1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Mark Evans, <[email protected]> 13 * 14 * Additional Authors: 15 * Florian la Roche <[email protected]> 16 * Alan Cox <[email protected]> 17 * David Hinds <[email protected]> 18 * Alexey Kuznetsov <[email protected]> 19 * Adam Sulmicki <[email protected]> 20 * Pekka Riikonen <[email protected]> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/mutex.h> 85 #include <linux/string.h> 86 #include <linux/mm.h> 87 #include <linux/socket.h> 88 #include <linux/sockios.h> 89 #include <linux/errno.h> 90 #include <linux/interrupt.h> 91 #include <linux/if_ether.h> 92 #include <linux/netdevice.h> 93 #include <linux/etherdevice.h> 94 #include <linux/ethtool.h> 95 #include <linux/notifier.h> 96 #include <linux/skbuff.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dst.h> 102 #include <net/pkt_sched.h> 103 #include <net/checksum.h> 104 #include <net/xfrm.h> 105 #include <linux/highmem.h> 106 #include <linux/init.h> 107 #include <linux/module.h> 108 #include <linux/netpoll.h> 109 #include <linux/rcupdate.h> 110 #include <linux/delay.h> 111 #include <net/iw_handler.h> 112 #include <asm/current.h> 113 #include <linux/audit.h> 114 #include <linux/dmaengine.h> 115 #include <linux/err.h> 116 #include <linux/ctype.h> 117 #include <linux/if_arp.h> 118 #include <linux/if_vlan.h> 119 #include <linux/ip.h> 120 #include <net/ip.h> 121 #include <net/mpls.h> 122 #include <linux/ipv6.h> 123 #include <linux/in.h> 124 #include <linux/jhash.h> 125 #include <linux/random.h> 126 #include <trace/events/napi.h> 127 #include <trace/events/net.h> 128 #include <trace/events/skb.h> 129 #include <linux/pci.h> 130 #include <linux/inetdevice.h> 131 #include <linux/cpu_rmap.h> 132 #include <linux/static_key.h> 133 #include <linux/hashtable.h> 134 #include <linux/vmalloc.h> 135 #include <linux/if_macvlan.h> 136 #include <linux/errqueue.h> 137 #include <linux/hrtimer.h> 138 #include <linux/netfilter_ingress.h> 139 140 #include "net-sysfs.h" 141 142 /* Instead of increasing this, you should create a hash table. */ 143 #define MAX_GRO_SKBS 8 144 145 /* This should be increased if a protocol with a bigger head is added. */ 146 #define GRO_MAX_HEAD (MAX_HEADER + 128) 147 148 static DEFINE_SPINLOCK(ptype_lock); 149 static DEFINE_SPINLOCK(offload_lock); 150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 151 struct list_head ptype_all __read_mostly; /* Taps */ 152 static struct list_head offload_base __read_mostly; 153 154 static int netif_rx_internal(struct sk_buff *skb); 155 static int call_netdevice_notifiers_info(unsigned long val, 156 struct net_device *dev, 157 struct netdev_notifier_info *info); 158 159 /* 160 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 161 * semaphore. 162 * 163 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 164 * 165 * Writers must hold the rtnl semaphore while they loop through the 166 * dev_base_head list, and hold dev_base_lock for writing when they do the 167 * actual updates. This allows pure readers to access the list even 168 * while a writer is preparing to update it. 169 * 170 * To put it another way, dev_base_lock is held for writing only to 171 * protect against pure readers; the rtnl semaphore provides the 172 * protection against other writers. 173 * 174 * See, for example usages, register_netdevice() and 175 * unregister_netdevice(), which must be called with the rtnl 176 * semaphore held. 177 */ 178 DEFINE_RWLOCK(dev_base_lock); 179 EXPORT_SYMBOL(dev_base_lock); 180 181 /* protects napi_hash addition/deletion and napi_gen_id */ 182 static DEFINE_SPINLOCK(napi_hash_lock); 183 184 static unsigned int napi_gen_id; 185 static DEFINE_HASHTABLE(napi_hash, 8); 186 187 static seqcount_t devnet_rename_seq; 188 189 static inline void dev_base_seq_inc(struct net *net) 190 { 191 while (++net->dev_base_seq == 0); 192 } 193 194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 195 { 196 unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 197 198 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 199 } 200 201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 202 { 203 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 204 } 205 206 static inline void rps_lock(struct softnet_data *sd) 207 { 208 #ifdef CONFIG_RPS 209 spin_lock(&sd->input_pkt_queue.lock); 210 #endif 211 } 212 213 static inline void rps_unlock(struct softnet_data *sd) 214 { 215 #ifdef CONFIG_RPS 216 spin_unlock(&sd->input_pkt_queue.lock); 217 #endif 218 } 219 220 /* Device list insertion */ 221 static void list_netdevice(struct net_device *dev) 222 { 223 struct net *net = dev_net(dev); 224 225 ASSERT_RTNL(); 226 227 write_lock_bh(&dev_base_lock); 228 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 229 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 230 hlist_add_head_rcu(&dev->index_hlist, 231 dev_index_hash(net, dev->ifindex)); 232 write_unlock_bh(&dev_base_lock); 233 234 dev_base_seq_inc(net); 235 } 236 237 /* Device list removal 238 * caller must respect a RCU grace period before freeing/reusing dev 239 */ 240 static void unlist_netdevice(struct net_device *dev) 241 { 242 ASSERT_RTNL(); 243 244 /* Unlink dev from the device chain */ 245 write_lock_bh(&dev_base_lock); 246 list_del_rcu(&dev->dev_list); 247 hlist_del_rcu(&dev->name_hlist); 248 hlist_del_rcu(&dev->index_hlist); 249 write_unlock_bh(&dev_base_lock); 250 251 dev_base_seq_inc(dev_net(dev)); 252 } 253 254 /* 255 * Our notifier list 256 */ 257 258 static RAW_NOTIFIER_HEAD(netdev_chain); 259 260 /* 261 * Device drivers call our routines to queue packets here. We empty the 262 * queue in the local softnet handler. 263 */ 264 265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 266 EXPORT_PER_CPU_SYMBOL(softnet_data); 267 268 #ifdef CONFIG_LOCKDEP 269 /* 270 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 271 * according to dev->type 272 */ 273 static const unsigned short netdev_lock_type[] = 274 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 275 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 276 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 277 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 278 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 279 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 280 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 281 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 282 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 283 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 284 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 285 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 286 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 287 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 288 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 289 290 static const char *const netdev_lock_name[] = 291 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 292 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 293 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 294 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 295 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 296 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 297 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 298 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 299 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 300 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 301 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 302 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 303 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 304 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 305 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 306 307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 309 310 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 311 { 312 int i; 313 314 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 315 if (netdev_lock_type[i] == dev_type) 316 return i; 317 /* the last key is used by default */ 318 return ARRAY_SIZE(netdev_lock_type) - 1; 319 } 320 321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 322 unsigned short dev_type) 323 { 324 int i; 325 326 i = netdev_lock_pos(dev_type); 327 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 328 netdev_lock_name[i]); 329 } 330 331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 332 { 333 int i; 334 335 i = netdev_lock_pos(dev->type); 336 lockdep_set_class_and_name(&dev->addr_list_lock, 337 &netdev_addr_lock_key[i], 338 netdev_lock_name[i]); 339 } 340 #else 341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 342 unsigned short dev_type) 343 { 344 } 345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 346 { 347 } 348 #endif 349 350 /******************************************************************************* 351 352 Protocol management and registration routines 353 354 *******************************************************************************/ 355 356 /* 357 * Add a protocol ID to the list. Now that the input handler is 358 * smarter we can dispense with all the messy stuff that used to be 359 * here. 360 * 361 * BEWARE!!! Protocol handlers, mangling input packets, 362 * MUST BE last in hash buckets and checking protocol handlers 363 * MUST start from promiscuous ptype_all chain in net_bh. 364 * It is true now, do not change it. 365 * Explanation follows: if protocol handler, mangling packet, will 366 * be the first on list, it is not able to sense, that packet 367 * is cloned and should be copied-on-write, so that it will 368 * change it and subsequent readers will get broken packet. 369 * --ANK (980803) 370 */ 371 372 static inline struct list_head *ptype_head(const struct packet_type *pt) 373 { 374 if (pt->type == htons(ETH_P_ALL)) 375 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 376 else 377 return pt->dev ? &pt->dev->ptype_specific : 378 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 379 } 380 381 /** 382 * dev_add_pack - add packet handler 383 * @pt: packet type declaration 384 * 385 * Add a protocol handler to the networking stack. The passed &packet_type 386 * is linked into kernel lists and may not be freed until it has been 387 * removed from the kernel lists. 388 * 389 * This call does not sleep therefore it can not 390 * guarantee all CPU's that are in middle of receiving packets 391 * will see the new packet type (until the next received packet). 392 */ 393 394 void dev_add_pack(struct packet_type *pt) 395 { 396 struct list_head *head = ptype_head(pt); 397 398 spin_lock(&ptype_lock); 399 list_add_rcu(&pt->list, head); 400 spin_unlock(&ptype_lock); 401 } 402 EXPORT_SYMBOL(dev_add_pack); 403 404 /** 405 * __dev_remove_pack - remove packet handler 406 * @pt: packet type declaration 407 * 408 * Remove a protocol handler that was previously added to the kernel 409 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 410 * from the kernel lists and can be freed or reused once this function 411 * returns. 412 * 413 * The packet type might still be in use by receivers 414 * and must not be freed until after all the CPU's have gone 415 * through a quiescent state. 416 */ 417 void __dev_remove_pack(struct packet_type *pt) 418 { 419 struct list_head *head = ptype_head(pt); 420 struct packet_type *pt1; 421 422 spin_lock(&ptype_lock); 423 424 list_for_each_entry(pt1, head, list) { 425 if (pt == pt1) { 426 list_del_rcu(&pt->list); 427 goto out; 428 } 429 } 430 431 pr_warn("dev_remove_pack: %p not found\n", pt); 432 out: 433 spin_unlock(&ptype_lock); 434 } 435 EXPORT_SYMBOL(__dev_remove_pack); 436 437 /** 438 * dev_remove_pack - remove packet handler 439 * @pt: packet type declaration 440 * 441 * Remove a protocol handler that was previously added to the kernel 442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 443 * from the kernel lists and can be freed or reused once this function 444 * returns. 445 * 446 * This call sleeps to guarantee that no CPU is looking at the packet 447 * type after return. 448 */ 449 void dev_remove_pack(struct packet_type *pt) 450 { 451 __dev_remove_pack(pt); 452 453 synchronize_net(); 454 } 455 EXPORT_SYMBOL(dev_remove_pack); 456 457 458 /** 459 * dev_add_offload - register offload handlers 460 * @po: protocol offload declaration 461 * 462 * Add protocol offload handlers to the networking stack. The passed 463 * &proto_offload is linked into kernel lists and may not be freed until 464 * it has been removed from the kernel lists. 465 * 466 * This call does not sleep therefore it can not 467 * guarantee all CPU's that are in middle of receiving packets 468 * will see the new offload handlers (until the next received packet). 469 */ 470 void dev_add_offload(struct packet_offload *po) 471 { 472 struct packet_offload *elem; 473 474 spin_lock(&offload_lock); 475 list_for_each_entry(elem, &offload_base, list) { 476 if (po->priority < elem->priority) 477 break; 478 } 479 list_add_rcu(&po->list, elem->list.prev); 480 spin_unlock(&offload_lock); 481 } 482 EXPORT_SYMBOL(dev_add_offload); 483 484 /** 485 * __dev_remove_offload - remove offload handler 486 * @po: packet offload declaration 487 * 488 * Remove a protocol offload handler that was previously added to the 489 * kernel offload handlers by dev_add_offload(). The passed &offload_type 490 * is removed from the kernel lists and can be freed or reused once this 491 * function returns. 492 * 493 * The packet type might still be in use by receivers 494 * and must not be freed until after all the CPU's have gone 495 * through a quiescent state. 496 */ 497 static void __dev_remove_offload(struct packet_offload *po) 498 { 499 struct list_head *head = &offload_base; 500 struct packet_offload *po1; 501 502 spin_lock(&offload_lock); 503 504 list_for_each_entry(po1, head, list) { 505 if (po == po1) { 506 list_del_rcu(&po->list); 507 goto out; 508 } 509 } 510 511 pr_warn("dev_remove_offload: %p not found\n", po); 512 out: 513 spin_unlock(&offload_lock); 514 } 515 516 /** 517 * dev_remove_offload - remove packet offload handler 518 * @po: packet offload declaration 519 * 520 * Remove a packet offload handler that was previously added to the kernel 521 * offload handlers by dev_add_offload(). The passed &offload_type is 522 * removed from the kernel lists and can be freed or reused once this 523 * function returns. 524 * 525 * This call sleeps to guarantee that no CPU is looking at the packet 526 * type after return. 527 */ 528 void dev_remove_offload(struct packet_offload *po) 529 { 530 __dev_remove_offload(po); 531 532 synchronize_net(); 533 } 534 EXPORT_SYMBOL(dev_remove_offload); 535 536 /****************************************************************************** 537 538 Device Boot-time Settings Routines 539 540 *******************************************************************************/ 541 542 /* Boot time configuration table */ 543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 544 545 /** 546 * netdev_boot_setup_add - add new setup entry 547 * @name: name of the device 548 * @map: configured settings for the device 549 * 550 * Adds new setup entry to the dev_boot_setup list. The function 551 * returns 0 on error and 1 on success. This is a generic routine to 552 * all netdevices. 553 */ 554 static int netdev_boot_setup_add(char *name, struct ifmap *map) 555 { 556 struct netdev_boot_setup *s; 557 int i; 558 559 s = dev_boot_setup; 560 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 561 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 562 memset(s[i].name, 0, sizeof(s[i].name)); 563 strlcpy(s[i].name, name, IFNAMSIZ); 564 memcpy(&s[i].map, map, sizeof(s[i].map)); 565 break; 566 } 567 } 568 569 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 570 } 571 572 /** 573 * netdev_boot_setup_check - check boot time settings 574 * @dev: the netdevice 575 * 576 * Check boot time settings for the device. 577 * The found settings are set for the device to be used 578 * later in the device probing. 579 * Returns 0 if no settings found, 1 if they are. 580 */ 581 int netdev_boot_setup_check(struct net_device *dev) 582 { 583 struct netdev_boot_setup *s = dev_boot_setup; 584 int i; 585 586 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 587 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 588 !strcmp(dev->name, s[i].name)) { 589 dev->irq = s[i].map.irq; 590 dev->base_addr = s[i].map.base_addr; 591 dev->mem_start = s[i].map.mem_start; 592 dev->mem_end = s[i].map.mem_end; 593 return 1; 594 } 595 } 596 return 0; 597 } 598 EXPORT_SYMBOL(netdev_boot_setup_check); 599 600 601 /** 602 * netdev_boot_base - get address from boot time settings 603 * @prefix: prefix for network device 604 * @unit: id for network device 605 * 606 * Check boot time settings for the base address of device. 607 * The found settings are set for the device to be used 608 * later in the device probing. 609 * Returns 0 if no settings found. 610 */ 611 unsigned long netdev_boot_base(const char *prefix, int unit) 612 { 613 const struct netdev_boot_setup *s = dev_boot_setup; 614 char name[IFNAMSIZ]; 615 int i; 616 617 sprintf(name, "%s%d", prefix, unit); 618 619 /* 620 * If device already registered then return base of 1 621 * to indicate not to probe for this interface 622 */ 623 if (__dev_get_by_name(&init_net, name)) 624 return 1; 625 626 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 627 if (!strcmp(name, s[i].name)) 628 return s[i].map.base_addr; 629 return 0; 630 } 631 632 /* 633 * Saves at boot time configured settings for any netdevice. 634 */ 635 int __init netdev_boot_setup(char *str) 636 { 637 int ints[5]; 638 struct ifmap map; 639 640 str = get_options(str, ARRAY_SIZE(ints), ints); 641 if (!str || !*str) 642 return 0; 643 644 /* Save settings */ 645 memset(&map, 0, sizeof(map)); 646 if (ints[0] > 0) 647 map.irq = ints[1]; 648 if (ints[0] > 1) 649 map.base_addr = ints[2]; 650 if (ints[0] > 2) 651 map.mem_start = ints[3]; 652 if (ints[0] > 3) 653 map.mem_end = ints[4]; 654 655 /* Add new entry to the list */ 656 return netdev_boot_setup_add(str, &map); 657 } 658 659 __setup("netdev=", netdev_boot_setup); 660 661 /******************************************************************************* 662 663 Device Interface Subroutines 664 665 *******************************************************************************/ 666 667 /** 668 * dev_get_iflink - get 'iflink' value of a interface 669 * @dev: targeted interface 670 * 671 * Indicates the ifindex the interface is linked to. 672 * Physical interfaces have the same 'ifindex' and 'iflink' values. 673 */ 674 675 int dev_get_iflink(const struct net_device *dev) 676 { 677 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 678 return dev->netdev_ops->ndo_get_iflink(dev); 679 680 return dev->ifindex; 681 } 682 EXPORT_SYMBOL(dev_get_iflink); 683 684 /** 685 * __dev_get_by_name - find a device by its name 686 * @net: the applicable net namespace 687 * @name: name to find 688 * 689 * Find an interface by name. Must be called under RTNL semaphore 690 * or @dev_base_lock. If the name is found a pointer to the device 691 * is returned. If the name is not found then %NULL is returned. The 692 * reference counters are not incremented so the caller must be 693 * careful with locks. 694 */ 695 696 struct net_device *__dev_get_by_name(struct net *net, const char *name) 697 { 698 struct net_device *dev; 699 struct hlist_head *head = dev_name_hash(net, name); 700 701 hlist_for_each_entry(dev, head, name_hlist) 702 if (!strncmp(dev->name, name, IFNAMSIZ)) 703 return dev; 704 705 return NULL; 706 } 707 EXPORT_SYMBOL(__dev_get_by_name); 708 709 /** 710 * dev_get_by_name_rcu - find a device by its name 711 * @net: the applicable net namespace 712 * @name: name to find 713 * 714 * Find an interface by name. 715 * If the name is found a pointer to the device is returned. 716 * If the name is not found then %NULL is returned. 717 * The reference counters are not incremented so the caller must be 718 * careful with locks. The caller must hold RCU lock. 719 */ 720 721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 722 { 723 struct net_device *dev; 724 struct hlist_head *head = dev_name_hash(net, name); 725 726 hlist_for_each_entry_rcu(dev, head, name_hlist) 727 if (!strncmp(dev->name, name, IFNAMSIZ)) 728 return dev; 729 730 return NULL; 731 } 732 EXPORT_SYMBOL(dev_get_by_name_rcu); 733 734 /** 735 * dev_get_by_name - find a device by its name 736 * @net: the applicable net namespace 737 * @name: name to find 738 * 739 * Find an interface by name. This can be called from any 740 * context and does its own locking. The returned handle has 741 * the usage count incremented and the caller must use dev_put() to 742 * release it when it is no longer needed. %NULL is returned if no 743 * matching device is found. 744 */ 745 746 struct net_device *dev_get_by_name(struct net *net, const char *name) 747 { 748 struct net_device *dev; 749 750 rcu_read_lock(); 751 dev = dev_get_by_name_rcu(net, name); 752 if (dev) 753 dev_hold(dev); 754 rcu_read_unlock(); 755 return dev; 756 } 757 EXPORT_SYMBOL(dev_get_by_name); 758 759 /** 760 * __dev_get_by_index - find a device by its ifindex 761 * @net: the applicable net namespace 762 * @ifindex: index of device 763 * 764 * Search for an interface by index. Returns %NULL if the device 765 * is not found or a pointer to the device. The device has not 766 * had its reference counter increased so the caller must be careful 767 * about locking. The caller must hold either the RTNL semaphore 768 * or @dev_base_lock. 769 */ 770 771 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 772 { 773 struct net_device *dev; 774 struct hlist_head *head = dev_index_hash(net, ifindex); 775 776 hlist_for_each_entry(dev, head, index_hlist) 777 if (dev->ifindex == ifindex) 778 return dev; 779 780 return NULL; 781 } 782 EXPORT_SYMBOL(__dev_get_by_index); 783 784 /** 785 * dev_get_by_index_rcu - find a device by its ifindex 786 * @net: the applicable net namespace 787 * @ifindex: index of device 788 * 789 * Search for an interface by index. Returns %NULL if the device 790 * is not found or a pointer to the device. The device has not 791 * had its reference counter increased so the caller must be careful 792 * about locking. The caller must hold RCU lock. 793 */ 794 795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 796 { 797 struct net_device *dev; 798 struct hlist_head *head = dev_index_hash(net, ifindex); 799 800 hlist_for_each_entry_rcu(dev, head, index_hlist) 801 if (dev->ifindex == ifindex) 802 return dev; 803 804 return NULL; 805 } 806 EXPORT_SYMBOL(dev_get_by_index_rcu); 807 808 809 /** 810 * dev_get_by_index - find a device by its ifindex 811 * @net: the applicable net namespace 812 * @ifindex: index of device 813 * 814 * Search for an interface by index. Returns NULL if the device 815 * is not found or a pointer to the device. The device returned has 816 * had a reference added and the pointer is safe until the user calls 817 * dev_put to indicate they have finished with it. 818 */ 819 820 struct net_device *dev_get_by_index(struct net *net, int ifindex) 821 { 822 struct net_device *dev; 823 824 rcu_read_lock(); 825 dev = dev_get_by_index_rcu(net, ifindex); 826 if (dev) 827 dev_hold(dev); 828 rcu_read_unlock(); 829 return dev; 830 } 831 EXPORT_SYMBOL(dev_get_by_index); 832 833 /** 834 * netdev_get_name - get a netdevice name, knowing its ifindex. 835 * @net: network namespace 836 * @name: a pointer to the buffer where the name will be stored. 837 * @ifindex: the ifindex of the interface to get the name from. 838 * 839 * The use of raw_seqcount_begin() and cond_resched() before 840 * retrying is required as we want to give the writers a chance 841 * to complete when CONFIG_PREEMPT is not set. 842 */ 843 int netdev_get_name(struct net *net, char *name, int ifindex) 844 { 845 struct net_device *dev; 846 unsigned int seq; 847 848 retry: 849 seq = raw_seqcount_begin(&devnet_rename_seq); 850 rcu_read_lock(); 851 dev = dev_get_by_index_rcu(net, ifindex); 852 if (!dev) { 853 rcu_read_unlock(); 854 return -ENODEV; 855 } 856 857 strcpy(name, dev->name); 858 rcu_read_unlock(); 859 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 860 cond_resched(); 861 goto retry; 862 } 863 864 return 0; 865 } 866 867 /** 868 * dev_getbyhwaddr_rcu - find a device by its hardware address 869 * @net: the applicable net namespace 870 * @type: media type of device 871 * @ha: hardware address 872 * 873 * Search for an interface by MAC address. Returns NULL if the device 874 * is not found or a pointer to the device. 875 * The caller must hold RCU or RTNL. 876 * The returned device has not had its ref count increased 877 * and the caller must therefore be careful about locking 878 * 879 */ 880 881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 882 const char *ha) 883 { 884 struct net_device *dev; 885 886 for_each_netdev_rcu(net, dev) 887 if (dev->type == type && 888 !memcmp(dev->dev_addr, ha, dev->addr_len)) 889 return dev; 890 891 return NULL; 892 } 893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 894 895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 896 { 897 struct net_device *dev; 898 899 ASSERT_RTNL(); 900 for_each_netdev(net, dev) 901 if (dev->type == type) 902 return dev; 903 904 return NULL; 905 } 906 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 907 908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 909 { 910 struct net_device *dev, *ret = NULL; 911 912 rcu_read_lock(); 913 for_each_netdev_rcu(net, dev) 914 if (dev->type == type) { 915 dev_hold(dev); 916 ret = dev; 917 break; 918 } 919 rcu_read_unlock(); 920 return ret; 921 } 922 EXPORT_SYMBOL(dev_getfirstbyhwtype); 923 924 /** 925 * __dev_get_by_flags - find any device with given flags 926 * @net: the applicable net namespace 927 * @if_flags: IFF_* values 928 * @mask: bitmask of bits in if_flags to check 929 * 930 * Search for any interface with the given flags. Returns NULL if a device 931 * is not found or a pointer to the device. Must be called inside 932 * rtnl_lock(), and result refcount is unchanged. 933 */ 934 935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 936 unsigned short mask) 937 { 938 struct net_device *dev, *ret; 939 940 ASSERT_RTNL(); 941 942 ret = NULL; 943 for_each_netdev(net, dev) { 944 if (((dev->flags ^ if_flags) & mask) == 0) { 945 ret = dev; 946 break; 947 } 948 } 949 return ret; 950 } 951 EXPORT_SYMBOL(__dev_get_by_flags); 952 953 /** 954 * dev_valid_name - check if name is okay for network device 955 * @name: name string 956 * 957 * Network device names need to be valid file names to 958 * to allow sysfs to work. We also disallow any kind of 959 * whitespace. 960 */ 961 bool dev_valid_name(const char *name) 962 { 963 if (*name == '\0') 964 return false; 965 if (strlen(name) >= IFNAMSIZ) 966 return false; 967 if (!strcmp(name, ".") || !strcmp(name, "..")) 