1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <[email protected]> 8 * Mark Evans, <[email protected]> 9 * 10 * Additional Authors: 11 * Florian la Roche <[email protected]> 12 * Alan Cox <[email protected]> 13 * David Hinds <[email protected]> 14 * Alexey Kuznetsov <[email protected]> 15 * Adam Sulmicki <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 #include <linux/static_key.h> 137 #include <linux/hashtable.h> 138 #include <linux/vmalloc.h> 139 #include <linux/if_macvlan.h> 140 #include <linux/errqueue.h> 141 #include <linux/hrtimer.h> 142 #include <linux/netfilter_ingress.h> 143 #include <linux/crash_dump.h> 144 #include <linux/sctp.h> 145 #include <net/udp_tunnel.h> 146 #include <linux/net_namespace.h> 147 #include <linux/indirect_call_wrapper.h> 148 #include <net/devlink.h> 149 #include <linux/pm_runtime.h> 150 #include <linux/prandom.h> 151 152 #include "net-sysfs.h" 153 154 #define MAX_GRO_SKBS 8 155 156 /* This should be increased if a protocol with a bigger head is added. */ 157 #define GRO_MAX_HEAD (MAX_HEADER + 128) 158 159 static DEFINE_SPINLOCK(ptype_lock); 160 static DEFINE_SPINLOCK(offload_lock); 161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 162 struct list_head ptype_all __read_mostly; /* Taps */ 163 static struct list_head offload_base __read_mostly; 164 165 static int netif_rx_internal(struct sk_buff *skb); 166 static int call_netdevice_notifiers_info(unsigned long val, 167 struct netdev_notifier_info *info); 168 static int call_netdevice_notifiers_extack(unsigned long val, 169 struct net_device *dev, 170 struct netlink_ext_ack *extack); 171 static struct napi_struct *napi_by_id(unsigned int napi_id); 172 173 /* 174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 175 * semaphore. 176 * 177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 178 * 179 * Writers must hold the rtnl semaphore while they loop through the 180 * dev_base_head list, and hold dev_base_lock for writing when they do the 181 * actual updates. This allows pure readers to access the list even 182 * while a writer is preparing to update it. 183 * 184 * To put it another way, dev_base_lock is held for writing only to 185 * protect against pure readers; the rtnl semaphore provides the 186 * protection against other writers. 187 * 188 * See, for example usages, register_netdevice() and 189 * unregister_netdevice(), which must be called with the rtnl 190 * semaphore held. 191 */ 192 DEFINE_RWLOCK(dev_base_lock); 193 EXPORT_SYMBOL(dev_base_lock); 194 195 static DEFINE_MUTEX(ifalias_mutex); 196 197 /* protects napi_hash addition/deletion and napi_gen_id */ 198 static DEFINE_SPINLOCK(napi_hash_lock); 199 200 static unsigned int napi_gen_id = NR_CPUS; 201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 202 203 static DECLARE_RWSEM(devnet_rename_sem); 204 205 static inline void dev_base_seq_inc(struct net *net) 206 { 207 while (++net->dev_base_seq == 0) 208 ; 209 } 210 211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 212 { 213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 214 215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 216 } 217 218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 219 { 220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 221 } 222 223 static inline void rps_lock(struct softnet_data *sd) 224 { 225 #ifdef CONFIG_RPS 226 spin_lock(&sd->input_pkt_queue.lock); 227 #endif 228 } 229 230 static inline void rps_unlock(struct softnet_data *sd) 231 { 232 #ifdef CONFIG_RPS 233 spin_unlock(&sd->input_pkt_queue.lock); 234 #endif 235 } 236 237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 238 const char *name) 239 { 240 struct netdev_name_node *name_node; 241 242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 243 if (!name_node) 244 return NULL; 245 INIT_HLIST_NODE(&name_node->hlist); 246 name_node->dev = dev; 247 name_node->name = name; 248 return name_node; 249 } 250 251 static struct netdev_name_node * 252 netdev_name_node_head_alloc(struct net_device *dev) 253 { 254 struct netdev_name_node *name_node; 255 256 name_node = netdev_name_node_alloc(dev, dev->name); 257 if (!name_node) 258 return NULL; 259 INIT_LIST_HEAD(&name_node->list); 260 return name_node; 261 } 262 263 static void netdev_name_node_free(struct netdev_name_node *name_node) 264 { 265 kfree(name_node); 266 } 267 268 static void netdev_name_node_add(struct net *net, 269 struct netdev_name_node *name_node) 270 { 271 hlist_add_head_rcu(&name_node->hlist, 272 dev_name_hash(net, name_node->name)); 273 } 274 275 static void netdev_name_node_del(struct netdev_name_node *name_node) 276 { 277 hlist_del_rcu(&name_node->hlist); 278 } 279 280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 281 const char *name) 282 { 283 struct hlist_head *head = dev_name_hash(net, name); 284 struct netdev_name_node *name_node; 285 286 hlist_for_each_entry(name_node, head, hlist) 287 if (!strcmp(name_node->name, name)) 288 return name_node; 289 return NULL; 290 } 291 292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 293 const char *name) 294 { 295 struct hlist_head *head = dev_name_hash(net, name); 296 struct netdev_name_node *name_node; 297 298 hlist_for_each_entry_rcu(name_node, head, hlist) 299 if (!strcmp(name_node->name, name)) 300 return name_node; 301 return NULL; 302 } 303 304 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 305 { 306 struct netdev_name_node *name_node; 307 struct net *net = dev_net(dev); 308 309 name_node = netdev_name_node_lookup(net, name); 310 if (name_node) 311 return -EEXIST; 312 name_node = netdev_name_node_alloc(dev, name); 313 if (!name_node) 314 return -ENOMEM; 315 netdev_name_node_add(net, name_node); 316 /* The node that holds dev->name acts as a head of per-device list. */ 317 list_add_tail(&name_node->list, &dev->name_node->list); 318 319 return 0; 320 } 321 EXPORT_SYMBOL(netdev_name_node_alt_create); 322 323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 324 { 325 list_del(&name_node->list); 326 netdev_name_node_del(name_node); 327 kfree(name_node->name); 328 netdev_name_node_free(name_node); 329 } 330 331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 332 { 333 struct netdev_name_node *name_node; 334 struct net *net = dev_net(dev); 335 336 name_node = netdev_name_node_lookup(net, name); 337 if (!name_node) 338 return -ENOENT; 339 /* lookup might have found our primary name or a name belonging 340 * to another device. 341 */ 342 if (name_node == dev->name_node || name_node->dev != dev) 343 return -EINVAL; 344 345 __netdev_name_node_alt_destroy(name_node); 346 347 return 0; 348 } 349 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 350 351 static void netdev_name_node_alt_flush(struct net_device *dev) 352 { 353 struct netdev_name_node *name_node, *tmp; 354 355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 356 __netdev_name_node_alt_destroy(name_node); 357 } 358 359 /* Device list insertion */ 360 static void list_netdevice(struct net_device *dev) 361 { 362 struct net *net = dev_net(dev); 363 364 ASSERT_RTNL(); 365 366 write_lock_bh(&dev_base_lock); 367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 368 netdev_name_node_add(net, dev->name_node); 369 hlist_add_head_rcu(&dev->index_hlist, 370 dev_index_hash(net, dev->ifindex)); 371 write_unlock_bh(&dev_base_lock); 372 373 dev_base_seq_inc(net); 374 } 375 376 /* Device list removal 377 * caller must respect a RCU grace period before freeing/reusing dev 378 */ 379 static void unlist_netdevice(struct net_device *dev) 380 { 381 ASSERT_RTNL(); 382 383 /* Unlink dev from the device chain */ 384 write_lock_bh(&dev_base_lock); 385 list_del_rcu(&dev->dev_list); 386 netdev_name_node_del(dev->name_node); 387 hlist_del_rcu(&dev->index_hlist); 388 write_unlock_bh(&dev_base_lock); 389 390 dev_base_seq_inc(dev_net(dev)); 391 } 392 393 /* 394 * Our notifier list 395 */ 396 397 static RAW_NOTIFIER_HEAD(netdev_chain); 398 399 /* 400 * Device drivers call our routines to queue packets here. We empty the 401 * queue in the local softnet handler. 402 */ 403 404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 405 EXPORT_PER_CPU_SYMBOL(softnet_data); 406 407 #ifdef CONFIG_LOCKDEP 408 /* 409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 410 * according to dev->type 411 */ 412 static const unsigned short netdev_lock_type[] = { 413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 428 429 static const char *const netdev_lock_name[] = { 430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 445 446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 448 449 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 450 { 451 int i; 452 453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 454 if (netdev_lock_type[i] == dev_type) 455 return i; 456 /* the last key is used by default */ 457 return ARRAY_SIZE(netdev_lock_type) - 1; 458 } 459 460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 461 unsigned short dev_type) 462 { 463 int i; 464 465 i = netdev_lock_pos(dev_type); 466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 467 netdev_lock_name[i]); 468 } 469 470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 471 { 472 int i; 473 474 i = netdev_lock_pos(dev->type); 475 lockdep_set_class_and_name(&dev->addr_list_lock, 476 &netdev_addr_lock_key[i], 477 netdev_lock_name[i]); 478 } 479 #else 480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 481 unsigned short dev_type) 482 { 483 } 484 485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 486 { 487 } 488 #endif 489 490 /******************************************************************************* 491 * 492 * Protocol management and registration routines 493 * 494 *******************************************************************************/ 495 496 497 /* 498 * Add a protocol ID to the list. Now that the input handler is 499 * smarter we can dispense with all the messy stuff that used to be 500 * here. 501 * 502 * BEWARE!!! Protocol handlers, mangling input packets, 503 * MUST BE last in hash buckets and checking protocol handlers 504 * MUST start from promiscuous ptype_all chain in net_bh. 505 * It is true now, do not change it. 506 * Explanation follows: if protocol handler, mangling packet, will 507 * be the first on list, it is not able to sense, that packet 508 * is cloned and should be copied-on-write, so that it will 509 * change it and subsequent readers will get broken packet. 510 * --ANK (980803) 511 */ 512 513 static inline struct list_head *ptype_head(const struct packet_type *pt) 514 { 515 if (pt->type == htons(ETH_P_ALL)) 516 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 517 else 518 return pt->dev ? &pt->dev->ptype_specific : 519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 520 } 521 522 /** 523 * dev_add_pack - add packet handler 524 * @pt: packet type declaration 525 * 526 * Add a protocol handler to the networking stack. The passed &packet_type 527 * is linked into kernel lists and may not be freed until it has been 528 * removed from the kernel lists. 529 * 530 * This call does not sleep therefore it can not 531 * guarantee all CPU's that are in middle of receiving packets 532 * will see the new packet type (until the next received packet). 533 */ 534 535 void dev_add_pack(struct packet_type *pt) 536 { 537 struct list_head *head = ptype_head(pt); 538 539 spin_lock(&ptype_lock); 540 list_add_rcu(&pt->list, head); 541 spin_unlock(&ptype_lock); 542 } 543 EXPORT_SYMBOL(dev_add_pack); 544 545 /** 546 * __dev_remove_pack - remove packet handler 547 * @pt: packet type declaration 548 * 549 * Remove a protocol handler that was previously added to the kernel 550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 551 * from the kernel lists and can be freed or reused once this function 552 * returns. 553 * 554 * The packet type might still be in use by receivers 555 * and must not be freed until after all the CPU's have gone 556 * through a quiescent state. 557 */ 558 void __dev_remove_pack(struct packet_type *pt) 559 { 560 struct list_head *head = ptype_head(pt); 561 struct packet_type *pt1; 562 563 spin_lock(&ptype_lock); 564 565 list_for_each_entry(pt1, head, list) { 566 if (pt == pt1) { 567 list_del_rcu(&pt->list); 568 goto out; 569 } 570 } 571 572 pr_warn("dev_remove_pack: %p not found\n", pt); 573 out: 574 spin_unlock(&ptype_lock); 575 } 576 EXPORT_SYMBOL(__dev_remove_pack); 577 578 /** 579 * dev_remove_pack - remove packet handler 580 * @pt: packet type declaration 581 * 582 * Remove a protocol handler that was previously added to the kernel 583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 584 * from the kernel lists and can be freed or reused once this function 585 * returns. 586 * 587 * This call sleeps to guarantee that no CPU is looking at the packet 588 * type after return. 589 */ 590 void dev_remove_pack(struct packet_type *pt) 591 { 592 __dev_remove_pack(pt); 593 594 synchronize_net(); 595 } 596 EXPORT_SYMBOL(dev_remove_pack); 597 598 599 /** 600 * dev_add_offload - register offload handlers 601 * @po: protocol offload declaration 602 * 603 * Add protocol offload handlers to the networking stack. The passed 604 * &proto_offload is linked into kernel lists and may not be freed until 605 * it has been removed from the kernel lists. 606 * 607 * This call does not sleep therefore it can not 608 * guarantee all CPU's that are in middle of receiving packets 609 * will see the new offload handlers (until the next received packet). 610 */ 611 void dev_add_offload(struct packet_offload *po) 612 { 613 struct packet_offload *elem; 614 615 spin_lock(&offload_lock); 616 list_for_each_entry(elem, &offload_base, list) { 617 if (po->priority < elem->priority) 618 break; 619 } 620 list_add_rcu(&po->list, elem->list.prev); 621 spin_unlock(&offload_lock); 622 } 623 EXPORT_SYMBOL(dev_add_offload); 624 625 /** 626 * __dev_remove_offload - remove offload handler 627 * @po: packet offload declaration 628 * 629 * Remove a protocol offload handler that was previously added to the 630 * kernel offload handlers by dev_add_offload(). The passed &offload_type 631 * is removed from the kernel lists and can be freed or reused once this 632 * function returns. 633 * 634 * The packet type might still be in use by receivers 635 * and must not be freed until after all the CPU's have gone 636 * through a quiescent state. 637 */ 638 static void __dev_remove_offload(struct packet_offload *po) 639 { 640 struct list_head *head = &offload_base; 641 struct packet_offload *po1; 642 643 spin_lock(&offload_lock); 644 645 list_for_each_entry(po1, head, list) { 646 if (po == po1) { 647 list_del_rcu(&po->list); 648 goto out; 649 } 650 } 651 652 pr_warn("dev_remove_offload: %p not found\n", po); 653 out: 654 spin_unlock(&offload_lock); 655 } 656 657 /** 658 * dev_remove_offload - remove packet offload handler 659 * @po: packet offload declaration 660 * 661 * Remove a packet offload handler that was previously added to the kernel 662 * offload handlers by dev_add_offload(). The passed &offload_type is 663 * removed from the kernel lists and can be freed or reused once this 664 * function returns. 665 * 666 * This call sleeps to guarantee that no CPU is looking at the packet 667 * type after return. 668 */ 669 void dev_remove_offload(struct packet_offload *po) 670 { 671 __dev_remove_offload(po); 672 673 synchronize_net(); 674 } 675 EXPORT_SYMBOL(dev_remove_offload); 676 677 /****************************************************************************** 678 * 679 * Device Boot-time Settings Routines 680 * 681 ******************************************************************************/ 682 683 /* Boot time configuration table */ 684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 685 686 /** 687 * netdev_boot_setup_add - add new setup entry 688 * @name: name of the device 689 * @map: configured settings for the device 690 * 691 * Adds new setup entry to the dev_boot_setup list. The function 692 * returns 0 on error and 1 on success. This is a generic routine to 693 * all netdevices. 694 */ 695 static int netdev_boot_setup_add(char *name, struct ifmap *map) 696 { 697 struct netdev_boot_setup *s; 698 int i; 699 700 s = dev_boot_setup; 701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 703 memset(s[i].name, 0, sizeof(s[i].name)); 704 strlcpy(s[i].name, name, IFNAMSIZ); 705 memcpy(&s[i].map, map, sizeof(s[i].map)); 706 break; 707 } 708 } 709 710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 711 } 712 713 /** 714 * netdev_boot_setup_check - check boot time settings 715 * @dev: the netdevice 716 * 717 * Check boot time settings for the device. 718 * The found settings are set for the device to be used 719 * later in the device probing. 720 * Returns 0 if no settings found, 1 if they are. 721 */ 722 int netdev_boot_setup_check(struct net_device *dev) 723 { 724 struct netdev_boot_setup *s = dev_boot_setup; 725 int i; 726 727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 729 !strcmp(dev->name, s[i].name)) { 730 dev->irq = s[i].map.irq; 731 dev->base_addr = s[i].map.base_addr; 732 dev->mem_start = s[i].map.mem_start; 733 dev->mem_end = s[i].map.mem_end; 734 return 1; 735 } 736 } 737 return 0; 738 } 739 EXPORT_SYMBOL(netdev_boot_setup_check); 740 741 742 /** 743 * netdev_boot_base - get address from boot time settings 744 * @prefix: prefix for network device 745 * @unit: id for network device 746 * 747 * Check boot time settings for the base address of device. 748 * The found settings are set for the device to be used 749 * later in the device probing. 750 * Returns 0 if no settings found. 751 */ 752 unsigned long netdev_boot_base(const char *prefix, int unit) 753 { 754 const struct netdev_boot_setup *s = dev_boot_setup; 755 char name[IFNAMSIZ]; 756 int i; 757 758 sprintf(name, "%s%d", prefix, unit); 759 760 /* 761 * If device already registered then return base of 1 762 * to indicate not to probe for this interface 763 */ 764 if (__dev_get_by_name(&init_net, name)) 765 return 1; 766 767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 768 if (!strcmp(name, s[i].name)) 769 return s[i].map.base_addr; 770 return 0; 771 } 772 773 /* 774 * Saves at boot time configured settings for any netdevice. 775 */ 776 int __init netdev_boot_setup(char *str) 777 { 778 int ints[5]; 779 struct ifmap map; 780 781 str = get_options(str, ARRAY_SIZE(ints), ints); 782 if (!str || !*str) 783 return 0; 784 785 /* Save settings */ 786 memset(&map, 0, sizeof(map)); 787 if (ints[0] > 0) 788 map.irq = ints[1]; 789 if (ints[0] > 1) 790 map.base_addr = ints[2]; 791 if (ints[0] > 2) 792 map.mem_start = ints[3]; 793 if (ints[0] > 3) 794 map.mem_end = ints[4]; 795 796 /* Add new entry to the list */ 797 return netdev_boot_setup_add(str, &map); 798 } 799 800 __setup("netdev=", netdev_boot_setup); 801 802 /******************************************************************************* 803 * 804 * Device Interface Subroutines 805 * 806 *******************************************************************************/ 807 808 /** 809 * dev_get_iflink - get 'iflink' value of a interface 810 * @dev: targeted interface 811 * 812 * Indicates the ifindex the interface is linked to. 813 * Physical interfaces have the same 'ifindex' and 'iflink' values. 814 */ 815 816 int dev_get_iflink(const struct net_device *dev) 817 { 818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 819 return dev->netdev_ops->ndo_get_iflink(dev); 820 821 return dev->ifindex; 822 } 823 EXPORT_SYMBOL(dev_get_iflink); 824 825 /** 826 * dev_fill_metadata_dst - Retrieve tunnel egress information. 827 * @dev: targeted interface 828 * @skb: The packet. 829 * 830 * For better visibility of tunnel traffic OVS needs to retrieve 831 * egress tunnel information for a packet. Following API allows 832 * user to get this info. 833 */ 834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 835 { 836 struct ip_tunnel_info *info; 837 838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 839 return -EINVAL; 840 841 info = skb_tunnel_info_unclone(skb); 842 if (!info) 843 return -ENOMEM; 844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 845 return -EINVAL; 846 847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 848 } 849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 850 851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 852 { 853 int k = stack->num_paths++; 854 855 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 856 return NULL; 857 858 return &stack->path[k]; 859 } 860 861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 862 struct net_device_path_stack *stack) 863 { 864 const struct net_device *last_dev; 865 struct net_device_path_ctx ctx = { 866 .dev = dev, 867 .daddr = daddr, 868 }; 869 struct net_device_path *path; 870 int ret = 0; 871 872 stack->num_paths = 0; 873 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 874 last_dev = ctx.dev; 875 path = dev_fwd_path(stack); 876 if (!path) 877 return -1; 878 879 memset(path, 0, sizeof(struct net_device_path)); 880 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 881 if (ret < 0) 882 return -1; 883 884 if (WARN_ON_ONCE(last_dev == ctx.dev)) 885 return -1; 886 } 887 path = dev_fwd_path(stack); 888 if (!path) 889 return -1; 890 path->type = DEV_PATH_ETHERNET; 891 path->dev = ctx.dev; 892 893 return ret; 894 } 895 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 896 897 /** 898 * __dev_get_by_name - find a device by its name 899 * @net: the applicable net namespace 900 * @name: name to find 901 * 902 * Find an interface by name. Must be called under RTNL semaphore 903 * or @dev_base_lock. If the name is found a pointer to the device 904 * is returned. If the name is not found then %NULL is returned. The 905 * reference counters are not incremented so the caller must be 906 * careful with locks. 907 */ 908 909 struct net_device *__dev_get_by_name(struct net *net, const char *name) 910 { 911 struct netdev_name_node *node_name; 912 913 node_name = netdev_name_node_lookup(net, name); 914 return node_name ? node_name->dev : NULL; 915 } 916 EXPORT_SYMBOL(__dev_get_by_name); 917 918 /** 919 * dev_get_by_name_rcu - find a device by its name 920 * @net: the applicable net namespace 921 * @name: name to find 922 * 923 * Find an interface by name. 924 * If the name is found a pointer to the device is returned. 925 * If the name is not found then %NULL is returned. 926 * The reference counters are not incremented so the caller must be 927 * careful with locks. The caller must hold RCU lock. 928 */ 929 930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 931 { 932 struct netdev_name_node *node_name; 933 934 node_name = netdev_name_node_lookup_rcu(net, name); 935 return node_name ? node_name->dev : NULL; 936 } 937 EXPORT_SYMBOL(dev_get_by_name_rcu); 938 939 /** 940 * dev_get_by_name - find a device by its name 941 * @net: the applicable net namespace 942 * @name: name to find 943 * 944 * Find an interface by name. This can be called from any 945 * context and does its own locking. The returned handle has 946 * the usage count incremented and the caller must use dev_put() to 947 * release it when it is no longer needed. %NULL is returned if no 948 * matching device is found. 949 */ 950 951 struct net_device *dev_get_by_name(struct net *net, const char *name) 952 { 953 struct net_device *dev; 954 955 rcu_read_lock(); 956 dev = dev_get_by_name_rcu(net, name); 957 if (dev) 958 dev_hold(dev); 959 rcu_read_unlock(); 960 return dev; 961 } 962 EXPORT_SYMBOL(dev_get_by_name); 963 964 /** 965 * __dev_get_by_index - find a device by its ifindex 966 * @net: the applicable net namespace 967 * @ifindex: index of device 968 * 969 * Search for an interface by index. Returns %NULL if the device 970 * is not found or a pointer to the device. The device has not 971 * had its reference counter increased so the caller must be careful 972 * about locking. The caller must hold either the RTNL semaphore 973 * or @dev_base_lock. 974 */ 975 976 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 977 { 978 struct net_device *dev; 979 struct hlist_head *head = dev_index_hash(net, ifindex); 980 981 hlist_for_each_entry(dev, head, index_hlist) 982 if (dev->ifindex == ifindex) 983 return dev; 984 985 return NULL; 986 } 987 EXPORT_SYMBOL(__dev_get_by_index); 988 989 /** 990 * dev_get_by_index_rcu - find a device by its ifindex 991 * @net: the applicable net namespace 992 * @ifindex: index of device 993 * 994 * Search for an interface by index. Returns %NULL if the device 995 * is not found or a pointer to the device. The device has not 996 * had its reference counter increased so the caller must be careful 997 * about locking. The caller must hold RCU lock. 998 */ 999 1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 1001 { 1002 struct net_device *dev; 1003 struct hlist_head *head = dev_index_hash(net, ifindex); 1004 1005 hlist_for_each_entry_rcu(dev, head, index_hlist) 1006 if (dev->ifindex == ifindex) 1007 return dev; 1008 1009 return NULL; 1010 } 1011 EXPORT_SYMBOL(dev_get_by_index_rcu); 1012 1013 1014 /** 1015 * dev_get_by_index - find a device by its ifindex 1016 * @net: the applicable net namespace 1017 * @ifindex: index of device 1018 * 1019 * Search for an interface by index. Returns NULL if the device 1020 * is not found or a pointer to the device. The device returned has 1021 * had a reference added and the pointer is safe until the user calls 1022 * dev_put to indicate they have finished with it. 1023 */ 1024 1025 struct net_device *dev_get_by_index(struct net *net, int ifindex) 1026 { 1027 struct net_device *dev; 1028 1029 rcu_read_lock(); 1030 dev = dev_get_by_index_rcu(net, ifindex); 1031 if (dev) 1032 dev_hold(dev); 1033 rcu_read_unlock(); 1034 return dev; 1035 } 1036 EXPORT_SYMBOL(dev_get_by_index); 1037 1038 /** 1039 * dev_get_by_napi_id - find a device by napi_id 1040 * @napi_id: ID of the NAPI struct 1041 * 1042 * Search for an interface by NAPI ID. Returns %NULL if the device 1043 * is not found or a pointer to the device. The device has not had 1044 * its reference counter increased so the caller must be careful 1045 * about locking. The caller must hold RCU lock. 1046 */ 1047 1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1049 { 1050 struct napi_struct *napi; 1051 1052 WARN_ON_ONCE(!rcu_read_lock_held()); 1053 1054 if (napi_id < MIN_NAPI_ID) 1055 return NULL; 1056 1057 napi = napi_by_id(napi_id); 1058 1059 return napi ? napi->dev : NULL; 1060 } 1061 EXPORT_SYMBOL(dev_get_by_napi_id); 1062 1063 /** 1064 * netdev_get_name - get a netdevice name, knowing its ifindex. 1065 * @net: network namespace 1066 * @name: a pointer to the buffer where the name will be stored. 1067 * @ifindex: the ifindex of the interface to get the name from. 1068 */ 1069 int netdev_get_name(struct net *net, char *name, int ifindex) 1070 { 1071 struct net_device *dev; 1072 int ret; 1073 1074 down_read(&devnet_rename_sem); 1075 rcu_read_lock(); 1076 1077 dev = dev_get_by_index_rcu(net, ifindex); 1078 if (!dev) { 1079 ret = -ENODEV; 1080 goto out; 1081 } 1082 1083 strcpy(name, dev->name); 1084 1085 ret = 0; 1086 out: 1087 rcu_read_unlock(); 1088 up_read(&devnet_rename_sem); 1089 return ret; 1090 } 1091 1092 /** 1093 * dev_getbyhwaddr_rcu - find a device by its hardware address 1094 * @net: the applicable net namespace 1095 * @type: media type of device 1096 * @ha: hardware address 1097 * 1098 * Search for an interface by MAC address. Returns NULL if the device 1099 * is not found or a pointer to the device. 1100 * The caller must hold RCU or RTNL. 1101 * The returned device has not had its ref count increased 1102 * and the caller must therefore be careful about locking 1103 * 1104 */ 1105 1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1107 const char *ha) 1108 { 1109 struct net_device *dev; 1110 1111 for_each_netdev_rcu(net, dev) 1112 if (dev->type == type && 1113 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1114 return dev; 1115 1116 return NULL; 1117 } 1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1119 1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1121 { 1122 struct net_device *dev, *ret = NULL; 1123 1124 rcu_read_lock(); 1125 for_each_netdev_rcu(net, dev) 1126 if (dev->type == type) { 1127 dev_hold(dev); 1128 ret = dev; 1129 break; 1130 } 1131 rcu_read_unlock(); 1132 return ret; 1133 } 1134 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1135 1136 /** 1137 * __dev_get_by_flags - find any device with given flags 1138 * @net: the applicable net namespace 1139 * @if_flags: IFF_* values 1140 * @mask: bitmask of bits in if_flags to check 1141 * 1142 * Search for any interface with the given flags. Returns NULL if a device 1143 * is not found or a pointer to the device. Must be called inside 1144 * rtnl_lock(), and result refcount is unchanged. 1145 */ 1146 1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1148 unsigned short mask) 1149 { 1150 struct net_device *dev, *ret; 1151 1152 ASSERT_RTNL(); 1153 1154 ret = NULL; 1155 for_each_netdev(net, dev) { 1156 if (((dev->flags ^ if_flags) & mask) == 0) { 1157 ret = dev; 1158 break; 1159 } 1160 } 1161 return ret; 1162 } 1163 EXPORT_SYMBOL(__dev_get_by_flags); 1164 1165 /** 1166 * dev_valid_name - check if name is okay for network device 1167 * @name: name string 1168 * 1169 * Network device names need to be valid file names to 1170 * allow sysfs to work. We also disallow any kind of 1171 * whitespace. 1172 */ 1173 bool dev_valid_name(const char *name) 1174 { 1175 if (*name == '\0') 1176 return false; 1177 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1178 return false; 1179 if (!strcmp(name, ".") || !strcmp(name, "..")) 1180 return false; 1181 1182 while (*name) { 1183 if (*name == '/' || *name == ':' || isspace(*name)) 1184 return false; 1185 name++; 1186 } 1187 return true; 1188 } 1189 EXPORT_SYMBOL(dev_valid_name); 1190 1191 /** 1192 * __dev_alloc_name - allocate a name for a device 1193 * @net: network namespace to allocate the device name in 1194 * @name: name format string 1195 * @buf: scratch buffer and result name string 1196 * 1197 * Passed a format string - eg "lt%d" it will try and find a suitable 1198 * id. It scans list of devices to build up a free map, then chooses 1199 * the first empty slot. The caller must hold the dev_base or rtnl lock 1200 * while allocating the name and adding the device in order to avoid 1201 * duplicates. 1202 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1203 * Returns the number of the unit assigned or a negative errno code. 1204 */ 1205 1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1207 { 1208 int i = 0; 1209 const char *p; 1210 const int max_netdevices = 8*PAGE_SIZE; 1211 unsigned long *inuse; 1212 struct net_device *d; 1213 1214 if (!dev_valid_name(name)) 1215 return -EINVAL; 1216 1217 p = strchr(name, '%'); 1218 if (p) { 1219 /* 1220 * Verify the string as this thing may have come from 1221 * the user. There must be either one "%d" and no other "%" 1222 * characters. 1223 */ 1224 if (p[1] != 'd' || strchr(p + 2, '%')) 1225 return -EINVAL; 1226 1227 /* Use one page as a bit array of possible slots */ 1228 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1229 if (!inuse) 1230 return -ENOMEM; 1231 1232 for_each_netdev(net, d) { 1233 struct netdev_name_node *name_node; 1234 list_for_each_entry(name_node, &d->name_node->list, list) { 1235 if (!sscanf(name_node->name, name, &i)) 1236 continue; 1237 if (i < 0 || i >= max_netdevices) 1238 continue; 1239 1240 /* avoid cases where sscanf is not exact inverse of printf */ 1241 snprintf(buf, IFNAMSIZ, name, i); 1242 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1243 set_bit(i, inuse); 1244 } 1245 if (!sscanf(d->name, name, &i)) 1246 continue; 1247 if (i < 0 || i >= max_netdevices) 1248 continue; 1249 1250 /* avoid cases where sscanf is not exact inverse of printf */ 1251 snprintf(buf, IFNAMSIZ, name, i); 1252 if (!strncmp(buf, d->name, IFNAMSIZ)) 1253 set_bit(i, inuse); 1254 } 1255 1256 i = find_first_zero_bit(inuse, max_netdevices); 1257 free_page((unsigned long) inuse); 1258 } 1259 1260 snprintf(buf, IFNAMSIZ, name, i); 1261 if (!__dev_get_by_name(net, buf)) 1262 return i; 1263 1264 /* It is possible to run out of possible slots 1265 * when the name is long and there isn't enough space left 1266 * for the digits, or if all bits are used. 1267 */ 1268 return -ENFILE; 1269 } 1270 1271 static int dev_alloc_name_ns(struct net *net, 1272 struct net_device *dev, 1273 const char *name) 1274 { 1275 char buf[IFNAMSIZ]; 1276 int ret; 1277 1278 BUG_ON(!net); 1279 ret = __dev_alloc_name(net, name, buf); 1280 if (ret >= 0) 1281 strlcpy(dev->name, buf, IFNAMSIZ); 1282 return ret; 1283 } 1284 1285 /** 1286 * dev_alloc_name - allocate a name for a device 1287 * @dev: device 1288 * @name: name format string 1289 * 1290 * Passed a format string - eg "lt%d" it will try and find a suitable 1291 * id. It scans list of devices to build up a free map, then chooses 1292 * the first empty slot. The caller must hold the dev_base or rtnl lock 1293 * while allocating the name and adding the device in order to avoid 1294 * duplicates. 1295 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1296 * Returns the number of the unit assigned or a negative errno code. 1297 */ 1298 1299 int dev_alloc_name(struct net_device *dev, const char *name) 1300 { 1301 return dev_alloc_name_ns(dev_net(dev), dev, name); 1302 } 1303 EXPORT_SYMBOL(dev_alloc_name); 1304 1305 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1306 const char *name) 1307 { 1308 BUG_ON(!net); 1309 1310 if (!dev_valid_name(name)) 1311 return -EINVAL; 1312 1313 if (strchr(name, '%')) 1314 return dev_alloc_name_ns(net, dev, name); 1315 else if (__dev_get_by_name(net, name)) 1316 return -EEXIST; 1317 else if (dev->name != name) 1318 strlcpy(dev->name, name, IFNAMSIZ); 1319 1320 return 0; 1321 } 1322 1323 /** 1324 * dev_change_name - change name of a device 1325 * @dev: device 1326 * @newname: name (or format string) must be at least IFNAMSIZ 1327 * 1328 * Change name of a device, can pass format strings "eth%d". 1329 * for wildcarding. 1330 */ 1331 int dev_change_name(struct net_device *dev, const char *newname) 1332 { 1333 unsigned char old_assign_type; 1334 char oldname[IFNAMSIZ]; 1335 int err = 0; 1336 int ret; 1337 struct net *net; 1338 1339 ASSERT_RTNL(); 1340 BUG_ON(!dev_net(dev)); 1341 1342 net = dev_net(dev); 1343 1344 /* Some auto-enslaved devices e.g. failover slaves are 1345 * special, as userspace might rename the device after 1346 * the interface had been brought up and running since 1347 * the point kernel initiated auto-enslavement. Allow 1348 * live name change even when these slave devices are 1349 * up and running. 1350 * 1351 * Typically, users of these auto-enslaving devices 1352 * don't actually care about slave name change, as 1353 * they are supposed to operate on master interface 1354 * directly. 1355 */ 1356 if (dev->flags & IFF_UP && 1357 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1358 return -EBUSY; 1359 1360 down_write(&devnet_rename_sem); 1361 1362 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1363 up_write(&devnet_rename_sem); 1364 return 0; 1365 } 1366 1367 memcpy(oldname, dev->name, IFNAMSIZ); 1368 1369 err = dev_get_valid_name(net, dev, newname); 1370 if (err < 0) { 1371 up_write(&devnet_rename_sem); 1372 return err; 1373 } 1374 1375 if (oldname[0] && !strchr(oldname, '%')) 1376 netdev_info(dev, "renamed from %s\n", oldname); 1377 1378 old_assign_type = dev->name_assign_type; 1379 dev->name_assign_type = NET_NAME_RENAMED; 1380 1381 rollback: 1382 ret = device_rename(&dev->dev, dev->name); 1383 if (ret) { 1384 memcpy(dev->name, oldname, IFNAMSIZ); 1385 dev->name_assign_type = old_assign_type; 1386 up_write(&devnet_rename_sem); 1387 return ret; 1388 } 1389 1390 up_write(&devnet_rename_sem); 1391 1392 netdev_adjacent_rename_links(dev, oldname); 1393 1394 write_lock_bh(&dev_base_lock); 1395 netdev_name_node_del(dev->name_node); 1396 write_unlock_bh(&dev_base_lock); 1397 1398 synchronize_rcu(); 1399 1400 write_lock_bh(&dev_base_lock); 1401 netdev_name_node_add(net, dev->name_node); 1402 write_unlock_bh(&dev_base_lock); 1403 1404 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1405 ret = notifier_to_errno(ret); 1406 1407 if (ret) { 1408 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1409 if (err >= 0) { 1410 err = ret; 1411 down_write(&devnet_rename_sem); 1412 memcpy(dev->name, oldname, IFNAMSIZ); 1413 memcpy(oldname, newname, IFNAMSIZ); 1414 dev->name_assign_type = old_assign_type; 1415 old_assign_type = NET_NAME_RENAMED; 1416 goto rollback; 1417 } else { 1418 pr_err("%s: name change rollback failed: %d\n", 1419 dev->name, ret); 1420 } 1421 } 1422 1423 return err; 1424 } 1425 1426 /** 1427 * dev_set_alias - change ifalias of a device 1428 * @dev: device 1429 * @alias: name up to IFALIASZ 1430 * @len: limit of bytes to copy from info 1431 * 1432 * Set ifalias for a device, 1433 */ 1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1435 { 1436 struct dev_ifalias *new_alias = NULL; 1437 1438 if (len >= IFALIASZ) 1439 return -EINVAL; 1440 1441 if (len) { 1442 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1443 if (!new_alias) 1444 return -ENOMEM; 1445 1446 memcpy(new_alias->ifalias, alias, len); 1447 new_alias->ifalias[len] = 0; 1448 } 1449 1450 mutex_lock(&ifalias_mutex); 1451 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1452 mutex_is_locked(&ifalias_mutex)); 1453 mutex_unlock(&ifalias_mutex); 1454 1455 if (new_alias) 1456 kfree_rcu(new_alias, rcuhead); 1457 1458 return len; 1459 } 1460 EXPORT_SYMBOL(dev_set_alias); 1461 1462 /** 1463 * dev_get_alias - get ifalias of a device 1464 * @dev: device 1465 * @name: buffer to store name of ifalias 1466 * @len: size of buffer 1467 * 1468 * get ifalias for a device. Caller must make sure dev cannot go 1469 * away, e.g. rcu read lock or own a reference count to device. 1470 */ 1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1472 { 1473 const struct dev_ifalias *alias; 1474 int ret = 0; 1475 1476 rcu_read_lock(); 1477 alias = rcu_dereference(dev->ifalias); 1478 if (alias) 1479 ret = snprintf(name, len, "%s", alias->ifalias); 1480 rcu_read_unlock(); 1481 1482 return ret; 1483 } 1484 1485 /** 1486 * netdev_features_change - device changes features 1487 * @dev: device to cause notification 1488 * 1489 * Called to indicate a device has changed features. 1490 */ 1491 void netdev_features_change(struct net_device *dev) 1492 { 1493 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1494 } 1495 EXPORT_SYMBOL(netdev_features_change); 1496 1497 /** 1498 * netdev_state_change - device changes state 1499 * @dev: device to cause notification 1500 * 1501 * Called to indicate a device has changed state. This function calls 1502 * the notifier chains for netdev_chain and sends a NEWLINK message 1503 * to the routing socket. 1504 */ 1505 void netdev_state_change(struct net_device *dev) 1506 { 1507 if (dev->flags & IFF_UP) { 1508 struct netdev_notifier_change_info change_info = { 1509 .info.dev = dev, 1510 }; 1511 1512 call_netdevice_notifiers_info(NETDEV_CHANGE, 1513 &change_info.info); 1514 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1515 } 1516 } 1517 EXPORT_SYMBOL(netdev_state_change); 1518 1519 /** 1520 * __netdev_notify_peers - notify network peers about existence of @dev, 1521 * to be called when rtnl lock is already held. 1522 * @dev: network device 1523 * 1524 * Generate traffic such that interested network peers are aware of 1525 * @dev, such as by generating a gratuitous ARP. This may be used when 1526 * a device wants to inform the rest of the network about some sort of 1527 * reconfiguration such as a failover event or virtual machine 1528 * migration. 1529 */ 1530 void __netdev_notify_peers(struct net_device *dev) 1531 { 1532 ASSERT_RTNL(); 1533 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1534 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1535 } 1536 EXPORT_SYMBOL(__netdev_notify_peers); 1537 1538 /** 1539 * netdev_notify_peers - notify network peers about existence of @dev 1540 * @dev: network device 1541 * 1542 * Generate traffic such that interested network peers are aware of 1543 * @dev, such as by generating a gratuitous ARP. This may be used when 1544 * a device wants to inform the rest of the network about some sort of 1545 * reconfiguration such as a failover event or virtual machine 1546 * migration. 1547 */ 1548 void netdev_notify_peers(struct net_device *dev) 1549 { 1550 rtnl_lock(); 1551 __netdev_notify_peers(dev); 1552 rtnl_unlock(); 1553 } 1554 EXPORT_SYMBOL(netdev_notify_peers); 1555 1556 static int napi_threaded_poll(void *data); 1557 1558 static int napi_kthread_create(struct napi_struct *n) 1559 { 1560 int err = 0; 1561 1562 /* Create and wake up the kthread once to put it in 1563 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1564 * warning and work with loadavg. 