1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Mark Evans, <[email protected]> 13 * 14 * Additional Authors: 15 * Florian la Roche <[email protected]> 16 * Alan Cox <[email protected]> 17 * David Hinds <[email protected]> 18 * Alexey Kuznetsov <[email protected]> 19 * Adam Sulmicki <[email protected]> 20 * Pekka Riikonen <[email protected]> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 137 #include "net-sysfs.h" 138 139 /* Instead of increasing this, you should create a hash table. */ 140 #define MAX_GRO_SKBS 8 141 142 /* This should be increased if a protocol with a bigger head is added. */ 143 #define GRO_MAX_HEAD (MAX_HEADER + 128) 144 145 /* 146 * The list of packet types we will receive (as opposed to discard) 147 * and the routines to invoke. 148 * 149 * Why 16. Because with 16 the only overlap we get on a hash of the 150 * low nibble of the protocol value is RARP/SNAP/X.25. 151 * 152 * NOTE: That is no longer true with the addition of VLAN tags. Not 153 * sure which should go first, but I bet it won't make much 154 * difference if we are running VLANs. The good news is that 155 * this protocol won't be in the list unless compiled in, so 156 * the average user (w/out VLANs) will not be adversely affected. 157 * --BLG 158 * 159 * 0800 IP 160 * 8100 802.1Q VLAN 161 * 0001 802.3 162 * 0002 AX.25 163 * 0004 802.2 164 * 8035 RARP 165 * 0005 SNAP 166 * 0805 X.25 167 * 0806 ARP 168 * 8137 IPX 169 * 0009 Localtalk 170 * 86DD IPv6 171 */ 172 173 #define PTYPE_HASH_SIZE (16) 174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 175 176 static DEFINE_SPINLOCK(ptype_lock); 177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 178 static struct list_head ptype_all __read_mostly; /* Taps */ 179 180 /* 181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 182 * semaphore. 183 * 184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 185 * 186 * Writers must hold the rtnl semaphore while they loop through the 187 * dev_base_head list, and hold dev_base_lock for writing when they do the 188 * actual updates. This allows pure readers to access the list even 189 * while a writer is preparing to update it. 190 * 191 * To put it another way, dev_base_lock is held for writing only to 192 * protect against pure readers; the rtnl semaphore provides the 193 * protection against other writers. 194 * 195 * See, for example usages, register_netdevice() and 196 * unregister_netdevice(), which must be called with the rtnl 197 * semaphore held. 198 */ 199 DEFINE_RWLOCK(dev_base_lock); 200 EXPORT_SYMBOL(dev_base_lock); 201 202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 203 { 204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 206 } 207 208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 209 { 210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 211 } 212 213 static inline void rps_lock(struct softnet_data *sd) 214 { 215 #ifdef CONFIG_RPS 216 spin_lock(&sd->input_pkt_queue.lock); 217 #endif 218 } 219 220 static inline void rps_unlock(struct softnet_data *sd) 221 { 222 #ifdef CONFIG_RPS 223 spin_unlock(&sd->input_pkt_queue.lock); 224 #endif 225 } 226 227 /* Device list insertion */ 228 static int list_netdevice(struct net_device *dev) 229 { 230 struct net *net = dev_net(dev); 231 232 ASSERT_RTNL(); 233 234 write_lock_bh(&dev_base_lock); 235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 237 hlist_add_head_rcu(&dev->index_hlist, 238 dev_index_hash(net, dev->ifindex)); 239 write_unlock_bh(&dev_base_lock); 240 return 0; 241 } 242 243 /* Device list removal 244 * caller must respect a RCU grace period before freeing/reusing dev 245 */ 246 static void unlist_netdevice(struct net_device *dev) 247 { 248 ASSERT_RTNL(); 249 250 /* Unlink dev from the device chain */ 251 write_lock_bh(&dev_base_lock); 252 list_del_rcu(&dev->dev_list); 253 hlist_del_rcu(&dev->name_hlist); 254 hlist_del_rcu(&dev->index_hlist); 255 write_unlock_bh(&dev_base_lock); 256 } 257 258 /* 259 * Our notifier list 260 */ 261 262 static RAW_NOTIFIER_HEAD(netdev_chain); 263 264 /* 265 * Device drivers call our routines to queue packets here. We empty the 266 * queue in the local softnet handler. 267 */ 268 269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 270 EXPORT_PER_CPU_SYMBOL(softnet_data); 271 272 #ifdef CONFIG_LOCKDEP 273 /* 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 275 * according to dev->type 276 */ 277 static const unsigned short netdev_lock_type[] = 278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 293 ARPHRD_VOID, ARPHRD_NONE}; 294 295 static const char *const netdev_lock_name[] = 296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 311 "_xmit_VOID", "_xmit_NONE"}; 312 313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 315 316 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 317 { 318 int i; 319 320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 321 if (netdev_lock_type[i] == dev_type) 322 return i; 323 /* the last key is used by default */ 324 return ARRAY_SIZE(netdev_lock_type) - 1; 325 } 326 327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 328 unsigned short dev_type) 329 { 330 int i; 331 332 i = netdev_lock_pos(dev_type); 333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 334 netdev_lock_name[i]); 335 } 336 337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 338 { 339 int i; 340 341 i = netdev_lock_pos(dev->type); 342 lockdep_set_class_and_name(&dev->addr_list_lock, 343 &netdev_addr_lock_key[i], 344 netdev_lock_name[i]); 345 } 346 #else 347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 348 unsigned short dev_type) 349 { 350 } 351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 352 { 353 } 354 #endif 355 356 /******************************************************************************* 357 358 Protocol management and registration routines 359 360 *******************************************************************************/ 361 362 /* 363 * Add a protocol ID to the list. Now that the input handler is 364 * smarter we can dispense with all the messy stuff that used to be 365 * here. 366 * 367 * BEWARE!!! Protocol handlers, mangling input packets, 368 * MUST BE last in hash buckets and checking protocol handlers 369 * MUST start from promiscuous ptype_all chain in net_bh. 370 * It is true now, do not change it. 371 * Explanation follows: if protocol handler, mangling packet, will 372 * be the first on list, it is not able to sense, that packet 373 * is cloned and should be copied-on-write, so that it will 374 * change it and subsequent readers will get broken packet. 375 * --ANK (980803) 376 */ 377 378 static inline struct list_head *ptype_head(const struct packet_type *pt) 379 { 380 if (pt->type == htons(ETH_P_ALL)) 381 return &ptype_all; 382 else 383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 384 } 385 386 /** 387 * dev_add_pack - add packet handler 388 * @pt: packet type declaration 389 * 390 * Add a protocol handler to the networking stack. The passed &packet_type 391 * is linked into kernel lists and may not be freed until it has been 392 * removed from the kernel lists. 393 * 394 * This call does not sleep therefore it can not 395 * guarantee all CPU's that are in middle of receiving packets 396 * will see the new packet type (until the next received packet). 397 */ 398 399 void dev_add_pack(struct packet_type *pt) 400 { 401 struct list_head *head = ptype_head(pt); 402 403 spin_lock(&ptype_lock); 404 list_add_rcu(&pt->list, head); 405 spin_unlock(&ptype_lock); 406 } 407 EXPORT_SYMBOL(dev_add_pack); 408 409 /** 410 * __dev_remove_pack - remove packet handler 411 * @pt: packet type declaration 412 * 413 * Remove a protocol handler that was previously added to the kernel 414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 415 * from the kernel lists and can be freed or reused once this function 416 * returns. 417 * 418 * The packet type might still be in use by receivers 419 * and must not be freed until after all the CPU's have gone 420 * through a quiescent state. 421 */ 422 void __dev_remove_pack(struct packet_type *pt) 423 { 424 struct list_head *head = ptype_head(pt); 425 struct packet_type *pt1; 426 427 spin_lock(&ptype_lock); 428 429 list_for_each_entry(pt1, head, list) { 430 if (pt == pt1) { 431 list_del_rcu(&pt->list); 432 goto out; 433 } 434 } 435 436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 437 out: 438 spin_unlock(&ptype_lock); 439 } 440 EXPORT_SYMBOL(__dev_remove_pack); 441 442 /** 443 * dev_remove_pack - remove packet handler 444 * @pt: packet type declaration 445 * 446 * Remove a protocol handler that was previously added to the kernel 447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 448 * from the kernel lists and can be freed or reused once this function 449 * returns. 450 * 451 * This call sleeps to guarantee that no CPU is looking at the packet 452 * type after return. 453 */ 454 void dev_remove_pack(struct packet_type *pt) 455 { 456 __dev_remove_pack(pt); 457 458 synchronize_net(); 459 } 460 EXPORT_SYMBOL(dev_remove_pack); 461 462 /****************************************************************************** 463 464 Device Boot-time Settings Routines 465 466 *******************************************************************************/ 467 468 /* Boot time configuration table */ 469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 470 471 /** 472 * netdev_boot_setup_add - add new setup entry 473 * @name: name of the device 474 * @map: configured settings for the device 475 * 476 * Adds new setup entry to the dev_boot_setup list. The function 477 * returns 0 on error and 1 on success. This is a generic routine to 478 * all netdevices. 479 */ 480 static int netdev_boot_setup_add(char *name, struct ifmap *map) 481 { 482 struct netdev_boot_setup *s; 483 int i; 484 485 s = dev_boot_setup; 486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 488 memset(s[i].name, 0, sizeof(s[i].name)); 489 strlcpy(s[i].name, name, IFNAMSIZ); 490 memcpy(&s[i].map, map, sizeof(s[i].map)); 491 break; 492 } 493 } 494 495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 496 } 497 498 /** 499 * netdev_boot_setup_check - check boot time settings 500 * @dev: the netdevice 501 * 502 * Check boot time settings for the device. 503 * The found settings are set for the device to be used 504 * later in the device probing. 505 * Returns 0 if no settings found, 1 if they are. 506 */ 507 int netdev_boot_setup_check(struct net_device *dev) 508 { 509 struct netdev_boot_setup *s = dev_boot_setup; 510 int i; 511 512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 514 !strcmp(dev->name, s[i].name)) { 515 dev->irq = s[i].map.irq; 516 dev->base_addr = s[i].map.base_addr; 517 dev->mem_start = s[i].map.mem_start; 518 dev->mem_end = s[i].map.mem_end; 519 return 1; 520 } 521 } 522 return 0; 523 } 524 EXPORT_SYMBOL(netdev_boot_setup_check); 525 526 527 /** 528 * netdev_boot_base - get address from boot time settings 529 * @prefix: prefix for network device 530 * @unit: id for network device 531 * 532 * Check boot time settings for the base address of device. 533 * The found settings are set for the device to be used 534 * later in the device probing. 535 * Returns 0 if no settings found. 536 */ 537 unsigned long netdev_boot_base(const char *prefix, int unit) 538 { 539 const struct netdev_boot_setup *s = dev_boot_setup; 540 char name[IFNAMSIZ]; 541 int i; 542 543 sprintf(name, "%s%d", prefix, unit); 544 545 /* 546 * If device already registered then return base of 1 547 * to indicate not to probe for this interface 548 */ 549 if (__dev_get_by_name(&init_net, name)) 550 return 1; 551 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 553 if (!strcmp(name, s[i].name)) 554 return s[i].map.base_addr; 555 return 0; 556 } 557 558 /* 559 * Saves at boot time configured settings for any netdevice. 560 */ 561 int __init netdev_boot_setup(char *str) 562 { 563 int ints[5]; 564 struct ifmap map; 565 566 str = get_options(str, ARRAY_SIZE(ints), ints); 567 if (!str || !*str) 568 return 0; 569 570 /* Save settings */ 571 memset(&map, 0, sizeof(map)); 572 if (ints[0] > 0) 573 map.irq = ints[1]; 574 if (ints[0] > 1) 575 map.base_addr = ints[2]; 576 if (ints[0] > 2) 577 map.mem_start = ints[3]; 578 if (ints[0] > 3) 579 map.mem_end = ints[4]; 580 581 /* Add new entry to the list */ 582 return netdev_boot_setup_add(str, &map); 583 } 584 585 __setup("netdev=", netdev_boot_setup); 586 587 /******************************************************************************* 588 589 Device Interface Subroutines 590 591 *******************************************************************************/ 592 593 /** 594 * __dev_get_by_name - find a device by its name 595 * @net: the applicable net namespace 596 * @name: name to find 597 * 598 * Find an interface by name. Must be called under RTNL semaphore 599 * or @dev_base_lock. If the name is found a pointer to the device 600 * is returned. If the name is not found then %NULL is returned. The 601 * reference counters are not incremented so the caller must be 602 * careful with locks. 603 */ 604 605 struct net_device *__dev_get_by_name(struct net *net, const char *name) 606 { 607 struct hlist_node *p; 608 struct net_device *dev; 609 struct hlist_head *head = dev_name_hash(net, name); 610 611 hlist_for_each_entry(dev, p, head, name_hlist) 612 if (!strncmp(dev->name, name, IFNAMSIZ)) 613 return dev; 614 615 return NULL; 616 } 617 EXPORT_SYMBOL(__dev_get_by_name); 618 619 /** 620 * dev_get_by_name_rcu - find a device by its name 621 * @net: the applicable net namespace 622 * @name: name to find 623 * 624 * Find an interface by name. 625 * If the name is found a pointer to the device is returned. 626 * If the name is not found then %NULL is returned. 627 * The reference counters are not incremented so the caller must be 628 * careful with locks. The caller must hold RCU lock. 629 */ 630 631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 632 { 633 struct hlist_node *p; 634 struct net_device *dev; 635 struct hlist_head *head = dev_name_hash(net, name); 636 637 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 638 if (!strncmp(dev->name, name, IFNAMSIZ)) 639 return dev; 640 641 return NULL; 642 } 643 EXPORT_SYMBOL(dev_get_by_name_rcu); 644 645 /** 646 * dev_get_by_name - find a device by its name 647 * @net: the applicable net namespace 648 * @name: name to find 649 * 650 * Find an interface by name. This can be called from any 651 * context and does its own locking. The returned handle has 652 * the usage count incremented and the caller must use dev_put() to 653 * release it when it is no longer needed. %NULL is returned if no 654 * matching device is found. 655 */ 656 657 struct net_device *dev_get_by_name(struct net *net, const char *name) 658 { 659 struct net_device *dev; 660 661 rcu_read_lock(); 662 dev = dev_get_by_name_rcu(net, name); 663 if (dev) 664 dev_hold(dev); 665 rcu_read_unlock(); 666 return dev; 667 } 668 EXPORT_SYMBOL(dev_get_by_name); 669 670 /** 671 * __dev_get_by_index - find a device by its ifindex 672 * @net: the applicable net namespace 673 * @ifindex: index of device 674 * 675 * Search for an interface by index. Returns %NULL if the device 676 * is not found or a pointer to the device. The device has not 677 * had its reference counter increased so the caller must be careful 678 * about locking. The caller must hold either the RTNL semaphore 679 * or @dev_base_lock. 680 */ 681 682 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 683 { 684 struct hlist_node *p; 685 struct net_device *dev; 686 struct hlist_head *head = dev_index_hash(net, ifindex); 687 688 hlist_for_each_entry(dev, p, head, index_hlist) 689 if (dev->ifindex == ifindex) 690 return dev; 691 692 return NULL; 693 } 694 EXPORT_SYMBOL(__dev_get_by_index); 695 696 /** 697 * dev_get_by_index_rcu - find a device by its ifindex 698 * @net: the applicable net namespace 699 * @ifindex: index of device 700 * 701 * Search for an interface by index. Returns %NULL if the device 702 * is not found or a pointer to the device. The device has not 703 * had its reference counter increased so the caller must be careful 704 * about locking. The caller must hold RCU lock. 705 */ 706 707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 708 { 709 struct hlist_node *p; 710 struct net_device *dev; 711 struct hlist_head *head = dev_index_hash(net, ifindex); 712 713 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 714 if (dev->ifindex == ifindex) 715 return dev; 716 717 return NULL; 718 } 719 EXPORT_SYMBOL(dev_get_by_index_rcu); 720 721 722 /** 723 * dev_get_by_index - find a device by its ifindex 724 * @net: the applicable net namespace 725 * @ifindex: index of device 726 * 727 * Search for an interface by index. Returns NULL if the device 728 * is not found or a pointer to the device. The device returned has 729 * had a reference added and the pointer is safe until the user calls 730 * dev_put to indicate they have finished with it. 731 */ 732 733 struct net_device *dev_get_by_index(struct net *net, int ifindex) 734 { 735 struct net_device *dev; 736 737 rcu_read_lock(); 738 dev = dev_get_by_index_rcu(net, ifindex); 739 if (dev) 740 dev_hold(dev); 741 rcu_read_unlock(); 742 return dev; 743 } 744 EXPORT_SYMBOL(dev_get_by_index); 745 746 /** 747 * dev_getbyhwaddr_rcu - find a device by its hardware address 748 * @net: the applicable net namespace 749 * @type: media type of device 750 * @ha: hardware address 751 * 752 * Search for an interface by MAC address. Returns NULL if the device 753 * is not found or a pointer to the device. 754 * The caller must hold RCU or RTNL. 755 * The returned device has not had its ref count increased 756 * and the caller must therefore be careful about locking 757 * 758 */ 759 760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 761 const char *ha) 762 { 763 struct net_device *dev; 764 765 for_each_netdev_rcu(net, dev) 766 if (dev->type == type && 767 !memcmp(dev->dev_addr, ha, dev->addr_len)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 773 774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 775 { 776 struct net_device *dev; 777 778 ASSERT_RTNL(); 779 for_each_netdev(net, dev) 780 if (dev->type == type) 781 return dev; 782 783 return NULL; 784 } 785 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 786 787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 788 { 789 struct net_device *dev, *ret = NULL; 790 791 rcu_read_lock(); 792 for_each_netdev_rcu(net, dev) 793 if (dev->type == type) { 794 dev_hold(dev); 795 ret = dev; 796 break; 797 } 798 rcu_read_unlock(); 799 return ret; 800 } 801 EXPORT_SYMBOL(dev_getfirstbyhwtype); 802 803 /** 804 * dev_get_by_flags_rcu - find any device with given flags 805 * @net: the applicable net namespace 806 * @if_flags: IFF_* values 807 * @mask: bitmask of bits in if_flags to check 808 * 809 * Search for any interface with the given flags. Returns NULL if a device 810 * is not found or a pointer to the device. Must be called inside 811 * rcu_read_lock(), and result refcount is unchanged. 812 */ 813 814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 815 unsigned short mask) 816 { 817 struct net_device *dev, *ret; 818 819 ret = NULL; 820 for_each_netdev_rcu(net, dev) { 821 if (((dev->flags ^ if_flags) & mask) == 0) { 822 ret = dev; 823 break; 824 } 825 } 826 return ret; 827 } 828 EXPORT_SYMBOL(dev_get_by_flags_rcu); 829 830 /** 831 * dev_valid_name - check if name is okay for network device 832 * @name: name string 833 * 834 * Network device names need to be valid file names to 835 * to allow sysfs to work. We also disallow any kind of 836 * whitespace. 837 */ 838 int dev_valid_name(const char *name) 839 { 840 if (*name == '\0') 841 return 0; 842 if (strlen(name) >= IFNAMSIZ) 843 return 0; 844 if (!strcmp(name, ".") || !strcmp(name, "..")) 845 return 0; 846 847 while (*name) { 848 if (*name == '/' || isspace(*name)) 849 return 0; 850 name++; 851 } 852 return 1; 853 } 854 EXPORT_SYMBOL(dev_valid_name); 855 856 /** 857 * __dev_alloc_name - allocate a name for a device 858 * @net: network namespace to allocate the device name in 859 * @name: name format string 860 * @buf: scratch buffer and result name string 861 * 862 * Passed a format string - eg "lt%d" it will try and find a suitable 863 * id. It scans list of devices to build up a free map, then chooses 864 * the first empty slot. The caller must hold the dev_base or rtnl lock 865 * while allocating the name and adding the device in order to avoid 866 * duplicates. 867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 868 * Returns the number of the unit assigned or a negative errno code. 869 */ 870 871 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 872 { 873 int i = 0; 874 const char *p; 875 const int max_netdevices = 8*PAGE_SIZE; 876 unsigned long *inuse; 877 struct net_device *d; 878 879 p = strnchr(name, IFNAMSIZ-1, '%'); 880 if (p) { 881 /* 882 * Verify the string as this thing may have come from 883 * the user. There must be either one "%d" and no other "%" 884 * characters. 885 */ 886 if (p[1] != 'd' || strchr(p + 2, '%')) 887 return -EINVAL; 888 889 /* Use one page as a bit array of possible slots */ 890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 891 if (!inuse) 892 return -ENOMEM; 893 894 for_each_netdev(net, d) { 895 if (!sscanf(d->name, name, &i)) 896 continue; 897 if (i < 0 || i >= max_netdevices) 898 continue; 899 900 /* avoid cases where sscanf is not exact inverse of printf */ 901 snprintf(buf, IFNAMSIZ, name, i); 902 if (!strncmp(buf, d->name, IFNAMSIZ)) 903 set_bit(i, inuse); 904 } 905 906 i = find_first_zero_bit(inuse, max_netdevices); 907 free_page((unsigned long) inuse); 908 } 909 910 if (buf != name) 911 snprintf(buf, IFNAMSIZ, name, i); 912 if (!