xref: /linux-6.15/net/socket.c (revision 17c324fa)
1 /*
2  * NET		An implementation of the SOCKET network access protocol.
3  *
4  * Version:	@(#)socket.c	1.1.93	18/02/95
5  *
6  * Authors:	Orest Zborowski, <[email protected]>
7  *		Ross Biro
8  *		Fred N. van Kempen, <[email protected]>
9  *
10  * Fixes:
11  *		Anonymous	:	NOTSOCK/BADF cleanup. Error fix in
12  *					shutdown()
13  *		Alan Cox	:	verify_area() fixes
14  *		Alan Cox	:	Removed DDI
15  *		Jonathan Kamens	:	SOCK_DGRAM reconnect bug
16  *		Alan Cox	:	Moved a load of checks to the very
17  *					top level.
18  *		Alan Cox	:	Move address structures to/from user
19  *					mode above the protocol layers.
20  *		Rob Janssen	:	Allow 0 length sends.
21  *		Alan Cox	:	Asynchronous I/O support (cribbed from the
22  *					tty drivers).
23  *		Niibe Yutaka	:	Asynchronous I/O for writes (4.4BSD style)
24  *		Jeff Uphoff	:	Made max number of sockets command-line
25  *					configurable.
26  *		Matti Aarnio	:	Made the number of sockets dynamic,
27  *					to be allocated when needed, and mr.
28  *					Uphoff's max is used as max to be
29  *					allowed to allocate.
30  *		Linus		:	Argh. removed all the socket allocation
31  *					altogether: it's in the inode now.
32  *		Alan Cox	:	Made sock_alloc()/sock_release() public
33  *					for NetROM and future kernel nfsd type
34  *					stuff.
35  *		Alan Cox	:	sendmsg/recvmsg basics.
36  *		Tom Dyas	:	Export net symbols.
37  *		Marcin Dalecki	:	Fixed problems with CONFIG_NET="n".
38  *		Alan Cox	:	Added thread locking to sys_* calls
39  *					for sockets. May have errors at the
40  *					moment.
41  *		Kevin Buhr	:	Fixed the dumb errors in the above.
42  *		Andi Kleen	:	Some small cleanups, optimizations,
43  *					and fixed a copy_from_user() bug.
44  *		Tigran Aivazian	:	sys_send(args) calls sys_sendto(args, NULL, 0)
45  *		Tigran Aivazian	:	Made listen(2) backlog sanity checks
46  *					protocol-independent
47  *
48  *
49  *		This program is free software; you can redistribute it and/or
50  *		modify it under the terms of the GNU General Public License
51  *		as published by the Free Software Foundation; either version
52  *		2 of the License, or (at your option) any later version.
53  *
54  *
55  *	This module is effectively the top level interface to the BSD socket
56  *	paradigm.
57  *
58  *	Based upon Swansea University Computer Society NET3.039
59  */
60 
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/wanrouter.h>
73 #include <linux/if_bridge.h>
74 #include <linux/if_frad.h>
75 #include <linux/if_vlan.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 
90 #include <asm/uaccess.h>
91 #include <asm/unistd.h>
92 
93 #include <net/compat.h>
94 #include <net/wext.h>
95 
96 #include <net/sock.h>
97 #include <linux/netfilter.h>
98 
99 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
100 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
101 			 unsigned long nr_segs, loff_t pos);
102 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
103 			  unsigned long nr_segs, loff_t pos);
104 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
105 
106 static int sock_close(struct inode *inode, struct file *file);
107 static unsigned int sock_poll(struct file *file,
108 			      struct poll_table_struct *wait);
109 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
110 #ifdef CONFIG_COMPAT
111 static long compat_sock_ioctl(struct file *file,
112 			      unsigned int cmd, unsigned long arg);
113 #endif
114 static int sock_fasync(int fd, struct file *filp, int on);
115 static ssize_t sock_sendpage(struct file *file, struct page *page,
116 			     int offset, size_t size, loff_t *ppos, int more);
117 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
118 			        struct pipe_inode_info *pipe, size_t len,
119 				unsigned int flags);
120 
121 /*
122  *	Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
123  *	in the operation structures but are done directly via the socketcall() multiplexor.
124  */
125 
126 static const struct file_operations socket_file_ops = {
127 	.owner =	THIS_MODULE,
128 	.llseek =	no_llseek,
129 	.aio_read =	sock_aio_read,
130 	.aio_write =	sock_aio_write,
131 	.poll =		sock_poll,
132 	.unlocked_ioctl = sock_ioctl,
133 #ifdef CONFIG_COMPAT
134 	.compat_ioctl = compat_sock_ioctl,
135 #endif
136 	.mmap =		sock_mmap,
137 	.open =		sock_no_open,	/* special open code to disallow open via /proc */
138 	.release =	sock_close,
139 	.fasync =	sock_fasync,
140 	.sendpage =	sock_sendpage,
141 	.splice_write = generic_splice_sendpage,
142 	.splice_read =	sock_splice_read,
143 };
144 
145 /*
146  *	The protocol list. Each protocol is registered in here.
147  */
148 
149 static DEFINE_SPINLOCK(net_family_lock);
150 static const struct net_proto_family *net_families[NPROTO] __read_mostly;
151 
152 /*
153  *	Statistics counters of the socket lists
154  */
155 
156 static DEFINE_PER_CPU(int, sockets_in_use) = 0;
157 
158 /*
159  * Support routines.
160  * Move socket addresses back and forth across the kernel/user
161  * divide and look after the messy bits.
162  */
163 
164 #define MAX_SOCK_ADDR	128		/* 108 for Unix domain -
165 					   16 for IP, 16 for IPX,
166 					   24 for IPv6,
167 					   about 80 for AX.25
168 					   must be at least one bigger than
169 					   the AF_UNIX size (see net/unix/af_unix.c
170 					   :unix_mkname()).
171 					 */
172 
173 /**
174  *	move_addr_to_kernel	-	copy a socket address into kernel space
175  *	@uaddr: Address in user space
176  *	@kaddr: Address in kernel space
177  *	@ulen: Length in user space
178  *
179  *	The address is copied into kernel space. If the provided address is
180  *	too long an error code of -EINVAL is returned. If the copy gives
181  *	invalid addresses -EFAULT is returned. On a success 0 is returned.
182  */
183 
184 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr *kaddr)
185 {
186 	if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
187 		return -EINVAL;
188 	if (ulen == 0)
189 		return 0;
190 	if (copy_from_user(kaddr, uaddr, ulen))
191 		return -EFAULT;
192 	return audit_sockaddr(ulen, kaddr);
193 }
194 
195 /**
196  *	move_addr_to_user	-	copy an address to user space
197  *	@kaddr: kernel space address
198  *	@klen: length of address in kernel
199  *	@uaddr: user space address
200  *	@ulen: pointer to user length field
201  *
202  *	The value pointed to by ulen on entry is the buffer length available.
203  *	This is overwritten with the buffer space used. -EINVAL is returned
204  *	if an overlong buffer is specified or a negative buffer size. -EFAULT
205  *	is returned if either the buffer or the length field are not
206  *	accessible.
207  *	After copying the data up to the limit the user specifies, the true
208  *	length of the data is written over the length limit the user
209  *	specified. Zero is returned for a success.
210  */
211 
212 int move_addr_to_user(struct sockaddr *kaddr, int klen, void __user *uaddr,
213 		      int __user *ulen)
214 {
215 	int err;
216 	int len;
217 
218 	err = get_user(len, ulen);
219 	if (err)
220 		return err;
221 	if (len > klen)
222 		len = klen;
223 	if (len < 0 || len > sizeof(struct sockaddr_storage))
224 		return -EINVAL;
225 	if (len) {
226 		if (audit_sockaddr(klen, kaddr))
227 			return -ENOMEM;
228 		if (copy_to_user(uaddr, kaddr, len))
229 			return -EFAULT;
230 	}
231 	/*
232 	 *      "fromlen shall refer to the value before truncation.."
233 	 *                      1003.1g
234 	 */
235 	return __put_user(klen, ulen);
236 }
237 
238 #define SOCKFS_MAGIC 0x534F434B
239 
240 static struct kmem_cache *sock_inode_cachep __read_mostly;
241 
242 static struct inode *sock_alloc_inode(struct super_block *sb)
243 {
244 	struct socket_alloc *ei;
245 
246 	ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
247 	if (!ei)
248 		return NULL;
249 	init_waitqueue_head(&ei->socket.wait);
250 
251 	ei->socket.fasync_list = NULL;
252 	ei->socket.state = SS_UNCONNECTED;
253 	ei->socket.flags = 0;
254 	ei->socket.ops = NULL;
255 	ei->socket.sk = NULL;
256 	ei->socket.file = NULL;
257 
258 	return &ei->vfs_inode;
259 }
260 
261 static void sock_destroy_inode(struct inode *inode)
262 {
263 	kmem_cache_free(sock_inode_cachep,
264 			container_of(inode, struct socket_alloc, vfs_inode));
265 }
266 
267 static void init_once(void *foo)
268 {
269 	struct socket_alloc *ei = (struct socket_alloc *)foo;
270 
271 	inode_init_once(&ei->vfs_inode);
272 }
273 
274 static int init_inodecache(void)
275 {
276 	sock_inode_cachep = kmem_cache_create("sock_inode_cache",
277 					      sizeof(struct socket_alloc),
278 					      0,
279 					      (SLAB_HWCACHE_ALIGN |
280 					       SLAB_RECLAIM_ACCOUNT |
281 					       SLAB_MEM_SPREAD),
282 					      init_once);
283 	if (sock_inode_cachep == NULL)
284 		return -ENOMEM;
285 	return 0;
286 }
287 
288 static struct super_operations sockfs_ops = {
289 	.alloc_inode =	sock_alloc_inode,
290 	.destroy_inode =sock_destroy_inode,
291 	.statfs =	simple_statfs,
292 };
293 
294 static int sockfs_get_sb(struct file_system_type *fs_type,
295 			 int flags, const char *dev_name, void *data,
296 			 struct vfsmount *mnt)
297 {
298 	return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
299 			     mnt);
300 }
301 
302 static struct vfsmount *sock_mnt __read_mostly;
303 
304 static struct file_system_type sock_fs_type = {
305 	.name =		"sockfs",
306 	.get_sb =	sockfs_get_sb,
307 	.kill_sb =	kill_anon_super,
308 };
309 
310 static int sockfs_delete_dentry(struct dentry *dentry)
311 {
312 	/*
313 	 * At creation time, we pretended this dentry was hashed
314 	 * (by clearing DCACHE_UNHASHED bit in d_flags)
315 	 * At delete time, we restore the truth : not hashed.
