xref: /linux-6.15/net/core/dev.c (revision ef54cf0c)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	if (!dev_valid_name(name))
1068 		return -EINVAL;
1069 
1070 	p = strchr(name, '%');
1071 	if (p) {
1072 		/*
1073 		 * Verify the string as this thing may have come from
1074 		 * the user.  There must be either one "%d" and no other "%"
1075 		 * characters.
1076 		 */
1077 		if (p[1] != 'd' || strchr(p + 2, '%'))
1078 			return -EINVAL;
1079 
1080 		/* Use one page as a bit array of possible slots */
1081 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082 		if (!inuse)
1083 			return -ENOMEM;
1084 
1085 		for_each_netdev(net, d) {
1086 			if (!sscanf(d->name, name, &i))
1087 				continue;
1088 			if (i < 0 || i >= max_netdevices)
1089 				continue;
1090 
1091 			/*  avoid cases where sscanf is not exact inverse of printf */
1092 			snprintf(buf, IFNAMSIZ, name, i);
1093 			if (!strncmp(buf, d->name, IFNAMSIZ))
1094 				set_bit(i, inuse);
1095 		}
1096 
1097 		i = find_first_zero_bit(inuse, max_netdevices);
1098 		free_page((unsigned long) inuse);
1099 	}
1100 
1101 	snprintf(buf, IFNAMSIZ, name, i);
1102 	if (!__dev_get_by_name(net, buf))
1103 		return i;
1104 
1105 	/* It is possible to run out of possible slots
1106 	 * when the name is long and there isn't enough space left
1107 	 * for the digits, or if all bits are used.
1108 	 */
1109 	return -ENFILE;
1110 }
1111 
1112 static int dev_alloc_name_ns(struct net *net,
1113 			     struct net_device *dev,
1114 			     const char *name)
1115 {
1116 	char buf[IFNAMSIZ];
1117 	int ret;
1118 
1119 	BUG_ON(!net);
1120 	ret = __dev_alloc_name(net, name, buf);
1121 	if (ret >= 0)
1122 		strlcpy(dev->name, buf, IFNAMSIZ);
1123 	return ret;
1124 }
1125 
1126 /**
1127  *	dev_alloc_name - allocate a name for a device
1128  *	@dev: device
1129  *	@name: name format string
1130  *
1131  *	Passed a format string - eg "lt%d" it will try and find a suitable
1132  *	id. It scans list of devices to build up a free map, then chooses
1133  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *	while allocating the name and adding the device in order to avoid
1135  *	duplicates.
1136  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *	Returns the number of the unit assigned or a negative errno code.
1138  */
1139 
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145 
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147 		       const char *name)
1148 {
1149 	BUG_ON(!net);
1150 
1151 	if (!dev_valid_name(name))
1152 		return -EINVAL;
1153 
1154 	if (strchr(name, '%'))
1155 		return dev_alloc_name_ns(net, dev, name);
1156 	else if (__dev_get_by_name(net, name))
1157 		return -EEXIST;
1158 	else if (dev->name != name)
1159 		strlcpy(dev->name, name, IFNAMSIZ);
1160 
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164 
1165 /**
1166  *	dev_change_name - change name of a device
1167  *	@dev: device
1168  *	@newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *	Change name of a device, can pass format strings "eth%d".
1171  *	for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175 	unsigned char old_assign_type;
1176 	char oldname[IFNAMSIZ];
1177 	int err = 0;
1178 	int ret;
1179 	struct net *net;
1180 
1181 	ASSERT_RTNL();
1182 	BUG_ON(!dev_net(dev));
1183 
1184 	net = dev_net(dev);
1185 	if (dev->flags & IFF_UP)
1186 		return -EBUSY;
1187 
1188 	write_seqcount_begin(&devnet_rename_seq);
1189 
1190 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191 		write_seqcount_end(&devnet_rename_seq);
1192 		return 0;
1193 	}
1194 
1195 	memcpy(oldname, dev->name, IFNAMSIZ);
1196 
1197 	err = dev_get_valid_name(net, dev, newname);
1198 	if (err < 0) {
1199 		write_seqcount_end(&devnet_rename_seq);
1200 		return err;
1201 	}
1202 
1203 	if (oldname[0] && !strchr(oldname, '%'))
1204 		netdev_info(dev, "renamed from %s\n", oldname);
1205 
1206 	old_assign_type = dev->name_assign_type;
1207 	dev->name_assign_type = NET_NAME_RENAMED;
1208 
1209 rollback:
1210 	ret = device_rename(&dev->dev, dev->name);
1211 	if (ret) {
1212 		memcpy(dev->name, oldname, IFNAMSIZ);
1213 		dev->name_assign_type = old_assign_type;
1214 		write_seqcount_end(&devnet_rename_seq);
1215 		return ret;
1216 	}
1217 
1218 	write_seqcount_end(&devnet_rename_seq);
1219 
1220 	netdev_adjacent_rename_links(dev, oldname);
1221 
1222 	write_lock_bh(&dev_base_lock);
1223 	hlist_del_rcu(&dev->name_hlist);
1224 	write_unlock_bh(&dev_base_lock);
1225 
1226 	synchronize_rcu();
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233 	ret = notifier_to_errno(ret);
1234 
1235 	if (ret) {
1236 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1237 		if (err >= 0) {
1238 			err = ret;
1239 			write_seqcount_begin(&devnet_rename_seq);
1240 			memcpy(dev->name, oldname, IFNAMSIZ);
1241 			memcpy(oldname, newname, IFNAMSIZ);
1242 			dev->name_assign_type = old_assign_type;
1243 			old_assign_type = NET_NAME_RENAMED;
1244 			goto rollback;
1245 		} else {
1246 			pr_err("%s: name change rollback failed: %d\n",
1247 			       dev->name, ret);
1248 		}
1249 	}
1250 
1251 	return err;
1252 }
1253 
1254 /**
1255  *	dev_set_alias - change ifalias of a device
1256  *	@dev: device
1257  *	@alias: name up to IFALIASZ
1258  *	@len: limit of bytes to copy from info
1259  *
1260  *	Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264 	struct dev_ifalias *new_alias = NULL;
1265 
1266 	if (len >= IFALIASZ)
1267 		return -EINVAL;
1268 
1269 	if (len) {
1270 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271 		if (!new_alias)
1272 			return -ENOMEM;
1273 
1274 		memcpy(new_alias->ifalias, alias, len);
1275 		new_alias->ifalias[len] = 0;
1276 	}
1277 
1278 	mutex_lock(&ifalias_mutex);
1279 	rcu_swap_protected(dev->ifalias, new_alias,
1280 			   mutex_is_locked(&ifalias_mutex));
1281 	mutex_unlock(&ifalias_mutex);
1282 
1283 	if (new_alias)
1284 		kfree_rcu(new_alias, rcuhead);
1285 
1286 	return len;
1287 }
1288 
1289 /**
1290  *	dev_get_alias - get ifalias of a device
1291  *	@dev: device
1292  *	@name: buffer to store name of ifalias
1293  *	@len: size of buffer
1294  *
1295  *	get ifalias for a device.  Caller must make sure dev cannot go
1296  *	away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300 	const struct dev_ifalias *alias;
1301 	int ret = 0;
1302 
1303 	rcu_read_lock();
1304 	alias = rcu_dereference(dev->ifalias);
1305 	if (alias)
1306 		ret = snprintf(name, len, "%s", alias->ifalias);
1307 	rcu_read_unlock();
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  *	netdev_features_change - device changes features
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323 
1324 /**
1325  *	netdev_state_change - device changes state
1326  *	@dev: device to cause notification
1327  *
1328  *	Called to indicate a device has changed state. This function calls
1329  *	the notifier chains for netdev_chain and sends a NEWLINK message
1330  *	to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334 	if (dev->flags & IFF_UP) {
1335 		struct netdev_notifier_change_info change_info = {
1336 			.info.dev = dev,
1337 		};
1338 
1339 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 					      &change_info.info);
1341 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 	}
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345 
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358 	rtnl_lock();
1359 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 	rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364 
1365 static int __dev_open(struct net_device *dev)
1366 {
1367 	const struct net_device_ops *ops = dev->netdev_ops;
1368 	int ret;
1369 
1370 	ASSERT_RTNL();
1371 
1372 	if (!netif_device_present(dev))
1373 		return -ENODEV;
1374 
1375 	/* Block netpoll from trying to do any rx path servicing.
1376 	 * If we don't do this there is a chance ndo_poll_controller
1377 	 * or ndo_poll may be running while we open the device
1378 	 */
1379 	netpoll_poll_disable(dev);
1380 
1381 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 	ret = notifier_to_errno(ret);
1383 	if (ret)
1384 		return ret;
1385 
1386 	set_bit(__LINK_STATE_START, &dev->state);
1387 
1388 	if (ops->ndo_validate_addr)
1389 		ret = ops->ndo_validate_addr(dev);
1390 
1391 	if (!ret && ops->ndo_open)
1392 		ret = ops->ndo_open(dev);
1393 
1394 	netpoll_poll_enable(dev);
1395 
1396 	if (ret)
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 	else {
1399 		dev->flags |= IFF_UP;
1400 		dev_set_rx_mode(dev);
1401 		dev_activate(dev);
1402 		add_device_randomness(dev->dev_addr, dev->addr_len);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  *	dev_open	- prepare an interface for use.
1410  *	@dev:	device to open
1411  *
1412  *	Takes a device from down to up state. The device's private open
1413  *	function is invoked and then the multicast lists are loaded. Finally
1414  *	the device is moved into the up state and a %NETDEV_UP message is
1415  *	sent to the netdev notifier chain.
1416  *
1417  *	Calling this function on an active interface is a nop. On a failure
1418  *	a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422 	int ret;
1423 
1424 	if (dev->flags & IFF_UP)
1425 		return 0;
1426 
1427 	ret = __dev_open(dev);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 	call_netdevice_notifiers(NETDEV_UP, dev);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437 
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440 	struct net_device *dev;
1441 
1442 	ASSERT_RTNL();
1443 	might_sleep();
1444 
1445 	list_for_each_entry(dev, head, close_list) {
1446 		/* Temporarily disable netpoll until the interface is down */
1447 		netpoll_poll_disable(dev);
1448 
1449 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 
1453 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454 		 * can be even on different cpu. So just clear netif_running().
1455 		 *
1456 		 * dev->stop() will invoke napi_disable() on all of it's
1457 		 * napi_struct instances on this device.
1458 		 */
1459 		smp_mb__after_atomic(); /* Commit netif_running(). */
1460 	}
1461 
1462 	dev_deactivate_many(head);
1463 
1464 	list_for_each_entry(dev, head, close_list) {
1465 		const struct net_device_ops *ops = dev->netdev_ops;
1466 
1467 		/*
1468 		 *	Call the device specific close. This cannot fail.
1469 		 *	Only if device is UP
1470 		 *
1471 		 *	We allow it to be called even after a DETACH hot-plug
1472 		 *	event.
1473 		 */
1474 		if (ops->ndo_stop)
1475 			ops->ndo_stop(dev);
1476 
1477 		dev->flags &= ~IFF_UP;
1478 		netpoll_poll_enable(dev);
1479 	}
1480 }
1481 
1482 static void __dev_close(struct net_device *dev)
1483 {
1484 	LIST_HEAD(single);
1485 
1486 	list_add(&dev->close_list, &single);
1487 	__dev_close_many(&single);
1488 	list_del(&single);
1489 }
1490 
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493 	struct net_device *dev, *tmp;
1494 
1495 	/* Remove the devices that don't need to be closed */
1496 	list_for_each_entry_safe(dev, tmp, head, close_list)
1497 		if (!(dev->flags & IFF_UP))
1498 			list_del_init(&dev->close_list);
1499 
1500 	__dev_close_many(head);
1501 
1502 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 		if (unlink)
1506 			list_del_init(&dev->close_list);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510 
1511 /**
1512  *	dev_close - shutdown an interface.
1513  *	@dev: device to shutdown
1514  *
1515  *	This function moves an active device into down state. A
1516  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *	chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522 	if (dev->flags & IFF_UP) {
1523 		LIST_HEAD(single);
1524 
1525 		list_add(&dev->close_list, &single);
1526 		dev_close_many(&single, true);
1527 		list_del(&single);
1528 	}
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531 
1532 
1533 /**
1534  *	dev_disable_lro - disable Large Receive Offload on a device
1535  *	@dev: device
1536  *
1537  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *	called under RTNL.  This is needed if received packets may be
1539  *	forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543 	struct net_device *lower_dev;
1544 	struct list_head *iter;
1545 
1546 	dev->wanted_features &= ~NETIF_F_LRO;
1547 	netdev_update_features(dev);
1548 
1549 	if (unlikely(dev->features & NETIF_F_LRO))
1550 		netdev_WARN(dev, "failed to disable LRO!\n");
1551 
1552 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 		dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556 
1557 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1558 				   struct net_device *dev)
1559 {
1560 	struct netdev_notifier_info info = {
1561 		.dev = dev,
1562 	};
1563 
1564 	return nb->notifier_call(nb, val, &info);
1565 }
1566 
1567 static int dev_boot_phase = 1;
1568 
1569 /**
1570  * register_netdevice_notifier - register a network notifier block
1571  * @nb: notifier
1572  *
1573  * Register a notifier to be called when network device events occur.
1574  * The notifier passed is linked into the kernel structures and must
1575  * not be reused until it has been unregistered. A negative errno code
1576  * is returned on a failure.
1577  *
1578  * When registered all registration and up events are replayed
1579  * to the new notifier to allow device to have a race free
1580  * view of the network device list.
1581  */
1582 
1583 int register_netdevice_notifier(struct notifier_block *nb)
1584 {
1585 	struct net_device *dev;
1586 	struct net_device *last;
1587 	struct net *net;
1588 	int err;
1589 
1590 	rtnl_lock();
1591 	err = raw_notifier_chain_register(&netdev_chain, nb);
1592 	if (err)
1593 		goto unlock;
1594 	if (dev_boot_phase)
1595 		goto unlock;
1596 	for_each_net(net) {
1597 		for_each_netdev(net, dev) {
1598 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1599 			err = notifier_to_errno(err);
1600 			if (err)
1601 				goto rollback;
1602 
1603 			if (!(dev->flags & IFF_UP))
1604 				continue;
1605 
1606 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1607 		}
1608 	}
1609 
1610 unlock:
1611 	rtnl_unlock();
1612 	return err;
1613 
1614 rollback:
1615 	last = dev;
1616 	for_each_net(net) {
1617 		for_each_netdev(net, dev) {
1618 			if (dev == last)
1619 				goto outroll;
1620 
1621 			if (dev->flags & IFF_UP) {
1622 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1623 							dev);
1624 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1625 			}
1626 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1627 		}
1628 	}
1629 
1630 outroll:
1631 	raw_notifier_chain_unregister(&netdev_chain, nb);
1632 	goto unlock;
1633 }
1634 EXPORT_SYMBOL(register_netdevice_notifier);
1635 
1636 /**
1637  * unregister_netdevice_notifier - unregister a network notifier block
1638  * @nb: notifier
1639  *
1640  * Unregister a notifier previously registered by
1641  * register_netdevice_notifier(). The notifier is unlinked into the
1642  * kernel structures and may then be reused. A negative errno code
1643  * is returned on a failure.
1644  *
1645  * After unregistering unregister and down device events are synthesized
1646  * for all devices on the device list to the removed notifier to remove
1647  * the need for special case cleanup code.
1648  */
1649 
1650 int unregister_netdevice_notifier(struct notifier_block *nb)
1651 {
1652 	struct net_device *dev;
1653 	struct net *net;
1654 	int err;
1655 
1656 	rtnl_lock();
1657 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1658 	if (err)
1659 		goto unlock;
1660 
1661 	for_each_net(net) {
1662 		for_each_netdev(net, dev) {
1663 			if (dev->flags & IFF_UP) {
1664 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1665 							dev);
1666 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1667 			}
1668 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1669 		}
1670 	}
1671 unlock:
1672 	rtnl_unlock();
1673 	return err;
1674 }
1675 EXPORT_SYMBOL(unregister_netdevice_notifier);
1676 
1677 /**
1678  *	call_netdevice_notifiers_info - call all network notifier blocks
1679  *	@val: value passed unmodified to notifier function
1680  *	@dev: net_device pointer passed unmodified to notifier function
1681  *	@info: notifier information data
1682  *
1683  *	Call all network notifier blocks.  Parameters and return value
1684  *	are as for raw_notifier_call_chain().
1685  */
1686 
1687 static int call_netdevice_notifiers_info(unsigned long val,
1688 					 struct netdev_notifier_info *info)
1689 {
1690 	ASSERT_RTNL();
1691 	return raw_notifier_call_chain(&netdev_chain, val, info);
1692 }
1693 
1694 /**
1695  *	call_netdevice_notifiers - call all network notifier blocks
1696  *      @val: value passed unmodified to notifier function
1697  *      @dev: net_device pointer passed unmodified to notifier function
1698  *
1699  *	Call all network notifier blocks.  Parameters and return value
1700  *	are as for raw_notifier_call_chain().
1701  */
1702 
1703 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1704 {
1705 	struct netdev_notifier_info info = {
1706 		.dev = dev,
1707 	};
1708 
1709 	return call_netdevice_notifiers_info(val, &info);
1710 }
1711 EXPORT_SYMBOL(call_netdevice_notifiers);
1712 
1713 #ifdef CONFIG_NET_INGRESS
1714 static struct static_key ingress_needed __read_mostly;
1715 
1716 void net_inc_ingress_queue(void)
1717 {
1718 	static_key_slow_inc(&ingress_needed);
1719 }
1720 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1721 
1722 void net_dec_ingress_queue(void)
1723 {
1724 	static_key_slow_dec(&ingress_needed);
1725 }
1726 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1727 #endif
1728 
1729 #ifdef CONFIG_NET_EGRESS
1730 static struct static_key egress_needed __read_mostly;
1731 
1732 void net_inc_egress_queue(void)
1733 {
1734 	static_key_slow_inc(&egress_needed);
1735 }
1736 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1737 
1738 void net_dec_egress_queue(void)
1739 {
1740 	static_key_slow_dec(&egress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1743 #endif
1744 
1745 static struct static_key netstamp_needed __read_mostly;
1746 #ifdef HAVE_JUMP_LABEL
1747 static atomic_t netstamp_needed_deferred;
1748 static atomic_t netstamp_wanted;
1749 static void netstamp_clear(struct work_struct *work)
1750 {
1751 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1752 	int wanted;
1753 
1754 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1755 	if (wanted > 0)
1756 		static_key_enable(&netstamp_needed);
1757 	else
1758 		static_key_disable(&netstamp_needed);
1759 }
1760 static DECLARE_WORK(netstamp_work, netstamp_clear);
1761 #endif
1762 
1763 void net_enable_timestamp(void)
1764 {
1765 #ifdef HAVE_JUMP_LABEL
1766 	int wanted;
1767 
1768 	while (1) {
1769 		wanted = atomic_read(&netstamp_wanted);
1770 		if (wanted <= 0)
1771 			break;
1772 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1773 			return;
1774 	}
1775 	atomic_inc(&netstamp_needed_deferred);
1776 	schedule_work(&netstamp_work);
1777 #else
1778 	static_key_slow_inc(&netstamp_needed);
1779 #endif
1780 }
1781 EXPORT_SYMBOL(net_enable_timestamp);
1782 
1783 void net_disable_timestamp(void)
1784 {
1785 #ifdef HAVE_JUMP_LABEL
1786 	int wanted;
1787 
1788 	while (1) {
1789 		wanted = atomic_read(&netstamp_wanted);
1790 		if (wanted <= 1)
1791 			break;
1792 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1793 			return;
1794 	}
1795 	atomic_dec(&netstamp_needed_deferred);
1796 	schedule_work(&netstamp_work);
1797 #else
1798 	static_key_slow_dec(&netstamp_needed);
1799 #endif
1800 }
1801 EXPORT_SYMBOL(net_disable_timestamp);
1802 
1803 static inline void net_timestamp_set(struct sk_buff *skb)
1804 {
1805 	skb->tstamp = 0;
1806 	if (static_key_false(&netstamp_needed))
1807 		__net_timestamp(skb);
1808 }
1809 
1810 #define net_timestamp_check(COND, SKB)			\
1811 	if (static_key_false(&netstamp_needed)) {		\
1812 		if ((COND) && !(SKB)->tstamp)	\
1813 			__net_timestamp(SKB);		\
1814 	}						\
1815 
1816 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1817 {
1818 	unsigned int len;
1819 
1820 	if (!(dev->flags & IFF_UP))
1821 		return false;
1822 
1823 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1824 	if (skb->len <= len)
1825 		return true;
1826 
1827 	/* if TSO is enabled, we don't care about the length as the packet
1828 	 * could be forwarded without being segmented before
1829 	 */
1830 	if (skb_is_gso(skb))
1831 		return true;
1832 
1833 	return false;
1834 }
1835 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1836 
1837 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1838 {
1839 	int ret = ____dev_forward_skb(dev, skb);
1840 
1841 	if (likely(!ret)) {
1842 		skb->protocol = eth_type_trans(skb, dev);
1843 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1844 	}
1845 
1846 	return ret;
1847 }
1848 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1849 
1850 /**
1851  * dev_forward_skb - loopback an skb to another netif
1852  *
1853  * @dev: destination network device
1854  * @skb: buffer to forward
1855  *
1856  * return values:
1857  *	NET_RX_SUCCESS	(no congestion)
1858  *	NET_RX_DROP     (packet was dropped, but freed)
1859  *
1860  * dev_forward_skb can be used for injecting an skb from the
1861  * start_xmit function of one device into the receive queue
1862  * of another device.
1863  *
1864  * The receiving device may be in another namespace, so
1865  * we have to clear all information in the skb that could
1866  * impact namespace isolation.
1867  */
1868 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1869 {
1870 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1871 }
1872 EXPORT_SYMBOL_GPL(dev_forward_skb);
1873 
1874 static inline int deliver_skb(struct sk_buff *skb,
1875 			      struct packet_type *pt_prev,
1876 			      struct net_device *orig_dev)
1877 {
1878 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1879 		return -ENOMEM;
1880 	refcount_inc(&skb->users);
1881 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1882 }
1883 
1884 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1885 					  struct packet_type **pt,
1886 					  struct net_device *orig_dev,
1887 					  __be16 type,
1888 					  struct list_head *ptype_list)
1889 {
1890 	struct packet_type *ptype, *pt_prev = *pt;
1891 
1892 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1893 		if (ptype->type != type)
1894 			continue;
1895 		if (pt_prev)
1896 			deliver_skb(skb, pt_prev, orig_dev);
1897 		pt_prev = ptype;
1898 	}
1899 	*pt = pt_prev;
1900 }
1901 
1902 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1903 {
1904 	if (!ptype->af_packet_priv || !skb->sk)
1905 		return false;
1906 
1907 	if (ptype->id_match)
1908 		return ptype->id_match(ptype, skb->sk);
1909 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1910 		return true;
1911 
1912 	return false;
1913 }
1914 
1915 /*
1916  *	Support routine. Sends outgoing frames to any network
1917  *	taps currently in use.
1918  */
1919 
1920 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1921 {
1922 	struct packet_type *ptype;
1923 	struct sk_buff *skb2 = NULL;
1924 	struct packet_type *pt_prev = NULL;
1925 	struct list_head *ptype_list = &ptype_all;
1926 
1927 	rcu_read_lock();
1928 again:
1929 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1930 		/* Never send packets back to the socket
1931 		 * they originated from - MvS ([email protected])
1932 		 */
1933 		if (skb_loop_sk(ptype, skb))
1934 			continue;
1935 
1936 		if (pt_prev) {
1937 			deliver_skb(skb2, pt_prev, skb->dev);
1938 			pt_prev = ptype;
1939 			continue;
1940 		}
1941 
1942 		/* need to clone skb, done only once */
1943 		skb2 = skb_clone(skb, GFP_ATOMIC);
1944 		if (!skb2)
1945 			goto out_unlock;
1946 
1947 		net_timestamp_set(skb2);
1948 
1949 		/* skb->nh should be correctly
1950 		 * set by sender, so that the second statement is
1951 		 * just protection against buggy protocols.
1952 		 */
1953 		skb_reset_mac_header(skb2);
1954 
1955 		if (skb_network_header(skb2) < skb2->data ||
1956 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1957 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1958 					     ntohs(skb2->protocol),
1959 					     dev->name);
1960 			skb_reset_network_header(skb2);
1961 		}
1962 
1963 		skb2->transport_header = skb2->network_header;
1964 		skb2->pkt_type = PACKET_OUTGOING;
1965 		pt_prev = ptype;
1966 	}
1967 
1968 	if (ptype_list == &ptype_all) {
1969 		ptype_list = &dev->ptype_all;
1970 		goto again;
1971 	}
1972 out_unlock:
1973 	if (pt_prev) {
1974 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1975 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1976 		else
1977 			kfree_skb(skb2);
1978 	}
1979 	rcu_read_unlock();
1980 }
1981 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1982 
1983 /**
1984  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1985  * @dev: Network device
1986  * @txq: number of queues available
1987  *
1988  * If real_num_tx_queues is changed the tc mappings may no longer be
1989  * valid. To resolve this verify the tc mapping remains valid and if
1990  * not NULL the mapping. With no priorities mapping to this
1991  * offset/count pair it will no longer be used. In the worst case TC0
1992  * is invalid nothing can be done so disable priority mappings. If is
1993  * expected that drivers will fix this mapping if they can before
1994  * calling netif_set_real_num_tx_queues.
1995  */
1996 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1997 {
1998 	int i;
1999 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2000 
2001 	/* If TC0 is invalidated disable TC mapping */
2002 	if (tc->offset + tc->count > txq) {
2003 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2004 		dev->num_tc = 0;
2005 		return;
2006 	}
2007 
2008 	/* Invalidated prio to tc mappings set to TC0 */
2009 	for (i = 1; i < TC_BITMASK + 1; i++) {
2010 		int q = netdev_get_prio_tc_map(dev, i);
2011 
2012 		tc = &dev->tc_to_txq[q];
2013 		if (tc->offset + tc->count > txq) {
2014 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2015 				i, q);
2016 			netdev_set_prio_tc_map(dev, i, 0);
2017 		}
2018 	}
2019 }
2020 
2021 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2022 {
2023 	if (dev->num_tc) {
2024 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2025 		int i;
2026 
2027 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2028 			if ((txq - tc->offset) < tc->count)
2029 				return i;
2030 		}
2031 
2032 		return -1;
2033 	}
2034 
2035 	return 0;
2036 }
2037 EXPORT_SYMBOL(netdev_txq_to_tc);
2038 
2039 #ifdef CONFIG_XPS
2040 static DEFINE_MUTEX(xps_map_mutex);
2041 #define xmap_dereference(P)		\
2042 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2043 
2044 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2045 			     int tci, u16 index)
2046 {
2047 	struct xps_map *map = NULL;
2048 	int pos;
2049 
2050 	if (dev_maps)
2051 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2052 	if (!map)
2053 		return false;
2054 
2055 	for (pos = map->len; pos--;) {
2056 		if (map->queues[pos] != index)
2057 			continue;
2058 
2059 		if (map->len > 1) {
2060 			map->queues[pos] = map->queues[--map->len];
2061 			break;
2062 		}
2063 
2064 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2065 		kfree_rcu(map, rcu);
2066 		return false;
2067 	}
2068 
2069 	return true;
2070 }
2071 
2072 static bool remove_xps_queue_cpu(struct net_device *dev,
2073 				 struct xps_dev_maps *dev_maps,
2074 				 int cpu, u16 offset, u16 count)
2075 {
2076 	int num_tc = dev->num_tc ? : 1;
2077 	bool active = false;
2078 	int tci;
2079 
2080 	for (tci = cpu * num_tc; num_tc--; tci++) {
2081 		int i, j;
2082 
2083 		for (i = count, j = offset; i--; j++) {
2084 			if (!remove_xps_queue(dev_maps, cpu, j))
2085 				break;
2086 		}
2087 
2088 		active |= i < 0;
2089 	}
2090 
2091 	return active;
2092 }
2093 
2094 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2095 				   u16 count)
2096 {
2097 	struct xps_dev_maps *dev_maps;
2098 	int cpu, i;
2099 	bool active = false;
2100 
2101 	mutex_lock(&xps_map_mutex);
2102 	dev_maps = xmap_dereference(dev->xps_maps);
2103 
2104 	if (!dev_maps)
2105 		goto out_no_maps;
2106 
2107 	for_each_possible_cpu(cpu)
2108 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2109 					       offset, count);
2110 
2111 	if (!active) {
2112 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2113 		kfree_rcu(dev_maps, rcu);
2114 	}
2115 
2116 	for (i = offset + (count - 1); count--; i--)
2117 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2118 					     NUMA_NO_NODE);
2119 
2120 out_no_maps:
2121 	mutex_unlock(&xps_map_mutex);
2122 }
2123 
2124 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2125 {
2126 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2127 }
2128 
2129 static struct xps_map *expand_xps_map(struct xps_map *map,
2130 				      int cpu, u16 index)
2131 {
2132 	struct xps_map *new_map;
2133 	int alloc_len = XPS_MIN_MAP_ALLOC;
2134 	int i, pos;
2135 
2136 	for (pos = 0; map && pos < map->len; pos++) {
2137 		if (map->queues[pos] != index)
2138 			continue;
2139 		return map;
2140 	}
2141 
2142 	/* Need to add queue to this CPU's existing map */
2143 	if (map) {
2144 		if (pos < map->alloc_len)
2145 			return map;
2146 
2147 		alloc_len = map->alloc_len * 2;
2148 	}
2149 
2150 	/* Need to allocate new map to store queue on this CPU's map */
2151 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2152 			       cpu_to_node(cpu));
2153 	if (!new_map)
2154 		return NULL;
2155 
2156 	for (i = 0; i < pos; i++)
2157 		new_map->queues[i] = map->queues[i];
2158 	new_map->alloc_len = alloc_len;
2159 	new_map->len = pos;
2160 
2161 	return new_map;
2162 }
2163 
2164 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2165 			u16 index)
2166 {
2167 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2168 	int i, cpu, tci, numa_node_id = -2;
2169 	int maps_sz, num_tc = 1, tc = 0;
2170 	struct xps_map *map, *new_map;
2171 	bool active = false;
2172 
2173 	if (dev->num_tc) {
2174 		num_tc = dev->num_tc;
2175 		tc = netdev_txq_to_tc(dev, index);
2176 		if (tc < 0)
2177 			return -EINVAL;
2178 	}
2179 
2180 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2181 	if (maps_sz < L1_CACHE_BYTES)
2182 		maps_sz = L1_CACHE_BYTES;
2183 
2184 	mutex_lock(&xps_map_mutex);
2185 
2186 	dev_maps = xmap_dereference(dev->xps_maps);
2187 
2188 	/* allocate memory for queue storage */
2189 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2190 		if (!new_dev_maps)
2191 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2192 		if (!new_dev_maps) {
2193 			mutex_unlock(&xps_map_mutex);
2194 			return -ENOMEM;
2195 		}
2196 
2197 		tci = cpu * num_tc + tc;
2198 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2199 				 NULL;
2200 
2201 		map = expand_xps_map(map, cpu, index);
2202 		if (!map)
2203 			goto error;
2204 
2205 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2206 	}
2207 
2208 	if (!new_dev_maps)
2209 		goto out_no_new_maps;
2210 
2211 	for_each_possible_cpu(cpu) {
2212 		/* copy maps belonging to foreign traffic classes */
2213 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2214 			/* fill in the new device map from the old device map */
2215 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2216 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2217 		}
2218 
2219 		/* We need to explicitly update tci as prevous loop
2220 		 * could break out early if dev_maps is NULL.