__dev_get_by_name(net, buf)) 913 return i; 914 915 /* It is possible to run out of possible slots 916 * when the name is long and there isn't enough space left 917 * for the digits, or if all bits are used. 918 */ 919 return -ENFILE; 920 } 921 922 /** 923 * dev_alloc_name - allocate a name for a device 924 * @dev: device 925 * @name: name format string 926 * 927 * Passed a format string - eg "lt%d" it will try and find a suitable 928 * id. It scans list of devices to build up a free map, then chooses 929 * the first empty slot. The caller must hold the dev_base or rtnl lock 930 * while allocating the name and adding the device in order to avoid 931 * duplicates. 932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 933 * Returns the number of the unit assigned or a negative errno code. 934 */ 935 936 int dev_alloc_name(struct net_device *dev, const char *name) 937 { 938 char buf[IFNAMSIZ]; 939 struct net *net; 940 int ret; 941 942 BUG_ON(!dev_net(dev)); 943 net = dev_net(dev); 944 ret = __dev_alloc_name(net, name, buf); 945 if (ret >= 0) 946 strlcpy(dev->name, buf, IFNAMSIZ); 947 return ret; 948 } 949 EXPORT_SYMBOL(dev_alloc_name); 950 951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 952 { 953 struct net *net; 954 955 BUG_ON(!dev_net(dev)); 956 net = dev_net(dev); 957 958 if (!dev_valid_name(name)) 959 return -EINVAL; 960 961 if (fmt && strchr(name, '%')) 962 return dev_alloc_name(dev, name); 963 else if (__dev_get_by_name(net, name)) 964 return -EEXIST; 965 else if (dev->name != name) 966 strlcpy(dev->name, name, IFNAMSIZ); 967 968 return 0; 969 } 970 971 /** 972 * dev_change_name - change name of a device 973 * @dev: device 974 * @newname: name (or format string) must be at least IFNAMSIZ 975 * 976 * Change name of a device, can pass format strings "eth%d". 977 * for wildcarding. 978 */ 979 int dev_change_name(struct net_device *dev, const char *newname) 980 { 981 char oldname[IFNAMSIZ]; 982 int err = 0; 983 int ret; 984 struct net *net; 985 986 ASSERT_RTNL(); 987 BUG_ON(!dev_net(dev)); 988 989 net = dev_net(dev); 990 if (dev->flags & IFF_UP) 991 return -EBUSY; 992 993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 994 return 0; 995 996 memcpy(oldname, dev->name, IFNAMSIZ); 997 998 err = dev_get_valid_name(dev, newname, 1); 999 if (err < 0) 1000 return err; 1001 1002 rollback: 1003 ret = device_rename(&dev->dev, dev->name); 1004 if (ret) { 1005 memcpy(dev->name, oldname, IFNAMSIZ); 1006 return ret; 1007 } 1008 1009 write_lock_bh(&dev_base_lock); 1010 hlist_del(&dev->name_hlist); 1011 write_unlock_bh(&dev_base_lock); 1012 1013 synchronize_rcu(); 1014 1015 write_lock_bh(&dev_base_lock); 1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1017 write_unlock_bh(&dev_base_lock); 1018 1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1020 ret = notifier_to_errno(ret); 1021 1022 if (ret) { 1023 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1024 if (err >= 0) { 1025 err = ret; 1026 memcpy(dev->name, oldname, IFNAMSIZ); 1027 goto rollback; 1028 } else { 1029 printk(KERN_ERR 1030 "%s: name change rollback failed: %d.\n", 1031 dev->name, ret); 1032 } 1033 } 1034 1035 return err; 1036 } 1037 1038 /** 1039 * dev_set_alias - change ifalias of a device 1040 * @dev: device 1041 * @alias: name up to IFALIASZ 1042 * @len: limit of bytes to copy from info 1043 * 1044 * Set ifalias for a device, 1045 */ 1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1047 { 1048 ASSERT_RTNL(); 1049 1050 if (len >= IFALIASZ) 1051 return -EINVAL; 1052 1053 if (!len) { 1054 if (dev->ifalias) { 1055 kfree(dev->ifalias); 1056 dev->ifalias = NULL; 1057 } 1058 return 0; 1059 } 1060 1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1062 if (!dev->ifalias) 1063 return -ENOMEM; 1064 1065 strlcpy(dev->ifalias, alias, len+1); 1066 return len; 1067 } 1068 1069 1070 /** 1071 * netdev_features_change - device changes features 1072 * @dev: device to cause notification 1073 * 1074 * Called to indicate a device has changed features. 1075 */ 1076 void netdev_features_change(struct net_device *dev) 1077 { 1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1079 } 1080 EXPORT_SYMBOL(netdev_features_change); 1081 1082 /** 1083 * netdev_state_change - device changes state 1084 * @dev: device to cause notification 1085 * 1086 * Called to indicate a device has changed state. This function calls 1087 * the notifier chains for netdev_chain and sends a NEWLINK message 1088 * to the routing socket. 1089 */ 1090 void netdev_state_change(struct net_device *dev) 1091 { 1092 if (dev->flags & IFF_UP) { 1093 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1095 } 1096 } 1097 EXPORT_SYMBOL(netdev_state_change); 1098 1099 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1100 { 1101 return call_netdevice_notifiers(event, dev); 1102 } 1103 EXPORT_SYMBOL(netdev_bonding_change); 1104 1105 /** 1106 * dev_load - load a network module 1107 * @net: the applicable net namespace 1108 * @name: name of interface 1109 * 1110 * If a network interface is not present and the process has suitable 1111 * privileges this function loads the module. If module loading is not 1112 * available in this kernel then it becomes a nop. 1113 */ 1114 1115 void dev_load(struct net *net, const char *name) 1116 { 1117 struct net_device *dev; 1118 1119 rcu_read_lock(); 1120 dev = dev_get_by_name_rcu(net, name); 1121 rcu_read_unlock(); 1122 1123 if (!dev && capable(CAP_NET_ADMIN)) 1124 request_module("%s", name); 1125 } 1126 EXPORT_SYMBOL(dev_load); 1127 1128 static int __dev_open(struct net_device *dev) 1129 { 1130 const struct net_device_ops *ops = dev->netdev_ops; 1131 int ret; 1132 1133 ASSERT_RTNL(); 1134 1135 /* 1136 * Is it even present? 1137 */ 1138 if (!netif_device_present(dev)) 1139 return -ENODEV; 1140 1141 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1142 ret = notifier_to_errno(ret); 1143 if (ret) 1144 return ret; 1145 1146 /* 1147 * Call device private open method 1148 */ 1149 set_bit(__LINK_STATE_START, &dev->state); 1150 1151 if (ops->ndo_validate_addr) 1152 ret = ops->ndo_validate_addr(dev); 1153 1154 if (!ret && ops->ndo_open) 1155 ret = ops->ndo_open(dev); 1156 1157 /* 1158 * If it went open OK then: 1159 */ 1160 1161 if (ret) 1162 clear_bit(__LINK_STATE_START, &dev->state); 1163 else { 1164 /* 1165 * Set the flags. 1166 */ 1167 dev->flags |= IFF_UP; 1168 1169 /* 1170 * Enable NET_DMA 1171 */ 1172 net_dmaengine_get(); 1173 1174 /* 1175 * Initialize multicasting status 1176 */ 1177 dev_set_rx_mode(dev); 1178 1179 /* 1180 * Wakeup transmit queue engine 1181 */ 1182 dev_activate(dev); 1183 } 1184 1185 return ret; 1186 } 1187 1188 /** 1189 * dev_open - prepare an interface for use. 1190 * @dev: device to open 1191 * 1192 * Takes a device from down to up state. The device's private open 1193 * function is invoked and then the multicast lists are loaded. Finally 1194 * the device is moved into the up state and a %NETDEV_UP message is 1195 * sent to the netdev notifier chain. 1196 * 1197 * Calling this function on an active interface is a nop. On a failure 1198 * a negative errno code is returned. 1199 */ 1200 int dev_open(struct net_device *dev) 1201 { 1202 int ret; 1203 1204 /* 1205 * Is it already up? 1206 */ 1207 if (dev->flags & IFF_UP) 1208 return 0; 1209 1210 /* 1211 * Open device 1212 */ 1213 ret = __dev_open(dev); 1214 if (ret < 0) 1215 return ret; 1216 1217 /* 1218 * ... and announce new interface. 1219 */ 1220 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1221 call_netdevice_notifiers(NETDEV_UP, dev); 1222 1223 return ret; 1224 } 1225 EXPORT_SYMBOL(dev_open); 1226 1227 static int __dev_close_many(struct list_head *head) 1228 { 1229 struct net_device *dev; 1230 1231 ASSERT_RTNL(); 1232 might_sleep(); 1233 1234 list_for_each_entry(dev, head, unreg_list) { 1235 /* 1236 * Tell people we are going down, so that they can 1237 * prepare to death, when device is still operating. 1238 */ 1239 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1240 1241 clear_bit(__LINK_STATE_START, &dev->state); 1242 1243 /* Synchronize to scheduled poll. We cannot touch poll list, it 1244 * can be even on different cpu. So just clear netif_running(). 1245 * 1246 * dev->stop() will invoke napi_disable() on all of it's 1247 * napi_struct instances on this device. 1248 */ 1249 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1250 } 1251 1252 dev_deactivate_many(head); 1253 1254 list_for_each_entry(dev, head, unreg_list) { 1255 const struct net_device_ops *ops = dev->netdev_ops; 1256 1257 /* 1258 * Call the device specific close. This cannot fail. 1259 * Only if device is UP 1260 * 1261 * We allow it to be called even after a DETACH hot-plug 1262 * event. 1263 */ 1264 if (ops->ndo_stop) 1265 ops->ndo_stop(dev); 1266 1267 /* 1268 * Device is now down. 1269 */ 1270 1271 dev->flags &= ~IFF_UP; 1272 1273 /* 1274 * Shutdown NET_DMA 1275 */ 1276 net_dmaengine_put(); 1277 } 1278 1279 return 0; 1280 } 1281 1282 static int __dev_close(struct net_device *dev) 1283 { 1284 int retval; 1285 LIST_HEAD(single); 1286 1287 list_add(&dev->unreg_list, &single); 1288 retval = __dev_close_many(&single); 1289 list_del(&single); 1290 return retval; 1291 } 1292 1293 static int dev_close_many(struct list_head *head) 1294 { 1295 struct net_device *dev, *tmp; 1296 LIST_HEAD(tmp_list); 1297 1298 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1299 if (!(dev->flags & IFF_UP)) 1300 list_move(&dev->unreg_list, &tmp_list); 1301 1302 __dev_close_many(head); 1303 1304 /* 1305 * Tell people we are down 1306 */ 1307 list_for_each_entry(dev, head, unreg_list) { 1308 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1309 call_netdevice_notifiers(NETDEV_DOWN, dev); 1310 } 1311 1312 /* rollback_registered_many needs the complete original list */ 1313 list_splice(&tmp_list, head); 1314 return 0; 1315 } 1316 1317 /** 1318 * dev_close - shutdown an interface. 1319 * @dev: device to shutdown 1320 * 1321 * This function moves an active device into down state. A 1322 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1323 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1324 * chain. 1325 */ 1326 int dev_close(struct net_device *dev) 1327 { 1328 LIST_HEAD(single); 1329 1330 list_add(&dev->unreg_list, &single); 1331 dev_close_many(&single); 1332 list_del(&single); 1333 return 0; 1334 } 1335 EXPORT_SYMBOL(dev_close); 1336 1337 1338 /** 1339 * dev_disable_lro - disable Large Receive Offload on a device 1340 * @dev: device 1341 * 1342 * Disable Large Receive Offload (LRO) on a net device. Must be 1343 * called under RTNL. This is needed if received packets may be 1344 * forwarded to another interface. 1345 */ 1346 void dev_disable_lro(struct net_device *dev) 1347 { 1348 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1349 dev->ethtool_ops->set_flags) { 1350 u32 flags = dev->ethtool_ops->get_flags(dev); 1351 if (flags & ETH_FLAG_LRO) { 1352 flags &= ~ETH_FLAG_LRO; 1353 dev->ethtool_ops->set_flags(dev, flags); 1354 } 1355 } 1356 WARN_ON(dev->features & NETIF_F_LRO); 1357 } 1358 EXPORT_SYMBOL(dev_disable_lro); 1359 1360 1361 static int dev_boot_phase = 1; 1362 1363 /* 1364 * Device change register/unregister. These are not inline or static 1365 * as we export them to the world. 1366 */ 1367 1368 /** 1369 * register_netdevice_notifier - register a network notifier block 1370 * @nb: notifier 1371 * 1372 * Register a notifier to be called when network device events occur. 1373 * The notifier passed is linked into the kernel structures and must 1374 * not be reused until it has been unregistered. A negative errno code 1375 * is returned on a failure. 1376 * 1377 * When registered all registration and up events are replayed 1378 * to the new notifier to allow device to have a race free 1379 * view of the network device list. 1380 */ 1381 1382 int register_netdevice_notifier(struct notifier_block *nb) 1383 { 1384 struct net_device *dev; 1385 struct net_device *last; 1386 struct net *net; 1387 int err; 1388 1389 rtnl_lock(); 1390 err = raw_notifier_chain_register(&netdev_chain, nb); 1391 if (err) 1392 goto unlock; 1393 if (dev_boot_phase) 1394 goto unlock; 1395 for_each_net(net) { 1396 for_each_netdev(net, dev) { 1397 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1398 err = notifier_to_errno(err); 1399 if (err) 1400 goto rollback; 1401 1402 if (!(dev->flags & IFF_UP)) 1403 continue; 1404 1405 nb->notifier_call(nb, NETDEV_UP, dev); 1406 } 1407 } 1408 1409 unlock: 1410 rtnl_unlock(); 1411 return err; 1412 1413 rollback: 1414 last = dev; 1415 for_each_net(net) { 1416 for_each_netdev(net, dev) { 1417 if (dev == last) 1418 break; 1419 1420 if (dev->flags & IFF_UP) { 1421 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1422 nb->notifier_call(nb, NETDEV_DOWN, dev); 1423 } 1424 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1425 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1426 } 1427 } 1428 1429 raw_notifier_chain_unregister(&netdev_chain, nb); 1430 goto unlock; 1431 } 1432 EXPORT_SYMBOL(register_netdevice_notifier); 1433 1434 /** 1435 * unregister_netdevice_notifier - unregister a network notifier block 1436 * @nb: notifier 1437 * 1438 * Unregister a notifier previously registered by 1439 * register_netdevice_notifier(). The notifier is unlinked into the 1440 * kernel structures and may then be reused. A negative errno code 1441 * is returned on a failure. 1442 */ 1443 1444 int unregister_netdevice_notifier(struct notifier_block *nb) 1445 { 1446 int err; 1447 1448 rtnl_lock(); 1449 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1450 rtnl_unlock(); 1451 return err; 1452 } 1453 EXPORT_SYMBOL(unregister_netdevice_notifier); 1454 1455 /** 1456 * call_netdevice_notifiers - call all network notifier blocks 1457 * @val: value passed unmodified to notifier function 1458 * @dev: net_device pointer passed unmodified to notifier function 1459 * 1460 * Call all network notifier blocks. Parameters and return value 1461 * are as for raw_notifier_call_chain(). 1462 */ 1463 1464 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1465 { 1466 ASSERT_RTNL(); 1467 return raw_notifier_call_chain(&netdev_chain, val, dev); 1468 } 1469 1470 /* When > 0 there are consumers of rx skb time stamps */ 1471 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1472 1473 void net_enable_timestamp(void) 1474 { 1475 atomic_inc(&netstamp_needed); 1476 } 1477 EXPORT_SYMBOL(net_enable_timestamp); 1478 1479 void net_disable_timestamp(void) 1480 { 1481 atomic_dec(&netstamp_needed); 1482 } 1483 EXPORT_SYMBOL(net_disable_timestamp); 1484 1485 static inline void net_timestamp_set(struct sk_buff *skb) 1486 { 1487 if (atomic_read(&netstamp_needed)) 1488 __net_timestamp(skb); 1489 else 1490 skb->tstamp.tv64 = 0; 1491 } 1492 1493 static inline void net_timestamp_check(struct sk_buff *skb) 1494 { 1495 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1496 __net_timestamp(skb); 1497 } 1498 1499 /** 1500 * dev_forward_skb - loopback an skb to another netif 1501 * 1502 * @dev: destination network device 1503 * @skb: buffer to forward 1504 * 1505 * return values: 1506 * NET_RX_SUCCESS (no congestion) 1507 * NET_RX_DROP (packet was dropped, but freed) 1508 * 1509 * dev_forward_skb can be used for injecting an skb from the 1510 * start_xmit function of one device into the receive queue 1511 * of another device. 1512 * 1513 * The receiving device may be in another namespace, so 1514 * we have to clear all information in the skb that could 1515 * impact namespace isolation. 1516 */ 1517 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1518 { 1519 skb_orphan(skb); 1520 nf_reset(skb); 1521 1522 if (unlikely(!(dev->flags & IFF_UP) || 1523 (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) { 1524 atomic_long_inc(&dev->rx_dropped); 1525 kfree_skb(skb); 1526 return NET_RX_DROP; 1527 } 1528 skb_set_dev(skb, dev); 1529 skb->tstamp.tv64 = 0; 1530 skb->pkt_type = PACKET_HOST; 1531 skb->protocol = eth_type_trans(skb, dev); 1532 return netif_rx(skb); 1533 } 1534 EXPORT_SYMBOL_GPL(dev_forward_skb); 1535 1536 static inline int deliver_skb(struct sk_buff *skb, 1537 struct packet_type *pt_prev, 1538 struct net_device *orig_dev) 1539 { 1540 atomic_inc(&skb->users); 1541 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1542 } 1543 1544 /* 1545 * Support routine. Sends outgoing frames to any network 1546 * taps currently in use. 1547 */ 1548 1549 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1550 { 1551 struct packet_type *ptype; 1552 struct sk_buff *skb2 = NULL; 1553 struct packet_type *pt_prev = NULL; 1554 1555 rcu_read_lock(); 1556 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1557 /* Never send packets back to the socket 1558 * they originated from - MvS ([email protected]) 1559 */ 1560 if ((ptype->dev == dev || !ptype->dev) && 1561 (ptype->af_packet_priv == NULL || 1562 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1563 if (pt_prev) { 1564 deliver_skb(skb2, pt_prev, skb->dev); 1565 pt_prev = ptype; 1566 continue; 1567 } 1568 1569 skb2 = skb_clone(skb, GFP_ATOMIC); 1570 if (!skb2) 1571 break; 1572 1573 net_timestamp_set(skb2); 1574 1575 /* skb->nh should be correctly 1576 set by sender, so that the second statement is 1577 just protection against buggy protocols. 1578 */ 1579 skb_reset_mac_header(skb2); 1580 1581 if (skb_network_header(skb2) < skb2->data || 1582 skb2->network_header > skb2->tail) { 1583 if (net_ratelimit()) 1584 printk(KERN_CRIT "protocol %04x is " 1585 "buggy, dev %s\n", 1586 ntohs(skb2->protocol), 1587 dev->name); 1588 skb_reset_network_header(skb2); 1589 } 1590 1591 skb2->transport_header = skb2->network_header; 1592 skb2->pkt_type = PACKET_OUTGOING; 1593 pt_prev = ptype; 1594 } 1595 } 1596 if (pt_prev) 1597 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1598 rcu_read_unlock(); 1599 } 1600 1601 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1602 * @dev: Network device 1603 * @txq: number of queues available 1604 * 1605 * If real_num_tx_queues is changed the tc mappings may no longer be 1606 * valid. To resolve this verify the tc mapping remains valid and if 1607 * not NULL the mapping. With no priorities mapping to this 1608 * offset/count pair it will no longer be used. In the worst case TC0 1609 * is invalid nothing can be done so disable priority mappings. If is 1610 * expected that drivers will fix this mapping if they can before 1611 * calling netif_set_real_num_tx_queues. 1612 */ 1613 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1614 { 1615 int i; 1616 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1617 1618 /* If TC0 is invalidated disable TC mapping */ 1619 if (tc->offset + tc->count > txq) { 1620 pr_warning("Number of in use tx queues changed " 1621 "invalidating tc mappings. Priority " 1622 "traffic classification disabled!\n"); 1623 dev->num_tc = 0; 1624 return; 1625 } 1626 1627 /* Invalidated prio to tc mappings set to TC0 */ 1628 for (i = 1; i < TC_BITMASK + 1; i++) { 1629 int q = netdev_get_prio_tc_map(dev, i); 1630 1631 tc = &dev->tc_to_txq[q]; 1632 if (tc->offset + tc->count > txq) { 1633 pr_warning("Number of in use tx queues " 1634 "changed. Priority %i to tc " 1635 "mapping %i is no longer valid " 1636 "setting map to 0\n", 1637 i, q); 1638 netdev_set_prio_tc_map(dev, i, 0); 1639 } 1640 } 1641 } 1642 1643 /* 1644 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1645 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1646 */ 1647 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1648 { 1649 int rc; 1650 1651 if (txq < 1 || txq > dev->num_tx_queues) 1652 return -EINVAL; 1653 1654 if (dev->reg_state == NETREG_REGISTERED || 1655 dev->reg_state == NETREG_UNREGISTERING) { 1656 ASSERT_RTNL(); 1657 1658 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1659 txq); 1660 if (rc) 1661 return rc; 1662 1663 if (dev->num_tc) 1664 netif_setup_tc(dev, txq); 1665 1666 if (txq < dev->real_num_tx_queues) 1667 qdisc_reset_all_tx_gt(dev, txq); 1668 } 1669 1670 dev->real_num_tx_queues = txq; 1671 return 0; 1672 } 1673 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1674 1675 #ifdef CONFIG_RPS 1676 /** 1677 * netif_set_real_num_rx_queues - set actual number of RX queues used 1678 * @dev: Network device 1679 * @rxq: Actual number of RX queues 1680 * 1681 * This must be called either with the rtnl_lock held or before 1682 * registration of the net device. Returns 0 on success, or a 1683 * negative error code. If called before registration, it always 1684 * succeeds. 1685 */ 1686 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1687 { 1688 int rc; 1689 1690 if (rxq < 1 || rxq > dev->num_rx_queues) 1691 return -EINVAL; 1692 1693 if (dev->reg_state == NETREG_REGISTERED) { 1694 ASSERT_RTNL(); 1695 1696 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1697 rxq); 1698 if (rc) 1699 return rc; 1700 } 1701 1702 dev->real_num_rx_queues = rxq; 1703 return 0; 1704 } 1705 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1706 #endif 1707 1708 static inline void __netif_reschedule(struct Qdisc *q) 1709 { 1710 struct softnet_data *sd; 1711 unsigned long flags; 1712 1713 local_irq_save(flags); 1714 sd = &__get_cpu_var(softnet_data); 1715 q->next_sched = NULL; 1716 *sd->output_queue_tailp = q; 1717 sd->output_queue_tailp = &q->next_sched; 1718 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1719 local_irq_restore(flags); 1720 } 1721 1722 void __netif_schedule(struct Qdisc *q) 1723 { 1724 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1725 __netif_reschedule(q); 1726 } 1727 EXPORT_SYMBOL(__netif_schedule); 1728 1729 void dev_kfree_skb_irq(struct sk_buff *skb) 1730 { 1731 if (atomic_dec_and_test(&skb->users)) { 1732 struct softnet_data *sd; 1733 unsigned long flags; 1734 1735 local_irq_save(flags); 1736 sd = &__get_cpu_var(softnet_data); 1737 skb->next = sd->completion_queue; 1738 sd->completion_queue = skb; 1739 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1740 local_irq_restore(flags); 1741 } 1742 } 1743 EXPORT_SYMBOL(dev_kfree_skb_irq); 1744 1745 void dev_kfree_skb_any(struct sk_buff *skb) 1746 { 1747 if (in_irq() || irqs_disabled()) 1748 dev_kfree_skb_irq(skb); 1749 else 1750 dev_kfree_skb(skb); 1751 } 1752 EXPORT_SYMBOL(dev_kfree_skb_any); 1753 1754 1755 /** 1756 * netif_device_detach - mark device as removed 1757 * @dev: network device 1758 * 1759 * Mark device as removed from system and therefore no longer available. 