316 	 * (so that dput() can proceed correctly)
317 	 */
318 	dentry->d_flags |= DCACHE_UNHASHED;
319 	return 0;
320 }
321 
322 /*
323  * sockfs_dname() is called from d_path().
324  */
325 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
326 {
327 	return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
328 				dentry->d_inode->i_ino);
329 }
330 
331 static struct dentry_operations sockfs_dentry_operations = {
332 	.d_delete = sockfs_delete_dentry,
333 	.d_dname  = sockfs_dname,
334 };
335 
336 /*
337  *	Obtains the first available file descriptor and sets it up for use.
338  *
339  *	These functions create file structures and maps them to fd space
340  *	of the current process. On success it returns file descriptor
341  *	and file struct implicitly stored in sock->file.
342  *	Note that another thread may close file descriptor before we return
343  *	from this function. We use the fact that now we do not refer
344  *	to socket after mapping. If one day we will need it, this
345  *	function will increment ref. count on file by 1.
346  *
347  *	In any case returned fd MAY BE not valid!
348  *	This race condition is unavoidable
349  *	with shared fd spaces, we cannot solve it inside kernel,
350  *	but we take care of internal coherence yet.
351  */
352 
353 static int sock_alloc_fd(struct file **filep, int flags)
354 {
355 	int fd;
356 
357 	fd = get_unused_fd_flags(flags);
358 	if (likely(fd >= 0)) {
359 		struct file *file = get_empty_filp();
360 
361 		*filep = file;
362 		if (unlikely(!file)) {
363 			put_unused_fd(fd);
364 			return -ENFILE;
365 		}
366 	} else
367 		*filep = NULL;
368 	return fd;
369 }
370 
371 static int sock_attach_fd(struct socket *sock, struct file *file, int flags)
372 {
373 	struct dentry *dentry;
374 	struct qstr name = { .name = "" };
375 
376 	dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
377 	if (unlikely(!dentry))
378 		return -ENOMEM;
379 
380 	dentry->d_op = &sockfs_dentry_operations;
381 	/*
382 	 * We dont want to push this dentry into global dentry hash table.
383 	 * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
384 	 * This permits a working /proc/$pid/fd/XXX on sockets
385 	 */
386 	dentry->d_flags &= ~DCACHE_UNHASHED;
387 	d_instantiate(dentry, SOCK_INODE(sock));
388 
389 	sock->file = file;
390 	init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
391 		  &socket_file_ops);
392 	SOCK_INODE(sock)->i_fop = &socket_file_ops;
393 	file->f_flags = O_RDWR | (flags & O_NONBLOCK);
394 	file->f_pos = 0;
395 	file->private_data = sock;
396 
397 	return 0;
398 }
399 
400 int sock_map_fd(struct socket *sock, int flags)
401 {
402 	struct file *newfile;
403 	int fd = sock_alloc_fd(&newfile, flags);
404 
405 	if (likely(fd >= 0)) {
406 		int err = sock_attach_fd(sock, newfile, flags);
407 
408 		if (unlikely(err < 0)) {
409 			put_filp(newfile);
410 			put_unused_fd(fd);
411 			return err;
412 		}
413 		fd_install(fd, newfile);
414 	}
415 	return fd;
416 }
417 
418 static struct socket *sock_from_file(struct file *file, int *err)
419 {
420 	if (file->f_op == &socket_file_ops)
421 		return file->private_data;	/* set in sock_map_fd */
422 
423 	*err = -ENOTSOCK;
424 	return NULL;
425 }
426 
427 /**
428  *	sockfd_lookup	- 	Go from a file number to its socket slot
429  *	@fd: file handle
430  *	@err: pointer to an error code return
431  *
432  *	The file handle passed in is locked and the socket it is bound
433  *	too is returned. If an error occurs the err pointer is overwritten
434  *	with a negative errno code and NULL is returned. The function checks
435  *	for both invalid handles and passing a handle which is not a socket.
436  *
437  *	On a success the socket object pointer is returned.
438  */
439 
440 struct socket *sockfd_lookup(int fd, int *err)
441 {
442 	struct file *file;
443 	struct socket *sock;
444 
445 	file = fget(fd);
446 	if (!file) {
447 		*err = -EBADF;
448 		return NULL;
449 	}
450 
451 	sock = sock_from_file(file, err);
452 	if (!sock)
453 		fput(file);
454 	return sock;
455 }
456 
457 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
458 {
459 	struct file *file;
460 	struct socket *sock;
461 
462 	*err = -EBADF;
463 	file = fget_light(fd, fput_needed);
464 	if (file) {
465 		sock = sock_from_file(file, err);
466 		if (sock)
467 			return sock;
468 		fput_light(file, *fput_needed);
469 	}
470 	return NULL;
471 }
472 
473 /**
474  *	sock_alloc	-	allocate a socket
475  *
476  *	Allocate a new inode and socket object. The two are bound together
477  *	and initialised. The socket is then returned. If we are out of inodes
478  *	NULL is returned.
479  */
480 
481 static struct socket *sock_alloc(void)
482 {
483 	struct inode *inode;
484 	struct socket *sock;
485 
486 	inode = new_inode(sock_mnt->mnt_sb);
487 	if (!inode)
488 		return NULL;
489 
490 	sock = SOCKET_I(inode);
491 
492 	inode->i_mode = S_IFSOCK | S_IRWXUGO;
493 	inode->i_uid = current->fsuid;
494 	inode->i_gid = current->fsgid;
495 
496 	get_cpu_var(sockets_in_use)++;
497 	put_cpu_var(sockets_in_use);
498 	return sock;
499 }
500 
501 /*
502  *	In theory you can't get an open on this inode, but /proc provides
503  *	a back door. Remember to keep it shut otherwise you'll let the
504  *	creepy crawlies in.
505  */
506 
507 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
508 {
509 	return -ENXIO;
510 }
511 
512 const struct file_operations bad_sock_fops = {
513 	.owner = THIS_MODULE,
514 	.open = sock_no_open,
515 };
516 
517 /**
518  *	sock_release	-	close a socket
519  *	@sock: socket to close
520  *
521  *	The socket is released from the protocol stack if it has a release
522  *	callback, and the inode is then released if the socket is bound to
523  *	an inode not a file.
