xref: /linux-6.15/net/core/dev.c (revision d0f482bb)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <[email protected]>
8  *				Mark Evans, <[email protected]>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <[email protected]>
12  *		Alan Cox <[email protected]>
13  *		David Hinds <[email protected]>
14  *		Alexey Kuznetsov <[email protected]>
15  *		Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 #include <linux/static_key.h>
137 #include <linux/hashtable.h>
138 #include <linux/vmalloc.h>
139 #include <linux/if_macvlan.h>
140 #include <linux/errqueue.h>
141 #include <linux/hrtimer.h>
142 #include <linux/netfilter_ingress.h>
143 #include <linux/crash_dump.h>
144 #include <linux/sctp.h>
145 #include <net/udp_tunnel.h>
146 #include <linux/net_namespace.h>
147 #include <linux/indirect_call_wrapper.h>
148 #include <net/devlink.h>
149 #include <linux/pm_runtime.h>
150 #include <linux/prandom.h>
151 
152 #include "net-sysfs.h"
153 
154 #define MAX_GRO_SKBS 8
155 
156 /* This should be increased if a protocol with a bigger head is added. */
157 #define GRO_MAX_HEAD (MAX_HEADER + 128)
158 
159 static DEFINE_SPINLOCK(ptype_lock);
160 static DEFINE_SPINLOCK(offload_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 static struct list_head offload_base __read_mostly;
164 
165 static int netif_rx_internal(struct sk_buff *skb);
166 static int call_netdevice_notifiers_info(unsigned long val,
167 					 struct netdev_notifier_info *info);
168 static int call_netdevice_notifiers_extack(unsigned long val,
169 					   struct net_device *dev,
170 					   struct netlink_ext_ack *extack);
171 static struct napi_struct *napi_by_id(unsigned int napi_id);
172 
173 /*
174  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175  * semaphore.
176  *
177  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178  *
179  * Writers must hold the rtnl semaphore while they loop through the
180  * dev_base_head list, and hold dev_base_lock for writing when they do the
181  * actual updates.  This allows pure readers to access the list even
182  * while a writer is preparing to update it.
183  *
184  * To put it another way, dev_base_lock is held for writing only to
185  * protect against pure readers; the rtnl semaphore provides the
186  * protection against other writers.
187  *
188  * See, for example usages, register_netdevice() and
189  * unregister_netdevice(), which must be called with the rtnl
190  * semaphore held.
191  */
192 DEFINE_RWLOCK(dev_base_lock);
193 EXPORT_SYMBOL(dev_base_lock);
194 
195 static DEFINE_MUTEX(ifalias_mutex);
196 
197 /* protects napi_hash addition/deletion and napi_gen_id */
198 static DEFINE_SPINLOCK(napi_hash_lock);
199 
200 static unsigned int napi_gen_id = NR_CPUS;
201 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202 
203 static DECLARE_RWSEM(devnet_rename_sem);
204 
205 static inline void dev_base_seq_inc(struct net *net)
206 {
207 	while (++net->dev_base_seq == 0)
208 		;
209 }
210 
211 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212 {
213 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214 
215 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221 }
222 
223 static inline void rps_lock(struct softnet_data *sd)
224 {
225 #ifdef CONFIG_RPS
226 	spin_lock(&sd->input_pkt_queue.lock);
227 #endif
228 }
229 
230 static inline void rps_unlock(struct softnet_data *sd)
231 {
232 #ifdef CONFIG_RPS
233 	spin_unlock(&sd->input_pkt_queue.lock);
234 #endif
235 }
236 
237 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 						       const char *name)
239 {
240 	struct netdev_name_node *name_node;
241 
242 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 	if (!name_node)
244 		return NULL;
245 	INIT_HLIST_NODE(&name_node->hlist);
246 	name_node->dev = dev;
247 	name_node->name = name;
248 	return name_node;
249 }
250 
251 static struct netdev_name_node *
252 netdev_name_node_head_alloc(struct net_device *dev)
253 {
254 	struct netdev_name_node *name_node;
255 
256 	name_node = netdev_name_node_alloc(dev, dev->name);
257 	if (!name_node)
258 		return NULL;
259 	INIT_LIST_HEAD(&name_node->list);
260 	return name_node;
261 }
262 
263 static void netdev_name_node_free(struct netdev_name_node *name_node)
264 {
265 	kfree(name_node);
266 }
267 
268 static void netdev_name_node_add(struct net *net,
269 				 struct netdev_name_node *name_node)
270 {
271 	hlist_add_head_rcu(&name_node->hlist,
272 			   dev_name_hash(net, name_node->name));
273 }
274 
275 static void netdev_name_node_del(struct netdev_name_node *name_node)
276 {
277 	hlist_del_rcu(&name_node->hlist);
278 }
279 
280 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 							const char *name)
282 {
283 	struct hlist_head *head = dev_name_hash(net, name);
284 	struct netdev_name_node *name_node;
285 
286 	hlist_for_each_entry(name_node, head, hlist)
287 		if (!strcmp(name_node->name, name))
288 			return name_node;
289 	return NULL;
290 }
291 
292 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 							    const char *name)
294 {
295 	struct hlist_head *head = dev_name_hash(net, name);
296 	struct netdev_name_node *name_node;
297 
298 	hlist_for_each_entry_rcu(name_node, head, hlist)
299 		if (!strcmp(name_node->name, name))
300 			return name_node;
301 	return NULL;
302 }
303 
304 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305 {
306 	struct netdev_name_node *name_node;
307 	struct net *net = dev_net(dev);
308 
309 	name_node = netdev_name_node_lookup(net, name);
310 	if (name_node)
311 		return -EEXIST;
312 	name_node = netdev_name_node_alloc(dev, name);
313 	if (!name_node)
314 		return -ENOMEM;
315 	netdev_name_node_add(net, name_node);
316 	/* The node that holds dev->name acts as a head of per-device list. */
317 	list_add_tail(&name_node->list, &dev->name_node->list);
318 
319 	return 0;
320 }
321 EXPORT_SYMBOL(netdev_name_node_alt_create);
322 
323 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324 {
325 	list_del(&name_node->list);
326 	netdev_name_node_del(name_node);
327 	kfree(name_node->name);
328 	netdev_name_node_free(name_node);
329 }
330 
331 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332 {
333 	struct netdev_name_node *name_node;
334 	struct net *net = dev_net(dev);
335 
336 	name_node = netdev_name_node_lookup(net, name);
337 	if (!name_node)
338 		return -ENOENT;
339 	/* lookup might have found our primary name or a name belonging
340 	 * to another device.
341 	 */
342 	if (name_node == dev->name_node || name_node->dev != dev)
343 		return -EINVAL;
344 
345 	__netdev_name_node_alt_destroy(name_node);
346 
347 	return 0;
348 }
349 EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350 
351 static void netdev_name_node_alt_flush(struct net_device *dev)
352 {
353 	struct netdev_name_node *name_node, *tmp;
354 
355 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 		__netdev_name_node_alt_destroy(name_node);
357 }
358 
359 /* Device list insertion */
360 static void list_netdevice(struct net_device *dev)
361 {
362 	struct net *net = dev_net(dev);
363 
364 	ASSERT_RTNL();
365 
366 	write_lock_bh(&dev_base_lock);
367 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 	netdev_name_node_add(net, dev->name_node);
369 	hlist_add_head_rcu(&dev->index_hlist,
370 			   dev_index_hash(net, dev->ifindex));
371 	write_unlock_bh(&dev_base_lock);
372 
373 	dev_base_seq_inc(net);
374 }
375 
376 /* Device list removal
377  * caller must respect a RCU grace period before freeing/reusing dev
378  */
379 static void unlist_netdevice(struct net_device *dev)
380 {
381 	ASSERT_RTNL();
382 
383 	/* Unlink dev from the device chain */
384 	write_lock_bh(&dev_base_lock);
385 	list_del_rcu(&dev->dev_list);
386 	netdev_name_node_del(dev->name_node);
387 	hlist_del_rcu(&dev->index_hlist);
388 	write_unlock_bh(&dev_base_lock);
389 
390 	dev_base_seq_inc(dev_net(dev));
391 }
392 
393 /*
394  *	Our notifier list
395  */
396 
397 static RAW_NOTIFIER_HEAD(netdev_chain);
398 
399 /*
400  *	Device drivers call our routines to queue packets here. We empty the
401  *	queue in the local softnet handler.
402  */
403 
404 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405 EXPORT_PER_CPU_SYMBOL(softnet_data);
406 
407 #ifdef CONFIG_LOCKDEP
408 /*
409  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410  * according to dev->type
411  */
412 static const unsigned short netdev_lock_type[] = {
413 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428 
429 static const char *const netdev_lock_name[] = {
430 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445 
446 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448 
449 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450 {
451 	int i;
452 
453 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 		if (netdev_lock_type[i] == dev_type)
455 			return i;
456 	/* the last key is used by default */
457 	return ARRAY_SIZE(netdev_lock_type) - 1;
458 }
459 
460 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 						 unsigned short dev_type)
462 {
463 	int i;
464 
465 	i = netdev_lock_pos(dev_type);
466 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 				   netdev_lock_name[i]);
468 }
469 
470 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471 {
472 	int i;
473 
474 	i = netdev_lock_pos(dev->type);
475 	lockdep_set_class_and_name(&dev->addr_list_lock,
476 				   &netdev_addr_lock_key[i],
477 				   netdev_lock_name[i]);
478 }
479 #else
480 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 						 unsigned short dev_type)
482 {
483 }
484 
485 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486 {
487 }
488 #endif
489 
490 /*******************************************************************************
491  *
492  *		Protocol management and registration routines
493  *
494  *******************************************************************************/
495 
496 
497 /*
498  *	Add a protocol ID to the list. Now that the input handler is
499  *	smarter we can dispense with all the messy stuff that used to be
500  *	here.
501  *
502  *	BEWARE!!! Protocol handlers, mangling input packets,
503  *	MUST BE last in hash buckets and checking protocol handlers
504  *	MUST start from promiscuous ptype_all chain in net_bh.
505  *	It is true now, do not change it.
506  *	Explanation follows: if protocol handler, mangling packet, will
507  *	be the first on list, it is not able to sense, that packet
508  *	is cloned and should be copied-on-write, so that it will
509  *	change it and subsequent readers will get broken packet.
510  *							--ANK (980803)
511  */
512 
513 static inline struct list_head *ptype_head(const struct packet_type *pt)
514 {
515 	if (pt->type == htons(ETH_P_ALL))
516 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 	else
518 		return pt->dev ? &pt->dev->ptype_specific :
519 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520 }
521 
522 /**
523  *	dev_add_pack - add packet handler
524  *	@pt: packet type declaration
525  *
526  *	Add a protocol handler to the networking stack. The passed &packet_type
527  *	is linked into kernel lists and may not be freed until it has been
528  *	removed from the kernel lists.
529  *
530  *	This call does not sleep therefore it can not
531  *	guarantee all CPU's that are in middle of receiving packets
532  *	will see the new packet type (until the next received packet).
533  */
534 
535 void dev_add_pack(struct packet_type *pt)
536 {
537 	struct list_head *head = ptype_head(pt);
538 
539 	spin_lock(&ptype_lock);
540 	list_add_rcu(&pt->list, head);
541 	spin_unlock(&ptype_lock);
542 }
543 EXPORT_SYMBOL(dev_add_pack);
544 
545 /**
546  *	__dev_remove_pack	 - remove packet handler
547  *	@pt: packet type declaration
548  *
549  *	Remove a protocol handler that was previously added to the kernel
550  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
551  *	from the kernel lists and can be freed or reused once this function
552  *	returns.
553  *
554  *      The packet type might still be in use by receivers
555  *	and must not be freed until after all the CPU's have gone
556  *	through a quiescent state.
557  */
558 void __dev_remove_pack(struct packet_type *pt)
559 {
560 	struct list_head *head = ptype_head(pt);
561 	struct packet_type *pt1;
562 
563 	spin_lock(&ptype_lock);
564 
565 	list_for_each_entry(pt1, head, list) {
566 		if (pt == pt1) {
567 			list_del_rcu(&pt->list);
568 			goto out;
569 		}
570 	}
571 
572 	pr_warn("dev_remove_pack: %p not found\n", pt);
573 out:
574 	spin_unlock(&ptype_lock);
575 }
576 EXPORT_SYMBOL(__dev_remove_pack);
577 
578 /**
579  *	dev_remove_pack	 - remove packet handler
580  *	@pt: packet type declaration
581  *
582  *	Remove a protocol handler that was previously added to the kernel
583  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
584  *	from the kernel lists and can be freed or reused once this function
585  *	returns.
586  *
587  *	This call sleeps to guarantee that no CPU is looking at the packet
588  *	type after return.
589  */
590 void dev_remove_pack(struct packet_type *pt)
591 {
592 	__dev_remove_pack(pt);
593 
594 	synchronize_net();
595 }
596 EXPORT_SYMBOL(dev_remove_pack);
597 
598 
599 /**
600  *	dev_add_offload - register offload handlers
601  *	@po: protocol offload declaration
602  *
603  *	Add protocol offload handlers to the networking stack. The passed
604  *	&proto_offload is linked into kernel lists and may not be freed until
605  *	it has been removed from the kernel lists.
606  *
607  *	This call does not sleep therefore it can not
608  *	guarantee all CPU's that are in middle of receiving packets
609  *	will see the new offload handlers (until the next received packet).
610  */
611 void dev_add_offload(struct packet_offload *po)
612 {
613 	struct packet_offload *elem;
614 
615 	spin_lock(&offload_lock);
616 	list_for_each_entry(elem, &offload_base, list) {
617 		if (po->priority < elem->priority)
618 			break;
619 	}
620 	list_add_rcu(&po->list, elem->list.prev);
621 	spin_unlock(&offload_lock);
622 }
623 EXPORT_SYMBOL(dev_add_offload);
624 
625 /**
626  *	__dev_remove_offload	 - remove offload handler
627  *	@po: packet offload declaration
628  *
629  *	Remove a protocol offload handler that was previously added to the
630  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
631  *	is removed from the kernel lists and can be freed or reused once this
632  *	function returns.
633  *
634  *      The packet type might still be in use by receivers
635  *	and must not be freed until after all the CPU's have gone
636  *	through a quiescent state.
637  */
638 static void __dev_remove_offload(struct packet_offload *po)
639 {
640 	struct list_head *head = &offload_base;
641 	struct packet_offload *po1;
642 
643 	spin_lock(&offload_lock);
644 
645 	list_for_each_entry(po1, head, list) {
646 		if (po == po1) {
647 			list_del_rcu(&po->list);
648 			goto out;
649 		}
650 	}
651 
652 	pr_warn("dev_remove_offload: %p not found\n", po);
653 out:
654 	spin_unlock(&offload_lock);
655 }
656 
657 /**
658  *	dev_remove_offload	 - remove packet offload handler
659  *	@po: packet offload declaration
660  *
661  *	Remove a packet offload handler that was previously added to the kernel
662  *	offload handlers by dev_add_offload(). The passed &offload_type is
663  *	removed from the kernel lists and can be freed or reused once this
664  *	function returns.
665  *
666  *	This call sleeps to guarantee that no CPU is looking at the packet
667  *	type after return.
668  */
669 void dev_remove_offload(struct packet_offload *po)
670 {
671 	__dev_remove_offload(po);
672 
673 	synchronize_net();
674 }
675 EXPORT_SYMBOL(dev_remove_offload);
676 
677 /******************************************************************************
678  *
679  *		      Device Boot-time Settings Routines
680  *
681  ******************************************************************************/
682 
683 /* Boot time configuration table */
684 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685 
686 /**
687  *	netdev_boot_setup_add	- add new setup entry
688  *	@name: name of the device
689  *	@map: configured settings for the device
690  *
691  *	Adds new setup entry to the dev_boot_setup list.  The function
692  *	returns 0 on error and 1 on success.  This is a generic routine to
693  *	all netdevices.
694  */
695 static int netdev_boot_setup_add(char *name, struct ifmap *map)
696 {
697 	struct netdev_boot_setup *s;
698 	int i;
699 
700 	s = dev_boot_setup;
701 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 			memset(s[i].name, 0, sizeof(s[i].name));
704 			strlcpy(s[i].name, name, IFNAMSIZ);
705 			memcpy(&s[i].map, map, sizeof(s[i].map));
706 			break;
707 		}
708 	}
709 
710 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711 }
712 
713 /**
714  * netdev_boot_setup_check	- check boot time settings
715  * @dev: the netdevice
716  *
717  * Check boot time settings for the device.
718  * The found settings are set for the device to be used
719  * later in the device probing.
720  * Returns 0 if no settings found, 1 if they are.
721  */
722 int netdev_boot_setup_check(struct net_device *dev)
723 {
724 	struct netdev_boot_setup *s = dev_boot_setup;
725 	int i;
726 
727 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 		    !strcmp(dev->name, s[i].name)) {
730 			dev->irq = s[i].map.irq;
731 			dev->base_addr = s[i].map.base_addr;
732 			dev->mem_start = s[i].map.mem_start;
733 			dev->mem_end = s[i].map.mem_end;
734 			return 1;
735 		}
736 	}
737 	return 0;
738 }
739 EXPORT_SYMBOL(netdev_boot_setup_check);
740 
741 
742 /**
743  * netdev_boot_base	- get address from boot time settings
744  * @prefix: prefix for network device
745  * @unit: id for network device
746  *
747  * Check boot time settings for the base address of device.
748  * The found settings are set for the device to be used
749  * later in the device probing.
750  * Returns 0 if no settings found.
751  */
752 unsigned long netdev_boot_base(const char *prefix, int unit)
753 {
754 	const struct netdev_boot_setup *s = dev_boot_setup;
755 	char name[IFNAMSIZ];
756 	int i;
757 
758 	sprintf(name, "%s%d", prefix, unit);
759 
760 	/*
761 	 * If device already registered then return base of 1
762 	 * to indicate not to probe for this interface
763 	 */
764 	if (__dev_get_by_name(&init_net, name))
765 		return 1;
766 
767 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 		if (!strcmp(name, s[i].name))
769 			return s[i].map.base_addr;
770 	return 0;
771 }
772 
773 /*
774  * Saves at boot time configured settings for any netdevice.
775  */
776 int __init netdev_boot_setup(char *str)
777 {
778 	int ints[5];
779 	struct ifmap map;
780 
781 	str = get_options(str, ARRAY_SIZE(ints), ints);
782 	if (!str || !*str)
783 		return 0;
784 
785 	/* Save settings */
786 	memset(&map, 0, sizeof(map));
787 	if (ints[0] > 0)
788 		map.irq = ints[1];
789 	if (ints[0] > 1)
790 		map.base_addr = ints[2];
791 	if (ints[0] > 2)
792 		map.mem_start = ints[3];
793 	if (ints[0] > 3)
794 		map.mem_end = ints[4];
795 
796 	/* Add new entry to the list */
797 	return netdev_boot_setup_add(str, &map);
798 }
799 
800 __setup("netdev=", netdev_boot_setup);
801 
802 /*******************************************************************************
803  *
804  *			    Device Interface Subroutines
805  *
806  *******************************************************************************/
807 
808 /**
809  *	dev_get_iflink	- get 'iflink' value of a interface
810  *	@dev: targeted interface
811  *
812  *	Indicates the ifindex the interface is linked to.
813  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
814  */
815 
816 int dev_get_iflink(const struct net_device *dev)
817 {
818 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 		return dev->netdev_ops->ndo_get_iflink(dev);
820 
821 	return dev->ifindex;
822 }
823 EXPORT_SYMBOL(dev_get_iflink);
824 
825 /**
826  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
827  *	@dev: targeted interface
828  *	@skb: The packet.
829  *
830  *	For better visibility of tunnel traffic OVS needs to retrieve
831  *	egress tunnel information for a packet. Following API allows
832  *	user to get this info.
833  */
834 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835 {
836 	struct ip_tunnel_info *info;
837 
838 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
839 		return -EINVAL;
840 
841 	info = skb_tunnel_info_unclone(skb);
842 	if (!info)
843 		return -ENOMEM;
844 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 		return -EINVAL;
846 
847 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848 }
849 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850 
851 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
852 {
853 	int k = stack->num_paths++;
854 
855 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
856 		return NULL;
857 
858 	return &stack->path[k];
859 }
860 
861 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862 			  struct net_device_path_stack *stack)
863 {
864 	const struct net_device *last_dev;
865 	struct net_device_path_ctx ctx = {
866 		.dev	= dev,
867 		.daddr	= daddr,
868 	};
869 	struct net_device_path *path;
870 	int ret = 0;
871 
872 	stack->num_paths = 0;
873 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
874 		last_dev = ctx.dev;
875 		path = dev_fwd_path(stack);
876 		if (!path)
877 			return -1;
878 
879 		memset(path, 0, sizeof(struct net_device_path));
880 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
881 		if (ret < 0)
882 			return -1;
883 
884 		if (WARN_ON_ONCE(last_dev == ctx.dev))
885 			return -1;
886 	}
887 	path = dev_fwd_path(stack);
888 	if (!path)
889 		return -1;
890 	path->type = DEV_PATH_ETHERNET;
891 	path->dev = ctx.dev;
892 
893 	return ret;
894 }
895 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
896 
897 /**
898  *	__dev_get_by_name	- find a device by its name
899  *	@net: the applicable net namespace
900  *	@name: name to find
901  *
902  *	Find an interface by name. Must be called under RTNL semaphore
903  *	or @dev_base_lock. If the name is found a pointer to the device
904  *	is returned. If the name is not found then %NULL is returned. The
905  *	reference counters are not incremented so the caller must be
906  *	careful with locks.
907  */
908 
909 struct net_device *__dev_get_by_name(struct net *net, const char *name)
910 {
911 	struct netdev_name_node *node_name;
912 
913 	node_name = netdev_name_node_lookup(net, name);
914 	return node_name ? node_name->dev : NULL;
915 }
916 EXPORT_SYMBOL(__dev_get_by_name);
917 
918 /**
919  * dev_get_by_name_rcu	- find a device by its name
920  * @net: the applicable net namespace
921  * @name: name to find
922  *
923  * Find an interface by name.
924  * If the name is found a pointer to the device is returned.
925  * If the name is not found then %NULL is returned.
926  * The reference counters are not incremented so the caller must be
927  * careful with locks. The caller must hold RCU lock.
928  */
929 
930 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
931 {
932 	struct netdev_name_node *node_name;
933 
934 	node_name = netdev_name_node_lookup_rcu(net, name);
935 	return node_name ? node_name->dev : NULL;
936 }
937 EXPORT_SYMBOL(dev_get_by_name_rcu);
938 
939 /**
940  *	dev_get_by_name		- find a device by its name
941  *	@net: the applicable net namespace
942  *	@name: name to find
943  *
944  *	Find an interface by name. This can be called from any
945  *	context and does its own locking. The returned handle has
946  *	the usage count incremented and the caller must use dev_put() to
947  *	release it when it is no longer needed. %NULL is returned if no
948  *	matching device is found.
949  */
950 
951 struct net_device *dev_get_by_name(struct net *net, const char *name)
952 {
953 	struct net_device *dev;
954 
955 	rcu_read_lock();
956 	dev = dev_get_by_name_rcu(net, name);
957 	if (dev)
958 		dev_hold(dev);
959 	rcu_read_unlock();
960 	return dev;
961 }
962 EXPORT_SYMBOL(dev_get_by_name);
963 
964 /**
965  *	__dev_get_by_index - find a device by its ifindex
966  *	@net: the applicable net namespace
967  *	@ifindex: index of device
968  *
969  *	Search for an interface by index. Returns %NULL if the device
970  *	is not found or a pointer to the device. The device has not
971  *	had its reference counter increased so the caller must be careful
972  *	about locking. The caller must hold either the RTNL semaphore
973  *	or @dev_base_lock.
974  */
975 
976 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
977 {
978 	struct net_device *dev;
979 	struct hlist_head *head = dev_index_hash(net, ifindex);
980 
981 	hlist_for_each_entry(dev, head, index_hlist)
982 		if (dev->ifindex == ifindex)
983 			return dev;
984 
985 	return NULL;
986 }
987 EXPORT_SYMBOL(__dev_get_by_index);
988 
989 /**
990  *	dev_get_by_index_rcu - find a device by its ifindex
991  *	@net: the applicable net namespace
992  *	@ifindex: index of device
993  *
994  *	Search for an interface by index. Returns %NULL if the device
995  *	is not found or a pointer to the device. The device has not
996  *	had its reference counter increased so the caller must be careful
997  *	about locking. The caller must hold RCU lock.
998  */
999 
1000 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001 {
1002 	struct net_device *dev;
1003 	struct hlist_head *head = dev_index_hash(net, ifindex);
1004 
1005 	hlist_for_each_entry_rcu(dev, head, index_hlist)
1006 		if (dev->ifindex == ifindex)
1007 			return dev;
1008 
1009 	return NULL;
1010 }
1011 EXPORT_SYMBOL(dev_get_by_index_rcu);
1012 
1013 
1014 /**
1015  *	dev_get_by_index - find a device by its ifindex
1016  *	@net: the applicable net namespace
1017  *	@ifindex: index of device
1018  *
1019  *	Search for an interface by index. Returns NULL if the device
1020  *	is not found or a pointer to the device. The device returned has
1021  *	had a reference added and the pointer is safe until the user calls
1022  *	dev_put to indicate they have finished with it.
1023  */
1024 
1025 struct net_device *dev_get_by_index(struct net *net, int ifindex)
1026 {
1027 	struct net_device *dev;
1028 
1029 	rcu_read_lock();
1030 	dev = dev_get_by_index_rcu(net, ifindex);
1031 	if (dev)
1032 		dev_hold(dev);
1033 	rcu_read_unlock();
1034 	return dev;
1035 }
1036 EXPORT_SYMBOL(dev_get_by_index);
1037 
1038 /**
1039  *	dev_get_by_napi_id - find a device by napi_id
1040  *	@napi_id: ID of the NAPI struct
1041  *
1042  *	Search for an interface by NAPI ID. Returns %NULL if the device
1043  *	is not found or a pointer to the device. The device has not had
1044  *	its reference counter increased so the caller must be careful
1045  *	about locking. The caller must hold RCU lock.
1046  */
1047 
1048 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049 {
1050 	struct napi_struct *napi;
1051 
1052 	WARN_ON_ONCE(!rcu_read_lock_held());
1053 
1054 	if (napi_id < MIN_NAPI_ID)
1055 		return NULL;
1056 
1057 	napi = napi_by_id(napi_id);
1058 
1059 	return napi ? napi->dev : NULL;
1060 }
1061 EXPORT_SYMBOL(dev_get_by_napi_id);
1062 
1063 /**
1064  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1065  *	@net: network namespace
1066  *	@name: a pointer to the buffer where the name will be stored.
1067  *	@ifindex: the ifindex of the interface to get the name from.
1068  */
1069 int netdev_get_name(struct net *net, char *name, int ifindex)
1070 {
1071 	struct net_device *dev;
1072 	int ret;
1073 
1074 	down_read(&devnet_rename_sem);
1075 	rcu_read_lock();
1076 
1077 	dev = dev_get_by_index_rcu(net, ifindex);
1078 	if (!dev) {
1079 		ret = -ENODEV;
1080 		goto out;
1081 	}
1082 
1083 	strcpy(name, dev->name);
1084 
1085 	ret = 0;
1086 out:
1087 	rcu_read_unlock();
1088 	up_read(&devnet_rename_sem);
1089 	return ret;
1090 }
1091 
1092 /**
1093  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1094  *	@net: the applicable net namespace
1095  *	@type: media type of device
1096  *	@ha: hardware address
1097  *
1098  *	Search for an interface by MAC address. Returns NULL if the device
1099  *	is not found or a pointer to the device.
1100  *	The caller must hold RCU or RTNL.
1101  *	The returned device has not had its ref count increased
1102  *	and the caller must therefore be careful about locking
1103  *
1104  */
1105 
1106 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107 				       const char *ha)
1108 {
1109 	struct net_device *dev;
1110 
1111 	for_each_netdev_rcu(net, dev)
1112 		if (dev->type == type &&
1113 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
1114 			return dev;
1115 
1116 	return NULL;
1117 }
1118 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1119 
1120 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1121 {
1122 	struct net_device *dev, *ret = NULL;
1123 
1124 	rcu_read_lock();
1125 	for_each_netdev_rcu(net, dev)
1126 		if (dev->type == type) {
1127 			dev_hold(dev);
1128 			ret = dev;
1129 			break;
1130 		}
1131 	rcu_read_unlock();
1132 	return ret;
1133 }
1134 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135 
1136 /**
1137  *	__dev_get_by_flags - find any device with given flags
1138  *	@net: the applicable net namespace
1139  *	@if_flags: IFF_* values
1140  *	@mask: bitmask of bits in if_flags to check
1141  *
1142  *	Search for any interface with the given flags. Returns NULL if a device
1143  *	is not found or a pointer to the device. Must be called inside
1144  *	rtnl_lock(), and result refcount is unchanged.
1145  */
1146 
1147 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148 				      unsigned short mask)
1149 {
1150 	struct net_device *dev, *ret;
1151 
1152 	ASSERT_RTNL();
1153 
1154 	ret = NULL;
1155 	for_each_netdev(net, dev) {
1156 		if (((dev->flags ^ if_flags) & mask) == 0) {
1157 			ret = dev;
1158 			break;
1159 		}
1160 	}
1161 	return ret;
1162 }
1163 EXPORT_SYMBOL(__dev_get_by_flags);
1164 
1165 /**
1166  *	dev_valid_name - check if name is okay for network device
1167  *	@name: name string
1168  *
1169  *	Network device names need to be valid file names to
1170  *	allow sysfs to work.  We also disallow any kind of
1171  *	whitespace.
1172  */
1173 bool dev_valid_name(const char *name)
1174 {
1175 	if (*name == '\0')
1176 		return false;
1177 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1178 		return false;
1179 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1180 		return false;
1181 
1182 	while (*name) {
1183 		if (*name == '/' || *name == ':' || isspace(*name))
1184 			return false;
1185 		name++;
1186 	}
1187 	return true;
1188 }
1189 EXPORT_SYMBOL(dev_valid_name);
1190 
1191 /**
1192  *	__dev_alloc_name - allocate a name for a device
1193  *	@net: network namespace to allocate the device name in
1194  *	@name: name format string
1195  *	@buf:  scratch buffer and result name string
1196  *
1197  *	Passed a format string - eg "lt%d" it will try and find a suitable
1198  *	id. It scans list of devices to build up a free map, then chooses
1199  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1200  *	while allocating the name and adding the device in order to avoid
1201  *	duplicates.
1202  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203  *	Returns the number of the unit assigned or a negative errno code.
1204  */
1205 
1206 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1207 {
1208 	int i = 0;
1209 	const char *p;
1210 	const int max_netdevices = 8*PAGE_SIZE;
1211 	unsigned long *inuse;
1212 	struct net_device *d;
1213 
1214 	if (!dev_valid_name(name))
1215 		return -EINVAL;
1216 
1217 	p = strchr(name, '%');
1218 	if (p) {
1219 		/*
1220 		 * Verify the string as this thing may have come from
1221 		 * the user.  There must be either one "%d" and no other "%"
1222 		 * characters.
1223 		 */
1224 		if (p[1] != 'd' || strchr(p + 2, '%'))
1225 			return -EINVAL;
1226 
1227 		/* Use one page as a bit array of possible slots */
1228 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1229 		if (!inuse)
1230 			return -ENOMEM;
1231 
1232 		for_each_netdev(net, d) {
1233 			struct netdev_name_node *name_node;
1234 			list_for_each_entry(name_node, &d->name_node->list, list) {
1235 				if (!sscanf(name_node->name, name, &i))
1236 					continue;
1237 				if (i < 0 || i >= max_netdevices)
1238 					continue;
1239 
1240 				/*  avoid cases where sscanf is not exact inverse of printf */
1241 				snprintf(buf, IFNAMSIZ, name, i);
1242 				if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243 					set_bit(i, inuse);
1244 			}
1245 			if (!sscanf(d->name, name, &i))
1246 				continue;
1247 			if (i < 0 || i >= max_netdevices)
1248 				continue;
1249 
1250 			/*  avoid cases where sscanf is not exact inverse of printf */
1251 			snprintf(buf, IFNAMSIZ, name, i);
1252 			if (!strncmp(buf, d->name, IFNAMSIZ))
1253 				set_bit(i, inuse);
1254 		}
1255 
1256 		i = find_first_zero_bit(inuse, max_netdevices);
1257 		free_page((unsigned long) inuse);
1258 	}
1259 
1260 	snprintf(buf, IFNAMSIZ, name, i);
1261 	if (!__dev_get_by_name(net, buf))
1262 		return i;
1263 
1264 	/* It is possible to run out of possible slots
1265 	 * when the name is long and there isn't enough space left
1266 	 * for the digits, or if all bits are used.
1267 	 */
1268 	return -ENFILE;
1269 }
1270 
1271 static int dev_alloc_name_ns(struct net *net,
1272 			     struct net_device *dev,
1273 			     const char *name)
1274 {
1275 	char buf[IFNAMSIZ];
1276 	int ret;
1277 
1278 	BUG_ON(!net);
1279 	ret = __dev_alloc_name(net, name, buf);
1280 	if (ret >= 0)
1281 		strlcpy(dev->name, buf, IFNAMSIZ);
1282 	return ret;
1283 }
1284 
1285 /**
1286  *	dev_alloc_name - allocate a name for a device
1287  *	@dev: device
1288  *	@name: name format string
1289  *
1290  *	Passed a format string - eg "lt%d" it will try and find a suitable
1291  *	id. It scans list of devices to build up a free map, then chooses
1292  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1293  *	while allocating the name and adding the device in order to avoid
1294  *	duplicates.
1295  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296  *	Returns the number of the unit assigned or a negative errno code.
1297  */
1298 
1299 int dev_alloc_name(struct net_device *dev, const char *name)
1300 {
1301 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1302 }
1303 EXPORT_SYMBOL(dev_alloc_name);
1304 
1305 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306 			      const char *name)
1307 {
1308 	BUG_ON(!net);
1309 
1310 	if (!dev_valid_name(name))
1311 		return -EINVAL;
1312 
1313 	if (strchr(name, '%'))
1314 		return dev_alloc_name_ns(net, dev, name);
1315 	else if (__dev_get_by_name(net, name))
1316 		return -EEXIST;
1317 	else if (dev->name != name)
1318 		strlcpy(dev->name, name, IFNAMSIZ);
1319 
1320 	return 0;
1321 }
1322 
1323 /**
1324  *	dev_change_name - change name of a device
1325  *	@dev: device
1326  *	@newname: name (or format string) must be at least IFNAMSIZ
1327  *
1328  *	Change name of a device, can pass format strings "eth%d".
1329  *	for wildcarding.
1330  */
1331 int dev_change_name(struct net_device *dev, const char *newname)
1332 {
1333 	unsigned char old_assign_type;
1334 	char oldname[IFNAMSIZ];
1335 	int err = 0;
1336 	int ret;
1337 	struct net *net;
1338 
1339 	ASSERT_RTNL();
1340 	BUG_ON(!dev_net(dev));
1341 
1342 	net = dev_net(dev);
1343 
1344 	/* Some auto-enslaved devices e.g. failover slaves are
1345 	 * special, as userspace might rename the device after
1346 	 * the interface had been brought up and running since
1347 	 * the point kernel initiated auto-enslavement. Allow
1348 	 * live name change even when these slave devices are
1349 	 * up and running.
1350 	 *
1351 	 * Typically, users of these auto-enslaving devices
1352 	 * don't actually care about slave name change, as
1353 	 * they are supposed to operate on master interface
1354 	 * directly.
1355 	 */
1356 	if (dev->flags & IFF_UP &&
1357 	    likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1358 		return -EBUSY;
1359 
1360 	down_write(&devnet_rename_sem);
1361 
1362 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363 		up_write(&devnet_rename_sem);
1364 		return 0;
1365 	}
1366 
1367 	memcpy(oldname, dev->name, IFNAMSIZ);
1368 
1369 	err = dev_get_valid_name(net, dev, newname);
1370 	if (err < 0) {
1371 		up_write(&devnet_rename_sem);
1372 		return err;
1373 	}
1374 
1375 	if (oldname[0] && !strchr(oldname, '%'))
1376 		netdev_info(dev, "renamed from %s\n", oldname);
1377 
1378 	old_assign_type = dev->name_assign_type;
1379 	dev->name_assign_type = NET_NAME_RENAMED;
1380 
1381 rollback:
1382 	ret = device_rename(&dev->dev, dev->name);
1383 	if (ret) {
1384 		memcpy(dev->name, oldname, IFNAMSIZ);
1385 		dev->name_assign_type = old_assign_type;
1386 		up_write(&devnet_rename_sem);
1387 		return ret;
1388 	}
1389 
1390 	up_write(&devnet_rename_sem);
1391 
1392 	netdev_adjacent_rename_links(dev, oldname);
1393 
1394 	write_lock_bh(&dev_base_lock);
1395 	netdev_name_node_del(dev->name_node);
1396 	write_unlock_bh(&dev_base_lock);
1397 
1398 	synchronize_rcu();
1399 
1400 	write_lock_bh(&dev_base_lock);
1401 	netdev_name_node_add(net, dev->name_node);
1402 	write_unlock_bh(&dev_base_lock);
1403 
1404 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405 	ret = notifier_to_errno(ret);
1406 
1407 	if (ret) {
1408 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1409 		if (err >= 0) {
1410 			err = ret;
1411 			down_write(&devnet_rename_sem);
1412 			memcpy(dev->name, oldname, IFNAMSIZ);
1413 			memcpy(oldname, newname, IFNAMSIZ);
1414 			dev->name_assign_type = old_assign_type;
1415 			old_assign_type = NET_NAME_RENAMED;
1416 			goto rollback;
1417 		} else {
1418 			pr_err("%s: name change rollback failed: %d\n",
1419 			       dev->name, ret);
1420 		}
1421 	}
1422 
1423 	return err;
1424 }
1425 
1426 /**
1427  *	dev_set_alias - change ifalias of a device
1428  *	@dev: device
1429  *	@alias: name up to IFALIASZ
1430  *	@len: limit of bytes to copy from info
1431  *
1432  *	Set ifalias for a device,
1433  */
1434 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435 {
1436 	struct dev_ifalias *new_alias = NULL;
1437 
1438 	if (len >= IFALIASZ)
1439 		return -EINVAL;
1440 
1441 	if (len) {
1442 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443 		if (!new_alias)
1444 			return -ENOMEM;
1445 
1446 		memcpy(new_alias->ifalias, alias, len);
1447 		new_alias->ifalias[len] = 0;
1448 	}
1449 
1450 	mutex_lock(&ifalias_mutex);
1451 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452 					mutex_is_locked(&ifalias_mutex));
1453 	mutex_unlock(&ifalias_mutex);
1454 
1455 	if (new_alias)
1456 		kfree_rcu(new_alias, rcuhead);
1457 
1458 	return len;
1459 }
1460 EXPORT_SYMBOL(dev_set_alias);
1461 
1462 /**
1463  *	dev_get_alias - get ifalias of a device
1464  *	@dev: device
1465  *	@name: buffer to store name of ifalias
1466  *	@len: size of buffer
1467  *
1468  *	get ifalias for a device.  Caller must make sure dev cannot go
1469  *	away,  e.g. rcu read lock or own a reference count to device.
1470  */
1471 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472 {
1473 	const struct dev_ifalias *alias;
1474 	int ret = 0;
1475 
1476 	rcu_read_lock();
1477 	alias = rcu_dereference(dev->ifalias);
1478 	if (alias)
1479 		ret = snprintf(name, len, "%s", alias->ifalias);
1480 	rcu_read_unlock();
1481 
1482 	return ret;
1483 }
1484 
1485 /**
1486  *	netdev_features_change - device changes features
1487  *	@dev: device to cause notification
1488  *
1489  *	Called to indicate a device has changed features.
1490  */
1491 void netdev_features_change(struct net_device *dev)
1492 {
1493 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1494 }
1495 EXPORT_SYMBOL(netdev_features_change);
1496 
1497 /**
1498  *	netdev_state_change - device changes state
1499  *	@dev: device to cause notification
1500  *
1501  *	Called to indicate a device has changed state. This function calls
1502  *	the notifier chains for netdev_chain and sends a NEWLINK message
1503  *	to the routing socket.
1504  */
1505 void netdev_state_change(struct net_device *dev)
1506 {
1507 	if (dev->flags & IFF_UP) {
1508 		struct netdev_notifier_change_info change_info = {
1509 			.info.dev = dev,
1510 		};
1511 
1512 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1513 					      &change_info.info);
1514 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1515 	}
1516 }
1517 EXPORT_SYMBOL(netdev_state_change);
1518 
1519 /**
1520  * __netdev_notify_peers - notify network peers about existence of @dev,
1521  * to be called when rtnl lock is already held.
1522  * @dev: network device
1523  *
1524  * Generate traffic such that interested network peers are aware of
1525  * @dev, such as by generating a gratuitous ARP. This may be used when
1526  * a device wants to inform the rest of the network about some sort of
1527  * reconfiguration such as a failover event or virtual machine
1528  * migration.
1529  */
1530 void __netdev_notify_peers(struct net_device *dev)
1531 {
1532 	ASSERT_RTNL();
1533 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535 }
1536 EXPORT_SYMBOL(__netdev_notify_peers);
1537 
1538 /**
1539  * netdev_notify_peers - notify network peers about existence of @dev
1540  * @dev: network device
1541  *
1542  * Generate traffic such that interested network peers are aware of
1543  * @dev, such as by generating a gratuitous ARP. This may be used when
1544  * a device wants to inform the rest of the network about some sort of
1545  * reconfiguration such as a failover event or virtual machine
1546  * migration.
1547  */
1548 void netdev_notify_peers(struct net_device *dev)
1549 {
1550 	rtnl_lock();
1551 	__netdev_notify_peers(dev);
1552 	rtnl_unlock();
1553 }
1554 EXPORT_SYMBOL(netdev_notify_peers);
1555 
1556 static int napi_threaded_poll(void *data);
1557 
1558 static int napi_kthread_create(struct napi_struct *n)
1559 {
1560 	int err = 0;
1561 
1562 	/* Create and wake up the kthread once to put it in
1563 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564 	 * warning and work with loadavg.
1565 	 */
1566 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567 				n->dev->name, n->napi_id);
1568 	if (IS_ERR(n->thread)) {
1569 		err = PTR_ERR(n->thread);
1570 		pr_err("kthread_run failed with err %d\n", err);
1571 		n->thread = NULL;
1572 	}
1573 
1574 	return err;
1575 }
1576 
1577 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1578 {
1579 	const struct net_device_ops *ops = dev->netdev_ops;
1580 	int ret;
1581 
1582 	ASSERT_RTNL();
1583 
1584 	if (!netif_device_present(dev)) {
1585 		/* may be detached because parent is runtime-suspended */
1586 		if (dev->dev.parent)
1587 			pm_runtime_resume(dev->dev.parent);
1588 		if (!netif_device_present(dev))
1589 			return -ENODEV;
1590 	}
1591 
1592 	/* Block netpoll from trying to do any rx path servicing.