1760 */ 1761 void netif_device_detach(struct net_device *dev) 1762 { 1763 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1764 netif_running(dev)) { 1765 netif_tx_stop_all_queues(dev); 1766 } 1767 } 1768 EXPORT_SYMBOL(netif_device_detach); 1769 1770 /** 1771 * netif_device_attach - mark device as attached 1772 * @dev: network device 1773 * 1774 * Mark device as attached from system and restart if needed. 1775 */ 1776 void netif_device_attach(struct net_device *dev) 1777 { 1778 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1779 netif_running(dev)) { 1780 netif_tx_wake_all_queues(dev); 1781 __netdev_watchdog_up(dev); 1782 } 1783 } 1784 EXPORT_SYMBOL(netif_device_attach); 1785 1786 /** 1787 * skb_dev_set -- assign a new device to a buffer 1788 * @skb: buffer for the new device 1789 * @dev: network device 1790 * 1791 * If an skb is owned by a device already, we have to reset 1792 * all data private to the namespace a device belongs to 1793 * before assigning it a new device. 1794 */ 1795 #ifdef CONFIG_NET_NS 1796 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1797 { 1798 skb_dst_drop(skb); 1799 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1800 secpath_reset(skb); 1801 nf_reset(skb); 1802 skb_init_secmark(skb); 1803 skb->mark = 0; 1804 skb->priority = 0; 1805 skb->nf_trace = 0; 1806 skb->ipvs_property = 0; 1807 #ifdef CONFIG_NET_SCHED 1808 skb->tc_index = 0; 1809 #endif 1810 } 1811 skb->dev = dev; 1812 } 1813 EXPORT_SYMBOL(skb_set_dev); 1814 #endif /* CONFIG_NET_NS */ 1815 1816 /* 1817 * Invalidate hardware checksum when packet is to be mangled, and 1818 * complete checksum manually on outgoing path. 1819 */ 1820 int skb_checksum_help(struct sk_buff *skb) 1821 { 1822 __wsum csum; 1823 int ret = 0, offset; 1824 1825 if (skb->ip_summed == CHECKSUM_COMPLETE) 1826 goto out_set_summed; 1827 1828 if (unlikely(skb_shinfo(skb)->gso_size)) { 1829 /* Let GSO fix up the checksum. */ 1830 goto out_set_summed; 1831 } 1832 1833 offset = skb_checksum_start_offset(skb); 1834 BUG_ON(offset >= skb_headlen(skb)); 1835 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1836 1837 offset += skb->csum_offset; 1838 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1839 1840 if (skb_cloned(skb) && 1841 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1842 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1843 if (ret) 1844 goto out; 1845 } 1846 1847 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1848 out_set_summed: 1849 skb->ip_summed = CHECKSUM_NONE; 1850 out: 1851 return ret; 1852 } 1853 EXPORT_SYMBOL(skb_checksum_help); 1854 1855 /** 1856 * skb_gso_segment - Perform segmentation on skb. 1857 * @skb: buffer to segment 1858 * @features: features for the output path (see dev->features) 1859 * 1860 * This function segments the given skb and returns a list of segments. 1861 * 1862 * It may return NULL if the skb requires no segmentation. This is 1863 * only possible when GSO is used for verifying header integrity. 1864 */ 1865 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features) 1866 { 1867 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1868 struct packet_type *ptype; 1869 __be16 type = skb->protocol; 1870 int vlan_depth = ETH_HLEN; 1871 int err; 1872 1873 while (type == htons(ETH_P_8021Q)) { 1874 struct vlan_hdr *vh; 1875 1876 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1877 return ERR_PTR(-EINVAL); 1878 1879 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1880 type = vh->h_vlan_encapsulated_proto; 1881 vlan_depth += VLAN_HLEN; 1882 } 1883 1884 skb_reset_mac_header(skb); 1885 skb->mac_len = skb->network_header - skb->mac_header; 1886 __skb_pull(skb, skb->mac_len); 1887 1888 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1889 struct net_device *dev = skb->dev; 1890 struct ethtool_drvinfo info = {}; 1891 1892 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1893 dev->ethtool_ops->get_drvinfo(dev, &info); 1894 1895 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1896 info.driver, dev ? dev->features : 0L, 1897 skb->sk ? skb->sk->sk_route_caps : 0L, 1898 skb->len, skb->data_len, skb->ip_summed); 1899 1900 if (skb_header_cloned(skb) && 1901 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1902 return ERR_PTR(err); 1903 } 1904 1905 rcu_read_lock(); 1906 list_for_each_entry_rcu(ptype, 1907 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1908 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1909 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1910 err = ptype->gso_send_check(skb); 1911 segs = ERR_PTR(err); 1912 if (err || skb_gso_ok(skb, features)) 1913 break; 1914 __skb_push(skb, (skb->data - 1915 skb_network_header(skb))); 1916 } 1917 segs = ptype->gso_segment(skb, features); 1918 break; 1919 } 1920 } 1921 rcu_read_unlock(); 1922 1923 __skb_push(skb, skb->data - skb_mac_header(skb)); 1924 1925 return segs; 1926 } 1927 EXPORT_SYMBOL(skb_gso_segment); 1928 1929 /* Take action when hardware reception checksum errors are detected. */ 1930 #ifdef CONFIG_BUG 1931 void netdev_rx_csum_fault(struct net_device *dev) 1932 { 1933 if (net_ratelimit()) { 1934 printk(KERN_ERR "%s: hw csum failure.\n", 1935 dev ? dev->name : "<unknown>"); 1936 dump_stack(); 1937 } 1938 } 1939 EXPORT_SYMBOL(netdev_rx_csum_fault); 1940 #endif 1941 1942 /* Actually, we should eliminate this check as soon as we know, that: 1943 * 1. IOMMU is present and allows to map all the memory. 1944 * 2. No high memory really exists on this machine. 1945 */ 1946 1947 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1948 { 1949 #ifdef CONFIG_HIGHMEM 1950 int i; 1951 if (!(dev->features & NETIF_F_HIGHDMA)) { 1952 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1953 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1954 return 1; 1955 } 1956 1957 if (PCI_DMA_BUS_IS_PHYS) { 1958 struct device *pdev = dev->dev.parent; 1959 1960 if (!pdev) 1961 return 0; 1962 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1963 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1964 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1965 return 1; 1966 } 1967 } 1968 #endif 1969 return 0; 1970 } 1971 1972 struct dev_gso_cb { 1973 void (*destructor)(struct sk_buff *skb); 1974 }; 1975 1976 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1977 1978 static void dev_gso_skb_destructor(struct sk_buff *skb) 1979 { 1980 struct dev_gso_cb *cb; 1981 1982 do { 1983 struct sk_buff *nskb = skb->next; 1984 1985 skb->next = nskb->next; 1986 nskb->next = NULL; 1987 kfree_skb(nskb); 1988 } while (skb->next); 1989 1990 cb = DEV_GSO_CB(skb); 1991 if (cb->destructor) 1992 cb->destructor(skb); 1993 } 1994 1995 /** 1996 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1997 * @skb: buffer to segment 1998 * @features: device features as applicable to this skb 1999 * 2000 * This function segments the given skb and stores the list of segments 2001 * in skb->next. 2002 */ 2003 static int dev_gso_segment(struct sk_buff *skb, int features) 2004 { 2005 struct sk_buff *segs; 2006 2007 segs = skb_gso_segment(skb, features); 2008 2009 /* Verifying header integrity only. */ 2010 if (!segs) 2011 return 0; 2012 2013 if (IS_ERR(segs)) 2014 return PTR_ERR(segs); 2015 2016 skb->next = segs; 2017 DEV_GSO_CB(skb)->destructor = skb->destructor; 2018 skb->destructor = dev_gso_skb_destructor; 2019 2020 return 0; 2021 } 2022 2023 /* 2024 * Try to orphan skb early, right before transmission by the device. 2025 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2026 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2027 */ 2028 static inline void skb_orphan_try(struct sk_buff *skb) 2029 { 2030 struct sock *sk = skb->sk; 2031 2032 if (sk && !skb_shinfo(skb)->tx_flags) { 2033 /* skb_tx_hash() wont be able to get sk. 2034 * We copy sk_hash into skb->rxhash 2035 */ 2036 if (!skb->rxhash) 2037 skb->rxhash = sk->sk_hash; 2038 skb_orphan(skb); 2039 } 2040 } 2041 2042 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 2043 { 2044 return ((features & NETIF_F_GEN_CSUM) || 2045 ((features & NETIF_F_V4_CSUM) && 2046 protocol == htons(ETH_P_IP)) || 2047 ((features & NETIF_F_V6_CSUM) && 2048 protocol == htons(ETH_P_IPV6)) || 2049 ((features & NETIF_F_FCOE_CRC) && 2050 protocol == htons(ETH_P_FCOE))); 2051 } 2052 2053 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features) 2054 { 2055 if (!can_checksum_protocol(features, protocol)) { 2056 features &= ~NETIF_F_ALL_CSUM; 2057 features &= ~NETIF_F_SG; 2058 } else if (illegal_highdma(skb->dev, skb)) { 2059 features &= ~NETIF_F_SG; 2060 } 2061 2062 return features; 2063 } 2064 2065 u32 netif_skb_features(struct sk_buff *skb) 2066 { 2067 __be16 protocol = skb->protocol; 2068 u32 features = skb->dev->features; 2069 2070 if (protocol == htons(ETH_P_8021Q)) { 2071 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2072 protocol = veh->h_vlan_encapsulated_proto; 2073 } else if (!vlan_tx_tag_present(skb)) { 2074 return harmonize_features(skb, protocol, features); 2075 } 2076 2077 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2078 2079 if (protocol != htons(ETH_P_8021Q)) { 2080 return harmonize_features(skb, protocol, features); 2081 } else { 2082 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2083 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2084 return harmonize_features(skb, protocol, features); 2085 } 2086 } 2087 EXPORT_SYMBOL(netif_skb_features); 2088 2089 /* 2090 * Returns true if either: 2091 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2092 * 2. skb is fragmented and the device does not support SG, or if 2093 * at least one of fragments is in highmem and device does not 2094 * support DMA from it. 2095 */ 2096 static inline int skb_needs_linearize(struct sk_buff *skb, 2097 int features) 2098 { 2099 return skb_is_nonlinear(skb) && 2100 ((skb_has_frag_list(skb) && 2101 !(features & NETIF_F_FRAGLIST)) || 2102 (skb_shinfo(skb)->nr_frags && 2103 !(features & NETIF_F_SG))); 2104 } 2105 2106 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2107 struct netdev_queue *txq) 2108 { 2109 const struct net_device_ops *ops = dev->netdev_ops; 2110 int rc = NETDEV_TX_OK; 2111 2112 if (likely(!skb->next)) { 2113 u32 features; 2114 2115 /* 2116 * If device doesnt need skb->dst, release it right now while 2117 * its hot in this cpu cache 2118 */ 2119 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2120 skb_dst_drop(skb); 2121 2122 if (!list_empty(&ptype_all)) 2123 dev_queue_xmit_nit(skb, dev); 2124 2125 skb_orphan_try(skb); 2126 2127 features = netif_skb_features(skb); 2128 2129 if (vlan_tx_tag_present(skb) && 2130 !(features & NETIF_F_HW_VLAN_TX)) { 2131 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2132 if (unlikely(!skb)) 2133 goto out; 2134 2135 skb->vlan_tci = 0; 2136 } 2137 2138 if (netif_needs_gso(skb, features)) { 2139 if (unlikely(dev_gso_segment(skb, features))) 2140 goto out_kfree_skb; 2141 if (skb->next) 2142 goto gso; 2143 } else { 2144 if (skb_needs_linearize(skb, features) && 2145 __skb_linearize(skb)) 2146 goto out_kfree_skb; 2147 2148 /* If packet is not checksummed and device does not 2149 * support checksumming for this protocol, complete 2150 * checksumming here. 2151 */ 2152 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2153 skb_set_transport_header(skb, 2154 skb_checksum_start_offset(skb)); 2155 if (!(features & NETIF_F_ALL_CSUM) && 2156 skb_checksum_help(skb)) 2157 goto out_kfree_skb; 2158 } 2159 } 2160 2161 rc = ops->ndo_start_xmit(skb, dev); 2162 trace_net_dev_xmit(skb, rc); 2163 if (rc == NETDEV_TX_OK) 2164 txq_trans_update(txq); 2165 return rc; 2166 } 2167 2168 gso: 2169 do { 2170 struct sk_buff *nskb = skb->next; 2171 2172 skb->next = nskb->next; 2173 nskb->next = NULL; 2174 2175 /* 2176 * If device doesnt need nskb->dst, release it right now while 2177 * its hot in this cpu cache 2178 */ 2179 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2180 skb_dst_drop(nskb); 2181 2182 rc = ops->ndo_start_xmit(nskb, dev); 2183 trace_net_dev_xmit(nskb, rc); 2184 if (unlikely(rc != NETDEV_TX_OK)) { 2185 if (rc & ~NETDEV_TX_MASK) 2186 goto out_kfree_gso_skb; 2187 nskb->next = skb->next; 2188 skb->next = nskb; 2189 return rc; 2190 } 2191 txq_trans_update(txq); 2192 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2193 return NETDEV_TX_BUSY; 2194 } while (skb->next); 2195 2196 out_kfree_gso_skb: 2197 if (likely(skb->next == NULL)) 2198 skb->destructor = DEV_GSO_CB(skb)->destructor; 2199 out_kfree_skb: 2200 kfree_skb(skb); 2201 out: 2202 return rc; 2203 } 2204 2205 static u32 hashrnd __read_mostly; 2206 2207 /* 2208 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2209 * to be used as a distribution range. 2210 */ 2211 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2212 unsigned int num_tx_queues) 2213 { 2214 u32 hash; 2215 u16 qoffset = 0; 2216 u16 qcount = num_tx_queues; 2217 2218 if (skb_rx_queue_recorded(skb)) { 2219 hash = skb_get_rx_queue(skb); 2220 while (unlikely(hash >= num_tx_queues)) 2221 hash -= num_tx_queues; 2222 return hash; 2223 } 2224 2225 if (dev->num_tc) { 2226 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2227 qoffset = dev->tc_to_txq[tc].offset; 2228 qcount = dev->tc_to_txq[tc].count; 2229 } 2230 2231 if (skb->sk && skb->sk->sk_hash) 2232 hash = skb->sk->sk_hash; 2233 else 2234 hash = (__force u16) skb->protocol ^ skb->rxhash; 2235 hash = jhash_1word(hash, hashrnd); 2236 2237 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2238 } 2239 EXPORT_SYMBOL(__skb_tx_hash); 2240 2241 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2242 { 2243 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2244 if (net_ratelimit()) { 2245 pr_warning("%s selects TX queue %d, but " 2246 "real number of TX queues is %d\n", 2247 dev->name, queue_index, dev->real_num_tx_queues); 2248 } 2249 return 0; 2250 } 2251 return queue_index; 2252 } 2253 2254 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2255 { 2256 #ifdef CONFIG_XPS 2257 struct xps_dev_maps *dev_maps; 2258 struct xps_map *map; 2259 int queue_index = -1; 2260 2261 rcu_read_lock(); 2262 dev_maps = rcu_dereference(dev->xps_maps); 2263 if (dev_maps) { 2264 map = rcu_dereference( 2265 dev_maps->cpu_map[raw_smp_processor_id()]); 2266 if (map) { 2267 if (map->len == 1) 2268 queue_index = map->queues[0]; 2269 else { 2270 u32 hash; 2271 if (skb->sk && skb->sk->sk_hash) 2272 hash = skb->sk->sk_hash; 2273 else 2274 hash = (__force u16) skb->protocol ^ 2275 skb->rxhash; 2276 hash = jhash_1word(hash, hashrnd); 2277 queue_index = map->queues[ 2278 ((u64)hash * map->len) >> 32]; 2279 } 2280 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2281 queue_index = -1; 2282 } 2283 } 2284 rcu_read_unlock(); 2285 2286 return queue_index; 2287 #else 2288 return -1; 2289 #endif 2290 } 2291 2292 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2293 struct sk_buff *skb) 2294 { 2295 int queue_index; 2296 const struct net_device_ops *ops = dev->netdev_ops; 2297 2298 if (dev->real_num_tx_queues == 1) 2299 queue_index = 0; 2300 else if (ops->ndo_select_queue) { 2301 queue_index = ops->ndo_select_queue(dev, skb); 2302 queue_index = dev_cap_txqueue(dev, queue_index); 2303 } else { 2304 struct sock *sk = skb->sk; 2305 queue_index = sk_tx_queue_get(sk); 2306 2307 if (queue_index < 0 || skb->ooo_okay || 2308 queue_index >= dev->real_num_tx_queues) { 2309 int old_index = queue_index; 2310 2311 queue_index = get_xps_queue(dev, skb); 2312 if (queue_index < 0) 2313 queue_index = skb_tx_hash(dev, skb); 2314 2315 if (queue_index != old_index && sk) { 2316 struct dst_entry *dst = 2317 rcu_dereference_check(sk->sk_dst_cache, 1); 2318 2319 if (dst && skb_dst(skb) == dst) 2320 sk_tx_queue_set(sk, queue_index); 2321 } 2322 } 2323 } 2324 2325 skb_set_queue_mapping(skb, queue_index); 2326 return netdev_get_tx_queue(dev, queue_index); 2327 } 2328 2329 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2330 struct net_device *dev, 2331 struct netdev_queue *txq) 2332 { 2333 spinlock_t *root_lock = qdisc_lock(q); 2334 bool contended; 2335 int rc; 2336 2337 qdisc_skb_cb(skb)->pkt_len = skb->len; 2338 qdisc_calculate_pkt_len(skb, q); 2339 /* 2340 * Heuristic to force contended enqueues to serialize on a 2341 * separate lock before trying to get qdisc main lock. 2342 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2343 * and dequeue packets faster. 2344 */ 2345 contended = qdisc_is_running(q); 2346 if (unlikely(contended)) 2347 spin_lock(&q->busylock); 2348 2349 spin_lock(root_lock); 2350 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2351 kfree_skb(skb); 2352 rc = NET_XMIT_DROP; 2353 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2354 qdisc_run_begin(q)) { 2355 /* 2356 * This is a work-conserving queue; there are no old skbs 2357 * waiting to be sent out; and the qdisc is not running - 2358 * xmit the skb directly. 2359 */ 2360 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2361 skb_dst_force(skb); 2362 2363 qdisc_bstats_update(q, skb); 2364 2365 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2366 if (unlikely(contended)) { 2367 spin_unlock(&q->busylock); 2368 contended = false; 2369 } 2370 __qdisc_run(q); 2371 } else 2372 qdisc_run_end(q); 2373 2374 rc = NET_XMIT_SUCCESS; 2375 } else { 2376 skb_dst_force(skb); 2377 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2378 if (qdisc_run_begin(q)) { 2379 if (unlikely(contended)) { 2380 spin_unlock(&q->busylock); 2381 contended = false; 2382 } 2383 __qdisc_run(q); 2384 } 2385 } 2386 spin_unlock(root_lock); 2387 if (unlikely(contended)) 2388 spin_unlock(&q->busylock); 2389 return rc; 2390 } 2391 2392 static DEFINE_PER_CPU(int, xmit_recursion); 2393 #define RECURSION_LIMIT 10 2394 2395 /** 2396 * dev_queue_xmit - transmit a buffer 2397 * @skb: buffer to transmit 2398 * 2399 * Queue a buffer for transmission to a network device. The caller must 2400 * have set the device and priority and built the buffer before calling 2401 * this function. The function can be called from an interrupt. 2402 * 2403 * A negative errno code is returned on a failure. A success does not 2404 * guarantee the frame will be transmitted as it may be dropped due 2405 * to congestion or traffic shaping. 2406 * 2407 * ----------------------------------------------------------------------------------- 2408 * I notice this method can also return errors from the queue disciplines, 2409 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2410 * be positive. 2411 * 2412 * Regardless of the return value, the skb is consumed, so it is currently 2413 * difficult to retry a send to this method. (You can bump the ref count 2414 * before sending to hold a reference for retry if you are careful.) 2415 * 2416 * When calling this method, interrupts MUST be enabled. This is because 2417 * the BH enable code must have IRQs enabled so that it will not deadlock. 2418 * --BLG 2419 */ 2420 int dev_queue_xmit(struct sk_buff *skb) 2421 { 2422 struct net_device *dev = skb->dev; 2423 struct netdev_queue *txq; 2424 struct Qdisc *q; 2425 int rc = -ENOMEM; 2426 2427 /* Disable soft irqs for various locks below. Also 2428 * stops preemption for RCU. 2429 */ 2430 rcu_read_lock_bh(); 2431 2432 txq = dev_pick_tx(dev, skb); 2433 q = rcu_dereference_bh(txq->qdisc); 2434 2435 #ifdef CONFIG_NET_CLS_ACT 2436 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2437 #endif 2438 trace_net_dev_queue(skb); 2439 if (q->enqueue) { 2440 rc = __dev_xmit_skb(skb, q, dev, txq); 2441 goto out; 2442 } 2443 2444 /* The device has no queue. Common case for software devices: 2445 loopback, all the sorts of tunnels... 2446 2447 Really, it is unlikely that netif_tx_lock protection is necessary 2448 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2449 counters.) 2450 However, it is possible, that they rely on protection 2451 made by us here. 2452 2453 Check this and shot the lock. It is not prone from deadlocks. 2454 Either shot noqueue qdisc, it is even simpler 8) 2455 */ 2456 if (dev->flags & IFF_UP) { 2457 int cpu = smp_processor_id(); /* ok because BHs are off */ 2458 2459 if (txq->xmit_lock_owner != cpu) { 2460 2461 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2462 goto recursion_alert; 2463 2464 HARD_TX_LOCK(dev, txq, cpu); 2465 2466 if (!netif_tx_queue_stopped(txq)) { 2467 __this_cpu_inc(xmit_recursion); 2468 rc = dev_hard_start_xmit(skb, dev, txq); 2469 __this_cpu_dec(xmit_recursion); 2470 if (dev_xmit_complete(rc)) { 2471 HARD_TX_UNLOCK(dev, txq); 2472 goto out; 2473 } 2474 } 2475 HARD_TX_UNLOCK(dev, txq); 2476 if (net_ratelimit()) 2477 printk(KERN_CRIT "Virtual device %s asks to " 2478 "queue packet!\n", dev->name); 2479 } else { 2480 /* Recursion is detected! It is possible, 2481 * unfortunately 2482 */ 2483 recursion_alert: 2484 if (net_ratelimit()) 2485 printk(KERN_CRIT "Dead loop on virtual device " 2486 "%s, fix it urgently!