xref: /linux-6.15/net/core/dev.c (revision ef700f2e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <[email protected]>
8  *				Mark Evans, <[email protected]>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <[email protected]>
12  *		Alan Cox <[email protected]>
13  *		David Hinds <[email protected]>
14  *		Alexey Kuznetsov <[email protected]>
15  *		Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151 
152 #include "net-sysfs.h"
153 
154 #define MAX_GRO_SKBS 8
155 
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 static struct list_head offload_base __read_mostly;
164 
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167 					 struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 					   struct net_device *dev,
170 					   struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172 
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194 
195 static DEFINE_MUTEX(ifalias_mutex);
196 
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199 
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202 
203 static DECLARE_RWSEM(devnet_rename_sem);
204 
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207 	while (++net->dev_base_seq == 0)
208 		;
209 }
210 
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214 
215 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222 
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 	spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229 
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233 	spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236 
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 						       const char *name)
239 {
240 	struct netdev_name_node *name_node;
241 
242 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 	if (!name_node)
244 		return NULL;
245 	INIT_HLIST_NODE(&name_node->hlist);
246 	name_node->dev = dev;
247 	name_node->name = name;
248 	return name_node;
249 }
250 
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254 	struct netdev_name_node *name_node;
255 
256 	name_node = netdev_name_node_alloc(dev, dev->name);
257 	if (!name_node)
258 		return NULL;
259 	INIT_LIST_HEAD(&name_node->list);
260 	return name_node;
261 }
262 
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265 	kfree(name_node);
266 }
267 
268 static void netdev_name_node_add(struct net *net,
269 				 struct netdev_name_node *name_node)
270 {
271 	hlist_add_head_rcu(&name_node->hlist,
272 			   dev_name_hash(net, name_node->name));
273 }
274 
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277 	hlist_del_rcu(&name_node->hlist);
278 }
279 
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 							const char *name)
282 {
283 	struct hlist_head *head = dev_name_hash(net, name);
284 	struct netdev_name_node *name_node;
285 
286 	hlist_for_each_entry(name_node, head, hlist)
287 		if (!strcmp(name_node->name, name))
288 			return name_node;
289 	return NULL;
290 }
291 
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 							    const char *name)
294 {
295 	struct hlist_head *head = dev_name_hash(net, name);
296 	struct netdev_name_node *name_node;
297 
298 	hlist_for_each_entry_rcu(name_node, head, hlist)
299 		if (!strcmp(name_node->name, name))
300 			return name_node;
301 	return NULL;
302 }
303 
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306 	struct netdev_name_node *name_node;
307 	struct net *net = dev_net(dev);
308 
309 	name_node = netdev_name_node_lookup(net, name);
310 	if (name_node)
311 		return -EEXIST;
312 	name_node = netdev_name_node_alloc(dev, name);
313 	if (!name_node)
314 		return -ENOMEM;
315 	netdev_name_node_add(net, name_node);
316 	/* The node that holds dev->name acts as a head of per-device list. */
317 	list_add_tail(&name_node->list, &dev->name_node->list);
318 
319 	return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322 
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325 	list_del(&name_node->list);
326 	netdev_name_node_del(name_node);
327 	kfree(name_node->name);
328 	netdev_name_node_free(name_node);
329 }
330 
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333 	struct netdev_name_node *name_node;
334 	struct net *net = dev_net(dev);
335 
336 	name_node = netdev_name_node_lookup(net, name);
337 	if (!name_node)
338 		return -ENOENT;
339 	/* lookup might have found our primary name or a name belonging
340 	 * to another device.
341 	 */
342 	if (name_node == dev->name_node || name_node->dev != dev)
343 		return -EINVAL;
344 
345 	__netdev_name_node_alt_destroy(name_node);
346 
347 	return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350 
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353 	struct netdev_name_node *name_node, *tmp;
354 
355 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 		__netdev_name_node_alt_destroy(name_node);
357 }
358 
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362 	struct net *net = dev_net(dev);
363 
364 	ASSERT_RTNL();
365 
366 	write_lock_bh(&dev_base_lock);
367 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 	netdev_name_node_add(net, dev->name_node);
369 	hlist_add_head_rcu(&dev->index_hlist,
370 			   dev_index_hash(net, dev->ifindex));
371 	write_unlock_bh(&dev_base_lock);
372 
373 	dev_base_seq_inc(net);
374 }
375 
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381 	ASSERT_RTNL();
382 
383 	/* Unlink dev from the device chain */
384 	write_lock_bh(&dev_base_lock);
385 	list_del_rcu(&dev->dev_list);
386 	netdev_name_node_del(dev->name_node);
387 	hlist_del_rcu(&dev->index_hlist);
388 	write_unlock_bh(&dev_base_lock);
389 
390 	dev_base_seq_inc(dev_net(dev));
391 }
392 
393 /*
394  *	Our notifier list
395  */
396 
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398 
399 /*
400  *	Device drivers call our routines to queue packets here. We empty the
401  *	queue in the local softnet handler.
402  */
403 
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406 
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428 
429 static const char *const netdev_lock_name[] = {
430 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445 
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448 
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451 	int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 		if (netdev_lock_type[i] == dev_type)
455 			return i;
456 	/* the last key is used by default */
457 	return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459 
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 						 unsigned short dev_type)
462 {
463 	int i;
464 
465 	i = netdev_lock_pos(dev_type);
466 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 				   netdev_lock_name[i]);
468 }
469 
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472 	int i;
473 
474 	i = netdev_lock_pos(dev->type);
475 	lockdep_set_class_and_name(&dev->addr_list_lock,
476 				   &netdev_addr_lock_key[i],
477 				   netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 						 unsigned short dev_type)
482 {
483 }
484 
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489 
490 /*******************************************************************************
491  *
492  *		Protocol management and registration routines
493  *
494  *******************************************************************************/
495 
496 
497 /*
498  *	Add a protocol ID to the list. Now that the input handler is
499  *	smarter we can dispense with all the messy stuff that used to be
500  *	here.
501  *
502  *	BEWARE!!! Protocol handlers, mangling input packets,
503  *	MUST BE last in hash buckets and checking protocol handlers
504  *	MUST start from promiscuous ptype_all chain in net_bh.
505  *	It is true now, do not change it.
506  *	Explanation follows: if protocol handler, mangling packet, will
507  *	be the first on list, it is not able to sense, that packet
508  *	is cloned and should be copied-on-write, so that it will
509  *	change it and subsequent readers will get broken packet.
510  *							--ANK (980803)
511  */
512 
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515 	if (pt->type == htons(ETH_P_ALL))
516 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 	else
518 		return pt->dev ? &pt->dev->ptype_specific :
519 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521 
522 /**
523  *	dev_add_pack - add packet handler
524  *	@pt: packet type declaration
525  *
526  *	Add a protocol handler to the networking stack. The passed &packet_type
527  *	is linked into kernel lists and may not be freed until it has been
528  *	removed from the kernel lists.
529  *
530  *	This call does not sleep therefore it can not
531  *	guarantee all CPU's that are in middle of receiving packets
532  *	will see the new packet type (until the next received packet).
533  */
534 
535 void dev_add_pack(struct packet_type *pt)
536 {
537 	struct list_head *head = ptype_head(pt);
538 
539 	spin_lock(&ptype_lock);
540 	list_add_rcu(&pt->list, head);
541 	spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544 
545 /**
546  *	__dev_remove_pack	 - remove packet handler
547  *	@pt: packet type declaration
548  *
549  *	Remove a protocol handler that was previously added to the kernel
550  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *	from the kernel lists and can be freed or reused once this function
552  *	returns.
553  *
554  *      The packet type might still be in use by receivers
555  *	and must not be freed until after all the CPU's have gone
556  *	through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 	struct packet_type *pt1;
562 
563 	spin_lock(&ptype_lock);
564 
565 	list_for_each_entry(pt1, head, list) {
566 		if (pt == pt1) {
567 			list_del_rcu(&pt->list);
568 			goto out;
569 		}
570 	}
571 
572 	pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574 	spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577 
578 /**
579  *	dev_remove_pack	 - remove packet handler
580  *	@pt: packet type declaration
581  *
582  *	Remove a protocol handler that was previously added to the kernel
583  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *	from the kernel lists and can be freed or reused once this function
585  *	returns.
586  *
587  *	This call sleeps to guarantee that no CPU is looking at the packet
588  *	type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592 	__dev_remove_pack(pt);
593 
594 	synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597 
598 
599 /**
600  *	dev_add_offload - register offload handlers
601  *	@po: protocol offload declaration
602  *
603  *	Add protocol offload handlers to the networking stack. The passed
604  *	&proto_offload is linked into kernel lists and may not be freed until
605  *	it has been removed from the kernel lists.
606  *
607  *	This call does not sleep therefore it can not
608  *	guarantee all CPU's that are in middle of receiving packets
609  *	will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613 	struct packet_offload *elem;
614 
615 	spin_lock(&offload_lock);
616 	list_for_each_entry(elem, &offload_base, list) {
617 		if (po->priority < elem->priority)
618 			break;
619 	}
620 	list_add_rcu(&po->list, elem->list.prev);
621 	spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624 
625 /**
626  *	__dev_remove_offload	 - remove offload handler
627  *	@po: packet offload declaration
628  *
629  *	Remove a protocol offload handler that was previously added to the
630  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *	is removed from the kernel lists and can be freed or reused once this
632  *	function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *	and must not be freed until after all the CPU's have gone
636  *	through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640 	struct list_head *head = &offload_base;
641 	struct packet_offload *po1;
642 
643 	spin_lock(&offload_lock);
644 
645 	list_for_each_entry(po1, head, list) {
646 		if (po == po1) {
647 			list_del_rcu(&po->list);
648 			goto out;
649 		}
650 	}
651 
652 	pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654 	spin_unlock(&offload_lock);
655 }
656 
657 /**
658  *	dev_remove_offload	 - remove packet offload handler
659  *	@po: packet offload declaration
660  *
661  *	Remove a packet offload handler that was previously added to the kernel
662  *	offload handlers by dev_add_offload(). The passed &offload_type is
663  *	removed from the kernel lists and can be freed or reused once this
664  *	function returns.
665  *
666  *	This call sleeps to guarantee that no CPU is looking at the packet
667  *	type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671 	__dev_remove_offload(po);
672 
673 	synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676 
677 /******************************************************************************
678  *
679  *		      Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682 
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685 
686 /**
687  *	netdev_boot_setup_add	- add new setup entry
688  *	@name: name of the device
689  *	@map: configured settings for the device
690  *
691  *	Adds new setup entry to the dev_boot_setup list.  The function
692  *	returns 0 on error and 1 on success.  This is a generic routine to
693  *	all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697 	struct netdev_boot_setup *s;
698 	int i;
699 
700 	s = dev_boot_setup;
701 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 			memset(s[i].name, 0, sizeof(s[i].name));
704 			strlcpy(s[i].name, name, IFNAMSIZ);
705 			memcpy(&s[i].map, map, sizeof(s[i].map));
706 			break;
707 		}
708 	}
709 
710 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712 
713 /**
714  * netdev_boot_setup_check	- check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724 	struct netdev_boot_setup *s = dev_boot_setup;
725 	int i;
726 
727 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 		    !strcmp(dev->name, s[i].name)) {
730 			dev->irq = s[i].map.irq;
731 			dev->base_addr = s[i].map.base_addr;
732 			dev->mem_start = s[i].map.mem_start;
733 			dev->mem_end = s[i].map.mem_end;
734 			return 1;
735 		}
736 	}
737 	return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740 
741 
742 /**
743  * netdev_boot_base	- get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754 	const struct netdev_boot_setup *s = dev_boot_setup;
755 	char name[IFNAMSIZ];
756 	int i;
757 
758 	sprintf(name, "%s%d", prefix, unit);
759 
760 	/*
761 	 * If device already registered then return base of 1
762 	 * to indicate not to probe for this interface
763 	 */
764 	if (__dev_get_by_name(&init_net, name))
765 		return 1;
766 
767 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 		if (!strcmp(name, s[i].name))
769 			return s[i].map.base_addr;
770 	return 0;
771 }
772 
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778 	int ints[5];
779 	struct ifmap map;
780 
781 	str = get_options(str, ARRAY_SIZE(ints), ints);
782 	if (!str || !*str)
783 		return 0;
784 
785 	/* Save settings */
786 	memset(&map, 0, sizeof(map));
787 	if (ints[0] > 0)
788 		map.irq = ints[1];
789 	if (ints[0] > 1)
790 		map.base_addr = ints[2];
791 	if (ints[0] > 2)
792 		map.mem_start = ints[3];
793 	if (ints[0] > 3)
794 		map.mem_end = ints[4];
795 
796 	/* Add new entry to the list */
797 	return netdev_boot_setup_add(str, &map);
798 }
799 
800 __setup("netdev=", netdev_boot_setup);
801 
802 /*******************************************************************************
803  *
804  *			    Device Interface Subroutines
805  *
806  *******************************************************************************/
807 
808 /**
809  *	dev_get_iflink	- get 'iflink' value of a interface
810  *	@dev: targeted interface
811  *
812  *	Indicates the ifindex the interface is linked to.
813  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815 
816 int dev_get_iflink(const struct net_device *dev)
817 {
818 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 		return dev->netdev_ops->ndo_get_iflink(dev);
820 
821 	return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824 
825 /**
826  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *	@dev: targeted interface
828  *	@skb: The packet.
829  *
830  *	For better visibility of tunnel traffic OVS needs to retrieve
831  *	egress tunnel information for a packet. Following API allows
832  *	user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836 	struct ip_tunnel_info *info;
837 
838 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839 		return -EINVAL;
840 
841 	info = skb_tunnel_info_unclone(skb);
842 	if (!info)
843 		return -ENOMEM;
844 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 		return -EINVAL;
846 
847 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850 
851 /**
852  *	__dev_get_by_name	- find a device by its name
853  *	@net: the applicable net namespace
854  *	@name: name to find
855  *
856  *	Find an interface by name. Must be called under RTNL semaphore
857  *	or @dev_base_lock. If the name is found a pointer to the device
858  *	is returned. If the name is not found then %NULL is returned. The
859  *	reference counters are not incremented so the caller must be
860  *	careful with locks.
861  */
862 
863 struct net_device *__dev_get_by_name(struct net *net, const char *name)
864 {
865 	struct netdev_name_node *node_name;
866 
867 	node_name = netdev_name_node_lookup(net, name);
868 	return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(__dev_get_by_name);
871 
872 /**
873  * dev_get_by_name_rcu	- find a device by its name
874  * @net: the applicable net namespace
875  * @name: name to find
876  *
877  * Find an interface by name.
878  * If the name is found a pointer to the device is returned.
879  * If the name is not found then %NULL is returned.
880  * The reference counters are not incremented so the caller must be
881  * careful with locks. The caller must hold RCU lock.
882  */
883 
884 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
885 {
886 	struct netdev_name_node *node_name;
887 
888 	node_name = netdev_name_node_lookup_rcu(net, name);
889 	return node_name ? node_name->dev : NULL;
890 }
891 EXPORT_SYMBOL(dev_get_by_name_rcu);
892 
893 /**
894  *	dev_get_by_name		- find a device by its name
895  *	@net: the applicable net namespace
896  *	@name: name to find
897  *
898  *	Find an interface by name. This can be called from any
899  *	context and does its own locking. The returned handle has
900  *	the usage count incremented and the caller must use dev_put() to
901  *	release it when it is no longer needed. %NULL is returned if no
902  *	matching device is found.
903  */
904 
905 struct net_device *dev_get_by_name(struct net *net, const char *name)
906 {
907 	struct net_device *dev;
908 
909 	rcu_read_lock();
910 	dev = dev_get_by_name_rcu(net, name);
911 	if (dev)
912 		dev_hold(dev);
913 	rcu_read_unlock();
914 	return dev;
915 }
916 EXPORT_SYMBOL(dev_get_by_name);
917 
918 /**
919  *	__dev_get_by_index - find a device by its ifindex
920  *	@net: the applicable net namespace
921  *	@ifindex: index of device
922  *
923  *	Search for an interface by index. Returns %NULL if the device
924  *	is not found or a pointer to the device. The device has not
925  *	had its reference counter increased so the caller must be careful
926  *	about locking. The caller must hold either the RTNL semaphore
927  *	or @dev_base_lock.
928  */
929 
930 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
931 {
932 	struct net_device *dev;
933 	struct hlist_head *head = dev_index_hash(net, ifindex);
934 
935 	hlist_for_each_entry(dev, head, index_hlist)
936 		if (dev->ifindex == ifindex)
937 			return dev;
938 
939 	return NULL;
940 }
941 EXPORT_SYMBOL(__dev_get_by_index);
942 
943 /**
944  *	dev_get_by_index_rcu - find a device by its ifindex
945  *	@net: the applicable net namespace
946  *	@ifindex: index of device
947  *
948  *	Search for an interface by index. Returns %NULL if the device
949  *	is not found or a pointer to the device. The device has not
950  *	had its reference counter increased so the caller must be careful
951  *	about locking. The caller must hold RCU lock.
952  */
953 
954 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
955 {
956 	struct net_device *dev;
957 	struct hlist_head *head = dev_index_hash(net, ifindex);
958 
959 	hlist_for_each_entry_rcu(dev, head, index_hlist)
960 		if (dev->ifindex == ifindex)
961 			return dev;
962 
963 	return NULL;
964 }
965 EXPORT_SYMBOL(dev_get_by_index_rcu);
966 
967 
968 /**
969  *	dev_get_by_index - find a device by its ifindex
970  *	@net: the applicable net namespace
971  *	@ifindex: index of device
972  *
973  *	Search for an interface by index. Returns NULL if the device
974  *	is not found or a pointer to the device. The device returned has
975  *	had a reference added and the pointer is safe until the user calls
976  *	dev_put to indicate they have finished with it.
977  */
978 
979 struct net_device *dev_get_by_index(struct net *net, int ifindex)
980 {
981 	struct net_device *dev;
982 
983 	rcu_read_lock();
984 	dev = dev_get_by_index_rcu(net, ifindex);
985 	if (dev)
986 		dev_hold(dev);
987 	rcu_read_unlock();
988 	return dev;
989 }
990 EXPORT_SYMBOL(dev_get_by_index);
991 
992 /**
993  *	dev_get_by_napi_id - find a device by napi_id
994  *	@napi_id: ID of the NAPI struct
995  *
996  *	Search for an interface by NAPI ID. Returns %NULL if the device
997  *	is not found or a pointer to the device. The device has not had
998  *	its reference counter increased so the caller must be careful
999  *	about locking. The caller must hold RCU lock.
1000  */
1001 
1002 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1003 {
1004 	struct napi_struct *napi;
1005 
1006 	WARN_ON_ONCE(!rcu_read_lock_held());
1007 
1008 	if (napi_id < MIN_NAPI_ID)
1009 		return NULL;
1010 
1011 	napi = napi_by_id(napi_id);
1012 
1013 	return napi ? napi->dev : NULL;
1014 }
1015 EXPORT_SYMBOL(dev_get_by_napi_id);
1016 
1017 /**
1018  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1019  *	@net: network namespace
1020  *	@name: a pointer to the buffer where the name will be stored.
1021  *	@ifindex: the ifindex of the interface to get the name from.
1022  */
1023 int netdev_get_name(struct net *net, char *name, int ifindex)
1024 {
1025 	struct net_device *dev;
1026 	int ret;
1027 
1028 	down_read(&devnet_rename_sem);
1029 	rcu_read_lock();
1030 
1031 	dev = dev_get_by_index_rcu(net, ifindex);
1032 	if (!dev) {
1033 		ret = -ENODEV;
1034 		goto out;
1035 	}
1036 
1037 	strcpy(name, dev->name);
1038 
1039 	ret = 0;
1040 out:
1041 	rcu_read_unlock();
1042 	up_read(&devnet_rename_sem);
1043 	return ret;
1044 }
1045 
1046 /**
1047  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1048  *	@net: the applicable net namespace
1049  *	@type: media type of device
1050  *	@ha: hardware address
1051  *
1052  *	Search for an interface by MAC address. Returns NULL if the device
1053  *	is not found or a pointer to the device.
1054  *	The caller must hold RCU or RTNL.
1055  *	The returned device has not had its ref count increased
1056  *	and the caller must therefore be careful about locking
1057  *
1058  */
1059 
1060 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1061 				       const char *ha)
1062 {
1063 	struct net_device *dev;
1064 
1065 	for_each_netdev_rcu(net, dev)
1066 		if (dev->type == type &&
1067 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1068 			return dev;
1069 
1070 	return NULL;
1071 }
1072 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1073 
1074 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1075 {
1076 	struct net_device *dev, *ret = NULL;
1077 
1078 	rcu_read_lock();
1079 	for_each_netdev_rcu(net, dev)
1080 		if (dev->type == type) {
1081 			dev_hold(dev);
1082 			ret = dev;
1083 			break;
1084 		}
1085 	rcu_read_unlock();
1086 	return ret;
1087 }
1088 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1089 
1090 /**
1091  *	__dev_get_by_flags - find any device with given flags
1092  *	@net: the applicable net namespace
1093  *	@if_flags: IFF_* values
1094  *	@mask: bitmask of bits in if_flags to check
1095  *
1096  *	Search for any interface with the given flags. Returns NULL if a device
1097  *	is not found or a pointer to the device. Must be called inside
1098  *	rtnl_lock(), and result refcount is unchanged.
1099  */
1100 
1101 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1102 				      unsigned short mask)
1103 {
1104 	struct net_device *dev, *ret;
1105 
1106 	ASSERT_RTNL();
1107 
1108 	ret = NULL;
1109 	for_each_netdev(net, dev) {
1110 		if (((dev->flags ^ if_flags) & mask) == 0) {
1111 			ret = dev;
1112 			break;
1113 		}
1114 	}
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL(__dev_get_by_flags);
1118 
1119 /**
1120  *	dev_valid_name - check if name is okay for network device
1121  *	@name: name string
1122  *
1123  *	Network device names need to be valid file names to
1124  *	allow sysfs to work.  We also disallow any kind of
1125  *	whitespace.
1126  */
1127 bool dev_valid_name(const char *name)
1128 {
1129 	if (*name == '\0')
1130 		return false;
1131 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1132 		return false;
1133 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1134 		return false;
1135 
1136 	while (*name) {
1137 		if (*name == '/' || *name == ':' || isspace(*name))
1138 			return false;
1139 		name++;
1140 	}
1141 	return true;
1142 }
1143 EXPORT_SYMBOL(dev_valid_name);
1144 
1145 /**
1146  *	__dev_alloc_name - allocate a name for a device
1147  *	@net: network namespace to allocate the device name in
1148  *	@name: name format string
1149  *	@buf:  scratch buffer and result name string
1150  *
1151  *	Passed a format string - eg "lt%d" it will try and find a suitable
1152  *	id. It scans list of devices to build up a free map, then chooses
1153  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1154  *	while allocating the name and adding the device in order to avoid
1155  *	duplicates.
1156  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1157  *	Returns the number of the unit assigned or a negative errno code.
1158  */
1159 
1160 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1161 {
1162 	int i = 0;
1163 	const char *p;
1164 	const int max_netdevices = 8*PAGE_SIZE;
1165 	unsigned long *inuse;
1166 	struct net_device *d;
1167 
1168 	if (!dev_valid_name(name))
1169 		return -EINVAL;
1170 
1171 	p = strchr(name, '%');
1172 	if (p) {
1173 		/*
1174 		 * Verify the string as this thing may have come from
1175 		 * the user.  There must be either one "%d" and no other "%"
1176 		 * characters.
1177 		 */
1178 		if (p[1] != 'd' || strchr(p + 2, '%'))
1179 			return -EINVAL;
1180 
1181 		/* Use one page as a bit array of possible slots */
1182 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1183 		if (!inuse)
1184 			return -ENOMEM;
1185 
1186 		for_each_netdev(net, d) {
1187 			if (!sscanf(d->name, name, &i))
1188 				continue;
1189 			if (i < 0 || i >= max_netdevices)
1190 				continue;
1191 
1192 			/*  avoid cases where sscanf is not exact inverse of printf */
1193 			snprintf(buf, IFNAMSIZ, name, i);
1194 			if (!strncmp(buf, d->name, IFNAMSIZ))
1195 				set_bit(i, inuse);
1196 		}
1197 
1198 		i = find_first_zero_bit(inuse, max_netdevices);
1199 		free_page((unsigned long) inuse);
1200 	}
1201 
1202 	snprintf(buf, IFNAMSIZ, name, i);
1203 	if (!__dev_get_by_name(net, buf))
1204 		return i;
1205 
1206 	/* It is possible to run out of possible slots
1207 	 * when the name is long and there isn't enough space left
1208 	 * for the digits, or if all bits are used.
1209 	 */
1210 	return -ENFILE;
1211 }
1212 
1213 static int dev_alloc_name_ns(struct net *net,
1214 			     struct net_device *dev,
1215 			     const char *name)
1216 {
1217 	char buf[IFNAMSIZ];
1218 	int ret;
1219 
1220 	BUG_ON(!net);
1221 	ret = __dev_alloc_name(net, name, buf);
1222 	if (ret >= 0)
1223 		strlcpy(dev->name, buf, IFNAMSIZ);
1224 	return ret;
1225 }
1226 
1227 /**
1228  *	dev_alloc_name - allocate a name for a device
1229  *	@dev: device
1230  *	@name: name format string
1231  *
1232  *	Passed a format string - eg "lt%d" it will try and find a suitable
1233  *	id. It scans list of devices to build up a free map, then chooses
1234  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1235  *	while allocating the name and adding the device in order to avoid
1236  *	duplicates.
1237  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1238  *	Returns the number of the unit assigned or a negative errno code.
1239  */
1240 
1241 int dev_alloc_name(struct net_device *dev, const char *name)
1242 {
1243 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1244 }
1245 EXPORT_SYMBOL(dev_alloc_name);
1246 
1247 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1248 			      const char *name)
1249 {
1250 	BUG_ON(!net);
1251 
1252 	if (!dev_valid_name(name))
1253 		return -EINVAL;
1254 
1255 	if (strchr(name, '%'))
1256 		return dev_alloc_name_ns(net, dev, name);
1257 	else if (__dev_get_by_name(net, name))
1258 		return -EEXIST;
1259 	else if (dev->name != name)
1260 		strlcpy(dev->name, name, IFNAMSIZ);
1261 
1262 	return 0;
1263 }
1264 
1265 /**
1266  *	dev_change_name - change name of a device
1267  *	@dev: device
1268  *	@newname: name (or format string) must be at least IFNAMSIZ
1269  *
1270  *	Change name of a device, can pass format strings "eth%d".
1271  *	for wildcarding.
1272  */
1273 int dev_change_name(struct net_device *dev, const char *newname)
1274 {
1275 	unsigned char old_assign_type;
1276 	char oldname[IFNAMSIZ];
1277 	int err = 0;
1278 	int ret;
1279 	struct net *net;
1280 
1281 	ASSERT_RTNL();
1282 	BUG_ON(!dev_net(dev));
1283 
1284 	net = dev_net(dev);
1285 
1286 	/* Some auto-enslaved devices e.g. failover slaves are
1287 	 * special, as userspace might rename the device after
1288 	 * the interface had been brought up and running since
1289 	 * the point kernel initiated auto-enslavement. Allow
1290 	 * live name change even when these slave devices are
1291 	 * up and running.
1292 	 *
1293 	 * Typically, users of these auto-enslaving devices
1294 	 * don't actually care about slave name change, as
1295 	 * they are supposed to operate on master interface
1296 	 * directly.
1297 	 */
1298 	if (dev->flags & IFF_UP &&
1299 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1300 		return -EBUSY;
1301 
1302 	down_write(&devnet_rename_sem);
1303 
1304 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1305 		up_write(&devnet_rename_sem);
1306 		return 0;
1307 	}
1308 
1309 	memcpy(oldname, dev->name, IFNAMSIZ);
1310 
1311 	err = dev_get_valid_name(net, dev, newname);
1312 	if (err < 0) {
1313 		up_write(&devnet_rename_sem);
1314 		return err;
1315 	}
1316 
1317 	if (oldname[0] && !strchr(oldname, '%'))
1318 		netdev_info(dev, "renamed from %s\n", oldname);
1319 
1320 	old_assign_type = dev->name_assign_type;
1321 	dev->name_assign_type = NET_NAME_RENAMED;
1322 
1323 rollback:
1324 	ret = device_rename(&dev->dev, dev->name);
1325 	if (ret) {
1326 		memcpy(dev->name, oldname, IFNAMSIZ);
1327 		dev->name_assign_type = old_assign_type;
1328 		up_write(&devnet_rename_sem);
1329 		return ret;
1330 	}
1331 
1332 	up_write(&devnet_rename_sem);
1333 
1334 	netdev_adjacent_rename_links(dev, oldname);
1335 
1336 	write_lock_bh(&dev_base_lock);
1337 	netdev_name_node_del(dev->name_node);
1338 	write_unlock_bh(&dev_base_lock);
1339 
1340 	synchronize_rcu();
1341 
1342 	write_lock_bh(&dev_base_lock);
1343 	netdev_name_node_add(net, dev->name_node);
1344 	write_unlock_bh(&dev_base_lock);
1345 
1346 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1347 	ret = notifier_to_errno(ret);
1348 
1349 	if (ret) {
1350 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1351 		if (err >= 0) {
1352 			err = ret;
1353 			down_write(&devnet_rename_sem);
1354 			memcpy(dev->name, oldname, IFNAMSIZ);
1355 			memcpy(oldname, newname, IFNAMSIZ);
1356 			dev->name_assign_type = old_assign_type;
1357 			old_assign_type = NET_NAME_RENAMED;
1358 			goto rollback;
1359 		} else {
1360 			pr_err("%s: name change rollback failed: %d\n",
1361 			       dev->name, ret);
1362 		}
1363 	}
1364 
1365 	return err;
1366 }
1367 
1368 /**
1369  *	dev_set_alias - change ifalias of a device
1370  *	@dev: device
1371  *	@alias: name up to IFALIASZ
1372  *	@len: limit of bytes to copy from info
1373  *
1374  *	Set ifalias for a device,
1375  */
1376 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1377 {
1378 	struct dev_ifalias *new_alias = NULL;
1379 
1380 	if (len >= IFALIASZ)
1381 		return -EINVAL;
1382 
1383 	if (len) {
1384 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1385 		if (!new_alias)
1386 			return -ENOMEM;
1387 
1388 		memcpy(new_alias->ifalias, alias, len);
1389 		new_alias->ifalias[len] = 0;
1390 	}
1391 
1392 	mutex_lock(&ifalias_mutex);
1393 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1394 					mutex_is_locked(&ifalias_mutex));
1395 	mutex_unlock(&ifalias_mutex);
1396 
1397 	if (new_alias)
1398 		kfree_rcu(new_alias, rcuhead);
1399 
1400 	return len;
1401 }
1402 EXPORT_SYMBOL(dev_set_alias);
1403 
1404 /**
1405  *	dev_get_alias - get ifalias of a device
1406  *	@dev: device
1407  *	@name: buffer to store name of ifalias
1408  *	@len: size of buffer
1409  *
1410  *	get ifalias for a device.  Caller must make sure dev cannot go
1411  *	away,  e.g. rcu read lock or own a reference count to device.
1412  */
1413 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1414 {
1415 	const struct dev_ifalias *alias;
1416 	int ret = 0;
1417 
1418 	rcu_read_lock();
1419 	alias = rcu_dereference(dev->ifalias);
1420 	if (alias)
1421 		ret = snprintf(name, len, "%s", alias->ifalias);
1422 	rcu_read_unlock();
1423 
1424 	return ret;
1425 }
1426 
1427 /**
1428  *	netdev_features_change - device changes features
1429  *	@dev: device to cause notification
1430  *
1431  *	Called to indicate a device has changed features.
1432  */
1433 void netdev_features_change(struct net_device *dev)
1434 {
1435 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1436 }
1437 EXPORT_SYMBOL(netdev_features_change);
1438 
1439 /**
1440  *	netdev_state_change - device changes state
1441  *	@dev: device to cause notification
1442  *
1443  *	Called to indicate a device has changed state. This function calls
1444  *	the notifier chains for netdev_chain and sends a NEWLINK message
1445  *	to the routing socket.
1446  */
1447 void netdev_state_change(struct net_device *dev)
1448 {
1449 	if (dev->flags & IFF_UP) {
1450 		struct netdev_notifier_change_info change_info = {
1451 			.info.dev = dev,
1452 		};
1453 
1454 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1455 					      &change_info.info);
1456 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1457 	}
1458 }
1459 EXPORT_SYMBOL(netdev_state_change);
1460 
1461 /**
1462  * __netdev_notify_peers - notify network peers about existence of @dev,
1463  * to be called when rtnl lock is already held.
1464  * @dev: network device
1465  *
1466  * Generate traffic such that interested network peers are aware of
1467  * @dev, such as by generating a gratuitous ARP. This may be used when
1468  * a device wants to inform the rest of the network about some sort of
1469  * reconfiguration such as a failover event or virtual machine
1470  * migration.
1471  */
1472 void __netdev_notify_peers(struct net_device *dev)
1473 {
1474 	ASSERT_RTNL();
1475 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1476 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1477 }
1478 EXPORT_SYMBOL(__netdev_notify_peers);
1479 
1480 /**
1481  * netdev_notify_peers - notify network peers about existence of @dev
1482  * @dev: network device
1483  *
1484  * Generate traffic such that interested network peers are aware of
1485  * @dev, such as by generating a gratuitous ARP. This may be used when
1486  * a device wants to inform the rest of the network about some sort of
1487  * reconfiguration such as a failover event or virtual machine
1488  * migration.
1489  */
1490 void netdev_notify_peers(struct net_device *dev)
1491 {
1492 	rtnl_lock();
1493 	__netdev_notify_peers(dev);
1494 	rtnl_unlock();
1495 }
1496 EXPORT_SYMBOL(netdev_notify_peers);
1497 
1498 static int napi_threaded_poll(void *data);
1499 
1500 static int napi_kthread_create(struct napi_struct *n)
1501 {
1502 	int err = 0;
1503 
1504 	/* Create and wake up the kthread once to put it in
1505 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1506 	 * warning and work with loadavg.
1507 	 */
1508 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1509 				n->dev->name, n->napi_id);
1510 	if (IS_ERR(n->thread)) {
1511 		err = PTR_ERR(n->thread);
1512 		pr_err("kthread_run failed with err %d\n", err);
1513 		n->thread = NULL;
1514 	}
1515 
1516 	return err;
1517 }
1518 
1519 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1520 {
1521 	const struct net_device_ops *ops = dev->netdev_ops;
1522 	int ret;
1523 
1524 	ASSERT_RTNL();
1525 
1526 	if (!netif_device_present(dev)) {
1527 		/* may be detached because parent is runtime-suspended */
1528 		if (dev->dev.parent)
1529 			pm_runtime_resume(dev->dev.parent);
1530 		if (!netif_device_present(dev))
1531 			return -ENODEV;
1532 	}
1533 
1534 	/* Block netpoll from trying to do any rx path servicing.
1535 	 * If we don't do this there is a chance ndo_poll_controller
1536 	 * or ndo_poll may be running while we open the device
1537 	 */
1538 	netpoll_poll_disable(dev);
1539 
1540 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1541 	ret = notifier_to_errno(ret);
1542 	if (ret)
1543 		return ret;
1544 
1545 	set_bit(__LINK_STATE_START, &dev->state);
1546 
1547 	if (ops->ndo_validate_addr)
1548 		ret = ops->ndo_validate_addr(dev);
1549 
1550 	if (!ret && ops->ndo_open)
1551 		ret = ops->ndo_open(dev);
1552 
1553 	netpoll_poll_enable(dev);
1554 
1555 	if (ret)
1556 		clear_bit(__LINK_STATE_START, &dev->state);
1557 	else {
1558 		dev->flags |= IFF_UP;
1559 		dev_set_rx_mode(dev);
1560 		dev_activate(dev);
1561 		add_device_randomness(dev->dev_addr, dev->addr_len);
1562 	}
1563 
1564 	return ret;
1565 }
1566 
1567 /**
1568  *	dev_open	- prepare an interface for use.
1569  *	@dev: device to open
1570  *	@extack: netlink extended ack
1571  *
1572  *	Takes a device from down to up state. The device's private open
1573  *	function is invoked and then the multicast lists are loaded. Finally
1574  *	the device is moved into the up state and a %NETDEV_UP message is
1575  *	sent to the netdev notifier chain.
1576  *
1577  *	Calling this function on an active interface is a nop. On a failure
1578  *	a negative errno code is returned.
1579  */
1580 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1581 {
1582 	int ret;
1583 
1584 	if (dev->flags & IFF_UP)
1585 		return 0;
1586 
1587 	ret = __dev_open(dev, extack);
1588 	if (ret < 0)
1589 		return ret;
1590 
1591 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1592 	call_netdevice_notifiers(NETDEV_UP, dev);
1593 
1594 	return ret;
1595 }
1596 EXPORT_SYMBOL(dev_open);
1597 
1598 static void __dev_close_many(struct list_head *head)
1599 {
1600 	struct net_device *dev;
1601 
1602 	ASSERT_RTNL();
1603 	might_sleep();
1604 
1605 	list_for_each_entry(dev, head, close_list) {
1606 		/* Temporarily disable netpoll until the interface is down */
1607 		netpoll_poll_disable(dev);
1608 
1609 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1610 
1611 		clear_bit(__LINK_STATE_START, &dev->state);
1612 
1613 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1614 		 * can be even on different cpu. So just clear netif_running().
1615 		 *
1616 		 * dev->stop() will invoke napi_disable() on all of it's
1617 		 * napi_struct instances on this device.
1618 		 */
1619 		smp_mb__after_atomic(); /* Commit netif_running(). */
1620 	}
1621 
1622 	dev_deactivate_many(head);
1623 
1624 	list_for_each_entry(dev, head, close_list) {
1625 		const struct net_device_ops *ops = dev->netdev_ops;
1626 
1627 		/*
1628 		 *	Call the device specific close. This cannot fail.
1629 		 *	Only if device is UP
1630 		 *
1631 		 *	We allow it to be called even after a DETACH hot-plug
1632 		 *	event.
1633 		 */
1634 		if (ops->ndo_stop)
1635 			ops->ndo_stop(dev);
1636 
1637 		dev->flags &= ~IFF_UP;
1638 		netpoll_poll_enable(dev);
1639 	}
1640 }
1641 
1642 static void __dev_close(struct net_device *dev)
1643 {
1644 	LIST_HEAD(single);
1645 
1646 	list_add(&dev->close_list, &single);
1647 	__dev_close_many(&single);
1648 	list_del(&single);
1649 }
1650 
1651 void dev_close_many(struct list_head *head, bool unlink)
1652 {
1653 	struct net_device *dev, *tmp;
1654 
1655 	/* Remove the devices that don't need to be closed */
1656 	list_for_each_entry_safe(dev, tmp, head, close_list)
1657 		if (!(dev->flags & IFF_UP))
1658 			list_del_init(&dev->close_list);
1659 
1660 	__dev_close_many(head);
1661 
1662 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1663 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1664 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1665 		if (unlink)
1666 			list_del_init(&dev->close_list);
1667 	}
1668 }
1669 EXPORT_SYMBOL(dev_close_many);
1670 
1671 /**
1672  *	dev_close - shutdown an interface.
1673  *	@dev: device to shutdown
1674  *
1675  *	This function moves an active device into down state. A
1676  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1677  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1678  *	chain.
1679  */
1680 void dev_close(struct net_device *dev)
1681 {
1682 	if (dev->flags & IFF_UP) {
1683 		LIST_HEAD(single);
1684 
1685 		list_add(&dev->close_list, &single);
1686 		dev_close_many(&single, true);
1687 		list_del(&single);
1688 	}
1689 }
1690 EXPORT_SYMBOL(dev_close);
1691 
1692 
1693 /**
1694  *	dev_disable_lro - disable Large Receive Offload on a device
1695  *	@dev: device
1696  *
1697  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1698  *	called under RTNL.  This is needed if received packets may be
1699  *	forwarded to another interface.
1700  */
1701 void dev_disable_lro(struct net_device *dev)
1702 {
1703 	struct net_device *lower_dev;
1704 	struct list_head *iter;
1705 
1706 	dev->wanted_features &= ~NETIF_F_LRO;
1707 	netdev_update_features(dev);
1708 
1709 	if (unlikely(dev->features & NETIF_F_LRO))
1710 		netdev_WARN(dev, "failed to disable LRO!\n");
1711 
1712 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1713 		dev_disable_lro(lower_dev);
1714 }
1715 EXPORT_SYMBOL(dev_disable_lro);
1716 
1717 /**
1718  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1719  *	@dev: device
1720  *
1721  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1722  *	called under RTNL.  This is needed if Generic XDP is installed on
1723  *	the device.
