG_DONTWAIT;
1724 	err = sock_recvmsg(sock, &msg, size, flags);
1725 
1726 	if (err >= 0 && addr != NULL) {
1727 		err2 = move_addr_to_user((struct sockaddr *)&address,
1728 					 msg.msg_namelen, addr, addr_len);
1729 		if (err2 < 0)
1730 			err = err2;
1731 	}
1732 
1733 	fput_light(sock->file, fput_needed);
1734 out:
1735 	return err;
1736 }
1737 
1738 /*
1739  *	Receive a datagram from a socket.
1740  */
1741 
1742 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1743 			 unsigned flags)
1744 {
1745 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1746 }
1747 
1748 /*
1749  *	Set a socket option. Because we don't know the option lengths we have
1750  *	to pass the user mode parameter for the protocols to sort out.
1751  */
1752 
1753 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1754 		char __user *, optval, int, optlen)
1755 {
1756 	int err, fput_needed;
1757 	struct socket *sock;
1758 
1759 	if (optlen < 0)
1760 		return -EINVAL;
1761 
1762 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1763 	if (sock != NULL) {
1764 		err = security_socket_setsockopt(sock, level, optname);
1765 		if (err)
1766 			goto out_put;
1767 
1768 		if (level == SOL_SOCKET)
1769 			err =
1770 			    sock_setsockopt(sock, level, optname, optval,
1771 					    optlen);
1772 		else
1773 			err =
1774 			    sock->ops->setsockopt(sock, level, optname, optval,
1775 						  optlen);
1776 out_put:
1777 		fput_light(sock->file, fput_needed);
1778 	}
1779 	return err;
1780 }
1781 
1782 /*
1783  *	Get a socket option. Because we don't know the option lengths we have
1784  *	to pass a user mode parameter for the protocols to sort out.
1785  */
1786 
1787 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1788 		char __user *, optval, int __user *, optlen)
1789 {
1790 	int err, fput_needed;
1791 	struct socket *sock;
1792 
1793 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1794 	if (sock != NULL) {
1795 		err = security_socket_getsockopt(sock, level, optname);
1796 		if (err)
1797 			goto out_put;
1798 
1799 		if (level == SOL_SOCKET)
1800 			err =
1801 			    sock_getsockopt(sock, level, optname, optval,
1802 					    optlen);
1803 		else
1804 			err =
1805 			    sock->ops->getsockopt(sock, level, optname, optval,
1806 						  optlen);
1807 out_put:
1808 		fput_light(sock->file, fput_needed);
1809 	}
1810 	return err;
1811 }
1812 
1813 /*
1814  *	Shutdown a socket.
1815  */
1816 
1817 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1818 {
1819 	int err, fput_needed;
1820 	struct socket *sock;
1821 
1822 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1823 	if (sock != NULL) {
1824 		err = security_socket_shutdown(sock, how);
1825 		if (!err)
1826 			err = sock->ops->shutdown(sock, how);
1827 		fput_light(sock->file, fput_needed);
1828 	}
1829 	return err;
1830 }
1831 
1832 /* A couple of helpful macros for getting the address of the 32/64 bit
1833  * fields which are the same type (int / unsigned) on our platforms.
1834  */
1835 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1836 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1837 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1838 
1839 /*
1840  *	BSD sendmsg interface
1841  */
1842 
1843 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned, flags)
1844 {
1845 	struct compat_msghdr __user *msg_compat =
1846 	    (struct compat_msghdr __user *)msg;
1847 	struct socket *sock;
1848 	struct sockaddr_storage address;
1849 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1850 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1851 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1852 	/* 20 is size of ipv6_pktinfo */
1853 	unsigned char *ctl_buf = ctl;
1854 	struct msghdr msg_sys;
1855 	int err, ctl_len, iov_size, total_len;
1856 	int fput_needed;
1857 
1858 	err = -EFAULT;
1859 	if (MSG_CMSG_COMPAT & flags) {
1860 		if (get_compat_msghdr(&msg_sys, msg_compat))
1861 			return -EFAULT;
1862 	} else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1863 		return -EFAULT;
1864 
1865 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1866 	if (!sock)
1867 		goto out;
1868 
1869 	/* do not move before msg_sys is valid */
1870 	err = -EMSGSIZE;
1871 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1872 		goto out_put;
1873 
1874 	/* Check whether to allocate the iovec area */
1875 	err = -ENOMEM;
1876 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1877 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1878 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1879 		if (!iov)
1880 			goto out_put;
1881 	}
1882 
1883 	/* This will also move the address data into kernel space */
1884 	if (MSG_CMSG_COMPAT & flags) {
1885 		err = verify_compat_iovec(&msg_sys, iov,
1886 					  (struct sockaddr *)&address,
1887 					  VERIFY_READ);
1888 	} else
1889 		err = verify_iovec(&msg_sys, iov,
1890 				   (struct sockaddr *)&address,
1891 				   VERIFY_READ);
1892 	if (err < 0)
1893 		goto out_freeiov;
1894 	total_len = err;
1895 
1896 	err = -ENOBUFS;
1897 
1898 	if (msg_sys.msg_controllen > INT_MAX)
1899 		goto out_freeiov;
1900 	ctl_len = msg_sys.msg_controllen;
1901 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1902 		err =
1903 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1904 						     sizeof(ctl));
1905 		if (err)
1906 			goto out_freeiov;
1907 		ctl_buf = msg_sys.msg_control;
1908 		ctl_len = msg_sys.msg_controllen;
1909 	} else if (ctl_len) {
1910 		if (ctl_len > sizeof(ctl)) {
1911 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1912 			if (ctl_buf == NULL)
1913 				goto out_freeiov;
1914 		}
1915 		err = -EFAULT;
1916 		/*
1917 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1918 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1919 		 * checking falls down on this.