2221 		 */
2222 		tci = cpu * num_tc + tc;
2223 
2224 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2225 			/* add queue to CPU maps */
2226 			int pos = 0;
2227 
2228 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2229 			while ((pos < map->len) && (map->queues[pos] != index))
2230 				pos++;
2231 
2232 			if (pos == map->len)
2233 				map->queues[map->len++] = index;
2234 #ifdef CONFIG_NUMA
2235 			if (numa_node_id == -2)
2236 				numa_node_id = cpu_to_node(cpu);
2237 			else if (numa_node_id != cpu_to_node(cpu))
2238 				numa_node_id = -1;
2239 #endif
2240 		} else if (dev_maps) {
2241 			/* fill in the new device map from the old device map */
2242 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2243 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2244 		}
2245 
2246 		/* copy maps belonging to foreign traffic classes */
2247 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2248 			/* fill in the new device map from the old device map */
2249 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2250 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2251 		}
2252 	}
2253 
2254 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2255 
2256 	/* Cleanup old maps */
2257 	if (!dev_maps)
2258 		goto out_no_old_maps;
2259 
2260 	for_each_possible_cpu(cpu) {
2261 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2262 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2263 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2264 			if (map && map != new_map)
2265 				kfree_rcu(map, rcu);
2266 		}
2267 	}
2268 
2269 	kfree_rcu(dev_maps, rcu);
2270 
2271 out_no_old_maps:
2272 	dev_maps = new_dev_maps;
2273 	active = true;
2274 
2275 out_no_new_maps:
2276 	/* update Tx queue numa node */
2277 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2278 				     (numa_node_id >= 0) ? numa_node_id :
2279 				     NUMA_NO_NODE);
2280 
2281 	if (!dev_maps)
2282 		goto out_no_maps;
2283 
2284 	/* removes queue from unused CPUs */
2285 	for_each_possible_cpu(cpu) {
2286 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2287 			active |= remove_xps_queue(dev_maps, tci, index);
2288 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2289 			active |= remove_xps_queue(dev_maps, tci, index);
2290 		for (i = num_tc - tc, tci++; --i; tci++)
2291 			active |= remove_xps_queue(dev_maps, tci, index);
2292 	}
2293 
2294 	/* free map if not active */
2295 	if (!active) {
2296 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2297 		kfree_rcu(dev_maps, rcu);
2298 	}
2299 
2300 out_no_maps:
2301 	mutex_unlock(&xps_map_mutex);
2302 
2303 	return 0;
2304 error:
2305 	/* remove any maps that we added */
2306 	for_each_possible_cpu(cpu) {
2307 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2308 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2309 			map = dev_maps ?
2310 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2311 			      NULL;
2312 			if (new_map && new_map != map)
2313 				kfree(new_map);
2314 		}
2315 	}
2316 
2317 	mutex_unlock(&xps_map_mutex);
2318 
2319 	kfree(new_dev_maps);
2320 	return -ENOMEM;
2321 }
2322 EXPORT_SYMBOL(netif_set_xps_queue);
2323 
2324 #endif
2325 void netdev_reset_tc(struct net_device *dev)
2326 {
2327 #ifdef CONFIG_XPS
2328 	netif_reset_xps_queues_gt(dev, 0);
2329 #endif
2330 	dev->num_tc = 0;
2331 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2332 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2333 }
2334 EXPORT_SYMBOL(netdev_reset_tc);
2335 
2336 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2337 {
2338 	if (tc >= dev->num_tc)
2339 		return -EINVAL;
2340 
2341 #ifdef CONFIG_XPS
2342 	netif_reset_xps_queues(dev, offset, count);
2343 #endif
2344 	dev->tc_to_txq[tc].count = count;
2345 	dev->tc_to_txq[tc].offset = offset;
2346 	return 0;
2347 }
2348 EXPORT_SYMBOL(netdev_set_tc_queue);
2349 
2350 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2351 {
2352 	if (num_tc > TC_MAX_QUEUE)
2353 		return -EINVAL;
2354 
2355 #ifdef CONFIG_XPS
2356 	netif_reset_xps_queues_gt(dev, 0);
2357 #endif
2358 	dev->num_tc = num_tc;
2359 	return 0;
2360 }
2361 EXPORT_SYMBOL(netdev_set_num_tc);
2362 
2363 /*
2364  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2365  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2366  */
2367 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2368 {
2369 	int rc;
2370 
2371 	if (txq < 1 || txq > dev->num_tx_queues)
2372 		return -EINVAL;
2373 
2374 	if (dev->reg_state == NETREG_REGISTERED ||
2375 	    dev->reg_state == NETREG_UNREGISTERING) {
2376 		ASSERT_RTNL();
2377 
2378 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2379 						  txq);
2380 		if (rc)
2381 			return rc;
2382 
2383 		if (dev->num_tc)
2384 			netif_setup_tc(dev, txq);
2385 
2386 		if (txq < dev->real_num_tx_queues) {
2387 			qdisc_reset_all_tx_gt(dev, txq);
2388 #ifdef CONFIG_XPS
2389 			netif_reset_xps_queues_gt(dev, txq);
2390 #endif
2391 		}
2392 	}
2393 
2394 	dev->real_num_tx_queues = txq;
2395 	return 0;
2396 }
2397 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2398 
2399 #ifdef CONFIG_SYSFS
2400 /**
2401  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2402  *	@dev: Network device
2403  *	@rxq: Actual number of RX queues
2404  *
2405  *	This must be called either with the rtnl_lock held or before
2406  *	registration of the net device.  Returns 0 on success, or a
2407  *	negative error code.  If called before registration, it always
2408  *	succeeds.
2409  */
2410 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2411 {
2412 	int rc;
2413 
2414 	if (rxq < 1 || rxq > dev->num_rx_queues)
2415 		return -EINVAL;
2416 
2417 	if (dev->reg_state == NETREG_REGISTERED) {
2418 		ASSERT_RTNL();
2419 
2420 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2421 						  rxq);
2422 		if (rc)
2423 			return rc;
2424 	}
2425 
2426 	dev->real_num_rx_queues = rxq;
2427 	return 0;
2428 }
2429 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2430 #endif
2431 
2432 /**
2433  * netif_get_num_default_rss_queues - default number of RSS queues
2434  *
2435  * This routine should set an upper limit on the number of RSS queues
2436  * used by default by multiqueue devices.
2437  */
2438 int netif_get_num_default_rss_queues(void)
2439 {
2440 	return is_kdump_kernel() ?
2441 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2442 }
2443 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2444 
2445 static void __netif_reschedule(struct Qdisc *q)
2446 {
2447 	struct softnet_data *sd;
2448 	unsigned long flags;
2449 
2450 	local_irq_save(flags);
2451 	sd = this_cpu_ptr(&softnet_data);
2452 	q->next_sched = NULL;
2453 	*sd->output_queue_tailp = q;
2454 	sd->output_queue_tailp = &q->next_sched;
2455 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2456 	local_irq_restore(flags);
2457 }
2458 
2459 void __netif_schedule(struct Qdisc *q)
2460 {
2461 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2462 		__netif_reschedule(q);
2463 }
2464 EXPORT_SYMBOL(__netif_schedule);
2465 
2466 struct dev_kfree_skb_cb {
2467 	enum skb_free_reason reason;
2468 };
2469 
2470 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2471 {
2472 	return (struct dev_kfree_skb_cb *)skb->cb;
2473 }
2474 
2475 void netif_schedule_queue(struct netdev_queue *txq)
2476 {
2477 	rcu_read_lock();
2478 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2479 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2480 
2481 		__netif_schedule(q);
2482 	}
2483 	rcu_read_unlock();
2484 }
2485 EXPORT_SYMBOL(netif_schedule_queue);
2486 
2487 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2488 {
2489 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2490 		struct Qdisc *q;
2491 
2492 		rcu_read_lock();
2493 		q = rcu_dereference(dev_queue->qdisc);
2494 		__netif_schedule(q);
2495 		rcu_read_unlock();
2496 	}
2497 }
2498 EXPORT_SYMBOL(netif_tx_wake_queue);
2499 
2500 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2501 {
2502 	unsigned long flags;
2503 
2504 	if (unlikely(!skb))
2505 		return;
2506 
2507 	if (likely(refcount_read(&skb->users) == 1)) {
2508 		smp_rmb();
2509 		refcount_set(&skb->users, 0);
2510 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2511 		return;
2512 	}
2513 	get_kfree_skb_cb(skb)->reason = reason;
2514 	local_irq_save(flags);
2515 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2516 	__this_cpu_write(softnet_data.completion_queue, skb);
2517 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2518 	local_irq_restore(flags);
2519 }
2520 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2521 
2522 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2523 {
2524 	if (in_irq() || irqs_disabled())
2525 		__dev_kfree_skb_irq(skb, reason);
2526 	else
2527 		dev_kfree_skb(skb);
2528 }
2529 EXPORT_SYMBOL(__dev_kfree_skb_any);
2530 
2531 
2532 /**
2533  * netif_device_detach - mark device as removed
2534  * @dev: network device
2535  *
2536  * Mark device as removed from system and therefore no longer available.
2537  */
2538 void netif_device_detach(struct net_device *dev)
2539 {
2540 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2541 	    netif_running(dev)) {
2542 		netif_tx_stop_all_queues(dev);
2543 	}
2544 }
2545 EXPORT_SYMBOL(netif_device_detach);
2546 
2547 /**
2548  * netif_device_attach - mark device as attached
2549  * @dev: network device
2550  *
2551  * Mark device as attached from system and restart if needed.
2552  */
2553 void netif_device_attach(struct net_device *dev)
2554 {
2555 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2556 	    netif_running(dev)) {
2557 		netif_tx_wake_all_queues(dev);
2558 		__netdev_watchdog_up(dev);
2559 	}
2560 }
2561 EXPORT_SYMBOL(netif_device_attach);
2562 
2563 /*
2564  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2565  * to be used as a distribution range.
2566  */
2567 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2568 		  unsigned int num_tx_queues)
2569 {
2570 	u32 hash;
2571 	u16 qoffset = 0;
2572 	u16 qcount = num_tx_queues;
2573 
2574 	if (skb_rx_queue_recorded(skb)) {
2575 		hash = skb_get_rx_queue(skb);
2576 		while (unlikely(hash >= num_tx_queues))
2577 			hash -= num_tx_queues;
2578 		return hash;
2579 	}
2580 
2581 	if (dev->num_tc) {
2582 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2583 
2584 		qoffset = dev->tc_to_txq[tc].offset;
2585 		qcount = dev->tc_to_txq[tc].count;
2586 	}
2587 
2588 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2589 }
2590 EXPORT_SYMBOL(__skb_tx_hash);
2591 
2592 static void skb_warn_bad_offload(const struct sk_buff *skb)
2593 {
2594 	static const netdev_features_t null_features;
2595 	struct net_device *dev = skb->dev;
2596 	const char *name = "";
2597 
2598 	if (!net_ratelimit())
2599 		return;
2600 
2601 	if (dev) {
2602 		if (dev->dev.parent)
2603 			name = dev_driver_string(dev->dev.parent);
2604 		else
2605 			name = netdev_name(dev);
2606 	}
2607 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2608 	     "gso_type=%d ip_summed=%d\n",
2609 	     name, dev ? &dev->features : &null_features,
2610 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2611 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2612 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2613 }
2614 
2615 /*
2616  * Invalidate hardware checksum when packet is to be mangled, and
2617  * complete checksum manually on outgoing path.
2618  */
2619 int skb_checksum_help(struct sk_buff *skb)
2620 {
2621 	__wsum csum;
2622 	int ret = 0, offset;
2623 
2624 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2625 		goto out_set_summed;
2626 
2627 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2628 		skb_warn_bad_offload(skb);
2629 		return -EINVAL;
2630 	}
2631 
2632 	/* Before computing a checksum, we should make sure no frag could
2633 	 * be modified by an external entity : checksum could be wrong.
2634 	 */
2635 	if (skb_has_shared_frag(skb)) {
2636 		ret = __skb_linearize(skb);
2637 		if (ret)
2638 			goto out;
2639 	}
2640 
2641 	offset = skb_checksum_start_offset(skb);
2642 	BUG_ON(offset >= skb_headlen(skb));
2643 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2644 
2645 	offset += skb->csum_offset;
2646 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2647 
2648 	if (skb_cloned(skb) &&
2649 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2650 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2651 		if (ret)
2652 			goto out;
2653 	}
2654 
2655 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2656 out_set_summed:
2657 	skb->ip_summed = CHECKSUM_NONE;
2658 out:
2659 	return ret;
2660 }
2661 EXPORT_SYMBOL(skb_checksum_help);
2662 
2663 int skb_crc32c_csum_help(struct sk_buff *skb)
2664 {
2665 	__le32 crc32c_csum;
2666 	int ret = 0, offset, start;
2667 
2668 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2669 		goto out;
2670 
2671 	if (unlikely(skb_is_gso(skb)))
2672 		goto out;
2673 
2674 	/* Before computing a checksum, we should make sure no frag could
2675 	 * be modified by an external entity : checksum could be wrong.
2676 	 */
2677 	if (unlikely(skb_has_shared_frag(skb))) {
2678 		ret = __skb_linearize(skb);
2679 		if (ret)
2680 			goto out;
2681 	}
2682 	start = skb_checksum_start_offset(skb);
2683 	offset = start + offsetof(struct sctphdr, checksum);
2684 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2685 		ret = -EINVAL;
2686 		goto out;
2687 	}
2688 	if (skb_cloned(skb) &&
2689 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2690 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2691 		if (ret)
2692 			goto out;
2693 	}
2694 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2695 						  skb->len - start, ~(__u32)0,
2696 						  crc32c_csum_stub));
2697 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2698 	skb->ip_summed = CHECKSUM_NONE;
2699 	skb->csum_not_inet = 0;
2700 out:
2701 	return ret;
2702 }
2703 
2704 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2705 {
2706 	__be16 type = skb->protocol;
2707 
2708 	/* Tunnel gso handlers can set protocol to ethernet. */
2709 	if (type == htons(ETH_P_TEB)) {
2710 		struct ethhdr *eth;
2711 
2712 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2713 			return 0;
2714 
2715 		eth = (struct ethhdr *)skb_mac_header(skb);
2716 		type = eth->h_proto;
2717 	}
2718 
2719 	return __vlan_get_protocol(skb, type, depth);
2720 }
2721 
2722 /**
2723  *	skb_mac_gso_segment - mac layer segmentation handler.
2724  *	@skb: buffer to segment
2725  *	@features: features for the output path (see dev->features)
2726  */
2727 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2728 				    netdev_features_t features)
2729 {
2730 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2731 	struct packet_offload *ptype;
2732 	int vlan_depth = skb->mac_len;
2733 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2734 
2735 	if (unlikely(!type))
2736 		return ERR_PTR(-EINVAL);
2737 
2738 	__skb_pull(skb, vlan_depth);
2739 
2740 	rcu_read_lock();
2741 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2742 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2743 			segs = ptype->callbacks.gso_segment(skb, features);
2744 			break;
2745 		}
2746 	}
2747 	rcu_read_unlock();
2748 
2749 	__skb_push(skb, skb->data - skb_mac_header(skb));
2750 
2751 	return segs;
2752 }
2753 EXPORT_SYMBOL(skb_mac_gso_segment);
2754 
2755 
2756 /* openvswitch calls this on rx path, so we need a different check.
2757  */
2758 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2759 {
2760 	if (tx_path)
2761 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2762 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2763 
2764 	return skb->ip_summed == CHECKSUM_NONE;
2765 }
2766 
2767 /**
2768  *	__skb_gso_segment - Perform segmentation on skb.
2769  *	@skb: buffer to segment
2770  *	@features: features for the output path (see dev->features)
2771  *	@tx_path: whether it is called in TX path
2772  *
2773  *	This function segments the given skb and returns a list of segments.
2774  *
2775  *	It may return NULL if the skb requires no segmentation.  This is
2776  *	only possible when GSO is used for verifying header integrity.
2777  *
2778  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2779  */
2780 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2781 				  netdev_features_t features, bool tx_path)
2782 {
2783 	struct sk_buff *segs;
2784 
2785 	if (unlikely(skb_needs_check(skb, tx_path))) {
2786 		int err;
2787 
2788 		/* We're going to init ->check field in TCP or UDP header */
2789 		err = skb_cow_head(skb, 0);
2790 		if (err < 0)
2791 			return ERR_PTR(err);
2792 	}
2793 
2794 	/* Only report GSO partial support if it will enable us to
2795 	 * support segmentation on this frame without needing additional
2796 	 * work.
2797 	 */
2798 	if (features & NETIF_F_GSO_PARTIAL) {
2799 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2800 		struct net_device *dev = skb->dev;
2801 
2802 		partial_features |= dev->features & dev->gso_partial_features;
2803 		if (!skb_gso_ok(skb, features | partial_features))
2804 			features &= ~NETIF_F_GSO_PARTIAL;
2805 	}
2806 
2807 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2808 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2809 
2810 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2811 	SKB_GSO_CB(skb)->encap_level = 0;
2812 
2813 	skb_reset_mac_header(skb);
2814 	skb_reset_mac_len(skb);
2815 
2816 	segs = skb_mac_gso_segment(skb, features);
2817 
2818 	if (unlikely(skb_needs_check(skb, tx_path)))
2819 		skb_warn_bad_offload(skb);
2820 
2821 	return segs;
2822 }
2823 EXPORT_SYMBOL(__skb_gso_segment);
2824 
2825 /* Take action when hardware reception checksum errors are detected. */
2826 #ifdef CONFIG_BUG
2827 void netdev_rx_csum_fault(struct net_device *dev)
2828 {
2829 	if (net_ratelimit()) {
2830 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2831 		dump_stack();
2832 	}
2833 }
2834 EXPORT_SYMBOL(netdev_rx_csum_fault);
2835 #endif
2836 
2837 /* Actually, we should eliminate this check as soon as we know, that:
2838  * 1. IOMMU is present and allows to map all the memory.
2839  * 2. No high memory really exists on this machine.
2840  */
2841 
2842 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2843 {
2844 #ifdef CONFIG_HIGHMEM
2845 	int i;
2846 
2847 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2848 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2849 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2850 
2851 			if (PageHighMem(skb_frag_page(frag)))
2852 				return 1;
2853 		}
2854 	}
2855 
2856 	if (PCI_DMA_BUS_IS_PHYS) {
2857 		struct device *pdev = dev->dev.parent;
2858 
2859 		if (!pdev)
2860 			return 0;
2861 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2862 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2863 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2864 
2865 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2866 				return 1;
2867 		}
2868 	}
2869 #endif
2870 	return 0;
2871 }
2872 
2873 /* If MPLS offload request, verify we are testing hardware MPLS features
2874  * instead of standard features for the netdev.
2875  */
2876 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2877 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2878 					   netdev_features_t features,
2879 					   __be16 type)
2880 {
2881 	if (eth_p_mpls(type))
2882 		features &= skb->dev->mpls_features;
2883 
2884 	return features;
2885 }
2886 #else
2887 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2888 					   netdev_features_t features,
2889 					   __be16 type)
2890 {
2891 	return features;
2892 }
2893 #endif
2894 
2895 static netdev_features_t harmonize_features(struct sk_buff *skb,
2896 	netdev_features_t features)
2897 {
2898 	int tmp;
2899 	__be16 type;
2900 
2901 	type = skb_network_protocol(skb, &tmp);
2902 	features = net_mpls_features(skb, features, type);
2903 
2904 	if (skb->ip_summed != CHECKSUM_NONE &&
2905 	    !can_checksum_protocol(features, type)) {
2906 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2907 	}
2908 	if (illegal_highdma(skb->dev, skb))
2909 		features &= ~NETIF_F_SG;
2910 
2911 	return features;
2912 }
2913 
2914 netdev_features_t passthru_features_check(struct sk_buff *skb,
2915 					  struct net_device *dev,
2916 					  netdev_features_t features)
2917 {
2918 	return features;
2919 }
2920 EXPORT_SYMBOL(passthru_features_check);
2921 
2922 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2923 					     struct net_device *dev,
2924 					     netdev_features_t features)
2925 {
2926 	return vlan_features_check(skb, features);
2927 }
2928 
2929 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2930 					    struct net_device *dev,
2931 					    netdev_features_t features)
2932 {
2933 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2934 
2935 	if (gso_segs > dev->gso_max_segs)
2936 		return features & ~NETIF_F_GSO_MASK;
2937 
2938 	/* Support for GSO partial features requires software
2939 	 * intervention before we can actually process the packets
2940 	 * so we need to strip support for any partial features now
2941 	 * and we can pull them back in after we have partially
2942 	 * segmented the frame.
2943 	 */
2944 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2945 		features &= ~dev->gso_partial_features;
2946 
2947 	/* Make sure to clear the IPv4 ID mangling feature if the
2948 	 * IPv4 header has the potential to be fragmented.
2949 	 */
2950 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2951 		struct iphdr *iph = skb->encapsulation ?
2952 				    inner_ip_hdr(skb) : ip_hdr(skb);
2953 
2954 		if (!(iph->frag_off & htons(IP_DF)))
2955 			features &= ~NETIF_F_TSO_MANGLEID;
2956 	}
2957 
2958 	return features;
2959 }
2960 
2961 netdev_features_t netif_skb_features(struct sk_buff *skb)
2962 {
2963 	struct net_device *dev = skb->dev;
2964 	netdev_features_t features = dev->features;
2965 
2966 	if (skb_is_gso(skb))
2967 		features = gso_features_check(skb, dev, features);
2968 
2969 	/* If encapsulation offload request, verify we are testing
2970 	 * hardware encapsulation features instead of standard
2971 	 * features for the netdev
2972 	 */
2973 	if (skb->encapsulation)
2974 		features &= dev->hw_enc_features;
2975 
2976 	if (skb_vlan_tagged(skb))
2977 		features = netdev_intersect_features(features,
2978 						     dev->vlan_features |
2979 						     NETIF_F_HW_VLAN_CTAG_TX |
2980 						     NETIF_F_HW_VLAN_STAG_TX);
2981 
2982 	if (dev->netdev_ops->ndo_features_check)
2983 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2984 								features);
2985 	else
2986 		features &= dflt_features_check(skb, dev, features);
2987 
2988 	return harmonize_features(skb, features);
2989 }
2990 EXPORT_SYMBOL(netif_skb_features);
2991 
2992 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2993 		    struct netdev_queue *txq, bool more)
2994 {
2995 	unsigned int len;
2996 	int rc;
2997 
2998 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2999 		dev_queue_xmit_nit(skb, dev);
3000 
3001 	len = skb->len;
3002 	trace_net_dev_start_xmit(skb, dev);
3003 	rc = netdev_start_xmit(skb, dev, txq, more);
3004 	trace_net_dev_xmit(skb, rc, dev, len);
3005 
3006 	return rc;
3007 }
3008 
3009 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3010 				    struct netdev_queue *txq, int *ret)
3011 {
3012 	struct sk_buff *skb = first;
3013 	int rc = NETDEV_TX_OK;
3014 
3015 	while (skb) {
3016 		struct sk_buff *next = skb->next;
3017 
3018 		skb->next = NULL;
3019 		rc = xmit_one(skb, dev, txq, next != NULL);
3020 		if (unlikely(!dev_xmit_complete(rc))) {
3021 			skb->next = next;
3022 			goto out;
3023 		}
3024 
3025 		skb = next;
3026 		if (netif_xmit_stopped(txq) && skb) {
3027 			rc = NETDEV_TX_BUSY;
3028 			break;
3029 		}
3030 	}
3031 
3032 out:
3033 	*ret = rc;
3034 	return skb;
3035 }
3036 
3037 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3038 					  netdev_features_t features)
3039 {
3040 	if (skb_vlan_tag_present(skb) &&
3041 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3042 		skb = __vlan_hwaccel_push_inside(skb);
3043 	return skb;
3044 }
3045 
3046 int skb_csum_hwoffload_help(struct sk_buff *skb,
3047 			    const netdev_features_t features)
3048 {
3049 	if (unlikely(skb->csum_not_inet))
3050 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3051 			skb_crc32c_csum_help(skb);
3052 
3053 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3054 }
3055 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3056 
3057 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3058 {
3059 	netdev_features_t features;
3060 
3061 	features = netif_skb_features(skb);
3062 	skb = validate_xmit_vlan(skb, features);
3063 	if (unlikely(!skb))
3064 		goto out_null;
3065 
3066 	if (netif_needs_gso(skb, features)) {
3067 		struct sk_buff *segs;
3068 
3069 		segs = skb_gso_segment(skb, features);
3070 		if (IS_ERR(segs)) {
3071 			goto out_kfree_skb;
3072 		} else if (segs) {
3073 			consume_skb(skb);
3074 			skb = segs;
3075 		}
3076 	} else {
3077 		if (skb_needs_linearize(skb, features) &&
3078 		    __skb_linearize(skb))
3079 			goto out_kfree_skb;
3080 
3081 		if (validate_xmit_xfrm(skb, features))
3082 			goto out_kfree_skb;
3083 
3084 		/* If packet is not checksummed and device does not
3085 		 * support checksumming for this protocol, complete
3086 		 * checksumming here.
3087 		 */
3088 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3089 			if (skb->encapsulation)
3090 				skb_set_inner_transport_header(skb,
3091 							       skb_checksum_start_offset(skb));
3092 			else
3093 				skb_set_transport_header(skb,
3094 							 skb_checksum_start_offset(skb));
3095 			if (skb_csum_hwoffload_help(skb, features))
3096 				goto out_kfree_skb;
3097 		}
3098 	}
3099 
3100 	return skb;
3101 
3102 out_kfree_skb:
3103 	kfree_skb(skb);
3104 out_null:
3105 	atomic_long_inc(&dev->tx_dropped);
3106 	return NULL;
3107 }
3108 
3109 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3110 {
3111 	struct sk_buff *next, *head = NULL, *tail;
3112 
3113 	for (; skb != NULL; skb = next) {
3114 		next = skb->next;
3115 		skb->next = NULL;
3116 
3117 		/* in case skb wont be segmented, point to itself */
3118 		skb->prev = skb;
3119 
3120 		skb = validate_xmit_skb(skb, dev);
3121 		if (!skb)
3122 			continue;
3123 
3124 		if (!head)
3125 			head = skb;
3126 		else
3127 			tail->next = skb;
3128 		/* If skb was segmented, skb->prev points to
3129 		 * the last segment. If not, it still contains skb.
