1 /* 2 * NET An implementation of the SOCKET network access protocol. 3 * 4 * Version: @(#)socket.c 1.1.93 18/02/95 5 * 6 * Authors: Orest Zborowski, <[email protected]> 7 * Ross Biro 8 * Fred N. van Kempen, <[email protected]> 9 * 10 * Fixes: 11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in 12 * shutdown() 13 * Alan Cox : verify_area() fixes 14 * Alan Cox : Removed DDI 15 * Jonathan Kamens : SOCK_DGRAM reconnect bug 16 * Alan Cox : Moved a load of checks to the very 17 * top level. 18 * Alan Cox : Move address structures to/from user 19 * mode above the protocol layers. 20 * Rob Janssen : Allow 0 length sends. 21 * Alan Cox : Asynchronous I/O support (cribbed from the 22 * tty drivers). 23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style) 24 * Jeff Uphoff : Made max number of sockets command-line 25 * configurable. 26 * Matti Aarnio : Made the number of sockets dynamic, 27 * to be allocated when needed, and mr. 28 * Uphoff's max is used as max to be 29 * allowed to allocate. 30 * Linus : Argh. removed all the socket allocation 31 * altogether: it's in the inode now. 32 * Alan Cox : Made sock_alloc()/sock_release() public 33 * for NetROM and future kernel nfsd type 34 * stuff. 35 * Alan Cox : sendmsg/recvmsg basics. 36 * Tom Dyas : Export net symbols. 37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n". 38 * Alan Cox : Added thread locking to sys_* calls 39 * for sockets. May have errors at the 40 * moment. 41 * Kevin Buhr : Fixed the dumb errors in the above. 42 * Andi Kleen : Some small cleanups, optimizations, 43 * and fixed a copy_from_user() bug. 44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0) 45 * Tigran Aivazian : Made listen(2) backlog sanity checks 46 * protocol-independent 47 * 48 * 49 * This program is free software; you can redistribute it and/or 50 * modify it under the terms of the GNU General Public License 51 * as published by the Free Software Foundation; either version 52 * 2 of the License, or (at your option) any later version. 53 * 54 * 55 * This module is effectively the top level interface to the BSD socket 56 * paradigm. 57 * 58 * Based upon Swansea University Computer Society NET3.039 59 */ 60 61 #include <linux/mm.h> 62 #include <linux/socket.h> 63 #include <linux/file.h> 64 #include <linux/net.h> 65 #include <linux/interrupt.h> 66 #include <linux/thread_info.h> 67 #include <linux/rcupdate.h> 68 #include <linux/netdevice.h> 69 #include <linux/proc_fs.h> 70 #include <linux/seq_file.h> 71 #include <linux/mutex.h> 72 #include <linux/wanrouter.h> 73 #include <linux/if_bridge.h> 74 #include <linux/if_frad.h> 75 #include <linux/if_vlan.h> 76 #include <linux/init.h> 77 #include <linux/poll.h> 78 #include <linux/cache.h> 79 #include <linux/module.h> 80 #include <linux/highmem.h> 81 #include <linux/mount.h> 82 #include <linux/security.h> 83 #include <linux/syscalls.h> 84 #include <linux/compat.h> 85 #include <linux/kmod.h> 86 #include <linux/audit.h> 87 #include <linux/wireless.h> 88 #include <linux/nsproxy.h> 89 90 #include <asm/uaccess.h> 91 #include <asm/unistd.h> 92 93 #include <net/compat.h> 94 #include <net/wext.h> 95 96 #include <net/sock.h> 97 #include <linux/netfilter.h> 98 99 static int sock_no_open(struct inode *irrelevant, struct file *dontcare); 100 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 101 unsigned long nr_segs, loff_t pos); 102 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 103 unsigned long nr_segs, loff_t pos); 104 static int sock_mmap(struct file *file, struct vm_area_struct *vma); 105 106 static int sock_close(struct inode *inode, struct file *file); 107 static unsigned int sock_poll(struct file *file, 108 struct poll_table_struct *wait); 109 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg); 110 #ifdef CONFIG_COMPAT 111 static long compat_sock_ioctl(struct file *file, 112 unsigned int cmd, unsigned long arg); 113 #endif 114 static int sock_fasync(int fd, struct file *filp, int on); 115 static ssize_t sock_sendpage(struct file *file, struct page *page, 116 int offset, size_t size, loff_t *ppos, int more); 117 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 118 struct pipe_inode_info *pipe, size_t len, 119 unsigned int flags); 120 121 /* 122 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear 123 * in the operation structures but are done directly via the socketcall() multiplexor. 124 */ 125 126 static const struct file_operations socket_file_ops = { 127 .owner = THIS_MODULE, 128 .llseek = no_llseek, 129 .aio_read = sock_aio_read, 130 .aio_write = sock_aio_write, 131 .poll = sock_poll, 132 .unlocked_ioctl = sock_ioctl, 133 #ifdef CONFIG_COMPAT 134 .compat_ioctl = compat_sock_ioctl, 135 #endif 136 .mmap = sock_mmap, 137 .open = sock_no_open, /* special open code to disallow open via /proc */ 138 .release = sock_close, 139 .fasync = sock_fasync, 140 .sendpage = sock_sendpage, 141 .splice_write = generic_splice_sendpage, 142 .splice_read = sock_splice_read, 143 }; 144 145 /* 146 * The protocol list. Each protocol is registered in here. 147 */ 148 149 static DEFINE_SPINLOCK(net_family_lock); 150 static const struct net_proto_family *net_families[NPROTO] __read_mostly; 151 152 /* 153 * Statistics counters of the socket lists 154 */ 155 156 static DEFINE_PER_CPU(int, sockets_in_use) = 0; 157 158 /* 159 * Support routines. 160 * Move socket addresses back and forth across the kernel/user 161 * divide and look after the messy bits. 162 */ 163 164 #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 165 16 for IP, 16 for IPX, 166 24 for IPv6, 167 about 80 for AX.25 168 must be at least one bigger than 169 the AF_UNIX size (see net/unix/af_unix.c 170 :unix_mkname()). 171 */ 172 173 /** 174 * move_addr_to_kernel - copy a socket address into kernel space 175 * @uaddr: Address in user space 176 * @kaddr: Address in kernel space 177 * @ulen: Length in user space 178 * 179 * The address is copied into kernel space. If the provided address is 180 * too long an error code of -EINVAL is returned. If the copy gives 181 * invalid addresses -EFAULT is returned. On a success 0 is returned. 182 */ 183 184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr) 185 { 186 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage)) 187 return -EINVAL; 188 if (ulen == 0) 189 return 0; 190 if (copy_from_user(kaddr, uaddr, ulen)) 191 return -EFAULT; 192 return audit_sockaddr(ulen, kaddr); 193 } 194 195 /** 196 * move_addr_to_user - copy an address to user space 197 * @kaddr: kernel space address 198 * @klen: length of address in kernel 199 * @uaddr: user space address 200 * @ulen: pointer to user length field 201 * 202 * The value pointed to by ulen on entry is the buffer length available. 203 * This is overwritten with the buffer space used. -EINVAL is returned 204 * if an overlong buffer is specified or a negative buffer size. -EFAULT 205 * is returned if either the buffer or the length field are not 206 * accessible. 207 * After copying the data up to the limit the user specifies, the true 208 * length of the data is written over the length limit the user 209 * specified. Zero is returned for a success. 210 */ 211 212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr, 213 int __user *ulen) 214 { 215 int err; 216 int len; 217 218 err = get_user(len, ulen); 219 if (err) 220 return err; 221 if (len > klen) 222 len = klen; 223 if (len < 0 || len > sizeof(struct sockaddr_storage)) 224 return -EINVAL; 225 if (len) { 226 if (audit_sockaddr(klen, kaddr)) 227 return -ENOMEM; 228 if (copy_to_user(uaddr, kaddr, len)) 229 return -EFAULT; 230 } 231 /* 232 * "fromlen shall refer to the value before truncation.." 