1593 	 * If we don't do this there is a chance ndo_poll_controller
1594 	 * or ndo_poll may be running while we open the device
1595 	 */
1596 	netpoll_poll_disable(dev);
1597 
1598 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599 	ret = notifier_to_errno(ret);
1600 	if (ret)
1601 		return ret;
1602 
1603 	set_bit(__LINK_STATE_START, &dev->state);
1604 
1605 	if (ops->ndo_validate_addr)
1606 		ret = ops->ndo_validate_addr(dev);
1607 
1608 	if (!ret && ops->ndo_open)
1609 		ret = ops->ndo_open(dev);
1610 
1611 	netpoll_poll_enable(dev);
1612 
1613 	if (ret)
1614 		clear_bit(__LINK_STATE_START, &dev->state);
1615 	else {
1616 		dev->flags |= IFF_UP;
1617 		dev_set_rx_mode(dev);
1618 		dev_activate(dev);
1619 		add_device_randomness(dev->dev_addr, dev->addr_len);
1620 	}
1621 
1622 	return ret;
1623 }
1624 
1625 /**
1626  *	dev_open	- prepare an interface for use.
1627  *	@dev: device to open
1628  *	@extack: netlink extended ack
1629  *
1630  *	Takes a device from down to up state. The device's private open
1631  *	function is invoked and then the multicast lists are loaded. Finally
1632  *	the device is moved into the up state and a %NETDEV_UP message is
1633  *	sent to the netdev notifier chain.
1634  *
1635  *	Calling this function on an active interface is a nop. On a failure
1636  *	a negative errno code is returned.
1637  */
1638 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1639 {
1640 	int ret;
1641 
1642 	if (dev->flags & IFF_UP)
1643 		return 0;
1644 
1645 	ret = __dev_open(dev, extack);
1646 	if (ret < 0)
1647 		return ret;
1648 
1649 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650 	call_netdevice_notifiers(NETDEV_UP, dev);
1651 
1652 	return ret;
1653 }
1654 EXPORT_SYMBOL(dev_open);
1655 
1656 static void __dev_close_many(struct list_head *head)
1657 {
1658 	struct net_device *dev;
1659 
1660 	ASSERT_RTNL();
1661 	might_sleep();
1662 
1663 	list_for_each_entry(dev, head, close_list) {
1664 		/* Temporarily disable netpoll until the interface is down */
1665 		netpoll_poll_disable(dev);
1666 
1667 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1668 
1669 		clear_bit(__LINK_STATE_START, &dev->state);
1670 
1671 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1672 		 * can be even on different cpu. So just clear netif_running().
1673 		 *
1674 		 * dev->stop() will invoke napi_disable() on all of it's
1675 		 * napi_struct instances on this device.
1676 		 */
1677 		smp_mb__after_atomic(); /* Commit netif_running(). */
1678 	}
1679 
1680 	dev_deactivate_many(head);
1681 
1682 	list_for_each_entry(dev, head, close_list) {
1683 		const struct net_device_ops *ops = dev->netdev_ops;
1684 
1685 		/*
1686 		 *	Call the device specific close. This cannot fail.
1687 		 *	Only if device is UP
1688 		 *
1689 		 *	We allow it to be called even after a DETACH hot-plug
1690 		 *	event.
1691 		 */
1692 		if (ops->ndo_stop)
1693 			ops->ndo_stop(dev);
1694 
1695 		dev->flags &= ~IFF_UP;
1696 		netpoll_poll_enable(dev);
1697 	}
1698 }
1699 
1700 static void __dev_close(struct net_device *dev)
1701 {
1702 	LIST_HEAD(single);
1703 
1704 	list_add(&dev->close_list, &single);
1705 	__dev_close_many(&single);
1706 	list_del(&single);
1707 }
1708 
1709 void dev_close_many(struct list_head *head, bool unlink)
1710 {
1711 	struct net_device *dev, *tmp;
1712 
1713 	/* Remove the devices that don't need to be closed */
1714 	list_for_each_entry_safe(dev, tmp, head, close_list)
1715 		if (!(dev->flags & IFF_UP))
1716 			list_del_init(&dev->close_list);
1717 
1718 	__dev_close_many(head);
1719 
1720 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1721 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1723 		if (unlink)
1724 			list_del_init(&dev->close_list);
1725 	}
1726 }
1727 EXPORT_SYMBOL(dev_close_many);
1728 
1729 /**
1730  *	dev_close - shutdown an interface.
1731  *	@dev: device to shutdown
1732  *
1733  *	This function moves an active device into down state. A
1734  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736  *	chain.
1737  */
1738 void dev_close(struct net_device *dev)
1739 {
1740 	if (dev->flags & IFF_UP) {
1741 		LIST_HEAD(single);
1742 
1743 		list_add(&dev->close_list, &single);
1744 		dev_close_many(&single, true);
1745 		list_del(&single);
1746 	}
1747 }
1748 EXPORT_SYMBOL(dev_close);
1749 
1750 
1751 /**
1752  *	dev_disable_lro - disable Large Receive Offload on a device
1753  *	@dev: device
1754  *
1755  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1756  *	called under RTNL.  This is needed if received packets may be
1757  *	forwarded to another interface.
1758  */
1759 void dev_disable_lro(struct net_device *dev)
1760 {
1761 	struct net_device *lower_dev;
1762 	struct list_head *iter;
1763 
1764 	dev->wanted_features &= ~NETIF_F_LRO;
1765 	netdev_update_features(dev);
1766 
1767 	if (unlikely(dev->features & NETIF_F_LRO))
1768 		netdev_WARN(dev, "failed to disable LRO!\n");
1769 
1770 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1771 		dev_disable_lro(lower_dev);
1772 }
1773 EXPORT_SYMBOL(dev_disable_lro);
1774 
1775 /**
1776  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777  *	@dev: device
1778  *
1779  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780  *	called under RTNL.  This is needed if Generic XDP is installed on
1781  *	the device.
1782  */
1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1786 	netdev_update_features(dev);
1787 
1788 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1789 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791 
1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val) 						\
1795 	case NETDEV_##val:				\
1796 		return "NETDEV_" __stringify(val);
1797 	switch (cmd) {
1798 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807 	N(PRE_CHANGEADDR)
1808 	}
1809 #undef N
1810 	return "UNKNOWN_NETDEV_EVENT";
1811 }
1812 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813 
1814 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815 				   struct net_device *dev)
1816 {
1817 	struct netdev_notifier_info info = {
1818 		.dev = dev,
1819 	};
1820 
1821 	return nb->notifier_call(nb, val, &info);
1822 }
1823 
1824 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825 					     struct net_device *dev)
1826 {
1827 	int err;
1828 
1829 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830 	err = notifier_to_errno(err);
1831 	if (err)
1832 		return err;
1833 
1834 	if (!(dev->flags & IFF_UP))
1835 		return 0;
1836 
1837 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1838 	return 0;
1839 }
1840 
1841 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842 						struct net_device *dev)
1843 {
1844 	if (dev->flags & IFF_UP) {
1845 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846 					dev);
1847 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848 	}
1849 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850 }
1851 
1852 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853 						 struct net *net)
1854 {
1855 	struct net_device *dev;
1856 	int err;
1857 
1858 	for_each_netdev(net, dev) {
1859 		err = call_netdevice_register_notifiers(nb, dev);
1860 		if (err)
1861 			goto rollback;
1862 	}
1863 	return 0;
1864 
1865 rollback:
1866 	for_each_netdev_continue_reverse(net, dev)
1867 		call_netdevice_unregister_notifiers(nb, dev);
1868 	return err;
1869 }
1870 
1871 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872 						    struct net *net)
1873 {
1874 	struct net_device *dev;
1875 
1876 	for_each_netdev(net, dev)
1877 		call_netdevice_unregister_notifiers(nb, dev);
1878 }
1879 
1880 static int dev_boot_phase = 1;
1881 
1882 /**
1883  * register_netdevice_notifier - register a network notifier block
1884  * @nb: notifier
1885  *
1886  * Register a notifier to be called when network device events occur.
1887  * The notifier passed is linked into the kernel structures and must
1888  * not be reused until it has been unregistered. A negative errno code
1889  * is returned on a failure.
1890  *
1891  * When registered all registration and up events are replayed
1892  * to the new notifier to allow device to have a race free
1893  * view of the network device list.
1894  */
1895 
1896 int register_netdevice_notifier(struct notifier_block *nb)
1897 {
1898 	struct net *net;
1899 	int err;
1900 
1901 	/* Close race with setup_net() and cleanup_net() */
1902 	down_write(&pernet_ops_rwsem);
1903 	rtnl_lock();
1904 	err = raw_notifier_chain_register(&netdev_chain, nb);
1905 	if (err)
1906 		goto unlock;
1907 	if (dev_boot_phase)
1908 		goto unlock;
1909 	for_each_net(net) {
1910 		err = call_netdevice_register_net_notifiers(nb, net);
1911 		if (err)
1912 			goto rollback;
1913 	}
1914 
1915 unlock:
1916 	rtnl_unlock();
1917 	up_write(&pernet_ops_rwsem);
1918 	return err;
1919 
1920 rollback:
1921 	for_each_net_continue_reverse(net)
1922 		call_netdevice_unregister_net_notifiers(nb, net);
1923 
1924 	raw_notifier_chain_unregister(&netdev_chain, nb);
1925 	goto unlock;
1926 }
1927 EXPORT_SYMBOL(register_netdevice_notifier);
1928 
1929 /**
1930  * unregister_netdevice_notifier - unregister a network notifier block
1931  * @nb: notifier
1932  *
1933  * Unregister a notifier previously registered by
1934  * register_netdevice_notifier(). The notifier is unlinked into the
1935  * kernel structures and may then be reused. A negative errno code
1936  * is returned on a failure.
1937  *
1938  * After unregistering unregister and down device events are synthesized
1939  * for all devices on the device list to the removed notifier to remove
1940  * the need for special case cleanup code.
1941  */
1942 
1943 int unregister_netdevice_notifier(struct notifier_block *nb)
1944 {
1945 	struct net *net;
1946 	int err;
1947 
1948 	/* Close race with setup_net() and cleanup_net() */
1949 	down_write(&pernet_ops_rwsem);
1950 	rtnl_lock();
1951 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1952 	if (err)
1953 		goto unlock;
1954 
1955 	for_each_net(net)
1956 		call_netdevice_unregister_net_notifiers(nb, net);
1957 
1958 unlock:
1959 	rtnl_unlock();
1960 	up_write(&pernet_ops_rwsem);
1961 	return err;
1962 }
1963 EXPORT_SYMBOL(unregister_netdevice_notifier);
1964 
1965 static int __register_netdevice_notifier_net(struct net *net,
1966 					     struct notifier_block *nb,
1967 					     bool ignore_call_fail)
1968 {
1969 	int err;
1970 
1971 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972 	if (err)
1973 		return err;
1974 	if (dev_boot_phase)
1975 		return 0;
1976 
1977 	err = call_netdevice_register_net_notifiers(nb, net);
1978 	if (err && !ignore_call_fail)
1979 		goto chain_unregister;
1980 
1981 	return 0;
1982 
1983 chain_unregister:
1984 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985 	return err;
1986 }
1987 
1988 static int __unregister_netdevice_notifier_net(struct net *net,
1989 					       struct notifier_block *nb)
1990 {
1991 	int err;
1992 
1993 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994 	if (err)
1995 		return err;
1996 
1997 	call_netdevice_unregister_net_notifiers(nb, net);
1998 	return 0;
1999 }
2000 
2001 /**
2002  * register_netdevice_notifier_net - register a per-netns network notifier block
2003  * @net: network namespace
2004  * @nb: notifier
2005  *
2006  * Register a notifier to be called when network device events occur.
2007  * The notifier passed is linked into the kernel structures and must
2008  * not be reused until it has been unregistered. A negative errno code
2009  * is returned on a failure.
2010  *
2011  * When registered all registration and up events are replayed
2012  * to the new notifier to allow device to have a race free
2013  * view of the network device list.
2014  */
2015 
2016 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017 {
2018 	int err;
2019 
2020 	rtnl_lock();
2021 	err = __register_netdevice_notifier_net(net, nb, false);
2022 	rtnl_unlock();
2023 	return err;
2024 }
2025 EXPORT_SYMBOL(register_netdevice_notifier_net);
2026 
2027 /**
2028  * unregister_netdevice_notifier_net - unregister a per-netns
2029  *                                     network notifier block
2030  * @net: network namespace
2031  * @nb: notifier
2032  *
2033  * Unregister a notifier previously registered by
2034  * register_netdevice_notifier(). The notifier is unlinked into the
2035  * kernel structures and may then be reused. A negative errno code
2036  * is returned on a failure.
2037  *
2038  * After unregistering unregister and down device events are synthesized
2039  * for all devices on the device list to the removed notifier to remove
2040  * the need for special case cleanup code.
2041  */
2042 
2043 int unregister_netdevice_notifier_net(struct net *net,
2044 				      struct notifier_block *nb)
2045 {
2046 	int err;
2047 
2048 	rtnl_lock();
2049 	err = __unregister_netdevice_notifier_net(net, nb);
2050 	rtnl_unlock();
2051 	return err;
2052 }
2053 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2054 
2055 int register_netdevice_notifier_dev_net(struct net_device *dev,
2056 					struct notifier_block *nb,
2057 					struct netdev_net_notifier *nn)
2058 {
2059 	int err;
2060 
2061 	rtnl_lock();
2062 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063 	if (!err) {
2064 		nn->nb = nb;
2065 		list_add(&nn->list, &dev->net_notifier_list);
2066 	}
2067 	rtnl_unlock();
2068 	return err;
2069 }
2070 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071 
2072 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073 					  struct notifier_block *nb,
2074 					  struct netdev_net_notifier *nn)
2075 {
2076 	int err;
2077 
2078 	rtnl_lock();
2079 	list_del(&nn->list);
2080 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081 	rtnl_unlock();
2082 	return err;
2083 }
2084 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085 
2086 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087 					     struct net *net)
2088 {
2089 	struct netdev_net_notifier *nn;
2090 
2091 	list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092 		__unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093 		__register_netdevice_notifier_net(net, nn->nb, true);
2094 	}
2095 }
2096 
2097 /**
2098  *	call_netdevice_notifiers_info - call all network notifier blocks
2099  *	@val: value passed unmodified to notifier function
2100  *	@info: notifier information data
2101  *
2102  *	Call all network notifier blocks.  Parameters and return value
2103  *	are as for raw_notifier_call_chain().
2104  */
2105 
2106 static int call_netdevice_notifiers_info(unsigned long val,
2107 					 struct netdev_notifier_info *info)
2108 {
2109 	struct net *net = dev_net(info->dev);
2110 	int ret;
2111 
2112 	ASSERT_RTNL();
2113 
2114 	/* Run per-netns notifier block chain first, then run the global one.
2115 	 * Hopefully, one day, the global one is going to be removed after
2116 	 * all notifier block registrators get converted to be per-netns.
2117 	 */
2118 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119 	if (ret & NOTIFY_STOP_MASK)
2120 		return ret;
2121 	return raw_notifier_call_chain(&netdev_chain, val, info);
2122 }
2123 
2124 static int call_netdevice_notifiers_extack(unsigned long val,
2125 					   struct net_device *dev,
2126 					   struct netlink_ext_ack *extack)
2127 {
2128 	struct netdev_notifier_info info = {
2129 		.dev = dev,
2130 		.extack = extack,
2131 	};
2132 
2133 	return call_netdevice_notifiers_info(val, &info);
2134 }
2135 
2136 /**
2137  *	call_netdevice_notifiers - call all network notifier blocks
2138  *      @val: value passed unmodified to notifier function
2139  *      @dev: net_device pointer passed unmodified to notifier function
2140  *
2141  *	Call all network notifier blocks.  Parameters and return value
2142  *	are as for raw_notifier_call_chain().
2143  */
2144 
2145 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2146 {
2147 	return call_netdevice_notifiers_extack(val, dev, NULL);
2148 }
2149 EXPORT_SYMBOL(call_netdevice_notifiers);
2150 
2151 /**
2152  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2153  *	@val: value passed unmodified to notifier function
2154  *	@dev: net_device pointer passed unmodified to notifier function
2155  *	@arg: additional u32 argument passed to the notifier function
2156  *
2157  *	Call all network notifier blocks.  Parameters and return value
2158  *	are as for raw_notifier_call_chain().
2159  */
2160 static int call_netdevice_notifiers_mtu(unsigned long val,
2161 					struct net_device *dev, u32 arg)
2162 {
2163 	struct netdev_notifier_info_ext info = {
2164 		.info.dev = dev,
2165 		.ext.mtu = arg,
2166 	};
2167 
2168 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169 
2170 	return call_netdevice_notifiers_info(val, &info.info);
2171 }
2172 
2173 #ifdef CONFIG_NET_INGRESS
2174 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2175 
2176 void net_inc_ingress_queue(void)
2177 {
2178 	static_branch_inc(&ingress_needed_key);
2179 }
2180 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181 
2182 void net_dec_ingress_queue(void)
2183 {
2184 	static_branch_dec(&ingress_needed_key);
2185 }
2186 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187 #endif
2188 
2189 #ifdef CONFIG_NET_EGRESS
2190 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2191 
2192 void net_inc_egress_queue(void)
2193 {
2194 	static_branch_inc(&egress_needed_key);
2195 }
2196 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197 
2198 void net_dec_egress_queue(void)
2199 {
2200 	static_branch_dec(&egress_needed_key);
2201 }
2202 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203 #endif
2204 
2205 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206 #ifdef CONFIG_JUMP_LABEL
2207 static atomic_t netstamp_needed_deferred;
2208 static atomic_t netstamp_wanted;
2209 static void netstamp_clear(struct work_struct *work)
2210 {
2211 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2212 	int wanted;
2213 
2214 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2215 	if (wanted > 0)
2216 		static_branch_enable(&netstamp_needed_key);
2217 	else
2218 		static_branch_disable(&netstamp_needed_key);
2219 }
2220 static DECLARE_WORK(netstamp_work, netstamp_clear);
2221 #endif
2222 
2223 void net_enable_timestamp(void)
2224 {
2225 #ifdef CONFIG_JUMP_LABEL
2226 	int wanted;
2227 
2228 	while (1) {
2229 		wanted = atomic_read(&netstamp_wanted);
2230 		if (wanted <= 0)
2231 			break;
2232 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233 			return;
2234 	}
2235 	atomic_inc(&netstamp_needed_deferred);
2236 	schedule_work(&netstamp_work);
2237 #else
2238 	static_branch_inc(&netstamp_needed_key);
2239 #endif
2240 }
2241 EXPORT_SYMBOL(net_enable_timestamp);
2242 
2243 void net_disable_timestamp(void)
2244 {
2245 #ifdef CONFIG_JUMP_LABEL
2246 	int wanted;
2247 
2248 	while (1) {
2249 		wanted = atomic_read(&netstamp_wanted);
2250 		if (wanted <= 1)
2251 			break;
2252 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253 			return;
2254 	}
2255 	atomic_dec(&netstamp_needed_deferred);
2256 	schedule_work(&netstamp_work);
2257 #else
2258 	static_branch_dec(&netstamp_needed_key);
2259 #endif
2260 }
2261 EXPORT_SYMBOL(net_disable_timestamp);
2262 
2263 static inline void net_timestamp_set(struct sk_buff *skb)
2264 {
2265 	skb->tstamp = 0;
2266 	if (static_branch_unlikely(&netstamp_needed_key))
2267 		__net_timestamp(skb);
2268 }
2269 
2270 #define net_timestamp_check(COND, SKB)				\
2271 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2272 		if ((COND) && !(SKB)->tstamp)			\
2273 			__net_timestamp(SKB);			\
2274 	}							\
2275 
2276 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2277 {
2278 	return __is_skb_forwardable(dev, skb, true);
2279 }
2280 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2281 
2282 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283 			      bool check_mtu)
2284 {
2285 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2286 
2287 	if (likely(!ret)) {
2288 		skb->protocol = eth_type_trans(skb, dev);
2289 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290 	}
2291 
2292 	return ret;
2293 }
2294 
2295 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296 {
2297 	return __dev_forward_skb2(dev, skb, true);
2298 }
2299 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300 
2301 /**
2302  * dev_forward_skb - loopback an skb to another netif
2303  *
2304  * @dev: destination network device
2305  * @skb: buffer to forward
2306  *
2307  * return values:
2308  *	NET_RX_SUCCESS	(no congestion)
2309  *	NET_RX_DROP     (packet was dropped, but freed)
2310  *
2311  * dev_forward_skb can be used for injecting an skb from the
2312  * start_xmit function of one device into the receive queue
2313  * of another device.
2314  *
2315  * The receiving device may be in another namespace, so
2316  * we have to clear all information in the skb that could
2317  * impact namespace isolation.
2318  */
2319 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320 {
2321 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2322 }
2323 EXPORT_SYMBOL_GPL(dev_forward_skb);
2324 
2325 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326 {
2327 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328 }
2329 
2330 static inline int deliver_skb(struct sk_buff *skb,
2331 			      struct packet_type *pt_prev,
2332 			      struct net_device *orig_dev)
2333 {
2334 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2335 		return -ENOMEM;
2336 	refcount_inc(&skb->users);
2337 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338 }
2339 
2340 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341 					  struct packet_type **pt,
2342 					  struct net_device *orig_dev,
2343 					  __be16 type,
2344 					  struct list_head *ptype_list)
2345 {
2346 	struct packet_type *ptype, *pt_prev = *pt;
2347 
2348 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2349 		if (ptype->type != type)
2350 			continue;
2351 		if (pt_prev)
2352 			deliver_skb(skb, pt_prev, orig_dev);
2353 		pt_prev = ptype;
2354 	}
2355 	*pt = pt_prev;
2356 }
2357 
2358 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359 {
2360 	if (!ptype->af_packet_priv || !skb->sk)
2361 		return false;
2362 
2363 	if (ptype->id_match)
2364 		return ptype->id_match(ptype, skb->sk);
2365 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366 		return true;
2367 
2368 	return false;
2369 }
2370 
2371 /**
2372  * dev_nit_active - return true if any network interface taps are in use
2373  *
2374  * @dev: network device to check for the presence of taps
2375  */
2376 bool dev_nit_active(struct net_device *dev)
2377 {
2378 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379 }
2380 EXPORT_SYMBOL_GPL(dev_nit_active);
2381 
2382 /*
2383  *	Support routine. Sends outgoing frames to any network
2384  *	taps currently in use.
2385  */
2386 
2387 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2388 {
2389 	struct packet_type *ptype;
2390 	struct sk_buff *skb2 = NULL;
2391 	struct packet_type *pt_prev = NULL;
2392 	struct list_head *ptype_list = &ptype_all;
2393 
2394 	rcu_read_lock();
2395 again:
2396 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2397 		if (ptype->ignore_outgoing)
2398 			continue;
2399 
2400 		/* Never send packets back to the socket
2401 		 * they originated from - MvS ([email protected])
2402 		 */
2403 		if (skb_loop_sk(ptype, skb))
2404 			continue;
2405 
2406 		if (pt_prev) {
2407 			deliver_skb(skb2, pt_prev, skb->dev);
2408 			pt_prev = ptype;
2409 			continue;
2410 		}
2411 
2412 		/* need to clone skb, done only once */
2413 		skb2 = skb_clone(skb, GFP_ATOMIC);
2414 		if (!skb2)
2415 			goto out_unlock;
2416 
2417 		net_timestamp_set(skb2);
2418 
2419 		/* skb->nh should be correctly
2420 		 * set by sender, so that the second statement is
2421 		 * just protection against buggy protocols.
2422 		 */
2423 		skb_reset_mac_header(skb2);
2424 
2425 		if (skb_network_header(skb2) < skb2->data ||
2426 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428 					     ntohs(skb2->protocol),
2429 					     dev->name);
2430 			skb_reset_network_header(skb2);
2431 		}
2432 
2433 		skb2->transport_header = skb2->network_header;
2434 		skb2->pkt_type = PACKET_OUTGOING;
2435 		pt_prev = ptype;
2436 	}
2437 
2438 	if (ptype_list == &ptype_all) {
2439 		ptype_list = &dev->ptype_all;
2440 		goto again;
2441 	}
2442 out_unlock:
2443 	if (pt_prev) {
2444 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446 		else
2447 			kfree_skb(skb2);
2448 	}
2449 	rcu_read_unlock();
2450 }
2451 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2452 
2453 /**
2454  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455  * @dev: Network device
2456  * @txq: number of queues available
2457  *
2458  * If real_num_tx_queues is changed the tc mappings may no longer be
2459  * valid. To resolve this verify the tc mapping remains valid and if
2460  * not NULL the mapping. With no priorities mapping to this
2461  * offset/count pair it will no longer be used. In the worst case TC0
2462  * is invalid nothing can be done so disable priority mappings. If is
2463  * expected that drivers will fix this mapping if they can before
2464  * calling netif_set_real_num_tx_queues.
2465  */
2466 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2467 {
2468 	int i;
2469 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470 
2471 	/* If TC0 is invalidated disable TC mapping */
2472 	if (tc->offset + tc->count > txq) {
2473 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2474 		dev->num_tc = 0;
2475 		return;
2476 	}
2477 
2478 	/* Invalidated prio to tc mappings set to TC0 */
2479 	for (i = 1; i < TC_BITMASK + 1; i++) {
2480 		int q = netdev_get_prio_tc_map(dev, i);
2481 
2482 		tc = &dev->tc_to_txq[q];
2483 		if (tc->offset + tc->count > txq) {
2484 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485 				i, q);
2486 			netdev_set_prio_tc_map(dev, i, 0);
2487 		}
2488 	}
2489 }
2490 
2491 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492 {
2493 	if (dev->num_tc) {
2494 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495 		int i;
2496 
2497 		/* walk through the TCs and see if it falls into any of them */
2498 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499 			if ((txq - tc->offset) < tc->count)
2500 				return i;
2501 		}
2502 
2503 		/* didn't find it, just return -1 to indicate no match */
2504 		return -1;
2505 	}
2506 
2507 	return 0;
2508 }
2509 EXPORT_SYMBOL(netdev_txq_to_tc);
2510 
2511 #ifdef CONFIG_XPS
2512 static struct static_key xps_needed __read_mostly;
2513 static struct static_key xps_rxqs_needed __read_mostly;
2514 static DEFINE_MUTEX(xps_map_mutex);
2515 #define xmap_dereference(P)		\
2516 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517 
2518 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2520 {
2521 	struct xps_map *map = NULL;
2522 	int pos;
2523 
2524 	if (dev_maps)
2525 		map = xmap_dereference(dev_maps->attr_map[tci]);
2526 	if (!map)
2527 		return false;
2528 
2529 	for (pos = map->len; pos--;) {
2530 		if (map->queues[pos] != index)
2531 			continue;
2532 
2533 		if (map->len > 1) {
2534 			map->queues[pos] = map->queues[--map->len];
2535 			break;
2536 		}
2537 
2538 		if (old_maps)
2539 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541 		kfree_rcu(map, rcu);
2542 		return false;
2543 	}
2544 
2545 	return true;
2546 }
2547 
2548 static bool remove_xps_queue_cpu(struct net_device *dev,
2549 				 struct xps_dev_maps *dev_maps,
2550 				 int cpu, u16 offset, u16 count)
2551 {
2552 	int num_tc = dev_maps->num_tc;
2553 	bool active = false;
2554 	int tci;
2555 
2556 	for (tci = cpu * num_tc; num_tc--; tci++) {
2557 		int i, j;
2558 
2559 		for (i = count, j = offset; i--; j++) {
2560 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2561 				break;
2562 		}
2563 
2564 		active |= i < 0;
2565 	}
2566 
2567 	return active;
2568 }
2569 
2570 static void reset_xps_maps(struct net_device *dev,
2571 			   struct xps_dev_maps *dev_maps,
2572 			   enum xps_map_type type)
2573 {
2574 	static_key_slow_dec_cpuslocked(&xps_needed);
2575 	if (type == XPS_RXQS)
2576 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577 
2578 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579 
2580 	kfree_rcu(dev_maps, rcu);
2581 }
2582 
2583 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584 			   u16 offset, u16 count)
2585 {
2586 	struct xps_dev_maps *dev_maps;
2587 	bool active = false;
2588 	int i, j;
2589 
2590 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2591 	if (!dev_maps)
2592 		return;
2593 
2594 	for (j = 0; j < dev_maps->nr_ids; j++)
2595 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2596 	if (!active)
2597 		reset_xps_maps(dev, dev_maps, type);
2598 
2599 	if (type == XPS_CPUS) {
2600 		for (i = offset + (count - 1); count--; i--)
2601 			netdev_queue_numa_node_write(
2602 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2603 	}
2604 }
2605 
2606 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607 				   u16 count)
2608 {
2609 	if (!static_key_false(&xps_needed))
2610 		return;
2611 
2612 	cpus_read_lock();
2613 	mutex_lock(&xps_map_mutex);
2614 
2615 	if (static_key_false(&xps_rxqs_needed))
2616 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2617 
2618 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2619 
2620 	mutex_unlock(&xps_map_mutex);
2621 	cpus_read_unlock();
2622 }
2623 
2624 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625 {
2626 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627 }
2628 
2629 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630 				      u16 index, bool is_rxqs_map)
2631 {
2632 	struct xps_map *new_map;
2633 	int alloc_len = XPS_MIN_MAP_ALLOC;
2634 	int i, pos;
2635 
2636 	for (pos = 0; map && pos < map->len; pos++) {
2637 		if (map->queues[pos] != index)
2638 			continue;
2639 		return map;
2640 	}
2641 
2642 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2643 	if (map) {
2644 		if (pos < map->alloc_len)
2645 			return map;
2646 
2647 		alloc_len = map->alloc_len * 2;
2648 	}
2649 
2650 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651 	 *  map
2652 	 */
2653 	if (is_rxqs_map)
2654 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655 	else
2656 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657 				       cpu_to_node(attr_index));
2658 	if (!new_map)
2659 		return NULL;
2660 
2661 	for (i = 0; i < pos; i++)
2662 		new_map->queues[i] = map->queues[i];
2663 	new_map->alloc_len = alloc_len;
2664 	new_map->len = pos;
2665 
2666 	return new_map;
2667 }
2668 
2669 /* Copy xps maps at a given index */
2670 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671 			      struct xps_dev_maps *new_dev_maps, int index,
2672 			      int tc, bool skip_tc)
2673 {
2674 	int i, tci = index * dev_maps->num_tc;
2675 	struct xps_map *map;
2676 
2677 	/* copy maps belonging to foreign traffic classes */
2678 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679 		if (i == tc && skip_tc)
2680 			continue;
2681 
2682 		/* fill in the new device map from the old device map */
2683 		map = xmap_dereference(dev_maps->attr_map[tci]);
2684 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685 	}
2686 }
2687 
2688 /* Must be called under cpus_read_lock */
2689 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690 			  u16 index, enum xps_map_type type)
2691 {
2692 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693 	const unsigned long *online_mask = NULL;
2694 	bool active = false, copy = false;
2695 	int i, j, tci, numa_node_id = -2;
2696 	int maps_sz, num_tc = 1, tc = 0;
2697 	struct xps_map *map, *new_map;
2698 	unsigned int nr_ids;
2699 
2700 	if (dev->num_tc) {
2701 		/* Do not allow XPS on subordinate device directly */
2702 		num_tc = dev->num_tc;
2703 		if (num_tc < 0)
2704 			return -EINVAL;
2705 
2706 		/* If queue belongs to subordinate dev use its map */
2707 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708 
2709 		tc = netdev_txq_to_tc(dev, index);
2710 		if (tc < 0)
2711 			return -EINVAL;
2712 	}
2713 
2714 	mutex_lock(&xps_map_mutex);
2715 
2716 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2717 	if (type == XPS_RXQS) {
2718 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719 		nr_ids = dev->num_rx_queues;
2720 	} else {
2721 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722 		if (num_possible_cpus() > 1)
2723 			online_mask = cpumask_bits(cpu_online_mask);
2724 		nr_ids = nr_cpu_ids;
2725 	}
2726 
2727 	if (maps_sz < L1_CACHE_BYTES)
2728 		maps_sz = L1_CACHE_BYTES;
2729 
2730 	/* The old dev_maps could be larger or smaller than the one we're
2731 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2732 	 * between. We could try to be smart, but let's be safe instead and only
2733 	 * copy foreign traffic classes if the two map sizes match.
2734 	 */
2735 	if (dev_maps &&
2736 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2737 		copy = true;
2738 
2739 	/* allocate memory for queue storage */
2740 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741 	     j < nr_ids;) {
2742 		if (!new_dev_maps) {
2743 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744 			if (!new_dev_maps) {
2745 				mutex_unlock(&xps_map_mutex);
2746 				return -ENOMEM;
2747 			}
2748 
2749 			new_dev_maps->nr_ids = nr_ids;
2750 			new_dev_maps->num_tc = num_tc;
2751 		}
2752 
2753 		tci = j * num_tc + tc;
2754 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2755 
2756 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2757 		if (!map)
2758 			goto error;
2759 
2760 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2761 	}
2762 
2763 	if (!new_dev_maps)
2764 		goto out_no_new_maps;
2765 
2766 	if (!dev_maps) {
2767 		/* Increment static keys at most once per type */
2768 		static_key_slow_inc_cpuslocked(&xps_needed);
2769 		if (type == XPS_RXQS)
2770 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771 	}
2772 
2773 	for (j = 0; j < nr_ids; j++) {
2774 		bool skip_tc = false;
2775 
2776 		tci = j * num_tc + tc;
2777 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2778 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2779 			/* add tx-queue to CPU/rx-queue maps */
2780 			int pos = 0;
2781 
2782 			skip_tc = true;
2783 
2784 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785 			while ((pos < map->len) && (map->queues[pos] != index))
2786 				pos++;
2787 
2788 			if (pos == map->len)
2789 				map->queues[map->len++] = index;
2790 #ifdef CONFIG_NUMA
2791 			if (type == XPS_CPUS) {
2792 				if (numa_node_id == -2)
2793 					numa_node_id = cpu_to_node(j);
2794 				else if (numa_node_id != cpu_to_node(j))
2795 					numa_node_id = -1;
2796 			}
2797 #endif
2798 		}
2799 
2800 		if (copy)
2801 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802 					  skip_tc);
2803 	}
2804 
2805 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2806 
2807 	/* Cleanup old maps */
2808 	if (!dev_maps)
2809 		goto out_no_old_maps;
2810 
2811 	for (j = 0; j < dev_maps->nr_ids; j++) {
2812 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813 			map = xmap_dereference(dev_maps->attr_map[tci]);
2814 			if (!map)
2815 				continue;
2816 
2817 			if (copy) {
2818 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819 				if (map == new_map)
2820 					continue;
2821 			}
2822 
2823 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824 			kfree_rcu(map, rcu);
2825 		}
2826 	}
2827 
2828 	old_dev_maps = dev_maps;
2829 
2830 out_no_old_maps:
2831 	dev_maps = new_dev_maps;
2832 	active = true;
2833 
2834 out_no_new_maps:
2835 	if (type == XPS_CPUS)
2836 		/* update Tx queue numa node */
2837 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838 					     (numa_node_id >= 0) ?
2839 					     numa_node_id : NUMA_NO_NODE);
2840 
2841 	if (!dev_maps)
2842 		goto out_no_maps;
2843 
2844 	/* removes tx-queue from unused CPUs/rx-queues */
2845 	for (j = 0; j < dev_maps->nr_ids; j++) {
2846 		tci = j * dev_maps->num_tc;
2847 
2848 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849 			if (i == tc &&
2850 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852 				continue;
2853 
2854 			active |= remove_xps_queue(dev_maps,
2855 						   copy ? old_dev_maps : NULL,
2856 						   tci, index);
2857 		}
2858 	}
2859 
2860 	if (old_dev_maps)
2861 		kfree_rcu(old_dev_maps, rcu);
2862 
2863 	/* free map if not active */
2864 	if (!active)
2865 		reset_xps_maps(dev, dev_maps, type);
2866 
2867 out_no_maps:
2868 	mutex_unlock(&xps_map_mutex);
2869 
2870 	return 0;
2871 error:
2872 	/* remove any maps that we added */
2873 	for (j = 0; j < nr_ids; j++) {
2874 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2876 			map = copy ?
2877 			      xmap_dereference(dev_maps->attr_map[tci]) :
2878 			      NULL;
2879 			if (new_map && new_map != map)
2880 				kfree(new_map);
2881 		}
2882 	}
2883 
2884 	mutex_unlock(&xps_map_mutex);
2885 
2886 	kfree(new_dev_maps);
2887 	return -ENOMEM;
2888 }
2889 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2890 
2891 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892 			u16 index)
2893 {
2894 	int ret;
2895 
2896 	cpus_read_lock();
2897 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2898 	cpus_read_unlock();
2899 
2900 	return ret;
2901 }
2902 EXPORT_SYMBOL(netif_set_xps_queue);
2903 
2904 #endif
2905 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906 {
2907 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908 
2909 	/* Unbind any subordinate channels */
2910 	while (txq-- != &dev->_tx[0]) {
2911 		if (txq->sb_dev)
2912 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2913 	}
2914 }
2915 
2916 void netdev_reset_tc(struct net_device *dev)
2917 {
2918 #ifdef CONFIG_XPS
2919 	netif_reset_xps_queues_gt(dev, 0);
2920 #endif
2921 	netdev_unbind_all_sb_channels(dev);
2922 
2923 	/* Reset TC configuration of device */
2924 	dev->num_tc = 0;
2925 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927 }
2928 EXPORT_SYMBOL(netdev_reset_tc);
2929 
2930 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931 {
2932 	if (tc >= dev->num_tc)
2933 		return -EINVAL;
2934 
2935 #ifdef CONFIG_XPS
2936 	netif_reset_xps_queues(dev, offset, count);
2937 #endif
2938 	dev->tc_to_txq[tc].count = count;
2939 	dev->tc_to_txq[tc].offset = offset;
2940 	return 0;
2941 }
2942 EXPORT_SYMBOL(netdev_set_tc_queue);
2943 
2944 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945 {
2946 	if (num_tc > TC_MAX_QUEUE)
2947 		return -EINVAL;
2948 
2949 #ifdef CONFIG_XPS
2950 	netif_reset_xps_queues_gt(dev, 0);
2951 #endif
2952 	netdev_unbind_all_sb_channels(dev);
2953 
2954 	dev->num_tc = num_tc;
2955 	return 0;
2956 }
2957 EXPORT_SYMBOL(netdev_set_num_tc);
2958 
2959 void netdev_unbind_sb_channel(struct net_device *dev,
2960 			      struct net_device *sb_dev)
2961 {
2962 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963 
2964 #ifdef CONFIG_XPS
2965 	netif_reset_xps_queues_gt(sb_dev, 0);
2966 #endif
2967 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969 
2970 	while (txq-- != &dev->_tx[0]) {
2971 		if (txq->sb_dev == sb_dev)
2972 			txq->sb_dev = NULL;
2973 	}
2974 }
2975 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976 
2977 int netdev_bind_sb_channel_queue(struct net_device *dev,
2978 				 struct net_device *sb_dev,
2979 				 u8 tc, u16 count, u16 offset)
2980 {
2981 	/* Make certain the sb_dev and dev are already configured */
2982 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983 		return -EINVAL;
2984 
2985 	/* We cannot hand out queues we don't have */
2986 	if ((offset + count) > dev->real_num_tx_queues)
2987 		return -EINVAL;
2988 
2989 	/* Record the mapping */
2990 	sb_dev->tc_to_txq[tc].count = count;
2991 	sb_dev->tc_to_txq[tc].offset = offset;
2992 
2993 	/* Provide a way for Tx queue to find the tc_to_txq map or
2994 	 * XPS map for itself.
2995 	 */
2996 	while (count--)
2997 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998 
2999 	return 0;
3000 }
3001 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002 
3003 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004 {
3005 	/* Do not use a multiqueue device to represent a subordinate channel */
3006 	if (netif_is_multiqueue(dev))
3007 		return -ENODEV;
3008 
3009 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3010 	 * Channel 0 is meant to be "native" mode and used only to represent
3011 	 * the main root device. We allow writing 0 to reset the device back
3012 	 * to normal mode after being used as a subordinate channel.
3013 	 */
3014 	if (channel > S16_MAX)
3015 		return -EINVAL;
3016 
3017 	dev->num_tc = -channel;
3018 
3019 	return 0;
3020 }
3021 EXPORT_SYMBOL(netdev_set_sb_channel);
3022 
3023 /*
3024  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3026  */
3027 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3028 {
3029 	bool disabling;
3030 	int rc;
3031 
3032 	disabling = txq < dev->real_num_tx_queues;
3033 
3034 	if (txq < 1 || txq > dev->num_tx_queues)
3035 		return -EINVAL;
3036 
3037 	if (dev->reg_state == NETREG_REGISTERED ||
3038 	    dev->reg_state == NETREG_UNREGISTERING) {
3039 		ASSERT_RTNL();
3040 
3041 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042 						  txq);
3043 		if (rc)
3044 			return rc;
3045 
3046 		if (dev->num_tc)
3047 			netif_setup_tc(dev, txq);
3048 
3049 		dev->real_num_tx_queues = txq;
3050 
3051 		if (disabling) {
3052 			synchronize_net();
3053 			qdisc_reset_all_tx_gt(dev, txq);
3054 #ifdef CONFIG_XPS
3055 			netif_reset_xps_queues_gt(dev, txq);
3056 #endif
3057 		}
3058 	} else {
3059 		dev->real_num_tx_queues = txq;
3060 	}
3061 
3062 	return 0;
3063 }
3064 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3065 
3066 #ifdef CONFIG_SYSFS
3067 /**
3068  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3069  *	@dev: Network device
3070  *	@rxq: Actual number of RX queues
3071  *
3072  *	This must be called either with the rtnl_lock held or before
3073  *	registration of the net device.  Returns 0 on success, or a
3074  *	negative error code.  If called before registration, it always
3075  *	succeeds.
3076  */
3077 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078 {
3079 	int rc;
3080 
3081 	if (rxq < 1 || rxq > dev->num_rx_queues)
3082 		return -EINVAL;
3083 
3084 	if (dev->reg_state == NETREG_REGISTERED) {
3085 		ASSERT_RTNL();
3086 
3087 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088 						  rxq);
3089 		if (rc)
3090 			return rc;
3091 	}
3092 
3093 	dev->real_num_rx_queues = rxq;
3094 	return 0;
3095 }
3096 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097 #endif
3098 
3099 /**
3100  * netif_get_num_default_rss_queues - default number of RSS queues
3101  *
3102  * This routine should set an upper limit on the number of RSS queues
3103  * used by default by multiqueue devices.
3104  */
3105 int netif_get_num_default_rss_queues(void)
3106 {
3107 	return is_kdump_kernel() ?