3130 		 */
3131 		tail = skb->prev;
3132 	}
3133 	return head;
3134 }
3135 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3136 
3137 static void qdisc_pkt_len_init(struct sk_buff *skb)
3138 {
3139 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3140 
3141 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3142 
3143 	/* To get more precise estimation of bytes sent on wire,
3144 	 * we add to pkt_len the headers size of all segments
3145 	 */
3146 	if (shinfo->gso_size)  {
3147 		unsigned int hdr_len;
3148 		u16 gso_segs = shinfo->gso_segs;
3149 
3150 		/* mac layer + network layer */
3151 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3152 
3153 		/* + transport layer */
3154 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3155 			hdr_len += tcp_hdrlen(skb);
3156 		else
3157 			hdr_len += sizeof(struct udphdr);
3158 
3159 		if (shinfo->gso_type & SKB_GSO_DODGY)
3160 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3161 						shinfo->gso_size);
3162 
3163 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3164 	}
3165 }
3166 
3167 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3168 				 struct net_device *dev,
3169 				 struct netdev_queue *txq)
3170 {
3171 	spinlock_t *root_lock = qdisc_lock(q);
3172 	struct sk_buff *to_free = NULL;
3173 	bool contended;
3174 	int rc;
3175 
3176 	qdisc_calculate_pkt_len(skb, q);
3177 	/*
3178 	 * Heuristic to force contended enqueues to serialize on a
3179 	 * separate lock before trying to get qdisc main lock.
3180 	 * This permits qdisc->running owner to get the lock more
3181 	 * often and dequeue packets faster.
3182 	 */
3183 	contended = qdisc_is_running(q);
3184 	if (unlikely(contended))
3185 		spin_lock(&q->busylock);
3186 
3187 	spin_lock(root_lock);
3188 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3189 		__qdisc_drop(skb, &to_free);
3190 		rc = NET_XMIT_DROP;
3191 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3192 		   qdisc_run_begin(q)) {
3193 		/*
3194 		 * This is a work-conserving queue; there are no old skbs
3195 		 * waiting to be sent out; and the qdisc is not running -
3196 		 * xmit the skb directly.
3197 		 */
3198 
3199 		qdisc_bstats_update(q, skb);
3200 
3201 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3202 			if (unlikely(contended)) {
3203 				spin_unlock(&q->busylock);
3204 				contended = false;
3205 			}
3206 			__qdisc_run(q);
3207 		} else
3208 			qdisc_run_end(q);
3209 
3210 		rc = NET_XMIT_SUCCESS;
3211 	} else {
3212 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3213 		if (qdisc_run_begin(q)) {
3214 			if (unlikely(contended)) {
3215 				spin_unlock(&q->busylock);
3216 				contended = false;
3217 			}
3218 			__qdisc_run(q);
3219 		}
3220 	}
3221 	spin_unlock(root_lock);
3222 	if (unlikely(to_free))
3223 		kfree_skb_list(to_free);
3224 	if (unlikely(contended))
3225 		spin_unlock(&q->busylock);
3226 	return rc;
3227 }
3228 
3229 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3230 static void skb_update_prio(struct sk_buff *skb)
3231 {
3232 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3233 
3234 	if (!skb->priority && skb->sk && map) {
3235 		unsigned int prioidx =
3236 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3237 
3238 		if (prioidx < map->priomap_len)
3239 			skb->priority = map->priomap[prioidx];
3240 	}
3241 }
3242 #else
3243 #define skb_update_prio(skb)
3244 #endif
3245 
3246 DEFINE_PER_CPU(int, xmit_recursion);
3247 EXPORT_SYMBOL(xmit_recursion);
3248 
3249 /**
3250  *	dev_loopback_xmit - loop back @skb
3251  *	@net: network namespace this loopback is happening in
3252  *	@sk:  sk needed to be a netfilter okfn
3253  *	@skb: buffer to transmit
3254  */
3255 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3256 {
3257 	skb_reset_mac_header(skb);
3258 	__skb_pull(skb, skb_network_offset(skb));
3259 	skb->pkt_type = PACKET_LOOPBACK;
3260 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3261 	WARN_ON(!skb_dst(skb));
3262 	skb_dst_force(skb);
3263 	netif_rx_ni(skb);
3264 	return 0;
3265 }
3266 EXPORT_SYMBOL(dev_loopback_xmit);
3267 
3268 #ifdef CONFIG_NET_EGRESS
3269 static struct sk_buff *
3270 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3271 {
3272 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3273 	struct tcf_result cl_res;
3274 
3275 	if (!miniq)
3276 		return skb;
3277 
3278 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3279 	mini_qdisc_bstats_cpu_update(miniq, skb);
3280 
3281 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3282 	case TC_ACT_OK:
3283 	case TC_ACT_RECLASSIFY:
3284 		skb->tc_index = TC_H_MIN(cl_res.classid);
3285 		break;
3286 	case TC_ACT_SHOT:
3287 		mini_qdisc_qstats_cpu_drop(miniq);
3288 		*ret = NET_XMIT_DROP;
3289 		kfree_skb(skb);
3290 		return NULL;
3291 	case TC_ACT_STOLEN:
3292 	case TC_ACT_QUEUED:
3293 	case TC_ACT_TRAP:
3294 		*ret = NET_XMIT_SUCCESS;
3295 		consume_skb(skb);
3296 		return NULL;
3297 	case TC_ACT_REDIRECT:
3298 		/* No need to push/pop skb's mac_header here on egress! */
3299 		skb_do_redirect(skb);
3300 		*ret = NET_XMIT_SUCCESS;
3301 		return NULL;
3302 	default:
3303 		break;
3304 	}
3305 
3306 	return skb;
3307 }
3308 #endif /* CONFIG_NET_EGRESS */
3309 
3310 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3311 {
3312 #ifdef CONFIG_XPS
3313 	struct xps_dev_maps *dev_maps;
3314 	struct xps_map *map;
3315 	int queue_index = -1;
3316 
3317 	rcu_read_lock();
3318 	dev_maps = rcu_dereference(dev->xps_maps);
3319 	if (dev_maps) {
3320 		unsigned int tci = skb->sender_cpu - 1;
3321 
3322 		if (dev->num_tc) {
3323 			tci *= dev->num_tc;
3324 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3325 		}
3326 
3327 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3328 		if (map) {
3329 			if (map->len == 1)
3330 				queue_index = map->queues[0];
3331 			else
3332 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3333 									   map->len)];
3334 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3335 				queue_index = -1;
3336 		}
3337 	}
3338 	rcu_read_unlock();
3339 
3340 	return queue_index;
3341 #else
3342 	return -1;
3343 #endif
3344 }
3345 
3346 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3347 {
3348 	struct sock *sk = skb->sk;
3349 	int queue_index = sk_tx_queue_get(sk);
3350 
3351 	if (queue_index < 0 || skb->ooo_okay ||
3352 	    queue_index >= dev->real_num_tx_queues) {
3353 		int new_index = get_xps_queue(dev, skb);
3354 
3355 		if (new_index < 0)
3356 			new_index = skb_tx_hash(dev, skb);
3357 
3358 		if (queue_index != new_index && sk &&
3359 		    sk_fullsock(sk) &&
3360 		    rcu_access_pointer(sk->sk_dst_cache))
3361 			sk_tx_queue_set(sk, new_index);
3362 
3363 		queue_index = new_index;
3364 	}
3365 
3366 	return queue_index;
3367 }
3368 
3369 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3370 				    struct sk_buff *skb,
3371 				    void *accel_priv)
3372 {
3373 	int queue_index = 0;
3374 
3375 #ifdef CONFIG_XPS
3376 	u32 sender_cpu = skb->sender_cpu - 1;
3377 
3378 	if (sender_cpu >= (u32)NR_CPUS)
3379 		skb->sender_cpu = raw_smp_processor_id() + 1;
3380 #endif
3381 
3382 	if (dev->real_num_tx_queues != 1) {
3383 		const struct net_device_ops *ops = dev->netdev_ops;
3384 
3385 		if (ops->ndo_select_queue)
3386 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3387 							    __netdev_pick_tx);
3388 		else
3389 			queue_index = __netdev_pick_tx(dev, skb);
3390 
3391 		if (!accel_priv)
3392 			queue_index = netdev_cap_txqueue(dev, queue_index);
3393 	}
3394 
3395 	skb_set_queue_mapping(skb, queue_index);
3396 	return netdev_get_tx_queue(dev, queue_index);
3397 }
3398 
3399 /**
3400  *	__dev_queue_xmit - transmit a buffer
3401  *	@skb: buffer to transmit
3402  *	@accel_priv: private data used for L2 forwarding offload
3403  *
3404  *	Queue a buffer for transmission to a network device. The caller must
3405  *	have set the device and priority and built the buffer before calling
3406  *	this function. The function can be called from an interrupt.
3407  *
3408  *	A negative errno code is returned on a failure. A success does not
3409  *	guarantee the frame will be transmitted as it may be dropped due
3410  *	to congestion or traffic shaping.
3411  *
3412  * -----------------------------------------------------------------------------------
3413  *      I notice this method can also return errors from the queue disciplines,
3414  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3415  *      be positive.
3416  *
3417  *      Regardless of the return value, the skb is consumed, so it is currently
3418  *      difficult to retry a send to this method.  (You can bump the ref count
3419  *      before sending to hold a reference for retry if you are careful.)
3420  *
3421  *      When calling this method, interrupts MUST be enabled.  This is because
3422  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3423  *          --BLG
3424  */
3425 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3426 {
3427 	struct net_device *dev = skb->dev;
3428 	struct netdev_queue *txq;
3429 	struct Qdisc *q;
3430 	int rc = -ENOMEM;
3431 
3432 	skb_reset_mac_header(skb);
3433 
3434 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3435 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3436 
3437 	/* Disable soft irqs for various locks below. Also
3438 	 * stops preemption for RCU.
3439 	 */
3440 	rcu_read_lock_bh();
3441 
3442 	skb_update_prio(skb);
3443 
3444 	qdisc_pkt_len_init(skb);
3445 #ifdef CONFIG_NET_CLS_ACT
3446 	skb->tc_at_ingress = 0;
3447 # ifdef CONFIG_NET_EGRESS
3448 	if (static_key_false(&egress_needed)) {
3449 		skb = sch_handle_egress(skb, &rc, dev);
3450 		if (!skb)
3451 			goto out;
3452 	}
3453 # endif
3454 #endif
3455 	/* If device/qdisc don't need skb->dst, release it right now while
3456 	 * its hot in this cpu cache.
3457 	 */
3458 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3459 		skb_dst_drop(skb);
3460 	else
3461 		skb_dst_force(skb);
3462 
3463 	txq = netdev_pick_tx(dev, skb, accel_priv);
3464 	q = rcu_dereference_bh(txq->qdisc);
3465 
3466 	trace_net_dev_queue(skb);
3467 	if (q->enqueue) {
3468 		rc = __dev_xmit_skb(skb, q, dev, txq);
3469 		goto out;
3470 	}
3471 
3472 	/* The device has no queue. Common case for software devices:
3473 	 * loopback, all the sorts of tunnels...
3474 
3475 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3476 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3477 	 * counters.)
3478 	 * However, it is possible, that they rely on protection
3479 	 * made by us here.
3480 
3481 	 * Check this and shot the lock. It is not prone from deadlocks.
3482 	 *Either shot noqueue qdisc, it is even simpler 8)
3483 	 */
3484 	if (dev->flags & IFF_UP) {
3485 		int cpu = smp_processor_id(); /* ok because BHs are off */
3486 
3487 		if (txq->xmit_lock_owner != cpu) {
3488 			if (unlikely(__this_cpu_read(xmit_recursion) >
3489 				     XMIT_RECURSION_LIMIT))
3490 				goto recursion_alert;
3491 
3492 			skb = validate_xmit_skb(skb, dev);
3493 			if (!skb)
3494 				goto out;
3495 
3496 			HARD_TX_LOCK(dev, txq, cpu);
3497 
3498 			if (!netif_xmit_stopped(txq)) {
3499 				__this_cpu_inc(xmit_recursion);
3500 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3501 				__this_cpu_dec(xmit_recursion);
3502 				if (dev_xmit_complete(rc)) {
3503 					HARD_TX_UNLOCK(dev, txq);
3504 					goto out;
3505 				}
3506 			}
3507 			HARD_TX_UNLOCK(dev, txq);
3508 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3509 					     dev->name);
3510 		} else {
3511 			/* Recursion is detected! It is possible,
3512 			 * unfortunately
3513 			 */
3514 recursion_alert:
3515 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3516 					     dev->name);
3517 		}
3518 	}
3519 
3520 	rc = -ENETDOWN;
3521 	rcu_read_unlock_bh();
3522 
3523 	atomic_long_inc(&dev->tx_dropped);
3524 	kfree_skb_list(skb);
3525 	return rc;
3526 out:
3527 	rcu_read_unlock_bh();
3528 	return rc;
3529 }
3530 
3531 int dev_queue_xmit(struct sk_buff *skb)
3532 {
3533 	return __dev_queue_xmit(skb, NULL);
3534 }
3535 EXPORT_SYMBOL(dev_queue_xmit);
3536 
3537 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3538 {
3539 	return __dev_queue_xmit(skb, accel_priv);
3540 }
3541 EXPORT_SYMBOL(dev_queue_xmit_accel);
3542 
3543 
3544 /*************************************************************************
3545  *			Receiver routines
3546  *************************************************************************/
3547 
3548 int netdev_max_backlog __read_mostly = 1000;
3549 EXPORT_SYMBOL(netdev_max_backlog);
3550 
3551 int netdev_tstamp_prequeue __read_mostly = 1;
3552 int netdev_budget __read_mostly = 300;
3553 unsigned int __read_mostly netdev_budget_usecs = 2000;
3554 int weight_p __read_mostly = 64;           /* old backlog weight */
3555 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3556 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3557 int dev_rx_weight __read_mostly = 64;
3558 int dev_tx_weight __read_mostly = 64;
3559 
3560 /* Called with irq disabled */
3561 static inline void ____napi_schedule(struct softnet_data *sd,
3562 				     struct napi_struct *napi)
3563 {
3564 	list_add_tail(&napi->poll_list, &sd->poll_list);
3565 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3566 }
3567 
3568 #ifdef CONFIG_RPS
3569 
3570 /* One global table that all flow-based protocols share. */
3571 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3572 EXPORT_SYMBOL(rps_sock_flow_table);
3573 u32 rps_cpu_mask __read_mostly;
3574 EXPORT_SYMBOL(rps_cpu_mask);
3575 
3576 struct static_key rps_needed __read_mostly;
3577 EXPORT_SYMBOL(rps_needed);
3578 struct static_key rfs_needed __read_mostly;
3579 EXPORT_SYMBOL(rfs_needed);
3580 
3581 static struct rps_dev_flow *
3582 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3583 	    struct rps_dev_flow *rflow, u16 next_cpu)
3584 {
3585 	if (next_cpu < nr_cpu_ids) {
3586 #ifdef CONFIG_RFS_ACCEL
3587 		struct netdev_rx_queue *rxqueue;
3588 		struct rps_dev_flow_table *flow_table;
3589 		struct rps_dev_flow *old_rflow;
3590 		u32 flow_id;
3591 		u16 rxq_index;
3592 		int rc;
3593 
3594 		/* Should we steer this flow to a different hardware queue? */
3595 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3596 		    !(dev->features & NETIF_F_NTUPLE))
3597 			goto out;
3598 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3599 		if (rxq_index == skb_get_rx_queue(skb))
3600 			goto out;
3601 
3602 		rxqueue = dev->_rx + rxq_index;
3603 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3604 		if (!flow_table)
3605 			goto out;
3606 		flow_id = skb_get_hash(skb) & flow_table->mask;
3607 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3608 							rxq_index, flow_id);
3609 		if (rc < 0)
3610 			goto out;
3611 		old_rflow = rflow;
3612 		rflow = &flow_table->flows[flow_id];
3613 		rflow->filter = rc;
3614 		if (old_rflow->filter == rflow->filter)
3615 			old_rflow->filter = RPS_NO_FILTER;
3616 	out:
3617 #endif
3618 		rflow->last_qtail =
3619 			per_cpu(softnet_data, next_cpu).input_queue_head;
3620 	}
3621 
3622 	rflow->cpu = next_cpu;
3623 	return rflow;
3624 }
3625 
3626 /*
3627  * get_rps_cpu is called from netif_receive_skb and returns the target
3628  * CPU from the RPS map of the receiving queue for a given skb.
3629  * rcu_read_lock must be held on entry.
3630  */
3631 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3632 		       struct rps_dev_flow **rflowp)
3633 {
3634 	const struct rps_sock_flow_table *sock_flow_table;
3635 	struct netdev_rx_queue *rxqueue = dev->_rx;
3636 	struct rps_dev_flow_table *flow_table;
3637 	struct rps_map *map;
3638 	int cpu = -1;
3639 	u32 tcpu;
3640 	u32 hash;
3641 
3642 	if (skb_rx_queue_recorded(skb)) {
3643 		u16 index = skb_get_rx_queue(skb);
3644 
3645 		if (unlikely(index >= dev->real_num_rx_queues)) {
3646 			WARN_ONCE(dev->real_num_rx_queues > 1,
3647 				  "%s received packet on queue %u, but number "
3648 				  "of RX queues is %u\n",
3649 				  dev->name, index, dev->real_num_rx_queues);
3650 			goto done;
3651 		}
3652 		rxqueue += index;
3653 	}
3654 
3655 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3656 
3657 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3658 	map = rcu_dereference(rxqueue->rps_map);
3659 	if (!flow_table && !map)
3660 		goto done;
3661 
3662 	skb_reset_network_header(skb);
3663 	hash = skb_get_hash(skb);
3664 	if (!hash)
3665 		goto done;
3666 
3667 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3668 	if (flow_table && sock_flow_table) {
3669 		struct rps_dev_flow *rflow;
3670 		u32 next_cpu;
3671 		u32 ident;
3672 
3673 		/* First check into global flow table if there is a match */
3674 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3675 		if ((ident ^ hash) & ~rps_cpu_mask)
3676 			goto try_rps;
3677 
3678 		next_cpu = ident & rps_cpu_mask;
3679 
3680 		/* OK, now we know there is a match,
3681 		 * we can look at the local (per receive queue) flow table
3682 		 */
3683 		rflow = &flow_table->flows[hash & flow_table->mask];
3684 		tcpu = rflow->cpu;
3685 
3686 		/*
3687 		 * If the desired CPU (where last recvmsg was done) is
3688 		 * different from current CPU (one in the rx-queue flow
3689 		 * table entry), switch if one of the following holds:
3690 		 *   - Current CPU is unset (>= nr_cpu_ids).
3691 		 *   - Current CPU is offline.
3692 		 *   - The current CPU's queue tail has advanced beyond the
3693 		 *     last packet that was enqueued using this table entry.
3694 		 *     This guarantees that all previous packets for the flow
3695 		 *     have been dequeued, thus preserving in order delivery.
3696 		 */
3697 		if (unlikely(tcpu != next_cpu) &&
3698 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3699 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3700 		      rflow->last_qtail)) >= 0)) {
3701 			tcpu = next_cpu;
3702 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3703 		}
3704 
3705 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3706 			*rflowp = rflow;
3707 			cpu = tcpu;
3708 			goto done;
3709 		}
3710 	}
3711 
3712 try_rps:
3713 
3714 	if (map) {
3715 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3716 		if (cpu_online(tcpu)) {
3717 			cpu = tcpu;
3718 			goto done;
3719 		}
3720 	}
3721 
3722 done:
3723 	return cpu;
3724 }
3725 
3726 #ifdef CONFIG_RFS_ACCEL
3727 
3728 /**
3729  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3730  * @dev: Device on which the filter was set
3731  * @rxq_index: RX queue index
3732  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3733  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3734  *
3735  * Drivers that implement ndo_rx_flow_steer() should periodically call
3736  * this function for each installed filter and remove the filters for
3737  * which it returns %true.
3738  */
3739 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3740 			 u32 flow_id, u16 filter_id)
3741 {
3742 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3743 	struct rps_dev_flow_table *flow_table;
3744 	struct rps_dev_flow *rflow;
3745 	bool expire = true;
3746 	unsigned int cpu;
3747 
3748 	rcu_read_lock();
3749 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3750 	if (flow_table && flow_id <= flow_table->mask) {
3751 		rflow = &flow_table->flows[flow_id];
3752 		cpu = READ_ONCE(rflow->cpu);
3753 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3754 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3755 			   rflow->last_qtail) <
3756 		     (int)(10 * flow_table->mask)))
3757 			expire = false;
3758 	}
3759 	rcu_read_unlock();
3760 	return expire;
3761 }
3762 EXPORT_SYMBOL(rps_may_expire_flow);
3763 
3764 #endif /* CONFIG_RFS_ACCEL */
3765 
3766 /* Called from hardirq (IPI) context */
3767 static void rps_trigger_softirq(void *data)
3768 {
3769 	struct softnet_data *sd = data;
3770 
3771 	____napi_schedule(sd, &sd->backlog);
3772 	sd->received_rps++;
3773 }
3774 
3775 #endif /* CONFIG_RPS */
3776 
3777 /*
3778  * Check if this softnet_data structure is another cpu one
3779  * If yes, queue it to our IPI list and return 1
3780  * If no, return 0
3781  */
3782 static int rps_ipi_queued(struct softnet_data *sd)
3783 {
3784 #ifdef CONFIG_RPS
3785 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3786 
3787 	if (sd != mysd) {
3788 		sd->rps_ipi_next = mysd->rps_ipi_list;
3789 		mysd->rps_ipi_list = sd;
3790 
3791 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3792 		return 1;
3793 	}
3794 #endif /* CONFIG_RPS */
3795 	return 0;
3796 }
3797 
3798 #ifdef CONFIG_NET_FLOW_LIMIT
3799 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3800 #endif
3801 
3802 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3803 {
3804 #ifdef CONFIG_NET_FLOW_LIMIT
3805 	struct sd_flow_limit *fl;
3806 	struct softnet_data *sd;
3807 	unsigned int old_flow, new_flow;
3808 
3809 	if (qlen < (netdev_max_backlog >> 1))
3810 		return false;
3811 
3812 	sd = this_cpu_ptr(&softnet_data);
3813 
3814 	rcu_read_lock();
3815 	fl = rcu_dereference(sd->flow_limit);
3816 	if (fl) {
3817 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3818 		old_flow = fl->history[fl->history_head];
3819 		fl->history[fl->history_head] = new_flow;
3820 
3821 		fl->history_head++;
3822 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3823 
3824 		if (likely(fl->buckets[old_flow]))
3825 			fl->buckets[old_flow]--;
3826 
3827 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3828 			fl->count++;
3829 			rcu_read_unlock();
3830 			return true;
3831 		}
3832 	}
3833 	rcu_read_unlock();
3834 #endif
3835 	return false;
3836 }
3837 
3838 /*
3839  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3840  * queue (may be a remote CPU queue).
3841  */
3842 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3843 			      unsigned int *qtail)
3844 {
3845 	struct softnet_data *sd;
3846 	unsigned long flags;
3847 	unsigned int qlen;
3848 
3849 	sd = &per_cpu(softnet_data, cpu);
3850 
3851 	local_irq_save(flags);
3852 
3853 	rps_lock(sd);
3854 	if (!netif_running(skb->dev))
3855 		goto drop;
3856 	qlen = skb_queue_len(&sd->input_pkt_queue);
3857 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3858 		if (qlen) {
3859 enqueue:
3860 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3861 			input_queue_tail_incr_save(sd, qtail);
3862 			rps_unlock(sd);
3863 			local_irq_restore(flags);
3864 			return NET_RX_SUCCESS;
3865 		}
3866 
3867 		/* Schedule NAPI for backlog device
3868 		 * We can use non atomic operation since we own the queue lock
3869 		 */
3870 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3871 			if (!rps_ipi_queued(sd))
3872 				____napi_schedule(sd, &sd->backlog);
3873 		}
3874 		goto enqueue;
3875 	}
3876 
3877 drop:
3878 	sd->dropped++;
3879 	rps_unlock(sd);
3880 
3881 	local_irq_restore(flags);
3882 
3883 	atomic_long_inc(&skb->dev->rx_dropped);
3884 	kfree_skb(skb);
3885 	return NET_RX_DROP;
3886 }
3887 
3888 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3889 				     struct bpf_prog *xdp_prog)
3890 {
3891 	u32 metalen, act = XDP_DROP;
3892 	struct xdp_buff xdp;
3893 	void *orig_data;
3894 	int hlen, off;
3895 	u32 mac_len;
3896 
3897 	/* Reinjected packets coming from act_mirred or similar should
3898 	 * not get XDP generic processing.
3899 	 */
3900 	if (skb_cloned(skb))
3901 		return XDP_PASS;
3902 
3903 	/* XDP packets must be linear and must have sufficient headroom
3904 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3905 	 * native XDP provides, thus we need to do it here as well.
3906 	 */
3907 	if (skb_is_nonlinear(skb) ||
3908 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3909 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3910 		int troom = skb->tail + skb->data_len - skb->end;
3911 
3912 		/* In case we have to go down the path and also linearize,
3913 		 * then lets do the pskb_expand_head() work just once here.
3914 		 */
3915 		if (pskb_expand_head(skb,
3916 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3917 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3918 			goto do_drop;
3919 		if (skb_linearize(skb))
3920 			goto do_drop;
3921 	}
3922 
3923 	/* The XDP program wants to see the packet starting at the MAC
3924 	 * header.
3925 	 */
3926 	mac_len = skb->data - skb_mac_header(skb);
3927 	hlen = skb_headlen(skb) + mac_len;
3928 	xdp.data = skb->data - mac_len;
3929 	xdp.data_meta = xdp.data;
3930 	xdp.data_end = xdp.data + hlen;
3931 	xdp.data_hard_start = skb->data - skb_headroom(skb);
3932 	orig_data = xdp.data;
3933 
3934 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
3935 
3936 	off = xdp.data - orig_data;
3937 	if (off > 0)
3938 		__skb_pull(skb, off);
3939 	else if (off < 0)
3940 		__skb_push(skb, -off);
3941 	skb->mac_header += off;
3942 
3943 	switch (act) {
3944 	case XDP_REDIRECT:
3945 	case XDP_TX:
3946 		__skb_push(skb, mac_len);
3947 		break;
3948 	case XDP_PASS:
3949 		metalen = xdp.data - xdp.data_meta;
3950 		if (metalen)
3951 			skb_metadata_set(skb, metalen);
3952 		break;
3953 	default:
3954 		bpf_warn_invalid_xdp_action(act);
3955 		/* fall through */
3956 	case XDP_ABORTED:
3957 		trace_xdp_exception(skb->dev, xdp_prog, act);
3958 		/* fall through */
3959 	case XDP_DROP:
3960 	do_drop:
3961 		kfree_skb(skb);
3962 		break;
3963 	}
3964 
3965 	return act;
3966 }
3967 
3968 /* When doing generic XDP we have to bypass the qdisc layer and the
3969  * network taps in order to match in-driver-XDP behavior.
3970  */
3971 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3972 {
3973 	struct net_device *dev = skb->dev;
3974 	struct netdev_queue *txq;
3975 	bool free_skb = true;
3976 	int cpu, rc;
3977 
3978 	txq = netdev_pick_tx(dev, skb, NULL);
3979 	cpu = smp_processor_id();
3980 	HARD_TX_LOCK(dev, txq, cpu);
3981 	if (!netif_xmit_stopped(txq)) {
3982 		rc = netdev_start_xmit(skb, dev, txq, 0);
3983 		if (dev_xmit_complete(rc))
3984 			free_skb = false;
3985 	}
3986 	HARD_TX_UNLOCK(dev, txq);
3987 	if (free_skb) {
3988 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
3989 		kfree_skb(skb);
3990 	}
3991 }
3992 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3993 
3994 static struct static_key generic_xdp_needed __read_mostly;
3995 
3996 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
3997 {
3998 	if (xdp_prog) {
3999 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4000 		int err;
4001 
4002 		if (act != XDP_PASS) {
4003 			switch (act) {
4004 			case XDP_REDIRECT:
4005 				err = xdp_do_generic_redirect(skb->dev, skb,
4006 							      xdp_prog);
4007 				if (err)
4008 					goto out_redir;
4009 			/* fallthru to submit skb */
4010 			case XDP_TX:
4011 				generic_xdp_tx(skb, xdp_prog);
4012 				break;
4013 			}
4014 			return XDP_DROP;
4015 		}
4016 	}
4017 	return XDP_PASS;
4018 out_redir:
4019 	kfree_skb(skb);
4020 	return XDP_DROP;
4021 }
4022 EXPORT_SYMBOL_GPL(do_xdp_generic);
4023 
4024 static int netif_rx_internal(struct sk_buff *skb)
4025 {
4026 	int ret;
4027 
4028 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4029 
4030 	trace_netif_rx(skb);
4031 
4032 	if (static_key_false(&generic_xdp_needed)) {
4033 		int ret;
4034 
4035 		preempt_disable();
4036 		rcu_read_lock();
4037 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4038 		rcu_read_unlock();
4039 		preempt_enable();
4040 
4041 		/* Consider XDP consuming the packet a success from
4042 		 * the netdev point of view we do not want to count
4043 		 * this as an error.
