1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Mark Evans, <[email protected]> 13 * 14 * Additional Authors: 15 * Florian la Roche <[email protected]> 16 * Alan Cox <[email protected]> 17 * David Hinds <[email protected]> 18 * Alexey Kuznetsov <[email protected]> 19 * Adam Sulmicki <[email protected]> 20 * Pekka Riikonen <[email protected]> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 136 #include "net-sysfs.h" 137 138 /* Instead of increasing this, you should create a hash table. */ 139 #define MAX_GRO_SKBS 8 140 141 /* This should be increased if a protocol with a bigger head is added. */ 142 #define GRO_MAX_HEAD (MAX_HEADER + 128) 143 144 /* 145 * The list of packet types we will receive (as opposed to discard) 146 * and the routines to invoke. 147 * 148 * Why 16. Because with 16 the only overlap we get on a hash of the 149 * low nibble of the protocol value is RARP/SNAP/X.25. 150 * 151 * NOTE: That is no longer true with the addition of VLAN tags. Not 152 * sure which should go first, but I bet it won't make much 153 * difference if we are running VLANs. The good news is that 154 * this protocol won't be in the list unless compiled in, so 155 * the average user (w/out VLANs) will not be adversely affected. 156 * --BLG 157 * 158 * 0800 IP 159 * 8100 802.1Q VLAN 160 * 0001 802.3 161 * 0002 AX.25 162 * 0004 802.2 163 * 8035 RARP 164 * 0005 SNAP 165 * 0805 X.25 166 * 0806 ARP 167 * 8137 IPX 168 * 0009 Localtalk 169 * 86DD IPv6 170 */ 171 172 #define PTYPE_HASH_SIZE (16) 173 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 174 175 static DEFINE_SPINLOCK(ptype_lock); 176 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 177 static struct list_head ptype_all __read_mostly; /* Taps */ 178 179 /* 180 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 181 * semaphore. 182 * 183 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 184 * 185 * Writers must hold the rtnl semaphore while they loop through the 186 * dev_base_head list, and hold dev_base_lock for writing when they do the 187 * actual updates. This allows pure readers to access the list even 188 * while a writer is preparing to update it. 189 * 190 * To put it another way, dev_base_lock is held for writing only to 191 * protect against pure readers; the rtnl semaphore provides the 192 * protection against other writers. 193 * 194 * See, for example usages, register_netdevice() and 195 * unregister_netdevice(), which must be called with the rtnl 196 * semaphore held. 197 */ 198 DEFINE_RWLOCK(dev_base_lock); 199 EXPORT_SYMBOL(dev_base_lock); 200 201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 202 { 203 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 204 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 205 } 206 207 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 208 { 209 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 210 } 211 212 static inline void rps_lock(struct softnet_data *sd) 213 { 214 #ifdef CONFIG_RPS 215 spin_lock(&sd->input_pkt_queue.lock); 216 #endif 217 } 218 219 static inline void rps_unlock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_unlock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 /* Device list insertion */ 227 static int list_netdevice(struct net_device *dev) 228 { 229 struct net *net = dev_net(dev); 230 231 ASSERT_RTNL(); 232 233 write_lock_bh(&dev_base_lock); 234 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 236 hlist_add_head_rcu(&dev->index_hlist, 237 dev_index_hash(net, dev->ifindex)); 238 write_unlock_bh(&dev_base_lock); 239 return 0; 240 } 241 242 /* Device list removal 243 * caller must respect a RCU grace period before freeing/reusing dev 244 */ 245 static void unlist_netdevice(struct net_device *dev) 246 { 247 ASSERT_RTNL(); 248 249 /* Unlink dev from the device chain */ 250 write_lock_bh(&dev_base_lock); 251 list_del_rcu(&dev->dev_list); 252 hlist_del_rcu(&dev->name_hlist); 253 hlist_del_rcu(&dev->index_hlist); 254 write_unlock_bh(&dev_base_lock); 255 } 256 257 /* 258 * Our notifier list 259 */ 260 261 static RAW_NOTIFIER_HEAD(netdev_chain); 262 263 /* 264 * Device drivers call our routines to queue packets here. We empty the 265 * queue in the local softnet handler. 266 */ 267 268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 269 EXPORT_PER_CPU_SYMBOL(softnet_data); 270 271 #ifdef CONFIG_LOCKDEP 272 /* 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 274 * according to dev->type 275 */ 276 static const unsigned short netdev_lock_type[] = 277 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 278 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 279 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 280 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 281 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 282 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 283 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 284 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 285 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 286 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 287 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 288 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 289 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 290 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 291 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 292 ARPHRD_VOID, ARPHRD_NONE}; 293 294 static const char *const netdev_lock_name[] = 295 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 296 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 297 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 298 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 299 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 300 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 301 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 302 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 303 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 304 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 305 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 306 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 307 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 308 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 309 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 310 "_xmit_VOID", "_xmit_NONE"}; 311 312 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 313 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 315 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 316 { 317 int i; 318 319 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 320 if (netdev_lock_type[i] == dev_type) 321 return i; 322 /* the last key is used by default */ 323 return ARRAY_SIZE(netdev_lock_type) - 1; 324 } 325 326 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 327 unsigned short dev_type) 328 { 329 int i; 330 331 i = netdev_lock_pos(dev_type); 332 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 333 netdev_lock_name[i]); 334 } 335 336 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 337 { 338 int i; 339 340 i = netdev_lock_pos(dev->type); 341 lockdep_set_class_and_name(&dev->addr_list_lock, 342 &netdev_addr_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 #else 346 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 347 unsigned short dev_type) 348 { 349 } 350 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 351 { 352 } 353 #endif 354 355 /******************************************************************************* 356 357 Protocol management and registration routines 358 359 *******************************************************************************/ 360 361 /* 362 * Add a protocol ID to the list. Now that the input handler is 363 * smarter we can dispense with all the messy stuff that used to be 364 * here. 365 * 366 * BEWARE!!! Protocol handlers, mangling input packets, 367 * MUST BE last in hash buckets and checking protocol handlers 368 * MUST start from promiscuous ptype_all chain in net_bh. 369 * It is true now, do not change it. 370 * Explanation follows: if protocol handler, mangling packet, will 371 * be the first on list, it is not able to sense, that packet 372 * is cloned and should be copied-on-write, so that it will 373 * change it and subsequent readers will get broken packet. 374 * --ANK (980803) 375 */ 376 377 static inline struct list_head *ptype_head(const struct packet_type *pt) 378 { 379 if (pt->type == htons(ETH_P_ALL)) 380 return &ptype_all; 381 else 382 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 383 } 384 385 /** 386 * dev_add_pack - add packet handler 387 * @pt: packet type declaration 388 * 389 * Add a protocol handler to the networking stack. The passed &packet_type 390 * is linked into kernel lists and may not be freed until it has been 391 * removed from the kernel lists. 392 * 393 * This call does not sleep therefore it can not 394 * guarantee all CPU's that are in middle of receiving packets 395 * will see the new packet type (until the next received packet). 396 */ 397 398 void dev_add_pack(struct packet_type *pt) 399 { 400 struct list_head *head = ptype_head(pt); 401 402 spin_lock(&ptype_lock); 403 list_add_rcu(&pt->list, head); 404 spin_unlock(&ptype_lock); 405 } 406 EXPORT_SYMBOL(dev_add_pack); 407 408 /** 409 * __dev_remove_pack - remove packet handler 410 * @pt: packet type declaration 411 * 412 * Remove a protocol handler that was previously added to the kernel 413 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 414 * from the kernel lists and can be freed or reused once this function 415 * returns. 416 * 417 * The packet type might still be in use by receivers 418 * and must not be freed until after all the CPU's have gone 419 * through a quiescent state. 420 */ 421 void __dev_remove_pack(struct packet_type *pt) 422 { 423 struct list_head *head = ptype_head(pt); 424 struct packet_type *pt1; 425 426 spin_lock(&ptype_lock); 427 428 list_for_each_entry(pt1, head, list) { 429 if (pt == pt1) { 430 list_del_rcu(&pt->list); 431 goto out; 432 } 433 } 434 435 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 436 out: 437 spin_unlock(&ptype_lock); 438 } 439 EXPORT_SYMBOL(__dev_remove_pack); 440 441 /** 442 * dev_remove_pack - remove packet handler 443 * @pt: packet type declaration 444 * 445 * Remove a protocol handler that was previously added to the kernel 446 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 447 * from the kernel lists and can be freed or reused once this function 448 * returns. 449 * 450 * This call sleeps to guarantee that no CPU is looking at the packet 451 * type after return. 452 */ 453 void dev_remove_pack(struct packet_type *pt) 454 { 455 __dev_remove_pack(pt); 456 457 synchronize_net(); 458 } 459 EXPORT_SYMBOL(dev_remove_pack); 460 461 /****************************************************************************** 462 463 Device Boot-time Settings Routines 464 465 *******************************************************************************/ 466 467 /* Boot time configuration table */ 468 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 469 470 /** 471 * netdev_boot_setup_add - add new setup entry 472 * @name: name of the device 473 * @map: configured settings for the device 474 * 475 * Adds new setup entry to the dev_boot_setup list. The function 476 * returns 0 on error and 1 on success. This is a generic routine to 477 * all netdevices. 478 */ 479 static int netdev_boot_setup_add(char *name, struct ifmap *map) 480 { 481 struct netdev_boot_setup *s; 482 int i; 483 484 s = dev_boot_setup; 485 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 486 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 487 memset(s[i].name, 0, sizeof(s[i].name)); 488 strlcpy(s[i].name, name, IFNAMSIZ); 489 memcpy(&s[i].map, map, sizeof(s[i].map)); 490 break; 491 } 492 } 493 494 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 495 } 496 497 /** 498 * netdev_boot_setup_check - check boot time settings 499 * @dev: the netdevice 500 * 501 * Check boot time settings for the device. 502 * The found settings are set for the device to be used 503 * later in the device probing. 504 * Returns 0 if no settings found, 1 if they are. 505 */ 506 int netdev_boot_setup_check(struct net_device *dev) 507 { 508 struct netdev_boot_setup *s = dev_boot_setup; 509 int i; 510 511 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 512 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 513 !strcmp(dev->name, s[i].name)) { 514 dev->irq = s[i].map.irq; 515 dev->base_addr = s[i].map.base_addr; 516 dev->mem_start = s[i].map.mem_start; 517 dev->mem_end = s[i].map.mem_end; 518 return 1; 519 } 520 } 521 return 0; 522 } 523 EXPORT_SYMBOL(netdev_boot_setup_check); 524 525 526 /** 527 * netdev_boot_base - get address from boot time settings 528 * @prefix: prefix for network device 529 * @unit: id for network device 530 * 531 * Check boot time settings for the base address of device. 532 * The found settings are set for the device to be used 533 * later in the device probing. 534 * Returns 0 if no settings found. 535 */ 536 unsigned long netdev_boot_base(const char *prefix, int unit) 537 { 538 const struct netdev_boot_setup *s = dev_boot_setup; 539 char name[IFNAMSIZ]; 540 int i; 541 542 sprintf(name, "%s%d", prefix, unit); 543 544 /* 545 * If device already registered then return base of 1 546 * to indicate not to probe for this interface 547 */ 548 if (__dev_get_by_name(&init_net, name)) 549 return 1; 550 551 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 552 if (!strcmp(name, s[i].name)) 553 return s[i].map.base_addr; 554 return 0; 555 } 556 557 /* 558 * Saves at boot time configured settings for any netdevice. 559 */ 560 int __init netdev_boot_setup(char *str) 561 { 562 int ints[5]; 563 struct ifmap map; 564 565 str = get_options(str, ARRAY_SIZE(ints), ints); 566 if (!str || !*str) 567 return 0; 568 569 /* Save settings */ 570 memset(&map, 0, sizeof(map)); 571 if (ints[0] > 0) 572 map.irq = ints[1]; 573 if (ints[0] > 1) 574 map.base_addr = ints[2]; 575 if (ints[0] > 2) 576 map.mem_start = ints[3]; 577 if (ints[0] > 3) 578 map.mem_end = ints[4]; 579 580 /* Add new entry to the list */ 581 return netdev_boot_setup_add(str, &map); 582 } 583 584 __setup("netdev=", netdev_boot_setup); 585 586 /******************************************************************************* 587 588 Device Interface Subroutines 589 590 *******************************************************************************/ 591 592 /** 593 * __dev_get_by_name - find a device by its name 594 * @net: the applicable net namespace 595 * @name: name to find 596 * 597 * Find an interface by name. Must be called under RTNL semaphore 598 * or @dev_base_lock. If the name is found a pointer to the device 599 * is returned. If the name is not found then %NULL is returned. The 600 * reference counters are not incremented so the caller must be 601 * careful with locks. 602 */ 603 604 struct net_device *__dev_get_by_name(struct net *net, const char *name) 605 { 606 struct hlist_node *p; 607 struct net_device *dev; 608 struct hlist_head *head = dev_name_hash(net, name); 609 610 hlist_for_each_entry(dev, p, head, name_hlist) 611 if (!strncmp(dev->name, name, IFNAMSIZ)) 612 return dev; 613 614 return NULL; 615 } 616 EXPORT_SYMBOL(__dev_get_by_name); 617 618 /** 619 * dev_get_by_name_rcu - find a device by its name 620 * @net: the applicable net namespace 621 * @name: name to find 622 * 623 * Find an interface by name. 624 * If the name is found a pointer to the device is returned. 625 * If the name is not found then %NULL is returned. 626 * The reference counters are not incremented so the caller must be 627 * careful with locks. The caller must hold RCU lock. 628 */ 629 630 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 631 { 632 struct hlist_node *p; 633 struct net_device *dev; 634 struct hlist_head *head = dev_name_hash(net, name); 635 636 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 637 if (!strncmp(dev->name, name, IFNAMSIZ)) 638 return dev; 639 640 return NULL; 641 } 642 EXPORT_SYMBOL(dev_get_by_name_rcu); 643 644 /** 645 * dev_get_by_name - find a device by its name 646 * @net: the applicable net namespace 647 * @name: name to find 648 * 649 * Find an interface by name. This can be called from any 650 * context and does its own locking. The returned handle has 651 * the usage count incremented and the caller must use dev_put() to 652 * release it when it is no longer needed. %NULL is returned if no 653 * matching device is found. 654 */ 655 656 struct net_device *dev_get_by_name(struct net *net, const char *name) 657 { 658 struct net_device *dev; 659 660 rcu_read_lock(); 661 dev = dev_get_by_name_rcu(net, name); 662 if (dev) 663 dev_hold(dev); 664 rcu_read_unlock(); 665 return dev; 666 } 667 EXPORT_SYMBOL(dev_get_by_name); 668 669 /** 670 * __dev_get_by_index - find a device by its ifindex 671 * @net: the applicable net namespace 672 * @ifindex: index of device 673 * 674 * Search for an interface by index. Returns %NULL if the device 675 * is not found or a pointer to the device. The device has not 676 * had its reference counter increased so the caller must be careful 677 * about locking. The caller must hold either the RTNL semaphore 678 * or @dev_base_lock. 679 */ 680 681 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 682 { 683 struct hlist_node *p; 684 struct net_device *dev; 685 struct hlist_head *head = dev_index_hash(net, ifindex); 686 687 hlist_for_each_entry(dev, p, head, index_hlist) 688 if (dev->ifindex == ifindex) 689 return dev; 690 691 return NULL; 692 } 693 EXPORT_SYMBOL(__dev_get_by_index); 694 695 /** 696 * dev_get_by_index_rcu - find a device by its ifindex 697 * @net: the applicable net namespace 698 * @ifindex: index of device 699 * 700 * Search for an interface by index. Returns %NULL if the device 701 * is not found or a pointer to the device. The device has not 702 * had its reference counter increased so the caller must be careful 703 * about locking. The caller must hold RCU lock. 704 */ 705 706 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 707 { 708 struct hlist_node *p; 709 struct net_device *dev; 710 struct hlist_head *head = dev_index_hash(net, ifindex); 711 712 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 713 if (dev->ifindex == ifindex) 714 return dev; 715 716 return NULL; 717 } 718 EXPORT_SYMBOL(dev_get_by_index_rcu); 719 720 721 /** 722 * dev_get_by_index - find a device by its ifindex 723 * @net: the applicable net namespace 724 * @ifindex: index of device 725 * 726 * Search for an interface by index. Returns NULL if the device 727 * is not found or a pointer to the device. The device returned has 728 * had a reference added and the pointer is safe until the user calls 729 * dev_put to indicate they have finished with it. 730 */ 731 732 struct net_device *dev_get_by_index(struct net *net, int ifindex) 733 { 734 struct net_device *dev; 735 736 rcu_read_lock(); 737 dev = dev_get_by_index_rcu(net, ifindex); 738 if (dev) 739 dev_hold(dev); 740 rcu_read_unlock(); 741 return dev; 742 } 743 EXPORT_SYMBOL(dev_get_by_index); 744 745 /** 746 * dev_getbyhwaddr_rcu - find a device by its hardware address 747 * @net: the applicable net namespace 748 * @type: media type of device 749 * @ha: hardware address 750 * 751 * Search for an interface by MAC address. Returns NULL if the device 752 * is not found or a pointer to the device. The caller must hold RCU 753 * The returned device has not had its ref count increased 754 * and the caller must therefore be careful about locking 755 * 756 */ 757 758 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 759 const char *ha) 760 { 761 struct net_device *dev; 762 763 for_each_netdev_rcu(net, dev) 764 if (dev->type == type && 765 !memcmp(dev->dev_addr, ha, dev->addr_len)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 771 772 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 773 { 774 struct net_device *dev; 775 776 ASSERT_RTNL(); 777 for_each_netdev(net, dev) 778 if (dev->type == type) 779 return dev; 780 781 return NULL; 782 } 783 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 784 785 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 786 { 787 struct net_device *dev, *ret = NULL; 788 789 rcu_read_lock(); 790 for_each_netdev_rcu(net, dev) 791 if (dev->type == type) { 792 dev_hold(dev); 793 ret = dev; 794 break; 795 } 796 rcu_read_unlock(); 797 return ret; 798 } 799 EXPORT_SYMBOL(dev_getfirstbyhwtype); 800 801 /** 802 * dev_get_by_flags_rcu - find any device with given flags 803 * @net: the applicable net namespace 804 * @if_flags: IFF_* values 805 * @mask: bitmask of bits in if_flags to check 806 * 807 * Search for any interface with the given flags. Returns NULL if a device 808 * is not found or a pointer to the device. Must be called inside 809 * rcu_read_lock(), and result refcount is unchanged. 810 */ 811 812 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 813 unsigned short mask) 814 { 815 struct net_device *dev, *ret; 816 817 ret = NULL; 818 for_each_netdev_rcu(net, dev) { 819 if (((dev->flags ^ if_flags) & mask) == 0) { 820 ret = dev; 821 break; 822 } 823 } 824 return ret; 825 } 826 EXPORT_SYMBOL(dev_get_by_flags_rcu); 827 828 /** 829 * dev_valid_name - check if name is okay for network device 830 * @name: name string 831 * 832 * Network device names need to be valid file names to 833 * to allow sysfs to work. We also disallow any kind of 834 * whitespace. 