968 return false; 969 970 while (*name) { 971 if (*name == '/' || *name == ':' || isspace(*name)) 972 return false; 973 name++; 974 } 975 return true; 976 } 977 EXPORT_SYMBOL(dev_valid_name); 978 979 /** 980 * __dev_alloc_name - allocate a name for a device 981 * @net: network namespace to allocate the device name in 982 * @name: name format string 983 * @buf: scratch buffer and result name string 984 * 985 * Passed a format string - eg "lt%d" it will try and find a suitable 986 * id. It scans list of devices to build up a free map, then chooses 987 * the first empty slot. The caller must hold the dev_base or rtnl lock 988 * while allocating the name and adding the device in order to avoid 989 * duplicates. 990 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 991 * Returns the number of the unit assigned or a negative errno code. 992 */ 993 994 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 995 { 996 int i = 0; 997 const char *p; 998 const int max_netdevices = 8*PAGE_SIZE; 999 unsigned long *inuse; 1000 struct net_device *d; 1001 1002 p = strnchr(name, IFNAMSIZ-1, '%'); 1003 if (p) { 1004 /* 1005 * Verify the string as this thing may have come from 1006 * the user. There must be either one "%d" and no other "%" 1007 * characters. 1008 */ 1009 if (p[1] != 'd' || strchr(p + 2, '%')) 1010 return -EINVAL; 1011 1012 /* Use one page as a bit array of possible slots */ 1013 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1014 if (!inuse) 1015 return -ENOMEM; 1016 1017 for_each_netdev(net, d) { 1018 if (!sscanf(d->name, name, &i)) 1019 continue; 1020 if (i < 0 || i >= max_netdevices) 1021 continue; 1022 1023 /* avoid cases where sscanf is not exact inverse of printf */ 1024 snprintf(buf, IFNAMSIZ, name, i); 1025 if (!strncmp(buf, d->name, IFNAMSIZ)) 1026 set_bit(i, inuse); 1027 } 1028 1029 i = find_first_zero_bit(inuse, max_netdevices); 1030 free_page((unsigned long) inuse); 1031 } 1032 1033 if (buf != name) 1034 snprintf(buf, IFNAMSIZ, name, i); 1035 if (!__dev_get_by_name(net, buf)) 1036 return i; 1037 1038 /* It is possible to run out of possible slots 1039 * when the name is long and there isn't enough space left 1040 * for the digits, or if all bits are used. 1041 */ 1042 return -ENFILE; 1043 } 1044 1045 /** 1046 * dev_alloc_name - allocate a name for a device 1047 * @dev: device 1048 * @name: name format string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 int dev_alloc_name(struct net_device *dev, const char *name) 1060 { 1061 char buf[IFNAMSIZ]; 1062 struct net *net; 1063 int ret; 1064 1065 BUG_ON(!dev_net(dev)); 1066 net = dev_net(dev); 1067 ret = __dev_alloc_name(net, name, buf); 1068 if (ret >= 0) 1069 strlcpy(dev->name, buf, IFNAMSIZ); 1070 return ret; 1071 } 1072 EXPORT_SYMBOL(dev_alloc_name); 1073 1074 static int dev_alloc_name_ns(struct net *net, 1075 struct net_device *dev, 1076 const char *name) 1077 { 1078 char buf[IFNAMSIZ]; 1079 int ret; 1080 1081 ret = __dev_alloc_name(net, name, buf); 1082 if (ret >= 0) 1083 strlcpy(dev->name, buf, IFNAMSIZ); 1084 return ret; 1085 } 1086 1087 static int dev_get_valid_name(struct net *net, 1088 struct net_device *dev, 1089 const char *name) 1090 { 1091 BUG_ON(!net); 1092 1093 if (!dev_valid_name(name)) 1094 return -EINVAL; 1095 1096 if (strchr(name, '%')) 1097 return dev_alloc_name_ns(net, dev, name); 1098 else if (__dev_get_by_name(net, name)) 1099 return -EEXIST; 1100 else if (dev->name != name) 1101 strlcpy(dev->name, name, IFNAMSIZ); 1102 1103 return 0; 1104 } 1105 1106 /** 1107 * dev_change_name - change name of a device 1108 * @dev: device 1109 * @newname: name (or format string) must be at least IFNAMSIZ 1110 * 1111 * Change name of a device, can pass format strings "eth%d". 1112 * for wildcarding. 1113 */ 1114 int dev_change_name(struct net_device *dev, const char *newname) 1115 { 1116 unsigned char old_assign_type; 1117 char oldname[IFNAMSIZ]; 1118 int err = 0; 1119 int ret; 1120 struct net *net; 1121 1122 ASSERT_RTNL(); 1123 BUG_ON(!dev_net(dev)); 1124 1125 net = dev_net(dev); 1126 if (dev->flags & IFF_UP) 1127 return -EBUSY; 1128 1129 write_seqcount_begin(&devnet_rename_seq); 1130 1131 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1132 write_seqcount_end(&devnet_rename_seq); 1133 return 0; 1134 } 1135 1136 memcpy(oldname, dev->name, IFNAMSIZ); 1137 1138 err = dev_get_valid_name(net, dev, newname); 1139 if (err < 0) { 1140 write_seqcount_end(&devnet_rename_seq); 1141 return err; 1142 } 1143 1144 if (oldname[0] && !strchr(oldname, '%')) 1145 netdev_info(dev, "renamed from %s\n", oldname); 1146 1147 old_assign_type = dev->name_assign_type; 1148 dev->name_assign_type = NET_NAME_RENAMED; 1149 1150 rollback: 1151 ret = device_rename(&dev->dev, dev->name); 1152 if (ret) { 1153 memcpy(dev->name, oldname, IFNAMSIZ); 1154 dev->name_assign_type = old_assign_type; 1155 write_seqcount_end(&devnet_rename_seq); 1156 return ret; 1157 } 1158 1159 write_seqcount_end(&devnet_rename_seq); 1160 1161 netdev_adjacent_rename_links(dev, oldname); 1162 1163 write_lock_bh(&dev_base_lock); 1164 hlist_del_rcu(&dev->name_hlist); 1165 write_unlock_bh(&dev_base_lock); 1166 1167 synchronize_rcu(); 1168 1169 write_lock_bh(&dev_base_lock); 1170 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1171 write_unlock_bh(&dev_base_lock); 1172 1173 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1174 ret = notifier_to_errno(ret); 1175 1176 if (ret) { 1177 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1178 if (err >= 0) { 1179 err = ret; 1180 write_seqcount_begin(&devnet_rename_seq); 1181 memcpy(dev->name, oldname, IFNAMSIZ); 1182 memcpy(oldname, newname, IFNAMSIZ); 1183 dev->name_assign_type = old_assign_type; 1184 old_assign_type = NET_NAME_RENAMED; 1185 goto rollback; 1186 } else { 1187 pr_err("%s: name change rollback failed: %d\n", 1188 dev->name, ret); 1189 } 1190 } 1191 1192 return err; 1193 } 1194 1195 /** 1196 * dev_set_alias - change ifalias of a device 1197 * @dev: device 1198 * @alias: name up to IFALIASZ 1199 * @len: limit of bytes to copy from info 1200 * 1201 * Set ifalias for a device, 1202 */ 1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1204 { 1205 char *new_ifalias; 1206 1207 ASSERT_RTNL(); 1208 1209 if (len >= IFALIASZ) 1210 return -EINVAL; 1211 1212 if (!len) { 1213 kfree(dev->ifalias); 1214 dev->ifalias = NULL; 1215 return 0; 1216 } 1217 1218 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1219 if (!new_ifalias) 1220 return -ENOMEM; 1221 dev->ifalias = new_ifalias; 1222 1223 strlcpy(dev->ifalias, alias, len+1); 1224 return len; 1225 } 1226 1227 1228 /** 1229 * netdev_features_change - device changes features 1230 * @dev: device to cause notification 1231 * 1232 * Called to indicate a device has changed features. 1233 */ 1234 void netdev_features_change(struct net_device *dev) 1235 { 1236 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1237 } 1238 EXPORT_SYMBOL(netdev_features_change); 1239 1240 /** 1241 * netdev_state_change - device changes state 1242 * @dev: device to cause notification 1243 * 1244 * Called to indicate a device has changed state. This function calls 1245 * the notifier chains for netdev_chain and sends a NEWLINK message 1246 * to the routing socket. 1247 */ 1248 void netdev_state_change(struct net_device *dev) 1249 { 1250 if (dev->flags & IFF_UP) { 1251 struct netdev_notifier_change_info change_info; 1252 1253 change_info.flags_changed = 0; 1254 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1255 &change_info.info); 1256 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1257 } 1258 } 1259 EXPORT_SYMBOL(netdev_state_change); 1260 1261 /** 1262 * netdev_notify_peers - notify network peers about existence of @dev 1263 * @dev: network device 1264 * 1265 * Generate traffic such that interested network peers are aware of 1266 * @dev, such as by generating a gratuitous ARP. This may be used when 1267 * a device wants to inform the rest of the network about some sort of 1268 * reconfiguration such as a failover event or virtual machine 1269 * migration. 1270 */ 1271 void netdev_notify_peers(struct net_device *dev) 1272 { 1273 rtnl_lock(); 1274 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1275 rtnl_unlock(); 1276 } 1277 EXPORT_SYMBOL(netdev_notify_peers); 1278 1279 static int __dev_open(struct net_device *dev) 1280 { 1281 const struct net_device_ops *ops = dev->netdev_ops; 1282 int ret; 1283 1284 ASSERT_RTNL(); 1285 1286 if (!netif_device_present(dev)) 1287 return -ENODEV; 1288 1289 /* Block netpoll from trying to do any rx path servicing. 1290 * If we don't do this there is a chance ndo_poll_controller 1291 * or ndo_poll may be running while we open the device 1292 */ 1293 netpoll_poll_disable(dev); 1294 1295 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1296 ret = notifier_to_errno(ret); 1297 if (ret) 1298 return ret; 1299 1300 set_bit(__LINK_STATE_START, &dev->state); 1301 1302 if (ops->ndo_validate_addr) 1303 ret = ops->ndo_validate_addr(dev); 1304 1305 if (!ret && ops->ndo_open) 1306 ret = ops->ndo_open(dev); 1307 1308 netpoll_poll_enable(dev); 1309 1310 if (ret) 1311 clear_bit(__LINK_STATE_START, &dev->state); 1312 else { 1313 dev->flags |= IFF_UP; 1314 dev_set_rx_mode(dev); 1315 dev_activate(dev); 1316 add_device_randomness(dev->dev_addr, dev->addr_len); 1317 } 1318 1319 return ret; 1320 } 1321 1322 /** 1323 * dev_open - prepare an interface for use. 1324 * @dev: device to open 1325 * 1326 * Takes a device from down to up state. The device's private open 1327 * function is invoked and then the multicast lists are loaded. Finally 1328 * the device is moved into the up state and a %NETDEV_UP message is 1329 * sent to the netdev notifier chain. 1330 * 1331 * Calling this function on an active interface is a nop. On a failure 1332 * a negative errno code is returned. 1333 */ 1334 int dev_open(struct net_device *dev) 1335 { 1336 int ret; 1337 1338 if (dev->flags & IFF_UP) 1339 return 0; 1340 1341 ret = __dev_open(dev); 1342 if (ret < 0) 1343 return ret; 1344 1345 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1346 call_netdevice_notifiers(NETDEV_UP, dev); 1347 1348 return ret; 1349 } 1350 EXPORT_SYMBOL(dev_open); 1351 1352 static int __dev_close_many(struct list_head *head) 1353 { 1354 struct net_device *dev; 1355 1356 ASSERT_RTNL(); 1357 might_sleep(); 1358 1359 list_for_each_entry(dev, head, close_list) { 1360 /* Temporarily disable netpoll until the interface is down */ 1361 netpoll_poll_disable(dev); 1362 1363 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1364 1365 clear_bit(__LINK_STATE_START, &dev->state); 1366 1367 /* Synchronize to scheduled poll. We cannot touch poll list, it 1368 * can be even on different cpu. So just clear netif_running(). 1369 * 1370 * dev->stop() will invoke napi_disable() on all of it's 1371 * napi_struct instances on this device. 1372 */ 1373 smp_mb__after_atomic(); /* Commit netif_running(). */ 1374 } 1375 1376 dev_deactivate_many(head); 1377 1378 list_for_each_entry(dev, head, close_list) { 1379 const struct net_device_ops *ops = dev->netdev_ops; 1380 1381 /* 1382 * Call the device specific close. This cannot fail. 1383 * Only if device is UP 1384 * 1385 * We allow it to be called even after a DETACH hot-plug 1386 * event. 1387 */ 1388 if (ops->ndo_stop) 1389 ops->ndo_stop(dev); 1390 1391 dev->flags &= ~IFF_UP; 1392 netpoll_poll_enable(dev); 1393 } 1394 1395 return 0; 1396 } 1397 1398 static int __dev_close(struct net_device *dev) 1399 { 1400 int retval; 1401 LIST_HEAD(single); 1402 1403 list_add(&dev->close_list, &single); 1404 retval = __dev_close_many(&single); 1405 list_del(&single); 1406 1407 return retval; 1408 } 1409 1410 int dev_close_many(struct list_head *head, bool unlink) 1411 { 1412 struct net_device *dev, *tmp; 1413 1414 /* Remove the devices that don't need to be closed */ 1415 list_for_each_entry_safe(dev, tmp, head, close_list) 1416 if (!(dev->flags & IFF_UP)) 1417 list_del_init(&dev->close_list); 1418 1419 __dev_close_many(head); 1420 1421 list_for_each_entry_safe(dev, tmp, head, close_list) { 1422 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1423 call_netdevice_notifiers(NETDEV_DOWN, dev); 1424 if (unlink) 1425 list_del_init(&dev->close_list); 1426 } 1427 1428 return 0; 1429 } 1430 EXPORT_SYMBOL(dev_close_many); 1431 1432 /** 1433 * dev_close - shutdown an interface. 1434 * @dev: device to shutdown 1435 * 1436 * This function moves an active device into down state. A 1437 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1438 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1439 * chain. 1440 */ 1441 int dev_close(struct net_device *dev) 1442 { 1443 if (dev->flags & IFF_UP) { 1444 LIST_HEAD(single); 1445 1446 list_add(&dev->close_list, &single); 1447 dev_close_many(&single, true); 1448 list_del(&single); 1449 } 1450 return 0; 1451 } 1452 EXPORT_SYMBOL(dev_close); 1453 1454 1455 /** 1456 * dev_disable_lro - disable Large Receive Offload on a device 1457 * @dev: device 1458 * 1459 * Disable Large Receive Offload (LRO) on a net device. Must be 1460 * called under RTNL. This is needed if received packets may be 1461 * forwarded to another interface. 1462 */ 1463 void dev_disable_lro(struct net_device *dev) 1464 { 1465 struct net_device *lower_dev; 1466 struct list_head *iter; 1467 1468 dev->wanted_features &= ~NETIF_F_LRO; 1469 netdev_update_features(dev); 1470 1471 if (unlikely(dev->features & NETIF_F_LRO)) 1472 netdev_WARN(dev, "failed to disable LRO!\n"); 1473 1474 netdev_for_each_lower_dev(dev, lower_dev, iter) 1475 dev_disable_lro(lower_dev); 1476 } 1477 EXPORT_SYMBOL(dev_disable_lro); 1478 1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1480 struct net_device *dev) 1481 { 1482 struct netdev_notifier_info info; 1483 1484 netdev_notifier_info_init(&info, dev); 1485 return nb->notifier_call(nb, val, &info); 1486 } 1487 1488 static int dev_boot_phase = 1; 1489 1490 /** 1491 * register_netdevice_notifier - register a network notifier block 1492 * @nb: notifier 1493 * 1494 * Register a notifier to be called when network device events occur. 1495 * The notifier passed is linked into the kernel structures and must 1496 * not be reused until it has been unregistered. A negative errno code 1497 * is returned on a failure. 1498 * 1499 * When registered all registration and up events are replayed 1500 * to the new notifier to allow device to have a race free 1501 * view of the network device list. 1502 */ 1503 1504 int register_netdevice_notifier(struct notifier_block *nb) 1505 { 1506 struct net_device *dev; 1507 struct net_device *last; 1508 struct net *net; 1509 int err; 1510 1511 rtnl_lock(); 1512 err = raw_notifier_chain_register(&netdev_chain, nb); 1513 if (err) 1514 goto unlock; 1515 if (dev_boot_phase) 1516 goto unlock; 1517 for_each_net(net) { 1518 for_each_netdev(net, dev) { 1519 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1520 err = notifier_to_errno(err); 1521 if (err) 1522 goto rollback; 1523 1524 if (!(dev->flags & IFF_UP)) 1525 continue; 1526 1527 call_netdevice_notifier(nb, NETDEV_UP, dev); 1528 } 1529 } 1530 1531 unlock: 1532 rtnl_unlock(); 1533 return err; 1534 1535 rollback: 1536 last = dev; 1537 for_each_net(net) { 1538 for_each_netdev(net, dev) { 1539 if (dev == last) 1540 goto outroll; 1541 1542 if (dev->flags & IFF_UP) { 1543 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1544 dev); 1545 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1546 } 1547 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1548 } 1549 } 1550 1551 outroll: 1552 raw_notifier_chain_unregister(&netdev_chain, nb); 1553 goto unlock; 1554 } 1555 EXPORT_SYMBOL(register_netdevice_notifier); 1556 1557 /** 1558 * unregister_netdevice_notifier - unregister a network notifier block 1559 * @nb: notifier 1560 * 1561 * Unregister a notifier previously registered by 1562 * register_netdevice_notifier(). The notifier is unlinked into the 1563 * kernel structures and may then be reused. A negative errno code 1564 * is returned on a failure. 1565 * 1566 * After unregistering unregister and down device events are synthesized 1567 * for all devices on the device list to the removed notifier to remove 1568 * the need for special case cleanup code. 1569 */ 1570 1571 int unregister_netdevice_notifier(struct notifier_block *nb) 1572 { 1573 struct net_device *dev; 1574 struct net *net; 1575 int err; 1576 1577 rtnl_lock(); 1578 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1579 if (err) 1580 goto unlock; 1581 1582 for_each_net(net) { 1583 for_each_netdev(net, dev) { 1584 if (dev->flags & IFF_UP) { 1585 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1586 dev); 1587 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1588 } 1589 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1590 } 1591 } 1592 unlock: 1593 rtnl_unlock(); 1594 return err; 1595 } 1596 EXPORT_SYMBOL(unregister_netdevice_notifier); 1597 1598 /** 1599 * call_netdevice_notifiers_info - call all network notifier blocks 1600 * @val: value passed unmodified to notifier function 1601 * @dev: net_device pointer passed unmodified to notifier function 1602 * @info: notifier information data 1603 * 1604 * Call all network notifier blocks. Parameters and return value 1605 * are as for raw_notifier_call_chain(). 1606 */ 1607 1608 static int call_netdevice_notifiers_info(unsigned long val, 1609 struct net_device *dev, 1610 struct netdev_notifier_info *info) 1611 { 1612 ASSERT_RTNL(); 1613 netdev_notifier_info_init(info, dev); 1614 return raw_notifier_call_chain(&netdev_chain, val, info); 1615 } 1616 1617 /** 1618 * call_netdevice_notifiers - call all network notifier blocks 1619 * @val: value passed unmodified to notifier function 1620 * @dev: net_device pointer passed unmodified to notifier function 1621 * 1622 * Call all network notifier blocks. Parameters and return value 1623 * are as for raw_notifier_call_chain(). 1624 */ 1625 1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1627 { 1628 struct netdev_notifier_info info; 1629 1630 return call_netdevice_notifiers_info(val, dev, &info); 1631 } 1632 EXPORT_SYMBOL(call_netdevice_notifiers); 1633 1634 #ifdef CONFIG_NET_INGRESS 1635 static struct static_key ingress_needed __read_mostly; 1636 1637 void net_inc_ingress_queue(void) 1638 { 1639 static_key_slow_inc(&ingress_needed); 1640 } 1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1642 1643 void net_dec_ingress_queue(void) 1644 { 1645 static_key_slow_dec(&ingress_needed); 1646 } 1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1648 #endif 1649 1650 static struct static_key netstamp_needed __read_mostly; 1651 #ifdef HAVE_JUMP_LABEL 1652 /* We are not allowed to call static_key_slow_dec() from irq context 1653 * If net_disable_timestamp() is called from irq context, defer the 1654 * static_key_slow_dec() calls. 1655 */ 1656 static atomic_t netstamp_needed_deferred; 1657 #endif 1658 1659 void net_enable_timestamp(void) 1660 { 1661 #ifdef HAVE_JUMP_LABEL 1662 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1663 1664 if (deferred) { 1665 while (--deferred) 1666 static_key_slow_dec(&netstamp_needed); 1667 return; 1668 } 1669 #endif 1670 static_key_slow_inc(&netstamp_needed); 1671 } 1672 EXPORT_SYMBOL(net_enable_timestamp); 1673 1674 void net_disable_timestamp(void) 1675 { 1676 #ifdef HAVE_JUMP_LABEL 1677 if (in_interrupt()) { 1678 atomic_inc(&netstamp_needed_deferred); 1679 return; 1680 } 1681 #endif 1682 static_key_slow_dec(&netstamp_needed); 1683 } 1684 EXPORT_SYMBOL(net_disable_timestamp); 1685 1686 static inline void net_timestamp_set(struct sk_buff *skb) 1687 { 1688 skb->tstamp.tv64 = 0; 1689 if (static_key_false(&netstamp_needed)) 1690 __net_timestamp(skb); 1691 } 1692 1693 #define net_timestamp_check(COND, SKB) \ 1694 if (static_key_false(&netstamp_needed)) { \ 1695 if ((COND) && !(SKB)->tstamp.tv64) \ 1696 __net_timestamp(SKB); \ 1697 } \ 1698 1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb) 1700 { 1701 unsigned int len; 1702 1703 if (!(dev->flags & IFF_UP)) 1704 return false; 1705 1706 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1707 if (skb->len <= len) 1708 return true; 1709 1710 /* if TSO is enabled, we don't care about the length as the packet 1711 * could be forwarded without being segmented before 1712 */ 1713 if (skb_is_gso(skb)) 1714 return true; 1715 1716 return false; 1717 } 1718 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1719 1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1721 { 1722 if (skb_orphan_frags(skb, GFP_ATOMIC) || 1723 unlikely(!is_skb_forwardable(dev, skb))) { 1724 atomic_long_inc(&dev->rx_dropped); 1725 kfree_skb(skb); 1726 return NET_RX_DROP; 1727 } 1728 1729 skb_scrub_packet(skb, true); 1730 skb->priority = 0; 1731 skb->protocol = eth_type_trans(skb, dev); 1732 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1733 1734 return 0; 1735 } 1736 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1737 1738 /** 1739 * dev_forward_skb - loopback an skb to another netif 1740 * 1741 * @dev: destination network device 1742 * @skb: buffer to forward 1743 * 1744 * return values: 1745 * NET_RX_SUCCESS (no congestion) 1746 * NET_RX_DROP (packet was dropped, but freed) 1747 * 1748 * dev_forward_skb can be used for injecting an skb from the 1749 * start_xmit function of one device into the receive queue 1750 * of another device. 1751 * 1752 * The receiving device may be in another namespace, so 1753 * we have to clear all information in the skb that could 1754 * impact namespace isolation. 1755 */ 1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1757 { 1758 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1759 } 1760 EXPORT_SYMBOL_GPL(dev_forward_skb); 1761 1762 static inline int deliver_skb(struct sk_buff *skb, 1763 struct packet_type *pt_prev, 1764 struct net_device *orig_dev) 1765 { 1766 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1767 return -ENOMEM; 1768 atomic_inc(&skb->users); 1769 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1770 } 1771 1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1773 struct packet_type **pt, 1774 struct net_device *orig_dev, 1775 __be16 type, 1776 struct list_head *ptype_list) 1777 { 1778 struct packet_type *ptype, *pt_prev = *pt; 1779 1780 list_for_each_entry_rcu(ptype, ptype_list, list) { 1781 if (ptype->type != type) 1782 continue; 1783 if (pt_prev) 1784 deliver_skb(skb, pt_prev, orig_dev); 1785 pt_prev = ptype; 1786 } 1787 *pt = pt_prev; 1788 } 1789 1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1791 { 1792 if (!ptype->af_packet_priv || !skb->sk) 1793 return false; 1794 1795 if (ptype->id_match) 1796 return ptype->id_match(ptype, skb->sk); 1797 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1798 return true; 1799 1800 return false; 1801 } 1802 1803 /* 1804 * Support routine. Sends outgoing frames to any network 1805 * taps currently in use. 1806 */ 1807 1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1809 { 1810 struct packet_type *ptype; 1811 struct sk_buff *skb2 = NULL; 1812 struct packet_type *pt_prev = NULL; 1813 struct list_head *ptype_list = &ptype_all; 1814 1815 rcu_read_lock(); 1816 again: 1817 list_for_each_entry_rcu(ptype, ptype_list, list) { 1818 /* Never send packets back to the socket 1819 * they originated from - MvS ([email protected]) 1820 */ 1821 if (skb_loop_sk(ptype, skb)) 1822 continue; 1823 1824 if (pt_prev) { 1825 deliver_skb(skb2, pt_prev, skb->dev); 1826 pt_prev = ptype; 1827 continue; 1828 } 1829 1830 /* need to clone skb, done only once */ 1831 skb2 = skb_clone(skb, GFP_ATOMIC); 1832 if (!skb2) 1833 goto out_unlock; 1834 1835 net_timestamp_set(skb2); 1836 1837 /* skb->nh should be correctly 1838 * set by sender, so that the second statement is 1839 * just protection against buggy protocols. 1840 */ 1841 skb_reset_mac_header(skb2); 1842 1843 if (skb_network_header(skb2) < skb2->data || 1844 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1845 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1846 ntohs(skb2->protocol), 1847 dev->name); 1848 skb_reset_network_header(skb2); 1849 } 1850 1851 skb2->transport_header = skb2->network_header; 1852 skb2->pkt_type = PACKET_OUTGOING; 1853 pt_prev = ptype; 1854 } 1855 1856 if (ptype_list == &ptype_all) { 1857 ptype_list = &dev->ptype_all; 1858 goto again; 1859 } 1860 out_unlock: 1861 if (pt_prev) 1862 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1863 rcu_read_unlock(); 1864 } 1865 1866 /** 1867 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1868 * @dev: Network device 1869 * @txq: number of queues available 1870 * 1871 * If real_num_tx_queues is changed the tc mappings may no longer be 1872 * valid. To resolve this verify the tc mapping remains valid and if 1873 * not NULL the mapping. With no priorities mapping to this 1874 * offset/count pair it will no longer be used. In the worst case TC0 1875 * is invalid nothing can be done so disable priority mappings. If is 1876 * expected that drivers will fix this mapping if they can before 1877 * calling netif_set_real_num_tx_queues. 