xref: /linux-6.15/net/core/dev.c (revision bd707f17)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct netdev_notifier_info *info);
166 static struct napi_struct *napi_by_id(unsigned int napi_id);
167 
168 /*
169  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170  * semaphore.
171  *
172  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173  *
174  * Writers must hold the rtnl semaphore while they loop through the
175  * dev_base_head list, and hold dev_base_lock for writing when they do the
176  * actual updates.  This allows pure readers to access the list even
177  * while a writer is preparing to update it.
178  *
179  * To put it another way, dev_base_lock is held for writing only to
180  * protect against pure readers; the rtnl semaphore provides the
181  * protection against other writers.
182  *
183  * See, for example usages, register_netdevice() and
184  * unregister_netdevice(), which must be called with the rtnl
185  * semaphore held.
186  */
187 DEFINE_RWLOCK(dev_base_lock);
188 EXPORT_SYMBOL(dev_base_lock);
189 
190 static DEFINE_MUTEX(ifalias_mutex);
191 
192 /* protects napi_hash addition/deletion and napi_gen_id */
193 static DEFINE_SPINLOCK(napi_hash_lock);
194 
195 static unsigned int napi_gen_id = NR_CPUS;
196 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197 
198 static seqcount_t devnet_rename_seq;
199 
200 static inline void dev_base_seq_inc(struct net *net)
201 {
202 	while (++net->dev_base_seq == 0)
203 		;
204 }
205 
206 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207 {
208 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209 
210 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211 }
212 
213 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214 {
215 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216 }
217 
218 static inline void rps_lock(struct softnet_data *sd)
219 {
220 #ifdef CONFIG_RPS
221 	spin_lock(&sd->input_pkt_queue.lock);
222 #endif
223 }
224 
225 static inline void rps_unlock(struct softnet_data *sd)
226 {
227 #ifdef CONFIG_RPS
228 	spin_unlock(&sd->input_pkt_queue.lock);
229 #endif
230 }
231 
232 /* Device list insertion */
233 static void list_netdevice(struct net_device *dev)
234 {
235 	struct net *net = dev_net(dev);
236 
237 	ASSERT_RTNL();
238 
239 	write_lock_bh(&dev_base_lock);
240 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
241 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
242 	hlist_add_head_rcu(&dev->index_hlist,
243 			   dev_index_hash(net, dev->ifindex));
244 	write_unlock_bh(&dev_base_lock);
245 
246 	dev_base_seq_inc(net);
247 }
248 
249 /* Device list removal
250  * caller must respect a RCU grace period before freeing/reusing dev
251  */
252 static void unlist_netdevice(struct net_device *dev)
253 {
254 	ASSERT_RTNL();
255 
256 	/* Unlink dev from the device chain */
257 	write_lock_bh(&dev_base_lock);
258 	list_del_rcu(&dev->dev_list);
259 	hlist_del_rcu(&dev->name_hlist);
260 	hlist_del_rcu(&dev->index_hlist);
261 	write_unlock_bh(&dev_base_lock);
262 
263 	dev_base_seq_inc(dev_net(dev));
264 }
265 
266 /*
267  *	Our notifier list
268  */
269 
270 static RAW_NOTIFIER_HEAD(netdev_chain);
271 
272 /*
273  *	Device drivers call our routines to queue packets here. We empty the
274  *	queue in the local softnet handler.
275  */
276 
277 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
278 EXPORT_PER_CPU_SYMBOL(softnet_data);
279 
280 #ifdef CONFIG_LOCKDEP
281 /*
282  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
283  * according to dev->type
284  */
285 static const unsigned short netdev_lock_type[] = {
286 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
287 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
288 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
289 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
290 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
291 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
292 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
293 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
294 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
295 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
296 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
297 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
298 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
299 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
300 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
301 
302 static const char *const netdev_lock_name[] = {
303 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
304 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
305 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
306 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
307 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
308 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
309 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
310 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
311 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
312 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
313 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
314 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
315 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
316 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
317 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
318 
319 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 
322 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
323 {
324 	int i;
325 
326 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
327 		if (netdev_lock_type[i] == dev_type)
328 			return i;
329 	/* the last key is used by default */
330 	return ARRAY_SIZE(netdev_lock_type) - 1;
331 }
332 
333 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
334 						 unsigned short dev_type)
335 {
336 	int i;
337 
338 	i = netdev_lock_pos(dev_type);
339 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
340 				   netdev_lock_name[i]);
341 }
342 
343 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
344 {
345 	int i;
346 
347 	i = netdev_lock_pos(dev->type);
348 	lockdep_set_class_and_name(&dev->addr_list_lock,
349 				   &netdev_addr_lock_key[i],
350 				   netdev_lock_name[i]);
351 }
352 #else
353 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
354 						 unsigned short dev_type)
355 {
356 }
357 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
358 {
359 }
360 #endif
361 
362 /*******************************************************************************
363  *
364  *		Protocol management and registration routines
365  *
366  *******************************************************************************/
367 
368 
369 /*
370  *	Add a protocol ID to the list. Now that the input handler is
371  *	smarter we can dispense with all the messy stuff that used to be
372  *	here.
373  *
374  *	BEWARE!!! Protocol handlers, mangling input packets,
375  *	MUST BE last in hash buckets and checking protocol handlers
376  *	MUST start from promiscuous ptype_all chain in net_bh.
377  *	It is true now, do not change it.
378  *	Explanation follows: if protocol handler, mangling packet, will
379  *	be the first on list, it is not able to sense, that packet
380  *	is cloned and should be copied-on-write, so that it will
381  *	change it and subsequent readers will get broken packet.
382  *							--ANK (980803)
383  */
384 
385 static inline struct list_head *ptype_head(const struct packet_type *pt)
386 {
387 	if (pt->type == htons(ETH_P_ALL))
388 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
389 	else
390 		return pt->dev ? &pt->dev->ptype_specific :
391 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
392 }
393 
394 /**
395  *	dev_add_pack - add packet handler
396  *	@pt: packet type declaration
397  *
398  *	Add a protocol handler to the networking stack. The passed &packet_type
399  *	is linked into kernel lists and may not be freed until it has been
400  *	removed from the kernel lists.
401  *
402  *	This call does not sleep therefore it can not
403  *	guarantee all CPU's that are in middle of receiving packets
404  *	will see the new packet type (until the next received packet).
405  */
406 
407 void dev_add_pack(struct packet_type *pt)
408 {
409 	struct list_head *head = ptype_head(pt);
410 
411 	spin_lock(&ptype_lock);
412 	list_add_rcu(&pt->list, head);
413 	spin_unlock(&ptype_lock);
414 }
415 EXPORT_SYMBOL(dev_add_pack);
416 
417 /**
418  *	__dev_remove_pack	 - remove packet handler
419  *	@pt: packet type declaration
420  *
421  *	Remove a protocol handler that was previously added to the kernel
422  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
423  *	from the kernel lists and can be freed or reused once this function
424  *	returns.
425  *
426  *      The packet type might still be in use by receivers
427  *	and must not be freed until after all the CPU's have gone
428  *	through a quiescent state.
429  */
430 void __dev_remove_pack(struct packet_type *pt)
431 {
432 	struct list_head *head = ptype_head(pt);
433 	struct packet_type *pt1;
434 
435 	spin_lock(&ptype_lock);
436 
437 	list_for_each_entry(pt1, head, list) {
438 		if (pt == pt1) {
439 			list_del_rcu(&pt->list);
440 			goto out;
441 		}
442 	}
443 
444 	pr_warn("dev_remove_pack: %p not found\n", pt);
445 out:
446 	spin_unlock(&ptype_lock);
447 }
448 EXPORT_SYMBOL(__dev_remove_pack);
449 
450 /**
451  *	dev_remove_pack	 - remove packet handler
452  *	@pt: packet type declaration
453  *
454  *	Remove a protocol handler that was previously added to the kernel
455  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
456  *	from the kernel lists and can be freed or reused once this function
457  *	returns.
458  *
459  *	This call sleeps to guarantee that no CPU is looking at the packet
460  *	type after return.
461  */
462 void dev_remove_pack(struct packet_type *pt)
463 {
464 	__dev_remove_pack(pt);
465 
466 	synchronize_net();
467 }
468 EXPORT_SYMBOL(dev_remove_pack);
469 
470 
471 /**
472  *	dev_add_offload - register offload handlers
473  *	@po: protocol offload declaration
474  *
475  *	Add protocol offload handlers to the networking stack. The passed
476  *	&proto_offload is linked into kernel lists and may not be freed until
477  *	it has been removed from the kernel lists.
478  *
479  *	This call does not sleep therefore it can not
480  *	guarantee all CPU's that are in middle of receiving packets
481  *	will see the new offload handlers (until the next received packet).
482  */
483 void dev_add_offload(struct packet_offload *po)
484 {
485 	struct packet_offload *elem;
486 
487 	spin_lock(&offload_lock);
488 	list_for_each_entry(elem, &offload_base, list) {
489 		if (po->priority < elem->priority)
490 			break;
491 	}
492 	list_add_rcu(&po->list, elem->list.prev);
493 	spin_unlock(&offload_lock);
494 }
495 EXPORT_SYMBOL(dev_add_offload);
496 
497 /**
498  *	__dev_remove_offload	 - remove offload handler
499  *	@po: packet offload declaration
500  *
501  *	Remove a protocol offload handler that was previously added to the
502  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
503  *	is removed from the kernel lists and can be freed or reused once this
504  *	function returns.
505  *
506  *      The packet type might still be in use by receivers
507  *	and must not be freed until after all the CPU's have gone
508  *	through a quiescent state.
509  */
510 static void __dev_remove_offload(struct packet_offload *po)
511 {
512 	struct list_head *head = &offload_base;
513 	struct packet_offload *po1;
514 
515 	spin_lock(&offload_lock);
516 
517 	list_for_each_entry(po1, head, list) {
518 		if (po == po1) {
519 			list_del_rcu(&po->list);
520 			goto out;
521 		}
522 	}
523 
524 	pr_warn("dev_remove_offload: %p not found\n", po);
525 out:
526 	spin_unlock(&offload_lock);
527 }
528 
529 /**
530  *	dev_remove_offload	 - remove packet offload handler
531  *	@po: packet offload declaration
532  *
533  *	Remove a packet offload handler that was previously added to the kernel
534  *	offload handlers by dev_add_offload(). The passed &offload_type is
535  *	removed from the kernel lists and can be freed or reused once this
536  *	function returns.
537  *
538  *	This call sleeps to guarantee that no CPU is looking at the packet
539  *	type after return.
540  */
541 void dev_remove_offload(struct packet_offload *po)
542 {
543 	__dev_remove_offload(po);
544 
545 	synchronize_net();
546 }
547 EXPORT_SYMBOL(dev_remove_offload);
548 
549 /******************************************************************************
550  *
551  *		      Device Boot-time Settings Routines
552  *
553  ******************************************************************************/
554 
555 /* Boot time configuration table */
556 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
557 
558 /**
559  *	netdev_boot_setup_add	- add new setup entry
560  *	@name: name of the device
561  *	@map: configured settings for the device
562  *
563  *	Adds new setup entry to the dev_boot_setup list.  The function
564  *	returns 0 on error and 1 on success.  This is a generic routine to
565  *	all netdevices.
566  */
567 static int netdev_boot_setup_add(char *name, struct ifmap *map)
568 {
569 	struct netdev_boot_setup *s;
570 	int i;
571 
572 	s = dev_boot_setup;
573 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
574 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
575 			memset(s[i].name, 0, sizeof(s[i].name));
576 			strlcpy(s[i].name, name, IFNAMSIZ);
577 			memcpy(&s[i].map, map, sizeof(s[i].map));
578 			break;
579 		}
580 	}
581 
582 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
583 }
584 
585 /**
586  * netdev_boot_setup_check	- check boot time settings
587  * @dev: the netdevice
588  *
589  * Check boot time settings for the device.
590  * The found settings are set for the device to be used
591  * later in the device probing.
592  * Returns 0 if no settings found, 1 if they are.
593  */
594 int netdev_boot_setup_check(struct net_device *dev)
595 {
596 	struct netdev_boot_setup *s = dev_boot_setup;
597 	int i;
598 
599 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
600 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
601 		    !strcmp(dev->name, s[i].name)) {
602 			dev->irq = s[i].map.irq;
603 			dev->base_addr = s[i].map.base_addr;
604 			dev->mem_start = s[i].map.mem_start;
605 			dev->mem_end = s[i].map.mem_end;
606 			return 1;
607 		}
608 	}
609 	return 0;
610 }
611 EXPORT_SYMBOL(netdev_boot_setup_check);
612 
613 
614 /**
615  * netdev_boot_base	- get address from boot time settings
616  * @prefix: prefix for network device
617  * @unit: id for network device
618  *
619  * Check boot time settings for the base address of device.
620  * The found settings are set for the device to be used
621  * later in the device probing.
622  * Returns 0 if no settings found.
623  */
624 unsigned long netdev_boot_base(const char *prefix, int unit)
625 {
626 	const struct netdev_boot_setup *s = dev_boot_setup;
627 	char name[IFNAMSIZ];
628 	int i;
629 
630 	sprintf(name, "%s%d", prefix, unit);
631 
632 	/*
633 	 * If device already registered then return base of 1
634 	 * to indicate not to probe for this interface
635 	 */
636 	if (__dev_get_by_name(&init_net, name))
637 		return 1;
638 
639 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
640 		if (!strcmp(name, s[i].name))
641 			return s[i].map.base_addr;
642 	return 0;
643 }
644 
645 /*
646  * Saves at boot time configured settings for any netdevice.
647  */
648 int __init netdev_boot_setup(char *str)
649 {
650 	int ints[5];
651 	struct ifmap map;
652 
653 	str = get_options(str, ARRAY_SIZE(ints), ints);
654 	if (!str || !*str)
655 		return 0;
656 
657 	/* Save settings */
658 	memset(&map, 0, sizeof(map));
659 	if (ints[0] > 0)
660 		map.irq = ints[1];
661 	if (ints[0] > 1)
662 		map.base_addr = ints[2];
663 	if (ints[0] > 2)
664 		map.mem_start = ints[3];
665 	if (ints[0] > 3)
666 		map.mem_end = ints[4];
667 
668 	/* Add new entry to the list */
669 	return netdev_boot_setup_add(str, &map);
670 }
671 
672 __setup("netdev=", netdev_boot_setup);
673 
674 /*******************************************************************************
675  *
676  *			    Device Interface Subroutines
677  *
678  *******************************************************************************/
679 
680 /**
681  *	dev_get_iflink	- get 'iflink' value of a interface
682  *	@dev: targeted interface
683  *
684  *	Indicates the ifindex the interface is linked to.
685  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
686  */
687 
688 int dev_get_iflink(const struct net_device *dev)
689 {
690 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
691 		return dev->netdev_ops->ndo_get_iflink(dev);
692 
693 	return dev->ifindex;
694 }
695 EXPORT_SYMBOL(dev_get_iflink);
696 
697 /**
698  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
699  *	@dev: targeted interface
700  *	@skb: The packet.
701  *
702  *	For better visibility of tunnel traffic OVS needs to retrieve
703  *	egress tunnel information for a packet. Following API allows
704  *	user to get this info.
705  */
706 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
707 {
708 	struct ip_tunnel_info *info;
709 
710 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
711 		return -EINVAL;
712 
713 	info = skb_tunnel_info_unclone(skb);
714 	if (!info)
715 		return -ENOMEM;
716 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
717 		return -EINVAL;
718 
719 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
720 }
721 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
722 
723 /**
724  *	__dev_get_by_name	- find a device by its name
725  *	@net: the applicable net namespace
726  *	@name: name to find
727  *
728  *	Find an interface by name. Must be called under RTNL semaphore
729  *	or @dev_base_lock. If the name is found a pointer to the device
730  *	is returned. If the name is not found then %NULL is returned. The
731  *	reference counters are not incremented so the caller must be
732  *	careful with locks.
733  */
734 
735 struct net_device *__dev_get_by_name(struct net *net, const char *name)
736 {
737 	struct net_device *dev;
738 	struct hlist_head *head = dev_name_hash(net, name);
739 
740 	hlist_for_each_entry(dev, head, name_hlist)
741 		if (!strncmp(dev->name, name, IFNAMSIZ))
742 			return dev;
743 
744 	return NULL;
745 }
746 EXPORT_SYMBOL(__dev_get_by_name);
747 
748 /**
749  * dev_get_by_name_rcu	- find a device by its name
750  * @net: the applicable net namespace
751  * @name: name to find
752  *
753  * Find an interface by name.
754  * If the name is found a pointer to the device is returned.
755  * If the name is not found then %NULL is returned.
756  * The reference counters are not incremented so the caller must be
757  * careful with locks. The caller must hold RCU lock.
758  */
759 
760 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
761 {
762 	struct net_device *dev;
763 	struct hlist_head *head = dev_name_hash(net, name);
764 
765 	hlist_for_each_entry_rcu(dev, head, name_hlist)
766 		if (!strncmp(dev->name, name, IFNAMSIZ))
767 			return dev;
768 
769 	return NULL;
770 }
771 EXPORT_SYMBOL(dev_get_by_name_rcu);
772 
773 /**
774  *	dev_get_by_name		- find a device by its name
775  *	@net: the applicable net namespace
776  *	@name: name to find
777  *
778  *	Find an interface by name. This can be called from any
779  *	context and does its own locking. The returned handle has
780  *	the usage count incremented and the caller must use dev_put() to
781  *	release it when it is no longer needed. %NULL is returned if no
782  *	matching device is found.
783  */
784 
785 struct net_device *dev_get_by_name(struct net *net, const char *name)
786 {
787 	struct net_device *dev;
788 
789 	rcu_read_lock();
790 	dev = dev_get_by_name_rcu(net, name);
791 	if (dev)
792 		dev_hold(dev);
793 	rcu_read_unlock();
794 	return dev;
795 }
796 EXPORT_SYMBOL(dev_get_by_name);
797 
798 /**
799  *	__dev_get_by_index - find a device by its ifindex
800  *	@net: the applicable net namespace
801  *	@ifindex: index of device
802  *
803  *	Search for an interface by index. Returns %NULL if the device
804  *	is not found or a pointer to the device. The device has not
805  *	had its reference counter increased so the caller must be careful
806  *	about locking. The caller must hold either the RTNL semaphore
807  *	or @dev_base_lock.
808  */
809 
810 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
811 {
812 	struct net_device *dev;
813 	struct hlist_head *head = dev_index_hash(net, ifindex);
814 
815 	hlist_for_each_entry(dev, head, index_hlist)
816 		if (dev->ifindex == ifindex)
817 			return dev;
818 
819 	return NULL;
820 }
821 EXPORT_SYMBOL(__dev_get_by_index);
822 
823 /**
824  *	dev_get_by_index_rcu - find a device by its ifindex
825  *	@net: the applicable net namespace
826  *	@ifindex: index of device
827  *
828  *	Search for an interface by index. Returns %NULL if the device
829  *	is not found or a pointer to the device. The device has not
830  *	had its reference counter increased so the caller must be careful
831  *	about locking. The caller must hold RCU lock.
832  */
833 
834 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
835 {
836 	struct net_device *dev;
837 	struct hlist_head *head = dev_index_hash(net, ifindex);
838 
839 	hlist_for_each_entry_rcu(dev, head, index_hlist)
840 		if (dev->ifindex == ifindex)
841 			return dev;
842 
843 	return NULL;
844 }
845 EXPORT_SYMBOL(dev_get_by_index_rcu);
846 
847 
848 /**
849  *	dev_get_by_index - find a device by its ifindex
850  *	@net: the applicable net namespace
851  *	@ifindex: index of device
852  *
853  *	Search for an interface by index. Returns NULL if the device
854  *	is not found or a pointer to the device. The device returned has
855  *	had a reference added and the pointer is safe until the user calls
856  *	dev_put to indicate they have finished with it.
857  */
858 
859 struct net_device *dev_get_by_index(struct net *net, int ifindex)
860 {
861 	struct net_device *dev;
862 
863 	rcu_read_lock();
864 	dev = dev_get_by_index_rcu(net, ifindex);
865 	if (dev)
866 		dev_hold(dev);
867 	rcu_read_unlock();
868 	return dev;
869 }
870 EXPORT_SYMBOL(dev_get_by_index);
871 
872 /**
873  *	dev_get_by_napi_id - find a device by napi_id
874  *	@napi_id: ID of the NAPI struct
875  *
876  *	Search for an interface by NAPI ID. Returns %NULL if the device
877  *	is not found or a pointer to the device. The device has not had
878  *	its reference counter increased so the caller must be careful
879  *	about locking. The caller must hold RCU lock.
880  */
881 
882 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
883 {
884 	struct napi_struct *napi;
885 
886 	WARN_ON_ONCE(!rcu_read_lock_held());
887 
888 	if (napi_id < MIN_NAPI_ID)
889 		return NULL;
890 
891 	napi = napi_by_id(napi_id);
892 
893 	return napi ? napi->dev : NULL;
894 }
895 EXPORT_SYMBOL(dev_get_by_napi_id);
896 
897 /**
898  *	netdev_get_name - get a netdevice name, knowing its ifindex.
899  *	@net: network namespace
900  *	@name: a pointer to the buffer where the name will be stored.
901  *	@ifindex: the ifindex of the interface to get the name from.
902  *
903  *	The use of raw_seqcount_begin() and cond_resched() before
904  *	retrying is required as we want to give the writers a chance
905  *	to complete when CONFIG_PREEMPT is not set.