1920 		 */
1921 		if (copy_from_user(ctl_buf,
1922 				   (void __user __force *)msg_sys.msg_control,
1923 				   ctl_len))
1924 			goto out_freectl;
1925 		msg_sys.msg_control = ctl_buf;
1926 	}
1927 	msg_sys.msg_flags = flags;
1928 
1929 	if (sock->file->f_flags & O_NONBLOCK)
1930 		msg_sys.msg_flags |= MSG_DONTWAIT;
1931 	err = sock_sendmsg(sock, &msg_sys, total_len);
1932 
1933 out_freectl:
1934 	if (ctl_buf != ctl)
1935 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1936 out_freeiov:
1937 	if (iov != iovstack)
1938 		sock_kfree_s(sock->sk, iov, iov_size);
1939 out_put:
1940 	fput_light(sock->file, fput_needed);
1941 out:
1942 	return err;
1943 }
1944 
1945 static int __sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
1946 			 struct msghdr *msg_sys, unsigned flags, int nosec)
1947 {
1948 	struct compat_msghdr __user *msg_compat =
1949 	    (struct compat_msghdr __user *)msg;
1950 	struct iovec iovstack[UIO_FASTIOV];
1951 	struct iovec *iov = iovstack;
1952 	unsigned long cmsg_ptr;
1953 	int err, iov_size, total_len, len;
1954 
1955 	/* kernel mode address */
1956 	struct sockaddr_storage addr;
1957 
1958 	/* user mode address pointers */
1959 	struct sockaddr __user *uaddr;
1960 	int __user *uaddr_len;
1961 
1962 	if (MSG_CMSG_COMPAT & flags) {
1963 		if (get_compat_msghdr(msg_sys, msg_compat))
1964 			return -EFAULT;
1965 	} else if (copy_from_user(msg_sys, msg, sizeof(struct msghdr)))
1966 		return -EFAULT;
1967 
1968 	err = -EMSGSIZE;
1969 	if (msg_sys->msg_iovlen > UIO_MAXIOV)
1970 		goto out;
1971 
1972 	/* Check whether to allocate the iovec area */
1973 	err = -ENOMEM;
1974 	iov_size = msg_sys->msg_iovlen * sizeof(struct iovec);
1975 	if (msg_sys->msg_iovlen > UIO_FASTIOV) {
1976 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1977 		if (!iov)
1978 			goto out;
1979 	}
1980 
1981 	/*
1982 	 *      Save the user-mode address (verify_iovec will change the
1983 	 *      kernel msghdr to use the kernel address space)
1984 	 */
1985 
1986 	uaddr = (__force void __user *)msg_sys->msg_name;
1987 	uaddr_len = COMPAT_NAMELEN(msg);
1988 	if (MSG_CMSG_COMPAT & flags) {
1989 		err = verify_compat_iovec(msg_sys, iov,
1990 					  (struct sockaddr *)&addr,
1991 					  VERIFY_WRITE);
1992 	} else
1993 		err = verify_iovec(msg_sys, iov,
1994 				   (struct sockaddr *)&addr,
1995 				   VERIFY_WRITE);
1996 	if (err < 0)
1997 		goto out_freeiov;
1998 	total_len = err;
1999 
2000 	cmsg_ptr = (unsigned long)msg_sys->msg_control;
2001 	msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2002 
2003 	if (sock->file->f_flags & O_NONBLOCK)
2004 		flags |= MSG_DONTWAIT;
2005 	err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2006 							  total_len, flags);
2007 	if (err < 0)
2008 		goto out_freeiov;
2009 	len = err;
2010 
2011 	if (uaddr != NULL) {
2012 		err = move_addr_to_user((struct sockaddr *)&addr,
2013 					msg_sys->msg_namelen, uaddr,
2014 					uaddr_len);
2015 		if (err < 0)
2016 			goto out_freeiov;
2017 	}
2018 	err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2019 			 COMPAT_FLAGS(msg));
2020 	if (err)
2021 		goto out_freeiov;
2022 	if (MSG_CMSG_COMPAT & flags)
2023 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2024 				 &msg_compat->msg_controllen);
2025 	else
2026 		err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2027 				 &msg->msg_controllen);
2028 	if (err)
2029 		goto out_freeiov;
2030 	err = len;
2031 
2032 out_freeiov:
2033 	if (iov != iovstack)
2034 		sock_kfree_s(sock->sk, iov, iov_size);
2035 out:
2036 	return err;
2037 }
2038 
2039 /*
2040  *	BSD recvmsg interface
2041  */
2042 
2043 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2044 		unsigned int, flags)
2045 {
2046 	int fput_needed, err;
2047 	struct msghdr msg_sys;
2048 	struct socket *sock = sockfd_lookup_light(fd, &err, &fput_needed);
2049 
2050 	if (!sock)
2051 		goto out;
2052 
2053 	err = __sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2054 
2055 	fput_light(sock->file, fput_needed);
2056 out:
2057 	return err;
2058 }
2059 
2060 /*
2061  *     Linux recvmmsg interface
2062  */
2063 
2064 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2065 		   unsigned int flags, struct timespec *timeout)
2066 {
2067 	int fput_needed, err, datagrams;
2068 	struct socket *sock;
2069 	struct mmsghdr __user *entry;
2070 	struct compat_mmsghdr __user *compat_entry;
2071 	struct msghdr msg_sys;
2072 	struct timespec end_time;
2073 
2074 	if (timeout &&
2075 	    poll_select_set_timeout(&end_time, timeout->tv_sec,
2076 				    timeout->tv_nsec))
2077 		return -EINVAL;
2078 
2079 	datagrams = 0;
2080 
2081 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
2082 	if (!sock)
2083 		return err;
2084 
2085 	err = sock_error(sock->sk);
2086 	if (err)
2087 		goto out_put;
2088 
2089 	entry = mmsg;
2090 	compat_entry = (struct compat_mmsghdr __user *)mmsg;
2091 
2092 	while (datagrams < vlen) {
2093 		/*
2094 		 * No need to ask LSM for more than the first datagram.
