xref: /linux-6.15/net/core/dev.c (revision dfc1580f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <[email protected]>
8  *				Mark Evans, <[email protected]>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <[email protected]>
12  *		Alan Cox <[email protected]>
13  *		David Hinds <[email protected]>
14  *		Alexey Kuznetsov <[email protected]>
15  *		Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_rx_queue.h>
160 #include <net/page_pool/types.h>
161 #include <net/page_pool/helpers.h>
162 #include <net/rps.h>
163 #include <linux/phy_link_topology.h>
164 
165 #include "dev.h"
166 #include "devmem.h"
167 #include "net-sysfs.h"
168 
169 static DEFINE_SPINLOCK(ptype_lock);
170 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 
172 static int netif_rx_internal(struct sk_buff *skb);
173 static int call_netdevice_notifiers_extack(unsigned long val,
174 					   struct net_device *dev,
175 					   struct netlink_ext_ack *extack);
176 
177 static DEFINE_MUTEX(ifalias_mutex);
178 
179 /* protects napi_hash addition/deletion and napi_gen_id */
180 static DEFINE_SPINLOCK(napi_hash_lock);
181 
182 static unsigned int napi_gen_id = NR_CPUS;
183 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
184 
185 static inline void dev_base_seq_inc(struct net *net)
186 {
187 	unsigned int val = net->dev_base_seq + 1;
188 
189 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
190 }
191 
192 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
193 {
194 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
195 
196 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
197 }
198 
199 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
200 {
201 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
202 }
203 
204 #ifndef CONFIG_PREEMPT_RT
205 
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
207 
208 static int __init setup_backlog_napi_threads(char *arg)
209 {
210 	static_branch_enable(&use_backlog_threads_key);
211 	return 0;
212 }
213 early_param("thread_backlog_napi", setup_backlog_napi_threads);
214 
215 static bool use_backlog_threads(void)
216 {
217 	return static_branch_unlikely(&use_backlog_threads_key);
218 }
219 
220 #else
221 
222 static bool use_backlog_threads(void)
223 {
224 	return true;
225 }
226 
227 #endif
228 
229 static inline void backlog_lock_irq_save(struct softnet_data *sd,
230 					 unsigned long *flags)
231 {
232 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
233 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
234 	else
235 		local_irq_save(*flags);
236 }
237 
238 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
239 {
240 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
241 		spin_lock_irq(&sd->input_pkt_queue.lock);
242 	else
243 		local_irq_disable();
244 }
245 
246 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
247 					      unsigned long *flags)
248 {
249 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
250 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
251 	else
252 		local_irq_restore(*flags);
253 }
254 
255 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
256 {
257 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
258 		spin_unlock_irq(&sd->input_pkt_queue.lock);
259 	else
260 		local_irq_enable();
261 }
262 
263 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
264 						       const char *name)
265 {
266 	struct netdev_name_node *name_node;
267 
268 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
269 	if (!name_node)
270 		return NULL;
271 	INIT_HLIST_NODE(&name_node->hlist);
272 	name_node->dev = dev;
273 	name_node->name = name;
274 	return name_node;
275 }
276 
277 static struct netdev_name_node *
278 netdev_name_node_head_alloc(struct net_device *dev)
279 {
280 	struct netdev_name_node *name_node;
281 
282 	name_node = netdev_name_node_alloc(dev, dev->name);
283 	if (!name_node)
284 		return NULL;
285 	INIT_LIST_HEAD(&name_node->list);
286 	return name_node;
287 }
288 
289 static void netdev_name_node_free(struct netdev_name_node *name_node)
290 {
291 	kfree(name_node);
292 }
293 
294 static void netdev_name_node_add(struct net *net,
295 				 struct netdev_name_node *name_node)
296 {
297 	hlist_add_head_rcu(&name_node->hlist,
298 			   dev_name_hash(net, name_node->name));
299 }
300 
301 static void netdev_name_node_del(struct netdev_name_node *name_node)
302 {
303 	hlist_del_rcu(&name_node->hlist);
304 }
305 
306 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
307 							const char *name)
308 {
309 	struct hlist_head *head = dev_name_hash(net, name);
310 	struct netdev_name_node *name_node;
311 
312 	hlist_for_each_entry(name_node, head, hlist)
313 		if (!strcmp(name_node->name, name))
314 			return name_node;
315 	return NULL;
316 }
317 
318 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
319 							    const char *name)
320 {
321 	struct hlist_head *head = dev_name_hash(net, name);
322 	struct netdev_name_node *name_node;
323 
324 	hlist_for_each_entry_rcu(name_node, head, hlist)
325 		if (!strcmp(name_node->name, name))
326 			return name_node;
327 	return NULL;
328 }
329 
330 bool netdev_name_in_use(struct net *net, const char *name)
331 {
332 	return netdev_name_node_lookup(net, name);
333 }
334 EXPORT_SYMBOL(netdev_name_in_use);
335 
336 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
337 {
338 	struct netdev_name_node *name_node;
339 	struct net *net = dev_net(dev);
340 
341 	name_node = netdev_name_node_lookup(net, name);
342 	if (name_node)
343 		return -EEXIST;
344 	name_node = netdev_name_node_alloc(dev, name);
345 	if (!name_node)
346 		return -ENOMEM;
347 	netdev_name_node_add(net, name_node);
348 	/* The node that holds dev->name acts as a head of per-device list. */
349 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
350 
351 	return 0;
352 }
353 
354 static void netdev_name_node_alt_free(struct rcu_head *head)
355 {
356 	struct netdev_name_node *name_node =
357 		container_of(head, struct netdev_name_node, rcu);
358 
359 	kfree(name_node->name);
360 	netdev_name_node_free(name_node);
361 }
362 
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
364 {
365 	netdev_name_node_del(name_node);
366 	list_del(&name_node->list);
367 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
368 }
369 
370 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
371 {
372 	struct netdev_name_node *name_node;
373 	struct net *net = dev_net(dev);
374 
375 	name_node = netdev_name_node_lookup(net, name);
376 	if (!name_node)
377 		return -ENOENT;
378 	/* lookup might have found our primary name or a name belonging
379 	 * to another device.
380 	 */
381 	if (name_node == dev->name_node || name_node->dev != dev)
382 		return -EINVAL;
383 
384 	__netdev_name_node_alt_destroy(name_node);
385 	return 0;
386 }
387 
388 static void netdev_name_node_alt_flush(struct net_device *dev)
389 {
390 	struct netdev_name_node *name_node, *tmp;
391 
392 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
393 		list_del(&name_node->list);
394 		netdev_name_node_alt_free(&name_node->rcu);
395 	}
396 }
397 
398 /* Device list insertion */
399 static void list_netdevice(struct net_device *dev)
400 {
401 	struct netdev_name_node *name_node;
402 	struct net *net = dev_net(dev);
403 
404 	ASSERT_RTNL();
405 
406 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
407 	netdev_name_node_add(net, dev->name_node);
408 	hlist_add_head_rcu(&dev->index_hlist,
409 			   dev_index_hash(net, dev->ifindex));
410 
411 	netdev_for_each_altname(dev, name_node)
412 		netdev_name_node_add(net, name_node);
413 
414 	/* We reserved the ifindex, this can't fail */
415 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
416 
417 	dev_base_seq_inc(net);
418 }
419 
420 /* Device list removal
421  * caller must respect a RCU grace period before freeing/reusing dev
422  */
423 static void unlist_netdevice(struct net_device *dev)
424 {
425 	struct netdev_name_node *name_node;
426 	struct net *net = dev_net(dev);
427 
428 	ASSERT_RTNL();
429 
430 	xa_erase(&net->dev_by_index, dev->ifindex);
431 
432 	netdev_for_each_altname(dev, name_node)
433 		netdev_name_node_del(name_node);
434 
435 	/* Unlink dev from the device chain */
436 	list_del_rcu(&dev->dev_list);
437 	netdev_name_node_del(dev->name_node);
438 	hlist_del_rcu(&dev->index_hlist);
439 
440 	dev_base_seq_inc(dev_net(dev));
441 }
442 
443 /*
444  *	Our notifier list
445  */
446 
447 static RAW_NOTIFIER_HEAD(netdev_chain);
448 
449 /*
450  *	Device drivers call our routines to queue packets here. We empty the
451  *	queue in the local softnet handler.
452  */
453 
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
455 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
456 };
457 EXPORT_PER_CPU_SYMBOL(softnet_data);
458 
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460  * PP consumers must pay attention to run APIs in the appropriate context
461  * (e.g. NAPI context).
462  */
463 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
464 
465 #ifdef CONFIG_LOCKDEP
466 /*
467  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468  * according to dev->type
469  */
470 static const unsigned short netdev_lock_type[] = {
471 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
472 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
473 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
474 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
475 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
476 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
477 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
478 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
479 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
480 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
481 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
482 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
483 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
484 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
485 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
486 
487 static const char *const netdev_lock_name[] = {
488 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
503 
504 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
505 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
506 
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
508 {
509 	int i;
510 
511 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
512 		if (netdev_lock_type[i] == dev_type)
513 			return i;
514 	/* the last key is used by default */
515 	return ARRAY_SIZE(netdev_lock_type) - 1;
516 }
517 
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 	int i;
522 
523 	i = netdev_lock_pos(dev_type);
524 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
525 				   netdev_lock_name[i]);
526 }
527 
528 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
529 {
530 	int i;
531 
532 	i = netdev_lock_pos(dev->type);
533 	lockdep_set_class_and_name(&dev->addr_list_lock,
534 				   &netdev_addr_lock_key[i],
535 				   netdev_lock_name[i]);
536 }
537 #else
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
539 						 unsigned short dev_type)
540 {
541 }
542 
543 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
544 {
545 }
546 #endif
547 
548 /*******************************************************************************
549  *
550  *		Protocol management and registration routines
551  *
552  *******************************************************************************/
553 
554 
555 /*
556  *	Add a protocol ID to the list. Now that the input handler is
557  *	smarter we can dispense with all the messy stuff that used to be
558  *	here.
559  *
560  *	BEWARE!!! Protocol handlers, mangling input packets,
561  *	MUST BE last in hash buckets and checking protocol handlers
562  *	MUST start from promiscuous ptype_all chain in net_bh.
563  *	It is true now, do not change it.
564  *	Explanation follows: if protocol handler, mangling packet, will
565  *	be the first on list, it is not able to sense, that packet
566  *	is cloned and should be copied-on-write, so that it will
567  *	change it and subsequent readers will get broken packet.
568  *							--ANK (980803)
569  */
570 
571 static inline struct list_head *ptype_head(const struct packet_type *pt)
572 {
573 	if (pt->type == htons(ETH_P_ALL))
574 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
575 	else
576 		return pt->dev ? &pt->dev->ptype_specific :
577 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
578 }
579 
580 /**
581  *	dev_add_pack - add packet handler
582  *	@pt: packet type declaration
583  *
584  *	Add a protocol handler to the networking stack. The passed &packet_type
585  *	is linked into kernel lists and may not be freed until it has been
586  *	removed from the kernel lists.
587  *
588  *	This call does not sleep therefore it can not
589  *	guarantee all CPU's that are in middle of receiving packets
590  *	will see the new packet type (until the next received packet).
591  */
592 
593 void dev_add_pack(struct packet_type *pt)
594 {
595 	struct list_head *head = ptype_head(pt);
596 
597 	spin_lock(&ptype_lock);
598 	list_add_rcu(&pt->list, head);
599 	spin_unlock(&ptype_lock);
600 }
601 EXPORT_SYMBOL(dev_add_pack);
602 
603 /**
604  *	__dev_remove_pack	 - remove packet handler
605  *	@pt: packet type declaration
606  *
607  *	Remove a protocol handler that was previously added to the kernel
608  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
609  *	from the kernel lists and can be freed or reused once this function
610  *	returns.
611  *
612  *      The packet type might still be in use by receivers
613  *	and must not be freed until after all the CPU's have gone
614  *	through a quiescent state.
615  */
616 void __dev_remove_pack(struct packet_type *pt)
617 {
618 	struct list_head *head = ptype_head(pt);
619 	struct packet_type *pt1;
620 
621 	spin_lock(&ptype_lock);
622 
623 	list_for_each_entry(pt1, head, list) {
624 		if (pt == pt1) {
625 			list_del_rcu(&pt->list);
626 			goto out;
627 		}
628 	}
629 
630 	pr_warn("dev_remove_pack: %p not found\n", pt);
631 out:
632 	spin_unlock(&ptype_lock);
633 }
634 EXPORT_SYMBOL(__dev_remove_pack);
635 
636 /**
637  *	dev_remove_pack	 - remove packet handler
638  *	@pt: packet type declaration
639  *
640  *	Remove a protocol handler that was previously added to the kernel
641  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
642  *	from the kernel lists and can be freed or reused once this function
643  *	returns.
644  *
645  *	This call sleeps to guarantee that no CPU is looking at the packet
646  *	type after return.
647  */
648 void dev_remove_pack(struct packet_type *pt)
649 {
650 	__dev_remove_pack(pt);
651 
652 	synchronize_net();
653 }
654 EXPORT_SYMBOL(dev_remove_pack);
655 
656 
657 /*******************************************************************************
658  *
659  *			    Device Interface Subroutines
660  *
661  *******************************************************************************/
662 
663 /**
664  *	dev_get_iflink	- get 'iflink' value of a interface
665  *	@dev: targeted interface
666  *
667  *	Indicates the ifindex the interface is linked to.
668  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
669  */
670 
671 int dev_get_iflink(const struct net_device *dev)
672 {
673 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
674 		return dev->netdev_ops->ndo_get_iflink(dev);
675 
676 	return READ_ONCE(dev->ifindex);
677 }
678 EXPORT_SYMBOL(dev_get_iflink);
679 
680 /**
681  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
682  *	@dev: targeted interface
683  *	@skb: The packet.
684  *
685  *	For better visibility of tunnel traffic OVS needs to retrieve
686  *	egress tunnel information for a packet. Following API allows
687  *	user to get this info.
688  */
689 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
690 {
691 	struct ip_tunnel_info *info;
692 
693 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
694 		return -EINVAL;
695 
696 	info = skb_tunnel_info_unclone(skb);
697 	if (!info)
698 		return -ENOMEM;
699 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
700 		return -EINVAL;
701 
702 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
703 }
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
705 
706 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
707 {
708 	int k = stack->num_paths++;
709 
710 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
711 		return NULL;
712 
713 	return &stack->path[k];
714 }
715 
716 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
717 			  struct net_device_path_stack *stack)
718 {
719 	const struct net_device *last_dev;
720 	struct net_device_path_ctx ctx = {
721 		.dev	= dev,
722 	};
723 	struct net_device_path *path;
724 	int ret = 0;
725 
726 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
727 	stack->num_paths = 0;
728 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
729 		last_dev = ctx.dev;
730 		path = dev_fwd_path(stack);
731 		if (!path)
732 			return -1;
733 
734 		memset(path, 0, sizeof(struct net_device_path));
735 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
736 		if (ret < 0)
737 			return -1;
738 
739 		if (WARN_ON_ONCE(last_dev == ctx.dev))
740 			return -1;
741 	}
742 
743 	if (!ctx.dev)
744 		return ret;
745 
746 	path = dev_fwd_path(stack);
747 	if (!path)
748 		return -1;
749 	path->type = DEV_PATH_ETHERNET;
750 	path->dev = ctx.dev;
751 
752 	return ret;
753 }
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
755 
756 /* must be called under rcu_read_lock(), as we dont take a reference */
757 static struct napi_struct *napi_by_id(unsigned int napi_id)
758 {
759 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
760 	struct napi_struct *napi;
761 
762 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
763 		if (napi->napi_id == napi_id)
764 			return napi;
765 
766 	return NULL;
767 }
768 
769 /* must be called under rcu_read_lock(), as we dont take a reference */
770 static struct napi_struct *
771 netdev_napi_by_id(struct net *net, unsigned int napi_id)
772 {
773 	struct napi_struct *napi;
774 
775 	napi = napi_by_id(napi_id);
776 	if (!napi)
777 		return NULL;
778 
779 	if (WARN_ON_ONCE(!napi->dev))
780 		return NULL;
781 	if (!net_eq(net, dev_net(napi->dev)))
782 		return NULL;
783 
784 	return napi;
785 }
786 
787 /**
788  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
789  *	@net: the applicable net namespace
790  *	@napi_id: ID of a NAPI of a target device
791  *
792  *	Find a NAPI instance with @napi_id. Lock its device.
793  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
794  *	netdev_unlock() must be called to release it.
795  *
796  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
797  */
798 struct napi_struct *
799 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
800 {
801 	struct napi_struct *napi;
802 	struct net_device *dev;
803 
804 	rcu_read_lock();
805 	napi = netdev_napi_by_id(net, napi_id);
806 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
807 		rcu_read_unlock();
808 		return NULL;
809 	}
810 
811 	dev = napi->dev;
812 	dev_hold(dev);
813 	rcu_read_unlock();
814 
815 	dev = __netdev_put_lock(dev);
816 	if (!dev)
817 		return NULL;
818 
819 	rcu_read_lock();
820 	napi = netdev_napi_by_id(net, napi_id);
821 	if (napi && napi->dev != dev)
822 		napi = NULL;
823 	rcu_read_unlock();
824 
825 	if (!napi)
826 		netdev_unlock(dev);
827 	return napi;
828 }
829 
830 /**
831  *	__dev_get_by_name	- find a device by its name
832  *	@net: the applicable net namespace
833  *	@name: name to find
834  *
835  *	Find an interface by name. Must be called under RTNL semaphore.
836  *	If the name is found a pointer to the device is returned.
837  *	If the name is not found then %NULL is returned. The
838  *	reference counters are not incremented so the caller must be
839  *	careful with locks.
840  */
841 
842 struct net_device *__dev_get_by_name(struct net *net, const char *name)
843 {
844 	struct netdev_name_node *node_name;
845 
846 	node_name = netdev_name_node_lookup(net, name);
847 	return node_name ? node_name->dev : NULL;
848 }
849 EXPORT_SYMBOL(__dev_get_by_name);
850 
851 /**
852  * dev_get_by_name_rcu	- find a device by its name
853  * @net: the applicable net namespace
854  * @name: name to find
855  *
856  * Find an interface by name.
857  * If the name is found a pointer to the device is returned.
858  * If the name is not found then %NULL is returned.
859  * The reference counters are not incremented so the caller must be
860  * careful with locks. The caller must hold RCU lock.
861  */
862 
863 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
864 {
865 	struct netdev_name_node *node_name;
866 
867 	node_name = netdev_name_node_lookup_rcu(net, name);
868 	return node_name ? node_name->dev : NULL;
869 }
870 EXPORT_SYMBOL(dev_get_by_name_rcu);
871 
872 /* Deprecated for new users, call netdev_get_by_name() instead */
873 struct net_device *dev_get_by_name(struct net *net, const char *name)
874 {
875 	struct net_device *dev;
876 
877 	rcu_read_lock();
878 	dev = dev_get_by_name_rcu(net, name);
879 	dev_hold(dev);
880 	rcu_read_unlock();
881 	return dev;
882 }
883 EXPORT_SYMBOL(dev_get_by_name);
884 
885 /**
886  *	netdev_get_by_name() - find a device by its name
887  *	@net: the applicable net namespace
888  *	@name: name to find
889  *	@tracker: tracking object for the acquired reference
890  *	@gfp: allocation flags for the tracker
891  *
892  *	Find an interface by name. This can be called from any
893  *	context and does its own locking. The returned handle has
894  *	the usage count incremented and the caller must use netdev_put() to
895  *	release it when it is no longer needed. %NULL is returned if no
896  *	matching device is found.
897  */
898 struct net_device *netdev_get_by_name(struct net *net, const char *name,
899 				      netdevice_tracker *tracker, gfp_t gfp)
900 {
901 	struct net_device *dev;
902 
903 	dev = dev_get_by_name(net, name);
904 	if (dev)
905 		netdev_tracker_alloc(dev, tracker, gfp);
906 	return dev;
907 }
908 EXPORT_SYMBOL(netdev_get_by_name);
909 
910 /**
911  *	__dev_get_by_index - find a device by its ifindex
912  *	@net: the applicable net namespace
913  *	@ifindex: index of device
914  *
915  *	Search for an interface by index. Returns %NULL if the device
916  *	is not found or a pointer to the device. The device has not
917  *	had its reference counter increased so the caller must be careful
918  *	about locking. The caller must hold the RTNL semaphore.
919  */
920 
921 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
922 {
923 	struct net_device *dev;
924 	struct hlist_head *head = dev_index_hash(net, ifindex);
925 
926 	hlist_for_each_entry(dev, head, index_hlist)
927 		if (dev->ifindex == ifindex)
928 			return dev;
929 
930 	return NULL;
931 }
932 EXPORT_SYMBOL(__dev_get_by_index);
933 
934 /**
935  *	dev_get_by_index_rcu - find a device by its ifindex
936  *	@net: the applicable net namespace
937  *	@ifindex: index of device
938  *
939  *	Search for an interface by index. Returns %NULL if the device
940  *	is not found or a pointer to the device. The device has not
941  *	had its reference counter increased so the caller must be careful
942  *	about locking. The caller must hold RCU lock.
943  */
944 
945 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
946 {
947 	struct net_device *dev;
948 	struct hlist_head *head = dev_index_hash(net, ifindex);
949 
950 	hlist_for_each_entry_rcu(dev, head, index_hlist)
951 		if (dev->ifindex == ifindex)
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_get_by_index_rcu);
957 
958 /* Deprecated for new users, call netdev_get_by_index() instead */
959 struct net_device *dev_get_by_index(struct net *net, int ifindex)
960 {
961 	struct net_device *dev;
962 
963 	rcu_read_lock();
964 	dev = dev_get_by_index_rcu(net, ifindex);
965 	dev_hold(dev);
966 	rcu_read_unlock();
967 	return dev;
968 }
969 EXPORT_SYMBOL(dev_get_by_index);
970 
971 /**
972  *	netdev_get_by_index() - find a device by its ifindex
973  *	@net: the applicable net namespace
974  *	@ifindex: index of device
975  *	@tracker: tracking object for the acquired reference
976  *	@gfp: allocation flags for the tracker
977  *
978  *	Search for an interface by index. Returns NULL if the device
979  *	is not found or a pointer to the device. The device returned has
980  *	had a reference added and the pointer is safe until the user calls
981  *	netdev_put() to indicate they have finished with it.
982  */
983 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
984 				       netdevice_tracker *tracker, gfp_t gfp)
985 {
986 	struct net_device *dev;
987 
988 	dev = dev_get_by_index(net, ifindex);
989 	if (dev)
990 		netdev_tracker_alloc(dev, tracker, gfp);
991 	return dev;
992 }
993 EXPORT_SYMBOL(netdev_get_by_index);
994 
995 /**
996  *	dev_get_by_napi_id - find a device by napi_id
997  *	@napi_id: ID of the NAPI struct
998  *
999  *	Search for an interface by NAPI ID. Returns %NULL if the device
1000  *	is not found or a pointer to the device. The device has not had
1001  *	its reference counter increased so the caller must be careful
1002  *	about locking. The caller must hold RCU lock.
1003  */
1004 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1005 {
1006 	struct napi_struct *napi;
1007 
1008 	WARN_ON_ONCE(!rcu_read_lock_held());
1009 
1010 	if (napi_id < MIN_NAPI_ID)
1011 		return NULL;
1012 
1013 	napi = napi_by_id(napi_id);
1014 
1015 	return napi ? napi->dev : NULL;
1016 }
1017 
1018 /* Release the held reference on the net_device, and if the net_device
1019  * is still registered try to lock the instance lock. If device is being
1020  * unregistered NULL will be returned (but the reference has been released,
1021  * either way!)
1022  *
1023  * This helper is intended for locking net_device after it has been looked up
1024  * using a lockless lookup helper. Lock prevents the instance from going away.
1025  */
1026 struct net_device *__netdev_put_lock(struct net_device *dev)
1027 {
1028 	netdev_lock(dev);
1029 	if (dev->reg_state > NETREG_REGISTERED) {
1030 		netdev_unlock(dev);
1031 		dev_put(dev);
1032 		return NULL;
1033 	}
1034 	dev_put(dev);
1035 	return dev;
1036 }
1037 
1038 /**
1039  *	netdev_get_by_index_lock() - find a device by its ifindex
1040  *	@net: the applicable net namespace
1041  *	@ifindex: index of device
1042  *
1043  *	Search for an interface by index. If a valid device
1044  *	with @ifindex is found it will be returned with netdev->lock held.
1045  *	netdev_unlock() must be called to release it.
1046  *
1047  *	Return: pointer to a device with lock held, NULL if not found.
1048  */
1049 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1050 {
1051 	struct net_device *dev;
1052 
1053 	dev = dev_get_by_index(net, ifindex);
1054 	if (!dev)
1055 		return NULL;
1056 
1057 	return __netdev_put_lock(dev);
1058 }
1059 
1060 struct net_device *
1061 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1062 		    unsigned long *index)
1063 {
1064 	if (dev)
1065 		netdev_unlock(dev);
1066 
1067 	do {
1068 		rcu_read_lock();
1069 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1070 		if (!dev) {
1071 			rcu_read_unlock();
1072 			return NULL;
1073 		}
1074 		dev_hold(dev);
1075 		rcu_read_unlock();
1076 
1077 		dev = __netdev_put_lock(dev);
1078 		if (dev)
1079 			return dev;
1080 
1081 		(*index)++;
1082 	} while (true);
1083 }
1084 
1085 static DEFINE_SEQLOCK(netdev_rename_lock);
1086 
1087 void netdev_copy_name(struct net_device *dev, char *name)
1088 {
1089 	unsigned int seq;
1090 
1091 	do {
1092 		seq = read_seqbegin(&netdev_rename_lock);
1093 		strscpy(name, dev->name, IFNAMSIZ);
1094 	} while (read_seqretry(&netdev_rename_lock, seq));
1095 }
1096 
1097 /**
1098  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1099  *	@net: network namespace
1100  *	@name: a pointer to the buffer where the name will be stored.
1101  *	@ifindex: the ifindex of the interface to get the name from.
1102  */
1103 int netdev_get_name(struct net *net, char *name, int ifindex)
1104 {
1105 	struct net_device *dev;
1106 	int ret;
1107 
1108 	rcu_read_lock();
1109 
1110 	dev = dev_get_by_index_rcu(net, ifindex);
1111 	if (!dev) {
1112 		ret = -ENODEV;
1113 		goto out;
1114 	}
1115 
1116 	netdev_copy_name(dev, name);
1117 
1118 	ret = 0;
1119 out:
1120 	rcu_read_unlock();
1121 	return ret;
1122 }
1123 
1124 /**
1125  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1126  *	@net: the applicable net namespace
1127  *	@type: media type of device
1128  *	@ha: hardware address
1129  *
1130  *	Search for an interface by MAC address. Returns NULL if the device
1131  *	is not found or a pointer to the device.
1132  *	The caller must hold RCU or RTNL.
1133  *	The returned device has not had its ref count increased
1134  *	and the caller must therefore be careful about locking
1135  *
1136  */
1137 
1138 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1139 				       const char *ha)
1140 {
1141 	struct net_device *dev;
1142 
1143 	for_each_netdev_rcu(net, dev)
1144 		if (dev->type == type &&
1145 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1146 			return dev;
1147 
1148 	return NULL;
1149 }
1150 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1151 
1152 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1153 {
1154 	struct net_device *dev, *ret = NULL;
1155 
1156 	rcu_read_lock();
1157 	for_each_netdev_rcu(net, dev)
1158 		if (dev->type == type) {
1159 			dev_hold(dev);
1160 			ret = dev;
1161 			break;
1162 		}
1163 	rcu_read_unlock();
1164 	return ret;
1165 }
1166 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1167 
1168 /**
1169  *	__dev_get_by_flags - find any device with given flags
1170  *	@net: the applicable net namespace
1171  *	@if_flags: IFF_* values
1172  *	@mask: bitmask of bits in if_flags to check
1173  *
1174  *	Search for any interface with the given flags. Returns NULL if a device
1175  *	is not found or a pointer to the device. Must be called inside
1176  *	rtnl_lock(), and result refcount is unchanged.
1177  */
1178 
1179 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1180 				      unsigned short mask)
1181 {
1182 	struct net_device *dev, *ret;
1183 
1184 	ASSERT_RTNL();
1185 
1186 	ret = NULL;
1187 	for_each_netdev(net, dev) {
1188 		if (((dev->flags ^ if_flags) & mask) == 0) {
1189 			ret = dev;
1190 			break;
1191 		}
1192 	}
1193 	return ret;
1194 }
1195 EXPORT_SYMBOL(__dev_get_by_flags);
1196 
1197 /**
1198  *	dev_valid_name - check if name is okay for network device
1199  *	@name: name string
1200  *
1201  *	Network device names need to be valid file names to
1202  *	allow sysfs to work.  We also disallow any kind of
1203  *	whitespace.
1204  */
1205 bool dev_valid_name(const char *name)
1206 {
1207 	if (*name == '\0')
1208 		return false;
1209 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1210 		return false;
1211 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1212 		return false;
1213 
1214 	while (*name) {
1215 		if (*name == '/' || *name == ':' || isspace(*name))
1216 			return false;
1217 		name++;
1218 	}
1219 	return true;
1220 }
1221 EXPORT_SYMBOL(dev_valid_name);
1222 
1223 /**
1224  *	__dev_alloc_name - allocate a name for a device
1225  *	@net: network namespace to allocate the device name in
1226  *	@name: name format string
1227  *	@res: result name string
1228  *
1229  *	Passed a format string - eg "lt%d" it will try and find a suitable
1230  *	id. It scans list of devices to build up a free map, then chooses
1231  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1232  *	while allocating the name and adding the device in order to avoid
1233  *	duplicates.
1234  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1235  *	Returns the number of the unit assigned or a negative errno code.
1236  */
1237 
1238 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1239 {
1240 	int i = 0;
1241 	const char *p;
1242 	const int max_netdevices = 8*PAGE_SIZE;
1243 	unsigned long *inuse;
1244 	struct net_device *d;
1245 	char buf[IFNAMSIZ];
1246 
1247 	/* Verify the string as this thing may have come from the user.
1248 	 * There must be one "%d" and no other "%" characters.
1249 	 */
1250 	p = strchr(name, '%');
1251 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1252 		return -EINVAL;
1253 
1254 	/* Use one page as a bit array of possible slots */
1255 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1256 	if (!inuse)
1257 		return -ENOMEM;
1258 
1259 	for_each_netdev(net, d) {
1260 		struct netdev_name_node *name_node;
1261 
1262 		netdev_for_each_altname(d, name_node) {
1263 			if (!sscanf(name_node->name, name, &i))
1264 				continue;
1265 			if (i < 0 || i >= max_netdevices)
1266 				continue;
1267 
1268 			/* avoid cases where sscanf is not exact inverse of printf */
1269 			snprintf(buf, IFNAMSIZ, name, i);
1270 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1271 				__set_bit(i, inuse);
1272 		}
1273 		if (!sscanf(d->name, name, &i))
1274 			continue;
1275 		if (i < 0 || i >= max_netdevices)
1276 			continue;
1277 
1278 		/* avoid cases where sscanf is not exact inverse of printf */
1279 		snprintf(buf, IFNAMSIZ, name, i);
1280 		if (!strncmp(buf, d->name, IFNAMSIZ))
1281 			__set_bit(i, inuse);
1282 	}
1283 
1284 	i = find_first_zero_bit(inuse, max_netdevices);
1285 	bitmap_free(inuse);
1286 	if (i == max_netdevices)
1287 		return -ENFILE;
1288 
1289 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1290 	strscpy(buf, name, IFNAMSIZ);
1291 	snprintf(res, IFNAMSIZ, buf, i);
1292 	return i;
1293 }
1294 
1295 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1296 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1297 			       const char *want_name, char *out_name,
1298 			       int dup_errno)
1299 {
1300 	if (!dev_valid_name(want_name))
1301 		return -EINVAL;
1302 
1303 	if (strchr(want_name, '%'))
1304 		return __dev_alloc_name(net, want_name, out_name);
1305 
1306 	if (netdev_name_in_use(net, want_name))
1307 		return -dup_errno;
1308 	if (out_name != want_name)
1309 		strscpy(out_name, want_name, IFNAMSIZ);
1310 	return 0;
1311 }
1312 
1313 /**
1314  *	dev_alloc_name - allocate a name for a device
1315  *	@dev: device
1316  *	@name: name format string
1317  *
1318  *	Passed a format string - eg "lt%d" it will try and find a suitable
1319  *	id. It scans list of devices to build up a free map, then chooses
1320  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1321  *	while allocating the name and adding the device in order to avoid
1322  *	duplicates.
1323  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1324  *	Returns the number of the unit assigned or a negative errno code.
1325  */
1326 
1327 int dev_alloc_name(struct net_device *dev, const char *name)
1328 {
1329 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1330 }
1331 EXPORT_SYMBOL(dev_alloc_name);
1332 
1333 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1334 			      const char *name)
1335 {
1336 	int ret;
1337 
1338 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1339 	return ret < 0 ? ret : 0;
1340 }
1341 
1342 /**
1343  *	dev_change_name - change name of a device
1344  *	@dev: device
1345  *	@newname: name (or format string) must be at least IFNAMSIZ
1346  *
1347  *	Change name of a device, can pass format strings "eth%d".
1348  *	for wildcarding.
1349  */
1350 int dev_change_name(struct net_device *dev, const char *newname)
1351 {
1352 	struct net *net = dev_net(dev);
1353 	unsigned char old_assign_type;
1354 	char oldname[IFNAMSIZ];
1355 	int err = 0;
1356 	int ret;
1357 
1358 	ASSERT_RTNL_NET(net);
1359 
1360 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1361 		return 0;
1362 
1363 	memcpy(oldname, dev->name, IFNAMSIZ);
1364 
1365 	write_seqlock_bh(&netdev_rename_lock);
1366 	err = dev_get_valid_name(net, dev, newname);
1367 	write_sequnlock_bh(&netdev_rename_lock);
1368 
1369 	if (err < 0)
1370 		return err;
1371 
1372 	if (oldname[0] && !strchr(oldname, '%'))
1373 		netdev_info(dev, "renamed from %s%s\n", oldname,
1374 			    dev->flags & IFF_UP ? " (while UP)" : "");
1375 
1376 	old_assign_type = dev->name_assign_type;
1377 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1378 
1379 rollback:
1380 	ret = device_rename(&dev->dev, dev->name);
1381 	if (ret) {
1382 		write_seqlock_bh(&netdev_rename_lock);
1383 		memcpy(dev->name, oldname, IFNAMSIZ);
1384 		write_sequnlock_bh(&netdev_rename_lock);
1385 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1386 		return ret;
1387 	}
1388 
1389 	netdev_adjacent_rename_links(dev, oldname);
1390 
1391 	netdev_name_node_del(dev->name_node);
1392 
1393 	synchronize_net();
1394 
1395 	netdev_name_node_add(net, dev->name_node);
1396 
1397 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1398 	ret = notifier_to_errno(ret);
1399 
1400 	if (ret) {
1401 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1402 		if (err >= 0) {
1403 			err = ret;
1404 			write_seqlock_bh(&netdev_rename_lock);
1405 			memcpy(dev->name, oldname, IFNAMSIZ);
1406 			write_sequnlock_bh(&netdev_rename_lock);
1407 			memcpy(oldname, newname, IFNAMSIZ);
1408 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1409 			old_assign_type = NET_NAME_RENAMED;
1410 			goto rollback;
1411 		} else {
1412 			netdev_err(dev, "name change rollback failed: %d\n",
1413 				   ret);
1414 		}
1415 	}
1416 
1417 	return err;
1418 }
1419 
1420 /**
1421  *	dev_set_alias - change ifalias of a device
1422  *	@dev: device
1423  *	@alias: name up to IFALIASZ
1424  *	@len: limit of bytes to copy from info
1425  *
1426  *	Set ifalias for a device,
1427  */
1428 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1429 {
1430 	struct dev_ifalias *new_alias = NULL;
1431 
1432 	if (len >= IFALIASZ)
1433 		return -EINVAL;
1434 
1435 	if (len) {
1436 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1437 		if (!new_alias)
1438 			return -ENOMEM;
1439 
1440 		memcpy(new_alias->ifalias, alias, len);
1441 		new_alias->ifalias[len] = 0;
1442 	}
1443 
1444 	mutex_lock(&ifalias_mutex);
1445 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1446 					mutex_is_locked(&ifalias_mutex));
1447 	mutex_unlock(&ifalias_mutex);
1448 
1449 	if (new_alias)
1450 		kfree_rcu(new_alias, rcuhead);
1451 
1452 	return len;
1453 }
1454 EXPORT_SYMBOL(dev_set_alias);
1455 
1456 /**
1457  *	dev_get_alias - get ifalias of a device
1458  *	@dev: device
1459  *	@name: buffer to store name of ifalias
1460  *	@len: size of buffer
1461  *
1462  *	get ifalias for a device.  Caller must make sure dev cannot go
1463  *	away,  e.g. rcu read lock or own a reference count to device.
1464  */
1465 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1466 {
1467 	const struct dev_ifalias *alias;
1468 	int ret = 0;
1469 
1470 	rcu_read_lock();
1471 	alias = rcu_dereference(dev->ifalias);
1472 	if (alias)
1473 		ret = snprintf(name, len, "%s", alias->ifalias);
1474 	rcu_read_unlock();
1475 
1476 	return ret;
1477 }
1478 
1479 /**
1480  *	netdev_features_change - device changes features
1481  *	@dev: device to cause notification
1482  *
1483  *	Called to indicate a device has changed features.
1484  */
1485 void netdev_features_change(struct net_device *dev)
1486 {
1487 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1488 }
1489 EXPORT_SYMBOL(netdev_features_change);
1490 
1491 /**
1492  *	netdev_state_change - device changes state
1493  *	@dev: device to cause notification
1494  *
1495  *	Called to indicate a device has changed state. This function calls
1496  *	the notifier chains for netdev_chain and sends a NEWLINK message
1497  *	to the routing socket.
1498  */
1499 void netdev_state_change(struct net_device *dev)
1500 {
1501 	if (dev->flags & IFF_UP) {
1502 		struct netdev_notifier_change_info change_info = {
1503 			.info.dev = dev,
1504 		};
1505 
1506 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1507 					      &change_info.info);
1508 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1509 	}
1510 }
1511 EXPORT_SYMBOL(netdev_state_change);
1512 
1513 /**
1514  * __netdev_notify_peers - notify network peers about existence of @dev,
1515  * to be called when rtnl lock is already held.
1516  * @dev: network device
1517  *
1518  * Generate traffic such that interested network peers are aware of
1519  * @dev, such as by generating a gratuitous ARP. This may be used when
1520  * a device wants to inform the rest of the network about some sort of
1521  * reconfiguration such as a failover event or virtual machine
1522  * migration.
1523  */
1524 void __netdev_notify_peers(struct net_device *dev)
1525 {
1526 	ASSERT_RTNL();
1527 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1528 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1529 }
1530 EXPORT_SYMBOL(__netdev_notify_peers);
1531 
1532 /**
1533  * netdev_notify_peers - notify network peers about existence of @dev
1534  * @dev: network device
1535  *
1536  * Generate traffic such that interested network peers are aware of
1537  * @dev, such as by generating a gratuitous ARP. This may be used when
1538  * a device wants to inform the rest of the network about some sort of
1539  * reconfiguration such as a failover event or virtual machine
1540  * migration.
1541  */
1542 void netdev_notify_peers(struct net_device *dev)
1543 {
1544 	rtnl_lock();
1545 	__netdev_notify_peers(dev);
1546 	rtnl_unlock();
1547 }
1548 EXPORT_SYMBOL(netdev_notify_peers);
1549 
1550 static int napi_threaded_poll(void *data);
1551 
1552 static int napi_kthread_create(struct napi_struct *n)
1553 {
1554 	int err = 0;
1555 
1556 	/* Create and wake up the kthread once to put it in
1557 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1558 	 * warning and work with loadavg.
1559 	 */
1560 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1561 				n->dev->name, n->napi_id);
1562 	if (IS_ERR(n->thread)) {
1563 		err = PTR_ERR(n->thread);
1564 		pr_err("kthread_run failed with err %d\n", err);
1565 		n->thread = NULL;
1566 	}
1567 
1568 	return err;
1569 }
1570 
1571 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1572 {
1573 	const struct net_device_ops *ops = dev->netdev_ops;
1574 	int ret;
1575 
1576 	ASSERT_RTNL();
1577 	dev_addr_check(dev);
1578 
1579 	if (!netif_device_present(dev)) {
1580 		/* may be detached because parent is runtime-suspended */
1581 		if (dev->dev.parent)
1582 			pm_runtime_resume(dev->dev.parent);
1583 		if (!netif_device_present(dev))
1584 			return -ENODEV;
1585 	}
1586 
1587 	/* Block netpoll from trying to do any rx path servicing.
1588 	 * If we don't do this there is a chance ndo_poll_controller
1589 	 * or ndo_poll may be running while we open the device
1590 	 */
1591 	netpoll_poll_disable(dev);
1592 
1593 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1594 	ret = notifier_to_errno(ret);
1595 	if (ret)
1596 		return ret;
1597 
1598 	set_bit(__LINK_STATE_START, &dev->state);
1599 
1600 	if (ops->ndo_validate_addr)
1601 		ret = ops->ndo_validate_addr(dev);
1602 
1603 	if (!ret && ops->ndo_open)
1604 		ret = ops->ndo_open(dev);
1605 
1606 	netpoll_poll_enable(dev);
1607 
1608 	if (ret)
1609 		clear_bit(__LINK_STATE_START, &dev->state);
1610 	else {
1611 		netif_set_up(dev, true);
1612 		dev_set_rx_mode(dev);
1613 		dev_activate(dev);
1614 		add_device_randomness(dev->dev_addr, dev->addr_len);
1615 	}
1616 
1617 	return ret;
1618 }
1619 
1620 /**
1621  *	dev_open	- prepare an interface for use.
1622  *	@dev: device to open
1623  *	@extack: netlink extended ack
1624  *
1625  *	Takes a device from down to up state. The device's private open
1626  *	function is invoked and then the multicast lists are loaded. Finally
1627  *	the device is moved into the up state and a %NETDEV_UP message is
1628  *	sent to the netdev notifier chain.
1629  *
1630  *	Calling this function on an active interface is a nop. On a failure
1631  *	a negative errno code is returned.
1632  */
1633 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1634 {
1635 	int ret;
1636 
1637 	if (dev->flags & IFF_UP)
1638 		return 0;
1639 
1640 	ret = __dev_open(dev, extack);
1641 	if (ret < 0)
1642 		return ret;
1643 
1644 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1645 	call_netdevice_notifiers(NETDEV_UP, dev);
1646 
1647 	return ret;
1648 }
1649 EXPORT_SYMBOL(dev_open);
1650 
1651 static void __dev_close_many(struct list_head *head)
1652 {
1653 	struct net_device *dev;
1654 
1655 	ASSERT_RTNL();
1656 	might_sleep();
1657 
1658 	list_for_each_entry(dev, head, close_list) {
1659 		/* Temporarily disable netpoll until the interface is down */
1660 		netpoll_poll_disable(dev);
1661 
1662 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1663 
1664 		clear_bit(__LINK_STATE_START, &dev->state);
1665 
1666 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1667 		 * can be even on different cpu. So just clear netif_running().
1668 		 *
1669 		 * dev->stop() will invoke napi_disable() on all of it's
1670 		 * napi_struct instances on this device.
1671 		 */
1672 		smp_mb__after_atomic(); /* Commit netif_running(). */
1673 	}
1674 
1675 	dev_deactivate_many(head);
1676 
1677 	list_for_each_entry(dev, head, close_list) {
1678 		const struct net_device_ops *ops = dev->netdev_ops;
1679 
1680 		/*
1681 		 *	Call the device specific close. This cannot fail.
1682 		 *	Only if device is UP
1683 		 *
1684 		 *	We allow it to be called even after a DETACH hot-plug
1685 		 *	event.
1686 		 */
1687 		if (ops->ndo_stop)
1688 			ops->ndo_stop(dev);
1689 
1690 		netif_set_up(dev, false);
1691 		netpoll_poll_enable(dev);
1692 	}
1693 }
1694 
1695 static void __dev_close(struct net_device *dev)
1696 {
1697 	LIST_HEAD(single);
1698 
1699 	list_add(&dev->close_list, &single);
1700 	__dev_close_many(&single);
1701 	list_del(&single);
1702 }
1703 
1704 void dev_close_many(struct list_head *head, bool unlink)
1705 {
1706 	struct net_device *dev, *tmp;
1707 
1708 	/* Remove the devices that don't need to be closed */
1709 	list_for_each_entry_safe(dev, tmp, head, close_list)
1710 		if (!(dev->flags & IFF_UP))
1711 			list_del_init(&dev->close_list);
1712 
1713 	__dev_close_many(head);
1714 
1715 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1716 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1717 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1718 		if (unlink)
1719 			list_del_init(&dev->close_list);
1720 	}
1721 }
1722 EXPORT_SYMBOL(dev_close_many);
1723 
1724 /**
1725  *	dev_close - shutdown an interface.
1726  *	@dev: device to shutdown
1727  *
1728  *	This function moves an active device into down state. A
1729  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1730  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1731  *	chain.
1732  */
1733 void dev_close(struct net_device *dev)
1734 {
1735 	if (dev->flags & IFF_UP) {
1736 		LIST_HEAD(single);
1737 
1738 		list_add(&dev->close_list, &single);
1739 		dev_close_many(&single, true);
1740 		list_del(&single);
1741 	}
1742 }
1743 EXPORT_SYMBOL(dev_close);
1744 
1745 
1746 /**
1747  *	dev_disable_lro - disable Large Receive Offload on a device
1748  *	@dev: device
1749  *
1750  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1751  *	called under RTNL.  This is needed if received packets may be
1752  *	forwarded to another interface.