524  */
525 
526 void sock_release(struct socket *sock)
527 {
528 	if (sock->ops) {
529 		struct module *owner = sock->ops->owner;
530 
531 		sock->ops->release(sock);
532 		sock->ops = NULL;
533 		module_put(owner);
534 	}
535 
536 	if (sock->fasync_list)
537 		printk(KERN_ERR "sock_release: fasync list not empty!\n");
538 
539 	get_cpu_var(sockets_in_use)--;
540 	put_cpu_var(sockets_in_use);
541 	if (!sock->file) {
542 		iput(SOCK_INODE(sock));
543 		return;
544 	}
545 	sock->file = NULL;
546 }
547 
548 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
549 				 struct msghdr *msg, size_t size)
550 {
551 	struct sock_iocb *si = kiocb_to_siocb(iocb);
552 	int err;
553 
554 	si->sock = sock;
555 	si->scm = NULL;
556 	si->msg = msg;
557 	si->size = size;
558 
559 	err = security_socket_sendmsg(sock, msg, size);
560 	if (err)
561 		return err;
562 
563 	return sock->ops->sendmsg(iocb, sock, msg, size);
564 }
565 
566 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
567 {
568 	struct kiocb iocb;
569 	struct sock_iocb siocb;
570 	int ret;
571 
572 	init_sync_kiocb(&iocb, NULL);
573 	iocb.private = &siocb;
574 	ret = __sock_sendmsg(&iocb, sock, msg, size);
575 	if (-EIOCBQUEUED == ret)
576 		ret = wait_on_sync_kiocb(&iocb);
577 	return ret;
578 }
579 
580 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
581 		   struct kvec *vec, size_t num, size_t size)
582 {
583 	mm_segment_t oldfs = get_fs();
584 	int result;
585 
586 	set_fs(KERNEL_DS);
587 	/*
588 	 * the following is safe, since for compiler definitions of kvec and
589 	 * iovec are identical, yielding the same in-core layout and alignment
590 	 */
591 	msg->msg_iov = (struct iovec *)vec;
592 	msg->msg_iovlen = num;
593 	result = sock_sendmsg(sock, msg, size);
594 	set_fs(oldfs);
595 	return result;
596 }
597 
598 /*
599  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
600  */
601 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
602 	struct sk_buff *skb)
603 {
604 	ktime_t kt = skb->tstamp;
605 
606 	if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
607 		struct timeval tv;
608 		/* Race occurred between timestamp enabling and packet
609 		   receiving.  Fill in the current time for now. */
610 		if (kt.tv64 == 0)
611 			kt = ktime_get_real();
612 		skb->tstamp = kt;
613 		tv = ktime_to_timeval(kt);
614 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
615 	} else {
616 		struct timespec ts;
617 		/* Race occurred between timestamp enabling and packet
618 		   receiving.  Fill in the current time for now. */
619 		if (kt.tv64 == 0)
620 			kt = ktime_get_real();
621 		skb->tstamp = kt;
622 		ts = ktime_to_timespec(kt);
623 		put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
624 	}
625 }
626 
627 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
628 
629 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
630 				 struct msghdr *msg, size_t size, int flags)
631 {
632 	int err;
633 	struct sock_iocb *si = kiocb_to_siocb(iocb);
634 
635 	si->sock = sock;
636 	si->scm = NULL;
637 	si->msg = msg;
638 	si->size = size;
639 	si->flags = flags;
640 
641 	err = security_socket_recvmsg(sock, msg, size, flags);
642 	if (err)
643 		return err;
644 
645 	return sock->ops->recvmsg(iocb, sock, msg, size, flags);
646 }
647 
648 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
649 		 size_t size, int flags)
650 {
651 	struct kiocb iocb;
652 	struct sock_iocb siocb;
653 	int ret;
654 
655 	init_sync_kiocb(&iocb, NULL);
656 	iocb.private = &siocb;
657 	ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
658 	if (-EIOCBQUEUED == ret)
659 		ret = wait_on_sync_kiocb(&iocb);
660 	return ret;
661 }
662 
663 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
664 		   struct kvec *vec, size_t num, size_t size, int flags)
665 {
666 	mm_segment_t oldfs = get_fs();
667 	int result;
668 
669 	set_fs(KERNEL_DS);
670 	/*
671 	 * the following is safe, since for compiler definitions of kvec and
672 	 * iovec are identical, yielding the same in-core layout and alignment
673 	 */
674 	msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
675 	result = sock_recvmsg(sock, msg, size, flags);
676 	set_fs(oldfs);
677 	return result;
678 }
679 
680 static void sock_aio_dtor(struct kiocb *iocb)
681 {
682 	kfree(iocb->private);
683 }
684 
685 static ssize_t sock_sendpage(struct file *file, struct page *page,
686 			     int offset, size_t size, loff_t *ppos, int more)
687 {
688 	struct socket *sock;
689 	int flags;
690 
691 	sock = file->private_data;
692 
693 	flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
694 	if (more)
695 		flags |= MSG_MORE;
696 
697 	return sock->ops->sendpage(sock, page, offset, size, flags);
698 }
699 
700 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
701 			        struct pipe_inode_info *pipe, size_t len,
702 				unsigned int flags)
703 {
704 	struct socket *sock = file->private_data;
705 
706 	if (unlikely(!sock->ops->splice_read))
707 		return -EINVAL;
708 
709 	return sock->ops->splice_read(sock, ppos, pipe, len, flags);
710 }
711 
712 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
713 					 struct sock_iocb *siocb)
714 {
715 	if (!is_sync_kiocb(iocb)) {
716 		siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
717 		if (!siocb)
718 			return NULL;
719 		iocb->ki_dtor = sock_aio_dtor;
720 	}
721 
722 	siocb->kiocb = iocb;
723 	iocb->private = siocb;
724 	return siocb;
725 }
726 
727 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
728 		struct file *file, const struct iovec *iov,
729 		unsigned long nr_segs)
730 {
731 	struct socket *sock = file->private_data;
732 	size_t size = 0;
733 	int i;
734 
735 	for (i = 0; i < nr_segs; i++)
736 		size += iov[i].iov_len;
737 
738 	msg->msg_name = NULL;
739 	msg->msg_namelen = 0;
740 	msg->msg_control = NULL;
741 	msg->msg_controllen = 0;
742 	msg->msg_iov = (struct iovec *)iov;
743 	msg->msg_iovlen = nr_segs;
744 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
745 
746 	return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
747 }
748 
749 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
750 				unsigned long nr_segs, loff_t pos)
751 {
752 	struct sock_iocb siocb, *x;
753 
754 	if (pos != 0)
755 		return -ESPIPE;
756 
757 	if (iocb->ki_left == 0)	/* Match SYS5 behaviour */
758 		return 0;
759 
760 
761 	x = alloc_sock_iocb(iocb, &siocb);
762 	if (!x)
763 		return -ENOMEM;
764 	return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
765 }
766 
767 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
768 			struct file *file, const struct iovec *iov,
769 			unsigned long nr_segs)
770 {
771 	struct socket *sock = file->private_data;
772 	size_t size = 0;
773 	int i;
774 
775 	for (i = 0; i < nr_segs; i++)
776 		size += iov[i].iov_len;
777 
778 	msg->msg_name = NULL;
779 	msg->msg_namelen = 0;
780 	msg->msg_control = NULL;
781 	msg->msg_controllen = 0;
782 	msg->msg_iov = (struct iovec *)iov;
783 	msg->msg_iovlen = nr_segs;
784 	msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
785 	if (sock->type == SOCK_SEQPACKET)
786 		msg->msg_flags |= MSG_EOR;
787 
788 	return __sock_sendmsg(iocb, sock, msg, size);
789 }
790 
791 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
792 			  unsigned long nr_segs, loff_t pos)
793 {
794 	struct sock_iocb siocb, *x;
795 
796 	if (pos != 0)
797 		return -ESPIPE;
798 
799 	x = alloc_sock_iocb(iocb, &siocb);
800 	if (!x)
801 		return -ENOMEM;
802 
803 	return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
804 }
805 
806 /*
807  * Atomic setting of ioctl hooks to avoid race
808  * with module unload.
809  */
810 
811 static DEFINE_MUTEX(br_ioctl_mutex);
812 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
813 
814 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
815 {
816 	mutex_lock(&br_ioctl_mutex);
817 	br_ioctl_hook = hook;
818 	mutex_unlock(&br_ioctl_mutex);
819 }
820 
821 EXPORT_SYMBOL(brioctl_set);
822 
823 static DEFINE_MUTEX(vlan_ioctl_mutex);
824 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
825 
826 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
827 {
828 	mutex_lock(&vlan_ioctl_mutex);
829 	vlan_ioctl_hook = hook;
830 	mutex_unlock(&vlan_ioctl_mutex);
831 }
832 
833 EXPORT_SYMBOL(vlan_ioctl_set);
834 
835 static DEFINE_MUTEX(dlci_ioctl_mutex);
836 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
837 
838 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
839 {
840 	mutex_lock(&dlci_ioctl_mutex);
841 	dlci_ioctl_hook = hook;
842 	mutex_unlock(&dlci_ioctl_mutex);
843 }
844 
845 EXPORT_SYMBOL(dlci_ioctl_set);
846 
847 /*
848  *	With an ioctl, arg may well be a user mode pointer, but we don't know
849  *	what to do with it - that's up to the protocol still.
850  */
851 
852 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
853 {
854 	struct socket *sock;
855 	struct sock *sk;
856 	void __user *argp = (void __user *)arg;
857 	int pid, err;
858 	struct net *net;
859 
860 	sock = file->private_data;
861 	sk = sock->sk;
862 	net = sock_net(sk);
863 	if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
864 		err = dev_ioctl(net, cmd, argp);
865 	} else
866 #ifdef CONFIG_WIRELESS_EXT
867 	if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
868 		err = dev_ioctl(net, cmd, argp);
869 	} else
870 #endif				/* CONFIG_WIRELESS_EXT */
871 		switch (cmd) {
872 		case FIOSETOWN:
873 		case SIOCSPGRP:
874 			err = -EFAULT;
875 			if (get_user(pid, (int __user *)argp))
876 				break;
877 			err = f_setown(sock->file, pid, 1);
878 			break;
879 		case FIOGETOWN:
880 		case SIOCGPGRP:
881 			err = put_user(f_getown(sock->file),
882 				       (int __user *)argp);
883 			break;
884 		case SIOCGIFBR:
885 		case SIOCSIFBR:
886 		case SIOCBRADDBR:
887 		case SIOCBRDELBR:
888 			err = -ENOPKG;
889 			if (!br_ioctl_hook)
890 				request_module("bridge");
891 
892 			mutex_lock(&br_ioctl_mutex);
893 			if (br_ioctl_hook)
894 				err = br_ioctl_hook(net, cmd, argp);
895 			mutex_unlock(&br_ioctl_mutex);
896 			break;
897 		case SIOCGIFVLAN:
898 		case SIOCSIFVLAN:
899 			err = -ENOPKG;
900 			if (!vlan_ioctl_hook)
901 				request_module("8021q");
902 
903 			mutex_lock(&vlan_ioctl_mutex);
904 			if (vlan_ioctl_hook)
905 				err = vlan_ioctl_hook(net, argp);
906 			mutex_unlock(&vlan_ioctl_mutex);
907 			break;
908 		case SIOCADDDLCI:
909 		case SIOCDELDLCI:
910 			err = -ENOPKG;
911 			if (!dlci_ioctl_hook)
912 				request_module("dlci");
913 
914 			mutex_lock(&dlci_ioctl_mutex);
915 			if (dlci_ioctl_hook)
916 				err = dlci_ioctl_hook(cmd, argp);
917 			mutex_unlock(&dlci_ioctl_mutex);
918 			break;
919 		default:
920 			err = sock->ops->ioctl(sock, cmd, arg);
921 
922 			/*
923 			 * If this ioctl is unknown try to hand it down
924 			 * to the NIC driver.
