xref: /linux-6.15/net/sctp/ulpqueue.c (revision 94014e8d)
1 /* SCTP kernel implementation
2  * (C) Copyright IBM Corp. 2001, 2004
3  * Copyright (c) 1999-2000 Cisco, Inc.
4  * Copyright (c) 1999-2001 Motorola, Inc.
5  * Copyright (c) 2001 Intel Corp.
6  * Copyright (c) 2001 Nokia, Inc.
7  * Copyright (c) 2001 La Monte H.P. Yarroll
8  *
9  * This abstraction carries sctp events to the ULP (sockets).
10  *
11  * This SCTP implementation is free software;
12  * you can redistribute it and/or modify it under the terms of
13  * the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This SCTP implementation is distributed in the hope that it
18  * will be useful, but WITHOUT ANY WARRANTY; without even the implied
19  *                 ************************
20  * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
21  * See the GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with GNU CC; see the file COPYING.  If not, see
25  * <http://www.gnu.org/licenses/>.
26  *
27  * Please send any bug reports or fixes you make to the
28  * email address(es):
29  *    lksctp developers <[email protected]>
30  *
31  * Written or modified by:
32  *    Jon Grimm             <[email protected]>
33  *    La Monte H.P. Yarroll <[email protected]>
34  *    Sridhar Samudrala     <[email protected]>
35  */
36 
37 #include <linux/slab.h>
38 #include <linux/types.h>
39 #include <linux/skbuff.h>
40 #include <net/sock.h>
41 #include <net/busy_poll.h>
42 #include <net/sctp/structs.h>
43 #include <net/sctp/sctp.h>
44 #include <net/sctp/sm.h>
45 
46 /* Forward declarations for internal helpers.  */
47 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
48 					      struct sctp_ulpevent *);
49 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *,
50 					      struct sctp_ulpevent *);
51 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq);
52 
53 /* 1st Level Abstractions */
54 
55 /* Initialize a ULP queue from a block of memory.  */
56 struct sctp_ulpq *sctp_ulpq_init(struct sctp_ulpq *ulpq,
57 				 struct sctp_association *asoc)
58 {
59 	memset(ulpq, 0, sizeof(struct sctp_ulpq));
60 
61 	ulpq->asoc = asoc;
62 	skb_queue_head_init(&ulpq->reasm);
63 	skb_queue_head_init(&ulpq->lobby);
64 	ulpq->pd_mode  = 0;
65 
66 	return ulpq;
67 }
68 
69 
70 /* Flush the reassembly and ordering queues.  */
71 void sctp_ulpq_flush(struct sctp_ulpq *ulpq)
72 {
73 	struct sk_buff *skb;
74 	struct sctp_ulpevent *event;
75 
76 	while ((skb = __skb_dequeue(&ulpq->lobby)) != NULL) {
77 		event = sctp_skb2event(skb);
78 		sctp_ulpevent_free(event);
79 	}
80 
81 	while ((skb = __skb_dequeue(&ulpq->reasm)) != NULL) {
82 		event = sctp_skb2event(skb);
83 		sctp_ulpevent_free(event);
84 	}
85 
86 }
87 
88 /* Dispose of a ulpqueue.  */
89 void sctp_ulpq_free(struct sctp_ulpq *ulpq)
90 {
91 	sctp_ulpq_flush(ulpq);
92 }
93 
94 /* Process an incoming DATA chunk.  */
95 int sctp_ulpq_tail_data(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
96 			gfp_t gfp)
97 {
98 	struct sk_buff_head temp;
99 	struct sctp_ulpevent *event;
100 	int event_eor = 0;
101 
102 	/* Create an event from the incoming chunk. */
103 	event = sctp_ulpevent_make_rcvmsg(chunk->asoc, chunk, gfp);
104 	if (!event)
105 		return -ENOMEM;
106 
107 	event->ssn = ntohs(chunk->subh.data_hdr->ssn);
108 	event->ppid = chunk->subh.data_hdr->ppid;
109 
110 	/* Do reassembly if needed.  */
111 	event = sctp_ulpq_reasm(ulpq, event);
112 
113 	/* Do ordering if needed.  */
114 	if ((event) && (event->msg_flags & MSG_EOR)) {
115 		/* Create a temporary list to collect chunks on.  */
116 		skb_queue_head_init(&temp);
117 		__skb_queue_tail(&temp, sctp_event2skb(event));
118 
119 		event = sctp_ulpq_order(ulpq, event);
120 	}
121 
122 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
123 	 * very first SKB on the 'temp' list.
124 	 */
125 	if (event) {
126 		event_eor = (event->msg_flags & MSG_EOR) ? 1 : 0;
127 		sctp_ulpq_tail_event(ulpq, event);
128 	}
129 
130 	return event_eor;
131 }
132 
133 /* Add a new event for propagation to the ULP.  */
134 /* Clear the partial delivery mode for this socket.   Note: This
135  * assumes that no association is currently in partial delivery mode.
136  */
137 int sctp_clear_pd(struct sock *sk, struct sctp_association *asoc)
138 {
139 	struct sctp_sock *sp = sctp_sk(sk);
140 
141 	if (atomic_dec_and_test(&sp->pd_mode)) {
142 		/* This means there are no other associations in PD, so
143 		 * we can go ahead and clear out the lobby in one shot
144 		 */
145 		if (!skb_queue_empty(&sp->pd_lobby)) {
146 			skb_queue_splice_tail_init(&sp->pd_lobby,
147 						   &sk->sk_receive_queue);
148 			return 1;
149 		}
150 	} else {
151 		/* There are other associations in PD, so we only need to
152 		 * pull stuff out of the lobby that belongs to the
153 		 * associations that is exiting PD (all of its notifications
154 		 * are posted here).