1724  */
1725 static void dev_disable_gro_hw(struct net_device *dev)
1726 {
1727 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1728 	netdev_update_features(dev);
1729 
1730 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1731 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1732 }
1733 
1734 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1735 {
1736 #define N(val) 						\
1737 	case NETDEV_##val:				\
1738 		return "NETDEV_" __stringify(val);
1739 	switch (cmd) {
1740 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1741 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1742 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1743 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1744 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1745 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1746 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1747 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1748 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1749 	N(PRE_CHANGEADDR)
1750 	}
1751 #undef N
1752 	return "UNKNOWN_NETDEV_EVENT";
1753 }
1754 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1755 
1756 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1757 				   struct net_device *dev)
1758 {
1759 	struct netdev_notifier_info info = {
1760 		.dev = dev,
1761 	};
1762 
1763 	return nb->notifier_call(nb, val, &info);
1764 }
1765 
1766 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1767 					     struct net_device *dev)
1768 {
1769 	int err;
1770 
1771 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1772 	err = notifier_to_errno(err);
1773 	if (err)
1774 		return err;
1775 
1776 	if (!(dev->flags & IFF_UP))
1777 		return 0;
1778 
1779 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1780 	return 0;
1781 }
1782 
1783 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1784 						struct net_device *dev)
1785 {
1786 	if (dev->flags & IFF_UP) {
1787 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1788 					dev);
1789 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1790 	}
1791 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1792 }
1793 
1794 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1795 						 struct net *net)
1796 {
1797 	struct net_device *dev;
1798 	int err;
1799 
1800 	for_each_netdev(net, dev) {
1801 		err = call_netdevice_register_notifiers(nb, dev);
1802 		if (err)
1803 			goto rollback;
1804 	}
1805 	return 0;
1806 
1807 rollback:
1808 	for_each_netdev_continue_reverse(net, dev)
1809 		call_netdevice_unregister_notifiers(nb, dev);
1810 	return err;
1811 }
1812 
1813 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1814 						    struct net *net)
1815 {
1816 	struct net_device *dev;
1817 
1818 	for_each_netdev(net, dev)
1819 		call_netdevice_unregister_notifiers(nb, dev);
1820 }
1821 
1822 static int dev_boot_phase = 1;
1823 
1824 /**
1825  * register_netdevice_notifier - register a network notifier block
1826  * @nb: notifier
1827  *
1828  * Register a notifier to be called when network device events occur.
1829  * The notifier passed is linked into the kernel structures and must
1830  * not be reused until it has been unregistered. A negative errno code
1831  * is returned on a failure.
1832  *
1833  * When registered all registration and up events are replayed
1834  * to the new notifier to allow device to have a race free
1835  * view of the network device list.
1836  */
1837 
1838 int register_netdevice_notifier(struct notifier_block *nb)
1839 {
1840 	struct net *net;
1841 	int err;
1842 
1843 	/* Close race with setup_net() and cleanup_net() */
1844 	down_write(&pernet_ops_rwsem);
1845 	rtnl_lock();
1846 	err = raw_notifier_chain_register(&netdev_chain, nb);
1847 	if (err)
1848 		goto unlock;
1849 	if (dev_boot_phase)
1850 		goto unlock;
1851 	for_each_net(net) {
1852 		err = call_netdevice_register_net_notifiers(nb, net);
1853 		if (err)
1854 			goto rollback;
1855 	}
1856 
1857 unlock:
1858 	rtnl_unlock();
1859 	up_write(&pernet_ops_rwsem);
1860 	return err;
1861 
1862 rollback:
1863 	for_each_net_continue_reverse(net)
1864 		call_netdevice_unregister_net_notifiers(nb, net);
1865 
1866 	raw_notifier_chain_unregister(&netdev_chain, nb);
1867 	goto unlock;
1868 }
1869 EXPORT_SYMBOL(register_netdevice_notifier);
1870 
1871 /**
1872  * unregister_netdevice_notifier - unregister a network notifier block
1873  * @nb: notifier
1874  *
1875  * Unregister a notifier previously registered by
1876  * register_netdevice_notifier(). The notifier is unlinked into the
1877  * kernel structures and may then be reused. A negative errno code
1878  * is returned on a failure.
1879  *
1880  * After unregistering unregister and down device events are synthesized
1881  * for all devices on the device list to the removed notifier to remove
1882  * the need for special case cleanup code.
1883  */
1884 
1885 int unregister_netdevice_notifier(struct notifier_block *nb)
1886 {
1887 	struct net *net;
1888 	int err;
1889 
1890 	/* Close race with setup_net() and cleanup_net() */
1891 	down_write(&pernet_ops_rwsem);
1892 	rtnl_lock();
1893 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1894 	if (err)
1895 		goto unlock;
1896 
1897 	for_each_net(net)
1898 		call_netdevice_unregister_net_notifiers(nb, net);
1899 
1900 unlock:
1901 	rtnl_unlock();
1902 	up_write(&pernet_ops_rwsem);
1903 	return err;
1904 }
1905 EXPORT_SYMBOL(unregister_netdevice_notifier);
1906 
1907 static int __register_netdevice_notifier_net(struct net *net,
1908 					     struct notifier_block *nb,
1909 					     bool ignore_call_fail)
1910 {
1911 	int err;
1912 
1913 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1914 	if (err)
1915 		return err;
1916 	if (dev_boot_phase)
1917 		return 0;
1918 
1919 	err = call_netdevice_register_net_notifiers(nb, net);
1920 	if (err && !ignore_call_fail)
1921 		goto chain_unregister;
1922 
1923 	return 0;
1924 
1925 chain_unregister:
1926 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1927 	return err;
1928 }
1929 
1930 static int __unregister_netdevice_notifier_net(struct net *net,
1931 					       struct notifier_block *nb)
1932 {
1933 	int err;
1934 
1935 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1936 	if (err)
1937 		return err;
1938 
1939 	call_netdevice_unregister_net_notifiers(nb, net);
1940 	return 0;
1941 }
1942 
1943 /**
1944  * register_netdevice_notifier_net - register a per-netns network notifier block
1945  * @net: network namespace
1946  * @nb: notifier
1947  *
1948  * Register a notifier to be called when network device events occur.
1949  * The notifier passed is linked into the kernel structures and must
1950  * not be reused until it has been unregistered. A negative errno code
1951  * is returned on a failure.
1952  *
1953  * When registered all registration and up events are replayed
1954  * to the new notifier to allow device to have a race free
1955  * view of the network device list.
1956  */
1957 
1958 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1959 {
1960 	int err;
1961 
1962 	rtnl_lock();
1963 	err = __register_netdevice_notifier_net(net, nb, false);
1964 	rtnl_unlock();
1965 	return err;
1966 }
1967 EXPORT_SYMBOL(register_netdevice_notifier_net);
1968 
1969 /**
1970  * unregister_netdevice_notifier_net - unregister a per-netns
1971  *                                     network notifier block
1972  * @net: network namespace
1973  * @nb: notifier
1974  *
1975  * Unregister a notifier previously registered by
1976  * register_netdevice_notifier(). The notifier is unlinked into the
1977  * kernel structures and may then be reused. A negative errno code
1978  * is returned on a failure.
1979  *
1980  * After unregistering unregister and down device events are synthesized
1981  * for all devices on the device list to the removed notifier to remove
1982  * the need for special case cleanup code.
1983  */
1984 
1985 int unregister_netdevice_notifier_net(struct net *net,
1986 				      struct notifier_block *nb)
1987 {
1988 	int err;
1989 
1990 	rtnl_lock();
1991 	err = __unregister_netdevice_notifier_net(net, nb);
1992 	rtnl_unlock();
1993 	return err;
1994 }
1995 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1996 
1997 int register_netdevice_notifier_dev_net(struct net_device *dev,
1998 					struct notifier_block *nb,
1999 					struct netdev_net_notifier *nn)
2000 {
2001 	int err;
2002 
2003 	rtnl_lock();
2004 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2005 	if (!err) {
2006 		nn->nb = nb;
2007 		list_add(&nn->list, &dev->net_notifier_list);
2008 	}
2009 	rtnl_unlock();
2010 	return err;
2011 }
2012 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2013 
2014 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2015 					  struct notifier_block *nb,
2016 					  struct netdev_net_notifier *nn)
2017 {
2018 	int err;
2019 
2020 	rtnl_lock();
2021 	list_del(&nn->list);
2022 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2023 	rtnl_unlock();
2024 	return err;
2025 }
2026 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2027 
2028 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2029 					     struct net *net)
2030 {
2031 	struct netdev_net_notifier *nn;
2032 
2033 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2034 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2035 		__register_netdevice_notifier_net(net, nn->nb, true);
2036 	}
2037 }
2038 
2039 /**
2040  *	call_netdevice_notifiers_info - call all network notifier blocks
2041  *	@val: value passed unmodified to notifier function
2042  *	@info: notifier information data
2043  *
2044  *	Call all network notifier blocks.  Parameters and return value
2045  *	are as for raw_notifier_call_chain().
2046  */
2047 
2048 static int call_netdevice_notifiers_info(unsigned long val,
2049 					 struct netdev_notifier_info *info)
2050 {
2051 	struct net *net = dev_net(info->dev);
2052 	int ret;
2053 
2054 	ASSERT_RTNL();
2055 
2056 	/* Run per-netns notifier block chain first, then run the global one.
2057 	 * Hopefully, one day, the global one is going to be removed after
2058 	 * all notifier block registrators get converted to be per-netns.
2059 	 */
2060 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2061 	if (ret & NOTIFY_STOP_MASK)
2062 		return ret;
2063 	return raw_notifier_call_chain(&netdev_chain, val, info);
2064 }
2065 
2066 static int call_netdevice_notifiers_extack(unsigned long val,
2067 					   struct net_device *dev,
2068 					   struct netlink_ext_ack *extack)
2069 {
2070 	struct netdev_notifier_info info = {
2071 		.dev = dev,
2072 		.extack = extack,
2073 	};
2074 
2075 	return call_netdevice_notifiers_info(val, &info);
2076 }
2077 
2078 /**
2079  *	call_netdevice_notifiers - call all network notifier blocks
2080  *      @val: value passed unmodified to notifier function
2081  *      @dev: net_device pointer passed unmodified to notifier function
2082  *
2083  *	Call all network notifier blocks.  Parameters and return value
2084  *	are as for raw_notifier_call_chain().
2085  */
2086 
2087 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2088 {
2089 	return call_netdevice_notifiers_extack(val, dev, NULL);
2090 }
2091 EXPORT_SYMBOL(call_netdevice_notifiers);
2092 
2093 /**
2094  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2095  *	@val: value passed unmodified to notifier function
2096  *	@dev: net_device pointer passed unmodified to notifier function
2097  *	@arg: additional u32 argument passed to the notifier function
2098  *
2099  *	Call all network notifier blocks.  Parameters and return value
2100  *	are as for raw_notifier_call_chain().
2101  */
2102 static int call_netdevice_notifiers_mtu(unsigned long val,
2103 					struct net_device *dev, u32 arg)
2104 {
2105 	struct netdev_notifier_info_ext info = {
2106 		.info.dev = dev,
2107 		.ext.mtu = arg,
2108 	};
2109 
2110 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2111 
2112 	return call_netdevice_notifiers_info(val, &info.info);
2113 }
2114 
2115 #ifdef CONFIG_NET_INGRESS
2116 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2117 
2118 void net_inc_ingress_queue(void)
2119 {
2120 	static_branch_inc(&ingress_needed_key);
2121 }
2122 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2123 
2124 void net_dec_ingress_queue(void)
2125 {
2126 	static_branch_dec(&ingress_needed_key);
2127 }
2128 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2129 #endif
2130 
2131 #ifdef CONFIG_NET_EGRESS
2132 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2133 
2134 void net_inc_egress_queue(void)
2135 {
2136 	static_branch_inc(&egress_needed_key);
2137 }
2138 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2139 
2140 void net_dec_egress_queue(void)
2141 {
2142 	static_branch_dec(&egress_needed_key);
2143 }
2144 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2145 #endif
2146 
2147 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2148 #ifdef CONFIG_JUMP_LABEL
2149 static atomic_t netstamp_needed_deferred;
2150 static atomic_t netstamp_wanted;
2151 static void netstamp_clear(struct work_struct *work)
2152 {
2153 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2154 	int wanted;
2155 
2156 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2157 	if (wanted > 0)
2158 		static_branch_enable(&netstamp_needed_key);
2159 	else
2160 		static_branch_disable(&netstamp_needed_key);
2161 }
2162 static DECLARE_WORK(netstamp_work, netstamp_clear);
2163 #endif
2164 
2165 void net_enable_timestamp(void)
2166 {
2167 #ifdef CONFIG_JUMP_LABEL
2168 	int wanted;
2169 
2170 	while (1) {
2171 		wanted = atomic_read(&netstamp_wanted);
2172 		if (wanted <= 0)
2173 			break;
2174 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2175 			return;
2176 	}
2177 	atomic_inc(&netstamp_needed_deferred);
2178 	schedule_work(&netstamp_work);
2179 #else
2180 	static_branch_inc(&netstamp_needed_key);
2181 #endif
2182 }
2183 EXPORT_SYMBOL(net_enable_timestamp);
2184 
2185 void net_disable_timestamp(void)
2186 {
2187 #ifdef CONFIG_JUMP_LABEL
2188 	int wanted;
2189 
2190 	while (1) {
2191 		wanted = atomic_read(&netstamp_wanted);
2192 		if (wanted <= 1)
2193 			break;
2194 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2195 			return;
2196 	}
2197 	atomic_dec(&netstamp_needed_deferred);
2198 	schedule_work(&netstamp_work);
2199 #else
2200 	static_branch_dec(&netstamp_needed_key);
2201 #endif
2202 }
2203 EXPORT_SYMBOL(net_disable_timestamp);
2204 
2205 static inline void net_timestamp_set(struct sk_buff *skb)
2206 {
2207 	skb->tstamp = 0;
2208 	if (static_branch_unlikely(&netstamp_needed_key))
2209 		__net_timestamp(skb);
2210 }
2211 
2212 #define net_timestamp_check(COND, SKB)				\
2213 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2214 		if ((COND) && !(SKB)->tstamp)			\
2215 			__net_timestamp(SKB);			\
2216 	}							\
2217 
2218 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2219 {
2220 	return __is_skb_forwardable(dev, skb, true);
2221 }
2222 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2223 
2224 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2225 			      bool check_mtu)
2226 {
2227 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2228 
2229 	if (likely(!ret)) {
2230 		skb->protocol = eth_type_trans(skb, dev);
2231 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2232 	}
2233 
2234 	return ret;
2235 }
2236 
2237 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2238 {
2239 	return __dev_forward_skb2(dev, skb, true);
2240 }
2241 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2242 
2243 /**
2244  * dev_forward_skb - loopback an skb to another netif
2245  *
2246  * @dev: destination network device
2247  * @skb: buffer to forward
2248  *
2249  * return values:
2250  *	NET_RX_SUCCESS	(no congestion)
2251  *	NET_RX_DROP     (packet was dropped, but freed)
2252  *
2253  * dev_forward_skb can be used for injecting an skb from the
2254  * start_xmit function of one device into the receive queue
2255  * of another device.
2256  *
2257  * The receiving device may be in another namespace, so
2258  * we have to clear all information in the skb that could
2259  * impact namespace isolation.
2260  */
2261 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2262 {
2263 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2264 }
2265 EXPORT_SYMBOL_GPL(dev_forward_skb);
2266 
2267 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2268 {
2269 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2270 }
2271 
2272 static inline int deliver_skb(struct sk_buff *skb,
2273 			      struct packet_type *pt_prev,
2274 			      struct net_device *orig_dev)
2275 {
2276 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2277 		return -ENOMEM;
2278 	refcount_inc(&skb->users);
2279 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2280 }
2281 
2282 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2283 					  struct packet_type **pt,
2284 					  struct net_device *orig_dev,
2285 					  __be16 type,
2286 					  struct list_head *ptype_list)
2287 {
2288 	struct packet_type *ptype, *pt_prev = *pt;
2289 
2290 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2291 		if (ptype->type != type)
2292 			continue;
2293 		if (pt_prev)
2294 			deliver_skb(skb, pt_prev, orig_dev);
2295 		pt_prev = ptype;
2296 	}
2297 	*pt = pt_prev;
2298 }
2299 
2300 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2301 {
2302 	if (!ptype->af_packet_priv || !skb->sk)
2303 		return false;
2304 
2305 	if (ptype->id_match)
2306 		return ptype->id_match(ptype, skb->sk);
2307 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2308 		return true;
2309 
2310 	return false;
2311 }
2312 
2313 /**
2314  * dev_nit_active - return true if any network interface taps are in use
2315  *
2316  * @dev: network device to check for the presence of taps
2317  */
2318 bool dev_nit_active(struct net_device *dev)
2319 {
2320 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2321 }
2322 EXPORT_SYMBOL_GPL(dev_nit_active);
2323 
2324 /*
2325  *	Support routine. Sends outgoing frames to any network
2326  *	taps currently in use.
2327  */
2328 
2329 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2330 {
2331 	struct packet_type *ptype;
2332 	struct sk_buff *skb2 = NULL;
2333 	struct packet_type *pt_prev = NULL;
2334 	struct list_head *ptype_list = &ptype_all;
2335 
2336 	rcu_read_lock();
2337 again:
2338 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2339 		if (ptype->ignore_outgoing)
2340 			continue;
2341 
2342 		/* Never send packets back to the socket
2343 		 * they originated from - MvS ([email protected])
2344 		 */
2345 		if (skb_loop_sk(ptype, skb))
2346 			continue;
2347 
2348 		if (pt_prev) {
2349 			deliver_skb(skb2, pt_prev, skb->dev);
2350 			pt_prev = ptype;
2351 			continue;
2352 		}
2353 
2354 		/* need to clone skb, done only once */
2355 		skb2 = skb_clone(skb, GFP_ATOMIC);
2356 		if (!skb2)
2357 			goto out_unlock;
2358 
2359 		net_timestamp_set(skb2);
2360 
2361 		/* skb->nh should be correctly
2362 		 * set by sender, so that the second statement is
2363 		 * just protection against buggy protocols.
2364 		 */
2365 		skb_reset_mac_header(skb2);
2366 
2367 		if (skb_network_header(skb2) < skb2->data ||
2368 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2369 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2370 					     ntohs(skb2->protocol),
2371 					     dev->name);
2372 			skb_reset_network_header(skb2);
2373 		}
2374 
2375 		skb2->transport_header = skb2->network_header;
2376 		skb2->pkt_type = PACKET_OUTGOING;
2377 		pt_prev = ptype;
2378 	}
2379 
2380 	if (ptype_list == &ptype_all) {
2381 		ptype_list = &dev->ptype_all;
2382 		goto again;
2383 	}
2384 out_unlock:
2385 	if (pt_prev) {
2386 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2387 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2388 		else
2389 			kfree_skb(skb2);
2390 	}
2391 	rcu_read_unlock();
2392 }
2393 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2394 
2395 /**
2396  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2397  * @dev: Network device
2398  * @txq: number of queues available
2399  *
2400  * If real_num_tx_queues is changed the tc mappings may no longer be
2401  * valid. To resolve this verify the tc mapping remains valid and if
2402  * not NULL the mapping. With no priorities mapping to this
2403  * offset/count pair it will no longer be used. In the worst case TC0
2404  * is invalid nothing can be done so disable priority mappings. If is
2405  * expected that drivers will fix this mapping if they can before
2406  * calling netif_set_real_num_tx_queues.
2407  */
2408 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2409 {
2410 	int i;
2411 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2412 
2413 	/* If TC0 is invalidated disable TC mapping */
2414 	if (tc->offset + tc->count > txq) {
2415 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2416 		dev->num_tc = 0;
2417 		return;
2418 	}
2419 
2420 	/* Invalidated prio to tc mappings set to TC0 */
2421 	for (i = 1; i < TC_BITMASK + 1; i++) {
2422 		int q = netdev_get_prio_tc_map(dev, i);
2423 
2424 		tc = &dev->tc_to_txq[q];
2425 		if (tc->offset + tc->count > txq) {
2426 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2427 				i, q);
2428 			netdev_set_prio_tc_map(dev, i, 0);
2429 		}
2430 	}
2431 }
2432 
2433 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2434 {
2435 	if (dev->num_tc) {
2436 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2437 		int i;
2438 
2439 		/* walk through the TCs and see if it falls into any of them */
2440 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2441 			if ((txq - tc->offset) < tc->count)
2442 				return i;
2443 		}
2444 
2445 		/* didn't find it, just return -1 to indicate no match */
2446 		return -1;
2447 	}
2448 
2449 	return 0;
2450 }
2451 EXPORT_SYMBOL(netdev_txq_to_tc);
2452 
2453 #ifdef CONFIG_XPS
2454 struct static_key xps_needed __read_mostly;
2455 EXPORT_SYMBOL(xps_needed);
2456 struct static_key xps_rxqs_needed __read_mostly;
2457 EXPORT_SYMBOL(xps_rxqs_needed);
2458 static DEFINE_MUTEX(xps_map_mutex);
2459 #define xmap_dereference(P)		\
2460 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2461 
2462 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2463 			     int tci, u16 index)
2464 {
2465 	struct xps_map *map = NULL;
2466 	int pos;
2467 
2468 	if (dev_maps)
2469 		map = xmap_dereference(dev_maps->attr_map[tci]);
2470 	if (!map)
2471 		return false;
2472 
2473 	for (pos = map->len; pos--;) {
2474 		if (map->queues[pos] != index)
2475 			continue;
2476 
2477 		if (map->len > 1) {
2478 			map->queues[pos] = map->queues[--map->len];
2479 			break;
2480 		}
2481 
2482 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2483 		kfree_rcu(map, rcu);
2484 		return false;
2485 	}
2486 
2487 	return true;
2488 }
2489 
2490 static bool remove_xps_queue_cpu(struct net_device *dev,
2491 				 struct xps_dev_maps *dev_maps,
2492 				 int cpu, u16 offset, u16 count)
2493 {
2494 	int num_tc = dev->num_tc ? : 1;
2495 	bool active = false;
2496 	int tci;
2497 
2498 	for (tci = cpu * num_tc; num_tc--; tci++) {
2499 		int i, j;
2500 
2501 		for (i = count, j = offset; i--; j++) {
2502 			if (!remove_xps_queue(dev_maps, tci, j))
2503 				break;
2504 		}
2505 
2506 		active |= i < 0;
2507 	}
2508 
2509 	return active;
2510 }
2511 
2512 static void reset_xps_maps(struct net_device *dev,
2513 			   struct xps_dev_maps *dev_maps,
2514 			   bool is_rxqs_map)
2515 {
2516 	if (is_rxqs_map) {
2517 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2518 		RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2519 	} else {
2520 		RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2521 	}
2522 	static_key_slow_dec_cpuslocked(&xps_needed);
2523 	kfree_rcu(dev_maps, rcu);
2524 }
2525 
2526 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2527 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2528 			   u16 offset, u16 count, bool is_rxqs_map)
2529 {
2530 	bool active = false;
2531 	int i, j;
2532 
2533 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2534 	     j < nr_ids;)
2535 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2536 					       count);
2537 	if (!active)
2538 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2539 
2540 	if (!is_rxqs_map) {
2541 		for (i = offset + (count - 1); count--; i--) {
2542 			netdev_queue_numa_node_write(
2543 				netdev_get_tx_queue(dev, i),
2544 				NUMA_NO_NODE);
2545 		}
2546 	}
2547 }
2548 
2549 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2550 				   u16 count)
2551 {
2552 	const unsigned long *possible_mask = NULL;
2553 	struct xps_dev_maps *dev_maps;
2554 	unsigned int nr_ids;
2555 
2556 	if (!static_key_false(&xps_needed))
2557 		return;
2558 
2559 	cpus_read_lock();
2560 	mutex_lock(&xps_map_mutex);
2561 
2562 	if (static_key_false(&xps_rxqs_needed)) {
2563 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2564 		if (dev_maps) {
2565 			nr_ids = dev->num_rx_queues;
2566 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2567 				       offset, count, true);
2568 		}
2569 	}
2570 
2571 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2572 	if (!dev_maps)
2573 		goto out_no_maps;
2574 
2575 	if (num_possible_cpus() > 1)
2576 		possible_mask = cpumask_bits(cpu_possible_mask);
2577 	nr_ids = nr_cpu_ids;
2578 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2579 		       false);
2580 
2581 out_no_maps:
2582 	mutex_unlock(&xps_map_mutex);
2583 	cpus_read_unlock();
2584 }
2585 
2586 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2587 {
2588 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2589 }
2590 
2591 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2592 				      u16 index, bool is_rxqs_map)
2593 {
2594 	struct xps_map *new_map;
2595 	int alloc_len = XPS_MIN_MAP_ALLOC;
2596 	int i, pos;
2597 
2598 	for (pos = 0; map && pos < map->len; pos++) {
2599 		if (map->queues[pos] != index)
2600 			continue;
2601 		return map;
2602 	}
2603 
2604 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2605 	if (map) {
2606 		if (pos < map->alloc_len)
2607 			return map;
2608 
2609 		alloc_len = map->alloc_len * 2;
2610 	}
2611 
2612 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2613 	 *  map
2614 	 */
2615 	if (is_rxqs_map)
2616 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2617 	else
2618 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2619 				       cpu_to_node(attr_index));
2620 	if (!new_map)
2621 		return NULL;
2622 
2623 	for (i = 0; i < pos; i++)
2624 		new_map->queues[i] = map->queues[i];
2625 	new_map->alloc_len = alloc_len;
2626 	new_map->len = pos;
2627 
2628 	return new_map;
2629 }
2630 
2631 /* Must be called under cpus_read_lock */
2632 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2633 			  u16 index, bool is_rxqs_map)
2634 {
2635 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2636 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2637 	int i, j, tci, numa_node_id = -2;
2638 	int maps_sz, num_tc = 1, tc = 0;
2639 	struct xps_map *map, *new_map;
2640 	bool active = false;
2641 	unsigned int nr_ids;
2642 
2643 	if (dev->num_tc) {
2644 		/* Do not allow XPS on subordinate device directly */
2645 		num_tc = dev->num_tc;
2646 		if (num_tc < 0)
2647 			return -EINVAL;
2648 
2649 		/* If queue belongs to subordinate dev use its map */
2650 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2651 
2652 		tc = netdev_txq_to_tc(dev, index);
2653 		if (tc < 0)
2654 			return -EINVAL;
2655 	}
2656 
2657 	mutex_lock(&xps_map_mutex);
2658 	if (is_rxqs_map) {
2659 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2660 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2661 		nr_ids = dev->num_rx_queues;
2662 	} else {
2663 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2664 		if (num_possible_cpus() > 1) {
2665 			online_mask = cpumask_bits(cpu_online_mask);
2666 			possible_mask = cpumask_bits(cpu_possible_mask);
2667 		}
2668 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2669 		nr_ids = nr_cpu_ids;
2670 	}
2671 
2672 	if (maps_sz < L1_CACHE_BYTES)
2673 		maps_sz = L1_CACHE_BYTES;
2674 
2675 	/* allocate memory for queue storage */
2676 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2677 	     j < nr_ids;) {
2678 		if (!new_dev_maps)
2679 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2680 		if (!new_dev_maps) {
2681 			mutex_unlock(&xps_map_mutex);
2682 			return -ENOMEM;
2683 		}
2684 
2685 		tci = j * num_tc + tc;
2686 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2687 				 NULL;
2688 
2689 		map = expand_xps_map(map, j, index, is_rxqs_map);
2690 		if (!map)
2691 			goto error;
2692 
2693 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2694 	}
2695 
2696 	if (!new_dev_maps)
2697 		goto out_no_new_maps;
2698 
2699 	if (!dev_maps) {
2700 		/* Increment static keys at most once per type */
2701 		static_key_slow_inc_cpuslocked(&xps_needed);
2702 		if (is_rxqs_map)
2703 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2704 	}
2705 
2706 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2707 	     j < nr_ids;) {
2708 		/* copy maps belonging to foreign traffic classes */
2709 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2710 			/* fill in the new device map from the old device map */
2711 			map = xmap_dereference(dev_maps->attr_map[tci]);
2712 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2713 		}
2714 
2715 		/* We need to explicitly update tci as prevous loop
2716 		 * could break out early if dev_maps is NULL.
2717 		 */
2718 		tci = j * num_tc + tc;
2719 
2720 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2721 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2722 			/* add tx-queue to CPU/rx-queue maps */
2723 			int pos = 0;
2724 
2725 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2726 			while ((pos < map->len) && (map->queues[pos] != index))
2727 				pos++;
2728 
2729 			if (pos == map->len)
2730 				map->queues[map->len++] = index;
2731 #ifdef CONFIG_NUMA
2732 			if (!is_rxqs_map) {
2733 				if (numa_node_id == -2)
2734 					numa_node_id = cpu_to_node(j);
2735 				else if (numa_node_id != cpu_to_node(j))
2736 					numa_node_id = -1;
2737 			}
2738 #endif
2739 		} else if (dev_maps) {
2740 			/* fill in the new device map from the old device map */
2741 			map = xmap_dereference(dev_maps->attr_map[tci]);
2742 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2743 		}
2744 
2745 		/* copy maps belonging to foreign traffic classes */
2746 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2747 			/* fill in the new device map from the old device map */
2748 			map = xmap_dereference(dev_maps->attr_map[tci]);
2749 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2750 		}
2751 	}
2752 
2753 	if (is_rxqs_map)
2754 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2755 	else
2756 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2757 
2758 	/* Cleanup old maps */
2759 	if (!dev_maps)
2760 		goto out_no_old_maps;
2761 
2762 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2763 	     j < nr_ids;) {
2764 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2765 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2766 			map = xmap_dereference(dev_maps->attr_map[tci]);
2767 			if (map && map != new_map)
2768 				kfree_rcu(map, rcu);
2769 		}
2770 	}
2771 
2772 	kfree_rcu(dev_maps, rcu);
2773 
2774 out_no_old_maps:
2775 	dev_maps = new_dev_maps;
2776 	active = true;
2777 
2778 out_no_new_maps:
2779 	if (!is_rxqs_map) {
2780 		/* update Tx queue numa node */
2781 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2782 					     (numa_node_id >= 0) ?
2783 					     numa_node_id : NUMA_NO_NODE);
2784 	}
2785 
2786 	if (!dev_maps)
2787 		goto out_no_maps;
2788 
2789 	/* removes tx-queue from unused CPUs/rx-queues */
2790 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2791 	     j < nr_ids;) {
2792 		for (i = tc, tci = j * num_tc; i--; tci++)
2793 			active |= remove_xps_queue(dev_maps, tci, index);
2794 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2795 		    !netif_attr_test_online(j, online_mask, nr_ids))
2796 			active |= remove_xps_queue(dev_maps, tci, index);
2797 		for (i = num_tc - tc, tci++; --i; tci++)
2798 			active |= remove_xps_queue(dev_maps, tci, index);
2799 	}
2800 
2801 	/* free map if not active */
2802 	if (!active)
2803 		reset_xps_maps(dev, dev_maps, is_rxqs_map);
2804 
2805 out_no_maps:
2806 	mutex_unlock(&xps_map_mutex);
2807 
2808 	return 0;
2809 error:
2810 	/* remove any maps that we added */
2811 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2812 	     j < nr_ids;) {
2813 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2814 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2815 			map = dev_maps ?
2816 			      xmap_dereference(dev_maps->attr_map[tci]) :
2817 			      NULL;
2818 			if (new_map && new_map != map)
2819 				kfree(new_map);
2820 		}
2821 	}
2822 
2823 	mutex_unlock(&xps_map_mutex);
2824 
2825 	kfree(new_dev_maps);
2826 	return -ENOMEM;
2827 }
2828 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2829 
2830 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2831 			u16 index)
2832 {
2833 	int ret;
2834 
2835 	cpus_read_lock();
2836 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2837 	cpus_read_unlock();
2838 
2839 	return ret;
2840 }
2841 EXPORT_SYMBOL(netif_set_xps_queue);
2842 
2843 #endif
2844 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2845 {
2846 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2847 
2848 	/* Unbind any subordinate channels */
2849 	while (txq-- != &dev->_tx[0]) {
2850 		if (txq->sb_dev)
2851 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2852 	}
2853 }
2854 
2855 void netdev_reset_tc(struct net_device *dev)
2856 {
2857 #ifdef CONFIG_XPS
2858 	netif_reset_xps_queues_gt(dev, 0);
2859 #endif
2860 	netdev_unbind_all_sb_channels(dev);
2861 
2862 	/* Reset TC configuration of device */
2863 	dev->num_tc = 0;
2864 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2865 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2866 }
2867 EXPORT_SYMBOL(netdev_reset_tc);
2868 
2869 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2870 {
2871 	if (tc >= dev->num_tc)
2872 		return -EINVAL;
2873 
2874 #ifdef CONFIG_XPS
2875 	netif_reset_xps_queues(dev, offset, count);
2876 #endif
2877 	dev->tc_to_txq[tc].count = count;
2878 	dev->tc_to_txq[tc].offset = offset;
2879 	return 0;
2880 }
2881 EXPORT_SYMBOL(netdev_set_tc_queue);
2882 
2883 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2884 {
2885 	if (num_tc > TC_MAX_QUEUE)
2886 		return -EINVAL;
2887 
2888 #ifdef CONFIG_XPS
2889 	netif_reset_xps_queues_gt(dev, 0);
2890 #endif
2891 	netdev_unbind_all_sb_channels(dev);
2892 
2893 	dev->num_tc = num_tc;
2894 	return 0;
2895 }
2896 EXPORT_SYMBOL(netdev_set_num_tc);
2897 
2898 void netdev_unbind_sb_channel(struct net_device *dev,
2899 			      struct net_device *sb_dev)
2900 {
2901 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2902 
2903 #ifdef CONFIG_XPS
2904 	netif_reset_xps_queues_gt(sb_dev, 0);
2905 #endif
2906 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2907 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2908 
2909 	while (txq-- != &dev->_tx[0]) {
2910 		if (txq->sb_dev == sb_dev)
2911 			txq->sb_dev = NULL;
2912 	}
2913 }
2914 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2915 
2916 int netdev_bind_sb_channel_queue(struct net_device *dev,
2917 				 struct net_device *sb_dev,
2918 				 u8 tc, u16 count, u16 offset)
2919 {
2920 	/* Make certain the sb_dev and dev are already configured */
2921 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2922 		return -EINVAL;
2923 
2924 	/* We cannot hand out queues we don't have */
2925 	if ((offset + count) > dev->real_num_tx_queues)
2926 		return -EINVAL;
2927 
2928 	/* Record the mapping */
2929 	sb_dev->tc_to_txq[tc].count = count;
2930 	sb_dev->tc_to_txq[tc].offset = offset;
2931 
2932 	/* Provide a way for Tx queue to find the tc_to_txq map or
2933 	 * XPS map for itself.
2934 	 */
2935 	while (count--)
2936 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2937 
2938 	return 0;
2939 }
2940 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2941 
2942 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2943 {
2944 	/* Do not use a multiqueue device to represent a subordinate channel */
2945 	if (netif_is_multiqueue(dev))
2946 		return -ENODEV;
2947 
2948 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2949 	 * Channel 0 is meant to be "native" mode and used only to represent
2950 	 * the main root device. We allow writing 0 to reset the device back
2951 	 * to normal mode after being used as a subordinate channel.
2952 	 */
2953 	if (channel > S16_MAX)
2954 		return -EINVAL;
2955 
2956 	dev->num_tc = -channel;
2957 
2958 	return 0;
2959 }
2960 EXPORT_SYMBOL(netdev_set_sb_channel);
2961 
2962 /*
2963  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2964  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2965  */
2966 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2967 {
2968 	bool disabling;
2969 	int rc;
2970 
2971 	disabling = txq < dev->real_num_tx_queues;
2972 
2973 	if (txq < 1 || txq > dev->num_tx_queues)
2974 		return -EINVAL;
2975 
2976 	if (dev->reg_state == NETREG_REGISTERED ||
2977 	    dev->reg_state == NETREG_UNREGISTERING) {
2978 		ASSERT_RTNL();
2979 
2980 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2981 						  txq);
2982 		if (rc)
2983 			return rc;
2984 
2985 		if (dev->num_tc)
2986 			netif_setup_tc(dev, txq);
2987 
2988 		dev->real_num_tx_queues = txq;
2989 
2990 		if (disabling) {
2991 			synchronize_net();
2992 			qdisc_reset_all_tx_gt(dev, txq);
2993 #ifdef CONFIG_XPS
2994 			netif_reset_xps_queues_gt(dev, txq);
2995 #endif
2996 		}
2997 	} else {
2998 		dev->real_num_tx_queues = txq;
2999 	}
3000 
3001 	return 0;
3002 }
3003 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3004 
3005 #ifdef CONFIG_SYSFS
3006 /**
3007  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3008  *	@dev: Network device
3009  *	@rxq: Actual number of RX queues
3010  *
3011  *	This must be called either with the rtnl_lock held or before
3012  *	registration of the net device.  Returns 0 on success, or a
3013  *	negative error code.  If called before registration, it always
3014  *	succeeds.
3015  */
3016 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3017 {
3018 	int rc;
3019 
3020 	if (rxq < 1 || rxq > dev->num_rx_queues)
3021 		return -EINVAL;
3022 
3023 	if (dev->reg_state == NETREG_REGISTERED) {
3024 		ASSERT_RTNL();
3025 
3026 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3027 						  rxq);
3028 		if (rc)
3029 			return rc;
3030 	}
3031 
3032 	dev->real_num_rx_queues = rxq;
3033 	return 0;
3034 }
3035 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3036 #endif
3037 
3038 /**
3039  * netif_get_num_default_rss_queues - default number of RSS queues
3040  *
3041  * This routine should set an upper limit on the number of RSS queues
3042  * used by default by multiqueue devices.
3043  */
3044 int netif_get_num_default_rss_queues(void)
3045 {
3046 	return is_kdump_kernel() ?
3047 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3048 }
3049 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3050 
3051 static void __netif_reschedule(struct Qdisc *q)
3052 {
3053 	struct softnet_data *sd;
3054 	unsigned long flags;
3055 
3056 	local_irq_save(flags);
3057 	sd = this_cpu_ptr(&softnet_data);
3058 	q->next_sched = NULL;
3059 	*sd->output_queue_tailp = q;
3060 	sd->output_queue_tailp = &q->next_sched;
3061 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3062 	local_irq_restore(flags);
3063 }
3064 
3065 void __netif_schedule(struct Qdisc *q)
3066 {
3067 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3068 		__netif_reschedule(q);
3069 }
3070 EXPORT_SYMBOL(__netif_schedule);
3071 
3072 struct dev_kfree_skb_cb {
3073 	enum skb_free_reason reason;
3074 };
3075 
3076 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3077 {
3078 	return (struct dev_kfree_skb_cb *)skb->cb;
3079 }
3080 
3081 void netif_schedule_queue(struct netdev_queue *txq)
3082 {
3083 	rcu_read_lock();
3084 	if (!netif_xmit_stopped(txq)) {
3085 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3086 
3087 		__netif_schedule(q);
3088 	}
3089 	rcu_read_unlock();
3090 }
3091 EXPORT_SYMBOL(netif_schedule_queue);
3092 
3093 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3094 {
3095 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3096 		struct Qdisc *q;
3097 
3098 		rcu_read_lock();
3099 		q = rcu_dereference(dev_queue->qdisc);
3100 		__netif_schedule(q);
3101 		rcu_read_unlock();
3102 	}
3103 }
3104 EXPORT_SYMBOL(netif_tx_wake_queue);
3105 
3106 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3107 {
3108 	unsigned long flags;
3109 
3110 	if (unlikely(!skb))
3111 		return;
3112 
3113 	if (likely(refcount_read(&skb->users) == 1)) {
3114 		smp_rmb();
3115 		refcount_set(&skb->users, 0);
3116 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3117 		return;
3118 	}
3119 	get_kfree_skb_cb(skb)->reason = reason;
3120 	local_irq_save(flags);
3121 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3122 	__this_cpu_write(softnet_data.completion_queue, skb);
3123 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3124 	local_irq_restore(flags);
3125 }
3126 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3127 
3128 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3129 {
3130 	if (in_irq() || irqs_disabled())
3131 		__dev_kfree_skb_irq(skb, reason);
3132 	else
3133 		dev_kfree_skb(skb);
3134 }
3135 EXPORT_SYMBOL(__dev_kfree_skb_any);
3136 
3137 
3138 /**
3139  * netif_device_detach - mark device as removed
3140  * @dev: network device
3141  *
3142  * Mark device as removed from system and therefore no longer available.
3143  */
3144 void netif_device_detach(struct net_device *dev)
3145 {
3146 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3147 	    netif_running(dev)) {
3148 		netif_tx_stop_all_queues(dev);
3149 	}
3150 }
3151 EXPORT_SYMBOL(netif_device_detach);
3152 
3153 /**
3154  * netif_device_attach - mark device as attached
3155  * @dev: network device
3156  *
3157  * Mark device as attached from system and restart if needed.
3158  */
3159 void netif_device_attach(struct net_device *dev)
3160 {
3161 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3162 	    netif_running(dev)) {
3163 		netif_tx_wake_all_queues(dev);
3164 		__netdev_watchdog_up(dev);
3165 	}
3166 }
3167 EXPORT_SYMBOL(netif_device_attach);
3168 
3169 /*
3170  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3171  * to be used as a distribution range.
3172  */
3173 static u16 skb_tx_hash(const struct net_device *dev,
3174 		       const struct net_device *sb_dev,
3175 		       struct sk_buff *skb)
3176 {
3177 	u32 hash;
3178 	u16 qoffset = 0;
3179 	u16 qcount = dev->real_num_tx_queues;
3180 
3181 	if (dev->num_tc) {
3182 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3183 
3184 		qoffset = sb_dev->tc_to_txq[tc].offset;
3185 		qcount = sb_dev->tc_to_txq[tc].count;
3186 	}
3187 
3188 	if (skb_rx_queue_recorded(skb)) {
3189 		hash = skb_get_rx_queue(skb);
3190 		if (hash >= qoffset)
3191 			hash -= qoffset;
3192 		while (unlikely(hash >= qcount))
3193 			hash -= qcount;
3194 		return hash + qoffset;
3195 	}
3196 
3197 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3198 }
3199 
3200 static void skb_warn_bad_offload(const struct sk_buff *skb)
3201 {
3202 	static const netdev_features_t null_features;
3203 	struct net_device *dev = skb->dev;
3204 	const char *name = "";
3205 
3206 	if (!net_ratelimit())
3207 		return;
3208 
3209 	if (dev) {
3210 		if (dev->dev.parent)
3211 			name = dev_driver_string(dev->dev.parent);
3212 		else
3213 			name = netdev_name(dev);
3214 	}
3215 	skb_dump(KERN_WARNING, skb, false);
3216 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3217 	     name, dev ? &dev->features : &null_features,
3218 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3219 }
3220 
3221 /*
3222  * Invalidate hardware checksum when packet is to be mangled, and
3223  * complete checksum manually on outgoing path.