835 */ 836 int dev_valid_name(const char *name) 837 { 838 if (*name == '\0') 839 return 0; 840 if (strlen(name) >= IFNAMSIZ) 841 return 0; 842 if (!strcmp(name, ".") || !strcmp(name, "..")) 843 return 0; 844 845 while (*name) { 846 if (*name == '/' || isspace(*name)) 847 return 0; 848 name++; 849 } 850 return 1; 851 } 852 EXPORT_SYMBOL(dev_valid_name); 853 854 /** 855 * __dev_alloc_name - allocate a name for a device 856 * @net: network namespace to allocate the device name in 857 * @name: name format string 858 * @buf: scratch buffer and result name string 859 * 860 * Passed a format string - eg "lt%d" it will try and find a suitable 861 * id. It scans list of devices to build up a free map, then chooses 862 * the first empty slot. The caller must hold the dev_base or rtnl lock 863 * while allocating the name and adding the device in order to avoid 864 * duplicates. 865 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 866 * Returns the number of the unit assigned or a negative errno code. 867 */ 868 869 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 870 { 871 int i = 0; 872 const char *p; 873 const int max_netdevices = 8*PAGE_SIZE; 874 unsigned long *inuse; 875 struct net_device *d; 876 877 p = strnchr(name, IFNAMSIZ-1, '%'); 878 if (p) { 879 /* 880 * Verify the string as this thing may have come from 881 * the user. There must be either one "%d" and no other "%" 882 * characters. 883 */ 884 if (p[1] != 'd' || strchr(p + 2, '%')) 885 return -EINVAL; 886 887 /* Use one page as a bit array of possible slots */ 888 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 889 if (!inuse) 890 return -ENOMEM; 891 892 for_each_netdev(net, d) { 893 if (!sscanf(d->name, name, &i)) 894 continue; 895 if (i < 0 || i >= max_netdevices) 896 continue; 897 898 /* avoid cases where sscanf is not exact inverse of printf */ 899 snprintf(buf, IFNAMSIZ, name, i); 900 if (!strncmp(buf, d->name, IFNAMSIZ)) 901 set_bit(i, inuse); 902 } 903 904 i = find_first_zero_bit(inuse, max_netdevices); 905 free_page((unsigned long) inuse); 906 } 907 908 if (buf != name) 909 snprintf(buf, IFNAMSIZ, name, i); 910 if (!__dev_get_by_name(net, buf)) 911 return i; 912 913 /* It is possible to run out of possible slots 914 * when the name is long and there isn't enough space left 915 * for the digits, or if all bits are used. 916 */ 917 return -ENFILE; 918 } 919 920 /** 921 * dev_alloc_name - allocate a name for a device 922 * @dev: device 923 * @name: name format string 924 * 925 * Passed a format string - eg "lt%d" it will try and find a suitable 926 * id. It scans list of devices to build up a free map, then chooses 927 * the first empty slot. The caller must hold the dev_base or rtnl lock 928 * while allocating the name and adding the device in order to avoid 929 * duplicates. 930 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 931 * Returns the number of the unit assigned or a negative errno code. 932 */ 933 934 int dev_alloc_name(struct net_device *dev, const char *name) 935 { 936 char buf[IFNAMSIZ]; 937 struct net *net; 938 int ret; 939 940 BUG_ON(!dev_net(dev)); 941 net = dev_net(dev); 942 ret = __dev_alloc_name(net, name, buf); 943 if (ret >= 0) 944 strlcpy(dev->name, buf, IFNAMSIZ); 945 return ret; 946 } 947 EXPORT_SYMBOL(dev_alloc_name); 948 949 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 950 { 951 struct net *net; 952 953 BUG_ON(!dev_net(dev)); 954 net = dev_net(dev); 955 956 if (!dev_valid_name(name)) 957 return -EINVAL; 958 959 if (fmt && strchr(name, '%')) 960 return dev_alloc_name(dev, name); 961 else if (__dev_get_by_name(net, name)) 962 return -EEXIST; 963 else if (dev->name != name) 964 strlcpy(dev->name, name, IFNAMSIZ); 965 966 return 0; 967 } 968 969 /** 970 * dev_change_name - change name of a device 971 * @dev: device 972 * @newname: name (or format string) must be at least IFNAMSIZ 973 * 974 * Change name of a device, can pass format strings "eth%d". 975 * for wildcarding. 976 */ 977 int dev_change_name(struct net_device *dev, const char *newname) 978 { 979 char oldname[IFNAMSIZ]; 980 int err = 0; 981 int ret; 982 struct net *net; 983 984 ASSERT_RTNL(); 985 BUG_ON(!dev_net(dev)); 986 987 net = dev_net(dev); 988 if (dev->flags & IFF_UP) 989 return -EBUSY; 990 991 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 992 return 0; 993 994 memcpy(oldname, dev->name, IFNAMSIZ); 995 996 err = dev_get_valid_name(dev, newname, 1); 997 if (err < 0) 998 return err; 999 1000 rollback: 1001 ret = device_rename(&dev->dev, dev->name); 1002 if (ret) { 1003 memcpy(dev->name, oldname, IFNAMSIZ); 1004 return ret; 1005 } 1006 1007 write_lock_bh(&dev_base_lock); 1008 hlist_del(&dev->name_hlist); 1009 write_unlock_bh(&dev_base_lock); 1010 1011 synchronize_rcu(); 1012 1013 write_lock_bh(&dev_base_lock); 1014 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1015 write_unlock_bh(&dev_base_lock); 1016 1017 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1018 ret = notifier_to_errno(ret); 1019 1020 if (ret) { 1021 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1022 if (err >= 0) { 1023 err = ret; 1024 memcpy(dev->name, oldname, IFNAMSIZ); 1025 goto rollback; 1026 } else { 1027 printk(KERN_ERR 1028 "%s: name change rollback failed: %d.\n", 1029 dev->name, ret); 1030 } 1031 } 1032 1033 return err; 1034 } 1035 1036 /** 1037 * dev_set_alias - change ifalias of a device 1038 * @dev: device 1039 * @alias: name up to IFALIASZ 1040 * @len: limit of bytes to copy from info 1041 * 1042 * Set ifalias for a device, 1043 */ 1044 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1045 { 1046 ASSERT_RTNL(); 1047 1048 if (len >= IFALIASZ) 1049 return -EINVAL; 1050 1051 if (!len) { 1052 if (dev->ifalias) { 1053 kfree(dev->ifalias); 1054 dev->ifalias = NULL; 1055 } 1056 return 0; 1057 } 1058 1059 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1060 if (!dev->ifalias) 1061 return -ENOMEM; 1062 1063 strlcpy(dev->ifalias, alias, len+1); 1064 return len; 1065 } 1066 1067 1068 /** 1069 * netdev_features_change - device changes features 1070 * @dev: device to cause notification 1071 * 1072 * Called to indicate a device has changed features. 1073 */ 1074 void netdev_features_change(struct net_device *dev) 1075 { 1076 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1077 } 1078 EXPORT_SYMBOL(netdev_features_change); 1079 1080 /** 1081 * netdev_state_change - device changes state 1082 * @dev: device to cause notification 1083 * 1084 * Called to indicate a device has changed state. This function calls 1085 * the notifier chains for netdev_chain and sends a NEWLINK message 1086 * to the routing socket. 1087 */ 1088 void netdev_state_change(struct net_device *dev) 1089 { 1090 if (dev->flags & IFF_UP) { 1091 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1092 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1093 } 1094 } 1095 EXPORT_SYMBOL(netdev_state_change); 1096 1097 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1098 { 1099 return call_netdevice_notifiers(event, dev); 1100 } 1101 EXPORT_SYMBOL(netdev_bonding_change); 1102 1103 /** 1104 * dev_load - load a network module 1105 * @net: the applicable net namespace 1106 * @name: name of interface 1107 * 1108 * If a network interface is not present and the process has suitable 1109 * privileges this function loads the module. If module loading is not 1110 * available in this kernel then it becomes a nop. 1111 */ 1112 1113 void dev_load(struct net *net, const char *name) 1114 { 1115 struct net_device *dev; 1116 1117 rcu_read_lock(); 1118 dev = dev_get_by_name_rcu(net, name); 1119 rcu_read_unlock(); 1120 1121 if (!dev && capable(CAP_NET_ADMIN)) 1122 request_module("%s", name); 1123 } 1124 EXPORT_SYMBOL(dev_load); 1125 1126 static int __dev_open(struct net_device *dev) 1127 { 1128 const struct net_device_ops *ops = dev->netdev_ops; 1129 int ret; 1130 1131 ASSERT_RTNL(); 1132 1133 /* 1134 * Is it even present? 1135 */ 1136 if (!netif_device_present(dev)) 1137 return -ENODEV; 1138 1139 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1140 ret = notifier_to_errno(ret); 1141 if (ret) 1142 return ret; 1143 1144 /* 1145 * Call device private open method 1146 */ 1147 set_bit(__LINK_STATE_START, &dev->state); 1148 1149 if (ops->ndo_validate_addr) 1150 ret = ops->ndo_validate_addr(dev); 1151 1152 if (!ret && ops->ndo_open) 1153 ret = ops->ndo_open(dev); 1154 1155 /* 1156 * If it went open OK then: 1157 */ 1158 1159 if (ret) 1160 clear_bit(__LINK_STATE_START, &dev->state); 1161 else { 1162 /* 1163 * Set the flags. 1164 */ 1165 dev->flags |= IFF_UP; 1166 1167 /* 1168 * Enable NET_DMA 1169 */ 1170 net_dmaengine_get(); 1171 1172 /* 1173 * Initialize multicasting status 1174 */ 1175 dev_set_rx_mode(dev); 1176 1177 /* 1178 * Wakeup transmit queue engine 1179 */ 1180 dev_activate(dev); 1181 } 1182 1183 return ret; 1184 } 1185 1186 /** 1187 * dev_open - prepare an interface for use. 1188 * @dev: device to open 1189 * 1190 * Takes a device from down to up state. The device's private open 1191 * function is invoked and then the multicast lists are loaded. Finally 1192 * the device is moved into the up state and a %NETDEV_UP message is 1193 * sent to the netdev notifier chain. 1194 * 1195 * Calling this function on an active interface is a nop. On a failure 1196 * a negative errno code is returned. 1197 */ 1198 int dev_open(struct net_device *dev) 1199 { 1200 int ret; 1201 1202 /* 1203 * Is it already up? 1204 */ 1205 if (dev->flags & IFF_UP) 1206 return 0; 1207 1208 /* 1209 * Open device 1210 */ 1211 ret = __dev_open(dev); 1212 if (ret < 0) 1213 return ret; 1214 1215 /* 1216 * ... and announce new interface. 1217 */ 1218 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1219 call_netdevice_notifiers(NETDEV_UP, dev); 1220 1221 return ret; 1222 } 1223 EXPORT_SYMBOL(dev_open); 1224 1225 static int __dev_close_many(struct list_head *head) 1226 { 1227 struct net_device *dev; 1228 1229 ASSERT_RTNL(); 1230 might_sleep(); 1231 1232 list_for_each_entry(dev, head, unreg_list) { 1233 /* 1234 * Tell people we are going down, so that they can 1235 * prepare to death, when device is still operating. 1236 */ 1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1238 1239 clear_bit(__LINK_STATE_START, &dev->state); 1240 1241 /* Synchronize to scheduled poll. We cannot touch poll list, it 1242 * can be even on different cpu. So just clear netif_running(). 1243 * 1244 * dev->stop() will invoke napi_disable() on all of it's 1245 * napi_struct instances on this device. 1246 */ 1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1248 } 1249 1250 dev_deactivate_many(head); 1251 1252 list_for_each_entry(dev, head, unreg_list) { 1253 const struct net_device_ops *ops = dev->netdev_ops; 1254 1255 /* 1256 * Call the device specific close. This cannot fail. 1257 * Only if device is UP 1258 * 1259 * We allow it to be called even after a DETACH hot-plug 1260 * event. 1261 */ 1262 if (ops->ndo_stop) 1263 ops->ndo_stop(dev); 1264 1265 /* 1266 * Device is now down. 1267 */ 1268 1269 dev->flags &= ~IFF_UP; 1270 1271 /* 1272 * Shutdown NET_DMA 1273 */ 1274 net_dmaengine_put(); 1275 } 1276 1277 return 0; 1278 } 1279 1280 static int __dev_close(struct net_device *dev) 1281 { 1282 LIST_HEAD(single); 1283 1284 list_add(&dev->unreg_list, &single); 1285 return __dev_close_many(&single); 1286 } 1287 1288 int dev_close_many(struct list_head *head) 1289 { 1290 struct net_device *dev, *tmp; 1291 LIST_HEAD(tmp_list); 1292 1293 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1294 if (!(dev->flags & IFF_UP)) 1295 list_move(&dev->unreg_list, &tmp_list); 1296 1297 __dev_close_many(head); 1298 1299 /* 1300 * Tell people we are down 1301 */ 1302 list_for_each_entry(dev, head, unreg_list) { 1303 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1304 call_netdevice_notifiers(NETDEV_DOWN, dev); 1305 } 1306 1307 /* rollback_registered_many needs the complete original list */ 1308 list_splice(&tmp_list, head); 1309 return 0; 1310 } 1311 1312 /** 1313 * dev_close - shutdown an interface. 1314 * @dev: device to shutdown 1315 * 1316 * This function moves an active device into down state. A 1317 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1318 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1319 * chain. 1320 */ 1321 int dev_close(struct net_device *dev) 1322 { 1323 LIST_HEAD(single); 1324 1325 list_add(&dev->unreg_list, &single); 1326 dev_close_many(&single); 1327 1328 return 0; 1329 } 1330 EXPORT_SYMBOL(dev_close); 1331 1332 1333 /** 1334 * dev_disable_lro - disable Large Receive Offload on a device 1335 * @dev: device 1336 * 1337 * Disable Large Receive Offload (LRO) on a net device. Must be 1338 * called under RTNL. This is needed if received packets may be 1339 * forwarded to another interface. 1340 */ 1341 void dev_disable_lro(struct net_device *dev) 1342 { 1343 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1344 dev->ethtool_ops->set_flags) { 1345 u32 flags = dev->ethtool_ops->get_flags(dev); 1346 if (flags & ETH_FLAG_LRO) { 1347 flags &= ~ETH_FLAG_LRO; 1348 dev->ethtool_ops->set_flags(dev, flags); 1349 } 1350 } 1351 WARN_ON(dev->features & NETIF_F_LRO); 1352 } 1353 EXPORT_SYMBOL(dev_disable_lro); 1354 1355 1356 static int dev_boot_phase = 1; 1357 1358 /* 1359 * Device change register/unregister. These are not inline or static 1360 * as we export them to the world. 1361 */ 1362 1363 /** 1364 * register_netdevice_notifier - register a network notifier block 1365 * @nb: notifier 1366 * 1367 * Register a notifier to be called when network device events occur. 1368 * The notifier passed is linked into the kernel structures and must 1369 * not be reused until it has been unregistered. A negative errno code 1370 * is returned on a failure. 1371 * 1372 * When registered all registration and up events are replayed 1373 * to the new notifier to allow device to have a race free 1374 * view of the network device list. 1375 */ 1376 1377 int register_netdevice_notifier(struct notifier_block *nb) 1378 { 1379 struct net_device *dev; 1380 struct net_device *last; 1381 struct net *net; 1382 int err; 1383 1384 rtnl_lock(); 1385 err = raw_notifier_chain_register(&netdev_chain, nb); 1386 if (err) 1387 goto unlock; 1388 if (dev_boot_phase) 1389 goto unlock; 1390 for_each_net(net) { 1391 for_each_netdev(net, dev) { 1392 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1393 err = notifier_to_errno(err); 1394 if (err) 1395 goto rollback; 1396 1397 if (!(dev->flags & IFF_UP)) 1398 continue; 1399 1400 nb->notifier_call(nb, NETDEV_UP, dev); 1401 } 1402 } 1403 1404 unlock: 1405 rtnl_unlock(); 1406 return err; 1407 1408 rollback: 1409 last = dev; 1410 for_each_net(net) { 1411 for_each_netdev(net, dev) { 1412 if (dev == last) 1413 break; 1414 1415 if (dev->flags & IFF_UP) { 1416 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1417 nb->notifier_call(nb, NETDEV_DOWN, dev); 1418 } 1419 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1420 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1421 } 1422 } 1423 1424 raw_notifier_chain_unregister(&netdev_chain, nb); 1425 goto unlock; 1426 } 1427 EXPORT_SYMBOL(register_netdevice_notifier); 1428 1429 /** 1430 * unregister_netdevice_notifier - unregister a network notifier block 1431 * @nb: notifier 1432 * 1433 * Unregister a notifier previously registered by 1434 * register_netdevice_notifier(). The notifier is unlinked into the 1435 * kernel structures and may then be reused. A negative errno code 1436 * is returned on a failure. 1437 */ 1438 1439 int unregister_netdevice_notifier(struct notifier_block *nb) 1440 { 1441 int err; 1442 1443 rtnl_lock(); 1444 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1445 rtnl_unlock(); 1446 return err; 1447 } 1448 EXPORT_SYMBOL(unregister_netdevice_notifier); 1449 1450 /** 1451 * call_netdevice_notifiers - call all network notifier blocks 1452 * @val: value passed unmodified to notifier function 1453 * @dev: net_device pointer passed unmodified to notifier function 1454 * 1455 * Call all network notifier blocks. Parameters and return value 1456 * are as for raw_notifier_call_chain(). 1457 */ 1458 1459 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1460 { 1461 ASSERT_RTNL(); 1462 return raw_notifier_call_chain(&netdev_chain, val, dev); 1463 } 1464 1465 /* When > 0 there are consumers of rx skb time stamps */ 1466 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1467 1468 void net_enable_timestamp(void) 1469 { 1470 atomic_inc(&netstamp_needed); 1471 } 1472 EXPORT_SYMBOL(net_enable_timestamp); 1473 1474 void net_disable_timestamp(void) 1475 { 1476 atomic_dec(&netstamp_needed); 1477 } 1478 EXPORT_SYMBOL(net_disable_timestamp); 1479 1480 static inline void net_timestamp_set(struct sk_buff *skb) 1481 { 1482 if (atomic_read(&netstamp_needed)) 1483 __net_timestamp(skb); 1484 else 1485 skb->tstamp.tv64 = 0; 1486 } 1487 1488 static inline void net_timestamp_check(struct sk_buff *skb) 1489 { 1490 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1491 __net_timestamp(skb); 1492 } 1493 1494 /** 1495 * dev_forward_skb - loopback an skb to another netif 1496 * 1497 * @dev: destination network device 1498 * @skb: buffer to forward 1499 * 1500 * return values: 1501 * NET_RX_SUCCESS (no congestion) 1502 * NET_RX_DROP (packet was dropped, but freed) 1503 * 1504 * dev_forward_skb can be used for injecting an skb from the 1505 * start_xmit function of one device into the receive queue 1506 * of another device. 1507 * 1508 * The receiving device may be in another namespace, so 1509 * we have to clear all information in the skb that could 1510 * impact namespace isolation. 1511 */ 1512 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1513 { 1514 skb_orphan(skb); 1515 nf_reset(skb); 1516 1517 if (unlikely(!(dev->flags & IFF_UP) || 1518 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) { 1519 atomic_long_inc(&dev->rx_dropped); 1520 kfree_skb(skb); 1521 return NET_RX_DROP; 1522 } 1523 skb_set_dev(skb, dev); 1524 skb->tstamp.tv64 = 0; 1525 skb->pkt_type = PACKET_HOST; 1526 skb->protocol = eth_type_trans(skb, dev); 1527 return netif_rx(skb); 1528 } 1529 EXPORT_SYMBOL_GPL(dev_forward_skb); 1530 1531 static inline int deliver_skb(struct sk_buff *skb, 1532 struct packet_type *pt_prev, 1533 struct net_device *orig_dev) 1534 { 1535 atomic_inc(&skb->users); 1536 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1537 } 1538 1539 /* 1540 * Support routine. Sends outgoing frames to any network 1541 * taps currently in use. 1542 */ 1543 1544 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1545 { 1546 struct packet_type *ptype; 1547 struct sk_buff *skb2 = NULL; 1548 struct packet_type *pt_prev = NULL; 1549 1550 rcu_read_lock(); 1551 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1552 /* Never send packets back to the socket 1553 * they originated from - MvS ([email protected]) 1554 */ 1555 if ((ptype->dev == dev || !ptype->dev) && 1556 (ptype->af_packet_priv == NULL || 1557 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1558 if (pt_prev) { 1559 deliver_skb(skb2, pt_prev, skb->dev); 1560 pt_prev = ptype; 1561 continue; 1562 } 1563 1564 skb2 = skb_clone(skb, GFP_ATOMIC); 1565 if (!skb2) 1566 break; 1567 1568 net_timestamp_set(skb2); 1569 1570 /* skb->nh should be correctly 1571 set by sender, so that the second statement is 1572 just protection against buggy protocols. 1573 */ 1574 skb_reset_mac_header(skb2); 1575 1576 if (skb_network_header(skb2) < skb2->data || 1577 skb2->network_header > skb2->tail) { 1578 if (net_ratelimit()) 1579 printk(KERN_CRIT "protocol %04x is " 1580 "buggy, dev %s\n", 1581 ntohs(skb2->protocol), 1582 dev->name); 1583 skb_reset_network_header(skb2); 1584 } 1585 1586 skb2->transport_header = skb2->network_header; 1587 skb2->pkt_type = PACKET_OUTGOING; 1588 pt_prev = ptype; 1589 } 1590 } 1591 if (pt_prev) 1592 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1593 rcu_read_unlock(); 1594 } 1595 1596 /* 1597 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1598 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1599 */ 1600 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1601 { 1602 int rc; 1603 1604 if (txq < 1 || txq > dev->num_tx_queues) 1605 return -EINVAL; 1606 1607 if (dev->reg_state == NETREG_REGISTERED) { 1608 ASSERT_RTNL(); 1609 1610 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1611 txq); 1612 if (rc) 1613 return rc; 1614 1615 if (txq < dev->real_num_tx_queues) 1616 qdisc_reset_all_tx_gt(dev, txq); 1617 } 1618 1619 dev->real_num_tx_queues = txq; 1620 return 0; 1621 } 1622 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1623 1624 #ifdef CONFIG_RPS 1625 /** 1626 * netif_set_real_num_rx_queues - set actual number of RX queues used 1627 * @dev: Network device 1628 * @rxq: Actual number of RX queues 1629 * 1630 * This must be called either with the rtnl_lock held or before 1631 * registration of the net device. Returns 0 on success, or a 1632 * negative error code. If called before registration, it always 1633 * succeeds. 