925 			 */
926 			if (err == -ENOIOCTLCMD)
927 				err = dev_ioctl(net, cmd, argp);
928 			break;
929 		}
930 	return err;
931 }
932 
933 int sock_create_lite(int family, int type, int protocol, struct socket **res)
934 {
935 	int err;
936 	struct socket *sock = NULL;
937 
938 	err = security_socket_create(family, type, protocol, 1);
939 	if (err)
940 		goto out;
941 
942 	sock = sock_alloc();
943 	if (!sock) {
944 		err = -ENOMEM;
945 		goto out;
946 	}
947 
948 	sock->type = type;
949 	err = security_socket_post_create(sock, family, type, protocol, 1);
950 	if (err)
951 		goto out_release;
952 
953 out:
954 	*res = sock;
955 	return err;
956 out_release:
957 	sock_release(sock);
958 	sock = NULL;
959 	goto out;
960 }
961 
962 /* No kernel lock held - perfect */
963 static unsigned int sock_poll(struct file *file, poll_table *wait)
964 {
965 	struct socket *sock;
966 
967 	/*
968 	 *      We can't return errors to poll, so it's either yes or no.
969 	 */
970 	sock = file->private_data;
971 	return sock->ops->poll(file, sock, wait);
972 }
973 
974 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
975 {
976 	struct socket *sock = file->private_data;
977 
978 	return sock->ops->mmap(file, sock, vma);
979 }
980 
981 static int sock_close(struct inode *inode, struct file *filp)
982 {
983 	/*
984 	 *      It was possible the inode is NULL we were
985 	 *      closing an unfinished socket.
986 	 */
987 
988 	if (!inode) {
989 		printk(KERN_DEBUG "sock_close: NULL inode\n");
990 		return 0;
991 	}
992 	sock_release(SOCKET_I(inode));
993 	return 0;
994 }
995 
996 /*
997  *	Update the socket async list
998  *
999  *	Fasync_list locking strategy.
1000  *
1001  *	1. fasync_list is modified only under process context socket lock
1002  *	   i.e. under semaphore.
1003  *	2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1004  *	   or under socket lock.
1005  *	3. fasync_list can be used from softirq context, so that
1006  *	   modification under socket lock have to be enhanced with
1007  *	   write_lock_bh(&sk->sk_callback_lock).
1008  *							--ANK (990710)
1009  */
1010 
1011 static int sock_fasync(int fd, struct file *filp, int on)
1012 {
1013 	struct fasync_struct *fa, *fna = NULL, **prev;
1014 	struct socket *sock;
1015 	struct sock *sk;
1016 
1017 	if (on) {
1018 		fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1019 		if (fna == NULL)
1020 			return -ENOMEM;
1021 	}
1022 
1023 	sock = filp->private_data;
1024 
1025 	sk = sock->sk;
1026 	if (sk == NULL) {
1027 		kfree(fna);
1028 		return -EINVAL;
1029 	}
1030 
1031 	lock_sock(sk);
1032 
1033 	prev = &(sock->fasync_list);
1034 
1035 	for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1036 		if (fa->fa_file == filp)
1037 			break;
1038 
1039 	if (on) {
1040 		if (fa != NULL) {
1041 			write_lock_bh(&sk->sk_callback_lock);
1042 			fa->fa_fd = fd;
1043 			write_unlock_bh(&sk->sk_callback_lock);
1044 
1045 			kfree(fna);
1046 			goto out;
1047 		}
1048 		fna->fa_file = filp;
1049 		fna->fa_fd = fd;
1050 		fna->magic = FASYNC_MAGIC;
1051 		fna->fa_next = sock->fasync_list;
1052 		write_lock_bh(&sk->sk_callback_lock);
1053 		sock->fasync_list = fna;
1054 		write_unlock_bh(&sk->sk_callback_lock);
1055 	} else {
1056 		if (fa != NULL) {
1057 			write_lock_bh(&sk->sk_callback_lock);
1058 			*prev = fa->fa_next;
1059 			write_unlock_bh(&sk->sk_callback_lock);
1060 			kfree(fa);
1061 		}
1062 	}
1063 
1064 out:
1065 	release_sock(sock->sk);
1066 	return 0;
1067 }
1068 
1069 /* This function may be called only under socket lock or callback_lock */
1070 
1071 int sock_wake_async(struct socket *sock, int how, int band)
1072 {
1073 	if (!sock || !sock->fasync_list)
1074 		return -1;
1075 	switch (how) {
1076 	case SOCK_WAKE_WAITD:
1077 		if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1078 			break;
1079 		goto call_kill;
1080 	case SOCK_WAKE_SPACE:
1081 		if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1082 			break;
1083 		/* fall through */
1084 	case SOCK_WAKE_IO:
1085 call_kill:
1086 		__kill_fasync(sock->fasync_list, SIGIO, band);
1087 		break;
1088 	case SOCK_WAKE_URG:
1089 		__kill_fasync(sock->fasync_list, SIGURG, band);
1090 	}
1091 	return 0;
1092 }
1093 
1094 static int __sock_create(struct net *net, int family, int type, int protocol,
1095 			 struct socket **res, int kern)
1096 {
1097 	int err;
1098 	struct socket *sock;
1099 	const struct net_proto_family *pf;
1100 
1101 	/*
1102 	 *      Check protocol is in range
1103 	 */
1104 	if (family < 0 || family >= NPROTO)
1105 		return -EAFNOSUPPORT;
1106 	if (type < 0 || type >= SOCK_MAX)
1107 		return -EINVAL;
1108 
1109 	/* Compatibility.
1110 
1111 	   This uglymoron is moved from INET layer to here to avoid
1112 	   deadlock in module load.
1113 	 */
1114 	if (family == PF_INET && type == SOCK_PACKET) {
1115 		static int warned;
1116 		if (!warned) {
1117 			warned = 1;
1118 			printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1119 			       current->comm);
1120 		}
1121 		family = PF_PACKET;
1122 	}
1123 
1124 	err = security_socket_create(family, type, protocol, kern);
1125 	if (err)
1126 		return err;
1127 
1128 	/*
1129 	 *	Allocate the socket and allow the family to set things up. if
1130 	 *	the protocol is 0, the family is instructed to select an appropriate
1131 	 *	default.
1132 	 */
1133 	sock = sock_alloc();
1134 	if (!sock) {
1135 		if (net_ratelimit())
1136 			printk(KERN_WARNING "socket: no more sockets\n");
1137 		return -ENFILE;	/* Not exactly a match, but its the
1138 				   closest posix thing */
1139 	}
1140 
1141 	sock->type = type;
1142 
1143 #ifdef CONFIG_MODULES
1144 	/* Attempt to load a protocol module if the find failed.
1145 	 *
1146 	 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1147 	 * requested real, full-featured networking support upon configuration.
1148 	 * Otherwise module support will break!
1149 	 */
1150 	if (net_families[family] == NULL)
1151 		request_module("net-pf-%d", family);
1152 #endif
1153 
1154 	rcu_read_lock();
1155 	pf = rcu_dereference(net_families[family]);
1156 	err = -EAFNOSUPPORT;
1157 	if (!pf)
1158 		goto out_release;
1159 
1160 	/*
1161 	 * We will call the ->create function, that possibly is in a loadable
1162 	 * module, so we have to bump that loadable module refcnt first.
1163 	 */
1164 	if (!try_module_get(pf->owner))
1165 		goto out_release;
1166 
1167 	/* Now protected by module ref count */
1168 	rcu_read_unlock();
1169 
1170 	err = pf->create(net, sock, protocol);
1171 	if (err < 0)
1172 		goto out_module_put;
1173 
1174 	/*
1175 	 * Now to bump the refcnt of the [loadable] module that owns this
1176 	 * socket at sock_release time we decrement its refcnt.