\n", dev->name); 2487 } 2488 } 2489 2490 rc = -ENETDOWN; 2491 rcu_read_unlock_bh(); 2492 2493 kfree_skb(skb); 2494 return rc; 2495 out: 2496 rcu_read_unlock_bh(); 2497 return rc; 2498 } 2499 EXPORT_SYMBOL(dev_queue_xmit); 2500 2501 2502 /*======================================================================= 2503 Receiver routines 2504 =======================================================================*/ 2505 2506 int netdev_max_backlog __read_mostly = 1000; 2507 int netdev_tstamp_prequeue __read_mostly = 1; 2508 int netdev_budget __read_mostly = 300; 2509 int weight_p __read_mostly = 64; /* old backlog weight */ 2510 2511 /* Called with irq disabled */ 2512 static inline void ____napi_schedule(struct softnet_data *sd, 2513 struct napi_struct *napi) 2514 { 2515 list_add_tail(&napi->poll_list, &sd->poll_list); 2516 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2517 } 2518 2519 /* 2520 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2521 * and src/dst port numbers. Returns a non-zero hash number on success 2522 * and 0 on failure. 2523 */ 2524 __u32 __skb_get_rxhash(struct sk_buff *skb) 2525 { 2526 int nhoff, hash = 0, poff; 2527 struct ipv6hdr *ip6; 2528 struct iphdr *ip; 2529 u8 ip_proto; 2530 u32 addr1, addr2, ihl; 2531 union { 2532 u32 v32; 2533 u16 v16[2]; 2534 } ports; 2535 2536 nhoff = skb_network_offset(skb); 2537 2538 switch (skb->protocol) { 2539 case __constant_htons(ETH_P_IP): 2540 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2541 goto done; 2542 2543 ip = (struct iphdr *) (skb->data + nhoff); 2544 if (ip->frag_off & htons(IP_MF | IP_OFFSET)) 2545 ip_proto = 0; 2546 else 2547 ip_proto = ip->protocol; 2548 addr1 = (__force u32) ip->saddr; 2549 addr2 = (__force u32) ip->daddr; 2550 ihl = ip->ihl; 2551 break; 2552 case __constant_htons(ETH_P_IPV6): 2553 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2554 goto done; 2555 2556 ip6 = (struct ipv6hdr *) (skb->data + nhoff); 2557 ip_proto = ip6->nexthdr; 2558 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2559 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2560 ihl = (40 >> 2); 2561 break; 2562 default: 2563 goto done; 2564 } 2565 2566 ports.v32 = 0; 2567 poff = proto_ports_offset(ip_proto); 2568 if (poff >= 0) { 2569 nhoff += ihl * 4 + poff; 2570 if (pskb_may_pull(skb, nhoff + 4)) { 2571 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2572 if (ports.v16[1] < ports.v16[0]) 2573 swap(ports.v16[0], ports.v16[1]); 2574 } 2575 } 2576 2577 /* get a consistent hash (same value on both flow directions) */ 2578 if (addr2 < addr1) 2579 swap(addr1, addr2); 2580 2581 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2582 if (!hash) 2583 hash = 1; 2584 2585 done: 2586 return hash; 2587 } 2588 EXPORT_SYMBOL(__skb_get_rxhash); 2589 2590 #ifdef CONFIG_RPS 2591 2592 /* One global table that all flow-based protocols share. */ 2593 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2594 EXPORT_SYMBOL(rps_sock_flow_table); 2595 2596 static struct rps_dev_flow * 2597 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2598 struct rps_dev_flow *rflow, u16 next_cpu) 2599 { 2600 u16 tcpu; 2601 2602 tcpu = rflow->cpu = next_cpu; 2603 if (tcpu != RPS_NO_CPU) { 2604 #ifdef CONFIG_RFS_ACCEL 2605 struct netdev_rx_queue *rxqueue; 2606 struct rps_dev_flow_table *flow_table; 2607 struct rps_dev_flow *old_rflow; 2608 u32 flow_id; 2609 u16 rxq_index; 2610 int rc; 2611 2612 /* Should we steer this flow to a different hardware queue? */ 2613 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2614 !(dev->features & NETIF_F_NTUPLE)) 2615 goto out; 2616 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2617 if (rxq_index == skb_get_rx_queue(skb)) 2618 goto out; 2619 2620 rxqueue = dev->_rx + rxq_index; 2621 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2622 if (!flow_table) 2623 goto out; 2624 flow_id = skb->rxhash & flow_table->mask; 2625 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2626 rxq_index, flow_id); 2627 if (rc < 0) 2628 goto out; 2629 old_rflow = rflow; 2630 rflow = &flow_table->flows[flow_id]; 2631 rflow->cpu = next_cpu; 2632 rflow->filter = rc; 2633 if (old_rflow->filter == rflow->filter) 2634 old_rflow->filter = RPS_NO_FILTER; 2635 out: 2636 #endif 2637 rflow->last_qtail = 2638 per_cpu(softnet_data, tcpu).input_queue_head; 2639 } 2640 2641 return rflow; 2642 } 2643 2644 /* 2645 * get_rps_cpu is called from netif_receive_skb and returns the target 2646 * CPU from the RPS map of the receiving queue for a given skb. 2647 * rcu_read_lock must be held on entry. 2648 */ 2649 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2650 struct rps_dev_flow **rflowp) 2651 { 2652 struct netdev_rx_queue *rxqueue; 2653 struct rps_map *map; 2654 struct rps_dev_flow_table *flow_table; 2655 struct rps_sock_flow_table *sock_flow_table; 2656 int cpu = -1; 2657 u16 tcpu; 2658 2659 if (skb_rx_queue_recorded(skb)) { 2660 u16 index = skb_get_rx_queue(skb); 2661 if (unlikely(index >= dev->real_num_rx_queues)) { 2662 WARN_ONCE(dev->real_num_rx_queues > 1, 2663 "%s received packet on queue %u, but number " 2664 "of RX queues is %u\n", 2665 dev->name, index, dev->real_num_rx_queues); 2666 goto done; 2667 } 2668 rxqueue = dev->_rx + index; 2669 } else 2670 rxqueue = dev->_rx; 2671 2672 map = rcu_dereference(rxqueue->rps_map); 2673 if (map) { 2674 if (map->len == 1 && 2675 !rcu_dereference_raw(rxqueue->rps_flow_table)) { 2676 tcpu = map->cpus[0]; 2677 if (cpu_online(tcpu)) 2678 cpu = tcpu; 2679 goto done; 2680 } 2681 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) { 2682 goto done; 2683 } 2684 2685 skb_reset_network_header(skb); 2686 if (!skb_get_rxhash(skb)) 2687 goto done; 2688 2689 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2690 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2691 if (flow_table && sock_flow_table) { 2692 u16 next_cpu; 2693 struct rps_dev_flow *rflow; 2694 2695 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2696 tcpu = rflow->cpu; 2697 2698 next_cpu = sock_flow_table->ents[skb->rxhash & 2699 sock_flow_table->mask]; 2700 2701 /* 2702 * If the desired CPU (where last recvmsg was done) is 2703 * different from current CPU (one in the rx-queue flow 2704 * table entry), switch if one of the following holds: 2705 * - Current CPU is unset (equal to RPS_NO_CPU). 2706 * - Current CPU is offline. 2707 * - The current CPU's queue tail has advanced beyond the 2708 * last packet that was enqueued using this table entry. 2709 * This guarantees that all previous packets for the flow 2710 * have been dequeued, thus preserving in order delivery. 2711 */ 2712 if (unlikely(tcpu != next_cpu) && 2713 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2714 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2715 rflow->last_qtail)) >= 0)) 2716 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2717 2718 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2719 *rflowp = rflow; 2720 cpu = tcpu; 2721 goto done; 2722 } 2723 } 2724 2725 if (map) { 2726 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2727 2728 if (cpu_online(tcpu)) { 2729 cpu = tcpu; 2730 goto done; 2731 } 2732 } 2733 2734 done: 2735 return cpu; 2736 } 2737 2738 #ifdef CONFIG_RFS_ACCEL 2739 2740 /** 2741 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2742 * @dev: Device on which the filter was set 2743 * @rxq_index: RX queue index 2744 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2745 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2746 * 2747 * Drivers that implement ndo_rx_flow_steer() should periodically call 2748 * this function for each installed filter and remove the filters for 2749 * which it returns %true. 2750 */ 2751 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2752 u32 flow_id, u16 filter_id) 2753 { 2754 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2755 struct rps_dev_flow_table *flow_table; 2756 struct rps_dev_flow *rflow; 2757 bool expire = true; 2758 int cpu; 2759 2760 rcu_read_lock(); 2761 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2762 if (flow_table && flow_id <= flow_table->mask) { 2763 rflow = &flow_table->flows[flow_id]; 2764 cpu = ACCESS_ONCE(rflow->cpu); 2765 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2766 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2767 rflow->last_qtail) < 2768 (int)(10 * flow_table->mask))) 2769 expire = false; 2770 } 2771 rcu_read_unlock(); 2772 return expire; 2773 } 2774 EXPORT_SYMBOL(rps_may_expire_flow); 2775 2776 #endif /* CONFIG_RFS_ACCEL */ 2777 2778 /* Called from hardirq (IPI) context */ 2779 static void rps_trigger_softirq(void *data) 2780 { 2781 struct softnet_data *sd = data; 2782 2783 ____napi_schedule(sd, &sd->backlog); 2784 sd->received_rps++; 2785 } 2786 2787 #endif /* CONFIG_RPS */ 2788 2789 /* 2790 * Check if this softnet_data structure is another cpu one 2791 * If yes, queue it to our IPI list and return 1 2792 * If no, return 0 2793 */ 2794 static int rps_ipi_queued(struct softnet_data *sd) 2795 { 2796 #ifdef CONFIG_RPS 2797 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2798 2799 if (sd != mysd) { 2800 sd->rps_ipi_next = mysd->rps_ipi_list; 2801 mysd->rps_ipi_list = sd; 2802 2803 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2804 return 1; 2805 } 2806 #endif /* CONFIG_RPS */ 2807 return 0; 2808 } 2809 2810 /* 2811 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2812 * queue (may be a remote CPU queue). 2813 */ 2814 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2815 unsigned int *qtail) 2816 { 2817 struct softnet_data *sd; 2818 unsigned long flags; 2819 2820 sd = &per_cpu(softnet_data, cpu); 2821 2822 local_irq_save(flags); 2823 2824 rps_lock(sd); 2825 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2826 if (skb_queue_len(&sd->input_pkt_queue)) { 2827 enqueue: 2828 __skb_queue_tail(&sd->input_pkt_queue, skb); 2829 input_queue_tail_incr_save(sd, qtail); 2830 rps_unlock(sd); 2831 local_irq_restore(flags); 2832 return NET_RX_SUCCESS; 2833 } 2834 2835 /* Schedule NAPI for backlog device 2836 * We can use non atomic operation since we own the queue lock 2837 */ 2838 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2839 if (!rps_ipi_queued(sd)) 2840 ____napi_schedule(sd, &sd->backlog); 2841 } 2842 goto enqueue; 2843 } 2844 2845 sd->dropped++; 2846 rps_unlock(sd); 2847 2848 local_irq_restore(flags); 2849 2850 atomic_long_inc(&skb->dev->rx_dropped); 2851 kfree_skb(skb); 2852 return NET_RX_DROP; 2853 } 2854 2855 /** 2856 * netif_rx - post buffer to the network code 2857 * @skb: buffer to post 2858 * 2859 * This function receives a packet from a device driver and queues it for 2860 * the upper (protocol) levels to process. It always succeeds. The buffer 2861 * may be dropped during processing for congestion control or by the 2862 * protocol layers. 2863 * 2864 * return values: 2865 * NET_RX_SUCCESS (no congestion) 2866 * NET_RX_DROP (packet was dropped) 2867 * 2868 */ 2869 2870 int netif_rx(struct sk_buff *skb) 2871 { 2872 int ret; 2873 2874 /* if netpoll wants it, pretend we never saw it */ 2875 if (netpoll_rx(skb)) 2876 return NET_RX_DROP; 2877 2878 if (netdev_tstamp_prequeue) 2879 net_timestamp_check(skb); 2880 2881 trace_netif_rx(skb); 2882 #ifdef CONFIG_RPS 2883 { 2884 struct rps_dev_flow voidflow, *rflow = &voidflow; 2885 int cpu; 2886 2887 preempt_disable(); 2888 rcu_read_lock(); 2889 2890 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2891 if (cpu < 0) 2892 cpu = smp_processor_id(); 2893 2894 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2895 2896 rcu_read_unlock(); 2897 preempt_enable(); 2898 } 2899 #else 2900 { 2901 unsigned int qtail; 2902 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2903 put_cpu(); 2904 } 2905 #endif 2906 return ret; 2907 } 2908 EXPORT_SYMBOL(netif_rx); 2909 2910 int netif_rx_ni(struct sk_buff *skb) 2911 { 2912 int err; 2913 2914 preempt_disable(); 2915 err = netif_rx(skb); 2916 if (local_softirq_pending()) 2917 do_softirq(); 2918 preempt_enable(); 2919 2920 return err; 2921 } 2922 EXPORT_SYMBOL(netif_rx_ni); 2923 2924 static void net_tx_action(struct softirq_action *h) 2925 { 2926 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2927 2928 if (sd->completion_queue) { 2929 struct sk_buff *clist; 2930 2931 local_irq_disable(); 2932 clist = sd->completion_queue; 2933 sd->completion_queue = NULL; 2934 local_irq_enable(); 2935 2936 while (clist) { 2937 struct sk_buff *skb = clist; 2938 clist = clist->next; 2939 2940 WARN_ON(atomic_read(&skb->users)); 2941 trace_kfree_skb(skb, net_tx_action); 2942 __kfree_skb(skb); 2943 } 2944 } 2945 2946 if (sd->output_queue) { 2947 struct Qdisc *head; 2948 2949 local_irq_disable(); 2950 head = sd->output_queue; 2951 sd->output_queue = NULL; 2952 sd->output_queue_tailp = &sd->output_queue; 2953 local_irq_enable(); 2954 2955 while (head) { 2956 struct Qdisc *q = head; 2957 spinlock_t *root_lock; 2958 2959 head = head->next_sched; 2960 2961 root_lock = qdisc_lock(q); 2962 if (spin_trylock(root_lock)) { 2963 smp_mb__before_clear_bit(); 2964 clear_bit(__QDISC_STATE_SCHED, 2965 &q->state); 2966 qdisc_run(q); 2967 spin_unlock(root_lock); 2968 } else { 2969 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2970 &q->state)) { 2971 __netif_reschedule(q); 2972 } else { 2973 smp_mb__before_clear_bit(); 2974 clear_bit(__QDISC_STATE_SCHED, 2975 &q->state); 2976 } 2977 } 2978 } 2979 } 2980 } 2981 2982 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2983 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2984 /* This hook is defined here for ATM LANE */ 2985 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2986 unsigned char *addr) __read_mostly; 2987 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2988 #endif 2989 2990 #ifdef CONFIG_NET_CLS_ACT 2991 /* TODO: Maybe we should just force sch_ingress to be compiled in 2992 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2993 * a compare and 2 stores extra right now if we dont have it on 2994 * but have CONFIG_NET_CLS_ACT 2995 * NOTE: This doesnt stop any functionality; if you dont have 2996 * the ingress scheduler, you just cant add policies on ingress. 2997 * 2998 */ 2999 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 3000 { 3001 struct net_device *dev = skb->dev; 3002 u32 ttl = G_TC_RTTL(skb->tc_verd); 3003 int result = TC_ACT_OK; 3004 struct Qdisc *q; 3005 3006 if (unlikely(MAX_RED_LOOP < ttl++)) { 3007 if (net_ratelimit()) 3008 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 3009 skb->skb_iif, dev->ifindex); 3010 return TC_ACT_SHOT; 3011 } 3012 3013 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 3014 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 3015 3016 q = rxq->qdisc; 3017 if (q != &noop_qdisc) { 3018 spin_lock(qdisc_lock(q)); 3019 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3020 result = qdisc_enqueue_root(skb, q); 3021 spin_unlock(qdisc_lock(q)); 3022 } 3023 3024 return result; 3025 } 3026 3027 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3028 struct packet_type **pt_prev, 3029 int *ret, struct net_device *orig_dev) 3030 { 3031 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3032 3033 if (!rxq || rxq->qdisc == &noop_qdisc) 3034 goto out; 3035 3036 if (*pt_prev) { 3037 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3038 *pt_prev = NULL; 3039 } 3040 3041 switch (ing_filter(skb, rxq)) { 3042 case TC_ACT_SHOT: 3043 case TC_ACT_STOLEN: 3044 kfree_skb(skb); 3045 return NULL; 3046 } 3047 3048 out: 3049 skb->tc_verd = 0; 3050 return skb; 3051 } 3052 #endif 3053 3054 /** 3055 * netdev_rx_handler_register - register receive handler 3056 * @dev: device to register a handler for 3057 * @rx_handler: receive handler to register 3058 * @rx_handler_data: data pointer that is used by rx handler 3059 * 3060 * Register a receive hander for a device. This handler will then be 3061 * called from __netif_receive_skb. A negative errno code is returned 3062 * on a failure. 3063 * 3064 * The caller must hold the rtnl_mutex. 3065 */ 3066 int netdev_rx_handler_register(struct net_device *dev, 3067 rx_handler_func_t *rx_handler, 3068 void *rx_handler_data) 3069 { 3070 ASSERT_RTNL(); 3071 3072 if (dev->rx_handler) 3073 return -EBUSY; 3074 3075 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3076 rcu_assign_pointer(dev->rx_handler, rx_handler); 3077 3078 return 0; 3079 } 3080 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3081 3082 /** 3083 * netdev_rx_handler_unregister - unregister receive handler 3084 * @dev: device to unregister a handler from 3085 * 3086 * Unregister a receive hander from a device. 3087 * 3088 * The caller must hold the rtnl_mutex. 3089 */ 3090 void netdev_rx_handler_unregister(struct net_device *dev) 3091 { 3092 3093 ASSERT_RTNL(); 3094 rcu_assign_pointer(dev->rx_handler, NULL); 3095 rcu_assign_pointer(dev->rx_handler_data, NULL); 3096 } 3097 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3098 3099 static void vlan_on_bond_hook(struct sk_buff *skb) 3100 { 3101 /* 3102 * Make sure ARP frames received on VLAN interfaces stacked on 3103 * bonding interfaces still make their way to any base bonding 3104 * device that may have registered for a specific ptype. 3105 */ 3106 if (skb->dev->priv_flags & IFF_802_1Q_VLAN && 3107 vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING && 3108 skb->protocol == htons(ETH_P_ARP)) { 3109 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 3110 3111 if (!skb2) 3112 return; 3113 skb2->dev = vlan_dev_real_dev(skb->dev); 3114 netif_rx(skb2); 3115 } 3116 } 3117 3118 static int __netif_receive_skb(struct sk_buff *skb) 3119 { 3120 struct packet_type *ptype, *pt_prev; 3121 rx_handler_func_t *rx_handler; 3122 struct net_device *orig_dev; 3123 struct net_device *null_or_dev; 3124 int ret = NET_RX_DROP; 3125 __be16 type; 3126 3127 if (!netdev_tstamp_prequeue) 3128 net_timestamp_check(skb); 3129 3130 trace_netif_receive_skb(skb); 3131 3132 /* if we've gotten here through NAPI, check netpoll */ 3133 if (netpoll_receive_skb(skb)) 3134 return NET_RX_DROP; 3135 3136 if (!skb->skb_iif) 3137 skb->skb_iif = skb->dev->ifindex; 3138 orig_dev = skb->dev; 3139 3140 skb_reset_network_header(skb); 3141 skb_reset_transport_header(skb); 3142 skb->mac_len = skb->network_header - skb->mac_header; 3143 3144 pt_prev = NULL; 3145 3146 rcu_read_lock(); 3147 3148 another_round: 3149 3150 __this_cpu_inc(softnet_data.processed); 3151 3152 #ifdef CONFIG_NET_CLS_ACT 3153 if (skb->tc_verd & TC_NCLS) { 3154 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3155 goto ncls; 3156 } 3157 #endif 3158 3159 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3160 if (!ptype->dev || ptype->dev == skb->dev) { 3161 if (pt_prev) 3162 ret = deliver_skb(skb, pt_prev, orig_dev); 3163 pt_prev = ptype; 3164 } 3165 } 3166 3167 #ifdef CONFIG_NET_CLS_ACT 3168 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3169 if (!skb) 3170 goto out; 3171 ncls: 3172 #endif 3173 3174 rx_handler = rcu_dereference(skb->dev->rx_handler); 3175 if (rx_handler) { 3176 struct net_device *prev_dev; 3177 3178 if (pt_prev) { 3179 ret = deliver_skb(skb, pt_prev, orig_dev); 3180 pt_prev = NULL; 3181 } 3182 prev_dev = skb->dev; 3183 skb = rx_handler(skb); 3184 if (!skb) 3185 goto out; 3186 if (skb->dev != prev_dev) 3187 goto another_round; 3188 } 3189 3190 if (vlan_tx_tag_present(skb)) { 3191 if (pt_prev) { 3192 ret = deliver_skb(skb, pt_prev, orig_dev); 3193 pt_prev = NULL; 3194 } 3195 if (vlan_hwaccel_do_receive(&skb)) { 3196 ret = __netif_receive_skb(skb); 3197 goto out; 3198 } else if (unlikely(!skb)) 3199 goto out; 3200 } 3201 3202 vlan_on_bond_hook(skb); 3203 3204 /* deliver only exact match when indicated */ 3205 null_or_dev = skb->deliver_no_wcard ? skb->dev : NULL; 3206 3207 type = skb->protocol; 3208 list_for_each_entry_rcu(ptype, 3209 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3210 if (ptype->type == type && 3211 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3212 ptype->dev == orig_dev)) { 3213 if (pt_prev) 3214 ret = deliver_skb(skb, pt_prev, orig_dev); 3215 pt_prev = ptype; 3216 } 3217 } 3218 3219 if (pt_prev) { 3220 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3221 } else { 3222 atomic_long_inc(&skb->dev->rx_dropped); 3223 kfree_skb(skb); 3224 /* Jamal, now you will not able to escape explaining 3225 * me how you were going to use this. :-) 3226 */ 3227 ret = NET_RX_DROP; 3228 } 3229 3230 out: 3231 rcu_read_unlock(); 3232 return ret; 3233 } 3234 3235 /** 3236 * netif_receive_skb - process receive buffer from network 3237 * @skb: buffer to process 3238 * 3239 * netif_receive_skb() is the main receive data processing function. 3240 * It always succeeds. The buffer may be dropped during processing 3241 * for congestion control or by the protocol layers. 3242 * 3243 * This function may only be called from softirq context and interrupts 3244 * should be enabled. 3245 * 3246 * Return values (usually ignored): 3247 * NET_RX_SUCCESS: no congestion 3248 * NET_RX_DROP: packet was dropped 3249 */ 3250 int netif_receive_skb(struct sk_buff *skb) 3251 { 3252 if (netdev_tstamp_prequeue) 3253 net_timestamp_check(skb); 3254 3255 if (skb_defer_rx_timestamp(skb)) 3256 return NET_RX_SUCCESS; 3257 3258 #ifdef CONFIG_RPS 3259 { 3260 struct rps_dev_flow voidflow, *rflow = &voidflow; 3261 int cpu, ret; 3262 3263 rcu_read_lock(); 3264 3265 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3266 3267 if (cpu >= 0) { 3268 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3269 rcu_read_unlock(); 3270 } else { 3271 rcu_read_unlock(); 3272 ret = __netif_receive_skb(skb); 3273 } 3274 3275 return ret; 3276 } 3277 #else 3278 return __netif_receive_skb(skb); 3279 #endif 3280 } 3281 EXPORT_SYMBOL(netif_receive_skb); 3282 3283 /* Network device is going away, flush any packets still pending 3284 * Called with irqs disabled. 