1634 */ 1635 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1636 { 1637 int rc; 1638 1639 if (rxq < 1 || rxq > dev->num_rx_queues) 1640 return -EINVAL; 1641 1642 if (dev->reg_state == NETREG_REGISTERED) { 1643 ASSERT_RTNL(); 1644 1645 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1646 rxq); 1647 if (rc) 1648 return rc; 1649 } 1650 1651 dev->real_num_rx_queues = rxq; 1652 return 0; 1653 } 1654 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1655 #endif 1656 1657 static inline void __netif_reschedule(struct Qdisc *q) 1658 { 1659 struct softnet_data *sd; 1660 unsigned long flags; 1661 1662 local_irq_save(flags); 1663 sd = &__get_cpu_var(softnet_data); 1664 q->next_sched = NULL; 1665 *sd->output_queue_tailp = q; 1666 sd->output_queue_tailp = &q->next_sched; 1667 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1668 local_irq_restore(flags); 1669 } 1670 1671 void __netif_schedule(struct Qdisc *q) 1672 { 1673 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1674 __netif_reschedule(q); 1675 } 1676 EXPORT_SYMBOL(__netif_schedule); 1677 1678 void dev_kfree_skb_irq(struct sk_buff *skb) 1679 { 1680 if (atomic_dec_and_test(&skb->users)) { 1681 struct softnet_data *sd; 1682 unsigned long flags; 1683 1684 local_irq_save(flags); 1685 sd = &__get_cpu_var(softnet_data); 1686 skb->next = sd->completion_queue; 1687 sd->completion_queue = skb; 1688 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1689 local_irq_restore(flags); 1690 } 1691 } 1692 EXPORT_SYMBOL(dev_kfree_skb_irq); 1693 1694 void dev_kfree_skb_any(struct sk_buff *skb) 1695 { 1696 if (in_irq() || irqs_disabled()) 1697 dev_kfree_skb_irq(skb); 1698 else 1699 dev_kfree_skb(skb); 1700 } 1701 EXPORT_SYMBOL(dev_kfree_skb_any); 1702 1703 1704 /** 1705 * netif_device_detach - mark device as removed 1706 * @dev: network device 1707 * 1708 * Mark device as removed from system and therefore no longer available. 1709 */ 1710 void netif_device_detach(struct net_device *dev) 1711 { 1712 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1713 netif_running(dev)) { 1714 netif_tx_stop_all_queues(dev); 1715 } 1716 } 1717 EXPORT_SYMBOL(netif_device_detach); 1718 1719 /** 1720 * netif_device_attach - mark device as attached 1721 * @dev: network device 1722 * 1723 * Mark device as attached from system and restart if needed. 1724 */ 1725 void netif_device_attach(struct net_device *dev) 1726 { 1727 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1728 netif_running(dev)) { 1729 netif_tx_wake_all_queues(dev); 1730 __netdev_watchdog_up(dev); 1731 } 1732 } 1733 EXPORT_SYMBOL(netif_device_attach); 1734 1735 /** 1736 * skb_dev_set -- assign a new device to a buffer 1737 * @skb: buffer for the new device 1738 * @dev: network device 1739 * 1740 * If an skb is owned by a device already, we have to reset 1741 * all data private to the namespace a device belongs to 1742 * before assigning it a new device. 1743 */ 1744 #ifdef CONFIG_NET_NS 1745 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1746 { 1747 skb_dst_drop(skb); 1748 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1749 secpath_reset(skb); 1750 nf_reset(skb); 1751 skb_init_secmark(skb); 1752 skb->mark = 0; 1753 skb->priority = 0; 1754 skb->nf_trace = 0; 1755 skb->ipvs_property = 0; 1756 #ifdef CONFIG_NET_SCHED 1757 skb->tc_index = 0; 1758 #endif 1759 } 1760 skb->dev = dev; 1761 } 1762 EXPORT_SYMBOL(skb_set_dev); 1763 #endif /* CONFIG_NET_NS */ 1764 1765 /* 1766 * Invalidate hardware checksum when packet is to be mangled, and 1767 * complete checksum manually on outgoing path. 1768 */ 1769 int skb_checksum_help(struct sk_buff *skb) 1770 { 1771 __wsum csum; 1772 int ret = 0, offset; 1773 1774 if (skb->ip_summed == CHECKSUM_COMPLETE) 1775 goto out_set_summed; 1776 1777 if (unlikely(skb_shinfo(skb)->gso_size)) { 1778 /* Let GSO fix up the checksum. */ 1779 goto out_set_summed; 1780 } 1781 1782 offset = skb_checksum_start_offset(skb); 1783 BUG_ON(offset >= skb_headlen(skb)); 1784 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1785 1786 offset += skb->csum_offset; 1787 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1788 1789 if (skb_cloned(skb) && 1790 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1791 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1792 if (ret) 1793 goto out; 1794 } 1795 1796 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1797 out_set_summed: 1798 skb->ip_summed = CHECKSUM_NONE; 1799 out: 1800 return ret; 1801 } 1802 EXPORT_SYMBOL(skb_checksum_help); 1803 1804 /** 1805 * skb_gso_segment - Perform segmentation on skb. 1806 * @skb: buffer to segment 1807 * @features: features for the output path (see dev->features) 1808 * 1809 * This function segments the given skb and returns a list of segments. 1810 * 1811 * It may return NULL if the skb requires no segmentation. This is 1812 * only possible when GSO is used for verifying header integrity. 1813 */ 1814 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1815 { 1816 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1817 struct packet_type *ptype; 1818 __be16 type = skb->protocol; 1819 int vlan_depth = ETH_HLEN; 1820 int err; 1821 1822 while (type == htons(ETH_P_8021Q)) { 1823 struct vlan_hdr *vh; 1824 1825 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1826 return ERR_PTR(-EINVAL); 1827 1828 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1829 type = vh->h_vlan_encapsulated_proto; 1830 vlan_depth += VLAN_HLEN; 1831 } 1832 1833 skb_reset_mac_header(skb); 1834 skb->mac_len = skb->network_header - skb->mac_header; 1835 __skb_pull(skb, skb->mac_len); 1836 1837 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1838 struct net_device *dev = skb->dev; 1839 struct ethtool_drvinfo info = {}; 1840 1841 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1842 dev->ethtool_ops->get_drvinfo(dev, &info); 1843 1844 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1845 info.driver, dev ? dev->features : 0L, 1846 skb->sk ? skb->sk->sk_route_caps : 0L, 1847 skb->len, skb->data_len, skb->ip_summed); 1848 1849 if (skb_header_cloned(skb) && 1850 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1851 return ERR_PTR(err); 1852 } 1853 1854 rcu_read_lock(); 1855 list_for_each_entry_rcu(ptype, 1856 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1857 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1858 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1859 err = ptype->gso_send_check(skb); 1860 segs = ERR_PTR(err); 1861 if (err || skb_gso_ok(skb, features)) 1862 break; 1863 __skb_push(skb, (skb->data - 1864 skb_network_header(skb))); 1865 } 1866 segs = ptype->gso_segment(skb, features); 1867 break; 1868 } 1869 } 1870 rcu_read_unlock(); 1871 1872 __skb_push(skb, skb->data - skb_mac_header(skb)); 1873 1874 return segs; 1875 } 1876 EXPORT_SYMBOL(skb_gso_segment); 1877 1878 /* Take action when hardware reception checksum errors are detected. */ 1879 #ifdef CONFIG_BUG 1880 void netdev_rx_csum_fault(struct net_device *dev) 1881 { 1882 if (net_ratelimit()) { 1883 printk(KERN_ERR "%s: hw csum failure.\n", 1884 dev ? dev->name : "<unknown>"); 1885 dump_stack(); 1886 } 1887 } 1888 EXPORT_SYMBOL(netdev_rx_csum_fault); 1889 #endif 1890 1891 /* Actually, we should eliminate this check as soon as we know, that: 1892 * 1. IOMMU is present and allows to map all the memory. 1893 * 2. No high memory really exists on this machine. 1894 */ 1895 1896 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1897 { 1898 #ifdef CONFIG_HIGHMEM 1899 int i; 1900 if (!(dev->features & NETIF_F_HIGHDMA)) { 1901 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1902 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1903 return 1; 1904 } 1905 1906 if (PCI_DMA_BUS_IS_PHYS) { 1907 struct device *pdev = dev->dev.parent; 1908 1909 if (!pdev) 1910 return 0; 1911 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1912 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1913 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1914 return 1; 1915 } 1916 } 1917 #endif 1918 return 0; 1919 } 1920 1921 struct dev_gso_cb { 1922 void (*destructor)(struct sk_buff *skb); 1923 }; 1924 1925 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1926 1927 static void dev_gso_skb_destructor(struct sk_buff *skb) 1928 { 1929 struct dev_gso_cb *cb; 1930 1931 do { 1932 struct sk_buff *nskb = skb->next; 1933 1934 skb->next = nskb->next; 1935 nskb->next = NULL; 1936 kfree_skb(nskb); 1937 } while (skb->next); 1938 1939 cb = DEV_GSO_CB(skb); 1940 if (cb->destructor) 1941 cb->destructor(skb); 1942 } 1943 1944 /** 1945 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1946 * @skb: buffer to segment 1947 * @features: device features as applicable to this skb 1948 * 1949 * This function segments the given skb and stores the list of segments 1950 * in skb->next. 1951 */ 1952 static int dev_gso_segment(struct sk_buff *skb, int features) 1953 { 1954 struct sk_buff *segs; 1955 1956 segs = skb_gso_segment(skb, features); 1957 1958 /* Verifying header integrity only. */ 1959 if (!segs) 1960 return 0; 1961 1962 if (IS_ERR(segs)) 1963 return PTR_ERR(segs); 1964 1965 skb->next = segs; 1966 DEV_GSO_CB(skb)->destructor = skb->destructor; 1967 skb->destructor = dev_gso_skb_destructor; 1968 1969 return 0; 1970 } 1971 1972 /* 1973 * Try to orphan skb early, right before transmission by the device. 1974 * We cannot orphan skb if tx timestamp is requested or the sk-reference 1975 * is needed on driver level for other reasons, e.g. see net/can/raw.c 1976 */ 1977 static inline void skb_orphan_try(struct sk_buff *skb) 1978 { 1979 struct sock *sk = skb->sk; 1980 1981 if (sk && !skb_shinfo(skb)->tx_flags) { 1982 /* skb_tx_hash() wont be able to get sk. 1983 * We copy sk_hash into skb->rxhash 1984 */ 1985 if (!skb->rxhash) 1986 skb->rxhash = sk->sk_hash; 1987 skb_orphan(skb); 1988 } 1989 } 1990 1991 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1992 { 1993 return ((features & NETIF_F_GEN_CSUM) || 1994 ((features & NETIF_F_V4_CSUM) && 1995 protocol == htons(ETH_P_IP)) || 1996 ((features & NETIF_F_V6_CSUM) && 1997 protocol == htons(ETH_P_IPV6)) || 1998 ((features & NETIF_F_FCOE_CRC) && 1999 protocol == htons(ETH_P_FCOE))); 2000 } 2001 2002 static int harmonize_features(struct sk_buff *skb, __be16 protocol, int features) 2003 { 2004 if (!can_checksum_protocol(protocol, features)) { 2005 features &= ~NETIF_F_ALL_CSUM; 2006 features &= ~NETIF_F_SG; 2007 } else if (illegal_highdma(skb->dev, skb)) { 2008 features &= ~NETIF_F_SG; 2009 } 2010 2011 return features; 2012 } 2013 2014 int netif_skb_features(struct sk_buff *skb) 2015 { 2016 __be16 protocol = skb->protocol; 2017 int features = skb->dev->features; 2018 2019 if (protocol == htons(ETH_P_8021Q)) { 2020 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2021 protocol = veh->h_vlan_encapsulated_proto; 2022 } else if (!vlan_tx_tag_present(skb)) { 2023 return harmonize_features(skb, protocol, features); 2024 } 2025 2026 features &= skb->dev->vlan_features; 2027 2028 if (protocol != htons(ETH_P_8021Q)) { 2029 return harmonize_features(skb, protocol, features); 2030 } else { 2031 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2032 NETIF_F_GEN_CSUM; 2033 return harmonize_features(skb, protocol, features); 2034 } 2035 } 2036 EXPORT_SYMBOL(netif_skb_features); 2037 2038 /* 2039 * Returns true if either: 2040 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2041 * 2. skb is fragmented and the device does not support SG, or if 2042 * at least one of fragments is in highmem and device does not 2043 * support DMA from it. 2044 */ 2045 static inline int skb_needs_linearize(struct sk_buff *skb, 2046 int features) 2047 { 2048 return skb_is_nonlinear(skb) && 2049 ((skb_has_frag_list(skb) && 2050 !(features & NETIF_F_FRAGLIST)) || 2051 (skb_shinfo(skb)->nr_frags && 2052 !(features & NETIF_F_SG))); 2053 } 2054 2055 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2056 struct netdev_queue *txq) 2057 { 2058 const struct net_device_ops *ops = dev->netdev_ops; 2059 int rc = NETDEV_TX_OK; 2060 2061 if (likely(!skb->next)) { 2062 int features; 2063 2064 /* 2065 * If device doesnt need skb->dst, release it right now while 2066 * its hot in this cpu cache 2067 */ 2068 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2069 skb_dst_drop(skb); 2070 2071 if (!list_empty(&ptype_all)) 2072 dev_queue_xmit_nit(skb, dev); 2073 2074 skb_orphan_try(skb); 2075 2076 features = netif_skb_features(skb); 2077 2078 if (vlan_tx_tag_present(skb) && 2079 !(features & NETIF_F_HW_VLAN_TX)) { 2080 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2081 if (unlikely(!skb)) 2082 goto out; 2083 2084 skb->vlan_tci = 0; 2085 } 2086 2087 if (netif_needs_gso(skb, features)) { 2088 if (unlikely(dev_gso_segment(skb, features))) 2089 goto out_kfree_skb; 2090 if (skb->next) 2091 goto gso; 2092 } else { 2093 if (skb_needs_linearize(skb, features) && 2094 __skb_linearize(skb)) 2095 goto out_kfree_skb; 2096 2097 /* If packet is not checksummed and device does not 2098 * support checksumming for this protocol, complete 2099 * checksumming here. 2100 */ 2101 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2102 skb_set_transport_header(skb, 2103 skb_checksum_start_offset(skb)); 2104 if (!(features & NETIF_F_ALL_CSUM) && 2105 skb_checksum_help(skb)) 2106 goto out_kfree_skb; 2107 } 2108 } 2109 2110 rc = ops->ndo_start_xmit(skb, dev); 2111 trace_net_dev_xmit(skb, rc); 2112 if (rc == NETDEV_TX_OK) 2113 txq_trans_update(txq); 2114 return rc; 2115 } 2116 2117 gso: 2118 do { 2119 struct sk_buff *nskb = skb->next; 2120 2121 skb->next = nskb->next; 2122 nskb->next = NULL; 2123 2124 /* 2125 * If device doesnt need nskb->dst, release it right now while 2126 * its hot in this cpu cache 2127 */ 2128 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2129 skb_dst_drop(nskb); 2130 2131 rc = ops->ndo_start_xmit(nskb, dev); 2132 trace_net_dev_xmit(nskb, rc); 2133 if (unlikely(rc != NETDEV_TX_OK)) { 2134 if (rc & ~NETDEV_TX_MASK) 2135 goto out_kfree_gso_skb; 2136 nskb->next = skb->next; 2137 skb->next = nskb; 2138 return rc; 2139 } 2140 txq_trans_update(txq); 2141 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2142 return NETDEV_TX_BUSY; 2143 } while (skb->next); 2144 2145 out_kfree_gso_skb: 2146 if (likely(skb->next == NULL)) 2147 skb->destructor = DEV_GSO_CB(skb)->destructor; 2148 out_kfree_skb: 2149 kfree_skb(skb); 2150 out: 2151 return rc; 2152 } 2153 2154 static u32 hashrnd __read_mostly; 2155 2156 /* 2157 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2158 * to be used as a distribution range. 2159 */ 2160 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2161 unsigned int num_tx_queues) 2162 { 2163 u32 hash; 2164 2165 if (skb_rx_queue_recorded(skb)) { 2166 hash = skb_get_rx_queue(skb); 2167 while (unlikely(hash >= num_tx_queues)) 2168 hash -= num_tx_queues; 2169 return hash; 2170 } 2171 2172 if (skb->sk && skb->sk->sk_hash) 2173 hash = skb->sk->sk_hash; 2174 else 2175 hash = (__force u16) skb->protocol ^ skb->rxhash; 2176 hash = jhash_1word(hash, hashrnd); 2177 2178 return (u16) (((u64) hash * num_tx_queues) >> 32); 2179 } 2180 EXPORT_SYMBOL(__skb_tx_hash); 2181 2182 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2183 { 2184 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2185 if (net_ratelimit()) { 2186 pr_warning("%s selects TX queue %d, but " 2187 "real number of TX queues is %d\n", 2188 dev->name, queue_index, dev->real_num_tx_queues); 2189 } 2190 return 0; 2191 } 2192 return queue_index; 2193 } 2194 2195 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2196 { 2197 #ifdef CONFIG_XPS 2198 struct xps_dev_maps *dev_maps; 2199 struct xps_map *map; 2200 int queue_index = -1; 2201 2202 rcu_read_lock(); 2203 dev_maps = rcu_dereference(dev->xps_maps); 2204 if (dev_maps) { 2205 map = rcu_dereference( 2206 dev_maps->cpu_map[raw_smp_processor_id()]); 2207 if (map) { 2208 if (map->len == 1) 2209 queue_index = map->queues[0]; 2210 else { 2211 u32 hash; 2212 if (skb->sk && skb->sk->sk_hash) 2213 hash = skb->sk->sk_hash; 2214 else 2215 hash = (__force u16) skb->protocol ^ 2216 skb->rxhash; 2217 hash = jhash_1word(hash, hashrnd); 2218 queue_index = map->queues[ 2219 ((u64)hash * map->len) >> 32]; 2220 } 2221 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2222 queue_index = -1; 2223 } 2224 } 2225 rcu_read_unlock(); 2226 2227 return queue_index; 2228 #else 2229 return -1; 2230 #endif 2231 } 2232 2233 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2234 struct sk_buff *skb) 2235 { 2236 int queue_index; 2237 const struct net_device_ops *ops = dev->netdev_ops; 2238 2239 if (dev->real_num_tx_queues == 1) 2240 queue_index = 0; 2241 else if (ops->ndo_select_queue) { 2242 queue_index = ops->ndo_select_queue(dev, skb); 2243 queue_index = dev_cap_txqueue(dev, queue_index); 2244 } else { 2245 struct sock *sk = skb->sk; 2246 queue_index = sk_tx_queue_get(sk); 2247 2248 if (queue_index < 0 || skb->ooo_okay || 2249 queue_index >= dev->real_num_tx_queues) { 2250 int old_index = queue_index; 2251 2252 queue_index = get_xps_queue(dev, skb); 2253 if (queue_index < 0) 2254 queue_index = skb_tx_hash(dev, skb); 2255 2256 if (queue_index != old_index && sk) { 2257 struct dst_entry *dst = 2258 rcu_dereference_check(sk->sk_dst_cache, 1); 2259 2260 if (dst && skb_dst(skb) == dst) 2261 sk_tx_queue_set(sk, queue_index); 2262 } 2263 } 2264 } 2265 2266 skb_set_queue_mapping(skb, queue_index); 2267 return netdev_get_tx_queue(dev, queue_index); 2268 } 2269 2270 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2271 struct net_device *dev, 2272 struct netdev_queue *txq) 2273 { 2274 spinlock_t *root_lock = qdisc_lock(q); 2275 bool contended = qdisc_is_running(q); 2276 int rc; 2277 2278 /* 2279 * Heuristic to force contended enqueues to serialize on a 2280 * separate lock before trying to get qdisc main lock. 2281 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2282 * and dequeue packets faster. 2283 */ 2284 if (unlikely(contended)) 2285 spin_lock(&q->busylock); 2286 2287 spin_lock(root_lock); 2288 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2289 kfree_skb(skb); 2290 rc = NET_XMIT_DROP; 2291 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2292 qdisc_run_begin(q)) { 2293 /* 2294 * This is a work-conserving queue; there are no old skbs 2295 * waiting to be sent out; and the qdisc is not running - 2296 * xmit the skb directly. 2297 */ 2298 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2299 skb_dst_force(skb); 2300 __qdisc_update_bstats(q, skb->len); 2301 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2302 if (unlikely(contended)) { 2303 spin_unlock(&q->busylock); 2304 contended = false; 2305 } 2306 __qdisc_run(q); 2307 } else 2308 qdisc_run_end(q); 2309 2310 rc = NET_XMIT_SUCCESS; 2311 } else { 2312 skb_dst_force(skb); 2313 rc = qdisc_enqueue_root(skb, q); 2314 if (qdisc_run_begin(q)) { 2315 if (unlikely(contended)) { 2316 spin_unlock(&q->busylock); 2317 contended = false; 2318 } 2319 __qdisc_run(q); 2320 } 2321 } 2322 spin_unlock(root_lock); 2323 if (unlikely(contended)) 2324 spin_unlock(&q->busylock); 2325 return rc; 2326 } 2327 2328 static DEFINE_PER_CPU(int, xmit_recursion); 2329 #define RECURSION_LIMIT 10 2330 2331 /** 2332 * dev_queue_xmit - transmit a buffer 2333 * @skb: buffer to transmit 2334 * 2335 * Queue a buffer for transmission to a network device. The caller must 2336 * have set the device and priority and built the buffer before calling 2337 * this function. The function can be called from an interrupt. 2338 * 2339 * A negative errno code is returned on a failure. A success does not 2340 * guarantee the frame will be transmitted as it may be dropped due 2341 * to congestion or traffic shaping. 2342 * 2343 * ----------------------------------------------------------------------------------- 2344 * I notice this method can also return errors from the queue disciplines, 2345 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2346 * be positive. 2347 * 2348 * Regardless of the return value, the skb is consumed, so it is currently 2349 * difficult to retry a send to this method. (You can bump the ref count 2350 * before sending to hold a reference for retry if you are careful.) 2351 * 2352 * When calling this method, interrupts MUST be enabled. This is because 2353 * the BH enable code must have IRQs enabled so that it will not deadlock. 2354 * --BLG 2355 */ 2356 int dev_queue_xmit(struct sk_buff *skb) 2357 { 2358 struct net_device *dev = skb->dev; 2359 struct netdev_queue *txq; 2360 struct Qdisc *q; 2361 int rc = -ENOMEM; 2362 2363 /* Disable soft irqs for various locks below. Also 2364 * stops preemption for RCU. 2365 */ 2366 rcu_read_lock_bh(); 2367 2368 txq = dev_pick_tx(dev, skb); 2369 q = rcu_dereference_bh(txq->qdisc); 2370 2371 #ifdef CONFIG_NET_CLS_ACT 2372 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2373 #endif 2374 trace_net_dev_queue(skb); 2375 if (q->enqueue) { 2376 rc = __dev_xmit_skb(skb, q, dev, txq); 2377 goto out; 2378 } 2379 2380 /* The device has no queue. Common case for software devices: 2381 loopback, all the sorts of tunnels... 2382 2383 Really, it is unlikely that netif_tx_lock protection is necessary 2384 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2385 counters.) 2386 However, it is possible, that they rely on protection 2387 made by us here. 2388 2389 Check this and shot the lock. It is not prone from deadlocks. 