xref: /linux-6.15/net/core/dev.c (revision fee6d4c7)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <linux/rtnetlink.h>
100 #include <linux/stat.h>
101 #include <net/dst.h>
102 #include <net/pkt_sched.h>
103 #include <net/checksum.h>
104 #include <net/xfrm.h>
105 #include <linux/highmem.h>
106 #include <linux/init.h>
107 #include <linux/module.h>
108 #include <linux/netpoll.h>
109 #include <linux/rcupdate.h>
110 #include <linux/delay.h>
111 #include <net/iw_handler.h>
112 #include <asm/current.h>
113 #include <linux/audit.h>
114 #include <linux/dmaengine.h>
115 #include <linux/err.h>
116 #include <linux/ctype.h>
117 #include <linux/if_arp.h>
118 #include <linux/if_vlan.h>
119 #include <linux/ip.h>
120 #include <net/ip.h>
121 #include <net/mpls.h>
122 #include <linux/ipv6.h>
123 #include <linux/in.h>
124 #include <linux/jhash.h>
125 #include <linux/random.h>
126 #include <trace/events/napi.h>
127 #include <trace/events/net.h>
128 #include <trace/events/skb.h>
129 #include <linux/pci.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 
140 #include "net-sysfs.h"
141 
142 /* Instead of increasing this, you should create a hash table. */
143 #define MAX_GRO_SKBS 8
144 
145 /* This should be increased if a protocol with a bigger head is added. */
146 #define GRO_MAX_HEAD (MAX_HEADER + 128)
147 
148 static DEFINE_SPINLOCK(ptype_lock);
149 static DEFINE_SPINLOCK(offload_lock);
150 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
151 struct list_head ptype_all __read_mostly;	/* Taps */
152 static struct list_head offload_base __read_mostly;
153 
154 static int netif_rx_internal(struct sk_buff *skb);
155 static int call_netdevice_notifiers_info(unsigned long val,
156 					 struct net_device *dev,
157 					 struct netdev_notifier_info *info);
158 
159 /*
160  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
161  * semaphore.
162  *
163  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
164  *
165  * Writers must hold the rtnl semaphore while they loop through the
166  * dev_base_head list, and hold dev_base_lock for writing when they do the
167  * actual updates.  This allows pure readers to access the list even
168  * while a writer is preparing to update it.
169  *
170  * To put it another way, dev_base_lock is held for writing only to
171  * protect against pure readers; the rtnl semaphore provides the
172  * protection against other writers.
173  *
174  * See, for example usages, register_netdevice() and
175  * unregister_netdevice(), which must be called with the rtnl
176  * semaphore held.
177  */
178 DEFINE_RWLOCK(dev_base_lock);
179 EXPORT_SYMBOL(dev_base_lock);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id;
185 static DEFINE_HASHTABLE(napi_hash, 8);
186 
187 static seqcount_t devnet_rename_seq;
188 
189 static inline void dev_base_seq_inc(struct net *net)
190 {
191 	while (++net->dev_base_seq == 0);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 static inline void rps_lock(struct softnet_data *sd)
207 {
208 #ifdef CONFIG_RPS
209 	spin_lock(&sd->input_pkt_queue.lock);
210 #endif
211 }
212 
213 static inline void rps_unlock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 	spin_unlock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219 
220 /* Device list insertion */
221 static void list_netdevice(struct net_device *dev)
222 {
223 	struct net *net = dev_net(dev);
224 
225 	ASSERT_RTNL();
226 
227 	write_lock_bh(&dev_base_lock);
228 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
230 	hlist_add_head_rcu(&dev->index_hlist,
231 			   dev_index_hash(net, dev->ifindex));
232 	write_unlock_bh(&dev_base_lock);
233 
234 	dev_base_seq_inc(net);
235 }
236 
237 /* Device list removal
238  * caller must respect a RCU grace period before freeing/reusing dev
239  */
240 static void unlist_netdevice(struct net_device *dev)
241 {
242 	ASSERT_RTNL();
243 
244 	/* Unlink dev from the device chain */
245 	write_lock_bh(&dev_base_lock);
246 	list_del_rcu(&dev->dev_list);
247 	hlist_del_rcu(&dev->name_hlist);
248 	hlist_del_rcu(&dev->index_hlist);
249 	write_unlock_bh(&dev_base_lock);
250 
251 	dev_base_seq_inc(dev_net(dev));
252 }
253 
254 /*
255  *	Our notifier list
256  */
257 
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259 
260 /*
261  *	Device drivers call our routines to queue packets here. We empty the
262  *	queue in the local softnet handler.
263  */
264 
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267 
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
287 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
288 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
289 
290 static const char *const netdev_lock_name[] =
291 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
292 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
293 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
294 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
295 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
296 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
297 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
298 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
299 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
300 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
301 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
302 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
303 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
304 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
305 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
306 
307 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
308 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
309 
310 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
311 {
312 	int i;
313 
314 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
315 		if (netdev_lock_type[i] == dev_type)
316 			return i;
317 	/* the last key is used by default */
318 	return ARRAY_SIZE(netdev_lock_type) - 1;
319 }
320 
321 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
322 						 unsigned short dev_type)
323 {
324 	int i;
325 
326 	i = netdev_lock_pos(dev_type);
327 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
328 				   netdev_lock_name[i]);
329 }
330 
331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
332 {
333 	int i;
334 
335 	i = netdev_lock_pos(dev->type);
336 	lockdep_set_class_and_name(&dev->addr_list_lock,
337 				   &netdev_addr_lock_key[i],
338 				   netdev_lock_name[i]);
339 }
340 #else
341 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
342 						 unsigned short dev_type)
343 {
344 }
345 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
346 {
347 }
348 #endif
349 
350 /*******************************************************************************
351 
352 		Protocol management and registration routines
353 
354 *******************************************************************************/
355 
356 /*
357  *	Add a protocol ID to the list. Now that the input handler is
358  *	smarter we can dispense with all the messy stuff that used to be
359  *	here.
360  *
361  *	BEWARE!!! Protocol handlers, mangling input packets,
362  *	MUST BE last in hash buckets and checking protocol handlers
363  *	MUST start from promiscuous ptype_all chain in net_bh.
364  *	It is true now, do not change it.
365  *	Explanation follows: if protocol handler, mangling packet, will
366  *	be the first on list, it is not able to sense, that packet
367  *	is cloned and should be copied-on-write, so that it will
368  *	change it and subsequent readers will get broken packet.
369  *							--ANK (980803)
370  */
371 
372 static inline struct list_head *ptype_head(const struct packet_type *pt)
373 {
374 	if (pt->type == htons(ETH_P_ALL))
375 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
376 	else
377 		return pt->dev ? &pt->dev->ptype_specific :
378 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
379 }
380 
381 /**
382  *	dev_add_pack - add packet handler
383  *	@pt: packet type declaration
384  *
385  *	Add a protocol handler to the networking stack. The passed &packet_type
386  *	is linked into kernel lists and may not be freed until it has been
387  *	removed from the kernel lists.
388  *
389  *	This call does not sleep therefore it can not
390  *	guarantee all CPU's that are in middle of receiving packets
391  *	will see the new packet type (until the next received packet).
392  */
393 
394 void dev_add_pack(struct packet_type *pt)
395 {
396 	struct list_head *head = ptype_head(pt);
397 
398 	spin_lock(&ptype_lock);
399 	list_add_rcu(&pt->list, head);
400 	spin_unlock(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403 
404 /**
405  *	__dev_remove_pack	 - remove packet handler
406  *	@pt: packet type declaration
407  *
408  *	Remove a protocol handler that was previously added to the kernel
409  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *	from the kernel lists and can be freed or reused once this function
411  *	returns.
412  *
413  *      The packet type might still be in use by receivers
414  *	and must not be freed until after all the CPU's have gone
415  *	through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 	struct list_head *head = ptype_head(pt);
420 	struct packet_type *pt1;
421 
422 	spin_lock(&ptype_lock);
423 
424 	list_for_each_entry(pt1, head, list) {
425 		if (pt == pt1) {
426 			list_del_rcu(&pt->list);
427 			goto out;
428 		}
429 	}
430 
431 	pr_warn("dev_remove_pack: %p not found\n", pt);
432 out:
433 	spin_unlock(&ptype_lock);
434 }
435 EXPORT_SYMBOL(__dev_remove_pack);
436 
437 /**
438  *	dev_remove_pack	 - remove packet handler
439  *	@pt: packet type declaration
440  *
441  *	Remove a protocol handler that was previously added to the kernel
442  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
443  *	from the kernel lists and can be freed or reused once this function
444  *	returns.
445  *
446  *	This call sleeps to guarantee that no CPU is looking at the packet
447  *	type after return.
448  */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451 	__dev_remove_pack(pt);
452 
453 	synchronize_net();
454 }
455 EXPORT_SYMBOL(dev_remove_pack);
456 
457 
458 /**
459  *	dev_add_offload - register offload handlers
460  *	@po: protocol offload declaration
461  *
462  *	Add protocol offload handlers to the networking stack. The passed
463  *	&proto_offload is linked into kernel lists and may not be freed until
464  *	it has been removed from the kernel lists.
465  *
466  *	This call does not sleep therefore it can not
467  *	guarantee all CPU's that are in middle of receiving packets
468  *	will see the new offload handlers (until the next received packet).
469  */
470 void dev_add_offload(struct packet_offload *po)
471 {
472 	struct packet_offload *elem;
473 
474 	spin_lock(&offload_lock);
475 	list_for_each_entry(elem, &offload_base, list) {
476 		if (po->priority < elem->priority)
477 			break;
478 	}
479 	list_add_rcu(&po->list, elem->list.prev);
480 	spin_unlock(&offload_lock);
481 }
482 EXPORT_SYMBOL(dev_add_offload);
483 
484 /**
485  *	__dev_remove_offload	 - remove offload handler
486  *	@po: packet offload declaration
487  *
488  *	Remove a protocol offload handler that was previously added to the
489  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
490  *	is removed from the kernel lists and can be freed or reused once this
491  *	function returns.
492  *
493  *      The packet type might still be in use by receivers
494  *	and must not be freed until after all the CPU's have gone
495  *	through a quiescent state.
496  */
497 static void __dev_remove_offload(struct packet_offload *po)
498 {
499 	struct list_head *head = &offload_base;
500 	struct packet_offload *po1;
501 
502 	spin_lock(&offload_lock);
503 
504 	list_for_each_entry(po1, head, list) {
505 		if (po == po1) {
506 			list_del_rcu(&po->list);
507 			goto out;
508 		}
509 	}
510 
511 	pr_warn("dev_remove_offload: %p not found\n", po);
512 out:
513 	spin_unlock(&offload_lock);
514 }
515 
516 /**
517  *	dev_remove_offload	 - remove packet offload handler
518  *	@po: packet offload declaration
519  *
520  *	Remove a packet offload handler that was previously added to the kernel
521  *	offload handlers by dev_add_offload(). The passed &offload_type is
522  *	removed from the kernel lists and can be freed or reused once this
523  *	function returns.
524  *
525  *	This call sleeps to guarantee that no CPU is looking at the packet
526  *	type after return.
527  */
528 void dev_remove_offload(struct packet_offload *po)
529 {
530 	__dev_remove_offload(po);
531 
532 	synchronize_net();
533 }
534 EXPORT_SYMBOL(dev_remove_offload);
535 
536 /******************************************************************************
537 
538 		      Device Boot-time Settings Routines
539 
540 *******************************************************************************/
541 
542 /* Boot time configuration table */
543 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
544 
545 /**
546  *	netdev_boot_setup_add	- add new setup entry
547  *	@name: name of the device
548  *	@map: configured settings for the device
549  *
550  *	Adds new setup entry to the dev_boot_setup list.  The function
551  *	returns 0 on error and 1 on success.  This is a generic routine to
552  *	all netdevices.
553  */
554 static int netdev_boot_setup_add(char *name, struct ifmap *map)
555 {
556 	struct netdev_boot_setup *s;
557 	int i;
558 
559 	s = dev_boot_setup;
560 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
561 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
562 			memset(s[i].name, 0, sizeof(s[i].name));
563 			strlcpy(s[i].name, name, IFNAMSIZ);
564 			memcpy(&s[i].map, map, sizeof(s[i].map));
565 			break;
566 		}
567 	}
568 
569 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
570 }
571 
572 /**
573  *	netdev_boot_setup_check	- check boot time settings
574  *	@dev: the netdevice
575  *
576  * 	Check boot time settings for the device.
577  *	The found settings are set for the device to be used
578  *	later in the device probing.
579  *	Returns 0 if no settings found, 1 if they are.
580  */
581 int netdev_boot_setup_check(struct net_device *dev)
582 {
583 	struct netdev_boot_setup *s = dev_boot_setup;
584 	int i;
585 
586 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
587 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
588 		    !strcmp(dev->name, s[i].name)) {
589 			dev->irq 	= s[i].map.irq;
590 			dev->base_addr 	= s[i].map.base_addr;
591 			dev->mem_start 	= s[i].map.mem_start;
592 			dev->mem_end 	= s[i].map.mem_end;
593 			return 1;
594 		}
595 	}
596 	return 0;
597 }
598 EXPORT_SYMBOL(netdev_boot_setup_check);
599 
600 
601 /**
602  *	netdev_boot_base	- get address from boot time settings
603  *	@prefix: prefix for network device
604  *	@unit: id for network device
605  *
606  * 	Check boot time settings for the base address of device.
607  *	The found settings are set for the device to be used
608  *	later in the device probing.
609  *	Returns 0 if no settings found.
610  */
611 unsigned long netdev_boot_base(const char *prefix, int unit)
612 {
613 	const struct netdev_boot_setup *s = dev_boot_setup;
614 	char name[IFNAMSIZ];
615 	int i;
616 
617 	sprintf(name, "%s%d", prefix, unit);
618 
619 	/*
620 	 * If device already registered then return base of 1
621 	 * to indicate not to probe for this interface
622 	 */
623 	if (__dev_get_by_name(&init_net, name))
624 		return 1;
625 
626 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
627 		if (!strcmp(name, s[i].name))
628 			return s[i].map.base_addr;
629 	return 0;
630 }
631 
632 /*
633  * Saves at boot time configured settings for any netdevice.
634  */
635 int __init netdev_boot_setup(char *str)
636 {
637 	int ints[5];
638 	struct ifmap map;
639 
640 	str = get_options(str, ARRAY_SIZE(ints), ints);
641 	if (!str || !*str)
642 		return 0;
643 
644 	/* Save settings */
645 	memset(&map, 0, sizeof(map));
646 	if (ints[0] > 0)
647 		map.irq = ints[1];
648 	if (ints[0] > 1)
649 		map.base_addr = ints[2];
650 	if (ints[0] > 2)
651 		map.mem_start = ints[3];
652 	if (ints[0] > 3)
653 		map.mem_end = ints[4];
654 
655 	/* Add new entry to the list */
656 	return netdev_boot_setup_add(str, &map);
657 }
658 
659 __setup("netdev=", netdev_boot_setup);
660 
661 /*******************************************************************************
662 
663 			    Device Interface Subroutines
664 
665 *******************************************************************************/
666 
667 /**
668  *	dev_get_iflink	- get 'iflink' value of a interface
669  *	@dev: targeted interface
670  *
671  *	Indicates the ifindex the interface is linked to.
672  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
673  */
674 
675 int dev_get_iflink(const struct net_device *dev)
676 {
677 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
678 		return dev->netdev_ops->ndo_get_iflink(dev);
679 
680 	return dev->ifindex;
681 }
682 EXPORT_SYMBOL(dev_get_iflink);
683 
684 /**
685  *	__dev_get_by_name	- find a device by its name
686  *	@net: the applicable net namespace
687  *	@name: name to find
688  *
689  *	Find an interface by name. Must be called under RTNL semaphore
690  *	or @dev_base_lock. If the name is found a pointer to the device
691  *	is returned. If the name is not found then %NULL is returned. The
692  *	reference counters are not incremented so the caller must be
693  *	careful with locks.
694  */
695 
696 struct net_device *__dev_get_by_name(struct net *net, const char *name)
697 {
698 	struct net_device *dev;
699 	struct hlist_head *head = dev_name_hash(net, name);
700 
701 	hlist_for_each_entry(dev, head, name_hlist)
702 		if (!strncmp(dev->name, name, IFNAMSIZ))
703 			return dev;
704 
705 	return NULL;
706 }
707 EXPORT_SYMBOL(__dev_get_by_name);
708 
709 /**
710  *	dev_get_by_name_rcu	- find a device by its name
711  *	@net: the applicable net namespace
712  *	@name: name to find
713  *
714  *	Find an interface by name.
715  *	If the name is found a pointer to the device is returned.
716  * 	If the name is not found then %NULL is returned.
717  *	The reference counters are not incremented so the caller must be
718  *	careful with locks. The caller must hold RCU lock.
719  */
720 
721 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
722 {
723 	struct net_device *dev;
724 	struct hlist_head *head = dev_name_hash(net, name);
725 
726 	hlist_for_each_entry_rcu(dev, head, name_hlist)
727 		if (!strncmp(dev->name, name, IFNAMSIZ))
728 			return dev;
729 
730 	return NULL;
731 }
732 EXPORT_SYMBOL(dev_get_by_name_rcu);
733 
734 /**
735  *	dev_get_by_name		- find a device by its name
736  *	@net: the applicable net namespace
737  *	@name: name to find
738  *
739  *	Find an interface by name. This can be called from any
740  *	context and does its own locking. The returned handle has
741  *	the usage count incremented and the caller must use dev_put() to
742  *	release it when it is no longer needed. %NULL is returned if no
743  *	matching device is found.
744  */
745 
746 struct net_device *dev_get_by_name(struct net *net, const char *name)
747 {
748 	struct net_device *dev;
749 
750 	rcu_read_lock();
751 	dev = dev_get_by_name_rcu(net, name);
752 	if (dev)
753 		dev_hold(dev);
754 	rcu_read_unlock();
755 	return dev;
756 }
757 EXPORT_SYMBOL(dev_get_by_name);
758 
759 /**
760  *	__dev_get_by_index - find a device by its ifindex
761  *	@net: the applicable net namespace
762  *	@ifindex: index of device
763  *
764  *	Search for an interface by index. Returns %NULL if the device
765  *	is not found or a pointer to the device. The device has not
766  *	had its reference counter increased so the caller must be careful
767  *	about locking. The caller must hold either the RTNL semaphore
768  *	or @dev_base_lock.
769  */
770 
771 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
772 {
773 	struct net_device *dev;
774 	struct hlist_head *head = dev_index_hash(net, ifindex);
775 
776 	hlist_for_each_entry(dev, head, index_hlist)
777 		if (dev->ifindex == ifindex)
778 			return dev;
779 
780 	return NULL;
781 }
782 EXPORT_SYMBOL(__dev_get_by_index);
783 
784 /**
785  *	dev_get_by_index_rcu - find a device by its ifindex
786  *	@net: the applicable net namespace
787  *	@ifindex: index of device
788  *
789  *	Search for an interface by index. Returns %NULL if the device
790  *	is not found or a pointer to the device. The device has not
791  *	had its reference counter increased so the caller must be careful
792  *	about locking. The caller must hold RCU lock.
793  */
794 
795 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
796 {
797 	struct net_device *dev;
798 	struct hlist_head *head = dev_index_hash(net, ifindex);
799 
800 	hlist_for_each_entry_rcu(dev, head, index_hlist)
801 		if (dev->ifindex == ifindex)
802 			return dev;
803 
804 	return NULL;
805 }
806 EXPORT_SYMBOL(dev_get_by_index_rcu);
807 
808 
809 /**
810  *	dev_get_by_index - find a device by its ifindex
811  *	@net: the applicable net namespace
812  *	@ifindex: index of device
813  *
814  *	Search for an interface by index. Returns NULL if the device
815  *	is not found or a pointer to the device. The device returned has
816  *	had a reference added and the pointer is safe until the user calls
817  *	dev_put to indicate they have finished with it.
818  */
819 
820 struct net_device *dev_get_by_index(struct net *net, int ifindex)
821 {
822 	struct net_device *dev;
823 
824 	rcu_read_lock();
825 	dev = dev_get_by_index_rcu(net, ifindex);
826 	if (dev)
827 		dev_hold(dev);
828 	rcu_read_unlock();
829 	return dev;
830 }
831 EXPORT_SYMBOL(dev_get_by_index);
832 
833 /**
834  *	netdev_get_name - get a netdevice name, knowing its ifindex.
835  *	@net: network namespace
836  *	@name: a pointer to the buffer where the name will be stored.
837  *	@ifindex: the ifindex of the interface to get the name from.
838  *
839  *	The use of raw_seqcount_begin() and cond_resched() before
840  *	retrying is required as we want to give the writers a chance
841  *	to complete when CONFIG_PREEMPT is not set.
842  */
843 int netdev_get_name(struct net *net, char *name, int ifindex)
844 {
845 	struct net_device *dev;
846 	unsigned int seq;
847 
848 retry:
849 	seq = raw_seqcount_begin(&devnet_rename_seq);
850 	rcu_read_lock();
851 	dev = dev_get_by_index_rcu(net, ifindex);
852 	if (!dev) {
853 		rcu_read_unlock();
854 		return -ENODEV;
855 	}
856 
857 	strcpy(name, dev->name);
858 	rcu_read_unlock();
859 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
860 		cond_resched();
861 		goto retry;
862 	}
863 
864 	return 0;
865 }
866 
867 /**
868  *	dev_getbyhwaddr_rcu - find a device by its hardware address
869  *	@net: the applicable net namespace
870  *	@type: media type of device
871  *	@ha: hardware address
872  *
873  *	Search for an interface by MAC address. Returns NULL if the device
874  *	is not found or a pointer to the device.
875  *	The caller must hold RCU or RTNL.
876  *	The returned device has not had its ref count increased
877  *	and the caller must therefore be careful about locking
878  *
879  */
880 
881 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
882 				       const char *ha)
883 {
884 	struct net_device *dev;
885 
886 	for_each_netdev_rcu(net, dev)
887 		if (dev->type == type &&
888 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
889 			return dev;
890 
891 	return NULL;
892 }
893 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
894 
895 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
896 {
897 	struct net_device *dev;
898 
899 	ASSERT_RTNL();
900 	for_each_netdev(net, dev)
901 		if (dev->type == type)
902 			return dev;
903 
904 	return NULL;
905 }
906 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
907 
908 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
909 {
910 	struct net_device *dev, *ret = NULL;
911 
912 	rcu_read_lock();
913 	for_each_netdev_rcu(net, dev)
914 		if (dev->type == type) {
915 			dev_hold(dev);
916 			ret = dev;
917 			break;
918 		}
919 	rcu_read_unlock();
920 	return ret;
921 }
922 EXPORT_SYMBOL(dev_getfirstbyhwtype);
923 
924 /**
925  *	__dev_get_by_flags - find any device with given flags
926  *	@net: the applicable net namespace
927  *	@if_flags: IFF_* values
928  *	@mask: bitmask of bits in if_flags to check
929  *
930  *	Search for any interface with the given flags. Returns NULL if a device
931  *	is not found or a pointer to the device. Must be called inside
932  *	rtnl_lock(), and result refcount is unchanged.
933  */
934 
935 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
936 				      unsigned short mask)
937 {
938 	struct net_device *dev, *ret;
939 
940 	ASSERT_RTNL();
941 
942 	ret = NULL;
943 	for_each_netdev(net, dev) {
944 		if (((dev->flags ^ if_flags) & mask) == 0) {
945 			ret = dev;
946 			break;
947 		}
948 	}
949 	return ret;
950 }
951 EXPORT_SYMBOL(__dev_get_by_flags);
952 
953 /**
954  *	dev_valid_name - check if name is okay for network device
955  *	@name: name string
956  *
957  *	Network device names need to be valid file names to
958  *	to allow sysfs to work.  We also disallow any kind of
959  *	whitespace.
960  */
961 bool dev_valid_name(const char *name)
962 {
963 	if (*name == '\0')
964 		return false;
965 	if (strlen(name) >= IFNAMSIZ)
966 		return false;
967 	if (!strcmp(name, ".") || !strcmp(name, ".."))
968 		return false;
969 
970 	while (*name) {
971 		if (*name == '/' || *name == ':' || isspace(*name))
972 			return false;
973 		name++;
974 	}
975 	return true;
976 }
977 EXPORT_SYMBOL(dev_valid_name);
978 
979 /**
980  *	__dev_alloc_name - allocate a name for a device
981  *	@net: network namespace to allocate the device name in
982  *	@name: name format string
983  *	@buf:  scratch buffer and result name string
984  *
985  *	Passed a format string - eg "lt%d" it will try and find a suitable
986  *	id. It scans list of devices to build up a free map, then chooses
987  *	the first empty slot. The caller must hold the dev_base or rtnl lock
988  *	while allocating the name and adding the device in order to avoid
989  *	duplicates.
990  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
991  *	Returns the number of the unit assigned or a negative errno code.
992  */
993 
994 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
995 {
996 	int i = 0;
997 	const char *p;
998 	const int max_netdevices = 8*PAGE_SIZE;
999 	unsigned long *inuse;
1000 	struct net_device *d;
1001 
1002 	p = strnchr(name, IFNAMSIZ-1, '%');
1003 	if (p) {
1004 		/*
1005 		 * Verify the string as this thing may have come from
1006 		 * the user.  There must be either one "%d" and no other "%"
1007 		 * characters.
1008 		 */
1009 		if (p[1] != 'd' || strchr(p + 2, '%'))
1010 			return -EINVAL;
1011 
1012 		/* Use one page as a bit array of possible slots */
1013 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1014 		if (!inuse)
1015 			return -ENOMEM;
1016 
1017 		for_each_netdev(net, d) {
1018 			if (!sscanf(d->name, name, &i))
1019 				continue;
1020 			if (i < 0 || i >= max_netdevices)
1021 				continue;
1022 
1023 			/*  avoid cases where sscanf is not exact inverse of printf */
1024 			snprintf(buf, IFNAMSIZ, name, i);
1025 			if (!strncmp(buf, d->name, IFNAMSIZ))
1026 				set_bit(i, inuse);
1027 		}
1028 
1029 		i = find_first_zero_bit(inuse, max_netdevices);
1030 		free_page((unsigned long) inuse);
1031 	}
1032 
1033 	if (buf != name)
1034 		snprintf(buf, IFNAMSIZ, name, i);
1035 	if (!__dev_get_by_name(net, buf))
1036 		return i;
1037 
1038 	/* It is possible to run out of possible slots
1039 	 * when the name is long and there isn't enough space left
1040 	 * for the digits, or if all bits are used.
1041 	 */
1042 	return -ENFILE;
1043 }
1044 
1045 /**
1046  *	dev_alloc_name - allocate a name for a device
1047  *	@dev: device
1048  *	@name: name format string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 int dev_alloc_name(struct net_device *dev, const char *name)
1060 {
1061 	char buf[IFNAMSIZ];
1062 	struct net *net;
1063 	int ret;
1064 
1065 	BUG_ON(!dev_net(dev));
1066 	net = dev_net(dev);
1067 	ret = __dev_alloc_name(net, name, buf);
1068 	if (ret >= 0)
1069 		strlcpy(dev->name, buf, IFNAMSIZ);
1070 	return ret;
1071 }
1072 EXPORT_SYMBOL(dev_alloc_name);
1073 
1074 static int dev_alloc_name_ns(struct net *net,
1075 			     struct net_device *dev,
1076 			     const char *name)
1077 {
1078 	char buf[IFNAMSIZ];
1079 	int ret;
1080 
1081 	ret = __dev_alloc_name(net, name, buf);
1082 	if (ret >= 0)
1083 		strlcpy(dev->name, buf, IFNAMSIZ);
1084 	return ret;
1085 }
1086 
1087 static int dev_get_valid_name(struct net *net,
1088 			      struct net_device *dev,
1089 			      const char *name)
1090 {
1091 	BUG_ON(!net);
1092 
1093 	if (!dev_valid_name(name))
1094 		return -EINVAL;
1095 
1096 	if (strchr(name, '%'))
1097 		return dev_alloc_name_ns(net, dev, name);
1098 	else if (__dev_get_by_name(net, name))
1099 		return -EEXIST;
1100 	else if (dev->name != name)
1101 		strlcpy(dev->name, name, IFNAMSIZ);
1102 
1103 	return 0;
1104 }
1105 
1106 /**
1107  *	dev_change_name - change name of a device
1108  *	@dev: device
1109  *	@newname: name (or format string) must be at least IFNAMSIZ
1110  *
1111  *	Change name of a device, can pass format strings "eth%d".
1112  *	for wildcarding.