2095 		 */
2096 		if (MSG_CMSG_COMPAT & flags) {
2097 			err = __sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2098 					    &msg_sys, flags, datagrams);
2099 			if (err < 0)
2100 				break;
2101 			err = __put_user(err, &compat_entry->msg_len);
2102 			++compat_entry;
2103 		} else {
2104 			err = __sys_recvmsg(sock, (struct msghdr __user *)entry,
2105 					    &msg_sys, flags, datagrams);
2106 			if (err < 0)
2107 				break;
2108 			err = put_user(err, &entry->msg_len);
2109 			++entry;
2110 		}
2111 
2112 		if (err)
2113 			break;
2114 		++datagrams;
2115 
2116 		/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2117 		if (flags & MSG_WAITFORONE)
2118 			flags |= MSG_DONTWAIT;
2119 
2120 		if (timeout) {
2121 			ktime_get_ts(timeout);
2122 			*timeout = timespec_sub(end_time, *timeout);
2123 			if (timeout->tv_sec < 0) {
2124 				timeout->tv_sec = timeout->tv_nsec = 0;
2125 				break;
2126 			}
2127 
2128 			/* Timeout, return less than vlen datagrams */
2129 			if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2130 				break;
2131 		}
2132 
2133 		/* Out of band data, return right away */
2134 		if (msg_sys.msg_flags & MSG_OOB)
2135 			break;
2136 	}
2137 
2138 out_put:
2139 	fput_light(sock->file, fput_needed);
2140 
2141 	if (err == 0)
2142 		return datagrams;
2143 
2144 	if (datagrams != 0) {
2145 		/*
2146 		 * We may return less entries than requested (vlen) if the
2147 		 * sock is non block and there aren't enough datagrams...
2148 		 */
2149 		if (err != -EAGAIN) {
2150 			/*
2151 			 * ... or  if recvmsg returns an error after we
2152 			 * received some datagrams, where we record the
2153 			 * error to return on the next call or if the
2154 			 * app asks about it using getsockopt(SO_ERROR).
2155 			 */
2156 			sock->sk->sk_err = -err;
2157 		}
2158 
2159 		return datagrams;
2160 	}
2161 
2162 	return err;
2163 }
2164 
2165 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2166 		unsigned int, vlen, unsigned int, flags,
2167 		struct timespec __user *, timeout)
2168 {
2169 	int datagrams;
2170 	struct timespec timeout_sys;
2171 
2172 	if (!timeout)
2173 		return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2174 
2175 	if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2176 		return -EFAULT;
2177 
2178 	datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2179 
2180 	if (datagrams > 0 &&
2181 	    copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2182 		datagrams = -EFAULT;
2183 
2184 	return datagrams;
2185 }
2186 
2187 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2188 /* Argument list sizes for sys_socketcall */
2189 #define AL(x) ((x) * sizeof(unsigned long))
2190 static const unsigned char nargs[20] = {
2191 	AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2192 	AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2193 	AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2194 	AL(4), AL(5)
2195 };
2196 
2197 #undef AL
2198 
2199 /*
2200  *	System call vectors.
2201  *
2202  *	Argument checking cleaned up. Saved 20% in size.
2203  *  This function doesn't need to set the kernel lock because
2204  *  it is set by the callees.
2205  */
2206 
2207 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2208 {
2209 	unsigned long a[6];
2210 	unsigned long a0, a1;
2211 	int err;
2212 	unsigned int len;
2213 
2214 	if (call < 1 || call > SYS_RECVMMSG)
2215 		return -EINVAL;
2216 
2217 	len = nargs[call];
2218 	if (len > sizeof(a))
2219 		return -EINVAL;
2220 
2221 	/* copy_from_user should be SMP safe. */
2222 	if (copy_from_user(a, args, len))
2223 		return -EFAULT;
2224 
2225 	audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2226 
2227 	a0 = a[0];
2228 	a1 = a[1];
2229 
2230 	switch (call) {
2231 	case SYS_SOCKET:
2232 		err = sys_socket(a0, a1, a[2]);
2233 		break;
2234 	case SYS_BIND:
2235 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2236 		break;
2237 	case SYS_CONNECT:
2238 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2239 		break;
2240 	case SYS_LISTEN:
2241 		err = sys_listen(a0, a1);
2242 		break;
2243 	case SYS_ACCEPT:
2244 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2245 				  (int __user *)a[2], 0);
2246 		break;
2247 	case SYS_GETSOCKNAME:
2248 		err =
2249 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2250 				    (int __user *)a[2]);
2251 		break;
2252 	case SYS_GETPEERNAME:
2253 		err =
2254 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2255 				    (int __user *)a[2]);
2256 		break;
2257 	case SYS_SOCKETPAIR:
2258 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2259 		break;
2260 	case SYS_SEND:
2261 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2262 		break;
2263 	case SYS_SENDTO:
2264 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2265 				 (struct sockaddr __user *)a[4], a[5]);
2266 		break;
2267 	case SYS_RECV:
2268 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2269 		break;
2270 	case SYS_RECVFROM:
2271 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2272 				   (struct sockaddr __user *)a[4],
2273 				   (int __user *)a[5]);
2274 		break;
2275 	case SYS_SHUTDOWN:
2276 		err = sys_shutdown(a0, a1);
2277 		break;
2278 	case SYS_SETSOCKOPT:
2279 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2280 		break;
2281 	case SYS_GETSOCKOPT:
2282 		err =
2283 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2284 				   (int __user *)a[4]);
2285 		break;
2286 	case SYS_SENDMSG:
2287 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2288 		break;
2289 	case SYS_RECVMSG:
2290 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2291 		break;
2292 	case SYS_RECVMMSG:
2293 		err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2294 				   (struct timespec __user *)a[4]);
2295 		break;
2296 	case SYS_ACCEPT4:
2297 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2298 				  (int __user *)a[2], a[3]);
2299 		break;
2300 	default:
2301 		err = -EINVAL;
2302 		break;
2303 	}
2304 	return err;
2305 }
2306 
2307 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2308 
2309 /**
2310  *	sock_register - add a socket protocol handler
2311  *	@ops: description of protocol
2312  *
2313  *	This function is called by a protocol handler that wants to
2314  *	advertise its address family, and have it linked into the
2315  *	socket interface. The value ops->family coresponds to the
2316  *	socket system call protocol family.
