xref: /linux-6.15/net/core/dev.c (revision df92b408)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <linux/if_bridge.h>
105 #include <linux/if_macvlan.h>
106 #include <net/dst.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/kmod.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/wext.h>
118 #include <net/iw_handler.h>
119 #include <asm/current.h>
120 #include <linux/audit.h>
121 #include <linux/dmaengine.h>
122 #include <linux/err.h>
123 #include <linux/ctype.h>
124 #include <linux/if_arp.h>
125 #include <linux/if_vlan.h>
126 #include <linux/ip.h>
127 #include <net/ip.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <linux/pci.h>
134 
135 #include "net-sysfs.h"
136 
137 /* Instead of increasing this, you should create a hash table. */
138 #define MAX_GRO_SKBS 8
139 
140 /* This should be increased if a protocol with a bigger head is added. */
141 #define GRO_MAX_HEAD (MAX_HEADER + 128)
142 
143 /*
144  *	The list of packet types we will receive (as opposed to discard)
145  *	and the routines to invoke.
146  *
147  *	Why 16. Because with 16 the only overlap we get on a hash of the
148  *	low nibble of the protocol value is RARP/SNAP/X.25.
149  *
150  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
151  *             sure which should go first, but I bet it won't make much
152  *             difference if we are running VLANs.  The good news is that
153  *             this protocol won't be in the list unless compiled in, so
154  *             the average user (w/out VLANs) will not be adversely affected.
155  *             --BLG
156  *
157  *		0800	IP
158  *		8100    802.1Q VLAN
159  *		0001	802.3
160  *		0002	AX.25
161  *		0004	802.2
162  *		8035	RARP
163  *		0005	SNAP
164  *		0805	X.25
165  *		0806	ARP
166  *		8137	IPX
167  *		0009	Localtalk
168  *		86DD	IPv6
169  */
170 
171 #define PTYPE_HASH_SIZE	(16)
172 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
173 
174 static DEFINE_SPINLOCK(ptype_lock);
175 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
176 static struct list_head ptype_all __read_mostly;	/* Taps */
177 
178 /*
179  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
180  * semaphore.
181  *
182  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
183  *
184  * Writers must hold the rtnl semaphore while they loop through the
185  * dev_base_head list, and hold dev_base_lock for writing when they do the
186  * actual updates.  This allows pure readers to access the list even
187  * while a writer is preparing to update it.
188  *
189  * To put it another way, dev_base_lock is held for writing only to
190  * protect against pure readers; the rtnl semaphore provides the
191  * protection against other writers.
192  *
193  * See, for example usages, register_netdevice() and
194  * unregister_netdevice(), which must be called with the rtnl
195  * semaphore held.
196  */
197 DEFINE_RWLOCK(dev_base_lock);
198 EXPORT_SYMBOL(dev_base_lock);
199 
200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
201 {
202 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
203 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
204 }
205 
206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
207 {
208 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
209 }
210 
211 static inline void rps_lock(struct softnet_data *sd)
212 {
213 #ifdef CONFIG_RPS
214 	spin_lock(&sd->input_pkt_queue.lock);
215 #endif
216 }
217 
218 static inline void rps_unlock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_unlock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 /* Device list insertion */
226 static int list_netdevice(struct net_device *dev)
227 {
228 	struct net *net = dev_net(dev);
229 
230 	ASSERT_RTNL();
231 
232 	write_lock_bh(&dev_base_lock);
233 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
234 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
235 	hlist_add_head_rcu(&dev->index_hlist,
236 			   dev_index_hash(net, dev->ifindex));
237 	write_unlock_bh(&dev_base_lock);
238 	return 0;
239 }
240 
241 /* Device list removal
242  * caller must respect a RCU grace period before freeing/reusing dev
243  */
244 static void unlist_netdevice(struct net_device *dev)
245 {
246 	ASSERT_RTNL();
247 
248 	/* Unlink dev from the device chain */
249 	write_lock_bh(&dev_base_lock);
250 	list_del_rcu(&dev->dev_list);
251 	hlist_del_rcu(&dev->name_hlist);
252 	hlist_del_rcu(&dev->index_hlist);
253 	write_unlock_bh(&dev_base_lock);
254 }
255 
256 /*
257  *	Our notifier list
258  */
259 
260 static RAW_NOTIFIER_HEAD(netdev_chain);
261 
262 /*
263  *	Device drivers call our routines to queue packets here. We empty the
264  *	queue in the local softnet handler.
265  */
266 
267 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
268 EXPORT_PER_CPU_SYMBOL(softnet_data);
269 
270 #ifdef CONFIG_LOCKDEP
271 /*
272  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273  * according to dev->type
274  */
275 static const unsigned short netdev_lock_type[] =
276 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
291 	 ARPHRD_VOID, ARPHRD_NONE};
292 
293 static const char *const netdev_lock_name[] =
294 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
307 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
308 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
309 	 "_xmit_VOID", "_xmit_NONE"};
310 
311 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
313 
314 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
315 {
316 	int i;
317 
318 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
319 		if (netdev_lock_type[i] == dev_type)
320 			return i;
321 	/* the last key is used by default */
322 	return ARRAY_SIZE(netdev_lock_type) - 1;
323 }
324 
325 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 						 unsigned short dev_type)
327 {
328 	int i;
329 
330 	i = netdev_lock_pos(dev_type);
331 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
332 				   netdev_lock_name[i]);
333 }
334 
335 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev->type);
340 	lockdep_set_class_and_name(&dev->addr_list_lock,
341 				   &netdev_addr_lock_key[i],
342 				   netdev_lock_name[i]);
343 }
344 #else
345 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
346 						 unsigned short dev_type)
347 {
348 }
349 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
350 {
351 }
352 #endif
353 
354 /*******************************************************************************
355 
356 		Protocol management and registration routines
357 
358 *******************************************************************************/
359 
360 /*
361  *	Add a protocol ID to the list. Now that the input handler is
362  *	smarter we can dispense with all the messy stuff that used to be
363  *	here.
364  *
365  *	BEWARE!!! Protocol handlers, mangling input packets,
366  *	MUST BE last in hash buckets and checking protocol handlers
367  *	MUST start from promiscuous ptype_all chain in net_bh.
368  *	It is true now, do not change it.
369  *	Explanation follows: if protocol handler, mangling packet, will
370  *	be the first on list, it is not able to sense, that packet
371  *	is cloned and should be copied-on-write, so that it will
372  *	change it and subsequent readers will get broken packet.
373  *							--ANK (980803)
374  */
375 
376 /**
377  *	dev_add_pack - add packet handler
378  *	@pt: packet type declaration
379  *
380  *	Add a protocol handler to the networking stack. The passed &packet_type
381  *	is linked into kernel lists and may not be freed until it has been
382  *	removed from the kernel lists.
383  *
384  *	This call does not sleep therefore it can not
385  *	guarantee all CPU's that are in middle of receiving packets
386  *	will see the new packet type (until the next received packet).
387  */
388 
389 void dev_add_pack(struct packet_type *pt)
390 {
391 	int hash;
392 
393 	spin_lock_bh(&ptype_lock);
394 	if (pt->type == htons(ETH_P_ALL))
395 		list_add_rcu(&pt->list, &ptype_all);
396 	else {
397 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
398 		list_add_rcu(&pt->list, &ptype_base[hash]);
399 	}
400 	spin_unlock_bh(&ptype_lock);
401 }
402 EXPORT_SYMBOL(dev_add_pack);
403 
404 /**
405  *	__dev_remove_pack	 - remove packet handler
406  *	@pt: packet type declaration
407  *
408  *	Remove a protocol handler that was previously added to the kernel
409  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
410  *	from the kernel lists and can be freed or reused once this function
411  *	returns.
412  *
413  *      The packet type might still be in use by receivers
414  *	and must not be freed until after all the CPU's have gone
415  *	through a quiescent state.
416  */
417 void __dev_remove_pack(struct packet_type *pt)
418 {
419 	struct list_head *head;
420 	struct packet_type *pt1;
421 
422 	spin_lock_bh(&ptype_lock);
423 
424 	if (pt->type == htons(ETH_P_ALL))
425 		head = &ptype_all;
426 	else
427 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
428 
429 	list_for_each_entry(pt1, head, list) {
430 		if (pt == pt1) {
431 			list_del_rcu(&pt->list);
432 			goto out;
433 		}
434 	}
435 
436 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 	spin_unlock_bh(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441 
442 /**
443  *	dev_remove_pack	 - remove packet handler
444  *	@pt: packet type declaration
445  *
446  *	Remove a protocol handler that was previously added to the kernel
447  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *	from the kernel lists and can be freed or reused once this function
449  *	returns.
450  *
451  *	This call sleeps to guarantee that no CPU is looking at the packet
452  *	type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 	__dev_remove_pack(pt);
457 
458 	synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461 
462 /******************************************************************************
463 
464 		      Device Boot-time Settings Routines
465 
466 *******************************************************************************/
467 
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470 
471 /**
472  *	netdev_boot_setup_add	- add new setup entry
473  *	@name: name of the device
474  *	@map: configured settings for the device
475  *
476  *	Adds new setup entry to the dev_boot_setup list.  The function
477  *	returns 0 on error and 1 on success.  This is a generic routine to
478  *	all netdevices.
479  */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 	struct netdev_boot_setup *s;
483 	int i;
484 
485 	s = dev_boot_setup;
486 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 			memset(s[i].name, 0, sizeof(s[i].name));
489 			strlcpy(s[i].name, name, IFNAMSIZ);
490 			memcpy(&s[i].map, map, sizeof(s[i].map));
491 			break;
492 		}
493 	}
494 
495 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497 
498 /**
499  *	netdev_boot_setup_check	- check boot time settings
500  *	@dev: the netdevice
501  *
502  * 	Check boot time settings for the device.
503  *	The found settings are set for the device to be used
504  *	later in the device probing.
505  *	Returns 0 if no settings found, 1 if they are.
506  */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 	struct netdev_boot_setup *s = dev_boot_setup;
510 	int i;
511 
512 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 		    !strcmp(dev->name, s[i].name)) {
515 			dev->irq 	= s[i].map.irq;
516 			dev->base_addr 	= s[i].map.base_addr;
517 			dev->mem_start 	= s[i].map.mem_start;
518 			dev->mem_end 	= s[i].map.mem_end;
519 			return 1;
520 		}
521 	}
522 	return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525 
526 
527 /**
528  *	netdev_boot_base	- get address from boot time settings
529  *	@prefix: prefix for network device
530  *	@unit: id for network device
531  *
532  * 	Check boot time settings for the base address of device.
533  *	The found settings are set for the device to be used
534  *	later in the device probing.
535  *	Returns 0 if no settings found.
536  */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 	const struct netdev_boot_setup *s = dev_boot_setup;
540 	char name[IFNAMSIZ];
541 	int i;
542 
543 	sprintf(name, "%s%d", prefix, unit);
544 
545 	/*
546 	 * If device already registered then return base of 1
547 	 * to indicate not to probe for this interface
548 	 */
549 	if (__dev_get_by_name(&init_net, name))
550 		return 1;
551 
552 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 		if (!strcmp(name, s[i].name))
554 			return s[i].map.base_addr;
555 	return 0;
556 }
557 
558 /*
559  * Saves at boot time configured settings for any netdevice.
560  */
561 int __init netdev_boot_setup(char *str)
562 {
563 	int ints[5];
564 	struct ifmap map;
565 
566 	str = get_options(str, ARRAY_SIZE(ints), ints);
567 	if (!str || !*str)
568 		return 0;
569 
570 	/* Save settings */
571 	memset(&map, 0, sizeof(map));
572 	if (ints[0] > 0)
573 		map.irq = ints[1];
574 	if (ints[0] > 1)
575 		map.base_addr = ints[2];
576 	if (ints[0] > 2)
577 		map.mem_start = ints[3];
578 	if (ints[0] > 3)
579 		map.mem_end = ints[4];
580 
581 	/* Add new entry to the list */
582 	return netdev_boot_setup_add(str, &map);
583 }
584 
585 __setup("netdev=", netdev_boot_setup);
586 
587 /*******************************************************************************
588 
589 			    Device Interface Subroutines
590 
591 *******************************************************************************/
592 
593 /**
594  *	__dev_get_by_name	- find a device by its name
595  *	@net: the applicable net namespace
596  *	@name: name to find
597  *
598  *	Find an interface by name. Must be called under RTNL semaphore
599  *	or @dev_base_lock. If the name is found a pointer to the device
600  *	is returned. If the name is not found then %NULL is returned. The
601  *	reference counters are not incremented so the caller must be
602  *	careful with locks.
603  */
604 
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 	struct hlist_node *p;
608 	struct net_device *dev;
609 	struct hlist_head *head = dev_name_hash(net, name);
610 
611 	hlist_for_each_entry(dev, p, head, name_hlist)
612 		if (!strncmp(dev->name, name, IFNAMSIZ))
613 			return dev;
614 
615 	return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618 
619 /**
620  *	dev_get_by_name_rcu	- find a device by its name
621  *	@net: the applicable net namespace
622  *	@name: name to find
623  *
624  *	Find an interface by name.
625  *	If the name is found a pointer to the device is returned.
626  * 	If the name is not found then %NULL is returned.
627  *	The reference counters are not incremented so the caller must be
628  *	careful with locks. The caller must hold RCU lock.
629  */
630 
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 	struct hlist_node *p;
634 	struct net_device *dev;
635 	struct hlist_head *head = dev_name_hash(net, name);
636 
637 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 		if (!strncmp(dev->name, name, IFNAMSIZ))
639 			return dev;
640 
641 	return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644 
645 /**
646  *	dev_get_by_name		- find a device by its name
647  *	@net: the applicable net namespace
648  *	@name: name to find
649  *
650  *	Find an interface by name. This can be called from any
651  *	context and does its own locking. The returned handle has
652  *	the usage count incremented and the caller must use dev_put() to
653  *	release it when it is no longer needed. %NULL is returned if no
654  *	matching device is found.
655  */
656 
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 	struct net_device *dev;
660 
661 	rcu_read_lock();
662 	dev = dev_get_by_name_rcu(net, name);
663 	if (dev)
664 		dev_hold(dev);
665 	rcu_read_unlock();
666 	return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669 
670 /**
671  *	__dev_get_by_index - find a device by its ifindex
672  *	@net: the applicable net namespace
673  *	@ifindex: index of device
674  *
675  *	Search for an interface by index. Returns %NULL if the device
676  *	is not found or a pointer to the device. The device has not
677  *	had its reference counter increased so the caller must be careful
678  *	about locking. The caller must hold either the RTNL semaphore
679  *	or @dev_base_lock.
680  */
681 
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 	struct hlist_node *p;
685 	struct net_device *dev;
686 	struct hlist_head *head = dev_index_hash(net, ifindex);
687 
688 	hlist_for_each_entry(dev, p, head, index_hlist)
689 		if (dev->ifindex == ifindex)
690 			return dev;
691 
692 	return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695 
696 /**
697  *	dev_get_by_index_rcu - find a device by its ifindex
698  *	@net: the applicable net namespace
699  *	@ifindex: index of device
700  *
701  *	Search for an interface by index. Returns %NULL if the device
702  *	is not found or a pointer to the device. The device has not
703  *	had its reference counter increased so the caller must be careful
704  *	about locking. The caller must hold RCU lock.
705  */
706 
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 	struct hlist_node *p;
710 	struct net_device *dev;
711 	struct hlist_head *head = dev_index_hash(net, ifindex);
712 
713 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 		if (dev->ifindex == ifindex)
715 			return dev;
716 
717 	return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720 
721 
722 /**
723  *	dev_get_by_index - find a device by its ifindex
724  *	@net: the applicable net namespace
725  *	@ifindex: index of device
726  *
727  *	Search for an interface by index. Returns NULL if the device
728  *	is not found or a pointer to the device. The device returned has
729  *	had a reference added and the pointer is safe until the user calls
730  *	dev_put to indicate they have finished with it.
731  */
732 
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 	struct net_device *dev;
736 
737 	rcu_read_lock();
738 	dev = dev_get_by_index_rcu(net, ifindex);
739 	if (dev)
740 		dev_hold(dev);
741 	rcu_read_unlock();
742 	return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745 
746 /**
747  *	dev_getbyhwaddr - find a device by its hardware address
748  *	@net: the applicable net namespace
749  *	@type: media type of device
750  *	@ha: hardware address
751  *
752  *	Search for an interface by MAC address. Returns NULL if the device
753  *	is not found or a pointer to the device. The caller must hold the
754  *	rtnl semaphore. The returned device has not had its ref count increased
755  *	and the caller must therefore be careful about locking
756  *
757  *	BUGS:
758  *	If the API was consistent this would be __dev_get_by_hwaddr
759  */
760 
761 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
762 {
763 	struct net_device *dev;
764 
765 	ASSERT_RTNL();
766 
767 	for_each_netdev(net, dev)
768 		if (dev->type == type &&
769 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
770 			return dev;
771 
772 	return NULL;
773 }
774 EXPORT_SYMBOL(dev_getbyhwaddr);
775 
776 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
777 {
778 	struct net_device *dev;
779 
780 	ASSERT_RTNL();
781 	for_each_netdev(net, dev)
782 		if (dev->type == type)
783 			return dev;
784 
785 	return NULL;
786 }
787 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
788 
789 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
790 {
791 	struct net_device *dev, *ret = NULL;
792 
793 	rcu_read_lock();
794 	for_each_netdev_rcu(net, dev)
795 		if (dev->type == type) {
796 			dev_hold(dev);
797 			ret = dev;
798 			break;
799 		}
800 	rcu_read_unlock();
801 	return ret;
802 }
803 EXPORT_SYMBOL(dev_getfirstbyhwtype);
804 
805 /**
806  *	dev_get_by_flags - find any device with given flags
807  *	@net: the applicable net namespace
808  *	@if_flags: IFF_* values
809  *	@mask: bitmask of bits in if_flags to check
810  *
811  *	Search for any interface with the given flags. Returns NULL if a device
812  *	is not found or a pointer to the device. The device returned has
813  *	had a reference added and the pointer is safe until the user calls
814  *	dev_put to indicate they have finished with it.
815  */
816 
817 struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
818 				    unsigned short mask)
819 {
820 	struct net_device *dev, *ret;
821 
822 	ret = NULL;
823 	rcu_read_lock();
824 	for_each_netdev_rcu(net, dev) {
825 		if (((dev->flags ^ if_flags) & mask) == 0) {
826 			dev_hold(dev);
827 			ret = dev;
828 			break;
829 		}
830 	}
831 	rcu_read_unlock();
832 	return ret;
833 }
834 EXPORT_SYMBOL(dev_get_by_flags);
835 
836 /**
837  *	dev_valid_name - check if name is okay for network device
838  *	@name: name string
839  *
840  *	Network device names need to be valid file names to
841  *	to allow sysfs to work.  We also disallow any kind of
842  *	whitespace.
843  */
844 int dev_valid_name(const char *name)
845 {
846 	if (*name == '\0')
847 		return 0;
848 	if (strlen(name) >= IFNAMSIZ)
849 		return 0;
850 	if (!strcmp(name, ".") || !strcmp(name, ".."))
851 		return 0;
852 
853 	while (*name) {
854 		if (*name == '/' || isspace(*name))
855 			return 0;
856 		name++;
857 	}
858 	return 1;
859 }
860 EXPORT_SYMBOL(dev_valid_name);
861 
862 /**
863  *	__dev_alloc_name - allocate a name for a device
864  *	@net: network namespace to allocate the device name in
865  *	@name: name format string
866  *	@buf:  scratch buffer and result name string
867  *
868  *	Passed a format string - eg "lt%d" it will try and find a suitable
869  *	id. It scans list of devices to build up a free map, then chooses
870  *	the first empty slot. The caller must hold the dev_base or rtnl lock
871  *	while allocating the name and adding the device in order to avoid
872  *	duplicates.
873  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
874  *	Returns the number of the unit assigned or a negative errno code.
875  */
876 
877 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
878 {
879 	int i = 0;
880 	const char *p;
881 	const int max_netdevices = 8*PAGE_SIZE;
882 	unsigned long *inuse;
883 	struct net_device *d;
884 
885 	p = strnchr(name, IFNAMSIZ-1, '%');
886 	if (p) {
887 		/*
888 		 * Verify the string as this thing may have come from
889 		 * the user.  There must be either one "%d" and no other "%"
890 		 * characters.
891 		 */
892 		if (p[1] != 'd' || strchr(p + 2, '%'))
893 			return -EINVAL;
894 
895 		/* Use one page as a bit array of possible slots */
896 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
897 		if (!inuse)
898 			return -ENOMEM;
899 
900 		for_each_netdev(net, d) {
901 			if (!sscanf(d->name, name, &i))
902 				continue;
903 			if (i < 0 || i >= max_netdevices)
904 				continue;
905 
906 			/*  avoid cases where sscanf is not exact inverse of printf */
907 			snprintf(buf, IFNAMSIZ, name, i);
908 			if (!strncmp(buf, d->name, IFNAMSIZ))
909 				set_bit(i, inuse);
910 		}
911 
912 		i = find_first_zero_bit(inuse, max_netdevices);
913 		free_page((unsigned long) inuse);
914 	}
915 
916 	if (buf != name)
917 		snprintf(buf, IFNAMSIZ, name, i);
918 	if (!__dev_get_by_name(net, buf))
919 		return i;
920 
921 	/* It is possible to run out of possible slots
922 	 * when the name is long and there isn't enough space left
923 	 * for the digits, or if all bits are used.
924 	 */
925 	return -ENFILE;
926 }
927 
928 /**
929  *	dev_alloc_name - allocate a name for a device
930  *	@dev: device
931  *	@name: name format string
932  *
933  *	Passed a format string - eg "lt%d" it will try and find a suitable
934  *	id. It scans list of devices to build up a free map, then chooses
935  *	the first empty slot. The caller must hold the dev_base or rtnl lock
936  *	while allocating the name and adding the device in order to avoid
937  *	duplicates.
938  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
939  *	Returns the number of the unit assigned or a negative errno code.