233 * 1003.1g 234 */ 235 return __put_user(klen, ulen); 236 } 237 238 #define SOCKFS_MAGIC 0x534F434B 239 240 static struct kmem_cache *sock_inode_cachep __read_mostly; 241 242 static struct inode *sock_alloc_inode(struct super_block *sb) 243 { 244 struct socket_alloc *ei; 245 246 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL); 247 if (!ei) 248 return NULL; 249 init_waitqueue_head(&ei->socket.wait); 250 251 ei->socket.fasync_list = NULL; 252 ei->socket.state = SS_UNCONNECTED; 253 ei->socket.flags = 0; 254 ei->socket.ops = NULL; 255 ei->socket.sk = NULL; 256 ei->socket.file = NULL; 257 258 return &ei->vfs_inode; 259 } 260 261 static void sock_destroy_inode(struct inode *inode) 262 { 263 kmem_cache_free(sock_inode_cachep, 264 container_of(inode, struct socket_alloc, vfs_inode)); 265 } 266 267 static void init_once(void *foo) 268 { 269 struct socket_alloc *ei = (struct socket_alloc *)foo; 270 271 inode_init_once(&ei->vfs_inode); 272 } 273 274 static int init_inodecache(void) 275 { 276 sock_inode_cachep = kmem_cache_create("sock_inode_cache", 277 sizeof(struct socket_alloc), 278 0, 279 (SLAB_HWCACHE_ALIGN | 280 SLAB_RECLAIM_ACCOUNT | 281 SLAB_MEM_SPREAD), 282 init_once); 283 if (sock_inode_cachep == NULL) 284 return -ENOMEM; 285 return 0; 286 } 287 288 static struct super_operations sockfs_ops = { 289 .alloc_inode = sock_alloc_inode, 290 .destroy_inode =sock_destroy_inode, 291 .statfs = simple_statfs, 292 }; 293 294 static int sockfs_get_sb(struct file_system_type *fs_type, 295 int flags, const char *dev_name, void *data, 296 struct vfsmount *mnt) 297 { 298 return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC, 299 mnt); 300 } 301 302 static struct vfsmount *sock_mnt __read_mostly; 303 304 static struct file_system_type sock_fs_type = { 305 .name = "sockfs", 306 .get_sb = sockfs_get_sb, 307 .kill_sb = kill_anon_super, 308 }; 309 310 static int sockfs_delete_dentry(struct dentry *dentry) 311 { 312 /* 313 * At creation time, we pretended this dentry was hashed 314 * (by clearing DCACHE_UNHASHED bit in d_flags) 315 * At delete time, we restore the truth : not hashed. 316 * (so that dput() can proceed correctly) 317 */ 318 dentry->d_flags |= DCACHE_UNHASHED; 319 return 0; 320 } 321 322 /* 323 * sockfs_dname() is called from d_path(). 324 */ 325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen) 326 { 327 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]", 328 dentry->d_inode->i_ino); 329 } 330 331 static struct dentry_operations sockfs_dentry_operations = { 332 .d_delete = sockfs_delete_dentry, 333 .d_dname = sockfs_dname, 334 }; 335 336 /* 337 * Obtains the first available file descriptor and sets it up for use. 338 * 339 * These functions create file structures and maps them to fd space 340 * of the current process. On success it returns file descriptor 341 * and file struct implicitly stored in sock->file. 342 * Note that another thread may close file descriptor before we return 343 * from this function. We use the fact that now we do not refer 344 * to socket after mapping. If one day we will need it, this 345 * function will increment ref. count on file by 1. 346 * 347 * In any case returned fd MAY BE not valid! 348 * This race condition is unavoidable 349 * with shared fd spaces, we cannot solve it inside kernel, 350 * but we take care of internal coherence yet. 351 */ 352 353 static int sock_alloc_fd(struct file **filep, int flags) 354 { 355 int fd; 356 357 fd = get_unused_fd_flags(flags); 358 if (likely(fd >= 0)) { 359 struct file *file = get_empty_filp(); 360 361 *filep = file; 362 if (unlikely(!file)) { 363 put_unused_fd(fd); 364 return -ENFILE; 365 } 366 } else 367 *filep = NULL; 368 return fd; 369 } 370 371 static int sock_attach_fd(struct socket *sock, struct file *file, int flags) 372 { 373 struct dentry *dentry; 374 struct qstr name = { .name = "" }; 375 376 dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name); 377 if (unlikely(!dentry)) 378 return -ENOMEM; 379 380 dentry->d_op = &sockfs_dentry_operations; 381 /* 382 * We dont want to push this dentry into global dentry hash table. 383 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED 384 * This permits a working /proc/$pid/fd/XXX on sockets 385 */ 386 dentry->d_flags &= ~DCACHE_UNHASHED; 387 d_instantiate(dentry, SOCK_INODE(sock)); 388 389 sock->file = file; 390 init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE, 391 &socket_file_ops); 392 SOCK_INODE(sock)->i_fop = &socket_file_ops; 393 file->f_flags = O_RDWR | (flags & O_NONBLOCK); 394 file->f_pos = 0; 395 file->private_data = sock; 396 397 return 0; 398 } 399 400 int sock_map_fd(struct socket *sock, int flags) 401 { 402 struct file *newfile; 403 int fd = sock_alloc_fd(&newfile, flags); 404 405 if (likely(fd >= 0)) { 406 int err = sock_attach_fd(sock, newfile, flags); 407 408 if (unlikely(err < 0)) { 409 put_filp(newfile); 410 put_unused_fd(fd); 411 return err; 412 } 413 fd_install(fd, newfile); 414 } 415 return fd; 416 } 417 418 static struct socket *sock_from_file(struct file *file, int *err) 419 { 420 if (file->f_op == &socket_file_ops) 421 return file->private_data; /* set in sock_map_fd */ 422 423 *err = -ENOTSOCK; 424 return NULL; 425 } 426 427 /** 428 * sockfd_lookup - Go from a file number to its socket slot 429 * @fd: file handle 430 * @err: pointer to an error code return 431 * 432 * The file handle passed in is locked and the socket it is bound 433 * too is returned. If an error occurs the err pointer is overwritten 434 * with a negative errno code and NULL is returned. The function checks 435 * for both invalid handles and passing a handle which is not a socket. 436 * 437 * On a success the socket object pointer is returned. 438 */ 439 440 struct socket *sockfd_lookup(int fd, int *err) 441 { 442 struct file *file; 443 struct socket *sock; 444 445 file = fget(fd); 446 if (!file) { 447 *err = -EBADF; 448 return NULL; 449 } 450 451 sock = sock_from_file(file, err); 452 if (!sock) 453 fput(file); 454 return sock; 455 } 456 457 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed) 458 { 459 struct file *file; 460 struct socket *sock; 461 462 *err = -EBADF; 463 file = fget_light(fd, fput_needed); 464 if (file) { 465 sock = sock_from_file(file, err); 466 if (sock) 467 return sock; 468 fput_light(file, *fput_needed); 469 } 470 return NULL; 471 } 472 473 /** 474 * sock_alloc - allocate a socket 475 * 476 * Allocate a new inode and socket object. The two are bound together 477 * and initialised. The socket is then returned. If we are out of inodes 478 * NULL is returned. 479 */ 480 481 static struct socket *sock_alloc(void) 482 { 483 struct inode *inode; 484 struct socket *sock; 485 486 inode = new_inode(sock_mnt->mnt_sb); 487 if (!inode) 488 return NULL; 489 490 sock = SOCKET_I(inode); 491 492 inode->i_mode = S_IFSOCK | S_IRWXUGO; 493 inode->i_uid = current->fsuid; 494 inode->i_gid = current->fsgid; 495 496 get_cpu_var(sockets_in_use)++; 497 put_cpu_var(sockets_in_use); 498 return sock; 499 } 500 501 /* 502 * In theory you can't get an open on this inode, but /proc provides 503 * a back door. Remember to keep it shut otherwise you'll let the 504 * creepy crawlies in. 505 */ 506 507 static int sock_no_open(struct inode *irrelevant, struct file *dontcare) 508 { 509 return -ENXIO; 510 } 511 512 const struct file_operations bad_sock_fops = { 513 .owner = THIS_MODULE, 514 .open = sock_no_open, 515 }; 516 517 /** 518 * sock_release - close a socket 519 * @sock: socket to close 520 * 521 * The socket is released from the protocol stack if it has a release 522 * callback, and the inode is then released if the socket is bound to 523 * an inode not a file. 524 */ 525 526 void sock_release(struct socket *sock) 527 { 528 if (sock->ops) { 529 struct module *owner = sock->ops->owner; 530 531 sock->ops->release(sock); 532 sock->ops = NULL; 533 module_put(owner); 534 } 535 536 if (sock->fasync_list) 537 printk(KERN_ERR "sock_release: fasync list not empty!