906  */
907 int netdev_get_name(struct net *net, char *name, int ifindex)
908 {
909 	struct net_device *dev;
910 	unsigned int seq;
911 
912 retry:
913 	seq = raw_seqcount_begin(&devnet_rename_seq);
914 	rcu_read_lock();
915 	dev = dev_get_by_index_rcu(net, ifindex);
916 	if (!dev) {
917 		rcu_read_unlock();
918 		return -ENODEV;
919 	}
920 
921 	strcpy(name, dev->name);
922 	rcu_read_unlock();
923 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
924 		cond_resched();
925 		goto retry;
926 	}
927 
928 	return 0;
929 }
930 
931 /**
932  *	dev_getbyhwaddr_rcu - find a device by its hardware address
933  *	@net: the applicable net namespace
934  *	@type: media type of device
935  *	@ha: hardware address
936  *
937  *	Search for an interface by MAC address. Returns NULL if the device
938  *	is not found or a pointer to the device.
939  *	The caller must hold RCU or RTNL.
940  *	The returned device has not had its ref count increased
941  *	and the caller must therefore be careful about locking
942  *
943  */
944 
945 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
946 				       const char *ha)
947 {
948 	struct net_device *dev;
949 
950 	for_each_netdev_rcu(net, dev)
951 		if (dev->type == type &&
952 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
953 			return dev;
954 
955 	return NULL;
956 }
957 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
958 
959 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
960 {
961 	struct net_device *dev;
962 
963 	ASSERT_RTNL();
964 	for_each_netdev(net, dev)
965 		if (dev->type == type)
966 			return dev;
967 
968 	return NULL;
969 }
970 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
971 
972 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
973 {
974 	struct net_device *dev, *ret = NULL;
975 
976 	rcu_read_lock();
977 	for_each_netdev_rcu(net, dev)
978 		if (dev->type == type) {
979 			dev_hold(dev);
980 			ret = dev;
981 			break;
982 		}
983 	rcu_read_unlock();
984 	return ret;
985 }
986 EXPORT_SYMBOL(dev_getfirstbyhwtype);
987 
988 /**
989  *	__dev_get_by_flags - find any device with given flags
990  *	@net: the applicable net namespace
991  *	@if_flags: IFF_* values
992  *	@mask: bitmask of bits in if_flags to check
993  *
994  *	Search for any interface with the given flags. Returns NULL if a device
995  *	is not found or a pointer to the device. Must be called inside
996  *	rtnl_lock(), and result refcount is unchanged.
997  */
998 
999 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1000 				      unsigned short mask)
1001 {
1002 	struct net_device *dev, *ret;
1003 
1004 	ASSERT_RTNL();
1005 
1006 	ret = NULL;
1007 	for_each_netdev(net, dev) {
1008 		if (((dev->flags ^ if_flags) & mask) == 0) {
1009 			ret = dev;
1010 			break;
1011 		}
1012 	}
1013 	return ret;
1014 }
1015 EXPORT_SYMBOL(__dev_get_by_flags);
1016 
1017 /**
1018  *	dev_valid_name - check if name is okay for network device
1019  *	@name: name string
1020  *
1021  *	Network device names need to be valid file names to
1022  *	to allow sysfs to work.  We also disallow any kind of
1023  *	whitespace.
1024  */
1025 bool dev_valid_name(const char *name)
1026 {
1027 	if (*name == '\0')
1028 		return false;
1029 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1030 		return false;
1031 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1032 		return false;
1033 
1034 	while (*name) {
1035 		if (*name == '/' || *name == ':' || isspace(*name))
1036 			return false;
1037 		name++;
1038 	}
1039 	return true;
1040 }
1041 EXPORT_SYMBOL(dev_valid_name);
1042 
1043 /**
1044  *	__dev_alloc_name - allocate a name for a device
1045  *	@net: network namespace to allocate the device name in
1046  *	@name: name format string
1047  *	@buf:  scratch buffer and result name string
1048  *
1049  *	Passed a format string - eg "lt%d" it will try and find a suitable
1050  *	id. It scans list of devices to build up a free map, then chooses
1051  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1052  *	while allocating the name and adding the device in order to avoid
1053  *	duplicates.
1054  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1055  *	Returns the number of the unit assigned or a negative errno code.
1056  */
1057 
1058 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1059 {
1060 	int i = 0;
1061 	const char *p;
1062 	const int max_netdevices = 8*PAGE_SIZE;
1063 	unsigned long *inuse;
1064 	struct net_device *d;
1065 
1066 	if (!dev_valid_name(name))
1067 		return -EINVAL;
1068 
1069 	p = strchr(name, '%');
1070 	if (p) {
1071 		/*
1072 		 * Verify the string as this thing may have come from
1073 		 * the user.  There must be either one "%d" and no other "%"
1074 		 * characters.
1075 		 */
1076 		if (p[1] != 'd' || strchr(p + 2, '%'))
1077 			return -EINVAL;
1078 
1079 		/* Use one page as a bit array of possible slots */
1080 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1081 		if (!inuse)
1082 			return -ENOMEM;
1083 
1084 		for_each_netdev(net, d) {
1085 			if (!sscanf(d->name, name, &i))
1086 				continue;
1087 			if (i < 0 || i >= max_netdevices)
1088 				continue;
1089 
1090 			/*  avoid cases where sscanf is not exact inverse of printf */
1091 			snprintf(buf, IFNAMSIZ, name, i);
1092 			if (!strncmp(buf, d->name, IFNAMSIZ))
1093 				set_bit(i, inuse);
1094 		}
1095 
1096 		i = find_first_zero_bit(inuse, max_netdevices);
1097 		free_page((unsigned long) inuse);
1098 	}
1099 
1100 	snprintf(buf, IFNAMSIZ, name, i);
1101 	if (!__dev_get_by_name(net, buf))
1102 		return i;
1103 
1104 	/* It is possible to run out of possible slots
1105 	 * when the name is long and there isn't enough space left
1106 	 * for the digits, or if all bits are used.
1107 	 */
1108 	return -ENFILE;
1109 }
1110 
1111 static int dev_alloc_name_ns(struct net *net,
1112 			     struct net_device *dev,
1113 			     const char *name)
1114 {
1115 	char buf[IFNAMSIZ];
1116 	int ret;
1117 
1118 	BUG_ON(!net);
1119 	ret = __dev_alloc_name(net, name, buf);
1120 	if (ret >= 0)
1121 		strlcpy(dev->name, buf, IFNAMSIZ);
1122 	return ret;
1123 }
1124 
1125 /**
1126  *	dev_alloc_name - allocate a name for a device
1127  *	@dev: device
1128  *	@name: name format string
1129  *
1130  *	Passed a format string - eg "lt%d" it will try and find a suitable
1131  *	id. It scans list of devices to build up a free map, then chooses
1132  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1133  *	while allocating the name and adding the device in order to avoid
1134  *	duplicates.
1135  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1136  *	Returns the number of the unit assigned or a negative errno code.
1137  */
1138 
1139 int dev_alloc_name(struct net_device *dev, const char *name)
1140 {
1141 	return dev_alloc_name_ns(dev_net(dev), dev, name);
1142 }
1143 EXPORT_SYMBOL(dev_alloc_name);
1144 
1145 int dev_get_valid_name(struct net *net, struct net_device *dev,
1146 		       const char *name)
1147 {
1148 	BUG_ON(!net);
1149 
1150 	if (!dev_valid_name(name))
1151 		return -EINVAL;
1152 
1153 	if (strchr(name, '%'))
1154 		return dev_alloc_name_ns(net, dev, name);
1155 	else if (__dev_get_by_name(net, name))
1156 		return -EEXIST;
1157 	else if (dev->name != name)
1158 		strlcpy(dev->name, name, IFNAMSIZ);
1159 
1160 	return 0;
1161 }
1162 EXPORT_SYMBOL(dev_get_valid_name);
1163 
1164 /**
1165  *	dev_change_name - change name of a device
1166  *	@dev: device
1167  *	@newname: name (or format string) must be at least IFNAMSIZ
1168  *
1169  *	Change name of a device, can pass format strings "eth%d".
1170  *	for wildcarding.
1171  */
1172 int dev_change_name(struct net_device *dev, const char *newname)
1173 {
1174 	unsigned char old_assign_type;
1175 	char oldname[IFNAMSIZ];
1176 	int err = 0;
1177 	int ret;
1178 	struct net *net;
1179 
1180 	ASSERT_RTNL();
1181 	BUG_ON(!dev_net(dev));
1182 
1183 	net = dev_net(dev);
1184 	if (dev->flags & IFF_UP)
1185 		return -EBUSY;
1186 
1187 	write_seqcount_begin(&devnet_rename_seq);
1188 
1189 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1190 		write_seqcount_end(&devnet_rename_seq);
1191 		return 0;
1192 	}
1193 
1194 	memcpy(oldname, dev->name, IFNAMSIZ);
1195 
1196 	err = dev_get_valid_name(net, dev, newname);
1197 	if (err < 0) {
1198 		write_seqcount_end(&devnet_rename_seq);
1199 		return err;
1200 	}
1201 
1202 	if (oldname[0] && !strchr(oldname, '%'))
1203 		netdev_info(dev, "renamed from %s\n", oldname);
1204 
1205 	old_assign_type = dev->name_assign_type;
1206 	dev->name_assign_type = NET_NAME_RENAMED;
1207 
1208 rollback:
1209 	ret = device_rename(&dev->dev, dev->name);
1210 	if (ret) {
1211 		memcpy(dev->name, oldname, IFNAMSIZ);
1212 		dev->name_assign_type = old_assign_type;
1213 		write_seqcount_end(&devnet_rename_seq);
1214 		return ret;
1215 	}
1216 
1217 	write_seqcount_end(&devnet_rename_seq);
1218 
1219 	netdev_adjacent_rename_links(dev, oldname);
1220 
1221 	write_lock_bh(&dev_base_lock);
1222 	hlist_del_rcu(&dev->name_hlist);
1223 	write_unlock_bh(&dev_base_lock);
1224 
1225 	synchronize_rcu();
1226 
1227 	write_lock_bh(&dev_base_lock);
1228 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1229 	write_unlock_bh(&dev_base_lock);
1230 
1231 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1232 	ret = notifier_to_errno(ret);
1233 
1234 	if (ret) {
1235 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1236 		if (err >= 0) {
1237 			err = ret;
1238 			write_seqcount_begin(&devnet_rename_seq);
1239 			memcpy(dev->name, oldname, IFNAMSIZ);
1240 			memcpy(oldname, newname, IFNAMSIZ);
1241 			dev->name_assign_type = old_assign_type;
1242 			old_assign_type = NET_NAME_RENAMED;
1243 			goto rollback;
1244 		} else {
1245 			pr_err("%s: name change rollback failed: %d\n",
1246 			       dev->name, ret);
1247 		}
1248 	}
1249 
1250 	return err;
1251 }
1252 
1253 /**
1254  *	dev_set_alias - change ifalias of a device
1255  *	@dev: device
1256  *	@alias: name up to IFALIASZ
1257  *	@len: limit of bytes to copy from info
1258  *
1259  *	Set ifalias for a device,
1260  */
1261 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1262 {
1263 	struct dev_ifalias *new_alias = NULL;
1264 
1265 	if (len >= IFALIASZ)
1266 		return -EINVAL;
1267 
1268 	if (len) {
1269 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1270 		if (!new_alias)
1271 			return -ENOMEM;
1272 
1273 		memcpy(new_alias->ifalias, alias, len);
1274 		new_alias->ifalias[len] = 0;
1275 	}
1276 
1277 	mutex_lock(&ifalias_mutex);
1278 	rcu_swap_protected(dev->ifalias, new_alias,
1279 			   mutex_is_locked(&ifalias_mutex));
1280 	mutex_unlock(&ifalias_mutex);
1281 
1282 	if (new_alias)
1283 		kfree_rcu(new_alias, rcuhead);
1284 
1285 	return len;
1286 }
1287 EXPORT_SYMBOL(dev_set_alias);
1288 
1289 /**
1290  *	dev_get_alias - get ifalias of a device
1291  *	@dev: device
1292  *	@name: buffer to store name of ifalias
1293  *	@len: size of buffer
1294  *
1295  *	get ifalias for a device.  Caller must make sure dev cannot go
1296  *	away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300 	const struct dev_ifalias *alias;
1301 	int ret = 0;
1302 
1303 	rcu_read_lock();
1304 	alias = rcu_dereference(dev->ifalias);
1305 	if (alias)
1306 		ret = snprintf(name, len, "%s", alias->ifalias);
1307 	rcu_read_unlock();
1308 
1309 	return ret;
1310 }
1311 
1312 /**
1313  *	netdev_features_change - device changes features
1314  *	@dev: device to cause notification
1315  *
1316  *	Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323 
1324 /**
1325  *	netdev_state_change - device changes state
1326  *	@dev: device to cause notification
1327  *
1328  *	Called to indicate a device has changed state. This function calls
1329  *	the notifier chains for netdev_chain and sends a NEWLINK message
1330  *	to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334 	if (dev->flags & IFF_UP) {
1335 		struct netdev_notifier_change_info change_info = {
1336 			.info.dev = dev,
1337 		};
1338 
1339 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1340 					      &change_info.info);
1341 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342 	}
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345 
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358 	rtnl_lock();
1359 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361 	rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364 
1365 static int __dev_open(struct net_device *dev)
1366 {
1367 	const struct net_device_ops *ops = dev->netdev_ops;
1368 	int ret;
1369 
1370 	ASSERT_RTNL();
1371 
1372 	if (!netif_device_present(dev))
1373 		return -ENODEV;
1374 
1375 	/* Block netpoll from trying to do any rx path servicing.
1376 	 * If we don't do this there is a chance ndo_poll_controller
1377 	 * or ndo_poll may be running while we open the device
1378 	 */
1379 	netpoll_poll_disable(dev);
1380 
1381 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382 	ret = notifier_to_errno(ret);
1383 	if (ret)
1384 		return ret;
1385 
1386 	set_bit(__LINK_STATE_START, &dev->state);
1387 
1388 	if (ops->ndo_validate_addr)
1389 		ret = ops->ndo_validate_addr(dev);
1390 
1391 	if (!ret && ops->ndo_open)
1392 		ret = ops->ndo_open(dev);
1393 
1394 	netpoll_poll_enable(dev);
1395 
1396 	if (ret)
1397 		clear_bit(__LINK_STATE_START, &dev->state);
1398 	else {
1399 		dev->flags |= IFF_UP;
1400 		dev_set_rx_mode(dev);
1401 		dev_activate(dev);
1402 		add_device_randomness(dev->dev_addr, dev->addr_len);
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 /**
1409  *	dev_open	- prepare an interface for use.
1410  *	@dev:	device to open
1411  *
1412  *	Takes a device from down to up state. The device's private open
1413  *	function is invoked and then the multicast lists are loaded. Finally
1414  *	the device is moved into the up state and a %NETDEV_UP message is
1415  *	sent to the netdev notifier chain.
1416  *
1417  *	Calling this function on an active interface is a nop. On a failure
1418  *	a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422 	int ret;
1423 
1424 	if (dev->flags & IFF_UP)
1425 		return 0;
1426 
1427 	ret = __dev_open(dev);
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432 	call_netdevice_notifiers(NETDEV_UP, dev);
1433 
1434 	return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437 
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440 	struct net_device *dev;
1441 
1442 	ASSERT_RTNL();
1443 	might_sleep();
1444 
1445 	list_for_each_entry(dev, head, close_list) {
1446 		/* Temporarily disable netpoll until the interface is down */
1447 		netpoll_poll_disable(dev);
1448 
1449 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450 
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 
1453 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1454 		 * can be even on different cpu. So just clear netif_running().
1455 		 *
1456 		 * dev->stop() will invoke napi_disable() on all of it's
1457 		 * napi_struct instances on this device.
1458 		 */
1459 		smp_mb__after_atomic(); /* Commit netif_running(). */
1460 	}
1461 
1462 	dev_deactivate_many(head);
1463 
1464 	list_for_each_entry(dev, head, close_list) {
1465 		const struct net_device_ops *ops = dev->netdev_ops;
1466 
1467 		/*
1468 		 *	Call the device specific close. This cannot fail.
1469 		 *	Only if device is UP
1470 		 *
1471 		 *	We allow it to be called even after a DETACH hot-plug
1472 		 *	event.
1473 		 */
1474 		if (ops->ndo_stop)
1475 			ops->ndo_stop(dev);
1476 
1477 		dev->flags &= ~IFF_UP;
1478 		netpoll_poll_enable(dev);
1479 	}
1480 }
1481 
1482 static void __dev_close(struct net_device *dev)
1483 {
1484 	LIST_HEAD(single);
1485 
1486 	list_add(&dev->close_list, &single);
1487 	__dev_close_many(&single);
1488 	list_del(&single);
1489 }
1490 
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493 	struct net_device *dev, *tmp;
1494 
1495 	/* Remove the devices that don't need to be closed */
1496 	list_for_each_entry_safe(dev, tmp, head, close_list)
1497 		if (!(dev->flags & IFF_UP))
1498 			list_del_init(&dev->close_list);
1499 
1500 	__dev_close_many(head);
1501 
1502 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1503 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1505 		if (unlink)
1506 			list_del_init(&dev->close_list);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510 
1511 /**
1512  *	dev_close - shutdown an interface.
1513  *	@dev: device to shutdown
1514  *
1515  *	This function moves an active device into down state. A
1516  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *	chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522 	if (dev->flags & IFF_UP) {
1523 		LIST_HEAD(single);
1524 
1525 		list_add(&dev->close_list, &single);
1526 		dev_close_many(&single, true);
1527 		list_del(&single);
1528 	}
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531 
1532 
1533 /**
1534  *	dev_disable_lro - disable Large Receive Offload on a device
1535  *	@dev: device
1536  *
1537  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *	called under RTNL.  This is needed if received packets may be
1539  *	forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543 	struct net_device *lower_dev;
1544 	struct list_head *iter;
1545 
1546 	dev->wanted_features &= ~NETIF_F_LRO;
1547 	netdev_update_features(dev);
1548 
1549 	if (unlikely(dev->features & NETIF_F_LRO))
1550 		netdev_WARN(dev, "failed to disable LRO!\n");
1551 
1552 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1553 		dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556 
1557 /**
1558  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *	@dev: device
1560  *
1561  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *	called under RTNL.  This is needed if Generic XDP is installed on
1563  *	the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1568 	netdev_update_features(dev);
1569 
1570 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1571 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573 
1574 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1575 {
1576 #define N(val) 						\
1577 	case NETDEV_##val:				\
1578 		return "NETDEV_" __stringify(val);
1579 	switch (cmd) {
1580 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1581 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1582 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1583 	N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1584 	N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1585 	N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1586 	N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1587 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1588 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1589 	}
1590 #undef N
1591 	return "UNKNOWN_NETDEV_EVENT";
1592 }
1593 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1594 
1595 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1596 				   struct net_device *dev)
1597 {
1598 	struct netdev_notifier_info info = {
1599 		.dev = dev,
1600 	};
1601 
1602 	return nb->notifier_call(nb, val, &info);
1603 }
1604 
1605 static int dev_boot_phase = 1;
1606 
1607 /**
1608  * register_netdevice_notifier - register a network notifier block
1609  * @nb: notifier
1610  *
1611  * Register a notifier to be called when network device events occur.
1612  * The notifier passed is linked into the kernel structures and must
1613  * not be reused until it has been unregistered. A negative errno code
1614  * is returned on a failure.
1615  *
1616  * When registered all registration and up events are replayed
1617  * to the new notifier to allow device to have a race free
1618  * view of the network device list.
1619  */
1620 
1621 int register_netdevice_notifier(struct notifier_block *nb)
1622 {
1623 	struct net_device *dev;
1624 	struct net_device *last;
1625 	struct net *net;
1626 	int err;
1627 
1628 	/* Close race with setup_net() and cleanup_net() */
1629 	down_write(&pernet_ops_rwsem);
1630 	rtnl_lock();
1631 	err = raw_notifier_chain_register(&netdev_chain, nb);
1632 	if (err)
1633 		goto unlock;
1634 	if (dev_boot_phase)
1635 		goto unlock;
1636 	for_each_net(net) {
1637 		for_each_netdev(net, dev) {
1638 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1639 			err = notifier_to_errno(err);
1640 			if (err)
1641 				goto rollback;
1642 
1643 			if (!(dev->flags & IFF_UP))
1644 				continue;
1645 
1646 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1647 		}
1648 	}
1649 
1650 unlock:
1651 	rtnl_unlock();
1652 	up_write(&pernet_ops_rwsem);
1653 	return err;
1654 
1655 rollback:
1656 	last = dev;
1657 	for_each_net(net) {
1658 		for_each_netdev(net, dev) {
1659 			if (dev == last)
1660 				goto outroll;
1661 
1662 			if (dev->flags & IFF_UP) {
1663 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1664 							dev);
1665 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1666 			}
1667 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1668 		}
1669 	}
1670 
1671 outroll:
1672 	raw_notifier_chain_unregister(&netdev_chain, nb);
1673 	goto unlock;
1674 }
1675 EXPORT_SYMBOL(register_netdevice_notifier);
1676 
1677 /**
1678  * unregister_netdevice_notifier - unregister a network notifier block
1679  * @nb: notifier
1680  *
1681  * Unregister a notifier previously registered by
1682  * register_netdevice_notifier(). The notifier is unlinked into the
1683  * kernel structures and may then be reused. A negative errno code
1684  * is returned on a failure.
1685  *
1686  * After unregistering unregister and down device events are synthesized
1687  * for all devices on the device list to the removed notifier to remove
1688  * the need for special case cleanup code.
