xref: /linux-6.15/net/core/dev.c (revision ffb7ed19)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <[email protected]>
8  *				Mark Evans, <[email protected]>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <[email protected]>
12  *		Alan Cox <[email protected]>
13  *		David Hinds <[email protected]>
14  *		Alexey Kuznetsov <[email protected]>
15  *		Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_rx_queue.h>
160 #include <net/page_pool/types.h>
161 #include <net/page_pool/helpers.h>
162 #include <net/page_pool/memory_provider.h>
163 #include <net/rps.h>
164 #include <linux/phy_link_topology.h>
165 
166 #include "dev.h"
167 #include "devmem.h"
168 #include "net-sysfs.h"
169 
170 static DEFINE_SPINLOCK(ptype_lock);
171 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
172 
173 static int netif_rx_internal(struct sk_buff *skb);
174 static int call_netdevice_notifiers_extack(unsigned long val,
175 					   struct net_device *dev,
176 					   struct netlink_ext_ack *extack);
177 
178 static DEFINE_MUTEX(ifalias_mutex);
179 
180 /* protects napi_hash addition/deletion and napi_gen_id */
181 static DEFINE_SPINLOCK(napi_hash_lock);
182 
183 static unsigned int napi_gen_id = NR_CPUS;
184 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
185 
186 static inline void dev_base_seq_inc(struct net *net)
187 {
188 	unsigned int val = net->dev_base_seq + 1;
189 
190 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
191 }
192 
193 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
194 {
195 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
196 
197 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
198 }
199 
200 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
201 {
202 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
203 }
204 
205 #ifndef CONFIG_PREEMPT_RT
206 
207 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
208 
209 static int __init setup_backlog_napi_threads(char *arg)
210 {
211 	static_branch_enable(&use_backlog_threads_key);
212 	return 0;
213 }
214 early_param("thread_backlog_napi", setup_backlog_napi_threads);
215 
216 static bool use_backlog_threads(void)
217 {
218 	return static_branch_unlikely(&use_backlog_threads_key);
219 }
220 
221 #else
222 
223 static bool use_backlog_threads(void)
224 {
225 	return true;
226 }
227 
228 #endif
229 
230 static inline void backlog_lock_irq_save(struct softnet_data *sd,
231 					 unsigned long *flags)
232 {
233 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
234 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
235 	else
236 		local_irq_save(*flags);
237 }
238 
239 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
240 {
241 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
242 		spin_lock_irq(&sd->input_pkt_queue.lock);
243 	else
244 		local_irq_disable();
245 }
246 
247 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
248 					      unsigned long *flags)
249 {
250 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
251 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
252 	else
253 		local_irq_restore(*flags);
254 }
255 
256 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
257 {
258 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
259 		spin_unlock_irq(&sd->input_pkt_queue.lock);
260 	else
261 		local_irq_enable();
262 }
263 
264 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
265 						       const char *name)
266 {
267 	struct netdev_name_node *name_node;
268 
269 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
270 	if (!name_node)
271 		return NULL;
272 	INIT_HLIST_NODE(&name_node->hlist);
273 	name_node->dev = dev;
274 	name_node->name = name;
275 	return name_node;
276 }
277 
278 static struct netdev_name_node *
279 netdev_name_node_head_alloc(struct net_device *dev)
280 {
281 	struct netdev_name_node *name_node;
282 
283 	name_node = netdev_name_node_alloc(dev, dev->name);
284 	if (!name_node)
285 		return NULL;
286 	INIT_LIST_HEAD(&name_node->list);
287 	return name_node;
288 }
289 
290 static void netdev_name_node_free(struct netdev_name_node *name_node)
291 {
292 	kfree(name_node);
293 }
294 
295 static void netdev_name_node_add(struct net *net,
296 				 struct netdev_name_node *name_node)
297 {
298 	hlist_add_head_rcu(&name_node->hlist,
299 			   dev_name_hash(net, name_node->name));
300 }
301 
302 static void netdev_name_node_del(struct netdev_name_node *name_node)
303 {
304 	hlist_del_rcu(&name_node->hlist);
305 }
306 
307 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
308 							const char *name)
309 {
310 	struct hlist_head *head = dev_name_hash(net, name);
311 	struct netdev_name_node *name_node;
312 
313 	hlist_for_each_entry(name_node, head, hlist)
314 		if (!strcmp(name_node->name, name))
315 			return name_node;
316 	return NULL;
317 }
318 
319 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
320 							    const char *name)
321 {
322 	struct hlist_head *head = dev_name_hash(net, name);
323 	struct netdev_name_node *name_node;
324 
325 	hlist_for_each_entry_rcu(name_node, head, hlist)
326 		if (!strcmp(name_node->name, name))
327 			return name_node;
328 	return NULL;
329 }
330 
331 bool netdev_name_in_use(struct net *net, const char *name)
332 {
333 	return netdev_name_node_lookup(net, name);
334 }
335 EXPORT_SYMBOL(netdev_name_in_use);
336 
337 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
338 {
339 	struct netdev_name_node *name_node;
340 	struct net *net = dev_net(dev);
341 
342 	name_node = netdev_name_node_lookup(net, name);
343 	if (name_node)
344 		return -EEXIST;
345 	name_node = netdev_name_node_alloc(dev, name);
346 	if (!name_node)
347 		return -ENOMEM;
348 	netdev_name_node_add(net, name_node);
349 	/* The node that holds dev->name acts as a head of per-device list. */
350 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
351 
352 	return 0;
353 }
354 
355 static void netdev_name_node_alt_free(struct rcu_head *head)
356 {
357 	struct netdev_name_node *name_node =
358 		container_of(head, struct netdev_name_node, rcu);
359 
360 	kfree(name_node->name);
361 	netdev_name_node_free(name_node);
362 }
363 
364 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
365 {
366 	netdev_name_node_del(name_node);
367 	list_del(&name_node->list);
368 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
369 }
370 
371 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
372 {
373 	struct netdev_name_node *name_node;
374 	struct net *net = dev_net(dev);
375 
376 	name_node = netdev_name_node_lookup(net, name);
377 	if (!name_node)
378 		return -ENOENT;
379 	/* lookup might have found our primary name or a name belonging
380 	 * to another device.
381 	 */
382 	if (name_node == dev->name_node || name_node->dev != dev)
383 		return -EINVAL;
384 
385 	__netdev_name_node_alt_destroy(name_node);
386 	return 0;
387 }
388 
389 static void netdev_name_node_alt_flush(struct net_device *dev)
390 {
391 	struct netdev_name_node *name_node, *tmp;
392 
393 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
394 		list_del(&name_node->list);
395 		netdev_name_node_alt_free(&name_node->rcu);
396 	}
397 }
398 
399 /* Device list insertion */
400 static void list_netdevice(struct net_device *dev)
401 {
402 	struct netdev_name_node *name_node;
403 	struct net *net = dev_net(dev);
404 
405 	ASSERT_RTNL();
406 
407 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
408 	netdev_name_node_add(net, dev->name_node);
409 	hlist_add_head_rcu(&dev->index_hlist,
410 			   dev_index_hash(net, dev->ifindex));
411 
412 	netdev_for_each_altname(dev, name_node)
413 		netdev_name_node_add(net, name_node);
414 
415 	/* We reserved the ifindex, this can't fail */
416 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
417 
418 	dev_base_seq_inc(net);
419 }
420 
421 /* Device list removal
422  * caller must respect a RCU grace period before freeing/reusing dev
423  */
424 static void unlist_netdevice(struct net_device *dev)
425 {
426 	struct netdev_name_node *name_node;
427 	struct net *net = dev_net(dev);
428 
429 	ASSERT_RTNL();
430 
431 	xa_erase(&net->dev_by_index, dev->ifindex);
432 
433 	netdev_for_each_altname(dev, name_node)
434 		netdev_name_node_del(name_node);
435 
436 	/* Unlink dev from the device chain */
437 	list_del_rcu(&dev->dev_list);
438 	netdev_name_node_del(dev->name_node);
439 	hlist_del_rcu(&dev->index_hlist);
440 
441 	dev_base_seq_inc(dev_net(dev));
442 }
443 
444 /*
445  *	Our notifier list
446  */
447 
448 static RAW_NOTIFIER_HEAD(netdev_chain);
449 
450 /*
451  *	Device drivers call our routines to queue packets here. We empty the
452  *	queue in the local softnet handler.
453  */
454 
455 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
456 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
457 };
458 EXPORT_PER_CPU_SYMBOL(softnet_data);
459 
460 /* Page_pool has a lockless array/stack to alloc/recycle pages.
461  * PP consumers must pay attention to run APIs in the appropriate context
462  * (e.g. NAPI context).
463  */
464 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
465 
466 #ifdef CONFIG_LOCKDEP
467 /*
468  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
469  * according to dev->type
470  */
471 static const unsigned short netdev_lock_type[] = {
472 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
473 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
474 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
475 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
476 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
477 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
478 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
479 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
480 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
481 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
482 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
483 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
484 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
485 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
486 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
487 
488 static const char *const netdev_lock_name[] = {
489 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
490 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
491 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
492 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
493 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
494 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
495 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
496 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
497 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
498 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
499 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
500 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
501 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
502 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
503 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
504 
505 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 
508 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
509 {
510 	int i;
511 
512 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
513 		if (netdev_lock_type[i] == dev_type)
514 			return i;
515 	/* the last key is used by default */
516 	return ARRAY_SIZE(netdev_lock_type) - 1;
517 }
518 
519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 						 unsigned short dev_type)
521 {
522 	int i;
523 
524 	i = netdev_lock_pos(dev_type);
525 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
526 				   netdev_lock_name[i]);
527 }
528 
529 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
530 {
531 	int i;
532 
533 	i = netdev_lock_pos(dev->type);
534 	lockdep_set_class_and_name(&dev->addr_list_lock,
535 				   &netdev_addr_lock_key[i],
536 				   netdev_lock_name[i]);
537 }
538 #else
539 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
540 						 unsigned short dev_type)
541 {
542 }
543 
544 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
545 {
546 }
547 #endif
548 
549 /*******************************************************************************
550  *
551  *		Protocol management and registration routines
552  *
553  *******************************************************************************/
554 
555 
556 /*
557  *	Add a protocol ID to the list. Now that the input handler is
558  *	smarter we can dispense with all the messy stuff that used to be
559  *	here.
560  *
561  *	BEWARE!!! Protocol handlers, mangling input packets,
562  *	MUST BE last in hash buckets and checking protocol handlers
563  *	MUST start from promiscuous ptype_all chain in net_bh.
564  *	It is true now, do not change it.
565  *	Explanation follows: if protocol handler, mangling packet, will
566  *	be the first on list, it is not able to sense, that packet
567  *	is cloned and should be copied-on-write, so that it will
568  *	change it and subsequent readers will get broken packet.
569  *							--ANK (980803)
570  */
571 
572 static inline struct list_head *ptype_head(const struct packet_type *pt)
573 {
574 	if (pt->type == htons(ETH_P_ALL))
575 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
576 	else
577 		return pt->dev ? &pt->dev->ptype_specific :
578 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
579 }
580 
581 /**
582  *	dev_add_pack - add packet handler
583  *	@pt: packet type declaration
584  *
585  *	Add a protocol handler to the networking stack. The passed &packet_type
586  *	is linked into kernel lists and may not be freed until it has been
587  *	removed from the kernel lists.
588  *
589  *	This call does not sleep therefore it can not
590  *	guarantee all CPU's that are in middle of receiving packets
591  *	will see the new packet type (until the next received packet).
592  */
593 
594 void dev_add_pack(struct packet_type *pt)
595 {
596 	struct list_head *head = ptype_head(pt);
597 
598 	spin_lock(&ptype_lock);
599 	list_add_rcu(&pt->list, head);
600 	spin_unlock(&ptype_lock);
601 }
602 EXPORT_SYMBOL(dev_add_pack);
603 
604 /**
605  *	__dev_remove_pack	 - remove packet handler
606  *	@pt: packet type declaration
607  *
608  *	Remove a protocol handler that was previously added to the kernel
609  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
610  *	from the kernel lists and can be freed or reused once this function
611  *	returns.
612  *
613  *      The packet type might still be in use by receivers
614  *	and must not be freed until after all the CPU's have gone
615  *	through a quiescent state.
616  */
617 void __dev_remove_pack(struct packet_type *pt)
618 {
619 	struct list_head *head = ptype_head(pt);
620 	struct packet_type *pt1;
621 
622 	spin_lock(&ptype_lock);
623 
624 	list_for_each_entry(pt1, head, list) {
625 		if (pt == pt1) {
626 			list_del_rcu(&pt->list);
627 			goto out;
628 		}
629 	}
630 
631 	pr_warn("dev_remove_pack: %p not found\n", pt);
632 out:
633 	spin_unlock(&ptype_lock);
634 }
635 EXPORT_SYMBOL(__dev_remove_pack);
636 
637 /**
638  *	dev_remove_pack	 - remove packet handler
639  *	@pt: packet type declaration
640  *
641  *	Remove a protocol handler that was previously added to the kernel
642  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
643  *	from the kernel lists and can be freed or reused once this function
644  *	returns.
645  *
646  *	This call sleeps to guarantee that no CPU is looking at the packet
647  *	type after return.
648  */
649 void dev_remove_pack(struct packet_type *pt)
650 {
651 	__dev_remove_pack(pt);
652 
653 	synchronize_net();
654 }
655 EXPORT_SYMBOL(dev_remove_pack);
656 
657 
658 /*******************************************************************************
659  *
660  *			    Device Interface Subroutines
661  *
662  *******************************************************************************/
663 
664 /**
665  *	dev_get_iflink	- get 'iflink' value of a interface
666  *	@dev: targeted interface
667  *
668  *	Indicates the ifindex the interface is linked to.
669  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
670  */
671 
672 int dev_get_iflink(const struct net_device *dev)
673 {
674 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
675 		return dev->netdev_ops->ndo_get_iflink(dev);
676 
677 	return READ_ONCE(dev->ifindex);
678 }
679 EXPORT_SYMBOL(dev_get_iflink);
680 
681 /**
682  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
683  *	@dev: targeted interface
684  *	@skb: The packet.
685  *
686  *	For better visibility of tunnel traffic OVS needs to retrieve
687  *	egress tunnel information for a packet. Following API allows
688  *	user to get this info.
689  */
690 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
691 {
692 	struct ip_tunnel_info *info;
693 
694 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
695 		return -EINVAL;
696 
697 	info = skb_tunnel_info_unclone(skb);
698 	if (!info)
699 		return -ENOMEM;
700 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
701 		return -EINVAL;
702 
703 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
704 }
705 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
706 
707 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
708 {
709 	int k = stack->num_paths++;
710 
711 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
712 		return NULL;
713 
714 	return &stack->path[k];
715 }
716 
717 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
718 			  struct net_device_path_stack *stack)
719 {
720 	const struct net_device *last_dev;
721 	struct net_device_path_ctx ctx = {
722 		.dev	= dev,
723 	};
724 	struct net_device_path *path;
725 	int ret = 0;
726 
727 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
728 	stack->num_paths = 0;
729 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
730 		last_dev = ctx.dev;
731 		path = dev_fwd_path(stack);
732 		if (!path)
733 			return -1;
734 
735 		memset(path, 0, sizeof(struct net_device_path));
736 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
737 		if (ret < 0)
738 			return -1;
739 
740 		if (WARN_ON_ONCE(last_dev == ctx.dev))
741 			return -1;
742 	}
743 
744 	if (!ctx.dev)
745 		return ret;
746 
747 	path = dev_fwd_path(stack);
748 	if (!path)
749 		return -1;
750 	path->type = DEV_PATH_ETHERNET;
751 	path->dev = ctx.dev;
752 
753 	return ret;
754 }
755 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
756 
757 /* must be called under rcu_read_lock(), as we dont take a reference */
758 static struct napi_struct *napi_by_id(unsigned int napi_id)
759 {
760 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
761 	struct napi_struct *napi;
762 
763 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
764 		if (napi->napi_id == napi_id)
765 			return napi;
766 
767 	return NULL;
768 }
769 
770 /* must be called under rcu_read_lock(), as we dont take a reference */
771 static struct napi_struct *
772 netdev_napi_by_id(struct net *net, unsigned int napi_id)
773 {
774 	struct napi_struct *napi;
775 
776 	napi = napi_by_id(napi_id);
777 	if (!napi)
778 		return NULL;
779 
780 	if (WARN_ON_ONCE(!napi->dev))
781 		return NULL;
782 	if (!net_eq(net, dev_net(napi->dev)))
783 		return NULL;
784 
785 	return napi;
786 }
787 
788 /**
789  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
790  *	@net: the applicable net namespace
791  *	@napi_id: ID of a NAPI of a target device
792  *
793  *	Find a NAPI instance with @napi_id. Lock its device.
794  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
795  *	netdev_unlock() must be called to release it.
796  *
797  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
798  */
799 struct napi_struct *
800 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
801 {
802 	struct napi_struct *napi;
803 	struct net_device *dev;
804 
805 	rcu_read_lock();
806 	napi = netdev_napi_by_id(net, napi_id);
807 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
808 		rcu_read_unlock();
809 		return NULL;
810 	}
811 
812 	dev = napi->dev;
813 	dev_hold(dev);
814 	rcu_read_unlock();
815 
816 	dev = __netdev_put_lock(dev);
817 	if (!dev)
818 		return NULL;
819 
820 	rcu_read_lock();
821 	napi = netdev_napi_by_id(net, napi_id);
822 	if (napi && napi->dev != dev)
823 		napi = NULL;
824 	rcu_read_unlock();
825 
826 	if (!napi)
827 		netdev_unlock(dev);
828 	return napi;
829 }
830 
831 /**
832  *	__dev_get_by_name	- find a device by its name
833  *	@net: the applicable net namespace
834  *	@name: name to find
835  *
836  *	Find an interface by name. Must be called under RTNL semaphore.
837  *	If the name is found a pointer to the device is returned.
838  *	If the name is not found then %NULL is returned. The
839  *	reference counters are not incremented so the caller must be
840  *	careful with locks.
841  */
842 
843 struct net_device *__dev_get_by_name(struct net *net, const char *name)
844 {
845 	struct netdev_name_node *node_name;
846 
847 	node_name = netdev_name_node_lookup(net, name);
848 	return node_name ? node_name->dev : NULL;
849 }
850 EXPORT_SYMBOL(__dev_get_by_name);
851 
852 /**
853  * dev_get_by_name_rcu	- find a device by its name
854  * @net: the applicable net namespace
855  * @name: name to find
856  *
857  * Find an interface by name.
858  * If the name is found a pointer to the device is returned.
859  * If the name is not found then %NULL is returned.
860  * The reference counters are not incremented so the caller must be
861  * careful with locks. The caller must hold RCU lock.
862  */
863 
864 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
865 {
866 	struct netdev_name_node *node_name;
867 
868 	node_name = netdev_name_node_lookup_rcu(net, name);
869 	return node_name ? node_name->dev : NULL;
870 }
871 EXPORT_SYMBOL(dev_get_by_name_rcu);
872 
873 /* Deprecated for new users, call netdev_get_by_name() instead */
874 struct net_device *dev_get_by_name(struct net *net, const char *name)
875 {
876 	struct net_device *dev;
877 
878 	rcu_read_lock();
879 	dev = dev_get_by_name_rcu(net, name);
880 	dev_hold(dev);
881 	rcu_read_unlock();
882 	return dev;
883 }
884 EXPORT_SYMBOL(dev_get_by_name);
885 
886 /**
887  *	netdev_get_by_name() - find a device by its name
888  *	@net: the applicable net namespace
889  *	@name: name to find
890  *	@tracker: tracking object for the acquired reference
891  *	@gfp: allocation flags for the tracker
892  *
893  *	Find an interface by name. This can be called from any
894  *	context and does its own locking. The returned handle has
895  *	the usage count incremented and the caller must use netdev_put() to
896  *	release it when it is no longer needed. %NULL is returned if no
897  *	matching device is found.
898  */
899 struct net_device *netdev_get_by_name(struct net *net, const char *name,
900 				      netdevice_tracker *tracker, gfp_t gfp)
901 {
902 	struct net_device *dev;
903 
904 	dev = dev_get_by_name(net, name);
905 	if (dev)
906 		netdev_tracker_alloc(dev, tracker, gfp);
907 	return dev;
908 }
909 EXPORT_SYMBOL(netdev_get_by_name);
910 
911 /**
912  *	__dev_get_by_index - find a device by its ifindex
913  *	@net: the applicable net namespace
914  *	@ifindex: index of device
915  *
916  *	Search for an interface by index. Returns %NULL if the device
917  *	is not found or a pointer to the device. The device has not
918  *	had its reference counter increased so the caller must be careful
919  *	about locking. The caller must hold the RTNL semaphore.
920  */
921 
922 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
923 {
924 	struct net_device *dev;
925 	struct hlist_head *head = dev_index_hash(net, ifindex);
926 
927 	hlist_for_each_entry(dev, head, index_hlist)
928 		if (dev->ifindex == ifindex)
929 			return dev;
930 
931 	return NULL;
932 }
933 EXPORT_SYMBOL(__dev_get_by_index);
934 
935 /**
936  *	dev_get_by_index_rcu - find a device by its ifindex
937  *	@net: the applicable net namespace
938  *	@ifindex: index of device
939  *
940  *	Search for an interface by index. Returns %NULL if the device
941  *	is not found or a pointer to the device. The device has not
942  *	had its reference counter increased so the caller must be careful
943  *	about locking. The caller must hold RCU lock.
944  */
945 
946 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
947 {
948 	struct net_device *dev;
949 	struct hlist_head *head = dev_index_hash(net, ifindex);
950 
951 	hlist_for_each_entry_rcu(dev, head, index_hlist)
952 		if (dev->ifindex == ifindex)
953 			return dev;
954 
955 	return NULL;
956 }
957 EXPORT_SYMBOL(dev_get_by_index_rcu);
958 
959 /* Deprecated for new users, call netdev_get_by_index() instead */
960 struct net_device *dev_get_by_index(struct net *net, int ifindex)
961 {
962 	struct net_device *dev;
963 
964 	rcu_read_lock();
965 	dev = dev_get_by_index_rcu(net, ifindex);
966 	dev_hold(dev);
967 	rcu_read_unlock();
968 	return dev;
969 }
970 EXPORT_SYMBOL(dev_get_by_index);
971 
972 /**
973  *	netdev_get_by_index() - find a device by its ifindex
974  *	@net: the applicable net namespace
975  *	@ifindex: index of device
976  *	@tracker: tracking object for the acquired reference
977  *	@gfp: allocation flags for the tracker
978  *
979  *	Search for an interface by index. Returns NULL if the device
980  *	is not found or a pointer to the device. The device returned has
981  *	had a reference added and the pointer is safe until the user calls
982  *	netdev_put() to indicate they have finished with it.
983  */
984 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
985 				       netdevice_tracker *tracker, gfp_t gfp)
986 {
987 	struct net_device *dev;
988 
989 	dev = dev_get_by_index(net, ifindex);
990 	if (dev)
991 		netdev_tracker_alloc(dev, tracker, gfp);
992 	return dev;
993 }
994 EXPORT_SYMBOL(netdev_get_by_index);
995 
996 /**
997  *	dev_get_by_napi_id - find a device by napi_id
998  *	@napi_id: ID of the NAPI struct
999  *
1000  *	Search for an interface by NAPI ID. Returns %NULL if the device
1001  *	is not found or a pointer to the device. The device has not had
1002  *	its reference counter increased so the caller must be careful
1003  *	about locking. The caller must hold RCU lock.
1004  */
1005 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1006 {
1007 	struct napi_struct *napi;
1008 
1009 	WARN_ON_ONCE(!rcu_read_lock_held());
1010 
1011 	if (!napi_id_valid(napi_id))
1012 		return NULL;
1013 
1014 	napi = napi_by_id(napi_id);
1015 
1016 	return napi ? napi->dev : NULL;
1017 }
1018 
1019 /* Release the held reference on the net_device, and if the net_device
1020  * is still registered try to lock the instance lock. If device is being
1021  * unregistered NULL will be returned (but the reference has been released,
1022  * either way!)
1023  *
1024  * This helper is intended for locking net_device after it has been looked up
1025  * using a lockless lookup helper. Lock prevents the instance from going away.
1026  */
1027 struct net_device *__netdev_put_lock(struct net_device *dev)
1028 {
1029 	netdev_lock(dev);
1030 	if (dev->reg_state > NETREG_REGISTERED) {
1031 		netdev_unlock(dev);
1032 		dev_put(dev);
1033 		return NULL;
1034 	}
1035 	dev_put(dev);
1036 	return dev;
1037 }
1038 
1039 /**
1040  *	netdev_get_by_index_lock() - find a device by its ifindex
1041  *	@net: the applicable net namespace
1042  *	@ifindex: index of device
1043  *
1044  *	Search for an interface by index. If a valid device
1045  *	with @ifindex is found it will be returned with netdev->lock held.
1046  *	netdev_unlock() must be called to release it.
1047  *
1048  *	Return: pointer to a device with lock held, NULL if not found.
1049  */
1050 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1051 {
1052 	struct net_device *dev;
1053 
1054 	dev = dev_get_by_index(net, ifindex);
1055 	if (!dev)
1056 		return NULL;
1057 
1058 	return __netdev_put_lock(dev);
1059 }
1060 
1061 struct net_device *
1062 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1063 		    unsigned long *index)
1064 {
1065 	if (dev)
1066 		netdev_unlock(dev);
1067 
1068 	do {
1069 		rcu_read_lock();
1070 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1071 		if (!dev) {
1072 			rcu_read_unlock();
1073 			return NULL;
1074 		}
1075 		dev_hold(dev);
1076 		rcu_read_unlock();
1077 
1078 		dev = __netdev_put_lock(dev);
1079 		if (dev)
1080 			return dev;
1081 
1082 		(*index)++;
1083 	} while (true);
1084 }
1085 
1086 static DEFINE_SEQLOCK(netdev_rename_lock);
1087 
1088 void netdev_copy_name(struct net_device *dev, char *name)
1089 {
1090 	unsigned int seq;
1091 
1092 	do {
1093 		seq = read_seqbegin(&netdev_rename_lock);
1094 		strscpy(name, dev->name, IFNAMSIZ);
1095 	} while (read_seqretry(&netdev_rename_lock, seq));
1096 }
1097 
1098 /**
1099  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1100  *	@net: network namespace
1101  *	@name: a pointer to the buffer where the name will be stored.
1102  *	@ifindex: the ifindex of the interface to get the name from.
1103  */
1104 int netdev_get_name(struct net *net, char *name, int ifindex)
1105 {
1106 	struct net_device *dev;
1107 	int ret;
1108 
1109 	rcu_read_lock();
1110 
1111 	dev = dev_get_by_index_rcu(net, ifindex);
1112 	if (!dev) {
1113 		ret = -ENODEV;
1114 		goto out;
1115 	}
1116 
1117 	netdev_copy_name(dev, name);
1118 
1119 	ret = 0;
1120 out:
1121 	rcu_read_unlock();
1122 	return ret;
1123 }
1124 
1125 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1126 			 const char *ha)
1127 {
1128 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1129 }
1130 
1131 /**
1132  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1133  *	@net: the applicable net namespace
1134  *	@type: media type of device
1135  *	@ha: hardware address
1136  *
1137  *	Search for an interface by MAC address. Returns NULL if the device
1138  *	is not found or a pointer to the device.
1139  *	The caller must hold RCU.
1140  *	The returned device has not had its ref count increased
1141  *	and the caller must therefore be careful about locking
1142  *
1143  */
1144 
1145 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1146 				       const char *ha)
1147 {
1148 	struct net_device *dev;
1149 
1150 	for_each_netdev_rcu(net, dev)
1151 		if (dev_addr_cmp(dev, type, ha))
1152 			return dev;
1153 
1154 	return NULL;
1155 }
1156 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1157 
1158 /**
1159  * dev_getbyhwaddr() - find a device by its hardware address
1160  * @net: the applicable net namespace
1161  * @type: media type of device
1162  * @ha: hardware address
1163  *
1164  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1165  * rtnl_lock.
1166  *
1167  * Context: rtnl_lock() must be held.
1168  * Return: pointer to the net_device, or NULL if not found
1169  */
1170 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1171 				   const char *ha)
1172 {
1173 	struct net_device *dev;
1174 
1175 	ASSERT_RTNL();
1176 	for_each_netdev(net, dev)
1177 		if (dev_addr_cmp(dev, type, ha))
1178 			return dev;
1179 
1180 	return NULL;
1181 }
1182 EXPORT_SYMBOL(dev_getbyhwaddr);
1183 
1184 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1185 {
1186 	struct net_device *dev, *ret = NULL;
1187 
1188 	rcu_read_lock();
1189 	for_each_netdev_rcu(net, dev)
1190 		if (dev->type == type) {
1191 			dev_hold(dev);
1192 			ret = dev;
1193 			break;
1194 		}
1195 	rcu_read_unlock();
1196 	return ret;
1197 }
1198 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1199 
1200 /**
1201  *	__dev_get_by_flags - find any device with given flags
1202  *	@net: the applicable net namespace
1203  *	@if_flags: IFF_* values
1204  *	@mask: bitmask of bits in if_flags to check
1205  *
1206  *	Search for any interface with the given flags. Returns NULL if a device
1207  *	is not found or a pointer to the device. Must be called inside
1208  *	rtnl_lock(), and result refcount is unchanged.
1209  */
1210 
1211 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1212 				      unsigned short mask)
1213 {
1214 	struct net_device *dev, *ret;
1215 
1216 	ASSERT_RTNL();
1217 
1218 	ret = NULL;
1219 	for_each_netdev(net, dev) {
1220 		if (((dev->flags ^ if_flags) & mask) == 0) {
1221 			ret = dev;
1222 			break;
1223 		}
1224 	}
1225 	return ret;
1226 }
1227 EXPORT_SYMBOL(__dev_get_by_flags);
1228 
1229 /**
1230  *	dev_valid_name - check if name is okay for network device
1231  *	@name: name string
1232  *
1233  *	Network device names need to be valid file names to
1234  *	allow sysfs to work.  We also disallow any kind of
1235  *	whitespace.
1236  */
1237 bool dev_valid_name(const char *name)
1238 {
1239 	if (*name == '\0')
1240 		return false;
1241 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1242 		return false;
1243 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1244 		return false;
1245 
1246 	while (*name) {
1247 		if (*name == '/' || *name == ':' || isspace(*name))
1248 			return false;
1249 		name++;
1250 	}
1251 	return true;
1252 }
1253 EXPORT_SYMBOL(dev_valid_name);
1254 
1255 /**
1256  *	__dev_alloc_name - allocate a name for a device
1257  *	@net: network namespace to allocate the device name in
1258  *	@name: name format string
1259  *	@res: result name string
1260  *
1261  *	Passed a format string - eg "lt%d" it will try and find a suitable
1262  *	id. It scans list of devices to build up a free map, then chooses
1263  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1264  *	while allocating the name and adding the device in order to avoid
1265  *	duplicates.
1266  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1267  *	Returns the number of the unit assigned or a negative errno code.
1268  */
1269 
1270 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1271 {
1272 	int i = 0;
1273 	const char *p;
1274 	const int max_netdevices = 8*PAGE_SIZE;
1275 	unsigned long *inuse;
1276 	struct net_device *d;
1277 	char buf[IFNAMSIZ];
1278 
1279 	/* Verify the string as this thing may have come from the user.
1280 	 * There must be one "%d" and no other "%" characters.
1281 	 */
1282 	p = strchr(name, '%');
1283 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1284 		return -EINVAL;
1285 
1286 	/* Use one page as a bit array of possible slots */
1287 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1288 	if (!inuse)
1289 		return -ENOMEM;
1290 
1291 	for_each_netdev(net, d) {
1292 		struct netdev_name_node *name_node;
1293 
1294 		netdev_for_each_altname(d, name_node) {
1295 			if (!sscanf(name_node->name, name, &i))
1296 				continue;
1297 			if (i < 0 || i >= max_netdevices)
1298 				continue;
1299 
1300 			/* avoid cases where sscanf is not exact inverse of printf */
1301 			snprintf(buf, IFNAMSIZ, name, i);
1302 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1303 				__set_bit(i, inuse);
1304 		}
1305 		if (!sscanf(d->name, name, &i))
1306 			continue;
1307 		if (i < 0 || i >= max_netdevices)
1308 			continue;
1309 
1310 		/* avoid cases where sscanf is not exact inverse of printf */
1311 		snprintf(buf, IFNAMSIZ, name, i);
1312 		if (!strncmp(buf, d->name, IFNAMSIZ))
1313 			__set_bit(i, inuse);
1314 	}
1315 
1316 	i = find_first_zero_bit(inuse, max_netdevices);
1317 	bitmap_free(inuse);
1318 	if (i == max_netdevices)
1319 		return -ENFILE;
1320 
1321 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1322 	strscpy(buf, name, IFNAMSIZ);
1323 	snprintf(res, IFNAMSIZ, buf, i);
1324 	return i;
1325 }
1326 
1327 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1328 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1329 			       const char *want_name, char *out_name,
1330 			       int dup_errno)
1331 {
1332 	if (!dev_valid_name(want_name))
1333 		return -EINVAL;
1334 
1335 	if (strchr(want_name, '%'))
1336 		return __dev_alloc_name(net, want_name, out_name);
1337 
1338 	if (netdev_name_in_use(net, want_name))
1339 		return -dup_errno;
1340 	if (out_name != want_name)
1341 		strscpy(out_name, want_name, IFNAMSIZ);
1342 	return 0;
1343 }
1344 
1345 /**
1346  *	dev_alloc_name - allocate a name for a device
1347  *	@dev: device
1348  *	@name: name format string
1349  *
1350  *	Passed a format string - eg "lt%d" it will try and find a suitable
1351  *	id. It scans list of devices to build up a free map, then chooses
1352  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1353  *	while allocating the name and adding the device in order to avoid
1354  *	duplicates.
1355  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1356  *	Returns the number of the unit assigned or a negative errno code.
1357  */
1358 
1359 int dev_alloc_name(struct net_device *dev, const char *name)
1360 {
1361 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1362 }
1363 EXPORT_SYMBOL(dev_alloc_name);
1364 
1365 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1366 			      const char *name)
1367 {
1368 	int ret;
1369 
1370 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1371 	return ret < 0 ? ret : 0;
1372 }
1373 
1374 int netif_change_name(struct net_device *dev, const char *newname)
1375 {
1376 	struct net *net = dev_net(dev);
1377 	unsigned char old_assign_type;
1378 	char oldname[IFNAMSIZ];
1379 	int err = 0;
1380 	int ret;
1381 
1382 	ASSERT_RTNL_NET(net);
1383 
1384 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1385 		return 0;
1386 
1387 	memcpy(oldname, dev->name, IFNAMSIZ);
1388 
1389 	write_seqlock_bh(&netdev_rename_lock);
1390 	err = dev_get_valid_name(net, dev, newname);
1391 	write_sequnlock_bh(&netdev_rename_lock);
1392 
1393 	if (err < 0)
1394 		return err;
1395 
1396 	if (oldname[0] && !strchr(oldname, '%'))
1397 		netdev_info(dev, "renamed from %s%s\n", oldname,
1398 			    dev->flags & IFF_UP ? " (while UP)" : "");
1399 
1400 	old_assign_type = dev->name_assign_type;
1401 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1402 
1403 rollback:
1404 	ret = device_rename(&dev->dev, dev->name);
1405 	if (ret) {
1406 		write_seqlock_bh(&netdev_rename_lock);
1407 		memcpy(dev->name, oldname, IFNAMSIZ);
1408 		write_sequnlock_bh(&netdev_rename_lock);
1409 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1410 		return ret;
1411 	}
1412 
1413 	netdev_adjacent_rename_links(dev, oldname);
1414 
1415 	netdev_name_node_del(dev->name_node);
1416 
1417 	synchronize_net();
1418 
1419 	netdev_name_node_add(net, dev->name_node);
1420 
1421 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1422 	ret = notifier_to_errno(ret);
1423 
1424 	if (ret) {
1425 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1426 		if (err >= 0) {
1427 			err = ret;
1428 			write_seqlock_bh(&netdev_rename_lock);
1429 			memcpy(dev->name, oldname, IFNAMSIZ);
1430 			write_sequnlock_bh(&netdev_rename_lock);
1431 			memcpy(oldname, newname, IFNAMSIZ);
1432 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1433 			old_assign_type = NET_NAME_RENAMED;
1434 			goto rollback;
1435 		} else {
1436 			netdev_err(dev, "name change rollback failed: %d\n",
1437 				   ret);
1438 		}
1439 	}
1440 
1441 	return err;
1442 }
1443 
1444 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1445 {
1446 	struct dev_ifalias *new_alias = NULL;
1447 
1448 	if (len >= IFALIASZ)
1449 		return -EINVAL;
1450 
1451 	if (len) {
1452 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1453 		if (!new_alias)
1454 			return -ENOMEM;
1455 
1456 		memcpy(new_alias->ifalias, alias, len);
1457 		new_alias->ifalias[len] = 0;
1458 	}
1459 
1460 	mutex_lock(&ifalias_mutex);
1461 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1462 					mutex_is_locked(&ifalias_mutex));
1463 	mutex_unlock(&ifalias_mutex);
1464 
1465 	if (new_alias)
1466 		kfree_rcu(new_alias, rcuhead);
1467 
1468 	return len;
1469 }
1470 
1471 /**
1472  *	dev_get_alias - get ifalias of a device
1473  *	@dev: device
1474  *	@name: buffer to store name of ifalias
1475  *	@len: size of buffer
1476  *
1477  *	get ifalias for a device.  Caller must make sure dev cannot go
1478  *	away,  e.g. rcu read lock or own a reference count to device.
1479  */
1480 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1481 {
1482 	const struct dev_ifalias *alias;
1483 	int ret = 0;
1484 
1485 	rcu_read_lock();
1486 	alias = rcu_dereference(dev->ifalias);
1487 	if (alias)
1488 		ret = snprintf(name, len, "%s", alias->ifalias);
1489 	rcu_read_unlock();
1490 
1491 	return ret;
1492 }
1493 
1494 /**
1495  *	netdev_features_change - device changes features
1496  *	@dev: device to cause notification
1497  *
1498  *	Called to indicate a device has changed features.
1499  */
1500 void netdev_features_change(struct net_device *dev)
1501 {
1502 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1503 }
1504 EXPORT_SYMBOL(netdev_features_change);
1505 
1506 /**
1507  *	netdev_state_change - device changes state
1508  *	@dev: device to cause notification
1509  *
1510  *	Called to indicate a device has changed state. This function calls
1511  *	the notifier chains for netdev_chain and sends a NEWLINK message
1512  *	to the routing socket.
1513  */
1514 void netdev_state_change(struct net_device *dev)
1515 {
1516 	if (dev->flags & IFF_UP) {
1517 		struct netdev_notifier_change_info change_info = {
1518 			.info.dev = dev,
1519 		};
1520 
1521 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1522 					      &change_info.info);
1523 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1524 	}
1525 }
1526 EXPORT_SYMBOL(netdev_state_change);
1527 
1528 /**
1529  * __netdev_notify_peers - notify network peers about existence of @dev,
1530  * to be called when rtnl lock is already held.
1531  * @dev: network device
1532  *
1533  * Generate traffic such that interested network peers are aware of
1534  * @dev, such as by generating a gratuitous ARP. This may be used when
1535  * a device wants to inform the rest of the network about some sort of
1536  * reconfiguration such as a failover event or virtual machine
1537  * migration.
1538  */
1539 void __netdev_notify_peers(struct net_device *dev)
1540 {
1541 	ASSERT_RTNL();
1542 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1543 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1544 }
1545 EXPORT_SYMBOL(__netdev_notify_peers);
1546 
1547 /**
1548  * netdev_notify_peers - notify network peers about existence of @dev
1549  * @dev: network device
1550  *
1551  * Generate traffic such that interested network peers are aware of
1552  * @dev, such as by generating a gratuitous ARP. This may be used when
1553  * a device wants to inform the rest of the network about some sort of
1554  * reconfiguration such as a failover event or virtual machine
1555  * migration.
1556  */
1557 void netdev_notify_peers(struct net_device *dev)
1558 {
1559 	rtnl_lock();
1560 	__netdev_notify_peers(dev);
1561 	rtnl_unlock();
1562 }
1563 EXPORT_SYMBOL(netdev_notify_peers);
1564 
1565 static int napi_threaded_poll(void *data);
1566 
1567 static int napi_kthread_create(struct napi_struct *n)
1568 {
1569 	int err = 0;
1570 
1571 	/* Create and wake up the kthread once to put it in
1572 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1573 	 * warning and work with loadavg.
1574 	 */
1575 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1576 				n->dev->name, n->napi_id);
1577 	if (IS_ERR(n->thread)) {
1578 		err = PTR_ERR(n->thread);
1579 		pr_err("kthread_run failed with err %d\n", err);
1580 		n->thread = NULL;
1581 	}
1582 
1583 	return err;
1584 }
1585 
1586 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1587 {
1588 	const struct net_device_ops *ops = dev->netdev_ops;
1589 	int ret;
1590 
1591 	ASSERT_RTNL();
1592 	dev_addr_check(dev);
1593 
1594 	if (!netif_device_present(dev)) {
1595 		/* may be detached because parent is runtime-suspended */
1596 		if (dev->dev.parent)
1597 			pm_runtime_resume(dev->dev.parent);
1598 		if (!netif_device_present(dev))
1599 			return -ENODEV;
1600 	}
1601 
1602 	/* Block netpoll from trying to do any rx path servicing.
1603 	 * If we don't do this there is a chance ndo_poll_controller
1604 	 * or ndo_poll may be running while we open the device
1605 	 */
1606 	netpoll_poll_disable(dev);
1607 
1608 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1609 	ret = notifier_to_errno(ret);
1610 	if (ret)
1611 		return ret;
1612 
1613 	set_bit(__LINK_STATE_START, &dev->state);
1614 
1615 	netdev_ops_assert_locked(dev);
1616 
1617 	if (ops->ndo_validate_addr)
1618 		ret = ops->ndo_validate_addr(dev);
1619 
1620 	if (!ret && ops->ndo_open)
1621 		ret = ops->ndo_open(dev);
1622 
1623 	netpoll_poll_enable(dev);
1624 
1625 	if (ret)
1626 		clear_bit(__LINK_STATE_START, &dev->state);
1627 	else {
1628 		netif_set_up(dev, true);
1629 		dev_set_rx_mode(dev);
1630 		dev_activate(dev);
1631 		add_device_randomness(dev->dev_addr, dev->addr_len);
1632 	}
1633 
1634 	return ret;
1635 }
1636 
1637 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1638 {
1639 	int ret;
1640 
1641 	if (dev->flags & IFF_UP)
1642 		return 0;
1643 
1644 	ret = __dev_open(dev, extack);
1645 	if (ret < 0)
1646 		return ret;
1647 
1648 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1649 	call_netdevice_notifiers(NETDEV_UP, dev);
1650 
1651 	return ret;
1652 }
1653 
1654 static void __dev_close_many(struct list_head *head)
1655 {
1656 	struct net_device *dev;
1657 
1658 	ASSERT_RTNL();
1659 	might_sleep();
1660 
1661 	list_for_each_entry(dev, head, close_list) {
1662 		/* Temporarily disable netpoll until the interface is down */
1663 		netpoll_poll_disable(dev);
1664 
1665 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1666 
1667 		clear_bit(__LINK_STATE_START, &dev->state);
1668 
1669 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1670 		 * can be even on different cpu. So just clear netif_running().
1671 		 *
1672 		 * dev->stop() will invoke napi_disable() on all of it's
1673 		 * napi_struct instances on this device.
1674 		 */
1675 		smp_mb__after_atomic(); /* Commit netif_running(). */
1676 	}
1677 
1678 	dev_deactivate_many(head);
1679 
1680 	list_for_each_entry(dev, head, close_list) {
1681 		const struct net_device_ops *ops = dev->netdev_ops;
1682 
1683 		/*
1684 		 *	Call the device specific close. This cannot fail.
1685 		 *	Only if device is UP
1686 		 *
1687 		 *	We allow it to be called even after a DETACH hot-plug
1688 		 *	event.
1689 		 */
1690 
1691 		netdev_ops_assert_locked(dev);
1692 
1693 		if (ops->ndo_stop)
1694 			ops->ndo_stop(dev);
1695 
1696 		netif_set_up(dev, false);
1697 		netpoll_poll_enable(dev);
1698 	}
1699 }
1700 
1701 static void __dev_close(struct net_device *dev)
1702 {
1703 	LIST_HEAD(single);
1704 
1705 	list_add(&dev->close_list, &single);
1706 	__dev_close_many(&single);
1707 	list_del(&single);
1708 }
1709 
1710 void dev_close_many(struct list_head *head, bool unlink)
1711 {
1712 	struct net_device *dev, *tmp;
1713 
1714 	/* Remove the devices that don't need to be closed */
1715 	list_for_each_entry_safe(dev, tmp, head, close_list)
1716 		if (!(dev->flags & IFF_UP))
1717 			list_del_init(&dev->close_list);
1718 
1719 	__dev_close_many(head);
1720 
1721 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1722 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1723 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1724 		if (unlink)
1725 			list_del_init(&dev->close_list);
1726 	}
1727 }
1728 EXPORT_SYMBOL(dev_close_many);
1729 
1730 void netif_close(struct net_device *dev)
1731 {
1732 	if (dev->flags & IFF_UP) {
1733 		LIST_HEAD(single);
1734 
1735 		list_add(&dev->close_list, &single);
1736 		dev_close_many(&single, true);
1737 		list_del(&single);
1738 	}
1739 }
1740 
1741 int dev_setup_tc(struct net_device *dev, enum tc_setup_type type,
1742 		 void *type_data)
1743 {
1744 	const struct net_device_ops *ops = dev->netdev_ops;
1745 	int ret;
1746 
1747 	ASSERT_RTNL();
1748 
1749 	if (!ops->ndo_setup_tc)
1750 		return -EOPNOTSUPP;
1751 
1752 	netdev_lock_ops(dev);
1753 	ret = ops->ndo_setup_tc(dev, type, type_data);
1754 	netdev_unlock_ops(dev);
1755 
1756 	return ret;
1757 }
1758 EXPORT_SYMBOL(dev_setup_tc);
1759 
1760 /**
1761  *	dev_disable_lro - disable Large Receive Offload on a device
1762  *	@dev: device
1763  *
1764  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1765  *	called under RTNL.  This is needed if received packets may be
1766  *	forwarded to another interface.
