1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <[email protected]> 8 * Mark Evans, <[email protected]> 9 * 10 * Additional Authors: 11 * Florian la Roche <[email protected]> 12 * Alan Cox <[email protected]> 13 * David Hinds <[email protected]> 14 * Alexey Kuznetsov <[email protected]> 15 * Adam Sulmicki <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 #include <linux/static_key.h> 137 #include <linux/hashtable.h> 138 #include <linux/vmalloc.h> 139 #include <linux/if_macvlan.h> 140 #include <linux/errqueue.h> 141 #include <linux/hrtimer.h> 142 #include <linux/netfilter_ingress.h> 143 #include <linux/crash_dump.h> 144 #include <linux/sctp.h> 145 #include <net/udp_tunnel.h> 146 #include <linux/net_namespace.h> 147 #include <linux/indirect_call_wrapper.h> 148 #include <net/devlink.h> 149 #include <linux/pm_runtime.h> 150 #include <linux/prandom.h> 151 152 #include "net-sysfs.h" 153 154 #define MAX_GRO_SKBS 8 155 156 /* This should be increased if a protocol with a bigger head is added. */ 157 #define GRO_MAX_HEAD (MAX_HEADER + 128) 158 159 static DEFINE_SPINLOCK(ptype_lock); 160 static DEFINE_SPINLOCK(offload_lock); 161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 162 struct list_head ptype_all __read_mostly; /* Taps */ 163 static struct list_head offload_base __read_mostly; 164 165 static int netif_rx_internal(struct sk_buff *skb); 166 static int call_netdevice_notifiers_info(unsigned long val, 167 struct netdev_notifier_info *info); 168 static int call_netdevice_notifiers_extack(unsigned long val, 169 struct net_device *dev, 170 struct netlink_ext_ack *extack); 171 static struct napi_struct *napi_by_id(unsigned int napi_id); 172 173 /* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192 DEFINE_RWLOCK(dev_base_lock); 193 EXPORT_SYMBOL(dev_base_lock); 194 195 static DEFINE_MUTEX(ifalias_mutex); 196 197 /* protects napi_hash addition/deletion and napi_gen_id */ 198 static DEFINE_SPINLOCK(napi_hash_lock); 199 200 static unsigned int napi_gen_id = NR_CPUS; 201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 202 203 static DECLARE_RWSEM(devnet_rename_sem); 204 205 static inline void dev_base_seq_inc(struct net *net) 206 { 207 while (++net->dev_base_seq == 0) 208 ; 209 } 210 211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 212 { 213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 214 215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 216 } 217 218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 219 { 220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 221 } 222 223 static inline void rps_lock(struct softnet_data *sd) 224 { 225 #ifdef CONFIG_RPS 226 spin_lock(&sd->input_pkt_queue.lock); 227 #endif 228 } 229 230 static inline void rps_unlock(struct softnet_data *sd) 231 { 232 #ifdef CONFIG_RPS 233 spin_unlock(&sd->input_pkt_queue.lock); 234 #endif 235 } 236 237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 238 const char *name) 239 { 240 struct netdev_name_node *name_node; 241 242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 243 if (!name_node) 244 return NULL; 245 INIT_HLIST_NODE(&name_node->hlist); 246 name_node->dev = dev; 247 name_node->name = name; 248 return name_node; 249 } 250 251 static struct netdev_name_node * 252 netdev_name_node_head_alloc(struct net_device *dev) 253 { 254 struct netdev_name_node *name_node; 255 256 name_node = netdev_name_node_alloc(dev, dev->name); 257 if (!name_node) 258 return NULL; 259 INIT_LIST_HEAD(&name_node->list); 260 return name_node; 261 } 262 263 static void netdev_name_node_free(struct netdev_name_node *name_node) 264 { 265 kfree(name_node); 266 } 267 268 static void netdev_name_node_add(struct net *net, 269 struct netdev_name_node *name_node) 270 { 271 hlist_add_head_rcu(&name_node->hlist, 272 dev_name_hash(net, name_node->name)); 273 } 274 275 static void netdev_name_node_del(struct netdev_name_node *name_node) 276 { 277 hlist_del_rcu(&name_node->hlist); 278 } 279 280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 281 const char *name) 282 { 283 struct hlist_head *head = dev_name_hash(net, name); 284 struct netdev_name_node *name_node; 285 286 hlist_for_each_entry(name_node, head, hlist) 287 if (!strcmp(name_node->name, name)) 288 return name_node; 289 return NULL; 290 } 291 292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 293 const char *name) 294 { 295 struct hlist_head *head = dev_name_hash(net, name); 296 struct netdev_name_node *name_node; 297 298 hlist_for_each_entry_rcu(name_node, head, hlist) 299 if (!strcmp(name_node->name, name)) 300 return name_node; 301 return NULL; 302 } 303 304 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 305 { 306 struct netdev_name_node *name_node; 307 struct net *net = dev_net(dev); 308 309 name_node = netdev_name_node_lookup(net, name); 310 if (name_node) 311 return -EEXIST; 312 name_node = netdev_name_node_alloc(dev, name); 313 if (!name_node) 314 return -ENOMEM; 315 netdev_name_node_add(net, name_node); 316 /* The node that holds dev->name acts as a head of per-device list. */ 317 list_add_tail(&name_node->list, &dev->name_node->list); 318 319 return 0; 320 } 321 EXPORT_SYMBOL(netdev_name_node_alt_create); 322 323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 324 { 325 list_del(&name_node->list); 326 netdev_name_node_del(name_node); 327 kfree(name_node->name); 328 netdev_name_node_free(name_node); 329 } 330 331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 332 { 333 struct netdev_name_node *name_node; 334 struct net *net = dev_net(dev); 335 336 name_node = netdev_name_node_lookup(net, name); 337 if (!name_node) 338 return -ENOENT; 339 /* lookup might have found our primary name or a name belonging 340 * to another device. 341 */ 342 if (name_node == dev->name_node || name_node->dev != dev) 343 return -EINVAL; 344 345 __netdev_name_node_alt_destroy(name_node); 346 347 return 0; 348 } 349 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 350 351 static void netdev_name_node_alt_flush(struct net_device *dev) 352 { 353 struct netdev_name_node *name_node, *tmp; 354 355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 356 __netdev_name_node_alt_destroy(name_node); 357 } 358 359 /* Device list insertion */ 360 static void list_netdevice(struct net_device *dev) 361 { 362 struct net *net = dev_net(dev); 363 364 ASSERT_RTNL(); 365 366 write_lock_bh(&dev_base_lock); 367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 368 netdev_name_node_add(net, dev->name_node); 369 hlist_add_head_rcu(&dev->index_hlist, 370 dev_index_hash(net, dev->ifindex)); 371 write_unlock_bh(&dev_base_lock); 372 373 dev_base_seq_inc(net); 374 } 375 376 /* Device list removal 377 * caller must respect a RCU grace period before freeing/reusing dev 378 */ 379 static void unlist_netdevice(struct net_device *dev) 380 { 381 ASSERT_RTNL(); 382 383 /* Unlink dev from the device chain */ 384 write_lock_bh(&dev_base_lock); 385 list_del_rcu(&dev->dev_list); 386 netdev_name_node_del(dev->name_node); 387 hlist_del_rcu(&dev->index_hlist); 388 write_unlock_bh(&dev_base_lock); 389 390 dev_base_seq_inc(dev_net(dev)); 391 } 392 393 /* 394 * Our notifier list 395 */ 396 397 static RAW_NOTIFIER_HEAD(netdev_chain); 398 399 /* 400 * Device drivers call our routines to queue packets here. We empty the 401 * queue in the local softnet handler. 402 */ 403 404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 405 EXPORT_PER_CPU_SYMBOL(softnet_data); 406 407 #ifdef CONFIG_LOCKDEP 408 /* 409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 410 * according to dev->type 411 */ 412 static const unsigned short netdev_lock_type[] = { 413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 428 429 static const char *const netdev_lock_name[] = { 430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 445 446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 448 449 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 450 { 451 int i; 452 453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 454 if (netdev_lock_type[i] == dev_type) 455 return i; 456 /* the last key is used by default */ 457 return ARRAY_SIZE(netdev_lock_type) - 1; 458 } 459 460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 461 unsigned short dev_type) 462 { 463 int i; 464 465 i = netdev_lock_pos(dev_type); 466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 467 netdev_lock_name[i]); 468 } 469 470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 471 { 472 int i; 473 474 i = netdev_lock_pos(dev->type); 475 lockdep_set_class_and_name(&dev->addr_list_lock, 476 &netdev_addr_lock_key[i], 477 netdev_lock_name[i]); 478 } 479 #else 480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 481 unsigned short dev_type) 482 { 483 } 484 485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 486 { 487 } 488 #endif 489 490 /******************************************************************************* 491 * 492 * Protocol management and registration routines 493 * 494 *******************************************************************************/ 495 496 497 /* 498 * Add a protocol ID to the list. Now that the input handler is 499 * smarter we can dispense with all the messy stuff that used to be 500 * here. 501 * 502 * BEWARE!!! Protocol handlers, mangling input packets, 503 * MUST BE last in hash buckets and checking protocol handlers 504 * MUST start from promiscuous ptype_all chain in net_bh. 505 * It is true now, do not change it. 506 * Explanation follows: if protocol handler, mangling packet, will 507 * be the first on list, it is not able to sense, that packet 508 * is cloned and should be copied-on-write, so that it will 509 * change it and subsequent readers will get broken packet. 510 * --ANK (980803) 511 */ 512 513 static inline struct list_head *ptype_head(const struct packet_type *pt) 514 { 515 if (pt->type == htons(ETH_P_ALL)) 516 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 517 else 518 return pt->dev ? &pt->dev->ptype_specific : 519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 520 } 521 522 /** 523 * dev_add_pack - add packet handler 524 * @pt: packet type declaration 525 * 526 * Add a protocol handler to the networking stack. The passed &packet_type 527 * is linked into kernel lists and may not be freed until it has been 528 * removed from the kernel lists. 529 * 530 * This call does not sleep therefore it can not 531 * guarantee all CPU's that are in middle of receiving packets 532 * will see the new packet type (until the next received packet). 533 */ 534 535 void dev_add_pack(struct packet_type *pt) 536 { 537 struct list_head *head = ptype_head(pt); 538 539 spin_lock(&ptype_lock); 540 list_add_rcu(&pt->list, head); 541 spin_unlock(&ptype_lock); 542 } 543 EXPORT_SYMBOL(dev_add_pack); 544 545 /** 546 * __dev_remove_pack - remove packet handler 547 * @pt: packet type declaration 548 * 549 * Remove a protocol handler that was previously added to the kernel 550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 551 * from the kernel lists and can be freed or reused once this function 552 * returns. 553 * 554 * The packet type might still be in use by receivers 555 * and must not be freed until after all the CPU's have gone 556 * through a quiescent state. 557 */ 558 void __dev_remove_pack(struct packet_type *pt) 559 { 560 struct list_head *head = ptype_head(pt); 561 struct packet_type *pt1; 562 563 spin_lock(&ptype_lock); 564 565 list_for_each_entry(pt1, head, list) { 566 if (pt == pt1) { 567 list_del_rcu(&pt->list); 568 goto out; 569 } 570 } 571 572 pr_warn("dev_remove_pack: %p not found\n", pt); 573 out: 574 spin_unlock(&ptype_lock); 575 } 576 EXPORT_SYMBOL(__dev_remove_pack); 577 578 /** 579 * dev_remove_pack - remove packet handler 580 * @pt: packet type declaration 581 * 582 * Remove a protocol handler that was previously added to the kernel 583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 584 * from the kernel lists and can be freed or reused once this function 585 * returns. 586 * 587 * This call sleeps to guarantee that no CPU is looking at the packet 588 * type after return. 589 */ 590 void dev_remove_pack(struct packet_type *pt) 591 { 592 __dev_remove_pack(pt); 593 594 synchronize_net(); 595 } 596 EXPORT_SYMBOL(dev_remove_pack); 597 598 599 /** 600 * dev_add_offload - register offload handlers 601 * @po: protocol offload declaration 602 * 603 * Add protocol offload handlers to the networking stack. The passed 604 * &proto_offload is linked into kernel lists and may not be freed until 605 * it has been removed from the kernel lists. 606 * 607 * This call does not sleep therefore it can not 608 * guarantee all CPU's that are in middle of receiving packets 609 * will see the new offload handlers (until the next received packet). 610 */ 611 void dev_add_offload(struct packet_offload *po) 612 { 613 struct packet_offload *elem; 614 615 spin_lock(&offload_lock); 616 list_for_each_entry(elem, &offload_base, list) { 617 if (po->priority < elem->priority) 618 break; 619 } 620 list_add_rcu(&po->list, elem->list.prev); 621 spin_unlock(&offload_lock); 622 } 623 EXPORT_SYMBOL(dev_add_offload); 624 625 /** 626 * __dev_remove_offload - remove offload handler 627 * @po: packet offload declaration 628 * 629 * Remove a protocol offload handler that was previously added to the 630 * kernel offload handlers by dev_add_offload(). The passed &offload_type 631 * is removed from the kernel lists and can be freed or reused once this 632 * function returns. 633 * 634 * The packet type might still be in use by receivers 635 * and must not be freed until after all the CPU's have gone 636 * through a quiescent state. 637 */ 638 static void __dev_remove_offload(struct packet_offload *po) 639 { 640 struct list_head *head = &offload_base; 641 struct packet_offload *po1; 642 643 spin_lock(&offload_lock); 644 645 list_for_each_entry(po1, head, list) { 646 if (po == po1) { 647 list_del_rcu(&po->list); 648 goto out; 649 } 650 } 651 652 pr_warn("dev_remove_offload: %p not found\n", po); 653 out: 654 spin_unlock(&offload_lock); 655 } 656 657 /** 658 * dev_remove_offload - remove packet offload handler 659 * @po: packet offload declaration 660 * 661 * Remove a packet offload handler that was previously added to the kernel 662 * offload handlers by dev_add_offload(). The passed &offload_type is 663 * removed from the kernel lists and can be freed or reused once this 664 * function returns. 665 * 666 * This call sleeps to guarantee that no CPU is looking at the packet 667 * type after return. 668 */ 669 void dev_remove_offload(struct packet_offload *po) 670 { 671 __dev_remove_offload(po); 672 673 synchronize_net(); 674 } 675 EXPORT_SYMBOL(dev_remove_offload); 676 677 /****************************************************************************** 678 * 679 * Device Boot-time Settings Routines 680 * 681 ******************************************************************************/ 682 683 /* Boot time configuration table */ 684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 685 686 /** 687 * netdev_boot_setup_add - add new setup entry 688 * @name: name of the device 689 * @map: configured settings for the device 690 * 691 * Adds new setup entry to the dev_boot_setup list. The function 692 * returns 0 on error and 1 on success. This is a generic routine to 693 * all netdevices. 694 */ 695 static int netdev_boot_setup_add(char *name, struct ifmap *map) 696 { 697 struct netdev_boot_setup *s; 698 int i; 699 700 s = dev_boot_setup; 701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 703 memset(s[i].name, 0, sizeof(s[i].name)); 704 strlcpy(s[i].name, name, IFNAMSIZ); 705 memcpy(&s[i].map, map, sizeof(s[i].map)); 706 break; 707 } 708 } 709 710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 711 } 712 713 /** 714 * netdev_boot_setup_check - check boot time settings 715 * @dev: the netdevice 716 * 717 * Check boot time settings for the device. 718 * The found settings are set for the device to be used 719 * later in the device probing. 720 * Returns 0 if no settings found, 1 if they are. 721 */ 722 int netdev_boot_setup_check(struct net_device *dev) 723 { 724 struct netdev_boot_setup *s = dev_boot_setup; 725 int i; 726 727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 729 !strcmp(dev->name, s[i].name)) { 730 dev->irq = s[i].map.irq; 731 dev->base_addr = s[i].map.base_addr; 732 dev->mem_start = s[i].map.mem_start; 733 dev->mem_end = s[i].map.mem_end; 734 return 1; 735 } 736 } 737 return 0; 738 } 739 EXPORT_SYMBOL(netdev_boot_setup_check); 740 741 742 /** 743 * netdev_boot_base - get address from boot time settings 744 * @prefix: prefix for network device 745 * @unit: id for network device 746 * 747 * Check boot time settings for the base address of device. 748 * The found settings are set for the device to be used 749 * later in the device probing. 750 * Returns 0 if no settings found. 751 */ 752 unsigned long netdev_boot_base(const char *prefix, int unit) 753 { 754 const struct netdev_boot_setup *s = dev_boot_setup; 755 char name[IFNAMSIZ]; 756 int i; 757 758 sprintf(name, "%s%d", prefix, unit); 759 760 /* 761 * If device already registered then return base of 1 762 * to indicate not to probe for this interface 763 */ 764 if (__dev_get_by_name(&init_net, name)) 765 return 1; 766 767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 768 if (!strcmp(name, s[i].name)) 769 return s[i].map.base_addr; 770 return 0; 771 } 772 773 /* 774 * Saves at boot time configured settings for any netdevice. 775 */ 776 int __init netdev_boot_setup(char *str) 777 { 778 int ints[5]; 779 struct ifmap map; 780 781 str = get_options(str, ARRAY_SIZE(ints), ints); 782 if (!str || !*str) 783 return 0; 784 785 /* Save settings */ 786 memset(&map, 0, sizeof(map)); 787 if (ints[0] > 0) 788 map.irq = ints[1]; 789 if (ints[0] > 1) 790 map.base_addr = ints[2]; 791 if (ints[0] > 2) 792 map.mem_start = ints[3]; 793 if (ints[0] > 3) 794 map.mem_end = ints[4]; 795 796 /* Add new entry to the list */ 797 return netdev_boot_setup_add(str, &map); 798 } 799 800 __setup("netdev=", netdev_boot_setup); 801 802 /******************************************************************************* 803 * 804 * Device Interface Subroutines 805 * 806 *******************************************************************************/ 807 808 /** 809 * dev_get_iflink - get 'iflink' value of a interface 810 * @dev: targeted interface 811 * 812 * Indicates the ifindex the interface is linked to. 813 * Physical interfaces have the same 'ifindex' and 'iflink' values. 814 */ 815 816 int dev_get_iflink(const struct net_device *dev) 817 { 818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 819 return dev->netdev_ops->ndo_get_iflink(dev); 820 821 return dev->ifindex; 822 } 823 EXPORT_SYMBOL(dev_get_iflink); 824 825 /** 826 * dev_fill_metadata_dst - Retrieve tunnel egress information. 827 * @dev: targeted interface 828 * @skb: The packet. 829 * 830 * For better visibility of tunnel traffic OVS needs to retrieve 831 * egress tunnel information for a packet. Following API allows 832 * user to get this info. 833 */ 834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 835 { 836 struct ip_tunnel_info *info; 837 838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 839 return -EINVAL; 840 841 info = skb_tunnel_info_unclone(skb); 842 if (!info) 843 return -ENOMEM; 844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 845 return -EINVAL; 846 847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 848 } 849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 850 851 /** 852 * __dev_get_by_name - find a device by its name 853 * @net: the applicable net namespace 854 * @name: name to find 855 * 856 * Find an interface by name. Must be called under RTNL semaphore 857 * or @dev_base_lock. If the name is found a pointer to the device 858 * is returned. If the name is not found then %NULL is returned. The 859 * reference counters are not incremented so the caller must be 860 * careful with locks. 861 */ 862 863 struct net_device *__dev_get_by_name(struct net *net, const char *name) 864 { 865 struct netdev_name_node *node_name; 866 867 node_name = netdev_name_node_lookup(net, name); 868 return node_name ? node_name->dev : NULL; 869 } 870 EXPORT_SYMBOL(__dev_get_by_name); 871 872 /** 873 * dev_get_by_name_rcu - find a device by its name 874 * @net: the applicable net namespace 875 * @name: name to find 876 * 877 * Find an interface by name. 878 * If the name is found a pointer to the device is returned. 879 * If the name is not found then %NULL is returned. 880 * The reference counters are not incremented so the caller must be 881 * careful with locks. The caller must hold RCU lock. 882 */ 883 884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 885 { 886 struct netdev_name_node *node_name; 887 888 node_name = netdev_name_node_lookup_rcu(net, name); 889 return node_name ? node_name->dev : NULL; 890 } 891 EXPORT_SYMBOL(dev_get_by_name_rcu); 892 893 /** 894 * dev_get_by_name - find a device by its name 895 * @net: the applicable net namespace 896 * @name: name to find 897 * 898 * Find an interface by name. This can be called from any 899 * context and does its own locking. The returned handle has 900 * the usage count incremented and the caller must use dev_put() to 901 * release it when it is no longer needed. %NULL is returned if no 902 * matching device is found. 903 */ 904 905 struct net_device *dev_get_by_name(struct net *net, const char *name) 906 { 907 struct net_device *dev; 908 909 rcu_read_lock(); 910 dev = dev_get_by_name_rcu(net, name); 911 if (dev) 912 dev_hold(dev); 913 rcu_read_unlock(); 914 return dev; 915 } 916 EXPORT_SYMBOL(dev_get_by_name); 917 918 /** 919 * __dev_get_by_index - find a device by its ifindex 920 * @net: the applicable net namespace 921 * @ifindex: index of device 922 * 923 * Search for an interface by index. Returns %NULL if the device 924 * is not found or a pointer to the device. The device has not 925 * had its reference counter increased so the caller must be careful 926 * about locking. The caller must hold either the RTNL semaphore 927 * or @dev_base_lock. 928 */ 929 930 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 931 { 932 struct net_device *dev; 933 struct hlist_head *head = dev_index_hash(net, ifindex); 934 935 hlist_for_each_entry(dev, head, index_hlist) 936 if (dev->ifindex == ifindex) 937 return dev; 938 939 return NULL; 940 } 941 EXPORT_SYMBOL(__dev_get_by_index); 942 943 /** 944 * dev_get_by_index_rcu - find a device by its ifindex 945 * @net: the applicable net namespace 946 * @ifindex: index of device 947 * 948 * Search for an interface by index. Returns %NULL if the device 949 * is not found or a pointer to the device. The device has not 950 * had its reference counter increased so the caller must be careful 951 * about locking. The caller must hold RCU lock. 952 */ 953 954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 955 { 956 struct net_device *dev; 957 struct hlist_head *head = dev_index_hash(net, ifindex); 958 959 hlist_for_each_entry_rcu(dev, head, index_hlist) 960 if (dev->ifindex == ifindex) 961 return dev; 962 963 return NULL; 964 } 965 EXPORT_SYMBOL(dev_get_by_index_rcu); 966 967 968 /** 969 * dev_get_by_index - find a device by its ifindex 970 * @net: the applicable net namespace 971 * @ifindex: index of device 972 * 973 * Search for an interface by index. Returns NULL if the device 974 * is not found or a pointer to the device. The device returned has 975 * had a reference added and the pointer is safe until the user calls 976 * dev_put to indicate they have finished with it. 977 */ 978 979 struct net_device *dev_get_by_index(struct net *net, int ifindex) 980 { 981 struct net_device *dev; 982 983 rcu_read_lock(); 984 dev = dev_get_by_index_rcu(net, ifindex); 985 if (dev) 986 dev_hold(dev); 987 rcu_read_unlock(); 988 return dev; 989 } 990 EXPORT_SYMBOL(dev_get_by_index); 991 992 /** 993 * dev_get_by_napi_id - find a device by napi_id 994 * @napi_id: ID of the NAPI struct 995 * 996 * Search for an interface by NAPI ID. Returns %NULL if the device 997 * is not found or a pointer to the device. The device has not had 998 * its reference counter increased so the caller must be careful 999 * about locking. The caller must hold RCU lock. 1000 */ 1001 1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1003 { 1004 struct napi_struct *napi; 1005 1006 WARN_ON_ONCE(!rcu_read_lock_held()); 1007 1008 if (napi_id < MIN_NAPI_ID) 1009 return NULL; 1010 1011 napi = napi_by_id(napi_id); 1012 1013 return napi ? napi->dev : NULL; 1014 } 1015 EXPORT_SYMBOL(dev_get_by_napi_id); 1016 1017 /** 1018 * netdev_get_name - get a netdevice name, knowing its ifindex. 1019 * @net: network namespace 1020 * @name: a pointer to the buffer where the name will be stored. 1021 * @ifindex: the ifindex of the interface to get the name from. 1022 */ 1023 int netdev_get_name(struct net *net, char *name, int ifindex) 1024 { 1025 struct net_device *dev; 1026 int ret; 1027 1028 down_read(&devnet_rename_sem); 1029 rcu_read_lock(); 1030 1031 dev = dev_get_by_index_rcu(net, ifindex); 1032 if (!dev) { 1033 ret = -ENODEV; 1034 goto out; 1035 } 1036 1037 strcpy(name, dev->name); 1038 1039 ret = 0; 1040 out: 1041 rcu_read_unlock(); 1042 up_read(&devnet_rename_sem); 1043 return ret; 1044 } 1045 1046 /** 1047 * dev_getbyhwaddr_rcu - find a device by its hardware address 1048 * @net: the applicable net namespace 1049 * @type: media type of device 1050 * @ha: hardware address 1051 * 1052 * Search for an interface by MAC address. Returns NULL if the device 1053 * is not found or a pointer to the device. 1054 * The caller must hold RCU or RTNL. 1055 * The returned device has not had its ref count increased 1056 * and the caller must therefore be careful about locking 1057 * 1058 */ 1059 1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1061 const char *ha) 1062 { 1063 struct net_device *dev; 1064 1065 for_each_netdev_rcu(net, dev) 1066 if (dev->type == type && 1067 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1068 return dev; 1069 1070 return NULL; 1071 } 1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1073 1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1075 { 1076 struct net_device *dev, *ret = NULL; 1077 1078 rcu_read_lock(); 1079 for_each_netdev_rcu(net, dev) 1080 if (dev->type == type) { 1081 dev_hold(dev); 1082 ret = dev; 1083 break; 1084 } 1085 rcu_read_unlock(); 1086 return ret; 1087 } 1088 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1089 1090 /** 1091 * __dev_get_by_flags - find any device with given flags 1092 * @net: the applicable net namespace 1093 * @if_flags: IFF_* values 1094 * @mask: bitmask of bits in if_flags to check 1095 * 1096 * Search for any interface with the given flags. Returns NULL if a device 1097 * is not found or a pointer to the device. Must be called inside 1098 * rtnl_lock(), and result refcount is unchanged. 1099 */ 1100 1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1102 unsigned short mask) 1103 { 1104 struct net_device *dev, *ret; 1105 1106 ASSERT_RTNL(); 1107 1108 ret = NULL; 1109 for_each_netdev(net, dev) { 1110 if (((dev->flags ^ if_flags) & mask) == 0) { 1111 ret = dev; 1112 break; 1113 } 1114 } 1115 return ret; 1116 } 1117 EXPORT_SYMBOL(__dev_get_by_flags); 1118 1119 /** 1120 * dev_valid_name - check if name is okay for network device 1121 * @name: name string 1122 * 1123 * Network device names need to be valid file names to 1124 * allow sysfs to work. We also disallow any kind of 1125 * whitespace. 1126 */ 1127 bool dev_valid_name(const char *name) 1128 { 1129 if (*name == '\0') 1130 return false; 1131 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1132 return false; 1133 if (!strcmp(name, ".") || !strcmp(name, "..")) 1134 return false; 1135 1136 while (*name) { 1137 if (*name == '/' || *name == ':' || isspace(*name)) 1138 return false; 1139 name++; 1140 } 1141 return true; 1142 } 1143 EXPORT_SYMBOL(dev_valid_name); 1144 1145 /** 1146 * __dev_alloc_name - allocate a name for a device 1147 * @net: network namespace to allocate the device name in 1148 * @name: name format string 1149 * @buf: scratch buffer and result name string 1150 * 1151 * Passed a format string - eg "lt%d" it will try and find a suitable 1152 * id. It scans list of devices to build up a free map, then chooses 1153 * the first empty slot. The caller must hold the dev_base or rtnl lock 1154 * while allocating the name and adding the device in order to avoid 1155 * duplicates. 1156 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1157 * Returns the number of the unit assigned or a negative errno code. 1158 */ 1159 1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1161 { 1162 int i = 0; 1163 const char *p; 1164 const int max_netdevices = 8*PAGE_SIZE; 1165 unsigned long *inuse; 1166 struct net_device *d; 1167 1168 if (!dev_valid_name(name)) 1169 return -EINVAL; 1170 1171 p = strchr(name, '%'); 1172 if (p) { 1173 /* 1174 * Verify the string as this thing may have come from 1175 * the user. There must be either one "%d" and no other "%" 1176 * characters. 1177 */ 1178 if (p[1] != 'd' || strchr(p + 2, '%')) 1179 return -EINVAL; 1180 1181 /* Use one page as a bit array of possible slots */ 1182 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1183 if (!inuse) 1184 return -ENOMEM; 1185 1186 for_each_netdev(net, d) { 1187 if (!sscanf(d->name, name, &i)) 1188 continue; 1189 if (i < 0 || i >= max_netdevices) 1190 continue; 1191 1192 /* avoid cases where sscanf is not exact inverse of printf */ 1193 snprintf(buf, IFNAMSIZ, name, i); 1194 if (!strncmp(buf, d->name, IFNAMSIZ)) 1195 set_bit(i, inuse); 1196 } 1197 1198 i = find_first_zero_bit(inuse, max_netdevices); 1199 free_page((unsigned long) inuse); 1200 } 1201 1202 snprintf(buf, IFNAMSIZ, name, i); 1203 if (!__dev_get_by_name(net, buf)) 1204 return i; 1205 1206 /* It is possible to run out of possible slots 1207 * when the name is long and there isn't enough space left 1208 * for the digits, or if all bits are used. 1209 */ 1210 return -ENFILE; 1211 } 1212 1213 static int dev_alloc_name_ns(struct net *net, 1214 struct net_device *dev, 1215 const char *name) 1216 { 1217 char buf[IFNAMSIZ]; 1218 int ret; 1219 1220 BUG_ON(!net); 1221 ret = __dev_alloc_name(net, name, buf); 1222 if (ret >= 0) 1223 strlcpy(dev->name, buf, IFNAMSIZ); 1224 return ret; 1225 } 1226 1227 /** 1228 * dev_alloc_name - allocate a name for a device 1229 * @dev: device 1230 * @name: name format string 1231 * 1232 * Passed a format string - eg "lt%d" it will try and find a suitable 1233 * id. It scans list of devices to build up a free map, then chooses 1234 * the first empty slot. The caller must hold the dev_base or rtnl lock 1235 * while allocating the name and adding the device in order to avoid 1236 * duplicates. 1237 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1238 * Returns the number of the unit assigned or a negative errno code. 1239 */ 1240 1241 int dev_alloc_name(struct net_device *dev, const char *name) 1242 { 1243 return dev_alloc_name_ns(dev_net(dev), dev, name); 1244 } 1245 EXPORT_SYMBOL(dev_alloc_name); 1246 1247 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1248 const char *name) 1249 { 1250 BUG_ON(!net); 1251 1252 if (!dev_valid_name(name)) 1253 return -EINVAL; 1254 1255 if (strchr(name, '%')) 1256 return dev_alloc_name_ns(net, dev, name); 1257 else if (__dev_get_by_name(net, name)) 1258 return -EEXIST; 1259 else if (dev->name != name) 1260 strlcpy(dev->name, name, IFNAMSIZ); 1261 1262 return 0; 1263 } 1264 1265 /** 1266 * dev_change_name - change name of a device 1267 * @dev: device 1268 * @newname: name (or format string) must be at least IFNAMSIZ 1269 * 1270 * Change name of a device, can pass format strings "eth%d". 1271 * for wildcarding. 1272 */ 1273 int dev_change_name(struct net_device *dev, const char *newname) 1274 { 1275 unsigned char old_assign_type; 1276 char oldname[IFNAMSIZ]; 1277 int err = 0; 1278 int ret; 1279 struct net *net; 1280 1281 ASSERT_RTNL(); 1282 BUG_ON(!dev_net(dev)); 1283 1284 net = dev_net(dev); 1285 1286 /* Some auto-enslaved devices e.g. failover slaves are 1287 * special, as userspace might rename the device after 1288 * the interface had been brought up and running since 1289 * the point kernel initiated auto-enslavement. Allow 1290 * live name change even when these slave devices are 1291 * up and running. 1292 * 1293 * Typically, users of these auto-enslaving devices 1294 * don't actually care about slave name change, as 1295 * they are supposed to operate on master interface 1296 * directly. 1297 */ 1298 if (dev->flags & IFF_UP && 1299 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1300 return -EBUSY; 1301 1302 down_write(&devnet_rename_sem); 1303 1304 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1305 up_write(&devnet_rename_sem); 1306 return 0; 1307 } 1308 1309 memcpy(oldname, dev->name, IFNAMSIZ); 1310 1311 err = dev_get_valid_name(net, dev, newname); 1312 if (err < 0) { 1313 up_write(&devnet_rename_sem); 1314 return err; 1315 } 1316 1317 if (oldname[0] && !strchr(oldname, '%')) 1318 netdev_info(dev, "renamed from %s\n", oldname); 1319 1320 old_assign_type = dev->name_assign_type; 1321 dev->name_assign_type = NET_NAME_RENAMED; 1322 1323 rollback: 1324 ret = device_rename(&dev->dev, dev->name); 1325 if (ret) { 1326 memcpy(dev->name, oldname, IFNAMSIZ); 1327 dev->name_assign_type = old_assign_type; 1328 up_write(&devnet_rename_sem); 1329 return ret; 1330 } 1331 1332 up_write(&devnet_rename_sem); 1333 1334 netdev_adjacent_rename_links(dev, oldname); 1335 1336 write_lock_bh(&dev_base_lock); 1337 netdev_name_node_del(dev->name_node); 1338 write_unlock_bh(&dev_base_lock); 1339 1340 synchronize_rcu(); 1341 1342 write_lock_bh(&dev_base_lock); 1343 netdev_name_node_add(net, dev->name_node); 1344 write_unlock_bh(&dev_base_lock); 1345 1346 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1347 ret = notifier_to_errno(ret); 1348 1349 if (ret) { 1350 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1351 if (err >= 0) { 1352 err = ret; 1353 down_write(&devnet_rename_sem); 1354 memcpy(dev->name, oldname, IFNAMSIZ); 1355 memcpy(oldname, newname, IFNAMSIZ); 1356 dev->name_assign_type = old_assign_type; 1357 old_assign_type = NET_NAME_RENAMED; 1358 goto rollback; 1359 } else { 1360 pr_err("%s: name change rollback failed: %d\n", 1361 dev->name, ret); 1362 } 1363 } 1364 1365 return err; 1366 } 1367 1368 /** 1369 * dev_set_alias - change ifalias of a device 1370 * @dev: device 1371 * @alias: name up to IFALIASZ 1372 * @len: limit of bytes to copy from info 1373 * 1374 * Set ifalias for a device, 1375 */ 1376 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1377 { 1378 struct dev_ifalias *new_alias = NULL; 1379 1380 if (len >= IFALIASZ) 1381 return -EINVAL; 1382 1383 if (len) { 1384 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1385 if (!new_alias) 1386 return -ENOMEM; 1387 1388 memcpy(new_alias->ifalias, alias, len); 1389 new_alias->ifalias[len] = 0; 1390 } 1391 1392 mutex_lock(&ifalias_mutex); 1393 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1394 mutex_is_locked(&ifalias_mutex)); 1395 mutex_unlock(&ifalias_mutex); 1396 1397 if (new_alias) 1398 kfree_rcu(new_alias, rcuhead); 1399 1400 return len; 1401 } 1402 EXPORT_SYMBOL(dev_set_alias); 1403 1404 /** 1405 * dev_get_alias - get ifalias of a device 1406 * @dev: device 1407 * @name: buffer to store name of ifalias 1408 * @len: size of buffer 1409 * 1410 * get ifalias for a device. Caller must make sure dev cannot go 1411 * away, e.g. rcu read lock or own a reference count to device. 1412 */ 1413 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1414 { 1415 const struct dev_ifalias *alias; 1416 int ret = 0; 1417 1418 rcu_read_lock(); 1419 alias = rcu_dereference(dev->ifalias); 1420 if (alias) 1421 ret = snprintf(name, len, "%s", alias->ifalias); 1422 rcu_read_unlock(); 1423 1424 return ret; 1425 } 1426 1427 /** 1428 * netdev_features_change - device changes features 1429 * @dev: device to cause notification 1430 * 1431 * Called to indicate a device has changed features. 1432 */ 1433 void netdev_features_change(struct net_device *dev) 1434 { 1435 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1436 } 1437 EXPORT_SYMBOL(netdev_features_change); 1438 1439 /** 1440 * netdev_state_change - device changes state 1441 * @dev: device to cause notification 1442 * 1443 * Called to indicate a device has changed state. This function calls 1444 * the notifier chains for netdev_chain and sends a NEWLINK message 1445 * to the routing socket. 1446 */ 1447 void netdev_state_change(struct net_device *dev) 1448 { 1449 if (dev->flags & IFF_UP) { 1450 struct netdev_notifier_change_info change_info = { 1451 .info.dev = dev, 1452 }; 1453 1454 call_netdevice_notifiers_info(NETDEV_CHANGE, 1455 &change_info.info); 1456 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1457 } 1458 } 1459 EXPORT_SYMBOL(netdev_state_change); 1460 1461 /** 1462 * __netdev_notify_peers - notify network peers about existence of @dev, 1463 * to be called when rtnl lock is already held. 1464 * @dev: network device 1465 * 1466 * Generate traffic such that interested network peers are aware of 1467 * @dev, such as by generating a gratuitous ARP. This may be used when 1468 * a device wants to inform the rest of the network about some sort of 1469 * reconfiguration such as a failover event or virtual machine 1470 * migration. 1471 */ 1472 void __netdev_notify_peers(struct net_device *dev) 1473 { 1474 ASSERT_RTNL(); 1475 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1476 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1477 } 1478 EXPORT_SYMBOL(__netdev_notify_peers); 1479 1480 /** 1481 * netdev_notify_peers - notify network peers about existence of @dev 1482 * @dev: network device 1483 * 1484 * Generate traffic such that interested network peers are aware of 1485 * @dev, such as by generating a gratuitous ARP. This may be used when 1486 * a device wants to inform the rest of the network about some sort of 1487 * reconfiguration such as a failover event or virtual machine 1488 * migration. 1489 */ 1490 void netdev_notify_peers(struct net_device *dev) 1491 { 1492 rtnl_lock(); 1493 __netdev_notify_peers(dev); 1494 rtnl_unlock(); 1495 } 1496 EXPORT_SYMBOL(netdev_notify_peers); 1497 1498 static int napi_threaded_poll(void *data); 1499 1500 static int napi_kthread_create(struct napi_struct *n) 1501 { 1502 int err = 0; 1503 1504 /* Create and wake up the kthread once to put it in 1505 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1506 * warning and work with loadavg. 1507 */ 1508 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1509 n->dev->name, n->napi_id); 1510 if (IS_ERR(n->thread)) { 1511 err = PTR_ERR(n->thread); 1512 pr_err("kthread_run failed with err %d\n", err); 1513 n->thread = NULL; 1514 } 1515 1516 return err; 1517 } 1518 1519 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1520 { 1521 const struct net_device_ops *ops = dev->netdev_ops; 1522 int ret; 1523 1524 ASSERT_RTNL(); 1525 1526 if (!netif_device_present(dev)) { 1527 /* may be detached because parent is runtime-suspended */ 1528 if (dev->dev.parent) 1529 pm_runtime_resume(dev->dev.parent); 1530 if (!netif_device_present(dev)) 1531 return -ENODEV; 1532 } 1533 1534 /* Block netpoll from trying to do any rx path servicing. 1535 * If we don't do this there is a chance ndo_poll_controller 1536 * or ndo_poll may be running while we open the device 1537 */ 1538 netpoll_poll_disable(dev); 1539 1540 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1541 ret = notifier_to_errno(ret); 1542 if (ret) 1543 return ret; 1544 1545 set_bit(__LINK_STATE_START, &dev->state); 1546 1547 if (ops->ndo_validate_addr) 1548 ret = ops->ndo_validate_addr(dev); 1549 1550 if (!ret && ops->ndo_open) 1551 ret = ops->ndo_open(dev); 1552 1553 netpoll_poll_enable(dev); 1554 1555 if (ret) 1556 clear_bit(__LINK_STATE_START, &dev->state); 1557 else { 1558 dev->flags |= IFF_UP; 1559 dev_set_rx_mode(dev); 1560 dev_activate(dev); 1561 add_device_randomness(dev->dev_addr, dev->addr_len); 1562 } 1563 1564 return ret; 1565 } 1566 1567 /** 1568 * dev_open - prepare an interface for use. 1569 * @dev: device to open 1570 * @extack: netlink extended ack 1571 * 1572 * Takes a device from down to up state. The device's private open 1573 * function is invoked and then the multicast lists are loaded. Finally 1574 * the device is moved into the up state and a %NETDEV_UP message is 1575 * sent to the netdev notifier chain. 