1689  */
1690 
1691 int unregister_netdevice_notifier(struct notifier_block *nb)
1692 {
1693 	struct net_device *dev;
1694 	struct net *net;
1695 	int err;
1696 
1697 	/* Close race with setup_net() and cleanup_net() */
1698 	down_write(&pernet_ops_rwsem);
1699 	rtnl_lock();
1700 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1701 	if (err)
1702 		goto unlock;
1703 
1704 	for_each_net(net) {
1705 		for_each_netdev(net, dev) {
1706 			if (dev->flags & IFF_UP) {
1707 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1708 							dev);
1709 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1710 			}
1711 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1712 		}
1713 	}
1714 unlock:
1715 	rtnl_unlock();
1716 	up_write(&pernet_ops_rwsem);
1717 	return err;
1718 }
1719 EXPORT_SYMBOL(unregister_netdevice_notifier);
1720 
1721 /**
1722  *	call_netdevice_notifiers_info - call all network notifier blocks
1723  *	@val: value passed unmodified to notifier function
1724  *	@info: notifier information data
1725  *
1726  *	Call all network notifier blocks.  Parameters and return value
1727  *	are as for raw_notifier_call_chain().
1728  */
1729 
1730 static int call_netdevice_notifiers_info(unsigned long val,
1731 					 struct netdev_notifier_info *info)
1732 {
1733 	ASSERT_RTNL();
1734 	return raw_notifier_call_chain(&netdev_chain, val, info);
1735 }
1736 
1737 /**
1738  *	call_netdevice_notifiers - call all network notifier blocks
1739  *      @val: value passed unmodified to notifier function
1740  *      @dev: net_device pointer passed unmodified to notifier function
1741  *
1742  *	Call all network notifier blocks.  Parameters and return value
1743  *	are as for raw_notifier_call_chain().
1744  */
1745 
1746 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1747 {
1748 	struct netdev_notifier_info info = {
1749 		.dev = dev,
1750 	};
1751 
1752 	return call_netdevice_notifiers_info(val, &info);
1753 }
1754 EXPORT_SYMBOL(call_netdevice_notifiers);
1755 
1756 #ifdef CONFIG_NET_INGRESS
1757 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1758 
1759 void net_inc_ingress_queue(void)
1760 {
1761 	static_branch_inc(&ingress_needed_key);
1762 }
1763 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1764 
1765 void net_dec_ingress_queue(void)
1766 {
1767 	static_branch_dec(&ingress_needed_key);
1768 }
1769 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1770 #endif
1771 
1772 #ifdef CONFIG_NET_EGRESS
1773 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1774 
1775 void net_inc_egress_queue(void)
1776 {
1777 	static_branch_inc(&egress_needed_key);
1778 }
1779 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1780 
1781 void net_dec_egress_queue(void)
1782 {
1783 	static_branch_dec(&egress_needed_key);
1784 }
1785 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1786 #endif
1787 
1788 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1789 #ifdef HAVE_JUMP_LABEL
1790 static atomic_t netstamp_needed_deferred;
1791 static atomic_t netstamp_wanted;
1792 static void netstamp_clear(struct work_struct *work)
1793 {
1794 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1795 	int wanted;
1796 
1797 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1798 	if (wanted > 0)
1799 		static_branch_enable(&netstamp_needed_key);
1800 	else
1801 		static_branch_disable(&netstamp_needed_key);
1802 }
1803 static DECLARE_WORK(netstamp_work, netstamp_clear);
1804 #endif
1805 
1806 void net_enable_timestamp(void)
1807 {
1808 #ifdef HAVE_JUMP_LABEL
1809 	int wanted;
1810 
1811 	while (1) {
1812 		wanted = atomic_read(&netstamp_wanted);
1813 		if (wanted <= 0)
1814 			break;
1815 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1816 			return;
1817 	}
1818 	atomic_inc(&netstamp_needed_deferred);
1819 	schedule_work(&netstamp_work);
1820 #else
1821 	static_branch_inc(&netstamp_needed_key);
1822 #endif
1823 }
1824 EXPORT_SYMBOL(net_enable_timestamp);
1825 
1826 void net_disable_timestamp(void)
1827 {
1828 #ifdef HAVE_JUMP_LABEL
1829 	int wanted;
1830 
1831 	while (1) {
1832 		wanted = atomic_read(&netstamp_wanted);
1833 		if (wanted <= 1)
1834 			break;
1835 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1836 			return;
1837 	}
1838 	atomic_dec(&netstamp_needed_deferred);
1839 	schedule_work(&netstamp_work);
1840 #else
1841 	static_branch_dec(&netstamp_needed_key);
1842 #endif
1843 }
1844 EXPORT_SYMBOL(net_disable_timestamp);
1845 
1846 static inline void net_timestamp_set(struct sk_buff *skb)
1847 {
1848 	skb->tstamp = 0;
1849 	if (static_branch_unlikely(&netstamp_needed_key))
1850 		__net_timestamp(skb);
1851 }
1852 
1853 #define net_timestamp_check(COND, SKB)				\
1854 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
1855 		if ((COND) && !(SKB)->tstamp)			\
1856 			__net_timestamp(SKB);			\
1857 	}							\
1858 
1859 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1860 {
1861 	unsigned int len;
1862 
1863 	if (!(dev->flags & IFF_UP))
1864 		return false;
1865 
1866 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1867 	if (skb->len <= len)
1868 		return true;
1869 
1870 	/* if TSO is enabled, we don't care about the length as the packet
1871 	 * could be forwarded without being segmented before
1872 	 */
1873 	if (skb_is_gso(skb))
1874 		return true;
1875 
1876 	return false;
1877 }
1878 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1879 
1880 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1881 {
1882 	int ret = ____dev_forward_skb(dev, skb);
1883 
1884 	if (likely(!ret)) {
1885 		skb->protocol = eth_type_trans(skb, dev);
1886 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1887 	}
1888 
1889 	return ret;
1890 }
1891 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1892 
1893 /**
1894  * dev_forward_skb - loopback an skb to another netif
1895  *
1896  * @dev: destination network device
1897  * @skb: buffer to forward
1898  *
1899  * return values:
1900  *	NET_RX_SUCCESS	(no congestion)
1901  *	NET_RX_DROP     (packet was dropped, but freed)
1902  *
1903  * dev_forward_skb can be used for injecting an skb from the
1904  * start_xmit function of one device into the receive queue
1905  * of another device.
1906  *
1907  * The receiving device may be in another namespace, so
1908  * we have to clear all information in the skb that could
1909  * impact namespace isolation.
1910  */
1911 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1912 {
1913 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1914 }
1915 EXPORT_SYMBOL_GPL(dev_forward_skb);
1916 
1917 static inline int deliver_skb(struct sk_buff *skb,
1918 			      struct packet_type *pt_prev,
1919 			      struct net_device *orig_dev)
1920 {
1921 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1922 		return -ENOMEM;
1923 	refcount_inc(&skb->users);
1924 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1925 }
1926 
1927 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1928 					  struct packet_type **pt,
1929 					  struct net_device *orig_dev,
1930 					  __be16 type,
1931 					  struct list_head *ptype_list)
1932 {
1933 	struct packet_type *ptype, *pt_prev = *pt;
1934 
1935 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1936 		if (ptype->type != type)
1937 			continue;
1938 		if (pt_prev)
1939 			deliver_skb(skb, pt_prev, orig_dev);
1940 		pt_prev = ptype;
1941 	}
1942 	*pt = pt_prev;
1943 }
1944 
1945 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1946 {
1947 	if (!ptype->af_packet_priv || !skb->sk)
1948 		return false;
1949 
1950 	if (ptype->id_match)
1951 		return ptype->id_match(ptype, skb->sk);
1952 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1953 		return true;
1954 
1955 	return false;
1956 }
1957 
1958 /*
1959  *	Support routine. Sends outgoing frames to any network
1960  *	taps currently in use.
1961  */
1962 
1963 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1964 {
1965 	struct packet_type *ptype;
1966 	struct sk_buff *skb2 = NULL;
1967 	struct packet_type *pt_prev = NULL;
1968 	struct list_head *ptype_list = &ptype_all;
1969 
1970 	rcu_read_lock();
1971 again:
1972 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1973 		/* Never send packets back to the socket
1974 		 * they originated from - MvS ([email protected])
1975 		 */
1976 		if (skb_loop_sk(ptype, skb))
1977 			continue;
1978 
1979 		if (pt_prev) {
1980 			deliver_skb(skb2, pt_prev, skb->dev);
1981 			pt_prev = ptype;
1982 			continue;
1983 		}
1984 
1985 		/* need to clone skb, done only once */
1986 		skb2 = skb_clone(skb, GFP_ATOMIC);
1987 		if (!skb2)
1988 			goto out_unlock;
1989 
1990 		net_timestamp_set(skb2);
1991 
1992 		/* skb->nh should be correctly
1993 		 * set by sender, so that the second statement is
1994 		 * just protection against buggy protocols.
1995 		 */
1996 		skb_reset_mac_header(skb2);
1997 
1998 		if (skb_network_header(skb2) < skb2->data ||
1999 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2000 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2001 					     ntohs(skb2->protocol),
2002 					     dev->name);
2003 			skb_reset_network_header(skb2);
2004 		}
2005 
2006 		skb2->transport_header = skb2->network_header;
2007 		skb2->pkt_type = PACKET_OUTGOING;
2008 		pt_prev = ptype;
2009 	}
2010 
2011 	if (ptype_list == &ptype_all) {
2012 		ptype_list = &dev->ptype_all;
2013 		goto again;
2014 	}
2015 out_unlock:
2016 	if (pt_prev) {
2017 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2018 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2019 		else
2020 			kfree_skb(skb2);
2021 	}
2022 	rcu_read_unlock();
2023 }
2024 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2025 
2026 /**
2027  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2028  * @dev: Network device
2029  * @txq: number of queues available
2030  *
2031  * If real_num_tx_queues is changed the tc mappings may no longer be
2032  * valid. To resolve this verify the tc mapping remains valid and if
2033  * not NULL the mapping. With no priorities mapping to this
2034  * offset/count pair it will no longer be used. In the worst case TC0
2035  * is invalid nothing can be done so disable priority mappings. If is
2036  * expected that drivers will fix this mapping if they can before
2037  * calling netif_set_real_num_tx_queues.
2038  */
2039 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2040 {
2041 	int i;
2042 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2043 
2044 	/* If TC0 is invalidated disable TC mapping */
2045 	if (tc->offset + tc->count > txq) {
2046 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2047 		dev->num_tc = 0;
2048 		return;
2049 	}
2050 
2051 	/* Invalidated prio to tc mappings set to TC0 */
2052 	for (i = 1; i < TC_BITMASK + 1; i++) {
2053 		int q = netdev_get_prio_tc_map(dev, i);
2054 
2055 		tc = &dev->tc_to_txq[q];
2056 		if (tc->offset + tc->count > txq) {
2057 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2058 				i, q);
2059 			netdev_set_prio_tc_map(dev, i, 0);
2060 		}
2061 	}
2062 }
2063 
2064 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2065 {
2066 	if (dev->num_tc) {
2067 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2068 		int i;
2069 
2070 		/* walk through the TCs and see if it falls into any of them */
2071 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2072 			if ((txq - tc->offset) < tc->count)
2073 				return i;
2074 		}
2075 
2076 		/* didn't find it, just return -1 to indicate no match */
2077 		return -1;
2078 	}
2079 
2080 	return 0;
2081 }
2082 EXPORT_SYMBOL(netdev_txq_to_tc);
2083 
2084 #ifdef CONFIG_XPS
2085 struct static_key xps_needed __read_mostly;
2086 EXPORT_SYMBOL(xps_needed);
2087 struct static_key xps_rxqs_needed __read_mostly;
2088 EXPORT_SYMBOL(xps_rxqs_needed);
2089 static DEFINE_MUTEX(xps_map_mutex);
2090 #define xmap_dereference(P)		\
2091 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2092 
2093 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2094 			     int tci, u16 index)
2095 {
2096 	struct xps_map *map = NULL;
2097 	int pos;
2098 
2099 	if (dev_maps)
2100 		map = xmap_dereference(dev_maps->attr_map[tci]);
2101 	if (!map)
2102 		return false;
2103 
2104 	for (pos = map->len; pos--;) {
2105 		if (map->queues[pos] != index)
2106 			continue;
2107 
2108 		if (map->len > 1) {
2109 			map->queues[pos] = map->queues[--map->len];
2110 			break;
2111 		}
2112 
2113 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2114 		kfree_rcu(map, rcu);
2115 		return false;
2116 	}
2117 
2118 	return true;
2119 }
2120 
2121 static bool remove_xps_queue_cpu(struct net_device *dev,
2122 				 struct xps_dev_maps *dev_maps,
2123 				 int cpu, u16 offset, u16 count)
2124 {
2125 	int num_tc = dev->num_tc ? : 1;
2126 	bool active = false;
2127 	int tci;
2128 
2129 	for (tci = cpu * num_tc; num_tc--; tci++) {
2130 		int i, j;
2131 
2132 		for (i = count, j = offset; i--; j++) {
2133 			if (!remove_xps_queue(dev_maps, tci, j))
2134 				break;
2135 		}
2136 
2137 		active |= i < 0;
2138 	}
2139 
2140 	return active;
2141 }
2142 
2143 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2144 			   struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2145 			   u16 offset, u16 count, bool is_rxqs_map)
2146 {
2147 	bool active = false;
2148 	int i, j;
2149 
2150 	for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2151 	     j < nr_ids;)
2152 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2153 					       count);
2154 	if (!active) {
2155 		if (is_rxqs_map) {
2156 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2157 		} else {
2158 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2159 
2160 			for (i = offset + (count - 1); count--; i--)
2161 				netdev_queue_numa_node_write(
2162 					netdev_get_tx_queue(dev, i),
2163 							NUMA_NO_NODE);
2164 		}
2165 		kfree_rcu(dev_maps, rcu);
2166 	}
2167 }
2168 
2169 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2170 				   u16 count)
2171 {
2172 	const unsigned long *possible_mask = NULL;
2173 	struct xps_dev_maps *dev_maps;
2174 	unsigned int nr_ids;
2175 
2176 	if (!static_key_false(&xps_needed))
2177 		return;
2178 
2179 	mutex_lock(&xps_map_mutex);
2180 
2181 	if (static_key_false(&xps_rxqs_needed)) {
2182 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2183 		if (dev_maps) {
2184 			nr_ids = dev->num_rx_queues;
2185 			clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2186 				       offset, count, true);
2187 		}
2188 	}
2189 
2190 	dev_maps = xmap_dereference(dev->xps_cpus_map);
2191 	if (!dev_maps)
2192 		goto out_no_maps;
2193 
2194 	if (num_possible_cpus() > 1)
2195 		possible_mask = cpumask_bits(cpu_possible_mask);
2196 	nr_ids = nr_cpu_ids;
2197 	clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2198 		       false);
2199 
2200 out_no_maps:
2201 	if (static_key_enabled(&xps_rxqs_needed))
2202 		static_key_slow_dec(&xps_rxqs_needed);
2203 
2204 	static_key_slow_dec(&xps_needed);
2205 	mutex_unlock(&xps_map_mutex);
2206 }
2207 
2208 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2209 {
2210 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2211 }
2212 
2213 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2214 				      u16 index, bool is_rxqs_map)
2215 {
2216 	struct xps_map *new_map;
2217 	int alloc_len = XPS_MIN_MAP_ALLOC;
2218 	int i, pos;
2219 
2220 	for (pos = 0; map && pos < map->len; pos++) {
2221 		if (map->queues[pos] != index)
2222 			continue;
2223 		return map;
2224 	}
2225 
2226 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2227 	if (map) {
2228 		if (pos < map->alloc_len)
2229 			return map;
2230 
2231 		alloc_len = map->alloc_len * 2;
2232 	}
2233 
2234 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2235 	 *  map
2236 	 */
2237 	if (is_rxqs_map)
2238 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2239 	else
2240 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2241 				       cpu_to_node(attr_index));
2242 	if (!new_map)
2243 		return NULL;
2244 
2245 	for (i = 0; i < pos; i++)
2246 		new_map->queues[i] = map->queues[i];
2247 	new_map->alloc_len = alloc_len;
2248 	new_map->len = pos;
2249 
2250 	return new_map;
2251 }
2252 
2253 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2254 			  u16 index, bool is_rxqs_map)
2255 {
2256 	const unsigned long *online_mask = NULL, *possible_mask = NULL;
2257 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2258 	int i, j, tci, numa_node_id = -2;
2259 	int maps_sz, num_tc = 1, tc = 0;
2260 	struct xps_map *map, *new_map;
2261 	bool active = false;
2262 	unsigned int nr_ids;
2263 
2264 	if (dev->num_tc) {
2265 		/* Do not allow XPS on subordinate device directly */
2266 		num_tc = dev->num_tc;
2267 		if (num_tc < 0)
2268 			return -EINVAL;
2269 
2270 		/* If queue belongs to subordinate dev use its map */
2271 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2272 
2273 		tc = netdev_txq_to_tc(dev, index);
2274 		if (tc < 0)
2275 			return -EINVAL;
2276 	}
2277 
2278 	mutex_lock(&xps_map_mutex);
2279 	if (is_rxqs_map) {
2280 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2281 		dev_maps = xmap_dereference(dev->xps_rxqs_map);
2282 		nr_ids = dev->num_rx_queues;
2283 	} else {
2284 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2285 		if (num_possible_cpus() > 1) {
2286 			online_mask = cpumask_bits(cpu_online_mask);
2287 			possible_mask = cpumask_bits(cpu_possible_mask);
2288 		}
2289 		dev_maps = xmap_dereference(dev->xps_cpus_map);
2290 		nr_ids = nr_cpu_ids;
2291 	}
2292 
2293 	if (maps_sz < L1_CACHE_BYTES)
2294 		maps_sz = L1_CACHE_BYTES;
2295 
2296 	/* allocate memory for queue storage */
2297 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2298 	     j < nr_ids;) {
2299 		if (!new_dev_maps)
2300 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2301 		if (!new_dev_maps) {
2302 			mutex_unlock(&xps_map_mutex);
2303 			return -ENOMEM;
2304 		}
2305 
2306 		tci = j * num_tc + tc;
2307 		map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2308 				 NULL;
2309 
2310 		map = expand_xps_map(map, j, index, is_rxqs_map);
2311 		if (!map)
2312 			goto error;
2313 
2314 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2315 	}
2316 
2317 	if (!new_dev_maps)
2318 		goto out_no_new_maps;
2319 
2320 	static_key_slow_inc(&xps_needed);
2321 	if (is_rxqs_map)
2322 		static_key_slow_inc(&xps_rxqs_needed);
2323 
2324 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2325 	     j < nr_ids;) {
2326 		/* copy maps belonging to foreign traffic classes */
2327 		for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2328 			/* fill in the new device map from the old device map */
2329 			map = xmap_dereference(dev_maps->attr_map[tci]);
2330 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2331 		}
2332 
2333 		/* We need to explicitly update tci as prevous loop
2334 		 * could break out early if dev_maps is NULL.
2335 		 */
2336 		tci = j * num_tc + tc;
2337 
2338 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2339 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2340 			/* add tx-queue to CPU/rx-queue maps */
2341 			int pos = 0;
2342 
2343 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2344 			while ((pos < map->len) && (map->queues[pos] != index))
2345 				pos++;
2346 
2347 			if (pos == map->len)
2348 				map->queues[map->len++] = index;
2349 #ifdef CONFIG_NUMA
2350 			if (!is_rxqs_map) {
2351 				if (numa_node_id == -2)
2352 					numa_node_id = cpu_to_node(j);
2353 				else if (numa_node_id != cpu_to_node(j))
2354 					numa_node_id = -1;
2355 			}
2356 #endif
2357 		} else if (dev_maps) {
2358 			/* fill in the new device map from the old device map */
2359 			map = xmap_dereference(dev_maps->attr_map[tci]);
2360 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2361 		}
2362 
2363 		/* copy maps belonging to foreign traffic classes */
2364 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2365 			/* fill in the new device map from the old device map */
2366 			map = xmap_dereference(dev_maps->attr_map[tci]);
2367 			RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2368 		}
2369 	}
2370 
2371 	if (is_rxqs_map)
2372 		rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2373 	else
2374 		rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2375 
2376 	/* Cleanup old maps */
2377 	if (!dev_maps)
2378 		goto out_no_old_maps;
2379 
2380 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2381 	     j < nr_ids;) {
2382 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2383 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2384 			map = xmap_dereference(dev_maps->attr_map[tci]);
2385 			if (map && map != new_map)
2386 				kfree_rcu(map, rcu);
2387 		}
2388 	}
2389 
2390 	kfree_rcu(dev_maps, rcu);
2391 
2392 out_no_old_maps:
2393 	dev_maps = new_dev_maps;
2394 	active = true;
2395 
2396 out_no_new_maps:
2397 	if (!is_rxqs_map) {
2398 		/* update Tx queue numa node */
2399 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2400 					     (numa_node_id >= 0) ?
2401 					     numa_node_id : NUMA_NO_NODE);
2402 	}
2403 
2404 	if (!dev_maps)
2405 		goto out_no_maps;
2406 
2407 	/* removes tx-queue from unused CPUs/rx-queues */
2408 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2409 	     j < nr_ids;) {
2410 		for (i = tc, tci = j * num_tc; i--; tci++)
2411 			active |= remove_xps_queue(dev_maps, tci, index);
2412 		if (!netif_attr_test_mask(j, mask, nr_ids) ||
2413 		    !netif_attr_test_online(j, online_mask, nr_ids))
2414 			active |= remove_xps_queue(dev_maps, tci, index);
2415 		for (i = num_tc - tc, tci++; --i; tci++)
2416 			active |= remove_xps_queue(dev_maps, tci, index);
2417 	}
2418 
2419 	/* free map if not active */
2420 	if (!active) {
2421 		if (is_rxqs_map)
2422 			RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2423 		else
2424 			RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2425 		kfree_rcu(dev_maps, rcu);
2426 	}
2427 
2428 out_no_maps:
2429 	mutex_unlock(&xps_map_mutex);
2430 
2431 	return 0;
2432 error:
2433 	/* remove any maps that we added */
2434 	for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2435 	     j < nr_ids;) {
2436 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2437 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2438 			map = dev_maps ?