1753  */
1754 void dev_disable_lro(struct net_device *dev)
1755 {
1756 	struct net_device *lower_dev;
1757 	struct list_head *iter;
1758 
1759 	dev->wanted_features &= ~NETIF_F_LRO;
1760 	netdev_update_features(dev);
1761 
1762 	if (unlikely(dev->features & NETIF_F_LRO))
1763 		netdev_WARN(dev, "failed to disable LRO!\n");
1764 
1765 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1766 		dev_disable_lro(lower_dev);
1767 }
1768 EXPORT_SYMBOL(dev_disable_lro);
1769 
1770 /**
1771  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1772  *	@dev: device
1773  *
1774  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1775  *	called under RTNL.  This is needed if Generic XDP is installed on
1776  *	the device.
1777  */
1778 static void dev_disable_gro_hw(struct net_device *dev)
1779 {
1780 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1781 	netdev_update_features(dev);
1782 
1783 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1784 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1785 }
1786 
1787 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1788 {
1789 #define N(val) 						\
1790 	case NETDEV_##val:				\
1791 		return "NETDEV_" __stringify(val);
1792 	switch (cmd) {
1793 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1794 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1795 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1796 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1797 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1798 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1799 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1800 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1801 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1802 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1803 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1804 	N(XDP_FEAT_CHANGE)
1805 	}
1806 #undef N
1807 	return "UNKNOWN_NETDEV_EVENT";
1808 }
1809 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1810 
1811 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1812 				   struct net_device *dev)
1813 {
1814 	struct netdev_notifier_info info = {
1815 		.dev = dev,
1816 	};
1817 
1818 	return nb->notifier_call(nb, val, &info);
1819 }
1820 
1821 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1822 					     struct net_device *dev)
1823 {
1824 	int err;
1825 
1826 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1827 	err = notifier_to_errno(err);
1828 	if (err)
1829 		return err;
1830 
1831 	if (!(dev->flags & IFF_UP))
1832 		return 0;
1833 
1834 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1835 	return 0;
1836 }
1837 
1838 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1839 						struct net_device *dev)
1840 {
1841 	if (dev->flags & IFF_UP) {
1842 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1843 					dev);
1844 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1845 	}
1846 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1847 }
1848 
1849 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1850 						 struct net *net)
1851 {
1852 	struct net_device *dev;
1853 	int err;
1854 
1855 	for_each_netdev(net, dev) {
1856 		err = call_netdevice_register_notifiers(nb, dev);
1857 		if (err)
1858 			goto rollback;
1859 	}
1860 	return 0;
1861 
1862 rollback:
1863 	for_each_netdev_continue_reverse(net, dev)
1864 		call_netdevice_unregister_notifiers(nb, dev);
1865 	return err;
1866 }
1867 
1868 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1869 						    struct net *net)
1870 {
1871 	struct net_device *dev;
1872 
1873 	for_each_netdev(net, dev)
1874 		call_netdevice_unregister_notifiers(nb, dev);
1875 }
1876 
1877 static int dev_boot_phase = 1;
1878 
1879 /**
1880  * register_netdevice_notifier - register a network notifier block
1881  * @nb: notifier
1882  *
1883  * Register a notifier to be called when network device events occur.
1884  * The notifier passed is linked into the kernel structures and must
1885  * not be reused until it has been unregistered. A negative errno code
1886  * is returned on a failure.
1887  *
1888  * When registered all registration and up events are replayed
1889  * to the new notifier to allow device to have a race free
1890  * view of the network device list.
1891  */
1892 
1893 int register_netdevice_notifier(struct notifier_block *nb)
1894 {
1895 	struct net *net;
1896 	int err;
1897 
1898 	/* Close race with setup_net() and cleanup_net() */
1899 	down_write(&pernet_ops_rwsem);
1900 
1901 	/* When RTNL is removed, we need protection for netdev_chain. */
1902 	rtnl_lock();
1903 
1904 	err = raw_notifier_chain_register(&netdev_chain, nb);
1905 	if (err)
1906 		goto unlock;
1907 	if (dev_boot_phase)
1908 		goto unlock;
1909 	for_each_net(net) {
1910 		__rtnl_net_lock(net);
1911 		err = call_netdevice_register_net_notifiers(nb, net);
1912 		__rtnl_net_unlock(net);
1913 		if (err)
1914 			goto rollback;
1915 	}
1916 
1917 unlock:
1918 	rtnl_unlock();
1919 	up_write(&pernet_ops_rwsem);
1920 	return err;
1921 
1922 rollback:
1923 	for_each_net_continue_reverse(net) {
1924 		__rtnl_net_lock(net);
1925 		call_netdevice_unregister_net_notifiers(nb, net);
1926 		__rtnl_net_unlock(net);
1927 	}
1928 
1929 	raw_notifier_chain_unregister(&netdev_chain, nb);
1930 	goto unlock;
1931 }
1932 EXPORT_SYMBOL(register_netdevice_notifier);
1933 
1934 /**
1935  * unregister_netdevice_notifier - unregister a network notifier block
1936  * @nb: notifier
1937  *
1938  * Unregister a notifier previously registered by
1939  * register_netdevice_notifier(). The notifier is unlinked into the
1940  * kernel structures and may then be reused. A negative errno code
1941  * is returned on a failure.
1942  *
1943  * After unregistering unregister and down device events are synthesized
1944  * for all devices on the device list to the removed notifier to remove
1945  * the need for special case cleanup code.
1946  */
1947 
1948 int unregister_netdevice_notifier(struct notifier_block *nb)
1949 {
1950 	struct net *net;
1951 	int err;
1952 
1953 	/* Close race with setup_net() and cleanup_net() */
1954 	down_write(&pernet_ops_rwsem);
1955 	rtnl_lock();
1956 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1957 	if (err)
1958 		goto unlock;
1959 
1960 	for_each_net(net) {
1961 		__rtnl_net_lock(net);
1962 		call_netdevice_unregister_net_notifiers(nb, net);
1963 		__rtnl_net_unlock(net);
1964 	}
1965 
1966 unlock:
1967 	rtnl_unlock();
1968 	up_write(&pernet_ops_rwsem);
1969 	return err;
1970 }
1971 EXPORT_SYMBOL(unregister_netdevice_notifier);
1972 
1973 static int __register_netdevice_notifier_net(struct net *net,
1974 					     struct notifier_block *nb,
1975 					     bool ignore_call_fail)
1976 {
1977 	int err;
1978 
1979 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1980 	if (err)
1981 		return err;
1982 	if (dev_boot_phase)
1983 		return 0;
1984 
1985 	err = call_netdevice_register_net_notifiers(nb, net);
1986 	if (err && !ignore_call_fail)
1987 		goto chain_unregister;
1988 
1989 	return 0;
1990 
1991 chain_unregister:
1992 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1993 	return err;
1994 }
1995 
1996 static int __unregister_netdevice_notifier_net(struct net *net,
1997 					       struct notifier_block *nb)
1998 {
1999 	int err;
2000 
2001 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2002 	if (err)
2003 		return err;
2004 
2005 	call_netdevice_unregister_net_notifiers(nb, net);
2006 	return 0;
2007 }
2008 
2009 /**
2010  * register_netdevice_notifier_net - register a per-netns network notifier block
2011  * @net: network namespace
2012  * @nb: notifier
2013  *
2014  * Register a notifier to be called when network device events occur.
2015  * The notifier passed is linked into the kernel structures and must
2016  * not be reused until it has been unregistered. A negative errno code
2017  * is returned on a failure.
2018  *
2019  * When registered all registration and up events are replayed
2020  * to the new notifier to allow device to have a race free
2021  * view of the network device list.
2022  */
2023 
2024 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2025 {
2026 	int err;
2027 
2028 	rtnl_net_lock(net);
2029 	err = __register_netdevice_notifier_net(net, nb, false);
2030 	rtnl_net_unlock(net);
2031 
2032 	return err;
2033 }
2034 EXPORT_SYMBOL(register_netdevice_notifier_net);
2035 
2036 /**
2037  * unregister_netdevice_notifier_net - unregister a per-netns
2038  *                                     network notifier block
2039  * @net: network namespace
2040  * @nb: notifier
2041  *
2042  * Unregister a notifier previously registered by
2043  * register_netdevice_notifier_net(). The notifier is unlinked from the
2044  * kernel structures and may then be reused. A negative errno code
2045  * is returned on a failure.
2046  *
2047  * After unregistering unregister and down device events are synthesized
2048  * for all devices on the device list to the removed notifier to remove
2049  * the need for special case cleanup code.
2050  */
2051 
2052 int unregister_netdevice_notifier_net(struct net *net,
2053 				      struct notifier_block *nb)
2054 {
2055 	int err;
2056 
2057 	rtnl_net_lock(net);
2058 	err = __unregister_netdevice_notifier_net(net, nb);
2059 	rtnl_net_unlock(net);
2060 
2061 	return err;
2062 }
2063 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2064 
2065 static void __move_netdevice_notifier_net(struct net *src_net,
2066 					  struct net *dst_net,
2067 					  struct notifier_block *nb)
2068 {
2069 	__unregister_netdevice_notifier_net(src_net, nb);
2070 	__register_netdevice_notifier_net(dst_net, nb, true);
2071 }
2072 
2073 static void rtnl_net_dev_lock(struct net_device *dev)
2074 {
2075 	bool again;
2076 
2077 	do {
2078 		struct net *net;
2079 
2080 		again = false;
2081 
2082 		/* netns might be being dismantled. */
2083 		rcu_read_lock();
2084 		net = dev_net_rcu(dev);
2085 		net_passive_inc(net);
2086 		rcu_read_unlock();
2087 
2088 		rtnl_net_lock(net);
2089 
2090 #ifdef CONFIG_NET_NS
2091 		/* dev might have been moved to another netns. */
2092 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2093 			rtnl_net_unlock(net);
2094 			net_passive_dec(net);
2095 			again = true;
2096 		}
2097 #endif
2098 	} while (again);
2099 }
2100 
2101 static void rtnl_net_dev_unlock(struct net_device *dev)
2102 {
2103 	struct net *net = dev_net(dev);
2104 
2105 	rtnl_net_unlock(net);
2106 	net_passive_dec(net);
2107 }
2108 
2109 int register_netdevice_notifier_dev_net(struct net_device *dev,
2110 					struct notifier_block *nb,
2111 					struct netdev_net_notifier *nn)
2112 {
2113 	struct net *net = dev_net(dev);
2114 	int err;
2115 
2116 	/* rtnl_net_lock() assumes dev is not yet published by
2117 	 * register_netdevice().
2118 	 */
2119 	DEBUG_NET_WARN_ON_ONCE(!list_empty(&dev->dev_list));
2120 
2121 	rtnl_net_lock(net);
2122 	err = __register_netdevice_notifier_net(net, nb, false);
2123 	if (!err) {
2124 		nn->nb = nb;
2125 		list_add(&nn->list, &dev->net_notifier_list);
2126 	}
2127 	rtnl_net_unlock(net);
2128 
2129 	return err;
2130 }
2131 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2132 
2133 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2134 					  struct notifier_block *nb,
2135 					  struct netdev_net_notifier *nn)
2136 {
2137 	int err;
2138 
2139 	rtnl_net_dev_lock(dev);
2140 	list_del(&nn->list);
2141 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2142 	rtnl_net_dev_unlock(dev);
2143 
2144 	return err;
2145 }
2146 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2147 
2148 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2149 					     struct net *net)
2150 {
2151 	struct netdev_net_notifier *nn;
2152 
2153 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2154 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2155 }
2156 
2157 /**
2158  *	call_netdevice_notifiers_info - call all network notifier blocks
2159  *	@val: value passed unmodified to notifier function
2160  *	@info: notifier information data
2161  *
2162  *	Call all network notifier blocks.  Parameters and return value
2163  *	are as for raw_notifier_call_chain().
2164  */
2165 
2166 int call_netdevice_notifiers_info(unsigned long val,
2167 				  struct netdev_notifier_info *info)
2168 {
2169 	struct net *net = dev_net(info->dev);
2170 	int ret;
2171 
2172 	ASSERT_RTNL();
2173 
2174 	/* Run per-netns notifier block chain first, then run the global one.
2175 	 * Hopefully, one day, the global one is going to be removed after
2176 	 * all notifier block registrators get converted to be per-netns.
2177 	 */
2178 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2179 	if (ret & NOTIFY_STOP_MASK)
2180 		return ret;
2181 	return raw_notifier_call_chain(&netdev_chain, val, info);
2182 }
2183 
2184 /**
2185  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2186  *	                                       for and rollback on error
2187  *	@val_up: value passed unmodified to notifier function
2188  *	@val_down: value passed unmodified to the notifier function when
2189  *	           recovering from an error on @val_up
2190  *	@info: notifier information data
2191  *
2192  *	Call all per-netns network notifier blocks, but not notifier blocks on
2193  *	the global notifier chain. Parameters and return value are as for
2194  *	raw_notifier_call_chain_robust().
2195  */
2196 
2197 static int
2198 call_netdevice_notifiers_info_robust(unsigned long val_up,
2199 				     unsigned long val_down,
2200 				     struct netdev_notifier_info *info)
2201 {
2202 	struct net *net = dev_net(info->dev);
2203 
2204 	ASSERT_RTNL();
2205 
2206 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2207 					      val_up, val_down, info);
2208 }
2209 
2210 static int call_netdevice_notifiers_extack(unsigned long val,
2211 					   struct net_device *dev,
2212 					   struct netlink_ext_ack *extack)
2213 {
2214 	struct netdev_notifier_info info = {
2215 		.dev = dev,
2216 		.extack = extack,
2217 	};
2218 
2219 	return call_netdevice_notifiers_info(val, &info);
2220 }
2221 
2222 /**
2223  *	call_netdevice_notifiers - call all network notifier blocks
2224  *      @val: value passed unmodified to notifier function
2225  *      @dev: net_device pointer passed unmodified to notifier function
2226  *
2227  *	Call all network notifier blocks.  Parameters and return value
2228  *	are as for raw_notifier_call_chain().
2229  */
2230 
2231 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2232 {
2233 	return call_netdevice_notifiers_extack(val, dev, NULL);
2234 }
2235 EXPORT_SYMBOL(call_netdevice_notifiers);
2236 
2237 /**
2238  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2239  *	@val: value passed unmodified to notifier function
2240  *	@dev: net_device pointer passed unmodified to notifier function
2241  *	@arg: additional u32 argument passed to the notifier function
2242  *
2243  *	Call all network notifier blocks.  Parameters and return value
2244  *	are as for raw_notifier_call_chain().
2245  */
2246 static int call_netdevice_notifiers_mtu(unsigned long val,
2247 					struct net_device *dev, u32 arg)
2248 {
2249 	struct netdev_notifier_info_ext info = {
2250 		.info.dev = dev,
2251 		.ext.mtu = arg,
2252 	};
2253 
2254 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2255 
2256 	return call_netdevice_notifiers_info(val, &info.info);
2257 }
2258 
2259 #ifdef CONFIG_NET_INGRESS
2260 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2261 
2262 void net_inc_ingress_queue(void)
2263 {
2264 	static_branch_inc(&ingress_needed_key);
2265 }
2266 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2267 
2268 void net_dec_ingress_queue(void)
2269 {
2270 	static_branch_dec(&ingress_needed_key);
2271 }
2272 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2273 #endif
2274 
2275 #ifdef CONFIG_NET_EGRESS
2276 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2277 
2278 void net_inc_egress_queue(void)
2279 {
2280 	static_branch_inc(&egress_needed_key);
2281 }
2282 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2283 
2284 void net_dec_egress_queue(void)
2285 {
2286 	static_branch_dec(&egress_needed_key);
2287 }
2288 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2289 #endif
2290 
2291 #ifdef CONFIG_NET_CLS_ACT
2292 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2293 EXPORT_SYMBOL(tcf_sw_enabled_key);
2294 #endif
2295 
2296 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2297 EXPORT_SYMBOL(netstamp_needed_key);
2298 #ifdef CONFIG_JUMP_LABEL
2299 static atomic_t netstamp_needed_deferred;
2300 static atomic_t netstamp_wanted;
2301 static void netstamp_clear(struct work_struct *work)
2302 {
2303 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2304 	int wanted;
2305 
2306 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2307 	if (wanted > 0)
2308 		static_branch_enable(&netstamp_needed_key);
2309 	else
2310 		static_branch_disable(&netstamp_needed_key);
2311 }
2312 static DECLARE_WORK(netstamp_work, netstamp_clear);
2313 #endif
2314 
2315 void net_enable_timestamp(void)
2316 {
2317 #ifdef CONFIG_JUMP_LABEL
2318 	int wanted = atomic_read(&netstamp_wanted);
2319 
2320 	while (wanted > 0) {
2321 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2322 			return;
2323 	}
2324 	atomic_inc(&netstamp_needed_deferred);
2325 	schedule_work(&netstamp_work);
2326 #else
2327 	static_branch_inc(&netstamp_needed_key);
2328 #endif
2329 }
2330 EXPORT_SYMBOL(net_enable_timestamp);
2331 
2332 void net_disable_timestamp(void)
2333 {
2334 #ifdef CONFIG_JUMP_LABEL
2335 	int wanted = atomic_read(&netstamp_wanted);
2336 
2337 	while (wanted > 1) {
2338 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2339 			return;
2340 	}
2341 	atomic_dec(&netstamp_needed_deferred);
2342 	schedule_work(&netstamp_work);
2343 #else
2344 	static_branch_dec(&netstamp_needed_key);
2345 #endif
2346 }
2347 EXPORT_SYMBOL(net_disable_timestamp);
2348 
2349 static inline void net_timestamp_set(struct sk_buff *skb)
2350 {
2351 	skb->tstamp = 0;
2352 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2353 	if (static_branch_unlikely(&netstamp_needed_key))
2354 		skb->tstamp = ktime_get_real();
2355 }
2356 
2357 #define net_timestamp_check(COND, SKB)				\
2358 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2359 		if ((COND) && !(SKB)->tstamp)			\
2360 			(SKB)->tstamp = ktime_get_real();	\
2361 	}							\
2362 
2363 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2364 {
2365 	return __is_skb_forwardable(dev, skb, true);
2366 }
2367 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2368 
2369 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2370 			      bool check_mtu)
2371 {
2372 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2373 
2374 	if (likely(!ret)) {
2375 		skb->protocol = eth_type_trans(skb, dev);
2376 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2377 	}
2378 
2379 	return ret;
2380 }
2381 
2382 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2383 {
2384 	return __dev_forward_skb2(dev, skb, true);
2385 }
2386 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2387 
2388 /**
2389  * dev_forward_skb - loopback an skb to another netif
2390  *
2391  * @dev: destination network device
2392  * @skb: buffer to forward
2393  *
2394  * return values:
2395  *	NET_RX_SUCCESS	(no congestion)
2396  *	NET_RX_DROP     (packet was dropped, but freed)
2397  *
2398  * dev_forward_skb can be used for injecting an skb from the
2399  * start_xmit function of one device into the receive queue
2400  * of another device.
2401  *
2402  * The receiving device may be in another namespace, so
2403  * we have to clear all information in the skb that could
2404  * impact namespace isolation.
2405  */
2406 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2407 {
2408 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2409 }
2410 EXPORT_SYMBOL_GPL(dev_forward_skb);
2411 
2412 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2413 {
2414 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2415 }
2416 
2417 static inline int deliver_skb(struct sk_buff *skb,
2418 			      struct packet_type *pt_prev,
2419 			      struct net_device *orig_dev)
2420 {
2421 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2422 		return -ENOMEM;
2423 	refcount_inc(&skb->users);
2424 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2425 }
2426 
2427 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2428 					  struct packet_type **pt,
2429 					  struct net_device *orig_dev,
2430 					  __be16 type,
2431 					  struct list_head *ptype_list)
2432 {
2433 	struct packet_type *ptype, *pt_prev = *pt;
2434 
2435 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2436 		if (ptype->type != type)
2437 			continue;
2438 		if (pt_prev)
2439 			deliver_skb(skb, pt_prev, orig_dev);
2440 		pt_prev = ptype;
2441 	}
2442 	*pt = pt_prev;
2443 }
2444 
2445 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2446 {
2447 	if (!ptype->af_packet_priv || !skb->sk)
2448 		return false;
2449 
2450 	if (ptype->id_match)
2451 		return ptype->id_match(ptype, skb->sk);
2452 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2453 		return true;
2454 
2455 	return false;
2456 }
2457 
2458 /**
2459  * dev_nit_active - return true if any network interface taps are in use
2460  *
2461  * @dev: network device to check for the presence of taps
2462  */
2463 bool dev_nit_active(struct net_device *dev)
2464 {
2465 	return !list_empty(&net_hotdata.ptype_all) ||
2466 	       !list_empty(&dev->ptype_all);
2467 }
2468 EXPORT_SYMBOL_GPL(dev_nit_active);
2469 
2470 /*
2471  *	Support routine. Sends outgoing frames to any network
2472  *	taps currently in use.
2473  */
2474 
2475 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2476 {
2477 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2478 	struct packet_type *ptype, *pt_prev = NULL;
2479 	struct sk_buff *skb2 = NULL;
2480 
2481 	rcu_read_lock();
2482 again:
2483 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2484 		if (READ_ONCE(ptype->ignore_outgoing))
2485 			continue;
2486 
2487 		/* Never send packets back to the socket
2488 		 * they originated from - MvS ([email protected])
2489 		 */
2490 		if (skb_loop_sk(ptype, skb))
2491 			continue;
2492 
2493 		if (pt_prev) {
2494 			deliver_skb(skb2, pt_prev, skb->dev);
2495 			pt_prev = ptype;
2496 			continue;
2497 		}
2498 
2499 		/* need to clone skb, done only once */
2500 		skb2 = skb_clone(skb, GFP_ATOMIC);
2501 		if (!skb2)
2502 			goto out_unlock;
2503 
2504 		net_timestamp_set(skb2);
2505 
2506 		/* skb->nh should be correctly
2507 		 * set by sender, so that the second statement is
2508 		 * just protection against buggy protocols.
2509 		 */
2510 		skb_reset_mac_header(skb2);
2511 
2512 		if (skb_network_header(skb2) < skb2->data ||
2513 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2514 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2515 					     ntohs(skb2->protocol),
2516 					     dev->name);
2517 			skb_reset_network_header(skb2);
2518 		}
2519 
2520 		skb2->transport_header = skb2->network_header;
2521 		skb2->pkt_type = PACKET_OUTGOING;
2522 		pt_prev = ptype;
2523 	}
2524 
2525 	if (ptype_list == &net_hotdata.ptype_all) {
2526 		ptype_list = &dev->ptype_all;
2527 		goto again;
2528 	}
2529 out_unlock:
2530 	if (pt_prev) {
2531 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2532 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2533 		else
2534 			kfree_skb(skb2);
2535 	}
2536 	rcu_read_unlock();
2537 }
2538 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2539 
2540 /**
2541  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2542  * @dev: Network device
2543  * @txq: number of queues available
2544  *
2545  * If real_num_tx_queues is changed the tc mappings may no longer be
2546  * valid. To resolve this verify the tc mapping remains valid and if
2547  * not NULL the mapping. With no priorities mapping to this
2548  * offset/count pair it will no longer be used. In the worst case TC0
2549  * is invalid nothing can be done so disable priority mappings. If is
2550  * expected that drivers will fix this mapping if they can before
2551  * calling netif_set_real_num_tx_queues.
2552  */
2553 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2554 {
2555 	int i;
2556 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2557 
2558 	/* If TC0 is invalidated disable TC mapping */
2559 	if (tc->offset + tc->count > txq) {
2560 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2561 		dev->num_tc = 0;
2562 		return;
2563 	}
2564 
2565 	/* Invalidated prio to tc mappings set to TC0 */
2566 	for (i = 1; i < TC_BITMASK + 1; i++) {
2567 		int q = netdev_get_prio_tc_map(dev, i);
2568 
2569 		tc = &dev->tc_to_txq[q];
2570 		if (tc->offset + tc->count > txq) {
2571 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2572 				    i, q);
2573 			netdev_set_prio_tc_map(dev, i, 0);
2574 		}
2575 	}
2576 }
2577 
2578 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2579 {
2580 	if (dev->num_tc) {
2581 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2582 		int i;
2583 
2584 		/* walk through the TCs and see if it falls into any of them */
2585 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2586 			if ((txq - tc->offset) < tc->count)
2587 				return i;
2588 		}
2589 
2590 		/* didn't find it, just return -1 to indicate no match */
2591 		return -1;
2592 	}
2593 
2594 	return 0;
2595 }
2596 EXPORT_SYMBOL(netdev_txq_to_tc);
2597 
2598 #ifdef CONFIG_XPS
2599 static struct static_key xps_needed __read_mostly;
2600 static struct static_key xps_rxqs_needed __read_mostly;
2601 static DEFINE_MUTEX(xps_map_mutex);
2602 #define xmap_dereference(P)		\
2603 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2604 
2605 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2606 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2607 {
2608 	struct xps_map *map = NULL;
2609 	int pos;
2610 
2611 	map = xmap_dereference(dev_maps->attr_map[tci]);
2612 	if (!map)
2613 		return false;
2614 
2615 	for (pos = map->len; pos--;) {
2616 		if (map->queues[pos] != index)
2617 			continue;
2618 
2619 		if (map->len > 1) {
2620 			map->queues[pos] = map->queues[--map->len];
2621 			break;
2622 		}
2623 
2624 		if (old_maps)
2625 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2626 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2627 		kfree_rcu(map, rcu);
2628 		return false;
2629 	}
2630 
2631 	return true;
2632 }
2633 
2634 static bool remove_xps_queue_cpu(struct net_device *dev,
2635 				 struct xps_dev_maps *dev_maps,
2636 				 int cpu, u16 offset, u16 count)
2637 {
2638 	int num_tc = dev_maps->num_tc;
2639 	bool active = false;
2640 	int tci;
2641 
2642 	for (tci = cpu * num_tc; num_tc--; tci++) {
2643 		int i, j;
2644 
2645 		for (i = count, j = offset; i--; j++) {
2646 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2647 				break;
2648 		}
2649 
2650 		active |= i < 0;
2651 	}
2652 
2653 	return active;
2654 }
2655 
2656 static void reset_xps_maps(struct net_device *dev,
2657 			   struct xps_dev_maps *dev_maps,
2658 			   enum xps_map_type type)
2659 {
2660 	static_key_slow_dec_cpuslocked(&xps_needed);
2661 	if (type == XPS_RXQS)
2662 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2663 
2664 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2665 
2666 	kfree_rcu(dev_maps, rcu);
2667 }
2668 
2669 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2670 			   u16 offset, u16 count)
2671 {
2672 	struct xps_dev_maps *dev_maps;
2673 	bool active = false;
2674 	int i, j;
2675 
2676 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2677 	if (!dev_maps)
2678 		return;
2679 
2680 	for (j = 0; j < dev_maps->nr_ids; j++)
2681 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2682 	if (!active)
2683 		reset_xps_maps(dev, dev_maps, type);
2684 
2685 	if (type == XPS_CPUS) {
2686 		for (i = offset + (count - 1); count--; i--)
2687 			netdev_queue_numa_node_write(
2688 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2689 	}
2690 }
2691 
2692 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2693 				   u16 count)
2694 {
2695 	if (!static_key_false(&xps_needed))
2696 		return;
2697 
2698 	cpus_read_lock();
2699 	mutex_lock(&xps_map_mutex);
2700 
2701 	if (static_key_false(&xps_rxqs_needed))
2702 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2703 
2704 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2705 
2706 	mutex_unlock(&xps_map_mutex);
2707 	cpus_read_unlock();
2708 }
2709 
2710 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2711 {
2712 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2713 }
2714 
2715 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2716 				      u16 index, bool is_rxqs_map)
2717 {
2718 	struct xps_map *new_map;
2719 	int alloc_len = XPS_MIN_MAP_ALLOC;
2720 	int i, pos;
2721 
2722 	for (pos = 0; map && pos < map->len; pos++) {
2723 		if (map->queues[pos] != index)
2724 			continue;
2725 		return map;
2726 	}
2727 
2728 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2729 	if (map) {
2730 		if (pos < map->alloc_len)
2731 			return map;
2732 
2733 		alloc_len = map->alloc_len * 2;
2734 	}
2735 
2736 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2737 	 *  map
2738 	 */
2739 	if (is_rxqs_map)
2740 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2741 	else
2742 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2743 				       cpu_to_node(attr_index));
2744 	if (!new_map)
2745 		return NULL;
2746 
2747 	for (i = 0; i < pos; i++)
2748 		new_map->queues[i] = map->queues[i];
2749 	new_map->alloc_len = alloc_len;
2750 	new_map->len = pos;
2751 
2752 	return new_map;
2753 }
2754 
2755 /* Copy xps maps at a given index */
2756 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2757 			      struct xps_dev_maps *new_dev_maps, int index,
2758 			      int tc, bool skip_tc)
2759 {
2760 	int i, tci = index * dev_maps->num_tc;
2761 	struct xps_map *map;
2762 
2763 	/* copy maps belonging to foreign traffic classes */
2764 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2765 		if (i == tc && skip_tc)
2766 			continue;
2767 
2768 		/* fill in the new device map from the old device map */
2769 		map = xmap_dereference(dev_maps->attr_map[tci]);
2770 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2771 	}
2772 }
2773 
2774 /* Must be called under cpus_read_lock */
2775 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2776 			  u16 index, enum xps_map_type type)
2777 {
2778 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2779 	const unsigned long *online_mask = NULL;
2780 	bool active = false, copy = false;
2781 	int i, j, tci, numa_node_id = -2;
2782 	int maps_sz, num_tc = 1, tc = 0;
2783 	struct xps_map *map, *new_map;
2784 	unsigned int nr_ids;
2785 
2786 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2787 
2788 	if (dev->num_tc) {
2789 		/* Do not allow XPS on subordinate device directly */
2790 		num_tc = dev->num_tc;
2791 		if (num_tc < 0)
2792 			return -EINVAL;
2793 
2794 		/* If queue belongs to subordinate dev use its map */
2795 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2796 
2797 		tc = netdev_txq_to_tc(dev, index);
2798 		if (tc < 0)
2799 			return -EINVAL;
2800 	}
2801 
2802 	mutex_lock(&xps_map_mutex);
2803 
2804 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2805 	if (type == XPS_RXQS) {
2806 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2807 		nr_ids = dev->num_rx_queues;
2808 	} else {
2809 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2810 		if (num_possible_cpus() > 1)
2811 			online_mask = cpumask_bits(cpu_online_mask);
2812 		nr_ids = nr_cpu_ids;
2813 	}
2814 
2815 	if (maps_sz < L1_CACHE_BYTES)
2816 		maps_sz = L1_CACHE_BYTES;
2817 
2818 	/* The old dev_maps could be larger or smaller than the one we're
2819 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2820 	 * between. We could try to be smart, but let's be safe instead and only
2821 	 * copy foreign traffic classes if the two map sizes match.
2822 	 */
2823 	if (dev_maps &&
2824 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2825 		copy = true;
2826 
2827 	/* allocate memory for queue storage */
2828 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2829 	     j < nr_ids;) {
2830 		if (!new_dev_maps) {
2831 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2832 			if (!new_dev_maps) {
2833 				mutex_unlock(&xps_map_mutex);
2834 				return -ENOMEM;
2835 			}
2836 
2837 			new_dev_maps->nr_ids = nr_ids;
2838 			new_dev_maps->num_tc = num_tc;
2839 		}
2840 
2841 		tci = j * num_tc + tc;
2842 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2843 
2844 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2845 		if (!map)
2846 			goto error;
2847 
2848 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2849 	}
2850 
2851 	if (!new_dev_maps)
2852 		goto out_no_new_maps;
2853 
2854 	if (!dev_maps) {
2855 		/* Increment static keys at most once per type */
2856 		static_key_slow_inc_cpuslocked(&xps_needed);
2857 		if (type == XPS_RXQS)
2858 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2859 	}
2860 
2861 	for (j = 0; j < nr_ids; j++) {
2862 		bool skip_tc = false;
2863 
2864 		tci = j * num_tc + tc;
2865 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2866 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2867 			/* add tx-queue to CPU/rx-queue maps */
2868 			int pos = 0;
2869 
2870 			skip_tc = true;
2871 
2872 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2873 			while ((pos < map->len) && (map->queues[pos] != index))
2874 				pos++;
2875 
2876 			if (pos == map->len)
2877 				map->queues[map->len++] = index;
2878 #ifdef CONFIG_NUMA
2879 			if (type == XPS_CPUS) {
2880 				if (numa_node_id == -2)
2881 					numa_node_id = cpu_to_node(j);
2882 				else if (numa_node_id != cpu_to_node(j))
2883 					numa_node_id = -1;
2884 			}
2885 #endif
2886 		}
2887 
2888 		if (copy)
2889 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2890 					  skip_tc);
2891 	}
2892 
2893 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2894 
2895 	/* Cleanup old maps */
2896 	if (!dev_maps)
2897 		goto out_no_old_maps;
2898 
2899 	for (j = 0; j < dev_maps->nr_ids; j++) {
2900 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2901 			map = xmap_dereference(dev_maps->attr_map[tci]);
2902 			if (!map)
2903 				continue;
2904 
2905 			if (copy) {
2906 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2907 				if (map == new_map)
2908 					continue;
2909 			}
2910 
2911 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2912 			kfree_rcu(map, rcu);
2913 		}
2914 	}
2915 
2916 	old_dev_maps = dev_maps;
2917 
2918 out_no_old_maps:
2919 	dev_maps = new_dev_maps;
2920 	active = true;
2921 
2922 out_no_new_maps:
2923 	if (type == XPS_CPUS)
2924 		/* update Tx queue numa node */
2925 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2926 					     (numa_node_id >= 0) ?
2927 					     numa_node_id : NUMA_NO_NODE);
2928 
2929 	if (!dev_maps)
2930 		goto out_no_maps;
2931 
2932 	/* removes tx-queue from unused CPUs/rx-queues */
2933 	for (j = 0; j < dev_maps->nr_ids; j++) {
2934 		tci = j * dev_maps->num_tc;
2935 
2936 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2937 			if (i == tc &&
2938 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2939 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2940 				continue;
2941 
2942 			active |= remove_xps_queue(dev_maps,
2943 						   copy ? old_dev_maps : NULL,
2944 						   tci, index);
2945 		}
2946 	}
2947 
2948 	if (old_dev_maps)
2949 		kfree_rcu(old_dev_maps, rcu);
2950 
2951 	/* free map if not active */
2952 	if (!active)
2953 		reset_xps_maps(dev, dev_maps, type);
2954 
2955 out_no_maps:
2956 	mutex_unlock(&xps_map_mutex);
2957 
2958 	return 0;
2959 error:
2960 	/* remove any maps that we added */
2961 	for (j = 0; j < nr_ids; j++) {
2962 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2963 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2964 			map = copy ?
2965 			      xmap_dereference(dev_maps->attr_map[tci]) :
2966 			      NULL;
2967 			if (new_map && new_map != map)
2968 				kfree(new_map);
2969 		}
2970 	}
2971 
2972 	mutex_unlock(&xps_map_mutex);
2973 
2974 	kfree(new_dev_maps);
2975 	return -ENOMEM;
2976 }
2977 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2978 
2979 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2980 			u16 index)
2981 {
2982 	int ret;
2983 
2984 	cpus_read_lock();
2985 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2986 	cpus_read_unlock();
2987 
2988 	return ret;
2989 }
2990 EXPORT_SYMBOL(netif_set_xps_queue);
2991 
2992 #endif
2993 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2994 {
2995 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2996 
2997 	/* Unbind any subordinate channels */
2998 	while (txq-- != &dev->_tx[0]) {
2999 		if (txq->sb_dev)
3000 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3001 	}
3002 }
3003 
3004 void netdev_reset_tc(struct net_device *dev)
3005 {
3006 #ifdef CONFIG_XPS
3007 	netif_reset_xps_queues_gt(dev, 0);
3008 #endif
3009 	netdev_unbind_all_sb_channels(dev);
3010 
3011 	/* Reset TC configuration of device */
3012 	dev->num_tc = 0;
3013 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3014 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3015 }
3016 EXPORT_SYMBOL(netdev_reset_tc);
3017 
3018 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3019 {
3020 	if (tc >= dev->num_tc)
3021 		return -EINVAL;
3022 
3023 #ifdef CONFIG_XPS
3024 	netif_reset_xps_queues(dev, offset, count);
3025 #endif
3026 	dev->tc_to_txq[tc].count = count;
3027 	dev->tc_to_txq[tc].offset = offset;
3028 	return 0;
3029 }
3030 EXPORT_SYMBOL(netdev_set_tc_queue);
3031 
3032 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3033 {
3034 	if (num_tc > TC_MAX_QUEUE)
3035 		return -EINVAL;
3036 
3037 #ifdef CONFIG_XPS
3038 	netif_reset_xps_queues_gt(dev, 0);
3039 #endif
3040 	netdev_unbind_all_sb_channels(dev);
3041 
3042 	dev->num_tc = num_tc;
3043 	return 0;
3044 }
3045 EXPORT_SYMBOL(netdev_set_num_tc);
3046 
3047 void netdev_unbind_sb_channel(struct net_device *dev,
3048 			      struct net_device *sb_dev)
3049 {
3050 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3051 
3052 #ifdef CONFIG_XPS
3053 	netif_reset_xps_queues_gt(sb_dev, 0);
3054 #endif
3055 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3056 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3057 
3058 	while (txq-- != &dev->_tx[0]) {
3059 		if (txq->sb_dev == sb_dev)
3060 			txq->sb_dev = NULL;
3061 	}
3062 }
3063 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3064 
3065 int netdev_bind_sb_channel_queue(struct net_device *dev,
3066 				 struct net_device *sb_dev,
3067 				 u8 tc, u16 count, u16 offset)
3068 {
3069 	/* Make certain the sb_dev and dev are already configured */
3070 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3071 		return -EINVAL;
3072 
3073 	/* We cannot hand out queues we don't have */
3074 	if ((offset + count) > dev->real_num_tx_queues)
3075 		return -EINVAL;
3076 
3077 	/* Record the mapping */
3078 	sb_dev->tc_to_txq[tc].count = count;
3079 	sb_dev->tc_to_txq[tc].offset = offset;
3080 
3081 	/* Provide a way for Tx queue to find the tc_to_txq map or
3082 	 * XPS map for itself.
3083 	 */
3084 	while (count--)
3085 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3086 
3087 	return 0;
3088 }
3089 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3090 
3091 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3092 {
3093 	/* Do not use a multiqueue device to represent a subordinate channel */
3094 	if (netif_is_multiqueue(dev))
3095 		return -ENODEV;
3096 
3097 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3098 	 * Channel 0 is meant to be "native" mode and used only to represent
3099 	 * the main root device. We allow writing 0 to reset the device back
3100 	 * to normal mode after being used as a subordinate channel.
3101 	 */
3102 	if (channel > S16_MAX)
3103 		return -EINVAL;
3104 
3105 	dev->num_tc = -channel;
3106 
3107 	return 0;
3108 }
3109 EXPORT_SYMBOL(netdev_set_sb_channel);
3110 
3111 /*
3112  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3113  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3114  */
3115 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3116 {
3117 	bool disabling;
3118 	int rc;
3119 
3120 	disabling = txq < dev->real_num_tx_queues;
3121 
3122 	if (txq < 1 || txq > dev->num_tx_queues)
3123 		return -EINVAL;
3124 
3125 	if (dev->reg_state == NETREG_REGISTERED ||
3126 	    dev->reg_state == NETREG_UNREGISTERING) {
3127 		ASSERT_RTNL();
3128 
3129 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3130 						  txq);
3131 		if (rc)
3132 			return rc;
3133 
3134 		if (dev->num_tc)
3135 			netif_setup_tc(dev, txq);
3136 
3137 		net_shaper_set_real_num_tx_queues(dev, txq);
3138 
3139 		dev_qdisc_change_real_num_tx(dev, txq);
3140 
3141 		dev->real_num_tx_queues = txq;
3142 
3143 		if (disabling) {
3144 			synchronize_net();
3145 			qdisc_reset_all_tx_gt(dev, txq);
3146 #ifdef CONFIG_XPS
3147 			netif_reset_xps_queues_gt(dev, txq);
3148 #endif
3149 		}
3150 	} else {
3151 		dev->real_num_tx_queues = txq;
3152 	}
3153 
3154 	return 0;
3155 }
3156 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3157 
3158 #ifdef CONFIG_SYSFS
3159 /**
3160  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3161  *	@dev: Network device
3162  *	@rxq: Actual number of RX queues
3163  *
3164  *	This must be called either with the rtnl_lock held or before
3165  *	registration of the net device.  Returns 0 on success, or a
3166  *	negative error code.  If called before registration, it always
3167  *	succeeds.
3168  */
3169 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3170 {
3171 	int rc;
3172 
3173 	if (rxq < 1 || rxq > dev->num_rx_queues)
3174 		return -EINVAL;
3175 
3176 	if (dev->reg_state == NETREG_REGISTERED) {
3177 		ASSERT_RTNL();
3178 
3179 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3180 						  rxq);
3181 		if (rc)
3182 			return rc;
3183 	}
3184 
3185 	dev->real_num_rx_queues = rxq;
3186 	return 0;
3187 }
3188 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3189 #endif
3190 
3191 /**
3192  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3193  *	@dev: Network device
3194  *	@txq: Actual number of TX queues
3195  *	@rxq: Actual number of RX queues
3196  *
3197  *	Set the real number of both TX and RX queues.
3198  *	Does nothing if the number of queues is already correct.
3199  */
3200 int netif_set_real_num_queues(struct net_device *dev,
3201 			      unsigned int txq, unsigned int rxq)
3202 {
3203 	unsigned int old_rxq = dev->real_num_rx_queues;
3204 	int err;
3205 
3206 	if (txq < 1 || txq > dev->num_tx_queues ||
3207 	    rxq < 1 || rxq > dev->num_rx_queues)
3208 		return -EINVAL;
3209 
3210 	/* Start from increases, so the error path only does decreases -
3211 	 * decreases can't fail.
3212 	 */
3213 	if (rxq > dev->real_num_rx_queues) {
3214 		err = netif_set_real_num_rx_queues(dev, rxq);
3215 		if (err)
3216 			return err;
3217 	}
3218 	if (txq > dev->real_num_tx_queues) {
3219 		err = netif_set_real_num_tx_queues(dev, txq);
3220 		if (err)
3221 			goto undo_rx;
3222 	}
3223 	if (rxq < dev->real_num_rx_queues)
3224 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3225 	if (txq < dev->real_num_tx_queues)
3226 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3227 
3228 	return 0;
3229 undo_rx:
3230 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3231 	return err;
3232 }
3233 EXPORT_SYMBOL(netif_set_real_num_queues);
3234 
3235 /**
3236  * netif_set_tso_max_size() - set the max size of TSO frames supported
3237  * @dev:	netdev to update
3238  * @size:	max skb->len of a TSO frame
3239  *
3240  * Set the limit on the size of TSO super-frames the device can handle.
3241  * Unless explicitly set the stack will assume the value of
3242  * %GSO_LEGACY_MAX_SIZE.
3243  */
3244 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3245 {
3246 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3247 	if (size < READ_ONCE(dev->gso_max_size))
3248 		netif_set_gso_max_size(dev, size);
3249 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3250 		netif_set_gso_ipv4_max_size(dev, size);
3251 }
3252 EXPORT_SYMBOL(netif_set_tso_max_size);
3253 
3254 /**
3255  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3256  * @dev:	netdev to update
3257  * @segs:	max number of TCP segments
3258  *
3259  * Set the limit on the number of TCP segments the device can generate from
3260  * a single TSO super-frame.
3261  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3262  */
3263 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3264 {
3265 	dev->tso_max_segs = segs;
3266 	if (segs < READ_ONCE(dev->gso_max_segs))
3267 		netif_set_gso_max_segs(dev, segs);
3268 }
3269 EXPORT_SYMBOL(netif_set_tso_max_segs);
3270 
3271 /**
3272  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3273  * @to:		netdev to update
3274  * @from:	netdev from which to copy the limits
3275  */
3276 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3277 {
3278 	netif_set_tso_max_size(to, from->tso_max_size);
3279 	netif_set_tso_max_segs(to, from->tso_max_segs);
3280 }
3281 EXPORT_SYMBOL(netif_inherit_tso_max);
3282 
3283 /**
3284  * netif_get_num_default_rss_queues - default number of RSS queues
3285  *
3286  * Default value is the number of physical cores if there are only 1 or 2, or
3287  * divided by 2 if there are more.
3288  */
3289 int netif_get_num_default_rss_queues(void)
3290 {
3291 	cpumask_var_t cpus;
3292 	int cpu, count = 0;
3293 
3294 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3295 		return 1;
3296 
3297 	cpumask_copy(cpus, cpu_online_mask);
3298 	for_each_cpu(cpu, cpus) {
3299 		++count;
3300 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3301 	}
3302 	free_cpumask_var(cpus);
3303 
3304 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3305 }
3306 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3307 
3308 static void __netif_reschedule(struct Qdisc *q)
3309 {
3310 	struct softnet_data *sd;
3311 	unsigned long flags;
3312 
3313 	local_irq_save(flags);
3314 	sd = this_cpu_ptr(&softnet_data);
3315 	q->next_sched = NULL;
3316 	*sd->output_queue_tailp = q;
3317 	sd->output_queue_tailp = &q->next_sched;
3318 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3319 	local_irq_restore(flags);
3320 }
3321 
3322 void __netif_schedule(struct Qdisc *q)
3323 {
3324 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3325 		__netif_reschedule(q);
3326 }
3327 EXPORT_SYMBOL(__netif_schedule);
3328 
3329 struct dev_kfree_skb_cb {
3330 	enum skb_drop_reason reason;
3331 };
3332 
3333 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3334 {
3335 	return (struct dev_kfree_skb_cb *)skb->cb;
3336 }
3337 
3338 void netif_schedule_queue(struct netdev_queue *txq)
3339 {
3340 	rcu_read_lock();
3341 	if (!netif_xmit_stopped(txq)) {
3342 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3343 
3344 		__netif_schedule(q);
3345 	}
3346 	rcu_read_unlock();
3347 }
3348 EXPORT_SYMBOL(netif_schedule_queue);
3349 
3350 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3351 {
3352 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3353 		struct Qdisc *q;
3354 
3355 		rcu_read_lock();
3356 		q = rcu_dereference(dev_queue->qdisc);
3357 		__netif_schedule(q);
3358 		rcu_read_unlock();
3359 	}
3360 }
3361 EXPORT_SYMBOL(netif_tx_wake_queue);
3362 
3363 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3364 {
3365 	unsigned long flags;
3366 
3367 	if (unlikely(!skb))
3368 		return;
3369 
3370 	if (likely(refcount_read(&skb->users) == 1)) {
3371 		smp_rmb();
3372 		refcount_set(&skb->users, 0);
3373 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3374 		return;
3375 	}
3376 	get_kfree_skb_cb(skb)->reason = reason;
3377 	local_irq_save(flags);
3378 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3379 	__this_cpu_write(softnet_data.completion_queue, skb);
3380 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3381 	local_irq_restore(flags);
3382 }
3383 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3384 
3385 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3386 {
3387 	if (in_hardirq() || irqs_disabled())
3388 		dev_kfree_skb_irq_reason(skb, reason);
3389 	else
3390 		kfree_skb_reason(skb, reason);
3391 }
3392 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3393 
3394 
3395 /**
3396  * netif_device_detach - mark device as removed
3397  * @dev: network device
3398  *
3399  * Mark device as removed from system and therefore no longer available.