\n"); 538 539 get_cpu_var(sockets_in_use)--; 540 put_cpu_var(sockets_in_use); 541 if (!sock->file) { 542 iput(SOCK_INODE(sock)); 543 return; 544 } 545 sock->file = NULL; 546 } 547 548 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock, 549 struct msghdr *msg, size_t size) 550 { 551 struct sock_iocb *si = kiocb_to_siocb(iocb); 552 int err; 553 554 si->sock = sock; 555 si->scm = NULL; 556 si->msg = msg; 557 si->size = size; 558 559 err = security_socket_sendmsg(sock, msg, size); 560 if (err) 561 return err; 562 563 return sock->ops->sendmsg(iocb, sock, msg, size); 564 } 565 566 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size) 567 { 568 struct kiocb iocb; 569 struct sock_iocb siocb; 570 int ret; 571 572 init_sync_kiocb(&iocb, NULL); 573 iocb.private = &siocb; 574 ret = __sock_sendmsg(&iocb, sock, msg, size); 575 if (-EIOCBQUEUED == ret) 576 ret = wait_on_sync_kiocb(&iocb); 577 return ret; 578 } 579 580 int kernel_sendmsg(struct socket *sock, struct msghdr *msg, 581 struct kvec *vec, size_t num, size_t size) 582 { 583 mm_segment_t oldfs = get_fs(); 584 int result; 585 586 set_fs(KERNEL_DS); 587 /* 588 * the following is safe, since for compiler definitions of kvec and 589 * iovec are identical, yielding the same in-core layout and alignment 590 */ 591 msg->msg_iov = (struct iovec *)vec; 592 msg->msg_iovlen = num; 593 result = sock_sendmsg(sock, msg, size); 594 set_fs(oldfs); 595 return result; 596 } 597 598 /* 599 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP) 600 */ 601 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, 602 struct sk_buff *skb) 603 { 604 ktime_t kt = skb->tstamp; 605 606 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) { 607 struct timeval tv; 608 /* Race occurred between timestamp enabling and packet 609 receiving. Fill in the current time for now. */ 610 if (kt.tv64 == 0) 611 kt = ktime_get_real(); 612 skb->tstamp = kt; 613 tv = ktime_to_timeval(kt); 614 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv); 615 } else { 616 struct timespec ts; 617 /* Race occurred between timestamp enabling and packet 618 receiving. Fill in the current time for now. */ 619 if (kt.tv64 == 0) 620 kt = ktime_get_real(); 621 skb->tstamp = kt; 622 ts = ktime_to_timespec(kt); 623 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts); 624 } 625 } 626 627 EXPORT_SYMBOL_GPL(__sock_recv_timestamp); 628 629 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock, 630 struct msghdr *msg, size_t size, int flags) 631 { 632 int err; 633 struct sock_iocb *si = kiocb_to_siocb(iocb); 634 635 si->sock = sock; 636 si->scm = NULL; 637 si->msg = msg; 638 si->size = size; 639 si->flags = flags; 640 641 err = security_socket_recvmsg(sock, msg, size, flags); 642 if (err) 643 return err; 644 645 return sock->ops->recvmsg(iocb, sock, msg, size, flags); 646 } 647 648 int sock_recvmsg(struct socket *sock, struct msghdr *msg, 649 size_t size, int flags) 650 { 651 struct kiocb iocb; 652 struct sock_iocb siocb; 653 int ret; 654 655 init_sync_kiocb(&iocb, NULL); 656 iocb.private = &siocb; 657 ret = __sock_recvmsg(&iocb, sock, msg, size, flags); 658 if (-EIOCBQUEUED == ret) 659 ret = wait_on_sync_kiocb(&iocb); 660 return ret; 661 } 662 663 int kernel_recvmsg(struct socket *sock, struct msghdr *msg, 664 struct kvec *vec, size_t num, size_t size, int flags) 665 { 666 mm_segment_t oldfs = get_fs(); 667 int result; 668 669 set_fs(KERNEL_DS); 670 /* 671 * the following is safe, since for compiler definitions of kvec and 672 * iovec are identical, yielding the same in-core layout and alignment 673 */ 674 msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num; 675 result = sock_recvmsg(sock, msg, size, flags); 676 set_fs(oldfs); 677 return result; 678 } 679 680 static void sock_aio_dtor(struct kiocb *iocb) 681 { 682 kfree(iocb->private); 683 } 684 685 static ssize_t sock_sendpage(struct file *file, struct page *page, 686 int offset, size_t size, loff_t *ppos, int more) 687 { 688 struct socket *sock; 689 int flags; 690 691 sock = file->private_data; 692 693 flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT; 694 if (more) 695 flags |= MSG_MORE; 696 697 return sock->ops->sendpage(sock, page, offset, size, flags); 698 } 699 700 static ssize_t sock_splice_read(struct file *file, loff_t *ppos, 701 struct pipe_inode_info *pipe, size_t len, 702 unsigned int flags) 703 { 704 struct socket *sock = file->private_data; 705 706 if (unlikely(!sock->ops->splice_read)) 707 return -EINVAL; 708 709 return sock->ops->splice_read(sock, ppos, pipe, len, flags); 710 } 711 712 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb, 713 struct sock_iocb *siocb) 714 { 715 if (!is_sync_kiocb(iocb)) { 716 siocb = kmalloc(sizeof(*siocb), GFP_KERNEL); 717 if (!siocb) 718 return NULL; 719 iocb->ki_dtor = sock_aio_dtor; 720 } 721 722 siocb->kiocb = iocb; 723 iocb->private = siocb; 724 return siocb; 725 } 726 727 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb, 728 struct file *file, const struct iovec *iov, 729 unsigned long nr_segs) 730 { 731 struct socket *sock = file->private_data; 732 size_t size = 0; 733 int i; 734 735 for (i = 0; i < nr_segs; i++) 736 size += iov[i].iov_len; 737 738 msg->msg_name = NULL; 739 msg->msg_namelen = 0; 740 msg->msg_control = NULL; 741 msg->msg_controllen = 0; 742 msg->msg_iov = (struct iovec *)iov; 743 msg->msg_iovlen = nr_segs; 744 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 745 746 return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags); 747 } 748 749 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov, 750 unsigned long nr_segs, loff_t pos) 751 { 752 struct sock_iocb siocb, *x; 753 754 if (pos != 0) 755 return -ESPIPE; 756 757 if (iocb->ki_left == 0) /* Match SYS5 behaviour */ 758 return 0; 759 760 761 x = alloc_sock_iocb(iocb, &siocb); 762 if (!x) 763 return -ENOMEM; 764 return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 765 } 766 767 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb, 768 struct file *file, const struct iovec *iov, 769 unsigned long nr_segs) 770 { 771 struct socket *sock = file->private_data; 772 size_t size = 0; 773 int i; 774 775 for (i = 0; i < nr_segs; i++) 776 size += iov[i].iov_len; 777 778 msg->msg_name = NULL; 779 msg->msg_namelen = 0; 780 msg->msg_control = NULL; 781 msg->msg_controllen = 0; 782 msg->msg_iov = (struct iovec *)iov; 783 msg->msg_iovlen = nr_segs; 784 msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0; 785 if (sock->type == SOCK_SEQPACKET) 786 msg->msg_flags |= MSG_EOR; 787 788 return __sock_sendmsg(iocb, sock, msg, size); 789 } 790 791 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov, 792 unsigned long nr_segs, loff_t pos) 793 { 794 struct sock_iocb siocb, *x; 795 796 if (pos != 0) 797 return -ESPIPE; 798 799 x = alloc_sock_iocb(iocb, &siocb); 800 if (!x) 801 return -ENOMEM; 802 803 return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs); 804 } 805 806 /* 807 * Atomic setting of ioctl hooks to avoid race 808 * with module unload. 809 */ 810 811 static DEFINE_MUTEX(br_ioctl_mutex); 812 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL; 813 814 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *)) 815 { 816 mutex_lock(&br_ioctl_mutex); 817 br_ioctl_hook = hook; 818 mutex_unlock(&br_ioctl_mutex); 819 } 820 821 EXPORT_SYMBOL(brioctl_set); 822 823 static DEFINE_MUTEX(vlan_ioctl_mutex); 824 static int (*vlan_ioctl_hook) (struct net *, void __user *arg); 825 826 void vlan_ioctl_set(int (*hook) (struct net *, void __user *)) 827 { 828 mutex_lock(&vlan_ioctl_mutex); 829 vlan_ioctl_hook = hook; 830 mutex_unlock(&vlan_ioctl_mutex); 831 } 832 833 EXPORT_SYMBOL(vlan_ioctl_set); 834 835 static DEFINE_MUTEX(dlci_ioctl_mutex); 836 static int (*dlci_ioctl_hook) (unsigned int, void __user *); 837 838 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *)) 839 { 840 mutex_lock(&dlci_ioctl_mutex); 841 dlci_ioctl_hook = hook; 842 mutex_unlock(&dlci_ioctl_mutex); 843 } 844 845 EXPORT_SYMBOL(dlci_ioctl_set); 846 847 /* 848 * With an ioctl, arg may well be a user mode pointer, but we don't know 849 * what to do with it - that's up to the protocol still. 