2439 			      xmap_dereference(dev_maps->attr_map[tci]) :
2440 			      NULL;
2441 			if (new_map && new_map != map)
2442 				kfree(new_map);
2443 		}
2444 	}
2445 
2446 	mutex_unlock(&xps_map_mutex);
2447 
2448 	kfree(new_dev_maps);
2449 	return -ENOMEM;
2450 }
2451 
2452 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2453 			u16 index)
2454 {
2455 	return __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2456 }
2457 EXPORT_SYMBOL(netif_set_xps_queue);
2458 
2459 #endif
2460 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2461 {
2462 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2463 
2464 	/* Unbind any subordinate channels */
2465 	while (txq-- != &dev->_tx[0]) {
2466 		if (txq->sb_dev)
2467 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2468 	}
2469 }
2470 
2471 void netdev_reset_tc(struct net_device *dev)
2472 {
2473 #ifdef CONFIG_XPS
2474 	netif_reset_xps_queues_gt(dev, 0);
2475 #endif
2476 	netdev_unbind_all_sb_channels(dev);
2477 
2478 	/* Reset TC configuration of device */
2479 	dev->num_tc = 0;
2480 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2481 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2482 }
2483 EXPORT_SYMBOL(netdev_reset_tc);
2484 
2485 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2486 {
2487 	if (tc >= dev->num_tc)
2488 		return -EINVAL;
2489 
2490 #ifdef CONFIG_XPS
2491 	netif_reset_xps_queues(dev, offset, count);
2492 #endif
2493 	dev->tc_to_txq[tc].count = count;
2494 	dev->tc_to_txq[tc].offset = offset;
2495 	return 0;
2496 }
2497 EXPORT_SYMBOL(netdev_set_tc_queue);
2498 
2499 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2500 {
2501 	if (num_tc > TC_MAX_QUEUE)
2502 		return -EINVAL;
2503 
2504 #ifdef CONFIG_XPS
2505 	netif_reset_xps_queues_gt(dev, 0);
2506 #endif
2507 	netdev_unbind_all_sb_channels(dev);
2508 
2509 	dev->num_tc = num_tc;
2510 	return 0;
2511 }
2512 EXPORT_SYMBOL(netdev_set_num_tc);
2513 
2514 void netdev_unbind_sb_channel(struct net_device *dev,
2515 			      struct net_device *sb_dev)
2516 {
2517 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2518 
2519 #ifdef CONFIG_XPS
2520 	netif_reset_xps_queues_gt(sb_dev, 0);
2521 #endif
2522 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2523 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2524 
2525 	while (txq-- != &dev->_tx[0]) {
2526 		if (txq->sb_dev == sb_dev)
2527 			txq->sb_dev = NULL;
2528 	}
2529 }
2530 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2531 
2532 int netdev_bind_sb_channel_queue(struct net_device *dev,
2533 				 struct net_device *sb_dev,
2534 				 u8 tc, u16 count, u16 offset)
2535 {
2536 	/* Make certain the sb_dev and dev are already configured */
2537 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2538 		return -EINVAL;
2539 
2540 	/* We cannot hand out queues we don't have */
2541 	if ((offset + count) > dev->real_num_tx_queues)
2542 		return -EINVAL;
2543 
2544 	/* Record the mapping */
2545 	sb_dev->tc_to_txq[tc].count = count;
2546 	sb_dev->tc_to_txq[tc].offset = offset;
2547 
2548 	/* Provide a way for Tx queue to find the tc_to_txq map or
2549 	 * XPS map for itself.
2550 	 */
2551 	while (count--)
2552 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2553 
2554 	return 0;
2555 }
2556 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2557 
2558 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2559 {
2560 	/* Do not use a multiqueue device to represent a subordinate channel */
2561 	if (netif_is_multiqueue(dev))
2562 		return -ENODEV;
2563 
2564 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2565 	 * Channel 0 is meant to be "native" mode and used only to represent
2566 	 * the main root device. We allow writing 0 to reset the device back
2567 	 * to normal mode after being used as a subordinate channel.
2568 	 */
2569 	if (channel > S16_MAX)
2570 		return -EINVAL;
2571 
2572 	dev->num_tc = -channel;
2573 
2574 	return 0;
2575 }
2576 EXPORT_SYMBOL(netdev_set_sb_channel);
2577 
2578 /*
2579  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2580  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2581  */
2582 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2583 {
2584 	bool disabling;
2585 	int rc;
2586 
2587 	disabling = txq < dev->real_num_tx_queues;
2588 
2589 	if (txq < 1 || txq > dev->num_tx_queues)
2590 		return -EINVAL;
2591 
2592 	if (dev->reg_state == NETREG_REGISTERED ||
2593 	    dev->reg_state == NETREG_UNREGISTERING) {
2594 		ASSERT_RTNL();
2595 
2596 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2597 						  txq);
2598 		if (rc)
2599 			return rc;
2600 
2601 		if (dev->num_tc)
2602 			netif_setup_tc(dev, txq);
2603 
2604 		dev->real_num_tx_queues = txq;
2605 
2606 		if (disabling) {
2607 			synchronize_net();
2608 			qdisc_reset_all_tx_gt(dev, txq);
2609 #ifdef CONFIG_XPS
2610 			netif_reset_xps_queues_gt(dev, txq);
2611 #endif
2612 		}
2613 	} else {
2614 		dev->real_num_tx_queues = txq;
2615 	}
2616 
2617 	return 0;
2618 }
2619 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2620 
2621 #ifdef CONFIG_SYSFS
2622 /**
2623  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2624  *	@dev: Network device
2625  *	@rxq: Actual number of RX queues
2626  *
2627  *	This must be called either with the rtnl_lock held or before
2628  *	registration of the net device.  Returns 0 on success, or a
2629  *	negative error code.  If called before registration, it always
2630  *	succeeds.
2631  */
2632 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2633 {
2634 	int rc;
2635 
2636 	if (rxq < 1 || rxq > dev->num_rx_queues)
2637 		return -EINVAL;
2638 
2639 	if (dev->reg_state == NETREG_REGISTERED) {
2640 		ASSERT_RTNL();
2641 
2642 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2643 						  rxq);
2644 		if (rc)
2645 			return rc;
2646 	}
2647 
2648 	dev->real_num_rx_queues = rxq;
2649 	return 0;
2650 }
2651 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2652 #endif
2653 
2654 /**
2655  * netif_get_num_default_rss_queues - default number of RSS queues
2656  *
2657  * This routine should set an upper limit on the number of RSS queues
2658  * used by default by multiqueue devices.
2659  */
2660 int netif_get_num_default_rss_queues(void)
2661 {
2662 	return is_kdump_kernel() ?
2663 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2664 }
2665 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2666 
2667 static void __netif_reschedule(struct Qdisc *q)
2668 {
2669 	struct softnet_data *sd;
2670 	unsigned long flags;
2671 
2672 	local_irq_save(flags);
2673 	sd = this_cpu_ptr(&softnet_data);
2674 	q->next_sched = NULL;
2675 	*sd->output_queue_tailp = q;
2676 	sd->output_queue_tailp = &q->next_sched;
2677 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2678 	local_irq_restore(flags);
2679 }
2680 
2681 void __netif_schedule(struct Qdisc *q)
2682 {
2683 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2684 		__netif_reschedule(q);
2685 }
2686 EXPORT_SYMBOL(__netif_schedule);
2687 
2688 struct dev_kfree_skb_cb {
2689 	enum skb_free_reason reason;
2690 };
2691 
2692 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2693 {
2694 	return (struct dev_kfree_skb_cb *)skb->cb;
2695 }
2696 
2697 void netif_schedule_queue(struct netdev_queue *txq)
2698 {
2699 	rcu_read_lock();
2700 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2701 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2702 
2703 		__netif_schedule(q);
2704 	}
2705 	rcu_read_unlock();
2706 }
2707 EXPORT_SYMBOL(netif_schedule_queue);
2708 
2709 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2710 {
2711 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2712 		struct Qdisc *q;
2713 
2714 		rcu_read_lock();
2715 		q = rcu_dereference(dev_queue->qdisc);
2716 		__netif_schedule(q);
2717 		rcu_read_unlock();
2718 	}
2719 }
2720 EXPORT_SYMBOL(netif_tx_wake_queue);
2721 
2722 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2723 {
2724 	unsigned long flags;
2725 
2726 	if (unlikely(!skb))
2727 		return;
2728 
2729 	if (likely(refcount_read(&skb->users) == 1)) {
2730 		smp_rmb();
2731 		refcount_set(&skb->users, 0);
2732 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2733 		return;
2734 	}
2735 	get_kfree_skb_cb(skb)->reason = reason;
2736 	local_irq_save(flags);
2737 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2738 	__this_cpu_write(softnet_data.completion_queue, skb);
2739 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2740 	local_irq_restore(flags);
2741 }
2742 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2743 
2744 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2745 {
2746 	if (in_irq() || irqs_disabled())
2747 		__dev_kfree_skb_irq(skb, reason);
2748 	else
2749 		dev_kfree_skb(skb);
2750 }
2751 EXPORT_SYMBOL(__dev_kfree_skb_any);
2752 
2753 
2754 /**
2755  * netif_device_detach - mark device as removed
2756  * @dev: network device
2757  *
2758  * Mark device as removed from system and therefore no longer available.
2759  */
2760 void netif_device_detach(struct net_device *dev)
2761 {
2762 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2763 	    netif_running(dev)) {
2764 		netif_tx_stop_all_queues(dev);
2765 	}
2766 }
2767 EXPORT_SYMBOL(netif_device_detach);
2768 
2769 /**
2770  * netif_device_attach - mark device as attached
2771  * @dev: network device
2772  *
2773  * Mark device as attached from system and restart if needed.
2774  */
2775 void netif_device_attach(struct net_device *dev)
2776 {
2777 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2778 	    netif_running(dev)) {
2779 		netif_tx_wake_all_queues(dev);
2780 		__netdev_watchdog_up(dev);
2781 	}
2782 }
2783 EXPORT_SYMBOL(netif_device_attach);
2784 
2785 /*
2786  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2787  * to be used as a distribution range.
2788  */
2789 static u16 skb_tx_hash(const struct net_device *dev,
2790 		       const struct net_device *sb_dev,
2791 		       struct sk_buff *skb)
2792 {
2793 	u32 hash;
2794 	u16 qoffset = 0;
2795 	u16 qcount = dev->real_num_tx_queues;
2796 
2797 	if (dev->num_tc) {
2798 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2799 
2800 		qoffset = sb_dev->tc_to_txq[tc].offset;
2801 		qcount = sb_dev->tc_to_txq[tc].count;
2802 	}
2803 
2804 	if (skb_rx_queue_recorded(skb)) {
2805 		hash = skb_get_rx_queue(skb);
2806 		while (unlikely(hash >= qcount))
2807 			hash -= qcount;
2808 		return hash + qoffset;
2809 	}
2810 
2811 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2812 }
2813 
2814 static void skb_warn_bad_offload(const struct sk_buff *skb)
2815 {
2816 	static const netdev_features_t null_features;
2817 	struct net_device *dev = skb->dev;
2818 	const char *name = "";
2819 
2820 	if (!net_ratelimit())
2821 		return;
2822 
2823 	if (dev) {
2824 		if (dev->dev.parent)
2825 			name = dev_driver_string(dev->dev.parent);
2826 		else
2827 			name = netdev_name(dev);
2828 	}
2829 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2830 	     "gso_type=%d ip_summed=%d\n",
2831 	     name, dev ? &dev->features : &null_features,
2832 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2833 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2834 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2835 }
2836 
2837 /*
2838  * Invalidate hardware checksum when packet is to be mangled, and
2839  * complete checksum manually on outgoing path.
2840  */
2841 int skb_checksum_help(struct sk_buff *skb)
2842 {
2843 	__wsum csum;
2844 	int ret = 0, offset;
2845 
2846 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2847 		goto out_set_summed;
2848 
2849 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2850 		skb_warn_bad_offload(skb);
2851 		return -EINVAL;
2852 	}
2853 
2854 	/* Before computing a checksum, we should make sure no frag could
2855 	 * be modified by an external entity : checksum could be wrong.
2856 	 */
2857 	if (skb_has_shared_frag(skb)) {
2858 		ret = __skb_linearize(skb);
2859 		if (ret)
2860 			goto out;
2861 	}
2862 
2863 	offset = skb_checksum_start_offset(skb);
2864 	BUG_ON(offset >= skb_headlen(skb));
2865 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2866 
2867 	offset += skb->csum_offset;
2868 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2869 
2870 	if (skb_cloned(skb) &&
2871 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2872 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2873 		if (ret)
2874 			goto out;
2875 	}
2876 
2877 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2878 out_set_summed:
2879 	skb->ip_summed = CHECKSUM_NONE;
2880 out:
2881 	return ret;
2882 }
2883 EXPORT_SYMBOL(skb_checksum_help);
2884 
2885 int skb_crc32c_csum_help(struct sk_buff *skb)
2886 {
2887 	__le32 crc32c_csum;
2888 	int ret = 0, offset, start;
2889 
2890 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2891 		goto out;
2892 
2893 	if (unlikely(skb_is_gso(skb)))
2894 		goto out;
2895 
2896 	/* Before computing a checksum, we should make sure no frag could
2897 	 * be modified by an external entity : checksum could be wrong.
2898 	 */
2899 	if (unlikely(skb_has_shared_frag(skb))) {
2900 		ret = __skb_linearize(skb);
2901 		if (ret)
2902 			goto out;
2903 	}
2904 	start = skb_checksum_start_offset(skb);
2905 	offset = start + offsetof(struct sctphdr, checksum);
2906 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2907 		ret = -EINVAL;
2908 		goto out;
2909 	}
2910 	if (skb_cloned(skb) &&
2911 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2912 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2913 		if (ret)
2914 			goto out;
2915 	}
2916 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2917 						  skb->len - start, ~(__u32)0,
2918 						  crc32c_csum_stub));
2919 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2920 	skb->ip_summed = CHECKSUM_NONE;
2921 	skb->csum_not_inet = 0;
2922 out:
2923 	return ret;
2924 }
2925 
2926 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2927 {
2928 	__be16 type = skb->protocol;
2929 
2930 	/* Tunnel gso handlers can set protocol to ethernet. */
2931 	if (type == htons(ETH_P_TEB)) {
2932 		struct ethhdr *eth;
2933 
2934 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2935 			return 0;
2936 
2937 		eth = (struct ethhdr *)skb->data;
2938 		type = eth->h_proto;
2939 	}
2940 
2941 	return __vlan_get_protocol(skb, type, depth);
2942 }
2943 
2944 /**
2945  *	skb_mac_gso_segment - mac layer segmentation handler.
2946  *	@skb: buffer to segment
2947  *	@features: features for the output path (see dev->features)
2948  */
2949 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2950 				    netdev_features_t features)
2951 {
2952 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2953 	struct packet_offload *ptype;
2954 	int vlan_depth = skb->mac_len;
2955 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2956 
2957 	if (unlikely(!type))
2958 		return ERR_PTR(-EINVAL);
2959 
2960 	__skb_pull(skb, vlan_depth);
2961 
2962 	rcu_read_lock();
2963 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2964 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2965 			segs = ptype->callbacks.gso_segment(skb, features);
2966 			break;
2967 		}
2968 	}
2969 	rcu_read_unlock();
2970 
2971 	__skb_push(skb, skb->data - skb_mac_header(skb));
2972 
2973 	return segs;
2974 }
2975 EXPORT_SYMBOL(skb_mac_gso_segment);
2976 
2977 
2978 /* openvswitch calls this on rx path, so we need a different check.
2979  */
2980 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2981 {
2982 	if (tx_path)
2983 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2984 		       skb->ip_summed != CHECKSUM_UNNECESSARY;
2985 
2986 	return skb->ip_summed == CHECKSUM_NONE;
2987 }
2988 
2989 /**
2990  *	__skb_gso_segment - Perform segmentation on skb.
2991  *	@skb: buffer to segment
2992  *	@features: features for the output path (see dev->features)
2993  *	@tx_path: whether it is called in TX path
2994  *
2995  *	This function segments the given skb and returns a list of segments.
2996  *
2997  *	It may return NULL if the skb requires no segmentation.  This is
2998  *	only possible when GSO is used for verifying header integrity.
2999  *
3000  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3001  */
3002 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3003 				  netdev_features_t features, bool tx_path)
3004 {
3005 	struct sk_buff *segs;
3006 
3007 	if (unlikely(skb_needs_check(skb, tx_path))) {
3008 		int err;
3009 
3010 		/* We're going to init ->check field in TCP or UDP header */
3011 		err = skb_cow_head(skb, 0);
3012 		if (err < 0)
3013 			return ERR_PTR(err);
3014 	}
3015 
3016 	/* Only report GSO partial support if it will enable us to
3017 	 * support segmentation on this frame without needing additional
3018 	 * work.
3019 	 */
3020 	if (features & NETIF_F_GSO_PARTIAL) {
3021 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3022 		struct net_device *dev = skb->dev;
3023 
3024 		partial_features |= dev->features & dev->gso_partial_features;
3025 		if (!skb_gso_ok(skb, features | partial_features))
3026 			features &= ~NETIF_F_GSO_PARTIAL;
3027 	}
3028 
3029 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3030 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3031 
3032 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3033 	SKB_GSO_CB(skb)->encap_level = 0;
3034 
3035 	skb_reset_mac_header(skb);
3036 	skb_reset_mac_len(skb);
3037 
3038 	segs = skb_mac_gso_segment(skb, features);
3039 
3040 	if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3041 		skb_warn_bad_offload(skb);
3042 
3043 	return segs;
3044 }
3045 EXPORT_SYMBOL(__skb_gso_segment);
3046 
3047 /* Take action when hardware reception checksum errors are detected. */
3048 #ifdef CONFIG_BUG
3049 void netdev_rx_csum_fault(struct net_device *dev)
3050 {
3051 	if (net_ratelimit()) {
3052 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3053 		dump_stack();
3054 	}
3055 }
3056 EXPORT_SYMBOL(netdev_rx_csum_fault);
3057 #endif
3058 
3059 /* XXX: check that highmem exists at all on the given machine. */
3060 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3061 {
3062 #ifdef CONFIG_HIGHMEM
3063 	int i;
3064 
3065 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3066 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3067 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3068 
3069 			if (PageHighMem(skb_frag_page(frag)))
3070 				return 1;
3071 		}
3072 	}
3073 #endif
3074 	return 0;
3075 }
3076 
3077 /* If MPLS offload request, verify we are testing hardware MPLS features
3078  * instead of standard features for the netdev.
3079  */
3080 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3081 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3082 					   netdev_features_t features,
3083 					   __be16 type)
3084 {
3085 	if (eth_p_mpls(type))
3086 		features &= skb->dev->mpls_features;
3087 
3088 	return features;
3089 }
3090 #else
3091 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3092 					   netdev_features_t features,
3093 					   __be16 type)
3094 {
3095 	return features;
3096 }
3097 #endif
3098 
3099 static netdev_features_t harmonize_features(struct sk_buff *skb,
3100 	netdev_features_t features)
3101 {
3102 	int tmp;
3103 	__be16 type;
3104 
3105 	type = skb_network_protocol(skb, &tmp);
3106 	features = net_mpls_features(skb, features, type);
3107 
3108 	if (skb->ip_summed != CHECKSUM_NONE &&
3109 	    !can_checksum_protocol(features, type)) {
3110 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3111 	}
3112 	if (illegal_highdma(skb->dev, skb))
3113 		features &= ~NETIF_F_SG;
3114 
3115 	return features;
3116 }
3117 
3118 netdev_features_t passthru_features_check(struct sk_buff *skb,
3119 					  struct net_device *dev,
3120 					  netdev_features_t features)
3121 {
3122 	return features;
3123 }
3124 EXPORT_SYMBOL(passthru_features_check);
3125 
3126 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3127 					     struct net_device *dev,
3128 					     netdev_features_t features)
3129 {
3130 	return vlan_features_check(skb, features);
3131 }
3132 
3133 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3134 					    struct net_device *dev,
3135 					    netdev_features_t features)
3136 {
3137 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3138 
3139 	if (gso_segs > dev->gso_max_segs)
3140 		return features & ~NETIF_F_GSO_MASK;
3141 
3142 	/* Support for GSO partial features requires software
3143 	 * intervention before we can actually process the packets
3144 	 * so we need to strip support for any partial features now
3145 	 * and we can pull them back in after we have partially
3146 	 * segmented the frame.
3147 	 */
3148 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3149 		features &= ~dev->gso_partial_features;
3150 
3151 	/* Make sure to clear the IPv4 ID mangling feature if the
3152 	 * IPv4 header has the potential to be fragmented.
3153 	 */
3154 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3155 		struct iphdr *iph = skb->encapsulation ?