4044 		 */
4045 		if (ret != XDP_PASS)
4046 			return NET_RX_SUCCESS;
4047 	}
4048 
4049 #ifdef CONFIG_RPS
4050 	if (static_key_false(&rps_needed)) {
4051 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4052 		int cpu;
4053 
4054 		preempt_disable();
4055 		rcu_read_lock();
4056 
4057 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4058 		if (cpu < 0)
4059 			cpu = smp_processor_id();
4060 
4061 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4062 
4063 		rcu_read_unlock();
4064 		preempt_enable();
4065 	} else
4066 #endif
4067 	{
4068 		unsigned int qtail;
4069 
4070 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4071 		put_cpu();
4072 	}
4073 	return ret;
4074 }
4075 
4076 /**
4077  *	netif_rx	-	post buffer to the network code
4078  *	@skb: buffer to post
4079  *
4080  *	This function receives a packet from a device driver and queues it for
4081  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4082  *	may be dropped during processing for congestion control or by the
4083  *	protocol layers.
4084  *
4085  *	return values:
4086  *	NET_RX_SUCCESS	(no congestion)
4087  *	NET_RX_DROP     (packet was dropped)
4088  *
4089  */
4090 
4091 int netif_rx(struct sk_buff *skb)
4092 {
4093 	trace_netif_rx_entry(skb);
4094 
4095 	return netif_rx_internal(skb);
4096 }
4097 EXPORT_SYMBOL(netif_rx);
4098 
4099 int netif_rx_ni(struct sk_buff *skb)
4100 {
4101 	int err;
4102 
4103 	trace_netif_rx_ni_entry(skb);
4104 
4105 	preempt_disable();
4106 	err = netif_rx_internal(skb);
4107 	if (local_softirq_pending())
4108 		do_softirq();
4109 	preempt_enable();
4110 
4111 	return err;
4112 }
4113 EXPORT_SYMBOL(netif_rx_ni);
4114 
4115 static __latent_entropy void net_tx_action(struct softirq_action *h)
4116 {
4117 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4118 
4119 	if (sd->completion_queue) {
4120 		struct sk_buff *clist;
4121 
4122 		local_irq_disable();
4123 		clist = sd->completion_queue;
4124 		sd->completion_queue = NULL;
4125 		local_irq_enable();
4126 
4127 		while (clist) {
4128 			struct sk_buff *skb = clist;
4129 
4130 			clist = clist->next;
4131 
4132 			WARN_ON(refcount_read(&skb->users));
4133 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4134 				trace_consume_skb(skb);
4135 			else
4136 				trace_kfree_skb(skb, net_tx_action);
4137 
4138 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4139 				__kfree_skb(skb);
4140 			else
4141 				__kfree_skb_defer(skb);
4142 		}
4143 
4144 		__kfree_skb_flush();
4145 	}
4146 
4147 	if (sd->output_queue) {
4148 		struct Qdisc *head;
4149 
4150 		local_irq_disable();
4151 		head = sd->output_queue;
4152 		sd->output_queue = NULL;
4153 		sd->output_queue_tailp = &sd->output_queue;
4154 		local_irq_enable();
4155 
4156 		while (head) {
4157 			struct Qdisc *q = head;
4158 			spinlock_t *root_lock;
4159 
4160 			head = head->next_sched;
4161 
4162 			root_lock = qdisc_lock(q);
4163 			spin_lock(root_lock);
4164 			/* We need to make sure head->next_sched is read
4165 			 * before clearing __QDISC_STATE_SCHED
4166 			 */
4167 			smp_mb__before_atomic();
4168 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4169 			qdisc_run(q);
4170 			spin_unlock(root_lock);
4171 		}
4172 	}
4173 }
4174 
4175 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4176 /* This hook is defined here for ATM LANE */
4177 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4178 			     unsigned char *addr) __read_mostly;
4179 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4180 #endif
4181 
4182 static inline struct sk_buff *
4183 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4184 		   struct net_device *orig_dev)
4185 {
4186 #ifdef CONFIG_NET_CLS_ACT
4187 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4188 	struct tcf_result cl_res;
4189 
4190 	/* If there's at least one ingress present somewhere (so
4191 	 * we get here via enabled static key), remaining devices
4192 	 * that are not configured with an ingress qdisc will bail
4193 	 * out here.
4194 	 */
4195 	if (!miniq)
4196 		return skb;
4197 
4198 	if (*pt_prev) {
4199 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4200 		*pt_prev = NULL;
4201 	}
4202 
4203 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4204 	skb->tc_at_ingress = 1;
4205 	mini_qdisc_bstats_cpu_update(miniq, skb);
4206 
4207 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4208 	case TC_ACT_OK:
4209 	case TC_ACT_RECLASSIFY:
4210 		skb->tc_index = TC_H_MIN(cl_res.classid);
4211 		break;
4212 	case TC_ACT_SHOT:
4213 		mini_qdisc_qstats_cpu_drop(miniq);
4214 		kfree_skb(skb);
4215 		return NULL;
4216 	case TC_ACT_STOLEN:
4217 	case TC_ACT_QUEUED:
4218 	case TC_ACT_TRAP:
4219 		consume_skb(skb);
4220 		return NULL;
4221 	case TC_ACT_REDIRECT:
4222 		/* skb_mac_header check was done by cls/act_bpf, so
4223 		 * we can safely push the L2 header back before
4224 		 * redirecting to another netdev
4225 		 */
4226 		__skb_push(skb, skb->mac_len);
4227 		skb_do_redirect(skb);
4228 		return NULL;
4229 	default:
4230 		break;
4231 	}
4232 #endif /* CONFIG_NET_CLS_ACT */
4233 	return skb;
4234 }
4235 
4236 /**
4237  *	netdev_is_rx_handler_busy - check if receive handler is registered
4238  *	@dev: device to check
4239  *
4240  *	Check if a receive handler is already registered for a given device.
4241  *	Return true if there one.
4242  *
4243  *	The caller must hold the rtnl_mutex.
4244  */
4245 bool netdev_is_rx_handler_busy(struct net_device *dev)
4246 {
4247 	ASSERT_RTNL();
4248 	return dev && rtnl_dereference(dev->rx_handler);
4249 }
4250 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4251 
4252 /**
4253  *	netdev_rx_handler_register - register receive handler
4254  *	@dev: device to register a handler for
4255  *	@rx_handler: receive handler to register
4256  *	@rx_handler_data: data pointer that is used by rx handler
4257  *
4258  *	Register a receive handler for a device. This handler will then be
4259  *	called from __netif_receive_skb. A negative errno code is returned
4260  *	on a failure.
4261  *
4262  *	The caller must hold the rtnl_mutex.
4263  *
4264  *	For a general description of rx_handler, see enum rx_handler_result.
4265  */
4266 int netdev_rx_handler_register(struct net_device *dev,
4267 			       rx_handler_func_t *rx_handler,
4268 			       void *rx_handler_data)
4269 {
4270 	if (netdev_is_rx_handler_busy(dev))
4271 		return -EBUSY;
4272 
4273 	/* Note: rx_handler_data must be set before rx_handler */
4274 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4275 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4276 
4277 	return 0;
4278 }
4279 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4280 
4281 /**
4282  *	netdev_rx_handler_unregister - unregister receive handler
4283  *	@dev: device to unregister a handler from
4284  *
4285  *	Unregister a receive handler from a device.
4286  *
4287  *	The caller must hold the rtnl_mutex.
4288  */
4289 void netdev_rx_handler_unregister(struct net_device *dev)
4290 {
4291 
4292 	ASSERT_RTNL();
4293 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4294 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4295 	 * section has a guarantee to see a non NULL rx_handler_data
4296 	 * as well.
4297 	 */
4298 	synchronize_net();
4299 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4300 }
4301 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4302 
4303 /*
4304  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4305  * the special handling of PFMEMALLOC skbs.
4306  */
4307 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4308 {
4309 	switch (skb->protocol) {
4310 	case htons(ETH_P_ARP):
4311 	case htons(ETH_P_IP):
4312 	case htons(ETH_P_IPV6):
4313 	case htons(ETH_P_8021Q):
4314 	case htons(ETH_P_8021AD):
4315 		return true;
4316 	default:
4317 		return false;
4318 	}
4319 }
4320 
4321 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4322 			     int *ret, struct net_device *orig_dev)
4323 {
4324 #ifdef CONFIG_NETFILTER_INGRESS
4325 	if (nf_hook_ingress_active(skb)) {
4326 		int ingress_retval;
4327 
4328 		if (*pt_prev) {
4329 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4330 			*pt_prev = NULL;
4331 		}
4332 
4333 		rcu_read_lock();
4334 		ingress_retval = nf_hook_ingress(skb);
4335 		rcu_read_unlock();
4336 		return ingress_retval;
4337 	}
4338 #endif /* CONFIG_NETFILTER_INGRESS */
4339 	return 0;
4340 }
4341 
4342 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4343 {
4344 	struct packet_type *ptype, *pt_prev;
4345 	rx_handler_func_t *rx_handler;
4346 	struct net_device *orig_dev;
4347 	bool deliver_exact = false;
4348 	int ret = NET_RX_DROP;
4349 	__be16 type;
4350 
4351 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4352 
4353 	trace_netif_receive_skb(skb);
4354 
4355 	orig_dev = skb->dev;
4356 
4357 	skb_reset_network_header(skb);
4358 	if (!skb_transport_header_was_set(skb))
4359 		skb_reset_transport_header(skb);
4360 	skb_reset_mac_len(skb);
4361 
4362 	pt_prev = NULL;
4363 
4364 another_round:
4365 	skb->skb_iif = skb->dev->ifindex;
4366 
4367 	__this_cpu_inc(softnet_data.processed);
4368 
4369 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4370 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4371 		skb = skb_vlan_untag(skb);
4372 		if (unlikely(!skb))
4373 			goto out;
4374 	}
4375 
4376 	if (skb_skip_tc_classify(skb))
4377 		goto skip_classify;
4378 
4379 	if (pfmemalloc)
4380 		goto skip_taps;
4381 
4382 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4383 		if (pt_prev)
4384 			ret = deliver_skb(skb, pt_prev, orig_dev);
4385 		pt_prev = ptype;
4386 	}
4387 
4388 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4389 		if (pt_prev)
4390 			ret = deliver_skb(skb, pt_prev, orig_dev);
4391 		pt_prev = ptype;
4392 	}
4393 
4394 skip_taps:
4395 #ifdef CONFIG_NET_INGRESS
4396 	if (static_key_false(&ingress_needed)) {
4397 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4398 		if (!skb)
4399 			goto out;
4400 
4401 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4402 			goto out;
4403 	}
4404 #endif
4405 	skb_reset_tc(skb);
4406 skip_classify:
4407 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4408 		goto drop;
4409 
4410 	if (skb_vlan_tag_present(skb)) {
4411 		if (pt_prev) {
4412 			ret = deliver_skb(skb, pt_prev, orig_dev);
4413 			pt_prev = NULL;
4414 		}
4415 		if (vlan_do_receive(&skb))
4416 			goto another_round;
4417 		else if (unlikely(!skb))
4418 			goto out;
4419 	}
4420 
4421 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4422 	if (rx_handler) {
4423 		if (pt_prev) {
4424 			ret = deliver_skb(skb, pt_prev, orig_dev);
4425 			pt_prev = NULL;
4426 		}
4427 		switch (rx_handler(&skb)) {
4428 		case RX_HANDLER_CONSUMED:
4429 			ret = NET_RX_SUCCESS;
4430 			goto out;
4431 		case RX_HANDLER_ANOTHER:
4432 			goto another_round;
4433 		case RX_HANDLER_EXACT:
4434 			deliver_exact = true;
4435 		case RX_HANDLER_PASS:
4436 			break;
4437 		default:
4438 			BUG();
4439 		}
4440 	}
4441 
4442 	if (unlikely(skb_vlan_tag_present(skb))) {
4443 		if (skb_vlan_tag_get_id(skb))
4444 			skb->pkt_type = PACKET_OTHERHOST;
4445 		/* Note: we might in the future use prio bits
4446 		 * and set skb->priority like in vlan_do_receive()
4447 		 * For the time being, just ignore Priority Code Point
4448 		 */
4449 		skb->vlan_tci = 0;
4450 	}
4451 
4452 	type = skb->protocol;
4453 
4454 	/* deliver only exact match when indicated */
4455 	if (likely(!deliver_exact)) {
4456 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4457 				       &ptype_base[ntohs(type) &
4458 						   PTYPE_HASH_MASK]);
4459 	}
4460 
4461 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4462 			       &orig_dev->ptype_specific);
4463 
4464 	if (unlikely(skb->dev != orig_dev)) {
4465 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4466 				       &skb->dev->ptype_specific);
4467 	}
4468 
4469 	if (pt_prev) {
4470 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4471 			goto drop;
4472 		else
4473 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4474 	} else {
4475 drop:
4476 		if (!deliver_exact)
4477 			atomic_long_inc(&skb->dev->rx_dropped);
4478 		else
4479 			atomic_long_inc(&skb->dev->rx_nohandler);
4480 		kfree_skb(skb);
4481 		/* Jamal, now you will not able to escape explaining
4482 		 * me how you were going to use this. :-)
4483 		 */
4484 		ret = NET_RX_DROP;
4485 	}
4486 
4487 out:
4488 	return ret;
4489 }
4490 
4491 /**
4492  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4493  *	@skb: buffer to process
4494  *
4495  *	More direct receive version of netif_receive_skb().  It should
4496  *	only be used by callers that have a need to skip RPS and Generic XDP.
4497  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4498  *
4499  *	This function may only be called from softirq context and interrupts
4500  *	should be enabled.
4501  *
4502  *	Return values (usually ignored):
4503  *	NET_RX_SUCCESS: no congestion
4504  *	NET_RX_DROP: packet was dropped
4505  */
4506 int netif_receive_skb_core(struct sk_buff *skb)
4507 {
4508 	int ret;
4509 
4510 	rcu_read_lock();
4511 	ret = __netif_receive_skb_core(skb, false);
4512 	rcu_read_unlock();
4513 
4514 	return ret;
4515 }
4516 EXPORT_SYMBOL(netif_receive_skb_core);
4517 
4518 static int __netif_receive_skb(struct sk_buff *skb)
4519 {
4520 	int ret;
4521 
4522 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4523 		unsigned int noreclaim_flag;
4524 
4525 		/*
4526 		 * PFMEMALLOC skbs are special, they should
4527 		 * - be delivered to SOCK_MEMALLOC sockets only
4528 		 * - stay away from userspace
4529 		 * - have bounded memory usage
4530 		 *
4531 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4532 		 * context down to all allocation sites.
4533 		 */
4534 		noreclaim_flag = memalloc_noreclaim_save();
4535 		ret = __netif_receive_skb_core(skb, true);
4536 		memalloc_noreclaim_restore(noreclaim_flag);
4537 	} else
4538 		ret = __netif_receive_skb_core(skb, false);
4539 
4540 	return ret;
4541 }
4542 
4543 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4544 {
4545 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4546 	struct bpf_prog *new = xdp->prog;
4547 	int ret = 0;
4548 
4549 	switch (xdp->command) {
4550 	case XDP_SETUP_PROG:
4551 		rcu_assign_pointer(dev->xdp_prog, new);
4552 		if (old)
4553 			bpf_prog_put(old);
4554 
4555 		if (old && !new) {
4556 			static_key_slow_dec(&generic_xdp_needed);
4557 		} else if (new && !old) {
4558 			static_key_slow_inc(&generic_xdp_needed);
4559 			dev_disable_lro(dev);
4560 		}
4561 		break;
4562 
4563 	case XDP_QUERY_PROG:
4564 		xdp->prog_attached = !!old;
4565 		xdp->prog_id = old ? old->aux->id : 0;
4566 		break;
4567 
4568 	default:
4569 		ret = -EINVAL;
4570 		break;
4571 	}
4572 
4573 	return ret;
4574 }
4575 
4576 static int netif_receive_skb_internal(struct sk_buff *skb)
4577 {
4578 	int ret;
4579 
4580 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4581 
4582 	if (skb_defer_rx_timestamp(skb))
4583 		return NET_RX_SUCCESS;
4584 
4585 	if (static_key_false(&generic_xdp_needed)) {
4586 		int ret;
4587 
4588 		preempt_disable();
4589 		rcu_read_lock();
4590 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4591 		rcu_read_unlock();
4592 		preempt_enable();
4593 
4594 		if (ret != XDP_PASS)
4595 			return NET_RX_DROP;
4596 	}
4597 
4598 	rcu_read_lock();
4599 #ifdef CONFIG_RPS
4600 	if (static_key_false(&rps_needed)) {
4601 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4602 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4603 
4604 		if (cpu >= 0) {
4605 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4606 			rcu_read_unlock();
4607 			return ret;
4608 		}
4609 	}
4610 #endif
4611 	ret = __netif_receive_skb(skb);
4612 	rcu_read_unlock();
4613 	return ret;
4614 }
4615 
4616 /**
4617  *	netif_receive_skb - process receive buffer from network
4618  *	@skb: buffer to process
4619  *
4620  *	netif_receive_skb() is the main receive data processing function.
4621  *	It always succeeds. The buffer may be dropped during processing
4622  *	for congestion control or by the protocol layers.
4623  *
4624  *	This function may only be called from softirq context and interrupts
4625  *	should be enabled.
4626  *
4627  *	Return values (usually ignored):
4628  *	NET_RX_SUCCESS: no congestion
4629  *	NET_RX_DROP: packet was dropped
4630  */
4631 int netif_receive_skb(struct sk_buff *skb)
4632 {
4633 	trace_netif_receive_skb_entry(skb);
4634 
4635 	return netif_receive_skb_internal(skb);
4636 }
4637 EXPORT_SYMBOL(netif_receive_skb);
4638 
4639 DEFINE_PER_CPU(struct work_struct, flush_works);
4640 
4641 /* Network device is going away, flush any packets still pending */
4642 static void flush_backlog(struct work_struct *work)
4643 {
4644 	struct sk_buff *skb, *tmp;
4645 	struct softnet_data *sd;
4646 
4647 	local_bh_disable();
4648 	sd = this_cpu_ptr(&softnet_data);
4649 
4650 	local_irq_disable();
4651 	rps_lock(sd);
4652 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4653 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4654 			__skb_unlink(skb, &sd->input_pkt_queue);
4655 			kfree_skb(skb);
4656 			input_queue_head_incr(sd);
4657 		}
4658 	}
4659 	rps_unlock(sd);
4660 	local_irq_enable();
4661 
4662 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4663 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4664 			__skb_unlink(skb, &sd->process_queue);
4665 			kfree_skb(skb);
4666 			input_queue_head_incr(sd);
4667 		}
4668 	}
4669 	local_bh_enable();
4670 }
4671 
4672 static void flush_all_backlogs(void)
4673 {
4674 	unsigned int cpu;
4675 
4676 	get_online_cpus();
4677 
4678 	for_each_online_cpu(cpu)
4679 		queue_work_on(cpu, system_highpri_wq,
4680 			      per_cpu_ptr(&flush_works, cpu));
4681 
4682 	for_each_online_cpu(cpu)
4683 		flush_work(per_cpu_ptr(&flush_works, cpu));
4684 
4685 	put_online_cpus();
4686 }
4687 
4688 static int napi_gro_complete(struct sk_buff *skb)
4689 {
4690 	struct packet_offload *ptype;
4691 	__be16 type = skb->protocol;
4692 	struct list_head *head = &offload_base;
4693 	int err = -ENOENT;
4694 
4695 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4696 
4697 	if (NAPI_GRO_CB(skb)->count == 1) {
4698 		skb_shinfo(skb)->gso_size = 0;
4699 		goto out;
4700 	}
4701 
4702 	rcu_read_lock();
4703 	list_for_each_entry_rcu(ptype, head, list) {
4704 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4705 			continue;
4706 
4707 		err = ptype->callbacks.gro_complete(skb, 0);
4708 		break;
4709 	}
4710 	rcu_read_unlock();
4711 
4712 	if (err) {
4713 		WARN_ON(&ptype->list == head);
4714 		kfree_skb(skb);
4715 		return NET_RX_SUCCESS;
4716 	}
4717 
4718 out:
4719 	return netif_receive_skb_internal(skb);
4720 }
4721 
4722 /* napi->gro_list contains packets ordered by age.
4723  * youngest packets at the head of it.
4724  * Complete skbs in reverse order to reduce latencies.
4725  */
4726 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4727 {
4728 	struct sk_buff *skb, *prev = NULL;
4729 
4730 	/* scan list and build reverse chain */
4731 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4732 		skb->prev = prev;
4733 		prev = skb;
4734 	}
4735 
4736 	for (skb = prev; skb; skb = prev) {
4737 		skb->next = NULL;
4738 
4739 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4740 			return;
4741 
4742 		prev = skb->prev;
4743 		napi_gro_complete(skb);
4744 		napi->gro_count--;
4745 	}
4746 
4747 	napi->gro_list = NULL;
4748 }
4749 EXPORT_SYMBOL(napi_gro_flush);
4750 
4751 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4752 {
4753 	struct sk_buff *p;
4754 	unsigned int maclen = skb->dev->hard_header_len;
4755 	u32 hash = skb_get_hash_raw(skb);
4756 
4757 	for (p = napi->gro_list; p; p = p->next) {
4758 		unsigned long diffs;
4759 
4760 		NAPI_GRO_CB(p)->flush = 0;
4761 
4762 		if (hash != skb_get_hash_raw(p)) {
4763 			NAPI_GRO_CB(p)->same_flow = 0;
4764 			continue;
4765 		}
4766 
4767 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4768 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4769 		diffs |= skb_metadata_dst_cmp(p, skb);
4770 		diffs |= skb_metadata_differs(p, skb);
4771 		if (maclen == ETH_HLEN)
4772 			diffs |= compare_ether_header(skb_mac_header(p),
4773 						      skb_mac_header(skb));
4774 		else if (!diffs)
4775 			diffs = memcmp(skb_mac_header(p),
4776 				       skb_mac_header(skb),
4777 				       maclen);
4778 		NAPI_GRO_CB(p)->same_flow = !diffs;
4779 	}
4780 }
4781 
4782 static void skb_gro_reset_offset(struct sk_buff *skb)
4783 {
4784 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4785 	const skb_frag_t *frag0 = &pinfo->frags[0];
4786 
4787 	NAPI_GRO_CB(skb)->data_offset = 0;
4788 	NAPI_GRO_CB(skb)->frag0 = NULL;
4789 	NAPI_GRO_CB(skb)->frag0_len = 0;
4790 
4791 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4792 	    pinfo->nr_frags &&
4793 	    !PageHighMem(skb_frag_page(frag0))) {
4794 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4795 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4796 						    skb_frag_size(frag0),
4797 						    skb->end - skb->tail);
4798 	}
4799 }
4800 
4801 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4802 {
4803 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4804 
4805 	BUG_ON(skb->end - skb->tail < grow);
4806 
4807 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4808 
4809 	skb->data_len -= grow;
4810 	skb->tail += grow;
4811 
4812 	pinfo->frags[0].page_offset += grow;
4813 	skb_frag_size_sub(&pinfo->frags[0], grow);
4814 
4815 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4816 		skb_frag_unref(skb, 0);
4817 		memmove(pinfo->frags, pinfo->frags + 1,
4818 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4819 	}
4820 }
4821 
4822 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4823 {
4824 	struct sk_buff **pp = NULL;
4825 	struct packet_offload *ptype;
4826 	__be16 type = skb->protocol;
4827 	struct list_head *head = &offload_base;
4828 	int same_flow;
4829 	enum gro_result ret;
4830 	int grow;
4831 
4832 	if (netif_elide_gro(skb->dev))
4833 		goto normal;
4834 
4835 	gro_list_prepare(napi, skb);
4836 
4837 	rcu_read_lock();
4838 	list_for_each_entry_rcu(ptype, head, list) {
4839 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4840 			continue;
4841 
4842 		skb_set_network_header(skb, skb_gro_offset(skb));
4843 		skb_reset_mac_len(skb);
4844 		NAPI_GRO_CB(skb)->same_flow = 0;
4845 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4846 		NAPI_GRO_CB(skb)->free = 0;
4847 		NAPI_GRO_CB(skb)->encap_mark = 0;
4848 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4849 		NAPI_GRO_CB(skb)->is_fou = 0;
4850 		NAPI_GRO_CB(skb)->is_atomic = 1;
4851 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4852 
4853 		/* Setup for GRO checksum validation */
4854 		switch (skb->ip_summed) {
4855 		case CHECKSUM_COMPLETE:
4856 			NAPI_GRO_CB(skb)->csum = skb->csum;
4857 			NAPI_GRO_CB(skb)->csum_valid = 1;
4858 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4859 			break;
4860 		case CHECKSUM_UNNECESSARY:
4861 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4862 			NAPI_GRO_CB(skb)->csum_valid = 0;
4863 			break;
4864 		default:
4865 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4866 			NAPI_GRO_CB(skb)->csum_valid = 0;
4867 		}
4868 
4869 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4870 		break;
4871 	}
4872 	rcu_read_unlock();
4873 
4874 	if (&ptype->list == head)
4875 		goto normal;
4876 
4877 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4878 		ret = GRO_CONSUMED;
4879 		goto ok;
4880 	}
4881 
4882 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4883 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4884 
4885 	if (pp) {
4886 		struct sk_buff *nskb = *pp;
4887 
4888 		*pp = nskb->next;
4889 		nskb->next = NULL;
4890 		napi_gro_complete(nskb);
4891 		napi->gro_count--;
4892 	}
4893 
4894 	if (same_flow)
4895 		goto ok;
4896 
4897 	if (NAPI_GRO_CB(skb)->flush)
4898 		goto normal;
4899 
4900 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4901 		struct sk_buff *nskb = napi->gro_list;
4902 
4903 		/* locate the end of the list to select the 'oldest' flow */
4904 		while (nskb->next) {
4905 			pp = &nskb->next;
4906 			nskb = *pp;
4907 		}
4908 		*pp = NULL;
4909 		nskb->next = NULL;
4910 		napi_gro_complete(nskb);
4911 	} else {
4912 		napi->gro_count++;
4913 	}
4914 	NAPI_GRO_CB(skb)->count = 1;
4915 	NAPI_GRO_CB(skb)->age = jiffies;
4916 	NAPI_GRO_CB(skb)->last = skb;
4917 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4918 	skb->next = napi->gro_list;
4919 	napi->gro_list = skb;
4920 	ret = GRO_HELD;
4921 
4922 pull:
4923 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4924 	if (grow > 0)
4925 		gro_pull_from_frag0(skb, grow);
4926 ok:
4927 	return ret;
4928 
4929 normal:
4930 	ret = GRO_NORMAL;
4931 	goto pull;
4932 }
4933 
4934 struct packet_offload *gro_find_receive_by_type(__be16 type)
4935 {
4936 	struct list_head *offload_head = &offload_base;
4937 	struct packet_offload *ptype;
4938 
4939 	list_for_each_entry_rcu(ptype, offload_head, list) {
4940 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4941 			continue;
4942 		return ptype;
4943 	}
4944 	return NULL;
4945 }
4946 EXPORT_SYMBOL(gro_find_receive_by_type);
4947 
4948 struct packet_offload *gro_find_complete_by_type(__be16 type)
4949 {
4950 	struct list_head *offload_head = &offload_base;
4951 	struct packet_offload *ptype;
4952 
4953 	list_for_each_entry_rcu(ptype, offload_head, list) {
4954 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4955 			continue;
4956 		return ptype;
4957 	}
4958 	return NULL;
4959 }
4960 EXPORT_SYMBOL(gro_find_complete_by_type);
4961 
4962 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4963 {
4964 	skb_dst_drop(skb);
4965 	secpath_reset(skb);
4966 	kmem_cache_free(skbuff_head_cache, skb);
4967 }
4968 
4969 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4970 {
4971 	switch (ret) {
4972 	case GRO_NORMAL:
4973 		if (netif_receive_skb_internal(skb))
4974 			ret = GRO_DROP;
4975 		break;
4976 
4977 	case GRO_DROP:
4978 		kfree_skb(skb);
4979 		break;
4980 
4981 	case GRO_MERGED_FREE:
4982 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4983 			napi_skb_free_stolen_head(skb);
4984 		else
4985 			__kfree_skb(skb);
4986 		break;
4987 
4988 	case GRO_HELD:
4989 	case GRO_MERGED:
4990 	case GRO_CONSUMED:
4991 		break;
4992 	}
4993 
4994 	return ret;
4995 }
4996 
4997 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4998 {
4999 	skb_mark_napi_id(skb, napi);
5000 	trace_napi_gro_receive_entry(skb);
5001 
5002 	skb_gro_reset_offset(skb);
5003 
5004 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5005 }
5006 EXPORT_SYMBOL(napi_gro_receive);
5007 
5008 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5009 {
5010 	if (unlikely(skb->pfmemalloc)) {
5011 		consume_skb(skb);
5012 		return;
5013 	}
5014 	__skb_pull(skb, skb_headlen(skb));
5015 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5016 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5017 	skb->vlan_tci = 0;
5018 	skb->dev = napi->dev;
5019 	skb->skb_iif = 0;
5020 	skb->encapsulation = 0;
5021 	skb_shinfo(skb)->gso_type = 0;
5022 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5023 	secpath_reset(skb);
5024 
5025 	napi->skb = skb;
5026 }
5027 
5028 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5029 {
5030 	struct sk_buff *skb = napi->skb;
5031 
5032 	if (!skb) {
5033 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5034 		if (skb) {
5035 			napi->skb = skb;
5036 			skb_mark_napi_id(skb, napi);
5037 		}
5038 	}
5039 	return skb;
5040 }
5041 EXPORT_SYMBOL(napi_get_frags);
5042 
5043 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5044 				      struct sk_buff *skb,
5045 				      gro_result_t ret)
5046 {
5047 	switch (ret) {
5048 	case GRO_NORMAL:
5049 	case GRO_HELD:
5050 		__skb_push(skb, ETH_HLEN);
5051 		skb->protocol = eth_type_trans(skb, skb->dev);
5052 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5053 			ret = GRO_DROP;
5054 		break;
5055 
5056 	case GRO_DROP:
5057 		napi_reuse_skb(napi, skb);
5058 		break;
5059 
5060 	case GRO_MERGED_FREE:
5061 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5062 			napi_skb_free_stolen_head(skb);
5063 		else
5064 			napi_reuse_skb(napi, skb);
5065 		break;
5066 
5067 	case GRO_MERGED:
5068 	case GRO_CONSUMED:
5069 		break;
5070 	}
5071 
5072 	return ret;
5073 }
5074 
5075 /* Upper GRO stack assumes network header starts at gro_offset=0
5076  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5077  * We copy ethernet header into skb->data to have a common layout.