1565 */ 1566 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1567 n->dev->name, n->napi_id); 1568 if (IS_ERR(n->thread)) { 1569 err = PTR_ERR(n->thread); 1570 pr_err("kthread_run failed with err %d\n", err); 1571 n->thread = NULL; 1572 } 1573 1574 return err; 1575 } 1576 1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1578 { 1579 const struct net_device_ops *ops = dev->netdev_ops; 1580 int ret; 1581 1582 ASSERT_RTNL(); 1583 1584 if (!netif_device_present(dev)) { 1585 /* may be detached because parent is runtime-suspended */ 1586 if (dev->dev.parent) 1587 pm_runtime_resume(dev->dev.parent); 1588 if (!netif_device_present(dev)) 1589 return -ENODEV; 1590 } 1591 1592 /* Block netpoll from trying to do any rx path servicing. 1593 * If we don't do this there is a chance ndo_poll_controller 1594 * or ndo_poll may be running while we open the device 1595 */ 1596 netpoll_poll_disable(dev); 1597 1598 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1599 ret = notifier_to_errno(ret); 1600 if (ret) 1601 return ret; 1602 1603 set_bit(__LINK_STATE_START, &dev->state); 1604 1605 if (ops->ndo_validate_addr) 1606 ret = ops->ndo_validate_addr(dev); 1607 1608 if (!ret && ops->ndo_open) 1609 ret = ops->ndo_open(dev); 1610 1611 netpoll_poll_enable(dev); 1612 1613 if (ret) 1614 clear_bit(__LINK_STATE_START, &dev->state); 1615 else { 1616 dev->flags |= IFF_UP; 1617 dev_set_rx_mode(dev); 1618 dev_activate(dev); 1619 add_device_randomness(dev->dev_addr, dev->addr_len); 1620 } 1621 1622 return ret; 1623 } 1624 1625 /** 1626 * dev_open - prepare an interface for use. 1627 * @dev: device to open 1628 * @extack: netlink extended ack 1629 * 1630 * Takes a device from down to up state. The device's private open 1631 * function is invoked and then the multicast lists are loaded. Finally 1632 * the device is moved into the up state and a %NETDEV_UP message is 1633 * sent to the netdev notifier chain. 1634 * 1635 * Calling this function on an active interface is a nop. On a failure 1636 * a negative errno code is returned. 1637 */ 1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1639 { 1640 int ret; 1641 1642 if (dev->flags & IFF_UP) 1643 return 0; 1644 1645 ret = __dev_open(dev, extack); 1646 if (ret < 0) 1647 return ret; 1648 1649 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1650 call_netdevice_notifiers(NETDEV_UP, dev); 1651 1652 return ret; 1653 } 1654 EXPORT_SYMBOL(dev_open); 1655 1656 static void __dev_close_many(struct list_head *head) 1657 { 1658 struct net_device *dev; 1659 1660 ASSERT_RTNL(); 1661 might_sleep(); 1662 1663 list_for_each_entry(dev, head, close_list) { 1664 /* Temporarily disable netpoll until the interface is down */ 1665 netpoll_poll_disable(dev); 1666 1667 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1668 1669 clear_bit(__LINK_STATE_START, &dev->state); 1670 1671 /* Synchronize to scheduled poll. We cannot touch poll list, it 1672 * can be even on different cpu. So just clear netif_running(). 1673 * 1674 * dev->stop() will invoke napi_disable() on all of it's 1675 * napi_struct instances on this device. 1676 */ 1677 smp_mb__after_atomic(); /* Commit netif_running(). */ 1678 } 1679 1680 dev_deactivate_many(head); 1681 1682 list_for_each_entry(dev, head, close_list) { 1683 const struct net_device_ops *ops = dev->netdev_ops; 1684 1685 /* 1686 * Call the device specific close. This cannot fail. 1687 * Only if device is UP 1688 * 1689 * We allow it to be called even after a DETACH hot-plug 1690 * event. 1691 */ 1692 if (ops->ndo_stop) 1693 ops->ndo_stop(dev); 1694 1695 dev->flags &= ~IFF_UP; 1696 netpoll_poll_enable(dev); 1697 } 1698 } 1699 1700 static void __dev_close(struct net_device *dev) 1701 { 1702 LIST_HEAD(single); 1703 1704 list_add(&dev->close_list, &single); 1705 __dev_close_many(&single); 1706 list_del(&single); 1707 } 1708 1709 void dev_close_many(struct list_head *head, bool unlink) 1710 { 1711 struct net_device *dev, *tmp; 1712 1713 /* Remove the devices that don't need to be closed */ 1714 list_for_each_entry_safe(dev, tmp, head, close_list) 1715 if (!(dev->flags & IFF_UP)) 1716 list_del_init(&dev->close_list); 1717 1718 __dev_close_many(head); 1719 1720 list_for_each_entry_safe(dev, tmp, head, close_list) { 1721 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1722 call_netdevice_notifiers(NETDEV_DOWN, dev); 1723 if (unlink) 1724 list_del_init(&dev->close_list); 1725 } 1726 } 1727 EXPORT_SYMBOL(dev_close_many); 1728 1729 /** 1730 * dev_close - shutdown an interface. 1731 * @dev: device to shutdown 1732 * 1733 * This function moves an active device into down state. A 1734 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1735 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1736 * chain. 1737 */ 1738 void dev_close(struct net_device *dev) 1739 { 1740 if (dev->flags & IFF_UP) { 1741 LIST_HEAD(single); 1742 1743 list_add(&dev->close_list, &single); 1744 dev_close_many(&single, true); 1745 list_del(&single); 1746 } 1747 } 1748 EXPORT_SYMBOL(dev_close); 1749 1750 1751 /** 1752 * dev_disable_lro - disable Large Receive Offload on a device 1753 * @dev: device 1754 * 1755 * Disable Large Receive Offload (LRO) on a net device. Must be 1756 * called under RTNL. This is needed if received packets may be 1757 * forwarded to another interface. 1758 */ 1759 void dev_disable_lro(struct net_device *dev) 1760 { 1761 struct net_device *lower_dev; 1762 struct list_head *iter; 1763 1764 dev->wanted_features &= ~NETIF_F_LRO; 1765 netdev_update_features(dev); 1766 1767 if (unlikely(dev->features & NETIF_F_LRO)) 1768 netdev_WARN(dev, "failed to disable LRO!\n"); 1769 1770 netdev_for_each_lower_dev(dev, lower_dev, iter) 1771 dev_disable_lro(lower_dev); 1772 } 1773 EXPORT_SYMBOL(dev_disable_lro); 1774 1775 /** 1776 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1777 * @dev: device 1778 * 1779 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1780 * called under RTNL. This is needed if Generic XDP is installed on 1781 * the device. 1782 */ 1783 static void dev_disable_gro_hw(struct net_device *dev) 1784 { 1785 dev->wanted_features &= ~NETIF_F_GRO_HW; 1786 netdev_update_features(dev); 1787 1788 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1789 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1790 } 1791 1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1793 { 1794 #define N(val) \ 1795 case NETDEV_##val: \ 1796 return "NETDEV_" __stringify(val); 1797 switch (cmd) { 1798 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1799 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1800 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1801 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1802 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1803 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1804 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1805 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1806 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1807 N(PRE_CHANGEADDR) 1808 } 1809 #undef N 1810 return "UNKNOWN_NETDEV_EVENT"; 1811 } 1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1813 1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1815 struct net_device *dev) 1816 { 1817 struct netdev_notifier_info info = { 1818 .dev = dev, 1819 }; 1820 1821 return nb->notifier_call(nb, val, &info); 1822 } 1823 1824 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1825 struct net_device *dev) 1826 { 1827 int err; 1828 1829 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1830 err = notifier_to_errno(err); 1831 if (err) 1832 return err; 1833 1834 if (!(dev->flags & IFF_UP)) 1835 return 0; 1836 1837 call_netdevice_notifier(nb, NETDEV_UP, dev); 1838 return 0; 1839 } 1840 1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1842 struct net_device *dev) 1843 { 1844 if (dev->flags & IFF_UP) { 1845 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1846 dev); 1847 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1848 } 1849 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1850 } 1851 1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1853 struct net *net) 1854 { 1855 struct net_device *dev; 1856 int err; 1857 1858 for_each_netdev(net, dev) { 1859 err = call_netdevice_register_notifiers(nb, dev); 1860 if (err) 1861 goto rollback; 1862 } 1863 return 0; 1864 1865 rollback: 1866 for_each_netdev_continue_reverse(net, dev) 1867 call_netdevice_unregister_notifiers(nb, dev); 1868 return err; 1869 } 1870 1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1872 struct net *net) 1873 { 1874 struct net_device *dev; 1875 1876 for_each_netdev(net, dev) 1877 call_netdevice_unregister_notifiers(nb, dev); 1878 } 1879 1880 static int dev_boot_phase = 1; 1881 1882 /** 1883 * register_netdevice_notifier - register a network notifier block 1884 * @nb: notifier 1885 * 1886 * Register a notifier to be called when network device events occur. 1887 * The notifier passed is linked into the kernel structures and must 1888 * not be reused until it has been unregistered. A negative errno code 1889 * is returned on a failure. 1890 * 1891 * When registered all registration and up events are replayed 1892 * to the new notifier to allow device to have a race free 1893 * view of the network device list. 1894 */ 1895 1896 int register_netdevice_notifier(struct notifier_block *nb) 1897 { 1898 struct net *net; 1899 int err; 1900 1901 /* Close race with setup_net() and cleanup_net() */ 1902 down_write(&pernet_ops_rwsem); 1903 rtnl_lock(); 1904 err = raw_notifier_chain_register(&netdev_chain, nb); 1905 if (err) 1906 goto unlock; 1907 if (dev_boot_phase) 1908 goto unlock; 1909 for_each_net(net) { 1910 err = call_netdevice_register_net_notifiers(nb, net); 1911 if (err) 1912 goto rollback; 1913 } 1914 1915 unlock: 1916 rtnl_unlock(); 1917 up_write(&pernet_ops_rwsem); 1918 return err; 1919 1920 rollback: 1921 for_each_net_continue_reverse(net) 1922 call_netdevice_unregister_net_notifiers(nb, net); 1923 1924 raw_notifier_chain_unregister(&netdev_chain, nb); 1925 goto unlock; 1926 } 1927 EXPORT_SYMBOL(register_netdevice_notifier); 1928 1929 /** 1930 * unregister_netdevice_notifier - unregister a network notifier block 1931 * @nb: notifier 1932 * 1933 * Unregister a notifier previously registered by 1934 * register_netdevice_notifier(). The notifier is unlinked into the 1935 * kernel structures and may then be reused. A negative errno code 1936 * is returned on a failure. 1937 * 1938 * After unregistering unregister and down device events are synthesized 1939 * for all devices on the device list to the removed notifier to remove 1940 * the need for special case cleanup code. 1941 */ 1942 1943 int unregister_netdevice_notifier(struct notifier_block *nb) 1944 { 1945 struct net *net; 1946 int err; 1947 1948 /* Close race with setup_net() and cleanup_net() */ 1949 down_write(&pernet_ops_rwsem); 1950 rtnl_lock(); 1951 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1952 if (err) 1953 goto unlock; 1954 1955 for_each_net(net) 1956 call_netdevice_unregister_net_notifiers(nb, net); 1957 1958 unlock: 1959 rtnl_unlock(); 1960 up_write(&pernet_ops_rwsem); 1961 return err; 1962 } 1963 EXPORT_SYMBOL(unregister_netdevice_notifier); 1964 1965 static int __register_netdevice_notifier_net(struct net *net, 1966 struct notifier_block *nb, 1967 bool ignore_call_fail) 1968 { 1969 int err; 1970 1971 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1972 if (err) 1973 return err; 1974 if (dev_boot_phase) 1975 return 0; 1976 1977 err = call_netdevice_register_net_notifiers(nb, net); 1978 if (err && !ignore_call_fail) 1979 goto chain_unregister; 1980 1981 return 0; 1982 1983 chain_unregister: 1984 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1985 return err; 1986 } 1987 1988 static int __unregister_netdevice_notifier_net(struct net *net, 1989 struct notifier_block *nb) 1990 { 1991 int err; 1992 1993 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1994 if (err) 1995 return err; 1996 1997 call_netdevice_unregister_net_notifiers(nb, net); 1998 return 0; 1999 } 2000 2001 /** 2002 * register_netdevice_notifier_net - register a per-netns network notifier block 2003 * @net: network namespace 2004 * @nb: notifier 2005 * 2006 * Register a notifier to be called when network device events occur. 2007 * The notifier passed is linked into the kernel structures and must 2008 * not be reused until it has been unregistered. A negative errno code 2009 * is returned on a failure. 2010 * 2011 * When registered all registration and up events are replayed 2012 * to the new notifier to allow device to have a race free 2013 * view of the network device list. 2014 */ 2015 2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 2017 { 2018 int err; 2019 2020 rtnl_lock(); 2021 err = __register_netdevice_notifier_net(net, nb, false); 2022 rtnl_unlock(); 2023 return err; 2024 } 2025 EXPORT_SYMBOL(register_netdevice_notifier_net); 2026 2027 /** 2028 * unregister_netdevice_notifier_net - unregister a per-netns 2029 * network notifier block 2030 * @net: network namespace 2031 * @nb: notifier 2032 * 2033 * Unregister a notifier previously registered by 2034 * register_netdevice_notifier(). The notifier is unlinked into the 2035 * kernel structures and may then be reused. A negative errno code 2036 * is returned on a failure. 2037 * 2038 * After unregistering unregister and down device events are synthesized 2039 * for all devices on the device list to the removed notifier to remove 2040 * the need for special case cleanup code. 2041 */ 2042 2043 int unregister_netdevice_notifier_net(struct net *net, 2044 struct notifier_block *nb) 2045 { 2046 int err; 2047 2048 rtnl_lock(); 2049 err = __unregister_netdevice_notifier_net(net, nb); 2050 rtnl_unlock(); 2051 return err; 2052 } 2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 2054 2055 int register_netdevice_notifier_dev_net(struct net_device *dev, 2056 struct notifier_block *nb, 2057 struct netdev_net_notifier *nn) 2058 { 2059 int err; 2060 2061 rtnl_lock(); 2062 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 2063 if (!err) { 2064 nn->nb = nb; 2065 list_add(&nn->list, &dev->net_notifier_list); 2066 } 2067 rtnl_unlock(); 2068 return err; 2069 } 2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 2071 2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 2073 struct notifier_block *nb, 2074 struct netdev_net_notifier *nn) 2075 { 2076 int err; 2077 2078 rtnl_lock(); 2079 list_del(&nn->list); 2080 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 2081 rtnl_unlock(); 2082 return err; 2083 } 2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 2085 2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2087 struct net *net) 2088 { 2089 struct netdev_net_notifier *nn; 2090 2091 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2092 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2093 __register_netdevice_notifier_net(net, nn->nb, true); 2094 } 2095 } 2096 2097 /** 2098 * call_netdevice_notifiers_info - call all network notifier blocks 2099 * @val: value passed unmodified to notifier function 2100 * @info: notifier information data 2101 * 2102 * Call all network notifier blocks. Parameters and return value 2103 * are as for raw_notifier_call_chain(). 2104 */ 2105 2106 static int call_netdevice_notifiers_info(unsigned long val, 2107 struct netdev_notifier_info *info) 2108 { 2109 struct net *net = dev_net(info->dev); 2110 int ret; 2111 2112 ASSERT_RTNL(); 2113 2114 /* Run per-netns notifier block chain first, then run the global one. 2115 * Hopefully, one day, the global one is going to be removed after 2116 * all notifier block registrators get converted to be per-netns. 2117 */ 2118 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2119 if (ret & NOTIFY_STOP_MASK) 2120 return ret; 2121 return raw_notifier_call_chain(&netdev_chain, val, info); 2122 } 2123 2124 static int call_netdevice_notifiers_extack(unsigned long val, 2125 struct net_device *dev, 2126 struct netlink_ext_ack *extack) 2127 { 2128 struct netdev_notifier_info info = { 2129 .dev = dev, 2130 .extack = extack, 2131 }; 2132 2133 return call_netdevice_notifiers_info(val, &info); 2134 } 2135 2136 /** 2137 * call_netdevice_notifiers - call all network notifier blocks 2138 * @val: value passed unmodified to notifier function 2139 * @dev: net_device pointer passed unmodified to notifier function 2140 * 2141 * Call all network notifier blocks. Parameters and return value 2142 * are as for raw_notifier_call_chain(). 2143 */ 2144 2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2146 { 2147 return call_netdevice_notifiers_extack(val, dev, NULL); 2148 } 2149 EXPORT_SYMBOL(call_netdevice_notifiers); 2150 2151 /** 2152 * call_netdevice_notifiers_mtu - call all network notifier blocks 2153 * @val: value passed unmodified to notifier function 2154 * @dev: net_device pointer passed unmodified to notifier function 2155 * @arg: additional u32 argument passed to the notifier function 2156 * 2157 * Call all network notifier blocks. Parameters and return value 2158 * are as for raw_notifier_call_chain(). 2159 */ 2160 static int call_netdevice_notifiers_mtu(unsigned long val, 2161 struct net_device *dev, u32 arg) 2162 { 2163 struct netdev_notifier_info_ext info = { 2164 .info.dev = dev, 2165 .ext.mtu = arg, 2166 }; 2167 2168 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2169 2170 return call_netdevice_notifiers_info(val, &info.info); 2171 } 2172 2173 #ifdef CONFIG_NET_INGRESS 2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2175 2176 void net_inc_ingress_queue(void) 2177 { 2178 static_branch_inc(&ingress_needed_key); 2179 } 2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2181 2182 void net_dec_ingress_queue(void) 2183 { 2184 static_branch_dec(&ingress_needed_key); 2185 } 2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2187 #endif 2188 2189 #ifdef CONFIG_NET_EGRESS 2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2191 2192 void net_inc_egress_queue(void) 2193 { 2194 static_branch_inc(&egress_needed_key); 2195 } 2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2197 2198 void net_dec_egress_queue(void) 2199 { 2200 static_branch_dec(&egress_needed_key); 2201 } 2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2203 #endif 2204 2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2206 #ifdef CONFIG_JUMP_LABEL 2207 static atomic_t netstamp_needed_deferred; 2208 static atomic_t netstamp_wanted; 2209 static void netstamp_clear(struct work_struct *work) 2210 { 2211 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2212 int wanted; 2213 2214 wanted = atomic_add_return(deferred, &netstamp_wanted); 2215 if (wanted > 0) 2216 static_branch_enable(&netstamp_needed_key); 2217 else 2218 static_branch_disable(&netstamp_needed_key); 2219 } 2220 static DECLARE_WORK(netstamp_work, netstamp_clear); 2221 #endif 2222 2223 void net_enable_timestamp(void) 2224 { 2225 #ifdef CONFIG_JUMP_LABEL 2226 int wanted; 2227 2228 while (1) { 2229 wanted = atomic_read(&netstamp_wanted); 2230 if (wanted <= 0) 2231 break; 2232 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2233 return; 2234 } 2235 atomic_inc(&netstamp_needed_deferred); 2236 schedule_work(&netstamp_work); 2237 #else 2238 static_branch_inc(&netstamp_needed_key); 2239 #endif 2240 } 2241 EXPORT_SYMBOL(net_enable_timestamp); 2242 2243 void net_disable_timestamp(void) 2244 { 2245 #ifdef CONFIG_JUMP_LABEL 2246 int wanted; 2247 2248 while (1) { 2249 wanted = atomic_read(&netstamp_wanted); 2250 if (wanted <= 1) 2251 break; 2252 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2253 return; 2254 } 2255 atomic_dec(&netstamp_needed_deferred); 2256 schedule_work(&netstamp_work); 2257 #else 2258 static_branch_dec(&netstamp_needed_key); 2259 #endif 2260 } 2261 EXPORT_SYMBOL(net_disable_timestamp); 2262 2263 static inline void net_timestamp_set(struct sk_buff *skb) 2264 { 2265 skb->tstamp = 0; 2266 if (static_branch_unlikely(&netstamp_needed_key)) 2267 __net_timestamp(skb); 2268 } 2269 2270 #define net_timestamp_check(COND, SKB) \ 2271 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2272 if ((COND) && !(SKB)->tstamp) \ 2273 __net_timestamp(SKB); \ 2274 } \ 2275 2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2277 { 2278 return __is_skb_forwardable(dev, skb, true); 2279 } 2280 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2281 2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2283 bool check_mtu) 2284 { 2285 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2286 2287 if (likely(!ret)) { 2288 skb->protocol = eth_type_trans(skb, dev); 2289 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2290 } 2291 2292 return ret; 2293 } 2294 2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2296 { 2297 return __dev_forward_skb2(dev, skb, true); 2298 } 2299 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2300 2301 /** 2302 * dev_forward_skb - loopback an skb to another netif 2303 * 2304 * @dev: destination network device 2305 * @skb: buffer to forward 2306 * 2307 * return values: 2308 * NET_RX_SUCCESS (no congestion) 2309 * NET_RX_DROP (packet was dropped, but freed) 2310 * 2311 * dev_forward_skb can be used for injecting an skb from the 2312 * start_xmit function of one device into the receive queue 2313 * of another device. 2314 * 2315 * The receiving device may be in another namespace, so 2316 * we have to clear all information in the skb that could 2317 * impact namespace isolation. 2318 */ 2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2320 { 2321 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2322 } 2323 EXPORT_SYMBOL_GPL(dev_forward_skb); 2324 2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2326 { 2327 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2328 } 2329 2330 static inline int deliver_skb(struct sk_buff *skb, 2331 struct packet_type *pt_prev, 2332 struct net_device *orig_dev) 2333 { 2334 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2335 return -ENOMEM; 2336 refcount_inc(&skb->users); 2337 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2338 } 2339 2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2341 struct packet_type **pt, 2342 struct net_device *orig_dev, 2343 __be16 type, 2344 struct list_head *ptype_list) 2345 { 2346 struct packet_type *ptype, *pt_prev = *pt; 2347 2348 list_for_each_entry_rcu(ptype, ptype_list, list) { 2349 if (ptype->type != type) 2350 continue; 2351 if (pt_prev) 2352 deliver_skb(skb, pt_prev, orig_dev); 2353 pt_prev = ptype; 2354 } 2355 *pt = pt_prev; 2356 } 2357 2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2359 { 2360 if (!ptype->af_packet_priv || !skb->sk) 2361 return false; 2362 2363 if (ptype->id_match) 2364 return ptype->id_match(ptype, skb->sk); 2365 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2366 return true; 2367 2368 return false; 2369 } 2370 2371 /** 2372 * dev_nit_active - return true if any network interface taps are in use 2373 * 2374 * @dev: network device to check for the presence of taps 2375 */ 2376 bool dev_nit_active(struct net_device *dev) 2377 { 2378 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2379 } 2380 EXPORT_SYMBOL_GPL(dev_nit_active); 2381 2382 /* 2383 * Support routine. Sends outgoing frames to any network 2384 * taps currently in use. 2385 */ 2386 2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2388 { 2389 struct packet_type *ptype; 2390 struct sk_buff *skb2 = NULL; 2391 struct packet_type *pt_prev = NULL; 2392 struct list_head *ptype_list = &ptype_all; 2393 2394 rcu_read_lock(); 2395 again: 2396 list_for_each_entry_rcu(ptype, ptype_list, list) { 2397 if (ptype->ignore_outgoing) 2398 continue; 2399 2400 /* Never send packets back to the socket 2401 * they originated from - MvS ([email protected]) 2402 */ 2403 if (skb_loop_sk(ptype, skb)) 2404 continue; 2405 2406 if (pt_prev) { 2407 deliver_skb(skb2, pt_prev, skb->dev); 2408 pt_prev = ptype; 2409 continue; 2410 } 2411 2412 /* need to clone skb, done only once */ 2413 skb2 = skb_clone(skb, GFP_ATOMIC); 2414 if (!skb2) 2415 goto out_unlock; 2416 2417 net_timestamp_set(skb2); 2418 2419 /* skb->nh should be correctly 2420 * set by sender, so that the second statement is 2421 * just protection against buggy protocols. 2422 */ 2423 skb_reset_mac_header(skb2); 2424 2425 if (skb_network_header(skb2) < skb2->data || 2426 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2427 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2428 ntohs(skb2->protocol), 2429 dev->name); 2430 skb_reset_network_header(skb2); 2431 } 2432 2433 skb2->transport_header = skb2->network_header; 2434 skb2->pkt_type = PACKET_OUTGOING; 2435 pt_prev = ptype; 2436 } 2437 2438 if (ptype_list == &ptype_all) { 2439 ptype_list = &dev->ptype_all; 2440 goto again; 2441 } 2442 out_unlock: 2443 if (pt_prev) { 2444 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2445 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2446 else 2447 kfree_skb(skb2); 2448 } 2449 rcu_read_unlock(); 2450 } 2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2452 2453 /** 2454 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2455 * @dev: Network device 2456 * @txq: number of queues available 2457 * 2458 * If real_num_tx_queues is changed the tc mappings may no longer be 2459 * valid. To resolve this verify the tc mapping remains valid and if 2460 * not NULL the mapping. With no priorities mapping to this 2461 * offset/count pair it will no longer be used. In the worst case TC0 2462 * is invalid nothing can be done so disable priority mappings. If is 2463 * expected that drivers will fix this mapping if they can before 2464 * calling netif_set_real_num_tx_queues. 2465 */ 2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2467 { 2468 int i; 2469 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2470 2471 /* If TC0 is invalidated disable TC mapping */ 2472 if (tc->offset + tc->count > txq) { 2473 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2474 dev->num_tc = 0; 2475 return; 2476 } 2477 2478 /* Invalidated prio to tc mappings set to TC0 */ 2479 for (i = 1; i < TC_BITMASK + 1; i++) { 2480 int q = netdev_get_prio_tc_map(dev, i); 2481 2482 tc = &dev->tc_to_txq[q]; 2483 if (tc->offset + tc->count > txq) { 2484 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2485 i, q); 2486 netdev_set_prio_tc_map(dev, i, 0); 2487 } 2488 } 2489 } 2490 2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2492 { 2493 if (dev->num_tc) { 2494 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2495 int i; 2496 2497 /* walk through the TCs and see if it falls into any of them */ 2498 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2499 if ((txq - tc->offset) < tc->count) 2500 return i; 2501 } 2502 2503 /* didn't find it, just return -1 to indicate no match */ 2504 return -1; 2505 } 2506 2507 return 0; 2508 } 2509 EXPORT_SYMBOL(netdev_txq_to_tc); 2510 2511 #ifdef CONFIG_XPS 2512 static struct static_key xps_needed __read_mostly; 2513 static struct static_key xps_rxqs_needed __read_mostly; 2514 static DEFINE_MUTEX(xps_map_mutex); 2515 #define xmap_dereference(P) \ 2516 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2517 2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2519 struct xps_dev_maps *old_maps, int tci, u16 index) 2520 { 2521 struct xps_map *map = NULL; 2522 int pos; 2523 2524 if (dev_maps) 2525 map = xmap_dereference(dev_maps->attr_map[tci]); 2526 if (!map) 2527 return false; 2528 2529 for (pos = map->len; pos--;) { 2530 if (map->queues[pos] != index) 2531 continue; 2532 2533 if (map->len > 1) { 2534 map->queues[pos] = map->queues[--map->len]; 2535 break; 2536 } 2537 2538 if (old_maps) 2539 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2540 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2541 kfree_rcu(map, rcu); 2542 return false; 2543 } 2544 2545 return true; 2546 } 2547 2548 static bool remove_xps_queue_cpu(struct net_device *dev, 2549 struct xps_dev_maps *dev_maps, 2550 int cpu, u16 offset, u16 count) 2551 { 2552 int num_tc = dev_maps->num_tc; 2553 bool active = false; 2554 int tci; 2555 2556 for (tci = cpu * num_tc; num_tc--; tci++) { 2557 int i, j; 2558 2559 for (i = count, j = offset; i--; j++) { 2560 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2561 break; 2562 } 2563 2564 active |= i < 0; 2565 } 2566 2567 return active; 2568 } 2569 2570 static void reset_xps_maps(struct net_device *dev, 2571 struct xps_dev_maps *dev_maps, 2572 enum xps_map_type type) 2573 { 2574 static_key_slow_dec_cpuslocked(&xps_needed); 2575 if (type == XPS_RXQS) 2576 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2577 2578 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2579 2580 kfree_rcu(dev_maps, rcu); 2581 } 2582 2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2584 u16 offset, u16 count) 2585 { 2586 struct xps_dev_maps *dev_maps; 2587 bool active = false; 2588 int i, j; 2589 2590 dev_maps = xmap_dereference(dev->xps_maps[type]); 2591 if (!dev_maps) 2592 return; 2593 2594 for (j = 0; j < dev_maps->nr_ids; j++) 2595 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2596 if (!active) 2597 reset_xps_maps(dev, dev_maps, type); 2598 2599 if (type == XPS_CPUS) { 2600 for (i = offset + (count - 1); count--; i--) 2601 netdev_queue_numa_node_write( 2602 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2603 } 2604 } 2605 2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2607 u16 count) 2608 { 2609 if (!static_key_false(&xps_needed)) 2610 return; 2611 2612 cpus_read_lock(); 2613 mutex_lock(&xps_map_mutex); 2614 2615 if (static_key_false(&xps_rxqs_needed)) 2616 clean_xps_maps(dev, XPS_RXQS, offset, count); 2617 2618 clean_xps_maps(dev, XPS_CPUS, offset, count); 2619 2620 mutex_unlock(&xps_map_mutex); 2621 cpus_read_unlock(); 2622 } 2623 2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2625 { 2626 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2627 } 2628 2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2630 u16 index, bool is_rxqs_map) 2631 { 2632 struct xps_map *new_map; 2633 int alloc_len = XPS_MIN_MAP_ALLOC; 2634 int i, pos; 2635 2636 for (pos = 0; map && pos < map->len; pos++) { 2637 if (map->queues[pos] != index) 2638 continue; 2639 return map; 2640 } 2641 2642 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2643 if (map) { 2644 if (pos < map->alloc_len) 2645 return map; 2646 2647 alloc_len = map->alloc_len * 2; 2648 } 2649 2650 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2651 * map 2652 */ 2653 if (is_rxqs_map) 2654 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2655 else 2656 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2657 cpu_to_node(attr_index)); 2658 if (!new_map) 2659 return NULL; 2660 2661 for (i = 0; i < pos; i++) 2662 new_map->queues[i] = map->queues[i]; 2663 new_map->alloc_len = alloc_len; 2664 new_map->len = pos; 2665 2666 return new_map; 2667 } 2668 2669 /* Copy xps maps at a given index */ 2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2671 struct xps_dev_maps *new_dev_maps, int index, 2672 int tc, bool skip_tc) 2673 { 2674 int i, tci = index * dev_maps->num_tc; 2675 struct xps_map *map; 2676 2677 /* copy maps belonging to foreign traffic classes */ 2678 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2679 if (i == tc && skip_tc) 2680 continue; 2681 2682 /* fill in the new device map from the old device map */ 2683 map = xmap_dereference(dev_maps->attr_map[tci]); 2684 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2685 } 2686 } 2687 2688 /* Must be called under cpus_read_lock */ 2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2690 u16 index, enum xps_map_type type) 2691 { 2692 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2693 const unsigned long *online_mask = NULL; 2694 bool active = false, copy = false; 2695 int i, j, tci, numa_node_id = -2; 2696 int maps_sz, num_tc = 1, tc = 0; 2697 struct xps_map *map, *new_map; 2698 unsigned int nr_ids; 2699 2700 if (dev->num_tc) { 2701 /* Do not allow XPS on subordinate device directly */ 2702 num_tc = dev->num_tc; 2703 if (num_tc < 0) 2704 return -EINVAL; 2705 2706 /* If queue belongs to subordinate dev use its map */ 2707 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2708 2709 tc = netdev_txq_to_tc(dev, index); 2710 if (tc < 0) 2711 return -EINVAL; 2712 } 2713 2714 mutex_lock(&xps_map_mutex); 2715 2716 dev_maps = xmap_dereference(dev->xps_maps[type]); 2717 if (type == XPS_RXQS) { 2718 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2719 nr_ids = dev->num_rx_queues; 2720 } else { 2721 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2722 if (num_possible_cpus() > 1) 2723 online_mask = cpumask_bits(cpu_online_mask); 2724 nr_ids = nr_cpu_ids; 2725 } 2726 2727 if (maps_sz < L1_CACHE_BYTES) 2728 maps_sz = L1_CACHE_BYTES; 2729 2730 /* The old dev_maps could be larger or smaller than the one we're 2731 * setting up now, as dev->num_tc or nr_ids could have been updated in 2732 * between. We could try to be smart, but let's be safe instead and only 2733 * copy foreign traffic classes if the two map sizes match. 2734 */ 2735 if (dev_maps && 2736 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2737 copy = true; 2738 2739 /* allocate memory for queue storage */ 2740 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2741 j < nr_ids;) { 2742 if (!new_dev_maps) { 2743 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2744 if (!new_dev_maps) { 2745 mutex_unlock(&xps_map_mutex); 2746 return -ENOMEM; 2747 } 2748 2749 new_dev_maps->nr_ids = nr_ids; 2750 new_dev_maps->num_tc = num_tc; 2751 } 2752 2753 tci = j * num_tc + tc; 2754 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2755 2756 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2757 if (!map) 2758 goto error; 2759 2760 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2761 } 2762 2763 if (!new_dev_maps) 2764 goto out_no_new_maps; 2765 2766 if (!dev_maps) { 2767 /* Increment static keys at most once per type */ 2768 static_key_slow_inc_cpuslocked(&xps_needed); 2769 if (type == XPS_RXQS) 2770 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2771 } 2772 2773 for (j = 0; j < nr_ids; j++) { 2774 bool skip_tc = false; 2775 2776 tci = j * num_tc + tc; 2777 if (netif_attr_test_mask(j, mask, nr_ids) && 2778 netif_attr_test_online(j, online_mask, nr_ids)) { 2779 /* add tx-queue to CPU/rx-queue maps */ 2780 int pos = 0; 2781 2782 skip_tc = true; 2783 2784 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2785 while ((pos < map->len) && (map->queues[pos] != index)) 2786 pos++; 2787 2788 if (pos == map->len) 2789 map->queues[map->len++] = index; 2790 #ifdef CONFIG_NUMA 2791 if (type == XPS_CPUS) { 2792 if (numa_node_id == -2) 2793 numa_node_id = cpu_to_node(j); 2794 else if (numa_node_id != cpu_to_node(j)) 2795 numa_node_id = -1; 2796 } 2797 #endif 2798 } 2799 2800 if (copy) 2801 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2802 skip_tc); 2803 } 2804 2805 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2806 2807 /* Cleanup old maps */ 2808 if (!dev_maps) 2809 goto out_no_old_maps; 2810 2811 for (j = 0; j < dev_maps->nr_ids; j++) { 2812 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2813 map = xmap_dereference(dev_maps->attr_map[tci]); 2814 if (!map) 2815 continue; 2816 2817 if (copy) { 2818 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2819 if (map == new_map) 2820 continue; 2821 } 2822 2823 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2824 kfree_rcu(map, rcu); 2825 } 2826 } 2827 2828 old_dev_maps = dev_maps; 2829 2830 out_no_old_maps: 2831 dev_maps = new_dev_maps; 2832 active = true; 2833 2834 out_no_new_maps: 2835 if (type == XPS_CPUS) 2836 /* update Tx queue numa node */ 2837 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2838 (numa_node_id >= 0) ? 2839 numa_node_id : NUMA_NO_NODE); 2840 2841 if (!dev_maps) 2842 goto out_no_maps; 2843 2844 /* removes tx-queue from unused CPUs/rx-queues */ 2845 for (j = 0; j < dev_maps->nr_ids; j++) { 2846 tci = j * dev_maps->num_tc; 2847 2848 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2849 if (i == tc && 2850 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2851 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2852 continue; 2853 2854 active |= remove_xps_queue(dev_maps, 2855 copy ? old_dev_maps : NULL, 2856 tci, index); 2857 } 2858 } 2859 2860 if (old_dev_maps) 2861 kfree_rcu(old_dev_maps, rcu); 2862 2863 /* free map if not active */ 2864 if (!active) 2865 reset_xps_maps(dev, dev_maps, type); 2866 2867 out_no_maps: 2868 mutex_unlock(&xps_map_mutex); 2869 2870 return 0; 2871 error: 2872 /* remove any maps that we added */ 2873 for (j = 0; j < nr_ids; j++) { 2874 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2875 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2876 map = copy ? 2877 xmap_dereference(dev_maps->attr_map[tci]) : 2878 NULL; 2879 if (new_map && new_map != map) 2880 kfree(new_map); 2881 } 2882 } 2883 2884 mutex_unlock(&xps_map_mutex); 2885 2886 kfree(new_dev_maps); 2887 return -ENOMEM; 2888 } 2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2890 2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2892 u16 index) 2893 { 2894 int ret; 2895 2896 cpus_read_lock(); 2897 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2898 cpus_read_unlock(); 2899 2900 return ret; 2901 } 2902 EXPORT_SYMBOL(netif_set_xps_queue); 2903 2904 #endif 2905 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2906 { 2907 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2908 2909 /* Unbind any subordinate channels */ 2910 while (txq-- != &dev->_tx[0]) { 2911 if (txq->sb_dev) 2912 netdev_unbind_sb_channel(dev, txq->sb_dev); 2913 } 2914 } 2915 2916 void netdev_reset_tc(struct net_device *dev) 2917 { 2918 #ifdef CONFIG_XPS 2919 netif_reset_xps_queues_gt(dev, 0); 2920 #endif 2921 netdev_unbind_all_sb_channels(dev); 2922 2923 /* Reset TC configuration of device */ 2924 dev->num_tc = 0; 2925 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2926 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2927 } 2928 EXPORT_SYMBOL(netdev_reset_tc); 2929 2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2931 { 2932 if (tc >= dev->num_tc) 2933 return -EINVAL; 2934 2935 #ifdef CONFIG_XPS 2936 netif_reset_xps_queues(dev, offset, count); 2937 #endif 2938 dev->tc_to_txq[tc].count = count; 2939 dev->tc_to_txq[tc].offset = offset; 2940 return 0; 2941 } 2942 EXPORT_SYMBOL(netdev_set_tc_queue); 2943 2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2945 { 2946 if (num_tc > TC_MAX_QUEUE) 2947 return -EINVAL; 2948 2949 #ifdef CONFIG_XPS 2950 netif_reset_xps_queues_gt(dev, 0); 2951 #endif 2952 netdev_unbind_all_sb_channels(dev); 2953 2954 dev->num_tc = num_tc; 2955 return 0; 2956 } 2957 EXPORT_SYMBOL(netdev_set_num_tc); 2958 2959 void netdev_unbind_sb_channel(struct net_device *dev, 2960 struct net_device *sb_dev) 2961 { 2962 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2963 2964 #ifdef CONFIG_XPS 2965 netif_reset_xps_queues_gt(sb_dev, 0); 2966 #endif 2967 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2968 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2969 2970 while (txq-- != &dev->_tx[0]) { 2971 if (txq->sb_dev == sb_dev) 2972 txq->sb_dev = NULL; 2973 } 2974 } 2975 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2976 2977 int netdev_bind_sb_channel_queue(struct net_device *dev, 2978 struct net_device *sb_dev, 2979 u8 tc, u16 count, u16 offset) 2980 { 2981 /* Make certain the sb_dev and dev are already configured */ 2982 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2983 return -EINVAL; 2984 2985 /* We cannot hand out queues we don't have */ 2986 if ((offset + count) > dev->real_num_tx_queues) 2987 return -EINVAL; 2988 2989 /* Record the mapping */ 2990 sb_dev->tc_to_txq[tc].count = count; 2991 sb_dev->tc_to_txq[tc].offset = offset; 2992 2993 /* Provide a way for Tx queue to find the tc_to_txq map or 2994 * XPS map for itself. 2995 */ 2996 while (count--) 2997 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2998 2999 return 0; 3000 } 3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 3002 3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 3004 { 3005 /* Do not use a multiqueue device to represent a subordinate channel */ 3006 if (netif_is_multiqueue(dev)) 3007 return -ENODEV; 3008 3009 /* We allow channels 1 - 32767 to be used for subordinate channels. 3010 * Channel 0 is meant to be "native" mode and used only to represent 3011 * the main root device. We allow writing 0 to reset the device back 3012 * to normal mode after being used as a subordinate channel. 