1177 	 */
1178 	if (!try_module_get(sock->ops->owner))
1179 		goto out_module_busy;
1180 
1181 	/*
1182 	 * Now that we're done with the ->create function, the [loadable]
1183 	 * module can have its refcnt decremented
1184 	 */
1185 	module_put(pf->owner);
1186 	err = security_socket_post_create(sock, family, type, protocol, kern);
1187 	if (err)
1188 		goto out_sock_release;
1189 	*res = sock;
1190 
1191 	return 0;
1192 
1193 out_module_busy:
1194 	err = -EAFNOSUPPORT;
1195 out_module_put:
1196 	sock->ops = NULL;
1197 	module_put(pf->owner);
1198 out_sock_release:
1199 	sock_release(sock);
1200 	return err;
1201 
1202 out_release:
1203 	rcu_read_unlock();
1204 	goto out_sock_release;
1205 }
1206 
1207 int sock_create(int family, int type, int protocol, struct socket **res)
1208 {
1209 	return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1210 }
1211 
1212 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1213 {
1214 	return __sock_create(&init_net, family, type, protocol, res, 1);
1215 }
1216 
1217 asmlinkage long sys_socket(int family, int type, int protocol)
1218 {
1219 	int retval;
1220 	struct socket *sock;
1221 	int flags;
1222 
1223 	/* Check the SOCK_* constants for consistency.  */
1224 	BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1225 	BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1226 	BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1227 	BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1228 
1229 	flags = type & ~SOCK_TYPE_MASK;
1230 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1231 		return -EINVAL;
1232 	type &= SOCK_TYPE_MASK;
1233 
1234 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1235 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1236 
1237 	retval = sock_create(family, type, protocol, &sock);
1238 	if (retval < 0)
1239 		goto out;
1240 
1241 	retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1242 	if (retval < 0)
1243 		goto out_release;
1244 
1245 out:
1246 	/* It may be already another descriptor 8) Not kernel problem. */
1247 	return retval;
1248 
1249 out_release:
1250 	sock_release(sock);
1251 	return retval;
1252 }
1253 
1254 /*
1255  *	Create a pair of connected sockets.
1256  */
1257 
1258 asmlinkage long sys_socketpair(int family, int type, int protocol,
1259 			       int __user *usockvec)
1260 {
1261 	struct socket *sock1, *sock2;
1262 	int fd1, fd2, err;
1263 	struct file *newfile1, *newfile2;
1264 	int flags;
1265 
1266 	flags = type & ~SOCK_TYPE_MASK;
1267 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1268 		return -EINVAL;
1269 	type &= SOCK_TYPE_MASK;
1270 
1271 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1272 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1273 
1274 	/*
1275 	 * Obtain the first socket and check if the underlying protocol
1276 	 * supports the socketpair call.
1277 	 */
1278 
1279 	err = sock_create(family, type, protocol, &sock1);
1280 	if (err < 0)
1281 		goto out;
1282 
1283 	err = sock_create(family, type, protocol, &sock2);
1284 	if (err < 0)
1285 		goto out_release_1;
1286 
1287 	err = sock1->ops->socketpair(sock1, sock2);
1288 	if (err < 0)
1289 		goto out_release_both;
1290 
1291 	fd1 = sock_alloc_fd(&newfile1, flags & O_CLOEXEC);
1292 	if (unlikely(fd1 < 0)) {
1293 		err = fd1;
1294 		goto out_release_both;
1295 	}
1296 
1297 	fd2 = sock_alloc_fd(&newfile2, flags & O_CLOEXEC);
1298 	if (unlikely(fd2 < 0)) {
1299 		err = fd2;
1300 		put_filp(newfile1);
1301 		put_unused_fd(fd1);
1302 		goto out_release_both;
1303 	}
1304 
1305 	err = sock_attach_fd(sock1, newfile1, flags & O_NONBLOCK);
1306 	if (unlikely(err < 0)) {
1307 		goto out_fd2;
1308 	}
1309 
1310 	err = sock_attach_fd(sock2, newfile2, flags & O_NONBLOCK);
1311 	if (unlikely(err < 0)) {
1312 		fput(newfile1);
1313 		goto out_fd1;
1314 	}
1315 
1316 	err = audit_fd_pair(fd1, fd2);
1317 	if (err < 0) {
1318 		fput(newfile1);
1319 		fput(newfile2);
1320 		goto out_fd;
1321 	}
1322 
1323 	fd_install(fd1, newfile1);
1324 	fd_install(fd2, newfile2);
1325 	/* fd1 and fd2 may be already another descriptors.
1326 	 * Not kernel problem.
1327 	 */
1328 
1329 	err = put_user(fd1, &usockvec[0]);
1330 	if (!err)
1331 		err = put_user(fd2, &usockvec[1]);
1332 	if (!err)
1333 		return 0;
1334 
1335 	sys_close(fd2);
1336 	sys_close(fd1);
1337 	return err;
1338 
1339 out_release_both:
1340 	sock_release(sock2);
1341 out_release_1:
1342 	sock_release(sock1);
1343 out:
1344 	return err;
1345 
1346 out_fd2:
1347 	put_filp(newfile1);
1348 	sock_release(sock1);
1349 out_fd1:
1350 	put_filp(newfile2);
1351 	sock_release(sock2);
1352 out_fd:
1353 	put_unused_fd(fd1);
1354 	put_unused_fd(fd2);
1355 	goto out;
1356 }
1357 
1358 /*
1359  *	Bind a name to a socket. Nothing much to do here since it's
1360  *	the protocol's responsibility to handle the local address.
1361  *
1362  *	We move the socket address to kernel space before we call
1363  *	the protocol layer (having also checked the address is ok).
1364  */
1365 
1366 asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1367 {
1368 	struct socket *sock;
1369 	struct sockaddr_storage address;
1370 	int err, fput_needed;
1371 
1372 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1373 	if (sock) {
1374 		err = move_addr_to_kernel(umyaddr, addrlen, (struct sockaddr *)&address);
1375 		if (err >= 0) {
1376 			err = security_socket_bind(sock,
1377 						   (struct sockaddr *)&address,
1378 						   addrlen);
1379 			if (!err)
1380 				err = sock->ops->bind(sock,
1381 						      (struct sockaddr *)
1382 						      &address, addrlen);
1383 		}
1384 		fput_light(sock->file, fput_needed);
1385 	}
1386 	return err;
1387 }
1388 
1389 /*
1390  *	Perform a listen. Basically, we allow the protocol to do anything
1391  *	necessary for a listen, and if that works, we mark the socket as
1392  *	ready for listening.
1393  */
1394 
1395 asmlinkage long sys_listen(int fd, int backlog)
1396 {
1397 	struct socket *sock;
1398 	int err, fput_needed;
1399 	int somaxconn;
1400 
1401 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1402 	if (sock) {
1403 		somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1404 		if ((unsigned)backlog > somaxconn)
1405 			backlog = somaxconn;
1406 
1407 		err = security_socket_listen(sock, backlog);
1408 		if (!err)
1409 			err = sock->ops->listen(sock, backlog);
1410 
1411 		fput_light(sock->file, fput_needed);
1412 	}
1413 	return err;
1414 }
1415 
1416 /*
1417  *	For accept, we attempt to create a new socket, set up the link
1418  *	with the client, wake up the client, then return the new
1419  *	connected fd. We collect the address of the connector in kernel
1420  *	space and move it to user at the very end. This is unclean because
1421  *	we open the socket then return an error.
1422  *
1423  *	1003.1g adds the ability to recvmsg() to query connection pending
1424  *	status to recvmsg. We need to add that support in a way thats
1425  *	clean when we restucture accept also.
1426  */
1427 
1428 asmlinkage long sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1429 			    int __user *upeer_addrlen, int flags)
1430 {
1431 	struct socket *sock, *newsock;
1432 	struct file *newfile;
1433 	int err, len, newfd, fput_needed;
1434 	struct sockaddr_storage address;
1435 
1436 	if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1437 		return -EINVAL;
1438 
1439 	if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1440 		flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1441 
1442 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1443 	if (!sock)
1444 		goto out;
1445 
1446 	err = -ENFILE;
1447 	if (!(newsock = sock_alloc()))
1448 		goto out_put;
1449 
1450 	newsock->type = sock->type;
1451 	newsock->ops = sock->ops;
1452 
1453 	/*
1454 	 * We don't need try_module_get here, as the listening socket (sock)
1455 	 * has the protocol module (sock->ops->owner) held.
1456 	 */
1457 	__module_get(newsock->ops->owner);
1458 
1459 	newfd = sock_alloc_fd(&newfile, flags & O_CLOEXEC);
1460 	if (unlikely(newfd < 0)) {
1461 		err = newfd;
1462 		sock_release(newsock);
1463 		goto out_put;
1464 	}
1465 
1466 	err = sock_attach_fd(newsock, newfile, flags & O_NONBLOCK);
1467 	if (err < 0)
1468 		goto out_fd_simple;
1469 
1470 	err = security_socket_accept(sock, newsock);
1471 	if (err)
1472 		goto out_fd;
1473 
1474 	err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1475 	if (err < 0)
1476 		goto out_fd;
1477 
1478 	if (upeer_sockaddr) {
1479 		if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1480 					  &len, 2) < 0) {
1481 			err = -ECONNABORTED;
1482 			goto out_fd;
1483 		}
1484 		err = move_addr_to_user((struct sockaddr *)&address,
1485 					len, upeer_sockaddr, upeer_addrlen);
1486 		if (err < 0)
1487 			goto out_fd;
1488 	}
1489 
1490 	/* File flags are not inherited via accept() unlike another OSes. */
1491 
1492 	fd_install(newfd, newfile);
1493 	err = newfd;
1494 
1495 	security_socket_post_accept(sock, newsock);
1496 
1497 out_put:
1498 	fput_light(sock->file, fput_needed);
1499 out:
1500 	return err;
1501 out_fd_simple:
1502 	sock_release(newsock);
1503 	put_filp(newfile);
1504 	put_unused_fd(newfd);
1505 	goto out_put;
1506 out_fd:
1507 	fput(newfile);
1508 	put_unused_fd(newfd);
1509 	goto out_put;
1510 }
1511 
1512 asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1513 			   int __user *upeer_addrlen)
1514 {
1515 	return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1516 }
1517 
1518 /*
1519  *	Attempt to connect to a socket with the server address.  The address
1520  *	is in user space so we verify it is OK and move it to kernel space.