155 		 */
156 		if (!skb_queue_empty(&sp->pd_lobby) && asoc) {
157 			struct sk_buff *skb, *tmp;
158 			struct sctp_ulpevent *event;
159 
160 			sctp_skb_for_each(skb, &sp->pd_lobby, tmp) {
161 				event = sctp_skb2event(skb);
162 				if (event->asoc == asoc) {
163 					__skb_unlink(skb, &sp->pd_lobby);
164 					__skb_queue_tail(&sk->sk_receive_queue,
165 							 skb);
166 				}
167 			}
168 		}
169 	}
170 
171 	return 0;
172 }
173 
174 /* Set the pd_mode on the socket and ulpq */
175 static void sctp_ulpq_set_pd(struct sctp_ulpq *ulpq)
176 {
177 	struct sctp_sock *sp = sctp_sk(ulpq->asoc->base.sk);
178 
179 	atomic_inc(&sp->pd_mode);
180 	ulpq->pd_mode = 1;
181 }
182 
183 /* Clear the pd_mode and restart any pending messages waiting for delivery. */
184 static int sctp_ulpq_clear_pd(struct sctp_ulpq *ulpq)
185 {
186 	ulpq->pd_mode = 0;
187 	sctp_ulpq_reasm_drain(ulpq);
188 	return sctp_clear_pd(ulpq->asoc->base.sk, ulpq->asoc);
189 }
190 
191 /* If the SKB of 'event' is on a list, it is the first such member
192  * of that list.
193  */
194 int sctp_ulpq_tail_event(struct sctp_ulpq *ulpq, struct sctp_ulpevent *event)
195 {
196 	struct sock *sk = ulpq->asoc->base.sk;
197 	struct sctp_sock *sp = sctp_sk(sk);
198 	struct sk_buff_head *queue, *skb_list;
199 	struct sk_buff *skb = sctp_event2skb(event);
200 	int clear_pd = 0;
201 
202 	skb_list = (struct sk_buff_head *) skb->prev;
203 
204 	/* If the socket is just going to throw this away, do not
205 	 * even try to deliver it.
206 	 */
207 	if (sk->sk_shutdown & RCV_SHUTDOWN &&
208 	    (sk->sk_shutdown & SEND_SHUTDOWN ||
209 	     !sctp_ulpevent_is_notification(event)))
210 		goto out_free;
211 
212 	if (!sctp_ulpevent_is_notification(event)) {
213 		sk_mark_napi_id(sk, skb);
214 		sk_incoming_cpu_update(sk);
215 	}
216 	/* Check if the user wishes to receive this event.  */
217 	if (!sctp_ulpevent_is_enabled(event, &sp->subscribe))
218 		goto out_free;
219 
220 	/* If we are in partial delivery mode, post to the lobby until
221 	 * partial delivery is cleared, unless, of course _this_ is
222 	 * the association the cause of the partial delivery.
223 	 */
224 
225 	if (atomic_read(&sp->pd_mode) == 0) {
226 		queue = &sk->sk_receive_queue;
227 	} else {
228 		if (ulpq->pd_mode) {
229 			/* If the association is in partial delivery, we
230 			 * need to finish delivering the partially processed
231 			 * packet before passing any other data.  This is
232 			 * because we don't truly support stream interleaving.
233 			 */
234 			if ((event->msg_flags & MSG_NOTIFICATION) ||
235 			    (SCTP_DATA_NOT_FRAG ==
236 				    (event->msg_flags & SCTP_DATA_FRAG_MASK)))
237 				queue = &sp->pd_lobby;
238 			else {
239 				clear_pd = event->msg_flags & MSG_EOR;
240 				queue = &sk->sk_receive_queue;
241 			}
242 		} else {
243 			/*
244 			 * If fragment interleave is enabled, we
245 			 * can queue this to the receive queue instead
246 			 * of the lobby.
247 			 */
248 			if (sp->frag_interleave)
249 				queue = &sk->sk_receive_queue;
250 			else
251 				queue = &sp->pd_lobby;
252 		}
253 	}
254 
255 	/* If we are harvesting multiple skbs they will be
256 	 * collected on a list.
257 	 */
258 	if (skb_list)
259 		skb_queue_splice_tail_init(skb_list, queue);
260 	else
261 		__skb_queue_tail(queue, skb);
262 
263 	/* Did we just complete partial delivery and need to get
264 	 * rolling again?  Move pending data to the receive
265 	 * queue.