3013 */ 3014 if (channel > S16_MAX) 3015 return -EINVAL; 3016 3017 dev->num_tc = -channel; 3018 3019 return 0; 3020 } 3021 EXPORT_SYMBOL(netdev_set_sb_channel); 3022 3023 /* 3024 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 3025 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 3026 */ 3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 3028 { 3029 bool disabling; 3030 int rc; 3031 3032 disabling = txq < dev->real_num_tx_queues; 3033 3034 if (txq < 1 || txq > dev->num_tx_queues) 3035 return -EINVAL; 3036 3037 if (dev->reg_state == NETREG_REGISTERED || 3038 dev->reg_state == NETREG_UNREGISTERING) { 3039 ASSERT_RTNL(); 3040 3041 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 3042 txq); 3043 if (rc) 3044 return rc; 3045 3046 if (dev->num_tc) 3047 netif_setup_tc(dev, txq); 3048 3049 dev->real_num_tx_queues = txq; 3050 3051 if (disabling) { 3052 synchronize_net(); 3053 qdisc_reset_all_tx_gt(dev, txq); 3054 #ifdef CONFIG_XPS 3055 netif_reset_xps_queues_gt(dev, txq); 3056 #endif 3057 } 3058 } else { 3059 dev->real_num_tx_queues = txq; 3060 } 3061 3062 return 0; 3063 } 3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 3065 3066 #ifdef CONFIG_SYSFS 3067 /** 3068 * netif_set_real_num_rx_queues - set actual number of RX queues used 3069 * @dev: Network device 3070 * @rxq: Actual number of RX queues 3071 * 3072 * This must be called either with the rtnl_lock held or before 3073 * registration of the net device. Returns 0 on success, or a 3074 * negative error code. If called before registration, it always 3075 * succeeds. 3076 */ 3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 3078 { 3079 int rc; 3080 3081 if (rxq < 1 || rxq > dev->num_rx_queues) 3082 return -EINVAL; 3083 3084 if (dev->reg_state == NETREG_REGISTERED) { 3085 ASSERT_RTNL(); 3086 3087 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3088 rxq); 3089 if (rc) 3090 return rc; 3091 } 3092 3093 dev->real_num_rx_queues = rxq; 3094 return 0; 3095 } 3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3097 #endif 3098 3099 /** 3100 * netif_get_num_default_rss_queues - default number of RSS queues 3101 * 3102 * This routine should set an upper limit on the number of RSS queues 3103 * used by default by multiqueue devices. 3104 */ 3105 int netif_get_num_default_rss_queues(void) 3106 { 3107 return is_kdump_kernel() ? 3108 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3109 } 3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3111 3112 static void __netif_reschedule(struct Qdisc *q) 3113 { 3114 struct softnet_data *sd; 3115 unsigned long flags; 3116 3117 local_irq_save(flags); 3118 sd = this_cpu_ptr(&softnet_data); 3119 q->next_sched = NULL; 3120 *sd->output_queue_tailp = q; 3121 sd->output_queue_tailp = &q->next_sched; 3122 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3123 local_irq_restore(flags); 3124 } 3125 3126 void __netif_schedule(struct Qdisc *q) 3127 { 3128 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3129 __netif_reschedule(q); 3130 } 3131 EXPORT_SYMBOL(__netif_schedule); 3132 3133 struct dev_kfree_skb_cb { 3134 enum skb_free_reason reason; 3135 }; 3136 3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3138 { 3139 return (struct dev_kfree_skb_cb *)skb->cb; 3140 } 3141 3142 void netif_schedule_queue(struct netdev_queue *txq) 3143 { 3144 rcu_read_lock(); 3145 if (!netif_xmit_stopped(txq)) { 3146 struct Qdisc *q = rcu_dereference(txq->qdisc); 3147 3148 __netif_schedule(q); 3149 } 3150 rcu_read_unlock(); 3151 } 3152 EXPORT_SYMBOL(netif_schedule_queue); 3153 3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3155 { 3156 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3157 struct Qdisc *q; 3158 3159 rcu_read_lock(); 3160 q = rcu_dereference(dev_queue->qdisc); 3161 __netif_schedule(q); 3162 rcu_read_unlock(); 3163 } 3164 } 3165 EXPORT_SYMBOL(netif_tx_wake_queue); 3166 3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3168 { 3169 unsigned long flags; 3170 3171 if (unlikely(!skb)) 3172 return; 3173 3174 if (likely(refcount_read(&skb->users) == 1)) { 3175 smp_rmb(); 3176 refcount_set(&skb->users, 0); 3177 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3178 return; 3179 } 3180 get_kfree_skb_cb(skb)->reason = reason; 3181 local_irq_save(flags); 3182 skb->next = __this_cpu_read(softnet_data.completion_queue); 3183 __this_cpu_write(softnet_data.completion_queue, skb); 3184 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3185 local_irq_restore(flags); 3186 } 3187 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3188 3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3190 { 3191 if (in_irq() || irqs_disabled()) 3192 __dev_kfree_skb_irq(skb, reason); 3193 else 3194 dev_kfree_skb(skb); 3195 } 3196 EXPORT_SYMBOL(__dev_kfree_skb_any); 3197 3198 3199 /** 3200 * netif_device_detach - mark device as removed 3201 * @dev: network device 3202 * 3203 * Mark device as removed from system and therefore no longer available. 3204 */ 3205 void netif_device_detach(struct net_device *dev) 3206 { 3207 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3208 netif_running(dev)) { 3209 netif_tx_stop_all_queues(dev); 3210 } 3211 } 3212 EXPORT_SYMBOL(netif_device_detach); 3213 3214 /** 3215 * netif_device_attach - mark device as attached 3216 * @dev: network device 3217 * 3218 * Mark device as attached from system and restart if needed. 3219 */ 3220 void netif_device_attach(struct net_device *dev) 3221 { 3222 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3223 netif_running(dev)) { 3224 netif_tx_wake_all_queues(dev); 3225 __netdev_watchdog_up(dev); 3226 } 3227 } 3228 EXPORT_SYMBOL(netif_device_attach); 3229 3230 /* 3231 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3232 * to be used as a distribution range. 3233 */ 3234 static u16 skb_tx_hash(const struct net_device *dev, 3235 const struct net_device *sb_dev, 3236 struct sk_buff *skb) 3237 { 3238 u32 hash; 3239 u16 qoffset = 0; 3240 u16 qcount = dev->real_num_tx_queues; 3241 3242 if (dev->num_tc) { 3243 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3244 3245 qoffset = sb_dev->tc_to_txq[tc].offset; 3246 qcount = sb_dev->tc_to_txq[tc].count; 3247 } 3248 3249 if (skb_rx_queue_recorded(skb)) { 3250 hash = skb_get_rx_queue(skb); 3251 if (hash >= qoffset) 3252 hash -= qoffset; 3253 while (unlikely(hash >= qcount)) 3254 hash -= qcount; 3255 return hash + qoffset; 3256 } 3257 3258 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3259 } 3260 3261 static void skb_warn_bad_offload(const struct sk_buff *skb) 3262 { 3263 static const netdev_features_t null_features; 3264 struct net_device *dev = skb->dev; 3265 const char *name = ""; 3266 3267 if (!net_ratelimit()) 3268 return; 3269 3270 if (dev) { 3271 if (dev->dev.parent) 3272 name = dev_driver_string(dev->dev.parent); 3273 else 3274 name = netdev_name(dev); 3275 } 3276 skb_dump(KERN_WARNING, skb, false); 3277 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3278 name, dev ? &dev->features : &null_features, 3279 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3280 } 3281 3282 /* 3283 * Invalidate hardware checksum when packet is to be mangled, and 3284 * complete checksum manually on outgoing path. 3285 */ 3286 int skb_checksum_help(struct sk_buff *skb) 3287 { 3288 __wsum csum; 3289 int ret = 0, offset; 3290 3291 if (skb->ip_summed == CHECKSUM_COMPLETE) 3292 goto out_set_summed; 3293 3294 if (unlikely(skb_is_gso(skb))) { 3295 skb_warn_bad_offload(skb); 3296 return -EINVAL; 3297 } 3298 3299 /* Before computing a checksum, we should make sure no frag could 3300 * be modified by an external entity : checksum could be wrong. 3301 */ 3302 if (skb_has_shared_frag(skb)) { 3303 ret = __skb_linearize(skb); 3304 if (ret) 3305 goto out; 3306 } 3307 3308 offset = skb_checksum_start_offset(skb); 3309 BUG_ON(offset >= skb_headlen(skb)); 3310 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3311 3312 offset += skb->csum_offset; 3313 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3314 3315 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3316 if (ret) 3317 goto out; 3318 3319 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3320 out_set_summed: 3321 skb->ip_summed = CHECKSUM_NONE; 3322 out: 3323 return ret; 3324 } 3325 EXPORT_SYMBOL(skb_checksum_help); 3326 3327 int skb_crc32c_csum_help(struct sk_buff *skb) 3328 { 3329 __le32 crc32c_csum; 3330 int ret = 0, offset, start; 3331 3332 if (skb->ip_summed != CHECKSUM_PARTIAL) 3333 goto out; 3334 3335 if (unlikely(skb_is_gso(skb))) 3336 goto out; 3337 3338 /* Before computing a checksum, we should make sure no frag could 3339 * be modified by an external entity : checksum could be wrong. 3340 */ 3341 if (unlikely(skb_has_shared_frag(skb))) { 3342 ret = __skb_linearize(skb); 3343 if (ret) 3344 goto out; 3345 } 3346 start = skb_checksum_start_offset(skb); 3347 offset = start + offsetof(struct sctphdr, checksum); 3348 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3349 ret = -EINVAL; 3350 goto out; 3351 } 3352 3353 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3354 if (ret) 3355 goto out; 3356 3357 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3358 skb->len - start, ~(__u32)0, 3359 crc32c_csum_stub)); 3360 *(__le32 *)(skb->data + offset) = crc32c_csum; 3361 skb->ip_summed = CHECKSUM_NONE; 3362 skb->csum_not_inet = 0; 3363 out: 3364 return ret; 3365 } 3366 3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3368 { 3369 __be16 type = skb->protocol; 3370 3371 /* Tunnel gso handlers can set protocol to ethernet. */ 3372 if (type == htons(ETH_P_TEB)) { 3373 struct ethhdr *eth; 3374 3375 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3376 return 0; 3377 3378 eth = (struct ethhdr *)skb->data; 3379 type = eth->h_proto; 3380 } 3381 3382 return __vlan_get_protocol(skb, type, depth); 3383 } 3384 3385 /** 3386 * skb_mac_gso_segment - mac layer segmentation handler. 3387 * @skb: buffer to segment 3388 * @features: features for the output path (see dev->features) 3389 */ 3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3391 netdev_features_t features) 3392 { 3393 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3394 struct packet_offload *ptype; 3395 int vlan_depth = skb->mac_len; 3396 __be16 type = skb_network_protocol(skb, &vlan_depth); 3397 3398 if (unlikely(!type)) 3399 return ERR_PTR(-EINVAL); 3400 3401 __skb_pull(skb, vlan_depth); 3402 3403 rcu_read_lock(); 3404 list_for_each_entry_rcu(ptype, &offload_base, list) { 3405 if (ptype->type == type && ptype->callbacks.gso_segment) { 3406 segs = ptype->callbacks.gso_segment(skb, features); 3407 break; 3408 } 3409 } 3410 rcu_read_unlock(); 3411 3412 __skb_push(skb, skb->data - skb_mac_header(skb)); 3413 3414 return segs; 3415 } 3416 EXPORT_SYMBOL(skb_mac_gso_segment); 3417 3418 3419 /* openvswitch calls this on rx path, so we need a different check. 3420 */ 3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3422 { 3423 if (tx_path) 3424 return skb->ip_summed != CHECKSUM_PARTIAL && 3425 skb->ip_summed != CHECKSUM_UNNECESSARY; 3426 3427 return skb->ip_summed == CHECKSUM_NONE; 3428 } 3429 3430 /** 3431 * __skb_gso_segment - Perform segmentation on skb. 3432 * @skb: buffer to segment 3433 * @features: features for the output path (see dev->features) 3434 * @tx_path: whether it is called in TX path 3435 * 3436 * This function segments the given skb and returns a list of segments. 3437 * 3438 * It may return NULL if the skb requires no segmentation. This is 3439 * only possible when GSO is used for verifying header integrity. 3440 * 3441 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3442 */ 3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3444 netdev_features_t features, bool tx_path) 3445 { 3446 struct sk_buff *segs; 3447 3448 if (unlikely(skb_needs_check(skb, tx_path))) { 3449 int err; 3450 3451 /* We're going to init ->check field in TCP or UDP header */ 3452 err = skb_cow_head(skb, 0); 3453 if (err < 0) 3454 return ERR_PTR(err); 3455 } 3456 3457 /* Only report GSO partial support if it will enable us to 3458 * support segmentation on this frame without needing additional 3459 * work. 3460 */ 3461 if (features & NETIF_F_GSO_PARTIAL) { 3462 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3463 struct net_device *dev = skb->dev; 3464 3465 partial_features |= dev->features & dev->gso_partial_features; 3466 if (!skb_gso_ok(skb, features | partial_features)) 3467 features &= ~NETIF_F_GSO_PARTIAL; 3468 } 3469 3470 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3471 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3472 3473 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3474 SKB_GSO_CB(skb)->encap_level = 0; 3475 3476 skb_reset_mac_header(skb); 3477 skb_reset_mac_len(skb); 3478 3479 segs = skb_mac_gso_segment(skb, features); 3480 3481 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3482 skb_warn_bad_offload(skb); 3483 3484 return segs; 3485 } 3486 EXPORT_SYMBOL(__skb_gso_segment); 3487 3488 /* Take action when hardware reception checksum errors are detected. */ 3489 #ifdef CONFIG_BUG 3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3491 { 3492 if (net_ratelimit()) { 3493 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3494 skb_dump(KERN_ERR, skb, true); 3495 dump_stack(); 3496 } 3497 } 3498 EXPORT_SYMBOL(netdev_rx_csum_fault); 3499 #endif 3500 3501 /* XXX: check that highmem exists at all on the given machine. */ 3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3503 { 3504 #ifdef CONFIG_HIGHMEM 3505 int i; 3506 3507 if (!(dev->features & NETIF_F_HIGHDMA)) { 3508 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3509 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3510 3511 if (PageHighMem(skb_frag_page(frag))) 3512 return 1; 3513 } 3514 } 3515 #endif 3516 return 0; 3517 } 3518 3519 /* If MPLS offload request, verify we are testing hardware MPLS features 3520 * instead of standard features for the netdev. 3521 */ 3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3523 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3524 netdev_features_t features, 3525 __be16 type) 3526 { 3527 if (eth_p_mpls(type)) 3528 features &= skb->dev->mpls_features; 3529 3530 return features; 3531 } 3532 #else 3533 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3534 netdev_features_t features, 3535 __be16 type) 3536 { 3537 return features; 3538 } 3539 #endif 3540 3541 static netdev_features_t harmonize_features(struct sk_buff *skb, 3542 netdev_features_t features) 3543 { 3544 __be16 type; 3545 3546 type = skb_network_protocol(skb, NULL); 3547 features = net_mpls_features(skb, features, type); 3548 3549 if (skb->ip_summed != CHECKSUM_NONE && 3550 !can_checksum_protocol(features, type)) { 3551 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3552 } 3553 if (illegal_highdma(skb->dev, skb)) 3554 features &= ~NETIF_F_SG; 3555 3556 return features; 3557 } 3558 3559 netdev_features_t passthru_features_check(struct sk_buff *skb, 3560 struct net_device *dev, 3561 netdev_features_t features) 3562 { 3563 return features; 3564 } 3565 EXPORT_SYMBOL(passthru_features_check); 3566 3567 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3568 struct net_device *dev, 3569 netdev_features_t features) 3570 { 3571 return vlan_features_check(skb, features); 3572 } 3573 3574 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3575 struct net_device *dev, 3576 netdev_features_t features) 3577 { 3578 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3579 3580 if (gso_segs > dev->gso_max_segs) 3581 return features & ~NETIF_F_GSO_MASK; 3582 3583 if (!skb_shinfo(skb)->gso_type) { 3584 skb_warn_bad_offload(skb); 3585 return features & ~NETIF_F_GSO_MASK; 3586 } 3587 3588 /* Support for GSO partial features requires software 3589 * intervention before we can actually process the packets 3590 * so we need to strip support for any partial features now 3591 * and we can pull them back in after we have partially 3592 * segmented the frame. 3593 */ 3594 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3595 features &= ~dev->gso_partial_features; 3596 3597 /* Make sure to clear the IPv4 ID mangling feature if the 3598 * IPv4 header has the potential to be fragmented. 3599 */ 3600 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3601 struct iphdr *iph = skb->encapsulation ? 3602 inner_ip_hdr(skb) : ip_hdr(skb); 3603 3604 if (!(iph->frag_off & htons(IP_DF))) 3605 features &= ~NETIF_F_TSO_MANGLEID; 3606 } 3607 3608 return features; 3609 } 3610 3611 netdev_features_t netif_skb_features(struct sk_buff *skb) 3612 { 3613 struct net_device *dev = skb->dev; 3614 netdev_features_t features = dev->features; 3615 3616 if (skb_is_gso(skb)) 3617 features = gso_features_check(skb, dev, features); 3618 3619 /* If encapsulation offload request, verify we are testing 3620 * hardware encapsulation features instead of standard 3621 * features for the netdev 3622 */ 3623 if (skb->encapsulation) 3624 features &= dev->hw_enc_features; 3625 3626 if (skb_vlan_tagged(skb)) 3627 features = netdev_intersect_features(features, 3628 dev->vlan_features | 3629 NETIF_F_HW_VLAN_CTAG_TX | 3630 NETIF_F_HW_VLAN_STAG_TX); 3631 3632 if (dev->netdev_ops->ndo_features_check) 3633 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3634 features); 3635 else 3636 features &= dflt_features_check(skb, dev, features); 3637 3638 return harmonize_features(skb, features); 3639 } 3640 EXPORT_SYMBOL(netif_skb_features); 3641 3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3643 struct netdev_queue *txq, bool more) 3644 { 3645 unsigned int len; 3646 int rc; 3647 3648 if (dev_nit_active(dev)) 3649 dev_queue_xmit_nit(skb, dev); 3650 3651 len = skb->len; 3652 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3653 trace_net_dev_start_xmit(skb, dev); 3654 rc = netdev_start_xmit(skb, dev, txq, more); 3655 trace_net_dev_xmit(skb, rc, dev, len); 3656 3657 return rc; 3658 } 3659 3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3661 struct netdev_queue *txq, int *ret) 3662 { 3663 struct sk_buff *skb = first; 3664 int rc = NETDEV_TX_OK; 3665 3666 while (skb) { 3667 struct sk_buff *next = skb->next; 3668 3669 skb_mark_not_on_list(skb); 3670 rc = xmit_one(skb, dev, txq, next != NULL); 3671 if (unlikely(!dev_xmit_complete(rc))) { 3672 skb->next = next; 3673 goto out; 3674 } 3675 3676 skb = next; 3677 if (netif_tx_queue_stopped(txq) && skb) { 3678 rc = NETDEV_TX_BUSY; 3679 break; 3680 } 3681 } 3682 3683 out: 3684 *ret = rc; 3685 return skb; 3686 } 3687 3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3689 netdev_features_t features) 3690 { 3691 if (skb_vlan_tag_present(skb) && 3692 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3693 skb = __vlan_hwaccel_push_inside(skb); 3694 return skb; 3695 } 3696 3697 int skb_csum_hwoffload_help(struct sk_buff *skb, 3698 const netdev_features_t features) 3699 { 3700 if (unlikely(skb_csum_is_sctp(skb))) 3701 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3702 skb_crc32c_csum_help(skb); 3703 3704 if (features & NETIF_F_HW_CSUM) 3705 return 0; 3706 3707 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3708 switch (skb->csum_offset) { 3709 case offsetof(struct tcphdr, check): 3710 case offsetof(struct udphdr, check): 3711 return 0; 3712 } 3713 } 3714 3715 return skb_checksum_help(skb); 3716 } 3717 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3718 3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3720 { 3721 netdev_features_t features; 3722 3723 features = netif_skb_features(skb); 3724 skb = validate_xmit_vlan(skb, features); 3725 if (unlikely(!skb)) 3726 goto out_null; 3727 3728 skb = sk_validate_xmit_skb(skb, dev); 3729 if (unlikely(!skb)) 3730 goto out_null; 3731 3732 if (netif_needs_gso(skb, features)) { 3733 struct sk_buff *segs; 3734 3735 segs = skb_gso_segment(skb, features); 3736 if (IS_ERR(segs)) { 3737 goto out_kfree_skb; 3738 } else if (segs) { 3739 consume_skb(skb); 3740 skb = segs; 3741 } 3742 } else { 3743 if (skb_needs_linearize(skb, features) && 3744 __skb_linearize(skb)) 3745 goto out_kfree_skb; 3746 3747 /* If packet is not checksummed and device does not 3748 * support checksumming for this protocol, complete 3749 * checksumming here. 3750 */ 3751 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3752 if (skb->encapsulation) 3753 skb_set_inner_transport_header(skb, 3754 skb_checksum_start_offset(skb)); 3755 else 3756 skb_set_transport_header(skb, 3757 skb_checksum_start_offset(skb)); 3758 if (skb_csum_hwoffload_help(skb, features)) 3759 goto out_kfree_skb; 3760 } 3761 } 3762 3763 skb = validate_xmit_xfrm(skb, features, again); 3764 3765 return skb; 3766 3767 out_kfree_skb: 3768 kfree_skb(skb); 3769 out_null: 3770 atomic_long_inc(&dev->tx_dropped); 3771 return NULL; 3772 } 3773 3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3775 { 3776 struct sk_buff *next, *head = NULL, *tail; 3777 3778 for (; skb != NULL; skb = next) { 3779 next = skb->next; 3780 skb_mark_not_on_list(skb); 3781 3782 /* in case skb wont be segmented, point to itself */ 3783 skb->prev = skb; 3784 3785 skb = validate_xmit_skb(skb, dev, again); 3786 if (!skb) 3787 continue; 3788 3789 if (!head) 3790 head = skb; 3791 else 3792 tail->next = skb; 3793 /* If skb was segmented, skb->prev points to 3794 * the last segment. If not, it still contains skb. 3795 */ 3796 tail = skb->prev; 3797 } 3798 return head; 3799 } 3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3801 3802 static void qdisc_pkt_len_init(struct sk_buff *skb) 3803 { 3804 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3805 3806 qdisc_skb_cb(skb)->pkt_len = skb->len; 3807 3808 /* To get more precise estimation of bytes sent on wire, 3809 * we add to pkt_len the headers size of all segments 3810 */ 3811 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3812 unsigned int hdr_len; 3813 u16 gso_segs = shinfo->gso_segs; 3814 3815 /* mac layer + network layer */ 3816 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3817 3818 /* + transport layer */ 3819 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3820 const struct tcphdr *th; 3821 struct tcphdr _tcphdr; 3822 3823 th = skb_header_pointer(skb, skb_transport_offset(skb), 3824 sizeof(_tcphdr), &_tcphdr); 3825 if (likely(th)) 3826 hdr_len += __tcp_hdrlen(th); 3827 } else { 3828 struct udphdr _udphdr; 3829 3830 if (skb_header_pointer(skb, skb_transport_offset(skb), 3831 sizeof(_udphdr), &_udphdr)) 3832 hdr_len += sizeof(struct udphdr); 3833 } 3834 3835 if (shinfo->gso_type & SKB_GSO_DODGY) 3836 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3837 shinfo->gso_size); 3838 3839 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3840 } 3841 } 3842 3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3844 struct net_device *dev, 3845 struct netdev_queue *txq) 3846 { 3847 spinlock_t *root_lock = qdisc_lock(q); 3848 struct sk_buff *to_free = NULL; 3849 bool contended; 3850 int rc; 3851 3852 qdisc_calculate_pkt_len(skb, q); 3853 3854 if (q->flags & TCQ_F_NOLOCK) { 3855 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3856 qdisc_run_begin(q)) { 3857 /* Retest nolock_qdisc_is_empty() within the protection 3858 * of q->seqlock to protect from racing with requeuing. 3859 */ 3860 if (unlikely(!nolock_qdisc_is_empty(q))) { 3861 rc = q->enqueue(skb, q, &to_free) & 3862 NET_XMIT_MASK; 3863 __qdisc_run(q); 3864 qdisc_run_end(q); 3865 3866 goto no_lock_out; 3867 } 3868 3869 qdisc_bstats_cpu_update(q, skb); 3870 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3871 !nolock_qdisc_is_empty(q)) 3872 __qdisc_run(q); 3873 3874 qdisc_run_end(q); 3875 return NET_XMIT_SUCCESS; 3876 } 3877 3878 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3879 qdisc_run(q); 3880 3881 no_lock_out: 3882 if (unlikely(to_free)) 3883 kfree_skb_list(to_free); 3884 return rc; 3885 } 3886 3887 /* 3888 * Heuristic to force contended enqueues to serialize on a 3889 * separate lock before trying to get qdisc main lock. 3890 * This permits qdisc->running owner to get the lock more 3891 * often and dequeue packets faster. 3892 */ 3893 contended = qdisc_is_running(q); 3894 if (unlikely(contended)) 3895 spin_lock(&q->busylock); 3896 3897 spin_lock(root_lock); 3898 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3899 __qdisc_drop(skb, &to_free); 3900 rc = NET_XMIT_DROP; 3901 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3902 qdisc_run_begin(q)) { 3903 /* 3904 * This is a work-conserving queue; there are no old skbs 3905 * waiting to be sent out; and the qdisc is not running - 3906 * xmit the skb directly. 3907 */ 3908 3909 qdisc_bstats_update(q, skb); 3910 3911 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3912 if (unlikely(contended)) { 3913 spin_unlock(&q->busylock); 3914 contended = false; 3915 } 3916 __qdisc_run(q); 3917 } 3918 3919 qdisc_run_end(q); 3920 rc = NET_XMIT_SUCCESS; 3921 } else { 3922 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3923 if (qdisc_run_begin(q)) { 3924 if (unlikely(contended)) { 3925 spin_unlock(&q->busylock); 3926 contended = false; 3927 } 3928 __qdisc_run(q); 3929 qdisc_run_end(q); 3930 } 3931 } 3932 spin_unlock(root_lock); 3933 if (unlikely(to_free)) 3934 kfree_skb_list(to_free); 3935 if (unlikely(contended)) 3936 spin_unlock(&q->busylock); 3937 return rc; 3938 } 3939 3940 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3941 static void skb_update_prio(struct sk_buff *skb) 3942 { 3943 const struct netprio_map *map; 3944 const struct sock *sk; 3945 unsigned int prioidx; 3946 3947 if (skb->priority) 3948 return; 3949 map = rcu_dereference_bh(skb->dev->priomap); 3950 if (!map) 3951 return; 3952 sk = skb_to_full_sk(skb); 3953 if (!sk) 3954 return; 3955 3956 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3957 3958 if (prioidx < map->priomap_len) 3959 skb->priority = map->priomap[prioidx]; 3960 } 3961 #else 3962 #define skb_update_prio(skb) 3963 #endif 3964 3965 /** 3966 * dev_loopback_xmit - loop back @skb 3967 * @net: network namespace this loopback is happening in 3968 * @sk: sk needed to be a netfilter okfn 3969 * @skb: buffer to transmit 3970 */ 3971 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3972 { 3973 skb_reset_mac_header(skb); 3974 __skb_pull(skb, skb_network_offset(skb)); 3975 skb->pkt_type = PACKET_LOOPBACK; 3976 skb->ip_summed = CHECKSUM_UNNECESSARY; 3977 WARN_ON(!skb_dst(skb)); 3978 skb_dst_force(skb); 3979 netif_rx_ni(skb); 3980 return 0; 3981 } 3982 EXPORT_SYMBOL(dev_loopback_xmit); 3983 3984 #ifdef CONFIG_NET_EGRESS 3985 static struct sk_buff * 3986 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3987 { 3988 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3989 struct tcf_result cl_res; 3990 3991 if (!miniq) 3992 return skb; 3993 3994 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3995 qdisc_skb_cb(skb)->mru = 0; 3996 qdisc_skb_cb(skb)->post_ct = false; 3997 mini_qdisc_bstats_cpu_update(miniq, skb); 3998 3999 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4000 case TC_ACT_OK: 4001 case TC_ACT_RECLASSIFY: 4002 skb->tc_index = TC_H_MIN(cl_res.classid); 4003 break; 4004 case TC_ACT_SHOT: 4005 mini_qdisc_qstats_cpu_drop(miniq); 4006 *ret = NET_XMIT_DROP; 4007 kfree_skb(skb); 4008 return NULL; 4009 case TC_ACT_STOLEN: 4010 case TC_ACT_QUEUED: 4011 case TC_ACT_TRAP: 4012 *ret = NET_XMIT_SUCCESS; 4013 consume_skb(skb); 4014 return NULL; 4015 case TC_ACT_REDIRECT: 4016 /* No need to push/pop skb's mac_header here on egress! */ 4017 skb_do_redirect(skb); 4018 *ret = NET_XMIT_SUCCESS; 4019 return NULL; 4020 default: 4021 break; 4022 } 4023 4024 return skb; 4025 } 4026 #endif /* CONFIG_NET_EGRESS */ 4027 4028 #ifdef CONFIG_XPS 4029 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4030 struct xps_dev_maps *dev_maps, unsigned int tci) 4031 { 4032 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4033 struct xps_map *map; 4034 int queue_index = -1; 4035 4036 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4037 return queue_index; 4038 4039 tci *= dev_maps->num_tc; 4040 tci += tc; 4041 4042 map = rcu_dereference(dev_maps->attr_map[tci]); 4043 if (map) { 4044 if (map->len == 1) 4045 queue_index = map->queues[0]; 4046 else 4047 queue_index = map->queues[reciprocal_scale( 4048 skb_get_hash(skb), map->len)]; 4049 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4050 queue_index = -1; 4051 } 4052 return queue_index; 4053 } 4054 #endif 4055 4056 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4057 struct sk_buff *skb) 4058 { 4059 #ifdef CONFIG_XPS 4060 struct xps_dev_maps *dev_maps; 4061 struct sock *sk = skb->sk; 4062 int queue_index = -1; 4063 4064 if (!static_key_false(&xps_needed)) 4065 return -1; 4066 4067 rcu_read_lock(); 4068 if (!static_key_false(&xps_rxqs_needed)) 4069 goto get_cpus_map; 4070 4071 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4072 if (dev_maps) { 4073 int tci = sk_rx_queue_get(sk); 4074 4075 if (tci >= 0) 4076 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4077 tci); 4078 } 4079 4080 get_cpus_map: 4081 if (queue_index < 0) { 4082 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4083 if (dev_maps) { 4084 unsigned int tci = skb->sender_cpu - 1; 4085 4086 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4087 tci); 4088 } 4089 } 4090 rcu_read_unlock(); 4091 4092 return queue_index; 4093 #else 4094 return -1; 4095 #endif 4096 } 4097 4098 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4099 struct net_device *sb_dev) 4100 { 4101 return 0; 4102 } 4103 EXPORT_SYMBOL(dev_pick_tx_zero); 4104 4105 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4106 struct net_device *sb_dev) 4107 { 4108 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4109 } 4110 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4111 4112 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4113 struct net_device *sb_dev) 4114 { 4115 struct sock *sk = skb->sk; 4116 int queue_index = sk_tx_queue_get(sk); 4117 4118 sb_dev = sb_dev ? : dev; 4119 4120 if (queue_index < 0 || skb->ooo_okay || 4121 queue_index >= dev->real_num_tx_queues) { 4122 int new_index = get_xps_queue(dev, sb_dev, skb); 4123 4124 if (new_index < 0) 4125 new_index = skb_tx_hash(dev, sb_dev, skb); 4126 4127 if (queue_index != new_index && sk && 4128 sk_fullsock(sk) && 4129 rcu_access_pointer(sk->sk_dst_cache)) 4130 sk_tx_queue_set(sk, new_index); 4131 4132 queue_index = new_index; 4133 } 4134 4135 return queue_index; 4136 } 4137 EXPORT_SYMBOL(netdev_pick_tx); 4138 4139 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4140 struct sk_buff *skb, 4141 struct net_device *sb_dev) 4142 { 4143 int queue_index = 0; 4144 4145 #ifdef CONFIG_XPS 4146 u32 sender_cpu = skb->sender_cpu - 1; 4147 4148 if (sender_cpu >= (u32)NR_CPUS) 4149 skb->sender_cpu = raw_smp_processor_id() + 1; 4150 #endif 4151 4152 if (dev->real_num_tx_queues != 1) { 4153 const struct net_device_ops *ops = dev->netdev_ops; 4154 4155 if (ops->ndo_select_queue) 4156 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4157 else 4158 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4159 4160 queue_index = netdev_cap_txqueue(dev, queue_index); 4161 } 4162 4163 skb_set_queue_mapping(skb, queue_index); 4164 return netdev_get_tx_queue(dev, queue_index); 4165 } 4166 4167 /** 4168 * __dev_queue_xmit - transmit a buffer 4169 * @skb: buffer to transmit 4170 * @sb_dev: suboordinate device used for L2 forwarding offload 4171 * 4172 * Queue a buffer for transmission to a network device. The caller must 4173 * have set the device and priority and built the buffer before calling 4174 * this function. The function can be called from an interrupt. 4175 * 4176 * A negative errno code is returned on a failure. A success does not 4177 * guarantee the frame will be transmitted as it may be dropped due 4178 * to congestion or traffic shaping. 4179 * 4180 * ----------------------------------------------------------------------------------- 4181 * I notice this method can also return errors from the queue disciplines, 4182 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4183 * be positive. 4184 * 4185 * Regardless of the return value, the skb is consumed, so it is currently 4186 * difficult to retry a send to this method. (You can bump the ref count 4187 * before sending to hold a reference for retry if you are careful.) 4188 * 4189 * When calling this method, interrupts MUST be enabled. This is because 4190 * the BH enable code must have IRQs enabled so that it will not deadlock. 4191 * --BLG 4192 */ 4193 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4194 { 4195 struct net_device *dev = skb->dev; 4196 struct netdev_queue *txq; 4197 struct Qdisc *q; 4198 int rc = -ENOMEM; 4199 bool again = false; 4200 4201 skb_reset_mac_header(skb); 4202 4203 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4204 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4205 4206 /* Disable soft irqs for various locks below. Also 4207 * stops preemption for RCU. 4208 */ 4209 rcu_read_lock_bh(); 4210 4211 skb_update_prio(skb); 4212 4213 qdisc_pkt_len_init(skb); 4214 #ifdef CONFIG_NET_CLS_ACT 4215 skb->tc_at_ingress = 0; 4216 # ifdef CONFIG_NET_EGRESS 4217 if (static_branch_unlikely(&egress_needed_key)) { 4218 skb = sch_handle_egress(skb, &rc, dev); 4219 if (!skb) 4220 goto out; 4221 } 4222 # endif 4223 #endif 4224 /* If device/qdisc don't need skb->dst, release it right now while 4225 * its hot in this cpu cache. 4226 */ 4227 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4228 skb_dst_drop(skb); 4229 else 4230 skb_dst_force(skb); 4231 4232 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4233 q = rcu_dereference_bh(txq->qdisc); 4234 4235 trace_net_dev_queue(skb); 4236 if (q->enqueue) { 4237 rc = __dev_xmit_skb(skb, q, dev, txq); 4238 goto out; 4239 } 4240 4241 /* The device has no queue. Common case for software devices: 4242 * loopback, all the sorts of tunnels... 4243 4244 * Really, it is unlikely that netif_tx_lock protection is necessary 4245 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4246 * counters.) 4247 * However, it is possible, that they rely on protection 4248 * made by us here. 4249 4250 * Check this and shot the lock. It is not prone from deadlocks. 4251 *Either shot noqueue qdisc, it is even simpler 8) 4252 */ 4253 if (dev->flags & IFF_UP) { 4254 int cpu = smp_processor_id(); /* ok because BHs are off */ 4255 4256 if (txq->xmit_lock_owner != cpu) { 4257 if (dev_xmit_recursion()) 4258 goto recursion_alert; 4259 4260 skb = validate_xmit_skb(skb, dev, &again); 4261 if (!skb) 4262 goto out; 4263 4264 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4265 HARD_TX_LOCK(dev, txq, cpu); 4266 4267 if (!netif_xmit_stopped(txq)) { 4268 dev_xmit_recursion_inc(); 4269 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4270 dev_xmit_recursion_dec(); 4271 if (dev_xmit_complete(rc)) { 4272 HARD_TX_UNLOCK(dev, txq); 4273 goto out; 4274 } 4275 } 4276 HARD_TX_UNLOCK(dev, txq); 4277 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4278 dev->name); 4279 } else { 4280 /* Recursion is detected! It is possible, 4281 * unfortunately 4282 */ 4283 recursion_alert: 4284 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4285 dev->name); 4286 } 4287 } 4288 4289 rc = -ENETDOWN; 4290 rcu_read_unlock_bh(); 4291 4292 atomic_long_inc(&dev->tx_dropped); 4293 kfree_skb_list(skb); 4294 return rc; 4295 out: 4296 rcu_read_unlock_bh(); 4297 return rc; 4298 } 4299 4300 int dev_queue_xmit(struct sk_buff *skb) 4301 { 4302 return __dev_queue_xmit(skb, NULL); 4303 } 4304 EXPORT_SYMBOL(dev_queue_xmit); 4305 4306 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4307 { 4308 return __dev_queue_xmit(skb, sb_dev); 4309 } 4310 EXPORT_SYMBOL(dev_queue_xmit_accel); 4311 4312 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4313 { 4314 struct net_device *dev = skb->dev; 4315 struct sk_buff *orig_skb = skb; 4316 struct netdev_queue *txq; 4317 int ret = NETDEV_TX_BUSY; 4318 bool again = false; 4319 4320 if (unlikely(!netif_running(dev) || 4321 !netif_carrier_ok(dev))) 4322 goto drop; 4323 4324 skb = validate_xmit_skb_list(skb, dev, &again); 4325 if (skb != orig_skb) 4326 goto drop; 4327 4328 skb_set_queue_mapping(skb, queue_id); 4329 txq = skb_get_tx_queue(dev, skb); 4330 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4331 4332 local_bh_disable(); 4333 4334 dev_xmit_recursion_inc(); 4335 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4336 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4337 ret = netdev_start_xmit(skb, dev, txq, false); 4338 HARD_TX_UNLOCK(dev, txq); 4339 dev_xmit_recursion_dec(); 4340 4341 local_bh_enable(); 4342 return ret; 4343 drop: 4344 atomic_long_inc(&dev->tx_dropped); 4345 kfree_skb_list(skb); 4346 return NET_XMIT_DROP; 4347 } 4348 EXPORT_SYMBOL(__dev_direct_xmit); 4349 4350 /************************************************************************* 4351 * Receiver routines 4352 *************************************************************************/ 4353 4354 int netdev_max_backlog __read_mostly = 1000; 4355 EXPORT_SYMBOL(netdev_max_backlog); 4356 4357 int netdev_tstamp_prequeue __read_mostly = 1; 4358 int netdev_budget __read_mostly = 300; 4359 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4360 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4361 int weight_p __read_mostly = 64; /* old backlog weight */ 4362 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4363 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4364 int dev_rx_weight __read_mostly = 64; 4365 int dev_tx_weight __read_mostly = 64; 4366 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4367 int gro_normal_batch __read_mostly = 8; 4368 4369 /* Called with irq disabled */ 4370 static inline void ____napi_schedule(struct softnet_data *sd, 4371 struct napi_struct *napi) 4372 { 4373 struct task_struct *thread; 4374 4375 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4376 /* Paired with smp_mb__before_atomic() in 4377 * napi_enable()/dev_set_threaded(). 4378 * Use READ_ONCE() to guarantee a complete 4379 * read on napi->thread. Only call 4380 * wake_up_process() when it's not NULL. 4381 */ 4382 thread = READ_ONCE(napi->thread); 4383 if (thread) { 4384 /* Avoid doing set_bit() if the thread is in 4385 * INTERRUPTIBLE state, cause napi_thread_wait() 4386 * makes sure to proceed with napi polling 4387 * if the thread is explicitly woken from here. 4388 */ 4389 if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE) 4390 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4391 wake_up_process(thread); 4392 return; 4393 } 4394 } 4395 4396 list_add_tail(&napi->poll_list, &sd->poll_list); 4397 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4398 } 4399 4400 #ifdef CONFIG_RPS 4401 4402 /* One global table that all flow-based protocols share. */ 4403 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4404 EXPORT_SYMBOL(rps_sock_flow_table); 4405 u32 rps_cpu_mask __read_mostly; 4406 EXPORT_SYMBOL(rps_cpu_mask); 4407 4408 struct static_key_false rps_needed __read_mostly; 4409 EXPORT_SYMBOL(rps_needed); 4410 struct static_key_false rfs_needed __read_mostly; 4411 EXPORT_SYMBOL(rfs_needed); 4412 4413 static struct rps_dev_flow * 4414 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4415 struct rps_dev_flow *rflow, u16 next_cpu) 4416 { 4417 if (next_cpu < nr_cpu_ids) { 4418 #ifdef CONFIG_RFS_ACCEL 4419 struct netdev_rx_queue *rxqueue; 4420 struct rps_dev_flow_table *flow_table; 4421 struct rps_dev_flow *old_rflow; 4422 u32 flow_id; 4423 u16 rxq_index; 4424 int rc; 4425 4426 /* Should we steer this flow to a different hardware queue? */ 4427 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4428 !(dev->features & NETIF_F_NTUPLE)) 4429 goto out; 4430 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4431 if (rxq_index == skb_get_rx_queue(skb)) 4432 goto out; 4433 4434 rxqueue = dev->_rx + rxq_index; 4435 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4436 if (!flow_table) 4437 goto out; 4438 flow_id = skb_get_hash(skb) & flow_table->mask; 4439 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4440 rxq_index, flow_id); 4441 if (rc < 0) 4442 goto out; 4443 old_rflow = rflow; 4444 rflow = &flow_table->flows[flow_id]; 4445 rflow->filter = rc; 4446 if (old_rflow->filter == rflow->filter) 4447 old_rflow->filter = RPS_NO_FILTER; 4448 out: 4449 #endif 4450 rflow->last_qtail = 4451 per_cpu(softnet_data, next_cpu).input_queue_head; 4452 } 4453 4454 rflow->cpu = next_cpu; 4455 return rflow; 4456 } 4457 4458 /* 4459 * get_rps_cpu is called from netif_receive_skb and returns the target 4460 * CPU from the RPS map of the receiving queue for a given skb. 4461 * rcu_read_lock must be held on entry. 