1576 * 1577 * Calling this function on an active interface is a nop. On a failure 1578 * a negative errno code is returned. 1579 */ 1580 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1581 { 1582 int ret; 1583 1584 if (dev->flags & IFF_UP) 1585 return 0; 1586 1587 ret = __dev_open(dev, extack); 1588 if (ret < 0) 1589 return ret; 1590 1591 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1592 call_netdevice_notifiers(NETDEV_UP, dev); 1593 1594 return ret; 1595 } 1596 EXPORT_SYMBOL(dev_open); 1597 1598 static void __dev_close_many(struct list_head *head) 1599 { 1600 struct net_device *dev; 1601 1602 ASSERT_RTNL(); 1603 might_sleep(); 1604 1605 list_for_each_entry(dev, head, close_list) { 1606 /* Temporarily disable netpoll until the interface is down */ 1607 netpoll_poll_disable(dev); 1608 1609 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1610 1611 clear_bit(__LINK_STATE_START, &dev->state); 1612 1613 /* Synchronize to scheduled poll. We cannot touch poll list, it 1614 * can be even on different cpu. So just clear netif_running(). 1615 * 1616 * dev->stop() will invoke napi_disable() on all of it's 1617 * napi_struct instances on this device. 1618 */ 1619 smp_mb__after_atomic(); /* Commit netif_running(). */ 1620 } 1621 1622 dev_deactivate_many(head); 1623 1624 list_for_each_entry(dev, head, close_list) { 1625 const struct net_device_ops *ops = dev->netdev_ops; 1626 1627 /* 1628 * Call the device specific close. This cannot fail. 1629 * Only if device is UP 1630 * 1631 * We allow it to be called even after a DETACH hot-plug 1632 * event. 1633 */ 1634 if (ops->ndo_stop) 1635 ops->ndo_stop(dev); 1636 1637 dev->flags &= ~IFF_UP; 1638 netpoll_poll_enable(dev); 1639 } 1640 } 1641 1642 static void __dev_close(struct net_device *dev) 1643 { 1644 LIST_HEAD(single); 1645 1646 list_add(&dev->close_list, &single); 1647 __dev_close_many(&single); 1648 list_del(&single); 1649 } 1650 1651 void dev_close_many(struct list_head *head, bool unlink) 1652 { 1653 struct net_device *dev, *tmp; 1654 1655 /* Remove the devices that don't need to be closed */ 1656 list_for_each_entry_safe(dev, tmp, head, close_list) 1657 if (!(dev->flags & IFF_UP)) 1658 list_del_init(&dev->close_list); 1659 1660 __dev_close_many(head); 1661 1662 list_for_each_entry_safe(dev, tmp, head, close_list) { 1663 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1664 call_netdevice_notifiers(NETDEV_DOWN, dev); 1665 if (unlink) 1666 list_del_init(&dev->close_list); 1667 } 1668 } 1669 EXPORT_SYMBOL(dev_close_many); 1670 1671 /** 1672 * dev_close - shutdown an interface. 1673 * @dev: device to shutdown 1674 * 1675 * This function moves an active device into down state. A 1676 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1677 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1678 * chain. 1679 */ 1680 void dev_close(struct net_device *dev) 1681 { 1682 if (dev->flags & IFF_UP) { 1683 LIST_HEAD(single); 1684 1685 list_add(&dev->close_list, &single); 1686 dev_close_many(&single, true); 1687 list_del(&single); 1688 } 1689 } 1690 EXPORT_SYMBOL(dev_close); 1691 1692 1693 /** 1694 * dev_disable_lro - disable Large Receive Offload on a device 1695 * @dev: device 1696 * 1697 * Disable Large Receive Offload (LRO) on a net device. Must be 1698 * called under RTNL. This is needed if received packets may be 1699 * forwarded to another interface. 1700 */ 1701 void dev_disable_lro(struct net_device *dev) 1702 { 1703 struct net_device *lower_dev; 1704 struct list_head *iter; 1705 1706 dev->wanted_features &= ~NETIF_F_LRO; 1707 netdev_update_features(dev); 1708 1709 if (unlikely(dev->features & NETIF_F_LRO)) 1710 netdev_WARN(dev, "failed to disable LRO!\n"); 1711 1712 netdev_for_each_lower_dev(dev, lower_dev, iter) 1713 dev_disable_lro(lower_dev); 1714 } 1715 EXPORT_SYMBOL(dev_disable_lro); 1716 1717 /** 1718 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1719 * @dev: device 1720 * 1721 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1722 * called under RTNL. This is needed if Generic XDP is installed on 1723 * the device. 1724 */ 1725 static void dev_disable_gro_hw(struct net_device *dev) 1726 { 1727 dev->wanted_features &= ~NETIF_F_GRO_HW; 1728 netdev_update_features(dev); 1729 1730 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1731 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1732 } 1733 1734 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1735 { 1736 #define N(val) \ 1737 case NETDEV_##val: \ 1738 return "NETDEV_" __stringify(val); 1739 switch (cmd) { 1740 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1741 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1742 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1743 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1744 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1745 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1746 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1747 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1748 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1749 N(PRE_CHANGEADDR) 1750 } 1751 #undef N 1752 return "UNKNOWN_NETDEV_EVENT"; 1753 } 1754 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1755 1756 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1757 struct net_device *dev) 1758 { 1759 struct netdev_notifier_info info = { 1760 .dev = dev, 1761 }; 1762 1763 return nb->notifier_call(nb, val, &info); 1764 } 1765 1766 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1767 struct net_device *dev) 1768 { 1769 int err; 1770 1771 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1772 err = notifier_to_errno(err); 1773 if (err) 1774 return err; 1775 1776 if (!(dev->flags & IFF_UP)) 1777 return 0; 1778 1779 call_netdevice_notifier(nb, NETDEV_UP, dev); 1780 return 0; 1781 } 1782 1783 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1784 struct net_device *dev) 1785 { 1786 if (dev->flags & IFF_UP) { 1787 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1788 dev); 1789 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1790 } 1791 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1792 } 1793 1794 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1795 struct net *net) 1796 { 1797 struct net_device *dev; 1798 int err; 1799 1800 for_each_netdev(net, dev) { 1801 err = call_netdevice_register_notifiers(nb, dev); 1802 if (err) 1803 goto rollback; 1804 } 1805 return 0; 1806 1807 rollback: 1808 for_each_netdev_continue_reverse(net, dev) 1809 call_netdevice_unregister_notifiers(nb, dev); 1810 return err; 1811 } 1812 1813 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1814 struct net *net) 1815 { 1816 struct net_device *dev; 1817 1818 for_each_netdev(net, dev) 1819 call_netdevice_unregister_notifiers(nb, dev); 1820 } 1821 1822 static int dev_boot_phase = 1; 1823 1824 /** 1825 * register_netdevice_notifier - register a network notifier block 1826 * @nb: notifier 1827 * 1828 * Register a notifier to be called when network device events occur. 1829 * The notifier passed is linked into the kernel structures and must 1830 * not be reused until it has been unregistered. A negative errno code 1831 * is returned on a failure. 1832 * 1833 * When registered all registration and up events are replayed 1834 * to the new notifier to allow device to have a race free 1835 * view of the network device list. 1836 */ 1837 1838 int register_netdevice_notifier(struct notifier_block *nb) 1839 { 1840 struct net *net; 1841 int err; 1842 1843 /* Close race with setup_net() and cleanup_net() */ 1844 down_write(&pernet_ops_rwsem); 1845 rtnl_lock(); 1846 err = raw_notifier_chain_register(&netdev_chain, nb); 1847 if (err) 1848 goto unlock; 1849 if (dev_boot_phase) 1850 goto unlock; 1851 for_each_net(net) { 1852 err = call_netdevice_register_net_notifiers(nb, net); 1853 if (err) 1854 goto rollback; 1855 } 1856 1857 unlock: 1858 rtnl_unlock(); 1859 up_write(&pernet_ops_rwsem); 1860 return err; 1861 1862 rollback: 1863 for_each_net_continue_reverse(net) 1864 call_netdevice_unregister_net_notifiers(nb, net); 1865 1866 raw_notifier_chain_unregister(&netdev_chain, nb); 1867 goto unlock; 1868 } 1869 EXPORT_SYMBOL(register_netdevice_notifier); 1870 1871 /** 1872 * unregister_netdevice_notifier - unregister a network notifier block 1873 * @nb: notifier 1874 * 1875 * Unregister a notifier previously registered by 1876 * register_netdevice_notifier(). The notifier is unlinked into the 1877 * kernel structures and may then be reused. A negative errno code 1878 * is returned on a failure. 1879 * 1880 * After unregistering unregister and down device events are synthesized 1881 * for all devices on the device list to the removed notifier to remove 1882 * the need for special case cleanup code. 1883 */ 1884 1885 int unregister_netdevice_notifier(struct notifier_block *nb) 1886 { 1887 struct net *net; 1888 int err; 1889 1890 /* Close race with setup_net() and cleanup_net() */ 1891 down_write(&pernet_ops_rwsem); 1892 rtnl_lock(); 1893 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1894 if (err) 1895 goto unlock; 1896 1897 for_each_net(net) 1898 call_netdevice_unregister_net_notifiers(nb, net); 1899 1900 unlock: 1901 rtnl_unlock(); 1902 up_write(&pernet_ops_rwsem); 1903 return err; 1904 } 1905 EXPORT_SYMBOL(unregister_netdevice_notifier); 1906 1907 static int __register_netdevice_notifier_net(struct net *net, 1908 struct notifier_block *nb, 1909 bool ignore_call_fail) 1910 { 1911 int err; 1912 1913 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1914 if (err) 1915 return err; 1916 if (dev_boot_phase) 1917 return 0; 1918 1919 err = call_netdevice_register_net_notifiers(nb, net); 1920 if (err && !ignore_call_fail) 1921 goto chain_unregister; 1922 1923 return 0; 1924 1925 chain_unregister: 1926 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1927 return err; 1928 } 1929 1930 static int __unregister_netdevice_notifier_net(struct net *net, 1931 struct notifier_block *nb) 1932 { 1933 int err; 1934 1935 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1936 if (err) 1937 return err; 1938 1939 call_netdevice_unregister_net_notifiers(nb, net); 1940 return 0; 1941 } 1942 1943 /** 1944 * register_netdevice_notifier_net - register a per-netns network notifier block 1945 * @net: network namespace 1946 * @nb: notifier 1947 * 1948 * Register a notifier to be called when network device events occur. 1949 * The notifier passed is linked into the kernel structures and must 1950 * not be reused until it has been unregistered. A negative errno code 1951 * is returned on a failure. 1952 * 1953 * When registered all registration and up events are replayed 1954 * to the new notifier to allow device to have a race free 1955 * view of the network device list. 1956 */ 1957 1958 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1959 { 1960 int err; 1961 1962 rtnl_lock(); 1963 err = __register_netdevice_notifier_net(net, nb, false); 1964 rtnl_unlock(); 1965 return err; 1966 } 1967 EXPORT_SYMBOL(register_netdevice_notifier_net); 1968 1969 /** 1970 * unregister_netdevice_notifier_net - unregister a per-netns 1971 * network notifier block 1972 * @net: network namespace 1973 * @nb: notifier 1974 * 1975 * Unregister a notifier previously registered by 1976 * register_netdevice_notifier(). The notifier is unlinked into the 1977 * kernel structures and may then be reused. A negative errno code 1978 * is returned on a failure. 1979 * 1980 * After unregistering unregister and down device events are synthesized 1981 * for all devices on the device list to the removed notifier to remove 1982 * the need for special case cleanup code. 1983 */ 1984 1985 int unregister_netdevice_notifier_net(struct net *net, 1986 struct notifier_block *nb) 1987 { 1988 int err; 1989 1990 rtnl_lock(); 1991 err = __unregister_netdevice_notifier_net(net, nb); 1992 rtnl_unlock(); 1993 return err; 1994 } 1995 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1996 1997 int register_netdevice_notifier_dev_net(struct net_device *dev, 1998 struct notifier_block *nb, 1999 struct netdev_net_notifier *nn) 2000 { 2001 int err; 2002 2003 rtnl_lock(); 2004 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2005 if (!err) { 2006 nn->nb = nb; 2007 list_add(&nn->list, &dev->net_notifier_list); 2008 } 2009 rtnl_unlock(); 2010 return err; 2011 } 2012 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2013 2014 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2015 struct notifier_block *nb, 2016 struct netdev_net_notifier *nn) 2017 { 2018 int err; 2019 2020 rtnl_lock(); 2021 list_del(&nn->list); 2022 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2023 rtnl_unlock(); 2024 return err; 2025 } 2026 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2027 2028 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2029 struct net *net) 2030 { 2031 struct netdev_net_notifier *nn; 2032 2033 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2034 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2035 __register_netdevice_notifier_net(net, nn->nb, true); 2036 } 2037 } 2038 2039 /** 2040 * call_netdevice_notifiers_info - call all network notifier blocks 2041 * @val: value passed unmodified to notifier function 2042 * @info: notifier information data 2043 * 2044 * Call all network notifier blocks. Parameters and return value 2045 * are as for raw_notifier_call_chain(). 2046 */ 2047 2048 static int call_netdevice_notifiers_info(unsigned long val, 2049 struct netdev_notifier_info *info) 2050 { 2051 struct net *net = dev_net(info->dev); 2052 int ret; 2053 2054 ASSERT_RTNL(); 2055 2056 /* Run per-netns notifier block chain first, then run the global one. 2057 * Hopefully, one day, the global one is going to be removed after 2058 * all notifier block registrators get converted to be per-netns. 2059 */ 2060 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2061 if (ret & NOTIFY_STOP_MASK) 2062 return ret; 2063 return raw_notifier_call_chain(&netdev_chain, val, info); 2064 } 2065 2066 static int call_netdevice_notifiers_extack(unsigned long val, 2067 struct net_device *dev, 2068 struct netlink_ext_ack *extack) 2069 { 2070 struct netdev_notifier_info info = { 2071 .dev = dev, 2072 .extack = extack, 2073 }; 2074 2075 return call_netdevice_notifiers_info(val, &info); 2076 } 2077 2078 /** 2079 * call_netdevice_notifiers - call all network notifier blocks 2080 * @val: value passed unmodified to notifier function 2081 * @dev: net_device pointer passed unmodified to notifier function 2082 * 2083 * Call all network notifier blocks. Parameters and return value 2084 * are as for raw_notifier_call_chain(). 2085 */ 2086 2087 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2088 { 2089 return call_netdevice_notifiers_extack(val, dev, NULL); 2090 } 2091 EXPORT_SYMBOL(call_netdevice_notifiers); 2092 2093 /** 2094 * call_netdevice_notifiers_mtu - call all network notifier blocks 2095 * @val: value passed unmodified to notifier function 2096 * @dev: net_device pointer passed unmodified to notifier function 2097 * @arg: additional u32 argument passed to the notifier function 2098 * 2099 * Call all network notifier blocks. Parameters and return value 2100 * are as for raw_notifier_call_chain(). 2101 */ 2102 static int call_netdevice_notifiers_mtu(unsigned long val, 2103 struct net_device *dev, u32 arg) 2104 { 2105 struct netdev_notifier_info_ext info = { 2106 .info.dev = dev, 2107 .ext.mtu = arg, 2108 }; 2109 2110 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2111 2112 return call_netdevice_notifiers_info(val, &info.info); 2113 } 2114 2115 #ifdef CONFIG_NET_INGRESS 2116 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2117 2118 void net_inc_ingress_queue(void) 2119 { 2120 static_branch_inc(&ingress_needed_key); 2121 } 2122 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2123 2124 void net_dec_ingress_queue(void) 2125 { 2126 static_branch_dec(&ingress_needed_key); 2127 } 2128 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2129 #endif 2130 2131 #ifdef CONFIG_NET_EGRESS 2132 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2133 2134 void net_inc_egress_queue(void) 2135 { 2136 static_branch_inc(&egress_needed_key); 2137 } 2138 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2139 2140 void net_dec_egress_queue(void) 2141 { 2142 static_branch_dec(&egress_needed_key); 2143 } 2144 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2145 #endif 2146 2147 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2148 #ifdef CONFIG_JUMP_LABEL 2149 static atomic_t netstamp_needed_deferred; 2150 static atomic_t netstamp_wanted; 2151 static void netstamp_clear(struct work_struct *work) 2152 { 2153 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2154 int wanted; 2155 2156 wanted = atomic_add_return(deferred, &netstamp_wanted); 2157 if (wanted > 0) 2158 static_branch_enable(&netstamp_needed_key); 2159 else 2160 static_branch_disable(&netstamp_needed_key); 2161 } 2162 static DECLARE_WORK(netstamp_work, netstamp_clear); 2163 #endif 2164 2165 void net_enable_timestamp(void) 2166 { 2167 #ifdef CONFIG_JUMP_LABEL 2168 int wanted; 2169 2170 while (1) { 2171 wanted = atomic_read(&netstamp_wanted); 2172 if (wanted <= 0) 2173 break; 2174 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2175 return; 2176 } 2177 atomic_inc(&netstamp_needed_deferred); 2178 schedule_work(&netstamp_work); 2179 #else 2180 static_branch_inc(&netstamp_needed_key); 2181 #endif 2182 } 2183 EXPORT_SYMBOL(net_enable_timestamp); 2184 2185 void net_disable_timestamp(void) 2186 { 2187 #ifdef CONFIG_JUMP_LABEL 2188 int wanted; 2189 2190 while (1) { 2191 wanted = atomic_read(&netstamp_wanted); 2192 if (wanted <= 1) 2193 break; 2194 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2195 return; 2196 } 2197 atomic_dec(&netstamp_needed_deferred); 2198 schedule_work(&netstamp_work); 2199 #else 2200 static_branch_dec(&netstamp_needed_key); 2201 #endif 2202 } 2203 EXPORT_SYMBOL(net_disable_timestamp); 2204 2205 static inline void net_timestamp_set(struct sk_buff *skb) 2206 { 2207 skb->tstamp = 0; 2208 if (static_branch_unlikely(&netstamp_needed_key)) 2209 __net_timestamp(skb); 2210 } 2211 2212 #define net_timestamp_check(COND, SKB) \ 2213 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2214 if ((COND) && !(SKB)->tstamp) \ 2215 __net_timestamp(SKB); \ 2216 } \ 2217 2218 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2219 { 2220 return __is_skb_forwardable(dev, skb, true); 2221 } 2222 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2223 2224 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2225 bool check_mtu) 2226 { 2227 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2228 2229 if (likely(!ret)) { 2230 skb->protocol = eth_type_trans(skb, dev); 2231 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2232 } 2233 2234 return ret; 2235 } 2236 2237 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2238 { 2239 return __dev_forward_skb2(dev, skb, true); 2240 } 2241 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2242 2243 /** 2244 * dev_forward_skb - loopback an skb to another netif 2245 * 2246 * @dev: destination network device 2247 * @skb: buffer to forward 2248 * 2249 * return values: 2250 * NET_RX_SUCCESS (no congestion) 2251 * NET_RX_DROP (packet was dropped, but freed) 2252 * 2253 * dev_forward_skb can be used for injecting an skb from the 2254 * start_xmit function of one device into the receive queue 2255 * of another device. 2256 * 2257 * The receiving device may be in another namespace, so 2258 * we have to clear all information in the skb that could 2259 * impact namespace isolation. 2260 */ 2261 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2262 { 2263 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2264 } 2265 EXPORT_SYMBOL_GPL(dev_forward_skb); 2266 2267 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2268 { 2269 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2270 } 2271 2272 static inline int deliver_skb(struct sk_buff *skb, 2273 struct packet_type *pt_prev, 2274 struct net_device *orig_dev) 2275 { 2276 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2277 return -ENOMEM; 2278 refcount_inc(&skb->users); 2279 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2280 } 2281 2282 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2283 struct packet_type **pt, 2284 struct net_device *orig_dev, 2285 __be16 type, 2286 struct list_head *ptype_list) 2287 { 2288 struct packet_type *ptype, *pt_prev = *pt; 2289 2290 list_for_each_entry_rcu(ptype, ptype_list, list) { 2291 if (ptype->type != type) 2292 continue; 2293 if (pt_prev) 2294 deliver_skb(skb, pt_prev, orig_dev); 2295 pt_prev = ptype; 2296 } 2297 *pt = pt_prev; 2298 } 2299 2300 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2301 { 2302 if (!ptype->af_packet_priv || !skb->sk) 2303 return false; 2304 2305 if (ptype->id_match) 2306 return ptype->id_match(ptype, skb->sk); 2307 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2308 return true; 2309 2310 return false; 2311 } 2312 2313 /** 2314 * dev_nit_active - return true if any network interface taps are in use 2315 * 2316 * @dev: network device to check for the presence of taps 2317 */ 2318 bool dev_nit_active(struct net_device *dev) 2319 { 2320 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2321 } 2322 EXPORT_SYMBOL_GPL(dev_nit_active); 2323 2324 /* 2325 * Support routine. Sends outgoing frames to any network 2326 * taps currently in use. 2327 */ 2328 2329 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2330 { 2331 struct packet_type *ptype; 2332 struct sk_buff *skb2 = NULL; 2333 struct packet_type *pt_prev = NULL; 2334 struct list_head *ptype_list = &ptype_all; 2335 2336 rcu_read_lock(); 2337 again: 2338 list_for_each_entry_rcu(ptype, ptype_list, list) { 2339 if (ptype->ignore_outgoing) 2340 continue; 2341 2342 /* Never send packets back to the socket 2343 * they originated from - MvS ([email protected]) 2344 */ 2345 if (skb_loop_sk(ptype, skb)) 2346 continue; 2347 2348 if (pt_prev) { 2349 deliver_skb(skb2, pt_prev, skb->dev); 2350 pt_prev = ptype; 2351 continue; 2352 } 2353 2354 /* need to clone skb, done only once */ 2355 skb2 = skb_clone(skb, GFP_ATOMIC); 2356 if (!skb2) 2357 goto out_unlock; 2358 2359 net_timestamp_set(skb2); 2360 2361 /* skb->nh should be correctly 2362 * set by sender, so that the second statement is 2363 * just protection against buggy protocols. 2364 */ 2365 skb_reset_mac_header(skb2); 2366 2367 if (skb_network_header(skb2) < skb2->data || 2368 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2369 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2370 ntohs(skb2->protocol), 2371 dev->name); 2372 skb_reset_network_header(skb2); 2373 } 2374 2375 skb2->transport_header = skb2->network_header; 2376 skb2->pkt_type = PACKET_OUTGOING; 2377 pt_prev = ptype; 2378 } 2379 2380 if (ptype_list == &ptype_all) { 2381 ptype_list = &dev->ptype_all; 2382 goto again; 2383 } 2384 out_unlock: 2385 if (pt_prev) { 2386 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2387 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2388 else 2389 kfree_skb(skb2); 2390 } 2391 rcu_read_unlock(); 2392 } 2393 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2394 2395 /** 2396 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2397 * @dev: Network device 2398 * @txq: number of queues available 2399 * 2400 * If real_num_tx_queues is changed the tc mappings may no longer be 2401 * valid. To resolve this verify the tc mapping remains valid and if 2402 * not NULL the mapping. With no priorities mapping to this 2403 * offset/count pair it will no longer be used. In the worst case TC0 2404 * is invalid nothing can be done so disable priority mappings. If is 2405 * expected that drivers will fix this mapping if they can before 2406 * calling netif_set_real_num_tx_queues. 2407 */ 2408 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2409 { 2410 int i; 2411 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2412 2413 /* If TC0 is invalidated disable TC mapping */ 2414 if (tc->offset + tc->count > txq) { 2415 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2416 dev->num_tc = 0; 2417 return; 2418 } 2419 2420 /* Invalidated prio to tc mappings set to TC0 */ 2421 for (i = 1; i < TC_BITMASK + 1; i++) { 2422 int q = netdev_get_prio_tc_map(dev, i); 2423 2424 tc = &dev->tc_to_txq[q]; 2425 if (tc->offset + tc->count > txq) { 2426 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2427 i, q); 2428 netdev_set_prio_tc_map(dev, i, 0); 2429 } 2430 } 2431 } 2432 2433 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2434 { 2435 if (dev->num_tc) { 2436 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2437 int i; 2438 2439 /* walk through the TCs and see if it falls into any of them */ 2440 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2441 if ((txq - tc->offset) < tc->count) 2442 return i; 2443 } 2444 2445 /* didn't find it, just return -1 to indicate no match */ 2446 return -1; 2447 } 2448 2449 return 0; 2450 } 2451 EXPORT_SYMBOL(netdev_txq_to_tc); 2452 2453 #ifdef CONFIG_XPS 2454 struct static_key xps_needed __read_mostly; 2455 EXPORT_SYMBOL(xps_needed); 2456 struct static_key xps_rxqs_needed __read_mostly; 2457 EXPORT_SYMBOL(xps_rxqs_needed); 2458 static DEFINE_MUTEX(xps_map_mutex); 2459 #define xmap_dereference(P) \ 2460 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2461 2462 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2463 int tci, u16 index) 2464 { 2465 struct xps_map *map = NULL; 2466 int pos; 2467 2468 if (dev_maps) 2469 map = xmap_dereference(dev_maps->attr_map[tci]); 2470 if (!map) 2471 return false; 2472 2473 for (pos = map->len; pos--;) { 2474 if (map->queues[pos] != index) 2475 continue; 2476 2477 if (map->len > 1) { 2478 map->queues[pos] = map->queues[--map->len]; 2479 break; 2480 } 2481 2482 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2483 kfree_rcu(map, rcu); 2484 return false; 2485 } 2486 2487 return true; 2488 } 2489 2490 static bool remove_xps_queue_cpu(struct net_device *dev, 2491 struct xps_dev_maps *dev_maps, 2492 int cpu, u16 offset, u16 count) 2493 { 2494 int num_tc = dev->num_tc ? : 1; 2495 bool active = false; 2496 int tci; 2497 2498 for (tci = cpu * num_tc; num_tc--; tci++) { 2499 int i, j; 2500 2501 for (i = count, j = offset; i--; j++) { 2502 if (!remove_xps_queue(dev_maps, tci, j)) 2503 break; 2504 } 2505 2506 active |= i < 0; 2507 } 2508 2509 return active; 2510 } 2511 2512 static void reset_xps_maps(struct net_device *dev, 2513 struct xps_dev_maps *dev_maps, 2514 bool is_rxqs_map) 2515 { 2516 if (is_rxqs_map) { 2517 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2518 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2519 } else { 2520 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2521 } 2522 static_key_slow_dec_cpuslocked(&xps_needed); 2523 kfree_rcu(dev_maps, rcu); 2524 } 2525 2526 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2527 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2528 u16 offset, u16 count, bool is_rxqs_map) 2529 { 2530 bool active = false; 2531 int i, j; 2532 2533 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2534 j < nr_ids;) 2535 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2536 count); 2537 if (!active) 2538 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2539 2540 if (!is_rxqs_map) { 2541 for (i = offset + (count - 1); count--; i--) { 2542 netdev_queue_numa_node_write( 2543 netdev_get_tx_queue(dev, i), 2544 NUMA_NO_NODE); 2545 } 2546 } 2547 } 2548 2549 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2550 u16 count) 2551 { 2552 const unsigned long *possible_mask = NULL; 2553 struct xps_dev_maps *dev_maps; 2554 unsigned int nr_ids; 2555 2556 if (!static_key_false(&xps_needed)) 2557 return; 2558 2559 cpus_read_lock(); 2560 mutex_lock(&xps_map_mutex); 2561 2562 if (static_key_false(&xps_rxqs_needed)) { 2563 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2564 if (dev_maps) { 2565 nr_ids = dev->num_rx_queues; 2566 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2567 offset, count, true); 2568 } 2569 } 2570 2571 dev_maps = xmap_dereference(dev->xps_cpus_map); 2572 if (!dev_maps) 2573 goto out_no_maps; 2574 2575 if (num_possible_cpus() > 1) 2576 possible_mask = cpumask_bits(cpu_possible_mask); 2577 nr_ids = nr_cpu_ids; 2578 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2579 false); 2580 2581 out_no_maps: 2582 mutex_unlock(&xps_map_mutex); 2583 cpus_read_unlock(); 2584 } 2585 2586 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2587 { 2588 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2589 } 2590 2591 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2592 u16 index, bool is_rxqs_map) 2593 { 2594 struct xps_map *new_map; 2595 int alloc_len = XPS_MIN_MAP_ALLOC; 2596 int i, pos; 2597 2598 for (pos = 0; map && pos < map->len; pos++) { 2599 if (map->queues[pos] != index) 2600 continue; 2601 return map; 2602 } 2603 2604 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2605 if (map) { 2606 if (pos < map->alloc_len) 2607 return map; 2608 2609 alloc_len = map->alloc_len * 2; 2610 } 2611 2612 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2613 * map 2614 */ 2615 if (is_rxqs_map) 2616 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2617 else 2618 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2619 cpu_to_node(attr_index)); 2620 if (!new_map) 2621 return NULL; 2622 2623 for (i = 0; i < pos; i++) 2624 new_map->queues[i] = map->queues[i]; 2625 new_map->alloc_len = alloc_len; 2626 new_map->len = pos; 2627 2628 return new_map; 2629 } 2630 2631 /* Must be called under cpus_read_lock */ 2632 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2633 u16 index, bool is_rxqs_map) 2634 { 2635 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2636 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2637 int i, j, tci, numa_node_id = -2; 2638 int maps_sz, num_tc = 1, tc = 0; 2639 struct xps_map *map, *new_map; 2640 bool active = false; 2641 unsigned int nr_ids; 2642 2643 if (dev->num_tc) { 2644 /* Do not allow XPS on subordinate device directly */ 2645 num_tc = dev->num_tc; 2646 if (num_tc < 0) 2647 return -EINVAL; 2648 2649 /* If queue belongs to subordinate dev use its map */ 2650 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2651 2652 tc = netdev_txq_to_tc(dev, index); 2653 if (tc < 0) 2654 return -EINVAL; 2655 } 2656 2657 mutex_lock(&xps_map_mutex); 2658 if (is_rxqs_map) { 2659 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2660 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2661 nr_ids = dev->num_rx_queues; 2662 } else { 2663 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2664 if (num_possible_cpus() > 1) { 2665 online_mask = cpumask_bits(cpu_online_mask); 2666 possible_mask = cpumask_bits(cpu_possible_mask); 2667 } 2668 dev_maps = xmap_dereference(dev->xps_cpus_map); 2669 nr_ids = nr_cpu_ids; 2670 } 2671 2672 if (maps_sz < L1_CACHE_BYTES) 2673 maps_sz = L1_CACHE_BYTES; 2674 2675 /* allocate memory for queue storage */ 2676 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2677 j < nr_ids;) { 2678 if (!new_dev_maps) 2679 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2680 if (!new_dev_maps) { 2681 mutex_unlock(&xps_map_mutex); 2682 return -ENOMEM; 2683 } 2684 2685 tci = j * num_tc + tc; 2686 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2687 NULL; 2688 2689 map = expand_xps_map(map, j, index, is_rxqs_map); 2690 if (!map) 2691 goto error; 2692 2693 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2694 } 2695 2696 if (!new_dev_maps) 2697 goto out_no_new_maps; 2698 2699 if (!dev_maps) { 2700 /* Increment static keys at most once per type */ 2701 static_key_slow_inc_cpuslocked(&xps_needed); 2702 if (is_rxqs_map) 2703 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2704 } 2705 2706 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2707 j < nr_ids;) { 2708 /* copy maps belonging to foreign traffic classes */ 2709 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2710 /* fill in the new device map from the old device map */ 2711 map = xmap_dereference(dev_maps->attr_map[tci]); 2712 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2713 } 2714 2715 /* We need to explicitly update tci as prevous loop 2716 * could break out early if dev_maps is NULL. 2717 */ 2718 tci = j * num_tc + tc; 2719 2720 if (netif_attr_test_mask(j, mask, nr_ids) && 2721 netif_attr_test_online(j, online_mask, nr_ids)) { 2722 /* add tx-queue to CPU/rx-queue maps */ 2723 int pos = 0; 2724 2725 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2726 while ((pos < map->len) && (map->queues[pos] != index)) 2727 pos++; 2728 2729 if (pos == map->len) 2730 map->queues[map->len++] = index; 2731 #ifdef CONFIG_NUMA 2732 if (!is_rxqs_map) { 2733 if (numa_node_id == -2) 2734 numa_node_id = cpu_to_node(j); 2735 else if (numa_node_id != cpu_to_node(j)) 2736 numa_node_id = -1; 2737 } 2738 #endif 2739 } else if (dev_maps) { 2740 /* fill in the new device map from the old device map */ 2741 map = xmap_dereference(dev_maps->attr_map[tci]); 2742 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2743 } 2744 2745 /* copy maps belonging to foreign traffic classes */ 2746 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2747 /* fill in the new device map from the old device map */ 2748 map = xmap_dereference(dev_maps->attr_map[tci]); 2749 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2750 } 2751 } 2752 2753 if (is_rxqs_map) 2754 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2755 else 2756 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2757 2758 /* Cleanup old maps */ 2759 if (!dev_maps) 2760 goto out_no_old_maps; 2761 2762 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2763 j < nr_ids;) { 2764 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2765 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2766 map = xmap_dereference(dev_maps->attr_map[tci]); 2767 if (map && map != new_map) 2768 kfree_rcu(map, rcu); 2769 } 2770 } 2771 2772 kfree_rcu(dev_maps, rcu); 2773 2774 out_no_old_maps: 2775 dev_maps = new_dev_maps; 2776 active = true; 2777 2778 out_no_new_maps: 2779 if (!is_rxqs_map) { 2780 /* update Tx queue numa node */ 2781 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2782 (numa_node_id >= 0) ? 2783 numa_node_id : NUMA_NO_NODE); 2784 } 2785 2786 if (!dev_maps) 2787 goto out_no_maps; 2788 2789 /* removes tx-queue from unused CPUs/rx-queues */ 2790 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2791 j < nr_ids;) { 2792 for (i = tc, tci = j * num_tc; i--; tci++) 2793 active |= remove_xps_queue(dev_maps, tci, index); 2794 if (!netif_attr_test_mask(j, mask, nr_ids) || 2795 !netif_attr_test_online(j, online_mask, nr_ids)) 2796 active |= remove_xps_queue(dev_maps, tci, index); 2797 for (i = num_tc - tc, tci++; --i; tci++) 2798 active |= remove_xps_queue(dev_maps, tci, index); 2799 } 2800 2801 /* free map if not active */ 2802 if (!active) 2803 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2804 2805 out_no_maps: 2806 mutex_unlock(&xps_map_mutex); 2807 2808 return 0; 2809 error: 2810 /* remove any maps that we added */ 2811 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2812 j < nr_ids;) { 2813 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2814 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2815 map = dev_maps ? 2816 xmap_dereference(dev_maps->attr_map[tci]) : 2817 NULL; 2818 if (new_map && new_map != map) 2819 kfree(new_map); 2820 } 2821 } 2822 2823 mutex_unlock(&xps_map_mutex); 2824 2825 kfree(new_dev_maps); 2826 return -ENOMEM; 2827 } 2828 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2829 2830 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2831 u16 index) 2832 { 2833 int ret; 2834 2835 cpus_read_lock(); 2836 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2837 cpus_read_unlock(); 2838 2839 return ret; 2840 } 2841 EXPORT_SYMBOL(netif_set_xps_queue); 2842 2843 #endif 2844 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2845 { 2846 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2847 2848 /* Unbind any subordinate channels */ 2849 while (txq-- != &dev->_tx[0]) { 2850 if (txq->sb_dev) 2851 netdev_unbind_sb_channel(dev, txq->sb_dev); 2852 } 2853 } 2854 2855 void netdev_reset_tc(struct net_device *dev) 2856 { 2857 #ifdef CONFIG_XPS 2858 netif_reset_xps_queues_gt(dev, 0); 2859 #endif 2860 netdev_unbind_all_sb_channels(dev); 2861 2862 /* Reset TC configuration of device */ 2863 dev->num_tc = 0; 2864 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2865 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2866 } 2867 EXPORT_SYMBOL(netdev_reset_tc); 2868 2869 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2870 { 2871 if (tc >= dev->num_tc) 2872 return -EINVAL; 2873 2874 #ifdef CONFIG_XPS 2875 netif_reset_xps_queues(dev, offset, count); 2876 #endif 2877 dev->tc_to_txq[tc].count = count; 2878 dev->tc_to_txq[tc].offset = offset; 2879 return 0; 2880 } 2881 EXPORT_SYMBOL(netdev_set_tc_queue); 2882 2883 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2884 { 2885 if (num_tc > TC_MAX_QUEUE) 2886 return -EINVAL; 2887 2888 #ifdef CONFIG_XPS 2889 netif_reset_xps_queues_gt(dev, 0); 2890 #endif 2891 netdev_unbind_all_sb_channels(dev); 2892 2893 dev->num_tc = num_tc; 2894 return 0; 2895 } 2896 EXPORT_SYMBOL(netdev_set_num_tc); 2897 2898 void netdev_unbind_sb_channel(struct net_device *dev, 2899 struct net_device *sb_dev) 2900 { 2901 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2902 2903 #ifdef CONFIG_XPS 2904 netif_reset_xps_queues_gt(sb_dev, 0); 2905 #endif 2906 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2907 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2908 2909 while (txq-- != &dev->_tx[0]) { 2910 if (txq->sb_dev == sb_dev) 2911 txq->sb_dev = NULL; 2912 } 2913 } 2914 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2915 2916 int netdev_bind_sb_channel_queue(struct net_device *dev, 2917 struct net_device *sb_dev, 2918 u8 tc, u16 count, u16 offset) 2919 { 2920 /* Make certain the sb_dev and dev are already configured */ 2921 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2922 return -EINVAL; 2923 2924 /* We cannot hand out queues we don't have */ 2925 if ((offset + count) > dev->real_num_tx_queues) 2926 return -EINVAL; 2927 2928 /* Record the mapping */ 2929 sb_dev->tc_to_txq[tc].count = count; 2930 sb_dev->tc_to_txq[tc].offset = offset; 2931 2932 /* Provide a way for Tx queue to find the tc_to_txq map or 2933 * XPS map for itself. 2934 */ 2935 while (count--) 2936 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2937 2938 return 0; 2939 } 2940 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2941 2942 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2943 { 2944 /* Do not use a multiqueue device to represent a subordinate channel */ 2945 if (netif_is_multiqueue(dev)) 2946 return -ENODEV; 2947 2948 /* We allow channels 1 - 32767 to be used for subordinate channels. 2949 * Channel 0 is meant to be "native" mode and used only to represent 2950 * the main root device. We allow writing 0 to reset the device back 2951 * to normal mode after being used as a subordinate channel. 