850 */ 851 852 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg) 853 { 854 struct socket *sock; 855 struct sock *sk; 856 void __user *argp = (void __user *)arg; 857 int pid, err; 858 struct net *net; 859 860 sock = file->private_data; 861 sk = sock->sk; 862 net = sock_net(sk); 863 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) { 864 err = dev_ioctl(net, cmd, argp); 865 } else 866 #ifdef CONFIG_WIRELESS_EXT 867 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) { 868 err = dev_ioctl(net, cmd, argp); 869 } else 870 #endif /* CONFIG_WIRELESS_EXT */ 871 switch (cmd) { 872 case FIOSETOWN: 873 case SIOCSPGRP: 874 err = -EFAULT; 875 if (get_user(pid, (int __user *)argp)) 876 break; 877 err = f_setown(sock->file, pid, 1); 878 break; 879 case FIOGETOWN: 880 case SIOCGPGRP: 881 err = put_user(f_getown(sock->file), 882 (int __user *)argp); 883 break; 884 case SIOCGIFBR: 885 case SIOCSIFBR: 886 case SIOCBRADDBR: 887 case SIOCBRDELBR: 888 err = -ENOPKG; 889 if (!br_ioctl_hook) 890 request_module("bridge"); 891 892 mutex_lock(&br_ioctl_mutex); 893 if (br_ioctl_hook) 894 err = br_ioctl_hook(net, cmd, argp); 895 mutex_unlock(&br_ioctl_mutex); 896 break; 897 case SIOCGIFVLAN: 898 case SIOCSIFVLAN: 899 err = -ENOPKG; 900 if (!vlan_ioctl_hook) 901 request_module("8021q"); 902 903 mutex_lock(&vlan_ioctl_mutex); 904 if (vlan_ioctl_hook) 905 err = vlan_ioctl_hook(net, argp); 906 mutex_unlock(&vlan_ioctl_mutex); 907 break; 908 case SIOCADDDLCI: 909 case SIOCDELDLCI: 910 err = -ENOPKG; 911 if (!dlci_ioctl_hook) 912 request_module("dlci"); 913 914 mutex_lock(&dlci_ioctl_mutex); 915 if (dlci_ioctl_hook) 916 err = dlci_ioctl_hook(cmd, argp); 917 mutex_unlock(&dlci_ioctl_mutex); 918 break; 919 default: 920 err = sock->ops->ioctl(sock, cmd, arg); 921 922 /* 923 * If this ioctl is unknown try to hand it down 924 * to the NIC driver. 925 */ 926 if (err == -ENOIOCTLCMD) 927 err = dev_ioctl(net, cmd, argp); 928 break; 929 } 930 return err; 931 } 932 933 int sock_create_lite(int family, int type, int protocol, struct socket **res) 934 { 935 int err; 936 struct socket *sock = NULL; 937 938 err = security_socket_create(family, type, protocol, 1); 939 if (err) 940 goto out; 941 942 sock = sock_alloc(); 943 if (!sock) { 944 err = -ENOMEM; 945 goto out; 946 } 947 948 sock->type = type; 949 err = security_socket_post_create(sock, family, type, protocol, 1); 950 if (err) 951 goto out_release; 952 953 out: 954 *res = sock; 955 return err; 956 out_release: 957 sock_release(sock); 958 sock = NULL; 959 goto out; 960 } 961 962 /* No kernel lock held - perfect */ 963 static unsigned int sock_poll(struct file *file, poll_table *wait) 964 { 965 struct socket *sock; 966 967 /* 968 * We can't return errors to poll, so it's either yes or no. 969 */ 970 sock = file->private_data; 971 return sock->ops->poll(file, sock, wait); 972 } 973 974 static int sock_mmap(struct file *file, struct vm_area_struct *vma) 975 { 976 struct socket *sock = file->private_data; 977 978 return sock->ops->mmap(file, sock, vma); 979 } 980 981 static int sock_close(struct inode *inode, struct file *filp) 982 { 983 /* 984 * It was possible the inode is NULL we were 985 * closing an unfinished socket. 986 */ 987 988 if (!inode) { 989 printk(KERN_DEBUG "sock_close: NULL inode\n"); 990 return 0; 991 } 992 sock_release(SOCKET_I(inode)); 993 return 0; 994 } 995 996 /* 997 * Update the socket async list 998 * 999 * Fasync_list locking strategy. 1000 * 1001 * 1. fasync_list is modified only under process context socket lock 1002 * i.e. under semaphore. 1003 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock) 1004 * or under socket lock. 1005 * 3. fasync_list can be used from softirq context, so that 1006 * modification under socket lock have to be enhanced with 1007 * write_lock_bh(&sk->sk_callback_lock). 1008 * --ANK (990710) 1009 */ 1010 1011 static int sock_fasync(int fd, struct file *filp, int on) 1012 { 1013 struct fasync_struct *fa, *fna = NULL, **prev; 1014 struct socket *sock; 1015 struct sock *sk; 1016 1017 if (on) { 1018 fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL); 1019 if (fna == NULL) 1020 return -ENOMEM; 1021 } 1022 1023 sock = filp->private_data; 1024 1025 sk = sock->sk; 1026 if (sk == NULL) { 1027 kfree(fna); 1028 return -EINVAL; 1029 } 1030 1031 lock_sock(sk); 1032 1033 prev = &(sock->fasync_list); 1034 1035 for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev) 1036 if (fa->fa_file == filp) 1037 break; 1038 1039 if (on) { 1040 if (fa != NULL) { 1041 write_lock_bh(&sk->sk_callback_lock); 1042 fa->fa_fd = fd; 1043 write_unlock_bh(&sk->sk_callback_lock); 1044 1045 kfree(fna); 1046 goto out; 1047 } 1048 fna->fa_file = filp; 1049 fna->fa_fd = fd; 1050 fna->magic = FASYNC_MAGIC; 1051 fna->fa_next = sock->fasync_list; 1052 write_lock_bh(&sk->sk_callback_lock); 1053 sock->fasync_list = fna; 1054 write_unlock_bh(&sk->sk_callback_lock); 1055 } else { 1056 if (fa != NULL) { 1057 write_lock_bh(&sk->sk_callback_lock); 1058 *prev = fa->fa_next; 1059 write_unlock_bh(&sk->sk_callback_lock); 1060 kfree(fa); 1061 } 1062 } 1063 1064 out: 1065 release_sock(sock->sk); 1066 return 0; 1067 } 1068 1069 /* This function may be called only under socket lock or callback_lock */ 1070 1071 int sock_wake_async(struct socket *sock, int how, int band) 1072 { 1073 if (!sock || !sock->fasync_list) 1074 return -1; 1075 switch (how) { 1076 case SOCK_WAKE_WAITD: 1077 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags)) 1078 break; 1079 goto call_kill; 1080 case SOCK_WAKE_SPACE: 1081 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags)) 1082 break; 1083 /* fall through */ 1084 case SOCK_WAKE_IO: 1085 call_kill: 1086 __kill_fasync(sock->fasync_list, SIGIO, band); 1087 break; 1088 case SOCK_WAKE_URG: 1089 __kill_fasync(sock->fasync_list, SIGURG, band); 1090 } 1091 return 0; 1092 } 1093 1094 static int __sock_create(struct net *net, int family, int type, int protocol, 1095 struct socket **res, int kern) 1096 { 1097 int err; 1098 struct socket *sock; 1099 const struct net_proto_family *pf; 1100 1101 /* 1102 * Check protocol is in range 1103 */ 1104 if (family < 0 || family >= NPROTO) 1105 return -EAFNOSUPPORT; 1106 if (type < 0 || type >= SOCK_MAX) 1107 return -EINVAL; 1108 1109 /* Compatibility. 1110 1111 This uglymoron is moved from INET layer to here to avoid 1112 deadlock in module load. 1113 */ 1114 if (family == PF_INET && type == SOCK_PACKET) { 1115 static int warned; 1116 if (!warned) { 1117 warned = 1; 1118 printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n", 1119 current->comm); 1120 } 1121 family = PF_PACKET; 1122 } 1123 1124 err = security_socket_create(family, type, protocol, kern); 1125 if (err) 1126 return err; 1127 1128 /* 1129 * Allocate the socket and allow the family to set things up. if 1130 * the protocol is 0, the family is instructed to select an appropriate 1131 * default. 1132 */ 1133 sock = sock_alloc(); 1134 if (!sock) { 1135 if (net_ratelimit()) 1136 printk(KERN_WARNING "socket: no more sockets\n"); 1137 return -ENFILE; /* Not exactly a match, but its the 1138 closest posix thing */ 1139 } 1140 1141 sock->type = type; 1142 1143 #ifdef CONFIG_MODULES 1144 /* Attempt to load a protocol module if the find failed. 1145 * 1146 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user 1147 * requested real, full-featured networking support upon configuration. 1148 * Otherwise module support will break! 1149 */ 1150 if (net_families[family] == NULL) 1151 request_module("net-pf-%d", family); 1152 #endif 1153 1154 rcu_read_lock(); 1155 pf = rcu_dereference(net_families[family]); 1156 err = -EAFNOSUPPORT; 1157 if (!pf) 1158 goto out_release; 1159 1160 /* 1161 * We will call the ->create function, that possibly is in a loadable 1162 * module, so we have to bump that loadable module refcnt first. 1163 */ 1164 if (!try_module_get(pf->owner)) 1165 goto out_release; 1166 1167 /* Now protected by module ref count */ 1168 rcu_read_unlock(); 1169 1170 err = pf->create(net, sock, protocol); 1171 if (err < 0) 1172 goto out_module_put; 1173 1174 /* 1175 * Now to bump the refcnt of the [loadable] module that owns this 1176 * socket at sock_release time we decrement its refcnt. 