3108 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3109 }
3110 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111 
3112 static void __netif_reschedule(struct Qdisc *q)
3113 {
3114 	struct softnet_data *sd;
3115 	unsigned long flags;
3116 
3117 	local_irq_save(flags);
3118 	sd = this_cpu_ptr(&softnet_data);
3119 	q->next_sched = NULL;
3120 	*sd->output_queue_tailp = q;
3121 	sd->output_queue_tailp = &q->next_sched;
3122 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123 	local_irq_restore(flags);
3124 }
3125 
3126 void __netif_schedule(struct Qdisc *q)
3127 {
3128 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129 		__netif_reschedule(q);
3130 }
3131 EXPORT_SYMBOL(__netif_schedule);
3132 
3133 struct dev_kfree_skb_cb {
3134 	enum skb_free_reason reason;
3135 };
3136 
3137 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3138 {
3139 	return (struct dev_kfree_skb_cb *)skb->cb;
3140 }
3141 
3142 void netif_schedule_queue(struct netdev_queue *txq)
3143 {
3144 	rcu_read_lock();
3145 	if (!netif_xmit_stopped(txq)) {
3146 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3147 
3148 		__netif_schedule(q);
3149 	}
3150 	rcu_read_unlock();
3151 }
3152 EXPORT_SYMBOL(netif_schedule_queue);
3153 
3154 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155 {
3156 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157 		struct Qdisc *q;
3158 
3159 		rcu_read_lock();
3160 		q = rcu_dereference(dev_queue->qdisc);
3161 		__netif_schedule(q);
3162 		rcu_read_unlock();
3163 	}
3164 }
3165 EXPORT_SYMBOL(netif_tx_wake_queue);
3166 
3167 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3168 {
3169 	unsigned long flags;
3170 
3171 	if (unlikely(!skb))
3172 		return;
3173 
3174 	if (likely(refcount_read(&skb->users) == 1)) {
3175 		smp_rmb();
3176 		refcount_set(&skb->users, 0);
3177 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3178 		return;
3179 	}
3180 	get_kfree_skb_cb(skb)->reason = reason;
3181 	local_irq_save(flags);
3182 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3183 	__this_cpu_write(softnet_data.completion_queue, skb);
3184 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185 	local_irq_restore(flags);
3186 }
3187 EXPORT_SYMBOL(__dev_kfree_skb_irq);
3188 
3189 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3190 {
3191 	if (in_irq() || irqs_disabled())
3192 		__dev_kfree_skb_irq(skb, reason);
3193 	else
3194 		dev_kfree_skb(skb);
3195 }
3196 EXPORT_SYMBOL(__dev_kfree_skb_any);
3197 
3198 
3199 /**
3200  * netif_device_detach - mark device as removed
3201  * @dev: network device
3202  *
3203  * Mark device as removed from system and therefore no longer available.
3204  */
3205 void netif_device_detach(struct net_device *dev)
3206 {
3207 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208 	    netif_running(dev)) {
3209 		netif_tx_stop_all_queues(dev);
3210 	}
3211 }
3212 EXPORT_SYMBOL(netif_device_detach);
3213 
3214 /**
3215  * netif_device_attach - mark device as attached
3216  * @dev: network device
3217  *
3218  * Mark device as attached from system and restart if needed.
3219  */
3220 void netif_device_attach(struct net_device *dev)
3221 {
3222 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223 	    netif_running(dev)) {
3224 		netif_tx_wake_all_queues(dev);
3225 		__netdev_watchdog_up(dev);
3226 	}
3227 }
3228 EXPORT_SYMBOL(netif_device_attach);
3229 
3230 /*
3231  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232  * to be used as a distribution range.
3233  */
3234 static u16 skb_tx_hash(const struct net_device *dev,
3235 		       const struct net_device *sb_dev,
3236 		       struct sk_buff *skb)
3237 {
3238 	u32 hash;
3239 	u16 qoffset = 0;
3240 	u16 qcount = dev->real_num_tx_queues;
3241 
3242 	if (dev->num_tc) {
3243 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244 
3245 		qoffset = sb_dev->tc_to_txq[tc].offset;
3246 		qcount = sb_dev->tc_to_txq[tc].count;
3247 	}
3248 
3249 	if (skb_rx_queue_recorded(skb)) {
3250 		hash = skb_get_rx_queue(skb);
3251 		if (hash >= qoffset)
3252 			hash -= qoffset;
3253 		while (unlikely(hash >= qcount))
3254 			hash -= qcount;
3255 		return hash + qoffset;
3256 	}
3257 
3258 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259 }
3260 
3261 static void skb_warn_bad_offload(const struct sk_buff *skb)
3262 {
3263 	static const netdev_features_t null_features;
3264 	struct net_device *dev = skb->dev;
3265 	const char *name = "";
3266 
3267 	if (!net_ratelimit())
3268 		return;
3269 
3270 	if (dev) {
3271 		if (dev->dev.parent)
3272 			name = dev_driver_string(dev->dev.parent);
3273 		else
3274 			name = netdev_name(dev);
3275 	}
3276 	skb_dump(KERN_WARNING, skb, false);
3277 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278 	     name, dev ? &dev->features : &null_features,
3279 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3280 }
3281 
3282 /*
3283  * Invalidate hardware checksum when packet is to be mangled, and
3284  * complete checksum manually on outgoing path.
3285  */
3286 int skb_checksum_help(struct sk_buff *skb)
3287 {
3288 	__wsum csum;
3289 	int ret = 0, offset;
3290 
3291 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3292 		goto out_set_summed;
3293 
3294 	if (unlikely(skb_is_gso(skb))) {
3295 		skb_warn_bad_offload(skb);
3296 		return -EINVAL;
3297 	}
3298 
3299 	/* Before computing a checksum, we should make sure no frag could
3300 	 * be modified by an external entity : checksum could be wrong.
3301 	 */
3302 	if (skb_has_shared_frag(skb)) {
3303 		ret = __skb_linearize(skb);
3304 		if (ret)
3305 			goto out;
3306 	}
3307 
3308 	offset = skb_checksum_start_offset(skb);
3309 	BUG_ON(offset >= skb_headlen(skb));
3310 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311 
3312 	offset += skb->csum_offset;
3313 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314 
3315 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316 	if (ret)
3317 		goto out;
3318 
3319 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3320 out_set_summed:
3321 	skb->ip_summed = CHECKSUM_NONE;
3322 out:
3323 	return ret;
3324 }
3325 EXPORT_SYMBOL(skb_checksum_help);
3326 
3327 int skb_crc32c_csum_help(struct sk_buff *skb)
3328 {
3329 	__le32 crc32c_csum;
3330 	int ret = 0, offset, start;
3331 
3332 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3333 		goto out;
3334 
3335 	if (unlikely(skb_is_gso(skb)))
3336 		goto out;
3337 
3338 	/* Before computing a checksum, we should make sure no frag could
3339 	 * be modified by an external entity : checksum could be wrong.
3340 	 */
3341 	if (unlikely(skb_has_shared_frag(skb))) {
3342 		ret = __skb_linearize(skb);
3343 		if (ret)
3344 			goto out;
3345 	}
3346 	start = skb_checksum_start_offset(skb);
3347 	offset = start + offsetof(struct sctphdr, checksum);
3348 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349 		ret = -EINVAL;
3350 		goto out;
3351 	}
3352 
3353 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354 	if (ret)
3355 		goto out;
3356 
3357 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358 						  skb->len - start, ~(__u32)0,
3359 						  crc32c_csum_stub));
3360 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3361 	skb->ip_summed = CHECKSUM_NONE;
3362 	skb->csum_not_inet = 0;
3363 out:
3364 	return ret;
3365 }
3366 
3367 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3368 {
3369 	__be16 type = skb->protocol;
3370 
3371 	/* Tunnel gso handlers can set protocol to ethernet. */
3372 	if (type == htons(ETH_P_TEB)) {
3373 		struct ethhdr *eth;
3374 
3375 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376 			return 0;
3377 
3378 		eth = (struct ethhdr *)skb->data;
3379 		type = eth->h_proto;
3380 	}
3381 
3382 	return __vlan_get_protocol(skb, type, depth);
3383 }
3384 
3385 /**
3386  *	skb_mac_gso_segment - mac layer segmentation handler.
3387  *	@skb: buffer to segment
3388  *	@features: features for the output path (see dev->features)
3389  */
3390 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391 				    netdev_features_t features)
3392 {
3393 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394 	struct packet_offload *ptype;
3395 	int vlan_depth = skb->mac_len;
3396 	__be16 type = skb_network_protocol(skb, &vlan_depth);
3397 
3398 	if (unlikely(!type))
3399 		return ERR_PTR(-EINVAL);
3400 
3401 	__skb_pull(skb, vlan_depth);
3402 
3403 	rcu_read_lock();
3404 	list_for_each_entry_rcu(ptype, &offload_base, list) {
3405 		if (ptype->type == type && ptype->callbacks.gso_segment) {
3406 			segs = ptype->callbacks.gso_segment(skb, features);
3407 			break;
3408 		}
3409 	}
3410 	rcu_read_unlock();
3411 
3412 	__skb_push(skb, skb->data - skb_mac_header(skb));
3413 
3414 	return segs;
3415 }
3416 EXPORT_SYMBOL(skb_mac_gso_segment);
3417 
3418 
3419 /* openvswitch calls this on rx path, so we need a different check.
3420  */
3421 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422 {
3423 	if (tx_path)
3424 		return skb->ip_summed != CHECKSUM_PARTIAL &&
3425 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
3426 
3427 	return skb->ip_summed == CHECKSUM_NONE;
3428 }
3429 
3430 /**
3431  *	__skb_gso_segment - Perform segmentation on skb.
3432  *	@skb: buffer to segment
3433  *	@features: features for the output path (see dev->features)
3434  *	@tx_path: whether it is called in TX path
3435  *
3436  *	This function segments the given skb and returns a list of segments.
3437  *
3438  *	It may return NULL if the skb requires no segmentation.  This is
3439  *	only possible when GSO is used for verifying header integrity.
3440  *
3441  *	Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3442  */
3443 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444 				  netdev_features_t features, bool tx_path)
3445 {
3446 	struct sk_buff *segs;
3447 
3448 	if (unlikely(skb_needs_check(skb, tx_path))) {
3449 		int err;
3450 
3451 		/* We're going to init ->check field in TCP or UDP header */
3452 		err = skb_cow_head(skb, 0);
3453 		if (err < 0)
3454 			return ERR_PTR(err);
3455 	}
3456 
3457 	/* Only report GSO partial support if it will enable us to
3458 	 * support segmentation on this frame without needing additional
3459 	 * work.
3460 	 */
3461 	if (features & NETIF_F_GSO_PARTIAL) {
3462 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463 		struct net_device *dev = skb->dev;
3464 
3465 		partial_features |= dev->features & dev->gso_partial_features;
3466 		if (!skb_gso_ok(skb, features | partial_features))
3467 			features &= ~NETIF_F_GSO_PARTIAL;
3468 	}
3469 
3470 	BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472 
3473 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474 	SKB_GSO_CB(skb)->encap_level = 0;
3475 
3476 	skb_reset_mac_header(skb);
3477 	skb_reset_mac_len(skb);
3478 
3479 	segs = skb_mac_gso_segment(skb, features);
3480 
3481 	if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482 		skb_warn_bad_offload(skb);
3483 
3484 	return segs;
3485 }
3486 EXPORT_SYMBOL(__skb_gso_segment);
3487 
3488 /* Take action when hardware reception checksum errors are detected. */
3489 #ifdef CONFIG_BUG
3490 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3491 {
3492 	if (net_ratelimit()) {
3493 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494 		skb_dump(KERN_ERR, skb, true);
3495 		dump_stack();
3496 	}
3497 }
3498 EXPORT_SYMBOL(netdev_rx_csum_fault);
3499 #endif
3500 
3501 /* XXX: check that highmem exists at all on the given machine. */
3502 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3503 {
3504 #ifdef CONFIG_HIGHMEM
3505 	int i;
3506 
3507 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3508 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510 
3511 			if (PageHighMem(skb_frag_page(frag)))
3512 				return 1;
3513 		}
3514 	}
3515 #endif
3516 	return 0;
3517 }
3518 
3519 /* If MPLS offload request, verify we are testing hardware MPLS features
3520  * instead of standard features for the netdev.
3521  */
3522 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3523 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524 					   netdev_features_t features,
3525 					   __be16 type)
3526 {
3527 	if (eth_p_mpls(type))
3528 		features &= skb->dev->mpls_features;
3529 
3530 	return features;
3531 }
3532 #else
3533 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534 					   netdev_features_t features,
3535 					   __be16 type)
3536 {
3537 	return features;
3538 }
3539 #endif
3540 
3541 static netdev_features_t harmonize_features(struct sk_buff *skb,
3542 	netdev_features_t features)
3543 {
3544 	__be16 type;
3545 
3546 	type = skb_network_protocol(skb, NULL);
3547 	features = net_mpls_features(skb, features, type);
3548 
3549 	if (skb->ip_summed != CHECKSUM_NONE &&
3550 	    !can_checksum_protocol(features, type)) {
3551 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3552 	}
3553 	if (illegal_highdma(skb->dev, skb))
3554 		features &= ~NETIF_F_SG;
3555 
3556 	return features;
3557 }
3558 
3559 netdev_features_t passthru_features_check(struct sk_buff *skb,
3560 					  struct net_device *dev,
3561 					  netdev_features_t features)
3562 {
3563 	return features;
3564 }
3565 EXPORT_SYMBOL(passthru_features_check);
3566 
3567 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568 					     struct net_device *dev,
3569 					     netdev_features_t features)
3570 {
3571 	return vlan_features_check(skb, features);
3572 }
3573 
3574 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575 					    struct net_device *dev,
3576 					    netdev_features_t features)
3577 {
3578 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579 
3580 	if (gso_segs > dev->gso_max_segs)
3581 		return features & ~NETIF_F_GSO_MASK;
3582 
3583 	if (!skb_shinfo(skb)->gso_type) {
3584 		skb_warn_bad_offload(skb);
3585 		return features & ~NETIF_F_GSO_MASK;
3586 	}
3587 
3588 	/* Support for GSO partial features requires software
3589 	 * intervention before we can actually process the packets
3590 	 * so we need to strip support for any partial features now
3591 	 * and we can pull them back in after we have partially
3592 	 * segmented the frame.
3593 	 */
3594 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595 		features &= ~dev->gso_partial_features;
3596 
3597 	/* Make sure to clear the IPv4 ID mangling feature if the
3598 	 * IPv4 header has the potential to be fragmented.
3599 	 */
3600 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601 		struct iphdr *iph = skb->encapsulation ?
3602 				    inner_ip_hdr(skb) : ip_hdr(skb);
3603 
3604 		if (!(iph->frag_off & htons(IP_DF)))
3605 			features &= ~NETIF_F_TSO_MANGLEID;
3606 	}
3607 
3608 	return features;
3609 }
3610 
3611 netdev_features_t netif_skb_features(struct sk_buff *skb)
3612 {
3613 	struct net_device *dev = skb->dev;
3614 	netdev_features_t features = dev->features;
3615 
3616 	if (skb_is_gso(skb))
3617 		features = gso_features_check(skb, dev, features);
3618 
3619 	/* If encapsulation offload request, verify we are testing
3620 	 * hardware encapsulation features instead of standard
3621 	 * features for the netdev
3622 	 */
3623 	if (skb->encapsulation)
3624 		features &= dev->hw_enc_features;
3625 
3626 	if (skb_vlan_tagged(skb))
3627 		features = netdev_intersect_features(features,
3628 						     dev->vlan_features |
3629 						     NETIF_F_HW_VLAN_CTAG_TX |
3630 						     NETIF_F_HW_VLAN_STAG_TX);
3631 
3632 	if (dev->netdev_ops->ndo_features_check)
3633 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634 								features);
3635 	else
3636 		features &= dflt_features_check(skb, dev, features);
3637 
3638 	return harmonize_features(skb, features);
3639 }
3640 EXPORT_SYMBOL(netif_skb_features);
3641 
3642 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643 		    struct netdev_queue *txq, bool more)
3644 {
3645 	unsigned int len;
3646 	int rc;
3647 
3648 	if (dev_nit_active(dev))
3649 		dev_queue_xmit_nit(skb, dev);
3650 
3651 	len = skb->len;
3652 	PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653 	trace_net_dev_start_xmit(skb, dev);
3654 	rc = netdev_start_xmit(skb, dev, txq, more);
3655 	trace_net_dev_xmit(skb, rc, dev, len);
3656 
3657 	return rc;
3658 }
3659 
3660 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661 				    struct netdev_queue *txq, int *ret)
3662 {
3663 	struct sk_buff *skb = first;
3664 	int rc = NETDEV_TX_OK;
3665 
3666 	while (skb) {
3667 		struct sk_buff *next = skb->next;
3668 
3669 		skb_mark_not_on_list(skb);
3670 		rc = xmit_one(skb, dev, txq, next != NULL);
3671 		if (unlikely(!dev_xmit_complete(rc))) {
3672 			skb->next = next;
3673 			goto out;
3674 		}
3675 
3676 		skb = next;
3677 		if (netif_tx_queue_stopped(txq) && skb) {
3678 			rc = NETDEV_TX_BUSY;
3679 			break;
3680 		}
3681 	}
3682 
3683 out:
3684 	*ret = rc;
3685 	return skb;
3686 }
3687 
3688 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689 					  netdev_features_t features)
3690 {
3691 	if (skb_vlan_tag_present(skb) &&
3692 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3693 		skb = __vlan_hwaccel_push_inside(skb);
3694 	return skb;
3695 }
3696 
3697 int skb_csum_hwoffload_help(struct sk_buff *skb,
3698 			    const netdev_features_t features)
3699 {
3700 	if (unlikely(skb_csum_is_sctp(skb)))
3701 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702 			skb_crc32c_csum_help(skb);
3703 
3704 	if (features & NETIF_F_HW_CSUM)
3705 		return 0;
3706 
3707 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708 		switch (skb->csum_offset) {
3709 		case offsetof(struct tcphdr, check):
3710 		case offsetof(struct udphdr, check):
3711 			return 0;
3712 		}
3713 	}
3714 
3715 	return skb_checksum_help(skb);
3716 }
3717 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718 
3719 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3720 {
3721 	netdev_features_t features;
3722 
3723 	features = netif_skb_features(skb);
3724 	skb = validate_xmit_vlan(skb, features);
3725 	if (unlikely(!skb))
3726 		goto out_null;
3727 
3728 	skb = sk_validate_xmit_skb(skb, dev);
3729 	if (unlikely(!skb))
3730 		goto out_null;
3731 
3732 	if (netif_needs_gso(skb, features)) {
3733 		struct sk_buff *segs;
3734 
3735 		segs = skb_gso_segment(skb, features);
3736 		if (IS_ERR(segs)) {
3737 			goto out_kfree_skb;
3738 		} else if (segs) {
3739 			consume_skb(skb);
3740 			skb = segs;
3741 		}
3742 	} else {
3743 		if (skb_needs_linearize(skb, features) &&
3744 		    __skb_linearize(skb))
3745 			goto out_kfree_skb;
3746 
3747 		/* If packet is not checksummed and device does not
3748 		 * support checksumming for this protocol, complete
3749 		 * checksumming here.
3750 		 */
3751 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752 			if (skb->encapsulation)
3753 				skb_set_inner_transport_header(skb,
3754 							       skb_checksum_start_offset(skb));
3755 			else
3756 				skb_set_transport_header(skb,
3757 							 skb_checksum_start_offset(skb));
3758 			if (skb_csum_hwoffload_help(skb, features))
3759 				goto out_kfree_skb;
3760 		}
3761 	}
3762 
3763 	skb = validate_xmit_xfrm(skb, features, again);
3764 
3765 	return skb;
3766 
3767 out_kfree_skb:
3768 	kfree_skb(skb);
3769 out_null:
3770 	atomic_long_inc(&dev->tx_dropped);
3771 	return NULL;
3772 }
3773 
3774 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3775 {
3776 	struct sk_buff *next, *head = NULL, *tail;
3777 
3778 	for (; skb != NULL; skb = next) {
3779 		next = skb->next;
3780 		skb_mark_not_on_list(skb);
3781 
3782 		/* in case skb wont be segmented, point to itself */
3783 		skb->prev = skb;
3784 
3785 		skb = validate_xmit_skb(skb, dev, again);
3786 		if (!skb)
3787 			continue;
3788 
3789 		if (!head)
3790 			head = skb;
3791 		else
3792 			tail->next = skb;
3793 		/* If skb was segmented, skb->prev points to
3794 		 * the last segment. If not, it still contains skb.
3795 		 */
3796 		tail = skb->prev;
3797 	}
3798 	return head;
3799 }
3800 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3801 
3802 static void qdisc_pkt_len_init(struct sk_buff *skb)
3803 {
3804 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805 
3806 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3807 
3808 	/* To get more precise estimation of bytes sent on wire,
3809 	 * we add to pkt_len the headers size of all segments
3810 	 */
3811 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812 		unsigned int hdr_len;
3813 		u16 gso_segs = shinfo->gso_segs;
3814 
3815 		/* mac layer + network layer */
3816 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817 
3818 		/* + transport layer */
3819 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820 			const struct tcphdr *th;
3821 			struct tcphdr _tcphdr;
3822 
3823 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3824 						sizeof(_tcphdr), &_tcphdr);
3825 			if (likely(th))
3826 				hdr_len += __tcp_hdrlen(th);
3827 		} else {
3828 			struct udphdr _udphdr;
3829 
3830 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3831 					       sizeof(_udphdr), &_udphdr))
3832 				hdr_len += sizeof(struct udphdr);
3833 		}
3834 
3835 		if (shinfo->gso_type & SKB_GSO_DODGY)
3836 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837 						shinfo->gso_size);
3838 
3839 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3840 	}
3841 }
3842 
3843 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844 				 struct net_device *dev,
3845 				 struct netdev_queue *txq)
3846 {
3847 	spinlock_t *root_lock = qdisc_lock(q);
3848 	struct sk_buff *to_free = NULL;
3849 	bool contended;
3850 	int rc;
3851 
3852 	qdisc_calculate_pkt_len(skb, q);
3853 
3854 	if (q->flags & TCQ_F_NOLOCK) {
3855 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3856 		    qdisc_run_begin(q)) {
3857 			/* Retest nolock_qdisc_is_empty() within the protection
3858 			 * of q->seqlock to protect from racing with requeuing.
3859 			 */
3860 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3861 				rc = q->enqueue(skb, q, &to_free) &
3862 					NET_XMIT_MASK;
3863 				__qdisc_run(q);
3864 				qdisc_run_end(q);
3865 
3866 				goto no_lock_out;
3867 			}
3868 
3869 			qdisc_bstats_cpu_update(q, skb);
3870 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3871 			    !nolock_qdisc_is_empty(q))
3872 				__qdisc_run(q);
3873 
3874 			qdisc_run_end(q);
3875 			return NET_XMIT_SUCCESS;
3876 		}
3877 
3878 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3879 		qdisc_run(q);
3880 
3881 no_lock_out:
3882 		if (unlikely(to_free))
3883 			kfree_skb_list(to_free);
3884 		return rc;
3885 	}
3886 
3887 	/*
3888 	 * Heuristic to force contended enqueues to serialize on a
3889 	 * separate lock before trying to get qdisc main lock.
3890 	 * This permits qdisc->running owner to get the lock more
3891 	 * often and dequeue packets faster.
3892 	 */
3893 	contended = qdisc_is_running(q);
3894 	if (unlikely(contended))
3895 		spin_lock(&q->busylock);
3896 
3897 	spin_lock(root_lock);
3898 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3899 		__qdisc_drop(skb, &to_free);
3900 		rc = NET_XMIT_DROP;
3901 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3902 		   qdisc_run_begin(q)) {
3903 		/*
3904 		 * This is a work-conserving queue; there are no old skbs
3905 		 * waiting to be sent out; and the qdisc is not running -
3906 		 * xmit the skb directly.
3907 		 */
3908 
3909 		qdisc_bstats_update(q, skb);
3910 
3911 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3912 			if (unlikely(contended)) {
3913 				spin_unlock(&q->busylock);
3914 				contended = false;
3915 			}
3916 			__qdisc_run(q);
3917 		}
3918 
3919 		qdisc_run_end(q);
3920 		rc = NET_XMIT_SUCCESS;
3921 	} else {
3922 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3923 		if (qdisc_run_begin(q)) {
3924 			if (unlikely(contended)) {
3925 				spin_unlock(&q->busylock);
3926 				contended = false;
3927 			}
3928 			__qdisc_run(q);
3929 			qdisc_run_end(q);
3930 		}
3931 	}
3932 	spin_unlock(root_lock);
3933 	if (unlikely(to_free))
3934 		kfree_skb_list(to_free);
3935 	if (unlikely(contended))
3936 		spin_unlock(&q->busylock);
3937 	return rc;
3938 }
3939 
3940 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3941 static void skb_update_prio(struct sk_buff *skb)
3942 {
3943 	const struct netprio_map *map;
3944 	const struct sock *sk;
3945 	unsigned int prioidx;
3946 
3947 	if (skb->priority)
3948 		return;
3949 	map = rcu_dereference_bh(skb->dev->priomap);
3950 	if (!map)
3951 		return;
3952 	sk = skb_to_full_sk(skb);
3953 	if (!sk)
3954 		return;
3955 
3956 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3957 
3958 	if (prioidx < map->priomap_len)
3959 		skb->priority = map->priomap[prioidx];
3960 }
3961 #else
3962 #define skb_update_prio(skb)
3963 #endif
3964 
3965 /**
3966  *	dev_loopback_xmit - loop back @skb
3967  *	@net: network namespace this loopback is happening in
3968  *	@sk:  sk needed to be a netfilter okfn
3969  *	@skb: buffer to transmit
3970  */
3971 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3972 {
3973 	skb_reset_mac_header(skb);
3974 	__skb_pull(skb, skb_network_offset(skb));
3975 	skb->pkt_type = PACKET_LOOPBACK;
3976 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3977 	WARN_ON(!skb_dst(skb));
3978 	skb_dst_force(skb);
3979 	netif_rx_ni(skb);
3980 	return 0;
3981 }
3982 EXPORT_SYMBOL(dev_loopback_xmit);
3983 
3984 #ifdef CONFIG_NET_EGRESS
3985 static struct sk_buff *
3986 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3987 {
3988 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3989 	struct tcf_result cl_res;
3990 
3991 	if (!miniq)
3992 		return skb;
3993 
3994 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3995 	qdisc_skb_cb(skb)->mru = 0;
3996 	qdisc_skb_cb(skb)->post_ct = false;
3997 	mini_qdisc_bstats_cpu_update(miniq, skb);
3998 
3999 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4000 	case TC_ACT_OK:
4001 	case TC_ACT_RECLASSIFY:
4002 		skb->tc_index = TC_H_MIN(cl_res.classid);
4003 		break;
4004 	case TC_ACT_SHOT:
4005 		mini_qdisc_qstats_cpu_drop(miniq);
4006 		*ret = NET_XMIT_DROP;
4007 		kfree_skb(skb);
4008 		return NULL;
4009 	case TC_ACT_STOLEN:
4010 	case TC_ACT_QUEUED:
4011 	case TC_ACT_TRAP:
4012 		*ret = NET_XMIT_SUCCESS;
4013 		consume_skb(skb);
4014 		return NULL;
4015 	case TC_ACT_REDIRECT:
4016 		/* No need to push/pop skb's mac_header here on egress! */
4017 		skb_do_redirect(skb);
4018 		*ret = NET_XMIT_SUCCESS;
4019 		return NULL;
4020 	default:
4021 		break;
4022 	}
4023 
4024 	return skb;
4025 }
4026 #endif /* CONFIG_NET_EGRESS */
4027 
4028 #ifdef CONFIG_XPS
4029 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4030 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4031 {
4032 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4033 	struct xps_map *map;
4034 	int queue_index = -1;
4035 
4036 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4037 		return queue_index;
4038 
4039 	tci *= dev_maps->num_tc;
4040 	tci += tc;
4041 
4042 	map = rcu_dereference(dev_maps->attr_map[tci]);
4043 	if (map) {
4044 		if (map->len == 1)
4045 			queue_index = map->queues[0];
4046 		else
4047 			queue_index = map->queues[reciprocal_scale(
4048 						skb_get_hash(skb), map->len)];
4049 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4050 			queue_index = -1;
4051 	}
4052 	return queue_index;
4053 }
4054 #endif
4055 
4056 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4057 			 struct sk_buff *skb)
4058 {
4059 #ifdef CONFIG_XPS
4060 	struct xps_dev_maps *dev_maps;
4061 	struct sock *sk = skb->sk;
4062 	int queue_index = -1;
4063 
4064 	if (!static_key_false(&xps_needed))
4065 		return -1;
4066 
4067 	rcu_read_lock();
4068 	if (!static_key_false(&xps_rxqs_needed))
4069 		goto get_cpus_map;
4070 
4071 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4072 	if (dev_maps) {
4073 		int tci = sk_rx_queue_get(sk);
4074 
4075 		if (tci >= 0)
4076 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4077 							  tci);
4078 	}
4079 
4080 get_cpus_map:
4081 	if (queue_index < 0) {
4082 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4083 		if (dev_maps) {
4084 			unsigned int tci = skb->sender_cpu - 1;
4085 
4086 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4087 							  tci);
4088 		}
4089 	}
4090 	rcu_read_unlock();
4091 
4092 	return queue_index;
4093 #else
4094 	return -1;
4095 #endif
4096 }
4097 
4098 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4099 		     struct net_device *sb_dev)
4100 {
4101 	return 0;
4102 }
4103 EXPORT_SYMBOL(dev_pick_tx_zero);
4104 
4105 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4106 		       struct net_device *sb_dev)
4107 {
4108 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4109 }
4110 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4111 
4112 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4113 		     struct net_device *sb_dev)
4114 {
4115 	struct sock *sk = skb->sk;
4116 	int queue_index = sk_tx_queue_get(sk);
4117 
4118 	sb_dev = sb_dev ? : dev;
4119 
4120 	if (queue_index < 0 || skb->ooo_okay ||
4121 	    queue_index >= dev->real_num_tx_queues) {
4122 		int new_index = get_xps_queue(dev, sb_dev, skb);
4123 
4124 		if (new_index < 0)
4125 			new_index = skb_tx_hash(dev, sb_dev, skb);
4126 
4127 		if (queue_index != new_index && sk &&
4128 		    sk_fullsock(sk) &&
4129 		    rcu_access_pointer(sk->sk_dst_cache))
4130 			sk_tx_queue_set(sk, new_index);
4131 
4132 		queue_index = new_index;
4133 	}
4134 
4135 	return queue_index;
4136 }
4137 EXPORT_SYMBOL(netdev_pick_tx);
4138 
4139 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4140 					 struct sk_buff *skb,
4141 					 struct net_device *sb_dev)
4142 {
4143 	int queue_index = 0;
4144 
4145 #ifdef CONFIG_XPS
4146 	u32 sender_cpu = skb->sender_cpu - 1;
4147 
4148 	if (sender_cpu >= (u32)NR_CPUS)
4149 		skb->sender_cpu = raw_smp_processor_id() + 1;
4150 #endif
4151 
4152 	if (dev->real_num_tx_queues != 1) {
4153 		const struct net_device_ops *ops = dev->netdev_ops;
4154 
4155 		if (ops->ndo_select_queue)
4156 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4157 		else
4158 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4159 
4160 		queue_index = netdev_cap_txqueue(dev, queue_index);
4161 	}
4162 
4163 	skb_set_queue_mapping(skb, queue_index);
4164 	return netdev_get_tx_queue(dev, queue_index);
4165 }
4166 
4167 /**
4168  *	__dev_queue_xmit - transmit a buffer
4169  *	@skb: buffer to transmit
4170  *	@sb_dev: suboordinate device used for L2 forwarding offload
4171  *
4172  *	Queue a buffer for transmission to a network device. The caller must
4173  *	have set the device and priority and built the buffer before calling
4174  *	this function. The function can be called from an interrupt.
4175  *
4176  *	A negative errno code is returned on a failure. A success does not
4177  *	guarantee the frame will be transmitted as it may be dropped due
4178  *	to congestion or traffic shaping.
4179  *
4180  * -----------------------------------------------------------------------------------
4181  *      I notice this method can also return errors from the queue disciplines,
4182  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
4183  *      be positive.
4184  *
4185  *      Regardless of the return value, the skb is consumed, so it is currently
4186  *      difficult to retry a send to this method.  (You can bump the ref count
4187  *      before sending to hold a reference for retry if you are careful.)
4188  *
4189  *      When calling this method, interrupts MUST be enabled.  This is because
4190  *      the BH enable code must have IRQs enabled so that it will not deadlock.
4191  *          --BLG
4192  */
4193 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4194 {
4195 	struct net_device *dev = skb->dev;
4196 	struct netdev_queue *txq;
4197 	struct Qdisc *q;
4198 	int rc = -ENOMEM;
4199 	bool again = false;
4200 
4201 	skb_reset_mac_header(skb);
4202 
4203 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4204 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4205 
4206 	/* Disable soft irqs for various locks below. Also
4207 	 * stops preemption for RCU.
4208 	 */
4209 	rcu_read_lock_bh();
4210 
4211 	skb_update_prio(skb);
4212 
4213 	qdisc_pkt_len_init(skb);
4214 #ifdef CONFIG_NET_CLS_ACT
4215 	skb->tc_at_ingress = 0;
4216 # ifdef CONFIG_NET_EGRESS
4217 	if (static_branch_unlikely(&egress_needed_key)) {
4218 		skb = sch_handle_egress(skb, &rc, dev);
4219 		if (!skb)
4220 			goto out;
4221 	}
4222 # endif
4223 #endif
4224 	/* If device/qdisc don't need skb->dst, release it right now while
4225 	 * its hot in this cpu cache.
4226 	 */
4227 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4228 		skb_dst_drop(skb);
4229 	else
4230 		skb_dst_force(skb);
4231 
4232 	txq = netdev_core_pick_tx(dev, skb, sb_dev);
4233 	q = rcu_dereference_bh(txq->qdisc);
4234 
4235 	trace_net_dev_queue(skb);
4236 	if (q->enqueue) {
4237 		rc = __dev_xmit_skb(skb, q, dev, txq);
4238 		goto out;
4239 	}
4240 
4241 	/* The device has no queue. Common case for software devices:
4242 	 * loopback, all the sorts of tunnels...
4243 
4244 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4245 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4246 	 * counters.)
4247 	 * However, it is possible, that they rely on protection
4248 	 * made by us here.
4249 
4250 	 * Check this and shot the lock. It is not prone from deadlocks.
4251 	 *Either shot noqueue qdisc, it is even simpler 8)
4252 	 */
4253 	if (dev->flags & IFF_UP) {
4254 		int cpu = smp_processor_id(); /* ok because BHs are off */
4255 
4256 		if (txq->xmit_lock_owner != cpu) {
4257 			if (dev_xmit_recursion())
4258 				goto recursion_alert;
4259 
4260 			skb = validate_xmit_skb(skb, dev, &again);
4261 			if (!skb)
4262 				goto out;
4263 
4264 			PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4265 			HARD_TX_LOCK(dev, txq, cpu);
4266 
4267 			if (!netif_xmit_stopped(txq)) {
4268 				dev_xmit_recursion_inc();
4269 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4270 				dev_xmit_recursion_dec();
4271 				if (dev_xmit_complete(rc)) {
4272 					HARD_TX_UNLOCK(dev, txq);
4273 					goto out;
4274 				}
4275 			}
4276 			HARD_TX_UNLOCK(dev, txq);
4277 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4278 					     dev->name);
4279 		} else {
4280 			/* Recursion is detected! It is possible,
4281 			 * unfortunately
4282 			 */
4283 recursion_alert:
4284 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4285 					     dev->name);
4286 		}
4287 	}
4288 
4289 	rc = -ENETDOWN;
4290 	rcu_read_unlock_bh();
4291 
4292 	atomic_long_inc(&dev->tx_dropped);
4293 	kfree_skb_list(skb);
4294 	return rc;
4295 out:
4296 	rcu_read_unlock_bh();
4297 	return rc;
4298 }
4299 
4300 int dev_queue_xmit(struct sk_buff *skb)
4301 {
4302 	return __dev_queue_xmit(skb, NULL);
4303 }
4304 EXPORT_SYMBOL(dev_queue_xmit);
4305 
4306 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4307 {
4308 	return __dev_queue_xmit(skb, sb_dev);
4309 }
4310 EXPORT_SYMBOL(dev_queue_xmit_accel);
4311 
4312 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4313 {
4314 	struct net_device *dev = skb->dev;
4315 	struct sk_buff *orig_skb = skb;
4316 	struct netdev_queue *txq;
4317 	int ret = NETDEV_TX_BUSY;
4318 	bool again = false;
4319 
4320 	if (unlikely(!netif_running(dev) ||
4321 		     !netif_carrier_ok(dev)))
4322 		goto drop;
4323 
4324 	skb = validate_xmit_skb_list(skb, dev, &again);
4325 	if (skb != orig_skb)
4326 		goto drop;
4327 
4328 	skb_set_queue_mapping(skb, queue_id);
4329 	txq = skb_get_tx_queue(dev, skb);
4330 	PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4331 
4332 	local_bh_disable();
4333 
4334 	dev_xmit_recursion_inc();
4335 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4336 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4337 		ret = netdev_start_xmit(skb, dev, txq, false);
4338 	HARD_TX_UNLOCK(dev, txq);
4339 	dev_xmit_recursion_dec();
4340 
4341 	local_bh_enable();
4342 	return ret;
4343 drop:
4344 	atomic_long_inc(&dev->tx_dropped);
4345 	kfree_skb_list(skb);
4346 	return NET_XMIT_DROP;
4347 }
4348 EXPORT_SYMBOL(__dev_direct_xmit);
4349 
4350 /*************************************************************************
4351  *			Receiver routines
4352  *************************************************************************/
4353 
4354 int netdev_max_backlog __read_mostly = 1000;
4355 EXPORT_SYMBOL(netdev_max_backlog);
4356 
4357 int netdev_tstamp_prequeue __read_mostly = 1;
4358 int netdev_budget __read_mostly = 300;
4359 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4360 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4361 int weight_p __read_mostly = 64;           /* old backlog weight */
4362 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4363 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4364 int dev_rx_weight __read_mostly = 64;
4365 int dev_tx_weight __read_mostly = 64;
4366 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4367 int gro_normal_batch __read_mostly = 8;
4368 
4369 /* Called with irq disabled */
4370 static inline void ____napi_schedule(struct softnet_data *sd,
4371 				     struct napi_struct *napi)
4372 {
4373 	struct task_struct *thread;
4374 
4375 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4376 		/* Paired with smp_mb__before_atomic() in
4377 		 * napi_enable()/dev_set_threaded().
4378 		 * Use READ_ONCE() to guarantee a complete
4379 		 * read on napi->thread. Only call
4380 		 * wake_up_process() when it's not NULL.
4381 		 */
4382 		thread = READ_ONCE(napi->thread);
4383 		if (thread) {
4384 			/* Avoid doing set_bit() if the thread is in
4385 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4386 			 * makes sure to proceed with napi polling
4387 			 * if the thread is explicitly woken from here.
4388 			 */
4389 			if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4390 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4391 			wake_up_process(thread);
4392 			return;
4393 		}
4394 	}
4395 
4396 	list_add_tail(&napi->poll_list, &sd->poll_list);
4397 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4398 }
4399 
4400 #ifdef CONFIG_RPS
4401 
4402 /* One global table that all flow-based protocols share. */
4403 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4404 EXPORT_SYMBOL(rps_sock_flow_table);
4405 u32 rps_cpu_mask __read_mostly;
4406 EXPORT_SYMBOL(rps_cpu_mask);
4407 
4408 struct static_key_false rps_needed __read_mostly;
4409 EXPORT_SYMBOL(rps_needed);
4410 struct static_key_false rfs_needed __read_mostly;
4411 EXPORT_SYMBOL(rfs_needed);
4412 
4413 static struct rps_dev_flow *
4414 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4415 	    struct rps_dev_flow *rflow, u16 next_cpu)
4416 {
4417 	if (next_cpu < nr_cpu_ids) {
4418 #ifdef CONFIG_RFS_ACCEL
4419 		struct netdev_rx_queue *rxqueue;
4420 		struct rps_dev_flow_table *flow_table;
4421 		struct rps_dev_flow *old_rflow;
4422 		u32 flow_id;
4423 		u16 rxq_index;
4424 		int rc;
4425 
4426 		/* Should we steer this flow to a different hardware queue? */
4427 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4428 		    !(dev->features & NETIF_F_NTUPLE))
4429 			goto out;
4430 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4431 		if (rxq_index == skb_get_rx_queue(skb))
4432 			goto out;
4433 
4434 		rxqueue = dev->_rx + rxq_index;
4435 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4436 		if (!flow_table)
4437 			goto out;
4438 		flow_id = skb_get_hash(skb) & flow_table->mask;
4439 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4440 							rxq_index, flow_id);
4441 		if (rc < 0)
4442 			goto out;
4443 		old_rflow = rflow;
4444 		rflow = &flow_table->flows[flow_id];
4445 		rflow->filter = rc;
4446 		if (old_rflow->filter == rflow->filter)
4447 			old_rflow->filter = RPS_NO_FILTER;
4448 	out:
4449 #endif
4450 		rflow->last_qtail =
4451 			per_cpu(softnet_data, next_cpu).input_queue_head;
4452 	}
4453 
4454 	rflow->cpu = next_cpu;
4455 	return rflow;
4456 }
4457 
4458 /*
4459  * get_rps_cpu is called from netif_receive_skb and returns the target
4460  * CPU from the RPS map of the receiving queue for a given skb.
4461  * rcu_read_lock must be held on entry.
4462  */
4463 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4464 		       struct rps_dev_flow **rflowp)
4465 {
4466 	const struct rps_sock_flow_table *sock_flow_table;
4467 	struct netdev_rx_queue *rxqueue = dev->_rx;
4468 	struct rps_dev_flow_table *flow_table;
4469 	struct rps_map *map;
4470 	int cpu = -1;
4471 	u32 tcpu;
4472 	u32 hash;
4473 
4474 	if (skb_rx_queue_recorded(skb)) {
4475 		u16 index = skb_get_rx_queue(skb);
4476 
4477 		if (unlikely(index >= dev->real_num_rx_queues)) {
4478 			WARN_ONCE(dev->real_num_rx_queues > 1,
4479 				  "%s received packet on queue %u, but number "
4480 				  "of RX queues is %u\n",
4481 				  dev->name, index, dev->real_num_rx_queues);
4482 			goto done;
4483 		}
4484 		rxqueue += index;
4485 	}
4486 
4487 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4488 
4489 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4490 	map = rcu_dereference(rxqueue->rps_map);
4491 	if (!flow_table && !map)
4492 		goto done;
4493 
4494 	skb_reset_network_header(skb);
4495 	hash = skb_get_hash(skb);
4496 	if (!hash)
4497 		goto done;
4498 
4499 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4500 	if (flow_table && sock_flow_table) {
4501 		struct rps_dev_flow *rflow;
4502 		u32 next_cpu;
4503 		u32 ident;
4504 
4505 		/* First check into global flow table if there is a match */
4506 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4507 		if ((ident ^ hash) & ~rps_cpu_mask)
4508 			goto try_rps;
4509 
4510 		next_cpu = ident & rps_cpu_mask;
4511 
4512 		/* OK, now we know there is a match,
4513 		 * we can look at the local (per receive queue) flow table
4514 		 */
4515 		rflow = &flow_table->flows[hash & flow_table->mask];
4516 		tcpu = rflow->cpu;
4517 
4518 		/*
4519 		 * If the desired CPU (where last recvmsg was done) is
4520 		 * different from current CPU (one in the rx-queue flow
4521 		 * table entry), switch if one of the following holds:
4522 		 *   - Current CPU is unset (>= nr_cpu_ids).
4523 		 *   - Current CPU is offline.