5078  */
5079 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5080 {
5081 	struct sk_buff *skb = napi->skb;
5082 	const struct ethhdr *eth;
5083 	unsigned int hlen = sizeof(*eth);
5084 
5085 	napi->skb = NULL;
5086 
5087 	skb_reset_mac_header(skb);
5088 	skb_gro_reset_offset(skb);
5089 
5090 	eth = skb_gro_header_fast(skb, 0);
5091 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5092 		eth = skb_gro_header_slow(skb, hlen, 0);
5093 		if (unlikely(!eth)) {
5094 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5095 					     __func__, napi->dev->name);
5096 			napi_reuse_skb(napi, skb);
5097 			return NULL;
5098 		}
5099 	} else {
5100 		gro_pull_from_frag0(skb, hlen);
5101 		NAPI_GRO_CB(skb)->frag0 += hlen;
5102 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5103 	}
5104 	__skb_pull(skb, hlen);
5105 
5106 	/*
5107 	 * This works because the only protocols we care about don't require
5108 	 * special handling.
5109 	 * We'll fix it up properly in napi_frags_finish()
5110 	 */
5111 	skb->protocol = eth->h_proto;
5112 
5113 	return skb;
5114 }
5115 
5116 gro_result_t napi_gro_frags(struct napi_struct *napi)
5117 {
5118 	struct sk_buff *skb = napi_frags_skb(napi);
5119 
5120 	if (!skb)
5121 		return GRO_DROP;
5122 
5123 	trace_napi_gro_frags_entry(skb);
5124 
5125 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5126 }
5127 EXPORT_SYMBOL(napi_gro_frags);
5128 
5129 /* Compute the checksum from gro_offset and return the folded value
5130  * after adding in any pseudo checksum.
5131  */
5132 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5133 {
5134 	__wsum wsum;
5135 	__sum16 sum;
5136 
5137 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5138 
5139 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5140 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5141 	if (likely(!sum)) {
5142 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5143 		    !skb->csum_complete_sw)
5144 			netdev_rx_csum_fault(skb->dev);
5145 	}
5146 
5147 	NAPI_GRO_CB(skb)->csum = wsum;
5148 	NAPI_GRO_CB(skb)->csum_valid = 1;
5149 
5150 	return sum;
5151 }
5152 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5153 
5154 static void net_rps_send_ipi(struct softnet_data *remsd)
5155 {
5156 #ifdef CONFIG_RPS
5157 	while (remsd) {
5158 		struct softnet_data *next = remsd->rps_ipi_next;
5159 
5160 		if (cpu_online(remsd->cpu))
5161 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5162 		remsd = next;
5163 	}
5164 #endif
5165 }
5166 
5167 /*
5168  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5169  * Note: called with local irq disabled, but exits with local irq enabled.
5170  */
5171 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5172 {
5173 #ifdef CONFIG_RPS
5174 	struct softnet_data *remsd = sd->rps_ipi_list;
5175 
5176 	if (remsd) {
5177 		sd->rps_ipi_list = NULL;
5178 
5179 		local_irq_enable();
5180 
5181 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5182 		net_rps_send_ipi(remsd);
5183 	} else
5184 #endif
5185 		local_irq_enable();
5186 }
5187 
5188 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5189 {
5190 #ifdef CONFIG_RPS
5191 	return sd->rps_ipi_list != NULL;
5192 #else
5193 	return false;
5194 #endif
5195 }
5196 
5197 static int process_backlog(struct napi_struct *napi, int quota)
5198 {
5199 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5200 	bool again = true;
5201 	int work = 0;
5202 
5203 	/* Check if we have pending ipi, its better to send them now,
5204 	 * not waiting net_rx_action() end.
5205 	 */
5206 	if (sd_has_rps_ipi_waiting(sd)) {
5207 		local_irq_disable();
5208 		net_rps_action_and_irq_enable(sd);
5209 	}
5210 
5211 	napi->weight = dev_rx_weight;
5212 	while (again) {
5213 		struct sk_buff *skb;
5214 
5215 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5216 			rcu_read_lock();
5217 			__netif_receive_skb(skb);
5218 			rcu_read_unlock();
5219 			input_queue_head_incr(sd);
5220 			if (++work >= quota)
5221 				return work;
5222 
5223 		}
5224 
5225 		local_irq_disable();
5226 		rps_lock(sd);
5227 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5228 			/*
5229 			 * Inline a custom version of __napi_complete().
5230 			 * only current cpu owns and manipulates this napi,
5231 			 * and NAPI_STATE_SCHED is the only possible flag set
5232 			 * on backlog.
5233 			 * We can use a plain write instead of clear_bit(),
5234 			 * and we dont need an smp_mb() memory barrier.
5235 			 */
5236 			napi->state = 0;
5237 			again = false;
5238 		} else {
5239 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5240 						   &sd->process_queue);
5241 		}
5242 		rps_unlock(sd);
5243 		local_irq_enable();
5244 	}
5245 
5246 	return work;
5247 }
5248 
5249 /**
5250  * __napi_schedule - schedule for receive
5251  * @n: entry to schedule
5252  *
5253  * The entry's receive function will be scheduled to run.
5254  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5255  */
5256 void __napi_schedule(struct napi_struct *n)
5257 {
5258 	unsigned long flags;
5259 
5260 	local_irq_save(flags);
5261 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5262 	local_irq_restore(flags);
5263 }
5264 EXPORT_SYMBOL(__napi_schedule);
5265 
5266 /**
5267  *	napi_schedule_prep - check if napi can be scheduled
5268  *	@n: napi context
5269  *
5270  * Test if NAPI routine is already running, and if not mark
5271  * it as running.  This is used as a condition variable
5272  * insure only one NAPI poll instance runs.  We also make
5273  * sure there is no pending NAPI disable.
5274  */
5275 bool napi_schedule_prep(struct napi_struct *n)
5276 {
5277 	unsigned long val, new;
5278 
5279 	do {
5280 		val = READ_ONCE(n->state);
5281 		if (unlikely(val & NAPIF_STATE_DISABLE))
5282 			return false;
5283 		new = val | NAPIF_STATE_SCHED;
5284 
5285 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5286 		 * This was suggested by Alexander Duyck, as compiler
5287 		 * emits better code than :
5288 		 * if (val & NAPIF_STATE_SCHED)
5289 		 *     new |= NAPIF_STATE_MISSED;
5290 		 */
5291 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5292 						   NAPIF_STATE_MISSED;
5293 	} while (cmpxchg(&n->state, val, new) != val);
5294 
5295 	return !(val & NAPIF_STATE_SCHED);
5296 }
5297 EXPORT_SYMBOL(napi_schedule_prep);
5298 
5299 /**
5300  * __napi_schedule_irqoff - schedule for receive
5301  * @n: entry to schedule
5302  *
5303  * Variant of __napi_schedule() assuming hard irqs are masked
5304  */
5305 void __napi_schedule_irqoff(struct napi_struct *n)
5306 {
5307 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5308 }
5309 EXPORT_SYMBOL(__napi_schedule_irqoff);
5310 
5311 bool napi_complete_done(struct napi_struct *n, int work_done)
5312 {
5313 	unsigned long flags, val, new;
5314 
5315 	/*
5316 	 * 1) Don't let napi dequeue from the cpu poll list
5317 	 *    just in case its running on a different cpu.
5318 	 * 2) If we are busy polling, do nothing here, we have
5319 	 *    the guarantee we will be called later.
5320 	 */
5321 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5322 				 NAPIF_STATE_IN_BUSY_POLL)))
5323 		return false;
5324 
5325 	if (n->gro_list) {
5326 		unsigned long timeout = 0;
5327 
5328 		if (work_done)
5329 			timeout = n->dev->gro_flush_timeout;
5330 
5331 		if (timeout)
5332 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5333 				      HRTIMER_MODE_REL_PINNED);
5334 		else
5335 			napi_gro_flush(n, false);
5336 	}
5337 	if (unlikely(!list_empty(&n->poll_list))) {
5338 		/* If n->poll_list is not empty, we need to mask irqs */
5339 		local_irq_save(flags);
5340 		list_del_init(&n->poll_list);
5341 		local_irq_restore(flags);
5342 	}
5343 
5344 	do {
5345 		val = READ_ONCE(n->state);
5346 
5347 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5348 
5349 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5350 
5351 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5352 		 * because we will call napi->poll() one more time.
5353 		 * This C code was suggested by Alexander Duyck to help gcc.
5354 		 */
5355 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5356 						    NAPIF_STATE_SCHED;
5357 	} while (cmpxchg(&n->state, val, new) != val);
5358 
5359 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5360 		__napi_schedule(n);
5361 		return false;
5362 	}
5363 
5364 	return true;
5365 }
5366 EXPORT_SYMBOL(napi_complete_done);
5367 
5368 /* must be called under rcu_read_lock(), as we dont take a reference */
5369 static struct napi_struct *napi_by_id(unsigned int napi_id)
5370 {
5371 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5372 	struct napi_struct *napi;
5373 
5374 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5375 		if (napi->napi_id == napi_id)
5376 			return napi;
5377 
5378 	return NULL;
5379 }
5380 
5381 #if defined(CONFIG_NET_RX_BUSY_POLL)
5382 
5383 #define BUSY_POLL_BUDGET 8
5384 
5385 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5386 {
5387 	int rc;
5388 
5389 	/* Busy polling means there is a high chance device driver hard irq
5390 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5391 	 * set in napi_schedule_prep().
5392 	 * Since we are about to call napi->poll() once more, we can safely
5393 	 * clear NAPI_STATE_MISSED.
5394 	 *
5395 	 * Note: x86 could use a single "lock and ..." instruction
5396 	 * to perform these two clear_bit()
5397 	 */
5398 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5399 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5400 
5401 	local_bh_disable();
5402 
5403 	/* All we really want here is to re-enable device interrupts.
5404 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5405 	 */
5406 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5407 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5408 	netpoll_poll_unlock(have_poll_lock);
5409 	if (rc == BUSY_POLL_BUDGET)
5410 		__napi_schedule(napi);
5411 	local_bh_enable();
5412 }
5413 
5414 void napi_busy_loop(unsigned int napi_id,
5415 		    bool (*loop_end)(void *, unsigned long),
5416 		    void *loop_end_arg)
5417 {
5418 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5419 	int (*napi_poll)(struct napi_struct *napi, int budget);
5420 	void *have_poll_lock = NULL;
5421 	struct napi_struct *napi;
5422 
5423 restart:
5424 	napi_poll = NULL;
5425 
5426 	rcu_read_lock();
5427 
5428 	napi = napi_by_id(napi_id);
5429 	if (!napi)
5430 		goto out;
5431 
5432 	preempt_disable();
5433 	for (;;) {
5434 		int work = 0;
5435 
5436 		local_bh_disable();
5437 		if (!napi_poll) {
5438 			unsigned long val = READ_ONCE(napi->state);
5439 
5440 			/* If multiple threads are competing for this napi,
5441 			 * we avoid dirtying napi->state as much as we can.
5442 			 */
5443 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5444 				   NAPIF_STATE_IN_BUSY_POLL))
5445 				goto count;
5446 			if (cmpxchg(&napi->state, val,
5447 				    val | NAPIF_STATE_IN_BUSY_POLL |
5448 					  NAPIF_STATE_SCHED) != val)
5449 				goto count;
5450 			have_poll_lock = netpoll_poll_lock(napi);
5451 			napi_poll = napi->poll;
5452 		}
5453 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5454 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5455 count:
5456 		if (work > 0)
5457 			__NET_ADD_STATS(dev_net(napi->dev),
5458 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5459 		local_bh_enable();
5460 
5461 		if (!loop_end || loop_end(loop_end_arg, start_time))
5462 			break;
5463 
5464 		if (unlikely(need_resched())) {
5465 			if (napi_poll)
5466 				busy_poll_stop(napi, have_poll_lock);
5467 			preempt_enable();
5468 			rcu_read_unlock();
5469 			cond_resched();
5470 			if (loop_end(loop_end_arg, start_time))
5471 				return;
5472 			goto restart;
5473 		}
5474 		cpu_relax();
5475 	}
5476 	if (napi_poll)
5477 		busy_poll_stop(napi, have_poll_lock);
5478 	preempt_enable();
5479 out:
5480 	rcu_read_unlock();
5481 }
5482 EXPORT_SYMBOL(napi_busy_loop);
5483 
5484 #endif /* CONFIG_NET_RX_BUSY_POLL */
5485 
5486 static void napi_hash_add(struct napi_struct *napi)
5487 {
5488 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5489 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5490 		return;
5491 
5492 	spin_lock(&napi_hash_lock);
5493 
5494 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5495 	do {
5496 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5497 			napi_gen_id = MIN_NAPI_ID;
5498 	} while (napi_by_id(napi_gen_id));
5499 	napi->napi_id = napi_gen_id;
5500 
5501 	hlist_add_head_rcu(&napi->napi_hash_node,
5502 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5503 
5504 	spin_unlock(&napi_hash_lock);
5505 }
5506 
5507 /* Warning : caller is responsible to make sure rcu grace period
5508  * is respected before freeing memory containing @napi
5509  */
5510 bool napi_hash_del(struct napi_struct *napi)
5511 {
5512 	bool rcu_sync_needed = false;
5513 
5514 	spin_lock(&napi_hash_lock);
5515 
5516 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5517 		rcu_sync_needed = true;
5518 		hlist_del_rcu(&napi->napi_hash_node);
5519 	}
5520 	spin_unlock(&napi_hash_lock);
5521 	return rcu_sync_needed;
5522 }
5523 EXPORT_SYMBOL_GPL(napi_hash_del);
5524 
5525 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5526 {
5527 	struct napi_struct *napi;
5528 
5529 	napi = container_of(timer, struct napi_struct, timer);
5530 
5531 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5532 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5533 	 */
5534 	if (napi->gro_list && !napi_disable_pending(napi) &&
5535 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5536 		__napi_schedule_irqoff(napi);
5537 
5538 	return HRTIMER_NORESTART;
5539 }
5540 
5541 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5542 		    int (*poll)(struct napi_struct *, int), int weight)
5543 {
5544 	INIT_LIST_HEAD(&napi->poll_list);
5545 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5546 	napi->timer.function = napi_watchdog;
5547 	napi->gro_count = 0;
5548 	napi->gro_list = NULL;
5549 	napi->skb = NULL;
5550 	napi->poll = poll;
5551 	if (weight > NAPI_POLL_WEIGHT)
5552 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5553 			    weight, dev->name);
5554 	napi->weight = weight;
5555 	list_add(&napi->dev_list, &dev->napi_list);
5556 	napi->dev = dev;
5557 #ifdef CONFIG_NETPOLL
5558 	napi->poll_owner = -1;
5559 #endif
5560 	set_bit(NAPI_STATE_SCHED, &napi->state);
5561 	napi_hash_add(napi);
5562 }
5563 EXPORT_SYMBOL(netif_napi_add);
5564 
5565 void napi_disable(struct napi_struct *n)
5566 {
5567 	might_sleep();
5568 	set_bit(NAPI_STATE_DISABLE, &n->state);
5569 
5570 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5571 		msleep(1);
5572 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5573 		msleep(1);
5574 
5575 	hrtimer_cancel(&n->timer);
5576 
5577 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5578 }
5579 EXPORT_SYMBOL(napi_disable);
5580 
5581 /* Must be called in process context */
5582 void netif_napi_del(struct napi_struct *napi)
5583 {
5584 	might_sleep();
5585 	if (napi_hash_del(napi))
5586 		synchronize_net();
5587 	list_del_init(&napi->dev_list);
5588 	napi_free_frags(napi);
5589 
5590 	kfree_skb_list(napi->gro_list);
5591 	napi->gro_list = NULL;
5592 	napi->gro_count = 0;
5593 }
5594 EXPORT_SYMBOL(netif_napi_del);
5595 
5596 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5597 {
5598 	void *have;
5599 	int work, weight;
5600 
5601 	list_del_init(&n->poll_list);
5602 
5603 	have = netpoll_poll_lock(n);
5604 
5605 	weight = n->weight;
5606 
5607 	/* This NAPI_STATE_SCHED test is for avoiding a race
5608 	 * with netpoll's poll_napi().  Only the entity which
5609 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5610 	 * actually make the ->poll() call.  Therefore we avoid
5611 	 * accidentally calling ->poll() when NAPI is not scheduled.
5612 	 */
5613 	work = 0;
5614 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5615 		work = n->poll(n, weight);
5616 		trace_napi_poll(n, work, weight);
5617 	}
5618 
5619 	WARN_ON_ONCE(work > weight);
5620 
5621 	if (likely(work < weight))
5622 		goto out_unlock;
5623 
5624 	/* Drivers must not modify the NAPI state if they
5625 	 * consume the entire weight.  In such cases this code
5626 	 * still "owns" the NAPI instance and therefore can
5627 	 * move the instance around on the list at-will.
5628 	 */
5629 	if (unlikely(napi_disable_pending(n))) {
5630 		napi_complete(n);
5631 		goto out_unlock;
5632 	}
5633 
5634 	if (n->gro_list) {
5635 		/* flush too old packets
5636 		 * If HZ < 1000, flush all packets.
5637 		 */
5638 		napi_gro_flush(n, HZ >= 1000);
5639 	}
5640 
5641 	/* Some drivers may have called napi_schedule
5642 	 * prior to exhausting their budget.
5643 	 */
5644 	if (unlikely(!list_empty(&n->poll_list))) {
5645 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5646 			     n->dev ? n->dev->name : "backlog");
5647 		goto out_unlock;
5648 	}
5649 
5650 	list_add_tail(&n->poll_list, repoll);
5651 
5652 out_unlock:
5653 	netpoll_poll_unlock(have);
5654 
5655 	return work;
5656 }
5657 
5658 static __latent_entropy void net_rx_action(struct softirq_action *h)
5659 {
5660 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5661 	unsigned long time_limit = jiffies +
5662 		usecs_to_jiffies(netdev_budget_usecs);
5663 	int budget = netdev_budget;
5664 	LIST_HEAD(list);
5665 	LIST_HEAD(repoll);
5666 
5667 	local_irq_disable();
5668 	list_splice_init(&sd->poll_list, &list);
5669 	local_irq_enable();
5670 
5671 	for (;;) {
5672 		struct napi_struct *n;
5673 
5674 		if (list_empty(&list)) {
5675 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5676 				goto out;
5677 			break;
5678 		}
5679 
5680 		n = list_first_entry(&list, struct napi_struct, poll_list);
5681 		budget -= napi_poll(n, &repoll);
5682 
5683 		/* If softirq window is exhausted then punt.
5684 		 * Allow this to run for 2 jiffies since which will allow
5685 		 * an average latency of 1.5/HZ.
5686 		 */
5687 		if (unlikely(budget <= 0 ||
5688 			     time_after_eq(jiffies, time_limit))) {
5689 			sd->time_squeeze++;
5690 			break;
5691 		}
5692 	}
5693 
5694 	local_irq_disable();
5695 
5696 	list_splice_tail_init(&sd->poll_list, &list);
5697 	list_splice_tail(&repoll, &list);
5698 	list_splice(&list, &sd->poll_list);
5699 	if (!list_empty(&sd->poll_list))
5700 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5701 
5702 	net_rps_action_and_irq_enable(sd);
5703 out:
5704 	__kfree_skb_flush();
5705 }
5706 
5707 struct netdev_adjacent {
5708 	struct net_device *dev;
5709 
5710 	/* upper master flag, there can only be one master device per list */
5711 	bool master;
5712 
5713 	/* counter for the number of times this device was added to us */
5714 	u16 ref_nr;
5715 
5716 	/* private field for the users */
5717 	void *private;
5718 
5719 	struct list_head list;
5720 	struct rcu_head rcu;
5721 };
5722 
5723 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5724 						 struct list_head *adj_list)
5725 {
5726 	struct netdev_adjacent *adj;
5727 
5728 	list_for_each_entry(adj, adj_list, list) {
5729 		if (adj->dev == adj_dev)
5730 			return adj;
5731 	}
5732 	return NULL;
5733 }
5734 
5735 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5736 {
5737 	struct net_device *dev = data;
5738 
5739 	return upper_dev == dev;
5740 }
5741 
5742 /**
5743  * netdev_has_upper_dev - Check if device is linked to an upper device
5744  * @dev: device
5745  * @upper_dev: upper device to check
5746  *
5747  * Find out if a device is linked to specified upper device and return true
5748  * in case it is. Note that this checks only immediate upper device,
5749  * not through a complete stack of devices. The caller must hold the RTNL lock.
5750  */
5751 bool netdev_has_upper_dev(struct net_device *dev,
5752 			  struct net_device *upper_dev)
5753 {
5754 	ASSERT_RTNL();
5755 
5756 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5757 					     upper_dev);
5758 }
5759 EXPORT_SYMBOL(netdev_has_upper_dev);
5760 
5761 /**
5762  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5763  * @dev: device
5764  * @upper_dev: upper device to check
5765  *
5766  * Find out if a device is linked to specified upper device and return true
5767  * in case it is. Note that this checks the entire upper device chain.
5768  * The caller must hold rcu lock.
5769  */
5770 
5771 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5772 				  struct net_device *upper_dev)
5773 {
5774 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5775 					       upper_dev);
5776 }
5777 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5778 
5779 /**
5780  * netdev_has_any_upper_dev - Check if device is linked to some device
5781  * @dev: device
5782  *
5783  * Find out if a device is linked to an upper device and return true in case
5784  * it is. The caller must hold the RTNL lock.
5785  */
5786 bool netdev_has_any_upper_dev(struct net_device *dev)
5787 {
5788 	ASSERT_RTNL();
5789 
5790 	return !list_empty(&dev->adj_list.upper);
5791 }
5792 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5793 
5794 /**
5795  * netdev_master_upper_dev_get - Get master upper device
5796  * @dev: device
5797  *
5798  * Find a master upper device and return pointer to it or NULL in case
5799  * it's not there. The caller must hold the RTNL lock.
5800  */
5801 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5802 {
5803 	struct netdev_adjacent *upper;
5804 
5805 	ASSERT_RTNL();
5806 
5807 	if (list_empty(&dev->adj_list.upper))
5808 		return NULL;
5809 
5810 	upper = list_first_entry(&dev->adj_list.upper,
5811 				 struct netdev_adjacent, list);
5812 	if (likely(upper->master))
5813 		return upper->dev;
5814 	return NULL;
5815 }
5816 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5817 
5818 /**
5819  * netdev_has_any_lower_dev - Check if device is linked to some device
5820  * @dev: device
5821  *
5822  * Find out if a device is linked to a lower device and return true in case
5823  * it is. The caller must hold the RTNL lock.
5824  */
5825 static bool netdev_has_any_lower_dev(struct net_device *dev)
5826 {
5827 	ASSERT_RTNL();
5828 
5829 	return !list_empty(&dev->adj_list.lower);
5830 }
5831 
5832 void *netdev_adjacent_get_private(struct list_head *adj_list)
5833 {
5834 	struct netdev_adjacent *adj;
5835 
5836 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5837 
5838 	return adj->private;
5839 }
5840 EXPORT_SYMBOL(netdev_adjacent_get_private);
5841 
5842 /**
5843  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5844  * @dev: device
5845  * @iter: list_head ** of the current position
5846  *
5847  * Gets the next device from the dev's upper list, starting from iter
5848  * position. The caller must hold RCU read lock.
5849  */
5850 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5851 						 struct list_head **iter)
5852 {
5853 	struct netdev_adjacent *upper;
5854 
5855 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5856 
5857 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5858 
5859 	if (&upper->list == &dev->adj_list.upper)
5860 		return NULL;
5861 
5862 	*iter = &upper->list;
5863 
5864 	return upper->dev;
5865 }
5866 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5867 
5868 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5869 						    struct list_head **iter)
5870 {
5871 	struct netdev_adjacent *upper;
5872 
5873 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5874 
5875 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5876 
5877 	if (&upper->list == &dev->adj_list.upper)
5878 		return NULL;
5879 
5880 	*iter = &upper->list;
5881 
5882 	return upper->dev;
5883 }
5884 
5885 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5886 				  int (*fn)(struct net_device *dev,
5887 					    void *data),
5888 				  void *data)
5889 {
5890 	struct net_device *udev;
5891 	struct list_head *iter;
5892 	int ret;
5893 
5894 	for (iter = &dev->adj_list.upper,
5895 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5896 	     udev;
5897 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5898 		/* first is the upper device itself */
5899 		ret = fn(udev, data);
5900 		if (ret)
5901 			return ret;
5902 
5903 		/* then look at all of its upper devices */
5904 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5905 		if (ret)
5906 			return ret;
5907 	}
5908 
5909 	return 0;
5910 }
5911 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5912 
5913 /**
5914  * netdev_lower_get_next_private - Get the next ->private from the
5915  *				   lower neighbour list
5916  * @dev: device
5917  * @iter: list_head ** of the current position
5918  *
5919  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5920  * list, starting from iter position. The caller must hold either hold the
5921  * RTNL lock or its own locking that guarantees that the neighbour lower
5922  * list will remain unchanged.
5923  */
5924 void *netdev_lower_get_next_private(struct net_device *dev,
5925 				    struct list_head **iter)
5926 {
5927 	struct netdev_adjacent *lower;
5928 
5929 	lower = list_entry(*iter, struct netdev_adjacent, list);
5930 
5931 	if (&lower->list == &dev->adj_list.lower)
5932 		return NULL;
5933 
5934 	*iter = lower->list.next;
5935 
5936 	return lower->private;
5937 }
5938 EXPORT_SYMBOL(netdev_lower_get_next_private);
5939 
5940 /**
5941  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5942  *				       lower neighbour list, RCU
5943  *				       variant
5944  * @dev: device
5945  * @iter: list_head ** of the current position
5946  *
5947  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5948  * list, starting from iter position. The caller must hold RCU read lock.
5949  */
5950 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5951 					struct list_head **iter)
5952 {
5953 	struct netdev_adjacent *lower;
5954 
5955 	WARN_ON_ONCE(!rcu_read_lock_held());
5956 
5957 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5958 
5959 	if (&lower->list == &dev->adj_list.lower)
5960 		return NULL;
5961 
5962 	*iter = &lower->list;
5963 
5964 	return lower->private;
5965 }
5966 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5967 
5968 /**
5969  * netdev_lower_get_next - Get the next device from the lower neighbour
5970  *                         list
5971  * @dev: device
5972  * @iter: list_head ** of the current position
5973  *
5974  * Gets the next netdev_adjacent from the dev's lower neighbour
5975  * list, starting from iter position. The caller must hold RTNL lock or
5976  * its own locking that guarantees that the neighbour lower
5977  * list will remain unchanged.
5978  */
5979 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5980 {
5981 	struct netdev_adjacent *lower;
5982 
5983 	lower = list_entry(*iter, struct netdev_adjacent, list);
5984 
5985 	if (&lower->list == &dev->adj_list.lower)
5986 		return NULL;
5987 
5988 	*iter = lower->list.next;
5989 
5990 	return lower->dev;
5991 }
5992 EXPORT_SYMBOL(netdev_lower_get_next);
5993 
5994 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5995 						struct list_head **iter)
5996 {
5997 	struct netdev_adjacent *lower;
5998 
5999 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6000 
6001 	if (&lower->list == &dev->adj_list.lower)
6002 		return NULL;
6003 
6004 	*iter = &lower->list;
6005 
6006 	return lower->dev;
6007 }
6008 
6009 int netdev_walk_all_lower_dev(struct net_device *dev,
6010 			      int (*fn)(struct net_device *dev,
6011 					void *data),
6012 			      void *data)
6013 {
6014 	struct net_device *ldev;
6015 	struct list_head *iter;
6016 	int ret;
6017 
6018 	for (iter = &dev->adj_list.lower,
6019 	     ldev = netdev_next_lower_dev(dev, &iter);
6020 	     ldev;
6021 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6022 		/* first is the lower device itself */
6023 		ret = fn(ldev, data);
6024 		if (ret)
6025 			return ret;
6026 
6027 		/* then look at all of its lower devices */
6028 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6029 		if (ret)
6030 			return ret;
6031 	}
6032 
6033 	return 0;
6034 }
6035 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6036 
6037 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6038 						    struct list_head **iter)
6039 {
6040 	struct netdev_adjacent *lower;
6041 
6042 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6043 	if (&lower->list == &dev->adj_list.lower)
6044 		return NULL;
6045 
6046 	*iter = &lower->list;
6047 
6048 	return lower->dev;
6049 }
6050 
6051 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6052 				  int (*fn)(struct net_device *dev,
6053 					    void *data),
6054 				  void *data)
6055 {
6056 	struct net_device *ldev;
6057 	struct list_head *iter;
6058 	int ret;
6059 
6060 	for (iter = &dev->adj_list.lower,
6061 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6062 	     ldev;
6063 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6064 		/* first is the lower device itself */
6065 		ret = fn(ldev, data);
6066 		if (ret)
6067 			return ret;
6068 
6069 		/* then look at all of its lower devices */
6070 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6071 		if (ret)
6072 			return ret;
6073 	}
6074 
6075 	return 0;
6076 }
6077 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6078 
6079 /**
6080  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6081  *				       lower neighbour list, RCU
6082  *				       variant
6083  * @dev: device
6084  *
6085  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6086  * list. The caller must hold RCU read lock.