940  */
941 
942 int dev_alloc_name(struct net_device *dev, const char *name)
943 {
944 	char buf[IFNAMSIZ];
945 	struct net *net;
946 	int ret;
947 
948 	BUG_ON(!dev_net(dev));
949 	net = dev_net(dev);
950 	ret = __dev_alloc_name(net, name, buf);
951 	if (ret >= 0)
952 		strlcpy(dev->name, buf, IFNAMSIZ);
953 	return ret;
954 }
955 EXPORT_SYMBOL(dev_alloc_name);
956 
957 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
958 {
959 	struct net *net;
960 
961 	BUG_ON(!dev_net(dev));
962 	net = dev_net(dev);
963 
964 	if (!dev_valid_name(name))
965 		return -EINVAL;
966 
967 	if (fmt && strchr(name, '%'))
968 		return dev_alloc_name(dev, name);
969 	else if (__dev_get_by_name(net, name))
970 		return -EEXIST;
971 	else if (dev->name != name)
972 		strlcpy(dev->name, name, IFNAMSIZ);
973 
974 	return 0;
975 }
976 
977 /**
978  *	dev_change_name - change name of a device
979  *	@dev: device
980  *	@newname: name (or format string) must be at least IFNAMSIZ
981  *
982  *	Change name of a device, can pass format strings "eth%d".
983  *	for wildcarding.
984  */
985 int dev_change_name(struct net_device *dev, const char *newname)
986 {
987 	char oldname[IFNAMSIZ];
988 	int err = 0;
989 	int ret;
990 	struct net *net;
991 
992 	ASSERT_RTNL();
993 	BUG_ON(!dev_net(dev));
994 
995 	net = dev_net(dev);
996 	if (dev->flags & IFF_UP)
997 		return -EBUSY;
998 
999 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
1000 		return 0;
1001 
1002 	memcpy(oldname, dev->name, IFNAMSIZ);
1003 
1004 	err = dev_get_valid_name(dev, newname, 1);
1005 	if (err < 0)
1006 		return err;
1007 
1008 rollback:
1009 	ret = device_rename(&dev->dev, dev->name);
1010 	if (ret) {
1011 		memcpy(dev->name, oldname, IFNAMSIZ);
1012 		return ret;
1013 	}
1014 
1015 	write_lock_bh(&dev_base_lock);
1016 	hlist_del(&dev->name_hlist);
1017 	write_unlock_bh(&dev_base_lock);
1018 
1019 	synchronize_rcu();
1020 
1021 	write_lock_bh(&dev_base_lock);
1022 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1023 	write_unlock_bh(&dev_base_lock);
1024 
1025 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1026 	ret = notifier_to_errno(ret);
1027 
1028 	if (ret) {
1029 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1030 		if (err >= 0) {
1031 			err = ret;
1032 			memcpy(dev->name, oldname, IFNAMSIZ);
1033 			goto rollback;
1034 		} else {
1035 			printk(KERN_ERR
1036 			       "%s: name change rollback failed: %d.\n",
1037 			       dev->name, ret);
1038 		}
1039 	}
1040 
1041 	return err;
1042 }
1043 
1044 /**
1045  *	dev_set_alias - change ifalias of a device
1046  *	@dev: device
1047  *	@alias: name up to IFALIASZ
1048  *	@len: limit of bytes to copy from info
1049  *
1050  *	Set ifalias for a device,
1051  */
1052 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1053 {
1054 	ASSERT_RTNL();
1055 
1056 	if (len >= IFALIASZ)
1057 		return -EINVAL;
1058 
1059 	if (!len) {
1060 		if (dev->ifalias) {
1061 			kfree(dev->ifalias);
1062 			dev->ifalias = NULL;
1063 		}
1064 		return 0;
1065 	}
1066 
1067 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1068 	if (!dev->ifalias)
1069 		return -ENOMEM;
1070 
1071 	strlcpy(dev->ifalias, alias, len+1);
1072 	return len;
1073 }
1074 
1075 
1076 /**
1077  *	netdev_features_change - device changes features
1078  *	@dev: device to cause notification
1079  *
1080  *	Called to indicate a device has changed features.
1081  */
1082 void netdev_features_change(struct net_device *dev)
1083 {
1084 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1085 }
1086 EXPORT_SYMBOL(netdev_features_change);
1087 
1088 /**
1089  *	netdev_state_change - device changes state
1090  *	@dev: device to cause notification
1091  *
1092  *	Called to indicate a device has changed state. This function calls
1093  *	the notifier chains for netdev_chain and sends a NEWLINK message
1094  *	to the routing socket.
1095  */
1096 void netdev_state_change(struct net_device *dev)
1097 {
1098 	if (dev->flags & IFF_UP) {
1099 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1100 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1101 	}
1102 }
1103 EXPORT_SYMBOL(netdev_state_change);
1104 
1105 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1106 {
1107 	return call_netdevice_notifiers(event, dev);
1108 }
1109 EXPORT_SYMBOL(netdev_bonding_change);
1110 
1111 /**
1112  *	dev_load 	- load a network module
1113  *	@net: the applicable net namespace
1114  *	@name: name of interface
1115  *
1116  *	If a network interface is not present and the process has suitable
1117  *	privileges this function loads the module. If module loading is not
1118  *	available in this kernel then it becomes a nop.
1119  */
1120 
1121 void dev_load(struct net *net, const char *name)
1122 {
1123 	struct net_device *dev;
1124 
1125 	rcu_read_lock();
1126 	dev = dev_get_by_name_rcu(net, name);
1127 	rcu_read_unlock();
1128 
1129 	if (!dev && capable(CAP_NET_ADMIN))
1130 		request_module("%s", name);
1131 }
1132 EXPORT_SYMBOL(dev_load);
1133 
1134 static int __dev_open(struct net_device *dev)
1135 {
1136 	const struct net_device_ops *ops = dev->netdev_ops;
1137 	int ret;
1138 
1139 	ASSERT_RTNL();
1140 
1141 	/*
1142 	 *	Is it even present?
1143 	 */
1144 	if (!netif_device_present(dev))
1145 		return -ENODEV;
1146 
1147 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1148 	ret = notifier_to_errno(ret);
1149 	if (ret)
1150 		return ret;
1151 
1152 	/*
1153 	 *	Call device private open method
1154 	 */
1155 	set_bit(__LINK_STATE_START, &dev->state);
1156 
1157 	if (ops->ndo_validate_addr)
1158 		ret = ops->ndo_validate_addr(dev);
1159 
1160 	if (!ret && ops->ndo_open)
1161 		ret = ops->ndo_open(dev);
1162 
1163 	/*
1164 	 *	If it went open OK then:
1165 	 */
1166 
1167 	if (ret)
1168 		clear_bit(__LINK_STATE_START, &dev->state);
1169 	else {
1170 		/*
1171 		 *	Set the flags.
1172 		 */
1173 		dev->flags |= IFF_UP;
1174 
1175 		/*
1176 		 *	Enable NET_DMA
1177 		 */
1178 		net_dmaengine_get();
1179 
1180 		/*
1181 		 *	Initialize multicasting status
1182 		 */
1183 		dev_set_rx_mode(dev);
1184 
1185 		/*
1186 		 *	Wakeup transmit queue engine
1187 		 */
1188 		dev_activate(dev);
1189 	}
1190 
1191 	return ret;
1192 }
1193 
1194 /**
1195  *	dev_open	- prepare an interface for use.
1196  *	@dev:	device to open
1197  *
1198  *	Takes a device from down to up state. The device's private open
1199  *	function is invoked and then the multicast lists are loaded. Finally
1200  *	the device is moved into the up state and a %NETDEV_UP message is
1201  *	sent to the netdev notifier chain.
1202  *
1203  *	Calling this function on an active interface is a nop. On a failure
1204  *	a negative errno code is returned.
1205  */
1206 int dev_open(struct net_device *dev)
1207 {
1208 	int ret;
1209 
1210 	/*
1211 	 *	Is it already up?
1212 	 */
1213 	if (dev->flags & IFF_UP)
1214 		return 0;
1215 
1216 	/*
1217 	 *	Open device
1218 	 */
1219 	ret = __dev_open(dev);
1220 	if (ret < 0)
1221 		return ret;
1222 
1223 	/*
1224 	 *	... and announce new interface.
1225 	 */
1226 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1227 	call_netdevice_notifiers(NETDEV_UP, dev);
1228 
1229 	return ret;
1230 }
1231 EXPORT_SYMBOL(dev_open);
1232 
1233 static int __dev_close(struct net_device *dev)
1234 {
1235 	const struct net_device_ops *ops = dev->netdev_ops;
1236 
1237 	ASSERT_RTNL();
1238 	might_sleep();
1239 
1240 	/*
1241 	 *	Tell people we are going down, so that they can
1242 	 *	prepare to death, when device is still operating.
1243 	 */
1244 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1245 
1246 	clear_bit(__LINK_STATE_START, &dev->state);
1247 
1248 	/* Synchronize to scheduled poll. We cannot touch poll list,
1249 	 * it can be even on different cpu. So just clear netif_running().
1250 	 *
1251 	 * dev->stop() will invoke napi_disable() on all of it's
1252 	 * napi_struct instances on this device.
1253 	 */
1254 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1255 
1256 	dev_deactivate(dev);
1257 
1258 	/*
1259 	 *	Call the device specific close. This cannot fail.
1260 	 *	Only if device is UP
1261 	 *
1262 	 *	We allow it to be called even after a DETACH hot-plug
1263 	 *	event.
1264 	 */
1265 	if (ops->ndo_stop)
1266 		ops->ndo_stop(dev);
1267 
1268 	/*
1269 	 *	Device is now down.
1270 	 */
1271 
1272 	dev->flags &= ~IFF_UP;
1273 
1274 	/*
1275 	 *	Shutdown NET_DMA
1276 	 */
1277 	net_dmaengine_put();
1278 
1279 	return 0;
1280 }
1281 
1282 /**
1283  *	dev_close - shutdown an interface.
1284  *	@dev: device to shutdown
1285  *
1286  *	This function moves an active device into down state. A
1287  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1288  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1289  *	chain.
1290  */
1291 int dev_close(struct net_device *dev)
1292 {
1293 	if (!(dev->flags & IFF_UP))
1294 		return 0;
1295 
1296 	__dev_close(dev);
1297 
1298 	/*
1299 	 * Tell people we are down
1300 	 */
1301 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1302 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1303 
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL(dev_close);
1307 
1308 
1309 /**
1310  *	dev_disable_lro - disable Large Receive Offload on a device
1311  *	@dev: device
1312  *
1313  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1314  *	called under RTNL.  This is needed if received packets may be
1315  *	forwarded to another interface.
1316  */
1317 void dev_disable_lro(struct net_device *dev)
1318 {
1319 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1320 	    dev->ethtool_ops->set_flags) {
1321 		u32 flags = dev->ethtool_ops->get_flags(dev);
1322 		if (flags & ETH_FLAG_LRO) {
1323 			flags &= ~ETH_FLAG_LRO;
1324 			dev->ethtool_ops->set_flags(dev, flags);
1325 		}
1326 	}
1327 	WARN_ON(dev->features & NETIF_F_LRO);
1328 }
1329 EXPORT_SYMBOL(dev_disable_lro);
1330 
1331 
1332 static int dev_boot_phase = 1;
1333 
1334 /*
1335  *	Device change register/unregister. These are not inline or static
1336  *	as we export them to the world.
1337  */
1338 
1339 /**
1340  *	register_netdevice_notifier - register a network notifier block
1341  *	@nb: notifier
1342  *
1343  *	Register a notifier to be called when network device events occur.
1344  *	The notifier passed is linked into the kernel structures and must
1345  *	not be reused until it has been unregistered. A negative errno code
1346  *	is returned on a failure.
1347  *
1348  * 	When registered all registration and up events are replayed
1349  *	to the new notifier to allow device to have a race free
1350  *	view of the network device list.
1351  */
1352 
1353 int register_netdevice_notifier(struct notifier_block *nb)
1354 {
1355 	struct net_device *dev;
1356 	struct net_device *last;
1357 	struct net *net;
1358 	int err;
1359 
1360 	rtnl_lock();
1361 	err = raw_notifier_chain_register(&netdev_chain, nb);
1362 	if (err)
1363 		goto unlock;
1364 	if (dev_boot_phase)
1365 		goto unlock;
1366 	for_each_net(net) {
1367 		for_each_netdev(net, dev) {
1368 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1369 			err = notifier_to_errno(err);
1370 			if (err)
1371 				goto rollback;
1372 
1373 			if (!(dev->flags & IFF_UP))
1374 				continue;
1375 
1376 			nb->notifier_call(nb, NETDEV_UP, dev);
1377 		}
1378 	}
1379 
1380 unlock:
1381 	rtnl_unlock();
1382 	return err;
1383 
1384 rollback:
1385 	last = dev;
1386 	for_each_net(net) {
1387 		for_each_netdev(net, dev) {
1388 			if (dev == last)
1389 				break;
1390 
1391 			if (dev->flags & IFF_UP) {
1392 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1393 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1394 			}
1395 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1396 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1397 		}
1398 	}
1399 
1400 	raw_notifier_chain_unregister(&netdev_chain, nb);
1401 	goto unlock;
1402 }
1403 EXPORT_SYMBOL(register_netdevice_notifier);
1404 
1405 /**
1406  *	unregister_netdevice_notifier - unregister a network notifier block
1407  *	@nb: notifier
1408  *
1409  *	Unregister a notifier previously registered by
1410  *	register_netdevice_notifier(). The notifier is unlinked into the
1411  *	kernel structures and may then be reused. A negative errno code
1412  *	is returned on a failure.
1413  */
1414 
1415 int unregister_netdevice_notifier(struct notifier_block *nb)
1416 {
1417 	int err;
1418 
1419 	rtnl_lock();
1420 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1421 	rtnl_unlock();
1422 	return err;
1423 }
1424 EXPORT_SYMBOL(unregister_netdevice_notifier);
1425 
1426 /**
1427  *	call_netdevice_notifiers - call all network notifier blocks
1428  *      @val: value passed unmodified to notifier function
1429  *      @dev: net_device pointer passed unmodified to notifier function
1430  *
1431  *	Call all network notifier blocks.  Parameters and return value
1432  *	are as for raw_notifier_call_chain().
1433  */
1434 
1435 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1436 {
1437 	ASSERT_RTNL();
1438 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1439 }
1440 
1441 /* When > 0 there are consumers of rx skb time stamps */
1442 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1443 
1444 void net_enable_timestamp(void)
1445 {
1446 	atomic_inc(&netstamp_needed);
1447 }
1448 EXPORT_SYMBOL(net_enable_timestamp);
1449 
1450 void net_disable_timestamp(void)
1451 {
1452 	atomic_dec(&netstamp_needed);
1453 }
1454 EXPORT_SYMBOL(net_disable_timestamp);
1455 
1456 static inline void net_timestamp_set(struct sk_buff *skb)
1457 {
1458 	if (atomic_read(&netstamp_needed))
1459 		__net_timestamp(skb);
1460 	else
1461 		skb->tstamp.tv64 = 0;
1462 }
1463 
1464 static inline void net_timestamp_check(struct sk_buff *skb)
1465 {
1466 	if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1467 		__net_timestamp(skb);
1468 }
1469 
1470 /**
1471  * dev_forward_skb - loopback an skb to another netif
1472  *
1473  * @dev: destination network device
1474  * @skb: buffer to forward
1475  *
1476  * return values:
1477  *	NET_RX_SUCCESS	(no congestion)
1478  *	NET_RX_DROP     (packet was dropped, but freed)
1479  *
1480  * dev_forward_skb can be used for injecting an skb from the
1481  * start_xmit function of one device into the receive queue
1482  * of another device.
1483  *
1484  * The receiving device may be in another namespace, so
1485  * we have to clear all information in the skb that could
1486  * impact namespace isolation.
1487  */
1488 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1489 {
1490 	skb_orphan(skb);
1491 
1492 	if (!(dev->flags & IFF_UP) ||
1493 	    (skb->len > (dev->mtu + dev->hard_header_len))) {
1494 		kfree_skb(skb);
1495 		return NET_RX_DROP;
1496 	}
1497 	skb_set_dev(skb, dev);
1498 	skb->tstamp.tv64 = 0;
1499 	skb->pkt_type = PACKET_HOST;
1500 	skb->protocol = eth_type_trans(skb, dev);
1501 	return netif_rx(skb);
1502 }
1503 EXPORT_SYMBOL_GPL(dev_forward_skb);
1504 
1505 /*
1506  *	Support routine. Sends outgoing frames to any network
1507  *	taps currently in use.
1508  */
1509 
1510 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1511 {
1512 	struct packet_type *ptype;
1513 
1514 #ifdef CONFIG_NET_CLS_ACT
1515 	if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1516 		net_timestamp_set(skb);
1517 #else
1518 	net_timestamp_set(skb);
1519 #endif
1520 
1521 	rcu_read_lock();
1522 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1523 		/* Never send packets back to the socket
1524 		 * they originated from - MvS ([email protected])
1525 		 */
1526 		if ((ptype->dev == dev || !ptype->dev) &&
1527 		    (ptype->af_packet_priv == NULL ||
1528 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1529 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1530 			if (!skb2)
1531 				break;
1532 
1533 			/* skb->nh should be correctly
1534 			   set by sender, so that the second statement is
1535 			   just protection against buggy protocols.
1536 			 */
1537 			skb_reset_mac_header(skb2);
1538 
1539 			if (skb_network_header(skb2) < skb2->data ||
1540 			    skb2->network_header > skb2->tail) {
1541 				if (net_ratelimit())
1542 					printk(KERN_CRIT "protocol %04x is "
1543 					       "buggy, dev %s\n",
1544 					       skb2->protocol, dev->name);
1545 				skb_reset_network_header(skb2);
1546 			}
1547 
1548 			skb2->transport_header = skb2->network_header;
1549 			skb2->pkt_type = PACKET_OUTGOING;
1550 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1551 		}
1552 	}
1553 	rcu_read_unlock();
1554 }
1555 
1556 /*
1557  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1558  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1559  */
1560 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1561 {
1562 	unsigned int real_num = dev->real_num_tx_queues;
1563 
1564 	if (unlikely(txq > dev->num_tx_queues))
1565 		;
1566 	else if (txq > real_num)
1567 		dev->real_num_tx_queues = txq;
1568 	else if (txq < real_num) {
1569 		dev->real_num_tx_queues = txq;
1570 		qdisc_reset_all_tx_gt(dev, txq);
1571 	}
1572 }
1573 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1574 
1575 static inline void __netif_reschedule(struct Qdisc *q)
1576 {
1577 	struct softnet_data *sd;
1578 	unsigned long flags;
1579 
1580 	local_irq_save(flags);
1581 	sd = &__get_cpu_var(softnet_data);
1582 	q->next_sched = NULL;
1583 	*sd->output_queue_tailp = q;
1584 	sd->output_queue_tailp = &q->next_sched;
1585 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1586 	local_irq_restore(flags);
1587 }
1588 
1589 void __netif_schedule(struct Qdisc *q)
1590 {
1591 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1592 		__netif_reschedule(q);
1593 }
1594 EXPORT_SYMBOL(__netif_schedule);
1595 
1596 void dev_kfree_skb_irq(struct sk_buff *skb)
1597 {
1598 	if (atomic_dec_and_test(&skb->users)) {
1599 		struct softnet_data *sd;
1600 		unsigned long flags;
1601 
1602 		local_irq_save(flags);
1603 		sd = &__get_cpu_var(softnet_data);
1604 		skb->next = sd->completion_queue;
1605 		sd->completion_queue = skb;
1606 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1607 		local_irq_restore(flags);
1608 	}
1609 }
1610 EXPORT_SYMBOL(dev_kfree_skb_irq);
1611 
1612 void dev_kfree_skb_any(struct sk_buff *skb)
1613 {
1614 	if (in_irq() || irqs_disabled())
1615 		dev_kfree_skb_irq(skb);
1616 	else
1617 		dev_kfree_skb(skb);
1618 }
1619 EXPORT_SYMBOL(dev_kfree_skb_any);
1620 
1621 
1622 /**
1623  * netif_device_detach - mark device as removed
1624  * @dev: network device
1625  *
1626  * Mark device as removed from system and therefore no longer available.
1627  */
1628 void netif_device_detach(struct net_device *dev)
1629 {
1630 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1631 	    netif_running(dev)) {
1632 		netif_tx_stop_all_queues(dev);
1633 	}
1634 }
1635 EXPORT_SYMBOL(netif_device_detach);
1636 
1637 /**
1638  * netif_device_attach - mark device as attached
1639  * @dev: network device
1640  *
1641  * Mark device as attached from system and restart if needed.
1642  */
1643 void netif_device_attach(struct net_device *dev)
1644 {
1645 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1646 	    netif_running(dev)) {
1647 		netif_tx_wake_all_queues(dev);
1648 		__netdev_watchdog_up(dev);
1649 	}
1650 }
1651 EXPORT_SYMBOL(netif_device_attach);
1652 
1653 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1654 {
1655 	return ((features & NETIF_F_GEN_CSUM) ||
1656 		((features & NETIF_F_IP_CSUM) &&
1657 		 protocol == htons(ETH_P_IP)) ||
1658 		((features & NETIF_F_IPV6_CSUM) &&
1659 		 protocol == htons(ETH_P_IPV6)) ||
1660 		((features & NETIF_F_FCOE_CRC) &&
1661 		 protocol == htons(ETH_P_FCOE)));
1662 }
1663 
1664 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1665 {
1666 	if (can_checksum_protocol(dev->features, skb->protocol))
1667 		return true;
1668 
1669 	if (skb->protocol == htons(ETH_P_8021Q)) {
1670 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1671 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1672 					  veh->h_vlan_encapsulated_proto))
1673 			return true;
1674 	}
1675 
1676 	return false;
1677 }
1678 
1679 /**
1680  * skb_dev_set -- assign a new device to a buffer
1681  * @skb: buffer for the new device
1682  * @dev: network device
1683  *
1684  * If an skb is owned by a device already, we have to reset
1685  * all data private to the namespace a device belongs to
1686  * before assigning it a new device.
1687  */
1688 #ifdef CONFIG_NET_NS
1689 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1690 {
1691 	skb_dst_drop(skb);
1692 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1693 		secpath_reset(skb);
1694 		nf_reset(skb);
1695 		skb_init_secmark(skb);
1696 		skb->mark = 0;
1697 		skb->priority = 0;
1698 		skb->nf_trace = 0;
1699 		skb->ipvs_property = 0;
1700 #ifdef CONFIG_NET_SCHED
1701 		skb->tc_index = 0;
1702 #endif
1703 	}
1704 	skb->dev = dev;
1705 }
1706 EXPORT_SYMBOL(skb_set_dev);
1707 #endif /* CONFIG_NET_NS */
1708 
1709 /*
1710  * Invalidate hardware checksum when packet is to be mangled, and
1711  * complete checksum manually on outgoing path.