266 	 */
267 	if (clear_pd)
268 		sctp_ulpq_clear_pd(ulpq);
269 
270 	if (queue == &sk->sk_receive_queue && !sp->data_ready_signalled) {
271 		if (!sock_owned_by_user(sk))
272 			sp->data_ready_signalled = 1;
273 		sk->sk_data_ready(sk);
274 	}
275 	return 1;
276 
277 out_free:
278 	if (skb_list)
279 		sctp_queue_purge_ulpevents(skb_list);
280 	else
281 		sctp_ulpevent_free(event);
282 
283 	return 0;
284 }
285 
286 /* 2nd Level Abstractions */
287 
288 /* Helper function to store chunks that need to be reassembled.  */
289 static void sctp_ulpq_store_reasm(struct sctp_ulpq *ulpq,
290 					 struct sctp_ulpevent *event)
291 {
292 	struct sk_buff *pos;
293 	struct sctp_ulpevent *cevent;
294 	__u32 tsn, ctsn;
295 
296 	tsn = event->tsn;
297 
298 	/* See if it belongs at the end. */
299 	pos = skb_peek_tail(&ulpq->reasm);
300 	if (!pos) {
301 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
302 		return;
303 	}
304 
305 	/* Short circuit just dropping it at the end. */
306 	cevent = sctp_skb2event(pos);
307 	ctsn = cevent->tsn;
308 	if (TSN_lt(ctsn, tsn)) {
309 		__skb_queue_tail(&ulpq->reasm, sctp_event2skb(event));
310 		return;
311 	}
312 
313 	/* Find the right place in this list. We store them by TSN.  */
314 	skb_queue_walk(&ulpq->reasm, pos) {
315 		cevent = sctp_skb2event(pos);
316 		ctsn = cevent->tsn;
317 
318 		if (TSN_lt(tsn, ctsn))
319 			break;
320 	}
321 
322 	/* Insert before pos. */
323 	__skb_queue_before(&ulpq->reasm, pos, sctp_event2skb(event));
324 
325 }
326 
327 /* Helper function to return an event corresponding to the reassembled
328  * datagram.
329  * This routine creates a re-assembled skb given the first and last skb's
330  * as stored in the reassembly queue. The skb's may be non-linear if the sctp
331  * payload was fragmented on the way and ip had to reassemble them.
332  * We add the rest of skb's to the first skb's fraglist.
333  */
334 struct sctp_ulpevent *sctp_make_reassembled_event(struct net *net,
335 						  struct sk_buff_head *queue,
336 						  struct sk_buff *f_frag,
337 						  struct sk_buff *l_frag)
338 {
339 	struct sk_buff *pos;
340 	struct sk_buff *new = NULL;
341 	struct sctp_ulpevent *event;
342 	struct sk_buff *pnext, *last;
343 	struct sk_buff *list = skb_shinfo(f_frag)->frag_list;
344 
345 	/* Store the pointer to the 2nd skb */
346 	if (f_frag == l_frag)
347 		pos = NULL;
348 	else
349 		pos = f_frag->next;
350 
351 	/* Get the last skb in the f_frag's frag_list if present. */
352 	for (last = list; list; last = list, list = list->next)
353 		;
354 
355 	/* Add the list of remaining fragments to the first fragments
356 	 * frag_list.
357 	 */
358 	if (last)
359 		last->next = pos;
360 	else {
361 		if (skb_cloned(f_frag)) {
362 			/* This is a cloned skb, we can't just modify
363 			 * the frag_list.  We need a new skb to do that.
364 			 * Instead of calling skb_unshare(), we'll do it
365 			 * ourselves since we need to delay the free.
366 			 */
367 			new = skb_copy(f_frag, GFP_ATOMIC);
368 			if (!new)
369 				return NULL;	/* try again later */
370 
371 			sctp_skb_set_owner_r(new, f_frag->sk);
372 
373 			skb_shinfo(new)->frag_list = pos;
374 		} else
375 			skb_shinfo(f_frag)->frag_list = pos;
376 	}
377 
378 	/* Remove the first fragment from the reassembly queue.  */
379 	__skb_unlink(f_frag, queue);
380 
381 	/* if we did unshare, then free the old skb and re-assign */
382 	if (new) {
383 		kfree_skb(f_frag);
384 		f_frag = new;
385 	}
386 
387 	while (pos) {
388 
389 		pnext = pos->next;
390 
391 		/* Update the len and data_len fields of the first fragment. */
392 		f_frag->len += pos->len;
393 		f_frag->data_len += pos->len;
394 
395 		/* Remove the fragment from the reassembly queue.  */
396 		__skb_unlink(pos, queue);
397 
398 		/* Break if we have reached the last fragment.  */
399 		if (pos == l_frag)
400 			break;
401 		pos->next = pnext;
402 		pos = pnext;
403 	}
404 
405 	event = sctp_skb2event(f_frag);
406 	SCTP_INC_STATS(net, SCTP_MIB_REASMUSRMSGS);
407 
408 	return event;
409 }
410 
411 
412 /* Helper function to check if an incoming chunk has filled up the last
413  * missing fragment in a SCTP datagram and return the corresponding event.
414  */
415 static struct sctp_ulpevent *sctp_ulpq_retrieve_reassembled(struct sctp_ulpq *ulpq)
416 {
417 	struct sk_buff *pos;
418 	struct sctp_ulpevent *cevent;
419 	struct sk_buff *first_frag = NULL;
420 	__u32 ctsn, next_tsn;
421 	struct sctp_ulpevent *retval = NULL;
422 	struct sk_buff *pd_first = NULL;
423 	struct sk_buff *pd_last = NULL;
424 	size_t pd_len = 0;
425 	struct sctp_association *asoc;
426 	u32 pd_point;
427 
428 	/* Initialized to 0 just to avoid compiler warning message.  Will
429 	 * never be used with this value. It is referenced only after it
430 	 * is set when we find the first fragment of a message.
431 	 */
432 	next_tsn = 0;
433 
434 	/* The chunks are held in the reasm queue sorted by TSN.
435 	 * Walk through the queue sequentially and look for a sequence of
436 	 * fragmented chunks that complete a datagram.