1767  */
1768 void dev_disable_lro(struct net_device *dev)
1769 {
1770 	struct net_device *lower_dev;
1771 	struct list_head *iter;
1772 
1773 	dev->wanted_features &= ~NETIF_F_LRO;
1774 	netdev_update_features(dev);
1775 
1776 	if (unlikely(dev->features & NETIF_F_LRO))
1777 		netdev_WARN(dev, "failed to disable LRO!\n");
1778 
1779 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1780 		dev_disable_lro(lower_dev);
1781 }
1782 EXPORT_SYMBOL(dev_disable_lro);
1783 
1784 /**
1785  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1786  *	@dev: device
1787  *
1788  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1789  *	called under RTNL.  This is needed if Generic XDP is installed on
1790  *	the device.
1791  */
1792 static void dev_disable_gro_hw(struct net_device *dev)
1793 {
1794 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1795 	netdev_update_features(dev);
1796 
1797 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1798 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1799 }
1800 
1801 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1802 {
1803 #define N(val) 						\
1804 	case NETDEV_##val:				\
1805 		return "NETDEV_" __stringify(val);
1806 	switch (cmd) {
1807 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1808 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1809 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1810 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1811 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1812 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1813 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1814 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1815 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1816 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1817 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1818 	N(XDP_FEAT_CHANGE)
1819 	}
1820 #undef N
1821 	return "UNKNOWN_NETDEV_EVENT";
1822 }
1823 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1824 
1825 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1826 				   struct net_device *dev)
1827 {
1828 	struct netdev_notifier_info info = {
1829 		.dev = dev,
1830 	};
1831 
1832 	return nb->notifier_call(nb, val, &info);
1833 }
1834 
1835 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1836 					     struct net_device *dev)
1837 {
1838 	int err;
1839 
1840 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1841 	err = notifier_to_errno(err);
1842 	if (err)
1843 		return err;
1844 
1845 	if (!(dev->flags & IFF_UP))
1846 		return 0;
1847 
1848 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1849 	return 0;
1850 }
1851 
1852 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1853 						struct net_device *dev)
1854 {
1855 	if (dev->flags & IFF_UP) {
1856 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1857 					dev);
1858 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1859 	}
1860 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1861 }
1862 
1863 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1864 						 struct net *net)
1865 {
1866 	struct net_device *dev;
1867 	int err;
1868 
1869 	for_each_netdev(net, dev) {
1870 		err = call_netdevice_register_notifiers(nb, dev);
1871 		if (err)
1872 			goto rollback;
1873 	}
1874 	return 0;
1875 
1876 rollback:
1877 	for_each_netdev_continue_reverse(net, dev)
1878 		call_netdevice_unregister_notifiers(nb, dev);
1879 	return err;
1880 }
1881 
1882 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1883 						    struct net *net)
1884 {
1885 	struct net_device *dev;
1886 
1887 	for_each_netdev(net, dev)
1888 		call_netdevice_unregister_notifiers(nb, dev);
1889 }
1890 
1891 static int dev_boot_phase = 1;
1892 
1893 /**
1894  * register_netdevice_notifier - register a network notifier block
1895  * @nb: notifier
1896  *
1897  * Register a notifier to be called when network device events occur.
1898  * The notifier passed is linked into the kernel structures and must
1899  * not be reused until it has been unregistered. A negative errno code
1900  * is returned on a failure.
1901  *
1902  * When registered all registration and up events are replayed
1903  * to the new notifier to allow device to have a race free
1904  * view of the network device list.
1905  */
1906 
1907 int register_netdevice_notifier(struct notifier_block *nb)
1908 {
1909 	struct net *net;
1910 	int err;
1911 
1912 	/* Close race with setup_net() and cleanup_net() */
1913 	down_write(&pernet_ops_rwsem);
1914 
1915 	/* When RTNL is removed, we need protection for netdev_chain. */
1916 	rtnl_lock();
1917 
1918 	err = raw_notifier_chain_register(&netdev_chain, nb);
1919 	if (err)
1920 		goto unlock;
1921 	if (dev_boot_phase)
1922 		goto unlock;
1923 	for_each_net(net) {
1924 		__rtnl_net_lock(net);
1925 		err = call_netdevice_register_net_notifiers(nb, net);
1926 		__rtnl_net_unlock(net);
1927 		if (err)
1928 			goto rollback;
1929 	}
1930 
1931 unlock:
1932 	rtnl_unlock();
1933 	up_write(&pernet_ops_rwsem);
1934 	return err;
1935 
1936 rollback:
1937 	for_each_net_continue_reverse(net) {
1938 		__rtnl_net_lock(net);
1939 		call_netdevice_unregister_net_notifiers(nb, net);
1940 		__rtnl_net_unlock(net);
1941 	}
1942 
1943 	raw_notifier_chain_unregister(&netdev_chain, nb);
1944 	goto unlock;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier);
1947 
1948 /**
1949  * unregister_netdevice_notifier - unregister a network notifier block
1950  * @nb: notifier
1951  *
1952  * Unregister a notifier previously registered by
1953  * register_netdevice_notifier(). The notifier is unlinked into the
1954  * kernel structures and may then be reused. A negative errno code
1955  * is returned on a failure.
1956  *
1957  * After unregistering unregister and down device events are synthesized
1958  * for all devices on the device list to the removed notifier to remove
1959  * the need for special case cleanup code.
1960  */
1961 
1962 int unregister_netdevice_notifier(struct notifier_block *nb)
1963 {
1964 	struct net *net;
1965 	int err;
1966 
1967 	/* Close race with setup_net() and cleanup_net() */
1968 	down_write(&pernet_ops_rwsem);
1969 	rtnl_lock();
1970 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1971 	if (err)
1972 		goto unlock;
1973 
1974 	for_each_net(net) {
1975 		__rtnl_net_lock(net);
1976 		call_netdevice_unregister_net_notifiers(nb, net);
1977 		__rtnl_net_unlock(net);
1978 	}
1979 
1980 unlock:
1981 	rtnl_unlock();
1982 	up_write(&pernet_ops_rwsem);
1983 	return err;
1984 }
1985 EXPORT_SYMBOL(unregister_netdevice_notifier);
1986 
1987 static int __register_netdevice_notifier_net(struct net *net,
1988 					     struct notifier_block *nb,
1989 					     bool ignore_call_fail)
1990 {
1991 	int err;
1992 
1993 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1994 	if (err)
1995 		return err;
1996 	if (dev_boot_phase)
1997 		return 0;
1998 
1999 	err = call_netdevice_register_net_notifiers(nb, net);
2000 	if (err && !ignore_call_fail)
2001 		goto chain_unregister;
2002 
2003 	return 0;
2004 
2005 chain_unregister:
2006 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2007 	return err;
2008 }
2009 
2010 static int __unregister_netdevice_notifier_net(struct net *net,
2011 					       struct notifier_block *nb)
2012 {
2013 	int err;
2014 
2015 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2016 	if (err)
2017 		return err;
2018 
2019 	call_netdevice_unregister_net_notifiers(nb, net);
2020 	return 0;
2021 }
2022 
2023 /**
2024  * register_netdevice_notifier_net - register a per-netns network notifier block
2025  * @net: network namespace
2026  * @nb: notifier
2027  *
2028  * Register a notifier to be called when network device events occur.
2029  * The notifier passed is linked into the kernel structures and must
2030  * not be reused until it has been unregistered. A negative errno code
2031  * is returned on a failure.
2032  *
2033  * When registered all registration and up events are replayed
2034  * to the new notifier to allow device to have a race free
2035  * view of the network device list.
2036  */
2037 
2038 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2039 {
2040 	int err;
2041 
2042 	rtnl_net_lock(net);
2043 	err = __register_netdevice_notifier_net(net, nb, false);
2044 	rtnl_net_unlock(net);
2045 
2046 	return err;
2047 }
2048 EXPORT_SYMBOL(register_netdevice_notifier_net);
2049 
2050 /**
2051  * unregister_netdevice_notifier_net - unregister a per-netns
2052  *                                     network notifier block
2053  * @net: network namespace
2054  * @nb: notifier
2055  *
2056  * Unregister a notifier previously registered by
2057  * register_netdevice_notifier_net(). The notifier is unlinked from the
2058  * kernel structures and may then be reused. A negative errno code
2059  * is returned on a failure.
2060  *
2061  * After unregistering unregister and down device events are synthesized
2062  * for all devices on the device list to the removed notifier to remove
2063  * the need for special case cleanup code.
2064  */
2065 
2066 int unregister_netdevice_notifier_net(struct net *net,
2067 				      struct notifier_block *nb)
2068 {
2069 	int err;
2070 
2071 	rtnl_net_lock(net);
2072 	err = __unregister_netdevice_notifier_net(net, nb);
2073 	rtnl_net_unlock(net);
2074 
2075 	return err;
2076 }
2077 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2078 
2079 static void __move_netdevice_notifier_net(struct net *src_net,
2080 					  struct net *dst_net,
2081 					  struct notifier_block *nb)
2082 {
2083 	__unregister_netdevice_notifier_net(src_net, nb);
2084 	__register_netdevice_notifier_net(dst_net, nb, true);
2085 }
2086 
2087 static void rtnl_net_dev_lock(struct net_device *dev)
2088 {
2089 	bool again;
2090 
2091 	do {
2092 		struct net *net;
2093 
2094 		again = false;
2095 
2096 		/* netns might be being dismantled. */
2097 		rcu_read_lock();
2098 		net = dev_net_rcu(dev);
2099 		net_passive_inc(net);
2100 		rcu_read_unlock();
2101 
2102 		rtnl_net_lock(net);
2103 
2104 #ifdef CONFIG_NET_NS
2105 		/* dev might have been moved to another netns. */
2106 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2107 			rtnl_net_unlock(net);
2108 			net_passive_dec(net);
2109 			again = true;
2110 		}
2111 #endif
2112 	} while (again);
2113 }
2114 
2115 static void rtnl_net_dev_unlock(struct net_device *dev)
2116 {
2117 	struct net *net = dev_net(dev);
2118 
2119 	rtnl_net_unlock(net);
2120 	net_passive_dec(net);
2121 }
2122 
2123 int register_netdevice_notifier_dev_net(struct net_device *dev,
2124 					struct notifier_block *nb,
2125 					struct netdev_net_notifier *nn)
2126 {
2127 	int err;
2128 
2129 	rtnl_net_dev_lock(dev);
2130 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2131 	if (!err) {
2132 		nn->nb = nb;
2133 		list_add(&nn->list, &dev->net_notifier_list);
2134 	}
2135 	rtnl_net_dev_unlock(dev);
2136 
2137 	return err;
2138 }
2139 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2140 
2141 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2142 					  struct notifier_block *nb,
2143 					  struct netdev_net_notifier *nn)
2144 {
2145 	int err;
2146 
2147 	rtnl_net_dev_lock(dev);
2148 	list_del(&nn->list);
2149 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2150 	rtnl_net_dev_unlock(dev);
2151 
2152 	return err;
2153 }
2154 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2155 
2156 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2157 					     struct net *net)
2158 {
2159 	struct netdev_net_notifier *nn;
2160 
2161 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2162 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2163 }
2164 
2165 /**
2166  *	call_netdevice_notifiers_info - call all network notifier blocks
2167  *	@val: value passed unmodified to notifier function
2168  *	@info: notifier information data
2169  *
2170  *	Call all network notifier blocks.  Parameters and return value
2171  *	are as for raw_notifier_call_chain().
2172  */
2173 
2174 int call_netdevice_notifiers_info(unsigned long val,
2175 				  struct netdev_notifier_info *info)
2176 {
2177 	struct net *net = dev_net(info->dev);
2178 	int ret;
2179 
2180 	ASSERT_RTNL();
2181 
2182 	/* Run per-netns notifier block chain first, then run the global one.
2183 	 * Hopefully, one day, the global one is going to be removed after
2184 	 * all notifier block registrators get converted to be per-netns.
2185 	 */
2186 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2187 	if (ret & NOTIFY_STOP_MASK)
2188 		return ret;
2189 	return raw_notifier_call_chain(&netdev_chain, val, info);
2190 }
2191 
2192 /**
2193  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2194  *	                                       for and rollback on error
2195  *	@val_up: value passed unmodified to notifier function
2196  *	@val_down: value passed unmodified to the notifier function when
2197  *	           recovering from an error on @val_up
2198  *	@info: notifier information data
2199  *
2200  *	Call all per-netns network notifier blocks, but not notifier blocks on
2201  *	the global notifier chain. Parameters and return value are as for
2202  *	raw_notifier_call_chain_robust().
2203  */
2204 
2205 static int
2206 call_netdevice_notifiers_info_robust(unsigned long val_up,
2207 				     unsigned long val_down,
2208 				     struct netdev_notifier_info *info)
2209 {
2210 	struct net *net = dev_net(info->dev);
2211 
2212 	ASSERT_RTNL();
2213 
2214 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2215 					      val_up, val_down, info);
2216 }
2217 
2218 static int call_netdevice_notifiers_extack(unsigned long val,
2219 					   struct net_device *dev,
2220 					   struct netlink_ext_ack *extack)
2221 {
2222 	struct netdev_notifier_info info = {
2223 		.dev = dev,
2224 		.extack = extack,
2225 	};
2226 
2227 	return call_netdevice_notifiers_info(val, &info);
2228 }
2229 
2230 /**
2231  *	call_netdevice_notifiers - call all network notifier blocks
2232  *      @val: value passed unmodified to notifier function
2233  *      @dev: net_device pointer passed unmodified to notifier function
2234  *
2235  *	Call all network notifier blocks.  Parameters and return value
2236  *	are as for raw_notifier_call_chain().
2237  */
2238 
2239 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2240 {
2241 	return call_netdevice_notifiers_extack(val, dev, NULL);
2242 }
2243 EXPORT_SYMBOL(call_netdevice_notifiers);
2244 
2245 /**
2246  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2247  *	@val: value passed unmodified to notifier function
2248  *	@dev: net_device pointer passed unmodified to notifier function
2249  *	@arg: additional u32 argument passed to the notifier function
2250  *
2251  *	Call all network notifier blocks.  Parameters and return value
2252  *	are as for raw_notifier_call_chain().
2253  */
2254 static int call_netdevice_notifiers_mtu(unsigned long val,
2255 					struct net_device *dev, u32 arg)
2256 {
2257 	struct netdev_notifier_info_ext info = {
2258 		.info.dev = dev,
2259 		.ext.mtu = arg,
2260 	};
2261 
2262 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2263 
2264 	return call_netdevice_notifiers_info(val, &info.info);
2265 }
2266 
2267 #ifdef CONFIG_NET_INGRESS
2268 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2269 
2270 void net_inc_ingress_queue(void)
2271 {
2272 	static_branch_inc(&ingress_needed_key);
2273 }
2274 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2275 
2276 void net_dec_ingress_queue(void)
2277 {
2278 	static_branch_dec(&ingress_needed_key);
2279 }
2280 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2281 #endif
2282 
2283 #ifdef CONFIG_NET_EGRESS
2284 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2285 
2286 void net_inc_egress_queue(void)
2287 {
2288 	static_branch_inc(&egress_needed_key);
2289 }
2290 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2291 
2292 void net_dec_egress_queue(void)
2293 {
2294 	static_branch_dec(&egress_needed_key);
2295 }
2296 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2297 #endif
2298 
2299 #ifdef CONFIG_NET_CLS_ACT
2300 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2301 EXPORT_SYMBOL(tcf_sw_enabled_key);
2302 #endif
2303 
2304 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2305 EXPORT_SYMBOL(netstamp_needed_key);
2306 #ifdef CONFIG_JUMP_LABEL
2307 static atomic_t netstamp_needed_deferred;
2308 static atomic_t netstamp_wanted;
2309 static void netstamp_clear(struct work_struct *work)
2310 {
2311 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2312 	int wanted;
2313 
2314 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2315 	if (wanted > 0)
2316 		static_branch_enable(&netstamp_needed_key);
2317 	else
2318 		static_branch_disable(&netstamp_needed_key);
2319 }
2320 static DECLARE_WORK(netstamp_work, netstamp_clear);
2321 #endif
2322 
2323 void net_enable_timestamp(void)
2324 {
2325 #ifdef CONFIG_JUMP_LABEL
2326 	int wanted = atomic_read(&netstamp_wanted);
2327 
2328 	while (wanted > 0) {
2329 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2330 			return;
2331 	}
2332 	atomic_inc(&netstamp_needed_deferred);
2333 	schedule_work(&netstamp_work);
2334 #else
2335 	static_branch_inc(&netstamp_needed_key);
2336 #endif
2337 }
2338 EXPORT_SYMBOL(net_enable_timestamp);
2339 
2340 void net_disable_timestamp(void)
2341 {
2342 #ifdef CONFIG_JUMP_LABEL
2343 	int wanted = atomic_read(&netstamp_wanted);
2344 
2345 	while (wanted > 1) {
2346 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2347 			return;
2348 	}
2349 	atomic_dec(&netstamp_needed_deferred);
2350 	schedule_work(&netstamp_work);
2351 #else
2352 	static_branch_dec(&netstamp_needed_key);
2353 #endif
2354 }
2355 EXPORT_SYMBOL(net_disable_timestamp);
2356 
2357 static inline void net_timestamp_set(struct sk_buff *skb)
2358 {
2359 	skb->tstamp = 0;
2360 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2361 	if (static_branch_unlikely(&netstamp_needed_key))
2362 		skb->tstamp = ktime_get_real();
2363 }
2364 
2365 #define net_timestamp_check(COND, SKB)				\
2366 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2367 		if ((COND) && !(SKB)->tstamp)			\
2368 			(SKB)->tstamp = ktime_get_real();	\
2369 	}							\
2370 
2371 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2372 {
2373 	return __is_skb_forwardable(dev, skb, true);
2374 }
2375 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2376 
2377 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2378 			      bool check_mtu)
2379 {
2380 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2381 
2382 	if (likely(!ret)) {
2383 		skb->protocol = eth_type_trans(skb, dev);
2384 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2385 	}
2386 
2387 	return ret;
2388 }
2389 
2390 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2391 {
2392 	return __dev_forward_skb2(dev, skb, true);
2393 }
2394 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2395 
2396 /**
2397  * dev_forward_skb - loopback an skb to another netif
2398  *
2399  * @dev: destination network device
2400  * @skb: buffer to forward
2401  *
2402  * return values:
2403  *	NET_RX_SUCCESS	(no congestion)
2404  *	NET_RX_DROP     (packet was dropped, but freed)
2405  *
2406  * dev_forward_skb can be used for injecting an skb from the
2407  * start_xmit function of one device into the receive queue
2408  * of another device.
2409  *
2410  * The receiving device may be in another namespace, so
2411  * we have to clear all information in the skb that could
2412  * impact namespace isolation.
2413  */
2414 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2415 {
2416 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2417 }
2418 EXPORT_SYMBOL_GPL(dev_forward_skb);
2419 
2420 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2421 {
2422 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2423 }
2424 
2425 static inline int deliver_skb(struct sk_buff *skb,
2426 			      struct packet_type *pt_prev,
2427 			      struct net_device *orig_dev)
2428 {
2429 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2430 		return -ENOMEM;
2431 	refcount_inc(&skb->users);
2432 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2433 }
2434 
2435 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2436 					  struct packet_type **pt,
2437 					  struct net_device *orig_dev,
2438 					  __be16 type,
2439 					  struct list_head *ptype_list)
2440 {
2441 	struct packet_type *ptype, *pt_prev = *pt;
2442 
2443 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2444 		if (ptype->type != type)
2445 			continue;
2446 		if (pt_prev)
2447 			deliver_skb(skb, pt_prev, orig_dev);
2448 		pt_prev = ptype;
2449 	}
2450 	*pt = pt_prev;
2451 }
2452 
2453 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2454 {
2455 	if (!ptype->af_packet_priv || !skb->sk)
2456 		return false;
2457 
2458 	if (ptype->id_match)
2459 		return ptype->id_match(ptype, skb->sk);
2460 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2461 		return true;
2462 
2463 	return false;
2464 }
2465 
2466 /**
2467  * dev_nit_active - return true if any network interface taps are in use
2468  *
2469  * @dev: network device to check for the presence of taps
2470  */
2471 bool dev_nit_active(struct net_device *dev)
2472 {
2473 	return !list_empty(&net_hotdata.ptype_all) ||
2474 	       !list_empty(&dev->ptype_all);
2475 }
2476 EXPORT_SYMBOL_GPL(dev_nit_active);
2477 
2478 /*
2479  *	Support routine. Sends outgoing frames to any network
2480  *	taps currently in use.
2481  */
2482 
2483 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2484 {
2485 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2486 	struct packet_type *ptype, *pt_prev = NULL;
2487 	struct sk_buff *skb2 = NULL;
2488 
2489 	rcu_read_lock();
2490 again:
2491 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2492 		if (READ_ONCE(ptype->ignore_outgoing))
2493 			continue;
2494 
2495 		/* Never send packets back to the socket
2496 		 * they originated from - MvS ([email protected])
2497 		 */
2498 		if (skb_loop_sk(ptype, skb))
2499 			continue;
2500 
2501 		if (pt_prev) {
2502 			deliver_skb(skb2, pt_prev, skb->dev);
2503 			pt_prev = ptype;
2504 			continue;
2505 		}
2506 
2507 		/* need to clone skb, done only once */
2508 		skb2 = skb_clone(skb, GFP_ATOMIC);
2509 		if (!skb2)
2510 			goto out_unlock;
2511 
2512 		net_timestamp_set(skb2);
2513 
2514 		/* skb->nh should be correctly
2515 		 * set by sender, so that the second statement is
2516 		 * just protection against buggy protocols.
2517 		 */
2518 		skb_reset_mac_header(skb2);
2519 
2520 		if (skb_network_header(skb2) < skb2->data ||
2521 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2522 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2523 					     ntohs(skb2->protocol),
2524 					     dev->name);
2525 			skb_reset_network_header(skb2);
2526 		}
2527 
2528 		skb2->transport_header = skb2->network_header;
2529 		skb2->pkt_type = PACKET_OUTGOING;
2530 		pt_prev = ptype;
2531 	}
2532 
2533 	if (ptype_list == &net_hotdata.ptype_all) {
2534 		ptype_list = &dev->ptype_all;
2535 		goto again;
2536 	}
2537 out_unlock:
2538 	if (pt_prev) {
2539 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2540 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2541 		else
2542 			kfree_skb(skb2);
2543 	}
2544 	rcu_read_unlock();
2545 }
2546 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2547 
2548 /**
2549  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2550  * @dev: Network device
2551  * @txq: number of queues available
2552  *
2553  * If real_num_tx_queues is changed the tc mappings may no longer be
2554  * valid. To resolve this verify the tc mapping remains valid and if
2555  * not NULL the mapping. With no priorities mapping to this
2556  * offset/count pair it will no longer be used. In the worst case TC0
2557  * is invalid nothing can be done so disable priority mappings. If is
2558  * expected that drivers will fix this mapping if they can before
2559  * calling netif_set_real_num_tx_queues.
2560  */
2561 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2562 {
2563 	int i;
2564 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2565 
2566 	/* If TC0 is invalidated disable TC mapping */
2567 	if (tc->offset + tc->count > txq) {
2568 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2569 		dev->num_tc = 0;
2570 		return;
2571 	}
2572 
2573 	/* Invalidated prio to tc mappings set to TC0 */
2574 	for (i = 1; i < TC_BITMASK + 1; i++) {
2575 		int q = netdev_get_prio_tc_map(dev, i);
2576 
2577 		tc = &dev->tc_to_txq[q];
2578 		if (tc->offset + tc->count > txq) {
2579 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2580 				    i, q);
2581 			netdev_set_prio_tc_map(dev, i, 0);
2582 		}
2583 	}
2584 }
2585 
2586 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2587 {
2588 	if (dev->num_tc) {
2589 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2590 		int i;
2591 
2592 		/* walk through the TCs and see if it falls into any of them */
2593 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2594 			if ((txq - tc->offset) < tc->count)
2595 				return i;
2596 		}
2597 
2598 		/* didn't find it, just return -1 to indicate no match */
2599 		return -1;
2600 	}
2601 
2602 	return 0;
2603 }
2604 EXPORT_SYMBOL(netdev_txq_to_tc);
2605 
2606 #ifdef CONFIG_XPS
2607 static struct static_key xps_needed __read_mostly;
2608 static struct static_key xps_rxqs_needed __read_mostly;
2609 static DEFINE_MUTEX(xps_map_mutex);
2610 #define xmap_dereference(P)		\
2611 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2612 
2613 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2614 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2615 {
2616 	struct xps_map *map = NULL;
2617 	int pos;
2618 
2619 	map = xmap_dereference(dev_maps->attr_map[tci]);
2620 	if (!map)
2621 		return false;
2622 
2623 	for (pos = map->len; pos--;) {
2624 		if (map->queues[pos] != index)
2625 			continue;
2626 
2627 		if (map->len > 1) {
2628 			map->queues[pos] = map->queues[--map->len];
2629 			break;
2630 		}
2631 
2632 		if (old_maps)
2633 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2634 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2635 		kfree_rcu(map, rcu);
2636 		return false;
2637 	}
2638 
2639 	return true;
2640 }
2641 
2642 static bool remove_xps_queue_cpu(struct net_device *dev,
2643 				 struct xps_dev_maps *dev_maps,
2644 				 int cpu, u16 offset, u16 count)
2645 {
2646 	int num_tc = dev_maps->num_tc;
2647 	bool active = false;
2648 	int tci;
2649 
2650 	for (tci = cpu * num_tc; num_tc--; tci++) {
2651 		int i, j;
2652 
2653 		for (i = count, j = offset; i--; j++) {
2654 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2655 				break;
2656 		}
2657 
2658 		active |= i < 0;
2659 	}
2660 
2661 	return active;
2662 }
2663 
2664 static void reset_xps_maps(struct net_device *dev,
2665 			   struct xps_dev_maps *dev_maps,
2666 			   enum xps_map_type type)
2667 {
2668 	static_key_slow_dec_cpuslocked(&xps_needed);
2669 	if (type == XPS_RXQS)
2670 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2671 
2672 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2673 
2674 	kfree_rcu(dev_maps, rcu);
2675 }
2676 
2677 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2678 			   u16 offset, u16 count)
2679 {
2680 	struct xps_dev_maps *dev_maps;
2681 	bool active = false;
2682 	int i, j;
2683 
2684 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2685 	if (!dev_maps)
2686 		return;
2687 
2688 	for (j = 0; j < dev_maps->nr_ids; j++)
2689 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2690 	if (!active)
2691 		reset_xps_maps(dev, dev_maps, type);
2692 
2693 	if (type == XPS_CPUS) {
2694 		for (i = offset + (count - 1); count--; i--)
2695 			netdev_queue_numa_node_write(
2696 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2697 	}
2698 }
2699 
2700 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2701 				   u16 count)
2702 {
2703 	if (!static_key_false(&xps_needed))
2704 		return;
2705 
2706 	cpus_read_lock();
2707 	mutex_lock(&xps_map_mutex);
2708 
2709 	if (static_key_false(&xps_rxqs_needed))
2710 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2711 
2712 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2713 
2714 	mutex_unlock(&xps_map_mutex);
2715 	cpus_read_unlock();
2716 }
2717 
2718 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2719 {
2720 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2721 }
2722 
2723 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2724 				      u16 index, bool is_rxqs_map)
2725 {
2726 	struct xps_map *new_map;
2727 	int alloc_len = XPS_MIN_MAP_ALLOC;
2728 	int i, pos;
2729 
2730 	for (pos = 0; map && pos < map->len; pos++) {
2731 		if (map->queues[pos] != index)
2732 			continue;
2733 		return map;
2734 	}
2735 
2736 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2737 	if (map) {
2738 		if (pos < map->alloc_len)
2739 			return map;
2740 
2741 		alloc_len = map->alloc_len * 2;
2742 	}
2743 
2744 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2745 	 *  map
2746 	 */
2747 	if (is_rxqs_map)
2748 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2749 	else
2750 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2751 				       cpu_to_node(attr_index));
2752 	if (!new_map)
2753 		return NULL;
2754 
2755 	for (i = 0; i < pos; i++)
2756 		new_map->queues[i] = map->queues[i];
2757 	new_map->alloc_len = alloc_len;
2758 	new_map->len = pos;
2759 
2760 	return new_map;
2761 }
2762 
2763 /* Copy xps maps at a given index */
2764 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2765 			      struct xps_dev_maps *new_dev_maps, int index,
2766 			      int tc, bool skip_tc)
2767 {
2768 	int i, tci = index * dev_maps->num_tc;
2769 	struct xps_map *map;
2770 
2771 	/* copy maps belonging to foreign traffic classes */
2772 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2773 		if (i == tc && skip_tc)
2774 			continue;
2775 
2776 		/* fill in the new device map from the old device map */
2777 		map = xmap_dereference(dev_maps->attr_map[tci]);
2778 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2779 	}
2780 }
2781 
2782 /* Must be called under cpus_read_lock */
2783 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2784 			  u16 index, enum xps_map_type type)
2785 {
2786 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2787 	const unsigned long *online_mask = NULL;
2788 	bool active = false, copy = false;
2789 	int i, j, tci, numa_node_id = -2;
2790 	int maps_sz, num_tc = 1, tc = 0;
2791 	struct xps_map *map, *new_map;
2792 	unsigned int nr_ids;
2793 
2794 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2795 
2796 	if (dev->num_tc) {
2797 		/* Do not allow XPS on subordinate device directly */
2798 		num_tc = dev->num_tc;
2799 		if (num_tc < 0)
2800 			return -EINVAL;
2801 
2802 		/* If queue belongs to subordinate dev use its map */
2803 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2804 
2805 		tc = netdev_txq_to_tc(dev, index);
2806 		if (tc < 0)
2807 			return -EINVAL;
2808 	}
2809 
2810 	mutex_lock(&xps_map_mutex);
2811 
2812 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2813 	if (type == XPS_RXQS) {
2814 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2815 		nr_ids = dev->num_rx_queues;
2816 	} else {
2817 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2818 		if (num_possible_cpus() > 1)
2819 			online_mask = cpumask_bits(cpu_online_mask);
2820 		nr_ids = nr_cpu_ids;
2821 	}
2822 
2823 	if (maps_sz < L1_CACHE_BYTES)
2824 		maps_sz = L1_CACHE_BYTES;
2825 
2826 	/* The old dev_maps could be larger or smaller than the one we're
2827 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2828 	 * between. We could try to be smart, but let's be safe instead and only
2829 	 * copy foreign traffic classes if the two map sizes match.
2830 	 */
2831 	if (dev_maps &&
2832 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2833 		copy = true;
2834 
2835 	/* allocate memory for queue storage */
2836 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2837 	     j < nr_ids;) {
2838 		if (!new_dev_maps) {
2839 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2840 			if (!new_dev_maps) {
2841 				mutex_unlock(&xps_map_mutex);
2842 				return -ENOMEM;
2843 			}
2844 
2845 			new_dev_maps->nr_ids = nr_ids;
2846 			new_dev_maps->num_tc = num_tc;
2847 		}
2848 
2849 		tci = j * num_tc + tc;
2850 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2851 
2852 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2853 		if (!map)
2854 			goto error;
2855 
2856 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2857 	}
2858 
2859 	if (!new_dev_maps)
2860 		goto out_no_new_maps;
2861 
2862 	if (!dev_maps) {
2863 		/* Increment static keys at most once per type */
2864 		static_key_slow_inc_cpuslocked(&xps_needed);
2865 		if (type == XPS_RXQS)
2866 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2867 	}
2868 
2869 	for (j = 0; j < nr_ids; j++) {
2870 		bool skip_tc = false;
2871 
2872 		tci = j * num_tc + tc;
2873 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2874 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2875 			/* add tx-queue to CPU/rx-queue maps */
2876 			int pos = 0;
2877 
2878 			skip_tc = true;
2879 
2880 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2881 			while ((pos < map->len) && (map->queues[pos] != index))
2882 				pos++;
2883 
2884 			if (pos == map->len)
2885 				map->queues[map->len++] = index;
2886 #ifdef CONFIG_NUMA
2887 			if (type == XPS_CPUS) {
2888 				if (numa_node_id == -2)
2889 					numa_node_id = cpu_to_node(j);
2890 				else if (numa_node_id != cpu_to_node(j))
2891 					numa_node_id = -1;
2892 			}
2893 #endif
2894 		}
2895 
2896 		if (copy)
2897 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2898 					  skip_tc);
2899 	}
2900 
2901 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2902 
2903 	/* Cleanup old maps */
2904 	if (!dev_maps)
2905 		goto out_no_old_maps;
2906 
2907 	for (j = 0; j < dev_maps->nr_ids; j++) {
2908 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2909 			map = xmap_dereference(dev_maps->attr_map[tci]);
2910 			if (!map)
2911 				continue;
2912 
2913 			if (copy) {
2914 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2915 				if (map == new_map)
2916 					continue;
2917 			}
2918 
2919 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2920 			kfree_rcu(map, rcu);
2921 		}
2922 	}
2923 
2924 	old_dev_maps = dev_maps;
2925 
2926 out_no_old_maps:
2927 	dev_maps = new_dev_maps;
2928 	active = true;
2929 
2930 out_no_new_maps:
2931 	if (type == XPS_CPUS)
2932 		/* update Tx queue numa node */
2933 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2934 					     (numa_node_id >= 0) ?
2935 					     numa_node_id : NUMA_NO_NODE);
2936 
2937 	if (!dev_maps)
2938 		goto out_no_maps;
2939 
2940 	/* removes tx-queue from unused CPUs/rx-queues */
2941 	for (j = 0; j < dev_maps->nr_ids; j++) {
2942 		tci = j * dev_maps->num_tc;
2943 
2944 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2945 			if (i == tc &&
2946 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2947 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2948 				continue;
2949 
2950 			active |= remove_xps_queue(dev_maps,
2951 						   copy ? old_dev_maps : NULL,
2952 						   tci, index);
2953 		}
2954 	}
2955 
2956 	if (old_dev_maps)
2957 		kfree_rcu(old_dev_maps, rcu);
2958 
2959 	/* free map if not active */
2960 	if (!active)
2961 		reset_xps_maps(dev, dev_maps, type);
2962 
2963 out_no_maps:
2964 	mutex_unlock(&xps_map_mutex);
2965 
2966 	return 0;
2967 error:
2968 	/* remove any maps that we added */
2969 	for (j = 0; j < nr_ids; j++) {
2970 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2971 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2972 			map = copy ?
2973 			      xmap_dereference(dev_maps->attr_map[tci]) :
2974 			      NULL;
2975 			if (new_map && new_map != map)
2976 				kfree(new_map);
2977 		}
2978 	}
2979 
2980 	mutex_unlock(&xps_map_mutex);
2981 
2982 	kfree(new_dev_maps);
2983 	return -ENOMEM;
2984 }
2985 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2986 
2987 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2988 			u16 index)
2989 {
2990 	int ret;
2991 
2992 	cpus_read_lock();
2993 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2994 	cpus_read_unlock();
2995 
2996 	return ret;
2997 }
2998 EXPORT_SYMBOL(netif_set_xps_queue);
2999 
3000 #endif
3001 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3002 {
3003 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3004 
3005 	/* Unbind any subordinate channels */
3006 	while (txq-- != &dev->_tx[0]) {
3007 		if (txq->sb_dev)
3008 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3009 	}
3010 }
3011 
3012 void netdev_reset_tc(struct net_device *dev)
3013 {
3014 #ifdef CONFIG_XPS
3015 	netif_reset_xps_queues_gt(dev, 0);
3016 #endif
3017 	netdev_unbind_all_sb_channels(dev);
3018 
3019 	/* Reset TC configuration of device */
3020 	dev->num_tc = 0;
3021 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3022 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3023 }
3024 EXPORT_SYMBOL(netdev_reset_tc);
3025 
3026 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3027 {
3028 	if (tc >= dev->num_tc)
3029 		return -EINVAL;
3030 
3031 #ifdef CONFIG_XPS
3032 	netif_reset_xps_queues(dev, offset, count);
3033 #endif
3034 	dev->tc_to_txq[tc].count = count;
3035 	dev->tc_to_txq[tc].offset = offset;
3036 	return 0;
3037 }
3038 EXPORT_SYMBOL(netdev_set_tc_queue);
3039 
3040 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3041 {
3042 	if (num_tc > TC_MAX_QUEUE)
3043 		return -EINVAL;
3044 
3045 #ifdef CONFIG_XPS
3046 	netif_reset_xps_queues_gt(dev, 0);
3047 #endif
3048 	netdev_unbind_all_sb_channels(dev);
3049 
3050 	dev->num_tc = num_tc;
3051 	return 0;
3052 }
3053 EXPORT_SYMBOL(netdev_set_num_tc);
3054 
3055 void netdev_unbind_sb_channel(struct net_device *dev,
3056 			      struct net_device *sb_dev)
3057 {
3058 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3059 
3060 #ifdef CONFIG_XPS
3061 	netif_reset_xps_queues_gt(sb_dev, 0);
3062 #endif
3063 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3064 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3065 
3066 	while (txq-- != &dev->_tx[0]) {
3067 		if (txq->sb_dev == sb_dev)
3068 			txq->sb_dev = NULL;
3069 	}
3070 }
3071 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3072 
3073 int netdev_bind_sb_channel_queue(struct net_device *dev,
3074 				 struct net_device *sb_dev,
3075 				 u8 tc, u16 count, u16 offset)
3076 {
3077 	/* Make certain the sb_dev and dev are already configured */
3078 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3079 		return -EINVAL;
3080 
3081 	/* We cannot hand out queues we don't have */
3082 	if ((offset + count) > dev->real_num_tx_queues)
3083 		return -EINVAL;
3084 
3085 	/* Record the mapping */
3086 	sb_dev->tc_to_txq[tc].count = count;
3087 	sb_dev->tc_to_txq[tc].offset = offset;
3088 
3089 	/* Provide a way for Tx queue to find the tc_to_txq map or
3090 	 * XPS map for itself.
3091 	 */
3092 	while (count--)
3093 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3094 
3095 	return 0;
3096 }
3097 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3098 
3099 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3100 {
3101 	/* Do not use a multiqueue device to represent a subordinate channel */
3102 	if (netif_is_multiqueue(dev))
3103 		return -ENODEV;
3104 
3105 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3106 	 * Channel 0 is meant to be "native" mode and used only to represent
3107 	 * the main root device. We allow writing 0 to reset the device back
3108 	 * to normal mode after being used as a subordinate channel.
3109 	 */
3110 	if (channel > S16_MAX)
3111 		return -EINVAL;
3112 
3113 	dev->num_tc = -channel;
3114 
3115 	return 0;
3116 }
3117 EXPORT_SYMBOL(netdev_set_sb_channel);
3118 
3119 /*
3120  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3121  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3122  */
3123 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3124 {
3125 	bool disabling;
3126 	int rc;
3127 
3128 	disabling = txq < dev->real_num_tx_queues;
3129 
3130 	if (txq < 1 || txq > dev->num_tx_queues)
3131 		return -EINVAL;
3132 
3133 	if (dev->reg_state == NETREG_REGISTERED ||
3134 	    dev->reg_state == NETREG_UNREGISTERING) {
3135 		ASSERT_RTNL();
3136 
3137 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3138 						  txq);
3139 		if (rc)
3140 			return rc;
3141 
3142 		if (dev->num_tc)
3143 			netif_setup_tc(dev, txq);
3144 
3145 		net_shaper_set_real_num_tx_queues(dev, txq);
3146 
3147 		dev_qdisc_change_real_num_tx(dev, txq);
3148 
3149 		dev->real_num_tx_queues = txq;
3150 
3151 		if (disabling) {
3152 			synchronize_net();
3153 			qdisc_reset_all_tx_gt(dev, txq);
3154 #ifdef CONFIG_XPS
3155 			netif_reset_xps_queues_gt(dev, txq);
3156 #endif
3157 		}
3158 	} else {
3159 		dev->real_num_tx_queues = txq;
3160 	}
3161 
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3165 
3166 #ifdef CONFIG_SYSFS
3167 /**
3168  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3169  *	@dev: Network device
3170  *	@rxq: Actual number of RX queues
3171  *
3172  *	This must be called either with the rtnl_lock held or before
3173  *	registration of the net device.  Returns 0 on success, or a
3174  *	negative error code.  If called before registration, it always
3175  *	succeeds.
3176  */
3177 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3178 {
3179 	int rc;
3180 
3181 	if (rxq < 1 || rxq > dev->num_rx_queues)
3182 		return -EINVAL;
3183 
3184 	if (dev->reg_state == NETREG_REGISTERED) {
3185 		ASSERT_RTNL();
3186 
3187 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3188 						  rxq);
3189 		if (rc)
3190 			return rc;
3191 	}
3192 
3193 	dev->real_num_rx_queues = rxq;
3194 	return 0;
3195 }
3196 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3197 #endif
3198 
3199 /**
3200  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3201  *	@dev: Network device
3202  *	@txq: Actual number of TX queues
3203  *	@rxq: Actual number of RX queues
3204  *
3205  *	Set the real number of both TX and RX queues.
3206  *	Does nothing if the number of queues is already correct.
3207  */
3208 int netif_set_real_num_queues(struct net_device *dev,
3209 			      unsigned int txq, unsigned int rxq)
3210 {
3211 	unsigned int old_rxq = dev->real_num_rx_queues;
3212 	int err;
3213 
3214 	if (txq < 1 || txq > dev->num_tx_queues ||
3215 	    rxq < 1 || rxq > dev->num_rx_queues)
3216 		return -EINVAL;
3217 
3218 	/* Start from increases, so the error path only does decreases -
3219 	 * decreases can't fail.
3220 	 */
3221 	if (rxq > dev->real_num_rx_queues) {
3222 		err = netif_set_real_num_rx_queues(dev, rxq);
3223 		if (err)
3224 			return err;
3225 	}
3226 	if (txq > dev->real_num_tx_queues) {
3227 		err = netif_set_real_num_tx_queues(dev, txq);
3228 		if (err)
3229 			goto undo_rx;
3230 	}
3231 	if (rxq < dev->real_num_rx_queues)
3232 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3233 	if (txq < dev->real_num_tx_queues)
3234 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3235 
3236 	return 0;
3237 undo_rx:
3238 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3239 	return err;
3240 }
3241 EXPORT_SYMBOL(netif_set_real_num_queues);
3242 
3243 /**
3244  * netif_set_tso_max_size() - set the max size of TSO frames supported
3245  * @dev:	netdev to update
3246  * @size:	max skb->len of a TSO frame
3247  *
3248  * Set the limit on the size of TSO super-frames the device can handle.
3249  * Unless explicitly set the stack will assume the value of
3250  * %GSO_LEGACY_MAX_SIZE.
3251  */
3252 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3253 {
3254 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3255 	if (size < READ_ONCE(dev->gso_max_size))
3256 		netif_set_gso_max_size(dev, size);
3257 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3258 		netif_set_gso_ipv4_max_size(dev, size);
3259 }
3260 EXPORT_SYMBOL(netif_set_tso_max_size);
3261 
3262 /**
3263  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3264  * @dev:	netdev to update
3265  * @segs:	max number of TCP segments
3266  *
3267  * Set the limit on the number of TCP segments the device can generate from
3268  * a single TSO super-frame.
3269  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3270  */
3271 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3272 {
3273 	dev->tso_max_segs = segs;
3274 	if (segs < READ_ONCE(dev->gso_max_segs))
3275 		netif_set_gso_max_segs(dev, segs);
3276 }
3277 EXPORT_SYMBOL(netif_set_tso_max_segs);
3278 
3279 /**
3280  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3281  * @to:		netdev to update
3282  * @from:	netdev from which to copy the limits
3283  */
3284 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3285 {
3286 	netif_set_tso_max_size(to, from->tso_max_size);
3287 	netif_set_tso_max_segs(to, from->tso_max_segs);
3288 }
3289 EXPORT_SYMBOL(netif_inherit_tso_max);
3290 
3291 /**
3292  * netif_get_num_default_rss_queues - default number of RSS queues
3293  *
3294  * Default value is the number of physical cores if there are only 1 or 2, or
3295  * divided by 2 if there are more.
3296  */
3297 int netif_get_num_default_rss_queues(void)
3298 {
3299 	cpumask_var_t cpus;
3300 	int cpu, count = 0;
3301 
3302 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3303 		return 1;
3304 
3305 	cpumask_copy(cpus, cpu_online_mask);
3306 	for_each_cpu(cpu, cpus) {
3307 		++count;
3308 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3309 	}
3310 	free_cpumask_var(cpus);
3311 
3312 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3313 }
3314 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3315 
3316 static void __netif_reschedule(struct Qdisc *q)
3317 {
3318 	struct softnet_data *sd;
3319 	unsigned long flags;
3320 
3321 	local_irq_save(flags);
3322 	sd = this_cpu_ptr(&softnet_data);
3323 	q->next_sched = NULL;
3324 	*sd->output_queue_tailp = q;
3325 	sd->output_queue_tailp = &q->next_sched;
3326 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3327 	local_irq_restore(flags);
3328 }
3329 
3330 void __netif_schedule(struct Qdisc *q)
3331 {
3332 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3333 		__netif_reschedule(q);
3334 }
3335 EXPORT_SYMBOL(__netif_schedule);
3336 
3337 struct dev_kfree_skb_cb {
3338 	enum skb_drop_reason reason;
3339 };
3340 
3341 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3342 {
3343 	return (struct dev_kfree_skb_cb *)skb->cb;
3344 }
3345 
3346 void netif_schedule_queue(struct netdev_queue *txq)
3347 {
3348 	rcu_read_lock();
3349 	if (!netif_xmit_stopped(txq)) {
3350 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3351 
3352 		__netif_schedule(q);
3353 	}
3354 	rcu_read_unlock();
3355 }
3356 EXPORT_SYMBOL(netif_schedule_queue);
3357 
3358 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3359 {
3360 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3361 		struct Qdisc *q;
3362 
3363 		rcu_read_lock();
3364 		q = rcu_dereference(dev_queue->qdisc);
3365 		__netif_schedule(q);
3366 		rcu_read_unlock();
3367 	}
3368 }
3369 EXPORT_SYMBOL(netif_tx_wake_queue);
3370 
3371 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3372 {
3373 	unsigned long flags;
3374 
3375 	if (unlikely(!skb))
3376 		return;
3377 
3378 	if (likely(refcount_read(&skb->users) == 1)) {
3379 		smp_rmb();
3380 		refcount_set(&skb->users, 0);
3381 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3382 		return;
3383 	}
3384 	get_kfree_skb_cb(skb)->reason = reason;
3385 	local_irq_save(flags);
3386 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3387 	__this_cpu_write(softnet_data.completion_queue, skb);
3388 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3389 	local_irq_restore(flags);
3390 }
3391 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3392 
3393 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3394 {
3395 	if (in_hardirq() || irqs_disabled())
3396 		dev_kfree_skb_irq_reason(skb, reason);
3397 	else
3398 		kfree_skb_reason(skb, reason);
3399 }
3400 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3401 
3402 
3403 /**
3404  * netif_device_detach - mark device as removed
3405  * @dev: network device
3406  *
3407  * Mark device as removed from system and therefore no longer available.