1113  */
1114 int dev_change_name(struct net_device *dev, const char *newname)
1115 {
1116 	unsigned char old_assign_type;
1117 	char oldname[IFNAMSIZ];
1118 	int err = 0;
1119 	int ret;
1120 	struct net *net;
1121 
1122 	ASSERT_RTNL();
1123 	BUG_ON(!dev_net(dev));
1124 
1125 	net = dev_net(dev);
1126 	if (dev->flags & IFF_UP)
1127 		return -EBUSY;
1128 
1129 	write_seqcount_begin(&devnet_rename_seq);
1130 
1131 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1132 		write_seqcount_end(&devnet_rename_seq);
1133 		return 0;
1134 	}
1135 
1136 	memcpy(oldname, dev->name, IFNAMSIZ);
1137 
1138 	err = dev_get_valid_name(net, dev, newname);
1139 	if (err < 0) {
1140 		write_seqcount_end(&devnet_rename_seq);
1141 		return err;
1142 	}
1143 
1144 	if (oldname[0] && !strchr(oldname, '%'))
1145 		netdev_info(dev, "renamed from %s\n", oldname);
1146 
1147 	old_assign_type = dev->name_assign_type;
1148 	dev->name_assign_type = NET_NAME_RENAMED;
1149 
1150 rollback:
1151 	ret = device_rename(&dev->dev, dev->name);
1152 	if (ret) {
1153 		memcpy(dev->name, oldname, IFNAMSIZ);
1154 		dev->name_assign_type = old_assign_type;
1155 		write_seqcount_end(&devnet_rename_seq);
1156 		return ret;
1157 	}
1158 
1159 	write_seqcount_end(&devnet_rename_seq);
1160 
1161 	netdev_adjacent_rename_links(dev, oldname);
1162 
1163 	write_lock_bh(&dev_base_lock);
1164 	hlist_del_rcu(&dev->name_hlist);
1165 	write_unlock_bh(&dev_base_lock);
1166 
1167 	synchronize_rcu();
1168 
1169 	write_lock_bh(&dev_base_lock);
1170 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1171 	write_unlock_bh(&dev_base_lock);
1172 
1173 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1174 	ret = notifier_to_errno(ret);
1175 
1176 	if (ret) {
1177 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1178 		if (err >= 0) {
1179 			err = ret;
1180 			write_seqcount_begin(&devnet_rename_seq);
1181 			memcpy(dev->name, oldname, IFNAMSIZ);
1182 			memcpy(oldname, newname, IFNAMSIZ);
1183 			dev->name_assign_type = old_assign_type;
1184 			old_assign_type = NET_NAME_RENAMED;
1185 			goto rollback;
1186 		} else {
1187 			pr_err("%s: name change rollback failed: %d\n",
1188 			       dev->name, ret);
1189 		}
1190 	}
1191 
1192 	return err;
1193 }
1194 
1195 /**
1196  *	dev_set_alias - change ifalias of a device
1197  *	@dev: device
1198  *	@alias: name up to IFALIASZ
1199  *	@len: limit of bytes to copy from info
1200  *
1201  *	Set ifalias for a device,
1202  */
1203 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1204 {
1205 	char *new_ifalias;
1206 
1207 	ASSERT_RTNL();
1208 
1209 	if (len >= IFALIASZ)
1210 		return -EINVAL;
1211 
1212 	if (!len) {
1213 		kfree(dev->ifalias);
1214 		dev->ifalias = NULL;
1215 		return 0;
1216 	}
1217 
1218 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1219 	if (!new_ifalias)
1220 		return -ENOMEM;
1221 	dev->ifalias = new_ifalias;
1222 
1223 	strlcpy(dev->ifalias, alias, len+1);
1224 	return len;
1225 }
1226 
1227 
1228 /**
1229  *	netdev_features_change - device changes features
1230  *	@dev: device to cause notification
1231  *
1232  *	Called to indicate a device has changed features.
1233  */
1234 void netdev_features_change(struct net_device *dev)
1235 {
1236 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1237 }
1238 EXPORT_SYMBOL(netdev_features_change);
1239 
1240 /**
1241  *	netdev_state_change - device changes state
1242  *	@dev: device to cause notification
1243  *
1244  *	Called to indicate a device has changed state. This function calls
1245  *	the notifier chains for netdev_chain and sends a NEWLINK message
1246  *	to the routing socket.
1247  */
1248 void netdev_state_change(struct net_device *dev)
1249 {
1250 	if (dev->flags & IFF_UP) {
1251 		struct netdev_notifier_change_info change_info;
1252 
1253 		change_info.flags_changed = 0;
1254 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1255 					      &change_info.info);
1256 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1257 	}
1258 }
1259 EXPORT_SYMBOL(netdev_state_change);
1260 
1261 /**
1262  * 	netdev_notify_peers - notify network peers about existence of @dev
1263  * 	@dev: network device
1264  *
1265  * Generate traffic such that interested network peers are aware of
1266  * @dev, such as by generating a gratuitous ARP. This may be used when
1267  * a device wants to inform the rest of the network about some sort of
1268  * reconfiguration such as a failover event or virtual machine
1269  * migration.
1270  */
1271 void netdev_notify_peers(struct net_device *dev)
1272 {
1273 	rtnl_lock();
1274 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1275 	rtnl_unlock();
1276 }
1277 EXPORT_SYMBOL(netdev_notify_peers);
1278 
1279 static int __dev_open(struct net_device *dev)
1280 {
1281 	const struct net_device_ops *ops = dev->netdev_ops;
1282 	int ret;
1283 
1284 	ASSERT_RTNL();
1285 
1286 	if (!netif_device_present(dev))
1287 		return -ENODEV;
1288 
1289 	/* Block netpoll from trying to do any rx path servicing.
1290 	 * If we don't do this there is a chance ndo_poll_controller
1291 	 * or ndo_poll may be running while we open the device
1292 	 */
1293 	netpoll_poll_disable(dev);
1294 
1295 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1296 	ret = notifier_to_errno(ret);
1297 	if (ret)
1298 		return ret;
1299 
1300 	set_bit(__LINK_STATE_START, &dev->state);
1301 
1302 	if (ops->ndo_validate_addr)
1303 		ret = ops->ndo_validate_addr(dev);
1304 
1305 	if (!ret && ops->ndo_open)
1306 		ret = ops->ndo_open(dev);
1307 
1308 	netpoll_poll_enable(dev);
1309 
1310 	if (ret)
1311 		clear_bit(__LINK_STATE_START, &dev->state);
1312 	else {
1313 		dev->flags |= IFF_UP;
1314 		dev_set_rx_mode(dev);
1315 		dev_activate(dev);
1316 		add_device_randomness(dev->dev_addr, dev->addr_len);
1317 	}
1318 
1319 	return ret;
1320 }
1321 
1322 /**
1323  *	dev_open	- prepare an interface for use.
1324  *	@dev:	device to open
1325  *
1326  *	Takes a device from down to up state. The device's private open
1327  *	function is invoked and then the multicast lists are loaded. Finally
1328  *	the device is moved into the up state and a %NETDEV_UP message is
1329  *	sent to the netdev notifier chain.
1330  *
1331  *	Calling this function on an active interface is a nop. On a failure
1332  *	a negative errno code is returned.
1333  */
1334 int dev_open(struct net_device *dev)
1335 {
1336 	int ret;
1337 
1338 	if (dev->flags & IFF_UP)
1339 		return 0;
1340 
1341 	ret = __dev_open(dev);
1342 	if (ret < 0)
1343 		return ret;
1344 
1345 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1346 	call_netdevice_notifiers(NETDEV_UP, dev);
1347 
1348 	return ret;
1349 }
1350 EXPORT_SYMBOL(dev_open);
1351 
1352 static int __dev_close_many(struct list_head *head)
1353 {
1354 	struct net_device *dev;
1355 
1356 	ASSERT_RTNL();
1357 	might_sleep();
1358 
1359 	list_for_each_entry(dev, head, close_list) {
1360 		/* Temporarily disable netpoll until the interface is down */
1361 		netpoll_poll_disable(dev);
1362 
1363 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1364 
1365 		clear_bit(__LINK_STATE_START, &dev->state);
1366 
1367 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1368 		 * can be even on different cpu. So just clear netif_running().
1369 		 *
1370 		 * dev->stop() will invoke napi_disable() on all of it's
1371 		 * napi_struct instances on this device.
1372 		 */
1373 		smp_mb__after_atomic(); /* Commit netif_running(). */
1374 	}
1375 
1376 	dev_deactivate_many(head);
1377 
1378 	list_for_each_entry(dev, head, close_list) {
1379 		const struct net_device_ops *ops = dev->netdev_ops;
1380 
1381 		/*
1382 		 *	Call the device specific close. This cannot fail.
1383 		 *	Only if device is UP
1384 		 *
1385 		 *	We allow it to be called even after a DETACH hot-plug
1386 		 *	event.
1387 		 */
1388 		if (ops->ndo_stop)
1389 			ops->ndo_stop(dev);
1390 
1391 		dev->flags &= ~IFF_UP;
1392 		netpoll_poll_enable(dev);
1393 	}
1394 
1395 	return 0;
1396 }
1397 
1398 static int __dev_close(struct net_device *dev)
1399 {
1400 	int retval;
1401 	LIST_HEAD(single);
1402 
1403 	list_add(&dev->close_list, &single);
1404 	retval = __dev_close_many(&single);
1405 	list_del(&single);
1406 
1407 	return retval;
1408 }
1409 
1410 int dev_close_many(struct list_head *head, bool unlink)
1411 {
1412 	struct net_device *dev, *tmp;
1413 
1414 	/* Remove the devices that don't need to be closed */
1415 	list_for_each_entry_safe(dev, tmp, head, close_list)
1416 		if (!(dev->flags & IFF_UP))
1417 			list_del_init(&dev->close_list);
1418 
1419 	__dev_close_many(head);
1420 
1421 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1422 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1423 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1424 		if (unlink)
1425 			list_del_init(&dev->close_list);
1426 	}
1427 
1428 	return 0;
1429 }
1430 EXPORT_SYMBOL(dev_close_many);
1431 
1432 /**
1433  *	dev_close - shutdown an interface.
1434  *	@dev: device to shutdown
1435  *
1436  *	This function moves an active device into down state. A
1437  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1438  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1439  *	chain.
1440  */
1441 int dev_close(struct net_device *dev)
1442 {
1443 	if (dev->flags & IFF_UP) {
1444 		LIST_HEAD(single);
1445 
1446 		list_add(&dev->close_list, &single);
1447 		dev_close_many(&single, true);
1448 		list_del(&single);
1449 	}
1450 	return 0;
1451 }
1452 EXPORT_SYMBOL(dev_close);
1453 
1454 
1455 /**
1456  *	dev_disable_lro - disable Large Receive Offload on a device
1457  *	@dev: device
1458  *
1459  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1460  *	called under RTNL.  This is needed if received packets may be
1461  *	forwarded to another interface.
1462  */
1463 void dev_disable_lro(struct net_device *dev)
1464 {
1465 	struct net_device *lower_dev;
1466 	struct list_head *iter;
1467 
1468 	dev->wanted_features &= ~NETIF_F_LRO;
1469 	netdev_update_features(dev);
1470 
1471 	if (unlikely(dev->features & NETIF_F_LRO))
1472 		netdev_WARN(dev, "failed to disable LRO!\n");
1473 
1474 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1475 		dev_disable_lro(lower_dev);
1476 }
1477 EXPORT_SYMBOL(dev_disable_lro);
1478 
1479 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1480 				   struct net_device *dev)
1481 {
1482 	struct netdev_notifier_info info;
1483 
1484 	netdev_notifier_info_init(&info, dev);
1485 	return nb->notifier_call(nb, val, &info);
1486 }
1487 
1488 static int dev_boot_phase = 1;
1489 
1490 /**
1491  *	register_netdevice_notifier - register a network notifier block
1492  *	@nb: notifier
1493  *
1494  *	Register a notifier to be called when network device events occur.
1495  *	The notifier passed is linked into the kernel structures and must
1496  *	not be reused until it has been unregistered. A negative errno code
1497  *	is returned on a failure.
1498  *
1499  * 	When registered all registration and up events are replayed
1500  *	to the new notifier to allow device to have a race free
1501  *	view of the network device list.
1502  */
1503 
1504 int register_netdevice_notifier(struct notifier_block *nb)
1505 {
1506 	struct net_device *dev;
1507 	struct net_device *last;
1508 	struct net *net;
1509 	int err;
1510 
1511 	rtnl_lock();
1512 	err = raw_notifier_chain_register(&netdev_chain, nb);
1513 	if (err)
1514 		goto unlock;
1515 	if (dev_boot_phase)
1516 		goto unlock;
1517 	for_each_net(net) {
1518 		for_each_netdev(net, dev) {
1519 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1520 			err = notifier_to_errno(err);
1521 			if (err)
1522 				goto rollback;
1523 
1524 			if (!(dev->flags & IFF_UP))
1525 				continue;
1526 
1527 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1528 		}
1529 	}
1530 
1531 unlock:
1532 	rtnl_unlock();
1533 	return err;
1534 
1535 rollback:
1536 	last = dev;
1537 	for_each_net(net) {
1538 		for_each_netdev(net, dev) {
1539 			if (dev == last)
1540 				goto outroll;
1541 
1542 			if (dev->flags & IFF_UP) {
1543 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1544 							dev);
1545 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1546 			}
1547 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1548 		}
1549 	}
1550 
1551 outroll:
1552 	raw_notifier_chain_unregister(&netdev_chain, nb);
1553 	goto unlock;
1554 }
1555 EXPORT_SYMBOL(register_netdevice_notifier);
1556 
1557 /**
1558  *	unregister_netdevice_notifier - unregister a network notifier block
1559  *	@nb: notifier
1560  *
1561  *	Unregister a notifier previously registered by
1562  *	register_netdevice_notifier(). The notifier is unlinked into the
1563  *	kernel structures and may then be reused. A negative errno code
1564  *	is returned on a failure.
1565  *
1566  * 	After unregistering unregister and down device events are synthesized
1567  *	for all devices on the device list to the removed notifier to remove
1568  *	the need for special case cleanup code.
1569  */
1570 
1571 int unregister_netdevice_notifier(struct notifier_block *nb)
1572 {
1573 	struct net_device *dev;
1574 	struct net *net;
1575 	int err;
1576 
1577 	rtnl_lock();
1578 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1579 	if (err)
1580 		goto unlock;
1581 
1582 	for_each_net(net) {
1583 		for_each_netdev(net, dev) {
1584 			if (dev->flags & IFF_UP) {
1585 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1586 							dev);
1587 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1588 			}
1589 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1590 		}
1591 	}
1592 unlock:
1593 	rtnl_unlock();
1594 	return err;
1595 }
1596 EXPORT_SYMBOL(unregister_netdevice_notifier);
1597 
1598 /**
1599  *	call_netdevice_notifiers_info - call all network notifier blocks
1600  *	@val: value passed unmodified to notifier function
1601  *	@dev: net_device pointer passed unmodified to notifier function
1602  *	@info: notifier information data
1603  *
1604  *	Call all network notifier blocks.  Parameters and return value
1605  *	are as for raw_notifier_call_chain().
1606  */
1607 
1608 static int call_netdevice_notifiers_info(unsigned long val,
1609 					 struct net_device *dev,
1610 					 struct netdev_notifier_info *info)
1611 {
1612 	ASSERT_RTNL();
1613 	netdev_notifier_info_init(info, dev);
1614 	return raw_notifier_call_chain(&netdev_chain, val, info);
1615 }
1616 
1617 /**
1618  *	call_netdevice_notifiers - call all network notifier blocks
1619  *      @val: value passed unmodified to notifier function
1620  *      @dev: net_device pointer passed unmodified to notifier function
1621  *
1622  *	Call all network notifier blocks.  Parameters and return value
1623  *	are as for raw_notifier_call_chain().
1624  */
1625 
1626 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1627 {
1628 	struct netdev_notifier_info info;
1629 
1630 	return call_netdevice_notifiers_info(val, dev, &info);
1631 }
1632 EXPORT_SYMBOL(call_netdevice_notifiers);
1633 
1634 #ifdef CONFIG_NET_INGRESS
1635 static struct static_key ingress_needed __read_mostly;
1636 
1637 void net_inc_ingress_queue(void)
1638 {
1639 	static_key_slow_inc(&ingress_needed);
1640 }
1641 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1642 
1643 void net_dec_ingress_queue(void)
1644 {
1645 	static_key_slow_dec(&ingress_needed);
1646 }
1647 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1648 #endif
1649 
1650 static struct static_key netstamp_needed __read_mostly;
1651 #ifdef HAVE_JUMP_LABEL
1652 /* We are not allowed to call static_key_slow_dec() from irq context
1653  * If net_disable_timestamp() is called from irq context, defer the
1654  * static_key_slow_dec() calls.
1655  */
1656 static atomic_t netstamp_needed_deferred;
1657 #endif
1658 
1659 void net_enable_timestamp(void)
1660 {
1661 #ifdef HAVE_JUMP_LABEL
1662 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1663 
1664 	if (deferred) {
1665 		while (--deferred)
1666 			static_key_slow_dec(&netstamp_needed);
1667 		return;
1668 	}
1669 #endif
1670 	static_key_slow_inc(&netstamp_needed);
1671 }
1672 EXPORT_SYMBOL(net_enable_timestamp);
1673 
1674 void net_disable_timestamp(void)
1675 {
1676 #ifdef HAVE_JUMP_LABEL
1677 	if (in_interrupt()) {
1678 		atomic_inc(&netstamp_needed_deferred);
1679 		return;
1680 	}
1681 #endif
1682 	static_key_slow_dec(&netstamp_needed);
1683 }
1684 EXPORT_SYMBOL(net_disable_timestamp);
1685 
1686 static inline void net_timestamp_set(struct sk_buff *skb)
1687 {
1688 	skb->tstamp.tv64 = 0;
1689 	if (static_key_false(&netstamp_needed))
1690 		__net_timestamp(skb);
1691 }
1692 
1693 #define net_timestamp_check(COND, SKB)			\
1694 	if (static_key_false(&netstamp_needed)) {		\
1695 		if ((COND) && !(SKB)->tstamp.tv64)	\
1696 			__net_timestamp(SKB);		\
1697 	}						\
1698 
1699 bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1700 {
1701 	unsigned int len;
1702 
1703 	if (!(dev->flags & IFF_UP))
1704 		return false;
1705 
1706 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1707 	if (skb->len <= len)
1708 		return true;
1709 
1710 	/* if TSO is enabled, we don't care about the length as the packet
1711 	 * could be forwarded without being segmented before
1712 	 */
1713 	if (skb_is_gso(skb))
1714 		return true;
1715 
1716 	return false;
1717 }
1718 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1719 
1720 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1721 {
1722 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1723 	    unlikely(!is_skb_forwardable(dev, skb))) {
1724 		atomic_long_inc(&dev->rx_dropped);
1725 		kfree_skb(skb);
1726 		return NET_RX_DROP;
1727 	}
1728 
1729 	skb_scrub_packet(skb, true);
1730 	skb->priority = 0;
1731 	skb->protocol = eth_type_trans(skb, dev);
1732 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1733 
1734 	return 0;
1735 }
1736 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1737 
1738 /**
1739  * dev_forward_skb - loopback an skb to another netif
1740  *
1741  * @dev: destination network device
1742  * @skb: buffer to forward
1743  *
1744  * return values:
1745  *	NET_RX_SUCCESS	(no congestion)
1746  *	NET_RX_DROP     (packet was dropped, but freed)
1747  *
1748  * dev_forward_skb can be used for injecting an skb from the
1749  * start_xmit function of one device into the receive queue
1750  * of another device.
1751  *
1752  * The receiving device may be in another namespace, so
1753  * we have to clear all information in the skb that could
1754  * impact namespace isolation.
1755  */
1756 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1757 {
1758 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1759 }
1760 EXPORT_SYMBOL_GPL(dev_forward_skb);
1761 
1762 static inline int deliver_skb(struct sk_buff *skb,
1763 			      struct packet_type *pt_prev,
1764 			      struct net_device *orig_dev)
1765 {
1766 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1767 		return -ENOMEM;
1768 	atomic_inc(&skb->users);
1769 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1770 }
1771 
1772 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1773 					  struct packet_type **pt,
1774 					  struct net_device *orig_dev,
1775 					  __be16 type,
1776 					  struct list_head *ptype_list)
1777 {
1778 	struct packet_type *ptype, *pt_prev = *pt;
1779 
1780 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1781 		if (ptype->type != type)
1782 			continue;
1783 		if (pt_prev)
1784 			deliver_skb(skb, pt_prev, orig_dev);
1785 		pt_prev = ptype;
1786 	}
1787 	*pt = pt_prev;
1788 }
1789 
1790 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1791 {
1792 	if (!ptype->af_packet_priv || !skb->sk)
1793 		return false;
1794 
1795 	if (ptype->id_match)
1796 		return ptype->id_match(ptype, skb->sk);
1797 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1798 		return true;
1799 
1800 	return false;
1801 }
1802 
1803 /*
1804  *	Support routine. Sends outgoing frames to any network
1805  *	taps currently in use.
1806  */
1807 
1808 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1809 {
1810 	struct packet_type *ptype;
1811 	struct sk_buff *skb2 = NULL;
1812 	struct packet_type *pt_prev = NULL;
1813 	struct list_head *ptype_list = &ptype_all;
1814 
1815 	rcu_read_lock();
1816 again:
1817 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1818 		/* Never send packets back to the socket
1819 		 * they originated from - MvS ([email protected])
1820 		 */
1821 		if (skb_loop_sk(ptype, skb))
1822 			continue;
1823 
1824 		if (pt_prev) {
1825 			deliver_skb(skb2, pt_prev, skb->dev);
1826 			pt_prev = ptype;
1827 			continue;
1828 		}
1829 
1830 		/* need to clone skb, done only once */
1831 		skb2 = skb_clone(skb, GFP_ATOMIC);
1832 		if (!skb2)
1833 			goto out_unlock;
1834 
1835 		net_timestamp_set(skb2);
1836 
1837 		/* skb->nh should be correctly
1838 		 * set by sender, so that the second statement is
1839 		 * just protection against buggy protocols.
1840 		 */
1841 		skb_reset_mac_header(skb2);
1842 
1843 		if (skb_network_header(skb2) < skb2->data ||
1844 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1845 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1846 					     ntohs(skb2->protocol),
1847 					     dev->name);
1848 			skb_reset_network_header(skb2);
1849 		}
1850 
1851 		skb2->transport_header = skb2->network_header;
1852 		skb2->pkt_type = PACKET_OUTGOING;
1853 		pt_prev = ptype;
1854 	}
1855 
1856 	if (ptype_list == &ptype_all) {
1857 		ptype_list = &dev->ptype_all;
1858 		goto again;
1859 	}
1860 out_unlock:
1861 	if (pt_prev)
1862 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1863 	rcu_read_unlock();
1864 }
1865 
1866 /**
1867  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1868  * @dev: Network device
1869  * @txq: number of queues available
1870  *
1871  * If real_num_tx_queues is changed the tc mappings may no longer be
1872  * valid. To resolve this verify the tc mapping remains valid and if
1873  * not NULL the mapping. With no priorities mapping to this
1874  * offset/count pair it will no longer be used. In the worst case TC0
1875  * is invalid nothing can be done so disable priority mappings. If is
1876  * expected that drivers will fix this mapping if they can before
1877  * calling netif_set_real_num_tx_queues.
1878  */
1879 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1880 {
1881 	int i;
1882 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1883 
1884 	/* If TC0 is invalidated disable TC mapping */
1885 	if (tc->offset + tc->count > txq) {
1886 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1887 		dev->num_tc = 0;
1888 		return;
1889 	}
1890 
1891 	/* Invalidated prio to tc mappings set to TC0 */
1892 	for (i = 1; i < TC_BITMASK + 1; i++) {
1893 		int q = netdev_get_prio_tc_map(dev, i);
1894 
1895 		tc = &dev->tc_to_txq[q];
1896 		if (tc->offset + tc->count > txq) {
1897 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1898 				i, q);
1899 			netdev_set_prio_tc_map(dev, i, 0);
1900 		}
1901 	}
1902 }
1903 
1904 #ifdef CONFIG_XPS
1905 static DEFINE_MUTEX(xps_map_mutex);
1906 #define xmap_dereference(P)		\
1907 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1908 
1909 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1910 					int cpu, u16 index)
1911 {
1912 	struct xps_map *map = NULL;
1913 	int pos;
1914 
1915 	if (dev_maps)
1916 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1917 
1918 	for (pos = 0; map && pos < map->len; pos++) {
1919 		if (map->queues[pos] == index) {
1920 			if (map->len > 1) {
1921 				map->queues[pos] = map->queues[--map->len];
1922 			} else {
1923 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1924 				kfree_rcu(map, rcu);
1925 				map = NULL;
1926 			}
1927 			break;
1928 		}
1929 	}
1930 
1931 	return map;
1932 }
1933 
1934 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1935 {
1936 	struct xps_dev_maps *dev_maps;
1937 	int cpu, i;
1938 	bool active = false;
1939 
1940 	mutex_lock(&xps_map_mutex);
1941 	dev_maps = xmap_dereference(dev->xps_maps);
1942 
1943 	if (!dev_maps)
1944 		goto out_no_maps;
1945 
1946 	for_each_possible_cpu(cpu) {
1947 		for (i = index; i < dev->num_tx_queues; i++) {
1948 			if (!remove_xps_queue(dev_maps, cpu, i))
1949 				break;
1950 		}
1951 		if (i == dev->num_tx_queues)
1952 			active = true;
1953 	}
1954 
1955 	if (!active) {
1956 		RCU_INIT_POINTER(dev->xps_maps, NULL);
1957 		kfree_rcu(dev_maps, rcu);
1958 	}
1959 
1960 	for (i = index; i < dev->num_tx_queues; i++)
1961 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
1962 					     NUMA_NO_NODE);
1963 
1964 out_no_maps:
1965 	mutex_unlock(&xps_map_mutex);
1966 }
1967 
1968 static struct xps_map *expand_xps_map(struct xps_map *map,
1969 				      int cpu, u16 index)
1970 {
1971 	struct xps_map *new_map;
1972 	int alloc_len = XPS_MIN_MAP_ALLOC;
1973 	int i, pos;
1974 
1975 	for (pos = 0; map && pos < map->len; pos++) {
1976 		if (map->queues[pos] != index)
1977 			continue;
1978 		return map;
1979 	}
1980 
1981 	/* Need to add queue to this CPU's existing map */
1982 	if (map) {
1983 		if (pos < map->alloc_len)
1984 			return map;
1985 
1986 		alloc_len = map->alloc_len * 2;
1987 	}
1988 
1989 	/* Need to allocate new map to store queue on this CPU's map */
1990 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
1991 			       cpu_to_node(cpu));
1992 	if (!new_map)
1993 		return NULL;
1994 
1995 	for (i = 0; i < pos; i++)
1996 		new_map->queues[i] = map->queues[i];
1997 	new_map->alloc_len = alloc_len;
1998 	new_map->len = pos;
1999 
2000 	return new_map;
2001 }
2002 
2003 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2004 			u16 index)
2005 {
2006 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2007 	struct xps_map *map, *new_map;
2008 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2009 	int cpu, numa_node_id = -2;
2010 	bool active = false;
2011 
2012 	mutex_lock(&xps_map_mutex);
2013 
2014 	dev_maps = xmap_dereference(dev->xps_maps);
2015 
2016 	/* allocate memory for queue storage */
2017 	for_each_online_cpu(cpu) {
2018 		if (!cpumask_test_cpu(cpu, mask))
2019 			continue;
2020 
2021 		if (!new_dev_maps)
2022 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2023 		if (!new_dev_maps) {
2024 			mutex_unlock(&xps_map_mutex);
2025 			return -ENOMEM;
2026 		}
2027 
2028 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2029 				 NULL;
2030 
2031 		map = expand_xps_map(map, cpu, index);
2032 		if (!map)
2033 			goto error;
2034 
2035 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2036 	}
2037 
2038 	if (!new_dev_maps)
2039 		goto out_no_new_maps;
2040 
2041 	for_each_possible_cpu(cpu) {
2042 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2043 			/* add queue to CPU maps */
2044 			int pos = 0;
2045 
2046 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2047 			while ((pos < map->len) && (map->queues[pos] != index))
2048 				pos++;
2049 
2050 			if (pos == map->len)
2051 				map->queues[map->len++] = index;
2052 #ifdef CONFIG_NUMA
2053 			if (numa_node_id == -2)
2054 				numa_node_id = cpu_to_node(cpu);
2055 			else if (numa_node_id != cpu_to_node(cpu))
2056 				numa_node_id = -1;
2057 #endif
2058 		} else if (dev_maps) {
2059 			/* fill in the new device map from the old device map */
2060 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2061 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2062 		}
2063 
2064 	}
2065 
2066 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2067 
2068 	/* Cleanup old maps */
2069 	if (dev_maps) {
2070 		for_each_possible_cpu(cpu) {
2071 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2072 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2073 			if (map && map != new_map)
2074 				kfree_rcu(map, rcu);
2075 		}
2076 
2077 		kfree_rcu(dev_maps, rcu);
2078 	}
2079 
2080 	dev_maps = new_dev_maps;
2081 	active = true;
2082 
2083 out_no_new_maps:
2084 	/* update Tx queue numa node */
2085 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2086 				     (numa_node_id >= 0) ? numa_node_id :
2087 				     NUMA_NO_NODE);
2088 
2089 	if (!dev_maps)
2090 		goto out_no_maps;
2091 
2092 	/* removes queue from unused CPUs */
2093 	for_each_possible_cpu(cpu) {
2094 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2095 			continue;
2096 
2097 		if (remove_xps_queue(dev_maps, cpu, index))
2098 			active = true;
2099 	}
2100 
2101 	/* free map if not active */
2102 	if (!active) {
2103 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2104 		kfree_rcu(dev_maps, rcu);
2105 	}
2106 
2107 out_no_maps:
2108 	mutex_unlock(&xps_map_mutex);
2109 
2110 	return 0;
2111 error:
2112 	/* remove any maps that we added */
2113 	for_each_possible_cpu(cpu) {
2114 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2115 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2116 				 NULL;
2117 		if (new_map && new_map != map)
2118 			kfree(new_map);
2119 	}
2120 
2121 	mutex_unlock(&xps_map_mutex);
2122 
2123 	kfree(new_dev_maps);
2124 	return -ENOMEM;
2125 }
2126 EXPORT_SYMBOL(netif_set_xps_queue);
2127 
2128 #endif
2129 /*
2130  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2131  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2132  */
2133 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2134 {
2135 	int rc;
2136 
2137 	if (txq < 1 || txq > dev->num_tx_queues)
2138 		return -EINVAL;
2139 
2140 	if (dev->reg_state == NETREG_REGISTERED ||
2141 	    dev->reg_state == NETREG_UNREGISTERING) {
2142 		ASSERT_RTNL();
2143 
2144 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2145 						  txq);
2146 		if (rc)
2147 			return rc;
2148 
2149 		if (dev->num_tc)
2150 			netif_setup_tc(dev, txq);
2151 
2152 		if (txq < dev->real_num_tx_queues) {
2153 			qdisc_reset_all_tx_gt(dev, txq);
2154 #ifdef CONFIG_XPS
2155 			netif_reset_xps_queues_gt(dev, txq);
2156 #endif
2157 		}
2158 	}
2159 
2160 	dev->real_num_tx_queues = txq;
2161 	return 0;
2162 }
2163 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2164 
2165 #ifdef CONFIG_SYSFS
2166 /**
2167  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2168  *	@dev: Network device
2169  *	@rxq: Actual number of RX queues
2170  *
2171  *	This must be called either with the rtnl_lock held or before
2172  *	registration of the net device.  Returns 0 on success, or a
2173  *	negative error code.  If called before registration, it always
2174  *	succeeds.