2952 */ 2953 if (channel > S16_MAX) 2954 return -EINVAL; 2955 2956 dev->num_tc = -channel; 2957 2958 return 0; 2959 } 2960 EXPORT_SYMBOL(netdev_set_sb_channel); 2961 2962 /* 2963 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2964 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2965 */ 2966 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2967 { 2968 bool disabling; 2969 int rc; 2970 2971 disabling = txq < dev->real_num_tx_queues; 2972 2973 if (txq < 1 || txq > dev->num_tx_queues) 2974 return -EINVAL; 2975 2976 if (dev->reg_state == NETREG_REGISTERED || 2977 dev->reg_state == NETREG_UNREGISTERING) { 2978 ASSERT_RTNL(); 2979 2980 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2981 txq); 2982 if (rc) 2983 return rc; 2984 2985 if (dev->num_tc) 2986 netif_setup_tc(dev, txq); 2987 2988 dev->real_num_tx_queues = txq; 2989 2990 if (disabling) { 2991 synchronize_net(); 2992 qdisc_reset_all_tx_gt(dev, txq); 2993 #ifdef CONFIG_XPS 2994 netif_reset_xps_queues_gt(dev, txq); 2995 #endif 2996 } 2997 } else { 2998 dev->real_num_tx_queues = txq; 2999 } 3000 3001 return 0; 3002 } 3003 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3004 3005 #ifdef CONFIG_SYSFS 3006 /** 3007 * netif_set_real_num_rx_queues - set actual number of RX queues used 3008 * @dev: Network device 3009 * @rxq: Actual number of RX queues 3010 * 3011 * This must be called either with the rtnl_lock held or before 3012 * registration of the net device. Returns 0 on success, or a 3013 * negative error code. If called before registration, it always 3014 * succeeds. 3015 */ 3016 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3017 { 3018 int rc; 3019 3020 if (rxq < 1 || rxq > dev->num_rx_queues) 3021 return -EINVAL; 3022 3023 if (dev->reg_state == NETREG_REGISTERED) { 3024 ASSERT_RTNL(); 3025 3026 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3027 rxq); 3028 if (rc) 3029 return rc; 3030 } 3031 3032 dev->real_num_rx_queues = rxq; 3033 return 0; 3034 } 3035 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3036 #endif 3037 3038 /** 3039 * netif_get_num_default_rss_queues - default number of RSS queues 3040 * 3041 * This routine should set an upper limit on the number of RSS queues 3042 * used by default by multiqueue devices. 3043 */ 3044 int netif_get_num_default_rss_queues(void) 3045 { 3046 return is_kdump_kernel() ? 3047 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3048 } 3049 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3050 3051 static void __netif_reschedule(struct Qdisc *q) 3052 { 3053 struct softnet_data *sd; 3054 unsigned long flags; 3055 3056 local_irq_save(flags); 3057 sd = this_cpu_ptr(&softnet_data); 3058 q->next_sched = NULL; 3059 *sd->output_queue_tailp = q; 3060 sd->output_queue_tailp = &q->next_sched; 3061 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3062 local_irq_restore(flags); 3063 } 3064 3065 void __netif_schedule(struct Qdisc *q) 3066 { 3067 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3068 __netif_reschedule(q); 3069 } 3070 EXPORT_SYMBOL(__netif_schedule); 3071 3072 struct dev_kfree_skb_cb { 3073 enum skb_free_reason reason; 3074 }; 3075 3076 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3077 { 3078 return (struct dev_kfree_skb_cb *)skb->cb; 3079 } 3080 3081 void netif_schedule_queue(struct netdev_queue *txq) 3082 { 3083 rcu_read_lock(); 3084 if (!netif_xmit_stopped(txq)) { 3085 struct Qdisc *q = rcu_dereference(txq->qdisc); 3086 3087 __netif_schedule(q); 3088 } 3089 rcu_read_unlock(); 3090 } 3091 EXPORT_SYMBOL(netif_schedule_queue); 3092 3093 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3094 { 3095 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3096 struct Qdisc *q; 3097 3098 rcu_read_lock(); 3099 q = rcu_dereference(dev_queue->qdisc); 3100 __netif_schedule(q); 3101 rcu_read_unlock(); 3102 } 3103 } 3104 EXPORT_SYMBOL(netif_tx_wake_queue); 3105 3106 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3107 { 3108 unsigned long flags; 3109 3110 if (unlikely(!skb)) 3111 return; 3112 3113 if (likely(refcount_read(&skb->users) == 1)) { 3114 smp_rmb(); 3115 refcount_set(&skb->users, 0); 3116 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3117 return; 3118 } 3119 get_kfree_skb_cb(skb)->reason = reason; 3120 local_irq_save(flags); 3121 skb->next = __this_cpu_read(softnet_data.completion_queue); 3122 __this_cpu_write(softnet_data.completion_queue, skb); 3123 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3124 local_irq_restore(flags); 3125 } 3126 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3127 3128 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3129 { 3130 if (in_irq() || irqs_disabled()) 3131 __dev_kfree_skb_irq(skb, reason); 3132 else 3133 dev_kfree_skb(skb); 3134 } 3135 EXPORT_SYMBOL(__dev_kfree_skb_any); 3136 3137 3138 /** 3139 * netif_device_detach - mark device as removed 3140 * @dev: network device 3141 * 3142 * Mark device as removed from system and therefore no longer available. 3143 */ 3144 void netif_device_detach(struct net_device *dev) 3145 { 3146 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3147 netif_running(dev)) { 3148 netif_tx_stop_all_queues(dev); 3149 } 3150 } 3151 EXPORT_SYMBOL(netif_device_detach); 3152 3153 /** 3154 * netif_device_attach - mark device as attached 3155 * @dev: network device 3156 * 3157 * Mark device as attached from system and restart if needed. 3158 */ 3159 void netif_device_attach(struct net_device *dev) 3160 { 3161 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3162 netif_running(dev)) { 3163 netif_tx_wake_all_queues(dev); 3164 __netdev_watchdog_up(dev); 3165 } 3166 } 3167 EXPORT_SYMBOL(netif_device_attach); 3168 3169 /* 3170 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3171 * to be used as a distribution range. 3172 */ 3173 static u16 skb_tx_hash(const struct net_device *dev, 3174 const struct net_device *sb_dev, 3175 struct sk_buff *skb) 3176 { 3177 u32 hash; 3178 u16 qoffset = 0; 3179 u16 qcount = dev->real_num_tx_queues; 3180 3181 if (dev->num_tc) { 3182 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3183 3184 qoffset = sb_dev->tc_to_txq[tc].offset; 3185 qcount = sb_dev->tc_to_txq[tc].count; 3186 } 3187 3188 if (skb_rx_queue_recorded(skb)) { 3189 hash = skb_get_rx_queue(skb); 3190 if (hash >= qoffset) 3191 hash -= qoffset; 3192 while (unlikely(hash >= qcount)) 3193 hash -= qcount; 3194 return hash + qoffset; 3195 } 3196 3197 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3198 } 3199 3200 static void skb_warn_bad_offload(const struct sk_buff *skb) 3201 { 3202 static const netdev_features_t null_features; 3203 struct net_device *dev = skb->dev; 3204 const char *name = ""; 3205 3206 if (!net_ratelimit()) 3207 return; 3208 3209 if (dev) { 3210 if (dev->dev.parent) 3211 name = dev_driver_string(dev->dev.parent); 3212 else 3213 name = netdev_name(dev); 3214 } 3215 skb_dump(KERN_WARNING, skb, false); 3216 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3217 name, dev ? &dev->features : &null_features, 3218 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3219 } 3220 3221 /* 3222 * Invalidate hardware checksum when packet is to be mangled, and 3223 * complete checksum manually on outgoing path. 3224 */ 3225 int skb_checksum_help(struct sk_buff *skb) 3226 { 3227 __wsum csum; 3228 int ret = 0, offset; 3229 3230 if (skb->ip_summed == CHECKSUM_COMPLETE) 3231 goto out_set_summed; 3232 3233 if (unlikely(skb_is_gso(skb))) { 3234 skb_warn_bad_offload(skb); 3235 return -EINVAL; 3236 } 3237 3238 /* Before computing a checksum, we should make sure no frag could 3239 * be modified by an external entity : checksum could be wrong. 3240 */ 3241 if (skb_has_shared_frag(skb)) { 3242 ret = __skb_linearize(skb); 3243 if (ret) 3244 goto out; 3245 } 3246 3247 offset = skb_checksum_start_offset(skb); 3248 BUG_ON(offset >= skb_headlen(skb)); 3249 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3250 3251 offset += skb->csum_offset; 3252 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3253 3254 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3255 if (ret) 3256 goto out; 3257 3258 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3259 out_set_summed: 3260 skb->ip_summed = CHECKSUM_NONE; 3261 out: 3262 return ret; 3263 } 3264 EXPORT_SYMBOL(skb_checksum_help); 3265 3266 int skb_crc32c_csum_help(struct sk_buff *skb) 3267 { 3268 __le32 crc32c_csum; 3269 int ret = 0, offset, start; 3270 3271 if (skb->ip_summed != CHECKSUM_PARTIAL) 3272 goto out; 3273 3274 if (unlikely(skb_is_gso(skb))) 3275 goto out; 3276 3277 /* Before computing a checksum, we should make sure no frag could 3278 * be modified by an external entity : checksum could be wrong. 3279 */ 3280 if (unlikely(skb_has_shared_frag(skb))) { 3281 ret = __skb_linearize(skb); 3282 if (ret) 3283 goto out; 3284 } 3285 start = skb_checksum_start_offset(skb); 3286 offset = start + offsetof(struct sctphdr, checksum); 3287 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3288 ret = -EINVAL; 3289 goto out; 3290 } 3291 3292 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3293 if (ret) 3294 goto out; 3295 3296 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3297 skb->len - start, ~(__u32)0, 3298 crc32c_csum_stub)); 3299 *(__le32 *)(skb->data + offset) = crc32c_csum; 3300 skb->ip_summed = CHECKSUM_NONE; 3301 skb->csum_not_inet = 0; 3302 out: 3303 return ret; 3304 } 3305 3306 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3307 { 3308 __be16 type = skb->protocol; 3309 3310 /* Tunnel gso handlers can set protocol to ethernet. */ 3311 if (type == htons(ETH_P_TEB)) { 3312 struct ethhdr *eth; 3313 3314 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3315 return 0; 3316 3317 eth = (struct ethhdr *)skb->data; 3318 type = eth->h_proto; 3319 } 3320 3321 return __vlan_get_protocol(skb, type, depth); 3322 } 3323 3324 /** 3325 * skb_mac_gso_segment - mac layer segmentation handler. 3326 * @skb: buffer to segment 3327 * @features: features for the output path (see dev->features) 3328 */ 3329 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3330 netdev_features_t features) 3331 { 3332 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3333 struct packet_offload *ptype; 3334 int vlan_depth = skb->mac_len; 3335 __be16 type = skb_network_protocol(skb, &vlan_depth); 3336 3337 if (unlikely(!type)) 3338 return ERR_PTR(-EINVAL); 3339 3340 __skb_pull(skb, vlan_depth); 3341 3342 rcu_read_lock(); 3343 list_for_each_entry_rcu(ptype, &offload_base, list) { 3344 if (ptype->type == type && ptype->callbacks.gso_segment) { 3345 segs = ptype->callbacks.gso_segment(skb, features); 3346 break; 3347 } 3348 } 3349 rcu_read_unlock(); 3350 3351 __skb_push(skb, skb->data - skb_mac_header(skb)); 3352 3353 return segs; 3354 } 3355 EXPORT_SYMBOL(skb_mac_gso_segment); 3356 3357 3358 /* openvswitch calls this on rx path, so we need a different check. 3359 */ 3360 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3361 { 3362 if (tx_path) 3363 return skb->ip_summed != CHECKSUM_PARTIAL && 3364 skb->ip_summed != CHECKSUM_UNNECESSARY; 3365 3366 return skb->ip_summed == CHECKSUM_NONE; 3367 } 3368 3369 /** 3370 * __skb_gso_segment - Perform segmentation on skb. 3371 * @skb: buffer to segment 3372 * @features: features for the output path (see dev->features) 3373 * @tx_path: whether it is called in TX path 3374 * 3375 * This function segments the given skb and returns a list of segments. 3376 * 3377 * It may return NULL if the skb requires no segmentation. This is 3378 * only possible when GSO is used for verifying header integrity. 3379 * 3380 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3381 */ 3382 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3383 netdev_features_t features, bool tx_path) 3384 { 3385 struct sk_buff *segs; 3386 3387 if (unlikely(skb_needs_check(skb, tx_path))) { 3388 int err; 3389 3390 /* We're going to init ->check field in TCP or UDP header */ 3391 err = skb_cow_head(skb, 0); 3392 if (err < 0) 3393 return ERR_PTR(err); 3394 } 3395 3396 /* Only report GSO partial support if it will enable us to 3397 * support segmentation on this frame without needing additional 3398 * work. 3399 */ 3400 if (features & NETIF_F_GSO_PARTIAL) { 3401 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3402 struct net_device *dev = skb->dev; 3403 3404 partial_features |= dev->features & dev->gso_partial_features; 3405 if (!skb_gso_ok(skb, features | partial_features)) 3406 features &= ~NETIF_F_GSO_PARTIAL; 3407 } 3408 3409 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3410 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3411 3412 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3413 SKB_GSO_CB(skb)->encap_level = 0; 3414 3415 skb_reset_mac_header(skb); 3416 skb_reset_mac_len(skb); 3417 3418 segs = skb_mac_gso_segment(skb, features); 3419 3420 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3421 skb_warn_bad_offload(skb); 3422 3423 return segs; 3424 } 3425 EXPORT_SYMBOL(__skb_gso_segment); 3426 3427 /* Take action when hardware reception checksum errors are detected. */ 3428 #ifdef CONFIG_BUG 3429 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3430 { 3431 if (net_ratelimit()) { 3432 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3433 skb_dump(KERN_ERR, skb, true); 3434 dump_stack(); 3435 } 3436 } 3437 EXPORT_SYMBOL(netdev_rx_csum_fault); 3438 #endif 3439 3440 /* XXX: check that highmem exists at all on the given machine. */ 3441 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3442 { 3443 #ifdef CONFIG_HIGHMEM 3444 int i; 3445 3446 if (!(dev->features & NETIF_F_HIGHDMA)) { 3447 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3448 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3449 3450 if (PageHighMem(skb_frag_page(frag))) 3451 return 1; 3452 } 3453 } 3454 #endif 3455 return 0; 3456 } 3457 3458 /* If MPLS offload request, verify we are testing hardware MPLS features 3459 * instead of standard features for the netdev. 3460 */ 3461 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3462 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3463 netdev_features_t features, 3464 __be16 type) 3465 { 3466 if (eth_p_mpls(type)) 3467 features &= skb->dev->mpls_features; 3468 3469 return features; 3470 } 3471 #else 3472 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3473 netdev_features_t features, 3474 __be16 type) 3475 { 3476 return features; 3477 } 3478 #endif 3479 3480 static netdev_features_t harmonize_features(struct sk_buff *skb, 3481 netdev_features_t features) 3482 { 3483 __be16 type; 3484 3485 type = skb_network_protocol(skb, NULL); 3486 features = net_mpls_features(skb, features, type); 3487 3488 if (skb->ip_summed != CHECKSUM_NONE && 3489 !can_checksum_protocol(features, type)) { 3490 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3491 } 3492 if (illegal_highdma(skb->dev, skb)) 3493 features &= ~NETIF_F_SG; 3494 3495 return features; 3496 } 3497 3498 netdev_features_t passthru_features_check(struct sk_buff *skb, 3499 struct net_device *dev, 3500 netdev_features_t features) 3501 { 3502 return features; 3503 } 3504 EXPORT_SYMBOL(passthru_features_check); 3505 3506 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3507 struct net_device *dev, 3508 netdev_features_t features) 3509 { 3510 return vlan_features_check(skb, features); 3511 } 3512 3513 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3514 struct net_device *dev, 3515 netdev_features_t features) 3516 { 3517 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3518 3519 if (gso_segs > dev->gso_max_segs) 3520 return features & ~NETIF_F_GSO_MASK; 3521 3522 if (!skb_shinfo(skb)->gso_type) { 3523 skb_warn_bad_offload(skb); 3524 return features & ~NETIF_F_GSO_MASK; 3525 } 3526 3527 /* Support for GSO partial features requires software 3528 * intervention before we can actually process the packets 3529 * so we need to strip support for any partial features now 3530 * and we can pull them back in after we have partially 3531 * segmented the frame. 3532 */ 3533 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3534 features &= ~dev->gso_partial_features; 3535 3536 /* Make sure to clear the IPv4 ID mangling feature if the 3537 * IPv4 header has the potential to be fragmented. 3538 */ 3539 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3540 struct iphdr *iph = skb->encapsulation ? 3541 inner_ip_hdr(skb) : ip_hdr(skb); 3542 3543 if (!(iph->frag_off & htons(IP_DF))) 3544 features &= ~NETIF_F_TSO_MANGLEID; 3545 } 3546 3547 return features; 3548 } 3549 3550 netdev_features_t netif_skb_features(struct sk_buff *skb) 3551 { 3552 struct net_device *dev = skb->dev; 3553 netdev_features_t features = dev->features; 3554 3555 if (skb_is_gso(skb)) 3556 features = gso_features_check(skb, dev, features); 3557 3558 /* If encapsulation offload request, verify we are testing 3559 * hardware encapsulation features instead of standard 3560 * features for the netdev 3561 */ 3562 if (skb->encapsulation) 3563 features &= dev->hw_enc_features; 3564 3565 if (skb_vlan_tagged(skb)) 3566 features = netdev_intersect_features(features, 3567 dev->vlan_features | 3568 NETIF_F_HW_VLAN_CTAG_TX | 3569 NETIF_F_HW_VLAN_STAG_TX); 3570 3571 if (dev->netdev_ops->ndo_features_check) 3572 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3573 features); 3574 else 3575 features &= dflt_features_check(skb, dev, features); 3576 3577 return harmonize_features(skb, features); 3578 } 3579 EXPORT_SYMBOL(netif_skb_features); 3580 3581 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3582 struct netdev_queue *txq, bool more) 3583 { 3584 unsigned int len; 3585 int rc; 3586 3587 if (dev_nit_active(dev)) 3588 dev_queue_xmit_nit(skb, dev); 3589 3590 len = skb->len; 3591 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3592 trace_net_dev_start_xmit(skb, dev); 3593 rc = netdev_start_xmit(skb, dev, txq, more); 3594 trace_net_dev_xmit(skb, rc, dev, len); 3595 3596 return rc; 3597 } 3598 3599 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3600 struct netdev_queue *txq, int *ret) 3601 { 3602 struct sk_buff *skb = first; 3603 int rc = NETDEV_TX_OK; 3604 3605 while (skb) { 3606 struct sk_buff *next = skb->next; 3607 3608 skb_mark_not_on_list(skb); 3609 rc = xmit_one(skb, dev, txq, next != NULL); 3610 if (unlikely(!dev_xmit_complete(rc))) { 3611 skb->next = next; 3612 goto out; 3613 } 3614 3615 skb = next; 3616 if (netif_tx_queue_stopped(txq) && skb) { 3617 rc = NETDEV_TX_BUSY; 3618 break; 3619 } 3620 } 3621 3622 out: 3623 *ret = rc; 3624 return skb; 3625 } 3626 3627 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3628 netdev_features_t features) 3629 { 3630 if (skb_vlan_tag_present(skb) && 3631 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3632 skb = __vlan_hwaccel_push_inside(skb); 3633 return skb; 3634 } 3635 3636 int skb_csum_hwoffload_help(struct sk_buff *skb, 3637 const netdev_features_t features) 3638 { 3639 if (unlikely(skb_csum_is_sctp(skb))) 3640 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3641 skb_crc32c_csum_help(skb); 3642 3643 if (features & NETIF_F_HW_CSUM) 3644 return 0; 3645 3646 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3647 switch (skb->csum_offset) { 3648 case offsetof(struct tcphdr, check): 3649 case offsetof(struct udphdr, check): 3650 return 0; 3651 } 3652 } 3653 3654 return skb_checksum_help(skb); 3655 } 3656 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3657 3658 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3659 { 3660 netdev_features_t features; 3661 3662 features = netif_skb_features(skb); 3663 skb = validate_xmit_vlan(skb, features); 3664 if (unlikely(!skb)) 3665 goto out_null; 3666 3667 skb = sk_validate_xmit_skb(skb, dev); 3668 if (unlikely(!skb)) 3669 goto out_null; 3670 3671 if (netif_needs_gso(skb, features)) { 3672 struct sk_buff *segs; 3673 3674 segs = skb_gso_segment(skb, features); 3675 if (IS_ERR(segs)) { 3676 goto out_kfree_skb; 3677 } else if (segs) { 3678 consume_skb(skb); 3679 skb = segs; 3680 } 3681 } else { 3682 if (skb_needs_linearize(skb, features) && 3683 __skb_linearize(skb)) 3684 goto out_kfree_skb; 3685 3686 /* If packet is not checksummed and device does not 3687 * support checksumming for this protocol, complete 3688 * checksumming here. 3689 */ 3690 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3691 if (skb->encapsulation) 3692 skb_set_inner_transport_header(skb, 3693 skb_checksum_start_offset(skb)); 3694 else 3695 skb_set_transport_header(skb, 3696 skb_checksum_start_offset(skb)); 3697 if (skb_csum_hwoffload_help(skb, features)) 3698 goto out_kfree_skb; 3699 } 3700 } 3701 3702 skb = validate_xmit_xfrm(skb, features, again); 3703 3704 return skb; 3705 3706 out_kfree_skb: 3707 kfree_skb(skb); 3708 out_null: 3709 atomic_long_inc(&dev->tx_dropped); 3710 return NULL; 3711 } 3712 3713 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3714 { 3715 struct sk_buff *next, *head = NULL, *tail; 3716 3717 for (; skb != NULL; skb = next) { 3718 next = skb->next; 3719 skb_mark_not_on_list(skb); 3720 3721 /* in case skb wont be segmented, point to itself */ 3722 skb->prev = skb; 3723 3724 skb = validate_xmit_skb(skb, dev, again); 3725 if (!skb) 3726 continue; 3727 3728 if (!head) 3729 head = skb; 3730 else 3731 tail->next = skb; 3732 /* If skb was segmented, skb->prev points to 3733 * the last segment. If not, it still contains skb. 3734 */ 3735 tail = skb->prev; 3736 } 3737 return head; 3738 } 3739 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3740 3741 static void qdisc_pkt_len_init(struct sk_buff *skb) 3742 { 3743 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3744 3745 qdisc_skb_cb(skb)->pkt_len = skb->len; 3746 3747 /* To get more precise estimation of bytes sent on wire, 3748 * we add to pkt_len the headers size of all segments 3749 */ 3750 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3751 unsigned int hdr_len; 3752 u16 gso_segs = shinfo->gso_segs; 3753 3754 /* mac layer + network layer */ 3755 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3756 3757 /* + transport layer */ 3758 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3759 const struct tcphdr *th; 3760 struct tcphdr _tcphdr; 3761 3762 th = skb_header_pointer(skb, skb_transport_offset(skb), 3763 sizeof(_tcphdr), &_tcphdr); 3764 if (likely(th)) 3765 hdr_len += __tcp_hdrlen(th); 3766 } else { 3767 struct udphdr _udphdr; 3768 3769 if (skb_header_pointer(skb, skb_transport_offset(skb), 3770 sizeof(_udphdr), &_udphdr)) 3771 hdr_len += sizeof(struct udphdr); 3772 } 3773 3774 if (shinfo->gso_type & SKB_GSO_DODGY) 3775 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3776 shinfo->gso_size); 3777 3778 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3779 } 3780 } 3781 3782 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3783 struct net_device *dev, 3784 struct netdev_queue *txq) 3785 { 3786 spinlock_t *root_lock = qdisc_lock(q); 3787 struct sk_buff *to_free = NULL; 3788 bool contended; 3789 int rc; 3790 3791 qdisc_calculate_pkt_len(skb, q); 3792 3793 if (q->flags & TCQ_F_NOLOCK) { 3794 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3795 qdisc_run(q); 3796 3797 if (unlikely(to_free)) 3798 kfree_skb_list(to_free); 3799 return rc; 3800 } 3801 3802 /* 3803 * Heuristic to force contended enqueues to serialize on a 3804 * separate lock before trying to get qdisc main lock. 3805 * This permits qdisc->running owner to get the lock more 3806 * often and dequeue packets faster. 3807 */ 3808 contended = qdisc_is_running(q); 3809 if (unlikely(contended)) 3810 spin_lock(&q->busylock); 3811 3812 spin_lock(root_lock); 3813 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3814 __qdisc_drop(skb, &to_free); 3815 rc = NET_XMIT_DROP; 3816 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3817 qdisc_run_begin(q)) { 3818 /* 3819 * This is a work-conserving queue; there are no old skbs 3820 * waiting to be sent out; and the qdisc is not running - 3821 * xmit the skb directly. 3822 */ 3823 3824 qdisc_bstats_update(q, skb); 3825 3826 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3827 if (unlikely(contended)) { 3828 spin_unlock(&q->busylock); 3829 contended = false; 3830 } 3831 __qdisc_run(q); 3832 } 3833 3834 qdisc_run_end(q); 3835 rc = NET_XMIT_SUCCESS; 3836 } else { 3837 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3838 if (qdisc_run_begin(q)) { 3839 if (unlikely(contended)) { 3840 spin_unlock(&q->busylock); 3841 contended = false; 3842 } 3843 __qdisc_run(q); 3844 qdisc_run_end(q); 3845 } 3846 } 3847 spin_unlock(root_lock); 3848 if (unlikely(to_free)) 3849 kfree_skb_list(to_free); 3850 if (unlikely(contended)) 3851 spin_unlock(&q->busylock); 3852 return rc; 3853 } 3854 3855 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3856 static void skb_update_prio(struct sk_buff *skb) 3857 { 3858 const struct netprio_map *map; 3859 const struct sock *sk; 3860 unsigned int prioidx; 3861 3862 if (skb->priority) 3863 return; 3864 map = rcu_dereference_bh(skb->dev->priomap); 3865 if (!map) 3866 return; 3867 sk = skb_to_full_sk(skb); 3868 if (!sk) 3869 return; 3870 3871 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3872 3873 if (prioidx < map->priomap_len) 3874 skb->priority = map->priomap[prioidx]; 3875 } 3876 #else 3877 #define skb_update_prio(skb) 3878 #endif 3879 3880 /** 3881 * dev_loopback_xmit - loop back @skb 3882 * @net: network namespace this loopback is happening in 3883 * @sk: sk needed to be a netfilter okfn 3884 * @skb: buffer to transmit 3885 */ 3886 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3887 { 3888 skb_reset_mac_header(skb); 3889 __skb_pull(skb, skb_network_offset(skb)); 3890 skb->pkt_type = PACKET_LOOPBACK; 3891 skb->ip_summed = CHECKSUM_UNNECESSARY; 3892 WARN_ON(!skb_dst(skb)); 3893 skb_dst_force(skb); 3894 netif_rx_ni(skb); 3895 return 0; 3896 } 3897 EXPORT_SYMBOL(dev_loopback_xmit); 3898 3899 #ifdef CONFIG_NET_EGRESS 3900 static struct sk_buff * 3901 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3902 { 3903 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3904 struct tcf_result cl_res; 3905 3906 if (!miniq) 3907 return skb; 3908 3909 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3910 qdisc_skb_cb(skb)->mru = 0; 3911 qdisc_skb_cb(skb)->post_ct = false; 3912 mini_qdisc_bstats_cpu_update(miniq, skb); 3913 3914 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3915 case TC_ACT_OK: 3916 case TC_ACT_RECLASSIFY: 3917 skb->tc_index = TC_H_MIN(cl_res.classid); 3918 break; 3919 case TC_ACT_SHOT: 3920 mini_qdisc_qstats_cpu_drop(miniq); 3921 *ret = NET_XMIT_DROP; 3922 kfree_skb(skb); 3923 return NULL; 3924 case TC_ACT_STOLEN: 3925 case TC_ACT_QUEUED: 3926 case TC_ACT_TRAP: 3927 *ret = NET_XMIT_SUCCESS; 3928 consume_skb(skb); 3929 return NULL; 3930 case TC_ACT_REDIRECT: 3931 /* No need to push/pop skb's mac_header here on egress! */ 3932 skb_do_redirect(skb); 3933 *ret = NET_XMIT_SUCCESS; 3934 return NULL; 3935 default: 3936 break; 3937 } 3938 3939 return skb; 3940 } 3941 #endif /* CONFIG_NET_EGRESS */ 3942 3943 #ifdef CONFIG_XPS 3944 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3945 struct xps_dev_maps *dev_maps, unsigned int tci) 3946 { 3947 struct xps_map *map; 3948 int queue_index = -1; 3949 3950 if (dev->num_tc) { 3951 tci *= dev->num_tc; 3952 tci += netdev_get_prio_tc_map(dev, skb->priority); 3953 } 3954 3955 map = rcu_dereference(dev_maps->attr_map[tci]); 3956 if (map) { 3957 if (map->len == 1) 3958 queue_index = map->queues[0]; 3959 else 3960 queue_index = map->queues[reciprocal_scale( 3961 skb_get_hash(skb), map->len)]; 3962 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3963 queue_index = -1; 3964 } 3965 return queue_index; 3966 } 3967 #endif 3968 3969 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3970 struct sk_buff *skb) 3971 { 3972 #ifdef CONFIG_XPS 3973 struct xps_dev_maps *dev_maps; 3974 struct sock *sk = skb->sk; 3975 int queue_index = -1; 3976 3977 if (!static_key_false(&xps_needed)) 3978 return -1; 3979 3980 rcu_read_lock(); 3981 if (!static_key_false(&xps_rxqs_needed)) 3982 goto get_cpus_map; 3983 3984 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3985 if (dev_maps) { 3986 int tci = sk_rx_queue_get(sk); 3987 3988 if (tci >= 0 && tci < dev->num_rx_queues) 3989 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3990 tci); 3991 } 3992 3993 get_cpus_map: 3994 if (queue_index < 0) { 3995 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3996 if (dev_maps) { 3997 unsigned int tci = skb->sender_cpu - 1; 3998 3999 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4000 tci); 4001 } 4002 } 4003 rcu_read_unlock(); 4004 4005 return queue_index; 4006 #else 4007 return -1; 4008 #endif 4009 } 4010 4011 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4012 struct net_device *sb_dev) 4013 { 4014 return 0; 4015 } 4016 EXPORT_SYMBOL(dev_pick_tx_zero); 4017 4018 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4019 struct net_device *sb_dev) 4020 { 4021 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4022 } 4023 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4024 4025 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4026 struct net_device *sb_dev) 4027 { 4028 struct sock *sk = skb->sk; 4029 int queue_index = sk_tx_queue_get(sk); 4030 4031 sb_dev = sb_dev ? : dev; 4032 4033 if (queue_index < 0 || skb->ooo_okay || 4034 queue_index >= dev->real_num_tx_queues) { 4035 int new_index = get_xps_queue(dev, sb_dev, skb); 4036 4037 if (new_index < 0) 4038 new_index = skb_tx_hash(dev, sb_dev, skb); 4039 4040 if (queue_index != new_index && sk && 4041 sk_fullsock(sk) && 4042 rcu_access_pointer(sk->sk_dst_cache)) 4043 sk_tx_queue_set(sk, new_index); 4044 4045 queue_index = new_index; 4046 } 4047 4048 return queue_index; 4049 } 4050 EXPORT_SYMBOL(netdev_pick_tx); 4051 4052 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4053 struct sk_buff *skb, 4054 struct net_device *sb_dev) 4055 { 4056 int queue_index = 0; 4057 4058 #ifdef CONFIG_XPS 4059 u32 sender_cpu = skb->sender_cpu - 1; 4060 4061 if (sender_cpu >= (u32)NR_CPUS) 4062 skb->sender_cpu = raw_smp_processor_id() + 1; 4063 #endif 4064 4065 if (dev->real_num_tx_queues != 1) { 4066 const struct net_device_ops *ops = dev->netdev_ops; 4067 4068 if (ops->ndo_select_queue) 4069 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4070 else 4071 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4072 4073 queue_index = netdev_cap_txqueue(dev, queue_index); 4074 } 4075 4076 skb_set_queue_mapping(skb, queue_index); 4077 return netdev_get_tx_queue(dev, queue_index); 4078 } 4079 4080 /** 4081 * __dev_queue_xmit - transmit a buffer 4082 * @skb: buffer to transmit 4083 * @sb_dev: suboordinate device used for L2 forwarding offload 4084 * 4085 * Queue a buffer for transmission to a network device. The caller must 4086 * have set the device and priority and built the buffer before calling 4087 * this function. The function can be called from an interrupt. 4088 * 4089 * A negative errno code is returned on a failure. A success does not 4090 * guarantee the frame will be transmitted as it may be dropped due 4091 * to congestion or traffic shaping. 4092 * 4093 * ----------------------------------------------------------------------------------- 4094 * I notice this method can also return errors from the queue disciplines, 4095 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4096 * be positive. 4097 * 4098 * Regardless of the return value, the skb is consumed, so it is currently 4099 * difficult to retry a send to this method. (You can bump the ref count 4100 * before sending to hold a reference for retry if you are careful.) 4101 * 4102 * When calling this method, interrupts MUST be enabled. This is because 4103 * the BH enable code must have IRQs enabled so that it will not deadlock. 4104 * --BLG 4105 */ 4106 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4107 { 4108 struct net_device *dev = skb->dev; 4109 struct netdev_queue *txq; 4110 struct Qdisc *q; 4111 int rc = -ENOMEM; 4112 bool again = false; 4113 4114 skb_reset_mac_header(skb); 4115 4116 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4117 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4118 4119 /* Disable soft irqs for various locks below. Also 4120 * stops preemption for RCU. 4121 */ 4122 rcu_read_lock_bh(); 4123 4124 skb_update_prio(skb); 4125 4126 qdisc_pkt_len_init(skb); 4127 #ifdef CONFIG_NET_CLS_ACT 4128 skb->tc_at_ingress = 0; 4129 # ifdef CONFIG_NET_EGRESS 4130 if (static_branch_unlikely(&egress_needed_key)) { 4131 skb = sch_handle_egress(skb, &rc, dev); 4132 if (!skb) 4133 goto out; 4134 } 4135 # endif 4136 #endif 4137 /* If device/qdisc don't need skb->dst, release it right now while 4138 * its hot in this cpu cache. 4139 */ 4140 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4141 skb_dst_drop(skb); 4142 else 4143 skb_dst_force(skb); 4144 4145 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4146 q = rcu_dereference_bh(txq->qdisc); 4147 4148 trace_net_dev_queue(skb); 4149 if (q->enqueue) { 4150 rc = __dev_xmit_skb(skb, q, dev, txq); 4151 goto out; 4152 } 4153 4154 /* The device has no queue. Common case for software devices: 4155 * loopback, all the sorts of tunnels... 4156 4157 * Really, it is unlikely that netif_tx_lock protection is necessary 4158 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4159 * counters.) 4160 * However, it is possible, that they rely on protection 4161 * made by us here. 4162 4163 * Check this and shot the lock. It is not prone from deadlocks. 4164 *Either shot noqueue qdisc, it is even simpler 8) 4165 */ 4166 if (dev->flags & IFF_UP) { 4167 int cpu = smp_processor_id(); /* ok because BHs are off */ 4168 4169 if (txq->xmit_lock_owner != cpu) { 4170 if (dev_xmit_recursion()) 4171 goto recursion_alert; 4172 4173 skb = validate_xmit_skb(skb, dev, &again); 4174 if (!skb) 4175 goto out; 4176 4177 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4178 HARD_TX_LOCK(dev, txq, cpu); 4179 4180 if (!netif_xmit_stopped(txq)) { 4181 dev_xmit_recursion_inc(); 4182 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4183 dev_xmit_recursion_dec(); 4184 if (dev_xmit_complete(rc)) { 4185 HARD_TX_UNLOCK(dev, txq); 4186 goto out; 4187 } 4188 } 4189 HARD_TX_UNLOCK(dev, txq); 4190 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4191 dev->name); 4192 } else { 4193 /* Recursion is detected! It is possible, 4194 * unfortunately 4195 */ 4196 recursion_alert: 4197 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4198 dev->name); 4199 } 4200 } 4201 4202 rc = -ENETDOWN; 4203 rcu_read_unlock_bh(); 4204 4205 atomic_long_inc(&dev->tx_dropped); 4206 kfree_skb_list(skb); 4207 return rc; 4208 out: 4209 rcu_read_unlock_bh(); 4210 return rc; 4211 } 4212 4213 int dev_queue_xmit(struct sk_buff *skb) 4214 { 4215 return __dev_queue_xmit(skb, NULL); 4216 } 4217 EXPORT_SYMBOL(dev_queue_xmit); 4218 4219 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4220 { 4221 return __dev_queue_xmit(skb, sb_dev); 4222 } 4223 EXPORT_SYMBOL(dev_queue_xmit_accel); 4224 4225 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4226 { 4227 struct net_device *dev = skb->dev; 4228 struct sk_buff *orig_skb = skb; 4229 struct netdev_queue *txq; 4230 int ret = NETDEV_TX_BUSY; 4231 bool again = false; 4232 4233 if (unlikely(!netif_running(dev) || 4234 !netif_carrier_ok(dev))) 4235 goto drop; 4236 4237 skb = validate_xmit_skb_list(skb, dev, &again); 4238 if (skb != orig_skb) 4239 goto drop; 4240 4241 skb_set_queue_mapping(skb, queue_id); 4242 txq = skb_get_tx_queue(dev, skb); 4243 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4244 4245 local_bh_disable(); 4246 4247 dev_xmit_recursion_inc(); 4248 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4249 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4250 ret = netdev_start_xmit(skb, dev, txq, false); 4251 HARD_TX_UNLOCK(dev, txq); 4252 dev_xmit_recursion_dec(); 4253 4254 local_bh_enable(); 4255 return ret; 4256 drop: 4257 atomic_long_inc(&dev->tx_dropped); 4258 kfree_skb_list(skb); 4259 return NET_XMIT_DROP; 4260 } 4261 EXPORT_SYMBOL(__dev_direct_xmit); 4262 4263 /************************************************************************* 4264 * Receiver routines 4265 *************************************************************************/ 4266 4267 int netdev_max_backlog __read_mostly = 1000; 4268 EXPORT_SYMBOL(netdev_max_backlog); 4269 4270 int netdev_tstamp_prequeue __read_mostly = 1; 4271 int netdev_budget __read_mostly = 300; 4272 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4273 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4274 int weight_p __read_mostly = 64; /* old backlog weight */ 4275 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4276 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4277 int dev_rx_weight __read_mostly = 64; 4278 int dev_tx_weight __read_mostly = 64; 4279 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4280 int gro_normal_batch __read_mostly = 8; 4281 4282 /* Called with irq disabled */ 4283 static inline void ____napi_schedule(struct softnet_data *sd, 4284 struct napi_struct *napi) 4285 { 4286 struct task_struct *thread; 4287 4288 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4289 /* Paired with smp_mb__before_atomic() in 4290 * napi_enable()/dev_set_threaded(). 4291 * Use READ_ONCE() to guarantee a complete 4292 * read on napi->thread. Only call 4293 * wake_up_process() when it's not NULL. 4294 */ 4295 thread = READ_ONCE(napi->thread); 4296 if (thread) { 4297 /* Avoid doing set_bit() if the thread is in 4298 * INTERRUPTIBLE state, cause napi_thread_wait() 4299 * makes sure to proceed with napi polling 4300 * if the thread is explicitly woken from here. 4301 */ 4302 if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE) 4303 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4304 wake_up_process(thread); 4305 return; 4306 } 4307 } 4308 4309 list_add_tail(&napi->poll_list, &sd->poll_list); 4310 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4311 } 4312 4313 #ifdef CONFIG_RPS 4314 4315 /* One global table that all flow-based protocols share. */ 4316 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4317 EXPORT_SYMBOL(rps_sock_flow_table); 4318 u32 rps_cpu_mask __read_mostly; 4319 EXPORT_SYMBOL(rps_cpu_mask); 4320 4321 struct static_key_false rps_needed __read_mostly; 4322 EXPORT_SYMBOL(rps_needed); 4323 struct static_key_false rfs_needed __read_mostly; 4324 EXPORT_SYMBOL(rfs_needed); 4325 4326 static struct rps_dev_flow * 4327 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4328 struct rps_dev_flow *rflow, u16 next_cpu) 4329 { 4330 if (next_cpu < nr_cpu_ids) { 4331 #ifdef CONFIG_RFS_ACCEL 4332 struct netdev_rx_queue *rxqueue; 4333 struct rps_dev_flow_table *flow_table; 4334 struct rps_dev_flow *old_rflow; 4335 u32 flow_id; 4336 u16 rxq_index; 4337 int rc; 4338 4339 /* Should we steer this flow to a different hardware queue? */ 4340 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4341 !(dev->features & NETIF_F_NTUPLE)) 4342 goto out; 4343 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4344 if (rxq_index == skb_get_rx_queue(skb)) 4345 goto out; 4346 4347 rxqueue = dev->_rx + rxq_index; 4348 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4349 if (!flow_table) 4350 goto out; 4351 flow_id = skb_get_hash(skb) & flow_table->mask; 4352 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4353 rxq_index, flow_id); 4354 if (rc < 0) 4355 goto out; 4356 old_rflow = rflow; 4357 rflow = &flow_table->flows[flow_id]; 4358 rflow->filter = rc; 4359 if (old_rflow->filter == rflow->filter) 4360 old_rflow->filter = RPS_NO_FILTER; 4361 out: 4362 #endif 4363 rflow->last_qtail = 4364 per_cpu(softnet_data, next_cpu).input_queue_head; 4365 } 4366 4367 rflow->cpu = next_cpu; 4368 return rflow; 4369 } 4370 4371 /* 4372 * get_rps_cpu is called from netif_receive_skb and returns the target 4373 * CPU from the RPS map of the receiving queue for a given skb. 4374 * rcu_read_lock must be held on entry. 4375 */ 4376 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4377 struct rps_dev_flow **rflowp) 4378 { 4379 const struct rps_sock_flow_table *sock_flow_table; 4380 struct netdev_rx_queue *rxqueue = dev->_rx; 4381 struct rps_dev_flow_table *flow_table; 4382 struct rps_map *map; 4383 int cpu = -1; 4384 u32 tcpu; 4385 u32 hash; 4386 4387 if (skb_rx_queue_recorded(skb)) { 4388 u16 index = skb_get_rx_queue(skb); 4389 4390 if (unlikely(index >= dev->real_num_rx_queues)) { 4391 WARN_ONCE(dev->real_num_rx_queues > 1, 4392 "%s received packet on queue %u, but number " 4393 "of RX queues is %u\n", 4394 dev->name, index, dev->real_num_rx_queues); 4395 goto done; 4396 } 4397 rxqueue += index; 4398 } 4399 4400 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4401 4402 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4403 map = rcu_dereference(rxqueue->rps_map); 4404 if (!flow_table && !map) 4405 goto done; 4406 4407 skb_reset_network_header(skb); 4408 hash = skb_get_hash(skb); 4409 if (!hash) 4410 goto done; 4411 4412 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4413 if (flow_table && sock_flow_table) { 4414 struct rps_dev_flow *rflow; 4415 u32 next_cpu; 4416 u32 ident; 4417 4418 /* First check into global flow table if there is a match */ 4419 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4420 if ((ident ^ hash) & ~rps_cpu_mask) 4421 goto try_rps; 4422 4423 next_cpu = ident & rps_cpu_mask; 4424 4425 /* OK, now we know there is a match, 4426 * we can look at the local (per receive queue) flow table 4427 */ 4428 rflow = &flow_table->flows[hash & flow_table->mask]; 4429 tcpu = rflow->cpu; 4430 4431 /* 4432 * If the desired CPU (where last recvmsg was done) is 4433 * different from current CPU (one in the rx-queue flow 4434 * table entry), switch if one of the following holds: 4435 * - Current CPU is unset (>= nr_cpu_ids). 