3408  */
3409 void netif_device_detach(struct net_device *dev)
3410 {
3411 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3412 	    netif_running(dev)) {
3413 		netif_tx_stop_all_queues(dev);
3414 	}
3415 }
3416 EXPORT_SYMBOL(netif_device_detach);
3417 
3418 /**
3419  * netif_device_attach - mark device as attached
3420  * @dev: network device
3421  *
3422  * Mark device as attached from system and restart if needed.
3423  */
3424 void netif_device_attach(struct net_device *dev)
3425 {
3426 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3427 	    netif_running(dev)) {
3428 		netif_tx_wake_all_queues(dev);
3429 		netdev_watchdog_up(dev);
3430 	}
3431 }
3432 EXPORT_SYMBOL(netif_device_attach);
3433 
3434 /*
3435  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3436  * to be used as a distribution range.
3437  */
3438 static u16 skb_tx_hash(const struct net_device *dev,
3439 		       const struct net_device *sb_dev,
3440 		       struct sk_buff *skb)
3441 {
3442 	u32 hash;
3443 	u16 qoffset = 0;
3444 	u16 qcount = dev->real_num_tx_queues;
3445 
3446 	if (dev->num_tc) {
3447 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3448 
3449 		qoffset = sb_dev->tc_to_txq[tc].offset;
3450 		qcount = sb_dev->tc_to_txq[tc].count;
3451 		if (unlikely(!qcount)) {
3452 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3453 					     sb_dev->name, qoffset, tc);
3454 			qoffset = 0;
3455 			qcount = dev->real_num_tx_queues;
3456 		}
3457 	}
3458 
3459 	if (skb_rx_queue_recorded(skb)) {
3460 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3461 		hash = skb_get_rx_queue(skb);
3462 		if (hash >= qoffset)
3463 			hash -= qoffset;
3464 		while (unlikely(hash >= qcount))
3465 			hash -= qcount;
3466 		return hash + qoffset;
3467 	}
3468 
3469 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3470 }
3471 
3472 void skb_warn_bad_offload(const struct sk_buff *skb)
3473 {
3474 	static const netdev_features_t null_features;
3475 	struct net_device *dev = skb->dev;
3476 	const char *name = "";
3477 
3478 	if (!net_ratelimit())
3479 		return;
3480 
3481 	if (dev) {
3482 		if (dev->dev.parent)
3483 			name = dev_driver_string(dev->dev.parent);
3484 		else
3485 			name = netdev_name(dev);
3486 	}
3487 	skb_dump(KERN_WARNING, skb, false);
3488 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3489 	     name, dev ? &dev->features : &null_features,
3490 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3491 }
3492 
3493 /*
3494  * Invalidate hardware checksum when packet is to be mangled, and
3495  * complete checksum manually on outgoing path.
3496  */
3497 int skb_checksum_help(struct sk_buff *skb)
3498 {
3499 	__wsum csum;
3500 	int ret = 0, offset;
3501 
3502 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3503 		goto out_set_summed;
3504 
3505 	if (unlikely(skb_is_gso(skb))) {
3506 		skb_warn_bad_offload(skb);
3507 		return -EINVAL;
3508 	}
3509 
3510 	if (!skb_frags_readable(skb)) {
3511 		return -EFAULT;
3512 	}
3513 
3514 	/* Before computing a checksum, we should make sure no frag could
3515 	 * be modified by an external entity : checksum could be wrong.
3516 	 */
3517 	if (skb_has_shared_frag(skb)) {
3518 		ret = __skb_linearize(skb);
3519 		if (ret)
3520 			goto out;
3521 	}
3522 
3523 	offset = skb_checksum_start_offset(skb);
3524 	ret = -EINVAL;
3525 	if (unlikely(offset >= skb_headlen(skb))) {
3526 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3527 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3528 			  offset, skb_headlen(skb));
3529 		goto out;
3530 	}
3531 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3532 
3533 	offset += skb->csum_offset;
3534 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3535 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3536 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3537 			  offset + sizeof(__sum16), skb_headlen(skb));
3538 		goto out;
3539 	}
3540 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3541 	if (ret)
3542 		goto out;
3543 
3544 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3545 out_set_summed:
3546 	skb->ip_summed = CHECKSUM_NONE;
3547 out:
3548 	return ret;
3549 }
3550 EXPORT_SYMBOL(skb_checksum_help);
3551 
3552 int skb_crc32c_csum_help(struct sk_buff *skb)
3553 {
3554 	__le32 crc32c_csum;
3555 	int ret = 0, offset, start;
3556 
3557 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3558 		goto out;
3559 
3560 	if (unlikely(skb_is_gso(skb)))
3561 		goto out;
3562 
3563 	/* Before computing a checksum, we should make sure no frag could
3564 	 * be modified by an external entity : checksum could be wrong.
3565 	 */
3566 	if (unlikely(skb_has_shared_frag(skb))) {
3567 		ret = __skb_linearize(skb);
3568 		if (ret)
3569 			goto out;
3570 	}
3571 	start = skb_checksum_start_offset(skb);
3572 	offset = start + offsetof(struct sctphdr, checksum);
3573 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3574 		ret = -EINVAL;
3575 		goto out;
3576 	}
3577 
3578 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3579 	if (ret)
3580 		goto out;
3581 
3582 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3583 						  skb->len - start, ~(__u32)0,
3584 						  crc32c_csum_stub));
3585 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3586 	skb_reset_csum_not_inet(skb);
3587 out:
3588 	return ret;
3589 }
3590 EXPORT_SYMBOL(skb_crc32c_csum_help);
3591 
3592 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3593 {
3594 	__be16 type = skb->protocol;
3595 
3596 	/* Tunnel gso handlers can set protocol to ethernet. */
3597 	if (type == htons(ETH_P_TEB)) {
3598 		struct ethhdr *eth;
3599 
3600 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3601 			return 0;
3602 
3603 		eth = (struct ethhdr *)skb->data;
3604 		type = eth->h_proto;
3605 	}
3606 
3607 	return vlan_get_protocol_and_depth(skb, type, depth);
3608 }
3609 
3610 
3611 /* Take action when hardware reception checksum errors are detected. */
3612 #ifdef CONFIG_BUG
3613 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3614 {
3615 	netdev_err(dev, "hw csum failure\n");
3616 	skb_dump(KERN_ERR, skb, true);
3617 	dump_stack();
3618 }
3619 
3620 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3621 {
3622 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3623 }
3624 EXPORT_SYMBOL(netdev_rx_csum_fault);
3625 #endif
3626 
3627 /* XXX: check that highmem exists at all on the given machine. */
3628 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3629 {
3630 #ifdef CONFIG_HIGHMEM
3631 	int i;
3632 
3633 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3634 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3635 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3636 			struct page *page = skb_frag_page(frag);
3637 
3638 			if (page && PageHighMem(page))
3639 				return 1;
3640 		}
3641 	}
3642 #endif
3643 	return 0;
3644 }
3645 
3646 /* If MPLS offload request, verify we are testing hardware MPLS features
3647  * instead of standard features for the netdev.
3648  */
3649 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3650 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3651 					   netdev_features_t features,
3652 					   __be16 type)
3653 {
3654 	if (eth_p_mpls(type))
3655 		features &= skb->dev->mpls_features;
3656 
3657 	return features;
3658 }
3659 #else
3660 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3661 					   netdev_features_t features,
3662 					   __be16 type)
3663 {
3664 	return features;
3665 }
3666 #endif
3667 
3668 static netdev_features_t harmonize_features(struct sk_buff *skb,
3669 	netdev_features_t features)
3670 {
3671 	__be16 type;
3672 
3673 	type = skb_network_protocol(skb, NULL);
3674 	features = net_mpls_features(skb, features, type);
3675 
3676 	if (skb->ip_summed != CHECKSUM_NONE &&
3677 	    !can_checksum_protocol(features, type)) {
3678 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3679 	}
3680 	if (illegal_highdma(skb->dev, skb))
3681 		features &= ~NETIF_F_SG;
3682 
3683 	return features;
3684 }
3685 
3686 netdev_features_t passthru_features_check(struct sk_buff *skb,
3687 					  struct net_device *dev,
3688 					  netdev_features_t features)
3689 {
3690 	return features;
3691 }
3692 EXPORT_SYMBOL(passthru_features_check);
3693 
3694 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3695 					     struct net_device *dev,
3696 					     netdev_features_t features)
3697 {
3698 	return vlan_features_check(skb, features);
3699 }
3700 
3701 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3702 					    struct net_device *dev,
3703 					    netdev_features_t features)
3704 {
3705 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3706 
3707 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3708 		return features & ~NETIF_F_GSO_MASK;
3709 
3710 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3711 		return features & ~NETIF_F_GSO_MASK;
3712 
3713 	if (!skb_shinfo(skb)->gso_type) {
3714 		skb_warn_bad_offload(skb);
3715 		return features & ~NETIF_F_GSO_MASK;
3716 	}
3717 
3718 	/* Support for GSO partial features requires software
3719 	 * intervention before we can actually process the packets
3720 	 * so we need to strip support for any partial features now
3721 	 * and we can pull them back in after we have partially
3722 	 * segmented the frame.
3723 	 */
3724 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3725 		features &= ~dev->gso_partial_features;
3726 
3727 	/* Make sure to clear the IPv4 ID mangling feature if the
3728 	 * IPv4 header has the potential to be fragmented.
3729 	 */
3730 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3731 		struct iphdr *iph = skb->encapsulation ?
3732 				    inner_ip_hdr(skb) : ip_hdr(skb);
3733 
3734 		if (!(iph->frag_off & htons(IP_DF)))
3735 			features &= ~NETIF_F_TSO_MANGLEID;
3736 	}
3737 
3738 	return features;
3739 }
3740 
3741 netdev_features_t netif_skb_features(struct sk_buff *skb)
3742 {
3743 	struct net_device *dev = skb->dev;
3744 	netdev_features_t features = dev->features;
3745 
3746 	if (skb_is_gso(skb))
3747 		features = gso_features_check(skb, dev, features);
3748 
3749 	/* If encapsulation offload request, verify we are testing
3750 	 * hardware encapsulation features instead of standard
3751 	 * features for the netdev
3752 	 */
3753 	if (skb->encapsulation)
3754 		features &= dev->hw_enc_features;
3755 
3756 	if (skb_vlan_tagged(skb))
3757 		features = netdev_intersect_features(features,
3758 						     dev->vlan_features |
3759 						     NETIF_F_HW_VLAN_CTAG_TX |
3760 						     NETIF_F_HW_VLAN_STAG_TX);
3761 
3762 	if (dev->netdev_ops->ndo_features_check)
3763 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3764 								features);
3765 	else
3766 		features &= dflt_features_check(skb, dev, features);
3767 
3768 	return harmonize_features(skb, features);
3769 }
3770 EXPORT_SYMBOL(netif_skb_features);
3771 
3772 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3773 		    struct netdev_queue *txq, bool more)
3774 {
3775 	unsigned int len;
3776 	int rc;
3777 
3778 	if (dev_nit_active(dev))
3779 		dev_queue_xmit_nit(skb, dev);
3780 
3781 	len = skb->len;
3782 	trace_net_dev_start_xmit(skb, dev);
3783 	rc = netdev_start_xmit(skb, dev, txq, more);
3784 	trace_net_dev_xmit(skb, rc, dev, len);
3785 
3786 	return rc;
3787 }
3788 
3789 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3790 				    struct netdev_queue *txq, int *ret)
3791 {
3792 	struct sk_buff *skb = first;
3793 	int rc = NETDEV_TX_OK;
3794 
3795 	while (skb) {
3796 		struct sk_buff *next = skb->next;
3797 
3798 		skb_mark_not_on_list(skb);
3799 		rc = xmit_one(skb, dev, txq, next != NULL);
3800 		if (unlikely(!dev_xmit_complete(rc))) {
3801 			skb->next = next;
3802 			goto out;
3803 		}
3804 
3805 		skb = next;
3806 		if (netif_tx_queue_stopped(txq) && skb) {
3807 			rc = NETDEV_TX_BUSY;
3808 			break;
3809 		}
3810 	}
3811 
3812 out:
3813 	*ret = rc;
3814 	return skb;
3815 }
3816 
3817 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3818 					  netdev_features_t features)
3819 {
3820 	if (skb_vlan_tag_present(skb) &&
3821 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3822 		skb = __vlan_hwaccel_push_inside(skb);
3823 	return skb;
3824 }
3825 
3826 int skb_csum_hwoffload_help(struct sk_buff *skb,
3827 			    const netdev_features_t features)
3828 {
3829 	if (unlikely(skb_csum_is_sctp(skb)))
3830 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3831 			skb_crc32c_csum_help(skb);
3832 
3833 	if (features & NETIF_F_HW_CSUM)
3834 		return 0;
3835 
3836 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3837 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3838 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3839 		    !ipv6_has_hopopt_jumbo(skb))
3840 			goto sw_checksum;
3841 
3842 		switch (skb->csum_offset) {
3843 		case offsetof(struct tcphdr, check):
3844 		case offsetof(struct udphdr, check):
3845 			return 0;
3846 		}
3847 	}
3848 
3849 sw_checksum:
3850 	return skb_checksum_help(skb);
3851 }
3852 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3853 
3854 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3855 {
3856 	netdev_features_t features;
3857 
3858 	features = netif_skb_features(skb);
3859 	skb = validate_xmit_vlan(skb, features);
3860 	if (unlikely(!skb))
3861 		goto out_null;
3862 
3863 	skb = sk_validate_xmit_skb(skb, dev);
3864 	if (unlikely(!skb))
3865 		goto out_null;
3866 
3867 	if (netif_needs_gso(skb, features)) {
3868 		struct sk_buff *segs;
3869 
3870 		segs = skb_gso_segment(skb, features);
3871 		if (IS_ERR(segs)) {
3872 			goto out_kfree_skb;
3873 		} else if (segs) {
3874 			consume_skb(skb);
3875 			skb = segs;
3876 		}
3877 	} else {
3878 		if (skb_needs_linearize(skb, features) &&
3879 		    __skb_linearize(skb))
3880 			goto out_kfree_skb;
3881 
3882 		/* If packet is not checksummed and device does not
3883 		 * support checksumming for this protocol, complete
3884 		 * checksumming here.
3885 		 */
3886 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3887 			if (skb->encapsulation)
3888 				skb_set_inner_transport_header(skb,
3889 							       skb_checksum_start_offset(skb));
3890 			else
3891 				skb_set_transport_header(skb,
3892 							 skb_checksum_start_offset(skb));
3893 			if (skb_csum_hwoffload_help(skb, features))
3894 				goto out_kfree_skb;
3895 		}
3896 	}
3897 
3898 	skb = validate_xmit_xfrm(skb, features, again);
3899 
3900 	return skb;
3901 
3902 out_kfree_skb:
3903 	kfree_skb(skb);
3904 out_null:
3905 	dev_core_stats_tx_dropped_inc(dev);
3906 	return NULL;
3907 }
3908 
3909 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3910 {
3911 	struct sk_buff *next, *head = NULL, *tail;
3912 
3913 	for (; skb != NULL; skb = next) {
3914 		next = skb->next;
3915 		skb_mark_not_on_list(skb);
3916 
3917 		/* in case skb won't be segmented, point to itself */
3918 		skb->prev = skb;
3919 
3920 		skb = validate_xmit_skb(skb, dev, again);
3921 		if (!skb)
3922 			continue;
3923 
3924 		if (!head)
3925 			head = skb;
3926 		else
3927 			tail->next = skb;
3928 		/* If skb was segmented, skb->prev points to
3929 		 * the last segment. If not, it still contains skb.
3930 		 */
3931 		tail = skb->prev;
3932 	}
3933 	return head;
3934 }
3935 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3936 
3937 static void qdisc_pkt_len_init(struct sk_buff *skb)
3938 {
3939 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3940 
3941 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3942 
3943 	/* To get more precise estimation of bytes sent on wire,
3944 	 * we add to pkt_len the headers size of all segments
3945 	 */
3946 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3947 		u16 gso_segs = shinfo->gso_segs;
3948 		unsigned int hdr_len;
3949 
3950 		/* mac layer + network layer */
3951 		hdr_len = skb_transport_offset(skb);
3952 
3953 		/* + transport layer */
3954 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3955 			const struct tcphdr *th;
3956 			struct tcphdr _tcphdr;
3957 
3958 			th = skb_header_pointer(skb, hdr_len,
3959 						sizeof(_tcphdr), &_tcphdr);
3960 			if (likely(th))
3961 				hdr_len += __tcp_hdrlen(th);
3962 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3963 			struct udphdr _udphdr;
3964 
3965 			if (skb_header_pointer(skb, hdr_len,
3966 					       sizeof(_udphdr), &_udphdr))
3967 				hdr_len += sizeof(struct udphdr);
3968 		}
3969 
3970 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3971 			int payload = skb->len - hdr_len;
3972 
3973 			/* Malicious packet. */
3974 			if (payload <= 0)
3975 				return;
3976 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3977 		}
3978 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3979 	}
3980 }
3981 
3982 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3983 			     struct sk_buff **to_free,
3984 			     struct netdev_queue *txq)
3985 {
3986 	int rc;
3987 
3988 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3989 	if (rc == NET_XMIT_SUCCESS)
3990 		trace_qdisc_enqueue(q, txq, skb);
3991 	return rc;
3992 }
3993 
3994 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3995 				 struct net_device *dev,
3996 				 struct netdev_queue *txq)
3997 {
3998 	spinlock_t *root_lock = qdisc_lock(q);
3999 	struct sk_buff *to_free = NULL;
4000 	bool contended;
4001 	int rc;
4002 
4003 	qdisc_calculate_pkt_len(skb, q);
4004 
4005 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4006 
4007 	if (q->flags & TCQ_F_NOLOCK) {
4008 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4009 		    qdisc_run_begin(q)) {
4010 			/* Retest nolock_qdisc_is_empty() within the protection
4011 			 * of q->seqlock to protect from racing with requeuing.
4012 			 */
4013 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4014 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4015 				__qdisc_run(q);
4016 				qdisc_run_end(q);
4017 
4018 				goto no_lock_out;
4019 			}
4020 
4021 			qdisc_bstats_cpu_update(q, skb);
4022 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4023 			    !nolock_qdisc_is_empty(q))
4024 				__qdisc_run(q);
4025 
4026 			qdisc_run_end(q);
4027 			return NET_XMIT_SUCCESS;
4028 		}
4029 
4030 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4031 		qdisc_run(q);
4032 
4033 no_lock_out:
4034 		if (unlikely(to_free))
4035 			kfree_skb_list_reason(to_free,
4036 					      tcf_get_drop_reason(to_free));
4037 		return rc;
4038 	}
4039 
4040 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4041 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4042 		return NET_XMIT_DROP;
4043 	}
4044 	/*
4045 	 * Heuristic to force contended enqueues to serialize on a
4046 	 * separate lock before trying to get qdisc main lock.
4047 	 * This permits qdisc->running owner to get the lock more
4048 	 * often and dequeue packets faster.
4049 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4050 	 * and then other tasks will only enqueue packets. The packets will be
4051 	 * sent after the qdisc owner is scheduled again. To prevent this
4052 	 * scenario the task always serialize on the lock.
4053 	 */
4054 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4055 	if (unlikely(contended))
4056 		spin_lock(&q->busylock);
4057 
4058 	spin_lock(root_lock);
4059 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4060 		__qdisc_drop(skb, &to_free);
4061 		rc = NET_XMIT_DROP;
4062 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4063 		   qdisc_run_begin(q)) {
4064 		/*
4065 		 * This is a work-conserving queue; there are no old skbs
4066 		 * waiting to be sent out; and the qdisc is not running -
4067 		 * xmit the skb directly.
4068 		 */
4069 
4070 		qdisc_bstats_update(q, skb);
4071 
4072 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4073 			if (unlikely(contended)) {
4074 				spin_unlock(&q->busylock);
4075 				contended = false;
4076 			}
4077 			__qdisc_run(q);
4078 		}
4079 
4080 		qdisc_run_end(q);
4081 		rc = NET_XMIT_SUCCESS;
4082 	} else {
4083 		WRITE_ONCE(q->owner, smp_processor_id());
4084 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4085 		WRITE_ONCE(q->owner, -1);
4086 		if (qdisc_run_begin(q)) {
4087 			if (unlikely(contended)) {
4088 				spin_unlock(&q->busylock);
4089 				contended = false;
4090 			}
4091 			__qdisc_run(q);
4092 			qdisc_run_end(q);
4093 		}
4094 	}
4095 	spin_unlock(root_lock);
4096 	if (unlikely(to_free))
4097 		kfree_skb_list_reason(to_free,
4098 				      tcf_get_drop_reason(to_free));
4099 	if (unlikely(contended))
4100 		spin_unlock(&q->busylock);
4101 	return rc;
4102 }
4103 
4104 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4105 static void skb_update_prio(struct sk_buff *skb)
4106 {
4107 	const struct netprio_map *map;
4108 	const struct sock *sk;
4109 	unsigned int prioidx;
4110 
4111 	if (skb->priority)
4112 		return;
4113 	map = rcu_dereference_bh(skb->dev->priomap);
4114 	if (!map)
4115 		return;
4116 	sk = skb_to_full_sk(skb);
4117 	if (!sk)
4118 		return;
4119 
4120 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4121 
4122 	if (prioidx < map->priomap_len)
4123 		skb->priority = map->priomap[prioidx];
4124 }
4125 #else
4126 #define skb_update_prio(skb)
4127 #endif
4128 
4129 /**
4130  *	dev_loopback_xmit - loop back @skb
4131  *	@net: network namespace this loopback is happening in
4132  *	@sk:  sk needed to be a netfilter okfn
4133  *	@skb: buffer to transmit
4134  */
4135 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4136 {
4137 	skb_reset_mac_header(skb);
4138 	__skb_pull(skb, skb_network_offset(skb));
4139 	skb->pkt_type = PACKET_LOOPBACK;
4140 	if (skb->ip_summed == CHECKSUM_NONE)
4141 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4142 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4143 	skb_dst_force(skb);
4144 	netif_rx(skb);
4145 	return 0;
4146 }
4147 EXPORT_SYMBOL(dev_loopback_xmit);
4148 
4149 #ifdef CONFIG_NET_EGRESS
4150 static struct netdev_queue *
4151 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4152 {
4153 	int qm = skb_get_queue_mapping(skb);
4154 
4155 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4156 }
4157 
4158 #ifndef CONFIG_PREEMPT_RT
4159 static bool netdev_xmit_txqueue_skipped(void)
4160 {
4161 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4162 }
4163 
4164 void netdev_xmit_skip_txqueue(bool skip)
4165 {
4166 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4167 }
4168 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4169 
4170 #else
4171 static bool netdev_xmit_txqueue_skipped(void)
4172 {
4173 	return current->net_xmit.skip_txqueue;
4174 }
4175 
4176 void netdev_xmit_skip_txqueue(bool skip)
4177 {
4178 	current->net_xmit.skip_txqueue = skip;
4179 }
4180 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4181 #endif
4182 #endif /* CONFIG_NET_EGRESS */
4183 
4184 #ifdef CONFIG_NET_XGRESS
4185 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4186 		  enum skb_drop_reason *drop_reason)
4187 {
4188 	int ret = TC_ACT_UNSPEC;
4189 #ifdef CONFIG_NET_CLS_ACT
4190 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4191 	struct tcf_result res;
4192 
4193 	if (!miniq)
4194 		return ret;
4195 
4196 	/* Global bypass */
4197 	if (!static_branch_likely(&tcf_sw_enabled_key))
4198 		return ret;
4199 
4200 	/* Block-wise bypass */
4201 	if (tcf_block_bypass_sw(miniq->block))
4202 		return ret;
4203 
4204 	tc_skb_cb(skb)->mru = 0;
4205 	tc_skb_cb(skb)->post_ct = false;
4206 	tcf_set_drop_reason(skb, *drop_reason);
4207 
4208 	mini_qdisc_bstats_cpu_update(miniq, skb);
4209 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4210 	/* Only tcf related quirks below. */
4211 	switch (ret) {
4212 	case TC_ACT_SHOT:
4213 		*drop_reason = tcf_get_drop_reason(skb);
4214 		mini_qdisc_qstats_cpu_drop(miniq);
4215 		break;
4216 	case TC_ACT_OK:
4217 	case TC_ACT_RECLASSIFY:
4218 		skb->tc_index = TC_H_MIN(res.classid);
4219 		break;
4220 	}
4221 #endif /* CONFIG_NET_CLS_ACT */
4222 	return ret;
4223 }
4224 
4225 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4226 
4227 void tcx_inc(void)
4228 {
4229 	static_branch_inc(&tcx_needed_key);
4230 }
4231 
4232 void tcx_dec(void)
4233 {
4234 	static_branch_dec(&tcx_needed_key);
4235 }
4236 
4237 static __always_inline enum tcx_action_base
4238 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4239 	const bool needs_mac)
4240 {
4241 	const struct bpf_mprog_fp *fp;
4242 	const struct bpf_prog *prog;
4243 	int ret = TCX_NEXT;
4244 
4245 	if (needs_mac)
4246 		__skb_push(skb, skb->mac_len);
4247 	bpf_mprog_foreach_prog(entry, fp, prog) {
4248 		bpf_compute_data_pointers(skb);
4249 		ret = bpf_prog_run(prog, skb);
4250 		if (ret != TCX_NEXT)
4251 			break;
4252 	}
4253 	if (needs_mac)
4254 		__skb_pull(skb, skb->mac_len);
4255 	return tcx_action_code(skb, ret);
4256 }
4257 
4258 static __always_inline struct sk_buff *
4259 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4260 		   struct net_device *orig_dev, bool *another)
4261 {
4262 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4263 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4264 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4265 	int sch_ret;
4266 
4267 	if (!entry)
4268 		return skb;
4269 
4270 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4271 	if (*pt_prev) {
4272 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4273 		*pt_prev = NULL;
4274 	}
4275 
4276 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4277 	tcx_set_ingress(skb, true);
4278 
4279 	if (static_branch_unlikely(&tcx_needed_key)) {
4280 		sch_ret = tcx_run(entry, skb, true);
4281 		if (sch_ret != TC_ACT_UNSPEC)
4282 			goto ingress_verdict;
4283 	}
4284 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4285 ingress_verdict:
4286 	switch (sch_ret) {
4287 	case TC_ACT_REDIRECT:
4288 		/* skb_mac_header check was done by BPF, so we can safely
4289 		 * push the L2 header back before redirecting to another
4290 		 * netdev.
4291 		 */
4292 		__skb_push(skb, skb->mac_len);
4293 		if (skb_do_redirect(skb) == -EAGAIN) {
4294 			__skb_pull(skb, skb->mac_len);
4295 			*another = true;
4296 			break;
4297 		}
4298 		*ret = NET_RX_SUCCESS;
4299 		bpf_net_ctx_clear(bpf_net_ctx);
4300 		return NULL;
4301 	case TC_ACT_SHOT:
4302 		kfree_skb_reason(skb, drop_reason);
4303 		*ret = NET_RX_DROP;
4304 		bpf_net_ctx_clear(bpf_net_ctx);
4305 		return NULL;
4306 	/* used by tc_run */
4307 	case TC_ACT_STOLEN:
4308 	case TC_ACT_QUEUED:
4309 	case TC_ACT_TRAP:
4310 		consume_skb(skb);
4311 		fallthrough;
4312 	case TC_ACT_CONSUMED:
4313 		*ret = NET_RX_SUCCESS;
4314 		bpf_net_ctx_clear(bpf_net_ctx);
4315 		return NULL;
4316 	}
4317 	bpf_net_ctx_clear(bpf_net_ctx);
4318 
4319 	return skb;
4320 }
4321 
4322 static __always_inline struct sk_buff *
4323 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4324 {
4325 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4326 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4327 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4328 	int sch_ret;
4329 
4330 	if (!entry)
4331 		return skb;
4332 
4333 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4334 
4335 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4336 	 * already set by the caller.
4337 	 */
4338 	if (static_branch_unlikely(&tcx_needed_key)) {
4339 		sch_ret = tcx_run(entry, skb, false);
4340 		if (sch_ret != TC_ACT_UNSPEC)
4341 			goto egress_verdict;
4342 	}
4343 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4344 egress_verdict:
4345 	switch (sch_ret) {
4346 	case TC_ACT_REDIRECT:
4347 		/* No need to push/pop skb's mac_header here on egress! */
4348 		skb_do_redirect(skb);
4349 		*ret = NET_XMIT_SUCCESS;
4350 		bpf_net_ctx_clear(bpf_net_ctx);
4351 		return NULL;
4352 	case TC_ACT_SHOT:
4353 		kfree_skb_reason(skb, drop_reason);
4354 		*ret = NET_XMIT_DROP;
4355 		bpf_net_ctx_clear(bpf_net_ctx);
4356 		return NULL;
4357 	/* used by tc_run */
4358 	case TC_ACT_STOLEN:
4359 	case TC_ACT_QUEUED:
4360 	case TC_ACT_TRAP:
4361 		consume_skb(skb);
4362 		fallthrough;
4363 	case TC_ACT_CONSUMED:
4364 		*ret = NET_XMIT_SUCCESS;
4365 		bpf_net_ctx_clear(bpf_net_ctx);
4366 		return NULL;
4367 	}
4368 	bpf_net_ctx_clear(bpf_net_ctx);
4369 
4370 	return skb;
4371 }
4372 #else
4373 static __always_inline struct sk_buff *
4374 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4375 		   struct net_device *orig_dev, bool *another)
4376 {
4377 	return skb;
4378 }
4379 
4380 static __always_inline struct sk_buff *
4381 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4382 {
4383 	return skb;
4384 }
4385 #endif /* CONFIG_NET_XGRESS */
4386 
4387 #ifdef CONFIG_XPS
4388 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4389 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4390 {
4391 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4392 	struct xps_map *map;
4393 	int queue_index = -1;
4394 
4395 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4396 		return queue_index;
4397 
4398 	tci *= dev_maps->num_tc;
4399 	tci += tc;
4400 
4401 	map = rcu_dereference(dev_maps->attr_map[tci]);
4402 	if (map) {
4403 		if (map->len == 1)
4404 			queue_index = map->queues[0];
4405 		else
4406 			queue_index = map->queues[reciprocal_scale(
4407 						skb_get_hash(skb), map->len)];
4408 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4409 			queue_index = -1;
4410 	}
4411 	return queue_index;
4412 }
4413 #endif
4414 
4415 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4416 			 struct sk_buff *skb)
4417 {
4418 #ifdef CONFIG_XPS
4419 	struct xps_dev_maps *dev_maps;
4420 	struct sock *sk = skb->sk;
4421 	int queue_index = -1;
4422 
4423 	if (!static_key_false(&xps_needed))
4424 		return -1;
4425 
4426 	rcu_read_lock();
4427 	if (!static_key_false(&xps_rxqs_needed))
4428 		goto get_cpus_map;
4429 
4430 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4431 	if (dev_maps) {
4432 		int tci = sk_rx_queue_get(sk);
4433 
4434 		if (tci >= 0)
4435 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4436 							  tci);
4437 	}
4438 
4439 get_cpus_map:
4440 	if (queue_index < 0) {
4441 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4442 		if (dev_maps) {
4443 			unsigned int tci = skb->sender_cpu - 1;
4444 
4445 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4446 							  tci);
4447 		}
4448 	}
4449 	rcu_read_unlock();
4450 
4451 	return queue_index;
4452 #else
4453 	return -1;
4454 #endif
4455 }
4456 
4457 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4458 		     struct net_device *sb_dev)
4459 {
4460 	return 0;
4461 }
4462 EXPORT_SYMBOL(dev_pick_tx_zero);
4463 
4464 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4465 		     struct net_device *sb_dev)
4466 {
4467 	struct sock *sk = skb->sk;
4468 	int queue_index = sk_tx_queue_get(sk);
4469 
4470 	sb_dev = sb_dev ? : dev;
4471 
4472 	if (queue_index < 0 || skb->ooo_okay ||
4473 	    queue_index >= dev->real_num_tx_queues) {
4474 		int new_index = get_xps_queue(dev, sb_dev, skb);
4475 
4476 		if (new_index < 0)
4477 			new_index = skb_tx_hash(dev, sb_dev, skb);
4478 
4479 		if (queue_index != new_index && sk &&
4480 		    sk_fullsock(sk) &&
4481 		    rcu_access_pointer(sk->sk_dst_cache))
4482 			sk_tx_queue_set(sk, new_index);
4483 
4484 		queue_index = new_index;
4485 	}
4486 
4487 	return queue_index;
4488 }
4489 EXPORT_SYMBOL(netdev_pick_tx);
4490 
4491 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4492 					 struct sk_buff *skb,
4493 					 struct net_device *sb_dev)
4494 {
4495 	int queue_index = 0;
4496 
4497 #ifdef CONFIG_XPS
4498 	u32 sender_cpu = skb->sender_cpu - 1;
4499 
4500 	if (sender_cpu >= (u32)NR_CPUS)
4501 		skb->sender_cpu = raw_smp_processor_id() + 1;
4502 #endif
4503 
4504 	if (dev->real_num_tx_queues != 1) {
4505 		const struct net_device_ops *ops = dev->netdev_ops;
4506 
4507 		if (ops->ndo_select_queue)
4508 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4509 		else
4510 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4511 
4512 		queue_index = netdev_cap_txqueue(dev, queue_index);
4513 	}
4514 
4515 	skb_set_queue_mapping(skb, queue_index);
4516 	return netdev_get_tx_queue(dev, queue_index);
4517 }
4518 
4519 /**
4520  * __dev_queue_xmit() - transmit a buffer
4521  * @skb:	buffer to transmit
4522  * @sb_dev:	suboordinate device used for L2 forwarding offload
4523  *
4524  * Queue a buffer for transmission to a network device. The caller must
4525  * have set the device and priority and built the buffer before calling
4526  * this function. The function can be called from an interrupt.
4527  *
4528  * When calling this method, interrupts MUST be enabled. This is because
4529  * the BH enable code must have IRQs enabled so that it will not deadlock.
4530  *
4531  * Regardless of the return value, the skb is consumed, so it is currently
4532  * difficult to retry a send to this method. (You can bump the ref count
4533  * before sending to hold a reference for retry if you are careful.)
4534  *
4535  * Return:
4536  * * 0				- buffer successfully transmitted
4537  * * positive qdisc return code	- NET_XMIT_DROP etc.
4538  * * negative errno		- other errors
4539  */
4540 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4541 {
4542 	struct net_device *dev = skb->dev;
4543 	struct netdev_queue *txq = NULL;
4544 	struct Qdisc *q;
4545 	int rc = -ENOMEM;
4546 	bool again = false;
4547 
4548 	skb_reset_mac_header(skb);
4549 	skb_assert_len(skb);
4550 
4551 	if (unlikely(skb_shinfo(skb)->tx_flags &
4552 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4553 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4554 
4555 	/* Disable soft irqs for various locks below. Also
4556 	 * stops preemption for RCU.
4557 	 */
4558 	rcu_read_lock_bh();
4559 
4560 	skb_update_prio(skb);
4561 
4562 	qdisc_pkt_len_init(skb);
4563 	tcx_set_ingress(skb, false);
4564 #ifdef CONFIG_NET_EGRESS
4565 	if (static_branch_unlikely(&egress_needed_key)) {
4566 		if (nf_hook_egress_active()) {
4567 			skb = nf_hook_egress(skb, &rc, dev);
4568 			if (!skb)
4569 				goto out;
4570 		}
4571 
4572 		netdev_xmit_skip_txqueue(false);
4573 
4574 		nf_skip_egress(skb, true);
4575 		skb = sch_handle_egress(skb, &rc, dev);
4576 		if (!skb)
4577 			goto out;
4578 		nf_skip_egress(skb, false);
4579 
4580 		if (netdev_xmit_txqueue_skipped())
4581 			txq = netdev_tx_queue_mapping(dev, skb);
4582 	}
4583 #endif
4584 	/* If device/qdisc don't need skb->dst, release it right now while
4585 	 * its hot in this cpu cache.
4586 	 */
4587 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4588 		skb_dst_drop(skb);
4589 	else
4590 		skb_dst_force(skb);
4591 
4592 	if (!txq)
4593 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4594 
4595 	q = rcu_dereference_bh(txq->qdisc);
4596 
4597 	trace_net_dev_queue(skb);
4598 	if (q->enqueue) {
4599 		rc = __dev_xmit_skb(skb, q, dev, txq);
4600 		goto out;
4601 	}
4602 
4603 	/* The device has no queue. Common case for software devices:
4604 	 * loopback, all the sorts of tunnels...
4605 
4606 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4607 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4608 	 * counters.)
4609 	 * However, it is possible, that they rely on protection
4610 	 * made by us here.
4611 
4612 	 * Check this and shot the lock. It is not prone from deadlocks.
4613 	 *Either shot noqueue qdisc, it is even simpler 8)
4614 	 */
4615 	if (dev->flags & IFF_UP) {
4616 		int cpu = smp_processor_id(); /* ok because BHs are off */
4617 
4618 		/* Other cpus might concurrently change txq->xmit_lock_owner
4619 		 * to -1 or to their cpu id, but not to our id.
4620 		 */
4621 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4622 			if (dev_xmit_recursion())
4623 				goto recursion_alert;
4624 
4625 			skb = validate_xmit_skb(skb, dev, &again);
4626 			if (!skb)
4627 				goto out;
4628 
4629 			HARD_TX_LOCK(dev, txq, cpu);
4630 
4631 			if (!netif_xmit_stopped(txq)) {
4632 				dev_xmit_recursion_inc();
4633 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4634 				dev_xmit_recursion_dec();
4635 				if (dev_xmit_complete(rc)) {
4636 					HARD_TX_UNLOCK(dev, txq);
4637 					goto out;
4638 				}
4639 			}
4640 			HARD_TX_UNLOCK(dev, txq);
4641 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4642 					     dev->name);
4643 		} else {
4644 			/* Recursion is detected! It is possible,
4645 			 * unfortunately
4646 			 */
4647 recursion_alert:
4648 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4649 					     dev->name);
4650 		}
4651 	}
4652 
4653 	rc = -ENETDOWN;
4654 	rcu_read_unlock_bh();
4655 
4656 	dev_core_stats_tx_dropped_inc(dev);
4657 	kfree_skb_list(skb);
4658 	return rc;
4659 out:
4660 	rcu_read_unlock_bh();
4661 	return rc;
4662 }
4663 EXPORT_SYMBOL(__dev_queue_xmit);
4664 
4665 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4666 {
4667 	struct net_device *dev = skb->dev;
4668 	struct sk_buff *orig_skb = skb;
4669 	struct netdev_queue *txq;
4670 	int ret = NETDEV_TX_BUSY;
4671 	bool again = false;
4672 
4673 	if (unlikely(!netif_running(dev) ||
4674 		     !netif_carrier_ok(dev)))
4675 		goto drop;
4676 
4677 	skb = validate_xmit_skb_list(skb, dev, &again);
4678 	if (skb != orig_skb)
4679 		goto drop;
4680 
4681 	skb_set_queue_mapping(skb, queue_id);
4682 	txq = skb_get_tx_queue(dev, skb);
4683 
4684 	local_bh_disable();
4685 
4686 	dev_xmit_recursion_inc();
4687 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4688 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4689 		ret = netdev_start_xmit(skb, dev, txq, false);
4690 	HARD_TX_UNLOCK(dev, txq);
4691 	dev_xmit_recursion_dec();
4692 
4693 	local_bh_enable();
4694 	return ret;
4695 drop:
4696 	dev_core_stats_tx_dropped_inc(dev);
4697 	kfree_skb_list(skb);
4698 	return NET_XMIT_DROP;
4699 }
4700 EXPORT_SYMBOL(__dev_direct_xmit);
4701 
4702 /*************************************************************************
4703  *			Receiver routines
4704  *************************************************************************/
4705 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4706 
4707 int weight_p __read_mostly = 64;           /* old backlog weight */
4708 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4709 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4710 
4711 /* Called with irq disabled */
4712 static inline void ____napi_schedule(struct softnet_data *sd,
4713 				     struct napi_struct *napi)
4714 {
4715 	struct task_struct *thread;
4716 
4717 	lockdep_assert_irqs_disabled();
4718 
4719 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4720 		/* Paired with smp_mb__before_atomic() in
4721 		 * napi_enable()/dev_set_threaded().
4722 		 * Use READ_ONCE() to guarantee a complete
4723 		 * read on napi->thread. Only call
4724 		 * wake_up_process() when it's not NULL.
4725 		 */
4726 		thread = READ_ONCE(napi->thread);
4727 		if (thread) {
4728 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4729 				goto use_local_napi;
4730 
4731 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4732 			wake_up_process(thread);
4733 			return;
4734 		}
4735 	}
4736 
4737 use_local_napi:
4738 	list_add_tail(&napi->poll_list, &sd->poll_list);
4739 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4740 	/* If not called from net_rx_action()
4741 	 * we have to raise NET_RX_SOFTIRQ.
4742 	 */
4743 	if (!sd->in_net_rx_action)
4744 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4745 }
4746 
4747 #ifdef CONFIG_RPS
4748 
4749 struct static_key_false rps_needed __read_mostly;
4750 EXPORT_SYMBOL(rps_needed);
4751 struct static_key_false rfs_needed __read_mostly;
4752 EXPORT_SYMBOL(rfs_needed);
4753 
4754 static struct rps_dev_flow *
4755 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4756 	    struct rps_dev_flow *rflow, u16 next_cpu)
4757 {
4758 	if (next_cpu < nr_cpu_ids) {
4759 		u32 head;
4760 #ifdef CONFIG_RFS_ACCEL
4761 		struct netdev_rx_queue *rxqueue;
4762 		struct rps_dev_flow_table *flow_table;
4763 		struct rps_dev_flow *old_rflow;
4764 		u16 rxq_index;
4765 		u32 flow_id;
4766 		int rc;
4767 
4768 		/* Should we steer this flow to a different hardware queue? */
4769 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4770 		    !(dev->features & NETIF_F_NTUPLE))
4771 			goto out;
4772 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4773 		if (rxq_index == skb_get_rx_queue(skb))
4774 			goto out;
4775 
4776 		rxqueue = dev->_rx + rxq_index;
4777 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4778 		if (!flow_table)
4779 			goto out;
4780 		flow_id = skb_get_hash(skb) & flow_table->mask;
4781 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4782 							rxq_index, flow_id);
4783 		if (rc < 0)
4784 			goto out;
4785 		old_rflow = rflow;
4786 		rflow = &flow_table->flows[flow_id];
4787 		WRITE_ONCE(rflow->filter, rc);
4788 		if (old_rflow->filter == rc)
4789 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4790 	out:
4791 #endif
4792 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4793 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4794 	}
4795 
4796 	WRITE_ONCE(rflow->cpu, next_cpu);
4797 	return rflow;
4798 }
4799 
4800 /*
4801  * get_rps_cpu is called from netif_receive_skb and returns the target
4802  * CPU from the RPS map of the receiving queue for a given skb.
4803  * rcu_read_lock must be held on entry.
4804  */
4805 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4806 		       struct rps_dev_flow **rflowp)
4807 {
4808 	const struct rps_sock_flow_table *sock_flow_table;
4809 	struct netdev_rx_queue *rxqueue = dev->_rx;
4810 	struct rps_dev_flow_table *flow_table;
4811 	struct rps_map *map;
4812 	int cpu = -1;
4813 	u32 tcpu;
4814 	u32 hash;
4815 
4816 	if (skb_rx_queue_recorded(skb)) {
4817 		u16 index = skb_get_rx_queue(skb);
4818 
4819 		if (unlikely(index >= dev->real_num_rx_queues)) {
4820 			WARN_ONCE(dev->real_num_rx_queues > 1,
4821 				  "%s received packet on queue %u, but number "
4822 				  "of RX queues is %u\n",
4823 				  dev->name, index, dev->real_num_rx_queues);
4824 			goto done;
4825 		}
4826 		rxqueue += index;
4827 	}
4828 
4829 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4830 
4831 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4832 	map = rcu_dereference(rxqueue->rps_map);
4833 	if (!flow_table && !map)
4834 		goto done;
4835 
4836 	skb_reset_network_header(skb);
4837 	hash = skb_get_hash(skb);
4838 	if (!hash)
4839 		goto done;
4840 
4841 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4842 	if (flow_table && sock_flow_table) {
4843 		struct rps_dev_flow *rflow;
4844 		u32 next_cpu;
4845 		u32 ident;
4846 
4847 		/* First check into global flow table if there is a match.
4848 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4849 		 */
4850 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4851 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4852 			goto try_rps;
4853 
4854 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4855 
4856 		/* OK, now we know there is a match,
4857 		 * we can look at the local (per receive queue) flow table
4858 		 */
4859 		rflow = &flow_table->flows[hash & flow_table->mask];
4860 		tcpu = rflow->cpu;
4861 
4862 		/*
4863 		 * If the desired CPU (where last recvmsg was done) is
4864 		 * different from current CPU (one in the rx-queue flow
4865 		 * table entry), switch if one of the following holds:
4866 		 *   - Current CPU is unset (>= nr_cpu_ids).
4867 		 *   - Current CPU is offline.
4868 		 *   - The current CPU's queue tail has advanced beyond the
4869 		 *     last packet that was enqueued using this table entry.
4870 		 *     This guarantees that all previous packets for the flow
4871 		 *     have been dequeued, thus preserving in order delivery.
4872 		 */
4873 		if (unlikely(tcpu != next_cpu) &&
4874 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4875 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4876 		      rflow->last_qtail)) >= 0)) {
4877 			tcpu = next_cpu;
4878 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4879 		}
4880 
4881 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4882 			*rflowp = rflow;
4883 			cpu = tcpu;
4884 			goto done;
4885 		}
4886 	}
4887 
4888 try_rps:
4889 
4890 	if (map) {
4891 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4892 		if (cpu_online(tcpu)) {
4893 			cpu = tcpu;
4894 			goto done;
4895 		}
4896 	}
4897 
4898 done:
4899 	return cpu;
4900 }
4901 
4902 #ifdef CONFIG_RFS_ACCEL
4903 
4904 /**
4905  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4906  * @dev: Device on which the filter was set
4907  * @rxq_index: RX queue index
4908  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4909  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4910  *
4911  * Drivers that implement ndo_rx_flow_steer() should periodically call
4912  * this function for each installed filter and remove the filters for
4913  * which it returns %true.