437 	 * 'first_frag' and next_tsn are reset when we find a chunk which
438 	 * is the first fragment of a datagram. Once these 2 fields are set
439 	 * we expect to find the remaining middle fragments and the last
440 	 * fragment in order. If not, first_frag is reset to NULL and we
441 	 * start the next pass when we find another first fragment.
442 	 *
443 	 * There is a potential to do partial delivery if user sets
444 	 * SCTP_PARTIAL_DELIVERY_POINT option. Lets count some things here
445 	 * to see if can do PD.
446 	 */
447 	skb_queue_walk(&ulpq->reasm, pos) {
448 		cevent = sctp_skb2event(pos);
449 		ctsn = cevent->tsn;
450 
451 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
452 		case SCTP_DATA_FIRST_FRAG:
453 			/* If this "FIRST_FRAG" is the first
454 			 * element in the queue, then count it towards
455 			 * possible PD.
456 			 */
457 			if (pos == ulpq->reasm.next) {
458 			    pd_first = pos;
459 			    pd_last = pos;
460 			    pd_len = pos->len;
461 			} else {
462 			    pd_first = NULL;
463 			    pd_last = NULL;
464 			    pd_len = 0;
465 			}
466 
467 			first_frag = pos;
468 			next_tsn = ctsn + 1;
469 			break;
470 
471 		case SCTP_DATA_MIDDLE_FRAG:
472 			if ((first_frag) && (ctsn == next_tsn)) {
473 				next_tsn++;
474 				if (pd_first) {
475 				    pd_last = pos;
476 				    pd_len += pos->len;
477 				}
478 			} else
479 				first_frag = NULL;
480 			break;
481 
482 		case SCTP_DATA_LAST_FRAG:
483 			if (first_frag && (ctsn == next_tsn))
484 				goto found;
485 			else
486 				first_frag = NULL;
487 			break;
488 		}
489 	}
490 
491 	asoc = ulpq->asoc;
492 	if (pd_first) {
493 		/* Make sure we can enter partial deliver.
494 		 * We can trigger partial delivery only if framgent
495 		 * interleave is set, or the socket is not already
496 		 * in  partial delivery.
497 		 */
498 		if (!sctp_sk(asoc->base.sk)->frag_interleave &&
499 		    atomic_read(&sctp_sk(asoc->base.sk)->pd_mode))
500 			goto done;
501 
502 		cevent = sctp_skb2event(pd_first);
503 		pd_point = sctp_sk(asoc->base.sk)->pd_point;
504 		if (pd_point && pd_point <= pd_len) {
505 			retval = sctp_make_reassembled_event(sock_net(asoc->base.sk),
506 							     &ulpq->reasm,
507 							     pd_first,
508 							     pd_last);
509 			if (retval)
510 				sctp_ulpq_set_pd(ulpq);
511 		}
512 	}
513 done:
514 	return retval;
515 found:
516 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
517 					     &ulpq->reasm, first_frag, pos);
518 	if (retval)
519 		retval->msg_flags |= MSG_EOR;
520 	goto done;
521 }
522 
523 /* Retrieve the next set of fragments of a partial message. */
524 static struct sctp_ulpevent *sctp_ulpq_retrieve_partial(struct sctp_ulpq *ulpq)
525 {
526 	struct sk_buff *pos, *last_frag, *first_frag;
527 	struct sctp_ulpevent *cevent;
528 	__u32 ctsn, next_tsn;
529 	int is_last;
530 	struct sctp_ulpevent *retval;
531 
532 	/* The chunks are held in the reasm queue sorted by TSN.
533 	 * Walk through the queue sequentially and look for the first
534 	 * sequence of fragmented chunks.
535 	 */
536 
537 	if (skb_queue_empty(&ulpq->reasm))
538 		return NULL;
539 
540 	last_frag = first_frag = NULL;
541 	retval = NULL;
542 	next_tsn = 0;
543 	is_last = 0;
544 
545 	skb_queue_walk(&ulpq->reasm, pos) {
546 		cevent = sctp_skb2event(pos);
547 		ctsn = cevent->tsn;
548 
549 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
550 		case SCTP_DATA_FIRST_FRAG:
551 			if (!first_frag)
552 				return NULL;
553 			goto done;
554 		case SCTP_DATA_MIDDLE_FRAG:
555 			if (!first_frag) {
556 				first_frag = pos;
557 				next_tsn = ctsn + 1;
558 				last_frag = pos;
559 			} else if (next_tsn == ctsn) {
560 				next_tsn++;
561 				last_frag = pos;
562 			} else
563 				goto done;
564 			break;
565 		case SCTP_DATA_LAST_FRAG:
566 			if (!first_frag)
567 				first_frag = pos;
568 			else if (ctsn != next_tsn)
569 				goto done;
570 			last_frag = pos;
571 			is_last = 1;
572 			goto done;
573 		default:
574 			return NULL;
575 		}
576 	}
577 
578 	/* We have the reassembled event. There is no need to look
579 	 * further.
580 	 */
581 done:
582 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
583 					&ulpq->reasm, first_frag, last_frag);
584 	if (retval && is_last)
585 		retval->msg_flags |= MSG_EOR;
586 
587 	return retval;
588 }
589 
590 
591 /* Helper function to reassemble chunks.  Hold chunks on the reasm queue that
592  * need reassembling.