4436 * - Current CPU is offline. 4437 * - The current CPU's queue tail has advanced beyond the 4438 * last packet that was enqueued using this table entry. 4439 * This guarantees that all previous packets for the flow 4440 * have been dequeued, thus preserving in order delivery. 4441 */ 4442 if (unlikely(tcpu != next_cpu) && 4443 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4444 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4445 rflow->last_qtail)) >= 0)) { 4446 tcpu = next_cpu; 4447 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4448 } 4449 4450 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4451 *rflowp = rflow; 4452 cpu = tcpu; 4453 goto done; 4454 } 4455 } 4456 4457 try_rps: 4458 4459 if (map) { 4460 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4461 if (cpu_online(tcpu)) { 4462 cpu = tcpu; 4463 goto done; 4464 } 4465 } 4466 4467 done: 4468 return cpu; 4469 } 4470 4471 #ifdef CONFIG_RFS_ACCEL 4472 4473 /** 4474 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4475 * @dev: Device on which the filter was set 4476 * @rxq_index: RX queue index 4477 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4478 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4479 * 4480 * Drivers that implement ndo_rx_flow_steer() should periodically call 4481 * this function for each installed filter and remove the filters for 4482 * which it returns %true. 4483 */ 4484 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4485 u32 flow_id, u16 filter_id) 4486 { 4487 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4488 struct rps_dev_flow_table *flow_table; 4489 struct rps_dev_flow *rflow; 4490 bool expire = true; 4491 unsigned int cpu; 4492 4493 rcu_read_lock(); 4494 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4495 if (flow_table && flow_id <= flow_table->mask) { 4496 rflow = &flow_table->flows[flow_id]; 4497 cpu = READ_ONCE(rflow->cpu); 4498 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4499 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4500 rflow->last_qtail) < 4501 (int)(10 * flow_table->mask))) 4502 expire = false; 4503 } 4504 rcu_read_unlock(); 4505 return expire; 4506 } 4507 EXPORT_SYMBOL(rps_may_expire_flow); 4508 4509 #endif /* CONFIG_RFS_ACCEL */ 4510 4511 /* Called from hardirq (IPI) context */ 4512 static void rps_trigger_softirq(void *data) 4513 { 4514 struct softnet_data *sd = data; 4515 4516 ____napi_schedule(sd, &sd->backlog); 4517 sd->received_rps++; 4518 } 4519 4520 #endif /* CONFIG_RPS */ 4521 4522 /* 4523 * Check if this softnet_data structure is another cpu one 4524 * If yes, queue it to our IPI list and return 1 4525 * If no, return 0 4526 */ 4527 static int rps_ipi_queued(struct softnet_data *sd) 4528 { 4529 #ifdef CONFIG_RPS 4530 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4531 4532 if (sd != mysd) { 4533 sd->rps_ipi_next = mysd->rps_ipi_list; 4534 mysd->rps_ipi_list = sd; 4535 4536 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4537 return 1; 4538 } 4539 #endif /* CONFIG_RPS */ 4540 return 0; 4541 } 4542 4543 #ifdef CONFIG_NET_FLOW_LIMIT 4544 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4545 #endif 4546 4547 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4548 { 4549 #ifdef CONFIG_NET_FLOW_LIMIT 4550 struct sd_flow_limit *fl; 4551 struct softnet_data *sd; 4552 unsigned int old_flow, new_flow; 4553 4554 if (qlen < (netdev_max_backlog >> 1)) 4555 return false; 4556 4557 sd = this_cpu_ptr(&softnet_data); 4558 4559 rcu_read_lock(); 4560 fl = rcu_dereference(sd->flow_limit); 4561 if (fl) { 4562 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4563 old_flow = fl->history[fl->history_head]; 4564 fl->history[fl->history_head] = new_flow; 4565 4566 fl->history_head++; 4567 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4568 4569 if (likely(fl->buckets[old_flow])) 4570 fl->buckets[old_flow]--; 4571 4572 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4573 fl->count++; 4574 rcu_read_unlock(); 4575 return true; 4576 } 4577 } 4578 rcu_read_unlock(); 4579 #endif 4580 return false; 4581 } 4582 4583 /* 4584 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4585 * queue (may be a remote CPU queue). 4586 */ 4587 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4588 unsigned int *qtail) 4589 { 4590 struct softnet_data *sd; 4591 unsigned long flags; 4592 unsigned int qlen; 4593 4594 sd = &per_cpu(softnet_data, cpu); 4595 4596 local_irq_save(flags); 4597 4598 rps_lock(sd); 4599 if (!netif_running(skb->dev)) 4600 goto drop; 4601 qlen = skb_queue_len(&sd->input_pkt_queue); 4602 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4603 if (qlen) { 4604 enqueue: 4605 __skb_queue_tail(&sd->input_pkt_queue, skb); 4606 input_queue_tail_incr_save(sd, qtail); 4607 rps_unlock(sd); 4608 local_irq_restore(flags); 4609 return NET_RX_SUCCESS; 4610 } 4611 4612 /* Schedule NAPI for backlog device 4613 * We can use non atomic operation since we own the queue lock 4614 */ 4615 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4616 if (!rps_ipi_queued(sd)) 4617 ____napi_schedule(sd, &sd->backlog); 4618 } 4619 goto enqueue; 4620 } 4621 4622 drop: 4623 sd->dropped++; 4624 rps_unlock(sd); 4625 4626 local_irq_restore(flags); 4627 4628 atomic_long_inc(&skb->dev->rx_dropped); 4629 kfree_skb(skb); 4630 return NET_RX_DROP; 4631 } 4632 4633 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4634 { 4635 struct net_device *dev = skb->dev; 4636 struct netdev_rx_queue *rxqueue; 4637 4638 rxqueue = dev->_rx; 4639 4640 if (skb_rx_queue_recorded(skb)) { 4641 u16 index = skb_get_rx_queue(skb); 4642 4643 if (unlikely(index >= dev->real_num_rx_queues)) { 4644 WARN_ONCE(dev->real_num_rx_queues > 1, 4645 "%s received packet on queue %u, but number " 4646 "of RX queues is %u\n", 4647 dev->name, index, dev->real_num_rx_queues); 4648 4649 return rxqueue; /* Return first rxqueue */ 4650 } 4651 rxqueue += index; 4652 } 4653 return rxqueue; 4654 } 4655 4656 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4657 struct xdp_buff *xdp, 4658 struct bpf_prog *xdp_prog) 4659 { 4660 void *orig_data, *orig_data_end, *hard_start; 4661 struct netdev_rx_queue *rxqueue; 4662 u32 metalen, act = XDP_DROP; 4663 u32 mac_len, frame_sz; 4664 __be16 orig_eth_type; 4665 struct ethhdr *eth; 4666 bool orig_bcast; 4667 int off; 4668 4669 /* Reinjected packets coming from act_mirred or similar should 4670 * not get XDP generic processing. 4671 */ 4672 if (skb_is_redirected(skb)) 4673 return XDP_PASS; 4674 4675 /* XDP packets must be linear and must have sufficient headroom 4676 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4677 * native XDP provides, thus we need to do it here as well. 4678 */ 4679 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4680 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4681 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4682 int troom = skb->tail + skb->data_len - skb->end; 4683 4684 /* In case we have to go down the path and also linearize, 4685 * then lets do the pskb_expand_head() work just once here. 4686 */ 4687 if (pskb_expand_head(skb, 4688 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4689 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4690 goto do_drop; 4691 if (skb_linearize(skb)) 4692 goto do_drop; 4693 } 4694 4695 /* The XDP program wants to see the packet starting at the MAC 4696 * header. 4697 */ 4698 mac_len = skb->data - skb_mac_header(skb); 4699 hard_start = skb->data - skb_headroom(skb); 4700 4701 /* SKB "head" area always have tailroom for skb_shared_info */ 4702 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4703 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4704 4705 rxqueue = netif_get_rxqueue(skb); 4706 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4707 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4708 skb_headlen(skb) + mac_len, true); 4709 4710 orig_data_end = xdp->data_end; 4711 orig_data = xdp->data; 4712 eth = (struct ethhdr *)xdp->data; 4713 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4714 orig_eth_type = eth->h_proto; 4715 4716 act = bpf_prog_run_xdp(xdp_prog, xdp); 4717 4718 /* check if bpf_xdp_adjust_head was used */ 4719 off = xdp->data - orig_data; 4720 if (off) { 4721 if (off > 0) 4722 __skb_pull(skb, off); 4723 else if (off < 0) 4724 __skb_push(skb, -off); 4725 4726 skb->mac_header += off; 4727 skb_reset_network_header(skb); 4728 } 4729 4730 /* check if bpf_xdp_adjust_tail was used */ 4731 off = xdp->data_end - orig_data_end; 4732 if (off != 0) { 4733 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4734 skb->len += off; /* positive on grow, negative on shrink */ 4735 } 4736 4737 /* check if XDP changed eth hdr such SKB needs update */ 4738 eth = (struct ethhdr *)xdp->data; 4739 if ((orig_eth_type != eth->h_proto) || 4740 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4741 __skb_push(skb, ETH_HLEN); 4742 skb->protocol = eth_type_trans(skb, skb->dev); 4743 } 4744 4745 switch (act) { 4746 case XDP_REDIRECT: 4747 case XDP_TX: 4748 __skb_push(skb, mac_len); 4749 break; 4750 case XDP_PASS: 4751 metalen = xdp->data - xdp->data_meta; 4752 if (metalen) 4753 skb_metadata_set(skb, metalen); 4754 break; 4755 default: 4756 bpf_warn_invalid_xdp_action(act); 4757 fallthrough; 4758 case XDP_ABORTED: 4759 trace_xdp_exception(skb->dev, xdp_prog, act); 4760 fallthrough; 4761 case XDP_DROP: 4762 do_drop: 4763 kfree_skb(skb); 4764 break; 4765 } 4766 4767 return act; 4768 } 4769 4770 /* When doing generic XDP we have to bypass the qdisc layer and the 4771 * network taps in order to match in-driver-XDP behavior. 4772 */ 4773 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4774 { 4775 struct net_device *dev = skb->dev; 4776 struct netdev_queue *txq; 4777 bool free_skb = true; 4778 int cpu, rc; 4779 4780 txq = netdev_core_pick_tx(dev, skb, NULL); 4781 cpu = smp_processor_id(); 4782 HARD_TX_LOCK(dev, txq, cpu); 4783 if (!netif_xmit_stopped(txq)) { 4784 rc = netdev_start_xmit(skb, dev, txq, 0); 4785 if (dev_xmit_complete(rc)) 4786 free_skb = false; 4787 } 4788 HARD_TX_UNLOCK(dev, txq); 4789 if (free_skb) { 4790 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4791 kfree_skb(skb); 4792 } 4793 } 4794 4795 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4796 4797 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4798 { 4799 if (xdp_prog) { 4800 struct xdp_buff xdp; 4801 u32 act; 4802 int err; 4803 4804 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4805 if (act != XDP_PASS) { 4806 switch (act) { 4807 case XDP_REDIRECT: 4808 err = xdp_do_generic_redirect(skb->dev, skb, 4809 &xdp, xdp_prog); 4810 if (err) 4811 goto out_redir; 4812 break; 4813 case XDP_TX: 4814 generic_xdp_tx(skb, xdp_prog); 4815 break; 4816 } 4817 return XDP_DROP; 4818 } 4819 } 4820 return XDP_PASS; 4821 out_redir: 4822 kfree_skb(skb); 4823 return XDP_DROP; 4824 } 4825 EXPORT_SYMBOL_GPL(do_xdp_generic); 4826 4827 static int netif_rx_internal(struct sk_buff *skb) 4828 { 4829 int ret; 4830 4831 net_timestamp_check(netdev_tstamp_prequeue, skb); 4832 4833 trace_netif_rx(skb); 4834 4835 #ifdef CONFIG_RPS 4836 if (static_branch_unlikely(&rps_needed)) { 4837 struct rps_dev_flow voidflow, *rflow = &voidflow; 4838 int cpu; 4839 4840 preempt_disable(); 4841 rcu_read_lock(); 4842 4843 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4844 if (cpu < 0) 4845 cpu = smp_processor_id(); 4846 4847 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4848 4849 rcu_read_unlock(); 4850 preempt_enable(); 4851 } else 4852 #endif 4853 { 4854 unsigned int qtail; 4855 4856 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4857 put_cpu(); 4858 } 4859 return ret; 4860 } 4861 4862 /** 4863 * netif_rx - post buffer to the network code 4864 * @skb: buffer to post 4865 * 4866 * This function receives a packet from a device driver and queues it for 4867 * the upper (protocol) levels to process. It always succeeds. The buffer 4868 * may be dropped during processing for congestion control or by the 4869 * protocol layers. 4870 * 4871 * return values: 4872 * NET_RX_SUCCESS (no congestion) 4873 * NET_RX_DROP (packet was dropped) 4874 * 4875 */ 4876 4877 int netif_rx(struct sk_buff *skb) 4878 { 4879 int ret; 4880 4881 trace_netif_rx_entry(skb); 4882 4883 ret = netif_rx_internal(skb); 4884 trace_netif_rx_exit(ret); 4885 4886 return ret; 4887 } 4888 EXPORT_SYMBOL(netif_rx); 4889 4890 int netif_rx_ni(struct sk_buff *skb) 4891 { 4892 int err; 4893 4894 trace_netif_rx_ni_entry(skb); 4895 4896 preempt_disable(); 4897 err = netif_rx_internal(skb); 4898 if (local_softirq_pending()) 4899 do_softirq(); 4900 preempt_enable(); 4901 trace_netif_rx_ni_exit(err); 4902 4903 return err; 4904 } 4905 EXPORT_SYMBOL(netif_rx_ni); 4906 4907 int netif_rx_any_context(struct sk_buff *skb) 4908 { 4909 /* 4910 * If invoked from contexts which do not invoke bottom half 4911 * processing either at return from interrupt or when softrqs are 4912 * reenabled, use netif_rx_ni() which invokes bottomhalf processing 4913 * directly. 4914 */ 4915 if (in_interrupt()) 4916 return netif_rx(skb); 4917 else 4918 return netif_rx_ni(skb); 4919 } 4920 EXPORT_SYMBOL(netif_rx_any_context); 4921 4922 static __latent_entropy void net_tx_action(struct softirq_action *h) 4923 { 4924 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4925 4926 if (sd->completion_queue) { 4927 struct sk_buff *clist; 4928 4929 local_irq_disable(); 4930 clist = sd->completion_queue; 4931 sd->completion_queue = NULL; 4932 local_irq_enable(); 4933 4934 while (clist) { 4935 struct sk_buff *skb = clist; 4936 4937 clist = clist->next; 4938 4939 WARN_ON(refcount_read(&skb->users)); 4940 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4941 trace_consume_skb(skb); 4942 else 4943 trace_kfree_skb(skb, net_tx_action); 4944 4945 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4946 __kfree_skb(skb); 4947 else 4948 __kfree_skb_defer(skb); 4949 } 4950 } 4951 4952 if (sd->output_queue) { 4953 struct Qdisc *head; 4954 4955 local_irq_disable(); 4956 head = sd->output_queue; 4957 sd->output_queue = NULL; 4958 sd->output_queue_tailp = &sd->output_queue; 4959 local_irq_enable(); 4960 4961 while (head) { 4962 struct Qdisc *q = head; 4963 spinlock_t *root_lock = NULL; 4964 4965 head = head->next_sched; 4966 4967 if (!(q->flags & TCQ_F_NOLOCK)) { 4968 root_lock = qdisc_lock(q); 4969 spin_lock(root_lock); 4970 } 4971 /* We need to make sure head->next_sched is read 4972 * before clearing __QDISC_STATE_SCHED 4973 */ 4974 smp_mb__before_atomic(); 4975 clear_bit(__QDISC_STATE_SCHED, &q->state); 4976 qdisc_run(q); 4977 if (root_lock) 4978 spin_unlock(root_lock); 4979 } 4980 } 4981 4982 xfrm_dev_backlog(sd); 4983 } 4984 4985 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4986 /* This hook is defined here for ATM LANE */ 4987 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4988 unsigned char *addr) __read_mostly; 4989 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4990 #endif 4991 4992 static inline struct sk_buff * 4993 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4994 struct net_device *orig_dev, bool *another) 4995 { 4996 #ifdef CONFIG_NET_CLS_ACT 4997 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4998 struct tcf_result cl_res; 4999 5000 /* If there's at least one ingress present somewhere (so 5001 * we get here via enabled static key), remaining devices 5002 * that are not configured with an ingress qdisc will bail 5003 * out here. 5004 */ 5005 if (!miniq) 5006 return skb; 5007 5008 if (*pt_prev) { 5009 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5010 *pt_prev = NULL; 5011 } 5012 5013 qdisc_skb_cb(skb)->pkt_len = skb->len; 5014 qdisc_skb_cb(skb)->mru = 0; 5015 qdisc_skb_cb(skb)->post_ct = false; 5016 skb->tc_at_ingress = 1; 5017 mini_qdisc_bstats_cpu_update(miniq, skb); 5018 5019 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 5020 &cl_res, false)) { 5021 case TC_ACT_OK: 5022 case TC_ACT_RECLASSIFY: 5023 skb->tc_index = TC_H_MIN(cl_res.classid); 5024 break; 5025 case TC_ACT_SHOT: 5026 mini_qdisc_qstats_cpu_drop(miniq); 5027 kfree_skb(skb); 5028 return NULL; 5029 case TC_ACT_STOLEN: 5030 case TC_ACT_QUEUED: 5031 case TC_ACT_TRAP: 5032 consume_skb(skb); 5033 return NULL; 5034 case TC_ACT_REDIRECT: 5035 /* skb_mac_header check was done by cls/act_bpf, so 5036 * we can safely push the L2 header back before 5037 * redirecting to another netdev 5038 */ 5039 __skb_push(skb, skb->mac_len); 5040 if (skb_do_redirect(skb) == -EAGAIN) { 5041 __skb_pull(skb, skb->mac_len); 5042 *another = true; 5043 break; 5044 } 5045 return NULL; 5046 case TC_ACT_CONSUMED: 5047 return NULL; 5048 default: 5049 break; 5050 } 5051 #endif /* CONFIG_NET_CLS_ACT */ 5052 return skb; 5053 } 5054 5055 /** 5056 * netdev_is_rx_handler_busy - check if receive handler is registered 5057 * @dev: device to check 5058 * 5059 * Check if a receive handler is already registered for a given device. 5060 * Return true if there one. 5061 * 5062 * The caller must hold the rtnl_mutex. 5063 */ 5064 bool netdev_is_rx_handler_busy(struct net_device *dev) 5065 { 5066 ASSERT_RTNL(); 5067 return dev && rtnl_dereference(dev->rx_handler); 5068 } 5069 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5070 5071 /** 5072 * netdev_rx_handler_register - register receive handler 5073 * @dev: device to register a handler for 5074 * @rx_handler: receive handler to register 5075 * @rx_handler_data: data pointer that is used by rx handler 5076 * 5077 * Register a receive handler for a device. This handler will then be 5078 * called from __netif_receive_skb. A negative errno code is returned 5079 * on a failure. 5080 * 5081 * The caller must hold the rtnl_mutex. 5082 * 5083 * For a general description of rx_handler, see enum rx_handler_result. 5084 */ 5085 int netdev_rx_handler_register(struct net_device *dev, 5086 rx_handler_func_t *rx_handler, 5087 void *rx_handler_data) 5088 { 5089 if (netdev_is_rx_handler_busy(dev)) 5090 return -EBUSY; 5091 5092 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5093 return -EINVAL; 5094 5095 /* Note: rx_handler_data must be set before rx_handler */ 5096 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5097 rcu_assign_pointer(dev->rx_handler, rx_handler); 5098 5099 return 0; 5100 } 5101 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5102 5103 /** 5104 * netdev_rx_handler_unregister - unregister receive handler 5105 * @dev: device to unregister a handler from 5106 * 5107 * Unregister a receive handler from a device. 5108 * 5109 * The caller must hold the rtnl_mutex. 5110 */ 5111 void netdev_rx_handler_unregister(struct net_device *dev) 5112 { 5113 5114 ASSERT_RTNL(); 5115 RCU_INIT_POINTER(dev->rx_handler, NULL); 5116 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5117 * section has a guarantee to see a non NULL rx_handler_data 5118 * as well. 5119 */ 5120 synchronize_net(); 5121 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5122 } 5123 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5124 5125 /* 5126 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5127 * the special handling of PFMEMALLOC skbs. 5128 */ 5129 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5130 { 5131 switch (skb->protocol) { 5132 case htons(ETH_P_ARP): 5133 case htons(ETH_P_IP): 5134 case htons(ETH_P_IPV6): 5135 case htons(ETH_P_8021Q): 5136 case htons(ETH_P_8021AD): 5137 return true; 5138 default: 5139 return false; 5140 } 5141 } 5142 5143 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5144 int *ret, struct net_device *orig_dev) 5145 { 5146 if (nf_hook_ingress_active(skb)) { 5147 int ingress_retval; 5148 5149 if (*pt_prev) { 5150 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5151 *pt_prev = NULL; 5152 } 5153 5154 rcu_read_lock(); 5155 ingress_retval = nf_hook_ingress(skb); 5156 rcu_read_unlock(); 5157 return ingress_retval; 5158 } 5159 return 0; 5160 } 5161 5162 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5163 struct packet_type **ppt_prev) 5164 { 5165 struct packet_type *ptype, *pt_prev; 5166 rx_handler_func_t *rx_handler; 5167 struct sk_buff *skb = *pskb; 5168 struct net_device *orig_dev; 5169 bool deliver_exact = false; 5170 int ret = NET_RX_DROP; 5171 __be16 type; 5172 5173 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5174 5175 trace_netif_receive_skb(skb); 5176 5177 orig_dev = skb->dev; 5178 5179 skb_reset_network_header(skb); 5180 if (!skb_transport_header_was_set(skb)) 5181 skb_reset_transport_header(skb); 5182 skb_reset_mac_len(skb); 5183 5184 pt_prev = NULL; 5185 5186 another_round: 5187 skb->skb_iif = skb->dev->ifindex; 5188 5189 __this_cpu_inc(softnet_data.processed); 5190 5191 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5192 int ret2; 5193 5194 preempt_disable(); 5195 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5196 preempt_enable(); 5197 5198 if (ret2 != XDP_PASS) { 5199 ret = NET_RX_DROP; 5200 goto out; 5201 } 5202 skb_reset_mac_len(skb); 5203 } 5204 5205 if (eth_type_vlan(skb->protocol)) { 5206 skb = skb_vlan_untag(skb); 5207 if (unlikely(!skb)) 5208 goto out; 5209 } 5210 5211 if (skb_skip_tc_classify(skb)) 5212 goto skip_classify; 5213 5214 if (pfmemalloc) 5215 goto skip_taps; 5216 5217 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5218 if (pt_prev) 5219 ret = deliver_skb(skb, pt_prev, orig_dev); 5220 pt_prev = ptype; 5221 } 5222 5223 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5224 if (pt_prev) 5225 ret = deliver_skb(skb, pt_prev, orig_dev); 5226 pt_prev = ptype; 5227 } 5228 5229 skip_taps: 5230 #ifdef CONFIG_NET_INGRESS 5231 if (static_branch_unlikely(&ingress_needed_key)) { 5232 bool another = false; 5233 5234 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5235 &another); 5236 if (another) 5237 goto another_round; 5238 if (!skb) 5239 goto out; 5240 5241 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5242 goto out; 5243 } 5244 #endif 5245 skb_reset_redirect(skb); 5246 skip_classify: 5247 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5248 goto drop; 5249 5250 if (skb_vlan_tag_present(skb)) { 5251 if (pt_prev) { 5252 ret = deliver_skb(skb, pt_prev, orig_dev); 5253 pt_prev = NULL; 5254 } 5255 if (vlan_do_receive(&skb)) 5256 goto another_round; 5257 else if (unlikely(!skb)) 5258 goto out; 5259 } 5260 5261 rx_handler = rcu_dereference(skb->dev->rx_handler); 5262 if (rx_handler) { 5263 if (pt_prev) { 5264 ret = deliver_skb(skb, pt_prev, orig_dev); 5265 pt_prev = NULL; 5266 } 5267 switch (rx_handler(&skb)) { 5268 case RX_HANDLER_CONSUMED: 5269 ret = NET_RX_SUCCESS; 5270 goto out; 5271 case RX_HANDLER_ANOTHER: 5272 goto another_round; 5273 case RX_HANDLER_EXACT: 5274 deliver_exact = true; 5275 case RX_HANDLER_PASS: 5276 break; 5277 default: 5278 BUG(); 5279 } 5280 } 5281 5282 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5283 check_vlan_id: 5284 if (skb_vlan_tag_get_id(skb)) { 5285 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5286 * find vlan device. 5287 */ 5288 skb->pkt_type = PACKET_OTHERHOST; 5289 } else if (eth_type_vlan(skb->protocol)) { 5290 /* Outer header is 802.1P with vlan 0, inner header is 5291 * 802.1Q or 802.1AD and vlan_do_receive() above could 5292 * not find vlan dev for vlan id 0. 5293 */ 5294 __vlan_hwaccel_clear_tag(skb); 5295 skb = skb_vlan_untag(skb); 5296 if (unlikely(!skb)) 5297 goto out; 5298 if (vlan_do_receive(&skb)) 5299 /* After stripping off 802.1P header with vlan 0 5300 * vlan dev is found for inner header. 5301 */ 5302 goto another_round; 5303 else if (unlikely(!skb)) 5304 goto out; 5305 else 5306 /* We have stripped outer 802.1P vlan 0 header. 5307 * But could not find vlan dev. 5308 * check again for vlan id to set OTHERHOST. 5309 */ 5310 goto check_vlan_id; 5311 } 5312 /* Note: we might in the future use prio bits 5313 * and set skb->priority like in vlan_do_receive() 5314 * For the time being, just ignore Priority Code Point 5315 */ 5316 __vlan_hwaccel_clear_tag(skb); 5317 } 5318 5319 type = skb->protocol; 5320 5321 /* deliver only exact match when indicated */ 5322 if (likely(!deliver_exact)) { 5323 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5324 &ptype_base[ntohs(type) & 5325 PTYPE_HASH_MASK]); 5326 } 5327 5328 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5329 &orig_dev->ptype_specific); 5330 5331 if (unlikely(skb->dev != orig_dev)) { 5332 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5333 &skb->dev->ptype_specific); 5334 } 5335 5336 if (pt_prev) { 5337 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5338 goto drop; 5339 *ppt_prev = pt_prev; 5340 } else { 5341 drop: 5342 if (!deliver_exact) 5343 atomic_long_inc(&skb->dev->rx_dropped); 5344 else 5345 atomic_long_inc(&skb->dev->rx_nohandler); 5346 kfree_skb(skb); 5347 /* Jamal, now you will not able to escape explaining 5348 * me how you were going to use this. :-) 5349 */ 5350 ret = NET_RX_DROP; 5351 } 5352 5353 out: 5354 /* The invariant here is that if *ppt_prev is not NULL 5355 * then skb should also be non-NULL. 5356 * 5357 * Apparently *ppt_prev assignment above holds this invariant due to 5358 * skb dereferencing near it. 5359 */ 5360 *pskb = skb; 5361 return ret; 5362 } 5363 5364 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5365 { 5366 struct net_device *orig_dev = skb->dev; 5367 struct packet_type *pt_prev = NULL; 5368 int ret; 5369 5370 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5371 if (pt_prev) 5372 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5373 skb->dev, pt_prev, orig_dev); 5374 return ret; 5375 } 5376 5377 /** 5378 * netif_receive_skb_core - special purpose version of netif_receive_skb 5379 * @skb: buffer to process 5380 * 5381 * More direct receive version of netif_receive_skb(). It should 5382 * only be used by callers that have a need to skip RPS and Generic XDP. 5383 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5384 * 5385 * This function may only be called from softirq context and interrupts 5386 * should be enabled. 5387 * 5388 * Return values (usually ignored): 5389 * NET_RX_SUCCESS: no congestion 5390 * NET_RX_DROP: packet was dropped 5391 */ 5392 int netif_receive_skb_core(struct sk_buff *skb) 5393 { 5394 int ret; 5395 5396 rcu_read_lock(); 5397 ret = __netif_receive_skb_one_core(skb, false); 5398 rcu_read_unlock(); 5399 5400 return ret; 5401 } 5402 EXPORT_SYMBOL(netif_receive_skb_core); 5403 5404 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5405 struct packet_type *pt_prev, 5406 struct net_device *orig_dev) 5407 { 5408 struct sk_buff *skb, *next; 5409 5410 if (!pt_prev) 5411 return; 5412 if (list_empty(head)) 5413 return; 5414 if (pt_prev->list_func != NULL) 5415 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5416 ip_list_rcv, head, pt_prev, orig_dev); 5417 else 5418 list_for_each_entry_safe(skb, next, head, list) { 5419 skb_list_del_init(skb); 5420 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5421 } 5422 } 5423 5424 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5425 { 5426 /* Fast-path assumptions: 5427 * - There is no RX handler. 5428 * - Only one packet_type matches. 5429 * If either of these fails, we will end up doing some per-packet 5430 * processing in-line, then handling the 'last ptype' for the whole 5431 * sublist. This can't cause out-of-order delivery to any single ptype, 5432 * because the 'last ptype' must be constant across the sublist, and all 5433 * other ptypes are handled per-packet. 5434 */ 5435 /* Current (common) ptype of sublist */ 5436 struct packet_type *pt_curr = NULL; 5437 /* Current (common) orig_dev of sublist */ 5438 struct net_device *od_curr = NULL; 5439 struct list_head sublist; 5440 struct sk_buff *skb, *next; 5441 5442 INIT_LIST_HEAD(&sublist); 5443 list_for_each_entry_safe(skb, next, head, list) { 5444 struct net_device *orig_dev = skb->dev; 5445 struct packet_type *pt_prev = NULL; 5446 5447 skb_list_del_init(skb); 5448 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5449 if (!pt_prev) 5450 continue; 5451 if (pt_curr != pt_prev || od_curr != orig_dev) { 5452 /* dispatch old sublist */ 5453 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5454 /* start new sublist */ 5455 INIT_LIST_HEAD(&sublist); 5456 pt_curr = pt_prev; 5457 od_curr = orig_dev; 5458 } 5459 list_add_tail(&skb->list, &sublist); 5460 } 5461 5462 /* dispatch final sublist */ 5463 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5464 } 5465 5466 static int __netif_receive_skb(struct sk_buff *skb) 5467 { 5468 int ret; 5469 5470 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5471 unsigned int noreclaim_flag; 5472 5473 /* 5474 * PFMEMALLOC skbs are special, they should 5475 * - be delivered to SOCK_MEMALLOC sockets only 5476 * - stay away from userspace 5477 * - have bounded memory usage 5478 * 5479 * Use PF_MEMALLOC as this saves us from propagating the allocation 5480 * context down to all allocation sites. 5481 */ 5482 noreclaim_flag = memalloc_noreclaim_save(); 5483 ret = __netif_receive_skb_one_core(skb, true); 5484 memalloc_noreclaim_restore(noreclaim_flag); 5485 } else 5486 ret = __netif_receive_skb_one_core(skb, false); 5487 5488 return ret; 5489 } 5490 5491 static void __netif_receive_skb_list(struct list_head *head) 5492 { 5493 unsigned long noreclaim_flag = 0; 5494 struct sk_buff *skb, *next; 5495 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5496 5497 list_for_each_entry_safe(skb, next, head, list) { 5498 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5499 struct list_head sublist; 5500 5501 /* Handle the previous sublist */ 5502 list_cut_before(&sublist, head, &skb->list); 5503 if (!list_empty(&sublist)) 5504 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5505 pfmemalloc = !pfmemalloc; 5506 /* See comments in __netif_receive_skb */ 5507 if (pfmemalloc) 5508 noreclaim_flag = memalloc_noreclaim_save(); 5509 else 5510 memalloc_noreclaim_restore(noreclaim_flag); 5511 } 5512 } 5513 /* Handle the remaining sublist */ 5514 if (!list_empty(head)) 5515 __netif_receive_skb_list_core(head, pfmemalloc); 5516 /* Restore pflags */ 5517 if (pfmemalloc) 5518 memalloc_noreclaim_restore(noreclaim_flag); 5519 } 5520 5521 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5522 { 5523 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5524 struct bpf_prog *new = xdp->prog; 5525 int ret = 0; 5526 5527 if (new) { 5528 u32 i; 5529 5530 mutex_lock(&new->aux->used_maps_mutex); 5531 5532 /* generic XDP does not work with DEVMAPs that can 5533 * have a bpf_prog installed on an entry 5534 */ 5535 for (i = 0; i < new->aux->used_map_cnt; i++) { 5536 if (dev_map_can_have_prog(new->aux->used_maps[i]) || 5537 cpu_map_prog_allowed(new->aux->used_maps[i])) { 5538 mutex_unlock(&new->aux->used_maps_mutex); 5539 return -EINVAL; 5540 } 5541 } 5542 5543 mutex_unlock(&new->aux->used_maps_mutex); 5544 } 5545 5546 switch (xdp->command) { 5547 case XDP_SETUP_PROG: 5548 rcu_assign_pointer(dev->xdp_prog, new); 5549 if (old) 5550 bpf_prog_put(old); 5551 5552 if (old && !new) { 5553 static_branch_dec(&generic_xdp_needed_key); 5554 } else if (new && !old) { 5555 static_branch_inc(&generic_xdp_needed_key); 5556 dev_disable_lro(dev); 5557 dev_disable_gro_hw(dev); 5558 } 5559 break; 5560 5561 default: 5562 ret = -EINVAL; 5563 break; 5564 } 5565 5566 return ret; 5567 } 5568 5569 static int netif_receive_skb_internal(struct sk_buff *skb) 5570 { 5571 int ret; 5572 5573 net_timestamp_check(netdev_tstamp_prequeue, skb); 5574 5575 if (skb_defer_rx_timestamp(skb)) 5576 return NET_RX_SUCCESS; 5577 5578 rcu_read_lock(); 5579 #ifdef CONFIG_RPS 5580 if (static_branch_unlikely(&rps_needed)) { 5581 struct rps_dev_flow voidflow, *rflow = &voidflow; 5582 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5583 5584 if (cpu >= 0) { 5585 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5586 rcu_read_unlock(); 5587 return ret; 5588 } 5589 } 5590 #endif 5591 ret = __netif_receive_skb(skb); 5592 rcu_read_unlock(); 5593 return ret; 5594 } 5595 5596 static void netif_receive_skb_list_internal(struct list_head *head) 5597 { 5598 struct sk_buff *skb, *next; 5599 struct list_head sublist; 5600 5601 INIT_LIST_HEAD(&sublist); 5602 list_for_each_entry_safe(skb, next, head, list) { 5603 net_timestamp_check(netdev_tstamp_prequeue, skb); 5604 skb_list_del_init(skb); 5605 if (!skb_defer_rx_timestamp(skb)) 5606 list_add_tail(&skb->list, &sublist); 5607 } 5608 list_splice_init(&sublist, head); 5609 5610 rcu_read_lock(); 5611 #ifdef CONFIG_RPS 5612 if (static_branch_unlikely(&rps_needed)) { 5613 list_for_each_entry_safe(skb, next, head, list) { 5614 struct rps_dev_flow voidflow, *rflow = &voidflow; 5615 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5616 5617 if (cpu >= 0) { 5618 /* Will be handled, remove from list */ 5619 skb_list_del_init(skb); 5620 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5621 } 5622 } 5623 } 5624 #endif 5625 __netif_receive_skb_list(head); 5626 rcu_read_unlock(); 5627 } 5628 5629 /** 5630 * netif_receive_skb - process receive buffer from network 5631 * @skb: buffer to process 5632 * 5633 * netif_receive_skb() is the main receive data processing function. 5634 * It always succeeds. The buffer may be dropped during processing 5635 * for congestion control or by the protocol layers. 5636 * 5637 * This function may only be called from softirq context and interrupts 5638 * should be enabled. 5639 * 5640 * Return values (usually ignored): 5641 * NET_RX_SUCCESS: no congestion 5642 * NET_RX_DROP: packet was dropped 5643 */ 5644 int netif_receive_skb(struct sk_buff *skb) 5645 { 5646 int ret; 5647 5648 trace_netif_receive_skb_entry(skb); 5649 5650 ret = netif_receive_skb_internal(skb); 5651 trace_netif_receive_skb_exit(ret); 5652 5653 return ret; 5654 } 5655 EXPORT_SYMBOL(netif_receive_skb); 5656 5657 /** 5658 * netif_receive_skb_list - process many receive buffers from network 5659 * @head: list of skbs to process. 5660 * 5661 * Since return value of netif_receive_skb() is normally ignored, and 5662 * wouldn't be meaningful for a list, this function returns void. 5663 * 5664 * This function may only be called from softirq context and interrupts 5665 * should be enabled. 5666 */ 5667 void netif_receive_skb_list(struct list_head *head) 5668 { 5669 struct sk_buff *skb; 5670 5671 if (list_empty(head)) 5672 return; 5673 if (trace_netif_receive_skb_list_entry_enabled()) { 5674 list_for_each_entry(skb, head, list) 5675 trace_netif_receive_skb_list_entry(skb); 5676 } 5677 netif_receive_skb_list_internal(head); 5678 trace_netif_receive_skb_list_exit(0); 5679 } 5680 EXPORT_SYMBOL(netif_receive_skb_list); 5681 5682 static DEFINE_PER_CPU(struct work_struct, flush_works); 5683 5684 /* Network device is going away, flush any packets still pending */ 5685 static void flush_backlog(struct work_struct *work) 5686 { 5687 struct sk_buff *skb, *tmp; 5688 struct softnet_data *sd; 5689 5690 local_bh_disable(); 5691 sd = this_cpu_ptr(&softnet_data); 5692 5693 local_irq_disable(); 5694 rps_lock(sd); 5695 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5696 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5697 __skb_unlink(skb, &sd->input_pkt_queue); 5698 dev_kfree_skb_irq(skb); 5699 input_queue_head_incr(sd); 5700 } 5701 } 5702 rps_unlock(sd); 5703 local_irq_enable(); 5704 5705 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5706 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5707 __skb_unlink(skb, &sd->process_queue); 5708 kfree_skb(skb); 5709 input_queue_head_incr(sd); 5710 } 5711 } 5712 local_bh_enable(); 5713 } 5714 5715 static bool flush_required(int cpu) 5716 { 5717 #if IS_ENABLED(CONFIG_RPS) 5718 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5719 bool do_flush; 5720 5721 local_irq_disable(); 5722 rps_lock(sd); 5723 5724 /* as insertion into process_queue happens with the rps lock held, 5725 * process_queue access may race only with dequeue 5726 */ 5727 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5728 !skb_queue_empty_lockless(&sd->process_queue); 5729 rps_unlock(sd); 5730 local_irq_enable(); 5731 5732 return do_flush; 5733 #endif 5734 /* without RPS we can't safely check input_pkt_queue: during a 5735 * concurrent remote skb_queue_splice() we can detect as empty both 5736 * input_pkt_queue and process_queue even if the latter could end-up 5737 * containing a lot of packets. 5738 */ 5739 return true; 5740 } 5741 5742 static void flush_all_backlogs(void) 5743 { 5744 static cpumask_t flush_cpus; 5745 unsigned int cpu; 5746 5747 /* since we are under rtnl lock protection we can use static data 5748 * for the cpumask and avoid allocating on stack the possibly 5749 * large mask 5750 */ 5751 ASSERT_RTNL(); 5752 5753 get_online_cpus(); 5754 5755 cpumask_clear(&flush_cpus); 5756 for_each_online_cpu(cpu) { 5757 if (flush_required(cpu)) { 5758 queue_work_on(cpu, system_highpri_wq, 5759 per_cpu_ptr(&flush_works, cpu)); 5760 cpumask_set_cpu(cpu, &flush_cpus); 5761 } 5762 } 5763 5764 /* we can have in flight packet[s] on the cpus we are not flushing, 5765 * synchronize_net() in unregister_netdevice_many() will take care of 5766 * them 5767 */ 5768 for_each_cpu(cpu, &flush_cpus) 5769 flush_work(per_cpu_ptr(&flush_works, cpu)); 5770 5771 put_online_cpus(); 5772 } 5773 5774 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5775 static void gro_normal_list(struct napi_struct *napi) 5776 { 5777 if (!napi->rx_count) 5778 return; 5779 netif_receive_skb_list_internal(&napi->rx_list); 5780 INIT_LIST_HEAD(&napi->rx_list); 5781 napi->rx_count = 0; 5782 } 5783 5784 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5785 * pass the whole batch up to the stack. 5786 */ 5787 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs) 5788 { 5789 list_add_tail(&skb->list, &napi->rx_list); 5790 napi->rx_count += segs; 5791 if (napi->rx_count >= gro_normal_batch) 5792 gro_normal_list(napi); 5793 } 5794 5795 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5796 { 5797 struct packet_offload *ptype; 5798 __be16 type = skb->protocol; 5799 struct list_head *head = &offload_base; 5800 int err = -ENOENT; 5801 5802 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5803 5804 if (NAPI_GRO_CB(skb)->count == 1) { 5805 skb_shinfo(skb)->gso_size = 0; 5806 goto out; 5807 } 5808 5809 rcu_read_lock(); 5810 list_for_each_entry_rcu(ptype, head, list) { 5811 if (ptype->type != type || !ptype->callbacks.gro_complete) 5812 continue; 5813 5814 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5815 ipv6_gro_complete, inet_gro_complete, 5816 skb, 0); 5817 break; 5818 } 5819 rcu_read_unlock(); 5820 5821 if (err) { 5822 WARN_ON(&ptype->list == head); 5823 kfree_skb(skb); 5824 return NET_RX_SUCCESS; 5825 } 5826 5827 out: 5828 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count); 5829 return NET_RX_SUCCESS; 5830 } 5831 5832 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5833 bool flush_old) 5834 { 5835 struct list_head *head = &napi->gro_hash[index].list; 5836 struct sk_buff *skb, *p; 5837 5838 list_for_each_entry_safe_reverse(skb, p, head, list) { 5839 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5840 return; 5841 skb_list_del_init(skb); 5842 napi_gro_complete(napi, skb); 5843 napi->gro_hash[index].count--; 5844 } 5845 5846 if (!napi->gro_hash[index].count) 5847 __clear_bit(index, &napi->gro_bitmask); 5848 } 5849 5850 /* napi->gro_hash[].list contains packets ordered by age. 5851 * youngest packets at the head of it. 5852 * Complete skbs in reverse order to reduce latencies. 