1878 */ 1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1880 { 1881 int i; 1882 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1883 1884 /* If TC0 is invalidated disable TC mapping */ 1885 if (tc->offset + tc->count > txq) { 1886 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1887 dev->num_tc = 0; 1888 return; 1889 } 1890 1891 /* Invalidated prio to tc mappings set to TC0 */ 1892 for (i = 1; i < TC_BITMASK + 1; i++) { 1893 int q = netdev_get_prio_tc_map(dev, i); 1894 1895 tc = &dev->tc_to_txq[q]; 1896 if (tc->offset + tc->count > txq) { 1897 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1898 i, q); 1899 netdev_set_prio_tc_map(dev, i, 0); 1900 } 1901 } 1902 } 1903 1904 #ifdef CONFIG_XPS 1905 static DEFINE_MUTEX(xps_map_mutex); 1906 #define xmap_dereference(P) \ 1907 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 1908 1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps, 1910 int cpu, u16 index) 1911 { 1912 struct xps_map *map = NULL; 1913 int pos; 1914 1915 if (dev_maps) 1916 map = xmap_dereference(dev_maps->cpu_map[cpu]); 1917 1918 for (pos = 0; map && pos < map->len; pos++) { 1919 if (map->queues[pos] == index) { 1920 if (map->len > 1) { 1921 map->queues[pos] = map->queues[--map->len]; 1922 } else { 1923 RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL); 1924 kfree_rcu(map, rcu); 1925 map = NULL; 1926 } 1927 break; 1928 } 1929 } 1930 1931 return map; 1932 } 1933 1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 1935 { 1936 struct xps_dev_maps *dev_maps; 1937 int cpu, i; 1938 bool active = false; 1939 1940 mutex_lock(&xps_map_mutex); 1941 dev_maps = xmap_dereference(dev->xps_maps); 1942 1943 if (!dev_maps) 1944 goto out_no_maps; 1945 1946 for_each_possible_cpu(cpu) { 1947 for (i = index; i < dev->num_tx_queues; i++) { 1948 if (!remove_xps_queue(dev_maps, cpu, i)) 1949 break; 1950 } 1951 if (i == dev->num_tx_queues) 1952 active = true; 1953 } 1954 1955 if (!active) { 1956 RCU_INIT_POINTER(dev->xps_maps, NULL); 1957 kfree_rcu(dev_maps, rcu); 1958 } 1959 1960 for (i = index; i < dev->num_tx_queues; i++) 1961 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 1962 NUMA_NO_NODE); 1963 1964 out_no_maps: 1965 mutex_unlock(&xps_map_mutex); 1966 } 1967 1968 static struct xps_map *expand_xps_map(struct xps_map *map, 1969 int cpu, u16 index) 1970 { 1971 struct xps_map *new_map; 1972 int alloc_len = XPS_MIN_MAP_ALLOC; 1973 int i, pos; 1974 1975 for (pos = 0; map && pos < map->len; pos++) { 1976 if (map->queues[pos] != index) 1977 continue; 1978 return map; 1979 } 1980 1981 /* Need to add queue to this CPU's existing map */ 1982 if (map) { 1983 if (pos < map->alloc_len) 1984 return map; 1985 1986 alloc_len = map->alloc_len * 2; 1987 } 1988 1989 /* Need to allocate new map to store queue on this CPU's map */ 1990 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 1991 cpu_to_node(cpu)); 1992 if (!new_map) 1993 return NULL; 1994 1995 for (i = 0; i < pos; i++) 1996 new_map->queues[i] = map->queues[i]; 1997 new_map->alloc_len = alloc_len; 1998 new_map->len = pos; 1999 2000 return new_map; 2001 } 2002 2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2004 u16 index) 2005 { 2006 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2007 struct xps_map *map, *new_map; 2008 int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES); 2009 int cpu, numa_node_id = -2; 2010 bool active = false; 2011 2012 mutex_lock(&xps_map_mutex); 2013 2014 dev_maps = xmap_dereference(dev->xps_maps); 2015 2016 /* allocate memory for queue storage */ 2017 for_each_online_cpu(cpu) { 2018 if (!cpumask_test_cpu(cpu, mask)) 2019 continue; 2020 2021 if (!new_dev_maps) 2022 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2023 if (!new_dev_maps) { 2024 mutex_unlock(&xps_map_mutex); 2025 return -ENOMEM; 2026 } 2027 2028 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2029 NULL; 2030 2031 map = expand_xps_map(map, cpu, index); 2032 if (!map) 2033 goto error; 2034 2035 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2036 } 2037 2038 if (!new_dev_maps) 2039 goto out_no_new_maps; 2040 2041 for_each_possible_cpu(cpu) { 2042 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2043 /* add queue to CPU maps */ 2044 int pos = 0; 2045 2046 map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2047 while ((pos < map->len) && (map->queues[pos] != index)) 2048 pos++; 2049 2050 if (pos == map->len) 2051 map->queues[map->len++] = index; 2052 #ifdef CONFIG_NUMA 2053 if (numa_node_id == -2) 2054 numa_node_id = cpu_to_node(cpu); 2055 else if (numa_node_id != cpu_to_node(cpu)) 2056 numa_node_id = -1; 2057 #endif 2058 } else if (dev_maps) { 2059 /* fill in the new device map from the old device map */ 2060 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2061 RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map); 2062 } 2063 2064 } 2065 2066 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2067 2068 /* Cleanup old maps */ 2069 if (dev_maps) { 2070 for_each_possible_cpu(cpu) { 2071 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2072 map = xmap_dereference(dev_maps->cpu_map[cpu]); 2073 if (map && map != new_map) 2074 kfree_rcu(map, rcu); 2075 } 2076 2077 kfree_rcu(dev_maps, rcu); 2078 } 2079 2080 dev_maps = new_dev_maps; 2081 active = true; 2082 2083 out_no_new_maps: 2084 /* update Tx queue numa node */ 2085 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2086 (numa_node_id >= 0) ? numa_node_id : 2087 NUMA_NO_NODE); 2088 2089 if (!dev_maps) 2090 goto out_no_maps; 2091 2092 /* removes queue from unused CPUs */ 2093 for_each_possible_cpu(cpu) { 2094 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) 2095 continue; 2096 2097 if (remove_xps_queue(dev_maps, cpu, index)) 2098 active = true; 2099 } 2100 2101 /* free map if not active */ 2102 if (!active) { 2103 RCU_INIT_POINTER(dev->xps_maps, NULL); 2104 kfree_rcu(dev_maps, rcu); 2105 } 2106 2107 out_no_maps: 2108 mutex_unlock(&xps_map_mutex); 2109 2110 return 0; 2111 error: 2112 /* remove any maps that we added */ 2113 for_each_possible_cpu(cpu) { 2114 new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]); 2115 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) : 2116 NULL; 2117 if (new_map && new_map != map) 2118 kfree(new_map); 2119 } 2120 2121 mutex_unlock(&xps_map_mutex); 2122 2123 kfree(new_dev_maps); 2124 return -ENOMEM; 2125 } 2126 EXPORT_SYMBOL(netif_set_xps_queue); 2127 2128 #endif 2129 /* 2130 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2131 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2132 */ 2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2134 { 2135 int rc; 2136 2137 if (txq < 1 || txq > dev->num_tx_queues) 2138 return -EINVAL; 2139 2140 if (dev->reg_state == NETREG_REGISTERED || 2141 dev->reg_state == NETREG_UNREGISTERING) { 2142 ASSERT_RTNL(); 2143 2144 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2145 txq); 2146 if (rc) 2147 return rc; 2148 2149 if (dev->num_tc) 2150 netif_setup_tc(dev, txq); 2151 2152 if (txq < dev->real_num_tx_queues) { 2153 qdisc_reset_all_tx_gt(dev, txq); 2154 #ifdef CONFIG_XPS 2155 netif_reset_xps_queues_gt(dev, txq); 2156 #endif 2157 } 2158 } 2159 2160 dev->real_num_tx_queues = txq; 2161 return 0; 2162 } 2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2164 2165 #ifdef CONFIG_SYSFS 2166 /** 2167 * netif_set_real_num_rx_queues - set actual number of RX queues used 2168 * @dev: Network device 2169 * @rxq: Actual number of RX queues 2170 * 2171 * This must be called either with the rtnl_lock held or before 2172 * registration of the net device. Returns 0 on success, or a 2173 * negative error code. If called before registration, it always 2174 * succeeds. 2175 */ 2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2177 { 2178 int rc; 2179 2180 if (rxq < 1 || rxq > dev->num_rx_queues) 2181 return -EINVAL; 2182 2183 if (dev->reg_state == NETREG_REGISTERED) { 2184 ASSERT_RTNL(); 2185 2186 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2187 rxq); 2188 if (rc) 2189 return rc; 2190 } 2191 2192 dev->real_num_rx_queues = rxq; 2193 return 0; 2194 } 2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2196 #endif 2197 2198 /** 2199 * netif_get_num_default_rss_queues - default number of RSS queues 2200 * 2201 * This routine should set an upper limit on the number of RSS queues 2202 * used by default by multiqueue devices. 2203 */ 2204 int netif_get_num_default_rss_queues(void) 2205 { 2206 return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2207 } 2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2209 2210 static inline void __netif_reschedule(struct Qdisc *q) 2211 { 2212 struct softnet_data *sd; 2213 unsigned long flags; 2214 2215 local_irq_save(flags); 2216 sd = this_cpu_ptr(&softnet_data); 2217 q->next_sched = NULL; 2218 *sd->output_queue_tailp = q; 2219 sd->output_queue_tailp = &q->next_sched; 2220 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2221 local_irq_restore(flags); 2222 } 2223 2224 void __netif_schedule(struct Qdisc *q) 2225 { 2226 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2227 __netif_reschedule(q); 2228 } 2229 EXPORT_SYMBOL(__netif_schedule); 2230 2231 struct dev_kfree_skb_cb { 2232 enum skb_free_reason reason; 2233 }; 2234 2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2236 { 2237 return (struct dev_kfree_skb_cb *)skb->cb; 2238 } 2239 2240 void netif_schedule_queue(struct netdev_queue *txq) 2241 { 2242 rcu_read_lock(); 2243 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2244 struct Qdisc *q = rcu_dereference(txq->qdisc); 2245 2246 __netif_schedule(q); 2247 } 2248 rcu_read_unlock(); 2249 } 2250 EXPORT_SYMBOL(netif_schedule_queue); 2251 2252 /** 2253 * netif_wake_subqueue - allow sending packets on subqueue 2254 * @dev: network device 2255 * @queue_index: sub queue index 2256 * 2257 * Resume individual transmit queue of a device with multiple transmit queues. 2258 */ 2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index) 2260 { 2261 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index); 2262 2263 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) { 2264 struct Qdisc *q; 2265 2266 rcu_read_lock(); 2267 q = rcu_dereference(txq->qdisc); 2268 __netif_schedule(q); 2269 rcu_read_unlock(); 2270 } 2271 } 2272 EXPORT_SYMBOL(netif_wake_subqueue); 2273 2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2275 { 2276 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2277 struct Qdisc *q; 2278 2279 rcu_read_lock(); 2280 q = rcu_dereference(dev_queue->qdisc); 2281 __netif_schedule(q); 2282 rcu_read_unlock(); 2283 } 2284 } 2285 EXPORT_SYMBOL(netif_tx_wake_queue); 2286 2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2288 { 2289 unsigned long flags; 2290 2291 if (likely(atomic_read(&skb->users) == 1)) { 2292 smp_rmb(); 2293 atomic_set(&skb->users, 0); 2294 } else if (likely(!atomic_dec_and_test(&skb->users))) { 2295 return; 2296 } 2297 get_kfree_skb_cb(skb)->reason = reason; 2298 local_irq_save(flags); 2299 skb->next = __this_cpu_read(softnet_data.completion_queue); 2300 __this_cpu_write(softnet_data.completion_queue, skb); 2301 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2302 local_irq_restore(flags); 2303 } 2304 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2305 2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2307 { 2308 if (in_irq() || irqs_disabled()) 2309 __dev_kfree_skb_irq(skb, reason); 2310 else 2311 dev_kfree_skb(skb); 2312 } 2313 EXPORT_SYMBOL(__dev_kfree_skb_any); 2314 2315 2316 /** 2317 * netif_device_detach - mark device as removed 2318 * @dev: network device 2319 * 2320 * Mark device as removed from system and therefore no longer available. 2321 */ 2322 void netif_device_detach(struct net_device *dev) 2323 { 2324 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2325 netif_running(dev)) { 2326 netif_tx_stop_all_queues(dev); 2327 } 2328 } 2329 EXPORT_SYMBOL(netif_device_detach); 2330 2331 /** 2332 * netif_device_attach - mark device as attached 2333 * @dev: network device 2334 * 2335 * Mark device as attached from system and restart if needed. 2336 */ 2337 void netif_device_attach(struct net_device *dev) 2338 { 2339 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2340 netif_running(dev)) { 2341 netif_tx_wake_all_queues(dev); 2342 __netdev_watchdog_up(dev); 2343 } 2344 } 2345 EXPORT_SYMBOL(netif_device_attach); 2346 2347 /* 2348 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2349 * to be used as a distribution range. 2350 */ 2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2352 unsigned int num_tx_queues) 2353 { 2354 u32 hash; 2355 u16 qoffset = 0; 2356 u16 qcount = num_tx_queues; 2357 2358 if (skb_rx_queue_recorded(skb)) { 2359 hash = skb_get_rx_queue(skb); 2360 while (unlikely(hash >= num_tx_queues)) 2361 hash -= num_tx_queues; 2362 return hash; 2363 } 2364 2365 if (dev->num_tc) { 2366 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2367 qoffset = dev->tc_to_txq[tc].offset; 2368 qcount = dev->tc_to_txq[tc].count; 2369 } 2370 2371 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2372 } 2373 EXPORT_SYMBOL(__skb_tx_hash); 2374 2375 static void skb_warn_bad_offload(const struct sk_buff *skb) 2376 { 2377 static const netdev_features_t null_features = 0; 2378 struct net_device *dev = skb->dev; 2379 const char *driver = ""; 2380 2381 if (!net_ratelimit()) 2382 return; 2383 2384 if (dev && dev->dev.parent) 2385 driver = dev_driver_string(dev->dev.parent); 2386 2387 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2388 "gso_type=%d ip_summed=%d\n", 2389 driver, dev ? &dev->features : &null_features, 2390 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2391 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2392 skb_shinfo(skb)->gso_type, skb->ip_summed); 2393 } 2394 2395 /* 2396 * Invalidate hardware checksum when packet is to be mangled, and 2397 * complete checksum manually on outgoing path. 2398 */ 2399 int skb_checksum_help(struct sk_buff *skb) 2400 { 2401 __wsum csum; 2402 int ret = 0, offset; 2403 2404 if (skb->ip_summed == CHECKSUM_COMPLETE) 2405 goto out_set_summed; 2406 2407 if (unlikely(skb_shinfo(skb)->gso_size)) { 2408 skb_warn_bad_offload(skb); 2409 return -EINVAL; 2410 } 2411 2412 /* Before computing a checksum, we should make sure no frag could 2413 * be modified by an external entity : checksum could be wrong. 2414 */ 2415 if (skb_has_shared_frag(skb)) { 2416 ret = __skb_linearize(skb); 2417 if (ret) 2418 goto out; 2419 } 2420 2421 offset = skb_checksum_start_offset(skb); 2422 BUG_ON(offset >= skb_headlen(skb)); 2423 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2424 2425 offset += skb->csum_offset; 2426 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2427 2428 if (skb_cloned(skb) && 2429 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2430 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2431 if (ret) 2432 goto out; 2433 } 2434 2435 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 2436 out_set_summed: 2437 skb->ip_summed = CHECKSUM_NONE; 2438 out: 2439 return ret; 2440 } 2441 EXPORT_SYMBOL(skb_checksum_help); 2442 2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2444 { 2445 __be16 type = skb->protocol; 2446 2447 /* Tunnel gso handlers can set protocol to ethernet. */ 2448 if (type == htons(ETH_P_TEB)) { 2449 struct ethhdr *eth; 2450 2451 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2452 return 0; 2453 2454 eth = (struct ethhdr *)skb_mac_header(skb); 2455 type = eth->h_proto; 2456 } 2457 2458 return __vlan_get_protocol(skb, type, depth); 2459 } 2460 2461 /** 2462 * skb_mac_gso_segment - mac layer segmentation handler. 2463 * @skb: buffer to segment 2464 * @features: features for the output path (see dev->features) 2465 */ 2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2467 netdev_features_t features) 2468 { 2469 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2470 struct packet_offload *ptype; 2471 int vlan_depth = skb->mac_len; 2472 __be16 type = skb_network_protocol(skb, &vlan_depth); 2473 2474 if (unlikely(!type)) 2475 return ERR_PTR(-EINVAL); 2476 2477 __skb_pull(skb, vlan_depth); 2478 2479 rcu_read_lock(); 2480 list_for_each_entry_rcu(ptype, &offload_base, list) { 2481 if (ptype->type == type && ptype->callbacks.gso_segment) { 2482 segs = ptype->callbacks.gso_segment(skb, features); 2483 break; 2484 } 2485 } 2486 rcu_read_unlock(); 2487 2488 __skb_push(skb, skb->data - skb_mac_header(skb)); 2489 2490 return segs; 2491 } 2492 EXPORT_SYMBOL(skb_mac_gso_segment); 2493 2494 2495 /* openvswitch calls this on rx path, so we need a different check. 2496 */ 2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2498 { 2499 if (tx_path) 2500 return skb->ip_summed != CHECKSUM_PARTIAL; 2501 else 2502 return skb->ip_summed == CHECKSUM_NONE; 2503 } 2504 2505 /** 2506 * __skb_gso_segment - Perform segmentation on skb. 2507 * @skb: buffer to segment 2508 * @features: features for the output path (see dev->features) 2509 * @tx_path: whether it is called in TX path 2510 * 2511 * This function segments the given skb and returns a list of segments. 2512 * 2513 * It may return NULL if the skb requires no segmentation. This is 2514 * only possible when GSO is used for verifying header integrity. 2515 */ 2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2517 netdev_features_t features, bool tx_path) 2518 { 2519 if (unlikely(skb_needs_check(skb, tx_path))) { 2520 int err; 2521 2522 skb_warn_bad_offload(skb); 2523 2524 err = skb_cow_head(skb, 0); 2525 if (err < 0) 2526 return ERR_PTR(err); 2527 } 2528 2529 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2530 SKB_GSO_CB(skb)->encap_level = 0; 2531 2532 skb_reset_mac_header(skb); 2533 skb_reset_mac_len(skb); 2534 2535 return skb_mac_gso_segment(skb, features); 2536 } 2537 EXPORT_SYMBOL(__skb_gso_segment); 2538 2539 /* Take action when hardware reception checksum errors are detected. */ 2540 #ifdef CONFIG_BUG 2541 void netdev_rx_csum_fault(struct net_device *dev) 2542 { 2543 if (net_ratelimit()) { 2544 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2545 dump_stack(); 2546 } 2547 } 2548 EXPORT_SYMBOL(netdev_rx_csum_fault); 2549 #endif 2550 2551 /* Actually, we should eliminate this check as soon as we know, that: 2552 * 1. IOMMU is present and allows to map all the memory. 2553 * 2. No high memory really exists on this machine. 2554 */ 2555 2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2557 { 2558 #ifdef CONFIG_HIGHMEM 2559 int i; 2560 if (!(dev->features & NETIF_F_HIGHDMA)) { 2561 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2562 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2563 if (PageHighMem(skb_frag_page(frag))) 2564 return 1; 2565 } 2566 } 2567 2568 if (PCI_DMA_BUS_IS_PHYS) { 2569 struct device *pdev = dev->dev.parent; 2570 2571 if (!pdev) 2572 return 0; 2573 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2574 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2575 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2576 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2577 return 1; 2578 } 2579 } 2580 #endif 2581 return 0; 2582 } 2583 2584 /* If MPLS offload request, verify we are testing hardware MPLS features 2585 * instead of standard features for the netdev. 2586 */ 2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2588 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2589 netdev_features_t features, 2590 __be16 type) 2591 { 2592 if (eth_p_mpls(type)) 2593 features &= skb->dev->mpls_features; 2594 2595 return features; 2596 } 2597 #else 2598 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2599 netdev_features_t features, 2600 __be16 type) 2601 { 2602 return features; 2603 } 2604 #endif 2605 2606 static netdev_features_t harmonize_features(struct sk_buff *skb, 2607 netdev_features_t features) 2608 { 2609 int tmp; 2610 __be16 type; 2611 2612 type = skb_network_protocol(skb, &tmp); 2613 features = net_mpls_features(skb, features, type); 2614 2615 if (skb->ip_summed != CHECKSUM_NONE && 2616 !can_checksum_protocol(features, type)) { 2617 features &= ~NETIF_F_ALL_CSUM; 2618 } else if (illegal_highdma(skb->dev, skb)) { 2619 features &= ~NETIF_F_SG; 2620 } 2621 2622 return features; 2623 } 2624 2625 netdev_features_t passthru_features_check(struct sk_buff *skb, 2626 struct net_device *dev, 2627 netdev_features_t features) 2628 { 2629 return features; 2630 } 2631 EXPORT_SYMBOL(passthru_features_check); 2632 2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2634 struct net_device *dev, 2635 netdev_features_t features) 2636 { 2637 return vlan_features_check(skb, features); 2638 } 2639 2640 netdev_features_t netif_skb_features(struct sk_buff *skb) 2641 { 2642 struct net_device *dev = skb->dev; 2643 netdev_features_t features = dev->features; 2644 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2645 2646 if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs) 2647 features &= ~NETIF_F_GSO_MASK; 2648 2649 /* If encapsulation offload request, verify we are testing 2650 * hardware encapsulation features instead of standard 2651 * features for the netdev 2652 */ 2653 if (skb->encapsulation) 2654 features &= dev->hw_enc_features; 2655 2656 if (skb_vlan_tagged(skb)) 2657 features = netdev_intersect_features(features, 2658 dev->vlan_features | 2659 NETIF_F_HW_VLAN_CTAG_TX | 2660 NETIF_F_HW_VLAN_STAG_TX); 2661 2662 if (dev->netdev_ops->ndo_features_check) 2663 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2664 features); 2665 else 2666 features &= dflt_features_check(skb, dev, features); 2667 2668 return harmonize_features(skb, features); 2669 } 2670 EXPORT_SYMBOL(netif_skb_features); 2671 2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2673 struct netdev_queue *txq, bool more) 2674 { 2675 unsigned int len; 2676 int rc; 2677 2678 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2679 dev_queue_xmit_nit(skb, dev); 2680 2681 len = skb->len; 2682 trace_net_dev_start_xmit(skb, dev); 2683 rc = netdev_start_xmit(skb, dev, txq, more); 2684 trace_net_dev_xmit(skb, rc, dev, len); 2685 2686 return rc; 2687 } 2688 2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2690 struct netdev_queue *txq, int *ret) 2691 { 2692 struct sk_buff *skb = first; 2693 int rc = NETDEV_TX_OK; 2694 2695 while (skb) { 2696 struct sk_buff *next = skb->next; 2697 2698 skb->next = NULL; 2699 rc = xmit_one(skb, dev, txq, next != NULL); 2700 if (unlikely(!dev_xmit_complete(rc))) { 2701 skb->next = next; 2702 goto out; 2703 } 2704 2705 skb = next; 2706 if (netif_xmit_stopped(txq) && skb) { 2707 rc = NETDEV_TX_BUSY; 2708 break; 2709 } 2710 } 2711 2712 out: 2713 *ret = rc; 2714 return skb; 2715 } 2716 2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 2718 netdev_features_t features) 2719 { 2720 if (skb_vlan_tag_present(skb) && 2721 !vlan_hw_offload_capable(features, skb->vlan_proto)) 2722 skb = __vlan_hwaccel_push_inside(skb); 2723 return skb; 2724 } 2725 2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 2727 { 2728 netdev_features_t features; 2729 2730 if (skb->next) 2731 return skb; 2732 2733 features = netif_skb_features(skb); 2734 skb = validate_xmit_vlan(skb, features); 2735 if (unlikely(!skb)) 2736 goto out_null; 2737 2738 if (netif_needs_gso(skb, features)) { 2739 struct sk_buff *segs; 2740 2741 segs = skb_gso_segment(skb, features); 2742 if (IS_ERR(segs)) { 2743 goto out_kfree_skb; 2744 } else if (segs) { 2745 consume_skb(skb); 2746 skb = segs; 2747 } 2748 } else { 2749 if (skb_needs_linearize(skb, features) && 2750 __skb_linearize(skb)) 2751 goto out_kfree_skb; 2752 2753 /* If packet is not checksummed and device does not 2754 * support checksumming for this protocol, complete 2755 * checksumming here. 2756 */ 2757 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2758 if (skb->encapsulation) 2759 skb_set_inner_transport_header(skb, 2760 skb_checksum_start_offset(skb)); 2761 else 2762 skb_set_transport_header(skb, 2763 skb_checksum_start_offset(skb)); 2764 if (!(features & NETIF_F_ALL_CSUM) && 2765 skb_checksum_help(skb)) 2766 goto out_kfree_skb; 2767 } 2768 } 2769 2770 return skb; 2771 2772 out_kfree_skb: 2773 kfree_skb(skb); 2774 out_null: 2775 return NULL; 2776 } 2777 2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 2779 { 2780 struct sk_buff *next, *head = NULL, *tail; 2781 2782 for (; skb != NULL; skb = next) { 2783 next = skb->next; 2784 skb->next = NULL; 2785 2786 /* in case skb wont be segmented, point to itself */ 2787 skb->prev = skb; 2788 2789 skb = validate_xmit_skb(skb, dev); 2790 if (!skb) 2791 continue; 2792 2793 if (!head) 2794 head = skb; 2795 else 2796 tail->next = skb; 2797 /* If skb was segmented, skb->prev points to 2798 * the last segment. If not, it still contains skb. 2799 */ 2800 tail = skb->prev; 2801 } 2802 return head; 2803 } 2804 2805 static void qdisc_pkt_len_init(struct sk_buff *skb) 2806 { 2807 const struct skb_shared_info *shinfo = skb_shinfo(skb); 2808 2809 qdisc_skb_cb(skb)->pkt_len = skb->len; 2810 2811 /* To get more precise estimation of bytes sent on wire, 2812 * we add to pkt_len the headers size of all segments 2813 */ 2814 if (shinfo->gso_size) { 2815 unsigned int hdr_len; 2816 u16 gso_segs = shinfo->gso_segs; 2817 2818 /* mac layer + network layer */ 2819 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 2820 2821 /* + transport layer */ 2822 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 2823 hdr_len += tcp_hdrlen(skb); 2824 else 2825 hdr_len += sizeof(struct udphdr); 2826 2827 if (shinfo->gso_type & SKB_GSO_DODGY) 2828 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 2829 shinfo->gso_size); 2830 2831 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 2832 } 2833 } 2834 2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2836 struct net_device *dev, 2837 struct netdev_queue *txq) 2838 { 2839 spinlock_t *root_lock = qdisc_lock(q); 2840 bool contended; 2841 int rc; 2842 2843 qdisc_pkt_len_init(skb); 2844 qdisc_calculate_pkt_len(skb, q); 2845 /* 2846 * Heuristic to force contended enqueues to serialize on a 2847 * separate lock before trying to get qdisc main lock. 2848 * This permits __QDISC___STATE_RUNNING owner to get the lock more 2849 * often and dequeue packets faster. 2850 */ 2851 contended = qdisc_is_running(q); 2852 if (unlikely(contended)) 2853 spin_lock(&q->busylock); 2854 2855 spin_lock(root_lock); 2856 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2857 kfree_skb(skb); 2858 rc = NET_XMIT_DROP; 2859 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2860 qdisc_run_begin(q)) { 2861 /* 2862 * This is a work-conserving queue; there are no old skbs 2863 * waiting to be sent out; and the qdisc is not running - 2864 * xmit the skb directly. 2865 */ 2866 2867 qdisc_bstats_update(q, skb); 2868 2869 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 2870 if (unlikely(contended)) { 2871 spin_unlock(&q->busylock); 2872 contended = false; 2873 } 2874 __qdisc_run(q); 2875 } else 2876 qdisc_run_end(q); 2877 2878 rc = NET_XMIT_SUCCESS; 2879 } else { 2880 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2881 if (qdisc_run_begin(q)) { 2882 if (unlikely(contended)) { 2883 spin_unlock(&q->busylock); 2884 contended = false; 2885 } 2886 __qdisc_run(q); 2887 } 2888 } 2889 spin_unlock(root_lock); 2890 if (unlikely(contended)) 2891 spin_unlock(&q->busylock); 2892 return rc; 2893 } 2894 2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 2896 static void skb_update_prio(struct sk_buff *skb) 2897 { 2898 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 2899 2900 if (!skb->priority && skb->sk && map) { 2901 unsigned int prioidx = skb->sk->sk_cgrp_prioidx; 2902 2903 if (prioidx < map->priomap_len) 2904 skb->priority = map->priomap[prioidx]; 2905 } 2906 } 2907 #else 2908 #define skb_update_prio(skb) 2909 #endif 2910 2911 DEFINE_PER_CPU(int, xmit_recursion); 2912 EXPORT_SYMBOL(xmit_recursion); 2913 2914 #define RECURSION_LIMIT 10 2915 2916 /** 2917 * dev_loopback_xmit - loop back @skb 2918 * @net: network namespace this loopback is happening in 2919 * @sk: sk needed to be a netfilter okfn 2920 * @skb: buffer to transmit 2921 */ 2922 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 2923 { 2924 skb_reset_mac_header(skb); 2925 __skb_pull(skb, skb_network_offset(skb)); 2926 skb->pkt_type = PACKET_LOOPBACK; 2927 skb->ip_summed = CHECKSUM_UNNECESSARY; 2928 WARN_ON(!skb_dst(skb)); 2929 skb_dst_force(skb); 2930 netif_rx_ni(skb); 2931 return 0; 2932 } 2933 EXPORT_SYMBOL(dev_loopback_xmit); 2934 2935 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2936 { 2937 #ifdef CONFIG_XPS 2938 struct xps_dev_maps *dev_maps; 2939 struct xps_map *map; 2940 int queue_index = -1; 2941 2942 rcu_read_lock(); 2943 dev_maps = rcu_dereference(dev->xps_maps); 2944 if (dev_maps) { 2945 map = rcu_dereference( 2946 dev_maps->cpu_map[skb->sender_cpu - 1]); 2947 if (map) { 2948 if (map->len == 1) 2949 queue_index = map->queues[0]; 2950 else 2951 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 2952 map->len)]; 2953 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2954 queue_index = -1; 2955 } 2956 } 2957 rcu_read_unlock(); 2958 2959 return queue_index; 2960 #else 2961 return -1; 2962 #endif 2963 } 2964 2965 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 2966 { 2967 struct sock *sk = skb->sk; 2968 int queue_index = sk_tx_queue_get(sk); 2969 2970 if (queue_index < 0 || skb->ooo_okay || 2971 queue_index >= dev->real_num_tx_queues) { 2972 int new_index = get_xps_queue(dev, skb); 2973 if (new_index < 0) 2974 new_index = skb_tx_hash(dev, skb); 2975 2976 if (queue_index != new_index && sk && 2977 sk_fullsock(sk) && 2978 rcu_access_pointer(sk->sk_dst_cache)) 2979 sk_tx_queue_set(sk, new_index); 2980 2981 queue_index = new_index; 2982 } 2983 2984 return queue_index; 2985 } 2986 2987 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 2988 struct sk_buff *skb, 2989 void *accel_priv) 2990 { 2991 int queue_index = 0; 2992 2993 #ifdef CONFIG_XPS 2994 if (skb->sender_cpu == 0) 2995 skb->sender_cpu = raw_smp_processor_id() + 1; 2996 #endif 2997 2998 if (dev->real_num_tx_queues != 1) { 2999 const struct net_device_ops *ops = dev->netdev_ops; 3000 if (ops->ndo_select_queue) 3001 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3002 __netdev_pick_tx); 3003 else 3004 queue_index = __netdev_pick_tx(dev, skb); 3005 3006 if (!accel_priv) 3007 queue_index = netdev_cap_txqueue(dev, queue_index); 3008 } 3009 3010 skb_set_queue_mapping(skb, queue_index); 3011 return netdev_get_tx_queue(dev, queue_index); 3012 } 3013 3014 /** 3015 * __dev_queue_xmit - transmit a buffer 3016 * @skb: buffer to transmit 3017 * @accel_priv: private data used for L2 forwarding offload 3018 * 3019 * Queue a buffer for transmission to a network device. The caller must 3020 * have set the device and priority and built the buffer before calling 3021 * this function. The function can be called from an interrupt. 