2390 Either shot noqueue qdisc, it is even simpler 8) 2391 */ 2392 if (dev->flags & IFF_UP) { 2393 int cpu = smp_processor_id(); /* ok because BHs are off */ 2394 2395 if (txq->xmit_lock_owner != cpu) { 2396 2397 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2398 goto recursion_alert; 2399 2400 HARD_TX_LOCK(dev, txq, cpu); 2401 2402 if (!netif_tx_queue_stopped(txq)) { 2403 __this_cpu_inc(xmit_recursion); 2404 rc = dev_hard_start_xmit(skb, dev, txq); 2405 __this_cpu_dec(xmit_recursion); 2406 if (dev_xmit_complete(rc)) { 2407 HARD_TX_UNLOCK(dev, txq); 2408 goto out; 2409 } 2410 } 2411 HARD_TX_UNLOCK(dev, txq); 2412 if (net_ratelimit()) 2413 printk(KERN_CRIT "Virtual device %s asks to " 2414 "queue packet!\n", dev->name); 2415 } else { 2416 /* Recursion is detected! It is possible, 2417 * unfortunately 2418 */ 2419 recursion_alert: 2420 if (net_ratelimit()) 2421 printk(KERN_CRIT "Dead loop on virtual device " 2422 "%s, fix it urgently!\n", dev->name); 2423 } 2424 } 2425 2426 rc = -ENETDOWN; 2427 rcu_read_unlock_bh(); 2428 2429 kfree_skb(skb); 2430 return rc; 2431 out: 2432 rcu_read_unlock_bh(); 2433 return rc; 2434 } 2435 EXPORT_SYMBOL(dev_queue_xmit); 2436 2437 2438 /*======================================================================= 2439 Receiver routines 2440 =======================================================================*/ 2441 2442 int netdev_max_backlog __read_mostly = 1000; 2443 int netdev_tstamp_prequeue __read_mostly = 1; 2444 int netdev_budget __read_mostly = 300; 2445 int weight_p __read_mostly = 64; /* old backlog weight */ 2446 2447 /* Called with irq disabled */ 2448 static inline void ____napi_schedule(struct softnet_data *sd, 2449 struct napi_struct *napi) 2450 { 2451 list_add_tail(&napi->poll_list, &sd->poll_list); 2452 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2453 } 2454 2455 /* 2456 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2457 * and src/dst port numbers. Returns a non-zero hash number on success 2458 * and 0 on failure. 2459 */ 2460 __u32 __skb_get_rxhash(struct sk_buff *skb) 2461 { 2462 int nhoff, hash = 0, poff; 2463 struct ipv6hdr *ip6; 2464 struct iphdr *ip; 2465 u8 ip_proto; 2466 u32 addr1, addr2, ihl; 2467 union { 2468 u32 v32; 2469 u16 v16[2]; 2470 } ports; 2471 2472 nhoff = skb_network_offset(skb); 2473 2474 switch (skb->protocol) { 2475 case __constant_htons(ETH_P_IP): 2476 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2477 goto done; 2478 2479 ip = (struct iphdr *) (skb->data + nhoff); 2480 if (ip->frag_off & htons(IP_MF | IP_OFFSET)) 2481 ip_proto = 0; 2482 else 2483 ip_proto = ip->protocol; 2484 addr1 = (__force u32) ip->saddr; 2485 addr2 = (__force u32) ip->daddr; 2486 ihl = ip->ihl; 2487 break; 2488 case __constant_htons(ETH_P_IPV6): 2489 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2490 goto done; 2491 2492 ip6 = (struct ipv6hdr *) (skb->data + nhoff); 2493 ip_proto = ip6->nexthdr; 2494 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2495 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2496 ihl = (40 >> 2); 2497 break; 2498 default: 2499 goto done; 2500 } 2501 2502 ports.v32 = 0; 2503 poff = proto_ports_offset(ip_proto); 2504 if (poff >= 0) { 2505 nhoff += ihl * 4 + poff; 2506 if (pskb_may_pull(skb, nhoff + 4)) { 2507 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2508 if (ports.v16[1] < ports.v16[0]) 2509 swap(ports.v16[0], ports.v16[1]); 2510 } 2511 } 2512 2513 /* get a consistent hash (same value on both flow directions) */ 2514 if (addr2 < addr1) 2515 swap(addr1, addr2); 2516 2517 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2518 if (!hash) 2519 hash = 1; 2520 2521 done: 2522 return hash; 2523 } 2524 EXPORT_SYMBOL(__skb_get_rxhash); 2525 2526 #ifdef CONFIG_RPS 2527 2528 /* One global table that all flow-based protocols share. */ 2529 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2530 EXPORT_SYMBOL(rps_sock_flow_table); 2531 2532 /* 2533 * get_rps_cpu is called from netif_receive_skb and returns the target 2534 * CPU from the RPS map of the receiving queue for a given skb. 2535 * rcu_read_lock must be held on entry. 2536 */ 2537 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2538 struct rps_dev_flow **rflowp) 2539 { 2540 struct netdev_rx_queue *rxqueue; 2541 struct rps_map *map; 2542 struct rps_dev_flow_table *flow_table; 2543 struct rps_sock_flow_table *sock_flow_table; 2544 int cpu = -1; 2545 u16 tcpu; 2546 2547 if (skb_rx_queue_recorded(skb)) { 2548 u16 index = skb_get_rx_queue(skb); 2549 if (unlikely(index >= dev->real_num_rx_queues)) { 2550 WARN_ONCE(dev->real_num_rx_queues > 1, 2551 "%s received packet on queue %u, but number " 2552 "of RX queues is %u\n", 2553 dev->name, index, dev->real_num_rx_queues); 2554 goto done; 2555 } 2556 rxqueue = dev->_rx + index; 2557 } else 2558 rxqueue = dev->_rx; 2559 2560 map = rcu_dereference(rxqueue->rps_map); 2561 if (map) { 2562 if (map->len == 1) { 2563 tcpu = map->cpus[0]; 2564 if (cpu_online(tcpu)) 2565 cpu = tcpu; 2566 goto done; 2567 } 2568 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) { 2569 goto done; 2570 } 2571 2572 skb_reset_network_header(skb); 2573 if (!skb_get_rxhash(skb)) 2574 goto done; 2575 2576 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2577 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2578 if (flow_table && sock_flow_table) { 2579 u16 next_cpu; 2580 struct rps_dev_flow *rflow; 2581 2582 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2583 tcpu = rflow->cpu; 2584 2585 next_cpu = sock_flow_table->ents[skb->rxhash & 2586 sock_flow_table->mask]; 2587 2588 /* 2589 * If the desired CPU (where last recvmsg was done) is 2590 * different from current CPU (one in the rx-queue flow 2591 * table entry), switch if one of the following holds: 2592 * - Current CPU is unset (equal to RPS_NO_CPU). 2593 * - Current CPU is offline. 2594 * - The current CPU's queue tail has advanced beyond the 2595 * last packet that was enqueued using this table entry. 2596 * This guarantees that all previous packets for the flow 2597 * have been dequeued, thus preserving in order delivery. 2598 */ 2599 if (unlikely(tcpu != next_cpu) && 2600 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2601 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2602 rflow->last_qtail)) >= 0)) { 2603 tcpu = rflow->cpu = next_cpu; 2604 if (tcpu != RPS_NO_CPU) 2605 rflow->last_qtail = per_cpu(softnet_data, 2606 tcpu).input_queue_head; 2607 } 2608 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2609 *rflowp = rflow; 2610 cpu = tcpu; 2611 goto done; 2612 } 2613 } 2614 2615 if (map) { 2616 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2617 2618 if (cpu_online(tcpu)) { 2619 cpu = tcpu; 2620 goto done; 2621 } 2622 } 2623 2624 done: 2625 return cpu; 2626 } 2627 2628 /* Called from hardirq (IPI) context */ 2629 static void rps_trigger_softirq(void *data) 2630 { 2631 struct softnet_data *sd = data; 2632 2633 ____napi_schedule(sd, &sd->backlog); 2634 sd->received_rps++; 2635 } 2636 2637 #endif /* CONFIG_RPS */ 2638 2639 /* 2640 * Check if this softnet_data structure is another cpu one 2641 * If yes, queue it to our IPI list and return 1 2642 * If no, return 0 2643 */ 2644 static int rps_ipi_queued(struct softnet_data *sd) 2645 { 2646 #ifdef CONFIG_RPS 2647 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2648 2649 if (sd != mysd) { 2650 sd->rps_ipi_next = mysd->rps_ipi_list; 2651 mysd->rps_ipi_list = sd; 2652 2653 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2654 return 1; 2655 } 2656 #endif /* CONFIG_RPS */ 2657 return 0; 2658 } 2659 2660 /* 2661 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2662 * queue (may be a remote CPU queue). 2663 */ 2664 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2665 unsigned int *qtail) 2666 { 2667 struct softnet_data *sd; 2668 unsigned long flags; 2669 2670 sd = &per_cpu(softnet_data, cpu); 2671 2672 local_irq_save(flags); 2673 2674 rps_lock(sd); 2675 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2676 if (skb_queue_len(&sd->input_pkt_queue)) { 2677 enqueue: 2678 __skb_queue_tail(&sd->input_pkt_queue, skb); 2679 input_queue_tail_incr_save(sd, qtail); 2680 rps_unlock(sd); 2681 local_irq_restore(flags); 2682 return NET_RX_SUCCESS; 2683 } 2684 2685 /* Schedule NAPI for backlog device 2686 * We can use non atomic operation since we own the queue lock 2687 */ 2688 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2689 if (!rps_ipi_queued(sd)) 2690 ____napi_schedule(sd, &sd->backlog); 2691 } 2692 goto enqueue; 2693 } 2694 2695 sd->dropped++; 2696 rps_unlock(sd); 2697 2698 local_irq_restore(flags); 2699 2700 atomic_long_inc(&skb->dev->rx_dropped); 2701 kfree_skb(skb); 2702 return NET_RX_DROP; 2703 } 2704 2705 /** 2706 * netif_rx - post buffer to the network code 2707 * @skb: buffer to post 2708 * 2709 * This function receives a packet from a device driver and queues it for 2710 * the upper (protocol) levels to process. It always succeeds. The buffer 2711 * may be dropped during processing for congestion control or by the 2712 * protocol layers. 2713 * 2714 * return values: 2715 * NET_RX_SUCCESS (no congestion) 2716 * NET_RX_DROP (packet was dropped) 2717 * 2718 */ 2719 2720 int netif_rx(struct sk_buff *skb) 2721 { 2722 int ret; 2723 2724 /* if netpoll wants it, pretend we never saw it */ 2725 if (netpoll_rx(skb)) 2726 return NET_RX_DROP; 2727 2728 if (netdev_tstamp_prequeue) 2729 net_timestamp_check(skb); 2730 2731 trace_netif_rx(skb); 2732 #ifdef CONFIG_RPS 2733 { 2734 struct rps_dev_flow voidflow, *rflow = &voidflow; 2735 int cpu; 2736 2737 preempt_disable(); 2738 rcu_read_lock(); 2739 2740 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2741 if (cpu < 0) 2742 cpu = smp_processor_id(); 2743 2744 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2745 2746 rcu_read_unlock(); 2747 preempt_enable(); 2748 } 2749 #else 2750 { 2751 unsigned int qtail; 2752 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2753 put_cpu(); 2754 } 2755 #endif 2756 return ret; 2757 } 2758 EXPORT_SYMBOL(netif_rx); 2759 2760 int netif_rx_ni(struct sk_buff *skb) 2761 { 2762 int err; 2763 2764 preempt_disable(); 2765 err = netif_rx(skb); 2766 if (local_softirq_pending()) 2767 do_softirq(); 2768 preempt_enable(); 2769 2770 return err; 2771 } 2772 EXPORT_SYMBOL(netif_rx_ni); 2773 2774 static void net_tx_action(struct softirq_action *h) 2775 { 2776 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2777 2778 if (sd->completion_queue) { 2779 struct sk_buff *clist; 2780 2781 local_irq_disable(); 2782 clist = sd->completion_queue; 2783 sd->completion_queue = NULL; 2784 local_irq_enable(); 2785 2786 while (clist) { 2787 struct sk_buff *skb = clist; 2788 clist = clist->next; 2789 2790 WARN_ON(atomic_read(&skb->users)); 2791 trace_kfree_skb(skb, net_tx_action); 2792 __kfree_skb(skb); 2793 } 2794 } 2795 2796 if (sd->output_queue) { 2797 struct Qdisc *head; 2798 2799 local_irq_disable(); 2800 head = sd->output_queue; 2801 sd->output_queue = NULL; 2802 sd->output_queue_tailp = &sd->output_queue; 2803 local_irq_enable(); 2804 2805 while (head) { 2806 struct Qdisc *q = head; 2807 spinlock_t *root_lock; 2808 2809 head = head->next_sched; 2810 2811 root_lock = qdisc_lock(q); 2812 if (spin_trylock(root_lock)) { 2813 smp_mb__before_clear_bit(); 2814 clear_bit(__QDISC_STATE_SCHED, 2815 &q->state); 2816 qdisc_run(q); 2817 spin_unlock(root_lock); 2818 } else { 2819 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2820 &q->state)) { 2821 __netif_reschedule(q); 2822 } else { 2823 smp_mb__before_clear_bit(); 2824 clear_bit(__QDISC_STATE_SCHED, 2825 &q->state); 2826 } 2827 } 2828 } 2829 } 2830 } 2831 2832 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2833 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2834 /* This hook is defined here for ATM LANE */ 2835 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2836 unsigned char *addr) __read_mostly; 2837 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2838 #endif 2839 2840 #ifdef CONFIG_NET_CLS_ACT 2841 /* TODO: Maybe we should just force sch_ingress to be compiled in 2842 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2843 * a compare and 2 stores extra right now if we dont have it on 2844 * but have CONFIG_NET_CLS_ACT 2845 * NOTE: This doesnt stop any functionality; if you dont have 2846 * the ingress scheduler, you just cant add policies on ingress. 2847 * 2848 */ 2849 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 2850 { 2851 struct net_device *dev = skb->dev; 2852 u32 ttl = G_TC_RTTL(skb->tc_verd); 2853 int result = TC_ACT_OK; 2854 struct Qdisc *q; 2855 2856 if (unlikely(MAX_RED_LOOP < ttl++)) { 2857 if (net_ratelimit()) 2858 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 2859 skb->skb_iif, dev->ifindex); 2860 return TC_ACT_SHOT; 2861 } 2862 2863 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2864 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2865 2866 q = rxq->qdisc; 2867 if (q != &noop_qdisc) { 2868 spin_lock(qdisc_lock(q)); 2869 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2870 result = qdisc_enqueue_root(skb, q); 2871 spin_unlock(qdisc_lock(q)); 2872 } 2873 2874 return result; 2875 } 2876 2877 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2878 struct packet_type **pt_prev, 2879 int *ret, struct net_device *orig_dev) 2880 { 2881 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 2882 2883 if (!rxq || rxq->qdisc == &noop_qdisc) 2884 goto out; 2885 2886 if (*pt_prev) { 2887 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2888 *pt_prev = NULL; 2889 } 2890 2891 switch (ing_filter(skb, rxq)) { 2892 case TC_ACT_SHOT: 2893 case TC_ACT_STOLEN: 2894 kfree_skb(skb); 2895 return NULL; 2896 } 2897 2898 out: 2899 skb->tc_verd = 0; 2900 return skb; 2901 } 2902 #endif 2903 2904 /** 2905 * netdev_rx_handler_register - register receive handler 2906 * @dev: device to register a handler for 2907 * @rx_handler: receive handler to register 2908 * @rx_handler_data: data pointer that is used by rx handler 2909 * 2910 * Register a receive hander for a device. This handler will then be 2911 * called from __netif_receive_skb. A negative errno code is returned 2912 * on a failure. 2913 * 2914 * The caller must hold the rtnl_mutex. 2915 */ 2916 int netdev_rx_handler_register(struct net_device *dev, 2917 rx_handler_func_t *rx_handler, 2918 void *rx_handler_data) 2919 { 2920 ASSERT_RTNL(); 2921 2922 if (dev->rx_handler) 2923 return -EBUSY; 2924 2925 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 2926 rcu_assign_pointer(dev->rx_handler, rx_handler); 2927 2928 return 0; 2929 } 2930 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 2931 2932 /** 2933 * netdev_rx_handler_unregister - unregister receive handler 2934 * @dev: device to unregister a handler from 2935 * 2936 * Unregister a receive hander from a device. 2937 * 2938 * The caller must hold the rtnl_mutex. 2939 */ 2940 void netdev_rx_handler_unregister(struct net_device *dev) 2941 { 2942 2943 ASSERT_RTNL(); 2944 rcu_assign_pointer(dev->rx_handler, NULL); 2945 rcu_assign_pointer(dev->rx_handler_data, NULL); 2946 } 2947 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 2948 2949 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2950 struct net_device *master) 2951 { 2952 if (skb->pkt_type == PACKET_HOST) { 2953 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2954 2955 memcpy(dest, master->dev_addr, ETH_ALEN); 2956 } 2957 } 2958 2959 /* On bonding slaves other than the currently active slave, suppress 2960 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2961 * ARP on active-backup slaves with arp_validate enabled. 2962 */ 2963 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2964 { 2965 struct net_device *dev = skb->dev; 2966 2967 if (master->priv_flags & IFF_MASTER_ARPMON) 2968 dev->last_rx = jiffies; 2969 2970 if ((master->priv_flags & IFF_MASTER_ALB) && 2971 (master->priv_flags & IFF_BRIDGE_PORT)) { 2972 /* Do address unmangle. The local destination address 2973 * will be always the one master has. Provides the right 2974 * functionality in a bridge. 2975 */ 2976 skb_bond_set_mac_by_master(skb, master); 2977 } 2978 2979 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2980 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2981 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2982 return 0; 2983 2984 if (master->priv_flags & IFF_MASTER_ALB) { 2985 if (skb->pkt_type != PACKET_BROADCAST && 2986 skb->pkt_type != PACKET_MULTICAST) 2987 return 0; 2988 } 2989 if (master->priv_flags & IFF_MASTER_8023AD && 2990 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2991 return 0; 2992 2993 return 1; 2994 } 2995 return 0; 2996 } 2997 EXPORT_SYMBOL(__skb_bond_should_drop); 2998 2999 static int __netif_receive_skb(struct sk_buff *skb) 3000 { 3001 struct packet_type *ptype, *pt_prev; 3002 rx_handler_func_t *rx_handler; 3003 struct net_device *orig_dev; 3004 struct net_device *master; 3005 struct net_device *null_or_orig; 3006 struct net_device *orig_or_bond; 3007 int ret = NET_RX_DROP; 3008 __be16 type; 3009 3010 if (!netdev_tstamp_prequeue) 3011 net_timestamp_check(skb); 3012 3013 trace_netif_receive_skb(skb); 3014 3015 /* if we've gotten here through NAPI, check netpoll */ 3016 if (netpoll_receive_skb(skb)) 3017 return NET_RX_DROP; 3018 3019 if (!skb->skb_iif) 3020 skb->skb_iif = skb->dev->ifindex; 3021 3022 /* 3023 * bonding note: skbs received on inactive slaves should only 3024 * be delivered to pkt handlers that are exact matches. Also 3025 * the deliver_no_wcard flag will be set. If packet handlers 3026 * are sensitive to duplicate packets these skbs will need to 3027 * be dropped at the handler. 3028 */ 3029 null_or_orig = NULL; 3030 orig_dev = skb->dev; 3031 master = ACCESS_ONCE(orig_dev->master); 3032 if (skb->deliver_no_wcard) 3033 null_or_orig = orig_dev; 3034 else if (master) { 3035 if (skb_bond_should_drop(skb, master)) { 3036 skb->deliver_no_wcard = 1; 3037 null_or_orig = orig_dev; /* deliver only exact match */ 3038 } else 3039 skb->dev = master; 3040 } 3041 3042 __this_cpu_inc(softnet_data.processed); 3043 skb_reset_network_header(skb); 3044 skb_reset_transport_header(skb); 3045 skb->mac_len = skb->network_header - skb->mac_header; 3046 3047 pt_prev = NULL; 3048 3049 rcu_read_lock(); 3050 3051 #ifdef CONFIG_NET_CLS_ACT 3052 if (skb->tc_verd & TC_NCLS) { 3053 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3054 goto ncls; 3055 } 3056 #endif 3057 3058 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3059 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 3060 ptype->dev == orig_dev) { 3061 if (pt_prev) 3062 ret = deliver_skb(skb, pt_prev, orig_dev); 3063 pt_prev = ptype; 3064 } 3065 } 3066 3067 #ifdef CONFIG_NET_CLS_ACT 3068 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3069 if (!skb) 3070 goto out; 3071 ncls: 3072 #endif 3073 3074 /* Handle special case of bridge or macvlan */ 3075 rx_handler = rcu_dereference(skb->dev->rx_handler); 3076 if (rx_handler) { 3077 if (pt_prev) { 3078 ret = deliver_skb(skb, pt_prev, orig_dev); 3079 pt_prev = NULL; 3080 } 3081 skb = rx_handler(skb); 3082 if (!skb) 3083 goto out; 3084 } 3085 3086 if (vlan_tx_tag_present(skb)) { 3087 if (pt_prev) { 3088 ret = deliver_skb(skb, pt_prev, orig_dev); 3089 pt_prev = NULL; 3090 } 3091 if (vlan_hwaccel_do_receive(&skb)) { 3092 ret = __netif_receive_skb(skb); 3093 goto out; 3094 } else if (unlikely(!skb)) 3095 goto out; 3096 } 3097 3098 /* 3099 * Make sure frames received on VLAN interfaces stacked on 3100 * bonding interfaces still make their way to any base bonding 3101 * device that may have registered for a specific ptype. The 3102 * handler may have to adjust skb->dev and orig_dev. 3103 */ 3104 orig_or_bond = orig_dev; 3105 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 3106 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 3107 orig_or_bond = vlan_dev_real_dev(skb->dev); 3108 } 3109 3110 type = skb->protocol; 3111 list_for_each_entry_rcu(ptype, 3112 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3113 if (ptype->type == type && (ptype->dev == null_or_orig || 3114 ptype->dev == skb->dev || ptype->dev == orig_dev || 3115 ptype->dev == orig_or_bond)) { 3116 if (pt_prev) 3117 ret = deliver_skb(skb, pt_prev, orig_dev); 3118 pt_prev = ptype; 3119 } 3120 } 3121 3122 if (pt_prev) { 3123 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3124 } else { 3125 atomic_long_inc(&skb->dev->rx_dropped); 3126 kfree_skb(skb); 3127 /* Jamal, now you will not able to escape explaining 3128 * me how you were going to use this. :-) 3129 */ 3130 ret = NET_RX_DROP; 3131 } 3132 3133 out: 3134 rcu_read_unlock(); 3135 return ret; 3136 } 3137 3138 /** 3139 * netif_receive_skb - process receive buffer from network 3140 * @skb: buffer to process 3141 * 3142 * netif_receive_skb() is the main receive data processing function. 3143 * It always succeeds. The buffer may be dropped during processing 3144 * for congestion control or by the protocol layers. 3145 * 3146 * This function may only be called from softirq context and interrupts 3147 * should be enabled. 3148 * 3149 * Return values (usually ignored): 3150 * NET_RX_SUCCESS: no congestion 3151 * NET_RX_DROP: packet was dropped 3152 */ 3153 int netif_receive_skb(struct sk_buff *skb) 3154 { 3155 if (netdev_tstamp_prequeue) 3156 net_timestamp_check(skb); 3157 3158 if (skb_defer_rx_timestamp(skb)) 3159 return NET_RX_SUCCESS; 3160 3161 #ifdef CONFIG_RPS 3162 { 3163 struct rps_dev_flow voidflow, *rflow = &voidflow; 3164 int cpu, ret; 3165 3166 rcu_read_lock(); 3167 3168 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3169 3170 if (cpu >= 0) { 3171 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3172 rcu_read_unlock(); 3173 } else { 3174 rcu_read_unlock(); 3175 ret = __netif_receive_skb(skb); 3176 } 3177 3178 return ret; 3179 } 3180 #else 3181 return __netif_receive_skb(skb); 3182 #endif 3183 } 3184 EXPORT_SYMBOL(netif_receive_skb); 3185 3186 /* Network device is going away, flush any packets still pending 3187 * Called with irqs disabled. 