3285 */ 3286 static void flush_backlog(void *arg) 3287 { 3288 struct net_device *dev = arg; 3289 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3290 struct sk_buff *skb, *tmp; 3291 3292 rps_lock(sd); 3293 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3294 if (skb->dev == dev) { 3295 __skb_unlink(skb, &sd->input_pkt_queue); 3296 kfree_skb(skb); 3297 input_queue_head_incr(sd); 3298 } 3299 } 3300 rps_unlock(sd); 3301 3302 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3303 if (skb->dev == dev) { 3304 __skb_unlink(skb, &sd->process_queue); 3305 kfree_skb(skb); 3306 input_queue_head_incr(sd); 3307 } 3308 } 3309 } 3310 3311 static int napi_gro_complete(struct sk_buff *skb) 3312 { 3313 struct packet_type *ptype; 3314 __be16 type = skb->protocol; 3315 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3316 int err = -ENOENT; 3317 3318 if (NAPI_GRO_CB(skb)->count == 1) { 3319 skb_shinfo(skb)->gso_size = 0; 3320 goto out; 3321 } 3322 3323 rcu_read_lock(); 3324 list_for_each_entry_rcu(ptype, head, list) { 3325 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3326 continue; 3327 3328 err = ptype->gro_complete(skb); 3329 break; 3330 } 3331 rcu_read_unlock(); 3332 3333 if (err) { 3334 WARN_ON(&ptype->list == head); 3335 kfree_skb(skb); 3336 return NET_RX_SUCCESS; 3337 } 3338 3339 out: 3340 return netif_receive_skb(skb); 3341 } 3342 3343 inline void napi_gro_flush(struct napi_struct *napi) 3344 { 3345 struct sk_buff *skb, *next; 3346 3347 for (skb = napi->gro_list; skb; skb = next) { 3348 next = skb->next; 3349 skb->next = NULL; 3350 napi_gro_complete(skb); 3351 } 3352 3353 napi->gro_count = 0; 3354 napi->gro_list = NULL; 3355 } 3356 EXPORT_SYMBOL(napi_gro_flush); 3357 3358 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3359 { 3360 struct sk_buff **pp = NULL; 3361 struct packet_type *ptype; 3362 __be16 type = skb->protocol; 3363 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3364 int same_flow; 3365 int mac_len; 3366 enum gro_result ret; 3367 3368 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3369 goto normal; 3370 3371 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3372 goto normal; 3373 3374 rcu_read_lock(); 3375 list_for_each_entry_rcu(ptype, head, list) { 3376 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3377 continue; 3378 3379 skb_set_network_header(skb, skb_gro_offset(skb)); 3380 mac_len = skb->network_header - skb->mac_header; 3381 skb->mac_len = mac_len; 3382 NAPI_GRO_CB(skb)->same_flow = 0; 3383 NAPI_GRO_CB(skb)->flush = 0; 3384 NAPI_GRO_CB(skb)->free = 0; 3385 3386 pp = ptype->gro_receive(&napi->gro_list, skb); 3387 break; 3388 } 3389 rcu_read_unlock(); 3390 3391 if (&ptype->list == head) 3392 goto normal; 3393 3394 same_flow = NAPI_GRO_CB(skb)->same_flow; 3395 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3396 3397 if (pp) { 3398 struct sk_buff *nskb = *pp; 3399 3400 *pp = nskb->next; 3401 nskb->next = NULL; 3402 napi_gro_complete(nskb); 3403 napi->gro_count--; 3404 } 3405 3406 if (same_flow) 3407 goto ok; 3408 3409 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3410 goto normal; 3411 3412 napi->gro_count++; 3413 NAPI_GRO_CB(skb)->count = 1; 3414 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3415 skb->next = napi->gro_list; 3416 napi->gro_list = skb; 3417 ret = GRO_HELD; 3418 3419 pull: 3420 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3421 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3422 3423 BUG_ON(skb->end - skb->tail < grow); 3424 3425 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3426 3427 skb->tail += grow; 3428 skb->data_len -= grow; 3429 3430 skb_shinfo(skb)->frags[0].page_offset += grow; 3431 skb_shinfo(skb)->frags[0].size -= grow; 3432 3433 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3434 put_page(skb_shinfo(skb)->frags[0].page); 3435 memmove(skb_shinfo(skb)->frags, 3436 skb_shinfo(skb)->frags + 1, 3437 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3438 } 3439 } 3440 3441 ok: 3442 return ret; 3443 3444 normal: 3445 ret = GRO_NORMAL; 3446 goto pull; 3447 } 3448 EXPORT_SYMBOL(dev_gro_receive); 3449 3450 static inline gro_result_t 3451 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3452 { 3453 struct sk_buff *p; 3454 3455 for (p = napi->gro_list; p; p = p->next) { 3456 unsigned long diffs; 3457 3458 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3459 diffs |= p->vlan_tci ^ skb->vlan_tci; 3460 diffs |= compare_ether_header(skb_mac_header(p), 3461 skb_gro_mac_header(skb)); 3462 NAPI_GRO_CB(p)->same_flow = !diffs; 3463 NAPI_GRO_CB(p)->flush = 0; 3464 } 3465 3466 return dev_gro_receive(napi, skb); 3467 } 3468 3469 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3470 { 3471 switch (ret) { 3472 case GRO_NORMAL: 3473 if (netif_receive_skb(skb)) 3474 ret = GRO_DROP; 3475 break; 3476 3477 case GRO_DROP: 3478 case GRO_MERGED_FREE: 3479 kfree_skb(skb); 3480 break; 3481 3482 case GRO_HELD: 3483 case GRO_MERGED: 3484 break; 3485 } 3486 3487 return ret; 3488 } 3489 EXPORT_SYMBOL(napi_skb_finish); 3490 3491 void skb_gro_reset_offset(struct sk_buff *skb) 3492 { 3493 NAPI_GRO_CB(skb)->data_offset = 0; 3494 NAPI_GRO_CB(skb)->frag0 = NULL; 3495 NAPI_GRO_CB(skb)->frag0_len = 0; 3496 3497 if (skb->mac_header == skb->tail && 3498 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3499 NAPI_GRO_CB(skb)->frag0 = 3500 page_address(skb_shinfo(skb)->frags[0].page) + 3501 skb_shinfo(skb)->frags[0].page_offset; 3502 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3503 } 3504 } 3505 EXPORT_SYMBOL(skb_gro_reset_offset); 3506 3507 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3508 { 3509 skb_gro_reset_offset(skb); 3510 3511 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3512 } 3513 EXPORT_SYMBOL(napi_gro_receive); 3514 3515 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3516 { 3517 __skb_pull(skb, skb_headlen(skb)); 3518 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3519 skb->vlan_tci = 0; 3520 skb->dev = napi->dev; 3521 skb->skb_iif = 0; 3522 3523 napi->skb = skb; 3524 } 3525 3526 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3527 { 3528 struct sk_buff *skb = napi->skb; 3529 3530 if (!skb) { 3531 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3532 if (skb) 3533 napi->skb = skb; 3534 } 3535 return skb; 3536 } 3537 EXPORT_SYMBOL(napi_get_frags); 3538 3539 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3540 gro_result_t ret) 3541 { 3542 switch (ret) { 3543 case GRO_NORMAL: 3544 case GRO_HELD: 3545 skb->protocol = eth_type_trans(skb, skb->dev); 3546 3547 if (ret == GRO_HELD) 3548 skb_gro_pull(skb, -ETH_HLEN); 3549 else if (netif_receive_skb(skb)) 3550 ret = GRO_DROP; 3551 break; 3552 3553 case GRO_DROP: 3554 case GRO_MERGED_FREE: 3555 napi_reuse_skb(napi, skb); 3556 break; 3557 3558 case GRO_MERGED: 3559 break; 3560 } 3561 3562 return ret; 3563 } 3564 EXPORT_SYMBOL(napi_frags_finish); 3565 3566 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3567 { 3568 struct sk_buff *skb = napi->skb; 3569 struct ethhdr *eth; 3570 unsigned int hlen; 3571 unsigned int off; 3572 3573 napi->skb = NULL; 3574 3575 skb_reset_mac_header(skb); 3576 skb_gro_reset_offset(skb); 3577 3578 off = skb_gro_offset(skb); 3579 hlen = off + sizeof(*eth); 3580 eth = skb_gro_header_fast(skb, off); 3581 if (skb_gro_header_hard(skb, hlen)) { 3582 eth = skb_gro_header_slow(skb, hlen, off); 3583 if (unlikely(!eth)) { 3584 napi_reuse_skb(napi, skb); 3585 skb = NULL; 3586 goto out; 3587 } 3588 } 3589 3590 skb_gro_pull(skb, sizeof(*eth)); 3591 3592 /* 3593 * This works because the only protocols we care about don't require 3594 * special handling. We'll fix it up properly at the end. 3595 */ 3596 skb->protocol = eth->h_proto; 3597 3598 out: 3599 return skb; 3600 } 3601 EXPORT_SYMBOL(napi_frags_skb); 3602 3603 gro_result_t napi_gro_frags(struct napi_struct *napi) 3604 { 3605 struct sk_buff *skb = napi_frags_skb(napi); 3606 3607 if (!skb) 3608 return GRO_DROP; 3609 3610 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3611 } 3612 EXPORT_SYMBOL(napi_gro_frags); 3613 3614 /* 3615 * net_rps_action sends any pending IPI's for rps. 3616 * Note: called with local irq disabled, but exits with local irq enabled. 3617 */ 3618 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3619 { 3620 #ifdef CONFIG_RPS 3621 struct softnet_data *remsd = sd->rps_ipi_list; 3622 3623 if (remsd) { 3624 sd->rps_ipi_list = NULL; 3625 3626 local_irq_enable(); 3627 3628 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3629 while (remsd) { 3630 struct softnet_data *next = remsd->rps_ipi_next; 3631 3632 if (cpu_online(remsd->cpu)) 3633 __smp_call_function_single(remsd->cpu, 3634 &remsd->csd, 0); 3635 remsd = next; 3636 } 3637 } else 3638 #endif 3639 local_irq_enable(); 3640 } 3641 3642 static int process_backlog(struct napi_struct *napi, int quota) 3643 { 3644 int work = 0; 3645 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3646 3647 #ifdef CONFIG_RPS 3648 /* Check if we have pending ipi, its better to send them now, 3649 * not waiting net_rx_action() end. 3650 */ 3651 if (sd->rps_ipi_list) { 3652 local_irq_disable(); 3653 net_rps_action_and_irq_enable(sd); 3654 } 3655 #endif 3656 napi->weight = weight_p; 3657 local_irq_disable(); 3658 while (work < quota) { 3659 struct sk_buff *skb; 3660 unsigned int qlen; 3661 3662 while ((skb = __skb_dequeue(&sd->process_queue))) { 3663 local_irq_enable(); 3664 __netif_receive_skb(skb); 3665 local_irq_disable(); 3666 input_queue_head_incr(sd); 3667 if (++work >= quota) { 3668 local_irq_enable(); 3669 return work; 3670 } 3671 } 3672 3673 rps_lock(sd); 3674 qlen = skb_queue_len(&sd->input_pkt_queue); 3675 if (qlen) 3676 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3677 &sd->process_queue); 3678 3679 if (qlen < quota - work) { 3680 /* 3681 * Inline a custom version of __napi_complete(). 3682 * only current cpu owns and manipulates this napi, 3683 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3684 * we can use a plain write instead of clear_bit(), 3685 * and we dont need an smp_mb() memory barrier. 3686 */ 3687 list_del(&napi->poll_list); 3688 napi->state = 0; 3689 3690 quota = work + qlen; 3691 } 3692 rps_unlock(sd); 3693 } 3694 local_irq_enable(); 3695 3696 return work; 3697 } 3698 3699 /** 3700 * __napi_schedule - schedule for receive 3701 * @n: entry to schedule 3702 * 3703 * The entry's receive function will be scheduled to run 3704 */ 3705 void __napi_schedule(struct napi_struct *n) 3706 { 3707 unsigned long flags; 3708 3709 local_irq_save(flags); 3710 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3711 local_irq_restore(flags); 3712 } 3713 EXPORT_SYMBOL(__napi_schedule); 3714 3715 void __napi_complete(struct napi_struct *n) 3716 { 3717 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3718 BUG_ON(n->gro_list); 3719 3720 list_del(&n->poll_list); 3721 smp_mb__before_clear_bit(); 3722 clear_bit(NAPI_STATE_SCHED, &n->state); 3723 } 3724 EXPORT_SYMBOL(__napi_complete); 3725 3726 void napi_complete(struct napi_struct *n) 3727 { 3728 unsigned long flags; 3729 3730 /* 3731 * don't let napi dequeue from the cpu poll list 3732 * just in case its running on a different cpu 3733 */ 3734 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3735 return; 3736 3737 napi_gro_flush(n); 3738 local_irq_save(flags); 3739 __napi_complete(n); 3740 local_irq_restore(flags); 3741 } 3742 EXPORT_SYMBOL(napi_complete); 3743 3744 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3745 int (*poll)(struct napi_struct *, int), int weight) 3746 { 3747 INIT_LIST_HEAD(&napi->poll_list); 3748 napi->gro_count = 0; 3749 napi->gro_list = NULL; 3750 napi->skb = NULL; 3751 napi->poll = poll; 3752 napi->weight = weight; 3753 list_add(&napi->dev_list, &dev->napi_list); 3754 napi->dev = dev; 3755 #ifdef CONFIG_NETPOLL 3756 spin_lock_init(&napi->poll_lock); 3757 napi->poll_owner = -1; 3758 #endif 3759 set_bit(NAPI_STATE_SCHED, &napi->state); 3760 } 3761 EXPORT_SYMBOL(netif_napi_add); 3762 3763 void netif_napi_del(struct napi_struct *napi) 3764 { 3765 struct sk_buff *skb, *next; 3766 3767 list_del_init(&napi->dev_list); 3768 napi_free_frags(napi); 3769 3770 for (skb = napi->gro_list; skb; skb = next) { 3771 next = skb->next; 3772 skb->next = NULL; 3773 kfree_skb(skb); 3774 } 3775 3776 napi->gro_list = NULL; 3777 napi->gro_count = 0; 3778 } 3779 EXPORT_SYMBOL(netif_napi_del); 3780 3781 static void net_rx_action(struct softirq_action *h) 3782 { 3783 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3784 unsigned long time_limit = jiffies + 2; 3785 int budget = netdev_budget; 3786 void *have; 3787 3788 local_irq_disable(); 3789 3790 while (!list_empty(&sd->poll_list)) { 3791 struct napi_struct *n; 3792 int work, weight; 3793 3794 /* If softirq window is exhuasted then punt. 3795 * Allow this to run for 2 jiffies since which will allow 3796 * an average latency of 1.5/HZ. 3797 */ 3798 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3799 goto softnet_break; 3800 3801 local_irq_enable(); 3802 3803 /* Even though interrupts have been re-enabled, this 3804 * access is safe because interrupts can only add new 3805 * entries to the tail of this list, and only ->poll() 3806 * calls can remove this head entry from the list. 3807 */ 3808 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3809 3810 have = netpoll_poll_lock(n); 3811 3812 weight = n->weight; 3813 3814 /* This NAPI_STATE_SCHED test is for avoiding a race 3815 * with netpoll's poll_napi(). Only the entity which 3816 * obtains the lock and sees NAPI_STATE_SCHED set will 3817 * actually make the ->poll() call. Therefore we avoid 3818 * accidently calling ->poll() when NAPI is not scheduled. 3819 */ 3820 work = 0; 3821 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3822 work = n->poll(n, weight); 3823 trace_napi_poll(n); 3824 } 3825 3826 WARN_ON_ONCE(work > weight); 3827 3828 budget -= work; 3829 3830 local_irq_disable(); 3831 3832 /* Drivers must not modify the NAPI state if they 3833 * consume the entire weight. In such cases this code 3834 * still "owns" the NAPI instance and therefore can 3835 * move the instance around on the list at-will. 3836 */ 3837 if (unlikely(work == weight)) { 3838 if (unlikely(napi_disable_pending(n))) { 3839 local_irq_enable(); 3840 napi_complete(n); 3841 local_irq_disable(); 3842 } else 3843 list_move_tail(&n->poll_list, &sd->poll_list); 3844 } 3845 3846 netpoll_poll_unlock(have); 3847 } 3848 out: 3849 net_rps_action_and_irq_enable(sd); 3850 3851 #ifdef CONFIG_NET_DMA 3852 /* 3853 * There may not be any more sk_buffs coming right now, so push 3854 * any pending DMA copies to hardware 3855 */ 3856 dma_issue_pending_all(); 3857 #endif 3858 3859 return; 3860 3861 softnet_break: 3862 sd->time_squeeze++; 3863 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3864 goto out; 3865 } 3866 3867 static gifconf_func_t *gifconf_list[NPROTO]; 3868 3869 /** 3870 * register_gifconf - register a SIOCGIF handler 3871 * @family: Address family 3872 * @gifconf: Function handler 3873 * 3874 * Register protocol dependent address dumping routines. The handler 3875 * that is passed must not be freed or reused until it has been replaced 3876 * by another handler. 3877 */ 3878 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3879 { 3880 if (family >= NPROTO) 3881 return -EINVAL; 3882 gifconf_list[family] = gifconf; 3883 return 0; 3884 } 3885 EXPORT_SYMBOL(register_gifconf); 3886 3887 3888 /* 3889 * Map an interface index to its name (SIOCGIFNAME) 3890 */ 3891 3892 /* 3893 * We need this ioctl for efficient implementation of the 3894 * if_indextoname() function required by the IPv6 API. Without 3895 * it, we would have to search all the interfaces to find a 3896 * match. --pb 3897 */ 3898 3899 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3900 { 3901 struct net_device *dev; 3902 struct ifreq ifr; 3903 3904 /* 3905 * Fetch the caller's info block. 3906 */ 3907 3908 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3909 return -EFAULT; 3910 3911 rcu_read_lock(); 3912 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3913 if (!dev) { 3914 rcu_read_unlock(); 3915 return -ENODEV; 3916 } 3917 3918 strcpy(ifr.ifr_name, dev->name); 3919 rcu_read_unlock(); 3920 3921 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3922 return -EFAULT; 3923 return 0; 3924 } 3925 3926 /* 3927 * Perform a SIOCGIFCONF call. This structure will change 3928 * size eventually, and there is nothing I can do about it. 3929 * Thus we will need a 'compatibility mode'. 3930 */ 3931 3932 static int dev_ifconf(struct net *net, char __user *arg) 3933 { 3934 struct ifconf ifc; 3935 struct net_device *dev; 3936 char __user *pos; 3937 int len; 3938 int total; 3939 int i; 3940 3941 /* 3942 * Fetch the caller's info block. 3943 */ 3944 3945 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3946 return -EFAULT; 3947 3948 pos = ifc.ifc_buf; 3949 len = ifc.ifc_len; 3950 3951 /* 3952 * Loop over the interfaces, and write an info block for each. 3953 */ 3954 3955 total = 0; 3956 for_each_netdev(net, dev) { 3957 for (i = 0; i < NPROTO; i++) { 3958 if (gifconf_list[i]) { 3959 int done; 3960 if (!pos) 3961 done = gifconf_list[i](dev, NULL, 0); 3962 else 3963 done = gifconf_list[i](dev, pos + total, 3964 len - total); 3965 if (done < 0) 3966 return -EFAULT; 3967 total += done; 3968 } 3969 } 3970 } 3971 3972 /* 3973 * All done. Write the updated control block back to the caller. 3974 */ 3975 ifc.ifc_len = total; 3976 3977 /* 3978 * Both BSD and Solaris return 0 here, so we do too. 3979 */ 3980 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3981 } 3982 3983 #ifdef CONFIG_PROC_FS 3984 /* 3985 * This is invoked by the /proc filesystem handler to display a device 3986 * in detail. 3987 */ 3988 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3989 __acquires(RCU) 3990 { 3991 struct net *net = seq_file_net(seq); 3992 loff_t off; 3993 struct net_device *dev; 3994 3995 rcu_read_lock(); 3996 if (!*pos) 3997 return SEQ_START_TOKEN; 3998 3999 off = 1; 4000 for_each_netdev_rcu(net, dev) 4001 if (off++ == *pos) 4002 return dev; 4003 4004 return NULL; 4005 } 4006 4007 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4008 { 4009 struct net_device *dev = v; 4010 4011 if (v == SEQ_START_TOKEN) 4012 dev = first_net_device_rcu(seq_file_net(seq)); 4013 else 4014 dev = next_net_device_rcu(dev); 4015 4016 ++*pos; 4017 return dev; 4018 } 4019 4020 void dev_seq_stop(struct seq_file *seq, void *v) 4021 __releases(RCU) 4022 { 4023 rcu_read_unlock(); 4024 } 4025 4026 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4027 { 4028 struct rtnl_link_stats64 temp; 4029 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4030 4031 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4032 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4033 dev->name, stats->rx_bytes, stats->rx_packets, 4034 stats->rx_errors, 4035 stats->rx_dropped + stats->rx_missed_errors, 4036 stats->rx_fifo_errors, 4037 stats->rx_length_errors + stats->rx_over_errors + 4038 stats->rx_crc_errors + stats->rx_frame_errors, 4039 stats->rx_compressed, stats->multicast, 4040 stats->tx_bytes, stats->tx_packets, 4041 stats->tx_errors, stats->tx_dropped, 4042 stats->tx_fifo_errors, stats->collisions, 4043 stats->tx_carrier_errors + 4044 stats->tx_aborted_errors + 4045 stats->tx_window_errors + 4046 stats->tx_heartbeat_errors, 4047 stats->tx_compressed); 4048 } 4049 4050 /* 4051 * Called from the PROCfs module. This now uses the new arbitrary sized 4052 * /proc/net interface to create /proc/net/dev 4053 */ 4054 static int dev_seq_show(struct seq_file *seq, void *v) 4055 { 4056 if (v == SEQ_START_TOKEN) 4057 seq_puts(seq, "Inter-| Receive " 4058 " | Transmit\n" 4059 " face |bytes packets errs drop fifo frame " 4060 "compressed multicast|bytes packets errs " 4061 "drop fifo colls carrier compressed\n"); 4062 else 4063 dev_seq_printf_stats(seq, v); 4064 return 0; 4065 } 4066 4067 static struct softnet_data *softnet_get_online(loff_t *pos) 4068 { 4069 struct softnet_data *sd = NULL; 4070 4071 while (*pos < nr_cpu_ids) 4072 if (cpu_online(*pos)) { 4073 sd = &per_cpu(softnet_data, *pos); 4074 break; 4075 } else 4076 ++*pos; 4077 return sd; 4078 } 4079 4080 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4081 { 4082 return softnet_get_online(pos); 4083 } 4084 4085 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4086 { 4087 ++*pos; 4088 return softnet_get_online(pos); 4089 } 4090 4091 static void softnet_seq_stop(struct seq_file *seq, void *v) 4092 { 4093 } 4094 4095 static int softnet_seq_show(struct seq_file *seq, void *v) 4096 { 4097 struct softnet_data *sd = v; 4098 4099 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4100 sd->processed, sd->dropped, sd->time_squeeze, 0, 4101 0, 0, 0, 0, /* was fastroute */ 4102 sd->cpu_collision, sd->received_rps); 4103 return 0; 4104 } 4105 4106 static const struct seq_operations dev_seq_ops = { 4107 .start = dev_seq_start, 4108 .next = dev_seq_next, 4109 .stop = dev_seq_stop, 4110 .show = dev_seq_show, 4111 }; 4112 4113 static int dev_seq_open(struct inode *inode, struct file *file) 4114 { 4115 return seq_open_net(inode, file, &dev_seq_ops, 4116 sizeof(struct seq_net_private)); 4117 } 4118 4119 static const struct file_operations dev_seq_fops = { 4120 .owner = THIS_MODULE, 4121 .open = dev_seq_open, 4122 .read = seq_read, 4123 .llseek = seq_lseek, 4124 .release = seq_release_net, 4125 }; 4126 4127 static const struct seq_operations softnet_seq_ops = { 4128 .start = softnet_seq_start, 4129 .next = softnet_seq_next, 4130 .stop = softnet_seq_stop, 4131 .show = softnet_seq_show, 4132 }; 4133 4134 static int softnet_seq_open(struct inode *inode, struct file *file) 4135 { 4136 return seq_open(file, &softnet_seq_ops); 4137 } 4138 4139 static const struct file_operations softnet_seq_fops = { 4140 .owner = THIS_MODULE, 4141 .open = softnet_seq_open, 