3022 * 3023 * A negative errno code is returned on a failure. A success does not 3024 * guarantee the frame will be transmitted as it may be dropped due 3025 * to congestion or traffic shaping. 3026 * 3027 * ----------------------------------------------------------------------------------- 3028 * I notice this method can also return errors from the queue disciplines, 3029 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3030 * be positive. 3031 * 3032 * Regardless of the return value, the skb is consumed, so it is currently 3033 * difficult to retry a send to this method. (You can bump the ref count 3034 * before sending to hold a reference for retry if you are careful.) 3035 * 3036 * When calling this method, interrupts MUST be enabled. This is because 3037 * the BH enable code must have IRQs enabled so that it will not deadlock. 3038 * --BLG 3039 */ 3040 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3041 { 3042 struct net_device *dev = skb->dev; 3043 struct netdev_queue *txq; 3044 struct Qdisc *q; 3045 int rc = -ENOMEM; 3046 3047 skb_reset_mac_header(skb); 3048 3049 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3050 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3051 3052 /* Disable soft irqs for various locks below. Also 3053 * stops preemption for RCU. 3054 */ 3055 rcu_read_lock_bh(); 3056 3057 skb_update_prio(skb); 3058 3059 /* If device/qdisc don't need skb->dst, release it right now while 3060 * its hot in this cpu cache. 3061 */ 3062 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3063 skb_dst_drop(skb); 3064 else 3065 skb_dst_force(skb); 3066 3067 #ifdef CONFIG_NET_SWITCHDEV 3068 /* Don't forward if offload device already forwarded */ 3069 if (skb->offload_fwd_mark && 3070 skb->offload_fwd_mark == dev->offload_fwd_mark) { 3071 consume_skb(skb); 3072 rc = NET_XMIT_SUCCESS; 3073 goto out; 3074 } 3075 #endif 3076 3077 txq = netdev_pick_tx(dev, skb, accel_priv); 3078 q = rcu_dereference_bh(txq->qdisc); 3079 3080 #ifdef CONFIG_NET_CLS_ACT 3081 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 3082 #endif 3083 trace_net_dev_queue(skb); 3084 if (q->enqueue) { 3085 rc = __dev_xmit_skb(skb, q, dev, txq); 3086 goto out; 3087 } 3088 3089 /* The device has no queue. Common case for software devices: 3090 loopback, all the sorts of tunnels... 3091 3092 Really, it is unlikely that netif_tx_lock protection is necessary 3093 here. (f.e. loopback and IP tunnels are clean ignoring statistics 3094 counters.) 3095 However, it is possible, that they rely on protection 3096 made by us here. 3097 3098 Check this and shot the lock. It is not prone from deadlocks. 3099 Either shot noqueue qdisc, it is even simpler 8) 3100 */ 3101 if (dev->flags & IFF_UP) { 3102 int cpu = smp_processor_id(); /* ok because BHs are off */ 3103 3104 if (txq->xmit_lock_owner != cpu) { 3105 3106 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 3107 goto recursion_alert; 3108 3109 skb = validate_xmit_skb(skb, dev); 3110 if (!skb) 3111 goto drop; 3112 3113 HARD_TX_LOCK(dev, txq, cpu); 3114 3115 if (!netif_xmit_stopped(txq)) { 3116 __this_cpu_inc(xmit_recursion); 3117 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3118 __this_cpu_dec(xmit_recursion); 3119 if (dev_xmit_complete(rc)) { 3120 HARD_TX_UNLOCK(dev, txq); 3121 goto out; 3122 } 3123 } 3124 HARD_TX_UNLOCK(dev, txq); 3125 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3126 dev->name); 3127 } else { 3128 /* Recursion is detected! It is possible, 3129 * unfortunately 3130 */ 3131 recursion_alert: 3132 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3133 dev->name); 3134 } 3135 } 3136 3137 rc = -ENETDOWN; 3138 drop: 3139 rcu_read_unlock_bh(); 3140 3141 atomic_long_inc(&dev->tx_dropped); 3142 kfree_skb_list(skb); 3143 return rc; 3144 out: 3145 rcu_read_unlock_bh(); 3146 return rc; 3147 } 3148 3149 int dev_queue_xmit(struct sk_buff *skb) 3150 { 3151 return __dev_queue_xmit(skb, NULL); 3152 } 3153 EXPORT_SYMBOL(dev_queue_xmit); 3154 3155 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3156 { 3157 return __dev_queue_xmit(skb, accel_priv); 3158 } 3159 EXPORT_SYMBOL(dev_queue_xmit_accel); 3160 3161 3162 /*======================================================================= 3163 Receiver routines 3164 =======================================================================*/ 3165 3166 int netdev_max_backlog __read_mostly = 1000; 3167 EXPORT_SYMBOL(netdev_max_backlog); 3168 3169 int netdev_tstamp_prequeue __read_mostly = 1; 3170 int netdev_budget __read_mostly = 300; 3171 int weight_p __read_mostly = 64; /* old backlog weight */ 3172 3173 /* Called with irq disabled */ 3174 static inline void ____napi_schedule(struct softnet_data *sd, 3175 struct napi_struct *napi) 3176 { 3177 list_add_tail(&napi->poll_list, &sd->poll_list); 3178 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3179 } 3180 3181 #ifdef CONFIG_RPS 3182 3183 /* One global table that all flow-based protocols share. */ 3184 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3185 EXPORT_SYMBOL(rps_sock_flow_table); 3186 u32 rps_cpu_mask __read_mostly; 3187 EXPORT_SYMBOL(rps_cpu_mask); 3188 3189 struct static_key rps_needed __read_mostly; 3190 3191 static struct rps_dev_flow * 3192 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3193 struct rps_dev_flow *rflow, u16 next_cpu) 3194 { 3195 if (next_cpu < nr_cpu_ids) { 3196 #ifdef CONFIG_RFS_ACCEL 3197 struct netdev_rx_queue *rxqueue; 3198 struct rps_dev_flow_table *flow_table; 3199 struct rps_dev_flow *old_rflow; 3200 u32 flow_id; 3201 u16 rxq_index; 3202 int rc; 3203 3204 /* Should we steer this flow to a different hardware queue? */ 3205 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3206 !(dev->features & NETIF_F_NTUPLE)) 3207 goto out; 3208 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3209 if (rxq_index == skb_get_rx_queue(skb)) 3210 goto out; 3211 3212 rxqueue = dev->_rx + rxq_index; 3213 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3214 if (!flow_table) 3215 goto out; 3216 flow_id = skb_get_hash(skb) & flow_table->mask; 3217 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3218 rxq_index, flow_id); 3219 if (rc < 0) 3220 goto out; 3221 old_rflow = rflow; 3222 rflow = &flow_table->flows[flow_id]; 3223 rflow->filter = rc; 3224 if (old_rflow->filter == rflow->filter) 3225 old_rflow->filter = RPS_NO_FILTER; 3226 out: 3227 #endif 3228 rflow->last_qtail = 3229 per_cpu(softnet_data, next_cpu).input_queue_head; 3230 } 3231 3232 rflow->cpu = next_cpu; 3233 return rflow; 3234 } 3235 3236 /* 3237 * get_rps_cpu is called from netif_receive_skb and returns the target 3238 * CPU from the RPS map of the receiving queue for a given skb. 3239 * rcu_read_lock must be held on entry. 3240 */ 3241 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3242 struct rps_dev_flow **rflowp) 3243 { 3244 const struct rps_sock_flow_table *sock_flow_table; 3245 struct netdev_rx_queue *rxqueue = dev->_rx; 3246 struct rps_dev_flow_table *flow_table; 3247 struct rps_map *map; 3248 int cpu = -1; 3249 u32 tcpu; 3250 u32 hash; 3251 3252 if (skb_rx_queue_recorded(skb)) { 3253 u16 index = skb_get_rx_queue(skb); 3254 3255 if (unlikely(index >= dev->real_num_rx_queues)) { 3256 WARN_ONCE(dev->real_num_rx_queues > 1, 3257 "%s received packet on queue %u, but number " 3258 "of RX queues is %u\n", 3259 dev->name, index, dev->real_num_rx_queues); 3260 goto done; 3261 } 3262 rxqueue += index; 3263 } 3264 3265 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3266 3267 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3268 map = rcu_dereference(rxqueue->rps_map); 3269 if (!flow_table && !map) 3270 goto done; 3271 3272 skb_reset_network_header(skb); 3273 hash = skb_get_hash(skb); 3274 if (!hash) 3275 goto done; 3276 3277 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3278 if (flow_table && sock_flow_table) { 3279 struct rps_dev_flow *rflow; 3280 u32 next_cpu; 3281 u32 ident; 3282 3283 /* First check into global flow table if there is a match */ 3284 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3285 if ((ident ^ hash) & ~rps_cpu_mask) 3286 goto try_rps; 3287 3288 next_cpu = ident & rps_cpu_mask; 3289 3290 /* OK, now we know there is a match, 3291 * we can look at the local (per receive queue) flow table 3292 */ 3293 rflow = &flow_table->flows[hash & flow_table->mask]; 3294 tcpu = rflow->cpu; 3295 3296 /* 3297 * If the desired CPU (where last recvmsg was done) is 3298 * different from current CPU (one in the rx-queue flow 3299 * table entry), switch if one of the following holds: 3300 * - Current CPU is unset (>= nr_cpu_ids). 3301 * - Current CPU is offline. 3302 * - The current CPU's queue tail has advanced beyond the 3303 * last packet that was enqueued using this table entry. 3304 * This guarantees that all previous packets for the flow 3305 * have been dequeued, thus preserving in order delivery. 3306 */ 3307 if (unlikely(tcpu != next_cpu) && 3308 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3309 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3310 rflow->last_qtail)) >= 0)) { 3311 tcpu = next_cpu; 3312 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3313 } 3314 3315 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3316 *rflowp = rflow; 3317 cpu = tcpu; 3318 goto done; 3319 } 3320 } 3321 3322 try_rps: 3323 3324 if (map) { 3325 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3326 if (cpu_online(tcpu)) { 3327 cpu = tcpu; 3328 goto done; 3329 } 3330 } 3331 3332 done: 3333 return cpu; 3334 } 3335 3336 #ifdef CONFIG_RFS_ACCEL 3337 3338 /** 3339 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3340 * @dev: Device on which the filter was set 3341 * @rxq_index: RX queue index 3342 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3343 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3344 * 3345 * Drivers that implement ndo_rx_flow_steer() should periodically call 3346 * this function for each installed filter and remove the filters for 3347 * which it returns %true. 3348 */ 3349 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3350 u32 flow_id, u16 filter_id) 3351 { 3352 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3353 struct rps_dev_flow_table *flow_table; 3354 struct rps_dev_flow *rflow; 3355 bool expire = true; 3356 unsigned int cpu; 3357 3358 rcu_read_lock(); 3359 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3360 if (flow_table && flow_id <= flow_table->mask) { 3361 rflow = &flow_table->flows[flow_id]; 3362 cpu = ACCESS_ONCE(rflow->cpu); 3363 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3364 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3365 rflow->last_qtail) < 3366 (int)(10 * flow_table->mask))) 3367 expire = false; 3368 } 3369 rcu_read_unlock(); 3370 return expire; 3371 } 3372 EXPORT_SYMBOL(rps_may_expire_flow); 3373 3374 #endif /* CONFIG_RFS_ACCEL */ 3375 3376 /* Called from hardirq (IPI) context */ 3377 static void rps_trigger_softirq(void *data) 3378 { 3379 struct softnet_data *sd = data; 3380 3381 ____napi_schedule(sd, &sd->backlog); 3382 sd->received_rps++; 3383 } 3384 3385 #endif /* CONFIG_RPS */ 3386 3387 /* 3388 * Check if this softnet_data structure is another cpu one 3389 * If yes, queue it to our IPI list and return 1 3390 * If no, return 0 3391 */ 3392 static int rps_ipi_queued(struct softnet_data *sd) 3393 { 3394 #ifdef CONFIG_RPS 3395 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3396 3397 if (sd != mysd) { 3398 sd->rps_ipi_next = mysd->rps_ipi_list; 3399 mysd->rps_ipi_list = sd; 3400 3401 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3402 return 1; 3403 } 3404 #endif /* CONFIG_RPS */ 3405 return 0; 3406 } 3407 3408 #ifdef CONFIG_NET_FLOW_LIMIT 3409 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3410 #endif 3411 3412 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3413 { 3414 #ifdef CONFIG_NET_FLOW_LIMIT 3415 struct sd_flow_limit *fl; 3416 struct softnet_data *sd; 3417 unsigned int old_flow, new_flow; 3418 3419 if (qlen < (netdev_max_backlog >> 1)) 3420 return false; 3421 3422 sd = this_cpu_ptr(&softnet_data); 3423 3424 rcu_read_lock(); 3425 fl = rcu_dereference(sd->flow_limit); 3426 if (fl) { 3427 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3428 old_flow = fl->history[fl->history_head]; 3429 fl->history[fl->history_head] = new_flow; 3430 3431 fl->history_head++; 3432 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3433 3434 if (likely(fl->buckets[old_flow])) 3435 fl->buckets[old_flow]--; 3436 3437 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3438 fl->count++; 3439 rcu_read_unlock(); 3440 return true; 3441 } 3442 } 3443 rcu_read_unlock(); 3444 #endif 3445 return false; 3446 } 3447 3448 /* 3449 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3450 * queue (may be a remote CPU queue). 3451 */ 3452 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3453 unsigned int *qtail) 3454 { 3455 struct softnet_data *sd; 3456 unsigned long flags; 3457 unsigned int qlen; 3458 3459 sd = &per_cpu(softnet_data, cpu); 3460 3461 local_irq_save(flags); 3462 3463 rps_lock(sd); 3464 if (!netif_running(skb->dev)) 3465 goto drop; 3466 qlen = skb_queue_len(&sd->input_pkt_queue); 3467 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3468 if (qlen) { 3469 enqueue: 3470 __skb_queue_tail(&sd->input_pkt_queue, skb); 3471 input_queue_tail_incr_save(sd, qtail); 3472 rps_unlock(sd); 3473 local_irq_restore(flags); 3474 return NET_RX_SUCCESS; 3475 } 3476 3477 /* Schedule NAPI for backlog device 3478 * We can use non atomic operation since we own the queue lock 3479 */ 3480 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3481 if (!rps_ipi_queued(sd)) 3482 ____napi_schedule(sd, &sd->backlog); 3483 } 3484 goto enqueue; 3485 } 3486 3487 drop: 3488 sd->dropped++; 3489 rps_unlock(sd); 3490 3491 local_irq_restore(flags); 3492 3493 atomic_long_inc(&skb->dev->rx_dropped); 3494 kfree_skb(skb); 3495 return NET_RX_DROP; 3496 } 3497 3498 static int netif_rx_internal(struct sk_buff *skb) 3499 { 3500 int ret; 3501 3502 net_timestamp_check(netdev_tstamp_prequeue, skb); 3503 3504 trace_netif_rx(skb); 3505 #ifdef CONFIG_RPS 3506 if (static_key_false(&rps_needed)) { 3507 struct rps_dev_flow voidflow, *rflow = &voidflow; 3508 int cpu; 3509 3510 preempt_disable(); 3511 rcu_read_lock(); 3512 3513 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3514 if (cpu < 0) 3515 cpu = smp_processor_id(); 3516 3517 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3518 3519 rcu_read_unlock(); 3520 preempt_enable(); 3521 } else 3522 #endif 3523 { 3524 unsigned int qtail; 3525 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 3526 put_cpu(); 3527 } 3528 return ret; 3529 } 3530 3531 /** 3532 * netif_rx - post buffer to the network code 3533 * @skb: buffer to post 3534 * 3535 * This function receives a packet from a device driver and queues it for 3536 * the upper (protocol) levels to process. It always succeeds. The buffer 3537 * may be dropped during processing for congestion control or by the 3538 * protocol layers. 3539 * 3540 * return values: 3541 * NET_RX_SUCCESS (no congestion) 3542 * NET_RX_DROP (packet was dropped) 3543 * 3544 */ 3545 3546 int netif_rx(struct sk_buff *skb) 3547 { 3548 trace_netif_rx_entry(skb); 3549 3550 return netif_rx_internal(skb); 3551 } 3552 EXPORT_SYMBOL(netif_rx); 3553 3554 int netif_rx_ni(struct sk_buff *skb) 3555 { 3556 int err; 3557 3558 trace_netif_rx_ni_entry(skb); 3559 3560 preempt_disable(); 3561 err = netif_rx_internal(skb); 3562 if (local_softirq_pending()) 3563 do_softirq(); 3564 preempt_enable(); 3565 3566 return err; 3567 } 3568 EXPORT_SYMBOL(netif_rx_ni); 3569 3570 static void net_tx_action(struct softirq_action *h) 3571 { 3572 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 3573 3574 if (sd->completion_queue) { 3575 struct sk_buff *clist; 3576 3577 local_irq_disable(); 3578 clist = sd->completion_queue; 3579 sd->completion_queue = NULL; 3580 local_irq_enable(); 3581 3582 while (clist) { 3583 struct sk_buff *skb = clist; 3584 clist = clist->next; 3585 3586 WARN_ON(atomic_read(&skb->users)); 3587 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 3588 trace_consume_skb(skb); 3589 else 3590 trace_kfree_skb(skb, net_tx_action); 3591 __kfree_skb(skb); 3592 } 3593 } 3594 3595 if (sd->output_queue) { 3596 struct Qdisc *head; 3597 3598 local_irq_disable(); 3599 head = sd->output_queue; 3600 sd->output_queue = NULL; 3601 sd->output_queue_tailp = &sd->output_queue; 3602 local_irq_enable(); 3603 3604 while (head) { 3605 struct Qdisc *q = head; 3606 spinlock_t *root_lock; 3607 3608 head = head->next_sched; 3609 3610 root_lock = qdisc_lock(q); 3611 if (spin_trylock(root_lock)) { 3612 smp_mb__before_atomic(); 3613 clear_bit(__QDISC_STATE_SCHED, 3614 &q->state); 3615 qdisc_run(q); 3616 spin_unlock(root_lock); 3617 } else { 3618 if (!test_bit(__QDISC_STATE_DEACTIVATED, 3619 &q->state)) { 3620 __netif_reschedule(q); 3621 } else { 3622 smp_mb__before_atomic(); 3623 clear_bit(__QDISC_STATE_SCHED, 3624 &q->state); 3625 } 3626 } 3627 } 3628 } 3629 } 3630 3631 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 3632 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 3633 /* This hook is defined here for ATM LANE */ 3634 int (*br_fdb_test_addr_hook)(struct net_device *dev, 3635 unsigned char *addr) __read_mostly; 3636 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 3637 #endif 3638 3639 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3640 struct packet_type **pt_prev, 3641 int *ret, struct net_device *orig_dev) 3642 { 3643 #ifdef CONFIG_NET_CLS_ACT 3644 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 3645 struct tcf_result cl_res; 3646 3647 /* If there's at least one ingress present somewhere (so 3648 * we get here via enabled static key), remaining devices 3649 * that are not configured with an ingress qdisc will bail 3650 * out here. 3651 */ 3652 if (!cl) 3653 return skb; 3654 if (*pt_prev) { 3655 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3656 *pt_prev = NULL; 3657 } 3658 3659 qdisc_skb_cb(skb)->pkt_len = skb->len; 3660 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3661 qdisc_bstats_cpu_update(cl->q, skb); 3662 3663 switch (tc_classify(skb, cl, &cl_res, false)) { 3664 case TC_ACT_OK: 3665 case TC_ACT_RECLASSIFY: 3666 skb->tc_index = TC_H_MIN(cl_res.classid); 3667 break; 3668 case TC_ACT_SHOT: 3669 qdisc_qstats_cpu_drop(cl->q); 3670 case TC_ACT_STOLEN: 3671 case TC_ACT_QUEUED: 3672 kfree_skb(skb); 3673 return NULL; 3674 case TC_ACT_REDIRECT: 3675 /* skb_mac_header check was done by cls/act_bpf, so 3676 * we can safely push the L2 header back before 3677 * redirecting to another netdev 3678 */ 3679 __skb_push(skb, skb->mac_len); 3680 skb_do_redirect(skb); 3681 return NULL; 3682 default: 3683 break; 3684 } 3685 #endif /* CONFIG_NET_CLS_ACT */ 3686 return skb; 3687 } 3688 3689 /** 3690 * netdev_rx_handler_register - register receive handler 3691 * @dev: device to register a handler for 3692 * @rx_handler: receive handler to register 3693 * @rx_handler_data: data pointer that is used by rx handler 3694 * 3695 * Register a receive handler for a device. This handler will then be 3696 * called from __netif_receive_skb. A negative errno code is returned 3697 * on a failure. 3698 * 3699 * The caller must hold the rtnl_mutex. 3700 * 3701 * For a general description of rx_handler, see enum rx_handler_result. 3702 */ 3703 int netdev_rx_handler_register(struct net_device *dev, 3704 rx_handler_func_t *rx_handler, 3705 void *rx_handler_data) 3706 { 3707 ASSERT_RTNL(); 3708 3709 if (dev->rx_handler) 3710 return -EBUSY; 3711 3712 /* Note: rx_handler_data must be set before rx_handler */ 3713 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3714 rcu_assign_pointer(dev->rx_handler, rx_handler); 3715 3716 return 0; 3717 } 3718 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3719 3720 /** 3721 * netdev_rx_handler_unregister - unregister receive handler 3722 * @dev: device to unregister a handler from 3723 * 3724 * Unregister a receive handler from a device. 3725 * 3726 * The caller must hold the rtnl_mutex. 3727 */ 3728 void netdev_rx_handler_unregister(struct net_device *dev) 3729 { 3730 3731 ASSERT_RTNL(); 3732 RCU_INIT_POINTER(dev->rx_handler, NULL); 3733 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 3734 * section has a guarantee to see a non NULL rx_handler_data 3735 * as well. 3736 */ 3737 synchronize_net(); 3738 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 3739 } 3740 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3741 3742 /* 3743 * Limit the use of PFMEMALLOC reserves to those protocols that implement 3744 * the special handling of PFMEMALLOC skbs. 3745 */ 3746 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 3747 { 3748 switch (skb->protocol) { 3749 case htons(ETH_P_ARP): 3750 case htons(ETH_P_IP): 3751 case htons(ETH_P_IPV6): 3752 case htons(ETH_P_8021Q): 3753 case htons(ETH_P_8021AD): 3754 return true; 3755 default: 3756 return false; 3757 } 3758 } 3759 3760 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 3761 int *ret, struct net_device *orig_dev) 3762 { 3763 #ifdef CONFIG_NETFILTER_INGRESS 3764 if (nf_hook_ingress_active(skb)) { 3765 if (*pt_prev) { 3766 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3767 *pt_prev = NULL; 3768 } 3769 3770 return nf_hook_ingress(skb); 3771 } 3772 #endif /* CONFIG_NETFILTER_INGRESS */ 3773 return 0; 3774 } 3775 3776 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 3777 { 3778 struct packet_type *ptype, *pt_prev; 3779 rx_handler_func_t *rx_handler; 3780 struct net_device *orig_dev; 3781 bool deliver_exact = false; 3782 int ret = NET_RX_DROP; 3783 __be16 type; 3784 3785 net_timestamp_check(!netdev_tstamp_prequeue, skb); 3786 3787 trace_netif_receive_skb(skb); 3788 3789 orig_dev = skb->dev; 3790 3791 skb_reset_network_header(skb); 3792 if (!skb_transport_header_was_set(skb)) 3793 skb_reset_transport_header(skb); 3794 skb_reset_mac_len(skb); 3795 3796 pt_prev = NULL; 3797 3798 another_round: 3799 skb->skb_iif = skb->dev->ifindex; 3800 3801 __this_cpu_inc(softnet_data.processed); 3802 3803 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 3804 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 3805 skb = skb_vlan_untag(skb); 3806 if (unlikely(!skb)) 3807 goto out; 3808 } 3809 3810 #ifdef CONFIG_NET_CLS_ACT 3811 if (skb->tc_verd & TC_NCLS) { 3812 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3813 goto ncls; 3814 } 3815 #endif 3816 3817 if (pfmemalloc) 3818 goto skip_taps; 3819 3820 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3821 if (pt_prev) 3822 ret = deliver_skb(skb, pt_prev, orig_dev); 3823 pt_prev = ptype; 3824 } 3825 3826 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 3827 if (pt_prev) 3828 ret = deliver_skb(skb, pt_prev, orig_dev); 3829 pt_prev = ptype; 3830 } 3831 3832 skip_taps: 3833 #ifdef CONFIG_NET_INGRESS 3834 if (static_key_false(&ingress_needed)) { 3835 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3836 if (!skb) 3837 goto out; 3838 3839 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 3840 goto out; 3841 } 3842 #endif 3843 #ifdef CONFIG_NET_CLS_ACT 3844 skb->tc_verd = 0; 3845 ncls: 3846 #endif 3847 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 3848 goto drop; 3849 3850 if (skb_vlan_tag_present(skb)) { 3851 if (pt_prev) { 3852 ret = deliver_skb(skb, pt_prev, orig_dev); 3853 pt_prev = NULL; 3854 } 3855 if (vlan_do_receive(&skb)) 3856 goto another_round; 3857 else if (unlikely(!skb)) 3858 goto out; 3859 } 3860 3861 rx_handler = rcu_dereference(skb->dev->rx_handler); 3862 if (rx_handler) { 3863 if (pt_prev) { 3864 ret = deliver_skb(skb, pt_prev, orig_dev); 3865 pt_prev = NULL; 3866 } 3867 switch (rx_handler(&skb)) { 3868 case RX_HANDLER_CONSUMED: 3869 ret = NET_RX_SUCCESS; 3870 goto out; 3871 case RX_HANDLER_ANOTHER: 3872 goto another_round; 3873 case RX_HANDLER_EXACT: 3874 deliver_exact = true; 3875 case RX_HANDLER_PASS: 3876 break; 3877 default: 3878 BUG(); 3879 } 3880 } 3881 3882 if (unlikely(skb_vlan_tag_present(skb))) { 3883 if (skb_vlan_tag_get_id(skb)) 3884 skb->pkt_type = PACKET_OTHERHOST; 3885 /* Note: we might in the future use prio bits 3886 * and set skb->priority like in vlan_do_receive() 3887 * For the time being, just ignore Priority Code Point 3888 */ 3889 skb->vlan_tci = 0; 3890 } 3891 3892 type = skb->protocol; 3893 3894 /* deliver only exact match when indicated */ 3895 if (likely(!deliver_exact)) { 3896 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3897 &ptype_base[ntohs(type) & 3898 PTYPE_HASH_MASK]); 3899 } 3900 3901 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3902 &orig_dev->ptype_specific); 3903 3904 if (unlikely(skb->dev != orig_dev)) { 3905 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 3906 &skb->dev->ptype_specific); 3907 } 3908 3909 if (pt_prev) { 3910 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 3911 goto drop; 3912 else 3913 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3914 } else { 3915 drop: 3916 atomic_long_inc(&skb->dev->rx_dropped); 3917 kfree_skb(skb); 3918 /* Jamal, now you will not able to escape explaining 3919 * me how you were going to use this. :-) 3920 */ 3921 ret = NET_RX_DROP; 3922 } 3923 3924 out: 3925 return ret; 3926 } 3927 3928 static int __netif_receive_skb(struct sk_buff *skb) 3929 { 3930 int ret; 3931 3932 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 3933 unsigned long pflags = current->flags; 3934 3935 /* 3936 * PFMEMALLOC skbs are special, they should 3937 * - be delivered to SOCK_MEMALLOC sockets only 3938 * - stay away from userspace 3939 * - have bounded memory usage 3940 * 3941 * Use PF_MEMALLOC as this saves us from propagating the allocation 3942 * context down to all allocation sites. 