1712  */
1713 int skb_checksum_help(struct sk_buff *skb)
1714 {
1715 	__wsum csum;
1716 	int ret = 0, offset;
1717 
1718 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1719 		goto out_set_summed;
1720 
1721 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1722 		/* Let GSO fix up the checksum. */
1723 		goto out_set_summed;
1724 	}
1725 
1726 	offset = skb->csum_start - skb_headroom(skb);
1727 	BUG_ON(offset >= skb_headlen(skb));
1728 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1729 
1730 	offset += skb->csum_offset;
1731 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1732 
1733 	if (skb_cloned(skb) &&
1734 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1735 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1736 		if (ret)
1737 			goto out;
1738 	}
1739 
1740 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1741 out_set_summed:
1742 	skb->ip_summed = CHECKSUM_NONE;
1743 out:
1744 	return ret;
1745 }
1746 EXPORT_SYMBOL(skb_checksum_help);
1747 
1748 /**
1749  *	skb_gso_segment - Perform segmentation on skb.
1750  *	@skb: buffer to segment
1751  *	@features: features for the output path (see dev->features)
1752  *
1753  *	This function segments the given skb and returns a list of segments.
1754  *
1755  *	It may return NULL if the skb requires no segmentation.  This is
1756  *	only possible when GSO is used for verifying header integrity.
1757  */
1758 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1759 {
1760 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1761 	struct packet_type *ptype;
1762 	__be16 type = skb->protocol;
1763 	int err;
1764 
1765 	skb_reset_mac_header(skb);
1766 	skb->mac_len = skb->network_header - skb->mac_header;
1767 	__skb_pull(skb, skb->mac_len);
1768 
1769 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1770 		struct net_device *dev = skb->dev;
1771 		struct ethtool_drvinfo info = {};
1772 
1773 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1774 			dev->ethtool_ops->get_drvinfo(dev, &info);
1775 
1776 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1777 			"ip_summed=%d",
1778 		     info.driver, dev ? dev->features : 0L,
1779 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1780 		     skb->len, skb->data_len, skb->ip_summed);
1781 
1782 		if (skb_header_cloned(skb) &&
1783 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1784 			return ERR_PTR(err);
1785 	}
1786 
1787 	rcu_read_lock();
1788 	list_for_each_entry_rcu(ptype,
1789 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1790 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1791 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1792 				err = ptype->gso_send_check(skb);
1793 				segs = ERR_PTR(err);
1794 				if (err || skb_gso_ok(skb, features))
1795 					break;
1796 				__skb_push(skb, (skb->data -
1797 						 skb_network_header(skb)));
1798 			}
1799 			segs = ptype->gso_segment(skb, features);
1800 			break;
1801 		}
1802 	}
1803 	rcu_read_unlock();
1804 
1805 	__skb_push(skb, skb->data - skb_mac_header(skb));
1806 
1807 	return segs;
1808 }
1809 EXPORT_SYMBOL(skb_gso_segment);
1810 
1811 /* Take action when hardware reception checksum errors are detected. */
1812 #ifdef CONFIG_BUG
1813 void netdev_rx_csum_fault(struct net_device *dev)
1814 {
1815 	if (net_ratelimit()) {
1816 		printk(KERN_ERR "%s: hw csum failure.\n",
1817 			dev ? dev->name : "<unknown>");
1818 		dump_stack();
1819 	}
1820 }
1821 EXPORT_SYMBOL(netdev_rx_csum_fault);
1822 #endif
1823 
1824 /* Actually, we should eliminate this check as soon as we know, that:
1825  * 1. IOMMU is present and allows to map all the memory.
1826  * 2. No high memory really exists on this machine.
1827  */
1828 
1829 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1830 {
1831 #ifdef CONFIG_HIGHMEM
1832 	int i;
1833 	if (!(dev->features & NETIF_F_HIGHDMA)) {
1834 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1835 			if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1836 				return 1;
1837 	}
1838 
1839 	if (PCI_DMA_BUS_IS_PHYS) {
1840 		struct device *pdev = dev->dev.parent;
1841 
1842 		if (!pdev)
1843 			return 0;
1844 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1845 			dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1846 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1847 				return 1;
1848 		}
1849 	}
1850 #endif
1851 	return 0;
1852 }
1853 
1854 struct dev_gso_cb {
1855 	void (*destructor)(struct sk_buff *skb);
1856 };
1857 
1858 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1859 
1860 static void dev_gso_skb_destructor(struct sk_buff *skb)
1861 {
1862 	struct dev_gso_cb *cb;
1863 
1864 	do {
1865 		struct sk_buff *nskb = skb->next;
1866 
1867 		skb->next = nskb->next;
1868 		nskb->next = NULL;
1869 		kfree_skb(nskb);
1870 	} while (skb->next);
1871 
1872 	cb = DEV_GSO_CB(skb);
1873 	if (cb->destructor)
1874 		cb->destructor(skb);
1875 }
1876 
1877 /**
1878  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1879  *	@skb: buffer to segment
1880  *
1881  *	This function segments the given skb and stores the list of segments
1882  *	in skb->next.
1883  */
1884 static int dev_gso_segment(struct sk_buff *skb)
1885 {
1886 	struct net_device *dev = skb->dev;
1887 	struct sk_buff *segs;
1888 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1889 					 NETIF_F_SG : 0);
1890 
1891 	segs = skb_gso_segment(skb, features);
1892 
1893 	/* Verifying header integrity only. */
1894 	if (!segs)
1895 		return 0;
1896 
1897 	if (IS_ERR(segs))
1898 		return PTR_ERR(segs);
1899 
1900 	skb->next = segs;
1901 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1902 	skb->destructor = dev_gso_skb_destructor;
1903 
1904 	return 0;
1905 }
1906 
1907 /*
1908  * Try to orphan skb early, right before transmission by the device.
1909  * We cannot orphan skb if tx timestamp is requested, since
1910  * drivers need to call skb_tstamp_tx() to send the timestamp.
1911  */
1912 static inline void skb_orphan_try(struct sk_buff *skb)
1913 {
1914 	struct sock *sk = skb->sk;
1915 
1916 	if (sk && !skb_tx(skb)->flags) {
1917 		/* skb_tx_hash() wont be able to get sk.
1918 		 * We copy sk_hash into skb->rxhash
1919 		 */
1920 		if (!skb->rxhash)
1921 			skb->rxhash = sk->sk_hash;
1922 		skb_orphan(skb);
1923 	}
1924 }
1925 
1926 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1927 			struct netdev_queue *txq)
1928 {
1929 	const struct net_device_ops *ops = dev->netdev_ops;
1930 	int rc = NETDEV_TX_OK;
1931 
1932 	if (likely(!skb->next)) {
1933 		if (!list_empty(&ptype_all))
1934 			dev_queue_xmit_nit(skb, dev);
1935 
1936 		/*
1937 		 * If device doesnt need skb->dst, release it right now while
1938 		 * its hot in this cpu cache
1939 		 */
1940 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1941 			skb_dst_drop(skb);
1942 
1943 		skb_orphan_try(skb);
1944 
1945 		if (netif_needs_gso(dev, skb)) {
1946 			if (unlikely(dev_gso_segment(skb)))
1947 				goto out_kfree_skb;
1948 			if (skb->next)
1949 				goto gso;
1950 		}
1951 
1952 		rc = ops->ndo_start_xmit(skb, dev);
1953 		if (rc == NETDEV_TX_OK)
1954 			txq_trans_update(txq);
1955 		return rc;
1956 	}
1957 
1958 gso:
1959 	do {
1960 		struct sk_buff *nskb = skb->next;
1961 
1962 		skb->next = nskb->next;
1963 		nskb->next = NULL;
1964 
1965 		/*
1966 		 * If device doesnt need nskb->dst, release it right now while
1967 		 * its hot in this cpu cache
1968 		 */
1969 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1970 			skb_dst_drop(nskb);
1971 
1972 		rc = ops->ndo_start_xmit(nskb, dev);
1973 		if (unlikely(rc != NETDEV_TX_OK)) {
1974 			if (rc & ~NETDEV_TX_MASK)
1975 				goto out_kfree_gso_skb;
1976 			nskb->next = skb->next;
1977 			skb->next = nskb;
1978 			return rc;
1979 		}
1980 		txq_trans_update(txq);
1981 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1982 			return NETDEV_TX_BUSY;
1983 	} while (skb->next);
1984 
1985 out_kfree_gso_skb:
1986 	if (likely(skb->next == NULL))
1987 		skb->destructor = DEV_GSO_CB(skb)->destructor;
1988 out_kfree_skb:
1989 	kfree_skb(skb);
1990 	return rc;
1991 }
1992 
1993 static u32 hashrnd __read_mostly;
1994 
1995 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
1996 {
1997 	u32 hash;
1998 
1999 	if (skb_rx_queue_recorded(skb)) {
2000 		hash = skb_get_rx_queue(skb);
2001 		while (unlikely(hash >= dev->real_num_tx_queues))
2002 			hash -= dev->real_num_tx_queues;
2003 		return hash;
2004 	}
2005 
2006 	if (skb->sk && skb->sk->sk_hash)
2007 		hash = skb->sk->sk_hash;
2008 	else
2009 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2010 	hash = jhash_1word(hash, hashrnd);
2011 
2012 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2013 }
2014 EXPORT_SYMBOL(skb_tx_hash);
2015 
2016 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2017 {
2018 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2019 		if (net_ratelimit()) {
2020 			pr_warning("%s selects TX queue %d, but "
2021 				"real number of TX queues is %d\n",
2022 				dev->name, queue_index, dev->real_num_tx_queues);
2023 		}
2024 		return 0;
2025 	}
2026 	return queue_index;
2027 }
2028 
2029 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2030 					struct sk_buff *skb)
2031 {
2032 	int queue_index;
2033 	struct sock *sk = skb->sk;
2034 
2035 	queue_index = sk_tx_queue_get(sk);
2036 	if (queue_index < 0) {
2037 		const struct net_device_ops *ops = dev->netdev_ops;
2038 
2039 		if (ops->ndo_select_queue) {
2040 			queue_index = ops->ndo_select_queue(dev, skb);
2041 			queue_index = dev_cap_txqueue(dev, queue_index);
2042 		} else {
2043 			queue_index = 0;
2044 			if (dev->real_num_tx_queues > 1)
2045 				queue_index = skb_tx_hash(dev, skb);
2046 
2047 			if (sk) {
2048 				struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2049 
2050 				if (dst && skb_dst(skb) == dst)
2051 					sk_tx_queue_set(sk, queue_index);
2052 			}
2053 		}
2054 	}
2055 
2056 	skb_set_queue_mapping(skb, queue_index);
2057 	return netdev_get_tx_queue(dev, queue_index);
2058 }
2059 
2060 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2061 				 struct net_device *dev,
2062 				 struct netdev_queue *txq)
2063 {
2064 	spinlock_t *root_lock = qdisc_lock(q);
2065 	int rc;
2066 
2067 	spin_lock(root_lock);
2068 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2069 		kfree_skb(skb);
2070 		rc = NET_XMIT_DROP;
2071 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2072 		   !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2073 		/*
2074 		 * This is a work-conserving queue; there are no old skbs
2075 		 * waiting to be sent out; and the qdisc is not running -
2076 		 * xmit the skb directly.
2077 		 */
2078 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2079 			skb_dst_force(skb);
2080 		__qdisc_update_bstats(q, skb->len);
2081 		if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2082 			__qdisc_run(q);
2083 		else
2084 			clear_bit(__QDISC_STATE_RUNNING, &q->state);
2085 
2086 		rc = NET_XMIT_SUCCESS;
2087 	} else {
2088 		skb_dst_force(skb);
2089 		rc = qdisc_enqueue_root(skb, q);
2090 		qdisc_run(q);
2091 	}
2092 	spin_unlock(root_lock);
2093 
2094 	return rc;
2095 }
2096 
2097 /*
2098  * Returns true if either:
2099  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2100  *	2. skb is fragmented and the device does not support SG, or if
2101  *	   at least one of fragments is in highmem and device does not
2102  *	   support DMA from it.
2103  */
2104 static inline int skb_needs_linearize(struct sk_buff *skb,
2105 				      struct net_device *dev)
2106 {
2107 	return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2108 	       (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2109 					      illegal_highdma(dev, skb)));
2110 }
2111 
2112 /**
2113  *	dev_queue_xmit - transmit a buffer
2114  *	@skb: buffer to transmit
2115  *
2116  *	Queue a buffer for transmission to a network device. The caller must
2117  *	have set the device and priority and built the buffer before calling
2118  *	this function. The function can be called from an interrupt.
2119  *
2120  *	A negative errno code is returned on a failure. A success does not
2121  *	guarantee the frame will be transmitted as it may be dropped due
2122  *	to congestion or traffic shaping.
2123  *
2124  * -----------------------------------------------------------------------------------
2125  *      I notice this method can also return errors from the queue disciplines,
2126  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2127  *      be positive.
2128  *
2129  *      Regardless of the return value, the skb is consumed, so it is currently
2130  *      difficult to retry a send to this method.  (You can bump the ref count
2131  *      before sending to hold a reference for retry if you are careful.)
2132  *
2133  *      When calling this method, interrupts MUST be enabled.  This is because
2134  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2135  *          --BLG
2136  */
2137 int dev_queue_xmit(struct sk_buff *skb)
2138 {
2139 	struct net_device *dev = skb->dev;
2140 	struct netdev_queue *txq;
2141 	struct Qdisc *q;
2142 	int rc = -ENOMEM;
2143 
2144 	/* GSO will handle the following emulations directly. */
2145 	if (netif_needs_gso(dev, skb))
2146 		goto gso;
2147 
2148 	/* Convert a paged skb to linear, if required */
2149 	if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
2150 		goto out_kfree_skb;
2151 
2152 	/* If packet is not checksummed and device does not support
2153 	 * checksumming for this protocol, complete checksumming here.
2154 	 */
2155 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2156 		skb_set_transport_header(skb, skb->csum_start -
2157 					      skb_headroom(skb));
2158 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2159 			goto out_kfree_skb;
2160 	}
2161 
2162 gso:
2163 	/* Disable soft irqs for various locks below. Also
2164 	 * stops preemption for RCU.
2165 	 */
2166 	rcu_read_lock_bh();
2167 
2168 	txq = dev_pick_tx(dev, skb);
2169 	q = rcu_dereference_bh(txq->qdisc);
2170 
2171 #ifdef CONFIG_NET_CLS_ACT
2172 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2173 #endif
2174 	if (q->enqueue) {
2175 		rc = __dev_xmit_skb(skb, q, dev, txq);
2176 		goto out;
2177 	}
2178 
2179 	/* The device has no queue. Common case for software devices:
2180 	   loopback, all the sorts of tunnels...
2181 
2182 	   Really, it is unlikely that netif_tx_lock protection is necessary
2183 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2184 	   counters.)
2185 	   However, it is possible, that they rely on protection
2186 	   made by us here.
2187 
2188 	   Check this and shot the lock. It is not prone from deadlocks.
2189 	   Either shot noqueue qdisc, it is even simpler 8)
2190 	 */
2191 	if (dev->flags & IFF_UP) {
2192 		int cpu = smp_processor_id(); /* ok because BHs are off */
2193 
2194 		if (txq->xmit_lock_owner != cpu) {
2195 
2196 			HARD_TX_LOCK(dev, txq, cpu);
2197 
2198 			if (!netif_tx_queue_stopped(txq)) {
2199 				rc = dev_hard_start_xmit(skb, dev, txq);
2200 				if (dev_xmit_complete(rc)) {
2201 					HARD_TX_UNLOCK(dev, txq);
2202 					goto out;
2203 				}
2204 			}
2205 			HARD_TX_UNLOCK(dev, txq);
2206 			if (net_ratelimit())
2207 				printk(KERN_CRIT "Virtual device %s asks to "
2208 				       "queue packet!\n", dev->name);
2209 		} else {
2210 			/* Recursion is detected! It is possible,
2211 			 * unfortunately */
2212 			if (net_ratelimit())
2213 				printk(KERN_CRIT "Dead loop on virtual device "
2214 				       "%s, fix it urgently!\n", dev->name);
2215 		}
2216 	}
2217 
2218 	rc = -ENETDOWN;
2219 	rcu_read_unlock_bh();
2220 
2221 out_kfree_skb:
2222 	kfree_skb(skb);
2223 	return rc;
2224 out:
2225 	rcu_read_unlock_bh();
2226 	return rc;
2227 }
2228 EXPORT_SYMBOL(dev_queue_xmit);
2229 
2230 
2231 /*=======================================================================
2232 			Receiver routines
2233   =======================================================================*/
2234 
2235 int netdev_max_backlog __read_mostly = 1000;
2236 int netdev_tstamp_prequeue __read_mostly = 1;
2237 int netdev_budget __read_mostly = 300;
2238 int weight_p __read_mostly = 64;            /* old backlog weight */
2239 
2240 /* Called with irq disabled */
2241 static inline void ____napi_schedule(struct softnet_data *sd,
2242 				     struct napi_struct *napi)
2243 {
2244 	list_add_tail(&napi->poll_list, &sd->poll_list);
2245 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2246 }
2247 
2248 #ifdef CONFIG_RPS
2249 
2250 /* One global table that all flow-based protocols share. */
2251 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2252 EXPORT_SYMBOL(rps_sock_flow_table);
2253 
2254 /*
2255  * get_rps_cpu is called from netif_receive_skb and returns the target
2256  * CPU from the RPS map of the receiving queue for a given skb.
2257  * rcu_read_lock must be held on entry.
2258  */
2259 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2260 		       struct rps_dev_flow **rflowp)
2261 {
2262 	struct ipv6hdr *ip6;
2263 	struct iphdr *ip;
2264 	struct netdev_rx_queue *rxqueue;
2265 	struct rps_map *map;
2266 	struct rps_dev_flow_table *flow_table;
2267 	struct rps_sock_flow_table *sock_flow_table;
2268 	int cpu = -1;
2269 	u8 ip_proto;
2270 	u16 tcpu;
2271 	u32 addr1, addr2, ihl;
2272 	union {
2273 		u32 v32;
2274 		u16 v16[2];
2275 	} ports;
2276 
2277 	if (skb_rx_queue_recorded(skb)) {
2278 		u16 index = skb_get_rx_queue(skb);
2279 		if (unlikely(index >= dev->num_rx_queues)) {
2280 			WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2281 				"on queue %u, but number of RX queues is %u\n",
2282 				dev->name, index, dev->num_rx_queues);
2283 			goto done;
2284 		}
2285 		rxqueue = dev->_rx + index;
2286 	} else
2287 		rxqueue = dev->_rx;
2288 
2289 	if (!rxqueue->rps_map && !rxqueue->rps_flow_table)
2290 		goto done;
2291 
2292 	if (skb->rxhash)
2293 		goto got_hash; /* Skip hash computation on packet header */
2294 
2295 	switch (skb->protocol) {
2296 	case __constant_htons(ETH_P_IP):
2297 		if (!pskb_may_pull(skb, sizeof(*ip)))
2298 			goto done;
2299 
2300 		ip = (struct iphdr *) skb->data;
2301 		ip_proto = ip->protocol;
2302 		addr1 = (__force u32) ip->saddr;
2303 		addr2 = (__force u32) ip->daddr;
2304 		ihl = ip->ihl;
2305 		break;
2306 	case __constant_htons(ETH_P_IPV6):
2307 		if (!pskb_may_pull(skb, sizeof(*ip6)))
2308 			goto done;
2309 
2310 		ip6 = (struct ipv6hdr *) skb->data;
2311 		ip_proto = ip6->nexthdr;
2312 		addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2313 		addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2314 		ihl = (40 >> 2);
2315 		break;
2316 	default:
2317 		goto done;
2318 	}
2319 	switch (ip_proto) {
2320 	case IPPROTO_TCP:
2321 	case IPPROTO_UDP:
2322 	case IPPROTO_DCCP:
2323 	case IPPROTO_ESP:
2324 	case IPPROTO_AH:
2325 	case IPPROTO_SCTP:
2326 	case IPPROTO_UDPLITE:
2327 		if (pskb_may_pull(skb, (ihl * 4) + 4)) {
2328 			ports.v32 = * (__force u32 *) (skb->data + (ihl * 4));
2329 			if (ports.v16[1] < ports.v16[0])
2330 				swap(ports.v16[0], ports.v16[1]);
2331 			break;
2332 		}
2333 	default:
2334 		ports.v32 = 0;
2335 		break;
2336 	}
2337 
2338 	/* get a consistent hash (same value on both flow directions) */
2339 	if (addr2 < addr1)
2340 		swap(addr1, addr2);
2341 	skb->rxhash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2342 	if (!skb->rxhash)
2343 		skb->rxhash = 1;
2344 
2345 got_hash:
2346 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2347 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2348 	if (flow_table && sock_flow_table) {
2349 		u16 next_cpu;
2350 		struct rps_dev_flow *rflow;
2351 
2352 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2353 		tcpu = rflow->cpu;
2354 
2355 		next_cpu = sock_flow_table->ents[skb->rxhash &
2356 		    sock_flow_table->mask];
2357 
2358 		/*
2359 		 * If the desired CPU (where last recvmsg was done) is
2360 		 * different from current CPU (one in the rx-queue flow
2361 		 * table entry), switch if one of the following holds:
2362 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2363 		 *   - Current CPU is offline.
2364 		 *   - The current CPU's queue tail has advanced beyond the
2365 		 *     last packet that was enqueued using this table entry.
2366 		 *     This guarantees that all previous packets for the flow
2367 		 *     have been dequeued, thus preserving in order delivery.