5853 */ 5854 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5855 { 5856 unsigned long bitmask = napi->gro_bitmask; 5857 unsigned int i, base = ~0U; 5858 5859 while ((i = ffs(bitmask)) != 0) { 5860 bitmask >>= i; 5861 base += i; 5862 __napi_gro_flush_chain(napi, base, flush_old); 5863 } 5864 } 5865 EXPORT_SYMBOL(napi_gro_flush); 5866 5867 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5868 struct sk_buff *skb) 5869 { 5870 unsigned int maclen = skb->dev->hard_header_len; 5871 u32 hash = skb_get_hash_raw(skb); 5872 struct list_head *head; 5873 struct sk_buff *p; 5874 5875 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5876 list_for_each_entry(p, head, list) { 5877 unsigned long diffs; 5878 5879 NAPI_GRO_CB(p)->flush = 0; 5880 5881 if (hash != skb_get_hash_raw(p)) { 5882 NAPI_GRO_CB(p)->same_flow = 0; 5883 continue; 5884 } 5885 5886 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5887 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5888 if (skb_vlan_tag_present(p)) 5889 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5890 diffs |= skb_metadata_dst_cmp(p, skb); 5891 diffs |= skb_metadata_differs(p, skb); 5892 if (maclen == ETH_HLEN) 5893 diffs |= compare_ether_header(skb_mac_header(p), 5894 skb_mac_header(skb)); 5895 else if (!diffs) 5896 diffs = memcmp(skb_mac_header(p), 5897 skb_mac_header(skb), 5898 maclen); 5899 NAPI_GRO_CB(p)->same_flow = !diffs; 5900 } 5901 5902 return head; 5903 } 5904 5905 static void skb_gro_reset_offset(struct sk_buff *skb) 5906 { 5907 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5908 const skb_frag_t *frag0 = &pinfo->frags[0]; 5909 5910 NAPI_GRO_CB(skb)->data_offset = 0; 5911 NAPI_GRO_CB(skb)->frag0 = NULL; 5912 NAPI_GRO_CB(skb)->frag0_len = 0; 5913 5914 if (!skb_headlen(skb) && pinfo->nr_frags && 5915 !PageHighMem(skb_frag_page(frag0))) { 5916 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5917 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5918 skb_frag_size(frag0), 5919 skb->end - skb->tail); 5920 } 5921 } 5922 5923 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5924 { 5925 struct skb_shared_info *pinfo = skb_shinfo(skb); 5926 5927 BUG_ON(skb->end - skb->tail < grow); 5928 5929 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5930 5931 skb->data_len -= grow; 5932 skb->tail += grow; 5933 5934 skb_frag_off_add(&pinfo->frags[0], grow); 5935 skb_frag_size_sub(&pinfo->frags[0], grow); 5936 5937 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5938 skb_frag_unref(skb, 0); 5939 memmove(pinfo->frags, pinfo->frags + 1, 5940 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5941 } 5942 } 5943 5944 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5945 { 5946 struct sk_buff *oldest; 5947 5948 oldest = list_last_entry(head, struct sk_buff, list); 5949 5950 /* We are called with head length >= MAX_GRO_SKBS, so this is 5951 * impossible. 5952 */ 5953 if (WARN_ON_ONCE(!oldest)) 5954 return; 5955 5956 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5957 * SKB to the chain. 5958 */ 5959 skb_list_del_init(oldest); 5960 napi_gro_complete(napi, oldest); 5961 } 5962 5963 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5964 { 5965 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5966 struct list_head *head = &offload_base; 5967 struct packet_offload *ptype; 5968 __be16 type = skb->protocol; 5969 struct list_head *gro_head; 5970 struct sk_buff *pp = NULL; 5971 enum gro_result ret; 5972 int same_flow; 5973 int grow; 5974 5975 if (netif_elide_gro(skb->dev)) 5976 goto normal; 5977 5978 gro_head = gro_list_prepare(napi, skb); 5979 5980 rcu_read_lock(); 5981 list_for_each_entry_rcu(ptype, head, list) { 5982 if (ptype->type != type || !ptype->callbacks.gro_receive) 5983 continue; 5984 5985 skb_set_network_header(skb, skb_gro_offset(skb)); 5986 skb_reset_mac_len(skb); 5987 NAPI_GRO_CB(skb)->same_flow = 0; 5988 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5989 NAPI_GRO_CB(skb)->free = 0; 5990 NAPI_GRO_CB(skb)->encap_mark = 0; 5991 NAPI_GRO_CB(skb)->recursion_counter = 0; 5992 NAPI_GRO_CB(skb)->is_fou = 0; 5993 NAPI_GRO_CB(skb)->is_atomic = 1; 5994 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5995 5996 /* Setup for GRO checksum validation */ 5997 switch (skb->ip_summed) { 5998 case CHECKSUM_COMPLETE: 5999 NAPI_GRO_CB(skb)->csum = skb->csum; 6000 NAPI_GRO_CB(skb)->csum_valid = 1; 6001 NAPI_GRO_CB(skb)->csum_cnt = 0; 6002 break; 6003 case CHECKSUM_UNNECESSARY: 6004 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 6005 NAPI_GRO_CB(skb)->csum_valid = 0; 6006 break; 6007 default: 6008 NAPI_GRO_CB(skb)->csum_cnt = 0; 6009 NAPI_GRO_CB(skb)->csum_valid = 0; 6010 } 6011 6012 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 6013 ipv6_gro_receive, inet_gro_receive, 6014 gro_head, skb); 6015 break; 6016 } 6017 rcu_read_unlock(); 6018 6019 if (&ptype->list == head) 6020 goto normal; 6021 6022 if (PTR_ERR(pp) == -EINPROGRESS) { 6023 ret = GRO_CONSUMED; 6024 goto ok; 6025 } 6026 6027 same_flow = NAPI_GRO_CB(skb)->same_flow; 6028 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 6029 6030 if (pp) { 6031 skb_list_del_init(pp); 6032 napi_gro_complete(napi, pp); 6033 napi->gro_hash[hash].count--; 6034 } 6035 6036 if (same_flow) 6037 goto ok; 6038 6039 if (NAPI_GRO_CB(skb)->flush) 6040 goto normal; 6041 6042 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 6043 gro_flush_oldest(napi, gro_head); 6044 } else { 6045 napi->gro_hash[hash].count++; 6046 } 6047 NAPI_GRO_CB(skb)->count = 1; 6048 NAPI_GRO_CB(skb)->age = jiffies; 6049 NAPI_GRO_CB(skb)->last = skb; 6050 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 6051 list_add(&skb->list, gro_head); 6052 ret = GRO_HELD; 6053 6054 pull: 6055 grow = skb_gro_offset(skb) - skb_headlen(skb); 6056 if (grow > 0) 6057 gro_pull_from_frag0(skb, grow); 6058 ok: 6059 if (napi->gro_hash[hash].count) { 6060 if (!test_bit(hash, &napi->gro_bitmask)) 6061 __set_bit(hash, &napi->gro_bitmask); 6062 } else if (test_bit(hash, &napi->gro_bitmask)) { 6063 __clear_bit(hash, &napi->gro_bitmask); 6064 } 6065 6066 return ret; 6067 6068 normal: 6069 ret = GRO_NORMAL; 6070 goto pull; 6071 } 6072 6073 struct packet_offload *gro_find_receive_by_type(__be16 type) 6074 { 6075 struct list_head *offload_head = &offload_base; 6076 struct packet_offload *ptype; 6077 6078 list_for_each_entry_rcu(ptype, offload_head, list) { 6079 if (ptype->type != type || !ptype->callbacks.gro_receive) 6080 continue; 6081 return ptype; 6082 } 6083 return NULL; 6084 } 6085 EXPORT_SYMBOL(gro_find_receive_by_type); 6086 6087 struct packet_offload *gro_find_complete_by_type(__be16 type) 6088 { 6089 struct list_head *offload_head = &offload_base; 6090 struct packet_offload *ptype; 6091 6092 list_for_each_entry_rcu(ptype, offload_head, list) { 6093 if (ptype->type != type || !ptype->callbacks.gro_complete) 6094 continue; 6095 return ptype; 6096 } 6097 return NULL; 6098 } 6099 EXPORT_SYMBOL(gro_find_complete_by_type); 6100 6101 static gro_result_t napi_skb_finish(struct napi_struct *napi, 6102 struct sk_buff *skb, 6103 gro_result_t ret) 6104 { 6105 switch (ret) { 6106 case GRO_NORMAL: 6107 gro_normal_one(napi, skb, 1); 6108 break; 6109 6110 case GRO_MERGED_FREE: 6111 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6112 napi_skb_free_stolen_head(skb); 6113 else 6114 __kfree_skb_defer(skb); 6115 break; 6116 6117 case GRO_HELD: 6118 case GRO_MERGED: 6119 case GRO_CONSUMED: 6120 break; 6121 } 6122 6123 return ret; 6124 } 6125 6126 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6127 { 6128 gro_result_t ret; 6129 6130 skb_mark_napi_id(skb, napi); 6131 trace_napi_gro_receive_entry(skb); 6132 6133 skb_gro_reset_offset(skb); 6134 6135 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6136 trace_napi_gro_receive_exit(ret); 6137 6138 return ret; 6139 } 6140 EXPORT_SYMBOL(napi_gro_receive); 6141 6142 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6143 { 6144 if (unlikely(skb->pfmemalloc)) { 6145 consume_skb(skb); 6146 return; 6147 } 6148 __skb_pull(skb, skb_headlen(skb)); 6149 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6150 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6151 __vlan_hwaccel_clear_tag(skb); 6152 skb->dev = napi->dev; 6153 skb->skb_iif = 0; 6154 6155 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6156 skb->pkt_type = PACKET_HOST; 6157 6158 skb->encapsulation = 0; 6159 skb_shinfo(skb)->gso_type = 0; 6160 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6161 skb_ext_reset(skb); 6162 6163 napi->skb = skb; 6164 } 6165 6166 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6167 { 6168 struct sk_buff *skb = napi->skb; 6169 6170 if (!skb) { 6171 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6172 if (skb) { 6173 napi->skb = skb; 6174 skb_mark_napi_id(skb, napi); 6175 } 6176 } 6177 return skb; 6178 } 6179 EXPORT_SYMBOL(napi_get_frags); 6180 6181 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6182 struct sk_buff *skb, 6183 gro_result_t ret) 6184 { 6185 switch (ret) { 6186 case GRO_NORMAL: 6187 case GRO_HELD: 6188 __skb_push(skb, ETH_HLEN); 6189 skb->protocol = eth_type_trans(skb, skb->dev); 6190 if (ret == GRO_NORMAL) 6191 gro_normal_one(napi, skb, 1); 6192 break; 6193 6194 case GRO_MERGED_FREE: 6195 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6196 napi_skb_free_stolen_head(skb); 6197 else 6198 napi_reuse_skb(napi, skb); 6199 break; 6200 6201 case GRO_MERGED: 6202 case GRO_CONSUMED: 6203 break; 6204 } 6205 6206 return ret; 6207 } 6208 6209 /* Upper GRO stack assumes network header starts at gro_offset=0 6210 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6211 * We copy ethernet header into skb->data to have a common layout. 6212 */ 6213 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6214 { 6215 struct sk_buff *skb = napi->skb; 6216 const struct ethhdr *eth; 6217 unsigned int hlen = sizeof(*eth); 6218 6219 napi->skb = NULL; 6220 6221 skb_reset_mac_header(skb); 6222 skb_gro_reset_offset(skb); 6223 6224 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6225 eth = skb_gro_header_slow(skb, hlen, 0); 6226 if (unlikely(!eth)) { 6227 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6228 __func__, napi->dev->name); 6229 napi_reuse_skb(napi, skb); 6230 return NULL; 6231 } 6232 } else { 6233 eth = (const struct ethhdr *)skb->data; 6234 gro_pull_from_frag0(skb, hlen); 6235 NAPI_GRO_CB(skb)->frag0 += hlen; 6236 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6237 } 6238 __skb_pull(skb, hlen); 6239 6240 /* 6241 * This works because the only protocols we care about don't require 6242 * special handling. 6243 * We'll fix it up properly in napi_frags_finish() 6244 */ 6245 skb->protocol = eth->h_proto; 6246 6247 return skb; 6248 } 6249 6250 gro_result_t napi_gro_frags(struct napi_struct *napi) 6251 { 6252 gro_result_t ret; 6253 struct sk_buff *skb = napi_frags_skb(napi); 6254 6255 trace_napi_gro_frags_entry(skb); 6256 6257 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6258 trace_napi_gro_frags_exit(ret); 6259 6260 return ret; 6261 } 6262 EXPORT_SYMBOL(napi_gro_frags); 6263 6264 /* Compute the checksum from gro_offset and return the folded value 6265 * after adding in any pseudo checksum. 6266 */ 6267 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6268 { 6269 __wsum wsum; 6270 __sum16 sum; 6271 6272 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6273 6274 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6275 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6276 /* See comments in __skb_checksum_complete(). */ 6277 if (likely(!sum)) { 6278 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6279 !skb->csum_complete_sw) 6280 netdev_rx_csum_fault(skb->dev, skb); 6281 } 6282 6283 NAPI_GRO_CB(skb)->csum = wsum; 6284 NAPI_GRO_CB(skb)->csum_valid = 1; 6285 6286 return sum; 6287 } 6288 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6289 6290 static void net_rps_send_ipi(struct softnet_data *remsd) 6291 { 6292 #ifdef CONFIG_RPS 6293 while (remsd) { 6294 struct softnet_data *next = remsd->rps_ipi_next; 6295 6296 if (cpu_online(remsd->cpu)) 6297 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6298 remsd = next; 6299 } 6300 #endif 6301 } 6302 6303 /* 6304 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6305 * Note: called with local irq disabled, but exits with local irq enabled. 6306 */ 6307 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6308 { 6309 #ifdef CONFIG_RPS 6310 struct softnet_data *remsd = sd->rps_ipi_list; 6311 6312 if (remsd) { 6313 sd->rps_ipi_list = NULL; 6314 6315 local_irq_enable(); 6316 6317 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6318 net_rps_send_ipi(remsd); 6319 } else 6320 #endif 6321 local_irq_enable(); 6322 } 6323 6324 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6325 { 6326 #ifdef CONFIG_RPS 6327 return sd->rps_ipi_list != NULL; 6328 #else 6329 return false; 6330 #endif 6331 } 6332 6333 static int process_backlog(struct napi_struct *napi, int quota) 6334 { 6335 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6336 bool again = true; 6337 int work = 0; 6338 6339 /* Check if we have pending ipi, its better to send them now, 6340 * not waiting net_rx_action() end. 6341 */ 6342 if (sd_has_rps_ipi_waiting(sd)) { 6343 local_irq_disable(); 6344 net_rps_action_and_irq_enable(sd); 6345 } 6346 6347 napi->weight = dev_rx_weight; 6348 while (again) { 6349 struct sk_buff *skb; 6350 6351 while ((skb = __skb_dequeue(&sd->process_queue))) { 6352 rcu_read_lock(); 6353 __netif_receive_skb(skb); 6354 rcu_read_unlock(); 6355 input_queue_head_incr(sd); 6356 if (++work >= quota) 6357 return work; 6358 6359 } 6360 6361 local_irq_disable(); 6362 rps_lock(sd); 6363 if (skb_queue_empty(&sd->input_pkt_queue)) { 6364 /* 6365 * Inline a custom version of __napi_complete(). 6366 * only current cpu owns and manipulates this napi, 6367 * and NAPI_STATE_SCHED is the only possible flag set 6368 * on backlog. 6369 * We can use a plain write instead of clear_bit(), 6370 * and we dont need an smp_mb() memory barrier. 6371 */ 6372 napi->state = 0; 6373 again = false; 6374 } else { 6375 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6376 &sd->process_queue); 6377 } 6378 rps_unlock(sd); 6379 local_irq_enable(); 6380 } 6381 6382 return work; 6383 } 6384 6385 /** 6386 * __napi_schedule - schedule for receive 6387 * @n: entry to schedule 6388 * 6389 * The entry's receive function will be scheduled to run. 6390 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6391 */ 6392 void __napi_schedule(struct napi_struct *n) 6393 { 6394 unsigned long flags; 6395 6396 local_irq_save(flags); 6397 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6398 local_irq_restore(flags); 6399 } 6400 EXPORT_SYMBOL(__napi_schedule); 6401 6402 /** 6403 * napi_schedule_prep - check if napi can be scheduled 6404 * @n: napi context 6405 * 6406 * Test if NAPI routine is already running, and if not mark 6407 * it as running. This is used as a condition variable to 6408 * insure only one NAPI poll instance runs. We also make 6409 * sure there is no pending NAPI disable. 6410 */ 6411 bool napi_schedule_prep(struct napi_struct *n) 6412 { 6413 unsigned long val, new; 6414 6415 do { 6416 val = READ_ONCE(n->state); 6417 if (unlikely(val & NAPIF_STATE_DISABLE)) 6418 return false; 6419 new = val | NAPIF_STATE_SCHED; 6420 6421 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6422 * This was suggested by Alexander Duyck, as compiler 6423 * emits better code than : 6424 * if (val & NAPIF_STATE_SCHED) 6425 * new |= NAPIF_STATE_MISSED; 6426 */ 6427 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6428 NAPIF_STATE_MISSED; 6429 } while (cmpxchg(&n->state, val, new) != val); 6430 6431 return !(val & NAPIF_STATE_SCHED); 6432 } 6433 EXPORT_SYMBOL(napi_schedule_prep); 6434 6435 /** 6436 * __napi_schedule_irqoff - schedule for receive 6437 * @n: entry to schedule 6438 * 6439 * Variant of __napi_schedule() assuming hard irqs are masked 6440 */ 6441 void __napi_schedule_irqoff(struct napi_struct *n) 6442 { 6443 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6444 } 6445 EXPORT_SYMBOL(__napi_schedule_irqoff); 6446 6447 bool napi_complete_done(struct napi_struct *n, int work_done) 6448 { 6449 unsigned long flags, val, new, timeout = 0; 6450 bool ret = true; 6451 6452 /* 6453 * 1) Don't let napi dequeue from the cpu poll list 6454 * just in case its running on a different cpu. 6455 * 2) If we are busy polling, do nothing here, we have 6456 * the guarantee we will be called later. 6457 */ 6458 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6459 NAPIF_STATE_IN_BUSY_POLL))) 6460 return false; 6461 6462 if (work_done) { 6463 if (n->gro_bitmask) 6464 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6465 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6466 } 6467 if (n->defer_hard_irqs_count > 0) { 6468 n->defer_hard_irqs_count--; 6469 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6470 if (timeout) 6471 ret = false; 6472 } 6473 if (n->gro_bitmask) { 6474 /* When the NAPI instance uses a timeout and keeps postponing 6475 * it, we need to bound somehow the time packets are kept in 6476 * the GRO layer 6477 */ 6478 napi_gro_flush(n, !!timeout); 6479 } 6480 6481 gro_normal_list(n); 6482 6483 if (unlikely(!list_empty(&n->poll_list))) { 6484 /* If n->poll_list is not empty, we need to mask irqs */ 6485 local_irq_save(flags); 6486 list_del_init(&n->poll_list); 6487 local_irq_restore(flags); 6488 } 6489 6490 do { 6491 val = READ_ONCE(n->state); 6492 6493 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6494 6495 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6496 NAPIF_STATE_SCHED_THREADED | 6497 NAPIF_STATE_PREFER_BUSY_POLL); 6498 6499 /* If STATE_MISSED was set, leave STATE_SCHED set, 6500 * because we will call napi->poll() one more time. 6501 * This C code was suggested by Alexander Duyck to help gcc. 6502 */ 6503 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6504 NAPIF_STATE_SCHED; 6505 } while (cmpxchg(&n->state, val, new) != val); 6506 6507 if (unlikely(val & NAPIF_STATE_MISSED)) { 6508 __napi_schedule(n); 6509 return false; 6510 } 6511 6512 if (timeout) 6513 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6514 HRTIMER_MODE_REL_PINNED); 6515 return ret; 6516 } 6517 EXPORT_SYMBOL(napi_complete_done); 6518 6519 /* must be called under rcu_read_lock(), as we dont take a reference */ 6520 static struct napi_struct *napi_by_id(unsigned int napi_id) 6521 { 6522 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6523 struct napi_struct *napi; 6524 6525 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6526 if (napi->napi_id == napi_id) 6527 return napi; 6528 6529 return NULL; 6530 } 6531 6532 #if defined(CONFIG_NET_RX_BUSY_POLL) 6533 6534 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6535 { 6536 if (!skip_schedule) { 6537 gro_normal_list(napi); 6538 __napi_schedule(napi); 6539 return; 6540 } 6541 6542 if (napi->gro_bitmask) { 6543 /* flush too old packets 6544 * If HZ < 1000, flush all packets. 6545 */ 6546 napi_gro_flush(napi, HZ >= 1000); 6547 } 6548 6549 gro_normal_list(napi); 6550 clear_bit(NAPI_STATE_SCHED, &napi->state); 6551 } 6552 6553 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6554 u16 budget) 6555 { 6556 bool skip_schedule = false; 6557 unsigned long timeout; 6558 int rc; 6559 6560 /* Busy polling means there is a high chance device driver hard irq 6561 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6562 * set in napi_schedule_prep(). 6563 * Since we are about to call napi->poll() once more, we can safely 6564 * clear NAPI_STATE_MISSED. 6565 * 6566 * Note: x86 could use a single "lock and ..." instruction 6567 * to perform these two clear_bit() 6568 */ 6569 clear_bit(NAPI_STATE_MISSED, &napi->state); 6570 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6571 6572 local_bh_disable(); 6573 6574 if (prefer_busy_poll) { 6575 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6576 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6577 if (napi->defer_hard_irqs_count && timeout) { 6578 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6579 skip_schedule = true; 6580 } 6581 } 6582 6583 /* All we really want here is to re-enable device interrupts. 6584 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6585 */ 6586 rc = napi->poll(napi, budget); 6587 /* We can't gro_normal_list() here, because napi->poll() might have 6588 * rearmed the napi (napi_complete_done()) in which case it could 6589 * already be running on another CPU. 6590 */ 6591 trace_napi_poll(napi, rc, budget); 6592 netpoll_poll_unlock(have_poll_lock); 6593 if (rc == budget) 6594 __busy_poll_stop(napi, skip_schedule); 6595 local_bh_enable(); 6596 } 6597 6598 void napi_busy_loop(unsigned int napi_id, 6599 bool (*loop_end)(void *, unsigned long), 6600 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6601 { 6602 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6603 int (*napi_poll)(struct napi_struct *napi, int budget); 6604 void *have_poll_lock = NULL; 6605 struct napi_struct *napi; 6606 6607 restart: 6608 napi_poll = NULL; 6609 6610 rcu_read_lock(); 6611 6612 napi = napi_by_id(napi_id); 6613 if (!napi) 6614 goto out; 6615 6616 preempt_disable(); 6617 for (;;) { 6618 int work = 0; 6619 6620 local_bh_disable(); 6621 if (!napi_poll) { 6622 unsigned long val = READ_ONCE(napi->state); 6623 6624 /* If multiple threads are competing for this napi, 6625 * we avoid dirtying napi->state as much as we can. 6626 */ 6627 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6628 NAPIF_STATE_IN_BUSY_POLL)) { 6629 if (prefer_busy_poll) 6630 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6631 goto count; 6632 } 6633 if (cmpxchg(&napi->state, val, 6634 val | NAPIF_STATE_IN_BUSY_POLL | 6635 NAPIF_STATE_SCHED) != val) { 6636 if (prefer_busy_poll) 6637 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6638 goto count; 6639 } 6640 have_poll_lock = netpoll_poll_lock(napi); 6641 napi_poll = napi->poll; 6642 } 6643 work = napi_poll(napi, budget); 6644 trace_napi_poll(napi, work, budget); 6645 gro_normal_list(napi); 6646 count: 6647 if (work > 0) 6648 __NET_ADD_STATS(dev_net(napi->dev), 6649 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6650 local_bh_enable(); 6651 6652 if (!loop_end || loop_end(loop_end_arg, start_time)) 6653 break; 6654 6655 if (unlikely(need_resched())) { 6656 if (napi_poll) 6657 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6658 preempt_enable(); 6659 rcu_read_unlock(); 6660 cond_resched(); 6661 if (loop_end(loop_end_arg, start_time)) 6662 return; 6663 goto restart; 6664 } 6665 cpu_relax(); 6666 } 6667 if (napi_poll) 6668 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6669 preempt_enable(); 6670 out: 6671 rcu_read_unlock(); 6672 } 6673 EXPORT_SYMBOL(napi_busy_loop); 6674 6675 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6676 6677 static void napi_hash_add(struct napi_struct *napi) 6678 { 6679 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6680 return; 6681 6682 spin_lock(&napi_hash_lock); 6683 6684 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6685 do { 6686 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6687 napi_gen_id = MIN_NAPI_ID; 6688 } while (napi_by_id(napi_gen_id)); 6689 napi->napi_id = napi_gen_id; 6690 6691 hlist_add_head_rcu(&napi->napi_hash_node, 6692 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6693 6694 spin_unlock(&napi_hash_lock); 6695 } 6696 6697 /* Warning : caller is responsible to make sure rcu grace period 6698 * is respected before freeing memory containing @napi 6699 */ 6700 static void napi_hash_del(struct napi_struct *napi) 6701 { 6702 spin_lock(&napi_hash_lock); 6703 6704 hlist_del_init_rcu(&napi->napi_hash_node); 6705 6706 spin_unlock(&napi_hash_lock); 6707 } 6708 6709 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6710 { 6711 struct napi_struct *napi; 6712 6713 napi = container_of(timer, struct napi_struct, timer); 6714 6715 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6716 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6717 */ 6718 if (!napi_disable_pending(napi) && 6719 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6720 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6721 __napi_schedule_irqoff(napi); 6722 } 6723 6724 return HRTIMER_NORESTART; 6725 } 6726 6727 static void init_gro_hash(struct napi_struct *napi) 6728 { 6729 int i; 6730 6731 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6732 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6733 napi->gro_hash[i].count = 0; 6734 } 6735 napi->gro_bitmask = 0; 6736 } 6737 6738 int dev_set_threaded(struct net_device *dev, bool threaded) 6739 { 6740 struct napi_struct *napi; 6741 int err = 0; 6742 6743 if (dev->threaded == threaded) 6744 return 0; 6745 6746 if (threaded) { 6747 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6748 if (!napi->thread) { 6749 err = napi_kthread_create(napi); 6750 if (err) { 6751 threaded = false; 6752 break; 6753 } 6754 } 6755 } 6756 } 6757 6758 dev->threaded = threaded; 6759 6760 /* Make sure kthread is created before THREADED bit 6761 * is set. 6762 */ 6763 smp_mb__before_atomic(); 6764 6765 /* Setting/unsetting threaded mode on a napi might not immediately 6766 * take effect, if the current napi instance is actively being 6767 * polled. In this case, the switch between threaded mode and 6768 * softirq mode will happen in the next round of napi_schedule(). 6769 * This should not cause hiccups/stalls to the live traffic. 6770 */ 6771 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6772 if (threaded) 6773 set_bit(NAPI_STATE_THREADED, &napi->state); 6774 else 6775 clear_bit(NAPI_STATE_THREADED, &napi->state); 6776 } 6777 6778 return err; 6779 } 6780 6781 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6782 int (*poll)(struct napi_struct *, int), int weight) 6783 { 6784 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6785 return; 6786 6787 INIT_LIST_HEAD(&napi->poll_list); 6788 INIT_HLIST_NODE(&napi->napi_hash_node); 6789 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6790 napi->timer.function = napi_watchdog; 6791 init_gro_hash(napi); 6792 napi->skb = NULL; 6793 INIT_LIST_HEAD(&napi->rx_list); 6794 napi->rx_count = 0; 6795 napi->poll = poll; 6796 if (weight > NAPI_POLL_WEIGHT) 6797 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6798 weight); 6799 napi->weight = weight; 6800 napi->dev = dev; 6801 #ifdef CONFIG_NETPOLL 6802 napi->poll_owner = -1; 6803 #endif 6804 set_bit(NAPI_STATE_SCHED, &napi->state); 6805 set_bit(NAPI_STATE_NPSVC, &napi->state); 6806 list_add_rcu(&napi->dev_list, &dev->napi_list); 6807 napi_hash_add(napi); 6808 /* Create kthread for this napi if dev->threaded is set. 6809 * Clear dev->threaded if kthread creation failed so that 6810 * threaded mode will not be enabled in napi_enable(). 6811 */ 6812 if (dev->threaded && napi_kthread_create(napi)) 6813 dev->threaded = 0; 6814 } 6815 EXPORT_SYMBOL(netif_napi_add); 6816 6817 void napi_disable(struct napi_struct *n) 6818 { 6819 might_sleep(); 6820 set_bit(NAPI_STATE_DISABLE, &n->state); 6821 6822 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6823 msleep(1); 6824 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6825 msleep(1); 6826 6827 hrtimer_cancel(&n->timer); 6828 6829 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 6830 clear_bit(NAPI_STATE_DISABLE, &n->state); 6831 clear_bit(NAPI_STATE_THREADED, &n->state); 6832 } 6833 EXPORT_SYMBOL(napi_disable); 6834 6835 /** 6836 * napi_enable - enable NAPI scheduling 6837 * @n: NAPI context 6838 * 6839 * Resume NAPI from being scheduled on this context. 6840 * Must be paired with napi_disable. 6841 */ 6842 void napi_enable(struct napi_struct *n) 6843 { 6844 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 6845 smp_mb__before_atomic(); 6846 clear_bit(NAPI_STATE_SCHED, &n->state); 6847 clear_bit(NAPI_STATE_NPSVC, &n->state); 6848 if (n->dev->threaded && n->thread) 6849 set_bit(NAPI_STATE_THREADED, &n->state); 6850 } 6851 EXPORT_SYMBOL(napi_enable); 6852 6853 static void flush_gro_hash(struct napi_struct *napi) 6854 { 6855 int i; 6856 6857 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6858 struct sk_buff *skb, *n; 6859 6860 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6861 kfree_skb(skb); 6862 napi->gro_hash[i].count = 0; 6863 } 6864 } 6865 6866 /* Must be called in process context */ 6867 void __netif_napi_del(struct napi_struct *napi) 6868 { 6869 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6870 return; 6871 6872 napi_hash_del(napi); 6873 list_del_rcu(&napi->dev_list); 6874 napi_free_frags(napi); 6875 6876 flush_gro_hash(napi); 6877 napi->gro_bitmask = 0; 6878 6879 if (napi->thread) { 6880 kthread_stop(napi->thread); 6881 napi->thread = NULL; 6882 } 6883 } 6884 EXPORT_SYMBOL(__netif_napi_del); 6885 6886 static int __napi_poll(struct napi_struct *n, bool *repoll) 6887 { 6888 int work, weight; 6889 6890 weight = n->weight; 6891 6892 /* This NAPI_STATE_SCHED test is for avoiding a race 6893 * with netpoll's poll_napi(). Only the entity which 6894 * obtains the lock and sees NAPI_STATE_SCHED set will 6895 * actually make the ->poll() call. Therefore we avoid 6896 * accidentally calling ->poll() when NAPI is not scheduled. 6897 */ 6898 work = 0; 6899 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6900 work = n->poll(n, weight); 6901 trace_napi_poll(n, work, weight); 6902 } 6903 6904 if (unlikely(work > weight)) 6905 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6906 n->poll, work, weight); 6907 6908 if (likely(work < weight)) 6909 return work; 6910 6911 /* Drivers must not modify the NAPI state if they 6912 * consume the entire weight. In such cases this code 6913 * still "owns" the NAPI instance and therefore can 6914 * move the instance around on the list at-will. 6915 */ 6916 if (unlikely(napi_disable_pending(n))) { 6917 napi_complete(n); 6918 return work; 6919 } 6920 6921 /* The NAPI context has more processing work, but busy-polling 6922 * is preferred. Exit early. 6923 */ 6924 if (napi_prefer_busy_poll(n)) { 6925 if (napi_complete_done(n, work)) { 6926 /* If timeout is not set, we need to make sure 6927 * that the NAPI is re-scheduled. 6928 */ 6929 napi_schedule(n); 6930 } 6931 return work; 6932 } 6933 6934 if (n->gro_bitmask) { 6935 /* flush too old packets 6936 * If HZ < 1000, flush all packets. 6937 */ 6938 napi_gro_flush(n, HZ >= 1000); 6939 } 6940 6941 gro_normal_list(n); 6942 6943 /* Some drivers may have called napi_schedule 6944 * prior to exhausting their budget. 6945 */ 6946 if (unlikely(!list_empty(&n->poll_list))) { 6947 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6948 n->dev ? n->dev->name : "backlog"); 6949 return work; 6950 } 6951 6952 *repoll = true; 6953 6954 return work; 6955 } 6956 6957 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6958 { 6959 bool do_repoll = false; 6960 void *have; 6961 int work; 6962 6963 list_del_init(&n->poll_list); 6964 6965 have = netpoll_poll_lock(n); 6966 6967 work = __napi_poll(n, &do_repoll); 6968 6969 if (do_repoll) 6970 list_add_tail(&n->poll_list, repoll); 6971 6972 netpoll_poll_unlock(have); 6973 6974 return work; 6975 } 6976 6977 static int napi_thread_wait(struct napi_struct *napi) 6978 { 6979 bool woken = false; 6980 6981 set_current_state(TASK_INTERRUPTIBLE); 6982 6983 while (!kthread_should_stop() && !napi_disable_pending(napi)) { 6984 /* Testing SCHED_THREADED bit here to make sure the current 6985 * kthread owns this napi and could poll on this napi. 6986 * Testing SCHED bit is not enough because SCHED bit might be 6987 * set by some other busy poll thread or by napi_disable(). 6988 */ 6989 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6990 WARN_ON(!list_empty(&napi->poll_list)); 6991 __set_current_state(TASK_RUNNING); 6992 return 0; 6993 } 6994 6995 schedule(); 6996 /* woken being true indicates this thread owns this napi. */ 6997 woken = true; 6998 set_current_state(TASK_INTERRUPTIBLE); 6999 } 7000 __set_current_state(TASK_RUNNING); 7001 return -1; 7002 } 7003 7004 static int napi_threaded_poll(void *data) 7005 { 7006 struct napi_struct *napi = data; 7007 void *have; 7008 7009 while (!napi_thread_wait(napi)) { 7010 for (;;) { 7011 bool repoll = false; 7012 7013 local_bh_disable(); 7014 7015 have = netpoll_poll_lock(napi); 7016 __napi_poll(napi, &repoll); 7017 netpoll_poll_unlock(have); 7018 7019 local_bh_enable(); 7020 7021 if (!repoll) 7022 break; 7023 7024 cond_resched(); 7025 } 7026 } 7027 return 0; 7028 } 7029 7030 static __latent_entropy void net_rx_action(struct softirq_action *h) 7031 { 7032 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7033 unsigned long time_limit = jiffies + 7034 usecs_to_jiffies(netdev_budget_usecs); 7035 int budget = netdev_budget; 7036 LIST_HEAD(list); 7037 LIST_HEAD(repoll); 7038 7039 local_irq_disable(); 7040 list_splice_init(&sd->poll_list, &list); 7041 local_irq_enable(); 7042 7043 for (;;) { 7044 struct napi_struct *n; 7045 7046 if (list_empty(&list)) { 7047 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 7048 return; 7049 break; 7050 } 7051 7052 n = list_first_entry(&list, struct napi_struct, poll_list); 7053 budget -= napi_poll(n, &repoll); 7054 7055 /* If softirq window is exhausted then punt. 7056 * Allow this to run for 2 jiffies since which will allow 7057 * an average latency of 1.5/HZ. 7058 */ 7059 if (unlikely(budget <= 0 || 7060 time_after_eq(jiffies, time_limit))) { 7061 sd->time_squeeze++; 7062 break; 7063 } 7064 } 7065 7066 local_irq_disable(); 7067 7068 list_splice_tail_init(&sd->poll_list, &list); 7069 list_splice_tail(&repoll, &list); 7070 list_splice(&list, &sd->poll_list); 7071 if (!list_empty(&sd->poll_list)) 7072 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7073 7074 net_rps_action_and_irq_enable(sd); 7075 } 7076 7077 struct netdev_adjacent { 7078 struct net_device *dev; 7079 7080 /* upper master flag, there can only be one master device per list */ 7081 bool master; 7082 7083 /* lookup ignore flag */ 7084 bool ignore; 7085 7086 /* counter for the number of times this device was added to us */ 7087 u16 ref_nr; 7088 7089 /* private field for the users */ 7090 void *private; 7091 7092 struct list_head list; 7093 struct rcu_head rcu; 7094 }; 7095 7096 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7097 struct list_head *adj_list) 7098 { 7099 struct netdev_adjacent *adj; 7100 7101 list_for_each_entry(adj, adj_list, list) { 7102 if (adj->dev == adj_dev) 7103 return adj; 7104 } 7105 return NULL; 7106 } 7107 7108 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7109 struct netdev_nested_priv *priv) 7110 { 7111 struct net_device *dev = (struct net_device *)priv->data; 7112 7113 return upper_dev == dev; 7114 } 7115 7116 /** 7117 * netdev_has_upper_dev - Check if device is linked to an upper device 7118 * @dev: device 7119 * @upper_dev: upper device to check 7120 * 7121 * Find out if a device is linked to specified upper device and return true 7122 * in case it is. Note that this checks only immediate upper device, 7123 * not through a complete stack of devices. The caller must hold the RTNL lock. 7124 */ 7125 bool netdev_has_upper_dev(struct net_device *dev, 7126 struct net_device *upper_dev) 7127 { 7128 struct netdev_nested_priv priv = { 7129 .data = (void *)upper_dev, 7130 }; 7131 7132 ASSERT_RTNL(); 7133 7134 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7135 &priv); 7136 } 7137 EXPORT_SYMBOL(netdev_has_upper_dev); 7138 7139 /** 7140 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7141 * @dev: device 7142 * @upper_dev: upper device to check 7143 * 7144 * Find out if a device is linked to specified upper device and return true 7145 * in case it is. Note that this checks the entire upper device chain. 7146 * The caller must hold rcu lock. 7147 */ 7148 7149 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7150 struct net_device *upper_dev) 7151 { 7152 struct netdev_nested_priv priv = { 7153 .data = (void *)upper_dev, 7154 }; 7155 7156 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7157 &priv); 7158 } 7159 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7160 7161 /** 7162 * netdev_has_any_upper_dev - Check if device is linked to some device 7163 * @dev: device 7164 * 7165 * Find out if a device is linked to an upper device and return true in case 7166 * it is. The caller must hold the RTNL lock. 7167 */ 7168 bool netdev_has_any_upper_dev(struct net_device *dev) 7169 { 7170 ASSERT_RTNL(); 7171 7172 return !list_empty(&dev->adj_list.upper); 7173 } 7174 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7175 7176 /** 7177 * netdev_master_upper_dev_get - Get master upper device 7178 * @dev: device 7179 * 7180 * Find a master upper device and return pointer to it or NULL in case 7181 * it's not there. The caller must hold the RTNL lock. 7182 */ 7183 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7184 { 7185 struct netdev_adjacent *upper; 7186 7187 ASSERT_RTNL(); 7188 7189 if (list_empty(&dev->adj_list.upper)) 7190 return NULL; 7191 7192 upper = list_first_entry(&dev->adj_list.upper, 7193 struct netdev_adjacent, list); 7194 if (likely(upper->master)) 7195 return upper->dev; 7196 return NULL; 7197 } 7198 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7199 7200 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7201 { 7202 struct netdev_adjacent *upper; 7203 7204 ASSERT_RTNL(); 7205 7206 if (list_empty(&dev->adj_list.upper)) 7207 return NULL; 7208 7209 upper = list_first_entry(&dev->adj_list.upper, 7210 struct netdev_adjacent, list); 7211 if (likely(upper->master) && !upper->ignore) 7212 return upper->dev; 7213 return NULL; 7214 } 7215 7216 /** 7217 * netdev_has_any_lower_dev - Check if device is linked to some device 7218 * @dev: device 7219 * 7220 * Find out if a device is linked to a lower device and return true in case 7221 * it is. The caller must hold the RTNL lock. 7222 */ 7223 static bool netdev_has_any_lower_dev(struct net_device *dev) 7224 { 7225 ASSERT_RTNL(); 7226 7227 return !list_empty(&dev->adj_list.lower); 7228 } 7229 7230 void *netdev_adjacent_get_private(struct list_head *adj_list) 7231 { 7232 struct netdev_adjacent *adj; 7233 7234 adj = list_entry(adj_list, struct netdev_adjacent, list); 7235 7236 return adj->private; 7237 } 7238 EXPORT_SYMBOL(netdev_adjacent_get_private); 7239 7240 /** 7241 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7242 * @dev: device 7243 * @iter: list_head ** of the current position 7244 * 7245 * Gets the next device from the dev's upper list, starting from iter 7246 * position. The caller must hold RCU read lock. 7247 */ 7248 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7249 struct list_head **iter) 7250 { 7251 struct netdev_adjacent *upper; 7252 7253 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7254 7255 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7256 7257 if (&upper->list == &dev->adj_list.upper) 7258 return NULL; 7259 7260 *iter = &upper->list; 7261 7262 return upper->dev; 7263 } 7264 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7265 7266 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7267 struct list_head **iter, 7268 bool *ignore) 7269 { 7270 struct netdev_adjacent *upper; 7271 7272 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7273 7274 if (&upper->list == &dev->adj_list.upper) 7275 return NULL; 7276 7277 *iter = &upper->list; 7278 *ignore = upper->ignore; 7279 7280 return upper->dev; 7281 } 7282 7283 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7284 struct list_head **iter) 7285 { 7286 struct netdev_adjacent *upper; 7287 7288 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7289 7290 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7291 7292 if (&upper->list == &dev->adj_list.upper) 7293 return NULL; 7294 7295 *iter = &upper->list; 7296 7297 return upper->dev; 7298 } 7299 7300 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7301 int (*fn)(struct net_device *dev, 7302 struct netdev_nested_priv *priv), 7303 struct netdev_nested_priv *priv) 7304 { 7305 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7306 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7307 int ret, cur = 0; 7308 bool ignore; 7309 7310 now = dev; 7311 iter = &dev->adj_list.upper; 7312 7313 while (1) { 7314 if (now != dev) { 7315 ret = fn(now, priv); 7316 if (ret) 7317 return ret; 7318 } 7319 7320 next = NULL; 7321 while (1) { 7322 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7323 if (!udev) 7324 break; 7325 if (ignore) 7326 continue; 7327 7328 next = udev; 7329 niter = &udev->adj_list.upper; 7330 dev_stack[cur] = now; 7331 iter_stack[cur++] = iter; 7332 break; 7333 } 7334 7335 if (!next) { 7336 if (!cur) 7337 return 0; 7338 next = dev_stack[--cur]; 7339 niter = iter_stack[cur]; 7340 } 7341 7342 now = next; 7343 iter = niter; 7344 } 7345 7346 return 0; 7347 } 7348 7349 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7350 int (*fn)(struct net_device *dev, 7351 struct netdev_nested_priv *priv), 7352 struct netdev_nested_priv *priv) 7353 { 7354 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7355 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7356 int ret, cur = 0; 7357 7358 now = dev; 7359 iter = &dev->adj_list.upper; 7360 7361 while (1) { 7362 if (now != dev) { 7363 ret = fn(now, priv); 7364 if (ret) 7365 return ret; 7366 } 7367 7368 next = NULL; 7369 while (1) { 7370 udev = netdev_next_upper_dev_rcu(now, &iter); 7371 if (!udev) 7372 break; 7373 7374 next = udev; 7375 niter = &udev->adj_list.upper; 7376 dev_stack[cur] = now; 7377 iter_stack[cur++] = iter; 7378 break; 7379 } 7380 7381 if (!next) { 7382 if (!cur) 7383 return 0; 7384 next = dev_stack[--cur]; 7385 niter = iter_stack[cur]; 7386 } 7387 7388 now = next; 7389 iter = niter; 7390 } 7391 7392 return 0; 7393 } 7394 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7395 7396 static bool __netdev_has_upper_dev(struct net_device *dev, 7397 struct net_device *upper_dev) 7398 { 7399 struct netdev_nested_priv priv = { 7400 .flags = 0, 7401 .data = (void *)upper_dev, 7402 }; 7403 7404 ASSERT_RTNL(); 7405 7406 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7407 &priv); 7408 } 7409 7410 /** 7411 * netdev_lower_get_next_private - Get the next ->private from the 7412 * lower neighbour list 7413 * @dev: device 7414 * @iter: list_head ** of the current position 7415 * 7416 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7417 * list, starting from iter position. The caller must hold either hold the 7418 * RTNL lock or its own locking that guarantees that the neighbour lower 7419 * list will remain unchanged. 