4914  */
4915 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4916 			 u32 flow_id, u16 filter_id)
4917 {
4918 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4919 	struct rps_dev_flow_table *flow_table;
4920 	struct rps_dev_flow *rflow;
4921 	bool expire = true;
4922 	unsigned int cpu;
4923 
4924 	rcu_read_lock();
4925 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4926 	if (flow_table && flow_id <= flow_table->mask) {
4927 		rflow = &flow_table->flows[flow_id];
4928 		cpu = READ_ONCE(rflow->cpu);
4929 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4930 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4931 			   READ_ONCE(rflow->last_qtail)) <
4932 		     (int)(10 * flow_table->mask)))
4933 			expire = false;
4934 	}
4935 	rcu_read_unlock();
4936 	return expire;
4937 }
4938 EXPORT_SYMBOL(rps_may_expire_flow);
4939 
4940 #endif /* CONFIG_RFS_ACCEL */
4941 
4942 /* Called from hardirq (IPI) context */
4943 static void rps_trigger_softirq(void *data)
4944 {
4945 	struct softnet_data *sd = data;
4946 
4947 	____napi_schedule(sd, &sd->backlog);
4948 	sd->received_rps++;
4949 }
4950 
4951 #endif /* CONFIG_RPS */
4952 
4953 /* Called from hardirq (IPI) context */
4954 static void trigger_rx_softirq(void *data)
4955 {
4956 	struct softnet_data *sd = data;
4957 
4958 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4959 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4960 }
4961 
4962 /*
4963  * After we queued a packet into sd->input_pkt_queue,
4964  * we need to make sure this queue is serviced soon.
4965  *
4966  * - If this is another cpu queue, link it to our rps_ipi_list,
4967  *   and make sure we will process rps_ipi_list from net_rx_action().
4968  *
4969  * - If this is our own queue, NAPI schedule our backlog.
4970  *   Note that this also raises NET_RX_SOFTIRQ.
4971  */
4972 static void napi_schedule_rps(struct softnet_data *sd)
4973 {
4974 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4975 
4976 #ifdef CONFIG_RPS
4977 	if (sd != mysd) {
4978 		if (use_backlog_threads()) {
4979 			__napi_schedule_irqoff(&sd->backlog);
4980 			return;
4981 		}
4982 
4983 		sd->rps_ipi_next = mysd->rps_ipi_list;
4984 		mysd->rps_ipi_list = sd;
4985 
4986 		/* If not called from net_rx_action() or napi_threaded_poll()
4987 		 * we have to raise NET_RX_SOFTIRQ.
4988 		 */
4989 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4990 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4991 		return;
4992 	}
4993 #endif /* CONFIG_RPS */
4994 	__napi_schedule_irqoff(&mysd->backlog);
4995 }
4996 
4997 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4998 {
4999 	unsigned long flags;
5000 
5001 	if (use_backlog_threads()) {
5002 		backlog_lock_irq_save(sd, &flags);
5003 
5004 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5005 			__napi_schedule_irqoff(&sd->backlog);
5006 
5007 		backlog_unlock_irq_restore(sd, &flags);
5008 
5009 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5010 		smp_call_function_single_async(cpu, &sd->defer_csd);
5011 	}
5012 }
5013 
5014 #ifdef CONFIG_NET_FLOW_LIMIT
5015 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5016 #endif
5017 
5018 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5019 {
5020 #ifdef CONFIG_NET_FLOW_LIMIT
5021 	struct sd_flow_limit *fl;
5022 	struct softnet_data *sd;
5023 	unsigned int old_flow, new_flow;
5024 
5025 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5026 		return false;
5027 
5028 	sd = this_cpu_ptr(&softnet_data);
5029 
5030 	rcu_read_lock();
5031 	fl = rcu_dereference(sd->flow_limit);
5032 	if (fl) {
5033 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5034 		old_flow = fl->history[fl->history_head];
5035 		fl->history[fl->history_head] = new_flow;
5036 
5037 		fl->history_head++;
5038 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5039 
5040 		if (likely(fl->buckets[old_flow]))
5041 			fl->buckets[old_flow]--;
5042 
5043 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5044 			fl->count++;
5045 			rcu_read_unlock();
5046 			return true;
5047 		}
5048 	}
5049 	rcu_read_unlock();
5050 #endif
5051 	return false;
5052 }
5053 
5054 /*
5055  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5056  * queue (may be a remote CPU queue).
5057  */
5058 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5059 			      unsigned int *qtail)
5060 {
5061 	enum skb_drop_reason reason;
5062 	struct softnet_data *sd;
5063 	unsigned long flags;
5064 	unsigned int qlen;
5065 	int max_backlog;
5066 	u32 tail;
5067 
5068 	reason = SKB_DROP_REASON_DEV_READY;
5069 	if (!netif_running(skb->dev))
5070 		goto bad_dev;
5071 
5072 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5073 	sd = &per_cpu(softnet_data, cpu);
5074 
5075 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5076 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5077 	if (unlikely(qlen > max_backlog))
5078 		goto cpu_backlog_drop;
5079 	backlog_lock_irq_save(sd, &flags);
5080 	qlen = skb_queue_len(&sd->input_pkt_queue);
5081 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5082 		if (!qlen) {
5083 			/* Schedule NAPI for backlog device. We can use
5084 			 * non atomic operation as we own the queue lock.
5085 			 */
5086 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5087 						&sd->backlog.state))
5088 				napi_schedule_rps(sd);
5089 		}
5090 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5091 		tail = rps_input_queue_tail_incr(sd);
5092 		backlog_unlock_irq_restore(sd, &flags);
5093 
5094 		/* save the tail outside of the critical section */
5095 		rps_input_queue_tail_save(qtail, tail);
5096 		return NET_RX_SUCCESS;
5097 	}
5098 
5099 	backlog_unlock_irq_restore(sd, &flags);
5100 
5101 cpu_backlog_drop:
5102 	atomic_inc(&sd->dropped);
5103 bad_dev:
5104 	dev_core_stats_rx_dropped_inc(skb->dev);
5105 	kfree_skb_reason(skb, reason);
5106 	return NET_RX_DROP;
5107 }
5108 
5109 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5110 {
5111 	struct net_device *dev = skb->dev;
5112 	struct netdev_rx_queue *rxqueue;
5113 
5114 	rxqueue = dev->_rx;
5115 
5116 	if (skb_rx_queue_recorded(skb)) {
5117 		u16 index = skb_get_rx_queue(skb);
5118 
5119 		if (unlikely(index >= dev->real_num_rx_queues)) {
5120 			WARN_ONCE(dev->real_num_rx_queues > 1,
5121 				  "%s received packet on queue %u, but number "
5122 				  "of RX queues is %u\n",
5123 				  dev->name, index, dev->real_num_rx_queues);
5124 
5125 			return rxqueue; /* Return first rxqueue */
5126 		}
5127 		rxqueue += index;
5128 	}
5129 	return rxqueue;
5130 }
5131 
5132 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5133 			     const struct bpf_prog *xdp_prog)
5134 {
5135 	void *orig_data, *orig_data_end, *hard_start;
5136 	struct netdev_rx_queue *rxqueue;
5137 	bool orig_bcast, orig_host;
5138 	u32 mac_len, frame_sz;
5139 	__be16 orig_eth_type;
5140 	struct ethhdr *eth;
5141 	u32 metalen, act;
5142 	int off;
5143 
5144 	/* The XDP program wants to see the packet starting at the MAC
5145 	 * header.
5146 	 */
5147 	mac_len = skb->data - skb_mac_header(skb);
5148 	hard_start = skb->data - skb_headroom(skb);
5149 
5150 	/* SKB "head" area always have tailroom for skb_shared_info */
5151 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5152 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5153 
5154 	rxqueue = netif_get_rxqueue(skb);
5155 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5156 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5157 			 skb_headlen(skb) + mac_len, true);
5158 	if (skb_is_nonlinear(skb)) {
5159 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5160 		xdp_buff_set_frags_flag(xdp);
5161 	} else {
5162 		xdp_buff_clear_frags_flag(xdp);
5163 	}
5164 
5165 	orig_data_end = xdp->data_end;
5166 	orig_data = xdp->data;
5167 	eth = (struct ethhdr *)xdp->data;
5168 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5169 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5170 	orig_eth_type = eth->h_proto;
5171 
5172 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5173 
5174 	/* check if bpf_xdp_adjust_head was used */
5175 	off = xdp->data - orig_data;
5176 	if (off) {
5177 		if (off > 0)
5178 			__skb_pull(skb, off);
5179 		else if (off < 0)
5180 			__skb_push(skb, -off);
5181 
5182 		skb->mac_header += off;
5183 		skb_reset_network_header(skb);
5184 	}
5185 
5186 	/* check if bpf_xdp_adjust_tail was used */
5187 	off = xdp->data_end - orig_data_end;
5188 	if (off != 0) {
5189 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5190 		skb->len += off; /* positive on grow, negative on shrink */
5191 	}
5192 
5193 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5194 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5195 	 */
5196 	if (xdp_buff_has_frags(xdp))
5197 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5198 	else
5199 		skb->data_len = 0;
5200 
5201 	/* check if XDP changed eth hdr such SKB needs update */
5202 	eth = (struct ethhdr *)xdp->data;
5203 	if ((orig_eth_type != eth->h_proto) ||
5204 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5205 						  skb->dev->dev_addr)) ||
5206 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5207 		__skb_push(skb, ETH_HLEN);
5208 		skb->pkt_type = PACKET_HOST;
5209 		skb->protocol = eth_type_trans(skb, skb->dev);
5210 	}
5211 
5212 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5213 	 * before calling us again on redirect path. We do not call do_redirect
5214 	 * as we leave that up to the caller.
5215 	 *
5216 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5217 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5218 	 */
5219 	switch (act) {
5220 	case XDP_REDIRECT:
5221 	case XDP_TX:
5222 		__skb_push(skb, mac_len);
5223 		break;
5224 	case XDP_PASS:
5225 		metalen = xdp->data - xdp->data_meta;
5226 		if (metalen)
5227 			skb_metadata_set(skb, metalen);
5228 		break;
5229 	}
5230 
5231 	return act;
5232 }
5233 
5234 static int
5235 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5236 {
5237 	struct sk_buff *skb = *pskb;
5238 	int err, hroom, troom;
5239 
5240 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5241 		return 0;
5242 
5243 	/* In case we have to go down the path and also linearize,
5244 	 * then lets do the pskb_expand_head() work just once here.
5245 	 */
5246 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5247 	troom = skb->tail + skb->data_len - skb->end;
5248 	err = pskb_expand_head(skb,
5249 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5250 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5251 	if (err)
5252 		return err;
5253 
5254 	return skb_linearize(skb);
5255 }
5256 
5257 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5258 				     struct xdp_buff *xdp,
5259 				     const struct bpf_prog *xdp_prog)
5260 {
5261 	struct sk_buff *skb = *pskb;
5262 	u32 mac_len, act = XDP_DROP;
5263 
5264 	/* Reinjected packets coming from act_mirred or similar should
5265 	 * not get XDP generic processing.
5266 	 */
5267 	if (skb_is_redirected(skb))
5268 		return XDP_PASS;
5269 
5270 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5271 	 * bytes. This is the guarantee that also native XDP provides,
5272 	 * thus we need to do it here as well.
5273 	 */
5274 	mac_len = skb->data - skb_mac_header(skb);
5275 	__skb_push(skb, mac_len);
5276 
5277 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5278 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5279 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5280 			goto do_drop;
5281 	}
5282 
5283 	__skb_pull(*pskb, mac_len);
5284 
5285 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5286 	switch (act) {
5287 	case XDP_REDIRECT:
5288 	case XDP_TX:
5289 	case XDP_PASS:
5290 		break;
5291 	default:
5292 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5293 		fallthrough;
5294 	case XDP_ABORTED:
5295 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5296 		fallthrough;
5297 	case XDP_DROP:
5298 	do_drop:
5299 		kfree_skb(*pskb);
5300 		break;
5301 	}
5302 
5303 	return act;
5304 }
5305 
5306 /* When doing generic XDP we have to bypass the qdisc layer and the
5307  * network taps in order to match in-driver-XDP behavior. This also means
5308  * that XDP packets are able to starve other packets going through a qdisc,
5309  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5310  * queues, so they do not have this starvation issue.
5311  */
5312 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5313 {
5314 	struct net_device *dev = skb->dev;
5315 	struct netdev_queue *txq;
5316 	bool free_skb = true;
5317 	int cpu, rc;
5318 
5319 	txq = netdev_core_pick_tx(dev, skb, NULL);
5320 	cpu = smp_processor_id();
5321 	HARD_TX_LOCK(dev, txq, cpu);
5322 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5323 		rc = netdev_start_xmit(skb, dev, txq, 0);
5324 		if (dev_xmit_complete(rc))
5325 			free_skb = false;
5326 	}
5327 	HARD_TX_UNLOCK(dev, txq);
5328 	if (free_skb) {
5329 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5330 		dev_core_stats_tx_dropped_inc(dev);
5331 		kfree_skb(skb);
5332 	}
5333 }
5334 
5335 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5336 
5337 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5338 {
5339 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5340 
5341 	if (xdp_prog) {
5342 		struct xdp_buff xdp;
5343 		u32 act;
5344 		int err;
5345 
5346 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5347 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5348 		if (act != XDP_PASS) {
5349 			switch (act) {
5350 			case XDP_REDIRECT:
5351 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5352 							      &xdp, xdp_prog);
5353 				if (err)
5354 					goto out_redir;
5355 				break;
5356 			case XDP_TX:
5357 				generic_xdp_tx(*pskb, xdp_prog);
5358 				break;
5359 			}
5360 			bpf_net_ctx_clear(bpf_net_ctx);
5361 			return XDP_DROP;
5362 		}
5363 		bpf_net_ctx_clear(bpf_net_ctx);
5364 	}
5365 	return XDP_PASS;
5366 out_redir:
5367 	bpf_net_ctx_clear(bpf_net_ctx);
5368 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5369 	return XDP_DROP;
5370 }
5371 EXPORT_SYMBOL_GPL(do_xdp_generic);
5372 
5373 static int netif_rx_internal(struct sk_buff *skb)
5374 {
5375 	int ret;
5376 
5377 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5378 
5379 	trace_netif_rx(skb);
5380 
5381 #ifdef CONFIG_RPS
5382 	if (static_branch_unlikely(&rps_needed)) {
5383 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5384 		int cpu;
5385 
5386 		rcu_read_lock();
5387 
5388 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5389 		if (cpu < 0)
5390 			cpu = smp_processor_id();
5391 
5392 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5393 
5394 		rcu_read_unlock();
5395 	} else
5396 #endif
5397 	{
5398 		unsigned int qtail;
5399 
5400 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5401 	}
5402 	return ret;
5403 }
5404 
5405 /**
5406  *	__netif_rx	-	Slightly optimized version of netif_rx
5407  *	@skb: buffer to post
5408  *
5409  *	This behaves as netif_rx except that it does not disable bottom halves.
5410  *	As a result this function may only be invoked from the interrupt context
5411  *	(either hard or soft interrupt).
5412  */
5413 int __netif_rx(struct sk_buff *skb)
5414 {
5415 	int ret;
5416 
5417 	lockdep_assert_once(hardirq_count() | softirq_count());
5418 
5419 	trace_netif_rx_entry(skb);
5420 	ret = netif_rx_internal(skb);
5421 	trace_netif_rx_exit(ret);
5422 	return ret;
5423 }
5424 EXPORT_SYMBOL(__netif_rx);
5425 
5426 /**
5427  *	netif_rx	-	post buffer to the network code
5428  *	@skb: buffer to post
5429  *
5430  *	This function receives a packet from a device driver and queues it for
5431  *	the upper (protocol) levels to process via the backlog NAPI device. It
5432  *	always succeeds. The buffer may be dropped during processing for
5433  *	congestion control or by the protocol layers.
5434  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5435  *	driver should use NAPI and GRO.
5436  *	This function can used from interrupt and from process context. The
5437  *	caller from process context must not disable interrupts before invoking
5438  *	this function.
5439  *
5440  *	return values:
5441  *	NET_RX_SUCCESS	(no congestion)
5442  *	NET_RX_DROP     (packet was dropped)
5443  *
5444  */
5445 int netif_rx(struct sk_buff *skb)
5446 {
5447 	bool need_bh_off = !(hardirq_count() | softirq_count());
5448 	int ret;
5449 
5450 	if (need_bh_off)
5451 		local_bh_disable();
5452 	trace_netif_rx_entry(skb);
5453 	ret = netif_rx_internal(skb);
5454 	trace_netif_rx_exit(ret);
5455 	if (need_bh_off)
5456 		local_bh_enable();
5457 	return ret;
5458 }
5459 EXPORT_SYMBOL(netif_rx);
5460 
5461 static __latent_entropy void net_tx_action(void)
5462 {
5463 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5464 
5465 	if (sd->completion_queue) {
5466 		struct sk_buff *clist;
5467 
5468 		local_irq_disable();
5469 		clist = sd->completion_queue;
5470 		sd->completion_queue = NULL;
5471 		local_irq_enable();
5472 
5473 		while (clist) {
5474 			struct sk_buff *skb = clist;
5475 
5476 			clist = clist->next;
5477 
5478 			WARN_ON(refcount_read(&skb->users));
5479 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5480 				trace_consume_skb(skb, net_tx_action);
5481 			else
5482 				trace_kfree_skb(skb, net_tx_action,
5483 						get_kfree_skb_cb(skb)->reason, NULL);
5484 
5485 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5486 				__kfree_skb(skb);
5487 			else
5488 				__napi_kfree_skb(skb,
5489 						 get_kfree_skb_cb(skb)->reason);
5490 		}
5491 	}
5492 
5493 	if (sd->output_queue) {
5494 		struct Qdisc *head;
5495 
5496 		local_irq_disable();
5497 		head = sd->output_queue;
5498 		sd->output_queue = NULL;
5499 		sd->output_queue_tailp = &sd->output_queue;
5500 		local_irq_enable();
5501 
5502 		rcu_read_lock();
5503 
5504 		while (head) {
5505 			struct Qdisc *q = head;
5506 			spinlock_t *root_lock = NULL;
5507 
5508 			head = head->next_sched;
5509 
5510 			/* We need to make sure head->next_sched is read
5511 			 * before clearing __QDISC_STATE_SCHED
5512 			 */
5513 			smp_mb__before_atomic();
5514 
5515 			if (!(q->flags & TCQ_F_NOLOCK)) {
5516 				root_lock = qdisc_lock(q);
5517 				spin_lock(root_lock);
5518 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5519 						     &q->state))) {
5520 				/* There is a synchronize_net() between
5521 				 * STATE_DEACTIVATED flag being set and
5522 				 * qdisc_reset()/some_qdisc_is_busy() in
5523 				 * dev_deactivate(), so we can safely bail out
5524 				 * early here to avoid data race between
5525 				 * qdisc_deactivate() and some_qdisc_is_busy()
5526 				 * for lockless qdisc.
5527 				 */
5528 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5529 				continue;
5530 			}
5531 
5532 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5533 			qdisc_run(q);
5534 			if (root_lock)
5535 				spin_unlock(root_lock);
5536 		}
5537 
5538 		rcu_read_unlock();
5539 	}
5540 
5541 	xfrm_dev_backlog(sd);
5542 }
5543 
5544 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5545 /* This hook is defined here for ATM LANE */
5546 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5547 			     unsigned char *addr) __read_mostly;
5548 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5549 #endif
5550 
5551 /**
5552  *	netdev_is_rx_handler_busy - check if receive handler is registered
5553  *	@dev: device to check
5554  *
5555  *	Check if a receive handler is already registered for a given device.
5556  *	Return true if there one.
5557  *
5558  *	The caller must hold the rtnl_mutex.
5559  */
5560 bool netdev_is_rx_handler_busy(struct net_device *dev)
5561 {
5562 	ASSERT_RTNL();
5563 	return dev && rtnl_dereference(dev->rx_handler);
5564 }
5565 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5566 
5567 /**
5568  *	netdev_rx_handler_register - register receive handler
5569  *	@dev: device to register a handler for
5570  *	@rx_handler: receive handler to register
5571  *	@rx_handler_data: data pointer that is used by rx handler
5572  *
5573  *	Register a receive handler for a device. This handler will then be
5574  *	called from __netif_receive_skb. A negative errno code is returned
5575  *	on a failure.
5576  *
5577  *	The caller must hold the rtnl_mutex.
5578  *
5579  *	For a general description of rx_handler, see enum rx_handler_result.
5580  */
5581 int netdev_rx_handler_register(struct net_device *dev,
5582 			       rx_handler_func_t *rx_handler,
5583 			       void *rx_handler_data)
5584 {
5585 	if (netdev_is_rx_handler_busy(dev))
5586 		return -EBUSY;
5587 
5588 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5589 		return -EINVAL;
5590 
5591 	/* Note: rx_handler_data must be set before rx_handler */
5592 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5593 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5594 
5595 	return 0;
5596 }
5597 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5598 
5599 /**
5600  *	netdev_rx_handler_unregister - unregister receive handler
5601  *	@dev: device to unregister a handler from
5602  *
5603  *	Unregister a receive handler from a device.
5604  *
5605  *	The caller must hold the rtnl_mutex.
5606  */
5607 void netdev_rx_handler_unregister(struct net_device *dev)
5608 {
5609 
5610 	ASSERT_RTNL();
5611 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5612 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5613 	 * section has a guarantee to see a non NULL rx_handler_data
5614 	 * as well.
5615 	 */
5616 	synchronize_net();
5617 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5618 }
5619 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5620 
5621 /*
5622  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5623  * the special handling of PFMEMALLOC skbs.
5624  */
5625 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5626 {
5627 	switch (skb->protocol) {
5628 	case htons(ETH_P_ARP):
5629 	case htons(ETH_P_IP):
5630 	case htons(ETH_P_IPV6):
5631 	case htons(ETH_P_8021Q):
5632 	case htons(ETH_P_8021AD):
5633 		return true;
5634 	default:
5635 		return false;
5636 	}
5637 }
5638 
5639 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5640 			     int *ret, struct net_device *orig_dev)
5641 {
5642 	if (nf_hook_ingress_active(skb)) {
5643 		int ingress_retval;
5644 
5645 		if (*pt_prev) {
5646 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5647 			*pt_prev = NULL;
5648 		}
5649 
5650 		rcu_read_lock();
5651 		ingress_retval = nf_hook_ingress(skb);
5652 		rcu_read_unlock();
5653 		return ingress_retval;
5654 	}
5655 	return 0;
5656 }
5657 
5658 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5659 				    struct packet_type **ppt_prev)
5660 {
5661 	struct packet_type *ptype, *pt_prev;
5662 	rx_handler_func_t *rx_handler;
5663 	struct sk_buff *skb = *pskb;
5664 	struct net_device *orig_dev;
5665 	bool deliver_exact = false;
5666 	int ret = NET_RX_DROP;
5667 	__be16 type;
5668 
5669 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5670 
5671 	trace_netif_receive_skb(skb);
5672 
5673 	orig_dev = skb->dev;
5674 
5675 	skb_reset_network_header(skb);
5676 #if !defined(CONFIG_DEBUG_NET)
5677 	/* We plan to no longer reset the transport header here.
5678 	 * Give some time to fuzzers and dev build to catch bugs
5679 	 * in network stacks.
5680 	 */
5681 	if (!skb_transport_header_was_set(skb))
5682 		skb_reset_transport_header(skb);
5683 #endif
5684 	skb_reset_mac_len(skb);
5685 
5686 	pt_prev = NULL;
5687 
5688 another_round:
5689 	skb->skb_iif = skb->dev->ifindex;
5690 
5691 	__this_cpu_inc(softnet_data.processed);
5692 
5693 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5694 		int ret2;
5695 
5696 		migrate_disable();
5697 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5698 				      &skb);
5699 		migrate_enable();
5700 
5701 		if (ret2 != XDP_PASS) {
5702 			ret = NET_RX_DROP;
5703 			goto out;
5704 		}
5705 	}
5706 
5707 	if (eth_type_vlan(skb->protocol)) {
5708 		skb = skb_vlan_untag(skb);
5709 		if (unlikely(!skb))
5710 			goto out;
5711 	}
5712 
5713 	if (skb_skip_tc_classify(skb))
5714 		goto skip_classify;
5715 
5716 	if (pfmemalloc)
5717 		goto skip_taps;
5718 
5719 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5720 		if (pt_prev)
5721 			ret = deliver_skb(skb, pt_prev, orig_dev);
5722 		pt_prev = ptype;
5723 	}
5724 
5725 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5726 		if (pt_prev)
5727 			ret = deliver_skb(skb, pt_prev, orig_dev);
5728 		pt_prev = ptype;
5729 	}
5730 
5731 skip_taps:
5732 #ifdef CONFIG_NET_INGRESS
5733 	if (static_branch_unlikely(&ingress_needed_key)) {
5734 		bool another = false;
5735 
5736 		nf_skip_egress(skb, true);
5737 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5738 					 &another);
5739 		if (another)
5740 			goto another_round;
5741 		if (!skb)
5742 			goto out;
5743 
5744 		nf_skip_egress(skb, false);
5745 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5746 			goto out;
5747 	}
5748 #endif
5749 	skb_reset_redirect(skb);
5750 skip_classify:
5751 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5752 		goto drop;
5753 
5754 	if (skb_vlan_tag_present(skb)) {
5755 		if (pt_prev) {
5756 			ret = deliver_skb(skb, pt_prev, orig_dev);
5757 			pt_prev = NULL;
5758 		}
5759 		if (vlan_do_receive(&skb))
5760 			goto another_round;
5761 		else if (unlikely(!skb))
5762 			goto out;
5763 	}
5764 
5765 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5766 	if (rx_handler) {
5767 		if (pt_prev) {
5768 			ret = deliver_skb(skb, pt_prev, orig_dev);
5769 			pt_prev = NULL;
5770 		}
5771 		switch (rx_handler(&skb)) {
5772 		case RX_HANDLER_CONSUMED:
5773 			ret = NET_RX_SUCCESS;
5774 			goto out;
5775 		case RX_HANDLER_ANOTHER:
5776 			goto another_round;
5777 		case RX_HANDLER_EXACT:
5778 			deliver_exact = true;
5779 			break;
5780 		case RX_HANDLER_PASS:
5781 			break;
5782 		default:
5783 			BUG();
5784 		}
5785 	}
5786 
5787 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5788 check_vlan_id:
5789 		if (skb_vlan_tag_get_id(skb)) {
5790 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5791 			 * find vlan device.
5792 			 */
5793 			skb->pkt_type = PACKET_OTHERHOST;
5794 		} else if (eth_type_vlan(skb->protocol)) {
5795 			/* Outer header is 802.1P with vlan 0, inner header is
5796 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5797 			 * not find vlan dev for vlan id 0.
5798 			 */
5799 			__vlan_hwaccel_clear_tag(skb);
5800 			skb = skb_vlan_untag(skb);
5801 			if (unlikely(!skb))
5802 				goto out;
5803 			if (vlan_do_receive(&skb))
5804 				/* After stripping off 802.1P header with vlan 0
5805 				 * vlan dev is found for inner header.
5806 				 */
5807 				goto another_round;
5808 			else if (unlikely(!skb))
5809 				goto out;
5810 			else
5811 				/* We have stripped outer 802.1P vlan 0 header.
5812 				 * But could not find vlan dev.
5813 				 * check again for vlan id to set OTHERHOST.
5814 				 */
5815 				goto check_vlan_id;
5816 		}
5817 		/* Note: we might in the future use prio bits
5818 		 * and set skb->priority like in vlan_do_receive()
5819 		 * For the time being, just ignore Priority Code Point
5820 		 */
5821 		__vlan_hwaccel_clear_tag(skb);
5822 	}
5823 
5824 	type = skb->protocol;
5825 
5826 	/* deliver only exact match when indicated */
5827 	if (likely(!deliver_exact)) {
5828 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5829 				       &ptype_base[ntohs(type) &
5830 						   PTYPE_HASH_MASK]);
5831 	}
5832 
5833 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5834 			       &orig_dev->ptype_specific);
5835 
5836 	if (unlikely(skb->dev != orig_dev)) {
5837 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5838 				       &skb->dev->ptype_specific);
5839 	}
5840 
5841 	if (pt_prev) {
5842 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5843 			goto drop;
5844 		*ppt_prev = pt_prev;
5845 	} else {
5846 drop:
5847 		if (!deliver_exact)
5848 			dev_core_stats_rx_dropped_inc(skb->dev);
5849 		else
5850 			dev_core_stats_rx_nohandler_inc(skb->dev);
5851 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5852 		/* Jamal, now you will not able to escape explaining
5853 		 * me how you were going to use this. :-)
5854 		 */
5855 		ret = NET_RX_DROP;
5856 	}
5857 
5858 out:
5859 	/* The invariant here is that if *ppt_prev is not NULL
5860 	 * then skb should also be non-NULL.
5861 	 *
5862 	 * Apparently *ppt_prev assignment above holds this invariant due to
5863 	 * skb dereferencing near it.
5864 	 */
5865 	*pskb = skb;
5866 	return ret;
5867 }
5868 
5869 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5870 {
5871 	struct net_device *orig_dev = skb->dev;
5872 	struct packet_type *pt_prev = NULL;
5873 	int ret;
5874 
5875 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5876 	if (pt_prev)
5877 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5878 					 skb->dev, pt_prev, orig_dev);
5879 	return ret;
5880 }
5881 
5882 /**
5883  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5884  *	@skb: buffer to process
5885  *
5886  *	More direct receive version of netif_receive_skb().  It should
5887  *	only be used by callers that have a need to skip RPS and Generic XDP.
5888  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5889  *
5890  *	This function may only be called from softirq context and interrupts
5891  *	should be enabled.
5892  *
5893  *	Return values (usually ignored):
5894  *	NET_RX_SUCCESS: no congestion
5895  *	NET_RX_DROP: packet was dropped
5896  */
5897 int netif_receive_skb_core(struct sk_buff *skb)
5898 {
5899 	int ret;
5900 
5901 	rcu_read_lock();
5902 	ret = __netif_receive_skb_one_core(skb, false);
5903 	rcu_read_unlock();
5904 
5905 	return ret;
5906 }
5907 EXPORT_SYMBOL(netif_receive_skb_core);
5908 
5909 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5910 						  struct packet_type *pt_prev,
5911 						  struct net_device *orig_dev)
5912 {
5913 	struct sk_buff *skb, *next;
5914 
5915 	if (!pt_prev)
5916 		return;
5917 	if (list_empty(head))
5918 		return;
5919 	if (pt_prev->list_func != NULL)
5920 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5921 				   ip_list_rcv, head, pt_prev, orig_dev);
5922 	else
5923 		list_for_each_entry_safe(skb, next, head, list) {
5924 			skb_list_del_init(skb);
5925 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5926 		}
5927 }
5928 
5929 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5930 {
5931 	/* Fast-path assumptions:
5932 	 * - There is no RX handler.
5933 	 * - Only one packet_type matches.
5934 	 * If either of these fails, we will end up doing some per-packet
5935 	 * processing in-line, then handling the 'last ptype' for the whole
5936 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5937 	 * because the 'last ptype' must be constant across the sublist, and all
5938 	 * other ptypes are handled per-packet.
5939 	 */
5940 	/* Current (common) ptype of sublist */
5941 	struct packet_type *pt_curr = NULL;
5942 	/* Current (common) orig_dev of sublist */
5943 	struct net_device *od_curr = NULL;
5944 	struct sk_buff *skb, *next;
5945 	LIST_HEAD(sublist);
5946 
5947 	list_for_each_entry_safe(skb, next, head, list) {
5948 		struct net_device *orig_dev = skb->dev;
5949 		struct packet_type *pt_prev = NULL;
5950 
5951 		skb_list_del_init(skb);
5952 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5953 		if (!pt_prev)
5954 			continue;
5955 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5956 			/* dispatch old sublist */
5957 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5958 			/* start new sublist */
5959 			INIT_LIST_HEAD(&sublist);
5960 			pt_curr = pt_prev;
5961 			od_curr = orig_dev;
5962 		}
5963 		list_add_tail(&skb->list, &sublist);
5964 	}
5965 
5966 	/* dispatch final sublist */
5967 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5968 }
5969 
5970 static int __netif_receive_skb(struct sk_buff *skb)
5971 {
5972 	int ret;
5973 
5974 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5975 		unsigned int noreclaim_flag;
5976 
5977 		/*
5978 		 * PFMEMALLOC skbs are special, they should
5979 		 * - be delivered to SOCK_MEMALLOC sockets only
5980 		 * - stay away from userspace
5981 		 * - have bounded memory usage
5982 		 *
5983 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5984 		 * context down to all allocation sites.
5985 		 */
5986 		noreclaim_flag = memalloc_noreclaim_save();
5987 		ret = __netif_receive_skb_one_core(skb, true);
5988 		memalloc_noreclaim_restore(noreclaim_flag);
5989 	} else
5990 		ret = __netif_receive_skb_one_core(skb, false);
5991 
5992 	return ret;
5993 }
5994 
5995 static void __netif_receive_skb_list(struct list_head *head)
5996 {
5997 	unsigned long noreclaim_flag = 0;
5998 	struct sk_buff *skb, *next;
5999 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6000 
6001 	list_for_each_entry_safe(skb, next, head, list) {
6002 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6003 			struct list_head sublist;
6004 
6005 			/* Handle the previous sublist */
6006 			list_cut_before(&sublist, head, &skb->list);
6007 			if (!list_empty(&sublist))
6008 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6009 			pfmemalloc = !pfmemalloc;
6010 			/* See comments in __netif_receive_skb */
6011 			if (pfmemalloc)
6012 				noreclaim_flag = memalloc_noreclaim_save();
6013 			else
6014 				memalloc_noreclaim_restore(noreclaim_flag);
6015 		}
6016 	}
6017 	/* Handle the remaining sublist */
6018 	if (!list_empty(head))
6019 		__netif_receive_skb_list_core(head, pfmemalloc);
6020 	/* Restore pflags */
6021 	if (pfmemalloc)
6022 		memalloc_noreclaim_restore(noreclaim_flag);
6023 }
6024 
6025 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6026 {
6027 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6028 	struct bpf_prog *new = xdp->prog;
6029 	int ret = 0;
6030 
6031 	switch (xdp->command) {
6032 	case XDP_SETUP_PROG:
6033 		rcu_assign_pointer(dev->xdp_prog, new);
6034 		if (old)
6035 			bpf_prog_put(old);
6036 
6037 		if (old && !new) {
6038 			static_branch_dec(&generic_xdp_needed_key);
6039 		} else if (new && !old) {
6040 			static_branch_inc(&generic_xdp_needed_key);
6041 			dev_disable_lro(dev);
6042 			dev_disable_gro_hw(dev);
6043 		}
6044 		break;
6045 
6046 	default:
6047 		ret = -EINVAL;
6048 		break;
6049 	}
6050 
6051 	return ret;
6052 }
6053 
6054 static int netif_receive_skb_internal(struct sk_buff *skb)
6055 {
6056 	int ret;
6057 
6058 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6059 
6060 	if (skb_defer_rx_timestamp(skb))
6061 		return NET_RX_SUCCESS;
6062 
6063 	rcu_read_lock();
6064 #ifdef CONFIG_RPS
6065 	if (static_branch_unlikely(&rps_needed)) {
6066 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6067 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6068 
6069 		if (cpu >= 0) {
6070 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6071 			rcu_read_unlock();
6072 			return ret;
6073 		}
6074 	}
6075 #endif
6076 	ret = __netif_receive_skb(skb);
6077 	rcu_read_unlock();
6078 	return ret;
6079 }
6080 
6081 void netif_receive_skb_list_internal(struct list_head *head)
6082 {
6083 	struct sk_buff *skb, *next;
6084 	LIST_HEAD(sublist);
6085 
6086 	list_for_each_entry_safe(skb, next, head, list) {
6087 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6088 				    skb);
6089 		skb_list_del_init(skb);
6090 		if (!skb_defer_rx_timestamp(skb))
6091 			list_add_tail(&skb->list, &sublist);
6092 	}
6093 	list_splice_init(&sublist, head);
6094 
6095 	rcu_read_lock();
6096 #ifdef CONFIG_RPS
6097 	if (static_branch_unlikely(&rps_needed)) {
6098 		list_for_each_entry_safe(skb, next, head, list) {
6099 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6100 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6101 
6102 			if (cpu >= 0) {
6103 				/* Will be handled, remove from list */
6104 				skb_list_del_init(skb);
6105 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6106 			}
6107 		}
6108 	}
6109 #endif
6110 	__netif_receive_skb_list(head);
6111 	rcu_read_unlock();
6112 }
6113 
6114 /**
6115  *	netif_receive_skb - process receive buffer from network
6116  *	@skb: buffer to process
6117  *
6118  *	netif_receive_skb() is the main receive data processing function.
6119  *	It always succeeds. The buffer may be dropped during processing
6120  *	for congestion control or by the protocol layers.
6121  *
6122  *	This function may only be called from softirq context and interrupts
6123  *	should be enabled.
6124  *
6125  *	Return values (usually ignored):
6126  *	NET_RX_SUCCESS: no congestion
6127  *	NET_RX_DROP: packet was dropped
6128  */
6129 int netif_receive_skb(struct sk_buff *skb)
6130 {
6131 	int ret;
6132 
6133 	trace_netif_receive_skb_entry(skb);
6134 
6135 	ret = netif_receive_skb_internal(skb);
6136 	trace_netif_receive_skb_exit(ret);
6137 
6138 	return ret;
6139 }
6140 EXPORT_SYMBOL(netif_receive_skb);
6141 
6142 /**
6143  *	netif_receive_skb_list - process many receive buffers from network
6144  *	@head: list of skbs to process.
6145  *
6146  *	Since return value of netif_receive_skb() is normally ignored, and
6147  *	wouldn't be meaningful for a list, this function returns void.
6148  *
6149  *	This function may only be called from softirq context and interrupts
6150  *	should be enabled.
6151  */
6152 void netif_receive_skb_list(struct list_head *head)
6153 {
6154 	struct sk_buff *skb;
6155 
6156 	if (list_empty(head))
6157 		return;
6158 	if (trace_netif_receive_skb_list_entry_enabled()) {
6159 		list_for_each_entry(skb, head, list)
6160 			trace_netif_receive_skb_list_entry(skb);
6161 	}
6162 	netif_receive_skb_list_internal(head);
6163 	trace_netif_receive_skb_list_exit(0);
6164 }
6165 EXPORT_SYMBOL(netif_receive_skb_list);
6166 
6167 /* Network device is going away, flush any packets still pending */
6168 static void flush_backlog(struct work_struct *work)
6169 {
6170 	struct sk_buff *skb, *tmp;
6171 	struct sk_buff_head list;
6172 	struct softnet_data *sd;
6173 
6174 	__skb_queue_head_init(&list);
6175 	local_bh_disable();
6176 	sd = this_cpu_ptr(&softnet_data);
6177 
6178 	backlog_lock_irq_disable(sd);
6179 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6180 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6181 			__skb_unlink(skb, &sd->input_pkt_queue);
6182 			__skb_queue_tail(&list, skb);
6183 			rps_input_queue_head_incr(sd);
6184 		}
6185 	}
6186 	backlog_unlock_irq_enable(sd);
6187 
6188 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6189 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6190 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6191 			__skb_unlink(skb, &sd->process_queue);
6192 			__skb_queue_tail(&list, skb);
6193 			rps_input_queue_head_incr(sd);
6194 		}
6195 	}
6196 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6197 	local_bh_enable();
6198 
6199 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6200 }
6201 
6202 static bool flush_required(int cpu)
6203 {
6204 #if IS_ENABLED(CONFIG_RPS)
6205 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6206 	bool do_flush;
6207 
6208 	backlog_lock_irq_disable(sd);
6209 
6210 	/* as insertion into process_queue happens with the rps lock held,
6211 	 * process_queue access may race only with dequeue
6212 	 */
6213 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6214 		   !skb_queue_empty_lockless(&sd->process_queue);
6215 	backlog_unlock_irq_enable(sd);
6216 
6217 	return do_flush;
6218 #endif
6219 	/* without RPS we can't safely check input_pkt_queue: during a
6220 	 * concurrent remote skb_queue_splice() we can detect as empty both
6221 	 * input_pkt_queue and process_queue even if the latter could end-up
6222 	 * containing a lot of packets.
6223 	 */
6224 	return true;
6225 }
6226 
6227 struct flush_backlogs {
6228 	cpumask_t		flush_cpus;
6229 	struct work_struct	w[];
6230 };
6231 
6232 static struct flush_backlogs *flush_backlogs_alloc(void)
6233 {
6234 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6235 		       GFP_KERNEL);
6236 }
6237 
6238 static struct flush_backlogs *flush_backlogs_fallback;
6239 static DEFINE_MUTEX(flush_backlogs_mutex);
6240 
6241 static void flush_all_backlogs(void)
6242 {
6243 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6244 	unsigned int cpu;
6245 
6246 	if (!ptr) {
6247 		mutex_lock(&flush_backlogs_mutex);
6248 		ptr = flush_backlogs_fallback;
6249 	}
6250 	cpumask_clear(&ptr->flush_cpus);
6251 
6252 	cpus_read_lock();
6253 
6254 	for_each_online_cpu(cpu) {
6255 		if (flush_required(cpu)) {
6256 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6257 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6258 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6259 		}
6260 	}
6261 
6262 	/* we can have in flight packet[s] on the cpus we are not flushing,
6263 	 * synchronize_net() in unregister_netdevice_many() will take care of
6264 	 * them.
6265 	 */
6266 	for_each_cpu(cpu, &ptr->flush_cpus)
6267 		flush_work(&ptr->w[cpu]);
6268 
6269 	cpus_read_unlock();
6270 
6271 	if (ptr != flush_backlogs_fallback)
6272 		kfree(ptr);
6273 	else
6274 		mutex_unlock(&flush_backlogs_mutex);
6275 }
6276 
6277 static void net_rps_send_ipi(struct softnet_data *remsd)
6278 {
6279 #ifdef CONFIG_RPS
6280 	while (remsd) {
6281 		struct softnet_data *next = remsd->rps_ipi_next;
6282 
6283 		if (cpu_online(remsd->cpu))
6284 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6285 		remsd = next;
6286 	}
6287 #endif
6288 }
6289 
6290 /*
6291  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6292  * Note: called with local irq disabled, but exits with local irq enabled.
6293  */
6294 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6295 {
6296 #ifdef CONFIG_RPS
6297 	struct softnet_data *remsd = sd->rps_ipi_list;
6298 
6299 	if (!use_backlog_threads() && remsd) {
6300 		sd->rps_ipi_list = NULL;
6301 
6302 		local_irq_enable();
6303 
6304 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6305 		net_rps_send_ipi(remsd);
6306 	} else
6307 #endif
6308 		local_irq_enable();
6309 }
6310 
6311 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6312 {
6313 #ifdef CONFIG_RPS
6314 	return !use_backlog_threads() && sd->rps_ipi_list;
6315 #else
6316 	return false;
6317 #endif
6318 }
6319 
6320 static int process_backlog(struct napi_struct *napi, int quota)
6321 {
6322 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6323 	bool again = true;
6324 	int work = 0;
6325 
6326 	/* Check if we have pending ipi, its better to send them now,
6327 	 * not waiting net_rx_action() end.
6328 	 */
6329 	if (sd_has_rps_ipi_waiting(sd)) {
6330 		local_irq_disable();
6331 		net_rps_action_and_irq_enable(sd);
6332 	}
6333 
6334 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6335 	while (again) {
6336 		struct sk_buff *skb;
6337 
6338 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6339 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6340 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6341 			rcu_read_lock();
6342 			__netif_receive_skb(skb);
6343 			rcu_read_unlock();
6344 			if (++work >= quota) {
6345 				rps_input_queue_head_add(sd, work);
6346 				return work;
6347 			}
6348 
6349 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6350 		}
6351 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6352 
6353 		backlog_lock_irq_disable(sd);
6354 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6355 			/*
6356 			 * Inline a custom version of __napi_complete().
6357 			 * only current cpu owns and manipulates this napi,
6358 			 * and NAPI_STATE_SCHED is the only possible flag set
6359 			 * on backlog.
6360 			 * We can use a plain write instead of clear_bit(),
6361 			 * and we dont need an smp_mb() memory barrier.
6362 			 */
6363 			napi->state &= NAPIF_STATE_THREADED;
6364 			again = false;
6365 		} else {
6366 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6367 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6368 						   &sd->process_queue);
6369 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6370 		}
6371 		backlog_unlock_irq_enable(sd);
6372 	}
6373 
6374 	if (work)
6375 		rps_input_queue_head_add(sd, work);
6376 	return work;
6377 }
6378 
6379 /**
6380  * __napi_schedule - schedule for receive
6381  * @n: entry to schedule
6382  *
6383  * The entry's receive function will be scheduled to run.
6384  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6385  */
6386 void __napi_schedule(struct napi_struct *n)
6387 {
6388 	unsigned long flags;
6389 
6390 	local_irq_save(flags);
6391 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6392 	local_irq_restore(flags);
6393 }
6394 EXPORT_SYMBOL(__napi_schedule);
6395 
6396 /**
6397  *	napi_schedule_prep - check if napi can be scheduled
6398  *	@n: napi context
6399  *
6400  * Test if NAPI routine is already running, and if not mark
6401  * it as running.  This is used as a condition variable to
6402  * insure only one NAPI poll instance runs.  We also make
6403  * sure there is no pending NAPI disable.
6404  */
6405 bool napi_schedule_prep(struct napi_struct *n)
6406 {
6407 	unsigned long new, val = READ_ONCE(n->state);
6408 
6409 	do {
6410 		if (unlikely(val & NAPIF_STATE_DISABLE))
6411 			return false;
6412 		new = val | NAPIF_STATE_SCHED;
6413 
6414 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6415 		 * This was suggested by Alexander Duyck, as compiler
6416 		 * emits better code than :
6417 		 * if (val & NAPIF_STATE_SCHED)
6418 		 *     new |= NAPIF_STATE_MISSED;
6419 		 */
6420 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6421 						   NAPIF_STATE_MISSED;
6422 	} while (!try_cmpxchg(&n->state, &val, new));
6423 
6424 	return !(val & NAPIF_STATE_SCHED);
6425 }
6426 EXPORT_SYMBOL(napi_schedule_prep);
6427 
6428 /**
6429  * __napi_schedule_irqoff - schedule for receive
6430  * @n: entry to schedule
6431  *
6432  * Variant of __napi_schedule() assuming hard irqs are masked.
6433  *
6434  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6435  * because the interrupt disabled assumption might not be true
6436  * due to force-threaded interrupts and spinlock substitution.
6437  */
6438 void __napi_schedule_irqoff(struct napi_struct *n)
6439 {
6440 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6441 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6442 	else
6443 		__napi_schedule(n);
6444 }
6445 EXPORT_SYMBOL(__napi_schedule_irqoff);
6446 
6447 bool napi_complete_done(struct napi_struct *n, int work_done)
6448 {
6449 	unsigned long flags, val, new, timeout = 0;
6450 	bool ret = true;
6451 
6452 	/*
6453 	 * 1) Don't let napi dequeue from the cpu poll list
6454 	 *    just in case its running on a different cpu.