3156 				    inner_ip_hdr(skb) : ip_hdr(skb);
3157 
3158 		if (!(iph->frag_off & htons(IP_DF)))
3159 			features &= ~NETIF_F_TSO_MANGLEID;
3160 	}
3161 
3162 	return features;
3163 }
3164 
3165 netdev_features_t netif_skb_features(struct sk_buff *skb)
3166 {
3167 	struct net_device *dev = skb->dev;
3168 	netdev_features_t features = dev->features;
3169 
3170 	if (skb_is_gso(skb))
3171 		features = gso_features_check(skb, dev, features);
3172 
3173 	/* If encapsulation offload request, verify we are testing
3174 	 * hardware encapsulation features instead of standard
3175 	 * features for the netdev
3176 	 */
3177 	if (skb->encapsulation)
3178 		features &= dev->hw_enc_features;
3179 
3180 	if (skb_vlan_tagged(skb))
3181 		features = netdev_intersect_features(features,
3182 						     dev->vlan_features |
3183 						     NETIF_F_HW_VLAN_CTAG_TX |
3184 						     NETIF_F_HW_VLAN_STAG_TX);
3185 
3186 	if (dev->netdev_ops->ndo_features_check)
3187 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3188 								features);
3189 	else
3190 		features &= dflt_features_check(skb, dev, features);
3191 
3192 	return harmonize_features(skb, features);
3193 }
3194 EXPORT_SYMBOL(netif_skb_features);
3195 
3196 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3197 		    struct netdev_queue *txq, bool more)
3198 {
3199 	unsigned int len;
3200 	int rc;
3201 
3202 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3203 		dev_queue_xmit_nit(skb, dev);
3204 
3205 	len = skb->len;
3206 	trace_net_dev_start_xmit(skb, dev);
3207 	rc = netdev_start_xmit(skb, dev, txq, more);
3208 	trace_net_dev_xmit(skb, rc, dev, len);
3209 
3210 	return rc;
3211 }
3212 
3213 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3214 				    struct netdev_queue *txq, int *ret)
3215 {
3216 	struct sk_buff *skb = first;
3217 	int rc = NETDEV_TX_OK;
3218 
3219 	while (skb) {
3220 		struct sk_buff *next = skb->next;
3221 
3222 		skb->next = NULL;
3223 		rc = xmit_one(skb, dev, txq, next != NULL);
3224 		if (unlikely(!dev_xmit_complete(rc))) {
3225 			skb->next = next;
3226 			goto out;
3227 		}
3228 
3229 		skb = next;
3230 		if (netif_xmit_stopped(txq) && skb) {
3231 			rc = NETDEV_TX_BUSY;
3232 			break;
3233 		}
3234 	}
3235 
3236 out:
3237 	*ret = rc;
3238 	return skb;
3239 }
3240 
3241 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3242 					  netdev_features_t features)
3243 {
3244 	if (skb_vlan_tag_present(skb) &&
3245 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3246 		skb = __vlan_hwaccel_push_inside(skb);
3247 	return skb;
3248 }
3249 
3250 int skb_csum_hwoffload_help(struct sk_buff *skb,
3251 			    const netdev_features_t features)
3252 {
3253 	if (unlikely(skb->csum_not_inet))
3254 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3255 			skb_crc32c_csum_help(skb);
3256 
3257 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3258 }
3259 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3260 
3261 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3262 {
3263 	netdev_features_t features;
3264 
3265 	features = netif_skb_features(skb);
3266 	skb = validate_xmit_vlan(skb, features);
3267 	if (unlikely(!skb))
3268 		goto out_null;
3269 
3270 	skb = sk_validate_xmit_skb(skb, dev);
3271 	if (unlikely(!skb))
3272 		goto out_null;
3273 
3274 	if (netif_needs_gso(skb, features)) {
3275 		struct sk_buff *segs;
3276 
3277 		segs = skb_gso_segment(skb, features);
3278 		if (IS_ERR(segs)) {
3279 			goto out_kfree_skb;
3280 		} else if (segs) {
3281 			consume_skb(skb);
3282 			skb = segs;
3283 		}
3284 	} else {
3285 		if (skb_needs_linearize(skb, features) &&
3286 		    __skb_linearize(skb))
3287 			goto out_kfree_skb;
3288 
3289 		/* If packet is not checksummed and device does not
3290 		 * support checksumming for this protocol, complete
3291 		 * checksumming here.
3292 		 */
3293 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3294 			if (skb->encapsulation)
3295 				skb_set_inner_transport_header(skb,
3296 							       skb_checksum_start_offset(skb));
3297 			else
3298 				skb_set_transport_header(skb,
3299 							 skb_checksum_start_offset(skb));
3300 			if (skb_csum_hwoffload_help(skb, features))
3301 				goto out_kfree_skb;
3302 		}
3303 	}
3304 
3305 	skb = validate_xmit_xfrm(skb, features, again);
3306 
3307 	return skb;
3308 
3309 out_kfree_skb:
3310 	kfree_skb(skb);
3311 out_null:
3312 	atomic_long_inc(&dev->tx_dropped);
3313 	return NULL;
3314 }
3315 
3316 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3317 {
3318 	struct sk_buff *next, *head = NULL, *tail;
3319 
3320 	for (; skb != NULL; skb = next) {
3321 		next = skb->next;
3322 		skb->next = NULL;
3323 
3324 		/* in case skb wont be segmented, point to itself */
3325 		skb->prev = skb;
3326 
3327 		skb = validate_xmit_skb(skb, dev, again);
3328 		if (!skb)
3329 			continue;
3330 
3331 		if (!head)
3332 			head = skb;
3333 		else
3334 			tail->next = skb;
3335 		/* If skb was segmented, skb->prev points to
3336 		 * the last segment. If not, it still contains skb.
3337 		 */
3338 		tail = skb->prev;
3339 	}
3340 	return head;
3341 }
3342 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3343 
3344 static void qdisc_pkt_len_init(struct sk_buff *skb)
3345 {
3346 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3347 
3348 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3349 
3350 	/* To get more precise estimation of bytes sent on wire,
3351 	 * we add to pkt_len the headers size of all segments
3352 	 */
3353 	if (shinfo->gso_size)  {
3354 		unsigned int hdr_len;
3355 		u16 gso_segs = shinfo->gso_segs;
3356 
3357 		/* mac layer + network layer */
3358 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3359 
3360 		/* + transport layer */
3361 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3362 			const struct tcphdr *th;
3363 			struct tcphdr _tcphdr;
3364 
3365 			th = skb_header_pointer(skb, skb_transport_offset(skb),
3366 						sizeof(_tcphdr), &_tcphdr);
3367 			if (likely(th))
3368 				hdr_len += __tcp_hdrlen(th);
3369 		} else {
3370 			struct udphdr _udphdr;
3371 
3372 			if (skb_header_pointer(skb, skb_transport_offset(skb),
3373 					       sizeof(_udphdr), &_udphdr))
3374 				hdr_len += sizeof(struct udphdr);
3375 		}
3376 
3377 		if (shinfo->gso_type & SKB_GSO_DODGY)
3378 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3379 						shinfo->gso_size);
3380 
3381 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3382 	}
3383 }
3384 
3385 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3386 				 struct net_device *dev,
3387 				 struct netdev_queue *txq)
3388 {
3389 	spinlock_t *root_lock = qdisc_lock(q);
3390 	struct sk_buff *to_free = NULL;
3391 	bool contended;
3392 	int rc;
3393 
3394 	qdisc_calculate_pkt_len(skb, q);
3395 
3396 	if (q->flags & TCQ_F_NOLOCK) {
3397 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3398 			__qdisc_drop(skb, &to_free);
3399 			rc = NET_XMIT_DROP;
3400 		} else {
3401 			rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3402 			qdisc_run(q);
3403 		}
3404 
3405 		if (unlikely(to_free))
3406 			kfree_skb_list(to_free);
3407 		return rc;
3408 	}
3409 
3410 	/*
3411 	 * Heuristic to force contended enqueues to serialize on a
3412 	 * separate lock before trying to get qdisc main lock.
3413 	 * This permits qdisc->running owner to get the lock more
3414 	 * often and dequeue packets faster.
3415 	 */
3416 	contended = qdisc_is_running(q);
3417 	if (unlikely(contended))
3418 		spin_lock(&q->busylock);
3419 
3420 	spin_lock(root_lock);
3421 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3422 		__qdisc_drop(skb, &to_free);
3423 		rc = NET_XMIT_DROP;
3424 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3425 		   qdisc_run_begin(q)) {
3426 		/*
3427 		 * This is a work-conserving queue; there are no old skbs
3428 		 * waiting to be sent out; and the qdisc is not running -
3429 		 * xmit the skb directly.
3430 		 */
3431 
3432 		qdisc_bstats_update(q, skb);
3433 
3434 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3435 			if (unlikely(contended)) {
3436 				spin_unlock(&q->busylock);
3437 				contended = false;
3438 			}
3439 			__qdisc_run(q);
3440 		}
3441 
3442 		qdisc_run_end(q);
3443 		rc = NET_XMIT_SUCCESS;
3444 	} else {
3445 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3446 		if (qdisc_run_begin(q)) {
3447 			if (unlikely(contended)) {
3448 				spin_unlock(&q->busylock);
3449 				contended = false;
3450 			}
3451 			__qdisc_run(q);
3452 			qdisc_run_end(q);
3453 		}
3454 	}
3455 	spin_unlock(root_lock);
3456 	if (unlikely(to_free))
3457 		kfree_skb_list(to_free);
3458 	if (unlikely(contended))
3459 		spin_unlock(&q->busylock);
3460 	return rc;
3461 }
3462 
3463 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3464 static void skb_update_prio(struct sk_buff *skb)
3465 {
3466 	const struct netprio_map *map;
3467 	const struct sock *sk;
3468 	unsigned int prioidx;
3469 
3470 	if (skb->priority)
3471 		return;
3472 	map = rcu_dereference_bh(skb->dev->priomap);
3473 	if (!map)
3474 		return;
3475 	sk = skb_to_full_sk(skb);
3476 	if (!sk)
3477 		return;
3478 
3479 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3480 
3481 	if (prioidx < map->priomap_len)
3482 		skb->priority = map->priomap[prioidx];
3483 }
3484 #else
3485 #define skb_update_prio(skb)
3486 #endif
3487 
3488 DEFINE_PER_CPU(int, xmit_recursion);
3489 EXPORT_SYMBOL(xmit_recursion);
3490 
3491 /**
3492  *	dev_loopback_xmit - loop back @skb
3493  *	@net: network namespace this loopback is happening in
3494  *	@sk:  sk needed to be a netfilter okfn
3495  *	@skb: buffer to transmit
3496  */
3497 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3498 {
3499 	skb_reset_mac_header(skb);
3500 	__skb_pull(skb, skb_network_offset(skb));
3501 	skb->pkt_type = PACKET_LOOPBACK;
3502 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3503 	WARN_ON(!skb_dst(skb));
3504 	skb_dst_force(skb);
3505 	netif_rx_ni(skb);
3506 	return 0;
3507 }
3508 EXPORT_SYMBOL(dev_loopback_xmit);
3509 
3510 #ifdef CONFIG_NET_EGRESS
3511 static struct sk_buff *
3512 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3513 {
3514 	struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3515 	struct tcf_result cl_res;
3516 
3517 	if (!miniq)
3518 		return skb;
3519 
3520 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3521 	mini_qdisc_bstats_cpu_update(miniq, skb);
3522 
3523 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3524 	case TC_ACT_OK:
3525 	case TC_ACT_RECLASSIFY:
3526 		skb->tc_index = TC_H_MIN(cl_res.classid);
3527 		break;
3528 	case TC_ACT_SHOT:
3529 		mini_qdisc_qstats_cpu_drop(miniq);
3530 		*ret = NET_XMIT_DROP;
3531 		kfree_skb(skb);
3532 		return NULL;
3533 	case TC_ACT_STOLEN:
3534 	case TC_ACT_QUEUED:
3535 	case TC_ACT_TRAP:
3536 		*ret = NET_XMIT_SUCCESS;
3537 		consume_skb(skb);
3538 		return NULL;
3539 	case TC_ACT_REDIRECT:
3540 		/* No need to push/pop skb's mac_header here on egress! */
3541 		skb_do_redirect(skb);
3542 		*ret = NET_XMIT_SUCCESS;
3543 		return NULL;
3544 	default:
3545 		break;
3546 	}
3547 
3548 	return skb;
3549 }
3550 #endif /* CONFIG_NET_EGRESS */
3551 
3552 #ifdef CONFIG_XPS
3553 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3554 			       struct xps_dev_maps *dev_maps, unsigned int tci)
3555 {
3556 	struct xps_map *map;
3557 	int queue_index = -1;
3558 
3559 	if (dev->num_tc) {
3560 		tci *= dev->num_tc;
3561 		tci += netdev_get_prio_tc_map(dev, skb->priority);
3562 	}
3563 
3564 	map = rcu_dereference(dev_maps->attr_map[tci]);
3565 	if (map) {
3566 		if (map->len == 1)
3567 			queue_index = map->queues[0];
3568 		else
3569 			queue_index = map->queues[reciprocal_scale(
3570 						skb_get_hash(skb), map->len)];
3571 		if (unlikely(queue_index >= dev->real_num_tx_queues))
3572 			queue_index = -1;
3573 	}
3574 	return queue_index;
3575 }
3576 #endif
3577 
3578 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3579 			 struct sk_buff *skb)
3580 {
3581 #ifdef CONFIG_XPS
3582 	struct xps_dev_maps *dev_maps;
3583 	struct sock *sk = skb->sk;
3584 	int queue_index = -1;
3585 
3586 	if (!static_key_false(&xps_needed))
3587 		return -1;
3588 
3589 	rcu_read_lock();
3590 	if (!static_key_false(&xps_rxqs_needed))
3591 		goto get_cpus_map;
3592 
3593 	dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3594 	if (dev_maps) {
3595 		int tci = sk_rx_queue_get(sk);
3596 
3597 		if (tci >= 0 && tci < dev->num_rx_queues)
3598 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3599 							  tci);
3600 	}
3601 
3602 get_cpus_map:
3603 	if (queue_index < 0) {
3604 		dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3605 		if (dev_maps) {
3606 			unsigned int tci = skb->sender_cpu - 1;
3607 
3608 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3609 							  tci);
3610 		}
3611 	}
3612 	rcu_read_unlock();
3613 
3614 	return queue_index;
3615 #else
3616 	return -1;
3617 #endif
3618 }
3619 
3620 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3621 		     struct net_device *sb_dev,
3622 		     select_queue_fallback_t fallback)
3623 {
3624 	return 0;
3625 }
3626 EXPORT_SYMBOL(dev_pick_tx_zero);
3627 
3628 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3629 		       struct net_device *sb_dev,
3630 		       select_queue_fallback_t fallback)
3631 {
3632 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3633 }
3634 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3635 
3636 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3637 			    struct net_device *sb_dev)
3638 {
3639 	struct sock *sk = skb->sk;
3640 	int queue_index = sk_tx_queue_get(sk);
3641 
3642 	sb_dev = sb_dev ? : dev;
3643 
3644 	if (queue_index < 0 || skb->ooo_okay ||
3645 	    queue_index >= dev->real_num_tx_queues) {
3646 		int new_index = get_xps_queue(dev, sb_dev, skb);
3647 
3648 		if (new_index < 0)
3649 			new_index = skb_tx_hash(dev, sb_dev, skb);
3650 
3651 		if (queue_index != new_index && sk &&
3652 		    sk_fullsock(sk) &&
3653 		    rcu_access_pointer(sk->sk_dst_cache))
3654 			sk_tx_queue_set(sk, new_index);
3655 
3656 		queue_index = new_index;
3657 	}
3658 
3659 	return queue_index;
3660 }
3661 
3662 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3663 				    struct sk_buff *skb,
3664 				    struct net_device *sb_dev)
3665 {
3666 	int queue_index = 0;
3667 
3668 #ifdef CONFIG_XPS
3669 	u32 sender_cpu = skb->sender_cpu - 1;
3670 
3671 	if (sender_cpu >= (u32)NR_CPUS)
3672 		skb->sender_cpu = raw_smp_processor_id() + 1;
3673 #endif
3674 
3675 	if (dev->real_num_tx_queues != 1) {
3676 		const struct net_device_ops *ops = dev->netdev_ops;
3677 
3678 		if (ops->ndo_select_queue)
3679 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3680 							    __netdev_pick_tx);
3681 		else
3682 			queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3683 
3684 		queue_index = netdev_cap_txqueue(dev, queue_index);
3685 	}
3686 
3687 	skb_set_queue_mapping(skb, queue_index);
3688 	return netdev_get_tx_queue(dev, queue_index);
3689 }
3690 
3691 /**
3692  *	__dev_queue_xmit - transmit a buffer
3693  *	@skb: buffer to transmit
3694  *	@sb_dev: suboordinate device used for L2 forwarding offload
3695  *
3696  *	Queue a buffer for transmission to a network device. The caller must
3697  *	have set the device and priority and built the buffer before calling
3698  *	this function. The function can be called from an interrupt.
3699  *
3700  *	A negative errno code is returned on a failure. A success does not
3701  *	guarantee the frame will be transmitted as it may be dropped due
3702  *	to congestion or traffic shaping.
3703  *
3704  * -----------------------------------------------------------------------------------
3705  *      I notice this method can also return errors from the queue disciplines,
3706  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3707  *      be positive.
3708  *
3709  *      Regardless of the return value, the skb is consumed, so it is currently
3710  *      difficult to retry a send to this method.  (You can bump the ref count
3711  *      before sending to hold a reference for retry if you are careful.)
3712  *
3713  *      When calling this method, interrupts MUST be enabled.  This is because
3714  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3715  *          --BLG
3716  */
3717 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3718 {
3719 	struct net_device *dev = skb->dev;
3720 	struct netdev_queue *txq;
3721 	struct Qdisc *q;
3722 	int rc = -ENOMEM;
3723 	bool again = false;
3724 
3725 	skb_reset_mac_header(skb);
3726 
3727 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3728 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3729 
3730 	/* Disable soft irqs for various locks below. Also
3731 	 * stops preemption for RCU.
3732 	 */
3733 	rcu_read_lock_bh();
3734 
3735 	skb_update_prio(skb);
3736 
3737 	qdisc_pkt_len_init(skb);
3738 #ifdef CONFIG_NET_CLS_ACT
3739 	skb->tc_at_ingress = 0;
3740 # ifdef CONFIG_NET_EGRESS
3741 	if (static_branch_unlikely(&egress_needed_key)) {
3742 		skb = sch_handle_egress(skb, &rc, dev);
3743 		if (!skb)
3744 			goto out;
3745 	}
3746 # endif
3747 #endif
3748 	/* If device/qdisc don't need skb->dst, release it right now while
3749 	 * its hot in this cpu cache.
3750 	 */
3751 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3752 		skb_dst_drop(skb);
3753 	else
3754 		skb_dst_force(skb);
3755 
3756 	txq = netdev_pick_tx(dev, skb, sb_dev);
3757 	q = rcu_dereference_bh(txq->qdisc);
3758 
3759 	trace_net_dev_queue(skb);
3760 	if (q->enqueue) {
3761 		rc = __dev_xmit_skb(skb, q, dev, txq);
3762 		goto out;
3763 	}
3764 
3765 	/* The device has no queue. Common case for software devices:
3766 	 * loopback, all the sorts of tunnels...
3767 
3768 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3769 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3770 	 * counters.)
3771 	 * However, it is possible, that they rely on protection
3772 	 * made by us here.
3773 
3774 	 * Check this and shot the lock. It is not prone from deadlocks.