1521  *
1522  *	For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1523  *	break bindings
1524  *
1525  *	NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1526  *	other SEQPACKET protocols that take time to connect() as it doesn't
1527  *	include the -EINPROGRESS status for such sockets.
1528  */
1529 
1530 asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1531 			    int addrlen)
1532 {
1533 	struct socket *sock;
1534 	struct sockaddr_storage address;
1535 	int err, fput_needed;
1536 
1537 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1538 	if (!sock)
1539 		goto out;
1540 	err = move_addr_to_kernel(uservaddr, addrlen, (struct sockaddr *)&address);
1541 	if (err < 0)
1542 		goto out_put;
1543 
1544 	err =
1545 	    security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1546 	if (err)
1547 		goto out_put;
1548 
1549 	err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1550 				 sock->file->f_flags);
1551 out_put:
1552 	fput_light(sock->file, fput_needed);
1553 out:
1554 	return err;
1555 }
1556 
1557 /*
1558  *	Get the local address ('name') of a socket object. Move the obtained
1559  *	name to user space.
1560  */
1561 
1562 asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1563 				int __user *usockaddr_len)
1564 {
1565 	struct socket *sock;
1566 	struct sockaddr_storage address;
1567 	int len, err, fput_needed;
1568 
1569 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1570 	if (!sock)
1571 		goto out;
1572 
1573 	err = security_socket_getsockname(sock);
1574 	if (err)
1575 		goto out_put;
1576 
1577 	err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1578 	if (err)
1579 		goto out_put;
1580 	err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr, usockaddr_len);
1581 
1582 out_put:
1583 	fput_light(sock->file, fput_needed);
1584 out:
1585 	return err;
1586 }
1587 
1588 /*
1589  *	Get the remote address ('name') of a socket object. Move the obtained
1590  *	name to user space.
1591  */
1592 
1593 asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1594 				int __user *usockaddr_len)
1595 {
1596 	struct socket *sock;
1597 	struct sockaddr_storage address;
1598 	int len, err, fput_needed;
1599 
1600 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1601 	if (sock != NULL) {
1602 		err = security_socket_getpeername(sock);
1603 		if (err) {
1604 			fput_light(sock->file, fput_needed);
1605 			return err;
1606 		}
1607 
1608 		err =
1609 		    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1610 				       1);
1611 		if (!err)
1612 			err = move_addr_to_user((struct sockaddr *)&address, len, usockaddr,
1613 						usockaddr_len);
1614 		fput_light(sock->file, fput_needed);
1615 	}
1616 	return err;
1617 }
1618 
1619 /*
1620  *	Send a datagram to a given address. We move the address into kernel
1621  *	space and check the user space data area is readable before invoking
1622  *	the protocol.
1623  */
1624 
1625 asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1626 			   unsigned flags, struct sockaddr __user *addr,
1627 			   int addr_len)
1628 {
1629 	struct socket *sock;
1630 	struct sockaddr_storage address;
1631 	int err;
1632 	struct msghdr msg;
1633 	struct iovec iov;
1634 	int fput_needed;
1635 
1636 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1637 	if (!sock)
1638 		goto out;
1639 
1640 	iov.iov_base = buff;
1641 	iov.iov_len = len;
1642 	msg.msg_name = NULL;
1643 	msg.msg_iov = &iov;
1644 	msg.msg_iovlen = 1;
1645 	msg.msg_control = NULL;
1646 	msg.msg_controllen = 0;
1647 	msg.msg_namelen = 0;
1648 	if (addr) {
1649 		err = move_addr_to_kernel(addr, addr_len, (struct sockaddr *)&address);
1650 		if (err < 0)
1651 			goto out_put;
1652 		msg.msg_name = (struct sockaddr *)&address;
1653 		msg.msg_namelen = addr_len;
1654 	}
1655 	if (sock->file->f_flags & O_NONBLOCK)
1656 		flags |= MSG_DONTWAIT;
1657 	msg.msg_flags = flags;
1658 	err = sock_sendmsg(sock, &msg, len);
1659 
1660 out_put:
1661 	fput_light(sock->file, fput_needed);
1662 out:
1663 	return err;
1664 }
1665 
1666 /*
1667  *	Send a datagram down a socket.
1668  */
1669 
1670 asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1671 {
1672 	return sys_sendto(fd, buff, len, flags, NULL, 0);
1673 }
1674 
1675 /*
1676  *	Receive a frame from the socket and optionally record the address of the
1677  *	sender. We verify the buffers are writable and if needed move the
1678  *	sender address from kernel to user space.
1679  */
1680 
1681 asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1682 			     unsigned flags, struct sockaddr __user *addr,
1683 			     int __user *addr_len)
1684 {
1685 	struct socket *sock;
1686 	struct iovec iov;
1687 	struct msghdr msg;
1688 	struct sockaddr_storage address;
1689 	int err, err2;
1690 	int fput_needed;
1691 
1692 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1693 	if (!sock)
1694 		goto out;
1695 
1696 	msg.msg_control = NULL;
1697 	msg.msg_controllen = 0;
1698 	msg.msg_iovlen = 1;
1699 	msg.msg_iov = &iov;
1700 	iov.iov_len = size;
1701 	iov.iov_base = ubuf;
1702 	msg.msg_name = (struct sockaddr *)&address;
1703 	msg.msg_namelen = sizeof(address);
1704 	if (sock->file->f_flags & O_NONBLOCK)
1705 		flags |= MSG_DONTWAIT;
1706 	err = sock_recvmsg(sock, &msg, size, flags);
1707 
1708 	if (err >= 0 && addr != NULL) {
1709 		err2 = move_addr_to_user((struct sockaddr *)&address,
1710 					 msg.msg_namelen, addr, addr_len);
1711 		if (err2 < 0)
1712 			err = err2;
1713 	}
1714 
1715 	fput_light(sock->file, fput_needed);
1716 out:
1717 	return err;
1718 }
1719 
1720 /*
1721  *	Receive a datagram from a socket.
1722  */
1723 
1724 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1725 			 unsigned flags)
1726 {
1727 	return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1728 }
1729 
1730 /*
1731  *	Set a socket option. Because we don't know the option lengths we have
1732  *	to pass the user mode parameter for the protocols to sort out.
1733  */
1734 
1735 asmlinkage long sys_setsockopt(int fd, int level, int optname,
1736 			       char __user *optval, int optlen)
1737 {
1738 	int err, fput_needed;
1739 	struct socket *sock;
1740 
1741 	if (optlen < 0)
1742 		return -EINVAL;
1743 
1744 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1745 	if (sock != NULL) {
1746 		err = security_socket_setsockopt(sock, level, optname);
1747 		if (err)
1748 			goto out_put;
1749 
1750 		if (level == SOL_SOCKET)
1751 			err =
1752 			    sock_setsockopt(sock, level, optname, optval,
1753 					    optlen);
1754 		else
1755 			err =
1756 			    sock->ops->setsockopt(sock, level, optname, optval,
1757 						  optlen);
1758 out_put:
1759 		fput_light(sock->file, fput_needed);
1760 	}
1761 	return err;
1762 }
1763 
1764 /*
1765  *	Get a socket option. Because we don't know the option lengths we have
1766  *	to pass a user mode parameter for the protocols to sort out.
1767  */
1768 
1769 asmlinkage long sys_getsockopt(int fd, int level, int optname,
1770 			       char __user *optval, int __user *optlen)
1771 {
1772 	int err, fput_needed;
1773 	struct socket *sock;
1774 
1775 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1776 	if (sock != NULL) {
1777 		err = security_socket_getsockopt(sock, level, optname);
1778 		if (err)
1779 			goto out_put;
1780 
1781 		if (level == SOL_SOCKET)
1782 			err =
1783 			    sock_getsockopt(sock, level, optname, optval,
1784 					    optlen);
1785 		else
1786 			err =
1787 			    sock->ops->getsockopt(sock, level, optname, optval,
1788 						  optlen);
1789 out_put:
1790 		fput_light(sock->file, fput_needed);
1791 	}
1792 	return err;
1793 }
1794 
1795 /*
1796  *	Shutdown a socket.
1797  */
1798 
1799 asmlinkage long sys_shutdown(int fd, int how)
1800 {
1801 	int err, fput_needed;
1802 	struct socket *sock;
1803 
1804 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1805 	if (sock != NULL) {
1806 		err = security_socket_shutdown(sock, how);
1807 		if (!err)
1808 			err = sock->ops->shutdown(sock, how);
1809 		fput_light(sock->file, fput_needed);
1810 	}
1811 	return err;
1812 }
1813 
1814 /* A couple of helpful macros for getting the address of the 32/64 bit
1815  * fields which are the same type (int / unsigned) on our platforms.