4142 .read = seq_read, 4143 .llseek = seq_lseek, 4144 .release = seq_release, 4145 }; 4146 4147 static void *ptype_get_idx(loff_t pos) 4148 { 4149 struct packet_type *pt = NULL; 4150 loff_t i = 0; 4151 int t; 4152 4153 list_for_each_entry_rcu(pt, &ptype_all, list) { 4154 if (i == pos) 4155 return pt; 4156 ++i; 4157 } 4158 4159 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4160 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4161 if (i == pos) 4162 return pt; 4163 ++i; 4164 } 4165 } 4166 return NULL; 4167 } 4168 4169 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4170 __acquires(RCU) 4171 { 4172 rcu_read_lock(); 4173 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4174 } 4175 4176 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4177 { 4178 struct packet_type *pt; 4179 struct list_head *nxt; 4180 int hash; 4181 4182 ++*pos; 4183 if (v == SEQ_START_TOKEN) 4184 return ptype_get_idx(0); 4185 4186 pt = v; 4187 nxt = pt->list.next; 4188 if (pt->type == htons(ETH_P_ALL)) { 4189 if (nxt != &ptype_all) 4190 goto found; 4191 hash = 0; 4192 nxt = ptype_base[0].next; 4193 } else 4194 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4195 4196 while (nxt == &ptype_base[hash]) { 4197 if (++hash >= PTYPE_HASH_SIZE) 4198 return NULL; 4199 nxt = ptype_base[hash].next; 4200 } 4201 found: 4202 return list_entry(nxt, struct packet_type, list); 4203 } 4204 4205 static void ptype_seq_stop(struct seq_file *seq, void *v) 4206 __releases(RCU) 4207 { 4208 rcu_read_unlock(); 4209 } 4210 4211 static int ptype_seq_show(struct seq_file *seq, void *v) 4212 { 4213 struct packet_type *pt = v; 4214 4215 if (v == SEQ_START_TOKEN) 4216 seq_puts(seq, "Type Device Function\n"); 4217 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4218 if (pt->type == htons(ETH_P_ALL)) 4219 seq_puts(seq, "ALL "); 4220 else 4221 seq_printf(seq, "%04x", ntohs(pt->type)); 4222 4223 seq_printf(seq, " %-8s %pF\n", 4224 pt->dev ? pt->dev->name : "", pt->func); 4225 } 4226 4227 return 0; 4228 } 4229 4230 static const struct seq_operations ptype_seq_ops = { 4231 .start = ptype_seq_start, 4232 .next = ptype_seq_next, 4233 .stop = ptype_seq_stop, 4234 .show = ptype_seq_show, 4235 }; 4236 4237 static int ptype_seq_open(struct inode *inode, struct file *file) 4238 { 4239 return seq_open_net(inode, file, &ptype_seq_ops, 4240 sizeof(struct seq_net_private)); 4241 } 4242 4243 static const struct file_operations ptype_seq_fops = { 4244 .owner = THIS_MODULE, 4245 .open = ptype_seq_open, 4246 .read = seq_read, 4247 .llseek = seq_lseek, 4248 .release = seq_release_net, 4249 }; 4250 4251 4252 static int __net_init dev_proc_net_init(struct net *net) 4253 { 4254 int rc = -ENOMEM; 4255 4256 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4257 goto out; 4258 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4259 goto out_dev; 4260 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4261 goto out_softnet; 4262 4263 if (wext_proc_init(net)) 4264 goto out_ptype; 4265 rc = 0; 4266 out: 4267 return rc; 4268 out_ptype: 4269 proc_net_remove(net, "ptype"); 4270 out_softnet: 4271 proc_net_remove(net, "softnet_stat"); 4272 out_dev: 4273 proc_net_remove(net, "dev"); 4274 goto out; 4275 } 4276 4277 static void __net_exit dev_proc_net_exit(struct net *net) 4278 { 4279 wext_proc_exit(net); 4280 4281 proc_net_remove(net, "ptype"); 4282 proc_net_remove(net, "softnet_stat"); 4283 proc_net_remove(net, "dev"); 4284 } 4285 4286 static struct pernet_operations __net_initdata dev_proc_ops = { 4287 .init = dev_proc_net_init, 4288 .exit = dev_proc_net_exit, 4289 }; 4290 4291 static int __init dev_proc_init(void) 4292 { 4293 return register_pernet_subsys(&dev_proc_ops); 4294 } 4295 #else 4296 #define dev_proc_init() 0 4297 #endif /* CONFIG_PROC_FS */ 4298 4299 4300 /** 4301 * netdev_set_master - set up master pointer 4302 * @slave: slave device 4303 * @master: new master device 4304 * 4305 * Changes the master device of the slave. Pass %NULL to break the 4306 * bonding. The caller must hold the RTNL semaphore. On a failure 4307 * a negative errno code is returned. On success the reference counts 4308 * are adjusted and the function returns zero. 4309 */ 4310 int netdev_set_master(struct net_device *slave, struct net_device *master) 4311 { 4312 struct net_device *old = slave->master; 4313 4314 ASSERT_RTNL(); 4315 4316 if (master) { 4317 if (old) 4318 return -EBUSY; 4319 dev_hold(master); 4320 } 4321 4322 slave->master = master; 4323 4324 if (old) { 4325 synchronize_net(); 4326 dev_put(old); 4327 } 4328 return 0; 4329 } 4330 EXPORT_SYMBOL(netdev_set_master); 4331 4332 /** 4333 * netdev_set_bond_master - set up bonding master/slave pair 4334 * @slave: slave device 4335 * @master: new master device 4336 * 4337 * Changes the master device of the slave. Pass %NULL to break the 4338 * bonding. The caller must hold the RTNL semaphore. On a failure 4339 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4340 * to the routing socket and the function returns zero. 4341 */ 4342 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4343 { 4344 int err; 4345 4346 ASSERT_RTNL(); 4347 4348 err = netdev_set_master(slave, master); 4349 if (err) 4350 return err; 4351 if (master) 4352 slave->flags |= IFF_SLAVE; 4353 else 4354 slave->flags &= ~IFF_SLAVE; 4355 4356 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4357 return 0; 4358 } 4359 EXPORT_SYMBOL(netdev_set_bond_master); 4360 4361 static void dev_change_rx_flags(struct net_device *dev, int flags) 4362 { 4363 const struct net_device_ops *ops = dev->netdev_ops; 4364 4365 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4366 ops->ndo_change_rx_flags(dev, flags); 4367 } 4368 4369 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4370 { 4371 unsigned short old_flags = dev->flags; 4372 uid_t uid; 4373 gid_t gid; 4374 4375 ASSERT_RTNL(); 4376 4377 dev->flags |= IFF_PROMISC; 4378 dev->promiscuity += inc; 4379 if (dev->promiscuity == 0) { 4380 /* 4381 * Avoid overflow. 4382 * If inc causes overflow, untouch promisc and return error. 4383 */ 4384 if (inc < 0) 4385 dev->flags &= ~IFF_PROMISC; 4386 else { 4387 dev->promiscuity -= inc; 4388 printk(KERN_WARNING "%s: promiscuity touches roof, " 4389 "set promiscuity failed, promiscuity feature " 4390 "of device might be broken.\n", dev->name); 4391 return -EOVERFLOW; 4392 } 4393 } 4394 if (dev->flags != old_flags) { 4395 printk(KERN_INFO "device %s %s promiscuous mode\n", 4396 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4397 "left"); 4398 if (audit_enabled) { 4399 current_uid_gid(&uid, &gid); 4400 audit_log(current->audit_context, GFP_ATOMIC, 4401 AUDIT_ANOM_PROMISCUOUS, 4402 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4403 dev->name, (dev->flags & IFF_PROMISC), 4404 (old_flags & IFF_PROMISC), 4405 audit_get_loginuid(current), 4406 uid, gid, 4407 audit_get_sessionid(current)); 4408 } 4409 4410 dev_change_rx_flags(dev, IFF_PROMISC); 4411 } 4412 return 0; 4413 } 4414 4415 /** 4416 * dev_set_promiscuity - update promiscuity count on a device 4417 * @dev: device 4418 * @inc: modifier 4419 * 4420 * Add or remove promiscuity from a device. While the count in the device 4421 * remains above zero the interface remains promiscuous. Once it hits zero 4422 * the device reverts back to normal filtering operation. A negative inc 4423 * value is used to drop promiscuity on the device. 4424 * Return 0 if successful or a negative errno code on error. 4425 */ 4426 int dev_set_promiscuity(struct net_device *dev, int inc) 4427 { 4428 unsigned short old_flags = dev->flags; 4429 int err; 4430 4431 err = __dev_set_promiscuity(dev, inc); 4432 if (err < 0) 4433 return err; 4434 if (dev->flags != old_flags) 4435 dev_set_rx_mode(dev); 4436 return err; 4437 } 4438 EXPORT_SYMBOL(dev_set_promiscuity); 4439 4440 /** 4441 * dev_set_allmulti - update allmulti count on a device 4442 * @dev: device 4443 * @inc: modifier 4444 * 4445 * Add or remove reception of all multicast frames to a device. While the 4446 * count in the device remains above zero the interface remains listening 4447 * to all interfaces. Once it hits zero the device reverts back to normal 4448 * filtering operation. A negative @inc value is used to drop the counter 4449 * when releasing a resource needing all multicasts. 4450 * Return 0 if successful or a negative errno code on error. 4451 */ 4452 4453 int dev_set_allmulti(struct net_device *dev, int inc) 4454 { 4455 unsigned short old_flags = dev->flags; 4456 4457 ASSERT_RTNL(); 4458 4459 dev->flags |= IFF_ALLMULTI; 4460 dev->allmulti += inc; 4461 if (dev->allmulti == 0) { 4462 /* 4463 * Avoid overflow. 4464 * If inc causes overflow, untouch allmulti and return error. 4465 */ 4466 if (inc < 0) 4467 dev->flags &= ~IFF_ALLMULTI; 4468 else { 4469 dev->allmulti -= inc; 4470 printk(KERN_WARNING "%s: allmulti touches roof, " 4471 "set allmulti failed, allmulti feature of " 4472 "device might be broken.\n", dev->name); 4473 return -EOVERFLOW; 4474 } 4475 } 4476 if (dev->flags ^ old_flags) { 4477 dev_change_rx_flags(dev, IFF_ALLMULTI); 4478 dev_set_rx_mode(dev); 4479 } 4480 return 0; 4481 } 4482 EXPORT_SYMBOL(dev_set_allmulti); 4483 4484 /* 4485 * Upload unicast and multicast address lists to device and 4486 * configure RX filtering. When the device doesn't support unicast 4487 * filtering it is put in promiscuous mode while unicast addresses 4488 * are present. 4489 */ 4490 void __dev_set_rx_mode(struct net_device *dev) 4491 { 4492 const struct net_device_ops *ops = dev->netdev_ops; 4493 4494 /* dev_open will call this function so the list will stay sane. */ 4495 if (!(dev->flags&IFF_UP)) 4496 return; 4497 4498 if (!netif_device_present(dev)) 4499 return; 4500 4501 if (ops->ndo_set_rx_mode) 4502 ops->ndo_set_rx_mode(dev); 4503 else { 4504 /* Unicast addresses changes may only happen under the rtnl, 4505 * therefore calling __dev_set_promiscuity here is safe. 4506 */ 4507 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4508 __dev_set_promiscuity(dev, 1); 4509 dev->uc_promisc = 1; 4510 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4511 __dev_set_promiscuity(dev, -1); 4512 dev->uc_promisc = 0; 4513 } 4514 4515 if (ops->ndo_set_multicast_list) 4516 ops->ndo_set_multicast_list(dev); 4517 } 4518 } 4519 4520 void dev_set_rx_mode(struct net_device *dev) 4521 { 4522 netif_addr_lock_bh(dev); 4523 __dev_set_rx_mode(dev); 4524 netif_addr_unlock_bh(dev); 4525 } 4526 4527 /** 4528 * dev_get_flags - get flags reported to userspace 4529 * @dev: device 4530 * 4531 * Get the combination of flag bits exported through APIs to userspace. 4532 */ 4533 unsigned dev_get_flags(const struct net_device *dev) 4534 { 4535 unsigned flags; 4536 4537 flags = (dev->flags & ~(IFF_PROMISC | 4538 IFF_ALLMULTI | 4539 IFF_RUNNING | 4540 IFF_LOWER_UP | 4541 IFF_DORMANT)) | 4542 (dev->gflags & (IFF_PROMISC | 4543 IFF_ALLMULTI)); 4544 4545 if (netif_running(dev)) { 4546 if (netif_oper_up(dev)) 4547 flags |= IFF_RUNNING; 4548 if (netif_carrier_ok(dev)) 4549 flags |= IFF_LOWER_UP; 4550 if (netif_dormant(dev)) 4551 flags |= IFF_DORMANT; 4552 } 4553 4554 return flags; 4555 } 4556 EXPORT_SYMBOL(dev_get_flags); 4557 4558 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4559 { 4560 int old_flags = dev->flags; 4561 int ret; 4562 4563 ASSERT_RTNL(); 4564 4565 /* 4566 * Set the flags on our device. 4567 */ 4568 4569 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4570 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4571 IFF_AUTOMEDIA)) | 4572 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4573 IFF_ALLMULTI)); 4574 4575 /* 4576 * Load in the correct multicast list now the flags have changed. 4577 */ 4578 4579 if ((old_flags ^ flags) & IFF_MULTICAST) 4580 dev_change_rx_flags(dev, IFF_MULTICAST); 4581 4582 dev_set_rx_mode(dev); 4583 4584 /* 4585 * Have we downed the interface. We handle IFF_UP ourselves 4586 * according to user attempts to set it, rather than blindly 4587 * setting it. 4588 */ 4589 4590 ret = 0; 4591 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4592 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4593 4594 if (!ret) 4595 dev_set_rx_mode(dev); 4596 } 4597 4598 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4599 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4600 4601 dev->gflags ^= IFF_PROMISC; 4602 dev_set_promiscuity(dev, inc); 4603 } 4604 4605 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4606 is important. Some (broken) drivers set IFF_PROMISC, when 4607 IFF_ALLMULTI is requested not asking us and not reporting. 4608 */ 4609 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4610 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4611 4612 dev->gflags ^= IFF_ALLMULTI; 4613 dev_set_allmulti(dev, inc); 4614 } 4615 4616 return ret; 4617 } 4618 4619 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4620 { 4621 unsigned int changes = dev->flags ^ old_flags; 4622 4623 if (changes & IFF_UP) { 4624 if (dev->flags & IFF_UP) 4625 call_netdevice_notifiers(NETDEV_UP, dev); 4626 else 4627 call_netdevice_notifiers(NETDEV_DOWN, dev); 4628 } 4629 4630 if (dev->flags & IFF_UP && 4631 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4632 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4633 } 4634 4635 /** 4636 * dev_change_flags - change device settings 4637 * @dev: device 4638 * @flags: device state flags 4639 * 4640 * Change settings on device based state flags. The flags are 4641 * in the userspace exported format. 4642 */ 4643 int dev_change_flags(struct net_device *dev, unsigned flags) 4644 { 4645 int ret, changes; 4646 int old_flags = dev->flags; 4647 4648 ret = __dev_change_flags(dev, flags); 4649 if (ret < 0) 4650 return ret; 4651 4652 changes = old_flags ^ dev->flags; 4653 if (changes) 4654 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4655 4656 __dev_notify_flags(dev, old_flags); 4657 return ret; 4658 } 4659 EXPORT_SYMBOL(dev_change_flags); 4660 4661 /** 4662 * dev_set_mtu - Change maximum transfer unit 4663 * @dev: device 4664 * @new_mtu: new transfer unit 4665 * 4666 * Change the maximum transfer size of the network device. 4667 */ 4668 int dev_set_mtu(struct net_device *dev, int new_mtu) 4669 { 4670 const struct net_device_ops *ops = dev->netdev_ops; 4671 int err; 4672 4673 if (new_mtu == dev->mtu) 4674 return 0; 4675 4676 /* MTU must be positive. */ 4677 if (new_mtu < 0) 4678 return -EINVAL; 4679 4680 if (!netif_device_present(dev)) 4681 return -ENODEV; 4682 4683 err = 0; 4684 if (ops->ndo_change_mtu) 4685 err = ops->ndo_change_mtu(dev, new_mtu); 4686 else 4687 dev->mtu = new_mtu; 4688 4689 if (!err && dev->flags & IFF_UP) 4690 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4691 return err; 4692 } 4693 EXPORT_SYMBOL(dev_set_mtu); 4694 4695 /** 4696 * dev_set_group - Change group this device belongs to 4697 * @dev: device 4698 * @new_group: group this device should belong to 4699 */ 4700 void dev_set_group(struct net_device *dev, int new_group) 4701 { 4702 dev->group = new_group; 4703 } 4704 EXPORT_SYMBOL(dev_set_group); 4705 4706 /** 4707 * dev_set_mac_address - Change Media Access Control Address 4708 * @dev: device 4709 * @sa: new address 4710 * 4711 * Change the hardware (MAC) address of the device 4712 */ 4713 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4714 { 4715 const struct net_device_ops *ops = dev->netdev_ops; 4716 int err; 4717 4718 if (!ops->ndo_set_mac_address) 4719 return -EOPNOTSUPP; 4720 if (sa->sa_family != dev->type) 4721 return -EINVAL; 4722 if (!netif_device_present(dev)) 4723 return -ENODEV; 4724 err = ops->ndo_set_mac_address(dev, sa); 4725 if (!err) 4726 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4727 return err; 4728 } 4729 EXPORT_SYMBOL(dev_set_mac_address); 4730 4731 /* 4732 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4733 */ 4734 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4735 { 4736 int err; 4737 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4738 4739 if (!dev) 4740 return -ENODEV; 4741 4742 switch (cmd) { 4743 case SIOCGIFFLAGS: /* Get interface flags */ 4744 ifr->ifr_flags = (short) dev_get_flags(dev); 4745 return 0; 4746 4747 case SIOCGIFMETRIC: /* Get the metric on the interface 4748 (currently unused) */ 4749 ifr->ifr_metric = 0; 4750 return 0; 4751 4752 case SIOCGIFMTU: /* Get the MTU of a device */ 4753 ifr->ifr_mtu = dev->mtu; 4754 return 0; 4755 4756 case SIOCGIFHWADDR: 4757 if (!dev->addr_len) 4758 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4759 else 4760 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4761 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4762 ifr->ifr_hwaddr.sa_family = dev->type; 4763 return 0; 4764 4765 case SIOCGIFSLAVE: 4766 err = -EINVAL; 4767 break; 4768 4769 case SIOCGIFMAP: 4770 ifr->ifr_map.mem_start = dev->mem_start; 4771 ifr->ifr_map.mem_end = dev->mem_end; 4772 ifr->ifr_map.base_addr = dev->base_addr; 4773 ifr->ifr_map.irq = dev->irq; 4774 ifr->ifr_map.dma = dev->dma; 4775 ifr->ifr_map.port = dev->if_port; 4776 return 0; 4777 4778 case SIOCGIFINDEX: 4779 ifr->ifr_ifindex = dev->ifindex; 4780 return 0; 4781 4782 case SIOCGIFTXQLEN: 4783 ifr->ifr_qlen = dev->tx_queue_len; 4784 return 0; 4785 4786 default: 4787 /* dev_ioctl() should ensure this case 4788 * is never reached 4789 */ 4790 WARN_ON(1); 4791 err = -EINVAL; 4792 break; 4793 4794 } 4795 return err; 4796 } 4797 4798 /* 4799 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4800 */ 4801 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4802 { 4803 int err; 4804 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4805 const struct net_device_ops *ops; 4806 4807 if (!dev) 4808 return -ENODEV; 4809 4810 ops = dev->netdev_ops; 4811 4812 switch (cmd) { 4813 case SIOCSIFFLAGS: /* Set interface flags */ 4814 return dev_change_flags(dev, ifr->ifr_flags); 4815 4816 case SIOCSIFMETRIC: /* Set the metric on the interface 4817 (currently unused) */ 4818 return -EOPNOTSUPP; 4819 4820 case SIOCSIFMTU: /* Set the MTU of a device */ 4821 return dev_set_mtu(dev, ifr->ifr_mtu); 4822 4823 case SIOCSIFHWADDR: 4824 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4825 4826 case SIOCSIFHWBROADCAST: 4827 if (ifr->ifr_hwaddr.sa_family != dev->type) 4828 return -EINVAL; 4829 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4830 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4831 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4832 return 0; 4833 4834 case SIOCSIFMAP: 4835 if (ops->ndo_set_config) { 4836 if (!netif_device_present(dev)) 4837 return -ENODEV; 4838 return ops->ndo_set_config(dev, &ifr->ifr_map); 4839 } 4840 return -EOPNOTSUPP; 4841 4842 case SIOCADDMULTI: 4843 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4844 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4845 return -EINVAL; 4846 if (!netif_device_present(dev)) 4847 return -ENODEV; 4848 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4849 4850 case SIOCDELMULTI: 4851 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4852 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4853 return -EINVAL; 4854 if (!netif_device_present(dev)) 4855 return -ENODEV; 4856 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4857 4858 case SIOCSIFTXQLEN: 4859 if (ifr->ifr_qlen < 0) 4860 return -EINVAL; 4861 dev->tx_queue_len = ifr->ifr_qlen; 4862 return 0; 4863 4864 case SIOCSIFNAME: 4865 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4866 return dev_change_name(dev, ifr->ifr_newname); 4867 4868 /* 4869 * Unknown or private ioctl 4870 */ 4871 default: 4872 if ((cmd >= SIOCDEVPRIVATE && 4873 cmd <= SIOCDEVPRIVATE + 15) || 4874 cmd == SIOCBONDENSLAVE || 4875 cmd == SIOCBONDRELEASE || 4876 cmd == SIOCBONDSETHWADDR || 4877 cmd == SIOCBONDSLAVEINFOQUERY || 4878 cmd == SIOCBONDINFOQUERY || 4879 cmd == SIOCBONDCHANGEACTIVE || 4880 cmd == SIOCGMIIPHY || 4881 cmd == SIOCGMIIREG || 4882 cmd == SIOCSMIIREG || 4883 cmd == SIOCBRADDIF || 4884 cmd == SIOCBRDELIF || 4885 cmd == SIOCSHWTSTAMP || 4886 cmd == SIOCWANDEV) { 4887 err = -EOPNOTSUPP; 4888 if (ops->ndo_do_ioctl) { 4889 if (netif_device_present(dev)) 4890 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4891 else 4892 err = -ENODEV; 4893 } 4894 } else 4895 err = -EINVAL; 4896 4897 } 4898 return err; 4899 } 4900 4901 /* 4902 * This function handles all "interface"-type I/O control requests. The actual 4903 * 'doing' part of this is dev_ifsioc above. 4904 */ 4905 4906 /** 4907 * dev_ioctl - network device ioctl 4908 * @net: the applicable net namespace 4909 * @cmd: command to issue 4910 * @arg: pointer to a struct ifreq in user space 4911 * 4912 * Issue ioctl functions to devices. This is normally called by the 4913 * user space syscall interfaces but can sometimes be useful for 4914 * other purposes. The return value is the return from the syscall if 4915 * positive or a negative errno code on error. 4916 */ 4917 4918 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4919 { 4920 struct ifreq ifr; 4921 int ret; 4922 char *colon; 4923 4924 /* One special case: SIOCGIFCONF takes ifconf argument 4925 and requires shared lock, because it sleeps writing 4926 to user space. 4927 */ 4928 4929 if (cmd == SIOCGIFCONF) { 4930 rtnl_lock(); 4931 ret = dev_ifconf(net, (char __user *) arg); 4932 rtnl_unlock(); 4933 return ret; 4934 } 4935 if (cmd == SIOCGIFNAME) 4936 return dev_ifname(net, (struct ifreq __user *)arg); 4937 4938 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4939 return -EFAULT; 4940 4941 ifr.ifr_name[IFNAMSIZ-1] = 0; 4942 4943 colon = strchr(ifr.ifr_name, ':'); 4944 if (colon) 4945 *colon = 0; 4946 4947 /* 4948 * See which interface the caller is talking about. 4949 */ 4950 4951 switch (cmd) { 4952 /* 4953 * These ioctl calls: 4954 * - can be done by all. 4955 * - atomic and do not require locking. 