2175  */
2176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2177 {
2178 	int rc;
2179 
2180 	if (rxq < 1 || rxq > dev->num_rx_queues)
2181 		return -EINVAL;
2182 
2183 	if (dev->reg_state == NETREG_REGISTERED) {
2184 		ASSERT_RTNL();
2185 
2186 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2187 						  rxq);
2188 		if (rc)
2189 			return rc;
2190 	}
2191 
2192 	dev->real_num_rx_queues = rxq;
2193 	return 0;
2194 }
2195 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2196 #endif
2197 
2198 /**
2199  * netif_get_num_default_rss_queues - default number of RSS queues
2200  *
2201  * This routine should set an upper limit on the number of RSS queues
2202  * used by default by multiqueue devices.
2203  */
2204 int netif_get_num_default_rss_queues(void)
2205 {
2206 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2207 }
2208 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2209 
2210 static inline void __netif_reschedule(struct Qdisc *q)
2211 {
2212 	struct softnet_data *sd;
2213 	unsigned long flags;
2214 
2215 	local_irq_save(flags);
2216 	sd = this_cpu_ptr(&softnet_data);
2217 	q->next_sched = NULL;
2218 	*sd->output_queue_tailp = q;
2219 	sd->output_queue_tailp = &q->next_sched;
2220 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2221 	local_irq_restore(flags);
2222 }
2223 
2224 void __netif_schedule(struct Qdisc *q)
2225 {
2226 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2227 		__netif_reschedule(q);
2228 }
2229 EXPORT_SYMBOL(__netif_schedule);
2230 
2231 struct dev_kfree_skb_cb {
2232 	enum skb_free_reason reason;
2233 };
2234 
2235 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2236 {
2237 	return (struct dev_kfree_skb_cb *)skb->cb;
2238 }
2239 
2240 void netif_schedule_queue(struct netdev_queue *txq)
2241 {
2242 	rcu_read_lock();
2243 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2244 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2245 
2246 		__netif_schedule(q);
2247 	}
2248 	rcu_read_unlock();
2249 }
2250 EXPORT_SYMBOL(netif_schedule_queue);
2251 
2252 /**
2253  *	netif_wake_subqueue - allow sending packets on subqueue
2254  *	@dev: network device
2255  *	@queue_index: sub queue index
2256  *
2257  * Resume individual transmit queue of a device with multiple transmit queues.
2258  */
2259 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2260 {
2261 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2262 
2263 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2264 		struct Qdisc *q;
2265 
2266 		rcu_read_lock();
2267 		q = rcu_dereference(txq->qdisc);
2268 		__netif_schedule(q);
2269 		rcu_read_unlock();
2270 	}
2271 }
2272 EXPORT_SYMBOL(netif_wake_subqueue);
2273 
2274 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2275 {
2276 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2277 		struct Qdisc *q;
2278 
2279 		rcu_read_lock();
2280 		q = rcu_dereference(dev_queue->qdisc);
2281 		__netif_schedule(q);
2282 		rcu_read_unlock();
2283 	}
2284 }
2285 EXPORT_SYMBOL(netif_tx_wake_queue);
2286 
2287 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2288 {
2289 	unsigned long flags;
2290 
2291 	if (likely(atomic_read(&skb->users) == 1)) {
2292 		smp_rmb();
2293 		atomic_set(&skb->users, 0);
2294 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2295 		return;
2296 	}
2297 	get_kfree_skb_cb(skb)->reason = reason;
2298 	local_irq_save(flags);
2299 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2300 	__this_cpu_write(softnet_data.completion_queue, skb);
2301 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2302 	local_irq_restore(flags);
2303 }
2304 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2305 
2306 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2307 {
2308 	if (in_irq() || irqs_disabled())
2309 		__dev_kfree_skb_irq(skb, reason);
2310 	else
2311 		dev_kfree_skb(skb);
2312 }
2313 EXPORT_SYMBOL(__dev_kfree_skb_any);
2314 
2315 
2316 /**
2317  * netif_device_detach - mark device as removed
2318  * @dev: network device
2319  *
2320  * Mark device as removed from system and therefore no longer available.
2321  */
2322 void netif_device_detach(struct net_device *dev)
2323 {
2324 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2325 	    netif_running(dev)) {
2326 		netif_tx_stop_all_queues(dev);
2327 	}
2328 }
2329 EXPORT_SYMBOL(netif_device_detach);
2330 
2331 /**
2332  * netif_device_attach - mark device as attached
2333  * @dev: network device
2334  *
2335  * Mark device as attached from system and restart if needed.
2336  */
2337 void netif_device_attach(struct net_device *dev)
2338 {
2339 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2340 	    netif_running(dev)) {
2341 		netif_tx_wake_all_queues(dev);
2342 		__netdev_watchdog_up(dev);
2343 	}
2344 }
2345 EXPORT_SYMBOL(netif_device_attach);
2346 
2347 /*
2348  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2349  * to be used as a distribution range.
2350  */
2351 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2352 		  unsigned int num_tx_queues)
2353 {
2354 	u32 hash;
2355 	u16 qoffset = 0;
2356 	u16 qcount = num_tx_queues;
2357 
2358 	if (skb_rx_queue_recorded(skb)) {
2359 		hash = skb_get_rx_queue(skb);
2360 		while (unlikely(hash >= num_tx_queues))
2361 			hash -= num_tx_queues;
2362 		return hash;
2363 	}
2364 
2365 	if (dev->num_tc) {
2366 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2367 		qoffset = dev->tc_to_txq[tc].offset;
2368 		qcount = dev->tc_to_txq[tc].count;
2369 	}
2370 
2371 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2372 }
2373 EXPORT_SYMBOL(__skb_tx_hash);
2374 
2375 static void skb_warn_bad_offload(const struct sk_buff *skb)
2376 {
2377 	static const netdev_features_t null_features = 0;
2378 	struct net_device *dev = skb->dev;
2379 	const char *driver = "";
2380 
2381 	if (!net_ratelimit())
2382 		return;
2383 
2384 	if (dev && dev->dev.parent)
2385 		driver = dev_driver_string(dev->dev.parent);
2386 
2387 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2388 	     "gso_type=%d ip_summed=%d\n",
2389 	     driver, dev ? &dev->features : &null_features,
2390 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2391 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2392 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2393 }
2394 
2395 /*
2396  * Invalidate hardware checksum when packet is to be mangled, and
2397  * complete checksum manually on outgoing path.
2398  */
2399 int skb_checksum_help(struct sk_buff *skb)
2400 {
2401 	__wsum csum;
2402 	int ret = 0, offset;
2403 
2404 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2405 		goto out_set_summed;
2406 
2407 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2408 		skb_warn_bad_offload(skb);
2409 		return -EINVAL;
2410 	}
2411 
2412 	/* Before computing a checksum, we should make sure no frag could
2413 	 * be modified by an external entity : checksum could be wrong.
2414 	 */
2415 	if (skb_has_shared_frag(skb)) {
2416 		ret = __skb_linearize(skb);
2417 		if (ret)
2418 			goto out;
2419 	}
2420 
2421 	offset = skb_checksum_start_offset(skb);
2422 	BUG_ON(offset >= skb_headlen(skb));
2423 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2424 
2425 	offset += skb->csum_offset;
2426 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2427 
2428 	if (skb_cloned(skb) &&
2429 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2430 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2431 		if (ret)
2432 			goto out;
2433 	}
2434 
2435 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2436 out_set_summed:
2437 	skb->ip_summed = CHECKSUM_NONE;
2438 out:
2439 	return ret;
2440 }
2441 EXPORT_SYMBOL(skb_checksum_help);
2442 
2443 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2444 {
2445 	__be16 type = skb->protocol;
2446 
2447 	/* Tunnel gso handlers can set protocol to ethernet. */
2448 	if (type == htons(ETH_P_TEB)) {
2449 		struct ethhdr *eth;
2450 
2451 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2452 			return 0;
2453 
2454 		eth = (struct ethhdr *)skb_mac_header(skb);
2455 		type = eth->h_proto;
2456 	}
2457 
2458 	return __vlan_get_protocol(skb, type, depth);
2459 }
2460 
2461 /**
2462  *	skb_mac_gso_segment - mac layer segmentation handler.
2463  *	@skb: buffer to segment
2464  *	@features: features for the output path (see dev->features)
2465  */
2466 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2467 				    netdev_features_t features)
2468 {
2469 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2470 	struct packet_offload *ptype;
2471 	int vlan_depth = skb->mac_len;
2472 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2473 
2474 	if (unlikely(!type))
2475 		return ERR_PTR(-EINVAL);
2476 
2477 	__skb_pull(skb, vlan_depth);
2478 
2479 	rcu_read_lock();
2480 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2481 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2482 			segs = ptype->callbacks.gso_segment(skb, features);
2483 			break;
2484 		}
2485 	}
2486 	rcu_read_unlock();
2487 
2488 	__skb_push(skb, skb->data - skb_mac_header(skb));
2489 
2490 	return segs;
2491 }
2492 EXPORT_SYMBOL(skb_mac_gso_segment);
2493 
2494 
2495 /* openvswitch calls this on rx path, so we need a different check.
2496  */
2497 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2498 {
2499 	if (tx_path)
2500 		return skb->ip_summed != CHECKSUM_PARTIAL;
2501 	else
2502 		return skb->ip_summed == CHECKSUM_NONE;
2503 }
2504 
2505 /**
2506  *	__skb_gso_segment - Perform segmentation on skb.
2507  *	@skb: buffer to segment
2508  *	@features: features for the output path (see dev->features)
2509  *	@tx_path: whether it is called in TX path
2510  *
2511  *	This function segments the given skb and returns a list of segments.
2512  *
2513  *	It may return NULL if the skb requires no segmentation.  This is
2514  *	only possible when GSO is used for verifying header integrity.
2515  */
2516 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2517 				  netdev_features_t features, bool tx_path)
2518 {
2519 	if (unlikely(skb_needs_check(skb, tx_path))) {
2520 		int err;
2521 
2522 		skb_warn_bad_offload(skb);
2523 
2524 		err = skb_cow_head(skb, 0);
2525 		if (err < 0)
2526 			return ERR_PTR(err);
2527 	}
2528 
2529 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2530 	SKB_GSO_CB(skb)->encap_level = 0;
2531 
2532 	skb_reset_mac_header(skb);
2533 	skb_reset_mac_len(skb);
2534 
2535 	return skb_mac_gso_segment(skb, features);
2536 }
2537 EXPORT_SYMBOL(__skb_gso_segment);
2538 
2539 /* Take action when hardware reception checksum errors are detected. */
2540 #ifdef CONFIG_BUG
2541 void netdev_rx_csum_fault(struct net_device *dev)
2542 {
2543 	if (net_ratelimit()) {
2544 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2545 		dump_stack();
2546 	}
2547 }
2548 EXPORT_SYMBOL(netdev_rx_csum_fault);
2549 #endif
2550 
2551 /* Actually, we should eliminate this check as soon as we know, that:
2552  * 1. IOMMU is present and allows to map all the memory.
2553  * 2. No high memory really exists on this machine.
2554  */
2555 
2556 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2557 {
2558 #ifdef CONFIG_HIGHMEM
2559 	int i;
2560 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2561 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2562 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2563 			if (PageHighMem(skb_frag_page(frag)))
2564 				return 1;
2565 		}
2566 	}
2567 
2568 	if (PCI_DMA_BUS_IS_PHYS) {
2569 		struct device *pdev = dev->dev.parent;
2570 
2571 		if (!pdev)
2572 			return 0;
2573 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2574 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2575 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2576 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2577 				return 1;
2578 		}
2579 	}
2580 #endif
2581 	return 0;
2582 }
2583 
2584 /* If MPLS offload request, verify we are testing hardware MPLS features
2585  * instead of standard features for the netdev.
2586  */
2587 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2588 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2589 					   netdev_features_t features,
2590 					   __be16 type)
2591 {
2592 	if (eth_p_mpls(type))
2593 		features &= skb->dev->mpls_features;
2594 
2595 	return features;
2596 }
2597 #else
2598 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2599 					   netdev_features_t features,
2600 					   __be16 type)
2601 {
2602 	return features;
2603 }
2604 #endif
2605 
2606 static netdev_features_t harmonize_features(struct sk_buff *skb,
2607 	netdev_features_t features)
2608 {
2609 	int tmp;
2610 	__be16 type;
2611 
2612 	type = skb_network_protocol(skb, &tmp);
2613 	features = net_mpls_features(skb, features, type);
2614 
2615 	if (skb->ip_summed != CHECKSUM_NONE &&
2616 	    !can_checksum_protocol(features, type)) {
2617 		features &= ~NETIF_F_ALL_CSUM;
2618 	} else if (illegal_highdma(skb->dev, skb)) {
2619 		features &= ~NETIF_F_SG;
2620 	}
2621 
2622 	return features;
2623 }
2624 
2625 netdev_features_t passthru_features_check(struct sk_buff *skb,
2626 					  struct net_device *dev,
2627 					  netdev_features_t features)
2628 {
2629 	return features;
2630 }
2631 EXPORT_SYMBOL(passthru_features_check);
2632 
2633 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2634 					     struct net_device *dev,
2635 					     netdev_features_t features)
2636 {
2637 	return vlan_features_check(skb, features);
2638 }
2639 
2640 netdev_features_t netif_skb_features(struct sk_buff *skb)
2641 {
2642 	struct net_device *dev = skb->dev;
2643 	netdev_features_t features = dev->features;
2644 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2645 
2646 	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2647 		features &= ~NETIF_F_GSO_MASK;
2648 
2649 	/* If encapsulation offload request, verify we are testing
2650 	 * hardware encapsulation features instead of standard
2651 	 * features for the netdev
2652 	 */
2653 	if (skb->encapsulation)
2654 		features &= dev->hw_enc_features;
2655 
2656 	if (skb_vlan_tagged(skb))
2657 		features = netdev_intersect_features(features,
2658 						     dev->vlan_features |
2659 						     NETIF_F_HW_VLAN_CTAG_TX |
2660 						     NETIF_F_HW_VLAN_STAG_TX);
2661 
2662 	if (dev->netdev_ops->ndo_features_check)
2663 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2664 								features);
2665 	else
2666 		features &= dflt_features_check(skb, dev, features);
2667 
2668 	return harmonize_features(skb, features);
2669 }
2670 EXPORT_SYMBOL(netif_skb_features);
2671 
2672 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2673 		    struct netdev_queue *txq, bool more)
2674 {
2675 	unsigned int len;
2676 	int rc;
2677 
2678 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2679 		dev_queue_xmit_nit(skb, dev);
2680 
2681 	len = skb->len;
2682 	trace_net_dev_start_xmit(skb, dev);
2683 	rc = netdev_start_xmit(skb, dev, txq, more);
2684 	trace_net_dev_xmit(skb, rc, dev, len);
2685 
2686 	return rc;
2687 }
2688 
2689 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2690 				    struct netdev_queue *txq, int *ret)
2691 {
2692 	struct sk_buff *skb = first;
2693 	int rc = NETDEV_TX_OK;
2694 
2695 	while (skb) {
2696 		struct sk_buff *next = skb->next;
2697 
2698 		skb->next = NULL;
2699 		rc = xmit_one(skb, dev, txq, next != NULL);
2700 		if (unlikely(!dev_xmit_complete(rc))) {
2701 			skb->next = next;
2702 			goto out;
2703 		}
2704 
2705 		skb = next;
2706 		if (netif_xmit_stopped(txq) && skb) {
2707 			rc = NETDEV_TX_BUSY;
2708 			break;
2709 		}
2710 	}
2711 
2712 out:
2713 	*ret = rc;
2714 	return skb;
2715 }
2716 
2717 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2718 					  netdev_features_t features)
2719 {
2720 	if (skb_vlan_tag_present(skb) &&
2721 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2722 		skb = __vlan_hwaccel_push_inside(skb);
2723 	return skb;
2724 }
2725 
2726 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2727 {
2728 	netdev_features_t features;
2729 
2730 	if (skb->next)
2731 		return skb;
2732 
2733 	features = netif_skb_features(skb);
2734 	skb = validate_xmit_vlan(skb, features);
2735 	if (unlikely(!skb))
2736 		goto out_null;
2737 
2738 	if (netif_needs_gso(skb, features)) {
2739 		struct sk_buff *segs;
2740 
2741 		segs = skb_gso_segment(skb, features);
2742 		if (IS_ERR(segs)) {
2743 			goto out_kfree_skb;
2744 		} else if (segs) {
2745 			consume_skb(skb);
2746 			skb = segs;
2747 		}
2748 	} else {
2749 		if (skb_needs_linearize(skb, features) &&
2750 		    __skb_linearize(skb))
2751 			goto out_kfree_skb;
2752 
2753 		/* If packet is not checksummed and device does not
2754 		 * support checksumming for this protocol, complete
2755 		 * checksumming here.
2756 		 */
2757 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2758 			if (skb->encapsulation)
2759 				skb_set_inner_transport_header(skb,
2760 							       skb_checksum_start_offset(skb));
2761 			else
2762 				skb_set_transport_header(skb,
2763 							 skb_checksum_start_offset(skb));
2764 			if (!(features & NETIF_F_ALL_CSUM) &&
2765 			    skb_checksum_help(skb))
2766 				goto out_kfree_skb;
2767 		}
2768 	}
2769 
2770 	return skb;
2771 
2772 out_kfree_skb:
2773 	kfree_skb(skb);
2774 out_null:
2775 	return NULL;
2776 }
2777 
2778 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2779 {
2780 	struct sk_buff *next, *head = NULL, *tail;
2781 
2782 	for (; skb != NULL; skb = next) {
2783 		next = skb->next;
2784 		skb->next = NULL;
2785 
2786 		/* in case skb wont be segmented, point to itself */
2787 		skb->prev = skb;
2788 
2789 		skb = validate_xmit_skb(skb, dev);
2790 		if (!skb)
2791 			continue;
2792 
2793 		if (!head)
2794 			head = skb;
2795 		else
2796 			tail->next = skb;
2797 		/* If skb was segmented, skb->prev points to
2798 		 * the last segment. If not, it still contains skb.
2799 		 */
2800 		tail = skb->prev;
2801 	}
2802 	return head;
2803 }
2804 
2805 static void qdisc_pkt_len_init(struct sk_buff *skb)
2806 {
2807 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2808 
2809 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2810 
2811 	/* To get more precise estimation of bytes sent on wire,
2812 	 * we add to pkt_len the headers size of all segments
2813 	 */
2814 	if (shinfo->gso_size)  {
2815 		unsigned int hdr_len;
2816 		u16 gso_segs = shinfo->gso_segs;
2817 
2818 		/* mac layer + network layer */
2819 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
2820 
2821 		/* + transport layer */
2822 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
2823 			hdr_len += tcp_hdrlen(skb);
2824 		else
2825 			hdr_len += sizeof(struct udphdr);
2826 
2827 		if (shinfo->gso_type & SKB_GSO_DODGY)
2828 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
2829 						shinfo->gso_size);
2830 
2831 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
2832 	}
2833 }
2834 
2835 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2836 				 struct net_device *dev,
2837 				 struct netdev_queue *txq)
2838 {
2839 	spinlock_t *root_lock = qdisc_lock(q);
2840 	bool contended;
2841 	int rc;
2842 
2843 	qdisc_pkt_len_init(skb);
2844 	qdisc_calculate_pkt_len(skb, q);
2845 	/*
2846 	 * Heuristic to force contended enqueues to serialize on a
2847 	 * separate lock before trying to get qdisc main lock.
2848 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
2849 	 * often and dequeue packets faster.
2850 	 */
2851 	contended = qdisc_is_running(q);
2852 	if (unlikely(contended))
2853 		spin_lock(&q->busylock);
2854 
2855 	spin_lock(root_lock);
2856 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2857 		kfree_skb(skb);
2858 		rc = NET_XMIT_DROP;
2859 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2860 		   qdisc_run_begin(q)) {
2861 		/*
2862 		 * This is a work-conserving queue; there are no old skbs
2863 		 * waiting to be sent out; and the qdisc is not running -
2864 		 * xmit the skb directly.
2865 		 */
2866 
2867 		qdisc_bstats_update(q, skb);
2868 
2869 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
2870 			if (unlikely(contended)) {
2871 				spin_unlock(&q->busylock);
2872 				contended = false;
2873 			}
2874 			__qdisc_run(q);
2875 		} else
2876 			qdisc_run_end(q);
2877 
2878 		rc = NET_XMIT_SUCCESS;
2879 	} else {
2880 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2881 		if (qdisc_run_begin(q)) {
2882 			if (unlikely(contended)) {
2883 				spin_unlock(&q->busylock);
2884 				contended = false;
2885 			}
2886 			__qdisc_run(q);
2887 		}
2888 	}
2889 	spin_unlock(root_lock);
2890 	if (unlikely(contended))
2891 		spin_unlock(&q->busylock);
2892 	return rc;
2893 }
2894 
2895 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2896 static void skb_update_prio(struct sk_buff *skb)
2897 {
2898 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
2899 
2900 	if (!skb->priority && skb->sk && map) {
2901 		unsigned int prioidx = skb->sk->sk_cgrp_prioidx;
2902 
2903 		if (prioidx < map->priomap_len)
2904 			skb->priority = map->priomap[prioidx];
2905 	}
2906 }
2907 #else
2908 #define skb_update_prio(skb)
2909 #endif
2910 
2911 DEFINE_PER_CPU(int, xmit_recursion);
2912 EXPORT_SYMBOL(xmit_recursion);
2913 
2914 #define RECURSION_LIMIT 10
2915 
2916 /**
2917  *	dev_loopback_xmit - loop back @skb
2918  *	@net: network namespace this loopback is happening in
2919  *	@sk:  sk needed to be a netfilter okfn
2920  *	@skb: buffer to transmit
2921  */
2922 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
2923 {
2924 	skb_reset_mac_header(skb);
2925 	__skb_pull(skb, skb_network_offset(skb));
2926 	skb->pkt_type = PACKET_LOOPBACK;
2927 	skb->ip_summed = CHECKSUM_UNNECESSARY;
2928 	WARN_ON(!skb_dst(skb));
2929 	skb_dst_force(skb);
2930 	netif_rx_ni(skb);
2931 	return 0;
2932 }
2933 EXPORT_SYMBOL(dev_loopback_xmit);
2934 
2935 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2936 {
2937 #ifdef CONFIG_XPS
2938 	struct xps_dev_maps *dev_maps;
2939 	struct xps_map *map;
2940 	int queue_index = -1;
2941 
2942 	rcu_read_lock();
2943 	dev_maps = rcu_dereference(dev->xps_maps);
2944 	if (dev_maps) {
2945 		map = rcu_dereference(
2946 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
2947 		if (map) {
2948 			if (map->len == 1)
2949 				queue_index = map->queues[0];
2950 			else
2951 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
2952 									   map->len)];
2953 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2954 				queue_index = -1;
2955 		}
2956 	}
2957 	rcu_read_unlock();
2958 
2959 	return queue_index;
2960 #else
2961 	return -1;
2962 #endif
2963 }
2964 
2965 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
2966 {
2967 	struct sock *sk = skb->sk;
2968 	int queue_index = sk_tx_queue_get(sk);
2969 
2970 	if (queue_index < 0 || skb->ooo_okay ||
2971 	    queue_index >= dev->real_num_tx_queues) {
2972 		int new_index = get_xps_queue(dev, skb);
2973 		if (new_index < 0)
2974 			new_index = skb_tx_hash(dev, skb);
2975 
2976 		if (queue_index != new_index && sk &&
2977 		    sk_fullsock(sk) &&
2978 		    rcu_access_pointer(sk->sk_dst_cache))
2979 			sk_tx_queue_set(sk, new_index);
2980 
2981 		queue_index = new_index;
2982 	}
2983 
2984 	return queue_index;
2985 }
2986 
2987 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2988 				    struct sk_buff *skb,
2989 				    void *accel_priv)
2990 {
2991 	int queue_index = 0;
2992 
2993 #ifdef CONFIG_XPS
2994 	if (skb->sender_cpu == 0)
2995 		skb->sender_cpu = raw_smp_processor_id() + 1;
2996 #endif
2997 
2998 	if (dev->real_num_tx_queues != 1) {
2999 		const struct net_device_ops *ops = dev->netdev_ops;
3000 		if (ops->ndo_select_queue)
3001 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3002 							    __netdev_pick_tx);
3003 		else
3004 			queue_index = __netdev_pick_tx(dev, skb);
3005 
3006 		if (!accel_priv)
3007 			queue_index = netdev_cap_txqueue(dev, queue_index);
3008 	}
3009 
3010 	skb_set_queue_mapping(skb, queue_index);
3011 	return netdev_get_tx_queue(dev, queue_index);
3012 }
3013 
3014 /**
3015  *	__dev_queue_xmit - transmit a buffer
3016  *	@skb: buffer to transmit
3017  *	@accel_priv: private data used for L2 forwarding offload
3018  *
3019  *	Queue a buffer for transmission to a network device. The caller must
3020  *	have set the device and priority and built the buffer before calling
3021  *	this function. The function can be called from an interrupt.
3022  *
3023  *	A negative errno code is returned on a failure. A success does not
3024  *	guarantee the frame will be transmitted as it may be dropped due
3025  *	to congestion or traffic shaping.
3026  *
3027  * -----------------------------------------------------------------------------------
3028  *      I notice this method can also return errors from the queue disciplines,
3029  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3030  *      be positive.
3031  *
3032  *      Regardless of the return value, the skb is consumed, so it is currently
3033  *      difficult to retry a send to this method.  (You can bump the ref count
3034  *      before sending to hold a reference for retry if you are careful.)