1816  */
1817 #define COMPAT_MSG(msg, member)	((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1818 #define COMPAT_NAMELEN(msg)	COMPAT_MSG(msg, msg_namelen)
1819 #define COMPAT_FLAGS(msg)	COMPAT_MSG(msg, msg_flags)
1820 
1821 /*
1822  *	BSD sendmsg interface
1823  */
1824 
1825 asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1826 {
1827 	struct compat_msghdr __user *msg_compat =
1828 	    (struct compat_msghdr __user *)msg;
1829 	struct socket *sock;
1830 	struct sockaddr_storage address;
1831 	struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1832 	unsigned char ctl[sizeof(struct cmsghdr) + 20]
1833 	    __attribute__ ((aligned(sizeof(__kernel_size_t))));
1834 	/* 20 is size of ipv6_pktinfo */
1835 	unsigned char *ctl_buf = ctl;
1836 	struct msghdr msg_sys;
1837 	int err, ctl_len, iov_size, total_len;
1838 	int fput_needed;
1839 
1840 	err = -EFAULT;
1841 	if (MSG_CMSG_COMPAT & flags) {
1842 		if (get_compat_msghdr(&msg_sys, msg_compat))
1843 			return -EFAULT;
1844 	}
1845 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1846 		return -EFAULT;
1847 
1848 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1849 	if (!sock)
1850 		goto out;
1851 
1852 	/* do not move before msg_sys is valid */
1853 	err = -EMSGSIZE;
1854 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1855 		goto out_put;
1856 
1857 	/* Check whether to allocate the iovec area */
1858 	err = -ENOMEM;
1859 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1860 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1861 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1862 		if (!iov)
1863 			goto out_put;
1864 	}
1865 
1866 	/* This will also move the address data into kernel space */
1867 	if (MSG_CMSG_COMPAT & flags) {
1868 		err = verify_compat_iovec(&msg_sys, iov,
1869 					  (struct sockaddr *)&address,
1870 					  VERIFY_READ);
1871 	} else
1872 		err = verify_iovec(&msg_sys, iov,
1873 				   (struct sockaddr *)&address,
1874 				   VERIFY_READ);
1875 	if (err < 0)
1876 		goto out_freeiov;
1877 	total_len = err;
1878 
1879 	err = -ENOBUFS;
1880 
1881 	if (msg_sys.msg_controllen > INT_MAX)
1882 		goto out_freeiov;
1883 	ctl_len = msg_sys.msg_controllen;
1884 	if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1885 		err =
1886 		    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1887 						     sizeof(ctl));
1888 		if (err)
1889 			goto out_freeiov;
1890 		ctl_buf = msg_sys.msg_control;
1891 		ctl_len = msg_sys.msg_controllen;
1892 	} else if (ctl_len) {
1893 		if (ctl_len > sizeof(ctl)) {
1894 			ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1895 			if (ctl_buf == NULL)
1896 				goto out_freeiov;
1897 		}
1898 		err = -EFAULT;
1899 		/*
1900 		 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1901 		 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1902 		 * checking falls down on this.
1903 		 */
1904 		if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1905 				   ctl_len))
1906 			goto out_freectl;
1907 		msg_sys.msg_control = ctl_buf;
1908 	}
1909 	msg_sys.msg_flags = flags;
1910 
1911 	if (sock->file->f_flags & O_NONBLOCK)
1912 		msg_sys.msg_flags |= MSG_DONTWAIT;
1913 	err = sock_sendmsg(sock, &msg_sys, total_len);
1914 
1915 out_freectl:
1916 	if (ctl_buf != ctl)
1917 		sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1918 out_freeiov:
1919 	if (iov != iovstack)
1920 		sock_kfree_s(sock->sk, iov, iov_size);
1921 out_put:
1922 	fput_light(sock->file, fput_needed);
1923 out:
1924 	return err;
1925 }
1926 
1927 /*
1928  *	BSD recvmsg interface
1929  */
1930 
1931 asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1932 			    unsigned int flags)
1933 {
1934 	struct compat_msghdr __user *msg_compat =
1935 	    (struct compat_msghdr __user *)msg;
1936 	struct socket *sock;
1937 	struct iovec iovstack[UIO_FASTIOV];
1938 	struct iovec *iov = iovstack;
1939 	struct msghdr msg_sys;
1940 	unsigned long cmsg_ptr;
1941 	int err, iov_size, total_len, len;
1942 	int fput_needed;
1943 
1944 	/* kernel mode address */
1945 	struct sockaddr_storage addr;
1946 
1947 	/* user mode address pointers */
1948 	struct sockaddr __user *uaddr;
1949 	int __user *uaddr_len;
1950 
1951 	if (MSG_CMSG_COMPAT & flags) {
1952 		if (get_compat_msghdr(&msg_sys, msg_compat))
1953 			return -EFAULT;
1954 	}
1955 	else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1956 		return -EFAULT;
1957 
1958 	sock = sockfd_lookup_light(fd, &err, &fput_needed);
1959 	if (!sock)
1960 		goto out;
1961 
1962 	err = -EMSGSIZE;
1963 	if (msg_sys.msg_iovlen > UIO_MAXIOV)
1964 		goto out_put;
1965 
1966 	/* Check whether to allocate the iovec area */
1967 	err = -ENOMEM;
1968 	iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1969 	if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1970 		iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1971 		if (!iov)
1972 			goto out_put;
1973 	}
1974 
1975 	/*
1976 	 *      Save the user-mode address (verify_iovec will change the
1977 	 *      kernel msghdr to use the kernel address space)
1978 	 */
1979 
1980 	uaddr = (__force void __user *)msg_sys.msg_name;
1981 	uaddr_len = COMPAT_NAMELEN(msg);
1982 	if (MSG_CMSG_COMPAT & flags) {
1983 		err = verify_compat_iovec(&msg_sys, iov,
1984 					  (struct sockaddr *)&addr,
1985 					  VERIFY_WRITE);
1986 	} else
1987 		err = verify_iovec(&msg_sys, iov,
1988 				   (struct sockaddr *)&addr,
1989 				   VERIFY_WRITE);
1990 	if (err < 0)
1991 		goto out_freeiov;
1992 	total_len = err;
1993 
1994 	cmsg_ptr = (unsigned long)msg_sys.msg_control;
1995 	msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1996 
1997 	if (sock->file->f_flags & O_NONBLOCK)
1998 		flags |= MSG_DONTWAIT;
1999 	err = sock_recvmsg(sock, &msg_sys, total_len, flags);
2000 	if (err < 0)
2001 		goto out_freeiov;
2002 	len = err;
2003 
2004 	if (uaddr != NULL) {
2005 		err = move_addr_to_user((struct sockaddr *)&addr,
2006 					msg_sys.msg_namelen, uaddr,
2007 					uaddr_len);
2008 		if (err < 0)
2009 			goto out_freeiov;
2010 	}
2011 	err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
2012 			 COMPAT_FLAGS(msg));
2013 	if (err)
2014 		goto out_freeiov;
2015 	if (MSG_CMSG_COMPAT & flags)
2016 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2017 				 &msg_compat->msg_controllen);
2018 	else
2019 		err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
2020 				 &msg->msg_controllen);
2021 	if (err)
2022 		goto out_freeiov;
2023 	err = len;
2024 
2025 out_freeiov:
2026 	if (iov != iovstack)
2027 		sock_kfree_s(sock->sk, iov, iov_size);
2028 out_put:
2029 	fput_light(sock->file, fput_needed);
2030 out:
2031 	return err;
2032 }
2033 
2034 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2035 
2036 /* Argument list sizes for sys_socketcall */
2037 #define AL(x) ((x) * sizeof(unsigned long))
2038 static const unsigned char nargs[19]={
2039 	AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
2040 	AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
2041 	AL(6),AL(2),AL(5),AL(5),AL(3),AL(3),
2042 	AL(4)
2043 };
2044 
2045 #undef AL
2046 
2047 /*
2048  *	System call vectors.
2049  *
2050  *	Argument checking cleaned up. Saved 20% in size.
2051  *  This function doesn't need to set the kernel lock because
2052  *  it is set by the callees.
2053  */
2054 
2055 asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2056 {
2057 	unsigned long a[6];
2058 	unsigned long a0, a1;
2059 	int err;
2060 
2061 	if (call < 1 || call > SYS_ACCEPT4)
2062 		return -EINVAL;
2063 
2064 	/* copy_from_user should be SMP safe. */
2065 	if (copy_from_user(a, args, nargs[call]))
2066 		return -EFAULT;
2067 
2068 	err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2069 	if (err)
2070 		return err;
2071 
2072 	a0 = a[0];
2073 	a1 = a[1];
2074 
2075 	switch (call) {
2076 	case SYS_SOCKET:
2077 		err = sys_socket(a0, a1, a[2]);
2078 		break;
2079 	case SYS_BIND:
2080 		err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2081 		break;
2082 	case SYS_CONNECT:
2083 		err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2084 		break;
2085 	case SYS_LISTEN:
2086 		err = sys_listen(a0, a1);
2087 		break;
2088 	case SYS_ACCEPT:
2089 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2090 				  (int __user *)a[2], 0);
2091 		break;
2092 	case SYS_GETSOCKNAME:
2093 		err =
2094 		    sys_getsockname(a0, (struct sockaddr __user *)a1,
2095 				    (int __user *)a[2]);
2096 		break;
2097 	case SYS_GETPEERNAME:
2098 		err =
2099 		    sys_getpeername(a0, (struct sockaddr __user *)a1,
2100 				    (int __user *)a[2]);
2101 		break;
2102 	case SYS_SOCKETPAIR:
2103 		err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2104 		break;
2105 	case SYS_SEND:
2106 		err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2107 		break;
2108 	case SYS_SENDTO:
2109 		err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2110 				 (struct sockaddr __user *)a[4], a[5]);
2111 		break;
2112 	case SYS_RECV:
2113 		err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2114 		break;
2115 	case SYS_RECVFROM:
2116 		err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2117 				   (struct sockaddr __user *)a[4],
2118 				   (int __user *)a[5]);
2119 		break;
2120 	case SYS_SHUTDOWN:
2121 		err = sys_shutdown(a0, a1);
2122 		break;
2123 	case SYS_SETSOCKOPT:
2124 		err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2125 		break;
2126 	case SYS_GETSOCKOPT:
2127 		err =
2128 		    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2129 				   (int __user *)a[4]);
2130 		break;
2131 	case SYS_SENDMSG:
2132 		err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2133 		break;
2134 	case SYS_RECVMSG:
2135 		err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2136 		break;
2137 	case SYS_ACCEPT4:
2138 		err = sys_accept4(a0, (struct sockaddr __user *)a1,
2139 				  (int __user *)a[2], a[3]);
2140 		break;
2141 	default:
2142 		err = -EINVAL;
2143 		break;
2144 	}
2145 	return err;
2146 }
2147 
2148 #endif				/* __ARCH_WANT_SYS_SOCKETCALL */
2149 
2150 /**
2151  *	sock_register - add a socket protocol handler
2152  *	@ops: description of protocol
2153  *
2154  *	This function is called by a protocol handler that wants to
2155  *	advertise its address family, and have it linked into the
2156  *	socket interface. The value ops->family coresponds to the
2157  *	socket system call protocol family.