3224  */
3225 int skb_checksum_help(struct sk_buff *skb)
3226 {
3227 	__wsum csum;
3228 	int ret = 0, offset;
3229 
3230 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3231 		goto out_set_summed;
3232 
3233 	if (unlikely(skb_is_gso(skb))) {
3234 		skb_warn_bad_offload(skb);
3235 		return -EINVAL;
3236 	}
3237 
3238 	/* Before computing a checksum, we should make sure no frag could
3239 	 * be modified by an external entity : checksum could be wrong.
3240 	 */
3241 	if (skb_has_shared_frag(skb)) {
3242 		ret = __skb_linearize(skb);
3243 		if (ret)
3244 			goto out;
3245 	}
3246 
3247 	offset = skb_checksum_start_offset(skb);
3248 	BUG_ON(offset >= skb_headlen(skb));
3249 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3250 
3251 	offset += skb->csum_offset;
3252 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3253 
3254 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3255 	if (ret)
3256 		goto out;
3257 
3258 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3259 out_set_summed:
3260 	skb->ip_summed = CHECKSUM_NONE;
3261 out:
3262 	return ret;
3263 }
3264 EXPORT_SYMBOL(skb_checksum_help);
3265 
3266 int skb_crc32c_csum_help(struct sk_buff *skb)
3267 {
3268 	__le32 crc32c_csum;
3269 	int ret = 0, offset, start;
3270 
3271 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3272 		goto out;
3273 
3274 	if (unlikely(skb_is_gso(skb)))
3275 		goto out;
3276 
3277 	/* Before computing a checksum, we should make sure no frag could
3278 	 * be modified by an external entity : checksum could be wrong.
3279 	 */
3280 	if (unlikely(skb_has_shared_frag(skb))) {
3281 		ret = __skb_linearize(skb);
3282 		if (ret)
3283 			goto out;
3284 	}
3285 	start = skb_checksum_start_offset(skb);
3286 	offset = start + offsetof(struct sctphdr, checksum);
3287 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3288 		ret = -EINVAL;
3289 		goto out;
3290 	}
3291 
3292 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3293 	if (ret)
3294 		goto out;
3295 
3296 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3297 						  skb->len - start, ~(__u32)0,
3298 						  crc32c_csum_stub));
3299 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3300 	skb->ip_summed = CHECKSUM_NONE;
3301 	skb->csum_not_inet = 0;
3302 out:
3303 	return ret;
3304 }
3305 
3306 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3307 {
3308 	__be16 type = skb->protocol;
3309 
3310 	/* Tunnel gso handlers can set protocol to ethernet. */
3311 	if (type == htons(ETH_P_TEB)) {
3312 		struct ethhdr *eth;
3313 
3314 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3315 			return 0;
3316 
3317 		eth = (struct ethhdr *)skb->data;
3318 		type = eth->h_proto;
3319 	}
3320 
3321 	return __vlan_get_protocol(skb, type, depth);
3322 }
3323 
3324 /**
3325  *	skb_mac_gso_segment - mac layer segmentation handler.
3326  *	@skb: buffer to segment
3327  *	@features: features for the output path (see dev->features)
3328  */
3329 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3330 				    netdev_features_t features)
3331 {
3332 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3333 	struct packet_offload *ptype;
3334 	int vlan_depth = skb->mac_len;
3335 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3336 
3337 	if (unlikely(!type))
3338 		return ERR_PTR(-EINVAL);
3339 
3340 	__skb_pull(skb, vlan_depth);
3341 
3342 	rcu_read_lock();
3343 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3344 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3345 			segs = ptype->callbacks.gso_segment(skb, features);
3346 			break;
3347 		}
3348 	}
3349 	rcu_read_unlock();
3350 
3351 	__skb_push(skb, skb->data - skb_mac_header(skb));
3352 
3353 	return segs;
3354 }
3355 EXPORT_SYMBOL(skb_mac_gso_segment);
3356 
3357 
3358 /* openvswitch calls this on rx path, so we need a different check.
3359  */
3360 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3361 {
3362 	if (tx_path)
3363 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3364 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3365 
3366 	return skb->ip_summed == CHECKSUM_NONE;
3367 }
3368 
3369 /**
3370  *	__skb_gso_segment - Perform segmentation on skb.
3371  *	@skb: buffer to segment
3372  *	@features: features for the output path (see dev->features)
3373  *	@tx_path: whether it is called in TX path
3374  *
3375  *	This function segments the given skb and returns a list of segments.
3376  *
3377  *	It may return NULL if the skb requires no segmentation.  This is
3378  *	only possible when GSO is used for verifying header integrity.
3379  *
3380  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3381  */
3382 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3383 				  netdev_features_t features, bool tx_path)
3384 {
3385 	struct sk_buff *segs;
3386 
3387 	if (unlikely(skb_needs_check(skb, tx_path))) {
3388 		int err;
3389 
3390 		/* We're going to init ->check field in TCP or UDP header */
3391 		err = skb_cow_head(skb, 0);
3392 		if (err < 0)
3393 			return ERR_PTR(err);
3394 	}
3395 
3396 	/* Only report GSO partial support if it will enable us to
3397 	 * support segmentation on this frame without needing additional
3398 	 * work.
3399 	 */
3400 	if (features & NETIF_F_GSO_PARTIAL) {
3401 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3402 		struct net_device *dev = skb->dev;
3403 
3404 		partial_features |= dev->features & dev->gso_partial_features;
3405 		if (!skb_gso_ok(skb, features | partial_features))
3406 			features &= ~NETIF_F_GSO_PARTIAL;
3407 	}
3408 
3409 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3410 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3411 
3412 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3413 	SKB_GSO_CB(skb)->encap_level = 0;
3414 
3415 	skb_reset_mac_header(skb);
3416 	skb_reset_mac_len(skb);
3417 
3418 	segs = skb_mac_gso_segment(skb, features);
3419 
3420 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3421 		skb_warn_bad_offload(skb);
3422 
3423 	return segs;
3424 }
3425 EXPORT_SYMBOL(__skb_gso_segment);
3426 
3427 /* Take action when hardware reception checksum errors are detected. */
3428 #ifdef CONFIG_BUG
3429 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3430 {
3431 	if (net_ratelimit()) {
3432 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3433 		skb_dump(KERN_ERR, skb, true);
3434 		dump_stack();
3435 	}
3436 }
3437 EXPORT_SYMBOL(netdev_rx_csum_fault);
3438 #endif
3439 
3440 /* XXX: check that highmem exists at all on the given machine. */
3441 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3442 {
3443 #ifdef CONFIG_HIGHMEM
3444 	int i;
3445 
3446 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3447 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3448 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3449 
3450 			if (PageHighMem(skb_frag_page(frag)))
3451 				return 1;
3452 		}
3453 	}
3454 #endif
3455 	return 0;
3456 }
3457 
3458 /* If MPLS offload request, verify we are testing hardware MPLS features
3459  * instead of standard features for the netdev.
3460  */
3461 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3462 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3463 					   netdev_features_t features,
3464 					   __be16 type)
3465 {
3466 	if (eth_p_mpls(type))
3467 		features &= skb->dev->mpls_features;
3468 
3469 	return features;
3470 }
3471 #else
3472 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3473 					   netdev_features_t features,
3474 					   __be16 type)
3475 {
3476 	return features;
3477 }
3478 #endif
3479 
3480 static netdev_features_t harmonize_features(struct sk_buff *skb,
3481 	netdev_features_t features)
3482 {
3483 	__be16 type;
3484 
3485 	type = skb_network_protocol(skb, NULL);
3486 	features = net_mpls_features(skb, features, type);
3487 
3488 	if (skb->ip_summed != CHECKSUM_NONE &&
3489 	    !can_checksum_protocol(features, type)) {
3490 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3491 	}
3492 	if (illegal_highdma(skb->dev, skb))
3493 		features &= ~NETIF_F_SG;
3494 
3495 	return features;
3496 }
3497 
3498 netdev_features_t passthru_features_check(struct sk_buff *skb,
3499 					  struct net_device *dev,
3500 					  netdev_features_t features)
3501 {
3502 	return features;
3503 }
3504 EXPORT_SYMBOL(passthru_features_check);
3505 
3506 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3507 					     struct net_device *dev,
3508 					     netdev_features_t features)
3509 {
3510 	return vlan_features_check(skb, features);
3511 }
3512 
3513 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3514 					    struct net_device *dev,
3515 					    netdev_features_t features)
3516 {
3517 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3518 
3519 	if (gso_segs > dev->gso_max_segs)
3520 		return features & ~NETIF_F_GSO_MASK;
3521 
3522 	if (!skb_shinfo(skb)->gso_type) {
3523 		skb_warn_bad_offload(skb);
3524 		return features & ~NETIF_F_GSO_MASK;
3525 	}
3526 
3527 	/* Support for GSO partial features requires software
3528 	 * intervention before we can actually process the packets
3529 	 * so we need to strip support for any partial features now
3530 	 * and we can pull them back in after we have partially
3531 	 * segmented the frame.
3532 	 */
3533 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3534 		features &= ~dev->gso_partial_features;
3535 
3536 	/* Make sure to clear the IPv4 ID mangling feature if the
3537 	 * IPv4 header has the potential to be fragmented.
3538 	 */
3539 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3540 		struct iphdr *iph = skb->encapsulation ?
3541 				    inner_ip_hdr(skb) : ip_hdr(skb);
3542 
3543 		if (!(iph->frag_off & htons(IP_DF)))
3544 			features &= ~NETIF_F_TSO_MANGLEID;
3545 	}
3546 
3547 	return features;
3548 }
3549 
3550 netdev_features_t netif_skb_features(struct sk_buff *skb)
3551 {
3552 	struct net_device *dev = skb->dev;
3553 	netdev_features_t features = dev->features;
3554 
3555 	if (skb_is_gso(skb))
3556 		features = gso_features_check(skb, dev, features);
3557 
3558 	/* If encapsulation offload request, verify we are testing
3559 	 * hardware encapsulation features instead of standard
3560 	 * features for the netdev
3561 	 */
3562 	if (skb->encapsulation)
3563 		features &= dev->hw_enc_features;
3564 
3565 	if (skb_vlan_tagged(skb))
3566 		features = netdev_intersect_features(features,
3567 						     dev->vlan_features |
3568 						     NETIF_F_HW_VLAN_CTAG_TX |
3569 						     NETIF_F_HW_VLAN_STAG_TX);
3570 
3571 	if (dev->netdev_ops->ndo_features_check)
3572 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3573 								features);
3574 	else
3575 		features &= dflt_features_check(skb, dev, features);
3576 
3577 	return harmonize_features(skb, features);
3578 }
3579 EXPORT_SYMBOL(netif_skb_features);
3580 
3581 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3582 		    struct netdev_queue *txq, bool more)
3583 {
3584 	unsigned int len;
3585 	int rc;
3586 
3587 	if (dev_nit_active(dev))
3588 		dev_queue_xmit_nit(skb, dev);
3589 
3590 	len = skb->len;
3591 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3592 	trace_net_dev_start_xmit(skb, dev);
3593 	rc = netdev_start_xmit(skb, dev, txq, more);
3594 	trace_net_dev_xmit(skb, rc, dev, len);
3595 
3596 	return rc;
3597 }
3598 
3599 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3600 				    struct netdev_queue *txq, int *ret)
3601 {
3602 	struct sk_buff *skb = first;
3603 	int rc = NETDEV_TX_OK;
3604 
3605 	while (skb) {
3606 		struct sk_buff *next = skb->next;
3607 
3608 		skb_mark_not_on_list(skb);
3609 		rc = xmit_one(skb, dev, txq, next != NULL);
3610 		if (unlikely(!dev_xmit_complete(rc))) {
3611 			skb->next = next;
3612 			goto out;
3613 		}
3614 
3615 		skb = next;
3616 		if (netif_tx_queue_stopped(txq) && skb) {
3617 			rc = NETDEV_TX_BUSY;
3618 			break;
3619 		}
3620 	}
3621 
3622 out:
3623 	*ret = rc;
3624 	return skb;
3625 }
3626 
3627 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3628 					  netdev_features_t features)
3629 {
3630 	if (skb_vlan_tag_present(skb) &&
3631 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3632 		skb = __vlan_hwaccel_push_inside(skb);
3633 	return skb;
3634 }
3635 
3636 int skb_csum_hwoffload_help(struct sk_buff *skb,
3637 			    const netdev_features_t features)
3638 {
3639 	if (unlikely(skb_csum_is_sctp(skb)))
3640 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3641 			skb_crc32c_csum_help(skb);
3642 
3643 	if (features & NETIF_F_HW_CSUM)
3644 		return 0;
3645 
3646 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3647 		switch (skb->csum_offset) {
3648 		case offsetof(struct tcphdr, check):
3649 		case offsetof(struct udphdr, check):
3650 			return 0;
3651 		}
3652 	}
3653 
3654 	return skb_checksum_help(skb);
3655 }
3656 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3657 
3658 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3659 {
3660 	netdev_features_t features;
3661 
3662 	features = netif_skb_features(skb);
3663 	skb = validate_xmit_vlan(skb, features);
3664 	if (unlikely(!skb))
3665 		goto out_null;
3666 
3667 	skb = sk_validate_xmit_skb(skb, dev);
3668 	if (unlikely(!skb))
3669 		goto out_null;
3670 
3671 	if (netif_needs_gso(skb, features)) {
3672 		struct sk_buff *segs;
3673 
3674 		segs = skb_gso_segment(skb, features);
3675 		if (IS_ERR(segs)) {
3676 			goto out_kfree_skb;
3677 		} else if (segs) {
3678 			consume_skb(skb);
3679 			skb = segs;
3680 		}
3681 	} else {
3682 		if (skb_needs_linearize(skb, features) &&
3683 		    __skb_linearize(skb))
3684 			goto out_kfree_skb;
3685 
3686 		/* If packet is not checksummed and device does not
3687 		 * support checksumming for this protocol, complete
3688 		 * checksumming here.
3689 		 */
3690 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3691 			if (skb->encapsulation)
3692 				skb_set_inner_transport_header(skb,
3693 							       skb_checksum_start_offset(skb));
3694 			else
3695 				skb_set_transport_header(skb,
3696 							 skb_checksum_start_offset(skb));
3697 			if (skb_csum_hwoffload_help(skb, features))
3698 				goto out_kfree_skb;
3699 		}
3700 	}
3701 
3702 	skb = validate_xmit_xfrm(skb, features, again);
3703 
3704 	return skb;
3705 
3706 out_kfree_skb:
3707 	kfree_skb(skb);
3708 out_null:
3709 	atomic_long_inc(&dev->tx_dropped);
3710 	return NULL;
3711 }
3712 
3713 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3714 {
3715 	struct sk_buff *next, *head = NULL, *tail;
3716 
3717 	for (; skb != NULL; skb = next) {
3718 		next = skb->next;
3719 		skb_mark_not_on_list(skb);
3720 
3721 		/* in case skb wont be segmented, point to itself */
3722 		skb->prev = skb;
3723 
3724 		skb = validate_xmit_skb(skb, dev, again);
3725 		if (!skb)
3726 			continue;
3727 
3728 		if (!head)
3729 			head = skb;
3730 		else
3731 			tail->next = skb;
3732 		/* If skb was segmented, skb->prev points to
3733 		 * the last segment. If not, it still contains skb.
3734 		 */
3735 		tail = skb->prev;
3736 	}
3737 	return head;
3738 }
3739 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3740 
3741 static void qdisc_pkt_len_init(struct sk_buff *skb)
3742 {
3743 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3744 
3745 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3746 
3747 	/* To get more precise estimation of bytes sent on wire,
3748 	 * we add to pkt_len the headers size of all segments
3749 	 */
3750 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3751 		unsigned int hdr_len;
3752 		u16 gso_segs = shinfo->gso_segs;
3753 
3754 		/* mac layer + network layer */
3755 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3756 
3757 		/* + transport layer */
3758 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3759 			const struct tcphdr *th;
3760 			struct tcphdr _tcphdr;
3761 
3762 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3763 						sizeof(_tcphdr), &_tcphdr);
3764 			if (likely(th))
3765 				hdr_len += __tcp_hdrlen(th);
3766 		} else {
3767 			struct udphdr _udphdr;
3768 
3769 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3770 					       sizeof(_udphdr), &_udphdr))
3771 				hdr_len += sizeof(struct udphdr);
3772 		}
3773 
3774 		if (shinfo->gso_type & SKB_GSO_DODGY)
3775 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3776 						shinfo->gso_size);
3777 
3778 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3779 	}
3780 }
3781 
3782 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3783 				 struct net_device *dev,
3784 				 struct netdev_queue *txq)
3785 {
3786 	spinlock_t *root_lock = qdisc_lock(q);
3787 	struct sk_buff *to_free = NULL;
3788 	bool contended;
3789 	int rc;
3790 
3791 	qdisc_calculate_pkt_len(skb, q);
3792 
3793 	if (q->flags & TCQ_F_NOLOCK) {
3794 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3795 		qdisc_run(q);
3796 
3797 		if (unlikely(to_free))
3798 			kfree_skb_list(to_free);
3799 		return rc;
3800 	}
3801 
3802 	/*
3803 	 * Heuristic to force contended enqueues to serialize on a
3804 	 * separate lock before trying to get qdisc main lock.
3805 	 * This permits qdisc->running owner to get the lock more
3806 	 * often and dequeue packets faster.
3807 	 */
3808 	contended = qdisc_is_running(q);
3809 	if (unlikely(contended))
3810 		spin_lock(&q->busylock);
3811 
3812 	spin_lock(root_lock);
3813 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3814 		__qdisc_drop(skb, &to_free);
3815 		rc = NET_XMIT_DROP;
3816 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3817 		   qdisc_run_begin(q)) {
3818 		/*
3819 		 * This is a work-conserving queue; there are no old skbs
3820 		 * waiting to be sent out; and the qdisc is not running -
3821 		 * xmit the skb directly.
3822 		 */
3823 
3824 		qdisc_bstats_update(q, skb);
3825 
3826 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3827 			if (unlikely(contended)) {
3828 				spin_unlock(&q->busylock);
3829 				contended = false;
3830 			}
3831 			__qdisc_run(q);
3832 		}
3833 
3834 		qdisc_run_end(q);
3835 		rc = NET_XMIT_SUCCESS;
3836 	} else {
3837 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3838 		if (qdisc_run_begin(q)) {
3839 			if (unlikely(contended)) {
3840 				spin_unlock(&q->busylock);
3841 				contended = false;
3842 			}
3843 			__qdisc_run(q);
3844 			qdisc_run_end(q);
3845 		}
3846 	}
3847 	spin_unlock(root_lock);
3848 	if (unlikely(to_free))
3849 		kfree_skb_list(to_free);
3850 	if (unlikely(contended))
3851 		spin_unlock(&q->busylock);
3852 	return rc;
3853 }
3854 
3855 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3856 static void skb_update_prio(struct sk_buff *skb)
3857 {
3858 	const struct netprio_map *map;
3859 	const struct sock *sk;
3860 	unsigned int prioidx;
3861 
3862 	if (skb->priority)
3863 		return;
3864 	map = rcu_dereference_bh(skb->dev->priomap);
3865 	if (!map)
3866 		return;
3867 	sk = skb_to_full_sk(skb);
3868 	if (!sk)
3869 		return;
3870 
3871 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3872 
3873 	if (prioidx < map->priomap_len)
3874 		skb->priority = map->priomap[prioidx];
3875 }
3876 #else
3877 #define skb_update_prio(skb)
3878 #endif
3879 
3880 /**
3881  *	dev_loopback_xmit - loop back @skb
3882  *	@net: network namespace this loopback is happening in
3883  *	@sk:  sk needed to be a netfilter okfn
3884  *	@skb: buffer to transmit
3885  */
3886 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3887 {
3888 	skb_reset_mac_header(skb);
3889 	__skb_pull(skb, skb_network_offset(skb));
3890 	skb->pkt_type = PACKET_LOOPBACK;
3891 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3892 	WARN_ON(!skb_dst(skb));
3893 	skb_dst_force(skb);
3894 	netif_rx_ni(skb);
3895 	return 0;
3896 }
3897 EXPORT_SYMBOL(dev_loopback_xmit);
3898 
3899 #ifdef CONFIG_NET_EGRESS
3900 static struct sk_buff *
3901 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3902 {
3903 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3904 	struct tcf_result cl_res;
3905 
3906 	if (!miniq)
3907 		return skb;
3908 
3909 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3910 	qdisc_skb_cb(skb)->mru = 0;
3911 	qdisc_skb_cb(skb)->post_ct = false;
3912 	mini_qdisc_bstats_cpu_update(miniq, skb);
3913 
3914 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3915 	case TC_ACT_OK:
3916 	case TC_ACT_RECLASSIFY:
3917 		skb->tc_index = TC_H_MIN(cl_res.classid);
3918 		break;
3919 	case TC_ACT_SHOT:
3920 		mini_qdisc_qstats_cpu_drop(miniq);
3921 		*ret = NET_XMIT_DROP;
3922 		kfree_skb(skb);
3923 		return NULL;
3924 	case TC_ACT_STOLEN:
3925 	case TC_ACT_QUEUED:
3926 	case TC_ACT_TRAP:
3927 		*ret = NET_XMIT_SUCCESS;
3928 		consume_skb(skb);
3929 		return NULL;
3930 	case TC_ACT_REDIRECT:
3931 		/* No need to push/pop skb's mac_header here on egress! */
3932 		skb_do_redirect(skb);
3933 		*ret = NET_XMIT_SUCCESS;
3934 		return NULL;
3935 	default:
3936 		break;
3937 	}
3938 
3939 	return skb;
3940 }
3941 #endif /* CONFIG_NET_EGRESS */
3942 
3943 #ifdef CONFIG_XPS
3944 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3945 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3946 {
3947 	struct xps_map *map;
3948 	int queue_index = -1;
3949 
3950 	if (dev->num_tc) {
3951 		tci *= dev->num_tc;
3952 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3953 	}
3954 
3955 	map = rcu_dereference(dev_maps->attr_map[tci]);
3956 	if (map) {
3957 		if (map->len == 1)
3958 			queue_index = map->queues[0];
3959 		else
3960 			queue_index = map->queues[reciprocal_scale(
3961 						skb_get_hash(skb), map->len)];
3962 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3963 			queue_index = -1;
3964 	}
3965 	return queue_index;
3966 }
3967 #endif
3968 
3969 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3970 			 struct sk_buff *skb)
3971 {
3972 #ifdef CONFIG_XPS
3973 	struct xps_dev_maps *dev_maps;
3974 	struct sock *sk = skb->sk;
3975 	int queue_index = -1;
3976 
3977 	if (!static_key_false(&xps_needed))
3978 		return -1;
3979 
3980 	rcu_read_lock();
3981 	if (!static_key_false(&xps_rxqs_needed))
3982 		goto get_cpus_map;
3983 
3984 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3985 	if (dev_maps) {
3986 		int tci = sk_rx_queue_get(sk);
3987 
3988 		if (tci >= 0 && tci < dev->num_rx_queues)
3989 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3990 							  tci);
3991 	}
3992 
3993 get_cpus_map:
3994 	if (queue_index < 0) {
3995 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3996 		if (dev_maps) {
3997 			unsigned int tci = skb->sender_cpu - 1;
3998 
3999 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4000 							  tci);
4001 		}
4002 	}
4003 	rcu_read_unlock();
4004 
4005 	return queue_index;
4006 #else
4007 	return -1;
4008 #endif
4009 }
4010 
4011 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4012 		     struct net_device *sb_dev)
4013 {
4014 	return 0;
4015 }
4016 EXPORT_SYMBOL(dev_pick_tx_zero);
4017 
4018 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4019 		       struct net_device *sb_dev)
4020 {
4021 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4022 }
4023 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4024 
4025 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4026 		     struct net_device *sb_dev)
4027 {
4028 	struct sock *sk = skb->sk;
4029 	int queue_index = sk_tx_queue_get(sk);
4030 
4031 	sb_dev = sb_dev ? : dev;
4032 
4033 	if (queue_index < 0 || skb->ooo_okay ||
4034 	    queue_index >= dev->real_num_tx_queues) {
4035 		int new_index = get_xps_queue(dev, sb_dev, skb);
4036 
4037 		if (new_index < 0)
4038 			new_index = skb_tx_hash(dev, sb_dev, skb);
4039 
4040 		if (queue_index != new_index && sk &&
4041 		    sk_fullsock(sk) &&
4042 		    rcu_access_pointer(sk->sk_dst_cache))
4043 			sk_tx_queue_set(sk, new_index);
4044 
4045 		queue_index = new_index;
4046 	}
4047 
4048 	return queue_index;
4049 }
4050 EXPORT_SYMBOL(netdev_pick_tx);
4051 
4052 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4053 					 struct sk_buff *skb,
4054 					 struct net_device *sb_dev)
4055 {
4056 	int queue_index = 0;
4057 
4058 #ifdef CONFIG_XPS
4059 	u32 sender_cpu = skb->sender_cpu - 1;
4060 
4061 	if (sender_cpu >= (u32)NR_CPUS)
4062 		skb->sender_cpu = raw_smp_processor_id() + 1;
4063 #endif
4064 
4065 	if (dev->real_num_tx_queues != 1) {
4066 		const struct net_device_ops *ops = dev->netdev_ops;
4067 
4068 		if (ops->ndo_select_queue)
4069 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4070 		else
4071 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4072 
4073 		queue_index = netdev_cap_txqueue(dev, queue_index);
4074 	}
4075 
4076 	skb_set_queue_mapping(skb, queue_index);
4077 	return netdev_get_tx_queue(dev, queue_index);
4078 }
4079 
4080 /**
4081  *	__dev_queue_xmit - transmit a buffer
4082  *	@skb: buffer to transmit
4083  *	@sb_dev: suboordinate device used for L2 forwarding offload
4084  *
4085  *	Queue a buffer for transmission to a network device. The caller must
4086  *	have set the device and priority and built the buffer before calling
4087  *	this function. The function can be called from an interrupt.
4088  *
4089  *	A negative errno code is returned on a failure. A success does not
4090  *	guarantee the frame will be transmitted as it may be dropped due
4091  *	to congestion or traffic shaping.
4092  *
4093  * -----------------------------------------------------------------------------------
4094  *      I notice this method can also return errors from the queue disciplines,
4095  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4096  *      be positive.
4097  *
4098  *      Regardless of the return value, the skb is consumed, so it is currently
4099  *      difficult to retry a send to this method.  (You can bump the ref count
4100  *      before sending to hold a reference for retry if you are careful.)
4101  *
4102  *      When calling this method, interrupts MUST be enabled.  This is because
4103  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4104  *          --BLG
4105  */
4106 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4107 {
4108 	struct net_device *dev = skb->dev;
4109 	struct netdev_queue *txq;
4110 	struct Qdisc *q;
4111 	int rc = -ENOMEM;
4112 	bool again = false;
4113 
4114 	skb_reset_mac_header(skb);
4115 
4116 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4117 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4118 
4119 	/* Disable soft irqs for various locks below. Also
4120 	 * stops preemption for RCU.
4121 	 */
4122 	rcu_read_lock_bh();
4123 
4124 	skb_update_prio(skb);
4125 
4126 	qdisc_pkt_len_init(skb);
4127 #ifdef CONFIG_NET_CLS_ACT
4128 	skb->tc_at_ingress = 0;
4129 # ifdef CONFIG_NET_EGRESS
4130 	if (static_branch_unlikely(&egress_needed_key)) {
4131 		skb = sch_handle_egress(skb, &rc, dev);
4132 		if (!skb)
4133 			goto out;
4134 	}
4135 # endif
4136 #endif
4137 	/* If device/qdisc don't need skb->dst, release it right now while
4138 	 * its hot in this cpu cache.
4139 	 */
4140 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4141 		skb_dst_drop(skb);
4142 	else
4143 		skb_dst_force(skb);
4144 
4145 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4146 	q = rcu_dereference_bh(txq->qdisc);
4147 
4148 	trace_net_dev_queue(skb);
4149 	if (q->enqueue) {
4150 		rc = __dev_xmit_skb(skb, q, dev, txq);
4151 		goto out;
4152 	}
4153 
4154 	/* The device has no queue. Common case for software devices:
4155 	 * loopback, all the sorts of tunnels...
4156 
4157 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4158 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4159 	 * counters.)
4160 	 * However, it is possible, that they rely on protection
4161 	 * made by us here.
4162 
4163 	 * Check this and shot the lock. It is not prone from deadlocks.
4164 	 *Either shot noqueue qdisc, it is even simpler 8)
4165 	 */
4166 	if (dev->flags & IFF_UP) {
4167 		int cpu = smp_processor_id(); /* ok because BHs are off */
4168 
4169 		if (txq->xmit_lock_owner != cpu) {
4170 			if (dev_xmit_recursion())
4171 				goto recursion_alert;
4172 
4173 			skb = validate_xmit_skb(skb, dev, &again);
4174 			if (!skb)
4175 				goto out;
4176 
4177 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4178 			HARD_TX_LOCK(dev, txq, cpu);
4179 
4180 			if (!netif_xmit_stopped(txq)) {
4181 				dev_xmit_recursion_inc();
4182 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4183 				dev_xmit_recursion_dec();
4184 				if (dev_xmit_complete(rc)) {
4185 					HARD_TX_UNLOCK(dev, txq);
4186 					goto out;
4187 				}
4188 			}
4189 			HARD_TX_UNLOCK(dev, txq);
4190 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4191 					     dev->name);
4192 		} else {
4193 			/* Recursion is detected! It is possible,
4194 			 * unfortunately
4195 			 */
4196 recursion_alert:
4197 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4198 					     dev->name);
4199 		}
4200 	}
4201 
4202 	rc = -ENETDOWN;
4203 	rcu_read_unlock_bh();
4204 
4205 	atomic_long_inc(&dev->tx_dropped);
4206 	kfree_skb_list(skb);
4207 	return rc;
4208 out:
4209 	rcu_read_unlock_bh();
4210 	return rc;
4211 }
4212 
4213 int dev_queue_xmit(struct sk_buff *skb)
4214 {
4215 	return __dev_queue_xmit(skb, NULL);
4216 }
4217 EXPORT_SYMBOL(dev_queue_xmit);
4218 
4219 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4220 {
4221 	return __dev_queue_xmit(skb, sb_dev);
4222 }
4223 EXPORT_SYMBOL(dev_queue_xmit_accel);
4224 
4225 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4226 {
4227 	struct net_device *dev = skb->dev;
4228 	struct sk_buff *orig_skb = skb;
4229 	struct netdev_queue *txq;
4230 	int ret = NETDEV_TX_BUSY;
4231 	bool again = false;
4232 
4233 	if (unlikely(!netif_running(dev) ||
4234 		     !netif_carrier_ok(dev)))
4235 		goto drop;
4236 
4237 	skb = validate_xmit_skb_list(skb, dev, &again);
4238 	if (skb != orig_skb)
4239 		goto drop;
4240 
4241 	skb_set_queue_mapping(skb, queue_id);
4242 	txq = skb_get_tx_queue(dev, skb);
4243 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4244 
4245 	local_bh_disable();
4246 
4247 	dev_xmit_recursion_inc();
4248 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4249 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4250 		ret = netdev_start_xmit(skb, dev, txq, false);
4251 	HARD_TX_UNLOCK(dev, txq);
4252 	dev_xmit_recursion_dec();
4253 
4254 	local_bh_enable();
4255 	return ret;
4256 drop:
4257 	atomic_long_inc(&dev->tx_dropped);
4258 	kfree_skb_list(skb);
4259 	return NET_XMIT_DROP;
4260 }
4261 EXPORT_SYMBOL(__dev_direct_xmit);
4262 
4263 /*************************************************************************
4264  *			Receiver routines
4265  *************************************************************************/
4266 
4267 int netdev_max_backlog __read_mostly = 1000;
4268 EXPORT_SYMBOL(netdev_max_backlog);
4269 
4270 int netdev_tstamp_prequeue __read_mostly = 1;
4271 int netdev_budget __read_mostly = 300;
4272 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4273 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4274 int weight_p __read_mostly = 64;           /* old backlog weight */
4275 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4276 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4277 int dev_rx_weight __read_mostly = 64;
4278 int dev_tx_weight __read_mostly = 64;
4279 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4280 int gro_normal_batch __read_mostly = 8;
4281 
4282 /* Called with irq disabled */
4283 static inline void ____napi_schedule(struct softnet_data *sd,
4284 				     struct napi_struct *napi)
4285 {
4286 	struct task_struct *thread;
4287 
4288 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4289 		/* Paired with smp_mb__before_atomic() in
4290 		 * napi_enable()/dev_set_threaded().
4291 		 * Use READ_ONCE() to guarantee a complete
4292 		 * read on napi->thread. Only call
4293 		 * wake_up_process() when it's not NULL.
4294 		 */
4295 		thread = READ_ONCE(napi->thread);
4296 		if (thread) {
4297 			wake_up_process(thread);
4298 			return;
4299 		}
4300 	}
4301 
4302 	list_add_tail(&napi->poll_list, &sd->poll_list);
4303 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4304 }
4305 
4306 #ifdef CONFIG_RPS
4307 
4308 /* One global table that all flow-based protocols share. */
4309 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4310 EXPORT_SYMBOL(rps_sock_flow_table);
4311 u32 rps_cpu_mask __read_mostly;
4312 EXPORT_SYMBOL(rps_cpu_mask);
4313 
4314 struct static_key_false rps_needed __read_mostly;
4315 EXPORT_SYMBOL(rps_needed);
4316 struct static_key_false rfs_needed __read_mostly;
4317 EXPORT_SYMBOL(rfs_needed);
4318 
4319 static struct rps_dev_flow *
4320 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4321 	    struct rps_dev_flow *rflow, u16 next_cpu)
4322 {
4323 	if (next_cpu < nr_cpu_ids) {
4324 #ifdef CONFIG_RFS_ACCEL
4325 		struct netdev_rx_queue *rxqueue;
4326 		struct rps_dev_flow_table *flow_table;
4327 		struct rps_dev_flow *old_rflow;
4328 		u32 flow_id;
4329 		u16 rxq_index;
4330 		int rc;
4331 
4332 		/* Should we steer this flow to a different hardware queue? */
4333 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4334 		    !(dev->features & NETIF_F_NTUPLE))
4335 			goto out;
4336 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4337 		if (rxq_index == skb_get_rx_queue(skb))
4338 			goto out;
4339 
4340 		rxqueue = dev->_rx + rxq_index;
4341 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4342 		if (!flow_table)
4343 			goto out;
4344 		flow_id = skb_get_hash(skb) & flow_table->mask;
4345 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4346 							rxq_index, flow_id);
4347 		if (rc < 0)
4348 			goto out;
4349 		old_rflow = rflow;
4350 		rflow = &flow_table->flows[flow_id];
4351 		rflow->filter = rc;
4352 		if (old_rflow->filter == rflow->filter)
4353 			old_rflow->filter = RPS_NO_FILTER;
4354 	out:
4355 #endif
4356 		rflow->last_qtail =
4357 			per_cpu(softnet_data, next_cpu).input_queue_head;
4358 	}
4359 
4360 	rflow->cpu = next_cpu;
4361 	return rflow;
4362 }
4363 
4364 /*
4365  * get_rps_cpu is called from netif_receive_skb and returns the target
4366  * CPU from the RPS map of the receiving queue for a given skb.
4367  * rcu_read_lock must be held on entry.
4368  */
4369 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4370 		       struct rps_dev_flow **rflowp)
4371 {
4372 	const struct rps_sock_flow_table *sock_flow_table;
4373 	struct netdev_rx_queue *rxqueue = dev->_rx;
4374 	struct rps_dev_flow_table *flow_table;
4375 	struct rps_map *map;
4376 	int cpu = -1;
4377 	u32 tcpu;
4378 	u32 hash;
4379 
4380 	if (skb_rx_queue_recorded(skb)) {
4381 		u16 index = skb_get_rx_queue(skb);
4382 
4383 		if (unlikely(index >= dev->real_num_rx_queues)) {
4384 			WARN_ONCE(dev->real_num_rx_queues > 1,
4385 				  "%s received packet on queue %u, but number "
4386 				  "of RX queues is %u\n",
4387 				  dev->name, index, dev->real_num_rx_queues);
4388 			goto done;
4389 		}
4390 		rxqueue += index;
4391 	}
4392 
4393 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4394 
4395 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4396 	map = rcu_dereference(rxqueue->rps_map);
4397 	if (!flow_table && !map)
4398 		goto done;
4399 
4400 	skb_reset_network_header(skb);
4401 	hash = skb_get_hash(skb);
4402 	if (!hash)
4403 		goto done;
4404 
4405 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4406 	if (flow_table && sock_flow_table) {
4407 		struct rps_dev_flow *rflow;
4408 		u32 next_cpu;
4409 		u32 ident;
4410 
4411 		/* First check into global flow table if there is a match */
4412 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4413 		if ((ident ^ hash) & ~rps_cpu_mask)
4414 			goto try_rps;
4415 
4416 		next_cpu = ident & rps_cpu_mask;
4417 
4418 		/* OK, now we know there is a match,
4419 		 * we can look at the local (per receive queue) flow table
4420 		 */
4421 		rflow = &flow_table->flows[hash & flow_table->mask];
4422 		tcpu = rflow->cpu;
4423 
4424 		/*
4425 		 * If the desired CPU (where last recvmsg was done) is
4426 		 * different from current CPU (one in the rx-queue flow
4427 		 * table entry), switch if one of the following holds:
4428 		 *   - Current CPU is unset (>= nr_cpu_ids).
4429 		 *   - Current CPU is offline.
4430 		 *   - The current CPU's queue tail has advanced beyond the
4431 		 *     last packet that was enqueued using this table entry.
4432 		 *     This guarantees that all previous packets for the flow
4433 		 *     have been dequeued, thus preserving in order delivery.
4434 		 */
4435 		if (unlikely(tcpu != next_cpu) &&
4436 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4437 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4438 		      rflow->last_qtail)) >= 0)) {
4439 			tcpu = next_cpu;
4440 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4441 		}
4442 
4443 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4444 			*rflowp = rflow;
4445 			cpu = tcpu;
4446 			goto done;
4447 		}
4448 	}
4449 
4450 try_rps:
4451 
4452 	if (map) {
4453 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4454 		if (cpu_online(tcpu)) {
4455 			cpu = tcpu;
4456 			goto done;
4457 		}
4458 	}
4459 
4460 done:
4461 	return cpu;
4462 }
4463 
4464 #ifdef CONFIG_RFS_ACCEL
4465 
4466 /**
4467  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4468  * @dev: Device on which the filter was set
4469  * @rxq_index: RX queue index
4470  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4471  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4472  *
4473  * Drivers that implement ndo_rx_flow_steer() should periodically call
4474  * this function for each installed filter and remove the filters for
4475  * which it returns %true.
4476  */
4477 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4478 			 u32 flow_id, u16 filter_id)
4479 {
4480 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4481 	struct rps_dev_flow_table *flow_table;
4482 	struct rps_dev_flow *rflow;
4483 	bool expire = true;
4484 	unsigned int cpu;
4485 
4486 	rcu_read_lock();
4487 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4488 	if (flow_table && flow_id <= flow_table->mask) {
4489 		rflow = &flow_table->flows[flow_id];
4490 		cpu = READ_ONCE(rflow->cpu);
4491 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4492 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4493 			   rflow->last_qtail) <
4494 		     (int)(10 * flow_table->mask)))
4495 			expire = false;
4496 	}
4497 	rcu_read_unlock();
4498 	return expire;
4499 }
4500 EXPORT_SYMBOL(rps_may_expire_flow);
4501 
4502 #endif /* CONFIG_RFS_ACCEL */
4503 
4504 /* Called from hardirq (IPI) context */
4505 static void rps_trigger_softirq(void *data)
4506 {
4507 	struct softnet_data *sd = data;
4508 
4509 	____napi_schedule(sd, &sd->backlog);
4510 	sd->received_rps++;
4511 }
4512 
4513 #endif /* CONFIG_RPS */
4514 
4515 /*
4516  * Check if this softnet_data structure is another cpu one
4517  * If yes, queue it to our IPI list and return 1
4518  * If no, return 0
4519  */
4520 static int rps_ipi_queued(struct softnet_data *sd)
4521 {
4522 #ifdef CONFIG_RPS
4523 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4524 
4525 	if (sd != mysd) {
4526 		sd->rps_ipi_next = mysd->rps_ipi_list;
4527 		mysd->rps_ipi_list = sd;
4528 
4529 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4530 		return 1;
4531 	}
4532 #endif /* CONFIG_RPS */
4533 	return 0;
4534 }
4535 
4536 #ifdef CONFIG_NET_FLOW_LIMIT
4537 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4538 #endif
4539 
4540 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4541 {
4542 #ifdef CONFIG_NET_FLOW_LIMIT
4543 	struct sd_flow_limit *fl;
4544 	struct softnet_data *sd;
4545 	unsigned int old_flow, new_flow;
4546 
4547 	if (qlen < (netdev_max_backlog >> 1))
4548 		return false;
4549 
4550 	sd = this_cpu_ptr(&softnet_data);
4551 
4552 	rcu_read_lock();
4553 	fl = rcu_dereference(sd->flow_limit);
4554 	if (fl) {
4555 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4556 		old_flow = fl->history[fl->history_head];
4557 		fl->history[fl->history_head] = new_flow;
4558 
4559 		fl->history_head++;
4560 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4561 
4562 		if (likely(fl->buckets[old_flow]))
4563 			fl->buckets[old_flow]--;
4564 
4565 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4566 			fl->count++;
4567 			rcu_read_unlock();
4568 			return true;
4569 		}
4570 	}
4571 	rcu_read_unlock();
4572 #endif
4573 	return false;
4574 }
4575 
4576 /*
4577  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4578  * queue (may be a remote CPU queue).