593  */
594 static struct sctp_ulpevent *sctp_ulpq_reasm(struct sctp_ulpq *ulpq,
595 						struct sctp_ulpevent *event)
596 {
597 	struct sctp_ulpevent *retval = NULL;
598 
599 	/* Check if this is part of a fragmented message.  */
600 	if (SCTP_DATA_NOT_FRAG == (event->msg_flags & SCTP_DATA_FRAG_MASK)) {
601 		event->msg_flags |= MSG_EOR;
602 		return event;
603 	}
604 
605 	sctp_ulpq_store_reasm(ulpq, event);
606 	if (!ulpq->pd_mode)
607 		retval = sctp_ulpq_retrieve_reassembled(ulpq);
608 	else {
609 		__u32 ctsn, ctsnap;
610 
611 		/* Do not even bother unless this is the next tsn to
612 		 * be delivered.
613 		 */
614 		ctsn = event->tsn;
615 		ctsnap = sctp_tsnmap_get_ctsn(&ulpq->asoc->peer.tsn_map);
616 		if (TSN_lte(ctsn, ctsnap))
617 			retval = sctp_ulpq_retrieve_partial(ulpq);
618 	}
619 
620 	return retval;
621 }
622 
623 /* Retrieve the first part (sequential fragments) for partial delivery.  */
624 static struct sctp_ulpevent *sctp_ulpq_retrieve_first(struct sctp_ulpq *ulpq)
625 {
626 	struct sk_buff *pos, *last_frag, *first_frag;
627 	struct sctp_ulpevent *cevent;
628 	__u32 ctsn, next_tsn;
629 	struct sctp_ulpevent *retval;
630 
631 	/* The chunks are held in the reasm queue sorted by TSN.
632 	 * Walk through the queue sequentially and look for a sequence of
633 	 * fragmented chunks that start a datagram.
634 	 */
635 
636 	if (skb_queue_empty(&ulpq->reasm))
637 		return NULL;
638 
639 	last_frag = first_frag = NULL;
640 	retval = NULL;
641 	next_tsn = 0;
642 
643 	skb_queue_walk(&ulpq->reasm, pos) {
644 		cevent = sctp_skb2event(pos);
645 		ctsn = cevent->tsn;
646 
647 		switch (cevent->msg_flags & SCTP_DATA_FRAG_MASK) {
648 		case SCTP_DATA_FIRST_FRAG:
649 			if (!first_frag) {
650 				first_frag = pos;
651 				next_tsn = ctsn + 1;
652 				last_frag = pos;
653 			} else
654 				goto done;
655 			break;
656 
657 		case SCTP_DATA_MIDDLE_FRAG:
658 			if (!first_frag)
659 				return NULL;
660 			if (ctsn == next_tsn) {
661 				next_tsn++;
662 				last_frag = pos;
663 			} else
664 				goto done;
665 			break;
666 
667 		case SCTP_DATA_LAST_FRAG:
668 			if (!first_frag)
669 				return NULL;
670 			else
671 				goto done;
672 			break;
673 
674 		default:
675 			return NULL;
676 		}
677 	}
678 
679 	/* We have the reassembled event. There is no need to look
680 	 * further.
681 	 */
682 done:
683 	retval = sctp_make_reassembled_event(sock_net(ulpq->asoc->base.sk),
684 					&ulpq->reasm, first_frag, last_frag);
685 	return retval;
686 }
687 
688 /*
689  * Flush out stale fragments from the reassembly queue when processing
690  * a Forward TSN.
691  *
692  * RFC 3758, Section 3.6
693  *
694  * After receiving and processing a FORWARD TSN, the data receiver MUST
695  * take cautions in updating its re-assembly queue.  The receiver MUST
696  * remove any partially reassembled message, which is still missing one
697  * or more TSNs earlier than or equal to the new cumulative TSN point.
698  * In the event that the receiver has invoked the partial delivery API,
699  * a notification SHOULD also be generated to inform the upper layer API
700  * that the message being partially delivered will NOT be completed.
701  */
702 void sctp_ulpq_reasm_flushtsn(struct sctp_ulpq *ulpq, __u32 fwd_tsn)
703 {
704 	struct sk_buff *pos, *tmp;
705 	struct sctp_ulpevent *event;
706 	__u32 tsn;
707 
708 	if (skb_queue_empty(&ulpq->reasm))
709 		return;
710 
711 	skb_queue_walk_safe(&ulpq->reasm, pos, tmp) {
712 		event = sctp_skb2event(pos);
713 		tsn = event->tsn;
714 
715 		/* Since the entire message must be abandoned by the
716 		 * sender (item A3 in Section 3.5, RFC 3758), we can
717 		 * free all fragments on the list that are less then
718 		 * or equal to ctsn_point
719 		 */
720 		if (TSN_lte(tsn, fwd_tsn)) {
721 			__skb_unlink(pos, &ulpq->reasm);
722 			sctp_ulpevent_free(event);
723 		} else
724 			break;
725 	}
726 }
727 
728 /*
729  * Drain the reassembly queue.  If we just cleared parted delivery, it
730  * is possible that the reassembly queue will contain already reassembled
731  * messages.  Retrieve any such messages and give them to the user.