3400  */
3401 void netif_device_detach(struct net_device *dev)
3402 {
3403 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3404 	    netif_running(dev)) {
3405 		netif_tx_stop_all_queues(dev);
3406 	}
3407 }
3408 EXPORT_SYMBOL(netif_device_detach);
3409 
3410 /**
3411  * netif_device_attach - mark device as attached
3412  * @dev: network device
3413  *
3414  * Mark device as attached from system and restart if needed.
3415  */
3416 void netif_device_attach(struct net_device *dev)
3417 {
3418 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3419 	    netif_running(dev)) {
3420 		netif_tx_wake_all_queues(dev);
3421 		netdev_watchdog_up(dev);
3422 	}
3423 }
3424 EXPORT_SYMBOL(netif_device_attach);
3425 
3426 /*
3427  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3428  * to be used as a distribution range.
3429  */
3430 static u16 skb_tx_hash(const struct net_device *dev,
3431 		       const struct net_device *sb_dev,
3432 		       struct sk_buff *skb)
3433 {
3434 	u32 hash;
3435 	u16 qoffset = 0;
3436 	u16 qcount = dev->real_num_tx_queues;
3437 
3438 	if (dev->num_tc) {
3439 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3440 
3441 		qoffset = sb_dev->tc_to_txq[tc].offset;
3442 		qcount = sb_dev->tc_to_txq[tc].count;
3443 		if (unlikely(!qcount)) {
3444 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3445 					     sb_dev->name, qoffset, tc);
3446 			qoffset = 0;
3447 			qcount = dev->real_num_tx_queues;
3448 		}
3449 	}
3450 
3451 	if (skb_rx_queue_recorded(skb)) {
3452 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3453 		hash = skb_get_rx_queue(skb);
3454 		if (hash >= qoffset)
3455 			hash -= qoffset;
3456 		while (unlikely(hash >= qcount))
3457 			hash -= qcount;
3458 		return hash + qoffset;
3459 	}
3460 
3461 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3462 }
3463 
3464 void skb_warn_bad_offload(const struct sk_buff *skb)
3465 {
3466 	static const netdev_features_t null_features;
3467 	struct net_device *dev = skb->dev;
3468 	const char *name = "";
3469 
3470 	if (!net_ratelimit())
3471 		return;
3472 
3473 	if (dev) {
3474 		if (dev->dev.parent)
3475 			name = dev_driver_string(dev->dev.parent);
3476 		else
3477 			name = netdev_name(dev);
3478 	}
3479 	skb_dump(KERN_WARNING, skb, false);
3480 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3481 	     name, dev ? &dev->features : &null_features,
3482 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3483 }
3484 
3485 /*
3486  * Invalidate hardware checksum when packet is to be mangled, and
3487  * complete checksum manually on outgoing path.
3488  */
3489 int skb_checksum_help(struct sk_buff *skb)
3490 {
3491 	__wsum csum;
3492 	int ret = 0, offset;
3493 
3494 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3495 		goto out_set_summed;
3496 
3497 	if (unlikely(skb_is_gso(skb))) {
3498 		skb_warn_bad_offload(skb);
3499 		return -EINVAL;
3500 	}
3501 
3502 	if (!skb_frags_readable(skb)) {
3503 		return -EFAULT;
3504 	}
3505 
3506 	/* Before computing a checksum, we should make sure no frag could
3507 	 * be modified by an external entity : checksum could be wrong.
3508 	 */
3509 	if (skb_has_shared_frag(skb)) {
3510 		ret = __skb_linearize(skb);
3511 		if (ret)
3512 			goto out;
3513 	}
3514 
3515 	offset = skb_checksum_start_offset(skb);
3516 	ret = -EINVAL;
3517 	if (unlikely(offset >= skb_headlen(skb))) {
3518 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3519 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3520 			  offset, skb_headlen(skb));
3521 		goto out;
3522 	}
3523 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3524 
3525 	offset += skb->csum_offset;
3526 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3527 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3528 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3529 			  offset + sizeof(__sum16), skb_headlen(skb));
3530 		goto out;
3531 	}
3532 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3533 	if (ret)
3534 		goto out;
3535 
3536 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3537 out_set_summed:
3538 	skb->ip_summed = CHECKSUM_NONE;
3539 out:
3540 	return ret;
3541 }
3542 EXPORT_SYMBOL(skb_checksum_help);
3543 
3544 int skb_crc32c_csum_help(struct sk_buff *skb)
3545 {
3546 	__le32 crc32c_csum;
3547 	int ret = 0, offset, start;
3548 
3549 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3550 		goto out;
3551 
3552 	if (unlikely(skb_is_gso(skb)))
3553 		goto out;
3554 
3555 	/* Before computing a checksum, we should make sure no frag could
3556 	 * be modified by an external entity : checksum could be wrong.
3557 	 */
3558 	if (unlikely(skb_has_shared_frag(skb))) {
3559 		ret = __skb_linearize(skb);
3560 		if (ret)
3561 			goto out;
3562 	}
3563 	start = skb_checksum_start_offset(skb);
3564 	offset = start + offsetof(struct sctphdr, checksum);
3565 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3566 		ret = -EINVAL;
3567 		goto out;
3568 	}
3569 
3570 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3571 	if (ret)
3572 		goto out;
3573 
3574 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3575 						  skb->len - start, ~(__u32)0,
3576 						  crc32c_csum_stub));
3577 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3578 	skb_reset_csum_not_inet(skb);
3579 out:
3580 	return ret;
3581 }
3582 EXPORT_SYMBOL(skb_crc32c_csum_help);
3583 
3584 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3585 {
3586 	__be16 type = skb->protocol;
3587 
3588 	/* Tunnel gso handlers can set protocol to ethernet. */
3589 	if (type == htons(ETH_P_TEB)) {
3590 		struct ethhdr *eth;
3591 
3592 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3593 			return 0;
3594 
3595 		eth = (struct ethhdr *)skb->data;
3596 		type = eth->h_proto;
3597 	}
3598 
3599 	return vlan_get_protocol_and_depth(skb, type, depth);
3600 }
3601 
3602 
3603 /* Take action when hardware reception checksum errors are detected. */
3604 #ifdef CONFIG_BUG
3605 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3606 {
3607 	netdev_err(dev, "hw csum failure\n");
3608 	skb_dump(KERN_ERR, skb, true);
3609 	dump_stack();
3610 }
3611 
3612 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3613 {
3614 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3615 }
3616 EXPORT_SYMBOL(netdev_rx_csum_fault);
3617 #endif
3618 
3619 /* XXX: check that highmem exists at all on the given machine. */
3620 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3621 {
3622 #ifdef CONFIG_HIGHMEM
3623 	int i;
3624 
3625 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3626 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3627 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3628 			struct page *page = skb_frag_page(frag);
3629 
3630 			if (page && PageHighMem(page))
3631 				return 1;
3632 		}
3633 	}
3634 #endif
3635 	return 0;
3636 }
3637 
3638 /* If MPLS offload request, verify we are testing hardware MPLS features
3639  * instead of standard features for the netdev.
3640  */
3641 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3642 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3643 					   netdev_features_t features,
3644 					   __be16 type)
3645 {
3646 	if (eth_p_mpls(type))
3647 		features &= skb->dev->mpls_features;
3648 
3649 	return features;
3650 }
3651 #else
3652 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3653 					   netdev_features_t features,
3654 					   __be16 type)
3655 {
3656 	return features;
3657 }
3658 #endif
3659 
3660 static netdev_features_t harmonize_features(struct sk_buff *skb,
3661 	netdev_features_t features)
3662 {
3663 	__be16 type;
3664 
3665 	type = skb_network_protocol(skb, NULL);
3666 	features = net_mpls_features(skb, features, type);
3667 
3668 	if (skb->ip_summed != CHECKSUM_NONE &&
3669 	    !can_checksum_protocol(features, type)) {
3670 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3671 	}
3672 	if (illegal_highdma(skb->dev, skb))
3673 		features &= ~NETIF_F_SG;
3674 
3675 	return features;
3676 }
3677 
3678 netdev_features_t passthru_features_check(struct sk_buff *skb,
3679 					  struct net_device *dev,
3680 					  netdev_features_t features)
3681 {
3682 	return features;
3683 }
3684 EXPORT_SYMBOL(passthru_features_check);
3685 
3686 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3687 					     struct net_device *dev,
3688 					     netdev_features_t features)
3689 {
3690 	return vlan_features_check(skb, features);
3691 }
3692 
3693 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3694 					    struct net_device *dev,
3695 					    netdev_features_t features)
3696 {
3697 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3698 
3699 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3700 		return features & ~NETIF_F_GSO_MASK;
3701 
3702 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3703 		return features & ~NETIF_F_GSO_MASK;
3704 
3705 	if (!skb_shinfo(skb)->gso_type) {
3706 		skb_warn_bad_offload(skb);
3707 		return features & ~NETIF_F_GSO_MASK;
3708 	}
3709 
3710 	/* Support for GSO partial features requires software
3711 	 * intervention before we can actually process the packets
3712 	 * so we need to strip support for any partial features now
3713 	 * and we can pull them back in after we have partially
3714 	 * segmented the frame.
3715 	 */
3716 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3717 		features &= ~dev->gso_partial_features;
3718 
3719 	/* Make sure to clear the IPv4 ID mangling feature if the
3720 	 * IPv4 header has the potential to be fragmented.
3721 	 */
3722 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3723 		struct iphdr *iph = skb->encapsulation ?
3724 				    inner_ip_hdr(skb) : ip_hdr(skb);
3725 
3726 		if (!(iph->frag_off & htons(IP_DF)))
3727 			features &= ~NETIF_F_TSO_MANGLEID;
3728 	}
3729 
3730 	return features;
3731 }
3732 
3733 netdev_features_t netif_skb_features(struct sk_buff *skb)
3734 {
3735 	struct net_device *dev = skb->dev;
3736 	netdev_features_t features = dev->features;
3737 
3738 	if (skb_is_gso(skb))
3739 		features = gso_features_check(skb, dev, features);
3740 
3741 	/* If encapsulation offload request, verify we are testing
3742 	 * hardware encapsulation features instead of standard
3743 	 * features for the netdev
3744 	 */
3745 	if (skb->encapsulation)
3746 		features &= dev->hw_enc_features;
3747 
3748 	if (skb_vlan_tagged(skb))
3749 		features = netdev_intersect_features(features,
3750 						     dev->vlan_features |
3751 						     NETIF_F_HW_VLAN_CTAG_TX |
3752 						     NETIF_F_HW_VLAN_STAG_TX);
3753 
3754 	if (dev->netdev_ops->ndo_features_check)
3755 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3756 								features);
3757 	else
3758 		features &= dflt_features_check(skb, dev, features);
3759 
3760 	return harmonize_features(skb, features);
3761 }
3762 EXPORT_SYMBOL(netif_skb_features);
3763 
3764 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3765 		    struct netdev_queue *txq, bool more)
3766 {
3767 	unsigned int len;
3768 	int rc;
3769 
3770 	if (dev_nit_active(dev))
3771 		dev_queue_xmit_nit(skb, dev);
3772 
3773 	len = skb->len;
3774 	trace_net_dev_start_xmit(skb, dev);
3775 	rc = netdev_start_xmit(skb, dev, txq, more);
3776 	trace_net_dev_xmit(skb, rc, dev, len);
3777 
3778 	return rc;
3779 }
3780 
3781 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3782 				    struct netdev_queue *txq, int *ret)
3783 {
3784 	struct sk_buff *skb = first;
3785 	int rc = NETDEV_TX_OK;
3786 
3787 	while (skb) {
3788 		struct sk_buff *next = skb->next;
3789 
3790 		skb_mark_not_on_list(skb);
3791 		rc = xmit_one(skb, dev, txq, next != NULL);
3792 		if (unlikely(!dev_xmit_complete(rc))) {
3793 			skb->next = next;
3794 			goto out;
3795 		}
3796 
3797 		skb = next;
3798 		if (netif_tx_queue_stopped(txq) && skb) {
3799 			rc = NETDEV_TX_BUSY;
3800 			break;
3801 		}
3802 	}
3803 
3804 out:
3805 	*ret = rc;
3806 	return skb;
3807 }
3808 
3809 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3810 					  netdev_features_t features)
3811 {
3812 	if (skb_vlan_tag_present(skb) &&
3813 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3814 		skb = __vlan_hwaccel_push_inside(skb);
3815 	return skb;
3816 }
3817 
3818 int skb_csum_hwoffload_help(struct sk_buff *skb,
3819 			    const netdev_features_t features)
3820 {
3821 	if (unlikely(skb_csum_is_sctp(skb)))
3822 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3823 			skb_crc32c_csum_help(skb);
3824 
3825 	if (features & NETIF_F_HW_CSUM)
3826 		return 0;
3827 
3828 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3829 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3830 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3831 		    !ipv6_has_hopopt_jumbo(skb))
3832 			goto sw_checksum;
3833 
3834 		switch (skb->csum_offset) {
3835 		case offsetof(struct tcphdr, check):
3836 		case offsetof(struct udphdr, check):
3837 			return 0;
3838 		}
3839 	}
3840 
3841 sw_checksum:
3842 	return skb_checksum_help(skb);
3843 }
3844 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3845 
3846 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3847 {
3848 	netdev_features_t features;
3849 
3850 	features = netif_skb_features(skb);
3851 	skb = validate_xmit_vlan(skb, features);
3852 	if (unlikely(!skb))
3853 		goto out_null;
3854 
3855 	skb = sk_validate_xmit_skb(skb, dev);
3856 	if (unlikely(!skb))
3857 		goto out_null;
3858 
3859 	if (netif_needs_gso(skb, features)) {
3860 		struct sk_buff *segs;
3861 
3862 		segs = skb_gso_segment(skb, features);
3863 		if (IS_ERR(segs)) {
3864 			goto out_kfree_skb;
3865 		} else if (segs) {
3866 			consume_skb(skb);
3867 			skb = segs;
3868 		}
3869 	} else {
3870 		if (skb_needs_linearize(skb, features) &&
3871 		    __skb_linearize(skb))
3872 			goto out_kfree_skb;
3873 
3874 		/* If packet is not checksummed and device does not
3875 		 * support checksumming for this protocol, complete
3876 		 * checksumming here.
3877 		 */
3878 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3879 			if (skb->encapsulation)
3880 				skb_set_inner_transport_header(skb,
3881 							       skb_checksum_start_offset(skb));
3882 			else
3883 				skb_set_transport_header(skb,
3884 							 skb_checksum_start_offset(skb));
3885 			if (skb_csum_hwoffload_help(skb, features))
3886 				goto out_kfree_skb;
3887 		}
3888 	}
3889 
3890 	skb = validate_xmit_xfrm(skb, features, again);
3891 
3892 	return skb;
3893 
3894 out_kfree_skb:
3895 	kfree_skb(skb);
3896 out_null:
3897 	dev_core_stats_tx_dropped_inc(dev);
3898 	return NULL;
3899 }
3900 
3901 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3902 {
3903 	struct sk_buff *next, *head = NULL, *tail;
3904 
3905 	for (; skb != NULL; skb = next) {
3906 		next = skb->next;
3907 		skb_mark_not_on_list(skb);
3908 
3909 		/* in case skb won't be segmented, point to itself */
3910 		skb->prev = skb;
3911 
3912 		skb = validate_xmit_skb(skb, dev, again);
3913 		if (!skb)
3914 			continue;
3915 
3916 		if (!head)
3917 			head = skb;
3918 		else
3919 			tail->next = skb;
3920 		/* If skb was segmented, skb->prev points to
3921 		 * the last segment. If not, it still contains skb.
3922 		 */
3923 		tail = skb->prev;
3924 	}
3925 	return head;
3926 }
3927 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3928 
3929 static void qdisc_pkt_len_init(struct sk_buff *skb)
3930 {
3931 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3932 
3933 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3934 
3935 	/* To get more precise estimation of bytes sent on wire,
3936 	 * we add to pkt_len the headers size of all segments
3937 	 */
3938 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3939 		u16 gso_segs = shinfo->gso_segs;
3940 		unsigned int hdr_len;
3941 
3942 		/* mac layer + network layer */
3943 		hdr_len = skb_transport_offset(skb);
3944 
3945 		/* + transport layer */
3946 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3947 			const struct tcphdr *th;
3948 			struct tcphdr _tcphdr;
3949 
3950 			th = skb_header_pointer(skb, hdr_len,
3951 						sizeof(_tcphdr), &_tcphdr);
3952 			if (likely(th))
3953 				hdr_len += __tcp_hdrlen(th);
3954 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3955 			struct udphdr _udphdr;
3956 
3957 			if (skb_header_pointer(skb, hdr_len,
3958 					       sizeof(_udphdr), &_udphdr))
3959 				hdr_len += sizeof(struct udphdr);
3960 		}
3961 
3962 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3963 			int payload = skb->len - hdr_len;
3964 
3965 			/* Malicious packet. */
3966 			if (payload <= 0)
3967 				return;
3968 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3969 		}
3970 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3971 	}
3972 }
3973 
3974 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3975 			     struct sk_buff **to_free,
3976 			     struct netdev_queue *txq)
3977 {
3978 	int rc;
3979 
3980 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3981 	if (rc == NET_XMIT_SUCCESS)
3982 		trace_qdisc_enqueue(q, txq, skb);
3983 	return rc;
3984 }
3985 
3986 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3987 				 struct net_device *dev,
3988 				 struct netdev_queue *txq)
3989 {
3990 	spinlock_t *root_lock = qdisc_lock(q);
3991 	struct sk_buff *to_free = NULL;
3992 	bool contended;
3993 	int rc;
3994 
3995 	qdisc_calculate_pkt_len(skb, q);
3996 
3997 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3998 
3999 	if (q->flags & TCQ_F_NOLOCK) {
4000 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4001 		    qdisc_run_begin(q)) {
4002 			/* Retest nolock_qdisc_is_empty() within the protection
4003 			 * of q->seqlock to protect from racing with requeuing.
4004 			 */
4005 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4006 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4007 				__qdisc_run(q);
4008 				qdisc_run_end(q);
4009 
4010 				goto no_lock_out;
4011 			}
4012 
4013 			qdisc_bstats_cpu_update(q, skb);
4014 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4015 			    !nolock_qdisc_is_empty(q))
4016 				__qdisc_run(q);
4017 
4018 			qdisc_run_end(q);
4019 			return NET_XMIT_SUCCESS;
4020 		}
4021 
4022 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4023 		qdisc_run(q);
4024 
4025 no_lock_out:
4026 		if (unlikely(to_free))
4027 			kfree_skb_list_reason(to_free,
4028 					      tcf_get_drop_reason(to_free));
4029 		return rc;
4030 	}
4031 
4032 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4033 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4034 		return NET_XMIT_DROP;
4035 	}
4036 	/*
4037 	 * Heuristic to force contended enqueues to serialize on a
4038 	 * separate lock before trying to get qdisc main lock.
4039 	 * This permits qdisc->running owner to get the lock more
4040 	 * often and dequeue packets faster.
4041 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4042 	 * and then other tasks will only enqueue packets. The packets will be
4043 	 * sent after the qdisc owner is scheduled again. To prevent this
4044 	 * scenario the task always serialize on the lock.
4045 	 */
4046 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4047 	if (unlikely(contended))
4048 		spin_lock(&q->busylock);
4049 
4050 	spin_lock(root_lock);
4051 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4052 		__qdisc_drop(skb, &to_free);
4053 		rc = NET_XMIT_DROP;
4054 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4055 		   qdisc_run_begin(q)) {
4056 		/*
4057 		 * This is a work-conserving queue; there are no old skbs
4058 		 * waiting to be sent out; and the qdisc is not running -
4059 		 * xmit the skb directly.
4060 		 */
4061 
4062 		qdisc_bstats_update(q, skb);
4063 
4064 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4065 			if (unlikely(contended)) {
4066 				spin_unlock(&q->busylock);
4067 				contended = false;
4068 			}
4069 			__qdisc_run(q);
4070 		}
4071 
4072 		qdisc_run_end(q);
4073 		rc = NET_XMIT_SUCCESS;
4074 	} else {
4075 		WRITE_ONCE(q->owner, smp_processor_id());
4076 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4077 		WRITE_ONCE(q->owner, -1);
4078 		if (qdisc_run_begin(q)) {
4079 			if (unlikely(contended)) {
4080 				spin_unlock(&q->busylock);
4081 				contended = false;
4082 			}
4083 			__qdisc_run(q);
4084 			qdisc_run_end(q);
4085 		}
4086 	}
4087 	spin_unlock(root_lock);
4088 	if (unlikely(to_free))
4089 		kfree_skb_list_reason(to_free,
4090 				      tcf_get_drop_reason(to_free));
4091 	if (unlikely(contended))
4092 		spin_unlock(&q->busylock);
4093 	return rc;
4094 }
4095 
4096 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4097 static void skb_update_prio(struct sk_buff *skb)
4098 {
4099 	const struct netprio_map *map;
4100 	const struct sock *sk;
4101 	unsigned int prioidx;
4102 
4103 	if (skb->priority)
4104 		return;
4105 	map = rcu_dereference_bh(skb->dev->priomap);
4106 	if (!map)
4107 		return;
4108 	sk = skb_to_full_sk(skb);
4109 	if (!sk)
4110 		return;
4111 
4112 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4113 
4114 	if (prioidx < map->priomap_len)
4115 		skb->priority = map->priomap[prioidx];
4116 }
4117 #else
4118 #define skb_update_prio(skb)
4119 #endif
4120 
4121 /**
4122  *	dev_loopback_xmit - loop back @skb
4123  *	@net: network namespace this loopback is happening in
4124  *	@sk:  sk needed to be a netfilter okfn
4125  *	@skb: buffer to transmit
4126  */
4127 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4128 {
4129 	skb_reset_mac_header(skb);
4130 	__skb_pull(skb, skb_network_offset(skb));
4131 	skb->pkt_type = PACKET_LOOPBACK;
4132 	if (skb->ip_summed == CHECKSUM_NONE)
4133 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4134 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4135 	skb_dst_force(skb);
4136 	netif_rx(skb);
4137 	return 0;
4138 }
4139 EXPORT_SYMBOL(dev_loopback_xmit);
4140 
4141 #ifdef CONFIG_NET_EGRESS
4142 static struct netdev_queue *
4143 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4144 {
4145 	int qm = skb_get_queue_mapping(skb);
4146 
4147 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4148 }
4149 
4150 #ifndef CONFIG_PREEMPT_RT
4151 static bool netdev_xmit_txqueue_skipped(void)
4152 {
4153 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4154 }
4155 
4156 void netdev_xmit_skip_txqueue(bool skip)
4157 {
4158 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4159 }
4160 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4161 
4162 #else
4163 static bool netdev_xmit_txqueue_skipped(void)
4164 {
4165 	return current->net_xmit.skip_txqueue;
4166 }
4167 
4168 void netdev_xmit_skip_txqueue(bool skip)
4169 {
4170 	current->net_xmit.skip_txqueue = skip;
4171 }
4172 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4173 #endif
4174 #endif /* CONFIG_NET_EGRESS */
4175 
4176 #ifdef CONFIG_NET_XGRESS
4177 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4178 		  enum skb_drop_reason *drop_reason)
4179 {
4180 	int ret = TC_ACT_UNSPEC;
4181 #ifdef CONFIG_NET_CLS_ACT
4182 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4183 	struct tcf_result res;
4184 
4185 	if (!miniq)
4186 		return ret;
4187 
4188 	/* Global bypass */
4189 	if (!static_branch_likely(&tcf_sw_enabled_key))
4190 		return ret;
4191 
4192 	/* Block-wise bypass */
4193 	if (tcf_block_bypass_sw(miniq->block))
4194 		return ret;
4195 
4196 	tc_skb_cb(skb)->mru = 0;
4197 	tc_skb_cb(skb)->post_ct = false;
4198 	tcf_set_drop_reason(skb, *drop_reason);
4199 
4200 	mini_qdisc_bstats_cpu_update(miniq, skb);
4201 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4202 	/* Only tcf related quirks below. */
4203 	switch (ret) {
4204 	case TC_ACT_SHOT:
4205 		*drop_reason = tcf_get_drop_reason(skb);
4206 		mini_qdisc_qstats_cpu_drop(miniq);
4207 		break;
4208 	case TC_ACT_OK:
4209 	case TC_ACT_RECLASSIFY:
4210 		skb->tc_index = TC_H_MIN(res.classid);
4211 		break;
4212 	}
4213 #endif /* CONFIG_NET_CLS_ACT */
4214 	return ret;
4215 }
4216 
4217 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4218 
4219 void tcx_inc(void)
4220 {
4221 	static_branch_inc(&tcx_needed_key);
4222 }
4223 
4224 void tcx_dec(void)
4225 {
4226 	static_branch_dec(&tcx_needed_key);
4227 }
4228 
4229 static __always_inline enum tcx_action_base
4230 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4231 	const bool needs_mac)
4232 {
4233 	const struct bpf_mprog_fp *fp;
4234 	const struct bpf_prog *prog;
4235 	int ret = TCX_NEXT;
4236 
4237 	if (needs_mac)
4238 		__skb_push(skb, skb->mac_len);
4239 	bpf_mprog_foreach_prog(entry, fp, prog) {
4240 		bpf_compute_data_pointers(skb);
4241 		ret = bpf_prog_run(prog, skb);
4242 		if (ret != TCX_NEXT)
4243 			break;
4244 	}
4245 	if (needs_mac)
4246 		__skb_pull(skb, skb->mac_len);
4247 	return tcx_action_code(skb, ret);
4248 }
4249 
4250 static __always_inline struct sk_buff *
4251 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4252 		   struct net_device *orig_dev, bool *another)
4253 {
4254 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4255 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4256 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4257 	int sch_ret;
4258 
4259 	if (!entry)
4260 		return skb;
4261 
4262 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4263 	if (*pt_prev) {
4264 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4265 		*pt_prev = NULL;
4266 	}
4267 
4268 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4269 	tcx_set_ingress(skb, true);
4270 
4271 	if (static_branch_unlikely(&tcx_needed_key)) {
4272 		sch_ret = tcx_run(entry, skb, true);
4273 		if (sch_ret != TC_ACT_UNSPEC)
4274 			goto ingress_verdict;
4275 	}
4276 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4277 ingress_verdict:
4278 	switch (sch_ret) {
4279 	case TC_ACT_REDIRECT:
4280 		/* skb_mac_header check was done by BPF, so we can safely
4281 		 * push the L2 header back before redirecting to another
4282 		 * netdev.
4283 		 */
4284 		__skb_push(skb, skb->mac_len);
4285 		if (skb_do_redirect(skb) == -EAGAIN) {
4286 			__skb_pull(skb, skb->mac_len);
4287 			*another = true;
4288 			break;
4289 		}
4290 		*ret = NET_RX_SUCCESS;
4291 		bpf_net_ctx_clear(bpf_net_ctx);
4292 		return NULL;
4293 	case TC_ACT_SHOT:
4294 		kfree_skb_reason(skb, drop_reason);
4295 		*ret = NET_RX_DROP;
4296 		bpf_net_ctx_clear(bpf_net_ctx);
4297 		return NULL;
4298 	/* used by tc_run */
4299 	case TC_ACT_STOLEN:
4300 	case TC_ACT_QUEUED:
4301 	case TC_ACT_TRAP:
4302 		consume_skb(skb);
4303 		fallthrough;
4304 	case TC_ACT_CONSUMED:
4305 		*ret = NET_RX_SUCCESS;
4306 		bpf_net_ctx_clear(bpf_net_ctx);
4307 		return NULL;
4308 	}
4309 	bpf_net_ctx_clear(bpf_net_ctx);
4310 
4311 	return skb;
4312 }
4313 
4314 static __always_inline struct sk_buff *
4315 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4316 {
4317 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4318 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4319 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4320 	int sch_ret;
4321 
4322 	if (!entry)
4323 		return skb;
4324 
4325 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4326 
4327 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4328 	 * already set by the caller.
4329 	 */
4330 	if (static_branch_unlikely(&tcx_needed_key)) {
4331 		sch_ret = tcx_run(entry, skb, false);
4332 		if (sch_ret != TC_ACT_UNSPEC)
4333 			goto egress_verdict;
4334 	}
4335 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4336 egress_verdict:
4337 	switch (sch_ret) {
4338 	case TC_ACT_REDIRECT:
4339 		/* No need to push/pop skb's mac_header here on egress! */
4340 		skb_do_redirect(skb);
4341 		*ret = NET_XMIT_SUCCESS;
4342 		bpf_net_ctx_clear(bpf_net_ctx);
4343 		return NULL;
4344 	case TC_ACT_SHOT:
4345 		kfree_skb_reason(skb, drop_reason);
4346 		*ret = NET_XMIT_DROP;
4347 		bpf_net_ctx_clear(bpf_net_ctx);
4348 		return NULL;
4349 	/* used by tc_run */
4350 	case TC_ACT_STOLEN:
4351 	case TC_ACT_QUEUED:
4352 	case TC_ACT_TRAP:
4353 		consume_skb(skb);
4354 		fallthrough;
4355 	case TC_ACT_CONSUMED:
4356 		*ret = NET_XMIT_SUCCESS;
4357 		bpf_net_ctx_clear(bpf_net_ctx);
4358 		return NULL;
4359 	}
4360 	bpf_net_ctx_clear(bpf_net_ctx);
4361 
4362 	return skb;
4363 }
4364 #else
4365 static __always_inline struct sk_buff *
4366 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4367 		   struct net_device *orig_dev, bool *another)
4368 {
4369 	return skb;
4370 }
4371 
4372 static __always_inline struct sk_buff *
4373 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4374 {
4375 	return skb;
4376 }
4377 #endif /* CONFIG_NET_XGRESS */
4378 
4379 #ifdef CONFIG_XPS
4380 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4381 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4382 {
4383 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4384 	struct xps_map *map;
4385 	int queue_index = -1;
4386 
4387 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4388 		return queue_index;
4389 
4390 	tci *= dev_maps->num_tc;
4391 	tci += tc;
4392 
4393 	map = rcu_dereference(dev_maps->attr_map[tci]);
4394 	if (map) {
4395 		if (map->len == 1)
4396 			queue_index = map->queues[0];
4397 		else
4398 			queue_index = map->queues[reciprocal_scale(
4399 						skb_get_hash(skb), map->len)];
4400 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4401 			queue_index = -1;
4402 	}
4403 	return queue_index;
4404 }
4405 #endif
4406 
4407 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4408 			 struct sk_buff *skb)
4409 {
4410 #ifdef CONFIG_XPS
4411 	struct xps_dev_maps *dev_maps;
4412 	struct sock *sk = skb->sk;
4413 	int queue_index = -1;
4414 
4415 	if (!static_key_false(&xps_needed))
4416 		return -1;
4417 
4418 	rcu_read_lock();
4419 	if (!static_key_false(&xps_rxqs_needed))
4420 		goto get_cpus_map;
4421 
4422 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4423 	if (dev_maps) {
4424 		int tci = sk_rx_queue_get(sk);
4425 
4426 		if (tci >= 0)
4427 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4428 							  tci);
4429 	}
4430 
4431 get_cpus_map:
4432 	if (queue_index < 0) {
4433 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4434 		if (dev_maps) {
4435 			unsigned int tci = skb->sender_cpu - 1;
4436 
4437 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4438 							  tci);
4439 		}
4440 	}
4441 	rcu_read_unlock();
4442 
4443 	return queue_index;
4444 #else
4445 	return -1;
4446 #endif
4447 }
4448 
4449 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4450 		     struct net_device *sb_dev)
4451 {
4452 	return 0;
4453 }
4454 EXPORT_SYMBOL(dev_pick_tx_zero);
4455 
4456 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4457 		     struct net_device *sb_dev)
4458 {
4459 	struct sock *sk = skb->sk;
4460 	int queue_index = sk_tx_queue_get(sk);
4461 
4462 	sb_dev = sb_dev ? : dev;
4463 
4464 	if (queue_index < 0 || skb->ooo_okay ||
4465 	    queue_index >= dev->real_num_tx_queues) {
4466 		int new_index = get_xps_queue(dev, sb_dev, skb);
4467 
4468 		if (new_index < 0)
4469 			new_index = skb_tx_hash(dev, sb_dev, skb);
4470 
4471 		if (queue_index != new_index && sk &&
4472 		    sk_fullsock(sk) &&
4473 		    rcu_access_pointer(sk->sk_dst_cache))
4474 			sk_tx_queue_set(sk, new_index);
4475 
4476 		queue_index = new_index;
4477 	}
4478 
4479 	return queue_index;
4480 }
4481 EXPORT_SYMBOL(netdev_pick_tx);
4482 
4483 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4484 					 struct sk_buff *skb,
4485 					 struct net_device *sb_dev)
4486 {
4487 	int queue_index = 0;
4488 
4489 #ifdef CONFIG_XPS
4490 	u32 sender_cpu = skb->sender_cpu - 1;
4491 
4492 	if (sender_cpu >= (u32)NR_CPUS)
4493 		skb->sender_cpu = raw_smp_processor_id() + 1;
4494 #endif
4495 
4496 	if (dev->real_num_tx_queues != 1) {
4497 		const struct net_device_ops *ops = dev->netdev_ops;
4498 
4499 		if (ops->ndo_select_queue)
4500 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4501 		else
4502 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4503 
4504 		queue_index = netdev_cap_txqueue(dev, queue_index);
4505 	}
4506 
4507 	skb_set_queue_mapping(skb, queue_index);
4508 	return netdev_get_tx_queue(dev, queue_index);
4509 }
4510 
4511 /**
4512  * __dev_queue_xmit() - transmit a buffer
4513  * @skb:	buffer to transmit
4514  * @sb_dev:	suboordinate device used for L2 forwarding offload
4515  *
4516  * Queue a buffer for transmission to a network device. The caller must
4517  * have set the device and priority and built the buffer before calling
4518  * this function. The function can be called from an interrupt.
4519  *
4520  * When calling this method, interrupts MUST be enabled. This is because
4521  * the BH enable code must have IRQs enabled so that it will not deadlock.
4522  *
4523  * Regardless of the return value, the skb is consumed, so it is currently
4524  * difficult to retry a send to this method. (You can bump the ref count
4525  * before sending to hold a reference for retry if you are careful.)
4526  *
4527  * Return:
4528  * * 0				- buffer successfully transmitted
4529  * * positive qdisc return code	- NET_XMIT_DROP etc.
4530  * * negative errno		- other errors
4531  */
4532 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4533 {
4534 	struct net_device *dev = skb->dev;
4535 	struct netdev_queue *txq = NULL;
4536 	struct Qdisc *q;
4537 	int rc = -ENOMEM;
4538 	bool again = false;
4539 
4540 	skb_reset_mac_header(skb);
4541 	skb_assert_len(skb);
4542 
4543 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4544 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4545 
4546 	/* Disable soft irqs for various locks below. Also
4547 	 * stops preemption for RCU.
4548 	 */
4549 	rcu_read_lock_bh();
4550 
4551 	skb_update_prio(skb);
4552 
4553 	qdisc_pkt_len_init(skb);
4554 	tcx_set_ingress(skb, false);
4555 #ifdef CONFIG_NET_EGRESS
4556 	if (static_branch_unlikely(&egress_needed_key)) {
4557 		if (nf_hook_egress_active()) {
4558 			skb = nf_hook_egress(skb, &rc, dev);
4559 			if (!skb)
4560 				goto out;
4561 		}
4562 
4563 		netdev_xmit_skip_txqueue(false);
4564 
4565 		nf_skip_egress(skb, true);
4566 		skb = sch_handle_egress(skb, &rc, dev);
4567 		if (!skb)
4568 			goto out;
4569 		nf_skip_egress(skb, false);
4570 
4571 		if (netdev_xmit_txqueue_skipped())
4572 			txq = netdev_tx_queue_mapping(dev, skb);
4573 	}
4574 #endif
4575 	/* If device/qdisc don't need skb->dst, release it right now while
4576 	 * its hot in this cpu cache.
4577 	 */
4578 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4579 		skb_dst_drop(skb);
4580 	else
4581 		skb_dst_force(skb);
4582 
4583 	if (!txq)
4584 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4585 
4586 	q = rcu_dereference_bh(txq->qdisc);
4587 
4588 	trace_net_dev_queue(skb);
4589 	if (q->enqueue) {
4590 		rc = __dev_xmit_skb(skb, q, dev, txq);
4591 		goto out;
4592 	}
4593 
4594 	/* The device has no queue. Common case for software devices:
4595 	 * loopback, all the sorts of tunnels...
4596 
4597 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4598 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4599 	 * counters.)
4600 	 * However, it is possible, that they rely on protection
4601 	 * made by us here.
4602 
4603 	 * Check this and shot the lock. It is not prone from deadlocks.
4604 	 *Either shot noqueue qdisc, it is even simpler 8)
4605 	 */
4606 	if (dev->flags & IFF_UP) {
4607 		int cpu = smp_processor_id(); /* ok because BHs are off */
4608 
4609 		/* Other cpus might concurrently change txq->xmit_lock_owner
4610 		 * to -1 or to their cpu id, but not to our id.
4611 		 */
4612 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4613 			if (dev_xmit_recursion())
4614 				goto recursion_alert;
4615 
4616 			skb = validate_xmit_skb(skb, dev, &again);
4617 			if (!skb)
4618 				goto out;
4619 
4620 			HARD_TX_LOCK(dev, txq, cpu);
4621 
4622 			if (!netif_xmit_stopped(txq)) {
4623 				dev_xmit_recursion_inc();
4624 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4625 				dev_xmit_recursion_dec();
4626 				if (dev_xmit_complete(rc)) {
4627 					HARD_TX_UNLOCK(dev, txq);
4628 					goto out;
4629 				}
4630 			}
4631 			HARD_TX_UNLOCK(dev, txq);
4632 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4633 					     dev->name);
4634 		} else {
4635 			/* Recursion is detected! It is possible,
4636 			 * unfortunately
4637 			 */
4638 recursion_alert:
4639 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4640 					     dev->name);
4641 		}
4642 	}
4643 
4644 	rc = -ENETDOWN;
4645 	rcu_read_unlock_bh();
4646 
4647 	dev_core_stats_tx_dropped_inc(dev);
4648 	kfree_skb_list(skb);
4649 	return rc;
4650 out:
4651 	rcu_read_unlock_bh();
4652 	return rc;
4653 }
4654 EXPORT_SYMBOL(__dev_queue_xmit);
4655 
4656 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4657 {
4658 	struct net_device *dev = skb->dev;
4659 	struct sk_buff *orig_skb = skb;
4660 	struct netdev_queue *txq;
4661 	int ret = NETDEV_TX_BUSY;
4662 	bool again = false;
4663 
4664 	if (unlikely(!netif_running(dev) ||
4665 		     !netif_carrier_ok(dev)))
4666 		goto drop;
4667 
4668 	skb = validate_xmit_skb_list(skb, dev, &again);
4669 	if (skb != orig_skb)
4670 		goto drop;
4671 
4672 	skb_set_queue_mapping(skb, queue_id);
4673 	txq = skb_get_tx_queue(dev, skb);
4674 
4675 	local_bh_disable();
4676 
4677 	dev_xmit_recursion_inc();
4678 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4679 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4680 		ret = netdev_start_xmit(skb, dev, txq, false);
4681 	HARD_TX_UNLOCK(dev, txq);
4682 	dev_xmit_recursion_dec();
4683 
4684 	local_bh_enable();
4685 	return ret;
4686 drop:
4687 	dev_core_stats_tx_dropped_inc(dev);
4688 	kfree_skb_list(skb);
4689 	return NET_XMIT_DROP;
4690 }
4691 EXPORT_SYMBOL(__dev_direct_xmit);
4692 
4693 /*************************************************************************
4694  *			Receiver routines
4695  *************************************************************************/
4696 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4697 
4698 int weight_p __read_mostly = 64;           /* old backlog weight */
4699 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4700 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4701 
4702 /* Called with irq disabled */
4703 static inline void ____napi_schedule(struct softnet_data *sd,
4704 				     struct napi_struct *napi)
4705 {
4706 	struct task_struct *thread;
4707 
4708 	lockdep_assert_irqs_disabled();
4709 
4710 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4711 		/* Paired with smp_mb__before_atomic() in
4712 		 * napi_enable()/dev_set_threaded().
4713 		 * Use READ_ONCE() to guarantee a complete
4714 		 * read on napi->thread. Only call
4715 		 * wake_up_process() when it's not NULL.
4716 		 */
4717 		thread = READ_ONCE(napi->thread);
4718 		if (thread) {
4719 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4720 				goto use_local_napi;
4721 
4722 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4723 			wake_up_process(thread);
4724 			return;
4725 		}
4726 	}
4727 
4728 use_local_napi:
4729 	list_add_tail(&napi->poll_list, &sd->poll_list);
4730 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4731 	/* If not called from net_rx_action()
4732 	 * we have to raise NET_RX_SOFTIRQ.
4733 	 */
4734 	if (!sd->in_net_rx_action)
4735 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4736 }
4737 
4738 #ifdef CONFIG_RPS
4739 
4740 struct static_key_false rps_needed __read_mostly;
4741 EXPORT_SYMBOL(rps_needed);
4742 struct static_key_false rfs_needed __read_mostly;
4743 EXPORT_SYMBOL(rfs_needed);
4744 
4745 static struct rps_dev_flow *
4746 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4747 	    struct rps_dev_flow *rflow, u16 next_cpu)
4748 {
4749 	if (next_cpu < nr_cpu_ids) {
4750 		u32 head;
4751 #ifdef CONFIG_RFS_ACCEL
4752 		struct netdev_rx_queue *rxqueue;
4753 		struct rps_dev_flow_table *flow_table;
4754 		struct rps_dev_flow *old_rflow;
4755 		u16 rxq_index;
4756 		u32 flow_id;
4757 		int rc;
4758 
4759 		/* Should we steer this flow to a different hardware queue? */
4760 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4761 		    !(dev->features & NETIF_F_NTUPLE))
4762 			goto out;
4763 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4764 		if (rxq_index == skb_get_rx_queue(skb))
4765 			goto out;
4766 
4767 		rxqueue = dev->_rx + rxq_index;
4768 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4769 		if (!flow_table)
4770 			goto out;
4771 		flow_id = skb_get_hash(skb) & flow_table->mask;
4772 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4773 							rxq_index, flow_id);
4774 		if (rc < 0)
4775 			goto out;
4776 		old_rflow = rflow;
4777 		rflow = &flow_table->flows[flow_id];
4778 		WRITE_ONCE(rflow->filter, rc);
4779 		if (old_rflow->filter == rc)
4780 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4781 	out:
4782 #endif
4783 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4784 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4785 	}
4786 
4787 	WRITE_ONCE(rflow->cpu, next_cpu);
4788 	return rflow;
4789 }
4790 
4791 /*
4792  * get_rps_cpu is called from netif_receive_skb and returns the target
4793  * CPU from the RPS map of the receiving queue for a given skb.
4794  * rcu_read_lock must be held on entry.
4795  */
4796 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4797 		       struct rps_dev_flow **rflowp)
4798 {
4799 	const struct rps_sock_flow_table *sock_flow_table;
4800 	struct netdev_rx_queue *rxqueue = dev->_rx;
4801 	struct rps_dev_flow_table *flow_table;
4802 	struct rps_map *map;
4803 	int cpu = -1;
4804 	u32 tcpu;
4805 	u32 hash;
4806 
4807 	if (skb_rx_queue_recorded(skb)) {
4808 		u16 index = skb_get_rx_queue(skb);
4809 
4810 		if (unlikely(index >= dev->real_num_rx_queues)) {
4811 			WARN_ONCE(dev->real_num_rx_queues > 1,
4812 				  "%s received packet on queue %u, but number "
4813 				  "of RX queues is %u\n",
4814 				  dev->name, index, dev->real_num_rx_queues);
4815 			goto done;
4816 		}
4817 		rxqueue += index;
4818 	}
4819 
4820 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4821 
4822 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4823 	map = rcu_dereference(rxqueue->rps_map);
4824 	if (!flow_table && !map)
4825 		goto done;
4826 
4827 	skb_reset_network_header(skb);
4828 	hash = skb_get_hash(skb);
4829 	if (!hash)
4830 		goto done;
4831 
4832 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4833 	if (flow_table && sock_flow_table) {
4834 		struct rps_dev_flow *rflow;
4835 		u32 next_cpu;
4836 		u32 ident;
4837 
4838 		/* First check into global flow table if there is a match.
4839 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4840 		 */
4841 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4842 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4843 			goto try_rps;
4844 
4845 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4846 
4847 		/* OK, now we know there is a match,
4848 		 * we can look at the local (per receive queue) flow table
4849 		 */
4850 		rflow = &flow_table->flows[hash & flow_table->mask];
4851 		tcpu = rflow->cpu;
4852 
4853 		/*
4854 		 * If the desired CPU (where last recvmsg was done) is
4855 		 * different from current CPU (one in the rx-queue flow
4856 		 * table entry), switch if one of the following holds:
4857 		 *   - Current CPU is unset (>= nr_cpu_ids).
4858 		 *   - Current CPU is offline.
4859 		 *   - The current CPU's queue tail has advanced beyond the
4860 		 *     last packet that was enqueued using this table entry.