3775 	 *Either shot noqueue qdisc, it is even simpler 8)
3776 	 */
3777 	if (dev->flags & IFF_UP) {
3778 		int cpu = smp_processor_id(); /* ok because BHs are off */
3779 
3780 		if (txq->xmit_lock_owner != cpu) {
3781 			if (unlikely(__this_cpu_read(xmit_recursion) >
3782 				     XMIT_RECURSION_LIMIT))
3783 				goto recursion_alert;
3784 
3785 			skb = validate_xmit_skb(skb, dev, &again);
3786 			if (!skb)
3787 				goto out;
3788 
3789 			HARD_TX_LOCK(dev, txq, cpu);
3790 
3791 			if (!netif_xmit_stopped(txq)) {
3792 				__this_cpu_inc(xmit_recursion);
3793 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3794 				__this_cpu_dec(xmit_recursion);
3795 				if (dev_xmit_complete(rc)) {
3796 					HARD_TX_UNLOCK(dev, txq);
3797 					goto out;
3798 				}
3799 			}
3800 			HARD_TX_UNLOCK(dev, txq);
3801 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3802 					     dev->name);
3803 		} else {
3804 			/* Recursion is detected! It is possible,
3805 			 * unfortunately
3806 			 */
3807 recursion_alert:
3808 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3809 					     dev->name);
3810 		}
3811 	}
3812 
3813 	rc = -ENETDOWN;
3814 	rcu_read_unlock_bh();
3815 
3816 	atomic_long_inc(&dev->tx_dropped);
3817 	kfree_skb_list(skb);
3818 	return rc;
3819 out:
3820 	rcu_read_unlock_bh();
3821 	return rc;
3822 }
3823 
3824 int dev_queue_xmit(struct sk_buff *skb)
3825 {
3826 	return __dev_queue_xmit(skb, NULL);
3827 }
3828 EXPORT_SYMBOL(dev_queue_xmit);
3829 
3830 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3831 {
3832 	return __dev_queue_xmit(skb, sb_dev);
3833 }
3834 EXPORT_SYMBOL(dev_queue_xmit_accel);
3835 
3836 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3837 {
3838 	struct net_device *dev = skb->dev;
3839 	struct sk_buff *orig_skb = skb;
3840 	struct netdev_queue *txq;
3841 	int ret = NETDEV_TX_BUSY;
3842 	bool again = false;
3843 
3844 	if (unlikely(!netif_running(dev) ||
3845 		     !netif_carrier_ok(dev)))
3846 		goto drop;
3847 
3848 	skb = validate_xmit_skb_list(skb, dev, &again);
3849 	if (skb != orig_skb)
3850 		goto drop;
3851 
3852 	skb_set_queue_mapping(skb, queue_id);
3853 	txq = skb_get_tx_queue(dev, skb);
3854 
3855 	local_bh_disable();
3856 
3857 	HARD_TX_LOCK(dev, txq, smp_processor_id());
3858 	if (!netif_xmit_frozen_or_drv_stopped(txq))
3859 		ret = netdev_start_xmit(skb, dev, txq, false);
3860 	HARD_TX_UNLOCK(dev, txq);
3861 
3862 	local_bh_enable();
3863 
3864 	if (!dev_xmit_complete(ret))
3865 		kfree_skb(skb);
3866 
3867 	return ret;
3868 drop:
3869 	atomic_long_inc(&dev->tx_dropped);
3870 	kfree_skb_list(skb);
3871 	return NET_XMIT_DROP;
3872 }
3873 EXPORT_SYMBOL(dev_direct_xmit);
3874 
3875 /*************************************************************************
3876  *			Receiver routines
3877  *************************************************************************/
3878 
3879 int netdev_max_backlog __read_mostly = 1000;
3880 EXPORT_SYMBOL(netdev_max_backlog);
3881 
3882 int netdev_tstamp_prequeue __read_mostly = 1;
3883 int netdev_budget __read_mostly = 300;
3884 unsigned int __read_mostly netdev_budget_usecs = 2000;
3885 int weight_p __read_mostly = 64;           /* old backlog weight */
3886 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3887 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3888 int dev_rx_weight __read_mostly = 64;
3889 int dev_tx_weight __read_mostly = 64;
3890 
3891 /* Called with irq disabled */
3892 static inline void ____napi_schedule(struct softnet_data *sd,
3893 				     struct napi_struct *napi)
3894 {
3895 	list_add_tail(&napi->poll_list, &sd->poll_list);
3896 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3897 }
3898 
3899 #ifdef CONFIG_RPS
3900 
3901 /* One global table that all flow-based protocols share. */
3902 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3903 EXPORT_SYMBOL(rps_sock_flow_table);
3904 u32 rps_cpu_mask __read_mostly;
3905 EXPORT_SYMBOL(rps_cpu_mask);
3906 
3907 struct static_key rps_needed __read_mostly;
3908 EXPORT_SYMBOL(rps_needed);
3909 struct static_key rfs_needed __read_mostly;
3910 EXPORT_SYMBOL(rfs_needed);
3911 
3912 static struct rps_dev_flow *
3913 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3914 	    struct rps_dev_flow *rflow, u16 next_cpu)
3915 {
3916 	if (next_cpu < nr_cpu_ids) {
3917 #ifdef CONFIG_RFS_ACCEL
3918 		struct netdev_rx_queue *rxqueue;
3919 		struct rps_dev_flow_table *flow_table;
3920 		struct rps_dev_flow *old_rflow;
3921 		u32 flow_id;
3922 		u16 rxq_index;
3923 		int rc;
3924 
3925 		/* Should we steer this flow to a different hardware queue? */
3926 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3927 		    !(dev->features & NETIF_F_NTUPLE))
3928 			goto out;
3929 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3930 		if (rxq_index == skb_get_rx_queue(skb))
3931 			goto out;
3932 
3933 		rxqueue = dev->_rx + rxq_index;
3934 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3935 		if (!flow_table)
3936 			goto out;
3937 		flow_id = skb_get_hash(skb) & flow_table->mask;
3938 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3939 							rxq_index, flow_id);
3940 		if (rc < 0)
3941 			goto out;
3942 		old_rflow = rflow;
3943 		rflow = &flow_table->flows[flow_id];
3944 		rflow->filter = rc;
3945 		if (old_rflow->filter == rflow->filter)
3946 			old_rflow->filter = RPS_NO_FILTER;
3947 	out:
3948 #endif
3949 		rflow->last_qtail =
3950 			per_cpu(softnet_data, next_cpu).input_queue_head;
3951 	}
3952 
3953 	rflow->cpu = next_cpu;
3954 	return rflow;
3955 }
3956 
3957 /*
3958  * get_rps_cpu is called from netif_receive_skb and returns the target
3959  * CPU from the RPS map of the receiving queue for a given skb.
3960  * rcu_read_lock must be held on entry.
3961  */
3962 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3963 		       struct rps_dev_flow **rflowp)
3964 {
3965 	const struct rps_sock_flow_table *sock_flow_table;
3966 	struct netdev_rx_queue *rxqueue = dev->_rx;
3967 	struct rps_dev_flow_table *flow_table;
3968 	struct rps_map *map;
3969 	int cpu = -1;
3970 	u32 tcpu;
3971 	u32 hash;
3972 
3973 	if (skb_rx_queue_recorded(skb)) {
3974 		u16 index = skb_get_rx_queue(skb);
3975 
3976 		if (unlikely(index >= dev->real_num_rx_queues)) {
3977 			WARN_ONCE(dev->real_num_rx_queues > 1,
3978 				  "%s received packet on queue %u, but number "
3979 				  "of RX queues is %u\n",
3980 				  dev->name, index, dev->real_num_rx_queues);
3981 			goto done;
3982 		}
3983 		rxqueue += index;
3984 	}
3985 
3986 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3987 
3988 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3989 	map = rcu_dereference(rxqueue->rps_map);
3990 	if (!flow_table && !map)
3991 		goto done;
3992 
3993 	skb_reset_network_header(skb);
3994 	hash = skb_get_hash(skb);
3995 	if (!hash)
3996 		goto done;
3997 
3998 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3999 	if (flow_table && sock_flow_table) {
4000 		struct rps_dev_flow *rflow;
4001 		u32 next_cpu;
4002 		u32 ident;
4003 
4004 		/* First check into global flow table if there is a match */
4005 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4006 		if ((ident ^ hash) & ~rps_cpu_mask)
4007 			goto try_rps;
4008 
4009 		next_cpu = ident & rps_cpu_mask;
4010 
4011 		/* OK, now we know there is a match,
4012 		 * we can look at the local (per receive queue) flow table
4013 		 */
4014 		rflow = &flow_table->flows[hash & flow_table->mask];
4015 		tcpu = rflow->cpu;
4016 
4017 		/*
4018 		 * If the desired CPU (where last recvmsg was done) is
4019 		 * different from current CPU (one in the rx-queue flow
4020 		 * table entry), switch if one of the following holds:
4021 		 *   - Current CPU is unset (>= nr_cpu_ids).
4022 		 *   - Current CPU is offline.
4023 		 *   - The current CPU's queue tail has advanced beyond the
4024 		 *     last packet that was enqueued using this table entry.
4025 		 *     This guarantees that all previous packets for the flow
4026 		 *     have been dequeued, thus preserving in order delivery.
4027 		 */
4028 		if (unlikely(tcpu != next_cpu) &&
4029 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4030 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4031 		      rflow->last_qtail)) >= 0)) {
4032 			tcpu = next_cpu;
4033 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4034 		}
4035 
4036 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4037 			*rflowp = rflow;
4038 			cpu = tcpu;
4039 			goto done;
4040 		}
4041 	}
4042 
4043 try_rps:
4044 
4045 	if (map) {
4046 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4047 		if (cpu_online(tcpu)) {
4048 			cpu = tcpu;
4049 			goto done;
4050 		}
4051 	}
4052 
4053 done:
4054 	return cpu;
4055 }
4056 
4057 #ifdef CONFIG_RFS_ACCEL
4058 
4059 /**
4060  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4061  * @dev: Device on which the filter was set
4062  * @rxq_index: RX queue index
4063  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4064  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4065  *
4066  * Drivers that implement ndo_rx_flow_steer() should periodically call
4067  * this function for each installed filter and remove the filters for
4068  * which it returns %true.
4069  */
4070 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4071 			 u32 flow_id, u16 filter_id)
4072 {
4073 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4074 	struct rps_dev_flow_table *flow_table;
4075 	struct rps_dev_flow *rflow;
4076 	bool expire = true;
4077 	unsigned int cpu;
4078 
4079 	rcu_read_lock();
4080 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4081 	if (flow_table && flow_id <= flow_table->mask) {
4082 		rflow = &flow_table->flows[flow_id];
4083 		cpu = READ_ONCE(rflow->cpu);
4084 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4085 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4086 			   rflow->last_qtail) <
4087 		     (int)(10 * flow_table->mask)))
4088 			expire = false;
4089 	}
4090 	rcu_read_unlock();
4091 	return expire;
4092 }
4093 EXPORT_SYMBOL(rps_may_expire_flow);
4094 
4095 #endif /* CONFIG_RFS_ACCEL */
4096 
4097 /* Called from hardirq (IPI) context */
4098 static void rps_trigger_softirq(void *data)
4099 {
4100 	struct softnet_data *sd = data;
4101 
4102 	____napi_schedule(sd, &sd->backlog);
4103 	sd->received_rps++;
4104 }
4105 
4106 #endif /* CONFIG_RPS */
4107 
4108 /*
4109  * Check if this softnet_data structure is another cpu one
4110  * If yes, queue it to our IPI list and return 1
4111  * If no, return 0
4112  */
4113 static int rps_ipi_queued(struct softnet_data *sd)
4114 {
4115 #ifdef CONFIG_RPS
4116 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4117 
4118 	if (sd != mysd) {
4119 		sd->rps_ipi_next = mysd->rps_ipi_list;
4120 		mysd->rps_ipi_list = sd;
4121 
4122 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4123 		return 1;
4124 	}
4125 #endif /* CONFIG_RPS */
4126 	return 0;
4127 }
4128 
4129 #ifdef CONFIG_NET_FLOW_LIMIT
4130 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4131 #endif
4132 
4133 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4134 {
4135 #ifdef CONFIG_NET_FLOW_LIMIT
4136 	struct sd_flow_limit *fl;
4137 	struct softnet_data *sd;
4138 	unsigned int old_flow, new_flow;
4139 
4140 	if (qlen < (netdev_max_backlog >> 1))
4141 		return false;
4142 
4143 	sd = this_cpu_ptr(&softnet_data);
4144 
4145 	rcu_read_lock();
4146 	fl = rcu_dereference(sd->flow_limit);
4147 	if (fl) {
4148 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4149 		old_flow = fl->history[fl->history_head];
4150 		fl->history[fl->history_head] = new_flow;
4151 
4152 		fl->history_head++;
4153 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4154 
4155 		if (likely(fl->buckets[old_flow]))
4156 			fl->buckets[old_flow]--;
4157 
4158 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4159 			fl->count++;
4160 			rcu_read_unlock();
4161 			return true;
4162 		}
4163 	}
4164 	rcu_read_unlock();
4165 #endif
4166 	return false;
4167 }
4168 
4169 /*
4170  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4171  * queue (may be a remote CPU queue).
4172  */
4173 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4174 			      unsigned int *qtail)
4175 {
4176 	struct softnet_data *sd;
4177 	unsigned long flags;
4178 	unsigned int qlen;
4179 
4180 	sd = &per_cpu(softnet_data, cpu);
4181 
4182 	local_irq_save(flags);
4183 
4184 	rps_lock(sd);
4185 	if (!netif_running(skb->dev))
4186 		goto drop;
4187 	qlen = skb_queue_len(&sd->input_pkt_queue);
4188 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4189 		if (qlen) {
4190 enqueue:
4191 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4192 			input_queue_tail_incr_save(sd, qtail);
4193 			rps_unlock(sd);
4194 			local_irq_restore(flags);
4195 			return NET_RX_SUCCESS;
4196 		}
4197 
4198 		/* Schedule NAPI for backlog device
4199 		 * We can use non atomic operation since we own the queue lock
4200 		 */
4201 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4202 			if (!rps_ipi_queued(sd))
4203 				____napi_schedule(sd, &sd->backlog);
4204 		}
4205 		goto enqueue;
4206 	}
4207 
4208 drop:
4209 	sd->dropped++;
4210 	rps_unlock(sd);
4211 
4212 	local_irq_restore(flags);
4213 
4214 	atomic_long_inc(&skb->dev->rx_dropped);
4215 	kfree_skb(skb);
4216 	return NET_RX_DROP;
4217 }
4218 
4219 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4220 {
4221 	struct net_device *dev = skb->dev;
4222 	struct netdev_rx_queue *rxqueue;
4223 
4224 	rxqueue = dev->_rx;
4225 
4226 	if (skb_rx_queue_recorded(skb)) {
4227 		u16 index = skb_get_rx_queue(skb);
4228 
4229 		if (unlikely(index >= dev->real_num_rx_queues)) {
4230 			WARN_ONCE(dev->real_num_rx_queues > 1,
4231 				  "%s received packet on queue %u, but number "
4232 				  "of RX queues is %u\n",
4233 				  dev->name, index, dev->real_num_rx_queues);
4234 
4235 			return rxqueue; /* Return first rxqueue */
4236 		}
4237 		rxqueue += index;
4238 	}
4239 	return rxqueue;
4240 }
4241 
4242 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4243 				     struct xdp_buff *xdp,
4244 				     struct bpf_prog *xdp_prog)
4245 {
4246 	struct netdev_rx_queue *rxqueue;
4247 	void *orig_data, *orig_data_end;
4248 	u32 metalen, act = XDP_DROP;
4249 	int hlen, off;
4250 	u32 mac_len;
4251 
4252 	/* Reinjected packets coming from act_mirred or similar should
4253 	 * not get XDP generic processing.
4254 	 */
4255 	if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4256 		return XDP_PASS;
4257 
4258 	/* XDP packets must be linear and must have sufficient headroom
4259 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4260 	 * native XDP provides, thus we need to do it here as well.
4261 	 */
4262 	if (skb_is_nonlinear(skb) ||
4263 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4264 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4265 		int troom = skb->tail + skb->data_len - skb->end;
4266 
4267 		/* In case we have to go down the path and also linearize,
4268 		 * then lets do the pskb_expand_head() work just once here.
4269 		 */
4270 		if (pskb_expand_head(skb,
4271 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4272 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4273 			goto do_drop;
4274 		if (skb_linearize(skb))
4275 			goto do_drop;
4276 	}
4277 
4278 	/* The XDP program wants to see the packet starting at the MAC
4279 	 * header.
4280 	 */
4281 	mac_len = skb->data - skb_mac_header(skb);
4282 	hlen = skb_headlen(skb) + mac_len;
4283 	xdp->data = skb->data - mac_len;
4284 	xdp->data_meta = xdp->data;
4285 	xdp->data_end = xdp->data + hlen;
4286 	xdp->data_hard_start = skb->data - skb_headroom(skb);
4287 	orig_data_end = xdp->data_end;
4288 	orig_data = xdp->data;
4289 
4290 	rxqueue = netif_get_rxqueue(skb);
4291 	xdp->rxq = &rxqueue->xdp_rxq;
4292 
4293 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4294 
4295 	off = xdp->data - orig_data;
4296 	if (off > 0)
4297 		__skb_pull(skb, off);
4298 	else if (off < 0)
4299 		__skb_push(skb, -off);
4300 	skb->mac_header += off;
4301 
4302 	/* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4303 	 * pckt.
4304 	 */
4305 	off = orig_data_end - xdp->data_end;
4306 	if (off != 0) {
4307 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4308 		skb->len -= off;
4309 
4310 	}
4311 
4312 	switch (act) {
4313 	case XDP_REDIRECT:
4314 	case XDP_TX:
4315 		__skb_push(skb, mac_len);
4316 		break;
4317 	case XDP_PASS:
4318 		metalen = xdp->data - xdp->data_meta;
4319 		if (metalen)
4320 			skb_metadata_set(skb, metalen);
4321 		break;
4322 	default:
4323 		bpf_warn_invalid_xdp_action(act);
4324 		/* fall through */
4325 	case XDP_ABORTED:
4326 		trace_xdp_exception(skb->dev, xdp_prog, act);
4327 		/* fall through */
4328 	case XDP_DROP:
4329 	do_drop:
4330 		kfree_skb(skb);
4331 		break;
4332 	}
4333 
4334 	return act;
4335 }
4336 
4337 /* When doing generic XDP we have to bypass the qdisc layer and the
4338  * network taps in order to match in-driver-XDP behavior.
4339  */
4340 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4341 {
4342 	struct net_device *dev = skb->dev;
4343 	struct netdev_queue *txq;
4344 	bool free_skb = true;
4345 	int cpu, rc;
4346 
4347 	txq = netdev_pick_tx(dev, skb, NULL);
4348 	cpu = smp_processor_id();
4349 	HARD_TX_LOCK(dev, txq, cpu);
4350 	if (!netif_xmit_stopped(txq)) {
4351 		rc = netdev_start_xmit(skb, dev, txq, 0);
4352 		if (dev_xmit_complete(rc))
4353 			free_skb = false;
4354 	}
4355 	HARD_TX_UNLOCK(dev, txq);
4356 	if (free_skb) {
4357 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
4358 		kfree_skb(skb);
4359 	}
4360 }
4361 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4362 
4363 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4364 
4365 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4366 {
4367 	if (xdp_prog) {
4368 		struct xdp_buff xdp;
4369 		u32 act;
4370 		int err;
4371 
4372 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4373 		if (act != XDP_PASS) {
4374 			switch (act) {
4375 			case XDP_REDIRECT:
4376 				err = xdp_do_generic_redirect(skb->dev, skb,
4377 							      &xdp, xdp_prog);
4378 				if (err)
4379 					goto out_redir;
4380 				break;
4381 			case XDP_TX:
4382 				generic_xdp_tx(skb, xdp_prog);
4383 				break;
4384 			}
4385 			return XDP_DROP;
4386 		}
4387 	}
4388 	return XDP_PASS;
4389 out_redir:
4390 	kfree_skb(skb);
4391 	return XDP_DROP;
4392 }
4393 EXPORT_SYMBOL_GPL(do_xdp_generic);
4394 
4395 static int netif_rx_internal(struct sk_buff *skb)
4396 {
4397 	int ret;
4398 
4399 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4400 
4401 	trace_netif_rx(skb);
4402 
4403 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
4404 		int ret;
4405 
4406 		preempt_disable();
4407 		rcu_read_lock();
4408 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4409 		rcu_read_unlock();
4410 		preempt_enable();
4411 
4412 		/* Consider XDP consuming the packet a success from
4413 		 * the netdev point of view we do not want to count
4414 		 * this as an error.
4415 		 */
4416 		if (ret != XDP_PASS)
4417 			return NET_RX_SUCCESS;
4418 	}
4419 
4420 #ifdef CONFIG_RPS
4421 	if (static_key_false(&rps_needed)) {
4422 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4423 		int cpu;
4424 
4425 		preempt_disable();
4426 		rcu_read_lock();
4427 
4428 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4429 		if (cpu < 0)
4430 			cpu = smp_processor_id();
4431 
4432 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4433 
4434 		rcu_read_unlock();
4435 		preempt_enable();
4436 	} else
4437 #endif
4438 	{
4439 		unsigned int qtail;
4440 
4441 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4442 		put_cpu();
4443 	}
4444 	return ret;
4445 }
4446 
4447 /**
4448  *	netif_rx	-	post buffer to the network code
4449  *	@skb: buffer to post
4450  *
4451  *	This function receives a packet from a device driver and queues it for
4452  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4453  *	may be dropped during processing for congestion control or by the
4454  *	protocol layers.
4455  *
4456  *	return values:
4457  *	NET_RX_SUCCESS	(no congestion)
4458  *	NET_RX_DROP     (packet was dropped)
4459  *
4460  */
4461 
4462 int netif_rx(struct sk_buff *skb)
4463 {
4464 	trace_netif_rx_entry(skb);
4465 
4466 	return netif_rx_internal(skb);
4467 }
4468 EXPORT_SYMBOL(netif_rx);
4469 
4470 int netif_rx_ni(struct sk_buff *skb)
4471 {
4472 	int err;
4473 
4474 	trace_netif_rx_ni_entry(skb);
4475 
4476 	preempt_disable();
4477 	err = netif_rx_internal(skb);
4478 	if (local_softirq_pending())
4479 		do_softirq();
4480 	preempt_enable();
4481 
4482 	return err;
4483 }
4484 EXPORT_SYMBOL(netif_rx_ni);
4485 
4486 static __latent_entropy void net_tx_action(struct softirq_action *h)
4487 {
4488 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4489 
4490 	if (sd->completion_queue) {
4491 		struct sk_buff *clist;
4492 
4493 		local_irq_disable();
4494 		clist = sd->completion_queue;
4495 		sd->completion_queue = NULL;
4496 		local_irq_enable();
4497 
4498 		while (clist) {
4499 			struct sk_buff *skb = clist;
4500 
4501 			clist = clist->next;
4502 
4503 			WARN_ON(refcount_read(&skb->users));
4504 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4505 				trace_consume_skb(skb);
4506 			else
4507 				trace_kfree_skb(skb, net_tx_action);
4508 
4509 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4510 				__kfree_skb(skb);
4511 			else
4512 				__kfree_skb_defer(skb);
4513 		}
4514 
4515 		__kfree_skb_flush();
4516 	}
4517 
4518 	if (sd->output_queue) {
4519 		struct Qdisc *head;
4520 
4521 		local_irq_disable();
4522 		head = sd->output_queue;
4523 		sd->output_queue = NULL;
4524 		sd->output_queue_tailp = &sd->output_queue;
4525 		local_irq_enable();
4526 
4527 		while (head) {
4528 			struct Qdisc *q = head;
4529 			spinlock_t *root_lock = NULL;
4530 
4531 			head = head->next_sched;
4532 
4533 			if (!(q->flags & TCQ_F_NOLOCK)) {
4534 				root_lock = qdisc_lock(q);
4535 				spin_lock(root_lock);
4536 			}
4537 			/* We need to make sure head->next_sched is read
4538 			 * before clearing __QDISC_STATE_SCHED
4539 			 */
4540 			smp_mb__before_atomic();
4541 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4542 			qdisc_run(q);
4543 			if (root_lock)
4544 				spin_unlock(root_lock);
4545 		}
4546 	}
4547 
4548 	xfrm_dev_backlog(sd);
4549 }
4550 
4551 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4552 /* This hook is defined here for ATM LANE */
4553 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4554 			     unsigned char *addr) __read_mostly;
4555 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4556 #endif
4557 
4558 static inline struct sk_buff *
4559 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4560 		   struct net_device *orig_dev)
4561 {
4562 #ifdef CONFIG_NET_CLS_ACT
4563 	struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4564 	struct tcf_result cl_res;
4565 
4566 	/* If there's at least one ingress present somewhere (so
4567 	 * we get here via enabled static key), remaining devices
4568 	 * that are not configured with an ingress qdisc will bail
4569 	 * out here.