3035  *
3036  *      When calling this method, interrupts MUST be enabled.  This is because
3037  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3038  *          --BLG
3039  */
3040 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3041 {
3042 	struct net_device *dev = skb->dev;
3043 	struct netdev_queue *txq;
3044 	struct Qdisc *q;
3045 	int rc = -ENOMEM;
3046 
3047 	skb_reset_mac_header(skb);
3048 
3049 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3050 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3051 
3052 	/* Disable soft irqs for various locks below. Also
3053 	 * stops preemption for RCU.
3054 	 */
3055 	rcu_read_lock_bh();
3056 
3057 	skb_update_prio(skb);
3058 
3059 	/* If device/qdisc don't need skb->dst, release it right now while
3060 	 * its hot in this cpu cache.
3061 	 */
3062 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3063 		skb_dst_drop(skb);
3064 	else
3065 		skb_dst_force(skb);
3066 
3067 #ifdef CONFIG_NET_SWITCHDEV
3068 	/* Don't forward if offload device already forwarded */
3069 	if (skb->offload_fwd_mark &&
3070 	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3071 		consume_skb(skb);
3072 		rc = NET_XMIT_SUCCESS;
3073 		goto out;
3074 	}
3075 #endif
3076 
3077 	txq = netdev_pick_tx(dev, skb, accel_priv);
3078 	q = rcu_dereference_bh(txq->qdisc);
3079 
3080 #ifdef CONFIG_NET_CLS_ACT
3081 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3082 #endif
3083 	trace_net_dev_queue(skb);
3084 	if (q->enqueue) {
3085 		rc = __dev_xmit_skb(skb, q, dev, txq);
3086 		goto out;
3087 	}
3088 
3089 	/* The device has no queue. Common case for software devices:
3090 	   loopback, all the sorts of tunnels...
3091 
3092 	   Really, it is unlikely that netif_tx_lock protection is necessary
3093 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3094 	   counters.)
3095 	   However, it is possible, that they rely on protection
3096 	   made by us here.
3097 
3098 	   Check this and shot the lock. It is not prone from deadlocks.
3099 	   Either shot noqueue qdisc, it is even simpler 8)
3100 	 */
3101 	if (dev->flags & IFF_UP) {
3102 		int cpu = smp_processor_id(); /* ok because BHs are off */
3103 
3104 		if (txq->xmit_lock_owner != cpu) {
3105 
3106 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3107 				goto recursion_alert;
3108 
3109 			skb = validate_xmit_skb(skb, dev);
3110 			if (!skb)
3111 				goto drop;
3112 
3113 			HARD_TX_LOCK(dev, txq, cpu);
3114 
3115 			if (!netif_xmit_stopped(txq)) {
3116 				__this_cpu_inc(xmit_recursion);
3117 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3118 				__this_cpu_dec(xmit_recursion);
3119 				if (dev_xmit_complete(rc)) {
3120 					HARD_TX_UNLOCK(dev, txq);
3121 					goto out;
3122 				}
3123 			}
3124 			HARD_TX_UNLOCK(dev, txq);
3125 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3126 					     dev->name);
3127 		} else {
3128 			/* Recursion is detected! It is possible,
3129 			 * unfortunately
3130 			 */
3131 recursion_alert:
3132 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3133 					     dev->name);
3134 		}
3135 	}
3136 
3137 	rc = -ENETDOWN;
3138 drop:
3139 	rcu_read_unlock_bh();
3140 
3141 	atomic_long_inc(&dev->tx_dropped);
3142 	kfree_skb_list(skb);
3143 	return rc;
3144 out:
3145 	rcu_read_unlock_bh();
3146 	return rc;
3147 }
3148 
3149 int dev_queue_xmit(struct sk_buff *skb)
3150 {
3151 	return __dev_queue_xmit(skb, NULL);
3152 }
3153 EXPORT_SYMBOL(dev_queue_xmit);
3154 
3155 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3156 {
3157 	return __dev_queue_xmit(skb, accel_priv);
3158 }
3159 EXPORT_SYMBOL(dev_queue_xmit_accel);
3160 
3161 
3162 /*=======================================================================
3163 			Receiver routines
3164   =======================================================================*/
3165 
3166 int netdev_max_backlog __read_mostly = 1000;
3167 EXPORT_SYMBOL(netdev_max_backlog);
3168 
3169 int netdev_tstamp_prequeue __read_mostly = 1;
3170 int netdev_budget __read_mostly = 300;
3171 int weight_p __read_mostly = 64;            /* old backlog weight */
3172 
3173 /* Called with irq disabled */
3174 static inline void ____napi_schedule(struct softnet_data *sd,
3175 				     struct napi_struct *napi)
3176 {
3177 	list_add_tail(&napi->poll_list, &sd->poll_list);
3178 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3179 }
3180 
3181 #ifdef CONFIG_RPS
3182 
3183 /* One global table that all flow-based protocols share. */
3184 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3185 EXPORT_SYMBOL(rps_sock_flow_table);
3186 u32 rps_cpu_mask __read_mostly;
3187 EXPORT_SYMBOL(rps_cpu_mask);
3188 
3189 struct static_key rps_needed __read_mostly;
3190 
3191 static struct rps_dev_flow *
3192 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3193 	    struct rps_dev_flow *rflow, u16 next_cpu)
3194 {
3195 	if (next_cpu < nr_cpu_ids) {
3196 #ifdef CONFIG_RFS_ACCEL
3197 		struct netdev_rx_queue *rxqueue;
3198 		struct rps_dev_flow_table *flow_table;
3199 		struct rps_dev_flow *old_rflow;
3200 		u32 flow_id;
3201 		u16 rxq_index;
3202 		int rc;
3203 
3204 		/* Should we steer this flow to a different hardware queue? */
3205 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3206 		    !(dev->features & NETIF_F_NTUPLE))
3207 			goto out;
3208 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3209 		if (rxq_index == skb_get_rx_queue(skb))
3210 			goto out;
3211 
3212 		rxqueue = dev->_rx + rxq_index;
3213 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3214 		if (!flow_table)
3215 			goto out;
3216 		flow_id = skb_get_hash(skb) & flow_table->mask;
3217 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3218 							rxq_index, flow_id);
3219 		if (rc < 0)
3220 			goto out;
3221 		old_rflow = rflow;
3222 		rflow = &flow_table->flows[flow_id];
3223 		rflow->filter = rc;
3224 		if (old_rflow->filter == rflow->filter)
3225 			old_rflow->filter = RPS_NO_FILTER;
3226 	out:
3227 #endif
3228 		rflow->last_qtail =
3229 			per_cpu(softnet_data, next_cpu).input_queue_head;
3230 	}
3231 
3232 	rflow->cpu = next_cpu;
3233 	return rflow;
3234 }
3235 
3236 /*
3237  * get_rps_cpu is called from netif_receive_skb and returns the target
3238  * CPU from the RPS map of the receiving queue for a given skb.
3239  * rcu_read_lock must be held on entry.
3240  */
3241 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3242 		       struct rps_dev_flow **rflowp)
3243 {
3244 	const struct rps_sock_flow_table *sock_flow_table;
3245 	struct netdev_rx_queue *rxqueue = dev->_rx;
3246 	struct rps_dev_flow_table *flow_table;
3247 	struct rps_map *map;
3248 	int cpu = -1;
3249 	u32 tcpu;
3250 	u32 hash;
3251 
3252 	if (skb_rx_queue_recorded(skb)) {
3253 		u16 index = skb_get_rx_queue(skb);
3254 
3255 		if (unlikely(index >= dev->real_num_rx_queues)) {
3256 			WARN_ONCE(dev->real_num_rx_queues > 1,
3257 				  "%s received packet on queue %u, but number "
3258 				  "of RX queues is %u\n",
3259 				  dev->name, index, dev->real_num_rx_queues);
3260 			goto done;
3261 		}
3262 		rxqueue += index;
3263 	}
3264 
3265 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3266 
3267 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3268 	map = rcu_dereference(rxqueue->rps_map);
3269 	if (!flow_table && !map)
3270 		goto done;
3271 
3272 	skb_reset_network_header(skb);
3273 	hash = skb_get_hash(skb);
3274 	if (!hash)
3275 		goto done;
3276 
3277 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3278 	if (flow_table && sock_flow_table) {
3279 		struct rps_dev_flow *rflow;
3280 		u32 next_cpu;
3281 		u32 ident;
3282 
3283 		/* First check into global flow table if there is a match */
3284 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3285 		if ((ident ^ hash) & ~rps_cpu_mask)
3286 			goto try_rps;
3287 
3288 		next_cpu = ident & rps_cpu_mask;
3289 
3290 		/* OK, now we know there is a match,
3291 		 * we can look at the local (per receive queue) flow table
3292 		 */
3293 		rflow = &flow_table->flows[hash & flow_table->mask];
3294 		tcpu = rflow->cpu;
3295 
3296 		/*
3297 		 * If the desired CPU (where last recvmsg was done) is
3298 		 * different from current CPU (one in the rx-queue flow
3299 		 * table entry), switch if one of the following holds:
3300 		 *   - Current CPU is unset (>= nr_cpu_ids).
3301 		 *   - Current CPU is offline.
3302 		 *   - The current CPU's queue tail has advanced beyond the
3303 		 *     last packet that was enqueued using this table entry.
3304 		 *     This guarantees that all previous packets for the flow
3305 		 *     have been dequeued, thus preserving in order delivery.
3306 		 */
3307 		if (unlikely(tcpu != next_cpu) &&
3308 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3309 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3310 		      rflow->last_qtail)) >= 0)) {
3311 			tcpu = next_cpu;
3312 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3313 		}
3314 
3315 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3316 			*rflowp = rflow;
3317 			cpu = tcpu;
3318 			goto done;
3319 		}
3320 	}
3321 
3322 try_rps:
3323 
3324 	if (map) {
3325 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3326 		if (cpu_online(tcpu)) {
3327 			cpu = tcpu;
3328 			goto done;
3329 		}
3330 	}
3331 
3332 done:
3333 	return cpu;
3334 }
3335 
3336 #ifdef CONFIG_RFS_ACCEL
3337 
3338 /**
3339  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3340  * @dev: Device on which the filter was set
3341  * @rxq_index: RX queue index
3342  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3343  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3344  *
3345  * Drivers that implement ndo_rx_flow_steer() should periodically call
3346  * this function for each installed filter and remove the filters for
3347  * which it returns %true.
3348  */
3349 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3350 			 u32 flow_id, u16 filter_id)
3351 {
3352 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3353 	struct rps_dev_flow_table *flow_table;
3354 	struct rps_dev_flow *rflow;
3355 	bool expire = true;
3356 	unsigned int cpu;
3357 
3358 	rcu_read_lock();
3359 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3360 	if (flow_table && flow_id <= flow_table->mask) {
3361 		rflow = &flow_table->flows[flow_id];
3362 		cpu = ACCESS_ONCE(rflow->cpu);
3363 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3364 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3365 			   rflow->last_qtail) <
3366 		     (int)(10 * flow_table->mask)))
3367 			expire = false;
3368 	}
3369 	rcu_read_unlock();
3370 	return expire;
3371 }
3372 EXPORT_SYMBOL(rps_may_expire_flow);
3373 
3374 #endif /* CONFIG_RFS_ACCEL */
3375 
3376 /* Called from hardirq (IPI) context */
3377 static void rps_trigger_softirq(void *data)
3378 {
3379 	struct softnet_data *sd = data;
3380 
3381 	____napi_schedule(sd, &sd->backlog);
3382 	sd->received_rps++;
3383 }
3384 
3385 #endif /* CONFIG_RPS */
3386 
3387 /*
3388  * Check if this softnet_data structure is another cpu one
3389  * If yes, queue it to our IPI list and return 1
3390  * If no, return 0
3391  */
3392 static int rps_ipi_queued(struct softnet_data *sd)
3393 {
3394 #ifdef CONFIG_RPS
3395 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3396 
3397 	if (sd != mysd) {
3398 		sd->rps_ipi_next = mysd->rps_ipi_list;
3399 		mysd->rps_ipi_list = sd;
3400 
3401 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3402 		return 1;
3403 	}
3404 #endif /* CONFIG_RPS */
3405 	return 0;
3406 }
3407 
3408 #ifdef CONFIG_NET_FLOW_LIMIT
3409 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3410 #endif
3411 
3412 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3413 {
3414 #ifdef CONFIG_NET_FLOW_LIMIT
3415 	struct sd_flow_limit *fl;
3416 	struct softnet_data *sd;
3417 	unsigned int old_flow, new_flow;
3418 
3419 	if (qlen < (netdev_max_backlog >> 1))
3420 		return false;
3421 
3422 	sd = this_cpu_ptr(&softnet_data);
3423 
3424 	rcu_read_lock();
3425 	fl = rcu_dereference(sd->flow_limit);
3426 	if (fl) {
3427 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3428 		old_flow = fl->history[fl->history_head];
3429 		fl->history[fl->history_head] = new_flow;
3430 
3431 		fl->history_head++;
3432 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3433 
3434 		if (likely(fl->buckets[old_flow]))
3435 			fl->buckets[old_flow]--;
3436 
3437 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3438 			fl->count++;
3439 			rcu_read_unlock();
3440 			return true;
3441 		}
3442 	}
3443 	rcu_read_unlock();
3444 #endif
3445 	return false;
3446 }
3447 
3448 /*
3449  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3450  * queue (may be a remote CPU queue).
3451  */
3452 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3453 			      unsigned int *qtail)
3454 {
3455 	struct softnet_data *sd;
3456 	unsigned long flags;
3457 	unsigned int qlen;
3458 
3459 	sd = &per_cpu(softnet_data, cpu);
3460 
3461 	local_irq_save(flags);
3462 
3463 	rps_lock(sd);
3464 	if (!netif_running(skb->dev))
3465 		goto drop;
3466 	qlen = skb_queue_len(&sd->input_pkt_queue);
3467 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3468 		if (qlen) {
3469 enqueue:
3470 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3471 			input_queue_tail_incr_save(sd, qtail);
3472 			rps_unlock(sd);
3473 			local_irq_restore(flags);
3474 			return NET_RX_SUCCESS;
3475 		}
3476 
3477 		/* Schedule NAPI for backlog device
3478 		 * We can use non atomic operation since we own the queue lock
3479 		 */
3480 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3481 			if (!rps_ipi_queued(sd))
3482 				____napi_schedule(sd, &sd->backlog);
3483 		}
3484 		goto enqueue;
3485 	}
3486 
3487 drop:
3488 	sd->dropped++;
3489 	rps_unlock(sd);
3490 
3491 	local_irq_restore(flags);
3492 
3493 	atomic_long_inc(&skb->dev->rx_dropped);
3494 	kfree_skb(skb);
3495 	return NET_RX_DROP;
3496 }
3497 
3498 static int netif_rx_internal(struct sk_buff *skb)
3499 {
3500 	int ret;
3501 
3502 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3503 
3504 	trace_netif_rx(skb);
3505 #ifdef CONFIG_RPS
3506 	if (static_key_false(&rps_needed)) {
3507 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3508 		int cpu;
3509 
3510 		preempt_disable();
3511 		rcu_read_lock();
3512 
3513 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3514 		if (cpu < 0)
3515 			cpu = smp_processor_id();
3516 
3517 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3518 
3519 		rcu_read_unlock();
3520 		preempt_enable();
3521 	} else
3522 #endif
3523 	{
3524 		unsigned int qtail;
3525 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3526 		put_cpu();
3527 	}
3528 	return ret;
3529 }
3530 
3531 /**
3532  *	netif_rx	-	post buffer to the network code
3533  *	@skb: buffer to post
3534  *
3535  *	This function receives a packet from a device driver and queues it for
3536  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3537  *	may be dropped during processing for congestion control or by the
3538  *	protocol layers.
3539  *
3540  *	return values:
3541  *	NET_RX_SUCCESS	(no congestion)
3542  *	NET_RX_DROP     (packet was dropped)
3543  *
3544  */
3545 
3546 int netif_rx(struct sk_buff *skb)
3547 {
3548 	trace_netif_rx_entry(skb);
3549 
3550 	return netif_rx_internal(skb);
3551 }
3552 EXPORT_SYMBOL(netif_rx);
3553 
3554 int netif_rx_ni(struct sk_buff *skb)
3555 {
3556 	int err;
3557 
3558 	trace_netif_rx_ni_entry(skb);
3559 
3560 	preempt_disable();
3561 	err = netif_rx_internal(skb);
3562 	if (local_softirq_pending())
3563 		do_softirq();
3564 	preempt_enable();
3565 
3566 	return err;
3567 }
3568 EXPORT_SYMBOL(netif_rx_ni);
3569 
3570 static void net_tx_action(struct softirq_action *h)
3571 {
3572 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3573 
3574 	if (sd->completion_queue) {
3575 		struct sk_buff *clist;
3576 
3577 		local_irq_disable();
3578 		clist = sd->completion_queue;
3579 		sd->completion_queue = NULL;
3580 		local_irq_enable();
3581 
3582 		while (clist) {
3583 			struct sk_buff *skb = clist;
3584 			clist = clist->next;
3585 
3586 			WARN_ON(atomic_read(&skb->users));
3587 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3588 				trace_consume_skb(skb);
3589 			else
3590 				trace_kfree_skb(skb, net_tx_action);
3591 			__kfree_skb(skb);
3592 		}
3593 	}
3594 
3595 	if (sd->output_queue) {
3596 		struct Qdisc *head;
3597 
3598 		local_irq_disable();
3599 		head = sd->output_queue;
3600 		sd->output_queue = NULL;
3601 		sd->output_queue_tailp = &sd->output_queue;
3602 		local_irq_enable();
3603 
3604 		while (head) {
3605 			struct Qdisc *q = head;
3606 			spinlock_t *root_lock;
3607 
3608 			head = head->next_sched;
3609 
3610 			root_lock = qdisc_lock(q);
3611 			if (spin_trylock(root_lock)) {
3612 				smp_mb__before_atomic();
3613 				clear_bit(__QDISC_STATE_SCHED,
3614 					  &q->state);
3615 				qdisc_run(q);
3616 				spin_unlock(root_lock);
3617 			} else {
3618 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3619 					      &q->state)) {
3620 					__netif_reschedule(q);
3621 				} else {
3622 					smp_mb__before_atomic();
3623 					clear_bit(__QDISC_STATE_SCHED,
3624 						  &q->state);
3625 				}
3626 			}
3627 		}
3628 	}
3629 }
3630 
3631 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3632     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3633 /* This hook is defined here for ATM LANE */
3634 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3635 			     unsigned char *addr) __read_mostly;
3636 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3637 #endif
3638 
3639 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
3640 					 struct packet_type **pt_prev,
3641 					 int *ret, struct net_device *orig_dev)
3642 {
3643 #ifdef CONFIG_NET_CLS_ACT
3644 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3645 	struct tcf_result cl_res;
3646 
3647 	/* If there's at least one ingress present somewhere (so
3648 	 * we get here via enabled static key), remaining devices
3649 	 * that are not configured with an ingress qdisc will bail
3650 	 * out here.
3651 	 */
3652 	if (!cl)
3653 		return skb;
3654 	if (*pt_prev) {
3655 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3656 		*pt_prev = NULL;
3657 	}
3658 
3659 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3660 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3661 	qdisc_bstats_cpu_update(cl->q, skb);
3662 
3663 	switch (tc_classify(skb, cl, &cl_res, false)) {
3664 	case TC_ACT_OK:
3665 	case TC_ACT_RECLASSIFY:
3666 		skb->tc_index = TC_H_MIN(cl_res.classid);
3667 		break;
3668 	case TC_ACT_SHOT:
3669 		qdisc_qstats_cpu_drop(cl->q);
3670 	case TC_ACT_STOLEN:
3671 	case TC_ACT_QUEUED:
3672 		kfree_skb(skb);
3673 		return NULL;
3674 	case TC_ACT_REDIRECT:
3675 		/* skb_mac_header check was done by cls/act_bpf, so
3676 		 * we can safely push the L2 header back before
3677 		 * redirecting to another netdev
3678 		 */
3679 		__skb_push(skb, skb->mac_len);
3680 		skb_do_redirect(skb);
3681 		return NULL;
3682 	default:
3683 		break;
3684 	}
3685 #endif /* CONFIG_NET_CLS_ACT */
3686 	return skb;
3687 }
3688 
3689 /**
3690  *	netdev_rx_handler_register - register receive handler
3691  *	@dev: device to register a handler for
3692  *	@rx_handler: receive handler to register
3693  *	@rx_handler_data: data pointer that is used by rx handler
3694  *
3695  *	Register a receive handler for a device. This handler will then be
3696  *	called from __netif_receive_skb. A negative errno code is returned
3697  *	on a failure.
3698  *
3699  *	The caller must hold the rtnl_mutex.
3700  *
3701  *	For a general description of rx_handler, see enum rx_handler_result.
3702  */
3703 int netdev_rx_handler_register(struct net_device *dev,
3704 			       rx_handler_func_t *rx_handler,
3705 			       void *rx_handler_data)
3706 {
3707 	ASSERT_RTNL();
3708 
3709 	if (dev->rx_handler)
3710 		return -EBUSY;
3711 
3712 	/* Note: rx_handler_data must be set before rx_handler */
3713 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3714 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3715 
3716 	return 0;
3717 }
3718 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3719 
3720 /**
3721  *	netdev_rx_handler_unregister - unregister receive handler
3722  *	@dev: device to unregister a handler from
3723  *
3724  *	Unregister a receive handler from a device.
3725  *
3726  *	The caller must hold the rtnl_mutex.
3727  */
3728 void netdev_rx_handler_unregister(struct net_device *dev)
3729 {
3730 
3731 	ASSERT_RTNL();
3732 	RCU_INIT_POINTER(dev->rx_handler, NULL);
3733 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3734 	 * section has a guarantee to see a non NULL rx_handler_data
3735 	 * as well.
3736 	 */
3737 	synchronize_net();
3738 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3739 }
3740 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3741 
3742 /*
3743  * Limit the use of PFMEMALLOC reserves to those protocols that implement
3744  * the special handling of PFMEMALLOC skbs.
3745  */
3746 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3747 {
3748 	switch (skb->protocol) {
3749 	case htons(ETH_P_ARP):
3750 	case htons(ETH_P_IP):
3751 	case htons(ETH_P_IPV6):
3752 	case htons(ETH_P_8021Q):
3753 	case htons(ETH_P_8021AD):
3754 		return true;
3755 	default:
3756 		return false;
3757 	}
3758 }
3759 
3760 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
3761 			     int *ret, struct net_device *orig_dev)
3762 {
3763 #ifdef CONFIG_NETFILTER_INGRESS
3764 	if (nf_hook_ingress_active(skb)) {
3765 		if (*pt_prev) {
3766 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
3767 			*pt_prev = NULL;
3768 		}
3769 
3770 		return nf_hook_ingress(skb);
3771 	}
3772 #endif /* CONFIG_NETFILTER_INGRESS */
3773 	return 0;
3774 }
3775 
3776 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
3777 {
3778 	struct packet_type *ptype, *pt_prev;
3779 	rx_handler_func_t *rx_handler;
3780 	struct net_device *orig_dev;
3781 	bool deliver_exact = false;
3782 	int ret = NET_RX_DROP;
3783 	__be16 type;
3784 
3785 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
3786 
3787 	trace_netif_receive_skb(skb);
3788 
3789 	orig_dev = skb->dev;
3790 
3791 	skb_reset_network_header(skb);
3792 	if (!skb_transport_header_was_set(skb))
3793 		skb_reset_transport_header(skb);
3794 	skb_reset_mac_len(skb);
3795 
3796 	pt_prev = NULL;
3797 
3798 another_round:
3799 	skb->skb_iif = skb->dev->ifindex;
3800 
3801 	__this_cpu_inc(softnet_data.processed);
3802 
3803 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
3804 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
3805 		skb = skb_vlan_untag(skb);
3806 		if (unlikely(!skb))
3807 			goto out;
3808 	}
3809 
3810 #ifdef CONFIG_NET_CLS_ACT
3811 	if (skb->tc_verd & TC_NCLS) {
3812 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3813 		goto ncls;
3814 	}
3815 #endif
3816 
3817 	if (pfmemalloc)
3818 		goto skip_taps;
3819 
3820 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3821 		if (pt_prev)
3822 			ret = deliver_skb(skb, pt_prev, orig_dev);
3823 		pt_prev = ptype;
3824 	}
3825 
3826 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
3827 		if (pt_prev)
3828 			ret = deliver_skb(skb, pt_prev, orig_dev);
3829 		pt_prev = ptype;
3830 	}
3831 
3832 skip_taps:
3833 #ifdef CONFIG_NET_INGRESS
3834 	if (static_key_false(&ingress_needed)) {
3835 		skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3836 		if (!skb)
3837 			goto out;
3838 
3839 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
3840 			goto out;
3841 	}
3842 #endif
3843 #ifdef CONFIG_NET_CLS_ACT
3844 	skb->tc_verd = 0;
3845 ncls:
3846 #endif
3847 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
3848 		goto drop;
3849 
3850 	if (skb_vlan_tag_present(skb)) {
3851 		if (pt_prev) {
3852 			ret = deliver_skb(skb, pt_prev, orig_dev);
3853 			pt_prev = NULL;
3854 		}
3855 		if (vlan_do_receive(&skb))
3856 			goto another_round;
3857 		else if (unlikely(!skb))
3858 			goto out;
3859 	}
3860 
3861 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3862 	if (rx_handler) {
3863 		if (pt_prev) {
3864 			ret = deliver_skb(skb, pt_prev, orig_dev);
3865 			pt_prev = NULL;
3866 		}
3867 		switch (rx_handler(&skb)) {
3868 		case RX_HANDLER_CONSUMED:
3869 			ret = NET_RX_SUCCESS;
3870 			goto out;
3871 		case RX_HANDLER_ANOTHER:
3872 			goto another_round;
3873 		case RX_HANDLER_EXACT:
3874 			deliver_exact = true;
3875 		case RX_HANDLER_PASS:
3876 			break;
3877 		default:
3878 			BUG();
3879 		}
3880 	}
3881 
3882 	if (unlikely(skb_vlan_tag_present(skb))) {
3883 		if (skb_vlan_tag_get_id(skb))
3884 			skb->pkt_type = PACKET_OTHERHOST;
3885 		/* Note: we might in the future use prio bits
3886 		 * and set skb->priority like in vlan_do_receive()
3887 		 * For the time being, just ignore Priority Code Point
3888 		 */
3889 		skb->vlan_tci = 0;
3890 	}
3891 
3892 	type = skb->protocol;
3893 
3894 	/* deliver only exact match when indicated */
3895 	if (likely(!deliver_exact)) {
3896 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3897 				       &ptype_base[ntohs(type) &
3898 						   PTYPE_HASH_MASK]);
3899 	}
3900 
3901 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3902 			       &orig_dev->ptype_specific);
3903 
3904 	if (unlikely(skb->dev != orig_dev)) {
3905 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
3906 				       &skb->dev->ptype_specific);
3907 	}
3908 
3909 	if (pt_prev) {
3910 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
3911 			goto drop;
3912 		else
3913 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3914 	} else {
3915 drop:
3916 		atomic_long_inc(&skb->dev->rx_dropped);
3917 		kfree_skb(skb);
3918 		/* Jamal, now you will not able to escape explaining
3919 		 * me how you were going to use this. :-)
3920 		 */
3921 		ret = NET_RX_DROP;
3922 	}
3923 
3924 out:
3925 	return ret;
3926 }
3927 
3928 static int __netif_receive_skb(struct sk_buff *skb)
3929 {
3930 	int ret;
3931 
3932 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
3933 		unsigned long pflags = current->flags;
3934 
3935 		/*
3936 		 * PFMEMALLOC skbs are special, they should
3937 		 * - be delivered to SOCK_MEMALLOC sockets only
3938 		 * - stay away from userspace
3939 		 * - have bounded memory usage
3940 		 *
3941 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
3942 		 * context down to all allocation sites.
3943 		 */
3944 		current->flags |= PF_MEMALLOC;
3945 		ret = __netif_receive_skb_core(skb, true);
3946 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
3947 	} else
3948 		ret = __netif_receive_skb_core(skb, false);
3949 
3950 	return ret;
3951 }
3952 
3953 static int netif_receive_skb_internal(struct sk_buff *skb)
3954 {
3955 	int ret;
3956 
3957 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3958 
3959 	if (skb_defer_rx_timestamp(skb))
3960 		return NET_RX_SUCCESS;
3961 
3962 	rcu_read_lock();
3963 
3964 #ifdef CONFIG_RPS
3965 	if (static_key_false(&rps_needed)) {
3966 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3967 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
3968 
3969 		if (cpu >= 0) {
3970 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3971 			rcu_read_unlock();
3972 			return ret;
3973 		}
3974 	}
3975 #endif
3976 	ret = __netif_receive_skb(skb);
3977 	rcu_read_unlock();
3978 	return ret;
3979 }
3980 
3981 /**
3982  *	netif_receive_skb - process receive buffer from network
3983  *	@skb: buffer to process
3984  *
3985  *	netif_receive_skb() is the main receive data processing function.