732  */
733 static void sctp_ulpq_reasm_drain(struct sctp_ulpq *ulpq)
734 {
735 	struct sctp_ulpevent *event = NULL;
736 	struct sk_buff_head temp;
737 
738 	if (skb_queue_empty(&ulpq->reasm))
739 		return;
740 
741 	while ((event = sctp_ulpq_retrieve_reassembled(ulpq)) != NULL) {
742 		/* Do ordering if needed.  */
743 		if ((event) && (event->msg_flags & MSG_EOR)) {
744 			skb_queue_head_init(&temp);
745 			__skb_queue_tail(&temp, sctp_event2skb(event));
746 
747 			event = sctp_ulpq_order(ulpq, event);
748 		}
749 
750 		/* Send event to the ULP.  'event' is the
751 		 * sctp_ulpevent for  very first SKB on the  temp' list.
752 		 */
753 		if (event)
754 			sctp_ulpq_tail_event(ulpq, event);
755 	}
756 }
757 
758 
759 /* Helper function to gather skbs that have possibly become
760  * ordered by an an incoming chunk.
761  */
762 static void sctp_ulpq_retrieve_ordered(struct sctp_ulpq *ulpq,
763 					      struct sctp_ulpevent *event)
764 {
765 	struct sk_buff_head *event_list;
766 	struct sk_buff *pos, *tmp;
767 	struct sctp_ulpevent *cevent;
768 	struct sctp_stream *stream;
769 	__u16 sid, csid, cssn;
770 
771 	sid = event->stream;
772 	stream  = &ulpq->asoc->stream;
773 
774 	event_list = (struct sk_buff_head *) sctp_event2skb(event)->prev;
775 
776 	/* We are holding the chunks by stream, by SSN.  */
777 	sctp_skb_for_each(pos, &ulpq->lobby, tmp) {
778 		cevent = (struct sctp_ulpevent *) pos->cb;
779 		csid = cevent->stream;
780 		cssn = cevent->ssn;
781 
782 		/* Have we gone too far?  */
783 		if (csid > sid)
784 			break;
785 
786 		/* Have we not gone far enough?  */
787 		if (csid < sid)
788 			continue;
789 
790 		if (cssn != sctp_ssn_peek(stream, in, sid))
791 			break;
792 
793 		/* Found it, so mark in the stream. */
794 		sctp_ssn_next(stream, in, sid);
795 
796 		__skb_unlink(pos, &ulpq->lobby);
797 
798 		/* Attach all gathered skbs to the event.  */
799 		__skb_queue_tail(event_list, pos);
800 	}
801 }
802 
803 /* Helper function to store chunks needing ordering.  */
804 static void sctp_ulpq_store_ordered(struct sctp_ulpq *ulpq,
805 					   struct sctp_ulpevent *event)
806 {
807 	struct sk_buff *pos;
808 	struct sctp_ulpevent *cevent;
809 	__u16 sid, csid;
810 	__u16 ssn, cssn;
811 
812 	pos = skb_peek_tail(&ulpq->lobby);
813 	if (!pos) {
814 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
815 		return;
816 	}
817 
818 	sid = event->stream;
819 	ssn = event->ssn;
820 
821 	cevent = (struct sctp_ulpevent *) pos->cb;
822 	csid = cevent->stream;
823 	cssn = cevent->ssn;
824 	if (sid > csid) {
825 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
826 		return;
827 	}
828 
829 	if ((sid == csid) && SSN_lt(cssn, ssn)) {
830 		__skb_queue_tail(&ulpq->lobby, sctp_event2skb(event));
831 		return;
832 	}
833 
834 	/* Find the right place in this list.  We store them by
835 	 * stream ID and then by SSN.
836 	 */
837 	skb_queue_walk(&ulpq->lobby, pos) {
838 		cevent = (struct sctp_ulpevent *) pos->cb;
839 		csid = cevent->stream;
840 		cssn = cevent->ssn;
841 
842 		if (csid > sid)
843 			break;
844 		if (csid == sid && SSN_lt(ssn, cssn))
845 			break;
846 	}
847 
848 
849 	/* Insert before pos. */
850 	__skb_queue_before(&ulpq->lobby, pos, sctp_event2skb(event));
851 }
852 
853 static struct sctp_ulpevent *sctp_ulpq_order(struct sctp_ulpq *ulpq,
854 					     struct sctp_ulpevent *event)
855 {
856 	__u16 sid, ssn;
857 	struct sctp_stream *stream;
858 
859 	/* Check if this message needs ordering.  */
860 	if (event->msg_flags & SCTP_DATA_UNORDERED)
861 		return event;
862 
863 	/* Note: The stream ID must be verified before this routine.  */
864 	sid = event->stream;
865 	ssn = event->ssn;
866 	stream  = &ulpq->asoc->stream;
867 
868 	/* Is this the expected SSN for this stream ID?  */
869 	if (ssn != sctp_ssn_peek(stream, in, sid)) {
870 		/* We've received something out of order, so find where it
871 		 * needs to be placed.  We order by stream and then by SSN.
872 		 */
873 		sctp_ulpq_store_ordered(ulpq, event);
874 		return NULL;
875 	}
876 
877 	/* Mark that the next chunk has been found.  */
878 	sctp_ssn_next(stream, in, sid);
879 
880 	/* Go find any other chunks that were waiting for
881 	 * ordering.
882 	 */
883 	sctp_ulpq_retrieve_ordered(ulpq, event);
884 
885 	return event;
886 }
887 
888 /* Helper function to gather skbs that have possibly become
889  * ordered by forward tsn skipping their dependencies.