4861 		 *     This guarantees that all previous packets for the flow
4862 		 *     have been dequeued, thus preserving in order delivery.
4863 		 */
4864 		if (unlikely(tcpu != next_cpu) &&
4865 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4866 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4867 		      rflow->last_qtail)) >= 0)) {
4868 			tcpu = next_cpu;
4869 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4870 		}
4871 
4872 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4873 			*rflowp = rflow;
4874 			cpu = tcpu;
4875 			goto done;
4876 		}
4877 	}
4878 
4879 try_rps:
4880 
4881 	if (map) {
4882 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4883 		if (cpu_online(tcpu)) {
4884 			cpu = tcpu;
4885 			goto done;
4886 		}
4887 	}
4888 
4889 done:
4890 	return cpu;
4891 }
4892 
4893 #ifdef CONFIG_RFS_ACCEL
4894 
4895 /**
4896  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4897  * @dev: Device on which the filter was set
4898  * @rxq_index: RX queue index
4899  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4900  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4901  *
4902  * Drivers that implement ndo_rx_flow_steer() should periodically call
4903  * this function for each installed filter and remove the filters for
4904  * which it returns %true.
4905  */
4906 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4907 			 u32 flow_id, u16 filter_id)
4908 {
4909 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4910 	struct rps_dev_flow_table *flow_table;
4911 	struct rps_dev_flow *rflow;
4912 	bool expire = true;
4913 	unsigned int cpu;
4914 
4915 	rcu_read_lock();
4916 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4917 	if (flow_table && flow_id <= flow_table->mask) {
4918 		rflow = &flow_table->flows[flow_id];
4919 		cpu = READ_ONCE(rflow->cpu);
4920 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4921 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4922 			   READ_ONCE(rflow->last_qtail)) <
4923 		     (int)(10 * flow_table->mask)))
4924 			expire = false;
4925 	}
4926 	rcu_read_unlock();
4927 	return expire;
4928 }
4929 EXPORT_SYMBOL(rps_may_expire_flow);
4930 
4931 #endif /* CONFIG_RFS_ACCEL */
4932 
4933 /* Called from hardirq (IPI) context */
4934 static void rps_trigger_softirq(void *data)
4935 {
4936 	struct softnet_data *sd = data;
4937 
4938 	____napi_schedule(sd, &sd->backlog);
4939 	sd->received_rps++;
4940 }
4941 
4942 #endif /* CONFIG_RPS */
4943 
4944 /* Called from hardirq (IPI) context */
4945 static void trigger_rx_softirq(void *data)
4946 {
4947 	struct softnet_data *sd = data;
4948 
4949 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4950 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4951 }
4952 
4953 /*
4954  * After we queued a packet into sd->input_pkt_queue,
4955  * we need to make sure this queue is serviced soon.
4956  *
4957  * - If this is another cpu queue, link it to our rps_ipi_list,
4958  *   and make sure we will process rps_ipi_list from net_rx_action().
4959  *
4960  * - If this is our own queue, NAPI schedule our backlog.
4961  *   Note that this also raises NET_RX_SOFTIRQ.
4962  */
4963 static void napi_schedule_rps(struct softnet_data *sd)
4964 {
4965 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4966 
4967 #ifdef CONFIG_RPS
4968 	if (sd != mysd) {
4969 		if (use_backlog_threads()) {
4970 			__napi_schedule_irqoff(&sd->backlog);
4971 			return;
4972 		}
4973 
4974 		sd->rps_ipi_next = mysd->rps_ipi_list;
4975 		mysd->rps_ipi_list = sd;
4976 
4977 		/* If not called from net_rx_action() or napi_threaded_poll()
4978 		 * we have to raise NET_RX_SOFTIRQ.
4979 		 */
4980 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4981 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4982 		return;
4983 	}
4984 #endif /* CONFIG_RPS */
4985 	__napi_schedule_irqoff(&mysd->backlog);
4986 }
4987 
4988 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
4989 {
4990 	unsigned long flags;
4991 
4992 	if (use_backlog_threads()) {
4993 		backlog_lock_irq_save(sd, &flags);
4994 
4995 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4996 			__napi_schedule_irqoff(&sd->backlog);
4997 
4998 		backlog_unlock_irq_restore(sd, &flags);
4999 
5000 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5001 		smp_call_function_single_async(cpu, &sd->defer_csd);
5002 	}
5003 }
5004 
5005 #ifdef CONFIG_NET_FLOW_LIMIT
5006 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5007 #endif
5008 
5009 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5010 {
5011 #ifdef CONFIG_NET_FLOW_LIMIT
5012 	struct sd_flow_limit *fl;
5013 	struct softnet_data *sd;
5014 	unsigned int old_flow, new_flow;
5015 
5016 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5017 		return false;
5018 
5019 	sd = this_cpu_ptr(&softnet_data);
5020 
5021 	rcu_read_lock();
5022 	fl = rcu_dereference(sd->flow_limit);
5023 	if (fl) {
5024 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5025 		old_flow = fl->history[fl->history_head];
5026 		fl->history[fl->history_head] = new_flow;
5027 
5028 		fl->history_head++;
5029 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5030 
5031 		if (likely(fl->buckets[old_flow]))
5032 			fl->buckets[old_flow]--;
5033 
5034 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5035 			fl->count++;
5036 			rcu_read_unlock();
5037 			return true;
5038 		}
5039 	}
5040 	rcu_read_unlock();
5041 #endif
5042 	return false;
5043 }
5044 
5045 /*
5046  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5047  * queue (may be a remote CPU queue).
5048  */
5049 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5050 			      unsigned int *qtail)
5051 {
5052 	enum skb_drop_reason reason;
5053 	struct softnet_data *sd;
5054 	unsigned long flags;
5055 	unsigned int qlen;
5056 	int max_backlog;
5057 	u32 tail;
5058 
5059 	reason = SKB_DROP_REASON_DEV_READY;
5060 	if (!netif_running(skb->dev))
5061 		goto bad_dev;
5062 
5063 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5064 	sd = &per_cpu(softnet_data, cpu);
5065 
5066 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5067 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5068 	if (unlikely(qlen > max_backlog))
5069 		goto cpu_backlog_drop;
5070 	backlog_lock_irq_save(sd, &flags);
5071 	qlen = skb_queue_len(&sd->input_pkt_queue);
5072 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5073 		if (!qlen) {
5074 			/* Schedule NAPI for backlog device. We can use
5075 			 * non atomic operation as we own the queue lock.
5076 			 */
5077 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5078 						&sd->backlog.state))
5079 				napi_schedule_rps(sd);
5080 		}
5081 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5082 		tail = rps_input_queue_tail_incr(sd);
5083 		backlog_unlock_irq_restore(sd, &flags);
5084 
5085 		/* save the tail outside of the critical section */
5086 		rps_input_queue_tail_save(qtail, tail);
5087 		return NET_RX_SUCCESS;
5088 	}
5089 
5090 	backlog_unlock_irq_restore(sd, &flags);
5091 
5092 cpu_backlog_drop:
5093 	atomic_inc(&sd->dropped);
5094 bad_dev:
5095 	dev_core_stats_rx_dropped_inc(skb->dev);
5096 	kfree_skb_reason(skb, reason);
5097 	return NET_RX_DROP;
5098 }
5099 
5100 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5101 {
5102 	struct net_device *dev = skb->dev;
5103 	struct netdev_rx_queue *rxqueue;
5104 
5105 	rxqueue = dev->_rx;
5106 
5107 	if (skb_rx_queue_recorded(skb)) {
5108 		u16 index = skb_get_rx_queue(skb);
5109 
5110 		if (unlikely(index >= dev->real_num_rx_queues)) {
5111 			WARN_ONCE(dev->real_num_rx_queues > 1,
5112 				  "%s received packet on queue %u, but number "
5113 				  "of RX queues is %u\n",
5114 				  dev->name, index, dev->real_num_rx_queues);
5115 
5116 			return rxqueue; /* Return first rxqueue */
5117 		}
5118 		rxqueue += index;
5119 	}
5120 	return rxqueue;
5121 }
5122 
5123 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5124 			     const struct bpf_prog *xdp_prog)
5125 {
5126 	void *orig_data, *orig_data_end, *hard_start;
5127 	struct netdev_rx_queue *rxqueue;
5128 	bool orig_bcast, orig_host;
5129 	u32 mac_len, frame_sz;
5130 	__be16 orig_eth_type;
5131 	struct ethhdr *eth;
5132 	u32 metalen, act;
5133 	int off;
5134 
5135 	/* The XDP program wants to see the packet starting at the MAC
5136 	 * header.
5137 	 */
5138 	mac_len = skb->data - skb_mac_header(skb);
5139 	hard_start = skb->data - skb_headroom(skb);
5140 
5141 	/* SKB "head" area always have tailroom for skb_shared_info */
5142 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5143 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5144 
5145 	rxqueue = netif_get_rxqueue(skb);
5146 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5147 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5148 			 skb_headlen(skb) + mac_len, true);
5149 	if (skb_is_nonlinear(skb)) {
5150 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5151 		xdp_buff_set_frags_flag(xdp);
5152 	} else {
5153 		xdp_buff_clear_frags_flag(xdp);
5154 	}
5155 
5156 	orig_data_end = xdp->data_end;
5157 	orig_data = xdp->data;
5158 	eth = (struct ethhdr *)xdp->data;
5159 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5160 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5161 	orig_eth_type = eth->h_proto;
5162 
5163 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5164 
5165 	/* check if bpf_xdp_adjust_head was used */
5166 	off = xdp->data - orig_data;
5167 	if (off) {
5168 		if (off > 0)
5169 			__skb_pull(skb, off);
5170 		else if (off < 0)
5171 			__skb_push(skb, -off);
5172 
5173 		skb->mac_header += off;
5174 		skb_reset_network_header(skb);
5175 	}
5176 
5177 	/* check if bpf_xdp_adjust_tail was used */
5178 	off = xdp->data_end - orig_data_end;
5179 	if (off != 0) {
5180 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5181 		skb->len += off; /* positive on grow, negative on shrink */
5182 	}
5183 
5184 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5185 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5186 	 */
5187 	if (xdp_buff_has_frags(xdp))
5188 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5189 	else
5190 		skb->data_len = 0;
5191 
5192 	/* check if XDP changed eth hdr such SKB needs update */
5193 	eth = (struct ethhdr *)xdp->data;
5194 	if ((orig_eth_type != eth->h_proto) ||
5195 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5196 						  skb->dev->dev_addr)) ||
5197 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5198 		__skb_push(skb, ETH_HLEN);
5199 		skb->pkt_type = PACKET_HOST;
5200 		skb->protocol = eth_type_trans(skb, skb->dev);
5201 	}
5202 
5203 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5204 	 * before calling us again on redirect path. We do not call do_redirect
5205 	 * as we leave that up to the caller.
5206 	 *
5207 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5208 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5209 	 */
5210 	switch (act) {
5211 	case XDP_REDIRECT:
5212 	case XDP_TX:
5213 		__skb_push(skb, mac_len);
5214 		break;
5215 	case XDP_PASS:
5216 		metalen = xdp->data - xdp->data_meta;
5217 		if (metalen)
5218 			skb_metadata_set(skb, metalen);
5219 		break;
5220 	}
5221 
5222 	return act;
5223 }
5224 
5225 static int
5226 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5227 {
5228 	struct sk_buff *skb = *pskb;
5229 	int err, hroom, troom;
5230 
5231 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5232 		return 0;
5233 
5234 	/* In case we have to go down the path and also linearize,
5235 	 * then lets do the pskb_expand_head() work just once here.
5236 	 */
5237 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5238 	troom = skb->tail + skb->data_len - skb->end;
5239 	err = pskb_expand_head(skb,
5240 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5241 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5242 	if (err)
5243 		return err;
5244 
5245 	return skb_linearize(skb);
5246 }
5247 
5248 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5249 				     struct xdp_buff *xdp,
5250 				     const struct bpf_prog *xdp_prog)
5251 {
5252 	struct sk_buff *skb = *pskb;
5253 	u32 mac_len, act = XDP_DROP;
5254 
5255 	/* Reinjected packets coming from act_mirred or similar should
5256 	 * not get XDP generic processing.
5257 	 */
5258 	if (skb_is_redirected(skb))
5259 		return XDP_PASS;
5260 
5261 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5262 	 * bytes. This is the guarantee that also native XDP provides,
5263 	 * thus we need to do it here as well.
5264 	 */
5265 	mac_len = skb->data - skb_mac_header(skb);
5266 	__skb_push(skb, mac_len);
5267 
5268 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5269 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5270 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5271 			goto do_drop;
5272 	}
5273 
5274 	__skb_pull(*pskb, mac_len);
5275 
5276 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5277 	switch (act) {
5278 	case XDP_REDIRECT:
5279 	case XDP_TX:
5280 	case XDP_PASS:
5281 		break;
5282 	default:
5283 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5284 		fallthrough;
5285 	case XDP_ABORTED:
5286 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5287 		fallthrough;
5288 	case XDP_DROP:
5289 	do_drop:
5290 		kfree_skb(*pskb);
5291 		break;
5292 	}
5293 
5294 	return act;
5295 }
5296 
5297 /* When doing generic XDP we have to bypass the qdisc layer and the
5298  * network taps in order to match in-driver-XDP behavior. This also means
5299  * that XDP packets are able to starve other packets going through a qdisc,
5300  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5301  * queues, so they do not have this starvation issue.
5302  */
5303 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5304 {
5305 	struct net_device *dev = skb->dev;
5306 	struct netdev_queue *txq;
5307 	bool free_skb = true;
5308 	int cpu, rc;
5309 
5310 	txq = netdev_core_pick_tx(dev, skb, NULL);
5311 	cpu = smp_processor_id();
5312 	HARD_TX_LOCK(dev, txq, cpu);
5313 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5314 		rc = netdev_start_xmit(skb, dev, txq, 0);
5315 		if (dev_xmit_complete(rc))
5316 			free_skb = false;
5317 	}
5318 	HARD_TX_UNLOCK(dev, txq);
5319 	if (free_skb) {
5320 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5321 		dev_core_stats_tx_dropped_inc(dev);
5322 		kfree_skb(skb);
5323 	}
5324 }
5325 
5326 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5327 
5328 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5329 {
5330 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5331 
5332 	if (xdp_prog) {
5333 		struct xdp_buff xdp;
5334 		u32 act;
5335 		int err;
5336 
5337 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5338 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5339 		if (act != XDP_PASS) {
5340 			switch (act) {
5341 			case XDP_REDIRECT:
5342 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5343 							      &xdp, xdp_prog);
5344 				if (err)
5345 					goto out_redir;
5346 				break;
5347 			case XDP_TX:
5348 				generic_xdp_tx(*pskb, xdp_prog);
5349 				break;
5350 			}
5351 			bpf_net_ctx_clear(bpf_net_ctx);
5352 			return XDP_DROP;
5353 		}
5354 		bpf_net_ctx_clear(bpf_net_ctx);
5355 	}
5356 	return XDP_PASS;
5357 out_redir:
5358 	bpf_net_ctx_clear(bpf_net_ctx);
5359 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5360 	return XDP_DROP;
5361 }
5362 EXPORT_SYMBOL_GPL(do_xdp_generic);
5363 
5364 static int netif_rx_internal(struct sk_buff *skb)
5365 {
5366 	int ret;
5367 
5368 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5369 
5370 	trace_netif_rx(skb);
5371 
5372 #ifdef CONFIG_RPS
5373 	if (static_branch_unlikely(&rps_needed)) {
5374 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5375 		int cpu;
5376 
5377 		rcu_read_lock();
5378 
5379 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5380 		if (cpu < 0)
5381 			cpu = smp_processor_id();
5382 
5383 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5384 
5385 		rcu_read_unlock();
5386 	} else
5387 #endif
5388 	{
5389 		unsigned int qtail;
5390 
5391 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5392 	}
5393 	return ret;
5394 }
5395 
5396 /**
5397  *	__netif_rx	-	Slightly optimized version of netif_rx
5398  *	@skb: buffer to post
5399  *
5400  *	This behaves as netif_rx except that it does not disable bottom halves.
5401  *	As a result this function may only be invoked from the interrupt context
5402  *	(either hard or soft interrupt).
5403  */
5404 int __netif_rx(struct sk_buff *skb)
5405 {
5406 	int ret;
5407 
5408 	lockdep_assert_once(hardirq_count() | softirq_count());
5409 
5410 	trace_netif_rx_entry(skb);
5411 	ret = netif_rx_internal(skb);
5412 	trace_netif_rx_exit(ret);
5413 	return ret;
5414 }
5415 EXPORT_SYMBOL(__netif_rx);
5416 
5417 /**
5418  *	netif_rx	-	post buffer to the network code
5419  *	@skb: buffer to post
5420  *
5421  *	This function receives a packet from a device driver and queues it for
5422  *	the upper (protocol) levels to process via the backlog NAPI device. It
5423  *	always succeeds. The buffer may be dropped during processing for
5424  *	congestion control or by the protocol layers.
5425  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5426  *	driver should use NAPI and GRO.
5427  *	This function can used from interrupt and from process context. The
5428  *	caller from process context must not disable interrupts before invoking
5429  *	this function.
5430  *
5431  *	return values:
5432  *	NET_RX_SUCCESS	(no congestion)
5433  *	NET_RX_DROP     (packet was dropped)
5434  *
5435  */
5436 int netif_rx(struct sk_buff *skb)
5437 {
5438 	bool need_bh_off = !(hardirq_count() | softirq_count());
5439 	int ret;
5440 
5441 	if (need_bh_off)
5442 		local_bh_disable();
5443 	trace_netif_rx_entry(skb);
5444 	ret = netif_rx_internal(skb);
5445 	trace_netif_rx_exit(ret);
5446 	if (need_bh_off)
5447 		local_bh_enable();
5448 	return ret;
5449 }
5450 EXPORT_SYMBOL(netif_rx);
5451 
5452 static __latent_entropy void net_tx_action(void)
5453 {
5454 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5455 
5456 	if (sd->completion_queue) {
5457 		struct sk_buff *clist;
5458 
5459 		local_irq_disable();
5460 		clist = sd->completion_queue;
5461 		sd->completion_queue = NULL;
5462 		local_irq_enable();
5463 
5464 		while (clist) {
5465 			struct sk_buff *skb = clist;
5466 
5467 			clist = clist->next;
5468 
5469 			WARN_ON(refcount_read(&skb->users));
5470 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5471 				trace_consume_skb(skb, net_tx_action);
5472 			else
5473 				trace_kfree_skb(skb, net_tx_action,
5474 						get_kfree_skb_cb(skb)->reason, NULL);
5475 
5476 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5477 				__kfree_skb(skb);
5478 			else
5479 				__napi_kfree_skb(skb,
5480 						 get_kfree_skb_cb(skb)->reason);
5481 		}
5482 	}
5483 
5484 	if (sd->output_queue) {
5485 		struct Qdisc *head;
5486 
5487 		local_irq_disable();
5488 		head = sd->output_queue;
5489 		sd->output_queue = NULL;
5490 		sd->output_queue_tailp = &sd->output_queue;
5491 		local_irq_enable();
5492 
5493 		rcu_read_lock();
5494 
5495 		while (head) {
5496 			struct Qdisc *q = head;
5497 			spinlock_t *root_lock = NULL;
5498 
5499 			head = head->next_sched;
5500 
5501 			/* We need to make sure head->next_sched is read
5502 			 * before clearing __QDISC_STATE_SCHED
5503 			 */
5504 			smp_mb__before_atomic();
5505 
5506 			if (!(q->flags & TCQ_F_NOLOCK)) {
5507 				root_lock = qdisc_lock(q);
5508 				spin_lock(root_lock);
5509 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5510 						     &q->state))) {
5511 				/* There is a synchronize_net() between
5512 				 * STATE_DEACTIVATED flag being set and
5513 				 * qdisc_reset()/some_qdisc_is_busy() in
5514 				 * dev_deactivate(), so we can safely bail out
5515 				 * early here to avoid data race between
5516 				 * qdisc_deactivate() and some_qdisc_is_busy()
5517 				 * for lockless qdisc.
5518 				 */
5519 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5520 				continue;
5521 			}
5522 
5523 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5524 			qdisc_run(q);
5525 			if (root_lock)
5526 				spin_unlock(root_lock);
5527 		}
5528 
5529 		rcu_read_unlock();
5530 	}
5531 
5532 	xfrm_dev_backlog(sd);
5533 }
5534 
5535 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5536 /* This hook is defined here for ATM LANE */
5537 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5538 			     unsigned char *addr) __read_mostly;
5539 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5540 #endif
5541 
5542 /**
5543  *	netdev_is_rx_handler_busy - check if receive handler is registered
5544  *	@dev: device to check
5545  *
5546  *	Check if a receive handler is already registered for a given device.
5547  *	Return true if there one.
5548  *
5549  *	The caller must hold the rtnl_mutex.
5550  */
5551 bool netdev_is_rx_handler_busy(struct net_device *dev)
5552 {
5553 	ASSERT_RTNL();
5554 	return dev && rtnl_dereference(dev->rx_handler);
5555 }
5556 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5557 
5558 /**
5559  *	netdev_rx_handler_register - register receive handler
5560  *	@dev: device to register a handler for
5561  *	@rx_handler: receive handler to register
5562  *	@rx_handler_data: data pointer that is used by rx handler
5563  *
5564  *	Register a receive handler for a device. This handler will then be
5565  *	called from __netif_receive_skb. A negative errno code is returned
5566  *	on a failure.
5567  *
5568  *	The caller must hold the rtnl_mutex.
5569  *
5570  *	For a general description of rx_handler, see enum rx_handler_result.
5571  */
5572 int netdev_rx_handler_register(struct net_device *dev,
5573 			       rx_handler_func_t *rx_handler,
5574 			       void *rx_handler_data)
5575 {
5576 	if (netdev_is_rx_handler_busy(dev))
5577 		return -EBUSY;
5578 
5579 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5580 		return -EINVAL;
5581 
5582 	/* Note: rx_handler_data must be set before rx_handler */
5583 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5584 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5585 
5586 	return 0;
5587 }
5588 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5589 
5590 /**
5591  *	netdev_rx_handler_unregister - unregister receive handler
5592  *	@dev: device to unregister a handler from
5593  *
5594  *	Unregister a receive handler from a device.
5595  *
5596  *	The caller must hold the rtnl_mutex.
5597  */
5598 void netdev_rx_handler_unregister(struct net_device *dev)
5599 {
5600 
5601 	ASSERT_RTNL();
5602 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5603 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5604 	 * section has a guarantee to see a non NULL rx_handler_data
5605 	 * as well.
5606 	 */
5607 	synchronize_net();
5608 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5609 }
5610 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5611 
5612 /*
5613  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5614  * the special handling of PFMEMALLOC skbs.
5615  */
5616 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5617 {
5618 	switch (skb->protocol) {
5619 	case htons(ETH_P_ARP):
5620 	case htons(ETH_P_IP):
5621 	case htons(ETH_P_IPV6):
5622 	case htons(ETH_P_8021Q):
5623 	case htons(ETH_P_8021AD):
5624 		return true;
5625 	default:
5626 		return false;
5627 	}
5628 }
5629 
5630 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5631 			     int *ret, struct net_device *orig_dev)
5632 {
5633 	if (nf_hook_ingress_active(skb)) {
5634 		int ingress_retval;
5635 
5636 		if (*pt_prev) {
5637 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5638 			*pt_prev = NULL;
5639 		}
5640 
5641 		rcu_read_lock();
5642 		ingress_retval = nf_hook_ingress(skb);
5643 		rcu_read_unlock();
5644 		return ingress_retval;
5645 	}
5646 	return 0;
5647 }
5648 
5649 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5650 				    struct packet_type **ppt_prev)
5651 {
5652 	struct packet_type *ptype, *pt_prev;
5653 	rx_handler_func_t *rx_handler;
5654 	struct sk_buff *skb = *pskb;
5655 	struct net_device *orig_dev;
5656 	bool deliver_exact = false;
5657 	int ret = NET_RX_DROP;
5658 	__be16 type;
5659 
5660 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5661 
5662 	trace_netif_receive_skb(skb);
5663 
5664 	orig_dev = skb->dev;
5665 
5666 	skb_reset_network_header(skb);
5667 #if !defined(CONFIG_DEBUG_NET)
5668 	/* We plan to no longer reset the transport header here.
5669 	 * Give some time to fuzzers and dev build to catch bugs
5670 	 * in network stacks.
5671 	 */
5672 	if (!skb_transport_header_was_set(skb))
5673 		skb_reset_transport_header(skb);
5674 #endif
5675 	skb_reset_mac_len(skb);
5676 
5677 	pt_prev = NULL;
5678 
5679 another_round:
5680 	skb->skb_iif = skb->dev->ifindex;
5681 
5682 	__this_cpu_inc(softnet_data.processed);
5683 
5684 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5685 		int ret2;
5686 
5687 		migrate_disable();
5688 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5689 				      &skb);
5690 		migrate_enable();
5691 
5692 		if (ret2 != XDP_PASS) {
5693 			ret = NET_RX_DROP;
5694 			goto out;
5695 		}
5696 	}
5697 
5698 	if (eth_type_vlan(skb->protocol)) {
5699 		skb = skb_vlan_untag(skb);
5700 		if (unlikely(!skb))
5701 			goto out;
5702 	}
5703 
5704 	if (skb_skip_tc_classify(skb))
5705 		goto skip_classify;
5706 
5707 	if (pfmemalloc)
5708 		goto skip_taps;
5709 
5710 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5711 		if (pt_prev)
5712 			ret = deliver_skb(skb, pt_prev, orig_dev);
5713 		pt_prev = ptype;
5714 	}
5715 
5716 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5717 		if (pt_prev)
5718 			ret = deliver_skb(skb, pt_prev, orig_dev);
5719 		pt_prev = ptype;
5720 	}
5721 
5722 skip_taps:
5723 #ifdef CONFIG_NET_INGRESS
5724 	if (static_branch_unlikely(&ingress_needed_key)) {
5725 		bool another = false;
5726 
5727 		nf_skip_egress(skb, true);
5728 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5729 					 &another);
5730 		if (another)
5731 			goto another_round;
5732 		if (!skb)
5733 			goto out;
5734 
5735 		nf_skip_egress(skb, false);
5736 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5737 			goto out;
5738 	}
5739 #endif
5740 	skb_reset_redirect(skb);
5741 skip_classify:
5742 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5743 		goto drop;
5744 
5745 	if (skb_vlan_tag_present(skb)) {
5746 		if (pt_prev) {
5747 			ret = deliver_skb(skb, pt_prev, orig_dev);
5748 			pt_prev = NULL;
5749 		}
5750 		if (vlan_do_receive(&skb))
5751 			goto another_round;
5752 		else if (unlikely(!skb))
5753 			goto out;
5754 	}
5755 
5756 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5757 	if (rx_handler) {
5758 		if (pt_prev) {
5759 			ret = deliver_skb(skb, pt_prev, orig_dev);
5760 			pt_prev = NULL;
5761 		}
5762 		switch (rx_handler(&skb)) {
5763 		case RX_HANDLER_CONSUMED:
5764 			ret = NET_RX_SUCCESS;
5765 			goto out;
5766 		case RX_HANDLER_ANOTHER:
5767 			goto another_round;
5768 		case RX_HANDLER_EXACT:
5769 			deliver_exact = true;
5770 			break;
5771 		case RX_HANDLER_PASS:
5772 			break;
5773 		default:
5774 			BUG();
5775 		}
5776 	}
5777 
5778 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5779 check_vlan_id:
5780 		if (skb_vlan_tag_get_id(skb)) {
5781 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5782 			 * find vlan device.
5783 			 */
5784 			skb->pkt_type = PACKET_OTHERHOST;
5785 		} else if (eth_type_vlan(skb->protocol)) {
5786 			/* Outer header is 802.1P with vlan 0, inner header is
5787 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5788 			 * not find vlan dev for vlan id 0.
5789 			 */
5790 			__vlan_hwaccel_clear_tag(skb);
5791 			skb = skb_vlan_untag(skb);
5792 			if (unlikely(!skb))
5793 				goto out;
5794 			if (vlan_do_receive(&skb))
5795 				/* After stripping off 802.1P header with vlan 0
5796 				 * vlan dev is found for inner header.
5797 				 */
5798 				goto another_round;
5799 			else if (unlikely(!skb))
5800 				goto out;
5801 			else
5802 				/* We have stripped outer 802.1P vlan 0 header.
5803 				 * But could not find vlan dev.
5804 				 * check again for vlan id to set OTHERHOST.
5805 				 */
5806 				goto check_vlan_id;
5807 		}
5808 		/* Note: we might in the future use prio bits
5809 		 * and set skb->priority like in vlan_do_receive()
5810 		 * For the time being, just ignore Priority Code Point
5811 		 */
5812 		__vlan_hwaccel_clear_tag(skb);
5813 	}
5814 
5815 	type = skb->protocol;
5816 
5817 	/* deliver only exact match when indicated */
5818 	if (likely(!deliver_exact)) {
5819 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5820 				       &ptype_base[ntohs(type) &
5821 						   PTYPE_HASH_MASK]);
5822 	}
5823 
5824 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5825 			       &orig_dev->ptype_specific);
5826 
5827 	if (unlikely(skb->dev != orig_dev)) {
5828 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5829 				       &skb->dev->ptype_specific);
5830 	}
5831 
5832 	if (pt_prev) {
5833 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5834 			goto drop;
5835 		*ppt_prev = pt_prev;
5836 	} else {
5837 drop:
5838 		if (!deliver_exact)
5839 			dev_core_stats_rx_dropped_inc(skb->dev);
5840 		else
5841 			dev_core_stats_rx_nohandler_inc(skb->dev);
5842 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5843 		/* Jamal, now you will not able to escape explaining
5844 		 * me how you were going to use this. :-)
5845 		 */
5846 		ret = NET_RX_DROP;
5847 	}
5848 
5849 out:
5850 	/* The invariant here is that if *ppt_prev is not NULL
5851 	 * then skb should also be non-NULL.
5852 	 *
5853 	 * Apparently *ppt_prev assignment above holds this invariant due to
5854 	 * skb dereferencing near it.
5855 	 */
5856 	*pskb = skb;
5857 	return ret;
5858 }
5859 
5860 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5861 {
5862 	struct net_device *orig_dev = skb->dev;
5863 	struct packet_type *pt_prev = NULL;
5864 	int ret;
5865 
5866 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5867 	if (pt_prev)
5868 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5869 					 skb->dev, pt_prev, orig_dev);
5870 	return ret;
5871 }
5872 
5873 /**
5874  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5875  *	@skb: buffer to process
5876  *
5877  *	More direct receive version of netif_receive_skb().  It should
5878  *	only be used by callers that have a need to skip RPS and Generic XDP.
5879  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5880  *
5881  *	This function may only be called from softirq context and interrupts
5882  *	should be enabled.
5883  *
5884  *	Return values (usually ignored):
5885  *	NET_RX_SUCCESS: no congestion
5886  *	NET_RX_DROP: packet was dropped
5887  */
5888 int netif_receive_skb_core(struct sk_buff *skb)
5889 {
5890 	int ret;
5891 
5892 	rcu_read_lock();
5893 	ret = __netif_receive_skb_one_core(skb, false);
5894 	rcu_read_unlock();
5895 
5896 	return ret;
5897 }
5898 EXPORT_SYMBOL(netif_receive_skb_core);
5899 
5900 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5901 						  struct packet_type *pt_prev,
5902 						  struct net_device *orig_dev)
5903 {
5904 	struct sk_buff *skb, *next;
5905 
5906 	if (!pt_prev)
5907 		return;
5908 	if (list_empty(head))
5909 		return;
5910 	if (pt_prev->list_func != NULL)
5911 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5912 				   ip_list_rcv, head, pt_prev, orig_dev);
5913 	else
5914 		list_for_each_entry_safe(skb, next, head, list) {
5915 			skb_list_del_init(skb);
5916 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5917 		}
5918 }
5919 
5920 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5921 {
5922 	/* Fast-path assumptions:
5923 	 * - There is no RX handler.
5924 	 * - Only one packet_type matches.
5925 	 * If either of these fails, we will end up doing some per-packet
5926 	 * processing in-line, then handling the 'last ptype' for the whole
5927 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5928 	 * because the 'last ptype' must be constant across the sublist, and all
5929 	 * other ptypes are handled per-packet.
5930 	 */
5931 	/* Current (common) ptype of sublist */
5932 	struct packet_type *pt_curr = NULL;
5933 	/* Current (common) orig_dev of sublist */
5934 	struct net_device *od_curr = NULL;
5935 	struct sk_buff *skb, *next;
5936 	LIST_HEAD(sublist);
5937 
5938 	list_for_each_entry_safe(skb, next, head, list) {
5939 		struct net_device *orig_dev = skb->dev;
5940 		struct packet_type *pt_prev = NULL;
5941 
5942 		skb_list_del_init(skb);
5943 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5944 		if (!pt_prev)
5945 			continue;
5946 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5947 			/* dispatch old sublist */
5948 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5949 			/* start new sublist */
5950 			INIT_LIST_HEAD(&sublist);
5951 			pt_curr = pt_prev;
5952 			od_curr = orig_dev;
5953 		}
5954 		list_add_tail(&skb->list, &sublist);
5955 	}
5956 
5957 	/* dispatch final sublist */
5958 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5959 }
5960 
5961 static int __netif_receive_skb(struct sk_buff *skb)
5962 {
5963 	int ret;
5964 
5965 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5966 		unsigned int noreclaim_flag;
5967 
5968 		/*
5969 		 * PFMEMALLOC skbs are special, they should
5970 		 * - be delivered to SOCK_MEMALLOC sockets only
5971 		 * - stay away from userspace
5972 		 * - have bounded memory usage
5973 		 *
5974 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5975 		 * context down to all allocation sites.
5976 		 */
5977 		noreclaim_flag = memalloc_noreclaim_save();
5978 		ret = __netif_receive_skb_one_core(skb, true);
5979 		memalloc_noreclaim_restore(noreclaim_flag);
5980 	} else
5981 		ret = __netif_receive_skb_one_core(skb, false);
5982 
5983 	return ret;
5984 }
5985 
5986 static void __netif_receive_skb_list(struct list_head *head)
5987 {
5988 	unsigned long noreclaim_flag = 0;
5989 	struct sk_buff *skb, *next;
5990 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5991 
5992 	list_for_each_entry_safe(skb, next, head, list) {
5993 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5994 			struct list_head sublist;
5995 
5996 			/* Handle the previous sublist */
5997 			list_cut_before(&sublist, head, &skb->list);
5998 			if (!list_empty(&sublist))
5999 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6000 			pfmemalloc = !pfmemalloc;
6001 			/* See comments in __netif_receive_skb */
6002 			if (pfmemalloc)
6003 				noreclaim_flag = memalloc_noreclaim_save();
6004 			else
6005 				memalloc_noreclaim_restore(noreclaim_flag);
6006 		}
6007 	}
6008 	/* Handle the remaining sublist */
6009 	if (!list_empty(head))
6010 		__netif_receive_skb_list_core(head, pfmemalloc);
6011 	/* Restore pflags */
6012 	if (pfmemalloc)
6013 		memalloc_noreclaim_restore(noreclaim_flag);
6014 }
6015 
6016 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6017 {
6018 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6019 	struct bpf_prog *new = xdp->prog;
6020 	int ret = 0;
6021 
6022 	switch (xdp->command) {
6023 	case XDP_SETUP_PROG:
6024 		rcu_assign_pointer(dev->xdp_prog, new);
6025 		if (old)
6026 			bpf_prog_put(old);
6027 
6028 		if (old && !new) {
6029 			static_branch_dec(&generic_xdp_needed_key);
6030 		} else if (new && !old) {
6031 			static_branch_inc(&generic_xdp_needed_key);
6032 			dev_disable_lro(dev);
6033 			dev_disable_gro_hw(dev);
6034 		}
6035 		break;
6036 
6037 	default:
6038 		ret = -EINVAL;
6039 		break;
6040 	}
6041 
6042 	return ret;
6043 }
6044 
6045 static int netif_receive_skb_internal(struct sk_buff *skb)
6046 {
6047 	int ret;
6048 
6049 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6050 
6051 	if (skb_defer_rx_timestamp(skb))
6052 		return NET_RX_SUCCESS;
6053 
6054 	rcu_read_lock();
6055 #ifdef CONFIG_RPS
6056 	if (static_branch_unlikely(&rps_needed)) {
6057 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6058 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6059 
6060 		if (cpu >= 0) {
6061 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6062 			rcu_read_unlock();
6063 			return ret;
6064 		}
6065 	}
6066 #endif
6067 	ret = __netif_receive_skb(skb);
6068 	rcu_read_unlock();
6069 	return ret;
6070 }
6071 
6072 void netif_receive_skb_list_internal(struct list_head *head)
6073 {
6074 	struct sk_buff *skb, *next;
6075 	LIST_HEAD(sublist);
6076 
6077 	list_for_each_entry_safe(skb, next, head, list) {
6078 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6079 				    skb);
6080 		skb_list_del_init(skb);
6081 		if (!skb_defer_rx_timestamp(skb))
6082 			list_add_tail(&skb->list, &sublist);
6083 	}
6084 	list_splice_init(&sublist, head);
6085 
6086 	rcu_read_lock();
6087 #ifdef CONFIG_RPS
6088 	if (static_branch_unlikely(&rps_needed)) {
6089 		list_for_each_entry_safe(skb, next, head, list) {
6090 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6091 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6092 
6093 			if (cpu >= 0) {
6094 				/* Will be handled, remove from list */
6095 				skb_list_del_init(skb);
6096 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6097 			}
6098 		}
6099 	}
6100 #endif
6101 	__netif_receive_skb_list(head);
6102 	rcu_read_unlock();
6103 }
6104 
6105 /**
6106  *	netif_receive_skb - process receive buffer from network
6107  *	@skb: buffer to process
6108  *
6109  *	netif_receive_skb() is the main receive data processing function.
6110  *	It always succeeds. The buffer may be dropped during processing
6111  *	for congestion control or by the protocol layers.
6112  *
6113  *	This function may only be called from softirq context and interrupts
6114  *	should be enabled.
6115  *
6116  *	Return values (usually ignored):
6117  *	NET_RX_SUCCESS: no congestion
6118  *	NET_RX_DROP: packet was dropped
6119  */
6120 int netif_receive_skb(struct sk_buff *skb)
6121 {
6122 	int ret;
6123 
6124 	trace_netif_receive_skb_entry(skb);
6125 
6126 	ret = netif_receive_skb_internal(skb);
6127 	trace_netif_receive_skb_exit(ret);
6128 
6129 	return ret;
6130 }
6131 EXPORT_SYMBOL(netif_receive_skb);
6132 
6133 /**
6134  *	netif_receive_skb_list - process many receive buffers from network
6135  *	@head: list of skbs to process.
6136  *
6137  *	Since return value of netif_receive_skb() is normally ignored, and
6138  *	wouldn't be meaningful for a list, this function returns void.
6139  *
6140  *	This function may only be called from softirq context and interrupts
6141  *	should be enabled.
6142  */
6143 void netif_receive_skb_list(struct list_head *head)
6144 {
6145 	struct sk_buff *skb;
6146 
6147 	if (list_empty(head))
6148 		return;
6149 	if (trace_netif_receive_skb_list_entry_enabled()) {
6150 		list_for_each_entry(skb, head, list)
6151 			trace_netif_receive_skb_list_entry(skb);
6152 	}
6153 	netif_receive_skb_list_internal(head);
6154 	trace_netif_receive_skb_list_exit(0);
6155 }
6156 EXPORT_SYMBOL(netif_receive_skb_list);
6157 
6158 /* Network device is going away, flush any packets still pending */
6159 static void flush_backlog(struct work_struct *work)
6160 {
6161 	struct sk_buff *skb, *tmp;
6162 	struct softnet_data *sd;
6163 
6164 	local_bh_disable();
6165 	sd = this_cpu_ptr(&softnet_data);
6166 
6167 	backlog_lock_irq_disable(sd);
6168 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6169 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6170 			__skb_unlink(skb, &sd->input_pkt_queue);
6171 			dev_kfree_skb_irq(skb);
6172 			rps_input_queue_head_incr(sd);
6173 		}
6174 	}
6175 	backlog_unlock_irq_enable(sd);
6176 
6177 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6178 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6179 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
6180 			__skb_unlink(skb, &sd->process_queue);
6181 			kfree_skb(skb);
6182 			rps_input_queue_head_incr(sd);
6183 		}
6184 	}
6185 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6186 	local_bh_enable();
6187 }
6188 
6189 static bool flush_required(int cpu)
6190 {
6191 #if IS_ENABLED(CONFIG_RPS)
6192 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6193 	bool do_flush;
6194 
6195 	backlog_lock_irq_disable(sd);
6196 
6197 	/* as insertion into process_queue happens with the rps lock held,
6198 	 * process_queue access may race only with dequeue
6199 	 */
6200 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6201 		   !skb_queue_empty_lockless(&sd->process_queue);
6202 	backlog_unlock_irq_enable(sd);
6203 
6204 	return do_flush;
6205 #endif
6206 	/* without RPS we can't safely check input_pkt_queue: during a
6207 	 * concurrent remote skb_queue_splice() we can detect as empty both
6208 	 * input_pkt_queue and process_queue even if the latter could end-up
6209 	 * containing a lot of packets.
6210 	 */
6211 	return true;
6212 }
6213 
6214 struct flush_backlogs {
6215 	cpumask_t		flush_cpus;
6216 	struct work_struct	w[];
6217 };
6218 
6219 static struct flush_backlogs *flush_backlogs_alloc(void)
6220 {
6221 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6222 		       GFP_KERNEL);
6223 }
6224 
6225 static struct flush_backlogs *flush_backlogs_fallback;
6226 static DEFINE_MUTEX(flush_backlogs_mutex);
6227 
6228 static void flush_all_backlogs(void)
6229 {
6230 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6231 	unsigned int cpu;
6232 
6233 	if (!ptr) {
6234 		mutex_lock(&flush_backlogs_mutex);
6235 		ptr = flush_backlogs_fallback;
6236 	}
6237 	cpumask_clear(&ptr->flush_cpus);
6238 
6239 	cpus_read_lock();
6240 
6241 	for_each_online_cpu(cpu) {
6242 		if (flush_required(cpu)) {
6243 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6244 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6245 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6246 		}
6247 	}
6248 
6249 	/* we can have in flight packet[s] on the cpus we are not flushing,
6250 	 * synchronize_net() in unregister_netdevice_many() will take care of
6251 	 * them.
6252 	 */
6253 	for_each_cpu(cpu, &ptr->flush_cpus)
6254 		flush_work(&ptr->w[cpu]);
6255 
6256 	cpus_read_unlock();
6257 
6258 	if (ptr != flush_backlogs_fallback)
6259 		kfree(ptr);
6260 	else
6261 		mutex_unlock(&flush_backlogs_mutex);
6262 }
6263 
6264 static void net_rps_send_ipi(struct softnet_data *remsd)
6265 {
6266 #ifdef CONFIG_RPS
6267 	while (remsd) {
6268 		struct softnet_data *next = remsd->rps_ipi_next;
6269 
6270 		if (cpu_online(remsd->cpu))
6271 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6272 		remsd = next;
6273 	}
6274 #endif
6275 }
6276 
6277 /*
6278  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6279  * Note: called with local irq disabled, but exits with local irq enabled.
6280  */
6281 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6282 {
6283 #ifdef CONFIG_RPS
6284 	struct softnet_data *remsd = sd->rps_ipi_list;
6285 
6286 	if (!use_backlog_threads() && remsd) {
6287 		sd->rps_ipi_list = NULL;
6288 
6289 		local_irq_enable();
6290 
6291 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6292 		net_rps_send_ipi(remsd);
6293 	} else
6294 #endif
6295 		local_irq_enable();
6296 }
6297 
6298 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6299 {
6300 #ifdef CONFIG_RPS
6301 	return !use_backlog_threads() && sd->rps_ipi_list;
6302 #else
6303 	return false;
6304 #endif
6305 }
6306 
6307 static int process_backlog(struct napi_struct *napi, int quota)
6308 {
6309 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6310 	bool again = true;
6311 	int work = 0;
6312 
6313 	/* Check if we have pending ipi, its better to send them now,
6314 	 * not waiting net_rx_action() end.
6315 	 */
6316 	if (sd_has_rps_ipi_waiting(sd)) {
6317 		local_irq_disable();
6318 		net_rps_action_and_irq_enable(sd);
6319 	}
6320 
6321 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6322 	while (again) {
6323 		struct sk_buff *skb;
6324 
6325 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6326 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6327 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6328 			rcu_read_lock();
6329 			__netif_receive_skb(skb);
6330 			rcu_read_unlock();
6331 			if (++work >= quota) {
6332 				rps_input_queue_head_add(sd, work);
6333 				return work;
6334 			}
6335 
6336 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6337 		}
6338 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6339 
6340 		backlog_lock_irq_disable(sd);
6341 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6342 			/*
6343 			 * Inline a custom version of __napi_complete().
6344 			 * only current cpu owns and manipulates this napi,
6345 			 * and NAPI_STATE_SCHED is the only possible flag set
6346 			 * on backlog.
6347 			 * We can use a plain write instead of clear_bit(),
6348 			 * and we dont need an smp_mb() memory barrier.
6349 			 */
6350 			napi->state &= NAPIF_STATE_THREADED;
6351 			again = false;
6352 		} else {
6353 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6354 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6355 						   &sd->process_queue);
6356 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6357 		}
6358 		backlog_unlock_irq_enable(sd);
6359 	}
6360 
6361 	if (work)
6362 		rps_input_queue_head_add(sd, work);
6363 	return work;
6364 }
6365 
6366 /**
6367  * __napi_schedule - schedule for receive
6368  * @n: entry to schedule
6369  *
6370  * The entry's receive function will be scheduled to run.
6371  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6372  */
6373 void __napi_schedule(struct napi_struct *n)
6374 {
6375 	unsigned long flags;
6376 
6377 	local_irq_save(flags);
6378 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6379 	local_irq_restore(flags);
6380 }
6381 EXPORT_SYMBOL(__napi_schedule);
6382 
6383 /**
6384  *	napi_schedule_prep - check if napi can be scheduled
6385  *	@n: napi context
6386  *
6387  * Test if NAPI routine is already running, and if not mark
6388  * it as running.  This is used as a condition variable to
6389  * insure only one NAPI poll instance runs.  We also make
6390  * sure there is no pending NAPI disable.