6087  */
6088 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6089 {
6090 	struct netdev_adjacent *lower;
6091 
6092 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6093 			struct netdev_adjacent, list);
6094 	if (lower)
6095 		return lower->private;
6096 	return NULL;
6097 }
6098 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6099 
6100 /**
6101  * netdev_master_upper_dev_get_rcu - Get master upper device
6102  * @dev: device
6103  *
6104  * Find a master upper device and return pointer to it or NULL in case
6105  * it's not there. The caller must hold the RCU read lock.
6106  */
6107 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6108 {
6109 	struct netdev_adjacent *upper;
6110 
6111 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6112 				       struct netdev_adjacent, list);
6113 	if (upper && likely(upper->master))
6114 		return upper->dev;
6115 	return NULL;
6116 }
6117 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6118 
6119 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6120 			      struct net_device *adj_dev,
6121 			      struct list_head *dev_list)
6122 {
6123 	char linkname[IFNAMSIZ+7];
6124 
6125 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6126 		"upper_%s" : "lower_%s", adj_dev->name);
6127 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6128 				 linkname);
6129 }
6130 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6131 			       char *name,
6132 			       struct list_head *dev_list)
6133 {
6134 	char linkname[IFNAMSIZ+7];
6135 
6136 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6137 		"upper_%s" : "lower_%s", name);
6138 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6139 }
6140 
6141 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6142 						 struct net_device *adj_dev,
6143 						 struct list_head *dev_list)
6144 {
6145 	return (dev_list == &dev->adj_list.upper ||
6146 		dev_list == &dev->adj_list.lower) &&
6147 		net_eq(dev_net(dev), dev_net(adj_dev));
6148 }
6149 
6150 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6151 					struct net_device *adj_dev,
6152 					struct list_head *dev_list,
6153 					void *private, bool master)
6154 {
6155 	struct netdev_adjacent *adj;
6156 	int ret;
6157 
6158 	adj = __netdev_find_adj(adj_dev, dev_list);
6159 
6160 	if (adj) {
6161 		adj->ref_nr += 1;
6162 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6163 			 dev->name, adj_dev->name, adj->ref_nr);
6164 
6165 		return 0;
6166 	}
6167 
6168 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6169 	if (!adj)
6170 		return -ENOMEM;
6171 
6172 	adj->dev = adj_dev;
6173 	adj->master = master;
6174 	adj->ref_nr = 1;
6175 	adj->private = private;
6176 	dev_hold(adj_dev);
6177 
6178 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6179 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6180 
6181 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6182 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6183 		if (ret)
6184 			goto free_adj;
6185 	}
6186 
6187 	/* Ensure that master link is always the first item in list. */
6188 	if (master) {
6189 		ret = sysfs_create_link(&(dev->dev.kobj),
6190 					&(adj_dev->dev.kobj), "master");
6191 		if (ret)
6192 			goto remove_symlinks;
6193 
6194 		list_add_rcu(&adj->list, dev_list);
6195 	} else {
6196 		list_add_tail_rcu(&adj->list, dev_list);
6197 	}
6198 
6199 	return 0;
6200 
6201 remove_symlinks:
6202 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6203 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6204 free_adj:
6205 	kfree(adj);
6206 	dev_put(adj_dev);
6207 
6208 	return ret;
6209 }
6210 
6211 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6212 					 struct net_device *adj_dev,
6213 					 u16 ref_nr,
6214 					 struct list_head *dev_list)
6215 {
6216 	struct netdev_adjacent *adj;
6217 
6218 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6219 		 dev->name, adj_dev->name, ref_nr);
6220 
6221 	adj = __netdev_find_adj(adj_dev, dev_list);
6222 
6223 	if (!adj) {
6224 		pr_err("Adjacency does not exist for device %s from %s\n",
6225 		       dev->name, adj_dev->name);
6226 		WARN_ON(1);
6227 		return;
6228 	}
6229 
6230 	if (adj->ref_nr > ref_nr) {
6231 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6232 			 dev->name, adj_dev->name, ref_nr,
6233 			 adj->ref_nr - ref_nr);
6234 		adj->ref_nr -= ref_nr;
6235 		return;
6236 	}
6237 
6238 	if (adj->master)
6239 		sysfs_remove_link(&(dev->dev.kobj), "master");
6240 
6241 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6242 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6243 
6244 	list_del_rcu(&adj->list);
6245 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6246 		 adj_dev->name, dev->name, adj_dev->name);
6247 	dev_put(adj_dev);
6248 	kfree_rcu(adj, rcu);
6249 }
6250 
6251 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6252 					    struct net_device *upper_dev,
6253 					    struct list_head *up_list,
6254 					    struct list_head *down_list,
6255 					    void *private, bool master)
6256 {
6257 	int ret;
6258 
6259 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6260 					   private, master);
6261 	if (ret)
6262 		return ret;
6263 
6264 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6265 					   private, false);
6266 	if (ret) {
6267 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6268 		return ret;
6269 	}
6270 
6271 	return 0;
6272 }
6273 
6274 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6275 					       struct net_device *upper_dev,
6276 					       u16 ref_nr,
6277 					       struct list_head *up_list,
6278 					       struct list_head *down_list)
6279 {
6280 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6281 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6282 }
6283 
6284 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6285 						struct net_device *upper_dev,
6286 						void *private, bool master)
6287 {
6288 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6289 						&dev->adj_list.upper,
6290 						&upper_dev->adj_list.lower,
6291 						private, master);
6292 }
6293 
6294 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6295 						   struct net_device *upper_dev)
6296 {
6297 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6298 					   &dev->adj_list.upper,
6299 					   &upper_dev->adj_list.lower);
6300 }
6301 
6302 static int __netdev_upper_dev_link(struct net_device *dev,
6303 				   struct net_device *upper_dev, bool master,
6304 				   void *upper_priv, void *upper_info,
6305 				   struct netlink_ext_ack *extack)
6306 {
6307 	struct netdev_notifier_changeupper_info changeupper_info = {
6308 		.info = {
6309 			.dev = dev,
6310 			.extack = extack,
6311 		},
6312 		.upper_dev = upper_dev,
6313 		.master = master,
6314 		.linking = true,
6315 		.upper_info = upper_info,
6316 	};
6317 	int ret = 0;
6318 
6319 	ASSERT_RTNL();
6320 
6321 	if (dev == upper_dev)
6322 		return -EBUSY;
6323 
6324 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6325 	if (netdev_has_upper_dev(upper_dev, dev))
6326 		return -EBUSY;
6327 
6328 	if (netdev_has_upper_dev(dev, upper_dev))
6329 		return -EEXIST;
6330 
6331 	if (master && netdev_master_upper_dev_get(dev))
6332 		return -EBUSY;
6333 
6334 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6335 					    &changeupper_info.info);
6336 	ret = notifier_to_errno(ret);
6337 	if (ret)
6338 		return ret;
6339 
6340 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6341 						   master);
6342 	if (ret)
6343 		return ret;
6344 
6345 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6346 					    &changeupper_info.info);
6347 	ret = notifier_to_errno(ret);
6348 	if (ret)
6349 		goto rollback;
6350 
6351 	return 0;
6352 
6353 rollback:
6354 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6355 
6356 	return ret;
6357 }
6358 
6359 /**
6360  * netdev_upper_dev_link - Add a link to the upper device
6361  * @dev: device
6362  * @upper_dev: new upper device
6363  *
6364  * Adds a link to device which is upper to this one. The caller must hold
6365  * the RTNL lock. On a failure a negative errno code is returned.
6366  * On success the reference counts are adjusted and the function
6367  * returns zero.
6368  */
6369 int netdev_upper_dev_link(struct net_device *dev,
6370 			  struct net_device *upper_dev,
6371 			  struct netlink_ext_ack *extack)
6372 {
6373 	return __netdev_upper_dev_link(dev, upper_dev, false,
6374 				       NULL, NULL, extack);
6375 }
6376 EXPORT_SYMBOL(netdev_upper_dev_link);
6377 
6378 /**
6379  * netdev_master_upper_dev_link - Add a master link to the upper device
6380  * @dev: device
6381  * @upper_dev: new upper device
6382  * @upper_priv: upper device private
6383  * @upper_info: upper info to be passed down via notifier
6384  *
6385  * Adds a link to device which is upper to this one. In this case, only
6386  * one master upper device can be linked, although other non-master devices
6387  * might be linked as well. The caller must hold the RTNL lock.
6388  * On a failure a negative errno code is returned. On success the reference
6389  * counts are adjusted and the function returns zero.
6390  */
6391 int netdev_master_upper_dev_link(struct net_device *dev,
6392 				 struct net_device *upper_dev,
6393 				 void *upper_priv, void *upper_info,
6394 				 struct netlink_ext_ack *extack)
6395 {
6396 	return __netdev_upper_dev_link(dev, upper_dev, true,
6397 				       upper_priv, upper_info, extack);
6398 }
6399 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6400 
6401 /**
6402  * netdev_upper_dev_unlink - Removes a link to upper device
6403  * @dev: device
6404  * @upper_dev: new upper device
6405  *
6406  * Removes a link to device which is upper to this one. The caller must hold
6407  * the RTNL lock.
6408  */
6409 void netdev_upper_dev_unlink(struct net_device *dev,
6410 			     struct net_device *upper_dev)
6411 {
6412 	struct netdev_notifier_changeupper_info changeupper_info = {
6413 		.info = {
6414 			.dev = dev,
6415 		},
6416 		.upper_dev = upper_dev,
6417 		.linking = false,
6418 	};
6419 
6420 	ASSERT_RTNL();
6421 
6422 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6423 
6424 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6425 				      &changeupper_info.info);
6426 
6427 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6428 
6429 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6430 				      &changeupper_info.info);
6431 }
6432 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6433 
6434 /**
6435  * netdev_bonding_info_change - Dispatch event about slave change
6436  * @dev: device
6437  * @bonding_info: info to dispatch
6438  *
6439  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6440  * The caller must hold the RTNL lock.
6441  */
6442 void netdev_bonding_info_change(struct net_device *dev,
6443 				struct netdev_bonding_info *bonding_info)
6444 {
6445 	struct netdev_notifier_bonding_info info = {
6446 		.info.dev = dev,
6447 	};
6448 
6449 	memcpy(&info.bonding_info, bonding_info,
6450 	       sizeof(struct netdev_bonding_info));
6451 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6452 				      &info.info);
6453 }
6454 EXPORT_SYMBOL(netdev_bonding_info_change);
6455 
6456 static void netdev_adjacent_add_links(struct net_device *dev)
6457 {
6458 	struct netdev_adjacent *iter;
6459 
6460 	struct net *net = dev_net(dev);
6461 
6462 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6463 		if (!net_eq(net, dev_net(iter->dev)))
6464 			continue;
6465 		netdev_adjacent_sysfs_add(iter->dev, dev,
6466 					  &iter->dev->adj_list.lower);
6467 		netdev_adjacent_sysfs_add(dev, iter->dev,
6468 					  &dev->adj_list.upper);
6469 	}
6470 
6471 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6472 		if (!net_eq(net, dev_net(iter->dev)))
6473 			continue;
6474 		netdev_adjacent_sysfs_add(iter->dev, dev,
6475 					  &iter->dev->adj_list.upper);
6476 		netdev_adjacent_sysfs_add(dev, iter->dev,
6477 					  &dev->adj_list.lower);
6478 	}
6479 }
6480 
6481 static void netdev_adjacent_del_links(struct net_device *dev)
6482 {
6483 	struct netdev_adjacent *iter;
6484 
6485 	struct net *net = dev_net(dev);
6486 
6487 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6488 		if (!net_eq(net, dev_net(iter->dev)))
6489 			continue;
6490 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6491 					  &iter->dev->adj_list.lower);
6492 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6493 					  &dev->adj_list.upper);
6494 	}
6495 
6496 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6497 		if (!net_eq(net, dev_net(iter->dev)))
6498 			continue;
6499 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6500 					  &iter->dev->adj_list.upper);
6501 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6502 					  &dev->adj_list.lower);
6503 	}
6504 }
6505 
6506 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6507 {
6508 	struct netdev_adjacent *iter;
6509 
6510 	struct net *net = dev_net(dev);
6511 
6512 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6513 		if (!net_eq(net, dev_net(iter->dev)))
6514 			continue;
6515 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6516 					  &iter->dev->adj_list.lower);
6517 		netdev_adjacent_sysfs_add(iter->dev, dev,
6518 					  &iter->dev->adj_list.lower);
6519 	}
6520 
6521 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6522 		if (!net_eq(net, dev_net(iter->dev)))
6523 			continue;
6524 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6525 					  &iter->dev->adj_list.upper);
6526 		netdev_adjacent_sysfs_add(iter->dev, dev,
6527 					  &iter->dev->adj_list.upper);
6528 	}
6529 }
6530 
6531 void *netdev_lower_dev_get_private(struct net_device *dev,
6532 				   struct net_device *lower_dev)
6533 {
6534 	struct netdev_adjacent *lower;
6535 
6536 	if (!lower_dev)
6537 		return NULL;
6538 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6539 	if (!lower)
6540 		return NULL;
6541 
6542 	return lower->private;
6543 }
6544 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6545 
6546 
6547 int dev_get_nest_level(struct net_device *dev)
6548 {
6549 	struct net_device *lower = NULL;
6550 	struct list_head *iter;
6551 	int max_nest = -1;
6552 	int nest;
6553 
6554 	ASSERT_RTNL();
6555 
6556 	netdev_for_each_lower_dev(dev, lower, iter) {
6557 		nest = dev_get_nest_level(lower);
6558 		if (max_nest < nest)
6559 			max_nest = nest;
6560 	}
6561 
6562 	return max_nest + 1;
6563 }
6564 EXPORT_SYMBOL(dev_get_nest_level);
6565 
6566 /**
6567  * netdev_lower_change - Dispatch event about lower device state change
6568  * @lower_dev: device
6569  * @lower_state_info: state to dispatch
6570  *
6571  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6572  * The caller must hold the RTNL lock.
6573  */
6574 void netdev_lower_state_changed(struct net_device *lower_dev,
6575 				void *lower_state_info)
6576 {
6577 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6578 		.info.dev = lower_dev,
6579 	};
6580 
6581 	ASSERT_RTNL();
6582 	changelowerstate_info.lower_state_info = lower_state_info;
6583 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6584 				      &changelowerstate_info.info);
6585 }
6586 EXPORT_SYMBOL(netdev_lower_state_changed);
6587 
6588 static void dev_change_rx_flags(struct net_device *dev, int flags)
6589 {
6590 	const struct net_device_ops *ops = dev->netdev_ops;
6591 
6592 	if (ops->ndo_change_rx_flags)
6593 		ops->ndo_change_rx_flags(dev, flags);
6594 }
6595 
6596 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6597 {
6598 	unsigned int old_flags = dev->flags;
6599 	kuid_t uid;
6600 	kgid_t gid;
6601 
6602 	ASSERT_RTNL();
6603 
6604 	dev->flags |= IFF_PROMISC;
6605 	dev->promiscuity += inc;
6606 	if (dev->promiscuity == 0) {
6607 		/*
6608 		 * Avoid overflow.
6609 		 * If inc causes overflow, untouch promisc and return error.
6610 		 */
6611 		if (inc < 0)
6612 			dev->flags &= ~IFF_PROMISC;
6613 		else {
6614 			dev->promiscuity -= inc;
6615 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6616 				dev->name);
6617 			return -EOVERFLOW;
6618 		}
6619 	}
6620 	if (dev->flags != old_flags) {
6621 		pr_info("device %s %s promiscuous mode\n",
6622 			dev->name,
6623 			dev->flags & IFF_PROMISC ? "entered" : "left");
6624 		if (audit_enabled) {
6625 			current_uid_gid(&uid, &gid);
6626 			audit_log(current->audit_context, GFP_ATOMIC,
6627 				AUDIT_ANOM_PROMISCUOUS,
6628 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6629 				dev->name, (dev->flags & IFF_PROMISC),
6630 				(old_flags & IFF_PROMISC),
6631 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6632 				from_kuid(&init_user_ns, uid),
6633 				from_kgid(&init_user_ns, gid),
6634 				audit_get_sessionid(current));
6635 		}
6636 
6637 		dev_change_rx_flags(dev, IFF_PROMISC);
6638 	}
6639 	if (notify)
6640 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6641 	return 0;
6642 }
6643 
6644 /**
6645  *	dev_set_promiscuity	- update promiscuity count on a device
6646  *	@dev: device
6647  *	@inc: modifier
6648  *
6649  *	Add or remove promiscuity from a device. While the count in the device
6650  *	remains above zero the interface remains promiscuous. Once it hits zero
6651  *	the device reverts back to normal filtering operation. A negative inc
6652  *	value is used to drop promiscuity on the device.
6653  *	Return 0 if successful or a negative errno code on error.
6654  */
6655 int dev_set_promiscuity(struct net_device *dev, int inc)
6656 {
6657 	unsigned int old_flags = dev->flags;
6658 	int err;
6659 
6660 	err = __dev_set_promiscuity(dev, inc, true);
6661 	if (err < 0)
6662 		return err;
6663 	if (dev->flags != old_flags)
6664 		dev_set_rx_mode(dev);
6665 	return err;
6666 }
6667 EXPORT_SYMBOL(dev_set_promiscuity);
6668 
6669 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6670 {
6671 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6672 
6673 	ASSERT_RTNL();
6674 
6675 	dev->flags |= IFF_ALLMULTI;
6676 	dev->allmulti += inc;
6677 	if (dev->allmulti == 0) {
6678 		/*
6679 		 * Avoid overflow.
6680 		 * If inc causes overflow, untouch allmulti and return error.
6681 		 */
6682 		if (inc < 0)
6683 			dev->flags &= ~IFF_ALLMULTI;
6684 		else {
6685 			dev->allmulti -= inc;
6686 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6687 				dev->name);
6688 			return -EOVERFLOW;
6689 		}
6690 	}
6691 	if (dev->flags ^ old_flags) {
6692 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6693 		dev_set_rx_mode(dev);
6694 		if (notify)
6695 			__dev_notify_flags(dev, old_flags,
6696 					   dev->gflags ^ old_gflags);
6697 	}
6698 	return 0;
6699 }
6700 
6701 /**
6702  *	dev_set_allmulti	- update allmulti count on a device
6703  *	@dev: device
6704  *	@inc: modifier
6705  *
6706  *	Add or remove reception of all multicast frames to a device. While the
6707  *	count in the device remains above zero the interface remains listening
6708  *	to all interfaces. Once it hits zero the device reverts back to normal
6709  *	filtering operation. A negative @inc value is used to drop the counter
6710  *	when releasing a resource needing all multicasts.
6711  *	Return 0 if successful or a negative errno code on error.
6712  */
6713 
6714 int dev_set_allmulti(struct net_device *dev, int inc)
6715 {
6716 	return __dev_set_allmulti(dev, inc, true);
6717 }
6718 EXPORT_SYMBOL(dev_set_allmulti);
6719 
6720 /*
6721  *	Upload unicast and multicast address lists to device and
6722  *	configure RX filtering. When the device doesn't support unicast
6723  *	filtering it is put in promiscuous mode while unicast addresses
6724  *	are present.
6725  */
6726 void __dev_set_rx_mode(struct net_device *dev)
6727 {
6728 	const struct net_device_ops *ops = dev->netdev_ops;
6729 
6730 	/* dev_open will call this function so the list will stay sane. */
6731 	if (!(dev->flags&IFF_UP))
6732 		return;
6733 
6734 	if (!netif_device_present(dev))
6735 		return;
6736 
6737 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6738 		/* Unicast addresses changes may only happen under the rtnl,
6739 		 * therefore calling __dev_set_promiscuity here is safe.
6740 		 */
6741 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6742 			__dev_set_promiscuity(dev, 1, false);
6743 			dev->uc_promisc = true;
6744 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6745 			__dev_set_promiscuity(dev, -1, false);
6746 			dev->uc_promisc = false;
6747 		}
6748 	}
6749 
6750 	if (ops->ndo_set_rx_mode)
6751 		ops->ndo_set_rx_mode(dev);
6752 }
6753 
6754 void dev_set_rx_mode(struct net_device *dev)
6755 {
6756 	netif_addr_lock_bh(dev);
6757 	__dev_set_rx_mode(dev);
6758 	netif_addr_unlock_bh(dev);
6759 }
6760 
6761 /**
6762  *	dev_get_flags - get flags reported to userspace
6763  *	@dev: device
6764  *
6765  *	Get the combination of flag bits exported through APIs to userspace.
6766  */
6767 unsigned int dev_get_flags(const struct net_device *dev)
6768 {
6769 	unsigned int flags;
6770 
6771 	flags = (dev->flags & ~(IFF_PROMISC |
6772 				IFF_ALLMULTI |
6773 				IFF_RUNNING |
6774 				IFF_LOWER_UP |
6775 				IFF_DORMANT)) |
6776 		(dev->gflags & (IFF_PROMISC |
6777 				IFF_ALLMULTI));
6778 
6779 	if (netif_running(dev)) {
6780 		if (netif_oper_up(dev))
6781 			flags |= IFF_RUNNING;
6782 		if (netif_carrier_ok(dev))
6783 			flags |= IFF_LOWER_UP;
6784 		if (netif_dormant(dev))
6785 			flags |= IFF_DORMANT;
6786 	}
6787 
6788 	return flags;
6789 }
6790 EXPORT_SYMBOL(dev_get_flags);
6791 
6792 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6793 {
6794 	unsigned int old_flags = dev->flags;
6795 	int ret;
6796 
6797 	ASSERT_RTNL();
6798 
6799 	/*
6800 	 *	Set the flags on our device.
6801 	 */
6802 
6803 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6804 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6805 			       IFF_AUTOMEDIA)) |
6806 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6807 				    IFF_ALLMULTI));
6808 
6809 	/*
6810 	 *	Load in the correct multicast list now the flags have changed.
6811 	 */
6812 
6813 	if ((old_flags ^ flags) & IFF_MULTICAST)
6814 		dev_change_rx_flags(dev, IFF_MULTICAST);
6815 
6816 	dev_set_rx_mode(dev);
6817 
6818 	/*
6819 	 *	Have we downed the interface. We handle IFF_UP ourselves
6820 	 *	according to user attempts to set it, rather than blindly
6821 	 *	setting it.
6822 	 */
6823 
6824 	ret = 0;
6825 	if ((old_flags ^ flags) & IFF_UP) {
6826 		if (old_flags & IFF_UP)
6827 			__dev_close(dev);
6828 		else
6829 			ret = __dev_open(dev);
6830 	}
6831 
6832 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6833 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6834 		unsigned int old_flags = dev->flags;
6835 
6836 		dev->gflags ^= IFF_PROMISC;
6837 
6838 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6839 			if (dev->flags != old_flags)
6840 				dev_set_rx_mode(dev);
6841 	}
6842 
6843 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6844 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6845 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6846 	 */
6847 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6848 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6849 
6850 		dev->gflags ^= IFF_ALLMULTI;
6851 		__dev_set_allmulti(dev, inc, false);
6852 	}
6853 
6854 	return ret;
6855 }
6856 
6857 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6858 			unsigned int gchanges)
6859 {
6860 	unsigned int changes = dev->flags ^ old_flags;
6861 
6862 	if (gchanges)
6863 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6864 
6865 	if (changes & IFF_UP) {
6866 		if (dev->flags & IFF_UP)
6867 			call_netdevice_notifiers(NETDEV_UP, dev);
6868 		else
6869 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6870 	}
6871 
6872 	if (dev->flags & IFF_UP &&
6873 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6874 		struct netdev_notifier_change_info change_info = {
6875 			.info = {
6876 				.dev = dev,
6877 			},
6878 			.flags_changed = changes,
6879 		};
6880 
6881 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6882 	}
6883 }
6884 
6885 /**
6886  *	dev_change_flags - change device settings
6887  *	@dev: device
6888  *	@flags: device state flags
6889  *
6890  *	Change settings on device based state flags. The flags are
6891  *	in the userspace exported format.
6892  */
6893 int dev_change_flags(struct net_device *dev, unsigned int flags)
6894 {
6895 	int ret;
6896 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6897 
6898 	ret = __dev_change_flags(dev, flags);
6899 	if (ret < 0)
6900 		return ret;
6901 
6902 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6903 	__dev_notify_flags(dev, old_flags, changes);
6904 	return ret;
6905 }
6906 EXPORT_SYMBOL(dev_change_flags);
6907 
6908 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6909 {
6910 	const struct net_device_ops *ops = dev->netdev_ops;
6911 
6912 	if (ops->ndo_change_mtu)
6913 		return ops->ndo_change_mtu(dev, new_mtu);
6914 
6915 	dev->mtu = new_mtu;
6916 	return 0;
6917 }
6918 EXPORT_SYMBOL(__dev_set_mtu);
6919 
6920 /**
6921  *	dev_set_mtu - Change maximum transfer unit
6922  *	@dev: device
6923  *	@new_mtu: new transfer unit
6924  *
6925  *	Change the maximum transfer size of the network device.
6926  */
6927 int dev_set_mtu(struct net_device *dev, int new_mtu)
6928 {
6929 	int err, orig_mtu;
6930 
6931 	if (new_mtu == dev->mtu)
6932 		return 0;
6933 
6934 	/* MTU must be positive, and in range */
6935 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6936 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6937 				    dev->name, new_mtu, dev->min_mtu);
6938 		return -EINVAL;
6939 	}
6940 
6941 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6942 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6943 				    dev->name, new_mtu, dev->max_mtu);
6944 		return -EINVAL;
6945 	}
6946 
6947 	if (!netif_device_present(dev))
6948 		return -ENODEV;
6949 
6950 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6951 	err = notifier_to_errno(err);
6952 	if (err)
6953 		return err;
6954 
6955 	orig_mtu = dev->mtu;
6956 	err = __dev_set_mtu(dev, new_mtu);
6957 
6958 	if (!err) {
6959 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6960 		err = notifier_to_errno(err);
6961 		if (err) {
6962 			/* setting mtu back and notifying everyone again,
6963 			 * so that they have a chance to revert changes.
6964 			 */
6965 			__dev_set_mtu(dev, orig_mtu);
6966 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6967 		}
6968 	}
6969 	return err;
6970 }
6971 EXPORT_SYMBOL(dev_set_mtu);
6972 
6973 /**
6974  *	dev_set_group - Change group this device belongs to
6975  *	@dev: device
6976  *	@new_group: group this device should belong to
6977  */
6978 void dev_set_group(struct net_device *dev, int new_group)
6979 {
6980 	dev->group = new_group;
6981 }
6982 EXPORT_SYMBOL(dev_set_group);
6983 
6984 /**
6985  *	dev_set_mac_address - Change Media Access Control Address
6986  *	@dev: device
6987  *	@sa: new address
6988  *
6989  *	Change the hardware (MAC) address of the device
6990  */
6991 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6992 {
6993 	const struct net_device_ops *ops = dev->netdev_ops;
6994 	int err;
6995 
6996 	if (!ops->ndo_set_mac_address)
6997 		return -EOPNOTSUPP;
6998 	if (sa->sa_family != dev->type)
6999 		return -EINVAL;
7000 	if (!netif_device_present(dev))
7001 		return -ENODEV;
7002 	err = ops->ndo_set_mac_address(dev, sa);
7003 	if (err)
7004 		return err;
7005 	dev->addr_assign_type = NET_ADDR_SET;
7006 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7007 	add_device_randomness(dev->dev_addr, dev->addr_len);
7008 	return 0;
7009 }
7010 EXPORT_SYMBOL(dev_set_mac_address);
7011 
7012 /**
7013  *	dev_change_carrier - Change device carrier
7014  *	@dev: device
7015  *	@new_carrier: new value
7016  *
7017  *	Change device carrier
7018  */
7019 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7020 {
7021 	const struct net_device_ops *ops = dev->netdev_ops;
7022 
7023 	if (!ops->ndo_change_carrier)
7024 		return -EOPNOTSUPP;
7025 	if (!netif_device_present(dev))
7026 		return -ENODEV;
7027 	return ops->ndo_change_carrier(dev, new_carrier);
7028 }
7029 EXPORT_SYMBOL(dev_change_carrier);
7030 
7031 /**
7032  *	dev_get_phys_port_id - Get device physical port ID
7033  *	@dev: device
7034  *	@ppid: port ID
7035  *
7036  *	Get device physical port ID
7037  */
7038 int dev_get_phys_port_id(struct net_device *dev,
7039 			 struct netdev_phys_item_id *ppid)
7040 {
7041 	const struct net_device_ops *ops = dev->netdev_ops;
7042 
7043 	if (!ops->ndo_get_phys_port_id)
7044 		return -EOPNOTSUPP;
7045 	return ops->ndo_get_phys_port_id(dev, ppid);
7046 }
7047 EXPORT_SYMBOL(dev_get_phys_port_id);
7048 
7049 /**
7050  *	dev_get_phys_port_name - Get device physical port name
7051  *	@dev: device
7052  *	@name: port name
7053  *	@len: limit of bytes to copy to name
7054  *
7055  *	Get device physical port name
7056  */
7057 int dev_get_phys_port_name(struct net_device *dev,
7058 			   char *name, size_t len)
7059 {
7060 	const struct net_device_ops *ops = dev->netdev_ops;
7061 
7062 	if (!ops->ndo_get_phys_port_name)
7063 		return -EOPNOTSUPP;
7064 	return ops->ndo_get_phys_port_name(dev, name, len);
7065 }
7066 EXPORT_SYMBOL(dev_get_phys_port_name);
7067 
7068 /**
7069  *	dev_change_proto_down - update protocol port state information
7070  *	@dev: device
7071  *	@proto_down: new value
7072  *
7073  *	This info can be used by switch drivers to set the phys state of the
7074  *	port.