4956 * - return a value 4957 */ 4958 case SIOCGIFFLAGS: 4959 case SIOCGIFMETRIC: 4960 case SIOCGIFMTU: 4961 case SIOCGIFHWADDR: 4962 case SIOCGIFSLAVE: 4963 case SIOCGIFMAP: 4964 case SIOCGIFINDEX: 4965 case SIOCGIFTXQLEN: 4966 dev_load(net, ifr.ifr_name); 4967 rcu_read_lock(); 4968 ret = dev_ifsioc_locked(net, &ifr, cmd); 4969 rcu_read_unlock(); 4970 if (!ret) { 4971 if (colon) 4972 *colon = ':'; 4973 if (copy_to_user(arg, &ifr, 4974 sizeof(struct ifreq))) 4975 ret = -EFAULT; 4976 } 4977 return ret; 4978 4979 case SIOCETHTOOL: 4980 dev_load(net, ifr.ifr_name); 4981 rtnl_lock(); 4982 ret = dev_ethtool(net, &ifr); 4983 rtnl_unlock(); 4984 if (!ret) { 4985 if (colon) 4986 *colon = ':'; 4987 if (copy_to_user(arg, &ifr, 4988 sizeof(struct ifreq))) 4989 ret = -EFAULT; 4990 } 4991 return ret; 4992 4993 /* 4994 * These ioctl calls: 4995 * - require superuser power. 4996 * - require strict serialization. 4997 * - return a value 4998 */ 4999 case SIOCGMIIPHY: 5000 case SIOCGMIIREG: 5001 case SIOCSIFNAME: 5002 if (!capable(CAP_NET_ADMIN)) 5003 return -EPERM; 5004 dev_load(net, ifr.ifr_name); 5005 rtnl_lock(); 5006 ret = dev_ifsioc(net, &ifr, cmd); 5007 rtnl_unlock(); 5008 if (!ret) { 5009 if (colon) 5010 *colon = ':'; 5011 if (copy_to_user(arg, &ifr, 5012 sizeof(struct ifreq))) 5013 ret = -EFAULT; 5014 } 5015 return ret; 5016 5017 /* 5018 * These ioctl calls: 5019 * - require superuser power. 5020 * - require strict serialization. 5021 * - do not return a value 5022 */ 5023 case SIOCSIFFLAGS: 5024 case SIOCSIFMETRIC: 5025 case SIOCSIFMTU: 5026 case SIOCSIFMAP: 5027 case SIOCSIFHWADDR: 5028 case SIOCSIFSLAVE: 5029 case SIOCADDMULTI: 5030 case SIOCDELMULTI: 5031 case SIOCSIFHWBROADCAST: 5032 case SIOCSIFTXQLEN: 5033 case SIOCSMIIREG: 5034 case SIOCBONDENSLAVE: 5035 case SIOCBONDRELEASE: 5036 case SIOCBONDSETHWADDR: 5037 case SIOCBONDCHANGEACTIVE: 5038 case SIOCBRADDIF: 5039 case SIOCBRDELIF: 5040 case SIOCSHWTSTAMP: 5041 if (!capable(CAP_NET_ADMIN)) 5042 return -EPERM; 5043 /* fall through */ 5044 case SIOCBONDSLAVEINFOQUERY: 5045 case SIOCBONDINFOQUERY: 5046 dev_load(net, ifr.ifr_name); 5047 rtnl_lock(); 5048 ret = dev_ifsioc(net, &ifr, cmd); 5049 rtnl_unlock(); 5050 return ret; 5051 5052 case SIOCGIFMEM: 5053 /* Get the per device memory space. We can add this but 5054 * currently do not support it */ 5055 case SIOCSIFMEM: 5056 /* Set the per device memory buffer space. 5057 * Not applicable in our case */ 5058 case SIOCSIFLINK: 5059 return -EINVAL; 5060 5061 /* 5062 * Unknown or private ioctl. 5063 */ 5064 default: 5065 if (cmd == SIOCWANDEV || 5066 (cmd >= SIOCDEVPRIVATE && 5067 cmd <= SIOCDEVPRIVATE + 15)) { 5068 dev_load(net, ifr.ifr_name); 5069 rtnl_lock(); 5070 ret = dev_ifsioc(net, &ifr, cmd); 5071 rtnl_unlock(); 5072 if (!ret && copy_to_user(arg, &ifr, 5073 sizeof(struct ifreq))) 5074 ret = -EFAULT; 5075 return ret; 5076 } 5077 /* Take care of Wireless Extensions */ 5078 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5079 return wext_handle_ioctl(net, &ifr, cmd, arg); 5080 return -EINVAL; 5081 } 5082 } 5083 5084 5085 /** 5086 * dev_new_index - allocate an ifindex 5087 * @net: the applicable net namespace 5088 * 5089 * Returns a suitable unique value for a new device interface 5090 * number. The caller must hold the rtnl semaphore or the 5091 * dev_base_lock to be sure it remains unique. 5092 */ 5093 static int dev_new_index(struct net *net) 5094 { 5095 static int ifindex; 5096 for (;;) { 5097 if (++ifindex <= 0) 5098 ifindex = 1; 5099 if (!__dev_get_by_index(net, ifindex)) 5100 return ifindex; 5101 } 5102 } 5103 5104 /* Delayed registration/unregisteration */ 5105 static LIST_HEAD(net_todo_list); 5106 5107 static void net_set_todo(struct net_device *dev) 5108 { 5109 list_add_tail(&dev->todo_list, &net_todo_list); 5110 } 5111 5112 static void rollback_registered_many(struct list_head *head) 5113 { 5114 struct net_device *dev, *tmp; 5115 5116 BUG_ON(dev_boot_phase); 5117 ASSERT_RTNL(); 5118 5119 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5120 /* Some devices call without registering 5121 * for initialization unwind. Remove those 5122 * devices and proceed with the remaining. 5123 */ 5124 if (dev->reg_state == NETREG_UNINITIALIZED) { 5125 pr_debug("unregister_netdevice: device %s/%p never " 5126 "was registered\n", dev->name, dev); 5127 5128 WARN_ON(1); 5129 list_del(&dev->unreg_list); 5130 continue; 5131 } 5132 5133 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5134 } 5135 5136 /* If device is running, close it first. */ 5137 dev_close_many(head); 5138 5139 list_for_each_entry(dev, head, unreg_list) { 5140 /* And unlink it from device chain. */ 5141 unlist_netdevice(dev); 5142 5143 dev->reg_state = NETREG_UNREGISTERING; 5144 } 5145 5146 synchronize_net(); 5147 5148 list_for_each_entry(dev, head, unreg_list) { 5149 /* Shutdown queueing discipline. */ 5150 dev_shutdown(dev); 5151 5152 5153 /* Notify protocols, that we are about to destroy 5154 this device. They should clean all the things. 5155 */ 5156 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5157 5158 if (!dev->rtnl_link_ops || 5159 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5160 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5161 5162 /* 5163 * Flush the unicast and multicast chains 5164 */ 5165 dev_uc_flush(dev); 5166 dev_mc_flush(dev); 5167 5168 if (dev->netdev_ops->ndo_uninit) 5169 dev->netdev_ops->ndo_uninit(dev); 5170 5171 /* Notifier chain MUST detach us from master device. */ 5172 WARN_ON(dev->master); 5173 5174 /* Remove entries from kobject tree */ 5175 netdev_unregister_kobject(dev); 5176 } 5177 5178 /* Process any work delayed until the end of the batch */ 5179 dev = list_first_entry(head, struct net_device, unreg_list); 5180 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5181 5182 rcu_barrier(); 5183 5184 list_for_each_entry(dev, head, unreg_list) 5185 dev_put(dev); 5186 } 5187 5188 static void rollback_registered(struct net_device *dev) 5189 { 5190 LIST_HEAD(single); 5191 5192 list_add(&dev->unreg_list, &single); 5193 rollback_registered_many(&single); 5194 list_del(&single); 5195 } 5196 5197 u32 netdev_fix_features(struct net_device *dev, u32 features) 5198 { 5199 /* Fix illegal checksum combinations */ 5200 if ((features & NETIF_F_HW_CSUM) && 5201 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5202 netdev_info(dev, "mixed HW and IP checksum settings.\n"); 5203 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5204 } 5205 5206 if ((features & NETIF_F_NO_CSUM) && 5207 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5208 netdev_info(dev, "mixed no checksumming and other settings.\n"); 5209 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5210 } 5211 5212 /* Fix illegal SG+CSUM combinations. */ 5213 if ((features & NETIF_F_SG) && 5214 !(features & NETIF_F_ALL_CSUM)) { 5215 netdev_info(dev, 5216 "Dropping NETIF_F_SG since no checksum feature.\n"); 5217 features &= ~NETIF_F_SG; 5218 } 5219 5220 /* TSO requires that SG is present as well. */ 5221 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 5222 netdev_info(dev, "Dropping NETIF_F_TSO since no SG feature.\n"); 5223 features &= ~NETIF_F_TSO; 5224 } 5225 5226 /* Software GSO depends on SG. */ 5227 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5228 netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5229 features &= ~NETIF_F_GSO; 5230 } 5231 5232 /* UFO needs SG and checksumming */ 5233 if (features & NETIF_F_UFO) { 5234 /* maybe split UFO into V4 and V6? */ 5235 if (!((features & NETIF_F_GEN_CSUM) || 5236 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5237 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5238 netdev_info(dev, 5239 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5240 features &= ~NETIF_F_UFO; 5241 } 5242 5243 if (!(features & NETIF_F_SG)) { 5244 netdev_info(dev, 5245 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5246 features &= ~NETIF_F_UFO; 5247 } 5248 } 5249 5250 return features; 5251 } 5252 EXPORT_SYMBOL(netdev_fix_features); 5253 5254 void netdev_update_features(struct net_device *dev) 5255 { 5256 u32 features; 5257 int err = 0; 5258 5259 features = netdev_get_wanted_features(dev); 5260 5261 if (dev->netdev_ops->ndo_fix_features) 5262 features = dev->netdev_ops->ndo_fix_features(dev, features); 5263 5264 /* driver might be less strict about feature dependencies */ 5265 features = netdev_fix_features(dev, features); 5266 5267 if (dev->features == features) 5268 return; 5269 5270 netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n", 5271 dev->features, features); 5272 5273 if (dev->netdev_ops->ndo_set_features) 5274 err = dev->netdev_ops->ndo_set_features(dev, features); 5275 5276 if (!err) 5277 dev->features = features; 5278 else if (err < 0) 5279 netdev_err(dev, 5280 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n", 5281 err, features, dev->features); 5282 } 5283 EXPORT_SYMBOL(netdev_update_features); 5284 5285 /** 5286 * netif_stacked_transfer_operstate - transfer operstate 5287 * @rootdev: the root or lower level device to transfer state from 5288 * @dev: the device to transfer operstate to 5289 * 5290 * Transfer operational state from root to device. This is normally 5291 * called when a stacking relationship exists between the root 5292 * device and the device(a leaf device). 5293 */ 5294 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5295 struct net_device *dev) 5296 { 5297 if (rootdev->operstate == IF_OPER_DORMANT) 5298 netif_dormant_on(dev); 5299 else 5300 netif_dormant_off(dev); 5301 5302 if (netif_carrier_ok(rootdev)) { 5303 if (!netif_carrier_ok(dev)) 5304 netif_carrier_on(dev); 5305 } else { 5306 if (netif_carrier_ok(dev)) 5307 netif_carrier_off(dev); 5308 } 5309 } 5310 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5311 5312 #ifdef CONFIG_RPS 5313 static int netif_alloc_rx_queues(struct net_device *dev) 5314 { 5315 unsigned int i, count = dev->num_rx_queues; 5316 struct netdev_rx_queue *rx; 5317 5318 BUG_ON(count < 1); 5319 5320 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5321 if (!rx) { 5322 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5323 return -ENOMEM; 5324 } 5325 dev->_rx = rx; 5326 5327 for (i = 0; i < count; i++) 5328 rx[i].dev = dev; 5329 return 0; 5330 } 5331 #endif 5332 5333 static void netdev_init_one_queue(struct net_device *dev, 5334 struct netdev_queue *queue, void *_unused) 5335 { 5336 /* Initialize queue lock */ 5337 spin_lock_init(&queue->_xmit_lock); 5338 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5339 queue->xmit_lock_owner = -1; 5340 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5341 queue->dev = dev; 5342 } 5343 5344 static int netif_alloc_netdev_queues(struct net_device *dev) 5345 { 5346 unsigned int count = dev->num_tx_queues; 5347 struct netdev_queue *tx; 5348 5349 BUG_ON(count < 1); 5350 5351 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5352 if (!tx) { 5353 pr_err("netdev: Unable to allocate %u tx queues.\n", 5354 count); 5355 return -ENOMEM; 5356 } 5357 dev->_tx = tx; 5358 5359 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5360 spin_lock_init(&dev->tx_global_lock); 5361 5362 return 0; 5363 } 5364 5365 /** 5366 * register_netdevice - register a network device 5367 * @dev: device to register 5368 * 5369 * Take a completed network device structure and add it to the kernel 5370 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5371 * chain. 0 is returned on success. A negative errno code is returned 5372 * on a failure to set up the device, or if the name is a duplicate. 5373 * 5374 * Callers must hold the rtnl semaphore. You may want 5375 * register_netdev() instead of this. 5376 * 5377 * BUGS: 5378 * The locking appears insufficient to guarantee two parallel registers 5379 * will not get the same name. 5380 */ 5381 5382 int register_netdevice(struct net_device *dev) 5383 { 5384 int ret; 5385 struct net *net = dev_net(dev); 5386 5387 BUG_ON(dev_boot_phase); 5388 ASSERT_RTNL(); 5389 5390 might_sleep(); 5391 5392 /* When net_device's are persistent, this will be fatal. */ 5393 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5394 BUG_ON(!net); 5395 5396 spin_lock_init(&dev->addr_list_lock); 5397 netdev_set_addr_lockdep_class(dev); 5398 5399 dev->iflink = -1; 5400 5401 /* Init, if this function is available */ 5402 if (dev->netdev_ops->ndo_init) { 5403 ret = dev->netdev_ops->ndo_init(dev); 5404 if (ret) { 5405 if (ret > 0) 5406 ret = -EIO; 5407 goto out; 5408 } 5409 } 5410 5411 ret = dev_get_valid_name(dev, dev->name, 0); 5412 if (ret) 5413 goto err_uninit; 5414 5415 dev->ifindex = dev_new_index(net); 5416 if (dev->iflink == -1) 5417 dev->iflink = dev->ifindex; 5418 5419 /* Transfer changeable features to wanted_features and enable 5420 * software offloads (GSO and GRO). 5421 */ 5422 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5423 dev->features |= NETIF_F_SOFT_FEATURES; 5424 dev->wanted_features = dev->features & dev->hw_features; 5425 5426 /* Avoid warning from netdev_fix_features() for GSO without SG */ 5427 if (!(dev->wanted_features & NETIF_F_SG)) { 5428 dev->wanted_features &= ~NETIF_F_GSO; 5429 dev->features &= ~NETIF_F_GSO; 5430 } 5431 5432 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default, 5433 * vlan_dev_init() will do the dev->features check, so these features 5434 * are enabled only if supported by underlying device. 5435 */ 5436 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA); 5437 5438 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5439 ret = notifier_to_errno(ret); 5440 if (ret) 5441 goto err_uninit; 5442 5443 ret = netdev_register_kobject(dev); 5444 if (ret) 5445 goto err_uninit; 5446 dev->reg_state = NETREG_REGISTERED; 5447 5448 netdev_update_features(dev); 5449 5450 /* 5451 * Default initial state at registry is that the 5452 * device is present. 5453 */ 5454 5455 set_bit(__LINK_STATE_PRESENT, &dev->state); 5456 5457 dev_init_scheduler(dev); 5458 dev_hold(dev); 5459 list_netdevice(dev); 5460 5461 /* Notify protocols, that a new device appeared. */ 5462 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5463 ret = notifier_to_errno(ret); 5464 if (ret) { 5465 rollback_registered(dev); 5466 dev->reg_state = NETREG_UNREGISTERED; 5467 } 5468 /* 5469 * Prevent userspace races by waiting until the network 5470 * device is fully setup before sending notifications. 5471 */ 5472 if (!dev->rtnl_link_ops || 5473 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5474 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5475 5476 out: 5477 return ret; 5478 5479 err_uninit: 5480 if (dev->netdev_ops->ndo_uninit) 5481 dev->netdev_ops->ndo_uninit(dev); 5482 goto out; 5483 } 5484 EXPORT_SYMBOL(register_netdevice); 5485 5486 /** 5487 * init_dummy_netdev - init a dummy network device for NAPI 5488 * @dev: device to init 5489 * 5490 * This takes a network device structure and initialize the minimum 5491 * amount of fields so it can be used to schedule NAPI polls without 5492 * registering a full blown interface. This is to be used by drivers 5493 * that need to tie several hardware interfaces to a single NAPI 5494 * poll scheduler due to HW limitations. 5495 */ 5496 int init_dummy_netdev(struct net_device *dev) 5497 { 5498 /* Clear everything. Note we don't initialize spinlocks 5499 * are they aren't supposed to be taken by any of the 5500 * NAPI code and this dummy netdev is supposed to be 5501 * only ever used for NAPI polls 5502 */ 5503 memset(dev, 0, sizeof(struct net_device)); 5504 5505 /* make sure we BUG if trying to hit standard 5506 * register/unregister code path 5507 */ 5508 dev->reg_state = NETREG_DUMMY; 5509 5510 /* NAPI wants this */ 5511 INIT_LIST_HEAD(&dev->napi_list); 5512 5513 /* a dummy interface is started by default */ 5514 set_bit(__LINK_STATE_PRESENT, &dev->state); 5515 set_bit(__LINK_STATE_START, &dev->state); 5516 5517 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5518 * because users of this 'device' dont need to change 5519 * its refcount. 5520 */ 5521 5522 return 0; 5523 } 5524 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5525 5526 5527 /** 5528 * register_netdev - register a network device 5529 * @dev: device to register 5530 * 5531 * Take a completed network device structure and add it to the kernel 5532 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5533 * chain. 0 is returned on success. A negative errno code is returned 5534 * on a failure to set up the device, or if the name is a duplicate. 5535 * 5536 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5537 * and expands the device name if you passed a format string to 5538 * alloc_netdev. 5539 */ 5540 int register_netdev(struct net_device *dev) 5541 { 5542 int err; 5543 5544 rtnl_lock(); 5545 5546 /* 5547 * If the name is a format string the caller wants us to do a 5548 * name allocation. 5549 */ 5550 if (strchr(dev->name, '%')) { 5551 err = dev_alloc_name(dev, dev->name); 5552 if (err < 0) 5553 goto out; 5554 } 5555 5556 err = register_netdevice(dev); 5557 out: 5558 rtnl_unlock(); 5559 return err; 5560 } 5561 EXPORT_SYMBOL(register_netdev); 5562 5563 int netdev_refcnt_read(const struct net_device *dev) 5564 { 5565 int i, refcnt = 0; 5566 5567 for_each_possible_cpu(i) 5568 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5569 return refcnt; 5570 } 5571 EXPORT_SYMBOL(netdev_refcnt_read); 5572 5573 /* 5574 * netdev_wait_allrefs - wait until all references are gone. 5575 * 5576 * This is called when unregistering network devices. 5577 * 5578 * Any protocol or device that holds a reference should register 5579 * for netdevice notification, and cleanup and put back the 5580 * reference if they receive an UNREGISTER event. 5581 * We can get stuck here if buggy protocols don't correctly 5582 * call dev_put. 5583 */ 5584 static void netdev_wait_allrefs(struct net_device *dev) 5585 { 5586 unsigned long rebroadcast_time, warning_time; 5587 int refcnt; 5588 5589 linkwatch_forget_dev(dev); 5590 5591 rebroadcast_time = warning_time = jiffies; 5592 refcnt = netdev_refcnt_read(dev); 5593 5594 while (refcnt != 0) { 5595 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5596 rtnl_lock(); 5597 5598 /* Rebroadcast unregister notification */ 5599 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5600 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5601 * should have already handle it the first time */ 5602 5603 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5604 &dev->state)) { 5605 /* We must not have linkwatch events 5606 * pending on unregister. If this 5607 * happens, we simply run the queue 5608 * unscheduled, resulting in a noop 5609 * for this device. 5610 */ 5611 linkwatch_run_queue(); 5612 } 5613 5614 __rtnl_unlock(); 5615 5616 rebroadcast_time = jiffies; 5617 } 5618 5619 msleep(250); 5620 5621 refcnt = netdev_refcnt_read(dev); 5622 5623 if (time_after(jiffies, warning_time + 10 * HZ)) { 5624 printk(KERN_EMERG "unregister_netdevice: " 5625 "waiting for %s to become free. Usage " 5626 "count = %d\n", 5627 dev->name, refcnt); 5628 warning_time = jiffies; 5629 } 5630 } 5631 } 5632 5633 /* The sequence is: 5634 * 5635 * rtnl_lock(); 5636 * ... 5637 * register_netdevice(x1); 5638 * register_netdevice(x2); 5639 * ... 5640 * unregister_netdevice(y1); 5641 * unregister_netdevice(y2); 5642 * ... 5643 * rtnl_unlock(); 5644 * free_netdev(y1); 5645 * free_netdev(y2); 5646 * 5647 * We are invoked by rtnl_unlock(). 5648 * This allows us to deal with problems: 5649 * 1) We can delete sysfs objects which invoke hotplug 5650 * without deadlocking with linkwatch via keventd. 5651 * 2) Since we run with the RTNL semaphore not held, we can sleep 5652 * safely in order to wait for the netdev refcnt to drop to zero. 5653 * 5654 * We must not return until all unregister events added during 5655 * the interval the lock was held have been completed. 5656 */ 5657 void netdev_run_todo(void) 5658 { 5659 struct list_head list; 5660 5661 /* Snapshot list, allow later requests */ 5662 list_replace_init(&net_todo_list, &list); 5663 5664 __rtnl_unlock(); 5665 5666 while (!list_empty(&list)) { 5667 struct net_device *dev 5668 = list_first_entry(&list, struct net_device, todo_list); 5669 list_del(&dev->todo_list); 5670 5671 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5672 printk(KERN_ERR "network todo '%s' but state %d\n", 5673 dev->name, dev->reg_state); 5674 dump_stack(); 5675 continue; 5676 } 5677 5678 dev->reg_state = NETREG_UNREGISTERED; 5679 5680 on_each_cpu(flush_backlog, dev, 1); 5681 5682 netdev_wait_allrefs(dev); 5683 5684 /* paranoia */ 5685 BUG_ON(netdev_refcnt_read(dev)); 5686 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5687 WARN_ON(rcu_dereference_raw(dev->ip6_ptr)); 5688 WARN_ON(dev->dn_ptr); 5689 5690 if (dev->destructor) 5691 dev->destructor(dev); 5692 5693 /* Free network device */ 5694 kobject_put(&dev->dev.kobj); 5695 } 5696 } 5697 5698 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5699 * fields in the same order, with only the type differing. 5700 */ 5701 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5702 const struct net_device_stats *netdev_stats) 5703 { 5704 #if BITS_PER_LONG == 64 5705 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5706 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5707 #else 5708 size_t i, n = sizeof(*stats64) / sizeof(u64); 5709 const unsigned long *src = (const unsigned long *)netdev_stats; 5710 u64 *dst = (u64 *)stats64; 5711 5712 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5713 sizeof(*stats64) / sizeof(u64)); 5714 for (i = 0; i < n; i++) 5715 dst[i] = src[i]; 5716 #endif 5717 } 5718 5719 /** 5720 * dev_get_stats - get network device statistics 5721 * @dev: device to get statistics from 5722 * @storage: place to store stats 5723 * 5724 * Get network statistics from device. Return @storage. 