3188 */ 3189 static void flush_backlog(void *arg) 3190 { 3191 struct net_device *dev = arg; 3192 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3193 struct sk_buff *skb, *tmp; 3194 3195 rps_lock(sd); 3196 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3197 if (skb->dev == dev) { 3198 __skb_unlink(skb, &sd->input_pkt_queue); 3199 kfree_skb(skb); 3200 input_queue_head_incr(sd); 3201 } 3202 } 3203 rps_unlock(sd); 3204 3205 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3206 if (skb->dev == dev) { 3207 __skb_unlink(skb, &sd->process_queue); 3208 kfree_skb(skb); 3209 input_queue_head_incr(sd); 3210 } 3211 } 3212 } 3213 3214 static int napi_gro_complete(struct sk_buff *skb) 3215 { 3216 struct packet_type *ptype; 3217 __be16 type = skb->protocol; 3218 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3219 int err = -ENOENT; 3220 3221 if (NAPI_GRO_CB(skb)->count == 1) { 3222 skb_shinfo(skb)->gso_size = 0; 3223 goto out; 3224 } 3225 3226 rcu_read_lock(); 3227 list_for_each_entry_rcu(ptype, head, list) { 3228 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3229 continue; 3230 3231 err = ptype->gro_complete(skb); 3232 break; 3233 } 3234 rcu_read_unlock(); 3235 3236 if (err) { 3237 WARN_ON(&ptype->list == head); 3238 kfree_skb(skb); 3239 return NET_RX_SUCCESS; 3240 } 3241 3242 out: 3243 return netif_receive_skb(skb); 3244 } 3245 3246 inline void napi_gro_flush(struct napi_struct *napi) 3247 { 3248 struct sk_buff *skb, *next; 3249 3250 for (skb = napi->gro_list; skb; skb = next) { 3251 next = skb->next; 3252 skb->next = NULL; 3253 napi_gro_complete(skb); 3254 } 3255 3256 napi->gro_count = 0; 3257 napi->gro_list = NULL; 3258 } 3259 EXPORT_SYMBOL(napi_gro_flush); 3260 3261 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3262 { 3263 struct sk_buff **pp = NULL; 3264 struct packet_type *ptype; 3265 __be16 type = skb->protocol; 3266 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3267 int same_flow; 3268 int mac_len; 3269 enum gro_result ret; 3270 3271 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3272 goto normal; 3273 3274 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3275 goto normal; 3276 3277 rcu_read_lock(); 3278 list_for_each_entry_rcu(ptype, head, list) { 3279 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3280 continue; 3281 3282 skb_set_network_header(skb, skb_gro_offset(skb)); 3283 mac_len = skb->network_header - skb->mac_header; 3284 skb->mac_len = mac_len; 3285 NAPI_GRO_CB(skb)->same_flow = 0; 3286 NAPI_GRO_CB(skb)->flush = 0; 3287 NAPI_GRO_CB(skb)->free = 0; 3288 3289 pp = ptype->gro_receive(&napi->gro_list, skb); 3290 break; 3291 } 3292 rcu_read_unlock(); 3293 3294 if (&ptype->list == head) 3295 goto normal; 3296 3297 same_flow = NAPI_GRO_CB(skb)->same_flow; 3298 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3299 3300 if (pp) { 3301 struct sk_buff *nskb = *pp; 3302 3303 *pp = nskb->next; 3304 nskb->next = NULL; 3305 napi_gro_complete(nskb); 3306 napi->gro_count--; 3307 } 3308 3309 if (same_flow) 3310 goto ok; 3311 3312 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3313 goto normal; 3314 3315 napi->gro_count++; 3316 NAPI_GRO_CB(skb)->count = 1; 3317 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3318 skb->next = napi->gro_list; 3319 napi->gro_list = skb; 3320 ret = GRO_HELD; 3321 3322 pull: 3323 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3324 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3325 3326 BUG_ON(skb->end - skb->tail < grow); 3327 3328 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3329 3330 skb->tail += grow; 3331 skb->data_len -= grow; 3332 3333 skb_shinfo(skb)->frags[0].page_offset += grow; 3334 skb_shinfo(skb)->frags[0].size -= grow; 3335 3336 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3337 put_page(skb_shinfo(skb)->frags[0].page); 3338 memmove(skb_shinfo(skb)->frags, 3339 skb_shinfo(skb)->frags + 1, 3340 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3341 } 3342 } 3343 3344 ok: 3345 return ret; 3346 3347 normal: 3348 ret = GRO_NORMAL; 3349 goto pull; 3350 } 3351 EXPORT_SYMBOL(dev_gro_receive); 3352 3353 static inline gro_result_t 3354 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3355 { 3356 struct sk_buff *p; 3357 3358 for (p = napi->gro_list; p; p = p->next) { 3359 unsigned long diffs; 3360 3361 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3362 diffs |= p->vlan_tci ^ skb->vlan_tci; 3363 diffs |= compare_ether_header(skb_mac_header(p), 3364 skb_gro_mac_header(skb)); 3365 NAPI_GRO_CB(p)->same_flow = !diffs; 3366 NAPI_GRO_CB(p)->flush = 0; 3367 } 3368 3369 return dev_gro_receive(napi, skb); 3370 } 3371 3372 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3373 { 3374 switch (ret) { 3375 case GRO_NORMAL: 3376 if (netif_receive_skb(skb)) 3377 ret = GRO_DROP; 3378 break; 3379 3380 case GRO_DROP: 3381 case GRO_MERGED_FREE: 3382 kfree_skb(skb); 3383 break; 3384 3385 case GRO_HELD: 3386 case GRO_MERGED: 3387 break; 3388 } 3389 3390 return ret; 3391 } 3392 EXPORT_SYMBOL(napi_skb_finish); 3393 3394 void skb_gro_reset_offset(struct sk_buff *skb) 3395 { 3396 NAPI_GRO_CB(skb)->data_offset = 0; 3397 NAPI_GRO_CB(skb)->frag0 = NULL; 3398 NAPI_GRO_CB(skb)->frag0_len = 0; 3399 3400 if (skb->mac_header == skb->tail && 3401 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3402 NAPI_GRO_CB(skb)->frag0 = 3403 page_address(skb_shinfo(skb)->frags[0].page) + 3404 skb_shinfo(skb)->frags[0].page_offset; 3405 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3406 } 3407 } 3408 EXPORT_SYMBOL(skb_gro_reset_offset); 3409 3410 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3411 { 3412 skb_gro_reset_offset(skb); 3413 3414 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3415 } 3416 EXPORT_SYMBOL(napi_gro_receive); 3417 3418 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3419 { 3420 __skb_pull(skb, skb_headlen(skb)); 3421 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3422 skb->vlan_tci = 0; 3423 3424 napi->skb = skb; 3425 } 3426 3427 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3428 { 3429 struct sk_buff *skb = napi->skb; 3430 3431 if (!skb) { 3432 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3433 if (skb) 3434 napi->skb = skb; 3435 } 3436 return skb; 3437 } 3438 EXPORT_SYMBOL(napi_get_frags); 3439 3440 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3441 gro_result_t ret) 3442 { 3443 switch (ret) { 3444 case GRO_NORMAL: 3445 case GRO_HELD: 3446 skb->protocol = eth_type_trans(skb, skb->dev); 3447 3448 if (ret == GRO_HELD) 3449 skb_gro_pull(skb, -ETH_HLEN); 3450 else if (netif_receive_skb(skb)) 3451 ret = GRO_DROP; 3452 break; 3453 3454 case GRO_DROP: 3455 case GRO_MERGED_FREE: 3456 napi_reuse_skb(napi, skb); 3457 break; 3458 3459 case GRO_MERGED: 3460 break; 3461 } 3462 3463 return ret; 3464 } 3465 EXPORT_SYMBOL(napi_frags_finish); 3466 3467 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3468 { 3469 struct sk_buff *skb = napi->skb; 3470 struct ethhdr *eth; 3471 unsigned int hlen; 3472 unsigned int off; 3473 3474 napi->skb = NULL; 3475 3476 skb_reset_mac_header(skb); 3477 skb_gro_reset_offset(skb); 3478 3479 off = skb_gro_offset(skb); 3480 hlen = off + sizeof(*eth); 3481 eth = skb_gro_header_fast(skb, off); 3482 if (skb_gro_header_hard(skb, hlen)) { 3483 eth = skb_gro_header_slow(skb, hlen, off); 3484 if (unlikely(!eth)) { 3485 napi_reuse_skb(napi, skb); 3486 skb = NULL; 3487 goto out; 3488 } 3489 } 3490 3491 skb_gro_pull(skb, sizeof(*eth)); 3492 3493 /* 3494 * This works because the only protocols we care about don't require 3495 * special handling. We'll fix it up properly at the end. 3496 */ 3497 skb->protocol = eth->h_proto; 3498 3499 out: 3500 return skb; 3501 } 3502 EXPORT_SYMBOL(napi_frags_skb); 3503 3504 gro_result_t napi_gro_frags(struct napi_struct *napi) 3505 { 3506 struct sk_buff *skb = napi_frags_skb(napi); 3507 3508 if (!skb) 3509 return GRO_DROP; 3510 3511 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3512 } 3513 EXPORT_SYMBOL(napi_gro_frags); 3514 3515 /* 3516 * net_rps_action sends any pending IPI's for rps. 3517 * Note: called with local irq disabled, but exits with local irq enabled. 3518 */ 3519 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3520 { 3521 #ifdef CONFIG_RPS 3522 struct softnet_data *remsd = sd->rps_ipi_list; 3523 3524 if (remsd) { 3525 sd->rps_ipi_list = NULL; 3526 3527 local_irq_enable(); 3528 3529 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3530 while (remsd) { 3531 struct softnet_data *next = remsd->rps_ipi_next; 3532 3533 if (cpu_online(remsd->cpu)) 3534 __smp_call_function_single(remsd->cpu, 3535 &remsd->csd, 0); 3536 remsd = next; 3537 } 3538 } else 3539 #endif 3540 local_irq_enable(); 3541 } 3542 3543 static int process_backlog(struct napi_struct *napi, int quota) 3544 { 3545 int work = 0; 3546 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3547 3548 #ifdef CONFIG_RPS 3549 /* Check if we have pending ipi, its better to send them now, 3550 * not waiting net_rx_action() end. 3551 */ 3552 if (sd->rps_ipi_list) { 3553 local_irq_disable(); 3554 net_rps_action_and_irq_enable(sd); 3555 } 3556 #endif 3557 napi->weight = weight_p; 3558 local_irq_disable(); 3559 while (work < quota) { 3560 struct sk_buff *skb; 3561 unsigned int qlen; 3562 3563 while ((skb = __skb_dequeue(&sd->process_queue))) { 3564 local_irq_enable(); 3565 __netif_receive_skb(skb); 3566 local_irq_disable(); 3567 input_queue_head_incr(sd); 3568 if (++work >= quota) { 3569 local_irq_enable(); 3570 return work; 3571 } 3572 } 3573 3574 rps_lock(sd); 3575 qlen = skb_queue_len(&sd->input_pkt_queue); 3576 if (qlen) 3577 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3578 &sd->process_queue); 3579 3580 if (qlen < quota - work) { 3581 /* 3582 * Inline a custom version of __napi_complete(). 3583 * only current cpu owns and manipulates this napi, 3584 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3585 * we can use a plain write instead of clear_bit(), 3586 * and we dont need an smp_mb() memory barrier. 3587 */ 3588 list_del(&napi->poll_list); 3589 napi->state = 0; 3590 3591 quota = work + qlen; 3592 } 3593 rps_unlock(sd); 3594 } 3595 local_irq_enable(); 3596 3597 return work; 3598 } 3599 3600 /** 3601 * __napi_schedule - schedule for receive 3602 * @n: entry to schedule 3603 * 3604 * The entry's receive function will be scheduled to run 3605 */ 3606 void __napi_schedule(struct napi_struct *n) 3607 { 3608 unsigned long flags; 3609 3610 local_irq_save(flags); 3611 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3612 local_irq_restore(flags); 3613 } 3614 EXPORT_SYMBOL(__napi_schedule); 3615 3616 void __napi_complete(struct napi_struct *n) 3617 { 3618 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3619 BUG_ON(n->gro_list); 3620 3621 list_del(&n->poll_list); 3622 smp_mb__before_clear_bit(); 3623 clear_bit(NAPI_STATE_SCHED, &n->state); 3624 } 3625 EXPORT_SYMBOL(__napi_complete); 3626 3627 void napi_complete(struct napi_struct *n) 3628 { 3629 unsigned long flags; 3630 3631 /* 3632 * don't let napi dequeue from the cpu poll list 3633 * just in case its running on a different cpu 3634 */ 3635 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3636 return; 3637 3638 napi_gro_flush(n); 3639 local_irq_save(flags); 3640 __napi_complete(n); 3641 local_irq_restore(flags); 3642 } 3643 EXPORT_SYMBOL(napi_complete); 3644 3645 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3646 int (*poll)(struct napi_struct *, int), int weight) 3647 { 3648 INIT_LIST_HEAD(&napi->poll_list); 3649 napi->gro_count = 0; 3650 napi->gro_list = NULL; 3651 napi->skb = NULL; 3652 napi->poll = poll; 3653 napi->weight = weight; 3654 list_add(&napi->dev_list, &dev->napi_list); 3655 napi->dev = dev; 3656 #ifdef CONFIG_NETPOLL 3657 spin_lock_init(&napi->poll_lock); 3658 napi->poll_owner = -1; 3659 #endif 3660 set_bit(NAPI_STATE_SCHED, &napi->state); 3661 } 3662 EXPORT_SYMBOL(netif_napi_add); 3663 3664 void netif_napi_del(struct napi_struct *napi) 3665 { 3666 struct sk_buff *skb, *next; 3667 3668 list_del_init(&napi->dev_list); 3669 napi_free_frags(napi); 3670 3671 for (skb = napi->gro_list; skb; skb = next) { 3672 next = skb->next; 3673 skb->next = NULL; 3674 kfree_skb(skb); 3675 } 3676 3677 napi->gro_list = NULL; 3678 napi->gro_count = 0; 3679 } 3680 EXPORT_SYMBOL(netif_napi_del); 3681 3682 static void net_rx_action(struct softirq_action *h) 3683 { 3684 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3685 unsigned long time_limit = jiffies + 2; 3686 int budget = netdev_budget; 3687 void *have; 3688 3689 local_irq_disable(); 3690 3691 while (!list_empty(&sd->poll_list)) { 3692 struct napi_struct *n; 3693 int work, weight; 3694 3695 /* If softirq window is exhuasted then punt. 3696 * Allow this to run for 2 jiffies since which will allow 3697 * an average latency of 1.5/HZ. 3698 */ 3699 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3700 goto softnet_break; 3701 3702 local_irq_enable(); 3703 3704 /* Even though interrupts have been re-enabled, this 3705 * access is safe because interrupts can only add new 3706 * entries to the tail of this list, and only ->poll() 3707 * calls can remove this head entry from the list. 3708 */ 3709 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3710 3711 have = netpoll_poll_lock(n); 3712 3713 weight = n->weight; 3714 3715 /* This NAPI_STATE_SCHED test is for avoiding a race 3716 * with netpoll's poll_napi(). Only the entity which 3717 * obtains the lock and sees NAPI_STATE_SCHED set will 3718 * actually make the ->poll() call. Therefore we avoid 3719 * accidently calling ->poll() when NAPI is not scheduled. 3720 */ 3721 work = 0; 3722 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3723 work = n->poll(n, weight); 3724 trace_napi_poll(n); 3725 } 3726 3727 WARN_ON_ONCE(work > weight); 3728 3729 budget -= work; 3730 3731 local_irq_disable(); 3732 3733 /* Drivers must not modify the NAPI state if they 3734 * consume the entire weight. In such cases this code 3735 * still "owns" the NAPI instance and therefore can 3736 * move the instance around on the list at-will. 3737 */ 3738 if (unlikely(work == weight)) { 3739 if (unlikely(napi_disable_pending(n))) { 3740 local_irq_enable(); 3741 napi_complete(n); 3742 local_irq_disable(); 3743 } else 3744 list_move_tail(&n->poll_list, &sd->poll_list); 3745 } 3746 3747 netpoll_poll_unlock(have); 3748 } 3749 out: 3750 net_rps_action_and_irq_enable(sd); 3751 3752 #ifdef CONFIG_NET_DMA 3753 /* 3754 * There may not be any more sk_buffs coming right now, so push 3755 * any pending DMA copies to hardware 3756 */ 3757 dma_issue_pending_all(); 3758 #endif 3759 3760 return; 3761 3762 softnet_break: 3763 sd->time_squeeze++; 3764 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3765 goto out; 3766 } 3767 3768 static gifconf_func_t *gifconf_list[NPROTO]; 3769 3770 /** 3771 * register_gifconf - register a SIOCGIF handler 3772 * @family: Address family 3773 * @gifconf: Function handler 3774 * 3775 * Register protocol dependent address dumping routines. The handler 3776 * that is passed must not be freed or reused until it has been replaced 3777 * by another handler. 3778 */ 3779 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3780 { 3781 if (family >= NPROTO) 3782 return -EINVAL; 3783 gifconf_list[family] = gifconf; 3784 return 0; 3785 } 3786 EXPORT_SYMBOL(register_gifconf); 3787 3788 3789 /* 3790 * Map an interface index to its name (SIOCGIFNAME) 3791 */ 3792 3793 /* 3794 * We need this ioctl for efficient implementation of the 3795 * if_indextoname() function required by the IPv6 API. Without 3796 * it, we would have to search all the interfaces to find a 3797 * match. --pb 3798 */ 3799 3800 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3801 { 3802 struct net_device *dev; 3803 struct ifreq ifr; 3804 3805 /* 3806 * Fetch the caller's info block. 3807 */ 3808 3809 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3810 return -EFAULT; 3811 3812 rcu_read_lock(); 3813 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3814 if (!dev) { 3815 rcu_read_unlock(); 3816 return -ENODEV; 3817 } 3818 3819 strcpy(ifr.ifr_name, dev->name); 3820 rcu_read_unlock(); 3821 3822 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3823 return -EFAULT; 3824 return 0; 3825 } 3826 3827 /* 3828 * Perform a SIOCGIFCONF call. This structure will change 3829 * size eventually, and there is nothing I can do about it. 3830 * Thus we will need a 'compatibility mode'. 3831 */ 3832 3833 static int dev_ifconf(struct net *net, char __user *arg) 3834 { 3835 struct ifconf ifc; 3836 struct net_device *dev; 3837 char __user *pos; 3838 int len; 3839 int total; 3840 int i; 3841 3842 /* 3843 * Fetch the caller's info block. 3844 */ 3845 3846 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3847 return -EFAULT; 3848 3849 pos = ifc.ifc_buf; 3850 len = ifc.ifc_len; 3851 3852 /* 3853 * Loop over the interfaces, and write an info block for each. 3854 */ 3855 3856 total = 0; 3857 for_each_netdev(net, dev) { 3858 for (i = 0; i < NPROTO; i++) { 3859 if (gifconf_list[i]) { 3860 int done; 3861 if (!pos) 3862 done = gifconf_list[i](dev, NULL, 0); 3863 else 3864 done = gifconf_list[i](dev, pos + total, 3865 len - total); 3866 if (done < 0) 3867 return -EFAULT; 3868 total += done; 3869 } 3870 } 3871 } 3872 3873 /* 3874 * All done. Write the updated control block back to the caller. 3875 */ 3876 ifc.ifc_len = total; 3877 3878 /* 3879 * Both BSD and Solaris return 0 here, so we do too. 3880 */ 3881 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3882 } 3883 3884 #ifdef CONFIG_PROC_FS 3885 /* 3886 * This is invoked by the /proc filesystem handler to display a device 3887 * in detail. 3888 */ 3889 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3890 __acquires(RCU) 3891 { 3892 struct net *net = seq_file_net(seq); 3893 loff_t off; 3894 struct net_device *dev; 3895 3896 rcu_read_lock(); 3897 if (!*pos) 3898 return SEQ_START_TOKEN; 3899 3900 off = 1; 3901 for_each_netdev_rcu(net, dev) 3902 if (off++ == *pos) 3903 return dev; 3904 3905 return NULL; 3906 } 3907 3908 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3909 { 3910 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3911 first_net_device(seq_file_net(seq)) : 3912 next_net_device((struct net_device *)v); 3913 3914 ++*pos; 3915 return rcu_dereference(dev); 3916 } 3917 3918 void dev_seq_stop(struct seq_file *seq, void *v) 3919 __releases(RCU) 3920 { 3921 rcu_read_unlock(); 3922 } 3923 3924 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3925 { 3926 struct rtnl_link_stats64 temp; 3927 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 3928 3929 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 3930 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 3931 dev->name, stats->rx_bytes, stats->rx_packets, 3932 stats->rx_errors, 3933 stats->rx_dropped + stats->rx_missed_errors, 3934 stats->rx_fifo_errors, 3935 stats->rx_length_errors + stats->rx_over_errors + 3936 stats->rx_crc_errors + stats->rx_frame_errors, 3937 stats->rx_compressed, stats->multicast, 3938 stats->tx_bytes, stats->tx_packets, 3939 stats->tx_errors, stats->tx_dropped, 3940 stats->tx_fifo_errors, stats->collisions, 3941 stats->tx_carrier_errors + 3942 stats->tx_aborted_errors + 3943 stats->tx_window_errors + 3944 stats->tx_heartbeat_errors, 3945 stats->tx_compressed); 3946 } 3947 3948 /* 3949 * Called from the PROCfs module. This now uses the new arbitrary sized 3950 * /proc/net interface to create /proc/net/dev 3951 */ 3952 static int dev_seq_show(struct seq_file *seq, void *v) 3953 { 3954 if (v == SEQ_START_TOKEN) 3955 seq_puts(seq, "Inter-| Receive " 3956 " | Transmit\n" 3957 " face |bytes packets errs drop fifo frame " 3958 "compressed multicast|bytes packets errs " 3959 "drop fifo colls carrier compressed\n"); 3960 else 3961 dev_seq_printf_stats(seq, v); 3962 return 0; 3963 } 3964 3965 static struct softnet_data *softnet_get_online(loff_t *pos) 3966 { 3967 struct softnet_data *sd = NULL; 3968 3969 while (*pos < nr_cpu_ids) 3970 if (cpu_online(*pos)) { 3971 sd = &per_cpu(softnet_data, *pos); 3972 break; 3973 } else 3974 ++*pos; 3975 return sd; 3976 } 3977 3978 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3979 { 3980 return softnet_get_online(pos); 3981 } 3982 3983 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3984 { 3985 ++*pos; 3986 return softnet_get_online(pos); 3987 } 3988 3989 static void softnet_seq_stop(struct seq_file *seq, void *v) 3990 { 3991 } 3992 3993 static int softnet_seq_show(struct seq_file *seq, void *v) 3994 { 3995 struct softnet_data *sd = v; 3996 3997 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3998 sd->processed, sd->dropped, sd->time_squeeze, 0, 3999 0, 0, 0, 0, /* was fastroute */ 4000 sd->cpu_collision, sd->received_rps); 4001 return 0; 4002 } 4003 4004 static const struct seq_operations dev_seq_ops = { 4005 .start = dev_seq_start, 4006 .next = dev_seq_next, 4007 .stop = dev_seq_stop, 4008 .show = dev_seq_show, 4009 }; 4010 4011 static int dev_seq_open(struct inode *inode, struct file *file) 4012 { 4013 return seq_open_net(inode, file, &dev_seq_ops, 4014 sizeof(struct