890  */
891 static void sctp_ulpq_reap_ordered(struct sctp_ulpq *ulpq, __u16 sid)
892 {
893 	struct sk_buff *pos, *tmp;
894 	struct sctp_ulpevent *cevent;
895 	struct sctp_ulpevent *event;
896 	struct sctp_stream *stream;
897 	struct sk_buff_head temp;
898 	struct sk_buff_head *lobby = &ulpq->lobby;
899 	__u16 csid, cssn;
900 
901 	stream = &ulpq->asoc->stream;
902 
903 	/* We are holding the chunks by stream, by SSN.  */
904 	skb_queue_head_init(&temp);
905 	event = NULL;
906 	sctp_skb_for_each(pos, lobby, tmp) {
907 		cevent = (struct sctp_ulpevent *) pos->cb;
908 		csid = cevent->stream;
909 		cssn = cevent->ssn;
910 
911 		/* Have we gone too far?  */
912 		if (csid > sid)
913 			break;
914 
915 		/* Have we not gone far enough?  */
916 		if (csid < sid)
917 			continue;
918 
919 		/* see if this ssn has been marked by skipping */
920 		if (!SSN_lt(cssn, sctp_ssn_peek(stream, in, csid)))
921 			break;
922 
923 		__skb_unlink(pos, lobby);
924 		if (!event)
925 			/* Create a temporary list to collect chunks on.  */
926 			event = sctp_skb2event(pos);
927 
928 		/* Attach all gathered skbs to the event.  */
929 		__skb_queue_tail(&temp, pos);
930 	}
931 
932 	/* If we didn't reap any data, see if the next expected SSN
933 	 * is next on the queue and if so, use that.
934 	 */
935 	if (event == NULL && pos != (struct sk_buff *)lobby) {
936 		cevent = (struct sctp_ulpevent *) pos->cb;
937 		csid = cevent->stream;
938 		cssn = cevent->ssn;
939 
940 		if (csid == sid && cssn == sctp_ssn_peek(stream, in, csid)) {
941 			sctp_ssn_next(stream, in, csid);
942 			__skb_unlink(pos, lobby);
943 			__skb_queue_tail(&temp, pos);
944 			event = sctp_skb2event(pos);
945 		}
946 	}
947 
948 	/* Send event to the ULP.  'event' is the sctp_ulpevent for
949 	 * very first SKB on the 'temp' list.
950 	 */
951 	if (event) {
952 		/* see if we have more ordered that we can deliver */
953 		sctp_ulpq_retrieve_ordered(ulpq, event);
954 		sctp_ulpq_tail_event(ulpq, event);
955 	}
956 }
957 
958 /* Skip over an SSN. This is used during the processing of
959  * Forwared TSN chunk to skip over the abandoned ordered data
960  */
961 void sctp_ulpq_skip(struct sctp_ulpq *ulpq, __u16 sid, __u16 ssn)
962 {
963 	struct sctp_stream *stream;
964 
965 	/* Note: The stream ID must be verified before this routine.  */
966 	stream  = &ulpq->asoc->stream;
967 
968 	/* Is this an old SSN?  If so ignore. */
969 	if (SSN_lt(ssn, sctp_ssn_peek(stream, in, sid)))
970 		return;
971 
972 	/* Mark that we are no longer expecting this SSN or lower. */
973 	sctp_ssn_skip(stream, in, sid, ssn);
974 
975 	/* Go find any other chunks that were waiting for
976 	 * ordering and deliver them if needed.
977 	 */
978 	sctp_ulpq_reap_ordered(ulpq, sid);
979 }
980 
981 __u16 sctp_ulpq_renege_list(struct sctp_ulpq *ulpq, struct sk_buff_head *list,
982 			    __u16 needed)
983 {
984 	__u16 freed = 0;
985 	__u32 tsn, last_tsn;
986 	struct sk_buff *skb, *flist, *last;
987 	struct sctp_ulpevent *event;
988 	struct sctp_tsnmap *tsnmap;
989 
990 	tsnmap = &ulpq->asoc->peer.tsn_map;
991 
992 	while ((skb = skb_peek_tail(list)) != NULL) {
993 		event = sctp_skb2event(skb);
994 		tsn = event->tsn;
995 
996 		/* Don't renege below the Cumulative TSN ACK Point. */
997 		if (TSN_lte(tsn, sctp_tsnmap_get_ctsn(tsnmap)))
998 			break;
999 
1000 		/* Events in ordering queue may have multiple fragments
1001 		 * corresponding to additional TSNs.  Sum the total
1002 		 * freed space; find the last TSN.