4524 		 *   - The current CPU's queue tail has advanced beyond the
4525 		 *     last packet that was enqueued using this table entry.
4526 		 *     This guarantees that all previous packets for the flow
4527 		 *     have been dequeued, thus preserving in order delivery.
4528 		 */
4529 		if (unlikely(tcpu != next_cpu) &&
4530 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4531 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4532 		      rflow->last_qtail)) >= 0)) {
4533 			tcpu = next_cpu;
4534 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4535 		}
4536 
4537 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4538 			*rflowp = rflow;
4539 			cpu = tcpu;
4540 			goto done;
4541 		}
4542 	}
4543 
4544 try_rps:
4545 
4546 	if (map) {
4547 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4548 		if (cpu_online(tcpu)) {
4549 			cpu = tcpu;
4550 			goto done;
4551 		}
4552 	}
4553 
4554 done:
4555 	return cpu;
4556 }
4557 
4558 #ifdef CONFIG_RFS_ACCEL
4559 
4560 /**
4561  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4562  * @dev: Device on which the filter was set
4563  * @rxq_index: RX queue index
4564  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4565  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4566  *
4567  * Drivers that implement ndo_rx_flow_steer() should periodically call
4568  * this function for each installed filter and remove the filters for
4569  * which it returns %true.
4570  */
4571 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4572 			 u32 flow_id, u16 filter_id)
4573 {
4574 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4575 	struct rps_dev_flow_table *flow_table;
4576 	struct rps_dev_flow *rflow;
4577 	bool expire = true;
4578 	unsigned int cpu;
4579 
4580 	rcu_read_lock();
4581 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4582 	if (flow_table && flow_id <= flow_table->mask) {
4583 		rflow = &flow_table->flows[flow_id];
4584 		cpu = READ_ONCE(rflow->cpu);
4585 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4586 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4587 			   rflow->last_qtail) <
4588 		     (int)(10 * flow_table->mask)))
4589 			expire = false;
4590 	}
4591 	rcu_read_unlock();
4592 	return expire;
4593 }
4594 EXPORT_SYMBOL(rps_may_expire_flow);
4595 
4596 #endif /* CONFIG_RFS_ACCEL */
4597 
4598 /* Called from hardirq (IPI) context */
4599 static void rps_trigger_softirq(void *data)
4600 {
4601 	struct softnet_data *sd = data;
4602 
4603 	____napi_schedule(sd, &sd->backlog);
4604 	sd->received_rps++;
4605 }
4606 
4607 #endif /* CONFIG_RPS */
4608 
4609 /*
4610  * Check if this softnet_data structure is another cpu one
4611  * If yes, queue it to our IPI list and return 1
4612  * If no, return 0
4613  */
4614 static int rps_ipi_queued(struct softnet_data *sd)
4615 {
4616 #ifdef CONFIG_RPS
4617 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4618 
4619 	if (sd != mysd) {
4620 		sd->rps_ipi_next = mysd->rps_ipi_list;
4621 		mysd->rps_ipi_list = sd;
4622 
4623 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4624 		return 1;
4625 	}
4626 #endif /* CONFIG_RPS */
4627 	return 0;
4628 }
4629 
4630 #ifdef CONFIG_NET_FLOW_LIMIT
4631 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4632 #endif
4633 
4634 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4635 {
4636 #ifdef CONFIG_NET_FLOW_LIMIT
4637 	struct sd_flow_limit *fl;
4638 	struct softnet_data *sd;
4639 	unsigned int old_flow, new_flow;
4640 
4641 	if (qlen < (netdev_max_backlog >> 1))
4642 		return false;
4643 
4644 	sd = this_cpu_ptr(&softnet_data);
4645 
4646 	rcu_read_lock();
4647 	fl = rcu_dereference(sd->flow_limit);
4648 	if (fl) {
4649 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4650 		old_flow = fl->history[fl->history_head];
4651 		fl->history[fl->history_head] = new_flow;
4652 
4653 		fl->history_head++;
4654 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4655 
4656 		if (likely(fl->buckets[old_flow]))
4657 			fl->buckets[old_flow]--;
4658 
4659 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4660 			fl->count++;
4661 			rcu_read_unlock();
4662 			return true;
4663 		}
4664 	}
4665 	rcu_read_unlock();
4666 #endif
4667 	return false;
4668 }
4669 
4670 /*
4671  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4672  * queue (may be a remote CPU queue).
4673  */
4674 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4675 			      unsigned int *qtail)
4676 {
4677 	struct softnet_data *sd;
4678 	unsigned long flags;
4679 	unsigned int qlen;
4680 
4681 	sd = &per_cpu(softnet_data, cpu);
4682 
4683 	local_irq_save(flags);
4684 
4685 	rps_lock(sd);
4686 	if (!netif_running(skb->dev))
4687 		goto drop;
4688 	qlen = skb_queue_len(&sd->input_pkt_queue);
4689 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4690 		if (qlen) {
4691 enqueue:
4692 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4693 			input_queue_tail_incr_save(sd, qtail);
4694 			rps_unlock(sd);
4695 			local_irq_restore(flags);
4696 			return NET_RX_SUCCESS;
4697 		}
4698 
4699 		/* Schedule NAPI for backlog device
4700 		 * We can use non atomic operation since we own the queue lock
4701 		 */
4702 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4703 			if (!rps_ipi_queued(sd))
4704 				____napi_schedule(sd, &sd->backlog);
4705 		}
4706 		goto enqueue;
4707 	}
4708 
4709 drop:
4710 	sd->dropped++;
4711 	rps_unlock(sd);
4712 
4713 	local_irq_restore(flags);
4714 
4715 	atomic_long_inc(&skb->dev->rx_dropped);
4716 	kfree_skb(skb);
4717 	return NET_RX_DROP;
4718 }
4719 
4720 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4721 {
4722 	struct net_device *dev = skb->dev;
4723 	struct netdev_rx_queue *rxqueue;
4724 
4725 	rxqueue = dev->_rx;
4726 
4727 	if (skb_rx_queue_recorded(skb)) {
4728 		u16 index = skb_get_rx_queue(skb);
4729 
4730 		if (unlikely(index >= dev->real_num_rx_queues)) {
4731 			WARN_ONCE(dev->real_num_rx_queues > 1,
4732 				  "%s received packet on queue %u, but number "
4733 				  "of RX queues is %u\n",
4734 				  dev->name, index, dev->real_num_rx_queues);
4735 
4736 			return rxqueue; /* Return first rxqueue */
4737 		}
4738 		rxqueue += index;
4739 	}
4740 	return rxqueue;
4741 }
4742 
4743 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4744 				     struct xdp_buff *xdp,
4745 				     struct bpf_prog *xdp_prog)
4746 {
4747 	void *orig_data, *orig_data_end, *hard_start;
4748 	struct netdev_rx_queue *rxqueue;
4749 	u32 metalen, act = XDP_DROP;
4750 	bool orig_bcast, orig_host;
4751 	u32 mac_len, frame_sz;
4752 	__be16 orig_eth_type;
4753 	struct ethhdr *eth;
4754 	int off;
4755 
4756 	/* Reinjected packets coming from act_mirred or similar should
4757 	 * not get XDP generic processing.
4758 	 */
4759 	if (skb_is_redirected(skb))
4760 		return XDP_PASS;
4761 
4762 	/* XDP packets must be linear and must have sufficient headroom
4763 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4764 	 * native XDP provides, thus we need to do it here as well.
4765 	 */
4766 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4767 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4768 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4769 		int troom = skb->tail + skb->data_len - skb->end;
4770 
4771 		/* In case we have to go down the path and also linearize,
4772 		 * then lets do the pskb_expand_head() work just once here.
4773 		 */
4774 		if (pskb_expand_head(skb,
4775 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4776 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4777 			goto do_drop;
4778 		if (skb_linearize(skb))
4779 			goto do_drop;
4780 	}
4781 
4782 	/* The XDP program wants to see the packet starting at the MAC
4783 	 * header.
4784 	 */
4785 	mac_len = skb->data - skb_mac_header(skb);
4786 	hard_start = skb->data - skb_headroom(skb);
4787 
4788 	/* SKB "head" area always have tailroom for skb_shared_info */
4789 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4790 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4791 
4792 	rxqueue = netif_get_rxqueue(skb);
4793 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4794 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4795 			 skb_headlen(skb) + mac_len, true);
4796 
4797 	orig_data_end = xdp->data_end;
4798 	orig_data = xdp->data;
4799 	eth = (struct ethhdr *)xdp->data;
4800 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4801 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4802 	orig_eth_type = eth->h_proto;
4803 
4804 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4805 
4806 	/* check if bpf_xdp_adjust_head was used */
4807 	off = xdp->data - orig_data;
4808 	if (off) {
4809 		if (off > 0)
4810 			__skb_pull(skb, off);
4811 		else if (off < 0)
4812 			__skb_push(skb, -off);
4813 
4814 		skb->mac_header += off;
4815 		skb_reset_network_header(skb);
4816 	}
4817 
4818 	/* check if bpf_xdp_adjust_tail was used */
4819 	off = xdp->data_end - orig_data_end;
4820 	if (off != 0) {
4821 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4822 		skb->len += off; /* positive on grow, negative on shrink */
4823 	}
4824 
4825 	/* check if XDP changed eth hdr such SKB needs update */
4826 	eth = (struct ethhdr *)xdp->data;
4827 	if ((orig_eth_type != eth->h_proto) ||
4828 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4829 						  skb->dev->dev_addr)) ||
4830 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4831 		__skb_push(skb, ETH_HLEN);
4832 		skb->pkt_type = PACKET_HOST;
4833 		skb->protocol = eth_type_trans(skb, skb->dev);
4834 	}
4835 
4836 	switch (act) {
4837 	case XDP_REDIRECT:
4838 	case XDP_TX:
4839 		__skb_push(skb, mac_len);
4840 		break;
4841 	case XDP_PASS:
4842 		metalen = xdp->data - xdp->data_meta;
4843 		if (metalen)
4844 			skb_metadata_set(skb, metalen);
4845 		break;
4846 	default:
4847 		bpf_warn_invalid_xdp_action(act);
4848 		fallthrough;
4849 	case XDP_ABORTED:
4850 		trace_xdp_exception(skb->dev, xdp_prog, act);
4851 		fallthrough;
4852 	case XDP_DROP:
4853 	do_drop:
4854 		kfree_skb(skb);
4855 		break;
4856 	}
4857 
4858 	return act;
4859 }
4860 
4861 /* When doing generic XDP we have to bypass the qdisc layer and the
4862  * network taps in order to match in-driver-XDP behavior.
4863  */
4864 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4865 {
4866 	struct net_device *dev = skb->dev;
4867 	struct netdev_queue *txq;
4868 	bool free_skb = true;
4869 	int cpu, rc;
4870 
4871 	txq = netdev_core_pick_tx(dev, skb, NULL);
4872 	cpu = smp_processor_id();
4873 	HARD_TX_LOCK(dev, txq, cpu);
4874 	if (!netif_xmit_stopped(txq)) {
4875 		rc = netdev_start_xmit(skb, dev, txq, 0);
4876 		if (dev_xmit_complete(rc))
4877 			free_skb = false;
4878 	}
4879 	HARD_TX_UNLOCK(dev, txq);
4880 	if (free_skb) {
4881 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4882 		kfree_skb(skb);
4883 	}
4884 }
4885 
4886 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4887 
4888 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4889 {
4890 	if (xdp_prog) {
4891 		struct xdp_buff xdp;
4892 		u32 act;
4893 		int err;
4894 
4895 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4896 		if (act != XDP_PASS) {
4897 			switch (act) {
4898 			case XDP_REDIRECT:
4899 				err = xdp_do_generic_redirect(skb->dev, skb,
4900 							      &xdp, xdp_prog);
4901 				if (err)
4902 					goto out_redir;
4903 				break;
4904 			case XDP_TX:
4905 				generic_xdp_tx(skb, xdp_prog);
4906 				break;
4907 			}
4908 			return XDP_DROP;
4909 		}
4910 	}
4911 	return XDP_PASS;
4912 out_redir:
4913 	kfree_skb(skb);
4914 	return XDP_DROP;
4915 }
4916 EXPORT_SYMBOL_GPL(do_xdp_generic);
4917 
4918 static int netif_rx_internal(struct sk_buff *skb)
4919 {
4920 	int ret;
4921 
4922 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4923 
4924 	trace_netif_rx(skb);
4925 
4926 #ifdef CONFIG_RPS
4927 	if (static_branch_unlikely(&rps_needed)) {
4928 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4929 		int cpu;
4930 
4931 		preempt_disable();
4932 		rcu_read_lock();
4933 
4934 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4935 		if (cpu < 0)
4936 			cpu = smp_processor_id();
4937 
4938 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4939 
4940 		rcu_read_unlock();
4941 		preempt_enable();
4942 	} else
4943 #endif
4944 	{
4945 		unsigned int qtail;
4946 
4947 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4948 		put_cpu();
4949 	}
4950 	return ret;
4951 }
4952 
4953 /**
4954  *	netif_rx	-	post buffer to the network code
4955  *	@skb: buffer to post
4956  *
4957  *	This function receives a packet from a device driver and queues it for
4958  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4959  *	may be dropped during processing for congestion control or by the
4960  *	protocol layers.
4961  *
4962  *	return values:
4963  *	NET_RX_SUCCESS	(no congestion)
4964  *	NET_RX_DROP     (packet was dropped)
4965  *
4966  */
4967 
4968 int netif_rx(struct sk_buff *skb)
4969 {
4970 	int ret;
4971 
4972 	trace_netif_rx_entry(skb);
4973 
4974 	ret = netif_rx_internal(skb);
4975 	trace_netif_rx_exit(ret);
4976 
4977 	return ret;
4978 }
4979 EXPORT_SYMBOL(netif_rx);
4980 
4981 int netif_rx_ni(struct sk_buff *skb)
4982 {
4983 	int err;
4984 
4985 	trace_netif_rx_ni_entry(skb);
4986 
4987 	preempt_disable();
4988 	err = netif_rx_internal(skb);
4989 	if (local_softirq_pending())
4990 		do_softirq();
4991 	preempt_enable();
4992 	trace_netif_rx_ni_exit(err);
4993 
4994 	return err;
4995 }
4996 EXPORT_SYMBOL(netif_rx_ni);
4997 
4998 int netif_rx_any_context(struct sk_buff *skb)
4999 {
5000 	/*
5001 	 * If invoked from contexts which do not invoke bottom half
5002 	 * processing either at return from interrupt or when softrqs are
5003 	 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
5004 	 * directly.
5005 	 */
5006 	if (in_interrupt())
5007 		return netif_rx(skb);
5008 	else
5009 		return netif_rx_ni(skb);
5010 }
5011 EXPORT_SYMBOL(netif_rx_any_context);
5012 
5013 static __latent_entropy void net_tx_action(struct softirq_action *h)
5014 {
5015 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5016 
5017 	if (sd->completion_queue) {
5018 		struct sk_buff *clist;
5019 
5020 		local_irq_disable();
5021 		clist = sd->completion_queue;
5022 		sd->completion_queue = NULL;
5023 		local_irq_enable();
5024 
5025 		while (clist) {
5026 			struct sk_buff *skb = clist;
5027 
5028 			clist = clist->next;
5029 
5030 			WARN_ON(refcount_read(&skb->users));
5031 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5032 				trace_consume_skb(skb);
5033 			else
5034 				trace_kfree_skb(skb, net_tx_action);
5035 
5036 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5037 				__kfree_skb(skb);
5038 			else
5039 				__kfree_skb_defer(skb);
5040 		}
5041 	}
5042 
5043 	if (sd->output_queue) {
5044 		struct Qdisc *head;
5045 
5046 		local_irq_disable();
5047 		head = sd->output_queue;
5048 		sd->output_queue = NULL;
5049 		sd->output_queue_tailp = &sd->output_queue;
5050 		local_irq_enable();
5051 
5052 		rcu_read_lock();
5053 
5054 		while (head) {
5055 			struct Qdisc *q = head;
5056 			spinlock_t *root_lock = NULL;
5057 
5058 			head = head->next_sched;
5059 
5060 			/* We need to make sure head->next_sched is read
5061 			 * before clearing __QDISC_STATE_SCHED
5062 			 */
5063 			smp_mb__before_atomic();
5064 
5065 			if (!(q->flags & TCQ_F_NOLOCK)) {
5066 				root_lock = qdisc_lock(q);
5067 				spin_lock(root_lock);
5068 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5069 						     &q->state))) {
5070 				/* There is a synchronize_net() between
5071 				 * STATE_DEACTIVATED flag being set and
5072 				 * qdisc_reset()/some_qdisc_is_busy() in
5073 				 * dev_deactivate(), so we can safely bail out
5074 				 * early here to avoid data race between
5075 				 * qdisc_deactivate() and some_qdisc_is_busy()
5076 				 * for lockless qdisc.
5077 				 */
5078 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5079 				continue;
5080 			}
5081 
5082 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5083 			qdisc_run(q);
5084 			if (root_lock)
5085 				spin_unlock(root_lock);
5086 		}
5087 
5088 		rcu_read_unlock();
5089 	}
5090 
5091 	xfrm_dev_backlog(sd);
5092 }
5093 
5094 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5095 /* This hook is defined here for ATM LANE */
5096 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5097 			     unsigned char *addr) __read_mostly;
5098 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5099 #endif
5100 
5101 static inline struct sk_buff *
5102 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5103 		   struct net_device *orig_dev, bool *another)
5104 {
5105 #ifdef CONFIG_NET_CLS_ACT
5106 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5107 	struct tcf_result cl_res;
5108 
5109 	/* If there's at least one ingress present somewhere (so
5110 	 * we get here via enabled static key), remaining devices
5111 	 * that are not configured with an ingress qdisc will bail
5112 	 * out here.
5113 	 */
5114 	if (!miniq)
5115 		return skb;
5116 
5117 	if (*pt_prev) {
5118 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
5119 		*pt_prev = NULL;
5120 	}
5121 
5122 	qdisc_skb_cb(skb)->pkt_len = skb->len;
5123 	qdisc_skb_cb(skb)->mru = 0;
5124 	qdisc_skb_cb(skb)->post_ct = false;
5125 	skb->tc_at_ingress = 1;
5126 	mini_qdisc_bstats_cpu_update(miniq, skb);
5127 
5128 	switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5129 				     &cl_res, false)) {
5130 	case TC_ACT_OK:
5131 	case TC_ACT_RECLASSIFY:
5132 		skb->tc_index = TC_H_MIN(cl_res.classid);
5133 		break;
5134 	case TC_ACT_SHOT:
5135 		mini_qdisc_qstats_cpu_drop(miniq);
5136 		kfree_skb(skb);
5137 		return NULL;
5138 	case TC_ACT_STOLEN:
5139 	case TC_ACT_QUEUED:
5140 	case TC_ACT_TRAP:
5141 		consume_skb(skb);
5142 		return NULL;
5143 	case TC_ACT_REDIRECT:
5144 		/* skb_mac_header check was done by cls/act_bpf, so
5145 		 * we can safely push the L2 header back before
5146 		 * redirecting to another netdev
5147 		 */
5148 		__skb_push(skb, skb->mac_len);
5149 		if (skb_do_redirect(skb) == -EAGAIN) {
5150 			__skb_pull(skb, skb->mac_len);
5151 			*another = true;
5152 			break;
5153 		}
5154 		return NULL;
5155 	case TC_ACT_CONSUMED:
5156 		return NULL;
5157 	default:
5158 		break;
5159 	}
5160 #endif /* CONFIG_NET_CLS_ACT */
5161 	return skb;
5162 }
5163 
5164 /**
5165  *	netdev_is_rx_handler_busy - check if receive handler is registered
5166  *	@dev: device to check
5167  *
5168  *	Check if a receive handler is already registered for a given device.
5169  *	Return true if there one.
5170  *
5171  *	The caller must hold the rtnl_mutex.
5172  */
5173 bool netdev_is_rx_handler_busy(struct net_device *dev)
5174 {
5175 	ASSERT_RTNL();
5176 	return dev && rtnl_dereference(dev->rx_handler);
5177 }
5178 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5179 
5180 /**
5181  *	netdev_rx_handler_register - register receive handler
5182  *	@dev: device to register a handler for
5183  *	@rx_handler: receive handler to register
5184  *	@rx_handler_data: data pointer that is used by rx handler
5185  *
5186  *	Register a receive handler for a device. This handler will then be
5187  *	called from __netif_receive_skb. A negative errno code is returned
5188  *	on a failure.
5189  *
5190  *	The caller must hold the rtnl_mutex.
5191  *
5192  *	For a general description of rx_handler, see enum rx_handler_result.
5193  */
5194 int netdev_rx_handler_register(struct net_device *dev,
5195 			       rx_handler_func_t *rx_handler,
5196 			       void *rx_handler_data)
5197 {
5198 	if (netdev_is_rx_handler_busy(dev))
5199 		return -EBUSY;
5200 
5201 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5202 		return -EINVAL;
5203 
5204 	/* Note: rx_handler_data must be set before rx_handler */
5205 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5206 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5207 
5208 	return 0;
5209 }
5210 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5211 
5212 /**
5213  *	netdev_rx_handler_unregister - unregister receive handler
5214  *	@dev: device to unregister a handler from
5215  *
5216  *	Unregister a receive handler from a device.
5217  *
5218  *	The caller must hold the rtnl_mutex.
5219  */
5220 void netdev_rx_handler_unregister(struct net_device *dev)
5221 {
5222 
5223 	ASSERT_RTNL();
5224 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5225 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5226 	 * section has a guarantee to see a non NULL rx_handler_data
5227 	 * as well.
5228 	 */
5229 	synchronize_net();
5230 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5231 }
5232 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5233 
5234 /*
5235  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5236  * the special handling of PFMEMALLOC skbs.
5237  */
5238 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5239 {
5240 	switch (skb->protocol) {
5241 	case htons(ETH_P_ARP):
5242 	case htons(ETH_P_IP):
5243 	case htons(ETH_P_IPV6):
5244 	case htons(ETH_P_8021Q):
5245 	case htons(ETH_P_8021AD):
5246 		return true;
5247 	default:
5248 		return false;
5249 	}
5250 }
5251 
5252 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5253 			     int *ret, struct net_device *orig_dev)
5254 {
5255 	if (nf_hook_ingress_active(skb)) {
5256 		int ingress_retval;
5257 
5258 		if (*pt_prev) {
5259 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5260 			*pt_prev = NULL;
5261 		}
5262 
5263 		rcu_read_lock();
5264 		ingress_retval = nf_hook_ingress(skb);
5265 		rcu_read_unlock();
5266 		return ingress_retval;
5267 	}
5268 	return 0;
5269 }
5270 
5271 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5272 				    struct packet_type **ppt_prev)
5273 {
5274 	struct packet_type *ptype, *pt_prev;
5275 	rx_handler_func_t *rx_handler;
5276 	struct sk_buff *skb = *pskb;
5277 	struct net_device *orig_dev;
5278 	bool deliver_exact = false;
5279 	int ret = NET_RX_DROP;
5280 	__be16 type;
5281 
5282 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
5283 
5284 	trace_netif_receive_skb(skb);
5285 
5286 	orig_dev = skb->dev;
5287 
5288 	skb_reset_network_header(skb);
5289 	if (!skb_transport_header_was_set(skb))
5290 		skb_reset_transport_header(skb);
5291 	skb_reset_mac_len(skb);
5292 
5293 	pt_prev = NULL;
5294 
5295 another_round:
5296 	skb->skb_iif = skb->dev->ifindex;
5297 
5298 	__this_cpu_inc(softnet_data.processed);
5299 
5300 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5301 		int ret2;
5302 
5303 		preempt_disable();
5304 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5305 		preempt_enable();
5306 
5307 		if (ret2 != XDP_PASS) {
5308 			ret = NET_RX_DROP;
5309 			goto out;
5310 		}
5311 		skb_reset_mac_len(skb);
5312 	}
5313 
5314 	if (eth_type_vlan(skb->protocol)) {
5315 		skb = skb_vlan_untag(skb);
5316 		if (unlikely(!skb))
5317 			goto out;
5318 	}
5319 
5320 	if (skb_skip_tc_classify(skb))
5321 		goto skip_classify;
5322 
5323 	if (pfmemalloc)
5324 		goto skip_taps;
5325 
5326 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5327 		if (pt_prev)
5328 			ret = deliver_skb(skb, pt_prev, orig_dev);
5329 		pt_prev = ptype;
5330 	}
5331 
5332 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5333 		if (pt_prev)
5334 			ret = deliver_skb(skb, pt_prev, orig_dev);
5335 		pt_prev = ptype;
5336 	}
5337 
5338 skip_taps:
5339 #ifdef CONFIG_NET_INGRESS
5340 	if (static_branch_unlikely(&ingress_needed_key)) {
5341 		bool another = false;
5342 
5343 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5344 					 &another);
5345 		if (another)
5346 			goto another_round;
5347 		if (!skb)
5348 			goto out;
5349 
5350 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5351 			goto out;
5352 	}
5353 #endif
5354 	skb_reset_redirect(skb);
5355 skip_classify:
5356 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5357 		goto drop;
5358 
5359 	if (skb_vlan_tag_present(skb)) {
5360 		if (pt_prev) {
5361 			ret = deliver_skb(skb, pt_prev, orig_dev);
5362 			pt_prev = NULL;
5363 		}
5364 		if (vlan_do_receive(&skb))
5365 			goto another_round;
5366 		else if (unlikely(!skb))
5367 			goto out;
5368 	}
5369 
5370 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5371 	if (rx_handler) {
5372 		if (pt_prev) {
5373 			ret = deliver_skb(skb, pt_prev, orig_dev);
5374 			pt_prev = NULL;
5375 		}
5376 		switch (rx_handler(&skb)) {
5377 		case RX_HANDLER_CONSUMED:
5378 			ret = NET_RX_SUCCESS;
5379 			goto out;
5380 		case RX_HANDLER_ANOTHER:
5381 			goto another_round;
5382 		case RX_HANDLER_EXACT:
5383 			deliver_exact = true;
5384 			break;
5385 		case RX_HANDLER_PASS:
5386 			break;
5387 		default:
5388 			BUG();
5389 		}
5390 	}
5391 
5392 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5393 check_vlan_id:
5394 		if (skb_vlan_tag_get_id(skb)) {
5395 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5396 			 * find vlan device.
5397 			 */
5398 			skb->pkt_type = PACKET_OTHERHOST;
5399 		} else if (eth_type_vlan(skb->protocol)) {
5400 			/* Outer header is 802.1P with vlan 0, inner header is
5401 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5402 			 * not find vlan dev for vlan id 0.
5403 			 */
5404 			__vlan_hwaccel_clear_tag(skb);
5405 			skb = skb_vlan_untag(skb);
5406 			if (unlikely(!skb))
5407 				goto out;
5408 			if (vlan_do_receive(&skb))
5409 				/* After stripping off 802.1P header with vlan 0
5410 				 * vlan dev is found for inner header.
5411 				 */
5412 				goto another_round;
5413 			else if (unlikely(!skb))
5414 				goto out;
5415 			else
5416 				/* We have stripped outer 802.1P vlan 0 header.
5417 				 * But could not find vlan dev.
5418 				 * check again for vlan id to set OTHERHOST.
5419 				 */
5420 				goto check_vlan_id;
5421 		}
5422 		/* Note: we might in the future use prio bits
5423 		 * and set skb->priority like in vlan_do_receive()
5424 		 * For the time being, just ignore Priority Code Point
5425 		 */
5426 		__vlan_hwaccel_clear_tag(skb);
5427 	}
5428 
5429 	type = skb->protocol;
5430 
5431 	/* deliver only exact match when indicated */
5432 	if (likely(!deliver_exact)) {
5433 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5434 				       &ptype_base[ntohs(type) &
5435 						   PTYPE_HASH_MASK]);
5436 	}
5437 
5438 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5439 			       &orig_dev->ptype_specific);
5440 
5441 	if (unlikely(skb->dev != orig_dev)) {
5442 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5443 				       &skb->dev->ptype_specific);
5444 	}
5445 
5446 	if (pt_prev) {
5447 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5448 			goto drop;
5449 		*ppt_prev = pt_prev;
5450 	} else {
5451 drop:
5452 		if (!deliver_exact)
5453 			atomic_long_inc(&skb->dev->rx_dropped);
5454 		else
5455 			atomic_long_inc(&skb->dev->rx_nohandler);
5456 		kfree_skb(skb);
5457 		/* Jamal, now you will not able to escape explaining
5458 		 * me how you were going to use this. :-)
5459 		 */
5460 		ret = NET_RX_DROP;
5461 	}
5462 
5463 out:
5464 	/* The invariant here is that if *ppt_prev is not NULL
5465 	 * then skb should also be non-NULL.
5466 	 *
5467 	 * Apparently *ppt_prev assignment above holds this invariant due to
5468 	 * skb dereferencing near it.
5469 	 */
5470 	*pskb = skb;
5471 	return ret;
5472 }
5473 
5474 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5475 {
5476 	struct net_device *orig_dev = skb->dev;
5477 	struct packet_type *pt_prev = NULL;
5478 	int ret;
5479 
5480 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5481 	if (pt_prev)
5482 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5483 					 skb->dev, pt_prev, orig_dev);
5484 	return ret;
5485 }
5486 
5487 /**
5488  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5489  *	@skb: buffer to process
5490  *
5491  *	More direct receive version of netif_receive_skb().  It should
5492  *	only be used by callers that have a need to skip RPS and Generic XDP.
5493  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5494  *
5495  *	This function may only be called from softirq context and interrupts
5496  *	should be enabled.
5497  *
5498  *	Return values (usually ignored):
5499  *	NET_RX_SUCCESS: no congestion
5500  *	NET_RX_DROP: packet was dropped
5501  */
5502 int netif_receive_skb_core(struct sk_buff *skb)
5503 {
5504 	int ret;
5505 
5506 	rcu_read_lock();
5507 	ret = __netif_receive_skb_one_core(skb, false);
5508 	rcu_read_unlock();
5509 
5510 	return ret;
5511 }
5512 EXPORT_SYMBOL(netif_receive_skb_core);
5513 
5514 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5515 						  struct packet_type *pt_prev,
5516 						  struct net_device *orig_dev)
5517 {
5518 	struct sk_buff *skb, *next;
5519 
5520 	if (!pt_prev)
5521 		return;
5522 	if (list_empty(head))
5523 		return;
5524 	if (pt_prev->list_func != NULL)
5525 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5526 				   ip_list_rcv, head, pt_prev, orig_dev);
5527 	else
5528 		list_for_each_entry_safe(skb, next, head, list) {
5529 			skb_list_del_init(skb);
5530 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5531 		}
5532 }
5533 
5534 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5535 {
5536 	/* Fast-path assumptions:
5537 	 * - There is no RX handler.
5538 	 * - Only one packet_type matches.
5539 	 * If either of these fails, we will end up doing some per-packet
5540 	 * processing in-line, then handling the 'last ptype' for the whole
5541 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5542 	 * because the 'last ptype' must be constant across the sublist, and all
5543 	 * other ptypes are handled per-packet.
5544 	 */
5545 	/* Current (common) ptype of sublist */
5546 	struct packet_type *pt_curr = NULL;
5547 	/* Current (common) orig_dev of sublist */
5548 	struct net_device *od_curr = NULL;
5549 	struct list_head sublist;
5550 	struct sk_buff *skb, *next;
5551 
5552 	INIT_LIST_HEAD(&sublist);
5553 	list_for_each_entry_safe(skb, next, head, list) {
5554 		struct net_device *orig_dev = skb->dev;
5555 		struct packet_type *pt_prev = NULL;
5556 
5557 		skb_list_del_init(skb);
5558 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5559 		if (!pt_prev)
5560 			continue;
5561 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5562 			/* dispatch old sublist */
5563 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5564 			/* start new sublist */
5565 			INIT_LIST_HEAD(&sublist);
5566 			pt_curr = pt_prev;
5567 			od_curr = orig_dev;
5568 		}
5569 		list_add_tail(&skb->list, &sublist);
5570 	}
5571 
5572 	/* dispatch final sublist */
5573 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5574 }
5575 
5576 static int __netif_receive_skb(struct sk_buff *skb)
5577 {
5578 	int ret;
5579 
5580 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5581 		unsigned int noreclaim_flag;
5582 
5583 		/*
5584 		 * PFMEMALLOC skbs are special, they should
5585 		 * - be delivered to SOCK_MEMALLOC sockets only
5586 		 * - stay away from userspace
5587 		 * - have bounded memory usage
5588 		 *
5589 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5590 		 * context down to all allocation sites.
5591 		 */
5592 		noreclaim_flag = memalloc_noreclaim_save();
5593 		ret = __netif_receive_skb_one_core(skb, true);
5594 		memalloc_noreclaim_restore(noreclaim_flag);
5595 	} else
5596 		ret = __netif_receive_skb_one_core(skb, false);
5597 
5598 	return ret;
5599 }
5600 
5601 static void __netif_receive_skb_list(struct list_head *head)
5602 {
5603 	unsigned long noreclaim_flag = 0;
5604 	struct sk_buff *skb, *next;
5605 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5606 
5607 	list_for_each_entry_safe(skb, next, head, list) {
5608 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5609 			struct list_head sublist;
5610 
5611 			/* Handle the previous sublist */
5612 			list_cut_before(&sublist, head, &skb->list);
5613 			if (!list_empty(&sublist))
5614 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5615 			pfmemalloc = !pfmemalloc;
5616 			/* See comments in __netif_receive_skb */
5617 			if (pfmemalloc)
5618 				noreclaim_flag = memalloc_noreclaim_save();
5619 			else
5620 				memalloc_noreclaim_restore(noreclaim_flag);
5621 		}
5622 	}
5623 	/* Handle the remaining sublist */
5624 	if (!list_empty(head))
5625 		__netif_receive_skb_list_core(head, pfmemalloc);
5626 	/* Restore pflags */
5627 	if (pfmemalloc)
5628 		memalloc_noreclaim_restore(noreclaim_flag);
5629 }
5630 
5631 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5632 {
5633 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5634 	struct bpf_prog *new = xdp->prog;
5635 	int ret = 0;
5636 
5637 	if (new) {
5638 		u32 i;
5639 
5640 		mutex_lock(&new->aux->used_maps_mutex);
5641 
5642 		/* generic XDP does not work with DEVMAPs that can
5643 		 * have a bpf_prog installed on an entry
5644 		 */
5645 		for (i = 0; i < new->aux->used_map_cnt; i++) {
5646 			if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5647 			    cpu_map_prog_allowed(new->aux->used_maps[i])) {
5648 				mutex_unlock(&new->aux->used_maps_mutex);
5649 				return -EINVAL;
5650 			}
5651 		}
5652 
5653 		mutex_unlock(&new->aux->used_maps_mutex);
5654 	}
5655 
5656 	switch (xdp->command) {
5657 	case XDP_SETUP_PROG:
5658 		rcu_assign_pointer(dev->xdp_prog, new);
5659 		if (old)
5660 			bpf_prog_put(old);
5661 
5662 		if (old && !new) {
5663 			static_branch_dec(&generic_xdp_needed_key);
5664 		} else if (new && !old) {
5665 			static_branch_inc(&generic_xdp_needed_key);
5666 			dev_disable_lro(dev);
5667 			dev_disable_gro_hw(dev);
5668 		}
5669 		break;
5670 
5671 	default:
5672 		ret = -EINVAL;
5673 		break;
5674 	}
5675 
5676 	return ret;
5677 }
5678 
5679 static int netif_receive_skb_internal(struct sk_buff *skb)
5680 {
5681 	int ret;
5682 
5683 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5684 
5685 	if (skb_defer_rx_timestamp(skb))
5686 		return NET_RX_SUCCESS;
5687 
5688 	rcu_read_lock();
5689 #ifdef CONFIG_RPS
5690 	if (static_branch_unlikely(&rps_needed)) {
5691 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5692 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5693 
5694 		if (cpu >= 0) {
5695 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5696 			rcu_read_unlock();
5697 			return ret;
5698 		}
5699 	}
5700 #endif
5701 	ret = __netif_receive_skb(skb);
5702 	rcu_read_unlock();
5703 	return ret;
5704 }
5705 
5706 static void netif_receive_skb_list_internal(struct list_head *head)
5707 {
5708 	struct sk_buff *skb, *next;
5709 	struct list_head sublist;
5710 
5711 	INIT_LIST_HEAD(&sublist);
5712 	list_for_each_entry_safe(skb, next, head, list) {
5713 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5714 		skb_list_del_init(skb);
5715 		if (!skb_defer_rx_timestamp(skb))
5716 			list_add_tail(&skb->list, &sublist);
5717 	}
5718 	list_splice_init(&sublist, head);
5719 
5720 	rcu_read_lock();
5721 #ifdef CONFIG_RPS
5722 	if (static_branch_unlikely(&rps_needed)) {
5723 		list_for_each_entry_safe(skb, next, head, list) {
5724 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5725 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5726 
5727 			if (cpu >= 0) {
5728 				/* Will be handled, remove from list */
5729 				skb_list_del_init(skb);
5730 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5731 			}
5732 		}
5733 	}
5734 #endif
5735 	__netif_receive_skb_list(head);
5736 	rcu_read_unlock();
5737 }
5738 
5739 /**
5740  *	netif_receive_skb - process receive buffer from network
5741  *	@skb: buffer to process
5742  *
5743  *	netif_receive_skb() is the main receive data processing function.
5744  *	It always succeeds. The buffer may be dropped during processing
5745  *	for congestion control or by the protocol layers.
5746  *
5747  *	This function may only be called from softirq context and interrupts
5748  *	should be enabled.
5749  *
5750  *	Return values (usually ignored):
5751  *	NET_RX_SUCCESS: no congestion
5752  *	NET_RX_DROP: packet was dropped
5753  */
5754 int netif_receive_skb(struct sk_buff *skb)
5755 {
5756 	int ret;
5757 
5758 	trace_netif_receive_skb_entry(skb);
5759 
5760 	ret = netif_receive_skb_internal(skb);
5761 	trace_netif_receive_skb_exit(ret);
5762 
5763 	return ret;
5764 }
5765 EXPORT_SYMBOL(netif_receive_skb);
5766 
5767 /**
5768  *	netif_receive_skb_list - process many receive buffers from network
5769  *	@head: list of skbs to process.
5770  *
5771  *	Since return value of netif_receive_skb() is normally ignored, and
5772  *	wouldn't be meaningful for a list, this function returns void.
5773  *
5774  *	This function may only be called from softirq context and interrupts
5775  *	should be enabled.
5776  */
5777 void netif_receive_skb_list(struct list_head *head)
5778 {
5779 	struct sk_buff *skb;
5780 
5781 	if (list_empty(head))
5782 		return;
5783 	if (trace_netif_receive_skb_list_entry_enabled()) {
5784 		list_for_each_entry(skb, head, list)
5785 			trace_netif_receive_skb_list_entry(skb);
5786 	}
5787 	netif_receive_skb_list_internal(head);
5788 	trace_netif_receive_skb_list_exit(0);
5789 }
5790 EXPORT_SYMBOL(netif_receive_skb_list);
5791 
5792 static DEFINE_PER_CPU(struct work_struct, flush_works);
5793 
5794 /* Network device is going away, flush any packets still pending */
5795 static void flush_backlog(struct work_struct *work)
5796 {
5797 	struct sk_buff *skb, *tmp;
5798 	struct softnet_data *sd;
5799 
5800 	local_bh_disable();
5801 	sd = this_cpu_ptr(&softnet_data);
5802 
5803 	local_irq_disable();
5804 	rps_lock(sd);
5805 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5806 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5807 			__skb_unlink(skb, &sd->input_pkt_queue);
5808 			dev_kfree_skb_irq(skb);
5809 			input_queue_head_incr(sd);
5810 		}
5811 	}
5812 	rps_unlock(sd);
5813 	local_irq_enable();
5814 
5815 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5816 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5817 			__skb_unlink(skb, &sd->process_queue);
5818 			kfree_skb(skb);
5819 			input_queue_head_incr(sd);
5820 		}
5821 	}
5822 	local_bh_enable();
5823 }
5824 
5825 static bool flush_required(int cpu)
5826 {
5827 #if IS_ENABLED(CONFIG_RPS)
5828 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5829 	bool do_flush;
5830 
5831 	local_irq_disable();
5832 	rps_lock(sd);
5833 
5834 	/* as insertion into process_queue happens with the rps lock held,
5835 	 * process_queue access may race only with dequeue
5836 	 */
5837 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5838 		   !skb_queue_empty_lockless(&sd->process_queue);
5839 	rps_unlock(sd);
5840 	local_irq_enable();
5841 
5842 	return do_flush;
5843 #endif
5844 	/* without RPS we can't safely check input_pkt_queue: during a
5845 	 * concurrent remote skb_queue_splice() we can detect as empty both
5846 	 * input_pkt_queue and process_queue even if the latter could end-up
5847 	 * containing a lot of packets.
5848 	 */
5849 	return true;
5850 }
5851 
5852 static void flush_all_backlogs(void)
5853 {
5854 	static cpumask_t flush_cpus;
5855 	unsigned int cpu;
5856 
5857 	/* since we are under rtnl lock protection we can use static data
5858 	 * for the cpumask and avoid allocating on stack the possibly
5859 	 * large mask
5860 	 */
5861 	ASSERT_RTNL();
5862 
5863 	get_online_cpus();
5864 
5865 	cpumask_clear(&flush_cpus);
5866 	for_each_online_cpu(cpu) {
5867 		if (flush_required(cpu)) {
5868 			queue_work_on(cpu, system_highpri_wq,
5869 				      per_cpu_ptr(&flush_works, cpu));
5870 			cpumask_set_cpu(cpu, &flush_cpus);
5871 		}
5872 	}
5873 
5874 	/* we can have in flight packet[s] on the cpus we are not flushing,
5875 	 * synchronize_net() in unregister_netdevice_many() will take care of
5876 	 * them
5877 	 */
5878 	for_each_cpu(cpu, &flush_cpus)
5879 		flush_work(per_cpu_ptr(&flush_works, cpu));
5880 
5881 	put_online_cpus();
5882 }
5883 
5884 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5885 static void gro_normal_list(struct napi_struct *napi)
5886 {
5887 	if (!napi->rx_count)
5888 		return;
5889 	netif_receive_skb_list_internal(&napi->rx_list);
5890 	INIT_LIST_HEAD(&napi->rx_list);
5891 	napi->rx_count = 0;
5892 }
5893 
5894 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5895  * pass the whole batch up to the stack.