3986  *	It always succeeds. The buffer may be dropped during processing
3987  *	for congestion control or by the protocol layers.
3988  *
3989  *	This function may only be called from softirq context and interrupts
3990  *	should be enabled.
3991  *
3992  *	Return values (usually ignored):
3993  *	NET_RX_SUCCESS: no congestion
3994  *	NET_RX_DROP: packet was dropped
3995  */
3996 int netif_receive_skb(struct sk_buff *skb)
3997 {
3998 	trace_netif_receive_skb_entry(skb);
3999 
4000 	return netif_receive_skb_internal(skb);
4001 }
4002 EXPORT_SYMBOL(netif_receive_skb);
4003 
4004 /* Network device is going away, flush any packets still pending
4005  * Called with irqs disabled.
4006  */
4007 static void flush_backlog(void *arg)
4008 {
4009 	struct net_device *dev = arg;
4010 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4011 	struct sk_buff *skb, *tmp;
4012 
4013 	rps_lock(sd);
4014 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4015 		if (skb->dev == dev) {
4016 			__skb_unlink(skb, &sd->input_pkt_queue);
4017 			kfree_skb(skb);
4018 			input_queue_head_incr(sd);
4019 		}
4020 	}
4021 	rps_unlock(sd);
4022 
4023 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4024 		if (skb->dev == dev) {
4025 			__skb_unlink(skb, &sd->process_queue);
4026 			kfree_skb(skb);
4027 			input_queue_head_incr(sd);
4028 		}
4029 	}
4030 }
4031 
4032 static int napi_gro_complete(struct sk_buff *skb)
4033 {
4034 	struct packet_offload *ptype;
4035 	__be16 type = skb->protocol;
4036 	struct list_head *head = &offload_base;
4037 	int err = -ENOENT;
4038 
4039 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4040 
4041 	if (NAPI_GRO_CB(skb)->count == 1) {
4042 		skb_shinfo(skb)->gso_size = 0;
4043 		goto out;
4044 	}
4045 
4046 	rcu_read_lock();
4047 	list_for_each_entry_rcu(ptype, head, list) {
4048 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4049 			continue;
4050 
4051 		err = ptype->callbacks.gro_complete(skb, 0);
4052 		break;
4053 	}
4054 	rcu_read_unlock();
4055 
4056 	if (err) {
4057 		WARN_ON(&ptype->list == head);
4058 		kfree_skb(skb);
4059 		return NET_RX_SUCCESS;
4060 	}
4061 
4062 out:
4063 	return netif_receive_skb_internal(skb);
4064 }
4065 
4066 /* napi->gro_list contains packets ordered by age.
4067  * youngest packets at the head of it.
4068  * Complete skbs in reverse order to reduce latencies.
4069  */
4070 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4071 {
4072 	struct sk_buff *skb, *prev = NULL;
4073 
4074 	/* scan list and build reverse chain */
4075 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4076 		skb->prev = prev;
4077 		prev = skb;
4078 	}
4079 
4080 	for (skb = prev; skb; skb = prev) {
4081 		skb->next = NULL;
4082 
4083 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4084 			return;
4085 
4086 		prev = skb->prev;
4087 		napi_gro_complete(skb);
4088 		napi->gro_count--;
4089 	}
4090 
4091 	napi->gro_list = NULL;
4092 }
4093 EXPORT_SYMBOL(napi_gro_flush);
4094 
4095 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4096 {
4097 	struct sk_buff *p;
4098 	unsigned int maclen = skb->dev->hard_header_len;
4099 	u32 hash = skb_get_hash_raw(skb);
4100 
4101 	for (p = napi->gro_list; p; p = p->next) {
4102 		unsigned long diffs;
4103 
4104 		NAPI_GRO_CB(p)->flush = 0;
4105 
4106 		if (hash != skb_get_hash_raw(p)) {
4107 			NAPI_GRO_CB(p)->same_flow = 0;
4108 			continue;
4109 		}
4110 
4111 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4112 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4113 		if (maclen == ETH_HLEN)
4114 			diffs |= compare_ether_header(skb_mac_header(p),
4115 						      skb_mac_header(skb));
4116 		else if (!diffs)
4117 			diffs = memcmp(skb_mac_header(p),
4118 				       skb_mac_header(skb),
4119 				       maclen);
4120 		NAPI_GRO_CB(p)->same_flow = !diffs;
4121 	}
4122 }
4123 
4124 static void skb_gro_reset_offset(struct sk_buff *skb)
4125 {
4126 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4127 	const skb_frag_t *frag0 = &pinfo->frags[0];
4128 
4129 	NAPI_GRO_CB(skb)->data_offset = 0;
4130 	NAPI_GRO_CB(skb)->frag0 = NULL;
4131 	NAPI_GRO_CB(skb)->frag0_len = 0;
4132 
4133 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4134 	    pinfo->nr_frags &&
4135 	    !PageHighMem(skb_frag_page(frag0))) {
4136 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4137 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4138 	}
4139 }
4140 
4141 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4142 {
4143 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4144 
4145 	BUG_ON(skb->end - skb->tail < grow);
4146 
4147 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4148 
4149 	skb->data_len -= grow;
4150 	skb->tail += grow;
4151 
4152 	pinfo->frags[0].page_offset += grow;
4153 	skb_frag_size_sub(&pinfo->frags[0], grow);
4154 
4155 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4156 		skb_frag_unref(skb, 0);
4157 		memmove(pinfo->frags, pinfo->frags + 1,
4158 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4159 	}
4160 }
4161 
4162 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4163 {
4164 	struct sk_buff **pp = NULL;
4165 	struct packet_offload *ptype;
4166 	__be16 type = skb->protocol;
4167 	struct list_head *head = &offload_base;
4168 	int same_flow;
4169 	enum gro_result ret;
4170 	int grow;
4171 
4172 	if (!(skb->dev->features & NETIF_F_GRO))
4173 		goto normal;
4174 
4175 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4176 		goto normal;
4177 
4178 	gro_list_prepare(napi, skb);
4179 
4180 	rcu_read_lock();
4181 	list_for_each_entry_rcu(ptype, head, list) {
4182 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4183 			continue;
4184 
4185 		skb_set_network_header(skb, skb_gro_offset(skb));
4186 		skb_reset_mac_len(skb);
4187 		NAPI_GRO_CB(skb)->same_flow = 0;
4188 		NAPI_GRO_CB(skb)->flush = 0;
4189 		NAPI_GRO_CB(skb)->free = 0;
4190 		NAPI_GRO_CB(skb)->udp_mark = 0;
4191 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4192 
4193 		/* Setup for GRO checksum validation */
4194 		switch (skb->ip_summed) {
4195 		case CHECKSUM_COMPLETE:
4196 			NAPI_GRO_CB(skb)->csum = skb->csum;
4197 			NAPI_GRO_CB(skb)->csum_valid = 1;
4198 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4199 			break;
4200 		case CHECKSUM_UNNECESSARY:
4201 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4202 			NAPI_GRO_CB(skb)->csum_valid = 0;
4203 			break;
4204 		default:
4205 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4206 			NAPI_GRO_CB(skb)->csum_valid = 0;
4207 		}
4208 
4209 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4210 		break;
4211 	}
4212 	rcu_read_unlock();
4213 
4214 	if (&ptype->list == head)
4215 		goto normal;
4216 
4217 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4218 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4219 
4220 	if (pp) {
4221 		struct sk_buff *nskb = *pp;
4222 
4223 		*pp = nskb->next;
4224 		nskb->next = NULL;
4225 		napi_gro_complete(nskb);
4226 		napi->gro_count--;
4227 	}
4228 
4229 	if (same_flow)
4230 		goto ok;
4231 
4232 	if (NAPI_GRO_CB(skb)->flush)
4233 		goto normal;
4234 
4235 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4236 		struct sk_buff *nskb = napi->gro_list;
4237 
4238 		/* locate the end of the list to select the 'oldest' flow */
4239 		while (nskb->next) {
4240 			pp = &nskb->next;
4241 			nskb = *pp;
4242 		}
4243 		*pp = NULL;
4244 		nskb->next = NULL;
4245 		napi_gro_complete(nskb);
4246 	} else {
4247 		napi->gro_count++;
4248 	}
4249 	NAPI_GRO_CB(skb)->count = 1;
4250 	NAPI_GRO_CB(skb)->age = jiffies;
4251 	NAPI_GRO_CB(skb)->last = skb;
4252 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4253 	skb->next = napi->gro_list;
4254 	napi->gro_list = skb;
4255 	ret = GRO_HELD;
4256 
4257 pull:
4258 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4259 	if (grow > 0)
4260 		gro_pull_from_frag0(skb, grow);
4261 ok:
4262 	return ret;
4263 
4264 normal:
4265 	ret = GRO_NORMAL;
4266 	goto pull;
4267 }
4268 
4269 struct packet_offload *gro_find_receive_by_type(__be16 type)
4270 {
4271 	struct list_head *offload_head = &offload_base;
4272 	struct packet_offload *ptype;
4273 
4274 	list_for_each_entry_rcu(ptype, offload_head, list) {
4275 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4276 			continue;
4277 		return ptype;
4278 	}
4279 	return NULL;
4280 }
4281 EXPORT_SYMBOL(gro_find_receive_by_type);
4282 
4283 struct packet_offload *gro_find_complete_by_type(__be16 type)
4284 {
4285 	struct list_head *offload_head = &offload_base;
4286 	struct packet_offload *ptype;
4287 
4288 	list_for_each_entry_rcu(ptype, offload_head, list) {
4289 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4290 			continue;
4291 		return ptype;
4292 	}
4293 	return NULL;
4294 }
4295 EXPORT_SYMBOL(gro_find_complete_by_type);
4296 
4297 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4298 {
4299 	switch (ret) {
4300 	case GRO_NORMAL:
4301 		if (netif_receive_skb_internal(skb))
4302 			ret = GRO_DROP;
4303 		break;
4304 
4305 	case GRO_DROP:
4306 		kfree_skb(skb);
4307 		break;
4308 
4309 	case GRO_MERGED_FREE:
4310 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4311 			kmem_cache_free(skbuff_head_cache, skb);
4312 		else
4313 			__kfree_skb(skb);
4314 		break;
4315 
4316 	case GRO_HELD:
4317 	case GRO_MERGED:
4318 		break;
4319 	}
4320 
4321 	return ret;
4322 }
4323 
4324 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4325 {
4326 	trace_napi_gro_receive_entry(skb);
4327 
4328 	skb_gro_reset_offset(skb);
4329 
4330 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4331 }
4332 EXPORT_SYMBOL(napi_gro_receive);
4333 
4334 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4335 {
4336 	if (unlikely(skb->pfmemalloc)) {
4337 		consume_skb(skb);
4338 		return;
4339 	}
4340 	__skb_pull(skb, skb_headlen(skb));
4341 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4342 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4343 	skb->vlan_tci = 0;
4344 	skb->dev = napi->dev;
4345 	skb->skb_iif = 0;
4346 	skb->encapsulation = 0;
4347 	skb_shinfo(skb)->gso_type = 0;
4348 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4349 
4350 	napi->skb = skb;
4351 }
4352 
4353 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4354 {
4355 	struct sk_buff *skb = napi->skb;
4356 
4357 	if (!skb) {
4358 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4359 		napi->skb = skb;
4360 	}
4361 	return skb;
4362 }
4363 EXPORT_SYMBOL(napi_get_frags);
4364 
4365 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4366 				      struct sk_buff *skb,
4367 				      gro_result_t ret)
4368 {
4369 	switch (ret) {
4370 	case GRO_NORMAL:
4371 	case GRO_HELD:
4372 		__skb_push(skb, ETH_HLEN);
4373 		skb->protocol = eth_type_trans(skb, skb->dev);
4374 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4375 			ret = GRO_DROP;
4376 		break;
4377 
4378 	case GRO_DROP:
4379 	case GRO_MERGED_FREE:
4380 		napi_reuse_skb(napi, skb);
4381 		break;
4382 
4383 	case GRO_MERGED:
4384 		break;
4385 	}
4386 
4387 	return ret;
4388 }
4389 
4390 /* Upper GRO stack assumes network header starts at gro_offset=0
4391  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4392  * We copy ethernet header into skb->data to have a common layout.
4393  */
4394 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4395 {
4396 	struct sk_buff *skb = napi->skb;
4397 	const struct ethhdr *eth;
4398 	unsigned int hlen = sizeof(*eth);
4399 
4400 	napi->skb = NULL;
4401 
4402 	skb_reset_mac_header(skb);
4403 	skb_gro_reset_offset(skb);
4404 
4405 	eth = skb_gro_header_fast(skb, 0);
4406 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4407 		eth = skb_gro_header_slow(skb, hlen, 0);
4408 		if (unlikely(!eth)) {
4409 			napi_reuse_skb(napi, skb);
4410 			return NULL;
4411 		}
4412 	} else {
4413 		gro_pull_from_frag0(skb, hlen);
4414 		NAPI_GRO_CB(skb)->frag0 += hlen;
4415 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4416 	}
4417 	__skb_pull(skb, hlen);
4418 
4419 	/*
4420 	 * This works because the only protocols we care about don't require
4421 	 * special handling.
4422 	 * We'll fix it up properly in napi_frags_finish()
4423 	 */
4424 	skb->protocol = eth->h_proto;
4425 
4426 	return skb;
4427 }
4428 
4429 gro_result_t napi_gro_frags(struct napi_struct *napi)
4430 {
4431 	struct sk_buff *skb = napi_frags_skb(napi);
4432 
4433 	if (!skb)
4434 		return GRO_DROP;
4435 
4436 	trace_napi_gro_frags_entry(skb);
4437 
4438 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4439 }
4440 EXPORT_SYMBOL(napi_gro_frags);
4441 
4442 /* Compute the checksum from gro_offset and return the folded value
4443  * after adding in any pseudo checksum.
4444  */
4445 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4446 {
4447 	__wsum wsum;
4448 	__sum16 sum;
4449 
4450 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4451 
4452 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4453 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4454 	if (likely(!sum)) {
4455 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4456 		    !skb->csum_complete_sw)
4457 			netdev_rx_csum_fault(skb->dev);
4458 	}
4459 
4460 	NAPI_GRO_CB(skb)->csum = wsum;
4461 	NAPI_GRO_CB(skb)->csum_valid = 1;
4462 
4463 	return sum;
4464 }
4465 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4466 
4467 /*
4468  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4469  * Note: called with local irq disabled, but exits with local irq enabled.
4470  */
4471 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4472 {
4473 #ifdef CONFIG_RPS
4474 	struct softnet_data *remsd = sd->rps_ipi_list;
4475 
4476 	if (remsd) {
4477 		sd->rps_ipi_list = NULL;
4478 
4479 		local_irq_enable();
4480 
4481 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4482 		while (remsd) {
4483 			struct softnet_data *next = remsd->rps_ipi_next;
4484 
4485 			if (cpu_online(remsd->cpu))
4486 				smp_call_function_single_async(remsd->cpu,
4487 							   &remsd->csd);
4488 			remsd = next;
4489 		}
4490 	} else
4491 #endif
4492 		local_irq_enable();
4493 }
4494 
4495 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4496 {
4497 #ifdef CONFIG_RPS
4498 	return sd->rps_ipi_list != NULL;
4499 #else
4500 	return false;
4501 #endif
4502 }
4503 
4504 static int process_backlog(struct napi_struct *napi, int quota)
4505 {
4506 	int work = 0;
4507 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4508 
4509 	/* Check if we have pending ipi, its better to send them now,
4510 	 * not waiting net_rx_action() end.
4511 	 */
4512 	if (sd_has_rps_ipi_waiting(sd)) {
4513 		local_irq_disable();
4514 		net_rps_action_and_irq_enable(sd);
4515 	}
4516 
4517 	napi->weight = weight_p;
4518 	local_irq_disable();
4519 	while (1) {
4520 		struct sk_buff *skb;
4521 
4522 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4523 			rcu_read_lock();
4524 			local_irq_enable();
4525 			__netif_receive_skb(skb);
4526 			rcu_read_unlock();
4527 			local_irq_disable();
4528 			input_queue_head_incr(sd);
4529 			if (++work >= quota) {
4530 				local_irq_enable();
4531 				return work;
4532 			}
4533 		}
4534 
4535 		rps_lock(sd);
4536 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4537 			/*
4538 			 * Inline a custom version of __napi_complete().
4539 			 * only current cpu owns and manipulates this napi,
4540 			 * and NAPI_STATE_SCHED is the only possible flag set
4541 			 * on backlog.
4542 			 * We can use a plain write instead of clear_bit(),
4543 			 * and we dont need an smp_mb() memory barrier.
4544 			 */
4545 			napi->state = 0;
4546 			rps_unlock(sd);
4547 
4548 			break;
4549 		}
4550 
4551 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4552 					   &sd->process_queue);
4553 		rps_unlock(sd);
4554 	}
4555 	local_irq_enable();
4556 
4557 	return work;
4558 }
4559 
4560 /**
4561  * __napi_schedule - schedule for receive
4562  * @n: entry to schedule
4563  *
4564  * The entry's receive function will be scheduled to run.
4565  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4566  */
4567 void __napi_schedule(struct napi_struct *n)
4568 {
4569 	unsigned long flags;
4570 
4571 	local_irq_save(flags);
4572 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4573 	local_irq_restore(flags);
4574 }
4575 EXPORT_SYMBOL(__napi_schedule);
4576 
4577 /**
4578  * __napi_schedule_irqoff - schedule for receive
4579  * @n: entry to schedule
4580  *
4581  * Variant of __napi_schedule() assuming hard irqs are masked
4582  */
4583 void __napi_schedule_irqoff(struct napi_struct *n)
4584 {
4585 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4586 }
4587 EXPORT_SYMBOL(__napi_schedule_irqoff);
4588 
4589 void __napi_complete(struct napi_struct *n)
4590 {
4591 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4592 
4593 	list_del_init(&n->poll_list);
4594 	smp_mb__before_atomic();
4595 	clear_bit(NAPI_STATE_SCHED, &n->state);
4596 }
4597 EXPORT_SYMBOL(__napi_complete);
4598 
4599 void napi_complete_done(struct napi_struct *n, int work_done)
4600 {
4601 	unsigned long flags;
4602 
4603 	/*
4604 	 * don't let napi dequeue from the cpu poll list
4605 	 * just in case its running on a different cpu
4606 	 */
4607 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4608 		return;
4609 
4610 	if (n->gro_list) {
4611 		unsigned long timeout = 0;
4612 
4613 		if (work_done)
4614 			timeout = n->dev->gro_flush_timeout;
4615 
4616 		if (timeout)
4617 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4618 				      HRTIMER_MODE_REL_PINNED);
4619 		else
4620 			napi_gro_flush(n, false);
4621 	}
4622 	if (likely(list_empty(&n->poll_list))) {
4623 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4624 	} else {
4625 		/* If n->poll_list is not empty, we need to mask irqs */
4626 		local_irq_save(flags);
4627 		__napi_complete(n);
4628 		local_irq_restore(flags);
4629 	}
4630 }
4631 EXPORT_SYMBOL(napi_complete_done);
4632 
4633 /* must be called under rcu_read_lock(), as we dont take a reference */
4634 struct napi_struct *napi_by_id(unsigned int napi_id)
4635 {
4636 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4637 	struct napi_struct *napi;
4638 
4639 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4640 		if (napi->napi_id == napi_id)
4641 			return napi;
4642 
4643 	return NULL;
4644 }
4645 EXPORT_SYMBOL_GPL(napi_by_id);
4646 
4647 void napi_hash_add(struct napi_struct *napi)
4648 {
4649 	if (!test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) {
4650 
4651 		spin_lock(&napi_hash_lock);
4652 
4653 		/* 0 is not a valid id, we also skip an id that is taken
4654 		 * we expect both events to be extremely rare
4655 		 */
4656 		napi->napi_id = 0;
4657 		while (!napi->napi_id) {
4658 			napi->napi_id = ++napi_gen_id;
4659 			if (napi_by_id(napi->napi_id))
4660 				napi->napi_id = 0;
4661 		}
4662 
4663 		hlist_add_head_rcu(&napi->napi_hash_node,
4664 			&napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4665 
4666 		spin_unlock(&napi_hash_lock);
4667 	}
4668 }
4669 EXPORT_SYMBOL_GPL(napi_hash_add);
4670 
4671 /* Warning : caller is responsible to make sure rcu grace period
4672  * is respected before freeing memory containing @napi
4673  */
4674 void napi_hash_del(struct napi_struct *napi)
4675 {
4676 	spin_lock(&napi_hash_lock);
4677 
4678 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state))
4679 		hlist_del_rcu(&napi->napi_hash_node);
4680 
4681 	spin_unlock(&napi_hash_lock);
4682 }
4683 EXPORT_SYMBOL_GPL(napi_hash_del);
4684 
4685 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
4686 {
4687 	struct napi_struct *napi;
4688 
4689 	napi = container_of(timer, struct napi_struct, timer);
4690 	if (napi->gro_list)
4691 		napi_schedule(napi);
4692 
4693 	return HRTIMER_NORESTART;
4694 }
4695 
4696 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
4697 		    int (*poll)(struct napi_struct *, int), int weight)
4698 {
4699 	INIT_LIST_HEAD(&napi->poll_list);
4700 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
4701 	napi->timer.function = napi_watchdog;
4702 	napi->gro_count = 0;
4703 	napi->gro_list = NULL;
4704 	napi->skb = NULL;
4705 	napi->poll = poll;
4706 	if (weight > NAPI_POLL_WEIGHT)
4707 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
4708 			    weight, dev->name);
4709 	napi->weight = weight;
4710 	list_add(&napi->dev_list, &dev->napi_list);
4711 	napi->dev = dev;
4712 #ifdef CONFIG_NETPOLL
4713 	spin_lock_init(&napi->poll_lock);
4714 	napi->poll_owner = -1;
4715 #endif
4716 	set_bit(NAPI_STATE_SCHED, &napi->state);
4717 }
4718 EXPORT_SYMBOL(netif_napi_add);
4719 
4720 void napi_disable(struct napi_struct *n)
4721 {
4722 	might_sleep();
4723 	set_bit(NAPI_STATE_DISABLE, &n->state);
4724 
4725 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
4726 		msleep(1);
4727 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
4728 		msleep(1);
4729 
4730 	hrtimer_cancel(&n->timer);
4731 
4732 	clear_bit(NAPI_STATE_DISABLE, &n->state);
4733 }
4734 EXPORT_SYMBOL(napi_disable);
4735 
4736 void netif_napi_del(struct napi_struct *napi)
4737 {
4738 	list_del_init(&napi->dev_list);
4739 	napi_free_frags(napi);
4740 
4741 	kfree_skb_list(napi->gro_list);
4742 	napi->gro_list = NULL;
4743 	napi->gro_count = 0;
4744 }
4745 EXPORT_SYMBOL(netif_napi_del);
4746 
4747 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
4748 {
4749 	void *have;
4750 	int work, weight;
4751 
4752 	list_del_init(&n->poll_list);
4753 
4754 	have = netpoll_poll_lock(n);
4755 
4756 	weight = n->weight;
4757 
4758 	/* This NAPI_STATE_SCHED test is for avoiding a race
4759 	 * with netpoll's poll_napi().  Only the entity which
4760 	 * obtains the lock and sees NAPI_STATE_SCHED set will
4761 	 * actually make the ->poll() call.  Therefore we avoid
4762 	 * accidentally calling ->poll() when NAPI is not scheduled.
4763 	 */
4764 	work = 0;
4765 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
4766 		work = n->poll(n, weight);
4767 		trace_napi_poll(n);
4768 	}
4769 
4770 	WARN_ON_ONCE(work > weight);
4771 
4772 	if (likely(work < weight))
4773 		goto out_unlock;
4774 
4775 	/* Drivers must not modify the NAPI state if they
4776 	 * consume the entire weight.  In such cases this code
4777 	 * still "owns" the NAPI instance and therefore can
4778 	 * move the instance around on the list at-will.
4779 	 */
4780 	if (unlikely(napi_disable_pending(n))) {
4781 		napi_complete(n);
4782 		goto out_unlock;
4783 	}
4784 
4785 	if (n->gro_list) {
4786 		/* flush too old packets
4787 		 * If HZ < 1000, flush all packets.
4788 		 */
4789 		napi_gro_flush(n, HZ >= 1000);
4790 	}
4791 
4792 	/* Some drivers may have called napi_schedule
4793 	 * prior to exhausting their budget.
4794 	 */
4795 	if (unlikely(!list_empty(&n->poll_list))) {
4796 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
4797 			     n->dev ? n->dev->name : "backlog");
4798 		goto out_unlock;
4799 	}
4800 
4801 	list_add_tail(&n->poll_list, repoll);
4802 
4803 out_unlock:
4804 	netpoll_poll_unlock(have);
4805 
4806 	return work;
4807 }
4808 
4809 static void net_rx_action(struct softirq_action *h)
4810 {
4811 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4812 	unsigned long time_limit = jiffies + 2;
4813 	int budget = netdev_budget;
4814 	LIST_HEAD(list);
4815 	LIST_HEAD(repoll);
4816 
4817 	local_irq_disable();
4818 	list_splice_init(&sd->poll_list, &list);
4819 	local_irq_enable();
4820 
4821 	for (;;) {
4822 		struct napi_struct *n;
4823 
4824 		if (list_empty(&list)) {
4825 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
4826 				return;
4827 			break;
4828 		}
4829 
4830 		n = list_first_entry(&list, struct napi_struct, poll_list);
4831 		budget -= napi_poll(n, &repoll);
4832 
4833 		/* If softirq window is exhausted then punt.
4834 		 * Allow this to run for 2 jiffies since which will allow
4835 		 * an average latency of 1.5/HZ.
4836 		 */
4837 		if (unlikely(budget <= 0 ||
4838 			     time_after_eq(jiffies, time_limit))) {
4839 			sd->time_squeeze++;
4840 			break;
4841 		}
4842 	}
4843 
4844 	local_irq_disable();
4845 
4846 	list_splice_tail_init(&sd->poll_list, &list);
4847 	list_splice_tail(&repoll, &list);
4848 	list_splice(&list, &sd->poll_list);
4849 	if (!list_empty(&sd->poll_list))
4850 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4851 
4852 	net_rps_action_and_irq_enable(sd);
4853 }
4854 
4855 struct netdev_adjacent {
4856 	struct net_device *dev;
4857 
4858 	/* upper master flag, there can only be one master device per list */
4859 	bool master;
4860 
4861 	/* counter for the number of times this device was added to us */
4862 	u16 ref_nr;
4863 
4864 	/* private field for the users */
4865 	void *private;
4866 
4867 	struct list_head list;
4868 	struct rcu_head rcu;
4869 };
4870 
4871 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
4872 						 struct list_head *adj_list)
4873 {
4874 	struct netdev_adjacent *adj;
4875 
4876 	list_for_each_entry(adj, adj_list, list) {
4877 		if (adj->dev == adj_dev)
4878 			return adj;
4879 	}
4880 	return NULL;
4881 }
4882 
4883 /**
4884  * netdev_has_upper_dev - Check if device is linked to an upper device
4885  * @dev: device
4886  * @upper_dev: upper device to check
4887  *
4888  * Find out if a device is linked to specified upper device and return true
4889  * in case it is. Note that this checks only immediate upper device,
4890  * not through a complete stack of devices. The caller must hold the RTNL lock.
4891  */
4892 bool netdev_has_upper_dev(struct net_device *dev,
4893 			  struct net_device *upper_dev)
4894 {
4895 	ASSERT_RTNL();
4896 
4897 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
4898 }
4899 EXPORT_SYMBOL(netdev_has_upper_dev);
4900 
4901 /**
4902  * netdev_has_any_upper_dev - Check if device is linked to some device
4903  * @dev: device
4904  *
4905  * Find out if a device is linked to an upper device and return true in case
4906  * it is. The caller must hold the RTNL lock.
4907  */
4908 static bool netdev_has_any_upper_dev(struct net_device *dev)
4909 {
4910 	ASSERT_RTNL();
4911 
4912 	return !list_empty(&dev->all_adj_list.upper);
4913 }
4914 
4915 /**
4916  * netdev_master_upper_dev_get - Get master upper device
4917  * @dev: device
4918  *
4919  * Find a master upper device and return pointer to it or NULL in case
4920  * it's not there. The caller must hold the RTNL lock.