3943 */ 3944 current->flags |= PF_MEMALLOC; 3945 ret = __netif_receive_skb_core(skb, true); 3946 tsk_restore_flags(current, pflags, PF_MEMALLOC); 3947 } else 3948 ret = __netif_receive_skb_core(skb, false); 3949 3950 return ret; 3951 } 3952 3953 static int netif_receive_skb_internal(struct sk_buff *skb) 3954 { 3955 int ret; 3956 3957 net_timestamp_check(netdev_tstamp_prequeue, skb); 3958 3959 if (skb_defer_rx_timestamp(skb)) 3960 return NET_RX_SUCCESS; 3961 3962 rcu_read_lock(); 3963 3964 #ifdef CONFIG_RPS 3965 if (static_key_false(&rps_needed)) { 3966 struct rps_dev_flow voidflow, *rflow = &voidflow; 3967 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 3968 3969 if (cpu >= 0) { 3970 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3971 rcu_read_unlock(); 3972 return ret; 3973 } 3974 } 3975 #endif 3976 ret = __netif_receive_skb(skb); 3977 rcu_read_unlock(); 3978 return ret; 3979 } 3980 3981 /** 3982 * netif_receive_skb - process receive buffer from network 3983 * @skb: buffer to process 3984 * 3985 * netif_receive_skb() is the main receive data processing function. 3986 * It always succeeds. The buffer may be dropped during processing 3987 * for congestion control or by the protocol layers. 3988 * 3989 * This function may only be called from softirq context and interrupts 3990 * should be enabled. 3991 * 3992 * Return values (usually ignored): 3993 * NET_RX_SUCCESS: no congestion 3994 * NET_RX_DROP: packet was dropped 3995 */ 3996 int netif_receive_skb(struct sk_buff *skb) 3997 { 3998 trace_netif_receive_skb_entry(skb); 3999 4000 return netif_receive_skb_internal(skb); 4001 } 4002 EXPORT_SYMBOL(netif_receive_skb); 4003 4004 /* Network device is going away, flush any packets still pending 4005 * Called with irqs disabled. 4006 */ 4007 static void flush_backlog(void *arg) 4008 { 4009 struct net_device *dev = arg; 4010 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4011 struct sk_buff *skb, *tmp; 4012 4013 rps_lock(sd); 4014 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4015 if (skb->dev == dev) { 4016 __skb_unlink(skb, &sd->input_pkt_queue); 4017 kfree_skb(skb); 4018 input_queue_head_incr(sd); 4019 } 4020 } 4021 rps_unlock(sd); 4022 4023 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4024 if (skb->dev == dev) { 4025 __skb_unlink(skb, &sd->process_queue); 4026 kfree_skb(skb); 4027 input_queue_head_incr(sd); 4028 } 4029 } 4030 } 4031 4032 static int napi_gro_complete(struct sk_buff *skb) 4033 { 4034 struct packet_offload *ptype; 4035 __be16 type = skb->protocol; 4036 struct list_head *head = &offload_base; 4037 int err = -ENOENT; 4038 4039 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4040 4041 if (NAPI_GRO_CB(skb)->count == 1) { 4042 skb_shinfo(skb)->gso_size = 0; 4043 goto out; 4044 } 4045 4046 rcu_read_lock(); 4047 list_for_each_entry_rcu(ptype, head, list) { 4048 if (ptype->type != type || !ptype->callbacks.gro_complete) 4049 continue; 4050 4051 err = ptype->callbacks.gro_complete(skb, 0); 4052 break; 4053 } 4054 rcu_read_unlock(); 4055 4056 if (err) { 4057 WARN_ON(&ptype->list == head); 4058 kfree_skb(skb); 4059 return NET_RX_SUCCESS; 4060 } 4061 4062 out: 4063 return netif_receive_skb_internal(skb); 4064 } 4065 4066 /* napi->gro_list contains packets ordered by age. 4067 * youngest packets at the head of it. 4068 * Complete skbs in reverse order to reduce latencies. 4069 */ 4070 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4071 { 4072 struct sk_buff *skb, *prev = NULL; 4073 4074 /* scan list and build reverse chain */ 4075 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4076 skb->prev = prev; 4077 prev = skb; 4078 } 4079 4080 for (skb = prev; skb; skb = prev) { 4081 skb->next = NULL; 4082 4083 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4084 return; 4085 4086 prev = skb->prev; 4087 napi_gro_complete(skb); 4088 napi->gro_count--; 4089 } 4090 4091 napi->gro_list = NULL; 4092 } 4093 EXPORT_SYMBOL(napi_gro_flush); 4094 4095 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4096 { 4097 struct sk_buff *p; 4098 unsigned int maclen = skb->dev->hard_header_len; 4099 u32 hash = skb_get_hash_raw(skb); 4100 4101 for (p = napi->gro_list; p; p = p->next) { 4102 unsigned long diffs; 4103 4104 NAPI_GRO_CB(p)->flush = 0; 4105 4106 if (hash != skb_get_hash_raw(p)) { 4107 NAPI_GRO_CB(p)->same_flow = 0; 4108 continue; 4109 } 4110 4111 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4112 diffs |= p->vlan_tci ^ skb->vlan_tci; 4113 if (maclen == ETH_HLEN) 4114 diffs |= compare_ether_header(skb_mac_header(p), 4115 skb_mac_header(skb)); 4116 else if (!diffs) 4117 diffs = memcmp(skb_mac_header(p), 4118 skb_mac_header(skb), 4119 maclen); 4120 NAPI_GRO_CB(p)->same_flow = !diffs; 4121 } 4122 } 4123 4124 static void skb_gro_reset_offset(struct sk_buff *skb) 4125 { 4126 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4127 const skb_frag_t *frag0 = &pinfo->frags[0]; 4128 4129 NAPI_GRO_CB(skb)->data_offset = 0; 4130 NAPI_GRO_CB(skb)->frag0 = NULL; 4131 NAPI_GRO_CB(skb)->frag0_len = 0; 4132 4133 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4134 pinfo->nr_frags && 4135 !PageHighMem(skb_frag_page(frag0))) { 4136 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4137 NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0); 4138 } 4139 } 4140 4141 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4142 { 4143 struct skb_shared_info *pinfo = skb_shinfo(skb); 4144 4145 BUG_ON(skb->end - skb->tail < grow); 4146 4147 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4148 4149 skb->data_len -= grow; 4150 skb->tail += grow; 4151 4152 pinfo->frags[0].page_offset += grow; 4153 skb_frag_size_sub(&pinfo->frags[0], grow); 4154 4155 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4156 skb_frag_unref(skb, 0); 4157 memmove(pinfo->frags, pinfo->frags + 1, 4158 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4159 } 4160 } 4161 4162 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4163 { 4164 struct sk_buff **pp = NULL; 4165 struct packet_offload *ptype; 4166 __be16 type = skb->protocol; 4167 struct list_head *head = &offload_base; 4168 int same_flow; 4169 enum gro_result ret; 4170 int grow; 4171 4172 if (!(skb->dev->features & NETIF_F_GRO)) 4173 goto normal; 4174 4175 if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad) 4176 goto normal; 4177 4178 gro_list_prepare(napi, skb); 4179 4180 rcu_read_lock(); 4181 list_for_each_entry_rcu(ptype, head, list) { 4182 if (ptype->type != type || !ptype->callbacks.gro_receive) 4183 continue; 4184 4185 skb_set_network_header(skb, skb_gro_offset(skb)); 4186 skb_reset_mac_len(skb); 4187 NAPI_GRO_CB(skb)->same_flow = 0; 4188 NAPI_GRO_CB(skb)->flush = 0; 4189 NAPI_GRO_CB(skb)->free = 0; 4190 NAPI_GRO_CB(skb)->udp_mark = 0; 4191 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4192 4193 /* Setup for GRO checksum validation */ 4194 switch (skb->ip_summed) { 4195 case CHECKSUM_COMPLETE: 4196 NAPI_GRO_CB(skb)->csum = skb->csum; 4197 NAPI_GRO_CB(skb)->csum_valid = 1; 4198 NAPI_GRO_CB(skb)->csum_cnt = 0; 4199 break; 4200 case CHECKSUM_UNNECESSARY: 4201 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4202 NAPI_GRO_CB(skb)->csum_valid = 0; 4203 break; 4204 default: 4205 NAPI_GRO_CB(skb)->csum_cnt = 0; 4206 NAPI_GRO_CB(skb)->csum_valid = 0; 4207 } 4208 4209 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4210 break; 4211 } 4212 rcu_read_unlock(); 4213 4214 if (&ptype->list == head) 4215 goto normal; 4216 4217 same_flow = NAPI_GRO_CB(skb)->same_flow; 4218 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4219 4220 if (pp) { 4221 struct sk_buff *nskb = *pp; 4222 4223 *pp = nskb->next; 4224 nskb->next = NULL; 4225 napi_gro_complete(nskb); 4226 napi->gro_count--; 4227 } 4228 4229 if (same_flow) 4230 goto ok; 4231 4232 if (NAPI_GRO_CB(skb)->flush) 4233 goto normal; 4234 4235 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4236 struct sk_buff *nskb = napi->gro_list; 4237 4238 /* locate the end of the list to select the 'oldest' flow */ 4239 while (nskb->next) { 4240 pp = &nskb->next; 4241 nskb = *pp; 4242 } 4243 *pp = NULL; 4244 nskb->next = NULL; 4245 napi_gro_complete(nskb); 4246 } else { 4247 napi->gro_count++; 4248 } 4249 NAPI_GRO_CB(skb)->count = 1; 4250 NAPI_GRO_CB(skb)->age = jiffies; 4251 NAPI_GRO_CB(skb)->last = skb; 4252 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4253 skb->next = napi->gro_list; 4254 napi->gro_list = skb; 4255 ret = GRO_HELD; 4256 4257 pull: 4258 grow = skb_gro_offset(skb) - skb_headlen(skb); 4259 if (grow > 0) 4260 gro_pull_from_frag0(skb, grow); 4261 ok: 4262 return ret; 4263 4264 normal: 4265 ret = GRO_NORMAL; 4266 goto pull; 4267 } 4268 4269 struct packet_offload *gro_find_receive_by_type(__be16 type) 4270 { 4271 struct list_head *offload_head = &offload_base; 4272 struct packet_offload *ptype; 4273 4274 list_for_each_entry_rcu(ptype, offload_head, list) { 4275 if (ptype->type != type || !ptype->callbacks.gro_receive) 4276 continue; 4277 return ptype; 4278 } 4279 return NULL; 4280 } 4281 EXPORT_SYMBOL(gro_find_receive_by_type); 4282 4283 struct packet_offload *gro_find_complete_by_type(__be16 type) 4284 { 4285 struct list_head *offload_head = &offload_base; 4286 struct packet_offload *ptype; 4287 4288 list_for_each_entry_rcu(ptype, offload_head, list) { 4289 if (ptype->type != type || !ptype->callbacks.gro_complete) 4290 continue; 4291 return ptype; 4292 } 4293 return NULL; 4294 } 4295 EXPORT_SYMBOL(gro_find_complete_by_type); 4296 4297 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4298 { 4299 switch (ret) { 4300 case GRO_NORMAL: 4301 if (netif_receive_skb_internal(skb)) 4302 ret = GRO_DROP; 4303 break; 4304 4305 case GRO_DROP: 4306 kfree_skb(skb); 4307 break; 4308 4309 case GRO_MERGED_FREE: 4310 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4311 kmem_cache_free(skbuff_head_cache, skb); 4312 else 4313 __kfree_skb(skb); 4314 break; 4315 4316 case GRO_HELD: 4317 case GRO_MERGED: 4318 break; 4319 } 4320 4321 return ret; 4322 } 4323 4324 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4325 { 4326 trace_napi_gro_receive_entry(skb); 4327 4328 skb_gro_reset_offset(skb); 4329 4330 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4331 } 4332 EXPORT_SYMBOL(napi_gro_receive); 4333 4334 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4335 { 4336 if (unlikely(skb->pfmemalloc)) { 4337 consume_skb(skb); 4338 return; 4339 } 4340 __skb_pull(skb, skb_headlen(skb)); 4341 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4342 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4343 skb->vlan_tci = 0; 4344 skb->dev = napi->dev; 4345 skb->skb_iif = 0; 4346 skb->encapsulation = 0; 4347 skb_shinfo(skb)->gso_type = 0; 4348 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4349 4350 napi->skb = skb; 4351 } 4352 4353 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4354 { 4355 struct sk_buff *skb = napi->skb; 4356 4357 if (!skb) { 4358 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4359 napi->skb = skb; 4360 } 4361 return skb; 4362 } 4363 EXPORT_SYMBOL(napi_get_frags); 4364 4365 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4366 struct sk_buff *skb, 4367 gro_result_t ret) 4368 { 4369 switch (ret) { 4370 case GRO_NORMAL: 4371 case GRO_HELD: 4372 __skb_push(skb, ETH_HLEN); 4373 skb->protocol = eth_type_trans(skb, skb->dev); 4374 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4375 ret = GRO_DROP; 4376 break; 4377 4378 case GRO_DROP: 4379 case GRO_MERGED_FREE: 4380 napi_reuse_skb(napi, skb); 4381 break; 4382 4383 case GRO_MERGED: 4384 break; 4385 } 4386 4387 return ret; 4388 } 4389 4390 /* Upper GRO stack assumes network header starts at gro_offset=0 4391 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4392 * We copy ethernet header into skb->data to have a common layout. 4393 */ 4394 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4395 { 4396 struct sk_buff *skb = napi->skb; 4397 const struct ethhdr *eth; 4398 unsigned int hlen = sizeof(*eth); 4399 4400 napi->skb = NULL; 4401 4402 skb_reset_mac_header(skb); 4403 skb_gro_reset_offset(skb); 4404 4405 eth = skb_gro_header_fast(skb, 0); 4406 if (unlikely(skb_gro_header_hard(skb, hlen))) { 4407 eth = skb_gro_header_slow(skb, hlen, 0); 4408 if (unlikely(!eth)) { 4409 napi_reuse_skb(napi, skb); 4410 return NULL; 4411 } 4412 } else { 4413 gro_pull_from_frag0(skb, hlen); 4414 NAPI_GRO_CB(skb)->frag0 += hlen; 4415 NAPI_GRO_CB(skb)->frag0_len -= hlen; 4416 } 4417 __skb_pull(skb, hlen); 4418 4419 /* 4420 * This works because the only protocols we care about don't require 4421 * special handling. 4422 * We'll fix it up properly in napi_frags_finish() 4423 */ 4424 skb->protocol = eth->h_proto; 4425 4426 return skb; 4427 } 4428 4429 gro_result_t napi_gro_frags(struct napi_struct *napi) 4430 { 4431 struct sk_buff *skb = napi_frags_skb(napi); 4432 4433 if (!skb) 4434 return GRO_DROP; 4435 4436 trace_napi_gro_frags_entry(skb); 4437 4438 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 4439 } 4440 EXPORT_SYMBOL(napi_gro_frags); 4441 4442 /* Compute the checksum from gro_offset and return the folded value 4443 * after adding in any pseudo checksum. 4444 */ 4445 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 4446 { 4447 __wsum wsum; 4448 __sum16 sum; 4449 4450 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 4451 4452 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 4453 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 4454 if (likely(!sum)) { 4455 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 4456 !skb->csum_complete_sw) 4457 netdev_rx_csum_fault(skb->dev); 4458 } 4459 4460 NAPI_GRO_CB(skb)->csum = wsum; 4461 NAPI_GRO_CB(skb)->csum_valid = 1; 4462 4463 return sum; 4464 } 4465 EXPORT_SYMBOL(__skb_gro_checksum_complete); 4466 4467 /* 4468 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 4469 * Note: called with local irq disabled, but exits with local irq enabled. 4470 */ 4471 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 4472 { 4473 #ifdef CONFIG_RPS 4474 struct softnet_data *remsd = sd->rps_ipi_list; 4475 4476 if (remsd) { 4477 sd->rps_ipi_list = NULL; 4478 4479 local_irq_enable(); 4480 4481 /* Send pending IPI's to kick RPS processing on remote cpus. */ 4482 while (remsd) { 4483 struct softnet_data *next = remsd->rps_ipi_next; 4484 4485 if (cpu_online(remsd->cpu)) 4486 smp_call_function_single_async(remsd->cpu, 4487 &remsd->csd); 4488 remsd = next; 4489 } 4490 } else 4491 #endif 4492 local_irq_enable(); 4493 } 4494 4495 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 4496 { 4497 #ifdef CONFIG_RPS 4498 return sd->rps_ipi_list != NULL; 4499 #else 4500 return false; 4501 #endif 4502 } 4503 4504 static int process_backlog(struct napi_struct *napi, int quota) 4505 { 4506 int work = 0; 4507 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 4508 4509 /* Check if we have pending ipi, its better to send them now, 4510 * not waiting net_rx_action() end. 4511 */ 4512 if (sd_has_rps_ipi_waiting(sd)) { 4513 local_irq_disable(); 4514 net_rps_action_and_irq_enable(sd); 4515 } 4516 4517 napi->weight = weight_p; 4518 local_irq_disable(); 4519 while (1) { 4520 struct sk_buff *skb; 4521 4522 while ((skb = __skb_dequeue(&sd->process_queue))) { 4523 rcu_read_lock(); 4524 local_irq_enable(); 4525 __netif_receive_skb(skb); 4526 rcu_read_unlock(); 4527 local_irq_disable(); 4528 input_queue_head_incr(sd); 4529 if (++work >= quota) { 4530 local_irq_enable(); 4531 return work; 4532 } 4533 } 4534 4535 rps_lock(sd); 4536 if (skb_queue_empty(&sd->input_pkt_queue)) { 4537 /* 4538 * Inline a custom version of __napi_complete(). 4539 * only current cpu owns and manipulates this napi, 4540 * and NAPI_STATE_SCHED is the only possible flag set 4541 * on backlog. 4542 * We can use a plain write instead of clear_bit(), 4543 * and we dont need an smp_mb() memory barrier. 4544 */ 4545 napi->state = 0; 4546 rps_unlock(sd); 4547 4548 break; 4549 } 4550 4551 skb_queue_splice_tail_init(&sd->input_pkt_queue, 4552 &sd->process_queue); 4553 rps_unlock(sd); 4554 } 4555 local_irq_enable(); 4556 4557 return work; 4558 } 4559 4560 /** 4561 * __napi_schedule - schedule for receive 4562 * @n: entry to schedule 4563 * 4564 * The entry's receive function will be scheduled to run. 4565 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 4566 */ 4567 void __napi_schedule(struct napi_struct *n) 4568 { 4569 unsigned long flags; 4570 4571 local_irq_save(flags); 4572 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4573 local_irq_restore(flags); 4574 } 4575 EXPORT_SYMBOL(__napi_schedule); 4576 4577 /** 4578 * __napi_schedule_irqoff - schedule for receive 4579 * @n: entry to schedule 4580 * 4581 * Variant of __napi_schedule() assuming hard irqs are masked 4582 */ 4583 void __napi_schedule_irqoff(struct napi_struct *n) 4584 { 4585 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 4586 } 4587 EXPORT_SYMBOL(__napi_schedule_irqoff); 4588 4589 void __napi_complete(struct napi_struct *n) 4590 { 4591 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 4592 4593 list_del_init(&n->poll_list); 4594 smp_mb__before_atomic(); 4595 clear_bit(NAPI_STATE_SCHED, &n->state); 4596 } 4597 EXPORT_SYMBOL(__napi_complete); 4598 4599 void napi_complete_done(struct napi_struct *n, int work_done) 4600 { 4601 unsigned long flags; 4602 4603 /* 4604 * don't let napi dequeue from the cpu poll list 4605 * just in case its running on a different cpu 4606 */ 4607 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 4608 return; 4609 4610 if (n->gro_list) { 4611 unsigned long timeout = 0; 4612 4613 if (work_done) 4614 timeout = n->dev->gro_flush_timeout; 4615 4616 if (timeout) 4617 hrtimer_start(&n->timer, ns_to_ktime(timeout), 4618 HRTIMER_MODE_REL_PINNED); 4619 else 4620 napi_gro_flush(n, false); 4621 } 4622 if (likely(list_empty(&n->poll_list))) { 4623 WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state)); 4624 } else { 4625 /* If n->poll_list is not empty, we need to mask irqs */ 4626 local_irq_save(flags); 4627 __napi_complete(n); 4628 local_irq_restore(flags); 4629 } 4630 } 4631 EXPORT_SYMBOL(napi_complete_done); 4632 4633 /* must be called under rcu_read_lock(), as we dont take a reference */ 4634 struct napi_struct *napi_by_id(unsigned int napi_id) 4635 { 4636 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 4637 struct napi_struct *napi; 4638 4639 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 4640 if (napi->napi_id == napi_id) 4641 return napi; 4642 4643 return NULL; 4644 } 4645 EXPORT_SYMBOL_GPL(napi_by_id); 4646 4647 void napi_hash_add(struct napi_struct *napi) 4648 { 4649 if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) { 4650 4651 spin_lock(&napi_hash_lock); 4652 4653 /* 0 is not a valid id, we also skip an id that is taken 4654 * we expect both events to be extremely rare 4655 */ 4656 napi->napi_id = 0; 4657 while (!napi->napi_id) { 4658 napi->napi_id = ++napi_gen_id; 4659 if (napi_by_id(napi->napi_id)) 4660 napi->napi_id = 0; 4661 } 4662 4663 hlist_add_head_rcu(&napi->napi_hash_node, 4664 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 4665 4666 spin_unlock(&napi_hash_lock); 4667 } 4668 } 4669 EXPORT_SYMBOL_GPL(napi_hash_add); 4670 4671 /* Warning : caller is responsible to make sure rcu grace period 4672 * is respected before freeing memory containing @napi 4673 */ 4674 void napi_hash_del(struct napi_struct *napi) 4675 { 4676 spin_lock(&napi_hash_lock); 4677 4678 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) 4679 hlist_del_rcu(&napi->napi_hash_node); 4680 4681 spin_unlock(&napi_hash_lock); 4682 } 4683 EXPORT_SYMBOL_GPL(napi_hash_del); 4684 4685 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 4686 { 4687 struct napi_struct *napi; 4688 4689 napi = container_of(timer, struct napi_struct, timer); 4690 if (napi->gro_list) 4691 napi_schedule(napi); 4692 4693 return HRTIMER_NORESTART; 4694 } 4695 4696 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 4697 int (*poll)(struct napi_struct *, int), int weight) 4698 { 4699 INIT_LIST_HEAD(&napi->poll_list); 4700 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 4701 napi->timer.function = napi_watchdog; 4702 napi->gro_count = 0; 4703 napi->gro_list = NULL; 4704 napi->skb = NULL; 4705 napi->poll = poll; 4706 if (weight > NAPI_POLL_WEIGHT) 4707 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 4708 weight, dev->name); 4709 napi->weight = weight; 4710 list_add(&napi->dev_list, &dev->napi_list); 4711 napi->dev = dev; 4712 #ifdef CONFIG_NETPOLL 4713 spin_lock_init(&napi->poll_lock); 4714 napi->poll_owner = -1; 4715 #endif 4716 set_bit(NAPI_STATE_SCHED, &napi->state); 4717 } 4718 EXPORT_SYMBOL(netif_napi_add); 4719 4720 void napi_disable(struct napi_struct *n) 4721 { 4722 might_sleep(); 4723 set_bit(NAPI_STATE_DISABLE, &n->state); 4724 4725 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 4726 msleep(1); 4727 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 4728 msleep(1); 4729 4730 hrtimer_cancel(&n->timer); 4731 4732 clear_bit(NAPI_STATE_DISABLE, &n->state); 4733 } 4734 EXPORT_SYMBOL(napi_disable); 4735 4736 void netif_napi_del(struct napi_struct *napi) 4737 { 4738 list_del_init(&napi->dev_list); 4739 napi_free_frags(napi); 4740 4741 kfree_skb_list(napi->gro_list); 4742 napi->gro_list = NULL; 4743 napi->gro_count = 0; 4744 } 4745 EXPORT_SYMBOL(netif_napi_del); 4746 4747 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 4748 { 4749 void *have; 4750 int work, weight; 4751 4752 list_del_init(&n->poll_list); 4753 4754 have = netpoll_poll_lock(n); 4755 4756 weight = n->weight; 4757 4758 /* This NAPI_STATE_SCHED test is for avoiding a race 4759 * with netpoll's poll_napi(). Only the entity which 4760 * obtains the lock and sees NAPI_STATE_SCHED set will 4761 * actually make the ->poll() call. Therefore we avoid 4762 * accidentally calling ->poll() when NAPI is not scheduled. 4763 */ 4764 work = 0; 4765 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 4766 work = n->poll(n, weight); 4767 trace_napi_poll(n); 4768 } 4769 4770 WARN_ON_ONCE(work > weight); 4771 4772 if (likely(work < weight)) 4773 goto out_unlock; 4774 4775 /* Drivers must not modify the NAPI state if they 4776 * consume the entire weight. In such cases this code 4777 * still "owns" the NAPI instance and therefore can 4778 * move the instance around on the list at-will. 4779 */ 4780 if (unlikely(napi_disable_pending(n))) { 4781 napi_complete(n); 4782 goto out_unlock; 4783 } 4784 4785 if (n->gro_list) { 4786 /* flush too old packets 4787 * If HZ < 1000, flush all packets. 4788 */ 4789 napi_gro_flush(n, HZ >= 1000); 4790 } 4791 4792 /* Some drivers may have called napi_schedule 4793 * prior to exhausting their budget. 4794 */ 4795 if (unlikely(!list_empty(&n->poll_list))) { 4796 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 4797 n->dev ? n->dev->name : "backlog"); 4798 goto out_unlock; 4799 } 4800 4801 list_add_tail(&n->poll_list, repoll); 4802 4803 out_unlock: 4804 netpoll_poll_unlock(have); 4805 4806 return work; 4807 } 4808 4809 static void net_rx_action(struct softirq_action *h) 4810 { 4811 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4812 unsigned long time_limit = jiffies + 2; 4813 int budget = netdev_budget; 4814 LIST_HEAD(list); 4815 LIST_HEAD(repoll); 4816 4817 local_irq_disable(); 4818 list_splice_init(&sd->poll_list, &list); 4819 local_irq_enable(); 4820 4821 for (;;) { 4822 struct napi_struct *n; 4823 4824 if (list_empty(&list)) { 4825 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 4826 return; 4827 break; 4828 } 4829 4830 n = list_first_entry(&list, struct napi_struct, poll_list); 4831 budget -= napi_poll(n, &repoll); 4832 4833 /* If softirq window is exhausted then punt. 4834 * Allow this to run for 2 jiffies since which will allow 4835 * an average latency of 1.5/HZ. 4836 */ 4837 if (unlikely(budget <= 0 || 4838 time_after_eq(jiffies, time_limit))) { 4839 sd->time_squeeze++; 4840 break; 4841 } 4842 } 4843 4844 local_irq_disable(); 4845 4846 list_splice_tail_init(&sd->poll_list, &list); 4847 list_splice_tail(&repoll, &list); 4848 list_splice(&list, &sd->poll_list); 4849 if (!list_empty(&sd->poll_list)) 4850 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4851 4852 net_rps_action_and_irq_enable(sd); 4853 } 4854 4855 struct netdev_adjacent { 4856 struct net_device *dev; 4857 4858 /* upper master flag, there can only be one master device per list */ 4859 bool master; 4860 4861 /* counter for the number of times this device was added to us */ 4862 u16 ref_nr; 4863 4864 /* private field for the users */ 4865 void *private; 4866 4867 struct list_head list; 4868 struct rcu_head rcu; 4869 }; 4870 4871 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 4872 struct list_head *adj_list) 4873 { 4874 struct netdev_adjacent *adj; 4875 4876 list_for_each_entry(adj, adj_list, list) { 4877 if (adj->dev == adj_dev) 4878 return adj; 4879 } 4880 return NULL; 4881 } 4882 4883 /** 4884 * netdev_has_upper_dev - Check if device is linked to an upper device 4885 * @dev: device 4886 * @upper_dev: upper device to check 4887 * 4888 * Find out if a device is linked to specified upper device and return true 4889 * in case it is. Note that this checks only immediate upper device, 4890 * not through a complete stack of devices. The caller must hold the RTNL lock. 4891 */ 4892 bool netdev_has_upper_dev(struct net_device *dev, 4893 struct net_device *upper_dev) 4894 { 4895 ASSERT_RTNL(); 4896 4897 return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper); 4898 } 4899 EXPORT_SYMBOL(netdev_has_upper_dev); 4900 4901 /** 4902 * netdev_has_any_upper_dev - Check if device is linked to some device 4903 * @dev: device 4904 * 4905 * Find out if a device is linked to an upper device and return true in case 4906 * it is. The caller must hold the RTNL lock. 4907 */ 4908 static bool netdev_has_any_upper_dev(struct net_device *dev) 4909 { 4910 ASSERT_RTNL(); 4911 4912 return !list_empty(&dev->all_adj_list.upper); 4913 } 4914 4915 /** 4916 * netdev_master_upper_dev_get - Get master upper device 4917 * @dev: device 4918 * 4919 * Find a master upper device and return pointer to it or NULL in case 4920 * it's not there. The caller must hold the RTNL lock. 4921 */ 4922 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 4923 { 4924 struct netdev_adjacent *upper; 4925 4926 ASSERT_RTNL(); 4927 4928 if (list_empty(&dev->adj_list.upper)) 4929 return NULL; 4930 4931 upper = list_first_entry(&dev->adj_list.upper, 4932 struct netdev_adjacent, list); 4933 if (likely(upper->master)) 4934 return upper->dev; 4935 return NULL; 4936 } 4937 EXPORT_SYMBOL(netdev_master_upper_dev_get); 4938 4939 void *netdev_adjacent_get_private(struct list_head *adj_list) 4940 { 4941 struct netdev_adjacent *adj; 4942 4943 adj = list_entry(adj_list, struct netdev_adjacent, list); 4944 4945 return adj->private; 4946 } 4947 EXPORT_SYMBOL(netdev_adjacent_get_private); 4948 4949 /** 4950 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 4951 * @dev: device 4952 * @iter: list_head ** of the current position 4953 * 4954 * Gets the next device from the dev's upper list, starting from iter 4955 * position. The caller must hold RCU read lock. 4956 */ 4957 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 4958 struct list_head **iter) 4959 { 4960 struct netdev_adjacent *upper; 4961 4962 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4963 4964 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4965 4966 if (&upper->list == &dev->adj_list.upper) 4967 return NULL; 4968 4969 *iter = &upper->list; 4970 4971 return upper->dev; 4972 } 4973 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 4974 4975 /** 4976 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list 4977 * @dev: device 4978 * @iter: list_head ** of the current position 4979 * 4980 * Gets the next device from the dev's upper list, starting from iter 4981 * position. The caller must hold RCU read lock. 4982 */ 4983 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev, 4984 struct list_head **iter) 4985 { 4986 struct netdev_adjacent *upper; 4987 4988 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 4989 4990 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 4991 4992 if (&upper->list == &dev->all_adj_list.upper) 4993 return NULL; 4994 4995 *iter = &upper->list; 4996 4997 return upper->dev; 4998 } 4999 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu); 5000 5001 /** 5002 * netdev_lower_get_next_private - Get the next ->private from the 5003 * lower neighbour list 5004 * @dev: device 5005 * @iter: list_head ** of the current position 5006 * 5007 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5008 * list, starting from iter position. The caller must hold either hold the 5009 * RTNL lock or its own locking that guarantees that the neighbour lower 5010 * list will remain unchanged. 