5896  */
5897 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5898 {
5899 	list_add_tail(&skb->list, &napi->rx_list);
5900 	napi->rx_count += segs;
5901 	if (napi->rx_count >= gro_normal_batch)
5902 		gro_normal_list(napi);
5903 }
5904 
5905 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5906 {
5907 	struct packet_offload *ptype;
5908 	__be16 type = skb->protocol;
5909 	struct list_head *head = &offload_base;
5910 	int err = -ENOENT;
5911 
5912 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5913 
5914 	if (NAPI_GRO_CB(skb)->count == 1) {
5915 		skb_shinfo(skb)->gso_size = 0;
5916 		goto out;
5917 	}
5918 
5919 	rcu_read_lock();
5920 	list_for_each_entry_rcu(ptype, head, list) {
5921 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5922 			continue;
5923 
5924 		err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5925 					 ipv6_gro_complete, inet_gro_complete,
5926 					 skb, 0);
5927 		break;
5928 	}
5929 	rcu_read_unlock();
5930 
5931 	if (err) {
5932 		WARN_ON(&ptype->list == head);
5933 		kfree_skb(skb);
5934 		return NET_RX_SUCCESS;
5935 	}
5936 
5937 out:
5938 	gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5939 	return NET_RX_SUCCESS;
5940 }
5941 
5942 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5943 				   bool flush_old)
5944 {
5945 	struct list_head *head = &napi->gro_hash[index].list;
5946 	struct sk_buff *skb, *p;
5947 
5948 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5949 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5950 			return;
5951 		skb_list_del_init(skb);
5952 		napi_gro_complete(napi, skb);
5953 		napi->gro_hash[index].count--;
5954 	}
5955 
5956 	if (!napi->gro_hash[index].count)
5957 		__clear_bit(index, &napi->gro_bitmask);
5958 }
5959 
5960 /* napi->gro_hash[].list contains packets ordered by age.
5961  * youngest packets at the head of it.
5962  * Complete skbs in reverse order to reduce latencies.
5963  */
5964 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5965 {
5966 	unsigned long bitmask = napi->gro_bitmask;
5967 	unsigned int i, base = ~0U;
5968 
5969 	while ((i = ffs(bitmask)) != 0) {
5970 		bitmask >>= i;
5971 		base += i;
5972 		__napi_gro_flush_chain(napi, base, flush_old);
5973 	}
5974 }
5975 EXPORT_SYMBOL(napi_gro_flush);
5976 
5977 static void gro_list_prepare(const struct list_head *head,
5978 			     const struct sk_buff *skb)
5979 {
5980 	unsigned int maclen = skb->dev->hard_header_len;
5981 	u32 hash = skb_get_hash_raw(skb);
5982 	struct sk_buff *p;
5983 
5984 	list_for_each_entry(p, head, list) {
5985 		unsigned long diffs;
5986 
5987 		NAPI_GRO_CB(p)->flush = 0;
5988 
5989 		if (hash != skb_get_hash_raw(p)) {
5990 			NAPI_GRO_CB(p)->same_flow = 0;
5991 			continue;
5992 		}
5993 
5994 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5995 		diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5996 		if (skb_vlan_tag_present(p))
5997 			diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5998 		diffs |= skb_metadata_dst_cmp(p, skb);
5999 		diffs |= skb_metadata_differs(p, skb);
6000 		if (maclen == ETH_HLEN)
6001 			diffs |= compare_ether_header(skb_mac_header(p),
6002 						      skb_mac_header(skb));
6003 		else if (!diffs)
6004 			diffs = memcmp(skb_mac_header(p),
6005 				       skb_mac_header(skb),
6006 				       maclen);
6007 		NAPI_GRO_CB(p)->same_flow = !diffs;
6008 	}
6009 }
6010 
6011 static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
6012 {
6013 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
6014 	const skb_frag_t *frag0 = &pinfo->frags[0];
6015 
6016 	NAPI_GRO_CB(skb)->data_offset = 0;
6017 	NAPI_GRO_CB(skb)->frag0 = NULL;
6018 	NAPI_GRO_CB(skb)->frag0_len = 0;
6019 
6020 	if (!skb_headlen(skb) && pinfo->nr_frags &&
6021 	    !PageHighMem(skb_frag_page(frag0)) &&
6022 	    (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6023 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6024 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6025 						    skb_frag_size(frag0),
6026 						    skb->end - skb->tail);
6027 	}
6028 }
6029 
6030 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6031 {
6032 	struct skb_shared_info *pinfo = skb_shinfo(skb);
6033 
6034 	BUG_ON(skb->end - skb->tail < grow);
6035 
6036 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6037 
6038 	skb->data_len -= grow;
6039 	skb->tail += grow;
6040 
6041 	skb_frag_off_add(&pinfo->frags[0], grow);
6042 	skb_frag_size_sub(&pinfo->frags[0], grow);
6043 
6044 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6045 		skb_frag_unref(skb, 0);
6046 		memmove(pinfo->frags, pinfo->frags + 1,
6047 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
6048 	}
6049 }
6050 
6051 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6052 {
6053 	struct sk_buff *oldest;
6054 
6055 	oldest = list_last_entry(head, struct sk_buff, list);
6056 
6057 	/* We are called with head length >= MAX_GRO_SKBS, so this is
6058 	 * impossible.
6059 	 */
6060 	if (WARN_ON_ONCE(!oldest))
6061 		return;
6062 
6063 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
6064 	 * SKB to the chain.
6065 	 */
6066 	skb_list_del_init(oldest);
6067 	napi_gro_complete(napi, oldest);
6068 }
6069 
6070 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6071 {
6072 	u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6073 	struct gro_list *gro_list = &napi->gro_hash[bucket];
6074 	struct list_head *head = &offload_base;
6075 	struct packet_offload *ptype;
6076 	__be16 type = skb->protocol;
6077 	struct sk_buff *pp = NULL;
6078 	enum gro_result ret;
6079 	int same_flow;
6080 	int grow;
6081 
6082 	if (netif_elide_gro(skb->dev))
6083 		goto normal;
6084 
6085 	gro_list_prepare(&gro_list->list, skb);
6086 
6087 	rcu_read_lock();
6088 	list_for_each_entry_rcu(ptype, head, list) {
6089 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6090 			continue;
6091 
6092 		skb_set_network_header(skb, skb_gro_offset(skb));
6093 		skb_reset_mac_len(skb);
6094 		NAPI_GRO_CB(skb)->same_flow = 0;
6095 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6096 		NAPI_GRO_CB(skb)->free = 0;
6097 		NAPI_GRO_CB(skb)->encap_mark = 0;
6098 		NAPI_GRO_CB(skb)->recursion_counter = 0;
6099 		NAPI_GRO_CB(skb)->is_fou = 0;
6100 		NAPI_GRO_CB(skb)->is_atomic = 1;
6101 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6102 
6103 		/* Setup for GRO checksum validation */
6104 		switch (skb->ip_summed) {
6105 		case CHECKSUM_COMPLETE:
6106 			NAPI_GRO_CB(skb)->csum = skb->csum;
6107 			NAPI_GRO_CB(skb)->csum_valid = 1;
6108 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6109 			break;
6110 		case CHECKSUM_UNNECESSARY:
6111 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6112 			NAPI_GRO_CB(skb)->csum_valid = 0;
6113 			break;
6114 		default:
6115 			NAPI_GRO_CB(skb)->csum_cnt = 0;
6116 			NAPI_GRO_CB(skb)->csum_valid = 0;
6117 		}
6118 
6119 		pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6120 					ipv6_gro_receive, inet_gro_receive,
6121 					&gro_list->list, skb);
6122 		break;
6123 	}
6124 	rcu_read_unlock();
6125 
6126 	if (&ptype->list == head)
6127 		goto normal;
6128 
6129 	if (PTR_ERR(pp) == -EINPROGRESS) {
6130 		ret = GRO_CONSUMED;
6131 		goto ok;
6132 	}
6133 
6134 	same_flow = NAPI_GRO_CB(skb)->same_flow;
6135 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6136 
6137 	if (pp) {
6138 		skb_list_del_init(pp);
6139 		napi_gro_complete(napi, pp);
6140 		gro_list->count--;
6141 	}
6142 
6143 	if (same_flow)
6144 		goto ok;
6145 
6146 	if (NAPI_GRO_CB(skb)->flush)
6147 		goto normal;
6148 
6149 	if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6150 		gro_flush_oldest(napi, &gro_list->list);
6151 	else
6152 		gro_list->count++;
6153 
6154 	NAPI_GRO_CB(skb)->count = 1;
6155 	NAPI_GRO_CB(skb)->age = jiffies;
6156 	NAPI_GRO_CB(skb)->last = skb;
6157 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6158 	list_add(&skb->list, &gro_list->list);
6159 	ret = GRO_HELD;
6160 
6161 pull:
6162 	grow = skb_gro_offset(skb) - skb_headlen(skb);
6163 	if (grow > 0)
6164 		gro_pull_from_frag0(skb, grow);
6165 ok:
6166 	if (gro_list->count) {
6167 		if (!test_bit(bucket, &napi->gro_bitmask))
6168 			__set_bit(bucket, &napi->gro_bitmask);
6169 	} else if (test_bit(bucket, &napi->gro_bitmask)) {
6170 		__clear_bit(bucket, &napi->gro_bitmask);
6171 	}
6172 
6173 	return ret;
6174 
6175 normal:
6176 	ret = GRO_NORMAL;
6177 	goto pull;
6178 }
6179 
6180 struct packet_offload *gro_find_receive_by_type(__be16 type)
6181 {
6182 	struct list_head *offload_head = &offload_base;
6183 	struct packet_offload *ptype;
6184 
6185 	list_for_each_entry_rcu(ptype, offload_head, list) {
6186 		if (ptype->type != type || !ptype->callbacks.gro_receive)
6187 			continue;
6188 		return ptype;
6189 	}
6190 	return NULL;
6191 }
6192 EXPORT_SYMBOL(gro_find_receive_by_type);
6193 
6194 struct packet_offload *gro_find_complete_by_type(__be16 type)
6195 {
6196 	struct list_head *offload_head = &offload_base;
6197 	struct packet_offload *ptype;
6198 
6199 	list_for_each_entry_rcu(ptype, offload_head, list) {
6200 		if (ptype->type != type || !ptype->callbacks.gro_complete)
6201 			continue;
6202 		return ptype;
6203 	}
6204 	return NULL;
6205 }
6206 EXPORT_SYMBOL(gro_find_complete_by_type);
6207 
6208 static gro_result_t napi_skb_finish(struct napi_struct *napi,
6209 				    struct sk_buff *skb,
6210 				    gro_result_t ret)
6211 {
6212 	switch (ret) {
6213 	case GRO_NORMAL:
6214 		gro_normal_one(napi, skb, 1);
6215 		break;
6216 
6217 	case GRO_MERGED_FREE:
6218 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6219 			napi_skb_free_stolen_head(skb);
6220 		else
6221 			__kfree_skb_defer(skb);
6222 		break;
6223 
6224 	case GRO_HELD:
6225 	case GRO_MERGED:
6226 	case GRO_CONSUMED:
6227 		break;
6228 	}
6229 
6230 	return ret;
6231 }
6232 
6233 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6234 {
6235 	gro_result_t ret;
6236 
6237 	skb_mark_napi_id(skb, napi);
6238 	trace_napi_gro_receive_entry(skb);
6239 
6240 	skb_gro_reset_offset(skb, 0);
6241 
6242 	ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6243 	trace_napi_gro_receive_exit(ret);
6244 
6245 	return ret;
6246 }
6247 EXPORT_SYMBOL(napi_gro_receive);
6248 
6249 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6250 {
6251 	if (unlikely(skb->pfmemalloc)) {
6252 		consume_skb(skb);
6253 		return;
6254 	}
6255 	__skb_pull(skb, skb_headlen(skb));
6256 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
6257 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6258 	__vlan_hwaccel_clear_tag(skb);
6259 	skb->dev = napi->dev;
6260 	skb->skb_iif = 0;
6261 
6262 	/* eth_type_trans() assumes pkt_type is PACKET_HOST */
6263 	skb->pkt_type = PACKET_HOST;
6264 
6265 	skb->encapsulation = 0;
6266 	skb_shinfo(skb)->gso_type = 0;
6267 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6268 	skb_ext_reset(skb);
6269 
6270 	napi->skb = skb;
6271 }
6272 
6273 struct sk_buff *napi_get_frags(struct napi_struct *napi)
6274 {
6275 	struct sk_buff *skb = napi->skb;
6276 
6277 	if (!skb) {
6278 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6279 		if (skb) {
6280 			napi->skb = skb;
6281 			skb_mark_napi_id(skb, napi);
6282 		}
6283 	}
6284 	return skb;
6285 }
6286 EXPORT_SYMBOL(napi_get_frags);
6287 
6288 static gro_result_t napi_frags_finish(struct napi_struct *napi,
6289 				      struct sk_buff *skb,
6290 				      gro_result_t ret)
6291 {
6292 	switch (ret) {
6293 	case GRO_NORMAL:
6294 	case GRO_HELD:
6295 		__skb_push(skb, ETH_HLEN);
6296 		skb->protocol = eth_type_trans(skb, skb->dev);
6297 		if (ret == GRO_NORMAL)
6298 			gro_normal_one(napi, skb, 1);
6299 		break;
6300 
6301 	case GRO_MERGED_FREE:
6302 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6303 			napi_skb_free_stolen_head(skb);
6304 		else
6305 			napi_reuse_skb(napi, skb);
6306 		break;
6307 
6308 	case GRO_MERGED:
6309 	case GRO_CONSUMED:
6310 		break;
6311 	}
6312 
6313 	return ret;
6314 }
6315 
6316 /* Upper GRO stack assumes network header starts at gro_offset=0
6317  * Drivers could call both napi_gro_frags() and napi_gro_receive()
6318  * We copy ethernet header into skb->data to have a common layout.
6319  */
6320 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6321 {
6322 	struct sk_buff *skb = napi->skb;
6323 	const struct ethhdr *eth;
6324 	unsigned int hlen = sizeof(*eth);
6325 
6326 	napi->skb = NULL;
6327 
6328 	skb_reset_mac_header(skb);
6329 	skb_gro_reset_offset(skb, hlen);
6330 
6331 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
6332 		eth = skb_gro_header_slow(skb, hlen, 0);
6333 		if (unlikely(!eth)) {
6334 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6335 					     __func__, napi->dev->name);
6336 			napi_reuse_skb(napi, skb);
6337 			return NULL;
6338 		}
6339 	} else {
6340 		eth = (const struct ethhdr *)skb->data;
6341 		gro_pull_from_frag0(skb, hlen);
6342 		NAPI_GRO_CB(skb)->frag0 += hlen;
6343 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
6344 	}
6345 	__skb_pull(skb, hlen);
6346 
6347 	/*
6348 	 * This works because the only protocols we care about don't require
6349 	 * special handling.
6350 	 * We'll fix it up properly in napi_frags_finish()
6351 	 */
6352 	skb->protocol = eth->h_proto;
6353 
6354 	return skb;
6355 }
6356 
6357 gro_result_t napi_gro_frags(struct napi_struct *napi)
6358 {
6359 	gro_result_t ret;
6360 	struct sk_buff *skb = napi_frags_skb(napi);
6361 
6362 	trace_napi_gro_frags_entry(skb);
6363 
6364 	ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6365 	trace_napi_gro_frags_exit(ret);
6366 
6367 	return ret;
6368 }
6369 EXPORT_SYMBOL(napi_gro_frags);
6370 
6371 /* Compute the checksum from gro_offset and return the folded value
6372  * after adding in any pseudo checksum.
6373  */
6374 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6375 {
6376 	__wsum wsum;
6377 	__sum16 sum;
6378 
6379 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6380 
6381 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6382 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6383 	/* See comments in __skb_checksum_complete(). */
6384 	if (likely(!sum)) {
6385 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6386 		    !skb->csum_complete_sw)
6387 			netdev_rx_csum_fault(skb->dev, skb);
6388 	}
6389 
6390 	NAPI_GRO_CB(skb)->csum = wsum;
6391 	NAPI_GRO_CB(skb)->csum_valid = 1;
6392 
6393 	return sum;
6394 }
6395 EXPORT_SYMBOL(__skb_gro_checksum_complete);
6396 
6397 static void net_rps_send_ipi(struct softnet_data *remsd)
6398 {
6399 #ifdef CONFIG_RPS
6400 	while (remsd) {
6401 		struct softnet_data *next = remsd->rps_ipi_next;
6402 
6403 		if (cpu_online(remsd->cpu))
6404 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6405 		remsd = next;
6406 	}
6407 #endif
6408 }
6409 
6410 /*
6411  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6412  * Note: called with local irq disabled, but exits with local irq enabled.
6413  */
6414 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6415 {
6416 #ifdef CONFIG_RPS
6417 	struct softnet_data *remsd = sd->rps_ipi_list;
6418 
6419 	if (remsd) {
6420 		sd->rps_ipi_list = NULL;
6421 
6422 		local_irq_enable();
6423 
6424 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6425 		net_rps_send_ipi(remsd);
6426 	} else
6427 #endif
6428 		local_irq_enable();
6429 }
6430 
6431 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6432 {
6433 #ifdef CONFIG_RPS
6434 	return sd->rps_ipi_list != NULL;
6435 #else
6436 	return false;
6437 #endif
6438 }
6439 
6440 static int process_backlog(struct napi_struct *napi, int quota)
6441 {
6442 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6443 	bool again = true;
6444 	int work = 0;
6445 
6446 	/* Check if we have pending ipi, its better to send them now,
6447 	 * not waiting net_rx_action() end.
6448 	 */
6449 	if (sd_has_rps_ipi_waiting(sd)) {
6450 		local_irq_disable();
6451 		net_rps_action_and_irq_enable(sd);
6452 	}
6453 
6454 	napi->weight = dev_rx_weight;
6455 	while (again) {
6456 		struct sk_buff *skb;
6457 
6458 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6459 			rcu_read_lock();
6460 			__netif_receive_skb(skb);
6461 			rcu_read_unlock();
6462 			input_queue_head_incr(sd);
6463 			if (++work >= quota)
6464 				return work;
6465 
6466 		}
6467 
6468 		local_irq_disable();
6469 		rps_lock(sd);
6470 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6471 			/*
6472 			 * Inline a custom version of __napi_complete().
6473 			 * only current cpu owns and manipulates this napi,
6474 			 * and NAPI_STATE_SCHED is the only possible flag set
6475 			 * on backlog.
6476 			 * We can use a plain write instead of clear_bit(),
6477 			 * and we dont need an smp_mb() memory barrier.
6478 			 */
6479 			napi->state = 0;
6480 			again = false;
6481 		} else {
6482 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6483 						   &sd->process_queue);
6484 		}
6485 		rps_unlock(sd);
6486 		local_irq_enable();
6487 	}
6488 
6489 	return work;
6490 }
6491 
6492 /**
6493  * __napi_schedule - schedule for receive
6494  * @n: entry to schedule
6495  *
6496  * The entry's receive function will be scheduled to run.
6497  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6498  */
6499 void __napi_schedule(struct napi_struct *n)
6500 {
6501 	unsigned long flags;
6502 
6503 	local_irq_save(flags);
6504 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6505 	local_irq_restore(flags);
6506 }
6507 EXPORT_SYMBOL(__napi_schedule);
6508 
6509 /**
6510  *	napi_schedule_prep - check if napi can be scheduled
6511  *	@n: napi context
6512  *
6513  * Test if NAPI routine is already running, and if not mark
6514  * it as running.  This is used as a condition variable to
6515  * insure only one NAPI poll instance runs.  We also make
6516  * sure there is no pending NAPI disable.
6517  */
6518 bool napi_schedule_prep(struct napi_struct *n)
6519 {
6520 	unsigned long val, new;
6521 
6522 	do {
6523 		val = READ_ONCE(n->state);
6524 		if (unlikely(val & NAPIF_STATE_DISABLE))
6525 			return false;
6526 		new = val | NAPIF_STATE_SCHED;
6527 
6528 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6529 		 * This was suggested by Alexander Duyck, as compiler
6530 		 * emits better code than :
6531 		 * if (val & NAPIF_STATE_SCHED)
6532 		 *     new |= NAPIF_STATE_MISSED;
6533 		 */
6534 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6535 						   NAPIF_STATE_MISSED;
6536 	} while (cmpxchg(&n->state, val, new) != val);
6537 
6538 	return !(val & NAPIF_STATE_SCHED);
6539 }
6540 EXPORT_SYMBOL(napi_schedule_prep);
6541 
6542 /**
6543  * __napi_schedule_irqoff - schedule for receive
6544  * @n: entry to schedule
6545  *
6546  * Variant of __napi_schedule() assuming hard irqs are masked.
6547  *
6548  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6549  * because the interrupt disabled assumption might not be true
6550  * due to force-threaded interrupts and spinlock substitution.
6551  */
6552 void __napi_schedule_irqoff(struct napi_struct *n)
6553 {
6554 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6555 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6556 	else
6557 		__napi_schedule(n);
6558 }
6559 EXPORT_SYMBOL(__napi_schedule_irqoff);
6560 
6561 bool napi_complete_done(struct napi_struct *n, int work_done)
6562 {
6563 	unsigned long flags, val, new, timeout = 0;
6564 	bool ret = true;
6565 
6566 	/*
6567 	 * 1) Don't let napi dequeue from the cpu poll list
6568 	 *    just in case its running on a different cpu.
6569 	 * 2) If we are busy polling, do nothing here, we have
6570 	 *    the guarantee we will be called later.
6571 	 */
6572 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6573 				 NAPIF_STATE_IN_BUSY_POLL)))
6574 		return false;
6575 
6576 	if (work_done) {
6577 		if (n->gro_bitmask)
6578 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6579 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6580 	}
6581 	if (n->defer_hard_irqs_count > 0) {
6582 		n->defer_hard_irqs_count--;
6583 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6584 		if (timeout)
6585 			ret = false;
6586 	}
6587 	if (n->gro_bitmask) {
6588 		/* When the NAPI instance uses a timeout and keeps postponing
6589 		 * it, we need to bound somehow the time packets are kept in
6590 		 * the GRO layer
6591 		 */
6592 		napi_gro_flush(n, !!timeout);
6593 	}
6594 
6595 	gro_normal_list(n);
6596 
6597 	if (unlikely(!list_empty(&n->poll_list))) {
6598 		/* If n->poll_list is not empty, we need to mask irqs */
6599 		local_irq_save(flags);
6600 		list_del_init(&n->poll_list);
6601 		local_irq_restore(flags);
6602 	}
6603 
6604 	do {
6605 		val = READ_ONCE(n->state);
6606 
6607 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6608 
6609 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6610 			      NAPIF_STATE_SCHED_THREADED |
6611 			      NAPIF_STATE_PREFER_BUSY_POLL);
6612 
6613 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6614 		 * because we will call napi->poll() one more time.
6615 		 * This C code was suggested by Alexander Duyck to help gcc.
6616 		 */
6617 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6618 						    NAPIF_STATE_SCHED;
6619 	} while (cmpxchg(&n->state, val, new) != val);
6620 
6621 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6622 		__napi_schedule(n);
6623 		return false;
6624 	}
6625 
6626 	if (timeout)
6627 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6628 			      HRTIMER_MODE_REL_PINNED);
6629 	return ret;
6630 }
6631 EXPORT_SYMBOL(napi_complete_done);
6632 
6633 /* must be called under rcu_read_lock(), as we dont take a reference */
6634 static struct napi_struct *napi_by_id(unsigned int napi_id)
6635 {
6636 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6637 	struct napi_struct *napi;
6638 
6639 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6640 		if (napi->napi_id == napi_id)
6641 			return napi;
6642 
6643 	return NULL;
6644 }
6645 
6646 #if defined(CONFIG_NET_RX_BUSY_POLL)
6647 
6648 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6649 {
6650 	if (!skip_schedule) {
6651 		gro_normal_list(napi);
6652 		__napi_schedule(napi);
6653 		return;
6654 	}
6655 
6656 	if (napi->gro_bitmask) {
6657 		/* flush too old packets
6658 		 * If HZ < 1000, flush all packets.
6659 		 */
6660 		napi_gro_flush(napi, HZ >= 1000);
6661 	}
6662 
6663 	gro_normal_list(napi);
6664 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6665 }
6666 
6667 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6668 			   u16 budget)
6669 {
6670 	bool skip_schedule = false;
6671 	unsigned long timeout;
6672 	int rc;
6673 
6674 	/* Busy polling means there is a high chance device driver hard irq
6675 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6676 	 * set in napi_schedule_prep().
6677 	 * Since we are about to call napi->poll() once more, we can safely
6678 	 * clear NAPI_STATE_MISSED.
6679 	 *
6680 	 * Note: x86 could use a single "lock and ..." instruction
6681 	 * to perform these two clear_bit()
6682 	 */
6683 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6684 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6685 
6686 	local_bh_disable();
6687 
6688 	if (prefer_busy_poll) {
6689 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6690 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6691 		if (napi->defer_hard_irqs_count && timeout) {
6692 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6693 			skip_schedule = true;
6694 		}
6695 	}
6696 
6697 	/* All we really want here is to re-enable device interrupts.
6698 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6699 	 */
6700 	rc = napi->poll(napi, budget);
6701 	/* We can't gro_normal_list() here, because napi->poll() might have
6702 	 * rearmed the napi (napi_complete_done()) in which case it could
6703 	 * already be running on another CPU.
6704 	 */
6705 	trace_napi_poll(napi, rc, budget);
6706 	netpoll_poll_unlock(have_poll_lock);
6707 	if (rc == budget)
6708 		__busy_poll_stop(napi, skip_schedule);
6709 	local_bh_enable();
6710 }
6711 
6712 void napi_busy_loop(unsigned int napi_id,
6713 		    bool (*loop_end)(void *, unsigned long),
6714 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6715 {
6716 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6717 	int (*napi_poll)(struct napi_struct *napi, int budget);
6718 	void *have_poll_lock = NULL;
6719 	struct napi_struct *napi;
6720 
6721 restart:
6722 	napi_poll = NULL;
6723 
6724 	rcu_read_lock();
6725 
6726 	napi = napi_by_id(napi_id);
6727 	if (!napi)
6728 		goto out;
6729 
6730 	preempt_disable();
6731 	for (;;) {
6732 		int work = 0;
6733 
6734 		local_bh_disable();
6735 		if (!napi_poll) {
6736 			unsigned long val = READ_ONCE(napi->state);
6737 
6738 			/* If multiple threads are competing for this napi,
6739 			 * we avoid dirtying napi->state as much as we can.
6740 			 */
6741 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6742 				   NAPIF_STATE_IN_BUSY_POLL)) {
6743 				if (prefer_busy_poll)
6744 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6745 				goto count;
6746 			}
6747 			if (cmpxchg(&napi->state, val,
6748 				    val | NAPIF_STATE_IN_BUSY_POLL |
6749 					  NAPIF_STATE_SCHED) != val) {
6750 				if (prefer_busy_poll)
6751 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6752 				goto count;
6753 			}
6754 			have_poll_lock = netpoll_poll_lock(napi);
6755 			napi_poll = napi->poll;
6756 		}
6757 		work = napi_poll(napi, budget);
6758 		trace_napi_poll(napi, work, budget);
6759 		gro_normal_list(napi);
6760 count:
6761 		if (work > 0)
6762 			__NET_ADD_STATS(dev_net(napi->dev),
6763 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6764 		local_bh_enable();
6765 
6766 		if (!loop_end || loop_end(loop_end_arg, start_time))
6767 			break;
6768 
6769 		if (unlikely(need_resched())) {
6770 			if (napi_poll)
6771 				busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6772 			preempt_enable();
6773 			rcu_read_unlock();
6774 			cond_resched();
6775 			if (loop_end(loop_end_arg, start_time))
6776 				return;
6777 			goto restart;
6778 		}
6779 		cpu_relax();
6780 	}
6781 	if (napi_poll)
6782 		busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6783 	preempt_enable();
6784 out:
6785 	rcu_read_unlock();
6786 }
6787 EXPORT_SYMBOL(napi_busy_loop);
6788 
6789 #endif /* CONFIG_NET_RX_BUSY_POLL */
6790 
6791 static void napi_hash_add(struct napi_struct *napi)
6792 {
6793 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6794 		return;
6795 
6796 	spin_lock(&napi_hash_lock);
6797 
6798 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6799 	do {
6800 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6801 			napi_gen_id = MIN_NAPI_ID;
6802 	} while (napi_by_id(napi_gen_id));
6803 	napi->napi_id = napi_gen_id;
6804 
6805 	hlist_add_head_rcu(&napi->napi_hash_node,
6806 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6807 
6808 	spin_unlock(&napi_hash_lock);
6809 }
6810 
6811 /* Warning : caller is responsible to make sure rcu grace period
6812  * is respected before freeing memory containing @napi
6813  */
6814 static void napi_hash_del(struct napi_struct *napi)
6815 {
6816 	spin_lock(&napi_hash_lock);
6817 
6818 	hlist_del_init_rcu(&napi->napi_hash_node);
6819 
6820 	spin_unlock(&napi_hash_lock);
6821 }
6822 
6823 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6824 {
6825 	struct napi_struct *napi;
6826 
6827 	napi = container_of(timer, struct napi_struct, timer);
6828 
6829 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6830 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6831 	 */
6832 	if (!napi_disable_pending(napi) &&
6833 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6834 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6835 		__napi_schedule_irqoff(napi);
6836 	}
6837 
6838 	return HRTIMER_NORESTART;
6839 }
6840 
6841 static void init_gro_hash(struct napi_struct *napi)
6842 {
6843 	int i;
6844 
6845 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6846 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6847 		napi->gro_hash[i].count = 0;
6848 	}
6849 	napi->gro_bitmask = 0;
6850 }
6851 
6852 int dev_set_threaded(struct net_device *dev, bool threaded)
6853 {
6854 	struct napi_struct *napi;
6855 	int err = 0;
6856 
6857 	if (dev->threaded == threaded)
6858 		return 0;
6859 
6860 	if (threaded) {
6861 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6862 			if (!napi->thread) {
6863 				err = napi_kthread_create(napi);
6864 				if (err) {
6865 					threaded = false;
6866 					break;
6867 				}
6868 			}
6869 		}
6870 	}
6871 
6872 	dev->threaded = threaded;
6873 
6874 	/* Make sure kthread is created before THREADED bit
6875 	 * is set.
6876 	 */
6877 	smp_mb__before_atomic();
6878 
6879 	/* Setting/unsetting threaded mode on a napi might not immediately
6880 	 * take effect, if the current napi instance is actively being
6881 	 * polled. In this case, the switch between threaded mode and
6882 	 * softirq mode will happen in the next round of napi_schedule().
6883 	 * This should not cause hiccups/stalls to the live traffic.
6884 	 */
6885 	list_for_each_entry(napi, &dev->napi_list, dev_list) {
6886 		if (threaded)
6887 			set_bit(NAPI_STATE_THREADED, &napi->state);
6888 		else
6889 			clear_bit(NAPI_STATE_THREADED, &napi->state);
6890 	}
6891 
6892 	return err;
6893 }
6894 EXPORT_SYMBOL(dev_set_threaded);
6895 
6896 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6897 		    int (*poll)(struct napi_struct *, int), int weight)
6898 {
6899 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6900 		return;
6901 
6902 	INIT_LIST_HEAD(&napi->poll_list);
6903 	INIT_HLIST_NODE(&napi->napi_hash_node);
6904 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6905 	napi->timer.function = napi_watchdog;
6906 	init_gro_hash(napi);
6907 	napi->skb = NULL;
6908 	INIT_LIST_HEAD(&napi->rx_list);
6909 	napi->rx_count = 0;
6910 	napi->poll = poll;
6911 	if (weight > NAPI_POLL_WEIGHT)
6912 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6913 				weight);
6914 	napi->weight = weight;
6915 	napi->dev = dev;
6916 #ifdef CONFIG_NETPOLL
6917 	napi->poll_owner = -1;
6918 #endif
6919 	set_bit(NAPI_STATE_SCHED, &napi->state);
6920 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6921 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6922 	napi_hash_add(napi);
6923 	/* Create kthread for this napi if dev->threaded is set.
6924 	 * Clear dev->threaded if kthread creation failed so that
6925 	 * threaded mode will not be enabled in napi_enable().
6926 	 */
6927 	if (dev->threaded && napi_kthread_create(napi))
6928 		dev->threaded = 0;
6929 }
6930 EXPORT_SYMBOL(netif_napi_add);
6931 
6932 void napi_disable(struct napi_struct *n)
6933 {
6934 	might_sleep();
6935 	set_bit(NAPI_STATE_DISABLE, &n->state);
6936 
6937 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6938 		msleep(1);
6939 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6940 		msleep(1);
6941 
6942 	hrtimer_cancel(&n->timer);
6943 
6944 	clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6945 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6946 	clear_bit(NAPI_STATE_THREADED, &n->state);
6947 }
6948 EXPORT_SYMBOL(napi_disable);
6949 
6950 /**
6951  *	napi_enable - enable NAPI scheduling
6952  *	@n: NAPI context
6953  *
6954  * Resume NAPI from being scheduled on this context.
6955  * Must be paired with napi_disable.
6956  */
6957 void napi_enable(struct napi_struct *n)
6958 {
6959 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6960 	smp_mb__before_atomic();
6961 	clear_bit(NAPI_STATE_SCHED, &n->state);
6962 	clear_bit(NAPI_STATE_NPSVC, &n->state);
6963 	if (n->dev->threaded && n->thread)
6964 		set_bit(NAPI_STATE_THREADED, &n->state);
6965 }
6966 EXPORT_SYMBOL(napi_enable);
6967 
6968 static void flush_gro_hash(struct napi_struct *napi)
6969 {
6970 	int i;
6971 
6972 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6973 		struct sk_buff *skb, *n;
6974 
6975 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6976 			kfree_skb(skb);
6977 		napi->gro_hash[i].count = 0;
6978 	}
6979 }
6980 
6981 /* Must be called in process context */
6982 void __netif_napi_del(struct napi_struct *napi)
6983 {
6984 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6985 		return;
6986 
6987 	napi_hash_del(napi);
6988 	list_del_rcu(&napi->dev_list);
6989 	napi_free_frags(napi);
6990 
6991 	flush_gro_hash(napi);
6992 	napi->gro_bitmask = 0;
6993 
6994 	if (napi->thread) {
6995 		kthread_stop(napi->thread);
6996 		napi->thread = NULL;
6997 	}
6998 }
6999 EXPORT_SYMBOL(__netif_napi_del);
7000 
7001 static int __napi_poll(struct napi_struct *n, bool *repoll)
7002 {
7003 	int work, weight;
7004 
7005 	weight = n->weight;
7006 
7007 	/* This NAPI_STATE_SCHED test is for avoiding a race
7008 	 * with netpoll's poll_napi().  Only the entity which
7009 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7010 	 * actually make the ->poll() call.  Therefore we avoid
7011 	 * accidentally calling ->poll() when NAPI is not scheduled.
7012 	 */
7013 	work = 0;
7014 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
7015 		work = n->poll(n, weight);
7016 		trace_napi_poll(n, work, weight);
7017 	}
7018 
7019 	if (unlikely(work > weight))
7020 		pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7021 			    n->poll, work, weight);
7022 
7023 	if (likely(work < weight))
7024 		return work;
7025 
7026 	/* Drivers must not modify the NAPI state if they
7027 	 * consume the entire weight.  In such cases this code
7028 	 * still "owns" the NAPI instance and therefore can
7029 	 * move the instance around on the list at-will.
7030 	 */
7031 	if (unlikely(napi_disable_pending(n))) {
7032 		napi_complete(n);
7033 		return work;
7034 	}
7035 
7036 	/* The NAPI context has more processing work, but busy-polling
7037 	 * is preferred. Exit early.
7038 	 */
7039 	if (napi_prefer_busy_poll(n)) {
7040 		if (napi_complete_done(n, work)) {
7041 			/* If timeout is not set, we need to make sure
7042 			 * that the NAPI is re-scheduled.
7043 			 */
7044 			napi_schedule(n);
7045 		}
7046 		return work;
7047 	}
7048 
7049 	if (n->gro_bitmask) {
7050 		/* flush too old packets
7051 		 * If HZ < 1000, flush all packets.
7052 		 */
7053 		napi_gro_flush(n, HZ >= 1000);
7054 	}
7055 
7056 	gro_normal_list(n);
7057 
7058 	/* Some drivers may have called napi_schedule
7059 	 * prior to exhausting their budget.
7060 	 */
7061 	if (unlikely(!list_empty(&n->poll_list))) {
7062 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7063 			     n->dev ? n->dev->name : "backlog");
7064 		return work;
7065 	}
7066 
7067 	*repoll = true;
7068 
7069 	return work;
7070 }
7071 
7072 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7073 {
7074 	bool do_repoll = false;
7075 	void *have;
7076 	int work;
7077 
7078 	list_del_init(&n->poll_list);
7079 
7080 	have = netpoll_poll_lock(n);
7081 
7082 	work = __napi_poll(n, &do_repoll);
7083 
7084 	if (do_repoll)
7085 		list_add_tail(&n->poll_list, repoll);
7086 
7087 	netpoll_poll_unlock(have);
7088 
7089 	return work;
7090 }
7091 
7092 static int napi_thread_wait(struct napi_struct *napi)
7093 {
7094 	bool woken = false;
7095 
7096 	set_current_state(TASK_INTERRUPTIBLE);
7097 
7098 	while (!kthread_should_stop()) {
7099 		/* Testing SCHED_THREADED bit here to make sure the current
7100 		 * kthread owns this napi and could poll on this napi.
7101 		 * Testing SCHED bit is not enough because SCHED bit might be
7102 		 * set by some other busy poll thread or by napi_disable().
7103 		 */
7104 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7105 			WARN_ON(!list_empty(&napi->poll_list));
7106 			__set_current_state(TASK_RUNNING);
7107 			return 0;
7108 		}
7109 
7110 		schedule();
7111 		/* woken being true indicates this thread owns this napi. */
7112 		woken = true;
7113 		set_current_state(TASK_INTERRUPTIBLE);
7114 	}
7115 	__set_current_state(TASK_RUNNING);
7116 
7117 	return -1;
7118 }
7119 
7120 static int napi_threaded_poll(void *data)
7121 {
7122 	struct napi_struct *napi = data;
7123 	void *have;
7124 
7125 	while (!napi_thread_wait(napi)) {
7126 		for (;;) {
7127 			bool repoll = false;
7128 
7129 			local_bh_disable();
7130 
7131 			have = netpoll_poll_lock(napi);
7132 			__napi_poll(napi, &repoll);
7133 			netpoll_poll_unlock(have);
7134 
7135 			local_bh_enable();
7136 
7137 			if (!repoll)
7138 				break;
7139 
7140 			cond_resched();
7141 		}
7142 	}
7143 	return 0;
7144 }
7145 
7146 static __latent_entropy void net_rx_action(struct softirq_action *h)
7147 {
7148 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7149 	unsigned long time_limit = jiffies +
7150 		usecs_to_jiffies(netdev_budget_usecs);
7151 	int budget = netdev_budget;
7152 	LIST_HEAD(list);
7153 	LIST_HEAD(repoll);
7154 
7155 	local_irq_disable();
7156 	list_splice_init(&sd->poll_list, &list);
7157 	local_irq_enable();
7158 
7159 	for (;;) {
7160 		struct napi_struct *n;
7161 
7162 		if (list_empty(&list)) {
7163 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7164 				return;
7165 			break;
7166 		}
7167 
7168 		n = list_first_entry(&list, struct napi_struct, poll_list);
7169 		budget -= napi_poll(n, &repoll);
7170 
7171 		/* If softirq window is exhausted then punt.
7172 		 * Allow this to run for 2 jiffies since which will allow
7173 		 * an average latency of 1.5/HZ.
7174 		 */
7175 		if (unlikely(budget <= 0 ||
7176 			     time_after_eq(jiffies, time_limit))) {
7177 			sd->time_squeeze++;
7178 			break;
7179 		}
7180 	}
7181 
7182 	local_irq_disable();
7183 
7184 	list_splice_tail_init(&sd->poll_list, &list);
7185 	list_splice_tail(&repoll, &list);
7186 	list_splice(&list, &sd->poll_list);
7187 	if (!list_empty(&sd->poll_list))
7188 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7189 
7190 	net_rps_action_and_irq_enable(sd);
7191 }
7192 
7193 struct netdev_adjacent {
7194 	struct net_device *dev;
7195 
7196 	/* upper master flag, there can only be one master device per list */
7197 	bool master;
7198 
7199 	/* lookup ignore flag */
7200 	bool ignore;
7201 
7202 	/* counter for the number of times this device was added to us */
7203 	u16 ref_nr;
7204 
7205 	/* private field for the users */
7206 	void *private;
7207 
7208 	struct list_head list;
7209 	struct rcu_head rcu;
7210 };
7211 
7212 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7213 						 struct list_head *adj_list)
7214 {
7215 	struct netdev_adjacent *adj;
7216 
7217 	list_for_each_entry(adj, adj_list, list) {
7218 		if (adj->dev == adj_dev)
7219 			return adj;
7220 	}
7221 	return NULL;
7222 }
7223 
7224 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7225 				    struct netdev_nested_priv *priv)
7226 {
7227 	struct net_device *dev = (struct net_device *)priv->data;
7228 
7229 	return upper_dev == dev;
7230 }
7231 
7232 /**
7233  * netdev_has_upper_dev - Check if device is linked to an upper device
7234  * @dev: device
7235  * @upper_dev: upper device to check
7236  *
7237  * Find out if a device is linked to specified upper device and return true
7238  * in case it is. Note that this checks only immediate upper device,
7239  * not through a complete stack of devices. The caller must hold the RTNL lock.
7240  */
7241 bool netdev_has_upper_dev(struct net_device *dev,
7242 			  struct net_device *upper_dev)
7243 {
7244 	struct netdev_nested_priv priv = {
7245 		.data = (void *)upper_dev,
7246 	};
7247 
7248 	ASSERT_RTNL();
7249 
7250 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7251 					     &priv);
7252 }
7253 EXPORT_SYMBOL(netdev_has_upper_dev);
7254 
7255 /**
7256  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7257  * @dev: device
7258  * @upper_dev: upper device to check
7259  *
7260  * Find out if a device is linked to specified upper device and return true
7261  * in case it is. Note that this checks the entire upper device chain.
7262  * The caller must hold rcu lock.
7263  */
7264 
7265 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7266 				  struct net_device *upper_dev)
7267 {
7268 	struct netdev_nested_priv priv = {
7269 		.data = (void *)upper_dev,
7270 	};
7271 
7272 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7273 					       &priv);
7274 }
7275 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7276 
7277 /**
7278  * netdev_has_any_upper_dev - Check if device is linked to some device
7279  * @dev: device
7280  *
7281  * Find out if a device is linked to an upper device and return true in case
7282  * it is. The caller must hold the RTNL lock.
7283  */
7284 bool netdev_has_any_upper_dev(struct net_device *dev)
7285 {
7286 	ASSERT_RTNL();
7287 
7288 	return !list_empty(&dev->adj_list.upper);
7289 }
7290 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7291 
7292 /**
7293  * netdev_master_upper_dev_get - Get master upper device
7294  * @dev: device
7295  *
7296  * Find a master upper device and return pointer to it or NULL in case
7297  * it's not there. The caller must hold the RTNL lock.
7298  */
7299 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7300 {
7301 	struct netdev_adjacent *upper;
7302 
7303 	ASSERT_RTNL();
7304 
7305 	if (list_empty(&dev->adj_list.upper))
7306 		return NULL;
7307 
7308 	upper = list_first_entry(&dev->adj_list.upper,
7309 				 struct netdev_adjacent, list);
7310 	if (likely(upper->master))
7311 		return upper->dev;
7312 	return NULL;
7313 }
7314 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7315 
7316 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7317 {
7318 	struct netdev_adjacent *upper;
7319 
7320 	ASSERT_RTNL();
7321 
7322 	if (list_empty(&dev->adj_list.upper))
7323 		return NULL;
7324 
7325 	upper = list_first_entry(&dev->adj_list.upper,
7326 				 struct netdev_adjacent, list);
7327 	if (likely(upper->master) && !upper->ignore)
7328 		return upper->dev;
7329 	return NULL;
7330 }
7331 
7332 /**
7333  * netdev_has_any_lower_dev - Check if device is linked to some device
7334  * @dev: device
7335  *
7336  * Find out if a device is linked to a lower device and return true in case
7337  * it is. The caller must hold the RTNL lock.