2368 		 */
2369 		if (unlikely(tcpu != next_cpu) &&
2370 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2371 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2372 		      rflow->last_qtail)) >= 0)) {
2373 			tcpu = rflow->cpu = next_cpu;
2374 			if (tcpu != RPS_NO_CPU)
2375 				rflow->last_qtail = per_cpu(softnet_data,
2376 				    tcpu).input_queue_head;
2377 		}
2378 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2379 			*rflowp = rflow;
2380 			cpu = tcpu;
2381 			goto done;
2382 		}
2383 	}
2384 
2385 	map = rcu_dereference(rxqueue->rps_map);
2386 	if (map) {
2387 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2388 
2389 		if (cpu_online(tcpu)) {
2390 			cpu = tcpu;
2391 			goto done;
2392 		}
2393 	}
2394 
2395 done:
2396 	return cpu;
2397 }
2398 
2399 /* Called from hardirq (IPI) context */
2400 static void rps_trigger_softirq(void *data)
2401 {
2402 	struct softnet_data *sd = data;
2403 
2404 	____napi_schedule(sd, &sd->backlog);
2405 	sd->received_rps++;
2406 }
2407 
2408 #endif /* CONFIG_RPS */
2409 
2410 /*
2411  * Check if this softnet_data structure is another cpu one
2412  * If yes, queue it to our IPI list and return 1
2413  * If no, return 0
2414  */
2415 static int rps_ipi_queued(struct softnet_data *sd)
2416 {
2417 #ifdef CONFIG_RPS
2418 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2419 
2420 	if (sd != mysd) {
2421 		sd->rps_ipi_next = mysd->rps_ipi_list;
2422 		mysd->rps_ipi_list = sd;
2423 
2424 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2425 		return 1;
2426 	}
2427 #endif /* CONFIG_RPS */
2428 	return 0;
2429 }
2430 
2431 /*
2432  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2433  * queue (may be a remote CPU queue).
2434  */
2435 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2436 			      unsigned int *qtail)
2437 {
2438 	struct softnet_data *sd;
2439 	unsigned long flags;
2440 
2441 	sd = &per_cpu(softnet_data, cpu);
2442 
2443 	local_irq_save(flags);
2444 
2445 	rps_lock(sd);
2446 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2447 		if (skb_queue_len(&sd->input_pkt_queue)) {
2448 enqueue:
2449 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2450 			input_queue_tail_incr_save(sd, qtail);
2451 			rps_unlock(sd);
2452 			local_irq_restore(flags);
2453 			return NET_RX_SUCCESS;
2454 		}
2455 
2456 		/* Schedule NAPI for backlog device
2457 		 * We can use non atomic operation since we own the queue lock
2458 		 */
2459 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2460 			if (!rps_ipi_queued(sd))
2461 				____napi_schedule(sd, &sd->backlog);
2462 		}
2463 		goto enqueue;
2464 	}
2465 
2466 	sd->dropped++;
2467 	rps_unlock(sd);
2468 
2469 	local_irq_restore(flags);
2470 
2471 	kfree_skb(skb);
2472 	return NET_RX_DROP;
2473 }
2474 
2475 /**
2476  *	netif_rx	-	post buffer to the network code
2477  *	@skb: buffer to post
2478  *
2479  *	This function receives a packet from a device driver and queues it for
2480  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2481  *	may be dropped during processing for congestion control or by the
2482  *	protocol layers.
2483  *
2484  *	return values:
2485  *	NET_RX_SUCCESS	(no congestion)
2486  *	NET_RX_DROP     (packet was dropped)
2487  *
2488  */
2489 
2490 int netif_rx(struct sk_buff *skb)
2491 {
2492 	int ret;
2493 
2494 	/* if netpoll wants it, pretend we never saw it */
2495 	if (netpoll_rx(skb))
2496 		return NET_RX_DROP;
2497 
2498 	if (netdev_tstamp_prequeue)
2499 		net_timestamp_check(skb);
2500 
2501 #ifdef CONFIG_RPS
2502 	{
2503 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2504 		int cpu;
2505 
2506 		rcu_read_lock();
2507 
2508 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2509 		if (cpu < 0)
2510 			cpu = smp_processor_id();
2511 
2512 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2513 
2514 		rcu_read_unlock();
2515 	}
2516 #else
2517 	{
2518 		unsigned int qtail;
2519 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2520 		put_cpu();
2521 	}
2522 #endif
2523 	return ret;
2524 }
2525 EXPORT_SYMBOL(netif_rx);
2526 
2527 int netif_rx_ni(struct sk_buff *skb)
2528 {
2529 	int err;
2530 
2531 	preempt_disable();
2532 	err = netif_rx(skb);
2533 	if (local_softirq_pending())
2534 		do_softirq();
2535 	preempt_enable();
2536 
2537 	return err;
2538 }
2539 EXPORT_SYMBOL(netif_rx_ni);
2540 
2541 static void net_tx_action(struct softirq_action *h)
2542 {
2543 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2544 
2545 	if (sd->completion_queue) {
2546 		struct sk_buff *clist;
2547 
2548 		local_irq_disable();
2549 		clist = sd->completion_queue;
2550 		sd->completion_queue = NULL;
2551 		local_irq_enable();
2552 
2553 		while (clist) {
2554 			struct sk_buff *skb = clist;
2555 			clist = clist->next;
2556 
2557 			WARN_ON(atomic_read(&skb->users));
2558 			__kfree_skb(skb);
2559 		}
2560 	}
2561 
2562 	if (sd->output_queue) {
2563 		struct Qdisc *head;
2564 
2565 		local_irq_disable();
2566 		head = sd->output_queue;
2567 		sd->output_queue = NULL;
2568 		sd->output_queue_tailp = &sd->output_queue;
2569 		local_irq_enable();
2570 
2571 		while (head) {
2572 			struct Qdisc *q = head;
2573 			spinlock_t *root_lock;
2574 
2575 			head = head->next_sched;
2576 
2577 			root_lock = qdisc_lock(q);
2578 			if (spin_trylock(root_lock)) {
2579 				smp_mb__before_clear_bit();
2580 				clear_bit(__QDISC_STATE_SCHED,
2581 					  &q->state);
2582 				qdisc_run(q);
2583 				spin_unlock(root_lock);
2584 			} else {
2585 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2586 					      &q->state)) {
2587 					__netif_reschedule(q);
2588 				} else {
2589 					smp_mb__before_clear_bit();
2590 					clear_bit(__QDISC_STATE_SCHED,
2591 						  &q->state);
2592 				}
2593 			}
2594 		}
2595 	}
2596 }
2597 
2598 static inline int deliver_skb(struct sk_buff *skb,
2599 			      struct packet_type *pt_prev,
2600 			      struct net_device *orig_dev)
2601 {
2602 	atomic_inc(&skb->users);
2603 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2604 }
2605 
2606 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2607 
2608 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2609 /* This hook is defined here for ATM LANE */
2610 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2611 			     unsigned char *addr) __read_mostly;
2612 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2613 #endif
2614 
2615 /*
2616  * If bridge module is loaded call bridging hook.
2617  *  returns NULL if packet was consumed.
2618  */
2619 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2620 					struct sk_buff *skb) __read_mostly;
2621 EXPORT_SYMBOL_GPL(br_handle_frame_hook);
2622 
2623 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2624 					    struct packet_type **pt_prev, int *ret,
2625 					    struct net_device *orig_dev)
2626 {
2627 	struct net_bridge_port *port;
2628 
2629 	if (skb->pkt_type == PACKET_LOOPBACK ||
2630 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2631 		return skb;
2632 
2633 	if (*pt_prev) {
2634 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2635 		*pt_prev = NULL;
2636 	}
2637 
2638 	return br_handle_frame_hook(port, skb);
2639 }
2640 #else
2641 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2642 #endif
2643 
2644 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2645 struct sk_buff *(*macvlan_handle_frame_hook)(struct macvlan_port *p,
2646 					     struct sk_buff *skb) __read_mostly;
2647 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2648 
2649 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2650 					     struct packet_type **pt_prev,
2651 					     int *ret,
2652 					     struct net_device *orig_dev)
2653 {
2654 	struct macvlan_port *port;
2655 
2656 	port = rcu_dereference(skb->dev->macvlan_port);
2657 	if (!port)
2658 		return skb;
2659 
2660 	if (*pt_prev) {
2661 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2662 		*pt_prev = NULL;
2663 	}
2664 	return macvlan_handle_frame_hook(port, skb);
2665 }
2666 #else
2667 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2668 #endif
2669 
2670 #ifdef CONFIG_NET_CLS_ACT
2671 /* TODO: Maybe we should just force sch_ingress to be compiled in
2672  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2673  * a compare and 2 stores extra right now if we dont have it on
2674  * but have CONFIG_NET_CLS_ACT
2675  * NOTE: This doesnt stop any functionality; if you dont have
2676  * the ingress scheduler, you just cant add policies on ingress.
2677  *
2678  */
2679 static int ing_filter(struct sk_buff *skb)
2680 {
2681 	struct net_device *dev = skb->dev;
2682 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2683 	struct netdev_queue *rxq;
2684 	int result = TC_ACT_OK;
2685 	struct Qdisc *q;
2686 
2687 	if (MAX_RED_LOOP < ttl++) {
2688 		printk(KERN_WARNING
2689 		       "Redir loop detected Dropping packet (%d->%d)\n",
2690 		       skb->skb_iif, dev->ifindex);
2691 		return TC_ACT_SHOT;
2692 	}
2693 
2694 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2695 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2696 
2697 	rxq = &dev->rx_queue;
2698 
2699 	q = rxq->qdisc;
2700 	if (q != &noop_qdisc) {
2701 		spin_lock(qdisc_lock(q));
2702 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2703 			result = qdisc_enqueue_root(skb, q);
2704 		spin_unlock(qdisc_lock(q));
2705 	}
2706 
2707 	return result;
2708 }
2709 
2710 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2711 					 struct packet_type **pt_prev,
2712 					 int *ret, struct net_device *orig_dev)
2713 {
2714 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2715 		goto out;
2716 
2717 	if (*pt_prev) {
2718 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2719 		*pt_prev = NULL;
2720 	} else {
2721 		/* Huh? Why does turning on AF_PACKET affect this? */
2722 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2723 	}
2724 
2725 	switch (ing_filter(skb)) {
2726 	case TC_ACT_SHOT:
2727 	case TC_ACT_STOLEN:
2728 		kfree_skb(skb);
2729 		return NULL;
2730 	}
2731 
2732 out:
2733 	skb->tc_verd = 0;
2734 	return skb;
2735 }
2736 #endif
2737 
2738 /*
2739  * 	netif_nit_deliver - deliver received packets to network taps
2740  * 	@skb: buffer
2741  *
2742  * 	This function is used to deliver incoming packets to network
2743  * 	taps. It should be used when the normal netif_receive_skb path
2744  * 	is bypassed, for example because of VLAN acceleration.
2745  */
2746 void netif_nit_deliver(struct sk_buff *skb)
2747 {
2748 	struct packet_type *ptype;
2749 
2750 	if (list_empty(&ptype_all))
2751 		return;
2752 
2753 	skb_reset_network_header(skb);
2754 	skb_reset_transport_header(skb);
2755 	skb->mac_len = skb->network_header - skb->mac_header;
2756 
2757 	rcu_read_lock();
2758 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2759 		if (!ptype->dev || ptype->dev == skb->dev)
2760 			deliver_skb(skb, ptype, skb->dev);
2761 	}
2762 	rcu_read_unlock();
2763 }
2764 
2765 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2766 					      struct net_device *master)
2767 {
2768 	if (skb->pkt_type == PACKET_HOST) {
2769 		u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2770 
2771 		memcpy(dest, master->dev_addr, ETH_ALEN);
2772 	}
2773 }
2774 
2775 /* On bonding slaves other than the currently active slave, suppress
2776  * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2777  * ARP on active-backup slaves with arp_validate enabled.
2778  */
2779 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2780 {
2781 	struct net_device *dev = skb->dev;
2782 
2783 	if (master->priv_flags & IFF_MASTER_ARPMON)
2784 		dev->last_rx = jiffies;
2785 
2786 	if ((master->priv_flags & IFF_MASTER_ALB) && master->br_port) {
2787 		/* Do address unmangle. The local destination address
2788 		 * will be always the one master has. Provides the right
2789 		 * functionality in a bridge.
2790 		 */
2791 		skb_bond_set_mac_by_master(skb, master);
2792 	}
2793 
2794 	if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2795 		if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2796 		    skb->protocol == __cpu_to_be16(ETH_P_ARP))
2797 			return 0;
2798 
2799 		if (master->priv_flags & IFF_MASTER_ALB) {
2800 			if (skb->pkt_type != PACKET_BROADCAST &&
2801 			    skb->pkt_type != PACKET_MULTICAST)
2802 				return 0;
2803 		}
2804 		if (master->priv_flags & IFF_MASTER_8023AD &&
2805 		    skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2806 			return 0;
2807 
2808 		return 1;
2809 	}
2810 	return 0;
2811 }
2812 EXPORT_SYMBOL(__skb_bond_should_drop);
2813 
2814 static int __netif_receive_skb(struct sk_buff *skb)
2815 {
2816 	struct packet_type *ptype, *pt_prev;
2817 	struct net_device *orig_dev;
2818 	struct net_device *master;
2819 	struct net_device *null_or_orig;
2820 	struct net_device *orig_or_bond;
2821 	int ret = NET_RX_DROP;
2822 	__be16 type;
2823 
2824 	if (!netdev_tstamp_prequeue)
2825 		net_timestamp_check(skb);
2826 
2827 	if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
2828 		return NET_RX_SUCCESS;
2829 
2830 	/* if we've gotten here through NAPI, check netpoll */
2831 	if (netpoll_receive_skb(skb))
2832 		return NET_RX_DROP;
2833 
2834 	if (!skb->skb_iif)
2835 		skb->skb_iif = skb->dev->ifindex;
2836 
2837 	/*
2838 	 * bonding note: skbs received on inactive slaves should only
2839 	 * be delivered to pkt handlers that are exact matches.  Also
2840 	 * the deliver_no_wcard flag will be set.  If packet handlers
2841 	 * are sensitive to duplicate packets these skbs will need to
2842 	 * be dropped at the handler.  The vlan accel path may have
2843 	 * already set the deliver_no_wcard flag.
2844 	 */
2845 	null_or_orig = NULL;
2846 	orig_dev = skb->dev;
2847 	master = ACCESS_ONCE(orig_dev->master);
2848 	if (skb->deliver_no_wcard)
2849 		null_or_orig = orig_dev;
2850 	else if (master) {
2851 		if (skb_bond_should_drop(skb, master)) {
2852 			skb->deliver_no_wcard = 1;
2853 			null_or_orig = orig_dev; /* deliver only exact match */
2854 		} else
2855 			skb->dev = master;
2856 	}
2857 
2858 	__get_cpu_var(softnet_data).processed++;
2859 
2860 	skb_reset_network_header(skb);
2861 	skb_reset_transport_header(skb);
2862 	skb->mac_len = skb->network_header - skb->mac_header;
2863 
2864 	pt_prev = NULL;
2865 
2866 	rcu_read_lock();
2867 
2868 #ifdef CONFIG_NET_CLS_ACT
2869 	if (skb->tc_verd & TC_NCLS) {
2870 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2871 		goto ncls;
2872 	}
2873 #endif
2874 
2875 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2876 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2877 		    ptype->dev == orig_dev) {
2878 			if (pt_prev)
2879 				ret = deliver_skb(skb, pt_prev, orig_dev);
2880 			pt_prev = ptype;
2881 		}
2882 	}
2883 
2884 #ifdef CONFIG_NET_CLS_ACT
2885 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2886 	if (!skb)
2887 		goto out;
2888 ncls:
2889 #endif
2890 
2891 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2892 	if (!skb)
2893 		goto out;
2894 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2895 	if (!skb)
2896 		goto out;
2897 
2898 	/*
2899 	 * Make sure frames received on VLAN interfaces stacked on
2900 	 * bonding interfaces still make their way to any base bonding
2901 	 * device that may have registered for a specific ptype.  The
2902 	 * handler may have to adjust skb->dev and orig_dev.
2903 	 */
2904 	orig_or_bond = orig_dev;
2905 	if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2906 	    (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2907 		orig_or_bond = vlan_dev_real_dev(skb->dev);
2908 	}
2909 
2910 	type = skb->protocol;
2911 	list_for_each_entry_rcu(ptype,
2912 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2913 		if (ptype->type == type && (ptype->dev == null_or_orig ||
2914 		     ptype->dev == skb->dev || ptype->dev == orig_dev ||
2915 		     ptype->dev == orig_or_bond)) {
2916 			if (pt_prev)
2917 				ret = deliver_skb(skb, pt_prev, orig_dev);
2918 			pt_prev = ptype;
2919 		}
2920 	}
2921 
2922 	if (pt_prev) {
2923 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2924 	} else {
2925 		kfree_skb(skb);
2926 		/* Jamal, now you will not able to escape explaining
2927 		 * me how you were going to use this. :-)
2928 		 */
2929 		ret = NET_RX_DROP;
2930 	}
2931 
2932 out:
2933 	rcu_read_unlock();
2934 	return ret;
2935 }
2936 
2937 /**
2938  *	netif_receive_skb - process receive buffer from network
2939  *	@skb: buffer to process
2940  *
2941  *	netif_receive_skb() is the main receive data processing function.
2942  *	It always succeeds. The buffer may be dropped during processing
2943  *	for congestion control or by the protocol layers.
2944  *
2945  *	This function may only be called from softirq context and interrupts
2946  *	should be enabled.
2947  *
2948  *	Return values (usually ignored):
2949  *	NET_RX_SUCCESS: no congestion
2950  *	NET_RX_DROP: packet was dropped
2951  */
2952 int netif_receive_skb(struct sk_buff *skb)
2953 {
2954 	if (netdev_tstamp_prequeue)
2955 		net_timestamp_check(skb);
2956 
2957 #ifdef CONFIG_RPS
2958 	{
2959 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2960 		int cpu, ret;
2961 
2962 		rcu_read_lock();
2963 
2964 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2965 
2966 		if (cpu >= 0) {
2967 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2968 			rcu_read_unlock();
2969 		} else {
2970 			rcu_read_unlock();
2971 			ret = __netif_receive_skb(skb);
2972 		}
2973 
2974 		return ret;
2975 	}
2976 #else
2977 	return __netif_receive_skb(skb);
2978 #endif
2979 }
2980 EXPORT_SYMBOL(netif_receive_skb);
2981 
2982 /* Network device is going away, flush any packets still pending
2983  * Called with irqs disabled.
2984  */
2985 static void flush_backlog(void *arg)
2986 {
2987 	struct net_device *dev = arg;
2988 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2989 	struct sk_buff *skb, *tmp;
2990 
2991 	rps_lock(sd);
2992 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
2993 		if (skb->dev == dev) {
2994 			__skb_unlink(skb, &sd->input_pkt_queue);
2995 			kfree_skb(skb);
2996 			input_queue_head_incr(sd);
2997 		}
2998 	}
2999 	rps_unlock(sd);
3000 
3001 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3002 		if (skb->dev == dev) {
3003 			__skb_unlink(skb, &sd->process_queue);
3004 			kfree_skb(skb);
3005 			input_queue_head_incr(sd);
3006 		}
3007 	}
3008 }
3009 
3010 static int napi_gro_complete(struct sk_buff *skb)
3011 {
3012 	struct packet_type *ptype;
3013 	__be16 type = skb->protocol;
3014 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3015 	int err = -ENOENT;
3016 
3017 	if (NAPI_GRO_CB(skb)->count == 1) {
3018 		skb_shinfo(skb)->gso_size = 0;
3019 		goto out;
3020 	}
3021 
3022 	rcu_read_lock();
3023 	list_for_each_entry_rcu(ptype, head, list) {
3024 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3025 			continue;
3026 
3027 		err = ptype->gro_complete(skb);
3028 		break;
3029 	}
3030 	rcu_read_unlock();
3031 
3032 	if (err) {
3033 		WARN_ON(&ptype->list == head);
3034 		kfree_skb(skb);
3035 		return NET_RX_SUCCESS;
3036 	}
3037 
3038 out:
3039 	return netif_receive_skb(skb);
3040 }
3041 
3042 static void napi_gro_flush(struct napi_struct *napi)
3043 {
3044 	struct sk_buff *skb, *next;
3045 
3046 	for (skb = napi->gro_list; skb; skb = next) {
3047 		next = skb->next;
3048 		skb->next = NULL;
3049 		napi_gro_complete(skb);
3050 	}
3051 
3052 	napi->gro_count = 0;
3053 	napi->gro_list = NULL;
3054 }
3055 
3056 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3057 {
3058 	struct sk_buff **pp = NULL;
3059 	struct packet_type *ptype;
3060 	__be16 type = skb->protocol;
3061 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3062 	int same_flow;
3063 	int mac_len;
3064 	enum gro_result ret;
3065 
3066 	if (!(skb->dev->features & NETIF_F_GRO))
3067 		goto normal;
3068 
3069 	if (skb_is_gso(skb) || skb_has_frags(skb))
3070 		goto normal;
3071 
3072 	rcu_read_lock();
3073 	list_for_each_entry_rcu(ptype, head, list) {
3074 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3075 			continue;
3076 
3077 		skb_set_network_header(skb, skb_gro_offset(skb));
3078 		mac_len = skb->network_header - skb->mac_header;
3079 		skb->mac_len = mac_len;
3080 		NAPI_GRO_CB(skb)->same_flow = 0;
3081 		NAPI_GRO_CB(skb)->flush = 0;
3082 		NAPI_GRO_CB(skb)->free = 0;
3083 
3084 		pp = ptype->gro_receive(&napi->gro_list, skb);
3085 		break;
3086 	}
3087 	rcu_read_unlock();
3088 
3089 	if (&ptype->list == head)
3090 		goto normal;
3091 
3092 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3093 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3094 
3095 	if (pp) {
3096 		struct sk_buff *nskb = *pp;
3097 
3098 		*pp = nskb->next;
3099 		nskb->next = NULL;
3100 		napi_gro_complete(nskb);
3101 		napi->gro_count--;
3102 	}
3103 
3104 	if (same_flow)
3105 		goto ok;
3106 
3107 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3108 		goto normal;
3109 
3110 	napi->gro_count++;
3111 	NAPI_GRO_CB(skb)->count = 1;
3112 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3113 	skb->next = napi->gro_list;
3114 	napi->gro_list = skb;
3115 	ret = GRO_HELD;
3116 
3117 pull:
3118 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3119 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3120 
3121 		BUG_ON(skb->end - skb->tail < grow);
3122 
3123 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3124 
3125 		skb->tail += grow;
3126 		skb->data_len -= grow;
3127 
3128 		skb_shinfo(skb)->frags[0].page_offset += grow;
3129 		skb_shinfo(skb)->frags[0].size -= grow;
3130 
3131 		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3132 			put_page(skb_shinfo(skb)->frags[0].page);
3133 			memmove(skb_shinfo(skb)->frags,
3134 				skb_shinfo(skb)->frags + 1,
3135 				--skb_shinfo(skb)->nr_frags);
3136 		}
3137 	}
3138 
3139 ok:
3140 	return ret;
3141 
3142 normal:
3143 	ret = GRO_NORMAL;
3144 	goto pull;
3145 }
3146 EXPORT_SYMBOL(dev_gro_receive);
3147 
3148 static gro_result_t
3149 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3150 {
3151 	struct sk_buff *p;
3152 
3153 	if (netpoll_rx_on(skb))
3154 		return GRO_NORMAL;
3155 
3156 	for (p = napi->gro_list; p; p = p->next) {
3157 		NAPI_GRO_CB(p)->same_flow =
3158 			(p->dev == skb->dev) &&
3159 			!compare_ether_header(skb_mac_header(p),
3160 					      skb_gro_mac_header(skb));
3161 		NAPI_GRO_CB(p)->flush = 0;
3162 	}
3163 
3164 	return dev_gro_receive(napi, skb);
3165 }
3166 
3167 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3168 {
3169 	switch (ret) {
3170 	case GRO_NORMAL:
3171 		if (netif_receive_skb(skb))
3172 			ret = GRO_DROP;
3173 		break;
3174 
3175 	case GRO_DROP:
3176 	case GRO_MERGED_FREE:
3177 		kfree_skb(skb);
3178 		break;
3179 
3180 	case GRO_HELD:
3181 	case GRO_MERGED:
3182 		break;
3183 	}
3184 
3185 	return ret;
3186 }
3187 EXPORT_SYMBOL(napi_skb_finish);
3188 
3189 void skb_gro_reset_offset(struct sk_buff *skb)
3190 {
3191 	NAPI_GRO_CB(skb)->data_offset = 0;
3192 	NAPI_GRO_CB(skb)->frag0 = NULL;
3193 	NAPI_GRO_CB(skb)->frag0_len = 0;
3194 
3195 	if (skb->mac_header == skb->tail &&
3196 	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3197 		NAPI_GRO_CB(skb)->frag0 =
3198 			page_address(skb_shinfo(skb)->frags[0].page) +
3199 			skb_shinfo(skb)->frags[0].page_offset;
3200 		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3201 	}
3202 }
3203 EXPORT_SYMBOL(skb_gro_reset_offset);
3204 
3205 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3206 {
3207 	skb_gro_reset_offset(skb);
3208 
3209 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3210 }
3211 EXPORT_SYMBOL(napi_gro_receive);
3212 
3213 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3214 {
3215 	__skb_pull(skb, skb_headlen(skb));
3216 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3217 
3218 	napi->skb = skb;
3219 }
3220 EXPORT_SYMBOL(napi_reuse_skb);
3221 
3222 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3223 {
3224 	struct sk_buff *skb = napi->skb;
3225 
3226 	if (!skb) {
3227 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3228 		if (skb)
3229 			napi->skb = skb;
3230 	}
3231 	return skb;
3232 }
3233 EXPORT_SYMBOL(napi_get_frags);
3234 
3235 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3236 			       gro_result_t ret)
3237 {
3238 	switch (ret) {
3239 	case GRO_NORMAL:
3240 	case GRO_HELD:
3241 		skb->protocol = eth_type_trans(skb, skb->dev);
3242 
3243 		if (ret == GRO_HELD)
3244 			skb_gro_pull(skb, -ETH_HLEN);
3245 		else if (netif_receive_skb(skb))
3246 			ret = GRO_DROP;
3247 		break;
3248 
3249 	case GRO_DROP:
3250 	case GRO_MERGED_FREE:
3251 		napi_reuse_skb(napi, skb);
3252 		break;
3253 
3254 	case GRO_MERGED:
3255 		break;
3256 	}
3257 
3258 	return ret;
3259 }
3260 EXPORT_SYMBOL(napi_frags_finish);
3261 
3262 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3263 {
3264 	struct sk_buff *skb = napi->skb;
3265 	struct ethhdr *eth;
3266 	unsigned int hlen;
3267 	unsigned int off;
3268 
3269 	napi->skb = NULL;
3270 
3271 	skb_reset_mac_header(skb);
3272 	skb_gro_reset_offset(skb);
3273 
3274 	off = skb_gro_offset(skb);
3275 	hlen = off + sizeof(*eth);
3276 	eth = skb_gro_header_fast(skb, off);
3277 	if (skb_gro_header_hard(skb, hlen)) {
3278 		eth = skb_gro_header_slow(skb, hlen, off);
3279 		if (unlikely(!eth)) {
3280 			napi_reuse_skb(napi, skb);
3281 			skb = NULL;
3282 			goto out;
3283 		}
3284 	}
3285 
3286 	skb_gro_pull(skb, sizeof(*eth));
3287 
3288 	/*
3289 	 * This works because the only protocols we care about don't require
3290 	 * special handling.  We'll fix it up properly at the end.