5011 */ 5012 void *netdev_lower_get_next_private(struct net_device *dev, 5013 struct list_head **iter) 5014 { 5015 struct netdev_adjacent *lower; 5016 5017 lower = list_entry(*iter, struct netdev_adjacent, list); 5018 5019 if (&lower->list == &dev->adj_list.lower) 5020 return NULL; 5021 5022 *iter = lower->list.next; 5023 5024 return lower->private; 5025 } 5026 EXPORT_SYMBOL(netdev_lower_get_next_private); 5027 5028 /** 5029 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5030 * lower neighbour list, RCU 5031 * variant 5032 * @dev: device 5033 * @iter: list_head ** of the current position 5034 * 5035 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5036 * list, starting from iter position. The caller must hold RCU read lock. 5037 */ 5038 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5039 struct list_head **iter) 5040 { 5041 struct netdev_adjacent *lower; 5042 5043 WARN_ON_ONCE(!rcu_read_lock_held()); 5044 5045 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5046 5047 if (&lower->list == &dev->adj_list.lower) 5048 return NULL; 5049 5050 *iter = &lower->list; 5051 5052 return lower->private; 5053 } 5054 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5055 5056 /** 5057 * netdev_lower_get_next - Get the next device from the lower neighbour 5058 * list 5059 * @dev: device 5060 * @iter: list_head ** of the current position 5061 * 5062 * Gets the next netdev_adjacent from the dev's lower neighbour 5063 * list, starting from iter position. The caller must hold RTNL lock or 5064 * its own locking that guarantees that the neighbour lower 5065 * list will remain unchanged. 5066 */ 5067 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5068 { 5069 struct netdev_adjacent *lower; 5070 5071 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5072 5073 if (&lower->list == &dev->adj_list.lower) 5074 return NULL; 5075 5076 *iter = &lower->list; 5077 5078 return lower->dev; 5079 } 5080 EXPORT_SYMBOL(netdev_lower_get_next); 5081 5082 /** 5083 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5084 * lower neighbour list, RCU 5085 * variant 5086 * @dev: device 5087 * 5088 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5089 * list. The caller must hold RCU read lock. 5090 */ 5091 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 5092 { 5093 struct netdev_adjacent *lower; 5094 5095 lower = list_first_or_null_rcu(&dev->adj_list.lower, 5096 struct netdev_adjacent, list); 5097 if (lower) 5098 return lower->private; 5099 return NULL; 5100 } 5101 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 5102 5103 /** 5104 * netdev_master_upper_dev_get_rcu - Get master upper device 5105 * @dev: device 5106 * 5107 * Find a master upper device and return pointer to it or NULL in case 5108 * it's not there. The caller must hold the RCU read lock. 5109 */ 5110 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 5111 { 5112 struct netdev_adjacent *upper; 5113 5114 upper = list_first_or_null_rcu(&dev->adj_list.upper, 5115 struct netdev_adjacent, list); 5116 if (upper && likely(upper->master)) 5117 return upper->dev; 5118 return NULL; 5119 } 5120 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 5121 5122 static int netdev_adjacent_sysfs_add(struct net_device *dev, 5123 struct net_device *adj_dev, 5124 struct list_head *dev_list) 5125 { 5126 char linkname[IFNAMSIZ+7]; 5127 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5128 "upper_%s" : "lower_%s", adj_dev->name); 5129 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 5130 linkname); 5131 } 5132 static void netdev_adjacent_sysfs_del(struct net_device *dev, 5133 char *name, 5134 struct list_head *dev_list) 5135 { 5136 char linkname[IFNAMSIZ+7]; 5137 sprintf(linkname, dev_list == &dev->adj_list.upper ? 5138 "upper_%s" : "lower_%s", name); 5139 sysfs_remove_link(&(dev->dev.kobj), linkname); 5140 } 5141 5142 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 5143 struct net_device *adj_dev, 5144 struct list_head *dev_list) 5145 { 5146 return (dev_list == &dev->adj_list.upper || 5147 dev_list == &dev->adj_list.lower) && 5148 net_eq(dev_net(dev), dev_net(adj_dev)); 5149 } 5150 5151 static int __netdev_adjacent_dev_insert(struct net_device *dev, 5152 struct net_device *adj_dev, 5153 struct list_head *dev_list, 5154 void *private, bool master) 5155 { 5156 struct netdev_adjacent *adj; 5157 int ret; 5158 5159 adj = __netdev_find_adj(adj_dev, dev_list); 5160 5161 if (adj) { 5162 adj->ref_nr++; 5163 return 0; 5164 } 5165 5166 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 5167 if (!adj) 5168 return -ENOMEM; 5169 5170 adj->dev = adj_dev; 5171 adj->master = master; 5172 adj->ref_nr = 1; 5173 adj->private = private; 5174 dev_hold(adj_dev); 5175 5176 pr_debug("dev_hold for %s, because of link added from %s to %s\n", 5177 adj_dev->name, dev->name, adj_dev->name); 5178 5179 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 5180 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 5181 if (ret) 5182 goto free_adj; 5183 } 5184 5185 /* Ensure that master link is always the first item in list. */ 5186 if (master) { 5187 ret = sysfs_create_link(&(dev->dev.kobj), 5188 &(adj_dev->dev.kobj), "master"); 5189 if (ret) 5190 goto remove_symlinks; 5191 5192 list_add_rcu(&adj->list, dev_list); 5193 } else { 5194 list_add_tail_rcu(&adj->list, dev_list); 5195 } 5196 5197 return 0; 5198 5199 remove_symlinks: 5200 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5201 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5202 free_adj: 5203 kfree(adj); 5204 dev_put(adj_dev); 5205 5206 return ret; 5207 } 5208 5209 static void __netdev_adjacent_dev_remove(struct net_device *dev, 5210 struct net_device *adj_dev, 5211 struct list_head *dev_list) 5212 { 5213 struct netdev_adjacent *adj; 5214 5215 adj = __netdev_find_adj(adj_dev, dev_list); 5216 5217 if (!adj) { 5218 pr_err("tried to remove device %s from %s\n", 5219 dev->name, adj_dev->name); 5220 BUG(); 5221 } 5222 5223 if (adj->ref_nr > 1) { 5224 pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name, 5225 adj->ref_nr-1); 5226 adj->ref_nr--; 5227 return; 5228 } 5229 5230 if (adj->master) 5231 sysfs_remove_link(&(dev->dev.kobj), "master"); 5232 5233 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 5234 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 5235 5236 list_del_rcu(&adj->list); 5237 pr_debug("dev_put for %s, because link removed from %s to %s\n", 5238 adj_dev->name, dev->name, adj_dev->name); 5239 dev_put(adj_dev); 5240 kfree_rcu(adj, rcu); 5241 } 5242 5243 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 5244 struct net_device *upper_dev, 5245 struct list_head *up_list, 5246 struct list_head *down_list, 5247 void *private, bool master) 5248 { 5249 int ret; 5250 5251 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private, 5252 master); 5253 if (ret) 5254 return ret; 5255 5256 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private, 5257 false); 5258 if (ret) { 5259 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5260 return ret; 5261 } 5262 5263 return 0; 5264 } 5265 5266 static int __netdev_adjacent_dev_link(struct net_device *dev, 5267 struct net_device *upper_dev) 5268 { 5269 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 5270 &dev->all_adj_list.upper, 5271 &upper_dev->all_adj_list.lower, 5272 NULL, false); 5273 } 5274 5275 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 5276 struct net_device *upper_dev, 5277 struct list_head *up_list, 5278 struct list_head *down_list) 5279 { 5280 __netdev_adjacent_dev_remove(dev, upper_dev, up_list); 5281 __netdev_adjacent_dev_remove(upper_dev, dev, down_list); 5282 } 5283 5284 static void __netdev_adjacent_dev_unlink(struct net_device *dev, 5285 struct net_device *upper_dev) 5286 { 5287 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5288 &dev->all_adj_list.upper, 5289 &upper_dev->all_adj_list.lower); 5290 } 5291 5292 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 5293 struct net_device *upper_dev, 5294 void *private, bool master) 5295 { 5296 int ret = __netdev_adjacent_dev_link(dev, upper_dev); 5297 5298 if (ret) 5299 return ret; 5300 5301 ret = __netdev_adjacent_dev_link_lists(dev, upper_dev, 5302 &dev->adj_list.upper, 5303 &upper_dev->adj_list.lower, 5304 private, master); 5305 if (ret) { 5306 __netdev_adjacent_dev_unlink(dev, upper_dev); 5307 return ret; 5308 } 5309 5310 return 0; 5311 } 5312 5313 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 5314 struct net_device *upper_dev) 5315 { 5316 __netdev_adjacent_dev_unlink(dev, upper_dev); 5317 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 5318 &dev->adj_list.upper, 5319 &upper_dev->adj_list.lower); 5320 } 5321 5322 static int __netdev_upper_dev_link(struct net_device *dev, 5323 struct net_device *upper_dev, bool master, 5324 void *private) 5325 { 5326 struct netdev_notifier_changeupper_info changeupper_info; 5327 struct netdev_adjacent *i, *j, *to_i, *to_j; 5328 int ret = 0; 5329 5330 ASSERT_RTNL(); 5331 5332 if (dev == upper_dev) 5333 return -EBUSY; 5334 5335 /* To prevent loops, check if dev is not upper device to upper_dev. */ 5336 if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper)) 5337 return -EBUSY; 5338 5339 if (__netdev_find_adj(upper_dev, &dev->adj_list.upper)) 5340 return -EEXIST; 5341 5342 if (master && netdev_master_upper_dev_get(dev)) 5343 return -EBUSY; 5344 5345 changeupper_info.upper_dev = upper_dev; 5346 changeupper_info.master = master; 5347 changeupper_info.linking = true; 5348 5349 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private, 5350 master); 5351 if (ret) 5352 return ret; 5353 5354 /* Now that we linked these devs, make all the upper_dev's 5355 * all_adj_list.upper visible to every dev's all_adj_list.lower an 5356 * versa, and don't forget the devices itself. All of these 5357 * links are non-neighbours. 5358 */ 5359 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5360 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5361 pr_debug("Interlinking %s with %s, non-neighbour\n", 5362 i->dev->name, j->dev->name); 5363 ret = __netdev_adjacent_dev_link(i->dev, j->dev); 5364 if (ret) 5365 goto rollback_mesh; 5366 } 5367 } 5368 5369 /* add dev to every upper_dev's upper device */ 5370 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5371 pr_debug("linking %s's upper device %s with %s\n", 5372 upper_dev->name, i->dev->name, dev->name); 5373 ret = __netdev_adjacent_dev_link(dev, i->dev); 5374 if (ret) 5375 goto rollback_upper_mesh; 5376 } 5377 5378 /* add upper_dev to every dev's lower device */ 5379 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5380 pr_debug("linking %s's lower device %s with %s\n", dev->name, 5381 i->dev->name, upper_dev->name); 5382 ret = __netdev_adjacent_dev_link(i->dev, upper_dev); 5383 if (ret) 5384 goto rollback_lower_mesh; 5385 } 5386 5387 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5388 &changeupper_info.info); 5389 return 0; 5390 5391 rollback_lower_mesh: 5392 to_i = i; 5393 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5394 if (i == to_i) 5395 break; 5396 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5397 } 5398 5399 i = NULL; 5400 5401 rollback_upper_mesh: 5402 to_i = i; 5403 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) { 5404 if (i == to_i) 5405 break; 5406 __netdev_adjacent_dev_unlink(dev, i->dev); 5407 } 5408 5409 i = j = NULL; 5410 5411 rollback_mesh: 5412 to_i = i; 5413 to_j = j; 5414 list_for_each_entry(i, &dev->all_adj_list.lower, list) { 5415 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) { 5416 if (i == to_i && j == to_j) 5417 break; 5418 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5419 } 5420 if (i == to_i) 5421 break; 5422 } 5423 5424 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5425 5426 return ret; 5427 } 5428 5429 /** 5430 * netdev_upper_dev_link - Add a link to the upper device 5431 * @dev: device 5432 * @upper_dev: new upper device 5433 * 5434 * Adds a link to device which is upper to this one. The caller must hold 5435 * the RTNL lock. On a failure a negative errno code is returned. 5436 * On success the reference counts are adjusted and the function 5437 * returns zero. 5438 */ 5439 int netdev_upper_dev_link(struct net_device *dev, 5440 struct net_device *upper_dev) 5441 { 5442 return __netdev_upper_dev_link(dev, upper_dev, false, NULL); 5443 } 5444 EXPORT_SYMBOL(netdev_upper_dev_link); 5445 5446 /** 5447 * netdev_master_upper_dev_link - Add a master link to the upper device 5448 * @dev: device 5449 * @upper_dev: new upper device 5450 * 5451 * Adds a link to device which is upper to this one. In this case, only 5452 * one master upper device can be linked, although other non-master devices 5453 * might be linked as well. The caller must hold the RTNL lock. 5454 * On a failure a negative errno code is returned. On success the reference 5455 * counts are adjusted and the function returns zero. 5456 */ 5457 int netdev_master_upper_dev_link(struct net_device *dev, 5458 struct net_device *upper_dev) 5459 { 5460 return __netdev_upper_dev_link(dev, upper_dev, true, NULL); 5461 } 5462 EXPORT_SYMBOL(netdev_master_upper_dev_link); 5463 5464 int netdev_master_upper_dev_link_private(struct net_device *dev, 5465 struct net_device *upper_dev, 5466 void *private) 5467 { 5468 return __netdev_upper_dev_link(dev, upper_dev, true, private); 5469 } 5470 EXPORT_SYMBOL(netdev_master_upper_dev_link_private); 5471 5472 /** 5473 * netdev_upper_dev_unlink - Removes a link to upper device 5474 * @dev: device 5475 * @upper_dev: new upper device 5476 * 5477 * Removes a link to device which is upper to this one. The caller must hold 5478 * the RTNL lock. 5479 */ 5480 void netdev_upper_dev_unlink(struct net_device *dev, 5481 struct net_device *upper_dev) 5482 { 5483 struct netdev_notifier_changeupper_info changeupper_info; 5484 struct netdev_adjacent *i, *j; 5485 ASSERT_RTNL(); 5486 5487 changeupper_info.upper_dev = upper_dev; 5488 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 5489 changeupper_info.linking = false; 5490 5491 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 5492 5493 /* Here is the tricky part. We must remove all dev's lower 5494 * devices from all upper_dev's upper devices and vice 5495 * versa, to maintain the graph relationship. 5496 */ 5497 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5498 list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) 5499 __netdev_adjacent_dev_unlink(i->dev, j->dev); 5500 5501 /* remove also the devices itself from lower/upper device 5502 * list 5503 */ 5504 list_for_each_entry(i, &dev->all_adj_list.lower, list) 5505 __netdev_adjacent_dev_unlink(i->dev, upper_dev); 5506 5507 list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) 5508 __netdev_adjacent_dev_unlink(dev, i->dev); 5509 5510 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 5511 &changeupper_info.info); 5512 } 5513 EXPORT_SYMBOL(netdev_upper_dev_unlink); 5514 5515 /** 5516 * netdev_bonding_info_change - Dispatch event about slave change 5517 * @dev: device 5518 * @bonding_info: info to dispatch 5519 * 5520 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 5521 * The caller must hold the RTNL lock. 5522 */ 5523 void netdev_bonding_info_change(struct net_device *dev, 5524 struct netdev_bonding_info *bonding_info) 5525 { 5526 struct netdev_notifier_bonding_info info; 5527 5528 memcpy(&info.bonding_info, bonding_info, 5529 sizeof(struct netdev_bonding_info)); 5530 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 5531 &info.info); 5532 } 5533 EXPORT_SYMBOL(netdev_bonding_info_change); 5534 5535 static void netdev_adjacent_add_links(struct net_device *dev) 5536 { 5537 struct netdev_adjacent *iter; 5538 5539 struct net *net = dev_net(dev); 5540 5541 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5542 if (!net_eq(net,dev_net(iter->dev))) 5543 continue; 5544 netdev_adjacent_sysfs_add(iter->dev, dev, 5545 &iter->dev->adj_list.lower); 5546 netdev_adjacent_sysfs_add(dev, iter->dev, 5547 &dev->adj_list.upper); 5548 } 5549 5550 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5551 if (!net_eq(net,dev_net(iter->dev))) 5552 continue; 5553 netdev_adjacent_sysfs_add(iter->dev, dev, 5554 &iter->dev->adj_list.upper); 5555 netdev_adjacent_sysfs_add(dev, iter->dev, 5556 &dev->adj_list.lower); 5557 } 5558 } 5559 5560 static void netdev_adjacent_del_links(struct net_device *dev) 5561 { 5562 struct netdev_adjacent *iter; 5563 5564 struct net *net = dev_net(dev); 5565 5566 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5567 if (!net_eq(net,dev_net(iter->dev))) 5568 continue; 5569 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5570 &iter->dev->adj_list.lower); 5571 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5572 &dev->adj_list.upper); 5573 } 5574 5575 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5576 if (!net_eq(net,dev_net(iter->dev))) 5577 continue; 5578 netdev_adjacent_sysfs_del(iter->dev, dev->name, 5579 &iter->dev->adj_list.upper); 5580 netdev_adjacent_sysfs_del(dev, iter->dev->name, 5581 &dev->adj_list.lower); 5582 } 5583 } 5584 5585 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 5586 { 5587 struct netdev_adjacent *iter; 5588 5589 struct net *net = dev_net(dev); 5590 5591 list_for_each_entry(iter, &dev->adj_list.upper, list) { 5592 if (!net_eq(net,dev_net(iter->dev))) 5593 continue; 5594 netdev_adjacent_sysfs_del(iter->dev, oldname, 5595 &iter->dev->adj_list.lower); 5596 netdev_adjacent_sysfs_add(iter->dev, dev, 5597 &iter->dev->adj_list.lower); 5598 } 5599 5600 list_for_each_entry(iter, &dev->adj_list.lower, list) { 5601 if (!net_eq(net,dev_net(iter->dev))) 5602 continue; 5603 netdev_adjacent_sysfs_del(iter->dev, oldname, 5604 &iter->dev->adj_list.upper); 5605 netdev_adjacent_sysfs_add(iter->dev, dev, 5606 &iter->dev->adj_list.upper); 5607 } 5608 } 5609 5610 void *netdev_lower_dev_get_private(struct net_device *dev, 5611 struct net_device *lower_dev) 5612 { 5613 struct netdev_adjacent *lower; 5614 5615 if (!lower_dev) 5616 return NULL; 5617 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 5618 if (!lower) 5619 return NULL; 5620 5621 return lower->private; 5622 } 5623 EXPORT_SYMBOL(netdev_lower_dev_get_private); 5624 5625 5626 int dev_get_nest_level(struct net_device *dev, 5627 bool (*type_check)(struct net_device *dev)) 5628 { 5629 struct net_device *lower = NULL; 5630 struct list_head *iter; 5631 int max_nest = -1; 5632 int nest; 5633 5634 ASSERT_RTNL(); 5635 5636 netdev_for_each_lower_dev(dev, lower, iter) { 5637 nest = dev_get_nest_level(lower, type_check); 5638 if (max_nest < nest) 5639 max_nest = nest; 5640 } 5641 5642 if (type_check(dev)) 5643 max_nest++; 5644 5645 return max_nest; 5646 } 5647 EXPORT_SYMBOL(dev_get_nest_level); 5648 5649 static void dev_change_rx_flags(struct net_device *dev, int flags) 5650 { 5651 const struct net_device_ops *ops = dev->netdev_ops; 5652 5653 if (ops->ndo_change_rx_flags) 5654 ops->ndo_change_rx_flags(dev, flags); 5655 } 5656 5657 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 5658 { 5659 unsigned int old_flags = dev->flags; 5660 kuid_t uid; 5661 kgid_t gid; 5662 5663 ASSERT_RTNL(); 5664 5665 dev->flags |= IFF_PROMISC; 5666 dev->promiscuity += inc; 5667 if (dev->promiscuity == 0) { 5668 /* 5669 * Avoid overflow. 5670 * If inc causes overflow, untouch promisc and return error. 5671 */ 5672 if (inc < 0) 5673 dev->flags &= ~IFF_PROMISC; 5674 else { 5675 dev->promiscuity -= inc; 5676 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 5677 dev->name); 5678 return -EOVERFLOW; 5679 } 5680 } 5681 if (dev->flags != old_flags) { 5682 pr_info("device %s %s promiscuous mode\n", 5683 dev->name, 5684 dev->flags & IFF_PROMISC ? "entered" : "left"); 5685 if (audit_enabled) { 5686 current_uid_gid(&uid, &gid); 5687 audit_log(current->audit_context, GFP_ATOMIC, 5688 AUDIT_ANOM_PROMISCUOUS, 5689 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 5690 dev->name, (dev->flags & IFF_PROMISC), 5691 (old_flags & IFF_PROMISC), 5692 from_kuid(&init_user_ns, audit_get_loginuid(current)), 5693 from_kuid(&init_user_ns, uid), 5694 from_kgid(&init_user_ns, gid), 5695 audit_get_sessionid(current)); 5696 } 5697 5698 dev_change_rx_flags(dev, IFF_PROMISC); 5699 } 5700 if (notify) 5701 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 5702 return 0; 5703 } 5704 5705 /** 5706 * dev_set_promiscuity - update promiscuity count on a device 5707 * @dev: device 5708 * @inc: modifier 5709 * 5710 * Add or remove promiscuity from a device. While the count in the device 5711 * remains above zero the interface remains promiscuous. Once it hits zero 5712 * the device reverts back to normal filtering operation. A negative inc 5713 * value is used to drop promiscuity on the device. 5714 * Return 0 if successful or a negative errno code on error. 5715 */ 5716 int dev_set_promiscuity(struct net_device *dev, int inc) 5717 { 5718 unsigned int old_flags = dev->flags; 5719 int err; 5720 5721 err = __dev_set_promiscuity(dev, inc, true); 5722 if (err < 0) 5723 return err; 5724 if (dev->flags != old_flags) 5725 dev_set_rx_mode(dev); 5726 return err; 5727 } 5728 EXPORT_SYMBOL(dev_set_promiscuity); 5729 5730 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 5731 { 5732 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 5733 5734 ASSERT_RTNL(); 5735 5736 dev->flags |= IFF_ALLMULTI; 5737 dev->allmulti += inc; 5738 if (dev->allmulti == 0) { 5739 /* 5740 * Avoid overflow. 5741 * If inc causes overflow, untouch allmulti and return error. 5742 */ 5743 if (inc < 0) 5744 dev->flags &= ~IFF_ALLMULTI; 5745 else { 5746 dev->allmulti -= inc; 5747 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 5748 dev->name); 5749 return -EOVERFLOW; 5750 } 5751 } 5752 if (dev->flags ^ old_flags) { 5753 dev_change_rx_flags(dev, IFF_ALLMULTI); 5754 dev_set_rx_mode(dev); 5755 if (notify) 5756 __dev_notify_flags(dev, old_flags, 5757 dev->gflags ^ old_gflags); 5758 } 5759 return 0; 5760 } 5761 5762 /** 5763 * dev_set_allmulti - update allmulti count on a device 5764 * @dev: device 5765 * @inc: modifier 5766 * 5767 * Add or remove reception of all multicast frames to a device. While the 5768 * count in the device remains above zero the interface remains listening 5769 * to all interfaces. Once it hits zero the device reverts back to normal 5770 * filtering operation. A negative @inc value is used to drop the counter 5771 * when releasing a resource needing all multicasts. 5772 * Return 0 if successful or a negative errno code on error. 5773 */ 5774 5775 int dev_set_allmulti(struct net_device *dev, int inc) 5776 { 5777 return __dev_set_allmulti(dev, inc, true); 5778 } 5779 EXPORT_SYMBOL(dev_set_allmulti); 5780 5781 /* 5782 * Upload unicast and multicast address lists to device and 5783 * configure RX filtering. When the device doesn't support unicast 5784 * filtering it is put in promiscuous mode while unicast addresses 5785 * are present. 5786 */ 5787 void __dev_set_rx_mode(struct net_device *dev) 5788 { 5789 const struct net_device_ops *ops = dev->netdev_ops; 5790 5791 /* dev_open will call this function so the list will stay sane. */ 5792 if (!(dev->flags&IFF_UP)) 5793 return; 5794 5795 if (!netif_device_present(dev)) 5796 return; 5797 5798 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 5799 /* Unicast addresses changes may only happen under the rtnl, 5800 * therefore calling __dev_set_promiscuity here is safe. 5801 */ 5802 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 5803 __dev_set_promiscuity(dev, 1, false); 5804 dev->uc_promisc = true; 5805 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 5806 __dev_set_promiscuity(dev, -1, false); 5807 dev->uc_promisc = false; 5808 } 5809 } 5810 5811 if (ops->ndo_set_rx_mode) 5812 ops->ndo_set_rx_mode(dev); 5813 } 5814 5815 void dev_set_rx_mode(struct net_device *dev) 5816 { 5817 netif_addr_lock_bh(dev); 5818 __dev_set_rx_mode(dev); 5819 netif_addr_unlock_bh(dev); 5820 } 5821 5822 /** 5823 * dev_get_flags - get flags reported to userspace 5824 * @dev: device 5825 * 5826 * Get the combination of flag bits exported through APIs to userspace. 