7338  */
7339 static bool netdev_has_any_lower_dev(struct net_device *dev)
7340 {
7341 	ASSERT_RTNL();
7342 
7343 	return !list_empty(&dev->adj_list.lower);
7344 }
7345 
7346 void *netdev_adjacent_get_private(struct list_head *adj_list)
7347 {
7348 	struct netdev_adjacent *adj;
7349 
7350 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7351 
7352 	return adj->private;
7353 }
7354 EXPORT_SYMBOL(netdev_adjacent_get_private);
7355 
7356 /**
7357  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7358  * @dev: device
7359  * @iter: list_head ** of the current position
7360  *
7361  * Gets the next device from the dev's upper list, starting from iter
7362  * position. The caller must hold RCU read lock.
7363  */
7364 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7365 						 struct list_head **iter)
7366 {
7367 	struct netdev_adjacent *upper;
7368 
7369 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7370 
7371 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7372 
7373 	if (&upper->list == &dev->adj_list.upper)
7374 		return NULL;
7375 
7376 	*iter = &upper->list;
7377 
7378 	return upper->dev;
7379 }
7380 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7381 
7382 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7383 						  struct list_head **iter,
7384 						  bool *ignore)
7385 {
7386 	struct netdev_adjacent *upper;
7387 
7388 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7389 
7390 	if (&upper->list == &dev->adj_list.upper)
7391 		return NULL;
7392 
7393 	*iter = &upper->list;
7394 	*ignore = upper->ignore;
7395 
7396 	return upper->dev;
7397 }
7398 
7399 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7400 						    struct list_head **iter)
7401 {
7402 	struct netdev_adjacent *upper;
7403 
7404 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7405 
7406 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7407 
7408 	if (&upper->list == &dev->adj_list.upper)
7409 		return NULL;
7410 
7411 	*iter = &upper->list;
7412 
7413 	return upper->dev;
7414 }
7415 
7416 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7417 				       int (*fn)(struct net_device *dev,
7418 					 struct netdev_nested_priv *priv),
7419 				       struct netdev_nested_priv *priv)
7420 {
7421 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7422 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7423 	int ret, cur = 0;
7424 	bool ignore;
7425 
7426 	now = dev;
7427 	iter = &dev->adj_list.upper;
7428 
7429 	while (1) {
7430 		if (now != dev) {
7431 			ret = fn(now, priv);
7432 			if (ret)
7433 				return ret;
7434 		}
7435 
7436 		next = NULL;
7437 		while (1) {
7438 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7439 			if (!udev)
7440 				break;
7441 			if (ignore)
7442 				continue;
7443 
7444 			next = udev;
7445 			niter = &udev->adj_list.upper;
7446 			dev_stack[cur] = now;
7447 			iter_stack[cur++] = iter;
7448 			break;
7449 		}
7450 
7451 		if (!next) {
7452 			if (!cur)
7453 				return 0;
7454 			next = dev_stack[--cur];
7455 			niter = iter_stack[cur];
7456 		}
7457 
7458 		now = next;
7459 		iter = niter;
7460 	}
7461 
7462 	return 0;
7463 }
7464 
7465 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7466 				  int (*fn)(struct net_device *dev,
7467 					    struct netdev_nested_priv *priv),
7468 				  struct netdev_nested_priv *priv)
7469 {
7470 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7471 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7472 	int ret, cur = 0;
7473 
7474 	now = dev;
7475 	iter = &dev->adj_list.upper;
7476 
7477 	while (1) {
7478 		if (now != dev) {
7479 			ret = fn(now, priv);
7480 			if (ret)
7481 				return ret;
7482 		}
7483 
7484 		next = NULL;
7485 		while (1) {
7486 			udev = netdev_next_upper_dev_rcu(now, &iter);
7487 			if (!udev)
7488 				break;
7489 
7490 			next = udev;
7491 			niter = &udev->adj_list.upper;
7492 			dev_stack[cur] = now;
7493 			iter_stack[cur++] = iter;
7494 			break;
7495 		}
7496 
7497 		if (!next) {
7498 			if (!cur)
7499 				return 0;
7500 			next = dev_stack[--cur];
7501 			niter = iter_stack[cur];
7502 		}
7503 
7504 		now = next;
7505 		iter = niter;
7506 	}
7507 
7508 	return 0;
7509 }
7510 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7511 
7512 static bool __netdev_has_upper_dev(struct net_device *dev,
7513 				   struct net_device *upper_dev)
7514 {
7515 	struct netdev_nested_priv priv = {
7516 		.flags = 0,
7517 		.data = (void *)upper_dev,
7518 	};
7519 
7520 	ASSERT_RTNL();
7521 
7522 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7523 					   &priv);
7524 }
7525 
7526 /**
7527  * netdev_lower_get_next_private - Get the next ->private from the
7528  *				   lower neighbour list
7529  * @dev: device
7530  * @iter: list_head ** of the current position
7531  *
7532  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7533  * list, starting from iter position. The caller must hold either hold the
7534  * RTNL lock or its own locking that guarantees that the neighbour lower
7535  * list will remain unchanged.
7536  */
7537 void *netdev_lower_get_next_private(struct net_device *dev,
7538 				    struct list_head **iter)
7539 {
7540 	struct netdev_adjacent *lower;
7541 
7542 	lower = list_entry(*iter, struct netdev_adjacent, list);
7543 
7544 	if (&lower->list == &dev->adj_list.lower)
7545 		return NULL;
7546 
7547 	*iter = lower->list.next;
7548 
7549 	return lower->private;
7550 }
7551 EXPORT_SYMBOL(netdev_lower_get_next_private);
7552 
7553 /**
7554  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7555  *				       lower neighbour list, RCU
7556  *				       variant
7557  * @dev: device
7558  * @iter: list_head ** of the current position
7559  *
7560  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7561  * list, starting from iter position. The caller must hold RCU read lock.
7562  */
7563 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7564 					struct list_head **iter)
7565 {
7566 	struct netdev_adjacent *lower;
7567 
7568 	WARN_ON_ONCE(!rcu_read_lock_held());
7569 
7570 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7571 
7572 	if (&lower->list == &dev->adj_list.lower)
7573 		return NULL;
7574 
7575 	*iter = &lower->list;
7576 
7577 	return lower->private;
7578 }
7579 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7580 
7581 /**
7582  * netdev_lower_get_next - Get the next device from the lower neighbour
7583  *                         list
7584  * @dev: device
7585  * @iter: list_head ** of the current position
7586  *
7587  * Gets the next netdev_adjacent from the dev's lower neighbour
7588  * list, starting from iter position. The caller must hold RTNL lock or
7589  * its own locking that guarantees that the neighbour lower
7590  * list will remain unchanged.
7591  */
7592 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7593 {
7594 	struct netdev_adjacent *lower;
7595 
7596 	lower = list_entry(*iter, struct netdev_adjacent, list);
7597 
7598 	if (&lower->list == &dev->adj_list.lower)
7599 		return NULL;
7600 
7601 	*iter = lower->list.next;
7602 
7603 	return lower->dev;
7604 }
7605 EXPORT_SYMBOL(netdev_lower_get_next);
7606 
7607 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7608 						struct list_head **iter)
7609 {
7610 	struct netdev_adjacent *lower;
7611 
7612 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7613 
7614 	if (&lower->list == &dev->adj_list.lower)
7615 		return NULL;
7616 
7617 	*iter = &lower->list;
7618 
7619 	return lower->dev;
7620 }
7621 
7622 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7623 						  struct list_head **iter,
7624 						  bool *ignore)
7625 {
7626 	struct netdev_adjacent *lower;
7627 
7628 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7629 
7630 	if (&lower->list == &dev->adj_list.lower)
7631 		return NULL;
7632 
7633 	*iter = &lower->list;
7634 	*ignore = lower->ignore;
7635 
7636 	return lower->dev;
7637 }
7638 
7639 int netdev_walk_all_lower_dev(struct net_device *dev,
7640 			      int (*fn)(struct net_device *dev,
7641 					struct netdev_nested_priv *priv),
7642 			      struct netdev_nested_priv *priv)
7643 {
7644 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7645 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7646 	int ret, cur = 0;
7647 
7648 	now = dev;
7649 	iter = &dev->adj_list.lower;
7650 
7651 	while (1) {
7652 		if (now != dev) {
7653 			ret = fn(now, priv);
7654 			if (ret)
7655 				return ret;
7656 		}
7657 
7658 		next = NULL;
7659 		while (1) {
7660 			ldev = netdev_next_lower_dev(now, &iter);
7661 			if (!ldev)
7662 				break;
7663 
7664 			next = ldev;
7665 			niter = &ldev->adj_list.lower;
7666 			dev_stack[cur] = now;
7667 			iter_stack[cur++] = iter;
7668 			break;
7669 		}
7670 
7671 		if (!next) {
7672 			if (!cur)
7673 				return 0;
7674 			next = dev_stack[--cur];
7675 			niter = iter_stack[cur];
7676 		}
7677 
7678 		now = next;
7679 		iter = niter;
7680 	}
7681 
7682 	return 0;
7683 }
7684 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7685 
7686 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7687 				       int (*fn)(struct net_device *dev,
7688 					 struct netdev_nested_priv *priv),
7689 				       struct netdev_nested_priv *priv)
7690 {
7691 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7692 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7693 	int ret, cur = 0;
7694 	bool ignore;
7695 
7696 	now = dev;
7697 	iter = &dev->adj_list.lower;
7698 
7699 	while (1) {
7700 		if (now != dev) {
7701 			ret = fn(now, priv);
7702 			if (ret)
7703 				return ret;
7704 		}
7705 
7706 		next = NULL;
7707 		while (1) {
7708 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7709 			if (!ldev)
7710 				break;
7711 			if (ignore)
7712 				continue;
7713 
7714 			next = ldev;
7715 			niter = &ldev->adj_list.lower;
7716 			dev_stack[cur] = now;
7717 			iter_stack[cur++] = iter;
7718 			break;
7719 		}
7720 
7721 		if (!next) {
7722 			if (!cur)
7723 				return 0;
7724 			next = dev_stack[--cur];
7725 			niter = iter_stack[cur];
7726 		}
7727 
7728 		now = next;
7729 		iter = niter;
7730 	}
7731 
7732 	return 0;
7733 }
7734 
7735 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7736 					     struct list_head **iter)
7737 {
7738 	struct netdev_adjacent *lower;
7739 
7740 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7741 	if (&lower->list == &dev->adj_list.lower)
7742 		return NULL;
7743 
7744 	*iter = &lower->list;
7745 
7746 	return lower->dev;
7747 }
7748 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7749 
7750 static u8 __netdev_upper_depth(struct net_device *dev)
7751 {
7752 	struct net_device *udev;
7753 	struct list_head *iter;
7754 	u8 max_depth = 0;
7755 	bool ignore;
7756 
7757 	for (iter = &dev->adj_list.upper,
7758 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7759 	     udev;
7760 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7761 		if (ignore)
7762 			continue;
7763 		if (max_depth < udev->upper_level)
7764 			max_depth = udev->upper_level;
7765 	}
7766 
7767 	return max_depth;
7768 }
7769 
7770 static u8 __netdev_lower_depth(struct net_device *dev)
7771 {
7772 	struct net_device *ldev;
7773 	struct list_head *iter;
7774 	u8 max_depth = 0;
7775 	bool ignore;
7776 
7777 	for (iter = &dev->adj_list.lower,
7778 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7779 	     ldev;
7780 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7781 		if (ignore)
7782 			continue;
7783 		if (max_depth < ldev->lower_level)
7784 			max_depth = ldev->lower_level;
7785 	}
7786 
7787 	return max_depth;
7788 }
7789 
7790 static int __netdev_update_upper_level(struct net_device *dev,
7791 				       struct netdev_nested_priv *__unused)
7792 {
7793 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7794 	return 0;
7795 }
7796 
7797 static int __netdev_update_lower_level(struct net_device *dev,
7798 				       struct netdev_nested_priv *priv)
7799 {
7800 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7801 
7802 #ifdef CONFIG_LOCKDEP
7803 	if (!priv)
7804 		return 0;
7805 
7806 	if (priv->flags & NESTED_SYNC_IMM)
7807 		dev->nested_level = dev->lower_level - 1;
7808 	if (priv->flags & NESTED_SYNC_TODO)
7809 		net_unlink_todo(dev);
7810 #endif
7811 	return 0;
7812 }
7813 
7814 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7815 				  int (*fn)(struct net_device *dev,
7816 					    struct netdev_nested_priv *priv),
7817 				  struct netdev_nested_priv *priv)
7818 {
7819 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7820 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7821 	int ret, cur = 0;
7822 
7823 	now = dev;
7824 	iter = &dev->adj_list.lower;
7825 
7826 	while (1) {
7827 		if (now != dev) {
7828 			ret = fn(now, priv);
7829 			if (ret)
7830 				return ret;
7831 		}
7832 
7833 		next = NULL;
7834 		while (1) {
7835 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7836 			if (!ldev)
7837 				break;
7838 
7839 			next = ldev;
7840 			niter = &ldev->adj_list.lower;
7841 			dev_stack[cur] = now;
7842 			iter_stack[cur++] = iter;
7843 			break;
7844 		}
7845 
7846 		if (!next) {
7847 			if (!cur)
7848 				return 0;
7849 			next = dev_stack[--cur];
7850 			niter = iter_stack[cur];
7851 		}
7852 
7853 		now = next;
7854 		iter = niter;
7855 	}
7856 
7857 	return 0;
7858 }
7859 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7860 
7861 /**
7862  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7863  *				       lower neighbour list, RCU
7864  *				       variant
7865  * @dev: device
7866  *
7867  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7868  * list. The caller must hold RCU read lock.
7869  */
7870 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7871 {
7872 	struct netdev_adjacent *lower;
7873 
7874 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7875 			struct netdev_adjacent, list);
7876 	if (lower)
7877 		return lower->private;
7878 	return NULL;
7879 }
7880 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7881 
7882 /**
7883  * netdev_master_upper_dev_get_rcu - Get master upper device
7884  * @dev: device
7885  *
7886  * Find a master upper device and return pointer to it or NULL in case
7887  * it's not there. The caller must hold the RCU read lock.
7888  */
7889 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7890 {
7891 	struct netdev_adjacent *upper;
7892 
7893 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7894 				       struct netdev_adjacent, list);
7895 	if (upper && likely(upper->master))
7896 		return upper->dev;
7897 	return NULL;
7898 }
7899 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7900 
7901 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7902 			      struct net_device *adj_dev,
7903 			      struct list_head *dev_list)
7904 {
7905 	char linkname[IFNAMSIZ+7];
7906 
7907 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7908 		"upper_%s" : "lower_%s", adj_dev->name);
7909 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7910 				 linkname);
7911 }
7912 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7913 			       char *name,
7914 			       struct list_head *dev_list)
7915 {
7916 	char linkname[IFNAMSIZ+7];
7917 
7918 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7919 		"upper_%s" : "lower_%s", name);
7920 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7921 }
7922 
7923 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7924 						 struct net_device *adj_dev,
7925 						 struct list_head *dev_list)
7926 {
7927 	return (dev_list == &dev->adj_list.upper ||
7928 		dev_list == &dev->adj_list.lower) &&
7929 		net_eq(dev_net(dev), dev_net(adj_dev));
7930 }
7931 
7932 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7933 					struct net_device *adj_dev,
7934 					struct list_head *dev_list,
7935 					void *private, bool master)
7936 {
7937 	struct netdev_adjacent *adj;
7938 	int ret;
7939 
7940 	adj = __netdev_find_adj(adj_dev, dev_list);
7941 
7942 	if (adj) {
7943 		adj->ref_nr += 1;
7944 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7945 			 dev->name, adj_dev->name, adj->ref_nr);
7946 
7947 		return 0;
7948 	}
7949 
7950 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7951 	if (!adj)
7952 		return -ENOMEM;
7953 
7954 	adj->dev = adj_dev;
7955 	adj->master = master;
7956 	adj->ref_nr = 1;
7957 	adj->private = private;
7958 	adj->ignore = false;
7959 	dev_hold(adj_dev);
7960 
7961 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7962 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7963 
7964 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7965 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7966 		if (ret)
7967 			goto free_adj;
7968 	}
7969 
7970 	/* Ensure that master link is always the first item in list. */
7971 	if (master) {
7972 		ret = sysfs_create_link(&(dev->dev.kobj),
7973 					&(adj_dev->dev.kobj), "master");
7974 		if (ret)
7975 			goto remove_symlinks;
7976 
7977 		list_add_rcu(&adj->list, dev_list);
7978 	} else {
7979 		list_add_tail_rcu(&adj->list, dev_list);
7980 	}
7981 
7982 	return 0;
7983 
7984 remove_symlinks:
7985 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7986 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7987 free_adj:
7988 	kfree(adj);
7989 	dev_put(adj_dev);
7990 
7991 	return ret;
7992 }
7993 
7994 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7995 					 struct net_device *adj_dev,
7996 					 u16 ref_nr,
7997 					 struct list_head *dev_list)
7998 {
7999 	struct netdev_adjacent *adj;
8000 
8001 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8002 		 dev->name, adj_dev->name, ref_nr);
8003 
8004 	adj = __netdev_find_adj(adj_dev, dev_list);
8005 
8006 	if (!adj) {
8007 		pr_err("Adjacency does not exist for device %s from %s\n",
8008 		       dev->name, adj_dev->name);
8009 		WARN_ON(1);
8010 		return;
8011 	}
8012 
8013 	if (adj->ref_nr > ref_nr) {
8014 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8015 			 dev->name, adj_dev->name, ref_nr,
8016 			 adj->ref_nr - ref_nr);
8017 		adj->ref_nr -= ref_nr;
8018 		return;
8019 	}
8020 
8021 	if (adj->master)
8022 		sysfs_remove_link(&(dev->dev.kobj), "master");
8023 
8024 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8025 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8026 
8027 	list_del_rcu(&adj->list);
8028 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8029 		 adj_dev->name, dev->name, adj_dev->name);
8030 	dev_put(adj_dev);
8031 	kfree_rcu(adj, rcu);
8032 }
8033 
8034 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8035 					    struct net_device *upper_dev,
8036 					    struct list_head *up_list,
8037 					    struct list_head *down_list,
8038 					    void *private, bool master)
8039 {
8040 	int ret;
8041 
8042 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8043 					   private, master);
8044 	if (ret)
8045 		return ret;
8046 
8047 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8048 					   private, false);
8049 	if (ret) {
8050 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8051 		return ret;
8052 	}
8053 
8054 	return 0;
8055 }
8056 
8057 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8058 					       struct net_device *upper_dev,
8059 					       u16 ref_nr,
8060 					       struct list_head *up_list,
8061 					       struct list_head *down_list)
8062 {
8063 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8064 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8065 }
8066 
8067 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8068 						struct net_device *upper_dev,
8069 						void *private, bool master)
8070 {
8071 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8072 						&dev->adj_list.upper,
8073 						&upper_dev->adj_list.lower,
8074 						private, master);
8075 }
8076 
8077 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8078 						   struct net_device *upper_dev)
8079 {
8080 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8081 					   &dev->adj_list.upper,
8082 					   &upper_dev->adj_list.lower);
8083 }
8084 
8085 static int __netdev_upper_dev_link(struct net_device *dev,
8086 				   struct net_device *upper_dev, bool master,
8087 				   void *upper_priv, void *upper_info,
8088 				   struct netdev_nested_priv *priv,
8089 				   struct netlink_ext_ack *extack)
8090 {
8091 	struct netdev_notifier_changeupper_info changeupper_info = {
8092 		.info = {
8093 			.dev = dev,
8094 			.extack = extack,
8095 		},
8096 		.upper_dev = upper_dev,
8097 		.master = master,
8098 		.linking = true,
8099 		.upper_info = upper_info,
8100 	};
8101 	struct net_device *master_dev;
8102 	int ret = 0;
8103 
8104 	ASSERT_RTNL();
8105 
8106 	if (dev == upper_dev)
8107 		return -EBUSY;
8108 
8109 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8110 	if (__netdev_has_upper_dev(upper_dev, dev))
8111 		return -EBUSY;
8112 
8113 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8114 		return -EMLINK;
8115 
8116 	if (!master) {
8117 		if (__netdev_has_upper_dev(dev, upper_dev))
8118 			return -EEXIST;
8119 	} else {
8120 		master_dev = __netdev_master_upper_dev_get(dev);
8121 		if (master_dev)
8122 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8123 	}
8124 
8125 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8126 					    &changeupper_info.info);
8127 	ret = notifier_to_errno(ret);
8128 	if (ret)
8129 		return ret;
8130 
8131 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8132 						   master);
8133 	if (ret)
8134 		return ret;
8135 
8136 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8137 					    &changeupper_info.info);
8138 	ret = notifier_to_errno(ret);
8139 	if (ret)
8140 		goto rollback;
8141 
8142 	__netdev_update_upper_level(dev, NULL);
8143 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8144 
8145 	__netdev_update_lower_level(upper_dev, priv);
8146 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8147 				    priv);
8148 
8149 	return 0;
8150 
8151 rollback:
8152 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8153 
8154 	return ret;
8155 }
8156 
8157 /**
8158  * netdev_upper_dev_link - Add a link to the upper device
8159  * @dev: device
8160  * @upper_dev: new upper device
8161  * @extack: netlink extended ack
8162  *
8163  * Adds a link to device which is upper to this one. The caller must hold
8164  * the RTNL lock. On a failure a negative errno code is returned.
8165  * On success the reference counts are adjusted and the function
8166  * returns zero.
8167  */
8168 int netdev_upper_dev_link(struct net_device *dev,
8169 			  struct net_device *upper_dev,
8170 			  struct netlink_ext_ack *extack)
8171 {
8172 	struct netdev_nested_priv priv = {
8173 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8174 		.data = NULL,
8175 	};
8176 
8177 	return __netdev_upper_dev_link(dev, upper_dev, false,
8178 				       NULL, NULL, &priv, extack);
8179 }
8180 EXPORT_SYMBOL(netdev_upper_dev_link);
8181 
8182 /**
8183  * netdev_master_upper_dev_link - Add a master link to the upper device
8184  * @dev: device
8185  * @upper_dev: new upper device
8186  * @upper_priv: upper device private
8187  * @upper_info: upper info to be passed down via notifier
8188  * @extack: netlink extended ack
8189  *
8190  * Adds a link to device which is upper to this one. In this case, only
8191  * one master upper device can be linked, although other non-master devices
8192  * might be linked as well. The caller must hold the RTNL lock.
8193  * On a failure a negative errno code is returned. On success the reference
8194  * counts are adjusted and the function returns zero.
8195  */
8196 int netdev_master_upper_dev_link(struct net_device *dev,
8197 				 struct net_device *upper_dev,
8198 				 void *upper_priv, void *upper_info,
8199 				 struct netlink_ext_ack *extack)
8200 {
8201 	struct netdev_nested_priv priv = {
8202 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8203 		.data = NULL,
8204 	};
8205 
8206 	return __netdev_upper_dev_link(dev, upper_dev, true,
8207 				       upper_priv, upper_info, &priv, extack);
8208 }
8209 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8210 
8211 static void __netdev_upper_dev_unlink(struct net_device *dev,
8212 				      struct net_device *upper_dev,
8213 				      struct netdev_nested_priv *priv)
8214 {
8215 	struct netdev_notifier_changeupper_info changeupper_info = {
8216 		.info = {
8217 			.dev = dev,
8218 		},
8219 		.upper_dev = upper_dev,
8220 		.linking = false,
8221 	};
8222 
8223 	ASSERT_RTNL();
8224 
8225 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8226 
8227 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8228 				      &changeupper_info.info);
8229 
8230 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8231 
8232 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8233 				      &changeupper_info.info);
8234 
8235 	__netdev_update_upper_level(dev, NULL);
8236 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8237 
8238 	__netdev_update_lower_level(upper_dev, priv);
8239 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8240 				    priv);
8241 }
8242 
8243 /**
8244  * netdev_upper_dev_unlink - Removes a link to upper device
8245  * @dev: device
8246  * @upper_dev: new upper device
8247  *
8248  * Removes a link to device which is upper to this one. The caller must hold
8249  * the RTNL lock.
8250  */
8251 void netdev_upper_dev_unlink(struct net_device *dev,
8252 			     struct net_device *upper_dev)
8253 {
8254 	struct netdev_nested_priv priv = {
8255 		.flags = NESTED_SYNC_TODO,
8256 		.data = NULL,
8257 	};
8258 
8259 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8260 }
8261 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8262 
8263 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8264 				      struct net_device *lower_dev,
8265 				      bool val)
8266 {
8267 	struct netdev_adjacent *adj;
8268 
8269 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8270 	if (adj)
8271 		adj->ignore = val;
8272 
8273 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8274 	if (adj)
8275 		adj->ignore = val;
8276 }
8277 
8278 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8279 					struct net_device *lower_dev)
8280 {
8281 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8282 }
8283 
8284 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8285 				       struct net_device *lower_dev)
8286 {
8287 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8288 }
8289 
8290 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8291 				   struct net_device *new_dev,
8292 				   struct net_device *dev,
8293 				   struct netlink_ext_ack *extack)
8294 {
8295 	struct netdev_nested_priv priv = {
8296 		.flags = 0,
8297 		.data = NULL,
8298 	};
8299 	int err;
8300 
8301 	if (!new_dev)
8302 		return 0;
8303 
8304 	if (old_dev && new_dev != old_dev)
8305 		netdev_adjacent_dev_disable(dev, old_dev);
8306 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8307 				      extack);
8308 	if (err) {
8309 		if (old_dev && new_dev != old_dev)
8310 			netdev_adjacent_dev_enable(dev, old_dev);
8311 		return err;
8312 	}
8313 
8314 	return 0;
8315 }
8316 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8317 
8318 void netdev_adjacent_change_commit(struct net_device *old_dev,
8319 				   struct net_device *new_dev,
8320 				   struct net_device *dev)
8321 {
8322 	struct netdev_nested_priv priv = {
8323 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8324 		.data = NULL,
8325 	};
8326 
8327 	if (!new_dev || !old_dev)
8328 		return;
8329 
8330 	if (new_dev == old_dev)
8331 		return;
8332 
8333 	netdev_adjacent_dev_enable(dev, old_dev);
8334 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8335 }
8336 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8337 
8338 void netdev_adjacent_change_abort(struct net_device *old_dev,
8339 				  struct net_device *new_dev,
8340 				  struct net_device *dev)
8341 {
8342 	struct netdev_nested_priv priv = {
8343 		.flags = 0,
8344 		.data = NULL,
8345 	};
8346 
8347 	if (!new_dev)
8348 		return;
8349 
8350 	if (old_dev && new_dev != old_dev)
8351 		netdev_adjacent_dev_enable(dev, old_dev);
8352 
8353 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8354 }
8355 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8356 
8357 /**
8358  * netdev_bonding_info_change - Dispatch event about slave change
8359  * @dev: device
8360  * @bonding_info: info to dispatch
8361  *
8362  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8363  * The caller must hold the RTNL lock.
8364  */
8365 void netdev_bonding_info_change(struct net_device *dev,
8366 				struct netdev_bonding_info *bonding_info)
8367 {
8368 	struct netdev_notifier_bonding_info info = {
8369 		.info.dev = dev,
8370 	};
8371 
8372 	memcpy(&info.bonding_info, bonding_info,
8373 	       sizeof(struct netdev_bonding_info));
8374 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8375 				      &info.info);
8376 }
8377 EXPORT_SYMBOL(netdev_bonding_info_change);
8378 
8379 /**
8380  * netdev_get_xmit_slave - Get the xmit slave of master device
8381  * @dev: device
8382  * @skb: The packet
8383  * @all_slaves: assume all the slaves are active
8384  *
8385  * The reference counters are not incremented so the caller must be
8386  * careful with locks. The caller must hold RCU lock.
8387  * %NULL is returned if no slave is found.
8388  */
8389 
8390 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8391 					 struct sk_buff *skb,
8392 					 bool all_slaves)
8393 {
8394 	const struct net_device_ops *ops = dev->netdev_ops;
8395 
8396 	if (!ops->ndo_get_xmit_slave)
8397 		return NULL;
8398 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8399 }
8400 EXPORT_SYMBOL(netdev_get_xmit_slave);
8401 
8402 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8403 						  struct sock *sk)
8404 {
8405 	const struct net_device_ops *ops = dev->netdev_ops;
8406 
8407 	if (!ops->ndo_sk_get_lower_dev)
8408 		return NULL;
8409 	return ops->ndo_sk_get_lower_dev(dev, sk);
8410 }
8411 
8412 /**
8413  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8414  * @dev: device
8415  * @sk: the socket
8416  *
8417  * %NULL is returned if no lower device is found.
8418  */
8419 
8420 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8421 					    struct sock *sk)
8422 {
8423 	struct net_device *lower;
8424 
8425 	lower = netdev_sk_get_lower_dev(dev, sk);
8426 	while (lower) {
8427 		dev = lower;
8428 		lower = netdev_sk_get_lower_dev(dev, sk);
8429 	}
8430 
8431 	return dev;
8432 }
8433 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8434 
8435 static void netdev_adjacent_add_links(struct net_device *dev)
8436 {
8437 	struct netdev_adjacent *iter;
8438 
8439 	struct net *net = dev_net(dev);
8440 
8441 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8442 		if (!net_eq(net, dev_net(iter->dev)))
8443 			continue;
8444 		netdev_adjacent_sysfs_add(iter->dev, dev,
8445 					  &iter->dev->adj_list.lower);
8446 		netdev_adjacent_sysfs_add(dev, iter->dev,
8447 					  &dev->adj_list.upper);
8448 	}
8449 
8450 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8451 		if (!net_eq(net, dev_net(iter->dev)))
8452 			continue;
8453 		netdev_adjacent_sysfs_add(iter->dev, dev,
8454 					  &iter->dev->adj_list.upper);
8455 		netdev_adjacent_sysfs_add(dev, iter->dev,
8456 					  &dev->adj_list.lower);
8457 	}
8458 }
8459 
8460 static void netdev_adjacent_del_links(struct net_device *dev)
8461 {
8462 	struct netdev_adjacent *iter;
8463 
8464 	struct net *net = dev_net(dev);
8465 
8466 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8467 		if (!net_eq(net, dev_net(iter->dev)))
8468 			continue;
8469 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8470 					  &iter->dev->adj_list.lower);
8471 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8472 					  &dev->adj_list.upper);
8473 	}
8474 
8475 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8476 		if (!net_eq(net, dev_net(iter->dev)))
8477 			continue;
8478 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8479 					  &iter->dev->adj_list.upper);
8480 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8481 					  &dev->adj_list.lower);
8482 	}
8483 }
8484 
8485 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8486 {
8487 	struct netdev_adjacent *iter;
8488 
8489 	struct net *net = dev_net(dev);
8490 
8491 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8492 		if (!net_eq(net, dev_net(iter->dev)))
8493 			continue;
8494 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8495 					  &iter->dev->adj_list.lower);
8496 		netdev_adjacent_sysfs_add(iter->dev, dev,
8497 					  &iter->dev->adj_list.lower);
8498 	}
8499 
8500 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8501 		if (!net_eq(net, dev_net(iter->dev)))
8502 			continue;
8503 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8504 					  &iter->dev->adj_list.upper);
8505 		netdev_adjacent_sysfs_add(iter->dev, dev,
8506 					  &iter->dev->adj_list.upper);
8507 	}
8508 }
8509 
8510 void *netdev_lower_dev_get_private(struct net_device *dev,
8511 				   struct net_device *lower_dev)
8512 {
8513 	struct netdev_adjacent *lower;
8514 
8515 	if (!lower_dev)
8516 		return NULL;
8517 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8518 	if (!lower)
8519 		return NULL;
8520 
8521 	return lower->private;
8522 }
8523 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8524 
8525 
8526 /**
8527  * netdev_lower_state_changed - Dispatch event about lower device state change
8528  * @lower_dev: device
8529  * @lower_state_info: state to dispatch
8530  *
8531  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8532  * The caller must hold the RTNL lock.
8533  */
8534 void netdev_lower_state_changed(struct net_device *lower_dev,
8535 				void *lower_state_info)
8536 {
8537 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8538 		.info.dev = lower_dev,
8539 	};
8540 
8541 	ASSERT_RTNL();
8542 	changelowerstate_info.lower_state_info = lower_state_info;
8543 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8544 				      &changelowerstate_info.info);
8545 }
8546 EXPORT_SYMBOL(netdev_lower_state_changed);
8547 
8548 static void dev_change_rx_flags(struct net_device *dev, int flags)
8549 {
8550 	const struct net_device_ops *ops = dev->netdev_ops;
8551 
8552 	if (ops->ndo_change_rx_flags)
8553 		ops->ndo_change_rx_flags(dev, flags);
8554 }
8555 
8556 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8557 {
8558 	unsigned int old_flags = dev->flags;
8559 	kuid_t uid;
8560 	kgid_t gid;
8561 
8562 	ASSERT_RTNL();
8563 
8564 	dev->flags |= IFF_PROMISC;
8565 	dev->promiscuity += inc;
8566 	if (dev->promiscuity == 0) {
8567 		/*
8568 		 * Avoid overflow.
8569 		 * If inc causes overflow, untouch promisc and return error.
8570 		 */
8571 		if (inc < 0)
8572 			dev->flags &= ~IFF_PROMISC;
8573 		else {
8574 			dev->promiscuity -= inc;
8575 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8576 				dev->name);
8577 			return -EOVERFLOW;
8578 		}
8579 	}
8580 	if (dev->flags != old_flags) {
8581 		pr_info("device %s %s promiscuous mode\n",
8582 			dev->name,
8583 			dev->flags & IFF_PROMISC ? "entered" : "left");
8584 		if (audit_enabled) {
8585 			current_uid_gid(&uid, &gid);
8586 			audit_log(audit_context(), GFP_ATOMIC,
8587 				  AUDIT_ANOM_PROMISCUOUS,
8588 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8589 				  dev->name, (dev->flags & IFF_PROMISC),
8590 				  (old_flags & IFF_PROMISC),
8591 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8592 				  from_kuid(&init_user_ns, uid),
8593 				  from_kgid(&init_user_ns, gid),
8594 				  audit_get_sessionid(current));
8595 		}
8596 
8597 		dev_change_rx_flags(dev, IFF_PROMISC);
8598 	}
8599 	if (notify)
8600 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
8601 	return 0;
8602 }
8603 
8604 /**
8605  *	dev_set_promiscuity	- update promiscuity count on a device
8606  *	@dev: device
8607  *	@inc: modifier
8608  *
8609  *	Add or remove promiscuity from a device. While the count in the device
8610  *	remains above zero the interface remains promiscuous. Once it hits zero
8611  *	the device reverts back to normal filtering operation. A negative inc
8612  *	value is used to drop promiscuity on the device.
8613  *	Return 0 if successful or a negative errno code on error.
8614  */
8615 int dev_set_promiscuity(struct net_device *dev, int inc)
8616 {
8617 	unsigned int old_flags = dev->flags;
8618 	int err;
8619 
8620 	err = __dev_set_promiscuity(dev, inc, true);
8621 	if (err < 0)
8622 		return err;
8623 	if (dev->flags != old_flags)
8624 		dev_set_rx_mode(dev);
8625 	return err;
8626 }
8627 EXPORT_SYMBOL(dev_set_promiscuity);
8628 
8629 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8630 {
8631 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8632 
8633 	ASSERT_RTNL();
8634 
8635 	dev->flags |= IFF_ALLMULTI;
8636 	dev->allmulti += inc;
8637 	if (dev->allmulti == 0) {
8638 		/*
8639 		 * Avoid overflow.
8640 		 * If inc causes overflow, untouch allmulti and return error.
8641 		 */
8642 		if (inc < 0)
8643 			dev->flags &= ~IFF_ALLMULTI;
8644 		else {
8645 			dev->allmulti -= inc;
8646 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8647 				dev->name);
8648 			return -EOVERFLOW;
8649 		}
8650 	}
8651 	if (dev->flags ^ old_flags) {
8652 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8653 		dev_set_rx_mode(dev);
8654 		if (notify)
8655 			__dev_notify_flags(dev, old_flags,
8656 					   dev->gflags ^ old_gflags);
8657 	}
8658 	return 0;
8659 }
8660 
8661 /**
8662  *	dev_set_allmulti	- update allmulti count on a device
8663  *	@dev: device
8664  *	@inc: modifier
8665  *
8666  *	Add or remove reception of all multicast frames to a device. While the
8667  *	count in the device remains above zero the interface remains listening
8668  *	to all interfaces. Once it hits zero the device reverts back to normal
8669  *	filtering operation. A negative @inc value is used to drop the counter
8670  *	when releasing a resource needing all multicasts.
8671  *	Return 0 if successful or a negative errno code on error.
8672  */
8673 
8674 int dev_set_allmulti(struct net_device *dev, int inc)
8675 {
8676 	return __dev_set_allmulti(dev, inc, true);
8677 }
8678 EXPORT_SYMBOL(dev_set_allmulti);
8679 
8680 /*
8681  *	Upload unicast and multicast address lists to device and
8682  *	configure RX filtering. When the device doesn't support unicast
8683  *	filtering it is put in promiscuous mode while unicast addresses
8684  *	are present.
8685  */
8686 void __dev_set_rx_mode(struct net_device *dev)
8687 {
8688 	const struct net_device_ops *ops = dev->netdev_ops;
8689 
8690 	/* dev_open will call this function so the list will stay sane. */
8691 	if (!(dev->flags&IFF_UP))
8692 		return;
8693 
8694 	if (!netif_device_present(dev))
8695 		return;
8696 
8697 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8698 		/* Unicast addresses changes may only happen under the rtnl,
8699 		 * therefore calling __dev_set_promiscuity here is safe.
8700 		 */
8701 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8702 			__dev_set_promiscuity(dev, 1, false);
8703 			dev->uc_promisc = true;
8704 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8705 			__dev_set_promiscuity(dev, -1, false);
8706 			dev->uc_promisc = false;
8707 		}
8708 	}
8709 
8710 	if (ops->ndo_set_rx_mode)
8711 		ops->ndo_set_rx_mode(dev);
8712 }
8713 
8714 void dev_set_rx_mode(struct net_device *dev)
8715 {
8716 	netif_addr_lock_bh(dev);
8717 	__dev_set_rx_mode(dev);
8718 	netif_addr_unlock_bh(dev);
8719 }
8720 
8721 /**
8722  *	dev_get_flags - get flags reported to userspace
8723  *	@dev: device
8724  *
8725  *	Get the combination of flag bits exported through APIs to userspace.
8726  */
8727 unsigned int dev_get_flags(const struct net_device *dev)
8728 {
8729 	unsigned int flags;
8730 
8731 	flags = (dev->flags & ~(IFF_PROMISC |
8732 				IFF_ALLMULTI |
8733 				IFF_RUNNING |
8734 				IFF_LOWER_UP |
8735 				IFF_DORMANT)) |
8736 		(dev->gflags & (IFF_PROMISC |
8737 				IFF_ALLMULTI));
8738 
8739 	if (netif_running(dev)) {
8740 		if (netif_oper_up(dev))
8741 			flags |= IFF_RUNNING;
8742 		if (netif_carrier_ok(dev))
8743 			flags |= IFF_LOWER_UP;
8744 		if (netif_dormant(dev))
8745 			flags |= IFF_DORMANT;
8746 	}
8747 
8748 	return flags;
8749 }
8750 EXPORT_SYMBOL(dev_get_flags);
8751 
8752 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8753 		       struct netlink_ext_ack *extack)
8754 {
8755 	unsigned int old_flags = dev->flags;
8756 	int ret;
8757 
8758 	ASSERT_RTNL();
8759 
8760 	/*
8761 	 *	Set the flags on our device.
8762 	 */
8763 
8764 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8765 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8766 			       IFF_AUTOMEDIA)) |
8767 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8768 				    IFF_ALLMULTI));
8769 
8770 	/*
8771 	 *	Load in the correct multicast list now the flags have changed.
8772 	 */
8773 
8774 	if ((old_flags ^ flags) & IFF_MULTICAST)
8775 		dev_change_rx_flags(dev, IFF_MULTICAST);
8776 
8777 	dev_set_rx_mode(dev);
8778 
8779 	/*
8780 	 *	Have we downed the interface. We handle IFF_UP ourselves
8781 	 *	according to user attempts to set it, rather than blindly
8782 	 *	setting it.
8783 	 */
8784 
8785 	ret = 0;
8786 	if ((old_flags ^ flags) & IFF_UP) {
8787 		if (old_flags & IFF_UP)
8788 			__dev_close(dev);
8789 		else
8790 			ret = __dev_open(dev, extack);
8791 	}
8792 
8793 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8794 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8795 		unsigned int old_flags = dev->flags;
8796 
8797 		dev->gflags ^= IFF_PROMISC;
8798 
8799 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8800 			if (dev->flags != old_flags)
8801 				dev_set_rx_mode(dev);
8802 	}
8803 
8804 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8805 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8806 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8807 	 */
8808 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8809 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8810 
8811 		dev->gflags ^= IFF_ALLMULTI;
8812 		__dev_set_allmulti(dev, inc, false);
8813 	}
8814 
8815 	return ret;
8816 }
8817 
8818 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8819 			unsigned int gchanges)
8820 {
8821 	unsigned int changes = dev->flags ^ old_flags;
8822 
8823 	if (gchanges)
8824 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8825 
8826 	if (changes & IFF_UP) {
8827 		if (dev->flags & IFF_UP)
8828 			call_netdevice_notifiers(NETDEV_UP, dev);
8829 		else
8830 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8831 	}
8832 
8833 	if (dev->flags & IFF_UP &&
8834 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8835 		struct netdev_notifier_change_info change_info = {
8836 			.info = {
8837 				.dev = dev,
8838 			},
8839 			.flags_changed = changes,
8840 		};
8841 
8842 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8843 	}
8844 }
8845 
8846 /**
8847  *	dev_change_flags - change device settings
8848  *	@dev: device
8849  *	@flags: device state flags
8850  *	@extack: netlink extended ack
8851  *
8852  *	Change settings on device based state flags. The flags are
8853  *	in the userspace exported format.
8854  */
8855 int dev_change_flags(struct net_device *dev, unsigned int flags,
8856 		     struct netlink_ext_ack *extack)
8857 {
8858 	int ret;
8859 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8860 
8861 	ret = __dev_change_flags(dev, flags, extack);
8862 	if (ret < 0)
8863 		return ret;
8864 
8865 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8866 	__dev_notify_flags(dev, old_flags, changes);
8867 	return ret;
8868 }
8869 EXPORT_SYMBOL(dev_change_flags);
8870 
8871 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8872 {
8873 	const struct net_device_ops *ops = dev->netdev_ops;
8874 
8875 	if (ops->ndo_change_mtu)
8876 		return ops->ndo_change_mtu(dev, new_mtu);
8877 
8878 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8879 	WRITE_ONCE(dev->mtu, new_mtu);
8880 	return 0;
8881 }
8882 EXPORT_SYMBOL(__dev_set_mtu);
8883 
8884 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8885 		     struct netlink_ext_ack *extack)
8886 {
8887 	/* MTU must be positive, and in range */
8888 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8889 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8890 		return -EINVAL;
8891 	}
8892 
8893 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8894 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8895 		return -EINVAL;
8896 	}
8897 	return 0;
8898 }
8899 
8900 /**
8901  *	dev_set_mtu_ext - Change maximum transfer unit
8902  *	@dev: device
8903  *	@new_mtu: new transfer unit
8904  *	@extack: netlink extended ack
8905  *
8906  *	Change the maximum transfer size of the network device.