1177 */ 1178 if (!try_module_get(sock->ops->owner)) 1179 goto out_module_busy; 1180 1181 /* 1182 * Now that we're done with the ->create function, the [loadable] 1183 * module can have its refcnt decremented 1184 */ 1185 module_put(pf->owner); 1186 err = security_socket_post_create(sock, family, type, protocol, kern); 1187 if (err) 1188 goto out_sock_release; 1189 *res = sock; 1190 1191 return 0; 1192 1193 out_module_busy: 1194 err = -EAFNOSUPPORT; 1195 out_module_put: 1196 sock->ops = NULL; 1197 module_put(pf->owner); 1198 out_sock_release: 1199 sock_release(sock); 1200 return err; 1201 1202 out_release: 1203 rcu_read_unlock(); 1204 goto out_sock_release; 1205 } 1206 1207 int sock_create(int family, int type, int protocol, struct socket **res) 1208 { 1209 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0); 1210 } 1211 1212 int sock_create_kern(int family, int type, int protocol, struct socket **res) 1213 { 1214 return __sock_create(&init_net, family, type, protocol, res, 1); 1215 } 1216 1217 asmlinkage long sys_socket(int family, int type, int protocol) 1218 { 1219 int retval; 1220 struct socket *sock; 1221 int flags; 1222 1223 /* Check the SOCK_* constants for consistency. */ 1224 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC); 1225 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK); 1226 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK); 1227 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK); 1228 1229 flags = type & ~SOCK_TYPE_MASK; 1230 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1231 return -EINVAL; 1232 type &= SOCK_TYPE_MASK; 1233 1234 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1235 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1236 1237 retval = sock_create(family, type, protocol, &sock); 1238 if (retval < 0) 1239 goto out; 1240 1241 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK)); 1242 if (retval < 0) 1243 goto out_release; 1244 1245 out: 1246 /* It may be already another descriptor 8) Not kernel problem. */ 1247 return retval; 1248 1249 out_release: 1250 sock_release(sock); 1251 return retval; 1252 } 1253 1254 /* 1255 * Create a pair of connected sockets. 1256 */ 1257 1258 asmlinkage long sys_socketpair(int family, int type, int protocol, 1259 int __user *usockvec) 1260 { 1261 struct socket *sock1, *sock2; 1262 int fd1, fd2, err; 1263 struct file *newfile1, *newfile2; 1264 int flags; 1265 1266 flags = type & ~SOCK_TYPE_MASK; 1267 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1268 return -EINVAL; 1269 type &= SOCK_TYPE_MASK; 1270 1271 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1272 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1273 1274 /* 1275 * Obtain the first socket and check if the underlying protocol 1276 * supports the socketpair call. 1277 */ 1278 1279 err = sock_create(family, type, protocol, &sock1); 1280 if (err < 0) 1281 goto out; 1282 1283 err = sock_create(family, type, protocol, &sock2); 1284 if (err < 0) 1285 goto out_release_1; 1286 1287 err = sock1->ops->socketpair(sock1, sock2); 1288 if (err < 0) 1289 goto out_release_both; 1290 1291 fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC); 1292 if (unlikely(fd1 < 0)) { 1293 err = fd1; 1294 goto out_release_both; 1295 } 1296 1297 fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC); 1298 if (unlikely(fd2 < 0)) { 1299 err = fd2; 1300 put_filp(newfile1); 1301 put_unused_fd(fd1); 1302 goto out_release_both; 1303 } 1304 1305 err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK); 1306 if (unlikely(err < 0)) { 1307 goto out_fd2; 1308 } 1309 1310 err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK); 1311 if (unlikely(err < 0)) { 1312 fput(newfile1); 1313 goto out_fd1; 1314 } 1315 1316 err = audit_fd_pair(fd1, fd2); 1317 if (err < 0) { 1318 fput(newfile1); 1319 fput(newfile2); 1320 goto out_fd; 1321 } 1322 1323 fd_install(fd1, newfile1); 1324 fd_install(fd2, newfile2); 1325 /* fd1 and fd2 may be already another descriptors. 1326 * Not kernel problem. 1327 */ 1328 1329 err = put_user(fd1, &usockvec[0]); 1330 if (!err) 1331 err = put_user(fd2, &usockvec[1]); 1332 if (!err) 1333 return 0; 1334 1335 sys_close(fd2); 1336 sys_close(fd1); 1337 return err; 1338 1339 out_release_both: 1340 sock_release(sock2); 1341 out_release_1: 1342 sock_release(sock1); 1343 out: 1344 return err; 1345 1346 out_fd2: 1347 put_filp(newfile1); 1348 sock_release(sock1); 1349 out_fd1: 1350 put_filp(newfile2); 1351 sock_release(sock2); 1352 out_fd: 1353 put_unused_fd(fd1); 1354 put_unused_fd(fd2); 1355 goto out; 1356 } 1357 1358 /* 1359 * Bind a name to a socket. Nothing much to do here since it's 1360 * the protocol's responsibility to handle the local address. 1361 * 1362 * We move the socket address to kernel space before we call 1363 * the protocol layer (having also checked the address is ok). 1364 */ 1365 1366 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen) 1367 { 1368 struct socket *sock; 1369 struct sockaddr_storage address; 1370 int err, fput_needed; 1371 1372 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1373 if (sock) { 1374 err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address); 1375 if (err >= 0) { 1376 err = security_socket_bind(sock, 1377 (struct sockaddr *)&address, 1378 addrlen); 1379 if (!err) 1380 err = sock->ops->bind(sock, 1381 (struct sockaddr *) 1382 &address, addrlen); 1383 } 1384 fput_light(sock->file, fput_needed); 1385 } 1386 return err; 1387 } 1388 1389 /* 1390 * Perform a listen. Basically, we allow the protocol to do anything 1391 * necessary for a listen, and if that works, we mark the socket as 1392 * ready for listening. 1393 */ 1394 1395 asmlinkage long sys_listen(int fd, int backlog) 1396 { 1397 struct socket *sock; 1398 int err, fput_needed; 1399 int somaxconn; 1400 1401 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1402 if (sock) { 1403 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn; 1404 if ((unsigned)backlog > somaxconn) 1405 backlog = somaxconn; 1406 1407 err = security_socket_listen(sock, backlog); 1408 if (!err) 1409 err = sock->ops->listen(sock, backlog); 1410 1411 fput_light(sock->file, fput_needed); 1412 } 1413 return err; 1414 } 1415 1416 /* 1417 * For accept, we attempt to create a new socket, set up the link 1418 * with the client, wake up the client, then return the new 1419 * connected fd. We collect the address of the connector in kernel 1420 * space and move it to user at the very end. This is unclean because 1421 * we open the socket then return an error. 1422 * 1423 * 1003.1g adds the ability to recvmsg() to query connection pending 1424 * status to recvmsg. We need to add that support in a way thats 1425 * clean when we restucture accept also. 1426 */ 1427 1428 asmlinkage long sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr, 1429 int __user *upeer_addrlen, int flags) 1430 { 1431 struct socket *sock, *newsock; 1432 struct file *newfile; 1433 int err, len, newfd, fput_needed; 1434 struct sockaddr_storage address; 1435 1436 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK)) 1437 return -EINVAL; 1438 1439 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK)) 1440 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK; 1441 1442 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1443 if (!sock) 1444 goto out; 1445 1446 err = -ENFILE; 1447 if (!(newsock = sock_alloc())) 1448 goto out_put; 1449 1450 newsock->type = sock->type; 1451 newsock->ops = sock->ops; 1452 1453 /* 1454 * We don't need try_module_get here, as the listening socket (sock) 1455 * has the protocol module (sock->ops->owner) held. 1456 */ 1457 __module_get(newsock->ops->owner); 1458 1459 newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC); 1460 if (unlikely(newfd < 0)) { 1461 err = newfd; 1462 sock_release(newsock); 1463 goto out_put; 1464 } 1465 1466 err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK); 1467 if (err < 0) 1468 goto out_fd_simple; 1469 1470 err = security_socket_accept(sock, newsock); 1471 if (err) 1472 goto out_fd; 1473 1474 err = sock->ops->accept(sock, newsock, sock->file->f_flags); 1475 if (err < 0) 1476 goto out_fd; 1477 1478 if (upeer_sockaddr) { 1479 if (newsock->ops->getname(newsock, (struct sockaddr *)&address, 1480 &len, 2) < 0) { 1481 err = -ECONNABORTED; 1482 goto out_fd; 1483 } 1484 err = move_addr_to_user((struct sockaddr *)&address, 1485 len, upeer_sockaddr, upeer_addrlen); 1486 if (err < 0) 1487 goto out_fd; 1488 } 1489 1490 /* File flags are not inherited via accept() unlike another OSes. */ 1491 1492 fd_install(newfd, newfile); 1493 err = newfd; 1494 1495 security_socket_post_accept(sock, newsock); 1496 1497 out_put: 1498 fput_light(sock->file, fput_needed); 1499 out: 1500 return err; 1501 out_fd_simple: 1502 sock_release(newsock); 1503 put_filp(newfile); 1504 put_unused_fd(newfd); 1505 goto out_put; 1506 out_fd: 1507 fput(newfile); 1508 put_unused_fd(newfd); 1509 goto out_put; 1510 } 1511 1512 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr, 1513 int __user *upeer_addrlen) 1514 { 1515 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0); 1516 } 1517 1518 /* 1519 * Attempt to connect to a socket with the server address. The address 1520 * is in user space so we verify it is OK and move it to kernel space. 