4921  */
4922 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
4923 {
4924 	struct netdev_adjacent *upper;
4925 
4926 	ASSERT_RTNL();
4927 
4928 	if (list_empty(&dev->adj_list.upper))
4929 		return NULL;
4930 
4931 	upper = list_first_entry(&dev->adj_list.upper,
4932 				 struct netdev_adjacent, list);
4933 	if (likely(upper->master))
4934 		return upper->dev;
4935 	return NULL;
4936 }
4937 EXPORT_SYMBOL(netdev_master_upper_dev_get);
4938 
4939 void *netdev_adjacent_get_private(struct list_head *adj_list)
4940 {
4941 	struct netdev_adjacent *adj;
4942 
4943 	adj = list_entry(adj_list, struct netdev_adjacent, list);
4944 
4945 	return adj->private;
4946 }
4947 EXPORT_SYMBOL(netdev_adjacent_get_private);
4948 
4949 /**
4950  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
4951  * @dev: device
4952  * @iter: list_head ** of the current position
4953  *
4954  * Gets the next device from the dev's upper list, starting from iter
4955  * position. The caller must hold RCU read lock.
4956  */
4957 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4958 						 struct list_head **iter)
4959 {
4960 	struct netdev_adjacent *upper;
4961 
4962 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4963 
4964 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4965 
4966 	if (&upper->list == &dev->adj_list.upper)
4967 		return NULL;
4968 
4969 	*iter = &upper->list;
4970 
4971 	return upper->dev;
4972 }
4973 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
4974 
4975 /**
4976  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
4977  * @dev: device
4978  * @iter: list_head ** of the current position
4979  *
4980  * Gets the next device from the dev's upper list, starting from iter
4981  * position. The caller must hold RCU read lock.
4982  */
4983 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4984 						     struct list_head **iter)
4985 {
4986 	struct netdev_adjacent *upper;
4987 
4988 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
4989 
4990 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
4991 
4992 	if (&upper->list == &dev->all_adj_list.upper)
4993 		return NULL;
4994 
4995 	*iter = &upper->list;
4996 
4997 	return upper->dev;
4998 }
4999 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5000 
5001 /**
5002  * netdev_lower_get_next_private - Get the next ->private from the
5003  *				   lower neighbour list
5004  * @dev: device
5005  * @iter: list_head ** of the current position
5006  *
5007  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5008  * list, starting from iter position. The caller must hold either hold the
5009  * RTNL lock or its own locking that guarantees that the neighbour lower
5010  * list will remain unchanged.
5011  */
5012 void *netdev_lower_get_next_private(struct net_device *dev,
5013 				    struct list_head **iter)
5014 {
5015 	struct netdev_adjacent *lower;
5016 
5017 	lower = list_entry(*iter, struct netdev_adjacent, list);
5018 
5019 	if (&lower->list == &dev->adj_list.lower)
5020 		return NULL;
5021 
5022 	*iter = lower->list.next;
5023 
5024 	return lower->private;
5025 }
5026 EXPORT_SYMBOL(netdev_lower_get_next_private);
5027 
5028 /**
5029  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5030  *				       lower neighbour list, RCU
5031  *				       variant
5032  * @dev: device
5033  * @iter: list_head ** of the current position
5034  *
5035  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5036  * list, starting from iter position. The caller must hold RCU read lock.
5037  */
5038 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5039 					struct list_head **iter)
5040 {
5041 	struct netdev_adjacent *lower;
5042 
5043 	WARN_ON_ONCE(!rcu_read_lock_held());
5044 
5045 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5046 
5047 	if (&lower->list == &dev->adj_list.lower)
5048 		return NULL;
5049 
5050 	*iter = &lower->list;
5051 
5052 	return lower->private;
5053 }
5054 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5055 
5056 /**
5057  * netdev_lower_get_next - Get the next device from the lower neighbour
5058  *                         list
5059  * @dev: device
5060  * @iter: list_head ** of the current position
5061  *
5062  * Gets the next netdev_adjacent from the dev's lower neighbour
5063  * list, starting from iter position. The caller must hold RTNL lock or
5064  * its own locking that guarantees that the neighbour lower
5065  * list will remain unchanged.
5066  */
5067 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5068 {
5069 	struct netdev_adjacent *lower;
5070 
5071 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5072 
5073 	if (&lower->list == &dev->adj_list.lower)
5074 		return NULL;
5075 
5076 	*iter = &lower->list;
5077 
5078 	return lower->dev;
5079 }
5080 EXPORT_SYMBOL(netdev_lower_get_next);
5081 
5082 /**
5083  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5084  *				       lower neighbour list, RCU
5085  *				       variant
5086  * @dev: device
5087  *
5088  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5089  * list. The caller must hold RCU read lock.
5090  */
5091 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5092 {
5093 	struct netdev_adjacent *lower;
5094 
5095 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5096 			struct netdev_adjacent, list);
5097 	if (lower)
5098 		return lower->private;
5099 	return NULL;
5100 }
5101 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5102 
5103 /**
5104  * netdev_master_upper_dev_get_rcu - Get master upper device
5105  * @dev: device
5106  *
5107  * Find a master upper device and return pointer to it or NULL in case
5108  * it's not there. The caller must hold the RCU read lock.
5109  */
5110 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5111 {
5112 	struct netdev_adjacent *upper;
5113 
5114 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5115 				       struct netdev_adjacent, list);
5116 	if (upper && likely(upper->master))
5117 		return upper->dev;
5118 	return NULL;
5119 }
5120 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5121 
5122 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5123 			      struct net_device *adj_dev,
5124 			      struct list_head *dev_list)
5125 {
5126 	char linkname[IFNAMSIZ+7];
5127 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5128 		"upper_%s" : "lower_%s", adj_dev->name);
5129 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5130 				 linkname);
5131 }
5132 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5133 			       char *name,
5134 			       struct list_head *dev_list)
5135 {
5136 	char linkname[IFNAMSIZ+7];
5137 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5138 		"upper_%s" : "lower_%s", name);
5139 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5140 }
5141 
5142 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5143 						 struct net_device *adj_dev,
5144 						 struct list_head *dev_list)
5145 {
5146 	return (dev_list == &dev->adj_list.upper ||
5147 		dev_list == &dev->adj_list.lower) &&
5148 		net_eq(dev_net(dev), dev_net(adj_dev));
5149 }
5150 
5151 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5152 					struct net_device *adj_dev,
5153 					struct list_head *dev_list,
5154 					void *private, bool master)
5155 {
5156 	struct netdev_adjacent *adj;
5157 	int ret;
5158 
5159 	adj = __netdev_find_adj(adj_dev, dev_list);
5160 
5161 	if (adj) {
5162 		adj->ref_nr++;
5163 		return 0;
5164 	}
5165 
5166 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5167 	if (!adj)
5168 		return -ENOMEM;
5169 
5170 	adj->dev = adj_dev;
5171 	adj->master = master;
5172 	adj->ref_nr = 1;
5173 	adj->private = private;
5174 	dev_hold(adj_dev);
5175 
5176 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5177 		 adj_dev->name, dev->name, adj_dev->name);
5178 
5179 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5180 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5181 		if (ret)
5182 			goto free_adj;
5183 	}
5184 
5185 	/* Ensure that master link is always the first item in list. */
5186 	if (master) {
5187 		ret = sysfs_create_link(&(dev->dev.kobj),
5188 					&(adj_dev->dev.kobj), "master");
5189 		if (ret)
5190 			goto remove_symlinks;
5191 
5192 		list_add_rcu(&adj->list, dev_list);
5193 	} else {
5194 		list_add_tail_rcu(&adj->list, dev_list);
5195 	}
5196 
5197 	return 0;
5198 
5199 remove_symlinks:
5200 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5201 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5202 free_adj:
5203 	kfree(adj);
5204 	dev_put(adj_dev);
5205 
5206 	return ret;
5207 }
5208 
5209 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5210 					 struct net_device *adj_dev,
5211 					 struct list_head *dev_list)
5212 {
5213 	struct netdev_adjacent *adj;
5214 
5215 	adj = __netdev_find_adj(adj_dev, dev_list);
5216 
5217 	if (!adj) {
5218 		pr_err("tried to remove device %s from %s\n",
5219 		       dev->name, adj_dev->name);
5220 		BUG();
5221 	}
5222 
5223 	if (adj->ref_nr > 1) {
5224 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5225 			 adj->ref_nr-1);
5226 		adj->ref_nr--;
5227 		return;
5228 	}
5229 
5230 	if (adj->master)
5231 		sysfs_remove_link(&(dev->dev.kobj), "master");
5232 
5233 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5234 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5235 
5236 	list_del_rcu(&adj->list);
5237 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5238 		 adj_dev->name, dev->name, adj_dev->name);
5239 	dev_put(adj_dev);
5240 	kfree_rcu(adj, rcu);
5241 }
5242 
5243 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5244 					    struct net_device *upper_dev,
5245 					    struct list_head *up_list,
5246 					    struct list_head *down_list,
5247 					    void *private, bool master)
5248 {
5249 	int ret;
5250 
5251 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5252 					   master);
5253 	if (ret)
5254 		return ret;
5255 
5256 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5257 					   false);
5258 	if (ret) {
5259 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5260 		return ret;
5261 	}
5262 
5263 	return 0;
5264 }
5265 
5266 static int __netdev_adjacent_dev_link(struct net_device *dev,
5267 				      struct net_device *upper_dev)
5268 {
5269 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5270 						&dev->all_adj_list.upper,
5271 						&upper_dev->all_adj_list.lower,
5272 						NULL, false);
5273 }
5274 
5275 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5276 					       struct net_device *upper_dev,
5277 					       struct list_head *up_list,
5278 					       struct list_head *down_list)
5279 {
5280 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5281 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5282 }
5283 
5284 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5285 					 struct net_device *upper_dev)
5286 {
5287 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5288 					   &dev->all_adj_list.upper,
5289 					   &upper_dev->all_adj_list.lower);
5290 }
5291 
5292 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5293 						struct net_device *upper_dev,
5294 						void *private, bool master)
5295 {
5296 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5297 
5298 	if (ret)
5299 		return ret;
5300 
5301 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5302 					       &dev->adj_list.upper,
5303 					       &upper_dev->adj_list.lower,
5304 					       private, master);
5305 	if (ret) {
5306 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5307 		return ret;
5308 	}
5309 
5310 	return 0;
5311 }
5312 
5313 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5314 						   struct net_device *upper_dev)
5315 {
5316 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5317 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5318 					   &dev->adj_list.upper,
5319 					   &upper_dev->adj_list.lower);
5320 }
5321 
5322 static int __netdev_upper_dev_link(struct net_device *dev,
5323 				   struct net_device *upper_dev, bool master,
5324 				   void *private)
5325 {
5326 	struct netdev_notifier_changeupper_info changeupper_info;
5327 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5328 	int ret = 0;
5329 
5330 	ASSERT_RTNL();
5331 
5332 	if (dev == upper_dev)
5333 		return -EBUSY;
5334 
5335 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5336 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5337 		return -EBUSY;
5338 
5339 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5340 		return -EEXIST;
5341 
5342 	if (master && netdev_master_upper_dev_get(dev))
5343 		return -EBUSY;
5344 
5345 	changeupper_info.upper_dev = upper_dev;
5346 	changeupper_info.master = master;
5347 	changeupper_info.linking = true;
5348 
5349 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, private,
5350 						   master);
5351 	if (ret)
5352 		return ret;
5353 
5354 	/* Now that we linked these devs, make all the upper_dev's
5355 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5356 	 * versa, and don't forget the devices itself. All of these
5357 	 * links are non-neighbours.
5358 	 */
5359 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5360 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5361 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5362 				 i->dev->name, j->dev->name);
5363 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5364 			if (ret)
5365 				goto rollback_mesh;
5366 		}
5367 	}
5368 
5369 	/* add dev to every upper_dev's upper device */
5370 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5371 		pr_debug("linking %s's upper device %s with %s\n",
5372 			 upper_dev->name, i->dev->name, dev->name);
5373 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5374 		if (ret)
5375 			goto rollback_upper_mesh;
5376 	}
5377 
5378 	/* add upper_dev to every dev's lower device */
5379 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5380 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5381 			 i->dev->name, upper_dev->name);
5382 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5383 		if (ret)
5384 			goto rollback_lower_mesh;
5385 	}
5386 
5387 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5388 				      &changeupper_info.info);
5389 	return 0;
5390 
5391 rollback_lower_mesh:
5392 	to_i = i;
5393 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5394 		if (i == to_i)
5395 			break;
5396 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5397 	}
5398 
5399 	i = NULL;
5400 
5401 rollback_upper_mesh:
5402 	to_i = i;
5403 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5404 		if (i == to_i)
5405 			break;
5406 		__netdev_adjacent_dev_unlink(dev, i->dev);
5407 	}
5408 
5409 	i = j = NULL;
5410 
5411 rollback_mesh:
5412 	to_i = i;
5413 	to_j = j;
5414 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5415 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5416 			if (i == to_i && j == to_j)
5417 				break;
5418 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5419 		}
5420 		if (i == to_i)
5421 			break;
5422 	}
5423 
5424 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5425 
5426 	return ret;
5427 }
5428 
5429 /**
5430  * netdev_upper_dev_link - Add a link to the upper device
5431  * @dev: device
5432  * @upper_dev: new upper device
5433  *
5434  * Adds a link to device which is upper to this one. The caller must hold
5435  * the RTNL lock. On a failure a negative errno code is returned.
5436  * On success the reference counts are adjusted and the function
5437  * returns zero.
5438  */
5439 int netdev_upper_dev_link(struct net_device *dev,
5440 			  struct net_device *upper_dev)
5441 {
5442 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL);
5443 }
5444 EXPORT_SYMBOL(netdev_upper_dev_link);
5445 
5446 /**
5447  * netdev_master_upper_dev_link - Add a master link to the upper device
5448  * @dev: device
5449  * @upper_dev: new upper device
5450  *
5451  * Adds a link to device which is upper to this one. In this case, only
5452  * one master upper device can be linked, although other non-master devices
5453  * might be linked as well. The caller must hold the RTNL lock.
5454  * On a failure a negative errno code is returned. On success the reference
5455  * counts are adjusted and the function returns zero.
5456  */
5457 int netdev_master_upper_dev_link(struct net_device *dev,
5458 				 struct net_device *upper_dev)
5459 {
5460 	return __netdev_upper_dev_link(dev, upper_dev, true, NULL);
5461 }
5462 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5463 
5464 int netdev_master_upper_dev_link_private(struct net_device *dev,
5465 					 struct net_device *upper_dev,
5466 					 void *private)
5467 {
5468 	return __netdev_upper_dev_link(dev, upper_dev, true, private);
5469 }
5470 EXPORT_SYMBOL(netdev_master_upper_dev_link_private);
5471 
5472 /**
5473  * netdev_upper_dev_unlink - Removes a link to upper device
5474  * @dev: device
5475  * @upper_dev: new upper device
5476  *
5477  * Removes a link to device which is upper to this one. The caller must hold
5478  * the RTNL lock.
5479  */
5480 void netdev_upper_dev_unlink(struct net_device *dev,
5481 			     struct net_device *upper_dev)
5482 {
5483 	struct netdev_notifier_changeupper_info changeupper_info;
5484 	struct netdev_adjacent *i, *j;
5485 	ASSERT_RTNL();
5486 
5487 	changeupper_info.upper_dev = upper_dev;
5488 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5489 	changeupper_info.linking = false;
5490 
5491 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5492 
5493 	/* Here is the tricky part. We must remove all dev's lower
5494 	 * devices from all upper_dev's upper devices and vice
5495 	 * versa, to maintain the graph relationship.
5496 	 */
5497 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5498 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5499 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5500 
5501 	/* remove also the devices itself from lower/upper device
5502 	 * list
5503 	 */
5504 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5505 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5506 
5507 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5508 		__netdev_adjacent_dev_unlink(dev, i->dev);
5509 
5510 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5511 				      &changeupper_info.info);
5512 }
5513 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5514 
5515 /**
5516  * netdev_bonding_info_change - Dispatch event about slave change
5517  * @dev: device
5518  * @bonding_info: info to dispatch
5519  *
5520  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5521  * The caller must hold the RTNL lock.
5522  */
5523 void netdev_bonding_info_change(struct net_device *dev,
5524 				struct netdev_bonding_info *bonding_info)
5525 {
5526 	struct netdev_notifier_bonding_info	info;
5527 
5528 	memcpy(&info.bonding_info, bonding_info,
5529 	       sizeof(struct netdev_bonding_info));
5530 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5531 				      &info.info);
5532 }
5533 EXPORT_SYMBOL(netdev_bonding_info_change);
5534 
5535 static void netdev_adjacent_add_links(struct net_device *dev)
5536 {
5537 	struct netdev_adjacent *iter;
5538 
5539 	struct net *net = dev_net(dev);
5540 
5541 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5542 		if (!net_eq(net,dev_net(iter->dev)))
5543 			continue;
5544 		netdev_adjacent_sysfs_add(iter->dev, dev,
5545 					  &iter->dev->adj_list.lower);
5546 		netdev_adjacent_sysfs_add(dev, iter->dev,
5547 					  &dev->adj_list.upper);
5548 	}
5549 
5550 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5551 		if (!net_eq(net,dev_net(iter->dev)))
5552 			continue;
5553 		netdev_adjacent_sysfs_add(iter->dev, dev,
5554 					  &iter->dev->adj_list.upper);
5555 		netdev_adjacent_sysfs_add(dev, iter->dev,
5556 					  &dev->adj_list.lower);
5557 	}
5558 }
5559 
5560 static void netdev_adjacent_del_links(struct net_device *dev)
5561 {
5562 	struct netdev_adjacent *iter;
5563 
5564 	struct net *net = dev_net(dev);
5565 
5566 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5567 		if (!net_eq(net,dev_net(iter->dev)))
5568 			continue;
5569 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5570 					  &iter->dev->adj_list.lower);
5571 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5572 					  &dev->adj_list.upper);
5573 	}
5574 
5575 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5576 		if (!net_eq(net,dev_net(iter->dev)))
5577 			continue;
5578 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5579 					  &iter->dev->adj_list.upper);
5580 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5581 					  &dev->adj_list.lower);
5582 	}
5583 }
5584 
5585 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5586 {
5587 	struct netdev_adjacent *iter;
5588 
5589 	struct net *net = dev_net(dev);
5590 
5591 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5592 		if (!net_eq(net,dev_net(iter->dev)))
5593 			continue;
5594 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5595 					  &iter->dev->adj_list.lower);
5596 		netdev_adjacent_sysfs_add(iter->dev, dev,
5597 					  &iter->dev->adj_list.lower);
5598 	}
5599 
5600 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5601 		if (!net_eq(net,dev_net(iter->dev)))
5602 			continue;
5603 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5604 					  &iter->dev->adj_list.upper);
5605 		netdev_adjacent_sysfs_add(iter->dev, dev,
5606 					  &iter->dev->adj_list.upper);
5607 	}
5608 }
5609 
5610 void *netdev_lower_dev_get_private(struct net_device *dev,
5611 				   struct net_device *lower_dev)
5612 {
5613 	struct netdev_adjacent *lower;
5614 
5615 	if (!lower_dev)
5616 		return NULL;
5617 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5618 	if (!lower)
5619 		return NULL;
5620 
5621 	return lower->private;
5622 }
5623 EXPORT_SYMBOL(netdev_lower_dev_get_private);
5624 
5625 
5626 int dev_get_nest_level(struct net_device *dev,
5627 		       bool (*type_check)(struct net_device *dev))
5628 {
5629 	struct net_device *lower = NULL;
5630 	struct list_head *iter;
5631 	int max_nest = -1;
5632 	int nest;
5633 
5634 	ASSERT_RTNL();
5635 
5636 	netdev_for_each_lower_dev(dev, lower, iter) {
5637 		nest = dev_get_nest_level(lower, type_check);
5638 		if (max_nest < nest)
5639 			max_nest = nest;
5640 	}
5641 
5642 	if (type_check(dev))
5643 		max_nest++;
5644 
5645 	return max_nest;
5646 }
5647 EXPORT_SYMBOL(dev_get_nest_level);
5648 
5649 static void dev_change_rx_flags(struct net_device *dev, int flags)
5650 {
5651 	const struct net_device_ops *ops = dev->netdev_ops;
5652 
5653 	if (ops->ndo_change_rx_flags)
5654 		ops->ndo_change_rx_flags(dev, flags);
5655 }
5656 
5657 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
5658 {
5659 	unsigned int old_flags = dev->flags;
5660 	kuid_t uid;
5661 	kgid_t gid;
5662 
5663 	ASSERT_RTNL();
5664 
5665 	dev->flags |= IFF_PROMISC;
5666 	dev->promiscuity += inc;
5667 	if (dev->promiscuity == 0) {
5668 		/*
5669 		 * Avoid overflow.
5670 		 * If inc causes overflow, untouch promisc and return error.
5671 		 */
5672 		if (inc < 0)
5673 			dev->flags &= ~IFF_PROMISC;
5674 		else {
5675 			dev->promiscuity -= inc;
5676 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
5677 				dev->name);
5678 			return -EOVERFLOW;
5679 		}
5680 	}
5681 	if (dev->flags != old_flags) {
5682 		pr_info("device %s %s promiscuous mode\n",
5683 			dev->name,
5684 			dev->flags & IFF_PROMISC ? "entered" : "left");
5685 		if (audit_enabled) {
5686 			current_uid_gid(&uid, &gid);
5687 			audit_log(current->audit_context, GFP_ATOMIC,
5688 				AUDIT_ANOM_PROMISCUOUS,
5689 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
5690 				dev->name, (dev->flags & IFF_PROMISC),
5691 				(old_flags & IFF_PROMISC),
5692 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
5693 				from_kuid(&init_user_ns, uid),
5694 				from_kgid(&init_user_ns, gid),
5695 				audit_get_sessionid(current));
5696 		}
5697 
5698 		dev_change_rx_flags(dev, IFF_PROMISC);
5699 	}
5700 	if (notify)
5701 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
5702 	return 0;
5703 }
5704 
5705 /**
5706  *	dev_set_promiscuity	- update promiscuity count on a device
5707  *	@dev: device
5708  *	@inc: modifier
5709  *
5710  *	Add or remove promiscuity from a device. While the count in the device
5711  *	remains above zero the interface remains promiscuous. Once it hits zero
5712  *	the device reverts back to normal filtering operation. A negative inc
5713  *	value is used to drop promiscuity on the device.
5714  *	Return 0 if successful or a negative errno code on error.
5715  */
5716 int dev_set_promiscuity(struct net_device *dev, int inc)
5717 {
5718 	unsigned int old_flags = dev->flags;
5719 	int err;
5720 
5721 	err = __dev_set_promiscuity(dev, inc, true);
5722 	if (err < 0)
5723 		return err;
5724 	if (dev->flags != old_flags)
5725 		dev_set_rx_mode(dev);
5726 	return err;
5727 }
5728 EXPORT_SYMBOL(dev_set_promiscuity);
5729 
5730 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
5731 {
5732 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
5733 
5734 	ASSERT_RTNL();
5735 
5736 	dev->flags |= IFF_ALLMULTI;
5737 	dev->allmulti += inc;
5738 	if (dev->allmulti == 0) {
5739 		/*
5740 		 * Avoid overflow.
5741 		 * If inc causes overflow, untouch allmulti and return error.
5742 		 */
5743 		if (inc < 0)
5744 			dev->flags &= ~IFF_ALLMULTI;
5745 		else {
5746 			dev->allmulti -= inc;
5747 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
5748 				dev->name);
5749 			return -EOVERFLOW;
5750 		}
5751 	}
5752 	if (dev->flags ^ old_flags) {
5753 		dev_change_rx_flags(dev, IFF_ALLMULTI);
5754 		dev_set_rx_mode(dev);
5755 		if (notify)
5756 			__dev_notify_flags(dev, old_flags,
5757 					   dev->gflags ^ old_gflags);
5758 	}
5759 	return 0;
5760 }
5761 
5762 /**
5763  *	dev_set_allmulti	- update allmulti count on a device
5764  *	@dev: device
5765  *	@inc: modifier
5766  *
5767  *	Add or remove reception of all multicast frames to a device. While the
5768  *	count in the device remains above zero the interface remains listening
5769  *	to all interfaces. Once it hits zero the device reverts back to normal
5770  *	filtering operation. A negative @inc value is used to drop the counter
5771  *	when releasing a resource needing all multicasts.
5772  *	Return 0 if successful or a negative errno code on error.
5773  */
5774 
5775 int dev_set_allmulti(struct net_device *dev, int inc)
5776 {
5777 	return __dev_set_allmulti(dev, inc, true);
5778 }
5779 EXPORT_SYMBOL(dev_set_allmulti);
5780 
5781 /*
5782  *	Upload unicast and multicast address lists to device and
5783  *	configure RX filtering. When the device doesn't support unicast
5784  *	filtering it is put in promiscuous mode while unicast addresses
5785  *	are present.
5786  */
5787 void __dev_set_rx_mode(struct net_device *dev)
5788 {
5789 	const struct net_device_ops *ops = dev->netdev_ops;
5790 
5791 	/* dev_open will call this function so the list will stay sane. */
5792 	if (!(dev->flags&IFF_UP))
5793 		return;
5794 
5795 	if (!netif_device_present(dev))
5796 		return;
5797 
5798 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
5799 		/* Unicast addresses changes may only happen under the rtnl,
5800 		 * therefore calling __dev_set_promiscuity here is safe.
5801 		 */
5802 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
5803 			__dev_set_promiscuity(dev, 1, false);
5804 			dev->uc_promisc = true;
5805 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
5806 			__dev_set_promiscuity(dev, -1, false);
5807 			dev->uc_promisc = false;
5808 		}
5809 	}
5810 
5811 	if (ops->ndo_set_rx_mode)
5812 		ops->ndo_set_rx_mode(dev);
5813 }
5814 
5815 void dev_set_rx_mode(struct net_device *dev)
5816 {
5817 	netif_addr_lock_bh(dev);
5818 	__dev_set_rx_mode(dev);
5819 	netif_addr_unlock_bh(dev);
5820 }
5821 
5822 /**
5823  *	dev_get_flags - get flags reported to userspace
5824  *	@dev: device
5825  *
5826  *	Get the combination of flag bits exported through APIs to userspace.
5827  */
5828 unsigned int dev_get_flags(const struct net_device *dev)
5829 {
5830 	unsigned int flags;
5831 
5832 	flags = (dev->flags & ~(IFF_PROMISC |
5833 				IFF_ALLMULTI |
5834 				IFF_RUNNING |
5835 				IFF_LOWER_UP |
5836 				IFF_DORMANT)) |
5837 		(dev->gflags & (IFF_PROMISC |
5838 				IFF_ALLMULTI));
5839 
5840 	if (netif_running(dev)) {
5841 		if (netif_oper_up(dev))
5842 			flags |= IFF_RUNNING;
5843 		if (netif_carrier_ok(dev))
5844 			flags |= IFF_LOWER_UP;
5845 		if (netif_dormant(dev))
5846 			flags |= IFF_DORMANT;
5847 	}
5848 
5849 	return flags;
5850 }
5851 EXPORT_SYMBOL(dev_get_flags);
5852 
5853 int __dev_change_flags(struct net_device *dev, unsigned int flags)
5854 {
5855 	unsigned int old_flags = dev->flags;
5856 	int ret;
5857 
5858 	ASSERT_RTNL();
5859 
5860 	/*
5861 	 *	Set the flags on our device.
5862 	 */
5863 
5864 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
5865 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
5866 			       IFF_AUTOMEDIA)) |
5867 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
5868 				    IFF_ALLMULTI));
5869 
5870 	/*
5871 	 *	Load in the correct multicast list now the flags have changed.
5872 	 */
5873 
5874 	if ((old_flags ^ flags) & IFF_MULTICAST)
5875 		dev_change_rx_flags(dev, IFF_MULTICAST);
5876 
5877 	dev_set_rx_mode(dev);
5878 
5879 	/*
5880 	 *	Have we downed the interface. We handle IFF_UP ourselves
5881 	 *	according to user attempts to set it, rather than blindly
5882 	 *	setting it.