4462 */ 4463 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4464 struct rps_dev_flow **rflowp) 4465 { 4466 const struct rps_sock_flow_table *sock_flow_table; 4467 struct netdev_rx_queue *rxqueue = dev->_rx; 4468 struct rps_dev_flow_table *flow_table; 4469 struct rps_map *map; 4470 int cpu = -1; 4471 u32 tcpu; 4472 u32 hash; 4473 4474 if (skb_rx_queue_recorded(skb)) { 4475 u16 index = skb_get_rx_queue(skb); 4476 4477 if (unlikely(index >= dev->real_num_rx_queues)) { 4478 WARN_ONCE(dev->real_num_rx_queues > 1, 4479 "%s received packet on queue %u, but number " 4480 "of RX queues is %u\n", 4481 dev->name, index, dev->real_num_rx_queues); 4482 goto done; 4483 } 4484 rxqueue += index; 4485 } 4486 4487 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4488 4489 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4490 map = rcu_dereference(rxqueue->rps_map); 4491 if (!flow_table && !map) 4492 goto done; 4493 4494 skb_reset_network_header(skb); 4495 hash = skb_get_hash(skb); 4496 if (!hash) 4497 goto done; 4498 4499 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4500 if (flow_table && sock_flow_table) { 4501 struct rps_dev_flow *rflow; 4502 u32 next_cpu; 4503 u32 ident; 4504 4505 /* First check into global flow table if there is a match */ 4506 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4507 if ((ident ^ hash) & ~rps_cpu_mask) 4508 goto try_rps; 4509 4510 next_cpu = ident & rps_cpu_mask; 4511 4512 /* OK, now we know there is a match, 4513 * we can look at the local (per receive queue) flow table 4514 */ 4515 rflow = &flow_table->flows[hash & flow_table->mask]; 4516 tcpu = rflow->cpu; 4517 4518 /* 4519 * If the desired CPU (where last recvmsg was done) is 4520 * different from current CPU (one in the rx-queue flow 4521 * table entry), switch if one of the following holds: 4522 * - Current CPU is unset (>= nr_cpu_ids). 4523 * - Current CPU is offline. 4524 * - The current CPU's queue tail has advanced beyond the 4525 * last packet that was enqueued using this table entry. 4526 * This guarantees that all previous packets for the flow 4527 * have been dequeued, thus preserving in order delivery. 4528 */ 4529 if (unlikely(tcpu != next_cpu) && 4530 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4531 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4532 rflow->last_qtail)) >= 0)) { 4533 tcpu = next_cpu; 4534 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4535 } 4536 4537 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4538 *rflowp = rflow; 4539 cpu = tcpu; 4540 goto done; 4541 } 4542 } 4543 4544 try_rps: 4545 4546 if (map) { 4547 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4548 if (cpu_online(tcpu)) { 4549 cpu = tcpu; 4550 goto done; 4551 } 4552 } 4553 4554 done: 4555 return cpu; 4556 } 4557 4558 #ifdef CONFIG_RFS_ACCEL 4559 4560 /** 4561 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4562 * @dev: Device on which the filter was set 4563 * @rxq_index: RX queue index 4564 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4565 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4566 * 4567 * Drivers that implement ndo_rx_flow_steer() should periodically call 4568 * this function for each installed filter and remove the filters for 4569 * which it returns %true. 4570 */ 4571 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4572 u32 flow_id, u16 filter_id) 4573 { 4574 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4575 struct rps_dev_flow_table *flow_table; 4576 struct rps_dev_flow *rflow; 4577 bool expire = true; 4578 unsigned int cpu; 4579 4580 rcu_read_lock(); 4581 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4582 if (flow_table && flow_id <= flow_table->mask) { 4583 rflow = &flow_table->flows[flow_id]; 4584 cpu = READ_ONCE(rflow->cpu); 4585 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4586 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4587 rflow->last_qtail) < 4588 (int)(10 * flow_table->mask))) 4589 expire = false; 4590 } 4591 rcu_read_unlock(); 4592 return expire; 4593 } 4594 EXPORT_SYMBOL(rps_may_expire_flow); 4595 4596 #endif /* CONFIG_RFS_ACCEL */ 4597 4598 /* Called from hardirq (IPI) context */ 4599 static void rps_trigger_softirq(void *data) 4600 { 4601 struct softnet_data *sd = data; 4602 4603 ____napi_schedule(sd, &sd->backlog); 4604 sd->received_rps++; 4605 } 4606 4607 #endif /* CONFIG_RPS */ 4608 4609 /* 4610 * Check if this softnet_data structure is another cpu one 4611 * If yes, queue it to our IPI list and return 1 4612 * If no, return 0 4613 */ 4614 static int rps_ipi_queued(struct softnet_data *sd) 4615 { 4616 #ifdef CONFIG_RPS 4617 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4618 4619 if (sd != mysd) { 4620 sd->rps_ipi_next = mysd->rps_ipi_list; 4621 mysd->rps_ipi_list = sd; 4622 4623 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4624 return 1; 4625 } 4626 #endif /* CONFIG_RPS */ 4627 return 0; 4628 } 4629 4630 #ifdef CONFIG_NET_FLOW_LIMIT 4631 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4632 #endif 4633 4634 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4635 { 4636 #ifdef CONFIG_NET_FLOW_LIMIT 4637 struct sd_flow_limit *fl; 4638 struct softnet_data *sd; 4639 unsigned int old_flow, new_flow; 4640 4641 if (qlen < (netdev_max_backlog >> 1)) 4642 return false; 4643 4644 sd = this_cpu_ptr(&softnet_data); 4645 4646 rcu_read_lock(); 4647 fl = rcu_dereference(sd->flow_limit); 4648 if (fl) { 4649 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4650 old_flow = fl->history[fl->history_head]; 4651 fl->history[fl->history_head] = new_flow; 4652 4653 fl->history_head++; 4654 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4655 4656 if (likely(fl->buckets[old_flow])) 4657 fl->buckets[old_flow]--; 4658 4659 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4660 fl->count++; 4661 rcu_read_unlock(); 4662 return true; 4663 } 4664 } 4665 rcu_read_unlock(); 4666 #endif 4667 return false; 4668 } 4669 4670 /* 4671 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4672 * queue (may be a remote CPU queue). 4673 */ 4674 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4675 unsigned int *qtail) 4676 { 4677 struct softnet_data *sd; 4678 unsigned long flags; 4679 unsigned int qlen; 4680 4681 sd = &per_cpu(softnet_data, cpu); 4682 4683 local_irq_save(flags); 4684 4685 rps_lock(sd); 4686 if (!netif_running(skb->dev)) 4687 goto drop; 4688 qlen = skb_queue_len(&sd->input_pkt_queue); 4689 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4690 if (qlen) { 4691 enqueue: 4692 __skb_queue_tail(&sd->input_pkt_queue, skb); 4693 input_queue_tail_incr_save(sd, qtail); 4694 rps_unlock(sd); 4695 local_irq_restore(flags); 4696 return NET_RX_SUCCESS; 4697 } 4698 4699 /* Schedule NAPI for backlog device 4700 * We can use non atomic operation since we own the queue lock 4701 */ 4702 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4703 if (!rps_ipi_queued(sd)) 4704 ____napi_schedule(sd, &sd->backlog); 4705 } 4706 goto enqueue; 4707 } 4708 4709 drop: 4710 sd->dropped++; 4711 rps_unlock(sd); 4712 4713 local_irq_restore(flags); 4714 4715 atomic_long_inc(&skb->dev->rx_dropped); 4716 kfree_skb(skb); 4717 return NET_RX_DROP; 4718 } 4719 4720 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4721 { 4722 struct net_device *dev = skb->dev; 4723 struct netdev_rx_queue *rxqueue; 4724 4725 rxqueue = dev->_rx; 4726 4727 if (skb_rx_queue_recorded(skb)) { 4728 u16 index = skb_get_rx_queue(skb); 4729 4730 if (unlikely(index >= dev->real_num_rx_queues)) { 4731 WARN_ONCE(dev->real_num_rx_queues > 1, 4732 "%s received packet on queue %u, but number " 4733 "of RX queues is %u\n", 4734 dev->name, index, dev->real_num_rx_queues); 4735 4736 return rxqueue; /* Return first rxqueue */ 4737 } 4738 rxqueue += index; 4739 } 4740 return rxqueue; 4741 } 4742 4743 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4744 struct xdp_buff *xdp, 4745 struct bpf_prog *xdp_prog) 4746 { 4747 void *orig_data, *orig_data_end, *hard_start; 4748 struct netdev_rx_queue *rxqueue; 4749 u32 metalen, act = XDP_DROP; 4750 bool orig_bcast, orig_host; 4751 u32 mac_len, frame_sz; 4752 __be16 orig_eth_type; 4753 struct ethhdr *eth; 4754 int off; 4755 4756 /* Reinjected packets coming from act_mirred or similar should 4757 * not get XDP generic processing. 4758 */ 4759 if (skb_is_redirected(skb)) 4760 return XDP_PASS; 4761 4762 /* XDP packets must be linear and must have sufficient headroom 4763 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4764 * native XDP provides, thus we need to do it here as well. 4765 */ 4766 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4767 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4768 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4769 int troom = skb->tail + skb->data_len - skb->end; 4770 4771 /* In case we have to go down the path and also linearize, 4772 * then lets do the pskb_expand_head() work just once here. 4773 */ 4774 if (pskb_expand_head(skb, 4775 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4776 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4777 goto do_drop; 4778 if (skb_linearize(skb)) 4779 goto do_drop; 4780 } 4781 4782 /* The XDP program wants to see the packet starting at the MAC 4783 * header. 4784 */ 4785 mac_len = skb->data - skb_mac_header(skb); 4786 hard_start = skb->data - skb_headroom(skb); 4787 4788 /* SKB "head" area always have tailroom for skb_shared_info */ 4789 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4790 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4791 4792 rxqueue = netif_get_rxqueue(skb); 4793 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4794 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4795 skb_headlen(skb) + mac_len, true); 4796 4797 orig_data_end = xdp->data_end; 4798 orig_data = xdp->data; 4799 eth = (struct ethhdr *)xdp->data; 4800 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4801 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4802 orig_eth_type = eth->h_proto; 4803 4804 act = bpf_prog_run_xdp(xdp_prog, xdp); 4805 4806 /* check if bpf_xdp_adjust_head was used */ 4807 off = xdp->data - orig_data; 4808 if (off) { 4809 if (off > 0) 4810 __skb_pull(skb, off); 4811 else if (off < 0) 4812 __skb_push(skb, -off); 4813 4814 skb->mac_header += off; 4815 skb_reset_network_header(skb); 4816 } 4817 4818 /* check if bpf_xdp_adjust_tail was used */ 4819 off = xdp->data_end - orig_data_end; 4820 if (off != 0) { 4821 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4822 skb->len += off; /* positive on grow, negative on shrink */ 4823 } 4824 4825 /* check if XDP changed eth hdr such SKB needs update */ 4826 eth = (struct ethhdr *)xdp->data; 4827 if ((orig_eth_type != eth->h_proto) || 4828 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4829 skb->dev->dev_addr)) || 4830 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4831 __skb_push(skb, ETH_HLEN); 4832 skb->pkt_type = PACKET_HOST; 4833 skb->protocol = eth_type_trans(skb, skb->dev); 4834 } 4835 4836 switch (act) { 4837 case XDP_REDIRECT: 4838 case XDP_TX: 4839 __skb_push(skb, mac_len); 4840 break; 4841 case XDP_PASS: 4842 metalen = xdp->data - xdp->data_meta; 4843 if (metalen) 4844 skb_metadata_set(skb, metalen); 4845 break; 4846 default: 4847 bpf_warn_invalid_xdp_action(act); 4848 fallthrough; 4849 case XDP_ABORTED: 4850 trace_xdp_exception(skb->dev, xdp_prog, act); 4851 fallthrough; 4852 case XDP_DROP: 4853 do_drop: 4854 kfree_skb(skb); 4855 break; 4856 } 4857 4858 return act; 4859 } 4860 4861 /* When doing generic XDP we have to bypass the qdisc layer and the 4862 * network taps in order to match in-driver-XDP behavior. 4863 */ 4864 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4865 { 4866 struct net_device *dev = skb->dev; 4867 struct netdev_queue *txq; 4868 bool free_skb = true; 4869 int cpu, rc; 4870 4871 txq = netdev_core_pick_tx(dev, skb, NULL); 4872 cpu = smp_processor_id(); 4873 HARD_TX_LOCK(dev, txq, cpu); 4874 if (!netif_xmit_stopped(txq)) { 4875 rc = netdev_start_xmit(skb, dev, txq, 0); 4876 if (dev_xmit_complete(rc)) 4877 free_skb = false; 4878 } 4879 HARD_TX_UNLOCK(dev, txq); 4880 if (free_skb) { 4881 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4882 kfree_skb(skb); 4883 } 4884 } 4885 4886 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4887 4888 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4889 { 4890 if (xdp_prog) { 4891 struct xdp_buff xdp; 4892 u32 act; 4893 int err; 4894 4895 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4896 if (act != XDP_PASS) { 4897 switch (act) { 4898 case XDP_REDIRECT: 4899 err = xdp_do_generic_redirect(skb->dev, skb, 4900 &xdp, xdp_prog); 4901 if (err) 4902 goto out_redir; 4903 break; 4904 case XDP_TX: 4905 generic_xdp_tx(skb, xdp_prog); 4906 break; 4907 } 4908 return XDP_DROP; 4909 } 4910 } 4911 return XDP_PASS; 4912 out_redir: 4913 kfree_skb(skb); 4914 return XDP_DROP; 4915 } 4916 EXPORT_SYMBOL_GPL(do_xdp_generic); 4917 4918 static int netif_rx_internal(struct sk_buff *skb) 4919 { 4920 int ret; 4921 4922 net_timestamp_check(netdev_tstamp_prequeue, skb); 4923 4924 trace_netif_rx(skb); 4925 4926 #ifdef CONFIG_RPS 4927 if (static_branch_unlikely(&rps_needed)) { 4928 struct rps_dev_flow voidflow, *rflow = &voidflow; 4929 int cpu; 4930 4931 preempt_disable(); 4932 rcu_read_lock(); 4933 4934 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4935 if (cpu < 0) 4936 cpu = smp_processor_id(); 4937 4938 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4939 4940 rcu_read_unlock(); 4941 preempt_enable(); 4942 } else 4943 #endif 4944 { 4945 unsigned int qtail; 4946 4947 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4948 put_cpu(); 4949 } 4950 return ret; 4951 } 4952 4953 /** 4954 * netif_rx - post buffer to the network code 4955 * @skb: buffer to post 4956 * 4957 * This function receives a packet from a device driver and queues it for 4958 * the upper (protocol) levels to process. It always succeeds. The buffer 4959 * may be dropped during processing for congestion control or by the 4960 * protocol layers. 4961 * 4962 * return values: 4963 * NET_RX_SUCCESS (no congestion) 4964 * NET_RX_DROP (packet was dropped) 4965 * 4966 */ 4967 4968 int netif_rx(struct sk_buff *skb) 4969 { 4970 int ret; 4971 4972 trace_netif_rx_entry(skb); 4973 4974 ret = netif_rx_internal(skb); 4975 trace_netif_rx_exit(ret); 4976 4977 return ret; 4978 } 4979 EXPORT_SYMBOL(netif_rx); 4980 4981 int netif_rx_ni(struct sk_buff *skb) 4982 { 4983 int err; 4984 4985 trace_netif_rx_ni_entry(skb); 4986 4987 preempt_disable(); 4988 err = netif_rx_internal(skb); 4989 if (local_softirq_pending()) 4990 do_softirq(); 4991 preempt_enable(); 4992 trace_netif_rx_ni_exit(err); 4993 4994 return err; 4995 } 4996 EXPORT_SYMBOL(netif_rx_ni); 4997 4998 int netif_rx_any_context(struct sk_buff *skb) 4999 { 5000 /* 5001 * If invoked from contexts which do not invoke bottom half 5002 * processing either at return from interrupt or when softrqs are 5003 * reenabled, use netif_rx_ni() which invokes bottomhalf processing 5004 * directly. 5005 */ 5006 if (in_interrupt()) 5007 return netif_rx(skb); 5008 else 5009 return netif_rx_ni(skb); 5010 } 5011 EXPORT_SYMBOL(netif_rx_any_context); 5012 5013 static __latent_entropy void net_tx_action(struct softirq_action *h) 5014 { 5015 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5016 5017 if (sd->completion_queue) { 5018 struct sk_buff *clist; 5019 5020 local_irq_disable(); 5021 clist = sd->completion_queue; 5022 sd->completion_queue = NULL; 5023 local_irq_enable(); 5024 5025 while (clist) { 5026 struct sk_buff *skb = clist; 5027 5028 clist = clist->next; 5029 5030 WARN_ON(refcount_read(&skb->users)); 5031 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 5032 trace_consume_skb(skb); 5033 else 5034 trace_kfree_skb(skb, net_tx_action); 5035 5036 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5037 __kfree_skb(skb); 5038 else 5039 __kfree_skb_defer(skb); 5040 } 5041 } 5042 5043 if (sd->output_queue) { 5044 struct Qdisc *head; 5045 5046 local_irq_disable(); 5047 head = sd->output_queue; 5048 sd->output_queue = NULL; 5049 sd->output_queue_tailp = &sd->output_queue; 5050 local_irq_enable(); 5051 5052 rcu_read_lock(); 5053 5054 while (head) { 5055 struct Qdisc *q = head; 5056 spinlock_t *root_lock = NULL; 5057 5058 head = head->next_sched; 5059 5060 /* We need to make sure head->next_sched is read 5061 * before clearing __QDISC_STATE_SCHED 5062 */ 5063 smp_mb__before_atomic(); 5064 5065 if (!(q->flags & TCQ_F_NOLOCK)) { 5066 root_lock = qdisc_lock(q); 5067 spin_lock(root_lock); 5068 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5069 &q->state))) { 5070 /* There is a synchronize_net() between 5071 * STATE_DEACTIVATED flag being set and 5072 * qdisc_reset()/some_qdisc_is_busy() in 5073 * dev_deactivate(), so we can safely bail out 5074 * early here to avoid data race between 5075 * qdisc_deactivate() and some_qdisc_is_busy() 5076 * for lockless qdisc. 5077 */ 5078 clear_bit(__QDISC_STATE_SCHED, &q->state); 5079 continue; 5080 } 5081 5082 clear_bit(__QDISC_STATE_SCHED, &q->state); 5083 qdisc_run(q); 5084 if (root_lock) 5085 spin_unlock(root_lock); 5086 } 5087 5088 rcu_read_unlock(); 5089 } 5090 5091 xfrm_dev_backlog(sd); 5092 } 5093 5094 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5095 /* This hook is defined here for ATM LANE */ 5096 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5097 unsigned char *addr) __read_mostly; 5098 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5099 #endif 5100 5101 static inline struct sk_buff * 5102 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 5103 struct net_device *orig_dev, bool *another) 5104 { 5105 #ifdef CONFIG_NET_CLS_ACT 5106 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 5107 struct tcf_result cl_res; 5108 5109 /* If there's at least one ingress present somewhere (so 5110 * we get here via enabled static key), remaining devices 5111 * that are not configured with an ingress qdisc will bail 5112 * out here. 5113 */ 5114 if (!miniq) 5115 return skb; 5116 5117 if (*pt_prev) { 5118 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5119 *pt_prev = NULL; 5120 } 5121 5122 qdisc_skb_cb(skb)->pkt_len = skb->len; 5123 qdisc_skb_cb(skb)->mru = 0; 5124 qdisc_skb_cb(skb)->post_ct = false; 5125 skb->tc_at_ingress = 1; 5126 mini_qdisc_bstats_cpu_update(miniq, skb); 5127 5128 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 5129 &cl_res, false)) { 5130 case TC_ACT_OK: 5131 case TC_ACT_RECLASSIFY: 5132 skb->tc_index = TC_H_MIN(cl_res.classid); 5133 break; 5134 case TC_ACT_SHOT: 5135 mini_qdisc_qstats_cpu_drop(miniq); 5136 kfree_skb(skb); 5137 return NULL; 5138 case TC_ACT_STOLEN: 5139 case TC_ACT_QUEUED: 5140 case TC_ACT_TRAP: 5141 consume_skb(skb); 5142 return NULL; 5143 case TC_ACT_REDIRECT: 5144 /* skb_mac_header check was done by cls/act_bpf, so 5145 * we can safely push the L2 header back before 5146 * redirecting to another netdev 5147 */ 5148 __skb_push(skb, skb->mac_len); 5149 if (skb_do_redirect(skb) == -EAGAIN) { 5150 __skb_pull(skb, skb->mac_len); 5151 *another = true; 5152 break; 5153 } 5154 return NULL; 5155 case TC_ACT_CONSUMED: 5156 return NULL; 5157 default: 5158 break; 5159 } 5160 #endif /* CONFIG_NET_CLS_ACT */ 5161 return skb; 5162 } 5163 5164 /** 5165 * netdev_is_rx_handler_busy - check if receive handler is registered 5166 * @dev: device to check 5167 * 5168 * Check if a receive handler is already registered for a given device. 5169 * Return true if there one. 5170 * 5171 * The caller must hold the rtnl_mutex. 5172 */ 5173 bool netdev_is_rx_handler_busy(struct net_device *dev) 5174 { 5175 ASSERT_RTNL(); 5176 return dev && rtnl_dereference(dev->rx_handler); 5177 } 5178 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5179 5180 /** 5181 * netdev_rx_handler_register - register receive handler 5182 * @dev: device to register a handler for 5183 * @rx_handler: receive handler to register 5184 * @rx_handler_data: data pointer that is used by rx handler 5185 * 5186 * Register a receive handler for a device. This handler will then be 5187 * called from __netif_receive_skb. A negative errno code is returned 5188 * on a failure. 5189 * 5190 * The caller must hold the rtnl_mutex. 5191 * 5192 * For a general description of rx_handler, see enum rx_handler_result. 5193 */ 5194 int netdev_rx_handler_register(struct net_device *dev, 5195 rx_handler_func_t *rx_handler, 5196 void *rx_handler_data) 5197 { 5198 if (netdev_is_rx_handler_busy(dev)) 5199 return -EBUSY; 5200 5201 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5202 return -EINVAL; 5203 5204 /* Note: rx_handler_data must be set before rx_handler */ 5205 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5206 rcu_assign_pointer(dev->rx_handler, rx_handler); 5207 5208 return 0; 5209 } 5210 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5211 5212 /** 5213 * netdev_rx_handler_unregister - unregister receive handler 5214 * @dev: device to unregister a handler from 5215 * 5216 * Unregister a receive handler from a device. 5217 * 5218 * The caller must hold the rtnl_mutex. 5219 */ 5220 void netdev_rx_handler_unregister(struct net_device *dev) 5221 { 5222 5223 ASSERT_RTNL(); 5224 RCU_INIT_POINTER(dev->rx_handler, NULL); 5225 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5226 * section has a guarantee to see a non NULL rx_handler_data 5227 * as well. 5228 */ 5229 synchronize_net(); 5230 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5231 } 5232 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5233 5234 /* 5235 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5236 * the special handling of PFMEMALLOC skbs. 5237 */ 5238 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5239 { 5240 switch (skb->protocol) { 5241 case htons(ETH_P_ARP): 5242 case htons(ETH_P_IP): 5243 case htons(ETH_P_IPV6): 5244 case htons(ETH_P_8021Q): 5245 case htons(ETH_P_8021AD): 5246 return true; 5247 default: 5248 return false; 5249 } 5250 } 5251 5252 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5253 int *ret, struct net_device *orig_dev) 5254 { 5255 if (nf_hook_ingress_active(skb)) { 5256 int ingress_retval; 5257 5258 if (*pt_prev) { 5259 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5260 *pt_prev = NULL; 5261 } 5262 5263 rcu_read_lock(); 5264 ingress_retval = nf_hook_ingress(skb); 5265 rcu_read_unlock(); 5266 return ingress_retval; 5267 } 5268 return 0; 5269 } 5270 5271 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5272 struct packet_type **ppt_prev) 5273 { 5274 struct packet_type *ptype, *pt_prev; 5275 rx_handler_func_t *rx_handler; 5276 struct sk_buff *skb = *pskb; 5277 struct net_device *orig_dev; 5278 bool deliver_exact = false; 5279 int ret = NET_RX_DROP; 5280 __be16 type; 5281 5282 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5283 5284 trace_netif_receive_skb(skb); 5285 5286 orig_dev = skb->dev; 5287 5288 skb_reset_network_header(skb); 5289 if (!skb_transport_header_was_set(skb)) 5290 skb_reset_transport_header(skb); 5291 skb_reset_mac_len(skb); 5292 5293 pt_prev = NULL; 5294 5295 another_round: 5296 skb->skb_iif = skb->dev->ifindex; 5297 5298 __this_cpu_inc(softnet_data.processed); 5299 5300 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5301 int ret2; 5302 5303 preempt_disable(); 5304 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5305 preempt_enable(); 5306 5307 if (ret2 != XDP_PASS) { 5308 ret = NET_RX_DROP; 5309 goto out; 5310 } 5311 skb_reset_mac_len(skb); 5312 } 5313 5314 if (eth_type_vlan(skb->protocol)) { 5315 skb = skb_vlan_untag(skb); 5316 if (unlikely(!skb)) 5317 goto out; 5318 } 5319 5320 if (skb_skip_tc_classify(skb)) 5321 goto skip_classify; 5322 5323 if (pfmemalloc) 5324 goto skip_taps; 5325 5326 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5327 if (pt_prev) 5328 ret = deliver_skb(skb, pt_prev, orig_dev); 5329 pt_prev = ptype; 5330 } 5331 5332 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5333 if (pt_prev) 5334 ret = deliver_skb(skb, pt_prev, orig_dev); 5335 pt_prev = ptype; 5336 } 5337 5338 skip_taps: 5339 #ifdef CONFIG_NET_INGRESS 5340 if (static_branch_unlikely(&ingress_needed_key)) { 5341 bool another = false; 5342 5343 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5344 &another); 5345 if (another) 5346 goto another_round; 5347 if (!skb) 5348 goto out; 5349 5350 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5351 goto out; 5352 } 5353 #endif 5354 skb_reset_redirect(skb); 5355 skip_classify: 5356 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5357 goto drop; 5358 5359 if (skb_vlan_tag_present(skb)) { 5360 if (pt_prev) { 5361 ret = deliver_skb(skb, pt_prev, orig_dev); 5362 pt_prev = NULL; 5363 } 5364 if (vlan_do_receive(&skb)) 5365 goto another_round; 5366 else if (unlikely(!skb)) 5367 goto out; 5368 } 5369 5370 rx_handler = rcu_dereference(skb->dev->rx_handler); 5371 if (rx_handler) { 5372 if (pt_prev) { 5373 ret = deliver_skb(skb, pt_prev, orig_dev); 5374 pt_prev = NULL; 5375 } 5376 switch (rx_handler(&skb)) { 5377 case RX_HANDLER_CONSUMED: 5378 ret = NET_RX_SUCCESS; 5379 goto out; 5380 case RX_HANDLER_ANOTHER: 5381 goto another_round; 5382 case RX_HANDLER_EXACT: 5383 deliver_exact = true; 5384 break; 5385 case RX_HANDLER_PASS: 5386 break; 5387 default: 5388 BUG(); 5389 } 5390 } 5391 5392 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5393 check_vlan_id: 5394 if (skb_vlan_tag_get_id(skb)) { 5395 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5396 * find vlan device. 5397 */ 5398 skb->pkt_type = PACKET_OTHERHOST; 5399 } else if (eth_type_vlan(skb->protocol)) { 5400 /* Outer header is 802.1P with vlan 0, inner header is 5401 * 802.1Q or 802.1AD and vlan_do_receive() above could 5402 * not find vlan dev for vlan id 0. 5403 */ 5404 __vlan_hwaccel_clear_tag(skb); 5405 skb = skb_vlan_untag(skb); 5406 if (unlikely(!skb)) 5407 goto out; 5408 if (vlan_do_receive(&skb)) 5409 /* After stripping off 802.1P header with vlan 0 5410 * vlan dev is found for inner header. 5411 */ 5412 goto another_round; 5413 else if (unlikely(!skb)) 5414 goto out; 5415 else 5416 /* We have stripped outer 802.1P vlan 0 header. 5417 * But could not find vlan dev. 5418 * check again for vlan id to set OTHERHOST. 5419 */ 5420 goto check_vlan_id; 5421 } 5422 /* Note: we might in the future use prio bits 5423 * and set skb->priority like in vlan_do_receive() 5424 * For the time being, just ignore Priority Code Point 5425 */ 5426 __vlan_hwaccel_clear_tag(skb); 5427 } 5428 5429 type = skb->protocol; 5430 5431 /* deliver only exact match when indicated */ 5432 if (likely(!deliver_exact)) { 5433 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5434 &ptype_base[ntohs(type) & 5435 PTYPE_HASH_MASK]); 5436 } 5437 5438 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5439 &orig_dev->ptype_specific); 5440 5441 if (unlikely(skb->dev != orig_dev)) { 5442 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5443 &skb->dev->ptype_specific); 5444 } 5445 5446 if (pt_prev) { 5447 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5448 goto drop; 5449 *ppt_prev = pt_prev; 5450 } else { 5451 drop: 5452 if (!deliver_exact) 5453 atomic_long_inc(&skb->dev->rx_dropped); 5454 else 5455 atomic_long_inc(&skb->dev->rx_nohandler); 5456 kfree_skb(skb); 5457 /* Jamal, now you will not able to escape explaining 5458 * me how you were going to use this. :-) 5459 */ 5460 ret = NET_RX_DROP; 5461 } 5462 5463 out: 5464 /* The invariant here is that if *ppt_prev is not NULL 5465 * then skb should also be non-NULL. 5466 * 5467 * Apparently *ppt_prev assignment above holds this invariant due to 5468 * skb dereferencing near it. 5469 */ 5470 *pskb = skb; 5471 return ret; 5472 } 5473 5474 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5475 { 5476 struct net_device *orig_dev = skb->dev; 5477 struct packet_type *pt_prev = NULL; 5478 int ret; 5479 5480 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5481 if (pt_prev) 5482 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5483 skb->dev, pt_prev, orig_dev); 5484 return ret; 5485 } 5486 5487 /** 5488 * netif_receive_skb_core - special purpose version of netif_receive_skb 5489 * @skb: buffer to process 5490 * 5491 * More direct receive version of netif_receive_skb(). It should 5492 * only be used by callers that have a need to skip RPS and Generic XDP. 5493 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5494 * 5495 * This function may only be called from softirq context and interrupts 5496 * should be enabled. 5497 * 5498 * Return values (usually ignored): 5499 * NET_RX_SUCCESS: no congestion 5500 * NET_RX_DROP: packet was dropped 5501 */ 5502 int netif_receive_skb_core(struct sk_buff *skb) 5503 { 5504 int ret; 5505 5506 rcu_read_lock(); 5507 ret = __netif_receive_skb_one_core(skb, false); 5508 rcu_read_unlock(); 5509 5510 return ret; 5511 } 5512 EXPORT_SYMBOL(netif_receive_skb_core); 5513 5514 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5515 struct packet_type *pt_prev, 5516 struct net_device *orig_dev) 5517 { 5518 struct sk_buff *skb, *next; 5519 5520 if (!pt_prev) 5521 return; 5522 if (list_empty(head)) 5523 return; 5524 if (pt_prev->list_func != NULL) 5525 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5526 ip_list_rcv, head, pt_prev, orig_dev); 5527 else 5528 list_for_each_entry_safe(skb, next, head, list) { 5529 skb_list_del_init(skb); 5530 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5531 } 5532 } 5533 5534 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5535 { 5536 /* Fast-path assumptions: 5537 * - There is no RX handler. 5538 * - Only one packet_type matches. 5539 * If either of these fails, we will end up doing some per-packet 5540 * processing in-line, then handling the 'last ptype' for the whole 5541 * sublist. This can't cause out-of-order delivery to any single ptype, 5542 * because the 'last ptype' must be constant across the sublist, and all 5543 * other ptypes are handled per-packet. 5544 */ 5545 /* Current (common) ptype of sublist */ 5546 struct packet_type *pt_curr = NULL; 5547 /* Current (common) orig_dev of sublist */ 5548 struct net_device *od_curr = NULL; 5549 struct list_head sublist; 5550 struct sk_buff *skb, *next; 5551 5552 INIT_LIST_HEAD(&sublist); 5553 list_for_each_entry_safe(skb, next, head, list) { 5554 struct net_device *orig_dev = skb->dev; 5555 struct packet_type *pt_prev = NULL; 5556 5557 skb_list_del_init(skb); 5558 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5559 if (!pt_prev) 5560 continue; 5561 if (pt_curr != pt_prev || od_curr != orig_dev) { 5562 /* dispatch old sublist */ 5563 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5564 /* start new sublist */ 5565 INIT_LIST_HEAD(&sublist); 5566 pt_curr = pt_prev; 5567 od_curr = orig_dev; 5568 } 5569 list_add_tail(&skb->list, &sublist); 5570 } 5571 5572 /* dispatch final sublist */ 5573 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5574 } 5575 5576 static int __netif_receive_skb(struct sk_buff *skb) 5577 { 5578 int ret; 5579 5580 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5581 unsigned int noreclaim_flag; 5582 5583 /* 5584 * PFMEMALLOC skbs are special, they should 5585 * - be delivered to SOCK_MEMALLOC sockets only 5586 * - stay away from userspace 5587 * - have bounded memory usage 5588 * 5589 * Use PF_MEMALLOC as this saves us from propagating the allocation 5590 * context down to all allocation sites. 5591 */ 5592 noreclaim_flag = memalloc_noreclaim_save(); 5593 ret = __netif_receive_skb_one_core(skb, true); 5594 memalloc_noreclaim_restore(noreclaim_flag); 5595 } else 5596 ret = __netif_receive_skb_one_core(skb, false); 5597 5598 return ret; 5599 } 5600 5601 static void __netif_receive_skb_list(struct list_head *head) 5602 { 5603 unsigned long noreclaim_flag = 0; 5604 struct sk_buff *skb, *next; 5605 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5606 5607 list_for_each_entry_safe(skb, next, head, list) { 5608 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5609 struct list_head sublist; 5610 5611 /* Handle the previous sublist */ 5612 list_cut_before(&sublist, head, &skb->list); 5613 if (!list_empty(&sublist)) 5614 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5615 pfmemalloc = !pfmemalloc; 5616 /* See comments in __netif_receive_skb */ 5617 if (pfmemalloc) 5618 noreclaim_flag = memalloc_noreclaim_save(); 5619 else 5620 memalloc_noreclaim_restore(noreclaim_flag); 5621 } 5622 } 5623 /* Handle the remaining sublist */ 5624 if (!list_empty(head)) 5625 __netif_receive_skb_list_core(head, pfmemalloc); 5626 /* Restore pflags */ 5627 if (pfmemalloc) 5628 memalloc_noreclaim_restore(noreclaim_flag); 5629 } 5630 5631 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5632 { 5633 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5634 struct bpf_prog *new = xdp->prog; 5635 int ret = 0; 5636 5637 if (new) { 5638 u32 i; 5639 5640 mutex_lock(&new->aux->used_maps_mutex); 5641 5642 /* generic XDP does not work with DEVMAPs that can 5643 * have a bpf_prog installed on an entry 5644 */ 5645 for (i = 0; i < new->aux->used_map_cnt; i++) { 5646 if (dev_map_can_have_prog(new->aux->used_maps[i]) || 5647 cpu_map_prog_allowed(new->aux->used_maps[i])) { 5648 mutex_unlock(&new->aux->used_maps_mutex); 5649 return -EINVAL; 5650 } 5651 } 5652 5653 mutex_unlock(&new->aux->used_maps_mutex); 5654 } 5655 5656 switch (xdp->command) { 5657 case XDP_SETUP_PROG: 5658 rcu_assign_pointer(dev->xdp_prog, new); 5659 if (old) 5660 bpf_prog_put(old); 5661 5662 if (old && !new) { 5663 static_branch_dec(&generic_xdp_needed_key); 5664 } else if (new && !old) { 5665 static_branch_inc(&generic_xdp_needed_key); 5666 dev_disable_lro(dev); 5667 dev_disable_gro_hw(dev); 5668 } 5669 break; 5670 5671 default: 5672 ret = -EINVAL; 5673 break; 5674 } 5675 5676 return ret; 5677 } 5678 5679 static int netif_receive_skb_internal(struct sk_buff *skb) 5680 { 5681 int ret; 5682 5683 net_timestamp_check(netdev_tstamp_prequeue, skb); 5684 5685 if (skb_defer_rx_timestamp(skb)) 5686 return NET_RX_SUCCESS; 5687 5688 rcu_read_lock(); 5689 #ifdef CONFIG_RPS 5690 if (static_branch_unlikely(&rps_needed)) { 5691 struct rps_dev_flow voidflow, *rflow = &voidflow; 5692 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5693 5694 if (cpu >= 0) { 5695 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5696 rcu_read_unlock(); 5697 return ret; 5698 } 5699 } 5700 #endif 5701 ret = __netif_receive_skb(skb); 5702 rcu_read_unlock(); 5703 return ret; 5704 } 5705 5706 static void netif_receive_skb_list_internal(struct list_head *head) 5707 { 5708 struct sk_buff *skb, *next; 5709 struct list_head sublist; 5710 5711 INIT_LIST_HEAD(&sublist); 5712 list_for_each_entry_safe(skb, next, head, list) { 5713 net_timestamp_check(netdev_tstamp_prequeue, skb); 5714 skb_list_del_init(skb); 5715 if (!skb_defer_rx_timestamp(skb)) 5716 list_add_tail(&skb->list, &sublist); 5717 } 5718 list_splice_init(&sublist, head); 5719 5720 rcu_read_lock(); 5721 #ifdef CONFIG_RPS 5722 if (static_branch_unlikely(&rps_needed)) { 5723 list_for_each_entry_safe(skb, next, head, list) { 5724 struct rps_dev_flow voidflow, *rflow = &voidflow; 5725 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5726 5727 if (cpu >= 0) { 5728 /* Will be handled, remove from list */ 5729 skb_list_del_init(skb); 5730 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5731 } 5732 } 5733 } 5734 #endif 5735 __netif_receive_skb_list(head); 5736 rcu_read_unlock(); 5737 } 5738 5739 /** 5740 * netif_receive_skb - process receive buffer from network 5741 * @skb: buffer to process 5742 * 5743 * netif_receive_skb() is the main receive data processing function. 5744 * It always succeeds. The buffer may be dropped during processing 5745 * for congestion control or by the protocol layers. 5746 * 5747 * This function may only be called from softirq context and interrupts 5748 * should be enabled. 5749 * 5750 * Return values (usually ignored): 5751 * NET_RX_SUCCESS: no congestion 5752 * NET_RX_DROP: packet was dropped 5753 */ 5754 int netif_receive_skb(struct sk_buff *skb) 5755 { 5756 int ret; 5757 5758 trace_netif_receive_skb_entry(skb); 5759 5760 ret = netif_receive_skb_internal(skb); 5761 trace_netif_receive_skb_exit(ret); 5762 5763 return ret; 5764 } 5765 EXPORT_SYMBOL(netif_receive_skb); 5766 5767 /** 5768 * netif_receive_skb_list - process many receive buffers from network 5769 * @head: list of skbs to process. 5770 * 5771 * Since return value of netif_receive_skb() is normally ignored, and 5772 * wouldn't be meaningful for a list, this function returns void. 5773 * 5774 * This function may only be called from softirq context and interrupts 5775 * should be enabled. 5776 */ 5777 void netif_receive_skb_list(struct list_head *head) 5778 { 5779 struct sk_buff *skb; 5780 5781 if (list_empty(head)) 5782 return; 5783 if (trace_netif_receive_skb_list_entry_enabled()) { 5784 list_for_each_entry(skb, head, list) 5785 trace_netif_receive_skb_list_entry(skb); 5786 } 5787 netif_receive_skb_list_internal(head); 5788 trace_netif_receive_skb_list_exit(0); 5789 } 5790 EXPORT_SYMBOL(netif_receive_skb_list); 5791 5792 static DEFINE_PER_CPU(struct work_struct, flush_works); 5793 5794 /* Network device is going away, flush any packets still pending */ 5795 static void flush_backlog(struct work_struct *work) 5796 { 5797 struct sk_buff *skb, *tmp; 5798 struct softnet_data *sd; 5799 5800 local_bh_disable(); 5801 sd = this_cpu_ptr(&softnet_data); 5802 5803 local_irq_disable(); 5804 rps_lock(sd); 5805 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5806 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5807 __skb_unlink(skb, &sd->input_pkt_queue); 5808 dev_kfree_skb_irq(skb); 5809 input_queue_head_incr(sd); 5810 } 5811 } 5812 rps_unlock(sd); 5813 local_irq_enable(); 5814 5815 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5816 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5817 __skb_unlink(skb, &sd->process_queue); 5818 kfree_skb(skb); 5819 input_queue_head_incr(sd); 5820 } 5821 } 5822 local_bh_enable(); 5823 } 5824 5825 static bool flush_required(int cpu) 5826 { 5827 #if IS_ENABLED(CONFIG_RPS) 5828 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5829 bool do_flush; 5830 5831 local_irq_disable(); 5832 rps_lock(sd); 5833 5834 /* as insertion into process_queue happens with the rps lock held, 5835 * process_queue access may race only with dequeue 5836 */ 5837 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5838 !skb_queue_empty_lockless(&sd->process_queue); 5839 rps_unlock(sd); 5840 local_irq_enable(); 5841 5842 return do_flush; 5843 #endif 5844 /* without RPS we can't safely check input_pkt_queue: during a 5845 * concurrent remote skb_queue_splice() we can detect as empty both 5846 * input_pkt_queue and process_queue even if the latter could end-up 5847 * containing a lot of packets. 5848 */ 5849 return true; 5850 } 5851 5852 static void flush_all_backlogs(void) 5853 { 5854 static cpumask_t flush_cpus; 5855 unsigned int cpu; 5856 5857 /* since we are under rtnl lock protection we can use static data 5858 * for the cpumask and avoid allocating on stack the possibly 5859 * large mask 5860 */ 5861 ASSERT_RTNL(); 5862 5863 get_online_cpus(); 5864 5865 cpumask_clear(&flush_cpus); 5866 for_each_online_cpu(cpu) { 5867 if (flush_required(cpu)) { 5868 queue_work_on(cpu, system_highpri_wq, 5869 per_cpu_ptr(&flush_works, cpu)); 5870 cpumask_set_cpu(cpu, &flush_cpus); 5871 } 5872 } 5873 5874 /* we can have in flight packet[s] on the cpus we are not flushing, 5875 * synchronize_net() in unregister_netdevice_many() will take care of 5876 * them 5877 */ 5878 for_each_cpu(cpu, &flush_cpus) 5879 flush_work(per_cpu_ptr(&flush_works, cpu)); 5880 5881 put_online_cpus(); 5882 } 5883 5884 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5885 static void gro_normal_list(struct napi_struct *napi) 5886 { 5887 if (!napi->rx_count) 5888 return; 5889 netif_receive_skb_list_internal(&napi->rx_list); 5890 INIT_LIST_HEAD(&napi->rx_list); 5891 napi->rx_count = 0; 5892 } 5893 5894 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5895 * pass the whole batch up to the stack. 5896 */ 5897 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs) 5898 { 5899 list_add_tail(&skb->list, &napi->rx_list); 5900 napi->rx_count += segs; 5901 if (napi->rx_count >= gro_normal_batch) 5902 gro_normal_list(napi); 5903 } 5904 5905 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5906 { 5907 struct packet_offload *ptype; 5908 __be16 type = skb->protocol; 5909 struct list_head *head = &offload_base; 5910 int err = -ENOENT; 5911 5912 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5913 5914 if (NAPI_GRO_CB(skb)->count == 1) { 5915 skb_shinfo(skb)->gso_size = 0; 5916 goto out; 5917 } 5918 5919 rcu_read_lock(); 5920 list_for_each_entry_rcu(ptype, head, list) { 5921 if (ptype->type != type || !ptype->callbacks.gro_complete) 5922 continue; 5923 5924 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5925 ipv6_gro_complete, inet_gro_complete, 5926 skb, 0); 5927 break; 5928 } 5929 rcu_read_unlock(); 5930 5931 if (err) { 5932 WARN_ON(&ptype->list == head); 5933 kfree_skb(skb); 5934 return NET_RX_SUCCESS; 5935 } 5936 5937 out: 5938 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count); 5939 return NET_RX_SUCCESS; 5940 } 5941 5942 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5943 bool flush_old) 5944 { 5945 struct list_head *head = &napi->gro_hash[index].list; 5946 struct sk_buff *skb, *p; 5947 5948 list_for_each_entry_safe_reverse(skb, p, head, list) { 5949 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5950 return; 5951 skb_list_del_init(skb); 5952 napi_gro_complete(napi, skb); 5953 napi->gro_hash[index].count--; 5954 } 5955 5956 if (!napi->gro_hash[index].count) 5957 __clear_bit(index, &napi->gro_bitmask); 5958 } 5959 5960 /* napi->gro_hash[].list contains packets ordered by age. 5961 * youngest packets at the head of it. 5962 * Complete skbs in reverse order to reduce latencies. 