5827 */ 5828 unsigned int dev_get_flags(const struct net_device *dev) 5829 { 5830 unsigned int flags; 5831 5832 flags = (dev->flags & ~(IFF_PROMISC | 5833 IFF_ALLMULTI | 5834 IFF_RUNNING | 5835 IFF_LOWER_UP | 5836 IFF_DORMANT)) | 5837 (dev->gflags & (IFF_PROMISC | 5838 IFF_ALLMULTI)); 5839 5840 if (netif_running(dev)) { 5841 if (netif_oper_up(dev)) 5842 flags |= IFF_RUNNING; 5843 if (netif_carrier_ok(dev)) 5844 flags |= IFF_LOWER_UP; 5845 if (netif_dormant(dev)) 5846 flags |= IFF_DORMANT; 5847 } 5848 5849 return flags; 5850 } 5851 EXPORT_SYMBOL(dev_get_flags); 5852 5853 int __dev_change_flags(struct net_device *dev, unsigned int flags) 5854 { 5855 unsigned int old_flags = dev->flags; 5856 int ret; 5857 5858 ASSERT_RTNL(); 5859 5860 /* 5861 * Set the flags on our device. 5862 */ 5863 5864 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 5865 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 5866 IFF_AUTOMEDIA)) | 5867 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 5868 IFF_ALLMULTI)); 5869 5870 /* 5871 * Load in the correct multicast list now the flags have changed. 5872 */ 5873 5874 if ((old_flags ^ flags) & IFF_MULTICAST) 5875 dev_change_rx_flags(dev, IFF_MULTICAST); 5876 5877 dev_set_rx_mode(dev); 5878 5879 /* 5880 * Have we downed the interface. We handle IFF_UP ourselves 5881 * according to user attempts to set it, rather than blindly 5882 * setting it. 5883 */ 5884 5885 ret = 0; 5886 if ((old_flags ^ flags) & IFF_UP) 5887 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 5888 5889 if ((flags ^ dev->gflags) & IFF_PROMISC) { 5890 int inc = (flags & IFF_PROMISC) ? 1 : -1; 5891 unsigned int old_flags = dev->flags; 5892 5893 dev->gflags ^= IFF_PROMISC; 5894 5895 if (__dev_set_promiscuity(dev, inc, false) >= 0) 5896 if (dev->flags != old_flags) 5897 dev_set_rx_mode(dev); 5898 } 5899 5900 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 5901 is important. Some (broken) drivers set IFF_PROMISC, when 5902 IFF_ALLMULTI is requested not asking us and not reporting. 5903 */ 5904 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 5905 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 5906 5907 dev->gflags ^= IFF_ALLMULTI; 5908 __dev_set_allmulti(dev, inc, false); 5909 } 5910 5911 return ret; 5912 } 5913 5914 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 5915 unsigned int gchanges) 5916 { 5917 unsigned int changes = dev->flags ^ old_flags; 5918 5919 if (gchanges) 5920 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 5921 5922 if (changes & IFF_UP) { 5923 if (dev->flags & IFF_UP) 5924 call_netdevice_notifiers(NETDEV_UP, dev); 5925 else 5926 call_netdevice_notifiers(NETDEV_DOWN, dev); 5927 } 5928 5929 if (dev->flags & IFF_UP && 5930 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 5931 struct netdev_notifier_change_info change_info; 5932 5933 change_info.flags_changed = changes; 5934 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 5935 &change_info.info); 5936 } 5937 } 5938 5939 /** 5940 * dev_change_flags - change device settings 5941 * @dev: device 5942 * @flags: device state flags 5943 * 5944 * Change settings on device based state flags. The flags are 5945 * in the userspace exported format. 5946 */ 5947 int dev_change_flags(struct net_device *dev, unsigned int flags) 5948 { 5949 int ret; 5950 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 5951 5952 ret = __dev_change_flags(dev, flags); 5953 if (ret < 0) 5954 return ret; 5955 5956 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 5957 __dev_notify_flags(dev, old_flags, changes); 5958 return ret; 5959 } 5960 EXPORT_SYMBOL(dev_change_flags); 5961 5962 static int __dev_set_mtu(struct net_device *dev, int new_mtu) 5963 { 5964 const struct net_device_ops *ops = dev->netdev_ops; 5965 5966 if (ops->ndo_change_mtu) 5967 return ops->ndo_change_mtu(dev, new_mtu); 5968 5969 dev->mtu = new_mtu; 5970 return 0; 5971 } 5972 5973 /** 5974 * dev_set_mtu - Change maximum transfer unit 5975 * @dev: device 5976 * @new_mtu: new transfer unit 5977 * 5978 * Change the maximum transfer size of the network device. 5979 */ 5980 int dev_set_mtu(struct net_device *dev, int new_mtu) 5981 { 5982 int err, orig_mtu; 5983 5984 if (new_mtu == dev->mtu) 5985 return 0; 5986 5987 /* MTU must be positive. */ 5988 if (new_mtu < 0) 5989 return -EINVAL; 5990 5991 if (!netif_device_present(dev)) 5992 return -ENODEV; 5993 5994 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 5995 err = notifier_to_errno(err); 5996 if (err) 5997 return err; 5998 5999 orig_mtu = dev->mtu; 6000 err = __dev_set_mtu(dev, new_mtu); 6001 6002 if (!err) { 6003 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6004 err = notifier_to_errno(err); 6005 if (err) { 6006 /* setting mtu back and notifying everyone again, 6007 * so that they have a chance to revert changes. 6008 */ 6009 __dev_set_mtu(dev, orig_mtu); 6010 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6011 } 6012 } 6013 return err; 6014 } 6015 EXPORT_SYMBOL(dev_set_mtu); 6016 6017 /** 6018 * dev_set_group - Change group this device belongs to 6019 * @dev: device 6020 * @new_group: group this device should belong to 6021 */ 6022 void dev_set_group(struct net_device *dev, int new_group) 6023 { 6024 dev->group = new_group; 6025 } 6026 EXPORT_SYMBOL(dev_set_group); 6027 6028 /** 6029 * dev_set_mac_address - Change Media Access Control Address 6030 * @dev: device 6031 * @sa: new address 6032 * 6033 * Change the hardware (MAC) address of the device 6034 */ 6035 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6036 { 6037 const struct net_device_ops *ops = dev->netdev_ops; 6038 int err; 6039 6040 if (!ops->ndo_set_mac_address) 6041 return -EOPNOTSUPP; 6042 if (sa->sa_family != dev->type) 6043 return -EINVAL; 6044 if (!netif_device_present(dev)) 6045 return -ENODEV; 6046 err = ops->ndo_set_mac_address(dev, sa); 6047 if (err) 6048 return err; 6049 dev->addr_assign_type = NET_ADDR_SET; 6050 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6051 add_device_randomness(dev->dev_addr, dev->addr_len); 6052 return 0; 6053 } 6054 EXPORT_SYMBOL(dev_set_mac_address); 6055 6056 /** 6057 * dev_change_carrier - Change device carrier 6058 * @dev: device 6059 * @new_carrier: new value 6060 * 6061 * Change device carrier 6062 */ 6063 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6064 { 6065 const struct net_device_ops *ops = dev->netdev_ops; 6066 6067 if (!ops->ndo_change_carrier) 6068 return -EOPNOTSUPP; 6069 if (!netif_device_present(dev)) 6070 return -ENODEV; 6071 return ops->ndo_change_carrier(dev, new_carrier); 6072 } 6073 EXPORT_SYMBOL(dev_change_carrier); 6074 6075 /** 6076 * dev_get_phys_port_id - Get device physical port ID 6077 * @dev: device 6078 * @ppid: port ID 6079 * 6080 * Get device physical port ID 6081 */ 6082 int dev_get_phys_port_id(struct net_device *dev, 6083 struct netdev_phys_item_id *ppid) 6084 { 6085 const struct net_device_ops *ops = dev->netdev_ops; 6086 6087 if (!ops->ndo_get_phys_port_id) 6088 return -EOPNOTSUPP; 6089 return ops->ndo_get_phys_port_id(dev, ppid); 6090 } 6091 EXPORT_SYMBOL(dev_get_phys_port_id); 6092 6093 /** 6094 * dev_get_phys_port_name - Get device physical port name 6095 * @dev: device 6096 * @name: port name 6097 * 6098 * Get device physical port name 6099 */ 6100 int dev_get_phys_port_name(struct net_device *dev, 6101 char *name, size_t len) 6102 { 6103 const struct net_device_ops *ops = dev->netdev_ops; 6104 6105 if (!ops->ndo_get_phys_port_name) 6106 return -EOPNOTSUPP; 6107 return ops->ndo_get_phys_port_name(dev, name, len); 6108 } 6109 EXPORT_SYMBOL(dev_get_phys_port_name); 6110 6111 /** 6112 * dev_change_proto_down - update protocol port state information 6113 * @dev: device 6114 * @proto_down: new value 6115 * 6116 * This info can be used by switch drivers to set the phys state of the 6117 * port. 6118 */ 6119 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6120 { 6121 const struct net_device_ops *ops = dev->netdev_ops; 6122 6123 if (!ops->ndo_change_proto_down) 6124 return -EOPNOTSUPP; 6125 if (!netif_device_present(dev)) 6126 return -ENODEV; 6127 return ops->ndo_change_proto_down(dev, proto_down); 6128 } 6129 EXPORT_SYMBOL(dev_change_proto_down); 6130 6131 /** 6132 * dev_new_index - allocate an ifindex 6133 * @net: the applicable net namespace 6134 * 6135 * Returns a suitable unique value for a new device interface 6136 * number. The caller must hold the rtnl semaphore or the 6137 * dev_base_lock to be sure it remains unique. 6138 */ 6139 static int dev_new_index(struct net *net) 6140 { 6141 int ifindex = net->ifindex; 6142 for (;;) { 6143 if (++ifindex <= 0) 6144 ifindex = 1; 6145 if (!__dev_get_by_index(net, ifindex)) 6146 return net->ifindex = ifindex; 6147 } 6148 } 6149 6150 /* Delayed registration/unregisteration */ 6151 static LIST_HEAD(net_todo_list); 6152 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 6153 6154 static void net_set_todo(struct net_device *dev) 6155 { 6156 list_add_tail(&dev->todo_list, &net_todo_list); 6157 dev_net(dev)->dev_unreg_count++; 6158 } 6159 6160 static void rollback_registered_many(struct list_head *head) 6161 { 6162 struct net_device *dev, *tmp; 6163 LIST_HEAD(close_head); 6164 6165 BUG_ON(dev_boot_phase); 6166 ASSERT_RTNL(); 6167 6168 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 6169 /* Some devices call without registering 6170 * for initialization unwind. Remove those 6171 * devices and proceed with the remaining. 6172 */ 6173 if (dev->reg_state == NETREG_UNINITIALIZED) { 6174 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 6175 dev->name, dev); 6176 6177 WARN_ON(1); 6178 list_del(&dev->unreg_list); 6179 continue; 6180 } 6181 dev->dismantle = true; 6182 BUG_ON(dev->reg_state != NETREG_REGISTERED); 6183 } 6184 6185 /* If device is running, close it first. */ 6186 list_for_each_entry(dev, head, unreg_list) 6187 list_add_tail(&dev->close_list, &close_head); 6188 dev_close_many(&close_head, true); 6189 6190 list_for_each_entry(dev, head, unreg_list) { 6191 /* And unlink it from device chain. */ 6192 unlist_netdevice(dev); 6193 6194 dev->reg_state = NETREG_UNREGISTERING; 6195 on_each_cpu(flush_backlog, dev, 1); 6196 } 6197 6198 synchronize_net(); 6199 6200 list_for_each_entry(dev, head, unreg_list) { 6201 struct sk_buff *skb = NULL; 6202 6203 /* Shutdown queueing discipline. */ 6204 dev_shutdown(dev); 6205 6206 6207 /* Notify protocols, that we are about to destroy 6208 this device. They should clean all the things. 6209 */ 6210 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6211 6212 if (!dev->rtnl_link_ops || 6213 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6214 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 6215 GFP_KERNEL); 6216 6217 /* 6218 * Flush the unicast and multicast chains 6219 */ 6220 dev_uc_flush(dev); 6221 dev_mc_flush(dev); 6222 6223 if (dev->netdev_ops->ndo_uninit) 6224 dev->netdev_ops->ndo_uninit(dev); 6225 6226 if (skb) 6227 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 6228 6229 /* Notifier chain MUST detach us all upper devices. */ 6230 WARN_ON(netdev_has_any_upper_dev(dev)); 6231 6232 /* Remove entries from kobject tree */ 6233 netdev_unregister_kobject(dev); 6234 #ifdef CONFIG_XPS 6235 /* Remove XPS queueing entries */ 6236 netif_reset_xps_queues_gt(dev, 0); 6237 #endif 6238 } 6239 6240 synchronize_net(); 6241 6242 list_for_each_entry(dev, head, unreg_list) 6243 dev_put(dev); 6244 } 6245 6246 static void rollback_registered(struct net_device *dev) 6247 { 6248 LIST_HEAD(single); 6249 6250 list_add(&dev->unreg_list, &single); 6251 rollback_registered_many(&single); 6252 list_del(&single); 6253 } 6254 6255 static netdev_features_t netdev_fix_features(struct net_device *dev, 6256 netdev_features_t features) 6257 { 6258 /* Fix illegal checksum combinations */ 6259 if ((features & NETIF_F_HW_CSUM) && 6260 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6261 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 6262 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 6263 } 6264 6265 /* TSO requires that SG is present as well. */ 6266 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 6267 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 6268 features &= ~NETIF_F_ALL_TSO; 6269 } 6270 6271 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 6272 !(features & NETIF_F_IP_CSUM)) { 6273 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 6274 features &= ~NETIF_F_TSO; 6275 features &= ~NETIF_F_TSO_ECN; 6276 } 6277 6278 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 6279 !(features & NETIF_F_IPV6_CSUM)) { 6280 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 6281 features &= ~NETIF_F_TSO6; 6282 } 6283 6284 /* TSO ECN requires that TSO is present as well. */ 6285 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 6286 features &= ~NETIF_F_TSO_ECN; 6287 6288 /* Software GSO depends on SG. */ 6289 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 6290 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 6291 features &= ~NETIF_F_GSO; 6292 } 6293 6294 /* UFO needs SG and checksumming */ 6295 if (features & NETIF_F_UFO) { 6296 /* maybe split UFO into V4 and V6? */ 6297 if (!((features & NETIF_F_GEN_CSUM) || 6298 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 6299 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 6300 netdev_dbg(dev, 6301 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 6302 features &= ~NETIF_F_UFO; 6303 } 6304 6305 if (!(features & NETIF_F_SG)) { 6306 netdev_dbg(dev, 6307 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 6308 features &= ~NETIF_F_UFO; 6309 } 6310 } 6311 6312 #ifdef CONFIG_NET_RX_BUSY_POLL 6313 if (dev->netdev_ops->ndo_busy_poll) 6314 features |= NETIF_F_BUSY_POLL; 6315 else 6316 #endif 6317 features &= ~NETIF_F_BUSY_POLL; 6318 6319 return features; 6320 } 6321 6322 int __netdev_update_features(struct net_device *dev) 6323 { 6324 netdev_features_t features; 6325 int err = 0; 6326 6327 ASSERT_RTNL(); 6328 6329 features = netdev_get_wanted_features(dev); 6330 6331 if (dev->netdev_ops->ndo_fix_features) 6332 features = dev->netdev_ops->ndo_fix_features(dev, features); 6333 6334 /* driver might be less strict about feature dependencies */ 6335 features = netdev_fix_features(dev, features); 6336 6337 if (dev->features == features) 6338 return 0; 6339 6340 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 6341 &dev->features, &features); 6342 6343 if (dev->netdev_ops->ndo_set_features) 6344 err = dev->netdev_ops->ndo_set_features(dev, features); 6345 6346 if (unlikely(err < 0)) { 6347 netdev_err(dev, 6348 "set_features() failed (%d); wanted %pNF, left %pNF\n", 6349 err, &features, &dev->features); 6350 return -1; 6351 } 6352 6353 if (!err) 6354 dev->features = features; 6355 6356 return 1; 6357 } 6358 6359 /** 6360 * netdev_update_features - recalculate device features 6361 * @dev: the device to check 6362 * 6363 * Recalculate dev->features set and send notifications if it 6364 * has changed. Should be called after driver or hardware dependent 6365 * conditions might have changed that influence the features. 6366 */ 6367 void netdev_update_features(struct net_device *dev) 6368 { 6369 if (__netdev_update_features(dev)) 6370 netdev_features_change(dev); 6371 } 6372 EXPORT_SYMBOL(netdev_update_features); 6373 6374 /** 6375 * netdev_change_features - recalculate device features 6376 * @dev: the device to check 6377 * 6378 * Recalculate dev->features set and send notifications even 6379 * if they have not changed. Should be called instead of 6380 * netdev_update_features() if also dev->vlan_features might 6381 * have changed to allow the changes to be propagated to stacked 6382 * VLAN devices. 6383 */ 6384 void netdev_change_features(struct net_device *dev) 6385 { 6386 __netdev_update_features(dev); 6387 netdev_features_change(dev); 6388 } 6389 EXPORT_SYMBOL(netdev_change_features); 6390 6391 /** 6392 * netif_stacked_transfer_operstate - transfer operstate 6393 * @rootdev: the root or lower level device to transfer state from 6394 * @dev: the device to transfer operstate to 6395 * 6396 * Transfer operational state from root to device. This is normally 6397 * called when a stacking relationship exists between the root 6398 * device and the device(a leaf device). 6399 */ 6400 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 6401 struct net_device *dev) 6402 { 6403 if (rootdev->operstate == IF_OPER_DORMANT) 6404 netif_dormant_on(dev); 6405 else 6406 netif_dormant_off(dev); 6407 6408 if (netif_carrier_ok(rootdev)) { 6409 if (!netif_carrier_ok(dev)) 6410 netif_carrier_on(dev); 6411 } else { 6412 if (netif_carrier_ok(dev)) 6413 netif_carrier_off(dev); 6414 } 6415 } 6416 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 6417 6418 #ifdef CONFIG_SYSFS 6419 static int netif_alloc_rx_queues(struct net_device *dev) 6420 { 6421 unsigned int i, count = dev->num_rx_queues; 6422 struct netdev_rx_queue *rx; 6423 size_t sz = count * sizeof(*rx); 6424 6425 BUG_ON(count < 1); 6426 6427 rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6428 if (!rx) { 6429 rx = vzalloc(sz); 6430 if (!rx) 6431 return -ENOMEM; 6432 } 6433 dev->_rx = rx; 6434 6435 for (i = 0; i < count; i++) 6436 rx[i].dev = dev; 6437 return 0; 6438 } 6439 #endif 6440 6441 static void netdev_init_one_queue(struct net_device *dev, 6442 struct netdev_queue *queue, void *_unused) 6443 { 6444 /* Initialize queue lock */ 6445 spin_lock_init(&queue->_xmit_lock); 6446 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 6447 queue->xmit_lock_owner = -1; 6448 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 6449 queue->dev = dev; 6450 #ifdef CONFIG_BQL 6451 dql_init(&queue->dql, HZ); 6452 #endif 6453 } 6454 6455 static void netif_free_tx_queues(struct net_device *dev) 6456 { 6457 kvfree(dev->_tx); 6458 } 6459 6460 static int netif_alloc_netdev_queues(struct net_device *dev) 6461 { 6462 unsigned int count = dev->num_tx_queues; 6463 struct netdev_queue *tx; 6464 size_t sz = count * sizeof(*tx); 6465 6466 if (count < 1 || count > 0xffff) 6467 return -EINVAL; 6468 6469 tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6470 if (!tx) { 6471 tx = vzalloc(sz); 6472 if (!tx) 6473 return -ENOMEM; 6474 } 6475 dev->_tx = tx; 6476 6477 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 6478 spin_lock_init(&dev->tx_global_lock); 6479 6480 return 0; 6481 } 6482 6483 void netif_tx_stop_all_queues(struct net_device *dev) 6484 { 6485 unsigned int i; 6486 6487 for (i = 0; i < dev->num_tx_queues; i++) { 6488 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 6489 netif_tx_stop_queue(txq); 6490 } 6491 } 6492 EXPORT_SYMBOL(netif_tx_stop_all_queues); 6493 6494 /** 6495 * register_netdevice - register a network device 6496 * @dev: device to register 6497 * 6498 * Take a completed network device structure and add it to the kernel 6499 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6500 * chain. 0 is returned on success. A negative errno code is returned 6501 * on a failure to set up the device, or if the name is a duplicate. 6502 * 6503 * Callers must hold the rtnl semaphore. You may want 6504 * register_netdev() instead of this. 6505 * 6506 * BUGS: 6507 * The locking appears insufficient to guarantee two parallel registers 6508 * will not get the same name. 6509 */ 6510 6511 int register_netdevice(struct net_device *dev) 6512 { 6513 int ret; 6514 struct net *net = dev_net(dev); 6515 6516 BUG_ON(dev_boot_phase); 6517 ASSERT_RTNL(); 6518 6519 might_sleep(); 6520 6521 /* When net_device's are persistent, this will be fatal. */ 6522 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 6523 BUG_ON(!net); 6524 6525 spin_lock_init(&dev->addr_list_lock); 6526 netdev_set_addr_lockdep_class(dev); 6527 6528 ret = dev_get_valid_name(net, dev, dev->name); 6529 if (ret < 0) 6530 goto out; 6531 6532 /* Init, if this function is available */ 6533 if (dev->netdev_ops->ndo_init) { 6534 ret = dev->netdev_ops->ndo_init(dev); 6535 if (ret) { 6536 if (ret > 0) 6537 ret = -EIO; 6538 goto out; 6539 } 6540 } 6541 6542 if (((dev->hw_features | dev->features) & 6543 NETIF_F_HW_VLAN_CTAG_FILTER) && 6544 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 6545 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 6546 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 6547 ret = -EINVAL; 6548 goto err_uninit; 6549 } 6550 6551 ret = -EBUSY; 6552 if (!dev->ifindex) 6553 dev->ifindex = dev_new_index(net); 6554 else if (__dev_get_by_index(net, dev->ifindex)) 6555 goto err_uninit; 6556 6557 /* Transfer changeable features to wanted_features and enable 6558 * software offloads (GSO and GRO). 6559 */ 6560 dev->hw_features |= NETIF_F_SOFT_FEATURES; 6561 dev->features |= NETIF_F_SOFT_FEATURES; 6562 dev->wanted_features = dev->features & dev->hw_features; 6563 6564 if (!(dev->flags & IFF_LOOPBACK)) { 6565 dev->hw_features |= NETIF_F_NOCACHE_COPY; 6566 } 6567 6568 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 6569 */ 6570 dev->vlan_features |= NETIF_F_HIGHDMA; 6571 6572 /* Make NETIF_F_SG inheritable to tunnel devices. 6573 */ 6574 dev->hw_enc_features |= NETIF_F_SG; 6575 6576 /* Make NETIF_F_SG inheritable to MPLS. 6577 */ 6578 dev->mpls_features |= NETIF_F_SG; 6579 6580 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 6581 ret = notifier_to_errno(ret); 6582 if (ret) 6583 goto err_uninit; 6584 6585 ret = netdev_register_kobject(dev); 6586 if (ret) 6587 goto err_uninit; 6588 dev->reg_state = NETREG_REGISTERED; 6589 6590 __netdev_update_features(dev); 6591 6592 /* 6593 * Default initial state at registry is that the 6594 * device is present. 6595 */ 6596 6597 set_bit(__LINK_STATE_PRESENT, &dev->state); 6598 6599 linkwatch_init_dev(dev); 6600 6601 dev_init_scheduler(dev); 6602 dev_hold(dev); 6603 list_netdevice(dev); 6604 add_device_randomness(dev->dev_addr, dev->addr_len); 6605 6606 /* If the device has permanent device address, driver should 6607 * set dev_addr and also addr_assign_type should be set to 6608 * NET_ADDR_PERM (default value). 6609 */ 6610 if (dev->addr_assign_type == NET_ADDR_PERM) 6611 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 6612 6613 /* Notify protocols, that a new device appeared. */ 6614 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 6615 ret = notifier_to_errno(ret); 6616 if (ret) { 6617 rollback_registered(dev); 6618 dev->reg_state = NETREG_UNREGISTERED; 6619 } 6620 /* 6621 * Prevent userspace races by waiting until the network 6622 * device is fully setup before sending notifications. 6623 */ 6624 if (!dev->rtnl_link_ops || 6625 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 6626 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 6627 6628 out: 6629 return ret; 6630 6631 err_uninit: 6632 if (dev->netdev_ops->ndo_uninit) 6633 dev->netdev_ops->ndo_uninit(dev); 6634 goto out; 6635 } 6636 EXPORT_SYMBOL(register_netdevice); 6637 6638 /** 6639 * init_dummy_netdev - init a dummy network device for NAPI 6640 * @dev: device to init 6641 * 6642 * This takes a network device structure and initialize the minimum 6643 * amount of fields so it can be used to schedule NAPI polls without 6644 * registering a full blown interface. This is to be used by drivers 6645 * that need to tie several hardware interfaces to a single NAPI 6646 * poll scheduler due to HW limitations. 6647 */ 6648 int init_dummy_netdev(struct net_device *dev) 6649 { 6650 /* Clear everything. Note we don't initialize spinlocks 6651 * are they aren't supposed to be taken by any of the 6652 * NAPI code and this dummy netdev is supposed to be 6653 * only ever used for NAPI polls 6654 */ 6655 memset(dev, 0, sizeof(struct net_device)); 6656 6657 /* make sure we BUG if trying to hit standard 6658 * register/unregister code path 6659 */ 6660 dev->reg_state = NETREG_DUMMY; 6661 6662 /* NAPI wants this */ 6663 INIT_LIST_HEAD(&dev->napi_list); 6664 6665 /* a dummy interface is started by default */ 6666 set_bit(__LINK_STATE_PRESENT, &dev->state); 6667 set_bit(__LINK_STATE_START, &dev->state); 6668 6669 /* Note : We dont allocate pcpu_refcnt for dummy devices, 6670 * because users of this 'device' dont need to change 6671 * its refcount. 6672 */ 6673 6674 return 0; 6675 } 6676 EXPORT_SYMBOL_GPL(init_dummy_netdev); 6677 6678 6679 /** 6680 * register_netdev - register a network device 6681 * @dev: device to register 6682 * 6683 * Take a completed network device structure and add it to the kernel 6684 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 6685 * chain. 0 is returned on success. A negative errno code is returned 6686 * on a failure to set up the device, or if the name is a duplicate. 6687 * 6688 * This is a wrapper around register_netdevice that takes the rtnl semaphore 6689 * and expands the device name if you passed a format string to 6690 * alloc_netdev. 6691 */ 6692 int register_netdev(struct net_device *dev) 6693 { 6694 int err; 6695 6696 rtnl_lock(); 6697 err = register_netdevice(dev); 6698 rtnl_unlock(); 6699 return err; 6700 } 6701 EXPORT_SYMBOL(register_netdev); 6702 6703 int netdev_refcnt_read(const struct net_device *dev) 6704 { 6705 int i, refcnt = 0; 6706 6707 for_each_possible_cpu(i) 6708 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 6709 return refcnt; 6710 } 6711 EXPORT_SYMBOL(netdev_refcnt_read); 6712 6713 /** 6714 * netdev_wait_allrefs - wait until all references are gone. 6715 * @dev: target net_device 6716 * 6717 * This is called when unregistering network devices. 6718 * 6719 * Any protocol or device that holds a reference should register 6720 * for netdevice notification, and cleanup and put back the 6721 * reference if they receive an UNREGISTER event. 6722 * We can get stuck here if buggy protocols don't correctly 6723 * call dev_put. 6724 */ 6725 static void netdev_wait_allrefs(struct net_device *dev) 6726 { 6727 unsigned long rebroadcast_time, warning_time; 6728 int refcnt; 6729 6730 linkwatch_forget_dev(dev); 6731 6732 rebroadcast_time = warning_time = jiffies; 6733 refcnt = netdev_refcnt_read(dev); 6734 6735 while (refcnt != 0) { 6736 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 6737 rtnl_lock(); 6738 6739 /* Rebroadcast unregister notification */ 6740 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6741 6742 __rtnl_unlock(); 6743 rcu_barrier(); 6744 rtnl_lock(); 6745 6746 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6747 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 6748 &dev->state)) { 6749 /* We must not have linkwatch events 6750 * pending on unregister. If this 6751 * happens, we simply run the queue 6752 * unscheduled, resulting in a noop 6753 * for this device. 6754 */ 6755 linkwatch_run_queue(); 6756 } 6757 6758 __rtnl_unlock(); 6759 6760 rebroadcast_time = jiffies; 6761 } 6762 6763 msleep(250); 6764 6765 refcnt = netdev_refcnt_read(dev); 6766 6767 if (time_after(jiffies, warning_time + 10 * HZ)) { 6768 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 6769 dev->name, refcnt); 6770 warning_time = jiffies; 6771 } 6772 } 6773 } 6774 6775 /* The sequence is: 6776 * 6777 * rtnl_lock(); 6778 * ... 6779 * register_netdevice(x1); 6780 * register_netdevice(x2); 6781 * ... 6782 * unregister_netdevice(y1); 6783 * unregister_netdevice(y2); 6784 * ... 6785 * rtnl_unlock(); 6786 * free_netdev(y1); 6787 * free_netdev(y2); 6788 * 6789 * We are invoked by rtnl_unlock(). 