7075  */
7076 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7077 {
7078 	const struct net_device_ops *ops = dev->netdev_ops;
7079 
7080 	if (!ops->ndo_change_proto_down)
7081 		return -EOPNOTSUPP;
7082 	if (!netif_device_present(dev))
7083 		return -ENODEV;
7084 	return ops->ndo_change_proto_down(dev, proto_down);
7085 }
7086 EXPORT_SYMBOL(dev_change_proto_down);
7087 
7088 u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op, u32 *prog_id)
7089 {
7090 	struct netdev_bpf xdp;
7091 
7092 	memset(&xdp, 0, sizeof(xdp));
7093 	xdp.command = XDP_QUERY_PROG;
7094 
7095 	/* Query must always succeed. */
7096 	WARN_ON(bpf_op(dev, &xdp) < 0);
7097 	if (prog_id)
7098 		*prog_id = xdp.prog_id;
7099 
7100 	return xdp.prog_attached;
7101 }
7102 
7103 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7104 			   struct netlink_ext_ack *extack, u32 flags,
7105 			   struct bpf_prog *prog)
7106 {
7107 	struct netdev_bpf xdp;
7108 
7109 	memset(&xdp, 0, sizeof(xdp));
7110 	if (flags & XDP_FLAGS_HW_MODE)
7111 		xdp.command = XDP_SETUP_PROG_HW;
7112 	else
7113 		xdp.command = XDP_SETUP_PROG;
7114 	xdp.extack = extack;
7115 	xdp.flags = flags;
7116 	xdp.prog = prog;
7117 
7118 	return bpf_op(dev, &xdp);
7119 }
7120 
7121 /**
7122  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7123  *	@dev: device
7124  *	@extack: netlink extended ack
7125  *	@fd: new program fd or negative value to clear
7126  *	@flags: xdp-related flags
7127  *
7128  *	Set or clear a bpf program for a device
7129  */
7130 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7131 		      int fd, u32 flags)
7132 {
7133 	const struct net_device_ops *ops = dev->netdev_ops;
7134 	struct bpf_prog *prog = NULL;
7135 	bpf_op_t bpf_op, bpf_chk;
7136 	int err;
7137 
7138 	ASSERT_RTNL();
7139 
7140 	bpf_op = bpf_chk = ops->ndo_bpf;
7141 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7142 		return -EOPNOTSUPP;
7143 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7144 		bpf_op = generic_xdp_install;
7145 	if (bpf_op == bpf_chk)
7146 		bpf_chk = generic_xdp_install;
7147 
7148 	if (fd >= 0) {
7149 		if (bpf_chk && __dev_xdp_attached(dev, bpf_chk, NULL))
7150 			return -EEXIST;
7151 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7152 		    __dev_xdp_attached(dev, bpf_op, NULL))
7153 			return -EBUSY;
7154 
7155 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7156 					     bpf_op == ops->ndo_bpf);
7157 		if (IS_ERR(prog))
7158 			return PTR_ERR(prog);
7159 
7160 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7161 		    bpf_prog_is_dev_bound(prog->aux)) {
7162 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7163 			bpf_prog_put(prog);
7164 			return -EINVAL;
7165 		}
7166 	}
7167 
7168 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7169 	if (err < 0 && prog)
7170 		bpf_prog_put(prog);
7171 
7172 	return err;
7173 }
7174 
7175 /**
7176  *	dev_new_index	-	allocate an ifindex
7177  *	@net: the applicable net namespace
7178  *
7179  *	Returns a suitable unique value for a new device interface
7180  *	number.  The caller must hold the rtnl semaphore or the
7181  *	dev_base_lock to be sure it remains unique.
7182  */
7183 static int dev_new_index(struct net *net)
7184 {
7185 	int ifindex = net->ifindex;
7186 
7187 	for (;;) {
7188 		if (++ifindex <= 0)
7189 			ifindex = 1;
7190 		if (!__dev_get_by_index(net, ifindex))
7191 			return net->ifindex = ifindex;
7192 	}
7193 }
7194 
7195 /* Delayed registration/unregisteration */
7196 static LIST_HEAD(net_todo_list);
7197 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7198 
7199 static void net_set_todo(struct net_device *dev)
7200 {
7201 	list_add_tail(&dev->todo_list, &net_todo_list);
7202 	dev_net(dev)->dev_unreg_count++;
7203 }
7204 
7205 static void rollback_registered_many(struct list_head *head)
7206 {
7207 	struct net_device *dev, *tmp;
7208 	LIST_HEAD(close_head);
7209 
7210 	BUG_ON(dev_boot_phase);
7211 	ASSERT_RTNL();
7212 
7213 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7214 		/* Some devices call without registering
7215 		 * for initialization unwind. Remove those
7216 		 * devices and proceed with the remaining.
7217 		 */
7218 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7219 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7220 				 dev->name, dev);
7221 
7222 			WARN_ON(1);
7223 			list_del(&dev->unreg_list);
7224 			continue;
7225 		}
7226 		dev->dismantle = true;
7227 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7228 	}
7229 
7230 	/* If device is running, close it first. */
7231 	list_for_each_entry(dev, head, unreg_list)
7232 		list_add_tail(&dev->close_list, &close_head);
7233 	dev_close_many(&close_head, true);
7234 
7235 	list_for_each_entry(dev, head, unreg_list) {
7236 		/* And unlink it from device chain. */
7237 		unlist_netdevice(dev);
7238 
7239 		dev->reg_state = NETREG_UNREGISTERING;
7240 	}
7241 	flush_all_backlogs();
7242 
7243 	synchronize_net();
7244 
7245 	list_for_each_entry(dev, head, unreg_list) {
7246 		struct sk_buff *skb = NULL;
7247 
7248 		/* Shutdown queueing discipline. */
7249 		dev_shutdown(dev);
7250 
7251 
7252 		/* Notify protocols, that we are about to destroy
7253 		 * this device. They should clean all the things.
7254 		 */
7255 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7256 
7257 		if (!dev->rtnl_link_ops ||
7258 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7259 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7260 						     GFP_KERNEL, NULL);
7261 
7262 		/*
7263 		 *	Flush the unicast and multicast chains
7264 		 */
7265 		dev_uc_flush(dev);
7266 		dev_mc_flush(dev);
7267 
7268 		if (dev->netdev_ops->ndo_uninit)
7269 			dev->netdev_ops->ndo_uninit(dev);
7270 
7271 		if (skb)
7272 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7273 
7274 		/* Notifier chain MUST detach us all upper devices. */
7275 		WARN_ON(netdev_has_any_upper_dev(dev));
7276 		WARN_ON(netdev_has_any_lower_dev(dev));
7277 
7278 		/* Remove entries from kobject tree */
7279 		netdev_unregister_kobject(dev);
7280 #ifdef CONFIG_XPS
7281 		/* Remove XPS queueing entries */
7282 		netif_reset_xps_queues_gt(dev, 0);
7283 #endif
7284 	}
7285 
7286 	synchronize_net();
7287 
7288 	list_for_each_entry(dev, head, unreg_list)
7289 		dev_put(dev);
7290 }
7291 
7292 static void rollback_registered(struct net_device *dev)
7293 {
7294 	LIST_HEAD(single);
7295 
7296 	list_add(&dev->unreg_list, &single);
7297 	rollback_registered_many(&single);
7298 	list_del(&single);
7299 }
7300 
7301 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7302 	struct net_device *upper, netdev_features_t features)
7303 {
7304 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7305 	netdev_features_t feature;
7306 	int feature_bit;
7307 
7308 	for_each_netdev_feature(&upper_disables, feature_bit) {
7309 		feature = __NETIF_F_BIT(feature_bit);
7310 		if (!(upper->wanted_features & feature)
7311 		    && (features & feature)) {
7312 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7313 				   &feature, upper->name);
7314 			features &= ~feature;
7315 		}
7316 	}
7317 
7318 	return features;
7319 }
7320 
7321 static void netdev_sync_lower_features(struct net_device *upper,
7322 	struct net_device *lower, netdev_features_t features)
7323 {
7324 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7325 	netdev_features_t feature;
7326 	int feature_bit;
7327 
7328 	for_each_netdev_feature(&upper_disables, feature_bit) {
7329 		feature = __NETIF_F_BIT(feature_bit);
7330 		if (!(features & feature) && (lower->features & feature)) {
7331 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7332 				   &feature, lower->name);
7333 			lower->wanted_features &= ~feature;
7334 			netdev_update_features(lower);
7335 
7336 			if (unlikely(lower->features & feature))
7337 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7338 					    &feature, lower->name);
7339 		}
7340 	}
7341 }
7342 
7343 static netdev_features_t netdev_fix_features(struct net_device *dev,
7344 	netdev_features_t features)
7345 {
7346 	/* Fix illegal checksum combinations */
7347 	if ((features & NETIF_F_HW_CSUM) &&
7348 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7349 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7350 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7351 	}
7352 
7353 	/* TSO requires that SG is present as well. */
7354 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7355 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7356 		features &= ~NETIF_F_ALL_TSO;
7357 	}
7358 
7359 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7360 					!(features & NETIF_F_IP_CSUM)) {
7361 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7362 		features &= ~NETIF_F_TSO;
7363 		features &= ~NETIF_F_TSO_ECN;
7364 	}
7365 
7366 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7367 					 !(features & NETIF_F_IPV6_CSUM)) {
7368 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7369 		features &= ~NETIF_F_TSO6;
7370 	}
7371 
7372 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7373 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7374 		features &= ~NETIF_F_TSO_MANGLEID;
7375 
7376 	/* TSO ECN requires that TSO is present as well. */
7377 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7378 		features &= ~NETIF_F_TSO_ECN;
7379 
7380 	/* Software GSO depends on SG. */
7381 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7382 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7383 		features &= ~NETIF_F_GSO;
7384 	}
7385 
7386 	/* GSO partial features require GSO partial be set */
7387 	if ((features & dev->gso_partial_features) &&
7388 	    !(features & NETIF_F_GSO_PARTIAL)) {
7389 		netdev_dbg(dev,
7390 			   "Dropping partially supported GSO features since no GSO partial.\n");
7391 		features &= ~dev->gso_partial_features;
7392 	}
7393 
7394 	return features;
7395 }
7396 
7397 int __netdev_update_features(struct net_device *dev)
7398 {
7399 	struct net_device *upper, *lower;
7400 	netdev_features_t features;
7401 	struct list_head *iter;
7402 	int err = -1;
7403 
7404 	ASSERT_RTNL();
7405 
7406 	features = netdev_get_wanted_features(dev);
7407 
7408 	if (dev->netdev_ops->ndo_fix_features)
7409 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7410 
7411 	/* driver might be less strict about feature dependencies */
7412 	features = netdev_fix_features(dev, features);
7413 
7414 	/* some features can't be enabled if they're off an an upper device */
7415 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7416 		features = netdev_sync_upper_features(dev, upper, features);
7417 
7418 	if (dev->features == features)
7419 		goto sync_lower;
7420 
7421 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7422 		&dev->features, &features);
7423 
7424 	if (dev->netdev_ops->ndo_set_features)
7425 		err = dev->netdev_ops->ndo_set_features(dev, features);
7426 	else
7427 		err = 0;
7428 
7429 	if (unlikely(err < 0)) {
7430 		netdev_err(dev,
7431 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7432 			err, &features, &dev->features);
7433 		/* return non-0 since some features might have changed and
7434 		 * it's better to fire a spurious notification than miss it
7435 		 */
7436 		return -1;
7437 	}
7438 
7439 sync_lower:
7440 	/* some features must be disabled on lower devices when disabled
7441 	 * on an upper device (think: bonding master or bridge)
7442 	 */
7443 	netdev_for_each_lower_dev(dev, lower, iter)
7444 		netdev_sync_lower_features(dev, lower, features);
7445 
7446 	if (!err) {
7447 		netdev_features_t diff = features ^ dev->features;
7448 
7449 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7450 			/* udp_tunnel_{get,drop}_rx_info both need
7451 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7452 			 * device, or they won't do anything.
7453 			 * Thus we need to update dev->features
7454 			 * *before* calling udp_tunnel_get_rx_info,
7455 			 * but *after* calling udp_tunnel_drop_rx_info.
7456 			 */
7457 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7458 				dev->features = features;
7459 				udp_tunnel_get_rx_info(dev);
7460 			} else {
7461 				udp_tunnel_drop_rx_info(dev);
7462 			}
7463 		}
7464 
7465 		dev->features = features;
7466 	}
7467 
7468 	return err < 0 ? 0 : 1;
7469 }
7470 
7471 /**
7472  *	netdev_update_features - recalculate device features
7473  *	@dev: the device to check
7474  *
7475  *	Recalculate dev->features set and send notifications if it
7476  *	has changed. Should be called after driver or hardware dependent
7477  *	conditions might have changed that influence the features.
7478  */
7479 void netdev_update_features(struct net_device *dev)
7480 {
7481 	if (__netdev_update_features(dev))
7482 		netdev_features_change(dev);
7483 }
7484 EXPORT_SYMBOL(netdev_update_features);
7485 
7486 /**
7487  *	netdev_change_features - recalculate device features
7488  *	@dev: the device to check
7489  *
7490  *	Recalculate dev->features set and send notifications even
7491  *	if they have not changed. Should be called instead of
7492  *	netdev_update_features() if also dev->vlan_features might
7493  *	have changed to allow the changes to be propagated to stacked
7494  *	VLAN devices.
7495  */
7496 void netdev_change_features(struct net_device *dev)
7497 {
7498 	__netdev_update_features(dev);
7499 	netdev_features_change(dev);
7500 }
7501 EXPORT_SYMBOL(netdev_change_features);
7502 
7503 /**
7504  *	netif_stacked_transfer_operstate -	transfer operstate
7505  *	@rootdev: the root or lower level device to transfer state from
7506  *	@dev: the device to transfer operstate to
7507  *
7508  *	Transfer operational state from root to device. This is normally
7509  *	called when a stacking relationship exists between the root
7510  *	device and the device(a leaf device).
7511  */
7512 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7513 					struct net_device *dev)
7514 {
7515 	if (rootdev->operstate == IF_OPER_DORMANT)
7516 		netif_dormant_on(dev);
7517 	else
7518 		netif_dormant_off(dev);
7519 
7520 	if (netif_carrier_ok(rootdev))
7521 		netif_carrier_on(dev);
7522 	else
7523 		netif_carrier_off(dev);
7524 }
7525 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7526 
7527 #ifdef CONFIG_SYSFS
7528 static int netif_alloc_rx_queues(struct net_device *dev)
7529 {
7530 	unsigned int i, count = dev->num_rx_queues;
7531 	struct netdev_rx_queue *rx;
7532 	size_t sz = count * sizeof(*rx);
7533 
7534 	BUG_ON(count < 1);
7535 
7536 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7537 	if (!rx)
7538 		return -ENOMEM;
7539 
7540 	dev->_rx = rx;
7541 
7542 	for (i = 0; i < count; i++)
7543 		rx[i].dev = dev;
7544 	return 0;
7545 }
7546 #endif
7547 
7548 static void netdev_init_one_queue(struct net_device *dev,
7549 				  struct netdev_queue *queue, void *_unused)
7550 {
7551 	/* Initialize queue lock */
7552 	spin_lock_init(&queue->_xmit_lock);
7553 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7554 	queue->xmit_lock_owner = -1;
7555 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7556 	queue->dev = dev;
7557 #ifdef CONFIG_BQL
7558 	dql_init(&queue->dql, HZ);
7559 #endif
7560 }
7561 
7562 static void netif_free_tx_queues(struct net_device *dev)
7563 {
7564 	kvfree(dev->_tx);
7565 }
7566 
7567 static int netif_alloc_netdev_queues(struct net_device *dev)
7568 {
7569 	unsigned int count = dev->num_tx_queues;
7570 	struct netdev_queue *tx;
7571 	size_t sz = count * sizeof(*tx);
7572 
7573 	if (count < 1 || count > 0xffff)
7574 		return -EINVAL;
7575 
7576 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7577 	if (!tx)
7578 		return -ENOMEM;
7579 
7580 	dev->_tx = tx;
7581 
7582 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7583 	spin_lock_init(&dev->tx_global_lock);
7584 
7585 	return 0;
7586 }
7587 
7588 void netif_tx_stop_all_queues(struct net_device *dev)
7589 {
7590 	unsigned int i;
7591 
7592 	for (i = 0; i < dev->num_tx_queues; i++) {
7593 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7594 
7595 		netif_tx_stop_queue(txq);
7596 	}
7597 }
7598 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7599 
7600 /**
7601  *	register_netdevice	- register a network device
7602  *	@dev: device to register
7603  *
7604  *	Take a completed network device structure and add it to the kernel
7605  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7606  *	chain. 0 is returned on success. A negative errno code is returned
7607  *	on a failure to set up the device, or if the name is a duplicate.
7608  *
7609  *	Callers must hold the rtnl semaphore. You may want
7610  *	register_netdev() instead of this.
7611  *
7612  *	BUGS:
7613  *	The locking appears insufficient to guarantee two parallel registers
7614  *	will not get the same name.
7615  */
7616 
7617 int register_netdevice(struct net_device *dev)
7618 {
7619 	int ret;
7620 	struct net *net = dev_net(dev);
7621 
7622 	BUG_ON(dev_boot_phase);
7623 	ASSERT_RTNL();
7624 
7625 	might_sleep();
7626 
7627 	/* When net_device's are persistent, this will be fatal. */
7628 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7629 	BUG_ON(!net);
7630 
7631 	spin_lock_init(&dev->addr_list_lock);
7632 	netdev_set_addr_lockdep_class(dev);
7633 
7634 	ret = dev_get_valid_name(net, dev, dev->name);
7635 	if (ret < 0)
7636 		goto out;
7637 
7638 	/* Init, if this function is available */
7639 	if (dev->netdev_ops->ndo_init) {
7640 		ret = dev->netdev_ops->ndo_init(dev);
7641 		if (ret) {
7642 			if (ret > 0)
7643 				ret = -EIO;
7644 			goto out;
7645 		}
7646 	}
7647 
7648 	if (((dev->hw_features | dev->features) &
7649 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7650 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7651 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7652 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7653 		ret = -EINVAL;
7654 		goto err_uninit;
7655 	}
7656 
7657 	ret = -EBUSY;
7658 	if (!dev->ifindex)
7659 		dev->ifindex = dev_new_index(net);
7660 	else if (__dev_get_by_index(net, dev->ifindex))
7661 		goto err_uninit;
7662 
7663 	/* Transfer changeable features to wanted_features and enable
7664 	 * software offloads (GSO and GRO).
7665 	 */
7666 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7667 	dev->features |= NETIF_F_SOFT_FEATURES;
7668 
7669 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7670 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7671 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7672 	}
7673 
7674 	dev->wanted_features = dev->features & dev->hw_features;
7675 
7676 	if (!(dev->flags & IFF_LOOPBACK))
7677 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7678 
7679 	/* If IPv4 TCP segmentation offload is supported we should also
7680 	 * allow the device to enable segmenting the frame with the option
7681 	 * of ignoring a static IP ID value.  This doesn't enable the
7682 	 * feature itself but allows the user to enable it later.
7683 	 */
7684 	if (dev->hw_features & NETIF_F_TSO)
7685 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7686 	if (dev->vlan_features & NETIF_F_TSO)
7687 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7688 	if (dev->mpls_features & NETIF_F_TSO)
7689 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7690 	if (dev->hw_enc_features & NETIF_F_TSO)
7691 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7692 
7693 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7694 	 */
7695 	dev->vlan_features |= NETIF_F_HIGHDMA;
7696 
7697 	/* Make NETIF_F_SG inheritable to tunnel devices.
7698 	 */
7699 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7700 
7701 	/* Make NETIF_F_SG inheritable to MPLS.
7702 	 */
7703 	dev->mpls_features |= NETIF_F_SG;
7704 
7705 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7706 	ret = notifier_to_errno(ret);
7707 	if (ret)
7708 		goto err_uninit;
7709 
7710 	ret = netdev_register_kobject(dev);
7711 	if (ret)
7712 		goto err_uninit;
7713 	dev->reg_state = NETREG_REGISTERED;
7714 
7715 	__netdev_update_features(dev);
7716 
7717 	/*
7718 	 *	Default initial state at registry is that the
7719 	 *	device is present.
7720 	 */
7721 
7722 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7723 
7724 	linkwatch_init_dev(dev);
7725 
7726 	dev_init_scheduler(dev);
7727 	dev_hold(dev);
7728 	list_netdevice(dev);
7729 	add_device_randomness(dev->dev_addr, dev->addr_len);
7730 
7731 	/* If the device has permanent device address, driver should
7732 	 * set dev_addr and also addr_assign_type should be set to
7733 	 * NET_ADDR_PERM (default value).
7734 	 */
7735 	if (dev->addr_assign_type == NET_ADDR_PERM)
7736 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7737 
7738 	/* Notify protocols, that a new device appeared. */
7739 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7740 	ret = notifier_to_errno(ret);
7741 	if (ret) {
7742 		rollback_registered(dev);
7743 		dev->reg_state = NETREG_UNREGISTERED;
7744 	}
7745 	/*
7746 	 *	Prevent userspace races by waiting until the network
7747 	 *	device is fully setup before sending notifications.
7748 	 */
7749 	if (!dev->rtnl_link_ops ||
7750 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7751 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7752 
7753 out:
7754 	return ret;
7755 
7756 err_uninit:
7757 	if (dev->netdev_ops->ndo_uninit)
7758 		dev->netdev_ops->ndo_uninit(dev);
7759 	if (dev->priv_destructor)
7760 		dev->priv_destructor(dev);
7761 	goto out;
7762 }
7763 EXPORT_SYMBOL(register_netdevice);
7764 
7765 /**
7766  *	init_dummy_netdev	- init a dummy network device for NAPI
7767  *	@dev: device to init
7768  *
7769  *	This takes a network device structure and initialize the minimum
7770  *	amount of fields so it can be used to schedule NAPI polls without
7771  *	registering a full blown interface. This is to be used by drivers
7772  *	that need to tie several hardware interfaces to a single NAPI
7773  *	poll scheduler due to HW limitations.
7774  */
7775 int init_dummy_netdev(struct net_device *dev)
7776 {
7777 	/* Clear everything. Note we don't initialize spinlocks
7778 	 * are they aren't supposed to be taken by any of the
7779 	 * NAPI code and this dummy netdev is supposed to be
7780 	 * only ever used for NAPI polls
7781 	 */
7782 	memset(dev, 0, sizeof(struct net_device));
7783 
7784 	/* make sure we BUG if trying to hit standard
7785 	 * register/unregister code path
7786 	 */
7787 	dev->reg_state = NETREG_DUMMY;
7788 
7789 	/* NAPI wants this */
7790 	INIT_LIST_HEAD(&dev->napi_list);
7791 
7792 	/* a dummy interface is started by default */
7793 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7794 	set_bit(__LINK_STATE_START, &dev->state);
7795 
7796 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7797 	 * because users of this 'device' dont need to change
7798 	 * its refcount.
7799 	 */
7800 
7801 	return 0;
7802 }
7803 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7804 
7805 
7806 /**
7807  *	register_netdev	- register a network device
7808  *	@dev: device to register
7809  *
7810  *	Take a completed network device structure and add it to the kernel
7811  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7812  *	chain. 0 is returned on success. A negative errno code is returned
7813  *	on a failure to set up the device, or if the name is a duplicate.
7814  *
7815  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7816  *	and expands the device name if you passed a format string to
7817  *	alloc_netdev.
7818  */
7819 int register_netdev(struct net_device *dev)
7820 {
7821 	int err;
7822 
7823 	rtnl_lock();
7824 	err = register_netdevice(dev);
7825 	rtnl_unlock();
7826 	return err;
7827 }
7828 EXPORT_SYMBOL(register_netdev);
7829 
7830 int netdev_refcnt_read(const struct net_device *dev)
7831 {
7832 	int i, refcnt = 0;
7833 
7834 	for_each_possible_cpu(i)
7835 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7836 	return refcnt;
7837 }
7838 EXPORT_SYMBOL(netdev_refcnt_read);
7839 
7840 /**
7841  * netdev_wait_allrefs - wait until all references are gone.
7842  * @dev: target net_device
7843  *
7844  * This is called when unregistering network devices.
7845  *
7846  * Any protocol or device that holds a reference should register
7847  * for netdevice notification, and cleanup and put back the
7848  * reference if they receive an UNREGISTER event.
7849  * We can get stuck here if buggy protocols don't correctly
7850  * call dev_put.
7851  */
7852 static void netdev_wait_allrefs(struct net_device *dev)
7853 {
7854 	unsigned long rebroadcast_time, warning_time;
7855 	int refcnt;
7856 
7857 	linkwatch_forget_dev(dev);
7858 
7859 	rebroadcast_time = warning_time = jiffies;
7860 	refcnt = netdev_refcnt_read(dev);
7861 
7862 	while (refcnt != 0) {
7863 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7864 			rtnl_lock();
7865 
7866 			/* Rebroadcast unregister notification */
7867 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7868 
7869 			__rtnl_unlock();
7870 			rcu_barrier();
7871 			rtnl_lock();
7872 
7873 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7874 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7875 				     &dev->state)) {
7876 				/* We must not have linkwatch events
7877 				 * pending on unregister. If this
7878 				 * happens, we simply run the queue
7879 				 * unscheduled, resulting in a noop
7880 				 * for this device.
7881 				 */
7882 				linkwatch_run_queue();
7883 			}
7884 
7885 			__rtnl_unlock();
7886 
7887 			rebroadcast_time = jiffies;
7888 		}
7889 
7890 		msleep(250);
7891 
7892 		refcnt = netdev_refcnt_read(dev);
7893 
7894 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7895 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7896 				 dev->name, refcnt);
7897 			warning_time = jiffies;
7898 		}
7899 	}
7900 }
7901 
7902 /* The sequence is:
7903  *
7904  *	rtnl_lock();
7905  *	...
7906  *	register_netdevice(x1);
7907  *	register_netdevice(x2);
7908  *	...
7909  *	unregister_netdevice(y1);
7910  *	unregister_netdevice(y2);
7911  *      ...
7912  *	rtnl_unlock();
7913  *	free_netdev(y1);
7914  *	free_netdev(y2);
7915  *
7916  * We are invoked by rtnl_unlock().
7917  * This allows us to deal with problems:
7918  * 1) We can delete sysfs objects which invoke hotplug
7919  *    without deadlocking with linkwatch via keventd.
7920  * 2) Since we run with the RTNL semaphore not held, we can sleep
7921  *    safely in order to wait for the netdev refcnt to drop to zero.
7922  *
7923  * We must not return until all unregister events added during
7924  * the interval the lock was held have been completed.