4579  */
4580 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4581 			      unsigned int *qtail)
4582 {
4583 	struct softnet_data *sd;
4584 	unsigned long flags;
4585 	unsigned int qlen;
4586 
4587 	sd = &per_cpu(softnet_data, cpu);
4588 
4589 	local_irq_save(flags);
4590 
4591 	rps_lock(sd);
4592 	if (!netif_running(skb->dev))
4593 		goto drop;
4594 	qlen = skb_queue_len(&sd->input_pkt_queue);
4595 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4596 		if (qlen) {
4597 enqueue:
4598 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4599 			input_queue_tail_incr_save(sd, qtail);
4600 			rps_unlock(sd);
4601 			local_irq_restore(flags);
4602 			return NET_RX_SUCCESS;
4603 		}
4604 
4605 		/* Schedule NAPI for backlog device
4606 		 * We can use non atomic operation since we own the queue lock
4607 		 */
4608 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4609 			if (!rps_ipi_queued(sd))
4610 				____napi_schedule(sd, &sd->backlog);
4611 		}
4612 		goto enqueue;
4613 	}
4614 
4615 drop:
4616 	sd->dropped++;
4617 	rps_unlock(sd);
4618 
4619 	local_irq_restore(flags);
4620 
4621 	atomic_long_inc(&skb->dev->rx_dropped);
4622 	kfree_skb(skb);
4623 	return NET_RX_DROP;
4624 }
4625 
4626 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4627 {
4628 	struct net_device *dev = skb->dev;
4629 	struct netdev_rx_queue *rxqueue;
4630 
4631 	rxqueue = dev->_rx;
4632 
4633 	if (skb_rx_queue_recorded(skb)) {
4634 		u16 index = skb_get_rx_queue(skb);
4635 
4636 		if (unlikely(index >= dev->real_num_rx_queues)) {
4637 			WARN_ONCE(dev->real_num_rx_queues > 1,
4638 				  "%s received packet on queue %u, but number "
4639 				  "of RX queues is %u\n",
4640 				  dev->name, index, dev->real_num_rx_queues);
4641 
4642 			return rxqueue; /* Return first rxqueue */
4643 		}
4644 		rxqueue += index;
4645 	}
4646 	return rxqueue;
4647 }
4648 
4649 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4650 				     struct xdp_buff *xdp,
4651 				     struct bpf_prog *xdp_prog)
4652 {
4653 	void *orig_data, *orig_data_end, *hard_start;
4654 	struct netdev_rx_queue *rxqueue;
4655 	u32 metalen, act = XDP_DROP;
4656 	u32 mac_len, frame_sz;
4657 	__be16 orig_eth_type;
4658 	struct ethhdr *eth;
4659 	bool orig_bcast;
4660 	int off;
4661 
4662 	/* Reinjected packets coming from act_mirred or similar should
4663 	 * not get XDP generic processing.
4664 	 */
4665 	if (skb_is_redirected(skb))
4666 		return XDP_PASS;
4667 
4668 	/* XDP packets must be linear and must have sufficient headroom
4669 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4670 	 * native XDP provides, thus we need to do it here as well.
4671 	 */
4672 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4673 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4674 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4675 		int troom = skb->tail + skb->data_len - skb->end;
4676 
4677 		/* In case we have to go down the path and also linearize,
4678 		 * then lets do the pskb_expand_head() work just once here.
4679 		 */
4680 		if (pskb_expand_head(skb,
4681 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4682 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4683 			goto do_drop;
4684 		if (skb_linearize(skb))
4685 			goto do_drop;
4686 	}
4687 
4688 	/* The XDP program wants to see the packet starting at the MAC
4689 	 * header.
4690 	 */
4691 	mac_len = skb->data - skb_mac_header(skb);
4692 	hard_start = skb->data - skb_headroom(skb);
4693 
4694 	/* SKB "head" area always have tailroom for skb_shared_info */
4695 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4696 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4697 
4698 	rxqueue = netif_get_rxqueue(skb);
4699 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4700 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4701 			 skb_headlen(skb) + mac_len, true);
4702 
4703 	orig_data_end = xdp->data_end;
4704 	orig_data = xdp->data;
4705 	eth = (struct ethhdr *)xdp->data;
4706 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4707 	orig_eth_type = eth->h_proto;
4708 
4709 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4710 
4711 	/* check if bpf_xdp_adjust_head was used */
4712 	off = xdp->data - orig_data;
4713 	if (off) {
4714 		if (off > 0)
4715 			__skb_pull(skb, off);
4716 		else if (off < 0)
4717 			__skb_push(skb, -off);
4718 
4719 		skb->mac_header += off;
4720 		skb_reset_network_header(skb);
4721 	}
4722 
4723 	/* check if bpf_xdp_adjust_tail was used */
4724 	off = xdp->data_end - orig_data_end;
4725 	if (off != 0) {
4726 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4727 		skb->len += off; /* positive on grow, negative on shrink */
4728 	}
4729 
4730 	/* check if XDP changed eth hdr such SKB needs update */
4731 	eth = (struct ethhdr *)xdp->data;
4732 	if ((orig_eth_type != eth->h_proto) ||
4733 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4734 		__skb_push(skb, ETH_HLEN);
4735 		skb->protocol = eth_type_trans(skb, skb->dev);
4736 	}
4737 
4738 	switch (act) {
4739 	case XDP_REDIRECT:
4740 	case XDP_TX:
4741 		__skb_push(skb, mac_len);
4742 		break;
4743 	case XDP_PASS:
4744 		metalen = xdp->data - xdp->data_meta;
4745 		if (metalen)
4746 			skb_metadata_set(skb, metalen);
4747 		break;
4748 	default:
4749 		bpf_warn_invalid_xdp_action(act);
4750 		fallthrough;
4751 	case XDP_ABORTED:
4752 		trace_xdp_exception(skb->dev, xdp_prog, act);
4753 		fallthrough;
4754 	case XDP_DROP:
4755 	do_drop:
4756 		kfree_skb(skb);
4757 		break;
4758 	}
4759 
4760 	return act;
4761 }
4762 
4763 /* When doing generic XDP we have to bypass the qdisc layer and the
4764  * network taps in order to match in-driver-XDP behavior.
4765  */
4766 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4767 {
4768 	struct net_device *dev = skb->dev;
4769 	struct netdev_queue *txq;
4770 	bool free_skb = true;
4771 	int cpu, rc;
4772 
4773 	txq = netdev_core_pick_tx(dev, skb, NULL);
4774 	cpu = smp_processor_id();
4775 	HARD_TX_LOCK(dev, txq, cpu);
4776 	if (!netif_xmit_stopped(txq)) {
4777 		rc = netdev_start_xmit(skb, dev, txq, 0);
4778 		if (dev_xmit_complete(rc))
4779 			free_skb = false;
4780 	}
4781 	HARD_TX_UNLOCK(dev, txq);
4782 	if (free_skb) {
4783 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4784 		kfree_skb(skb);
4785 	}
4786 }
4787 
4788 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4789 
4790 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4791 {
4792 	if (xdp_prog) {
4793 		struct xdp_buff xdp;
4794 		u32 act;
4795 		int err;
4796 
4797 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4798 		if (act != XDP_PASS) {
4799 			switch (act) {
4800 			case XDP_REDIRECT:
4801 				err = xdp_do_generic_redirect(skb->dev, skb,
4802 							      &xdp, xdp_prog);
4803 				if (err)
4804 					goto out_redir;
4805 				break;
4806 			case XDP_TX:
4807 				generic_xdp_tx(skb, xdp_prog);
4808 				break;
4809 			}
4810 			return XDP_DROP;
4811 		}
4812 	}
4813 	return XDP_PASS;
4814 out_redir:
4815 	kfree_skb(skb);
4816 	return XDP_DROP;
4817 }
4818 EXPORT_SYMBOL_GPL(do_xdp_generic);
4819 
4820 static int netif_rx_internal(struct sk_buff *skb)
4821 {
4822 	int ret;
4823 
4824 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4825 
4826 	trace_netif_rx(skb);
4827 
4828 #ifdef CONFIG_RPS
4829 	if (static_branch_unlikely(&rps_needed)) {
4830 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4831 		int cpu;
4832 
4833 		preempt_disable();
4834 		rcu_read_lock();
4835 
4836 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4837 		if (cpu < 0)
4838 			cpu = smp_processor_id();
4839 
4840 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4841 
4842 		rcu_read_unlock();
4843 		preempt_enable();
4844 	} else
4845 #endif
4846 	{
4847 		unsigned int qtail;
4848 
4849 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4850 		put_cpu();
4851 	}
4852 	return ret;
4853 }
4854 
4855 /**
4856  *	netif_rx	-	post buffer to the network code
4857  *	@skb: buffer to post
4858  *
4859  *	This function receives a packet from a device driver and queues it for
4860  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4861  *	may be dropped during processing for congestion control or by the
4862  *	protocol layers.
4863  *
4864  *	return values:
4865  *	NET_RX_SUCCESS	(no congestion)
4866  *	NET_RX_DROP     (packet was dropped)
4867  *
4868  */
4869 
4870 int netif_rx(struct sk_buff *skb)
4871 {
4872 	int ret;
4873 
4874 	trace_netif_rx_entry(skb);
4875 
4876 	ret = netif_rx_internal(skb);
4877 	trace_netif_rx_exit(ret);
4878 
4879 	return ret;
4880 }
4881 EXPORT_SYMBOL(netif_rx);
4882 
4883 int netif_rx_ni(struct sk_buff *skb)
4884 {
4885 	int err;
4886 
4887 	trace_netif_rx_ni_entry(skb);
4888 
4889 	preempt_disable();
4890 	err = netif_rx_internal(skb);
4891 	if (local_softirq_pending())
4892 		do_softirq();
4893 	preempt_enable();
4894 	trace_netif_rx_ni_exit(err);
4895 
4896 	return err;
4897 }
4898 EXPORT_SYMBOL(netif_rx_ni);
4899 
4900 int netif_rx_any_context(struct sk_buff *skb)
4901 {
4902 	/*
4903 	 * If invoked from contexts which do not invoke bottom half
4904 	 * processing either at return from interrupt or when softrqs are
4905 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4906 	 * directly.
4907 	 */
4908 	if (in_interrupt())
4909 		return netif_rx(skb);
4910 	else
4911 		return netif_rx_ni(skb);
4912 }
4913 EXPORT_SYMBOL(netif_rx_any_context);
4914 
4915 static __latent_entropy void net_tx_action(struct softirq_action *h)
4916 {
4917 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4918 
4919 	if (sd->completion_queue) {
4920 		struct sk_buff *clist;
4921 
4922 		local_irq_disable();
4923 		clist = sd->completion_queue;
4924 		sd->completion_queue = NULL;
4925 		local_irq_enable();
4926 
4927 		while (clist) {
4928 			struct sk_buff *skb = clist;
4929 
4930 			clist = clist->next;
4931 
4932 			WARN_ON(refcount_read(&skb->users));
4933 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4934 				trace_consume_skb(skb);
4935 			else
4936 				trace_kfree_skb(skb, net_tx_action);
4937 
4938 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4939 				__kfree_skb(skb);
4940 			else
4941 				__kfree_skb_defer(skb);
4942 		}
4943 	}
4944 
4945 	if (sd->output_queue) {
4946 		struct Qdisc *head;
4947 
4948 		local_irq_disable();
4949 		head = sd->output_queue;
4950 		sd->output_queue = NULL;
4951 		sd->output_queue_tailp = &sd->output_queue;
4952 		local_irq_enable();
4953 
4954 		while (head) {
4955 			struct Qdisc *q = head;
4956 			spinlock_t *root_lock = NULL;
4957 
4958 			head = head->next_sched;
4959 
4960 			if (!(q->flags & TCQ_F_NOLOCK)) {
4961 				root_lock = qdisc_lock(q);
4962 				spin_lock(root_lock);
4963 			}
4964 			/* We need to make sure head->next_sched is read
4965 			 * before clearing __QDISC_STATE_SCHED
4966 			 */
4967 			smp_mb__before_atomic();
4968 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4969 			qdisc_run(q);
4970 			if (root_lock)
4971 				spin_unlock(root_lock);
4972 		}
4973 	}
4974 
4975 	xfrm_dev_backlog(sd);
4976 }
4977 
4978 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4979 /* This hook is defined here for ATM LANE */
4980 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4981 			     unsigned char *addr) __read_mostly;
4982 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4983 #endif
4984 
4985 static inline struct sk_buff *
4986 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4987 		   struct net_device *orig_dev, bool *another)
4988 {
4989 #ifdef CONFIG_NET_CLS_ACT
4990 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4991 	struct tcf_result cl_res;
4992 
4993 	/* If there's at least one ingress present somewhere (so
4994 	 * we get here via enabled static key), remaining devices
4995 	 * that are not configured with an ingress qdisc will bail
4996 	 * out here.
4997 	 */
4998 	if (!miniq)
4999 		return skb;
5000 
5001 	if (*pt_prev) {
5002 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5003 		*pt_prev = NULL;
5004 	}
5005 
5006 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5007 	qdisc_skb_cb(skb)->mru = 0;
5008 	qdisc_skb_cb(skb)->post_ct = false;
5009 	skb->tc_at_ingress = 1;
5010 	mini_qdisc_bstats_cpu_update(miniq, skb);
5011 
5012 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5013 				     &cl_res, false)) {
5014 	case TC_ACT_OK:
5015 	case TC_ACT_RECLASSIFY:
5016 		skb->tc_index = TC_H_MIN(cl_res.classid);
5017 		break;
5018 	case TC_ACT_SHOT:
5019 		mini_qdisc_qstats_cpu_drop(miniq);
5020 		kfree_skb(skb);
5021 		return NULL;
5022 	case TC_ACT_STOLEN:
5023 	case TC_ACT_QUEUED:
5024 	case TC_ACT_TRAP:
5025 		consume_skb(skb);
5026 		return NULL;
5027 	case TC_ACT_REDIRECT:
5028 		/* skb_mac_header check was done by cls/act_bpf, so
5029 		 * we can safely push the L2 header back before
5030 		 * redirecting to another netdev
5031 		 */
5032 		__skb_push(skb, skb->mac_len);
5033 		if (skb_do_redirect(skb) == -EAGAIN) {
5034 			__skb_pull(skb, skb->mac_len);
5035 			*another = true;
5036 			break;
5037 		}
5038 		return NULL;
5039 	case TC_ACT_CONSUMED:
5040 		return NULL;
5041 	default:
5042 		break;
5043 	}
5044 #endif /* CONFIG_NET_CLS_ACT */
5045 	return skb;
5046 }
5047 
5048 /**
5049  *	netdev_is_rx_handler_busy - check if receive handler is registered
5050  *	@dev: device to check
5051  *
5052  *	Check if a receive handler is already registered for a given device.
5053  *	Return true if there one.
5054  *
5055  *	The caller must hold the rtnl_mutex.
5056  */
5057 bool netdev_is_rx_handler_busy(struct net_device *dev)
5058 {
5059 	ASSERT_RTNL();
5060 	return dev && rtnl_dereference(dev->rx_handler);
5061 }
5062 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5063 
5064 /**
5065  *	netdev_rx_handler_register - register receive handler
5066  *	@dev: device to register a handler for
5067  *	@rx_handler: receive handler to register
5068  *	@rx_handler_data: data pointer that is used by rx handler
5069  *
5070  *	Register a receive handler for a device. This handler will then be
5071  *	called from __netif_receive_skb. A negative errno code is returned
5072  *	on a failure.
5073  *
5074  *	The caller must hold the rtnl_mutex.
5075  *
5076  *	For a general description of rx_handler, see enum rx_handler_result.
5077  */
5078 int netdev_rx_handler_register(struct net_device *dev,
5079 			       rx_handler_func_t *rx_handler,
5080 			       void *rx_handler_data)
5081 {
5082 	if (netdev_is_rx_handler_busy(dev))
5083 		return -EBUSY;
5084 
5085 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5086 		return -EINVAL;
5087 
5088 	/* Note: rx_handler_data must be set before rx_handler */
5089 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5090 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5091 
5092 	return 0;
5093 }
5094 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5095 
5096 /**
5097  *	netdev_rx_handler_unregister - unregister receive handler
5098  *	@dev: device to unregister a handler from
5099  *
5100  *	Unregister a receive handler from a device.
5101  *
5102  *	The caller must hold the rtnl_mutex.
5103  */
5104 void netdev_rx_handler_unregister(struct net_device *dev)
5105 {
5106 
5107 	ASSERT_RTNL();
5108 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5109 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5110 	 * section has a guarantee to see a non NULL rx_handler_data
5111 	 * as well.
5112 	 */
5113 	synchronize_net();
5114 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5115 }
5116 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5117 
5118 /*
5119  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5120  * the special handling of PFMEMALLOC skbs.
5121  */
5122 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5123 {
5124 	switch (skb->protocol) {
5125 	case htons(ETH_P_ARP):
5126 	case htons(ETH_P_IP):
5127 	case htons(ETH_P_IPV6):
5128 	case htons(ETH_P_8021Q):
5129 	case htons(ETH_P_8021AD):
5130 		return true;
5131 	default:
5132 		return false;
5133 	}
5134 }
5135 
5136 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5137 			     int *ret, struct net_device *orig_dev)
5138 {
5139 	if (nf_hook_ingress_active(skb)) {
5140 		int ingress_retval;
5141 
5142 		if (*pt_prev) {
5143 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5144 			*pt_prev = NULL;
5145 		}
5146 
5147 		rcu_read_lock();
5148 		ingress_retval = nf_hook_ingress(skb);
5149 		rcu_read_unlock();
5150 		return ingress_retval;
5151 	}
5152 	return 0;
5153 }
5154 
5155 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5156 				    struct packet_type **ppt_prev)
5157 {
5158 	struct packet_type *ptype, *pt_prev;
5159 	rx_handler_func_t *rx_handler;
5160 	struct sk_buff *skb = *pskb;
5161 	struct net_device *orig_dev;
5162 	bool deliver_exact = false;
5163 	int ret = NET_RX_DROP;
5164 	__be16 type;
5165 
5166 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5167 
5168 	trace_netif_receive_skb(skb);
5169 
5170 	orig_dev = skb->dev;
5171 
5172 	skb_reset_network_header(skb);
5173 	if (!skb_transport_header_was_set(skb))
5174 		skb_reset_transport_header(skb);
5175 	skb_reset_mac_len(skb);
5176 
5177 	pt_prev = NULL;
5178 
5179 another_round:
5180 	skb->skb_iif = skb->dev->ifindex;
5181 
5182 	__this_cpu_inc(softnet_data.processed);
5183 
5184 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5185 		int ret2;
5186 
5187 		preempt_disable();
5188 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5189 		preempt_enable();
5190 
5191 		if (ret2 != XDP_PASS) {
5192 			ret = NET_RX_DROP;
5193 			goto out;
5194 		}
5195 		skb_reset_mac_len(skb);
5196 	}
5197 
5198 	if (eth_type_vlan(skb->protocol)) {
5199 		skb = skb_vlan_untag(skb);
5200 		if (unlikely(!skb))
5201 			goto out;
5202 	}
5203 
5204 	if (skb_skip_tc_classify(skb))
5205 		goto skip_classify;
5206 
5207 	if (pfmemalloc)
5208 		goto skip_taps;
5209 
5210 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5211 		if (pt_prev)
5212 			ret = deliver_skb(skb, pt_prev, orig_dev);
5213 		pt_prev = ptype;
5214 	}
5215 
5216 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5217 		if (pt_prev)
5218 			ret = deliver_skb(skb, pt_prev, orig_dev);
5219 		pt_prev = ptype;
5220 	}
5221 
5222 skip_taps:
5223 #ifdef CONFIG_NET_INGRESS
5224 	if (static_branch_unlikely(&ingress_needed_key)) {
5225 		bool another = false;
5226 
5227 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5228 					 &another);
5229 		if (another)
5230 			goto another_round;
5231 		if (!skb)
5232 			goto out;
5233 
5234 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5235 			goto out;
5236 	}
5237 #endif
5238 	skb_reset_redirect(skb);
5239 skip_classify:
5240 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5241 		goto drop;
5242 
5243 	if (skb_vlan_tag_present(skb)) {
5244 		if (pt_prev) {
5245 			ret = deliver_skb(skb, pt_prev, orig_dev);
5246 			pt_prev = NULL;
5247 		}
5248 		if (vlan_do_receive(&skb))
5249 			goto another_round;
5250 		else if (unlikely(!skb))
5251 			goto out;
5252 	}
5253 
5254 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5255 	if (rx_handler) {
5256 		if (pt_prev) {
5257 			ret = deliver_skb(skb, pt_prev, orig_dev);
5258 			pt_prev = NULL;
5259 		}
5260 		switch (rx_handler(&skb)) {
5261 		case RX_HANDLER_CONSUMED:
5262 			ret = NET_RX_SUCCESS;
5263 			goto out;
5264 		case RX_HANDLER_ANOTHER:
5265 			goto another_round;
5266 		case RX_HANDLER_EXACT:
5267 			deliver_exact = true;
5268 			break;
5269 		case RX_HANDLER_PASS:
5270 			break;
5271 		default:
5272 			BUG();
5273 		}
5274 	}
5275 
5276 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5277 check_vlan_id:
5278 		if (skb_vlan_tag_get_id(skb)) {
5279 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5280 			 * find vlan device.
5281 			 */
5282 			skb->pkt_type = PACKET_OTHERHOST;
5283 		} else if (eth_type_vlan(skb->protocol)) {
5284 			/* Outer header is 802.1P with vlan 0, inner header is
5285 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5286 			 * not find vlan dev for vlan id 0.
5287 			 */
5288 			__vlan_hwaccel_clear_tag(skb);
5289 			skb = skb_vlan_untag(skb);
5290 			if (unlikely(!skb))
5291 				goto out;
5292 			if (vlan_do_receive(&skb))
5293 				/* After stripping off 802.1P header with vlan 0
5294 				 * vlan dev is found for inner header.
5295 				 */
5296 				goto another_round;
5297 			else if (unlikely(!skb))
5298 				goto out;
5299 			else
5300 				/* We have stripped outer 802.1P vlan 0 header.
5301 				 * But could not find vlan dev.
5302 				 * check again for vlan id to set OTHERHOST.
5303 				 */
5304 				goto check_vlan_id;
5305 		}
5306 		/* Note: we might in the future use prio bits
5307 		 * and set skb->priority like in vlan_do_receive()
5308 		 * For the time being, just ignore Priority Code Point
5309 		 */
5310 		__vlan_hwaccel_clear_tag(skb);
5311 	}
5312 
5313 	type = skb->protocol;
5314 
5315 	/* deliver only exact match when indicated */
5316 	if (likely(!deliver_exact)) {
5317 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5318 				       &ptype_base[ntohs(type) &
5319 						   PTYPE_HASH_MASK]);
5320 	}
5321 
5322 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5323 			       &orig_dev->ptype_specific);
5324 
5325 	if (unlikely(skb->dev != orig_dev)) {
5326 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5327 				       &skb->dev->ptype_specific);
5328 	}
5329 
5330 	if (pt_prev) {
5331 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5332 			goto drop;
5333 		*ppt_prev = pt_prev;
5334 	} else {
5335 drop:
5336 		if (!deliver_exact)
5337 			atomic_long_inc(&skb->dev->rx_dropped);
5338 		else
5339 			atomic_long_inc(&skb->dev->rx_nohandler);
5340 		kfree_skb(skb);
5341 		/* Jamal, now you will not able to escape explaining
5342 		 * me how you were going to use this. :-)
5343 		 */
5344 		ret = NET_RX_DROP;
5345 	}
5346 
5347 out:
5348 	/* The invariant here is that if *ppt_prev is not NULL
5349 	 * then skb should also be non-NULL.
5350 	 *
5351 	 * Apparently *ppt_prev assignment above holds this invariant due to
5352 	 * skb dereferencing near it.
5353 	 */
5354 	*pskb = skb;
5355 	return ret;
5356 }
5357 
5358 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5359 {
5360 	struct net_device *orig_dev = skb->dev;
5361 	struct packet_type *pt_prev = NULL;
5362 	int ret;
5363 
5364 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5365 	if (pt_prev)
5366 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5367 					 skb->dev, pt_prev, orig_dev);
5368 	return ret;
5369 }
5370 
5371 /**
5372  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5373  *	@skb: buffer to process
5374  *
5375  *	More direct receive version of netif_receive_skb().  It should
5376  *	only be used by callers that have a need to skip RPS and Generic XDP.
5377  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5378  *
5379  *	This function may only be called from softirq context and interrupts
5380  *	should be enabled.
5381  *
5382  *	Return values (usually ignored):
5383  *	NET_RX_SUCCESS: no congestion
5384  *	NET_RX_DROP: packet was dropped
5385  */
5386 int netif_receive_skb_core(struct sk_buff *skb)
5387 {
5388 	int ret;
5389 
5390 	rcu_read_lock();
5391 	ret = __netif_receive_skb_one_core(skb, false);
5392 	rcu_read_unlock();
5393 
5394 	return ret;
5395 }
5396 EXPORT_SYMBOL(netif_receive_skb_core);
5397 
5398 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5399 						  struct packet_type *pt_prev,
5400 						  struct net_device *orig_dev)
5401 {
5402 	struct sk_buff *skb, *next;
5403 
5404 	if (!pt_prev)
5405 		return;
5406 	if (list_empty(head))
5407 		return;
5408 	if (pt_prev->list_func != NULL)
5409 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5410 				   ip_list_rcv, head, pt_prev, orig_dev);
5411 	else
5412 		list_for_each_entry_safe(skb, next, head, list) {
5413 			skb_list_del_init(skb);
5414 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5415 		}
5416 }
5417 
5418 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5419 {
5420 	/* Fast-path assumptions:
5421 	 * - There is no RX handler.
5422 	 * - Only one packet_type matches.
5423 	 * If either of these fails, we will end up doing some per-packet
5424 	 * processing in-line, then handling the 'last ptype' for the whole
5425 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5426 	 * because the 'last ptype' must be constant across the sublist, and all
5427 	 * other ptypes are handled per-packet.
5428 	 */
5429 	/* Current (common) ptype of sublist */
5430 	struct packet_type *pt_curr = NULL;
5431 	/* Current (common) orig_dev of sublist */
5432 	struct net_device *od_curr = NULL;
5433 	struct list_head sublist;
5434 	struct sk_buff *skb, *next;
5435 
5436 	INIT_LIST_HEAD(&sublist);
5437 	list_for_each_entry_safe(skb, next, head, list) {
5438 		struct net_device *orig_dev = skb->dev;
5439 		struct packet_type *pt_prev = NULL;
5440 
5441 		skb_list_del_init(skb);
5442 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5443 		if (!pt_prev)
5444 			continue;
5445 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5446 			/* dispatch old sublist */
5447 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5448 			/* start new sublist */
5449 			INIT_LIST_HEAD(&sublist);
5450 			pt_curr = pt_prev;
5451 			od_curr = orig_dev;
5452 		}
5453 		list_add_tail(&skb->list, &sublist);
5454 	}
5455 
5456 	/* dispatch final sublist */
5457 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5458 }
5459 
5460 static int __netif_receive_skb(struct sk_buff *skb)
5461 {
5462 	int ret;
5463 
5464 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5465 		unsigned int noreclaim_flag;
5466 
5467 		/*
5468 		 * PFMEMALLOC skbs are special, they should
5469 		 * - be delivered to SOCK_MEMALLOC sockets only
5470 		 * - stay away from userspace
5471 		 * - have bounded memory usage
5472 		 *
5473 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5474 		 * context down to all allocation sites.
5475 		 */
5476 		noreclaim_flag = memalloc_noreclaim_save();
5477 		ret = __netif_receive_skb_one_core(skb, true);
5478 		memalloc_noreclaim_restore(noreclaim_flag);
5479 	} else
5480 		ret = __netif_receive_skb_one_core(skb, false);
5481 
5482 	return ret;
5483 }
5484 
5485 static void __netif_receive_skb_list(struct list_head *head)
5486 {
5487 	unsigned long noreclaim_flag = 0;
5488 	struct sk_buff *skb, *next;
5489 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5490 
5491 	list_for_each_entry_safe(skb, next, head, list) {
5492 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5493 			struct list_head sublist;
5494 
5495 			/* Handle the previous sublist */
5496 			list_cut_before(&sublist, head, &skb->list);
5497 			if (!list_empty(&sublist))
5498 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5499 			pfmemalloc = !pfmemalloc;
5500 			/* See comments in __netif_receive_skb */
5501 			if (pfmemalloc)
5502 				noreclaim_flag = memalloc_noreclaim_save();
5503 			else
5504 				memalloc_noreclaim_restore(noreclaim_flag);
5505 		}
5506 	}
5507 	/* Handle the remaining sublist */
5508 	if (!list_empty(head))
5509 		__netif_receive_skb_list_core(head, pfmemalloc);
5510 	/* Restore pflags */
5511 	if (pfmemalloc)
5512 		memalloc_noreclaim_restore(noreclaim_flag);
5513 }
5514 
5515 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5516 {
5517 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5518 	struct bpf_prog *new = xdp->prog;
5519 	int ret = 0;
5520 
5521 	if (new) {
5522 		u32 i;
5523 
5524 		mutex_lock(&new->aux->used_maps_mutex);
5525 
5526 		/* generic XDP does not work with DEVMAPs that can
5527 		 * have a bpf_prog installed on an entry
5528 		 */
5529 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5530 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5531 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5532 				mutex_unlock(&new->aux->used_maps_mutex);
5533 				return -EINVAL;
5534 			}
5535 		}
5536 
5537 		mutex_unlock(&new->aux->used_maps_mutex);
5538 	}
5539 
5540 	switch (xdp->command) {
5541 	case XDP_SETUP_PROG:
5542 		rcu_assign_pointer(dev->xdp_prog, new);
5543 		if (old)
5544 			bpf_prog_put(old);
5545 
5546 		if (old && !new) {
5547 			static_branch_dec(&generic_xdp_needed_key);
5548 		} else if (new && !old) {
5549 			static_branch_inc(&generic_xdp_needed_key);
5550 			dev_disable_lro(dev);
5551 			dev_disable_gro_hw(dev);
5552 		}
5553 		break;
5554 
5555 	default:
5556 		ret = -EINVAL;
5557 		break;
5558 	}
5559 
5560 	return ret;
5561 }
5562 
5563 static int netif_receive_skb_internal(struct sk_buff *skb)
5564 {
5565 	int ret;
5566 
5567 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5568 
5569 	if (skb_defer_rx_timestamp(skb))
5570 		return NET_RX_SUCCESS;
5571 
5572 	rcu_read_lock();
5573 #ifdef CONFIG_RPS
5574 	if (static_branch_unlikely(&rps_needed)) {
5575 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5576 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5577 
5578 		if (cpu >= 0) {
5579 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5580 			rcu_read_unlock();
5581 			return ret;
5582 		}
5583 	}
5584 #endif
5585 	ret = __netif_receive_skb(skb);
5586 	rcu_read_unlock();
5587 	return ret;
5588 }
5589 
5590 static void netif_receive_skb_list_internal(struct list_head *head)
5591 {
5592 	struct sk_buff *skb, *next;
5593 	struct list_head sublist;
5594 
5595 	INIT_LIST_HEAD(&sublist);
5596 	list_for_each_entry_safe(skb, next, head, list) {
5597 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5598 		skb_list_del_init(skb);
5599 		if (!skb_defer_rx_timestamp(skb))
5600 			list_add_tail(&skb->list, &sublist);
5601 	}
5602 	list_splice_init(&sublist, head);
5603 
5604 	rcu_read_lock();
5605 #ifdef CONFIG_RPS
5606 	if (static_branch_unlikely(&rps_needed)) {
5607 		list_for_each_entry_safe(skb, next, head, list) {
5608 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5609 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5610 
5611 			if (cpu >= 0) {
5612 				/* Will be handled, remove from list */
5613 				skb_list_del_init(skb);
5614 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5615 			}
5616 		}
5617 	}
5618 #endif
5619 	__netif_receive_skb_list(head);
5620 	rcu_read_unlock();
5621 }
5622 
5623 /**
5624  *	netif_receive_skb - process receive buffer from network
5625  *	@skb: buffer to process
5626  *
5627  *	netif_receive_skb() is the main receive data processing function.
5628  *	It always succeeds. The buffer may be dropped during processing
5629  *	for congestion control or by the protocol layers.
5630  *
5631  *	This function may only be called from softirq context and interrupts
5632  *	should be enabled.
5633  *
5634  *	Return values (usually ignored):
5635  *	NET_RX_SUCCESS: no congestion
5636  *	NET_RX_DROP: packet was dropped
5637  */
5638 int netif_receive_skb(struct sk_buff *skb)
5639 {
5640 	int ret;
5641 
5642 	trace_netif_receive_skb_entry(skb);
5643 
5644 	ret = netif_receive_skb_internal(skb);
5645 	trace_netif_receive_skb_exit(ret);
5646 
5647 	return ret;
5648 }
5649 EXPORT_SYMBOL(netif_receive_skb);
5650 
5651 /**
5652  *	netif_receive_skb_list - process many receive buffers from network
5653  *	@head: list of skbs to process.
5654  *
5655  *	Since return value of netif_receive_skb() is normally ignored, and
5656  *	wouldn't be meaningful for a list, this function returns void.
5657  *
5658  *	This function may only be called from softirq context and interrupts
5659  *	should be enabled.
5660  */
5661 void netif_receive_skb_list(struct list_head *head)
5662 {
5663 	struct sk_buff *skb;
5664 
5665 	if (list_empty(head))
5666 		return;
5667 	if (trace_netif_receive_skb_list_entry_enabled()) {
5668 		list_for_each_entry(skb, head, list)
5669 			trace_netif_receive_skb_list_entry(skb);
5670 	}
5671 	netif_receive_skb_list_internal(head);
5672 	trace_netif_receive_skb_list_exit(0);
5673 }
5674 EXPORT_SYMBOL(netif_receive_skb_list);
5675 
5676 static DEFINE_PER_CPU(struct work_struct, flush_works);
5677 
5678 /* Network device is going away, flush any packets still pending */
5679 static void flush_backlog(struct work_struct *work)
5680 {
5681 	struct sk_buff *skb, *tmp;
5682 	struct softnet_data *sd;
5683 
5684 	local_bh_disable();
5685 	sd = this_cpu_ptr(&softnet_data);
5686 
5687 	local_irq_disable();
5688 	rps_lock(sd);
5689 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5690 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5691 			__skb_unlink(skb, &sd->input_pkt_queue);
5692 			dev_kfree_skb_irq(skb);
5693 			input_queue_head_incr(sd);
5694 		}
5695 	}
5696 	rps_unlock(sd);
5697 	local_irq_enable();
5698 
5699 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5700 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5701 			__skb_unlink(skb, &sd->process_queue);
5702 			kfree_skb(skb);
5703 			input_queue_head_incr(sd);
5704 		}
5705 	}
5706 	local_bh_enable();
5707 }
5708 
5709 static bool flush_required(int cpu)
5710 {
5711 #if IS_ENABLED(CONFIG_RPS)
5712 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5713 	bool do_flush;
5714 
5715 	local_irq_disable();
5716 	rps_lock(sd);
5717 
5718 	/* as insertion into process_queue happens with the rps lock held,
5719 	 * process_queue access may race only with dequeue
5720 	 */
5721 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5722 		   !skb_queue_empty_lockless(&sd->process_queue);
5723 	rps_unlock(sd);
5724 	local_irq_enable();
5725 
5726 	return do_flush;
5727 #endif
5728 	/* without RPS we can't safely check input_pkt_queue: during a
5729 	 * concurrent remote skb_queue_splice() we can detect as empty both
5730 	 * input_pkt_queue and process_queue even if the latter could end-up
5731 	 * containing a lot of packets.
5732 	 */
5733 	return true;
5734 }
5735 
5736 static void flush_all_backlogs(void)
5737 {
5738 	static cpumask_t flush_cpus;
5739 	unsigned int cpu;
5740 
5741 	/* since we are under rtnl lock protection we can use static data
5742 	 * for the cpumask and avoid allocating on stack the possibly
5743 	 * large mask
5744 	 */
5745 	ASSERT_RTNL();
5746 
5747 	get_online_cpus();
5748 
5749 	cpumask_clear(&flush_cpus);
5750 	for_each_online_cpu(cpu) {
5751 		if (flush_required(cpu)) {
5752 			queue_work_on(cpu, system_highpri_wq,
5753 				      per_cpu_ptr(&flush_works, cpu));
5754 			cpumask_set_cpu(cpu, &flush_cpus);
5755 		}
5756 	}
5757 
5758 	/* we can have in flight packet[s] on the cpus we are not flushing,
5759 	 * synchronize_net() in unregister_netdevice_many() will take care of
5760 	 * them
5761 	 */
5762 	for_each_cpu(cpu, &flush_cpus)
5763 		flush_work(per_cpu_ptr(&flush_works, cpu));
5764 
5765 	put_online_cpus();
5766 }
5767 
5768 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5769 static void gro_normal_list(struct napi_struct *napi)
5770 {
5771 	if (!napi->rx_count)
5772 		return;
5773 	netif_receive_skb_list_internal(&napi->rx_list);
5774 	INIT_LIST_HEAD(&napi->rx_list);
5775 	napi->rx_count = 0;
5776 }
5777 
5778 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5779  * pass the whole batch up to the stack.
5780  */
5781 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5782 {
5783 	list_add_tail(&skb->list, &napi->rx_list);
5784 	napi->rx_count += segs;
5785 	if (napi->rx_count >= gro_normal_batch)
5786 		gro_normal_list(napi);
5787 }
5788 
5789 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5790 {
5791 	struct packet_offload *ptype;
5792 	__be16 type = skb->protocol;
5793 	struct list_head *head = &offload_base;
5794 	int err = -ENOENT;
5795 
5796 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5797 
5798 	if (NAPI_GRO_CB(skb)->count == 1) {
5799 		skb_shinfo(skb)->gso_size = 0;
5800 		goto out;
5801 	}
5802 
5803 	rcu_read_lock();
5804 	list_for_each_entry_rcu(ptype, head, list) {
5805 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5806 			continue;
5807 
5808 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5809 					 ipv6_gro_complete, inet_gro_complete,
5810 					 skb, 0);
5811 		break;
5812 	}
5813 	rcu_read_unlock();
5814 
5815 	if (err) {
5816 		WARN_ON(&ptype->list == head);
5817 		kfree_skb(skb);
5818 		return NET_RX_SUCCESS;
5819 	}
5820 
5821 out:
5822 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5823 	return NET_RX_SUCCESS;
5824 }
5825 
5826 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5827 				   bool flush_old)
5828 {
5829 	struct list_head *head = &napi->gro_hash[index].list;
5830 	struct sk_buff *skb, *p;
5831 
5832 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5833 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5834 			return;
5835 		skb_list_del_init(skb);
5836 		napi_gro_complete(napi, skb);
5837 		napi->gro_hash[index].count--;
5838 	}
5839 
5840 	if (!napi->gro_hash[index].count)
5841 		__clear_bit(index, &napi->gro_bitmask);
5842 }
5843 
5844 /* napi->gro_hash[].list contains packets ordered by age.
5845  * youngest packets at the head of it.
5846  * Complete skbs in reverse order to reduce latencies.
5847  */
5848 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5849 {
5850 	unsigned long bitmask = napi->gro_bitmask;
5851 	unsigned int i, base = ~0U;
5852 
5853 	while ((i = ffs(bitmask)) != 0) {
5854 		bitmask >>= i;
5855 		base += i;
5856 		__napi_gro_flush_chain(napi, base, flush_old);
5857 	}
5858 }
5859 EXPORT_SYMBOL(napi_gro_flush);
5860 
5861 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5862 					  struct sk_buff *skb)
5863 {
5864 	unsigned int maclen = skb->dev->hard_header_len;
5865 	u32 hash = skb_get_hash_raw(skb);
5866 	struct list_head *head;
5867 	struct sk_buff *p;
5868 
5869 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5870 	list_for_each_entry(p, head, list) {
5871 		unsigned long diffs;
5872 
5873 		NAPI_GRO_CB(p)->flush = 0;
5874 
5875 		if (hash != skb_get_hash_raw(p)) {
5876 			NAPI_GRO_CB(p)->same_flow = 0;
5877 			continue;
5878 		}
5879 
5880 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5881 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5882 		if (skb_vlan_tag_present(p))
5883 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5884 		diffs |= skb_metadata_dst_cmp(p, skb);
5885 		diffs |= skb_metadata_differs(p, skb);
5886 		if (maclen == ETH_HLEN)
5887 			diffs |= compare_ether_header(skb_mac_header(p),
5888 						      skb_mac_header(skb));
5889 		else if (!diffs)
5890 			diffs = memcmp(skb_mac_header(p),
5891 				       skb_mac_header(skb),
5892 				       maclen);
5893 		NAPI_GRO_CB(p)->same_flow = !diffs;
5894 	}
5895 
5896 	return head;
5897 }
5898 
5899 static void skb_gro_reset_offset(struct sk_buff *skb)
5900 {
5901 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5902 	const skb_frag_t *frag0 = &pinfo->frags[0];
5903 
5904 	NAPI_GRO_CB(skb)->data_offset = 0;
5905 	NAPI_GRO_CB(skb)->frag0 = NULL;
5906 	NAPI_GRO_CB(skb)->frag0_len = 0;
5907 
5908 	if (!skb_headlen(skb) && pinfo->nr_frags &&
5909 	    !PageHighMem(skb_frag_page(frag0))) {
5910 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5911 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5912 						    skb_frag_size(frag0),
5913 						    skb->end - skb->tail);
5914 	}
5915 }
5916 
5917 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5918 {
5919 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5920 
5921 	BUG_ON(skb->end - skb->tail < grow);
5922 
5923 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5924 
5925 	skb->data_len -= grow;
5926 	skb->tail += grow;
5927 
5928 	skb_frag_off_add(&pinfo->frags[0], grow);
5929 	skb_frag_size_sub(&pinfo->frags[0], grow);
5930 
5931 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5932 		skb_frag_unref(skb, 0);
5933 		memmove(pinfo->frags, pinfo->frags + 1,
5934 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5935 	}
5936 }
5937 
5938 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
5939 {
5940 	struct sk_buff *oldest;
5941 
5942 	oldest = list_last_entry(head, struct sk_buff, list);
5943 
5944 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5945 	 * impossible.