6455 	 * 2) If we are busy polling, do nothing here, we have
6456 	 *    the guarantee we will be called later.
6457 	 */
6458 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6459 				 NAPIF_STATE_IN_BUSY_POLL)))
6460 		return false;
6461 
6462 	if (work_done) {
6463 		if (n->gro.bitmask)
6464 			timeout = napi_get_gro_flush_timeout(n);
6465 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6466 	}
6467 	if (n->defer_hard_irqs_count > 0) {
6468 		n->defer_hard_irqs_count--;
6469 		timeout = napi_get_gro_flush_timeout(n);
6470 		if (timeout)
6471 			ret = false;
6472 	}
6473 
6474 	/*
6475 	 * When the NAPI instance uses a timeout and keeps postponing
6476 	 * it, we need to bound somehow the time packets are kept in
6477 	 * the GRO layer.
6478 	 */
6479 	gro_flush(&n->gro, !!timeout);
6480 	gro_normal_list(&n->gro);
6481 
6482 	if (unlikely(!list_empty(&n->poll_list))) {
6483 		/* If n->poll_list is not empty, we need to mask irqs */
6484 		local_irq_save(flags);
6485 		list_del_init(&n->poll_list);
6486 		local_irq_restore(flags);
6487 	}
6488 	WRITE_ONCE(n->list_owner, -1);
6489 
6490 	val = READ_ONCE(n->state);
6491 	do {
6492 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6493 
6494 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6495 			      NAPIF_STATE_SCHED_THREADED |
6496 			      NAPIF_STATE_PREFER_BUSY_POLL);
6497 
6498 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6499 		 * because we will call napi->poll() one more time.
6500 		 * This C code was suggested by Alexander Duyck to help gcc.
6501 		 */
6502 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6503 						    NAPIF_STATE_SCHED;
6504 	} while (!try_cmpxchg(&n->state, &val, new));
6505 
6506 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6507 		__napi_schedule(n);
6508 		return false;
6509 	}
6510 
6511 	if (timeout)
6512 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6513 			      HRTIMER_MODE_REL_PINNED);
6514 	return ret;
6515 }
6516 EXPORT_SYMBOL(napi_complete_done);
6517 
6518 static void skb_defer_free_flush(struct softnet_data *sd)
6519 {
6520 	struct sk_buff *skb, *next;
6521 
6522 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6523 	if (!READ_ONCE(sd->defer_list))
6524 		return;
6525 
6526 	spin_lock(&sd->defer_lock);
6527 	skb = sd->defer_list;
6528 	sd->defer_list = NULL;
6529 	sd->defer_count = 0;
6530 	spin_unlock(&sd->defer_lock);
6531 
6532 	while (skb != NULL) {
6533 		next = skb->next;
6534 		napi_consume_skb(skb, 1);
6535 		skb = next;
6536 	}
6537 }
6538 
6539 #if defined(CONFIG_NET_RX_BUSY_POLL)
6540 
6541 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6542 {
6543 	if (!skip_schedule) {
6544 		gro_normal_list(&napi->gro);
6545 		__napi_schedule(napi);
6546 		return;
6547 	}
6548 
6549 	/* Flush too old packets. If HZ < 1000, flush all packets */
6550 	gro_flush(&napi->gro, HZ >= 1000);
6551 	gro_normal_list(&napi->gro);
6552 
6553 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6554 }
6555 
6556 enum {
6557 	NAPI_F_PREFER_BUSY_POLL	= 1,
6558 	NAPI_F_END_ON_RESCHED	= 2,
6559 };
6560 
6561 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6562 			   unsigned flags, u16 budget)
6563 {
6564 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6565 	bool skip_schedule = false;
6566 	unsigned long timeout;
6567 	int rc;
6568 
6569 	/* Busy polling means there is a high chance device driver hard irq
6570 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6571 	 * set in napi_schedule_prep().
6572 	 * Since we are about to call napi->poll() once more, we can safely
6573 	 * clear NAPI_STATE_MISSED.
6574 	 *
6575 	 * Note: x86 could use a single "lock and ..." instruction
6576 	 * to perform these two clear_bit()
6577 	 */
6578 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6579 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6580 
6581 	local_bh_disable();
6582 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6583 
6584 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6585 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6586 		timeout = napi_get_gro_flush_timeout(napi);
6587 		if (napi->defer_hard_irqs_count && timeout) {
6588 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6589 			skip_schedule = true;
6590 		}
6591 	}
6592 
6593 	/* All we really want here is to re-enable device interrupts.
6594 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6595 	 */
6596 	rc = napi->poll(napi, budget);
6597 	/* We can't gro_normal_list() here, because napi->poll() might have
6598 	 * rearmed the napi (napi_complete_done()) in which case it could
6599 	 * already be running on another CPU.
6600 	 */
6601 	trace_napi_poll(napi, rc, budget);
6602 	netpoll_poll_unlock(have_poll_lock);
6603 	if (rc == budget)
6604 		__busy_poll_stop(napi, skip_schedule);
6605 	bpf_net_ctx_clear(bpf_net_ctx);
6606 	local_bh_enable();
6607 }
6608 
6609 static void __napi_busy_loop(unsigned int napi_id,
6610 		      bool (*loop_end)(void *, unsigned long),
6611 		      void *loop_end_arg, unsigned flags, u16 budget)
6612 {
6613 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6614 	int (*napi_poll)(struct napi_struct *napi, int budget);
6615 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6616 	void *have_poll_lock = NULL;
6617 	struct napi_struct *napi;
6618 
6619 	WARN_ON_ONCE(!rcu_read_lock_held());
6620 
6621 restart:
6622 	napi_poll = NULL;
6623 
6624 	napi = napi_by_id(napi_id);
6625 	if (!napi)
6626 		return;
6627 
6628 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6629 		preempt_disable();
6630 	for (;;) {
6631 		int work = 0;
6632 
6633 		local_bh_disable();
6634 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6635 		if (!napi_poll) {
6636 			unsigned long val = READ_ONCE(napi->state);
6637 
6638 			/* If multiple threads are competing for this napi,
6639 			 * we avoid dirtying napi->state as much as we can.
6640 			 */
6641 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6642 				   NAPIF_STATE_IN_BUSY_POLL)) {
6643 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6644 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6645 				goto count;
6646 			}
6647 			if (cmpxchg(&napi->state, val,
6648 				    val | NAPIF_STATE_IN_BUSY_POLL |
6649 					  NAPIF_STATE_SCHED) != val) {
6650 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6651 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6652 				goto count;
6653 			}
6654 			have_poll_lock = netpoll_poll_lock(napi);
6655 			napi_poll = napi->poll;
6656 		}
6657 		work = napi_poll(napi, budget);
6658 		trace_napi_poll(napi, work, budget);
6659 		gro_normal_list(&napi->gro);
6660 count:
6661 		if (work > 0)
6662 			__NET_ADD_STATS(dev_net(napi->dev),
6663 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6664 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6665 		bpf_net_ctx_clear(bpf_net_ctx);
6666 		local_bh_enable();
6667 
6668 		if (!loop_end || loop_end(loop_end_arg, start_time))
6669 			break;
6670 
6671 		if (unlikely(need_resched())) {
6672 			if (flags & NAPI_F_END_ON_RESCHED)
6673 				break;
6674 			if (napi_poll)
6675 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6676 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6677 				preempt_enable();
6678 			rcu_read_unlock();
6679 			cond_resched();
6680 			rcu_read_lock();
6681 			if (loop_end(loop_end_arg, start_time))
6682 				return;
6683 			goto restart;
6684 		}
6685 		cpu_relax();
6686 	}
6687 	if (napi_poll)
6688 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6689 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6690 		preempt_enable();
6691 }
6692 
6693 void napi_busy_loop_rcu(unsigned int napi_id,
6694 			bool (*loop_end)(void *, unsigned long),
6695 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6696 {
6697 	unsigned flags = NAPI_F_END_ON_RESCHED;
6698 
6699 	if (prefer_busy_poll)
6700 		flags |= NAPI_F_PREFER_BUSY_POLL;
6701 
6702 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6703 }
6704 
6705 void napi_busy_loop(unsigned int napi_id,
6706 		    bool (*loop_end)(void *, unsigned long),
6707 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6708 {
6709 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6710 
6711 	rcu_read_lock();
6712 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6713 	rcu_read_unlock();
6714 }
6715 EXPORT_SYMBOL(napi_busy_loop);
6716 
6717 void napi_suspend_irqs(unsigned int napi_id)
6718 {
6719 	struct napi_struct *napi;
6720 
6721 	rcu_read_lock();
6722 	napi = napi_by_id(napi_id);
6723 	if (napi) {
6724 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6725 
6726 		if (timeout)
6727 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6728 				      HRTIMER_MODE_REL_PINNED);
6729 	}
6730 	rcu_read_unlock();
6731 }
6732 
6733 void napi_resume_irqs(unsigned int napi_id)
6734 {
6735 	struct napi_struct *napi;
6736 
6737 	rcu_read_lock();
6738 	napi = napi_by_id(napi_id);
6739 	if (napi) {
6740 		/* If irq_suspend_timeout is set to 0 between the call to
6741 		 * napi_suspend_irqs and now, the original value still
6742 		 * determines the safety timeout as intended and napi_watchdog
6743 		 * will resume irq processing.
6744 		 */
6745 		if (napi_get_irq_suspend_timeout(napi)) {
6746 			local_bh_disable();
6747 			napi_schedule(napi);
6748 			local_bh_enable();
6749 		}
6750 	}
6751 	rcu_read_unlock();
6752 }
6753 
6754 #endif /* CONFIG_NET_RX_BUSY_POLL */
6755 
6756 static void __napi_hash_add_with_id(struct napi_struct *napi,
6757 				    unsigned int napi_id)
6758 {
6759 	napi->gro.cached_napi_id = napi_id;
6760 
6761 	WRITE_ONCE(napi->napi_id, napi_id);
6762 	hlist_add_head_rcu(&napi->napi_hash_node,
6763 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6764 }
6765 
6766 static void napi_hash_add_with_id(struct napi_struct *napi,
6767 				  unsigned int napi_id)
6768 {
6769 	unsigned long flags;
6770 
6771 	spin_lock_irqsave(&napi_hash_lock, flags);
6772 	WARN_ON_ONCE(napi_by_id(napi_id));
6773 	__napi_hash_add_with_id(napi, napi_id);
6774 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6775 }
6776 
6777 static void napi_hash_add(struct napi_struct *napi)
6778 {
6779 	unsigned long flags;
6780 
6781 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6782 		return;
6783 
6784 	spin_lock_irqsave(&napi_hash_lock, flags);
6785 
6786 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6787 	do {
6788 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6789 			napi_gen_id = MIN_NAPI_ID;
6790 	} while (napi_by_id(napi_gen_id));
6791 
6792 	__napi_hash_add_with_id(napi, napi_gen_id);
6793 
6794 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6795 }
6796 
6797 /* Warning : caller is responsible to make sure rcu grace period
6798  * is respected before freeing memory containing @napi
6799  */
6800 static void napi_hash_del(struct napi_struct *napi)
6801 {
6802 	unsigned long flags;
6803 
6804 	spin_lock_irqsave(&napi_hash_lock, flags);
6805 
6806 	hlist_del_init_rcu(&napi->napi_hash_node);
6807 
6808 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6809 }
6810 
6811 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6812 {
6813 	struct napi_struct *napi;
6814 
6815 	napi = container_of(timer, struct napi_struct, timer);
6816 
6817 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6818 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6819 	 */
6820 	if (!napi_disable_pending(napi) &&
6821 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6822 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6823 		__napi_schedule_irqoff(napi);
6824 	}
6825 
6826 	return HRTIMER_NORESTART;
6827 }
6828 
6829 int dev_set_threaded(struct net_device *dev, bool threaded)
6830 {
6831 	struct napi_struct *napi;
6832 	int err = 0;
6833 
6834 	netdev_assert_locked_or_invisible(dev);
6835 
6836 	if (dev->threaded == threaded)
6837 		return 0;
6838 
6839 	if (threaded) {
6840 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6841 			if (!napi->thread) {
6842 				err = napi_kthread_create(napi);
6843 				if (err) {
6844 					threaded = false;
6845 					break;
6846 				}
6847 			}
6848 		}
6849 	}
6850 
6851 	WRITE_ONCE(dev->threaded, threaded);
6852 
6853 	/* Make sure kthread is created before THREADED bit
6854 	 * is set.
6855 	 */
6856 	smp_mb__before_atomic();
6857 
6858 	/* Setting/unsetting threaded mode on a napi might not immediately
6859 	 * take effect, if the current napi instance is actively being
6860 	 * polled. In this case, the switch between threaded mode and
6861 	 * softirq mode will happen in the next round of napi_schedule().
6862 	 * This should not cause hiccups/stalls to the live traffic.
6863 	 */
6864 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6865 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6866 
6867 	return err;
6868 }
6869 EXPORT_SYMBOL(dev_set_threaded);
6870 
6871 /**
6872  * netif_queue_set_napi - Associate queue with the napi
6873  * @dev: device to which NAPI and queue belong
6874  * @queue_index: Index of queue
6875  * @type: queue type as RX or TX
6876  * @napi: NAPI context, pass NULL to clear previously set NAPI
6877  *
6878  * Set queue with its corresponding napi context. This should be done after
6879  * registering the NAPI handler for the queue-vector and the queues have been
6880  * mapped to the corresponding interrupt vector.
6881  */
6882 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6883 			  enum netdev_queue_type type, struct napi_struct *napi)
6884 {
6885 	struct netdev_rx_queue *rxq;
6886 	struct netdev_queue *txq;
6887 
6888 	if (WARN_ON_ONCE(napi && !napi->dev))
6889 		return;
6890 	if (dev->reg_state >= NETREG_REGISTERED)
6891 		ASSERT_RTNL();
6892 
6893 	switch (type) {
6894 	case NETDEV_QUEUE_TYPE_RX:
6895 		rxq = __netif_get_rx_queue(dev, queue_index);
6896 		rxq->napi = napi;
6897 		return;
6898 	case NETDEV_QUEUE_TYPE_TX:
6899 		txq = netdev_get_tx_queue(dev, queue_index);
6900 		txq->napi = napi;
6901 		return;
6902 	default:
6903 		return;
6904 	}
6905 }
6906 EXPORT_SYMBOL(netif_queue_set_napi);
6907 
6908 static void
6909 netif_napi_irq_notify(struct irq_affinity_notify *notify,
6910 		      const cpumask_t *mask)
6911 {
6912 	struct napi_struct *napi =
6913 		container_of(notify, struct napi_struct, notify);
6914 #ifdef CONFIG_RFS_ACCEL
6915 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6916 	int err;
6917 #endif
6918 
6919 	if (napi->config && napi->dev->irq_affinity_auto)
6920 		cpumask_copy(&napi->config->affinity_mask, mask);
6921 
6922 #ifdef CONFIG_RFS_ACCEL
6923 	if (napi->dev->rx_cpu_rmap_auto) {
6924 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6925 		if (err)
6926 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6927 				    err);
6928 	}
6929 #endif
6930 }
6931 
6932 #ifdef CONFIG_RFS_ACCEL
6933 static void netif_napi_affinity_release(struct kref *ref)
6934 {
6935 	struct napi_struct *napi =
6936 		container_of(ref, struct napi_struct, notify.kref);
6937 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6938 
6939 	netdev_assert_locked(napi->dev);
6940 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6941 				   &napi->state));
6942 
6943 	if (!napi->dev->rx_cpu_rmap_auto)
6944 		return;
6945 	rmap->obj[napi->napi_rmap_idx] = NULL;
6946 	napi->napi_rmap_idx = -1;
6947 	cpu_rmap_put(rmap);
6948 }
6949 
6950 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6951 {
6952 	if (dev->rx_cpu_rmap_auto)
6953 		return 0;
6954 
6955 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6956 	if (!dev->rx_cpu_rmap)
6957 		return -ENOMEM;
6958 
6959 	dev->rx_cpu_rmap_auto = true;
6960 	return 0;
6961 }
6962 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6963 
6964 static void netif_del_cpu_rmap(struct net_device *dev)
6965 {
6966 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6967 
6968 	if (!dev->rx_cpu_rmap_auto)
6969 		return;
6970 
6971 	/* Free the rmap */
6972 	cpu_rmap_put(rmap);
6973 	dev->rx_cpu_rmap = NULL;
6974 	dev->rx_cpu_rmap_auto = false;
6975 }
6976 
6977 #else
6978 static void netif_napi_affinity_release(struct kref *ref)
6979 {
6980 }
6981 
6982 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6983 {
6984 	return 0;
6985 }
6986 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6987 
6988 static void netif_del_cpu_rmap(struct net_device *dev)
6989 {
6990 }
6991 #endif
6992 
6993 void netif_set_affinity_auto(struct net_device *dev)
6994 {
6995 	unsigned int i, maxqs, numa;
6996 
6997 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
6998 	numa = dev_to_node(&dev->dev);
6999 
7000 	for (i = 0; i < maxqs; i++)
7001 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7002 				&dev->napi_config[i].affinity_mask);
7003 
7004 	dev->irq_affinity_auto = true;
7005 }
7006 EXPORT_SYMBOL(netif_set_affinity_auto);
7007 
7008 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7009 {
7010 	int rc;
7011 
7012 	netdev_assert_locked_or_invisible(napi->dev);
7013 
7014 	if (napi->irq == irq)
7015 		return;
7016 
7017 	/* Remove existing resources */
7018 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7019 		irq_set_affinity_notifier(napi->irq, NULL);
7020 
7021 	napi->irq = irq;
7022 	if (irq < 0 ||
7023 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7024 		return;
7025 
7026 	/* Abort for buggy drivers */
7027 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7028 		return;
7029 
7030 #ifdef CONFIG_RFS_ACCEL
7031 	if (napi->dev->rx_cpu_rmap_auto) {
7032 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7033 		if (rc < 0)
7034 			return;
7035 
7036 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7037 		napi->napi_rmap_idx = rc;
7038 	}
7039 #endif
7040 
7041 	/* Use core IRQ notifier */
7042 	napi->notify.notify = netif_napi_irq_notify;
7043 	napi->notify.release = netif_napi_affinity_release;
7044 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7045 	if (rc) {
7046 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7047 			    rc);
7048 		goto put_rmap;
7049 	}
7050 
7051 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7052 	return;
7053 
7054 put_rmap:
7055 #ifdef CONFIG_RFS_ACCEL
7056 	if (napi->dev->rx_cpu_rmap_auto) {
7057 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7058 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7059 		napi->napi_rmap_idx = -1;
7060 	}
7061 #endif
7062 	napi->notify.notify = NULL;
7063 	napi->notify.release = NULL;
7064 }
7065 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7066 
7067 static void napi_restore_config(struct napi_struct *n)
7068 {
7069 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7070 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7071 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7072 
7073 	if (n->dev->irq_affinity_auto &&
7074 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7075 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7076 
7077 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7078 	 * napi_hash_add to generate one for us.
7079 	 */
7080 	if (n->config->napi_id) {
7081 		napi_hash_add_with_id(n, n->config->napi_id);
7082 	} else {
7083 		napi_hash_add(n);
7084 		n->config->napi_id = n->napi_id;
7085 	}
7086 }
7087 
7088 static void napi_save_config(struct napi_struct *n)
7089 {
7090 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7091 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7092 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7093 	napi_hash_del(n);
7094 }
7095 
7096 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7097  * inherit an existing ID try to insert it at the right position.
7098  */
7099 static void
7100 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7101 {
7102 	unsigned int new_id, pos_id;
7103 	struct list_head *higher;
7104 	struct napi_struct *pos;
7105 
7106 	new_id = UINT_MAX;
7107 	if (napi->config && napi->config->napi_id)
7108 		new_id = napi->config->napi_id;
7109 
7110 	higher = &dev->napi_list;
7111 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7112 		if (napi_id_valid(pos->napi_id))
7113 			pos_id = pos->napi_id;
7114 		else if (pos->config)
7115 			pos_id = pos->config->napi_id;
7116 		else
7117 			pos_id = UINT_MAX;
7118 
7119 		if (pos_id <= new_id)
7120 			break;
7121 		higher = &pos->dev_list;
7122 	}
7123 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7124 }
7125 
7126 /* Double check that napi_get_frags() allocates skbs with
7127  * skb->head being backed by slab, not a page fragment.
7128  * This is to make sure bug fixed in 3226b158e67c
7129  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7130  * does not accidentally come back.
7131  */
7132 static void napi_get_frags_check(struct napi_struct *napi)
7133 {
7134 	struct sk_buff *skb;
7135 
7136 	local_bh_disable();
7137 	skb = napi_get_frags(napi);
7138 	WARN_ON_ONCE(skb && skb->head_frag);
7139 	napi_free_frags(napi);
7140 	local_bh_enable();
7141 }
7142 
7143 void netif_napi_add_weight_locked(struct net_device *dev,
7144 				  struct napi_struct *napi,
7145 				  int (*poll)(struct napi_struct *, int),
7146 				  int weight)
7147 {
7148 	netdev_assert_locked(dev);
7149 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7150 		return;
7151 
7152 	INIT_LIST_HEAD(&napi->poll_list);
7153 	INIT_HLIST_NODE(&napi->napi_hash_node);
7154 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7155 	napi->timer.function = napi_watchdog;
7156 	gro_init(&napi->gro);
7157 	napi->skb = NULL;
7158 	napi->poll = poll;
7159 	if (weight > NAPI_POLL_WEIGHT)
7160 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7161 				weight);
7162 	napi->weight = weight;
7163 	napi->dev = dev;
7164 #ifdef CONFIG_NETPOLL
7165 	napi->poll_owner = -1;
7166 #endif
7167 	napi->list_owner = -1;
7168 	set_bit(NAPI_STATE_SCHED, &napi->state);
7169 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7170 	netif_napi_dev_list_add(dev, napi);
7171 
7172 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7173 	 * configuration will be loaded in napi_enable
7174 	 */
7175 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7176 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7177 
7178 	napi_get_frags_check(napi);
7179 	/* Create kthread for this napi if dev->threaded is set.
7180 	 * Clear dev->threaded if kthread creation failed so that
7181 	 * threaded mode will not be enabled in napi_enable().
7182 	 */
7183 	if (dev->threaded && napi_kthread_create(napi))
7184 		dev->threaded = false;
7185 	netif_napi_set_irq_locked(napi, -1);
7186 }
7187 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7188 
7189 void napi_disable_locked(struct napi_struct *n)
7190 {
7191 	unsigned long val, new;
7192 
7193 	might_sleep();
7194 	netdev_assert_locked(n->dev);
7195 
7196 	set_bit(NAPI_STATE_DISABLE, &n->state);
7197 
7198 	val = READ_ONCE(n->state);
7199 	do {
7200 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7201 			usleep_range(20, 200);
7202 			val = READ_ONCE(n->state);
7203 		}
7204 
7205 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7206 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7207 	} while (!try_cmpxchg(&n->state, &val, new));
7208 
7209 	hrtimer_cancel(&n->timer);
7210 
7211 	if (n->config)
7212 		napi_save_config(n);
7213 	else
7214 		napi_hash_del(n);
7215 
7216 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7217 }
7218 EXPORT_SYMBOL(napi_disable_locked);
7219 
7220 /**
7221  * napi_disable() - prevent NAPI from scheduling
7222  * @n: NAPI context
7223  *
7224  * Stop NAPI from being scheduled on this context.
7225  * Waits till any outstanding processing completes.
7226  * Takes netdev_lock() for associated net_device.
7227  */
7228 void napi_disable(struct napi_struct *n)
7229 {
7230 	netdev_lock(n->dev);
7231 	napi_disable_locked(n);
7232 	netdev_unlock(n->dev);
7233 }
7234 EXPORT_SYMBOL(napi_disable);
7235 
7236 void napi_enable_locked(struct napi_struct *n)
7237 {
7238 	unsigned long new, val = READ_ONCE(n->state);
7239 
7240 	if (n->config)
7241 		napi_restore_config(n);
7242 	else
7243 		napi_hash_add(n);
7244 
7245 	do {
7246 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7247 
7248 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7249 		if (n->dev->threaded && n->thread)
7250 			new |= NAPIF_STATE_THREADED;
7251 	} while (!try_cmpxchg(&n->state, &val, new));
7252 }
7253 EXPORT_SYMBOL(napi_enable_locked);
7254 
7255 /**
7256  * napi_enable() - enable NAPI scheduling
7257  * @n: NAPI context
7258  *
7259  * Enable scheduling of a NAPI instance.
7260  * Must be paired with napi_disable().
7261  * Takes netdev_lock() for associated net_device.
7262  */
7263 void napi_enable(struct napi_struct *n)
7264 {
7265 	netdev_lock(n->dev);
7266 	napi_enable_locked(n);
7267 	netdev_unlock(n->dev);
7268 }
7269 EXPORT_SYMBOL(napi_enable);
7270 
7271 /* Must be called in process context */
7272 void __netif_napi_del_locked(struct napi_struct *napi)
7273 {
7274 	netdev_assert_locked(napi->dev);
7275 
7276 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7277 		return;
7278 
7279 	/* Make sure NAPI is disabled (or was never enabled). */
7280 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7281 
7282 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7283 		irq_set_affinity_notifier(napi->irq, NULL);
7284 
7285 	if (napi->config) {
7286 		napi->index = -1;
7287 		napi->config = NULL;
7288 	}
7289 
7290 	list_del_rcu(&napi->dev_list);
7291 	napi_free_frags(napi);
7292 
7293 	gro_cleanup(&napi->gro);
7294 
7295 	if (napi->thread) {
7296 		kthread_stop(napi->thread);
7297 		napi->thread = NULL;
7298 	}
7299 }
7300 EXPORT_SYMBOL(__netif_napi_del_locked);
7301 
7302 static int __napi_poll(struct napi_struct *n, bool *repoll)
7303 {
7304 	int work, weight;
7305 
7306 	weight = n->weight;
7307 
7308 	/* This NAPI_STATE_SCHED test is for avoiding a race
7309 	 * with netpoll's poll_napi().  Only the entity which
7310 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7311 	 * actually make the ->poll() call.  Therefore we avoid
7312 	 * accidentally calling ->poll() when NAPI is not scheduled.
7313 	 */
7314 	work = 0;
7315 	if (napi_is_scheduled(n)) {
7316 		work = n->poll(n, weight);
7317 		trace_napi_poll(n, work, weight);
7318 
7319 		xdp_do_check_flushed(n);
7320 	}
7321 
7322 	if (unlikely(work > weight))
7323 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7324 				n->poll, work, weight);
7325 
7326 	if (likely(work < weight))
7327 		return work;
7328 
7329 	/* Drivers must not modify the NAPI state if they
7330 	 * consume the entire weight.  In such cases this code
7331 	 * still "owns" the NAPI instance and therefore can
7332 	 * move the instance around on the list at-will.
7333 	 */
7334 	if (unlikely(napi_disable_pending(n))) {
7335 		napi_complete(n);
7336 		return work;
7337 	}
7338 
7339 	/* The NAPI context has more processing work, but busy-polling
7340 	 * is preferred. Exit early.
7341 	 */
7342 	if (napi_prefer_busy_poll(n)) {
7343 		if (napi_complete_done(n, work)) {
7344 			/* If timeout is not set, we need to make sure
7345 			 * that the NAPI is re-scheduled.
7346 			 */
7347 			napi_schedule(n);
7348 		}
7349 		return work;
7350 	}
7351 
7352 	/* Flush too old packets. If HZ < 1000, flush all packets */
7353 	gro_flush(&n->gro, HZ >= 1000);
7354 	gro_normal_list(&n->gro);
7355 
7356 	/* Some drivers may have called napi_schedule
7357 	 * prior to exhausting their budget.
7358 	 */
7359 	if (unlikely(!list_empty(&n->poll_list))) {
7360 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7361 			     n->dev ? n->dev->name : "backlog");
7362 		return work;
7363 	}
7364 
7365 	*repoll = true;
7366 
7367 	return work;
7368 }
7369 
7370 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7371 {
7372 	bool do_repoll = false;
7373 	void *have;
7374 	int work;
7375 
7376 	list_del_init(&n->poll_list);
7377 
7378 	have = netpoll_poll_lock(n);
7379 
7380 	work = __napi_poll(n, &do_repoll);
7381 
7382 	if (do_repoll)
7383 		list_add_tail(&n->poll_list, repoll);
7384 
7385 	netpoll_poll_unlock(have);
7386 
7387 	return work;
7388 }
7389 
7390 static int napi_thread_wait(struct napi_struct *napi)
7391 {
7392 	set_current_state(TASK_INTERRUPTIBLE);
7393 
7394 	while (!kthread_should_stop()) {
7395 		/* Testing SCHED_THREADED bit here to make sure the current
7396 		 * kthread owns this napi and could poll on this napi.
7397 		 * Testing SCHED bit is not enough because SCHED bit might be
7398 		 * set by some other busy poll thread or by napi_disable().
7399 		 */
7400 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7401 			WARN_ON(!list_empty(&napi->poll_list));
7402 			__set_current_state(TASK_RUNNING);
7403 			return 0;
7404 		}
7405 
7406 		schedule();
7407 		set_current_state(TASK_INTERRUPTIBLE);
7408 	}
7409 	__set_current_state(TASK_RUNNING);
7410 
7411 	return -1;
7412 }
7413 
7414 static void napi_threaded_poll_loop(struct napi_struct *napi)
7415 {
7416 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7417 	struct softnet_data *sd;
7418 	unsigned long last_qs = jiffies;
7419 
7420 	for (;;) {
7421 		bool repoll = false;
7422 		void *have;
7423 
7424 		local_bh_disable();
7425 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7426 
7427 		sd = this_cpu_ptr(&softnet_data);
7428 		sd->in_napi_threaded_poll = true;
7429 
7430 		have = netpoll_poll_lock(napi);
7431 		__napi_poll(napi, &repoll);
7432 		netpoll_poll_unlock(have);
7433 
7434 		sd->in_napi_threaded_poll = false;
7435 		barrier();
7436 
7437 		if (sd_has_rps_ipi_waiting(sd)) {
7438 			local_irq_disable();
7439 			net_rps_action_and_irq_enable(sd);
7440 		}
7441 		skb_defer_free_flush(sd);
7442 		bpf_net_ctx_clear(bpf_net_ctx);
7443 		local_bh_enable();
7444 
7445 		if (!repoll)
7446 			break;
7447 
7448 		rcu_softirq_qs_periodic(last_qs);
7449 		cond_resched();
7450 	}
7451 }
7452 
7453 static int napi_threaded_poll(void *data)
7454 {
7455 	struct napi_struct *napi = data;
7456 
7457 	while (!napi_thread_wait(napi))
7458 		napi_threaded_poll_loop(napi);
7459 
7460 	return 0;
7461 }
7462 
7463 static __latent_entropy void net_rx_action(void)
7464 {
7465 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7466 	unsigned long time_limit = jiffies +
7467 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7468 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7469 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7470 	LIST_HEAD(list);
7471 	LIST_HEAD(repoll);
7472 
7473 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7474 start:
7475 	sd->in_net_rx_action = true;
7476 	local_irq_disable();
7477 	list_splice_init(&sd->poll_list, &list);
7478 	local_irq_enable();
7479 
7480 	for (;;) {
7481 		struct napi_struct *n;
7482 
7483 		skb_defer_free_flush(sd);
7484 
7485 		if (list_empty(&list)) {
7486 			if (list_empty(&repoll)) {
7487 				sd->in_net_rx_action = false;
7488 				barrier();
7489 				/* We need to check if ____napi_schedule()
7490 				 * had refilled poll_list while
7491 				 * sd->in_net_rx_action was true.
7492 				 */
7493 				if (!list_empty(&sd->poll_list))
7494 					goto start;
7495 				if (!sd_has_rps_ipi_waiting(sd))
7496 					goto end;
7497 			}
7498 			break;
7499 		}
7500 
7501 		n = list_first_entry(&list, struct napi_struct, poll_list);
7502 		budget -= napi_poll(n, &repoll);
7503 
7504 		/* If softirq window is exhausted then punt.
7505 		 * Allow this to run for 2 jiffies since which will allow
7506 		 * an average latency of 1.5/HZ.
7507 		 */
7508 		if (unlikely(budget <= 0 ||
7509 			     time_after_eq(jiffies, time_limit))) {
7510 			sd->time_squeeze++;
7511 			break;
7512 		}
7513 	}
7514 
7515 	local_irq_disable();
7516 
7517 	list_splice_tail_init(&sd->poll_list, &list);
7518 	list_splice_tail(&repoll, &list);
7519 	list_splice(&list, &sd->poll_list);
7520 	if (!list_empty(&sd->poll_list))
7521 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7522 	else
7523 		sd->in_net_rx_action = false;
7524 
7525 	net_rps_action_and_irq_enable(sd);
7526 end:
7527 	bpf_net_ctx_clear(bpf_net_ctx);
7528 }
7529 
7530 struct netdev_adjacent {
7531 	struct net_device *dev;
7532 	netdevice_tracker dev_tracker;
7533 
7534 	/* upper master flag, there can only be one master device per list */
7535 	bool master;
7536 
7537 	/* lookup ignore flag */
7538 	bool ignore;
7539 
7540 	/* counter for the number of times this device was added to us */
7541 	u16 ref_nr;
7542 
7543 	/* private field for the users */
7544 	void *private;
7545 
7546 	struct list_head list;
7547 	struct rcu_head rcu;
7548 };
7549 
7550 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7551 						 struct list_head *adj_list)
7552 {
7553 	struct netdev_adjacent *adj;
7554 
7555 	list_for_each_entry(adj, adj_list, list) {
7556 		if (adj->dev == adj_dev)
7557 			return adj;
7558 	}
7559 	return NULL;
7560 }
7561 
7562 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7563 				    struct netdev_nested_priv *priv)
7564 {
7565 	struct net_device *dev = (struct net_device *)priv->data;
7566 
7567 	return upper_dev == dev;
7568 }
7569 
7570 /**
7571  * netdev_has_upper_dev - Check if device is linked to an upper device
7572  * @dev: device
7573  * @upper_dev: upper device to check
7574  *
7575  * Find out if a device is linked to specified upper device and return true
7576  * in case it is. Note that this checks only immediate upper device,
7577  * not through a complete stack of devices. The caller must hold the RTNL lock.
7578  */
7579 bool netdev_has_upper_dev(struct net_device *dev,
7580 			  struct net_device *upper_dev)
7581 {
7582 	struct netdev_nested_priv priv = {
7583 		.data = (void *)upper_dev,
7584 	};
7585 
7586 	ASSERT_RTNL();
7587 
7588 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7589 					     &priv);
7590 }
7591 EXPORT_SYMBOL(netdev_has_upper_dev);
7592 
7593 /**
7594  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7595  * @dev: device
7596  * @upper_dev: upper device to check
7597  *
7598  * Find out if a device is linked to specified upper device and return true
7599  * in case it is. Note that this checks the entire upper device chain.
7600  * The caller must hold rcu lock.
7601  */
7602 
7603 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7604 				  struct net_device *upper_dev)
7605 {
7606 	struct netdev_nested_priv priv = {
7607 		.data = (void *)upper_dev,
7608 	};
7609 
7610 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7611 					       &priv);
7612 }
7613 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7614 
7615 /**
7616  * netdev_has_any_upper_dev - Check if device is linked to some device
7617  * @dev: device
7618  *
7619  * Find out if a device is linked to an upper device and return true in case
7620  * it is. The caller must hold the RTNL lock.
7621  */
7622 bool netdev_has_any_upper_dev(struct net_device *dev)
7623 {
7624 	ASSERT_RTNL();
7625 
7626 	return !list_empty(&dev->adj_list.upper);
7627 }
7628 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7629 
7630 /**
7631  * netdev_master_upper_dev_get - Get master upper device
7632  * @dev: device
7633  *
7634  * Find a master upper device and return pointer to it or NULL in case
7635  * it's not there. The caller must hold the RTNL lock.
7636  */
7637 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7638 {
7639 	struct netdev_adjacent *upper;
7640 
7641 	ASSERT_RTNL();
7642 
7643 	if (list_empty(&dev->adj_list.upper))
7644 		return NULL;
7645 
7646 	upper = list_first_entry(&dev->adj_list.upper,
7647 				 struct netdev_adjacent, list);
7648 	if (likely(upper->master))
7649 		return upper->dev;
7650 	return NULL;
7651 }
7652 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7653 
7654 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7655 {
7656 	struct netdev_adjacent *upper;
7657 
7658 	ASSERT_RTNL();
7659 
7660 	if (list_empty(&dev->adj_list.upper))
7661 		return NULL;
7662 
7663 	upper = list_first_entry(&dev->adj_list.upper,
7664 				 struct netdev_adjacent, list);
7665 	if (likely(upper->master) && !upper->ignore)
7666 		return upper->dev;
7667 	return NULL;
7668 }
7669 
7670 /**
7671  * netdev_has_any_lower_dev - Check if device is linked to some device
7672  * @dev: device
7673  *
7674  * Find out if a device is linked to a lower device and return true in case
7675  * it is. The caller must hold the RTNL lock.
7676  */
7677 static bool netdev_has_any_lower_dev(struct net_device *dev)
7678 {
7679 	ASSERT_RTNL();
7680 
7681 	return !list_empty(&dev->adj_list.lower);
7682 }
7683 
7684 void *netdev_adjacent_get_private(struct list_head *adj_list)
7685 {
7686 	struct netdev_adjacent *adj;
7687 
7688 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7689 
7690 	return adj->private;
7691 }
7692 EXPORT_SYMBOL(netdev_adjacent_get_private);
7693 
7694 /**
7695  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7696  * @dev: device
7697  * @iter: list_head ** of the current position
7698  *
7699  * Gets the next device from the dev's upper list, starting from iter
7700  * position. The caller must hold RCU read lock.
7701  */
7702 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7703 						 struct list_head **iter)
7704 {
7705 	struct netdev_adjacent *upper;
7706 
7707 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7708 
7709 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7710 
7711 	if (&upper->list == &dev->adj_list.upper)
7712 		return NULL;
7713 
7714 	*iter = &upper->list;
7715 
7716 	return upper->dev;
7717 }
7718 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7719 
7720 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7721 						  struct list_head **iter,
7722 						  bool *ignore)
7723 {
7724 	struct netdev_adjacent *upper;
7725 
7726 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7727 
7728 	if (&upper->list == &dev->adj_list.upper)
7729 		return NULL;
7730 
7731 	*iter = &upper->list;
7732 	*ignore = upper->ignore;
7733 
7734 	return upper->dev;
7735 }
7736 
7737 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7738 						    struct list_head **iter)
7739 {
7740 	struct netdev_adjacent *upper;
7741 
7742 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7743 
7744 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7745 
7746 	if (&upper->list == &dev->adj_list.upper)
7747 		return NULL;
7748 
7749 	*iter = &upper->list;
7750 
7751 	return upper->dev;
7752 }
7753 
7754 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7755 				       int (*fn)(struct net_device *dev,
7756 					 struct netdev_nested_priv *priv),
7757 				       struct netdev_nested_priv *priv)
7758 {
7759 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7760 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7761 	int ret, cur = 0;
7762 	bool ignore;
7763 
7764 	now = dev;
7765 	iter = &dev->adj_list.upper;
7766 
7767 	while (1) {
7768 		if (now != dev) {
7769 			ret = fn(now, priv);
7770 			if (ret)
7771 				return ret;
7772 		}
7773 
7774 		next = NULL;
7775 		while (1) {
7776 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7777 			if (!udev)
7778 				break;
7779 			if (ignore)
7780 				continue;
7781 
7782 			next = udev;
7783 			niter = &udev->adj_list.upper;
7784 			dev_stack[cur] = now;
7785 			iter_stack[cur++] = iter;
7786 			break;
7787 		}
7788 
7789 		if (!next) {
7790 			if (!cur)
7791 				return 0;
7792 			next = dev_stack[--cur];
7793 			niter = iter_stack[cur];
7794 		}
7795 
7796 		now = next;
7797 		iter = niter;
7798 	}
7799 
7800 	return 0;
7801 }
7802 
7803 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7804 				  int (*fn)(struct net_device *dev,
7805 					    struct netdev_nested_priv *priv),
7806 				  struct netdev_nested_priv *priv)
7807 {
7808 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7809 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7810 	int ret, cur = 0;
7811 
7812 	now = dev;
7813 	iter = &dev->adj_list.upper;
7814 
7815 	while (1) {
7816 		if (now != dev) {
7817 			ret = fn(now, priv);
7818 			if (ret)
7819 				return ret;
7820 		}
7821 
7822 		next = NULL;
7823 		while (1) {
7824 			udev = netdev_next_upper_dev_rcu(now, &iter);
7825 			if (!udev)
7826 				break;
7827 
7828 			next = udev;
7829 			niter = &udev->adj_list.upper;
7830 			dev_stack[cur] = now;
7831 			iter_stack[cur++] = iter;
7832 			break;
7833 		}
7834 
7835 		if (!next) {
7836 			if (!cur)
7837 				return 0;
7838 			next = dev_stack[--cur];
7839 			niter = iter_stack[cur];
7840 		}
7841 
7842 		now = next;
7843 		iter = niter;
7844 	}
7845 
7846 	return 0;
7847 }
7848 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7849 
7850 static bool __netdev_has_upper_dev(struct net_device *dev,
7851 				   struct net_device *upper_dev)
7852 {
7853 	struct netdev_nested_priv priv = {
7854 		.flags = 0,
7855 		.data = (void *)upper_dev,
7856 	};
7857 
7858 	ASSERT_RTNL();
7859 
7860 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7861 					   &priv);
7862 }
7863 
7864 /**
7865  * netdev_lower_get_next_private - Get the next ->private from the
7866  *				   lower neighbour list
7867  * @dev: device
7868  * @iter: list_head ** of the current position
7869  *
7870  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7871  * list, starting from iter position. The caller must hold either hold the
7872  * RTNL lock or its own locking that guarantees that the neighbour lower
7873  * list will remain unchanged.
7874  */
7875 void *netdev_lower_get_next_private(struct net_device *dev,
7876 				    struct list_head **iter)
7877 {
7878 	struct netdev_adjacent *lower;
7879 
7880 	lower = list_entry(*iter, struct netdev_adjacent, list);
7881 
7882 	if (&lower->list == &dev->adj_list.lower)
7883 		return NULL;
7884 
7885 	*iter = lower->list.next;
7886 
7887 	return lower->private;
7888 }
7889 EXPORT_SYMBOL(netdev_lower_get_next_private);
7890 
7891 /**
7892  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7893  *				       lower neighbour list, RCU
7894  *				       variant
7895  * @dev: device
7896  * @iter: list_head ** of the current position
7897  *
7898  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7899  * list, starting from iter position. The caller must hold RCU read lock.
7900  */
7901 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7902 					struct list_head **iter)
7903 {
7904 	struct netdev_adjacent *lower;
7905 
7906 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7907 
7908 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7909 
7910 	if (&lower->list == &dev->adj_list.lower)
7911 		return NULL;
7912 
7913 	*iter = &lower->list;
7914 
7915 	return lower->private;
7916 }
7917 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7918 
7919 /**
7920  * netdev_lower_get_next - Get the next device from the lower neighbour
7921  *                         list
7922  * @dev: device
7923  * @iter: list_head ** of the current position
7924  *
7925  * Gets the next netdev_adjacent from the dev's lower neighbour
7926  * list, starting from iter position. The caller must hold RTNL lock or
7927  * its own locking that guarantees that the neighbour lower
7928  * list will remain unchanged.