6391  */
6392 bool napi_schedule_prep(struct napi_struct *n)
6393 {
6394 	unsigned long new, val = READ_ONCE(n->state);
6395 
6396 	do {
6397 		if (unlikely(val & NAPIF_STATE_DISABLE))
6398 			return false;
6399 		new = val | NAPIF_STATE_SCHED;
6400 
6401 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6402 		 * This was suggested by Alexander Duyck, as compiler
6403 		 * emits better code than :
6404 		 * if (val & NAPIF_STATE_SCHED)
6405 		 *     new |= NAPIF_STATE_MISSED;
6406 		 */
6407 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6408 						   NAPIF_STATE_MISSED;
6409 	} while (!try_cmpxchg(&n->state, &val, new));
6410 
6411 	return !(val & NAPIF_STATE_SCHED);
6412 }
6413 EXPORT_SYMBOL(napi_schedule_prep);
6414 
6415 /**
6416  * __napi_schedule_irqoff - schedule for receive
6417  * @n: entry to schedule
6418  *
6419  * Variant of __napi_schedule() assuming hard irqs are masked.
6420  *
6421  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6422  * because the interrupt disabled assumption might not be true
6423  * due to force-threaded interrupts and spinlock substitution.
6424  */
6425 void __napi_schedule_irqoff(struct napi_struct *n)
6426 {
6427 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6428 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6429 	else
6430 		__napi_schedule(n);
6431 }
6432 EXPORT_SYMBOL(__napi_schedule_irqoff);
6433 
6434 bool napi_complete_done(struct napi_struct *n, int work_done)
6435 {
6436 	unsigned long flags, val, new, timeout = 0;
6437 	bool ret = true;
6438 
6439 	/*
6440 	 * 1) Don't let napi dequeue from the cpu poll list
6441 	 *    just in case its running on a different cpu.
6442 	 * 2) If we are busy polling, do nothing here, we have
6443 	 *    the guarantee we will be called later.
6444 	 */
6445 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6446 				 NAPIF_STATE_IN_BUSY_POLL)))
6447 		return false;
6448 
6449 	if (work_done) {
6450 		if (n->gro_bitmask)
6451 			timeout = napi_get_gro_flush_timeout(n);
6452 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6453 	}
6454 	if (n->defer_hard_irqs_count > 0) {
6455 		n->defer_hard_irqs_count--;
6456 		timeout = napi_get_gro_flush_timeout(n);
6457 		if (timeout)
6458 			ret = false;
6459 	}
6460 	if (n->gro_bitmask) {
6461 		/* When the NAPI instance uses a timeout and keeps postponing
6462 		 * it, we need to bound somehow the time packets are kept in
6463 		 * the GRO layer
6464 		 */
6465 		napi_gro_flush(n, !!timeout);
6466 	}
6467 
6468 	gro_normal_list(n);
6469 
6470 	if (unlikely(!list_empty(&n->poll_list))) {
6471 		/* If n->poll_list is not empty, we need to mask irqs */
6472 		local_irq_save(flags);
6473 		list_del_init(&n->poll_list);
6474 		local_irq_restore(flags);
6475 	}
6476 	WRITE_ONCE(n->list_owner, -1);
6477 
6478 	val = READ_ONCE(n->state);
6479 	do {
6480 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6481 
6482 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6483 			      NAPIF_STATE_SCHED_THREADED |
6484 			      NAPIF_STATE_PREFER_BUSY_POLL);
6485 
6486 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6487 		 * because we will call napi->poll() one more time.
6488 		 * This C code was suggested by Alexander Duyck to help gcc.
6489 		 */
6490 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6491 						    NAPIF_STATE_SCHED;
6492 	} while (!try_cmpxchg(&n->state, &val, new));
6493 
6494 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6495 		__napi_schedule(n);
6496 		return false;
6497 	}
6498 
6499 	if (timeout)
6500 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6501 			      HRTIMER_MODE_REL_PINNED);
6502 	return ret;
6503 }
6504 EXPORT_SYMBOL(napi_complete_done);
6505 
6506 static void skb_defer_free_flush(struct softnet_data *sd)
6507 {
6508 	struct sk_buff *skb, *next;
6509 
6510 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6511 	if (!READ_ONCE(sd->defer_list))
6512 		return;
6513 
6514 	spin_lock(&sd->defer_lock);
6515 	skb = sd->defer_list;
6516 	sd->defer_list = NULL;
6517 	sd->defer_count = 0;
6518 	spin_unlock(&sd->defer_lock);
6519 
6520 	while (skb != NULL) {
6521 		next = skb->next;
6522 		napi_consume_skb(skb, 1);
6523 		skb = next;
6524 	}
6525 }
6526 
6527 #if defined(CONFIG_NET_RX_BUSY_POLL)
6528 
6529 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6530 {
6531 	if (!skip_schedule) {
6532 		gro_normal_list(napi);
6533 		__napi_schedule(napi);
6534 		return;
6535 	}
6536 
6537 	if (napi->gro_bitmask) {
6538 		/* flush too old packets
6539 		 * If HZ < 1000, flush all packets.
6540 		 */
6541 		napi_gro_flush(napi, HZ >= 1000);
6542 	}
6543 
6544 	gro_normal_list(napi);
6545 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6546 }
6547 
6548 enum {
6549 	NAPI_F_PREFER_BUSY_POLL	= 1,
6550 	NAPI_F_END_ON_RESCHED	= 2,
6551 };
6552 
6553 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6554 			   unsigned flags, u16 budget)
6555 {
6556 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6557 	bool skip_schedule = false;
6558 	unsigned long timeout;
6559 	int rc;
6560 
6561 	/* Busy polling means there is a high chance device driver hard irq
6562 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6563 	 * set in napi_schedule_prep().
6564 	 * Since we are about to call napi->poll() once more, we can safely
6565 	 * clear NAPI_STATE_MISSED.
6566 	 *
6567 	 * Note: x86 could use a single "lock and ..." instruction
6568 	 * to perform these two clear_bit()
6569 	 */
6570 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6571 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6572 
6573 	local_bh_disable();
6574 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6575 
6576 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6577 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6578 		timeout = napi_get_gro_flush_timeout(napi);
6579 		if (napi->defer_hard_irqs_count && timeout) {
6580 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6581 			skip_schedule = true;
6582 		}
6583 	}
6584 
6585 	/* All we really want here is to re-enable device interrupts.
6586 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6587 	 */
6588 	rc = napi->poll(napi, budget);
6589 	/* We can't gro_normal_list() here, because napi->poll() might have
6590 	 * rearmed the napi (napi_complete_done()) in which case it could
6591 	 * already be running on another CPU.
6592 	 */
6593 	trace_napi_poll(napi, rc, budget);
6594 	netpoll_poll_unlock(have_poll_lock);
6595 	if (rc == budget)
6596 		__busy_poll_stop(napi, skip_schedule);
6597 	bpf_net_ctx_clear(bpf_net_ctx);
6598 	local_bh_enable();
6599 }
6600 
6601 static void __napi_busy_loop(unsigned int napi_id,
6602 		      bool (*loop_end)(void *, unsigned long),
6603 		      void *loop_end_arg, unsigned flags, u16 budget)
6604 {
6605 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6606 	int (*napi_poll)(struct napi_struct *napi, int budget);
6607 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6608 	void *have_poll_lock = NULL;
6609 	struct napi_struct *napi;
6610 
6611 	WARN_ON_ONCE(!rcu_read_lock_held());
6612 
6613 restart:
6614 	napi_poll = NULL;
6615 
6616 	napi = napi_by_id(napi_id);
6617 	if (!napi)
6618 		return;
6619 
6620 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6621 		preempt_disable();
6622 	for (;;) {
6623 		int work = 0;
6624 
6625 		local_bh_disable();
6626 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6627 		if (!napi_poll) {
6628 			unsigned long val = READ_ONCE(napi->state);
6629 
6630 			/* If multiple threads are competing for this napi,
6631 			 * we avoid dirtying napi->state as much as we can.
6632 			 */
6633 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6634 				   NAPIF_STATE_IN_BUSY_POLL)) {
6635 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6636 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6637 				goto count;
6638 			}
6639 			if (cmpxchg(&napi->state, val,
6640 				    val | NAPIF_STATE_IN_BUSY_POLL |
6641 					  NAPIF_STATE_SCHED) != val) {
6642 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6643 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6644 				goto count;
6645 			}
6646 			have_poll_lock = netpoll_poll_lock(napi);
6647 			napi_poll = napi->poll;
6648 		}
6649 		work = napi_poll(napi, budget);
6650 		trace_napi_poll(napi, work, budget);
6651 		gro_normal_list(napi);
6652 count:
6653 		if (work > 0)
6654 			__NET_ADD_STATS(dev_net(napi->dev),
6655 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6656 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6657 		bpf_net_ctx_clear(bpf_net_ctx);
6658 		local_bh_enable();
6659 
6660 		if (!loop_end || loop_end(loop_end_arg, start_time))
6661 			break;
6662 
6663 		if (unlikely(need_resched())) {
6664 			if (flags & NAPI_F_END_ON_RESCHED)
6665 				break;
6666 			if (napi_poll)
6667 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6668 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6669 				preempt_enable();
6670 			rcu_read_unlock();
6671 			cond_resched();
6672 			rcu_read_lock();
6673 			if (loop_end(loop_end_arg, start_time))
6674 				return;
6675 			goto restart;
6676 		}
6677 		cpu_relax();
6678 	}
6679 	if (napi_poll)
6680 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6681 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6682 		preempt_enable();
6683 }
6684 
6685 void napi_busy_loop_rcu(unsigned int napi_id,
6686 			bool (*loop_end)(void *, unsigned long),
6687 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6688 {
6689 	unsigned flags = NAPI_F_END_ON_RESCHED;
6690 
6691 	if (prefer_busy_poll)
6692 		flags |= NAPI_F_PREFER_BUSY_POLL;
6693 
6694 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6695 }
6696 
6697 void napi_busy_loop(unsigned int napi_id,
6698 		    bool (*loop_end)(void *, unsigned long),
6699 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6700 {
6701 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6702 
6703 	rcu_read_lock();
6704 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6705 	rcu_read_unlock();
6706 }
6707 EXPORT_SYMBOL(napi_busy_loop);
6708 
6709 void napi_suspend_irqs(unsigned int napi_id)
6710 {
6711 	struct napi_struct *napi;
6712 
6713 	rcu_read_lock();
6714 	napi = napi_by_id(napi_id);
6715 	if (napi) {
6716 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6717 
6718 		if (timeout)
6719 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6720 				      HRTIMER_MODE_REL_PINNED);
6721 	}
6722 	rcu_read_unlock();
6723 }
6724 
6725 void napi_resume_irqs(unsigned int napi_id)
6726 {
6727 	struct napi_struct *napi;
6728 
6729 	rcu_read_lock();
6730 	napi = napi_by_id(napi_id);
6731 	if (napi) {
6732 		/* If irq_suspend_timeout is set to 0 between the call to
6733 		 * napi_suspend_irqs and now, the original value still
6734 		 * determines the safety timeout as intended and napi_watchdog
6735 		 * will resume irq processing.
6736 		 */
6737 		if (napi_get_irq_suspend_timeout(napi)) {
6738 			local_bh_disable();
6739 			napi_schedule(napi);
6740 			local_bh_enable();
6741 		}
6742 	}
6743 	rcu_read_unlock();
6744 }
6745 
6746 #endif /* CONFIG_NET_RX_BUSY_POLL */
6747 
6748 static void __napi_hash_add_with_id(struct napi_struct *napi,
6749 				    unsigned int napi_id)
6750 {
6751 	WRITE_ONCE(napi->napi_id, napi_id);
6752 	hlist_add_head_rcu(&napi->napi_hash_node,
6753 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6754 }
6755 
6756 static void napi_hash_add_with_id(struct napi_struct *napi,
6757 				  unsigned int napi_id)
6758 {
6759 	unsigned long flags;
6760 
6761 	spin_lock_irqsave(&napi_hash_lock, flags);
6762 	WARN_ON_ONCE(napi_by_id(napi_id));
6763 	__napi_hash_add_with_id(napi, napi_id);
6764 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6765 }
6766 
6767 static void napi_hash_add(struct napi_struct *napi)
6768 {
6769 	unsigned long flags;
6770 
6771 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6772 		return;
6773 
6774 	spin_lock_irqsave(&napi_hash_lock, flags);
6775 
6776 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6777 	do {
6778 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6779 			napi_gen_id = MIN_NAPI_ID;
6780 	} while (napi_by_id(napi_gen_id));
6781 
6782 	__napi_hash_add_with_id(napi, napi_gen_id);
6783 
6784 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6785 }
6786 
6787 /* Warning : caller is responsible to make sure rcu grace period
6788  * is respected before freeing memory containing @napi
6789  */
6790 static void napi_hash_del(struct napi_struct *napi)
6791 {
6792 	unsigned long flags;
6793 
6794 	spin_lock_irqsave(&napi_hash_lock, flags);
6795 
6796 	hlist_del_init_rcu(&napi->napi_hash_node);
6797 
6798 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6799 }
6800 
6801 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6802 {
6803 	struct napi_struct *napi;
6804 
6805 	napi = container_of(timer, struct napi_struct, timer);
6806 
6807 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6808 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6809 	 */
6810 	if (!napi_disable_pending(napi) &&
6811 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6812 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6813 		__napi_schedule_irqoff(napi);
6814 	}
6815 
6816 	return HRTIMER_NORESTART;
6817 }
6818 
6819 static void init_gro_hash(struct napi_struct *napi)
6820 {
6821 	int i;
6822 
6823 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6824 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6825 		napi->gro_hash[i].count = 0;
6826 	}
6827 	napi->gro_bitmask = 0;
6828 }
6829 
6830 int dev_set_threaded(struct net_device *dev, bool threaded)
6831 {
6832 	struct napi_struct *napi;
6833 	int err = 0;
6834 
6835 	netdev_assert_locked_or_invisible(dev);
6836 
6837 	if (dev->threaded == threaded)
6838 		return 0;
6839 
6840 	if (threaded) {
6841 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6842 			if (!napi->thread) {
6843 				err = napi_kthread_create(napi);
6844 				if (err) {
6845 					threaded = false;
6846 					break;
6847 				}
6848 			}
6849 		}
6850 	}
6851 
6852 	WRITE_ONCE(dev->threaded, threaded);
6853 
6854 	/* Make sure kthread is created before THREADED bit
6855 	 * is set.
6856 	 */
6857 	smp_mb__before_atomic();
6858 
6859 	/* Setting/unsetting threaded mode on a napi might not immediately
6860 	 * take effect, if the current napi instance is actively being
6861 	 * polled. In this case, the switch between threaded mode and
6862 	 * softirq mode will happen in the next round of napi_schedule().
6863 	 * This should not cause hiccups/stalls to the live traffic.
6864 	 */
6865 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6866 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6867 
6868 	return err;
6869 }
6870 EXPORT_SYMBOL(dev_set_threaded);
6871 
6872 /**
6873  * netif_queue_set_napi - Associate queue with the napi
6874  * @dev: device to which NAPI and queue belong
6875  * @queue_index: Index of queue
6876  * @type: queue type as RX or TX
6877  * @napi: NAPI context, pass NULL to clear previously set NAPI
6878  *
6879  * Set queue with its corresponding napi context. This should be done after
6880  * registering the NAPI handler for the queue-vector and the queues have been
6881  * mapped to the corresponding interrupt vector.
6882  */
6883 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6884 			  enum netdev_queue_type type, struct napi_struct *napi)
6885 {
6886 	struct netdev_rx_queue *rxq;
6887 	struct netdev_queue *txq;
6888 
6889 	if (WARN_ON_ONCE(napi && !napi->dev))
6890 		return;
6891 	if (dev->reg_state >= NETREG_REGISTERED)
6892 		ASSERT_RTNL();
6893 
6894 	switch (type) {
6895 	case NETDEV_QUEUE_TYPE_RX:
6896 		rxq = __netif_get_rx_queue(dev, queue_index);
6897 		rxq->napi = napi;
6898 		return;
6899 	case NETDEV_QUEUE_TYPE_TX:
6900 		txq = netdev_get_tx_queue(dev, queue_index);
6901 		txq->napi = napi;
6902 		return;
6903 	default:
6904 		return;
6905 	}
6906 }
6907 EXPORT_SYMBOL(netif_queue_set_napi);
6908 
6909 static void napi_restore_config(struct napi_struct *n)
6910 {
6911 	n->defer_hard_irqs = n->config->defer_hard_irqs;
6912 	n->gro_flush_timeout = n->config->gro_flush_timeout;
6913 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
6914 	/* a NAPI ID might be stored in the config, if so use it. if not, use
6915 	 * napi_hash_add to generate one for us.
6916 	 */
6917 	if (n->config->napi_id) {
6918 		napi_hash_add_with_id(n, n->config->napi_id);
6919 	} else {
6920 		napi_hash_add(n);
6921 		n->config->napi_id = n->napi_id;
6922 	}
6923 }
6924 
6925 static void napi_save_config(struct napi_struct *n)
6926 {
6927 	n->config->defer_hard_irqs = n->defer_hard_irqs;
6928 	n->config->gro_flush_timeout = n->gro_flush_timeout;
6929 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
6930 	napi_hash_del(n);
6931 }
6932 
6933 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
6934  * inherit an existing ID try to insert it at the right position.
6935  */
6936 static void
6937 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
6938 {
6939 	unsigned int new_id, pos_id;
6940 	struct list_head *higher;
6941 	struct napi_struct *pos;
6942 
6943 	new_id = UINT_MAX;
6944 	if (napi->config && napi->config->napi_id)
6945 		new_id = napi->config->napi_id;
6946 
6947 	higher = &dev->napi_list;
6948 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
6949 		if (pos->napi_id >= MIN_NAPI_ID)
6950 			pos_id = pos->napi_id;
6951 		else if (pos->config)
6952 			pos_id = pos->config->napi_id;
6953 		else
6954 			pos_id = UINT_MAX;
6955 
6956 		if (pos_id <= new_id)
6957 			break;
6958 		higher = &pos->dev_list;
6959 	}
6960 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
6961 }
6962 
6963 void netif_napi_add_weight_locked(struct net_device *dev,
6964 				  struct napi_struct *napi,
6965 				  int (*poll)(struct napi_struct *, int),
6966 				  int weight)
6967 {
6968 	netdev_assert_locked(dev);
6969 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6970 		return;
6971 
6972 	INIT_LIST_HEAD(&napi->poll_list);
6973 	INIT_HLIST_NODE(&napi->napi_hash_node);
6974 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6975 	napi->timer.function = napi_watchdog;
6976 	init_gro_hash(napi);
6977 	napi->skb = NULL;
6978 	INIT_LIST_HEAD(&napi->rx_list);
6979 	napi->rx_count = 0;
6980 	napi->poll = poll;
6981 	if (weight > NAPI_POLL_WEIGHT)
6982 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6983 				weight);
6984 	napi->weight = weight;
6985 	napi->dev = dev;
6986 #ifdef CONFIG_NETPOLL
6987 	napi->poll_owner = -1;
6988 #endif
6989 	napi->list_owner = -1;
6990 	set_bit(NAPI_STATE_SCHED, &napi->state);
6991 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6992 	netif_napi_dev_list_add(dev, napi);
6993 
6994 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
6995 	 * configuration will be loaded in napi_enable
6996 	 */
6997 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
6998 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
6999 
7000 	napi_get_frags_check(napi);
7001 	/* Create kthread for this napi if dev->threaded is set.
7002 	 * Clear dev->threaded if kthread creation failed so that
7003 	 * threaded mode will not be enabled in napi_enable().
7004 	 */
7005 	if (dev->threaded && napi_kthread_create(napi))
7006 		dev->threaded = false;
7007 	netif_napi_set_irq_locked(napi, -1);
7008 }
7009 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7010 
7011 void napi_disable_locked(struct napi_struct *n)
7012 {
7013 	unsigned long val, new;
7014 
7015 	might_sleep();
7016 	netdev_assert_locked(n->dev);
7017 
7018 	set_bit(NAPI_STATE_DISABLE, &n->state);
7019 
7020 	val = READ_ONCE(n->state);
7021 	do {
7022 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7023 			usleep_range(20, 200);
7024 			val = READ_ONCE(n->state);
7025 		}
7026 
7027 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7028 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7029 	} while (!try_cmpxchg(&n->state, &val, new));
7030 
7031 	hrtimer_cancel(&n->timer);
7032 
7033 	if (n->config)
7034 		napi_save_config(n);
7035 	else
7036 		napi_hash_del(n);
7037 
7038 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7039 }
7040 EXPORT_SYMBOL(napi_disable_locked);
7041 
7042 /**
7043  * napi_disable() - prevent NAPI from scheduling
7044  * @n: NAPI context
7045  *
7046  * Stop NAPI from being scheduled on this context.
7047  * Waits till any outstanding processing completes.
7048  * Takes netdev_lock() for associated net_device.
7049  */
7050 void napi_disable(struct napi_struct *n)
7051 {
7052 	netdev_lock(n->dev);
7053 	napi_disable_locked(n);
7054 	netdev_unlock(n->dev);
7055 }
7056 EXPORT_SYMBOL(napi_disable);
7057 
7058 void napi_enable_locked(struct napi_struct *n)
7059 {
7060 	unsigned long new, val = READ_ONCE(n->state);
7061 
7062 	if (n->config)
7063 		napi_restore_config(n);
7064 	else
7065 		napi_hash_add(n);
7066 
7067 	do {
7068 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7069 
7070 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7071 		if (n->dev->threaded && n->thread)
7072 			new |= NAPIF_STATE_THREADED;
7073 	} while (!try_cmpxchg(&n->state, &val, new));
7074 }
7075 EXPORT_SYMBOL(napi_enable_locked);
7076 
7077 /**
7078  * napi_enable() - enable NAPI scheduling
7079  * @n: NAPI context
7080  *
7081  * Enable scheduling of a NAPI instance.
7082  * Must be paired with napi_disable().
7083  * Takes netdev_lock() for associated net_device.
7084  */
7085 void napi_enable(struct napi_struct *n)
7086 {
7087 	netdev_lock(n->dev);
7088 	napi_enable_locked(n);
7089 	netdev_unlock(n->dev);
7090 }
7091 EXPORT_SYMBOL(napi_enable);
7092 
7093 static void flush_gro_hash(struct napi_struct *napi)
7094 {
7095 	int i;
7096 
7097 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
7098 		struct sk_buff *skb, *n;
7099 
7100 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
7101 			kfree_skb(skb);
7102 		napi->gro_hash[i].count = 0;
7103 	}
7104 }
7105 
7106 /* Must be called in process context */
7107 void __netif_napi_del_locked(struct napi_struct *napi)
7108 {
7109 	netdev_assert_locked(napi->dev);
7110 
7111 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7112 		return;
7113 
7114 	if (napi->config) {
7115 		napi->index = -1;
7116 		napi->config = NULL;
7117 	}
7118 
7119 	list_del_rcu(&napi->dev_list);
7120 	napi_free_frags(napi);
7121 
7122 	flush_gro_hash(napi);
7123 	napi->gro_bitmask = 0;
7124 
7125 	if (napi->thread) {
7126 		kthread_stop(napi->thread);
7127 		napi->thread = NULL;
7128 	}
7129 }
7130 EXPORT_SYMBOL(__netif_napi_del_locked);
7131 
7132 static int __napi_poll(struct napi_struct *n, bool *repoll)
7133 {
7134 	int work, weight;
7135 
7136 	weight = n->weight;
7137 
7138 	/* This NAPI_STATE_SCHED test is for avoiding a race
7139 	 * with netpoll's poll_napi().  Only the entity which
7140 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7141 	 * actually make the ->poll() call.  Therefore we avoid
7142 	 * accidentally calling ->poll() when NAPI is not scheduled.
7143 	 */
7144 	work = 0;
7145 	if (napi_is_scheduled(n)) {
7146 		work = n->poll(n, weight);
7147 		trace_napi_poll(n, work, weight);
7148 
7149 		xdp_do_check_flushed(n);
7150 	}
7151 
7152 	if (unlikely(work > weight))
7153 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7154 				n->poll, work, weight);
7155 
7156 	if (likely(work < weight))
7157 		return work;
7158 
7159 	/* Drivers must not modify the NAPI state if they
7160 	 * consume the entire weight.  In such cases this code
7161 	 * still "owns" the NAPI instance and therefore can
7162 	 * move the instance around on the list at-will.
7163 	 */
7164 	if (unlikely(napi_disable_pending(n))) {
7165 		napi_complete(n);
7166 		return work;
7167 	}
7168 
7169 	/* The NAPI context has more processing work, but busy-polling
7170 	 * is preferred. Exit early.
7171 	 */
7172 	if (napi_prefer_busy_poll(n)) {
7173 		if (napi_complete_done(n, work)) {
7174 			/* If timeout is not set, we need to make sure
7175 			 * that the NAPI is re-scheduled.
7176 			 */
7177 			napi_schedule(n);
7178 		}
7179 		return work;
7180 	}
7181 
7182 	if (n->gro_bitmask) {
7183 		/* flush too old packets
7184 		 * If HZ < 1000, flush all packets.
7185 		 */
7186 		napi_gro_flush(n, HZ >= 1000);
7187 	}
7188 
7189 	gro_normal_list(n);
7190 
7191 	/* Some drivers may have called napi_schedule
7192 	 * prior to exhausting their budget.
7193 	 */
7194 	if (unlikely(!list_empty(&n->poll_list))) {
7195 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7196 			     n->dev ? n->dev->name : "backlog");
7197 		return work;
7198 	}
7199 
7200 	*repoll = true;
7201 
7202 	return work;
7203 }
7204 
7205 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7206 {
7207 	bool do_repoll = false;
7208 	void *have;
7209 	int work;
7210 
7211 	list_del_init(&n->poll_list);
7212 
7213 	have = netpoll_poll_lock(n);
7214 
7215 	work = __napi_poll(n, &do_repoll);
7216 
7217 	if (do_repoll)
7218 		list_add_tail(&n->poll_list, repoll);
7219 
7220 	netpoll_poll_unlock(have);
7221 
7222 	return work;
7223 }
7224 
7225 static int napi_thread_wait(struct napi_struct *napi)
7226 {
7227 	set_current_state(TASK_INTERRUPTIBLE);
7228 
7229 	while (!kthread_should_stop()) {
7230 		/* Testing SCHED_THREADED bit here to make sure the current
7231 		 * kthread owns this napi and could poll on this napi.
7232 		 * Testing SCHED bit is not enough because SCHED bit might be
7233 		 * set by some other busy poll thread or by napi_disable().
7234 		 */
7235 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7236 			WARN_ON(!list_empty(&napi->poll_list));
7237 			__set_current_state(TASK_RUNNING);
7238 			return 0;
7239 		}
7240 
7241 		schedule();
7242 		set_current_state(TASK_INTERRUPTIBLE);
7243 	}
7244 	__set_current_state(TASK_RUNNING);
7245 
7246 	return -1;
7247 }
7248 
7249 static void napi_threaded_poll_loop(struct napi_struct *napi)
7250 {
7251 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7252 	struct softnet_data *sd;
7253 	unsigned long last_qs = jiffies;
7254 
7255 	for (;;) {
7256 		bool repoll = false;
7257 		void *have;
7258 
7259 		local_bh_disable();
7260 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7261 
7262 		sd = this_cpu_ptr(&softnet_data);
7263 		sd->in_napi_threaded_poll = true;
7264 
7265 		have = netpoll_poll_lock(napi);
7266 		__napi_poll(napi, &repoll);
7267 		netpoll_poll_unlock(have);
7268 
7269 		sd->in_napi_threaded_poll = false;
7270 		barrier();
7271 
7272 		if (sd_has_rps_ipi_waiting(sd)) {
7273 			local_irq_disable();
7274 			net_rps_action_and_irq_enable(sd);
7275 		}
7276 		skb_defer_free_flush(sd);
7277 		bpf_net_ctx_clear(bpf_net_ctx);
7278 		local_bh_enable();
7279 
7280 		if (!repoll)
7281 			break;
7282 
7283 		rcu_softirq_qs_periodic(last_qs);
7284 		cond_resched();
7285 	}
7286 }
7287 
7288 static int napi_threaded_poll(void *data)
7289 {
7290 	struct napi_struct *napi = data;
7291 
7292 	while (!napi_thread_wait(napi))
7293 		napi_threaded_poll_loop(napi);
7294 
7295 	return 0;
7296 }
7297 
7298 static __latent_entropy void net_rx_action(void)
7299 {
7300 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7301 	unsigned long time_limit = jiffies +
7302 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7303 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7304 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7305 	LIST_HEAD(list);
7306 	LIST_HEAD(repoll);
7307 
7308 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7309 start:
7310 	sd->in_net_rx_action = true;
7311 	local_irq_disable();
7312 	list_splice_init(&sd->poll_list, &list);
7313 	local_irq_enable();
7314 
7315 	for (;;) {
7316 		struct napi_struct *n;
7317 
7318 		skb_defer_free_flush(sd);
7319 
7320 		if (list_empty(&list)) {
7321 			if (list_empty(&repoll)) {
7322 				sd->in_net_rx_action = false;
7323 				barrier();
7324 				/* We need to check if ____napi_schedule()
7325 				 * had refilled poll_list while
7326 				 * sd->in_net_rx_action was true.
7327 				 */
7328 				if (!list_empty(&sd->poll_list))
7329 					goto start;
7330 				if (!sd_has_rps_ipi_waiting(sd))
7331 					goto end;
7332 			}
7333 			break;
7334 		}
7335 
7336 		n = list_first_entry(&list, struct napi_struct, poll_list);
7337 		budget -= napi_poll(n, &repoll);
7338 
7339 		/* If softirq window is exhausted then punt.
7340 		 * Allow this to run for 2 jiffies since which will allow
7341 		 * an average latency of 1.5/HZ.
7342 		 */
7343 		if (unlikely(budget <= 0 ||
7344 			     time_after_eq(jiffies, time_limit))) {
7345 			sd->time_squeeze++;
7346 			break;
7347 		}
7348 	}
7349 
7350 	local_irq_disable();
7351 
7352 	list_splice_tail_init(&sd->poll_list, &list);
7353 	list_splice_tail(&repoll, &list);
7354 	list_splice(&list, &sd->poll_list);
7355 	if (!list_empty(&sd->poll_list))
7356 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7357 	else
7358 		sd->in_net_rx_action = false;
7359 
7360 	net_rps_action_and_irq_enable(sd);
7361 end:
7362 	bpf_net_ctx_clear(bpf_net_ctx);
7363 }
7364 
7365 struct netdev_adjacent {
7366 	struct net_device *dev;
7367 	netdevice_tracker dev_tracker;
7368 
7369 	/* upper master flag, there can only be one master device per list */
7370 	bool master;
7371 
7372 	/* lookup ignore flag */
7373 	bool ignore;
7374 
7375 	/* counter for the number of times this device was added to us */
7376 	u16 ref_nr;
7377 
7378 	/* private field for the users */
7379 	void *private;
7380 
7381 	struct list_head list;
7382 	struct rcu_head rcu;
7383 };
7384 
7385 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7386 						 struct list_head *adj_list)
7387 {
7388 	struct netdev_adjacent *adj;
7389 
7390 	list_for_each_entry(adj, adj_list, list) {
7391 		if (adj->dev == adj_dev)
7392 			return adj;
7393 	}
7394 	return NULL;
7395 }
7396 
7397 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7398 				    struct netdev_nested_priv *priv)
7399 {
7400 	struct net_device *dev = (struct net_device *)priv->data;
7401 
7402 	return upper_dev == dev;
7403 }
7404 
7405 /**
7406  * netdev_has_upper_dev - Check if device is linked to an upper device
7407  * @dev: device
7408  * @upper_dev: upper device to check
7409  *
7410  * Find out if a device is linked to specified upper device and return true
7411  * in case it is. Note that this checks only immediate upper device,
7412  * not through a complete stack of devices. The caller must hold the RTNL lock.
7413  */
7414 bool netdev_has_upper_dev(struct net_device *dev,
7415 			  struct net_device *upper_dev)
7416 {
7417 	struct netdev_nested_priv priv = {
7418 		.data = (void *)upper_dev,
7419 	};
7420 
7421 	ASSERT_RTNL();
7422 
7423 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7424 					     &priv);
7425 }
7426 EXPORT_SYMBOL(netdev_has_upper_dev);
7427 
7428 /**
7429  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7430  * @dev: device
7431  * @upper_dev: upper device to check
7432  *
7433  * Find out if a device is linked to specified upper device and return true
7434  * in case it is. Note that this checks the entire upper device chain.
7435  * The caller must hold rcu lock.
7436  */
7437 
7438 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7439 				  struct net_device *upper_dev)
7440 {
7441 	struct netdev_nested_priv priv = {
7442 		.data = (void *)upper_dev,
7443 	};
7444 
7445 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7446 					       &priv);
7447 }
7448 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7449 
7450 /**
7451  * netdev_has_any_upper_dev - Check if device is linked to some device
7452  * @dev: device
7453  *
7454  * Find out if a device is linked to an upper device and return true in case
7455  * it is. The caller must hold the RTNL lock.
7456  */
7457 bool netdev_has_any_upper_dev(struct net_device *dev)
7458 {
7459 	ASSERT_RTNL();
7460 
7461 	return !list_empty(&dev->adj_list.upper);
7462 }
7463 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7464 
7465 /**
7466  * netdev_master_upper_dev_get - Get master upper device
7467  * @dev: device
7468  *
7469  * Find a master upper device and return pointer to it or NULL in case
7470  * it's not there. The caller must hold the RTNL lock.
7471  */
7472 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7473 {
7474 	struct netdev_adjacent *upper;
7475 
7476 	ASSERT_RTNL();
7477 
7478 	if (list_empty(&dev->adj_list.upper))
7479 		return NULL;
7480 
7481 	upper = list_first_entry(&dev->adj_list.upper,
7482 				 struct netdev_adjacent, list);
7483 	if (likely(upper->master))
7484 		return upper->dev;
7485 	return NULL;
7486 }
7487 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7488 
7489 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7490 {
7491 	struct netdev_adjacent *upper;
7492 
7493 	ASSERT_RTNL();
7494 
7495 	if (list_empty(&dev->adj_list.upper))
7496 		return NULL;
7497 
7498 	upper = list_first_entry(&dev->adj_list.upper,
7499 				 struct netdev_adjacent, list);
7500 	if (likely(upper->master) && !upper->ignore)
7501 		return upper->dev;
7502 	return NULL;
7503 }
7504 
7505 /**
7506  * netdev_has_any_lower_dev - Check if device is linked to some device
7507  * @dev: device
7508  *
7509  * Find out if a device is linked to a lower device and return true in case
7510  * it is. The caller must hold the RTNL lock.
7511  */
7512 static bool netdev_has_any_lower_dev(struct net_device *dev)
7513 {
7514 	ASSERT_RTNL();
7515 
7516 	return !list_empty(&dev->adj_list.lower);
7517 }
7518 
7519 void *netdev_adjacent_get_private(struct list_head *adj_list)
7520 {
7521 	struct netdev_adjacent *adj;
7522 
7523 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7524 
7525 	return adj->private;
7526 }
7527 EXPORT_SYMBOL(netdev_adjacent_get_private);
7528 
7529 /**
7530  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7531  * @dev: device
7532  * @iter: list_head ** of the current position
7533  *
7534  * Gets the next device from the dev's upper list, starting from iter
7535  * position. The caller must hold RCU read lock.
7536  */
7537 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7538 						 struct list_head **iter)
7539 {
7540 	struct netdev_adjacent *upper;
7541 
7542 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7543 
7544 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7545 
7546 	if (&upper->list == &dev->adj_list.upper)
7547 		return NULL;
7548 
7549 	*iter = &upper->list;
7550 
7551 	return upper->dev;
7552 }
7553 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7554 
7555 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7556 						  struct list_head **iter,
7557 						  bool *ignore)
7558 {
7559 	struct netdev_adjacent *upper;
7560 
7561 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7562 
7563 	if (&upper->list == &dev->adj_list.upper)
7564 		return NULL;
7565 
7566 	*iter = &upper->list;
7567 	*ignore = upper->ignore;
7568 
7569 	return upper->dev;
7570 }
7571 
7572 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7573 						    struct list_head **iter)
7574 {
7575 	struct netdev_adjacent *upper;
7576 
7577 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7578 
7579 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7580 
7581 	if (&upper->list == &dev->adj_list.upper)
7582 		return NULL;
7583 
7584 	*iter = &upper->list;
7585 
7586 	return upper->dev;
7587 }
7588 
7589 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7590 				       int (*fn)(struct net_device *dev,
7591 					 struct netdev_nested_priv *priv),
7592 				       struct netdev_nested_priv *priv)
7593 {
7594 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7595 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7596 	int ret, cur = 0;
7597 	bool ignore;
7598 
7599 	now = dev;
7600 	iter = &dev->adj_list.upper;
7601 
7602 	while (1) {
7603 		if (now != dev) {
7604 			ret = fn(now, priv);
7605 			if (ret)
7606 				return ret;
7607 		}
7608 
7609 		next = NULL;
7610 		while (1) {
7611 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7612 			if (!udev)
7613 				break;
7614 			if (ignore)
7615 				continue;
7616 
7617 			next = udev;
7618 			niter = &udev->adj_list.upper;
7619 			dev_stack[cur] = now;
7620 			iter_stack[cur++] = iter;
7621 			break;
7622 		}
7623 
7624 		if (!next) {
7625 			if (!cur)
7626 				return 0;
7627 			next = dev_stack[--cur];
7628 			niter = iter_stack[cur];
7629 		}
7630 
7631 		now = next;
7632 		iter = niter;
7633 	}
7634 
7635 	return 0;
7636 }
7637 
7638 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7639 				  int (*fn)(struct net_device *dev,
7640 					    struct netdev_nested_priv *priv),
7641 				  struct netdev_nested_priv *priv)
7642 {
7643 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7644 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7645 	int ret, cur = 0;
7646 
7647 	now = dev;
7648 	iter = &dev->adj_list.upper;
7649 
7650 	while (1) {
7651 		if (now != dev) {
7652 			ret = fn(now, priv);
7653 			if (ret)
7654 				return ret;
7655 		}
7656 
7657 		next = NULL;
7658 		while (1) {
7659 			udev = netdev_next_upper_dev_rcu(now, &iter);
7660 			if (!udev)
7661 				break;
7662 
7663 			next = udev;
7664 			niter = &udev->adj_list.upper;
7665 			dev_stack[cur] = now;
7666 			iter_stack[cur++] = iter;
7667 			break;
7668 		}
7669 
7670 		if (!next) {
7671 			if (!cur)
7672 				return 0;
7673 			next = dev_stack[--cur];
7674 			niter = iter_stack[cur];
7675 		}
7676 
7677 		now = next;
7678 		iter = niter;
7679 	}
7680 
7681 	return 0;
7682 }
7683 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7684 
7685 static bool __netdev_has_upper_dev(struct net_device *dev,
7686 				   struct net_device *upper_dev)
7687 {
7688 	struct netdev_nested_priv priv = {
7689 		.flags = 0,
7690 		.data = (void *)upper_dev,
7691 	};
7692 
7693 	ASSERT_RTNL();
7694 
7695 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7696 					   &priv);
7697 }
7698 
7699 /**
7700  * netdev_lower_get_next_private - Get the next ->private from the
7701  *				   lower neighbour list
7702  * @dev: device
7703  * @iter: list_head ** of the current position
7704  *
7705  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7706  * list, starting from iter position. The caller must hold either hold the
7707  * RTNL lock or its own locking that guarantees that the neighbour lower
7708  * list will remain unchanged.
7709  */
7710 void *netdev_lower_get_next_private(struct net_device *dev,
7711 				    struct list_head **iter)
7712 {
7713 	struct netdev_adjacent *lower;
7714 
7715 	lower = list_entry(*iter, struct netdev_adjacent, list);
7716 
7717 	if (&lower->list == &dev->adj_list.lower)
7718 		return NULL;
7719 
7720 	*iter = lower->list.next;
7721 
7722 	return lower->private;
7723 }
7724 EXPORT_SYMBOL(netdev_lower_get_next_private);
7725 
7726 /**
7727  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7728  *				       lower neighbour list, RCU
7729  *				       variant
7730  * @dev: device
7731  * @iter: list_head ** of the current position
7732  *
7733  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7734  * list, starting from iter position. The caller must hold RCU read lock.
7735  */
7736 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7737 					struct list_head **iter)
7738 {
7739 	struct netdev_adjacent *lower;
7740 
7741 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7742 
7743 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7744 
7745 	if (&lower->list == &dev->adj_list.lower)
7746 		return NULL;
7747 
7748 	*iter = &lower->list;
7749 
7750 	return lower->private;
7751 }
7752 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7753 
7754 /**
7755  * netdev_lower_get_next - Get the next device from the lower neighbour
7756  *                         list
7757  * @dev: device
7758  * @iter: list_head ** of the current position
7759  *
7760  * Gets the next netdev_adjacent from the dev's lower neighbour
7761  * list, starting from iter position. The caller must hold RTNL lock or
7762  * its own locking that guarantees that the neighbour lower
7763  * list will remain unchanged.
7764  */
7765 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7766 {
7767 	struct netdev_adjacent *lower;
7768 
7769 	lower = list_entry(*iter, struct netdev_adjacent, list);
7770 
7771 	if (&lower->list == &dev->adj_list.lower)
7772 		return NULL;
7773 
7774 	*iter = lower->list.next;
7775 
7776 	return lower->dev;
7777 }
7778 EXPORT_SYMBOL(netdev_lower_get_next);
7779 
7780 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7781 						struct list_head **iter)
7782 {
7783 	struct netdev_adjacent *lower;
7784 
7785 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7786 
7787 	if (&lower->list == &dev->adj_list.lower)
7788 		return NULL;
7789 
7790 	*iter = &lower->list;
7791 
7792 	return lower->dev;
7793 }
7794 
7795 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7796 						  struct list_head **iter,
7797 						  bool *ignore)
7798 {
7799 	struct netdev_adjacent *lower;
7800 
7801 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7802 
7803 	if (&lower->list == &dev->adj_list.lower)
7804 		return NULL;
7805 
7806 	*iter = &lower->list;
7807 	*ignore = lower->ignore;
7808 
7809 	return lower->dev;
7810 }
7811 
7812 int netdev_walk_all_lower_dev(struct net_device *dev,
7813 			      int (*fn)(struct net_device *dev,
7814 					struct netdev_nested_priv *priv),
7815 			      struct netdev_nested_priv *priv)
7816 {
7817 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7818 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7819 	int ret, cur = 0;
7820 
7821 	now = dev;
7822 	iter = &dev->adj_list.lower;
7823 
7824 	while (1) {
7825 		if (now != dev) {
7826 			ret = fn(now, priv);
7827 			if (ret)
7828 				return ret;
7829 		}
7830 
7831 		next = NULL;
7832 		while (1) {
7833 			ldev = netdev_next_lower_dev(now, &iter);
7834 			if (!ldev)
7835 				break;
7836 
7837 			next = ldev;
7838 			niter = &ldev->adj_list.lower;
7839 			dev_stack[cur] = now;
7840 			iter_stack[cur++] = iter;
7841 			break;
7842 		}
7843 
7844 		if (!next) {
7845 			if (!cur)
7846 				return 0;
7847 			next = dev_stack[--cur];
7848 			niter = iter_stack[cur];
7849 		}
7850 
7851 		now = next;
7852 		iter = niter;
7853 	}
7854 
7855 	return 0;
7856 }
7857 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7858 
7859 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7860 				       int (*fn)(struct net_device *dev,
7861 					 struct netdev_nested_priv *priv),
7862 				       struct netdev_nested_priv *priv)
7863 {
7864 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7865 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7866 	int ret, cur = 0;
7867 	bool ignore;
7868 
7869 	now = dev;
7870 	iter = &dev->adj_list.lower;
7871 
7872 	while (1) {
7873 		if (now != dev) {
7874 			ret = fn(now, priv);
7875 			if (ret)
7876 				return ret;
7877 		}
7878 
7879 		next = NULL;
7880 		while (1) {
7881 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7882 			if (!ldev)
7883 				break;
7884 			if (ignore)
7885 				continue;
7886 
7887 			next = ldev;
7888 			niter = &ldev->adj_list.lower;
7889 			dev_stack[cur] = now;
7890 			iter_stack[cur++] = iter;
7891 			break;
7892 		}
7893 
7894 		if (!next) {
7895 			if (!cur)
7896 				return 0;
7897 			next = dev_stack[--cur];
7898 			niter = iter_stack[cur];
7899 		}
7900 
7901 		now = next;
7902 		iter = niter;
7903 	}
7904 
7905 	return 0;
7906 }
7907 
7908 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7909 					     struct list_head **iter)
7910 {
7911 	struct netdev_adjacent *lower;
7912 
7913 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7914 	if (&lower->list == &dev->adj_list.lower)
7915 		return NULL;
7916 
7917 	*iter = &lower->list;
7918 
7919 	return lower->dev;
7920 }
7921 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7922 
7923 static u8 __netdev_upper_depth(struct net_device *dev)
7924 {
7925 	struct net_device *udev;
7926 	struct list_head *iter;
7927 	u8 max_depth = 0;
7928 	bool ignore;
7929 
7930 	for (iter = &dev->adj_list.upper,
7931 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7932 	     udev;
7933 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7934 		if (ignore)
7935 			continue;
7936 		if (max_depth < udev->upper_level)
7937 			max_depth = udev->upper_level;
7938 	}
7939 
7940 	return max_depth;
7941 }
7942 
7943 static u8 __netdev_lower_depth(struct net_device *dev)
7944 {
7945 	struct net_device *ldev;
7946 	struct list_head *iter;
7947 	u8 max_depth = 0;
7948 	bool ignore;
7949 
7950 	for (iter = &dev->adj_list.lower,
7951 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7952 	     ldev;
7953 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7954 		if (ignore)
7955 			continue;
7956 		if (max_depth < ldev->lower_level)
7957 			max_depth = ldev->lower_level;
7958 	}
7959 
7960 	return max_depth;
7961 }
7962 
7963 static int __netdev_update_upper_level(struct net_device *dev,
7964 				       struct netdev_nested_priv *__unused)
7965 {
7966 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7967 	return 0;
7968 }
7969 
7970 #ifdef CONFIG_LOCKDEP
7971 static LIST_HEAD(net_unlink_list);
7972 
7973 static void net_unlink_todo(struct net_device *dev)
7974 {
7975 	if (list_empty(&dev->unlink_list))
7976 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7977 }
7978 #endif
7979 
7980 static int __netdev_update_lower_level(struct net_device *dev,
7981 				       struct netdev_nested_priv *priv)
7982 {
7983 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7984 
7985 #ifdef CONFIG_LOCKDEP
7986 	if (!priv)
7987 		return 0;
7988 
7989 	if (priv->flags & NESTED_SYNC_IMM)
7990 		dev->nested_level = dev->lower_level - 1;
7991 	if (priv->flags & NESTED_SYNC_TODO)
7992 		net_unlink_todo(dev);
7993 #endif
7994 	return 0;
7995 }
7996 
7997 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7998 				  int (*fn)(struct net_device *dev,
7999 					    struct netdev_nested_priv *priv),
8000 				  struct netdev_nested_priv *priv)
8001 {
8002 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8003 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8004 	int ret, cur = 0;
8005 
8006 	now = dev;
8007 	iter = &dev->adj_list.lower;
8008 
8009 	while (1) {
8010 		if (now != dev) {
8011 			ret = fn(now, priv);
8012 			if (ret)
8013 				return ret;
8014 		}
8015 
8016 		next = NULL;
8017 		while (1) {
8018 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8019 			if (!ldev)
8020 				break;
8021 
8022 			next = ldev;
8023 			niter = &ldev->adj_list.lower;
8024 			dev_stack[cur] = now;
8025 			iter_stack[cur++] = iter;
8026 			break;
8027 		}
8028 
8029 		if (!next) {
8030 			if (!cur)
8031 				return 0;
8032 			next = dev_stack[--cur];
8033 			niter = iter_stack[cur];
8034 		}
8035 
8036 		now = next;
8037 		iter = niter;
8038 	}
8039 
8040 	return 0;
8041 }
8042 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8043 
8044 /**
8045  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8046  *				       lower neighbour list, RCU
8047  *				       variant
8048  * @dev: device
8049  *
8050  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8051  * list. The caller must hold RCU read lock.