seq_net_private)); 4015 } 4016 4017 static const struct file_operations dev_seq_fops = { 4018 .owner = THIS_MODULE, 4019 .open = dev_seq_open, 4020 .read = seq_read, 4021 .llseek = seq_lseek, 4022 .release = seq_release_net, 4023 }; 4024 4025 static const struct seq_operations softnet_seq_ops = { 4026 .start = softnet_seq_start, 4027 .next = softnet_seq_next, 4028 .stop = softnet_seq_stop, 4029 .show = softnet_seq_show, 4030 }; 4031 4032 static int softnet_seq_open(struct inode *inode, struct file *file) 4033 { 4034 return seq_open(file, &softnet_seq_ops); 4035 } 4036 4037 static const struct file_operations softnet_seq_fops = { 4038 .owner = THIS_MODULE, 4039 .open = softnet_seq_open, 4040 .read = seq_read, 4041 .llseek = seq_lseek, 4042 .release = seq_release, 4043 }; 4044 4045 static void *ptype_get_idx(loff_t pos) 4046 { 4047 struct packet_type *pt = NULL; 4048 loff_t i = 0; 4049 int t; 4050 4051 list_for_each_entry_rcu(pt, &ptype_all, list) { 4052 if (i == pos) 4053 return pt; 4054 ++i; 4055 } 4056 4057 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4058 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4059 if (i == pos) 4060 return pt; 4061 ++i; 4062 } 4063 } 4064 return NULL; 4065 } 4066 4067 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4068 __acquires(RCU) 4069 { 4070 rcu_read_lock(); 4071 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4072 } 4073 4074 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4075 { 4076 struct packet_type *pt; 4077 struct list_head *nxt; 4078 int hash; 4079 4080 ++*pos; 4081 if (v == SEQ_START_TOKEN) 4082 return ptype_get_idx(0); 4083 4084 pt = v; 4085 nxt = pt->list.next; 4086 if (pt->type == htons(ETH_P_ALL)) { 4087 if (nxt != &ptype_all) 4088 goto found; 4089 hash = 0; 4090 nxt = ptype_base[0].next; 4091 } else 4092 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4093 4094 while (nxt == &ptype_base[hash]) { 4095 if (++hash >= PTYPE_HASH_SIZE) 4096 return NULL; 4097 nxt = ptype_base[hash].next; 4098 } 4099 found: 4100 return list_entry(nxt, struct packet_type, list); 4101 } 4102 4103 static void ptype_seq_stop(struct seq_file *seq, void *v) 4104 __releases(RCU) 4105 { 4106 rcu_read_unlock(); 4107 } 4108 4109 static int ptype_seq_show(struct seq_file *seq, void *v) 4110 { 4111 struct packet_type *pt = v; 4112 4113 if (v == SEQ_START_TOKEN) 4114 seq_puts(seq, "Type Device Function\n"); 4115 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4116 if (pt->type == htons(ETH_P_ALL)) 4117 seq_puts(seq, "ALL "); 4118 else 4119 seq_printf(seq, "%04x", ntohs(pt->type)); 4120 4121 seq_printf(seq, " %-8s %pF\n", 4122 pt->dev ? pt->dev->name : "", pt->func); 4123 } 4124 4125 return 0; 4126 } 4127 4128 static const struct seq_operations ptype_seq_ops = { 4129 .start = ptype_seq_start, 4130 .next = ptype_seq_next, 4131 .stop = ptype_seq_stop, 4132 .show = ptype_seq_show, 4133 }; 4134 4135 static int ptype_seq_open(struct inode *inode, struct file *file) 4136 { 4137 return seq_open_net(inode, file, &ptype_seq_ops, 4138 sizeof(struct seq_net_private)); 4139 } 4140 4141 static const struct file_operations ptype_seq_fops = { 4142 .owner = THIS_MODULE, 4143 .open = ptype_seq_open, 4144 .read = seq_read, 4145 .llseek = seq_lseek, 4146 .release = seq_release_net, 4147 }; 4148 4149 4150 static int __net_init dev_proc_net_init(struct net *net) 4151 { 4152 int rc = -ENOMEM; 4153 4154 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4155 goto out; 4156 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4157 goto out_dev; 4158 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4159 goto out_softnet; 4160 4161 if (wext_proc_init(net)) 4162 goto out_ptype; 4163 rc = 0; 4164 out: 4165 return rc; 4166 out_ptype: 4167 proc_net_remove(net, "ptype"); 4168 out_softnet: 4169 proc_net_remove(net, "softnet_stat"); 4170 out_dev: 4171 proc_net_remove(net, "dev"); 4172 goto out; 4173 } 4174 4175 static void __net_exit dev_proc_net_exit(struct net *net) 4176 { 4177 wext_proc_exit(net); 4178 4179 proc_net_remove(net, "ptype"); 4180 proc_net_remove(net, "softnet_stat"); 4181 proc_net_remove(net, "dev"); 4182 } 4183 4184 static struct pernet_operations __net_initdata dev_proc_ops = { 4185 .init = dev_proc_net_init, 4186 .exit = dev_proc_net_exit, 4187 }; 4188 4189 static int __init dev_proc_init(void) 4190 { 4191 return register_pernet_subsys(&dev_proc_ops); 4192 } 4193 #else 4194 #define dev_proc_init() 0 4195 #endif /* CONFIG_PROC_FS */ 4196 4197 4198 /** 4199 * netdev_set_master - set up master/slave pair 4200 * @slave: slave device 4201 * @master: new master device 4202 * 4203 * Changes the master device of the slave. Pass %NULL to break the 4204 * bonding. The caller must hold the RTNL semaphore. On a failure 4205 * a negative errno code is returned. On success the reference counts 4206 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 4207 * function returns zero. 4208 */ 4209 int netdev_set_master(struct net_device *slave, struct net_device *master) 4210 { 4211 struct net_device *old = slave->master; 4212 4213 ASSERT_RTNL(); 4214 4215 if (master) { 4216 if (old) 4217 return -EBUSY; 4218 dev_hold(master); 4219 } 4220 4221 slave->master = master; 4222 4223 if (old) { 4224 synchronize_net(); 4225 dev_put(old); 4226 } 4227 if (master) 4228 slave->flags |= IFF_SLAVE; 4229 else 4230 slave->flags &= ~IFF_SLAVE; 4231 4232 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4233 return 0; 4234 } 4235 EXPORT_SYMBOL(netdev_set_master); 4236 4237 static void dev_change_rx_flags(struct net_device *dev, int flags) 4238 { 4239 const struct net_device_ops *ops = dev->netdev_ops; 4240 4241 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4242 ops->ndo_change_rx_flags(dev, flags); 4243 } 4244 4245 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4246 { 4247 unsigned short old_flags = dev->flags; 4248 uid_t uid; 4249 gid_t gid; 4250 4251 ASSERT_RTNL(); 4252 4253 dev->flags |= IFF_PROMISC; 4254 dev->promiscuity += inc; 4255 if (dev->promiscuity == 0) { 4256 /* 4257 * Avoid overflow. 4258 * If inc causes overflow, untouch promisc and return error. 4259 */ 4260 if (inc < 0) 4261 dev->flags &= ~IFF_PROMISC; 4262 else { 4263 dev->promiscuity -= inc; 4264 printk(KERN_WARNING "%s: promiscuity touches roof, " 4265 "set promiscuity failed, promiscuity feature " 4266 "of device might be broken.\n", dev->name); 4267 return -EOVERFLOW; 4268 } 4269 } 4270 if (dev->flags != old_flags) { 4271 printk(KERN_INFO "device %s %s promiscuous mode\n", 4272 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4273 "left"); 4274 if (audit_enabled) { 4275 current_uid_gid(&uid, &gid); 4276 audit_log(current->audit_context, GFP_ATOMIC, 4277 AUDIT_ANOM_PROMISCUOUS, 4278 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4279 dev->name, (dev->flags & IFF_PROMISC), 4280 (old_flags & IFF_PROMISC), 4281 audit_get_loginuid(current), 4282 uid, gid, 4283 audit_get_sessionid(current)); 4284 } 4285 4286 dev_change_rx_flags(dev, IFF_PROMISC); 4287 } 4288 return 0; 4289 } 4290 4291 /** 4292 * dev_set_promiscuity - update promiscuity count on a device 4293 * @dev: device 4294 * @inc: modifier 4295 * 4296 * Add or remove promiscuity from a device. While the count in the device 4297 * remains above zero the interface remains promiscuous. Once it hits zero 4298 * the device reverts back to normal filtering operation. A negative inc 4299 * value is used to drop promiscuity on the device. 4300 * Return 0 if successful or a negative errno code on error. 4301 */ 4302 int dev_set_promiscuity(struct net_device *dev, int inc) 4303 { 4304 unsigned short old_flags = dev->flags; 4305 int err; 4306 4307 err = __dev_set_promiscuity(dev, inc); 4308 if (err < 0) 4309 return err; 4310 if (dev->flags != old_flags) 4311 dev_set_rx_mode(dev); 4312 return err; 4313 } 4314 EXPORT_SYMBOL(dev_set_promiscuity); 4315 4316 /** 4317 * dev_set_allmulti - update allmulti count on a device 4318 * @dev: device 4319 * @inc: modifier 4320 * 4321 * Add or remove reception of all multicast frames to a device. While the 4322 * count in the device remains above zero the interface remains listening 4323 * to all interfaces. Once it hits zero the device reverts back to normal 4324 * filtering operation. A negative @inc value is used to drop the counter 4325 * when releasing a resource needing all multicasts. 4326 * Return 0 if successful or a negative errno code on error. 4327 */ 4328 4329 int dev_set_allmulti(struct net_device *dev, int inc) 4330 { 4331 unsigned short old_flags = dev->flags; 4332 4333 ASSERT_RTNL(); 4334 4335 dev->flags |= IFF_ALLMULTI; 4336 dev->allmulti += inc; 4337 if (dev->allmulti == 0) { 4338 /* 4339 * Avoid overflow. 4340 * If inc causes overflow, untouch allmulti and return error. 4341 */ 4342 if (inc < 0) 4343 dev->flags &= ~IFF_ALLMULTI; 4344 else { 4345 dev->allmulti -= inc; 4346 printk(KERN_WARNING "%s: allmulti touches roof, " 4347 "set allmulti failed, allmulti feature of " 4348 "device might be broken.\n", dev->name); 4349 return -EOVERFLOW; 4350 } 4351 } 4352 if (dev->flags ^ old_flags) { 4353 dev_change_rx_flags(dev, IFF_ALLMULTI); 4354 dev_set_rx_mode(dev); 4355 } 4356 return 0; 4357 } 4358 EXPORT_SYMBOL(dev_set_allmulti); 4359 4360 /* 4361 * Upload unicast and multicast address lists to device and 4362 * configure RX filtering. When the device doesn't support unicast 4363 * filtering it is put in promiscuous mode while unicast addresses 4364 * are present. 4365 */ 4366 void __dev_set_rx_mode(struct net_device *dev) 4367 { 4368 const struct net_device_ops *ops = dev->netdev_ops; 4369 4370 /* dev_open will call this function so the list will stay sane. */ 4371 if (!(dev->flags&IFF_UP)) 4372 return; 4373 4374 if (!netif_device_present(dev)) 4375 return; 4376 4377 if (ops->ndo_set_rx_mode) 4378 ops->ndo_set_rx_mode(dev); 4379 else { 4380 /* Unicast addresses changes may only happen under the rtnl, 4381 * therefore calling __dev_set_promiscuity here is safe. 4382 */ 4383 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4384 __dev_set_promiscuity(dev, 1); 4385 dev->uc_promisc = 1; 4386 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4387 __dev_set_promiscuity(dev, -1); 4388 dev->uc_promisc = 0; 4389 } 4390 4391 if (ops->ndo_set_multicast_list) 4392 ops->ndo_set_multicast_list(dev); 4393 } 4394 } 4395 4396 void dev_set_rx_mode(struct net_device *dev) 4397 { 4398 netif_addr_lock_bh(dev); 4399 __dev_set_rx_mode(dev); 4400 netif_addr_unlock_bh(dev); 4401 } 4402 4403 /** 4404 * dev_get_flags - get flags reported to userspace 4405 * @dev: device 4406 * 4407 * Get the combination of flag bits exported through APIs to userspace. 4408 */ 4409 unsigned dev_get_flags(const struct net_device *dev) 4410 { 4411 unsigned flags; 4412 4413 flags = (dev->flags & ~(IFF_PROMISC | 4414 IFF_ALLMULTI | 4415 IFF_RUNNING | 4416 IFF_LOWER_UP | 4417 IFF_DORMANT)) | 4418 (dev->gflags & (IFF_PROMISC | 4419 IFF_ALLMULTI)); 4420 4421 if (netif_running(dev)) { 4422 if (netif_oper_up(dev)) 4423 flags |= IFF_RUNNING; 4424 if (netif_carrier_ok(dev)) 4425 flags |= IFF_LOWER_UP; 4426 if (netif_dormant(dev)) 4427 flags |= IFF_DORMANT; 4428 } 4429 4430 return flags; 4431 } 4432 EXPORT_SYMBOL(dev_get_flags); 4433 4434 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4435 { 4436 int old_flags = dev->flags; 4437 int ret; 4438 4439 ASSERT_RTNL(); 4440 4441 /* 4442 * Set the flags on our device. 4443 */ 4444 4445 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4446 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4447 IFF_AUTOMEDIA)) | 4448 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4449 IFF_ALLMULTI)); 4450 4451 /* 4452 * Load in the correct multicast list now the flags have changed. 4453 */ 4454 4455 if ((old_flags ^ flags) & IFF_MULTICAST) 4456 dev_change_rx_flags(dev, IFF_MULTICAST); 4457 4458 dev_set_rx_mode(dev); 4459 4460 /* 4461 * Have we downed the interface. We handle IFF_UP ourselves 4462 * according to user attempts to set it, rather than blindly 4463 * setting it. 4464 */ 4465 4466 ret = 0; 4467 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4468 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4469 4470 if (!ret) 4471 dev_set_rx_mode(dev); 4472 } 4473 4474 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4475 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4476 4477 dev->gflags ^= IFF_PROMISC; 4478 dev_set_promiscuity(dev, inc); 4479 } 4480 4481 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4482 is important. Some (broken) drivers set IFF_PROMISC, when 4483 IFF_ALLMULTI is requested not asking us and not reporting. 4484 */ 4485 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4486 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4487 4488 dev->gflags ^= IFF_ALLMULTI; 4489 dev_set_allmulti(dev, inc); 4490 } 4491 4492 return ret; 4493 } 4494 4495 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4496 { 4497 unsigned int changes = dev->flags ^ old_flags; 4498 4499 if (changes & IFF_UP) { 4500 if (dev->flags & IFF_UP) 4501 call_netdevice_notifiers(NETDEV_UP, dev); 4502 else 4503 call_netdevice_notifiers(NETDEV_DOWN, dev); 4504 } 4505 4506 if (dev->flags & IFF_UP && 4507 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4508 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4509 } 4510 4511 /** 4512 * dev_change_flags - change device settings 4513 * @dev: device 4514 * @flags: device state flags 4515 * 4516 * Change settings on device based state flags. The flags are 4517 * in the userspace exported format. 4518 */ 4519 int dev_change_flags(struct net_device *dev, unsigned flags) 4520 { 4521 int ret, changes; 4522 int old_flags = dev->flags; 4523 4524 ret = __dev_change_flags(dev, flags); 4525 if (ret < 0) 4526 return ret; 4527 4528 changes = old_flags ^ dev->flags; 4529 if (changes) 4530 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4531 4532 __dev_notify_flags(dev, old_flags); 4533 return ret; 4534 } 4535 EXPORT_SYMBOL(dev_change_flags); 4536 4537 /** 4538 * dev_set_mtu - Change maximum transfer unit 4539 * @dev: device 4540 * @new_mtu: new transfer unit 4541 * 4542 * Change the maximum transfer size of the network device. 4543 */ 4544 int dev_set_mtu(struct net_device *dev, int new_mtu) 4545 { 4546 const struct net_device_ops *ops = dev->netdev_ops; 4547 int err; 4548 4549 if (new_mtu == dev->mtu) 4550 return 0; 4551 4552 /* MTU must be positive. */ 4553 if (new_mtu < 0) 4554 return -EINVAL; 4555 4556 if (!netif_device_present(dev)) 4557 return -ENODEV; 4558 4559 err = 0; 4560 if (ops->ndo_change_mtu) 4561 err = ops->ndo_change_mtu(dev, new_mtu); 4562 else 4563 dev->mtu = new_mtu; 4564 4565 if (!err && dev->flags & IFF_UP) 4566 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4567 return err; 4568 } 4569 EXPORT_SYMBOL(dev_set_mtu); 4570 4571 /** 4572 * dev_set_mac_address - Change Media Access Control Address 4573 * @dev: device 4574 * @sa: new address 4575 * 4576 * Change the hardware (MAC) address of the device 4577 */ 4578 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4579 { 4580 const struct net_device_ops *ops = dev->netdev_ops; 4581 int err; 4582 4583 if (!ops->ndo_set_mac_address) 4584 return -EOPNOTSUPP; 4585 if (sa->sa_family != dev->type) 4586 return -EINVAL; 4587 if (!netif_device_present(dev)) 4588 return -ENODEV; 4589 err = ops->ndo_set_mac_address(dev, sa); 4590 if (!err) 4591 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4592 return err; 4593 } 4594 EXPORT_SYMBOL(dev_set_mac_address); 4595 4596 /* 4597 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4598 */ 4599 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4600 { 4601 int err; 4602 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4603 4604 if (!dev) 4605 return -ENODEV; 4606 4607 switch (cmd) { 4608 case SIOCGIFFLAGS: /* Get interface flags */ 4609 ifr->ifr_flags = (short) dev_get_flags(dev); 4610 return 0; 4611 4612 case SIOCGIFMETRIC: /* Get the metric on the interface 4613 (currently unused) */ 4614 ifr->ifr_metric = 0; 4615 return 0; 4616 4617 case SIOCGIFMTU: /* Get the MTU of a device */ 4618 ifr->ifr_mtu = dev->mtu; 4619 return 0; 4620 4621 case SIOCGIFHWADDR: 4622 if (!dev->addr_len) 4623 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4624 else 4625 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4626 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4627 ifr->ifr_hwaddr.sa_family = dev->type; 4628 return 0; 4629 4630 case SIOCGIFSLAVE: 4631 err = -EINVAL; 4632 break; 4633 4634 case SIOCGIFMAP: 4635 ifr->ifr_map.mem_start = dev->mem_start; 4636 ifr->ifr_map.mem_end = dev->mem_end; 4637 ifr->ifr_map.base_addr = dev->base_addr; 4638 ifr->ifr_map.irq = dev->irq; 4639 ifr->ifr_map.dma = dev->dma; 4640 ifr->ifr_map.port = dev->if_port; 4641 return 0; 4642 4643 case SIOCGIFINDEX: 4644 ifr->ifr_ifindex = dev->ifindex; 4645 return 0; 4646 4647 case SIOCGIFTXQLEN: 4648 ifr->ifr_qlen = dev->tx_queue_len; 4649 return 0; 4650 4651 default: 4652 /* dev_ioctl() should ensure this case 4653 * is never reached 4654 */ 4655 WARN_ON(1); 4656 err = -EINVAL; 4657 break; 4658 4659 } 4660 return err; 4661 } 4662 4663 /* 4664 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4665 */ 4666 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4667 { 4668 int err; 4669 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4670 const struct net_device_ops *ops; 4671 4672 if (!dev) 4673 return -ENODEV; 4674 4675 ops = dev->netdev_ops; 4676 4677 switch (cmd) { 4678 case SIOCSIFFLAGS: /* Set interface flags */ 4679 return dev_change_flags(dev, ifr->ifr_flags); 4680 4681 case SIOCSIFMETRIC: /* Set the metric on the interface 4682 (currently unused) */ 4683 return -EOPNOTSUPP; 4684 4685 case SIOCSIFMTU: /* Set the MTU of a device */ 4686 return dev_set_mtu(dev, ifr->ifr_mtu); 4687 4688 case SIOCSIFHWADDR: 4689 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4690 4691 case SIOCSIFHWBROADCAST: 4692 if (ifr->ifr_hwaddr.sa_family != dev->type) 4693 return -EINVAL; 4694 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4695 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4696 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4697 return 0; 4698 4699 case SIOCSIFMAP: 4700 if (ops->ndo_set_config) { 4701 if (!netif_device_present(dev)) 4702 return -ENODEV; 4703 return ops->ndo_set_config(dev, &ifr->ifr_map); 4704 } 4705 return -EOPNOTSUPP; 4706 4707 case SIOCADDMULTI: 4708 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4709 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4710 return -EINVAL; 4711 if (!netif_device_present(dev)) 4712 return -ENODEV; 4713 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4714 4715 case SIOCDELMULTI: 4716 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4717 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4718 return -EINVAL; 4719 if (!netif_device_present(dev)) 4720 return -ENODEV; 4721 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4722 4723 case SIOCSIFTXQLEN: 4724 if (ifr->ifr_qlen < 0) 4725 return -EINVAL; 4726 dev->tx_queue_len = ifr->ifr_qlen; 4727 return 0; 4728 4729 case SIOCSIFNAME: 4730 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4731 return dev_change_name(dev, ifr->ifr_newname); 4732 4733 /* 4734 * Unknown or private ioctl 4735 */ 4736 default: 4737 if ((cmd >= SIOCDEVPRIVATE && 4738 cmd <= SIOCDEVPRIVATE + 15) || 4739 cmd == SIOCBONDENSLAVE || 4740 cmd == SIOCBONDRELEASE || 4741 cmd == SIOCBONDSETHWADDR || 4742 cmd == SIOCBONDSLAVEINFOQUERY || 4743 cmd == SIOCBONDINFOQUERY || 4744 cmd == SIOCBONDCHANGEACTIVE || 4745 cmd == SIOCGMIIPHY || 4746 cmd == SIOCGMIIREG || 4747 cmd == SIOCSMIIREG || 4748 cmd == SIOCBRADDIF || 4749 cmd == SIOCBRDELIF || 4750 cmd == SIOCSHWTSTAMP || 4751 cmd == SIOCWANDEV) { 4752 err = -EOPNOTSUPP; 4753 if (ops->ndo_do_ioctl) { 4754 if (netif_device_present(dev)) 4755 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4756 else 4757 err = -ENODEV; 4758 } 4759 } else 4760 err = -EINVAL; 4761 4762 } 4763 return err; 4764 } 4765 4766 /* 4767 * This function handles all "interface"-type I/O control requests. The actual 4768 * 'doing' part of this is dev_ifsioc above. 4769 */ 4770 4771 /** 4772 * dev_ioctl - network device ioctl 4773 * @net: the applicable net namespace 4774 * @cmd: command to issue 4775 * @arg: pointer to a struct ifreq in user space 4776 * 4777 * Issue ioctl functions to devices. This is normally called by the 4778 * user space syscall interfaces but can sometimes be useful for 4779 * other purposes. The return value is the return from the syscall if 4780 * positive or a negative errno code on error. 4781 */ 4782 4783 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4784 { 4785 struct ifreq ifr; 4786 int ret; 4787 char *colon; 4788 4789 /* One special case: SIOCGIFCONF takes ifconf argument 4790 and requires shared lock, because it sleeps writing 4791 to user space. 4792 */ 4793 4794 if (cmd == SIOCGIFCONF) { 4795 rtnl_lock(); 4796 ret = dev_ifconf(net, (char __user *) arg); 4797 rtnl_unlock(); 4798 return ret; 4799 } 4800 if (cmd == SIOCGIFNAME) 4801 return dev_ifname(net, (struct ifreq __user *)arg); 4802 4803 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4804 return -EFAULT; 4805 4806 ifr.ifr_name[IFNAMSIZ-1] = 0; 4807 4808 colon = strchr(ifr.ifr_name, ':'); 4809 if (colon) 4810 *colon = 0; 4811 4812 /* 4813 * See which interface the caller is talking about. 