7929  */
7930 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7931 {
7932 	struct netdev_adjacent *lower;
7933 
7934 	lower = list_entry(*iter, struct netdev_adjacent, list);
7935 
7936 	if (&lower->list == &dev->adj_list.lower)
7937 		return NULL;
7938 
7939 	*iter = lower->list.next;
7940 
7941 	return lower->dev;
7942 }
7943 EXPORT_SYMBOL(netdev_lower_get_next);
7944 
7945 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7946 						struct list_head **iter)
7947 {
7948 	struct netdev_adjacent *lower;
7949 
7950 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7951 
7952 	if (&lower->list == &dev->adj_list.lower)
7953 		return NULL;
7954 
7955 	*iter = &lower->list;
7956 
7957 	return lower->dev;
7958 }
7959 
7960 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7961 						  struct list_head **iter,
7962 						  bool *ignore)
7963 {
7964 	struct netdev_adjacent *lower;
7965 
7966 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7967 
7968 	if (&lower->list == &dev->adj_list.lower)
7969 		return NULL;
7970 
7971 	*iter = &lower->list;
7972 	*ignore = lower->ignore;
7973 
7974 	return lower->dev;
7975 }
7976 
7977 int netdev_walk_all_lower_dev(struct net_device *dev,
7978 			      int (*fn)(struct net_device *dev,
7979 					struct netdev_nested_priv *priv),
7980 			      struct netdev_nested_priv *priv)
7981 {
7982 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7983 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7984 	int ret, cur = 0;
7985 
7986 	now = dev;
7987 	iter = &dev->adj_list.lower;
7988 
7989 	while (1) {
7990 		if (now != dev) {
7991 			ret = fn(now, priv);
7992 			if (ret)
7993 				return ret;
7994 		}
7995 
7996 		next = NULL;
7997 		while (1) {
7998 			ldev = netdev_next_lower_dev(now, &iter);
7999 			if (!ldev)
8000 				break;
8001 
8002 			next = ldev;
8003 			niter = &ldev->adj_list.lower;
8004 			dev_stack[cur] = now;
8005 			iter_stack[cur++] = iter;
8006 			break;
8007 		}
8008 
8009 		if (!next) {
8010 			if (!cur)
8011 				return 0;
8012 			next = dev_stack[--cur];
8013 			niter = iter_stack[cur];
8014 		}
8015 
8016 		now = next;
8017 		iter = niter;
8018 	}
8019 
8020 	return 0;
8021 }
8022 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8023 
8024 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8025 				       int (*fn)(struct net_device *dev,
8026 					 struct netdev_nested_priv *priv),
8027 				       struct netdev_nested_priv *priv)
8028 {
8029 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8030 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8031 	int ret, cur = 0;
8032 	bool ignore;
8033 
8034 	now = dev;
8035 	iter = &dev->adj_list.lower;
8036 
8037 	while (1) {
8038 		if (now != dev) {
8039 			ret = fn(now, priv);
8040 			if (ret)
8041 				return ret;
8042 		}
8043 
8044 		next = NULL;
8045 		while (1) {
8046 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8047 			if (!ldev)
8048 				break;
8049 			if (ignore)
8050 				continue;
8051 
8052 			next = ldev;
8053 			niter = &ldev->adj_list.lower;
8054 			dev_stack[cur] = now;
8055 			iter_stack[cur++] = iter;
8056 			break;
8057 		}
8058 
8059 		if (!next) {
8060 			if (!cur)
8061 				return 0;
8062 			next = dev_stack[--cur];
8063 			niter = iter_stack[cur];
8064 		}
8065 
8066 		now = next;
8067 		iter = niter;
8068 	}
8069 
8070 	return 0;
8071 }
8072 
8073 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8074 					     struct list_head **iter)
8075 {
8076 	struct netdev_adjacent *lower;
8077 
8078 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8079 	if (&lower->list == &dev->adj_list.lower)
8080 		return NULL;
8081 
8082 	*iter = &lower->list;
8083 
8084 	return lower->dev;
8085 }
8086 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8087 
8088 static u8 __netdev_upper_depth(struct net_device *dev)
8089 {
8090 	struct net_device *udev;
8091 	struct list_head *iter;
8092 	u8 max_depth = 0;
8093 	bool ignore;
8094 
8095 	for (iter = &dev->adj_list.upper,
8096 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8097 	     udev;
8098 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8099 		if (ignore)
8100 			continue;
8101 		if (max_depth < udev->upper_level)
8102 			max_depth = udev->upper_level;
8103 	}
8104 
8105 	return max_depth;
8106 }
8107 
8108 static u8 __netdev_lower_depth(struct net_device *dev)
8109 {
8110 	struct net_device *ldev;
8111 	struct list_head *iter;
8112 	u8 max_depth = 0;
8113 	bool ignore;
8114 
8115 	for (iter = &dev->adj_list.lower,
8116 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8117 	     ldev;
8118 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8119 		if (ignore)
8120 			continue;
8121 		if (max_depth < ldev->lower_level)
8122 			max_depth = ldev->lower_level;
8123 	}
8124 
8125 	return max_depth;
8126 }
8127 
8128 static int __netdev_update_upper_level(struct net_device *dev,
8129 				       struct netdev_nested_priv *__unused)
8130 {
8131 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8132 	return 0;
8133 }
8134 
8135 #ifdef CONFIG_LOCKDEP
8136 static LIST_HEAD(net_unlink_list);
8137 
8138 static void net_unlink_todo(struct net_device *dev)
8139 {
8140 	if (list_empty(&dev->unlink_list))
8141 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8142 }
8143 #endif
8144 
8145 static int __netdev_update_lower_level(struct net_device *dev,
8146 				       struct netdev_nested_priv *priv)
8147 {
8148 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8149 
8150 #ifdef CONFIG_LOCKDEP
8151 	if (!priv)
8152 		return 0;
8153 
8154 	if (priv->flags & NESTED_SYNC_IMM)
8155 		dev->nested_level = dev->lower_level - 1;
8156 	if (priv->flags & NESTED_SYNC_TODO)
8157 		net_unlink_todo(dev);
8158 #endif
8159 	return 0;
8160 }
8161 
8162 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8163 				  int (*fn)(struct net_device *dev,
8164 					    struct netdev_nested_priv *priv),
8165 				  struct netdev_nested_priv *priv)
8166 {
8167 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8168 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8169 	int ret, cur = 0;
8170 
8171 	now = dev;
8172 	iter = &dev->adj_list.lower;
8173 
8174 	while (1) {
8175 		if (now != dev) {
8176 			ret = fn(now, priv);
8177 			if (ret)
8178 				return ret;
8179 		}
8180 
8181 		next = NULL;
8182 		while (1) {
8183 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8184 			if (!ldev)
8185 				break;
8186 
8187 			next = ldev;
8188 			niter = &ldev->adj_list.lower;
8189 			dev_stack[cur] = now;
8190 			iter_stack[cur++] = iter;
8191 			break;
8192 		}
8193 
8194 		if (!next) {
8195 			if (!cur)
8196 				return 0;
8197 			next = dev_stack[--cur];
8198 			niter = iter_stack[cur];
8199 		}
8200 
8201 		now = next;
8202 		iter = niter;
8203 	}
8204 
8205 	return 0;
8206 }
8207 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8208 
8209 /**
8210  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8211  *				       lower neighbour list, RCU
8212  *				       variant
8213  * @dev: device
8214  *
8215  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8216  * list. The caller must hold RCU read lock.
8217  */
8218 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8219 {
8220 	struct netdev_adjacent *lower;
8221 
8222 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8223 			struct netdev_adjacent, list);
8224 	if (lower)
8225 		return lower->private;
8226 	return NULL;
8227 }
8228 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8229 
8230 /**
8231  * netdev_master_upper_dev_get_rcu - Get master upper device
8232  * @dev: device
8233  *
8234  * Find a master upper device and return pointer to it or NULL in case
8235  * it's not there. The caller must hold the RCU read lock.
8236  */
8237 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8238 {
8239 	struct netdev_adjacent *upper;
8240 
8241 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8242 				       struct netdev_adjacent, list);
8243 	if (upper && likely(upper->master))
8244 		return upper->dev;
8245 	return NULL;
8246 }
8247 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8248 
8249 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8250 			      struct net_device *adj_dev,
8251 			      struct list_head *dev_list)
8252 {
8253 	char linkname[IFNAMSIZ+7];
8254 
8255 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8256 		"upper_%s" : "lower_%s", adj_dev->name);
8257 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8258 				 linkname);
8259 }
8260 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8261 			       char *name,
8262 			       struct list_head *dev_list)
8263 {
8264 	char linkname[IFNAMSIZ+7];
8265 
8266 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8267 		"upper_%s" : "lower_%s", name);
8268 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8269 }
8270 
8271 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8272 						 struct net_device *adj_dev,
8273 						 struct list_head *dev_list)
8274 {
8275 	return (dev_list == &dev->adj_list.upper ||
8276 		dev_list == &dev->adj_list.lower) &&
8277 		net_eq(dev_net(dev), dev_net(adj_dev));
8278 }
8279 
8280 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8281 					struct net_device *adj_dev,
8282 					struct list_head *dev_list,
8283 					void *private, bool master)
8284 {
8285 	struct netdev_adjacent *adj;
8286 	int ret;
8287 
8288 	adj = __netdev_find_adj(adj_dev, dev_list);
8289 
8290 	if (adj) {
8291 		adj->ref_nr += 1;
8292 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8293 			 dev->name, adj_dev->name, adj->ref_nr);
8294 
8295 		return 0;
8296 	}
8297 
8298 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8299 	if (!adj)
8300 		return -ENOMEM;
8301 
8302 	adj->dev = adj_dev;
8303 	adj->master = master;
8304 	adj->ref_nr = 1;
8305 	adj->private = private;
8306 	adj->ignore = false;
8307 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8308 
8309 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8310 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8311 
8312 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8313 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8314 		if (ret)
8315 			goto free_adj;
8316 	}
8317 
8318 	/* Ensure that master link is always the first item in list. */
8319 	if (master) {
8320 		ret = sysfs_create_link(&(dev->dev.kobj),
8321 					&(adj_dev->dev.kobj), "master");
8322 		if (ret)
8323 			goto remove_symlinks;
8324 
8325 		list_add_rcu(&adj->list, dev_list);
8326 	} else {
8327 		list_add_tail_rcu(&adj->list, dev_list);
8328 	}
8329 
8330 	return 0;
8331 
8332 remove_symlinks:
8333 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8334 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8335 free_adj:
8336 	netdev_put(adj_dev, &adj->dev_tracker);
8337 	kfree(adj);
8338 
8339 	return ret;
8340 }
8341 
8342 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8343 					 struct net_device *adj_dev,
8344 					 u16 ref_nr,
8345 					 struct list_head *dev_list)
8346 {
8347 	struct netdev_adjacent *adj;
8348 
8349 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8350 		 dev->name, adj_dev->name, ref_nr);
8351 
8352 	adj = __netdev_find_adj(adj_dev, dev_list);
8353 
8354 	if (!adj) {
8355 		pr_err("Adjacency does not exist for device %s from %s\n",
8356 		       dev->name, adj_dev->name);
8357 		WARN_ON(1);
8358 		return;
8359 	}
8360 
8361 	if (adj->ref_nr > ref_nr) {
8362 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8363 			 dev->name, adj_dev->name, ref_nr,
8364 			 adj->ref_nr - ref_nr);
8365 		adj->ref_nr -= ref_nr;
8366 		return;
8367 	}
8368 
8369 	if (adj->master)
8370 		sysfs_remove_link(&(dev->dev.kobj), "master");
8371 
8372 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8373 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8374 
8375 	list_del_rcu(&adj->list);
8376 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8377 		 adj_dev->name, dev->name, adj_dev->name);
8378 	netdev_put(adj_dev, &adj->dev_tracker);
8379 	kfree_rcu(adj, rcu);
8380 }
8381 
8382 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8383 					    struct net_device *upper_dev,
8384 					    struct list_head *up_list,
8385 					    struct list_head *down_list,
8386 					    void *private, bool master)
8387 {
8388 	int ret;
8389 
8390 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8391 					   private, master);
8392 	if (ret)
8393 		return ret;
8394 
8395 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8396 					   private, false);
8397 	if (ret) {
8398 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8399 		return ret;
8400 	}
8401 
8402 	return 0;
8403 }
8404 
8405 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8406 					       struct net_device *upper_dev,
8407 					       u16 ref_nr,
8408 					       struct list_head *up_list,
8409 					       struct list_head *down_list)
8410 {
8411 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8412 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8413 }
8414 
8415 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8416 						struct net_device *upper_dev,
8417 						void *private, bool master)
8418 {
8419 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8420 						&dev->adj_list.upper,
8421 						&upper_dev->adj_list.lower,
8422 						private, master);
8423 }
8424 
8425 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8426 						   struct net_device *upper_dev)
8427 {
8428 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8429 					   &dev->adj_list.upper,
8430 					   &upper_dev->adj_list.lower);
8431 }
8432 
8433 static int __netdev_upper_dev_link(struct net_device *dev,
8434 				   struct net_device *upper_dev, bool master,
8435 				   void *upper_priv, void *upper_info,
8436 				   struct netdev_nested_priv *priv,
8437 				   struct netlink_ext_ack *extack)
8438 {
8439 	struct netdev_notifier_changeupper_info changeupper_info = {
8440 		.info = {
8441 			.dev = dev,
8442 			.extack = extack,
8443 		},
8444 		.upper_dev = upper_dev,
8445 		.master = master,
8446 		.linking = true,
8447 		.upper_info = upper_info,
8448 	};
8449 	struct net_device *master_dev;
8450 	int ret = 0;
8451 
8452 	ASSERT_RTNL();
8453 
8454 	if (dev == upper_dev)
8455 		return -EBUSY;
8456 
8457 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8458 	if (__netdev_has_upper_dev(upper_dev, dev))
8459 		return -EBUSY;
8460 
8461 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8462 		return -EMLINK;
8463 
8464 	if (!master) {
8465 		if (__netdev_has_upper_dev(dev, upper_dev))
8466 			return -EEXIST;
8467 	} else {
8468 		master_dev = __netdev_master_upper_dev_get(dev);
8469 		if (master_dev)
8470 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8471 	}
8472 
8473 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8474 					    &changeupper_info.info);
8475 	ret = notifier_to_errno(ret);
8476 	if (ret)
8477 		return ret;
8478 
8479 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8480 						   master);
8481 	if (ret)
8482 		return ret;
8483 
8484 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8485 					    &changeupper_info.info);
8486 	ret = notifier_to_errno(ret);
8487 	if (ret)
8488 		goto rollback;
8489 
8490 	__netdev_update_upper_level(dev, NULL);
8491 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8492 
8493 	__netdev_update_lower_level(upper_dev, priv);
8494 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8495 				    priv);
8496 
8497 	return 0;
8498 
8499 rollback:
8500 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8501 
8502 	return ret;
8503 }
8504 
8505 /**
8506  * netdev_upper_dev_link - Add a link to the upper device
8507  * @dev: device
8508  * @upper_dev: new upper device
8509  * @extack: netlink extended ack
8510  *
8511  * Adds a link to device which is upper to this one. The caller must hold
8512  * the RTNL lock. On a failure a negative errno code is returned.
8513  * On success the reference counts are adjusted and the function
8514  * returns zero.
8515  */
8516 int netdev_upper_dev_link(struct net_device *dev,
8517 			  struct net_device *upper_dev,
8518 			  struct netlink_ext_ack *extack)
8519 {
8520 	struct netdev_nested_priv priv = {
8521 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8522 		.data = NULL,
8523 	};
8524 
8525 	return __netdev_upper_dev_link(dev, upper_dev, false,
8526 				       NULL, NULL, &priv, extack);
8527 }
8528 EXPORT_SYMBOL(netdev_upper_dev_link);
8529 
8530 /**
8531  * netdev_master_upper_dev_link - Add a master link to the upper device
8532  * @dev: device
8533  * @upper_dev: new upper device
8534  * @upper_priv: upper device private
8535  * @upper_info: upper info to be passed down via notifier
8536  * @extack: netlink extended ack
8537  *
8538  * Adds a link to device which is upper to this one. In this case, only
8539  * one master upper device can be linked, although other non-master devices
8540  * might be linked as well. The caller must hold the RTNL lock.
8541  * On a failure a negative errno code is returned. On success the reference
8542  * counts are adjusted and the function returns zero.
8543  */
8544 int netdev_master_upper_dev_link(struct net_device *dev,
8545 				 struct net_device *upper_dev,
8546 				 void *upper_priv, void *upper_info,
8547 				 struct netlink_ext_ack *extack)
8548 {
8549 	struct netdev_nested_priv priv = {
8550 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8551 		.data = NULL,
8552 	};
8553 
8554 	return __netdev_upper_dev_link(dev, upper_dev, true,
8555 				       upper_priv, upper_info, &priv, extack);
8556 }
8557 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8558 
8559 static void __netdev_upper_dev_unlink(struct net_device *dev,
8560 				      struct net_device *upper_dev,
8561 				      struct netdev_nested_priv *priv)
8562 {
8563 	struct netdev_notifier_changeupper_info changeupper_info = {
8564 		.info = {
8565 			.dev = dev,
8566 		},
8567 		.upper_dev = upper_dev,
8568 		.linking = false,
8569 	};
8570 
8571 	ASSERT_RTNL();
8572 
8573 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8574 
8575 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8576 				      &changeupper_info.info);
8577 
8578 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8579 
8580 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8581 				      &changeupper_info.info);
8582 
8583 	__netdev_update_upper_level(dev, NULL);
8584 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8585 
8586 	__netdev_update_lower_level(upper_dev, priv);
8587 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8588 				    priv);
8589 }
8590 
8591 /**
8592  * netdev_upper_dev_unlink - Removes a link to upper device
8593  * @dev: device
8594  * @upper_dev: new upper device
8595  *
8596  * Removes a link to device which is upper to this one. The caller must hold
8597  * the RTNL lock.
8598  */
8599 void netdev_upper_dev_unlink(struct net_device *dev,
8600 			     struct net_device *upper_dev)
8601 {
8602 	struct netdev_nested_priv priv = {
8603 		.flags = NESTED_SYNC_TODO,
8604 		.data = NULL,
8605 	};
8606 
8607 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8608 }
8609 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8610 
8611 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8612 				      struct net_device *lower_dev,
8613 				      bool val)
8614 {
8615 	struct netdev_adjacent *adj;
8616 
8617 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8618 	if (adj)
8619 		adj->ignore = val;
8620 
8621 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8622 	if (adj)
8623 		adj->ignore = val;
8624 }
8625 
8626 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8627 					struct net_device *lower_dev)
8628 {
8629 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8630 }
8631 
8632 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8633 				       struct net_device *lower_dev)
8634 {
8635 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8636 }
8637 
8638 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8639 				   struct net_device *new_dev,
8640 				   struct net_device *dev,
8641 				   struct netlink_ext_ack *extack)
8642 {
8643 	struct netdev_nested_priv priv = {
8644 		.flags = 0,
8645 		.data = NULL,
8646 	};
8647 	int err;
8648 
8649 	if (!new_dev)
8650 		return 0;
8651 
8652 	if (old_dev && new_dev != old_dev)
8653 		netdev_adjacent_dev_disable(dev, old_dev);
8654 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8655 				      extack);
8656 	if (err) {
8657 		if (old_dev && new_dev != old_dev)
8658 			netdev_adjacent_dev_enable(dev, old_dev);
8659 		return err;
8660 	}
8661 
8662 	return 0;
8663 }
8664 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8665 
8666 void netdev_adjacent_change_commit(struct net_device *old_dev,
8667 				   struct net_device *new_dev,
8668 				   struct net_device *dev)
8669 {
8670 	struct netdev_nested_priv priv = {
8671 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8672 		.data = NULL,
8673 	};
8674 
8675 	if (!new_dev || !old_dev)
8676 		return;
8677 
8678 	if (new_dev == old_dev)
8679 		return;
8680 
8681 	netdev_adjacent_dev_enable(dev, old_dev);
8682 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8683 }
8684 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8685 
8686 void netdev_adjacent_change_abort(struct net_device *old_dev,
8687 				  struct net_device *new_dev,
8688 				  struct net_device *dev)
8689 {
8690 	struct netdev_nested_priv priv = {
8691 		.flags = 0,
8692 		.data = NULL,
8693 	};
8694 
8695 	if (!new_dev)
8696 		return;
8697 
8698 	if (old_dev && new_dev != old_dev)
8699 		netdev_adjacent_dev_enable(dev, old_dev);
8700 
8701 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8702 }
8703 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8704 
8705 /**
8706  * netdev_bonding_info_change - Dispatch event about slave change
8707  * @dev: device
8708  * @bonding_info: info to dispatch
8709  *
8710  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8711  * The caller must hold the RTNL lock.
8712  */
8713 void netdev_bonding_info_change(struct net_device *dev,
8714 				struct netdev_bonding_info *bonding_info)
8715 {
8716 	struct netdev_notifier_bonding_info info = {
8717 		.info.dev = dev,
8718 	};
8719 
8720 	memcpy(&info.bonding_info, bonding_info,
8721 	       sizeof(struct netdev_bonding_info));
8722 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8723 				      &info.info);
8724 }
8725 EXPORT_SYMBOL(netdev_bonding_info_change);
8726 
8727 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8728 					   struct netlink_ext_ack *extack)
8729 {
8730 	struct netdev_notifier_offload_xstats_info info = {
8731 		.info.dev = dev,
8732 		.info.extack = extack,
8733 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8734 	};
8735 	int err;
8736 	int rc;
8737 
8738 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8739 					 GFP_KERNEL);
8740 	if (!dev->offload_xstats_l3)
8741 		return -ENOMEM;
8742 
8743 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8744 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8745 						  &info.info);
8746 	err = notifier_to_errno(rc);
8747 	if (err)
8748 		goto free_stats;
8749 
8750 	return 0;
8751 
8752 free_stats:
8753 	kfree(dev->offload_xstats_l3);
8754 	dev->offload_xstats_l3 = NULL;
8755 	return err;
8756 }
8757 
8758 int netdev_offload_xstats_enable(struct net_device *dev,
8759 				 enum netdev_offload_xstats_type type,
8760 				 struct netlink_ext_ack *extack)
8761 {
8762 	ASSERT_RTNL();
8763 
8764 	if (netdev_offload_xstats_enabled(dev, type))
8765 		return -EALREADY;
8766 
8767 	switch (type) {
8768 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8769 		return netdev_offload_xstats_enable_l3(dev, extack);
8770 	}
8771 
8772 	WARN_ON(1);
8773 	return -EINVAL;
8774 }
8775 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8776 
8777 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8778 {
8779 	struct netdev_notifier_offload_xstats_info info = {
8780 		.info.dev = dev,
8781 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8782 	};
8783 
8784 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8785 				      &info.info);
8786 	kfree(dev->offload_xstats_l3);
8787 	dev->offload_xstats_l3 = NULL;
8788 }
8789 
8790 int netdev_offload_xstats_disable(struct net_device *dev,
8791 				  enum netdev_offload_xstats_type type)
8792 {
8793 	ASSERT_RTNL();
8794 
8795 	if (!netdev_offload_xstats_enabled(dev, type))
8796 		return -EALREADY;
8797 
8798 	switch (type) {
8799 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8800 		netdev_offload_xstats_disable_l3(dev);
8801 		return 0;
8802 	}
8803 
8804 	WARN_ON(1);
8805 	return -EINVAL;
8806 }
8807 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8808 
8809 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8810 {
8811 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8812 }
8813 
8814 static struct rtnl_hw_stats64 *
8815 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8816 			      enum netdev_offload_xstats_type type)
8817 {
8818 	switch (type) {
8819 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8820 		return dev->offload_xstats_l3;
8821 	}
8822 
8823 	WARN_ON(1);
8824 	return NULL;
8825 }
8826 
8827 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8828 				   enum netdev_offload_xstats_type type)
8829 {
8830 	ASSERT_RTNL();
8831 
8832 	return netdev_offload_xstats_get_ptr(dev, type);
8833 }
8834 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8835 
8836 struct netdev_notifier_offload_xstats_ru {
8837 	bool used;
8838 };
8839 
8840 struct netdev_notifier_offload_xstats_rd {
8841 	struct rtnl_hw_stats64 stats;
8842 	bool used;
8843 };
8844 
8845 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8846 				  const struct rtnl_hw_stats64 *src)
8847 {
8848 	dest->rx_packets	  += src->rx_packets;
8849 	dest->tx_packets	  += src->tx_packets;
8850 	dest->rx_bytes		  += src->rx_bytes;
8851 	dest->tx_bytes		  += src->tx_bytes;
8852 	dest->rx_errors		  += src->rx_errors;
8853 	dest->tx_errors		  += src->tx_errors;
8854 	dest->rx_dropped	  += src->rx_dropped;
8855 	dest->tx_dropped	  += src->tx_dropped;
8856 	dest->multicast		  += src->multicast;
8857 }
8858 
8859 static int netdev_offload_xstats_get_used(struct net_device *dev,
8860 					  enum netdev_offload_xstats_type type,
8861 					  bool *p_used,
8862 					  struct netlink_ext_ack *extack)
8863 {
8864 	struct netdev_notifier_offload_xstats_ru report_used = {};
8865 	struct netdev_notifier_offload_xstats_info info = {
8866 		.info.dev = dev,
8867 		.info.extack = extack,
8868 		.type = type,
8869 		.report_used = &report_used,
8870 	};
8871 	int rc;
8872 
8873 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8874 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8875 					   &info.info);
8876 	*p_used = report_used.used;
8877 	return notifier_to_errno(rc);
8878 }
8879 
8880 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8881 					   enum netdev_offload_xstats_type type,
8882 					   struct rtnl_hw_stats64 *p_stats,
8883 					   bool *p_used,
8884 					   struct netlink_ext_ack *extack)
8885 {
8886 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8887 	struct netdev_notifier_offload_xstats_info info = {
8888 		.info.dev = dev,
8889 		.info.extack = extack,
8890 		.type = type,
8891 		.report_delta = &report_delta,
8892 	};
8893 	struct rtnl_hw_stats64 *stats;
8894 	int rc;
8895 
8896 	stats = netdev_offload_xstats_get_ptr(dev, type);
8897 	if (WARN_ON(!stats))
8898 		return -EINVAL;
8899 
8900 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8901 					   &info.info);
8902 
8903 	/* Cache whatever we got, even if there was an error, otherwise the
8904 	 * successful stats retrievals would get lost.
8905 	 */
8906 	netdev_hw_stats64_add(stats, &report_delta.stats);
8907 
8908 	if (p_stats)
8909 		*p_stats = *stats;
8910 	*p_used = report_delta.used;
8911 
8912 	return notifier_to_errno(rc);
8913 }
8914 
8915 int netdev_offload_xstats_get(struct net_device *dev,
8916 			      enum netdev_offload_xstats_type type,
8917 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8918 			      struct netlink_ext_ack *extack)
8919 {
8920 	ASSERT_RTNL();
8921 
8922 	if (p_stats)
8923 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8924 						       p_used, extack);
8925 	else
8926 		return netdev_offload_xstats_get_used(dev, type, p_used,
8927 						      extack);
8928 }
8929 EXPORT_SYMBOL(netdev_offload_xstats_get);
8930 
8931 void
8932 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8933 				   const struct rtnl_hw_stats64 *stats)
8934 {
8935 	report_delta->used = true;
8936 	netdev_hw_stats64_add(&report_delta->stats, stats);
8937 }
8938 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8939 
8940 void
8941 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8942 {
8943 	report_used->used = true;
8944 }
8945 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8946 
8947 void netdev_offload_xstats_push_delta(struct net_device *dev,
8948 				      enum netdev_offload_xstats_type type,
8949 				      const struct rtnl_hw_stats64 *p_stats)
8950 {
8951 	struct rtnl_hw_stats64 *stats;
8952 
8953 	ASSERT_RTNL();
8954 
8955 	stats = netdev_offload_xstats_get_ptr(dev, type);
8956 	if (WARN_ON(!stats))
8957 		return;
8958 
8959 	netdev_hw_stats64_add(stats, p_stats);
8960 }
8961 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8962 
8963 /**
8964  * netdev_get_xmit_slave - Get the xmit slave of master device
8965  * @dev: device
8966  * @skb: The packet
8967  * @all_slaves: assume all the slaves are active
8968  *
8969  * The reference counters are not incremented so the caller must be
8970  * careful with locks. The caller must hold RCU lock.
8971  * %NULL is returned if no slave is found.
8972  */
8973 
8974 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8975 					 struct sk_buff *skb,
8976 					 bool all_slaves)
8977 {
8978 	const struct net_device_ops *ops = dev->netdev_ops;
8979 
8980 	if (!ops->ndo_get_xmit_slave)
8981 		return NULL;
8982 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8983 }
8984 EXPORT_SYMBOL(netdev_get_xmit_slave);
8985 
8986 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8987 						  struct sock *sk)
8988 {
8989 	const struct net_device_ops *ops = dev->netdev_ops;
8990 
8991 	if (!ops->ndo_sk_get_lower_dev)
8992 		return NULL;
8993 	return ops->ndo_sk_get_lower_dev(dev, sk);
8994 }
8995 
8996 /**
8997  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8998  * @dev: device
8999  * @sk: the socket
9000  *
9001  * %NULL is returned if no lower device is found.
9002  */
9003 
9004 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9005 					    struct sock *sk)
9006 {
9007 	struct net_device *lower;
9008 
9009 	lower = netdev_sk_get_lower_dev(dev, sk);
9010 	while (lower) {
9011 		dev = lower;
9012 		lower = netdev_sk_get_lower_dev(dev, sk);
9013 	}
9014 
9015 	return dev;
9016 }
9017 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9018 
9019 static void netdev_adjacent_add_links(struct net_device *dev)
9020 {
9021 	struct netdev_adjacent *iter;
9022 
9023 	struct net *net = dev_net(dev);
9024 
9025 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9026 		if (!net_eq(net, dev_net(iter->dev)))
9027 			continue;
9028 		netdev_adjacent_sysfs_add(iter->dev, dev,
9029 					  &iter->dev->adj_list.lower);
9030 		netdev_adjacent_sysfs_add(dev, iter->dev,
9031 					  &dev->adj_list.upper);
9032 	}
9033 
9034 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9035 		if (!net_eq(net, dev_net(iter->dev)))
9036 			continue;
9037 		netdev_adjacent_sysfs_add(iter->dev, dev,
9038 					  &iter->dev->adj_list.upper);
9039 		netdev_adjacent_sysfs_add(dev, iter->dev,
9040 					  &dev->adj_list.lower);
9041 	}
9042 }
9043 
9044 static void netdev_adjacent_del_links(struct net_device *dev)
9045 {
9046 	struct netdev_adjacent *iter;
9047 
9048 	struct net *net = dev_net(dev);
9049 
9050 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9051 		if (!net_eq(net, dev_net(iter->dev)))
9052 			continue;
9053 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9054 					  &iter->dev->adj_list.lower);
9055 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9056 					  &dev->adj_list.upper);
9057 	}
9058 
9059 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9060 		if (!net_eq(net, dev_net(iter->dev)))
9061 			continue;
9062 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9063 					  &iter->dev->adj_list.upper);
9064 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9065 					  &dev->adj_list.lower);
9066 	}
9067 }
9068 
9069 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9070 {
9071 	struct netdev_adjacent *iter;
9072 
9073 	struct net *net = dev_net(dev);
9074 
9075 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9076 		if (!net_eq(net, dev_net(iter->dev)))
9077 			continue;
9078 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9079 					  &iter->dev->adj_list.lower);
9080 		netdev_adjacent_sysfs_add(iter->dev, dev,
9081 					  &iter->dev->adj_list.lower);
9082 	}
9083 
9084 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9085 		if (!net_eq(net, dev_net(iter->dev)))
9086 			continue;
9087 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9088 					  &iter->dev->adj_list.upper);
9089 		netdev_adjacent_sysfs_add(iter->dev, dev,
9090 					  &iter->dev->adj_list.upper);
9091 	}
9092 }
9093 
9094 void *netdev_lower_dev_get_private(struct net_device *dev,
9095 				   struct net_device *lower_dev)
9096 {
9097 	struct netdev_adjacent *lower;
9098 
9099 	if (!lower_dev)
9100 		return NULL;
9101 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9102 	if (!lower)
9103 		return NULL;
9104 
9105 	return lower->private;
9106 }
9107 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9108 
9109 
9110 /**
9111  * netdev_lower_state_changed - Dispatch event about lower device state change
9112  * @lower_dev: device
9113  * @lower_state_info: state to dispatch
9114  *
9115  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9116  * The caller must hold the RTNL lock.
9117  */
9118 void netdev_lower_state_changed(struct net_device *lower_dev,
9119 				void *lower_state_info)
9120 {
9121 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9122 		.info.dev = lower_dev,
9123 	};
9124 
9125 	ASSERT_RTNL();
9126 	changelowerstate_info.lower_state_info = lower_state_info;
9127 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9128 				      &changelowerstate_info.info);
9129 }
9130 EXPORT_SYMBOL(netdev_lower_state_changed);
9131 
9132 static void dev_change_rx_flags(struct net_device *dev, int flags)
9133 {
9134 	const struct net_device_ops *ops = dev->netdev_ops;
9135 
9136 	if (ops->ndo_change_rx_flags)
9137 		ops->ndo_change_rx_flags(dev, flags);
9138 }
9139 
9140 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9141 {
9142 	unsigned int old_flags = dev->flags;
9143 	unsigned int promiscuity, flags;
9144 	kuid_t uid;
9145 	kgid_t gid;
9146 
9147 	ASSERT_RTNL();
9148 
9149 	promiscuity = dev->promiscuity + inc;
9150 	if (promiscuity == 0) {
9151 		/*
9152 		 * Avoid overflow.
9153 		 * If inc causes overflow, untouch promisc and return error.
9154 		 */
9155 		if (unlikely(inc > 0)) {
9156 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9157 			return -EOVERFLOW;
9158 		}
9159 		flags = old_flags & ~IFF_PROMISC;
9160 	} else {
9161 		flags = old_flags | IFF_PROMISC;
9162 	}
9163 	WRITE_ONCE(dev->promiscuity, promiscuity);
9164 	if (flags != old_flags) {
9165 		WRITE_ONCE(dev->flags, flags);
9166 		netdev_info(dev, "%s promiscuous mode\n",
9167 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9168 		if (audit_enabled) {
9169 			current_uid_gid(&uid, &gid);
9170 			audit_log(audit_context(), GFP_ATOMIC,
9171 				  AUDIT_ANOM_PROMISCUOUS,
9172 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9173 				  dev->name, (dev->flags & IFF_PROMISC),
9174 				  (old_flags & IFF_PROMISC),
9175 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9176 				  from_kuid(&init_user_ns, uid),
9177 				  from_kgid(&init_user_ns, gid),
9178 				  audit_get_sessionid(current));
9179 		}
9180 
9181 		dev_change_rx_flags(dev, IFF_PROMISC);
9182 	}
9183 	if (notify)
9184 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9185 	return 0;
9186 }
9187 
9188 /**
9189  *	dev_set_promiscuity	- update promiscuity count on a device
9190  *	@dev: device
9191  *	@inc: modifier
9192  *
9193  *	Add or remove promiscuity from a device. While the count in the device
9194  *	remains above zero the interface remains promiscuous. Once it hits zero
9195  *	the device reverts back to normal filtering operation. A negative inc
9196  *	value is used to drop promiscuity on the device.
9197  *	Return 0 if successful or a negative errno code on error.
9198  */
9199 int dev_set_promiscuity(struct net_device *dev, int inc)
9200 {
9201 	unsigned int old_flags = dev->flags;
9202 	int err;
9203 
9204 	err = __dev_set_promiscuity(dev, inc, true);
9205 	if (err < 0)
9206 		return err;
9207 	if (dev->flags != old_flags)
9208 		dev_set_rx_mode(dev);
9209 	return err;
9210 }
9211 EXPORT_SYMBOL(dev_set_promiscuity);
9212 
9213 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
9214 {
9215 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9216 	unsigned int allmulti, flags;
9217 
9218 	ASSERT_RTNL();
9219 
9220 	allmulti = dev->allmulti + inc;
9221 	if (allmulti == 0) {
9222 		/*
9223 		 * Avoid overflow.
9224 		 * If inc causes overflow, untouch allmulti and return error.
9225 		 */
9226 		if (unlikely(inc > 0)) {
9227 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9228 			return -EOVERFLOW;
9229 		}
9230 		flags = old_flags & ~IFF_ALLMULTI;
9231 	} else {
9232 		flags = old_flags | IFF_ALLMULTI;
9233 	}
9234 	WRITE_ONCE(dev->allmulti, allmulti);
9235 	if (flags != old_flags) {
9236 		WRITE_ONCE(dev->flags, flags);
9237 		netdev_info(dev, "%s allmulticast mode\n",
9238 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9239 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9240 		dev_set_rx_mode(dev);
9241 		if (notify)
9242 			__dev_notify_flags(dev, old_flags,
9243 					   dev->gflags ^ old_gflags, 0, NULL);
9244 	}
9245 	return 0;
9246 }
9247 
9248 /**
9249  *	dev_set_allmulti	- update allmulti count on a device
9250  *	@dev: device
9251  *	@inc: modifier
9252  *
9253  *	Add or remove reception of all multicast frames to a device. While the
9254  *	count in the device remains above zero the interface remains listening
9255  *	to all interfaces. Once it hits zero the device reverts back to normal
9256  *	filtering operation. A negative @inc value is used to drop the counter
9257  *	when releasing a resource needing all multicasts.
9258  *	Return 0 if successful or a negative errno code on error.
9259  */
9260 
9261 int dev_set_allmulti(struct net_device *dev, int inc)
9262 {
9263 	return __dev_set_allmulti(dev, inc, true);
9264 }
9265 EXPORT_SYMBOL(dev_set_allmulti);
9266 
9267 /*
9268  *	Upload unicast and multicast address lists to device and
9269  *	configure RX filtering. When the device doesn't support unicast
9270  *	filtering it is put in promiscuous mode while unicast addresses
9271  *	are present.
9272  */
9273 void __dev_set_rx_mode(struct net_device *dev)
9274 {
9275 	const struct net_device_ops *ops = dev->netdev_ops;
9276 
9277 	/* dev_open will call this function so the list will stay sane. */
9278 	if (!(dev->flags&IFF_UP))
9279 		return;
9280 
9281 	if (!netif_device_present(dev))
9282 		return;
9283 
9284 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9285 		/* Unicast addresses changes may only happen under the rtnl,
9286 		 * therefore calling __dev_set_promiscuity here is safe.
9287 		 */
9288 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9289 			__dev_set_promiscuity(dev, 1, false);
9290 			dev->uc_promisc = true;
9291 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9292 			__dev_set_promiscuity(dev, -1, false);
9293 			dev->uc_promisc = false;
9294 		}
9295 	}
9296 
9297 	if (ops->ndo_set_rx_mode)
9298 		ops->ndo_set_rx_mode(dev);
9299 }
9300 
9301 void dev_set_rx_mode(struct net_device *dev)
9302 {
9303 	netif_addr_lock_bh(dev);
9304 	__dev_set_rx_mode(dev);
9305 	netif_addr_unlock_bh(dev);
9306 }
9307 
9308 /**
9309  *	dev_get_flags - get flags reported to userspace
9310  *	@dev: device
9311  *
9312  *	Get the combination of flag bits exported through APIs to userspace.
9313  */
9314 unsigned int dev_get_flags(const struct net_device *dev)
9315 {
9316 	unsigned int flags;
9317 
9318 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9319 				IFF_ALLMULTI |
9320 				IFF_RUNNING |
9321 				IFF_LOWER_UP |
9322 				IFF_DORMANT)) |
9323 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9324 				IFF_ALLMULTI));
9325 
9326 	if (netif_running(dev)) {
9327 		if (netif_oper_up(dev))
9328 			flags |= IFF_RUNNING;
9329 		if (netif_carrier_ok(dev))
9330 			flags |= IFF_LOWER_UP;
9331 		if (netif_dormant(dev))
9332 			flags |= IFF_DORMANT;
9333 	}
9334 
9335 	return flags;
9336 }
9337 EXPORT_SYMBOL(dev_get_flags);
9338 
9339 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9340 		       struct netlink_ext_ack *extack)
9341 {
9342 	unsigned int old_flags = dev->flags;
9343 	int ret;
9344 
9345 	ASSERT_RTNL();
9346 
9347 	/*
9348 	 *	Set the flags on our device.
9349 	 */
9350 
9351 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9352 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9353 			       IFF_AUTOMEDIA)) |
9354 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9355 				    IFF_ALLMULTI));
9356 
9357 	/*
9358 	 *	Load in the correct multicast list now the flags have changed.
9359 	 */
9360 
9361 	if ((old_flags ^ flags) & IFF_MULTICAST)
9362 		dev_change_rx_flags(dev, IFF_MULTICAST);
9363 
9364 	dev_set_rx_mode(dev);
9365 
9366 	/*
9367 	 *	Have we downed the interface. We handle IFF_UP ourselves
9368 	 *	according to user attempts to set it, rather than blindly
9369 	 *	setting it.
9370 	 */
9371 
9372 	ret = 0;
9373 	if ((old_flags ^ flags) & IFF_UP) {
9374 		if (old_flags & IFF_UP)
9375 			__dev_close(dev);
9376 		else
9377 			ret = __dev_open(dev, extack);
9378 	}
9379 
9380 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9381 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9382 		old_flags = dev->flags;
9383 
9384 		dev->gflags ^= IFF_PROMISC;
9385 
9386 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9387 			if (dev->flags != old_flags)
9388 				dev_set_rx_mode(dev);
9389 	}
9390 
9391 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9392 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9393 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9394 	 */
9395 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9396 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9397 
9398 		dev->gflags ^= IFF_ALLMULTI;
9399 		__dev_set_allmulti(dev, inc, false);
9400 	}
9401 
9402 	return ret;
9403 }
9404 
9405 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9406 			unsigned int gchanges, u32 portid,
9407 			const struct nlmsghdr *nlh)
9408 {
9409 	unsigned int changes = dev->flags ^ old_flags;
9410 
9411 	if (gchanges)
9412 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9413 
9414 	if (changes & IFF_UP) {
9415 		if (dev->flags & IFF_UP)
9416 			call_netdevice_notifiers(NETDEV_UP, dev);
9417 		else
9418 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9419 	}
9420 
9421 	if (dev->flags & IFF_UP &&
9422 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9423 		struct netdev_notifier_change_info change_info = {
9424 			.info = {
9425 				.dev = dev,
9426 			},
9427 			.flags_changed = changes,
9428 		};
9429 
9430 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9431 	}
9432 }
9433 
9434 int netif_change_flags(struct net_device *dev, unsigned int flags,
9435 		       struct netlink_ext_ack *extack)
9436 {
9437 	int ret;
9438 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9439 
9440 	ret = __dev_change_flags(dev, flags, extack);
9441 	if (ret < 0)
9442 		return ret;
9443 
9444 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9445 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9446 	return ret;
9447 }
9448 
9449 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9450 {
9451 	const struct net_device_ops *ops = dev->netdev_ops;
9452 
9453 	if (ops->ndo_change_mtu)
9454 		return ops->ndo_change_mtu(dev, new_mtu);
9455 
9456 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9457 	WRITE_ONCE(dev->mtu, new_mtu);
9458 	return 0;
9459 }
9460 EXPORT_SYMBOL(__dev_set_mtu);
9461 
9462 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9463 		     struct netlink_ext_ack *extack)
9464 {
9465 	/* MTU must be positive, and in range */
9466 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9467 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9468 		return -EINVAL;
9469 	}
9470 
9471 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9472 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9473 		return -EINVAL;
9474 	}
9475 	return 0;
9476 }
9477 
9478 /**
9479  *	netif_set_mtu_ext - Change maximum transfer unit
9480  *	@dev: device
9481  *	@new_mtu: new transfer unit
9482  *	@extack: netlink extended ack
9483  *
9484  *	Change the maximum transfer size of the network device.
9485  */
9486 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9487 		      struct netlink_ext_ack *extack)
9488 {
9489 	int err, orig_mtu;
9490 
9491 	if (new_mtu == dev->mtu)
9492 		return 0;
9493 
9494 	err = dev_validate_mtu(dev, new_mtu, extack);
9495 	if (err)
9496 		return err;
9497 
9498 	if (!netif_device_present(dev))
9499 		return -ENODEV;
9500 
9501 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9502 	err = notifier_to_errno(err);
9503 	if (err)
9504 		return err;
9505 
9506 	orig_mtu = dev->mtu;
9507 	err = __dev_set_mtu(dev, new_mtu);
9508 
9509 	if (!err) {
9510 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9511 						   orig_mtu);
9512 		err = notifier_to_errno(err);
9513 		if (err) {
9514 			/* setting mtu back and notifying everyone again,
9515 			 * so that they have a chance to revert changes.