7420 */ 7421 void *netdev_lower_get_next_private(struct net_device *dev, 7422 struct list_head **iter) 7423 { 7424 struct netdev_adjacent *lower; 7425 7426 lower = list_entry(*iter, struct netdev_adjacent, list); 7427 7428 if (&lower->list == &dev->adj_list.lower) 7429 return NULL; 7430 7431 *iter = lower->list.next; 7432 7433 return lower->private; 7434 } 7435 EXPORT_SYMBOL(netdev_lower_get_next_private); 7436 7437 /** 7438 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7439 * lower neighbour list, RCU 7440 * variant 7441 * @dev: device 7442 * @iter: list_head ** of the current position 7443 * 7444 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7445 * list, starting from iter position. The caller must hold RCU read lock. 7446 */ 7447 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7448 struct list_head **iter) 7449 { 7450 struct netdev_adjacent *lower; 7451 7452 WARN_ON_ONCE(!rcu_read_lock_held()); 7453 7454 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7455 7456 if (&lower->list == &dev->adj_list.lower) 7457 return NULL; 7458 7459 *iter = &lower->list; 7460 7461 return lower->private; 7462 } 7463 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7464 7465 /** 7466 * netdev_lower_get_next - Get the next device from the lower neighbour 7467 * list 7468 * @dev: device 7469 * @iter: list_head ** of the current position 7470 * 7471 * Gets the next netdev_adjacent from the dev's lower neighbour 7472 * list, starting from iter position. The caller must hold RTNL lock or 7473 * its own locking that guarantees that the neighbour lower 7474 * list will remain unchanged. 7475 */ 7476 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7477 { 7478 struct netdev_adjacent *lower; 7479 7480 lower = list_entry(*iter, struct netdev_adjacent, list); 7481 7482 if (&lower->list == &dev->adj_list.lower) 7483 return NULL; 7484 7485 *iter = lower->list.next; 7486 7487 return lower->dev; 7488 } 7489 EXPORT_SYMBOL(netdev_lower_get_next); 7490 7491 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7492 struct list_head **iter) 7493 { 7494 struct netdev_adjacent *lower; 7495 7496 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7497 7498 if (&lower->list == &dev->adj_list.lower) 7499 return NULL; 7500 7501 *iter = &lower->list; 7502 7503 return lower->dev; 7504 } 7505 7506 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7507 struct list_head **iter, 7508 bool *ignore) 7509 { 7510 struct netdev_adjacent *lower; 7511 7512 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7513 7514 if (&lower->list == &dev->adj_list.lower) 7515 return NULL; 7516 7517 *iter = &lower->list; 7518 *ignore = lower->ignore; 7519 7520 return lower->dev; 7521 } 7522 7523 int netdev_walk_all_lower_dev(struct net_device *dev, 7524 int (*fn)(struct net_device *dev, 7525 struct netdev_nested_priv *priv), 7526 struct netdev_nested_priv *priv) 7527 { 7528 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7529 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7530 int ret, cur = 0; 7531 7532 now = dev; 7533 iter = &dev->adj_list.lower; 7534 7535 while (1) { 7536 if (now != dev) { 7537 ret = fn(now, priv); 7538 if (ret) 7539 return ret; 7540 } 7541 7542 next = NULL; 7543 while (1) { 7544 ldev = netdev_next_lower_dev(now, &iter); 7545 if (!ldev) 7546 break; 7547 7548 next = ldev; 7549 niter = &ldev->adj_list.lower; 7550 dev_stack[cur] = now; 7551 iter_stack[cur++] = iter; 7552 break; 7553 } 7554 7555 if (!next) { 7556 if (!cur) 7557 return 0; 7558 next = dev_stack[--cur]; 7559 niter = iter_stack[cur]; 7560 } 7561 7562 now = next; 7563 iter = niter; 7564 } 7565 7566 return 0; 7567 } 7568 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7569 7570 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7571 int (*fn)(struct net_device *dev, 7572 struct netdev_nested_priv *priv), 7573 struct netdev_nested_priv *priv) 7574 { 7575 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7576 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7577 int ret, cur = 0; 7578 bool ignore; 7579 7580 now = dev; 7581 iter = &dev->adj_list.lower; 7582 7583 while (1) { 7584 if (now != dev) { 7585 ret = fn(now, priv); 7586 if (ret) 7587 return ret; 7588 } 7589 7590 next = NULL; 7591 while (1) { 7592 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7593 if (!ldev) 7594 break; 7595 if (ignore) 7596 continue; 7597 7598 next = ldev; 7599 niter = &ldev->adj_list.lower; 7600 dev_stack[cur] = now; 7601 iter_stack[cur++] = iter; 7602 break; 7603 } 7604 7605 if (!next) { 7606 if (!cur) 7607 return 0; 7608 next = dev_stack[--cur]; 7609 niter = iter_stack[cur]; 7610 } 7611 7612 now = next; 7613 iter = niter; 7614 } 7615 7616 return 0; 7617 } 7618 7619 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7620 struct list_head **iter) 7621 { 7622 struct netdev_adjacent *lower; 7623 7624 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7625 if (&lower->list == &dev->adj_list.lower) 7626 return NULL; 7627 7628 *iter = &lower->list; 7629 7630 return lower->dev; 7631 } 7632 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7633 7634 static u8 __netdev_upper_depth(struct net_device *dev) 7635 { 7636 struct net_device *udev; 7637 struct list_head *iter; 7638 u8 max_depth = 0; 7639 bool ignore; 7640 7641 for (iter = &dev->adj_list.upper, 7642 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7643 udev; 7644 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7645 if (ignore) 7646 continue; 7647 if (max_depth < udev->upper_level) 7648 max_depth = udev->upper_level; 7649 } 7650 7651 return max_depth; 7652 } 7653 7654 static u8 __netdev_lower_depth(struct net_device *dev) 7655 { 7656 struct net_device *ldev; 7657 struct list_head *iter; 7658 u8 max_depth = 0; 7659 bool ignore; 7660 7661 for (iter = &dev->adj_list.lower, 7662 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7663 ldev; 7664 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7665 if (ignore) 7666 continue; 7667 if (max_depth < ldev->lower_level) 7668 max_depth = ldev->lower_level; 7669 } 7670 7671 return max_depth; 7672 } 7673 7674 static int __netdev_update_upper_level(struct net_device *dev, 7675 struct netdev_nested_priv *__unused) 7676 { 7677 dev->upper_level = __netdev_upper_depth(dev) + 1; 7678 return 0; 7679 } 7680 7681 static int __netdev_update_lower_level(struct net_device *dev, 7682 struct netdev_nested_priv *priv) 7683 { 7684 dev->lower_level = __netdev_lower_depth(dev) + 1; 7685 7686 #ifdef CONFIG_LOCKDEP 7687 if (!priv) 7688 return 0; 7689 7690 if (priv->flags & NESTED_SYNC_IMM) 7691 dev->nested_level = dev->lower_level - 1; 7692 if (priv->flags & NESTED_SYNC_TODO) 7693 net_unlink_todo(dev); 7694 #endif 7695 return 0; 7696 } 7697 7698 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7699 int (*fn)(struct net_device *dev, 7700 struct netdev_nested_priv *priv), 7701 struct netdev_nested_priv *priv) 7702 { 7703 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7704 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7705 int ret, cur = 0; 7706 7707 now = dev; 7708 iter = &dev->adj_list.lower; 7709 7710 while (1) { 7711 if (now != dev) { 7712 ret = fn(now, priv); 7713 if (ret) 7714 return ret; 7715 } 7716 7717 next = NULL; 7718 while (1) { 7719 ldev = netdev_next_lower_dev_rcu(now, &iter); 7720 if (!ldev) 7721 break; 7722 7723 next = ldev; 7724 niter = &ldev->adj_list.lower; 7725 dev_stack[cur] = now; 7726 iter_stack[cur++] = iter; 7727 break; 7728 } 7729 7730 if (!next) { 7731 if (!cur) 7732 return 0; 7733 next = dev_stack[--cur]; 7734 niter = iter_stack[cur]; 7735 } 7736 7737 now = next; 7738 iter = niter; 7739 } 7740 7741 return 0; 7742 } 7743 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7744 7745 /** 7746 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7747 * lower neighbour list, RCU 7748 * variant 7749 * @dev: device 7750 * 7751 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7752 * list. The caller must hold RCU read lock. 7753 */ 7754 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7755 { 7756 struct netdev_adjacent *lower; 7757 7758 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7759 struct netdev_adjacent, list); 7760 if (lower) 7761 return lower->private; 7762 return NULL; 7763 } 7764 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7765 7766 /** 7767 * netdev_master_upper_dev_get_rcu - Get master upper device 7768 * @dev: device 7769 * 7770 * Find a master upper device and return pointer to it or NULL in case 7771 * it's not there. The caller must hold the RCU read lock. 7772 */ 7773 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7774 { 7775 struct netdev_adjacent *upper; 7776 7777 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7778 struct netdev_adjacent, list); 7779 if (upper && likely(upper->master)) 7780 return upper->dev; 7781 return NULL; 7782 } 7783 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7784 7785 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7786 struct net_device *adj_dev, 7787 struct list_head *dev_list) 7788 { 7789 char linkname[IFNAMSIZ+7]; 7790 7791 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7792 "upper_%s" : "lower_%s", adj_dev->name); 7793 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7794 linkname); 7795 } 7796 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7797 char *name, 7798 struct list_head *dev_list) 7799 { 7800 char linkname[IFNAMSIZ+7]; 7801 7802 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7803 "upper_%s" : "lower_%s", name); 7804 sysfs_remove_link(&(dev->dev.kobj), linkname); 7805 } 7806 7807 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7808 struct net_device *adj_dev, 7809 struct list_head *dev_list) 7810 { 7811 return (dev_list == &dev->adj_list.upper || 7812 dev_list == &dev->adj_list.lower) && 7813 net_eq(dev_net(dev), dev_net(adj_dev)); 7814 } 7815 7816 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7817 struct net_device *adj_dev, 7818 struct list_head *dev_list, 7819 void *private, bool master) 7820 { 7821 struct netdev_adjacent *adj; 7822 int ret; 7823 7824 adj = __netdev_find_adj(adj_dev, dev_list); 7825 7826 if (adj) { 7827 adj->ref_nr += 1; 7828 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7829 dev->name, adj_dev->name, adj->ref_nr); 7830 7831 return 0; 7832 } 7833 7834 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7835 if (!adj) 7836 return -ENOMEM; 7837 7838 adj->dev = adj_dev; 7839 adj->master = master; 7840 adj->ref_nr = 1; 7841 adj->private = private; 7842 adj->ignore = false; 7843 dev_hold(adj_dev); 7844 7845 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7846 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7847 7848 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7849 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7850 if (ret) 7851 goto free_adj; 7852 } 7853 7854 /* Ensure that master link is always the first item in list. */ 7855 if (master) { 7856 ret = sysfs_create_link(&(dev->dev.kobj), 7857 &(adj_dev->dev.kobj), "master"); 7858 if (ret) 7859 goto remove_symlinks; 7860 7861 list_add_rcu(&adj->list, dev_list); 7862 } else { 7863 list_add_tail_rcu(&adj->list, dev_list); 7864 } 7865 7866 return 0; 7867 7868 remove_symlinks: 7869 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7870 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7871 free_adj: 7872 kfree(adj); 7873 dev_put(adj_dev); 7874 7875 return ret; 7876 } 7877 7878 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7879 struct net_device *adj_dev, 7880 u16 ref_nr, 7881 struct list_head *dev_list) 7882 { 7883 struct netdev_adjacent *adj; 7884 7885 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7886 dev->name, adj_dev->name, ref_nr); 7887 7888 adj = __netdev_find_adj(adj_dev, dev_list); 7889 7890 if (!adj) { 7891 pr_err("Adjacency does not exist for device %s from %s\n", 7892 dev->name, adj_dev->name); 7893 WARN_ON(1); 7894 return; 7895 } 7896 7897 if (adj->ref_nr > ref_nr) { 7898 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7899 dev->name, adj_dev->name, ref_nr, 7900 adj->ref_nr - ref_nr); 7901 adj->ref_nr -= ref_nr; 7902 return; 7903 } 7904 7905 if (adj->master) 7906 sysfs_remove_link(&(dev->dev.kobj), "master"); 7907 7908 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7909 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7910 7911 list_del_rcu(&adj->list); 7912 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7913 adj_dev->name, dev->name, adj_dev->name); 7914 dev_put(adj_dev); 7915 kfree_rcu(adj, rcu); 7916 } 7917 7918 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7919 struct net_device *upper_dev, 7920 struct list_head *up_list, 7921 struct list_head *down_list, 7922 void *private, bool master) 7923 { 7924 int ret; 7925 7926 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7927 private, master); 7928 if (ret) 7929 return ret; 7930 7931 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7932 private, false); 7933 if (ret) { 7934 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7935 return ret; 7936 } 7937 7938 return 0; 7939 } 7940 7941 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7942 struct net_device *upper_dev, 7943 u16 ref_nr, 7944 struct list_head *up_list, 7945 struct list_head *down_list) 7946 { 7947 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7948 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7949 } 7950 7951 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7952 struct net_device *upper_dev, 7953 void *private, bool master) 7954 { 7955 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7956 &dev->adj_list.upper, 7957 &upper_dev->adj_list.lower, 7958 private, master); 7959 } 7960 7961 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7962 struct net_device *upper_dev) 7963 { 7964 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7965 &dev->adj_list.upper, 7966 &upper_dev->adj_list.lower); 7967 } 7968 7969 static int __netdev_upper_dev_link(struct net_device *dev, 7970 struct net_device *upper_dev, bool master, 7971 void *upper_priv, void *upper_info, 7972 struct netdev_nested_priv *priv, 7973 struct netlink_ext_ack *extack) 7974 { 7975 struct netdev_notifier_changeupper_info changeupper_info = { 7976 .info = { 7977 .dev = dev, 7978 .extack = extack, 7979 }, 7980 .upper_dev = upper_dev, 7981 .master = master, 7982 .linking = true, 7983 .upper_info = upper_info, 7984 }; 7985 struct net_device *master_dev; 7986 int ret = 0; 7987 7988 ASSERT_RTNL(); 7989 7990 if (dev == upper_dev) 7991 return -EBUSY; 7992 7993 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7994 if (__netdev_has_upper_dev(upper_dev, dev)) 7995 return -EBUSY; 7996 7997 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7998 return -EMLINK; 7999 8000 if (!master) { 8001 if (__netdev_has_upper_dev(dev, upper_dev)) 8002 return -EEXIST; 8003 } else { 8004 master_dev = __netdev_master_upper_dev_get(dev); 8005 if (master_dev) 8006 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8007 } 8008 8009 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8010 &changeupper_info.info); 8011 ret = notifier_to_errno(ret); 8012 if (ret) 8013 return ret; 8014 8015 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8016 master); 8017 if (ret) 8018 return ret; 8019 8020 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8021 &changeupper_info.info); 8022 ret = notifier_to_errno(ret); 8023 if (ret) 8024 goto rollback; 8025 8026 __netdev_update_upper_level(dev, NULL); 8027 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8028 8029 __netdev_update_lower_level(upper_dev, priv); 8030 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8031 priv); 8032 8033 return 0; 8034 8035 rollback: 8036 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8037 8038 return ret; 8039 } 8040 8041 /** 8042 * netdev_upper_dev_link - Add a link to the upper device 8043 * @dev: device 8044 * @upper_dev: new upper device 8045 * @extack: netlink extended ack 8046 * 8047 * Adds a link to device which is upper to this one. The caller must hold 8048 * the RTNL lock. On a failure a negative errno code is returned. 8049 * On success the reference counts are adjusted and the function 8050 * returns zero. 8051 */ 8052 int netdev_upper_dev_link(struct net_device *dev, 8053 struct net_device *upper_dev, 8054 struct netlink_ext_ack *extack) 8055 { 8056 struct netdev_nested_priv priv = { 8057 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8058 .data = NULL, 8059 }; 8060 8061 return __netdev_upper_dev_link(dev, upper_dev, false, 8062 NULL, NULL, &priv, extack); 8063 } 8064 EXPORT_SYMBOL(netdev_upper_dev_link); 8065 8066 /** 8067 * netdev_master_upper_dev_link - Add a master link to the upper device 8068 * @dev: device 8069 * @upper_dev: new upper device 8070 * @upper_priv: upper device private 8071 * @upper_info: upper info to be passed down via notifier 8072 * @extack: netlink extended ack 8073 * 8074 * Adds a link to device which is upper to this one. In this case, only 8075 * one master upper device can be linked, although other non-master devices 8076 * might be linked as well. The caller must hold the RTNL lock. 8077 * On a failure a negative errno code is returned. On success the reference 8078 * counts are adjusted and the function returns zero. 8079 */ 8080 int netdev_master_upper_dev_link(struct net_device *dev, 8081 struct net_device *upper_dev, 8082 void *upper_priv, void *upper_info, 8083 struct netlink_ext_ack *extack) 8084 { 8085 struct netdev_nested_priv priv = { 8086 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8087 .data = NULL, 8088 }; 8089 8090 return __netdev_upper_dev_link(dev, upper_dev, true, 8091 upper_priv, upper_info, &priv, extack); 8092 } 8093 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8094 8095 static void __netdev_upper_dev_unlink(struct net_device *dev, 8096 struct net_device *upper_dev, 8097 struct netdev_nested_priv *priv) 8098 { 8099 struct netdev_notifier_changeupper_info changeupper_info = { 8100 .info = { 8101 .dev = dev, 8102 }, 8103 .upper_dev = upper_dev, 8104 .linking = false, 8105 }; 8106 8107 ASSERT_RTNL(); 8108 8109 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8110 8111 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8112 &changeupper_info.info); 8113 8114 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8115 8116 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8117 &changeupper_info.info); 8118 8119 __netdev_update_upper_level(dev, NULL); 8120 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8121 8122 __netdev_update_lower_level(upper_dev, priv); 8123 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8124 priv); 8125 } 8126 8127 /** 8128 * netdev_upper_dev_unlink - Removes a link to upper device 8129 * @dev: device 8130 * @upper_dev: new upper device 8131 * 8132 * Removes a link to device which is upper to this one. The caller must hold 8133 * the RTNL lock. 8134 */ 8135 void netdev_upper_dev_unlink(struct net_device *dev, 8136 struct net_device *upper_dev) 8137 { 8138 struct netdev_nested_priv priv = { 8139 .flags = NESTED_SYNC_TODO, 8140 .data = NULL, 8141 }; 8142 8143 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8144 } 8145 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8146 8147 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8148 struct net_device *lower_dev, 8149 bool val) 8150 { 8151 struct netdev_adjacent *adj; 8152 8153 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8154 if (adj) 8155 adj->ignore = val; 8156 8157 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8158 if (adj) 8159 adj->ignore = val; 8160 } 8161 8162 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8163 struct net_device *lower_dev) 8164 { 8165 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8166 } 8167 8168 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8169 struct net_device *lower_dev) 8170 { 8171 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8172 } 8173 8174 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8175 struct net_device *new_dev, 8176 struct net_device *dev, 8177 struct netlink_ext_ack *extack) 8178 { 8179 struct netdev_nested_priv priv = { 8180 .flags = 0, 8181 .data = NULL, 8182 }; 8183 int err; 8184 8185 if (!new_dev) 8186 return 0; 8187 8188 if (old_dev && new_dev != old_dev) 8189 netdev_adjacent_dev_disable(dev, old_dev); 8190 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8191 extack); 8192 if (err) { 8193 if (old_dev && new_dev != old_dev) 8194 netdev_adjacent_dev_enable(dev, old_dev); 8195 return err; 8196 } 8197 8198 return 0; 8199 } 8200 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8201 8202 void netdev_adjacent_change_commit(struct net_device *old_dev, 8203 struct net_device *new_dev, 8204 struct net_device *dev) 8205 { 8206 struct netdev_nested_priv priv = { 8207 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8208 .data = NULL, 8209 }; 8210 8211 if (!new_dev || !old_dev) 8212 return; 8213 8214 if (new_dev == old_dev) 8215 return; 8216 8217 netdev_adjacent_dev_enable(dev, old_dev); 8218 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8219 } 8220 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8221 8222 void netdev_adjacent_change_abort(struct net_device *old_dev, 8223 struct net_device *new_dev, 8224 struct net_device *dev) 8225 { 8226 struct netdev_nested_priv priv = { 8227 .flags = 0, 8228 .data = NULL, 8229 }; 8230 8231 if (!new_dev) 8232 return; 8233 8234 if (old_dev && new_dev != old_dev) 8235 netdev_adjacent_dev_enable(dev, old_dev); 8236 8237 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8238 } 8239 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8240 8241 /** 8242 * netdev_bonding_info_change - Dispatch event about slave change 8243 * @dev: device 8244 * @bonding_info: info to dispatch 8245 * 8246 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8247 * The caller must hold the RTNL lock. 8248 */ 8249 void netdev_bonding_info_change(struct net_device *dev, 8250 struct netdev_bonding_info *bonding_info) 8251 { 8252 struct netdev_notifier_bonding_info info = { 8253 .info.dev = dev, 8254 }; 8255 8256 memcpy(&info.bonding_info, bonding_info, 8257 sizeof(struct netdev_bonding_info)); 8258 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8259 &info.info); 8260 } 8261 EXPORT_SYMBOL(netdev_bonding_info_change); 8262 8263 /** 8264 * netdev_get_xmit_slave - Get the xmit slave of master device 8265 * @dev: device 8266 * @skb: The packet 8267 * @all_slaves: assume all the slaves are active 8268 * 8269 * The reference counters are not incremented so the caller must be 8270 * careful with locks. The caller must hold RCU lock. 8271 * %NULL is returned if no slave is found. 8272 */ 8273 8274 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8275 struct sk_buff *skb, 8276 bool all_slaves) 8277 { 8278 const struct net_device_ops *ops = dev->netdev_ops; 8279 8280 if (!ops->ndo_get_xmit_slave) 8281 return NULL; 8282 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8283 } 8284 EXPORT_SYMBOL(netdev_get_xmit_slave); 8285 8286 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8287 struct sock *sk) 8288 { 8289 const struct net_device_ops *ops = dev->netdev_ops; 8290 8291 if (!ops->ndo_sk_get_lower_dev) 8292 return NULL; 8293 return ops->ndo_sk_get_lower_dev(dev, sk); 8294 } 8295 8296 /** 8297 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8298 * @dev: device 8299 * @sk: the socket 8300 * 8301 * %NULL is returned if no lower device is found. 8302 */ 8303 8304 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8305 struct sock *sk) 8306 { 8307 struct net_device *lower; 8308 8309 lower = netdev_sk_get_lower_dev(dev, sk); 8310 while (lower) { 8311 dev = lower; 8312 lower = netdev_sk_get_lower_dev(dev, sk); 8313 } 8314 8315 return dev; 8316 } 8317 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8318 8319 static void netdev_adjacent_add_links(struct net_device *dev) 8320 { 8321 struct netdev_adjacent *iter; 8322 8323 struct net *net = dev_net(dev); 8324 8325 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8326 if (!net_eq(net, dev_net(iter->dev))) 8327 continue; 8328 netdev_adjacent_sysfs_add(iter->dev, dev, 8329 &iter->dev->adj_list.lower); 8330 netdev_adjacent_sysfs_add(dev, iter->dev, 8331 &dev->adj_list.upper); 8332 } 8333 8334 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8335 if (!net_eq(net, dev_net(iter->dev))) 8336 continue; 8337 netdev_adjacent_sysfs_add(iter->dev, dev, 8338 &iter->dev->adj_list.upper); 8339 netdev_adjacent_sysfs_add(dev, iter->dev, 8340 &dev->adj_list.lower); 8341 } 8342 } 8343 8344 static void netdev_adjacent_del_links(struct net_device *dev) 8345 { 8346 struct netdev_adjacent *iter; 8347 8348 struct net *net = dev_net(dev); 8349 8350 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8351 if (!net_eq(net, dev_net(iter->dev))) 8352 continue; 8353 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8354 &iter->dev->adj_list.lower); 8355 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8356 &dev->adj_list.upper); 8357 } 8358 8359 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8360 if (!net_eq(net, dev_net(iter->dev))) 8361 continue; 8362 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8363 &iter->dev->adj_list.upper); 8364 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8365 &dev->adj_list.lower); 8366 } 8367 } 8368 8369 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8370 { 8371 struct netdev_adjacent *iter; 8372 8373 struct net *net = dev_net(dev); 8374 8375 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8376 if (!net_eq(net, dev_net(iter->dev))) 8377 continue; 8378 netdev_adjacent_sysfs_del(iter->dev, oldname, 8379 &iter->dev->adj_list.lower); 8380 netdev_adjacent_sysfs_add(iter->dev, dev, 8381 &iter->dev->adj_list.lower); 8382 } 8383 8384 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8385 if (!net_eq(net, dev_net(iter->dev))) 8386 continue; 8387 netdev_adjacent_sysfs_del(iter->dev, oldname, 8388 &iter->dev->adj_list.upper); 8389 netdev_adjacent_sysfs_add(iter->dev, dev, 8390 &iter->dev->adj_list.upper); 8391 } 8392 } 8393 8394 void *netdev_lower_dev_get_private(struct net_device *dev, 8395 struct net_device *lower_dev) 8396 { 8397 struct netdev_adjacent *lower; 8398 8399 if (!lower_dev) 8400 return NULL; 8401 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8402 if (!lower) 8403 return NULL; 8404 8405 return lower->private; 8406 } 8407 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8408 8409 8410 /** 8411 * netdev_lower_state_changed - Dispatch event about lower device state change 8412 * @lower_dev: device 8413 * @lower_state_info: state to dispatch 8414 * 8415 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8416 * The caller must hold the RTNL lock. 8417 */ 8418 void netdev_lower_state_changed(struct net_device *lower_dev, 8419 void *lower_state_info) 8420 { 8421 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8422 .info.dev = lower_dev, 8423 }; 8424 8425 ASSERT_RTNL(); 8426 changelowerstate_info.lower_state_info = lower_state_info; 8427 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8428 &changelowerstate_info.info); 8429 } 8430 EXPORT_SYMBOL(netdev_lower_state_changed); 8431 8432 static void dev_change_rx_flags(struct net_device *dev, int flags) 8433 { 8434 const struct net_device_ops *ops = dev->netdev_ops; 8435 8436 if (ops->ndo_change_rx_flags) 8437 ops->ndo_change_rx_flags(dev, flags); 8438 } 8439 8440 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8441 { 8442 unsigned int old_flags = dev->flags; 8443 kuid_t uid; 8444 kgid_t gid; 8445 8446 ASSERT_RTNL(); 8447 8448 dev->flags |= IFF_PROMISC; 8449 dev->promiscuity += inc; 8450 if (dev->promiscuity == 0) { 8451 /* 8452 * Avoid overflow. 8453 * If inc causes overflow, untouch promisc and return error. 8454 */ 8455 if (inc < 0) 8456 dev->flags &= ~IFF_PROMISC; 8457 else { 8458 dev->promiscuity -= inc; 8459 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8460 dev->name); 8461 return -EOVERFLOW; 8462 } 8463 } 8464 if (dev->flags != old_flags) { 8465 pr_info("device %s %s promiscuous mode\n", 8466 dev->name, 8467 dev->flags & IFF_PROMISC ? "entered" : "left"); 8468 if (audit_enabled) { 8469 current_uid_gid(&uid, &gid); 8470 audit_log(audit_context(), GFP_ATOMIC, 8471 AUDIT_ANOM_PROMISCUOUS, 8472 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8473 dev->name, (dev->flags & IFF_PROMISC), 8474 (old_flags & IFF_PROMISC), 8475 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8476 from_kuid(&init_user_ns, uid), 8477 from_kgid(&init_user_ns, gid), 8478 audit_get_sessionid(current)); 8479 } 8480 8481 dev_change_rx_flags(dev, IFF_PROMISC); 8482 } 8483 if (notify) 8484 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8485 return 0; 8486 } 8487 8488 /** 8489 * dev_set_promiscuity - update promiscuity count on a device 8490 * @dev: device 8491 * @inc: modifier 8492 * 8493 * Add or remove promiscuity from a device. While the count in the device 8494 * remains above zero the interface remains promiscuous. Once it hits zero 8495 * the device reverts back to normal filtering operation. A negative inc 8496 * value is used to drop promiscuity on the device. 8497 * Return 0 if successful or a negative errno code on error. 8498 */ 8499 int dev_set_promiscuity(struct net_device *dev, int inc) 8500 { 8501 unsigned int old_flags = dev->flags; 8502 int err; 8503 8504 err = __dev_set_promiscuity(dev, inc, true); 8505 if (err < 0) 8506 return err; 8507 if (dev->flags != old_flags) 8508 dev_set_rx_mode(dev); 8509 return err; 8510 } 8511 EXPORT_SYMBOL(dev_set_promiscuity); 8512 8513 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8514 { 8515 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8516 8517 ASSERT_RTNL(); 8518 8519 dev->flags |= IFF_ALLMULTI; 8520 dev->allmulti += inc; 8521 if (dev->allmulti == 0) { 8522 /* 8523 * Avoid overflow. 8524 * If inc causes overflow, untouch allmulti and return error. 8525 */ 8526 if (inc < 0) 8527 dev->flags &= ~IFF_ALLMULTI; 8528 else { 8529 dev->allmulti -= inc; 8530 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8531 dev->name); 8532 return -EOVERFLOW; 8533 } 8534 } 8535 if (dev->flags ^ old_flags) { 8536 dev_change_rx_flags(dev, IFF_ALLMULTI); 8537 dev_set_rx_mode(dev); 8538 if (notify) 8539 __dev_notify_flags(dev, old_flags, 8540 dev->gflags ^ old_gflags); 8541 } 8542 return 0; 8543 } 8544 8545 /** 8546 * dev_set_allmulti - update allmulti count on a device 8547 * @dev: device 8548 * @inc: modifier 8549 * 8550 * Add or remove reception of all multicast frames to a device. While the 8551 * count in the device remains above zero the interface remains listening 8552 * to all interfaces. Once it hits zero the device reverts back to normal 8553 * filtering operation. A negative @inc value is used to drop the counter 8554 * when releasing a resource needing all multicasts. 8555 * Return 0 if successful or a negative errno code on error. 8556 */ 8557 8558 int dev_set_allmulti(struct net_device *dev, int inc) 8559 { 8560 return __dev_set_allmulti(dev, inc, true); 8561 } 8562 EXPORT_SYMBOL(dev_set_allmulti); 8563 8564 /* 8565 * Upload unicast and multicast address lists to device and 8566 * configure RX filtering. When the device doesn't support unicast 8567 * filtering it is put in promiscuous mode while unicast addresses 8568 * are present. 8569 */ 8570 void __dev_set_rx_mode(struct net_device *dev) 8571 { 8572 const struct net_device_ops *ops = dev->netdev_ops; 8573 8574 /* dev_open will call this function so the list will stay sane. */ 8575 if (!(dev->flags&IFF_UP)) 8576 return; 8577 8578 if (!netif_device_present(dev)) 8579 return; 8580 8581 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8582 /* Unicast addresses changes may only happen under the rtnl, 8583 * therefore calling __dev_set_promiscuity here is safe. 8584 */ 8585 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8586 __dev_set_promiscuity(dev, 1, false); 8587 dev->uc_promisc = true; 8588 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8589 __dev_set_promiscuity(dev, -1, false); 8590 dev->uc_promisc = false; 8591 } 8592 } 8593 8594 if (ops->ndo_set_rx_mode) 8595 ops->ndo_set_rx_mode(dev); 8596 } 8597 8598 void dev_set_rx_mode(struct net_device *dev) 8599 { 8600 netif_addr_lock_bh(dev); 8601 __dev_set_rx_mode(dev); 8602 netif_addr_unlock_bh(dev); 8603 } 8604 8605 /** 8606 * dev_get_flags - get flags reported to userspace 8607 * @dev: device 8608 * 8609 * Get the combination of flag bits exported through APIs to userspace. 8610 */ 8611 unsigned int dev_get_flags(const struct net_device *dev) 8612 { 8613 unsigned int flags; 8614 8615 flags = (dev->flags & ~(IFF_PROMISC | 8616 IFF_ALLMULTI | 8617 IFF_RUNNING | 8618 IFF_LOWER_UP | 8619 IFF_DORMANT)) | 8620 (dev->gflags & (IFF_PROMISC | 8621 IFF_ALLMULTI)); 8622 8623 if (netif_running(dev)) { 8624 if (netif_oper_up(dev)) 8625 flags |= IFF_RUNNING; 8626 if (netif_carrier_ok(dev)) 8627 flags |= IFF_LOWER_UP; 8628 if (netif_dormant(dev)) 8629 flags |= IFF_DORMANT; 8630 } 8631 8632 return flags; 8633 } 8634 EXPORT_SYMBOL(dev_get_flags); 8635 8636 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8637 struct netlink_ext_ack *extack) 8638 { 8639 unsigned int old_flags = dev->flags; 8640 int ret; 8641 8642 ASSERT_RTNL(); 8643 8644 /* 8645 * Set the flags on our device. 8646 */ 8647 8648 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8649 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8650 IFF_AUTOMEDIA)) | 8651 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8652 IFF_ALLMULTI)); 8653 8654 /* 8655 * Load in the correct multicast list now the flags have changed. 8656 */ 8657 8658 if ((old_flags ^ flags) & IFF_MULTICAST) 8659 dev_change_rx_flags(dev, IFF_MULTICAST); 8660 8661 dev_set_rx_mode(dev); 8662 8663 /* 8664 * Have we downed the interface. We handle IFF_UP ourselves 8665 * according to user attempts to set it, rather than blindly 8666 * setting it. 8667 */ 8668 8669 ret = 0; 8670 if ((old_flags ^ flags) & IFF_UP) { 8671 if (old_flags & IFF_UP) 8672 __dev_close(dev); 8673 else 8674 ret = __dev_open(dev, extack); 8675 } 8676 8677 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8678 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8679 unsigned int old_flags = dev->flags; 8680 8681 dev->gflags ^= IFF_PROMISC; 8682 8683 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8684 if (dev->flags != old_flags) 8685 dev_set_rx_mode(dev); 8686 } 8687 8688 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8689 * is important. Some (broken) drivers set IFF_PROMISC, when 8690 * IFF_ALLMULTI is requested not asking us and not reporting. 8691 */ 8692 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8693 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8694 8695 dev->gflags ^= IFF_ALLMULTI; 8696 __dev_set_allmulti(dev, inc, false); 8697 } 8698 8699 return ret; 8700 } 8701 8702 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8703 unsigned int gchanges) 8704 { 8705 unsigned int changes = dev->flags ^ old_flags; 8706 8707 if (gchanges) 8708 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8709 8710 if (changes & IFF_UP) { 8711 if (dev->flags & IFF_UP) 8712 call_netdevice_notifiers(NETDEV_UP, dev); 8713 else 8714 call_netdevice_notifiers(NETDEV_DOWN, dev); 8715 } 8716 8717 if (dev->flags & IFF_UP && 8718 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8719 struct netdev_notifier_change_info change_info = { 8720 .info = { 8721 .dev = dev, 8722 }, 8723 .flags_changed = changes, 8724 }; 8725 8726 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8727 } 8728 } 8729 8730 /** 8731 * dev_change_flags - change device settings 8732 * @dev: device 8733 * @flags: device state flags 8734 * @extack: netlink extended ack 8735 * 8736 * Change settings on device based state flags. The flags are 8737 * in the userspace exported format. 8738 */ 8739 int dev_change_flags(struct net_device *dev, unsigned int flags, 8740 struct netlink_ext_ack *extack) 8741 { 8742 int ret; 8743 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8744 8745 ret = __dev_change_flags(dev, flags, extack); 8746 if (ret < 0) 8747 return ret; 8748 8749 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8750 __dev_notify_flags(dev, old_flags, changes); 8751 return ret; 8752 } 8753 EXPORT_SYMBOL(dev_change_flags); 8754 8755 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8756 { 8757 const struct net_device_ops *ops = dev->netdev_ops; 8758 8759 if (ops->ndo_change_mtu) 8760 return ops->ndo_change_mtu(dev, new_mtu); 8761 8762 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8763 WRITE_ONCE(dev->mtu, new_mtu); 8764 return 0; 8765 } 8766 EXPORT_SYMBOL(__dev_set_mtu); 8767 8768 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8769 struct netlink_ext_ack *extack) 8770 { 8771 /* MTU must be positive, and in range */ 8772 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8773 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8774 return -EINVAL; 8775 } 8776 8777 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8778 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8779 return -EINVAL; 8780 } 8781 return 0; 8782 } 8783 8784 /** 8785 * dev_set_mtu_ext - Change maximum transfer unit 8786 * @dev: device 8787 * @new_mtu: new transfer unit 8788 * @extack: netlink extended ack 8789 * 8790 * Change the maximum transfer size of the network device. 8791 */ 8792 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8793 struct netlink_ext_ack *extack) 8794 { 8795 int err, orig_mtu; 8796 8797 if (new_mtu == dev->mtu) 8798 return 0; 8799 8800 err = dev_validate_mtu(dev, new_mtu, extack); 8801 if (err) 8802 return err; 8803 8804 if (!netif_device_present(dev)) 8805 return -ENODEV; 8806 8807 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8808 err = notifier_to_errno(err); 8809 if (err) 8810 return err; 8811 8812 orig_mtu = dev->mtu; 8813 err = __dev_set_mtu(dev, new_mtu); 8814 8815 if (!err) { 8816 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8817 orig_mtu); 8818 err = notifier_to_errno(err); 8819 if (err) { 8820 /* setting mtu back and notifying everyone again, 8821 * so that they have a chance to revert changes. 