3291 	 */
3292 	skb->protocol = eth->h_proto;
3293 
3294 out:
3295 	return skb;
3296 }
3297 EXPORT_SYMBOL(napi_frags_skb);
3298 
3299 gro_result_t napi_gro_frags(struct napi_struct *napi)
3300 {
3301 	struct sk_buff *skb = napi_frags_skb(napi);
3302 
3303 	if (!skb)
3304 		return GRO_DROP;
3305 
3306 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3307 }
3308 EXPORT_SYMBOL(napi_gro_frags);
3309 
3310 /*
3311  * net_rps_action sends any pending IPI's for rps.
3312  * Note: called with local irq disabled, but exits with local irq enabled.
3313  */
3314 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3315 {
3316 #ifdef CONFIG_RPS
3317 	struct softnet_data *remsd = sd->rps_ipi_list;
3318 
3319 	if (remsd) {
3320 		sd->rps_ipi_list = NULL;
3321 
3322 		local_irq_enable();
3323 
3324 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3325 		while (remsd) {
3326 			struct softnet_data *next = remsd->rps_ipi_next;
3327 
3328 			if (cpu_online(remsd->cpu))
3329 				__smp_call_function_single(remsd->cpu,
3330 							   &remsd->csd, 0);
3331 			remsd = next;
3332 		}
3333 	} else
3334 #endif
3335 		local_irq_enable();
3336 }
3337 
3338 static int process_backlog(struct napi_struct *napi, int quota)
3339 {
3340 	int work = 0;
3341 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3342 
3343 #ifdef CONFIG_RPS
3344 	/* Check if we have pending ipi, its better to send them now,
3345 	 * not waiting net_rx_action() end.
3346 	 */
3347 	if (sd->rps_ipi_list) {
3348 		local_irq_disable();
3349 		net_rps_action_and_irq_enable(sd);
3350 	}
3351 #endif
3352 	napi->weight = weight_p;
3353 	local_irq_disable();
3354 	while (work < quota) {
3355 		struct sk_buff *skb;
3356 		unsigned int qlen;
3357 
3358 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3359 			local_irq_enable();
3360 			__netif_receive_skb(skb);
3361 			local_irq_disable();
3362 			input_queue_head_incr(sd);
3363 			if (++work >= quota) {
3364 				local_irq_enable();
3365 				return work;
3366 			}
3367 		}
3368 
3369 		rps_lock(sd);
3370 		qlen = skb_queue_len(&sd->input_pkt_queue);
3371 		if (qlen)
3372 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3373 						   &sd->process_queue);
3374 
3375 		if (qlen < quota - work) {
3376 			/*
3377 			 * Inline a custom version of __napi_complete().
3378 			 * only current cpu owns and manipulates this napi,
3379 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3380 			 * we can use a plain write instead of clear_bit(),
3381 			 * and we dont need an smp_mb() memory barrier.
3382 			 */
3383 			list_del(&napi->poll_list);
3384 			napi->state = 0;
3385 
3386 			quota = work + qlen;
3387 		}
3388 		rps_unlock(sd);
3389 	}
3390 	local_irq_enable();
3391 
3392 	return work;
3393 }
3394 
3395 /**
3396  * __napi_schedule - schedule for receive
3397  * @n: entry to schedule
3398  *
3399  * The entry's receive function will be scheduled to run
3400  */
3401 void __napi_schedule(struct napi_struct *n)
3402 {
3403 	unsigned long flags;
3404 
3405 	local_irq_save(flags);
3406 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3407 	local_irq_restore(flags);
3408 }
3409 EXPORT_SYMBOL(__napi_schedule);
3410 
3411 void __napi_complete(struct napi_struct *n)
3412 {
3413 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3414 	BUG_ON(n->gro_list);
3415 
3416 	list_del(&n->poll_list);
3417 	smp_mb__before_clear_bit();
3418 	clear_bit(NAPI_STATE_SCHED, &n->state);
3419 }
3420 EXPORT_SYMBOL(__napi_complete);
3421 
3422 void napi_complete(struct napi_struct *n)
3423 {
3424 	unsigned long flags;
3425 
3426 	/*
3427 	 * don't let napi dequeue from the cpu poll list
3428 	 * just in case its running on a different cpu
3429 	 */
3430 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3431 		return;
3432 
3433 	napi_gro_flush(n);
3434 	local_irq_save(flags);
3435 	__napi_complete(n);
3436 	local_irq_restore(flags);
3437 }
3438 EXPORT_SYMBOL(napi_complete);
3439 
3440 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3441 		    int (*poll)(struct napi_struct *, int), int weight)
3442 {
3443 	INIT_LIST_HEAD(&napi->poll_list);
3444 	napi->gro_count = 0;
3445 	napi->gro_list = NULL;
3446 	napi->skb = NULL;
3447 	napi->poll = poll;
3448 	napi->weight = weight;
3449 	list_add(&napi->dev_list, &dev->napi_list);
3450 	napi->dev = dev;
3451 #ifdef CONFIG_NETPOLL
3452 	spin_lock_init(&napi->poll_lock);
3453 	napi->poll_owner = -1;
3454 #endif
3455 	set_bit(NAPI_STATE_SCHED, &napi->state);
3456 }
3457 EXPORT_SYMBOL(netif_napi_add);
3458 
3459 void netif_napi_del(struct napi_struct *napi)
3460 {
3461 	struct sk_buff *skb, *next;
3462 
3463 	list_del_init(&napi->dev_list);
3464 	napi_free_frags(napi);
3465 
3466 	for (skb = napi->gro_list; skb; skb = next) {
3467 		next = skb->next;
3468 		skb->next = NULL;
3469 		kfree_skb(skb);
3470 	}
3471 
3472 	napi->gro_list = NULL;
3473 	napi->gro_count = 0;
3474 }
3475 EXPORT_SYMBOL(netif_napi_del);
3476 
3477 static void net_rx_action(struct softirq_action *h)
3478 {
3479 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3480 	unsigned long time_limit = jiffies + 2;
3481 	int budget = netdev_budget;
3482 	void *have;
3483 
3484 	local_irq_disable();
3485 
3486 	while (!list_empty(&sd->poll_list)) {
3487 		struct napi_struct *n;
3488 		int work, weight;
3489 
3490 		/* If softirq window is exhuasted then punt.
3491 		 * Allow this to run for 2 jiffies since which will allow
3492 		 * an average latency of 1.5/HZ.
3493 		 */
3494 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3495 			goto softnet_break;
3496 
3497 		local_irq_enable();
3498 
3499 		/* Even though interrupts have been re-enabled, this
3500 		 * access is safe because interrupts can only add new
3501 		 * entries to the tail of this list, and only ->poll()
3502 		 * calls can remove this head entry from the list.
3503 		 */
3504 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3505 
3506 		have = netpoll_poll_lock(n);
3507 
3508 		weight = n->weight;
3509 
3510 		/* This NAPI_STATE_SCHED test is for avoiding a race
3511 		 * with netpoll's poll_napi().  Only the entity which
3512 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3513 		 * actually make the ->poll() call.  Therefore we avoid
3514 		 * accidently calling ->poll() when NAPI is not scheduled.
3515 		 */
3516 		work = 0;
3517 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3518 			work = n->poll(n, weight);
3519 			trace_napi_poll(n);
3520 		}
3521 
3522 		WARN_ON_ONCE(work > weight);
3523 
3524 		budget -= work;
3525 
3526 		local_irq_disable();
3527 
3528 		/* Drivers must not modify the NAPI state if they
3529 		 * consume the entire weight.  In such cases this code
3530 		 * still "owns" the NAPI instance and therefore can
3531 		 * move the instance around on the list at-will.
3532 		 */
3533 		if (unlikely(work == weight)) {
3534 			if (unlikely(napi_disable_pending(n))) {
3535 				local_irq_enable();
3536 				napi_complete(n);
3537 				local_irq_disable();
3538 			} else
3539 				list_move_tail(&n->poll_list, &sd->poll_list);
3540 		}
3541 
3542 		netpoll_poll_unlock(have);
3543 	}
3544 out:
3545 	net_rps_action_and_irq_enable(sd);
3546 
3547 #ifdef CONFIG_NET_DMA
3548 	/*
3549 	 * There may not be any more sk_buffs coming right now, so push
3550 	 * any pending DMA copies to hardware
3551 	 */
3552 	dma_issue_pending_all();
3553 #endif
3554 
3555 	return;
3556 
3557 softnet_break:
3558 	sd->time_squeeze++;
3559 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3560 	goto out;
3561 }
3562 
3563 static gifconf_func_t *gifconf_list[NPROTO];
3564 
3565 /**
3566  *	register_gifconf	-	register a SIOCGIF handler
3567  *	@family: Address family
3568  *	@gifconf: Function handler
3569  *
3570  *	Register protocol dependent address dumping routines. The handler
3571  *	that is passed must not be freed or reused until it has been replaced
3572  *	by another handler.
3573  */
3574 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3575 {
3576 	if (family >= NPROTO)
3577 		return -EINVAL;
3578 	gifconf_list[family] = gifconf;
3579 	return 0;
3580 }
3581 EXPORT_SYMBOL(register_gifconf);
3582 
3583 
3584 /*
3585  *	Map an interface index to its name (SIOCGIFNAME)
3586  */
3587 
3588 /*
3589  *	We need this ioctl for efficient implementation of the
3590  *	if_indextoname() function required by the IPv6 API.  Without
3591  *	it, we would have to search all the interfaces to find a
3592  *	match.  --pb
3593  */
3594 
3595 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3596 {
3597 	struct net_device *dev;
3598 	struct ifreq ifr;
3599 
3600 	/*
3601 	 *	Fetch the caller's info block.
3602 	 */
3603 
3604 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3605 		return -EFAULT;
3606 
3607 	rcu_read_lock();
3608 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3609 	if (!dev) {
3610 		rcu_read_unlock();
3611 		return -ENODEV;
3612 	}
3613 
3614 	strcpy(ifr.ifr_name, dev->name);
3615 	rcu_read_unlock();
3616 
3617 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3618 		return -EFAULT;
3619 	return 0;
3620 }
3621 
3622 /*
3623  *	Perform a SIOCGIFCONF call. This structure will change
3624  *	size eventually, and there is nothing I can do about it.
3625  *	Thus we will need a 'compatibility mode'.
3626  */
3627 
3628 static int dev_ifconf(struct net *net, char __user *arg)
3629 {
3630 	struct ifconf ifc;
3631 	struct net_device *dev;
3632 	char __user *pos;
3633 	int len;
3634 	int total;
3635 	int i;
3636 
3637 	/*
3638 	 *	Fetch the caller's info block.
3639 	 */
3640 
3641 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3642 		return -EFAULT;
3643 
3644 	pos = ifc.ifc_buf;
3645 	len = ifc.ifc_len;
3646 
3647 	/*
3648 	 *	Loop over the interfaces, and write an info block for each.
3649 	 */
3650 
3651 	total = 0;
3652 	for_each_netdev(net, dev) {
3653 		for (i = 0; i < NPROTO; i++) {
3654 			if (gifconf_list[i]) {
3655 				int done;
3656 				if (!pos)
3657 					done = gifconf_list[i](dev, NULL, 0);
3658 				else
3659 					done = gifconf_list[i](dev, pos + total,
3660 							       len - total);
3661 				if (done < 0)
3662 					return -EFAULT;
3663 				total += done;
3664 			}
3665 		}
3666 	}
3667 
3668 	/*
3669 	 *	All done.  Write the updated control block back to the caller.
3670 	 */
3671 	ifc.ifc_len = total;
3672 
3673 	/*
3674 	 * 	Both BSD and Solaris return 0 here, so we do too.
3675 	 */
3676 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3677 }
3678 
3679 #ifdef CONFIG_PROC_FS
3680 /*
3681  *	This is invoked by the /proc filesystem handler to display a device
3682  *	in detail.
3683  */
3684 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3685 	__acquires(RCU)
3686 {
3687 	struct net *net = seq_file_net(seq);
3688 	loff_t off;
3689 	struct net_device *dev;
3690 
3691 	rcu_read_lock();
3692 	if (!*pos)
3693 		return SEQ_START_TOKEN;
3694 
3695 	off = 1;
3696 	for_each_netdev_rcu(net, dev)
3697 		if (off++ == *pos)
3698 			return dev;
3699 
3700 	return NULL;
3701 }
3702 
3703 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3704 {
3705 	struct net_device *dev = (v == SEQ_START_TOKEN) ?
3706 				  first_net_device(seq_file_net(seq)) :
3707 				  next_net_device((struct net_device *)v);
3708 
3709 	++*pos;
3710 	return rcu_dereference(dev);
3711 }
3712 
3713 void dev_seq_stop(struct seq_file *seq, void *v)
3714 	__releases(RCU)
3715 {
3716 	rcu_read_unlock();
3717 }
3718 
3719 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3720 {
3721 	const struct net_device_stats *stats = dev_get_stats(dev);
3722 
3723 	seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
3724 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3725 		   dev->name, stats->rx_bytes, stats->rx_packets,
3726 		   stats->rx_errors,
3727 		   stats->rx_dropped + stats->rx_missed_errors,
3728 		   stats->rx_fifo_errors,
3729 		   stats->rx_length_errors + stats->rx_over_errors +
3730 		    stats->rx_crc_errors + stats->rx_frame_errors,
3731 		   stats->rx_compressed, stats->multicast,
3732 		   stats->tx_bytes, stats->tx_packets,
3733 		   stats->tx_errors, stats->tx_dropped,
3734 		   stats->tx_fifo_errors, stats->collisions,
3735 		   stats->tx_carrier_errors +
3736 		    stats->tx_aborted_errors +
3737 		    stats->tx_window_errors +
3738 		    stats->tx_heartbeat_errors,
3739 		   stats->tx_compressed);
3740 }
3741 
3742 /*
3743  *	Called from the PROCfs module. This now uses the new arbitrary sized
3744  *	/proc/net interface to create /proc/net/dev
3745  */
3746 static int dev_seq_show(struct seq_file *seq, void *v)
3747 {
3748 	if (v == SEQ_START_TOKEN)
3749 		seq_puts(seq, "Inter-|   Receive                            "
3750 			      "                    |  Transmit\n"
3751 			      " face |bytes    packets errs drop fifo frame "
3752 			      "compressed multicast|bytes    packets errs "
3753 			      "drop fifo colls carrier compressed\n");
3754 	else
3755 		dev_seq_printf_stats(seq, v);
3756 	return 0;
3757 }
3758 
3759 static struct softnet_data *softnet_get_online(loff_t *pos)
3760 {
3761 	struct softnet_data *sd = NULL;
3762 
3763 	while (*pos < nr_cpu_ids)
3764 		if (cpu_online(*pos)) {
3765 			sd = &per_cpu(softnet_data, *pos);
3766 			break;
3767 		} else
3768 			++*pos;
3769 	return sd;
3770 }
3771 
3772 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3773 {
3774 	return softnet_get_online(pos);
3775 }
3776 
3777 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3778 {
3779 	++*pos;
3780 	return softnet_get_online(pos);
3781 }
3782 
3783 static void softnet_seq_stop(struct seq_file *seq, void *v)
3784 {
3785 }
3786 
3787 static int softnet_seq_show(struct seq_file *seq, void *v)
3788 {
3789 	struct softnet_data *sd = v;
3790 
3791 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3792 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
3793 		   0, 0, 0, 0, /* was fastroute */
3794 		   sd->cpu_collision, sd->received_rps);
3795 	return 0;
3796 }
3797 
3798 static const struct seq_operations dev_seq_ops = {
3799 	.start = dev_seq_start,
3800 	.next  = dev_seq_next,
3801 	.stop  = dev_seq_stop,
3802 	.show  = dev_seq_show,
3803 };
3804 
3805 static int dev_seq_open(struct inode *inode, struct file *file)
3806 {
3807 	return seq_open_net(inode, file, &dev_seq_ops,
3808 			    sizeof(struct seq_net_private));
3809 }
3810 
3811 static const struct file_operations dev_seq_fops = {
3812 	.owner	 = THIS_MODULE,
3813 	.open    = dev_seq_open,
3814 	.read    = seq_read,
3815 	.llseek  = seq_lseek,
3816 	.release = seq_release_net,
3817 };
3818 
3819 static const struct seq_operations softnet_seq_ops = {
3820 	.start = softnet_seq_start,
3821 	.next  = softnet_seq_next,
3822 	.stop  = softnet_seq_stop,
3823 	.show  = softnet_seq_show,
3824 };
3825 
3826 static int softnet_seq_open(struct inode *inode, struct file *file)
3827 {
3828 	return seq_open(file, &softnet_seq_ops);
3829 }
3830 
3831 static const struct file_operations softnet_seq_fops = {
3832 	.owner	 = THIS_MODULE,
3833 	.open    = softnet_seq_open,
3834 	.read    = seq_read,
3835 	.llseek  = seq_lseek,
3836 	.release = seq_release,
3837 };
3838 
3839 static void *ptype_get_idx(loff_t pos)
3840 {
3841 	struct packet_type *pt = NULL;
3842 	loff_t i = 0;
3843 	int t;
3844 
3845 	list_for_each_entry_rcu(pt, &ptype_all, list) {
3846 		if (i == pos)
3847 			return pt;
3848 		++i;
3849 	}
3850 
3851 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3852 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3853 			if (i == pos)
3854 				return pt;
3855 			++i;
3856 		}
3857 	}
3858 	return NULL;
3859 }
3860 
3861 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3862 	__acquires(RCU)
3863 {
3864 	rcu_read_lock();
3865 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3866 }
3867 
3868 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3869 {
3870 	struct packet_type *pt;
3871 	struct list_head *nxt;
3872 	int hash;
3873 
3874 	++*pos;
3875 	if (v == SEQ_START_TOKEN)
3876 		return ptype_get_idx(0);
3877 
3878 	pt = v;
3879 	nxt = pt->list.next;
3880 	if (pt->type == htons(ETH_P_ALL)) {
3881 		if (nxt != &ptype_all)
3882 			goto found;
3883 		hash = 0;
3884 		nxt = ptype_base[0].next;
3885 	} else
3886 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3887 
3888 	while (nxt == &ptype_base[hash]) {
3889 		if (++hash >= PTYPE_HASH_SIZE)
3890 			return NULL;
3891 		nxt = ptype_base[hash].next;
3892 	}
3893 found:
3894 	return list_entry(nxt, struct packet_type, list);
3895 }
3896 
3897 static void ptype_seq_stop(struct seq_file *seq, void *v)
3898 	__releases(RCU)
3899 {
3900 	rcu_read_unlock();
3901 }
3902 
3903 static int ptype_seq_show(struct seq_file *seq, void *v)
3904 {
3905 	struct packet_type *pt = v;
3906 
3907 	if (v == SEQ_START_TOKEN)
3908 		seq_puts(seq, "Type Device      Function\n");
3909 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3910 		if (pt->type == htons(ETH_P_ALL))
3911 			seq_puts(seq, "ALL ");
3912 		else
3913 			seq_printf(seq, "%04x", ntohs(pt->type));
3914 
3915 		seq_printf(seq, " %-8s %pF\n",
3916 			   pt->dev ? pt->dev->name : "", pt->func);
3917 	}
3918 
3919 	return 0;
3920 }
3921 
3922 static const struct seq_operations ptype_seq_ops = {
3923 	.start = ptype_seq_start,
3924 	.next  = ptype_seq_next,
3925 	.stop  = ptype_seq_stop,
3926 	.show  = ptype_seq_show,
3927 };
3928 
3929 static int ptype_seq_open(struct inode *inode, struct file *file)
3930 {
3931 	return seq_open_net(inode, file, &ptype_seq_ops,
3932 			sizeof(struct seq_net_private));
3933 }
3934 
3935 static const struct file_operations ptype_seq_fops = {
3936 	.owner	 = THIS_MODULE,
3937 	.open    = ptype_seq_open,
3938 	.read    = seq_read,
3939 	.llseek  = seq_lseek,
3940 	.release = seq_release_net,
3941 };
3942 
3943 
3944 static int __net_init dev_proc_net_init(struct net *net)
3945 {
3946 	int rc = -ENOMEM;
3947 
3948 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3949 		goto out;
3950 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3951 		goto out_dev;
3952 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3953 		goto out_softnet;
3954 
3955 	if (wext_proc_init(net))
3956 		goto out_ptype;
3957 	rc = 0;
3958 out:
3959 	return rc;
3960 out_ptype:
3961 	proc_net_remove(net, "ptype");
3962 out_softnet:
3963 	proc_net_remove(net, "softnet_stat");
3964 out_dev:
3965 	proc_net_remove(net, "dev");
3966 	goto out;
3967 }
3968 
3969 static void __net_exit dev_proc_net_exit(struct net *net)
3970 {
3971 	wext_proc_exit(net);
3972 
3973 	proc_net_remove(net, "ptype");
3974 	proc_net_remove(net, "softnet_stat");
3975 	proc_net_remove(net, "dev");
3976 }
3977 
3978 static struct pernet_operations __net_initdata dev_proc_ops = {
3979 	.init = dev_proc_net_init,
3980 	.exit = dev_proc_net_exit,
3981 };
3982 
3983 static int __init dev_proc_init(void)
3984 {
3985 	return register_pernet_subsys(&dev_proc_ops);
3986 }
3987 #else
3988 #define dev_proc_init() 0
3989 #endif	/* CONFIG_PROC_FS */
3990 
3991 
3992 /**
3993  *	netdev_set_master	-	set up master/slave pair
3994  *	@slave: slave device
3995  *	@master: new master device
3996  *
3997  *	Changes the master device of the slave. Pass %NULL to break the
3998  *	bonding. The caller must hold the RTNL semaphore. On a failure
3999  *	a negative errno code is returned. On success the reference counts
4000  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4001  *	function returns zero.