2317  */
2318 int sock_register(const struct net_proto_family *ops)
2319 {
2320 	int err;
2321 
2322 	if (ops->family >= NPROTO) {
2323 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2324 		       NPROTO);
2325 		return -ENOBUFS;
2326 	}
2327 
2328 	spin_lock(&net_family_lock);
2329 	if (net_families[ops->family])
2330 		err = -EEXIST;
2331 	else {
2332 		net_families[ops->family] = ops;
2333 		err = 0;
2334 	}
2335 	spin_unlock(&net_family_lock);
2336 
2337 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2338 	return err;
2339 }
2340 EXPORT_SYMBOL(sock_register);
2341 
2342 /**
2343  *	sock_unregister - remove a protocol handler
2344  *	@family: protocol family to remove
2345  *
2346  *	This function is called by a protocol handler that wants to
2347  *	remove its address family, and have it unlinked from the
2348  *	new socket creation.
2349  *
2350  *	If protocol handler is a module, then it can use module reference
2351  *	counts to protect against new references. If protocol handler is not
2352  *	a module then it needs to provide its own protection in
2353  *	the ops->create routine.
2354  */
2355 void sock_unregister(int family)
2356 {
2357 	BUG_ON(family < 0 || family >= NPROTO);
2358 
2359 	spin_lock(&net_family_lock);
2360 	net_families[family] = NULL;
2361 	spin_unlock(&net_family_lock);
2362 
2363 	synchronize_rcu();
2364 
2365 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2366 }
2367 EXPORT_SYMBOL(sock_unregister);
2368 
2369 static int __init sock_init(void)
2370 {
2371 	/*
2372 	 *      Initialize sock SLAB cache.
2373 	 */
2374 
2375 	sk_init();
2376 
2377 	/*
2378 	 *      Initialize skbuff SLAB cache
2379 	 */
2380 	skb_init();
2381 
2382 	/*
2383 	 *      Initialize the protocols module.
2384 	 */
2385 
2386 	init_inodecache();
2387 	register_filesystem(&sock_fs_type);
2388 	sock_mnt = kern_mount(&sock_fs_type);
2389 
2390 	/* The real protocol initialization is performed in later initcalls.
2391 	 */
2392 
2393 #ifdef CONFIG_NETFILTER
2394 	netfilter_init();
2395 #endif
2396 
2397 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2398 	skb_timestamping_init();
2399 #endif
2400 
2401 	return 0;
2402 }
2403 
2404 core_initcall(sock_init);	/* early initcall */
2405 
2406 #ifdef CONFIG_PROC_FS
2407 void socket_seq_show(struct seq_file *seq)
2408 {
2409 	int cpu;
2410 	int counter = 0;
2411 
2412 	for_each_possible_cpu(cpu)
2413 	    counter += per_cpu(sockets_in_use, cpu);
2414 
2415 	/* It can be negative, by the way. 8) */
2416 	if (counter < 0)
2417 		counter = 0;
2418 
2419 	seq_printf(seq, "sockets: used %d\n", counter);
2420 }
2421 #endif				/* CONFIG_PROC_FS */
2422 
2423 #ifdef CONFIG_COMPAT
2424 static int do_siocgstamp(struct net *net, struct socket *sock,
2425 			 unsigned int cmd, struct compat_timeval __user *up)
2426 {
2427 	mm_segment_t old_fs = get_fs();
2428 	struct timeval ktv;
2429 	int err;
2430 
2431 	set_fs(KERNEL_DS);
2432 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2433 	set_fs(old_fs);
2434 	if (!err) {
2435 		err = put_user(ktv.tv_sec, &up->tv_sec);
2436 		err |= __put_user(ktv.tv_usec, &up->tv_usec);
2437 	}
2438 	return err;
2439 }
2440 
2441 static int do_siocgstampns(struct net *net, struct socket *sock,
2442 			 unsigned int cmd, struct compat_timespec __user *up)
2443 {
2444 	mm_segment_t old_fs = get_fs();
2445 	struct timespec kts;
2446 	int err;
2447 
2448 	set_fs(KERNEL_DS);
2449 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2450 	set_fs(old_fs);
2451 	if (!err) {
2452 		err = put_user(kts.tv_sec, &up->tv_sec);
2453 		err |= __put_user(kts.tv_nsec, &up->tv_nsec);
2454 	}
2455 	return err;
2456 }
2457 
2458 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2459 {
2460 	struct ifreq __user *uifr;
2461 	int err;
2462 
2463 	uifr = compat_alloc_user_space(sizeof(struct ifreq));
2464 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2465 		return -EFAULT;
2466 
2467 	err = dev_ioctl(net, SIOCGIFNAME, uifr);
2468 	if (err)
2469 		return err;
2470 
2471 	if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2472 		return -EFAULT;
2473 
2474 	return 0;
2475 }
2476 
2477 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2478 {
2479 	struct compat_ifconf ifc32;
2480 	struct ifconf ifc;
2481 	struct ifconf __user *uifc;
2482 	struct compat_ifreq __user *ifr32;
2483 	struct ifreq __user *ifr;
2484 	unsigned int i, j;
2485 	int err;
2486 
2487 	if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2488 		return -EFAULT;
2489 
2490 	if (ifc32.ifcbuf == 0) {
2491 		ifc32.ifc_len = 0;
2492 		ifc.ifc_len = 0;