8052  */
8053 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8054 {
8055 	struct netdev_adjacent *lower;
8056 
8057 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8058 			struct netdev_adjacent, list);
8059 	if (lower)
8060 		return lower->private;
8061 	return NULL;
8062 }
8063 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8064 
8065 /**
8066  * netdev_master_upper_dev_get_rcu - Get master upper device
8067  * @dev: device
8068  *
8069  * Find a master upper device and return pointer to it or NULL in case
8070  * it's not there. The caller must hold the RCU read lock.
8071  */
8072 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8073 {
8074 	struct netdev_adjacent *upper;
8075 
8076 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8077 				       struct netdev_adjacent, list);
8078 	if (upper && likely(upper->master))
8079 		return upper->dev;
8080 	return NULL;
8081 }
8082 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8083 
8084 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8085 			      struct net_device *adj_dev,
8086 			      struct list_head *dev_list)
8087 {
8088 	char linkname[IFNAMSIZ+7];
8089 
8090 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8091 		"upper_%s" : "lower_%s", adj_dev->name);
8092 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8093 				 linkname);
8094 }
8095 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8096 			       char *name,
8097 			       struct list_head *dev_list)
8098 {
8099 	char linkname[IFNAMSIZ+7];
8100 
8101 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8102 		"upper_%s" : "lower_%s", name);
8103 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8104 }
8105 
8106 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8107 						 struct net_device *adj_dev,
8108 						 struct list_head *dev_list)
8109 {
8110 	return (dev_list == &dev->adj_list.upper ||
8111 		dev_list == &dev->adj_list.lower) &&
8112 		net_eq(dev_net(dev), dev_net(adj_dev));
8113 }
8114 
8115 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8116 					struct net_device *adj_dev,
8117 					struct list_head *dev_list,
8118 					void *private, bool master)
8119 {
8120 	struct netdev_adjacent *adj;
8121 	int ret;
8122 
8123 	adj = __netdev_find_adj(adj_dev, dev_list);
8124 
8125 	if (adj) {
8126 		adj->ref_nr += 1;
8127 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8128 			 dev->name, adj_dev->name, adj->ref_nr);
8129 
8130 		return 0;
8131 	}
8132 
8133 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8134 	if (!adj)
8135 		return -ENOMEM;
8136 
8137 	adj->dev = adj_dev;
8138 	adj->master = master;
8139 	adj->ref_nr = 1;
8140 	adj->private = private;
8141 	adj->ignore = false;
8142 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8143 
8144 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8145 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8146 
8147 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8148 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8149 		if (ret)
8150 			goto free_adj;
8151 	}
8152 
8153 	/* Ensure that master link is always the first item in list. */
8154 	if (master) {
8155 		ret = sysfs_create_link(&(dev->dev.kobj),
8156 					&(adj_dev->dev.kobj), "master");
8157 		if (ret)
8158 			goto remove_symlinks;
8159 
8160 		list_add_rcu(&adj->list, dev_list);
8161 	} else {
8162 		list_add_tail_rcu(&adj->list, dev_list);
8163 	}
8164 
8165 	return 0;
8166 
8167 remove_symlinks:
8168 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8169 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8170 free_adj:
8171 	netdev_put(adj_dev, &adj->dev_tracker);
8172 	kfree(adj);
8173 
8174 	return ret;
8175 }
8176 
8177 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8178 					 struct net_device *adj_dev,
8179 					 u16 ref_nr,
8180 					 struct list_head *dev_list)
8181 {
8182 	struct netdev_adjacent *adj;
8183 
8184 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8185 		 dev->name, adj_dev->name, ref_nr);
8186 
8187 	adj = __netdev_find_adj(adj_dev, dev_list);
8188 
8189 	if (!adj) {
8190 		pr_err("Adjacency does not exist for device %s from %s\n",
8191 		       dev->name, adj_dev->name);
8192 		WARN_ON(1);
8193 		return;
8194 	}
8195 
8196 	if (adj->ref_nr > ref_nr) {
8197 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8198 			 dev->name, adj_dev->name, ref_nr,
8199 			 adj->ref_nr - ref_nr);
8200 		adj->ref_nr -= ref_nr;
8201 		return;
8202 	}
8203 
8204 	if (adj->master)
8205 		sysfs_remove_link(&(dev->dev.kobj), "master");
8206 
8207 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8208 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8209 
8210 	list_del_rcu(&adj->list);
8211 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8212 		 adj_dev->name, dev->name, adj_dev->name);
8213 	netdev_put(adj_dev, &adj->dev_tracker);
8214 	kfree_rcu(adj, rcu);
8215 }
8216 
8217 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8218 					    struct net_device *upper_dev,
8219 					    struct list_head *up_list,
8220 					    struct list_head *down_list,
8221 					    void *private, bool master)
8222 {
8223 	int ret;
8224 
8225 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8226 					   private, master);
8227 	if (ret)
8228 		return ret;
8229 
8230 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8231 					   private, false);
8232 	if (ret) {
8233 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8234 		return ret;
8235 	}
8236 
8237 	return 0;
8238 }
8239 
8240 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8241 					       struct net_device *upper_dev,
8242 					       u16 ref_nr,
8243 					       struct list_head *up_list,
8244 					       struct list_head *down_list)
8245 {
8246 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8247 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8248 }
8249 
8250 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8251 						struct net_device *upper_dev,
8252 						void *private, bool master)
8253 {
8254 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8255 						&dev->adj_list.upper,
8256 						&upper_dev->adj_list.lower,
8257 						private, master);
8258 }
8259 
8260 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8261 						   struct net_device *upper_dev)
8262 {
8263 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8264 					   &dev->adj_list.upper,
8265 					   &upper_dev->adj_list.lower);
8266 }
8267 
8268 static int __netdev_upper_dev_link(struct net_device *dev,
8269 				   struct net_device *upper_dev, bool master,
8270 				   void *upper_priv, void *upper_info,
8271 				   struct netdev_nested_priv *priv,
8272 				   struct netlink_ext_ack *extack)
8273 {
8274 	struct netdev_notifier_changeupper_info changeupper_info = {
8275 		.info = {
8276 			.dev = dev,
8277 			.extack = extack,
8278 		},
8279 		.upper_dev = upper_dev,
8280 		.master = master,
8281 		.linking = true,
8282 		.upper_info = upper_info,
8283 	};
8284 	struct net_device *master_dev;
8285 	int ret = 0;
8286 
8287 	ASSERT_RTNL();
8288 
8289 	if (dev == upper_dev)
8290 		return -EBUSY;
8291 
8292 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8293 	if (__netdev_has_upper_dev(upper_dev, dev))
8294 		return -EBUSY;
8295 
8296 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8297 		return -EMLINK;
8298 
8299 	if (!master) {
8300 		if (__netdev_has_upper_dev(dev, upper_dev))
8301 			return -EEXIST;
8302 	} else {
8303 		master_dev = __netdev_master_upper_dev_get(dev);
8304 		if (master_dev)
8305 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8306 	}
8307 
8308 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8309 					    &changeupper_info.info);
8310 	ret = notifier_to_errno(ret);
8311 	if (ret)
8312 		return ret;
8313 
8314 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8315 						   master);
8316 	if (ret)
8317 		return ret;
8318 
8319 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8320 					    &changeupper_info.info);
8321 	ret = notifier_to_errno(ret);
8322 	if (ret)
8323 		goto rollback;
8324 
8325 	__netdev_update_upper_level(dev, NULL);
8326 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8327 
8328 	__netdev_update_lower_level(upper_dev, priv);
8329 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8330 				    priv);
8331 
8332 	return 0;
8333 
8334 rollback:
8335 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8336 
8337 	return ret;
8338 }
8339 
8340 /**
8341  * netdev_upper_dev_link - Add a link to the upper device
8342  * @dev: device
8343  * @upper_dev: new upper device
8344  * @extack: netlink extended ack
8345  *
8346  * Adds a link to device which is upper to this one. The caller must hold
8347  * the RTNL lock. On a failure a negative errno code is returned.
8348  * On success the reference counts are adjusted and the function
8349  * returns zero.
8350  */
8351 int netdev_upper_dev_link(struct net_device *dev,
8352 			  struct net_device *upper_dev,
8353 			  struct netlink_ext_ack *extack)
8354 {
8355 	struct netdev_nested_priv priv = {
8356 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8357 		.data = NULL,
8358 	};
8359 
8360 	return __netdev_upper_dev_link(dev, upper_dev, false,
8361 				       NULL, NULL, &priv, extack);
8362 }
8363 EXPORT_SYMBOL(netdev_upper_dev_link);
8364 
8365 /**
8366  * netdev_master_upper_dev_link - Add a master link to the upper device
8367  * @dev: device
8368  * @upper_dev: new upper device
8369  * @upper_priv: upper device private
8370  * @upper_info: upper info to be passed down via notifier
8371  * @extack: netlink extended ack
8372  *
8373  * Adds a link to device which is upper to this one. In this case, only
8374  * one master upper device can be linked, although other non-master devices
8375  * might be linked as well. The caller must hold the RTNL lock.
8376  * On a failure a negative errno code is returned. On success the reference
8377  * counts are adjusted and the function returns zero.
8378  */
8379 int netdev_master_upper_dev_link(struct net_device *dev,
8380 				 struct net_device *upper_dev,
8381 				 void *upper_priv, void *upper_info,
8382 				 struct netlink_ext_ack *extack)
8383 {
8384 	struct netdev_nested_priv priv = {
8385 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8386 		.data = NULL,
8387 	};
8388 
8389 	return __netdev_upper_dev_link(dev, upper_dev, true,
8390 				       upper_priv, upper_info, &priv, extack);
8391 }
8392 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8393 
8394 static void __netdev_upper_dev_unlink(struct net_device *dev,
8395 				      struct net_device *upper_dev,
8396 				      struct netdev_nested_priv *priv)
8397 {
8398 	struct netdev_notifier_changeupper_info changeupper_info = {
8399 		.info = {
8400 			.dev = dev,
8401 		},
8402 		.upper_dev = upper_dev,
8403 		.linking = false,
8404 	};
8405 
8406 	ASSERT_RTNL();
8407 
8408 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8409 
8410 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8411 				      &changeupper_info.info);
8412 
8413 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8414 
8415 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8416 				      &changeupper_info.info);
8417 
8418 	__netdev_update_upper_level(dev, NULL);
8419 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8420 
8421 	__netdev_update_lower_level(upper_dev, priv);
8422 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8423 				    priv);
8424 }
8425 
8426 /**
8427  * netdev_upper_dev_unlink - Removes a link to upper device
8428  * @dev: device
8429  * @upper_dev: new upper device
8430  *
8431  * Removes a link to device which is upper to this one. The caller must hold
8432  * the RTNL lock.
8433  */
8434 void netdev_upper_dev_unlink(struct net_device *dev,
8435 			     struct net_device *upper_dev)
8436 {
8437 	struct netdev_nested_priv priv = {
8438 		.flags = NESTED_SYNC_TODO,
8439 		.data = NULL,
8440 	};
8441 
8442 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8443 }
8444 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8445 
8446 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8447 				      struct net_device *lower_dev,
8448 				      bool val)
8449 {
8450 	struct netdev_adjacent *adj;
8451 
8452 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8453 	if (adj)
8454 		adj->ignore = val;
8455 
8456 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8457 	if (adj)
8458 		adj->ignore = val;
8459 }
8460 
8461 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8462 					struct net_device *lower_dev)
8463 {
8464 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8465 }
8466 
8467 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8468 				       struct net_device *lower_dev)
8469 {
8470 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8471 }
8472 
8473 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8474 				   struct net_device *new_dev,
8475 				   struct net_device *dev,
8476 				   struct netlink_ext_ack *extack)
8477 {
8478 	struct netdev_nested_priv priv = {
8479 		.flags = 0,
8480 		.data = NULL,
8481 	};
8482 	int err;
8483 
8484 	if (!new_dev)
8485 		return 0;
8486 
8487 	if (old_dev && new_dev != old_dev)
8488 		netdev_adjacent_dev_disable(dev, old_dev);
8489 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8490 				      extack);
8491 	if (err) {
8492 		if (old_dev && new_dev != old_dev)
8493 			netdev_adjacent_dev_enable(dev, old_dev);
8494 		return err;
8495 	}
8496 
8497 	return 0;
8498 }
8499 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8500 
8501 void netdev_adjacent_change_commit(struct net_device *old_dev,
8502 				   struct net_device *new_dev,
8503 				   struct net_device *dev)
8504 {
8505 	struct netdev_nested_priv priv = {
8506 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8507 		.data = NULL,
8508 	};
8509 
8510 	if (!new_dev || !old_dev)
8511 		return;
8512 
8513 	if (new_dev == old_dev)
8514 		return;
8515 
8516 	netdev_adjacent_dev_enable(dev, old_dev);
8517 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8518 }
8519 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8520 
8521 void netdev_adjacent_change_abort(struct net_device *old_dev,
8522 				  struct net_device *new_dev,
8523 				  struct net_device *dev)
8524 {
8525 	struct netdev_nested_priv priv = {
8526 		.flags = 0,
8527 		.data = NULL,
8528 	};
8529 
8530 	if (!new_dev)
8531 		return;
8532 
8533 	if (old_dev && new_dev != old_dev)
8534 		netdev_adjacent_dev_enable(dev, old_dev);
8535 
8536 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8537 }
8538 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8539 
8540 /**
8541  * netdev_bonding_info_change - Dispatch event about slave change
8542  * @dev: device
8543  * @bonding_info: info to dispatch
8544  *
8545  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8546  * The caller must hold the RTNL lock.
8547  */
8548 void netdev_bonding_info_change(struct net_device *dev,
8549 				struct netdev_bonding_info *bonding_info)
8550 {
8551 	struct netdev_notifier_bonding_info info = {
8552 		.info.dev = dev,
8553 	};
8554 
8555 	memcpy(&info.bonding_info, bonding_info,
8556 	       sizeof(struct netdev_bonding_info));
8557 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8558 				      &info.info);
8559 }
8560 EXPORT_SYMBOL(netdev_bonding_info_change);
8561 
8562 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8563 					   struct netlink_ext_ack *extack)
8564 {
8565 	struct netdev_notifier_offload_xstats_info info = {
8566 		.info.dev = dev,
8567 		.info.extack = extack,
8568 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8569 	};
8570 	int err;
8571 	int rc;
8572 
8573 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8574 					 GFP_KERNEL);
8575 	if (!dev->offload_xstats_l3)
8576 		return -ENOMEM;
8577 
8578 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8579 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8580 						  &info.info);
8581 	err = notifier_to_errno(rc);
8582 	if (err)
8583 		goto free_stats;
8584 
8585 	return 0;
8586 
8587 free_stats:
8588 	kfree(dev->offload_xstats_l3);
8589 	dev->offload_xstats_l3 = NULL;
8590 	return err;
8591 }
8592 
8593 int netdev_offload_xstats_enable(struct net_device *dev,
8594 				 enum netdev_offload_xstats_type type,
8595 				 struct netlink_ext_ack *extack)
8596 {
8597 	ASSERT_RTNL();
8598 
8599 	if (netdev_offload_xstats_enabled(dev, type))
8600 		return -EALREADY;
8601 
8602 	switch (type) {
8603 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8604 		return netdev_offload_xstats_enable_l3(dev, extack);
8605 	}
8606 
8607 	WARN_ON(1);
8608 	return -EINVAL;
8609 }
8610 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8611 
8612 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8613 {
8614 	struct netdev_notifier_offload_xstats_info info = {
8615 		.info.dev = dev,
8616 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8617 	};
8618 
8619 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8620 				      &info.info);
8621 	kfree(dev->offload_xstats_l3);
8622 	dev->offload_xstats_l3 = NULL;
8623 }
8624 
8625 int netdev_offload_xstats_disable(struct net_device *dev,
8626 				  enum netdev_offload_xstats_type type)
8627 {
8628 	ASSERT_RTNL();
8629 
8630 	if (!netdev_offload_xstats_enabled(dev, type))
8631 		return -EALREADY;
8632 
8633 	switch (type) {
8634 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8635 		netdev_offload_xstats_disable_l3(dev);
8636 		return 0;
8637 	}
8638 
8639 	WARN_ON(1);
8640 	return -EINVAL;
8641 }
8642 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8643 
8644 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8645 {
8646 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8647 }
8648 
8649 static struct rtnl_hw_stats64 *
8650 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8651 			      enum netdev_offload_xstats_type type)
8652 {
8653 	switch (type) {
8654 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8655 		return dev->offload_xstats_l3;
8656 	}
8657 
8658 	WARN_ON(1);
8659 	return NULL;
8660 }
8661 
8662 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8663 				   enum netdev_offload_xstats_type type)
8664 {
8665 	ASSERT_RTNL();
8666 
8667 	return netdev_offload_xstats_get_ptr(dev, type);
8668 }
8669 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8670 
8671 struct netdev_notifier_offload_xstats_ru {
8672 	bool used;
8673 };
8674 
8675 struct netdev_notifier_offload_xstats_rd {
8676 	struct rtnl_hw_stats64 stats;
8677 	bool used;
8678 };
8679 
8680 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8681 				  const struct rtnl_hw_stats64 *src)
8682 {
8683 	dest->rx_packets	  += src->rx_packets;
8684 	dest->tx_packets	  += src->tx_packets;
8685 	dest->rx_bytes		  += src->rx_bytes;
8686 	dest->tx_bytes		  += src->tx_bytes;
8687 	dest->rx_errors		  += src->rx_errors;
8688 	dest->tx_errors		  += src->tx_errors;
8689 	dest->rx_dropped	  += src->rx_dropped;
8690 	dest->tx_dropped	  += src->tx_dropped;
8691 	dest->multicast		  += src->multicast;
8692 }
8693 
8694 static int netdev_offload_xstats_get_used(struct net_device *dev,
8695 					  enum netdev_offload_xstats_type type,
8696 					  bool *p_used,
8697 					  struct netlink_ext_ack *extack)
8698 {
8699 	struct netdev_notifier_offload_xstats_ru report_used = {};
8700 	struct netdev_notifier_offload_xstats_info info = {
8701 		.info.dev = dev,
8702 		.info.extack = extack,
8703 		.type = type,
8704 		.report_used = &report_used,
8705 	};
8706 	int rc;
8707 
8708 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8709 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8710 					   &info.info);
8711 	*p_used = report_used.used;
8712 	return notifier_to_errno(rc);
8713 }
8714 
8715 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8716 					   enum netdev_offload_xstats_type type,
8717 					   struct rtnl_hw_stats64 *p_stats,
8718 					   bool *p_used,
8719 					   struct netlink_ext_ack *extack)
8720 {
8721 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8722 	struct netdev_notifier_offload_xstats_info info = {
8723 		.info.dev = dev,
8724 		.info.extack = extack,
8725 		.type = type,
8726 		.report_delta = &report_delta,
8727 	};
8728 	struct rtnl_hw_stats64 *stats;
8729 	int rc;
8730 
8731 	stats = netdev_offload_xstats_get_ptr(dev, type);
8732 	if (WARN_ON(!stats))
8733 		return -EINVAL;
8734 
8735 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8736 					   &info.info);
8737 
8738 	/* Cache whatever we got, even if there was an error, otherwise the
8739 	 * successful stats retrievals would get lost.
8740 	 */
8741 	netdev_hw_stats64_add(stats, &report_delta.stats);
8742 
8743 	if (p_stats)
8744 		*p_stats = *stats;
8745 	*p_used = report_delta.used;
8746 
8747 	return notifier_to_errno(rc);
8748 }
8749 
8750 int netdev_offload_xstats_get(struct net_device *dev,
8751 			      enum netdev_offload_xstats_type type,
8752 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8753 			      struct netlink_ext_ack *extack)
8754 {
8755 	ASSERT_RTNL();
8756 
8757 	if (p_stats)
8758 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8759 						       p_used, extack);
8760 	else
8761 		return netdev_offload_xstats_get_used(dev, type, p_used,
8762 						      extack);
8763 }
8764 EXPORT_SYMBOL(netdev_offload_xstats_get);
8765 
8766 void
8767 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8768 				   const struct rtnl_hw_stats64 *stats)
8769 {
8770 	report_delta->used = true;
8771 	netdev_hw_stats64_add(&report_delta->stats, stats);
8772 }
8773 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8774 
8775 void
8776 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8777 {
8778 	report_used->used = true;
8779 }
8780 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8781 
8782 void netdev_offload_xstats_push_delta(struct net_device *dev,
8783 				      enum netdev_offload_xstats_type type,
8784 				      const struct rtnl_hw_stats64 *p_stats)
8785 {
8786 	struct rtnl_hw_stats64 *stats;
8787 
8788 	ASSERT_RTNL();
8789 
8790 	stats = netdev_offload_xstats_get_ptr(dev, type);
8791 	if (WARN_ON(!stats))
8792 		return;
8793 
8794 	netdev_hw_stats64_add(stats, p_stats);
8795 }
8796 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8797 
8798 /**
8799  * netdev_get_xmit_slave - Get the xmit slave of master device
8800  * @dev: device
8801  * @skb: The packet
8802  * @all_slaves: assume all the slaves are active
8803  *
8804  * The reference counters are not incremented so the caller must be
8805  * careful with locks. The caller must hold RCU lock.
8806  * %NULL is returned if no slave is found.
8807  */
8808 
8809 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8810 					 struct sk_buff *skb,
8811 					 bool all_slaves)
8812 {
8813 	const struct net_device_ops *ops = dev->netdev_ops;
8814 
8815 	if (!ops->ndo_get_xmit_slave)
8816 		return NULL;
8817 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8818 }
8819 EXPORT_SYMBOL(netdev_get_xmit_slave);
8820 
8821 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8822 						  struct sock *sk)
8823 {
8824 	const struct net_device_ops *ops = dev->netdev_ops;
8825 
8826 	if (!ops->ndo_sk_get_lower_dev)
8827 		return NULL;
8828 	return ops->ndo_sk_get_lower_dev(dev, sk);
8829 }
8830 
8831 /**
8832  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8833  * @dev: device
8834  * @sk: the socket
8835  *
8836  * %NULL is returned if no lower device is found.
8837  */
8838 
8839 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8840 					    struct sock *sk)
8841 {
8842 	struct net_device *lower;
8843 
8844 	lower = netdev_sk_get_lower_dev(dev, sk);
8845 	while (lower) {
8846 		dev = lower;
8847 		lower = netdev_sk_get_lower_dev(dev, sk);
8848 	}
8849 
8850 	return dev;
8851 }
8852 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8853 
8854 static void netdev_adjacent_add_links(struct net_device *dev)
8855 {
8856 	struct netdev_adjacent *iter;
8857 
8858 	struct net *net = dev_net(dev);
8859 
8860 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8861 		if (!net_eq(net, dev_net(iter->dev)))
8862 			continue;
8863 		netdev_adjacent_sysfs_add(iter->dev, dev,
8864 					  &iter->dev->adj_list.lower);
8865 		netdev_adjacent_sysfs_add(dev, iter->dev,
8866 					  &dev->adj_list.upper);
8867 	}
8868 
8869 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8870 		if (!net_eq(net, dev_net(iter->dev)))
8871 			continue;
8872 		netdev_adjacent_sysfs_add(iter->dev, dev,
8873 					  &iter->dev->adj_list.upper);
8874 		netdev_adjacent_sysfs_add(dev, iter->dev,
8875 					  &dev->adj_list.lower);
8876 	}
8877 }
8878 
8879 static void netdev_adjacent_del_links(struct net_device *dev)
8880 {
8881 	struct netdev_adjacent *iter;
8882 
8883 	struct net *net = dev_net(dev);
8884 
8885 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8886 		if (!net_eq(net, dev_net(iter->dev)))
8887 			continue;
8888 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8889 					  &iter->dev->adj_list.lower);
8890 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8891 					  &dev->adj_list.upper);
8892 	}
8893 
8894 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8895 		if (!net_eq(net, dev_net(iter->dev)))
8896 			continue;
8897 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8898 					  &iter->dev->adj_list.upper);
8899 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8900 					  &dev->adj_list.lower);
8901 	}
8902 }
8903 
8904 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8905 {
8906 	struct netdev_adjacent *iter;
8907 
8908 	struct net *net = dev_net(dev);
8909 
8910 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8911 		if (!net_eq(net, dev_net(iter->dev)))
8912 			continue;
8913 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8914 					  &iter->dev->adj_list.lower);
8915 		netdev_adjacent_sysfs_add(iter->dev, dev,
8916 					  &iter->dev->adj_list.lower);
8917 	}
8918 
8919 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8920 		if (!net_eq(net, dev_net(iter->dev)))
8921 			continue;
8922 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8923 					  &iter->dev->adj_list.upper);
8924 		netdev_adjacent_sysfs_add(iter->dev, dev,
8925 					  &iter->dev->adj_list.upper);
8926 	}
8927 }
8928 
8929 void *netdev_lower_dev_get_private(struct net_device *dev,
8930 				   struct net_device *lower_dev)
8931 {
8932 	struct netdev_adjacent *lower;
8933 
8934 	if (!lower_dev)
8935 		return NULL;
8936 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8937 	if (!lower)
8938 		return NULL;
8939 
8940 	return lower->private;
8941 }
8942 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8943 
8944 
8945 /**
8946  * netdev_lower_state_changed - Dispatch event about lower device state change
8947  * @lower_dev: device
8948  * @lower_state_info: state to dispatch
8949  *
8950  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8951  * The caller must hold the RTNL lock.
8952  */
8953 void netdev_lower_state_changed(struct net_device *lower_dev,
8954 				void *lower_state_info)
8955 {
8956 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8957 		.info.dev = lower_dev,
8958 	};
8959 
8960 	ASSERT_RTNL();
8961 	changelowerstate_info.lower_state_info = lower_state_info;
8962 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8963 				      &changelowerstate_info.info);
8964 }
8965 EXPORT_SYMBOL(netdev_lower_state_changed);
8966 
8967 static void dev_change_rx_flags(struct net_device *dev, int flags)
8968 {
8969 	const struct net_device_ops *ops = dev->netdev_ops;
8970 
8971 	if (ops->ndo_change_rx_flags)
8972 		ops->ndo_change_rx_flags(dev, flags);
8973 }
8974 
8975 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8976 {
8977 	unsigned int old_flags = dev->flags;
8978 	unsigned int promiscuity, flags;
8979 	kuid_t uid;
8980 	kgid_t gid;
8981 
8982 	ASSERT_RTNL();
8983 
8984 	promiscuity = dev->promiscuity + inc;
8985 	if (promiscuity == 0) {
8986 		/*
8987 		 * Avoid overflow.
8988 		 * If inc causes overflow, untouch promisc and return error.
8989 		 */
8990 		if (unlikely(inc > 0)) {
8991 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8992 			return -EOVERFLOW;
8993 		}
8994 		flags = old_flags & ~IFF_PROMISC;
8995 	} else {
8996 		flags = old_flags | IFF_PROMISC;
8997 	}
8998 	WRITE_ONCE(dev->promiscuity, promiscuity);
8999 	if (flags != old_flags) {
9000 		WRITE_ONCE(dev->flags, flags);
9001 		netdev_info(dev, "%s promiscuous mode\n",
9002 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9003 		if (audit_enabled) {
9004 			current_uid_gid(&uid, &gid);
9005 			audit_log(audit_context(), GFP_ATOMIC,
9006 				  AUDIT_ANOM_PROMISCUOUS,
9007 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9008 				  dev->name, (dev->flags & IFF_PROMISC),
9009 				  (old_flags & IFF_PROMISC),
9010 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9011 				  from_kuid(&init_user_ns, uid),
9012 				  from_kgid(&init_user_ns, gid),
9013 				  audit_get_sessionid(current));
9014 		}
9015 
9016 		dev_change_rx_flags(dev, IFF_PROMISC);
9017 	}
9018 	if (notify)
9019 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9020 	return 0;
9021 }
9022 
9023 /**
9024  *	dev_set_promiscuity	- update promiscuity count on a device
9025  *	@dev: device
9026  *	@inc: modifier
9027  *
9028  *	Add or remove promiscuity from a device. While the count in the device
9029  *	remains above zero the interface remains promiscuous. Once it hits zero
9030  *	the device reverts back to normal filtering operation. A negative inc
9031  *	value is used to drop promiscuity on the device.
9032  *	Return 0 if successful or a negative errno code on error.
9033  */
9034 int dev_set_promiscuity(struct net_device *dev, int inc)
9035 {
9036 	unsigned int old_flags = dev->flags;
9037 	int err;
9038 
9039 	err = __dev_set_promiscuity(dev, inc, true);
9040 	if (err < 0)
9041 		return err;
9042 	if (dev->flags != old_flags)
9043 		dev_set_rx_mode(dev);
9044 	return err;
9045 }
9046 EXPORT_SYMBOL(dev_set_promiscuity);
9047 
9048 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
9049 {
9050 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9051 	unsigned int allmulti, flags;
9052 
9053 	ASSERT_RTNL();
9054 
9055 	allmulti = dev->allmulti + inc;
9056 	if (allmulti == 0) {
9057 		/*
9058 		 * Avoid overflow.
9059 		 * If inc causes overflow, untouch allmulti and return error.
9060 		 */
9061 		if (unlikely(inc > 0)) {
9062 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9063 			return -EOVERFLOW;
9064 		}
9065 		flags = old_flags & ~IFF_ALLMULTI;
9066 	} else {
9067 		flags = old_flags | IFF_ALLMULTI;
9068 	}
9069 	WRITE_ONCE(dev->allmulti, allmulti);
9070 	if (flags != old_flags) {
9071 		WRITE_ONCE(dev->flags, flags);
9072 		netdev_info(dev, "%s allmulticast mode\n",
9073 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9074 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9075 		dev_set_rx_mode(dev);
9076 		if (notify)
9077 			__dev_notify_flags(dev, old_flags,
9078 					   dev->gflags ^ old_gflags, 0, NULL);
9079 	}
9080 	return 0;
9081 }
9082 
9083 /**
9084  *	dev_set_allmulti	- update allmulti count on a device
9085  *	@dev: device
9086  *	@inc: modifier
9087  *
9088  *	Add or remove reception of all multicast frames to a device. While the
9089  *	count in the device remains above zero the interface remains listening
9090  *	to all interfaces. Once it hits zero the device reverts back to normal
9091  *	filtering operation. A negative @inc value is used to drop the counter
9092  *	when releasing a resource needing all multicasts.
9093  *	Return 0 if successful or a negative errno code on error.
9094  */
9095 
9096 int dev_set_allmulti(struct net_device *dev, int inc)
9097 {
9098 	return __dev_set_allmulti(dev, inc, true);
9099 }
9100 EXPORT_SYMBOL(dev_set_allmulti);
9101 
9102 /*
9103  *	Upload unicast and multicast address lists to device and
9104  *	configure RX filtering. When the device doesn't support unicast
9105  *	filtering it is put in promiscuous mode while unicast addresses
9106  *	are present.
9107  */
9108 void __dev_set_rx_mode(struct net_device *dev)
9109 {
9110 	const struct net_device_ops *ops = dev->netdev_ops;
9111 
9112 	/* dev_open will call this function so the list will stay sane. */
9113 	if (!(dev->flags&IFF_UP))
9114 		return;
9115 
9116 	if (!netif_device_present(dev))
9117 		return;
9118 
9119 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9120 		/* Unicast addresses changes may only happen under the rtnl,
9121 		 * therefore calling __dev_set_promiscuity here is safe.
9122 		 */
9123 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9124 			__dev_set_promiscuity(dev, 1, false);
9125 			dev->uc_promisc = true;
9126 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9127 			__dev_set_promiscuity(dev, -1, false);
9128 			dev->uc_promisc = false;
9129 		}
9130 	}
9131 
9132 	if (ops->ndo_set_rx_mode)
9133 		ops->ndo_set_rx_mode(dev);
9134 }
9135 
9136 void dev_set_rx_mode(struct net_device *dev)
9137 {
9138 	netif_addr_lock_bh(dev);
9139 	__dev_set_rx_mode(dev);
9140 	netif_addr_unlock_bh(dev);
9141 }
9142 
9143 /**
9144  *	dev_get_flags - get flags reported to userspace
9145  *	@dev: device
9146  *
9147  *	Get the combination of flag bits exported through APIs to userspace.
9148  */
9149 unsigned int dev_get_flags(const struct net_device *dev)
9150 {
9151 	unsigned int flags;
9152 
9153 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9154 				IFF_ALLMULTI |
9155 				IFF_RUNNING |
9156 				IFF_LOWER_UP |
9157 				IFF_DORMANT)) |
9158 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9159 				IFF_ALLMULTI));
9160 
9161 	if (netif_running(dev)) {
9162 		if (netif_oper_up(dev))
9163 			flags |= IFF_RUNNING;
9164 		if (netif_carrier_ok(dev))
9165 			flags |= IFF_LOWER_UP;
9166 		if (netif_dormant(dev))
9167 			flags |= IFF_DORMANT;
9168 	}
9169 
9170 	return flags;
9171 }
9172 EXPORT_SYMBOL(dev_get_flags);
9173 
9174 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9175 		       struct netlink_ext_ack *extack)
9176 {
9177 	unsigned int old_flags = dev->flags;
9178 	int ret;
9179 
9180 	ASSERT_RTNL();
9181 
9182 	/*
9183 	 *	Set the flags on our device.
9184 	 */
9185 
9186 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9187 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9188 			       IFF_AUTOMEDIA)) |
9189 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9190 				    IFF_ALLMULTI));
9191 
9192 	/*
9193 	 *	Load in the correct multicast list now the flags have changed.
9194 	 */
9195 
9196 	if ((old_flags ^ flags) & IFF_MULTICAST)
9197 		dev_change_rx_flags(dev, IFF_MULTICAST);
9198 
9199 	dev_set_rx_mode(dev);
9200 
9201 	/*
9202 	 *	Have we downed the interface. We handle IFF_UP ourselves
9203 	 *	according to user attempts to set it, rather than blindly
9204 	 *	setting it.
9205 	 */
9206 
9207 	ret = 0;
9208 	if ((old_flags ^ flags) & IFF_UP) {
9209 		if (old_flags & IFF_UP)
9210 			__dev_close(dev);
9211 		else
9212 			ret = __dev_open(dev, extack);
9213 	}
9214 
9215 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9216 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9217 		unsigned int old_flags = dev->flags;
9218 
9219 		dev->gflags ^= IFF_PROMISC;
9220 
9221 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9222 			if (dev->flags != old_flags)
9223 				dev_set_rx_mode(dev);
9224 	}
9225 
9226 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9227 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9228 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9229 	 */
9230 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9231 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9232 
9233 		dev->gflags ^= IFF_ALLMULTI;
9234 		__dev_set_allmulti(dev, inc, false);
9235 	}
9236 
9237 	return ret;
9238 }
9239 
9240 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9241 			unsigned int gchanges, u32 portid,
9242 			const struct nlmsghdr *nlh)
9243 {
9244 	unsigned int changes = dev->flags ^ old_flags;
9245 
9246 	if (gchanges)
9247 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9248 
9249 	if (changes & IFF_UP) {
9250 		if (dev->flags & IFF_UP)
9251 			call_netdevice_notifiers(NETDEV_UP, dev);
9252 		else
9253 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9254 	}
9255 
9256 	if (dev->flags & IFF_UP &&
9257 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9258 		struct netdev_notifier_change_info change_info = {
9259 			.info = {
9260 				.dev = dev,
9261 			},
9262 			.flags_changed = changes,
9263 		};
9264 
9265 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9266 	}
9267 }
9268 
9269 /**
9270  *	dev_change_flags - change device settings
9271  *	@dev: device
9272  *	@flags: device state flags
9273  *	@extack: netlink extended ack
9274  *
9275  *	Change settings on device based state flags. The flags are
9276  *	in the userspace exported format.
9277  */
9278 int dev_change_flags(struct net_device *dev, unsigned int flags,
9279 		     struct netlink_ext_ack *extack)
9280 {
9281 	int ret;
9282 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9283 
9284 	ret = __dev_change_flags(dev, flags, extack);
9285 	if (ret < 0)
9286 		return ret;
9287 
9288 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9289 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9290 	return ret;
9291 }
9292 EXPORT_SYMBOL(dev_change_flags);
9293 
9294 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9295 {
9296 	const struct net_device_ops *ops = dev->netdev_ops;
9297 
9298 	if (ops->ndo_change_mtu)
9299 		return ops->ndo_change_mtu(dev, new_mtu);
9300 
9301 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9302 	WRITE_ONCE(dev->mtu, new_mtu);
9303 	return 0;
9304 }
9305 EXPORT_SYMBOL(__dev_set_mtu);
9306 
9307 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9308 		     struct netlink_ext_ack *extack)
9309 {
9310 	/* MTU must be positive, and in range */
9311 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9312 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9313 		return -EINVAL;
9314 	}
9315 
9316 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9317 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9318 		return -EINVAL;
9319 	}
9320 	return 0;
9321 }
9322 
9323 /**
9324  *	dev_set_mtu_ext - Change maximum transfer unit
9325  *	@dev: device
9326  *	@new_mtu: new transfer unit
9327  *	@extack: netlink extended ack
9328  *
9329  *	Change the maximum transfer size of the network device.
9330  */
9331 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
9332 		    struct netlink_ext_ack *extack)
9333 {
9334 	int err, orig_mtu;
9335 
9336 	if (new_mtu == dev->mtu)
9337 		return 0;
9338 
9339 	err = dev_validate_mtu(dev, new_mtu, extack);
9340 	if (err)
9341 		return err;
9342 
9343 	if (!netif_device_present(dev))
9344 		return -ENODEV;
9345 
9346 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9347 	err = notifier_to_errno(err);
9348 	if (err)
9349 		return err;
9350 
9351 	orig_mtu = dev->mtu;
9352 	err = __dev_set_mtu(dev, new_mtu);
9353 
9354 	if (!err) {
9355 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9356 						   orig_mtu);
9357 		err = notifier_to_errno(err);
9358 		if (err) {
9359 			/* setting mtu back and notifying everyone again,
9360 			 * so that they have a chance to revert changes.
9361 			 */
9362 			__dev_set_mtu(dev, orig_mtu);
9363 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9364 						     new_mtu);
9365 		}
9366 	}
9367 	return err;
9368 }
9369 
9370 int dev_set_mtu(struct net_device *dev, int new_mtu)
9371 {
9372 	struct netlink_ext_ack extack;
9373 	int err;
9374 
9375 	memset(&extack, 0, sizeof(extack));
9376 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
9377 	if (err && extack._msg)
9378 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9379 	return err;
9380 }
9381 EXPORT_SYMBOL(dev_set_mtu);
9382 
9383 /**
9384  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
9385  *	@dev: device
9386  *	@new_len: new tx queue length
9387  */
9388 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9389 {
9390 	unsigned int orig_len = dev->tx_queue_len;
9391 	int res;
9392 
9393 	if (new_len != (unsigned int)new_len)
9394 		return -ERANGE;
9395 
9396 	if (new_len != orig_len) {
9397 		WRITE_ONCE(dev->tx_queue_len, new_len);
9398 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9399 		res = notifier_to_errno(res);
9400 		if (res)
9401 			goto err_rollback;
9402 		res = dev_qdisc_change_tx_queue_len(dev);
9403 		if (res)
9404 			goto err_rollback;
9405 	}
9406 
9407 	return 0;
9408 
9409 err_rollback:
9410 	netdev_err(dev, "refused to change device tx_queue_len\n");
9411 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9412 	return res;
9413 }
9414 
9415 /**
9416  *	dev_set_group - Change group this device belongs to
9417  *	@dev: device
9418  *	@new_group: group this device should belong to
9419  */
9420 void dev_set_group(struct net_device *dev, int new_group)
9421 {
9422 	dev->group = new_group;
9423 }
9424 
9425 /**
9426  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9427  *	@dev: device
9428  *	@addr: new address
9429  *	@extack: netlink extended ack
9430  */
9431 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9432 			      struct netlink_ext_ack *extack)
9433 {
9434 	struct netdev_notifier_pre_changeaddr_info info = {
9435 		.info.dev = dev,
9436 		.info.extack = extack,
9437 		.dev_addr = addr,
9438 	};
9439 	int rc;
9440 
9441 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9442 	return notifier_to_errno(rc);
9443 }
9444 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9445 
9446 /**
9447  *	dev_set_mac_address - Change Media Access Control Address
9448  *	@dev: device
9449  *	@sa: new address
9450  *	@extack: netlink extended ack
9451  *
9452  *	Change the hardware (MAC) address of the device
9453  */
9454 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9455 			struct netlink_ext_ack *extack)
9456 {
9457 	const struct net_device_ops *ops = dev->netdev_ops;
9458 	int err;
9459 
9460 	if (!ops->ndo_set_mac_address)
9461 		return -EOPNOTSUPP;
9462 	if (sa->sa_family != dev->type)
9463 		return -EINVAL;
9464 	if (!netif_device_present(dev))
9465 		return -ENODEV;
9466 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9467 	if (err)
9468 		return err;
9469 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9470 		err = ops->ndo_set_mac_address(dev, sa);
9471 		if (err)
9472 			return err;
9473 	}
9474 	dev->addr_assign_type = NET_ADDR_SET;
9475 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9476 	add_device_randomness(dev->dev_addr, dev->addr_len);
9477 	return 0;
9478 }
9479 EXPORT_SYMBOL(dev_set_mac_address);
9480 
9481 DECLARE_RWSEM(dev_addr_sem);
9482 
9483 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9484 			     struct netlink_ext_ack *extack)
9485 {
9486 	int ret;
9487 
9488 	down_write(&dev_addr_sem);
9489 	ret = dev_set_mac_address(dev, sa, extack);
9490 	up_write(&dev_addr_sem);
9491 	return ret;
9492 }
9493 EXPORT_SYMBOL(dev_set_mac_address_user);
9494 
9495 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9496 {
9497 	size_t size = sizeof(sa->sa_data_min);
9498 	struct net_device *dev;
9499 	int ret = 0;
9500 
9501 	down_read(&dev_addr_sem);
9502 	rcu_read_lock();
9503 
9504 	dev = dev_get_by_name_rcu(net, dev_name);
9505 	if (!dev) {
9506 		ret = -ENODEV;
9507 		goto unlock;
9508 	}
9509 	if (!dev->addr_len)
9510 		memset(sa->sa_data, 0, size);
9511 	else
9512 		memcpy(sa->sa_data, dev->dev_addr,
9513 		       min_t(size_t, size, dev->addr_len));
9514 	sa->sa_family = dev->type;
9515 
9516 unlock:
9517 	rcu_read_unlock();
9518 	up_read(&dev_addr_sem);
9519 	return ret;
9520 }
9521 EXPORT_SYMBOL(dev_get_mac_address);
9522 
9523 /**
9524  *	dev_change_carrier - Change device carrier
9525  *	@dev: device
9526  *	@new_carrier: new value
9527  *
9528  *	Change device carrier
9529  */
9530 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9531 {
9532 	const struct net_device_ops *ops = dev->netdev_ops;
9533 
9534 	if (!ops->ndo_change_carrier)
9535 		return -EOPNOTSUPP;
9536 	if (!netif_device_present(dev))
9537 		return -ENODEV;
9538 	return ops->ndo_change_carrier(dev, new_carrier);
9539 }
9540 
9541 /**
9542  *	dev_get_phys_port_id - Get device physical port ID
9543  *	@dev: device
9544  *	@ppid: port ID
9545  *
9546  *	Get device physical port ID
9547  */
9548 int dev_get_phys_port_id(struct net_device *dev,
9549 			 struct netdev_phys_item_id *ppid)
9550 {
9551 	const struct net_device_ops *ops = dev->netdev_ops;
9552 
9553 	if (!ops->ndo_get_phys_port_id)
9554 		return -EOPNOTSUPP;
9555 	return ops->ndo_get_phys_port_id(dev, ppid);
9556 }
9557 
9558 /**
9559  *	dev_get_phys_port_name - Get device physical port name
9560  *	@dev: device
9561  *	@name: port name
9562  *	@len: limit of bytes to copy to name
9563  *
9564  *	Get device physical port name
9565  */
9566 int dev_get_phys_port_name(struct net_device *dev,
9567 			   char *name, size_t len)
9568 {
9569 	const struct net_device_ops *ops = dev->netdev_ops;
9570 	int err;
9571 
9572 	if (ops->ndo_get_phys_port_name) {
9573 		err = ops->ndo_get_phys_port_name(dev, name, len);
9574 		if (err != -EOPNOTSUPP)
9575 			return err;
9576 	}
9577 	return devlink_compat_phys_port_name_get(dev, name, len);
9578 }
9579 
9580 /**
9581  *	dev_get_port_parent_id - Get the device's port parent identifier
9582  *	@dev: network device
9583  *	@ppid: pointer to a storage for the port's parent identifier
9584  *	@recurse: allow/disallow recursion to lower devices
9585  *
9586  *	Get the devices's port parent identifier
9587  */
9588 int dev_get_port_parent_id(struct net_device *dev,
9589 			   struct netdev_phys_item_id *ppid,
9590 			   bool recurse)
9591 {
9592 	const struct net_device_ops *ops = dev->netdev_ops;
9593 	struct netdev_phys_item_id first = { };
9594 	struct net_device *lower_dev;
9595 	struct list_head *iter;
9596 	int err;
9597 
9598 	if (ops->ndo_get_port_parent_id) {
9599 		err = ops->ndo_get_port_parent_id(dev, ppid);
9600 		if (err != -EOPNOTSUPP)
9601 			return err;
9602 	}
9603 
9604 	err = devlink_compat_switch_id_get(dev, ppid);
9605 	if (!recurse || err != -EOPNOTSUPP)
9606 		return err;
9607 
9608 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9609 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9610 		if (err)
9611 			break;
9612 		if (!first.id_len)
9613 			first = *ppid;
9614 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9615 			return -EOPNOTSUPP;
9616 	}
9617 
9618 	return err;
9619 }
9620 EXPORT_SYMBOL(dev_get_port_parent_id);
9621 
9622 /**
9623  *	netdev_port_same_parent_id - Indicate if two network devices have
9624  *	the same port parent identifier
9625  *	@a: first network device
9626  *	@b: second network device
9627  */
9628 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9629 {
9630 	struct netdev_phys_item_id a_id = { };
9631 	struct netdev_phys_item_id b_id = { };
9632 
9633 	if (dev_get_port_parent_id(a, &a_id, true) ||
9634 	    dev_get_port_parent_id(b, &b_id, true))
9635 		return false;
9636 
9637 	return netdev_phys_item_id_same(&a_id, &b_id);
9638 }
9639 EXPORT_SYMBOL(netdev_port_same_parent_id);
9640 
9641 /**
9642  *	dev_change_proto_down - set carrier according to proto_down.