1521 * 1522 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to 1523 * break bindings 1524 * 1525 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and 1526 * other SEQPACKET protocols that take time to connect() as it doesn't 1527 * include the -EINPROGRESS status for such sockets. 1528 */ 1529 1530 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr, 1531 int addrlen) 1532 { 1533 struct socket *sock; 1534 struct sockaddr_storage address; 1535 int err, fput_needed; 1536 1537 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1538 if (!sock) 1539 goto out; 1540 err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address); 1541 if (err < 0) 1542 goto out_put; 1543 1544 err = 1545 security_socket_connect(sock, (struct sockaddr *)&address, addrlen); 1546 if (err) 1547 goto out_put; 1548 1549 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen, 1550 sock->file->f_flags); 1551 out_put: 1552 fput_light(sock->file, fput_needed); 1553 out: 1554 return err; 1555 } 1556 1557 /* 1558 * Get the local address ('name') of a socket object. Move the obtained 1559 * name to user space. 1560 */ 1561 1562 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr, 1563 int __user *usockaddr_len) 1564 { 1565 struct socket *sock; 1566 struct sockaddr_storage address; 1567 int len, err, fput_needed; 1568 1569 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1570 if (!sock) 1571 goto out; 1572 1573 err = security_socket_getsockname(sock); 1574 if (err) 1575 goto out_put; 1576 1577 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0); 1578 if (err) 1579 goto out_put; 1580 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len); 1581 1582 out_put: 1583 fput_light(sock->file, fput_needed); 1584 out: 1585 return err; 1586 } 1587 1588 /* 1589 * Get the remote address ('name') of a socket object. Move the obtained 1590 * name to user space. 1591 */ 1592 1593 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr, 1594 int __user *usockaddr_len) 1595 { 1596 struct socket *sock; 1597 struct sockaddr_storage address; 1598 int len, err, fput_needed; 1599 1600 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1601 if (sock != NULL) { 1602 err = security_socket_getpeername(sock); 1603 if (err) { 1604 fput_light(sock->file, fput_needed); 1605 return err; 1606 } 1607 1608 err = 1609 sock->ops->getname(sock, (struct sockaddr *)&address, &len, 1610 1); 1611 if (!err) 1612 err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, 1613 usockaddr_len); 1614 fput_light(sock->file, fput_needed); 1615 } 1616 return err; 1617 } 1618 1619 /* 1620 * Send a datagram to a given address. We move the address into kernel 1621 * space and check the user space data area is readable before invoking 1622 * the protocol. 1623 */ 1624 1625 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len, 1626 unsigned flags, struct sockaddr __user *addr, 1627 int addr_len) 1628 { 1629 struct socket *sock; 1630 struct sockaddr_storage address; 1631 int err; 1632 struct msghdr msg; 1633 struct iovec iov; 1634 int fput_needed; 1635 1636 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1637 if (!sock) 1638 goto out; 1639 1640 iov.iov_base = buff; 1641 iov.iov_len = len; 1642 msg.msg_name = NULL; 1643 msg.msg_iov = &iov; 1644 msg.msg_iovlen = 1; 1645 msg.msg_control = NULL; 1646 msg.msg_controllen = 0; 1647 msg.msg_namelen = 0; 1648 if (addr) { 1649 err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address); 1650 if (err < 0) 1651 goto out_put; 1652 msg.msg_name = (struct sockaddr *)&address; 1653 msg.msg_namelen = addr_len; 1654 } 1655 if (sock->file->f_flags & O_NONBLOCK) 1656 flags |= MSG_DONTWAIT; 1657 msg.msg_flags = flags; 1658 err = sock_sendmsg(sock, &msg, len); 1659 1660 out_put: 1661 fput_light(sock->file, fput_needed); 1662 out: 1663 return err; 1664 } 1665 1666 /* 1667 * Send a datagram down a socket. 1668 */ 1669 1670 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags) 1671 { 1672 return sys_sendto(fd, buff, len, flags, NULL, 0); 1673 } 1674 1675 /* 1676 * Receive a frame from the socket and optionally record the address of the 1677 * sender. We verify the buffers are writable and if needed move the 1678 * sender address from kernel to user space. 1679 */ 1680 1681 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size, 1682 unsigned flags, struct sockaddr __user *addr, 1683 int __user *addr_len) 1684 { 1685 struct socket *sock; 1686 struct iovec iov; 1687 struct msghdr msg; 1688 struct sockaddr_storage address; 1689 int err, err2; 1690 int fput_needed; 1691 1692 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1693 if (!sock) 1694 goto out; 1695 1696 msg.msg_control = NULL; 1697 msg.msg_controllen = 0; 1698 msg.msg_iovlen = 1; 1699 msg.msg_iov = &iov; 1700 iov.iov_len = size; 1701 iov.iov_base = ubuf; 1702 msg.msg_name = (struct sockaddr *)&address; 1703 msg.msg_namelen = sizeof(address); 1704 if (sock->file->f_flags & O_NONBLOCK) 1705 flags |= MSG_DONTWAIT; 1706 err = sock_recvmsg(sock, &msg, size, flags); 1707 1708 if (err >= 0 && addr != NULL) { 1709 err2 = move_addr_to_user((struct sockaddr *)&address, 1710 msg.msg_namelen, addr, addr_len); 1711 if (err2 < 0) 1712 err = err2; 1713 } 1714 1715 fput_light(sock->file, fput_needed); 1716 out: 1717 return err; 1718 } 1719 1720 /* 1721 * Receive a datagram from a socket. 1722 */ 1723 1724 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size, 1725 unsigned flags) 1726 { 1727 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL); 1728 } 1729 1730 /* 1731 * Set a socket option. Because we don't know the option lengths we have 1732 * to pass the user mode parameter for the protocols to sort out. 1733 */ 1734 1735 asmlinkage long sys_setsockopt(int fd, int level, int optname, 1736 char __user *optval, int optlen) 1737 { 1738 int err, fput_needed; 1739 struct socket *sock; 1740 1741 if (optlen < 0) 1742 return -EINVAL; 1743 1744 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1745 if (sock != NULL) { 1746 err = security_socket_setsockopt(sock, level, optname); 1747 if (err) 1748 goto out_put; 1749 1750 if (level == SOL_SOCKET) 1751 err = 1752 sock_setsockopt(sock, level, optname, optval, 1753 optlen); 1754 else 1755 err = 1756 sock->ops->setsockopt(sock, level, optname, optval, 1757 optlen); 1758 out_put: 1759 fput_light(sock->file, fput_needed); 1760 } 1761 return err; 1762 } 1763 1764 /* 1765 * Get a socket option. Because we don't know the option lengths we have 1766 * to pass a user mode parameter for the protocols to sort out. 1767 */ 1768 1769 asmlinkage long sys_getsockopt(int fd, int level, int optname, 1770 char __user *optval, int __user *optlen) 1771 { 1772 int err, fput_needed; 1773 struct socket *sock; 1774 1775 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1776 if (sock != NULL) { 1777 err = security_socket_getsockopt(sock, level, optname); 1778 if (err) 1779 goto out_put; 1780 1781 if (level == SOL_SOCKET) 1782 err = 1783 sock_getsockopt(sock, level, optname, optval, 1784 optlen); 1785 else 1786 err = 1787 sock->ops->getsockopt(sock, level, optname, optval, 1788 optlen); 1789 out_put: 1790 fput_light(sock->file, fput_needed); 1791 } 1792 return err; 1793 } 1794 1795 /* 1796 * Shutdown a socket. 1797 */ 1798 1799 asmlinkage long sys_shutdown(int fd, int how) 1800 { 1801 int err, fput_needed; 1802 struct socket *sock; 1803 1804 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1805 if (sock != NULL) { 1806 err = security_socket_shutdown(sock, how); 1807 if (!err) 1808 err = sock->ops->shutdown(sock, how); 1809 fput_light(sock->file, fput_needed); 1810 } 1811 return err; 1812 } 1813 1814 /* A couple of helpful macros for getting the address of the 32/64 bit 1815 * fields which are the same type (int / unsigned) on our platforms. 