8822 */ 8823 __dev_set_mtu(dev, orig_mtu); 8824 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8825 new_mtu); 8826 } 8827 } 8828 return err; 8829 } 8830 8831 int dev_set_mtu(struct net_device *dev, int new_mtu) 8832 { 8833 struct netlink_ext_ack extack; 8834 int err; 8835 8836 memset(&extack, 0, sizeof(extack)); 8837 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8838 if (err && extack._msg) 8839 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8840 return err; 8841 } 8842 EXPORT_SYMBOL(dev_set_mtu); 8843 8844 /** 8845 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8846 * @dev: device 8847 * @new_len: new tx queue length 8848 */ 8849 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8850 { 8851 unsigned int orig_len = dev->tx_queue_len; 8852 int res; 8853 8854 if (new_len != (unsigned int)new_len) 8855 return -ERANGE; 8856 8857 if (new_len != orig_len) { 8858 dev->tx_queue_len = new_len; 8859 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8860 res = notifier_to_errno(res); 8861 if (res) 8862 goto err_rollback; 8863 res = dev_qdisc_change_tx_queue_len(dev); 8864 if (res) 8865 goto err_rollback; 8866 } 8867 8868 return 0; 8869 8870 err_rollback: 8871 netdev_err(dev, "refused to change device tx_queue_len\n"); 8872 dev->tx_queue_len = orig_len; 8873 return res; 8874 } 8875 8876 /** 8877 * dev_set_group - Change group this device belongs to 8878 * @dev: device 8879 * @new_group: group this device should belong to 8880 */ 8881 void dev_set_group(struct net_device *dev, int new_group) 8882 { 8883 dev->group = new_group; 8884 } 8885 EXPORT_SYMBOL(dev_set_group); 8886 8887 /** 8888 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8889 * @dev: device 8890 * @addr: new address 8891 * @extack: netlink extended ack 8892 */ 8893 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8894 struct netlink_ext_ack *extack) 8895 { 8896 struct netdev_notifier_pre_changeaddr_info info = { 8897 .info.dev = dev, 8898 .info.extack = extack, 8899 .dev_addr = addr, 8900 }; 8901 int rc; 8902 8903 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8904 return notifier_to_errno(rc); 8905 } 8906 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8907 8908 /** 8909 * dev_set_mac_address - Change Media Access Control Address 8910 * @dev: device 8911 * @sa: new address 8912 * @extack: netlink extended ack 8913 * 8914 * Change the hardware (MAC) address of the device 8915 */ 8916 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8917 struct netlink_ext_ack *extack) 8918 { 8919 const struct net_device_ops *ops = dev->netdev_ops; 8920 int err; 8921 8922 if (!ops->ndo_set_mac_address) 8923 return -EOPNOTSUPP; 8924 if (sa->sa_family != dev->type) 8925 return -EINVAL; 8926 if (!netif_device_present(dev)) 8927 return -ENODEV; 8928 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8929 if (err) 8930 return err; 8931 err = ops->ndo_set_mac_address(dev, sa); 8932 if (err) 8933 return err; 8934 dev->addr_assign_type = NET_ADDR_SET; 8935 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8936 add_device_randomness(dev->dev_addr, dev->addr_len); 8937 return 0; 8938 } 8939 EXPORT_SYMBOL(dev_set_mac_address); 8940 8941 static DECLARE_RWSEM(dev_addr_sem); 8942 8943 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8944 struct netlink_ext_ack *extack) 8945 { 8946 int ret; 8947 8948 down_write(&dev_addr_sem); 8949 ret = dev_set_mac_address(dev, sa, extack); 8950 up_write(&dev_addr_sem); 8951 return ret; 8952 } 8953 EXPORT_SYMBOL(dev_set_mac_address_user); 8954 8955 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8956 { 8957 size_t size = sizeof(sa->sa_data); 8958 struct net_device *dev; 8959 int ret = 0; 8960 8961 down_read(&dev_addr_sem); 8962 rcu_read_lock(); 8963 8964 dev = dev_get_by_name_rcu(net, dev_name); 8965 if (!dev) { 8966 ret = -ENODEV; 8967 goto unlock; 8968 } 8969 if (!dev->addr_len) 8970 memset(sa->sa_data, 0, size); 8971 else 8972 memcpy(sa->sa_data, dev->dev_addr, 8973 min_t(size_t, size, dev->addr_len)); 8974 sa->sa_family = dev->type; 8975 8976 unlock: 8977 rcu_read_unlock(); 8978 up_read(&dev_addr_sem); 8979 return ret; 8980 } 8981 EXPORT_SYMBOL(dev_get_mac_address); 8982 8983 /** 8984 * dev_change_carrier - Change device carrier 8985 * @dev: device 8986 * @new_carrier: new value 8987 * 8988 * Change device carrier 8989 */ 8990 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8991 { 8992 const struct net_device_ops *ops = dev->netdev_ops; 8993 8994 if (!ops->ndo_change_carrier) 8995 return -EOPNOTSUPP; 8996 if (!netif_device_present(dev)) 8997 return -ENODEV; 8998 return ops->ndo_change_carrier(dev, new_carrier); 8999 } 9000 EXPORT_SYMBOL(dev_change_carrier); 9001 9002 /** 9003 * dev_get_phys_port_id - Get device physical port ID 9004 * @dev: device 9005 * @ppid: port ID 9006 * 9007 * Get device physical port ID 9008 */ 9009 int dev_get_phys_port_id(struct net_device *dev, 9010 struct netdev_phys_item_id *ppid) 9011 { 9012 const struct net_device_ops *ops = dev->netdev_ops; 9013 9014 if (!ops->ndo_get_phys_port_id) 9015 return -EOPNOTSUPP; 9016 return ops->ndo_get_phys_port_id(dev, ppid); 9017 } 9018 EXPORT_SYMBOL(dev_get_phys_port_id); 9019 9020 /** 9021 * dev_get_phys_port_name - Get device physical port name 9022 * @dev: device 9023 * @name: port name 9024 * @len: limit of bytes to copy to name 9025 * 9026 * Get device physical port name 9027 */ 9028 int dev_get_phys_port_name(struct net_device *dev, 9029 char *name, size_t len) 9030 { 9031 const struct net_device_ops *ops = dev->netdev_ops; 9032 int err; 9033 9034 if (ops->ndo_get_phys_port_name) { 9035 err = ops->ndo_get_phys_port_name(dev, name, len); 9036 if (err != -EOPNOTSUPP) 9037 return err; 9038 } 9039 return devlink_compat_phys_port_name_get(dev, name, len); 9040 } 9041 EXPORT_SYMBOL(dev_get_phys_port_name); 9042 9043 /** 9044 * dev_get_port_parent_id - Get the device's port parent identifier 9045 * @dev: network device 9046 * @ppid: pointer to a storage for the port's parent identifier 9047 * @recurse: allow/disallow recursion to lower devices 9048 * 9049 * Get the devices's port parent identifier 9050 */ 9051 int dev_get_port_parent_id(struct net_device *dev, 9052 struct netdev_phys_item_id *ppid, 9053 bool recurse) 9054 { 9055 const struct net_device_ops *ops = dev->netdev_ops; 9056 struct netdev_phys_item_id first = { }; 9057 struct net_device *lower_dev; 9058 struct list_head *iter; 9059 int err; 9060 9061 if (ops->ndo_get_port_parent_id) { 9062 err = ops->ndo_get_port_parent_id(dev, ppid); 9063 if (err != -EOPNOTSUPP) 9064 return err; 9065 } 9066 9067 err = devlink_compat_switch_id_get(dev, ppid); 9068 if (!err || err != -EOPNOTSUPP) 9069 return err; 9070 9071 if (!recurse) 9072 return -EOPNOTSUPP; 9073 9074 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9075 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 9076 if (err) 9077 break; 9078 if (!first.id_len) 9079 first = *ppid; 9080 else if (memcmp(&first, ppid, sizeof(*ppid))) 9081 return -EOPNOTSUPP; 9082 } 9083 9084 return err; 9085 } 9086 EXPORT_SYMBOL(dev_get_port_parent_id); 9087 9088 /** 9089 * netdev_port_same_parent_id - Indicate if two network devices have 9090 * the same port parent identifier 9091 * @a: first network device 9092 * @b: second network device 9093 */ 9094 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9095 { 9096 struct netdev_phys_item_id a_id = { }; 9097 struct netdev_phys_item_id b_id = { }; 9098 9099 if (dev_get_port_parent_id(a, &a_id, true) || 9100 dev_get_port_parent_id(b, &b_id, true)) 9101 return false; 9102 9103 return netdev_phys_item_id_same(&a_id, &b_id); 9104 } 9105 EXPORT_SYMBOL(netdev_port_same_parent_id); 9106 9107 /** 9108 * dev_change_proto_down - update protocol port state information 9109 * @dev: device 9110 * @proto_down: new value 9111 * 9112 * This info can be used by switch drivers to set the phys state of the 9113 * port. 9114 */ 9115 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9116 { 9117 const struct net_device_ops *ops = dev->netdev_ops; 9118 9119 if (!ops->ndo_change_proto_down) 9120 return -EOPNOTSUPP; 9121 if (!netif_device_present(dev)) 9122 return -ENODEV; 9123 return ops->ndo_change_proto_down(dev, proto_down); 9124 } 9125 EXPORT_SYMBOL(dev_change_proto_down); 9126 9127 /** 9128 * dev_change_proto_down_generic - generic implementation for 9129 * ndo_change_proto_down that sets carrier according to 9130 * proto_down. 9131 * 9132 * @dev: device 9133 * @proto_down: new value 9134 */ 9135 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 9136 { 9137 if (proto_down) 9138 netif_carrier_off(dev); 9139 else 9140 netif_carrier_on(dev); 9141 dev->proto_down = proto_down; 9142 return 0; 9143 } 9144 EXPORT_SYMBOL(dev_change_proto_down_generic); 9145 9146 /** 9147 * dev_change_proto_down_reason - proto down reason 9148 * 9149 * @dev: device 9150 * @mask: proto down mask 9151 * @value: proto down value 9152 */ 9153 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9154 u32 value) 9155 { 9156 int b; 9157 9158 if (!mask) { 9159 dev->proto_down_reason = value; 9160 } else { 9161 for_each_set_bit(b, &mask, 32) { 9162 if (value & (1 << b)) 9163 dev->proto_down_reason |= BIT(b); 9164 else 9165 dev->proto_down_reason &= ~BIT(b); 9166 } 9167 } 9168 } 9169 EXPORT_SYMBOL(dev_change_proto_down_reason); 9170 9171 struct bpf_xdp_link { 9172 struct bpf_link link; 9173 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9174 int flags; 9175 }; 9176 9177 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9178 { 9179 if (flags & XDP_FLAGS_HW_MODE) 9180 return XDP_MODE_HW; 9181 if (flags & XDP_FLAGS_DRV_MODE) 9182 return XDP_MODE_DRV; 9183 if (flags & XDP_FLAGS_SKB_MODE) 9184 return XDP_MODE_SKB; 9185 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9186 } 9187 9188 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9189 { 9190 switch (mode) { 9191 case XDP_MODE_SKB: 9192 return generic_xdp_install; 9193 case XDP_MODE_DRV: 9194 case XDP_MODE_HW: 9195 return dev->netdev_ops->ndo_bpf; 9196 default: 9197 return NULL; 9198 } 9199 } 9200 9201 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9202 enum bpf_xdp_mode mode) 9203 { 9204 return dev->xdp_state[mode].link; 9205 } 9206 9207 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9208 enum bpf_xdp_mode mode) 9209 { 9210 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9211 9212 if (link) 9213 return link->link.prog; 9214 return dev->xdp_state[mode].prog; 9215 } 9216 9217 static u8 dev_xdp_prog_count(struct net_device *dev) 9218 { 9219 u8 count = 0; 9220 int i; 9221 9222 for (i = 0; i < __MAX_XDP_MODE; i++) 9223 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9224 count++; 9225 return count; 9226 } 9227 9228 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9229 { 9230 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9231 9232 return prog ? prog->aux->id : 0; 9233 } 9234 9235 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9236 struct bpf_xdp_link *link) 9237 { 9238 dev->xdp_state[mode].link = link; 9239 dev->xdp_state[mode].prog = NULL; 9240 } 9241 9242 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9243 struct bpf_prog *prog) 9244 { 9245 dev->xdp_state[mode].link = NULL; 9246 dev->xdp_state[mode].prog = prog; 9247 } 9248 9249 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9250 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9251 u32 flags, struct bpf_prog *prog) 9252 { 9253 struct netdev_bpf xdp; 9254 int err; 9255 9256 memset(&xdp, 0, sizeof(xdp)); 9257 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9258 xdp.extack = extack; 9259 xdp.flags = flags; 9260 xdp.prog = prog; 9261 9262 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9263 * "moved" into driver), so they don't increment it on their own, but 9264 * they do decrement refcnt when program is detached or replaced. 9265 * Given net_device also owns link/prog, we need to bump refcnt here 9266 * to prevent drivers from underflowing it. 9267 */ 9268 if (prog) 9269 bpf_prog_inc(prog); 9270 err = bpf_op(dev, &xdp); 9271 if (err) { 9272 if (prog) 9273 bpf_prog_put(prog); 9274 return err; 9275 } 9276 9277 if (mode != XDP_MODE_HW) 9278 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9279 9280 return 0; 9281 } 9282 9283 static void dev_xdp_uninstall(struct net_device *dev) 9284 { 9285 struct bpf_xdp_link *link; 9286 struct bpf_prog *prog; 9287 enum bpf_xdp_mode mode; 9288 bpf_op_t bpf_op; 9289 9290 ASSERT_RTNL(); 9291 9292 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9293 prog = dev_xdp_prog(dev, mode); 9294 if (!prog) 9295 continue; 9296 9297 bpf_op = dev_xdp_bpf_op(dev, mode); 9298 if (!bpf_op) 9299 continue; 9300 9301 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9302 9303 /* auto-detach link from net device */ 9304 link = dev_xdp_link(dev, mode); 9305 if (link) 9306 link->dev = NULL; 9307 else 9308 bpf_prog_put(prog); 9309 9310 dev_xdp_set_link(dev, mode, NULL); 9311 } 9312 } 9313 9314 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9315 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9316 struct bpf_prog *old_prog, u32 flags) 9317 { 9318 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9319 struct bpf_prog *cur_prog; 9320 enum bpf_xdp_mode mode; 9321 bpf_op_t bpf_op; 9322 int err; 9323 9324 ASSERT_RTNL(); 9325 9326 /* either link or prog attachment, never both */ 9327 if (link && (new_prog || old_prog)) 9328 return -EINVAL; 9329 /* link supports only XDP mode flags */ 9330 if (link && (flags & ~XDP_FLAGS_MODES)) { 9331 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9332 return -EINVAL; 9333 } 9334 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9335 if (num_modes > 1) { 9336 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9337 return -EINVAL; 9338 } 9339 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9340 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9341 NL_SET_ERR_MSG(extack, 9342 "More than one program loaded, unset mode is ambiguous"); 9343 return -EINVAL; 9344 } 9345 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9346 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9347 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9348 return -EINVAL; 9349 } 9350 9351 mode = dev_xdp_mode(dev, flags); 9352 /* can't replace attached link */ 9353 if (dev_xdp_link(dev, mode)) { 9354 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9355 return -EBUSY; 9356 } 9357 9358 cur_prog = dev_xdp_prog(dev, mode); 9359 /* can't replace attached prog with link */ 9360 if (link && cur_prog) { 9361 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9362 return -EBUSY; 9363 } 9364 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9365 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9366 return -EEXIST; 9367 } 9368 9369 /* put effective new program into new_prog */ 9370 if (link) 9371 new_prog = link->link.prog; 9372 9373 if (new_prog) { 9374 bool offload = mode == XDP_MODE_HW; 9375 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9376 ? XDP_MODE_DRV : XDP_MODE_SKB; 9377 9378 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9379 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9380 return -EBUSY; 9381 } 9382 if (!offload && dev_xdp_prog(dev, other_mode)) { 9383 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9384 return -EEXIST; 9385 } 9386 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9387 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9388 return -EINVAL; 9389 } 9390 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9391 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9392 return -EINVAL; 9393 } 9394 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9395 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9396 return -EINVAL; 9397 } 9398 } 9399 9400 /* don't call drivers if the effective program didn't change */ 9401 if (new_prog != cur_prog) { 9402 bpf_op = dev_xdp_bpf_op(dev, mode); 9403 if (!bpf_op) { 9404 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9405 return -EOPNOTSUPP; 9406 } 9407 9408 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9409 if (err) 9410 return err; 9411 } 9412 9413 if (link) 9414 dev_xdp_set_link(dev, mode, link); 9415 else 9416 dev_xdp_set_prog(dev, mode, new_prog); 9417 if (cur_prog) 9418 bpf_prog_put(cur_prog); 9419 9420 return 0; 9421 } 9422 9423 static int dev_xdp_attach_link(struct net_device *dev, 9424 struct netlink_ext_ack *extack, 9425 struct bpf_xdp_link *link) 9426 { 9427 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9428 } 9429 9430 static int dev_xdp_detach_link(struct net_device *dev, 9431 struct netlink_ext_ack *extack, 9432 struct bpf_xdp_link *link) 9433 { 9434 enum bpf_xdp_mode mode; 9435 bpf_op_t bpf_op; 9436 9437 ASSERT_RTNL(); 9438 9439 mode = dev_xdp_mode(dev, link->flags); 9440 if (dev_xdp_link(dev, mode) != link) 9441 return -EINVAL; 9442 9443 bpf_op = dev_xdp_bpf_op(dev, mode); 9444 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9445 dev_xdp_set_link(dev, mode, NULL); 9446 return 0; 9447 } 9448 9449 static void bpf_xdp_link_release(struct bpf_link *link) 9450 { 9451 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9452 9453 rtnl_lock(); 9454 9455 /* if racing with net_device's tear down, xdp_link->dev might be 9456 * already NULL, in which case link was already auto-detached 9457 */ 9458 if (xdp_link->dev) { 9459 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9460 xdp_link->dev = NULL; 9461 } 9462 9463 rtnl_unlock(); 9464 } 9465 9466 static int bpf_xdp_link_detach(struct bpf_link *link) 9467 { 9468 bpf_xdp_link_release(link); 9469 return 0; 9470 } 9471 9472 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9473 { 9474 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9475 9476 kfree(xdp_link); 9477 } 9478 9479 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9480 struct seq_file *seq) 9481 { 9482 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9483 u32 ifindex = 0; 9484 9485 rtnl_lock(); 9486 if (xdp_link->dev) 9487 ifindex = xdp_link->dev->ifindex; 9488 rtnl_unlock(); 9489 9490 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9491 } 9492 9493 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9494 struct bpf_link_info *info) 9495 { 9496 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9497 u32 ifindex = 0; 9498 9499 rtnl_lock(); 9500 if (xdp_link->dev) 9501 ifindex = xdp_link->dev->ifindex; 9502 rtnl_unlock(); 9503 9504 info->xdp.ifindex = ifindex; 9505 return 0; 9506 } 9507 9508 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9509 struct bpf_prog *old_prog) 9510 { 9511 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9512 enum bpf_xdp_mode mode; 9513 bpf_op_t bpf_op; 9514 int err = 0; 9515 9516 rtnl_lock(); 9517 9518 /* link might have been auto-released already, so fail */ 9519 if (!xdp_link->dev) { 9520 err = -ENOLINK; 9521 goto out_unlock; 9522 } 9523 9524 if (old_prog && link->prog != old_prog) { 9525 err = -EPERM; 9526 goto out_unlock; 9527 } 9528 old_prog = link->prog; 9529 if (old_prog == new_prog) { 9530 /* no-op, don't disturb drivers */ 9531 bpf_prog_put(new_prog); 9532 goto out_unlock; 9533 } 9534 9535 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9536 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9537 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9538 xdp_link->flags, new_prog); 9539 if (err) 9540 goto out_unlock; 9541 9542 old_prog = xchg(&link->prog, new_prog); 9543 bpf_prog_put(old_prog); 9544 9545 out_unlock: 9546 rtnl_unlock(); 9547 return err; 9548 } 9549 9550 static const struct bpf_link_ops bpf_xdp_link_lops = { 9551 .release = bpf_xdp_link_release, 9552 .dealloc = bpf_xdp_link_dealloc, 9553 .detach = bpf_xdp_link_detach, 9554 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9555 .fill_link_info = bpf_xdp_link_fill_link_info, 9556 .update_prog = bpf_xdp_link_update, 9557 }; 9558 9559 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9560 { 9561 struct net *net = current->nsproxy->net_ns; 9562 struct bpf_link_primer link_primer; 9563 struct bpf_xdp_link *link; 9564 struct net_device *dev; 9565 int err, fd; 9566 9567 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9568 if (!dev) 9569 return -EINVAL; 9570 9571 link = kzalloc(sizeof(*link), GFP_USER); 9572 if (!link) { 9573 err = -ENOMEM; 9574 goto out_put_dev; 9575 } 9576 9577 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9578 link->dev = dev; 9579 link->flags = attr->link_create.flags; 9580 9581 err = bpf_link_prime(&link->link, &link_primer); 9582 if (err) { 9583 kfree(link); 9584 goto out_put_dev; 9585 } 9586 9587 rtnl_lock(); 9588 err = dev_xdp_attach_link(dev, NULL, link); 9589 rtnl_unlock(); 9590 9591 if (err) { 9592 bpf_link_cleanup(&link_primer); 9593 goto out_put_dev; 9594 } 9595 9596 fd = bpf_link_settle(&link_primer); 9597 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9598 dev_put(dev); 9599 return fd; 9600 9601 out_put_dev: 9602 dev_put(dev); 9603 return err; 9604 } 9605 9606 /** 9607 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9608 * @dev: device 9609 * @extack: netlink extended ack 9610 * @fd: new program fd or negative value to clear 9611 * @expected_fd: old program fd that userspace expects to replace or clear 9612 * @flags: xdp-related flags 9613 * 9614 * Set or clear a bpf program for a device 9615 */ 9616 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9617 int fd, int expected_fd, u32 flags) 9618 { 9619 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9620 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9621 int err; 9622 9623 ASSERT_RTNL(); 9624 9625 if (fd >= 0) { 9626 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9627 mode != XDP_MODE_SKB); 9628 if (IS_ERR(new_prog)) 9629 return PTR_ERR(new_prog); 9630 } 9631 9632 if (expected_fd >= 0) { 9633 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9634 mode != XDP_MODE_SKB); 9635 if (IS_ERR(old_prog)) { 9636 err = PTR_ERR(old_prog); 9637 old_prog = NULL; 9638 goto err_out; 9639 } 9640 } 9641 9642 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9643 9644 err_out: 9645 if (err && new_prog) 9646 bpf_prog_put(new_prog); 9647 if (old_prog) 9648 bpf_prog_put(old_prog); 9649 return err; 9650 } 9651 9652 /** 9653 * dev_new_index - allocate an ifindex 9654 * @net: the applicable net namespace 9655 * 9656 * Returns a suitable unique value for a new device interface 9657 * number. The caller must hold the rtnl semaphore or the 9658 * dev_base_lock to be sure it remains unique. 9659 */ 9660 static int dev_new_index(struct net *net) 9661 { 9662 int ifindex = net->ifindex; 9663 9664 for (;;) { 9665 if (++ifindex <= 0) 9666 ifindex = 1; 9667 if (!__dev_get_by_index(net, ifindex)) 9668 return net->ifindex = ifindex; 9669 } 9670 } 9671 9672 /* Delayed registration/unregisteration */ 9673 static LIST_HEAD(net_todo_list); 9674 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9675 9676 static void net_set_todo(struct net_device *dev) 9677 { 9678 list_add_tail(&dev->todo_list, &net_todo_list); 9679 dev_net(dev)->dev_unreg_count++; 9680 } 9681 9682 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9683 struct net_device *upper, netdev_features_t features) 9684 { 9685 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9686 netdev_features_t feature; 9687 int feature_bit; 9688 9689 for_each_netdev_feature(upper_disables, feature_bit) { 9690 feature = __NETIF_F_BIT(feature_bit); 9691 if (!(upper->wanted_features & feature) 9692 && (features & feature)) { 9693 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9694 &feature, upper->name); 9695 features &= ~feature; 9696 } 9697 } 9698 9699 return features; 9700 } 9701 9702 static void netdev_sync_lower_features(struct net_device *upper, 9703 struct net_device *lower, netdev_features_t features) 9704 { 9705 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9706 netdev_features_t feature; 9707 int feature_bit; 9708 9709 for_each_netdev_feature(upper_disables, feature_bit) { 9710 feature = __NETIF_F_BIT(feature_bit); 9711 if (!(features & feature) && (lower->features & feature)) { 9712 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9713 &feature, lower->name); 9714 lower->wanted_features &= ~feature; 9715 __netdev_update_features(lower); 9716 9717 if (unlikely(lower->features & feature)) 9718 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9719 &feature, lower->name); 9720 else 9721 netdev_features_change(lower); 9722 } 9723 } 9724 } 9725 9726 static netdev_features_t netdev_fix_features(struct net_device *dev, 9727 netdev_features_t features) 9728 { 9729 /* Fix illegal checksum combinations */ 9730 if ((features & NETIF_F_HW_CSUM) && 9731 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9732 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9733 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9734 } 9735 9736 /* TSO requires that SG is present as well. */ 9737 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9738 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9739 features &= ~NETIF_F_ALL_TSO; 9740 } 9741 9742 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9743 !(features & NETIF_F_IP_CSUM)) { 9744 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9745 features &= ~NETIF_F_TSO; 9746 features &= ~NETIF_F_TSO_ECN; 9747 } 9748 9749 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9750 !(features & NETIF_F_IPV6_CSUM)) { 9751 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9752 features &= ~NETIF_F_TSO6; 9753 } 9754 9755 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9756 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9757 features &= ~NETIF_F_TSO_MANGLEID; 9758 9759 /* TSO ECN requires that TSO is present as well. */ 9760 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9761 features &= ~NETIF_F_TSO_ECN; 9762 9763 /* Software GSO depends on SG. */ 9764 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9765 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9766 features &= ~NETIF_F_GSO; 9767 } 9768 9769 /* GSO partial features require GSO partial be set */ 9770 if ((features & dev->gso_partial_features) && 9771 !(features & NETIF_F_GSO_PARTIAL)) { 9772 netdev_dbg(dev, 9773 "Dropping partially supported GSO features since no GSO partial.\n"); 9774 features &= ~dev->gso_partial_features; 9775 } 9776 9777 if (!(features & NETIF_F_RXCSUM)) { 9778 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9779 * successfully merged by hardware must also have the 9780 * checksum verified by hardware. If the user does not 9781 * want to enable RXCSUM, logically, we should disable GRO_HW. 9782 */ 9783 if (features & NETIF_F_GRO_HW) { 9784 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9785 features &= ~NETIF_F_GRO_HW; 9786 } 9787 } 9788 9789 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9790 if (features & NETIF_F_RXFCS) { 9791 if (features & NETIF_F_LRO) { 9792 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9793 features &= ~NETIF_F_LRO; 9794 } 9795 9796 if (features & NETIF_F_GRO_HW) { 9797 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9798 features &= ~NETIF_F_GRO_HW; 9799 } 9800 } 9801 9802 if (features & NETIF_F_HW_TLS_TX) { 9803 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9804 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9805 bool hw_csum = features & NETIF_F_HW_CSUM; 9806 9807 if (!ip_csum && !hw_csum) { 9808 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9809 features &= ~NETIF_F_HW_TLS_TX; 9810 } 9811 } 9812 9813 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9814 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9815 features &= ~NETIF_F_HW_TLS_RX; 9816 } 9817 9818 return features; 9819 } 9820 9821 int __netdev_update_features(struct net_device *dev) 9822 { 9823 struct net_device *upper, *lower; 9824 netdev_features_t features; 9825 struct list_head *iter; 9826 int err = -1; 9827 9828 ASSERT_RTNL(); 9829 9830 features = netdev_get_wanted_features(dev); 9831 9832 if (dev->netdev_ops->ndo_fix_features) 9833 features = dev->netdev_ops->ndo_fix_features(dev, features); 9834 9835 /* driver might be less strict about feature dependencies */ 9836 features = netdev_fix_features(dev, features); 9837 9838 /* some features can't be enabled if they're off on an upper device */ 9839 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9840 features = netdev_sync_upper_features(dev, upper, features); 9841 9842 if (dev->features == features) 9843 goto sync_lower; 9844 9845 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9846 &dev->features, &features); 9847 9848 if (dev->netdev_ops->ndo_set_features) 9849 err = dev->netdev_ops->ndo_set_features(dev, features); 9850 else 9851 err = 0; 9852 9853 if (unlikely(err < 0)) { 9854 netdev_err(dev, 9855 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9856 err, &features, &dev->features); 9857 /* return non-0 since some features might have changed and 9858 * it's better to fire a spurious notification than miss it 9859 */ 9860 return -1; 9861 } 9862 9863 sync_lower: 9864 /* some features must be disabled on lower devices when disabled 9865 * on an upper device (think: bonding master or bridge) 9866 */ 9867 netdev_for_each_lower_dev(dev, lower, iter) 9868 netdev_sync_lower_features(dev, lower, features); 9869 9870 if (!err) { 9871 netdev_features_t diff = features ^ dev->features; 9872 9873 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9874 /* udp_tunnel_{get,drop}_rx_info both need 9875 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9876 * device, or they won't do anything. 9877 * Thus we need to update dev->features 9878 * *before* calling udp_tunnel_get_rx_info, 9879 * but *after* calling udp_tunnel_drop_rx_info. 9880 */ 9881 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9882 dev->features = features; 9883 udp_tunnel_get_rx_info(dev); 9884 } else { 9885 udp_tunnel_drop_rx_info(dev); 9886 } 9887 } 9888 9889 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9890 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9891 dev->features = features; 9892 err |= vlan_get_rx_ctag_filter_info(dev); 9893 } else { 9894 vlan_drop_rx_ctag_filter_info(dev); 9895 } 9896 } 9897 9898 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9899 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9900 dev->features = features; 9901 err |= vlan_get_rx_stag_filter_info(dev); 9902 } else { 9903 vlan_drop_rx_stag_filter_info(dev); 9904 } 9905 } 9906 9907 dev->features = features; 9908 } 9909 9910 return err < 0 ? 0 : 1; 9911 } 9912 9913 /** 9914 * netdev_update_features - recalculate device features 9915 * @dev: the device to check 9916 * 9917 * Recalculate dev->features set and send notifications if it 9918 * has changed. Should be called after driver or hardware dependent 9919 * conditions might have changed that influence the features. 9920 */ 9921 void netdev_update_features(struct net_device *dev) 9922 { 9923 if (__netdev_update_features(dev)) 9924 netdev_features_change(dev); 9925 } 9926 EXPORT_SYMBOL(netdev_update_features); 9927 9928 /** 9929 * netdev_change_features - recalculate device features 9930 * @dev: the device to check 9931 * 9932 * Recalculate dev->features set and send notifications even 9933 * if they have not changed. Should be called instead of 9934 * netdev_update_features() if also dev->vlan_features might 9935 * have changed to allow the changes to be propagated to stacked 9936 * VLAN devices. 9937 */ 9938 void netdev_change_features(struct net_device *dev) 9939 { 9940 __netdev_update_features(dev); 9941 netdev_features_change(dev); 9942 } 9943 EXPORT_SYMBOL(netdev_change_features); 9944 9945 /** 9946 * netif_stacked_transfer_operstate - transfer operstate 9947 * @rootdev: the root or lower level device to transfer state from 9948 * @dev: the device to transfer operstate to 9949 * 9950 * Transfer operational state from root to device. This is normally 9951 * called when a stacking relationship exists between the root 9952 * device and the device(a leaf device). 9953 */ 9954 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9955 struct net_device *dev) 9956 { 9957 if (rootdev->operstate == IF_OPER_DORMANT) 9958 netif_dormant_on(dev); 9959 else 9960 netif_dormant_off(dev); 9961 9962 if (rootdev->operstate == IF_OPER_TESTING) 9963 netif_testing_on(dev); 9964 else 9965 netif_testing_off(dev); 9966 9967 if (netif_carrier_ok(rootdev)) 9968 netif_carrier_on(dev); 9969 else 9970 netif_carrier_off(dev); 9971 } 9972 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9973 9974 static int netif_alloc_rx_queues(struct net_device *dev) 9975 { 9976 unsigned int i, count = dev->num_rx_queues; 9977 struct netdev_rx_queue *rx; 9978 size_t sz = count * sizeof(*rx); 9979 int err = 0; 9980 9981 BUG_ON(count < 1); 9982 9983 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9984 if (!rx) 9985 return -ENOMEM; 9986 9987 dev->_rx = rx; 9988 9989 for (i = 0; i < count; i++) { 9990 rx[i].dev = dev; 9991 9992 /* XDP RX-queue setup */ 9993 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 9994 if (err < 0) 9995 goto err_rxq_info; 9996 } 9997 return 0; 9998 9999 err_rxq_info: 10000 /* Rollback successful reg's and free other resources */ 10001 while (i--) 10002 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10003 kvfree(dev->_rx); 10004 dev->_rx = NULL; 10005 return err; 10006 } 10007 10008 static void netif_free_rx_queues(struct net_device *dev) 10009 { 10010 unsigned int i, count = dev->num_rx_queues; 10011 10012 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10013 if (!dev->_rx) 10014 return; 10015 10016 for (i = 0; i < count; i++) 10017 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10018 10019 kvfree(dev->_rx); 10020 } 10021 10022 static void netdev_init_one_queue(struct net_device *dev, 10023 struct netdev_queue *queue, void *_unused) 10024 { 10025 /* Initialize queue lock */ 10026 spin_lock_init(&queue->_xmit_lock); 10027 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10028 queue->xmit_lock_owner = -1; 10029 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10030 queue->dev = dev; 10031 #ifdef CONFIG_BQL 10032 dql_init(&queue->dql, HZ); 10033 #endif 10034 } 10035 10036 static void netif_free_tx_queues(struct net_device *dev) 10037 { 10038 kvfree(dev->_tx); 10039 } 10040 10041 static int netif_alloc_netdev_queues(struct net_device *dev) 10042 { 10043 unsigned int count = dev->num_tx_queues; 10044 struct netdev_queue *tx; 10045 size_t sz = count * sizeof(*tx); 10046 10047 if (count < 1 || count > 0xffff) 10048 return -EINVAL; 10049 10050 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10051 if (!tx) 10052 return -ENOMEM; 10053 10054 dev->_tx = tx; 10055 10056 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10057 spin_lock_init(&dev->tx_global_lock); 10058 10059 return 0; 10060 } 10061 10062 void netif_tx_stop_all_queues(struct net_device *dev) 10063 { 10064 unsigned int i; 10065 10066 for (i = 0; i < dev->num_tx_queues; i++) { 10067 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10068 10069 netif_tx_stop_queue(txq); 10070 } 10071 } 10072 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10073 10074 /** 10075 * register_netdevice - register a network device 10076 * @dev: device to register 10077 * 10078 * Take a completed network device structure and add it to the kernel 10079 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10080 * chain. 0 is returned on success. A negative errno code is returned 10081 * on a failure to set up the device, or if the name is a duplicate. 10082 * 10083 * Callers must hold the rtnl semaphore. You may want 10084 * register_netdev() instead of this. 10085 * 10086 * BUGS: 10087 * The locking appears insufficient to guarantee two parallel registers 10088 * will not get the same name. 10089 */ 10090 10091 int register_netdevice(struct net_device *dev) 10092 { 10093 int ret; 10094 struct net *net = dev_net(dev); 10095 10096 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10097 NETDEV_FEATURE_COUNT); 10098 BUG_ON(dev_boot_phase); 10099 ASSERT_RTNL(); 10100 10101 might_sleep(); 10102 10103 /* When net_device's are persistent, this will be fatal. */ 10104 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10105 BUG_ON(!net); 10106 10107 ret = ethtool_check_ops(dev->ethtool_ops); 10108 if (ret) 10109 return ret; 10110 10111 spin_lock_init(&dev->addr_list_lock); 10112 netdev_set_addr_lockdep_class(dev); 10113 10114 ret = dev_get_valid_name(net, dev, dev->name); 10115 if (ret < 0) 10116 goto out; 10117 10118 ret = -ENOMEM; 10119 dev->name_node = netdev_name_node_head_alloc(dev); 10120 if (!dev->name_node) 10121 goto out; 10122 10123 /* Init, if this function is available */ 10124 if (dev->netdev_ops->ndo_init) { 10125 ret = dev->netdev_ops->ndo_init(dev); 10126 if (ret) { 10127 if (ret > 0) 10128 ret = -EIO; 10129 goto err_free_name; 10130 } 10131 } 10132 10133 if (((dev->hw_features | dev->features) & 10134 NETIF_F_HW_VLAN_CTAG_FILTER) && 10135 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10136 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10137 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10138 ret = -EINVAL; 10139 goto err_uninit; 10140 } 10141 10142 ret = -EBUSY; 10143 if (!dev->ifindex) 10144 dev->ifindex = dev_new_index(net); 10145 else if (__dev_get_by_index(net, dev->ifindex)) 10146 goto err_uninit; 10147 10148 /* Transfer changeable features to wanted_features and enable 10149 * software offloads (GSO and GRO). 10150 */ 10151 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10152 dev->features |= NETIF_F_SOFT_FEATURES; 10153 10154 if (dev->udp_tunnel_nic_info) { 10155 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10156 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10157 } 10158 10159 dev->wanted_features = dev->features & dev->hw_features; 10160 10161 if (!(dev->flags & IFF_LOOPBACK)) 10162 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10163 10164 /* If IPv4 TCP segmentation offload is supported we should also 10165 * allow the device to enable segmenting the frame with the option 10166 * of ignoring a static IP ID value. This doesn't enable the 10167 * feature itself but allows the user to enable it later. 10168 */ 10169 if (dev->hw_features & NETIF_F_TSO) 10170 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10171 if (dev->vlan_features & NETIF_F_TSO) 10172 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10173 if (dev->mpls_features & NETIF_F_TSO) 10174 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10175 if (dev->hw_enc_features & NETIF_F_TSO) 10176 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10177 10178 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10179 */ 10180 dev->vlan_features |= NETIF_F_HIGHDMA; 10181 10182 /* Make NETIF_F_SG inheritable to tunnel devices. 10183 */ 10184 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10185 10186 /* Make NETIF_F_SG inheritable to MPLS. 10187 */ 10188 dev->mpls_features |= NETIF_F_SG; 10189 10190 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10191 ret = notifier_to_errno(ret); 10192 if (ret) 10193 goto err_uninit; 10194 10195 ret = netdev_register_kobject(dev); 10196 if (ret) { 10197 dev->reg_state = NETREG_UNREGISTERED; 10198 goto err_uninit; 10199 } 10200 dev->reg_state = NETREG_REGISTERED; 10201 10202 __netdev_update_features(dev); 10203 10204 /* 10205 * Default initial state at registry is that the 10206 * device is present. 10207 */ 10208 10209 set_bit(__LINK_STATE_PRESENT, &dev->state); 10210 10211 linkwatch_init_dev(dev); 10212 10213 dev_init_scheduler(dev); 10214 dev_hold(dev); 10215 list_netdevice(dev); 10216 add_device_randomness(dev->dev_addr, dev->addr_len); 10217 10218 /* If the device has permanent device address, driver should 10219 * set dev_addr and also addr_assign_type should be set to 10220 * NET_ADDR_PERM (default value). 