4002  */
4003 int netdev_set_master(struct net_device *slave, struct net_device *master)
4004 {
4005 	struct net_device *old = slave->master;
4006 
4007 	ASSERT_RTNL();
4008 
4009 	if (master) {
4010 		if (old)
4011 			return -EBUSY;
4012 		dev_hold(master);
4013 	}
4014 
4015 	slave->master = master;
4016 
4017 	if (old) {
4018 		synchronize_net();
4019 		dev_put(old);
4020 	}
4021 	if (master)
4022 		slave->flags |= IFF_SLAVE;
4023 	else
4024 		slave->flags &= ~IFF_SLAVE;
4025 
4026 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4027 	return 0;
4028 }
4029 EXPORT_SYMBOL(netdev_set_master);
4030 
4031 static void dev_change_rx_flags(struct net_device *dev, int flags)
4032 {
4033 	const struct net_device_ops *ops = dev->netdev_ops;
4034 
4035 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4036 		ops->ndo_change_rx_flags(dev, flags);
4037 }
4038 
4039 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4040 {
4041 	unsigned short old_flags = dev->flags;
4042 	uid_t uid;
4043 	gid_t gid;
4044 
4045 	ASSERT_RTNL();
4046 
4047 	dev->flags |= IFF_PROMISC;
4048 	dev->promiscuity += inc;
4049 	if (dev->promiscuity == 0) {
4050 		/*
4051 		 * Avoid overflow.
4052 		 * If inc causes overflow, untouch promisc and return error.
4053 		 */
4054 		if (inc < 0)
4055 			dev->flags &= ~IFF_PROMISC;
4056 		else {
4057 			dev->promiscuity -= inc;
4058 			printk(KERN_WARNING "%s: promiscuity touches roof, "
4059 				"set promiscuity failed, promiscuity feature "
4060 				"of device might be broken.\n", dev->name);
4061 			return -EOVERFLOW;
4062 		}
4063 	}
4064 	if (dev->flags != old_flags) {
4065 		printk(KERN_INFO "device %s %s promiscuous mode\n",
4066 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4067 							       "left");
4068 		if (audit_enabled) {
4069 			current_uid_gid(&uid, &gid);
4070 			audit_log(current->audit_context, GFP_ATOMIC,
4071 				AUDIT_ANOM_PROMISCUOUS,
4072 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4073 				dev->name, (dev->flags & IFF_PROMISC),
4074 				(old_flags & IFF_PROMISC),
4075 				audit_get_loginuid(current),
4076 				uid, gid,
4077 				audit_get_sessionid(current));
4078 		}
4079 
4080 		dev_change_rx_flags(dev, IFF_PROMISC);
4081 	}
4082 	return 0;
4083 }
4084 
4085 /**
4086  *	dev_set_promiscuity	- update promiscuity count on a device
4087  *	@dev: device
4088  *	@inc: modifier
4089  *
4090  *	Add or remove promiscuity from a device. While the count in the device
4091  *	remains above zero the interface remains promiscuous. Once it hits zero
4092  *	the device reverts back to normal filtering operation. A negative inc
4093  *	value is used to drop promiscuity on the device.
4094  *	Return 0 if successful or a negative errno code on error.
4095  */
4096 int dev_set_promiscuity(struct net_device *dev, int inc)
4097 {
4098 	unsigned short old_flags = dev->flags;
4099 	int err;
4100 
4101 	err = __dev_set_promiscuity(dev, inc);
4102 	if (err < 0)
4103 		return err;
4104 	if (dev->flags != old_flags)
4105 		dev_set_rx_mode(dev);
4106 	return err;
4107 }
4108 EXPORT_SYMBOL(dev_set_promiscuity);
4109 
4110 /**
4111  *	dev_set_allmulti	- update allmulti count on a device
4112  *	@dev: device
4113  *	@inc: modifier
4114  *
4115  *	Add or remove reception of all multicast frames to a device. While the
4116  *	count in the device remains above zero the interface remains listening
4117  *	to all interfaces. Once it hits zero the device reverts back to normal
4118  *	filtering operation. A negative @inc value is used to drop the counter
4119  *	when releasing a resource needing all multicasts.
4120  *	Return 0 if successful or a negative errno code on error.
4121  */
4122 
4123 int dev_set_allmulti(struct net_device *dev, int inc)
4124 {
4125 	unsigned short old_flags = dev->flags;
4126 
4127 	ASSERT_RTNL();
4128 
4129 	dev->flags |= IFF_ALLMULTI;
4130 	dev->allmulti += inc;
4131 	if (dev->allmulti == 0) {
4132 		/*
4133 		 * Avoid overflow.
4134 		 * If inc causes overflow, untouch allmulti and return error.
4135 		 */
4136 		if (inc < 0)
4137 			dev->flags &= ~IFF_ALLMULTI;
4138 		else {
4139 			dev->allmulti -= inc;
4140 			printk(KERN_WARNING "%s: allmulti touches roof, "
4141 				"set allmulti failed, allmulti feature of "
4142 				"device might be broken.\n", dev->name);
4143 			return -EOVERFLOW;
4144 		}
4145 	}
4146 	if (dev->flags ^ old_flags) {
4147 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4148 		dev_set_rx_mode(dev);
4149 	}
4150 	return 0;
4151 }
4152 EXPORT_SYMBOL(dev_set_allmulti);
4153 
4154 /*
4155  *	Upload unicast and multicast address lists to device and
4156  *	configure RX filtering. When the device doesn't support unicast
4157  *	filtering it is put in promiscuous mode while unicast addresses
4158  *	are present.
4159  */
4160 void __dev_set_rx_mode(struct net_device *dev)
4161 {
4162 	const struct net_device_ops *ops = dev->netdev_ops;
4163 
4164 	/* dev_open will call this function so the list will stay sane. */
4165 	if (!(dev->flags&IFF_UP))
4166 		return;
4167 
4168 	if (!netif_device_present(dev))
4169 		return;
4170 
4171 	if (ops->ndo_set_rx_mode)
4172 		ops->ndo_set_rx_mode(dev);
4173 	else {
4174 		/* Unicast addresses changes may only happen under the rtnl,
4175 		 * therefore calling __dev_set_promiscuity here is safe.
4176 		 */
4177 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4178 			__dev_set_promiscuity(dev, 1);
4179 			dev->uc_promisc = 1;
4180 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4181 			__dev_set_promiscuity(dev, -1);
4182 			dev->uc_promisc = 0;
4183 		}
4184 
4185 		if (ops->ndo_set_multicast_list)
4186 			ops->ndo_set_multicast_list(dev);
4187 	}
4188 }
4189 
4190 void dev_set_rx_mode(struct net_device *dev)
4191 {
4192 	netif_addr_lock_bh(dev);
4193 	__dev_set_rx_mode(dev);
4194 	netif_addr_unlock_bh(dev);
4195 }
4196 
4197 /**
4198  *	dev_get_flags - get flags reported to userspace
4199  *	@dev: device
4200  *
4201  *	Get the combination of flag bits exported through APIs to userspace.
4202  */
4203 unsigned dev_get_flags(const struct net_device *dev)
4204 {
4205 	unsigned flags;
4206 
4207 	flags = (dev->flags & ~(IFF_PROMISC |
4208 				IFF_ALLMULTI |
4209 				IFF_RUNNING |
4210 				IFF_LOWER_UP |
4211 				IFF_DORMANT)) |
4212 		(dev->gflags & (IFF_PROMISC |
4213 				IFF_ALLMULTI));
4214 
4215 	if (netif_running(dev)) {
4216 		if (netif_oper_up(dev))
4217 			flags |= IFF_RUNNING;
4218 		if (netif_carrier_ok(dev))
4219 			flags |= IFF_LOWER_UP;
4220 		if (netif_dormant(dev))
4221 			flags |= IFF_DORMANT;
4222 	}
4223 
4224 	return flags;
4225 }
4226 EXPORT_SYMBOL(dev_get_flags);
4227 
4228 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4229 {
4230 	int old_flags = dev->flags;
4231 	int ret;
4232 
4233 	ASSERT_RTNL();
4234 
4235 	/*
4236 	 *	Set the flags on our device.
4237 	 */
4238 
4239 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4240 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4241 			       IFF_AUTOMEDIA)) |
4242 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4243 				    IFF_ALLMULTI));
4244 
4245 	/*
4246 	 *	Load in the correct multicast list now the flags have changed.
4247 	 */
4248 
4249 	if ((old_flags ^ flags) & IFF_MULTICAST)
4250 		dev_change_rx_flags(dev, IFF_MULTICAST);
4251 
4252 	dev_set_rx_mode(dev);
4253 
4254 	/*
4255 	 *	Have we downed the interface. We handle IFF_UP ourselves
4256 	 *	according to user attempts to set it, rather than blindly
4257 	 *	setting it.
4258 	 */
4259 
4260 	ret = 0;
4261 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4262 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4263 
4264 		if (!ret)
4265 			dev_set_rx_mode(dev);
4266 	}
4267 
4268 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4269 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4270 
4271 		dev->gflags ^= IFF_PROMISC;
4272 		dev_set_promiscuity(dev, inc);
4273 	}
4274 
4275 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4276 	   is important. Some (broken) drivers set IFF_PROMISC, when
4277 	   IFF_ALLMULTI is requested not asking us and not reporting.
4278 	 */
4279 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4280 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4281 
4282 		dev->gflags ^= IFF_ALLMULTI;
4283 		dev_set_allmulti(dev, inc);
4284 	}
4285 
4286 	return ret;
4287 }
4288 
4289 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4290 {
4291 	unsigned int changes = dev->flags ^ old_flags;
4292 
4293 	if (changes & IFF_UP) {
4294 		if (dev->flags & IFF_UP)
4295 			call_netdevice_notifiers(NETDEV_UP, dev);
4296 		else
4297 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4298 	}
4299 
4300 	if (dev->flags & IFF_UP &&
4301 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4302 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4303 }
4304 
4305 /**
4306  *	dev_change_flags - change device settings
4307  *	@dev: device
4308  *	@flags: device state flags
4309  *
4310  *	Change settings on device based state flags. The flags are
4311  *	in the userspace exported format.
4312  */
4313 int dev_change_flags(struct net_device *dev, unsigned flags)
4314 {
4315 	int ret, changes;
4316 	int old_flags = dev->flags;
4317 
4318 	ret = __dev_change_flags(dev, flags);
4319 	if (ret < 0)
4320 		return ret;
4321 
4322 	changes = old_flags ^ dev->flags;
4323 	if (changes)
4324 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4325 
4326 	__dev_notify_flags(dev, old_flags);
4327 	return ret;
4328 }
4329 EXPORT_SYMBOL(dev_change_flags);
4330 
4331 /**
4332  *	dev_set_mtu - Change maximum transfer unit
4333  *	@dev: device
4334  *	@new_mtu: new transfer unit
4335  *
4336  *	Change the maximum transfer size of the network device.
4337  */
4338 int dev_set_mtu(struct net_device *dev, int new_mtu)
4339 {
4340 	const struct net_device_ops *ops = dev->netdev_ops;
4341 	int err;
4342 
4343 	if (new_mtu == dev->mtu)
4344 		return 0;
4345 
4346 	/*	MTU must be positive.	 */
4347 	if (new_mtu < 0)
4348 		return -EINVAL;
4349 
4350 	if (!netif_device_present(dev))
4351 		return -ENODEV;
4352 
4353 	err = 0;
4354 	if (ops->ndo_change_mtu)
4355 		err = ops->ndo_change_mtu(dev, new_mtu);
4356 	else
4357 		dev->mtu = new_mtu;
4358 
4359 	if (!err && dev->flags & IFF_UP)
4360 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4361 	return err;
4362 }
4363 EXPORT_SYMBOL(dev_set_mtu);
4364 
4365 /**
4366  *	dev_set_mac_address - Change Media Access Control Address
4367  *	@dev: device
4368  *	@sa: new address
4369  *
4370  *	Change the hardware (MAC) address of the device
4371  */
4372 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4373 {
4374 	const struct net_device_ops *ops = dev->netdev_ops;
4375 	int err;
4376 
4377 	if (!ops->ndo_set_mac_address)
4378 		return -EOPNOTSUPP;
4379 	if (sa->sa_family != dev->type)
4380 		return -EINVAL;
4381 	if (!netif_device_present(dev))
4382 		return -ENODEV;
4383 	err = ops->ndo_set_mac_address(dev, sa);
4384 	if (!err)
4385 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4386 	return err;
4387 }
4388 EXPORT_SYMBOL(dev_set_mac_address);
4389 
4390 /*
4391  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4392  */
4393 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4394 {
4395 	int err;
4396 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4397 
4398 	if (!dev)
4399 		return -ENODEV;
4400 
4401 	switch (cmd) {
4402 	case SIOCGIFFLAGS:	/* Get interface flags */
4403 		ifr->ifr_flags = (short) dev_get_flags(dev);
4404 		return 0;
4405 
4406 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4407 				   (currently unused) */
4408 		ifr->ifr_metric = 0;
4409 		return 0;
4410 
4411 	case SIOCGIFMTU:	/* Get the MTU of a device */
4412 		ifr->ifr_mtu = dev->mtu;
4413 		return 0;
4414 
4415 	case SIOCGIFHWADDR:
4416 		if (!dev->addr_len)
4417 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4418 		else
4419 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4420 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4421 		ifr->ifr_hwaddr.sa_family = dev->type;
4422 		return 0;
4423 
4424 	case SIOCGIFSLAVE:
4425 		err = -EINVAL;
4426 		break;
4427 
4428 	case SIOCGIFMAP:
4429 		ifr->ifr_map.mem_start = dev->mem_start;
4430 		ifr->ifr_map.mem_end   = dev->mem_end;
4431 		ifr->ifr_map.base_addr = dev->base_addr;
4432 		ifr->ifr_map.irq       = dev->irq;
4433 		ifr->ifr_map.dma       = dev->dma;
4434 		ifr->ifr_map.port      = dev->if_port;
4435 		return 0;
4436 
4437 	case SIOCGIFINDEX:
4438 		ifr->ifr_ifindex = dev->ifindex;
4439 		return 0;
4440 
4441 	case SIOCGIFTXQLEN:
4442 		ifr->ifr_qlen = dev->tx_queue_len;
4443 		return 0;
4444 
4445 	default:
4446 		/* dev_ioctl() should ensure this case
4447 		 * is never reached
4448 		 */
4449 		WARN_ON(1);
4450 		err = -EINVAL;
4451 		break;
4452 
4453 	}
4454 	return err;
4455 }
4456 
4457 /*
4458  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4459  */
4460 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4461 {
4462 	int err;
4463 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4464 	const struct net_device_ops *ops;
4465 
4466 	if (!dev)
4467 		return -ENODEV;
4468 
4469 	ops = dev->netdev_ops;
4470 
4471 	switch (cmd) {
4472 	case SIOCSIFFLAGS:	/* Set interface flags */
4473 		return dev_change_flags(dev, ifr->ifr_flags);
4474 
4475 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4476 				   (currently unused) */
4477 		return -EOPNOTSUPP;
4478 
4479 	case SIOCSIFMTU:	/* Set the MTU of a device */
4480 		return dev_set_mtu(dev, ifr->ifr_mtu);
4481 
4482 	case SIOCSIFHWADDR:
4483 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4484 
4485 	case SIOCSIFHWBROADCAST:
4486 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4487 			return -EINVAL;
4488 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4489 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4490 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4491 		return 0;
4492 
4493 	case SIOCSIFMAP:
4494 		if (ops->ndo_set_config) {
4495 			if (!netif_device_present(dev))
4496 				return -ENODEV;
4497 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4498 		}
4499 		return -EOPNOTSUPP;
4500 
4501 	case SIOCADDMULTI:
4502 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4503 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4504 			return -EINVAL;
4505 		if (!netif_device_present(dev))
4506 			return -ENODEV;
4507 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4508 
4509 	case SIOCDELMULTI:
4510 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4511 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4512 			return -EINVAL;
4513 		if (!netif_device_present(dev))
4514 			return -ENODEV;
4515 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4516 
4517 	case SIOCSIFTXQLEN:
4518 		if (ifr->ifr_qlen < 0)
4519 			return -EINVAL;
4520 		dev->tx_queue_len = ifr->ifr_qlen;
4521 		return 0;
4522 
4523 	case SIOCSIFNAME:
4524 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4525 		return dev_change_name(dev, ifr->ifr_newname);
4526 
4527 	/*
4528 	 *	Unknown or private ioctl
4529 	 */
4530 	default:
4531 		if ((cmd >= SIOCDEVPRIVATE &&
4532 		    cmd <= SIOCDEVPRIVATE + 15) ||
4533 		    cmd == SIOCBONDENSLAVE ||
4534 		    cmd == SIOCBONDRELEASE ||
4535 		    cmd == SIOCBONDSETHWADDR ||
4536 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4537 		    cmd == SIOCBONDINFOQUERY ||
4538 		    cmd == SIOCBONDCHANGEACTIVE ||
4539 		    cmd == SIOCGMIIPHY ||
4540 		    cmd == SIOCGMIIREG ||
4541 		    cmd == SIOCSMIIREG ||
4542 		    cmd == SIOCBRADDIF ||
4543 		    cmd == SIOCBRDELIF ||
4544 		    cmd == SIOCSHWTSTAMP ||
4545 		    cmd == SIOCWANDEV) {
4546 			err = -EOPNOTSUPP;
4547 			if (ops->ndo_do_ioctl) {
4548 				if (netif_device_present(dev))
4549 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4550 				else
4551 					err = -ENODEV;
4552 			}
4553 		} else
4554 			err = -EINVAL;
4555 
4556 	}
4557 	return err;
4558 }
4559 
4560 /*
4561  *	This function handles all "interface"-type I/O control requests. The actual
4562  *	'doing' part of this is dev_ifsioc above.
4563  */
4564 
4565 /**
4566  *	dev_ioctl	-	network device ioctl
4567  *	@net: the applicable net namespace
4568  *	@cmd: command to issue
4569  *	@arg: pointer to a struct ifreq in user space
4570  *
4571  *	Issue ioctl functions to devices. This is normally called by the
4572  *	user space syscall interfaces but can sometimes be useful for
4573  *	other purposes. The return value is the return from the syscall if
4574  *	positive or a negative errno code on error.
4575  */
4576 
4577 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4578 {
4579 	struct ifreq ifr;
4580 	int ret;
4581 	char *colon;
4582 
4583 	/* One special case: SIOCGIFCONF takes ifconf argument
4584 	   and requires shared lock, because it sleeps writing
4585 	   to user space.