5883 	 */
5884 
5885 	ret = 0;
5886 	if ((old_flags ^ flags) & IFF_UP)
5887 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
5888 
5889 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
5890 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
5891 		unsigned int old_flags = dev->flags;
5892 
5893 		dev->gflags ^= IFF_PROMISC;
5894 
5895 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
5896 			if (dev->flags != old_flags)
5897 				dev_set_rx_mode(dev);
5898 	}
5899 
5900 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
5901 	   is important. Some (broken) drivers set IFF_PROMISC, when
5902 	   IFF_ALLMULTI is requested not asking us and not reporting.
5903 	 */
5904 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
5905 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
5906 
5907 		dev->gflags ^= IFF_ALLMULTI;
5908 		__dev_set_allmulti(dev, inc, false);
5909 	}
5910 
5911 	return ret;
5912 }
5913 
5914 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
5915 			unsigned int gchanges)
5916 {
5917 	unsigned int changes = dev->flags ^ old_flags;
5918 
5919 	if (gchanges)
5920 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
5921 
5922 	if (changes & IFF_UP) {
5923 		if (dev->flags & IFF_UP)
5924 			call_netdevice_notifiers(NETDEV_UP, dev);
5925 		else
5926 			call_netdevice_notifiers(NETDEV_DOWN, dev);
5927 	}
5928 
5929 	if (dev->flags & IFF_UP &&
5930 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
5931 		struct netdev_notifier_change_info change_info;
5932 
5933 		change_info.flags_changed = changes;
5934 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
5935 					      &change_info.info);
5936 	}
5937 }
5938 
5939 /**
5940  *	dev_change_flags - change device settings
5941  *	@dev: device
5942  *	@flags: device state flags
5943  *
5944  *	Change settings on device based state flags. The flags are
5945  *	in the userspace exported format.
5946  */
5947 int dev_change_flags(struct net_device *dev, unsigned int flags)
5948 {
5949 	int ret;
5950 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
5951 
5952 	ret = __dev_change_flags(dev, flags);
5953 	if (ret < 0)
5954 		return ret;
5955 
5956 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
5957 	__dev_notify_flags(dev, old_flags, changes);
5958 	return ret;
5959 }
5960 EXPORT_SYMBOL(dev_change_flags);
5961 
5962 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
5963 {
5964 	const struct net_device_ops *ops = dev->netdev_ops;
5965 
5966 	if (ops->ndo_change_mtu)
5967 		return ops->ndo_change_mtu(dev, new_mtu);
5968 
5969 	dev->mtu = new_mtu;
5970 	return 0;
5971 }
5972 
5973 /**
5974  *	dev_set_mtu - Change maximum transfer unit
5975  *	@dev: device
5976  *	@new_mtu: new transfer unit
5977  *
5978  *	Change the maximum transfer size of the network device.
5979  */
5980 int dev_set_mtu(struct net_device *dev, int new_mtu)
5981 {
5982 	int err, orig_mtu;
5983 
5984 	if (new_mtu == dev->mtu)
5985 		return 0;
5986 
5987 	/*	MTU must be positive.	 */
5988 	if (new_mtu < 0)
5989 		return -EINVAL;
5990 
5991 	if (!netif_device_present(dev))
5992 		return -ENODEV;
5993 
5994 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
5995 	err = notifier_to_errno(err);
5996 	if (err)
5997 		return err;
5998 
5999 	orig_mtu = dev->mtu;
6000 	err = __dev_set_mtu(dev, new_mtu);
6001 
6002 	if (!err) {
6003 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6004 		err = notifier_to_errno(err);
6005 		if (err) {
6006 			/* setting mtu back and notifying everyone again,
6007 			 * so that they have a chance to revert changes.
6008 			 */
6009 			__dev_set_mtu(dev, orig_mtu);
6010 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6011 		}
6012 	}
6013 	return err;
6014 }
6015 EXPORT_SYMBOL(dev_set_mtu);
6016 
6017 /**
6018  *	dev_set_group - Change group this device belongs to
6019  *	@dev: device
6020  *	@new_group: group this device should belong to
6021  */
6022 void dev_set_group(struct net_device *dev, int new_group)
6023 {
6024 	dev->group = new_group;
6025 }
6026 EXPORT_SYMBOL(dev_set_group);
6027 
6028 /**
6029  *	dev_set_mac_address - Change Media Access Control Address
6030  *	@dev: device
6031  *	@sa: new address
6032  *
6033  *	Change the hardware (MAC) address of the device
6034  */
6035 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6036 {
6037 	const struct net_device_ops *ops = dev->netdev_ops;
6038 	int err;
6039 
6040 	if (!ops->ndo_set_mac_address)
6041 		return -EOPNOTSUPP;
6042 	if (sa->sa_family != dev->type)
6043 		return -EINVAL;
6044 	if (!netif_device_present(dev))
6045 		return -ENODEV;
6046 	err = ops->ndo_set_mac_address(dev, sa);
6047 	if (err)
6048 		return err;
6049 	dev->addr_assign_type = NET_ADDR_SET;
6050 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6051 	add_device_randomness(dev->dev_addr, dev->addr_len);
6052 	return 0;
6053 }
6054 EXPORT_SYMBOL(dev_set_mac_address);
6055 
6056 /**
6057  *	dev_change_carrier - Change device carrier
6058  *	@dev: device
6059  *	@new_carrier: new value
6060  *
6061  *	Change device carrier
6062  */
6063 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6064 {
6065 	const struct net_device_ops *ops = dev->netdev_ops;
6066 
6067 	if (!ops->ndo_change_carrier)
6068 		return -EOPNOTSUPP;
6069 	if (!netif_device_present(dev))
6070 		return -ENODEV;
6071 	return ops->ndo_change_carrier(dev, new_carrier);
6072 }
6073 EXPORT_SYMBOL(dev_change_carrier);
6074 
6075 /**
6076  *	dev_get_phys_port_id - Get device physical port ID
6077  *	@dev: device
6078  *	@ppid: port ID
6079  *
6080  *	Get device physical port ID
6081  */
6082 int dev_get_phys_port_id(struct net_device *dev,
6083 			 struct netdev_phys_item_id *ppid)
6084 {
6085 	const struct net_device_ops *ops = dev->netdev_ops;
6086 
6087 	if (!ops->ndo_get_phys_port_id)
6088 		return -EOPNOTSUPP;
6089 	return ops->ndo_get_phys_port_id(dev, ppid);
6090 }
6091 EXPORT_SYMBOL(dev_get_phys_port_id);
6092 
6093 /**
6094  *	dev_get_phys_port_name - Get device physical port name
6095  *	@dev: device
6096  *	@name: port name
6097  *
6098  *	Get device physical port name
6099  */
6100 int dev_get_phys_port_name(struct net_device *dev,
6101 			   char *name, size_t len)
6102 {
6103 	const struct net_device_ops *ops = dev->netdev_ops;
6104 
6105 	if (!ops->ndo_get_phys_port_name)
6106 		return -EOPNOTSUPP;
6107 	return ops->ndo_get_phys_port_name(dev, name, len);
6108 }
6109 EXPORT_SYMBOL(dev_get_phys_port_name);
6110 
6111 /**
6112  *	dev_change_proto_down - update protocol port state information
6113  *	@dev: device
6114  *	@proto_down: new value
6115  *
6116  *	This info can be used by switch drivers to set the phys state of the
6117  *	port.
6118  */
6119 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6120 {
6121 	const struct net_device_ops *ops = dev->netdev_ops;
6122 
6123 	if (!ops->ndo_change_proto_down)
6124 		return -EOPNOTSUPP;
6125 	if (!netif_device_present(dev))
6126 		return -ENODEV;
6127 	return ops->ndo_change_proto_down(dev, proto_down);
6128 }
6129 EXPORT_SYMBOL(dev_change_proto_down);
6130 
6131 /**
6132  *	dev_new_index	-	allocate an ifindex
6133  *	@net: the applicable net namespace
6134  *
6135  *	Returns a suitable unique value for a new device interface
6136  *	number.  The caller must hold the rtnl semaphore or the
6137  *	dev_base_lock to be sure it remains unique.
6138  */
6139 static int dev_new_index(struct net *net)
6140 {
6141 	int ifindex = net->ifindex;
6142 	for (;;) {
6143 		if (++ifindex <= 0)
6144 			ifindex = 1;
6145 		if (!__dev_get_by_index(net, ifindex))
6146 			return net->ifindex = ifindex;
6147 	}
6148 }
6149 
6150 /* Delayed registration/unregisteration */
6151 static LIST_HEAD(net_todo_list);
6152 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6153 
6154 static void net_set_todo(struct net_device *dev)
6155 {
6156 	list_add_tail(&dev->todo_list, &net_todo_list);
6157 	dev_net(dev)->dev_unreg_count++;
6158 }
6159 
6160 static void rollback_registered_many(struct list_head *head)
6161 {
6162 	struct net_device *dev, *tmp;
6163 	LIST_HEAD(close_head);
6164 
6165 	BUG_ON(dev_boot_phase);
6166 	ASSERT_RTNL();
6167 
6168 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6169 		/* Some devices call without registering
6170 		 * for initialization unwind. Remove those
6171 		 * devices and proceed with the remaining.
6172 		 */
6173 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6174 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6175 				 dev->name, dev);
6176 
6177 			WARN_ON(1);
6178 			list_del(&dev->unreg_list);
6179 			continue;
6180 		}
6181 		dev->dismantle = true;
6182 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6183 	}
6184 
6185 	/* If device is running, close it first. */
6186 	list_for_each_entry(dev, head, unreg_list)
6187 		list_add_tail(&dev->close_list, &close_head);
6188 	dev_close_many(&close_head, true);
6189 
6190 	list_for_each_entry(dev, head, unreg_list) {
6191 		/* And unlink it from device chain. */
6192 		unlist_netdevice(dev);
6193 
6194 		dev->reg_state = NETREG_UNREGISTERING;
6195 		on_each_cpu(flush_backlog, dev, 1);
6196 	}
6197 
6198 	synchronize_net();
6199 
6200 	list_for_each_entry(dev, head, unreg_list) {
6201 		struct sk_buff *skb = NULL;
6202 
6203 		/* Shutdown queueing discipline. */
6204 		dev_shutdown(dev);
6205 
6206 
6207 		/* Notify protocols, that we are about to destroy
6208 		   this device. They should clean all the things.
6209 		*/
6210 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6211 
6212 		if (!dev->rtnl_link_ops ||
6213 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6214 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6215 						     GFP_KERNEL);
6216 
6217 		/*
6218 		 *	Flush the unicast and multicast chains
6219 		 */
6220 		dev_uc_flush(dev);
6221 		dev_mc_flush(dev);
6222 
6223 		if (dev->netdev_ops->ndo_uninit)
6224 			dev->netdev_ops->ndo_uninit(dev);
6225 
6226 		if (skb)
6227 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6228 
6229 		/* Notifier chain MUST detach us all upper devices. */
6230 		WARN_ON(netdev_has_any_upper_dev(dev));
6231 
6232 		/* Remove entries from kobject tree */
6233 		netdev_unregister_kobject(dev);
6234 #ifdef CONFIG_XPS
6235 		/* Remove XPS queueing entries */
6236 		netif_reset_xps_queues_gt(dev, 0);
6237 #endif
6238 	}
6239 
6240 	synchronize_net();
6241 
6242 	list_for_each_entry(dev, head, unreg_list)
6243 		dev_put(dev);
6244 }
6245 
6246 static void rollback_registered(struct net_device *dev)
6247 {
6248 	LIST_HEAD(single);
6249 
6250 	list_add(&dev->unreg_list, &single);
6251 	rollback_registered_many(&single);
6252 	list_del(&single);
6253 }
6254 
6255 static netdev_features_t netdev_fix_features(struct net_device *dev,
6256 	netdev_features_t features)
6257 {
6258 	/* Fix illegal checksum combinations */
6259 	if ((features & NETIF_F_HW_CSUM) &&
6260 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6261 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6262 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6263 	}
6264 
6265 	/* TSO requires that SG is present as well. */
6266 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6267 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6268 		features &= ~NETIF_F_ALL_TSO;
6269 	}
6270 
6271 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6272 					!(features & NETIF_F_IP_CSUM)) {
6273 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6274 		features &= ~NETIF_F_TSO;
6275 		features &= ~NETIF_F_TSO_ECN;
6276 	}
6277 
6278 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6279 					 !(features & NETIF_F_IPV6_CSUM)) {
6280 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6281 		features &= ~NETIF_F_TSO6;
6282 	}
6283 
6284 	/* TSO ECN requires that TSO is present as well. */
6285 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6286 		features &= ~NETIF_F_TSO_ECN;
6287 
6288 	/* Software GSO depends on SG. */
6289 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6290 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6291 		features &= ~NETIF_F_GSO;
6292 	}
6293 
6294 	/* UFO needs SG and checksumming */
6295 	if (features & NETIF_F_UFO) {
6296 		/* maybe split UFO into V4 and V6? */
6297 		if (!((features & NETIF_F_GEN_CSUM) ||
6298 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
6299 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6300 			netdev_dbg(dev,
6301 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6302 			features &= ~NETIF_F_UFO;
6303 		}
6304 
6305 		if (!(features & NETIF_F_SG)) {
6306 			netdev_dbg(dev,
6307 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6308 			features &= ~NETIF_F_UFO;
6309 		}
6310 	}
6311 
6312 #ifdef CONFIG_NET_RX_BUSY_POLL
6313 	if (dev->netdev_ops->ndo_busy_poll)
6314 		features |= NETIF_F_BUSY_POLL;
6315 	else
6316 #endif
6317 		features &= ~NETIF_F_BUSY_POLL;
6318 
6319 	return features;
6320 }
6321 
6322 int __netdev_update_features(struct net_device *dev)
6323 {
6324 	netdev_features_t features;
6325 	int err = 0;
6326 
6327 	ASSERT_RTNL();
6328 
6329 	features = netdev_get_wanted_features(dev);
6330 
6331 	if (dev->netdev_ops->ndo_fix_features)
6332 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6333 
6334 	/* driver might be less strict about feature dependencies */
6335 	features = netdev_fix_features(dev, features);
6336 
6337 	if (dev->features == features)
6338 		return 0;
6339 
6340 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6341 		&dev->features, &features);
6342 
6343 	if (dev->netdev_ops->ndo_set_features)
6344 		err = dev->netdev_ops->ndo_set_features(dev, features);
6345 
6346 	if (unlikely(err < 0)) {
6347 		netdev_err(dev,
6348 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6349 			err, &features, &dev->features);
6350 		return -1;
6351 	}
6352 
6353 	if (!err)
6354 		dev->features = features;
6355 
6356 	return 1;
6357 }
6358 
6359 /**
6360  *	netdev_update_features - recalculate device features
6361  *	@dev: the device to check
6362  *
6363  *	Recalculate dev->features set and send notifications if it
6364  *	has changed. Should be called after driver or hardware dependent
6365  *	conditions might have changed that influence the features.
6366  */
6367 void netdev_update_features(struct net_device *dev)
6368 {
6369 	if (__netdev_update_features(dev))
6370 		netdev_features_change(dev);
6371 }
6372 EXPORT_SYMBOL(netdev_update_features);
6373 
6374 /**
6375  *	netdev_change_features - recalculate device features
6376  *	@dev: the device to check
6377  *
6378  *	Recalculate dev->features set and send notifications even
6379  *	if they have not changed. Should be called instead of
6380  *	netdev_update_features() if also dev->vlan_features might
6381  *	have changed to allow the changes to be propagated to stacked
6382  *	VLAN devices.
6383  */
6384 void netdev_change_features(struct net_device *dev)
6385 {
6386 	__netdev_update_features(dev);
6387 	netdev_features_change(dev);
6388 }
6389 EXPORT_SYMBOL(netdev_change_features);
6390 
6391 /**
6392  *	netif_stacked_transfer_operstate -	transfer operstate
6393  *	@rootdev: the root or lower level device to transfer state from
6394  *	@dev: the device to transfer operstate to
6395  *
6396  *	Transfer operational state from root to device. This is normally
6397  *	called when a stacking relationship exists between the root
6398  *	device and the device(a leaf device).
6399  */
6400 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6401 					struct net_device *dev)
6402 {
6403 	if (rootdev->operstate == IF_OPER_DORMANT)
6404 		netif_dormant_on(dev);
6405 	else
6406 		netif_dormant_off(dev);
6407 
6408 	if (netif_carrier_ok(rootdev)) {
6409 		if (!netif_carrier_ok(dev))
6410 			netif_carrier_on(dev);
6411 	} else {
6412 		if (netif_carrier_ok(dev))
6413 			netif_carrier_off(dev);
6414 	}
6415 }
6416 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6417 
6418 #ifdef CONFIG_SYSFS
6419 static int netif_alloc_rx_queues(struct net_device *dev)
6420 {
6421 	unsigned int i, count = dev->num_rx_queues;
6422 	struct netdev_rx_queue *rx;
6423 	size_t sz = count * sizeof(*rx);
6424 
6425 	BUG_ON(count < 1);
6426 
6427 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6428 	if (!rx) {
6429 		rx = vzalloc(sz);
6430 		if (!rx)
6431 			return -ENOMEM;
6432 	}
6433 	dev->_rx = rx;
6434 
6435 	for (i = 0; i < count; i++)
6436 		rx[i].dev = dev;
6437 	return 0;
6438 }
6439 #endif
6440 
6441 static void netdev_init_one_queue(struct net_device *dev,
6442 				  struct netdev_queue *queue, void *_unused)
6443 {
6444 	/* Initialize queue lock */
6445 	spin_lock_init(&queue->_xmit_lock);
6446 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6447 	queue->xmit_lock_owner = -1;
6448 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6449 	queue->dev = dev;
6450 #ifdef CONFIG_BQL
6451 	dql_init(&queue->dql, HZ);
6452 #endif
6453 }
6454 
6455 static void netif_free_tx_queues(struct net_device *dev)
6456 {
6457 	kvfree(dev->_tx);
6458 }
6459 
6460 static int netif_alloc_netdev_queues(struct net_device *dev)
6461 {
6462 	unsigned int count = dev->num_tx_queues;
6463 	struct netdev_queue *tx;
6464 	size_t sz = count * sizeof(*tx);
6465 
6466 	if (count < 1 || count > 0xffff)
6467 		return -EINVAL;
6468 
6469 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6470 	if (!tx) {
6471 		tx = vzalloc(sz);
6472 		if (!tx)
6473 			return -ENOMEM;
6474 	}
6475 	dev->_tx = tx;
6476 
6477 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6478 	spin_lock_init(&dev->tx_global_lock);
6479 
6480 	return 0;
6481 }
6482 
6483 void netif_tx_stop_all_queues(struct net_device *dev)
6484 {
6485 	unsigned int i;
6486 
6487 	for (i = 0; i < dev->num_tx_queues; i++) {
6488 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6489 		netif_tx_stop_queue(txq);
6490 	}
6491 }
6492 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6493 
6494 /**
6495  *	register_netdevice	- register a network device
6496  *	@dev: device to register
6497  *
6498  *	Take a completed network device structure and add it to the kernel
6499  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6500  *	chain. 0 is returned on success. A negative errno code is returned
6501  *	on a failure to set up the device, or if the name is a duplicate.
6502  *
6503  *	Callers must hold the rtnl semaphore. You may want
6504  *	register_netdev() instead of this.
6505  *
6506  *	BUGS:
6507  *	The locking appears insufficient to guarantee two parallel registers
6508  *	will not get the same name.
6509  */
6510 
6511 int register_netdevice(struct net_device *dev)
6512 {
6513 	int ret;
6514 	struct net *net = dev_net(dev);
6515 
6516 	BUG_ON(dev_boot_phase);
6517 	ASSERT_RTNL();
6518 
6519 	might_sleep();
6520 
6521 	/* When net_device's are persistent, this will be fatal. */
6522 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6523 	BUG_ON(!net);
6524 
6525 	spin_lock_init(&dev->addr_list_lock);
6526 	netdev_set_addr_lockdep_class(dev);
6527 
6528 	ret = dev_get_valid_name(net, dev, dev->name);
6529 	if (ret < 0)
6530 		goto out;
6531 
6532 	/* Init, if this function is available */
6533 	if (dev->netdev_ops->ndo_init) {
6534 		ret = dev->netdev_ops->ndo_init(dev);
6535 		if (ret) {
6536 			if (ret > 0)
6537 				ret = -EIO;
6538 			goto out;
6539 		}
6540 	}
6541 
6542 	if (((dev->hw_features | dev->features) &
6543 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6544 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6545 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6546 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6547 		ret = -EINVAL;
6548 		goto err_uninit;
6549 	}
6550 
6551 	ret = -EBUSY;
6552 	if (!dev->ifindex)
6553 		dev->ifindex = dev_new_index(net);
6554 	else if (__dev_get_by_index(net, dev->ifindex))
6555 		goto err_uninit;
6556 
6557 	/* Transfer changeable features to wanted_features and enable
6558 	 * software offloads (GSO and GRO).
6559 	 */
6560 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6561 	dev->features |= NETIF_F_SOFT_FEATURES;
6562 	dev->wanted_features = dev->features & dev->hw_features;
6563 
6564 	if (!(dev->flags & IFF_LOOPBACK)) {
6565 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6566 	}
6567 
6568 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6569 	 */
6570 	dev->vlan_features |= NETIF_F_HIGHDMA;
6571 
6572 	/* Make NETIF_F_SG inheritable to tunnel devices.
6573 	 */
6574 	dev->hw_enc_features |= NETIF_F_SG;
6575 
6576 	/* Make NETIF_F_SG inheritable to MPLS.
6577 	 */
6578 	dev->mpls_features |= NETIF_F_SG;
6579 
6580 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6581 	ret = notifier_to_errno(ret);
6582 	if (ret)
6583 		goto err_uninit;
6584 
6585 	ret = netdev_register_kobject(dev);
6586 	if (ret)
6587 		goto err_uninit;
6588 	dev->reg_state = NETREG_REGISTERED;
6589 
6590 	__netdev_update_features(dev);
6591 
6592 	/*
6593 	 *	Default initial state at registry is that the
6594 	 *	device is present.
6595 	 */
6596 
6597 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6598 
6599 	linkwatch_init_dev(dev);
6600 
6601 	dev_init_scheduler(dev);
6602 	dev_hold(dev);
6603 	list_netdevice(dev);
6604 	add_device_randomness(dev->dev_addr, dev->addr_len);
6605 
6606 	/* If the device has permanent device address, driver should
6607 	 * set dev_addr and also addr_assign_type should be set to
6608 	 * NET_ADDR_PERM (default value).
6609 	 */
6610 	if (dev->addr_assign_type == NET_ADDR_PERM)
6611 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
6612 
6613 	/* Notify protocols, that a new device appeared. */
6614 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
6615 	ret = notifier_to_errno(ret);
6616 	if (ret) {
6617 		rollback_registered(dev);
6618 		dev->reg_state = NETREG_UNREGISTERED;
6619 	}
6620 	/*
6621 	 *	Prevent userspace races by waiting until the network
6622 	 *	device is fully setup before sending notifications.
6623 	 */
6624 	if (!dev->rtnl_link_ops ||
6625 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6626 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
6627 
6628 out:
6629 	return ret;
6630 
6631 err_uninit:
6632 	if (dev->netdev_ops->ndo_uninit)
6633 		dev->netdev_ops->ndo_uninit(dev);
6634 	goto out;
6635 }
6636 EXPORT_SYMBOL(register_netdevice);
6637 
6638 /**
6639  *	init_dummy_netdev	- init a dummy network device for NAPI
6640  *	@dev: device to init
6641  *
6642  *	This takes a network device structure and initialize the minimum
6643  *	amount of fields so it can be used to schedule NAPI polls without
6644  *	registering a full blown interface. This is to be used by drivers
6645  *	that need to tie several hardware interfaces to a single NAPI
6646  *	poll scheduler due to HW limitations.
6647  */
6648 int init_dummy_netdev(struct net_device *dev)
6649 {
6650 	/* Clear everything. Note we don't initialize spinlocks
6651 	 * are they aren't supposed to be taken by any of the
6652 	 * NAPI code and this dummy netdev is supposed to be
6653 	 * only ever used for NAPI polls
6654 	 */
6655 	memset(dev, 0, sizeof(struct net_device));
6656 
6657 	/* make sure we BUG if trying to hit standard
6658 	 * register/unregister code path
6659 	 */
6660 	dev->reg_state = NETREG_DUMMY;
6661 
6662 	/* NAPI wants this */
6663 	INIT_LIST_HEAD(&dev->napi_list);
6664 
6665 	/* a dummy interface is started by default */
6666 	set_bit(__LINK_STATE_PRESENT, &dev->state);
6667 	set_bit(__LINK_STATE_START, &dev->state);
6668 
6669 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
6670 	 * because users of this 'device' dont need to change
6671 	 * its refcount.
6672 	 */
6673 
6674 	return 0;
6675 }
6676 EXPORT_SYMBOL_GPL(init_dummy_netdev);
6677 
6678 
6679 /**
6680  *	register_netdev	- register a network device
6681  *	@dev: device to register
6682  *
6683  *	Take a completed network device structure and add it to the kernel
6684  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6685  *	chain. 0 is returned on success. A negative errno code is returned
6686  *	on a failure to set up the device, or if the name is a duplicate.
6687  *
6688  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
6689  *	and expands the device name if you passed a format string to
6690  *	alloc_netdev.
6691  */
6692 int register_netdev(struct net_device *dev)
6693 {
6694 	int err;
6695 
6696 	rtnl_lock();
6697 	err = register_netdevice(dev);
6698 	rtnl_unlock();
6699 	return err;
6700 }
6701 EXPORT_SYMBOL(register_netdev);
6702 
6703 int netdev_refcnt_read(const struct net_device *dev)
6704 {
6705 	int i, refcnt = 0;
6706 
6707 	for_each_possible_cpu(i)
6708 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
6709 	return refcnt;
6710 }
6711 EXPORT_SYMBOL(netdev_refcnt_read);
6712 
6713 /**
6714  * netdev_wait_allrefs - wait until all references are gone.
6715  * @dev: target net_device
6716  *
6717  * This is called when unregistering network devices.
6718  *
6719  * Any protocol or device that holds a reference should register
6720  * for netdevice notification, and cleanup and put back the
6721  * reference if they receive an UNREGISTER event.
6722  * We can get stuck here if buggy protocols don't correctly
6723  * call dev_put.
6724  */
6725 static void netdev_wait_allrefs(struct net_device *dev)
6726 {
6727 	unsigned long rebroadcast_time, warning_time;
6728 	int refcnt;
6729 
6730 	linkwatch_forget_dev(dev);
6731 
6732 	rebroadcast_time = warning_time = jiffies;
6733 	refcnt = netdev_refcnt_read(dev);
6734 
6735 	while (refcnt != 0) {
6736 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6737 			rtnl_lock();
6738 
6739 			/* Rebroadcast unregister notification */
6740 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6741 
6742 			__rtnl_unlock();
6743 			rcu_barrier();
6744 			rtnl_lock();
6745 
6746 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6747 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
6748 				     &dev->state)) {
6749 				/* We must not have linkwatch events
6750 				 * pending on unregister. If this
6751 				 * happens, we simply run the queue
6752 				 * unscheduled, resulting in a noop
6753 				 * for this device.
6754 				 */
6755 				linkwatch_run_queue();
6756 			}
6757 
6758 			__rtnl_unlock();
6759 
6760 			rebroadcast_time = jiffies;
6761 		}
6762 
6763 		msleep(250);
6764 
6765 		refcnt = netdev_refcnt_read(dev);
6766 
6767 		if (time_after(jiffies, warning_time + 10 * HZ)) {
6768 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
6769 				 dev->name, refcnt);
6770 			warning_time = jiffies;
6771 		}
6772 	}
6773 }
6774 
6775 /* The sequence is:
6776  *
6777  *	rtnl_lock();
6778  *	...
6779  *	register_netdevice(x1);
6780  *	register_netdevice(x2);
6781  *	...
6782  *	unregister_netdevice(y1);
6783  *	unregister_netdevice(y2);
6784  *      ...
6785  *	rtnl_unlock();
6786  *	free_netdev(y1);
6787  *	free_netdev(y2);
6788  *
6789  * We are invoked by rtnl_unlock().
6790  * This allows us to deal with problems:
6791  * 1) We can delete sysfs objects which invoke hotplug
6792  *    without deadlocking with linkwatch via keventd.
6793  * 2) Since we run with the RTNL semaphore not held, we can sleep
6794  *    safely in order to wait for the netdev refcnt to drop to zero.
6795  *
6796  * We must not return until all unregister events added during
6797  * the interval the lock was held have been completed.
6798  */
6799 void netdev_run_todo(void)
6800 {
6801 	struct list_head list;
6802 
6803 	/* Snapshot list, allow later requests */
6804 	list_replace_init(&net_todo_list, &list);
6805 
6806 	__rtnl_unlock();
6807 
6808 
6809 	/* Wait for rcu callbacks to finish before next phase */
6810 	if (!list_empty(&list))
6811 		rcu_barrier();
6812 
6813 	while (!list_empty(&list)) {
6814 		struct net_device *dev
6815 			= list_first_entry(&list, struct net_device, todo_list);
6816 		list_del(&dev->todo_list);
6817 
6818 		rtnl_lock();
6819 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
6820 		__rtnl_unlock();
6821 
6822 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
6823 			pr_err("network todo '%s' but state %d\n",
6824 			       dev->name, dev->reg_state);
6825 			dump_stack();
6826 			continue;
6827 		}
6828 
6829 		dev->reg_state = NETREG_UNREGISTERED;
6830 
6831 		netdev_wait_allrefs(dev);
6832 
6833 		/* paranoia */
6834 		BUG_ON(netdev_refcnt_read(dev));
6835 		BUG_ON(!list_empty(&dev->ptype_all));
6836 		BUG_ON(!list_empty(&dev->ptype_specific));
6837 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
6838 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
6839 		WARN_ON(dev->dn_ptr);
6840 
6841 		if (dev->destructor)
6842 			dev->destructor(dev);
6843 
6844 		/* Report a network device has been unregistered */
6845 		rtnl_lock();
6846 		dev_net(dev)->dev_unreg_count--;
6847 		__rtnl_unlock();
6848 		wake_up(&netdev_unregistering_wq);
6849 
6850 		/* Free network device */
6851 		kobject_put(&dev->dev.kobj);
6852 	}
6853 }
6854 
6855 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
6856  * fields in the same order, with only the type differing.