7925  */
7926 void netdev_run_todo(void)
7927 {
7928 	struct list_head list;
7929 
7930 	/* Snapshot list, allow later requests */
7931 	list_replace_init(&net_todo_list, &list);
7932 
7933 	__rtnl_unlock();
7934 
7935 
7936 	/* Wait for rcu callbacks to finish before next phase */
7937 	if (!list_empty(&list))
7938 		rcu_barrier();
7939 
7940 	while (!list_empty(&list)) {
7941 		struct net_device *dev
7942 			= list_first_entry(&list, struct net_device, todo_list);
7943 		list_del(&dev->todo_list);
7944 
7945 		rtnl_lock();
7946 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7947 		__rtnl_unlock();
7948 
7949 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7950 			pr_err("network todo '%s' but state %d\n",
7951 			       dev->name, dev->reg_state);
7952 			dump_stack();
7953 			continue;
7954 		}
7955 
7956 		dev->reg_state = NETREG_UNREGISTERED;
7957 
7958 		netdev_wait_allrefs(dev);
7959 
7960 		/* paranoia */
7961 		BUG_ON(netdev_refcnt_read(dev));
7962 		BUG_ON(!list_empty(&dev->ptype_all));
7963 		BUG_ON(!list_empty(&dev->ptype_specific));
7964 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7965 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7966 		WARN_ON(dev->dn_ptr);
7967 
7968 		if (dev->priv_destructor)
7969 			dev->priv_destructor(dev);
7970 		if (dev->needs_free_netdev)
7971 			free_netdev(dev);
7972 
7973 		/* Report a network device has been unregistered */
7974 		rtnl_lock();
7975 		dev_net(dev)->dev_unreg_count--;
7976 		__rtnl_unlock();
7977 		wake_up(&netdev_unregistering_wq);
7978 
7979 		/* Free network device */
7980 		kobject_put(&dev->dev.kobj);
7981 	}
7982 }
7983 
7984 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7985  * all the same fields in the same order as net_device_stats, with only
7986  * the type differing, but rtnl_link_stats64 may have additional fields
7987  * at the end for newer counters.
7988  */
7989 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7990 			     const struct net_device_stats *netdev_stats)
7991 {
7992 #if BITS_PER_LONG == 64
7993 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7994 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7995 	/* zero out counters that only exist in rtnl_link_stats64 */
7996 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7997 	       sizeof(*stats64) - sizeof(*netdev_stats));
7998 #else
7999 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8000 	const unsigned long *src = (const unsigned long *)netdev_stats;
8001 	u64 *dst = (u64 *)stats64;
8002 
8003 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8004 	for (i = 0; i < n; i++)
8005 		dst[i] = src[i];
8006 	/* zero out counters that only exist in rtnl_link_stats64 */
8007 	memset((char *)stats64 + n * sizeof(u64), 0,
8008 	       sizeof(*stats64) - n * sizeof(u64));
8009 #endif
8010 }
8011 EXPORT_SYMBOL(netdev_stats_to_stats64);
8012 
8013 /**
8014  *	dev_get_stats	- get network device statistics
8015  *	@dev: device to get statistics from
8016  *	@storage: place to store stats
8017  *
8018  *	Get network statistics from device. Return @storage.
8019  *	The device driver may provide its own method by setting
8020  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8021  *	otherwise the internal statistics structure is used.
8022  */
8023 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8024 					struct rtnl_link_stats64 *storage)
8025 {
8026 	const struct net_device_ops *ops = dev->netdev_ops;
8027 
8028 	if (ops->ndo_get_stats64) {
8029 		memset(storage, 0, sizeof(*storage));
8030 		ops->ndo_get_stats64(dev, storage);
8031 	} else if (ops->ndo_get_stats) {
8032 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8033 	} else {
8034 		netdev_stats_to_stats64(storage, &dev->stats);
8035 	}
8036 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8037 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8038 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8039 	return storage;
8040 }
8041 EXPORT_SYMBOL(dev_get_stats);
8042 
8043 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8044 {
8045 	struct netdev_queue *queue = dev_ingress_queue(dev);
8046 
8047 #ifdef CONFIG_NET_CLS_ACT
8048 	if (queue)
8049 		return queue;
8050 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8051 	if (!queue)
8052 		return NULL;
8053 	netdev_init_one_queue(dev, queue, NULL);
8054 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8055 	queue->qdisc_sleeping = &noop_qdisc;
8056 	rcu_assign_pointer(dev->ingress_queue, queue);
8057 #endif
8058 	return queue;
8059 }
8060 
8061 static const struct ethtool_ops default_ethtool_ops;
8062 
8063 void netdev_set_default_ethtool_ops(struct net_device *dev,
8064 				    const struct ethtool_ops *ops)
8065 {
8066 	if (dev->ethtool_ops == &default_ethtool_ops)
8067 		dev->ethtool_ops = ops;
8068 }
8069 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8070 
8071 void netdev_freemem(struct net_device *dev)
8072 {
8073 	char *addr = (char *)dev - dev->padded;
8074 
8075 	kvfree(addr);
8076 }
8077 
8078 /**
8079  * alloc_netdev_mqs - allocate network device
8080  * @sizeof_priv: size of private data to allocate space for
8081  * @name: device name format string
8082  * @name_assign_type: origin of device name
8083  * @setup: callback to initialize device
8084  * @txqs: the number of TX subqueues to allocate
8085  * @rxqs: the number of RX subqueues to allocate
8086  *
8087  * Allocates a struct net_device with private data area for driver use
8088  * and performs basic initialization.  Also allocates subqueue structs
8089  * for each queue on the device.
8090  */
8091 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8092 		unsigned char name_assign_type,
8093 		void (*setup)(struct net_device *),
8094 		unsigned int txqs, unsigned int rxqs)
8095 {
8096 	struct net_device *dev;
8097 	unsigned int alloc_size;
8098 	struct net_device *p;
8099 
8100 	BUG_ON(strlen(name) >= sizeof(dev->name));
8101 
8102 	if (txqs < 1) {
8103 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8104 		return NULL;
8105 	}
8106 
8107 #ifdef CONFIG_SYSFS
8108 	if (rxqs < 1) {
8109 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8110 		return NULL;
8111 	}
8112 #endif
8113 
8114 	alloc_size = sizeof(struct net_device);
8115 	if (sizeof_priv) {
8116 		/* ensure 32-byte alignment of private area */
8117 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8118 		alloc_size += sizeof_priv;
8119 	}
8120 	/* ensure 32-byte alignment of whole construct */
8121 	alloc_size += NETDEV_ALIGN - 1;
8122 
8123 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8124 	if (!p)
8125 		return NULL;
8126 
8127 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8128 	dev->padded = (char *)dev - (char *)p;
8129 
8130 	dev->pcpu_refcnt = alloc_percpu(int);
8131 	if (!dev->pcpu_refcnt)
8132 		goto free_dev;
8133 
8134 	if (dev_addr_init(dev))
8135 		goto free_pcpu;
8136 
8137 	dev_mc_init(dev);
8138 	dev_uc_init(dev);
8139 
8140 	dev_net_set(dev, &init_net);
8141 
8142 	dev->gso_max_size = GSO_MAX_SIZE;
8143 	dev->gso_max_segs = GSO_MAX_SEGS;
8144 
8145 	INIT_LIST_HEAD(&dev->napi_list);
8146 	INIT_LIST_HEAD(&dev->unreg_list);
8147 	INIT_LIST_HEAD(&dev->close_list);
8148 	INIT_LIST_HEAD(&dev->link_watch_list);
8149 	INIT_LIST_HEAD(&dev->adj_list.upper);
8150 	INIT_LIST_HEAD(&dev->adj_list.lower);
8151 	INIT_LIST_HEAD(&dev->ptype_all);
8152 	INIT_LIST_HEAD(&dev->ptype_specific);
8153 #ifdef CONFIG_NET_SCHED
8154 	hash_init(dev->qdisc_hash);
8155 #endif
8156 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8157 	setup(dev);
8158 
8159 	if (!dev->tx_queue_len) {
8160 		dev->priv_flags |= IFF_NO_QUEUE;
8161 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8162 	}
8163 
8164 	dev->num_tx_queues = txqs;
8165 	dev->real_num_tx_queues = txqs;
8166 	if (netif_alloc_netdev_queues(dev))
8167 		goto free_all;
8168 
8169 #ifdef CONFIG_SYSFS
8170 	dev->num_rx_queues = rxqs;
8171 	dev->real_num_rx_queues = rxqs;
8172 	if (netif_alloc_rx_queues(dev))
8173 		goto free_all;
8174 #endif
8175 
8176 	strcpy(dev->name, name);
8177 	dev->name_assign_type = name_assign_type;
8178 	dev->group = INIT_NETDEV_GROUP;
8179 	if (!dev->ethtool_ops)
8180 		dev->ethtool_ops = &default_ethtool_ops;
8181 
8182 	nf_hook_ingress_init(dev);
8183 
8184 	return dev;
8185 
8186 free_all:
8187 	free_netdev(dev);
8188 	return NULL;
8189 
8190 free_pcpu:
8191 	free_percpu(dev->pcpu_refcnt);
8192 free_dev:
8193 	netdev_freemem(dev);
8194 	return NULL;
8195 }
8196 EXPORT_SYMBOL(alloc_netdev_mqs);
8197 
8198 /**
8199  * free_netdev - free network device
8200  * @dev: device
8201  *
8202  * This function does the last stage of destroying an allocated device
8203  * interface. The reference to the device object is released. If this
8204  * is the last reference then it will be freed.Must be called in process
8205  * context.
8206  */
8207 void free_netdev(struct net_device *dev)
8208 {
8209 	struct napi_struct *p, *n;
8210 	struct bpf_prog *prog;
8211 
8212 	might_sleep();
8213 	netif_free_tx_queues(dev);
8214 #ifdef CONFIG_SYSFS
8215 	kvfree(dev->_rx);
8216 #endif
8217 
8218 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8219 
8220 	/* Flush device addresses */
8221 	dev_addr_flush(dev);
8222 
8223 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8224 		netif_napi_del(p);
8225 
8226 	free_percpu(dev->pcpu_refcnt);
8227 	dev->pcpu_refcnt = NULL;
8228 
8229 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8230 	if (prog) {
8231 		bpf_prog_put(prog);
8232 		static_key_slow_dec(&generic_xdp_needed);
8233 	}
8234 
8235 	/*  Compatibility with error handling in drivers */
8236 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8237 		netdev_freemem(dev);
8238 		return;
8239 	}
8240 
8241 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8242 	dev->reg_state = NETREG_RELEASED;
8243 
8244 	/* will free via device release */
8245 	put_device(&dev->dev);
8246 }
8247 EXPORT_SYMBOL(free_netdev);
8248 
8249 /**
8250  *	synchronize_net -  Synchronize with packet receive processing
8251  *
8252  *	Wait for packets currently being received to be done.
8253  *	Does not block later packets from starting.
8254  */
8255 void synchronize_net(void)
8256 {
8257 	might_sleep();
8258 	if (rtnl_is_locked())
8259 		synchronize_rcu_expedited();
8260 	else
8261 		synchronize_rcu();
8262 }
8263 EXPORT_SYMBOL(synchronize_net);
8264 
8265 /**
8266  *	unregister_netdevice_queue - remove device from the kernel
8267  *	@dev: device
8268  *	@head: list
8269  *
8270  *	This function shuts down a device interface and removes it
8271  *	from the kernel tables.
8272  *	If head not NULL, device is queued to be unregistered later.
8273  *
8274  *	Callers must hold the rtnl semaphore.  You may want
8275  *	unregister_netdev() instead of this.
8276  */
8277 
8278 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8279 {
8280 	ASSERT_RTNL();
8281 
8282 	if (head) {
8283 		list_move_tail(&dev->unreg_list, head);
8284 	} else {
8285 		rollback_registered(dev);
8286 		/* Finish processing unregister after unlock */
8287 		net_set_todo(dev);
8288 	}
8289 }
8290 EXPORT_SYMBOL(unregister_netdevice_queue);
8291 
8292 /**
8293  *	unregister_netdevice_many - unregister many devices
8294  *	@head: list of devices
8295  *
8296  *  Note: As most callers use a stack allocated list_head,
8297  *  we force a list_del() to make sure stack wont be corrupted later.
8298  */
8299 void unregister_netdevice_many(struct list_head *head)
8300 {
8301 	struct net_device *dev;
8302 
8303 	if (!list_empty(head)) {
8304 		rollback_registered_many(head);
8305 		list_for_each_entry(dev, head, unreg_list)
8306 			net_set_todo(dev);
8307 		list_del(head);
8308 	}
8309 }
8310 EXPORT_SYMBOL(unregister_netdevice_many);
8311 
8312 /**
8313  *	unregister_netdev - remove device from the kernel
8314  *	@dev: device
8315  *
8316  *	This function shuts down a device interface and removes it
8317  *	from the kernel tables.
8318  *
8319  *	This is just a wrapper for unregister_netdevice that takes
8320  *	the rtnl semaphore.  In general you want to use this and not
8321  *	unregister_netdevice.
8322  */
8323 void unregister_netdev(struct net_device *dev)
8324 {
8325 	rtnl_lock();
8326 	unregister_netdevice(dev);
8327 	rtnl_unlock();
8328 }
8329 EXPORT_SYMBOL(unregister_netdev);
8330 
8331 /**
8332  *	dev_change_net_namespace - move device to different nethost namespace
8333  *	@dev: device
8334  *	@net: network namespace
8335  *	@pat: If not NULL name pattern to try if the current device name
8336  *	      is already taken in the destination network namespace.
8337  *
8338  *	This function shuts down a device interface and moves it
8339  *	to a new network namespace. On success 0 is returned, on
8340  *	a failure a netagive errno code is returned.
8341  *
8342  *	Callers must hold the rtnl semaphore.
8343  */
8344 
8345 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8346 {
8347 	int err, new_nsid;
8348 
8349 	ASSERT_RTNL();
8350 
8351 	/* Don't allow namespace local devices to be moved. */
8352 	err = -EINVAL;
8353 	if (dev->features & NETIF_F_NETNS_LOCAL)
8354 		goto out;
8355 
8356 	/* Ensure the device has been registrered */
8357 	if (dev->reg_state != NETREG_REGISTERED)
8358 		goto out;
8359 
8360 	/* Get out if there is nothing todo */
8361 	err = 0;
8362 	if (net_eq(dev_net(dev), net))
8363 		goto out;
8364 
8365 	/* Pick the destination device name, and ensure
8366 	 * we can use it in the destination network namespace.
8367 	 */
8368 	err = -EEXIST;
8369 	if (__dev_get_by_name(net, dev->name)) {
8370 		/* We get here if we can't use the current device name */
8371 		if (!pat)
8372 			goto out;
8373 		if (dev_get_valid_name(net, dev, pat) < 0)
8374 			goto out;
8375 	}
8376 
8377 	/*
8378 	 * And now a mini version of register_netdevice unregister_netdevice.
8379 	 */
8380 
8381 	/* If device is running close it first. */
8382 	dev_close(dev);
8383 
8384 	/* And unlink it from device chain */
8385 	err = -ENODEV;
8386 	unlist_netdevice(dev);
8387 
8388 	synchronize_net();
8389 
8390 	/* Shutdown queueing discipline. */
8391 	dev_shutdown(dev);
8392 
8393 	/* Notify protocols, that we are about to destroy
8394 	 * this device. They should clean all the things.
8395 	 *
8396 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8397 	 * This is wanted because this way 8021q and macvlan know
8398 	 * the device is just moving and can keep their slaves up.
8399 	 */
8400 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8401 	rcu_barrier();
8402 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8403 	if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8404 		new_nsid = peernet2id_alloc(dev_net(dev), net);
8405 	else
8406 		new_nsid = peernet2id(dev_net(dev), net);
8407 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8408 
8409 	/*
8410 	 *	Flush the unicast and multicast chains
8411 	 */
8412 	dev_uc_flush(dev);
8413 	dev_mc_flush(dev);
8414 
8415 	/* Send a netdev-removed uevent to the old namespace */
8416 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8417 	netdev_adjacent_del_links(dev);
8418 
8419 	/* Actually switch the network namespace */
8420 	dev_net_set(dev, net);
8421 
8422 	/* If there is an ifindex conflict assign a new one */
8423 	if (__dev_get_by_index(net, dev->ifindex))
8424 		dev->ifindex = dev_new_index(net);
8425 
8426 	/* Send a netdev-add uevent to the new namespace */
8427 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8428 	netdev_adjacent_add_links(dev);
8429 
8430 	/* Fixup kobjects */
8431 	err = device_rename(&dev->dev, dev->name);
8432 	WARN_ON(err);
8433 
8434 	/* Add the device back in the hashes */
8435 	list_netdevice(dev);
8436 
8437 	/* Notify protocols, that a new device appeared. */
8438 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8439 
8440 	/*
8441 	 *	Prevent userspace races by waiting until the network
8442 	 *	device is fully setup before sending notifications.
8443 	 */
8444 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8445 
8446 	synchronize_net();
8447 	err = 0;
8448 out:
8449 	return err;
8450 }
8451 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8452 
8453 static int dev_cpu_dead(unsigned int oldcpu)
8454 {
8455 	struct sk_buff **list_skb;
8456 	struct sk_buff *skb;
8457 	unsigned int cpu;
8458 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8459 
8460 	local_irq_disable();
8461 	cpu = smp_processor_id();
8462 	sd = &per_cpu(softnet_data, cpu);
8463 	oldsd = &per_cpu(softnet_data, oldcpu);
8464 
8465 	/* Find end of our completion_queue. */
8466 	list_skb = &sd->completion_queue;
8467 	while (*list_skb)
8468 		list_skb = &(*list_skb)->next;
8469 	/* Append completion queue from offline CPU. */
8470 	*list_skb = oldsd->completion_queue;
8471 	oldsd->completion_queue = NULL;
8472 
8473 	/* Append output queue from offline CPU. */
8474 	if (oldsd->output_queue) {
8475 		*sd->output_queue_tailp = oldsd->output_queue;
8476 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8477 		oldsd->output_queue = NULL;
8478 		oldsd->output_queue_tailp = &oldsd->output_queue;
8479 	}
8480 	/* Append NAPI poll list from offline CPU, with one exception :
8481 	 * process_backlog() must be called by cpu owning percpu backlog.
8482 	 * We properly handle process_queue & input_pkt_queue later.
8483 	 */
8484 	while (!list_empty(&oldsd->poll_list)) {
8485 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8486 							    struct napi_struct,
8487 							    poll_list);
8488 
8489 		list_del_init(&napi->poll_list);
8490 		if (napi->poll == process_backlog)
8491 			napi->state = 0;
8492 		else
8493 			____napi_schedule(sd, napi);
8494 	}
8495 
8496 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8497 	local_irq_enable();
8498 
8499 #ifdef CONFIG_RPS
8500 	remsd = oldsd->rps_ipi_list;
8501 	oldsd->rps_ipi_list = NULL;
8502 #endif
8503 	/* send out pending IPI's on offline CPU */
8504 	net_rps_send_ipi(remsd);
8505 
8506 	/* Process offline CPU's input_pkt_queue */
8507 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8508 		netif_rx_ni(skb);
8509 		input_queue_head_incr(oldsd);
8510 	}
8511 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8512 		netif_rx_ni(skb);
8513 		input_queue_head_incr(oldsd);
8514 	}
8515 
8516 	return 0;
8517 }
8518 
8519 /**
8520  *	netdev_increment_features - increment feature set by one
8521  *	@all: current feature set
8522  *	@one: new feature set
8523  *	@mask: mask feature set
8524  *
8525  *	Computes a new feature set after adding a device with feature set
8526  *	@one to the master device with current feature set @all.  Will not
8527  *	enable anything that is off in @mask. Returns the new feature set.
8528  */
8529 netdev_features_t netdev_increment_features(netdev_features_t all,
8530 	netdev_features_t one, netdev_features_t mask)
8531 {
8532 	if (mask & NETIF_F_HW_CSUM)
8533 		mask |= NETIF_F_CSUM_MASK;
8534 	mask |= NETIF_F_VLAN_CHALLENGED;
8535 
8536 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8537 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8538 
8539 	/* If one device supports hw checksumming, set for all. */
8540 	if (all & NETIF_F_HW_CSUM)
8541 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8542 
8543 	return all;
8544 }
8545 EXPORT_SYMBOL(netdev_increment_features);
8546 
8547 static struct hlist_head * __net_init netdev_create_hash(void)
8548 {
8549 	int i;
8550 	struct hlist_head *hash;
8551 
8552 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8553 	if (hash != NULL)
8554 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8555 			INIT_HLIST_HEAD(&hash[i]);
8556 
8557 	return hash;
8558 }
8559 
8560 /* Initialize per network namespace state */
8561 static int __net_init netdev_init(struct net *net)
8562 {
8563 	if (net != &init_net)
8564 		INIT_LIST_HEAD(&net->dev_base_head);
8565 
8566 	net->dev_name_head = netdev_create_hash();
8567 	if (net->dev_name_head == NULL)
8568 		goto err_name;
8569 
8570 	net->dev_index_head = netdev_create_hash();
8571 	if (net->dev_index_head == NULL)
8572 		goto err_idx;
8573 
8574 	return 0;
8575 
8576 err_idx:
8577 	kfree(net->dev_name_head);
8578 err_name:
8579 	return -ENOMEM;
8580 }
8581 
8582 /**
8583  *	netdev_drivername - network driver for the device
8584  *	@dev: network device
8585  *
8586  *	Determine network driver for device.
8587  */
8588 const char *netdev_drivername(const struct net_device *dev)
8589 {
8590 	const struct device_driver *driver;
8591 	const struct device *parent;
8592 	const char *empty = "";
8593 
8594 	parent = dev->dev.parent;
8595 	if (!parent)
8596 		return empty;
8597 
8598 	driver = parent->driver;
8599 	if (driver && driver->name)
8600 		return driver->name;
8601 	return empty;
8602 }
8603 
8604 static void __netdev_printk(const char *level, const struct net_device *dev,
8605 			    struct va_format *vaf)
8606 {
8607 	if (dev && dev->dev.parent) {
8608 		dev_printk_emit(level[1] - '0',
8609 				dev->dev.parent,
8610 				"%s %s %s%s: %pV",
8611 				dev_driver_string(dev->dev.parent),
8612 				dev_name(dev->dev.parent),
8613 				netdev_name(dev), netdev_reg_state(dev),
8614 				vaf);
8615 	} else if (dev) {
8616 		printk("%s%s%s: %pV",
8617 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8618 	} else {
8619 		printk("%s(NULL net_device): %pV", level, vaf);
8620 	}
8621 }
8622 
8623 void netdev_printk(const char *level, const struct net_device *dev,
8624 		   const char *format, ...)
8625 {
8626 	struct va_format vaf;
8627 	va_list args;
8628 
8629 	va_start(args, format);
8630 
8631 	vaf.fmt = format;
8632 	vaf.va = &args;
8633 
8634 	__netdev_printk(level, dev, &vaf);
8635 
8636 	va_end(args);
8637 }
8638 EXPORT_SYMBOL(netdev_printk);
8639 
8640 #define define_netdev_printk_level(func, level)			\
8641 void func(const struct net_device *dev, const char *fmt, ...)	\
8642 {								\
8643 	struct va_format vaf;					\
8644 	va_list args;						\
8645 								\
8646 	va_start(args, fmt);					\
8647 								\
8648 	vaf.fmt = fmt;						\
8649 	vaf.va = &args;						\
8650 								\
8651 	__netdev_printk(level, dev, &vaf);			\
8652 								\
8653 	va_end(args);						\
8654 }								\
8655 EXPORT_SYMBOL(func);
8656 
8657 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8658 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8659 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8660 define_netdev_printk_level(netdev_err, KERN_ERR);
8661 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8662 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8663 define_netdev_printk_level(netdev_info, KERN_INFO);
8664 
8665 static void __net_exit netdev_exit(struct net *net)
8666 {
8667 	kfree(net->dev_name_head);
8668 	kfree(net->dev_index_head);
8669 	if (net != &init_net)
8670 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8671 }
8672 
8673 static struct pernet_operations __net_initdata netdev_net_ops = {
8674 	.init = netdev_init,
8675 	.exit = netdev_exit,
8676 };
8677 
8678 static void __net_exit default_device_exit(struct net *net)
8679 {
8680 	struct net_device *dev, *aux;
8681 	/*
8682 	 * Push all migratable network devices back to the
8683 	 * initial network namespace
8684 	 */
8685 	rtnl_lock();
8686 	for_each_netdev_safe(net, dev, aux) {
8687 		int err;
8688 		char fb_name[IFNAMSIZ];
8689 
8690 		/* Ignore unmoveable devices (i.e. loopback) */
8691 		if (dev->features & NETIF_F_NETNS_LOCAL)
8692 			continue;
8693 
8694 		/* Leave virtual devices for the generic cleanup */
8695 		if (dev->rtnl_link_ops)
8696 			continue;
8697 
8698 		/* Push remaining network devices to init_net */
8699 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8700 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8701 		if (err) {
8702 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8703 				 __func__, dev->name, err);
8704 			BUG();
8705 		}
8706 	}
8707 	rtnl_unlock();
8708 }
8709 
8710 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8711 {
8712 	/* Return with the rtnl_lock held when there are no network
8713 	 * devices unregistering in any network namespace in net_list.
8714 	 */
8715 	struct net *net;
8716 	bool unregistering;
8717 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8718 
8719 	add_wait_queue(&netdev_unregistering_wq, &wait);
8720 	for (;;) {
8721 		unregistering = false;
8722 		rtnl_lock();
8723 		list_for_each_entry(net, net_list, exit_list) {
8724 			if (net->dev_unreg_count > 0) {
8725 				unregistering = true;
8726 				break;
8727 			}
8728 		}
8729 		if (!unregistering)
8730 			break;
8731 		__rtnl_unlock();
8732 
8733 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8734 	}
8735 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8736 }
8737 
8738 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8739 {
8740 	/* At exit all network devices most be removed from a network
8741 	 * namespace.  Do this in the reverse order of registration.
8742 	 * Do this across as many network namespaces as possible to
8743 	 * improve batching efficiency.
8744 	 */
8745 	struct net_device *dev;
8746 	struct net *net;
8747 	LIST_HEAD(dev_kill_list);
8748 
8749 	/* To prevent network device cleanup code from dereferencing
8750 	 * loopback devices or network devices that have been freed
8751 	 * wait here for all pending unregistrations to complete,
8752 	 * before unregistring the loopback device and allowing the
8753 	 * network namespace be freed.
8754 	 *
8755 	 * The netdev todo list containing all network devices
8756 	 * unregistrations that happen in default_device_exit_batch
8757 	 * will run in the rtnl_unlock() at the end of
8758 	 * default_device_exit_batch.
8759 	 */
8760 	rtnl_lock_unregistering(net_list);
8761 	list_for_each_entry(net, net_list, exit_list) {
8762 		for_each_netdev_reverse(net, dev) {
8763 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8764 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8765 			else
8766 				unregister_netdevice_queue(dev, &dev_kill_list);
8767 		}
8768 	}
8769 	unregister_netdevice_many(&dev_kill_list);
8770 	rtnl_unlock();
8771 }
8772 
8773 static struct pernet_operations __net_initdata default_device_ops = {
8774 	.exit = default_device_exit,
8775 	.exit_batch = default_device_exit_batch,
8776 };
8777 
8778 /*
8779  *	Initialize the DEV module. At boot time this walks the device list and
8780  *	unhooks any devices that fail to initialise (normally hardware not
8781  *	present) and leaves us with a valid list of present and active devices.
8782  *
8783  */
8784 
8785 /*
8786  *       This is called single threaded during boot, so no need
8787  *       to take the rtnl semaphore.
8788  */
8789 static int __init net_dev_init(void)
8790 {
8791 	int i, rc = -ENOMEM;
8792 
8793 	BUG_ON(!dev_boot_phase);
8794 
8795 	if (dev_proc_init())
8796 		goto out;
8797 
8798 	if (netdev_kobject_init())
8799 		goto out;
8800 
8801 	INIT_LIST_HEAD(&ptype_all);
8802 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8803 		INIT_LIST_HEAD(&ptype_base[i]);
8804 
8805 	INIT_LIST_HEAD(&offload_base);
8806 
8807 	if (register_pernet_subsys(&netdev_net_ops))
8808 		goto out;
8809 
8810 	/*
8811 	 *	Initialise the packet receive queues.
8812 	 */
8813 
8814 	for_each_possible_cpu(i) {
8815 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8816 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8817 
8818 		INIT_WORK(flush, flush_backlog);
8819 
8820 		skb_queue_head_init(&sd->input_pkt_queue);
8821 		skb_queue_head_init(&sd->process_queue);
8822 		INIT_LIST_HEAD(&sd->poll_list);
8823 		sd->output_queue_tailp = &sd->output_queue;
8824 #ifdef CONFIG_RPS
8825 		sd->csd.func = rps_trigger_softirq;
8826 		sd->csd.info = sd;
8827 		sd->cpu = i;
8828 #endif
8829 
8830 		sd->backlog.poll = process_backlog;
8831 		sd->backlog.weight = weight_p;
8832 	}
8833 
8834 	dev_boot_phase = 0;
8835 
8836 	/* The loopback device is special if any other network devices
8837 	 * is present in a network namespace the loopback device must
8838 	 * be present. Since we now dynamically allocate and free the
8839 	 * loopback device ensure this invariant is maintained by
8840 	 * keeping the loopback device as the first device on the
8841 	 * list of network devices.  Ensuring the loopback devices
8842 	 * is the first device that appears and the last network device
8843 	 * that disappears.
8844 	 */
8845 	if (register_pernet_device(&loopback_net_ops))
8846 		goto out;
8847 
8848 	if (register_pernet_device(&default_device_ops))
8849 		goto out;
8850 
8851 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8852 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8853 
8854 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8855 				       NULL, dev_cpu_dead);
8856 	WARN_ON(rc < 0);
8857 	rc = 0;
8858 out:
8859 	return rc;
8860 }
8861 
8862 subsys_initcall(net_dev_init);
8863