2493 		ifc.ifc_req = NULL;
2494 		uifc = compat_alloc_user_space(sizeof(struct ifconf));
2495 	} else {
2496 		size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2497 			sizeof(struct ifreq);
2498 		uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2499 		ifc.ifc_len = len;
2500 		ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2501 		ifr32 = compat_ptr(ifc32.ifcbuf);
2502 		for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2503 			if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2504 				return -EFAULT;
2505 			ifr++;
2506 			ifr32++;
2507 		}
2508 	}
2509 	if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2510 		return -EFAULT;
2511 
2512 	err = dev_ioctl(net, SIOCGIFCONF, uifc);
2513 	if (err)
2514 		return err;
2515 
2516 	if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2517 		return -EFAULT;
2518 
2519 	ifr = ifc.ifc_req;
2520 	ifr32 = compat_ptr(ifc32.ifcbuf);
2521 	for (i = 0, j = 0;
2522 	     i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2523 	     i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2524 		if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2525 			return -EFAULT;
2526 		ifr32++;
2527 		ifr++;
2528 	}
2529 
2530 	if (ifc32.ifcbuf == 0) {
2531 		/* Translate from 64-bit structure multiple to
2532 		 * a 32-bit one.
2533 		 */
2534 		i = ifc.ifc_len;
2535 		i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2536 		ifc32.ifc_len = i;
2537 	} else {
2538 		ifc32.ifc_len = i;
2539 	}
2540 	if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2541 		return -EFAULT;
2542 
2543 	return 0;
2544 }
2545 
2546 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2547 {
2548 	struct ifreq __user *ifr;
2549 	u32 data;
2550 	void __user *datap;
2551 
2552 	ifr = compat_alloc_user_space(sizeof(*ifr));
2553 
2554 	if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2555 		return -EFAULT;
2556 
2557 	if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2558 		return -EFAULT;
2559 
2560 	datap = compat_ptr(data);
2561 	if (put_user(datap, &ifr->ifr_ifru.ifru_data))
2562 		return -EFAULT;
2563 
2564 	return dev_ioctl(net, SIOCETHTOOL, ifr);
2565 }
2566 
2567 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2568 {
2569 	void __user *uptr;
2570 	compat_uptr_t uptr32;
2571 	struct ifreq __user *uifr;
2572 
2573 	uifr = compat_alloc_user_space(sizeof(*uifr));
2574 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2575 		return -EFAULT;
2576 
2577 	if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2578 		return -EFAULT;
2579 
2580 	uptr = compat_ptr(uptr32);
2581 
2582 	if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2583 		return -EFAULT;
2584 
2585 	return dev_ioctl(net, SIOCWANDEV, uifr);
2586 }
2587 
2588 static int bond_ioctl(struct net *net, unsigned int cmd,
2589 			 struct compat_ifreq __user *ifr32)
2590 {
2591 	struct ifreq kifr;
2592 	struct ifreq __user *uifr;
2593 	mm_segment_t old_fs;
2594 	int err;
2595 	u32 data;
2596 	void __user *datap;
2597 
2598 	switch (cmd) {
2599 	case SIOCBONDENSLAVE:
2600 	case SIOCBONDRELEASE:
2601 	case SIOCBONDSETHWADDR:
2602 	case SIOCBONDCHANGEACTIVE:
2603 		if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2604 			return -EFAULT;
2605 
2606 		old_fs = get_fs();
2607 		set_fs(KERNEL_DS);
2608 		err = dev_ioctl(net, cmd, &kifr);
2609 		set_fs(old_fs);
2610 
2611 		return err;
2612 	case SIOCBONDSLAVEINFOQUERY:
2613 	case SIOCBONDINFOQUERY:
2614 		uifr = compat_alloc_user_space(sizeof(*uifr));
2615 		if (copy_in_user(&uifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2616 			return -EFAULT;
2617 
2618 		if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2619 			return -EFAULT;
2620 
2621 		datap = compat_ptr(data);
2622 		if (put_user(datap, &uifr->ifr_ifru.ifru_data))
2623 			return -EFAULT;
2624 
2625 		return dev_ioctl(net, cmd, uifr);
2626 	default:
2627 		return -EINVAL;
2628 	}
2629 }
2630 
2631 static int siocdevprivate_ioctl(struct net *net, unsigned int cmd,
2632 				 struct compat_ifreq __user *u_ifreq32)
2633 {
2634 	struct ifreq __user *u_ifreq64;
2635 	char tmp_buf[IFNAMSIZ];
2636 	void __user *data64;
2637 	u32 data32;
2638 
2639 	if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2640 			   IFNAMSIZ))
2641 		return -EFAULT;
2642 	if (__get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2643 		return -EFAULT;
2644 	data64 = compat_ptr(data32);
2645 
2646 	u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2647 
2648 	/* Don't check these user accesses, just let that get trapped
2649 	 * in the ioctl handler instead.