4814 */ 4815 4816 switch (cmd) { 4817 /* 4818 * These ioctl calls: 4819 * - can be done by all. 4820 * - atomic and do not require locking. 4821 * - return a value 4822 */ 4823 case SIOCGIFFLAGS: 4824 case SIOCGIFMETRIC: 4825 case SIOCGIFMTU: 4826 case SIOCGIFHWADDR: 4827 case SIOCGIFSLAVE: 4828 case SIOCGIFMAP: 4829 case SIOCGIFINDEX: 4830 case SIOCGIFTXQLEN: 4831 dev_load(net, ifr.ifr_name); 4832 rcu_read_lock(); 4833 ret = dev_ifsioc_locked(net, &ifr, cmd); 4834 rcu_read_unlock(); 4835 if (!ret) { 4836 if (colon) 4837 *colon = ':'; 4838 if (copy_to_user(arg, &ifr, 4839 sizeof(struct ifreq))) 4840 ret = -EFAULT; 4841 } 4842 return ret; 4843 4844 case SIOCETHTOOL: 4845 dev_load(net, ifr.ifr_name); 4846 rtnl_lock(); 4847 ret = dev_ethtool(net, &ifr); 4848 rtnl_unlock(); 4849 if (!ret) { 4850 if (colon) 4851 *colon = ':'; 4852 if (copy_to_user(arg, &ifr, 4853 sizeof(struct ifreq))) 4854 ret = -EFAULT; 4855 } 4856 return ret; 4857 4858 /* 4859 * These ioctl calls: 4860 * - require superuser power. 4861 * - require strict serialization. 4862 * - return a value 4863 */ 4864 case SIOCGMIIPHY: 4865 case SIOCGMIIREG: 4866 case SIOCSIFNAME: 4867 if (!capable(CAP_NET_ADMIN)) 4868 return -EPERM; 4869 dev_load(net, ifr.ifr_name); 4870 rtnl_lock(); 4871 ret = dev_ifsioc(net, &ifr, cmd); 4872 rtnl_unlock(); 4873 if (!ret) { 4874 if (colon) 4875 *colon = ':'; 4876 if (copy_to_user(arg, &ifr, 4877 sizeof(struct ifreq))) 4878 ret = -EFAULT; 4879 } 4880 return ret; 4881 4882 /* 4883 * These ioctl calls: 4884 * - require superuser power. 4885 * - require strict serialization. 4886 * - do not return a value 4887 */ 4888 case SIOCSIFFLAGS: 4889 case SIOCSIFMETRIC: 4890 case SIOCSIFMTU: 4891 case SIOCSIFMAP: 4892 case SIOCSIFHWADDR: 4893 case SIOCSIFSLAVE: 4894 case SIOCADDMULTI: 4895 case SIOCDELMULTI: 4896 case SIOCSIFHWBROADCAST: 4897 case SIOCSIFTXQLEN: 4898 case SIOCSMIIREG: 4899 case SIOCBONDENSLAVE: 4900 case SIOCBONDRELEASE: 4901 case SIOCBONDSETHWADDR: 4902 case SIOCBONDCHANGEACTIVE: 4903 case SIOCBRADDIF: 4904 case SIOCBRDELIF: 4905 case SIOCSHWTSTAMP: 4906 if (!capable(CAP_NET_ADMIN)) 4907 return -EPERM; 4908 /* fall through */ 4909 case SIOCBONDSLAVEINFOQUERY: 4910 case SIOCBONDINFOQUERY: 4911 dev_load(net, ifr.ifr_name); 4912 rtnl_lock(); 4913 ret = dev_ifsioc(net, &ifr, cmd); 4914 rtnl_unlock(); 4915 return ret; 4916 4917 case SIOCGIFMEM: 4918 /* Get the per device memory space. We can add this but 4919 * currently do not support it */ 4920 case SIOCSIFMEM: 4921 /* Set the per device memory buffer space. 4922 * Not applicable in our case */ 4923 case SIOCSIFLINK: 4924 return -EINVAL; 4925 4926 /* 4927 * Unknown or private ioctl. 4928 */ 4929 default: 4930 if (cmd == SIOCWANDEV || 4931 (cmd >= SIOCDEVPRIVATE && 4932 cmd <= SIOCDEVPRIVATE + 15)) { 4933 dev_load(net, ifr.ifr_name); 4934 rtnl_lock(); 4935 ret = dev_ifsioc(net, &ifr, cmd); 4936 rtnl_unlock(); 4937 if (!ret && copy_to_user(arg, &ifr, 4938 sizeof(struct ifreq))) 4939 ret = -EFAULT; 4940 return ret; 4941 } 4942 /* Take care of Wireless Extensions */ 4943 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4944 return wext_handle_ioctl(net, &ifr, cmd, arg); 4945 return -EINVAL; 4946 } 4947 } 4948 4949 4950 /** 4951 * dev_new_index - allocate an ifindex 4952 * @net: the applicable net namespace 4953 * 4954 * Returns a suitable unique value for a new device interface 4955 * number. The caller must hold the rtnl semaphore or the 4956 * dev_base_lock to be sure it remains unique. 4957 */ 4958 static int dev_new_index(struct net *net) 4959 { 4960 static int ifindex; 4961 for (;;) { 4962 if (++ifindex <= 0) 4963 ifindex = 1; 4964 if (!__dev_get_by_index(net, ifindex)) 4965 return ifindex; 4966 } 4967 } 4968 4969 /* Delayed registration/unregisteration */ 4970 static LIST_HEAD(net_todo_list); 4971 4972 static void net_set_todo(struct net_device *dev) 4973 { 4974 list_add_tail(&dev->todo_list, &net_todo_list); 4975 } 4976 4977 static void rollback_registered_many(struct list_head *head) 4978 { 4979 struct net_device *dev, *tmp; 4980 4981 BUG_ON(dev_boot_phase); 4982 ASSERT_RTNL(); 4983 4984 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4985 /* Some devices call without registering 4986 * for initialization unwind. Remove those 4987 * devices and proceed with the remaining. 4988 */ 4989 if (dev->reg_state == NETREG_UNINITIALIZED) { 4990 pr_debug("unregister_netdevice: device %s/%p never " 4991 "was registered\n", dev->name, dev); 4992 4993 WARN_ON(1); 4994 list_del(&dev->unreg_list); 4995 continue; 4996 } 4997 4998 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4999 } 5000 5001 /* If device is running, close it first. */ 5002 dev_close_many(head); 5003 5004 list_for_each_entry(dev, head, unreg_list) { 5005 /* And unlink it from device chain. */ 5006 unlist_netdevice(dev); 5007 5008 dev->reg_state = NETREG_UNREGISTERING; 5009 } 5010 5011 synchronize_net(); 5012 5013 list_for_each_entry(dev, head, unreg_list) { 5014 /* Shutdown queueing discipline. */ 5015 dev_shutdown(dev); 5016 5017 5018 /* Notify protocols, that we are about to destroy 5019 this device. They should clean all the things. 5020 */ 5021 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5022 5023 if (!dev->rtnl_link_ops || 5024 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5025 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5026 5027 /* 5028 * Flush the unicast and multicast chains 5029 */ 5030 dev_uc_flush(dev); 5031 dev_mc_flush(dev); 5032 5033 if (dev->netdev_ops->ndo_uninit) 5034 dev->netdev_ops->ndo_uninit(dev); 5035 5036 /* Notifier chain MUST detach us from master device. */ 5037 WARN_ON(dev->master); 5038 5039 /* Remove entries from kobject tree */ 5040 netdev_unregister_kobject(dev); 5041 } 5042 5043 /* Process any work delayed until the end of the batch */ 5044 dev = list_first_entry(head, struct net_device, unreg_list); 5045 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5046 5047 rcu_barrier(); 5048 5049 list_for_each_entry(dev, head, unreg_list) 5050 dev_put(dev); 5051 } 5052 5053 static void rollback_registered(struct net_device *dev) 5054 { 5055 LIST_HEAD(single); 5056 5057 list_add(&dev->unreg_list, &single); 5058 rollback_registered_many(&single); 5059 } 5060 5061 unsigned long netdev_fix_features(unsigned long features, const char *name) 5062 { 5063 /* Fix illegal SG+CSUM combinations. */ 5064 if ((features & NETIF_F_SG) && 5065 !(features & NETIF_F_ALL_CSUM)) { 5066 if (name) 5067 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 5068 "checksum feature.\n", name); 5069 features &= ~NETIF_F_SG; 5070 } 5071 5072 /* TSO requires that SG is present as well. */ 5073 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 5074 if (name) 5075 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 5076 "SG feature.\n", name); 5077 features &= ~NETIF_F_TSO; 5078 } 5079 5080 if (features & NETIF_F_UFO) { 5081 /* maybe split UFO into V4 and V6? */ 5082 if (!((features & NETIF_F_GEN_CSUM) || 5083 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5084 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5085 if (name) 5086 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5087 "since no checksum offload features.\n", 5088 name); 5089 features &= ~NETIF_F_UFO; 5090 } 5091 5092 if (!(features & NETIF_F_SG)) { 5093 if (name) 5094 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 5095 "since no NETIF_F_SG feature.\n", name); 5096 features &= ~NETIF_F_UFO; 5097 } 5098 } 5099 5100 return features; 5101 } 5102 EXPORT_SYMBOL(netdev_fix_features); 5103 5104 /** 5105 * netif_stacked_transfer_operstate - transfer operstate 5106 * @rootdev: the root or lower level device to transfer state from 5107 * @dev: the device to transfer operstate to 5108 * 5109 * Transfer operational state from root to device. This is normally 5110 * called when a stacking relationship exists between the root 5111 * device and the device(a leaf device). 5112 */ 5113 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5114 struct net_device *dev) 5115 { 5116 if (rootdev->operstate == IF_OPER_DORMANT) 5117 netif_dormant_on(dev); 5118 else 5119 netif_dormant_off(dev); 5120 5121 if (netif_carrier_ok(rootdev)) { 5122 if (!netif_carrier_ok(dev)) 5123 netif_carrier_on(dev); 5124 } else { 5125 if (netif_carrier_ok(dev)) 5126 netif_carrier_off(dev); 5127 } 5128 } 5129 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5130 5131 #ifdef CONFIG_RPS 5132 static int netif_alloc_rx_queues(struct net_device *dev) 5133 { 5134 unsigned int i, count = dev->num_rx_queues; 5135 struct netdev_rx_queue *rx; 5136 5137 BUG_ON(count < 1); 5138 5139 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5140 if (!rx) { 5141 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5142 return -ENOMEM; 5143 } 5144 dev->_rx = rx; 5145 5146 for (i = 0; i < count; i++) 5147 rx[i].dev = dev; 5148 return 0; 5149 } 5150 #endif 5151 5152 static void netdev_init_one_queue(struct net_device *dev, 5153 struct netdev_queue *queue, void *_unused) 5154 { 5155 /* Initialize queue lock */ 5156 spin_lock_init(&queue->_xmit_lock); 5157 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5158 queue->xmit_lock_owner = -1; 5159 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5160 queue->dev = dev; 5161 } 5162 5163 static int netif_alloc_netdev_queues(struct net_device *dev) 5164 { 5165 unsigned int count = dev->num_tx_queues; 5166 struct netdev_queue *tx; 5167 5168 BUG_ON(count < 1); 5169 5170 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5171 if (!tx) { 5172 pr_err("netdev: Unable to allocate %u tx queues.\n", 5173 count); 5174 return -ENOMEM; 5175 } 5176 dev->_tx = tx; 5177 5178 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5179 spin_lock_init(&dev->tx_global_lock); 5180 5181 return 0; 5182 } 5183 5184 /** 5185 * register_netdevice - register a network device 5186 * @dev: device to register 5187 * 5188 * Take a completed network device structure and add it to the kernel 5189 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5190 * chain. 0 is returned on success. A negative errno code is returned 5191 * on a failure to set up the device, or if the name is a duplicate. 5192 * 5193 * Callers must hold the rtnl semaphore. You may want 5194 * register_netdev() instead of this. 5195 * 5196 * BUGS: 5197 * The locking appears insufficient to guarantee two parallel registers 5198 * will not get the same name. 5199 */ 5200 5201 int register_netdevice(struct net_device *dev) 5202 { 5203 int ret; 5204 struct net *net = dev_net(dev); 5205 5206 BUG_ON(dev_boot_phase); 5207 ASSERT_RTNL(); 5208 5209 might_sleep(); 5210 5211 /* When net_device's are persistent, this will be fatal. */ 5212 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5213 BUG_ON(!net); 5214 5215 spin_lock_init(&dev->addr_list_lock); 5216 netdev_set_addr_lockdep_class(dev); 5217 5218 dev->iflink = -1; 5219 5220 /* Init, if this function is available */ 5221 if (dev->netdev_ops->ndo_init) { 5222 ret = dev->netdev_ops->ndo_init(dev); 5223 if (ret) { 5224 if (ret > 0) 5225 ret = -EIO; 5226 goto out; 5227 } 5228 } 5229 5230 ret = dev_get_valid_name(dev, dev->name, 0); 5231 if (ret) 5232 goto err_uninit; 5233 5234 dev->ifindex = dev_new_index(net); 5235 if (dev->iflink == -1) 5236 dev->iflink = dev->ifindex; 5237 5238 /* Fix illegal checksum combinations */ 5239 if ((dev->features & NETIF_F_HW_CSUM) && 5240 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5241 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5242 dev->name); 5243 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5244 } 5245 5246 if ((dev->features & NETIF_F_NO_CSUM) && 5247 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5248 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5249 dev->name); 5250 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5251 } 5252 5253 dev->features = netdev_fix_features(dev->features, dev->name); 5254 5255 /* Enable software GSO if SG is supported. */ 5256 if (dev->features & NETIF_F_SG) 5257 dev->features |= NETIF_F_GSO; 5258 5259 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default, 5260 * vlan_dev_init() will do the dev->features check, so these features 5261 * are enabled only if supported by underlying device. 5262 */ 5263 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA); 5264 5265 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5266 ret = notifier_to_errno(ret); 5267 if (ret) 5268 goto err_uninit; 5269 5270 ret = netdev_register_kobject(dev); 5271 if (ret) 5272 goto err_uninit; 5273 dev->reg_state = NETREG_REGISTERED; 5274 5275 /* 5276 * Default initial state at registry is that the 5277 * device is present. 5278 */ 5279 5280 set_bit(__LINK_STATE_PRESENT, &dev->state); 5281 5282 dev_init_scheduler(dev); 5283 dev_hold(dev); 5284 list_netdevice(dev); 5285 5286 /* Notify protocols, that a new device appeared. */ 5287 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5288 ret = notifier_to_errno(ret); 5289 if (ret) { 5290 rollback_registered(dev); 5291 dev->reg_state = NETREG_UNREGISTERED; 5292 } 5293 /* 5294 * Prevent userspace races by waiting until the network 5295 * device is fully setup before sending notifications. 5296 */ 5297 if (!dev->rtnl_link_ops || 5298 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5299 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5300 5301 out: 5302 return ret; 5303 5304 err_uninit: 5305 if (dev->netdev_ops->ndo_uninit) 5306 dev->netdev_ops->ndo_uninit(dev); 5307 goto out; 5308 } 5309 EXPORT_SYMBOL(register_netdevice); 5310 5311 /** 5312 * init_dummy_netdev - init a dummy network device for NAPI 5313 * @dev: device to init 5314 * 5315 * This takes a network device structure and initialize the minimum 5316 * amount of fields so it can be used to schedule NAPI polls without 5317 * registering a full blown interface. This is to be used by drivers 5318 * that need to tie several hardware interfaces to a single NAPI 5319 * poll scheduler due to HW limitations. 5320 */ 5321 int init_dummy_netdev(struct net_device *dev) 5322 { 5323 /* Clear everything. Note we don't initialize spinlocks 5324 * are they aren't supposed to be taken by any of the 5325 * NAPI code and this dummy netdev is supposed to be 5326 * only ever used for NAPI polls 5327 */ 5328 memset(dev, 0, sizeof(struct net_device)); 5329 5330 /* make sure we BUG if trying to hit standard 5331 * register/unregister code path 5332 */ 5333 dev->reg_state = NETREG_DUMMY; 5334 5335 /* NAPI wants this */ 5336 INIT_LIST_HEAD(&dev->napi_list); 5337 5338 /* a dummy interface is started by default */ 5339 set_bit(__LINK_STATE_PRESENT, &dev->state); 5340 set_bit(__LINK_STATE_START, &dev->state); 5341 5342 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5343 * because users of this 'device' dont need to change 5344 * its refcount. 5345 */ 5346 5347 return 0; 5348 } 5349 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5350 5351 5352 /** 5353 * register_netdev - register a network device 5354 * @dev: device to register 5355 * 5356 * Take a completed network device structure and add it to the kernel 5357 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5358 * chain. 0 is returned on success. A negative errno code is returned 5359 * on a failure to set up the device, or if the name is a duplicate. 5360 * 5361 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5362 * and expands the device name if you passed a format string to 5363 * alloc_netdev. 5364 */ 5365 int register_netdev(struct net_device *dev) 5366 { 5367 int err; 5368 5369 rtnl_lock(); 5370 5371 /* 5372 * If the name is a format string the caller wants us to do a 5373 * name allocation. 5374 */ 5375 if (strchr(dev->name, '%')) { 5376 err = dev_alloc_name(dev, dev->name); 5377 if (err < 0) 5378 goto out; 5379 } 5380 5381 err = register_netdevice(dev); 5382 out: 5383 rtnl_unlock(); 5384 return err; 5385 } 5386 EXPORT_SYMBOL(register_netdev); 5387 5388 int netdev_refcnt_read(const struct net_device *dev) 5389 { 5390 int i, refcnt = 0; 5391 5392 for_each_possible_cpu(i) 5393 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5394 return refcnt; 5395 } 5396 EXPORT_SYMBOL(netdev_refcnt_read); 5397 5398 /* 5399 * netdev_wait_allrefs - wait until all references are gone. 5400 * 5401 * This is called when unregistering network devices. 5402 * 5403 * Any protocol or device that holds a reference should register 5404 * for netdevice notification, and cleanup and put back the 5405 * reference if they receive an UNREGISTER event. 5406 * We can get stuck here if buggy protocols don't correctly 5407 * call dev_put. 5408 */ 5409 static void netdev_wait_allrefs(struct net_device *dev) 5410 { 5411 unsigned long rebroadcast_time, warning_time; 5412 int refcnt; 5413 5414 linkwatch_forget_dev(dev); 5415 5416 rebroadcast_time = warning_time = jiffies; 5417 refcnt = netdev_refcnt_read(dev); 5418 5419 while (refcnt != 0) { 5420 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5421 rtnl_lock(); 5422 5423 /* Rebroadcast unregister notification */ 5424 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5425 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5426 * should have already handle it the first time */ 5427 5428 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5429 &dev->state)) { 5430 /* We must not have linkwatch events 5431 * pending on unregister. If this 5432 * happens, we simply run the queue 5433 * unscheduled, resulting in a noop 5434 * for this device. 5435 */ 5436 linkwatch_run_queue(); 5437 } 5438 5439 __rtnl_unlock(); 5440 5441 rebroadcast_time = jiffies; 5442 } 5443 5444 msleep(250); 5445 5446 refcnt = netdev_refcnt_read(dev); 5447 5448 if (time_after(jiffies, warning_time + 10 * HZ)) { 5449 printk(KERN_EMERG "unregister_netdevice: " 5450 "waiting for %s to become free. Usage " 5451 "count = %d\n", 5452 dev->name, refcnt); 5453 warning_time = jiffies; 5454 } 5455 } 5456 } 5457 5458 /* The sequence is: 5459 * 5460 * rtnl_lock(); 5461 * ... 5462 * register_netdevice(x1); 5463 * register_netdevice(x2); 5464 * ... 5465 * unregister_netdevice(y1); 5466 * unregister_netdevice(y2); 5467 * ... 5468 * rtnl_unlock(); 5469 * free_netdev(y1); 5470 * free_netdev(y2); 5471 * 5472 * We are invoked by rtnl_unlock(). 5473 * This allows us to deal with problems: 5474 * 1) We can delete sysfs objects which invoke hotplug 5475 * without deadlocking with linkwatch via keventd. 5476 * 2) Since we run with the RTNL semaphore not held, we can sleep 5477 * safely in order to wait for the netdev refcnt to drop to zero. 5478 * 5479 * We must not return until all unregister events added during 5480 * the interval the lock was held have been completed. 5481 */ 5482 void netdev_run_todo(void) 5483 { 5484 struct list_head list; 5485 5486 /* Snapshot list, allow later requests */ 5487 list_replace_init(&net_todo_list, &list); 5488 5489 __rtnl_unlock(); 5490 5491 while (!list_empty(&list)) { 5492 struct net_device *dev 5493 = list_first_entry(&list, struct net_device, todo_list); 5494 list_del(&dev->todo_list); 5495 5496 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5497 printk(KERN_ERR "network todo '%s' but state %d\n", 5498 dev->name, dev->reg_state); 5499 dump_stack(); 5500 continue; 5501 } 5502 5503 dev->reg_state = NETREG_UNREGISTERED; 5504 5505 on_each_cpu(flush_backlog, dev, 1); 5506 5507 netdev_wait_allrefs(dev); 5508 5509 /* paranoia */ 5510 BUG_ON(netdev_refcnt_read(dev)); 5511 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5512 WARN_ON(rcu_dereference_raw(dev->ip6_ptr)); 5513 WARN_ON(dev->dn_ptr); 5514 5515 if (dev->destructor) 5516 dev->destructor(dev); 5517 5518 /* Free network device */ 5519 kobject_put(&dev->dev.kobj); 5520 } 5521 } 5522 5523 /** 5524 * dev_txq_stats_fold - fold tx_queues stats 5525 * @dev: device to get statistics from 5526 * @stats: struct rtnl_link_stats64 to hold results 5527 */ 5528 void dev_txq_stats_fold(const struct net_device *dev, 5529 struct rtnl_link_stats64 *stats) 5530 { 5531 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5532 unsigned int i; 5533 struct netdev_queue *txq; 5534 5535 for (i = 0; i < dev->num_tx_queues; i++) { 5536 txq = netdev_get_tx_queue(dev, i); 5537 spin_lock_bh(&txq->_xmit_lock); 5538 tx_bytes += txq->tx_bytes; 5539 tx_packets += txq->tx_packets; 5540 tx_dropped += txq->tx_dropped; 5541 spin_unlock_bh(&txq->_xmit_lock); 5542 } 5543 if (tx_bytes || tx_packets || tx_dropped) { 5544 stats->tx_bytes = tx_bytes; 5545 stats->tx_packets = tx_packets; 5546 stats->tx_dropped = tx_dropped; 5547 } 5548 } 5549 EXPORT_SYMBOL(dev_txq_stats_fold); 5550 5551 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5552 * fields in the same order, with only the type differing. 5553 */ 5554 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5555 const struct net_device_stats *netdev_stats) 5556 { 5557 #if BITS_PER_LONG == 64 5558 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5559 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5560 #else 5561 size_t i, n = sizeof(*stats64) / sizeof(u64); 5562 const unsigned long *src = (const unsigned long *)netdev_stats; 5563 u64 *dst = (u64 *)stats64; 5564 5565 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5566 sizeof(*stats64) / sizeof(u64)); 5567 for (i = 0; i < n; i++) 5568 dst[i] = src[i]; 5569 #endif 5570 } 5571 5572 /** 5573 * dev_get_stats - get network device statistics 5574 * @dev: device to get statistics from 5575 * @storage: place to store stats 5576 * 5577 * Get network statistics from device. Return @storage. 