6857  */
6858 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
6859 			     const struct net_device_stats *netdev_stats)
6860 {
6861 #if BITS_PER_LONG == 64
6862 	BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
6863 	memcpy(stats64, netdev_stats, sizeof(*stats64));
6864 #else
6865 	size_t i, n = sizeof(*stats64) / sizeof(u64);
6866 	const unsigned long *src = (const unsigned long *)netdev_stats;
6867 	u64 *dst = (u64 *)stats64;
6868 
6869 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
6870 		     sizeof(*stats64) / sizeof(u64));
6871 	for (i = 0; i < n; i++)
6872 		dst[i] = src[i];
6873 #endif
6874 }
6875 EXPORT_SYMBOL(netdev_stats_to_stats64);
6876 
6877 /**
6878  *	dev_get_stats	- get network device statistics
6879  *	@dev: device to get statistics from
6880  *	@storage: place to store stats
6881  *
6882  *	Get network statistics from device. Return @storage.
6883  *	The device driver may provide its own method by setting
6884  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
6885  *	otherwise the internal statistics structure is used.
6886  */
6887 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
6888 					struct rtnl_link_stats64 *storage)
6889 {
6890 	const struct net_device_ops *ops = dev->netdev_ops;
6891 
6892 	if (ops->ndo_get_stats64) {
6893 		memset(storage, 0, sizeof(*storage));
6894 		ops->ndo_get_stats64(dev, storage);
6895 	} else if (ops->ndo_get_stats) {
6896 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
6897 	} else {
6898 		netdev_stats_to_stats64(storage, &dev->stats);
6899 	}
6900 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
6901 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
6902 	return storage;
6903 }
6904 EXPORT_SYMBOL(dev_get_stats);
6905 
6906 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
6907 {
6908 	struct netdev_queue *queue = dev_ingress_queue(dev);
6909 
6910 #ifdef CONFIG_NET_CLS_ACT
6911 	if (queue)
6912 		return queue;
6913 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
6914 	if (!queue)
6915 		return NULL;
6916 	netdev_init_one_queue(dev, queue, NULL);
6917 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
6918 	queue->qdisc_sleeping = &noop_qdisc;
6919 	rcu_assign_pointer(dev->ingress_queue, queue);
6920 #endif
6921 	return queue;
6922 }
6923 
6924 static const struct ethtool_ops default_ethtool_ops;
6925 
6926 void netdev_set_default_ethtool_ops(struct net_device *dev,
6927 				    const struct ethtool_ops *ops)
6928 {
6929 	if (dev->ethtool_ops == &default_ethtool_ops)
6930 		dev->ethtool_ops = ops;
6931 }
6932 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
6933 
6934 void netdev_freemem(struct net_device *dev)
6935 {
6936 	char *addr = (char *)dev - dev->padded;
6937 
6938 	kvfree(addr);
6939 }
6940 
6941 /**
6942  *	alloc_netdev_mqs - allocate network device
6943  *	@sizeof_priv:		size of private data to allocate space for
6944  *	@name:			device name format string
6945  *	@name_assign_type: 	origin of device name
6946  *	@setup:			callback to initialize device
6947  *	@txqs:			the number of TX subqueues to allocate
6948  *	@rxqs:			the number of RX subqueues to allocate
6949  *
6950  *	Allocates a struct net_device with private data area for driver use
6951  *	and performs basic initialization.  Also allocates subqueue structs
6952  *	for each queue on the device.
6953  */
6954 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
6955 		unsigned char name_assign_type,
6956 		void (*setup)(struct net_device *),
6957 		unsigned int txqs, unsigned int rxqs)
6958 {
6959 	struct net_device *dev;
6960 	size_t alloc_size;
6961 	struct net_device *p;
6962 
6963 	BUG_ON(strlen(name) >= sizeof(dev->name));
6964 
6965 	if (txqs < 1) {
6966 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
6967 		return NULL;
6968 	}
6969 
6970 #ifdef CONFIG_SYSFS
6971 	if (rxqs < 1) {
6972 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
6973 		return NULL;
6974 	}
6975 #endif
6976 
6977 	alloc_size = sizeof(struct net_device);
6978 	if (sizeof_priv) {
6979 		/* ensure 32-byte alignment of private area */
6980 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
6981 		alloc_size += sizeof_priv;
6982 	}
6983 	/* ensure 32-byte alignment of whole construct */
6984 	alloc_size += NETDEV_ALIGN - 1;
6985 
6986 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6987 	if (!p)
6988 		p = vzalloc(alloc_size);
6989 	if (!p)
6990 		return NULL;
6991 
6992 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
6993 	dev->padded = (char *)dev - (char *)p;
6994 
6995 	dev->pcpu_refcnt = alloc_percpu(int);
6996 	if (!dev->pcpu_refcnt)
6997 		goto free_dev;
6998 
6999 	if (dev_addr_init(dev))
7000 		goto free_pcpu;
7001 
7002 	dev_mc_init(dev);
7003 	dev_uc_init(dev);
7004 
7005 	dev_net_set(dev, &init_net);
7006 
7007 	dev->gso_max_size = GSO_MAX_SIZE;
7008 	dev->gso_max_segs = GSO_MAX_SEGS;
7009 	dev->gso_min_segs = 0;
7010 
7011 	INIT_LIST_HEAD(&dev->napi_list);
7012 	INIT_LIST_HEAD(&dev->unreg_list);
7013 	INIT_LIST_HEAD(&dev->close_list);
7014 	INIT_LIST_HEAD(&dev->link_watch_list);
7015 	INIT_LIST_HEAD(&dev->adj_list.upper);
7016 	INIT_LIST_HEAD(&dev->adj_list.lower);
7017 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7018 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7019 	INIT_LIST_HEAD(&dev->ptype_all);
7020 	INIT_LIST_HEAD(&dev->ptype_specific);
7021 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7022 	setup(dev);
7023 
7024 	if (!dev->tx_queue_len)
7025 		dev->priv_flags |= IFF_NO_QUEUE;
7026 
7027 	dev->num_tx_queues = txqs;
7028 	dev->real_num_tx_queues = txqs;
7029 	if (netif_alloc_netdev_queues(dev))
7030 		goto free_all;
7031 
7032 #ifdef CONFIG_SYSFS
7033 	dev->num_rx_queues = rxqs;
7034 	dev->real_num_rx_queues = rxqs;
7035 	if (netif_alloc_rx_queues(dev))
7036 		goto free_all;
7037 #endif
7038 
7039 	strcpy(dev->name, name);
7040 	dev->name_assign_type = name_assign_type;
7041 	dev->group = INIT_NETDEV_GROUP;
7042 	if (!dev->ethtool_ops)
7043 		dev->ethtool_ops = &default_ethtool_ops;
7044 
7045 	nf_hook_ingress_init(dev);
7046 
7047 	return dev;
7048 
7049 free_all:
7050 	free_netdev(dev);
7051 	return NULL;
7052 
7053 free_pcpu:
7054 	free_percpu(dev->pcpu_refcnt);
7055 free_dev:
7056 	netdev_freemem(dev);
7057 	return NULL;
7058 }
7059 EXPORT_SYMBOL(alloc_netdev_mqs);
7060 
7061 /**
7062  *	free_netdev - free network device
7063  *	@dev: device
7064  *
7065  *	This function does the last stage of destroying an allocated device
7066  * 	interface. The reference to the device object is released.
7067  *	If this is the last reference then it will be freed.
7068  */
7069 void free_netdev(struct net_device *dev)
7070 {
7071 	struct napi_struct *p, *n;
7072 
7073 	netif_free_tx_queues(dev);
7074 #ifdef CONFIG_SYSFS
7075 	kvfree(dev->_rx);
7076 #endif
7077 
7078 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7079 
7080 	/* Flush device addresses */
7081 	dev_addr_flush(dev);
7082 
7083 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7084 		netif_napi_del(p);
7085 
7086 	free_percpu(dev->pcpu_refcnt);
7087 	dev->pcpu_refcnt = NULL;
7088 
7089 	/*  Compatibility with error handling in drivers */
7090 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7091 		netdev_freemem(dev);
7092 		return;
7093 	}
7094 
7095 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7096 	dev->reg_state = NETREG_RELEASED;
7097 
7098 	/* will free via device release */
7099 	put_device(&dev->dev);
7100 }
7101 EXPORT_SYMBOL(free_netdev);
7102 
7103 /**
7104  *	synchronize_net -  Synchronize with packet receive processing
7105  *
7106  *	Wait for packets currently being received to be done.
7107  *	Does not block later packets from starting.
7108  */
7109 void synchronize_net(void)
7110 {
7111 	might_sleep();
7112 	if (rtnl_is_locked())
7113 		synchronize_rcu_expedited();
7114 	else
7115 		synchronize_rcu();
7116 }
7117 EXPORT_SYMBOL(synchronize_net);
7118 
7119 /**
7120  *	unregister_netdevice_queue - remove device from the kernel
7121  *	@dev: device
7122  *	@head: list
7123  *
7124  *	This function shuts down a device interface and removes it
7125  *	from the kernel tables.
7126  *	If head not NULL, device is queued to be unregistered later.
7127  *
7128  *	Callers must hold the rtnl semaphore.  You may want
7129  *	unregister_netdev() instead of this.
7130  */
7131 
7132 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7133 {
7134 	ASSERT_RTNL();
7135 
7136 	if (head) {
7137 		list_move_tail(&dev->unreg_list, head);
7138 	} else {
7139 		rollback_registered(dev);
7140 		/* Finish processing unregister after unlock */
7141 		net_set_todo(dev);
7142 	}
7143 }
7144 EXPORT_SYMBOL(unregister_netdevice_queue);
7145 
7146 /**
7147  *	unregister_netdevice_many - unregister many devices
7148  *	@head: list of devices
7149  *
7150  *  Note: As most callers use a stack allocated list_head,
7151  *  we force a list_del() to make sure stack wont be corrupted later.
7152  */
7153 void unregister_netdevice_many(struct list_head *head)
7154 {
7155 	struct net_device *dev;
7156 
7157 	if (!list_empty(head)) {
7158 		rollback_registered_many(head);
7159 		list_for_each_entry(dev, head, unreg_list)
7160 			net_set_todo(dev);
7161 		list_del(head);
7162 	}
7163 }
7164 EXPORT_SYMBOL(unregister_netdevice_many);
7165 
7166 /**
7167  *	unregister_netdev - remove device from the kernel
7168  *	@dev: device
7169  *
7170  *	This function shuts down a device interface and removes it
7171  *	from the kernel tables.
7172  *
7173  *	This is just a wrapper for unregister_netdevice that takes
7174  *	the rtnl semaphore.  In general you want to use this and not
7175  *	unregister_netdevice.
7176  */
7177 void unregister_netdev(struct net_device *dev)
7178 {
7179 	rtnl_lock();
7180 	unregister_netdevice(dev);
7181 	rtnl_unlock();
7182 }
7183 EXPORT_SYMBOL(unregister_netdev);
7184 
7185 /**
7186  *	dev_change_net_namespace - move device to different nethost namespace
7187  *	@dev: device
7188  *	@net: network namespace
7189  *	@pat: If not NULL name pattern to try if the current device name
7190  *	      is already taken in the destination network namespace.
7191  *
7192  *	This function shuts down a device interface and moves it
7193  *	to a new network namespace. On success 0 is returned, on
7194  *	a failure a netagive errno code is returned.
7195  *
7196  *	Callers must hold the rtnl semaphore.
7197  */
7198 
7199 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7200 {
7201 	int err;
7202 
7203 	ASSERT_RTNL();
7204 
7205 	/* Don't allow namespace local devices to be moved. */
7206 	err = -EINVAL;
7207 	if (dev->features & NETIF_F_NETNS_LOCAL)
7208 		goto out;
7209 
7210 	/* Ensure the device has been registrered */
7211 	if (dev->reg_state != NETREG_REGISTERED)
7212 		goto out;
7213 
7214 	/* Get out if there is nothing todo */
7215 	err = 0;
7216 	if (net_eq(dev_net(dev), net))
7217 		goto out;
7218 
7219 	/* Pick the destination device name, and ensure
7220 	 * we can use it in the destination network namespace.
7221 	 */
7222 	err = -EEXIST;
7223 	if (__dev_get_by_name(net, dev->name)) {
7224 		/* We get here if we can't use the current device name */
7225 		if (!pat)
7226 			goto out;
7227 		if (dev_get_valid_name(net, dev, pat) < 0)
7228 			goto out;
7229 	}
7230 
7231 	/*
7232 	 * And now a mini version of register_netdevice unregister_netdevice.
7233 	 */
7234 
7235 	/* If device is running close it first. */
7236 	dev_close(dev);
7237 
7238 	/* And unlink it from device chain */
7239 	err = -ENODEV;
7240 	unlist_netdevice(dev);
7241 
7242 	synchronize_net();
7243 
7244 	/* Shutdown queueing discipline. */
7245 	dev_shutdown(dev);
7246 
7247 	/* Notify protocols, that we are about to destroy
7248 	   this device. They should clean all the things.
7249 
7250 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7251 	   This is wanted because this way 8021q and macvlan know
7252 	   the device is just moving and can keep their slaves up.
7253 	*/
7254 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7255 	rcu_barrier();
7256 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7257 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7258 
7259 	/*
7260 	 *	Flush the unicast and multicast chains
7261 	 */
7262 	dev_uc_flush(dev);
7263 	dev_mc_flush(dev);
7264 
7265 	/* Send a netdev-removed uevent to the old namespace */
7266 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7267 	netdev_adjacent_del_links(dev);
7268 
7269 	/* Actually switch the network namespace */
7270 	dev_net_set(dev, net);
7271 
7272 	/* If there is an ifindex conflict assign a new one */
7273 	if (__dev_get_by_index(net, dev->ifindex))
7274 		dev->ifindex = dev_new_index(net);
7275 
7276 	/* Send a netdev-add uevent to the new namespace */
7277 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7278 	netdev_adjacent_add_links(dev);
7279 
7280 	/* Fixup kobjects */
7281 	err = device_rename(&dev->dev, dev->name);
7282 	WARN_ON(err);
7283 
7284 	/* Add the device back in the hashes */
7285 	list_netdevice(dev);
7286 
7287 	/* Notify protocols, that a new device appeared. */
7288 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7289 
7290 	/*
7291 	 *	Prevent userspace races by waiting until the network
7292 	 *	device is fully setup before sending notifications.
7293 	 */
7294 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7295 
7296 	synchronize_net();
7297 	err = 0;
7298 out:
7299 	return err;
7300 }
7301 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7302 
7303 static int dev_cpu_callback(struct notifier_block *nfb,
7304 			    unsigned long action,
7305 			    void *ocpu)
7306 {
7307 	struct sk_buff **list_skb;
7308 	struct sk_buff *skb;
7309 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7310 	struct softnet_data *sd, *oldsd;
7311 
7312 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7313 		return NOTIFY_OK;
7314 
7315 	local_irq_disable();
7316 	cpu = smp_processor_id();
7317 	sd = &per_cpu(softnet_data, cpu);
7318 	oldsd = &per_cpu(softnet_data, oldcpu);
7319 
7320 	/* Find end of our completion_queue. */
7321 	list_skb = &sd->completion_queue;
7322 	while (*list_skb)
7323 		list_skb = &(*list_skb)->next;
7324 	/* Append completion queue from offline CPU. */
7325 	*list_skb = oldsd->completion_queue;
7326 	oldsd->completion_queue = NULL;
7327 
7328 	/* Append output queue from offline CPU. */
7329 	if (oldsd->output_queue) {
7330 		*sd->output_queue_tailp = oldsd->output_queue;
7331 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7332 		oldsd->output_queue = NULL;
7333 		oldsd->output_queue_tailp = &oldsd->output_queue;
7334 	}
7335 	/* Append NAPI poll list from offline CPU, with one exception :
7336 	 * process_backlog() must be called by cpu owning percpu backlog.
7337 	 * We properly handle process_queue & input_pkt_queue later.
7338 	 */
7339 	while (!list_empty(&oldsd->poll_list)) {
7340 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7341 							    struct napi_struct,
7342 							    poll_list);
7343 
7344 		list_del_init(&napi->poll_list);
7345 		if (napi->poll == process_backlog)
7346 			napi->state = 0;
7347 		else
7348 			____napi_schedule(sd, napi);
7349 	}
7350 
7351 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7352 	local_irq_enable();
7353 
7354 	/* Process offline CPU's input_pkt_queue */
7355 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7356 		netif_rx_ni(skb);
7357 		input_queue_head_incr(oldsd);
7358 	}
7359 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7360 		netif_rx_ni(skb);
7361 		input_queue_head_incr(oldsd);
7362 	}
7363 
7364 	return NOTIFY_OK;
7365 }
7366 
7367 
7368 /**
7369  *	netdev_increment_features - increment feature set by one
7370  *	@all: current feature set
7371  *	@one: new feature set
7372  *	@mask: mask feature set
7373  *
7374  *	Computes a new feature set after adding a device with feature set
7375  *	@one to the master device with current feature set @all.  Will not
7376  *	enable anything that is off in @mask. Returns the new feature set.
7377  */
7378 netdev_features_t netdev_increment_features(netdev_features_t all,
7379 	netdev_features_t one, netdev_features_t mask)
7380 {
7381 	if (mask & NETIF_F_GEN_CSUM)
7382 		mask |= NETIF_F_ALL_CSUM;
7383 	mask |= NETIF_F_VLAN_CHALLENGED;
7384 
7385 	all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask;
7386 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7387 
7388 	/* If one device supports hw checksumming, set for all. */
7389 	if (all & NETIF_F_GEN_CSUM)
7390 		all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM);
7391 
7392 	return all;
7393 }
7394 EXPORT_SYMBOL(netdev_increment_features);
7395 
7396 static struct hlist_head * __net_init netdev_create_hash(void)
7397 {
7398 	int i;
7399 	struct hlist_head *hash;
7400 
7401 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7402 	if (hash != NULL)
7403 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7404 			INIT_HLIST_HEAD(&hash[i]);
7405 
7406 	return hash;
7407 }
7408 
7409 /* Initialize per network namespace state */
7410 static int __net_init netdev_init(struct net *net)
7411 {
7412 	if (net != &init_net)
7413 		INIT_LIST_HEAD(&net->dev_base_head);
7414 
7415 	net->dev_name_head = netdev_create_hash();
7416 	if (net->dev_name_head == NULL)
7417 		goto err_name;
7418 
7419 	net->dev_index_head = netdev_create_hash();
7420 	if (net->dev_index_head == NULL)
7421 		goto err_idx;
7422 
7423 	return 0;
7424 
7425 err_idx:
7426 	kfree(net->dev_name_head);
7427 err_name:
7428 	return -ENOMEM;
7429 }
7430 
7431 /**
7432  *	netdev_drivername - network driver for the device
7433  *	@dev: network device
7434  *
7435  *	Determine network driver for device.
7436  */
7437 const char *netdev_drivername(const struct net_device *dev)
7438 {
7439 	const struct device_driver *driver;
7440 	const struct device *parent;
7441 	const char *empty = "";
7442 
7443 	parent = dev->dev.parent;
7444 	if (!parent)
7445 		return empty;
7446 
7447 	driver = parent->driver;
7448 	if (driver && driver->name)
7449 		return driver->name;
7450 	return empty;
7451 }
7452 
7453 static void __netdev_printk(const char *level, const struct net_device *dev,
7454 			    struct va_format *vaf)
7455 {
7456 	if (dev && dev->dev.parent) {
7457 		dev_printk_emit(level[1] - '0',
7458 				dev->dev.parent,
7459 				"%s %s %s%s: %pV",
7460 				dev_driver_string(dev->dev.parent),
7461 				dev_name(dev->dev.parent),
7462 				netdev_name(dev), netdev_reg_state(dev),
7463 				vaf);
7464 	} else if (dev) {
7465 		printk("%s%s%s: %pV",
7466 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7467 	} else {
7468 		printk("%s(NULL net_device): %pV", level, vaf);
7469 	}
7470 }
7471 
7472 void netdev_printk(const char *level, const struct net_device *dev,
7473 		   const char *format, ...)
7474 {
7475 	struct va_format vaf;
7476 	va_list args;
7477 
7478 	va_start(args, format);
7479 
7480 	vaf.fmt = format;
7481 	vaf.va = &args;
7482 
7483 	__netdev_printk(level, dev, &vaf);
7484 
7485 	va_end(args);
7486 }
7487 EXPORT_SYMBOL(netdev_printk);
7488 
7489 #define define_netdev_printk_level(func, level)			\
7490 void func(const struct net_device *dev, const char *fmt, ...)	\
7491 {								\
7492 	struct va_format vaf;					\
7493 	va_list args;						\
7494 								\
7495 	va_start(args, fmt);					\
7496 								\
7497 	vaf.fmt = fmt;						\
7498 	vaf.va = &args;						\
7499 								\
7500 	__netdev_printk(level, dev, &vaf);			\
7501 								\
7502 	va_end(args);						\
7503 }								\
7504 EXPORT_SYMBOL(func);
7505 
7506 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7507 define_netdev_printk_level(netdev_alert, KERN_ALERT);
7508 define_netdev_printk_level(netdev_crit, KERN_CRIT);
7509 define_netdev_printk_level(netdev_err, KERN_ERR);
7510 define_netdev_printk_level(netdev_warn, KERN_WARNING);
7511 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7512 define_netdev_printk_level(netdev_info, KERN_INFO);
7513 
7514 static void __net_exit netdev_exit(struct net *net)
7515 {
7516 	kfree(net->dev_name_head);
7517 	kfree(net->dev_index_head);
7518 }
7519 
7520 static struct pernet_operations __net_initdata netdev_net_ops = {
7521 	.init = netdev_init,
7522 	.exit = netdev_exit,
7523 };
7524 
7525 static void __net_exit default_device_exit(struct net *net)
7526 {
7527 	struct net_device *dev, *aux;
7528 	/*
7529 	 * Push all migratable network devices back to the
7530 	 * initial network namespace
7531 	 */
7532 	rtnl_lock();
7533 	for_each_netdev_safe(net, dev, aux) {
7534 		int err;
7535 		char fb_name[IFNAMSIZ];
7536 
7537 		/* Ignore unmoveable devices (i.e. loopback) */
7538 		if (dev->features & NETIF_F_NETNS_LOCAL)
7539 			continue;
7540 
7541 		/* Leave virtual devices for the generic cleanup */
7542 		if (dev->rtnl_link_ops)
7543 			continue;
7544 
7545 		/* Push remaining network devices to init_net */
7546 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
7547 		err = dev_change_net_namespace(dev, &init_net, fb_name);
7548 		if (err) {
7549 			pr_emerg("%s: failed to move %s to init_net: %d\n",
7550 				 __func__, dev->name, err);
7551 			BUG();
7552 		}
7553 	}
7554 	rtnl_unlock();
7555 }
7556 
7557 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7558 {
7559 	/* Return with the rtnl_lock held when there are no network
7560 	 * devices unregistering in any network namespace in net_list.
7561 	 */
7562 	struct net *net;
7563 	bool unregistering;
7564 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7565 
7566 	add_wait_queue(&netdev_unregistering_wq, &wait);
7567 	for (;;) {
7568 		unregistering = false;
7569 		rtnl_lock();
7570 		list_for_each_entry(net, net_list, exit_list) {
7571 			if (net->dev_unreg_count > 0) {
7572 				unregistering = true;
7573 				break;
7574 			}
7575 		}
7576 		if (!unregistering)
7577 			break;
7578 		__rtnl_unlock();
7579 
7580 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
7581 	}
7582 	remove_wait_queue(&netdev_unregistering_wq, &wait);
7583 }
7584 
7585 static void __net_exit default_device_exit_batch(struct list_head *net_list)
7586 {
7587 	/* At exit all network devices most be removed from a network
7588 	 * namespace.  Do this in the reverse order of registration.
7589 	 * Do this across as many network namespaces as possible to
7590 	 * improve batching efficiency.
7591 	 */
7592 	struct net_device *dev;
7593 	struct net *net;
7594 	LIST_HEAD(dev_kill_list);
7595 
7596 	/* To prevent network device cleanup code from dereferencing
7597 	 * loopback devices or network devices that have been freed
7598 	 * wait here for all pending unregistrations to complete,
7599 	 * before unregistring the loopback device and allowing the
7600 	 * network namespace be freed.
7601 	 *
7602 	 * The netdev todo list containing all network devices
7603 	 * unregistrations that happen in default_device_exit_batch
7604 	 * will run in the rtnl_unlock() at the end of
7605 	 * default_device_exit_batch.
7606 	 */
7607 	rtnl_lock_unregistering(net_list);
7608 	list_for_each_entry(net, net_list, exit_list) {
7609 		for_each_netdev_reverse(net, dev) {
7610 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
7611 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
7612 			else
7613 				unregister_netdevice_queue(dev, &dev_kill_list);
7614 		}
7615 	}
7616 	unregister_netdevice_many(&dev_kill_list);
7617 	rtnl_unlock();
7618 }
7619 
7620 static struct pernet_operations __net_initdata default_device_ops = {
7621 	.exit = default_device_exit,
7622 	.exit_batch = default_device_exit_batch,
7623 };
7624 
7625 /*
7626  *	Initialize the DEV module. At boot time this walks the device list and
7627  *	unhooks any devices that fail to initialise (normally hardware not
7628  *	present) and leaves us with a valid list of present and active devices.
7629  *
7630  */
7631 
7632 /*
7633  *       This is called single threaded during boot, so no need
7634  *       to take the rtnl semaphore.
7635  */
7636 static int __init net_dev_init(void)
7637 {
7638 	int i, rc = -ENOMEM;
7639 
7640 	BUG_ON(!dev_boot_phase);
7641 
7642 	if (dev_proc_init())
7643 		goto out;
7644 
7645 	if (netdev_kobject_init())
7646 		goto out;
7647 
7648 	INIT_LIST_HEAD(&ptype_all);
7649 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
7650 		INIT_LIST_HEAD(&ptype_base[i]);
7651 
7652 	INIT_LIST_HEAD(&offload_base);
7653 
7654 	if (register_pernet_subsys(&netdev_net_ops))
7655 		goto out;
7656 
7657 	/*
7658 	 *	Initialise the packet receive queues.
7659 	 */
7660 
7661 	for_each_possible_cpu(i) {
7662 		struct softnet_data *sd = &per_cpu(softnet_data, i);
7663 
7664 		skb_queue_head_init(&sd->input_pkt_queue);
7665 		skb_queue_head_init(&sd->process_queue);
7666 		INIT_LIST_HEAD(&sd->poll_list);
7667 		sd->output_queue_tailp = &sd->output_queue;
7668 #ifdef CONFIG_RPS
7669 		sd->csd.func = rps_trigger_softirq;
7670 		sd->csd.info = sd;
7671 		sd->cpu = i;
7672 #endif
7673 
7674 		sd->backlog.poll = process_backlog;
7675 		sd->backlog.weight = weight_p;
7676 	}
7677 
7678 	dev_boot_phase = 0;
7679 
7680 	/* The loopback device is special if any other network devices
7681 	 * is present in a network namespace the loopback device must
7682 	 * be present. Since we now dynamically allocate and free the
7683 	 * loopback device ensure this invariant is maintained by
7684 	 * keeping the loopback device as the first device on the
7685 	 * list of network devices.  Ensuring the loopback devices
7686 	 * is the first device that appears and the last network device
7687 	 * that disappears.
7688 	 */
7689 	if (register_pernet_device(&loopback_net_ops))
7690 		goto out;
7691 
7692 	if (register_pernet_device(&default_device_ops))
7693 		goto out;
7694 
7695 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
7696 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
7697 
7698 	hotcpu_notifier(dev_cpu_callback, 0);
7699 	dst_subsys_init();
7700 	rc = 0;
7701 out:
7702 	return rc;
7703 }
7704 
7705 subsys_initcall(net_dev_init);
7706