9643  *
9644  *	@dev: device
9645  *	@proto_down: new value
9646  */
9647 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9648 {
9649 	if (!dev->change_proto_down)
9650 		return -EOPNOTSUPP;
9651 	if (!netif_device_present(dev))
9652 		return -ENODEV;
9653 	if (proto_down)
9654 		netif_carrier_off(dev);
9655 	else
9656 		netif_carrier_on(dev);
9657 	WRITE_ONCE(dev->proto_down, proto_down);
9658 	return 0;
9659 }
9660 
9661 /**
9662  *	dev_change_proto_down_reason - proto down reason
9663  *
9664  *	@dev: device
9665  *	@mask: proto down mask
9666  *	@value: proto down value
9667  */
9668 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9669 				  u32 value)
9670 {
9671 	u32 proto_down_reason;
9672 	int b;
9673 
9674 	if (!mask) {
9675 		proto_down_reason = value;
9676 	} else {
9677 		proto_down_reason = dev->proto_down_reason;
9678 		for_each_set_bit(b, &mask, 32) {
9679 			if (value & (1 << b))
9680 				proto_down_reason |= BIT(b);
9681 			else
9682 				proto_down_reason &= ~BIT(b);
9683 		}
9684 	}
9685 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9686 }
9687 
9688 struct bpf_xdp_link {
9689 	struct bpf_link link;
9690 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9691 	int flags;
9692 };
9693 
9694 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9695 {
9696 	if (flags & XDP_FLAGS_HW_MODE)
9697 		return XDP_MODE_HW;
9698 	if (flags & XDP_FLAGS_DRV_MODE)
9699 		return XDP_MODE_DRV;
9700 	if (flags & XDP_FLAGS_SKB_MODE)
9701 		return XDP_MODE_SKB;
9702 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9703 }
9704 
9705 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9706 {
9707 	switch (mode) {
9708 	case XDP_MODE_SKB:
9709 		return generic_xdp_install;
9710 	case XDP_MODE_DRV:
9711 	case XDP_MODE_HW:
9712 		return dev->netdev_ops->ndo_bpf;
9713 	default:
9714 		return NULL;
9715 	}
9716 }
9717 
9718 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9719 					 enum bpf_xdp_mode mode)
9720 {
9721 	return dev->xdp_state[mode].link;
9722 }
9723 
9724 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9725 				     enum bpf_xdp_mode mode)
9726 {
9727 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9728 
9729 	if (link)
9730 		return link->link.prog;
9731 	return dev->xdp_state[mode].prog;
9732 }
9733 
9734 u8 dev_xdp_prog_count(struct net_device *dev)
9735 {
9736 	u8 count = 0;
9737 	int i;
9738 
9739 	for (i = 0; i < __MAX_XDP_MODE; i++)
9740 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9741 			count++;
9742 	return count;
9743 }
9744 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9745 
9746 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9747 {
9748 	u8 count = 0;
9749 	int i;
9750 
9751 	for (i = 0; i < __MAX_XDP_MODE; i++)
9752 		if (dev->xdp_state[i].prog &&
9753 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9754 			count++;
9755 	return count;
9756 }
9757 
9758 int dev_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9759 {
9760 	if (!dev->netdev_ops->ndo_bpf)
9761 		return -EOPNOTSUPP;
9762 
9763 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9764 	    bpf->command == XDP_SETUP_PROG &&
9765 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9766 		NL_SET_ERR_MSG(bpf->extack,
9767 			       "unable to propagate XDP to device using tcp-data-split");
9768 		return -EBUSY;
9769 	}
9770 
9771 	if (dev_get_min_mp_channel_count(dev)) {
9772 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9773 		return -EBUSY;
9774 	}
9775 
9776 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9777 }
9778 EXPORT_SYMBOL_GPL(dev_xdp_propagate);
9779 
9780 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9781 {
9782 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9783 
9784 	return prog ? prog->aux->id : 0;
9785 }
9786 
9787 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9788 			     struct bpf_xdp_link *link)
9789 {
9790 	dev->xdp_state[mode].link = link;
9791 	dev->xdp_state[mode].prog = NULL;
9792 }
9793 
9794 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9795 			     struct bpf_prog *prog)
9796 {
9797 	dev->xdp_state[mode].link = NULL;
9798 	dev->xdp_state[mode].prog = prog;
9799 }
9800 
9801 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9802 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9803 			   u32 flags, struct bpf_prog *prog)
9804 {
9805 	struct netdev_bpf xdp;
9806 	int err;
9807 
9808 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9809 	    prog && !prog->aux->xdp_has_frags) {
9810 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9811 		return -EBUSY;
9812 	}
9813 
9814 	if (dev_get_min_mp_channel_count(dev)) {
9815 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9816 		return -EBUSY;
9817 	}
9818 
9819 	memset(&xdp, 0, sizeof(xdp));
9820 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9821 	xdp.extack = extack;
9822 	xdp.flags = flags;
9823 	xdp.prog = prog;
9824 
9825 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9826 	 * "moved" into driver), so they don't increment it on their own, but
9827 	 * they do decrement refcnt when program is detached or replaced.
9828 	 * Given net_device also owns link/prog, we need to bump refcnt here
9829 	 * to prevent drivers from underflowing it.
9830 	 */
9831 	if (prog)
9832 		bpf_prog_inc(prog);
9833 	err = bpf_op(dev, &xdp);
9834 	if (err) {
9835 		if (prog)
9836 			bpf_prog_put(prog);
9837 		return err;
9838 	}
9839 
9840 	if (mode != XDP_MODE_HW)
9841 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9842 
9843 	return 0;
9844 }
9845 
9846 static void dev_xdp_uninstall(struct net_device *dev)
9847 {
9848 	struct bpf_xdp_link *link;
9849 	struct bpf_prog *prog;
9850 	enum bpf_xdp_mode mode;
9851 	bpf_op_t bpf_op;
9852 
9853 	ASSERT_RTNL();
9854 
9855 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9856 		prog = dev_xdp_prog(dev, mode);
9857 		if (!prog)
9858 			continue;
9859 
9860 		bpf_op = dev_xdp_bpf_op(dev, mode);
9861 		if (!bpf_op)
9862 			continue;
9863 
9864 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9865 
9866 		/* auto-detach link from net device */
9867 		link = dev_xdp_link(dev, mode);
9868 		if (link)
9869 			link->dev = NULL;
9870 		else
9871 			bpf_prog_put(prog);
9872 
9873 		dev_xdp_set_link(dev, mode, NULL);
9874 	}
9875 }
9876 
9877 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9878 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9879 			  struct bpf_prog *old_prog, u32 flags)
9880 {
9881 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9882 	struct bpf_prog *cur_prog;
9883 	struct net_device *upper;
9884 	struct list_head *iter;
9885 	enum bpf_xdp_mode mode;
9886 	bpf_op_t bpf_op;
9887 	int err;
9888 
9889 	ASSERT_RTNL();
9890 
9891 	/* either link or prog attachment, never both */
9892 	if (link && (new_prog || old_prog))
9893 		return -EINVAL;
9894 	/* link supports only XDP mode flags */
9895 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9896 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9897 		return -EINVAL;
9898 	}
9899 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9900 	if (num_modes > 1) {
9901 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9902 		return -EINVAL;
9903 	}
9904 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9905 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9906 		NL_SET_ERR_MSG(extack,
9907 			       "More than one program loaded, unset mode is ambiguous");
9908 		return -EINVAL;
9909 	}
9910 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9911 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9912 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9913 		return -EINVAL;
9914 	}
9915 
9916 	mode = dev_xdp_mode(dev, flags);
9917 	/* can't replace attached link */
9918 	if (dev_xdp_link(dev, mode)) {
9919 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9920 		return -EBUSY;
9921 	}
9922 
9923 	/* don't allow if an upper device already has a program */
9924 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9925 		if (dev_xdp_prog_count(upper) > 0) {
9926 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9927 			return -EEXIST;
9928 		}
9929 	}
9930 
9931 	cur_prog = dev_xdp_prog(dev, mode);
9932 	/* can't replace attached prog with link */
9933 	if (link && cur_prog) {
9934 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9935 		return -EBUSY;
9936 	}
9937 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9938 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9939 		return -EEXIST;
9940 	}
9941 
9942 	/* put effective new program into new_prog */
9943 	if (link)
9944 		new_prog = link->link.prog;
9945 
9946 	if (new_prog) {
9947 		bool offload = mode == XDP_MODE_HW;
9948 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9949 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9950 
9951 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9952 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9953 			return -EBUSY;
9954 		}
9955 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9956 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9957 			return -EEXIST;
9958 		}
9959 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9960 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9961 			return -EINVAL;
9962 		}
9963 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9964 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9965 			return -EINVAL;
9966 		}
9967 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
9968 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
9969 			return -EINVAL;
9970 		}
9971 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9972 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9973 			return -EINVAL;
9974 		}
9975 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9976 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9977 			return -EINVAL;
9978 		}
9979 	}
9980 
9981 	/* don't call drivers if the effective program didn't change */
9982 	if (new_prog != cur_prog) {
9983 		bpf_op = dev_xdp_bpf_op(dev, mode);
9984 		if (!bpf_op) {
9985 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9986 			return -EOPNOTSUPP;
9987 		}
9988 
9989 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9990 		if (err)
9991 			return err;
9992 	}
9993 
9994 	if (link)
9995 		dev_xdp_set_link(dev, mode, link);
9996 	else
9997 		dev_xdp_set_prog(dev, mode, new_prog);
9998 	if (cur_prog)
9999 		bpf_prog_put(cur_prog);
10000 
10001 	return 0;
10002 }
10003 
10004 static int dev_xdp_attach_link(struct net_device *dev,
10005 			       struct netlink_ext_ack *extack,
10006 			       struct bpf_xdp_link *link)
10007 {
10008 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10009 }
10010 
10011 static int dev_xdp_detach_link(struct net_device *dev,
10012 			       struct netlink_ext_ack *extack,
10013 			       struct bpf_xdp_link *link)
10014 {
10015 	enum bpf_xdp_mode mode;
10016 	bpf_op_t bpf_op;
10017 
10018 	ASSERT_RTNL();
10019 
10020 	mode = dev_xdp_mode(dev, link->flags);
10021 	if (dev_xdp_link(dev, mode) != link)
10022 		return -EINVAL;
10023 
10024 	bpf_op = dev_xdp_bpf_op(dev, mode);
10025 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10026 	dev_xdp_set_link(dev, mode, NULL);
10027 	return 0;
10028 }
10029 
10030 static void bpf_xdp_link_release(struct bpf_link *link)
10031 {
10032 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10033 
10034 	rtnl_lock();
10035 
10036 	/* if racing with net_device's tear down, xdp_link->dev might be
10037 	 * already NULL, in which case link was already auto-detached
10038 	 */
10039 	if (xdp_link->dev) {
10040 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10041 		xdp_link->dev = NULL;
10042 	}
10043 
10044 	rtnl_unlock();
10045 }
10046 
10047 static int bpf_xdp_link_detach(struct bpf_link *link)
10048 {
10049 	bpf_xdp_link_release(link);
10050 	return 0;
10051 }
10052 
10053 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10054 {
10055 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10056 
10057 	kfree(xdp_link);
10058 }
10059 
10060 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10061 				     struct seq_file *seq)
10062 {
10063 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10064 	u32 ifindex = 0;
10065 
10066 	rtnl_lock();
10067 	if (xdp_link->dev)
10068 		ifindex = xdp_link->dev->ifindex;
10069 	rtnl_unlock();
10070 
10071 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10072 }
10073 
10074 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10075 				       struct bpf_link_info *info)
10076 {
10077 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10078 	u32 ifindex = 0;
10079 
10080 	rtnl_lock();
10081 	if (xdp_link->dev)
10082 		ifindex = xdp_link->dev->ifindex;
10083 	rtnl_unlock();
10084 
10085 	info->xdp.ifindex = ifindex;
10086 	return 0;
10087 }
10088 
10089 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10090 			       struct bpf_prog *old_prog)
10091 {
10092 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10093 	enum bpf_xdp_mode mode;
10094 	bpf_op_t bpf_op;
10095 	int err = 0;
10096 
10097 	rtnl_lock();
10098 
10099 	/* link might have been auto-released already, so fail */
10100 	if (!xdp_link->dev) {
10101 		err = -ENOLINK;
10102 		goto out_unlock;
10103 	}
10104 
10105 	if (old_prog && link->prog != old_prog) {
10106 		err = -EPERM;
10107 		goto out_unlock;
10108 	}
10109 	old_prog = link->prog;
10110 	if (old_prog->type != new_prog->type ||
10111 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10112 		err = -EINVAL;
10113 		goto out_unlock;
10114 	}
10115 
10116 	if (old_prog == new_prog) {
10117 		/* no-op, don't disturb drivers */
10118 		bpf_prog_put(new_prog);
10119 		goto out_unlock;
10120 	}
10121 
10122 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10123 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10124 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10125 			      xdp_link->flags, new_prog);
10126 	if (err)
10127 		goto out_unlock;
10128 
10129 	old_prog = xchg(&link->prog, new_prog);
10130 	bpf_prog_put(old_prog);
10131 
10132 out_unlock:
10133 	rtnl_unlock();
10134 	return err;
10135 }
10136 
10137 static const struct bpf_link_ops bpf_xdp_link_lops = {
10138 	.release = bpf_xdp_link_release,
10139 	.dealloc = bpf_xdp_link_dealloc,
10140 	.detach = bpf_xdp_link_detach,
10141 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10142 	.fill_link_info = bpf_xdp_link_fill_link_info,
10143 	.update_prog = bpf_xdp_link_update,
10144 };
10145 
10146 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10147 {
10148 	struct net *net = current->nsproxy->net_ns;
10149 	struct bpf_link_primer link_primer;
10150 	struct netlink_ext_ack extack = {};
10151 	struct bpf_xdp_link *link;
10152 	struct net_device *dev;
10153 	int err, fd;
10154 
10155 	rtnl_lock();
10156 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10157 	if (!dev) {
10158 		rtnl_unlock();
10159 		return -EINVAL;
10160 	}
10161 
10162 	link = kzalloc(sizeof(*link), GFP_USER);
10163 	if (!link) {
10164 		err = -ENOMEM;
10165 		goto unlock;
10166 	}
10167 
10168 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10169 	link->dev = dev;
10170 	link->flags = attr->link_create.flags;
10171 
10172 	err = bpf_link_prime(&link->link, &link_primer);
10173 	if (err) {
10174 		kfree(link);
10175 		goto unlock;
10176 	}
10177 
10178 	err = dev_xdp_attach_link(dev, &extack, link);
10179 	rtnl_unlock();
10180 
10181 	if (err) {
10182 		link->dev = NULL;
10183 		bpf_link_cleanup(&link_primer);
10184 		trace_bpf_xdp_link_attach_failed(extack._msg);
10185 		goto out_put_dev;
10186 	}
10187 
10188 	fd = bpf_link_settle(&link_primer);
10189 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10190 	dev_put(dev);
10191 	return fd;
10192 
10193 unlock:
10194 	rtnl_unlock();
10195 
10196 out_put_dev:
10197 	dev_put(dev);
10198 	return err;
10199 }
10200 
10201 /**
10202  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10203  *	@dev: device
10204  *	@extack: netlink extended ack
10205  *	@fd: new program fd or negative value to clear
10206  *	@expected_fd: old program fd that userspace expects to replace or clear
10207  *	@flags: xdp-related flags
10208  *
10209  *	Set or clear a bpf program for a device
10210  */
10211 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10212 		      int fd, int expected_fd, u32 flags)
10213 {
10214 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10215 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10216 	int err;
10217 
10218 	ASSERT_RTNL();
10219 
10220 	if (fd >= 0) {
10221 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10222 						 mode != XDP_MODE_SKB);
10223 		if (IS_ERR(new_prog))
10224 			return PTR_ERR(new_prog);
10225 	}
10226 
10227 	if (expected_fd >= 0) {
10228 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10229 						 mode != XDP_MODE_SKB);
10230 		if (IS_ERR(old_prog)) {
10231 			err = PTR_ERR(old_prog);
10232 			old_prog = NULL;
10233 			goto err_out;
10234 		}
10235 	}
10236 
10237 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10238 
10239 err_out:
10240 	if (err && new_prog)
10241 		bpf_prog_put(new_prog);
10242 	if (old_prog)
10243 		bpf_prog_put(old_prog);
10244 	return err;
10245 }
10246 
10247 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10248 {
10249 	int i;
10250 
10251 	ASSERT_RTNL();
10252 
10253 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10254 		if (dev->_rx[i].mp_params.mp_priv)
10255 			/* The channel count is the idx plus 1. */
10256 			return i + 1;
10257 
10258 	return 0;
10259 }
10260 
10261 /**
10262  * dev_index_reserve() - allocate an ifindex in a namespace
10263  * @net: the applicable net namespace
10264  * @ifindex: requested ifindex, pass %0 to get one allocated
10265  *
10266  * Allocate a ifindex for a new device. Caller must either use the ifindex
10267  * to store the device (via list_netdevice()) or call dev_index_release()
10268  * to give the index up.
10269  *
10270  * Return: a suitable unique value for a new device interface number or -errno.
10271  */
10272 static int dev_index_reserve(struct net *net, u32 ifindex)
10273 {
10274 	int err;
10275 
10276 	if (ifindex > INT_MAX) {
10277 		DEBUG_NET_WARN_ON_ONCE(1);
10278 		return -EINVAL;
10279 	}
10280 
10281 	if (!ifindex)
10282 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10283 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10284 	else
10285 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10286 	if (err < 0)
10287 		return err;
10288 
10289 	return ifindex;
10290 }
10291 
10292 static void dev_index_release(struct net *net, int ifindex)
10293 {
10294 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10295 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10296 }
10297 
10298 static bool from_cleanup_net(void)
10299 {
10300 #ifdef CONFIG_NET_NS
10301 	return current == cleanup_net_task;
10302 #else
10303 	return false;
10304 #endif
10305 }
10306 
10307 /* Delayed registration/unregisteration */
10308 LIST_HEAD(net_todo_list);
10309 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10310 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10311 
10312 static void net_set_todo(struct net_device *dev)
10313 {
10314 	list_add_tail(&dev->todo_list, &net_todo_list);
10315 }
10316 
10317 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10318 	struct net_device *upper, netdev_features_t features)
10319 {
10320 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10321 	netdev_features_t feature;
10322 	int feature_bit;
10323 
10324 	for_each_netdev_feature(upper_disables, feature_bit) {
10325 		feature = __NETIF_F_BIT(feature_bit);
10326 		if (!(upper->wanted_features & feature)
10327 		    && (features & feature)) {
10328 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10329 				   &feature, upper->name);
10330 			features &= ~feature;
10331 		}
10332 	}
10333 
10334 	return features;
10335 }
10336 
10337 static void netdev_sync_lower_features(struct net_device *upper,
10338 	struct net_device *lower, netdev_features_t features)
10339 {
10340 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10341 	netdev_features_t feature;
10342 	int feature_bit;
10343 
10344 	for_each_netdev_feature(upper_disables, feature_bit) {
10345 		feature = __NETIF_F_BIT(feature_bit);
10346 		if (!(features & feature) && (lower->features & feature)) {
10347 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10348 				   &feature, lower->name);
10349 			lower->wanted_features &= ~feature;
10350 			__netdev_update_features(lower);
10351 
10352 			if (unlikely(lower->features & feature))
10353 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10354 					    &feature, lower->name);
10355 			else
10356 				netdev_features_change(lower);
10357 		}
10358 	}
10359 }
10360 
10361 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10362 {
10363 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10364 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10365 	bool hw_csum = features & NETIF_F_HW_CSUM;
10366 
10367 	return ip_csum || hw_csum;
10368 }
10369 
10370 static netdev_features_t netdev_fix_features(struct net_device *dev,
10371 	netdev_features_t features)
10372 {
10373 	/* Fix illegal checksum combinations */
10374 	if ((features & NETIF_F_HW_CSUM) &&
10375 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10376 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10377 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10378 	}
10379 
10380 	/* TSO requires that SG is present as well. */
10381 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10382 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10383 		features &= ~NETIF_F_ALL_TSO;
10384 	}
10385 
10386 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10387 					!(features & NETIF_F_IP_CSUM)) {
10388 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10389 		features &= ~NETIF_F_TSO;
10390 		features &= ~NETIF_F_TSO_ECN;
10391 	}
10392 
10393 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10394 					 !(features & NETIF_F_IPV6_CSUM)) {
10395 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10396 		features &= ~NETIF_F_TSO6;
10397 	}
10398 
10399 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10400 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10401 		features &= ~NETIF_F_TSO_MANGLEID;
10402 
10403 	/* TSO ECN requires that TSO is present as well. */
10404 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10405 		features &= ~NETIF_F_TSO_ECN;
10406 
10407 	/* Software GSO depends on SG. */
10408 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10409 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10410 		features &= ~NETIF_F_GSO;
10411 	}
10412 
10413 	/* GSO partial features require GSO partial be set */
10414 	if ((features & dev->gso_partial_features) &&
10415 	    !(features & NETIF_F_GSO_PARTIAL)) {
10416 		netdev_dbg(dev,
10417 			   "Dropping partially supported GSO features since no GSO partial.\n");
10418 		features &= ~dev->gso_partial_features;
10419 	}
10420 
10421 	if (!(features & NETIF_F_RXCSUM)) {
10422 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10423 		 * successfully merged by hardware must also have the
10424 		 * checksum verified by hardware.  If the user does not
10425 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10426 		 */
10427 		if (features & NETIF_F_GRO_HW) {
10428 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10429 			features &= ~NETIF_F_GRO_HW;
10430 		}
10431 	}
10432 
10433 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10434 	if (features & NETIF_F_RXFCS) {
10435 		if (features & NETIF_F_LRO) {
10436 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10437 			features &= ~NETIF_F_LRO;
10438 		}
10439 
10440 		if (features & NETIF_F_GRO_HW) {
10441 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10442 			features &= ~NETIF_F_GRO_HW;
10443 		}
10444 	}
10445 
10446 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10447 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10448 		features &= ~NETIF_F_LRO;
10449 	}
10450 
10451 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10452 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10453 		features &= ~NETIF_F_HW_TLS_TX;
10454 	}
10455 
10456 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10457 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10458 		features &= ~NETIF_F_HW_TLS_RX;
10459 	}
10460 
10461 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10462 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10463 		features &= ~NETIF_F_GSO_UDP_L4;
10464 	}
10465 
10466 	return features;
10467 }
10468 
10469 int __netdev_update_features(struct net_device *dev)
10470 {
10471 	struct net_device *upper, *lower;
10472 	netdev_features_t features;
10473 	struct list_head *iter;
10474 	int err = -1;
10475 
10476 	ASSERT_RTNL();
10477 
10478 	features = netdev_get_wanted_features(dev);
10479 
10480 	if (dev->netdev_ops->ndo_fix_features)
10481 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10482 
10483 	/* driver might be less strict about feature dependencies */
10484 	features = netdev_fix_features(dev, features);
10485 
10486 	/* some features can't be enabled if they're off on an upper device */
10487 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10488 		features = netdev_sync_upper_features(dev, upper, features);
10489 
10490 	if (dev->features == features)
10491 		goto sync_lower;
10492 
10493 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10494 		&dev->features, &features);
10495 
10496 	if (dev->netdev_ops->ndo_set_features)
10497 		err = dev->netdev_ops->ndo_set_features(dev, features);
10498 	else
10499 		err = 0;
10500 
10501 	if (unlikely(err < 0)) {
10502 		netdev_err(dev,
10503 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10504 			err, &features, &dev->features);
10505 		/* return non-0 since some features might have changed and
10506 		 * it's better to fire a spurious notification than miss it
10507 		 */
10508 		return -1;
10509 	}
10510 
10511 sync_lower:
10512 	/* some features must be disabled on lower devices when disabled
10513 	 * on an upper device (think: bonding master or bridge)
10514 	 */
10515 	netdev_for_each_lower_dev(dev, lower, iter)
10516 		netdev_sync_lower_features(dev, lower, features);
10517 
10518 	if (!err) {
10519 		netdev_features_t diff = features ^ dev->features;
10520 
10521 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10522 			/* udp_tunnel_{get,drop}_rx_info both need
10523 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10524 			 * device, or they won't do anything.
10525 			 * Thus we need to update dev->features
10526 			 * *before* calling udp_tunnel_get_rx_info,
10527 			 * but *after* calling udp_tunnel_drop_rx_info.
10528 			 */
10529 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10530 				dev->features = features;
10531 				udp_tunnel_get_rx_info(dev);
10532 			} else {
10533 				udp_tunnel_drop_rx_info(dev);
10534 			}
10535 		}
10536 
10537 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10538 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10539 				dev->features = features;
10540 				err |= vlan_get_rx_ctag_filter_info(dev);
10541 			} else {
10542 				vlan_drop_rx_ctag_filter_info(dev);
10543 			}
10544 		}
10545 
10546 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10547 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10548 				dev->features = features;
10549 				err |= vlan_get_rx_stag_filter_info(dev);
10550 			} else {
10551 				vlan_drop_rx_stag_filter_info(dev);
10552 			}
10553 		}
10554 
10555 		dev->features = features;
10556 	}
10557 
10558 	return err < 0 ? 0 : 1;
10559 }
10560 
10561 /**
10562  *	netdev_update_features - recalculate device features
10563  *	@dev: the device to check
10564  *
10565  *	Recalculate dev->features set and send notifications if it
10566  *	has changed. Should be called after driver or hardware dependent
10567  *	conditions might have changed that influence the features.
10568  */
10569 void netdev_update_features(struct net_device *dev)
10570 {
10571 	if (__netdev_update_features(dev))
10572 		netdev_features_change(dev);
10573 }
10574 EXPORT_SYMBOL(netdev_update_features);
10575 
10576 /**
10577  *	netdev_change_features - recalculate device features
10578  *	@dev: the device to check
10579  *
10580  *	Recalculate dev->features set and send notifications even
10581  *	if they have not changed. Should be called instead of
10582  *	netdev_update_features() if also dev->vlan_features might
10583  *	have changed to allow the changes to be propagated to stacked
10584  *	VLAN devices.
10585  */
10586 void netdev_change_features(struct net_device *dev)
10587 {
10588 	__netdev_update_features(dev);
10589 	netdev_features_change(dev);
10590 }
10591 EXPORT_SYMBOL(netdev_change_features);
10592 
10593 /**
10594  *	netif_stacked_transfer_operstate -	transfer operstate
10595  *	@rootdev: the root or lower level device to transfer state from
10596  *	@dev: the device to transfer operstate to
10597  *
10598  *	Transfer operational state from root to device. This is normally
10599  *	called when a stacking relationship exists between the root
10600  *	device and the device(a leaf device).
10601  */
10602 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10603 					struct net_device *dev)
10604 {
10605 	if (rootdev->operstate == IF_OPER_DORMANT)
10606 		netif_dormant_on(dev);
10607 	else
10608 		netif_dormant_off(dev);
10609 
10610 	if (rootdev->operstate == IF_OPER_TESTING)
10611 		netif_testing_on(dev);
10612 	else
10613 		netif_testing_off(dev);
10614 
10615 	if (netif_carrier_ok(rootdev))
10616 		netif_carrier_on(dev);
10617 	else
10618 		netif_carrier_off(dev);
10619 }
10620 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10621 
10622 static int netif_alloc_rx_queues(struct net_device *dev)
10623 {
10624 	unsigned int i, count = dev->num_rx_queues;
10625 	struct netdev_rx_queue *rx;
10626 	size_t sz = count * sizeof(*rx);
10627 	int err = 0;
10628 
10629 	BUG_ON(count < 1);
10630 
10631 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10632 	if (!rx)
10633 		return -ENOMEM;
10634 
10635 	dev->_rx = rx;
10636 
10637 	for (i = 0; i < count; i++) {
10638 		rx[i].dev = dev;
10639 
10640 		/* XDP RX-queue setup */
10641 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10642 		if (err < 0)
10643 			goto err_rxq_info;
10644 	}
10645 	return 0;
10646 
10647 err_rxq_info:
10648 	/* Rollback successful reg's and free other resources */
10649 	while (i--)
10650 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10651 	kvfree(dev->_rx);
10652 	dev->_rx = NULL;
10653 	return err;
10654 }
10655 
10656 static void netif_free_rx_queues(struct net_device *dev)
10657 {
10658 	unsigned int i, count = dev->num_rx_queues;
10659 
10660 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10661 	if (!dev->_rx)
10662 		return;
10663 
10664 	for (i = 0; i < count; i++)
10665 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10666 
10667 	kvfree(dev->_rx);
10668 }
10669 
10670 static void netdev_init_one_queue(struct net_device *dev,
10671 				  struct netdev_queue *queue, void *_unused)
10672 {
10673 	/* Initialize queue lock */
10674 	spin_lock_init(&queue->_xmit_lock);
10675 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10676 	queue->xmit_lock_owner = -1;
10677 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10678 	queue->dev = dev;
10679 #ifdef CONFIG_BQL
10680 	dql_init(&queue->dql, HZ);
10681 #endif
10682 }
10683 
10684 static void netif_free_tx_queues(struct net_device *dev)
10685 {
10686 	kvfree(dev->_tx);
10687 }
10688 
10689 static int netif_alloc_netdev_queues(struct net_device *dev)
10690 {
10691 	unsigned int count = dev->num_tx_queues;
10692 	struct netdev_queue *tx;
10693 	size_t sz = count * sizeof(*tx);
10694 
10695 	if (count < 1 || count > 0xffff)
10696 		return -EINVAL;
10697 
10698 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10699 	if (!tx)
10700 		return -ENOMEM;
10701 
10702 	dev->_tx = tx;
10703 
10704 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10705 	spin_lock_init(&dev->tx_global_lock);
10706 
10707 	return 0;
10708 }
10709 
10710 void netif_tx_stop_all_queues(struct net_device *dev)
10711 {
10712 	unsigned int i;
10713 
10714 	for (i = 0; i < dev->num_tx_queues; i++) {
10715 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10716 
10717 		netif_tx_stop_queue(txq);
10718 	}
10719 }
10720 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10721 
10722 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10723 {
10724 	void __percpu *v;
10725 
10726 	/* Drivers implementing ndo_get_peer_dev must support tstat
10727 	 * accounting, so that skb_do_redirect() can bump the dev's
10728 	 * RX stats upon network namespace switch.
10729 	 */
10730 	if (dev->netdev_ops->ndo_get_peer_dev &&
10731 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10732 		return -EOPNOTSUPP;
10733 
10734 	switch (dev->pcpu_stat_type) {
10735 	case NETDEV_PCPU_STAT_NONE:
10736 		return 0;
10737 	case NETDEV_PCPU_STAT_LSTATS:
10738 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10739 		break;
10740 	case NETDEV_PCPU_STAT_TSTATS:
10741 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10742 		break;
10743 	case NETDEV_PCPU_STAT_DSTATS:
10744 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10745 		break;
10746 	default:
10747 		return -EINVAL;
10748 	}
10749 
10750 	return v ? 0 : -ENOMEM;
10751 }
10752 
10753 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10754 {
10755 	switch (dev->pcpu_stat_type) {
10756 	case NETDEV_PCPU_STAT_NONE:
10757 		return;
10758 	case NETDEV_PCPU_STAT_LSTATS:
10759 		free_percpu(dev->lstats);
10760 		break;
10761 	case NETDEV_PCPU_STAT_TSTATS:
10762 		free_percpu(dev->tstats);
10763 		break;
10764 	case NETDEV_PCPU_STAT_DSTATS:
10765 		free_percpu(dev->dstats);
10766 		break;
10767 	}
10768 }
10769 
10770 static void netdev_free_phy_link_topology(struct net_device *dev)
10771 {
10772 	struct phy_link_topology *topo = dev->link_topo;
10773 
10774 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10775 		xa_destroy(&topo->phys);
10776 		kfree(topo);
10777 		dev->link_topo = NULL;
10778 	}
10779 }
10780 
10781 /**
10782  * register_netdevice() - register a network device
10783  * @dev: device to register
10784  *
10785  * Take a prepared network device structure and make it externally accessible.
10786  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10787  * Callers must hold the rtnl lock - you may want register_netdev()
10788  * instead of this.
10789  */
10790 int register_netdevice(struct net_device *dev)
10791 {
10792 	int ret;
10793 	struct net *net = dev_net(dev);
10794 
10795 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10796 		     NETDEV_FEATURE_COUNT);
10797 	BUG_ON(dev_boot_phase);
10798 	ASSERT_RTNL();
10799 
10800 	might_sleep();
10801 
10802 	/* When net_device's are persistent, this will be fatal. */
10803 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10804 	BUG_ON(!net);
10805 
10806 	ret = ethtool_check_ops(dev->ethtool_ops);
10807 	if (ret)
10808 		return ret;
10809 
10810 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10811 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10812 	mutex_init(&dev->ethtool->rss_lock);
10813 
10814 	spin_lock_init(&dev->addr_list_lock);
10815 	netdev_set_addr_lockdep_class(dev);
10816 
10817 	ret = dev_get_valid_name(net, dev, dev->name);
10818 	if (ret < 0)
10819 		goto out;
10820 
10821 	ret = -ENOMEM;
10822 	dev->name_node = netdev_name_node_head_alloc(dev);
10823 	if (!dev->name_node)
10824 		goto out;
10825 
10826 	/* Init, if this function is available */
10827 	if (dev->netdev_ops->ndo_init) {
10828 		ret = dev->netdev_ops->ndo_init(dev);
10829 		if (ret) {
10830 			if (ret > 0)
10831 				ret = -EIO;
10832 			goto err_free_name;
10833 		}
10834 	}
10835 
10836 	if (((dev->hw_features | dev->features) &
10837 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10838 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10839 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10840 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10841 		ret = -EINVAL;
10842 		goto err_uninit;
10843 	}
10844 
10845 	ret = netdev_do_alloc_pcpu_stats(dev);
10846 	if (ret)
10847 		goto err_uninit;
10848 
10849 	ret = dev_index_reserve(net, dev->ifindex);
10850 	if (ret < 0)
10851 		goto err_free_pcpu;
10852 	dev->ifindex = ret;
10853 
10854 	/* Transfer changeable features to wanted_features and enable
10855 	 * software offloads (GSO and GRO).
10856 	 */
10857 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10858 	dev->features |= NETIF_F_SOFT_FEATURES;
10859 
10860 	if (dev->udp_tunnel_nic_info) {
10861 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10862 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10863 	}
10864 
10865 	dev->wanted_features = dev->features & dev->hw_features;
10866 
10867 	if (!(dev->flags & IFF_LOOPBACK))
10868 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10869 
10870 	/* If IPv4 TCP segmentation offload is supported we should also
10871 	 * allow the device to enable segmenting the frame with the option
10872 	 * of ignoring a static IP ID value.  This doesn't enable the
10873 	 * feature itself but allows the user to enable it later.
10874 	 */
10875 	if (dev->hw_features & NETIF_F_TSO)
10876 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10877 	if (dev->vlan_features & NETIF_F_TSO)
10878 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10879 	if (dev->mpls_features & NETIF_F_TSO)
10880 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10881 	if (dev->hw_enc_features & NETIF_F_TSO)
10882 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10883 
10884 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10885 	 */
10886 	dev->vlan_features |= NETIF_F_HIGHDMA;
10887 
10888 	/* Make NETIF_F_SG inheritable to tunnel devices.
10889 	 */
10890 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10891 
10892 	/* Make NETIF_F_SG inheritable to MPLS.
10893 	 */
10894 	dev->mpls_features |= NETIF_F_SG;
10895 
10896 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10897 	ret = notifier_to_errno(ret);
10898 	if (ret)
10899 		goto err_ifindex_release;
10900 
10901 	ret = netdev_register_kobject(dev);
10902 
10903 	netdev_lock(dev);
10904 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10905 	netdev_unlock(dev);
10906 
10907 	if (ret)
10908 		goto err_uninit_notify;
10909 
10910 	__netdev_update_features(dev);
10911 
10912 	/*
10913 	 *	Default initial state at registry is that the
10914 	 *	device is present.
10915 	 */
10916 
10917 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10918 
10919 	linkwatch_init_dev(dev);
10920 
10921 	dev_init_scheduler(dev);
10922 
10923 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10924 	list_netdevice(dev);
10925 
10926 	add_device_randomness(dev->dev_addr, dev->addr_len);
10927 
10928 	/* If the device has permanent device address, driver should
10929 	 * set dev_addr and also addr_assign_type should be set to
10930 	 * NET_ADDR_PERM (default value).
10931 	 */
10932 	if (dev->addr_assign_type == NET_ADDR_PERM)
10933 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10934 
10935 	/* Notify protocols, that a new device appeared. */
10936 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10937 	ret = notifier_to_errno(ret);
10938 	if (ret) {
10939 		/* Expect explicit free_netdev() on failure */
10940 		dev->needs_free_netdev = false;
10941 		unregister_netdevice_queue(dev, NULL);
10942 		goto out;
10943 	}
10944 	/*
10945 	 *	Prevent userspace races by waiting until the network
10946 	 *	device is fully setup before sending notifications.
10947 	 */
10948 	if (!dev->rtnl_link_ops ||
10949 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10950 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10951 
10952 out:
10953 	return ret;
10954 
10955 err_uninit_notify:
10956 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10957 err_ifindex_release:
10958 	dev_index_release(net, dev->ifindex);
10959 err_free_pcpu:
10960 	netdev_do_free_pcpu_stats(dev);
10961 err_uninit:
10962 	if (dev->netdev_ops->ndo_uninit)
10963 		dev->netdev_ops->ndo_uninit(dev);
10964 	if (dev->priv_destructor)
10965 		dev->priv_destructor(dev);
10966 err_free_name:
10967 	netdev_name_node_free(dev->name_node);
10968 	goto out;
10969 }
10970 EXPORT_SYMBOL(register_netdevice);
10971 
10972 /* Initialize the core of a dummy net device.
10973  * The setup steps dummy netdevs need which normal netdevs get by going
10974  * through register_netdevice().
10975  */
10976 static void init_dummy_netdev(struct net_device *dev)
10977 {
10978 	/* make sure we BUG if trying to hit standard
10979 	 * register/unregister code path
10980 	 */
10981 	dev->reg_state = NETREG_DUMMY;
10982 
10983 	/* a dummy interface is started by default */
10984 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10985 	set_bit(__LINK_STATE_START, &dev->state);
10986 
10987 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10988 	 * because users of this 'device' dont need to change
10989 	 * its refcount.
10990 	 */
10991 }
10992 
10993 /**
10994  *	register_netdev	- register a network device
10995  *	@dev: device to register
10996  *
10997  *	Take a completed network device structure and add it to the kernel
10998  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10999  *	chain. 0 is returned on success. A negative errno code is returned
11000  *	on a failure to set up the device, or if the name is a duplicate.
11001  *
11002  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11003  *	and expands the device name if you passed a format string to
11004  *	alloc_netdev.
11005  */
11006 int register_netdev(struct net_device *dev)
11007 {
11008 	struct net *net = dev_net(dev);
11009 	int err;
11010 
11011 	if (rtnl_net_lock_killable(net))
11012 		return -EINTR;
11013 
11014 	err = register_netdevice(dev);
11015 
11016 	rtnl_net_unlock(net);
11017 
11018 	return err;
11019 }
11020 EXPORT_SYMBOL(register_netdev);
11021 
11022 int netdev_refcnt_read(const struct net_device *dev)
11023 {
11024 #ifdef CONFIG_PCPU_DEV_REFCNT
11025 	int i, refcnt = 0;
11026 
11027 	for_each_possible_cpu(i)
11028 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11029 	return refcnt;
11030 #else
11031 	return refcount_read(&dev->dev_refcnt);
11032 #endif
11033 }
11034 EXPORT_SYMBOL(netdev_refcnt_read);
11035 
11036 int netdev_unregister_timeout_secs __read_mostly = 10;
11037 
11038 #define WAIT_REFS_MIN_MSECS 1
11039 #define WAIT_REFS_MAX_MSECS 250
11040 /**
11041  * netdev_wait_allrefs_any - wait until all references are gone.
11042  * @list: list of net_devices to wait on
11043  *
11044  * This is called when unregistering network devices.
11045  *
11046  * Any protocol or device that holds a reference should register
11047  * for netdevice notification, and cleanup and put back the
11048  * reference if they receive an UNREGISTER event.
11049  * We can get stuck here if buggy protocols don't correctly
11050  * call dev_put.
11051  */
11052 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11053 {
11054 	unsigned long rebroadcast_time, warning_time;
11055 	struct net_device *dev;
11056 	int wait = 0;
11057 
11058 	rebroadcast_time = warning_time = jiffies;
11059 
11060 	list_for_each_entry(dev, list, todo_list)
11061 		if (netdev_refcnt_read(dev) == 1)
11062 			return dev;
11063 
11064 	while (true) {
11065 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11066 			rtnl_lock();
11067 
11068 			/* Rebroadcast unregister notification */
11069 			list_for_each_entry(dev, list, todo_list)
11070 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11071 
11072 			__rtnl_unlock();
11073 			rcu_barrier();
11074 			rtnl_lock();
11075 
11076 			list_for_each_entry(dev, list, todo_list)
11077 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11078 					     &dev->state)) {
11079 					/* We must not have linkwatch events
11080 					 * pending on unregister. If this
11081 					 * happens, we simply run the queue
11082 					 * unscheduled, resulting in a noop
11083 					 * for this device.
11084 					 */
11085 					linkwatch_run_queue();
11086 					break;
11087 				}
11088 
11089 			__rtnl_unlock();
11090 
11091 			rebroadcast_time = jiffies;
11092 		}
11093 
11094 		rcu_barrier();
11095 
11096 		if (!wait) {
11097 			wait = WAIT_REFS_MIN_MSECS;
11098 		} else {
11099 			msleep(wait);
11100 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11101 		}
11102 
11103 		list_for_each_entry(dev, list, todo_list)
11104 			if (netdev_refcnt_read(dev) == 1)
11105 				return dev;
11106 
11107 		if (time_after(jiffies, warning_time +
11108 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11109 			list_for_each_entry(dev, list, todo_list) {
11110 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11111 					 dev->name, netdev_refcnt_read(dev));
11112 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11113 			}
11114 
11115 			warning_time = jiffies;
11116 		}
11117 	}
11118 }
11119 
11120 /* The sequence is:
11121  *
11122  *	rtnl_lock();
11123  *	...
11124  *	register_netdevice(x1);
11125  *	register_netdevice(x2);
11126  *	...
11127  *	unregister_netdevice(y1);
11128  *	unregister_netdevice(y2);
11129  *      ...
11130  *	rtnl_unlock();
11131  *	free_netdev(y1);
11132  *	free_netdev(y2);
11133  *
11134  * We are invoked by rtnl_unlock().
11135  * This allows us to deal with problems:
11136  * 1) We can delete sysfs objects which invoke hotplug
11137  *    without deadlocking with linkwatch via keventd.
11138  * 2) Since we run with the RTNL semaphore not held, we can sleep
11139  *    safely in order to wait for the netdev refcnt to drop to zero.
11140  *
11141  * We must not return until all unregister events added during
11142  * the interval the lock was held have been completed.