4586 	 */
4587 
4588 	if (cmd == SIOCGIFCONF) {
4589 		rtnl_lock();
4590 		ret = dev_ifconf(net, (char __user *) arg);
4591 		rtnl_unlock();
4592 		return ret;
4593 	}
4594 	if (cmd == SIOCGIFNAME)
4595 		return dev_ifname(net, (struct ifreq __user *)arg);
4596 
4597 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4598 		return -EFAULT;
4599 
4600 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4601 
4602 	colon = strchr(ifr.ifr_name, ':');
4603 	if (colon)
4604 		*colon = 0;
4605 
4606 	/*
4607 	 *	See which interface the caller is talking about.
4608 	 */
4609 
4610 	switch (cmd) {
4611 	/*
4612 	 *	These ioctl calls:
4613 	 *	- can be done by all.
4614 	 *	- atomic and do not require locking.
4615 	 *	- return a value
4616 	 */
4617 	case SIOCGIFFLAGS:
4618 	case SIOCGIFMETRIC:
4619 	case SIOCGIFMTU:
4620 	case SIOCGIFHWADDR:
4621 	case SIOCGIFSLAVE:
4622 	case SIOCGIFMAP:
4623 	case SIOCGIFINDEX:
4624 	case SIOCGIFTXQLEN:
4625 		dev_load(net, ifr.ifr_name);
4626 		rcu_read_lock();
4627 		ret = dev_ifsioc_locked(net, &ifr, cmd);
4628 		rcu_read_unlock();
4629 		if (!ret) {
4630 			if (colon)
4631 				*colon = ':';
4632 			if (copy_to_user(arg, &ifr,
4633 					 sizeof(struct ifreq)))
4634 				ret = -EFAULT;
4635 		}
4636 		return ret;
4637 
4638 	case SIOCETHTOOL:
4639 		dev_load(net, ifr.ifr_name);
4640 		rtnl_lock();
4641 		ret = dev_ethtool(net, &ifr);
4642 		rtnl_unlock();
4643 		if (!ret) {
4644 			if (colon)
4645 				*colon = ':';
4646 			if (copy_to_user(arg, &ifr,
4647 					 sizeof(struct ifreq)))
4648 				ret = -EFAULT;
4649 		}
4650 		return ret;
4651 
4652 	/*
4653 	 *	These ioctl calls:
4654 	 *	- require superuser power.
4655 	 *	- require strict serialization.
4656 	 *	- return a value
4657 	 */
4658 	case SIOCGMIIPHY:
4659 	case SIOCGMIIREG:
4660 	case SIOCSIFNAME:
4661 		if (!capable(CAP_NET_ADMIN))
4662 			return -EPERM;
4663 		dev_load(net, ifr.ifr_name);
4664 		rtnl_lock();
4665 		ret = dev_ifsioc(net, &ifr, cmd);
4666 		rtnl_unlock();
4667 		if (!ret) {
4668 			if (colon)
4669 				*colon = ':';
4670 			if (copy_to_user(arg, &ifr,
4671 					 sizeof(struct ifreq)))
4672 				ret = -EFAULT;
4673 		}
4674 		return ret;
4675 
4676 	/*
4677 	 *	These ioctl calls:
4678 	 *	- require superuser power.
4679 	 *	- require strict serialization.
4680 	 *	- do not return a value
4681 	 */
4682 	case SIOCSIFFLAGS:
4683 	case SIOCSIFMETRIC:
4684 	case SIOCSIFMTU:
4685 	case SIOCSIFMAP:
4686 	case SIOCSIFHWADDR:
4687 	case SIOCSIFSLAVE:
4688 	case SIOCADDMULTI:
4689 	case SIOCDELMULTI:
4690 	case SIOCSIFHWBROADCAST:
4691 	case SIOCSIFTXQLEN:
4692 	case SIOCSMIIREG:
4693 	case SIOCBONDENSLAVE:
4694 	case SIOCBONDRELEASE:
4695 	case SIOCBONDSETHWADDR:
4696 	case SIOCBONDCHANGEACTIVE:
4697 	case SIOCBRADDIF:
4698 	case SIOCBRDELIF:
4699 	case SIOCSHWTSTAMP:
4700 		if (!capable(CAP_NET_ADMIN))
4701 			return -EPERM;
4702 		/* fall through */
4703 	case SIOCBONDSLAVEINFOQUERY:
4704 	case SIOCBONDINFOQUERY:
4705 		dev_load(net, ifr.ifr_name);
4706 		rtnl_lock();
4707 		ret = dev_ifsioc(net, &ifr, cmd);
4708 		rtnl_unlock();
4709 		return ret;
4710 
4711 	case SIOCGIFMEM:
4712 		/* Get the per device memory space. We can add this but
4713 		 * currently do not support it */
4714 	case SIOCSIFMEM:
4715 		/* Set the per device memory buffer space.
4716 		 * Not applicable in our case */
4717 	case SIOCSIFLINK:
4718 		return -EINVAL;
4719 
4720 	/*
4721 	 *	Unknown or private ioctl.
4722 	 */
4723 	default:
4724 		if (cmd == SIOCWANDEV ||
4725 		    (cmd >= SIOCDEVPRIVATE &&
4726 		     cmd <= SIOCDEVPRIVATE + 15)) {
4727 			dev_load(net, ifr.ifr_name);
4728 			rtnl_lock();
4729 			ret = dev_ifsioc(net, &ifr, cmd);
4730 			rtnl_unlock();
4731 			if (!ret && copy_to_user(arg, &ifr,
4732 						 sizeof(struct ifreq)))
4733 				ret = -EFAULT;
4734 			return ret;
4735 		}
4736 		/* Take care of Wireless Extensions */
4737 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4738 			return wext_handle_ioctl(net, &ifr, cmd, arg);
4739 		return -EINVAL;
4740 	}
4741 }
4742 
4743 
4744 /**
4745  *	dev_new_index	-	allocate an ifindex
4746  *	@net: the applicable net namespace
4747  *
4748  *	Returns a suitable unique value for a new device interface
4749  *	number.  The caller must hold the rtnl semaphore or the
4750  *	dev_base_lock to be sure it remains unique.
4751  */
4752 static int dev_new_index(struct net *net)
4753 {
4754 	static int ifindex;
4755 	for (;;) {
4756 		if (++ifindex <= 0)
4757 			ifindex = 1;
4758 		if (!__dev_get_by_index(net, ifindex))
4759 			return ifindex;
4760 	}
4761 }
4762 
4763 /* Delayed registration/unregisteration */
4764 static LIST_HEAD(net_todo_list);
4765 
4766 static void net_set_todo(struct net_device *dev)
4767 {
4768 	list_add_tail(&dev->todo_list, &net_todo_list);
4769 }
4770 
4771 static void rollback_registered_many(struct list_head *head)
4772 {
4773 	struct net_device *dev, *tmp;
4774 
4775 	BUG_ON(dev_boot_phase);
4776 	ASSERT_RTNL();
4777 
4778 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4779 		/* Some devices call without registering
4780 		 * for initialization unwind. Remove those
4781 		 * devices and proceed with the remaining.
4782 		 */
4783 		if (dev->reg_state == NETREG_UNINITIALIZED) {
4784 			pr_debug("unregister_netdevice: device %s/%p never "
4785 				 "was registered\n", dev->name, dev);
4786 
4787 			WARN_ON(1);
4788 			list_del(&dev->unreg_list);
4789 			continue;
4790 		}
4791 
4792 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
4793 
4794 		/* If device is running, close it first. */
4795 		dev_close(dev);
4796 
4797 		/* And unlink it from device chain. */
4798 		unlist_netdevice(dev);
4799 
4800 		dev->reg_state = NETREG_UNREGISTERING;
4801 	}
4802 
4803 	synchronize_net();
4804 
4805 	list_for_each_entry(dev, head, unreg_list) {
4806 		/* Shutdown queueing discipline. */
4807 		dev_shutdown(dev);
4808 
4809 
4810 		/* Notify protocols, that we are about to destroy
4811 		   this device. They should clean all the things.
4812 		*/
4813 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4814 
4815 		if (!dev->rtnl_link_ops ||
4816 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4817 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4818 
4819 		/*
4820 		 *	Flush the unicast and multicast chains
4821 		 */
4822 		dev_uc_flush(dev);
4823 		dev_mc_flush(dev);
4824 
4825 		if (dev->netdev_ops->ndo_uninit)
4826 			dev->netdev_ops->ndo_uninit(dev);
4827 
4828 		/* Notifier chain MUST detach us from master device. */
4829 		WARN_ON(dev->master);
4830 
4831 		/* Remove entries from kobject tree */
4832 		netdev_unregister_kobject(dev);
4833 	}
4834 
4835 	/* Process any work delayed until the end of the batch */
4836 	dev = list_first_entry(head, struct net_device, unreg_list);
4837 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4838 
4839 	synchronize_net();
4840 
4841 	list_for_each_entry(dev, head, unreg_list)
4842 		dev_put(dev);
4843 }
4844 
4845 static void rollback_registered(struct net_device *dev)
4846 {
4847 	LIST_HEAD(single);
4848 
4849 	list_add(&dev->unreg_list, &single);
4850 	rollback_registered_many(&single);
4851 }
4852 
4853 static void __netdev_init_queue_locks_one(struct net_device *dev,
4854 					  struct netdev_queue *dev_queue,
4855 					  void *_unused)
4856 {
4857 	spin_lock_init(&dev_queue->_xmit_lock);
4858 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4859 	dev_queue->xmit_lock_owner = -1;
4860 }
4861 
4862 static void netdev_init_queue_locks(struct net_device *dev)
4863 {
4864 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4865 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4866 }
4867 
4868 unsigned long netdev_fix_features(unsigned long features, const char *name)
4869 {
4870 	/* Fix illegal SG+CSUM combinations. */
4871 	if ((features & NETIF_F_SG) &&
4872 	    !(features & NETIF_F_ALL_CSUM)) {
4873 		if (name)
4874 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4875 			       "checksum feature.\n", name);
4876 		features &= ~NETIF_F_SG;
4877 	}
4878 
4879 	/* TSO requires that SG is present as well. */
4880 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4881 		if (name)
4882 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4883 			       "SG feature.\n", name);
4884 		features &= ~NETIF_F_TSO;
4885 	}
4886 
4887 	if (features & NETIF_F_UFO) {
4888 		if (!(features & NETIF_F_GEN_CSUM)) {
4889 			if (name)
4890 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4891 				       "since no NETIF_F_HW_CSUM feature.\n",
4892 				       name);
4893 			features &= ~NETIF_F_UFO;
4894 		}
4895 
4896 		if (!(features & NETIF_F_SG)) {
4897 			if (name)
4898 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4899 				       "since no NETIF_F_SG feature.\n", name);
4900 			features &= ~NETIF_F_UFO;
4901 		}
4902 	}
4903 
4904 	return features;
4905 }
4906 EXPORT_SYMBOL(netdev_fix_features);
4907 
4908 /**
4909  *	netif_stacked_transfer_operstate -	transfer operstate
4910  *	@rootdev: the root or lower level device to transfer state from
4911  *	@dev: the device to transfer operstate to
4912  *
4913  *	Transfer operational state from root to device. This is normally
4914  *	called when a stacking relationship exists between the root
4915  *	device and the device(a leaf device).
4916  */
4917 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4918 					struct net_device *dev)
4919 {
4920 	if (rootdev->operstate == IF_OPER_DORMANT)
4921 		netif_dormant_on(dev);
4922 	else
4923 		netif_dormant_off(dev);
4924 
4925 	if (netif_carrier_ok(rootdev)) {
4926 		if (!netif_carrier_ok(dev))
4927 			netif_carrier_on(dev);
4928 	} else {
4929 		if (netif_carrier_ok(dev))
4930 			netif_carrier_off(dev);
4931 	}
4932 }
4933 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4934 
4935 /**
4936  *	register_netdevice	- register a network device
4937  *	@dev: device to register
4938  *
4939  *	Take a completed network device structure and add it to the kernel
4940  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4941  *	chain. 0 is returned on success. A negative errno code is returned
4942  *	on a failure to set up the device, or if the name is a duplicate.
4943  *
4944  *	Callers must hold the rtnl semaphore. You may want
4945  *	register_netdev() instead of this.
4946  *
4947  *	BUGS:
4948  *	The locking appears insufficient to guarantee two parallel registers
4949  *	will not get the same name.
4950  */
4951 
4952 int register_netdevice(struct net_device *dev)
4953 {
4954 	int ret;
4955 	struct net *net = dev_net(dev);
4956 
4957 	BUG_ON(dev_boot_phase);
4958 	ASSERT_RTNL();
4959 
4960 	might_sleep();
4961 
4962 	/* When net_device's are persistent, this will be fatal. */
4963 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4964 	BUG_ON(!net);
4965 
4966 	spin_lock_init(&dev->addr_list_lock);
4967 	netdev_set_addr_lockdep_class(dev);
4968 	netdev_init_queue_locks(dev);
4969 
4970 	dev->iflink = -1;
4971 
4972 #ifdef CONFIG_RPS
4973 	if (!dev->num_rx_queues) {
4974 		/*
4975 		 * Allocate a single RX queue if driver never called
4976 		 * alloc_netdev_mq
4977 		 */
4978 
4979 		dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
4980 		if (!dev->_rx) {
4981 			ret = -ENOMEM;
4982 			goto out;
4983 		}
4984 
4985 		dev->_rx->first = dev->_rx;
4986 		atomic_set(&dev->_rx->count, 1);
4987 		dev->num_rx_queues = 1;
4988 	}
4989 #endif
4990 	/* Init, if this function is available */
4991 	if (dev->netdev_ops->ndo_init) {
4992 		ret = dev->netdev_ops->ndo_init(dev);
4993 		if (ret) {
4994 			if (ret > 0)
4995 				ret = -EIO;
4996 			goto out;
4997 		}
4998 	}
4999 
5000 	ret = dev_get_valid_name(dev, dev->name, 0);
5001 	if (ret)
5002 		goto err_uninit;
5003 
5004 	dev->ifindex = dev_new_index(net);
5005 	if (dev->iflink == -1)
5006 		dev->iflink = dev->ifindex;
5007 
5008 	/* Fix illegal checksum combinations */
5009 	if ((dev->features & NETIF_F_HW_CSUM) &&
5010 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5011 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5012 		       dev->name);
5013 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5014 	}
5015 
5016 	if ((dev->features & NETIF_F_NO_CSUM) &&
5017 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5018 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5019 		       dev->name);
5020 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5021 	}
5022 
5023 	dev->features = netdev_fix_features(dev->features, dev->name);
5024 
5025 	/* Enable software GSO if SG is supported. */
5026 	if (dev->features & NETIF_F_SG)
5027 		dev->features |= NETIF_F_GSO;
5028 
5029 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5030 	ret = notifier_to_errno(ret);
5031 	if (ret)
5032 		goto err_uninit;
5033 
5034 	ret = netdev_register_kobject(dev);
5035 	if (ret)
5036 		goto err_uninit;
5037 	dev->reg_state = NETREG_REGISTERED;
5038 
5039 	/*
5040 	 *	Default initial state at registry is that the
5041 	 *	device is present.
5042 	 */
5043 
5044 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5045 
5046 	dev_init_scheduler(dev);
5047 	dev_hold(dev);
5048 	list_netdevice(dev);
5049 
5050 	/* Notify protocols, that a new device appeared. */
5051 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5052 	ret = notifier_to_errno(ret);
5053 	if (ret) {
5054 		rollback_registered(dev);
5055 		dev->reg_state = NETREG_UNREGISTERED;
5056 	}
5057 	/*
5058 	 *	Prevent userspace races by waiting until the network
5059 	 *	device is fully setup before sending notifications.
5060 	 */
5061 	if (!dev->rtnl_link_ops ||
5062 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5063 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5064 
5065 out:
5066 	return ret;
5067 
5068 err_uninit:
5069 	if (dev->netdev_ops->ndo_uninit)
5070 		dev->netdev_ops->ndo_uninit(dev);
5071 	goto out;
5072 }
5073 EXPORT_SYMBOL(register_netdevice);
5074 
5075 /**
5076  *	init_dummy_netdev	- init a dummy network device for NAPI
5077  *	@dev: device to init
5078  *
5079  *	This takes a network device structure and initialize the minimum
5080  *	amount of fields so it can be used to schedule NAPI polls without
5081  *	registering a full blown interface. This is to be used by drivers
5082  *	that need to tie several hardware interfaces to a single NAPI
5083  *	poll scheduler due to HW limitations.
5084  */
5085 int init_dummy_netdev(struct net_device *dev)
5086 {
5087 	/* Clear everything. Note we don't initialize spinlocks
5088 	 * are they aren't supposed to be taken by any of the
5089 	 * NAPI code and this dummy netdev is supposed to be
5090 	 * only ever used for NAPI polls
5091 	 */
5092 	memset(dev, 0, sizeof(struct net_device));
5093 
5094 	/* make sure we BUG if trying to hit standard
5095 	 * register/unregister code path
5096 	 */
5097 	dev->reg_state = NETREG_DUMMY;
5098 
5099 	/* initialize the ref count */
5100 	atomic_set(&dev->refcnt, 1);
5101 
5102 	/* NAPI wants this */
5103 	INIT_LIST_HEAD(&dev->napi_list);
5104 
5105 	/* a dummy interface is started by default */
5106 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5107 	set_bit(__LINK_STATE_START, &dev->state);
5108 
5109 	return 0;
5110 }
5111 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5112 
5113 
5114 /**
5115  *	register_netdev	- register a network device
5116  *	@dev: device to register
5117  *
5118  *	Take a completed network device structure and add it to the kernel
5119  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5120  *	chain. 0 is returned on success. A negative errno code is returned
5121  *	on a failure to set up the device, or if the name is a duplicate.
5122  *
5123  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5124  *	and expands the device name if you passed a format string to
5125  *	alloc_netdev.
5126  */
5127 int register_netdev(struct net_device *dev)
5128 {
5129 	int err;
5130 
5131 	rtnl_lock();
5132 
5133 	/*
5134 	 * If the name is a format string the caller wants us to do a
5135 	 * name allocation.
5136 	 */
5137 	if (strchr(dev->name, '%')) {
5138 		err = dev_alloc_name(dev, dev->name);
5139 		if (err < 0)
5140 			goto out;
5141 	}
5142 
5143 	err = register_netdevice(dev);
5144 out:
5145 	rtnl_unlock();
5146 	return err;
5147 }
5148 EXPORT_SYMBOL(register_netdev);
5149 
5150 /*
5151  * netdev_wait_allrefs - wait until all references are gone.
5152  *
5153  * This is called when unregistering network devices.
5154  *
5155  * Any protocol or device that holds a reference should register
5156  * for netdevice notification, and cleanup and put back the
5157  * reference if they receive an UNREGISTER event.
5158  * We can get stuck here if buggy protocols don't correctly
5159  * call dev_put.
5160  */
5161 static void netdev_wait_allrefs(struct net_device *dev)
5162 {
5163 	unsigned long rebroadcast_time, warning_time;
5164 
5165 	linkwatch_forget_dev(dev);
5166 
5167 	rebroadcast_time = warning_time = jiffies;
5168 	while (atomic_read(&dev->refcnt) != 0) {
5169 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5170 			rtnl_lock();
5171 
5172 			/* Rebroadcast unregister notification */
5173 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5174 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5175 			 * should have already handle it the first time */
5176 
5177 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5178 				     &dev->state)) {
5179 				/* We must not have linkwatch events
5180 				 * pending on unregister. If this
5181 				 * happens, we simply run the queue
5182 				 * unscheduled, resulting in a noop
5183 				 * for this device.
5184 				 */
5185 				linkwatch_run_queue();
5186 			}
5187 
5188 			__rtnl_unlock();
5189 
5190 			rebroadcast_time = jiffies;
5191 		}
5192 
5193 		msleep(250);
5194 
5195 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5196 			printk(KERN_EMERG "unregister_netdevice: "
5197 			       "waiting for %s to become free. Usage "
5198 			       "count = %d\n",
5199 			       dev->name, atomic_read(&dev->refcnt));
5200 			warning_time = jiffies;
5201 		}
5202 	}
5203 }
5204 
5205 /* The sequence is:
5206  *
5207  *	rtnl_lock();
5208  *	...
5209  *	register_netdevice(x1);
5210  *	register_netdevice(x2);
5211  *	...
5212  *	unregister_netdevice(y1);
5213  *	unregister_netdevice(y2);
5214  *      ...
5215  *	rtnl_unlock();
5216  *	free_netdev(y1);
5217  *	free_netdev(y2);
5218  *
5219  * We are invoked by rtnl_unlock().
5220  * This allows us to deal with problems:
5221  * 1) We can delete sysfs objects which invoke hotplug
5222  *    without deadlocking with linkwatch via keventd.
5223  * 2) Since we run with the RTNL semaphore not held, we can sleep
5224  *    safely in order to wait for the netdev refcnt to drop to zero.
5225  *
5226  * We must not return until all unregister events added during
5227  * the interval the lock was held have been completed.
5228  */
5229 void netdev_run_todo(void)
5230 {
5231 	struct list_head list;
5232 
5233 	/* Snapshot list, allow later requests */
5234 	list_replace_init(&net_todo_list, &list);
5235 
5236 	__rtnl_unlock();
5237 
5238 	while (!list_empty(&list)) {
5239 		struct net_device *dev
5240 			= list_first_entry(&list, struct net_device, todo_list);
5241 		list_del(&dev->todo_list);
5242 
5243 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5244 			printk(KERN_ERR "network todo '%s' but state %d\n",
5245 			       dev->name, dev->reg_state);
5246 			dump_stack();
5247 			continue;
5248 		}
5249 
5250 		dev->reg_state = NETREG_UNREGISTERED;
5251 
5252 		on_each_cpu(flush_backlog, dev, 1);
5253 
5254 		netdev_wait_allrefs(dev);
5255 
5256 		/* paranoia */
5257 		BUG_ON(atomic_read(&dev->refcnt));
5258 		WARN_ON(dev->ip_ptr);
5259 		WARN_ON(dev->ip6_ptr);
5260 		WARN_ON(dev->dn_ptr);
5261 
5262 		if (dev->destructor)
5263 			dev->destructor(dev);
5264 
5265 		/* Free network device */
5266 		kobject_put(&dev->dev.kobj);
5267 	}
5268 }
5269 
5270 /**
5271  *	dev_txq_stats_fold - fold tx_queues stats
5272  *	@dev: device to get statistics from
5273  *	@stats: struct net_device_stats to hold results
5274  */
5275 void dev_txq_stats_fold(const struct net_device *dev,
5276 			struct net_device_stats *stats)
5277 {
5278 	unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5279 	unsigned int i;
5280 	struct netdev_queue *txq;
5281 
5282 	for (i = 0; i < dev->num_tx_queues; i++) {
5283 		txq = netdev_get_tx_queue(dev, i);
5284 		tx_bytes   += txq->tx_bytes;
5285 		tx_packets += txq->tx_packets;
5286 		tx_dropped += txq->tx_dropped;
5287 	}
5288 	if (tx_bytes || tx_packets || tx_dropped) {
5289 		stats->tx_bytes   = tx_bytes;
5290 		stats->tx_packets = tx_packets;
5291 		stats->tx_dropped = tx_dropped;
5292 	}
5293 }
5294 EXPORT_SYMBOL(dev_txq_stats_fold);
5295 
5296 /**
5297  *	dev_get_stats	- get network device statistics
5298  *	@dev: device to get statistics from
5299  *
5300  *	Get network statistics from device. The device driver may provide
5301  *	its own method by setting dev->netdev_ops->get_stats; otherwise
5302  *	the internal statistics structure is used.