1003 		 */
1004 		freed += skb_headlen(skb);
1005 		flist = skb_shinfo(skb)->frag_list;
1006 		for (last = flist; flist; flist = flist->next) {
1007 			last = flist;
1008 			freed += skb_headlen(last);
1009 		}
1010 		if (last)
1011 			last_tsn = sctp_skb2event(last)->tsn;
1012 		else
1013 			last_tsn = tsn;
1014 
1015 		/* Unlink the event, then renege all applicable TSNs. */
1016 		__skb_unlink(skb, list);
1017 		sctp_ulpevent_free(event);
1018 		while (TSN_lte(tsn, last_tsn)) {
1019 			sctp_tsnmap_renege(tsnmap, tsn);
1020 			tsn++;
1021 		}
1022 		if (freed >= needed)
1023 			return freed;
1024 	}
1025 
1026 	return freed;
1027 }
1028 
1029 /* Renege 'needed' bytes from the ordering queue. */
1030 static __u16 sctp_ulpq_renege_order(struct sctp_ulpq *ulpq, __u16 needed)
1031 {
1032 	return sctp_ulpq_renege_list(ulpq, &ulpq->lobby, needed);
1033 }
1034 
1035 /* Renege 'needed' bytes from the reassembly queue. */
1036 static __u16 sctp_ulpq_renege_frags(struct sctp_ulpq *ulpq, __u16 needed)
1037 {
1038 	return sctp_ulpq_renege_list(ulpq, &ulpq->reasm, needed);
1039 }
1040 
1041 /* Partial deliver the first message as there is pressure on rwnd. */
1042 void sctp_ulpq_partial_delivery(struct sctp_ulpq *ulpq,
1043 				gfp_t gfp)
1044 {
1045 	struct sctp_ulpevent *event;
1046 	struct sctp_association *asoc;
1047 	struct sctp_sock *sp;
1048 	__u32 ctsn;
1049 	struct sk_buff *skb;
1050 
1051 	asoc = ulpq->asoc;
1052 	sp = sctp_sk(asoc->base.sk);
1053 
1054 	/* If the association is already in Partial Delivery mode
1055 	 * we have nothing to do.
1056 	 */
1057 	if (ulpq->pd_mode)
1058 		return;
1059 
1060 	/* Data must be at or below the Cumulative TSN ACK Point to
1061 	 * start partial delivery.
1062 	 */
1063 	skb = skb_peek(&asoc->ulpq.reasm);
1064 	if (skb != NULL) {
1065 		ctsn = sctp_skb2event(skb)->tsn;
1066 		if (!TSN_lte(ctsn, sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map)))
1067 			return;
1068 	}
1069 
1070 	/* If the user enabled fragment interleave socket option,
1071 	 * multiple associations can enter partial delivery.
1072 	 * Otherwise, we can only enter partial delivery if the
1073 	 * socket is not in partial deliver mode.
1074 	 */
1075 	if (sp->frag_interleave || atomic_read(&sp->pd_mode) == 0) {
1076 		/* Is partial delivery possible?  */
1077 		event = sctp_ulpq_retrieve_first(ulpq);
1078 		/* Send event to the ULP.   */
1079 		if (event) {
1080 			sctp_ulpq_tail_event(ulpq, event);
1081 			sctp_ulpq_set_pd(ulpq);
1082 			return;
1083 		}
1084 	}
1085 }
1086 
1087 /* Renege some packets to make room for an incoming chunk.  */
1088 void sctp_ulpq_renege(struct sctp_ulpq *ulpq, struct sctp_chunk *chunk,
1089 		      gfp_t gfp)
1090 {
1091 	struct sctp_association *asoc;
1092 	__u16 needed, freed;
1093 
1094 	asoc = ulpq->asoc;
1095 
1096 	if (chunk) {
1097 		needed = ntohs(chunk->chunk_hdr->length);
1098 		needed -= sizeof(struct sctp_data_chunk);
1099 	} else
1100 		needed = SCTP_DEFAULT_MAXWINDOW;
1101 
1102 	freed = 0;
1103 
1104 	if (skb_queue_empty(&asoc->base.sk->sk_receive_queue)) {
1105 		freed = sctp_ulpq_renege_order(ulpq, needed);
1106 		if (freed < needed) {
1107 			freed += sctp_ulpq_renege_frags(ulpq, needed - freed);
1108 		}
1109 	}
1110 	/* If able to free enough room, accept this chunk. */
1111 	if (chunk && (freed >= needed)) {
1112 		int retval;
1113 		retval = sctp_ulpq_tail_data(ulpq, chunk, gfp);
1114 		/*
1115 		 * Enter partial delivery if chunk has not been
1116 		 * delivered; otherwise, drain the reassembly queue.
1117 		 */
1118 		if (retval <= 0)
1119 			sctp_ulpq_partial_delivery(ulpq, gfp);
1120 		else if (retval == 1)
1121 			sctp_ulpq_reasm_drain(ulpq);
1122 	}
1123 
1124 	sk_mem_reclaim(asoc->base.sk);
1125 }
1126 
1127 
1128 
1129 /* Notify the application if an association is aborted and in
1130  * partial delivery mode.  Send up any pending received messages.
1131  */
1132 void sctp_ulpq_abort_pd(struct sctp_ulpq *ulpq, gfp_t gfp)
1133 {
1134 	struct sctp_ulpevent *ev = NULL;
1135 	struct sock *sk;
1136 	struct sctp_sock *sp;
1137 
1138 	if (!ulpq->pd_mode)
1139 		return;
1140 
1141 	sk = ulpq->asoc->base.sk;
1142 	sp = sctp_sk(sk);
1143 	if (sctp_ulpevent_type_enabled(SCTP_PARTIAL_DELIVERY_EVENT,
1144 				       &sctp_sk(sk)->subscribe))
1145 		ev = sctp_ulpevent_make_pdapi(ulpq->asoc,
1146 					      SCTP_PARTIAL_DELIVERY_ABORTED,
1147 					      gfp);
1148 	if (ev)
1149 		__skb_queue_tail(&sk->sk_receive_queue, sctp_event2skb(ev));
1150 
1151 	/* If there is data waiting, send it up the socket now. */
1152 	if ((sctp_ulpq_clear_pd(ulpq) || ev) && !sp->data_ready_signalled) {
1153 		sp->data_ready_signalled = 1;
1154 		sk->sk_data_ready(sk);
1155 	}
1156 }
1157