5725 * The device driver may provide its own method by setting 5726 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5727 * otherwise the internal statistics structure is used. 5728 */ 5729 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5730 struct rtnl_link_stats64 *storage) 5731 { 5732 const struct net_device_ops *ops = dev->netdev_ops; 5733 5734 if (ops->ndo_get_stats64) { 5735 memset(storage, 0, sizeof(*storage)); 5736 ops->ndo_get_stats64(dev, storage); 5737 } else if (ops->ndo_get_stats) { 5738 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5739 } else { 5740 netdev_stats_to_stats64(storage, &dev->stats); 5741 } 5742 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5743 return storage; 5744 } 5745 EXPORT_SYMBOL(dev_get_stats); 5746 5747 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5748 { 5749 struct netdev_queue *queue = dev_ingress_queue(dev); 5750 5751 #ifdef CONFIG_NET_CLS_ACT 5752 if (queue) 5753 return queue; 5754 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5755 if (!queue) 5756 return NULL; 5757 netdev_init_one_queue(dev, queue, NULL); 5758 queue->qdisc = &noop_qdisc; 5759 queue->qdisc_sleeping = &noop_qdisc; 5760 rcu_assign_pointer(dev->ingress_queue, queue); 5761 #endif 5762 return queue; 5763 } 5764 5765 /** 5766 * alloc_netdev_mqs - allocate network device 5767 * @sizeof_priv: size of private data to allocate space for 5768 * @name: device name format string 5769 * @setup: callback to initialize device 5770 * @txqs: the number of TX subqueues to allocate 5771 * @rxqs: the number of RX subqueues to allocate 5772 * 5773 * Allocates a struct net_device with private data area for driver use 5774 * and performs basic initialization. Also allocates subquue structs 5775 * for each queue on the device. 5776 */ 5777 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5778 void (*setup)(struct net_device *), 5779 unsigned int txqs, unsigned int rxqs) 5780 { 5781 struct net_device *dev; 5782 size_t alloc_size; 5783 struct net_device *p; 5784 5785 BUG_ON(strlen(name) >= sizeof(dev->name)); 5786 5787 if (txqs < 1) { 5788 pr_err("alloc_netdev: Unable to allocate device " 5789 "with zero queues.\n"); 5790 return NULL; 5791 } 5792 5793 #ifdef CONFIG_RPS 5794 if (rxqs < 1) { 5795 pr_err("alloc_netdev: Unable to allocate device " 5796 "with zero RX queues.\n"); 5797 return NULL; 5798 } 5799 #endif 5800 5801 alloc_size = sizeof(struct net_device); 5802 if (sizeof_priv) { 5803 /* ensure 32-byte alignment of private area */ 5804 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5805 alloc_size += sizeof_priv; 5806 } 5807 /* ensure 32-byte alignment of whole construct */ 5808 alloc_size += NETDEV_ALIGN - 1; 5809 5810 p = kzalloc(alloc_size, GFP_KERNEL); 5811 if (!p) { 5812 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5813 return NULL; 5814 } 5815 5816 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5817 dev->padded = (char *)dev - (char *)p; 5818 5819 dev->pcpu_refcnt = alloc_percpu(int); 5820 if (!dev->pcpu_refcnt) 5821 goto free_p; 5822 5823 if (dev_addr_init(dev)) 5824 goto free_pcpu; 5825 5826 dev_mc_init(dev); 5827 dev_uc_init(dev); 5828 5829 dev_net_set(dev, &init_net); 5830 5831 dev->gso_max_size = GSO_MAX_SIZE; 5832 5833 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5834 dev->ethtool_ntuple_list.count = 0; 5835 INIT_LIST_HEAD(&dev->napi_list); 5836 INIT_LIST_HEAD(&dev->unreg_list); 5837 INIT_LIST_HEAD(&dev->link_watch_list); 5838 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5839 setup(dev); 5840 5841 dev->num_tx_queues = txqs; 5842 dev->real_num_tx_queues = txqs; 5843 if (netif_alloc_netdev_queues(dev)) 5844 goto free_all; 5845 5846 #ifdef CONFIG_RPS 5847 dev->num_rx_queues = rxqs; 5848 dev->real_num_rx_queues = rxqs; 5849 if (netif_alloc_rx_queues(dev)) 5850 goto free_all; 5851 #endif 5852 5853 strcpy(dev->name, name); 5854 dev->group = INIT_NETDEV_GROUP; 5855 return dev; 5856 5857 free_all: 5858 free_netdev(dev); 5859 return NULL; 5860 5861 free_pcpu: 5862 free_percpu(dev->pcpu_refcnt); 5863 kfree(dev->_tx); 5864 #ifdef CONFIG_RPS 5865 kfree(dev->_rx); 5866 #endif 5867 5868 free_p: 5869 kfree(p); 5870 return NULL; 5871 } 5872 EXPORT_SYMBOL(alloc_netdev_mqs); 5873 5874 /** 5875 * free_netdev - free network device 5876 * @dev: device 5877 * 5878 * This function does the last stage of destroying an allocated device 5879 * interface. The reference to the device object is released. 5880 * If this is the last reference then it will be freed. 5881 */ 5882 void free_netdev(struct net_device *dev) 5883 { 5884 struct napi_struct *p, *n; 5885 5886 release_net(dev_net(dev)); 5887 5888 kfree(dev->_tx); 5889 #ifdef CONFIG_RPS 5890 kfree(dev->_rx); 5891 #endif 5892 5893 kfree(rcu_dereference_raw(dev->ingress_queue)); 5894 5895 /* Flush device addresses */ 5896 dev_addr_flush(dev); 5897 5898 /* Clear ethtool n-tuple list */ 5899 ethtool_ntuple_flush(dev); 5900 5901 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5902 netif_napi_del(p); 5903 5904 free_percpu(dev->pcpu_refcnt); 5905 dev->pcpu_refcnt = NULL; 5906 5907 /* Compatibility with error handling in drivers */ 5908 if (dev->reg_state == NETREG_UNINITIALIZED) { 5909 kfree((char *)dev - dev->padded); 5910 return; 5911 } 5912 5913 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5914 dev->reg_state = NETREG_RELEASED; 5915 5916 /* will free via device release */ 5917 put_device(&dev->dev); 5918 } 5919 EXPORT_SYMBOL(free_netdev); 5920 5921 /** 5922 * synchronize_net - Synchronize with packet receive processing 5923 * 5924 * Wait for packets currently being received to be done. 5925 * Does not block later packets from starting. 5926 */ 5927 void synchronize_net(void) 5928 { 5929 might_sleep(); 5930 synchronize_rcu(); 5931 } 5932 EXPORT_SYMBOL(synchronize_net); 5933 5934 /** 5935 * unregister_netdevice_queue - remove device from the kernel 5936 * @dev: device 5937 * @head: list 5938 * 5939 * This function shuts down a device interface and removes it 5940 * from the kernel tables. 5941 * If head not NULL, device is queued to be unregistered later. 5942 * 5943 * Callers must hold the rtnl semaphore. You may want 5944 * unregister_netdev() instead of this. 5945 */ 5946 5947 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5948 { 5949 ASSERT_RTNL(); 5950 5951 if (head) { 5952 list_move_tail(&dev->unreg_list, head); 5953 } else { 5954 rollback_registered(dev); 5955 /* Finish processing unregister after unlock */ 5956 net_set_todo(dev); 5957 } 5958 } 5959 EXPORT_SYMBOL(unregister_netdevice_queue); 5960 5961 /** 5962 * unregister_netdevice_many - unregister many devices 5963 * @head: list of devices 5964 */ 5965 void unregister_netdevice_many(struct list_head *head) 5966 { 5967 struct net_device *dev; 5968 5969 if (!list_empty(head)) { 5970 rollback_registered_many(head); 5971 list_for_each_entry(dev, head, unreg_list) 5972 net_set_todo(dev); 5973 } 5974 } 5975 EXPORT_SYMBOL(unregister_netdevice_many); 5976 5977 /** 5978 * unregister_netdev - remove device from the kernel 5979 * @dev: device 5980 * 5981 * This function shuts down a device interface and removes it 5982 * from the kernel tables. 5983 * 5984 * This is just a wrapper for unregister_netdevice that takes 5985 * the rtnl semaphore. In general you want to use this and not 5986 * unregister_netdevice. 5987 */ 5988 void unregister_netdev(struct net_device *dev) 5989 { 5990 rtnl_lock(); 5991 unregister_netdevice(dev); 5992 rtnl_unlock(); 5993 } 5994 EXPORT_SYMBOL(unregister_netdev); 5995 5996 /** 5997 * dev_change_net_namespace - move device to different nethost namespace 5998 * @dev: device 5999 * @net: network namespace 6000 * @pat: If not NULL name pattern to try if the current device name 6001 * is already taken in the destination network namespace. 6002 * 6003 * This function shuts down a device interface and moves it 6004 * to a new network namespace. On success 0 is returned, on 6005 * a failure a netagive errno code is returned. 6006 * 6007 * Callers must hold the rtnl semaphore. 6008 */ 6009 6010 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6011 { 6012 int err; 6013 6014 ASSERT_RTNL(); 6015 6016 /* Don't allow namespace local devices to be moved. */ 6017 err = -EINVAL; 6018 if (dev->features & NETIF_F_NETNS_LOCAL) 6019 goto out; 6020 6021 /* Ensure the device has been registrered */ 6022 err = -EINVAL; 6023 if (dev->reg_state != NETREG_REGISTERED) 6024 goto out; 6025 6026 /* Get out if there is nothing todo */ 6027 err = 0; 6028 if (net_eq(dev_net(dev), net)) 6029 goto out; 6030 6031 /* Pick the destination device name, and ensure 6032 * we can use it in the destination network namespace. 6033 */ 6034 err = -EEXIST; 6035 if (__dev_get_by_name(net, dev->name)) { 6036 /* We get here if we can't use the current device name */ 6037 if (!pat) 6038 goto out; 6039 if (dev_get_valid_name(dev, pat, 1)) 6040 goto out; 6041 } 6042 6043 /* 6044 * And now a mini version of register_netdevice unregister_netdevice. 6045 */ 6046 6047 /* If device is running close it first. */ 6048 dev_close(dev); 6049 6050 /* And unlink it from device chain */ 6051 err = -ENODEV; 6052 unlist_netdevice(dev); 6053 6054 synchronize_net(); 6055 6056 /* Shutdown queueing discipline. */ 6057 dev_shutdown(dev); 6058 6059 /* Notify protocols, that we are about to destroy 6060 this device. They should clean all the things. 6061 6062 Note that dev->reg_state stays at NETREG_REGISTERED. 6063 This is wanted because this way 8021q and macvlan know 6064 the device is just moving and can keep their slaves up. 6065 */ 6066 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6067 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6068 6069 /* 6070 * Flush the unicast and multicast chains 6071 */ 6072 dev_uc_flush(dev); 6073 dev_mc_flush(dev); 6074 6075 /* Actually switch the network namespace */ 6076 dev_net_set(dev, net); 6077 6078 /* If there is an ifindex conflict assign a new one */ 6079 if (__dev_get_by_index(net, dev->ifindex)) { 6080 int iflink = (dev->iflink == dev->ifindex); 6081 dev->ifindex = dev_new_index(net); 6082 if (iflink) 6083 dev->iflink = dev->ifindex; 6084 } 6085 6086 /* Fixup kobjects */ 6087 err = device_rename(&dev->dev, dev->name); 6088 WARN_ON(err); 6089 6090 /* Add the device back in the hashes */ 6091 list_netdevice(dev); 6092 6093 /* Notify protocols, that a new device appeared. */ 6094 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6095 6096 /* 6097 * Prevent userspace races by waiting until the network 6098 * device is fully setup before sending notifications. 6099 */ 6100 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6101 6102 synchronize_net(); 6103 err = 0; 6104 out: 6105 return err; 6106 } 6107 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6108 6109 static int dev_cpu_callback(struct notifier_block *nfb, 6110 unsigned long action, 6111 void *ocpu) 6112 { 6113 struct sk_buff **list_skb; 6114 struct sk_buff *skb; 6115 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6116 struct softnet_data *sd, *oldsd; 6117 6118 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6119 return NOTIFY_OK; 6120 6121 local_irq_disable(); 6122 cpu = smp_processor_id(); 6123 sd = &per_cpu(softnet_data, cpu); 6124 oldsd = &per_cpu(softnet_data, oldcpu); 6125 6126 /* Find end of our completion_queue. */ 6127 list_skb = &sd->completion_queue; 6128 while (*list_skb) 6129 list_skb = &(*list_skb)->next; 6130 /* Append completion queue from offline CPU. */ 6131 *list_skb = oldsd->completion_queue; 6132 oldsd->completion_queue = NULL; 6133 6134 /* Append output queue from offline CPU. */ 6135 if (oldsd->output_queue) { 6136 *sd->output_queue_tailp = oldsd->output_queue; 6137 sd->output_queue_tailp = oldsd->output_queue_tailp; 6138 oldsd->output_queue = NULL; 6139 oldsd->output_queue_tailp = &oldsd->output_queue; 6140 } 6141 6142 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6143 local_irq_enable(); 6144 6145 /* Process offline CPU's input_pkt_queue */ 6146 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6147 netif_rx(skb); 6148 input_queue_head_incr(oldsd); 6149 } 6150 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6151 netif_rx(skb); 6152 input_queue_head_incr(oldsd); 6153 } 6154 6155 return NOTIFY_OK; 6156 } 6157 6158 6159 /** 6160 * netdev_increment_features - increment feature set by one 6161 * @all: current feature set 6162 * @one: new feature set 6163 * @mask: mask feature set 6164 * 6165 * Computes a new feature set after adding a device with feature set 6166 * @one to the master device with current feature set @all. Will not 6167 * enable anything that is off in @mask. Returns the new feature set. 6168 */ 6169 u32 netdev_increment_features(u32 all, u32 one, u32 mask) 6170 { 6171 /* If device needs checksumming, downgrade to it. */ 6172 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 6173 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 6174 else if (mask & NETIF_F_ALL_CSUM) { 6175 /* If one device supports v4/v6 checksumming, set for all. */ 6176 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 6177 !(all & NETIF_F_GEN_CSUM)) { 6178 all &= ~NETIF_F_ALL_CSUM; 6179 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 6180 } 6181 6182 /* If one device supports hw checksumming, set for all. */ 6183 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 6184 all &= ~NETIF_F_ALL_CSUM; 6185 all |= NETIF_F_HW_CSUM; 6186 } 6187 } 6188 6189 one |= NETIF_F_ALL_CSUM; 6190 6191 one |= all & NETIF_F_ONE_FOR_ALL; 6192 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 6193 all |= one & mask & NETIF_F_ONE_FOR_ALL; 6194 6195 return all; 6196 } 6197 EXPORT_SYMBOL(netdev_increment_features); 6198 6199 static struct hlist_head *netdev_create_hash(void) 6200 { 6201 int i; 6202 struct hlist_head *hash; 6203 6204 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6205 if (hash != NULL) 6206 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6207 INIT_HLIST_HEAD(&hash[i]); 6208 6209 return hash; 6210 } 6211 6212 /* Initialize per network namespace state */ 6213 static int __net_init netdev_init(struct net *net) 6214 { 6215 INIT_LIST_HEAD(&net->dev_base_head); 6216 6217 net->dev_name_head = netdev_create_hash(); 6218 if (net->dev_name_head == NULL) 6219 goto err_name; 6220 6221 net->dev_index_head = netdev_create_hash(); 6222 if (net->dev_index_head == NULL) 6223 goto err_idx; 6224 6225 return 0; 6226 6227 err_idx: 6228 kfree(net->dev_name_head); 6229 err_name: 6230 return -ENOMEM; 6231 } 6232 6233 /** 6234 * netdev_drivername - network driver for the device 6235 * @dev: network device 6236 * @buffer: buffer for resulting name 6237 * @len: size of buffer 6238 * 6239 * Determine network driver for device. 6240 */ 6241 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 6242 { 6243 const struct device_driver *driver; 6244 const struct device *parent; 6245 6246 if (len <= 0 || !buffer) 6247 return buffer; 6248 buffer[0] = 0; 6249 6250 parent = dev->dev.parent; 6251 6252 if (!parent) 6253 return buffer; 6254 6255 driver = parent->driver; 6256 if (driver && driver->name) 6257 strlcpy(buffer, driver->name, len); 6258 return buffer; 6259 } 6260 6261 static int __netdev_printk(const char *level, const struct net_device *dev, 6262 struct va_format *vaf) 6263 { 6264 int r; 6265 6266 if (dev && dev->dev.parent) 6267 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6268 netdev_name(dev), vaf); 6269 else if (dev) 6270 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6271 else 6272 r = printk("%s(NULL net_device): %pV", level, vaf); 6273 6274 return r; 6275 } 6276 6277 int netdev_printk(const char *level, const struct net_device *dev, 6278 const char *format, ...) 6279 { 6280 struct va_format vaf; 6281 va_list args; 6282 int r; 6283 6284 va_start(args, format); 6285 6286 vaf.fmt = format; 6287 vaf.va = &args; 6288 6289 r = __netdev_printk(level, dev, &vaf); 6290 va_end(args); 6291 6292 return r; 6293 } 6294 EXPORT_SYMBOL(netdev_printk); 6295 6296 #define define_netdev_printk_level(func, level) \ 6297 int func(const struct net_device *dev, const char *fmt, ...) \ 6298 { \ 6299 int r; \ 6300 struct va_format vaf; \ 6301 va_list args; \ 6302 \ 6303 va_start(args, fmt); \ 6304 \ 6305 vaf.fmt = fmt; \ 6306 vaf.va = &args; \ 6307 \ 6308 r = __netdev_printk(level, dev, &vaf); \ 6309 va_end(args); \ 6310 \ 6311 return r; \ 6312 } \ 6313 EXPORT_SYMBOL(func); 6314 6315 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6316 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6317 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6318 define_netdev_printk_level(netdev_err, KERN_ERR); 6319 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6320 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6321 define_netdev_printk_level(netdev_info, KERN_INFO); 6322 6323 static void __net_exit netdev_exit(struct net *net) 6324 { 6325 kfree(net->dev_name_head); 6326 kfree(net->dev_index_head); 6327 } 6328 6329 static struct pernet_operations __net_initdata netdev_net_ops = { 6330 .init = netdev_init, 6331 .exit = netdev_exit, 6332 }; 6333 6334 static void __net_exit default_device_exit(struct net *net) 6335 { 6336 struct net_device *dev, *aux; 6337 /* 6338 * Push all migratable network devices back to the 6339 * initial network namespace 6340 */ 6341 rtnl_lock(); 6342 for_each_netdev_safe(net, dev, aux) { 6343 int err; 6344 char fb_name[IFNAMSIZ]; 6345 6346 /* Ignore unmoveable devices (i.e. loopback) */ 6347 if (dev->features & NETIF_F_NETNS_LOCAL) 6348 continue; 6349 6350 /* Leave virtual devices for the generic cleanup */ 6351 if (dev->rtnl_link_ops) 6352 continue; 6353 6354 /* Push remaing network devices to init_net */ 6355 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6356 err = dev_change_net_namespace(dev, &init_net, fb_name); 6357 if (err) { 6358 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6359 __func__, dev->name, err); 6360 BUG(); 6361 } 6362 } 6363 rtnl_unlock(); 6364 } 6365 6366 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6367 { 6368 /* At exit all network devices most be removed from a network 6369 * namespace. Do this in the reverse order of registration. 6370 * Do this across as many network namespaces as possible to 6371 * improve batching efficiency. 6372 */ 6373 struct net_device *dev; 6374 struct net *net; 6375 LIST_HEAD(dev_kill_list); 6376 6377 rtnl_lock(); 6378 list_for_each_entry(net, net_list, exit_list) { 6379 for_each_netdev_reverse(net, dev) { 6380 if (dev->rtnl_link_ops) 6381 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6382 else 6383 unregister_netdevice_queue(dev, &dev_kill_list); 6384 } 6385 } 6386 unregister_netdevice_many(&dev_kill_list); 6387 list_del(&dev_kill_list); 6388 rtnl_unlock(); 6389 } 6390 6391 static struct pernet_operations __net_initdata default_device_ops = { 6392 .exit = default_device_exit, 6393 .exit_batch = default_device_exit_batch, 6394 }; 6395 6396 /* 6397 * Initialize the DEV module. At boot time this walks the device list and 6398 * unhooks any devices that fail to initialise (normally hardware not 6399 * present) and leaves us with a valid list of present and active devices. 6400 * 6401 */ 6402 6403 /* 6404 * This is called single threaded during boot, so no need 6405 * to take the rtnl semaphore. 6406 */ 6407 static int __init net_dev_init(void) 6408 { 6409 int i, rc = -ENOMEM; 6410 6411 BUG_ON(!dev_boot_phase); 6412 6413 if (dev_proc_init()) 6414 goto out; 6415 6416 if (netdev_kobject_init()) 6417 goto out; 6418 6419 INIT_LIST_HEAD(&ptype_all); 6420 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6421 INIT_LIST_HEAD(&ptype_base[i]); 6422 6423 if (register_pernet_subsys(&netdev_net_ops)) 6424 goto out; 6425 6426 /* 6427 * Initialise the packet receive queues. 6428 */ 6429 6430 for_each_possible_cpu(i) { 6431 struct softnet_data *sd = &per_cpu(softnet_data, i); 6432 6433 memset(sd, 0, sizeof(*sd)); 6434 skb_queue_head_init(&sd->input_pkt_queue); 6435 skb_queue_head_init(&sd->process_queue); 6436 sd->completion_queue = NULL; 6437 INIT_LIST_HEAD(&sd->poll_list); 6438 sd->output_queue = NULL; 6439 sd->output_queue_tailp = &sd->output_queue; 6440 #ifdef CONFIG_RPS 6441 sd->csd.func = rps_trigger_softirq; 6442 sd->csd.info = sd; 6443 sd->csd.flags = 0; 6444 sd->cpu = i; 6445 #endif 6446 6447 sd->backlog.poll = process_backlog; 6448 sd->backlog.weight = weight_p; 6449 sd->backlog.gro_list = NULL; 6450 sd->backlog.gro_count = 0; 6451 } 6452 6453 dev_boot_phase = 0; 6454 6455 /* The loopback device is special if any other network devices 6456 * is present in a network namespace the loopback device must 6457 * be present. Since we now dynamically allocate and free the 6458 * loopback device ensure this invariant is maintained by 6459 * keeping the loopback device as the first device on the 6460 * list of network devices. Ensuring the loopback devices 6461 * is the first device that appears and the last network device 6462 * that disappears. 6463 */ 6464 if (register_pernet_device(&loopback_net_ops)) 6465 goto out; 6466 6467 if (register_pernet_device(&default_device_ops)) 6468 goto out; 6469 6470 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6471 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6472 6473 hotcpu_notifier(dev_cpu_callback, 0); 6474 dst_init(); 6475 dev_mcast_init(); 6476 rc = 0; 6477 out: 6478 return rc; 6479 } 6480 6481 subsys_initcall(net_dev_init); 6482 6483 static int __init initialize_hashrnd(void) 6484 { 6485 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6486 return 0; 6487 } 6488 6489 late_initcall_sync(initialize_hashrnd); 6490 6491