2650 	 */
2651 	if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2652 			 IFNAMSIZ))
2653 		return -EFAULT;
2654 	if (__put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2655 		return -EFAULT;
2656 
2657 	return dev_ioctl(net, cmd, u_ifreq64);
2658 }
2659 
2660 static int dev_ifsioc(struct net *net, struct socket *sock,
2661 			 unsigned int cmd, struct compat_ifreq __user *uifr32)
2662 {
2663 	struct ifreq __user *uifr;
2664 	int err;
2665 
2666 	uifr = compat_alloc_user_space(sizeof(*uifr));
2667 	if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2668 		return -EFAULT;
2669 
2670 	err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2671 
2672 	if (!err) {
2673 		switch (cmd) {
2674 		case SIOCGIFFLAGS:
2675 		case SIOCGIFMETRIC:
2676 		case SIOCGIFMTU:
2677 		case SIOCGIFMEM:
2678 		case SIOCGIFHWADDR:
2679 		case SIOCGIFINDEX:
2680 		case SIOCGIFADDR:
2681 		case SIOCGIFBRDADDR:
2682 		case SIOCGIFDSTADDR:
2683 		case SIOCGIFNETMASK:
2684 		case SIOCGIFPFLAGS:
2685 		case SIOCGIFTXQLEN:
2686 		case SIOCGMIIPHY:
2687 		case SIOCGMIIREG:
2688 			if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2689 				err = -EFAULT;
2690 			break;
2691 		}
2692 	}
2693 	return err;
2694 }
2695 
2696 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2697 			struct compat_ifreq __user *uifr32)
2698 {
2699 	struct ifreq ifr;
2700 	struct compat_ifmap __user *uifmap32;
2701 	mm_segment_t old_fs;
2702 	int err;
2703 
2704 	uifmap32 = &uifr32->ifr_ifru.ifru_map;
2705 	err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2706 	err |= __get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2707 	err |= __get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2708 	err |= __get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2709 	err |= __get_user(ifr.ifr_map.irq, &uifmap32->irq);
2710 	err |= __get_user(ifr.ifr_map.dma, &uifmap32->dma);
2711 	err |= __get_user(ifr.ifr_map.port, &uifmap32->port);
2712 	if (err)
2713 		return -EFAULT;
2714 
2715 	old_fs = get_fs();
2716 	set_fs(KERNEL_DS);
2717 	err = dev_ioctl(net, cmd, (void __user *)&ifr);
2718 	set_fs(old_fs);
2719 
2720 	if (cmd == SIOCGIFMAP && !err) {
2721 		err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2722 		err |= __put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2723 		err |= __put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2724 		err |= __put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2725 		err |= __put_user(ifr.ifr_map.irq, &uifmap32->irq);
2726 		err |= __put_user(ifr.ifr_map.dma, &uifmap32->dma);
2727 		err |= __put_user(ifr.ifr_map.port, &uifmap32->port);
2728 		if (err)
2729 			err = -EFAULT;
2730 	}
2731 	return err;
2732 }
2733 
2734 static int compat_siocshwtstamp(struct net *net, struct compat_ifreq __user *uifr32)
2735 {
2736 	void __user *uptr;
2737 	compat_uptr_t uptr32;
2738 	struct ifreq __user *uifr;
2739 
2740 	uifr = compat_alloc_user_space(sizeof(*uifr));
2741 	if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2742 		return -EFAULT;
2743 
2744 	if (get_user(uptr32, &uifr32->ifr_data))
2745 		return -EFAULT;
2746 
2747 	uptr = compat_ptr(uptr32);
2748 
2749 	if (put_user(uptr, &uifr->ifr_data))
2750 		return -EFAULT;
2751 
2752 	return dev_ioctl(net, SIOCSHWTSTAMP, uifr);
2753 }
2754 
2755 struct rtentry32 {
2756 	u32		rt_pad1;
2757 	struct sockaddr rt_dst;         /* target address               */
2758 	struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2759 	struct sockaddr rt_genmask;     /* target network mask (IP)     */
2760 	unsigned short	rt_flags;
2761 	short		rt_pad2;
2762 	u32		rt_pad3;
2763 	unsigned char	rt_tos;
2764 	unsigned char	rt_class;
2765 	short		rt_pad4;
2766 	short		rt_metric;      /* +1 for binary compatibility! */
2767 	/* char * */ u32 rt_dev;        /* forcing the device at add    */
2768 	u32		rt_mtu;         /* per route MTU/Window         */
2769 	u32		rt_window;      /* Window clamping              */
2770 	unsigned short  rt_irtt;        /* Initial RTT                  */
2771 };
2772 
2773 struct in6_rtmsg32 {
2774 	struct in6_addr		rtmsg_dst;
2775 	struct in6_addr		rtmsg_src;
2776 	struct in6_addr		rtmsg_gateway;
2777 	u32			rtmsg_type;
2778 	u16			rtmsg_dst_len;
2779 	u16			rtmsg_src_len;
2780 	u32			rtmsg_metric;
2781 	u32			rtmsg_info;
2782 	u32			rtmsg_flags;
2783 	s32			rtmsg_ifindex;
2784 };
2785 
2786 static int routing_ioctl(struct net *net, struct socket *sock,
2787 			 unsigned int cmd, void __user *argp)
2788 {
2789 	int ret;
2790 	void *r = NULL;
2791 	struct in6_rtmsg r6;
2792 	struct rtentry r4;
2793 	char devname[16];
2794 	u32 rtdev;
2795 	mm_segment_t old_fs = get_fs();
2796 