1816 */ 1817 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member) 1818 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen) 1819 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags) 1820 1821 /* 1822 * BSD sendmsg interface 1823 */ 1824 1825 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags) 1826 { 1827 struct compat_msghdr __user *msg_compat = 1828 (struct compat_msghdr __user *)msg; 1829 struct socket *sock; 1830 struct sockaddr_storage address; 1831 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; 1832 unsigned char ctl[sizeof(struct cmsghdr) + 20] 1833 __attribute__ ((aligned(sizeof(__kernel_size_t)))); 1834 /* 20 is size of ipv6_pktinfo */ 1835 unsigned char *ctl_buf = ctl; 1836 struct msghdr msg_sys; 1837 int err, ctl_len, iov_size, total_len; 1838 int fput_needed; 1839 1840 err = -EFAULT; 1841 if (MSG_CMSG_COMPAT & flags) { 1842 if (get_compat_msghdr(&msg_sys, msg_compat)) 1843 return -EFAULT; 1844 } 1845 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1846 return -EFAULT; 1847 1848 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1849 if (!sock) 1850 goto out; 1851 1852 /* do not move before msg_sys is valid */ 1853 err = -EMSGSIZE; 1854 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1855 goto out_put; 1856 1857 /* Check whether to allocate the iovec area */ 1858 err = -ENOMEM; 1859 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1860 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1861 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1862 if (!iov) 1863 goto out_put; 1864 } 1865 1866 /* This will also move the address data into kernel space */ 1867 if (MSG_CMSG_COMPAT & flags) { 1868 err = verify_compat_iovec(&msg_sys, iov, 1869 (struct sockaddr *)&address, 1870 VERIFY_READ); 1871 } else 1872 err = verify_iovec(&msg_sys, iov, 1873 (struct sockaddr *)&address, 1874 VERIFY_READ); 1875 if (err < 0) 1876 goto out_freeiov; 1877 total_len = err; 1878 1879 err = -ENOBUFS; 1880 1881 if (msg_sys.msg_controllen > INT_MAX) 1882 goto out_freeiov; 1883 ctl_len = msg_sys.msg_controllen; 1884 if ((MSG_CMSG_COMPAT & flags) && ctl_len) { 1885 err = 1886 cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl, 1887 sizeof(ctl)); 1888 if (err) 1889 goto out_freeiov; 1890 ctl_buf = msg_sys.msg_control; 1891 ctl_len = msg_sys.msg_controllen; 1892 } else if (ctl_len) { 1893 if (ctl_len > sizeof(ctl)) { 1894 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); 1895 if (ctl_buf == NULL) 1896 goto out_freeiov; 1897 } 1898 err = -EFAULT; 1899 /* 1900 * Careful! Before this, msg_sys.msg_control contains a user pointer. 1901 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted 1902 * checking falls down on this. 1903 */ 1904 if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control, 1905 ctl_len)) 1906 goto out_freectl; 1907 msg_sys.msg_control = ctl_buf; 1908 } 1909 msg_sys.msg_flags = flags; 1910 1911 if (sock->file->f_flags & O_NONBLOCK) 1912 msg_sys.msg_flags |= MSG_DONTWAIT; 1913 err = sock_sendmsg(sock, &msg_sys, total_len); 1914 1915 out_freectl: 1916 if (ctl_buf != ctl) 1917 sock_kfree_s(sock->sk, ctl_buf, ctl_len); 1918 out_freeiov: 1919 if (iov != iovstack) 1920 sock_kfree_s(sock->sk, iov, iov_size); 1921 out_put: 1922 fput_light(sock->file, fput_needed); 1923 out: 1924 return err; 1925 } 1926 1927 /* 1928 * BSD recvmsg interface 1929 */ 1930 1931 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg, 1932 unsigned int flags) 1933 { 1934 struct compat_msghdr __user *msg_compat = 1935 (struct compat_msghdr __user *)msg; 1936 struct socket *sock; 1937 struct iovec iovstack[UIO_FASTIOV]; 1938 struct iovec *iov = iovstack; 1939 struct msghdr msg_sys; 1940 unsigned long cmsg_ptr; 1941 int err, iov_size, total_len, len; 1942 int fput_needed; 1943 1944 /* kernel mode address */ 1945 struct sockaddr_storage addr; 1946 1947 /* user mode address pointers */ 1948 struct sockaddr __user *uaddr; 1949 int __user *uaddr_len; 1950 1951 if (MSG_CMSG_COMPAT & flags) { 1952 if (get_compat_msghdr(&msg_sys, msg_compat)) 1953 return -EFAULT; 1954 } 1955 else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr))) 1956 return -EFAULT; 1957 1958 sock = sockfd_lookup_light(fd, &err, &fput_needed); 1959 if (!sock) 1960 goto out; 1961 1962 err = -EMSGSIZE; 1963 if (msg_sys.msg_iovlen > UIO_MAXIOV) 1964 goto out_put; 1965 1966 /* Check whether to allocate the iovec area */ 1967 err = -ENOMEM; 1968 iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); 1969 if (msg_sys.msg_iovlen > UIO_FASTIOV) { 1970 iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); 1971 if (!iov) 1972 goto out_put; 1973 } 1974 1975 /* 1976 * Save the user-mode address (verify_iovec will change the 1977 * kernel msghdr to use the kernel address space) 1978 */ 1979 1980 uaddr = (__force void __user *)msg_sys.msg_name; 1981 uaddr_len = COMPAT_NAMELEN(msg); 1982 if (MSG_CMSG_COMPAT & flags) { 1983 err = verify_compat_iovec(&msg_sys, iov, 1984 (struct sockaddr *)&addr, 1985 VERIFY_WRITE); 1986 } else 1987 err = verify_iovec(&msg_sys, iov, 1988 (struct sockaddr *)&addr, 1989 VERIFY_WRITE); 1990 if (err < 0) 1991 goto out_freeiov; 1992 total_len = err; 1993 1994 cmsg_ptr = (unsigned long)msg_sys.msg_control; 1995 msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT); 1996 1997 if (sock->file->f_flags & O_NONBLOCK) 1998 flags |= MSG_DONTWAIT; 1999 err = sock_recvmsg(sock, &msg_sys, total_len, flags); 2000 if (err < 0) 2001 goto out_freeiov; 2002 len = err; 2003 2004 if (uaddr != NULL) { 2005 err = move_addr_to_user((struct sockaddr *)&addr, 2006 msg_sys.msg_namelen, uaddr, 2007 uaddr_len); 2008 if (err < 0) 2009 goto out_freeiov; 2010 } 2011 err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT), 2012 COMPAT_FLAGS(msg)); 2013 if (err) 2014 goto out_freeiov; 2015 if (MSG_CMSG_COMPAT & flags) 2016 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 2017 &msg_compat->msg_controllen); 2018 else 2019 err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr, 2020 &msg->msg_controllen); 2021 if (err) 2022 goto out_freeiov; 2023 err = len; 2024 2025 out_freeiov: 2026 if (iov != iovstack) 2027 sock_kfree_s(sock->sk, iov, iov_size); 2028 out_put: 2029 fput_light(sock->file, fput_needed); 2030 out: 2031 return err; 2032 } 2033 2034 #ifdef __ARCH_WANT_SYS_SOCKETCALL 2035 2036 /* Argument list sizes for sys_socketcall */ 2037 #define AL(x) ((x) * sizeof(unsigned long)) 2038 static const unsigned char nargs[19]={ 2039 AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), 2040 AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), 2041 AL(6),AL(2),AL(5),AL(5),AL(3),AL(3), 2042 AL(4) 2043 }; 2044 2045 #undef AL 2046 2047 /* 2048 * System call vectors. 2049 * 2050 * Argument checking cleaned up. Saved 20% in size. 2051 * This function doesn't need to set the kernel lock because 2052 * it is set by the callees. 2053 */ 2054 2055 asmlinkage long sys_socketcall(int call, unsigned long __user *args) 2056 { 2057 unsigned long a[6]; 2058 unsigned long a0, a1; 2059 int err; 2060 2061 if (call < 1 || call > SYS_ACCEPT4) 2062 return -EINVAL; 2063 2064 /* copy_from_user should be SMP safe. */ 2065 if (copy_from_user(a, args, nargs[call])) 2066 return -EFAULT; 2067 2068 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a); 2069 if (err) 2070 return err; 2071 2072 a0 = a[0]; 2073 a1 = a[1]; 2074 2075 switch (call) { 2076 case SYS_SOCKET: 2077 err = sys_socket(a0, a1, a[2]); 2078 break; 2079 case SYS_BIND: 2080 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]); 2081 break; 2082 case SYS_CONNECT: 2083 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]); 2084 break; 2085 case SYS_LISTEN: 2086 err = sys_listen(a0, a1); 2087 break; 2088 case SYS_ACCEPT: 2089 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2090 (int __user *)a[2], 0); 2091 break; 2092 case SYS_GETSOCKNAME: 2093 err = 2094 sys_getsockname(a0, (struct sockaddr __user *)a1, 2095 (int __user *)a[2]); 2096 break; 2097 case SYS_GETPEERNAME: 2098 err = 2099 sys_getpeername(a0, (struct sockaddr __user *)a1, 2100 (int __user *)a[2]); 2101 break; 2102 case SYS_SOCKETPAIR: 2103 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]); 2104 break; 2105 case