2158  */
2159 int sock_register(const struct net_proto_family *ops)
2160 {
2161 	int err;
2162 
2163 	if (ops->family >= NPROTO) {
2164 		printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2165 		       NPROTO);
2166 		return -ENOBUFS;
2167 	}
2168 
2169 	spin_lock(&net_family_lock);
2170 	if (net_families[ops->family])
2171 		err = -EEXIST;
2172 	else {
2173 		net_families[ops->family] = ops;
2174 		err = 0;
2175 	}
2176 	spin_unlock(&net_family_lock);
2177 
2178 	printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2179 	return err;
2180 }
2181 
2182 /**
2183  *	sock_unregister - remove a protocol handler
2184  *	@family: protocol family to remove
2185  *
2186  *	This function is called by a protocol handler that wants to
2187  *	remove its address family, and have it unlinked from the
2188  *	new socket creation.
2189  *
2190  *	If protocol handler is a module, then it can use module reference
2191  *	counts to protect against new references. If protocol handler is not
2192  *	a module then it needs to provide its own protection in
2193  *	the ops->create routine.
2194  */
2195 void sock_unregister(int family)
2196 {
2197 	BUG_ON(family < 0 || family >= NPROTO);
2198 
2199 	spin_lock(&net_family_lock);
2200 	net_families[family] = NULL;
2201 	spin_unlock(&net_family_lock);
2202 
2203 	synchronize_rcu();
2204 
2205 	printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2206 }
2207 
2208 static int __init sock_init(void)
2209 {
2210 	/*
2211 	 *      Initialize sock SLAB cache.
2212 	 */
2213 
2214 	sk_init();
2215 
2216 	/*
2217 	 *      Initialize skbuff SLAB cache
2218 	 */
2219 	skb_init();
2220 
2221 	/*
2222 	 *      Initialize the protocols module.
2223 	 */
2224 
2225 	init_inodecache();
2226 	register_filesystem(&sock_fs_type);
2227 	sock_mnt = kern_mount(&sock_fs_type);
2228 
2229 	/* The real protocol initialization is performed in later initcalls.
2230 	 */
2231 
2232 #ifdef CONFIG_NETFILTER
2233 	netfilter_init();
2234 #endif
2235 
2236 	return 0;
2237 }
2238 
2239 core_initcall(sock_init);	/* early initcall */
2240 
2241 #ifdef CONFIG_PROC_FS
2242 void socket_seq_show(struct seq_file *seq)
2243 {
2244 	int cpu;
2245 	int counter = 0;
2246 
2247 	for_each_possible_cpu(cpu)
2248 	    counter += per_cpu(sockets_in_use, cpu);
2249 
2250 	/* It can be negative, by the way. 8) */
2251 	if (counter < 0)
2252 		counter = 0;
2253 
2254 	seq_printf(seq, "sockets: used %d\n", counter);
2255 }
2256 #endif				/* CONFIG_PROC_FS */
2257 
2258 #ifdef CONFIG_COMPAT
2259 static long compat_sock_ioctl(struct file *file, unsigned cmd,
2260 			      unsigned long arg)
2261 {
2262 	struct socket *sock = file->private_data;
2263 	int ret = -ENOIOCTLCMD;
2264 	struct sock *sk;
2265 	struct net *net;
2266 
2267 	sk = sock->sk;
2268 	net = sock_net(sk);
2269 
2270 	if (sock->ops->compat_ioctl)
2271 		ret = sock->ops->compat_ioctl(sock, cmd, arg);
2272 
2273 	if (ret == -ENOIOCTLCMD &&
2274 	    (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
2275 		ret = compat_wext_handle_ioctl(net, cmd, arg);
2276 
2277 	return ret;
2278 }
2279 #endif
2280 
2281 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2282 {
2283 	return sock->ops->bind(sock, addr, addrlen);
2284 }
2285 
2286 int kernel_listen(struct socket *sock, int backlog)
2287 {
2288 	return sock->ops->listen(sock, backlog);
2289 }
2290 
2291 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2292 {
2293 	struct sock *sk = sock->sk;
2294 	int err;
2295 
2296 	err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2297 			       newsock);
2298 	if (err < 0)
2299 		goto done;
2300 
2301 	err = sock->ops->accept(sock, *newsock, flags);
2302 	if (err < 0) {
2303 		sock_release(*newsock);
2304 		*newsock = NULL;
2305 		goto done;
2306 	}
2307 
2308 	(*newsock)->ops = sock->ops;
2309 
2310 done:
2311 	return err;
2312 }
2313 
2314 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2315 		   int flags)
2316 {
2317 	return sock->ops->connect(sock, addr, addrlen, flags);
2318 }
2319 
2320 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2321 			 int *addrlen)
2322 {
2323 	return sock->ops->getname(sock, addr, addrlen, 0);
2324 }
2325 
2326 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2327 			 int *addrlen)
2328 {
2329 	return sock->ops->getname(sock, addr, addrlen, 1);
2330 }
2331 
2332 int kernel_getsockopt(struct socket *sock, int level, int optname,
2333 			char *optval, int *optlen)
2334 {
2335 	mm_segment_t oldfs = get_fs();
2336 	int err;
2337 
2338 	set_fs(KERNEL_DS);
2339 	if (level == SOL_SOCKET)
2340 		err = sock_getsockopt(sock, level, optname, optval, optlen);
2341 	else
2342 		err = sock->ops->getsockopt(sock, level, optname, optval,
2343 					    optlen);
2344 	set_fs(oldfs);
2345 	return err;
2346 }
2347 
2348 int kernel_setsockopt(struct socket *sock, int level, int optname,
2349 			char *optval, int optlen)
2350 {
2351 	mm_segment_t oldfs = get_fs();
2352 	int err;
2353 
2354 	set_fs(KERNEL_DS);
2355 	if (level == SOL_SOCKET)
2356 		err = sock_setsockopt(sock, level, optname, optval, optlen);
2357 	else
2358 		err = sock->ops->setsockopt(sock, level, optname, optval,
2359 					    optlen);
2360 	set_fs(oldfs);
2361 	return err;
2362 }
2363 
2364 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2365 		    size_t size, int flags)
2366 {
2367 	if (sock->ops->sendpage)
2368 		return sock->ops->sendpage(sock, page, offset, size, flags);
2369 
2370 	return sock_no_sendpage(sock, page, offset, size, flags);
2371 }
2372 
2373 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2374 {
2375 	mm_segment_t oldfs = get_fs();
2376 	int err;
2377 
2378 	set_fs(KERNEL_DS);
2379 	err = sock->ops->ioctl(sock, cmd, arg);
2380 	set_fs(oldfs);
2381 
2382 	return err;
2383 }
2384 
2385 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2386 {
2387 	return sock->ops->shutdown(sock, how);
2388 }
2389 
2390 EXPORT_SYMBOL(sock_create);
2391 EXPORT_SYMBOL(sock_create_kern);
2392 EXPORT_SYMBOL(sock_create_lite);
2393 EXPORT_SYMBOL(sock_map_fd);
2394 EXPORT_SYMBOL(sock_recvmsg);
2395 EXPORT_SYMBOL(sock_register);
2396 EXPORT_SYMBOL(sock_release);
2397 EXPORT_SYMBOL(sock_sendmsg);
2398 EXPORT_SYMBOL(sock_unregister);
2399 EXPORT_SYMBOL(sock_wake_async);
2400 EXPORT_SYMBOL(sockfd_lookup);
2401 EXPORT_SYMBOL(kernel_sendmsg);
2402 EXPORT_SYMBOL(kernel_recvmsg);
2403 EXPORT_SYMBOL(kernel_bind);
2404 EXPORT_SYMBOL(kernel_listen);
2405 EXPORT_SYMBOL(kernel_accept);
2406 EXPORT_SYMBOL(kernel_connect);
2407 EXPORT_SYMBOL(kernel_getsockname);
2408 EXPORT_SYMBOL(kernel_getpeername);
2409 EXPORT_SYMBOL(kernel_getsockopt);
2410 EXPORT_SYMBOL(kernel_setsockopt);
2411 EXPORT_SYMBOL(kernel_sendpage);
2412 EXPORT_SYMBOL(kernel_sock_ioctl);
2413 EXPORT_SYMBOL(kernel_sock_shutdown);
2414