4570 	 */
4571 	if (!miniq)
4572 		return skb;
4573 
4574 	if (*pt_prev) {
4575 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4576 		*pt_prev = NULL;
4577 	}
4578 
4579 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4580 	skb->tc_at_ingress = 1;
4581 	mini_qdisc_bstats_cpu_update(miniq, skb);
4582 
4583 	switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4584 	case TC_ACT_OK:
4585 	case TC_ACT_RECLASSIFY:
4586 		skb->tc_index = TC_H_MIN(cl_res.classid);
4587 		break;
4588 	case TC_ACT_SHOT:
4589 		mini_qdisc_qstats_cpu_drop(miniq);
4590 		kfree_skb(skb);
4591 		return NULL;
4592 	case TC_ACT_STOLEN:
4593 	case TC_ACT_QUEUED:
4594 	case TC_ACT_TRAP:
4595 		consume_skb(skb);
4596 		return NULL;
4597 	case TC_ACT_REDIRECT:
4598 		/* skb_mac_header check was done by cls/act_bpf, so
4599 		 * we can safely push the L2 header back before
4600 		 * redirecting to another netdev
4601 		 */
4602 		__skb_push(skb, skb->mac_len);
4603 		skb_do_redirect(skb);
4604 		return NULL;
4605 	case TC_ACT_REINSERT:
4606 		/* this does not scrub the packet, and updates stats on error */
4607 		skb_tc_reinsert(skb, &cl_res);
4608 		return NULL;
4609 	default:
4610 		break;
4611 	}
4612 #endif /* CONFIG_NET_CLS_ACT */
4613 	return skb;
4614 }
4615 
4616 /**
4617  *	netdev_is_rx_handler_busy - check if receive handler is registered
4618  *	@dev: device to check
4619  *
4620  *	Check if a receive handler is already registered for a given device.
4621  *	Return true if there one.
4622  *
4623  *	The caller must hold the rtnl_mutex.
4624  */
4625 bool netdev_is_rx_handler_busy(struct net_device *dev)
4626 {
4627 	ASSERT_RTNL();
4628 	return dev && rtnl_dereference(dev->rx_handler);
4629 }
4630 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4631 
4632 /**
4633  *	netdev_rx_handler_register - register receive handler
4634  *	@dev: device to register a handler for
4635  *	@rx_handler: receive handler to register
4636  *	@rx_handler_data: data pointer that is used by rx handler
4637  *
4638  *	Register a receive handler for a device. This handler will then be
4639  *	called from __netif_receive_skb. A negative errno code is returned
4640  *	on a failure.
4641  *
4642  *	The caller must hold the rtnl_mutex.
4643  *
4644  *	For a general description of rx_handler, see enum rx_handler_result.
4645  */
4646 int netdev_rx_handler_register(struct net_device *dev,
4647 			       rx_handler_func_t *rx_handler,
4648 			       void *rx_handler_data)
4649 {
4650 	if (netdev_is_rx_handler_busy(dev))
4651 		return -EBUSY;
4652 
4653 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
4654 		return -EINVAL;
4655 
4656 	/* Note: rx_handler_data must be set before rx_handler */
4657 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4658 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4659 
4660 	return 0;
4661 }
4662 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4663 
4664 /**
4665  *	netdev_rx_handler_unregister - unregister receive handler
4666  *	@dev: device to unregister a handler from
4667  *
4668  *	Unregister a receive handler from a device.
4669  *
4670  *	The caller must hold the rtnl_mutex.
4671  */
4672 void netdev_rx_handler_unregister(struct net_device *dev)
4673 {
4674 
4675 	ASSERT_RTNL();
4676 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4677 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4678 	 * section has a guarantee to see a non NULL rx_handler_data
4679 	 * as well.
4680 	 */
4681 	synchronize_net();
4682 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4683 }
4684 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4685 
4686 /*
4687  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4688  * the special handling of PFMEMALLOC skbs.
4689  */
4690 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4691 {
4692 	switch (skb->protocol) {
4693 	case htons(ETH_P_ARP):
4694 	case htons(ETH_P_IP):
4695 	case htons(ETH_P_IPV6):
4696 	case htons(ETH_P_8021Q):
4697 	case htons(ETH_P_8021AD):
4698 		return true;
4699 	default:
4700 		return false;
4701 	}
4702 }
4703 
4704 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4705 			     int *ret, struct net_device *orig_dev)
4706 {
4707 #ifdef CONFIG_NETFILTER_INGRESS
4708 	if (nf_hook_ingress_active(skb)) {
4709 		int ingress_retval;
4710 
4711 		if (*pt_prev) {
4712 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4713 			*pt_prev = NULL;
4714 		}
4715 
4716 		rcu_read_lock();
4717 		ingress_retval = nf_hook_ingress(skb);
4718 		rcu_read_unlock();
4719 		return ingress_retval;
4720 	}
4721 #endif /* CONFIG_NETFILTER_INGRESS */
4722 	return 0;
4723 }
4724 
4725 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4726 				    struct packet_type **ppt_prev)
4727 {
4728 	struct packet_type *ptype, *pt_prev;
4729 	rx_handler_func_t *rx_handler;
4730 	struct net_device *orig_dev;
4731 	bool deliver_exact = false;
4732 	int ret = NET_RX_DROP;
4733 	__be16 type;
4734 
4735 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4736 
4737 	trace_netif_receive_skb(skb);
4738 
4739 	orig_dev = skb->dev;
4740 
4741 	skb_reset_network_header(skb);
4742 	if (!skb_transport_header_was_set(skb))
4743 		skb_reset_transport_header(skb);
4744 	skb_reset_mac_len(skb);
4745 
4746 	pt_prev = NULL;
4747 
4748 another_round:
4749 	skb->skb_iif = skb->dev->ifindex;
4750 
4751 	__this_cpu_inc(softnet_data.processed);
4752 
4753 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4754 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4755 		skb = skb_vlan_untag(skb);
4756 		if (unlikely(!skb))
4757 			goto out;
4758 	}
4759 
4760 	if (skb_skip_tc_classify(skb))
4761 		goto skip_classify;
4762 
4763 	if (pfmemalloc)
4764 		goto skip_taps;
4765 
4766 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4767 		if (pt_prev)
4768 			ret = deliver_skb(skb, pt_prev, orig_dev);
4769 		pt_prev = ptype;
4770 	}
4771 
4772 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4773 		if (pt_prev)
4774 			ret = deliver_skb(skb, pt_prev, orig_dev);
4775 		pt_prev = ptype;
4776 	}
4777 
4778 skip_taps:
4779 #ifdef CONFIG_NET_INGRESS
4780 	if (static_branch_unlikely(&ingress_needed_key)) {
4781 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4782 		if (!skb)
4783 			goto out;
4784 
4785 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4786 			goto out;
4787 	}
4788 #endif
4789 	skb_reset_tc(skb);
4790 skip_classify:
4791 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4792 		goto drop;
4793 
4794 	if (skb_vlan_tag_present(skb)) {
4795 		if (pt_prev) {
4796 			ret = deliver_skb(skb, pt_prev, orig_dev);
4797 			pt_prev = NULL;
4798 		}
4799 		if (vlan_do_receive(&skb))
4800 			goto another_round;
4801 		else if (unlikely(!skb))
4802 			goto out;
4803 	}
4804 
4805 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4806 	if (rx_handler) {
4807 		if (pt_prev) {
4808 			ret = deliver_skb(skb, pt_prev, orig_dev);
4809 			pt_prev = NULL;
4810 		}
4811 		switch (rx_handler(&skb)) {
4812 		case RX_HANDLER_CONSUMED:
4813 			ret = NET_RX_SUCCESS;
4814 			goto out;
4815 		case RX_HANDLER_ANOTHER:
4816 			goto another_round;
4817 		case RX_HANDLER_EXACT:
4818 			deliver_exact = true;
4819 		case RX_HANDLER_PASS:
4820 			break;
4821 		default:
4822 			BUG();
4823 		}
4824 	}
4825 
4826 	if (unlikely(skb_vlan_tag_present(skb))) {
4827 		if (skb_vlan_tag_get_id(skb))
4828 			skb->pkt_type = PACKET_OTHERHOST;
4829 		/* Note: we might in the future use prio bits
4830 		 * and set skb->priority like in vlan_do_receive()
4831 		 * For the time being, just ignore Priority Code Point
4832 		 */
4833 		skb->vlan_tci = 0;
4834 	}
4835 
4836 	type = skb->protocol;
4837 
4838 	/* deliver only exact match when indicated */
4839 	if (likely(!deliver_exact)) {
4840 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4841 				       &ptype_base[ntohs(type) &
4842 						   PTYPE_HASH_MASK]);
4843 	}
4844 
4845 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4846 			       &orig_dev->ptype_specific);
4847 
4848 	if (unlikely(skb->dev != orig_dev)) {
4849 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4850 				       &skb->dev->ptype_specific);
4851 	}
4852 
4853 	if (pt_prev) {
4854 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4855 			goto drop;
4856 		*ppt_prev = pt_prev;
4857 	} else {
4858 drop:
4859 		if (!deliver_exact)
4860 			atomic_long_inc(&skb->dev->rx_dropped);
4861 		else
4862 			atomic_long_inc(&skb->dev->rx_nohandler);
4863 		kfree_skb(skb);
4864 		/* Jamal, now you will not able to escape explaining
4865 		 * me how you were going to use this. :-)
4866 		 */
4867 		ret = NET_RX_DROP;
4868 	}
4869 
4870 out:
4871 	return ret;
4872 }
4873 
4874 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4875 {
4876 	struct net_device *orig_dev = skb->dev;
4877 	struct packet_type *pt_prev = NULL;
4878 	int ret;
4879 
4880 	ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4881 	if (pt_prev)
4882 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4883 	return ret;
4884 }
4885 
4886 /**
4887  *	netif_receive_skb_core - special purpose version of netif_receive_skb
4888  *	@skb: buffer to process
4889  *
4890  *	More direct receive version of netif_receive_skb().  It should
4891  *	only be used by callers that have a need to skip RPS and Generic XDP.
4892  *	Caller must also take care of handling if (page_is_)pfmemalloc.
4893  *
4894  *	This function may only be called from softirq context and interrupts
4895  *	should be enabled.
4896  *
4897  *	Return values (usually ignored):
4898  *	NET_RX_SUCCESS: no congestion
4899  *	NET_RX_DROP: packet was dropped
4900  */
4901 int netif_receive_skb_core(struct sk_buff *skb)
4902 {
4903 	int ret;
4904 
4905 	rcu_read_lock();
4906 	ret = __netif_receive_skb_one_core(skb, false);
4907 	rcu_read_unlock();
4908 
4909 	return ret;
4910 }
4911 EXPORT_SYMBOL(netif_receive_skb_core);
4912 
4913 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4914 						  struct packet_type *pt_prev,
4915 						  struct net_device *orig_dev)
4916 {
4917 	struct sk_buff *skb, *next;
4918 
4919 	if (!pt_prev)
4920 		return;
4921 	if (list_empty(head))
4922 		return;
4923 	if (pt_prev->list_func != NULL)
4924 		pt_prev->list_func(head, pt_prev, orig_dev);
4925 	else
4926 		list_for_each_entry_safe(skb, next, head, list)
4927 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4928 }
4929 
4930 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4931 {
4932 	/* Fast-path assumptions:
4933 	 * - There is no RX handler.
4934 	 * - Only one packet_type matches.
4935 	 * If either of these fails, we will end up doing some per-packet
4936 	 * processing in-line, then handling the 'last ptype' for the whole
4937 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
4938 	 * because the 'last ptype' must be constant across the sublist, and all
4939 	 * other ptypes are handled per-packet.
4940 	 */
4941 	/* Current (common) ptype of sublist */
4942 	struct packet_type *pt_curr = NULL;
4943 	/* Current (common) orig_dev of sublist */
4944 	struct net_device *od_curr = NULL;
4945 	struct list_head sublist;
4946 	struct sk_buff *skb, *next;
4947 
4948 	INIT_LIST_HEAD(&sublist);
4949 	list_for_each_entry_safe(skb, next, head, list) {
4950 		struct net_device *orig_dev = skb->dev;
4951 		struct packet_type *pt_prev = NULL;
4952 
4953 		list_del(&skb->list);
4954 		__netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4955 		if (!pt_prev)
4956 			continue;
4957 		if (pt_curr != pt_prev || od_curr != orig_dev) {
4958 			/* dispatch old sublist */
4959 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4960 			/* start new sublist */
4961 			INIT_LIST_HEAD(&sublist);
4962 			pt_curr = pt_prev;
4963 			od_curr = orig_dev;
4964 		}
4965 		list_add_tail(&skb->list, &sublist);
4966 	}
4967 
4968 	/* dispatch final sublist */
4969 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
4970 }
4971 
4972 static int __netif_receive_skb(struct sk_buff *skb)
4973 {
4974 	int ret;
4975 
4976 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4977 		unsigned int noreclaim_flag;
4978 
4979 		/*
4980 		 * PFMEMALLOC skbs are special, they should
4981 		 * - be delivered to SOCK_MEMALLOC sockets only
4982 		 * - stay away from userspace
4983 		 * - have bounded memory usage
4984 		 *
4985 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4986 		 * context down to all allocation sites.
4987 		 */
4988 		noreclaim_flag = memalloc_noreclaim_save();
4989 		ret = __netif_receive_skb_one_core(skb, true);
4990 		memalloc_noreclaim_restore(noreclaim_flag);
4991 	} else
4992 		ret = __netif_receive_skb_one_core(skb, false);
4993 
4994 	return ret;
4995 }
4996 
4997 static void __netif_receive_skb_list(struct list_head *head)
4998 {
4999 	unsigned long noreclaim_flag = 0;
5000 	struct sk_buff *skb, *next;
5001 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5002 
5003 	list_for_each_entry_safe(skb, next, head, list) {
5004 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5005 			struct list_head sublist;
5006 
5007 			/* Handle the previous sublist */
5008 			list_cut_before(&sublist, head, &skb->list);
5009 			if (!list_empty(&sublist))
5010 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5011 			pfmemalloc = !pfmemalloc;
5012 			/* See comments in __netif_receive_skb */
5013 			if (pfmemalloc)
5014 				noreclaim_flag = memalloc_noreclaim_save();
5015 			else
5016 				memalloc_noreclaim_restore(noreclaim_flag);
5017 		}
5018 	}
5019 	/* Handle the remaining sublist */
5020 	if (!list_empty(head))
5021 		__netif_receive_skb_list_core(head, pfmemalloc);
5022 	/* Restore pflags */
5023 	if (pfmemalloc)
5024 		memalloc_noreclaim_restore(noreclaim_flag);
5025 }
5026 
5027 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5028 {
5029 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5030 	struct bpf_prog *new = xdp->prog;
5031 	int ret = 0;
5032 
5033 	switch (xdp->command) {
5034 	case XDP_SETUP_PROG:
5035 		rcu_assign_pointer(dev->xdp_prog, new);
5036 		if (old)
5037 			bpf_prog_put(old);
5038 
5039 		if (old && !new) {
5040 			static_branch_dec(&generic_xdp_needed_key);
5041 		} else if (new && !old) {
5042 			static_branch_inc(&generic_xdp_needed_key);
5043 			dev_disable_lro(dev);
5044 			dev_disable_gro_hw(dev);
5045 		}
5046 		break;
5047 
5048 	case XDP_QUERY_PROG:
5049 		xdp->prog_id = old ? old->aux->id : 0;
5050 		break;
5051 
5052 	default:
5053 		ret = -EINVAL;
5054 		break;
5055 	}
5056 
5057 	return ret;
5058 }
5059 
5060 static int netif_receive_skb_internal(struct sk_buff *skb)
5061 {
5062 	int ret;
5063 
5064 	net_timestamp_check(netdev_tstamp_prequeue, skb);
5065 
5066 	if (skb_defer_rx_timestamp(skb))
5067 		return NET_RX_SUCCESS;
5068 
5069 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5070 		int ret;
5071 
5072 		preempt_disable();
5073 		rcu_read_lock();
5074 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5075 		rcu_read_unlock();
5076 		preempt_enable();
5077 
5078 		if (ret != XDP_PASS)
5079 			return NET_RX_DROP;
5080 	}
5081 
5082 	rcu_read_lock();
5083 #ifdef CONFIG_RPS
5084 	if (static_key_false(&rps_needed)) {
5085 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5086 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5087 
5088 		if (cpu >= 0) {
5089 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5090 			rcu_read_unlock();
5091 			return ret;
5092 		}
5093 	}
5094 #endif
5095 	ret = __netif_receive_skb(skb);
5096 	rcu_read_unlock();
5097 	return ret;
5098 }
5099 
5100 static void netif_receive_skb_list_internal(struct list_head *head)
5101 {
5102 	struct bpf_prog *xdp_prog = NULL;
5103 	struct sk_buff *skb, *next;
5104 	struct list_head sublist;
5105 
5106 	INIT_LIST_HEAD(&sublist);
5107 	list_for_each_entry_safe(skb, next, head, list) {
5108 		net_timestamp_check(netdev_tstamp_prequeue, skb);
5109 		list_del(&skb->list);
5110 		if (!skb_defer_rx_timestamp(skb))
5111 			list_add_tail(&skb->list, &sublist);
5112 	}
5113 	list_splice_init(&sublist, head);
5114 
5115 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5116 		preempt_disable();
5117 		rcu_read_lock();
5118 		list_for_each_entry_safe(skb, next, head, list) {
5119 			xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5120 			list_del(&skb->list);
5121 			if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5122 				list_add_tail(&skb->list, &sublist);
5123 		}
5124 		rcu_read_unlock();
5125 		preempt_enable();
5126 		/* Put passed packets back on main list */
5127 		list_splice_init(&sublist, head);
5128 	}
5129 
5130 	rcu_read_lock();
5131 #ifdef CONFIG_RPS
5132 	if (static_key_false(&rps_needed)) {
5133 		list_for_each_entry_safe(skb, next, head, list) {
5134 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5135 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5136 
5137 			if (cpu >= 0) {
5138 				/* Will be handled, remove from list */
5139 				list_del(&skb->list);
5140 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5141 			}
5142 		}
5143 	}
5144 #endif
5145 	__netif_receive_skb_list(head);
5146 	rcu_read_unlock();
5147 }
5148 
5149 /**
5150  *	netif_receive_skb - process receive buffer from network
5151  *	@skb: buffer to process
5152  *
5153  *	netif_receive_skb() is the main receive data processing function.
5154  *	It always succeeds. The buffer may be dropped during processing
5155  *	for congestion control or by the protocol layers.
5156  *
5157  *	This function may only be called from softirq context and interrupts
5158  *	should be enabled.
5159  *
5160  *	Return values (usually ignored):
5161  *	NET_RX_SUCCESS: no congestion
5162  *	NET_RX_DROP: packet was dropped
5163  */
5164 int netif_receive_skb(struct sk_buff *skb)
5165 {
5166 	trace_netif_receive_skb_entry(skb);
5167 
5168 	return netif_receive_skb_internal(skb);
5169 }
5170 EXPORT_SYMBOL(netif_receive_skb);
5171 
5172 /**
5173  *	netif_receive_skb_list - process many receive buffers from network
5174  *	@head: list of skbs to process.
5175  *
5176  *	Since return value of netif_receive_skb() is normally ignored, and
5177  *	wouldn't be meaningful for a list, this function returns void.
5178  *
5179  *	This function may only be called from softirq context and interrupts
5180  *	should be enabled.