10221 */ 10222 if (dev->addr_assign_type == NET_ADDR_PERM) 10223 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10224 10225 /* Notify protocols, that a new device appeared. */ 10226 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10227 ret = notifier_to_errno(ret); 10228 if (ret) { 10229 /* Expect explicit free_netdev() on failure */ 10230 dev->needs_free_netdev = false; 10231 unregister_netdevice_queue(dev, NULL); 10232 goto out; 10233 } 10234 /* 10235 * Prevent userspace races by waiting until the network 10236 * device is fully setup before sending notifications. 10237 */ 10238 if (!dev->rtnl_link_ops || 10239 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10240 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10241 10242 out: 10243 return ret; 10244 10245 err_uninit: 10246 if (dev->netdev_ops->ndo_uninit) 10247 dev->netdev_ops->ndo_uninit(dev); 10248 if (dev->priv_destructor) 10249 dev->priv_destructor(dev); 10250 err_free_name: 10251 netdev_name_node_free(dev->name_node); 10252 goto out; 10253 } 10254 EXPORT_SYMBOL(register_netdevice); 10255 10256 /** 10257 * init_dummy_netdev - init a dummy network device for NAPI 10258 * @dev: device to init 10259 * 10260 * This takes a network device structure and initialize the minimum 10261 * amount of fields so it can be used to schedule NAPI polls without 10262 * registering a full blown interface. This is to be used by drivers 10263 * that need to tie several hardware interfaces to a single NAPI 10264 * poll scheduler due to HW limitations. 10265 */ 10266 int init_dummy_netdev(struct net_device *dev) 10267 { 10268 /* Clear everything. Note we don't initialize spinlocks 10269 * are they aren't supposed to be taken by any of the 10270 * NAPI code and this dummy netdev is supposed to be 10271 * only ever used for NAPI polls 10272 */ 10273 memset(dev, 0, sizeof(struct net_device)); 10274 10275 /* make sure we BUG if trying to hit standard 10276 * register/unregister code path 10277 */ 10278 dev->reg_state = NETREG_DUMMY; 10279 10280 /* NAPI wants this */ 10281 INIT_LIST_HEAD(&dev->napi_list); 10282 10283 /* a dummy interface is started by default */ 10284 set_bit(__LINK_STATE_PRESENT, &dev->state); 10285 set_bit(__LINK_STATE_START, &dev->state); 10286 10287 /* napi_busy_loop stats accounting wants this */ 10288 dev_net_set(dev, &init_net); 10289 10290 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10291 * because users of this 'device' dont need to change 10292 * its refcount. 10293 */ 10294 10295 return 0; 10296 } 10297 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10298 10299 10300 /** 10301 * register_netdev - register a network device 10302 * @dev: device to register 10303 * 10304 * Take a completed network device structure and add it to the kernel 10305 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10306 * chain. 0 is returned on success. A negative errno code is returned 10307 * on a failure to set up the device, or if the name is a duplicate. 10308 * 10309 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10310 * and expands the device name if you passed a format string to 10311 * alloc_netdev. 10312 */ 10313 int register_netdev(struct net_device *dev) 10314 { 10315 int err; 10316 10317 if (rtnl_lock_killable()) 10318 return -EINTR; 10319 err = register_netdevice(dev); 10320 rtnl_unlock(); 10321 return err; 10322 } 10323 EXPORT_SYMBOL(register_netdev); 10324 10325 int netdev_refcnt_read(const struct net_device *dev) 10326 { 10327 int i, refcnt = 0; 10328 10329 for_each_possible_cpu(i) 10330 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10331 return refcnt; 10332 } 10333 EXPORT_SYMBOL(netdev_refcnt_read); 10334 10335 #define WAIT_REFS_MIN_MSECS 1 10336 #define WAIT_REFS_MAX_MSECS 250 10337 /** 10338 * netdev_wait_allrefs - wait until all references are gone. 10339 * @dev: target net_device 10340 * 10341 * This is called when unregistering network devices. 10342 * 10343 * Any protocol or device that holds a reference should register 10344 * for netdevice notification, and cleanup and put back the 10345 * reference if they receive an UNREGISTER event. 10346 * We can get stuck here if buggy protocols don't correctly 10347 * call dev_put. 10348 */ 10349 static void netdev_wait_allrefs(struct net_device *dev) 10350 { 10351 unsigned long rebroadcast_time, warning_time; 10352 int wait = 0, refcnt; 10353 10354 linkwatch_forget_dev(dev); 10355 10356 rebroadcast_time = warning_time = jiffies; 10357 refcnt = netdev_refcnt_read(dev); 10358 10359 while (refcnt != 0) { 10360 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10361 rtnl_lock(); 10362 10363 /* Rebroadcast unregister notification */ 10364 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10365 10366 __rtnl_unlock(); 10367 rcu_barrier(); 10368 rtnl_lock(); 10369 10370 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10371 &dev->state)) { 10372 /* We must not have linkwatch events 10373 * pending on unregister. If this 10374 * happens, we simply run the queue 10375 * unscheduled, resulting in a noop 10376 * for this device. 10377 */ 10378 linkwatch_run_queue(); 10379 } 10380 10381 __rtnl_unlock(); 10382 10383 rebroadcast_time = jiffies; 10384 } 10385 10386 if (!wait) { 10387 rcu_barrier(); 10388 wait = WAIT_REFS_MIN_MSECS; 10389 } else { 10390 msleep(wait); 10391 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10392 } 10393 10394 refcnt = netdev_refcnt_read(dev); 10395 10396 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 10397 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10398 dev->name, refcnt); 10399 warning_time = jiffies; 10400 } 10401 } 10402 } 10403 10404 /* The sequence is: 10405 * 10406 * rtnl_lock(); 10407 * ... 10408 * register_netdevice(x1); 10409 * register_netdevice(x2); 10410 * ... 10411 * unregister_netdevice(y1); 10412 * unregister_netdevice(y2); 10413 * ... 10414 * rtnl_unlock(); 10415 * free_netdev(y1); 10416 * free_netdev(y2); 10417 * 10418 * We are invoked by rtnl_unlock(). 10419 * This allows us to deal with problems: 10420 * 1) We can delete sysfs objects which invoke hotplug 10421 * without deadlocking with linkwatch via keventd. 10422 * 2) Since we run with the RTNL semaphore not held, we can sleep 10423 * safely in order to wait for the netdev refcnt to drop to zero. 10424 * 10425 * We must not return until all unregister events added during 10426 * the interval the lock was held have been completed. 10427 */ 10428 void netdev_run_todo(void) 10429 { 10430 struct list_head list; 10431 #ifdef CONFIG_LOCKDEP 10432 struct list_head unlink_list; 10433 10434 list_replace_init(&net_unlink_list, &unlink_list); 10435 10436 while (!list_empty(&unlink_list)) { 10437 struct net_device *dev = list_first_entry(&unlink_list, 10438 struct net_device, 10439 unlink_list); 10440 list_del_init(&dev->unlink_list); 10441 dev->nested_level = dev->lower_level - 1; 10442 } 10443 #endif 10444 10445 /* Snapshot list, allow later requests */ 10446 list_replace_init(&net_todo_list, &list); 10447 10448 __rtnl_unlock(); 10449 10450 10451 /* Wait for rcu callbacks to finish before next phase */ 10452 if (!list_empty(&list)) 10453 rcu_barrier(); 10454 10455 while (!list_empty(&list)) { 10456 struct net_device *dev 10457 = list_first_entry(&list, struct net_device, todo_list); 10458 list_del(&dev->todo_list); 10459 10460 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10461 pr_err("network todo '%s' but state %d\n", 10462 dev->name, dev->reg_state); 10463 dump_stack(); 10464 continue; 10465 } 10466 10467 dev->reg_state = NETREG_UNREGISTERED; 10468 10469 netdev_wait_allrefs(dev); 10470 10471 /* paranoia */ 10472 BUG_ON(netdev_refcnt_read(dev)); 10473 BUG_ON(!list_empty(&dev->ptype_all)); 10474 BUG_ON(!list_empty(&dev->ptype_specific)); 10475 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10476 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10477 #if IS_ENABLED(CONFIG_DECNET) 10478 WARN_ON(dev->dn_ptr); 10479 #endif 10480 if (dev->priv_destructor) 10481 dev->priv_destructor(dev); 10482 if (dev->needs_free_netdev) 10483 free_netdev(dev); 10484 10485 /* Report a network device has been unregistered */ 10486 rtnl_lock(); 10487 dev_net(dev)->dev_unreg_count--; 10488 __rtnl_unlock(); 10489 wake_up(&netdev_unregistering_wq); 10490 10491 /* Free network device */ 10492 kobject_put(&dev->dev.kobj); 10493 } 10494 } 10495 10496 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10497 * all the same fields in the same order as net_device_stats, with only 10498 * the type differing, but rtnl_link_stats64 may have additional fields 10499 * at the end for newer counters. 10500 */ 10501 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10502 const struct net_device_stats *netdev_stats) 10503 { 10504 #if BITS_PER_LONG == 64 10505 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10506 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10507 /* zero out counters that only exist in rtnl_link_stats64 */ 10508 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10509 sizeof(*stats64) - sizeof(*netdev_stats)); 10510 #else 10511 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10512 const unsigned long *src = (const unsigned long *)netdev_stats; 10513 u64 *dst = (u64 *)stats64; 10514 10515 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10516 for (i = 0; i < n; i++) 10517 dst[i] = src[i]; 10518 /* zero out counters that only exist in rtnl_link_stats64 */ 10519 memset((char *)stats64 + n * sizeof(u64), 0, 10520 sizeof(*stats64) - n * sizeof(u64)); 10521 #endif 10522 } 10523 EXPORT_SYMBOL(netdev_stats_to_stats64); 10524 10525 /** 10526 * dev_get_stats - get network device statistics 10527 * @dev: device to get statistics from 10528 * @storage: place to store stats 10529 * 10530 * Get network statistics from device. Return @storage. 10531 * The device driver may provide its own method by setting 10532 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10533 * otherwise the internal statistics structure is used. 10534 */ 10535 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10536 struct rtnl_link_stats64 *storage) 10537 { 10538 const struct net_device_ops *ops = dev->netdev_ops; 10539 10540 if (ops->ndo_get_stats64) { 10541 memset(storage, 0, sizeof(*storage)); 10542 ops->ndo_get_stats64(dev, storage); 10543 } else if (ops->ndo_get_stats) { 10544 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10545 } else { 10546 netdev_stats_to_stats64(storage, &dev->stats); 10547 } 10548 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10549 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10550 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10551 return storage; 10552 } 10553 EXPORT_SYMBOL(dev_get_stats); 10554 10555 /** 10556 * dev_fetch_sw_netstats - get per-cpu network device statistics 10557 * @s: place to store stats 10558 * @netstats: per-cpu network stats to read from 10559 * 10560 * Read per-cpu network statistics and populate the related fields in @s. 10561 */ 10562 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10563 const struct pcpu_sw_netstats __percpu *netstats) 10564 { 10565 int cpu; 10566 10567 for_each_possible_cpu(cpu) { 10568 const struct pcpu_sw_netstats *stats; 10569 struct pcpu_sw_netstats tmp; 10570 unsigned int start; 10571 10572 stats = per_cpu_ptr(netstats, cpu); 10573 do { 10574 start = u64_stats_fetch_begin_irq(&stats->syncp); 10575 tmp.rx_packets = stats->rx_packets; 10576 tmp.rx_bytes = stats->rx_bytes; 10577 tmp.tx_packets = stats->tx_packets; 10578 tmp.tx_bytes = stats->tx_bytes; 10579 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10580 10581 s->rx_packets += tmp.rx_packets; 10582 s->rx_bytes += tmp.rx_bytes; 10583 s->tx_packets += tmp.tx_packets; 10584 s->tx_bytes += tmp.tx_bytes; 10585 } 10586 } 10587 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10588 10589 /** 10590 * dev_get_tstats64 - ndo_get_stats64 implementation 10591 * @dev: device to get statistics from 10592 * @s: place to store stats 10593 * 10594 * Populate @s from dev->stats and dev->tstats. Can be used as 10595 * ndo_get_stats64() callback. 10596 */ 10597 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10598 { 10599 netdev_stats_to_stats64(s, &dev->stats); 10600 dev_fetch_sw_netstats(s, dev->tstats); 10601 } 10602 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10603 10604 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10605 { 10606 struct netdev_queue *queue = dev_ingress_queue(dev); 10607 10608 #ifdef CONFIG_NET_CLS_ACT 10609 if (queue) 10610 return queue; 10611 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10612 if (!queue) 10613 return NULL; 10614 netdev_init_one_queue(dev, queue, NULL); 10615 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10616 queue->qdisc_sleeping = &noop_qdisc; 10617 rcu_assign_pointer(dev->ingress_queue, queue); 10618 #endif 10619 return queue; 10620 } 10621 10622 static const struct ethtool_ops default_ethtool_ops; 10623 10624 void netdev_set_default_ethtool_ops(struct net_device *dev, 10625 const struct ethtool_ops *ops) 10626 { 10627 if (dev->ethtool_ops == &default_ethtool_ops) 10628 dev->ethtool_ops = ops; 10629 } 10630 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10631 10632 void netdev_freemem(struct net_device *dev) 10633 { 10634 char *addr = (char *)dev - dev->padded; 10635 10636 kvfree(addr); 10637 } 10638 10639 /** 10640 * alloc_netdev_mqs - allocate network device 10641 * @sizeof_priv: size of private data to allocate space for 10642 * @name: device name format string 10643 * @name_assign_type: origin of device name 10644 * @setup: callback to initialize device 10645 * @txqs: the number of TX subqueues to allocate 10646 * @rxqs: the number of RX subqueues to allocate 10647 * 10648 * Allocates a struct net_device with private data area for driver use 10649 * and performs basic initialization. Also allocates subqueue structs 10650 * for each queue on the device. 10651 */ 10652 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10653 unsigned char name_assign_type, 10654 void (*setup)(struct net_device *), 10655 unsigned int txqs, unsigned int rxqs) 10656 { 10657 struct net_device *dev; 10658 unsigned int alloc_size; 10659 struct net_device *p; 10660 10661 BUG_ON(strlen(name) >= sizeof(dev->name)); 10662 10663 if (txqs < 1) { 10664 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10665 return NULL; 10666 } 10667 10668 if (rxqs < 1) { 10669 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10670 return NULL; 10671 } 10672 10673 alloc_size = sizeof(struct net_device); 10674 if (sizeof_priv) { 10675 /* ensure 32-byte alignment of private area */ 10676 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10677 alloc_size += sizeof_priv; 10678 } 10679 /* ensure 32-byte alignment of whole construct */ 10680 alloc_size += NETDEV_ALIGN - 1; 10681 10682 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10683 if (!p) 10684 return NULL; 10685 10686 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10687 dev->padded = (char *)dev - (char *)p; 10688 10689 dev->pcpu_refcnt = alloc_percpu(int); 10690 if (!dev->pcpu_refcnt) 10691 goto free_dev; 10692 10693 if (dev_addr_init(dev)) 10694 goto free_pcpu; 10695 10696 dev_mc_init(dev); 10697 dev_uc_init(dev); 10698 10699 dev_net_set(dev, &init_net); 10700 10701 dev->gso_max_size = GSO_MAX_SIZE; 10702 dev->gso_max_segs = GSO_MAX_SEGS; 10703 dev->upper_level = 1; 10704 dev->lower_level = 1; 10705 #ifdef CONFIG_LOCKDEP 10706 dev->nested_level = 0; 10707 INIT_LIST_HEAD(&dev->unlink_list); 10708 #endif 10709 10710 INIT_LIST_HEAD(&dev->napi_list); 10711 INIT_LIST_HEAD(&dev->unreg_list); 10712 INIT_LIST_HEAD(&dev->close_list); 10713 INIT_LIST_HEAD(&dev->link_watch_list); 10714 INIT_LIST_HEAD(&dev->adj_list.upper); 10715 INIT_LIST_HEAD(&dev->adj_list.lower); 10716 INIT_LIST_HEAD(&dev->ptype_all); 10717 INIT_LIST_HEAD(&dev->ptype_specific); 10718 INIT_LIST_HEAD(&dev->net_notifier_list); 10719 #ifdef CONFIG_NET_SCHED 10720 hash_init(dev->qdisc_hash); 10721 #endif 10722 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10723 setup(dev); 10724 10725 if (!dev->tx_queue_len) { 10726 dev->priv_flags |= IFF_NO_QUEUE; 10727 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10728 } 10729 10730 dev->num_tx_queues = txqs; 10731 dev->real_num_tx_queues = txqs; 10732 if (netif_alloc_netdev_queues(dev)) 10733 goto free_all; 10734 10735 dev->num_rx_queues = rxqs; 10736 dev->real_num_rx_queues = rxqs; 10737 if (netif_alloc_rx_queues(dev)) 10738 goto free_all; 10739 10740 strcpy(dev->name, name); 10741 dev->name_assign_type = name_assign_type; 10742 dev->group = INIT_NETDEV_GROUP; 10743 if (!dev->ethtool_ops) 10744 dev->ethtool_ops = &default_ethtool_ops; 10745 10746 nf_hook_ingress_init(dev); 10747 10748 return dev; 10749 10750 free_all: 10751 free_netdev(dev); 10752 return NULL; 10753 10754 free_pcpu: 10755 free_percpu(dev->pcpu_refcnt); 10756 free_dev: 10757 netdev_freemem(dev); 10758 return NULL; 10759 } 10760 EXPORT_SYMBOL(alloc_netdev_mqs); 10761 10762 /** 10763 * free_netdev - free network device 10764 * @dev: device 10765 * 10766 * This function does the last stage of destroying an allocated device 10767 * interface. The reference to the device object is released. If this 10768 * is the last reference then it will be freed.Must be called in process 10769 * context. 10770 */ 10771 void free_netdev(struct net_device *dev) 10772 { 10773 struct napi_struct *p, *n; 10774 10775 might_sleep(); 10776 10777 /* When called immediately after register_netdevice() failed the unwind 10778 * handling may still be dismantling the device. Handle that case by 10779 * deferring the free. 10780 */ 10781 if (dev->reg_state == NETREG_UNREGISTERING) { 10782 ASSERT_RTNL(); 10783 dev->needs_free_netdev = true; 10784 return; 10785 } 10786 10787 netif_free_tx_queues(dev); 10788 netif_free_rx_queues(dev); 10789 10790 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10791 10792 /* Flush device addresses */ 10793 dev_addr_flush(dev); 10794 10795 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10796 netif_napi_del(p); 10797 10798 free_percpu(dev->pcpu_refcnt); 10799 dev->pcpu_refcnt = NULL; 10800 free_percpu(dev->xdp_bulkq); 10801 dev->xdp_bulkq = NULL; 10802 10803 /* Compatibility with error handling in drivers */ 10804 if (dev->reg_state == NETREG_UNINITIALIZED) { 10805 netdev_freemem(dev); 10806 return; 10807 } 10808 10809 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10810 dev->reg_state = NETREG_RELEASED; 10811 10812 /* will free via device release */ 10813 put_device(&dev->dev); 10814 } 10815 EXPORT_SYMBOL(free_netdev); 10816 10817 /** 10818 * synchronize_net - Synchronize with packet receive processing 10819 * 10820 * Wait for packets currently being received to be done. 10821 * Does not block later packets from starting. 10822 */ 10823 void synchronize_net(void) 10824 { 10825 might_sleep(); 10826 if (rtnl_is_locked()) 10827 synchronize_rcu_expedited(); 10828 else 10829 synchronize_rcu(); 10830 } 10831 EXPORT_SYMBOL(synchronize_net); 10832 10833 /** 10834 * unregister_netdevice_queue - remove device from the kernel 10835 * @dev: device 10836 * @head: list 10837 * 10838 * This function shuts down a device interface and removes it 10839 * from the kernel tables. 10840 * If head not NULL, device is queued to be unregistered later. 10841 * 10842 * Callers must hold the rtnl semaphore. You may want 10843 * unregister_netdev() instead of this. 10844 */ 10845 10846 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10847 { 10848 ASSERT_RTNL(); 10849 10850 if (head) { 10851 list_move_tail(&dev->unreg_list, head); 10852 } else { 10853 LIST_HEAD(single); 10854 10855 list_add(&dev->unreg_list, &single); 10856 unregister_netdevice_many(&single); 10857 } 10858 } 10859 EXPORT_SYMBOL(unregister_netdevice_queue); 10860 10861 /** 10862 * unregister_netdevice_many - unregister many devices 10863 * @head: list of devices 10864 * 10865 * Note: As most callers use a stack allocated list_head, 10866 * we force a list_del() to make sure stack wont be corrupted later. 10867 */ 10868 void unregister_netdevice_many(struct list_head *head) 10869 { 10870 struct net_device *dev, *tmp; 10871 LIST_HEAD(close_head); 10872 10873 BUG_ON(dev_boot_phase); 10874 ASSERT_RTNL(); 10875 10876 if (list_empty(head)) 10877 return; 10878 10879 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10880 /* Some devices call without registering 10881 * for initialization unwind. Remove those 10882 * devices and proceed with the remaining. 10883 */ 10884 if (dev->reg_state == NETREG_UNINITIALIZED) { 10885 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10886 dev->name, dev); 10887 10888 WARN_ON(1); 10889 list_del(&dev->unreg_list); 10890 continue; 10891 } 10892 dev->dismantle = true; 10893 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10894 } 10895 10896 /* If device is running, close it first. */ 10897 list_for_each_entry(dev, head, unreg_list) 10898 list_add_tail(&dev->close_list, &close_head); 10899 dev_close_many(&close_head, true); 10900 10901 list_for_each_entry(dev, head, unreg_list) { 10902 /* And unlink it from device chain. */ 10903 unlist_netdevice(dev); 10904 10905 dev->reg_state = NETREG_UNREGISTERING; 10906 } 10907 flush_all_backlogs(); 10908 10909 synchronize_net(); 10910 10911 list_for_each_entry(dev, head, unreg_list) { 10912 struct sk_buff *skb = NULL; 10913 10914 /* Shutdown queueing discipline. */ 10915 dev_shutdown(dev); 10916 10917 dev_xdp_uninstall(dev); 10918 10919 /* Notify protocols, that we are about to destroy 10920 * this device. They should clean all the things. 10921 */ 10922 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10923 10924 if (!dev->rtnl_link_ops || 10925 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10926 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 10927 GFP_KERNEL, NULL, 0); 10928 10929 /* 10930 * Flush the unicast and multicast chains 10931 */ 10932 dev_uc_flush(dev); 10933 dev_mc_flush(dev); 10934 10935 netdev_name_node_alt_flush(dev); 10936 netdev_name_node_free(dev->name_node); 10937 10938 if (dev->netdev_ops->ndo_uninit) 10939 dev->netdev_ops->ndo_uninit(dev); 10940 10941 if (skb) 10942 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 10943 10944 /* Notifier chain MUST detach us all upper devices. */ 10945 WARN_ON(netdev_has_any_upper_dev(dev)); 10946 WARN_ON(netdev_has_any_lower_dev(dev)); 10947 10948 /* Remove entries from kobject tree */ 10949 netdev_unregister_kobject(dev); 10950 #ifdef CONFIG_XPS 10951 /* Remove XPS queueing entries */ 10952 netif_reset_xps_queues_gt(dev, 0); 10953 #endif 10954 } 10955 10956 synchronize_net(); 10957 10958 list_for_each_entry(dev, head, unreg_list) { 10959 dev_put(dev); 10960 net_set_todo(dev); 10961 } 10962 10963 list_del(head); 10964 } 10965 EXPORT_SYMBOL(unregister_netdevice_many); 10966 10967 /** 10968 * unregister_netdev - remove device from the kernel 10969 * @dev: device 10970 * 10971 * This function shuts down a device interface and removes it 10972 * from the kernel tables. 10973 * 10974 * This is just a wrapper for unregister_netdevice that takes 10975 * the rtnl semaphore. In general you want to use this and not 10976 * unregister_netdevice. 10977 */ 10978 void unregister_netdev(struct net_device *dev) 10979 { 10980 rtnl_lock(); 10981 unregister_netdevice(dev); 10982 rtnl_unlock(); 10983 } 10984 EXPORT_SYMBOL(unregister_netdev); 10985 10986 /** 10987 * dev_change_net_namespace - move device to different nethost namespace 10988 * @dev: device 10989 * @net: network namespace 10990 * @pat: If not NULL name pattern to try if the current device name 10991 * is already taken in the destination network namespace. 10992 * 10993 * This function shuts down a device interface and moves it 10994 * to a new network namespace. On success 0 is returned, on 10995 * a failure a netagive errno code is returned. 10996 * 10997 * Callers must hold the rtnl semaphore. 10998 */ 10999 11000 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 11001 { 11002 struct net *net_old = dev_net(dev); 11003 int err, new_nsid, new_ifindex; 11004 11005 ASSERT_RTNL(); 11006 11007 /* Don't allow namespace local devices to be moved. */ 11008 err = -EINVAL; 11009 if (dev->features & NETIF_F_NETNS_LOCAL) 11010 goto out; 11011 11012 /* Ensure the device has been registrered */ 11013 if (dev->reg_state != NETREG_REGISTERED) 11014 goto out; 11015 11016 /* Get out if there is nothing todo */ 11017 err = 0; 11018 if (net_eq(net_old, net)) 11019 goto out; 11020 11021 /* Pick the destination device name, and ensure 11022 * we can use it in the destination network namespace. 11023 */ 11024 err = -EEXIST; 11025 if (__dev_get_by_name(net, dev->name)) { 11026 /* We get here if we can't use the current device name */ 11027 if (!pat) 11028 goto out; 11029 err = dev_get_valid_name(net, dev, pat); 11030 if (err < 0) 11031 goto out; 11032 } 11033 11034 /* 11035 * And now a mini version of register_netdevice unregister_netdevice. 11036 */ 11037 11038 /* If device is running close it first. */ 11039 dev_close(dev); 11040 11041 /* And unlink it from device chain */ 11042 unlist_netdevice(dev); 11043 11044 synchronize_net(); 11045 11046 /* Shutdown queueing discipline. */ 11047 dev_shutdown(dev); 11048 11049 /* Notify protocols, that we are about to destroy 11050 * this device. They should clean all the things. 11051 * 11052 * Note that dev->reg_state stays at NETREG_REGISTERED. 11053 * This is wanted because this way 8021q and macvlan know 11054 * the device is just moving and can keep their slaves up. 11055 */ 11056 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11057 rcu_barrier(); 11058 11059 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11060 /* If there is an ifindex conflict assign a new one */ 11061 if (__dev_get_by_index(net, dev->ifindex)) 11062 new_ifindex = dev_new_index(net); 11063 else 11064 new_ifindex = dev->ifindex; 11065 11066 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11067 new_ifindex); 11068 11069 /* 11070 * Flush the unicast and multicast chains 11071 */ 11072 dev_uc_flush(dev); 11073 dev_mc_flush(dev); 11074 11075 /* Send a netdev-removed uevent to the old namespace */ 11076 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11077 netdev_adjacent_del_links(dev); 11078 11079 /* Move per-net netdevice notifiers that are following the netdevice */ 11080 move_netdevice_notifiers_dev_net(dev, net); 11081 11082 /* Actually switch the network namespace */ 11083 dev_net_set(dev, net); 11084 dev->ifindex = new_ifindex; 11085 11086 /* Send a netdev-add uevent to the new namespace */ 11087 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11088 netdev_adjacent_add_links(dev); 11089 11090 /* Fixup kobjects */ 11091 err = device_rename(&dev->dev, dev->name); 11092 WARN_ON(err); 11093 11094 /* Adapt owner in case owning user namespace of target network 11095 * namespace is different from the original one. 11096 */ 11097 err = netdev_change_owner(dev, net_old, net); 11098 WARN_ON(err); 11099 11100 /* Add the device back in the hashes */ 11101 list_netdevice(dev); 11102 11103 /* Notify protocols, that a new device appeared. */ 11104 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11105 11106 /* 11107 * Prevent userspace races by waiting until the network 11108 * device is fully setup before sending notifications. 11109 */ 11110 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 11111 11112 synchronize_net(); 11113 err = 0; 11114 out: 11115 return err; 11116 } 11117 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 11118 11119 static int dev_cpu_dead(unsigned int oldcpu) 11120 { 11121 struct sk_buff **list_skb; 11122 struct sk_buff *skb; 11123 unsigned int cpu; 11124 struct softnet_data *sd, *oldsd, *remsd = NULL; 11125 11126 local_irq_disable(); 11127 cpu = smp_processor_id(); 11128 sd = &per_cpu(softnet_data, cpu); 11129 oldsd = &per_cpu(softnet_data, oldcpu); 11130 11131 /* Find end of our completion_queue. */ 11132 list_skb = &sd->completion_queue; 11133 while (*list_skb) 11134 list_skb = &(*list_skb)->next; 11135 /* Append completion queue from offline CPU. */ 11136 *list_skb = oldsd->completion_queue; 11137 oldsd->completion_queue = NULL; 11138 11139 /* Append output queue from offline CPU. */ 11140 if (oldsd->output_queue) { 11141 *sd->output_queue_tailp = oldsd->output_queue; 11142 sd->output_queue_tailp = oldsd->output_queue_tailp; 11143 oldsd->output_queue = NULL; 11144 oldsd->output_queue_tailp = &oldsd->output_queue; 11145 } 11146 /* Append NAPI poll list from offline CPU, with one exception : 11147 * process_backlog() must be called by cpu owning percpu backlog. 11148 * We properly handle process_queue & input_pkt_queue later. 11149 */ 11150 while (!list_empty(&oldsd->poll_list)) { 11151 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11152 struct napi_struct, 11153 poll_list); 11154 11155 list_del_init(&napi->poll_list); 11156 if (napi->poll == process_backlog) 11157 napi->state = 0; 11158 else 11159 ____napi_schedule(sd, napi); 11160 } 11161 11162 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11163 local_irq_enable(); 11164 11165 #ifdef CONFIG_RPS 11166 remsd = oldsd->rps_ipi_list; 11167 oldsd->rps_ipi_list = NULL; 11168 #endif 11169 /* send out pending IPI's on offline CPU */ 11170 net_rps_send_ipi(remsd); 11171 11172 /* Process offline CPU's input_pkt_queue */ 11173 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11174 netif_rx_ni(skb); 11175 input_queue_head_incr(oldsd); 11176 } 11177 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11178 netif_rx_ni(skb); 11179 input_queue_head_incr(oldsd); 11180 } 11181 11182 return 0; 11183 } 11184 11185 /** 11186 * netdev_increment_features - increment feature set by one 11187 * @all: current feature set 11188 * @one: new feature set 11189 * @mask: mask feature set 11190 * 11191 * Computes a new feature set after adding a device with feature set 11192 * @one to the master device with current feature set @all. Will not 11193 * enable anything that is off in @mask. Returns the new feature set. 11194 */ 11195 netdev_features_t netdev_increment_features(netdev_features_t all, 11196 netdev_features_t one, netdev_features_t mask) 11197 { 11198 if (mask & NETIF_F_HW_CSUM) 11199 mask |= NETIF_F_CSUM_MASK; 11200 mask |= NETIF_F_VLAN_CHALLENGED; 11201 11202 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11203 all &= one | ~NETIF_F_ALL_FOR_ALL; 11204 11205 /* If one device supports hw checksumming, set for all. */ 11206 if (all & NETIF_F_HW_CSUM) 11207 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11208 11209 return all; 11210 } 11211 EXPORT_SYMBOL(netdev_increment_features); 11212 11213 static struct hlist_head * __net_init netdev_create_hash(void) 11214 { 11215 int i; 11216 struct hlist_head *hash; 11217 11218 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11219 if (hash != NULL) 11220 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11221 INIT_HLIST_HEAD(&hash[i]); 11222 11223 return hash; 11224 } 11225 11226 /* Initialize per network namespace state */ 11227 static int __net_init netdev_init(struct net *net) 11228 { 11229 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11230 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11231 11232 if (net != &init_net) 11233 INIT_LIST_HEAD(&net->dev_base_head); 11234 11235 net->dev_name_head = netdev_create_hash(); 11236 if (net->dev_name_head == NULL) 11237 goto err_name; 11238 11239 net->dev_index_head = netdev_create_hash(); 11240 if (net->dev_index_head == NULL) 11241 goto err_idx; 11242 11243 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11244 11245 return 0; 11246 11247 err_idx: 11248 kfree(net->dev_name_head); 11249 err_name: 11250 return -ENOMEM; 11251 } 11252 11253 /** 11254 * netdev_drivername - network driver for the device 11255 * @dev: network device 11256 * 11257 * Determine network driver for device. 11258 */ 11259 const char *netdev_drivername(const struct net_device *dev) 11260 { 11261 const struct device_driver *driver; 11262 const struct device *parent; 11263 const char *empty = ""; 11264 11265 parent = dev->dev.parent; 11266 if (!parent) 11267 return empty; 11268 11269 driver = parent->driver; 11270 if (driver && driver->name) 11271 return driver->name; 11272 return empty; 11273 } 11274 11275 static void __netdev_printk(const char *level, const struct net_device *dev, 11276 struct va_format *vaf) 11277 { 11278 if (dev && dev->dev.parent) { 11279 dev_printk_emit(level[1] - '0', 11280 dev->dev.parent, 11281 "%s %s %s%s: %pV", 11282 dev_driver_string(dev->dev.parent), 11283 dev_name(dev->dev.parent), 11284 netdev_name(dev), netdev_reg_state(dev), 11285 vaf); 11286 } else if (dev) { 11287 printk("%s%s%s: %pV", 11288 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11289 } else { 11290 printk("%s(NULL net_device): %pV", level, vaf); 11291 } 11292 } 11293 11294 void netdev_printk(const char *level, const struct net_device *dev, 11295 const char *format, ...) 11296 { 11297 struct va_format vaf; 11298 va_list args; 11299 11300 va_start(args, format); 11301 11302 vaf.fmt = format; 11303 vaf.va = &args; 11304 11305 __netdev_printk(level, dev, &vaf); 11306 11307 va_end(args); 11308 } 11309 EXPORT_SYMBOL(netdev_printk); 11310 11311 #define define_netdev_printk_level(func, level) \ 11312 void func(const struct net_device *dev, const char *fmt, ...) \ 11313 { \ 11314 struct va_format vaf; \ 11315 va_list args; \ 11316 \ 11317 va_start(args, fmt); \ 11318 \ 11319 vaf.fmt = fmt; \ 11320 vaf.va = &args; \ 11321 \ 11322 __netdev_printk(level, dev, &vaf); \ 11323 \ 11324 va_end(args); \ 11325 } \ 11326 EXPORT_SYMBOL(func); 11327 11328 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11329 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11330 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11331 define_netdev_printk_level(netdev_err, KERN_ERR); 11332 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11333 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11334 define_netdev_printk_level(netdev_info, KERN_INFO); 11335 11336 static void __net_exit netdev_exit(struct net *net) 11337 { 11338 kfree(net->dev_name_head); 11339 kfree(net->dev_index_head); 11340 if (net != &init_net) 11341 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11342 } 11343 11344 static struct pernet_operations __net_initdata netdev_net_ops = { 11345 .init = netdev_init, 11346 .exit = netdev_exit, 11347 }; 11348 11349 static void __net_exit default_device_exit(struct net *net) 11350 { 11351 struct net_device *dev, *aux; 11352 /* 11353 * Push all migratable network devices back to the 11354 * initial network namespace 11355 */ 11356 rtnl_lock(); 11357 for_each_netdev_safe(net, dev, aux) { 11358 int err; 11359 char fb_name[IFNAMSIZ]; 11360 11361 /* Ignore unmoveable devices (i.e. loopback) */ 11362 if (dev->features & NETIF_F_NETNS_LOCAL) 11363 continue; 11364 11365 /* Leave virtual devices for the generic cleanup */ 11366 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11367 continue; 11368 11369 /* Push remaining network devices to init_net */ 11370 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11371 if (__dev_get_by_name(&init_net, fb_name)) 11372 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11373 err = dev_change_net_namespace(dev, &init_net, fb_name); 11374 if (err) { 11375 pr_emerg("%s: failed to move %s to init_net: %d\n", 11376 __func__, dev->name, err); 11377 BUG(); 11378 } 11379 } 11380 rtnl_unlock(); 11381 } 11382 11383 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 11384 { 11385 /* Return with the rtnl_lock held when there are no network 11386 * devices unregistering in any network namespace in net_list. 11387 */ 11388 struct net *net; 11389 bool unregistering; 11390 DEFINE_WAIT_FUNC(wait, woken_wake_function); 11391 11392 add_wait_queue(&netdev_unregistering_wq, &wait); 11393 for (;;) { 11394 unregistering = false; 11395 rtnl_lock(); 11396 list_for_each_entry(net, net_list, exit_list) { 11397 if (net->dev_unreg_count > 0) { 11398 unregistering = true; 11399 break; 11400 } 11401 } 11402 if (!unregistering) 11403 break; 11404 __rtnl_unlock(); 11405 11406 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 11407 } 11408 remove_wait_queue(&netdev_unregistering_wq, &wait); 11409 } 11410 11411 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11412 { 11413 /* At exit all network devices most be removed from a network 11414 * namespace. Do this in the reverse order of registration. 11415 * Do this across as many network namespaces as possible to 11416 * improve batching efficiency. 11417 */ 11418 struct net_device *dev; 11419 struct net *net; 11420 LIST_HEAD(dev_kill_list); 11421 11422 /* To prevent network device cleanup code from dereferencing 11423 * loopback devices or network devices that have been freed 11424 * wait here for all pending unregistrations to complete, 11425 * before unregistring the loopback device and allowing the 11426 * network namespace be freed. 11427 * 11428 * The netdev todo list containing all network devices 11429 * unregistrations that happen in default_device_exit_batch 11430 * will run in the rtnl_unlock() at the end of 11431 * default_device_exit_batch. 11432 */ 11433 rtnl_lock_unregistering(net_list); 11434 list_for_each_entry(net, net_list, exit_list) { 11435 for_each_netdev_reverse(net, dev) { 11436 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11437 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11438 else 11439 unregister_netdevice_queue(dev, &dev_kill_list); 11440 } 11441 } 11442 unregister_netdevice_many(&dev_kill_list); 11443 rtnl_unlock(); 11444 } 11445 11446 static struct pernet_operations __net_initdata default_device_ops = { 11447 .exit = default_device_exit, 11448 .exit_batch = default_device_exit_batch, 11449 }; 11450 11451 /* 11452 * Initialize the DEV module. At boot time this walks the device list and 11453 * unhooks any devices that fail to initialise (normally hardware not 11454 * present) and leaves us with a valid list of present and active devices. 11455 * 11456 */ 11457 11458 /* 11459 * This is called single threaded during boot, so no need 11460 * to take the rtnl semaphore. 11461 */ 11462 static int __init net_dev_init(void) 11463 { 11464 int i, rc = -ENOMEM; 11465 11466 BUG_ON(!dev_boot_phase); 11467 11468 if (dev_proc_init()) 11469 goto out; 11470 11471 if (netdev_kobject_init()) 11472 goto out; 11473 11474 INIT_LIST_HEAD(&ptype_all); 11475 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11476 INIT_LIST_HEAD(&ptype_base[i]); 11477 11478 INIT_LIST_HEAD(&offload_base); 11479 11480 if (register_pernet_subsys(&netdev_net_ops)) 11481 goto out; 11482 11483 /* 11484 * Initialise the packet receive queues. 11485 */ 11486 11487 for_each_possible_cpu(i) { 11488 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11489 struct softnet_data *sd = &per_cpu(softnet_data, i); 11490 11491 INIT_WORK(flush, flush_backlog); 11492 11493 skb_queue_head_init(&sd->input_pkt_queue); 11494 skb_queue_head_init(&sd->process_queue); 11495 #ifdef CONFIG_XFRM_OFFLOAD 11496 skb_queue_head_init(&sd->xfrm_backlog); 11497 #endif 11498 INIT_LIST_HEAD(&sd->poll_list); 11499 sd->output_queue_tailp = &sd->output_queue; 11500 #ifdef CONFIG_RPS 11501 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11502 sd->cpu = i; 11503 #endif 11504 11505 init_gro_hash(&sd->backlog); 11506 sd->backlog.poll = process_backlog; 11507 sd->backlog.weight = weight_p; 11508 } 11509 11510 dev_boot_phase = 0; 11511 11512 /* The loopback device is special if any other network devices 11513 * is present in a network namespace the loopback device must 11514 * be present. Since we now dynamically allocate and free the 11515 * loopback device ensure this invariant is maintained by 11516 * keeping the loopback device as the first device on the 11517 * list of network devices. Ensuring the loopback devices 11518 * is the first device that appears and the last network device 11519 * that disappears. 11520 */ 11521 if (register_pernet_device(&loopback_net_ops)) 11522 goto out; 11523 11524 if (register_pernet_device(&default_device_ops)) 11525 goto out; 11526 11527 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11528 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11529 11530 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11531 NULL, dev_cpu_dead); 11532 WARN_ON(rc < 0); 11533 rc = 0; 11534 out: 11535 return rc; 11536 } 11537 11538 subsys_initcall(net_dev_init); 11539