5963 */ 5964 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5965 { 5966 unsigned long bitmask = napi->gro_bitmask; 5967 unsigned int i, base = ~0U; 5968 5969 while ((i = ffs(bitmask)) != 0) { 5970 bitmask >>= i; 5971 base += i; 5972 __napi_gro_flush_chain(napi, base, flush_old); 5973 } 5974 } 5975 EXPORT_SYMBOL(napi_gro_flush); 5976 5977 static void gro_list_prepare(const struct list_head *head, 5978 const struct sk_buff *skb) 5979 { 5980 unsigned int maclen = skb->dev->hard_header_len; 5981 u32 hash = skb_get_hash_raw(skb); 5982 struct sk_buff *p; 5983 5984 list_for_each_entry(p, head, list) { 5985 unsigned long diffs; 5986 5987 NAPI_GRO_CB(p)->flush = 0; 5988 5989 if (hash != skb_get_hash_raw(p)) { 5990 NAPI_GRO_CB(p)->same_flow = 0; 5991 continue; 5992 } 5993 5994 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5995 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5996 if (skb_vlan_tag_present(p)) 5997 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5998 diffs |= skb_metadata_dst_cmp(p, skb); 5999 diffs |= skb_metadata_differs(p, skb); 6000 if (maclen == ETH_HLEN) 6001 diffs |= compare_ether_header(skb_mac_header(p), 6002 skb_mac_header(skb)); 6003 else if (!diffs) 6004 diffs = memcmp(skb_mac_header(p), 6005 skb_mac_header(skb), 6006 maclen); 6007 NAPI_GRO_CB(p)->same_flow = !diffs; 6008 } 6009 } 6010 6011 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff) 6012 { 6013 const struct skb_shared_info *pinfo = skb_shinfo(skb); 6014 const skb_frag_t *frag0 = &pinfo->frags[0]; 6015 6016 NAPI_GRO_CB(skb)->data_offset = 0; 6017 NAPI_GRO_CB(skb)->frag0 = NULL; 6018 NAPI_GRO_CB(skb)->frag0_len = 0; 6019 6020 if (!skb_headlen(skb) && pinfo->nr_frags && 6021 !PageHighMem(skb_frag_page(frag0)) && 6022 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) { 6023 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 6024 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 6025 skb_frag_size(frag0), 6026 skb->end - skb->tail); 6027 } 6028 } 6029 6030 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 6031 { 6032 struct skb_shared_info *pinfo = skb_shinfo(skb); 6033 6034 BUG_ON(skb->end - skb->tail < grow); 6035 6036 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 6037 6038 skb->data_len -= grow; 6039 skb->tail += grow; 6040 6041 skb_frag_off_add(&pinfo->frags[0], grow); 6042 skb_frag_size_sub(&pinfo->frags[0], grow); 6043 6044 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 6045 skb_frag_unref(skb, 0); 6046 memmove(pinfo->frags, pinfo->frags + 1, 6047 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 6048 } 6049 } 6050 6051 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 6052 { 6053 struct sk_buff *oldest; 6054 6055 oldest = list_last_entry(head, struct sk_buff, list); 6056 6057 /* We are called with head length >= MAX_GRO_SKBS, so this is 6058 * impossible. 6059 */ 6060 if (WARN_ON_ONCE(!oldest)) 6061 return; 6062 6063 /* Do not adjust napi->gro_hash[].count, caller is adding a new 6064 * SKB to the chain. 6065 */ 6066 skb_list_del_init(oldest); 6067 napi_gro_complete(napi, oldest); 6068 } 6069 6070 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6071 { 6072 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 6073 struct gro_list *gro_list = &napi->gro_hash[bucket]; 6074 struct list_head *head = &offload_base; 6075 struct packet_offload *ptype; 6076 __be16 type = skb->protocol; 6077 struct sk_buff *pp = NULL; 6078 enum gro_result ret; 6079 int same_flow; 6080 int grow; 6081 6082 if (netif_elide_gro(skb->dev)) 6083 goto normal; 6084 6085 gro_list_prepare(&gro_list->list, skb); 6086 6087 rcu_read_lock(); 6088 list_for_each_entry_rcu(ptype, head, list) { 6089 if (ptype->type != type || !ptype->callbacks.gro_receive) 6090 continue; 6091 6092 skb_set_network_header(skb, skb_gro_offset(skb)); 6093 skb_reset_mac_len(skb); 6094 NAPI_GRO_CB(skb)->same_flow = 0; 6095 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 6096 NAPI_GRO_CB(skb)->free = 0; 6097 NAPI_GRO_CB(skb)->encap_mark = 0; 6098 NAPI_GRO_CB(skb)->recursion_counter = 0; 6099 NAPI_GRO_CB(skb)->is_fou = 0; 6100 NAPI_GRO_CB(skb)->is_atomic = 1; 6101 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 6102 6103 /* Setup for GRO checksum validation */ 6104 switch (skb->ip_summed) { 6105 case CHECKSUM_COMPLETE: 6106 NAPI_GRO_CB(skb)->csum = skb->csum; 6107 NAPI_GRO_CB(skb)->csum_valid = 1; 6108 NAPI_GRO_CB(skb)->csum_cnt = 0; 6109 break; 6110 case CHECKSUM_UNNECESSARY: 6111 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 6112 NAPI_GRO_CB(skb)->csum_valid = 0; 6113 break; 6114 default: 6115 NAPI_GRO_CB(skb)->csum_cnt = 0; 6116 NAPI_GRO_CB(skb)->csum_valid = 0; 6117 } 6118 6119 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 6120 ipv6_gro_receive, inet_gro_receive, 6121 &gro_list->list, skb); 6122 break; 6123 } 6124 rcu_read_unlock(); 6125 6126 if (&ptype->list == head) 6127 goto normal; 6128 6129 if (PTR_ERR(pp) == -EINPROGRESS) { 6130 ret = GRO_CONSUMED; 6131 goto ok; 6132 } 6133 6134 same_flow = NAPI_GRO_CB(skb)->same_flow; 6135 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 6136 6137 if (pp) { 6138 skb_list_del_init(pp); 6139 napi_gro_complete(napi, pp); 6140 gro_list->count--; 6141 } 6142 6143 if (same_flow) 6144 goto ok; 6145 6146 if (NAPI_GRO_CB(skb)->flush) 6147 goto normal; 6148 6149 if (unlikely(gro_list->count >= MAX_GRO_SKBS)) 6150 gro_flush_oldest(napi, &gro_list->list); 6151 else 6152 gro_list->count++; 6153 6154 NAPI_GRO_CB(skb)->count = 1; 6155 NAPI_GRO_CB(skb)->age = jiffies; 6156 NAPI_GRO_CB(skb)->last = skb; 6157 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 6158 list_add(&skb->list, &gro_list->list); 6159 ret = GRO_HELD; 6160 6161 pull: 6162 grow = skb_gro_offset(skb) - skb_headlen(skb); 6163 if (grow > 0) 6164 gro_pull_from_frag0(skb, grow); 6165 ok: 6166 if (gro_list->count) { 6167 if (!test_bit(bucket, &napi->gro_bitmask)) 6168 __set_bit(bucket, &napi->gro_bitmask); 6169 } else if (test_bit(bucket, &napi->gro_bitmask)) { 6170 __clear_bit(bucket, &napi->gro_bitmask); 6171 } 6172 6173 return ret; 6174 6175 normal: 6176 ret = GRO_NORMAL; 6177 goto pull; 6178 } 6179 6180 struct packet_offload *gro_find_receive_by_type(__be16 type) 6181 { 6182 struct list_head *offload_head = &offload_base; 6183 struct packet_offload *ptype; 6184 6185 list_for_each_entry_rcu(ptype, offload_head, list) { 6186 if (ptype->type != type || !ptype->callbacks.gro_receive) 6187 continue; 6188 return ptype; 6189 } 6190 return NULL; 6191 } 6192 EXPORT_SYMBOL(gro_find_receive_by_type); 6193 6194 struct packet_offload *gro_find_complete_by_type(__be16 type) 6195 { 6196 struct list_head *offload_head = &offload_base; 6197 struct packet_offload *ptype; 6198 6199 list_for_each_entry_rcu(ptype, offload_head, list) { 6200 if (ptype->type != type || !ptype->callbacks.gro_complete) 6201 continue; 6202 return ptype; 6203 } 6204 return NULL; 6205 } 6206 EXPORT_SYMBOL(gro_find_complete_by_type); 6207 6208 static gro_result_t napi_skb_finish(struct napi_struct *napi, 6209 struct sk_buff *skb, 6210 gro_result_t ret) 6211 { 6212 switch (ret) { 6213 case GRO_NORMAL: 6214 gro_normal_one(napi, skb, 1); 6215 break; 6216 6217 case GRO_MERGED_FREE: 6218 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6219 napi_skb_free_stolen_head(skb); 6220 else 6221 __kfree_skb_defer(skb); 6222 break; 6223 6224 case GRO_HELD: 6225 case GRO_MERGED: 6226 case GRO_CONSUMED: 6227 break; 6228 } 6229 6230 return ret; 6231 } 6232 6233 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6234 { 6235 gro_result_t ret; 6236 6237 skb_mark_napi_id(skb, napi); 6238 trace_napi_gro_receive_entry(skb); 6239 6240 skb_gro_reset_offset(skb, 0); 6241 6242 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6243 trace_napi_gro_receive_exit(ret); 6244 6245 return ret; 6246 } 6247 EXPORT_SYMBOL(napi_gro_receive); 6248 6249 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6250 { 6251 if (unlikely(skb->pfmemalloc)) { 6252 consume_skb(skb); 6253 return; 6254 } 6255 __skb_pull(skb, skb_headlen(skb)); 6256 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6257 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6258 __vlan_hwaccel_clear_tag(skb); 6259 skb->dev = napi->dev; 6260 skb->skb_iif = 0; 6261 6262 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6263 skb->pkt_type = PACKET_HOST; 6264 6265 skb->encapsulation = 0; 6266 skb_shinfo(skb)->gso_type = 0; 6267 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6268 skb_ext_reset(skb); 6269 6270 napi->skb = skb; 6271 } 6272 6273 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6274 { 6275 struct sk_buff *skb = napi->skb; 6276 6277 if (!skb) { 6278 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6279 if (skb) { 6280 napi->skb = skb; 6281 skb_mark_napi_id(skb, napi); 6282 } 6283 } 6284 return skb; 6285 } 6286 EXPORT_SYMBOL(napi_get_frags); 6287 6288 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6289 struct sk_buff *skb, 6290 gro_result_t ret) 6291 { 6292 switch (ret) { 6293 case GRO_NORMAL: 6294 case GRO_HELD: 6295 __skb_push(skb, ETH_HLEN); 6296 skb->protocol = eth_type_trans(skb, skb->dev); 6297 if (ret == GRO_NORMAL) 6298 gro_normal_one(napi, skb, 1); 6299 break; 6300 6301 case GRO_MERGED_FREE: 6302 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6303 napi_skb_free_stolen_head(skb); 6304 else 6305 napi_reuse_skb(napi, skb); 6306 break; 6307 6308 case GRO_MERGED: 6309 case GRO_CONSUMED: 6310 break; 6311 } 6312 6313 return ret; 6314 } 6315 6316 /* Upper GRO stack assumes network header starts at gro_offset=0 6317 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6318 * We copy ethernet header into skb->data to have a common layout. 6319 */ 6320 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6321 { 6322 struct sk_buff *skb = napi->skb; 6323 const struct ethhdr *eth; 6324 unsigned int hlen = sizeof(*eth); 6325 6326 napi->skb = NULL; 6327 6328 skb_reset_mac_header(skb); 6329 skb_gro_reset_offset(skb, hlen); 6330 6331 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6332 eth = skb_gro_header_slow(skb, hlen, 0); 6333 if (unlikely(!eth)) { 6334 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6335 __func__, napi->dev->name); 6336 napi_reuse_skb(napi, skb); 6337 return NULL; 6338 } 6339 } else { 6340 eth = (const struct ethhdr *)skb->data; 6341 gro_pull_from_frag0(skb, hlen); 6342 NAPI_GRO_CB(skb)->frag0 += hlen; 6343 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6344 } 6345 __skb_pull(skb, hlen); 6346 6347 /* 6348 * This works because the only protocols we care about don't require 6349 * special handling. 6350 * We'll fix it up properly in napi_frags_finish() 6351 */ 6352 skb->protocol = eth->h_proto; 6353 6354 return skb; 6355 } 6356 6357 gro_result_t napi_gro_frags(struct napi_struct *napi) 6358 { 6359 gro_result_t ret; 6360 struct sk_buff *skb = napi_frags_skb(napi); 6361 6362 trace_napi_gro_frags_entry(skb); 6363 6364 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6365 trace_napi_gro_frags_exit(ret); 6366 6367 return ret; 6368 } 6369 EXPORT_SYMBOL(napi_gro_frags); 6370 6371 /* Compute the checksum from gro_offset and return the folded value 6372 * after adding in any pseudo checksum. 6373 */ 6374 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6375 { 6376 __wsum wsum; 6377 __sum16 sum; 6378 6379 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6380 6381 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6382 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6383 /* See comments in __skb_checksum_complete(). */ 6384 if (likely(!sum)) { 6385 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6386 !skb->csum_complete_sw) 6387 netdev_rx_csum_fault(skb->dev, skb); 6388 } 6389 6390 NAPI_GRO_CB(skb)->csum = wsum; 6391 NAPI_GRO_CB(skb)->csum_valid = 1; 6392 6393 return sum; 6394 } 6395 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6396 6397 static void net_rps_send_ipi(struct softnet_data *remsd) 6398 { 6399 #ifdef CONFIG_RPS 6400 while (remsd) { 6401 struct softnet_data *next = remsd->rps_ipi_next; 6402 6403 if (cpu_online(remsd->cpu)) 6404 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6405 remsd = next; 6406 } 6407 #endif 6408 } 6409 6410 /* 6411 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6412 * Note: called with local irq disabled, but exits with local irq enabled. 6413 */ 6414 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6415 { 6416 #ifdef CONFIG_RPS 6417 struct softnet_data *remsd = sd->rps_ipi_list; 6418 6419 if (remsd) { 6420 sd->rps_ipi_list = NULL; 6421 6422 local_irq_enable(); 6423 6424 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6425 net_rps_send_ipi(remsd); 6426 } else 6427 #endif 6428 local_irq_enable(); 6429 } 6430 6431 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6432 { 6433 #ifdef CONFIG_RPS 6434 return sd->rps_ipi_list != NULL; 6435 #else 6436 return false; 6437 #endif 6438 } 6439 6440 static int process_backlog(struct napi_struct *napi, int quota) 6441 { 6442 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6443 bool again = true; 6444 int work = 0; 6445 6446 /* Check if we have pending ipi, its better to send them now, 6447 * not waiting net_rx_action() end. 6448 */ 6449 if (sd_has_rps_ipi_waiting(sd)) { 6450 local_irq_disable(); 6451 net_rps_action_and_irq_enable(sd); 6452 } 6453 6454 napi->weight = dev_rx_weight; 6455 while (again) { 6456 struct sk_buff *skb; 6457 6458 while ((skb = __skb_dequeue(&sd->process_queue))) { 6459 rcu_read_lock(); 6460 __netif_receive_skb(skb); 6461 rcu_read_unlock(); 6462 input_queue_head_incr(sd); 6463 if (++work >= quota) 6464 return work; 6465 6466 } 6467 6468 local_irq_disable(); 6469 rps_lock(sd); 6470 if (skb_queue_empty(&sd->input_pkt_queue)) { 6471 /* 6472 * Inline a custom version of __napi_complete(). 6473 * only current cpu owns and manipulates this napi, 6474 * and NAPI_STATE_SCHED is the only possible flag set 6475 * on backlog. 6476 * We can use a plain write instead of clear_bit(), 6477 * and we dont need an smp_mb() memory barrier. 6478 */ 6479 napi->state = 0; 6480 again = false; 6481 } else { 6482 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6483 &sd->process_queue); 6484 } 6485 rps_unlock(sd); 6486 local_irq_enable(); 6487 } 6488 6489 return work; 6490 } 6491 6492 /** 6493 * __napi_schedule - schedule for receive 6494 * @n: entry to schedule 6495 * 6496 * The entry's receive function will be scheduled to run. 6497 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6498 */ 6499 void __napi_schedule(struct napi_struct *n) 6500 { 6501 unsigned long flags; 6502 6503 local_irq_save(flags); 6504 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6505 local_irq_restore(flags); 6506 } 6507 EXPORT_SYMBOL(__napi_schedule); 6508 6509 /** 6510 * napi_schedule_prep - check if napi can be scheduled 6511 * @n: napi context 6512 * 6513 * Test if NAPI routine is already running, and if not mark 6514 * it as running. This is used as a condition variable to 6515 * insure only one NAPI poll instance runs. We also make 6516 * sure there is no pending NAPI disable. 6517 */ 6518 bool napi_schedule_prep(struct napi_struct *n) 6519 { 6520 unsigned long val, new; 6521 6522 do { 6523 val = READ_ONCE(n->state); 6524 if (unlikely(val & NAPIF_STATE_DISABLE)) 6525 return false; 6526 new = val | NAPIF_STATE_SCHED; 6527 6528 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6529 * This was suggested by Alexander Duyck, as compiler 6530 * emits better code than : 6531 * if (val & NAPIF_STATE_SCHED) 6532 * new |= NAPIF_STATE_MISSED; 6533 */ 6534 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6535 NAPIF_STATE_MISSED; 6536 } while (cmpxchg(&n->state, val, new) != val); 6537 6538 return !(val & NAPIF_STATE_SCHED); 6539 } 6540 EXPORT_SYMBOL(napi_schedule_prep); 6541 6542 /** 6543 * __napi_schedule_irqoff - schedule for receive 6544 * @n: entry to schedule 6545 * 6546 * Variant of __napi_schedule() assuming hard irqs are masked. 6547 * 6548 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6549 * because the interrupt disabled assumption might not be true 6550 * due to force-threaded interrupts and spinlock substitution. 6551 */ 6552 void __napi_schedule_irqoff(struct napi_struct *n) 6553 { 6554 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6555 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6556 else 6557 __napi_schedule(n); 6558 } 6559 EXPORT_SYMBOL(__napi_schedule_irqoff); 6560 6561 bool napi_complete_done(struct napi_struct *n, int work_done) 6562 { 6563 unsigned long flags, val, new, timeout = 0; 6564 bool ret = true; 6565 6566 /* 6567 * 1) Don't let napi dequeue from the cpu poll list 6568 * just in case its running on a different cpu. 6569 * 2) If we are busy polling, do nothing here, we have 6570 * the guarantee we will be called later. 6571 */ 6572 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6573 NAPIF_STATE_IN_BUSY_POLL))) 6574 return false; 6575 6576 if (work_done) { 6577 if (n->gro_bitmask) 6578 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6579 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6580 } 6581 if (n->defer_hard_irqs_count > 0) { 6582 n->defer_hard_irqs_count--; 6583 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6584 if (timeout) 6585 ret = false; 6586 } 6587 if (n->gro_bitmask) { 6588 /* When the NAPI instance uses a timeout and keeps postponing 6589 * it, we need to bound somehow the time packets are kept in 6590 * the GRO layer 6591 */ 6592 napi_gro_flush(n, !!timeout); 6593 } 6594 6595 gro_normal_list(n); 6596 6597 if (unlikely(!list_empty(&n->poll_list))) { 6598 /* If n->poll_list is not empty, we need to mask irqs */ 6599 local_irq_save(flags); 6600 list_del_init(&n->poll_list); 6601 local_irq_restore(flags); 6602 } 6603 6604 do { 6605 val = READ_ONCE(n->state); 6606 6607 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6608 6609 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6610 NAPIF_STATE_SCHED_THREADED | 6611 NAPIF_STATE_PREFER_BUSY_POLL); 6612 6613 /* If STATE_MISSED was set, leave STATE_SCHED set, 6614 * because we will call napi->poll() one more time. 6615 * This C code was suggested by Alexander Duyck to help gcc. 6616 */ 6617 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6618 NAPIF_STATE_SCHED; 6619 } while (cmpxchg(&n->state, val, new) != val); 6620 6621 if (unlikely(val & NAPIF_STATE_MISSED)) { 6622 __napi_schedule(n); 6623 return false; 6624 } 6625 6626 if (timeout) 6627 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6628 HRTIMER_MODE_REL_PINNED); 6629 return ret; 6630 } 6631 EXPORT_SYMBOL(napi_complete_done); 6632 6633 /* must be called under rcu_read_lock(), as we dont take a reference */ 6634 static struct napi_struct *napi_by_id(unsigned int napi_id) 6635 { 6636 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6637 struct napi_struct *napi; 6638 6639 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6640 if (napi->napi_id == napi_id) 6641 return napi; 6642 6643 return NULL; 6644 } 6645 6646 #if defined(CONFIG_NET_RX_BUSY_POLL) 6647 6648 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6649 { 6650 if (!skip_schedule) { 6651 gro_normal_list(napi); 6652 __napi_schedule(napi); 6653 return; 6654 } 6655 6656 if (napi->gro_bitmask) { 6657 /* flush too old packets 6658 * If HZ < 1000, flush all packets. 6659 */ 6660 napi_gro_flush(napi, HZ >= 1000); 6661 } 6662 6663 gro_normal_list(napi); 6664 clear_bit(NAPI_STATE_SCHED, &napi->state); 6665 } 6666 6667 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6668 u16 budget) 6669 { 6670 bool skip_schedule = false; 6671 unsigned long timeout; 6672 int rc; 6673 6674 /* Busy polling means there is a high chance device driver hard irq 6675 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6676 * set in napi_schedule_prep(). 6677 * Since we are about to call napi->poll() once more, we can safely 6678 * clear NAPI_STATE_MISSED. 6679 * 6680 * Note: x86 could use a single "lock and ..." instruction 6681 * to perform these two clear_bit() 6682 */ 6683 clear_bit(NAPI_STATE_MISSED, &napi->state); 6684 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6685 6686 local_bh_disable(); 6687 6688 if (prefer_busy_poll) { 6689 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6690 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6691 if (napi->defer_hard_irqs_count && timeout) { 6692 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6693 skip_schedule = true; 6694 } 6695 } 6696 6697 /* All we really want here is to re-enable device interrupts. 6698 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6699 */ 6700 rc = napi->poll(napi, budget); 6701 /* We can't gro_normal_list() here, because napi->poll() might have 6702 * rearmed the napi (napi_complete_done()) in which case it could 6703 * already be running on another CPU. 6704 */ 6705 trace_napi_poll(napi, rc, budget); 6706 netpoll_poll_unlock(have_poll_lock); 6707 if (rc == budget) 6708 __busy_poll_stop(napi, skip_schedule); 6709 local_bh_enable(); 6710 } 6711 6712 void napi_busy_loop(unsigned int napi_id, 6713 bool (*loop_end)(void *, unsigned long), 6714 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6715 { 6716 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6717 int (*napi_poll)(struct napi_struct *napi, int budget); 6718 void *have_poll_lock = NULL; 6719 struct napi_struct *napi; 6720 6721 restart: 6722 napi_poll = NULL; 6723 6724 rcu_read_lock(); 6725 6726 napi = napi_by_id(napi_id); 6727 if (!napi) 6728 goto out; 6729 6730 preempt_disable(); 6731 for (;;) { 6732 int work = 0; 6733 6734 local_bh_disable(); 6735 if (!napi_poll) { 6736 unsigned long val = READ_ONCE(napi->state); 6737 6738 /* If multiple threads are competing for this napi, 6739 * we avoid dirtying napi->state as much as we can. 6740 */ 6741 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6742 NAPIF_STATE_IN_BUSY_POLL)) { 6743 if (prefer_busy_poll) 6744 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6745 goto count; 6746 } 6747 if (cmpxchg(&napi->state, val, 6748 val | NAPIF_STATE_IN_BUSY_POLL | 6749 NAPIF_STATE_SCHED) != val) { 6750 if (prefer_busy_poll) 6751 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6752 goto count; 6753 } 6754 have_poll_lock = netpoll_poll_lock(napi); 6755 napi_poll = napi->poll; 6756 } 6757 work = napi_poll(napi, budget); 6758 trace_napi_poll(napi, work, budget); 6759 gro_normal_list(napi); 6760 count: 6761 if (work > 0) 6762 __NET_ADD_STATS(dev_net(napi->dev), 6763 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6764 local_bh_enable(); 6765 6766 if (!loop_end || loop_end(loop_end_arg, start_time)) 6767 break; 6768 6769 if (unlikely(need_resched())) { 6770 if (napi_poll) 6771 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6772 preempt_enable(); 6773 rcu_read_unlock(); 6774 cond_resched(); 6775 if (loop_end(loop_end_arg, start_time)) 6776 return; 6777 goto restart; 6778 } 6779 cpu_relax(); 6780 } 6781 if (napi_poll) 6782 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6783 preempt_enable(); 6784 out: 6785 rcu_read_unlock(); 6786 } 6787 EXPORT_SYMBOL(napi_busy_loop); 6788 6789 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6790 6791 static void napi_hash_add(struct napi_struct *napi) 6792 { 6793 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6794 return; 6795 6796 spin_lock(&napi_hash_lock); 6797 6798 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6799 do { 6800 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6801 napi_gen_id = MIN_NAPI_ID; 6802 } while (napi_by_id(napi_gen_id)); 6803 napi->napi_id = napi_gen_id; 6804 6805 hlist_add_head_rcu(&napi->napi_hash_node, 6806 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6807 6808 spin_unlock(&napi_hash_lock); 6809 } 6810 6811 /* Warning : caller is responsible to make sure rcu grace period 6812 * is respected before freeing memory containing @napi 6813 */ 6814 static void napi_hash_del(struct napi_struct *napi) 6815 { 6816 spin_lock(&napi_hash_lock); 6817 6818 hlist_del_init_rcu(&napi->napi_hash_node); 6819 6820 spin_unlock(&napi_hash_lock); 6821 } 6822 6823 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6824 { 6825 struct napi_struct *napi; 6826 6827 napi = container_of(timer, struct napi_struct, timer); 6828 6829 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6830 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6831 */ 6832 if (!napi_disable_pending(napi) && 6833 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6834 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6835 __napi_schedule_irqoff(napi); 6836 } 6837 6838 return HRTIMER_NORESTART; 6839 } 6840 6841 static void init_gro_hash(struct napi_struct *napi) 6842 { 6843 int i; 6844 6845 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6846 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6847 napi->gro_hash[i].count = 0; 6848 } 6849 napi->gro_bitmask = 0; 6850 } 6851 6852 int dev_set_threaded(struct net_device *dev, bool threaded) 6853 { 6854 struct napi_struct *napi; 6855 int err = 0; 6856 6857 if (dev->threaded == threaded) 6858 return 0; 6859 6860 if (threaded) { 6861 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6862 if (!napi->thread) { 6863 err = napi_kthread_create(napi); 6864 if (err) { 6865 threaded = false; 6866 break; 6867 } 6868 } 6869 } 6870 } 6871 6872 dev->threaded = threaded; 6873 6874 /* Make sure kthread is created before THREADED bit 6875 * is set. 6876 */ 6877 smp_mb__before_atomic(); 6878 6879 /* Setting/unsetting threaded mode on a napi might not immediately 6880 * take effect, if the current napi instance is actively being 6881 * polled. In this case, the switch between threaded mode and 6882 * softirq mode will happen in the next round of napi_schedule(). 6883 * This should not cause hiccups/stalls to the live traffic. 6884 */ 6885 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6886 if (threaded) 6887 set_bit(NAPI_STATE_THREADED, &napi->state); 6888 else 6889 clear_bit(NAPI_STATE_THREADED, &napi->state); 6890 } 6891 6892 return err; 6893 } 6894 EXPORT_SYMBOL(dev_set_threaded); 6895 6896 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6897 int (*poll)(struct napi_struct *, int), int weight) 6898 { 6899 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6900 return; 6901 6902 INIT_LIST_HEAD(&napi->poll_list); 6903 INIT_HLIST_NODE(&napi->napi_hash_node); 6904 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6905 napi->timer.function = napi_watchdog; 6906 init_gro_hash(napi); 6907 napi->skb = NULL; 6908 INIT_LIST_HEAD(&napi->rx_list); 6909 napi->rx_count = 0; 6910 napi->poll = poll; 6911 if (weight > NAPI_POLL_WEIGHT) 6912 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6913 weight); 6914 napi->weight = weight; 6915 napi->dev = dev; 6916 #ifdef CONFIG_NETPOLL 6917 napi->poll_owner = -1; 6918 #endif 6919 set_bit(NAPI_STATE_SCHED, &napi->state); 6920 set_bit(NAPI_STATE_NPSVC, &napi->state); 6921 list_add_rcu(&napi->dev_list, &dev->napi_list); 6922 napi_hash_add(napi); 6923 /* Create kthread for this napi if dev->threaded is set. 6924 * Clear dev->threaded if kthread creation failed so that 6925 * threaded mode will not be enabled in napi_enable(). 6926 */ 6927 if (dev->threaded && napi_kthread_create(napi)) 6928 dev->threaded = 0; 6929 } 6930 EXPORT_SYMBOL(netif_napi_add); 6931 6932 void napi_disable(struct napi_struct *n) 6933 { 6934 might_sleep(); 6935 set_bit(NAPI_STATE_DISABLE, &n->state); 6936 6937 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6938 msleep(1); 6939 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6940 msleep(1); 6941 6942 hrtimer_cancel(&n->timer); 6943 6944 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 6945 clear_bit(NAPI_STATE_DISABLE, &n->state); 6946 clear_bit(NAPI_STATE_THREADED, &n->state); 6947 } 6948 EXPORT_SYMBOL(napi_disable); 6949 6950 /** 6951 * napi_enable - enable NAPI scheduling 6952 * @n: NAPI context 6953 * 6954 * Resume NAPI from being scheduled on this context. 6955 * Must be paired with napi_disable. 6956 */ 6957 void napi_enable(struct napi_struct *n) 6958 { 6959 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 6960 smp_mb__before_atomic(); 6961 clear_bit(NAPI_STATE_SCHED, &n->state); 6962 clear_bit(NAPI_STATE_NPSVC, &n->state); 6963 if (n->dev->threaded && n->thread) 6964 set_bit(NAPI_STATE_THREADED, &n->state); 6965 } 6966 EXPORT_SYMBOL(napi_enable); 6967 6968 static void flush_gro_hash(struct napi_struct *napi) 6969 { 6970 int i; 6971 6972 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6973 struct sk_buff *skb, *n; 6974 6975 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6976 kfree_skb(skb); 6977 napi->gro_hash[i].count = 0; 6978 } 6979 } 6980 6981 /* Must be called in process context */ 6982 void __netif_napi_del(struct napi_struct *napi) 6983 { 6984 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6985 return; 6986 6987 napi_hash_del(napi); 6988 list_del_rcu(&napi->dev_list); 6989 napi_free_frags(napi); 6990 6991 flush_gro_hash(napi); 6992 napi->gro_bitmask = 0; 6993 6994 if (napi->thread) { 6995 kthread_stop(napi->thread); 6996 napi->thread = NULL; 6997 } 6998 } 6999 EXPORT_SYMBOL(__netif_napi_del); 7000 7001 static int __napi_poll(struct napi_struct *n, bool *repoll) 7002 { 7003 int work, weight; 7004 7005 weight = n->weight; 7006 7007 /* This NAPI_STATE_SCHED test is for avoiding a race 7008 * with netpoll's poll_napi(). Only the entity which 7009 * obtains the lock and sees NAPI_STATE_SCHED set will 7010 * actually make the ->poll() call. Therefore we avoid 7011 * accidentally calling ->poll() when NAPI is not scheduled. 7012 */ 7013 work = 0; 7014 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 7015 work = n->poll(n, weight); 7016 trace_napi_poll(n, work, weight); 7017 } 7018 7019 if (unlikely(work > weight)) 7020 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 7021 n->poll, work, weight); 7022 7023 if (likely(work < weight)) 7024 return work; 7025 7026 /* Drivers must not modify the NAPI state if they 7027 * consume the entire weight. In such cases this code 7028 * still "owns" the NAPI instance and therefore can 7029 * move the instance around on the list at-will. 7030 */ 7031 if (unlikely(napi_disable_pending(n))) { 7032 napi_complete(n); 7033 return work; 7034 } 7035 7036 /* The NAPI context has more processing work, but busy-polling 7037 * is preferred. Exit early. 7038 */ 7039 if (napi_prefer_busy_poll(n)) { 7040 if (napi_complete_done(n, work)) { 7041 /* If timeout is not set, we need to make sure 7042 * that the NAPI is re-scheduled. 7043 */ 7044 napi_schedule(n); 7045 } 7046 return work; 7047 } 7048 7049 if (n->gro_bitmask) { 7050 /* flush too old packets 7051 * If HZ < 1000, flush all packets. 7052 */ 7053 napi_gro_flush(n, HZ >= 1000); 7054 } 7055 7056 gro_normal_list(n); 7057 7058 /* Some drivers may have called napi_schedule 7059 * prior to exhausting their budget. 7060 */ 7061 if (unlikely(!list_empty(&n->poll_list))) { 7062 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 7063 n->dev ? n->dev->name : "backlog"); 7064 return work; 7065 } 7066 7067 *repoll = true; 7068 7069 return work; 7070 } 7071 7072 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 7073 { 7074 bool do_repoll = false; 7075 void *have; 7076 int work; 7077 7078 list_del_init(&n->poll_list); 7079 7080 have = netpoll_poll_lock(n); 7081 7082 work = __napi_poll(n, &do_repoll); 7083 7084 if (do_repoll) 7085 list_add_tail(&n->poll_list, repoll); 7086 7087 netpoll_poll_unlock(have); 7088 7089 return work; 7090 } 7091 7092 static int napi_thread_wait(struct napi_struct *napi) 7093 { 7094 bool woken = false; 7095 7096 set_current_state(TASK_INTERRUPTIBLE); 7097 7098 while (!kthread_should_stop()) { 7099 /* Testing SCHED_THREADED bit here to make sure the current 7100 * kthread owns this napi and could poll on this napi. 7101 * Testing SCHED bit is not enough because SCHED bit might be 7102 * set by some other busy poll thread or by napi_disable(). 7103 */ 7104 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 7105 WARN_ON(!list_empty(&napi->poll_list)); 7106 __set_current_state(TASK_RUNNING); 7107 return 0; 7108 } 7109 7110 schedule(); 7111 /* woken being true indicates this thread owns this napi. */ 7112 woken = true; 7113 set_current_state(TASK_INTERRUPTIBLE); 7114 } 7115 __set_current_state(TASK_RUNNING); 7116 7117 return -1; 7118 } 7119 7120 static int napi_threaded_poll(void *data) 7121 { 7122 struct napi_struct *napi = data; 7123 void *have; 7124 7125 while (!napi_thread_wait(napi)) { 7126 for (;;) { 7127 bool repoll = false; 7128 7129 local_bh_disable(); 7130 7131 have = netpoll_poll_lock(napi); 7132 __napi_poll(napi, &repoll); 7133 netpoll_poll_unlock(have); 7134 7135 local_bh_enable(); 7136 7137 if (!repoll) 7138 break; 7139 7140 cond_resched(); 7141 } 7142 } 7143 return 0; 7144 } 7145 7146 static __latent_entropy void net_rx_action(struct softirq_action *h) 7147 { 7148 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 7149 unsigned long time_limit = jiffies + 7150 usecs_to_jiffies(netdev_budget_usecs); 7151 int budget = netdev_budget; 7152 LIST_HEAD(list); 7153 LIST_HEAD(repoll); 7154 7155 local_irq_disable(); 7156 list_splice_init(&sd->poll_list, &list); 7157 local_irq_enable(); 7158 7159 for (;;) { 7160 struct napi_struct *n; 7161 7162 if (list_empty(&list)) { 7163 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 7164 return; 7165 break; 7166 } 7167 7168 n = list_first_entry(&list, struct napi_struct, poll_list); 7169 budget -= napi_poll(n, &repoll); 7170 7171 /* If softirq window is exhausted then punt. 7172 * Allow this to run for 2 jiffies since which will allow 7173 * an average latency of 1.5/HZ. 7174 */ 7175 if (unlikely(budget <= 0 || 7176 time_after_eq(jiffies, time_limit))) { 7177 sd->time_squeeze++; 7178 break; 7179 } 7180 } 7181 7182 local_irq_disable(); 7183 7184 list_splice_tail_init(&sd->poll_list, &list); 7185 list_splice_tail(&repoll, &list); 7186 list_splice(&list, &sd->poll_list); 7187 if (!list_empty(&sd->poll_list)) 7188 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 7189 7190 net_rps_action_and_irq_enable(sd); 7191 } 7192 7193 struct netdev_adjacent { 7194 struct net_device *dev; 7195 7196 /* upper master flag, there can only be one master device per list */ 7197 bool master; 7198 7199 /* lookup ignore flag */ 7200 bool ignore; 7201 7202 /* counter for the number of times this device was added to us */ 7203 u16 ref_nr; 7204 7205 /* private field for the users */ 7206 void *private; 7207 7208 struct list_head list; 7209 struct rcu_head rcu; 7210 }; 7211 7212 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 7213 struct list_head *adj_list) 7214 { 7215 struct netdev_adjacent *adj; 7216 7217 list_for_each_entry(adj, adj_list, list) { 7218 if (adj->dev == adj_dev) 7219 return adj; 7220 } 7221 return NULL; 7222 } 7223 7224 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 7225 struct netdev_nested_priv *priv) 7226 { 7227 struct net_device *dev = (struct net_device *)priv->data; 7228 7229 return upper_dev == dev; 7230 } 7231 7232 /** 7233 * netdev_has_upper_dev - Check if device is linked to an upper device 7234 * @dev: device 7235 * @upper_dev: upper device to check 7236 * 7237 * Find out if a device is linked to specified upper device and return true 7238 * in case it is. Note that this checks only immediate upper device, 7239 * not through a complete stack of devices. The caller must hold the RTNL lock. 7240 */ 7241 bool netdev_has_upper_dev(struct net_device *dev, 7242 struct net_device *upper_dev) 7243 { 7244 struct netdev_nested_priv priv = { 7245 .data = (void *)upper_dev, 7246 }; 7247 7248 ASSERT_RTNL(); 7249 7250 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7251 &priv); 7252 } 7253 EXPORT_SYMBOL(netdev_has_upper_dev); 7254 7255 /** 7256 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 7257 * @dev: device 7258 * @upper_dev: upper device to check 7259 * 7260 * Find out if a device is linked to specified upper device and return true 7261 * in case it is. Note that this checks the entire upper device chain. 7262 * The caller must hold rcu lock. 7263 */ 7264 7265 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 7266 struct net_device *upper_dev) 7267 { 7268 struct netdev_nested_priv priv = { 7269 .data = (void *)upper_dev, 7270 }; 7271 7272 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 7273 &priv); 7274 } 7275 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 7276 7277 /** 7278 * netdev_has_any_upper_dev - Check if device is linked to some device 7279 * @dev: device 7280 * 7281 * Find out if a device is linked to an upper device and return true in case 7282 * it is. The caller must hold the RTNL lock. 7283 */ 7284 bool netdev_has_any_upper_dev(struct net_device *dev) 7285 { 7286 ASSERT_RTNL(); 7287 7288 return !list_empty(&dev->adj_list.upper); 7289 } 7290 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7291 7292 /** 7293 * netdev_master_upper_dev_get - Get master upper device 7294 * @dev: device 7295 * 7296 * Find a master upper device and return pointer to it or NULL in case 7297 * it's not there. The caller must hold the RTNL lock. 7298 */ 7299 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7300 { 7301 struct netdev_adjacent *upper; 7302 7303 ASSERT_RTNL(); 7304 7305 if (list_empty(&dev->adj_list.upper)) 7306 return NULL; 7307 7308 upper = list_first_entry(&dev->adj_list.upper, 7309 struct netdev_adjacent, list); 7310 if (likely(upper->master)) 7311 return upper->dev; 7312 return NULL; 7313 } 7314 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7315 7316 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7317 { 7318 struct netdev_adjacent *upper; 7319 7320 ASSERT_RTNL(); 7321 7322 if (list_empty(&dev->adj_list.upper)) 7323 return NULL; 7324 7325 upper = list_first_entry(&dev->adj_list.upper, 7326 struct netdev_adjacent, list); 7327 if (likely(upper->master) && !upper->ignore) 7328 return upper->dev; 7329 return NULL; 7330 } 7331 7332 /** 7333 * netdev_has_any_lower_dev - Check if device is linked to some device 7334 * @dev: device 7335 * 7336 * Find out if a device is linked to a lower device and return true in case 7337 * it is. The caller must hold the RTNL lock. 7338 */ 7339 static bool netdev_has_any_lower_dev(struct net_device *dev) 7340 { 7341 ASSERT_RTNL(); 7342 7343 return !list_empty(&dev->adj_list.lower); 7344 } 7345 7346 void *netdev_adjacent_get_private(struct list_head *adj_list) 7347 { 7348 struct netdev_adjacent *adj; 7349 7350 adj = list_entry(adj_list, struct netdev_adjacent, list); 7351 7352 return adj->private; 7353 } 7354 EXPORT_SYMBOL(netdev_adjacent_get_private); 7355 7356 /** 7357 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7358 * @dev: device 7359 * @iter: list_head ** of the current position 7360 * 7361 * Gets the next device from the dev's upper list, starting from iter 7362 * position. The caller must hold RCU read lock. 7363 */ 7364 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7365 struct list_head **iter) 7366 { 7367 struct netdev_adjacent *upper; 7368 7369 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7370 7371 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7372 7373 if (&upper->list == &dev->adj_list.upper) 7374 return NULL; 7375 7376 *iter = &upper->list; 7377 7378 return upper->dev; 7379 } 7380 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7381 7382 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7383 struct list_head **iter, 7384 bool *ignore) 7385 { 7386 struct netdev_adjacent *upper; 7387 7388 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7389 7390 if (&upper->list == &dev->adj_list.upper) 7391 return NULL; 7392 7393 *iter = &upper->list; 7394 *ignore = upper->ignore; 7395 7396 return upper->dev; 7397 } 7398 7399 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7400 struct list_head **iter) 7401 { 7402 struct netdev_adjacent *upper; 7403 7404 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7405 7406 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7407 7408 if (&upper->list == &dev->adj_list.upper) 7409 return NULL; 7410 7411 *iter = &upper->list; 7412 7413 return upper->dev; 7414 } 7415 7416 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7417 int (*fn)(struct net_device *dev, 7418 struct netdev_nested_priv *priv), 7419 struct netdev_nested_priv *priv) 7420 { 7421 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7422 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7423 int ret, cur = 0; 7424 bool ignore; 7425 7426 now = dev; 7427 iter = &dev->adj_list.upper; 7428 7429 while (1) { 7430 if (now != dev) { 7431 ret = fn(now, priv); 7432 if (ret) 7433 return ret; 7434 } 7435 7436 next = NULL; 7437 while (1) { 7438 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7439 if (!udev) 7440 break; 7441 if (ignore) 7442 continue; 7443 7444 next = udev; 7445 niter = &udev->adj_list.upper; 7446 dev_stack[cur] = now; 7447 iter_stack[cur++] = iter; 7448 break; 7449 } 7450 7451 if (!next) { 7452 if (!cur) 7453 return 0; 7454 next = dev_stack[--cur]; 7455 niter = iter_stack[cur]; 7456 } 7457 7458 now = next; 7459 iter = niter; 7460 } 7461 7462 return 0; 7463 } 7464 7465 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7466 int (*fn)(struct net_device *dev, 7467 struct netdev_nested_priv *priv), 7468 struct netdev_nested_priv *priv) 7469 { 7470 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7471 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7472 int ret, cur = 0; 7473 7474 now = dev; 7475 iter = &dev->adj_list.upper; 7476 7477 while (1) { 7478 if (now != dev) { 7479 ret = fn(now, priv); 7480 if (ret) 7481 return ret; 7482 } 7483 7484 next = NULL; 7485 while (1) { 7486 udev = netdev_next_upper_dev_rcu(now, &iter); 7487 if (!udev) 7488 break; 7489 7490 next = udev; 7491 niter = &udev->adj_list.upper; 7492 dev_stack[cur] = now; 7493 iter_stack[cur++] = iter; 7494 break; 7495 } 7496 7497 if (!next) { 7498 if (!cur) 7499 return 0; 7500 next = dev_stack[--cur]; 7501 niter = iter_stack[cur]; 7502 } 7503 7504 now = next; 7505 iter = niter; 7506 } 7507 7508 return 0; 7509 } 7510 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7511 7512 static bool __netdev_has_upper_dev(struct net_device *dev, 7513 struct net_device *upper_dev) 7514 { 7515 struct netdev_nested_priv priv = { 7516 .flags = 0, 7517 .data = (void *)upper_dev, 7518 }; 7519 7520 ASSERT_RTNL(); 7521 7522 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7523 &priv); 7524 } 7525 7526 /** 7527 * netdev_lower_get_next_private - Get the next ->private from the 7528 * lower neighbour list 7529 * @dev: device 7530 * @iter: list_head ** of the current position 7531 * 7532 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7533 * list, starting from iter position. The caller must hold either hold the 7534 * RTNL lock or its own locking that guarantees that the neighbour lower 7535 * list will remain unchanged. 