5303  */
5304 const struct net_device_stats *dev_get_stats(struct net_device *dev)
5305 {
5306 	const struct net_device_ops *ops = dev->netdev_ops;
5307 
5308 	if (ops->ndo_get_stats)
5309 		return ops->ndo_get_stats(dev);
5310 
5311 	dev_txq_stats_fold(dev, &dev->stats);
5312 	return &dev->stats;
5313 }
5314 EXPORT_SYMBOL(dev_get_stats);
5315 
5316 static void netdev_init_one_queue(struct net_device *dev,
5317 				  struct netdev_queue *queue,
5318 				  void *_unused)
5319 {
5320 	queue->dev = dev;
5321 }
5322 
5323 static void netdev_init_queues(struct net_device *dev)
5324 {
5325 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5326 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5327 	spin_lock_init(&dev->tx_global_lock);
5328 }
5329 
5330 /**
5331  *	alloc_netdev_mq - allocate network device
5332  *	@sizeof_priv:	size of private data to allocate space for
5333  *	@name:		device name format string
5334  *	@setup:		callback to initialize device
5335  *	@queue_count:	the number of subqueues to allocate
5336  *
5337  *	Allocates a struct net_device with private data area for driver use
5338  *	and performs basic initialization.  Also allocates subquue structs
5339  *	for each queue on the device at the end of the netdevice.
5340  */
5341 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5342 		void (*setup)(struct net_device *), unsigned int queue_count)
5343 {
5344 	struct netdev_queue *tx;
5345 	struct net_device *dev;
5346 	size_t alloc_size;
5347 	struct net_device *p;
5348 #ifdef CONFIG_RPS
5349 	struct netdev_rx_queue *rx;
5350 	int i;
5351 #endif
5352 
5353 	BUG_ON(strlen(name) >= sizeof(dev->name));
5354 
5355 	alloc_size = sizeof(struct net_device);
5356 	if (sizeof_priv) {
5357 		/* ensure 32-byte alignment of private area */
5358 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5359 		alloc_size += sizeof_priv;
5360 	}
5361 	/* ensure 32-byte alignment of whole construct */
5362 	alloc_size += NETDEV_ALIGN - 1;
5363 
5364 	p = kzalloc(alloc_size, GFP_KERNEL);
5365 	if (!p) {
5366 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5367 		return NULL;
5368 	}
5369 
5370 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5371 	if (!tx) {
5372 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
5373 		       "tx qdiscs.\n");
5374 		goto free_p;
5375 	}
5376 
5377 #ifdef CONFIG_RPS
5378 	rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5379 	if (!rx) {
5380 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
5381 		       "rx queues.\n");
5382 		goto free_tx;
5383 	}
5384 
5385 	atomic_set(&rx->count, queue_count);
5386 
5387 	/*
5388 	 * Set a pointer to first element in the array which holds the
5389 	 * reference count.
5390 	 */
5391 	for (i = 0; i < queue_count; i++)
5392 		rx[i].first = rx;
5393 #endif
5394 
5395 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5396 	dev->padded = (char *)dev - (char *)p;
5397 
5398 	if (dev_addr_init(dev))
5399 		goto free_rx;
5400 
5401 	dev_mc_init(dev);
5402 	dev_uc_init(dev);
5403 
5404 	dev_net_set(dev, &init_net);
5405 
5406 	dev->_tx = tx;
5407 	dev->num_tx_queues = queue_count;
5408 	dev->real_num_tx_queues = queue_count;
5409 
5410 #ifdef CONFIG_RPS
5411 	dev->_rx = rx;
5412 	dev->num_rx_queues = queue_count;
5413 #endif
5414 
5415 	dev->gso_max_size = GSO_MAX_SIZE;
5416 
5417 	netdev_init_queues(dev);
5418 
5419 	INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5420 	dev->ethtool_ntuple_list.count = 0;
5421 	INIT_LIST_HEAD(&dev->napi_list);
5422 	INIT_LIST_HEAD(&dev->unreg_list);
5423 	INIT_LIST_HEAD(&dev->link_watch_list);
5424 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5425 	setup(dev);
5426 	strcpy(dev->name, name);
5427 	return dev;
5428 
5429 free_rx:
5430 #ifdef CONFIG_RPS
5431 	kfree(rx);
5432 free_tx:
5433 #endif
5434 	kfree(tx);
5435 free_p:
5436 	kfree(p);
5437 	return NULL;
5438 }
5439 EXPORT_SYMBOL(alloc_netdev_mq);
5440 
5441 /**
5442  *	free_netdev - free network device
5443  *	@dev: device
5444  *
5445  *	This function does the last stage of destroying an allocated device
5446  * 	interface. The reference to the device object is released.
5447  *	If this is the last reference then it will be freed.
5448  */
5449 void free_netdev(struct net_device *dev)
5450 {
5451 	struct napi_struct *p, *n;
5452 
5453 	release_net(dev_net(dev));
5454 
5455 	kfree(dev->_tx);
5456 
5457 	/* Flush device addresses */
5458 	dev_addr_flush(dev);
5459 
5460 	/* Clear ethtool n-tuple list */
5461 	ethtool_ntuple_flush(dev);
5462 
5463 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5464 		netif_napi_del(p);
5465 
5466 	/*  Compatibility with error handling in drivers */
5467 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5468 		kfree((char *)dev - dev->padded);
5469 		return;
5470 	}
5471 
5472 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5473 	dev->reg_state = NETREG_RELEASED;
5474 
5475 	/* will free via device release */
5476 	put_device(&dev->dev);
5477 }
5478 EXPORT_SYMBOL(free_netdev);
5479 
5480 /**
5481  *	synchronize_net -  Synchronize with packet receive processing
5482  *
5483  *	Wait for packets currently being received to be done.
5484  *	Does not block later packets from starting.
5485  */
5486 void synchronize_net(void)
5487 {
5488 	might_sleep();
5489 	synchronize_rcu();
5490 }
5491 EXPORT_SYMBOL(synchronize_net);
5492 
5493 /**
5494  *	unregister_netdevice_queue - remove device from the kernel
5495  *	@dev: device
5496  *	@head: list
5497  *
5498  *	This function shuts down a device interface and removes it
5499  *	from the kernel tables.
5500  *	If head not NULL, device is queued to be unregistered later.
5501  *
5502  *	Callers must hold the rtnl semaphore.  You may want
5503  *	unregister_netdev() instead of this.
5504  */
5505 
5506 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5507 {
5508 	ASSERT_RTNL();
5509 
5510 	if (head) {
5511 		list_move_tail(&dev->unreg_list, head);
5512 	} else {
5513 		rollback_registered(dev);
5514 		/* Finish processing unregister after unlock */
5515 		net_set_todo(dev);
5516 	}
5517 }
5518 EXPORT_SYMBOL(unregister_netdevice_queue);
5519 
5520 /**
5521  *	unregister_netdevice_many - unregister many devices
5522  *	@head: list of devices
5523  */
5524 void unregister_netdevice_many(struct list_head *head)
5525 {
5526 	struct net_device *dev;
5527 
5528 	if (!list_empty(head)) {
5529 		rollback_registered_many(head);
5530 		list_for_each_entry(dev, head, unreg_list)
5531 			net_set_todo(dev);
5532 	}
5533 }
5534 EXPORT_SYMBOL(unregister_netdevice_many);
5535 
5536 /**
5537  *	unregister_netdev - remove device from the kernel
5538  *	@dev: device
5539  *
5540  *	This function shuts down a device interface and removes it
5541  *	from the kernel tables.
5542  *
5543  *	This is just a wrapper for unregister_netdevice that takes
5544  *	the rtnl semaphore.  In general you want to use this and not
5545  *	unregister_netdevice.
5546  */
5547 void unregister_netdev(struct net_device *dev)
5548 {
5549 	rtnl_lock();
5550 	unregister_netdevice(dev);
5551 	rtnl_unlock();
5552 }
5553 EXPORT_SYMBOL(unregister_netdev);
5554 
5555 /**
5556  *	dev_change_net_namespace - move device to different nethost namespace
5557  *	@dev: device
5558  *	@net: network namespace
5559  *	@pat: If not NULL name pattern to try if the current device name
5560  *	      is already taken in the destination network namespace.
5561  *
5562  *	This function shuts down a device interface and moves it
5563  *	to a new network namespace. On success 0 is returned, on
5564  *	a failure a netagive errno code is returned.
5565  *
5566  *	Callers must hold the rtnl semaphore.
5567  */
5568 
5569 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5570 {
5571 	int err;
5572 
5573 	ASSERT_RTNL();
5574 
5575 	/* Don't allow namespace local devices to be moved. */
5576 	err = -EINVAL;
5577 	if (dev->features & NETIF_F_NETNS_LOCAL)
5578 		goto out;
5579 
5580 	/* Ensure the device has been registrered */
5581 	err = -EINVAL;
5582 	if (dev->reg_state != NETREG_REGISTERED)
5583 		goto out;
5584 
5585 	/* Get out if there is nothing todo */
5586 	err = 0;
5587 	if (net_eq(dev_net(dev), net))
5588 		goto out;
5589 
5590 	/* Pick the destination device name, and ensure
5591 	 * we can use it in the destination network namespace.
5592 	 */
5593 	err = -EEXIST;
5594 	if (__dev_get_by_name(net, dev->name)) {
5595 		/* We get here if we can't use the current device name */
5596 		if (!pat)
5597 			goto out;
5598 		if (dev_get_valid_name(dev, pat, 1))
5599 			goto out;
5600 	}
5601 
5602 	/*
5603 	 * And now a mini version of register_netdevice unregister_netdevice.
5604 	 */
5605 
5606 	/* If device is running close it first. */
5607 	dev_close(dev);
5608 
5609 	/* And unlink it from device chain */
5610 	err = -ENODEV;
5611 	unlist_netdevice(dev);
5612 
5613 	synchronize_net();
5614 
5615 	/* Shutdown queueing discipline. */
5616 	dev_shutdown(dev);
5617 
5618 	/* Notify protocols, that we are about to destroy
5619 	   this device. They should clean all the things.
5620 	*/
5621 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5622 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5623 
5624 	/*
5625 	 *	Flush the unicast and multicast chains
5626 	 */
5627 	dev_uc_flush(dev);
5628 	dev_mc_flush(dev);
5629 
5630 	/* Actually switch the network namespace */
5631 	dev_net_set(dev, net);
5632 
5633 	/* If there is an ifindex conflict assign a new one */
5634 	if (__dev_get_by_index(net, dev->ifindex)) {
5635 		int iflink = (dev->iflink == dev->ifindex);
5636 		dev->ifindex = dev_new_index(net);
5637 		if (iflink)
5638 			dev->iflink = dev->ifindex;
5639 	}
5640 
5641 	/* Fixup kobjects */
5642 	err = device_rename(&dev->dev, dev->name);
5643 	WARN_ON(err);
5644 
5645 	/* Add the device back in the hashes */
5646 	list_netdevice(dev);
5647 
5648 	/* Notify protocols, that a new device appeared. */
5649 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5650 
5651 	/*
5652 	 *	Prevent userspace races by waiting until the network
5653 	 *	device is fully setup before sending notifications.
5654 	 */
5655 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5656 
5657 	synchronize_net();
5658 	err = 0;
5659 out:
5660 	return err;
5661 }
5662 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5663 
5664 static int dev_cpu_callback(struct notifier_block *nfb,
5665 			    unsigned long action,
5666 			    void *ocpu)
5667 {
5668 	struct sk_buff **list_skb;
5669 	struct sk_buff *skb;
5670 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5671 	struct softnet_data *sd, *oldsd;
5672 
5673 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5674 		return NOTIFY_OK;
5675 
5676 	local_irq_disable();
5677 	cpu = smp_processor_id();
5678 	sd = &per_cpu(softnet_data, cpu);
5679 	oldsd = &per_cpu(softnet_data, oldcpu);
5680 
5681 	/* Find end of our completion_queue. */
5682 	list_skb = &sd->completion_queue;
5683 	while (*list_skb)
5684 		list_skb = &(*list_skb)->next;
5685 	/* Append completion queue from offline CPU. */
5686 	*list_skb = oldsd->completion_queue;
5687 	oldsd->completion_queue = NULL;
5688 
5689 	/* Append output queue from offline CPU. */
5690 	if (oldsd->output_queue) {
5691 		*sd->output_queue_tailp = oldsd->output_queue;
5692 		sd->output_queue_tailp = oldsd->output_queue_tailp;
5693 		oldsd->output_queue = NULL;
5694 		oldsd->output_queue_tailp = &oldsd->output_queue;
5695 	}
5696 
5697 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5698 	local_irq_enable();
5699 
5700 	/* Process offline CPU's input_pkt_queue */
5701 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5702 		netif_rx(skb);
5703 		input_queue_head_incr(oldsd);
5704 	}
5705 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5706 		netif_rx(skb);
5707 		input_queue_head_incr(oldsd);
5708 	}
5709 
5710 	return NOTIFY_OK;
5711 }
5712 
5713 
5714 /**
5715  *	netdev_increment_features - increment feature set by one
5716  *	@all: current feature set
5717  *	@one: new feature set
5718  *	@mask: mask feature set
5719  *
5720  *	Computes a new feature set after adding a device with feature set
5721  *	@one to the master device with current feature set @all.  Will not
5722  *	enable anything that is off in @mask. Returns the new feature set.
5723  */
5724 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5725 					unsigned long mask)
5726 {
5727 	/* If device needs checksumming, downgrade to it. */
5728 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5729 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5730 	else if (mask & NETIF_F_ALL_CSUM) {
5731 		/* If one device supports v4/v6 checksumming, set for all. */
5732 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5733 		    !(all & NETIF_F_GEN_CSUM)) {
5734 			all &= ~NETIF_F_ALL_CSUM;
5735 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5736 		}
5737 
5738 		/* If one device supports hw checksumming, set for all. */
5739 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5740 			all &= ~NETIF_F_ALL_CSUM;
5741 			all |= NETIF_F_HW_CSUM;
5742 		}
5743 	}
5744 
5745 	one |= NETIF_F_ALL_CSUM;
5746 
5747 	one |= all & NETIF_F_ONE_FOR_ALL;
5748 	all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5749 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
5750 
5751 	return all;
5752 }
5753 EXPORT_SYMBOL(netdev_increment_features);
5754 
5755 static struct hlist_head *netdev_create_hash(void)
5756 {
5757 	int i;
5758 	struct hlist_head *hash;
5759 
5760 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5761 	if (hash != NULL)
5762 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5763 			INIT_HLIST_HEAD(&hash[i]);
5764 
5765 	return hash;
5766 }
5767 
5768 /* Initialize per network namespace state */
5769 static int __net_init netdev_init(struct net *net)
5770 {
5771 	INIT_LIST_HEAD(&net->dev_base_head);
5772 
5773 	net->dev_name_head = netdev_create_hash();
5774 	if (net->dev_name_head == NULL)
5775 		goto err_name;
5776 
5777 	net->dev_index_head = netdev_create_hash();
5778 	if (net->dev_index_head == NULL)
5779 		goto err_idx;
5780 
5781 	return 0;
5782 
5783 err_idx:
5784 	kfree(net->dev_name_head);
5785 err_name:
5786 	return -ENOMEM;
5787 }
5788 
5789 /**
5790  *	netdev_drivername - network driver for the device
5791  *	@dev: network device
5792  *	@buffer: buffer for resulting name
5793  *	@len: size of buffer
5794  *
5795  *	Determine network driver for device.
5796  */
5797 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5798 {
5799 	const struct device_driver *driver;
5800 	const struct device *parent;
5801 
5802 	if (len <= 0 || !buffer)
5803 		return buffer;
5804 	buffer[0] = 0;
5805 
5806 	parent = dev->dev.parent;
5807 
5808 	if (!parent)
5809 		return buffer;
5810 
5811 	driver = parent->driver;
5812 	if (driver && driver->name)
5813 		strlcpy(buffer, driver->name, len);
5814 	return buffer;
5815 }
5816 
5817 static void __net_exit netdev_exit(struct net *net)
5818 {
5819 	kfree(net->dev_name_head);
5820 	kfree(net->dev_index_head);
5821 }
5822 
5823 static struct pernet_operations __net_initdata netdev_net_ops = {
5824 	.init = netdev_init,
5825 	.exit = netdev_exit,
5826 };
5827 
5828 static void __net_exit default_device_exit(struct net *net)
5829 {
5830 	struct net_device *dev, *aux;
5831 	/*
5832 	 * Push all migratable network devices back to the
5833 	 * initial network namespace
5834 	 */
5835 	rtnl_lock();
5836 	for_each_netdev_safe(net, dev, aux) {
5837 		int err;
5838 		char fb_name[IFNAMSIZ];
5839 
5840 		/* Ignore unmoveable devices (i.e. loopback) */
5841 		if (dev->features & NETIF_F_NETNS_LOCAL)
5842 			continue;
5843 
5844 		/* Leave virtual devices for the generic cleanup */
5845 		if (dev->rtnl_link_ops)
5846 			continue;
5847 
5848 		/* Push remaing network devices to init_net */
5849 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5850 		err = dev_change_net_namespace(dev, &init_net, fb_name);
5851 		if (err) {
5852 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5853 				__func__, dev->name, err);
5854 			BUG();
5855 		}
5856 	}
5857 	rtnl_unlock();
5858 }
5859 
5860 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5861 {
5862 	/* At exit all network devices most be removed from a network
5863 	 * namespace.  Do this in the reverse order of registeration.
5864 	 * Do this across as many network namespaces as possible to
5865 	 * improve batching efficiency.
5866 	 */
5867 	struct net_device *dev;
5868 	struct net *net;
5869 	LIST_HEAD(dev_kill_list);
5870 
5871 	rtnl_lock();
5872 	list_for_each_entry(net, net_list, exit_list) {
5873 		for_each_netdev_reverse(net, dev) {
5874 			if (dev->rtnl_link_ops)
5875 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5876 			else
5877 				unregister_netdevice_queue(dev, &dev_kill_list);
5878 		}
5879 	}
5880 	unregister_netdevice_many(&dev_kill_list);
5881 	rtnl_unlock();
5882 }
5883 
5884 static struct pernet_operations __net_initdata default_device_ops = {
5885 	.exit = default_device_exit,
5886 	.exit_batch = default_device_exit_batch,
5887 };
5888 
5889 /*
5890  *	Initialize the DEV module. At boot time this walks the device list and
5891  *	unhooks any devices that fail to initialise (normally hardware not
5892  *	present) and leaves us with a valid list of present and active devices.
5893  *
5894  */
5895 
5896 /*
5897  *       This is called single threaded during boot, so no need
5898  *       to take the rtnl semaphore.
5899  */
5900 static int __init net_dev_init(void)
5901 {
5902 	int i, rc = -ENOMEM;
5903 
5904 	BUG_ON(!dev_boot_phase);
5905 
5906 	if (dev_proc_init())
5907 		goto out;
5908 
5909 	if (netdev_kobject_init())
5910 		goto out;
5911 
5912 	INIT_LIST_HEAD(&ptype_all);
5913 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
5914 		INIT_LIST_HEAD(&ptype_base[i]);
5915 
5916 	if (register_pernet_subsys(&netdev_net_ops))
5917 		goto out;
5918 
5919 	/*
5920 	 *	Initialise the packet receive queues.
5921 	 */
5922 
5923 	for_each_possible_cpu(i) {
5924 		struct softnet_data *sd = &per_cpu(softnet_data, i);
5925 
5926 		memset(sd, 0, sizeof(*sd));
5927 		skb_queue_head_init(&sd->input_pkt_queue);
5928 		skb_queue_head_init(&sd->process_queue);
5929 		sd->completion_queue = NULL;
5930 		INIT_LIST_HEAD(&sd->poll_list);
5931 		sd->output_queue = NULL;
5932 		sd->output_queue_tailp = &sd->output_queue;
5933 #ifdef CONFIG_RPS
5934 		sd->csd.func = rps_trigger_softirq;
5935 		sd->csd.info = sd;
5936 		sd->csd.flags = 0;
5937 		sd->cpu = i;
5938 #endif
5939 
5940 		sd->backlog.poll = process_backlog;
5941 		sd->backlog.weight = weight_p;
5942 		sd->backlog.gro_list = NULL;
5943 		sd->backlog.gro_count = 0;
5944 	}
5945 
5946 	dev_boot_phase = 0;
5947 
5948 	/* The loopback device is special if any other network devices
5949 	 * is present in a network namespace the loopback device must
5950 	 * be present. Since we now dynamically allocate and free the
5951 	 * loopback device ensure this invariant is maintained by
5952 	 * keeping the loopback device as the first device on the
5953 	 * list of network devices.  Ensuring the loopback devices
5954 	 * is the first device that appears and the last network device
5955 	 * that disappears.
5956 	 */
5957 	if (register_pernet_device(&loopback_net_ops))
5958 		goto out;
5959 
5960 	if (register_pernet_device(&default_device_ops))
5961 		goto out;
5962 
5963 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5964 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5965 
5966 	hotcpu_notifier(dev_cpu_callback, 0);
5967 	dst_init();
5968 	dev_mcast_init();
5969 	rc = 0;
5970 out:
5971 	return rc;
5972 }
5973 
5974 subsys_initcall(net_dev_init);
5975 
5976 static int __init initialize_hashrnd(void)
5977 {
5978 	get_random_bytes(&hashrnd, sizeof(hashrnd));
5979 	return 0;
5980 }
5981 
5982 late_initcall_sync(initialize_hashrnd);
5983 
5984