5946 	 */
5947 	if (WARN_ON_ONCE(!oldest))
5948 		return;
5949 
5950 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5951 	 * SKB to the chain.
5952 	 */
5953 	skb_list_del_init(oldest);
5954 	napi_gro_complete(napi, oldest);
5955 }
5956 
5957 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5958 {
5959 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5960 	struct list_head *head = &offload_base;
5961 	struct packet_offload *ptype;
5962 	__be16 type = skb->protocol;
5963 	struct list_head *gro_head;
5964 	struct sk_buff *pp = NULL;
5965 	enum gro_result ret;
5966 	int same_flow;
5967 	int grow;
5968 
5969 	if (netif_elide_gro(skb->dev))
5970 		goto normal;
5971 
5972 	gro_head = gro_list_prepare(napi, skb);
5973 
5974 	rcu_read_lock();
5975 	list_for_each_entry_rcu(ptype, head, list) {
5976 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5977 			continue;
5978 
5979 		skb_set_network_header(skb, skb_gro_offset(skb));
5980 		skb_reset_mac_len(skb);
5981 		NAPI_GRO_CB(skb)->same_flow = 0;
5982 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5983 		NAPI_GRO_CB(skb)->free = 0;
5984 		NAPI_GRO_CB(skb)->encap_mark = 0;
5985 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5986 		NAPI_GRO_CB(skb)->is_fou = 0;
5987 		NAPI_GRO_CB(skb)->is_atomic = 1;
5988 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5989 
5990 		/* Setup for GRO checksum validation */
5991 		switch (skb->ip_summed) {
5992 		case CHECKSUM_COMPLETE:
5993 			NAPI_GRO_CB(skb)->csum = skb->csum;
5994 			NAPI_GRO_CB(skb)->csum_valid = 1;
5995 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5996 			break;
5997 		case CHECKSUM_UNNECESSARY:
5998 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5999 			NAPI_GRO_CB(skb)->csum_valid = 0;
6000 			break;
6001 		default:
6002 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6003 			NAPI_GRO_CB(skb)->csum_valid = 0;
6004 		}
6005 
6006 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6007 					ipv6_gro_receive, inet_gro_receive,
6008 					gro_head, skb);
6009 		break;
6010 	}
6011 	rcu_read_unlock();
6012 
6013 	if (&ptype->list == head)
6014 		goto normal;
6015 
6016 	if (PTR_ERR(pp) == -EINPROGRESS) {
6017 		ret = GRO_CONSUMED;
6018 		goto ok;
6019 	}
6020 
6021 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6022 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6023 
6024 	if (pp) {
6025 		skb_list_del_init(pp);
6026 		napi_gro_complete(napi, pp);
6027 		napi->gro_hash[hash].count--;
6028 	}
6029 
6030 	if (same_flow)
6031 		goto ok;
6032 
6033 	if (NAPI_GRO_CB(skb)->flush)
6034 		goto normal;
6035 
6036 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
6037 		gro_flush_oldest(napi, gro_head);
6038 	} else {
6039 		napi->gro_hash[hash].count++;
6040 	}
6041 	NAPI_GRO_CB(skb)->count = 1;
6042 	NAPI_GRO_CB(skb)->age = jiffies;
6043 	NAPI_GRO_CB(skb)->last = skb;
6044 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6045 	list_add(&skb->list, gro_head);
6046 	ret = GRO_HELD;
6047 
6048 pull:
6049 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6050 	if (grow > 0)
6051 		gro_pull_from_frag0(skb, grow);
6052 ok:
6053 	if (napi->gro_hash[hash].count) {
6054 		if (!test_bit(hash, &napi->gro_bitmask))
6055 			__set_bit(hash, &napi->gro_bitmask);
6056 	} else if (test_bit(hash, &napi->gro_bitmask)) {
6057 		__clear_bit(hash, &napi->gro_bitmask);
6058 	}
6059 
6060 	return ret;
6061 
6062 normal:
6063 	ret = GRO_NORMAL;
6064 	goto pull;
6065 }
6066 
6067 struct packet_offload *gro_find_receive_by_type(__be16 type)
6068 {
6069 	struct list_head *offload_head = &offload_base;
6070 	struct packet_offload *ptype;
6071 
6072 	list_for_each_entry_rcu(ptype, offload_head, list) {
6073 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6074 			continue;
6075 		return ptype;
6076 	}
6077 	return NULL;
6078 }
6079 EXPORT_SYMBOL(gro_find_receive_by_type);
6080 
6081 struct packet_offload *gro_find_complete_by_type(__be16 type)
6082 {
6083 	struct list_head *offload_head = &offload_base;
6084 	struct packet_offload *ptype;
6085 
6086 	list_for_each_entry_rcu(ptype, offload_head, list) {
6087 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6088 			continue;
6089 		return ptype;
6090 	}
6091 	return NULL;
6092 }
6093 EXPORT_SYMBOL(gro_find_complete_by_type);
6094 
6095 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6096 				    struct sk_buff *skb,
6097 				    gro_result_t ret)
6098 {
6099 	switch (ret) {
6100 	case GRO_NORMAL:
6101 		gro_normal_one(napi, skb, 1);
6102 		break;
6103 
6104 	case GRO_MERGED_FREE:
6105 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6106 			napi_skb_free_stolen_head(skb);
6107 		else
6108 			__kfree_skb_defer(skb);
6109 		break;
6110 
6111 	case GRO_HELD:
6112 	case GRO_MERGED:
6113 	case GRO_CONSUMED:
6114 		break;
6115 	}
6116 
6117 	return ret;
6118 }
6119 
6120 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6121 {
6122 	gro_result_t ret;
6123 
6124 	skb_mark_napi_id(skb, napi);
6125 	trace_napi_gro_receive_entry(skb);
6126 
6127 	skb_gro_reset_offset(skb);
6128 
6129 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6130 	trace_napi_gro_receive_exit(ret);
6131 
6132 	return ret;
6133 }
6134 EXPORT_SYMBOL(napi_gro_receive);
6135 
6136 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6137 {
6138 	if (unlikely(skb->pfmemalloc)) {
6139 		consume_skb(skb);
6140 		return;
6141 	}
6142 	__skb_pull(skb, skb_headlen(skb));
6143 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6144 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6145 	__vlan_hwaccel_clear_tag(skb);
6146 	skb->dev = napi->dev;
6147 	skb->skb_iif = 0;
6148 
6149 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6150 	skb->pkt_type = PACKET_HOST;
6151 
6152 	skb->encapsulation = 0;
6153 	skb_shinfo(skb)->gso_type = 0;
6154 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6155 	skb_ext_reset(skb);
6156 
6157 	napi->skb = skb;
6158 }
6159 
6160 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6161 {
6162 	struct sk_buff *skb = napi->skb;
6163 
6164 	if (!skb) {
6165 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6166 		if (skb) {
6167 			napi->skb = skb;
6168 			skb_mark_napi_id(skb, napi);
6169 		}
6170 	}
6171 	return skb;
6172 }
6173 EXPORT_SYMBOL(napi_get_frags);
6174 
6175 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6176 				      struct sk_buff *skb,
6177 				      gro_result_t ret)
6178 {
6179 	switch (ret) {
6180 	case GRO_NORMAL:
6181 	case GRO_HELD:
6182 		__skb_push(skb, ETH_HLEN);
6183 		skb->protocol = eth_type_trans(skb, skb->dev);
6184 		if (ret == GRO_NORMAL)
6185 			gro_normal_one(napi, skb, 1);
6186 		break;
6187 
6188 	case GRO_MERGED_FREE:
6189 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6190 			napi_skb_free_stolen_head(skb);
6191 		else
6192 			napi_reuse_skb(napi, skb);
6193 		break;
6194 
6195 	case GRO_MERGED:
6196 	case GRO_CONSUMED:
6197 		break;
6198 	}
6199 
6200 	return ret;
6201 }
6202 
6203 /* Upper GRO stack assumes network header starts at gro_offset=0
6204  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6205  * We copy ethernet header into skb->data to have a common layout.
6206  */
6207 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6208 {
6209 	struct sk_buff *skb = napi->skb;
6210 	const struct ethhdr *eth;
6211 	unsigned int hlen = sizeof(*eth);
6212 
6213 	napi->skb = NULL;
6214 
6215 	skb_reset_mac_header(skb);
6216 	skb_gro_reset_offset(skb);
6217 
6218 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6219 		eth = skb_gro_header_slow(skb, hlen, 0);
6220 		if (unlikely(!eth)) {
6221 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6222 					     __func__, napi->dev->name);
6223 			napi_reuse_skb(napi, skb);
6224 			return NULL;
6225 		}
6226 	} else {
6227 		eth = (const struct ethhdr *)skb->data;
6228 		gro_pull_from_frag0(skb, hlen);
6229 		NAPI_GRO_CB(skb)->frag0 += hlen;
6230 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6231 	}
6232 	__skb_pull(skb, hlen);
6233 
6234 	/*
6235 	 * This works because the only protocols we care about don't require
6236 	 * special handling.
6237 	 * We'll fix it up properly in napi_frags_finish()
6238 	 */
6239 	skb->protocol = eth->h_proto;
6240 
6241 	return skb;
6242 }
6243 
6244 gro_result_t napi_gro_frags(struct napi_struct *napi)
6245 {
6246 	gro_result_t ret;
6247 	struct sk_buff *skb = napi_frags_skb(napi);
6248 
6249 	trace_napi_gro_frags_entry(skb);
6250 
6251 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6252 	trace_napi_gro_frags_exit(ret);
6253 
6254 	return ret;
6255 }
6256 EXPORT_SYMBOL(napi_gro_frags);
6257 
6258 /* Compute the checksum from gro_offset and return the folded value
6259  * after adding in any pseudo checksum.
6260  */
6261 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6262 {
6263 	__wsum wsum;
6264 	__sum16 sum;
6265 
6266 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6267 
6268 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6269 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6270 	/* See comments in __skb_checksum_complete(). */
6271 	if (likely(!sum)) {
6272 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6273 		    !skb->csum_complete_sw)
6274 			netdev_rx_csum_fault(skb->dev, skb);
6275 	}
6276 
6277 	NAPI_GRO_CB(skb)->csum = wsum;
6278 	NAPI_GRO_CB(skb)->csum_valid = 1;
6279 
6280 	return sum;
6281 }
6282 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6283 
6284 static void net_rps_send_ipi(struct softnet_data *remsd)
6285 {
6286 #ifdef CONFIG_RPS
6287 	while (remsd) {
6288 		struct softnet_data *next = remsd->rps_ipi_next;
6289 
6290 		if (cpu_online(remsd->cpu))
6291 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6292 		remsd = next;
6293 	}
6294 #endif
6295 }
6296 
6297 /*
6298  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6299  * Note: called with local irq disabled, but exits with local irq enabled.
6300  */
6301 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6302 {
6303 #ifdef CONFIG_RPS
6304 	struct softnet_data *remsd = sd->rps_ipi_list;
6305 
6306 	if (remsd) {
6307 		sd->rps_ipi_list = NULL;
6308 
6309 		local_irq_enable();
6310 
6311 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6312 		net_rps_send_ipi(remsd);
6313 	} else
6314 #endif
6315 		local_irq_enable();
6316 }
6317 
6318 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6319 {
6320 #ifdef CONFIG_RPS
6321 	return sd->rps_ipi_list != NULL;
6322 #else
6323 	return false;
6324 #endif
6325 }
6326 
6327 static int process_backlog(struct napi_struct *napi, int quota)
6328 {
6329 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6330 	bool again = true;
6331 	int work = 0;
6332 
6333 	/* Check if we have pending ipi, its better to send them now,
6334 	 * not waiting net_rx_action() end.
6335 	 */
6336 	if (sd_has_rps_ipi_waiting(sd)) {
6337 		local_irq_disable();
6338 		net_rps_action_and_irq_enable(sd);
6339 	}
6340 
6341 	napi->weight = dev_rx_weight;
6342 	while (again) {
6343 		struct sk_buff *skb;
6344 
6345 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6346 			rcu_read_lock();
6347 			__netif_receive_skb(skb);
6348 			rcu_read_unlock();
6349 			input_queue_head_incr(sd);
6350 			if (++work >= quota)
6351 				return work;
6352 
6353 		}
6354 
6355 		local_irq_disable();
6356 		rps_lock(sd);
6357 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6358 			/*
6359 			 * Inline a custom version of __napi_complete().
6360 			 * only current cpu owns and manipulates this napi,
6361 			 * and NAPI_STATE_SCHED is the only possible flag set
6362 			 * on backlog.
6363 			 * We can use a plain write instead of clear_bit(),
6364 			 * and we dont need an smp_mb() memory barrier.
6365 			 */
6366 			napi->state = 0;
6367 			again = false;
6368 		} else {
6369 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6370 						   &sd->process_queue);
6371 		}
6372 		rps_unlock(sd);
6373 		local_irq_enable();
6374 	}
6375 
6376 	return work;
6377 }
6378 
6379 /**
6380  * __napi_schedule - schedule for receive
6381  * @n: entry to schedule
6382  *
6383  * The entry's receive function will be scheduled to run.
6384  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6385  */
6386 void __napi_schedule(struct napi_struct *n)
6387 {
6388 	unsigned long flags;
6389 
6390 	local_irq_save(flags);
6391 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6392 	local_irq_restore(flags);
6393 }
6394 EXPORT_SYMBOL(__napi_schedule);
6395 
6396 /**
6397  *	napi_schedule_prep - check if napi can be scheduled
6398  *	@n: napi context
6399  *
6400  * Test if NAPI routine is already running, and if not mark
6401  * it as running.  This is used as a condition variable to
6402  * insure only one NAPI poll instance runs.  We also make
6403  * sure there is no pending NAPI disable.
6404  */
6405 bool napi_schedule_prep(struct napi_struct *n)
6406 {
6407 	unsigned long val, new;
6408 
6409 	do {
6410 		val = READ_ONCE(n->state);
6411 		if (unlikely(val & NAPIF_STATE_DISABLE))
6412 			return false;
6413 		new = val | NAPIF_STATE_SCHED;
6414 
6415 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6416 		 * This was suggested by Alexander Duyck, as compiler
6417 		 * emits better code than :
6418 		 * if (val & NAPIF_STATE_SCHED)
6419 		 *     new |= NAPIF_STATE_MISSED;
6420 		 */
6421 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6422 						   NAPIF_STATE_MISSED;
6423 	} while (cmpxchg(&n->state, val, new) != val);
6424 
6425 	return !(val & NAPIF_STATE_SCHED);
6426 }
6427 EXPORT_SYMBOL(napi_schedule_prep);
6428 
6429 /**
6430  * __napi_schedule_irqoff - schedule for receive
6431  * @n: entry to schedule
6432  *
6433  * Variant of __napi_schedule() assuming hard irqs are masked
6434  */
6435 void __napi_schedule_irqoff(struct napi_struct *n)
6436 {
6437 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6438 }
6439 EXPORT_SYMBOL(__napi_schedule_irqoff);
6440 
6441 bool napi_complete_done(struct napi_struct *n, int work_done)
6442 {
6443 	unsigned long flags, val, new, timeout = 0;
6444 	bool ret = true;
6445 
6446 	/*
6447 	 * 1) Don't let napi dequeue from the cpu poll list
6448 	 *    just in case its running on a different cpu.
6449 	 * 2) If we are busy polling, do nothing here, we have
6450 	 *    the guarantee we will be called later.
6451 	 */
6452 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6453 				 NAPIF_STATE_IN_BUSY_POLL)))
6454 		return false;
6455 
6456 	if (work_done) {
6457 		if (n->gro_bitmask)
6458 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6459 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6460 	}
6461 	if (n->defer_hard_irqs_count > 0) {
6462 		n->defer_hard_irqs_count--;
6463 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6464 		if (timeout)
6465 			ret = false;
6466 	}
6467 	if (n->gro_bitmask) {
6468 		/* When the NAPI instance uses a timeout and keeps postponing
6469 		 * it, we need to bound somehow the time packets are kept in
6470 		 * the GRO layer
6471 		 */
6472 		napi_gro_flush(n, !!timeout);
6473 	}
6474 
6475 	gro_normal_list(n);
6476 
6477 	if (unlikely(!list_empty(&n->poll_list))) {
6478 		/* If n->poll_list is not empty, we need to mask irqs */
6479 		local_irq_save(flags);
6480 		list_del_init(&n->poll_list);
6481 		local_irq_restore(flags);
6482 	}
6483 
6484 	do {
6485 		val = READ_ONCE(n->state);
6486 
6487 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6488 
6489 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6490 			      NAPIF_STATE_PREFER_BUSY_POLL);
6491 
6492 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6493 		 * because we will call napi->poll() one more time.
6494 		 * This C code was suggested by Alexander Duyck to help gcc.
6495 		 */
6496 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6497 						    NAPIF_STATE_SCHED;
6498 	} while (cmpxchg(&n->state, val, new) != val);
6499 
6500 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6501 		__napi_schedule(n);
6502 		return false;
6503 	}
6504 
6505 	if (timeout)
6506 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6507 			      HRTIMER_MODE_REL_PINNED);
6508 	return ret;
6509 }
6510 EXPORT_SYMBOL(napi_complete_done);
6511 
6512 /* must be called under rcu_read_lock(), as we dont take a reference */
6513 static struct napi_struct *napi_by_id(unsigned int napi_id)
6514 {
6515 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6516 	struct napi_struct *napi;
6517 
6518 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6519 		if (napi->napi_id == napi_id)
6520 			return napi;
6521 
6522 	return NULL;
6523 }
6524 
6525 #if defined(CONFIG_NET_RX_BUSY_POLL)
6526 
6527 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6528 {
6529 	if (!skip_schedule) {
6530 		gro_normal_list(napi);
6531 		__napi_schedule(napi);
6532 		return;
6533 	}
6534 
6535 	if (napi->gro_bitmask) {
6536 		/* flush too old packets
6537 		 * If HZ < 1000, flush all packets.
6538 		 */
6539 		napi_gro_flush(napi, HZ >= 1000);
6540 	}
6541 
6542 	gro_normal_list(napi);
6543 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6544 }
6545 
6546 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6547 			   u16 budget)
6548 {
6549 	bool skip_schedule = false;
6550 	unsigned long timeout;
6551 	int rc;
6552 
6553 	/* Busy polling means there is a high chance device driver hard irq
6554 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6555 	 * set in napi_schedule_prep().
6556 	 * Since we are about to call napi->poll() once more, we can safely
6557 	 * clear NAPI_STATE_MISSED.
6558 	 *
6559 	 * Note: x86 could use a single "lock and ..." instruction
6560 	 * to perform these two clear_bit()
6561 	 */
6562 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6563 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6564 
6565 	local_bh_disable();
6566 
6567 	if (prefer_busy_poll) {
6568 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6569 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6570 		if (napi->defer_hard_irqs_count && timeout) {
6571 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6572 			skip_schedule = true;
6573 		}
6574 	}
6575 
6576 	/* All we really want here is to re-enable device interrupts.
6577 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6578 	 */
6579 	rc = napi->poll(napi, budget);
6580 	/* We can't gro_normal_list() here, because napi->poll() might have
6581 	 * rearmed the napi (napi_complete_done()) in which case it could
6582 	 * already be running on another CPU.
6583 	 */
6584 	trace_napi_poll(napi, rc, budget);
6585 	netpoll_poll_unlock(have_poll_lock);
6586 	if (rc == budget)
6587 		__busy_poll_stop(napi, skip_schedule);
6588 	local_bh_enable();
6589 }
6590 
6591 void napi_busy_loop(unsigned int napi_id,
6592 		    bool (*loop_end)(void *, unsigned long),
6593 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6594 {
6595 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6596 	int (*napi_poll)(struct napi_struct *napi, int budget);
6597 	void *have_poll_lock = NULL;
6598 	struct napi_struct *napi;
6599 
6600 restart:
6601 	napi_poll = NULL;
6602 
6603 	rcu_read_lock();
6604 
6605 	napi = napi_by_id(napi_id);
6606 	if (!napi)
6607 		goto out;
6608 
6609 	preempt_disable();
6610 	for (;;) {
6611 		int work = 0;
6612 
6613 		local_bh_disable();
6614 		if (!napi_poll) {
6615 			unsigned long val = READ_ONCE(napi->state);
6616 
6617 			/* If multiple threads are competing for this napi,
6618 			 * we avoid dirtying napi->state as much as we can.
6619 			 */
6620 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6621 				   NAPIF_STATE_IN_BUSY_POLL)) {
6622 				if (prefer_busy_poll)
6623 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6624 				goto count;
6625 			}
6626 			if (cmpxchg(&napi->state, val,
6627 				    val | NAPIF_STATE_IN_BUSY_POLL |
6628 					  NAPIF_STATE_SCHED) != val) {
6629 				if (prefer_busy_poll)
6630 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6631 				goto count;
6632 			}
6633 			have_poll_lock = netpoll_poll_lock(napi);
6634 			napi_poll = napi->poll;
6635 		}
6636 		work = napi_poll(napi, budget);
6637 		trace_napi_poll(napi, work, budget);
6638 		gro_normal_list(napi);
6639 count:
6640 		if (work > 0)
6641 			__NET_ADD_STATS(dev_net(napi->dev),
6642 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6643 		local_bh_enable();
6644 
6645 		if (!loop_end || loop_end(loop_end_arg, start_time))
6646 			break;
6647 
6648 		if (unlikely(need_resched())) {
6649 			if (napi_poll)
6650 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6651 			preempt_enable();
6652 			rcu_read_unlock();
6653 			cond_resched();
6654 			if (loop_end(loop_end_arg, start_time))
6655 				return;
6656 			goto restart;
6657 		}
6658 		cpu_relax();
6659 	}
6660 	if (napi_poll)
6661 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6662 	preempt_enable();
6663 out:
6664 	rcu_read_unlock();
6665 }
6666 EXPORT_SYMBOL(napi_busy_loop);
6667 
6668 #endif /* CONFIG_NET_RX_BUSY_POLL */
6669 
6670 static void napi_hash_add(struct napi_struct *napi)
6671 {
6672 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6673 		return;
6674 
6675 	spin_lock(&napi_hash_lock);
6676 
6677 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6678 	do {
6679 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6680 			napi_gen_id = MIN_NAPI_ID;
6681 	} while (napi_by_id(napi_gen_id));
6682 	napi->napi_id = napi_gen_id;
6683 
6684 	hlist_add_head_rcu(&napi->napi_hash_node,
6685 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6686 
6687 	spin_unlock(&napi_hash_lock);
6688 }
6689 
6690 /* Warning : caller is responsible to make sure rcu grace period
6691  * is respected before freeing memory containing @napi
6692  */
6693 static void napi_hash_del(struct napi_struct *napi)
6694 {
6695 	spin_lock(&napi_hash_lock);
6696 
6697 	hlist_del_init_rcu(&napi->napi_hash_node);
6698 
6699 	spin_unlock(&napi_hash_lock);
6700 }
6701 
6702 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6703 {
6704 	struct napi_struct *napi;
6705 
6706 	napi = container_of(timer, struct napi_struct, timer);
6707 
6708 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6709 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6710 	 */
6711 	if (!napi_disable_pending(napi) &&
6712 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6713 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6714 		__napi_schedule_irqoff(napi);
6715 	}
6716 
6717 	return HRTIMER_NORESTART;
6718 }
6719 
6720 static void init_gro_hash(struct napi_struct *napi)
6721 {
6722 	int i;
6723 
6724 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6725 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6726 		napi->gro_hash[i].count = 0;
6727 	}
6728 	napi->gro_bitmask = 0;
6729 }
6730 
6731 int dev_set_threaded(struct net_device *dev, bool threaded)
6732 {
6733 	struct napi_struct *napi;
6734 	int err = 0;
6735 
6736 	if (dev->threaded == threaded)
6737 		return 0;
6738 
6739 	if (threaded) {
6740 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6741 			if (!napi->thread) {
6742 				err = napi_kthread_create(napi);
6743 				if (err) {
6744 					threaded = false;
6745 					break;
6746 				}
6747 			}
6748 		}
6749 	}
6750 
6751 	dev->threaded = threaded;
6752 
6753 	/* Make sure kthread is created before THREADED bit
6754 	 * is set.
6755 	 */
6756 	smp_mb__before_atomic();
6757 
6758 	/* Setting/unsetting threaded mode on a napi might not immediately
6759 	 * take effect, if the current napi instance is actively being
6760 	 * polled. In this case, the switch between threaded mode and
6761 	 * softirq mode will happen in the next round of napi_schedule().
6762 	 * This should not cause hiccups/stalls to the live traffic.
6763 	 */
6764 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6765 		if (threaded)
6766 			set_bit(NAPI_STATE_THREADED, &napi->state);
6767 		else
6768 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6769 	}
6770 
6771 	return err;
6772 }
6773 
6774 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6775 		    int (*poll)(struct napi_struct *, int), int weight)
6776 {
6777 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6778 		return;
6779 
6780 	INIT_LIST_HEAD(&napi->poll_list);
6781 	INIT_HLIST_NODE(&napi->napi_hash_node);
6782 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6783 	napi->timer.function = napi_watchdog;
6784 	init_gro_hash(napi);
6785 	napi->skb = NULL;
6786 	INIT_LIST_HEAD(&napi->rx_list);
6787 	napi->rx_count = 0;
6788 	napi->poll = poll;
6789 	if (weight > NAPI_POLL_WEIGHT)
6790 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6791 				weight);
6792 	napi->weight = weight;
6793 	napi->dev = dev;
6794 #ifdef CONFIG_NETPOLL
6795 	napi->poll_owner = -1;
6796 #endif
6797 	set_bit(NAPI_STATE_SCHED, &napi->state);
6798 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6799 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6800 	napi_hash_add(napi);
6801 	/* Create kthread for this napi if dev->threaded is set.
6802 	 * Clear dev->threaded if kthread creation failed so that
6803 	 * threaded mode will not be enabled in napi_enable().
6804 	 */
6805 	if (dev->threaded && napi_kthread_create(napi))
6806 		dev->threaded = 0;
6807 }
6808 EXPORT_SYMBOL(netif_napi_add);
6809 
6810 void napi_disable(struct napi_struct *n)
6811 {
6812 	might_sleep();
6813 	set_bit(NAPI_STATE_DISABLE, &n->state);
6814 
6815 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6816 		msleep(1);
6817 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6818 		msleep(1);
6819 
6820 	hrtimer_cancel(&n->timer);
6821 
6822 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6823 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6824 	clear_bit(NAPI_STATE_THREADED, &n->state);
6825 }
6826 EXPORT_SYMBOL(napi_disable);
6827 
6828 /**
6829  *	napi_enable - enable NAPI scheduling
6830  *	@n: NAPI context
6831  *
6832  * Resume NAPI from being scheduled on this context.
6833  * Must be paired with napi_disable.
6834  */
6835 void napi_enable(struct napi_struct *n)
6836 {
6837 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6838 	smp_mb__before_atomic();
6839 	clear_bit(NAPI_STATE_SCHED, &n->state);
6840 	clear_bit(NAPI_STATE_NPSVC, &n->state);
6841 	if (n->dev->threaded && n->thread)
6842 		set_bit(NAPI_STATE_THREADED, &n->state);
6843 }
6844 EXPORT_SYMBOL(napi_enable);
6845 
6846 static void flush_gro_hash(struct napi_struct *napi)
6847 {
6848 	int i;
6849 
6850 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6851 		struct sk_buff *skb, *n;
6852 
6853 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6854 			kfree_skb(skb);
6855 		napi->gro_hash[i].count = 0;
6856 	}
6857 }
6858 
6859 /* Must be called in process context */
6860 void __netif_napi_del(struct napi_struct *napi)
6861 {
6862 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6863 		return;
6864 
6865 	napi_hash_del(napi);
6866 	list_del_rcu(&napi->dev_list);
6867 	napi_free_frags(napi);
6868 
6869 	flush_gro_hash(napi);
6870 	napi->gro_bitmask = 0;
6871 
6872 	if (napi->thread) {
6873 		kthread_stop(napi->thread);
6874 		napi->thread = NULL;
6875 	}
6876 }
6877 EXPORT_SYMBOL(__netif_napi_del);
6878 
6879 static int __napi_poll(struct napi_struct *n, bool *repoll)
6880 {
6881 	int work, weight;
6882 
6883 	weight = n->weight;
6884 
6885 	/* This NAPI_STATE_SCHED test is for avoiding a race
6886 	 * with netpoll's poll_napi().  Only the entity which
6887 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6888 	 * actually make the ->poll() call.  Therefore we avoid
6889 	 * accidentally calling ->poll() when NAPI is not scheduled.
6890 	 */
6891 	work = 0;
6892 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6893 		work = n->poll(n, weight);
6894 		trace_napi_poll(n, work, weight);
6895 	}
6896 
6897 	if (unlikely(work > weight))
6898 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6899 			    n->poll, work, weight);
6900 
6901 	if (likely(work < weight))
6902 		return work;
6903 
6904 	/* Drivers must not modify the NAPI state if they
6905 	 * consume the entire weight.  In such cases this code
6906 	 * still "owns" the NAPI instance and therefore can
6907 	 * move the instance around on the list at-will.
6908 	 */
6909 	if (unlikely(napi_disable_pending(n))) {
6910 		napi_complete(n);
6911 		return work;
6912 	}
6913 
6914 	/* The NAPI context has more processing work, but busy-polling
6915 	 * is preferred. Exit early.
6916 	 */
6917 	if (napi_prefer_busy_poll(n)) {
6918 		if (napi_complete_done(n, work)) {
6919 			/* If timeout is not set, we need to make sure
6920 			 * that the NAPI is re-scheduled.
6921 			 */
6922 			napi_schedule(n);
6923 		}
6924 		return work;
6925 	}
6926 
6927 	if (n->gro_bitmask) {
6928 		/* flush too old packets
6929 		 * If HZ < 1000, flush all packets.
6930 		 */
6931 		napi_gro_flush(n, HZ >= 1000);
6932 	}
6933 
6934 	gro_normal_list(n);
6935 
6936 	/* Some drivers may have called napi_schedule
6937 	 * prior to exhausting their budget.
6938 	 */
6939 	if (unlikely(!list_empty(&n->poll_list))) {
6940 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6941 			     n->dev ? n->dev->name : "backlog");
6942 		return work;
6943 	}
6944 
6945 	*repoll = true;
6946 
6947 	return work;
6948 }
6949 
6950 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6951 {
6952 	bool do_repoll = false;
6953 	void *have;
6954 	int work;
6955 
6956 	list_del_init(&n->poll_list);
6957 
6958 	have = netpoll_poll_lock(n);
6959 
6960 	work = __napi_poll(n, &do_repoll);
6961 
6962 	if (do_repoll)
6963 		list_add_tail(&n->poll_list, repoll);
6964 
6965 	netpoll_poll_unlock(have);
6966 
6967 	return work;
6968 }
6969 
6970 static int napi_thread_wait(struct napi_struct *napi)
6971 {
6972 	set_current_state(TASK_INTERRUPTIBLE);
6973 
6974 	while (!kthread_should_stop() && !napi_disable_pending(napi)) {
6975 		if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
6976 			WARN_ON(!list_empty(&napi->poll_list));
6977 			__set_current_state(TASK_RUNNING);
6978 			return 0;
6979 		}
6980 
6981 		schedule();
6982 		set_current_state(TASK_INTERRUPTIBLE);
6983 	}
6984 	__set_current_state(TASK_RUNNING);
6985 	return -1;
6986 }
6987 
6988 static int napi_threaded_poll(void *data)
6989 {
6990 	struct napi_struct *napi = data;
6991 	void *have;
6992 
6993 	while (!napi_thread_wait(napi)) {
6994 		for (;;) {
6995 			bool repoll = false;
6996 
6997 			local_bh_disable();
6998 
6999 			have = netpoll_poll_lock(napi);
7000 			__napi_poll(napi, &repoll);
7001 			netpoll_poll_unlock(have);
7002 
7003 			local_bh_enable();
7004 
7005 			if (!repoll)
7006 				break;
7007 
7008 			cond_resched();
7009 		}
7010 	}
7011 	return 0;
7012 }
7013 
7014 static __latent_entropy void net_rx_action(struct softirq_action *h)
7015 {
7016 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7017 	unsigned long time_limit = jiffies +
7018 		usecs_to_jiffies(netdev_budget_usecs);
7019 	int budget = netdev_budget;
7020 	LIST_HEAD(list);
7021 	LIST_HEAD(repoll);
7022 
7023 	local_irq_disable();
7024 	list_splice_init(&sd->poll_list, &list);
7025 	local_irq_enable();
7026 
7027 	for (;;) {
7028 		struct napi_struct *n;
7029 
7030 		if (list_empty(&list)) {
7031 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7032 				return;
7033 			break;
7034 		}
7035 
7036 		n = list_first_entry(&list, struct napi_struct, poll_list);
7037 		budget -= napi_poll(n, &repoll);
7038 
7039 		/* If softirq window is exhausted then punt.
7040 		 * Allow this to run for 2 jiffies since which will allow
7041 		 * an average latency of 1.5/HZ.
7042 		 */
7043 		if (unlikely(budget <= 0 ||
7044 			     time_after_eq(jiffies, time_limit))) {
7045 			sd->time_squeeze++;
7046 			break;
7047 		}
7048 	}
7049 
7050 	local_irq_disable();
7051 
7052 	list_splice_tail_init(&sd->poll_list, &list);
7053 	list_splice_tail(&repoll, &list);
7054 	list_splice(&list, &sd->poll_list);
7055 	if (!list_empty(&sd->poll_list))
7056 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7057 
7058 	net_rps_action_and_irq_enable(sd);
7059 }
7060 
7061 struct netdev_adjacent {
7062 	struct net_device *dev;
7063 
7064 	/* upper master flag, there can only be one master device per list */
7065 	bool master;
7066 
7067 	/* lookup ignore flag */
7068 	bool ignore;
7069 
7070 	/* counter for the number of times this device was added to us */
7071 	u16 ref_nr;
7072 
7073 	/* private field for the users */
7074 	void *private;
7075 
7076 	struct list_head list;
7077 	struct rcu_head rcu;
7078 };
7079 
7080 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7081 						 struct list_head *adj_list)
7082 {
7083 	struct netdev_adjacent *adj;
7084 
7085 	list_for_each_entry(adj, adj_list, list) {
7086 		if (adj->dev == adj_dev)
7087 			return adj;
7088 	}
7089 	return NULL;
7090 }
7091 
7092 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7093 				    struct netdev_nested_priv *priv)
7094 {
7095 	struct net_device *dev = (struct net_device *)priv->data;
7096 
7097 	return upper_dev == dev;
7098 }
7099 
7100 /**
7101  * netdev_has_upper_dev - Check if device is linked to an upper device
7102  * @dev: device
7103  * @upper_dev: upper device to check
7104  *
7105  * Find out if a device is linked to specified upper device and return true
7106  * in case it is. Note that this checks only immediate upper device,
7107  * not through a complete stack of devices. The caller must hold the RTNL lock.
7108  */
7109 bool netdev_has_upper_dev(struct net_device *dev,
7110 			  struct net_device *upper_dev)
7111 {
7112 	struct netdev_nested_priv priv = {
7113 		.data = (void *)upper_dev,
7114 	};
7115 
7116 	ASSERT_RTNL();
7117 
7118 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7119 					     &priv);
7120 }
7121 EXPORT_SYMBOL(netdev_has_upper_dev);
7122 
7123 /**
7124  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7125  * @dev: device
7126  * @upper_dev: upper device to check
7127  *
7128  * Find out if a device is linked to specified upper device and return true
7129  * in case it is. Note that this checks the entire upper device chain.
7130  * The caller must hold rcu lock.
7131  */
7132 
7133 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7134 				  struct net_device *upper_dev)
7135 {
7136 	struct netdev_nested_priv priv = {
7137 		.data = (void *)upper_dev,
7138 	};
7139 
7140 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7141 					       &priv);
7142 }
7143 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7144 
7145 /**
7146  * netdev_has_any_upper_dev - Check if device is linked to some device
7147  * @dev: device
7148  *
7149  * Find out if a device is linked to an upper device and return true in case
7150  * it is. The caller must hold the RTNL lock.
7151  */
7152 bool netdev_has_any_upper_dev(struct net_device *dev)
7153 {
7154 	ASSERT_RTNL();
7155 
7156 	return !list_empty(&dev->adj_list.upper);
7157 }
7158 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7159 
7160 /**
7161  * netdev_master_upper_dev_get - Get master upper device
7162  * @dev: device
7163  *
7164  * Find a master upper device and return pointer to it or NULL in case
7165  * it's not there. The caller must hold the RTNL lock.
7166  */
7167 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7168 {
7169 	struct netdev_adjacent *upper;
7170 
7171 	ASSERT_RTNL();
7172 
7173 	if (list_empty(&dev->adj_list.upper))
7174 		return NULL;
7175 
7176 	upper = list_first_entry(&dev->adj_list.upper,
7177 				 struct netdev_adjacent, list);
7178 	if (likely(upper->master))
7179 		return upper->dev;
7180 	return NULL;
7181 }
7182 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7183 
7184 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7185 {
7186 	struct netdev_adjacent *upper;
7187 
7188 	ASSERT_RTNL();
7189 
7190 	if (list_empty(&dev->adj_list.upper))
7191 		return NULL;
7192 
7193 	upper = list_first_entry(&dev->adj_list.upper,
7194 				 struct netdev_adjacent, list);
7195 	if (likely(upper->master) && !upper->ignore)
7196 		return upper->dev;
7197 	return NULL;
7198 }
7199 
7200 /**
7201  * netdev_has_any_lower_dev - Check if device is linked to some device
7202  * @dev: device
7203  *
7204  * Find out if a device is linked to a lower device and return true in case
7205  * it is. The caller must hold the RTNL lock.
7206  */
7207 static bool netdev_has_any_lower_dev(struct net_device *dev)
7208 {
7209 	ASSERT_RTNL();
7210 
7211 	return !list_empty(&dev->adj_list.lower);
7212 }
7213 
7214 void *netdev_adjacent_get_private(struct list_head *adj_list)
7215 {
7216 	struct netdev_adjacent *adj;
7217 
7218 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7219 
7220 	return adj->private;
7221 }
7222 EXPORT_SYMBOL(netdev_adjacent_get_private);
7223 
7224 /**
7225  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7226  * @dev: device
7227  * @iter: list_head ** of the current position
7228  *
7229  * Gets the next device from the dev's upper list, starting from iter
7230  * position. The caller must hold RCU read lock.
7231  */
7232 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7233 						 struct list_head **iter)
7234 {
7235 	struct netdev_adjacent *upper;
7236 
7237 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7238 
7239 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7240 
7241 	if (&upper->list == &dev->adj_list.upper)
7242 		return NULL;
7243 
7244 	*iter = &upper->list;
7245 
7246 	return upper->dev;
7247 }
7248 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7249 
7250 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7251 						  struct list_head **iter,
7252 						  bool *ignore)
7253 {
7254 	struct netdev_adjacent *upper;
7255 
7256 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7257 
7258 	if (&upper->list == &dev->adj_list.upper)
7259 		return NULL;
7260 
7261 	*iter = &upper->list;
7262 	*ignore = upper->ignore;
7263 
7264 	return upper->dev;
7265 }
7266 
7267 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7268 						    struct list_head **iter)
7269 {
7270 	struct netdev_adjacent *upper;
7271 
7272 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7273 
7274 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7275 
7276 	if (&upper->list == &dev->adj_list.upper)
7277 		return NULL;
7278 
7279 	*iter = &upper->list;
7280 
7281 	return upper->dev;
7282 }
7283 
7284 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7285 				       int (*fn)(struct net_device *dev,
7286 					 struct netdev_nested_priv *priv),
7287 				       struct netdev_nested_priv *priv)
7288 {
7289 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7290 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7291 	int ret, cur = 0;
7292 	bool ignore;
7293 
7294 	now = dev;
7295 	iter = &dev->adj_list.upper;
7296 
7297 	while (1) {
7298 		if (now != dev) {
7299 			ret = fn(now, priv);
7300 			if (ret)
7301 				return ret;
7302 		}
7303 
7304 		next = NULL;
7305 		while (1) {
7306 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7307 			if (!udev)
7308 				break;
7309 			if (ignore)
7310 				continue;
7311 
7312 			next = udev;
7313 			niter = &udev->adj_list.upper;
7314 			dev_stack[cur] = now;
7315 			iter_stack[cur++] = iter;
7316 			break;
7317 		}
7318 
7319 		if (!next) {
7320 			if (!cur)
7321 				return 0;
7322 			next = dev_stack[--cur];
7323 			niter = iter_stack[cur];
7324 		}
7325 
7326 		now = next;
7327 		iter = niter;
7328 	}
7329 
7330 	return 0;
7331 }
7332 
7333 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7334 				  int (*fn)(struct net_device *dev,
7335 					    struct netdev_nested_priv *priv),
7336 				  struct netdev_nested_priv *priv)
7337 {
7338 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7339 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7340 	int ret, cur = 0;
7341 
7342 	now = dev;
7343 	iter = &dev->adj_list.upper;
7344 
7345 	while (1) {
7346 		if (now != dev) {
7347 			ret = fn(now, priv);
7348 			if (ret)
7349 				return ret;
7350 		}
7351 
7352 		next = NULL;
7353 		while (1) {
7354 			udev = netdev_next_upper_dev_rcu(now, &iter);
7355 			if (!udev)
7356 				break;
7357 
7358 			next = udev;
7359 			niter = &udev->adj_list.upper;
7360 			dev_stack[cur] = now;
7361 			iter_stack[cur++] = iter;
7362 			break;
7363 		}
7364 
7365 		if (!next) {
7366 			if (!cur)
7367 				return 0;
7368 			next = dev_stack[--cur];
7369 			niter = iter_stack[cur];
7370 		}
7371 
7372 		now = next;
7373 		iter = niter;
7374 	}
7375 
7376 	return 0;
7377 }
7378 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7379 
7380 static bool __netdev_has_upper_dev(struct net_device *dev,
7381 				   struct net_device *upper_dev)
7382 {
7383 	struct netdev_nested_priv priv = {
7384 		.flags = 0,
7385 		.data = (void *)upper_dev,
7386 	};
7387 
7388 	ASSERT_RTNL();
7389 
7390 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7391 					   &priv);
7392 }
7393 
7394 /**
7395  * netdev_lower_get_next_private - Get the next ->private from the
7396  *				   lower neighbour list
7397  * @dev: device
7398  * @iter: list_head ** of the current position
7399  *
7400  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7401  * list, starting from iter position. The caller must hold either hold the
7402  * RTNL lock or its own locking that guarantees that the neighbour lower
7403  * list will remain unchanged.