7536 */ 7537 void *netdev_lower_get_next_private(struct net_device *dev, 7538 struct list_head **iter) 7539 { 7540 struct netdev_adjacent *lower; 7541 7542 lower = list_entry(*iter, struct netdev_adjacent, list); 7543 7544 if (&lower->list == &dev->adj_list.lower) 7545 return NULL; 7546 7547 *iter = lower->list.next; 7548 7549 return lower->private; 7550 } 7551 EXPORT_SYMBOL(netdev_lower_get_next_private); 7552 7553 /** 7554 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7555 * lower neighbour list, RCU 7556 * variant 7557 * @dev: device 7558 * @iter: list_head ** of the current position 7559 * 7560 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7561 * list, starting from iter position. The caller must hold RCU read lock. 7562 */ 7563 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7564 struct list_head **iter) 7565 { 7566 struct netdev_adjacent *lower; 7567 7568 WARN_ON_ONCE(!rcu_read_lock_held()); 7569 7570 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7571 7572 if (&lower->list == &dev->adj_list.lower) 7573 return NULL; 7574 7575 *iter = &lower->list; 7576 7577 return lower->private; 7578 } 7579 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7580 7581 /** 7582 * netdev_lower_get_next - Get the next device from the lower neighbour 7583 * list 7584 * @dev: device 7585 * @iter: list_head ** of the current position 7586 * 7587 * Gets the next netdev_adjacent from the dev's lower neighbour 7588 * list, starting from iter position. The caller must hold RTNL lock or 7589 * its own locking that guarantees that the neighbour lower 7590 * list will remain unchanged. 7591 */ 7592 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7593 { 7594 struct netdev_adjacent *lower; 7595 7596 lower = list_entry(*iter, struct netdev_adjacent, list); 7597 7598 if (&lower->list == &dev->adj_list.lower) 7599 return NULL; 7600 7601 *iter = lower->list.next; 7602 7603 return lower->dev; 7604 } 7605 EXPORT_SYMBOL(netdev_lower_get_next); 7606 7607 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7608 struct list_head **iter) 7609 { 7610 struct netdev_adjacent *lower; 7611 7612 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7613 7614 if (&lower->list == &dev->adj_list.lower) 7615 return NULL; 7616 7617 *iter = &lower->list; 7618 7619 return lower->dev; 7620 } 7621 7622 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7623 struct list_head **iter, 7624 bool *ignore) 7625 { 7626 struct netdev_adjacent *lower; 7627 7628 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7629 7630 if (&lower->list == &dev->adj_list.lower) 7631 return NULL; 7632 7633 *iter = &lower->list; 7634 *ignore = lower->ignore; 7635 7636 return lower->dev; 7637 } 7638 7639 int netdev_walk_all_lower_dev(struct net_device *dev, 7640 int (*fn)(struct net_device *dev, 7641 struct netdev_nested_priv *priv), 7642 struct netdev_nested_priv *priv) 7643 { 7644 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7645 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7646 int ret, cur = 0; 7647 7648 now = dev; 7649 iter = &dev->adj_list.lower; 7650 7651 while (1) { 7652 if (now != dev) { 7653 ret = fn(now, priv); 7654 if (ret) 7655 return ret; 7656 } 7657 7658 next = NULL; 7659 while (1) { 7660 ldev = netdev_next_lower_dev(now, &iter); 7661 if (!ldev) 7662 break; 7663 7664 next = ldev; 7665 niter = &ldev->adj_list.lower; 7666 dev_stack[cur] = now; 7667 iter_stack[cur++] = iter; 7668 break; 7669 } 7670 7671 if (!next) { 7672 if (!cur) 7673 return 0; 7674 next = dev_stack[--cur]; 7675 niter = iter_stack[cur]; 7676 } 7677 7678 now = next; 7679 iter = niter; 7680 } 7681 7682 return 0; 7683 } 7684 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7685 7686 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7687 int (*fn)(struct net_device *dev, 7688 struct netdev_nested_priv *priv), 7689 struct netdev_nested_priv *priv) 7690 { 7691 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7692 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7693 int ret, cur = 0; 7694 bool ignore; 7695 7696 now = dev; 7697 iter = &dev->adj_list.lower; 7698 7699 while (1) { 7700 if (now != dev) { 7701 ret = fn(now, priv); 7702 if (ret) 7703 return ret; 7704 } 7705 7706 next = NULL; 7707 while (1) { 7708 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7709 if (!ldev) 7710 break; 7711 if (ignore) 7712 continue; 7713 7714 next = ldev; 7715 niter = &ldev->adj_list.lower; 7716 dev_stack[cur] = now; 7717 iter_stack[cur++] = iter; 7718 break; 7719 } 7720 7721 if (!next) { 7722 if (!cur) 7723 return 0; 7724 next = dev_stack[--cur]; 7725 niter = iter_stack[cur]; 7726 } 7727 7728 now = next; 7729 iter = niter; 7730 } 7731 7732 return 0; 7733 } 7734 7735 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7736 struct list_head **iter) 7737 { 7738 struct netdev_adjacent *lower; 7739 7740 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7741 if (&lower->list == &dev->adj_list.lower) 7742 return NULL; 7743 7744 *iter = &lower->list; 7745 7746 return lower->dev; 7747 } 7748 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7749 7750 static u8 __netdev_upper_depth(struct net_device *dev) 7751 { 7752 struct net_device *udev; 7753 struct list_head *iter; 7754 u8 max_depth = 0; 7755 bool ignore; 7756 7757 for (iter = &dev->adj_list.upper, 7758 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7759 udev; 7760 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7761 if (ignore) 7762 continue; 7763 if (max_depth < udev->upper_level) 7764 max_depth = udev->upper_level; 7765 } 7766 7767 return max_depth; 7768 } 7769 7770 static u8 __netdev_lower_depth(struct net_device *dev) 7771 { 7772 struct net_device *ldev; 7773 struct list_head *iter; 7774 u8 max_depth = 0; 7775 bool ignore; 7776 7777 for (iter = &dev->adj_list.lower, 7778 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7779 ldev; 7780 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7781 if (ignore) 7782 continue; 7783 if (max_depth < ldev->lower_level) 7784 max_depth = ldev->lower_level; 7785 } 7786 7787 return max_depth; 7788 } 7789 7790 static int __netdev_update_upper_level(struct net_device *dev, 7791 struct netdev_nested_priv *__unused) 7792 { 7793 dev->upper_level = __netdev_upper_depth(dev) + 1; 7794 return 0; 7795 } 7796 7797 static int __netdev_update_lower_level(struct net_device *dev, 7798 struct netdev_nested_priv *priv) 7799 { 7800 dev->lower_level = __netdev_lower_depth(dev) + 1; 7801 7802 #ifdef CONFIG_LOCKDEP 7803 if (!priv) 7804 return 0; 7805 7806 if (priv->flags & NESTED_SYNC_IMM) 7807 dev->nested_level = dev->lower_level - 1; 7808 if (priv->flags & NESTED_SYNC_TODO) 7809 net_unlink_todo(dev); 7810 #endif 7811 return 0; 7812 } 7813 7814 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7815 int (*fn)(struct net_device *dev, 7816 struct netdev_nested_priv *priv), 7817 struct netdev_nested_priv *priv) 7818 { 7819 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7820 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7821 int ret, cur = 0; 7822 7823 now = dev; 7824 iter = &dev->adj_list.lower; 7825 7826 while (1) { 7827 if (now != dev) { 7828 ret = fn(now, priv); 7829 if (ret) 7830 return ret; 7831 } 7832 7833 next = NULL; 7834 while (1) { 7835 ldev = netdev_next_lower_dev_rcu(now, &iter); 7836 if (!ldev) 7837 break; 7838 7839 next = ldev; 7840 niter = &ldev->adj_list.lower; 7841 dev_stack[cur] = now; 7842 iter_stack[cur++] = iter; 7843 break; 7844 } 7845 7846 if (!next) { 7847 if (!cur) 7848 return 0; 7849 next = dev_stack[--cur]; 7850 niter = iter_stack[cur]; 7851 } 7852 7853 now = next; 7854 iter = niter; 7855 } 7856 7857 return 0; 7858 } 7859 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7860 7861 /** 7862 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7863 * lower neighbour list, RCU 7864 * variant 7865 * @dev: device 7866 * 7867 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7868 * list. The caller must hold RCU read lock. 7869 */ 7870 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7871 { 7872 struct netdev_adjacent *lower; 7873 7874 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7875 struct netdev_adjacent, list); 7876 if (lower) 7877 return lower->private; 7878 return NULL; 7879 } 7880 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7881 7882 /** 7883 * netdev_master_upper_dev_get_rcu - Get master upper device 7884 * @dev: device 7885 * 7886 * Find a master upper device and return pointer to it or NULL in case 7887 * it's not there. The caller must hold the RCU read lock. 7888 */ 7889 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7890 { 7891 struct netdev_adjacent *upper; 7892 7893 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7894 struct netdev_adjacent, list); 7895 if (upper && likely(upper->master)) 7896 return upper->dev; 7897 return NULL; 7898 } 7899 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7900 7901 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7902 struct net_device *adj_dev, 7903 struct list_head *dev_list) 7904 { 7905 char linkname[IFNAMSIZ+7]; 7906 7907 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7908 "upper_%s" : "lower_%s", adj_dev->name); 7909 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7910 linkname); 7911 } 7912 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7913 char *name, 7914 struct list_head *dev_list) 7915 { 7916 char linkname[IFNAMSIZ+7]; 7917 7918 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7919 "upper_%s" : "lower_%s", name); 7920 sysfs_remove_link(&(dev->dev.kobj), linkname); 7921 } 7922 7923 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7924 struct net_device *adj_dev, 7925 struct list_head *dev_list) 7926 { 7927 return (dev_list == &dev->adj_list.upper || 7928 dev_list == &dev->adj_list.lower) && 7929 net_eq(dev_net(dev), dev_net(adj_dev)); 7930 } 7931 7932 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7933 struct net_device *adj_dev, 7934 struct list_head *dev_list, 7935 void *private, bool master) 7936 { 7937 struct netdev_adjacent *adj; 7938 int ret; 7939 7940 adj = __netdev_find_adj(adj_dev, dev_list); 7941 7942 if (adj) { 7943 adj->ref_nr += 1; 7944 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7945 dev->name, adj_dev->name, adj->ref_nr); 7946 7947 return 0; 7948 } 7949 7950 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7951 if (!adj) 7952 return -ENOMEM; 7953 7954 adj->dev = adj_dev; 7955 adj->master = master; 7956 adj->ref_nr = 1; 7957 adj->private = private; 7958 adj->ignore = false; 7959 dev_hold(adj_dev); 7960 7961 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7962 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7963 7964 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7965 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7966 if (ret) 7967 goto free_adj; 7968 } 7969 7970 /* Ensure that master link is always the first item in list. */ 7971 if (master) { 7972 ret = sysfs_create_link(&(dev->dev.kobj), 7973 &(adj_dev->dev.kobj), "master"); 7974 if (ret) 7975 goto remove_symlinks; 7976 7977 list_add_rcu(&adj->list, dev_list); 7978 } else { 7979 list_add_tail_rcu(&adj->list, dev_list); 7980 } 7981 7982 return 0; 7983 7984 remove_symlinks: 7985 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7986 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7987 free_adj: 7988 kfree(adj); 7989 dev_put(adj_dev); 7990 7991 return ret; 7992 } 7993 7994 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7995 struct net_device *adj_dev, 7996 u16 ref_nr, 7997 struct list_head *dev_list) 7998 { 7999 struct netdev_adjacent *adj; 8000 8001 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 8002 dev->name, adj_dev->name, ref_nr); 8003 8004 adj = __netdev_find_adj(adj_dev, dev_list); 8005 8006 if (!adj) { 8007 pr_err("Adjacency does not exist for device %s from %s\n", 8008 dev->name, adj_dev->name); 8009 WARN_ON(1); 8010 return; 8011 } 8012 8013 if (adj->ref_nr > ref_nr) { 8014 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 8015 dev->name, adj_dev->name, ref_nr, 8016 adj->ref_nr - ref_nr); 8017 adj->ref_nr -= ref_nr; 8018 return; 8019 } 8020 8021 if (adj->master) 8022 sysfs_remove_link(&(dev->dev.kobj), "master"); 8023 8024 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 8025 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 8026 8027 list_del_rcu(&adj->list); 8028 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 8029 adj_dev->name, dev->name, adj_dev->name); 8030 dev_put(adj_dev); 8031 kfree_rcu(adj, rcu); 8032 } 8033 8034 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 8035 struct net_device *upper_dev, 8036 struct list_head *up_list, 8037 struct list_head *down_list, 8038 void *private, bool master) 8039 { 8040 int ret; 8041 8042 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 8043 private, master); 8044 if (ret) 8045 return ret; 8046 8047 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 8048 private, false); 8049 if (ret) { 8050 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 8051 return ret; 8052 } 8053 8054 return 0; 8055 } 8056 8057 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 8058 struct net_device *upper_dev, 8059 u16 ref_nr, 8060 struct list_head *up_list, 8061 struct list_head *down_list) 8062 { 8063 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 8064 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 8065 } 8066 8067 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 8068 struct net_device *upper_dev, 8069 void *private, bool master) 8070 { 8071 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 8072 &dev->adj_list.upper, 8073 &upper_dev->adj_list.lower, 8074 private, master); 8075 } 8076 8077 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 8078 struct net_device *upper_dev) 8079 { 8080 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 8081 &dev->adj_list.upper, 8082 &upper_dev->adj_list.lower); 8083 } 8084 8085 static int __netdev_upper_dev_link(struct net_device *dev, 8086 struct net_device *upper_dev, bool master, 8087 void *upper_priv, void *upper_info, 8088 struct netdev_nested_priv *priv, 8089 struct netlink_ext_ack *extack) 8090 { 8091 struct netdev_notifier_changeupper_info changeupper_info = { 8092 .info = { 8093 .dev = dev, 8094 .extack = extack, 8095 }, 8096 .upper_dev = upper_dev, 8097 .master = master, 8098 .linking = true, 8099 .upper_info = upper_info, 8100 }; 8101 struct net_device *master_dev; 8102 int ret = 0; 8103 8104 ASSERT_RTNL(); 8105 8106 if (dev == upper_dev) 8107 return -EBUSY; 8108 8109 /* To prevent loops, check if dev is not upper device to upper_dev. */ 8110 if (__netdev_has_upper_dev(upper_dev, dev)) 8111 return -EBUSY; 8112 8113 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 8114 return -EMLINK; 8115 8116 if (!master) { 8117 if (__netdev_has_upper_dev(dev, upper_dev)) 8118 return -EEXIST; 8119 } else { 8120 master_dev = __netdev_master_upper_dev_get(dev); 8121 if (master_dev) 8122 return master_dev == upper_dev ? -EEXIST : -EBUSY; 8123 } 8124 8125 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8126 &changeupper_info.info); 8127 ret = notifier_to_errno(ret); 8128 if (ret) 8129 return ret; 8130 8131 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 8132 master); 8133 if (ret) 8134 return ret; 8135 8136 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8137 &changeupper_info.info); 8138 ret = notifier_to_errno(ret); 8139 if (ret) 8140 goto rollback; 8141 8142 __netdev_update_upper_level(dev, NULL); 8143 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8144 8145 __netdev_update_lower_level(upper_dev, priv); 8146 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8147 priv); 8148 8149 return 0; 8150 8151 rollback: 8152 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8153 8154 return ret; 8155 } 8156 8157 /** 8158 * netdev_upper_dev_link - Add a link to the upper device 8159 * @dev: device 8160 * @upper_dev: new upper device 8161 * @extack: netlink extended ack 8162 * 8163 * Adds a link to device which is upper to this one. The caller must hold 8164 * the RTNL lock. On a failure a negative errno code is returned. 8165 * On success the reference counts are adjusted and the function 8166 * returns zero. 8167 */ 8168 int netdev_upper_dev_link(struct net_device *dev, 8169 struct net_device *upper_dev, 8170 struct netlink_ext_ack *extack) 8171 { 8172 struct netdev_nested_priv priv = { 8173 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8174 .data = NULL, 8175 }; 8176 8177 return __netdev_upper_dev_link(dev, upper_dev, false, 8178 NULL, NULL, &priv, extack); 8179 } 8180 EXPORT_SYMBOL(netdev_upper_dev_link); 8181 8182 /** 8183 * netdev_master_upper_dev_link - Add a master link to the upper device 8184 * @dev: device 8185 * @upper_dev: new upper device 8186 * @upper_priv: upper device private 8187 * @upper_info: upper info to be passed down via notifier 8188 * @extack: netlink extended ack 8189 * 8190 * Adds a link to device which is upper to this one. In this case, only 8191 * one master upper device can be linked, although other non-master devices 8192 * might be linked as well. The caller must hold the RTNL lock. 8193 * On a failure a negative errno code is returned. On success the reference 8194 * counts are adjusted and the function returns zero. 8195 */ 8196 int netdev_master_upper_dev_link(struct net_device *dev, 8197 struct net_device *upper_dev, 8198 void *upper_priv, void *upper_info, 8199 struct netlink_ext_ack *extack) 8200 { 8201 struct netdev_nested_priv priv = { 8202 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8203 .data = NULL, 8204 }; 8205 8206 return __netdev_upper_dev_link(dev, upper_dev, true, 8207 upper_priv, upper_info, &priv, extack); 8208 } 8209 EXPORT_SYMBOL(netdev_master_upper_dev_link); 8210 8211 static void __netdev_upper_dev_unlink(struct net_device *dev, 8212 struct net_device *upper_dev, 8213 struct netdev_nested_priv *priv) 8214 { 8215 struct netdev_notifier_changeupper_info changeupper_info = { 8216 .info = { 8217 .dev = dev, 8218 }, 8219 .upper_dev = upper_dev, 8220 .linking = false, 8221 }; 8222 8223 ASSERT_RTNL(); 8224 8225 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 8226 8227 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 8228 &changeupper_info.info); 8229 8230 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 8231 8232 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 8233 &changeupper_info.info); 8234 8235 __netdev_update_upper_level(dev, NULL); 8236 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 8237 8238 __netdev_update_lower_level(upper_dev, priv); 8239 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 8240 priv); 8241 } 8242 8243 /** 8244 * netdev_upper_dev_unlink - Removes a link to upper device 8245 * @dev: device 8246 * @upper_dev: new upper device 8247 * 8248 * Removes a link to device which is upper to this one. The caller must hold 8249 * the RTNL lock. 8250 */ 8251 void netdev_upper_dev_unlink(struct net_device *dev, 8252 struct net_device *upper_dev) 8253 { 8254 struct netdev_nested_priv priv = { 8255 .flags = NESTED_SYNC_TODO, 8256 .data = NULL, 8257 }; 8258 8259 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 8260 } 8261 EXPORT_SYMBOL(netdev_upper_dev_unlink); 8262 8263 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 8264 struct net_device *lower_dev, 8265 bool val) 8266 { 8267 struct netdev_adjacent *adj; 8268 8269 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 8270 if (adj) 8271 adj->ignore = val; 8272 8273 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 8274 if (adj) 8275 adj->ignore = val; 8276 } 8277 8278 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 8279 struct net_device *lower_dev) 8280 { 8281 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 8282 } 8283 8284 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 8285 struct net_device *lower_dev) 8286 { 8287 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8288 } 8289 8290 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8291 struct net_device *new_dev, 8292 struct net_device *dev, 8293 struct netlink_ext_ack *extack) 8294 { 8295 struct netdev_nested_priv priv = { 8296 .flags = 0, 8297 .data = NULL, 8298 }; 8299 int err; 8300 8301 if (!new_dev) 8302 return 0; 8303 8304 if (old_dev && new_dev != old_dev) 8305 netdev_adjacent_dev_disable(dev, old_dev); 8306 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8307 extack); 8308 if (err) { 8309 if (old_dev && new_dev != old_dev) 8310 netdev_adjacent_dev_enable(dev, old_dev); 8311 return err; 8312 } 8313 8314 return 0; 8315 } 8316 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8317 8318 void netdev_adjacent_change_commit(struct net_device *old_dev, 8319 struct net_device *new_dev, 8320 struct net_device *dev) 8321 { 8322 struct netdev_nested_priv priv = { 8323 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8324 .data = NULL, 8325 }; 8326 8327 if (!new_dev || !old_dev) 8328 return; 8329 8330 if (new_dev == old_dev) 8331 return; 8332 8333 netdev_adjacent_dev_enable(dev, old_dev); 8334 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8335 } 8336 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8337 8338 void netdev_adjacent_change_abort(struct net_device *old_dev, 8339 struct net_device *new_dev, 8340 struct net_device *dev) 8341 { 8342 struct netdev_nested_priv priv = { 8343 .flags = 0, 8344 .data = NULL, 8345 }; 8346 8347 if (!new_dev) 8348 return; 8349 8350 if (old_dev && new_dev != old_dev) 8351 netdev_adjacent_dev_enable(dev, old_dev); 8352 8353 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8354 } 8355 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8356 8357 /** 8358 * netdev_bonding_info_change - Dispatch event about slave change 8359 * @dev: device 8360 * @bonding_info: info to dispatch 8361 * 8362 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8363 * The caller must hold the RTNL lock. 8364 */ 8365 void netdev_bonding_info_change(struct net_device *dev, 8366 struct netdev_bonding_info *bonding_info) 8367 { 8368 struct netdev_notifier_bonding_info info = { 8369 .info.dev = dev, 8370 }; 8371 8372 memcpy(&info.bonding_info, bonding_info, 8373 sizeof(struct netdev_bonding_info)); 8374 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8375 &info.info); 8376 } 8377 EXPORT_SYMBOL(netdev_bonding_info_change); 8378 8379 /** 8380 * netdev_get_xmit_slave - Get the xmit slave of master device 8381 * @dev: device 8382 * @skb: The packet 8383 * @all_slaves: assume all the slaves are active 8384 * 8385 * The reference counters are not incremented so the caller must be 8386 * careful with locks. The caller must hold RCU lock. 8387 * %NULL is returned if no slave is found. 8388 */ 8389 8390 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8391 struct sk_buff *skb, 8392 bool all_slaves) 8393 { 8394 const struct net_device_ops *ops = dev->netdev_ops; 8395 8396 if (!ops->ndo_get_xmit_slave) 8397 return NULL; 8398 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8399 } 8400 EXPORT_SYMBOL(netdev_get_xmit_slave); 8401 8402 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8403 struct sock *sk) 8404 { 8405 const struct net_device_ops *ops = dev->netdev_ops; 8406 8407 if (!ops->ndo_sk_get_lower_dev) 8408 return NULL; 8409 return ops->ndo_sk_get_lower_dev(dev, sk); 8410 } 8411 8412 /** 8413 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8414 * @dev: device 8415 * @sk: the socket 8416 * 8417 * %NULL is returned if no lower device is found. 8418 */ 8419 8420 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8421 struct sock *sk) 8422 { 8423 struct net_device *lower; 8424 8425 lower = netdev_sk_get_lower_dev(dev, sk); 8426 while (lower) { 8427 dev = lower; 8428 lower = netdev_sk_get_lower_dev(dev, sk); 8429 } 8430 8431 return dev; 8432 } 8433 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8434 8435 static void netdev_adjacent_add_links(struct net_device *dev) 8436 { 8437 struct netdev_adjacent *iter; 8438 8439 struct net *net = dev_net(dev); 8440 8441 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8442 if (!net_eq(net, dev_net(iter->dev))) 8443 continue; 8444 netdev_adjacent_sysfs_add(iter->dev, dev, 8445 &iter->dev->adj_list.lower); 8446 netdev_adjacent_sysfs_add(dev, iter->dev, 8447 &dev->adj_list.upper); 8448 } 8449 8450 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8451 if (!net_eq(net, dev_net(iter->dev))) 8452 continue; 8453 netdev_adjacent_sysfs_add(iter->dev, dev, 8454 &iter->dev->adj_list.upper); 8455 netdev_adjacent_sysfs_add(dev, iter->dev, 8456 &dev->adj_list.lower); 8457 } 8458 } 8459 8460 static void netdev_adjacent_del_links(struct net_device *dev) 8461 { 8462 struct netdev_adjacent *iter; 8463 8464 struct net *net = dev_net(dev); 8465 8466 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8467 if (!net_eq(net, dev_net(iter->dev))) 8468 continue; 8469 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8470 &iter->dev->adj_list.lower); 8471 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8472 &dev->adj_list.upper); 8473 } 8474 8475 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8476 if (!net_eq(net, dev_net(iter->dev))) 8477 continue; 8478 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8479 &iter->dev->adj_list.upper); 8480 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8481 &dev->adj_list.lower); 8482 } 8483 } 8484 8485 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8486 { 8487 struct netdev_adjacent *iter; 8488 8489 struct net *net = dev_net(dev); 8490 8491 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8492 if (!net_eq(net, dev_net(iter->dev))) 8493 continue; 8494 netdev_adjacent_sysfs_del(iter->dev, oldname, 8495 &iter->dev->adj_list.lower); 8496 netdev_adjacent_sysfs_add(iter->dev, dev, 8497 &iter->dev->adj_list.lower); 8498 } 8499 8500 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8501 if (!net_eq(net, dev_net(iter->dev))) 8502 continue; 8503 netdev_adjacent_sysfs_del(iter->dev, oldname, 8504 &iter->dev->adj_list.upper); 8505 netdev_adjacent_sysfs_add(iter->dev, dev, 8506 &iter->dev->adj_list.upper); 8507 } 8508 } 8509 8510 void *netdev_lower_dev_get_private(struct net_device *dev, 8511 struct net_device *lower_dev) 8512 { 8513 struct netdev_adjacent *lower; 8514 8515 if (!lower_dev) 8516 return NULL; 8517 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8518 if (!lower) 8519 return NULL; 8520 8521 return lower->private; 8522 } 8523 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8524 8525 8526 /** 8527 * netdev_lower_state_changed - Dispatch event about lower device state change 8528 * @lower_dev: device 8529 * @lower_state_info: state to dispatch 8530 * 8531 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8532 * The caller must hold the RTNL lock. 8533 */ 8534 void netdev_lower_state_changed(struct net_device *lower_dev, 8535 void *lower_state_info) 8536 { 8537 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8538 .info.dev = lower_dev, 8539 }; 8540 8541 ASSERT_RTNL(); 8542 changelowerstate_info.lower_state_info = lower_state_info; 8543 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8544 &changelowerstate_info.info); 8545 } 8546 EXPORT_SYMBOL(netdev_lower_state_changed); 8547 8548 static void dev_change_rx_flags(struct net_device *dev, int flags) 8549 { 8550 const struct net_device_ops *ops = dev->netdev_ops; 8551 8552 if (ops->ndo_change_rx_flags) 8553 ops->ndo_change_rx_flags(dev, flags); 8554 } 8555 8556 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8557 { 8558 unsigned int old_flags = dev->flags; 8559 kuid_t uid; 8560 kgid_t gid; 8561 8562 ASSERT_RTNL(); 8563 8564 dev->flags |= IFF_PROMISC; 8565 dev->promiscuity += inc; 8566 if (dev->promiscuity == 0) { 8567 /* 8568 * Avoid overflow. 8569 * If inc causes overflow, untouch promisc and return error. 8570 */ 8571 if (inc < 0) 8572 dev->flags &= ~IFF_PROMISC; 8573 else { 8574 dev->promiscuity -= inc; 8575 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8576 dev->name); 8577 return -EOVERFLOW; 8578 } 8579 } 8580 if (dev->flags != old_flags) { 8581 pr_info("device %s %s promiscuous mode\n", 8582 dev->name, 8583 dev->flags & IFF_PROMISC ? "entered" : "left"); 8584 if (audit_enabled) { 8585 current_uid_gid(&uid, &gid); 8586 audit_log(audit_context(), GFP_ATOMIC, 8587 AUDIT_ANOM_PROMISCUOUS, 8588 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8589 dev->name, (dev->flags & IFF_PROMISC), 8590 (old_flags & IFF_PROMISC), 8591 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8592 from_kuid(&init_user_ns, uid), 8593 from_kgid(&init_user_ns, gid), 8594 audit_get_sessionid(current)); 8595 } 8596 8597 dev_change_rx_flags(dev, IFF_PROMISC); 8598 } 8599 if (notify) 8600 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8601 return 0; 8602 } 8603 8604 /** 8605 * dev_set_promiscuity - update promiscuity count on a device 8606 * @dev: device 8607 * @inc: modifier 8608 * 8609 * Add or remove promiscuity from a device. While the count in the device 8610 * remains above zero the interface remains promiscuous. Once it hits zero 8611 * the device reverts back to normal filtering operation. A negative inc 8612 * value is used to drop promiscuity on the device. 8613 * Return 0 if successful or a negative errno code on error. 8614 */ 8615 int dev_set_promiscuity(struct net_device *dev, int inc) 8616 { 8617 unsigned int old_flags = dev->flags; 8618 int err; 8619 8620 err = __dev_set_promiscuity(dev, inc, true); 8621 if (err < 0) 8622 return err; 8623 if (dev->flags != old_flags) 8624 dev_set_rx_mode(dev); 8625 return err; 8626 } 8627 EXPORT_SYMBOL(dev_set_promiscuity); 8628 8629 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8630 { 8631 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8632 8633 ASSERT_RTNL(); 8634 8635 dev->flags |= IFF_ALLMULTI; 8636 dev->allmulti += inc; 8637 if (dev->allmulti == 0) { 8638 /* 8639 * Avoid overflow. 8640 * If inc causes overflow, untouch allmulti and return error. 8641 */ 8642 if (inc < 0) 8643 dev->flags &= ~IFF_ALLMULTI; 8644 else { 8645 dev->allmulti -= inc; 8646 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8647 dev->name); 8648 return -EOVERFLOW; 8649 } 8650 } 8651 if (dev->flags ^ old_flags) { 8652 dev_change_rx_flags(dev, IFF_ALLMULTI); 8653 dev_set_rx_mode(dev); 8654 if (notify) 8655 __dev_notify_flags(dev, old_flags, 8656 dev->gflags ^ old_gflags); 8657 } 8658 return 0; 8659 } 8660 8661 /** 8662 * dev_set_allmulti - update allmulti count on a device 8663 * @dev: device 8664 * @inc: modifier 8665 * 8666 * Add or remove reception of all multicast frames to a device. While the 8667 * count in the device remains above zero the interface remains listening 8668 * to all interfaces. Once it hits zero the device reverts back to normal 8669 * filtering operation. A negative @inc value is used to drop the counter 8670 * when releasing a resource needing all multicasts. 8671 * Return 0 if successful or a negative errno code on error. 8672 */ 8673 8674 int dev_set_allmulti(struct net_device *dev, int inc) 8675 { 8676 return __dev_set_allmulti(dev, inc, true); 8677 } 8678 EXPORT_SYMBOL(dev_set_allmulti); 8679 8680 /* 8681 * Upload unicast and multicast address lists to device and 8682 * configure RX filtering. When the device doesn't support unicast 8683 * filtering it is put in promiscuous mode while unicast addresses 8684 * are present. 8685 */ 8686 void __dev_set_rx_mode(struct net_device *dev) 8687 { 8688 const struct net_device_ops *ops = dev->netdev_ops; 8689 8690 /* dev_open will call this function so the list will stay sane. */ 8691 if (!(dev->flags&IFF_UP)) 8692 return; 8693 8694 if (!netif_device_present(dev)) 8695 return; 8696 8697 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8698 /* Unicast addresses changes may only happen under the rtnl, 8699 * therefore calling __dev_set_promiscuity here is safe. 8700 */ 8701 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8702 __dev_set_promiscuity(dev, 1, false); 8703 dev->uc_promisc = true; 8704 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8705 __dev_set_promiscuity(dev, -1, false); 8706 dev->uc_promisc = false; 8707 } 8708 } 8709 8710 if (ops->ndo_set_rx_mode) 8711 ops->ndo_set_rx_mode(dev); 8712 } 8713 8714 void dev_set_rx_mode(struct net_device *dev) 8715 { 8716 netif_addr_lock_bh(dev); 8717 __dev_set_rx_mode(dev); 8718 netif_addr_unlock_bh(dev); 8719 } 8720 8721 /** 8722 * dev_get_flags - get flags reported to userspace 8723 * @dev: device 8724 * 8725 * Get the combination of flag bits exported through APIs to userspace. 8726 */ 8727 unsigned int dev_get_flags(const struct net_device *dev) 8728 { 8729 unsigned int flags; 8730 8731 flags = (dev->flags & ~(IFF_PROMISC | 8732 IFF_ALLMULTI | 8733 IFF_RUNNING | 8734 IFF_LOWER_UP | 8735 IFF_DORMANT)) | 8736 (dev->gflags & (IFF_PROMISC | 8737 IFF_ALLMULTI)); 8738 8739 if (netif_running(dev)) { 8740 if (netif_oper_up(dev)) 8741 flags |= IFF_RUNNING; 8742 if (netif_carrier_ok(dev)) 8743 flags |= IFF_LOWER_UP; 8744 if (netif_dormant(dev)) 8745 flags |= IFF_DORMANT; 8746 } 8747 8748 return flags; 8749 } 8750 EXPORT_SYMBOL(dev_get_flags); 8751 8752 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8753 struct netlink_ext_ack *extack) 8754 { 8755 unsigned int old_flags = dev->flags; 8756 int ret; 8757 8758 ASSERT_RTNL(); 8759 8760 /* 8761 * Set the flags on our device. 8762 */ 8763 8764 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8765 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8766 IFF_AUTOMEDIA)) | 8767 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8768 IFF_ALLMULTI)); 8769 8770 /* 8771 * Load in the correct multicast list now the flags have changed. 8772 */ 8773 8774 if ((old_flags ^ flags) & IFF_MULTICAST) 8775 dev_change_rx_flags(dev, IFF_MULTICAST); 8776 8777 dev_set_rx_mode(dev); 8778 8779 /* 8780 * Have we downed the interface. We handle IFF_UP ourselves 8781 * according to user attempts to set it, rather than blindly 8782 * setting it. 8783 */ 8784 8785 ret = 0; 8786 if ((old_flags ^ flags) & IFF_UP) { 8787 if (old_flags & IFF_UP) 8788 __dev_close(dev); 8789 else 8790 ret = __dev_open(dev, extack); 8791 } 8792 8793 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8794 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8795 unsigned int old_flags = dev->flags; 8796 8797 dev->gflags ^= IFF_PROMISC; 8798 8799 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8800 if (dev->flags != old_flags) 8801 dev_set_rx_mode(dev); 8802 } 8803 8804 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8805 * is important. Some (broken) drivers set IFF_PROMISC, when 8806 * IFF_ALLMULTI is requested not asking us and not reporting. 8807 */ 8808 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8809 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8810 8811 dev->gflags ^= IFF_ALLMULTI; 8812 __dev_set_allmulti(dev, inc, false); 8813 } 8814 8815 return ret; 8816 } 8817 8818 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8819 unsigned int gchanges) 8820 { 8821 unsigned int changes = dev->flags ^ old_flags; 8822 8823 if (gchanges) 8824 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8825 8826 if (changes & IFF_UP) { 8827 if (dev->flags & IFF_UP) 8828 call_netdevice_notifiers(NETDEV_UP, dev); 8829 else 8830 call_netdevice_notifiers(NETDEV_DOWN, dev); 8831 } 8832 8833 if (dev->flags & IFF_UP && 8834 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8835 struct netdev_notifier_change_info change_info = { 8836 .info = { 8837 .dev = dev, 8838 }, 8839 .flags_changed = changes, 8840 }; 8841 8842 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8843 } 8844 } 8845 8846 /** 8847 * dev_change_flags - change device settings 8848 * @dev: device 8849 * @flags: device state flags 8850 * @extack: netlink extended ack 8851 * 8852 * Change settings on device based state flags. The flags are 8853 * in the userspace exported format. 8854 */ 8855 int dev_change_flags(struct net_device *dev, unsigned int flags, 8856 struct netlink_ext_ack *extack) 8857 { 8858 int ret; 8859 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8860 8861 ret = __dev_change_flags(dev, flags, extack); 8862 if (ret < 0) 8863 return ret; 8864 8865 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8866 __dev_notify_flags(dev, old_flags, changes); 8867 return ret; 8868 } 8869 EXPORT_SYMBOL(dev_change_flags); 8870 8871 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8872 { 8873 const struct net_device_ops *ops = dev->netdev_ops; 8874 8875 if (ops->ndo_change_mtu) 8876 return ops->ndo_change_mtu(dev, new_mtu); 8877 8878 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8879 WRITE_ONCE(dev->mtu, new_mtu); 8880 return 0; 8881 } 8882 EXPORT_SYMBOL(__dev_set_mtu); 8883 8884 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8885 struct netlink_ext_ack *extack) 8886 { 8887 /* MTU must be positive, and in range */ 8888 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8889 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8890 return -EINVAL; 8891 } 8892 8893 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8894 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8895 return -EINVAL; 8896 } 8897 return 0; 8898 } 8899 8900 /** 8901 * dev_set_mtu_ext - Change maximum transfer unit 8902 * @dev: device 8903 * @new_mtu: new transfer unit 8904 * @extack: netlink extended ack 8905 * 8906 * Change the maximum transfer size of the network device. 8907 */ 8908 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8909 struct netlink_ext_ack *extack) 8910 { 8911 int err, orig_mtu; 8912 8913 if (new_mtu == dev->mtu) 8914 return 0; 8915 8916 err = dev_validate_mtu(dev, new_mtu, extack); 8917 if (err) 8918 return err; 8919 8920 if (!netif_device_present(dev)) 8921 return -ENODEV; 8922 8923 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8924 err = notifier_to_errno(err); 8925 if (err) 8926 return err; 8927 8928 orig_mtu = dev->mtu; 8929 err = __dev_set_mtu(dev, new_mtu); 8930 8931 if (!err) { 8932 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8933 orig_mtu); 8934 err = notifier_to_errno(err); 8935 if (err) { 8936 /* setting mtu back and notifying everyone again, 8937 * so that they have a chance to revert changes. 