9516 			 */
9517 			__dev_set_mtu(dev, orig_mtu);
9518 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9519 						     new_mtu);
9520 		}
9521 	}
9522 	return err;
9523 }
9524 
9525 int netif_set_mtu(struct net_device *dev, int new_mtu)
9526 {
9527 	struct netlink_ext_ack extack;
9528 	int err;
9529 
9530 	memset(&extack, 0, sizeof(extack));
9531 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9532 	if (err && extack._msg)
9533 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9534 	return err;
9535 }
9536 EXPORT_SYMBOL(netif_set_mtu);
9537 
9538 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9539 {
9540 	unsigned int orig_len = dev->tx_queue_len;
9541 	int res;
9542 
9543 	if (new_len != (unsigned int)new_len)
9544 		return -ERANGE;
9545 
9546 	if (new_len != orig_len) {
9547 		WRITE_ONCE(dev->tx_queue_len, new_len);
9548 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9549 		res = notifier_to_errno(res);
9550 		if (res)
9551 			goto err_rollback;
9552 		res = dev_qdisc_change_tx_queue_len(dev);
9553 		if (res)
9554 			goto err_rollback;
9555 	}
9556 
9557 	return 0;
9558 
9559 err_rollback:
9560 	netdev_err(dev, "refused to change device tx_queue_len\n");
9561 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9562 	return res;
9563 }
9564 
9565 void netif_set_group(struct net_device *dev, int new_group)
9566 {
9567 	dev->group = new_group;
9568 }
9569 
9570 /**
9571  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9572  *	@dev: device
9573  *	@addr: new address
9574  *	@extack: netlink extended ack
9575  */
9576 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9577 			      struct netlink_ext_ack *extack)
9578 {
9579 	struct netdev_notifier_pre_changeaddr_info info = {
9580 		.info.dev = dev,
9581 		.info.extack = extack,
9582 		.dev_addr = addr,
9583 	};
9584 	int rc;
9585 
9586 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9587 	return notifier_to_errno(rc);
9588 }
9589 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9590 
9591 /**
9592  *	dev_set_mac_address - Change Media Access Control Address
9593  *	@dev: device
9594  *	@sa: new address
9595  *	@extack: netlink extended ack
9596  *
9597  *	Change the hardware (MAC) address of the device
9598  */
9599 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9600 			struct netlink_ext_ack *extack)
9601 {
9602 	const struct net_device_ops *ops = dev->netdev_ops;
9603 	int err;
9604 
9605 	if (!ops->ndo_set_mac_address)
9606 		return -EOPNOTSUPP;
9607 	if (sa->sa_family != dev->type)
9608 		return -EINVAL;
9609 	if (!netif_device_present(dev))
9610 		return -ENODEV;
9611 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9612 	if (err)
9613 		return err;
9614 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9615 		err = ops->ndo_set_mac_address(dev, sa);
9616 		if (err)
9617 			return err;
9618 	}
9619 	dev->addr_assign_type = NET_ADDR_SET;
9620 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9621 	add_device_randomness(dev->dev_addr, dev->addr_len);
9622 	return 0;
9623 }
9624 EXPORT_SYMBOL(dev_set_mac_address);
9625 
9626 DECLARE_RWSEM(dev_addr_sem);
9627 
9628 int netif_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9629 			       struct netlink_ext_ack *extack)
9630 {
9631 	int ret;
9632 
9633 	down_write(&dev_addr_sem);
9634 	ret = dev_set_mac_address(dev, sa, extack);
9635 	up_write(&dev_addr_sem);
9636 	return ret;
9637 }
9638 
9639 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9640 {
9641 	size_t size = sizeof(sa->sa_data_min);
9642 	struct net_device *dev;
9643 	int ret = 0;
9644 
9645 	down_read(&dev_addr_sem);
9646 	rcu_read_lock();
9647 
9648 	dev = dev_get_by_name_rcu(net, dev_name);
9649 	if (!dev) {
9650 		ret = -ENODEV;
9651 		goto unlock;
9652 	}
9653 	if (!dev->addr_len)
9654 		memset(sa->sa_data, 0, size);
9655 	else
9656 		memcpy(sa->sa_data, dev->dev_addr,
9657 		       min_t(size_t, size, dev->addr_len));
9658 	sa->sa_family = dev->type;
9659 
9660 unlock:
9661 	rcu_read_unlock();
9662 	up_read(&dev_addr_sem);
9663 	return ret;
9664 }
9665 EXPORT_SYMBOL(dev_get_mac_address);
9666 
9667 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9668 {
9669 	const struct net_device_ops *ops = dev->netdev_ops;
9670 
9671 	if (!ops->ndo_change_carrier)
9672 		return -EOPNOTSUPP;
9673 	if (!netif_device_present(dev))
9674 		return -ENODEV;
9675 	return ops->ndo_change_carrier(dev, new_carrier);
9676 }
9677 
9678 /**
9679  *	dev_get_phys_port_id - Get device physical port ID
9680  *	@dev: device
9681  *	@ppid: port ID
9682  *
9683  *	Get device physical port ID
9684  */
9685 int dev_get_phys_port_id(struct net_device *dev,
9686 			 struct netdev_phys_item_id *ppid)
9687 {
9688 	const struct net_device_ops *ops = dev->netdev_ops;
9689 
9690 	if (!ops->ndo_get_phys_port_id)
9691 		return -EOPNOTSUPP;
9692 	return ops->ndo_get_phys_port_id(dev, ppid);
9693 }
9694 
9695 /**
9696  *	dev_get_phys_port_name - Get device physical port name
9697  *	@dev: device
9698  *	@name: port name
9699  *	@len: limit of bytes to copy to name
9700  *
9701  *	Get device physical port name
9702  */
9703 int dev_get_phys_port_name(struct net_device *dev,
9704 			   char *name, size_t len)
9705 {
9706 	const struct net_device_ops *ops = dev->netdev_ops;
9707 	int err;
9708 
9709 	if (ops->ndo_get_phys_port_name) {
9710 		err = ops->ndo_get_phys_port_name(dev, name, len);
9711 		if (err != -EOPNOTSUPP)
9712 			return err;
9713 	}
9714 	return devlink_compat_phys_port_name_get(dev, name, len);
9715 }
9716 
9717 /**
9718  *	dev_get_port_parent_id - Get the device's port parent identifier
9719  *	@dev: network device
9720  *	@ppid: pointer to a storage for the port's parent identifier
9721  *	@recurse: allow/disallow recursion to lower devices
9722  *
9723  *	Get the devices's port parent identifier
9724  */
9725 int dev_get_port_parent_id(struct net_device *dev,
9726 			   struct netdev_phys_item_id *ppid,
9727 			   bool recurse)
9728 {
9729 	const struct net_device_ops *ops = dev->netdev_ops;
9730 	struct netdev_phys_item_id first = { };
9731 	struct net_device *lower_dev;
9732 	struct list_head *iter;
9733 	int err;
9734 
9735 	if (ops->ndo_get_port_parent_id) {
9736 		err = ops->ndo_get_port_parent_id(dev, ppid);
9737 		if (err != -EOPNOTSUPP)
9738 			return err;
9739 	}
9740 
9741 	err = devlink_compat_switch_id_get(dev, ppid);
9742 	if (!recurse || err != -EOPNOTSUPP)
9743 		return err;
9744 
9745 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9746 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9747 		if (err)
9748 			break;
9749 		if (!first.id_len)
9750 			first = *ppid;
9751 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9752 			return -EOPNOTSUPP;
9753 	}
9754 
9755 	return err;
9756 }
9757 EXPORT_SYMBOL(dev_get_port_parent_id);
9758 
9759 /**
9760  *	netdev_port_same_parent_id - Indicate if two network devices have
9761  *	the same port parent identifier
9762  *	@a: first network device
9763  *	@b: second network device
9764  */
9765 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9766 {
9767 	struct netdev_phys_item_id a_id = { };
9768 	struct netdev_phys_item_id b_id = { };
9769 
9770 	if (dev_get_port_parent_id(a, &a_id, true) ||
9771 	    dev_get_port_parent_id(b, &b_id, true))
9772 		return false;
9773 
9774 	return netdev_phys_item_id_same(&a_id, &b_id);
9775 }
9776 EXPORT_SYMBOL(netdev_port_same_parent_id);
9777 
9778 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9779 {
9780 	if (!dev->change_proto_down)
9781 		return -EOPNOTSUPP;
9782 	if (!netif_device_present(dev))
9783 		return -ENODEV;
9784 	if (proto_down)
9785 		netif_carrier_off(dev);
9786 	else
9787 		netif_carrier_on(dev);
9788 	WRITE_ONCE(dev->proto_down, proto_down);
9789 	return 0;
9790 }
9791 
9792 /**
9793  *	netdev_change_proto_down_reason_locked - proto down reason
9794  *
9795  *	@dev: device
9796  *	@mask: proto down mask
9797  *	@value: proto down value
9798  */
9799 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9800 					    unsigned long mask, u32 value)
9801 {
9802 	u32 proto_down_reason;
9803 	int b;
9804 
9805 	if (!mask) {
9806 		proto_down_reason = value;
9807 	} else {
9808 		proto_down_reason = dev->proto_down_reason;
9809 		for_each_set_bit(b, &mask, 32) {
9810 			if (value & (1 << b))
9811 				proto_down_reason |= BIT(b);
9812 			else
9813 				proto_down_reason &= ~BIT(b);
9814 		}
9815 	}
9816 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9817 }
9818 
9819 struct bpf_xdp_link {
9820 	struct bpf_link link;
9821 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9822 	int flags;
9823 };
9824 
9825 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9826 {
9827 	if (flags & XDP_FLAGS_HW_MODE)
9828 		return XDP_MODE_HW;
9829 	if (flags & XDP_FLAGS_DRV_MODE)
9830 		return XDP_MODE_DRV;
9831 	if (flags & XDP_FLAGS_SKB_MODE)
9832 		return XDP_MODE_SKB;
9833 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9834 }
9835 
9836 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9837 {
9838 	switch (mode) {
9839 	case XDP_MODE_SKB:
9840 		return generic_xdp_install;
9841 	case XDP_MODE_DRV:
9842 	case XDP_MODE_HW:
9843 		return dev->netdev_ops->ndo_bpf;
9844 	default:
9845 		return NULL;
9846 	}
9847 }
9848 
9849 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9850 					 enum bpf_xdp_mode mode)
9851 {
9852 	return dev->xdp_state[mode].link;
9853 }
9854 
9855 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9856 				     enum bpf_xdp_mode mode)
9857 {
9858 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9859 
9860 	if (link)
9861 		return link->link.prog;
9862 	return dev->xdp_state[mode].prog;
9863 }
9864 
9865 u8 dev_xdp_prog_count(struct net_device *dev)
9866 {
9867 	u8 count = 0;
9868 	int i;
9869 
9870 	for (i = 0; i < __MAX_XDP_MODE; i++)
9871 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9872 			count++;
9873 	return count;
9874 }
9875 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9876 
9877 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9878 {
9879 	u8 count = 0;
9880 	int i;
9881 
9882 	for (i = 0; i < __MAX_XDP_MODE; i++)
9883 		if (dev->xdp_state[i].prog &&
9884 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9885 			count++;
9886 	return count;
9887 }
9888 
9889 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9890 {
9891 	if (!dev->netdev_ops->ndo_bpf)
9892 		return -EOPNOTSUPP;
9893 
9894 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9895 	    bpf->command == XDP_SETUP_PROG &&
9896 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9897 		NL_SET_ERR_MSG(bpf->extack,
9898 			       "unable to propagate XDP to device using tcp-data-split");
9899 		return -EBUSY;
9900 	}
9901 
9902 	if (dev_get_min_mp_channel_count(dev)) {
9903 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9904 		return -EBUSY;
9905 	}
9906 
9907 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9908 }
9909 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9910 
9911 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9912 {
9913 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9914 
9915 	return prog ? prog->aux->id : 0;
9916 }
9917 
9918 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9919 			     struct bpf_xdp_link *link)
9920 {
9921 	dev->xdp_state[mode].link = link;
9922 	dev->xdp_state[mode].prog = NULL;
9923 }
9924 
9925 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9926 			     struct bpf_prog *prog)
9927 {
9928 	dev->xdp_state[mode].link = NULL;
9929 	dev->xdp_state[mode].prog = prog;
9930 }
9931 
9932 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9933 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9934 			   u32 flags, struct bpf_prog *prog)
9935 {
9936 	struct netdev_bpf xdp;
9937 	int err;
9938 
9939 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9940 	    prog && !prog->aux->xdp_has_frags) {
9941 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9942 		return -EBUSY;
9943 	}
9944 
9945 	if (dev_get_min_mp_channel_count(dev)) {
9946 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9947 		return -EBUSY;
9948 	}
9949 
9950 	memset(&xdp, 0, sizeof(xdp));
9951 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9952 	xdp.extack = extack;
9953 	xdp.flags = flags;
9954 	xdp.prog = prog;
9955 
9956 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9957 	 * "moved" into driver), so they don't increment it on their own, but
9958 	 * they do decrement refcnt when program is detached or replaced.
9959 	 * Given net_device also owns link/prog, we need to bump refcnt here
9960 	 * to prevent drivers from underflowing it.
9961 	 */
9962 	if (prog)
9963 		bpf_prog_inc(prog);
9964 	err = bpf_op(dev, &xdp);
9965 	if (err) {
9966 		if (prog)
9967 			bpf_prog_put(prog);
9968 		return err;
9969 	}
9970 
9971 	if (mode != XDP_MODE_HW)
9972 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9973 
9974 	return 0;
9975 }
9976 
9977 static void dev_xdp_uninstall(struct net_device *dev)
9978 {
9979 	struct bpf_xdp_link *link;
9980 	struct bpf_prog *prog;
9981 	enum bpf_xdp_mode mode;
9982 	bpf_op_t bpf_op;
9983 
9984 	ASSERT_RTNL();
9985 
9986 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9987 		prog = dev_xdp_prog(dev, mode);
9988 		if (!prog)
9989 			continue;
9990 
9991 		bpf_op = dev_xdp_bpf_op(dev, mode);
9992 		if (!bpf_op)
9993 			continue;
9994 
9995 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9996 
9997 		/* auto-detach link from net device */
9998 		link = dev_xdp_link(dev, mode);
9999 		if (link)
10000 			link->dev = NULL;
10001 		else
10002 			bpf_prog_put(prog);
10003 
10004 		dev_xdp_set_link(dev, mode, NULL);
10005 	}
10006 }
10007 
10008 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
10009 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
10010 			  struct bpf_prog *old_prog, u32 flags)
10011 {
10012 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
10013 	struct bpf_prog *cur_prog;
10014 	struct net_device *upper;
10015 	struct list_head *iter;
10016 	enum bpf_xdp_mode mode;
10017 	bpf_op_t bpf_op;
10018 	int err;
10019 
10020 	ASSERT_RTNL();
10021 
10022 	/* either link or prog attachment, never both */
10023 	if (link && (new_prog || old_prog))
10024 		return -EINVAL;
10025 	/* link supports only XDP mode flags */
10026 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10027 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10028 		return -EINVAL;
10029 	}
10030 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10031 	if (num_modes > 1) {
10032 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10033 		return -EINVAL;
10034 	}
10035 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10036 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10037 		NL_SET_ERR_MSG(extack,
10038 			       "More than one program loaded, unset mode is ambiguous");
10039 		return -EINVAL;
10040 	}
10041 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10042 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10043 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10044 		return -EINVAL;
10045 	}
10046 
10047 	mode = dev_xdp_mode(dev, flags);
10048 	/* can't replace attached link */
10049 	if (dev_xdp_link(dev, mode)) {
10050 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10051 		return -EBUSY;
10052 	}
10053 
10054 	/* don't allow if an upper device already has a program */
10055 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10056 		if (dev_xdp_prog_count(upper) > 0) {
10057 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10058 			return -EEXIST;
10059 		}
10060 	}
10061 
10062 	cur_prog = dev_xdp_prog(dev, mode);
10063 	/* can't replace attached prog with link */
10064 	if (link && cur_prog) {
10065 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10066 		return -EBUSY;
10067 	}
10068 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10069 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10070 		return -EEXIST;
10071 	}
10072 
10073 	/* put effective new program into new_prog */
10074 	if (link)
10075 		new_prog = link->link.prog;
10076 
10077 	if (new_prog) {
10078 		bool offload = mode == XDP_MODE_HW;
10079 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10080 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10081 
10082 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10083 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10084 			return -EBUSY;
10085 		}
10086 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10087 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10088 			return -EEXIST;
10089 		}
10090 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10091 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10092 			return -EINVAL;
10093 		}
10094 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10095 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10096 			return -EINVAL;
10097 		}
10098 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10099 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10100 			return -EINVAL;
10101 		}
10102 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10103 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10104 			return -EINVAL;
10105 		}
10106 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10107 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10108 			return -EINVAL;
10109 		}
10110 	}
10111 
10112 	/* don't call drivers if the effective program didn't change */
10113 	if (new_prog != cur_prog) {
10114 		bpf_op = dev_xdp_bpf_op(dev, mode);
10115 		if (!bpf_op) {
10116 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10117 			return -EOPNOTSUPP;
10118 		}
10119 
10120 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10121 		if (err)
10122 			return err;
10123 	}
10124 
10125 	if (link)
10126 		dev_xdp_set_link(dev, mode, link);
10127 	else
10128 		dev_xdp_set_prog(dev, mode, new_prog);
10129 	if (cur_prog)
10130 		bpf_prog_put(cur_prog);
10131 
10132 	return 0;
10133 }
10134 
10135 static int dev_xdp_attach_link(struct net_device *dev,
10136 			       struct netlink_ext_ack *extack,
10137 			       struct bpf_xdp_link *link)
10138 {
10139 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10140 }
10141 
10142 static int dev_xdp_detach_link(struct net_device *dev,
10143 			       struct netlink_ext_ack *extack,
10144 			       struct bpf_xdp_link *link)
10145 {
10146 	enum bpf_xdp_mode mode;
10147 	bpf_op_t bpf_op;
10148 
10149 	ASSERT_RTNL();
10150 
10151 	mode = dev_xdp_mode(dev, link->flags);
10152 	if (dev_xdp_link(dev, mode) != link)
10153 		return -EINVAL;
10154 
10155 	bpf_op = dev_xdp_bpf_op(dev, mode);
10156 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10157 	dev_xdp_set_link(dev, mode, NULL);
10158 	return 0;
10159 }
10160 
10161 static void bpf_xdp_link_release(struct bpf_link *link)
10162 {
10163 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10164 
10165 	rtnl_lock();
10166 
10167 	/* if racing with net_device's tear down, xdp_link->dev might be
10168 	 * already NULL, in which case link was already auto-detached
10169 	 */
10170 	if (xdp_link->dev) {
10171 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10172 		xdp_link->dev = NULL;
10173 	}
10174 
10175 	rtnl_unlock();
10176 }
10177 
10178 static int bpf_xdp_link_detach(struct bpf_link *link)
10179 {
10180 	bpf_xdp_link_release(link);
10181 	return 0;
10182 }
10183 
10184 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10185 {
10186 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10187 
10188 	kfree(xdp_link);
10189 }
10190 
10191 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10192 				     struct seq_file *seq)
10193 {
10194 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10195 	u32 ifindex = 0;
10196 
10197 	rtnl_lock();
10198 	if (xdp_link->dev)
10199 		ifindex = xdp_link->dev->ifindex;
10200 	rtnl_unlock();
10201 
10202 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10203 }
10204 
10205 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10206 				       struct bpf_link_info *info)
10207 {
10208 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10209 	u32 ifindex = 0;
10210 
10211 	rtnl_lock();
10212 	if (xdp_link->dev)
10213 		ifindex = xdp_link->dev->ifindex;
10214 	rtnl_unlock();
10215 
10216 	info->xdp.ifindex = ifindex;
10217 	return 0;
10218 }
10219 
10220 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10221 			       struct bpf_prog *old_prog)
10222 {
10223 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10224 	enum bpf_xdp_mode mode;
10225 	bpf_op_t bpf_op;
10226 	int err = 0;
10227 
10228 	rtnl_lock();
10229 
10230 	/* link might have been auto-released already, so fail */
10231 	if (!xdp_link->dev) {
10232 		err = -ENOLINK;
10233 		goto out_unlock;
10234 	}
10235 
10236 	if (old_prog && link->prog != old_prog) {
10237 		err = -EPERM;
10238 		goto out_unlock;
10239 	}
10240 	old_prog = link->prog;
10241 	if (old_prog->type != new_prog->type ||
10242 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10243 		err = -EINVAL;
10244 		goto out_unlock;
10245 	}
10246 
10247 	if (old_prog == new_prog) {
10248 		/* no-op, don't disturb drivers */
10249 		bpf_prog_put(new_prog);
10250 		goto out_unlock;
10251 	}
10252 
10253 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10254 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10255 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10256 			      xdp_link->flags, new_prog);
10257 	if (err)
10258 		goto out_unlock;
10259 
10260 	old_prog = xchg(&link->prog, new_prog);
10261 	bpf_prog_put(old_prog);
10262 
10263 out_unlock:
10264 	rtnl_unlock();
10265 	return err;
10266 }
10267 
10268 static const struct bpf_link_ops bpf_xdp_link_lops = {
10269 	.release = bpf_xdp_link_release,
10270 	.dealloc = bpf_xdp_link_dealloc,
10271 	.detach = bpf_xdp_link_detach,
10272 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10273 	.fill_link_info = bpf_xdp_link_fill_link_info,
10274 	.update_prog = bpf_xdp_link_update,
10275 };
10276 
10277 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10278 {
10279 	struct net *net = current->nsproxy->net_ns;
10280 	struct bpf_link_primer link_primer;
10281 	struct netlink_ext_ack extack = {};
10282 	struct bpf_xdp_link *link;
10283 	struct net_device *dev;
10284 	int err, fd;
10285 
10286 	rtnl_lock();
10287 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10288 	if (!dev) {
10289 		rtnl_unlock();
10290 		return -EINVAL;
10291 	}
10292 
10293 	link = kzalloc(sizeof(*link), GFP_USER);
10294 	if (!link) {
10295 		err = -ENOMEM;
10296 		goto unlock;
10297 	}
10298 
10299 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10300 	link->dev = dev;
10301 	link->flags = attr->link_create.flags;
10302 
10303 	err = bpf_link_prime(&link->link, &link_primer);
10304 	if (err) {
10305 		kfree(link);
10306 		goto unlock;
10307 	}
10308 
10309 	err = dev_xdp_attach_link(dev, &extack, link);
10310 	rtnl_unlock();
10311 
10312 	if (err) {
10313 		link->dev = NULL;
10314 		bpf_link_cleanup(&link_primer);
10315 		trace_bpf_xdp_link_attach_failed(extack._msg);
10316 		goto out_put_dev;
10317 	}
10318 
10319 	fd = bpf_link_settle(&link_primer);
10320 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10321 	dev_put(dev);
10322 	return fd;
10323 
10324 unlock:
10325 	rtnl_unlock();
10326 
10327 out_put_dev:
10328 	dev_put(dev);
10329 	return err;
10330 }
10331 
10332 /**
10333  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10334  *	@dev: device
10335  *	@extack: netlink extended ack
10336  *	@fd: new program fd or negative value to clear
10337  *	@expected_fd: old program fd that userspace expects to replace or clear
10338  *	@flags: xdp-related flags
10339  *
10340  *	Set or clear a bpf program for a device
10341  */
10342 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10343 		      int fd, int expected_fd, u32 flags)
10344 {
10345 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10346 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10347 	int err;
10348 
10349 	ASSERT_RTNL();
10350 
10351 	if (fd >= 0) {
10352 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10353 						 mode != XDP_MODE_SKB);
10354 		if (IS_ERR(new_prog))
10355 			return PTR_ERR(new_prog);
10356 	}
10357 
10358 	if (expected_fd >= 0) {
10359 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10360 						 mode != XDP_MODE_SKB);
10361 		if (IS_ERR(old_prog)) {
10362 			err = PTR_ERR(old_prog);
10363 			old_prog = NULL;
10364 			goto err_out;
10365 		}
10366 	}
10367 
10368 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10369 
10370 err_out:
10371 	if (err && new_prog)
10372 		bpf_prog_put(new_prog);
10373 	if (old_prog)
10374 		bpf_prog_put(old_prog);
10375 	return err;
10376 }
10377 
10378 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10379 {
10380 	int i;
10381 
10382 	ASSERT_RTNL();
10383 
10384 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10385 		if (dev->_rx[i].mp_params.mp_priv)
10386 			/* The channel count is the idx plus 1. */
10387 			return i + 1;
10388 
10389 	return 0;
10390 }
10391 
10392 /**
10393  * dev_index_reserve() - allocate an ifindex in a namespace
10394  * @net: the applicable net namespace
10395  * @ifindex: requested ifindex, pass %0 to get one allocated
10396  *
10397  * Allocate a ifindex for a new device. Caller must either use the ifindex
10398  * to store the device (via list_netdevice()) or call dev_index_release()
10399  * to give the index up.
10400  *
10401  * Return: a suitable unique value for a new device interface number or -errno.
10402  */
10403 static int dev_index_reserve(struct net *net, u32 ifindex)
10404 {
10405 	int err;
10406 
10407 	if (ifindex > INT_MAX) {
10408 		DEBUG_NET_WARN_ON_ONCE(1);
10409 		return -EINVAL;
10410 	}
10411 
10412 	if (!ifindex)
10413 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10414 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10415 	else
10416 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10417 	if (err < 0)
10418 		return err;
10419 
10420 	return ifindex;
10421 }
10422 
10423 static void dev_index_release(struct net *net, int ifindex)
10424 {
10425 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10426 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10427 }
10428 
10429 static bool from_cleanup_net(void)
10430 {
10431 #ifdef CONFIG_NET_NS
10432 	return current == cleanup_net_task;
10433 #else
10434 	return false;
10435 #endif
10436 }
10437 
10438 /* Delayed registration/unregisteration */
10439 LIST_HEAD(net_todo_list);
10440 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10441 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10442 
10443 static void net_set_todo(struct net_device *dev)
10444 {
10445 	list_add_tail(&dev->todo_list, &net_todo_list);
10446 }
10447 
10448 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10449 	struct net_device *upper, netdev_features_t features)
10450 {
10451 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10452 	netdev_features_t feature;
10453 	int feature_bit;
10454 
10455 	for_each_netdev_feature(upper_disables, feature_bit) {
10456 		feature = __NETIF_F_BIT(feature_bit);
10457 		if (!(upper->wanted_features & feature)
10458 		    && (features & feature)) {
10459 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10460 				   &feature, upper->name);
10461 			features &= ~feature;
10462 		}
10463 	}
10464 
10465 	return features;
10466 }
10467 
10468 static void netdev_sync_lower_features(struct net_device *upper,
10469 	struct net_device *lower, netdev_features_t features)
10470 {
10471 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10472 	netdev_features_t feature;
10473 	int feature_bit;
10474 
10475 	for_each_netdev_feature(upper_disables, feature_bit) {
10476 		feature = __NETIF_F_BIT(feature_bit);
10477 		if (!(features & feature) && (lower->features & feature)) {
10478 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10479 				   &feature, lower->name);
10480 			lower->wanted_features &= ~feature;
10481 			__netdev_update_features(lower);
10482 
10483 			if (unlikely(lower->features & feature))
10484 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10485 					    &feature, lower->name);
10486 			else
10487 				netdev_features_change(lower);
10488 		}
10489 	}
10490 }
10491 
10492 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10493 {
10494 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10495 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10496 	bool hw_csum = features & NETIF_F_HW_CSUM;
10497 
10498 	return ip_csum || hw_csum;
10499 }
10500 
10501 static netdev_features_t netdev_fix_features(struct net_device *dev,
10502 	netdev_features_t features)
10503 {
10504 	/* Fix illegal checksum combinations */
10505 	if ((features & NETIF_F_HW_CSUM) &&
10506 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10507 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10508 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10509 	}
10510 
10511 	/* TSO requires that SG is present as well. */
10512 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10513 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10514 		features &= ~NETIF_F_ALL_TSO;
10515 	}
10516 
10517 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10518 					!(features & NETIF_F_IP_CSUM)) {
10519 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10520 		features &= ~NETIF_F_TSO;
10521 		features &= ~NETIF_F_TSO_ECN;
10522 	}
10523 
10524 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10525 					 !(features & NETIF_F_IPV6_CSUM)) {
10526 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10527 		features &= ~NETIF_F_TSO6;
10528 	}
10529 
10530 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10531 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10532 		features &= ~NETIF_F_TSO_MANGLEID;
10533 
10534 	/* TSO ECN requires that TSO is present as well. */
10535 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10536 		features &= ~NETIF_F_TSO_ECN;
10537 
10538 	/* Software GSO depends on SG. */
10539 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10540 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10541 		features &= ~NETIF_F_GSO;
10542 	}
10543 
10544 	/* GSO partial features require GSO partial be set */
10545 	if ((features & dev->gso_partial_features) &&
10546 	    !(features & NETIF_F_GSO_PARTIAL)) {
10547 		netdev_dbg(dev,
10548 			   "Dropping partially supported GSO features since no GSO partial.\n");
10549 		features &= ~dev->gso_partial_features;
10550 	}
10551 
10552 	if (!(features & NETIF_F_RXCSUM)) {
10553 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10554 		 * successfully merged by hardware must also have the
10555 		 * checksum verified by hardware.  If the user does not
10556 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10557 		 */
10558 		if (features & NETIF_F_GRO_HW) {
10559 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10560 			features &= ~NETIF_F_GRO_HW;
10561 		}
10562 	}
10563 
10564 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10565 	if (features & NETIF_F_RXFCS) {
10566 		if (features & NETIF_F_LRO) {
10567 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10568 			features &= ~NETIF_F_LRO;
10569 		}
10570 
10571 		if (features & NETIF_F_GRO_HW) {
10572 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10573 			features &= ~NETIF_F_GRO_HW;
10574 		}
10575 	}
10576 
10577 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10578 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10579 		features &= ~NETIF_F_LRO;
10580 	}
10581 
10582 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10583 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10584 		features &= ~NETIF_F_HW_TLS_TX;
10585 	}
10586 
10587 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10588 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10589 		features &= ~NETIF_F_HW_TLS_RX;
10590 	}
10591 
10592 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10593 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10594 		features &= ~NETIF_F_GSO_UDP_L4;
10595 	}
10596 
10597 	return features;
10598 }
10599 
10600 int __netdev_update_features(struct net_device *dev)
10601 {
10602 	struct net_device *upper, *lower;
10603 	netdev_features_t features;
10604 	struct list_head *iter;
10605 	int err = -1;
10606 
10607 	ASSERT_RTNL();
10608 	netdev_ops_assert_locked(dev);
10609 
10610 	features = netdev_get_wanted_features(dev);
10611 
10612 	if (dev->netdev_ops->ndo_fix_features)
10613 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10614 
10615 	/* driver might be less strict about feature dependencies */
10616 	features = netdev_fix_features(dev, features);
10617 
10618 	/* some features can't be enabled if they're off on an upper device */
10619 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10620 		features = netdev_sync_upper_features(dev, upper, features);
10621 
10622 	if (dev->features == features)
10623 		goto sync_lower;
10624 
10625 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10626 		&dev->features, &features);
10627 
10628 	if (dev->netdev_ops->ndo_set_features)
10629 		err = dev->netdev_ops->ndo_set_features(dev, features);
10630 	else
10631 		err = 0;
10632 
10633 	if (unlikely(err < 0)) {
10634 		netdev_err(dev,
10635 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10636 			err, &features, &dev->features);
10637 		/* return non-0 since some features might have changed and
10638 		 * it's better to fire a spurious notification than miss it
10639 		 */
10640 		return -1;
10641 	}
10642 
10643 sync_lower:
10644 	/* some features must be disabled on lower devices when disabled
10645 	 * on an upper device (think: bonding master or bridge)
10646 	 */
10647 	netdev_for_each_lower_dev(dev, lower, iter)
10648 		netdev_sync_lower_features(dev, lower, features);
10649 
10650 	if (!err) {
10651 		netdev_features_t diff = features ^ dev->features;
10652 
10653 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10654 			/* udp_tunnel_{get,drop}_rx_info both need
10655 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10656 			 * device, or they won't do anything.
10657 			 * Thus we need to update dev->features
10658 			 * *before* calling udp_tunnel_get_rx_info,
10659 			 * but *after* calling udp_tunnel_drop_rx_info.
10660 			 */
10661 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10662 				dev->features = features;
10663 				udp_tunnel_get_rx_info(dev);
10664 			} else {
10665 				udp_tunnel_drop_rx_info(dev);
10666 			}
10667 		}
10668 
10669 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10670 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10671 				dev->features = features;
10672 				err |= vlan_get_rx_ctag_filter_info(dev);
10673 			} else {
10674 				vlan_drop_rx_ctag_filter_info(dev);
10675 			}
10676 		}
10677 
10678 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10679 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10680 				dev->features = features;
10681 				err |= vlan_get_rx_stag_filter_info(dev);
10682 			} else {
10683 				vlan_drop_rx_stag_filter_info(dev);
10684 			}
10685 		}
10686 
10687 		dev->features = features;
10688 	}
10689 
10690 	return err < 0 ? 0 : 1;
10691 }
10692 
10693 /**
10694  *	netdev_update_features - recalculate device features
10695  *	@dev: the device to check
10696  *
10697  *	Recalculate dev->features set and send notifications if it
10698  *	has changed. Should be called after driver or hardware dependent
10699  *	conditions might have changed that influence the features.
10700  */
10701 void netdev_update_features(struct net_device *dev)
10702 {
10703 	if (__netdev_update_features(dev))
10704 		netdev_features_change(dev);
10705 }
10706 EXPORT_SYMBOL(netdev_update_features);
10707 
10708 /**
10709  *	netdev_change_features - recalculate device features
10710  *	@dev: the device to check
10711  *
10712  *	Recalculate dev->features set and send notifications even
10713  *	if they have not changed. Should be called instead of
10714  *	netdev_update_features() if also dev->vlan_features might
10715  *	have changed to allow the changes to be propagated to stacked
10716  *	VLAN devices.
10717  */
10718 void netdev_change_features(struct net_device *dev)
10719 {
10720 	__netdev_update_features(dev);
10721 	netdev_features_change(dev);
10722 }
10723 EXPORT_SYMBOL(netdev_change_features);
10724 
10725 /**
10726  *	netif_stacked_transfer_operstate -	transfer operstate
10727  *	@rootdev: the root or lower level device to transfer state from
10728  *	@dev: the device to transfer operstate to
10729  *
10730  *	Transfer operational state from root to device. This is normally
10731  *	called when a stacking relationship exists between the root
10732  *	device and the device(a leaf device).
10733  */
10734 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10735 					struct net_device *dev)
10736 {
10737 	if (rootdev->operstate == IF_OPER_DORMANT)
10738 		netif_dormant_on(dev);
10739 	else
10740 		netif_dormant_off(dev);
10741 
10742 	if (rootdev->operstate == IF_OPER_TESTING)
10743 		netif_testing_on(dev);
10744 	else
10745 		netif_testing_off(dev);
10746 
10747 	if (netif_carrier_ok(rootdev))
10748 		netif_carrier_on(dev);
10749 	else
10750 		netif_carrier_off(dev);
10751 }
10752 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10753 
10754 static int netif_alloc_rx_queues(struct net_device *dev)
10755 {
10756 	unsigned int i, count = dev->num_rx_queues;
10757 	struct netdev_rx_queue *rx;
10758 	size_t sz = count * sizeof(*rx);
10759 	int err = 0;
10760 
10761 	BUG_ON(count < 1);
10762 
10763 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10764 	if (!rx)
10765 		return -ENOMEM;
10766 
10767 	dev->_rx = rx;
10768 
10769 	for (i = 0; i < count; i++) {
10770 		rx[i].dev = dev;
10771 
10772 		/* XDP RX-queue setup */
10773 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10774 		if (err < 0)
10775 			goto err_rxq_info;
10776 	}
10777 	return 0;
10778 
10779 err_rxq_info:
10780 	/* Rollback successful reg's and free other resources */
10781 	while (i--)
10782 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10783 	kvfree(dev->_rx);
10784 	dev->_rx = NULL;
10785 	return err;
10786 }
10787 
10788 static void netif_free_rx_queues(struct net_device *dev)
10789 {
10790 	unsigned int i, count = dev->num_rx_queues;
10791 
10792 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10793 	if (!dev->_rx)
10794 		return;
10795 
10796 	for (i = 0; i < count; i++)
10797 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10798 
10799 	kvfree(dev->_rx);
10800 }
10801 
10802 static void netdev_init_one_queue(struct net_device *dev,
10803 				  struct netdev_queue *queue, void *_unused)
10804 {
10805 	/* Initialize queue lock */
10806 	spin_lock_init(&queue->_xmit_lock);
10807 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10808 	queue->xmit_lock_owner = -1;
10809 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10810 	queue->dev = dev;
10811 #ifdef CONFIG_BQL
10812 	dql_init(&queue->dql, HZ);
10813 #endif
10814 }
10815 
10816 static void netif_free_tx_queues(struct net_device *dev)
10817 {
10818 	kvfree(dev->_tx);
10819 }
10820 
10821 static int netif_alloc_netdev_queues(struct net_device *dev)
10822 {
10823 	unsigned int count = dev->num_tx_queues;
10824 	struct netdev_queue *tx;
10825 	size_t sz = count * sizeof(*tx);
10826 
10827 	if (count < 1 || count > 0xffff)
10828 		return -EINVAL;
10829 
10830 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10831 	if (!tx)
10832 		return -ENOMEM;
10833 
10834 	dev->_tx = tx;
10835 
10836 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10837 	spin_lock_init(&dev->tx_global_lock);
10838 
10839 	return 0;
10840 }
10841 
10842 void netif_tx_stop_all_queues(struct net_device *dev)
10843 {
10844 	unsigned int i;
10845 
10846 	for (i = 0; i < dev->num_tx_queues; i++) {
10847 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10848 
10849 		netif_tx_stop_queue(txq);
10850 	}
10851 }
10852 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10853 
10854 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10855 {
10856 	void __percpu *v;
10857 
10858 	/* Drivers implementing ndo_get_peer_dev must support tstat
10859 	 * accounting, so that skb_do_redirect() can bump the dev's
10860 	 * RX stats upon network namespace switch.
10861 	 */
10862 	if (dev->netdev_ops->ndo_get_peer_dev &&
10863 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10864 		return -EOPNOTSUPP;
10865 
10866 	switch (dev->pcpu_stat_type) {
10867 	case NETDEV_PCPU_STAT_NONE:
10868 		return 0;
10869 	case NETDEV_PCPU_STAT_LSTATS:
10870 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10871 		break;
10872 	case NETDEV_PCPU_STAT_TSTATS:
10873 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10874 		break;
10875 	case NETDEV_PCPU_STAT_DSTATS:
10876 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10877 		break;
10878 	default:
10879 		return -EINVAL;
10880 	}
10881 
10882 	return v ? 0 : -ENOMEM;
10883 }
10884 
10885 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10886 {
10887 	switch (dev->pcpu_stat_type) {
10888 	case NETDEV_PCPU_STAT_NONE:
10889 		return;
10890 	case NETDEV_PCPU_STAT_LSTATS:
10891 		free_percpu(dev->lstats);
10892 		break;
10893 	case NETDEV_PCPU_STAT_TSTATS:
10894 		free_percpu(dev->tstats);
10895 		break;
10896 	case NETDEV_PCPU_STAT_DSTATS:
10897 		free_percpu(dev->dstats);
10898 		break;
10899 	}
10900 }
10901 
10902 static void netdev_free_phy_link_topology(struct net_device *dev)
10903 {
10904 	struct phy_link_topology *topo = dev->link_topo;
10905 
10906 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10907 		xa_destroy(&topo->phys);
10908 		kfree(topo);
10909 		dev->link_topo = NULL;
10910 	}
10911 }
10912 
10913 /**
10914  * register_netdevice() - register a network device
10915  * @dev: device to register
10916  *
10917  * Take a prepared network device structure and make it externally accessible.
10918  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10919  * Callers must hold the rtnl lock - you may want register_netdev()
10920  * instead of this.
10921  */
10922 int register_netdevice(struct net_device *dev)
10923 {
10924 	int ret;
10925 	struct net *net = dev_net(dev);
10926 
10927 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10928 		     NETDEV_FEATURE_COUNT);
10929 	BUG_ON(dev_boot_phase);
10930 	ASSERT_RTNL();
10931 
10932 	might_sleep();
10933 
10934 	/* When net_device's are persistent, this will be fatal. */
10935 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10936 	BUG_ON(!net);
10937 
10938 	ret = ethtool_check_ops(dev->ethtool_ops);
10939 	if (ret)
10940 		return ret;
10941 
10942 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10943 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10944 	mutex_init(&dev->ethtool->rss_lock);
10945 
10946 	spin_lock_init(&dev->addr_list_lock);
10947 	netdev_set_addr_lockdep_class(dev);
10948 
10949 	ret = dev_get_valid_name(net, dev, dev->name);
10950 	if (ret < 0)
10951 		goto out;
10952 
10953 	ret = -ENOMEM;
10954 	dev->name_node = netdev_name_node_head_alloc(dev);
10955 	if (!dev->name_node)
10956 		goto out;
10957 
10958 	/* Init, if this function is available */
10959 	if (dev->netdev_ops->ndo_init) {
10960 		ret = dev->netdev_ops->ndo_init(dev);
10961 		if (ret) {
10962 			if (ret > 0)
10963 				ret = -EIO;
10964 			goto err_free_name;
10965 		}
10966 	}
10967 
10968 	if (((dev->hw_features | dev->features) &
10969 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10970 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10971 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10972 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10973 		ret = -EINVAL;
10974 		goto err_uninit;
10975 	}
10976 
10977 	ret = netdev_do_alloc_pcpu_stats(dev);
10978 	if (ret)
10979 		goto err_uninit;
10980 
10981 	ret = dev_index_reserve(net, dev->ifindex);
10982 	if (ret < 0)
10983 		goto err_free_pcpu;
10984 	dev->ifindex = ret;
10985 
10986 	/* Transfer changeable features to wanted_features and enable
10987 	 * software offloads (GSO and GRO).
10988 	 */
10989 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10990 	dev->features |= NETIF_F_SOFT_FEATURES;
10991 
10992 	if (dev->udp_tunnel_nic_info) {
10993 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10994 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10995 	}
10996 
10997 	dev->wanted_features = dev->features & dev->hw_features;
10998 
10999 	if (!(dev->flags & IFF_LOOPBACK))
11000 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
11001 
11002 	/* If IPv4 TCP segmentation offload is supported we should also
11003 	 * allow the device to enable segmenting the frame with the option
11004 	 * of ignoring a static IP ID value.  This doesn't enable the
11005 	 * feature itself but allows the user to enable it later.
11006 	 */
11007 	if (dev->hw_features & NETIF_F_TSO)
11008 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
11009 	if (dev->vlan_features & NETIF_F_TSO)
11010 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
11011 	if (dev->mpls_features & NETIF_F_TSO)
11012 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
11013 	if (dev->hw_enc_features & NETIF_F_TSO)
11014 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11015 
11016 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
11017 	 */
11018 	dev->vlan_features |= NETIF_F_HIGHDMA;
11019 
11020 	/* Make NETIF_F_SG inheritable to tunnel devices.
11021 	 */
11022 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11023 
11024 	/* Make NETIF_F_SG inheritable to MPLS.
11025 	 */
11026 	dev->mpls_features |= NETIF_F_SG;
11027 
11028 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11029 	ret = notifier_to_errno(ret);
11030 	if (ret)
11031 		goto err_ifindex_release;
11032 
11033 	ret = netdev_register_kobject(dev);
11034 
11035 	netdev_lock(dev);
11036 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11037 	netdev_unlock(dev);
11038 
11039 	if (ret)
11040 		goto err_uninit_notify;
11041 
11042 	__netdev_update_features(dev);
11043 
11044 	/*
11045 	 *	Default initial state at registry is that the
11046 	 *	device is present.
11047 	 */
11048 
11049 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11050 
11051 	linkwatch_init_dev(dev);
11052 
11053 	dev_init_scheduler(dev);
11054 
11055 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11056 	list_netdevice(dev);
11057 
11058 	add_device_randomness(dev->dev_addr, dev->addr_len);
11059 
11060 	/* If the device has permanent device address, driver should
11061 	 * set dev_addr and also addr_assign_type should be set to
11062 	 * NET_ADDR_PERM (default value).
11063 	 */
11064 	if (dev->addr_assign_type == NET_ADDR_PERM)
11065 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11066 
11067 	/* Notify protocols, that a new device appeared. */
11068 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11069 	ret = notifier_to_errno(ret);
11070 	if (ret) {
11071 		/* Expect explicit free_netdev() on failure */
11072 		dev->needs_free_netdev = false;
11073 		unregister_netdevice_queue(dev, NULL);
11074 		goto out;
11075 	}
11076 	/*
11077 	 *	Prevent userspace races by waiting until the network
11078 	 *	device is fully setup before sending notifications.
11079 	 */
11080 	if (!dev->rtnl_link_ops ||
11081 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11082 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11083 
11084 out:
11085 	return ret;
11086 
11087 err_uninit_notify:
11088 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11089 err_ifindex_release:
11090 	dev_index_release(net, dev->ifindex);
11091 err_free_pcpu:
11092 	netdev_do_free_pcpu_stats(dev);
11093 err_uninit:
11094 	if (dev->netdev_ops->ndo_uninit)
11095 		dev->netdev_ops->ndo_uninit(dev);
11096 	if (dev->priv_destructor)
11097 		dev->priv_destructor(dev);
11098 err_free_name:
11099 	netdev_name_node_free(dev->name_node);
11100 	goto out;
11101 }
11102 EXPORT_SYMBOL(register_netdevice);
11103 
11104 /* Initialize the core of a dummy net device.
11105  * The setup steps dummy netdevs need which normal netdevs get by going
11106  * through register_netdevice().
11107  */
11108 static void init_dummy_netdev(struct net_device *dev)
11109 {
11110 	/* make sure we BUG if trying to hit standard
11111 	 * register/unregister code path
11112 	 */
11113 	dev->reg_state = NETREG_DUMMY;
11114 
11115 	/* a dummy interface is started by default */
11116 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11117 	set_bit(__LINK_STATE_START, &dev->state);
11118 
11119 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11120 	 * because users of this 'device' dont need to change
11121 	 * its refcount.
11122 	 */
11123 }
11124 
11125 /**
11126  *	register_netdev	- register a network device
11127  *	@dev: device to register
11128  *
11129  *	Take a completed network device structure and add it to the kernel
11130  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11131  *	chain. 0 is returned on success. A negative errno code is returned
11132  *	on a failure to set up the device, or if the name is a duplicate.
11133  *
11134  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11135  *	and expands the device name if you passed a format string to
11136  *	alloc_netdev.
11137  */
11138 int register_netdev(struct net_device *dev)
11139 {
11140 	struct net *net = dev_net(dev);
11141 	int err;
11142 
11143 	if (rtnl_net_lock_killable(net))
11144 		return -EINTR;
11145 
11146 	err = register_netdevice(dev);
11147 
11148 	rtnl_net_unlock(net);
11149 
11150 	return err;
11151 }
11152 EXPORT_SYMBOL(register_netdev);
11153 
11154 int netdev_refcnt_read(const struct net_device *dev)
11155 {
11156 #ifdef CONFIG_PCPU_DEV_REFCNT
11157 	int i, refcnt = 0;
11158 
11159 	for_each_possible_cpu(i)
11160 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11161 	return refcnt;
11162 #else
11163 	return refcount_read(&dev->dev_refcnt);
11164 #endif
11165 }
11166 EXPORT_SYMBOL(netdev_refcnt_read);
11167 
11168 int netdev_unregister_timeout_secs __read_mostly = 10;
11169 
11170 #define WAIT_REFS_MIN_MSECS 1
11171 #define WAIT_REFS_MAX_MSECS 250
11172 /**
11173  * netdev_wait_allrefs_any - wait until all references are gone.
11174  * @list: list of net_devices to wait on
11175  *
11176  * This is called when unregistering network devices.
11177  *
11178  * Any protocol or device that holds a reference should register
11179  * for netdevice notification, and cleanup and put back the
11180  * reference if they receive an UNREGISTER event.
11181  * We can get stuck here if buggy protocols don't correctly
11182  * call dev_put.
11183  */
11184 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11185 {
11186 	unsigned long rebroadcast_time, warning_time;
11187 	struct net_device *dev;
11188 	int wait = 0;
11189 
11190 	rebroadcast_time = warning_time = jiffies;
11191 
11192 	list_for_each_entry(dev, list, todo_list)
11193 		if (netdev_refcnt_read(dev) == 1)
11194 			return dev;
11195 
11196 	while (true) {
11197 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11198 			rtnl_lock();
11199 
11200 			/* Rebroadcast unregister notification */
11201 			list_for_each_entry(dev, list, todo_list)
11202 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11203 
11204 			__rtnl_unlock();
11205 			rcu_barrier();
11206 			rtnl_lock();
11207 
11208 			list_for_each_entry(dev, list, todo_list)
11209 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11210 					     &dev->state)) {
11211 					/* We must not have linkwatch events
11212 					 * pending on unregister. If this
11213 					 * happens, we simply run the queue
11214 					 * unscheduled, resulting in a noop
11215 					 * for this device.
11216 					 */
11217 					linkwatch_run_queue();
11218 					break;
11219 				}
11220 
11221 			__rtnl_unlock();
11222 
11223 			rebroadcast_time = jiffies;
11224 		}
11225 
11226 		rcu_barrier();
11227 
11228 		if (!wait) {
11229 			wait = WAIT_REFS_MIN_MSECS;
11230 		} else {
11231 			msleep(wait);
11232 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11233 		}
11234 
11235 		list_for_each_entry(dev, list, todo_list)
11236 			if (netdev_refcnt_read(dev) == 1)
11237 				return dev;
11238 
11239 		if (time_after(jiffies, warning_time +
11240 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11241 			list_for_each_entry(dev, list, todo_list) {
11242 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11243 					 dev->name, netdev_refcnt_read(dev));
11244 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11245 			}
11246 
11247 			warning_time = jiffies;
11248 		}
11249 	}
11250 }
11251 
11252 /* The sequence is:
11253  *
11254  *	rtnl_lock();
11255  *	...
11256  *	register_netdevice(x1);
11257  *	register_netdevice(x2);
11258  *	...
11259  *	unregister_netdevice(y1);
11260  *	unregister_netdevice(y2);
11261  *      ...
11262  *	rtnl_unlock();
11263  *	free_netdev(y1);
11264  *	free_netdev(y2);
11265  *
11266  * We are invoked by rtnl_unlock().
11267  * This allows us to deal with problems:
11268  * 1) We can delete sysfs objects which invoke hotplug
11269  *    without deadlocking with linkwatch via keventd.
11270  * 2) Since we run with the RTNL semaphore not held, we can sleep
11271  *    safely in order to wait for the netdev refcnt to drop to zero.
11272  *
11273  * We must not return until all unregister events added during
11274  * the interval the lock was held have been completed.