7404  */
7405 void *netdev_lower_get_next_private(struct net_device *dev,
7406 				    struct list_head **iter)
7407 {
7408 	struct netdev_adjacent *lower;
7409 
7410 	lower = list_entry(*iter, struct netdev_adjacent, list);
7411 
7412 	if (&lower->list == &dev->adj_list.lower)
7413 		return NULL;
7414 
7415 	*iter = lower->list.next;
7416 
7417 	return lower->private;
7418 }
7419 EXPORT_SYMBOL(netdev_lower_get_next_private);
7420 
7421 /**
7422  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7423  *				       lower neighbour list, RCU
7424  *				       variant
7425  * @dev: device
7426  * @iter: list_head ** of the current position
7427  *
7428  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7429  * list, starting from iter position. The caller must hold RCU read lock.
7430  */
7431 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7432 					struct list_head **iter)
7433 {
7434 	struct netdev_adjacent *lower;
7435 
7436 	WARN_ON_ONCE(!rcu_read_lock_held());
7437 
7438 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7439 
7440 	if (&lower->list == &dev->adj_list.lower)
7441 		return NULL;
7442 
7443 	*iter = &lower->list;
7444 
7445 	return lower->private;
7446 }
7447 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7448 
7449 /**
7450  * netdev_lower_get_next - Get the next device from the lower neighbour
7451  *                         list
7452  * @dev: device
7453  * @iter: list_head ** of the current position
7454  *
7455  * Gets the next netdev_adjacent from the dev's lower neighbour
7456  * list, starting from iter position. The caller must hold RTNL lock or
7457  * its own locking that guarantees that the neighbour lower
7458  * list will remain unchanged.
7459  */
7460 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7461 {
7462 	struct netdev_adjacent *lower;
7463 
7464 	lower = list_entry(*iter, struct netdev_adjacent, list);
7465 
7466 	if (&lower->list == &dev->adj_list.lower)
7467 		return NULL;
7468 
7469 	*iter = lower->list.next;
7470 
7471 	return lower->dev;
7472 }
7473 EXPORT_SYMBOL(netdev_lower_get_next);
7474 
7475 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7476 						struct list_head **iter)
7477 {
7478 	struct netdev_adjacent *lower;
7479 
7480 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7481 
7482 	if (&lower->list == &dev->adj_list.lower)
7483 		return NULL;
7484 
7485 	*iter = &lower->list;
7486 
7487 	return lower->dev;
7488 }
7489 
7490 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7491 						  struct list_head **iter,
7492 						  bool *ignore)
7493 {
7494 	struct netdev_adjacent *lower;
7495 
7496 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7497 
7498 	if (&lower->list == &dev->adj_list.lower)
7499 		return NULL;
7500 
7501 	*iter = &lower->list;
7502 	*ignore = lower->ignore;
7503 
7504 	return lower->dev;
7505 }
7506 
7507 int netdev_walk_all_lower_dev(struct net_device *dev,
7508 			      int (*fn)(struct net_device *dev,
7509 					struct netdev_nested_priv *priv),
7510 			      struct netdev_nested_priv *priv)
7511 {
7512 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7513 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7514 	int ret, cur = 0;
7515 
7516 	now = dev;
7517 	iter = &dev->adj_list.lower;
7518 
7519 	while (1) {
7520 		if (now != dev) {
7521 			ret = fn(now, priv);
7522 			if (ret)
7523 				return ret;
7524 		}
7525 
7526 		next = NULL;
7527 		while (1) {
7528 			ldev = netdev_next_lower_dev(now, &iter);
7529 			if (!ldev)
7530 				break;
7531 
7532 			next = ldev;
7533 			niter = &ldev->adj_list.lower;
7534 			dev_stack[cur] = now;
7535 			iter_stack[cur++] = iter;
7536 			break;
7537 		}
7538 
7539 		if (!next) {
7540 			if (!cur)
7541 				return 0;
7542 			next = dev_stack[--cur];
7543 			niter = iter_stack[cur];
7544 		}
7545 
7546 		now = next;
7547 		iter = niter;
7548 	}
7549 
7550 	return 0;
7551 }
7552 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7553 
7554 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7555 				       int (*fn)(struct net_device *dev,
7556 					 struct netdev_nested_priv *priv),
7557 				       struct netdev_nested_priv *priv)
7558 {
7559 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7560 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7561 	int ret, cur = 0;
7562 	bool ignore;
7563 
7564 	now = dev;
7565 	iter = &dev->adj_list.lower;
7566 
7567 	while (1) {
7568 		if (now != dev) {
7569 			ret = fn(now, priv);
7570 			if (ret)
7571 				return ret;
7572 		}
7573 
7574 		next = NULL;
7575 		while (1) {
7576 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7577 			if (!ldev)
7578 				break;
7579 			if (ignore)
7580 				continue;
7581 
7582 			next = ldev;
7583 			niter = &ldev->adj_list.lower;
7584 			dev_stack[cur] = now;
7585 			iter_stack[cur++] = iter;
7586 			break;
7587 		}
7588 
7589 		if (!next) {
7590 			if (!cur)
7591 				return 0;
7592 			next = dev_stack[--cur];
7593 			niter = iter_stack[cur];
7594 		}
7595 
7596 		now = next;
7597 		iter = niter;
7598 	}
7599 
7600 	return 0;
7601 }
7602 
7603 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7604 					     struct list_head **iter)
7605 {
7606 	struct netdev_adjacent *lower;
7607 
7608 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7609 	if (&lower->list == &dev->adj_list.lower)
7610 		return NULL;
7611 
7612 	*iter = &lower->list;
7613 
7614 	return lower->dev;
7615 }
7616 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7617 
7618 static u8 __netdev_upper_depth(struct net_device *dev)
7619 {
7620 	struct net_device *udev;
7621 	struct list_head *iter;
7622 	u8 max_depth = 0;
7623 	bool ignore;
7624 
7625 	for (iter = &dev->adj_list.upper,
7626 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7627 	     udev;
7628 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7629 		if (ignore)
7630 			continue;
7631 		if (max_depth < udev->upper_level)
7632 			max_depth = udev->upper_level;
7633 	}
7634 
7635 	return max_depth;
7636 }
7637 
7638 static u8 __netdev_lower_depth(struct net_device *dev)
7639 {
7640 	struct net_device *ldev;
7641 	struct list_head *iter;
7642 	u8 max_depth = 0;
7643 	bool ignore;
7644 
7645 	for (iter = &dev->adj_list.lower,
7646 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7647 	     ldev;
7648 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7649 		if (ignore)
7650 			continue;
7651 		if (max_depth < ldev->lower_level)
7652 			max_depth = ldev->lower_level;
7653 	}
7654 
7655 	return max_depth;
7656 }
7657 
7658 static int __netdev_update_upper_level(struct net_device *dev,
7659 				       struct netdev_nested_priv *__unused)
7660 {
7661 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7662 	return 0;
7663 }
7664 
7665 static int __netdev_update_lower_level(struct net_device *dev,
7666 				       struct netdev_nested_priv *priv)
7667 {
7668 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7669 
7670 #ifdef CONFIG_LOCKDEP
7671 	if (!priv)
7672 		return 0;
7673 
7674 	if (priv->flags & NESTED_SYNC_IMM)
7675 		dev->nested_level = dev->lower_level - 1;
7676 	if (priv->flags & NESTED_SYNC_TODO)
7677 		net_unlink_todo(dev);
7678 #endif
7679 	return 0;
7680 }
7681 
7682 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7683 				  int (*fn)(struct net_device *dev,
7684 					    struct netdev_nested_priv *priv),
7685 				  struct netdev_nested_priv *priv)
7686 {
7687 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7688 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7689 	int ret, cur = 0;
7690 
7691 	now = dev;
7692 	iter = &dev->adj_list.lower;
7693 
7694 	while (1) {
7695 		if (now != dev) {
7696 			ret = fn(now, priv);
7697 			if (ret)
7698 				return ret;
7699 		}
7700 
7701 		next = NULL;
7702 		while (1) {
7703 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7704 			if (!ldev)
7705 				break;
7706 
7707 			next = ldev;
7708 			niter = &ldev->adj_list.lower;
7709 			dev_stack[cur] = now;
7710 			iter_stack[cur++] = iter;
7711 			break;
7712 		}
7713 
7714 		if (!next) {
7715 			if (!cur)
7716 				return 0;
7717 			next = dev_stack[--cur];
7718 			niter = iter_stack[cur];
7719 		}
7720 
7721 		now = next;
7722 		iter = niter;
7723 	}
7724 
7725 	return 0;
7726 }
7727 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7728 
7729 /**
7730  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7731  *				       lower neighbour list, RCU
7732  *				       variant
7733  * @dev: device
7734  *
7735  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7736  * list. The caller must hold RCU read lock.
7737  */
7738 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7739 {
7740 	struct netdev_adjacent *lower;
7741 
7742 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7743 			struct netdev_adjacent, list);
7744 	if (lower)
7745 		return lower->private;
7746 	return NULL;
7747 }
7748 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7749 
7750 /**
7751  * netdev_master_upper_dev_get_rcu - Get master upper device
7752  * @dev: device
7753  *
7754  * Find a master upper device and return pointer to it or NULL in case
7755  * it's not there. The caller must hold the RCU read lock.
7756  */
7757 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7758 {
7759 	struct netdev_adjacent *upper;
7760 
7761 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7762 				       struct netdev_adjacent, list);
7763 	if (upper && likely(upper->master))
7764 		return upper->dev;
7765 	return NULL;
7766 }
7767 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7768 
7769 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7770 			      struct net_device *adj_dev,
7771 			      struct list_head *dev_list)
7772 {
7773 	char linkname[IFNAMSIZ+7];
7774 
7775 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7776 		"upper_%s" : "lower_%s", adj_dev->name);
7777 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7778 				 linkname);
7779 }
7780 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7781 			       char *name,
7782 			       struct list_head *dev_list)
7783 {
7784 	char linkname[IFNAMSIZ+7];
7785 
7786 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7787 		"upper_%s" : "lower_%s", name);
7788 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7789 }
7790 
7791 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7792 						 struct net_device *adj_dev,
7793 						 struct list_head *dev_list)
7794 {
7795 	return (dev_list == &dev->adj_list.upper ||
7796 		dev_list == &dev->adj_list.lower) &&
7797 		net_eq(dev_net(dev), dev_net(adj_dev));
7798 }
7799 
7800 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7801 					struct net_device *adj_dev,
7802 					struct list_head *dev_list,
7803 					void *private, bool master)
7804 {
7805 	struct netdev_adjacent *adj;
7806 	int ret;
7807 
7808 	adj = __netdev_find_adj(adj_dev, dev_list);
7809 
7810 	if (adj) {
7811 		adj->ref_nr += 1;
7812 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7813 			 dev->name, adj_dev->name, adj->ref_nr);
7814 
7815 		return 0;
7816 	}
7817 
7818 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7819 	if (!adj)
7820 		return -ENOMEM;
7821 
7822 	adj->dev = adj_dev;
7823 	adj->master = master;
7824 	adj->ref_nr = 1;
7825 	adj->private = private;
7826 	adj->ignore = false;
7827 	dev_hold(adj_dev);
7828 
7829 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7830 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7831 
7832 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7833 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7834 		if (ret)
7835 			goto free_adj;
7836 	}
7837 
7838 	/* Ensure that master link is always the first item in list. */
7839 	if (master) {
7840 		ret = sysfs_create_link(&(dev->dev.kobj),
7841 					&(adj_dev->dev.kobj), "master");
7842 		if (ret)
7843 			goto remove_symlinks;
7844 
7845 		list_add_rcu(&adj->list, dev_list);
7846 	} else {
7847 		list_add_tail_rcu(&adj->list, dev_list);
7848 	}
7849 
7850 	return 0;
7851 
7852 remove_symlinks:
7853 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7854 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7855 free_adj:
7856 	kfree(adj);
7857 	dev_put(adj_dev);
7858 
7859 	return ret;
7860 }
7861 
7862 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7863 					 struct net_device *adj_dev,
7864 					 u16 ref_nr,
7865 					 struct list_head *dev_list)
7866 {
7867 	struct netdev_adjacent *adj;
7868 
7869 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7870 		 dev->name, adj_dev->name, ref_nr);
7871 
7872 	adj = __netdev_find_adj(adj_dev, dev_list);
7873 
7874 	if (!adj) {
7875 		pr_err("Adjacency does not exist for device %s from %s\n",
7876 		       dev->name, adj_dev->name);
7877 		WARN_ON(1);
7878 		return;
7879 	}
7880 
7881 	if (adj->ref_nr > ref_nr) {
7882 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7883 			 dev->name, adj_dev->name, ref_nr,
7884 			 adj->ref_nr - ref_nr);
7885 		adj->ref_nr -= ref_nr;
7886 		return;
7887 	}
7888 
7889 	if (adj->master)
7890 		sysfs_remove_link(&(dev->dev.kobj), "master");
7891 
7892 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7893 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7894 
7895 	list_del_rcu(&adj->list);
7896 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7897 		 adj_dev->name, dev->name, adj_dev->name);
7898 	dev_put(adj_dev);
7899 	kfree_rcu(adj, rcu);
7900 }
7901 
7902 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7903 					    struct net_device *upper_dev,
7904 					    struct list_head *up_list,
7905 					    struct list_head *down_list,
7906 					    void *private, bool master)
7907 {
7908 	int ret;
7909 
7910 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7911 					   private, master);
7912 	if (ret)
7913 		return ret;
7914 
7915 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7916 					   private, false);
7917 	if (ret) {
7918 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7919 		return ret;
7920 	}
7921 
7922 	return 0;
7923 }
7924 
7925 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7926 					       struct net_device *upper_dev,
7927 					       u16 ref_nr,
7928 					       struct list_head *up_list,
7929 					       struct list_head *down_list)
7930 {
7931 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7932 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7933 }
7934 
7935 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7936 						struct net_device *upper_dev,
7937 						void *private, bool master)
7938 {
7939 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7940 						&dev->adj_list.upper,
7941 						&upper_dev->adj_list.lower,
7942 						private, master);
7943 }
7944 
7945 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7946 						   struct net_device *upper_dev)
7947 {
7948 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7949 					   &dev->adj_list.upper,
7950 					   &upper_dev->adj_list.lower);
7951 }
7952 
7953 static int __netdev_upper_dev_link(struct net_device *dev,
7954 				   struct net_device *upper_dev, bool master,
7955 				   void *upper_priv, void *upper_info,
7956 				   struct netdev_nested_priv *priv,
7957 				   struct netlink_ext_ack *extack)
7958 {
7959 	struct netdev_notifier_changeupper_info changeupper_info = {
7960 		.info = {
7961 			.dev = dev,
7962 			.extack = extack,
7963 		},
7964 		.upper_dev = upper_dev,
7965 		.master = master,
7966 		.linking = true,
7967 		.upper_info = upper_info,
7968 	};
7969 	struct net_device *master_dev;
7970 	int ret = 0;
7971 
7972 	ASSERT_RTNL();
7973 
7974 	if (dev == upper_dev)
7975 		return -EBUSY;
7976 
7977 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7978 	if (__netdev_has_upper_dev(upper_dev, dev))
7979 		return -EBUSY;
7980 
7981 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7982 		return -EMLINK;
7983 
7984 	if (!master) {
7985 		if (__netdev_has_upper_dev(dev, upper_dev))
7986 			return -EEXIST;
7987 	} else {
7988 		master_dev = __netdev_master_upper_dev_get(dev);
7989 		if (master_dev)
7990 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7991 	}
7992 
7993 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7994 					    &changeupper_info.info);
7995 	ret = notifier_to_errno(ret);
7996 	if (ret)
7997 		return ret;
7998 
7999 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8000 						   master);
8001 	if (ret)
8002 		return ret;
8003 
8004 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8005 					    &changeupper_info.info);
8006 	ret = notifier_to_errno(ret);
8007 	if (ret)
8008 		goto rollback;
8009 
8010 	__netdev_update_upper_level(dev, NULL);
8011 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8012 
8013 	__netdev_update_lower_level(upper_dev, priv);
8014 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8015 				    priv);
8016 
8017 	return 0;
8018 
8019 rollback:
8020 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8021 
8022 	return ret;
8023 }
8024 
8025 /**
8026  * netdev_upper_dev_link - Add a link to the upper device
8027  * @dev: device
8028  * @upper_dev: new upper device
8029  * @extack: netlink extended ack
8030  *
8031  * Adds a link to device which is upper to this one. The caller must hold
8032  * the RTNL lock. On a failure a negative errno code is returned.
8033  * On success the reference counts are adjusted and the function
8034  * returns zero.
8035  */
8036 int netdev_upper_dev_link(struct net_device *dev,
8037 			  struct net_device *upper_dev,
8038 			  struct netlink_ext_ack *extack)
8039 {
8040 	struct netdev_nested_priv priv = {
8041 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8042 		.data = NULL,
8043 	};
8044 
8045 	return __netdev_upper_dev_link(dev, upper_dev, false,
8046 				       NULL, NULL, &priv, extack);
8047 }
8048 EXPORT_SYMBOL(netdev_upper_dev_link);
8049 
8050 /**
8051  * netdev_master_upper_dev_link - Add a master link to the upper device
8052  * @dev: device
8053  * @upper_dev: new upper device
8054  * @upper_priv: upper device private
8055  * @upper_info: upper info to be passed down via notifier
8056  * @extack: netlink extended ack
8057  *
8058  * Adds a link to device which is upper to this one. In this case, only
8059  * one master upper device can be linked, although other non-master devices
8060  * might be linked as well. The caller must hold the RTNL lock.
8061  * On a failure a negative errno code is returned. On success the reference
8062  * counts are adjusted and the function returns zero.
8063  */
8064 int netdev_master_upper_dev_link(struct net_device *dev,
8065 				 struct net_device *upper_dev,
8066 				 void *upper_priv, void *upper_info,
8067 				 struct netlink_ext_ack *extack)
8068 {
8069 	struct netdev_nested_priv priv = {
8070 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8071 		.data = NULL,
8072 	};
8073 
8074 	return __netdev_upper_dev_link(dev, upper_dev, true,
8075 				       upper_priv, upper_info, &priv, extack);
8076 }
8077 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8078 
8079 static void __netdev_upper_dev_unlink(struct net_device *dev,
8080 				      struct net_device *upper_dev,
8081 				      struct netdev_nested_priv *priv)
8082 {
8083 	struct netdev_notifier_changeupper_info changeupper_info = {
8084 		.info = {
8085 			.dev = dev,
8086 		},
8087 		.upper_dev = upper_dev,
8088 		.linking = false,
8089 	};
8090 
8091 	ASSERT_RTNL();
8092 
8093 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8094 
8095 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8096 				      &changeupper_info.info);
8097 
8098 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8099 
8100 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8101 				      &changeupper_info.info);
8102 
8103 	__netdev_update_upper_level(dev, NULL);
8104 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8105 
8106 	__netdev_update_lower_level(upper_dev, priv);
8107 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8108 				    priv);
8109 }
8110 
8111 /**
8112  * netdev_upper_dev_unlink - Removes a link to upper device
8113  * @dev: device
8114  * @upper_dev: new upper device
8115  *
8116  * Removes a link to device which is upper to this one. The caller must hold
8117  * the RTNL lock.
8118  */
8119 void netdev_upper_dev_unlink(struct net_device *dev,
8120 			     struct net_device *upper_dev)
8121 {
8122 	struct netdev_nested_priv priv = {
8123 		.flags = NESTED_SYNC_TODO,
8124 		.data = NULL,
8125 	};
8126 
8127 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8128 }
8129 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8130 
8131 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8132 				      struct net_device *lower_dev,
8133 				      bool val)
8134 {
8135 	struct netdev_adjacent *adj;
8136 
8137 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8138 	if (adj)
8139 		adj->ignore = val;
8140 
8141 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8142 	if (adj)
8143 		adj->ignore = val;
8144 }
8145 
8146 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8147 					struct net_device *lower_dev)
8148 {
8149 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8150 }
8151 
8152 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8153 				       struct net_device *lower_dev)
8154 {
8155 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8156 }
8157 
8158 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8159 				   struct net_device *new_dev,
8160 				   struct net_device *dev,
8161 				   struct netlink_ext_ack *extack)
8162 {
8163 	struct netdev_nested_priv priv = {
8164 		.flags = 0,
8165 		.data = NULL,
8166 	};
8167 	int err;
8168 
8169 	if (!new_dev)
8170 		return 0;
8171 
8172 	if (old_dev && new_dev != old_dev)
8173 		netdev_adjacent_dev_disable(dev, old_dev);
8174 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8175 				      extack);
8176 	if (err) {
8177 		if (old_dev && new_dev != old_dev)
8178 			netdev_adjacent_dev_enable(dev, old_dev);
8179 		return err;
8180 	}
8181 
8182 	return 0;
8183 }
8184 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8185 
8186 void netdev_adjacent_change_commit(struct net_device *old_dev,
8187 				   struct net_device *new_dev,
8188 				   struct net_device *dev)
8189 {
8190 	struct netdev_nested_priv priv = {
8191 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8192 		.data = NULL,
8193 	};
8194 
8195 	if (!new_dev || !old_dev)
8196 		return;
8197 
8198 	if (new_dev == old_dev)
8199 		return;
8200 
8201 	netdev_adjacent_dev_enable(dev, old_dev);
8202 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8203 }
8204 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8205 
8206 void netdev_adjacent_change_abort(struct net_device *old_dev,
8207 				  struct net_device *new_dev,
8208 				  struct net_device *dev)
8209 {
8210 	struct netdev_nested_priv priv = {
8211 		.flags = 0,
8212 		.data = NULL,
8213 	};
8214 
8215 	if (!new_dev)
8216 		return;
8217 
8218 	if (old_dev && new_dev != old_dev)
8219 		netdev_adjacent_dev_enable(dev, old_dev);
8220 
8221 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8222 }
8223 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8224 
8225 /**
8226  * netdev_bonding_info_change - Dispatch event about slave change
8227  * @dev: device
8228  * @bonding_info: info to dispatch
8229  *
8230  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8231  * The caller must hold the RTNL lock.
8232  */
8233 void netdev_bonding_info_change(struct net_device *dev,
8234 				struct netdev_bonding_info *bonding_info)
8235 {
8236 	struct netdev_notifier_bonding_info info = {
8237 		.info.dev = dev,
8238 	};
8239 
8240 	memcpy(&info.bonding_info, bonding_info,
8241 	       sizeof(struct netdev_bonding_info));
8242 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8243 				      &info.info);
8244 }
8245 EXPORT_SYMBOL(netdev_bonding_info_change);
8246 
8247 /**
8248  * netdev_get_xmit_slave - Get the xmit slave of master device
8249  * @dev: device
8250  * @skb: The packet
8251  * @all_slaves: assume all the slaves are active
8252  *
8253  * The reference counters are not incremented so the caller must be
8254  * careful with locks. The caller must hold RCU lock.
8255  * %NULL is returned if no slave is found.
8256  */
8257 
8258 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8259 					 struct sk_buff *skb,
8260 					 bool all_slaves)
8261 {
8262 	const struct net_device_ops *ops = dev->netdev_ops;
8263 
8264 	if (!ops->ndo_get_xmit_slave)
8265 		return NULL;
8266 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8267 }
8268 EXPORT_SYMBOL(netdev_get_xmit_slave);
8269 
8270 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8271 						  struct sock *sk)
8272 {
8273 	const struct net_device_ops *ops = dev->netdev_ops;
8274 
8275 	if (!ops->ndo_sk_get_lower_dev)
8276 		return NULL;
8277 	return ops->ndo_sk_get_lower_dev(dev, sk);
8278 }
8279 
8280 /**
8281  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8282  * @dev: device
8283  * @sk: the socket
8284  *
8285  * %NULL is returned if no lower device is found.
8286  */
8287 
8288 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8289 					    struct sock *sk)
8290 {
8291 	struct net_device *lower;
8292 
8293 	lower = netdev_sk_get_lower_dev(dev, sk);
8294 	while (lower) {
8295 		dev = lower;
8296 		lower = netdev_sk_get_lower_dev(dev, sk);
8297 	}
8298 
8299 	return dev;
8300 }
8301 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8302 
8303 static void netdev_adjacent_add_links(struct net_device *dev)
8304 {
8305 	struct netdev_adjacent *iter;
8306 
8307 	struct net *net = dev_net(dev);
8308 
8309 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8310 		if (!net_eq(net, dev_net(iter->dev)))
8311 			continue;
8312 		netdev_adjacent_sysfs_add(iter->dev, dev,
8313 					  &iter->dev->adj_list.lower);
8314 		netdev_adjacent_sysfs_add(dev, iter->dev,
8315 					  &dev->adj_list.upper);
8316 	}
8317 
8318 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8319 		if (!net_eq(net, dev_net(iter->dev)))
8320 			continue;
8321 		netdev_adjacent_sysfs_add(iter->dev, dev,
8322 					  &iter->dev->adj_list.upper);
8323 		netdev_adjacent_sysfs_add(dev, iter->dev,
8324 					  &dev->adj_list.lower);
8325 	}
8326 }
8327 
8328 static void netdev_adjacent_del_links(struct net_device *dev)
8329 {
8330 	struct netdev_adjacent *iter;
8331 
8332 	struct net *net = dev_net(dev);
8333 
8334 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8335 		if (!net_eq(net, dev_net(iter->dev)))
8336 			continue;
8337 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8338 					  &iter->dev->adj_list.lower);
8339 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8340 					  &dev->adj_list.upper);
8341 	}
8342 
8343 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8344 		if (!net_eq(net, dev_net(iter->dev)))
8345 			continue;
8346 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8347 					  &iter->dev->adj_list.upper);
8348 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8349 					  &dev->adj_list.lower);
8350 	}
8351 }
8352 
8353 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8354 {
8355 	struct netdev_adjacent *iter;
8356 
8357 	struct net *net = dev_net(dev);
8358 
8359 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8360 		if (!net_eq(net, dev_net(iter->dev)))
8361 			continue;
8362 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8363 					  &iter->dev->adj_list.lower);
8364 		netdev_adjacent_sysfs_add(iter->dev, dev,
8365 					  &iter->dev->adj_list.lower);
8366 	}
8367 
8368 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8369 		if (!net_eq(net, dev_net(iter->dev)))
8370 			continue;
8371 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8372 					  &iter->dev->adj_list.upper);
8373 		netdev_adjacent_sysfs_add(iter->dev, dev,
8374 					  &iter->dev->adj_list.upper);
8375 	}
8376 }
8377 
8378 void *netdev_lower_dev_get_private(struct net_device *dev,
8379 				   struct net_device *lower_dev)
8380 {
8381 	struct netdev_adjacent *lower;
8382 
8383 	if (!lower_dev)
8384 		return NULL;
8385 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8386 	if (!lower)
8387 		return NULL;
8388 
8389 	return lower->private;
8390 }
8391 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8392 
8393 
8394 /**
8395  * netdev_lower_state_changed - Dispatch event about lower device state change
8396  * @lower_dev: device
8397  * @lower_state_info: state to dispatch
8398  *
8399  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8400  * The caller must hold the RTNL lock.
8401  */
8402 void netdev_lower_state_changed(struct net_device *lower_dev,
8403 				void *lower_state_info)
8404 {
8405 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8406 		.info.dev = lower_dev,
8407 	};
8408 
8409 	ASSERT_RTNL();
8410 	changelowerstate_info.lower_state_info = lower_state_info;
8411 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8412 				      &changelowerstate_info.info);
8413 }
8414 EXPORT_SYMBOL(netdev_lower_state_changed);
8415 
8416 static void dev_change_rx_flags(struct net_device *dev, int flags)
8417 {
8418 	const struct net_device_ops *ops = dev->netdev_ops;
8419 
8420 	if (ops->ndo_change_rx_flags)
8421 		ops->ndo_change_rx_flags(dev, flags);
8422 }
8423 
8424 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8425 {
8426 	unsigned int old_flags = dev->flags;
8427 	kuid_t uid;
8428 	kgid_t gid;
8429 
8430 	ASSERT_RTNL();
8431 
8432 	dev->flags |= IFF_PROMISC;
8433 	dev->promiscuity += inc;
8434 	if (dev->promiscuity == 0) {
8435 		/*
8436 		 * Avoid overflow.
8437 		 * If inc causes overflow, untouch promisc and return error.
8438 		 */
8439 		if (inc < 0)
8440 			dev->flags &= ~IFF_PROMISC;
8441 		else {
8442 			dev->promiscuity -= inc;
8443 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8444 				dev->name);
8445 			return -EOVERFLOW;
8446 		}
8447 	}
8448 	if (dev->flags != old_flags) {
8449 		pr_info("device %s %s promiscuous mode\n",
8450 			dev->name,
8451 			dev->flags & IFF_PROMISC ? "entered" : "left");
8452 		if (audit_enabled) {
8453 			current_uid_gid(&uid, &gid);
8454 			audit_log(audit_context(), GFP_ATOMIC,
8455 				  AUDIT_ANOM_PROMISCUOUS,
8456 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8457 				  dev->name, (dev->flags & IFF_PROMISC),
8458 				  (old_flags & IFF_PROMISC),
8459 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8460 				  from_kuid(&init_user_ns, uid),
8461 				  from_kgid(&init_user_ns, gid),
8462 				  audit_get_sessionid(current));
8463 		}
8464 
8465 		dev_change_rx_flags(dev, IFF_PROMISC);
8466 	}
8467 	if (notify)
8468 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8469 	return 0;
8470 }
8471 
8472 /**
8473  *	dev_set_promiscuity	- update promiscuity count on a device
8474  *	@dev: device
8475  *	@inc: modifier
8476  *
8477  *	Add or remove promiscuity from a device. While the count in the device
8478  *	remains above zero the interface remains promiscuous. Once it hits zero
8479  *	the device reverts back to normal filtering operation. A negative inc
8480  *	value is used to drop promiscuity on the device.
8481  *	Return 0 if successful or a negative errno code on error.
8482  */
8483 int dev_set_promiscuity(struct net_device *dev, int inc)
8484 {
8485 	unsigned int old_flags = dev->flags;
8486 	int err;
8487 
8488 	err = __dev_set_promiscuity(dev, inc, true);
8489 	if (err < 0)
8490 		return err;
8491 	if (dev->flags != old_flags)
8492 		dev_set_rx_mode(dev);
8493 	return err;
8494 }
8495 EXPORT_SYMBOL(dev_set_promiscuity);
8496 
8497 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8498 {
8499 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8500 
8501 	ASSERT_RTNL();
8502 
8503 	dev->flags |= IFF_ALLMULTI;
8504 	dev->allmulti += inc;
8505 	if (dev->allmulti == 0) {
8506 		/*
8507 		 * Avoid overflow.
8508 		 * If inc causes overflow, untouch allmulti and return error.
8509 		 */
8510 		if (inc < 0)
8511 			dev->flags &= ~IFF_ALLMULTI;
8512 		else {
8513 			dev->allmulti -= inc;
8514 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8515 				dev->name);
8516 			return -EOVERFLOW;
8517 		}
8518 	}
8519 	if (dev->flags ^ old_flags) {
8520 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8521 		dev_set_rx_mode(dev);
8522 		if (notify)
8523 			__dev_notify_flags(dev, old_flags,
8524 					   dev->gflags ^ old_gflags);
8525 	}
8526 	return 0;
8527 }
8528 
8529 /**
8530  *	dev_set_allmulti	- update allmulti count on a device
8531  *	@dev: device
8532  *	@inc: modifier
8533  *
8534  *	Add or remove reception of all multicast frames to a device. While the
8535  *	count in the device remains above zero the interface remains listening
8536  *	to all interfaces. Once it hits zero the device reverts back to normal
8537  *	filtering operation. A negative @inc value is used to drop the counter
8538  *	when releasing a resource needing all multicasts.
8539  *	Return 0 if successful or a negative errno code on error.
8540  */
8541 
8542 int dev_set_allmulti(struct net_device *dev, int inc)
8543 {
8544 	return __dev_set_allmulti(dev, inc, true);
8545 }
8546 EXPORT_SYMBOL(dev_set_allmulti);
8547 
8548 /*
8549  *	Upload unicast and multicast address lists to device and
8550  *	configure RX filtering. When the device doesn't support unicast
8551  *	filtering it is put in promiscuous mode while unicast addresses
8552  *	are present.
8553  */
8554 void __dev_set_rx_mode(struct net_device *dev)
8555 {
8556 	const struct net_device_ops *ops = dev->netdev_ops;
8557 
8558 	/* dev_open will call this function so the list will stay sane. */
8559 	if (!(dev->flags&IFF_UP))
8560 		return;
8561 
8562 	if (!netif_device_present(dev))
8563 		return;
8564 
8565 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8566 		/* Unicast addresses changes may only happen under the rtnl,
8567 		 * therefore calling __dev_set_promiscuity here is safe.
8568 		 */
8569 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8570 			__dev_set_promiscuity(dev, 1, false);
8571 			dev->uc_promisc = true;
8572 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8573 			__dev_set_promiscuity(dev, -1, false);
8574 			dev->uc_promisc = false;
8575 		}
8576 	}
8577 
8578 	if (ops->ndo_set_rx_mode)
8579 		ops->ndo_set_rx_mode(dev);
8580 }
8581 
8582 void dev_set_rx_mode(struct net_device *dev)
8583 {
8584 	netif_addr_lock_bh(dev);
8585 	__dev_set_rx_mode(dev);
8586 	netif_addr_unlock_bh(dev);
8587 }
8588 
8589 /**
8590  *	dev_get_flags - get flags reported to userspace
8591  *	@dev: device
8592  *
8593  *	Get the combination of flag bits exported through APIs to userspace.
8594  */
8595 unsigned int dev_get_flags(const struct net_device *dev)
8596 {
8597 	unsigned int flags;
8598 
8599 	flags = (dev->flags & ~(IFF_PROMISC |
8600 				IFF_ALLMULTI |
8601 				IFF_RUNNING |
8602 				IFF_LOWER_UP |
8603 				IFF_DORMANT)) |
8604 		(dev->gflags & (IFF_PROMISC |
8605 				IFF_ALLMULTI));
8606 
8607 	if (netif_running(dev)) {
8608 		if (netif_oper_up(dev))
8609 			flags |= IFF_RUNNING;
8610 		if (netif_carrier_ok(dev))
8611 			flags |= IFF_LOWER_UP;
8612 		if (netif_dormant(dev))
8613 			flags |= IFF_DORMANT;
8614 	}
8615 
8616 	return flags;
8617 }
8618 EXPORT_SYMBOL(dev_get_flags);
8619 
8620 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8621 		       struct netlink_ext_ack *extack)
8622 {
8623 	unsigned int old_flags = dev->flags;
8624 	int ret;
8625 
8626 	ASSERT_RTNL();
8627 
8628 	/*
8629 	 *	Set the flags on our device.
8630 	 */
8631 
8632 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8633 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8634 			       IFF_AUTOMEDIA)) |
8635 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8636 				    IFF_ALLMULTI));
8637 
8638 	/*
8639 	 *	Load in the correct multicast list now the flags have changed.
8640 	 */
8641 
8642 	if ((old_flags ^ flags) & IFF_MULTICAST)
8643 		dev_change_rx_flags(dev, IFF_MULTICAST);
8644 
8645 	dev_set_rx_mode(dev);
8646 
8647 	/*
8648 	 *	Have we downed the interface. We handle IFF_UP ourselves
8649 	 *	according to user attempts to set it, rather than blindly
8650 	 *	setting it.
8651 	 */
8652 
8653 	ret = 0;
8654 	if ((old_flags ^ flags) & IFF_UP) {
8655 		if (old_flags & IFF_UP)
8656 			__dev_close(dev);
8657 		else
8658 			ret = __dev_open(dev, extack);
8659 	}
8660 
8661 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8662 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8663 		unsigned int old_flags = dev->flags;
8664 
8665 		dev->gflags ^= IFF_PROMISC;
8666 
8667 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8668 			if (dev->flags != old_flags)
8669 				dev_set_rx_mode(dev);
8670 	}
8671 
8672 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8673 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8674 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8675 	 */
8676 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8677 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8678 
8679 		dev->gflags ^= IFF_ALLMULTI;
8680 		__dev_set_allmulti(dev, inc, false);
8681 	}
8682 
8683 	return ret;
8684 }
8685 
8686 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8687 			unsigned int gchanges)
8688 {
8689 	unsigned int changes = dev->flags ^ old_flags;
8690 
8691 	if (gchanges)
8692 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8693 
8694 	if (changes & IFF_UP) {
8695 		if (dev->flags & IFF_UP)
8696 			call_netdevice_notifiers(NETDEV_UP, dev);
8697 		else
8698 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8699 	}
8700 
8701 	if (dev->flags & IFF_UP &&
8702 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8703 		struct netdev_notifier_change_info change_info = {
8704 			.info = {
8705 				.dev = dev,
8706 			},
8707 			.flags_changed = changes,
8708 		};
8709 
8710 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8711 	}
8712 }
8713 
8714 /**
8715  *	dev_change_flags - change device settings
8716  *	@dev: device
8717  *	@flags: device state flags
8718  *	@extack: netlink extended ack
8719  *
8720  *	Change settings on device based state flags. The flags are
8721  *	in the userspace exported format.
8722  */
8723 int dev_change_flags(struct net_device *dev, unsigned int flags,
8724 		     struct netlink_ext_ack *extack)
8725 {
8726 	int ret;
8727 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8728 
8729 	ret = __dev_change_flags(dev, flags, extack);
8730 	if (ret < 0)
8731 		return ret;
8732 
8733 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8734 	__dev_notify_flags(dev, old_flags, changes);
8735 	return ret;
8736 }
8737 EXPORT_SYMBOL(dev_change_flags);
8738 
8739 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8740 {
8741 	const struct net_device_ops *ops = dev->netdev_ops;
8742 
8743 	if (ops->ndo_change_mtu)
8744 		return ops->ndo_change_mtu(dev, new_mtu);
8745 
8746 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8747 	WRITE_ONCE(dev->mtu, new_mtu);
8748 	return 0;
8749 }
8750 EXPORT_SYMBOL(__dev_set_mtu);
8751 
8752 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8753 		     struct netlink_ext_ack *extack)
8754 {
8755 	/* MTU must be positive, and in range */
8756 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8757 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8758 		return -EINVAL;
8759 	}
8760 
8761 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8762 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8763 		return -EINVAL;
8764 	}
8765 	return 0;
8766 }
8767 
8768 /**
8769  *	dev_set_mtu_ext - Change maximum transfer unit
8770  *	@dev: device
8771  *	@new_mtu: new transfer unit
8772  *	@extack: netlink extended ack
8773  *
8774  *	Change the maximum transfer size of the network device.
8775  */
8776 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8777 		    struct netlink_ext_ack *extack)
8778 {
8779 	int err, orig_mtu;
8780 
8781 	if (new_mtu == dev->mtu)
8782 		return 0;
8783 
8784 	err = dev_validate_mtu(dev, new_mtu, extack);
8785 	if (err)
8786 		return err;
8787 
8788 	if (!netif_device_present(dev))
8789 		return -ENODEV;
8790 
8791 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8792 	err = notifier_to_errno(err);
8793 	if (err)
8794 		return err;
8795 
8796 	orig_mtu = dev->mtu;
8797 	err = __dev_set_mtu(dev, new_mtu);
8798 
8799 	if (!err) {
8800 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8801 						   orig_mtu);
8802 		err = notifier_to_errno(err);
8803 		if (err) {
8804 			/* setting mtu back and notifying everyone again,
8805 			 * so that they have a chance to revert changes.