8938 */ 8939 __dev_set_mtu(dev, orig_mtu); 8940 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8941 new_mtu); 8942 } 8943 } 8944 return err; 8945 } 8946 8947 int dev_set_mtu(struct net_device *dev, int new_mtu) 8948 { 8949 struct netlink_ext_ack extack; 8950 int err; 8951 8952 memset(&extack, 0, sizeof(extack)); 8953 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8954 if (err && extack._msg) 8955 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8956 return err; 8957 } 8958 EXPORT_SYMBOL(dev_set_mtu); 8959 8960 /** 8961 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8962 * @dev: device 8963 * @new_len: new tx queue length 8964 */ 8965 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8966 { 8967 unsigned int orig_len = dev->tx_queue_len; 8968 int res; 8969 8970 if (new_len != (unsigned int)new_len) 8971 return -ERANGE; 8972 8973 if (new_len != orig_len) { 8974 dev->tx_queue_len = new_len; 8975 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8976 res = notifier_to_errno(res); 8977 if (res) 8978 goto err_rollback; 8979 res = dev_qdisc_change_tx_queue_len(dev); 8980 if (res) 8981 goto err_rollback; 8982 } 8983 8984 return 0; 8985 8986 err_rollback: 8987 netdev_err(dev, "refused to change device tx_queue_len\n"); 8988 dev->tx_queue_len = orig_len; 8989 return res; 8990 } 8991 8992 /** 8993 * dev_set_group - Change group this device belongs to 8994 * @dev: device 8995 * @new_group: group this device should belong to 8996 */ 8997 void dev_set_group(struct net_device *dev, int new_group) 8998 { 8999 dev->group = new_group; 9000 } 9001 EXPORT_SYMBOL(dev_set_group); 9002 9003 /** 9004 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 9005 * @dev: device 9006 * @addr: new address 9007 * @extack: netlink extended ack 9008 */ 9009 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 9010 struct netlink_ext_ack *extack) 9011 { 9012 struct netdev_notifier_pre_changeaddr_info info = { 9013 .info.dev = dev, 9014 .info.extack = extack, 9015 .dev_addr = addr, 9016 }; 9017 int rc; 9018 9019 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 9020 return notifier_to_errno(rc); 9021 } 9022 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 9023 9024 /** 9025 * dev_set_mac_address - Change Media Access Control Address 9026 * @dev: device 9027 * @sa: new address 9028 * @extack: netlink extended ack 9029 * 9030 * Change the hardware (MAC) address of the device 9031 */ 9032 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 9033 struct netlink_ext_ack *extack) 9034 { 9035 const struct net_device_ops *ops = dev->netdev_ops; 9036 int err; 9037 9038 if (!ops->ndo_set_mac_address) 9039 return -EOPNOTSUPP; 9040 if (sa->sa_family != dev->type) 9041 return -EINVAL; 9042 if (!netif_device_present(dev)) 9043 return -ENODEV; 9044 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 9045 if (err) 9046 return err; 9047 err = ops->ndo_set_mac_address(dev, sa); 9048 if (err) 9049 return err; 9050 dev->addr_assign_type = NET_ADDR_SET; 9051 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 9052 add_device_randomness(dev->dev_addr, dev->addr_len); 9053 return 0; 9054 } 9055 EXPORT_SYMBOL(dev_set_mac_address); 9056 9057 static DECLARE_RWSEM(dev_addr_sem); 9058 9059 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 9060 struct netlink_ext_ack *extack) 9061 { 9062 int ret; 9063 9064 down_write(&dev_addr_sem); 9065 ret = dev_set_mac_address(dev, sa, extack); 9066 up_write(&dev_addr_sem); 9067 return ret; 9068 } 9069 EXPORT_SYMBOL(dev_set_mac_address_user); 9070 9071 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 9072 { 9073 size_t size = sizeof(sa->sa_data); 9074 struct net_device *dev; 9075 int ret = 0; 9076 9077 down_read(&dev_addr_sem); 9078 rcu_read_lock(); 9079 9080 dev = dev_get_by_name_rcu(net, dev_name); 9081 if (!dev) { 9082 ret = -ENODEV; 9083 goto unlock; 9084 } 9085 if (!dev->addr_len) 9086 memset(sa->sa_data, 0, size); 9087 else 9088 memcpy(sa->sa_data, dev->dev_addr, 9089 min_t(size_t, size, dev->addr_len)); 9090 sa->sa_family = dev->type; 9091 9092 unlock: 9093 rcu_read_unlock(); 9094 up_read(&dev_addr_sem); 9095 return ret; 9096 } 9097 EXPORT_SYMBOL(dev_get_mac_address); 9098 9099 /** 9100 * dev_change_carrier - Change device carrier 9101 * @dev: device 9102 * @new_carrier: new value 9103 * 9104 * Change device carrier 9105 */ 9106 int dev_change_carrier(struct net_device *dev, bool new_carrier) 9107 { 9108 const struct net_device_ops *ops = dev->netdev_ops; 9109 9110 if (!ops->ndo_change_carrier) 9111 return -EOPNOTSUPP; 9112 if (!netif_device_present(dev)) 9113 return -ENODEV; 9114 return ops->ndo_change_carrier(dev, new_carrier); 9115 } 9116 EXPORT_SYMBOL(dev_change_carrier); 9117 9118 /** 9119 * dev_get_phys_port_id - Get device physical port ID 9120 * @dev: device 9121 * @ppid: port ID 9122 * 9123 * Get device physical port ID 9124 */ 9125 int dev_get_phys_port_id(struct net_device *dev, 9126 struct netdev_phys_item_id *ppid) 9127 { 9128 const struct net_device_ops *ops = dev->netdev_ops; 9129 9130 if (!ops->ndo_get_phys_port_id) 9131 return -EOPNOTSUPP; 9132 return ops->ndo_get_phys_port_id(dev, ppid); 9133 } 9134 EXPORT_SYMBOL(dev_get_phys_port_id); 9135 9136 /** 9137 * dev_get_phys_port_name - Get device physical port name 9138 * @dev: device 9139 * @name: port name 9140 * @len: limit of bytes to copy to name 9141 * 9142 * Get device physical port name 9143 */ 9144 int dev_get_phys_port_name(struct net_device *dev, 9145 char *name, size_t len) 9146 { 9147 const struct net_device_ops *ops = dev->netdev_ops; 9148 int err; 9149 9150 if (ops->ndo_get_phys_port_name) { 9151 err = ops->ndo_get_phys_port_name(dev, name, len); 9152 if (err != -EOPNOTSUPP) 9153 return err; 9154 } 9155 return devlink_compat_phys_port_name_get(dev, name, len); 9156 } 9157 EXPORT_SYMBOL(dev_get_phys_port_name); 9158 9159 /** 9160 * dev_get_port_parent_id - Get the device's port parent identifier 9161 * @dev: network device 9162 * @ppid: pointer to a storage for the port's parent identifier 9163 * @recurse: allow/disallow recursion to lower devices 9164 * 9165 * Get the devices's port parent identifier 9166 */ 9167 int dev_get_port_parent_id(struct net_device *dev, 9168 struct netdev_phys_item_id *ppid, 9169 bool recurse) 9170 { 9171 const struct net_device_ops *ops = dev->netdev_ops; 9172 struct netdev_phys_item_id first = { }; 9173 struct net_device *lower_dev; 9174 struct list_head *iter; 9175 int err; 9176 9177 if (ops->ndo_get_port_parent_id) { 9178 err = ops->ndo_get_port_parent_id(dev, ppid); 9179 if (err != -EOPNOTSUPP) 9180 return err; 9181 } 9182 9183 err = devlink_compat_switch_id_get(dev, ppid); 9184 if (!err || err != -EOPNOTSUPP) 9185 return err; 9186 9187 if (!recurse) 9188 return -EOPNOTSUPP; 9189 9190 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9191 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 9192 if (err) 9193 break; 9194 if (!first.id_len) 9195 first = *ppid; 9196 else if (memcmp(&first, ppid, sizeof(*ppid))) 9197 return -EOPNOTSUPP; 9198 } 9199 9200 return err; 9201 } 9202 EXPORT_SYMBOL(dev_get_port_parent_id); 9203 9204 /** 9205 * netdev_port_same_parent_id - Indicate if two network devices have 9206 * the same port parent identifier 9207 * @a: first network device 9208 * @b: second network device 9209 */ 9210 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9211 { 9212 struct netdev_phys_item_id a_id = { }; 9213 struct netdev_phys_item_id b_id = { }; 9214 9215 if (dev_get_port_parent_id(a, &a_id, true) || 9216 dev_get_port_parent_id(b, &b_id, true)) 9217 return false; 9218 9219 return netdev_phys_item_id_same(&a_id, &b_id); 9220 } 9221 EXPORT_SYMBOL(netdev_port_same_parent_id); 9222 9223 /** 9224 * dev_change_proto_down - update protocol port state information 9225 * @dev: device 9226 * @proto_down: new value 9227 * 9228 * This info can be used by switch drivers to set the phys state of the 9229 * port. 9230 */ 9231 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9232 { 9233 const struct net_device_ops *ops = dev->netdev_ops; 9234 9235 if (!ops->ndo_change_proto_down) 9236 return -EOPNOTSUPP; 9237 if (!netif_device_present(dev)) 9238 return -ENODEV; 9239 return ops->ndo_change_proto_down(dev, proto_down); 9240 } 9241 EXPORT_SYMBOL(dev_change_proto_down); 9242 9243 /** 9244 * dev_change_proto_down_generic - generic implementation for 9245 * ndo_change_proto_down that sets carrier according to 9246 * proto_down. 9247 * 9248 * @dev: device 9249 * @proto_down: new value 9250 */ 9251 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 9252 { 9253 if (proto_down) 9254 netif_carrier_off(dev); 9255 else 9256 netif_carrier_on(dev); 9257 dev->proto_down = proto_down; 9258 return 0; 9259 } 9260 EXPORT_SYMBOL(dev_change_proto_down_generic); 9261 9262 /** 9263 * dev_change_proto_down_reason - proto down reason 9264 * 9265 * @dev: device 9266 * @mask: proto down mask 9267 * @value: proto down value 9268 */ 9269 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9270 u32 value) 9271 { 9272 int b; 9273 9274 if (!mask) { 9275 dev->proto_down_reason = value; 9276 } else { 9277 for_each_set_bit(b, &mask, 32) { 9278 if (value & (1 << b)) 9279 dev->proto_down_reason |= BIT(b); 9280 else 9281 dev->proto_down_reason &= ~BIT(b); 9282 } 9283 } 9284 } 9285 EXPORT_SYMBOL(dev_change_proto_down_reason); 9286 9287 struct bpf_xdp_link { 9288 struct bpf_link link; 9289 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9290 int flags; 9291 }; 9292 9293 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9294 { 9295 if (flags & XDP_FLAGS_HW_MODE) 9296 return XDP_MODE_HW; 9297 if (flags & XDP_FLAGS_DRV_MODE) 9298 return XDP_MODE_DRV; 9299 if (flags & XDP_FLAGS_SKB_MODE) 9300 return XDP_MODE_SKB; 9301 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9302 } 9303 9304 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9305 { 9306 switch (mode) { 9307 case XDP_MODE_SKB: 9308 return generic_xdp_install; 9309 case XDP_MODE_DRV: 9310 case XDP_MODE_HW: 9311 return dev->netdev_ops->ndo_bpf; 9312 default: 9313 return NULL; 9314 } 9315 } 9316 9317 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9318 enum bpf_xdp_mode mode) 9319 { 9320 return dev->xdp_state[mode].link; 9321 } 9322 9323 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9324 enum bpf_xdp_mode mode) 9325 { 9326 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9327 9328 if (link) 9329 return link->link.prog; 9330 return dev->xdp_state[mode].prog; 9331 } 9332 9333 static u8 dev_xdp_prog_count(struct net_device *dev) 9334 { 9335 u8 count = 0; 9336 int i; 9337 9338 for (i = 0; i < __MAX_XDP_MODE; i++) 9339 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9340 count++; 9341 return count; 9342 } 9343 9344 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9345 { 9346 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9347 9348 return prog ? prog->aux->id : 0; 9349 } 9350 9351 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9352 struct bpf_xdp_link *link) 9353 { 9354 dev->xdp_state[mode].link = link; 9355 dev->xdp_state[mode].prog = NULL; 9356 } 9357 9358 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9359 struct bpf_prog *prog) 9360 { 9361 dev->xdp_state[mode].link = NULL; 9362 dev->xdp_state[mode].prog = prog; 9363 } 9364 9365 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9366 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9367 u32 flags, struct bpf_prog *prog) 9368 { 9369 struct netdev_bpf xdp; 9370 int err; 9371 9372 memset(&xdp, 0, sizeof(xdp)); 9373 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9374 xdp.extack = extack; 9375 xdp.flags = flags; 9376 xdp.prog = prog; 9377 9378 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9379 * "moved" into driver), so they don't increment it on their own, but 9380 * they do decrement refcnt when program is detached or replaced. 9381 * Given net_device also owns link/prog, we need to bump refcnt here 9382 * to prevent drivers from underflowing it. 9383 */ 9384 if (prog) 9385 bpf_prog_inc(prog); 9386 err = bpf_op(dev, &xdp); 9387 if (err) { 9388 if (prog) 9389 bpf_prog_put(prog); 9390 return err; 9391 } 9392 9393 if (mode != XDP_MODE_HW) 9394 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9395 9396 return 0; 9397 } 9398 9399 static void dev_xdp_uninstall(struct net_device *dev) 9400 { 9401 struct bpf_xdp_link *link; 9402 struct bpf_prog *prog; 9403 enum bpf_xdp_mode mode; 9404 bpf_op_t bpf_op; 9405 9406 ASSERT_RTNL(); 9407 9408 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9409 prog = dev_xdp_prog(dev, mode); 9410 if (!prog) 9411 continue; 9412 9413 bpf_op = dev_xdp_bpf_op(dev, mode); 9414 if (!bpf_op) 9415 continue; 9416 9417 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9418 9419 /* auto-detach link from net device */ 9420 link = dev_xdp_link(dev, mode); 9421 if (link) 9422 link->dev = NULL; 9423 else 9424 bpf_prog_put(prog); 9425 9426 dev_xdp_set_link(dev, mode, NULL); 9427 } 9428 } 9429 9430 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9431 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9432 struct bpf_prog *old_prog, u32 flags) 9433 { 9434 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9435 struct bpf_prog *cur_prog; 9436 enum bpf_xdp_mode mode; 9437 bpf_op_t bpf_op; 9438 int err; 9439 9440 ASSERT_RTNL(); 9441 9442 /* either link or prog attachment, never both */ 9443 if (link && (new_prog || old_prog)) 9444 return -EINVAL; 9445 /* link supports only XDP mode flags */ 9446 if (link && (flags & ~XDP_FLAGS_MODES)) { 9447 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9448 return -EINVAL; 9449 } 9450 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9451 if (num_modes > 1) { 9452 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9453 return -EINVAL; 9454 } 9455 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9456 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9457 NL_SET_ERR_MSG(extack, 9458 "More than one program loaded, unset mode is ambiguous"); 9459 return -EINVAL; 9460 } 9461 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9462 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9463 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9464 return -EINVAL; 9465 } 9466 9467 mode = dev_xdp_mode(dev, flags); 9468 /* can't replace attached link */ 9469 if (dev_xdp_link(dev, mode)) { 9470 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9471 return -EBUSY; 9472 } 9473 9474 cur_prog = dev_xdp_prog(dev, mode); 9475 /* can't replace attached prog with link */ 9476 if (link && cur_prog) { 9477 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9478 return -EBUSY; 9479 } 9480 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9481 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9482 return -EEXIST; 9483 } 9484 9485 /* put effective new program into new_prog */ 9486 if (link) 9487 new_prog = link->link.prog; 9488 9489 if (new_prog) { 9490 bool offload = mode == XDP_MODE_HW; 9491 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9492 ? XDP_MODE_DRV : XDP_MODE_SKB; 9493 9494 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9495 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9496 return -EBUSY; 9497 } 9498 if (!offload && dev_xdp_prog(dev, other_mode)) { 9499 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9500 return -EEXIST; 9501 } 9502 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9503 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9504 return -EINVAL; 9505 } 9506 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9507 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9508 return -EINVAL; 9509 } 9510 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9511 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9512 return -EINVAL; 9513 } 9514 } 9515 9516 /* don't call drivers if the effective program didn't change */ 9517 if (new_prog != cur_prog) { 9518 bpf_op = dev_xdp_bpf_op(dev, mode); 9519 if (!bpf_op) { 9520 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9521 return -EOPNOTSUPP; 9522 } 9523 9524 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9525 if (err) 9526 return err; 9527 } 9528 9529 if (link) 9530 dev_xdp_set_link(dev, mode, link); 9531 else 9532 dev_xdp_set_prog(dev, mode, new_prog); 9533 if (cur_prog) 9534 bpf_prog_put(cur_prog); 9535 9536 return 0; 9537 } 9538 9539 static int dev_xdp_attach_link(struct net_device *dev, 9540 struct netlink_ext_ack *extack, 9541 struct bpf_xdp_link *link) 9542 { 9543 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9544 } 9545 9546 static int dev_xdp_detach_link(struct net_device *dev, 9547 struct netlink_ext_ack *extack, 9548 struct bpf_xdp_link *link) 9549 { 9550 enum bpf_xdp_mode mode; 9551 bpf_op_t bpf_op; 9552 9553 ASSERT_RTNL(); 9554 9555 mode = dev_xdp_mode(dev, link->flags); 9556 if (dev_xdp_link(dev, mode) != link) 9557 return -EINVAL; 9558 9559 bpf_op = dev_xdp_bpf_op(dev, mode); 9560 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9561 dev_xdp_set_link(dev, mode, NULL); 9562 return 0; 9563 } 9564 9565 static void bpf_xdp_link_release(struct bpf_link *link) 9566 { 9567 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9568 9569 rtnl_lock(); 9570 9571 /* if racing with net_device's tear down, xdp_link->dev might be 9572 * already NULL, in which case link was already auto-detached 9573 */ 9574 if (xdp_link->dev) { 9575 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9576 xdp_link->dev = NULL; 9577 } 9578 9579 rtnl_unlock(); 9580 } 9581 9582 static int bpf_xdp_link_detach(struct bpf_link *link) 9583 { 9584 bpf_xdp_link_release(link); 9585 return 0; 9586 } 9587 9588 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9589 { 9590 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9591 9592 kfree(xdp_link); 9593 } 9594 9595 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9596 struct seq_file *seq) 9597 { 9598 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9599 u32 ifindex = 0; 9600 9601 rtnl_lock(); 9602 if (xdp_link->dev) 9603 ifindex = xdp_link->dev->ifindex; 9604 rtnl_unlock(); 9605 9606 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9607 } 9608 9609 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9610 struct bpf_link_info *info) 9611 { 9612 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9613 u32 ifindex = 0; 9614 9615 rtnl_lock(); 9616 if (xdp_link->dev) 9617 ifindex = xdp_link->dev->ifindex; 9618 rtnl_unlock(); 9619 9620 info->xdp.ifindex = ifindex; 9621 return 0; 9622 } 9623 9624 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9625 struct bpf_prog *old_prog) 9626 { 9627 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9628 enum bpf_xdp_mode mode; 9629 bpf_op_t bpf_op; 9630 int err = 0; 9631 9632 rtnl_lock(); 9633 9634 /* link might have been auto-released already, so fail */ 9635 if (!xdp_link->dev) { 9636 err = -ENOLINK; 9637 goto out_unlock; 9638 } 9639 9640 if (old_prog && link->prog != old_prog) { 9641 err = -EPERM; 9642 goto out_unlock; 9643 } 9644 old_prog = link->prog; 9645 if (old_prog == new_prog) { 9646 /* no-op, don't disturb drivers */ 9647 bpf_prog_put(new_prog); 9648 goto out_unlock; 9649 } 9650 9651 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9652 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9653 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9654 xdp_link->flags, new_prog); 9655 if (err) 9656 goto out_unlock; 9657 9658 old_prog = xchg(&link->prog, new_prog); 9659 bpf_prog_put(old_prog); 9660 9661 out_unlock: 9662 rtnl_unlock(); 9663 return err; 9664 } 9665 9666 static const struct bpf_link_ops bpf_xdp_link_lops = { 9667 .release = bpf_xdp_link_release, 9668 .dealloc = bpf_xdp_link_dealloc, 9669 .detach = bpf_xdp_link_detach, 9670 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9671 .fill_link_info = bpf_xdp_link_fill_link_info, 9672 .update_prog = bpf_xdp_link_update, 9673 }; 9674 9675 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9676 { 9677 struct net *net = current->nsproxy->net_ns; 9678 struct bpf_link_primer link_primer; 9679 struct bpf_xdp_link *link; 9680 struct net_device *dev; 9681 int err, fd; 9682 9683 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9684 if (!dev) 9685 return -EINVAL; 9686 9687 link = kzalloc(sizeof(*link), GFP_USER); 9688 if (!link) { 9689 err = -ENOMEM; 9690 goto out_put_dev; 9691 } 9692 9693 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9694 link->dev = dev; 9695 link->flags = attr->link_create.flags; 9696 9697 err = bpf_link_prime(&link->link, &link_primer); 9698 if (err) { 9699 kfree(link); 9700 goto out_put_dev; 9701 } 9702 9703 rtnl_lock(); 9704 err = dev_xdp_attach_link(dev, NULL, link); 9705 rtnl_unlock(); 9706 9707 if (err) { 9708 bpf_link_cleanup(&link_primer); 9709 goto out_put_dev; 9710 } 9711 9712 fd = bpf_link_settle(&link_primer); 9713 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9714 dev_put(dev); 9715 return fd; 9716 9717 out_put_dev: 9718 dev_put(dev); 9719 return err; 9720 } 9721 9722 /** 9723 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9724 * @dev: device 9725 * @extack: netlink extended ack 9726 * @fd: new program fd or negative value to clear 9727 * @expected_fd: old program fd that userspace expects to replace or clear 9728 * @flags: xdp-related flags 9729 * 9730 * Set or clear a bpf program for a device 9731 */ 9732 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9733 int fd, int expected_fd, u32 flags) 9734 { 9735 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9736 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9737 int err; 9738 9739 ASSERT_RTNL(); 9740 9741 if (fd >= 0) { 9742 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9743 mode != XDP_MODE_SKB); 9744 if (IS_ERR(new_prog)) 9745 return PTR_ERR(new_prog); 9746 } 9747 9748 if (expected_fd >= 0) { 9749 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9750 mode != XDP_MODE_SKB); 9751 if (IS_ERR(old_prog)) { 9752 err = PTR_ERR(old_prog); 9753 old_prog = NULL; 9754 goto err_out; 9755 } 9756 } 9757 9758 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9759 9760 err_out: 9761 if (err && new_prog) 9762 bpf_prog_put(new_prog); 9763 if (old_prog) 9764 bpf_prog_put(old_prog); 9765 return err; 9766 } 9767 9768 /** 9769 * dev_new_index - allocate an ifindex 9770 * @net: the applicable net namespace 9771 * 9772 * Returns a suitable unique value for a new device interface 9773 * number. The caller must hold the rtnl semaphore or the 9774 * dev_base_lock to be sure it remains unique. 9775 */ 9776 static int dev_new_index(struct net *net) 9777 { 9778 int ifindex = net->ifindex; 9779 9780 for (;;) { 9781 if (++ifindex <= 0) 9782 ifindex = 1; 9783 if (!__dev_get_by_index(net, ifindex)) 9784 return net->ifindex = ifindex; 9785 } 9786 } 9787 9788 /* Delayed registration/unregisteration */ 9789 static LIST_HEAD(net_todo_list); 9790 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9791 9792 static void net_set_todo(struct net_device *dev) 9793 { 9794 list_add_tail(&dev->todo_list, &net_todo_list); 9795 dev_net(dev)->dev_unreg_count++; 9796 } 9797 9798 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9799 struct net_device *upper, netdev_features_t features) 9800 { 9801 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9802 netdev_features_t feature; 9803 int feature_bit; 9804 9805 for_each_netdev_feature(upper_disables, feature_bit) { 9806 feature = __NETIF_F_BIT(feature_bit); 9807 if (!(upper->wanted_features & feature) 9808 && (features & feature)) { 9809 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9810 &feature, upper->name); 9811 features &= ~feature; 9812 } 9813 } 9814 9815 return features; 9816 } 9817 9818 static void netdev_sync_lower_features(struct net_device *upper, 9819 struct net_device *lower, netdev_features_t features) 9820 { 9821 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9822 netdev_features_t feature; 9823 int feature_bit; 9824 9825 for_each_netdev_feature(upper_disables, feature_bit) { 9826 feature = __NETIF_F_BIT(feature_bit); 9827 if (!(features & feature) && (lower->features & feature)) { 9828 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9829 &feature, lower->name); 9830 lower->wanted_features &= ~feature; 9831 __netdev_update_features(lower); 9832 9833 if (unlikely(lower->features & feature)) 9834 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9835 &feature, lower->name); 9836 else 9837 netdev_features_change(lower); 9838 } 9839 } 9840 } 9841 9842 static netdev_features_t netdev_fix_features(struct net_device *dev, 9843 netdev_features_t features) 9844 { 9845 /* Fix illegal checksum combinations */ 9846 if ((features & NETIF_F_HW_CSUM) && 9847 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9848 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9849 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9850 } 9851 9852 /* TSO requires that SG is present as well. */ 9853 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9854 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9855 features &= ~NETIF_F_ALL_TSO; 9856 } 9857 9858 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9859 !(features & NETIF_F_IP_CSUM)) { 9860 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9861 features &= ~NETIF_F_TSO; 9862 features &= ~NETIF_F_TSO_ECN; 9863 } 9864 9865 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9866 !(features & NETIF_F_IPV6_CSUM)) { 9867 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9868 features &= ~NETIF_F_TSO6; 9869 } 9870 9871 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9872 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9873 features &= ~NETIF_F_TSO_MANGLEID; 9874 9875 /* TSO ECN requires that TSO is present as well. */ 9876 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9877 features &= ~NETIF_F_TSO_ECN; 9878 9879 /* Software GSO depends on SG. */ 9880 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9881 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9882 features &= ~NETIF_F_GSO; 9883 } 9884 9885 /* GSO partial features require GSO partial be set */ 9886 if ((features & dev->gso_partial_features) && 9887 !(features & NETIF_F_GSO_PARTIAL)) { 9888 netdev_dbg(dev, 9889 "Dropping partially supported GSO features since no GSO partial.\n"); 9890 features &= ~dev->gso_partial_features; 9891 } 9892 9893 if (!(features & NETIF_F_RXCSUM)) { 9894 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9895 * successfully merged by hardware must also have the 9896 * checksum verified by hardware. If the user does not 9897 * want to enable RXCSUM, logically, we should disable GRO_HW. 9898 */ 9899 if (features & NETIF_F_GRO_HW) { 9900 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9901 features &= ~NETIF_F_GRO_HW; 9902 } 9903 } 9904 9905 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9906 if (features & NETIF_F_RXFCS) { 9907 if (features & NETIF_F_LRO) { 9908 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9909 features &= ~NETIF_F_LRO; 9910 } 9911 9912 if (features & NETIF_F_GRO_HW) { 9913 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9914 features &= ~NETIF_F_GRO_HW; 9915 } 9916 } 9917 9918 if (features & NETIF_F_HW_TLS_TX) { 9919 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9920 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9921 bool hw_csum = features & NETIF_F_HW_CSUM; 9922 9923 if (!ip_csum && !hw_csum) { 9924 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9925 features &= ~NETIF_F_HW_TLS_TX; 9926 } 9927 } 9928 9929 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9930 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9931 features &= ~NETIF_F_HW_TLS_RX; 9932 } 9933 9934 return features; 9935 } 9936 9937 int __netdev_update_features(struct net_device *dev) 9938 { 9939 struct net_device *upper, *lower; 9940 netdev_features_t features; 9941 struct list_head *iter; 9942 int err = -1; 9943 9944 ASSERT_RTNL(); 9945 9946 features = netdev_get_wanted_features(dev); 9947 9948 if (dev->netdev_ops->ndo_fix_features) 9949 features = dev->netdev_ops->ndo_fix_features(dev, features); 9950 9951 /* driver might be less strict about feature dependencies */ 9952 features = netdev_fix_features(dev, features); 9953 9954 /* some features can't be enabled if they're off on an upper device */ 9955 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9956 features = netdev_sync_upper_features(dev, upper, features); 9957 9958 if (dev->features == features) 9959 goto sync_lower; 9960 9961 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9962 &dev->features, &features); 9963 9964 if (dev->netdev_ops->ndo_set_features) 9965 err = dev->netdev_ops->ndo_set_features(dev, features); 9966 else 9967 err = 0; 9968 9969 if (unlikely(err < 0)) { 9970 netdev_err(dev, 9971 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9972 err, &features, &dev->features); 9973 /* return non-0 since some features might have changed and 9974 * it's better to fire a spurious notification than miss it 9975 */ 9976 return -1; 9977 } 9978 9979 sync_lower: 9980 /* some features must be disabled on lower devices when disabled 9981 * on an upper device (think: bonding master or bridge) 9982 */ 9983 netdev_for_each_lower_dev(dev, lower, iter) 9984 netdev_sync_lower_features(dev, lower, features); 9985 9986 if (!err) { 9987 netdev_features_t diff = features ^ dev->features; 9988 9989 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9990 /* udp_tunnel_{get,drop}_rx_info both need 9991 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9992 * device, or they won't do anything. 9993 * Thus we need to update dev->features 9994 * *before* calling udp_tunnel_get_rx_info, 9995 * but *after* calling udp_tunnel_drop_rx_info. 9996 */ 9997 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9998 dev->features = features; 9999 udp_tunnel_get_rx_info(dev); 10000 } else { 10001 udp_tunnel_drop_rx_info(dev); 10002 } 10003 } 10004 10005 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 10006 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 10007 dev->features = features; 10008 err |= vlan_get_rx_ctag_filter_info(dev); 10009 } else { 10010 vlan_drop_rx_ctag_filter_info(dev); 10011 } 10012 } 10013 10014 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 10015 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 10016 dev->features = features; 10017 err |= vlan_get_rx_stag_filter_info(dev); 10018 } else { 10019 vlan_drop_rx_stag_filter_info(dev); 10020 } 10021 } 10022 10023 dev->features = features; 10024 } 10025 10026 return err < 0 ? 0 : 1; 10027 } 10028 10029 /** 10030 * netdev_update_features - recalculate device features 10031 * @dev: the device to check 10032 * 10033 * Recalculate dev->features set and send notifications if it 10034 * has changed. Should be called after driver or hardware dependent 10035 * conditions might have changed that influence the features. 10036 */ 10037 void netdev_update_features(struct net_device *dev) 10038 { 10039 if (__netdev_update_features(dev)) 10040 netdev_features_change(dev); 10041 } 10042 EXPORT_SYMBOL(netdev_update_features); 10043 10044 /** 10045 * netdev_change_features - recalculate device features 10046 * @dev: the device to check 10047 * 10048 * Recalculate dev->features set and send notifications even 10049 * if they have not changed. Should be called instead of 10050 * netdev_update_features() if also dev->vlan_features might 10051 * have changed to allow the changes to be propagated to stacked 10052 * VLAN devices. 10053 */ 10054 void netdev_change_features(struct net_device *dev) 10055 { 10056 __netdev_update_features(dev); 10057 netdev_features_change(dev); 10058 } 10059 EXPORT_SYMBOL(netdev_change_features); 10060 10061 /** 10062 * netif_stacked_transfer_operstate - transfer operstate 10063 * @rootdev: the root or lower level device to transfer state from 10064 * @dev: the device to transfer operstate to 10065 * 10066 * Transfer operational state from root to device. This is normally 10067 * called when a stacking relationship exists between the root 10068 * device and the device(a leaf device). 10069 */ 10070 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 10071 struct net_device *dev) 10072 { 10073 if (rootdev->operstate == IF_OPER_DORMANT) 10074 netif_dormant_on(dev); 10075 else 10076 netif_dormant_off(dev); 10077 10078 if (rootdev->operstate == IF_OPER_TESTING) 10079 netif_testing_on(dev); 10080 else 10081 netif_testing_off(dev); 10082 10083 if (netif_carrier_ok(rootdev)) 10084 netif_carrier_on(dev); 10085 else 10086 netif_carrier_off(dev); 10087 } 10088 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10089 10090 static int netif_alloc_rx_queues(struct net_device *dev) 10091 { 10092 unsigned int i, count = dev->num_rx_queues; 10093 struct netdev_rx_queue *rx; 10094 size_t sz = count * sizeof(*rx); 10095 int err = 0; 10096 10097 BUG_ON(count < 1); 10098 10099 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10100 if (!rx) 10101 return -ENOMEM; 10102 10103 dev->_rx = rx; 10104 10105 for (i = 0; i < count; i++) { 10106 rx[i].dev = dev; 10107 10108 /* XDP RX-queue setup */ 10109 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10110 if (err < 0) 10111 goto err_rxq_info; 10112 } 10113 return 0; 10114 10115 err_rxq_info: 10116 /* Rollback successful reg's and free other resources */ 10117 while (i--) 10118 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10119 kvfree(dev->_rx); 10120 dev->_rx = NULL; 10121 return err; 10122 } 10123 10124 static void netif_free_rx_queues(struct net_device *dev) 10125 { 10126 unsigned int i, count = dev->num_rx_queues; 10127 10128 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10129 if (!dev->_rx) 10130 return; 10131 10132 for (i = 0; i < count; i++) 10133 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10134 10135 kvfree(dev->_rx); 10136 } 10137 10138 static void netdev_init_one_queue(struct net_device *dev, 10139 struct netdev_queue *queue, void *_unused) 10140 { 10141 /* Initialize queue lock */ 10142 spin_lock_init(&queue->_xmit_lock); 10143 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10144 queue->xmit_lock_owner = -1; 10145 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10146 queue->dev = dev; 10147 #ifdef CONFIG_BQL 10148 dql_init(&queue->dql, HZ); 10149 #endif 10150 } 10151 10152 static void netif_free_tx_queues(struct net_device *dev) 10153 { 10154 kvfree(dev->_tx); 10155 } 10156 10157 static int netif_alloc_netdev_queues(struct net_device *dev) 10158 { 10159 unsigned int count = dev->num_tx_queues; 10160 struct netdev_queue *tx; 10161 size_t sz = count * sizeof(*tx); 10162 10163 if (count < 1 || count > 0xffff) 10164 return -EINVAL; 10165 10166 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10167 if (!tx) 10168 return -ENOMEM; 10169 10170 dev->_tx = tx; 10171 10172 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10173 spin_lock_init(&dev->tx_global_lock); 10174 10175 return 0; 10176 } 10177 10178 void netif_tx_stop_all_queues(struct net_device *dev) 10179 { 10180 unsigned int i; 10181 10182 for (i = 0; i < dev->num_tx_queues; i++) { 10183 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10184 10185 netif_tx_stop_queue(txq); 10186 } 10187 } 10188 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10189 10190 /** 10191 * register_netdevice - register a network device 10192 * @dev: device to register 10193 * 10194 * Take a completed network device structure and add it to the kernel 10195 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10196 * chain. 0 is returned on success. A negative errno code is returned 10197 * on a failure to set up the device, or if the name is a duplicate. 10198 * 10199 * Callers must hold the rtnl semaphore. You may want 10200 * register_netdev() instead of this. 10201 * 10202 * BUGS: 10203 * The locking appears insufficient to guarantee two parallel registers 10204 * will not get the same name. 10205 */ 10206 10207 int register_netdevice(struct net_device *dev) 10208 { 10209 int ret; 10210 struct net *net = dev_net(dev); 10211 10212 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10213 NETDEV_FEATURE_COUNT); 10214 BUG_ON(dev_boot_phase); 10215 ASSERT_RTNL(); 10216 10217 might_sleep(); 10218 10219 /* When net_device's are persistent, this will be fatal. */ 10220 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10221 BUG_ON(!net); 10222 10223 ret = ethtool_check_ops(dev->ethtool_ops); 10224 if (ret) 10225 return ret; 10226 10227 spin_lock_init(&dev->addr_list_lock); 10228 netdev_set_addr_lockdep_class(dev); 10229 10230 ret = dev_get_valid_name(net, dev, dev->name); 10231 if (ret < 0) 10232 goto out; 10233 10234 ret = -ENOMEM; 10235 dev->name_node = netdev_name_node_head_alloc(dev); 10236 if (!dev->name_node) 10237 goto out; 10238 10239 /* Init, if this function is available */ 10240 if (dev->netdev_ops->ndo_init) { 10241 ret = dev->netdev_ops->ndo_init(dev); 10242 if (ret) { 10243 if (ret > 0) 10244 ret = -EIO; 10245 goto err_free_name; 10246 } 10247 } 10248 10249 if (((dev->hw_features | dev->features) & 10250 NETIF_F_HW_VLAN_CTAG_FILTER) && 10251 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10252 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10253 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10254 ret = -EINVAL; 10255 goto err_uninit; 10256 } 10257 10258 ret = -EBUSY; 10259 if (!dev->ifindex) 10260 dev->ifindex = dev_new_index(net); 10261 else if (__dev_get_by_index(net, dev->ifindex)) 10262 goto err_uninit; 10263 10264 /* Transfer changeable features to wanted_features and enable 10265 * software offloads (GSO and GRO). 10266 */ 10267 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10268 dev->features |= NETIF_F_SOFT_FEATURES; 10269 10270 if (dev->udp_tunnel_nic_info) { 10271 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10272 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10273 } 10274 10275 dev->wanted_features = dev->features & dev->hw_features; 10276 10277 if (!(dev->flags & IFF_LOOPBACK)) 10278 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10279 10280 /* If IPv4 TCP segmentation offload is supported we should also 10281 * allow the device to enable segmenting the frame with the option 10282 * of ignoring a static IP ID value. This doesn't enable the 10283 * feature itself but allows the user to enable it later. 10284 */ 10285 if (dev->hw_features & NETIF_F_TSO) 10286 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10287 if (dev->vlan_features & NETIF_F_TSO) 10288 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10289 if (dev->mpls_features & NETIF_F_TSO) 10290 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10291 if (dev->hw_enc_features & NETIF_F_TSO) 10292 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10293 10294 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10295 */ 10296 dev->vlan_features |= NETIF_F_HIGHDMA; 10297 10298 /* Make NETIF_F_SG inheritable to tunnel devices. 10299 */ 10300 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10301 10302 /* Make NETIF_F_SG inheritable to MPLS. 10303 */ 10304 dev->mpls_features |= NETIF_F_SG; 10305 10306 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10307 ret = notifier_to_errno(ret); 10308 if (ret) 10309 goto err_uninit; 10310 10311 ret = netdev_register_kobject(dev); 10312 if (ret) { 10313 dev->reg_state = NETREG_UNREGISTERED; 10314 goto err_uninit; 10315 } 10316 dev->reg_state = NETREG_REGISTERED; 10317 10318 __netdev_update_features(dev); 10319 10320 /* 10321 * Default initial state at registry is that the 10322 * device is present. 10323 */ 10324 10325 set_bit(__LINK_STATE_PRESENT, &dev->state); 10326 10327 linkwatch_init_dev(dev); 10328 10329 dev_init_scheduler(dev); 10330 dev_hold(dev); 10331 list_netdevice(dev); 10332 add_device_randomness(dev->dev_addr, dev->addr_len); 10333 10334 /* If the device has permanent device address, driver should 10335 * set dev_addr and also addr_assign_type should be set to 10336 * NET_ADDR_PERM (default value). 10337 */ 10338 if (dev->addr_assign_type == NET_ADDR_PERM) 10339 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10340 10341 /* Notify protocols, that a new device appeared. */ 10342 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10343 ret = notifier_to_errno(ret); 10344 if (ret) { 10345 /* Expect explicit free_netdev() on failure */ 10346 dev->needs_free_netdev = false; 10347 unregister_netdevice_queue(dev, NULL); 10348 goto out; 10349 } 10350 /* 10351 * Prevent userspace races by waiting until the network 10352 * device is fully setup before sending notifications. 