8907  */
8908 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8909 		    struct netlink_ext_ack *extack)
8910 {
8911 	int err, orig_mtu;
8912 
8913 	if (new_mtu == dev->mtu)
8914 		return 0;
8915 
8916 	err = dev_validate_mtu(dev, new_mtu, extack);
8917 	if (err)
8918 		return err;
8919 
8920 	if (!netif_device_present(dev))
8921 		return -ENODEV;
8922 
8923 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8924 	err = notifier_to_errno(err);
8925 	if (err)
8926 		return err;
8927 
8928 	orig_mtu = dev->mtu;
8929 	err = __dev_set_mtu(dev, new_mtu);
8930 
8931 	if (!err) {
8932 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8933 						   orig_mtu);
8934 		err = notifier_to_errno(err);
8935 		if (err) {
8936 			/* setting mtu back and notifying everyone again,
8937 			 * so that they have a chance to revert changes.
8938 			 */
8939 			__dev_set_mtu(dev, orig_mtu);
8940 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8941 						     new_mtu);
8942 		}
8943 	}
8944 	return err;
8945 }
8946 
8947 int dev_set_mtu(struct net_device *dev, int new_mtu)
8948 {
8949 	struct netlink_ext_ack extack;
8950 	int err;
8951 
8952 	memset(&extack, 0, sizeof(extack));
8953 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8954 	if (err && extack._msg)
8955 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8956 	return err;
8957 }
8958 EXPORT_SYMBOL(dev_set_mtu);
8959 
8960 /**
8961  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8962  *	@dev: device
8963  *	@new_len: new tx queue length
8964  */
8965 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8966 {
8967 	unsigned int orig_len = dev->tx_queue_len;
8968 	int res;
8969 
8970 	if (new_len != (unsigned int)new_len)
8971 		return -ERANGE;
8972 
8973 	if (new_len != orig_len) {
8974 		dev->tx_queue_len = new_len;
8975 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8976 		res = notifier_to_errno(res);
8977 		if (res)
8978 			goto err_rollback;
8979 		res = dev_qdisc_change_tx_queue_len(dev);
8980 		if (res)
8981 			goto err_rollback;
8982 	}
8983 
8984 	return 0;
8985 
8986 err_rollback:
8987 	netdev_err(dev, "refused to change device tx_queue_len\n");
8988 	dev->tx_queue_len = orig_len;
8989 	return res;
8990 }
8991 
8992 /**
8993  *	dev_set_group - Change group this device belongs to
8994  *	@dev: device
8995  *	@new_group: group this device should belong to
8996  */
8997 void dev_set_group(struct net_device *dev, int new_group)
8998 {
8999 	dev->group = new_group;
9000 }
9001 EXPORT_SYMBOL(dev_set_group);
9002 
9003 /**
9004  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9005  *	@dev: device
9006  *	@addr: new address
9007  *	@extack: netlink extended ack
9008  */
9009 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9010 			      struct netlink_ext_ack *extack)
9011 {
9012 	struct netdev_notifier_pre_changeaddr_info info = {
9013 		.info.dev = dev,
9014 		.info.extack = extack,
9015 		.dev_addr = addr,
9016 	};
9017 	int rc;
9018 
9019 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9020 	return notifier_to_errno(rc);
9021 }
9022 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9023 
9024 /**
9025  *	dev_set_mac_address - Change Media Access Control Address
9026  *	@dev: device
9027  *	@sa: new address
9028  *	@extack: netlink extended ack
9029  *
9030  *	Change the hardware (MAC) address of the device
9031  */
9032 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9033 			struct netlink_ext_ack *extack)
9034 {
9035 	const struct net_device_ops *ops = dev->netdev_ops;
9036 	int err;
9037 
9038 	if (!ops->ndo_set_mac_address)
9039 		return -EOPNOTSUPP;
9040 	if (sa->sa_family != dev->type)
9041 		return -EINVAL;
9042 	if (!netif_device_present(dev))
9043 		return -ENODEV;
9044 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9045 	if (err)
9046 		return err;
9047 	err = ops->ndo_set_mac_address(dev, sa);
9048 	if (err)
9049 		return err;
9050 	dev->addr_assign_type = NET_ADDR_SET;
9051 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9052 	add_device_randomness(dev->dev_addr, dev->addr_len);
9053 	return 0;
9054 }
9055 EXPORT_SYMBOL(dev_set_mac_address);
9056 
9057 static DECLARE_RWSEM(dev_addr_sem);
9058 
9059 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9060 			     struct netlink_ext_ack *extack)
9061 {
9062 	int ret;
9063 
9064 	down_write(&dev_addr_sem);
9065 	ret = dev_set_mac_address(dev, sa, extack);
9066 	up_write(&dev_addr_sem);
9067 	return ret;
9068 }
9069 EXPORT_SYMBOL(dev_set_mac_address_user);
9070 
9071 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9072 {
9073 	size_t size = sizeof(sa->sa_data);
9074 	struct net_device *dev;
9075 	int ret = 0;
9076 
9077 	down_read(&dev_addr_sem);
9078 	rcu_read_lock();
9079 
9080 	dev = dev_get_by_name_rcu(net, dev_name);
9081 	if (!dev) {
9082 		ret = -ENODEV;
9083 		goto unlock;
9084 	}
9085 	if (!dev->addr_len)
9086 		memset(sa->sa_data, 0, size);
9087 	else
9088 		memcpy(sa->sa_data, dev->dev_addr,
9089 		       min_t(size_t, size, dev->addr_len));
9090 	sa->sa_family = dev->type;
9091 
9092 unlock:
9093 	rcu_read_unlock();
9094 	up_read(&dev_addr_sem);
9095 	return ret;
9096 }
9097 EXPORT_SYMBOL(dev_get_mac_address);
9098 
9099 /**
9100  *	dev_change_carrier - Change device carrier
9101  *	@dev: device
9102  *	@new_carrier: new value
9103  *
9104  *	Change device carrier
9105  */
9106 int dev_change_carrier(struct net_device *dev, bool new_carrier)
9107 {
9108 	const struct net_device_ops *ops = dev->netdev_ops;
9109 
9110 	if (!ops->ndo_change_carrier)
9111 		return -EOPNOTSUPP;
9112 	if (!netif_device_present(dev))
9113 		return -ENODEV;
9114 	return ops->ndo_change_carrier(dev, new_carrier);
9115 }
9116 EXPORT_SYMBOL(dev_change_carrier);
9117 
9118 /**
9119  *	dev_get_phys_port_id - Get device physical port ID
9120  *	@dev: device
9121  *	@ppid: port ID
9122  *
9123  *	Get device physical port ID
9124  */
9125 int dev_get_phys_port_id(struct net_device *dev,
9126 			 struct netdev_phys_item_id *ppid)
9127 {
9128 	const struct net_device_ops *ops = dev->netdev_ops;
9129 
9130 	if (!ops->ndo_get_phys_port_id)
9131 		return -EOPNOTSUPP;
9132 	return ops->ndo_get_phys_port_id(dev, ppid);
9133 }
9134 EXPORT_SYMBOL(dev_get_phys_port_id);
9135 
9136 /**
9137  *	dev_get_phys_port_name - Get device physical port name
9138  *	@dev: device
9139  *	@name: port name
9140  *	@len: limit of bytes to copy to name
9141  *
9142  *	Get device physical port name
9143  */
9144 int dev_get_phys_port_name(struct net_device *dev,
9145 			   char *name, size_t len)
9146 {
9147 	const struct net_device_ops *ops = dev->netdev_ops;
9148 	int err;
9149 
9150 	if (ops->ndo_get_phys_port_name) {
9151 		err = ops->ndo_get_phys_port_name(dev, name, len);
9152 		if (err != -EOPNOTSUPP)
9153 			return err;
9154 	}
9155 	return devlink_compat_phys_port_name_get(dev, name, len);
9156 }
9157 EXPORT_SYMBOL(dev_get_phys_port_name);
9158 
9159 /**
9160  *	dev_get_port_parent_id - Get the device's port parent identifier
9161  *	@dev: network device
9162  *	@ppid: pointer to a storage for the port's parent identifier
9163  *	@recurse: allow/disallow recursion to lower devices
9164  *
9165  *	Get the devices's port parent identifier
9166  */
9167 int dev_get_port_parent_id(struct net_device *dev,
9168 			   struct netdev_phys_item_id *ppid,
9169 			   bool recurse)
9170 {
9171 	const struct net_device_ops *ops = dev->netdev_ops;
9172 	struct netdev_phys_item_id first = { };
9173 	struct net_device *lower_dev;
9174 	struct list_head *iter;
9175 	int err;
9176 
9177 	if (ops->ndo_get_port_parent_id) {
9178 		err = ops->ndo_get_port_parent_id(dev, ppid);
9179 		if (err != -EOPNOTSUPP)
9180 			return err;
9181 	}
9182 
9183 	err = devlink_compat_switch_id_get(dev, ppid);
9184 	if (!err || err != -EOPNOTSUPP)
9185 		return err;
9186 
9187 	if (!recurse)
9188 		return -EOPNOTSUPP;
9189 
9190 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9191 		err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9192 		if (err)
9193 			break;
9194 		if (!first.id_len)
9195 			first = *ppid;
9196 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9197 			return -EOPNOTSUPP;
9198 	}
9199 
9200 	return err;
9201 }
9202 EXPORT_SYMBOL(dev_get_port_parent_id);
9203 
9204 /**
9205  *	netdev_port_same_parent_id - Indicate if two network devices have
9206  *	the same port parent identifier
9207  *	@a: first network device
9208  *	@b: second network device
9209  */
9210 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9211 {
9212 	struct netdev_phys_item_id a_id = { };
9213 	struct netdev_phys_item_id b_id = { };
9214 
9215 	if (dev_get_port_parent_id(a, &a_id, true) ||
9216 	    dev_get_port_parent_id(b, &b_id, true))
9217 		return false;
9218 
9219 	return netdev_phys_item_id_same(&a_id, &b_id);
9220 }
9221 EXPORT_SYMBOL(netdev_port_same_parent_id);
9222 
9223 /**
9224  *	dev_change_proto_down - update protocol port state information
9225  *	@dev: device
9226  *	@proto_down: new value
9227  *
9228  *	This info can be used by switch drivers to set the phys state of the
9229  *	port.
9230  */
9231 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9232 {
9233 	const struct net_device_ops *ops = dev->netdev_ops;
9234 
9235 	if (!ops->ndo_change_proto_down)
9236 		return -EOPNOTSUPP;
9237 	if (!netif_device_present(dev))
9238 		return -ENODEV;
9239 	return ops->ndo_change_proto_down(dev, proto_down);
9240 }
9241 EXPORT_SYMBOL(dev_change_proto_down);
9242 
9243 /**
9244  *	dev_change_proto_down_generic - generic implementation for
9245  * 	ndo_change_proto_down that sets carrier according to
9246  * 	proto_down.
9247  *
9248  *	@dev: device
9249  *	@proto_down: new value
9250  */
9251 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9252 {
9253 	if (proto_down)
9254 		netif_carrier_off(dev);
9255 	else
9256 		netif_carrier_on(dev);
9257 	dev->proto_down = proto_down;
9258 	return 0;
9259 }
9260 EXPORT_SYMBOL(dev_change_proto_down_generic);
9261 
9262 /**
9263  *	dev_change_proto_down_reason - proto down reason
9264  *
9265  *	@dev: device
9266  *	@mask: proto down mask
9267  *	@value: proto down value
9268  */
9269 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9270 				  u32 value)
9271 {
9272 	int b;
9273 
9274 	if (!mask) {
9275 		dev->proto_down_reason = value;
9276 	} else {
9277 		for_each_set_bit(b, &mask, 32) {
9278 			if (value & (1 << b))
9279 				dev->proto_down_reason |= BIT(b);
9280 			else
9281 				dev->proto_down_reason &= ~BIT(b);
9282 		}
9283 	}
9284 }
9285 EXPORT_SYMBOL(dev_change_proto_down_reason);
9286 
9287 struct bpf_xdp_link {
9288 	struct bpf_link link;
9289 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9290 	int flags;
9291 };
9292 
9293 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9294 {
9295 	if (flags & XDP_FLAGS_HW_MODE)
9296 		return XDP_MODE_HW;
9297 	if (flags & XDP_FLAGS_DRV_MODE)
9298 		return XDP_MODE_DRV;
9299 	if (flags & XDP_FLAGS_SKB_MODE)
9300 		return XDP_MODE_SKB;
9301 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9302 }
9303 
9304 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9305 {
9306 	switch (mode) {
9307 	case XDP_MODE_SKB:
9308 		return generic_xdp_install;
9309 	case XDP_MODE_DRV:
9310 	case XDP_MODE_HW:
9311 		return dev->netdev_ops->ndo_bpf;
9312 	default:
9313 		return NULL;
9314 	}
9315 }
9316 
9317 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9318 					 enum bpf_xdp_mode mode)
9319 {
9320 	return dev->xdp_state[mode].link;
9321 }
9322 
9323 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9324 				     enum bpf_xdp_mode mode)
9325 {
9326 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9327 
9328 	if (link)
9329 		return link->link.prog;
9330 	return dev->xdp_state[mode].prog;
9331 }
9332 
9333 static u8 dev_xdp_prog_count(struct net_device *dev)
9334 {
9335 	u8 count = 0;
9336 	int i;
9337 
9338 	for (i = 0; i < __MAX_XDP_MODE; i++)
9339 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9340 			count++;
9341 	return count;
9342 }
9343 
9344 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9345 {
9346 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9347 
9348 	return prog ? prog->aux->id : 0;
9349 }
9350 
9351 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9352 			     struct bpf_xdp_link *link)
9353 {
9354 	dev->xdp_state[mode].link = link;
9355 	dev->xdp_state[mode].prog = NULL;
9356 }
9357 
9358 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9359 			     struct bpf_prog *prog)
9360 {
9361 	dev->xdp_state[mode].link = NULL;
9362 	dev->xdp_state[mode].prog = prog;
9363 }
9364 
9365 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9366 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9367 			   u32 flags, struct bpf_prog *prog)
9368 {
9369 	struct netdev_bpf xdp;
9370 	int err;
9371 
9372 	memset(&xdp, 0, sizeof(xdp));
9373 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9374 	xdp.extack = extack;
9375 	xdp.flags = flags;
9376 	xdp.prog = prog;
9377 
9378 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9379 	 * "moved" into driver), so they don't increment it on their own, but
9380 	 * they do decrement refcnt when program is detached or replaced.
9381 	 * Given net_device also owns link/prog, we need to bump refcnt here
9382 	 * to prevent drivers from underflowing it.
9383 	 */
9384 	if (prog)
9385 		bpf_prog_inc(prog);
9386 	err = bpf_op(dev, &xdp);
9387 	if (err) {
9388 		if (prog)
9389 			bpf_prog_put(prog);
9390 		return err;
9391 	}
9392 
9393 	if (mode != XDP_MODE_HW)
9394 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9395 
9396 	return 0;
9397 }
9398 
9399 static void dev_xdp_uninstall(struct net_device *dev)
9400 {
9401 	struct bpf_xdp_link *link;
9402 	struct bpf_prog *prog;
9403 	enum bpf_xdp_mode mode;
9404 	bpf_op_t bpf_op;
9405 
9406 	ASSERT_RTNL();
9407 
9408 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9409 		prog = dev_xdp_prog(dev, mode);
9410 		if (!prog)
9411 			continue;
9412 
9413 		bpf_op = dev_xdp_bpf_op(dev, mode);
9414 		if (!bpf_op)
9415 			continue;
9416 
9417 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9418 
9419 		/* auto-detach link from net device */
9420 		link = dev_xdp_link(dev, mode);
9421 		if (link)
9422 			link->dev = NULL;
9423 		else
9424 			bpf_prog_put(prog);
9425 
9426 		dev_xdp_set_link(dev, mode, NULL);
9427 	}
9428 }
9429 
9430 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9431 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9432 			  struct bpf_prog *old_prog, u32 flags)
9433 {
9434 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9435 	struct bpf_prog *cur_prog;
9436 	enum bpf_xdp_mode mode;
9437 	bpf_op_t bpf_op;
9438 	int err;
9439 
9440 	ASSERT_RTNL();
9441 
9442 	/* either link or prog attachment, never both */
9443 	if (link && (new_prog || old_prog))
9444 		return -EINVAL;
9445 	/* link supports only XDP mode flags */
9446 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9447 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9448 		return -EINVAL;
9449 	}
9450 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9451 	if (num_modes > 1) {
9452 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9453 		return -EINVAL;
9454 	}
9455 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9456 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9457 		NL_SET_ERR_MSG(extack,
9458 			       "More than one program loaded, unset mode is ambiguous");
9459 		return -EINVAL;
9460 	}
9461 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9462 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9463 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9464 		return -EINVAL;
9465 	}
9466 
9467 	mode = dev_xdp_mode(dev, flags);
9468 	/* can't replace attached link */
9469 	if (dev_xdp_link(dev, mode)) {
9470 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9471 		return -EBUSY;
9472 	}
9473 
9474 	cur_prog = dev_xdp_prog(dev, mode);
9475 	/* can't replace attached prog with link */
9476 	if (link && cur_prog) {
9477 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9478 		return -EBUSY;
9479 	}
9480 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9481 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9482 		return -EEXIST;
9483 	}
9484 
9485 	/* put effective new program into new_prog */
9486 	if (link)
9487 		new_prog = link->link.prog;
9488 
9489 	if (new_prog) {
9490 		bool offload = mode == XDP_MODE_HW;
9491 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9492 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9493 
9494 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9495 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9496 			return -EBUSY;
9497 		}
9498 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9499 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9500 			return -EEXIST;
9501 		}
9502 		if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9503 			NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9504 			return -EINVAL;
9505 		}
9506 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9507 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9508 			return -EINVAL;
9509 		}
9510 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9511 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9512 			return -EINVAL;
9513 		}
9514 	}
9515 
9516 	/* don't call drivers if the effective program didn't change */
9517 	if (new_prog != cur_prog) {
9518 		bpf_op = dev_xdp_bpf_op(dev, mode);
9519 		if (!bpf_op) {
9520 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9521 			return -EOPNOTSUPP;
9522 		}
9523 
9524 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9525 		if (err)
9526 			return err;
9527 	}
9528 
9529 	if (link)
9530 		dev_xdp_set_link(dev, mode, link);
9531 	else
9532 		dev_xdp_set_prog(dev, mode, new_prog);
9533 	if (cur_prog)
9534 		bpf_prog_put(cur_prog);
9535 
9536 	return 0;
9537 }
9538 
9539 static int dev_xdp_attach_link(struct net_device *dev,
9540 			       struct netlink_ext_ack *extack,
9541 			       struct bpf_xdp_link *link)
9542 {
9543 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9544 }
9545 
9546 static int dev_xdp_detach_link(struct net_device *dev,
9547 			       struct netlink_ext_ack *extack,
9548 			       struct bpf_xdp_link *link)
9549 {
9550 	enum bpf_xdp_mode mode;
9551 	bpf_op_t bpf_op;
9552 
9553 	ASSERT_RTNL();
9554 
9555 	mode = dev_xdp_mode(dev, link->flags);
9556 	if (dev_xdp_link(dev, mode) != link)
9557 		return -EINVAL;
9558 
9559 	bpf_op = dev_xdp_bpf_op(dev, mode);
9560 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9561 	dev_xdp_set_link(dev, mode, NULL);
9562 	return 0;
9563 }
9564 
9565 static void bpf_xdp_link_release(struct bpf_link *link)
9566 {
9567 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9568 
9569 	rtnl_lock();
9570 
9571 	/* if racing with net_device's tear down, xdp_link->dev might be
9572 	 * already NULL, in which case link was already auto-detached
9573 	 */
9574 	if (xdp_link->dev) {
9575 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9576 		xdp_link->dev = NULL;
9577 	}
9578 
9579 	rtnl_unlock();
9580 }
9581 
9582 static int bpf_xdp_link_detach(struct bpf_link *link)
9583 {
9584 	bpf_xdp_link_release(link);
9585 	return 0;
9586 }
9587 
9588 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9589 {
9590 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9591 
9592 	kfree(xdp_link);
9593 }
9594 
9595 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9596 				     struct seq_file *seq)
9597 {
9598 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9599 	u32 ifindex = 0;
9600 
9601 	rtnl_lock();
9602 	if (xdp_link->dev)
9603 		ifindex = xdp_link->dev->ifindex;
9604 	rtnl_unlock();
9605 
9606 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9607 }
9608 
9609 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9610 				       struct bpf_link_info *info)
9611 {
9612 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9613 	u32 ifindex = 0;
9614 
9615 	rtnl_lock();
9616 	if (xdp_link->dev)
9617 		ifindex = xdp_link->dev->ifindex;
9618 	rtnl_unlock();
9619 
9620 	info->xdp.ifindex = ifindex;
9621 	return 0;
9622 }
9623 
9624 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9625 			       struct bpf_prog *old_prog)
9626 {
9627 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9628 	enum bpf_xdp_mode mode;
9629 	bpf_op_t bpf_op;
9630 	int err = 0;
9631 
9632 	rtnl_lock();
9633 
9634 	/* link might have been auto-released already, so fail */
9635 	if (!xdp_link->dev) {
9636 		err = -ENOLINK;
9637 		goto out_unlock;
9638 	}
9639 
9640 	if (old_prog && link->prog != old_prog) {
9641 		err = -EPERM;
9642 		goto out_unlock;
9643 	}
9644 	old_prog = link->prog;
9645 	if (old_prog == new_prog) {
9646 		/* no-op, don't disturb drivers */
9647 		bpf_prog_put(new_prog);
9648 		goto out_unlock;
9649 	}
9650 
9651 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9652 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9653 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9654 			      xdp_link->flags, new_prog);
9655 	if (err)
9656 		goto out_unlock;
9657 
9658 	old_prog = xchg(&link->prog, new_prog);
9659 	bpf_prog_put(old_prog);
9660 
9661 out_unlock:
9662 	rtnl_unlock();
9663 	return err;
9664 }
9665 
9666 static const struct bpf_link_ops bpf_xdp_link_lops = {
9667 	.release = bpf_xdp_link_release,
9668 	.dealloc = bpf_xdp_link_dealloc,
9669 	.detach = bpf_xdp_link_detach,
9670 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9671 	.fill_link_info = bpf_xdp_link_fill_link_info,
9672 	.update_prog = bpf_xdp_link_update,
9673 };
9674 
9675 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9676 {
9677 	struct net *net = current->nsproxy->net_ns;
9678 	struct bpf_link_primer link_primer;
9679 	struct bpf_xdp_link *link;
9680 	struct net_device *dev;
9681 	int err, fd;
9682 
9683 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9684 	if (!dev)
9685 		return -EINVAL;
9686 
9687 	link = kzalloc(sizeof(*link), GFP_USER);
9688 	if (!link) {
9689 		err = -ENOMEM;
9690 		goto out_put_dev;
9691 	}
9692 
9693 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9694 	link->dev = dev;
9695 	link->flags = attr->link_create.flags;
9696 
9697 	err = bpf_link_prime(&link->link, &link_primer);
9698 	if (err) {
9699 		kfree(link);
9700 		goto out_put_dev;
9701 	}
9702 
9703 	rtnl_lock();
9704 	err = dev_xdp_attach_link(dev, NULL, link);
9705 	rtnl_unlock();
9706 
9707 	if (err) {
9708 		bpf_link_cleanup(&link_primer);
9709 		goto out_put_dev;
9710 	}
9711 
9712 	fd = bpf_link_settle(&link_primer);
9713 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9714 	dev_put(dev);
9715 	return fd;
9716 
9717 out_put_dev:
9718 	dev_put(dev);
9719 	return err;
9720 }
9721 
9722 /**
9723  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9724  *	@dev: device
9725  *	@extack: netlink extended ack
9726  *	@fd: new program fd or negative value to clear
9727  *	@expected_fd: old program fd that userspace expects to replace or clear
9728  *	@flags: xdp-related flags
9729  *
9730  *	Set or clear a bpf program for a device
9731  */
9732 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9733 		      int fd, int expected_fd, u32 flags)
9734 {
9735 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9736 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9737 	int err;
9738 
9739 	ASSERT_RTNL();
9740 
9741 	if (fd >= 0) {
9742 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9743 						 mode != XDP_MODE_SKB);
9744 		if (IS_ERR(new_prog))
9745 			return PTR_ERR(new_prog);
9746 	}
9747 
9748 	if (expected_fd >= 0) {
9749 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9750 						 mode != XDP_MODE_SKB);
9751 		if (IS_ERR(old_prog)) {
9752 			err = PTR_ERR(old_prog);
9753 			old_prog = NULL;
9754 			goto err_out;
9755 		}
9756 	}
9757 
9758 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9759 
9760 err_out:
9761 	if (err && new_prog)
9762 		bpf_prog_put(new_prog);
9763 	if (old_prog)
9764 		bpf_prog_put(old_prog);
9765 	return err;
9766 }
9767 
9768 /**
9769  *	dev_new_index	-	allocate an ifindex
9770  *	@net: the applicable net namespace
9771  *
9772  *	Returns a suitable unique value for a new device interface
9773  *	number.  The caller must hold the rtnl semaphore or the
9774  *	dev_base_lock to be sure it remains unique.
9775  */
9776 static int dev_new_index(struct net *net)
9777 {
9778 	int ifindex = net->ifindex;
9779 
9780 	for (;;) {
9781 		if (++ifindex <= 0)
9782 			ifindex = 1;
9783 		if (!__dev_get_by_index(net, ifindex))
9784 			return net->ifindex = ifindex;
9785 	}
9786 }
9787 
9788 /* Delayed registration/unregisteration */
9789 static LIST_HEAD(net_todo_list);
9790 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9791 
9792 static void net_set_todo(struct net_device *dev)
9793 {
9794 	list_add_tail(&dev->todo_list, &net_todo_list);
9795 	dev_net(dev)->dev_unreg_count++;
9796 }
9797 
9798 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9799 	struct net_device *upper, netdev_features_t features)
9800 {
9801 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9802 	netdev_features_t feature;
9803 	int feature_bit;
9804 
9805 	for_each_netdev_feature(upper_disables, feature_bit) {
9806 		feature = __NETIF_F_BIT(feature_bit);
9807 		if (!(upper->wanted_features & feature)
9808 		    && (features & feature)) {
9809 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9810 				   &feature, upper->name);
9811 			features &= ~feature;
9812 		}
9813 	}
9814 
9815 	return features;
9816 }
9817 
9818 static void netdev_sync_lower_features(struct net_device *upper,
9819 	struct net_device *lower, netdev_features_t features)
9820 {
9821 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9822 	netdev_features_t feature;
9823 	int feature_bit;
9824 
9825 	for_each_netdev_feature(upper_disables, feature_bit) {
9826 		feature = __NETIF_F_BIT(feature_bit);
9827 		if (!(features & feature) && (lower->features & feature)) {
9828 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9829 				   &feature, lower->name);
9830 			lower->wanted_features &= ~feature;
9831 			__netdev_update_features(lower);
9832 
9833 			if (unlikely(lower->features & feature))
9834 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9835 					    &feature, lower->name);
9836 			else
9837 				netdev_features_change(lower);
9838 		}
9839 	}
9840 }
9841 
9842 static netdev_features_t netdev_fix_features(struct net_device *dev,
9843 	netdev_features_t features)
9844 {
9845 	/* Fix illegal checksum combinations */
9846 	if ((features & NETIF_F_HW_CSUM) &&
9847 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9848 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9849 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9850 	}
9851 
9852 	/* TSO requires that SG is present as well. */
9853 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9854 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9855 		features &= ~NETIF_F_ALL_TSO;
9856 	}
9857 
9858 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9859 					!(features & NETIF_F_IP_CSUM)) {
9860 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9861 		features &= ~NETIF_F_TSO;
9862 		features &= ~NETIF_F_TSO_ECN;
9863 	}
9864 
9865 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9866 					 !(features & NETIF_F_IPV6_CSUM)) {
9867 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9868 		features &= ~NETIF_F_TSO6;
9869 	}
9870 
9871 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9872 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9873 		features &= ~NETIF_F_TSO_MANGLEID;
9874 
9875 	/* TSO ECN requires that TSO is present as well. */
9876 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9877 		features &= ~NETIF_F_TSO_ECN;
9878 
9879 	/* Software GSO depends on SG. */
9880 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9881 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9882 		features &= ~NETIF_F_GSO;
9883 	}
9884 
9885 	/* GSO partial features require GSO partial be set */
9886 	if ((features & dev->gso_partial_features) &&
9887 	    !(features & NETIF_F_GSO_PARTIAL)) {
9888 		netdev_dbg(dev,
9889 			   "Dropping partially supported GSO features since no GSO partial.\n");
9890 		features &= ~dev->gso_partial_features;
9891 	}
9892 
9893 	if (!(features & NETIF_F_RXCSUM)) {
9894 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9895 		 * successfully merged by hardware must also have the
9896 		 * checksum verified by hardware.  If the user does not
9897 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9898 		 */
9899 		if (features & NETIF_F_GRO_HW) {
9900 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9901 			features &= ~NETIF_F_GRO_HW;
9902 		}
9903 	}
9904 
9905 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9906 	if (features & NETIF_F_RXFCS) {
9907 		if (features & NETIF_F_LRO) {
9908 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9909 			features &= ~NETIF_F_LRO;
9910 		}
9911 
9912 		if (features & NETIF_F_GRO_HW) {
9913 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9914 			features &= ~NETIF_F_GRO_HW;
9915 		}
9916 	}
9917 
9918 	if (features & NETIF_F_HW_TLS_TX) {
9919 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9920 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9921 		bool hw_csum = features & NETIF_F_HW_CSUM;
9922 
9923 		if (!ip_csum && !hw_csum) {
9924 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9925 			features &= ~NETIF_F_HW_TLS_TX;
9926 		}
9927 	}
9928 
9929 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9930 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9931 		features &= ~NETIF_F_HW_TLS_RX;
9932 	}
9933 
9934 	return features;
9935 }
9936 
9937 int __netdev_update_features(struct net_device *dev)
9938 {
9939 	struct net_device *upper, *lower;
9940 	netdev_features_t features;
9941 	struct list_head *iter;
9942 	int err = -1;
9943 
9944 	ASSERT_RTNL();
9945 
9946 	features = netdev_get_wanted_features(dev);
9947 
9948 	if (dev->netdev_ops->ndo_fix_features)
9949 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9950 
9951 	/* driver might be less strict about feature dependencies */
9952 	features = netdev_fix_features(dev, features);
9953 
9954 	/* some features can't be enabled if they're off on an upper device */
9955 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9956 		features = netdev_sync_upper_features(dev, upper, features);
9957 
9958 	if (dev->features == features)
9959 		goto sync_lower;
9960 
9961 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9962 		&dev->features, &features);
9963 
9964 	if (dev->netdev_ops->ndo_set_features)
9965 		err = dev->netdev_ops->ndo_set_features(dev, features);
9966 	else
9967 		err = 0;
9968 
9969 	if (unlikely(err < 0)) {
9970 		netdev_err(dev,
9971 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9972 			err, &features, &dev->features);
9973 		/* return non-0 since some features might have changed and
9974 		 * it's better to fire a spurious notification than miss it
9975 		 */
9976 		return -1;
9977 	}
9978 
9979 sync_lower:
9980 	/* some features must be disabled on lower devices when disabled
9981 	 * on an upper device (think: bonding master or bridge)
9982 	 */
9983 	netdev_for_each_lower_dev(dev, lower, iter)
9984 		netdev_sync_lower_features(dev, lower, features);
9985 
9986 	if (!err) {
9987 		netdev_features_t diff = features ^ dev->features;
9988 
9989 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9990 			/* udp_tunnel_{get,drop}_rx_info both need
9991 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9992 			 * device, or they won't do anything.
9993 			 * Thus we need to update dev->features
9994 			 * *before* calling udp_tunnel_get_rx_info,
9995 			 * but *after* calling udp_tunnel_drop_rx_info.
9996 			 */
9997 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9998 				dev->features = features;
9999 				udp_tunnel_get_rx_info(dev);
10000 			} else {
10001 				udp_tunnel_drop_rx_info(dev);
10002 			}
10003 		}
10004 
10005 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10006 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10007 				dev->features = features;
10008 				err |= vlan_get_rx_ctag_filter_info(dev);
10009 			} else {
10010 				vlan_drop_rx_ctag_filter_info(dev);
10011 			}
10012 		}
10013 
10014 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10015 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10016 				dev->features = features;
10017 				err |= vlan_get_rx_stag_filter_info(dev);
10018 			} else {
10019 				vlan_drop_rx_stag_filter_info(dev);
10020 			}
10021 		}
10022 
10023 		dev->features = features;
10024 	}
10025 
10026 	return err < 0 ? 0 : 1;
10027 }
10028 
10029 /**
10030  *	netdev_update_features - recalculate device features
10031  *	@dev: the device to check
10032  *
10033  *	Recalculate dev->features set and send notifications if it
10034  *	has changed. Should be called after driver or hardware dependent
10035  *	conditions might have changed that influence the features.
10036  */
10037 void netdev_update_features(struct net_device *dev)
10038 {
10039 	if (__netdev_update_features(dev))
10040 		netdev_features_change(dev);
10041 }
10042 EXPORT_SYMBOL(netdev_update_features);
10043 
10044 /**
10045  *	netdev_change_features - recalculate device features
10046  *	@dev: the device to check
10047  *
10048  *	Recalculate dev->features set and send notifications even
10049  *	if they have not changed. Should be called instead of
10050  *	netdev_update_features() if also dev->vlan_features might
10051  *	have changed to allow the changes to be propagated to stacked
10052  *	VLAN devices.
10053  */
10054 void netdev_change_features(struct net_device *dev)
10055 {
10056 	__netdev_update_features(dev);
10057 	netdev_features_change(dev);
10058 }
10059 EXPORT_SYMBOL(netdev_change_features);
10060 
10061 /**
10062  *	netif_stacked_transfer_operstate -	transfer operstate
10063  *	@rootdev: the root or lower level device to transfer state from
10064  *	@dev: the device to transfer operstate to
10065  *
10066  *	Transfer operational state from root to device. This is normally
10067  *	called when a stacking relationship exists between the root
10068  *	device and the device(a leaf device).
10069  */
10070 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10071 					struct net_device *dev)
10072 {
10073 	if (rootdev->operstate == IF_OPER_DORMANT)
10074 		netif_dormant_on(dev);
10075 	else
10076 		netif_dormant_off(dev);
10077 
10078 	if (rootdev->operstate == IF_OPER_TESTING)
10079 		netif_testing_on(dev);
10080 	else
10081 		netif_testing_off(dev);
10082 
10083 	if (netif_carrier_ok(rootdev))
10084 		netif_carrier_on(dev);
10085 	else
10086 		netif_carrier_off(dev);
10087 }
10088 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10089 
10090 static int netif_alloc_rx_queues(struct net_device *dev)
10091 {
10092 	unsigned int i, count = dev->num_rx_queues;
10093 	struct netdev_rx_queue *rx;
10094 	size_t sz = count * sizeof(*rx);
10095 	int err = 0;
10096 
10097 	BUG_ON(count < 1);
10098 
10099 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10100 	if (!rx)
10101 		return -ENOMEM;
10102 
10103 	dev->_rx = rx;
10104 
10105 	for (i = 0; i < count; i++) {
10106 		rx[i].dev = dev;
10107 
10108 		/* XDP RX-queue setup */
10109 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10110 		if (err < 0)
10111 			goto err_rxq_info;
10112 	}
10113 	return 0;
10114 
10115 err_rxq_info:
10116 	/* Rollback successful reg's and free other resources */
10117 	while (i--)
10118 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10119 	kvfree(dev->_rx);
10120 	dev->_rx = NULL;
10121 	return err;
10122 }
10123 
10124 static void netif_free_rx_queues(struct net_device *dev)
10125 {
10126 	unsigned int i, count = dev->num_rx_queues;
10127 
10128 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10129 	if (!dev->_rx)
10130 		return;
10131 
10132 	for (i = 0; i < count; i++)
10133 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10134 
10135 	kvfree(dev->_rx);
10136 }
10137 
10138 static void netdev_init_one_queue(struct net_device *dev,
10139 				  struct netdev_queue *queue, void *_unused)
10140 {
10141 	/* Initialize queue lock */
10142 	spin_lock_init(&queue->_xmit_lock);
10143 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10144 	queue->xmit_lock_owner = -1;
10145 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10146 	queue->dev = dev;
10147 #ifdef CONFIG_BQL
10148 	dql_init(&queue->dql, HZ);
10149 #endif
10150 }
10151 
10152 static void netif_free_tx_queues(struct net_device *dev)
10153 {
10154 	kvfree(dev->_tx);
10155 }
10156 
10157 static int netif_alloc_netdev_queues(struct net_device *dev)
10158 {
10159 	unsigned int count = dev->num_tx_queues;
10160 	struct netdev_queue *tx;
10161 	size_t sz = count * sizeof(*tx);
10162 
10163 	if (count < 1 || count > 0xffff)
10164 		return -EINVAL;
10165 
10166 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10167 	if (!tx)
10168 		return -ENOMEM;
10169 
10170 	dev->_tx = tx;
10171 
10172 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10173 	spin_lock_init(&dev->tx_global_lock);
10174 
10175 	return 0;
10176 }
10177 
10178 void netif_tx_stop_all_queues(struct net_device *dev)
10179 {
10180 	unsigned int i;
10181 
10182 	for (i = 0; i < dev->num_tx_queues; i++) {
10183 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10184 
10185 		netif_tx_stop_queue(txq);
10186 	}
10187 }
10188 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10189 
10190 /**
10191  *	register_netdevice	- register a network device
10192  *	@dev: device to register
10193  *
10194  *	Take a completed network device structure and add it to the kernel
10195  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10196  *	chain. 0 is returned on success. A negative errno code is returned
10197  *	on a failure to set up the device, or if the name is a duplicate.
10198  *
10199  *	Callers must hold the rtnl semaphore. You may want
10200  *	register_netdev() instead of this.
10201  *
10202  *	BUGS:
10203  *	The locking appears insufficient to guarantee two parallel registers
10204  *	will not get the same name.
10205  */
10206 
10207 int register_netdevice(struct net_device *dev)
10208 {
10209 	int ret;
10210 	struct net *net = dev_net(dev);
10211 
10212 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10213 		     NETDEV_FEATURE_COUNT);
10214 	BUG_ON(dev_boot_phase);
10215 	ASSERT_RTNL();
10216 
10217 	might_sleep();
10218 
10219 	/* When net_device's are persistent, this will be fatal. */
10220 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10221 	BUG_ON(!net);
10222 
10223 	ret = ethtool_check_ops(dev->ethtool_ops);
10224 	if (ret)
10225 		return ret;
10226 
10227 	spin_lock_init(&dev->addr_list_lock);
10228 	netdev_set_addr_lockdep_class(dev);
10229 
10230 	ret = dev_get_valid_name(net, dev, dev->name);
10231 	if (ret < 0)
10232 		goto out;
10233 
10234 	ret = -ENOMEM;
10235 	dev->name_node = netdev_name_node_head_alloc(dev);
10236 	if (!dev->name_node)
10237 		goto out;
10238 
10239 	/* Init, if this function is available */
10240 	if (dev->netdev_ops->ndo_init) {
10241 		ret = dev->netdev_ops->ndo_init(dev);
10242 		if (ret) {
10243 			if (ret > 0)
10244 				ret = -EIO;
10245 			goto err_free_name;
10246 		}
10247 	}
10248 
10249 	if (((dev->hw_features | dev->features) &
10250 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10251 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10252 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10253 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10254 		ret = -EINVAL;
10255 		goto err_uninit;
10256 	}
10257 
10258 	ret = -EBUSY;
10259 	if (!dev->ifindex)
10260 		dev->ifindex = dev_new_index(net);
10261 	else if (__dev_get_by_index(net, dev->ifindex))
10262 		goto err_uninit;
10263 
10264 	/* Transfer changeable features to wanted_features and enable
10265 	 * software offloads (GSO and GRO).
10266 	 */
10267 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10268 	dev->features |= NETIF_F_SOFT_FEATURES;
10269 
10270 	if (dev->udp_tunnel_nic_info) {
10271 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10272 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10273 	}
10274 
10275 	dev->wanted_features = dev->features & dev->hw_features;
10276 
10277 	if (!(dev->flags & IFF_LOOPBACK))
10278 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10279 
10280 	/* If IPv4 TCP segmentation offload is supported we should also
10281 	 * allow the device to enable segmenting the frame with the option
10282 	 * of ignoring a static IP ID value.  This doesn't enable the
10283 	 * feature itself but allows the user to enable it later.
10284 	 */
10285 	if (dev->hw_features & NETIF_F_TSO)
10286 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10287 	if (dev->vlan_features & NETIF_F_TSO)
10288 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10289 	if (dev->mpls_features & NETIF_F_TSO)
10290 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10291 	if (dev->hw_enc_features & NETIF_F_TSO)
10292 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10293 
10294 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10295 	 */
10296 	dev->vlan_features |= NETIF_F_HIGHDMA;
10297 
10298 	/* Make NETIF_F_SG inheritable to tunnel devices.
10299 	 */
10300 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10301 
10302 	/* Make NETIF_F_SG inheritable to MPLS.
10303 	 */
10304 	dev->mpls_features |= NETIF_F_SG;
10305 
10306 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10307 	ret = notifier_to_errno(ret);
10308 	if (ret)
10309 		goto err_uninit;
10310 
10311 	ret = netdev_register_kobject(dev);
10312 	if (ret) {
10313 		dev->reg_state = NETREG_UNREGISTERED;
10314 		goto err_uninit;
10315 	}
10316 	dev->reg_state = NETREG_REGISTERED;
10317 
10318 	__netdev_update_features(dev);
10319 
10320 	/*
10321 	 *	Default initial state at registry is that the
10322 	 *	device is present.
10323 	 */
10324 
10325 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10326 
10327 	linkwatch_init_dev(dev);
10328 
10329 	dev_init_scheduler(dev);
10330 	dev_hold(dev);
10331 	list_netdevice(dev);
10332 	add_device_randomness(dev->dev_addr, dev->addr_len);
10333 
10334 	/* If the device has permanent device address, driver should
10335 	 * set dev_addr and also addr_assign_type should be set to
10336 	 * NET_ADDR_PERM (default value).
10337 	 */
10338 	if (dev->addr_assign_type == NET_ADDR_PERM)
10339 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10340 
10341 	/* Notify protocols, that a new device appeared. */
10342 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10343 	ret = notifier_to_errno(ret);
10344 	if (ret) {
10345 		/* Expect explicit free_netdev() on failure */
10346 		dev->needs_free_netdev = false;
10347 		unregister_netdevice_queue(dev, NULL);
10348 		goto out;
10349 	}
10350 	/*
10351 	 *	Prevent userspace races by waiting until the network
10352 	 *	device is fully setup before sending notifications.