8806 			 */
8807 			__dev_set_mtu(dev, orig_mtu);
8808 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8809 						     new_mtu);
8810 		}
8811 	}
8812 	return err;
8813 }
8814 
8815 int dev_set_mtu(struct net_device *dev, int new_mtu)
8816 {
8817 	struct netlink_ext_ack extack;
8818 	int err;
8819 
8820 	memset(&extack, 0, sizeof(extack));
8821 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8822 	if (err && extack._msg)
8823 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8824 	return err;
8825 }
8826 EXPORT_SYMBOL(dev_set_mtu);
8827 
8828 /**
8829  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8830  *	@dev: device
8831  *	@new_len: new tx queue length
8832  */
8833 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8834 {
8835 	unsigned int orig_len = dev->tx_queue_len;
8836 	int res;
8837 
8838 	if (new_len != (unsigned int)new_len)
8839 		return -ERANGE;
8840 
8841 	if (new_len != orig_len) {
8842 		dev->tx_queue_len = new_len;
8843 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8844 		res = notifier_to_errno(res);
8845 		if (res)
8846 			goto err_rollback;
8847 		res = dev_qdisc_change_tx_queue_len(dev);
8848 		if (res)
8849 			goto err_rollback;
8850 	}
8851 
8852 	return 0;
8853 
8854 err_rollback:
8855 	netdev_err(dev, "refused to change device tx_queue_len\n");
8856 	dev->tx_queue_len = orig_len;
8857 	return res;
8858 }
8859 
8860 /**
8861  *	dev_set_group - Change group this device belongs to
8862  *	@dev: device
8863  *	@new_group: group this device should belong to
8864  */
8865 void dev_set_group(struct net_device *dev, int new_group)
8866 {
8867 	dev->group = new_group;
8868 }
8869 EXPORT_SYMBOL(dev_set_group);
8870 
8871 /**
8872  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8873  *	@dev: device
8874  *	@addr: new address
8875  *	@extack: netlink extended ack
8876  */
8877 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8878 			      struct netlink_ext_ack *extack)
8879 {
8880 	struct netdev_notifier_pre_changeaddr_info info = {
8881 		.info.dev = dev,
8882 		.info.extack = extack,
8883 		.dev_addr = addr,
8884 	};
8885 	int rc;
8886 
8887 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8888 	return notifier_to_errno(rc);
8889 }
8890 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8891 
8892 /**
8893  *	dev_set_mac_address - Change Media Access Control Address
8894  *	@dev: device
8895  *	@sa: new address
8896  *	@extack: netlink extended ack
8897  *
8898  *	Change the hardware (MAC) address of the device
8899  */
8900 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8901 			struct netlink_ext_ack *extack)
8902 {
8903 	const struct net_device_ops *ops = dev->netdev_ops;
8904 	int err;
8905 
8906 	if (!ops->ndo_set_mac_address)
8907 		return -EOPNOTSUPP;
8908 	if (sa->sa_family != dev->type)
8909 		return -EINVAL;
8910 	if (!netif_device_present(dev))
8911 		return -ENODEV;
8912 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8913 	if (err)
8914 		return err;
8915 	err = ops->ndo_set_mac_address(dev, sa);
8916 	if (err)
8917 		return err;
8918 	dev->addr_assign_type = NET_ADDR_SET;
8919 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8920 	add_device_randomness(dev->dev_addr, dev->addr_len);
8921 	return 0;
8922 }
8923 EXPORT_SYMBOL(dev_set_mac_address);
8924 
8925 static DECLARE_RWSEM(dev_addr_sem);
8926 
8927 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8928 			     struct netlink_ext_ack *extack)
8929 {
8930 	int ret;
8931 
8932 	down_write(&dev_addr_sem);
8933 	ret = dev_set_mac_address(dev, sa, extack);
8934 	up_write(&dev_addr_sem);
8935 	return ret;
8936 }
8937 EXPORT_SYMBOL(dev_set_mac_address_user);
8938 
8939 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8940 {
8941 	size_t size = sizeof(sa->sa_data);
8942 	struct net_device *dev;
8943 	int ret = 0;
8944 
8945 	down_read(&dev_addr_sem);
8946 	rcu_read_lock();
8947 
8948 	dev = dev_get_by_name_rcu(net, dev_name);
8949 	if (!dev) {
8950 		ret = -ENODEV;
8951 		goto unlock;
8952 	}
8953 	if (!dev->addr_len)
8954 		memset(sa->sa_data, 0, size);
8955 	else
8956 		memcpy(sa->sa_data, dev->dev_addr,
8957 		       min_t(size_t, size, dev->addr_len));
8958 	sa->sa_family = dev->type;
8959 
8960 unlock:
8961 	rcu_read_unlock();
8962 	up_read(&dev_addr_sem);
8963 	return ret;
8964 }
8965 EXPORT_SYMBOL(dev_get_mac_address);
8966 
8967 /**
8968  *	dev_change_carrier - Change device carrier
8969  *	@dev: device
8970  *	@new_carrier: new value
8971  *
8972  *	Change device carrier
8973  */
8974 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8975 {
8976 	const struct net_device_ops *ops = dev->netdev_ops;
8977 
8978 	if (!ops->ndo_change_carrier)
8979 		return -EOPNOTSUPP;
8980 	if (!netif_device_present(dev))
8981 		return -ENODEV;
8982 	return ops->ndo_change_carrier(dev, new_carrier);
8983 }
8984 EXPORT_SYMBOL(dev_change_carrier);
8985 
8986 /**
8987  *	dev_get_phys_port_id - Get device physical port ID
8988  *	@dev: device
8989  *	@ppid: port ID
8990  *
8991  *	Get device physical port ID
8992  */
8993 int dev_get_phys_port_id(struct net_device *dev,
8994 			 struct netdev_phys_item_id *ppid)
8995 {
8996 	const struct net_device_ops *ops = dev->netdev_ops;
8997 
8998 	if (!ops->ndo_get_phys_port_id)
8999 		return -EOPNOTSUPP;
9000 	return ops->ndo_get_phys_port_id(dev, ppid);
9001 }
9002 EXPORT_SYMBOL(dev_get_phys_port_id);
9003 
9004 /**
9005  *	dev_get_phys_port_name - Get device physical port name
9006  *	@dev: device
9007  *	@name: port name
9008  *	@len: limit of bytes to copy to name
9009  *
9010  *	Get device physical port name
9011  */
9012 int dev_get_phys_port_name(struct net_device *dev,
9013 			   char *name, size_t len)
9014 {
9015 	const struct net_device_ops *ops = dev->netdev_ops;
9016 	int err;
9017 
9018 	if (ops->ndo_get_phys_port_name) {
9019 		err = ops->ndo_get_phys_port_name(dev, name, len);
9020 		if (err != -EOPNOTSUPP)
9021 			return err;
9022 	}
9023 	return devlink_compat_phys_port_name_get(dev, name, len);
9024 }
9025 EXPORT_SYMBOL(dev_get_phys_port_name);
9026 
9027 /**
9028  *	dev_get_port_parent_id - Get the device's port parent identifier
9029  *	@dev: network device
9030  *	@ppid: pointer to a storage for the port's parent identifier
9031  *	@recurse: allow/disallow recursion to lower devices
9032  *
9033  *	Get the devices's port parent identifier
9034  */
9035 int dev_get_port_parent_id(struct net_device *dev,
9036 			   struct netdev_phys_item_id *ppid,
9037 			   bool recurse)
9038 {
9039 	const struct net_device_ops *ops = dev->netdev_ops;
9040 	struct netdev_phys_item_id first = { };
9041 	struct net_device *lower_dev;
9042 	struct list_head *iter;
9043 	int err;
9044 
9045 	if (ops->ndo_get_port_parent_id) {
9046 		err = ops->ndo_get_port_parent_id(dev, ppid);
9047 		if (err != -EOPNOTSUPP)
9048 			return err;
9049 	}
9050 
9051 	err = devlink_compat_switch_id_get(dev, ppid);
9052 	if (!err || err != -EOPNOTSUPP)
9053 		return err;
9054 
9055 	if (!recurse)
9056 		return -EOPNOTSUPP;
9057 
9058 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9059 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9060 		if (err)
9061 			break;
9062 		if (!first.id_len)
9063 			first = *ppid;
9064 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9065 			return -EOPNOTSUPP;
9066 	}
9067 
9068 	return err;
9069 }
9070 EXPORT_SYMBOL(dev_get_port_parent_id);
9071 
9072 /**
9073  *	netdev_port_same_parent_id - Indicate if two network devices have
9074  *	the same port parent identifier
9075  *	@a: first network device
9076  *	@b: second network device
9077  */
9078 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9079 {
9080 	struct netdev_phys_item_id a_id = { };
9081 	struct netdev_phys_item_id b_id = { };
9082 
9083 	if (dev_get_port_parent_id(a, &a_id, true) ||
9084 	    dev_get_port_parent_id(b, &b_id, true))
9085 		return false;
9086 
9087 	return netdev_phys_item_id_same(&a_id, &b_id);
9088 }
9089 EXPORT_SYMBOL(netdev_port_same_parent_id);
9090 
9091 /**
9092  *	dev_change_proto_down - update protocol port state information
9093  *	@dev: device
9094  *	@proto_down: new value
9095  *
9096  *	This info can be used by switch drivers to set the phys state of the
9097  *	port.
9098  */
9099 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9100 {
9101 	const struct net_device_ops *ops = dev->netdev_ops;
9102 
9103 	if (!ops->ndo_change_proto_down)
9104 		return -EOPNOTSUPP;
9105 	if (!netif_device_present(dev))
9106 		return -ENODEV;
9107 	return ops->ndo_change_proto_down(dev, proto_down);
9108 }
9109 EXPORT_SYMBOL(dev_change_proto_down);
9110 
9111 /**
9112  *	dev_change_proto_down_generic - generic implementation for
9113  * 	ndo_change_proto_down that sets carrier according to
9114  * 	proto_down.
9115  *
9116  *	@dev: device
9117  *	@proto_down: new value
9118  */
9119 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9120 {
9121 	if (proto_down)
9122 		netif_carrier_off(dev);
9123 	else
9124 		netif_carrier_on(dev);
9125 	dev->proto_down = proto_down;
9126 	return 0;
9127 }
9128 EXPORT_SYMBOL(dev_change_proto_down_generic);
9129 
9130 /**
9131  *	dev_change_proto_down_reason - proto down reason
9132  *
9133  *	@dev: device
9134  *	@mask: proto down mask
9135  *	@value: proto down value
9136  */
9137 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9138 				  u32 value)
9139 {
9140 	int b;
9141 
9142 	if (!mask) {
9143 		dev->proto_down_reason = value;
9144 	} else {
9145 		for_each_set_bit(b, &mask, 32) {
9146 			if (value & (1 << b))
9147 				dev->proto_down_reason |= BIT(b);
9148 			else
9149 				dev->proto_down_reason &= ~BIT(b);
9150 		}
9151 	}
9152 }
9153 EXPORT_SYMBOL(dev_change_proto_down_reason);
9154 
9155 struct bpf_xdp_link {
9156 	struct bpf_link link;
9157 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9158 	int flags;
9159 };
9160 
9161 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9162 {
9163 	if (flags & XDP_FLAGS_HW_MODE)
9164 		return XDP_MODE_HW;
9165 	if (flags & XDP_FLAGS_DRV_MODE)
9166 		return XDP_MODE_DRV;
9167 	if (flags & XDP_FLAGS_SKB_MODE)
9168 		return XDP_MODE_SKB;
9169 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9170 }
9171 
9172 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9173 {
9174 	switch (mode) {
9175 	case XDP_MODE_SKB:
9176 		return generic_xdp_install;
9177 	case XDP_MODE_DRV:
9178 	case XDP_MODE_HW:
9179 		return dev->netdev_ops->ndo_bpf;
9180 	default:
9181 		return NULL;
9182 	}
9183 }
9184 
9185 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9186 					 enum bpf_xdp_mode mode)
9187 {
9188 	return dev->xdp_state[mode].link;
9189 }
9190 
9191 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9192 				     enum bpf_xdp_mode mode)
9193 {
9194 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9195 
9196 	if (link)
9197 		return link->link.prog;
9198 	return dev->xdp_state[mode].prog;
9199 }
9200 
9201 static u8 dev_xdp_prog_count(struct net_device *dev)
9202 {
9203 	u8 count = 0;
9204 	int i;
9205 
9206 	for (i = 0; i < __MAX_XDP_MODE; i++)
9207 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9208 			count++;
9209 	return count;
9210 }
9211 
9212 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9213 {
9214 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9215 
9216 	return prog ? prog->aux->id : 0;
9217 }
9218 
9219 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9220 			     struct bpf_xdp_link *link)
9221 {
9222 	dev->xdp_state[mode].link = link;
9223 	dev->xdp_state[mode].prog = NULL;
9224 }
9225 
9226 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9227 			     struct bpf_prog *prog)
9228 {
9229 	dev->xdp_state[mode].link = NULL;
9230 	dev->xdp_state[mode].prog = prog;
9231 }
9232 
9233 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9234 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9235 			   u32 flags, struct bpf_prog *prog)
9236 {
9237 	struct netdev_bpf xdp;
9238 	int err;
9239 
9240 	memset(&xdp, 0, sizeof(xdp));
9241 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9242 	xdp.extack = extack;
9243 	xdp.flags = flags;
9244 	xdp.prog = prog;
9245 
9246 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9247 	 * "moved" into driver), so they don't increment it on their own, but
9248 	 * they do decrement refcnt when program is detached or replaced.
9249 	 * Given net_device also owns link/prog, we need to bump refcnt here
9250 	 * to prevent drivers from underflowing it.
9251 	 */
9252 	if (prog)
9253 		bpf_prog_inc(prog);
9254 	err = bpf_op(dev, &xdp);
9255 	if (err) {
9256 		if (prog)
9257 			bpf_prog_put(prog);
9258 		return err;
9259 	}
9260 
9261 	if (mode != XDP_MODE_HW)
9262 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9263 
9264 	return 0;
9265 }
9266 
9267 static void dev_xdp_uninstall(struct net_device *dev)
9268 {
9269 	struct bpf_xdp_link *link;
9270 	struct bpf_prog *prog;
9271 	enum bpf_xdp_mode mode;
9272 	bpf_op_t bpf_op;
9273 
9274 	ASSERT_RTNL();
9275 
9276 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9277 		prog = dev_xdp_prog(dev, mode);
9278 		if (!prog)
9279 			continue;
9280 
9281 		bpf_op = dev_xdp_bpf_op(dev, mode);
9282 		if (!bpf_op)
9283 			continue;
9284 
9285 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9286 
9287 		/* auto-detach link from net device */
9288 		link = dev_xdp_link(dev, mode);
9289 		if (link)
9290 			link->dev = NULL;
9291 		else
9292 			bpf_prog_put(prog);
9293 
9294 		dev_xdp_set_link(dev, mode, NULL);
9295 	}
9296 }
9297 
9298 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9299 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9300 			  struct bpf_prog *old_prog, u32 flags)
9301 {
9302 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9303 	struct bpf_prog *cur_prog;
9304 	enum bpf_xdp_mode mode;
9305 	bpf_op_t bpf_op;
9306 	int err;
9307 
9308 	ASSERT_RTNL();
9309 
9310 	/* either link or prog attachment, never both */
9311 	if (link && (new_prog || old_prog))
9312 		return -EINVAL;
9313 	/* link supports only XDP mode flags */
9314 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9315 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9316 		return -EINVAL;
9317 	}
9318 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9319 	if (num_modes > 1) {
9320 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9321 		return -EINVAL;
9322 	}
9323 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9324 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9325 		NL_SET_ERR_MSG(extack,
9326 			       "More than one program loaded, unset mode is ambiguous");
9327 		return -EINVAL;
9328 	}
9329 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9330 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9331 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9332 		return -EINVAL;
9333 	}
9334 
9335 	mode = dev_xdp_mode(dev, flags);
9336 	/* can't replace attached link */
9337 	if (dev_xdp_link(dev, mode)) {
9338 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9339 		return -EBUSY;
9340 	}
9341 
9342 	cur_prog = dev_xdp_prog(dev, mode);
9343 	/* can't replace attached prog with link */
9344 	if (link && cur_prog) {
9345 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9346 		return -EBUSY;
9347 	}
9348 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9349 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9350 		return -EEXIST;
9351 	}
9352 
9353 	/* put effective new program into new_prog */
9354 	if (link)
9355 		new_prog = link->link.prog;
9356 
9357 	if (new_prog) {
9358 		bool offload = mode == XDP_MODE_HW;
9359 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9360 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9361 
9362 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9363 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9364 			return -EBUSY;
9365 		}
9366 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9367 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9368 			return -EEXIST;
9369 		}
9370 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9371 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9372 			return -EINVAL;
9373 		}
9374 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9375 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9376 			return -EINVAL;
9377 		}
9378 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9379 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9380 			return -EINVAL;
9381 		}
9382 	}
9383 
9384 	/* don't call drivers if the effective program didn't change */
9385 	if (new_prog != cur_prog) {
9386 		bpf_op = dev_xdp_bpf_op(dev, mode);
9387 		if (!bpf_op) {
9388 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9389 			return -EOPNOTSUPP;
9390 		}
9391 
9392 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9393 		if (err)
9394 			return err;
9395 	}
9396 
9397 	if (link)
9398 		dev_xdp_set_link(dev, mode, link);
9399 	else
9400 		dev_xdp_set_prog(dev, mode, new_prog);
9401 	if (cur_prog)
9402 		bpf_prog_put(cur_prog);
9403 
9404 	return 0;
9405 }
9406 
9407 static int dev_xdp_attach_link(struct net_device *dev,
9408 			       struct netlink_ext_ack *extack,
9409 			       struct bpf_xdp_link *link)
9410 {
9411 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9412 }
9413 
9414 static int dev_xdp_detach_link(struct net_device *dev,
9415 			       struct netlink_ext_ack *extack,
9416 			       struct bpf_xdp_link *link)
9417 {
9418 	enum bpf_xdp_mode mode;
9419 	bpf_op_t bpf_op;
9420 
9421 	ASSERT_RTNL();
9422 
9423 	mode = dev_xdp_mode(dev, link->flags);
9424 	if (dev_xdp_link(dev, mode) != link)
9425 		return -EINVAL;
9426 
9427 	bpf_op = dev_xdp_bpf_op(dev, mode);
9428 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9429 	dev_xdp_set_link(dev, mode, NULL);
9430 	return 0;
9431 }
9432 
9433 static void bpf_xdp_link_release(struct bpf_link *link)
9434 {
9435 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9436 
9437 	rtnl_lock();
9438 
9439 	/* if racing with net_device's tear down, xdp_link->dev might be
9440 	 * already NULL, in which case link was already auto-detached
9441 	 */
9442 	if (xdp_link->dev) {
9443 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9444 		xdp_link->dev = NULL;
9445 	}
9446 
9447 	rtnl_unlock();
9448 }
9449 
9450 static int bpf_xdp_link_detach(struct bpf_link *link)
9451 {
9452 	bpf_xdp_link_release(link);
9453 	return 0;
9454 }
9455 
9456 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9457 {
9458 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9459 
9460 	kfree(xdp_link);
9461 }
9462 
9463 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9464 				     struct seq_file *seq)
9465 {
9466 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9467 	u32 ifindex = 0;
9468 
9469 	rtnl_lock();
9470 	if (xdp_link->dev)
9471 		ifindex = xdp_link->dev->ifindex;
9472 	rtnl_unlock();
9473 
9474 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9475 }
9476 
9477 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9478 				       struct bpf_link_info *info)
9479 {
9480 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9481 	u32 ifindex = 0;
9482 
9483 	rtnl_lock();
9484 	if (xdp_link->dev)
9485 		ifindex = xdp_link->dev->ifindex;
9486 	rtnl_unlock();
9487 
9488 	info->xdp.ifindex = ifindex;
9489 	return 0;
9490 }
9491 
9492 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9493 			       struct bpf_prog *old_prog)
9494 {
9495 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9496 	enum bpf_xdp_mode mode;
9497 	bpf_op_t bpf_op;
9498 	int err = 0;
9499 
9500 	rtnl_lock();
9501 
9502 	/* link might have been auto-released already, so fail */
9503 	if (!xdp_link->dev) {
9504 		err = -ENOLINK;
9505 		goto out_unlock;
9506 	}
9507 
9508 	if (old_prog && link->prog != old_prog) {
9509 		err = -EPERM;
9510 		goto out_unlock;
9511 	}
9512 	old_prog = link->prog;
9513 	if (old_prog == new_prog) {
9514 		/* no-op, don't disturb drivers */
9515 		bpf_prog_put(new_prog);
9516 		goto out_unlock;
9517 	}
9518 
9519 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9520 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9521 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9522 			      xdp_link->flags, new_prog);
9523 	if (err)
9524 		goto out_unlock;
9525 
9526 	old_prog = xchg(&link->prog, new_prog);
9527 	bpf_prog_put(old_prog);
9528 
9529 out_unlock:
9530 	rtnl_unlock();
9531 	return err;
9532 }
9533 
9534 static const struct bpf_link_ops bpf_xdp_link_lops = {
9535 	.release = bpf_xdp_link_release,
9536 	.dealloc = bpf_xdp_link_dealloc,
9537 	.detach = bpf_xdp_link_detach,
9538 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9539 	.fill_link_info = bpf_xdp_link_fill_link_info,
9540 	.update_prog = bpf_xdp_link_update,
9541 };
9542 
9543 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9544 {
9545 	struct net *net = current->nsproxy->net_ns;
9546 	struct bpf_link_primer link_primer;
9547 	struct bpf_xdp_link *link;
9548 	struct net_device *dev;
9549 	int err, fd;
9550 
9551 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9552 	if (!dev)
9553 		return -EINVAL;
9554 
9555 	link = kzalloc(sizeof(*link), GFP_USER);
9556 	if (!link) {
9557 		err = -ENOMEM;
9558 		goto out_put_dev;
9559 	}
9560 
9561 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9562 	link->dev = dev;
9563 	link->flags = attr->link_create.flags;
9564 
9565 	err = bpf_link_prime(&link->link, &link_primer);
9566 	if (err) {
9567 		kfree(link);
9568 		goto out_put_dev;
9569 	}
9570 
9571 	rtnl_lock();
9572 	err = dev_xdp_attach_link(dev, NULL, link);
9573 	rtnl_unlock();
9574 
9575 	if (err) {
9576 		bpf_link_cleanup(&link_primer);
9577 		goto out_put_dev;
9578 	}
9579 
9580 	fd = bpf_link_settle(&link_primer);
9581 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9582 	dev_put(dev);
9583 	return fd;
9584 
9585 out_put_dev:
9586 	dev_put(dev);
9587 	return err;
9588 }
9589 
9590 /**
9591  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9592  *	@dev: device
9593  *	@extack: netlink extended ack
9594  *	@fd: new program fd or negative value to clear
9595  *	@expected_fd: old program fd that userspace expects to replace or clear
9596  *	@flags: xdp-related flags
9597  *
9598  *	Set or clear a bpf program for a device
9599  */
9600 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9601 		      int fd, int expected_fd, u32 flags)
9602 {
9603 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9604 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9605 	int err;
9606 
9607 	ASSERT_RTNL();
9608 
9609 	if (fd >= 0) {
9610 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9611 						 mode != XDP_MODE_SKB);
9612 		if (IS_ERR(new_prog))
9613 			return PTR_ERR(new_prog);
9614 	}
9615 
9616 	if (expected_fd >= 0) {
9617 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9618 						 mode != XDP_MODE_SKB);
9619 		if (IS_ERR(old_prog)) {
9620 			err = PTR_ERR(old_prog);
9621 			old_prog = NULL;
9622 			goto err_out;
9623 		}
9624 	}
9625 
9626 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9627 
9628 err_out:
9629 	if (err && new_prog)
9630 		bpf_prog_put(new_prog);
9631 	if (old_prog)
9632 		bpf_prog_put(old_prog);
9633 	return err;
9634 }
9635 
9636 /**
9637  *	dev_new_index	-	allocate an ifindex
9638  *	@net: the applicable net namespace
9639  *
9640  *	Returns a suitable unique value for a new device interface
9641  *	number.  The caller must hold the rtnl semaphore or the
9642  *	dev_base_lock to be sure it remains unique.
9643  */
9644 static int dev_new_index(struct net *net)
9645 {
9646 	int ifindex = net->ifindex;
9647 
9648 	for (;;) {
9649 		if (++ifindex <= 0)
9650 			ifindex = 1;
9651 		if (!__dev_get_by_index(net, ifindex))
9652 			return net->ifindex = ifindex;
9653 	}
9654 }
9655 
9656 /* Delayed registration/unregisteration */
9657 static LIST_HEAD(net_todo_list);
9658 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9659 
9660 static void net_set_todo(struct net_device *dev)
9661 {
9662 	list_add_tail(&dev->todo_list, &net_todo_list);
9663 	dev_net(dev)->dev_unreg_count++;
9664 }
9665 
9666 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9667 	struct net_device *upper, netdev_features_t features)
9668 {
9669 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9670 	netdev_features_t feature;
9671 	int feature_bit;
9672 
9673 	for_each_netdev_feature(upper_disables, feature_bit) {
9674 		feature = __NETIF_F_BIT(feature_bit);
9675 		if (!(upper->wanted_features & feature)
9676 		    && (features & feature)) {
9677 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9678 				   &feature, upper->name);
9679 			features &= ~feature;
9680 		}
9681 	}
9682 
9683 	return features;
9684 }
9685 
9686 static void netdev_sync_lower_features(struct net_device *upper,
9687 	struct net_device *lower, netdev_features_t features)
9688 {
9689 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9690 	netdev_features_t feature;
9691 	int feature_bit;
9692 
9693 	for_each_netdev_feature(upper_disables, feature_bit) {
9694 		feature = __NETIF_F_BIT(feature_bit);
9695 		if (!(features & feature) && (lower->features & feature)) {
9696 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9697 				   &feature, lower->name);
9698 			lower->wanted_features &= ~feature;
9699 			__netdev_update_features(lower);
9700 
9701 			if (unlikely(lower->features & feature))
9702 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9703 					    &feature, lower->name);
9704 			else
9705 				netdev_features_change(lower);
9706 		}
9707 	}
9708 }
9709 
9710 static netdev_features_t netdev_fix_features(struct net_device *dev,
9711 	netdev_features_t features)
9712 {
9713 	/* Fix illegal checksum combinations */
9714 	if ((features & NETIF_F_HW_CSUM) &&
9715 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9716 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9717 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9718 	}
9719 
9720 	/* TSO requires that SG is present as well. */
9721 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9722 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9723 		features &= ~NETIF_F_ALL_TSO;
9724 	}
9725 
9726 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9727 					!(features & NETIF_F_IP_CSUM)) {
9728 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9729 		features &= ~NETIF_F_TSO;
9730 		features &= ~NETIF_F_TSO_ECN;
9731 	}
9732 
9733 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9734 					 !(features & NETIF_F_IPV6_CSUM)) {
9735 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9736 		features &= ~NETIF_F_TSO6;
9737 	}
9738 
9739 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9740 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9741 		features &= ~NETIF_F_TSO_MANGLEID;
9742 
9743 	/* TSO ECN requires that TSO is present as well. */
9744 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9745 		features &= ~NETIF_F_TSO_ECN;
9746 
9747 	/* Software GSO depends on SG. */
9748 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9749 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9750 		features &= ~NETIF_F_GSO;
9751 	}
9752 
9753 	/* GSO partial features require GSO partial be set */
9754 	if ((features & dev->gso_partial_features) &&
9755 	    !(features & NETIF_F_GSO_PARTIAL)) {
9756 		netdev_dbg(dev,
9757 			   "Dropping partially supported GSO features since no GSO partial.\n");
9758 		features &= ~dev->gso_partial_features;
9759 	}
9760 
9761 	if (!(features & NETIF_F_RXCSUM)) {
9762 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9763 		 * successfully merged by hardware must also have the
9764 		 * checksum verified by hardware.  If the user does not
9765 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9766 		 */
9767 		if (features & NETIF_F_GRO_HW) {
9768 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9769 			features &= ~NETIF_F_GRO_HW;
9770 		}
9771 	}
9772 
9773 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9774 	if (features & NETIF_F_RXFCS) {
9775 		if (features & NETIF_F_LRO) {
9776 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9777 			features &= ~NETIF_F_LRO;
9778 		}
9779 
9780 		if (features & NETIF_F_GRO_HW) {
9781 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9782 			features &= ~NETIF_F_GRO_HW;
9783 		}
9784 	}
9785 
9786 	if (features & NETIF_F_HW_TLS_TX) {
9787 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9788 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9789 		bool hw_csum = features & NETIF_F_HW_CSUM;
9790 
9791 		if (!ip_csum && !hw_csum) {
9792 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9793 			features &= ~NETIF_F_HW_TLS_TX;
9794 		}
9795 	}
9796 
9797 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9798 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9799 		features &= ~NETIF_F_HW_TLS_RX;
9800 	}
9801 
9802 	return features;
9803 }
9804 
9805 int __netdev_update_features(struct net_device *dev)
9806 {
9807 	struct net_device *upper, *lower;
9808 	netdev_features_t features;
9809 	struct list_head *iter;
9810 	int err = -1;
9811 
9812 	ASSERT_RTNL();
9813 
9814 	features = netdev_get_wanted_features(dev);
9815 
9816 	if (dev->netdev_ops->ndo_fix_features)
9817 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9818 
9819 	/* driver might be less strict about feature dependencies */
9820 	features = netdev_fix_features(dev, features);
9821 
9822 	/* some features can't be enabled if they're off on an upper device */
9823 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9824 		features = netdev_sync_upper_features(dev, upper, features);
9825 
9826 	if (dev->features == features)
9827 		goto sync_lower;
9828 
9829 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9830 		&dev->features, &features);
9831 
9832 	if (dev->netdev_ops->ndo_set_features)
9833 		err = dev->netdev_ops->ndo_set_features(dev, features);
9834 	else
9835 		err = 0;
9836 
9837 	if (unlikely(err < 0)) {
9838 		netdev_err(dev,
9839 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9840 			err, &features, &dev->features);
9841 		/* return non-0 since some features might have changed and
9842 		 * it's better to fire a spurious notification than miss it
9843 		 */
9844 		return -1;
9845 	}
9846 
9847 sync_lower:
9848 	/* some features must be disabled on lower devices when disabled
9849 	 * on an upper device (think: bonding master or bridge)
9850 	 */
9851 	netdev_for_each_lower_dev(dev, lower, iter)
9852 		netdev_sync_lower_features(dev, lower, features);
9853 
9854 	if (!err) {
9855 		netdev_features_t diff = features ^ dev->features;
9856 
9857 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9858 			/* udp_tunnel_{get,drop}_rx_info both need
9859 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9860 			 * device, or they won't do anything.
9861 			 * Thus we need to update dev->features
9862 			 * *before* calling udp_tunnel_get_rx_info,
9863 			 * but *after* calling udp_tunnel_drop_rx_info.
9864 			 */
9865 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9866 				dev->features = features;
9867 				udp_tunnel_get_rx_info(dev);
9868 			} else {
9869 				udp_tunnel_drop_rx_info(dev);
9870 			}
9871 		}
9872 
9873 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9874 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9875 				dev->features = features;
9876 				err |= vlan_get_rx_ctag_filter_info(dev);
9877 			} else {
9878 				vlan_drop_rx_ctag_filter_info(dev);
9879 			}
9880 		}
9881 
9882 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9883 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9884 				dev->features = features;
9885 				err |= vlan_get_rx_stag_filter_info(dev);
9886 			} else {
9887 				vlan_drop_rx_stag_filter_info(dev);
9888 			}
9889 		}
9890 
9891 		dev->features = features;
9892 	}
9893 
9894 	return err < 0 ? 0 : 1;
9895 }
9896 
9897 /**
9898  *	netdev_update_features - recalculate device features
9899  *	@dev: the device to check
9900  *
9901  *	Recalculate dev->features set and send notifications if it
9902  *	has changed. Should be called after driver or hardware dependent
9903  *	conditions might have changed that influence the features.
9904  */
9905 void netdev_update_features(struct net_device *dev)
9906 {
9907 	if (__netdev_update_features(dev))
9908 		netdev_features_change(dev);
9909 }
9910 EXPORT_SYMBOL(netdev_update_features);
9911 
9912 /**
9913  *	netdev_change_features - recalculate device features
9914  *	@dev: the device to check
9915  *
9916  *	Recalculate dev->features set and send notifications even
9917  *	if they have not changed. Should be called instead of
9918  *	netdev_update_features() if also dev->vlan_features might
9919  *	have changed to allow the changes to be propagated to stacked
9920  *	VLAN devices.
9921  */
9922 void netdev_change_features(struct net_device *dev)
9923 {
9924 	__netdev_update_features(dev);
9925 	netdev_features_change(dev);
9926 }
9927 EXPORT_SYMBOL(netdev_change_features);
9928 
9929 /**
9930  *	netif_stacked_transfer_operstate -	transfer operstate
9931  *	@rootdev: the root or lower level device to transfer state from
9932  *	@dev: the device to transfer operstate to
9933  *
9934  *	Transfer operational state from root to device. This is normally
9935  *	called when a stacking relationship exists between the root
9936  *	device and the device(a leaf device).
9937  */
9938 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9939 					struct net_device *dev)
9940 {
9941 	if (rootdev->operstate == IF_OPER_DORMANT)
9942 		netif_dormant_on(dev);
9943 	else
9944 		netif_dormant_off(dev);
9945 
9946 	if (rootdev->operstate == IF_OPER_TESTING)
9947 		netif_testing_on(dev);
9948 	else
9949 		netif_testing_off(dev);
9950 
9951 	if (netif_carrier_ok(rootdev))
9952 		netif_carrier_on(dev);
9953 	else
9954 		netif_carrier_off(dev);
9955 }
9956 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9957 
9958 static int netif_alloc_rx_queues(struct net_device *dev)
9959 {
9960 	unsigned int i, count = dev->num_rx_queues;
9961 	struct netdev_rx_queue *rx;
9962 	size_t sz = count * sizeof(*rx);
9963 	int err = 0;
9964 
9965 	BUG_ON(count < 1);
9966 
9967 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9968 	if (!rx)
9969 		return -ENOMEM;
9970 
9971 	dev->_rx = rx;
9972 
9973 	for (i = 0; i < count; i++) {
9974 		rx[i].dev = dev;
9975 
9976 		/* XDP RX-queue setup */
9977 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9978 		if (err < 0)
9979 			goto err_rxq_info;
9980 	}
9981 	return 0;
9982 
9983 err_rxq_info:
9984 	/* Rollback successful reg's and free other resources */
9985 	while (i--)
9986 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9987 	kvfree(dev->_rx);
9988 	dev->_rx = NULL;
9989 	return err;
9990 }
9991 
9992 static void netif_free_rx_queues(struct net_device *dev)
9993 {
9994 	unsigned int i, count = dev->num_rx_queues;
9995 
9996 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9997 	if (!dev->_rx)
9998 		return;
9999 
10000 	for (i = 0; i < count; i++)
10001 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10002 
10003 	kvfree(dev->_rx);
10004 }
10005 
10006 static void netdev_init_one_queue(struct net_device *dev,
10007 				  struct netdev_queue *queue, void *_unused)
10008 {
10009 	/* Initialize queue lock */
10010 	spin_lock_init(&queue->_xmit_lock);
10011 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10012 	queue->xmit_lock_owner = -1;
10013 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10014 	queue->dev = dev;
10015 #ifdef CONFIG_BQL
10016 	dql_init(&queue->dql, HZ);
10017 #endif
10018 }
10019 
10020 static void netif_free_tx_queues(struct net_device *dev)
10021 {
10022 	kvfree(dev->_tx);
10023 }
10024 
10025 static int netif_alloc_netdev_queues(struct net_device *dev)
10026 {
10027 	unsigned int count = dev->num_tx_queues;
10028 	struct netdev_queue *tx;
10029 	size_t sz = count * sizeof(*tx);
10030 
10031 	if (count < 1 || count > 0xffff)
10032 		return -EINVAL;
10033 
10034 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10035 	if (!tx)
10036 		return -ENOMEM;
10037 
10038 	dev->_tx = tx;
10039 
10040 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10041 	spin_lock_init(&dev->tx_global_lock);
10042 
10043 	return 0;
10044 }
10045 
10046 void netif_tx_stop_all_queues(struct net_device *dev)
10047 {
10048 	unsigned int i;
10049 
10050 	for (i = 0; i < dev->num_tx_queues; i++) {
10051 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10052 
10053 		netif_tx_stop_queue(txq);
10054 	}
10055 }
10056 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10057 
10058 /**
10059  *	register_netdevice	- register a network device
10060  *	@dev: device to register
10061  *
10062  *	Take a completed network device structure and add it to the kernel
10063  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10064  *	chain. 0 is returned on success. A negative errno code is returned
10065  *	on a failure to set up the device, or if the name is a duplicate.
10066  *
10067  *	Callers must hold the rtnl semaphore. You may want
10068  *	register_netdev() instead of this.
10069  *
10070  *	BUGS:
10071  *	The locking appears insufficient to guarantee two parallel registers
10072  *	will not get the same name.
10073  */
10074 
10075 int register_netdevice(struct net_device *dev)
10076 {
10077 	int ret;
10078 	struct net *net = dev_net(dev);
10079 
10080 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10081 		     NETDEV_FEATURE_COUNT);
10082 	BUG_ON(dev_boot_phase);
10083 	ASSERT_RTNL();
10084 
10085 	might_sleep();
10086 
10087 	/* When net_device's are persistent, this will be fatal. */
10088 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10089 	BUG_ON(!net);
10090 
10091 	ret = ethtool_check_ops(dev->ethtool_ops);
10092 	if (ret)
10093 		return ret;
10094 
10095 	spin_lock_init(&dev->addr_list_lock);
10096 	netdev_set_addr_lockdep_class(dev);
10097 
10098 	ret = dev_get_valid_name(net, dev, dev->name);
10099 	if (ret < 0)
10100 		goto out;
10101 
10102 	ret = -ENOMEM;
10103 	dev->name_node = netdev_name_node_head_alloc(dev);
10104 	if (!dev->name_node)
10105 		goto out;
10106 
10107 	/* Init, if this function is available */
10108 	if (dev->netdev_ops->ndo_init) {
10109 		ret = dev->netdev_ops->ndo_init(dev);
10110 		if (ret) {
10111 			if (ret > 0)
10112 				ret = -EIO;
10113 			goto err_free_name;
10114 		}
10115 	}
10116 
10117 	if (((dev->hw_features | dev->features) &
10118 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10119 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10120 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10121 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10122 		ret = -EINVAL;
10123 		goto err_uninit;
10124 	}
10125 
10126 	ret = -EBUSY;
10127 	if (!dev->ifindex)
10128 		dev->ifindex = dev_new_index(net);
10129 	else if (__dev_get_by_index(net, dev->ifindex))
10130 		goto err_uninit;
10131 
10132 	/* Transfer changeable features to wanted_features and enable
10133 	 * software offloads (GSO and GRO).
10134 	 */
10135 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10136 	dev->features |= NETIF_F_SOFT_FEATURES;
10137 
10138 	if (dev->udp_tunnel_nic_info) {
10139 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10140 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10141 	}
10142 
10143 	dev->wanted_features = dev->features & dev->hw_features;
10144 
10145 	if (!(dev->flags & IFF_LOOPBACK))
10146 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10147 
10148 	/* If IPv4 TCP segmentation offload is supported we should also
10149 	 * allow the device to enable segmenting the frame with the option
10150 	 * of ignoring a static IP ID value.  This doesn't enable the
10151 	 * feature itself but allows the user to enable it later.
10152 	 */
10153 	if (dev->hw_features & NETIF_F_TSO)
10154 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10155 	if (dev->vlan_features & NETIF_F_TSO)
10156 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10157 	if (dev->mpls_features & NETIF_F_TSO)
10158 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10159 	if (dev->hw_enc_features & NETIF_F_TSO)
10160 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10161 
10162 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10163 	 */
10164 	dev->vlan_features |= NETIF_F_HIGHDMA;
10165 
10166 	/* Make NETIF_F_SG inheritable to tunnel devices.
10167 	 */
10168 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10169 
10170 	/* Make NETIF_F_SG inheritable to MPLS.
10171 	 */
10172 	dev->mpls_features |= NETIF_F_SG;
10173 
10174 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10175 	ret = notifier_to_errno(ret);
10176 	if (ret)
10177 		goto err_uninit;
10178 
10179 	ret = netdev_register_kobject(dev);
10180 	if (ret) {
10181 		dev->reg_state = NETREG_UNREGISTERED;
10182 		goto err_uninit;
10183 	}
10184 	dev->reg_state = NETREG_REGISTERED;
10185 
10186 	__netdev_update_features(dev);
10187 
10188 	/*
10189 	 *	Default initial state at registry is that the
10190 	 *	device is present.
10191 	 */
10192 
10193 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10194 
10195 	linkwatch_init_dev(dev);
10196 
10197 	dev_init_scheduler(dev);
10198 	dev_hold(dev);
10199 	list_netdevice(dev);
10200 	add_device_randomness(dev->dev_addr, dev->addr_len);
10201 
10202 	/* If the device has permanent device address, driver should
10203 	 * set dev_addr and also addr_assign_type should be set to
10204 	 * NET_ADDR_PERM (default value).
10205 	 */
10206 	if (dev->addr_assign_type == NET_ADDR_PERM)
10207 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10208 
10209 	/* Notify protocols, that a new device appeared. */
10210 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10211 	ret = notifier_to_errno(ret);
10212 	if (ret) {
10213 		/* Expect explicit free_netdev() on failure */
10214 		dev->needs_free_netdev = false;
10215 		unregister_netdevice_queue(dev, NULL);
10216 		goto out;
10217 	}
10218 	/*
10219 	 *	Prevent userspace races by waiting until the network
10220 	 *	device is fully setup before sending notifications.