10353 */ 10354 if (!dev->rtnl_link_ops || 10355 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10356 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10357 10358 out: 10359 return ret; 10360 10361 err_uninit: 10362 if (dev->netdev_ops->ndo_uninit) 10363 dev->netdev_ops->ndo_uninit(dev); 10364 if (dev->priv_destructor) 10365 dev->priv_destructor(dev); 10366 err_free_name: 10367 netdev_name_node_free(dev->name_node); 10368 goto out; 10369 } 10370 EXPORT_SYMBOL(register_netdevice); 10371 10372 /** 10373 * init_dummy_netdev - init a dummy network device for NAPI 10374 * @dev: device to init 10375 * 10376 * This takes a network device structure and initialize the minimum 10377 * amount of fields so it can be used to schedule NAPI polls without 10378 * registering a full blown interface. This is to be used by drivers 10379 * that need to tie several hardware interfaces to a single NAPI 10380 * poll scheduler due to HW limitations. 10381 */ 10382 int init_dummy_netdev(struct net_device *dev) 10383 { 10384 /* Clear everything. Note we don't initialize spinlocks 10385 * are they aren't supposed to be taken by any of the 10386 * NAPI code and this dummy netdev is supposed to be 10387 * only ever used for NAPI polls 10388 */ 10389 memset(dev, 0, sizeof(struct net_device)); 10390 10391 /* make sure we BUG if trying to hit standard 10392 * register/unregister code path 10393 */ 10394 dev->reg_state = NETREG_DUMMY; 10395 10396 /* NAPI wants this */ 10397 INIT_LIST_HEAD(&dev->napi_list); 10398 10399 /* a dummy interface is started by default */ 10400 set_bit(__LINK_STATE_PRESENT, &dev->state); 10401 set_bit(__LINK_STATE_START, &dev->state); 10402 10403 /* napi_busy_loop stats accounting wants this */ 10404 dev_net_set(dev, &init_net); 10405 10406 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10407 * because users of this 'device' dont need to change 10408 * its refcount. 10409 */ 10410 10411 return 0; 10412 } 10413 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10414 10415 10416 /** 10417 * register_netdev - register a network device 10418 * @dev: device to register 10419 * 10420 * Take a completed network device structure and add it to the kernel 10421 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10422 * chain. 0 is returned on success. A negative errno code is returned 10423 * on a failure to set up the device, or if the name is a duplicate. 10424 * 10425 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10426 * and expands the device name if you passed a format string to 10427 * alloc_netdev. 10428 */ 10429 int register_netdev(struct net_device *dev) 10430 { 10431 int err; 10432 10433 if (rtnl_lock_killable()) 10434 return -EINTR; 10435 err = register_netdevice(dev); 10436 rtnl_unlock(); 10437 return err; 10438 } 10439 EXPORT_SYMBOL(register_netdev); 10440 10441 int netdev_refcnt_read(const struct net_device *dev) 10442 { 10443 #ifdef CONFIG_PCPU_DEV_REFCNT 10444 int i, refcnt = 0; 10445 10446 for_each_possible_cpu(i) 10447 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10448 return refcnt; 10449 #else 10450 return refcount_read(&dev->dev_refcnt); 10451 #endif 10452 } 10453 EXPORT_SYMBOL(netdev_refcnt_read); 10454 10455 int netdev_unregister_timeout_secs __read_mostly = 10; 10456 10457 #define WAIT_REFS_MIN_MSECS 1 10458 #define WAIT_REFS_MAX_MSECS 250 10459 /** 10460 * netdev_wait_allrefs - wait until all references are gone. 10461 * @dev: target net_device 10462 * 10463 * This is called when unregistering network devices. 10464 * 10465 * Any protocol or device that holds a reference should register 10466 * for netdevice notification, and cleanup and put back the 10467 * reference if they receive an UNREGISTER event. 10468 * We can get stuck here if buggy protocols don't correctly 10469 * call dev_put. 10470 */ 10471 static void netdev_wait_allrefs(struct net_device *dev) 10472 { 10473 unsigned long rebroadcast_time, warning_time; 10474 int wait = 0, refcnt; 10475 10476 linkwatch_forget_dev(dev); 10477 10478 rebroadcast_time = warning_time = jiffies; 10479 refcnt = netdev_refcnt_read(dev); 10480 10481 while (refcnt != 1) { 10482 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10483 rtnl_lock(); 10484 10485 /* Rebroadcast unregister notification */ 10486 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10487 10488 __rtnl_unlock(); 10489 rcu_barrier(); 10490 rtnl_lock(); 10491 10492 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10493 &dev->state)) { 10494 /* We must not have linkwatch events 10495 * pending on unregister. If this 10496 * happens, we simply run the queue 10497 * unscheduled, resulting in a noop 10498 * for this device. 10499 */ 10500 linkwatch_run_queue(); 10501 } 10502 10503 __rtnl_unlock(); 10504 10505 rebroadcast_time = jiffies; 10506 } 10507 10508 if (!wait) { 10509 rcu_barrier(); 10510 wait = WAIT_REFS_MIN_MSECS; 10511 } else { 10512 msleep(wait); 10513 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10514 } 10515 10516 refcnt = netdev_refcnt_read(dev); 10517 10518 if (refcnt != 1 && 10519 time_after(jiffies, warning_time + 10520 netdev_unregister_timeout_secs * HZ)) { 10521 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10522 dev->name, refcnt); 10523 warning_time = jiffies; 10524 } 10525 } 10526 } 10527 10528 /* The sequence is: 10529 * 10530 * rtnl_lock(); 10531 * ... 10532 * register_netdevice(x1); 10533 * register_netdevice(x2); 10534 * ... 10535 * unregister_netdevice(y1); 10536 * unregister_netdevice(y2); 10537 * ... 10538 * rtnl_unlock(); 10539 * free_netdev(y1); 10540 * free_netdev(y2); 10541 * 10542 * We are invoked by rtnl_unlock(). 10543 * This allows us to deal with problems: 10544 * 1) We can delete sysfs objects which invoke hotplug 10545 * without deadlocking with linkwatch via keventd. 10546 * 2) Since we run with the RTNL semaphore not held, we can sleep 10547 * safely in order to wait for the netdev refcnt to drop to zero. 10548 * 10549 * We must not return until all unregister events added during 10550 * the interval the lock was held have been completed. 10551 */ 10552 void netdev_run_todo(void) 10553 { 10554 struct list_head list; 10555 #ifdef CONFIG_LOCKDEP 10556 struct list_head unlink_list; 10557 10558 list_replace_init(&net_unlink_list, &unlink_list); 10559 10560 while (!list_empty(&unlink_list)) { 10561 struct net_device *dev = list_first_entry(&unlink_list, 10562 struct net_device, 10563 unlink_list); 10564 list_del_init(&dev->unlink_list); 10565 dev->nested_level = dev->lower_level - 1; 10566 } 10567 #endif 10568 10569 /* Snapshot list, allow later requests */ 10570 list_replace_init(&net_todo_list, &list); 10571 10572 __rtnl_unlock(); 10573 10574 10575 /* Wait for rcu callbacks to finish before next phase */ 10576 if (!list_empty(&list)) 10577 rcu_barrier(); 10578 10579 while (!list_empty(&list)) { 10580 struct net_device *dev 10581 = list_first_entry(&list, struct net_device, todo_list); 10582 list_del(&dev->todo_list); 10583 10584 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10585 pr_err("network todo '%s' but state %d\n", 10586 dev->name, dev->reg_state); 10587 dump_stack(); 10588 continue; 10589 } 10590 10591 dev->reg_state = NETREG_UNREGISTERED; 10592 10593 netdev_wait_allrefs(dev); 10594 10595 /* paranoia */ 10596 BUG_ON(netdev_refcnt_read(dev) != 1); 10597 BUG_ON(!list_empty(&dev->ptype_all)); 10598 BUG_ON(!list_empty(&dev->ptype_specific)); 10599 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10600 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10601 #if IS_ENABLED(CONFIG_DECNET) 10602 WARN_ON(dev->dn_ptr); 10603 #endif 10604 if (dev->priv_destructor) 10605 dev->priv_destructor(dev); 10606 if (dev->needs_free_netdev) 10607 free_netdev(dev); 10608 10609 /* Report a network device has been unregistered */ 10610 rtnl_lock(); 10611 dev_net(dev)->dev_unreg_count--; 10612 __rtnl_unlock(); 10613 wake_up(&netdev_unregistering_wq); 10614 10615 /* Free network device */ 10616 kobject_put(&dev->dev.kobj); 10617 } 10618 } 10619 10620 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10621 * all the same fields in the same order as net_device_stats, with only 10622 * the type differing, but rtnl_link_stats64 may have additional fields 10623 * at the end for newer counters. 10624 */ 10625 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10626 const struct net_device_stats *netdev_stats) 10627 { 10628 #if BITS_PER_LONG == 64 10629 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10630 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10631 /* zero out counters that only exist in rtnl_link_stats64 */ 10632 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10633 sizeof(*stats64) - sizeof(*netdev_stats)); 10634 #else 10635 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10636 const unsigned long *src = (const unsigned long *)netdev_stats; 10637 u64 *dst = (u64 *)stats64; 10638 10639 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10640 for (i = 0; i < n; i++) 10641 dst[i] = src[i]; 10642 /* zero out counters that only exist in rtnl_link_stats64 */ 10643 memset((char *)stats64 + n * sizeof(u64), 0, 10644 sizeof(*stats64) - n * sizeof(u64)); 10645 #endif 10646 } 10647 EXPORT_SYMBOL(netdev_stats_to_stats64); 10648 10649 /** 10650 * dev_get_stats - get network device statistics 10651 * @dev: device to get statistics from 10652 * @storage: place to store stats 10653 * 10654 * Get network statistics from device. Return @storage. 10655 * The device driver may provide its own method by setting 10656 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10657 * otherwise the internal statistics structure is used. 10658 */ 10659 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10660 struct rtnl_link_stats64 *storage) 10661 { 10662 const struct net_device_ops *ops = dev->netdev_ops; 10663 10664 if (ops->ndo_get_stats64) { 10665 memset(storage, 0, sizeof(*storage)); 10666 ops->ndo_get_stats64(dev, storage); 10667 } else if (ops->ndo_get_stats) { 10668 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10669 } else { 10670 netdev_stats_to_stats64(storage, &dev->stats); 10671 } 10672 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10673 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10674 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10675 return storage; 10676 } 10677 EXPORT_SYMBOL(dev_get_stats); 10678 10679 /** 10680 * dev_fetch_sw_netstats - get per-cpu network device statistics 10681 * @s: place to store stats 10682 * @netstats: per-cpu network stats to read from 10683 * 10684 * Read per-cpu network statistics and populate the related fields in @s. 10685 */ 10686 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10687 const struct pcpu_sw_netstats __percpu *netstats) 10688 { 10689 int cpu; 10690 10691 for_each_possible_cpu(cpu) { 10692 const struct pcpu_sw_netstats *stats; 10693 struct pcpu_sw_netstats tmp; 10694 unsigned int start; 10695 10696 stats = per_cpu_ptr(netstats, cpu); 10697 do { 10698 start = u64_stats_fetch_begin_irq(&stats->syncp); 10699 tmp.rx_packets = stats->rx_packets; 10700 tmp.rx_bytes = stats->rx_bytes; 10701 tmp.tx_packets = stats->tx_packets; 10702 tmp.tx_bytes = stats->tx_bytes; 10703 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10704 10705 s->rx_packets += tmp.rx_packets; 10706 s->rx_bytes += tmp.rx_bytes; 10707 s->tx_packets += tmp.tx_packets; 10708 s->tx_bytes += tmp.tx_bytes; 10709 } 10710 } 10711 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10712 10713 /** 10714 * dev_get_tstats64 - ndo_get_stats64 implementation 10715 * @dev: device to get statistics from 10716 * @s: place to store stats 10717 * 10718 * Populate @s from dev->stats and dev->tstats. Can be used as 10719 * ndo_get_stats64() callback. 10720 */ 10721 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10722 { 10723 netdev_stats_to_stats64(s, &dev->stats); 10724 dev_fetch_sw_netstats(s, dev->tstats); 10725 } 10726 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10727 10728 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10729 { 10730 struct netdev_queue *queue = dev_ingress_queue(dev); 10731 10732 #ifdef CONFIG_NET_CLS_ACT 10733 if (queue) 10734 return queue; 10735 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10736 if (!queue) 10737 return NULL; 10738 netdev_init_one_queue(dev, queue, NULL); 10739 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10740 queue->qdisc_sleeping = &noop_qdisc; 10741 rcu_assign_pointer(dev->ingress_queue, queue); 10742 #endif 10743 return queue; 10744 } 10745 10746 static const struct ethtool_ops default_ethtool_ops; 10747 10748 void netdev_set_default_ethtool_ops(struct net_device *dev, 10749 const struct ethtool_ops *ops) 10750 { 10751 if (dev->ethtool_ops == &default_ethtool_ops) 10752 dev->ethtool_ops = ops; 10753 } 10754 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10755 10756 void netdev_freemem(struct net_device *dev) 10757 { 10758 char *addr = (char *)dev - dev->padded; 10759 10760 kvfree(addr); 10761 } 10762 10763 /** 10764 * alloc_netdev_mqs - allocate network device 10765 * @sizeof_priv: size of private data to allocate space for 10766 * @name: device name format string 10767 * @name_assign_type: origin of device name 10768 * @setup: callback to initialize device 10769 * @txqs: the number of TX subqueues to allocate 10770 * @rxqs: the number of RX subqueues to allocate 10771 * 10772 * Allocates a struct net_device with private data area for driver use 10773 * and performs basic initialization. Also allocates subqueue structs 10774 * for each queue on the device. 10775 */ 10776 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10777 unsigned char name_assign_type, 10778 void (*setup)(struct net_device *), 10779 unsigned int txqs, unsigned int rxqs) 10780 { 10781 struct net_device *dev; 10782 unsigned int alloc_size; 10783 struct net_device *p; 10784 10785 BUG_ON(strlen(name) >= sizeof(dev->name)); 10786 10787 if (txqs < 1) { 10788 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10789 return NULL; 10790 } 10791 10792 if (rxqs < 1) { 10793 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10794 return NULL; 10795 } 10796 10797 alloc_size = sizeof(struct net_device); 10798 if (sizeof_priv) { 10799 /* ensure 32-byte alignment of private area */ 10800 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10801 alloc_size += sizeof_priv; 10802 } 10803 /* ensure 32-byte alignment of whole construct */ 10804 alloc_size += NETDEV_ALIGN - 1; 10805 10806 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10807 if (!p) 10808 return NULL; 10809 10810 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10811 dev->padded = (char *)dev - (char *)p; 10812 10813 #ifdef CONFIG_PCPU_DEV_REFCNT 10814 dev->pcpu_refcnt = alloc_percpu(int); 10815 if (!dev->pcpu_refcnt) 10816 goto free_dev; 10817 dev_hold(dev); 10818 #else 10819 refcount_set(&dev->dev_refcnt, 1); 10820 #endif 10821 10822 if (dev_addr_init(dev)) 10823 goto free_pcpu; 10824 10825 dev_mc_init(dev); 10826 dev_uc_init(dev); 10827 10828 dev_net_set(dev, &init_net); 10829 10830 dev->gso_max_size = GSO_MAX_SIZE; 10831 dev->gso_max_segs = GSO_MAX_SEGS; 10832 dev->upper_level = 1; 10833 dev->lower_level = 1; 10834 #ifdef CONFIG_LOCKDEP 10835 dev->nested_level = 0; 10836 INIT_LIST_HEAD(&dev->unlink_list); 10837 #endif 10838 10839 INIT_LIST_HEAD(&dev->napi_list); 10840 INIT_LIST_HEAD(&dev->unreg_list); 10841 INIT_LIST_HEAD(&dev->close_list); 10842 INIT_LIST_HEAD(&dev->link_watch_list); 10843 INIT_LIST_HEAD(&dev->adj_list.upper); 10844 INIT_LIST_HEAD(&dev->adj_list.lower); 10845 INIT_LIST_HEAD(&dev->ptype_all); 10846 INIT_LIST_HEAD(&dev->ptype_specific); 10847 INIT_LIST_HEAD(&dev->net_notifier_list); 10848 #ifdef CONFIG_NET_SCHED 10849 hash_init(dev->qdisc_hash); 10850 #endif 10851 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10852 setup(dev); 10853 10854 if (!dev->tx_queue_len) { 10855 dev->priv_flags |= IFF_NO_QUEUE; 10856 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10857 } 10858 10859 dev->num_tx_queues = txqs; 10860 dev->real_num_tx_queues = txqs; 10861 if (netif_alloc_netdev_queues(dev)) 10862 goto free_all; 10863 10864 dev->num_rx_queues = rxqs; 10865 dev->real_num_rx_queues = rxqs; 10866 if (netif_alloc_rx_queues(dev)) 10867 goto free_all; 10868 10869 strcpy(dev->name, name); 10870 dev->name_assign_type = name_assign_type; 10871 dev->group = INIT_NETDEV_GROUP; 10872 if (!dev->ethtool_ops) 10873 dev->ethtool_ops = &default_ethtool_ops; 10874 10875 nf_hook_ingress_init(dev); 10876 10877 return dev; 10878 10879 free_all: 10880 free_netdev(dev); 10881 return NULL; 10882 10883 free_pcpu: 10884 #ifdef CONFIG_PCPU_DEV_REFCNT 10885 free_percpu(dev->pcpu_refcnt); 10886 free_dev: 10887 #endif 10888 netdev_freemem(dev); 10889 return NULL; 10890 } 10891 EXPORT_SYMBOL(alloc_netdev_mqs); 10892 10893 /** 10894 * free_netdev - free network device 10895 * @dev: device 10896 * 10897 * This function does the last stage of destroying an allocated device 10898 * interface. The reference to the device object is released. If this 10899 * is the last reference then it will be freed.Must be called in process 10900 * context. 10901 */ 10902 void free_netdev(struct net_device *dev) 10903 { 10904 struct napi_struct *p, *n; 10905 10906 might_sleep(); 10907 10908 /* When called immediately after register_netdevice() failed the unwind 10909 * handling may still be dismantling the device. Handle that case by 10910 * deferring the free. 10911 */ 10912 if (dev->reg_state == NETREG_UNREGISTERING) { 10913 ASSERT_RTNL(); 10914 dev->needs_free_netdev = true; 10915 return; 10916 } 10917 10918 netif_free_tx_queues(dev); 10919 netif_free_rx_queues(dev); 10920 10921 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10922 10923 /* Flush device addresses */ 10924 dev_addr_flush(dev); 10925 10926 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10927 netif_napi_del(p); 10928 10929 #ifdef CONFIG_PCPU_DEV_REFCNT 10930 free_percpu(dev->pcpu_refcnt); 10931 dev->pcpu_refcnt = NULL; 10932 #endif 10933 free_percpu(dev->xdp_bulkq); 10934 dev->xdp_bulkq = NULL; 10935 10936 /* Compatibility with error handling in drivers */ 10937 if (dev->reg_state == NETREG_UNINITIALIZED) { 10938 netdev_freemem(dev); 10939 return; 10940 } 10941 10942 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10943 dev->reg_state = NETREG_RELEASED; 10944 10945 /* will free via device release */ 10946 put_device(&dev->dev); 10947 } 10948 EXPORT_SYMBOL(free_netdev); 10949 10950 /** 10951 * synchronize_net - Synchronize with packet receive processing 10952 * 10953 * Wait for packets currently being received to be done. 10954 * Does not block later packets from starting. 10955 */ 10956 void synchronize_net(void) 10957 { 10958 might_sleep(); 10959 if (rtnl_is_locked()) 10960 synchronize_rcu_expedited(); 10961 else 10962 synchronize_rcu(); 10963 } 10964 EXPORT_SYMBOL(synchronize_net); 10965 10966 /** 10967 * unregister_netdevice_queue - remove device from the kernel 10968 * @dev: device 10969 * @head: list 10970 * 10971 * This function shuts down a device interface and removes it 10972 * from the kernel tables. 10973 * If head not NULL, device is queued to be unregistered later. 10974 * 10975 * Callers must hold the rtnl semaphore. You may want 10976 * unregister_netdev() instead of this. 10977 */ 10978 10979 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10980 { 10981 ASSERT_RTNL(); 10982 10983 if (head) { 10984 list_move_tail(&dev->unreg_list, head); 10985 } else { 10986 LIST_HEAD(single); 10987 10988 list_add(&dev->unreg_list, &single); 10989 unregister_netdevice_many(&single); 10990 } 10991 } 10992 EXPORT_SYMBOL(unregister_netdevice_queue); 10993 10994 /** 10995 * unregister_netdevice_many - unregister many devices 10996 * @head: list of devices 10997 * 10998 * Note: As most callers use a stack allocated list_head, 10999 * we force a list_del() to make sure stack wont be corrupted later. 11000 */ 11001 void unregister_netdevice_many(struct list_head *head) 11002 { 11003 struct net_device *dev, *tmp; 11004 LIST_HEAD(close_head); 11005 11006 BUG_ON(dev_boot_phase); 11007 ASSERT_RTNL(); 11008 11009 if (list_empty(head)) 11010 return; 11011 11012 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11013 /* Some devices call without registering 11014 * for initialization unwind. Remove those 11015 * devices and proceed with the remaining. 11016 */ 11017 if (dev->reg_state == NETREG_UNINITIALIZED) { 11018 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11019 dev->name, dev); 11020 11021 WARN_ON(1); 11022 list_del(&dev->unreg_list); 11023 continue; 11024 } 11025 dev->dismantle = true; 11026 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11027 } 11028 11029 /* If device is running, close it first. */ 11030 list_for_each_entry(dev, head, unreg_list) 11031 list_add_tail(&dev->close_list, &close_head); 11032 dev_close_many(&close_head, true); 11033 11034 list_for_each_entry(dev, head, unreg_list) { 11035 /* And unlink it from device chain. */ 11036 unlist_netdevice(dev); 11037 11038 dev->reg_state = NETREG_UNREGISTERING; 11039 } 11040 flush_all_backlogs(); 11041 11042 synchronize_net(); 11043 11044 list_for_each_entry(dev, head, unreg_list) { 11045 struct sk_buff *skb = NULL; 11046 11047 /* Shutdown queueing discipline. */ 11048 dev_shutdown(dev); 11049 11050 dev_xdp_uninstall(dev); 11051 11052 /* Notify protocols, that we are about to destroy 11053 * this device. They should clean all the things. 11054 */ 11055 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11056 11057 if (!dev->rtnl_link_ops || 11058 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11059 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11060 GFP_KERNEL, NULL, 0); 11061 11062 /* 11063 * Flush the unicast and multicast chains 11064 */ 11065 dev_uc_flush(dev); 11066 dev_mc_flush(dev); 11067 11068 netdev_name_node_alt_flush(dev); 11069 netdev_name_node_free(dev->name_node); 11070 11071 if (dev->netdev_ops->ndo_uninit) 11072 dev->netdev_ops->ndo_uninit(dev); 11073 11074 if (skb) 11075 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 11076 11077 /* Notifier chain MUST detach us all upper devices. */ 11078 WARN_ON(netdev_has_any_upper_dev(dev)); 11079 WARN_ON(netdev_has_any_lower_dev(dev)); 11080 11081 /* Remove entries from kobject tree */ 11082 netdev_unregister_kobject(dev); 11083 #ifdef CONFIG_XPS 11084 /* Remove XPS queueing entries */ 11085 netif_reset_xps_queues_gt(dev, 0); 11086 #endif 11087 } 11088 11089 synchronize_net(); 11090 11091 list_for_each_entry(dev, head, unreg_list) { 11092 dev_put(dev); 11093 net_set_todo(dev); 11094 } 11095 11096 list_del(head); 11097 } 11098 EXPORT_SYMBOL(unregister_netdevice_many); 11099 11100 /** 11101 * unregister_netdev - remove device from the kernel 11102 * @dev: device 11103 * 11104 * This function shuts down a device interface and removes it 11105 * from the kernel tables. 11106 * 11107 * This is just a wrapper for unregister_netdevice that takes 11108 * the rtnl semaphore. In general you want to use this and not 11109 * unregister_netdevice. 11110 */ 11111 void unregister_netdev(struct net_device *dev) 11112 { 11113 rtnl_lock(); 11114 unregister_netdevice(dev); 11115 rtnl_unlock(); 11116 } 11117 EXPORT_SYMBOL(unregister_netdev); 11118 11119 /** 11120 * __dev_change_net_namespace - move device to different nethost namespace 11121 * @dev: device 11122 * @net: network namespace 11123 * @pat: If not NULL name pattern to try if the current device name 11124 * is already taken in the destination network namespace. 11125 * @new_ifindex: If not zero, specifies device index in the target 11126 * namespace. 11127 * 11128 * This function shuts down a device interface and moves it 11129 * to a new network namespace. On success 0 is returned, on 11130 * a failure a netagive errno code is returned. 11131 * 11132 * Callers must hold the rtnl semaphore. 11133 */ 11134 11135 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11136 const char *pat, int new_ifindex) 11137 { 11138 struct net *net_old = dev_net(dev); 11139 int err, new_nsid; 11140 11141 ASSERT_RTNL(); 11142 11143 /* Don't allow namespace local devices to be moved. */ 11144 err = -EINVAL; 11145 if (dev->features & NETIF_F_NETNS_LOCAL) 11146 goto out; 11147 11148 /* Ensure the device has been registrered */ 11149 if (dev->reg_state != NETREG_REGISTERED) 11150 goto out; 11151 11152 /* Get out if there is nothing todo */ 11153 err = 0; 11154 if (net_eq(net_old, net)) 11155 goto out; 11156 11157 /* Pick the destination device name, and ensure 11158 * we can use it in the destination network namespace. 11159 */ 11160 err = -EEXIST; 11161 if (__dev_get_by_name(net, dev->name)) { 11162 /* We get here if we can't use the current device name */ 11163 if (!pat) 11164 goto out; 11165 err = dev_get_valid_name(net, dev, pat); 11166 if (err < 0) 11167 goto out; 11168 } 11169 11170 /* Check that new_ifindex isn't used yet. */ 11171 err = -EBUSY; 11172 if (new_ifindex && __dev_get_by_index(net, new_ifindex)) 11173 goto out; 11174 11175 /* 11176 * And now a mini version of register_netdevice unregister_netdevice. 11177 */ 11178 11179 /* If device is running close it first. */ 11180 dev_close(dev); 11181 11182 /* And unlink it from device chain */ 11183 unlist_netdevice(dev); 11184 11185 synchronize_net(); 11186 11187 /* Shutdown queueing discipline. */ 11188 dev_shutdown(dev); 11189 11190 /* Notify protocols, that we are about to destroy 11191 * this device. They should clean all the things. 11192 * 11193 * Note that dev->reg_state stays at NETREG_REGISTERED. 11194 * This is wanted because this way 8021q and macvlan know 11195 * the device is just moving and can keep their slaves up. 11196 */ 11197 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11198 rcu_barrier(); 11199 11200 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11201 /* If there is an ifindex conflict assign a new one */ 11202 if (!new_ifindex) { 11203 if (__dev_get_by_index(net, dev->ifindex)) 11204 new_ifindex = dev_new_index(net); 11205 else 11206 new_ifindex = dev->ifindex; 11207 } 11208 11209 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11210 new_ifindex); 11211 11212 /* 11213 * Flush the unicast and multicast chains 11214 */ 11215 dev_uc_flush(dev); 11216 dev_mc_flush(dev); 11217 11218 /* Send a netdev-removed uevent to the old namespace */ 11219 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11220 netdev_adjacent_del_links(dev); 11221 11222 /* Move per-net netdevice notifiers that are following the netdevice */ 11223 move_netdevice_notifiers_dev_net(dev, net); 11224 11225 /* Actually switch the network namespace */ 11226 dev_net_set(dev, net); 11227 dev->ifindex = new_ifindex; 11228 11229 /* Send a netdev-add uevent to the new namespace */ 11230 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11231 netdev_adjacent_add_links(dev); 11232 11233 /* Fixup kobjects */ 11234 err = device_rename(&dev->dev, dev->name); 11235 WARN_ON(err); 11236 11237 /* Adapt owner in case owning user namespace of target network 11238 * namespace is different from the original one. 11239 */ 11240 err = netdev_change_owner(dev, net_old, net); 11241 WARN_ON(err); 11242 11243 /* Add the device back in the hashes */ 11244 list_netdevice(dev); 11245 11246 /* Notify protocols, that a new device appeared. */ 11247 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11248 11249 /* 11250 * Prevent userspace races by waiting until the network 11251 * device is fully setup before sending notifications. 11252 */ 11253 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 11254 11255 synchronize_net(); 11256 err = 0; 11257 out: 11258 return err; 11259 } 11260 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11261 11262 static int dev_cpu_dead(unsigned int oldcpu) 11263 { 11264 struct sk_buff **list_skb; 11265 struct sk_buff *skb; 11266 unsigned int cpu; 11267 struct softnet_data *sd, *oldsd, *remsd = NULL; 11268 11269 local_irq_disable(); 11270 cpu = smp_processor_id(); 11271 sd = &per_cpu(softnet_data, cpu); 11272 oldsd = &per_cpu(softnet_data, oldcpu); 11273 11274 /* Find end of our completion_queue. */ 11275 list_skb = &sd->completion_queue; 11276 while (*list_skb) 11277 list_skb = &(*list_skb)->next; 11278 /* Append completion queue from offline CPU. */ 11279 *list_skb = oldsd->completion_queue; 11280 oldsd->completion_queue = NULL; 11281 11282 /* Append output queue from offline CPU. */ 11283 if (oldsd->output_queue) { 11284 *sd->output_queue_tailp = oldsd->output_queue; 11285 sd->output_queue_tailp = oldsd->output_queue_tailp; 11286 oldsd->output_queue = NULL; 11287 oldsd->output_queue_tailp = &oldsd->output_queue; 11288 } 11289 /* Append NAPI poll list from offline CPU, with one exception : 11290 * process_backlog() must be called by cpu owning percpu backlog. 11291 * We properly handle process_queue & input_pkt_queue later. 11292 */ 11293 while (!list_empty(&oldsd->poll_list)) { 11294 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11295 struct napi_struct, 11296 poll_list); 11297 11298 list_del_init(&napi->poll_list); 11299 if (napi->poll == process_backlog) 11300 napi->state = 0; 11301 else 11302 ____napi_schedule(sd, napi); 11303 } 11304 11305 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11306 local_irq_enable(); 11307 11308 #ifdef CONFIG_RPS 11309 remsd = oldsd->rps_ipi_list; 11310 oldsd->rps_ipi_list = NULL; 11311 #endif 11312 /* send out pending IPI's on offline CPU */ 11313 net_rps_send_ipi(remsd); 11314 11315 /* Process offline CPU's input_pkt_queue */ 11316 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11317 netif_rx_ni(skb); 11318 input_queue_head_incr(oldsd); 11319 } 11320 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11321 netif_rx_ni(skb); 11322 input_queue_head_incr(oldsd); 11323 } 11324 11325 return 0; 11326 } 11327 11328 /** 11329 * netdev_increment_features - increment feature set by one 11330 * @all: current feature set 11331 * @one: new feature set 11332 * @mask: mask feature set 11333 * 11334 * Computes a new feature set after adding a device with feature set 11335 * @one to the master device with current feature set @all. Will not 11336 * enable anything that is off in @mask. Returns the new feature set. 11337 */ 11338 netdev_features_t netdev_increment_features(netdev_features_t all, 11339 netdev_features_t one, netdev_features_t mask) 11340 { 11341 if (mask & NETIF_F_HW_CSUM) 11342 mask |= NETIF_F_CSUM_MASK; 11343 mask |= NETIF_F_VLAN_CHALLENGED; 11344 11345 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11346 all &= one | ~NETIF_F_ALL_FOR_ALL; 11347 11348 /* If one device supports hw checksumming, set for all. */ 11349 if (all & NETIF_F_HW_CSUM) 11350 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11351 11352 return all; 11353 } 11354 EXPORT_SYMBOL(netdev_increment_features); 11355 11356 static struct hlist_head * __net_init netdev_create_hash(void) 11357 { 11358 int i; 11359 struct hlist_head *hash; 11360 11361 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11362 if (hash != NULL) 11363 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11364 INIT_HLIST_HEAD(&hash[i]); 11365 11366 return hash; 11367 } 11368 11369 /* Initialize per network namespace state */ 11370 static int __net_init netdev_init(struct net *net) 11371 { 11372 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11373 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11374 11375 if (net != &init_net) 11376 INIT_LIST_HEAD(&net->dev_base_head); 11377 11378 net->dev_name_head = netdev_create_hash(); 11379 if (net->dev_name_head == NULL) 11380 goto err_name; 11381 11382 net->dev_index_head = netdev_create_hash(); 11383 if (net->dev_index_head == NULL) 11384 goto err_idx; 11385 11386 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11387 11388 return 0; 11389 11390 err_idx: 11391 kfree(net->dev_name_head); 11392 err_name: 11393 return -ENOMEM; 11394 } 11395 11396 /** 11397 * netdev_drivername - network driver for the device 11398 * @dev: network device 11399 * 11400 * Determine network driver for device. 11401 */ 11402 const char *netdev_drivername(const struct net_device *dev) 11403 { 11404 const struct device_driver *driver; 11405 const struct device *parent; 11406 const char *empty = ""; 11407 11408 parent = dev->dev.parent; 11409 if (!parent) 11410 return empty; 11411 11412 driver = parent->driver; 11413 if (driver && driver->name) 11414 return driver->name; 11415 return empty; 11416 } 11417 11418 static void __netdev_printk(const char *level, const struct net_device *dev, 11419 struct va_format *vaf) 11420 { 11421 if (dev && dev->dev.parent) { 11422 dev_printk_emit(level[1] - '0', 11423 dev->dev.parent, 11424 "%s %s %s%s: %pV", 11425 dev_driver_string(dev->dev.parent), 11426 dev_name(dev->dev.parent), 11427 netdev_name(dev), netdev_reg_state(dev), 11428 vaf); 11429 } else if (dev) { 11430 printk("%s%s%s: %pV", 11431 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11432 } else { 11433 printk("%s(NULL net_device): %pV", level, vaf); 11434 } 11435 } 11436 11437 void netdev_printk(const char *level, const struct net_device *dev, 11438 const char *format, ...) 11439 { 11440 struct va_format vaf; 11441 va_list args; 11442 11443 va_start(args, format); 11444 11445 vaf.fmt = format; 11446 vaf.va = &args; 11447 11448 __netdev_printk(level, dev, &vaf); 11449 11450 va_end(args); 11451 } 11452 EXPORT_SYMBOL(netdev_printk); 11453 11454 #define define_netdev_printk_level(func, level) \ 11455 void func(const struct net_device *dev, const char *fmt, ...) \ 11456 { \ 11457 struct va_format vaf; \ 11458 va_list args; \ 11459 \ 11460 va_start(args, fmt); \ 11461 \ 11462 vaf.fmt = fmt; \ 11463 vaf.va = &args; \ 11464 \ 11465 __netdev_printk(level, dev, &vaf); \ 11466 \ 11467 va_end(args); \ 11468 } \ 11469 EXPORT_SYMBOL(func); 11470 11471 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11472 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11473 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11474 define_netdev_printk_level(netdev_err, KERN_ERR); 11475 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11476 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11477 define_netdev_printk_level(netdev_info, KERN_INFO); 11478 11479 static void __net_exit netdev_exit(struct net *net) 11480 { 11481 kfree(net->dev_name_head); 11482 kfree(net->dev_index_head); 11483 if (net != &init_net) 11484 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11485 } 11486 11487 static struct pernet_operations __net_initdata netdev_net_ops = { 11488 .init = netdev_init, 11489 .exit = netdev_exit, 11490 }; 11491 11492 static void __net_exit default_device_exit(struct net *net) 11493 { 11494 struct net_device *dev, *aux; 11495 /* 11496 * Push all migratable network devices back to the 11497 * initial network namespace 11498 */ 11499 rtnl_lock(); 11500 for_each_netdev_safe(net, dev, aux) { 11501 int err; 11502 char fb_name[IFNAMSIZ]; 11503 11504 /* Ignore unmoveable devices (i.e. loopback) */ 11505 if (dev->features & NETIF_F_NETNS_LOCAL) 11506 continue; 11507 11508 /* Leave virtual devices for the generic cleanup */ 11509 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11510 continue; 11511 11512 /* Push remaining network devices to init_net */ 11513 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11514 if (__dev_get_by_name(&init_net, fb_name)) 11515 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11516 err = dev_change_net_namespace(dev, &init_net, fb_name); 11517 if (err) { 11518 pr_emerg("%s: failed to move %s to init_net: %d\n", 11519 __func__, dev->name, err); 11520 BUG(); 11521 } 11522 } 11523 rtnl_unlock(); 11524 } 11525 11526 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 11527 { 11528 /* Return with the rtnl_lock held when there are no network 11529 * devices unregistering in any network namespace in net_list. 11530 */ 11531 struct net *net; 11532 bool unregistering; 11533 DEFINE_WAIT_FUNC(wait, woken_wake_function); 11534 11535 add_wait_queue(&netdev_unregistering_wq, &wait); 11536 for (;;) { 11537 unregistering = false; 11538 rtnl_lock(); 11539 list_for_each_entry(net, net_list, exit_list) { 11540 if (net->dev_unreg_count > 0) { 11541 unregistering = true; 11542 break; 11543 } 11544 } 11545 if (!unregistering) 11546 break; 11547 __rtnl_unlock(); 11548 11549 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 11550 } 11551 remove_wait_queue(&netdev_unregistering_wq, &wait); 11552 } 11553 11554 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11555 { 11556 /* At exit all network devices most be removed from a network 11557 * namespace. Do this in the reverse order of registration. 11558 * Do this across as many network namespaces as possible to 11559 * improve batching efficiency. 11560 */ 11561 struct net_device *dev; 11562 struct net *net; 11563 LIST_HEAD(dev_kill_list); 11564 11565 /* To prevent network device cleanup code from dereferencing 11566 * loopback devices or network devices that have been freed 11567 * wait here for all pending unregistrations to complete, 11568 * before unregistring the loopback device and allowing the 11569 * network namespace be freed. 11570 * 11571 * The netdev todo list containing all network devices 11572 * unregistrations that happen in default_device_exit_batch 11573 * will run in the rtnl_unlock() at the end of 11574 * default_device_exit_batch. 11575 */ 11576 rtnl_lock_unregistering(net_list); 11577 list_for_each_entry(net, net_list, exit_list) { 11578 for_each_netdev_reverse(net, dev) { 11579 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11580 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11581 else 11582 unregister_netdevice_queue(dev, &dev_kill_list); 11583 } 11584 } 11585 unregister_netdevice_many(&dev_kill_list); 11586 rtnl_unlock(); 11587 } 11588 11589 static struct pernet_operations __net_initdata default_device_ops = { 11590 .exit = default_device_exit, 11591 .exit_batch = default_device_exit_batch, 11592 }; 11593 11594 /* 11595 * Initialize the DEV module. At boot time this walks the device list and 11596 * unhooks any devices that fail to initialise (normally hardware not 11597 * present) and leaves us with a valid list of present and active devices. 11598 * 11599 */ 11600 11601 /* 11602 * This is called single threaded during boot, so no need 11603 * to take the rtnl semaphore. 11604 */ 11605 static int __init net_dev_init(void) 11606 { 11607 int i, rc = -ENOMEM; 11608 11609 BUG_ON(!dev_boot_phase); 11610 11611 if (dev_proc_init()) 11612 goto out; 11613 11614 if (netdev_kobject_init()) 11615 goto out; 11616 11617 INIT_LIST_HEAD(&ptype_all); 11618 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11619 INIT_LIST_HEAD(&ptype_base[i]); 11620 11621 INIT_LIST_HEAD(&offload_base); 11622 11623 if (register_pernet_subsys(&netdev_net_ops)) 11624 goto out; 11625 11626 /* 11627 * Initialise the packet receive queues. 11628 */ 11629 11630 for_each_possible_cpu(i) { 11631 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11632 struct softnet_data *sd = &per_cpu(softnet_data, i); 11633 11634 INIT_WORK(flush, flush_backlog); 11635 11636 skb_queue_head_init(&sd->input_pkt_queue); 11637 skb_queue_head_init(&sd->process_queue); 11638 #ifdef CONFIG_XFRM_OFFLOAD 11639 skb_queue_head_init(&sd->xfrm_backlog); 11640 #endif 11641 INIT_LIST_HEAD(&sd->poll_list); 11642 sd->output_queue_tailp = &sd->output_queue; 11643 #ifdef CONFIG_RPS 11644 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11645 sd->cpu = i; 11646 #endif 11647 11648 init_gro_hash(&sd->backlog); 11649 sd->backlog.poll = process_backlog; 11650 sd->backlog.weight = weight_p; 11651 } 11652 11653 dev_boot_phase = 0; 11654 11655 /* The loopback device is special if any other network devices 11656 * is present in a network namespace the loopback device must 11657 * be present. Since we now dynamically allocate and free the 11658 * loopback device ensure this invariant is maintained by 11659 * keeping the loopback device as the first device on the 11660 * list of network devices. Ensuring the loopback devices 11661 * is the first device that appears and the last network device 11662 * that disappears. 11663 */ 11664 if (register_pernet_device(&loopback_net_ops)) 11665 goto out; 11666 11667 if (register_pernet_device(&default_device_ops)) 11668 goto out; 11669 11670 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11671 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11672 11673 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11674 NULL, dev_cpu_dead); 11675 WARN_ON(rc < 0); 11676 rc = 0; 11677 out: 11678 return rc; 11679 } 11680 11681 subsys_initcall(net_dev_init); 11682