SYS_SEND: 2106 err = sys_send(a0, (void __user *)a1, a[2], a[3]); 2107 break; 2108 case SYS_SENDTO: 2109 err = sys_sendto(a0, (void __user *)a1, a[2], a[3], 2110 (struct sockaddr __user *)a[4], a[5]); 2111 break; 2112 case SYS_RECV: 2113 err = sys_recv(a0, (void __user *)a1, a[2], a[3]); 2114 break; 2115 case SYS_RECVFROM: 2116 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3], 2117 (struct sockaddr __user *)a[4], 2118 (int __user *)a[5]); 2119 break; 2120 case SYS_SHUTDOWN: 2121 err = sys_shutdown(a0, a1); 2122 break; 2123 case SYS_SETSOCKOPT: 2124 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]); 2125 break; 2126 case SYS_GETSOCKOPT: 2127 err = 2128 sys_getsockopt(a0, a1, a[2], (char __user *)a[3], 2129 (int __user *)a[4]); 2130 break; 2131 case SYS_SENDMSG: 2132 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]); 2133 break; 2134 case SYS_RECVMSG: 2135 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]); 2136 break; 2137 case SYS_ACCEPT4: 2138 err = sys_accept4(a0, (struct sockaddr __user *)a1, 2139 (int __user *)a[2], a[3]); 2140 break; 2141 default: 2142 err = -EINVAL; 2143 break; 2144 } 2145 return err; 2146 } 2147 2148 #endif /* __ARCH_WANT_SYS_SOCKETCALL */ 2149 2150 /** 2151 * sock_register - add a socket protocol handler 2152 * @ops: description of protocol 2153 * 2154 * This function is called by a protocol handler that wants to 2155 * advertise its address family, and have it linked into the 2156 * socket interface. The value ops->family coresponds to the 2157 * socket system call protocol family. 2158 */ 2159 int sock_register(const struct net_proto_family *ops) 2160 { 2161 int err; 2162 2163 if (ops->family >= NPROTO) { 2164 printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family, 2165 NPROTO); 2166 return -ENOBUFS; 2167 } 2168 2169 spin_lock(&net_family_lock); 2170 if (net_families[ops->family]) 2171 err = -EEXIST; 2172 else { 2173 net_families[ops->family] = ops; 2174 err = 0; 2175 } 2176 spin_unlock(&net_family_lock); 2177 2178 printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family); 2179 return err; 2180 } 2181 2182 /** 2183 * sock_unregister - remove a protocol handler 2184 * @family: protocol family to remove 2185 * 2186 * This function is called by a protocol handler that wants to 2187 * remove its address family, and have it unlinked from the 2188 * new socket creation. 2189 * 2190 * If protocol handler is a module, then it can use module reference 2191 * counts to protect against new references. If protocol handler is not 2192 * a module then it needs to provide its own protection in 2193 * the ops->create routine. 2194 */ 2195 void sock_unregister(int family) 2196 { 2197 BUG_ON(family < 0 || family >= NPROTO); 2198 2199 spin_lock(&net_family_lock); 2200 net_families[family] = NULL; 2201 spin_unlock(&net_family_lock); 2202 2203 synchronize_rcu(); 2204 2205 printk(KERN_INFO "NET: Unregistered protocol family %d\n", family); 2206 } 2207 2208 static int __init sock_init(void) 2209 { 2210 /* 2211 * Initialize sock SLAB cache. 2212 */ 2213 2214 sk_init(); 2215 2216 /* 2217 * Initialize skbuff SLAB cache 2218 */ 2219 skb_init(); 2220 2221 /* 2222 * Initialize the protocols module. 2223 */ 2224 2225 init_inodecache(); 2226 register_filesystem(&sock_fs_type); 2227 sock_mnt = kern_mount(&sock_fs_type); 2228 2229 /* The real protocol initialization is performed in later initcalls. 2230 */ 2231 2232 #ifdef CONFIG_NETFILTER 2233 netfilter_init(); 2234 #endif 2235 2236 return 0; 2237 } 2238 2239 core_initcall(sock_init); /* early initcall */ 2240 2241 #ifdef CONFIG_PROC_FS 2242 void socket_seq_show(struct seq_file *seq) 2243 { 2244 int cpu; 2245 int counter = 0; 2246 2247 for_each_possible_cpu(cpu) 2248 counter += per_cpu(sockets_in_use, cpu); 2249 2250 /* It can be negative, by the way. 8) */ 2251 if (counter < 0) 2252 counter = 0; 2253 2254 seq_printf(seq, "sockets: used %d\n", counter); 2255 } 2256 #endif /* CONFIG_PROC_FS */ 2257 2258 #ifdef CONFIG_COMPAT 2259 static long compat_sock_ioctl(struct file *file, unsigned cmd, 2260 unsigned long arg) 2261 { 2262 struct socket *sock = file->private_data; 2263 int ret = -ENOIOCTLCMD; 2264 struct sock *sk; 2265 struct net *net; 2266 2267 sk = sock->sk; 2268 net = sock_net(sk); 2269 2270 if (sock->ops->compat_ioctl) 2271 ret = sock->ops->compat_ioctl(sock, cmd, arg); 2272 2273 if (ret == -ENOIOCTLCMD && 2274 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)) 2275 ret = compat_wext_handle_ioctl(net, cmd, arg); 2276 2277 return ret; 2278 } 2279 #endif 2280 2281 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen) 2282 { 2283 return sock->ops->bind(sock, addr, addrlen); 2284 } 2285 2286 int kernel_listen(struct socket *sock, int backlog) 2287 { 2288 return sock->ops->listen(sock, backlog); 2289 } 2290 2291 int kernel_accept(struct socket *sock, struct socket **newsock, int flags) 2292 { 2293 struct sock *sk = sock->sk; 2294 int err; 2295 2296 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol, 2297 newsock); 2298 if (err < 0) 2299 goto done; 2300 2301 err = sock->ops->accept(sock, *newsock, flags); 2302 if (err < 0) { 2303 sock_release(*newsock); 2304 *newsock = NULL; 2305 goto done; 2306 } 2307 2308 (*newsock)->ops = sock->ops; 2309 2310 done: 2311 return err; 2312 } 2313 2314 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen, 2315 int flags) 2316 { 2317 return sock->ops->connect(sock, addr, addrlen, flags); 2318 } 2319 2320 int kernel_getsockname(struct socket *sock, struct sockaddr *addr, 2321 int *addrlen) 2322 { 2323 return sock->ops->getname(sock, addr, addrlen, 0); 2324 } 2325 2326 int kernel_getpeername(struct socket *sock, struct sockaddr *addr, 2327 int *addrlen) 2328 { 2329 return sock->ops->getname(sock, addr, addrlen, 1); 2330 } 2331 2332 int kernel_getsockopt(struct socket *sock, int level, int optname, 2333 char *optval, int *optlen) 2334 { 2335 mm_segment_t oldfs = get_fs(); 2336 int err; 2337 2338 set_fs(KERNEL_DS); 2339 if (level == SOL_SOCKET) 2340 err = sock_getsockopt(sock, level, optname, optval, optlen); 2341 else 2342 err = sock->ops->getsockopt(sock, level, optname, optval, 2343 optlen); 2344 set_fs(oldfs); 2345 return err; 2346 } 2347 2348 int kernel_setsockopt(struct socket *sock, int level, int optname, 2349 char *optval, int optlen) 2350 { 2351 mm_segment_t oldfs = get_fs(); 2352 int err; 2353 2354 set_fs(KERNEL_DS); 2355 if (level == SOL_SOCKET) 2356 err = sock_setsockopt(sock, level, optname, optval, optlen); 2357 else 2358 err = sock->ops->setsockopt(sock, level, optname, optval, 2359 optlen); 2360 set_fs(oldfs); 2361 return err; 2362 } 2363 2364 int kernel_sendpage(struct socket *sock, struct page *page, int offset, 2365 size_t size, int flags) 2366 { 2367 if (sock->ops->sendpage) 2368 return sock->ops->sendpage(sock, page, offset, size, flags); 2369 2370 return sock_no_sendpage(sock, page, offset, size, flags); 2371 } 2372 2373 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg) 2374 { 2375 mm_segment_t oldfs = get_fs(); 2376 int err; 2377 2378 set_fs(KERNEL_DS); 2379 err = sock->ops->ioctl(sock, cmd, arg); 2380 set_fs(oldfs); 2381 2382 return err; 2383 } 2384 2385 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how) 2386 { 2387 return sock->ops->shutdown(sock, how); 2388 } 2389 2390 EXPORT_SYMBOL(sock_create); 2391 EXPORT_SYMBOL(sock_create_kern); 2392 EXPORT_SYMBOL(sock_create_lite); 2393 EXPORT_SYMBOL(sock_map_fd); 2394 EXPORT_SYMBOL(sock_recvmsg); 2395 EXPORT_SYMBOL(sock_register); 2396 EXPORT_SYMBOL(sock_release); 2397 EXPORT_SYMBOL(sock_sendmsg); 2398 EXPORT_SYMBOL(sock_unregister); 2399 EXPORT_SYMBOL(sock_wake_async); 2400 EXPORT_SYMBOL(sockfd_lookup); 2401 EXPORT_SYMBOL(kernel_sendmsg); 2402 EXPORT_SYMBOL(kernel_recvmsg); 2403 EXPORT_SYMBOL(kernel_bind); 2404 EXPORT_SYMBOL(kernel_listen); 2405 EXPORT_SYMBOL(kernel_accept); 2406 EXPORT_SYMBOL(kernel_connect); 2407 EXPORT_SYMBOL(kernel_getsockname); 2408 EXPORT_SYMBOL(kernel_getpeername); 2409 EXPORT_SYMBOL(kernel_getsockopt); 2410 EXPORT_SYMBOL(kernel_setsockopt); 2411 EXPORT_SYMBOL(kernel_sendpage); 2412 EXPORT_SYMBOL(kernel_sock_ioctl); 2413 EXPORT_SYMBOL(kernel_sock_shutdown); 2414