5578 * The device driver may provide its own method by setting 5579 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5580 * otherwise the internal statistics structure is used. 5581 */ 5582 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5583 struct rtnl_link_stats64 *storage) 5584 { 5585 const struct net_device_ops *ops = dev->netdev_ops; 5586 5587 if (ops->ndo_get_stats64) { 5588 memset(storage, 0, sizeof(*storage)); 5589 ops->ndo_get_stats64(dev, storage); 5590 } else if (ops->ndo_get_stats) { 5591 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5592 } else { 5593 netdev_stats_to_stats64(storage, &dev->stats); 5594 dev_txq_stats_fold(dev, storage); 5595 } 5596 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5597 return storage; 5598 } 5599 EXPORT_SYMBOL(dev_get_stats); 5600 5601 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5602 { 5603 struct netdev_queue *queue = dev_ingress_queue(dev); 5604 5605 #ifdef CONFIG_NET_CLS_ACT 5606 if (queue) 5607 return queue; 5608 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5609 if (!queue) 5610 return NULL; 5611 netdev_init_one_queue(dev, queue, NULL); 5612 queue->qdisc = &noop_qdisc; 5613 queue->qdisc_sleeping = &noop_qdisc; 5614 rcu_assign_pointer(dev->ingress_queue, queue); 5615 #endif 5616 return queue; 5617 } 5618 5619 /** 5620 * alloc_netdev_mq - allocate network device 5621 * @sizeof_priv: size of private data to allocate space for 5622 * @name: device name format string 5623 * @setup: callback to initialize device 5624 * @queue_count: the number of subqueues to allocate 5625 * 5626 * Allocates a struct net_device with private data area for driver use 5627 * and performs basic initialization. Also allocates subquue structs 5628 * for each queue on the device at the end of the netdevice. 5629 */ 5630 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5631 void (*setup)(struct net_device *), unsigned int queue_count) 5632 { 5633 struct net_device *dev; 5634 size_t alloc_size; 5635 struct net_device *p; 5636 5637 BUG_ON(strlen(name) >= sizeof(dev->name)); 5638 5639 if (queue_count < 1) { 5640 pr_err("alloc_netdev: Unable to allocate device " 5641 "with zero queues.\n"); 5642 return NULL; 5643 } 5644 5645 alloc_size = sizeof(struct net_device); 5646 if (sizeof_priv) { 5647 /* ensure 32-byte alignment of private area */ 5648 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5649 alloc_size += sizeof_priv; 5650 } 5651 /* ensure 32-byte alignment of whole construct */ 5652 alloc_size += NETDEV_ALIGN - 1; 5653 5654 p = kzalloc(alloc_size, GFP_KERNEL); 5655 if (!p) { 5656 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5657 return NULL; 5658 } 5659 5660 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5661 dev->padded = (char *)dev - (char *)p; 5662 5663 dev->pcpu_refcnt = alloc_percpu(int); 5664 if (!dev->pcpu_refcnt) 5665 goto free_p; 5666 5667 if (dev_addr_init(dev)) 5668 goto free_pcpu; 5669 5670 dev_mc_init(dev); 5671 dev_uc_init(dev); 5672 5673 dev_net_set(dev, &init_net); 5674 5675 dev->num_tx_queues = queue_count; 5676 dev->real_num_tx_queues = queue_count; 5677 if (netif_alloc_netdev_queues(dev)) 5678 goto free_pcpu; 5679 5680 #ifdef CONFIG_RPS 5681 dev->num_rx_queues = queue_count; 5682 dev->real_num_rx_queues = queue_count; 5683 if (netif_alloc_rx_queues(dev)) 5684 goto free_pcpu; 5685 #endif 5686 5687 dev->gso_max_size = GSO_MAX_SIZE; 5688 5689 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5690 dev->ethtool_ntuple_list.count = 0; 5691 INIT_LIST_HEAD(&dev->napi_list); 5692 INIT_LIST_HEAD(&dev->unreg_list); 5693 INIT_LIST_HEAD(&dev->link_watch_list); 5694 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5695 setup(dev); 5696 strcpy(dev->name, name); 5697 return dev; 5698 5699 free_pcpu: 5700 free_percpu(dev->pcpu_refcnt); 5701 kfree(dev->_tx); 5702 #ifdef CONFIG_RPS 5703 kfree(dev->_rx); 5704 #endif 5705 5706 free_p: 5707 kfree(p); 5708 return NULL; 5709 } 5710 EXPORT_SYMBOL(alloc_netdev_mq); 5711 5712 /** 5713 * free_netdev - free network device 5714 * @dev: device 5715 * 5716 * This function does the last stage of destroying an allocated device 5717 * interface. The reference to the device object is released. 5718 * If this is the last reference then it will be freed. 5719 */ 5720 void free_netdev(struct net_device *dev) 5721 { 5722 struct napi_struct *p, *n; 5723 5724 release_net(dev_net(dev)); 5725 5726 kfree(dev->_tx); 5727 #ifdef CONFIG_RPS 5728 kfree(dev->_rx); 5729 #endif 5730 5731 kfree(rcu_dereference_raw(dev->ingress_queue)); 5732 5733 /* Flush device addresses */ 5734 dev_addr_flush(dev); 5735 5736 /* Clear ethtool n-tuple list */ 5737 ethtool_ntuple_flush(dev); 5738 5739 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5740 netif_napi_del(p); 5741 5742 free_percpu(dev->pcpu_refcnt); 5743 dev->pcpu_refcnt = NULL; 5744 5745 /* Compatibility with error handling in drivers */ 5746 if (dev->reg_state == NETREG_UNINITIALIZED) { 5747 kfree((char *)dev - dev->padded); 5748 return; 5749 } 5750 5751 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5752 dev->reg_state = NETREG_RELEASED; 5753 5754 /* will free via device release */ 5755 put_device(&dev->dev); 5756 } 5757 EXPORT_SYMBOL(free_netdev); 5758 5759 /** 5760 * synchronize_net - Synchronize with packet receive processing 5761 * 5762 * Wait for packets currently being received to be done. 5763 * Does not block later packets from starting. 5764 */ 5765 void synchronize_net(void) 5766 { 5767 might_sleep(); 5768 synchronize_rcu(); 5769 } 5770 EXPORT_SYMBOL(synchronize_net); 5771 5772 /** 5773 * unregister_netdevice_queue - remove device from the kernel 5774 * @dev: device 5775 * @head: list 5776 * 5777 * This function shuts down a device interface and removes it 5778 * from the kernel tables. 5779 * If head not NULL, device is queued to be unregistered later. 5780 * 5781 * Callers must hold the rtnl semaphore. You may want 5782 * unregister_netdev() instead of this. 5783 */ 5784 5785 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5786 { 5787 ASSERT_RTNL(); 5788 5789 if (head) { 5790 list_move_tail(&dev->unreg_list, head); 5791 } else { 5792 rollback_registered(dev); 5793 /* Finish processing unregister after unlock */ 5794 net_set_todo(dev); 5795 } 5796 } 5797 EXPORT_SYMBOL(unregister_netdevice_queue); 5798 5799 /** 5800 * unregister_netdevice_many - unregister many devices 5801 * @head: list of devices 5802 */ 5803 void unregister_netdevice_many(struct list_head *head) 5804 { 5805 struct net_device *dev; 5806 5807 if (!list_empty(head)) { 5808 rollback_registered_many(head); 5809 list_for_each_entry(dev, head, unreg_list) 5810 net_set_todo(dev); 5811 } 5812 } 5813 EXPORT_SYMBOL(unregister_netdevice_many); 5814 5815 /** 5816 * unregister_netdev - remove device from the kernel 5817 * @dev: device 5818 * 5819 * This function shuts down a device interface and removes it 5820 * from the kernel tables. 5821 * 5822 * This is just a wrapper for unregister_netdevice that takes 5823 * the rtnl semaphore. In general you want to use this and not 5824 * unregister_netdevice. 5825 */ 5826 void unregister_netdev(struct net_device *dev) 5827 { 5828 rtnl_lock(); 5829 unregister_netdevice(dev); 5830 rtnl_unlock(); 5831 } 5832 EXPORT_SYMBOL(unregister_netdev); 5833 5834 /** 5835 * dev_change_net_namespace - move device to different nethost namespace 5836 * @dev: device 5837 * @net: network namespace 5838 * @pat: If not NULL name pattern to try if the current device name 5839 * is already taken in the destination network namespace. 5840 * 5841 * This function shuts down a device interface and moves it 5842 * to a new network namespace. On success 0 is returned, on 5843 * a failure a netagive errno code is returned. 5844 * 5845 * Callers must hold the rtnl semaphore. 5846 */ 5847 5848 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5849 { 5850 int err; 5851 5852 ASSERT_RTNL(); 5853 5854 /* Don't allow namespace local devices to be moved. */ 5855 err = -EINVAL; 5856 if (dev->features & NETIF_F_NETNS_LOCAL) 5857 goto out; 5858 5859 /* Ensure the device has been registrered */ 5860 err = -EINVAL; 5861 if (dev->reg_state != NETREG_REGISTERED) 5862 goto out; 5863 5864 /* Get out if there is nothing todo */ 5865 err = 0; 5866 if (net_eq(dev_net(dev), net)) 5867 goto out; 5868 5869 /* Pick the destination device name, and ensure 5870 * we can use it in the destination network namespace. 5871 */ 5872 err = -EEXIST; 5873 if (__dev_get_by_name(net, dev->name)) { 5874 /* We get here if we can't use the current device name */ 5875 if (!pat) 5876 goto out; 5877 if (dev_get_valid_name(dev, pat, 1)) 5878 goto out; 5879 } 5880 5881 /* 5882 * And now a mini version of register_netdevice unregister_netdevice. 5883 */ 5884 5885 /* If device is running close it first. */ 5886 dev_close(dev); 5887 5888 /* And unlink it from device chain */ 5889 err = -ENODEV; 5890 unlist_netdevice(dev); 5891 5892 synchronize_net(); 5893 5894 /* Shutdown queueing discipline. */ 5895 dev_shutdown(dev); 5896 5897 /* Notify protocols, that we are about to destroy 5898 this device. They should clean all the things. 5899 5900 Note that dev->reg_state stays at NETREG_REGISTERED. 5901 This is wanted because this way 8021q and macvlan know 5902 the device is just moving and can keep their slaves up. 5903 */ 5904 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5905 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5906 5907 /* 5908 * Flush the unicast and multicast chains 5909 */ 5910 dev_uc_flush(dev); 5911 dev_mc_flush(dev); 5912 5913 /* Actually switch the network namespace */ 5914 dev_net_set(dev, net); 5915 5916 /* If there is an ifindex conflict assign a new one */ 5917 if (__dev_get_by_index(net, dev->ifindex)) { 5918 int iflink = (dev->iflink == dev->ifindex); 5919 dev->ifindex = dev_new_index(net); 5920 if (iflink) 5921 dev->iflink = dev->ifindex; 5922 } 5923 5924 /* Fixup kobjects */ 5925 err = device_rename(&dev->dev, dev->name); 5926 WARN_ON(err); 5927 5928 /* Add the device back in the hashes */ 5929 list_netdevice(dev); 5930 5931 /* Notify protocols, that a new device appeared. */ 5932 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5933 5934 /* 5935 * Prevent userspace races by waiting until the network 5936 * device is fully setup before sending notifications. 5937 */ 5938 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5939 5940 synchronize_net(); 5941 err = 0; 5942 out: 5943 return err; 5944 } 5945 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5946 5947 static int dev_cpu_callback(struct notifier_block *nfb, 5948 unsigned long action, 5949 void *ocpu) 5950 { 5951 struct sk_buff **list_skb; 5952 struct sk_buff *skb; 5953 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5954 struct softnet_data *sd, *oldsd; 5955 5956 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5957 return NOTIFY_OK; 5958 5959 local_irq_disable(); 5960 cpu = smp_processor_id(); 5961 sd = &per_cpu(softnet_data, cpu); 5962 oldsd = &per_cpu(softnet_data, oldcpu); 5963 5964 /* Find end of our completion_queue. */ 5965 list_skb = &sd->completion_queue; 5966 while (*list_skb) 5967 list_skb = &(*list_skb)->next; 5968 /* Append completion queue from offline CPU. */ 5969 *list_skb = oldsd->completion_queue; 5970 oldsd->completion_queue = NULL; 5971 5972 /* Append output queue from offline CPU. */ 5973 if (oldsd->output_queue) { 5974 *sd->output_queue_tailp = oldsd->output_queue; 5975 sd->output_queue_tailp = oldsd->output_queue_tailp; 5976 oldsd->output_queue = NULL; 5977 oldsd->output_queue_tailp = &oldsd->output_queue; 5978 } 5979 5980 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5981 local_irq_enable(); 5982 5983 /* Process offline CPU's input_pkt_queue */ 5984 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5985 netif_rx(skb); 5986 input_queue_head_incr(oldsd); 5987 } 5988 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5989 netif_rx(skb); 5990 input_queue_head_incr(oldsd); 5991 } 5992 5993 return NOTIFY_OK; 5994 } 5995 5996 5997 /** 5998 * netdev_increment_features - increment feature set by one 5999 * @all: current feature set 6000 * @one: new feature set 6001 * @mask: mask feature set 6002 * 6003 * Computes a new feature set after adding a device with feature set 6004 * @one to the master device with current feature set @all. Will not 6005 * enable anything that is off in @mask. Returns the new feature set. 6006 */ 6007 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 6008 unsigned long mask) 6009 { 6010 /* If device needs checksumming, downgrade to it. */ 6011 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 6012 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 6013 else if (mask & NETIF_F_ALL_CSUM) { 6014 /* If one device supports v4/v6 checksumming, set for all. */ 6015 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 6016 !(all & NETIF_F_GEN_CSUM)) { 6017 all &= ~NETIF_F_ALL_CSUM; 6018 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 6019 } 6020 6021 /* If one device supports hw checksumming, set for all. */ 6022 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 6023 all &= ~NETIF_F_ALL_CSUM; 6024 all |= NETIF_F_HW_CSUM; 6025 } 6026 } 6027 6028 one |= NETIF_F_ALL_CSUM; 6029 6030 one |= all & NETIF_F_ONE_FOR_ALL; 6031 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 6032 all |= one & mask & NETIF_F_ONE_FOR_ALL; 6033 6034 return all; 6035 } 6036 EXPORT_SYMBOL(netdev_increment_features); 6037 6038 static struct hlist_head *netdev_create_hash(void) 6039 { 6040 int i; 6041 struct hlist_head *hash; 6042 6043 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6044 if (hash != NULL) 6045 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6046 INIT_HLIST_HEAD(&hash[i]); 6047 6048 return hash; 6049 } 6050 6051 /* Initialize per network namespace state */ 6052 static int __net_init netdev_init(struct net *net) 6053 { 6054 INIT_LIST_HEAD(&net->dev_base_head); 6055 6056 net->dev_name_head = netdev_create_hash(); 6057 if (net->dev_name_head == NULL) 6058 goto err_name; 6059 6060 net->dev_index_head = netdev_create_hash(); 6061 if (net->dev_index_head == NULL) 6062 goto err_idx; 6063 6064 return 0; 6065 6066 err_idx: 6067 kfree(net->dev_name_head); 6068 err_name: 6069 return -ENOMEM; 6070 } 6071 6072 /** 6073 * netdev_drivername - network driver for the device 6074 * @dev: network device 6075 * @buffer: buffer for resulting name 6076 * @len: size of buffer 6077 * 6078 * Determine network driver for device. 6079 */ 6080 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 6081 { 6082 const struct device_driver *driver; 6083 const struct device *parent; 6084 6085 if (len <= 0 || !buffer) 6086 return buffer; 6087 buffer[0] = 0; 6088 6089 parent = dev->dev.parent; 6090 6091 if (!parent) 6092 return buffer; 6093 6094 driver = parent->driver; 6095 if (driver && driver->name) 6096 strlcpy(buffer, driver->name, len); 6097 return buffer; 6098 } 6099 6100 static int __netdev_printk(const char *level, const struct net_device *dev, 6101 struct va_format *vaf) 6102 { 6103 int r; 6104 6105 if (dev && dev->dev.parent) 6106 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6107 netdev_name(dev), vaf); 6108 else if (dev) 6109 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6110 else 6111 r = printk("%s(NULL net_device): %pV", level, vaf); 6112 6113 return r; 6114 } 6115 6116 int netdev_printk(const char *level, const struct net_device *dev, 6117 const char *format, ...) 6118 { 6119 struct va_format vaf; 6120 va_list args; 6121 int r; 6122 6123 va_start(args, format); 6124 6125 vaf.fmt = format; 6126 vaf.va = &args; 6127 6128 r = __netdev_printk(level, dev, &vaf); 6129 va_end(args); 6130 6131 return r; 6132 } 6133 EXPORT_SYMBOL(netdev_printk); 6134 6135 #define define_netdev_printk_level(func, level) \ 6136 int func(const struct net_device *dev, const char *fmt, ...) \ 6137 { \ 6138 int r; \ 6139 struct va_format vaf; \ 6140 va_list args; \ 6141 \ 6142 va_start(args, fmt); \ 6143 \ 6144 vaf.fmt = fmt; \ 6145 vaf.va = &args; \ 6146 \ 6147 r = __netdev_printk(level, dev, &vaf); \ 6148 va_end(args); \ 6149 \ 6150 return r; \ 6151 } \ 6152 EXPORT_SYMBOL(func); 6153 6154 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6155 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6156 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6157 define_netdev_printk_level(netdev_err, KERN_ERR); 6158 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6159 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6160 define_netdev_printk_level(netdev_info, KERN_INFO); 6161 6162 static void __net_exit netdev_exit(struct net *net) 6163 { 6164 kfree(net->dev_name_head); 6165 kfree(net->dev_index_head); 6166 } 6167 6168 static struct pernet_operations __net_initdata netdev_net_ops = { 6169 .init = netdev_init, 6170 .exit = netdev_exit, 6171 }; 6172 6173 static void __net_exit default_device_exit(struct net *net) 6174 { 6175 struct net_device *dev, *aux; 6176 /* 6177 * Push all migratable network devices back to the 6178 * initial network namespace 6179 */ 6180 rtnl_lock(); 6181 for_each_netdev_safe(net, dev, aux) { 6182 int err; 6183 char fb_name[IFNAMSIZ]; 6184 6185 /* Ignore unmoveable devices (i.e. loopback) */ 6186 if (dev->features & NETIF_F_NETNS_LOCAL) 6187 continue; 6188 6189 /* Leave virtual devices for the generic cleanup */ 6190 if (dev->rtnl_link_ops) 6191 continue; 6192 6193 /* Push remaing network devices to init_net */ 6194 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6195 err = dev_change_net_namespace(dev, &init_net, fb_name); 6196 if (err) { 6197 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6198 __func__, dev->name, err); 6199 BUG(); 6200 } 6201 } 6202 rtnl_unlock(); 6203 } 6204 6205 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6206 { 6207 /* At exit all network devices most be removed from a network 6208 * namespace. Do this in the reverse order of registeration. 6209 * Do this across as many network namespaces as possible to 6210 * improve batching efficiency. 6211 */ 6212 struct net_device *dev; 6213 struct net *net; 6214 LIST_HEAD(dev_kill_list); 6215 6216 rtnl_lock(); 6217 list_for_each_entry(net, net_list, exit_list) { 6218 for_each_netdev_reverse(net, dev) { 6219 if (dev->rtnl_link_ops) 6220 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6221 else 6222 unregister_netdevice_queue(dev, &dev_kill_list); 6223 } 6224 } 6225 unregister_netdevice_many(&dev_kill_list); 6226 rtnl_unlock(); 6227 } 6228 6229 static struct pernet_operations __net_initdata default_device_ops = { 6230 .exit = default_device_exit, 6231 .exit_batch = default_device_exit_batch, 6232 }; 6233 6234 /* 6235 * Initialize the DEV module. At boot time this walks the device list and 6236 * unhooks any devices that fail to initialise (normally hardware not 6237 * present) and leaves us with a valid list of present and active devices. 6238 * 6239 */ 6240 6241 /* 6242 * This is called single threaded during boot, so no need 6243 * to take the rtnl semaphore. 6244 */ 6245 static int __init net_dev_init(void) 6246 { 6247 int i, rc = -ENOMEM; 6248 6249 BUG_ON(!dev_boot_phase); 6250 6251 if (dev_proc_init()) 6252 goto out; 6253 6254 if (netdev_kobject_init()) 6255 goto out; 6256 6257 INIT_LIST_HEAD(&ptype_all); 6258 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6259 INIT_LIST_HEAD(&ptype_base[i]); 6260 6261 if (register_pernet_subsys(&netdev_net_ops)) 6262 goto out; 6263 6264 /* 6265 * Initialise the packet receive queues. 6266 */ 6267 6268 for_each_possible_cpu(i) { 6269 struct softnet_data *sd = &per_cpu(softnet_data, i); 6270 6271 memset(sd, 0, sizeof(*sd)); 6272 skb_queue_head_init(&sd->input_pkt_queue); 6273 skb_queue_head_init(&sd->process_queue); 6274 sd->completion_queue = NULL; 6275 INIT_LIST_HEAD(&sd->poll_list); 6276 sd->output_queue = NULL; 6277 sd->output_queue_tailp = &sd->output_queue; 6278 #ifdef CONFIG_RPS 6279 sd->csd.func = rps_trigger_softirq; 6280 sd->csd.info = sd; 6281 sd->csd.flags = 0; 6282 sd->cpu = i; 6283 #endif 6284 6285 sd->backlog.poll = process_backlog; 6286 sd->backlog.weight = weight_p; 6287 sd->backlog.gro_list = NULL; 6288 sd->backlog.gro_count = 0; 6289 } 6290 6291 dev_boot_phase = 0; 6292 6293 /* The loopback device is special if any other network devices 6294 * is present in a network namespace the loopback device must 6295 * be present. Since we now dynamically allocate and free the 6296 * loopback device ensure this invariant is maintained by 6297 * keeping the loopback device as the first device on the 6298 * list of network devices. Ensuring the loopback devices 6299 * is the first device that appears and the last network device 6300 * that disappears. 6301 */ 6302 if (register_pernet_device(&loopback_net_ops)) 6303 goto out; 6304 6305 if (register_pernet_device(&default_device_ops)) 6306 goto out; 6307 6308 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6309 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6310 6311 hotcpu_notifier(dev_cpu_callback, 0); 6312 dst_init(); 6313 dev_mcast_init(); 6314 rc = 0; 6315 out: 6316 return rc; 6317 } 6318 6319 subsys_initcall(net_dev_init); 6320 6321 static int __init initialize_hashrnd(void) 6322 { 6323 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6324 return 0; 6325 } 6326 6327 late_initcall_sync(initialize_hashrnd); 6328 6329