11275  */
11276 void netdev_run_todo(void)
11277 {
11278 	struct net_device *dev, *tmp;
11279 	struct list_head list;
11280 	int cnt;
11281 #ifdef CONFIG_LOCKDEP
11282 	struct list_head unlink_list;
11283 
11284 	list_replace_init(&net_unlink_list, &unlink_list);
11285 
11286 	while (!list_empty(&unlink_list)) {
11287 		dev = list_first_entry(&unlink_list, struct net_device,
11288 				       unlink_list);
11289 		list_del_init(&dev->unlink_list);
11290 		dev->nested_level = dev->lower_level - 1;
11291 	}
11292 #endif
11293 
11294 	/* Snapshot list, allow later requests */
11295 	list_replace_init(&net_todo_list, &list);
11296 
11297 	__rtnl_unlock();
11298 
11299 	/* Wait for rcu callbacks to finish before next phase */
11300 	if (!list_empty(&list))
11301 		rcu_barrier();
11302 
11303 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11304 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11305 			netdev_WARN(dev, "run_todo but not unregistering\n");
11306 			list_del(&dev->todo_list);
11307 			continue;
11308 		}
11309 
11310 		netdev_lock(dev);
11311 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11312 		netdev_unlock(dev);
11313 		linkwatch_sync_dev(dev);
11314 	}
11315 
11316 	cnt = 0;
11317 	while (!list_empty(&list)) {
11318 		dev = netdev_wait_allrefs_any(&list);
11319 		list_del(&dev->todo_list);
11320 
11321 		/* paranoia */
11322 		BUG_ON(netdev_refcnt_read(dev) != 1);
11323 		BUG_ON(!list_empty(&dev->ptype_all));
11324 		BUG_ON(!list_empty(&dev->ptype_specific));
11325 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11326 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11327 
11328 		netdev_do_free_pcpu_stats(dev);
11329 		if (dev->priv_destructor)
11330 			dev->priv_destructor(dev);
11331 		if (dev->needs_free_netdev)
11332 			free_netdev(dev);
11333 
11334 		cnt++;
11335 
11336 		/* Free network device */
11337 		kobject_put(&dev->dev.kobj);
11338 	}
11339 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11340 		wake_up(&netdev_unregistering_wq);
11341 }
11342 
11343 /* Collate per-cpu network dstats statistics
11344  *
11345  * Read per-cpu network statistics from dev->dstats and populate the related
11346  * fields in @s.
11347  */
11348 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11349 			     const struct pcpu_dstats __percpu *dstats)
11350 {
11351 	int cpu;
11352 
11353 	for_each_possible_cpu(cpu) {
11354 		u64 rx_packets, rx_bytes, rx_drops;
11355 		u64 tx_packets, tx_bytes, tx_drops;
11356 		const struct pcpu_dstats *stats;
11357 		unsigned int start;
11358 
11359 		stats = per_cpu_ptr(dstats, cpu);
11360 		do {
11361 			start = u64_stats_fetch_begin(&stats->syncp);
11362 			rx_packets = u64_stats_read(&stats->rx_packets);
11363 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11364 			rx_drops   = u64_stats_read(&stats->rx_drops);
11365 			tx_packets = u64_stats_read(&stats->tx_packets);
11366 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11367 			tx_drops   = u64_stats_read(&stats->tx_drops);
11368 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11369 
11370 		s->rx_packets += rx_packets;
11371 		s->rx_bytes   += rx_bytes;
11372 		s->rx_dropped += rx_drops;
11373 		s->tx_packets += tx_packets;
11374 		s->tx_bytes   += tx_bytes;
11375 		s->tx_dropped += tx_drops;
11376 	}
11377 }
11378 
11379 /* ndo_get_stats64 implementation for dtstats-based accounting.
11380  *
11381  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11382  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11383  */
11384 static void dev_get_dstats64(const struct net_device *dev,
11385 			     struct rtnl_link_stats64 *s)
11386 {
11387 	netdev_stats_to_stats64(s, &dev->stats);
11388 	dev_fetch_dstats(s, dev->dstats);
11389 }
11390 
11391 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11392  * all the same fields in the same order as net_device_stats, with only
11393  * the type differing, but rtnl_link_stats64 may have additional fields
11394  * at the end for newer counters.
11395  */
11396 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11397 			     const struct net_device_stats *netdev_stats)
11398 {
11399 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11400 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11401 	u64 *dst = (u64 *)stats64;
11402 
11403 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11404 	for (i = 0; i < n; i++)
11405 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11406 	/* zero out counters that only exist in rtnl_link_stats64 */
11407 	memset((char *)stats64 + n * sizeof(u64), 0,
11408 	       sizeof(*stats64) - n * sizeof(u64));
11409 }
11410 EXPORT_SYMBOL(netdev_stats_to_stats64);
11411 
11412 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11413 		struct net_device *dev)
11414 {
11415 	struct net_device_core_stats __percpu *p;
11416 
11417 	p = alloc_percpu_gfp(struct net_device_core_stats,
11418 			     GFP_ATOMIC | __GFP_NOWARN);
11419 
11420 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11421 		free_percpu(p);
11422 
11423 	/* This READ_ONCE() pairs with the cmpxchg() above */
11424 	return READ_ONCE(dev->core_stats);
11425 }
11426 
11427 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11428 {
11429 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11430 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11431 	unsigned long __percpu *field;
11432 
11433 	if (unlikely(!p)) {
11434 		p = netdev_core_stats_alloc(dev);
11435 		if (!p)
11436 			return;
11437 	}
11438 
11439 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11440 	this_cpu_inc(*field);
11441 }
11442 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11443 
11444 /**
11445  *	dev_get_stats	- get network device statistics
11446  *	@dev: device to get statistics from
11447  *	@storage: place to store stats
11448  *
11449  *	Get network statistics from device. Return @storage.
11450  *	The device driver may provide its own method by setting
11451  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11452  *	otherwise the internal statistics structure is used.
11453  */
11454 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11455 					struct rtnl_link_stats64 *storage)
11456 {
11457 	const struct net_device_ops *ops = dev->netdev_ops;
11458 	const struct net_device_core_stats __percpu *p;
11459 
11460 	/*
11461 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11462 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11463 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11464 	 */
11465 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11466 		     offsetof(struct pcpu_dstats, rx_bytes));
11467 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11468 		     offsetof(struct pcpu_dstats, rx_packets));
11469 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11470 		     offsetof(struct pcpu_dstats, tx_bytes));
11471 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11472 		     offsetof(struct pcpu_dstats, tx_packets));
11473 
11474 	if (ops->ndo_get_stats64) {
11475 		memset(storage, 0, sizeof(*storage));
11476 		ops->ndo_get_stats64(dev, storage);
11477 	} else if (ops->ndo_get_stats) {
11478 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11479 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11480 		dev_get_tstats64(dev, storage);
11481 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11482 		dev_get_dstats64(dev, storage);
11483 	} else {
11484 		netdev_stats_to_stats64(storage, &dev->stats);
11485 	}
11486 
11487 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11488 	p = READ_ONCE(dev->core_stats);
11489 	if (p) {
11490 		const struct net_device_core_stats *core_stats;
11491 		int i;
11492 
11493 		for_each_possible_cpu(i) {
11494 			core_stats = per_cpu_ptr(p, i);
11495 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11496 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11497 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11498 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11499 		}
11500 	}
11501 	return storage;
11502 }
11503 EXPORT_SYMBOL(dev_get_stats);
11504 
11505 /**
11506  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11507  *	@s: place to store stats
11508  *	@netstats: per-cpu network stats to read from
11509  *
11510  *	Read per-cpu network statistics and populate the related fields in @s.
11511  */
11512 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11513 			   const struct pcpu_sw_netstats __percpu *netstats)
11514 {
11515 	int cpu;
11516 
11517 	for_each_possible_cpu(cpu) {
11518 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11519 		const struct pcpu_sw_netstats *stats;
11520 		unsigned int start;
11521 
11522 		stats = per_cpu_ptr(netstats, cpu);
11523 		do {
11524 			start = u64_stats_fetch_begin(&stats->syncp);
11525 			rx_packets = u64_stats_read(&stats->rx_packets);
11526 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11527 			tx_packets = u64_stats_read(&stats->tx_packets);
11528 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11529 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11530 
11531 		s->rx_packets += rx_packets;
11532 		s->rx_bytes   += rx_bytes;
11533 		s->tx_packets += tx_packets;
11534 		s->tx_bytes   += tx_bytes;
11535 	}
11536 }
11537 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11538 
11539 /**
11540  *	dev_get_tstats64 - ndo_get_stats64 implementation
11541  *	@dev: device to get statistics from
11542  *	@s: place to store stats
11543  *
11544  *	Populate @s from dev->stats and dev->tstats. Can be used as
11545  *	ndo_get_stats64() callback.
11546  */
11547 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11548 {
11549 	netdev_stats_to_stats64(s, &dev->stats);
11550 	dev_fetch_sw_netstats(s, dev->tstats);
11551 }
11552 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11553 
11554 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11555 {
11556 	struct netdev_queue *queue = dev_ingress_queue(dev);
11557 
11558 #ifdef CONFIG_NET_CLS_ACT
11559 	if (queue)
11560 		return queue;
11561 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11562 	if (!queue)
11563 		return NULL;
11564 	netdev_init_one_queue(dev, queue, NULL);
11565 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11566 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11567 	rcu_assign_pointer(dev->ingress_queue, queue);
11568 #endif
11569 	return queue;
11570 }
11571 
11572 static const struct ethtool_ops default_ethtool_ops;
11573 
11574 void netdev_set_default_ethtool_ops(struct net_device *dev,
11575 				    const struct ethtool_ops *ops)
11576 {
11577 	if (dev->ethtool_ops == &default_ethtool_ops)
11578 		dev->ethtool_ops = ops;
11579 }
11580 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11581 
11582 /**
11583  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11584  * @dev: netdev to enable the IRQ coalescing on
11585  *
11586  * Sets a conservative default for SW IRQ coalescing. Users can use
11587  * sysfs attributes to override the default values.
11588  */
11589 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11590 {
11591 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11592 
11593 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11594 		netdev_set_gro_flush_timeout(dev, 20000);
11595 		netdev_set_defer_hard_irqs(dev, 1);
11596 	}
11597 }
11598 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11599 
11600 /**
11601  * alloc_netdev_mqs - allocate network device
11602  * @sizeof_priv: size of private data to allocate space for
11603  * @name: device name format string
11604  * @name_assign_type: origin of device name
11605  * @setup: callback to initialize device
11606  * @txqs: the number of TX subqueues to allocate
11607  * @rxqs: the number of RX subqueues to allocate
11608  *
11609  * Allocates a struct net_device with private data area for driver use
11610  * and performs basic initialization.  Also allocates subqueue structs
11611  * for each queue on the device.
11612  */
11613 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11614 		unsigned char name_assign_type,
11615 		void (*setup)(struct net_device *),
11616 		unsigned int txqs, unsigned int rxqs)
11617 {
11618 	struct net_device *dev;
11619 	size_t napi_config_sz;
11620 	unsigned int maxqs;
11621 
11622 	BUG_ON(strlen(name) >= sizeof(dev->name));
11623 
11624 	if (txqs < 1) {
11625 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11626 		return NULL;
11627 	}
11628 
11629 	if (rxqs < 1) {
11630 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11631 		return NULL;
11632 	}
11633 
11634 	maxqs = max(txqs, rxqs);
11635 
11636 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11637 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11638 	if (!dev)
11639 		return NULL;
11640 
11641 	dev->priv_len = sizeof_priv;
11642 
11643 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11644 #ifdef CONFIG_PCPU_DEV_REFCNT
11645 	dev->pcpu_refcnt = alloc_percpu(int);
11646 	if (!dev->pcpu_refcnt)
11647 		goto free_dev;
11648 	__dev_hold(dev);
11649 #else
11650 	refcount_set(&dev->dev_refcnt, 1);
11651 #endif
11652 
11653 	if (dev_addr_init(dev))
11654 		goto free_pcpu;
11655 
11656 	dev_mc_init(dev);
11657 	dev_uc_init(dev);
11658 
11659 	dev_net_set(dev, &init_net);
11660 
11661 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11662 	dev->xdp_zc_max_segs = 1;
11663 	dev->gso_max_segs = GSO_MAX_SEGS;
11664 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11665 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11666 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11667 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11668 	dev->tso_max_segs = TSO_MAX_SEGS;
11669 	dev->upper_level = 1;
11670 	dev->lower_level = 1;
11671 #ifdef CONFIG_LOCKDEP
11672 	dev->nested_level = 0;
11673 	INIT_LIST_HEAD(&dev->unlink_list);
11674 #endif
11675 
11676 	INIT_LIST_HEAD(&dev->napi_list);
11677 	INIT_LIST_HEAD(&dev->unreg_list);
11678 	INIT_LIST_HEAD(&dev->close_list);
11679 	INIT_LIST_HEAD(&dev->link_watch_list);
11680 	INIT_LIST_HEAD(&dev->adj_list.upper);
11681 	INIT_LIST_HEAD(&dev->adj_list.lower);
11682 	INIT_LIST_HEAD(&dev->ptype_all);
11683 	INIT_LIST_HEAD(&dev->ptype_specific);
11684 	INIT_LIST_HEAD(&dev->net_notifier_list);
11685 #ifdef CONFIG_NET_SCHED
11686 	hash_init(dev->qdisc_hash);
11687 #endif
11688 
11689 	mutex_init(&dev->lock);
11690 
11691 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11692 	setup(dev);
11693 
11694 	if (!dev->tx_queue_len) {
11695 		dev->priv_flags |= IFF_NO_QUEUE;
11696 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11697 	}
11698 
11699 	dev->num_tx_queues = txqs;
11700 	dev->real_num_tx_queues = txqs;
11701 	if (netif_alloc_netdev_queues(dev))
11702 		goto free_all;
11703 
11704 	dev->num_rx_queues = rxqs;
11705 	dev->real_num_rx_queues = rxqs;
11706 	if (netif_alloc_rx_queues(dev))
11707 		goto free_all;
11708 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11709 	if (!dev->ethtool)
11710 		goto free_all;
11711 
11712 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11713 	if (!dev->cfg)
11714 		goto free_all;
11715 	dev->cfg_pending = dev->cfg;
11716 
11717 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11718 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11719 	if (!dev->napi_config)
11720 		goto free_all;
11721 
11722 	strscpy(dev->name, name);
11723 	dev->name_assign_type = name_assign_type;
11724 	dev->group = INIT_NETDEV_GROUP;
11725 	if (!dev->ethtool_ops)
11726 		dev->ethtool_ops = &default_ethtool_ops;
11727 
11728 	nf_hook_netdev_init(dev);
11729 
11730 	return dev;
11731 
11732 free_all:
11733 	free_netdev(dev);
11734 	return NULL;
11735 
11736 free_pcpu:
11737 #ifdef CONFIG_PCPU_DEV_REFCNT
11738 	free_percpu(dev->pcpu_refcnt);
11739 free_dev:
11740 #endif
11741 	kvfree(dev);
11742 	return NULL;
11743 }
11744 EXPORT_SYMBOL(alloc_netdev_mqs);
11745 
11746 static void netdev_napi_exit(struct net_device *dev)
11747 {
11748 	if (!list_empty(&dev->napi_list)) {
11749 		struct napi_struct *p, *n;
11750 
11751 		netdev_lock(dev);
11752 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11753 			__netif_napi_del_locked(p);
11754 		netdev_unlock(dev);
11755 
11756 		synchronize_net();
11757 	}
11758 
11759 	kvfree(dev->napi_config);
11760 }
11761 
11762 /**
11763  * free_netdev - free network device
11764  * @dev: device
11765  *
11766  * This function does the last stage of destroying an allocated device
11767  * interface. The reference to the device object is released. If this
11768  * is the last reference then it will be freed.Must be called in process
11769  * context.
11770  */
11771 void free_netdev(struct net_device *dev)
11772 {
11773 	might_sleep();
11774 
11775 	/* When called immediately after register_netdevice() failed the unwind
11776 	 * handling may still be dismantling the device. Handle that case by
11777 	 * deferring the free.
11778 	 */
11779 	if (dev->reg_state == NETREG_UNREGISTERING) {
11780 		ASSERT_RTNL();
11781 		dev->needs_free_netdev = true;
11782 		return;
11783 	}
11784 
11785 	WARN_ON(dev->cfg != dev->cfg_pending);
11786 	kfree(dev->cfg);
11787 	kfree(dev->ethtool);
11788 	netif_free_tx_queues(dev);
11789 	netif_free_rx_queues(dev);
11790 
11791 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11792 
11793 	/* Flush device addresses */
11794 	dev_addr_flush(dev);
11795 
11796 	netdev_napi_exit(dev);
11797 
11798 	netif_del_cpu_rmap(dev);
11799 
11800 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11801 #ifdef CONFIG_PCPU_DEV_REFCNT
11802 	free_percpu(dev->pcpu_refcnt);
11803 	dev->pcpu_refcnt = NULL;
11804 #endif
11805 	free_percpu(dev->core_stats);
11806 	dev->core_stats = NULL;
11807 	free_percpu(dev->xdp_bulkq);
11808 	dev->xdp_bulkq = NULL;
11809 
11810 	netdev_free_phy_link_topology(dev);
11811 
11812 	mutex_destroy(&dev->lock);
11813 
11814 	/*  Compatibility with error handling in drivers */
11815 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11816 	    dev->reg_state == NETREG_DUMMY) {
11817 		kvfree(dev);
11818 		return;
11819 	}
11820 
11821 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11822 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11823 
11824 	/* will free via device release */
11825 	put_device(&dev->dev);
11826 }
11827 EXPORT_SYMBOL(free_netdev);
11828 
11829 /**
11830  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11831  * @sizeof_priv: size of private data to allocate space for
11832  *
11833  * Return: the allocated net_device on success, NULL otherwise
11834  */
11835 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11836 {
11837 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11838 			    init_dummy_netdev);
11839 }
11840 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11841 
11842 /**
11843  *	synchronize_net -  Synchronize with packet receive processing
11844  *
11845  *	Wait for packets currently being received to be done.
11846  *	Does not block later packets from starting.
11847  */
11848 void synchronize_net(void)
11849 {
11850 	might_sleep();
11851 	if (from_cleanup_net() || rtnl_is_locked())
11852 		synchronize_rcu_expedited();
11853 	else
11854 		synchronize_rcu();
11855 }
11856 EXPORT_SYMBOL(synchronize_net);
11857 
11858 static void netdev_rss_contexts_free(struct net_device *dev)
11859 {
11860 	struct ethtool_rxfh_context *ctx;
11861 	unsigned long context;
11862 
11863 	mutex_lock(&dev->ethtool->rss_lock);
11864 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11865 		struct ethtool_rxfh_param rxfh;
11866 
11867 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11868 		rxfh.key = ethtool_rxfh_context_key(ctx);
11869 		rxfh.hfunc = ctx->hfunc;
11870 		rxfh.input_xfrm = ctx->input_xfrm;
11871 		rxfh.rss_context = context;
11872 		rxfh.rss_delete = true;
11873 
11874 		xa_erase(&dev->ethtool->rss_ctx, context);
11875 		if (dev->ethtool_ops->create_rxfh_context)
11876 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11877 							      context, NULL);
11878 		else
11879 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11880 		kfree(ctx);
11881 	}
11882 	xa_destroy(&dev->ethtool->rss_ctx);
11883 	mutex_unlock(&dev->ethtool->rss_lock);
11884 }
11885 
11886 /**
11887  *	unregister_netdevice_queue - remove device from the kernel
11888  *	@dev: device
11889  *	@head: list
11890  *
11891  *	This function shuts down a device interface and removes it
11892  *	from the kernel tables.
11893  *	If head not NULL, device is queued to be unregistered later.
11894  *
11895  *	Callers must hold the rtnl semaphore.  You may want
11896  *	unregister_netdev() instead of this.
11897  */
11898 
11899 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11900 {
11901 	ASSERT_RTNL();
11902 
11903 	if (head) {
11904 		list_move_tail(&dev->unreg_list, head);
11905 	} else {
11906 		LIST_HEAD(single);
11907 
11908 		list_add(&dev->unreg_list, &single);
11909 		unregister_netdevice_many(&single);
11910 	}
11911 }
11912 EXPORT_SYMBOL(unregister_netdevice_queue);
11913 
11914 static void dev_memory_provider_uninstall(struct net_device *dev)
11915 {
11916 	unsigned int i;
11917 
11918 	for (i = 0; i < dev->real_num_rx_queues; i++) {
11919 		struct netdev_rx_queue *rxq = &dev->_rx[i];
11920 		struct pp_memory_provider_params *p = &rxq->mp_params;
11921 
11922 		if (p->mp_ops && p->mp_ops->uninstall)
11923 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11924 	}
11925 }
11926 
11927 void unregister_netdevice_many_notify(struct list_head *head,
11928 				      u32 portid, const struct nlmsghdr *nlh)
11929 {
11930 	struct net_device *dev, *tmp;
11931 	LIST_HEAD(close_head);
11932 	int cnt = 0;
11933 
11934 	BUG_ON(dev_boot_phase);
11935 	ASSERT_RTNL();
11936 
11937 	if (list_empty(head))
11938 		return;
11939 
11940 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11941 		/* Some devices call without registering
11942 		 * for initialization unwind. Remove those
11943 		 * devices and proceed with the remaining.
11944 		 */
11945 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11946 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11947 				 dev->name, dev);
11948 
11949 			WARN_ON(1);
11950 			list_del(&dev->unreg_list);
11951 			continue;
11952 		}
11953 		dev->dismantle = true;
11954 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11955 	}
11956 
11957 	/* If device is running, close it first. */
11958 	list_for_each_entry(dev, head, unreg_list) {
11959 		list_add_tail(&dev->close_list, &close_head);
11960 		netdev_lock_ops(dev);
11961 	}
11962 	dev_close_many(&close_head, true);
11963 
11964 	list_for_each_entry(dev, head, unreg_list) {
11965 		netdev_unlock_ops(dev);
11966 		/* And unlink it from device chain. */
11967 		unlist_netdevice(dev);
11968 		netdev_lock(dev);
11969 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11970 		netdev_unlock(dev);
11971 	}
11972 	flush_all_backlogs();
11973 
11974 	synchronize_net();
11975 
11976 	list_for_each_entry(dev, head, unreg_list) {
11977 		struct sk_buff *skb = NULL;
11978 
11979 		/* Shutdown queueing discipline. */
11980 		dev_shutdown(dev);
11981 		dev_tcx_uninstall(dev);
11982 		dev_xdp_uninstall(dev);
11983 		bpf_dev_bound_netdev_unregister(dev);
11984 		dev_memory_provider_uninstall(dev);
11985 
11986 		netdev_offload_xstats_disable_all(dev);
11987 
11988 		/* Notify protocols, that we are about to destroy
11989 		 * this device. They should clean all the things.
11990 		 */
11991 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11992 
11993 		if (!dev->rtnl_link_ops ||
11994 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11995 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11996 						     GFP_KERNEL, NULL, 0,
11997 						     portid, nlh);
11998 
11999 		/*
12000 		 *	Flush the unicast and multicast chains
12001 		 */
12002 		dev_uc_flush(dev);
12003 		dev_mc_flush(dev);
12004 
12005 		netdev_name_node_alt_flush(dev);
12006 		netdev_name_node_free(dev->name_node);
12007 
12008 		netdev_rss_contexts_free(dev);
12009 
12010 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
12011 
12012 		if (dev->netdev_ops->ndo_uninit)
12013 			dev->netdev_ops->ndo_uninit(dev);
12014 
12015 		mutex_destroy(&dev->ethtool->rss_lock);
12016 
12017 		net_shaper_flush_netdev(dev);
12018 
12019 		if (skb)
12020 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12021 
12022 		/* Notifier chain MUST detach us all upper devices. */
12023 		WARN_ON(netdev_has_any_upper_dev(dev));
12024 		WARN_ON(netdev_has_any_lower_dev(dev));
12025 
12026 		/* Remove entries from kobject tree */
12027 		netdev_unregister_kobject(dev);
12028 #ifdef CONFIG_XPS
12029 		/* Remove XPS queueing entries */
12030 		netif_reset_xps_queues_gt(dev, 0);
12031 #endif
12032 	}
12033 
12034 	synchronize_net();
12035 
12036 	list_for_each_entry(dev, head, unreg_list) {
12037 		netdev_put(dev, &dev->dev_registered_tracker);
12038 		net_set_todo(dev);
12039 		cnt++;
12040 	}
12041 	atomic_add(cnt, &dev_unreg_count);
12042 
12043 	list_del(head);
12044 }
12045 
12046 /**
12047  *	unregister_netdevice_many - unregister many devices
12048  *	@head: list of devices
12049  *
12050  *  Note: As most callers use a stack allocated list_head,
12051  *  we force a list_del() to make sure stack won't be corrupted later.
12052  */
12053 void unregister_netdevice_many(struct list_head *head)
12054 {
12055 	unregister_netdevice_many_notify(head, 0, NULL);
12056 }
12057 EXPORT_SYMBOL(unregister_netdevice_many);
12058 
12059 /**
12060  *	unregister_netdev - remove device from the kernel
12061  *	@dev: device
12062  *
12063  *	This function shuts down a device interface and removes it
12064  *	from the kernel tables.
12065  *
12066  *	This is just a wrapper for unregister_netdevice that takes
12067  *	the rtnl semaphore.  In general you want to use this and not
12068  *	unregister_netdevice.
12069  */
12070 void unregister_netdev(struct net_device *dev)
12071 {
12072 	rtnl_net_dev_lock(dev);
12073 	unregister_netdevice(dev);
12074 	rtnl_net_dev_unlock(dev);
12075 }
12076 EXPORT_SYMBOL(unregister_netdev);
12077 
12078 int netif_change_net_namespace(struct net_device *dev, struct net *net,
12079 			       const char *pat, int new_ifindex,
12080 			       struct netlink_ext_ack *extack)
12081 {
12082 	struct netdev_name_node *name_node;
12083 	struct net *net_old = dev_net(dev);
12084 	char new_name[IFNAMSIZ] = {};
12085 	int err, new_nsid;
12086 
12087 	ASSERT_RTNL();
12088 
12089 	/* Don't allow namespace local devices to be moved. */
12090 	err = -EINVAL;
12091 	if (dev->netns_immutable) {
12092 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12093 		goto out;
12094 	}
12095 
12096 	/* Ensure the device has been registered */
12097 	if (dev->reg_state != NETREG_REGISTERED) {
12098 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12099 		goto out;
12100 	}
12101 
12102 	/* Get out if there is nothing todo */
12103 	err = 0;
12104 	if (net_eq(net_old, net))
12105 		goto out;
12106 
12107 	/* Pick the destination device name, and ensure
12108 	 * we can use it in the destination network namespace.
12109 	 */
12110 	err = -EEXIST;
12111 	if (netdev_name_in_use(net, dev->name)) {
12112 		/* We get here if we can't use the current device name */
12113 		if (!pat) {
12114 			NL_SET_ERR_MSG(extack,
12115 				       "An interface with the same name exists in the target netns");
12116 			goto out;
12117 		}
12118 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12119 		if (err < 0) {
12120 			NL_SET_ERR_MSG_FMT(extack,
12121 					   "Unable to use '%s' for the new interface name in the target netns",
12122 					   pat);
12123 			goto out;
12124 		}
12125 	}
12126 	/* Check that none of the altnames conflicts. */
12127 	err = -EEXIST;
12128 	netdev_for_each_altname(dev, name_node) {
12129 		if (netdev_name_in_use(net, name_node->name)) {
12130 			NL_SET_ERR_MSG_FMT(extack,
12131 					   "An interface with the altname %s exists in the target netns",
12132 					   name_node->name);
12133 			goto out;
12134 		}
12135 	}
12136 
12137 	/* Check that new_ifindex isn't used yet. */
12138 	if (new_ifindex) {
12139 		err = dev_index_reserve(net, new_ifindex);
12140 		if (err < 0) {
12141 			NL_SET_ERR_MSG_FMT(extack,
12142 					   "The ifindex %d is not available in the target netns",
12143 					   new_ifindex);
12144 			goto out;
12145 		}
12146 	} else {
12147 		/* If there is an ifindex conflict assign a new one */
12148 		err = dev_index_reserve(net, dev->ifindex);
12149 		if (err == -EBUSY)
12150 			err = dev_index_reserve(net, 0);
12151 		if (err < 0) {
12152 			NL_SET_ERR_MSG(extack,
12153 				       "Unable to allocate a new ifindex in the target netns");
12154 			goto out;
12155 		}
12156 		new_ifindex = err;
12157 	}
12158 
12159 	/*
12160 	 * And now a mini version of register_netdevice unregister_netdevice.
12161 	 */
12162 
12163 	/* If device is running close it first. */
12164 	netif_close(dev);
12165 
12166 	/* And unlink it from device chain */
12167 	unlist_netdevice(dev);
12168 
12169 	synchronize_net();
12170 
12171 	/* Shutdown queueing discipline. */
12172 	dev_shutdown(dev);
12173 
12174 	/* Notify protocols, that we are about to destroy
12175 	 * this device. They should clean all the things.
12176 	 *
12177 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12178 	 * This is wanted because this way 8021q and macvlan know
12179 	 * the device is just moving and can keep their slaves up.
12180 	 */
12181 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12182 	rcu_barrier();
12183 
12184 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12185 
12186 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12187 			    new_ifindex);
12188 
12189 	/*
12190 	 *	Flush the unicast and multicast chains
12191 	 */
12192 	dev_uc_flush(dev);
12193 	dev_mc_flush(dev);
12194 
12195 	/* Send a netdev-removed uevent to the old namespace */
12196 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12197 	netdev_adjacent_del_links(dev);
12198 
12199 	/* Move per-net netdevice notifiers that are following the netdevice */
12200 	move_netdevice_notifiers_dev_net(dev, net);
12201 
12202 	/* Actually switch the network namespace */
12203 	dev_net_set(dev, net);
12204 	dev->ifindex = new_ifindex;
12205 
12206 	if (new_name[0]) {
12207 		/* Rename the netdev to prepared name */
12208 		write_seqlock_bh(&netdev_rename_lock);
12209 		strscpy(dev->name, new_name, IFNAMSIZ);
12210 		write_sequnlock_bh(&netdev_rename_lock);
12211 	}
12212 
12213 	/* Fixup kobjects */
12214 	dev_set_uevent_suppress(&dev->dev, 1);
12215 	err = device_rename(&dev->dev, dev->name);
12216 	dev_set_uevent_suppress(&dev->dev, 0);
12217 	WARN_ON(err);
12218 
12219 	/* Send a netdev-add uevent to the new namespace */
12220 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12221 	netdev_adjacent_add_links(dev);
12222 
12223 	/* Adapt owner in case owning user namespace of target network
12224 	 * namespace is different from the original one.
12225 	 */
12226 	err = netdev_change_owner(dev, net_old, net);
12227 	WARN_ON(err);
12228 
12229 	/* Add the device back in the hashes */
12230 	list_netdevice(dev);
12231 
12232 	/* Notify protocols, that a new device appeared. */
12233 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12234 
12235 	/*
12236 	 *	Prevent userspace races by waiting until the network
12237 	 *	device is fully setup before sending notifications.
12238 	 */
12239 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12240 
12241 	synchronize_net();
12242 	err = 0;
12243 out:
12244 	return err;
12245 }
12246 
12247 static int dev_cpu_dead(unsigned int oldcpu)
12248 {
12249 	struct sk_buff **list_skb;
12250 	struct sk_buff *skb;
12251 	unsigned int cpu;
12252 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12253 
12254 	local_irq_disable();
12255 	cpu = smp_processor_id();
12256 	sd = &per_cpu(softnet_data, cpu);
12257 	oldsd = &per_cpu(softnet_data, oldcpu);
12258 
12259 	/* Find end of our completion_queue. */
12260 	list_skb = &sd->completion_queue;
12261 	while (*list_skb)
12262 		list_skb = &(*list_skb)->next;
12263 	/* Append completion queue from offline CPU. */
12264 	*list_skb = oldsd->completion_queue;
12265 	oldsd->completion_queue = NULL;
12266 
12267 	/* Append output queue from offline CPU. */
12268 	if (oldsd->output_queue) {
12269 		*sd->output_queue_tailp = oldsd->output_queue;
12270 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12271 		oldsd->output_queue = NULL;
12272 		oldsd->output_queue_tailp = &oldsd->output_queue;
12273 	}
12274 	/* Append NAPI poll list from offline CPU, with one exception :
12275 	 * process_backlog() must be called by cpu owning percpu backlog.
12276 	 * We properly handle process_queue & input_pkt_queue later.
12277 	 */
12278 	while (!list_empty(&oldsd->poll_list)) {
12279 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12280 							    struct napi_struct,
12281 							    poll_list);
12282 
12283 		list_del_init(&napi->poll_list);
12284 		if (napi->poll == process_backlog)
12285 			napi->state &= NAPIF_STATE_THREADED;
12286 		else
12287 			____napi_schedule(sd, napi);
12288 	}
12289 
12290 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12291 	local_irq_enable();
12292 
12293 	if (!use_backlog_threads()) {
12294 #ifdef CONFIG_RPS
12295 		remsd = oldsd->rps_ipi_list;
12296 		oldsd->rps_ipi_list = NULL;
12297 #endif
12298 		/* send out pending IPI's on offline CPU */
12299 		net_rps_send_ipi(remsd);
12300 	}
12301 
12302 	/* Process offline CPU's input_pkt_queue */
12303 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12304 		netif_rx(skb);
12305 		rps_input_queue_head_incr(oldsd);
12306 	}
12307 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12308 		netif_rx(skb);
12309 		rps_input_queue_head_incr(oldsd);
12310 	}
12311 
12312 	return 0;
12313 }
12314 
12315 /**
12316  *	netdev_increment_features - increment feature set by one
12317  *	@all: current feature set
12318  *	@one: new feature set
12319  *	@mask: mask feature set
12320  *
12321  *	Computes a new feature set after adding a device with feature set
12322  *	@one to the master device with current feature set @all.  Will not
12323  *	enable anything that is off in @mask. Returns the new feature set.
12324  */
12325 netdev_features_t netdev_increment_features(netdev_features_t all,
12326 	netdev_features_t one, netdev_features_t mask)
12327 {
12328 	if (mask & NETIF_F_HW_CSUM)
12329 		mask |= NETIF_F_CSUM_MASK;
12330 	mask |= NETIF_F_VLAN_CHALLENGED;
12331 
12332 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12333 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12334 
12335 	/* If one device supports hw checksumming, set for all. */
12336 	if (all & NETIF_F_HW_CSUM)
12337 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12338 
12339 	return all;
12340 }
12341 EXPORT_SYMBOL(netdev_increment_features);
12342 
12343 static struct hlist_head * __net_init netdev_create_hash(void)
12344 {
12345 	int i;
12346 	struct hlist_head *hash;
12347 
12348 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12349 	if (hash != NULL)
12350 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12351 			INIT_HLIST_HEAD(&hash[i]);
12352 
12353 	return hash;
12354 }
12355 
12356 /* Initialize per network namespace state */
12357 static int __net_init netdev_init(struct net *net)
12358 {
12359 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12360 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12361 
12362 	INIT_LIST_HEAD(&net->dev_base_head);
12363 
12364 	net->dev_name_head = netdev_create_hash();
12365 	if (net->dev_name_head == NULL)
12366 		goto err_name;
12367 
12368 	net->dev_index_head = netdev_create_hash();
12369 	if (net->dev_index_head == NULL)
12370 		goto err_idx;
12371 
12372 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12373 
12374 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12375 
12376 	return 0;
12377 
12378 err_idx:
12379 	kfree(net->dev_name_head);
12380 err_name:
12381 	return -ENOMEM;
12382 }
12383 
12384 /**
12385  *	netdev_drivername - network driver for the device
12386  *	@dev: network device
12387  *
12388  *	Determine network driver for device.
12389  */
12390 const char *netdev_drivername(const struct net_device *dev)
12391 {
12392 	const struct device_driver *driver;
12393 	const struct device *parent;
12394 	const char *empty = "";
12395 
12396 	parent = dev->dev.parent;
12397 	if (!parent)
12398 		return empty;
12399 
12400 	driver = parent->driver;
12401 	if (driver && driver->name)
12402 		return driver->name;
12403 	return empty;
12404 }
12405 
12406 static void __netdev_printk(const char *level, const struct net_device *dev,
12407 			    struct va_format *vaf)
12408 {
12409 	if (dev && dev->dev.parent) {
12410 		dev_printk_emit(level[1] - '0',
12411 				dev->dev.parent,
12412 				"%s %s %s%s: %pV",
12413 				dev_driver_string(dev->dev.parent),
12414 				dev_name(dev->dev.parent),
12415 				netdev_name(dev), netdev_reg_state(dev),
12416 				vaf);
12417 	} else if (dev) {
12418 		printk("%s%s%s: %pV",
12419 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12420 	} else {
12421 		printk("%s(NULL net_device): %pV", level, vaf);
12422 	}
12423 }
12424 
12425 void netdev_printk(const char *level, const struct net_device *dev,
12426 		   const char *format, ...)
12427 {
12428 	struct va_format vaf;
12429 	va_list args;
12430 
12431 	va_start(args, format);
12432 
12433 	vaf.fmt = format;
12434 	vaf.va = &args;
12435 
12436 	__netdev_printk(level, dev, &vaf);
12437 
12438 	va_end(args);
12439 }
12440 EXPORT_SYMBOL(netdev_printk);
12441 
12442 #define define_netdev_printk_level(func, level)			\
12443 void func(const struct net_device *dev, const char *fmt, ...)	\
12444 {								\
12445 	struct va_format vaf;					\
12446 	va_list args;						\
12447 								\
12448 	va_start(args, fmt);					\
12449 								\
12450 	vaf.fmt = fmt;						\
12451 	vaf.va = &args;						\
12452 								\
12453 	__netdev_printk(level, dev, &vaf);			\
12454 								\
12455 	va_end(args);						\
12456 }								\
12457 EXPORT_SYMBOL(func);
12458 
12459 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12460 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12461 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12462 define_netdev_printk_level(netdev_err, KERN_ERR);
12463 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12464 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12465 define_netdev_printk_level(netdev_info, KERN_INFO);
12466 
12467 static void __net_exit netdev_exit(struct net *net)
12468 {
12469 	kfree(net->dev_name_head);
12470 	kfree(net->dev_index_head);
12471 	xa_destroy(&net->dev_by_index);
12472 	if (net != &init_net)
12473 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12474 }
12475 
12476 static struct pernet_operations __net_initdata netdev_net_ops = {
12477 	.init = netdev_init,
12478 	.exit = netdev_exit,
12479 };
12480 
12481 static void __net_exit default_device_exit_net(struct net *net)
12482 {
12483 	struct netdev_name_node *name_node, *tmp;
12484 	struct net_device *dev, *aux;
12485 	/*
12486 	 * Push all migratable network devices back to the
12487 	 * initial network namespace
12488 	 */
12489 	ASSERT_RTNL();
12490 	for_each_netdev_safe(net, dev, aux) {
12491 		int err;
12492 		char fb_name[IFNAMSIZ];
12493 
12494 		/* Ignore unmoveable devices (i.e. loopback) */
12495 		if (dev->netns_immutable)
12496 			continue;
12497 
12498 		/* Leave virtual devices for the generic cleanup */
12499 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12500 			continue;
12501 
12502 		/* Push remaining network devices to init_net */
12503 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12504 		if (netdev_name_in_use(&init_net, fb_name))
12505 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12506 
12507 		netdev_for_each_altname_safe(dev, name_node, tmp)
12508 			if (netdev_name_in_use(&init_net, name_node->name))
12509 				__netdev_name_node_alt_destroy(name_node);
12510 
12511 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12512 		if (err) {
12513 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12514 				 __func__, dev->name, err);
12515 			BUG();
12516 		}
12517 	}
12518 }
12519 
12520 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12521 {
12522 	/* At exit all network devices most be removed from a network
12523 	 * namespace.  Do this in the reverse order of registration.
12524 	 * Do this across as many network namespaces as possible to
12525 	 * improve batching efficiency.
12526 	 */
12527 	struct net_device *dev;
12528 	struct net *net;
12529 	LIST_HEAD(dev_kill_list);
12530 
12531 	rtnl_lock();
12532 	list_for_each_entry(net, net_list, exit_list) {
12533 		default_device_exit_net(net);
12534 		cond_resched();
12535 	}
12536 
12537 	list_for_each_entry(net, net_list, exit_list) {
12538 		for_each_netdev_reverse(net, dev) {
12539 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12540 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12541 			else
12542 				unregister_netdevice_queue(dev, &dev_kill_list);
12543 		}
12544 	}
12545 	unregister_netdevice_many(&dev_kill_list);
12546 	rtnl_unlock();
12547 }
12548 
12549 static struct pernet_operations __net_initdata default_device_ops = {
12550 	.exit_batch = default_device_exit_batch,
12551 };
12552 
12553 static void __init net_dev_struct_check(void)
12554 {
12555 	/* TX read-mostly hotpath */
12556 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12557 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12558 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12559 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12560 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12561 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12562 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12563 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12564 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12565 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12566 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12567 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12568 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12569 #ifdef CONFIG_XPS
12570 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12571 #endif
12572 #ifdef CONFIG_NETFILTER_EGRESS
12573 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12574 #endif
12575 #ifdef CONFIG_NET_XGRESS
12576 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12577 #endif
12578 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12579 
12580 	/* TXRX read-mostly hotpath */
12581 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12582 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12583 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12584 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12585 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12586 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12587 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12588 
12589 	/* RX read-mostly hotpath */
12590 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12591 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12592 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12593 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12594 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12595 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12596 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12597 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12598 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12599 #ifdef CONFIG_NETPOLL
12600 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12601 #endif
12602 #ifdef CONFIG_NET_XGRESS
12603 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12604 #endif
12605 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12606 }
12607 
12608 /*
12609  *	Initialize the DEV module. At boot time this walks the device list and
12610  *	unhooks any devices that fail to initialise (normally hardware not
12611  *	present) and leaves us with a valid list of present and active devices.
12612  *
12613  */
12614 
12615 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12616 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12617 
12618 static int net_page_pool_create(int cpuid)
12619 {
12620 #if IS_ENABLED(CONFIG_PAGE_POOL)
12621 	struct page_pool_params page_pool_params = {
12622 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12623 		.flags = PP_FLAG_SYSTEM_POOL,
12624 		.nid = cpu_to_mem(cpuid),
12625 	};
12626 	struct page_pool *pp_ptr;
12627 	int err;
12628 
12629 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12630 	if (IS_ERR(pp_ptr))
12631 		return -ENOMEM;
12632 
12633 	err = xdp_reg_page_pool(pp_ptr);
12634 	if (err) {
12635 		page_pool_destroy(pp_ptr);
12636 		return err;
12637 	}
12638 
12639 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12640 #endif
12641 	return 0;
12642 }
12643 
12644 static int backlog_napi_should_run(unsigned int cpu)
12645 {
12646 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12647 	struct napi_struct *napi = &sd->backlog;
12648 
12649 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12650 }
12651 
12652 static void run_backlog_napi(unsigned int cpu)
12653 {
12654 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12655 
12656 	napi_threaded_poll_loop(&sd->backlog);
12657 }
12658 
12659 static void backlog_napi_setup(unsigned int cpu)
12660 {
12661 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12662 	struct napi_struct *napi = &sd->backlog;
12663 
12664 	napi->thread = this_cpu_read(backlog_napi);
12665 	set_bit(NAPI_STATE_THREADED, &napi->state);
12666 }
12667 
12668 static struct smp_hotplug_thread backlog_threads = {
12669 	.store			= &backlog_napi,
12670 	.thread_should_run	= backlog_napi_should_run,
12671 	.thread_fn		= run_backlog_napi,
12672 	.thread_comm		= "backlog_napi/%u",
12673 	.setup			= backlog_napi_setup,
12674 };
12675 
12676 /*
12677  *       This is called single threaded during boot, so no need
12678  *       to take the rtnl semaphore.
12679  */
12680 static int __init net_dev_init(void)
12681 {
12682 	int i, rc = -ENOMEM;
12683 
12684 	BUG_ON(!dev_boot_phase);
12685 
12686 	net_dev_struct_check();
12687 
12688 	if (dev_proc_init())
12689 		goto out;
12690 
12691 	if (netdev_kobject_init())
12692 		goto out;
12693 
12694 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12695 		INIT_LIST_HEAD(&ptype_base[i]);
12696 
12697 	if (register_pernet_subsys(&netdev_net_ops))
12698 		goto out;
12699 
12700 	/*
12701 	 *	Initialise the packet receive queues.
12702 	 */
12703 
12704 	flush_backlogs_fallback = flush_backlogs_alloc();
12705 	if (!flush_backlogs_fallback)
12706 		goto out;
12707 
12708 	for_each_possible_cpu(i) {
12709 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12710 
12711 		skb_queue_head_init(&sd->input_pkt_queue);
12712 		skb_queue_head_init(&sd->process_queue);
12713 #ifdef CONFIG_XFRM_OFFLOAD
12714 		skb_queue_head_init(&sd->xfrm_backlog);
12715 #endif
12716 		INIT_LIST_HEAD(&sd->poll_list);
12717 		sd->output_queue_tailp = &sd->output_queue;
12718 #ifdef CONFIG_RPS
12719 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12720 		sd->cpu = i;
12721 #endif
12722 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12723 		spin_lock_init(&sd->defer_lock);
12724 
12725 		gro_init(&sd->backlog.gro);
12726 		sd->backlog.poll = process_backlog;
12727 		sd->backlog.weight = weight_p;
12728 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12729 
12730 		if (net_page_pool_create(i))
12731 			goto out;
12732 	}
12733 	if (use_backlog_threads())
12734 		smpboot_register_percpu_thread(&backlog_threads);
12735 
12736 	dev_boot_phase = 0;
12737 
12738 	/* The loopback device is special if any other network devices
12739 	 * is present in a network namespace the loopback device must
12740 	 * be present. Since we now dynamically allocate and free the
12741 	 * loopback device ensure this invariant is maintained by
12742 	 * keeping the loopback device as the first device on the
12743 	 * list of network devices.  Ensuring the loopback devices
12744 	 * is the first device that appears and the last network device
12745 	 * that disappears.
12746 	 */
12747 	if (register_pernet_device(&loopback_net_ops))
12748 		goto out;
12749 
12750 	if (register_pernet_device(&default_device_ops))
12751 		goto out;
12752 
12753 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12754 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12755 
12756 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12757 				       NULL, dev_cpu_dead);
12758 	WARN_ON(rc < 0);
12759 	rc = 0;
12760 
12761 	/* avoid static key IPIs to isolated CPUs */
12762 	if (housekeeping_enabled(HK_TYPE_MISC))
12763 		net_enable_timestamp();
12764 out:
12765 	if (rc < 0) {
12766 		for_each_possible_cpu(i) {
12767 			struct page_pool *pp_ptr;
12768 
12769 			pp_ptr = per_cpu(system_page_pool, i);
12770 			if (!pp_ptr)
12771 				continue;
12772 
12773 			xdp_unreg_page_pool(pp_ptr);
12774 			page_pool_destroy(pp_ptr);
12775 			per_cpu(system_page_pool, i) = NULL;
12776 		}
12777 	}
12778 
12779 	return rc;
12780 }
12781 
12782 subsys_initcall(net_dev_init);
12783