11143  */
11144 void netdev_run_todo(void)
11145 {
11146 	struct net_device *dev, *tmp;
11147 	struct list_head list;
11148 	int cnt;
11149 #ifdef CONFIG_LOCKDEP
11150 	struct list_head unlink_list;
11151 
11152 	list_replace_init(&net_unlink_list, &unlink_list);
11153 
11154 	while (!list_empty(&unlink_list)) {
11155 		struct net_device *dev = list_first_entry(&unlink_list,
11156 							  struct net_device,
11157 							  unlink_list);
11158 		list_del_init(&dev->unlink_list);
11159 		dev->nested_level = dev->lower_level - 1;
11160 	}
11161 #endif
11162 
11163 	/* Snapshot list, allow later requests */
11164 	list_replace_init(&net_todo_list, &list);
11165 
11166 	__rtnl_unlock();
11167 
11168 	/* Wait for rcu callbacks to finish before next phase */
11169 	if (!list_empty(&list))
11170 		rcu_barrier();
11171 
11172 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11173 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11174 			netdev_WARN(dev, "run_todo but not unregistering\n");
11175 			list_del(&dev->todo_list);
11176 			continue;
11177 		}
11178 
11179 		netdev_lock(dev);
11180 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11181 		netdev_unlock(dev);
11182 		linkwatch_sync_dev(dev);
11183 	}
11184 
11185 	cnt = 0;
11186 	while (!list_empty(&list)) {
11187 		dev = netdev_wait_allrefs_any(&list);
11188 		list_del(&dev->todo_list);
11189 
11190 		/* paranoia */
11191 		BUG_ON(netdev_refcnt_read(dev) != 1);
11192 		BUG_ON(!list_empty(&dev->ptype_all));
11193 		BUG_ON(!list_empty(&dev->ptype_specific));
11194 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11195 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11196 
11197 		netdev_do_free_pcpu_stats(dev);
11198 		if (dev->priv_destructor)
11199 			dev->priv_destructor(dev);
11200 		if (dev->needs_free_netdev)
11201 			free_netdev(dev);
11202 
11203 		cnt++;
11204 
11205 		/* Free network device */
11206 		kobject_put(&dev->dev.kobj);
11207 	}
11208 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11209 		wake_up(&netdev_unregistering_wq);
11210 }
11211 
11212 /* Collate per-cpu network dstats statistics
11213  *
11214  * Read per-cpu network statistics from dev->dstats and populate the related
11215  * fields in @s.
11216  */
11217 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11218 			     const struct pcpu_dstats __percpu *dstats)
11219 {
11220 	int cpu;
11221 
11222 	for_each_possible_cpu(cpu) {
11223 		u64 rx_packets, rx_bytes, rx_drops;
11224 		u64 tx_packets, tx_bytes, tx_drops;
11225 		const struct pcpu_dstats *stats;
11226 		unsigned int start;
11227 
11228 		stats = per_cpu_ptr(dstats, cpu);
11229 		do {
11230 			start = u64_stats_fetch_begin(&stats->syncp);
11231 			rx_packets = u64_stats_read(&stats->rx_packets);
11232 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11233 			rx_drops   = u64_stats_read(&stats->rx_drops);
11234 			tx_packets = u64_stats_read(&stats->tx_packets);
11235 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11236 			tx_drops   = u64_stats_read(&stats->tx_drops);
11237 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11238 
11239 		s->rx_packets += rx_packets;
11240 		s->rx_bytes   += rx_bytes;
11241 		s->rx_dropped += rx_drops;
11242 		s->tx_packets += tx_packets;
11243 		s->tx_bytes   += tx_bytes;
11244 		s->tx_dropped += tx_drops;
11245 	}
11246 }
11247 
11248 /* ndo_get_stats64 implementation for dtstats-based accounting.
11249  *
11250  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11251  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11252  */
11253 static void dev_get_dstats64(const struct net_device *dev,
11254 			     struct rtnl_link_stats64 *s)
11255 {
11256 	netdev_stats_to_stats64(s, &dev->stats);
11257 	dev_fetch_dstats(s, dev->dstats);
11258 }
11259 
11260 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11261  * all the same fields in the same order as net_device_stats, with only
11262  * the type differing, but rtnl_link_stats64 may have additional fields
11263  * at the end for newer counters.
11264  */
11265 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11266 			     const struct net_device_stats *netdev_stats)
11267 {
11268 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11269 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11270 	u64 *dst = (u64 *)stats64;
11271 
11272 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11273 	for (i = 0; i < n; i++)
11274 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11275 	/* zero out counters that only exist in rtnl_link_stats64 */
11276 	memset((char *)stats64 + n * sizeof(u64), 0,
11277 	       sizeof(*stats64) - n * sizeof(u64));
11278 }
11279 EXPORT_SYMBOL(netdev_stats_to_stats64);
11280 
11281 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11282 		struct net_device *dev)
11283 {
11284 	struct net_device_core_stats __percpu *p;
11285 
11286 	p = alloc_percpu_gfp(struct net_device_core_stats,
11287 			     GFP_ATOMIC | __GFP_NOWARN);
11288 
11289 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11290 		free_percpu(p);
11291 
11292 	/* This READ_ONCE() pairs with the cmpxchg() above */
11293 	return READ_ONCE(dev->core_stats);
11294 }
11295 
11296 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11297 {
11298 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11299 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11300 	unsigned long __percpu *field;
11301 
11302 	if (unlikely(!p)) {
11303 		p = netdev_core_stats_alloc(dev);
11304 		if (!p)
11305 			return;
11306 	}
11307 
11308 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11309 	this_cpu_inc(*field);
11310 }
11311 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11312 
11313 /**
11314  *	dev_get_stats	- get network device statistics
11315  *	@dev: device to get statistics from
11316  *	@storage: place to store stats
11317  *
11318  *	Get network statistics from device. Return @storage.
11319  *	The device driver may provide its own method by setting
11320  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11321  *	otherwise the internal statistics structure is used.
11322  */
11323 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11324 					struct rtnl_link_stats64 *storage)
11325 {
11326 	const struct net_device_ops *ops = dev->netdev_ops;
11327 	const struct net_device_core_stats __percpu *p;
11328 
11329 	/*
11330 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11331 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11332 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11333 	 */
11334 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11335 		     offsetof(struct pcpu_dstats, rx_bytes));
11336 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11337 		     offsetof(struct pcpu_dstats, rx_packets));
11338 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11339 		     offsetof(struct pcpu_dstats, tx_bytes));
11340 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11341 		     offsetof(struct pcpu_dstats, tx_packets));
11342 
11343 	if (ops->ndo_get_stats64) {
11344 		memset(storage, 0, sizeof(*storage));
11345 		ops->ndo_get_stats64(dev, storage);
11346 	} else if (ops->ndo_get_stats) {
11347 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11348 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11349 		dev_get_tstats64(dev, storage);
11350 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11351 		dev_get_dstats64(dev, storage);
11352 	} else {
11353 		netdev_stats_to_stats64(storage, &dev->stats);
11354 	}
11355 
11356 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11357 	p = READ_ONCE(dev->core_stats);
11358 	if (p) {
11359 		const struct net_device_core_stats *core_stats;
11360 		int i;
11361 
11362 		for_each_possible_cpu(i) {
11363 			core_stats = per_cpu_ptr(p, i);
11364 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11365 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11366 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11367 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11368 		}
11369 	}
11370 	return storage;
11371 }
11372 EXPORT_SYMBOL(dev_get_stats);
11373 
11374 /**
11375  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11376  *	@s: place to store stats
11377  *	@netstats: per-cpu network stats to read from
11378  *
11379  *	Read per-cpu network statistics and populate the related fields in @s.
11380  */
11381 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11382 			   const struct pcpu_sw_netstats __percpu *netstats)
11383 {
11384 	int cpu;
11385 
11386 	for_each_possible_cpu(cpu) {
11387 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11388 		const struct pcpu_sw_netstats *stats;
11389 		unsigned int start;
11390 
11391 		stats = per_cpu_ptr(netstats, cpu);
11392 		do {
11393 			start = u64_stats_fetch_begin(&stats->syncp);
11394 			rx_packets = u64_stats_read(&stats->rx_packets);
11395 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11396 			tx_packets = u64_stats_read(&stats->tx_packets);
11397 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11398 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11399 
11400 		s->rx_packets += rx_packets;
11401 		s->rx_bytes   += rx_bytes;
11402 		s->tx_packets += tx_packets;
11403 		s->tx_bytes   += tx_bytes;
11404 	}
11405 }
11406 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11407 
11408 /**
11409  *	dev_get_tstats64 - ndo_get_stats64 implementation
11410  *	@dev: device to get statistics from
11411  *	@s: place to store stats
11412  *
11413  *	Populate @s from dev->stats and dev->tstats. Can be used as
11414  *	ndo_get_stats64() callback.
11415  */
11416 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11417 {
11418 	netdev_stats_to_stats64(s, &dev->stats);
11419 	dev_fetch_sw_netstats(s, dev->tstats);
11420 }
11421 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11422 
11423 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11424 {
11425 	struct netdev_queue *queue = dev_ingress_queue(dev);
11426 
11427 #ifdef CONFIG_NET_CLS_ACT
11428 	if (queue)
11429 		return queue;
11430 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11431 	if (!queue)
11432 		return NULL;
11433 	netdev_init_one_queue(dev, queue, NULL);
11434 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11435 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11436 	rcu_assign_pointer(dev->ingress_queue, queue);
11437 #endif
11438 	return queue;
11439 }
11440 
11441 static const struct ethtool_ops default_ethtool_ops;
11442 
11443 void netdev_set_default_ethtool_ops(struct net_device *dev,
11444 				    const struct ethtool_ops *ops)
11445 {
11446 	if (dev->ethtool_ops == &default_ethtool_ops)
11447 		dev->ethtool_ops = ops;
11448 }
11449 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11450 
11451 /**
11452  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11453  * @dev: netdev to enable the IRQ coalescing on
11454  *
11455  * Sets a conservative default for SW IRQ coalescing. Users can use
11456  * sysfs attributes to override the default values.
11457  */
11458 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11459 {
11460 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11461 
11462 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11463 		netdev_set_gro_flush_timeout(dev, 20000);
11464 		netdev_set_defer_hard_irqs(dev, 1);
11465 	}
11466 }
11467 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11468 
11469 /**
11470  * alloc_netdev_mqs - allocate network device
11471  * @sizeof_priv: size of private data to allocate space for
11472  * @name: device name format string
11473  * @name_assign_type: origin of device name
11474  * @setup: callback to initialize device
11475  * @txqs: the number of TX subqueues to allocate
11476  * @rxqs: the number of RX subqueues to allocate
11477  *
11478  * Allocates a struct net_device with private data area for driver use
11479  * and performs basic initialization.  Also allocates subqueue structs
11480  * for each queue on the device.
11481  */
11482 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11483 		unsigned char name_assign_type,
11484 		void (*setup)(struct net_device *),
11485 		unsigned int txqs, unsigned int rxqs)
11486 {
11487 	struct net_device *dev;
11488 	size_t napi_config_sz;
11489 	unsigned int maxqs;
11490 
11491 	BUG_ON(strlen(name) >= sizeof(dev->name));
11492 
11493 	if (txqs < 1) {
11494 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11495 		return NULL;
11496 	}
11497 
11498 	if (rxqs < 1) {
11499 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11500 		return NULL;
11501 	}
11502 
11503 	maxqs = max(txqs, rxqs);
11504 
11505 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11506 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11507 	if (!dev)
11508 		return NULL;
11509 
11510 	dev->priv_len = sizeof_priv;
11511 
11512 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11513 #ifdef CONFIG_PCPU_DEV_REFCNT
11514 	dev->pcpu_refcnt = alloc_percpu(int);
11515 	if (!dev->pcpu_refcnt)
11516 		goto free_dev;
11517 	__dev_hold(dev);
11518 #else
11519 	refcount_set(&dev->dev_refcnt, 1);
11520 #endif
11521 
11522 	if (dev_addr_init(dev))
11523 		goto free_pcpu;
11524 
11525 	dev_mc_init(dev);
11526 	dev_uc_init(dev);
11527 
11528 	dev_net_set(dev, &init_net);
11529 
11530 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11531 	dev->xdp_zc_max_segs = 1;
11532 	dev->gso_max_segs = GSO_MAX_SEGS;
11533 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11534 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11535 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11536 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11537 	dev->tso_max_segs = TSO_MAX_SEGS;
11538 	dev->upper_level = 1;
11539 	dev->lower_level = 1;
11540 #ifdef CONFIG_LOCKDEP
11541 	dev->nested_level = 0;
11542 	INIT_LIST_HEAD(&dev->unlink_list);
11543 #endif
11544 
11545 	INIT_LIST_HEAD(&dev->napi_list);
11546 	INIT_LIST_HEAD(&dev->unreg_list);
11547 	INIT_LIST_HEAD(&dev->close_list);
11548 	INIT_LIST_HEAD(&dev->link_watch_list);
11549 	INIT_LIST_HEAD(&dev->adj_list.upper);
11550 	INIT_LIST_HEAD(&dev->adj_list.lower);
11551 	INIT_LIST_HEAD(&dev->ptype_all);
11552 	INIT_LIST_HEAD(&dev->ptype_specific);
11553 	INIT_LIST_HEAD(&dev->net_notifier_list);
11554 #ifdef CONFIG_NET_SCHED
11555 	hash_init(dev->qdisc_hash);
11556 #endif
11557 
11558 	mutex_init(&dev->lock);
11559 
11560 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11561 	setup(dev);
11562 
11563 	if (!dev->tx_queue_len) {
11564 		dev->priv_flags |= IFF_NO_QUEUE;
11565 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11566 	}
11567 
11568 	dev->num_tx_queues = txqs;
11569 	dev->real_num_tx_queues = txqs;
11570 	if (netif_alloc_netdev_queues(dev))
11571 		goto free_all;
11572 
11573 	dev->num_rx_queues = rxqs;
11574 	dev->real_num_rx_queues = rxqs;
11575 	if (netif_alloc_rx_queues(dev))
11576 		goto free_all;
11577 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11578 	if (!dev->ethtool)
11579 		goto free_all;
11580 
11581 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11582 	if (!dev->cfg)
11583 		goto free_all;
11584 	dev->cfg_pending = dev->cfg;
11585 
11586 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11587 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11588 	if (!dev->napi_config)
11589 		goto free_all;
11590 
11591 	strscpy(dev->name, name);
11592 	dev->name_assign_type = name_assign_type;
11593 	dev->group = INIT_NETDEV_GROUP;
11594 	if (!dev->ethtool_ops)
11595 		dev->ethtool_ops = &default_ethtool_ops;
11596 
11597 	nf_hook_netdev_init(dev);
11598 
11599 	return dev;
11600 
11601 free_all:
11602 	free_netdev(dev);
11603 	return NULL;
11604 
11605 free_pcpu:
11606 #ifdef CONFIG_PCPU_DEV_REFCNT
11607 	free_percpu(dev->pcpu_refcnt);
11608 free_dev:
11609 #endif
11610 	kvfree(dev);
11611 	return NULL;
11612 }
11613 EXPORT_SYMBOL(alloc_netdev_mqs);
11614 
11615 static void netdev_napi_exit(struct net_device *dev)
11616 {
11617 	if (!list_empty(&dev->napi_list)) {
11618 		struct napi_struct *p, *n;
11619 
11620 		netdev_lock(dev);
11621 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11622 			__netif_napi_del_locked(p);
11623 		netdev_unlock(dev);
11624 
11625 		synchronize_net();
11626 	}
11627 
11628 	kvfree(dev->napi_config);
11629 }
11630 
11631 /**
11632  * free_netdev - free network device
11633  * @dev: device
11634  *
11635  * This function does the last stage of destroying an allocated device
11636  * interface. The reference to the device object is released. If this
11637  * is the last reference then it will be freed.Must be called in process
11638  * context.
11639  */
11640 void free_netdev(struct net_device *dev)
11641 {
11642 	might_sleep();
11643 
11644 	/* When called immediately after register_netdevice() failed the unwind
11645 	 * handling may still be dismantling the device. Handle that case by
11646 	 * deferring the free.
11647 	 */
11648 	if (dev->reg_state == NETREG_UNREGISTERING) {
11649 		ASSERT_RTNL();
11650 		dev->needs_free_netdev = true;
11651 		return;
11652 	}
11653 
11654 	WARN_ON(dev->cfg != dev->cfg_pending);
11655 	kfree(dev->cfg);
11656 	kfree(dev->ethtool);
11657 	netif_free_tx_queues(dev);
11658 	netif_free_rx_queues(dev);
11659 
11660 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11661 
11662 	/* Flush device addresses */
11663 	dev_addr_flush(dev);
11664 
11665 	netdev_napi_exit(dev);
11666 
11667 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11668 #ifdef CONFIG_PCPU_DEV_REFCNT
11669 	free_percpu(dev->pcpu_refcnt);
11670 	dev->pcpu_refcnt = NULL;
11671 #endif
11672 	free_percpu(dev->core_stats);
11673 	dev->core_stats = NULL;
11674 	free_percpu(dev->xdp_bulkq);
11675 	dev->xdp_bulkq = NULL;
11676 
11677 	netdev_free_phy_link_topology(dev);
11678 
11679 	mutex_destroy(&dev->lock);
11680 
11681 	/*  Compatibility with error handling in drivers */
11682 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11683 	    dev->reg_state == NETREG_DUMMY) {
11684 		kvfree(dev);
11685 		return;
11686 	}
11687 
11688 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11689 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11690 
11691 	/* will free via device release */
11692 	put_device(&dev->dev);
11693 }
11694 EXPORT_SYMBOL(free_netdev);
11695 
11696 /**
11697  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11698  * @sizeof_priv: size of private data to allocate space for
11699  *
11700  * Return: the allocated net_device on success, NULL otherwise
11701  */
11702 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11703 {
11704 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11705 			    init_dummy_netdev);
11706 }
11707 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11708 
11709 /**
11710  *	synchronize_net -  Synchronize with packet receive processing
11711  *
11712  *	Wait for packets currently being received to be done.
11713  *	Does not block later packets from starting.
11714  */
11715 void synchronize_net(void)
11716 {
11717 	might_sleep();
11718 	if (from_cleanup_net() || rtnl_is_locked())
11719 		synchronize_rcu_expedited();
11720 	else
11721 		synchronize_rcu();
11722 }
11723 EXPORT_SYMBOL(synchronize_net);
11724 
11725 static void netdev_rss_contexts_free(struct net_device *dev)
11726 {
11727 	struct ethtool_rxfh_context *ctx;
11728 	unsigned long context;
11729 
11730 	mutex_lock(&dev->ethtool->rss_lock);
11731 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11732 		struct ethtool_rxfh_param rxfh;
11733 
11734 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11735 		rxfh.key = ethtool_rxfh_context_key(ctx);
11736 		rxfh.hfunc = ctx->hfunc;
11737 		rxfh.input_xfrm = ctx->input_xfrm;
11738 		rxfh.rss_context = context;
11739 		rxfh.rss_delete = true;
11740 
11741 		xa_erase(&dev->ethtool->rss_ctx, context);
11742 		if (dev->ethtool_ops->create_rxfh_context)
11743 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11744 							      context, NULL);
11745 		else
11746 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11747 		kfree(ctx);
11748 	}
11749 	xa_destroy(&dev->ethtool->rss_ctx);
11750 	mutex_unlock(&dev->ethtool->rss_lock);
11751 }
11752 
11753 /**
11754  *	unregister_netdevice_queue - remove device from the kernel
11755  *	@dev: device
11756  *	@head: list
11757  *
11758  *	This function shuts down a device interface and removes it
11759  *	from the kernel tables.
11760  *	If head not NULL, device is queued to be unregistered later.
11761  *
11762  *	Callers must hold the rtnl semaphore.  You may want
11763  *	unregister_netdev() instead of this.
11764  */
11765 
11766 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11767 {
11768 	ASSERT_RTNL();
11769 
11770 	if (head) {
11771 		list_move_tail(&dev->unreg_list, head);
11772 	} else {
11773 		LIST_HEAD(single);
11774 
11775 		list_add(&dev->unreg_list, &single);
11776 		unregister_netdevice_many(&single);
11777 	}
11778 }
11779 EXPORT_SYMBOL(unregister_netdevice_queue);
11780 
11781 void unregister_netdevice_many_notify(struct list_head *head,
11782 				      u32 portid, const struct nlmsghdr *nlh)
11783 {
11784 	struct net_device *dev, *tmp;
11785 	LIST_HEAD(close_head);
11786 	int cnt = 0;
11787 
11788 	BUG_ON(dev_boot_phase);
11789 	ASSERT_RTNL();
11790 
11791 	if (list_empty(head))
11792 		return;
11793 
11794 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11795 		/* Some devices call without registering
11796 		 * for initialization unwind. Remove those
11797 		 * devices and proceed with the remaining.
11798 		 */
11799 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11800 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11801 				 dev->name, dev);
11802 
11803 			WARN_ON(1);
11804 			list_del(&dev->unreg_list);
11805 			continue;
11806 		}
11807 		dev->dismantle = true;
11808 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11809 	}
11810 
11811 	/* If device is running, close it first. */
11812 	list_for_each_entry(dev, head, unreg_list)
11813 		list_add_tail(&dev->close_list, &close_head);
11814 	dev_close_many(&close_head, true);
11815 
11816 	list_for_each_entry(dev, head, unreg_list) {
11817 		/* And unlink it from device chain. */
11818 		unlist_netdevice(dev);
11819 		netdev_lock(dev);
11820 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11821 		netdev_unlock(dev);
11822 	}
11823 	flush_all_backlogs();
11824 
11825 	synchronize_net();
11826 
11827 	list_for_each_entry(dev, head, unreg_list) {
11828 		struct sk_buff *skb = NULL;
11829 
11830 		/* Shutdown queueing discipline. */
11831 		dev_shutdown(dev);
11832 		dev_tcx_uninstall(dev);
11833 		dev_xdp_uninstall(dev);
11834 		bpf_dev_bound_netdev_unregister(dev);
11835 		dev_dmabuf_uninstall(dev);
11836 
11837 		netdev_offload_xstats_disable_all(dev);
11838 
11839 		/* Notify protocols, that we are about to destroy
11840 		 * this device. They should clean all the things.
11841 		 */
11842 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11843 
11844 		if (!dev->rtnl_link_ops ||
11845 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11846 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11847 						     GFP_KERNEL, NULL, 0,
11848 						     portid, nlh);
11849 
11850 		/*
11851 		 *	Flush the unicast and multicast chains
11852 		 */
11853 		dev_uc_flush(dev);
11854 		dev_mc_flush(dev);
11855 
11856 		netdev_name_node_alt_flush(dev);
11857 		netdev_name_node_free(dev->name_node);
11858 
11859 		netdev_rss_contexts_free(dev);
11860 
11861 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11862 
11863 		if (dev->netdev_ops->ndo_uninit)
11864 			dev->netdev_ops->ndo_uninit(dev);
11865 
11866 		mutex_destroy(&dev->ethtool->rss_lock);
11867 
11868 		net_shaper_flush_netdev(dev);
11869 
11870 		if (skb)
11871 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11872 
11873 		/* Notifier chain MUST detach us all upper devices. */
11874 		WARN_ON(netdev_has_any_upper_dev(dev));
11875 		WARN_ON(netdev_has_any_lower_dev(dev));
11876 
11877 		/* Remove entries from kobject tree */
11878 		netdev_unregister_kobject(dev);
11879 #ifdef CONFIG_XPS
11880 		/* Remove XPS queueing entries */
11881 		netif_reset_xps_queues_gt(dev, 0);
11882 #endif
11883 	}
11884 
11885 	synchronize_net();
11886 
11887 	list_for_each_entry(dev, head, unreg_list) {
11888 		netdev_put(dev, &dev->dev_registered_tracker);
11889 		net_set_todo(dev);
11890 		cnt++;
11891 	}
11892 	atomic_add(cnt, &dev_unreg_count);
11893 
11894 	list_del(head);
11895 }
11896 
11897 /**
11898  *	unregister_netdevice_many - unregister many devices
11899  *	@head: list of devices
11900  *
11901  *  Note: As most callers use a stack allocated list_head,
11902  *  we force a list_del() to make sure stack won't be corrupted later.
11903  */
11904 void unregister_netdevice_many(struct list_head *head)
11905 {
11906 	unregister_netdevice_many_notify(head, 0, NULL);
11907 }
11908 EXPORT_SYMBOL(unregister_netdevice_many);
11909 
11910 /**
11911  *	unregister_netdev - remove device from the kernel
11912  *	@dev: device
11913  *
11914  *	This function shuts down a device interface and removes it
11915  *	from the kernel tables.
11916  *
11917  *	This is just a wrapper for unregister_netdevice that takes
11918  *	the rtnl semaphore.  In general you want to use this and not
11919  *	unregister_netdevice.
11920  */
11921 void unregister_netdev(struct net_device *dev)
11922 {
11923 	rtnl_net_dev_lock(dev);
11924 	unregister_netdevice(dev);
11925 	rtnl_net_dev_unlock(dev);
11926 }
11927 EXPORT_SYMBOL(unregister_netdev);
11928 
11929 /**
11930  *	__dev_change_net_namespace - move device to different nethost namespace
11931  *	@dev: device
11932  *	@net: network namespace
11933  *	@pat: If not NULL name pattern to try if the current device name
11934  *	      is already taken in the destination network namespace.
11935  *	@new_ifindex: If not zero, specifies device index in the target
11936  *	              namespace.
11937  *
11938  *	This function shuts down a device interface and moves it
11939  *	to a new network namespace. On success 0 is returned, on
11940  *	a failure a netagive errno code is returned.
11941  *
11942  *	Callers must hold the rtnl semaphore.
11943  */
11944 
11945 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11946 			       const char *pat, int new_ifindex)
11947 {
11948 	struct netdev_name_node *name_node;
11949 	struct net *net_old = dev_net(dev);
11950 	char new_name[IFNAMSIZ] = {};
11951 	int err, new_nsid;
11952 
11953 	ASSERT_RTNL();
11954 
11955 	/* Don't allow namespace local devices to be moved. */
11956 	err = -EINVAL;
11957 	if (dev->netns_local)
11958 		goto out;
11959 
11960 	/* Ensure the device has been registered */
11961 	if (dev->reg_state != NETREG_REGISTERED)
11962 		goto out;
11963 
11964 	/* Get out if there is nothing todo */
11965 	err = 0;
11966 	if (net_eq(net_old, net))
11967 		goto out;
11968 
11969 	/* Pick the destination device name, and ensure
11970 	 * we can use it in the destination network namespace.
11971 	 */
11972 	err = -EEXIST;
11973 	if (netdev_name_in_use(net, dev->name)) {
11974 		/* We get here if we can't use the current device name */
11975 		if (!pat)
11976 			goto out;
11977 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11978 		if (err < 0)
11979 			goto out;
11980 	}
11981 	/* Check that none of the altnames conflicts. */
11982 	err = -EEXIST;
11983 	netdev_for_each_altname(dev, name_node)
11984 		if (netdev_name_in_use(net, name_node->name))
11985 			goto out;
11986 
11987 	/* Check that new_ifindex isn't used yet. */
11988 	if (new_ifindex) {
11989 		err = dev_index_reserve(net, new_ifindex);
11990 		if (err < 0)
11991 			goto out;
11992 	} else {
11993 		/* If there is an ifindex conflict assign a new one */
11994 		err = dev_index_reserve(net, dev->ifindex);
11995 		if (err == -EBUSY)
11996 			err = dev_index_reserve(net, 0);
11997 		if (err < 0)
11998 			goto out;
11999 		new_ifindex = err;
12000 	}
12001 
12002 	/*
12003 	 * And now a mini version of register_netdevice unregister_netdevice.
12004 	 */
12005 
12006 	/* If device is running close it first. */
12007 	dev_close(dev);
12008 
12009 	/* And unlink it from device chain */
12010 	unlist_netdevice(dev);
12011 
12012 	synchronize_net();
12013 
12014 	/* Shutdown queueing discipline. */
12015 	dev_shutdown(dev);
12016 
12017 	/* Notify protocols, that we are about to destroy
12018 	 * this device. They should clean all the things.
12019 	 *
12020 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12021 	 * This is wanted because this way 8021q and macvlan know
12022 	 * the device is just moving and can keep their slaves up.
12023 	 */
12024 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12025 	rcu_barrier();
12026 
12027 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12028 
12029 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12030 			    new_ifindex);
12031 
12032 	/*
12033 	 *	Flush the unicast and multicast chains
12034 	 */
12035 	dev_uc_flush(dev);
12036 	dev_mc_flush(dev);
12037 
12038 	/* Send a netdev-removed uevent to the old namespace */
12039 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12040 	netdev_adjacent_del_links(dev);
12041 
12042 	/* Move per-net netdevice notifiers that are following the netdevice */
12043 	move_netdevice_notifiers_dev_net(dev, net);
12044 
12045 	/* Actually switch the network namespace */
12046 	dev_net_set(dev, net);
12047 	dev->ifindex = new_ifindex;
12048 
12049 	if (new_name[0]) {
12050 		/* Rename the netdev to prepared name */
12051 		write_seqlock_bh(&netdev_rename_lock);
12052 		strscpy(dev->name, new_name, IFNAMSIZ);
12053 		write_sequnlock_bh(&netdev_rename_lock);
12054 	}
12055 
12056 	/* Fixup kobjects */
12057 	dev_set_uevent_suppress(&dev->dev, 1);
12058 	err = device_rename(&dev->dev, dev->name);
12059 	dev_set_uevent_suppress(&dev->dev, 0);
12060 	WARN_ON(err);
12061 
12062 	/* Send a netdev-add uevent to the new namespace */
12063 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12064 	netdev_adjacent_add_links(dev);
12065 
12066 	/* Adapt owner in case owning user namespace of target network
12067 	 * namespace is different from the original one.
12068 	 */
12069 	err = netdev_change_owner(dev, net_old, net);
12070 	WARN_ON(err);
12071 
12072 	/* Add the device back in the hashes */
12073 	list_netdevice(dev);
12074 
12075 	/* Notify protocols, that a new device appeared. */
12076 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12077 
12078 	/*
12079 	 *	Prevent userspace races by waiting until the network
12080 	 *	device is fully setup before sending notifications.
12081 	 */
12082 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12083 
12084 	synchronize_net();
12085 	err = 0;
12086 out:
12087 	return err;
12088 }
12089 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
12090 
12091 static int dev_cpu_dead(unsigned int oldcpu)
12092 {
12093 	struct sk_buff **list_skb;
12094 	struct sk_buff *skb;
12095 	unsigned int cpu;
12096 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12097 
12098 	local_irq_disable();
12099 	cpu = smp_processor_id();
12100 	sd = &per_cpu(softnet_data, cpu);
12101 	oldsd = &per_cpu(softnet_data, oldcpu);
12102 
12103 	/* Find end of our completion_queue. */
12104 	list_skb = &sd->completion_queue;
12105 	while (*list_skb)
12106 		list_skb = &(*list_skb)->next;
12107 	/* Append completion queue from offline CPU. */
12108 	*list_skb = oldsd->completion_queue;
12109 	oldsd->completion_queue = NULL;
12110 
12111 	/* Append output queue from offline CPU. */
12112 	if (oldsd->output_queue) {
12113 		*sd->output_queue_tailp = oldsd->output_queue;
12114 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12115 		oldsd->output_queue = NULL;
12116 		oldsd->output_queue_tailp = &oldsd->output_queue;
12117 	}
12118 	/* Append NAPI poll list from offline CPU, with one exception :
12119 	 * process_backlog() must be called by cpu owning percpu backlog.
12120 	 * We properly handle process_queue & input_pkt_queue later.
12121 	 */
12122 	while (!list_empty(&oldsd->poll_list)) {
12123 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12124 							    struct napi_struct,
12125 							    poll_list);
12126 
12127 		list_del_init(&napi->poll_list);
12128 		if (napi->poll == process_backlog)
12129 			napi->state &= NAPIF_STATE_THREADED;
12130 		else
12131 			____napi_schedule(sd, napi);
12132 	}
12133 
12134 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12135 	local_irq_enable();
12136 
12137 	if (!use_backlog_threads()) {
12138 #ifdef CONFIG_RPS
12139 		remsd = oldsd->rps_ipi_list;
12140 		oldsd->rps_ipi_list = NULL;
12141 #endif
12142 		/* send out pending IPI's on offline CPU */
12143 		net_rps_send_ipi(remsd);
12144 	}
12145 
12146 	/* Process offline CPU's input_pkt_queue */
12147 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12148 		netif_rx(skb);
12149 		rps_input_queue_head_incr(oldsd);
12150 	}
12151 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12152 		netif_rx(skb);
12153 		rps_input_queue_head_incr(oldsd);
12154 	}
12155 
12156 	return 0;
12157 }
12158 
12159 /**
12160  *	netdev_increment_features - increment feature set by one
12161  *	@all: current feature set
12162  *	@one: new feature set
12163  *	@mask: mask feature set
12164  *
12165  *	Computes a new feature set after adding a device with feature set
12166  *	@one to the master device with current feature set @all.  Will not
12167  *	enable anything that is off in @mask. Returns the new feature set.
12168  */
12169 netdev_features_t netdev_increment_features(netdev_features_t all,
12170 	netdev_features_t one, netdev_features_t mask)
12171 {
12172 	if (mask & NETIF_F_HW_CSUM)
12173 		mask |= NETIF_F_CSUM_MASK;
12174 	mask |= NETIF_F_VLAN_CHALLENGED;
12175 
12176 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12177 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12178 
12179 	/* If one device supports hw checksumming, set for all. */
12180 	if (all & NETIF_F_HW_CSUM)
12181 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12182 
12183 	return all;
12184 }
12185 EXPORT_SYMBOL(netdev_increment_features);
12186 
12187 static struct hlist_head * __net_init netdev_create_hash(void)
12188 {
12189 	int i;
12190 	struct hlist_head *hash;
12191 
12192 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12193 	if (hash != NULL)
12194 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12195 			INIT_HLIST_HEAD(&hash[i]);
12196 
12197 	return hash;
12198 }
12199 
12200 /* Initialize per network namespace state */
12201 static int __net_init netdev_init(struct net *net)
12202 {
12203 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12204 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
12205 
12206 	INIT_LIST_HEAD(&net->dev_base_head);
12207 
12208 	net->dev_name_head = netdev_create_hash();
12209 	if (net->dev_name_head == NULL)
12210 		goto err_name;
12211 
12212 	net->dev_index_head = netdev_create_hash();
12213 	if (net->dev_index_head == NULL)
12214 		goto err_idx;
12215 
12216 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12217 
12218 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12219 
12220 	return 0;
12221 
12222 err_idx:
12223 	kfree(net->dev_name_head);
12224 err_name:
12225 	return -ENOMEM;
12226 }
12227 
12228 /**
12229  *	netdev_drivername - network driver for the device
12230  *	@dev: network device
12231  *
12232  *	Determine network driver for device.
12233  */
12234 const char *netdev_drivername(const struct net_device *dev)
12235 {
12236 	const struct device_driver *driver;
12237 	const struct device *parent;
12238 	const char *empty = "";
12239 
12240 	parent = dev->dev.parent;
12241 	if (!parent)
12242 		return empty;
12243 
12244 	driver = parent->driver;
12245 	if (driver && driver->name)
12246 		return driver->name;
12247 	return empty;
12248 }
12249 
12250 static void __netdev_printk(const char *level, const struct net_device *dev,
12251 			    struct va_format *vaf)
12252 {
12253 	if (dev && dev->dev.parent) {
12254 		dev_printk_emit(level[1] - '0',
12255 				dev->dev.parent,
12256 				"%s %s %s%s: %pV",
12257 				dev_driver_string(dev->dev.parent),
12258 				dev_name(dev->dev.parent),
12259 				netdev_name(dev), netdev_reg_state(dev),
12260 				vaf);
12261 	} else if (dev) {
12262 		printk("%s%s%s: %pV",
12263 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12264 	} else {
12265 		printk("%s(NULL net_device): %pV", level, vaf);
12266 	}
12267 }
12268 
12269 void netdev_printk(const char *level, const struct net_device *dev,
12270 		   const char *format, ...)
12271 {
12272 	struct va_format vaf;
12273 	va_list args;
12274 
12275 	va_start(args, format);
12276 
12277 	vaf.fmt = format;
12278 	vaf.va = &args;
12279 
12280 	__netdev_printk(level, dev, &vaf);
12281 
12282 	va_end(args);
12283 }
12284 EXPORT_SYMBOL(netdev_printk);
12285 
12286 #define define_netdev_printk_level(func, level)			\
12287 void func(const struct net_device *dev, const char *fmt, ...)	\
12288 {								\
12289 	struct va_format vaf;					\
12290 	va_list args;						\
12291 								\
12292 	va_start(args, fmt);					\
12293 								\
12294 	vaf.fmt = fmt;						\
12295 	vaf.va = &args;						\
12296 								\
12297 	__netdev_printk(level, dev, &vaf);			\
12298 								\
12299 	va_end(args);						\
12300 }								\
12301 EXPORT_SYMBOL(func);
12302 
12303 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12304 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12305 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12306 define_netdev_printk_level(netdev_err, KERN_ERR);
12307 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12308 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12309 define_netdev_printk_level(netdev_info, KERN_INFO);
12310 
12311 static void __net_exit netdev_exit(struct net *net)
12312 {
12313 	kfree(net->dev_name_head);
12314 	kfree(net->dev_index_head);
12315 	xa_destroy(&net->dev_by_index);
12316 	if (net != &init_net)
12317 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12318 }
12319 
12320 static struct pernet_operations __net_initdata netdev_net_ops = {
12321 	.init = netdev_init,
12322 	.exit = netdev_exit,
12323 };
12324 
12325 static void __net_exit default_device_exit_net(struct net *net)
12326 {
12327 	struct netdev_name_node *name_node, *tmp;
12328 	struct net_device *dev, *aux;
12329 	/*
12330 	 * Push all migratable network devices back to the
12331 	 * initial network namespace
12332 	 */
12333 	ASSERT_RTNL();
12334 	for_each_netdev_safe(net, dev, aux) {
12335 		int err;
12336 		char fb_name[IFNAMSIZ];
12337 
12338 		/* Ignore unmoveable devices (i.e. loopback) */
12339 		if (dev->netns_local)
12340 			continue;
12341 
12342 		/* Leave virtual devices for the generic cleanup */
12343 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12344 			continue;
12345 
12346 		/* Push remaining network devices to init_net */
12347 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12348 		if (netdev_name_in_use(&init_net, fb_name))
12349 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12350 
12351 		netdev_for_each_altname_safe(dev, name_node, tmp)
12352 			if (netdev_name_in_use(&init_net, name_node->name))
12353 				__netdev_name_node_alt_destroy(name_node);
12354 
12355 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12356 		if (err) {
12357 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12358 				 __func__, dev->name, err);
12359 			BUG();
12360 		}
12361 	}
12362 }
12363 
12364 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12365 {
12366 	/* At exit all network devices most be removed from a network
12367 	 * namespace.  Do this in the reverse order of registration.
12368 	 * Do this across as many network namespaces as possible to
12369 	 * improve batching efficiency.
12370 	 */
12371 	struct net_device *dev;
12372 	struct net *net;
12373 	LIST_HEAD(dev_kill_list);
12374 
12375 	rtnl_lock();
12376 	list_for_each_entry(net, net_list, exit_list) {
12377 		default_device_exit_net(net);
12378 		cond_resched();
12379 	}
12380 
12381 	list_for_each_entry(net, net_list, exit_list) {
12382 		for_each_netdev_reverse(net, dev) {
12383 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12384 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12385 			else
12386 				unregister_netdevice_queue(dev, &dev_kill_list);
12387 		}
12388 	}
12389 	unregister_netdevice_many(&dev_kill_list);
12390 	rtnl_unlock();
12391 }
12392 
12393 static struct pernet_operations __net_initdata default_device_ops = {
12394 	.exit_batch = default_device_exit_batch,
12395 };
12396 
12397 static void __init net_dev_struct_check(void)
12398 {
12399 	/* TX read-mostly hotpath */
12400 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12401 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12402 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12403 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12404 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12405 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12406 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12407 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12408 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12409 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12410 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12411 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12412 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12413 #ifdef CONFIG_XPS
12414 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12415 #endif
12416 #ifdef CONFIG_NETFILTER_EGRESS
12417 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12418 #endif
12419 #ifdef CONFIG_NET_XGRESS
12420 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12421 #endif
12422 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12423 
12424 	/* TXRX read-mostly hotpath */
12425 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12426 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12427 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12428 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12429 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12430 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12431 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12432 
12433 	/* RX read-mostly hotpath */
12434 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12435 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12436 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12437 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12438 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12439 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12440 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12441 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12442 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12443 #ifdef CONFIG_NETPOLL
12444 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12445 #endif
12446 #ifdef CONFIG_NET_XGRESS
12447 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12448 #endif
12449 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12450 }
12451 
12452 /*
12453  *	Initialize the DEV module. At boot time this walks the device list and
12454  *	unhooks any devices that fail to initialise (normally hardware not
12455  *	present) and leaves us with a valid list of present and active devices.
12456  *
12457  */
12458 
12459 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12460 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12461 
12462 static int net_page_pool_create(int cpuid)
12463 {
12464 #if IS_ENABLED(CONFIG_PAGE_POOL)
12465 	struct page_pool_params page_pool_params = {
12466 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12467 		.flags = PP_FLAG_SYSTEM_POOL,
12468 		.nid = cpu_to_mem(cpuid),
12469 	};
12470 	struct page_pool *pp_ptr;
12471 	int err;
12472 
12473 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12474 	if (IS_ERR(pp_ptr))
12475 		return -ENOMEM;
12476 
12477 	err = xdp_reg_page_pool(pp_ptr);
12478 	if (err) {
12479 		page_pool_destroy(pp_ptr);
12480 		return err;
12481 	}
12482 
12483 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12484 #endif
12485 	return 0;
12486 }
12487 
12488 static int backlog_napi_should_run(unsigned int cpu)
12489 {
12490 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12491 	struct napi_struct *napi = &sd->backlog;
12492 
12493 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12494 }
12495 
12496 static void run_backlog_napi(unsigned int cpu)
12497 {
12498 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12499 
12500 	napi_threaded_poll_loop(&sd->backlog);
12501 }
12502 
12503 static void backlog_napi_setup(unsigned int cpu)
12504 {
12505 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12506 	struct napi_struct *napi = &sd->backlog;
12507 
12508 	napi->thread = this_cpu_read(backlog_napi);
12509 	set_bit(NAPI_STATE_THREADED, &napi->state);
12510 }
12511 
12512 static struct smp_hotplug_thread backlog_threads = {
12513 	.store			= &backlog_napi,
12514 	.thread_should_run	= backlog_napi_should_run,
12515 	.thread_fn		= run_backlog_napi,
12516 	.thread_comm		= "backlog_napi/%u",
12517 	.setup			= backlog_napi_setup,
12518 };
12519 
12520 /*
12521  *       This is called single threaded during boot, so no need
12522  *       to take the rtnl semaphore.
12523  */
12524 static int __init net_dev_init(void)
12525 {
12526 	int i, rc = -ENOMEM;
12527 
12528 	BUG_ON(!dev_boot_phase);
12529 
12530 	net_dev_struct_check();
12531 
12532 	if (dev_proc_init())
12533 		goto out;
12534 
12535 	if (netdev_kobject_init())
12536 		goto out;
12537 
12538 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12539 		INIT_LIST_HEAD(&ptype_base[i]);
12540 
12541 	if (register_pernet_subsys(&netdev_net_ops))
12542 		goto out;
12543 
12544 	/*
12545 	 *	Initialise the packet receive queues.
12546 	 */
12547 
12548 	flush_backlogs_fallback = flush_backlogs_alloc();
12549 	if (!flush_backlogs_fallback)
12550 		goto out;
12551 
12552 	for_each_possible_cpu(i) {
12553 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12554 
12555 		skb_queue_head_init(&sd->input_pkt_queue);
12556 		skb_queue_head_init(&sd->process_queue);
12557 #ifdef CONFIG_XFRM_OFFLOAD
12558 		skb_queue_head_init(&sd->xfrm_backlog);
12559 #endif
12560 		INIT_LIST_HEAD(&sd->poll_list);
12561 		sd->output_queue_tailp = &sd->output_queue;
12562 #ifdef CONFIG_RPS
12563 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12564 		sd->cpu = i;
12565 #endif
12566 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12567 		spin_lock_init(&sd->defer_lock);
12568 
12569 		init_gro_hash(&sd->backlog);
12570 		sd->backlog.poll = process_backlog;
12571 		sd->backlog.weight = weight_p;
12572 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12573 
12574 		if (net_page_pool_create(i))
12575 			goto out;
12576 	}
12577 	if (use_backlog_threads())
12578 		smpboot_register_percpu_thread(&backlog_threads);
12579 
12580 	dev_boot_phase = 0;
12581 
12582 	/* The loopback device is special if any other network devices
12583 	 * is present in a network namespace the loopback device must
12584 	 * be present. Since we now dynamically allocate and free the
12585 	 * loopback device ensure this invariant is maintained by
12586 	 * keeping the loopback device as the first device on the
12587 	 * list of network devices.  Ensuring the loopback devices
12588 	 * is the first device that appears and the last network device
12589 	 * that disappears.
12590 	 */
12591 	if (register_pernet_device(&loopback_net_ops))
12592 		goto out;
12593 
12594 	if (register_pernet_device(&default_device_ops))
12595 		goto out;
12596 
12597 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12598 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12599 
12600 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12601 				       NULL, dev_cpu_dead);
12602 	WARN_ON(rc < 0);
12603 	rc = 0;
12604 
12605 	/* avoid static key IPIs to isolated CPUs */
12606 	if (housekeeping_enabled(HK_TYPE_MISC))
12607 		net_enable_timestamp();
12608 out:
12609 	if (rc < 0) {
12610 		for_each_possible_cpu(i) {
12611 			struct page_pool *pp_ptr;
12612 
12613 			pp_ptr = per_cpu(system_page_pool, i);
12614 			if (!pp_ptr)
12615 				continue;
12616 
12617 			xdp_unreg_page_pool(pp_ptr);
12618 			page_pool_destroy(pp_ptr);
12619 			per_cpu(system_page_pool, i) = NULL;
12620 		}
12621 	}
12622 
12623 	return rc;
12624 }
12625 
12626 subsys_initcall(net_dev_init);
12627