10353 	 */
10354 	if (!dev->rtnl_link_ops ||
10355 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10356 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10357 
10358 out:
10359 	return ret;
10360 
10361 err_uninit:
10362 	if (dev->netdev_ops->ndo_uninit)
10363 		dev->netdev_ops->ndo_uninit(dev);
10364 	if (dev->priv_destructor)
10365 		dev->priv_destructor(dev);
10366 err_free_name:
10367 	netdev_name_node_free(dev->name_node);
10368 	goto out;
10369 }
10370 EXPORT_SYMBOL(register_netdevice);
10371 
10372 /**
10373  *	init_dummy_netdev	- init a dummy network device for NAPI
10374  *	@dev: device to init
10375  *
10376  *	This takes a network device structure and initialize the minimum
10377  *	amount of fields so it can be used to schedule NAPI polls without
10378  *	registering a full blown interface. This is to be used by drivers
10379  *	that need to tie several hardware interfaces to a single NAPI
10380  *	poll scheduler due to HW limitations.
10381  */
10382 int init_dummy_netdev(struct net_device *dev)
10383 {
10384 	/* Clear everything. Note we don't initialize spinlocks
10385 	 * are they aren't supposed to be taken by any of the
10386 	 * NAPI code and this dummy netdev is supposed to be
10387 	 * only ever used for NAPI polls
10388 	 */
10389 	memset(dev, 0, sizeof(struct net_device));
10390 
10391 	/* make sure we BUG if trying to hit standard
10392 	 * register/unregister code path
10393 	 */
10394 	dev->reg_state = NETREG_DUMMY;
10395 
10396 	/* NAPI wants this */
10397 	INIT_LIST_HEAD(&dev->napi_list);
10398 
10399 	/* a dummy interface is started by default */
10400 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10401 	set_bit(__LINK_STATE_START, &dev->state);
10402 
10403 	/* napi_busy_loop stats accounting wants this */
10404 	dev_net_set(dev, &init_net);
10405 
10406 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10407 	 * because users of this 'device' dont need to change
10408 	 * its refcount.
10409 	 */
10410 
10411 	return 0;
10412 }
10413 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10414 
10415 
10416 /**
10417  *	register_netdev	- register a network device
10418  *	@dev: device to register
10419  *
10420  *	Take a completed network device structure and add it to the kernel
10421  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10422  *	chain. 0 is returned on success. A negative errno code is returned
10423  *	on a failure to set up the device, or if the name is a duplicate.
10424  *
10425  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10426  *	and expands the device name if you passed a format string to
10427  *	alloc_netdev.
10428  */
10429 int register_netdev(struct net_device *dev)
10430 {
10431 	int err;
10432 
10433 	if (rtnl_lock_killable())
10434 		return -EINTR;
10435 	err = register_netdevice(dev);
10436 	rtnl_unlock();
10437 	return err;
10438 }
10439 EXPORT_SYMBOL(register_netdev);
10440 
10441 int netdev_refcnt_read(const struct net_device *dev)
10442 {
10443 #ifdef CONFIG_PCPU_DEV_REFCNT
10444 	int i, refcnt = 0;
10445 
10446 	for_each_possible_cpu(i)
10447 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10448 	return refcnt;
10449 #else
10450 	return refcount_read(&dev->dev_refcnt);
10451 #endif
10452 }
10453 EXPORT_SYMBOL(netdev_refcnt_read);
10454 
10455 int netdev_unregister_timeout_secs __read_mostly = 10;
10456 
10457 #define WAIT_REFS_MIN_MSECS 1
10458 #define WAIT_REFS_MAX_MSECS 250
10459 /**
10460  * netdev_wait_allrefs - wait until all references are gone.
10461  * @dev: target net_device
10462  *
10463  * This is called when unregistering network devices.
10464  *
10465  * Any protocol or device that holds a reference should register
10466  * for netdevice notification, and cleanup and put back the
10467  * reference if they receive an UNREGISTER event.
10468  * We can get stuck here if buggy protocols don't correctly
10469  * call dev_put.
10470  */
10471 static void netdev_wait_allrefs(struct net_device *dev)
10472 {
10473 	unsigned long rebroadcast_time, warning_time;
10474 	int wait = 0, refcnt;
10475 
10476 	linkwatch_forget_dev(dev);
10477 
10478 	rebroadcast_time = warning_time = jiffies;
10479 	refcnt = netdev_refcnt_read(dev);
10480 
10481 	while (refcnt != 1) {
10482 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10483 			rtnl_lock();
10484 
10485 			/* Rebroadcast unregister notification */
10486 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10487 
10488 			__rtnl_unlock();
10489 			rcu_barrier();
10490 			rtnl_lock();
10491 
10492 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10493 				     &dev->state)) {
10494 				/* We must not have linkwatch events
10495 				 * pending on unregister. If this
10496 				 * happens, we simply run the queue
10497 				 * unscheduled, resulting in a noop
10498 				 * for this device.
10499 				 */
10500 				linkwatch_run_queue();
10501 			}
10502 
10503 			__rtnl_unlock();
10504 
10505 			rebroadcast_time = jiffies;
10506 		}
10507 
10508 		if (!wait) {
10509 			rcu_barrier();
10510 			wait = WAIT_REFS_MIN_MSECS;
10511 		} else {
10512 			msleep(wait);
10513 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10514 		}
10515 
10516 		refcnt = netdev_refcnt_read(dev);
10517 
10518 		if (refcnt != 1 &&
10519 		    time_after(jiffies, warning_time +
10520 			       netdev_unregister_timeout_secs * HZ)) {
10521 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10522 				 dev->name, refcnt);
10523 			warning_time = jiffies;
10524 		}
10525 	}
10526 }
10527 
10528 /* The sequence is:
10529  *
10530  *	rtnl_lock();
10531  *	...
10532  *	register_netdevice(x1);
10533  *	register_netdevice(x2);
10534  *	...
10535  *	unregister_netdevice(y1);
10536  *	unregister_netdevice(y2);
10537  *      ...
10538  *	rtnl_unlock();
10539  *	free_netdev(y1);
10540  *	free_netdev(y2);
10541  *
10542  * We are invoked by rtnl_unlock().
10543  * This allows us to deal with problems:
10544  * 1) We can delete sysfs objects which invoke hotplug
10545  *    without deadlocking with linkwatch via keventd.
10546  * 2) Since we run with the RTNL semaphore not held, we can sleep
10547  *    safely in order to wait for the netdev refcnt to drop to zero.
10548  *
10549  * We must not return until all unregister events added during
10550  * the interval the lock was held have been completed.
10551  */
10552 void netdev_run_todo(void)
10553 {
10554 	struct list_head list;
10555 #ifdef CONFIG_LOCKDEP
10556 	struct list_head unlink_list;
10557 
10558 	list_replace_init(&net_unlink_list, &unlink_list);
10559 
10560 	while (!list_empty(&unlink_list)) {
10561 		struct net_device *dev = list_first_entry(&unlink_list,
10562 							  struct net_device,
10563 							  unlink_list);
10564 		list_del_init(&dev->unlink_list);
10565 		dev->nested_level = dev->lower_level - 1;
10566 	}
10567 #endif
10568 
10569 	/* Snapshot list, allow later requests */
10570 	list_replace_init(&net_todo_list, &list);
10571 
10572 	__rtnl_unlock();
10573 
10574 
10575 	/* Wait for rcu callbacks to finish before next phase */
10576 	if (!list_empty(&list))
10577 		rcu_barrier();
10578 
10579 	while (!list_empty(&list)) {
10580 		struct net_device *dev
10581 			= list_first_entry(&list, struct net_device, todo_list);
10582 		list_del(&dev->todo_list);
10583 
10584 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10585 			pr_err("network todo '%s' but state %d\n",
10586 			       dev->name, dev->reg_state);
10587 			dump_stack();
10588 			continue;
10589 		}
10590 
10591 		dev->reg_state = NETREG_UNREGISTERED;
10592 
10593 		netdev_wait_allrefs(dev);
10594 
10595 		/* paranoia */
10596 		BUG_ON(netdev_refcnt_read(dev) != 1);
10597 		BUG_ON(!list_empty(&dev->ptype_all));
10598 		BUG_ON(!list_empty(&dev->ptype_specific));
10599 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10600 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10601 #if IS_ENABLED(CONFIG_DECNET)
10602 		WARN_ON(dev->dn_ptr);
10603 #endif
10604 		if (dev->priv_destructor)
10605 			dev->priv_destructor(dev);
10606 		if (dev->needs_free_netdev)
10607 			free_netdev(dev);
10608 
10609 		/* Report a network device has been unregistered */
10610 		rtnl_lock();
10611 		dev_net(dev)->dev_unreg_count--;
10612 		__rtnl_unlock();
10613 		wake_up(&netdev_unregistering_wq);
10614 
10615 		/* Free network device */
10616 		kobject_put(&dev->dev.kobj);
10617 	}
10618 }
10619 
10620 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10621  * all the same fields in the same order as net_device_stats, with only
10622  * the type differing, but rtnl_link_stats64 may have additional fields
10623  * at the end for newer counters.
10624  */
10625 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10626 			     const struct net_device_stats *netdev_stats)
10627 {
10628 #if BITS_PER_LONG == 64
10629 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10630 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10631 	/* zero out counters that only exist in rtnl_link_stats64 */
10632 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
10633 	       sizeof(*stats64) - sizeof(*netdev_stats));
10634 #else
10635 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10636 	const unsigned long *src = (const unsigned long *)netdev_stats;
10637 	u64 *dst = (u64 *)stats64;
10638 
10639 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10640 	for (i = 0; i < n; i++)
10641 		dst[i] = src[i];
10642 	/* zero out counters that only exist in rtnl_link_stats64 */
10643 	memset((char *)stats64 + n * sizeof(u64), 0,
10644 	       sizeof(*stats64) - n * sizeof(u64));
10645 #endif
10646 }
10647 EXPORT_SYMBOL(netdev_stats_to_stats64);
10648 
10649 /**
10650  *	dev_get_stats	- get network device statistics
10651  *	@dev: device to get statistics from
10652  *	@storage: place to store stats
10653  *
10654  *	Get network statistics from device. Return @storage.
10655  *	The device driver may provide its own method by setting
10656  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10657  *	otherwise the internal statistics structure is used.
10658  */
10659 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10660 					struct rtnl_link_stats64 *storage)
10661 {
10662 	const struct net_device_ops *ops = dev->netdev_ops;
10663 
10664 	if (ops->ndo_get_stats64) {
10665 		memset(storage, 0, sizeof(*storage));
10666 		ops->ndo_get_stats64(dev, storage);
10667 	} else if (ops->ndo_get_stats) {
10668 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10669 	} else {
10670 		netdev_stats_to_stats64(storage, &dev->stats);
10671 	}
10672 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10673 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10674 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10675 	return storage;
10676 }
10677 EXPORT_SYMBOL(dev_get_stats);
10678 
10679 /**
10680  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10681  *	@s: place to store stats
10682  *	@netstats: per-cpu network stats to read from
10683  *
10684  *	Read per-cpu network statistics and populate the related fields in @s.
10685  */
10686 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10687 			   const struct pcpu_sw_netstats __percpu *netstats)
10688 {
10689 	int cpu;
10690 
10691 	for_each_possible_cpu(cpu) {
10692 		const struct pcpu_sw_netstats *stats;
10693 		struct pcpu_sw_netstats tmp;
10694 		unsigned int start;
10695 
10696 		stats = per_cpu_ptr(netstats, cpu);
10697 		do {
10698 			start = u64_stats_fetch_begin_irq(&stats->syncp);
10699 			tmp.rx_packets = stats->rx_packets;
10700 			tmp.rx_bytes   = stats->rx_bytes;
10701 			tmp.tx_packets = stats->tx_packets;
10702 			tmp.tx_bytes   = stats->tx_bytes;
10703 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10704 
10705 		s->rx_packets += tmp.rx_packets;
10706 		s->rx_bytes   += tmp.rx_bytes;
10707 		s->tx_packets += tmp.tx_packets;
10708 		s->tx_bytes   += tmp.tx_bytes;
10709 	}
10710 }
10711 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10712 
10713 /**
10714  *	dev_get_tstats64 - ndo_get_stats64 implementation
10715  *	@dev: device to get statistics from
10716  *	@s: place to store stats
10717  *
10718  *	Populate @s from dev->stats and dev->tstats. Can be used as
10719  *	ndo_get_stats64() callback.
10720  */
10721 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10722 {
10723 	netdev_stats_to_stats64(s, &dev->stats);
10724 	dev_fetch_sw_netstats(s, dev->tstats);
10725 }
10726 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10727 
10728 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10729 {
10730 	struct netdev_queue *queue = dev_ingress_queue(dev);
10731 
10732 #ifdef CONFIG_NET_CLS_ACT
10733 	if (queue)
10734 		return queue;
10735 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10736 	if (!queue)
10737 		return NULL;
10738 	netdev_init_one_queue(dev, queue, NULL);
10739 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10740 	queue->qdisc_sleeping = &noop_qdisc;
10741 	rcu_assign_pointer(dev->ingress_queue, queue);
10742 #endif
10743 	return queue;
10744 }
10745 
10746 static const struct ethtool_ops default_ethtool_ops;
10747 
10748 void netdev_set_default_ethtool_ops(struct net_device *dev,
10749 				    const struct ethtool_ops *ops)
10750 {
10751 	if (dev->ethtool_ops == &default_ethtool_ops)
10752 		dev->ethtool_ops = ops;
10753 }
10754 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10755 
10756 void netdev_freemem(struct net_device *dev)
10757 {
10758 	char *addr = (char *)dev - dev->padded;
10759 
10760 	kvfree(addr);
10761 }
10762 
10763 /**
10764  * alloc_netdev_mqs - allocate network device
10765  * @sizeof_priv: size of private data to allocate space for
10766  * @name: device name format string
10767  * @name_assign_type: origin of device name
10768  * @setup: callback to initialize device
10769  * @txqs: the number of TX subqueues to allocate
10770  * @rxqs: the number of RX subqueues to allocate
10771  *
10772  * Allocates a struct net_device with private data area for driver use
10773  * and performs basic initialization.  Also allocates subqueue structs
10774  * for each queue on the device.
10775  */
10776 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10777 		unsigned char name_assign_type,
10778 		void (*setup)(struct net_device *),
10779 		unsigned int txqs, unsigned int rxqs)
10780 {
10781 	struct net_device *dev;
10782 	unsigned int alloc_size;
10783 	struct net_device *p;
10784 
10785 	BUG_ON(strlen(name) >= sizeof(dev->name));
10786 
10787 	if (txqs < 1) {
10788 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10789 		return NULL;
10790 	}
10791 
10792 	if (rxqs < 1) {
10793 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10794 		return NULL;
10795 	}
10796 
10797 	alloc_size = sizeof(struct net_device);
10798 	if (sizeof_priv) {
10799 		/* ensure 32-byte alignment of private area */
10800 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10801 		alloc_size += sizeof_priv;
10802 	}
10803 	/* ensure 32-byte alignment of whole construct */
10804 	alloc_size += NETDEV_ALIGN - 1;
10805 
10806 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10807 	if (!p)
10808 		return NULL;
10809 
10810 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10811 	dev->padded = (char *)dev - (char *)p;
10812 
10813 #ifdef CONFIG_PCPU_DEV_REFCNT
10814 	dev->pcpu_refcnt = alloc_percpu(int);
10815 	if (!dev->pcpu_refcnt)
10816 		goto free_dev;
10817 	dev_hold(dev);
10818 #else
10819 	refcount_set(&dev->dev_refcnt, 1);
10820 #endif
10821 
10822 	if (dev_addr_init(dev))
10823 		goto free_pcpu;
10824 
10825 	dev_mc_init(dev);
10826 	dev_uc_init(dev);
10827 
10828 	dev_net_set(dev, &init_net);
10829 
10830 	dev->gso_max_size = GSO_MAX_SIZE;
10831 	dev->gso_max_segs = GSO_MAX_SEGS;
10832 	dev->upper_level = 1;
10833 	dev->lower_level = 1;
10834 #ifdef CONFIG_LOCKDEP
10835 	dev->nested_level = 0;
10836 	INIT_LIST_HEAD(&dev->unlink_list);
10837 #endif
10838 
10839 	INIT_LIST_HEAD(&dev->napi_list);
10840 	INIT_LIST_HEAD(&dev->unreg_list);
10841 	INIT_LIST_HEAD(&dev->close_list);
10842 	INIT_LIST_HEAD(&dev->link_watch_list);
10843 	INIT_LIST_HEAD(&dev->adj_list.upper);
10844 	INIT_LIST_HEAD(&dev->adj_list.lower);
10845 	INIT_LIST_HEAD(&dev->ptype_all);
10846 	INIT_LIST_HEAD(&dev->ptype_specific);
10847 	INIT_LIST_HEAD(&dev->net_notifier_list);
10848 #ifdef CONFIG_NET_SCHED
10849 	hash_init(dev->qdisc_hash);
10850 #endif
10851 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10852 	setup(dev);
10853 
10854 	if (!dev->tx_queue_len) {
10855 		dev->priv_flags |= IFF_NO_QUEUE;
10856 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10857 	}
10858 
10859 	dev->num_tx_queues = txqs;
10860 	dev->real_num_tx_queues = txqs;
10861 	if (netif_alloc_netdev_queues(dev))
10862 		goto free_all;
10863 
10864 	dev->num_rx_queues = rxqs;
10865 	dev->real_num_rx_queues = rxqs;
10866 	if (netif_alloc_rx_queues(dev))
10867 		goto free_all;
10868 
10869 	strcpy(dev->name, name);
10870 	dev->name_assign_type = name_assign_type;
10871 	dev->group = INIT_NETDEV_GROUP;
10872 	if (!dev->ethtool_ops)
10873 		dev->ethtool_ops = &default_ethtool_ops;
10874 
10875 	nf_hook_ingress_init(dev);
10876 
10877 	return dev;
10878 
10879 free_all:
10880 	free_netdev(dev);
10881 	return NULL;
10882 
10883 free_pcpu:
10884 #ifdef CONFIG_PCPU_DEV_REFCNT
10885 	free_percpu(dev->pcpu_refcnt);
10886 free_dev:
10887 #endif
10888 	netdev_freemem(dev);
10889 	return NULL;
10890 }
10891 EXPORT_SYMBOL(alloc_netdev_mqs);
10892 
10893 /**
10894  * free_netdev - free network device
10895  * @dev: device
10896  *
10897  * This function does the last stage of destroying an allocated device
10898  * interface. The reference to the device object is released. If this
10899  * is the last reference then it will be freed.Must be called in process
10900  * context.
10901  */
10902 void free_netdev(struct net_device *dev)
10903 {
10904 	struct napi_struct *p, *n;
10905 
10906 	might_sleep();
10907 
10908 	/* When called immediately after register_netdevice() failed the unwind
10909 	 * handling may still be dismantling the device. Handle that case by
10910 	 * deferring the free.
10911 	 */
10912 	if (dev->reg_state == NETREG_UNREGISTERING) {
10913 		ASSERT_RTNL();
10914 		dev->needs_free_netdev = true;
10915 		return;
10916 	}
10917 
10918 	netif_free_tx_queues(dev);
10919 	netif_free_rx_queues(dev);
10920 
10921 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10922 
10923 	/* Flush device addresses */
10924 	dev_addr_flush(dev);
10925 
10926 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10927 		netif_napi_del(p);
10928 
10929 #ifdef CONFIG_PCPU_DEV_REFCNT
10930 	free_percpu(dev->pcpu_refcnt);
10931 	dev->pcpu_refcnt = NULL;
10932 #endif
10933 	free_percpu(dev->xdp_bulkq);
10934 	dev->xdp_bulkq = NULL;
10935 
10936 	/*  Compatibility with error handling in drivers */
10937 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10938 		netdev_freemem(dev);
10939 		return;
10940 	}
10941 
10942 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10943 	dev->reg_state = NETREG_RELEASED;
10944 
10945 	/* will free via device release */
10946 	put_device(&dev->dev);
10947 }
10948 EXPORT_SYMBOL(free_netdev);
10949 
10950 /**
10951  *	synchronize_net -  Synchronize with packet receive processing
10952  *
10953  *	Wait for packets currently being received to be done.
10954  *	Does not block later packets from starting.
10955  */
10956 void synchronize_net(void)
10957 {
10958 	might_sleep();
10959 	if (rtnl_is_locked())
10960 		synchronize_rcu_expedited();
10961 	else
10962 		synchronize_rcu();
10963 }
10964 EXPORT_SYMBOL(synchronize_net);
10965 
10966 /**
10967  *	unregister_netdevice_queue - remove device from the kernel
10968  *	@dev: device
10969  *	@head: list
10970  *
10971  *	This function shuts down a device interface and removes it
10972  *	from the kernel tables.
10973  *	If head not NULL, device is queued to be unregistered later.
10974  *
10975  *	Callers must hold the rtnl semaphore.  You may want
10976  *	unregister_netdev() instead of this.
10977  */
10978 
10979 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10980 {
10981 	ASSERT_RTNL();
10982 
10983 	if (head) {
10984 		list_move_tail(&dev->unreg_list, head);
10985 	} else {
10986 		LIST_HEAD(single);
10987 
10988 		list_add(&dev->unreg_list, &single);
10989 		unregister_netdevice_many(&single);
10990 	}
10991 }
10992 EXPORT_SYMBOL(unregister_netdevice_queue);
10993 
10994 /**
10995  *	unregister_netdevice_many - unregister many devices
10996  *	@head: list of devices
10997  *
10998  *  Note: As most callers use a stack allocated list_head,
10999  *  we force a list_del() to make sure stack wont be corrupted later.
11000  */
11001 void unregister_netdevice_many(struct list_head *head)
11002 {
11003 	struct net_device *dev, *tmp;
11004 	LIST_HEAD(close_head);
11005 
11006 	BUG_ON(dev_boot_phase);
11007 	ASSERT_RTNL();
11008 
11009 	if (list_empty(head))
11010 		return;
11011 
11012 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11013 		/* Some devices call without registering
11014 		 * for initialization unwind. Remove those
11015 		 * devices and proceed with the remaining.
11016 		 */
11017 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11018 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11019 				 dev->name, dev);
11020 
11021 			WARN_ON(1);
11022 			list_del(&dev->unreg_list);
11023 			continue;
11024 		}
11025 		dev->dismantle = true;
11026 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11027 	}
11028 
11029 	/* If device is running, close it first. */
11030 	list_for_each_entry(dev, head, unreg_list)
11031 		list_add_tail(&dev->close_list, &close_head);
11032 	dev_close_many(&close_head, true);
11033 
11034 	list_for_each_entry(dev, head, unreg_list) {
11035 		/* And unlink it from device chain. */
11036 		unlist_netdevice(dev);
11037 
11038 		dev->reg_state = NETREG_UNREGISTERING;
11039 	}
11040 	flush_all_backlogs();
11041 
11042 	synchronize_net();
11043 
11044 	list_for_each_entry(dev, head, unreg_list) {
11045 		struct sk_buff *skb = NULL;
11046 
11047 		/* Shutdown queueing discipline. */
11048 		dev_shutdown(dev);
11049 
11050 		dev_xdp_uninstall(dev);
11051 
11052 		/* Notify protocols, that we are about to destroy
11053 		 * this device. They should clean all the things.
11054 		 */
11055 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11056 
11057 		if (!dev->rtnl_link_ops ||
11058 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11059 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11060 						     GFP_KERNEL, NULL, 0);
11061 
11062 		/*
11063 		 *	Flush the unicast and multicast chains
11064 		 */
11065 		dev_uc_flush(dev);
11066 		dev_mc_flush(dev);
11067 
11068 		netdev_name_node_alt_flush(dev);
11069 		netdev_name_node_free(dev->name_node);
11070 
11071 		if (dev->netdev_ops->ndo_uninit)
11072 			dev->netdev_ops->ndo_uninit(dev);
11073 
11074 		if (skb)
11075 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11076 
11077 		/* Notifier chain MUST detach us all upper devices. */
11078 		WARN_ON(netdev_has_any_upper_dev(dev));
11079 		WARN_ON(netdev_has_any_lower_dev(dev));
11080 
11081 		/* Remove entries from kobject tree */
11082 		netdev_unregister_kobject(dev);
11083 #ifdef CONFIG_XPS
11084 		/* Remove XPS queueing entries */
11085 		netif_reset_xps_queues_gt(dev, 0);
11086 #endif
11087 	}
11088 
11089 	synchronize_net();
11090 
11091 	list_for_each_entry(dev, head, unreg_list) {
11092 		dev_put(dev);
11093 		net_set_todo(dev);
11094 	}
11095 
11096 	list_del(head);
11097 }
11098 EXPORT_SYMBOL(unregister_netdevice_many);
11099 
11100 /**
11101  *	unregister_netdev - remove device from the kernel
11102  *	@dev: device
11103  *
11104  *	This function shuts down a device interface and removes it
11105  *	from the kernel tables.
11106  *
11107  *	This is just a wrapper for unregister_netdevice that takes
11108  *	the rtnl semaphore.  In general you want to use this and not
11109  *	unregister_netdevice.
11110  */
11111 void unregister_netdev(struct net_device *dev)
11112 {
11113 	rtnl_lock();
11114 	unregister_netdevice(dev);
11115 	rtnl_unlock();
11116 }
11117 EXPORT_SYMBOL(unregister_netdev);
11118 
11119 /**
11120  *	__dev_change_net_namespace - move device to different nethost namespace
11121  *	@dev: device
11122  *	@net: network namespace
11123  *	@pat: If not NULL name pattern to try if the current device name
11124  *	      is already taken in the destination network namespace.
11125  *	@new_ifindex: If not zero, specifies device index in the target
11126  *	              namespace.
11127  *
11128  *	This function shuts down a device interface and moves it
11129  *	to a new network namespace. On success 0 is returned, on
11130  *	a failure a netagive errno code is returned.
11131  *
11132  *	Callers must hold the rtnl semaphore.
11133  */
11134 
11135 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11136 			       const char *pat, int new_ifindex)
11137 {
11138 	struct net *net_old = dev_net(dev);
11139 	int err, new_nsid;
11140 
11141 	ASSERT_RTNL();
11142 
11143 	/* Don't allow namespace local devices to be moved. */
11144 	err = -EINVAL;
11145 	if (dev->features & NETIF_F_NETNS_LOCAL)
11146 		goto out;
11147 
11148 	/* Ensure the device has been registrered */
11149 	if (dev->reg_state != NETREG_REGISTERED)
11150 		goto out;
11151 
11152 	/* Get out if there is nothing todo */
11153 	err = 0;
11154 	if (net_eq(net_old, net))
11155 		goto out;
11156 
11157 	/* Pick the destination device name, and ensure
11158 	 * we can use it in the destination network namespace.
11159 	 */
11160 	err = -EEXIST;
11161 	if (__dev_get_by_name(net, dev->name)) {
11162 		/* We get here if we can't use the current device name */
11163 		if (!pat)
11164 			goto out;
11165 		err = dev_get_valid_name(net, dev, pat);
11166 		if (err < 0)
11167 			goto out;
11168 	}
11169 
11170 	/* Check that new_ifindex isn't used yet. */
11171 	err = -EBUSY;
11172 	if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11173 		goto out;
11174 
11175 	/*
11176 	 * And now a mini version of register_netdevice unregister_netdevice.
11177 	 */
11178 
11179 	/* If device is running close it first. */
11180 	dev_close(dev);
11181 
11182 	/* And unlink it from device chain */
11183 	unlist_netdevice(dev);
11184 
11185 	synchronize_net();
11186 
11187 	/* Shutdown queueing discipline. */
11188 	dev_shutdown(dev);
11189 
11190 	/* Notify protocols, that we are about to destroy
11191 	 * this device. They should clean all the things.
11192 	 *
11193 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11194 	 * This is wanted because this way 8021q and macvlan know
11195 	 * the device is just moving and can keep their slaves up.
11196 	 */
11197 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11198 	rcu_barrier();
11199 
11200 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11201 	/* If there is an ifindex conflict assign a new one */
11202 	if (!new_ifindex) {
11203 		if (__dev_get_by_index(net, dev->ifindex))
11204 			new_ifindex = dev_new_index(net);
11205 		else
11206 			new_ifindex = dev->ifindex;
11207 	}
11208 
11209 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11210 			    new_ifindex);
11211 
11212 	/*
11213 	 *	Flush the unicast and multicast chains
11214 	 */
11215 	dev_uc_flush(dev);
11216 	dev_mc_flush(dev);
11217 
11218 	/* Send a netdev-removed uevent to the old namespace */
11219 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11220 	netdev_adjacent_del_links(dev);
11221 
11222 	/* Move per-net netdevice notifiers that are following the netdevice */
11223 	move_netdevice_notifiers_dev_net(dev, net);
11224 
11225 	/* Actually switch the network namespace */
11226 	dev_net_set(dev, net);
11227 	dev->ifindex = new_ifindex;
11228 
11229 	/* Send a netdev-add uevent to the new namespace */
11230 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11231 	netdev_adjacent_add_links(dev);
11232 
11233 	/* Fixup kobjects */
11234 	err = device_rename(&dev->dev, dev->name);
11235 	WARN_ON(err);
11236 
11237 	/* Adapt owner in case owning user namespace of target network
11238 	 * namespace is different from the original one.
11239 	 */
11240 	err = netdev_change_owner(dev, net_old, net);
11241 	WARN_ON(err);
11242 
11243 	/* Add the device back in the hashes */
11244 	list_netdevice(dev);
11245 
11246 	/* Notify protocols, that a new device appeared. */
11247 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11248 
11249 	/*
11250 	 *	Prevent userspace races by waiting until the network
11251 	 *	device is fully setup before sending notifications.
11252 	 */
11253 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11254 
11255 	synchronize_net();
11256 	err = 0;
11257 out:
11258 	return err;
11259 }
11260 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11261 
11262 static int dev_cpu_dead(unsigned int oldcpu)
11263 {
11264 	struct sk_buff **list_skb;
11265 	struct sk_buff *skb;
11266 	unsigned int cpu;
11267 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11268 
11269 	local_irq_disable();
11270 	cpu = smp_processor_id();
11271 	sd = &per_cpu(softnet_data, cpu);
11272 	oldsd = &per_cpu(softnet_data, oldcpu);
11273 
11274 	/* Find end of our completion_queue. */
11275 	list_skb = &sd->completion_queue;
11276 	while (*list_skb)
11277 		list_skb = &(*list_skb)->next;
11278 	/* Append completion queue from offline CPU. */
11279 	*list_skb = oldsd->completion_queue;
11280 	oldsd->completion_queue = NULL;
11281 
11282 	/* Append output queue from offline CPU. */
11283 	if (oldsd->output_queue) {
11284 		*sd->output_queue_tailp = oldsd->output_queue;
11285 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11286 		oldsd->output_queue = NULL;
11287 		oldsd->output_queue_tailp = &oldsd->output_queue;
11288 	}
11289 	/* Append NAPI poll list from offline CPU, with one exception :
11290 	 * process_backlog() must be called by cpu owning percpu backlog.
11291 	 * We properly handle process_queue & input_pkt_queue later.
11292 	 */
11293 	while (!list_empty(&oldsd->poll_list)) {
11294 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11295 							    struct napi_struct,
11296 							    poll_list);
11297 
11298 		list_del_init(&napi->poll_list);
11299 		if (napi->poll == process_backlog)
11300 			napi->state = 0;
11301 		else
11302 			____napi_schedule(sd, napi);
11303 	}
11304 
11305 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11306 	local_irq_enable();
11307 
11308 #ifdef CONFIG_RPS
11309 	remsd = oldsd->rps_ipi_list;
11310 	oldsd->rps_ipi_list = NULL;
11311 #endif
11312 	/* send out pending IPI's on offline CPU */
11313 	net_rps_send_ipi(remsd);
11314 
11315 	/* Process offline CPU's input_pkt_queue */
11316 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11317 		netif_rx_ni(skb);
11318 		input_queue_head_incr(oldsd);
11319 	}
11320 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11321 		netif_rx_ni(skb);
11322 		input_queue_head_incr(oldsd);
11323 	}
11324 
11325 	return 0;
11326 }
11327 
11328 /**
11329  *	netdev_increment_features - increment feature set by one
11330  *	@all: current feature set
11331  *	@one: new feature set
11332  *	@mask: mask feature set
11333  *
11334  *	Computes a new feature set after adding a device with feature set
11335  *	@one to the master device with current feature set @all.  Will not
11336  *	enable anything that is off in @mask. Returns the new feature set.
11337  */
11338 netdev_features_t netdev_increment_features(netdev_features_t all,
11339 	netdev_features_t one, netdev_features_t mask)
11340 {
11341 	if (mask & NETIF_F_HW_CSUM)
11342 		mask |= NETIF_F_CSUM_MASK;
11343 	mask |= NETIF_F_VLAN_CHALLENGED;
11344 
11345 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11346 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11347 
11348 	/* If one device supports hw checksumming, set for all. */
11349 	if (all & NETIF_F_HW_CSUM)
11350 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11351 
11352 	return all;
11353 }
11354 EXPORT_SYMBOL(netdev_increment_features);
11355 
11356 static struct hlist_head * __net_init netdev_create_hash(void)
11357 {
11358 	int i;
11359 	struct hlist_head *hash;
11360 
11361 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11362 	if (hash != NULL)
11363 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11364 			INIT_HLIST_HEAD(&hash[i]);
11365 
11366 	return hash;
11367 }
11368 
11369 /* Initialize per network namespace state */
11370 static int __net_init netdev_init(struct net *net)
11371 {
11372 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11373 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11374 
11375 	if (net != &init_net)
11376 		INIT_LIST_HEAD(&net->dev_base_head);
11377 
11378 	net->dev_name_head = netdev_create_hash();
11379 	if (net->dev_name_head == NULL)
11380 		goto err_name;
11381 
11382 	net->dev_index_head = netdev_create_hash();
11383 	if (net->dev_index_head == NULL)
11384 		goto err_idx;
11385 
11386 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11387 
11388 	return 0;
11389 
11390 err_idx:
11391 	kfree(net->dev_name_head);
11392 err_name:
11393 	return -ENOMEM;
11394 }
11395 
11396 /**
11397  *	netdev_drivername - network driver for the device
11398  *	@dev: network device
11399  *
11400  *	Determine network driver for device.
11401  */
11402 const char *netdev_drivername(const struct net_device *dev)
11403 {
11404 	const struct device_driver *driver;
11405 	const struct device *parent;
11406 	const char *empty = "";
11407 
11408 	parent = dev->dev.parent;
11409 	if (!parent)
11410 		return empty;
11411 
11412 	driver = parent->driver;
11413 	if (driver && driver->name)
11414 		return driver->name;
11415 	return empty;
11416 }
11417 
11418 static void __netdev_printk(const char *level, const struct net_device *dev,
11419 			    struct va_format *vaf)
11420 {
11421 	if (dev && dev->dev.parent) {
11422 		dev_printk_emit(level[1] - '0',
11423 				dev->dev.parent,
11424 				"%s %s %s%s: %pV",
11425 				dev_driver_string(dev->dev.parent),
11426 				dev_name(dev->dev.parent),
11427 				netdev_name(dev), netdev_reg_state(dev),
11428 				vaf);
11429 	} else if (dev) {
11430 		printk("%s%s%s: %pV",
11431 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11432 	} else {
11433 		printk("%s(NULL net_device): %pV", level, vaf);
11434 	}
11435 }
11436 
11437 void netdev_printk(const char *level, const struct net_device *dev,
11438 		   const char *format, ...)
11439 {
11440 	struct va_format vaf;
11441 	va_list args;
11442 
11443 	va_start(args, format);
11444 
11445 	vaf.fmt = format;
11446 	vaf.va = &args;
11447 
11448 	__netdev_printk(level, dev, &vaf);
11449 
11450 	va_end(args);
11451 }
11452 EXPORT_SYMBOL(netdev_printk);
11453 
11454 #define define_netdev_printk_level(func, level)			\
11455 void func(const struct net_device *dev, const char *fmt, ...)	\
11456 {								\
11457 	struct va_format vaf;					\
11458 	va_list args;						\
11459 								\
11460 	va_start(args, fmt);					\
11461 								\
11462 	vaf.fmt = fmt;						\
11463 	vaf.va = &args;						\
11464 								\
11465 	__netdev_printk(level, dev, &vaf);			\
11466 								\
11467 	va_end(args);						\
11468 }								\
11469 EXPORT_SYMBOL(func);
11470 
11471 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11472 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11473 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11474 define_netdev_printk_level(netdev_err, KERN_ERR);
11475 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11476 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11477 define_netdev_printk_level(netdev_info, KERN_INFO);
11478 
11479 static void __net_exit netdev_exit(struct net *net)
11480 {
11481 	kfree(net->dev_name_head);
11482 	kfree(net->dev_index_head);
11483 	if (net != &init_net)
11484 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11485 }
11486 
11487 static struct pernet_operations __net_initdata netdev_net_ops = {
11488 	.init = netdev_init,
11489 	.exit = netdev_exit,
11490 };
11491 
11492 static void __net_exit default_device_exit(struct net *net)
11493 {
11494 	struct net_device *dev, *aux;
11495 	/*
11496 	 * Push all migratable network devices back to the
11497 	 * initial network namespace
11498 	 */
11499 	rtnl_lock();
11500 	for_each_netdev_safe(net, dev, aux) {
11501 		int err;
11502 		char fb_name[IFNAMSIZ];
11503 
11504 		/* Ignore unmoveable devices (i.e. loopback) */
11505 		if (dev->features & NETIF_F_NETNS_LOCAL)
11506 			continue;
11507 
11508 		/* Leave virtual devices for the generic cleanup */
11509 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11510 			continue;
11511 
11512 		/* Push remaining network devices to init_net */
11513 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11514 		if (__dev_get_by_name(&init_net, fb_name))
11515 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11516 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11517 		if (err) {
11518 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11519 				 __func__, dev->name, err);
11520 			BUG();
11521 		}
11522 	}
11523 	rtnl_unlock();
11524 }
11525 
11526 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11527 {
11528 	/* Return with the rtnl_lock held when there are no network
11529 	 * devices unregistering in any network namespace in net_list.
11530 	 */
11531 	struct net *net;
11532 	bool unregistering;
11533 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
11534 
11535 	add_wait_queue(&netdev_unregistering_wq, &wait);
11536 	for (;;) {
11537 		unregistering = false;
11538 		rtnl_lock();
11539 		list_for_each_entry(net, net_list, exit_list) {
11540 			if (net->dev_unreg_count > 0) {
11541 				unregistering = true;
11542 				break;
11543 			}
11544 		}
11545 		if (!unregistering)
11546 			break;
11547 		__rtnl_unlock();
11548 
11549 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11550 	}
11551 	remove_wait_queue(&netdev_unregistering_wq, &wait);
11552 }
11553 
11554 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11555 {
11556 	/* At exit all network devices most be removed from a network
11557 	 * namespace.  Do this in the reverse order of registration.
11558 	 * Do this across as many network namespaces as possible to
11559 	 * improve batching efficiency.
11560 	 */
11561 	struct net_device *dev;
11562 	struct net *net;
11563 	LIST_HEAD(dev_kill_list);
11564 
11565 	/* To prevent network device cleanup code from dereferencing
11566 	 * loopback devices or network devices that have been freed
11567 	 * wait here for all pending unregistrations to complete,
11568 	 * before unregistring the loopback device and allowing the
11569 	 * network namespace be freed.
11570 	 *
11571 	 * The netdev todo list containing all network devices
11572 	 * unregistrations that happen in default_device_exit_batch
11573 	 * will run in the rtnl_unlock() at the end of
11574 	 * default_device_exit_batch.
11575 	 */
11576 	rtnl_lock_unregistering(net_list);
11577 	list_for_each_entry(net, net_list, exit_list) {
11578 		for_each_netdev_reverse(net, dev) {
11579 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11580 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11581 			else
11582 				unregister_netdevice_queue(dev, &dev_kill_list);
11583 		}
11584 	}
11585 	unregister_netdevice_many(&dev_kill_list);
11586 	rtnl_unlock();
11587 }
11588 
11589 static struct pernet_operations __net_initdata default_device_ops = {
11590 	.exit = default_device_exit,
11591 	.exit_batch = default_device_exit_batch,
11592 };
11593 
11594 /*
11595  *	Initialize the DEV module. At boot time this walks the device list and
11596  *	unhooks any devices that fail to initialise (normally hardware not
11597  *	present) and leaves us with a valid list of present and active devices.
11598  *
11599  */
11600 
11601 /*
11602  *       This is called single threaded during boot, so no need
11603  *       to take the rtnl semaphore.
11604  */
11605 static int __init net_dev_init(void)
11606 {
11607 	int i, rc = -ENOMEM;
11608 
11609 	BUG_ON(!dev_boot_phase);
11610 
11611 	if (dev_proc_init())
11612 		goto out;
11613 
11614 	if (netdev_kobject_init())
11615 		goto out;
11616 
11617 	INIT_LIST_HEAD(&ptype_all);
11618 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11619 		INIT_LIST_HEAD(&ptype_base[i]);
11620 
11621 	INIT_LIST_HEAD(&offload_base);
11622 
11623 	if (register_pernet_subsys(&netdev_net_ops))
11624 		goto out;
11625 
11626 	/*
11627 	 *	Initialise the packet receive queues.
11628 	 */
11629 
11630 	for_each_possible_cpu(i) {
11631 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11632 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11633 
11634 		INIT_WORK(flush, flush_backlog);
11635 
11636 		skb_queue_head_init(&sd->input_pkt_queue);
11637 		skb_queue_head_init(&sd->process_queue);
11638 #ifdef CONFIG_XFRM_OFFLOAD
11639 		skb_queue_head_init(&sd->xfrm_backlog);
11640 #endif
11641 		INIT_LIST_HEAD(&sd->poll_list);
11642 		sd->output_queue_tailp = &sd->output_queue;
11643 #ifdef CONFIG_RPS
11644 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11645 		sd->cpu = i;
11646 #endif
11647 
11648 		init_gro_hash(&sd->backlog);
11649 		sd->backlog.poll = process_backlog;
11650 		sd->backlog.weight = weight_p;
11651 	}
11652 
11653 	dev_boot_phase = 0;
11654 
11655 	/* The loopback device is special if any other network devices
11656 	 * is present in a network namespace the loopback device must
11657 	 * be present. Since we now dynamically allocate and free the
11658 	 * loopback device ensure this invariant is maintained by
11659 	 * keeping the loopback device as the first device on the
11660 	 * list of network devices.  Ensuring the loopback devices
11661 	 * is the first device that appears and the last network device
11662 	 * that disappears.
11663 	 */
11664 	if (register_pernet_device(&loopback_net_ops))
11665 		goto out;
11666 
11667 	if (register_pernet_device(&default_device_ops))
11668 		goto out;
11669 
11670 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11671 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11672 
11673 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11674 				       NULL, dev_cpu_dead);
11675 	WARN_ON(rc < 0);
11676 	rc = 0;
11677 out:
11678 	return rc;
11679 }
11680 
11681 subsys_initcall(net_dev_init);
11682