6790 * This allows us to deal with problems: 6791 * 1) We can delete sysfs objects which invoke hotplug 6792 * without deadlocking with linkwatch via keventd. 6793 * 2) Since we run with the RTNL semaphore not held, we can sleep 6794 * safely in order to wait for the netdev refcnt to drop to zero. 6795 * 6796 * We must not return until all unregister events added during 6797 * the interval the lock was held have been completed. 6798 */ 6799 void netdev_run_todo(void) 6800 { 6801 struct list_head list; 6802 6803 /* Snapshot list, allow later requests */ 6804 list_replace_init(&net_todo_list, &list); 6805 6806 __rtnl_unlock(); 6807 6808 6809 /* Wait for rcu callbacks to finish before next phase */ 6810 if (!list_empty(&list)) 6811 rcu_barrier(); 6812 6813 while (!list_empty(&list)) { 6814 struct net_device *dev 6815 = list_first_entry(&list, struct net_device, todo_list); 6816 list_del(&dev->todo_list); 6817 6818 rtnl_lock(); 6819 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 6820 __rtnl_unlock(); 6821 6822 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 6823 pr_err("network todo '%s' but state %d\n", 6824 dev->name, dev->reg_state); 6825 dump_stack(); 6826 continue; 6827 } 6828 6829 dev->reg_state = NETREG_UNREGISTERED; 6830 6831 netdev_wait_allrefs(dev); 6832 6833 /* paranoia */ 6834 BUG_ON(netdev_refcnt_read(dev)); 6835 BUG_ON(!list_empty(&dev->ptype_all)); 6836 BUG_ON(!list_empty(&dev->ptype_specific)); 6837 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 6838 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 6839 WARN_ON(dev->dn_ptr); 6840 6841 if (dev->destructor) 6842 dev->destructor(dev); 6843 6844 /* Report a network device has been unregistered */ 6845 rtnl_lock(); 6846 dev_net(dev)->dev_unreg_count--; 6847 __rtnl_unlock(); 6848 wake_up(&netdev_unregistering_wq); 6849 6850 /* Free network device */ 6851 kobject_put(&dev->dev.kobj); 6852 } 6853 } 6854 6855 /* Convert net_device_stats to rtnl_link_stats64. They have the same 6856 * fields in the same order, with only the type differing. 6857 */ 6858 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 6859 const struct net_device_stats *netdev_stats) 6860 { 6861 #if BITS_PER_LONG == 64 6862 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 6863 memcpy(stats64, netdev_stats, sizeof(*stats64)); 6864 #else 6865 size_t i, n = sizeof(*stats64) / sizeof(u64); 6866 const unsigned long *src = (const unsigned long *)netdev_stats; 6867 u64 *dst = (u64 *)stats64; 6868 6869 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 6870 sizeof(*stats64) / sizeof(u64)); 6871 for (i = 0; i < n; i++) 6872 dst[i] = src[i]; 6873 #endif 6874 } 6875 EXPORT_SYMBOL(netdev_stats_to_stats64); 6876 6877 /** 6878 * dev_get_stats - get network device statistics 6879 * @dev: device to get statistics from 6880 * @storage: place to store stats 6881 * 6882 * Get network statistics from device. Return @storage. 6883 * The device driver may provide its own method by setting 6884 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 6885 * otherwise the internal statistics structure is used. 6886 */ 6887 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 6888 struct rtnl_link_stats64 *storage) 6889 { 6890 const struct net_device_ops *ops = dev->netdev_ops; 6891 6892 if (ops->ndo_get_stats64) { 6893 memset(storage, 0, sizeof(*storage)); 6894 ops->ndo_get_stats64(dev, storage); 6895 } else if (ops->ndo_get_stats) { 6896 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 6897 } else { 6898 netdev_stats_to_stats64(storage, &dev->stats); 6899 } 6900 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 6901 storage->tx_dropped += atomic_long_read(&dev->tx_dropped); 6902 return storage; 6903 } 6904 EXPORT_SYMBOL(dev_get_stats); 6905 6906 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 6907 { 6908 struct netdev_queue *queue = dev_ingress_queue(dev); 6909 6910 #ifdef CONFIG_NET_CLS_ACT 6911 if (queue) 6912 return queue; 6913 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 6914 if (!queue) 6915 return NULL; 6916 netdev_init_one_queue(dev, queue, NULL); 6917 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 6918 queue->qdisc_sleeping = &noop_qdisc; 6919 rcu_assign_pointer(dev->ingress_queue, queue); 6920 #endif 6921 return queue; 6922 } 6923 6924 static const struct ethtool_ops default_ethtool_ops; 6925 6926 void netdev_set_default_ethtool_ops(struct net_device *dev, 6927 const struct ethtool_ops *ops) 6928 { 6929 if (dev->ethtool_ops == &default_ethtool_ops) 6930 dev->ethtool_ops = ops; 6931 } 6932 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 6933 6934 void netdev_freemem(struct net_device *dev) 6935 { 6936 char *addr = (char *)dev - dev->padded; 6937 6938 kvfree(addr); 6939 } 6940 6941 /** 6942 * alloc_netdev_mqs - allocate network device 6943 * @sizeof_priv: size of private data to allocate space for 6944 * @name: device name format string 6945 * @name_assign_type: origin of device name 6946 * @setup: callback to initialize device 6947 * @txqs: the number of TX subqueues to allocate 6948 * @rxqs: the number of RX subqueues to allocate 6949 * 6950 * Allocates a struct net_device with private data area for driver use 6951 * and performs basic initialization. Also allocates subqueue structs 6952 * for each queue on the device. 6953 */ 6954 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 6955 unsigned char name_assign_type, 6956 void (*setup)(struct net_device *), 6957 unsigned int txqs, unsigned int rxqs) 6958 { 6959 struct net_device *dev; 6960 size_t alloc_size; 6961 struct net_device *p; 6962 6963 BUG_ON(strlen(name) >= sizeof(dev->name)); 6964 6965 if (txqs < 1) { 6966 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 6967 return NULL; 6968 } 6969 6970 #ifdef CONFIG_SYSFS 6971 if (rxqs < 1) { 6972 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 6973 return NULL; 6974 } 6975 #endif 6976 6977 alloc_size = sizeof(struct net_device); 6978 if (sizeof_priv) { 6979 /* ensure 32-byte alignment of private area */ 6980 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 6981 alloc_size += sizeof_priv; 6982 } 6983 /* ensure 32-byte alignment of whole construct */ 6984 alloc_size += NETDEV_ALIGN - 1; 6985 6986 p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); 6987 if (!p) 6988 p = vzalloc(alloc_size); 6989 if (!p) 6990 return NULL; 6991 6992 dev = PTR_ALIGN(p, NETDEV_ALIGN); 6993 dev->padded = (char *)dev - (char *)p; 6994 6995 dev->pcpu_refcnt = alloc_percpu(int); 6996 if (!dev->pcpu_refcnt) 6997 goto free_dev; 6998 6999 if (dev_addr_init(dev)) 7000 goto free_pcpu; 7001 7002 dev_mc_init(dev); 7003 dev_uc_init(dev); 7004 7005 dev_net_set(dev, &init_net); 7006 7007 dev->gso_max_size = GSO_MAX_SIZE; 7008 dev->gso_max_segs = GSO_MAX_SEGS; 7009 dev->gso_min_segs = 0; 7010 7011 INIT_LIST_HEAD(&dev->napi_list); 7012 INIT_LIST_HEAD(&dev->unreg_list); 7013 INIT_LIST_HEAD(&dev->close_list); 7014 INIT_LIST_HEAD(&dev->link_watch_list); 7015 INIT_LIST_HEAD(&dev->adj_list.upper); 7016 INIT_LIST_HEAD(&dev->adj_list.lower); 7017 INIT_LIST_HEAD(&dev->all_adj_list.upper); 7018 INIT_LIST_HEAD(&dev->all_adj_list.lower); 7019 INIT_LIST_HEAD(&dev->ptype_all); 7020 INIT_LIST_HEAD(&dev->ptype_specific); 7021 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 7022 setup(dev); 7023 7024 if (!dev->tx_queue_len) 7025 dev->priv_flags |= IFF_NO_QUEUE; 7026 7027 dev->num_tx_queues = txqs; 7028 dev->real_num_tx_queues = txqs; 7029 if (netif_alloc_netdev_queues(dev)) 7030 goto free_all; 7031 7032 #ifdef CONFIG_SYSFS 7033 dev->num_rx_queues = rxqs; 7034 dev->real_num_rx_queues = rxqs; 7035 if (netif_alloc_rx_queues(dev)) 7036 goto free_all; 7037 #endif 7038 7039 strcpy(dev->name, name); 7040 dev->name_assign_type = name_assign_type; 7041 dev->group = INIT_NETDEV_GROUP; 7042 if (!dev->ethtool_ops) 7043 dev->ethtool_ops = &default_ethtool_ops; 7044 7045 nf_hook_ingress_init(dev); 7046 7047 return dev; 7048 7049 free_all: 7050 free_netdev(dev); 7051 return NULL; 7052 7053 free_pcpu: 7054 free_percpu(dev->pcpu_refcnt); 7055 free_dev: 7056 netdev_freemem(dev); 7057 return NULL; 7058 } 7059 EXPORT_SYMBOL(alloc_netdev_mqs); 7060 7061 /** 7062 * free_netdev - free network device 7063 * @dev: device 7064 * 7065 * This function does the last stage of destroying an allocated device 7066 * interface. The reference to the device object is released. 7067 * If this is the last reference then it will be freed. 7068 */ 7069 void free_netdev(struct net_device *dev) 7070 { 7071 struct napi_struct *p, *n; 7072 7073 netif_free_tx_queues(dev); 7074 #ifdef CONFIG_SYSFS 7075 kvfree(dev->_rx); 7076 #endif 7077 7078 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 7079 7080 /* Flush device addresses */ 7081 dev_addr_flush(dev); 7082 7083 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 7084 netif_napi_del(p); 7085 7086 free_percpu(dev->pcpu_refcnt); 7087 dev->pcpu_refcnt = NULL; 7088 7089 /* Compatibility with error handling in drivers */ 7090 if (dev->reg_state == NETREG_UNINITIALIZED) { 7091 netdev_freemem(dev); 7092 return; 7093 } 7094 7095 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 7096 dev->reg_state = NETREG_RELEASED; 7097 7098 /* will free via device release */ 7099 put_device(&dev->dev); 7100 } 7101 EXPORT_SYMBOL(free_netdev); 7102 7103 /** 7104 * synchronize_net - Synchronize with packet receive processing 7105 * 7106 * Wait for packets currently being received to be done. 7107 * Does not block later packets from starting. 7108 */ 7109 void synchronize_net(void) 7110 { 7111 might_sleep(); 7112 if (rtnl_is_locked()) 7113 synchronize_rcu_expedited(); 7114 else 7115 synchronize_rcu(); 7116 } 7117 EXPORT_SYMBOL(synchronize_net); 7118 7119 /** 7120 * unregister_netdevice_queue - remove device from the kernel 7121 * @dev: device 7122 * @head: list 7123 * 7124 * This function shuts down a device interface and removes it 7125 * from the kernel tables. 7126 * If head not NULL, device is queued to be unregistered later. 7127 * 7128 * Callers must hold the rtnl semaphore. You may want 7129 * unregister_netdev() instead of this. 7130 */ 7131 7132 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 7133 { 7134 ASSERT_RTNL(); 7135 7136 if (head) { 7137 list_move_tail(&dev->unreg_list, head); 7138 } else { 7139 rollback_registered(dev); 7140 /* Finish processing unregister after unlock */ 7141 net_set_todo(dev); 7142 } 7143 } 7144 EXPORT_SYMBOL(unregister_netdevice_queue); 7145 7146 /** 7147 * unregister_netdevice_many - unregister many devices 7148 * @head: list of devices 7149 * 7150 * Note: As most callers use a stack allocated list_head, 7151 * we force a list_del() to make sure stack wont be corrupted later. 7152 */ 7153 void unregister_netdevice_many(struct list_head *head) 7154 { 7155 struct net_device *dev; 7156 7157 if (!list_empty(head)) { 7158 rollback_registered_many(head); 7159 list_for_each_entry(dev, head, unreg_list) 7160 net_set_todo(dev); 7161 list_del(head); 7162 } 7163 } 7164 EXPORT_SYMBOL(unregister_netdevice_many); 7165 7166 /** 7167 * unregister_netdev - remove device from the kernel 7168 * @dev: device 7169 * 7170 * This function shuts down a device interface and removes it 7171 * from the kernel tables. 7172 * 7173 * This is just a wrapper for unregister_netdevice that takes 7174 * the rtnl semaphore. In general you want to use this and not 7175 * unregister_netdevice. 7176 */ 7177 void unregister_netdev(struct net_device *dev) 7178 { 7179 rtnl_lock(); 7180 unregister_netdevice(dev); 7181 rtnl_unlock(); 7182 } 7183 EXPORT_SYMBOL(unregister_netdev); 7184 7185 /** 7186 * dev_change_net_namespace - move device to different nethost namespace 7187 * @dev: device 7188 * @net: network namespace 7189 * @pat: If not NULL name pattern to try if the current device name 7190 * is already taken in the destination network namespace. 7191 * 7192 * This function shuts down a device interface and moves it 7193 * to a new network namespace. On success 0 is returned, on 7194 * a failure a netagive errno code is returned. 7195 * 7196 * Callers must hold the rtnl semaphore. 7197 */ 7198 7199 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 7200 { 7201 int err; 7202 7203 ASSERT_RTNL(); 7204 7205 /* Don't allow namespace local devices to be moved. */ 7206 err = -EINVAL; 7207 if (dev->features & NETIF_F_NETNS_LOCAL) 7208 goto out; 7209 7210 /* Ensure the device has been registrered */ 7211 if (dev->reg_state != NETREG_REGISTERED) 7212 goto out; 7213 7214 /* Get out if there is nothing todo */ 7215 err = 0; 7216 if (net_eq(dev_net(dev), net)) 7217 goto out; 7218 7219 /* Pick the destination device name, and ensure 7220 * we can use it in the destination network namespace. 7221 */ 7222 err = -EEXIST; 7223 if (__dev_get_by_name(net, dev->name)) { 7224 /* We get here if we can't use the current device name */ 7225 if (!pat) 7226 goto out; 7227 if (dev_get_valid_name(net, dev, pat) < 0) 7228 goto out; 7229 } 7230 7231 /* 7232 * And now a mini version of register_netdevice unregister_netdevice. 7233 */ 7234 7235 /* If device is running close it first. */ 7236 dev_close(dev); 7237 7238 /* And unlink it from device chain */ 7239 err = -ENODEV; 7240 unlist_netdevice(dev); 7241 7242 synchronize_net(); 7243 7244 /* Shutdown queueing discipline. */ 7245 dev_shutdown(dev); 7246 7247 /* Notify protocols, that we are about to destroy 7248 this device. They should clean all the things. 7249 7250 Note that dev->reg_state stays at NETREG_REGISTERED. 7251 This is wanted because this way 8021q and macvlan know 7252 the device is just moving and can keep their slaves up. 7253 */ 7254 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7255 rcu_barrier(); 7256 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7257 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 7258 7259 /* 7260 * Flush the unicast and multicast chains 7261 */ 7262 dev_uc_flush(dev); 7263 dev_mc_flush(dev); 7264 7265 /* Send a netdev-removed uevent to the old namespace */ 7266 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 7267 netdev_adjacent_del_links(dev); 7268 7269 /* Actually switch the network namespace */ 7270 dev_net_set(dev, net); 7271 7272 /* If there is an ifindex conflict assign a new one */ 7273 if (__dev_get_by_index(net, dev->ifindex)) 7274 dev->ifindex = dev_new_index(net); 7275 7276 /* Send a netdev-add uevent to the new namespace */ 7277 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 7278 netdev_adjacent_add_links(dev); 7279 7280 /* Fixup kobjects */ 7281 err = device_rename(&dev->dev, dev->name); 7282 WARN_ON(err); 7283 7284 /* Add the device back in the hashes */ 7285 list_netdevice(dev); 7286 7287 /* Notify protocols, that a new device appeared. */ 7288 call_netdevice_notifiers(NETDEV_REGISTER, dev); 7289 7290 /* 7291 * Prevent userspace races by waiting until the network 7292 * device is fully setup before sending notifications. 7293 */ 7294 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7295 7296 synchronize_net(); 7297 err = 0; 7298 out: 7299 return err; 7300 } 7301 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 7302 7303 static int dev_cpu_callback(struct notifier_block *nfb, 7304 unsigned long action, 7305 void *ocpu) 7306 { 7307 struct sk_buff **list_skb; 7308 struct sk_buff *skb; 7309 unsigned int cpu, oldcpu = (unsigned long)ocpu; 7310 struct softnet_data *sd, *oldsd; 7311 7312 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 7313 return NOTIFY_OK; 7314 7315 local_irq_disable(); 7316 cpu = smp_processor_id(); 7317 sd = &per_cpu(softnet_data, cpu); 7318 oldsd = &per_cpu(softnet_data, oldcpu); 7319 7320 /* Find end of our completion_queue. */ 7321 list_skb = &sd->completion_queue; 7322 while (*list_skb) 7323 list_skb = &(*list_skb)->next; 7324 /* Append completion queue from offline CPU. */ 7325 *list_skb = oldsd->completion_queue; 7326 oldsd->completion_queue = NULL; 7327 7328 /* Append output queue from offline CPU. */ 7329 if (oldsd->output_queue) { 7330 *sd->output_queue_tailp = oldsd->output_queue; 7331 sd->output_queue_tailp = oldsd->output_queue_tailp; 7332 oldsd->output_queue = NULL; 7333 oldsd->output_queue_tailp = &oldsd->output_queue; 7334 } 7335 /* Append NAPI poll list from offline CPU, with one exception : 7336 * process_backlog() must be called by cpu owning percpu backlog. 7337 * We properly handle process_queue & input_pkt_queue later. 7338 */ 7339 while (!list_empty(&oldsd->poll_list)) { 7340 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 7341 struct napi_struct, 7342 poll_list); 7343 7344 list_del_init(&napi->poll_list); 7345 if (napi->poll == process_backlog) 7346 napi->state = 0; 7347 else 7348 ____napi_schedule(sd, napi); 7349 } 7350 7351 raise_softirq_irqoff(NET_TX_SOFTIRQ); 7352 local_irq_enable(); 7353 7354 /* Process offline CPU's input_pkt_queue */ 7355 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 7356 netif_rx_ni(skb); 7357 input_queue_head_incr(oldsd); 7358 } 7359 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 7360 netif_rx_ni(skb); 7361 input_queue_head_incr(oldsd); 7362 } 7363 7364 return NOTIFY_OK; 7365 } 7366 7367 7368 /** 7369 * netdev_increment_features - increment feature set by one 7370 * @all: current feature set 7371 * @one: new feature set 7372 * @mask: mask feature set 7373 * 7374 * Computes a new feature set after adding a device with feature set 7375 * @one to the master device with current feature set @all. Will not 7376 * enable anything that is off in @mask. Returns the new feature set. 7377 */ 7378 netdev_features_t netdev_increment_features(netdev_features_t all, 7379 netdev_features_t one, netdev_features_t mask) 7380 { 7381 if (mask & NETIF_F_GEN_CSUM) 7382 mask |= NETIF_F_ALL_CSUM; 7383 mask |= NETIF_F_VLAN_CHALLENGED; 7384 7385 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 7386 all &= one | ~NETIF_F_ALL_FOR_ALL; 7387 7388 /* If one device supports hw checksumming, set for all. */ 7389 if (all & NETIF_F_GEN_CSUM) 7390 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 7391 7392 return all; 7393 } 7394 EXPORT_SYMBOL(netdev_increment_features); 7395 7396 static struct hlist_head * __net_init netdev_create_hash(void) 7397 { 7398 int i; 7399 struct hlist_head *hash; 7400 7401 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 7402 if (hash != NULL) 7403 for (i = 0; i < NETDEV_HASHENTRIES; i++) 7404 INIT_HLIST_HEAD(&hash[i]); 7405 7406 return hash; 7407 } 7408 7409 /* Initialize per network namespace state */ 7410 static int __net_init netdev_init(struct net *net) 7411 { 7412 if (net != &init_net) 7413 INIT_LIST_HEAD(&net->dev_base_head); 7414 7415 net->dev_name_head = netdev_create_hash(); 7416 if (net->dev_name_head == NULL) 7417 goto err_name; 7418 7419 net->dev_index_head = netdev_create_hash(); 7420 if (net->dev_index_head == NULL) 7421 goto err_idx; 7422 7423 return 0; 7424 7425 err_idx: 7426 kfree(net->dev_name_head); 7427 err_name: 7428 return -ENOMEM; 7429 } 7430 7431 /** 7432 * netdev_drivername - network driver for the device 7433 * @dev: network device 7434 * 7435 * Determine network driver for device. 7436 */ 7437 const char *netdev_drivername(const struct net_device *dev) 7438 { 7439 const struct device_driver *driver; 7440 const struct device *parent; 7441 const char *empty = ""; 7442 7443 parent = dev->dev.parent; 7444 if (!parent) 7445 return empty; 7446 7447 driver = parent->driver; 7448 if (driver && driver->name) 7449 return driver->name; 7450 return empty; 7451 } 7452 7453 static void __netdev_printk(const char *level, const struct net_device *dev, 7454 struct va_format *vaf) 7455 { 7456 if (dev && dev->dev.parent) { 7457 dev_printk_emit(level[1] - '0', 7458 dev->dev.parent, 7459 "%s %s %s%s: %pV", 7460 dev_driver_string(dev->dev.parent), 7461 dev_name(dev->dev.parent), 7462 netdev_name(dev), netdev_reg_state(dev), 7463 vaf); 7464 } else if (dev) { 7465 printk("%s%s%s: %pV", 7466 level, netdev_name(dev), netdev_reg_state(dev), vaf); 7467 } else { 7468 printk("%s(NULL net_device): %pV", level, vaf); 7469 } 7470 } 7471 7472 void netdev_printk(const char *level, const struct net_device *dev, 7473 const char *format, ...) 7474 { 7475 struct va_format vaf; 7476 va_list args; 7477 7478 va_start(args, format); 7479 7480 vaf.fmt = format; 7481 vaf.va = &args; 7482 7483 __netdev_printk(level, dev, &vaf); 7484 7485 va_end(args); 7486 } 7487 EXPORT_SYMBOL(netdev_printk); 7488 7489 #define define_netdev_printk_level(func, level) \ 7490 void func(const struct net_device *dev, const char *fmt, ...) \ 7491 { \ 7492 struct va_format vaf; \ 7493 va_list args; \ 7494 \ 7495 va_start(args, fmt); \ 7496 \ 7497 vaf.fmt = fmt; \ 7498 vaf.va = &args; \ 7499 \ 7500 __netdev_printk(level, dev, &vaf); \ 7501 \ 7502 va_end(args); \ 7503 } \ 7504 EXPORT_SYMBOL(func); 7505 7506 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 7507 define_netdev_printk_level(netdev_alert, KERN_ALERT); 7508 define_netdev_printk_level(netdev_crit, KERN_CRIT); 7509 define_netdev_printk_level(netdev_err, KERN_ERR); 7510 define_netdev_printk_level(netdev_warn, KERN_WARNING); 7511 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 7512 define_netdev_printk_level(netdev_info, KERN_INFO); 7513 7514 static void __net_exit netdev_exit(struct net *net) 7515 { 7516 kfree(net->dev_name_head); 7517 kfree(net->dev_index_head); 7518 } 7519 7520 static struct pernet_operations __net_initdata netdev_net_ops = { 7521 .init = netdev_init, 7522 .exit = netdev_exit, 7523 }; 7524 7525 static void __net_exit default_device_exit(struct net *net) 7526 { 7527 struct net_device *dev, *aux; 7528 /* 7529 * Push all migratable network devices back to the 7530 * initial network namespace 7531 */ 7532 rtnl_lock(); 7533 for_each_netdev_safe(net, dev, aux) { 7534 int err; 7535 char fb_name[IFNAMSIZ]; 7536 7537 /* Ignore unmoveable devices (i.e. loopback) */ 7538 if (dev->features & NETIF_F_NETNS_LOCAL) 7539 continue; 7540 7541 /* Leave virtual devices for the generic cleanup */ 7542 if (dev->rtnl_link_ops) 7543 continue; 7544 7545 /* Push remaining network devices to init_net */ 7546 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 7547 err = dev_change_net_namespace(dev, &init_net, fb_name); 7548 if (err) { 7549 pr_emerg("%s: failed to move %s to init_net: %d\n", 7550 __func__, dev->name, err); 7551 BUG(); 7552 } 7553 } 7554 rtnl_unlock(); 7555 } 7556 7557 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 7558 { 7559 /* Return with the rtnl_lock held when there are no network 7560 * devices unregistering in any network namespace in net_list. 7561 */ 7562 struct net *net; 7563 bool unregistering; 7564 DEFINE_WAIT_FUNC(wait, woken_wake_function); 7565 7566 add_wait_queue(&netdev_unregistering_wq, &wait); 7567 for (;;) { 7568 unregistering = false; 7569 rtnl_lock(); 7570 list_for_each_entry(net, net_list, exit_list) { 7571 if (net->dev_unreg_count > 0) { 7572 unregistering = true; 7573 break; 7574 } 7575 } 7576 if (!unregistering) 7577 break; 7578 __rtnl_unlock(); 7579 7580 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 7581 } 7582 remove_wait_queue(&netdev_unregistering_wq, &wait); 7583 } 7584 7585 static void __net_exit default_device_exit_batch(struct list_head *net_list) 7586 { 7587 /* At exit all network devices most be removed from a network 7588 * namespace. Do this in the reverse order of registration. 7589 * Do this across as many network namespaces as possible to 7590 * improve batching efficiency. 7591 */ 7592 struct net_device *dev; 7593 struct net *net; 7594 LIST_HEAD(dev_kill_list); 7595 7596 /* To prevent network device cleanup code from dereferencing 7597 * loopback devices or network devices that have been freed 7598 * wait here for all pending unregistrations to complete, 7599 * before unregistring the loopback device and allowing the 7600 * network namespace be freed. 7601 * 7602 * The netdev todo list containing all network devices 7603 * unregistrations that happen in default_device_exit_batch 7604 * will run in the rtnl_unlock() at the end of 7605 * default_device_exit_batch. 7606 */ 7607 rtnl_lock_unregistering(net_list); 7608 list_for_each_entry(net, net_list, exit_list) { 7609 for_each_netdev_reverse(net, dev) { 7610 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 7611 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 7612 else 7613 unregister_netdevice_queue(dev, &dev_kill_list); 7614 } 7615 } 7616 unregister_netdevice_many(&dev_kill_list); 7617 rtnl_unlock(); 7618 } 7619 7620 static struct pernet_operations __net_initdata default_device_ops = { 7621 .exit = default_device_exit, 7622 .exit_batch = default_device_exit_batch, 7623 }; 7624 7625 /* 7626 * Initialize the DEV module. At boot time this walks the device list and 7627 * unhooks any devices that fail to initialise (normally hardware not 7628 * present) and leaves us with a valid list of present and active devices. 7629 * 7630 */ 7631 7632 /* 7633 * This is called single threaded during boot, so no need 7634 * to take the rtnl semaphore. 7635 */ 7636 static int __init net_dev_init(void) 7637 { 7638 int i, rc = -ENOMEM; 7639 7640 BUG_ON(!dev_boot_phase); 7641 7642 if (dev_proc_init()) 7643 goto out; 7644 7645 if (netdev_kobject_init()) 7646 goto out; 7647 7648 INIT_LIST_HEAD(&ptype_all); 7649 for (i = 0; i < PTYPE_HASH_SIZE; i++) 7650 INIT_LIST_HEAD(&ptype_base[i]); 7651 7652 INIT_LIST_HEAD(&offload_base); 7653 7654 if (register_pernet_subsys(&netdev_net_ops)) 7655 goto out; 7656 7657 /* 7658 * Initialise the packet receive queues. 7659 */ 7660 7661 for_each_possible_cpu(i) { 7662 struct softnet_data *sd = &per_cpu(softnet_data, i); 7663 7664 skb_queue_head_init(&sd->input_pkt_queue); 7665 skb_queue_head_init(&sd->process_queue); 7666 INIT_LIST_HEAD(&sd->poll_list); 7667 sd->output_queue_tailp = &sd->output_queue; 7668 #ifdef CONFIG_RPS 7669 sd->csd.func = rps_trigger_softirq; 7670 sd->csd.info = sd; 7671 sd->cpu = i; 7672 #endif 7673 7674 sd->backlog.poll = process_backlog; 7675 sd->backlog.weight = weight_p; 7676 } 7677 7678 dev_boot_phase = 0; 7679 7680 /* The loopback device is special if any other network devices 7681 * is present in a network namespace the loopback device must 7682 * be present. Since we now dynamically allocate and free the 7683 * loopback device ensure this invariant is maintained by 7684 * keeping the loopback device as the first device on the 7685 * list of network devices. Ensuring the loopback devices 7686 * is the first device that appears and the last network device 7687 * that disappears. 7688 */ 7689 if (register_pernet_device(&loopback_net_ops)) 7690 goto out; 7691 7692 if (register_pernet_device(&default_device_ops)) 7693 goto out; 7694 7695 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 7696 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 7697 7698 hotcpu_notifier(dev_cpu_callback, 0); 7699 dst_subsys_init(); 7700 rc = 0; 7701 out: 7702 return rc; 7703 } 7704 7705 subsys_initcall(net_dev_init); 7706