2797 	if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2798 		struct in6_rtmsg32 __user *ur6 = argp;
2799 		ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2800 			3 * sizeof(struct in6_addr));
2801 		ret |= __get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2802 		ret |= __get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2803 		ret |= __get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2804 		ret |= __get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2805 		ret |= __get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2806 		ret |= __get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2807 		ret |= __get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2808 
2809 		r = (void *) &r6;
2810 	} else { /* ipv4 */
2811 		struct rtentry32 __user *ur4 = argp;
2812 		ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
2813 					3 * sizeof(struct sockaddr));
2814 		ret |= __get_user(r4.rt_flags, &(ur4->rt_flags));
2815 		ret |= __get_user(r4.rt_metric, &(ur4->rt_metric));
2816 		ret |= __get_user(r4.rt_mtu, &(ur4->rt_mtu));
2817 		ret |= __get_user(r4.rt_window, &(ur4->rt_window));
2818 		ret |= __get_user(r4.rt_irtt, &(ur4->rt_irtt));
2819 		ret |= __get_user(rtdev, &(ur4->rt_dev));
2820 		if (rtdev) {
2821 			ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
2822 			r4.rt_dev = devname; devname[15] = 0;
2823 		} else
2824 			r4.rt_dev = NULL;
2825 
2826 		r = (void *) &r4;
2827 	}
2828 
2829 	if (ret) {
2830 		ret = -EFAULT;
2831 		goto out;
2832 	}
2833 
2834 	set_fs(KERNEL_DS);
2835 	ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
2836 	set_fs(old_fs);
2837 
2838 out:
2839 	return ret;
2840 }
2841 
2842 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
2843  * for some operations; this forces use of the newer bridge-utils that
2844  * use compatiable ioctls
2845  */
2846 static int old_bridge_ioctl(compat_ulong_t __user *argp)
2847 {
2848 	compat_ulong_t tmp;
2849 
2850 	if (get_user(tmp, argp))
2851 		return -EFAULT;
2852 	if (tmp == BRCTL_GET_VERSION)
2853 		return BRCTL_VERSION + 1;
2854 	return -EINVAL;
2855 }
2856 
2857 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
2858 			 unsigned int cmd, unsigned long arg)
2859 {
2860 	void __user *argp = compat_ptr(arg);
2861 	struct sock *sk = sock->sk;
2862 	struct net *net = sock_net(sk);
2863 
2864 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
2865 		return siocdevprivate_ioctl(net, cmd, argp);
2866 
2867 	switch (cmd) {
2868 	case SIOCSIFBR:
2869 	case SIOCGIFBR:
2870 		return old_bridge_ioctl(argp);
2871 	case SIOCGIFNAME:
2872 		return dev_ifname32(net, argp);
2873 	case SIOCGIFCONF:
2874 		return dev_ifconf(net, argp);
2875 	case SIOCETHTOOL:
2876 		return ethtool_ioctl(net, argp);
2877 	case SIOCWANDEV:
2878 		return compat_siocwandev(net, argp);
2879 	case SIOCGIFMAP:
2880 	case SIOCSIFMAP:
2881 		return compat_sioc_ifmap(net, cmd, argp);
2882 	case SIOCBONDENSLAVE:
2883 	case SIOCBONDRELEASE:
2884 	case SIOCBONDSETHWADDR:
2885 	case SIOCBONDSLAVEINFOQUERY:
2886 	case SIOCBONDINFOQUERY:
2887 	case SIOCBONDCHANGEACTIVE:
2888 		return bond_ioctl(net, cmd, argp);
2889 	case SIOCADDRT:
2890 	case SIOCDELRT:
2891 		return routing_ioctl(net, sock, cmd, argp);
2892 	case SIOCGSTAMP:
2893 		return do_siocgstamp(net, sock, cmd, argp);
2894 	case SIOCGSTAMPNS:
2895 		return do_siocgstampns(net, sock, cmd, argp);
2896 	case SIOCSHWTSTAMP:
2897 		return compat_siocshwtstamp(net, argp);
2898 
2899 	case FIOSETOWN:
2900 	case SIOCSPGRP:
2901 	case FIOGETOWN:
2902 	case SIOCGPGRP:
2903 	case SIOCBRADDBR:
2904 	case SIOCBRDELBR:
2905 	case SIOCGIFVLAN:
2906 	case SIOCSIFVLAN:
2907 	case SIOCADDDLCI:
2908 	case SIOCDELDLCI:
2909 		return sock_ioctl(file, cmd, arg);
2910 
2911 	case SIOCGIFFLAGS:
2912 	case SIOCSIFFLAGS:
2913 	case SIOCGIFMETRIC:
2914 	case SIOCSIFMETRIC:
2915 	case SIOCGIFMTU:
2916 	case SIOCSIFMTU:
2917 	case SIOCGIFMEM:
2918 	case SIOCSIFMEM:
2919 	case SIOCGIFHWADDR:
2920 	case SIOCSIFHWADDR:
2921 	case SIOCADDMULTI:
2922 	case SIOCDELMULTI:
2923 	case SIOCGIFINDEX:
2924 	case SIOCGIFADDR:
2925 	case SIOCSIFADDR:
2926 	case SIOCSIFHWBROADCAST:
2927 	case SIOCDIFADDR:
2928 	case SIOCGIFBRDADDR:
2929 	case SIOCSIFBRDADDR:
2930 	case SIOCGIFDSTADDR:
2931 	case SIOCSIFDSTADDR:
2932 	case SIOCGIFNETMASK:
2933 	case SIOCSIFNETMASK:
2934 	case SIOCSIFPFLAGS:
2935 	case SIOCGIFPFLAGS:
2936 	case SIOCGIFTXQLEN:
2937 	case SIOCSIFTXQLEN:
2938 	case SIOCBRADDIF:
2939 	case SIOCBRDELIF:
2940 	case SIOCSIFNAME:
2941 	case SIOCGMIIPHY:
2942 	case SIOCGMIIREG:
2943 	case SIOCSMIIREG:
2944 		return dev_ifsioc(net, sock, cmd, argp);
2945 
2946 	case SIOCSARP:
2947 	case SIOCGARP:
2948 	case SIOCDARP:
2949 	case SIOCATMARK:
2950 		return sock_do_ioctl(net, sock, cmd, arg);
2951 	}
2952 
2953 	/* Prevent warning from compat_sys_ioctl, these always
2954 	 * result in -EINVAL in the native case anyway. */
2955 	switch (cmd) {
2956 	case SIOCRTMSG:
2957 	case SIOCGIFCOUNT:
2958 	case SIOCSRARP:
2959 	case SIOCGRARP:
2960 	case SIOCDRARP:
2961 	case SIOCSIFLINK:
2962 	case SIOCGIFSLAVE:
2963 	case SIOCSIFSLAVE:
2964 		return -EINVAL;
2965 	}
2966 
2967 	return -ENOIOCTLCMD;
2968 }
2969 
2970 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2971 			      unsigned long arg)
2972 {
2973 	struct socket *sock = file->private_data;
2974 	int ret = -ENOIOCTLCMD;
2975 	struct sock *sk;
2976 	struct net *net;
2977 
2978 	sk = sock->sk;
2979 	net = sock_net(sk);
2980 
2981 	if (sock->ops->compat_ioctl)
2982 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2983 
2984 	if (ret == -ENOIOCTLCMD &&
2985 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2986 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2987 
2988 	if (ret == -ENOIOCTLCMD)
2989 		ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
2990 
2991 	return ret;
2992 }
2993 #endif
2994 
2995 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2996 {
2997 	return sock->ops->bind(sock, addr, addrlen);
2998 }
2999 EXPORT_SYMBOL(kernel_bind);
3000 
3001 int kernel_listen(struct socket *sock, int backlog)
3002 {
3003 	return sock->ops->listen(sock, backlog);
3004 }
3005 EXPORT_SYMBOL(kernel_listen);
3006 
3007 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3008 {
3009 	struct sock *sk = sock->sk;
3010 	int err;
3011 
3012 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3013 			       newsock);
3014 	if (err < 0)
3015 		goto done;
3016 
3017 	err = sock->ops->accept(sock, *newsock, flags);
3018 	if (err < 0) {
3019 		sock_release(*newsock);
3020 		*newsock = NULL;
3021 		goto done;
3022 	}
3023 
3024 	(*newsock)->ops = sock->ops;
3025 	__module_get((*newsock)->ops->owner);
3026 
3027 done:
3028 	return err;
3029 }
3030 EXPORT_SYMBOL(kernel_accept);
3031 
3032 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3033 		   int flags)
3034 {
3035 	return sock->ops->connect(sock, addr, addrlen, flags);
3036 }
3037 EXPORT_SYMBOL(kernel_connect);
3038 
3039 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3040 			 int *addrlen)
3041 {
3042 	return sock->ops->getname(sock, addr, addrlen, 0);
3043 }
3044 EXPORT_SYMBOL(kernel_getsockname);
3045 
3046 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3047 			 int *addrlen)
3048 {
3049 	return sock->ops->getname(sock, addr, addrlen, 1);
3050 }
3051 EXPORT_SYMBOL(kernel_getpeername);
3052 
3053 int kernel_getsockopt(struct socket *sock, int level, int optname,
3054 			char *optval, int *optlen)
3055 {
3056 	mm_segment_t oldfs = get_fs();
3057 	char __user *uoptval;
3058 	int __user *uoptlen;
3059 	int err;
3060 
3061 	uoptval = (char __user __force *) optval;
3062 	uoptlen = (int __user __force *) optlen;
3063 
3064 	set_fs(KERNEL_DS);
3065 	if (level == SOL_SOCKET)
3066 		err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3067 	else
3068 		err = sock->ops->getsockopt(sock, level, optname, uoptval,
3069 					    uoptlen);
3070 	set_fs(oldfs);
3071 	return err;
3072 }
3073 EXPORT_SYMBOL(kernel_getsockopt);
3074 
3075 int kernel_setsockopt(struct socket *sock, int level, int optname,
3076 			char *optval, unsigned int optlen)
3077 {
3078 	mm_segment_t oldfs = get_fs();
3079 	char __user *uoptval;
3080 	int err;
3081 
3082 	uoptval = (char __user __force *) optval;
3083 
3084 	set_fs(KERNEL_DS);
3085 	if (level == SOL_SOCKET)
3086 		err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3087 	else
3088 		err = sock->ops->setsockopt(sock, level, optname, uoptval,
3089 					    optlen);
3090 	set_fs(oldfs);
3091 	return err;
3092 }
3093 EXPORT_SYMBOL(kernel_setsockopt);
3094 
3095 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3096 		    size_t size, int flags)
3097 {
3098 	sock_update_classid(sock->sk);
3099 
3100 	if (sock->ops->sendpage)
3101 		return sock->ops->sendpage(sock, page, offset, size, flags);
3102 
3103 	return sock_no_sendpage(sock, page, offset, size, flags);
3104 }
3105 EXPORT_SYMBOL(kernel_sendpage);
3106 
3107 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3108 {
3109 	mm_segment_t oldfs = get_fs();
3110 	int err;
3111 
3112 	set_fs(KERNEL_DS);
3113 	err = sock->ops->ioctl(sock, cmd, arg);
3114 	set_fs(oldfs);
3115 
3116 	return err;
3117 }
3118 EXPORT_SYMBOL(kernel_sock_ioctl);
3119 
3120 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3121 {
3122 	return sock->ops->shutdown(sock, how);
3123 }
3124 EXPORT_SYMBOL(kernel_sock_shutdown);
3125