10221 	 */
10222 	if (!dev->rtnl_link_ops ||
10223 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10224 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10225 
10226 out:
10227 	return ret;
10228 
10229 err_uninit:
10230 	if (dev->netdev_ops->ndo_uninit)
10231 		dev->netdev_ops->ndo_uninit(dev);
10232 	if (dev->priv_destructor)
10233 		dev->priv_destructor(dev);
10234 err_free_name:
10235 	netdev_name_node_free(dev->name_node);
10236 	goto out;
10237 }
10238 EXPORT_SYMBOL(register_netdevice);
10239 
10240 /**
10241  *	init_dummy_netdev	- init a dummy network device for NAPI
10242  *	@dev: device to init
10243  *
10244  *	This takes a network device structure and initialize the minimum
10245  *	amount of fields so it can be used to schedule NAPI polls without
10246  *	registering a full blown interface. This is to be used by drivers
10247  *	that need to tie several hardware interfaces to a single NAPI
10248  *	poll scheduler due to HW limitations.
10249  */
10250 int init_dummy_netdev(struct net_device *dev)
10251 {
10252 	/* Clear everything. Note we don't initialize spinlocks
10253 	 * are they aren't supposed to be taken by any of the
10254 	 * NAPI code and this dummy netdev is supposed to be
10255 	 * only ever used for NAPI polls
10256 	 */
10257 	memset(dev, 0, sizeof(struct net_device));
10258 
10259 	/* make sure we BUG if trying to hit standard
10260 	 * register/unregister code path
10261 	 */
10262 	dev->reg_state = NETREG_DUMMY;
10263 
10264 	/* NAPI wants this */
10265 	INIT_LIST_HEAD(&dev->napi_list);
10266 
10267 	/* a dummy interface is started by default */
10268 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10269 	set_bit(__LINK_STATE_START, &dev->state);
10270 
10271 	/* napi_busy_loop stats accounting wants this */
10272 	dev_net_set(dev, &init_net);
10273 
10274 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10275 	 * because users of this 'device' dont need to change
10276 	 * its refcount.
10277 	 */
10278 
10279 	return 0;
10280 }
10281 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10282 
10283 
10284 /**
10285  *	register_netdev	- register a network device
10286  *	@dev: device to register
10287  *
10288  *	Take a completed network device structure and add it to the kernel
10289  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10290  *	chain. 0 is returned on success. A negative errno code is returned
10291  *	on a failure to set up the device, or if the name is a duplicate.
10292  *
10293  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10294  *	and expands the device name if you passed a format string to
10295  *	alloc_netdev.
10296  */
10297 int register_netdev(struct net_device *dev)
10298 {
10299 	int err;
10300 
10301 	if (rtnl_lock_killable())
10302 		return -EINTR;
10303 	err = register_netdevice(dev);
10304 	rtnl_unlock();
10305 	return err;
10306 }
10307 EXPORT_SYMBOL(register_netdev);
10308 
10309 int netdev_refcnt_read(const struct net_device *dev)
10310 {
10311 	int i, refcnt = 0;
10312 
10313 	for_each_possible_cpu(i)
10314 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10315 	return refcnt;
10316 }
10317 EXPORT_SYMBOL(netdev_refcnt_read);
10318 
10319 #define WAIT_REFS_MIN_MSECS 1
10320 #define WAIT_REFS_MAX_MSECS 250
10321 /**
10322  * netdev_wait_allrefs - wait until all references are gone.
10323  * @dev: target net_device
10324  *
10325  * This is called when unregistering network devices.
10326  *
10327  * Any protocol or device that holds a reference should register
10328  * for netdevice notification, and cleanup and put back the
10329  * reference if they receive an UNREGISTER event.
10330  * We can get stuck here if buggy protocols don't correctly
10331  * call dev_put.
10332  */
10333 static void netdev_wait_allrefs(struct net_device *dev)
10334 {
10335 	unsigned long rebroadcast_time, warning_time;
10336 	int wait = 0, refcnt;
10337 
10338 	linkwatch_forget_dev(dev);
10339 
10340 	rebroadcast_time = warning_time = jiffies;
10341 	refcnt = netdev_refcnt_read(dev);
10342 
10343 	while (refcnt != 0) {
10344 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10345 			rtnl_lock();
10346 
10347 			/* Rebroadcast unregister notification */
10348 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10349 
10350 			__rtnl_unlock();
10351 			rcu_barrier();
10352 			rtnl_lock();
10353 
10354 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10355 				     &dev->state)) {
10356 				/* We must not have linkwatch events
10357 				 * pending on unregister. If this
10358 				 * happens, we simply run the queue
10359 				 * unscheduled, resulting in a noop
10360 				 * for this device.
10361 				 */
10362 				linkwatch_run_queue();
10363 			}
10364 
10365 			__rtnl_unlock();
10366 
10367 			rebroadcast_time = jiffies;
10368 		}
10369 
10370 		if (!wait) {
10371 			rcu_barrier();
10372 			wait = WAIT_REFS_MIN_MSECS;
10373 		} else {
10374 			msleep(wait);
10375 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10376 		}
10377 
10378 		refcnt = netdev_refcnt_read(dev);
10379 
10380 		if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
10381 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10382 				 dev->name, refcnt);
10383 			warning_time = jiffies;
10384 		}
10385 	}
10386 }
10387 
10388 /* The sequence is:
10389  *
10390  *	rtnl_lock();
10391  *	...
10392  *	register_netdevice(x1);
10393  *	register_netdevice(x2);
10394  *	...
10395  *	unregister_netdevice(y1);
10396  *	unregister_netdevice(y2);
10397  *      ...
10398  *	rtnl_unlock();
10399  *	free_netdev(y1);
10400  *	free_netdev(y2);
10401  *
10402  * We are invoked by rtnl_unlock().
10403  * This allows us to deal with problems:
10404  * 1) We can delete sysfs objects which invoke hotplug
10405  *    without deadlocking with linkwatch via keventd.
10406  * 2) Since we run with the RTNL semaphore not held, we can sleep
10407  *    safely in order to wait for the netdev refcnt to drop to zero.
10408  *
10409  * We must not return until all unregister events added during
10410  * the interval the lock was held have been completed.
10411  */
10412 void netdev_run_todo(void)
10413 {
10414 	struct list_head list;
10415 #ifdef CONFIG_LOCKDEP
10416 	struct list_head unlink_list;
10417 
10418 	list_replace_init(&net_unlink_list, &unlink_list);
10419 
10420 	while (!list_empty(&unlink_list)) {
10421 		struct net_device *dev = list_first_entry(&unlink_list,
10422 							  struct net_device,
10423 							  unlink_list);
10424 		list_del_init(&dev->unlink_list);
10425 		dev->nested_level = dev->lower_level - 1;
10426 	}
10427 #endif
10428 
10429 	/* Snapshot list, allow later requests */
10430 	list_replace_init(&net_todo_list, &list);
10431 
10432 	__rtnl_unlock();
10433 
10434 
10435 	/* Wait for rcu callbacks to finish before next phase */
10436 	if (!list_empty(&list))
10437 		rcu_barrier();
10438 
10439 	while (!list_empty(&list)) {
10440 		struct net_device *dev
10441 			= list_first_entry(&list, struct net_device, todo_list);
10442 		list_del(&dev->todo_list);
10443 
10444 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10445 			pr_err("network todo '%s' but state %d\n",
10446 			       dev->name, dev->reg_state);
10447 			dump_stack();
10448 			continue;
10449 		}
10450 
10451 		dev->reg_state = NETREG_UNREGISTERED;
10452 
10453 		netdev_wait_allrefs(dev);
10454 
10455 		/* paranoia */
10456 		BUG_ON(netdev_refcnt_read(dev));
10457 		BUG_ON(!list_empty(&dev->ptype_all));
10458 		BUG_ON(!list_empty(&dev->ptype_specific));
10459 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10460 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10461 #if IS_ENABLED(CONFIG_DECNET)
10462 		WARN_ON(dev->dn_ptr);
10463 #endif
10464 		if (dev->priv_destructor)
10465 			dev->priv_destructor(dev);
10466 		if (dev->needs_free_netdev)
10467 			free_netdev(dev);
10468 
10469 		/* Report a network device has been unregistered */
10470 		rtnl_lock();
10471 		dev_net(dev)->dev_unreg_count--;
10472 		__rtnl_unlock();
10473 		wake_up(&netdev_unregistering_wq);
10474 
10475 		/* Free network device */
10476 		kobject_put(&dev->dev.kobj);
10477 	}
10478 }
10479 
10480 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10481  * all the same fields in the same order as net_device_stats, with only
10482  * the type differing, but rtnl_link_stats64 may have additional fields
10483  * at the end for newer counters.
10484  */
10485 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10486 			     const struct net_device_stats *netdev_stats)
10487 {
10488 #if BITS_PER_LONG == 64
10489 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10490 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10491 	/* zero out counters that only exist in rtnl_link_stats64 */
10492 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10493 	       sizeof(*stats64) - sizeof(*netdev_stats));
10494 #else
10495 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10496 	const unsigned long *src = (const unsigned long *)netdev_stats;
10497 	u64 *dst = (u64 *)stats64;
10498 
10499 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10500 	for (i = 0; i < n; i++)
10501 		dst[i] = src[i];
10502 	/* zero out counters that only exist in rtnl_link_stats64 */
10503 	memset((char *)stats64 + n * sizeof(u64), 0,
10504 	       sizeof(*stats64) - n * sizeof(u64));
10505 #endif
10506 }
10507 EXPORT_SYMBOL(netdev_stats_to_stats64);
10508 
10509 /**
10510  *	dev_get_stats	- get network device statistics
10511  *	@dev: device to get statistics from
10512  *	@storage: place to store stats
10513  *
10514  *	Get network statistics from device. Return @storage.
10515  *	The device driver may provide its own method by setting
10516  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10517  *	otherwise the internal statistics structure is used.
10518  */
10519 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10520 					struct rtnl_link_stats64 *storage)
10521 {
10522 	const struct net_device_ops *ops = dev->netdev_ops;
10523 
10524 	if (ops->ndo_get_stats64) {
10525 		memset(storage, 0, sizeof(*storage));
10526 		ops->ndo_get_stats64(dev, storage);
10527 	} else if (ops->ndo_get_stats) {
10528 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10529 	} else {
10530 		netdev_stats_to_stats64(storage, &dev->stats);
10531 	}
10532 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10533 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10534 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10535 	return storage;
10536 }
10537 EXPORT_SYMBOL(dev_get_stats);
10538 
10539 /**
10540  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10541  *	@s: place to store stats
10542  *	@netstats: per-cpu network stats to read from
10543  *
10544  *	Read per-cpu network statistics and populate the related fields in @s.
10545  */
10546 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10547 			   const struct pcpu_sw_netstats __percpu *netstats)
10548 {
10549 	int cpu;
10550 
10551 	for_each_possible_cpu(cpu) {
10552 		const struct pcpu_sw_netstats *stats;
10553 		struct pcpu_sw_netstats tmp;
10554 		unsigned int start;
10555 
10556 		stats = per_cpu_ptr(netstats, cpu);
10557 		do {
10558 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10559 			tmp.rx_packets = stats->rx_packets;
10560 			tmp.rx_bytes   = stats->rx_bytes;
10561 			tmp.tx_packets = stats->tx_packets;
10562 			tmp.tx_bytes   = stats->tx_bytes;
10563 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10564 
10565 		s->rx_packets += tmp.rx_packets;
10566 		s->rx_bytes   += tmp.rx_bytes;
10567 		s->tx_packets += tmp.tx_packets;
10568 		s->tx_bytes   += tmp.tx_bytes;
10569 	}
10570 }
10571 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10572 
10573 /**
10574  *	dev_get_tstats64 - ndo_get_stats64 implementation
10575  *	@dev: device to get statistics from
10576  *	@s: place to store stats
10577  *
10578  *	Populate @s from dev->stats and dev->tstats. Can be used as
10579  *	ndo_get_stats64() callback.
10580  */
10581 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10582 {
10583 	netdev_stats_to_stats64(s, &dev->stats);
10584 	dev_fetch_sw_netstats(s, dev->tstats);
10585 }
10586 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10587 
10588 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10589 {
10590 	struct netdev_queue *queue = dev_ingress_queue(dev);
10591 
10592 #ifdef CONFIG_NET_CLS_ACT
10593 	if (queue)
10594 		return queue;
10595 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10596 	if (!queue)
10597 		return NULL;
10598 	netdev_init_one_queue(dev, queue, NULL);
10599 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10600 	queue->qdisc_sleeping = &noop_qdisc;
10601 	rcu_assign_pointer(dev->ingress_queue, queue);
10602 #endif
10603 	return queue;
10604 }
10605 
10606 static const struct ethtool_ops default_ethtool_ops;
10607 
10608 void netdev_set_default_ethtool_ops(struct net_device *dev,
10609 				    const struct ethtool_ops *ops)
10610 {
10611 	if (dev->ethtool_ops == &default_ethtool_ops)
10612 		dev->ethtool_ops = ops;
10613 }
10614 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10615 
10616 void netdev_freemem(struct net_device *dev)
10617 {
10618 	char *addr = (char *)dev - dev->padded;
10619 
10620 	kvfree(addr);
10621 }
10622 
10623 /**
10624  * alloc_netdev_mqs - allocate network device
10625  * @sizeof_priv: size of private data to allocate space for
10626  * @name: device name format string
10627  * @name_assign_type: origin of device name
10628  * @setup: callback to initialize device
10629  * @txqs: the number of TX subqueues to allocate
10630  * @rxqs: the number of RX subqueues to allocate
10631  *
10632  * Allocates a struct net_device with private data area for driver use
10633  * and performs basic initialization.  Also allocates subqueue structs
10634  * for each queue on the device.
10635  */
10636 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10637 		unsigned char name_assign_type,
10638 		void (*setup)(struct net_device *),
10639 		unsigned int txqs, unsigned int rxqs)
10640 {
10641 	struct net_device *dev;
10642 	unsigned int alloc_size;
10643 	struct net_device *p;
10644 
10645 	BUG_ON(strlen(name) >= sizeof(dev->name));
10646 
10647 	if (txqs < 1) {
10648 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10649 		return NULL;
10650 	}
10651 
10652 	if (rxqs < 1) {
10653 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10654 		return NULL;
10655 	}
10656 
10657 	alloc_size = sizeof(struct net_device);
10658 	if (sizeof_priv) {
10659 		/* ensure 32-byte alignment of private area */
10660 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10661 		alloc_size += sizeof_priv;
10662 	}
10663 	/* ensure 32-byte alignment of whole construct */
10664 	alloc_size += NETDEV_ALIGN - 1;
10665 
10666 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10667 	if (!p)
10668 		return NULL;
10669 
10670 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10671 	dev->padded = (char *)dev - (char *)p;
10672 
10673 	dev->pcpu_refcnt = alloc_percpu(int);
10674 	if (!dev->pcpu_refcnt)
10675 		goto free_dev;
10676 
10677 	if (dev_addr_init(dev))
10678 		goto free_pcpu;
10679 
10680 	dev_mc_init(dev);
10681 	dev_uc_init(dev);
10682 
10683 	dev_net_set(dev, &init_net);
10684 
10685 	dev->gso_max_size = GSO_MAX_SIZE;
10686 	dev->gso_max_segs = GSO_MAX_SEGS;
10687 	dev->upper_level = 1;
10688 	dev->lower_level = 1;
10689 #ifdef CONFIG_LOCKDEP
10690 	dev->nested_level = 0;
10691 	INIT_LIST_HEAD(&dev->unlink_list);
10692 #endif
10693 
10694 	INIT_LIST_HEAD(&dev->napi_list);
10695 	INIT_LIST_HEAD(&dev->unreg_list);
10696 	INIT_LIST_HEAD(&dev->close_list);
10697 	INIT_LIST_HEAD(&dev->link_watch_list);
10698 	INIT_LIST_HEAD(&dev->adj_list.upper);
10699 	INIT_LIST_HEAD(&dev->adj_list.lower);
10700 	INIT_LIST_HEAD(&dev->ptype_all);
10701 	INIT_LIST_HEAD(&dev->ptype_specific);
10702 	INIT_LIST_HEAD(&dev->net_notifier_list);
10703 #ifdef CONFIG_NET_SCHED
10704 	hash_init(dev->qdisc_hash);
10705 #endif
10706 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10707 	setup(dev);
10708 
10709 	if (!dev->tx_queue_len) {
10710 		dev->priv_flags |= IFF_NO_QUEUE;
10711 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10712 	}
10713 
10714 	dev->num_tx_queues = txqs;
10715 	dev->real_num_tx_queues = txqs;
10716 	if (netif_alloc_netdev_queues(dev))
10717 		goto free_all;
10718 
10719 	dev->num_rx_queues = rxqs;
10720 	dev->real_num_rx_queues = rxqs;
10721 	if (netif_alloc_rx_queues(dev))
10722 		goto free_all;
10723 
10724 	strcpy(dev->name, name);
10725 	dev->name_assign_type = name_assign_type;
10726 	dev->group = INIT_NETDEV_GROUP;
10727 	if (!dev->ethtool_ops)
10728 		dev->ethtool_ops = &default_ethtool_ops;
10729 
10730 	nf_hook_ingress_init(dev);
10731 
10732 	return dev;
10733 
10734 free_all:
10735 	free_netdev(dev);
10736 	return NULL;
10737 
10738 free_pcpu:
10739 	free_percpu(dev->pcpu_refcnt);
10740 free_dev:
10741 	netdev_freemem(dev);
10742 	return NULL;
10743 }
10744 EXPORT_SYMBOL(alloc_netdev_mqs);
10745 
10746 /**
10747  * free_netdev - free network device
10748  * @dev: device
10749  *
10750  * This function does the last stage of destroying an allocated device
10751  * interface. The reference to the device object is released. If this
10752  * is the last reference then it will be freed.Must be called in process
10753  * context.
10754  */
10755 void free_netdev(struct net_device *dev)
10756 {
10757 	struct napi_struct *p, *n;
10758 
10759 	might_sleep();
10760 
10761 	/* When called immediately after register_netdevice() failed the unwind
10762 	 * handling may still be dismantling the device. Handle that case by
10763 	 * deferring the free.
10764 	 */
10765 	if (dev->reg_state == NETREG_UNREGISTERING) {
10766 		ASSERT_RTNL();
10767 		dev->needs_free_netdev = true;
10768 		return;
10769 	}
10770 
10771 	netif_free_tx_queues(dev);
10772 	netif_free_rx_queues(dev);
10773 
10774 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10775 
10776 	/* Flush device addresses */
10777 	dev_addr_flush(dev);
10778 
10779 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10780 		netif_napi_del(p);
10781 
10782 	free_percpu(dev->pcpu_refcnt);
10783 	dev->pcpu_refcnt = NULL;
10784 	free_percpu(dev->xdp_bulkq);
10785 	dev->xdp_bulkq = NULL;
10786 
10787 	/*  Compatibility with error handling in drivers */
10788 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10789 		netdev_freemem(dev);
10790 		return;
10791 	}
10792 
10793 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10794 	dev->reg_state = NETREG_RELEASED;
10795 
10796 	/* will free via device release */
10797 	put_device(&dev->dev);
10798 }
10799 EXPORT_SYMBOL(free_netdev);
10800 
10801 /**
10802  *	synchronize_net -  Synchronize with packet receive processing
10803  *
10804  *	Wait for packets currently being received to be done.
10805  *	Does not block later packets from starting.
10806  */
10807 void synchronize_net(void)
10808 {
10809 	might_sleep();
10810 	if (rtnl_is_locked())
10811 		synchronize_rcu_expedited();
10812 	else
10813 		synchronize_rcu();
10814 }
10815 EXPORT_SYMBOL(synchronize_net);
10816 
10817 /**
10818  *	unregister_netdevice_queue - remove device from the kernel
10819  *	@dev: device
10820  *	@head: list
10821  *
10822  *	This function shuts down a device interface and removes it
10823  *	from the kernel tables.
10824  *	If head not NULL, device is queued to be unregistered later.
10825  *
10826  *	Callers must hold the rtnl semaphore.  You may want
10827  *	unregister_netdev() instead of this.
10828  */
10829 
10830 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10831 {
10832 	ASSERT_RTNL();
10833 
10834 	if (head) {
10835 		list_move_tail(&dev->unreg_list, head);
10836 	} else {
10837 		LIST_HEAD(single);
10838 
10839 		list_add(&dev->unreg_list, &single);
10840 		unregister_netdevice_many(&single);
10841 	}
10842 }
10843 EXPORT_SYMBOL(unregister_netdevice_queue);
10844 
10845 /**
10846  *	unregister_netdevice_many - unregister many devices
10847  *	@head: list of devices
10848  *
10849  *  Note: As most callers use a stack allocated list_head,
10850  *  we force a list_del() to make sure stack wont be corrupted later.
10851  */
10852 void unregister_netdevice_many(struct list_head *head)
10853 {
10854 	struct net_device *dev, *tmp;
10855 	LIST_HEAD(close_head);
10856 
10857 	BUG_ON(dev_boot_phase);
10858 	ASSERT_RTNL();
10859 
10860 	if (list_empty(head))
10861 		return;
10862 
10863 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10864 		/* Some devices call without registering
10865 		 * for initialization unwind. Remove those
10866 		 * devices and proceed with the remaining.
10867 		 */
10868 		if (dev->reg_state == NETREG_UNINITIALIZED) {
10869 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10870 				 dev->name, dev);
10871 
10872 			WARN_ON(1);
10873 			list_del(&dev->unreg_list);
10874 			continue;
10875 		}
10876 		dev->dismantle = true;
10877 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
10878 	}
10879 
10880 	/* If device is running, close it first. */
10881 	list_for_each_entry(dev, head, unreg_list)
10882 		list_add_tail(&dev->close_list, &close_head);
10883 	dev_close_many(&close_head, true);
10884 
10885 	list_for_each_entry(dev, head, unreg_list) {
10886 		/* And unlink it from device chain. */
10887 		unlist_netdevice(dev);
10888 
10889 		dev->reg_state = NETREG_UNREGISTERING;
10890 	}
10891 	flush_all_backlogs();
10892 
10893 	synchronize_net();
10894 
10895 	list_for_each_entry(dev, head, unreg_list) {
10896 		struct sk_buff *skb = NULL;
10897 
10898 		/* Shutdown queueing discipline. */
10899 		dev_shutdown(dev);
10900 
10901 		dev_xdp_uninstall(dev);
10902 
10903 		/* Notify protocols, that we are about to destroy
10904 		 * this device. They should clean all the things.
10905 		 */
10906 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10907 
10908 		if (!dev->rtnl_link_ops ||
10909 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10910 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10911 						     GFP_KERNEL, NULL, 0);
10912 
10913 		/*
10914 		 *	Flush the unicast and multicast chains
10915 		 */
10916 		dev_uc_flush(dev);
10917 		dev_mc_flush(dev);
10918 
10919 		netdev_name_node_alt_flush(dev);
10920 		netdev_name_node_free(dev->name_node);
10921 
10922 		if (dev->netdev_ops->ndo_uninit)
10923 			dev->netdev_ops->ndo_uninit(dev);
10924 
10925 		if (skb)
10926 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
10927 
10928 		/* Notifier chain MUST detach us all upper devices. */
10929 		WARN_ON(netdev_has_any_upper_dev(dev));
10930 		WARN_ON(netdev_has_any_lower_dev(dev));
10931 
10932 		/* Remove entries from kobject tree */
10933 		netdev_unregister_kobject(dev);
10934 #ifdef CONFIG_XPS
10935 		/* Remove XPS queueing entries */
10936 		netif_reset_xps_queues_gt(dev, 0);
10937 #endif
10938 	}
10939 
10940 	synchronize_net();
10941 
10942 	list_for_each_entry(dev, head, unreg_list) {
10943 		dev_put(dev);
10944 		net_set_todo(dev);
10945 	}
10946 
10947 	list_del(head);
10948 }
10949 EXPORT_SYMBOL(unregister_netdevice_many);
10950 
10951 /**
10952  *	unregister_netdev - remove device from the kernel
10953  *	@dev: device
10954  *
10955  *	This function shuts down a device interface and removes it
10956  *	from the kernel tables.
10957  *
10958  *	This is just a wrapper for unregister_netdevice that takes
10959  *	the rtnl semaphore.  In general you want to use this and not
10960  *	unregister_netdevice.
10961  */
10962 void unregister_netdev(struct net_device *dev)
10963 {
10964 	rtnl_lock();
10965 	unregister_netdevice(dev);
10966 	rtnl_unlock();
10967 }
10968 EXPORT_SYMBOL(unregister_netdev);
10969 
10970 /**
10971  *	dev_change_net_namespace - move device to different nethost namespace
10972  *	@dev: device
10973  *	@net: network namespace
10974  *	@pat: If not NULL name pattern to try if the current device name
10975  *	      is already taken in the destination network namespace.
10976  *
10977  *	This function shuts down a device interface and moves it
10978  *	to a new network namespace. On success 0 is returned, on
10979  *	a failure a netagive errno code is returned.
10980  *
10981  *	Callers must hold the rtnl semaphore.
10982  */
10983 
10984 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
10985 {
10986 	struct net *net_old = dev_net(dev);
10987 	int err, new_nsid, new_ifindex;
10988 
10989 	ASSERT_RTNL();
10990 
10991 	/* Don't allow namespace local devices to be moved. */
10992 	err = -EINVAL;
10993 	if (dev->features & NETIF_F_NETNS_LOCAL)
10994 		goto out;
10995 
10996 	/* Ensure the device has been registrered */
10997 	if (dev->reg_state != NETREG_REGISTERED)
10998 		goto out;
10999 
11000 	/* Get out if there is nothing todo */
11001 	err = 0;
11002 	if (net_eq(net_old, net))
11003 		goto out;
11004 
11005 	/* Pick the destination device name, and ensure
11006 	 * we can use it in the destination network namespace.
11007 	 */
11008 	err = -EEXIST;
11009 	if (__dev_get_by_name(net, dev->name)) {
11010 		/* We get here if we can't use the current device name */
11011 		if (!pat)
11012 			goto out;
11013 		err = dev_get_valid_name(net, dev, pat);
11014 		if (err < 0)
11015 			goto out;
11016 	}
11017 
11018 	/*
11019 	 * And now a mini version of register_netdevice unregister_netdevice.
11020 	 */
11021 
11022 	/* If device is running close it first. */
11023 	dev_close(dev);
11024 
11025 	/* And unlink it from device chain */
11026 	unlist_netdevice(dev);
11027 
11028 	synchronize_net();
11029 
11030 	/* Shutdown queueing discipline. */
11031 	dev_shutdown(dev);
11032 
11033 	/* Notify protocols, that we are about to destroy
11034 	 * this device. They should clean all the things.
11035 	 *
11036 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11037 	 * This is wanted because this way 8021q and macvlan know
11038 	 * the device is just moving and can keep their slaves up.
11039 	 */
11040 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11041 	rcu_barrier();
11042 
11043 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11044 	/* If there is an ifindex conflict assign a new one */
11045 	if (__dev_get_by_index(net, dev->ifindex))
11046 		new_ifindex = dev_new_index(net);
11047 	else
11048 		new_ifindex = dev->ifindex;
11049 
11050 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11051 			    new_ifindex);
11052 
11053 	/*
11054 	 *	Flush the unicast and multicast chains
11055 	 */
11056 	dev_uc_flush(dev);
11057 	dev_mc_flush(dev);
11058 
11059 	/* Send a netdev-removed uevent to the old namespace */
11060 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11061 	netdev_adjacent_del_links(dev);
11062 
11063 	/* Move per-net netdevice notifiers that are following the netdevice */
11064 	move_netdevice_notifiers_dev_net(dev, net);
11065 
11066 	/* Actually switch the network namespace */
11067 	dev_net_set(dev, net);
11068 	dev->ifindex = new_ifindex;
11069 
11070 	/* Send a netdev-add uevent to the new namespace */
11071 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11072 	netdev_adjacent_add_links(dev);
11073 
11074 	/* Fixup kobjects */
11075 	err = device_rename(&dev->dev, dev->name);
11076 	WARN_ON(err);
11077 
11078 	/* Adapt owner in case owning user namespace of target network
11079 	 * namespace is different from the original one.
11080 	 */
11081 	err = netdev_change_owner(dev, net_old, net);
11082 	WARN_ON(err);
11083 
11084 	/* Add the device back in the hashes */
11085 	list_netdevice(dev);
11086 
11087 	/* Notify protocols, that a new device appeared. */
11088 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11089 
11090 	/*
11091 	 *	Prevent userspace races by waiting until the network
11092 	 *	device is fully setup before sending notifications.
11093 	 */
11094 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11095 
11096 	synchronize_net();
11097 	err = 0;
11098 out:
11099 	return err;
11100 }
11101 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
11102 
11103 static int dev_cpu_dead(unsigned int oldcpu)
11104 {
11105 	struct sk_buff **list_skb;
11106 	struct sk_buff *skb;
11107 	unsigned int cpu;
11108 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11109 
11110 	local_irq_disable();
11111 	cpu = smp_processor_id();
11112 	sd = &per_cpu(softnet_data, cpu);
11113 	oldsd = &per_cpu(softnet_data, oldcpu);
11114 
11115 	/* Find end of our completion_queue. */
11116 	list_skb = &sd->completion_queue;
11117 	while (*list_skb)
11118 		list_skb = &(*list_skb)->next;
11119 	/* Append completion queue from offline CPU. */
11120 	*list_skb = oldsd->completion_queue;
11121 	oldsd->completion_queue = NULL;
11122 
11123 	/* Append output queue from offline CPU. */
11124 	if (oldsd->output_queue) {
11125 		*sd->output_queue_tailp = oldsd->output_queue;
11126 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11127 		oldsd->output_queue = NULL;
11128 		oldsd->output_queue_tailp = &oldsd->output_queue;
11129 	}
11130 	/* Append NAPI poll list from offline CPU, with one exception :
11131 	 * process_backlog() must be called by cpu owning percpu backlog.
11132 	 * We properly handle process_queue & input_pkt_queue later.
11133 	 */
11134 	while (!list_empty(&oldsd->poll_list)) {
11135 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11136 							    struct napi_struct,
11137 							    poll_list);
11138 
11139 		list_del_init(&napi->poll_list);
11140 		if (napi->poll == process_backlog)
11141 			napi->state = 0;
11142 		else
11143 			____napi_schedule(sd, napi);
11144 	}
11145 
11146 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11147 	local_irq_enable();
11148 
11149 #ifdef CONFIG_RPS
11150 	remsd = oldsd->rps_ipi_list;
11151 	oldsd->rps_ipi_list = NULL;
11152 #endif
11153 	/* send out pending IPI's on offline CPU */
11154 	net_rps_send_ipi(remsd);
11155 
11156 	/* Process offline CPU's input_pkt_queue */
11157 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11158 		netif_rx_ni(skb);
11159 		input_queue_head_incr(oldsd);
11160 	}
11161 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11162 		netif_rx_ni(skb);
11163 		input_queue_head_incr(oldsd);
11164 	}
11165 
11166 	return 0;
11167 }
11168 
11169 /**
11170  *	netdev_increment_features - increment feature set by one
11171  *	@all: current feature set
11172  *	@one: new feature set
11173  *	@mask: mask feature set
11174  *
11175  *	Computes a new feature set after adding a device with feature set
11176  *	@one to the master device with current feature set @all.  Will not
11177  *	enable anything that is off in @mask. Returns the new feature set.
11178  */
11179 netdev_features_t netdev_increment_features(netdev_features_t all,
11180 	netdev_features_t one, netdev_features_t mask)
11181 {
11182 	if (mask & NETIF_F_HW_CSUM)
11183 		mask |= NETIF_F_CSUM_MASK;
11184 	mask |= NETIF_F_VLAN_CHALLENGED;
11185 
11186 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11187 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11188 
11189 	/* If one device supports hw checksumming, set for all. */
11190 	if (all & NETIF_F_HW_CSUM)
11191 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11192 
11193 	return all;
11194 }
11195 EXPORT_SYMBOL(netdev_increment_features);
11196 
11197 static struct hlist_head * __net_init netdev_create_hash(void)
11198 {
11199 	int i;
11200 	struct hlist_head *hash;
11201 
11202 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11203 	if (hash != NULL)
11204 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11205 			INIT_HLIST_HEAD(&hash[i]);
11206 
11207 	return hash;
11208 }
11209 
11210 /* Initialize per network namespace state */
11211 static int __net_init netdev_init(struct net *net)
11212 {
11213 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11214 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11215 
11216 	if (net != &init_net)
11217 		INIT_LIST_HEAD(&net->dev_base_head);
11218 
11219 	net->dev_name_head = netdev_create_hash();
11220 	if (net->dev_name_head == NULL)
11221 		goto err_name;
11222 
11223 	net->dev_index_head = netdev_create_hash();
11224 	if (net->dev_index_head == NULL)
11225 		goto err_idx;
11226 
11227 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11228 
11229 	return 0;
11230 
11231 err_idx:
11232 	kfree(net->dev_name_head);
11233 err_name:
11234 	return -ENOMEM;
11235 }
11236 
11237 /**
11238  *	netdev_drivername - network driver for the device
11239  *	@dev: network device
11240  *
11241  *	Determine network driver for device.
11242  */
11243 const char *netdev_drivername(const struct net_device *dev)
11244 {
11245 	const struct device_driver *driver;
11246 	const struct device *parent;
11247 	const char *empty = "";
11248 
11249 	parent = dev->dev.parent;
11250 	if (!parent)
11251 		return empty;
11252 
11253 	driver = parent->driver;
11254 	if (driver && driver->name)
11255 		return driver->name;
11256 	return empty;
11257 }
11258 
11259 static void __netdev_printk(const char *level, const struct net_device *dev,
11260 			    struct va_format *vaf)
11261 {
11262 	if (dev && dev->dev.parent) {
11263 		dev_printk_emit(level[1] - '0',
11264 				dev->dev.parent,
11265 				"%s %s %s%s: %pV",
11266 				dev_driver_string(dev->dev.parent),
11267 				dev_name(dev->dev.parent),
11268 				netdev_name(dev), netdev_reg_state(dev),
11269 				vaf);
11270 	} else if (dev) {
11271 		printk("%s%s%s: %pV",
11272 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11273 	} else {
11274 		printk("%s(NULL net_device): %pV", level, vaf);
11275 	}
11276 }
11277 
11278 void netdev_printk(const char *level, const struct net_device *dev,
11279 		   const char *format, ...)
11280 {
11281 	struct va_format vaf;
11282 	va_list args;
11283 
11284 	va_start(args, format);
11285 
11286 	vaf.fmt = format;
11287 	vaf.va = &args;
11288 
11289 	__netdev_printk(level, dev, &vaf);
11290 
11291 	va_end(args);
11292 }
11293 EXPORT_SYMBOL(netdev_printk);
11294 
11295 #define define_netdev_printk_level(func, level)			\
11296 void func(const struct net_device *dev, const char *fmt, ...)	\
11297 {								\
11298 	struct va_format vaf;					\
11299 	va_list args;						\
11300 								\
11301 	va_start(args, fmt);					\
11302 								\
11303 	vaf.fmt = fmt;						\
11304 	vaf.va = &args;						\
11305 								\
11306 	__netdev_printk(level, dev, &vaf);			\
11307 								\
11308 	va_end(args);						\
11309 }								\
11310 EXPORT_SYMBOL(func);
11311 
11312 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11313 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11314 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11315 define_netdev_printk_level(netdev_err, KERN_ERR);
11316 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11317 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11318 define_netdev_printk_level(netdev_info, KERN_INFO);
11319 
11320 static void __net_exit netdev_exit(struct net *net)
11321 {
11322 	kfree(net->dev_name_head);
11323 	kfree(net->dev_index_head);
11324 	if (net != &init_net)
11325 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11326 }
11327 
11328 static struct pernet_operations __net_initdata netdev_net_ops = {
11329 	.init = netdev_init,
11330 	.exit = netdev_exit,
11331 };
11332 
11333 static void __net_exit default_device_exit(struct net *net)
11334 {
11335 	struct net_device *dev, *aux;
11336 	/*
11337 	 * Push all migratable network devices back to the
11338 	 * initial network namespace
11339 	 */
11340 	rtnl_lock();
11341 	for_each_netdev_safe(net, dev, aux) {
11342 		int err;
11343 		char fb_name[IFNAMSIZ];
11344 
11345 		/* Ignore unmoveable devices (i.e. loopback) */
11346 		if (dev->features & NETIF_F_NETNS_LOCAL)
11347 			continue;
11348 
11349 		/* Leave virtual devices for the generic cleanup */
11350 		if (dev->rtnl_link_ops)
11351 			continue;
11352 
11353 		/* Push remaining network devices to init_net */
11354 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11355 		if (__dev_get_by_name(&init_net, fb_name))
11356 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11357 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11358 		if (err) {
11359 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11360 				 __func__, dev->name, err);
11361 			BUG();
11362 		}
11363 	}
11364 	rtnl_unlock();
11365 }
11366 
11367 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11368 {
11369 	/* Return with the rtnl_lock held when there are no network
11370 	 * devices unregistering in any network namespace in net_list.
11371 	 */
11372 	struct net *net;
11373 	bool unregistering;
11374 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11375 
11376 	add_wait_queue(&netdev_unregistering_wq, &wait);
11377 	for (;;) {
11378 		unregistering = false;
11379 		rtnl_lock();
11380 		list_for_each_entry(net, net_list, exit_list) {
11381 			if (net->dev_unreg_count > 0) {
11382 				unregistering = true;
11383 				break;
11384 			}
11385 		}
11386 		if (!unregistering)
11387 			break;
11388 		__rtnl_unlock();
11389 
11390 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11391 	}
11392 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11393 }
11394 
11395 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11396 {
11397 	/* At exit all network devices most be removed from a network
11398 	 * namespace.  Do this in the reverse order of registration.
11399 	 * Do this across as many network namespaces as possible to
11400 	 * improve batching efficiency.
11401 	 */
11402 	struct net_device *dev;
11403 	struct net *net;
11404 	LIST_HEAD(dev_kill_list);
11405 
11406 	/* To prevent network device cleanup code from dereferencing
11407 	 * loopback devices or network devices that have been freed
11408 	 * wait here for all pending unregistrations to complete,
11409 	 * before unregistring the loopback device and allowing the
11410 	 * network namespace be freed.
11411 	 *
11412 	 * The netdev todo list containing all network devices
11413 	 * unregistrations that happen in default_device_exit_batch
11414 	 * will run in the rtnl_unlock() at the end of
11415 	 * default_device_exit_batch.
11416 	 */
11417 	rtnl_lock_unregistering(net_list);
11418 	list_for_each_entry(net, net_list, exit_list) {
11419 		for_each_netdev_reverse(net, dev) {
11420 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11421 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11422 			else
11423 				unregister_netdevice_queue(dev, &dev_kill_list);
11424 		}
11425 	}
11426 	unregister_netdevice_many(&dev_kill_list);
11427 	rtnl_unlock();
11428 }
11429 
11430 static struct pernet_operations __net_initdata default_device_ops = {
11431 	.exit = default_device_exit,
11432 	.exit_batch = default_device_exit_batch,
11433 };
11434 
11435 /*
11436  *	Initialize the DEV module. At boot time this walks the device list and
11437  *	unhooks any devices that fail to initialise (normally hardware not
11438  *	present) and leaves us with a valid list of present and active devices.
11439  *
11440  */
11441 
11442 /*
11443  *       This is called single threaded during boot, so no need
11444  *       to take the rtnl semaphore.
11445  */
11446 static int __init net_dev_init(void)
11447 {
11448 	int i, rc = -ENOMEM;
11449 
11450 	BUG_ON(!dev_boot_phase);
11451 
11452 	if (dev_proc_init())
11453 		goto out;
11454 
11455 	if (netdev_kobject_init())
11456 		goto out;
11457 
11458 	INIT_LIST_HEAD(&ptype_all);
11459 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11460 		INIT_LIST_HEAD(&ptype_base[i]);
11461 
11462 	INIT_LIST_HEAD(&offload_base);
11463 
11464 	if (register_pernet_subsys(&netdev_net_ops))
11465 		goto out;
11466 
11467 	/*
11468 	 *	Initialise the packet receive queues.
11469 	 */
11470 
11471 	for_each_possible_cpu(i) {
11472 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11473 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11474 
11475 		INIT_WORK(flush, flush_backlog);
11476 
11477 		skb_queue_head_init(&sd->input_pkt_queue);
11478 		skb_queue_head_init(&sd->process_queue);
11479 #ifdef CONFIG_XFRM_OFFLOAD
11480 		skb_queue_head_init(&sd->xfrm_backlog);
11481 #endif
11482 		INIT_LIST_HEAD(&sd->poll_list);
11483 		sd->output_queue_tailp = &sd->output_queue;
11484 #ifdef CONFIG_RPS
11485 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11486 		sd->cpu = i;
11487 #endif
11488 
11489 		init_gro_hash(&sd->backlog);
11490 		sd->backlog.poll = process_backlog;
11491 		sd->backlog.weight = weight_p;
11492 	}
11493 
11494 	dev_boot_phase = 0;
11495 
11496 	/* The loopback device is special if any other network devices
11497 	 * is present in a network namespace the loopback device must
11498 	 * be present. Since we now dynamically allocate and free the
11499 	 * loopback device ensure this invariant is maintained by
11500 	 * keeping the loopback device as the first device on the
11501 	 * list of network devices.  Ensuring the loopback devices
11502 	 * is the first device that appears and the last network device
11503 	 * that disappears.
11504 	 */
11505 	if (register_pernet_device(&loopback_net_ops))
11506 		goto out;
11507 
11508 	if (register_pernet_device(&default_device_ops))
11509 		goto out;
11510 
11511 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11512 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11513 
11514 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11515 				       NULL, dev_cpu_dead);
11516 	WARN_ON(rc < 0);
11517 	rc = 0;
11518 out:
11519 	return rc;
11520 }
11521 
11522 subsys_initcall(net_dev_init);
11523