5181  */
5182 void netif_receive_skb_list(struct list_head *head)
5183 {
5184 	struct sk_buff *skb;
5185 
5186 	if (list_empty(head))
5187 		return;
5188 	list_for_each_entry(skb, head, list)
5189 		trace_netif_receive_skb_list_entry(skb);
5190 	netif_receive_skb_list_internal(head);
5191 }
5192 EXPORT_SYMBOL(netif_receive_skb_list);
5193 
5194 DEFINE_PER_CPU(struct work_struct, flush_works);
5195 
5196 /* Network device is going away, flush any packets still pending */
5197 static void flush_backlog(struct work_struct *work)
5198 {
5199 	struct sk_buff *skb, *tmp;
5200 	struct softnet_data *sd;
5201 
5202 	local_bh_disable();
5203 	sd = this_cpu_ptr(&softnet_data);
5204 
5205 	local_irq_disable();
5206 	rps_lock(sd);
5207 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5208 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5209 			__skb_unlink(skb, &sd->input_pkt_queue);
5210 			kfree_skb(skb);
5211 			input_queue_head_incr(sd);
5212 		}
5213 	}
5214 	rps_unlock(sd);
5215 	local_irq_enable();
5216 
5217 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5218 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5219 			__skb_unlink(skb, &sd->process_queue);
5220 			kfree_skb(skb);
5221 			input_queue_head_incr(sd);
5222 		}
5223 	}
5224 	local_bh_enable();
5225 }
5226 
5227 static void flush_all_backlogs(void)
5228 {
5229 	unsigned int cpu;
5230 
5231 	get_online_cpus();
5232 
5233 	for_each_online_cpu(cpu)
5234 		queue_work_on(cpu, system_highpri_wq,
5235 			      per_cpu_ptr(&flush_works, cpu));
5236 
5237 	for_each_online_cpu(cpu)
5238 		flush_work(per_cpu_ptr(&flush_works, cpu));
5239 
5240 	put_online_cpus();
5241 }
5242 
5243 static int napi_gro_complete(struct sk_buff *skb)
5244 {
5245 	struct packet_offload *ptype;
5246 	__be16 type = skb->protocol;
5247 	struct list_head *head = &offload_base;
5248 	int err = -ENOENT;
5249 
5250 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5251 
5252 	if (NAPI_GRO_CB(skb)->count == 1) {
5253 		skb_shinfo(skb)->gso_size = 0;
5254 		goto out;
5255 	}
5256 
5257 	rcu_read_lock();
5258 	list_for_each_entry_rcu(ptype, head, list) {
5259 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5260 			continue;
5261 
5262 		err = ptype->callbacks.gro_complete(skb, 0);
5263 		break;
5264 	}
5265 	rcu_read_unlock();
5266 
5267 	if (err) {
5268 		WARN_ON(&ptype->list == head);
5269 		kfree_skb(skb);
5270 		return NET_RX_SUCCESS;
5271 	}
5272 
5273 out:
5274 	return netif_receive_skb_internal(skb);
5275 }
5276 
5277 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5278 				   bool flush_old)
5279 {
5280 	struct list_head *head = &napi->gro_hash[index].list;
5281 	struct sk_buff *skb, *p;
5282 
5283 	list_for_each_entry_safe_reverse(skb, p, head, list) {
5284 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5285 			return;
5286 		list_del(&skb->list);
5287 		skb->next = NULL;
5288 		napi_gro_complete(skb);
5289 		napi->gro_hash[index].count--;
5290 	}
5291 
5292 	if (!napi->gro_hash[index].count)
5293 		__clear_bit(index, &napi->gro_bitmask);
5294 }
5295 
5296 /* napi->gro_hash[].list contains packets ordered by age.
5297  * youngest packets at the head of it.
5298  * Complete skbs in reverse order to reduce latencies.
5299  */
5300 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5301 {
5302 	u32 i;
5303 
5304 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5305 		if (test_bit(i, &napi->gro_bitmask))
5306 			__napi_gro_flush_chain(napi, i, flush_old);
5307 	}
5308 }
5309 EXPORT_SYMBOL(napi_gro_flush);
5310 
5311 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5312 					  struct sk_buff *skb)
5313 {
5314 	unsigned int maclen = skb->dev->hard_header_len;
5315 	u32 hash = skb_get_hash_raw(skb);
5316 	struct list_head *head;
5317 	struct sk_buff *p;
5318 
5319 	head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5320 	list_for_each_entry(p, head, list) {
5321 		unsigned long diffs;
5322 
5323 		NAPI_GRO_CB(p)->flush = 0;
5324 
5325 		if (hash != skb_get_hash_raw(p)) {
5326 			NAPI_GRO_CB(p)->same_flow = 0;
5327 			continue;
5328 		}
5329 
5330 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5331 		diffs |= p->vlan_tci ^ skb->vlan_tci;
5332 		diffs |= skb_metadata_dst_cmp(p, skb);
5333 		diffs |= skb_metadata_differs(p, skb);
5334 		if (maclen == ETH_HLEN)
5335 			diffs |= compare_ether_header(skb_mac_header(p),
5336 						      skb_mac_header(skb));
5337 		else if (!diffs)
5338 			diffs = memcmp(skb_mac_header(p),
5339 				       skb_mac_header(skb),
5340 				       maclen);
5341 		NAPI_GRO_CB(p)->same_flow = !diffs;
5342 	}
5343 
5344 	return head;
5345 }
5346 
5347 static void skb_gro_reset_offset(struct sk_buff *skb)
5348 {
5349 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
5350 	const skb_frag_t *frag0 = &pinfo->frags[0];
5351 
5352 	NAPI_GRO_CB(skb)->data_offset = 0;
5353 	NAPI_GRO_CB(skb)->frag0 = NULL;
5354 	NAPI_GRO_CB(skb)->frag0_len = 0;
5355 
5356 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5357 	    pinfo->nr_frags &&
5358 	    !PageHighMem(skb_frag_page(frag0))) {
5359 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5360 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5361 						    skb_frag_size(frag0),
5362 						    skb->end - skb->tail);
5363 	}
5364 }
5365 
5366 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5367 {
5368 	struct skb_shared_info *pinfo = skb_shinfo(skb);
5369 
5370 	BUG_ON(skb->end - skb->tail < grow);
5371 
5372 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5373 
5374 	skb->data_len -= grow;
5375 	skb->tail += grow;
5376 
5377 	pinfo->frags[0].page_offset += grow;
5378 	skb_frag_size_sub(&pinfo->frags[0], grow);
5379 
5380 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5381 		skb_frag_unref(skb, 0);
5382 		memmove(pinfo->frags, pinfo->frags + 1,
5383 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
5384 	}
5385 }
5386 
5387 static void gro_flush_oldest(struct list_head *head)
5388 {
5389 	struct sk_buff *oldest;
5390 
5391 	oldest = list_last_entry(head, struct sk_buff, list);
5392 
5393 	/* We are called with head length >= MAX_GRO_SKBS, so this is
5394 	 * impossible.
5395 	 */
5396 	if (WARN_ON_ONCE(!oldest))
5397 		return;
5398 
5399 	/* Do not adjust napi->gro_hash[].count, caller is adding a new
5400 	 * SKB to the chain.
5401 	 */
5402 	list_del(&oldest->list);
5403 	napi_gro_complete(oldest);
5404 }
5405 
5406 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5407 {
5408 	u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5409 	struct list_head *head = &offload_base;
5410 	struct packet_offload *ptype;
5411 	__be16 type = skb->protocol;
5412 	struct list_head *gro_head;
5413 	struct sk_buff *pp = NULL;
5414 	enum gro_result ret;
5415 	int same_flow;
5416 	int grow;
5417 
5418 	if (netif_elide_gro(skb->dev))
5419 		goto normal;
5420 
5421 	gro_head = gro_list_prepare(napi, skb);
5422 
5423 	rcu_read_lock();
5424 	list_for_each_entry_rcu(ptype, head, list) {
5425 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5426 			continue;
5427 
5428 		skb_set_network_header(skb, skb_gro_offset(skb));
5429 		skb_reset_mac_len(skb);
5430 		NAPI_GRO_CB(skb)->same_flow = 0;
5431 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5432 		NAPI_GRO_CB(skb)->free = 0;
5433 		NAPI_GRO_CB(skb)->encap_mark = 0;
5434 		NAPI_GRO_CB(skb)->recursion_counter = 0;
5435 		NAPI_GRO_CB(skb)->is_fou = 0;
5436 		NAPI_GRO_CB(skb)->is_atomic = 1;
5437 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5438 
5439 		/* Setup for GRO checksum validation */
5440 		switch (skb->ip_summed) {
5441 		case CHECKSUM_COMPLETE:
5442 			NAPI_GRO_CB(skb)->csum = skb->csum;
5443 			NAPI_GRO_CB(skb)->csum_valid = 1;
5444 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5445 			break;
5446 		case CHECKSUM_UNNECESSARY:
5447 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5448 			NAPI_GRO_CB(skb)->csum_valid = 0;
5449 			break;
5450 		default:
5451 			NAPI_GRO_CB(skb)->csum_cnt = 0;
5452 			NAPI_GRO_CB(skb)->csum_valid = 0;
5453 		}
5454 
5455 		pp = ptype->callbacks.gro_receive(gro_head, skb);
5456 		break;
5457 	}
5458 	rcu_read_unlock();
5459 
5460 	if (&ptype->list == head)
5461 		goto normal;
5462 
5463 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5464 		ret = GRO_CONSUMED;
5465 		goto ok;
5466 	}
5467 
5468 	same_flow = NAPI_GRO_CB(skb)->same_flow;
5469 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5470 
5471 	if (pp) {
5472 		list_del(&pp->list);
5473 		pp->next = NULL;
5474 		napi_gro_complete(pp);
5475 		napi->gro_hash[hash].count--;
5476 	}
5477 
5478 	if (same_flow)
5479 		goto ok;
5480 
5481 	if (NAPI_GRO_CB(skb)->flush)
5482 		goto normal;
5483 
5484 	if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5485 		gro_flush_oldest(gro_head);
5486 	} else {
5487 		napi->gro_hash[hash].count++;
5488 	}
5489 	NAPI_GRO_CB(skb)->count = 1;
5490 	NAPI_GRO_CB(skb)->age = jiffies;
5491 	NAPI_GRO_CB(skb)->last = skb;
5492 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5493 	list_add(&skb->list, gro_head);
5494 	ret = GRO_HELD;
5495 
5496 pull:
5497 	grow = skb_gro_offset(skb) - skb_headlen(skb);
5498 	if (grow > 0)
5499 		gro_pull_from_frag0(skb, grow);
5500 ok:
5501 	if (napi->gro_hash[hash].count) {
5502 		if (!test_bit(hash, &napi->gro_bitmask))
5503 			__set_bit(hash, &napi->gro_bitmask);
5504 	} else if (test_bit(hash, &napi->gro_bitmask)) {
5505 		__clear_bit(hash, &napi->gro_bitmask);
5506 	}
5507 
5508 	return ret;
5509 
5510 normal:
5511 	ret = GRO_NORMAL;
5512 	goto pull;
5513 }
5514 
5515 struct packet_offload *gro_find_receive_by_type(__be16 type)
5516 {
5517 	struct list_head *offload_head = &offload_base;
5518 	struct packet_offload *ptype;
5519 
5520 	list_for_each_entry_rcu(ptype, offload_head, list) {
5521 		if (ptype->type != type || !ptype->callbacks.gro_receive)
5522 			continue;
5523 		return ptype;
5524 	}
5525 	return NULL;
5526 }
5527 EXPORT_SYMBOL(gro_find_receive_by_type);
5528 
5529 struct packet_offload *gro_find_complete_by_type(__be16 type)
5530 {
5531 	struct list_head *offload_head = &offload_base;
5532 	struct packet_offload *ptype;
5533 
5534 	list_for_each_entry_rcu(ptype, offload_head, list) {
5535 		if (ptype->type != type || !ptype->callbacks.gro_complete)
5536 			continue;
5537 		return ptype;
5538 	}
5539 	return NULL;
5540 }
5541 EXPORT_SYMBOL(gro_find_complete_by_type);
5542 
5543 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5544 {
5545 	skb_dst_drop(skb);
5546 	secpath_reset(skb);
5547 	kmem_cache_free(skbuff_head_cache, skb);
5548 }
5549 
5550 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5551 {
5552 	switch (ret) {
5553 	case GRO_NORMAL:
5554 		if (netif_receive_skb_internal(skb))
5555 			ret = GRO_DROP;
5556 		break;
5557 
5558 	case GRO_DROP:
5559 		kfree_skb(skb);
5560 		break;
5561 
5562 	case GRO_MERGED_FREE:
5563 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5564 			napi_skb_free_stolen_head(skb);
5565 		else
5566 			__kfree_skb(skb);
5567 		break;
5568 
5569 	case GRO_HELD:
5570 	case GRO_MERGED:
5571 	case GRO_CONSUMED:
5572 		break;
5573 	}
5574 
5575 	return ret;
5576 }
5577 
5578 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5579 {
5580 	skb_mark_napi_id(skb, napi);
5581 	trace_napi_gro_receive_entry(skb);
5582 
5583 	skb_gro_reset_offset(skb);
5584 
5585 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5586 }
5587 EXPORT_SYMBOL(napi_gro_receive);
5588 
5589 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5590 {
5591 	if (unlikely(skb->pfmemalloc)) {
5592 		consume_skb(skb);
5593 		return;
5594 	}
5595 	__skb_pull(skb, skb_headlen(skb));
5596 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
5597 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5598 	skb->vlan_tci = 0;
5599 	skb->dev = napi->dev;
5600 	skb->skb_iif = 0;
5601 	skb->encapsulation = 0;
5602 	skb_shinfo(skb)->gso_type = 0;
5603 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5604 	secpath_reset(skb);
5605 
5606 	napi->skb = skb;
5607 }
5608 
5609 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5610 {
5611 	struct sk_buff *skb = napi->skb;
5612 
5613 	if (!skb) {
5614 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5615 		if (skb) {
5616 			napi->skb = skb;
5617 			skb_mark_napi_id(skb, napi);
5618 		}
5619 	}
5620 	return skb;
5621 }
5622 EXPORT_SYMBOL(napi_get_frags);
5623 
5624 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5625 				      struct sk_buff *skb,
5626 				      gro_result_t ret)
5627 {
5628 	switch (ret) {
5629 	case GRO_NORMAL:
5630 	case GRO_HELD:
5631 		__skb_push(skb, ETH_HLEN);
5632 		skb->protocol = eth_type_trans(skb, skb->dev);
5633 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5634 			ret = GRO_DROP;
5635 		break;
5636 
5637 	case GRO_DROP:
5638 		napi_reuse_skb(napi, skb);
5639 		break;
5640 
5641 	case GRO_MERGED_FREE:
5642 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5643 			napi_skb_free_stolen_head(skb);
5644 		else
5645 			napi_reuse_skb(napi, skb);
5646 		break;
5647 
5648 	case GRO_MERGED:
5649 	case GRO_CONSUMED:
5650 		break;
5651 	}
5652 
5653 	return ret;
5654 }
5655 
5656 /* Upper GRO stack assumes network header starts at gro_offset=0
5657  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5658  * We copy ethernet header into skb->data to have a common layout.
5659  */
5660 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5661 {
5662 	struct sk_buff *skb = napi->skb;
5663 	const struct ethhdr *eth;
5664 	unsigned int hlen = sizeof(*eth);
5665 
5666 	napi->skb = NULL;
5667 
5668 	skb_reset_mac_header(skb);
5669 	skb_gro_reset_offset(skb);
5670 
5671 	eth = skb_gro_header_fast(skb, 0);
5672 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5673 		eth = skb_gro_header_slow(skb, hlen, 0);
5674 		if (unlikely(!eth)) {
5675 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5676 					     __func__, napi->dev->name);
5677 			napi_reuse_skb(napi, skb);
5678 			return NULL;
5679 		}
5680 	} else {
5681 		gro_pull_from_frag0(skb, hlen);
5682 		NAPI_GRO_CB(skb)->frag0 += hlen;
5683 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5684 	}
5685 	__skb_pull(skb, hlen);
5686 
5687 	/*
5688 	 * This works because the only protocols we care about don't require
5689 	 * special handling.
5690 	 * We'll fix it up properly in napi_frags_finish()
5691 	 */
5692 	skb->protocol = eth->h_proto;
5693 
5694 	return skb;
5695 }
5696 
5697 gro_result_t napi_gro_frags(struct napi_struct *napi)
5698 {
5699 	struct sk_buff *skb = napi_frags_skb(napi);
5700 
5701 	if (!skb)
5702 		return GRO_DROP;
5703 
5704 	trace_napi_gro_frags_entry(skb);
5705 
5706 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5707 }
5708 EXPORT_SYMBOL(napi_gro_frags);
5709 
5710 /* Compute the checksum from gro_offset and return the folded value
5711  * after adding in any pseudo checksum.
5712  */
5713 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5714 {
5715 	__wsum wsum;
5716 	__sum16 sum;
5717 
5718 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5719 
5720 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5721 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5722 	if (likely(!sum)) {
5723 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5724 		    !skb->csum_complete_sw)
5725 			netdev_rx_csum_fault(skb->dev);
5726 	}
5727 
5728 	NAPI_GRO_CB(skb)->csum = wsum;
5729 	NAPI_GRO_CB(skb)->csum_valid = 1;
5730 
5731 	return sum;
5732 }
5733 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5734 
5735 static void net_rps_send_ipi(struct softnet_data *remsd)
5736 {
5737 #ifdef CONFIG_RPS
5738 	while (remsd) {
5739 		struct softnet_data *next = remsd->rps_ipi_next;
5740 
5741 		if (cpu_online(remsd->cpu))
5742 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5743 		remsd = next;
5744 	}
5745 #endif
5746 }
5747 
5748 /*
5749  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5750  * Note: called with local irq disabled, but exits with local irq enabled.
5751  */
5752 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5753 {
5754 #ifdef CONFIG_RPS
5755 	struct softnet_data *remsd = sd->rps_ipi_list;
5756 
5757 	if (remsd) {
5758 		sd->rps_ipi_list = NULL;
5759 
5760 		local_irq_enable();
5761 
5762 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5763 		net_rps_send_ipi(remsd);
5764 	} else
5765 #endif
5766 		local_irq_enable();
5767 }
5768 
5769 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5770 {
5771 #ifdef CONFIG_RPS
5772 	return sd->rps_ipi_list != NULL;
5773 #else
5774 	return false;
5775 #endif
5776 }
5777 
5778 static int process_backlog(struct napi_struct *napi, int quota)
5779 {
5780 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5781 	bool again = true;
5782 	int work = 0;
5783 
5784 	/* Check if we have pending ipi, its better to send them now,
5785 	 * not waiting net_rx_action() end.
5786 	 */
5787 	if (sd_has_rps_ipi_waiting(sd)) {
5788 		local_irq_disable();
5789 		net_rps_action_and_irq_enable(sd);
5790 	}
5791 
5792 	napi->weight = dev_rx_weight;
5793 	while (again) {
5794 		struct sk_buff *skb;
5795 
5796 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5797 			rcu_read_lock();
5798 			__netif_receive_skb(skb);
5799 			rcu_read_unlock();
5800 			input_queue_head_incr(sd);
5801 			if (++work >= quota)
5802 				return work;
5803 
5804 		}
5805 
5806 		local_irq_disable();
5807 		rps_lock(sd);
5808 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5809 			/*
5810 			 * Inline a custom version of __napi_complete().
5811 			 * only current cpu owns and manipulates this napi,
5812 			 * and NAPI_STATE_SCHED is the only possible flag set
5813 			 * on backlog.
5814 			 * We can use a plain write instead of clear_bit(),
5815 			 * and we dont need an smp_mb() memory barrier.
5816 			 */
5817 			napi->state = 0;
5818 			again = false;
5819 		} else {
5820 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5821 						   &sd->process_queue);
5822 		}
5823 		rps_unlock(sd);
5824 		local_irq_enable();
5825 	}
5826 
5827 	return work;
5828 }
5829 
5830 /**
5831  * __napi_schedule - schedule for receive
5832  * @n: entry to schedule
5833  *
5834  * The entry's receive function will be scheduled to run.
5835  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5836  */
5837 void __napi_schedule(struct napi_struct *n)
5838 {
5839 	unsigned long flags;
5840 
5841 	local_irq_save(flags);
5842 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5843 	local_irq_restore(flags);
5844 }
5845 EXPORT_SYMBOL(__napi_schedule);
5846 
5847 /**
5848  *	napi_schedule_prep - check if napi can be scheduled
5849  *	@n: napi context
5850  *
5851  * Test if NAPI routine is already running, and if not mark
5852  * it as running.  This is used as a condition variable
5853  * insure only one NAPI poll instance runs.  We also make
5854  * sure there is no pending NAPI disable.
5855  */
5856 bool napi_schedule_prep(struct napi_struct *n)
5857 {
5858 	unsigned long val, new;
5859 
5860 	do {
5861 		val = READ_ONCE(n->state);
5862 		if (unlikely(val & NAPIF_STATE_DISABLE))
5863 			return false;
5864 		new = val | NAPIF_STATE_SCHED;
5865 
5866 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5867 		 * This was suggested by Alexander Duyck, as compiler
5868 		 * emits better code than :
5869 		 * if (val & NAPIF_STATE_SCHED)
5870 		 *     new |= NAPIF_STATE_MISSED;
5871 		 */
5872 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5873 						   NAPIF_STATE_MISSED;
5874 	} while (cmpxchg(&n->state, val, new) != val);
5875 
5876 	return !(val & NAPIF_STATE_SCHED);
5877 }
5878 EXPORT_SYMBOL(napi_schedule_prep);
5879 
5880 /**
5881  * __napi_schedule_irqoff - schedule for receive
5882  * @n: entry to schedule
5883  *
5884  * Variant of __napi_schedule() assuming hard irqs are masked
5885  */
5886 void __napi_schedule_irqoff(struct napi_struct *n)
5887 {
5888 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5889 }
5890 EXPORT_SYMBOL(__napi_schedule_irqoff);
5891 
5892 bool napi_complete_done(struct napi_struct *n, int work_done)
5893 {
5894 	unsigned long flags, val, new;
5895 
5896 	/*
5897 	 * 1) Don't let napi dequeue from the cpu poll list
5898 	 *    just in case its running on a different cpu.
5899 	 * 2) If we are busy polling, do nothing here, we have
5900 	 *    the guarantee we will be called later.
5901 	 */
5902 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5903 				 NAPIF_STATE_IN_BUSY_POLL)))
5904 		return false;
5905 
5906 	if (n->gro_bitmask) {
5907 		unsigned long timeout = 0;
5908 
5909 		if (work_done)
5910 			timeout = n->dev->gro_flush_timeout;
5911 
5912 		if (timeout)
5913 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5914 				      HRTIMER_MODE_REL_PINNED);
5915 		else
5916 			napi_gro_flush(n, false);
5917 	}
5918 	if (unlikely(!list_empty(&n->poll_list))) {
5919 		/* If n->poll_list is not empty, we need to mask irqs */
5920 		local_irq_save(flags);
5921 		list_del_init(&n->poll_list);
5922 		local_irq_restore(flags);
5923 	}
5924 
5925 	do {
5926 		val = READ_ONCE(n->state);
5927 
5928 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5929 
5930 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5931 
5932 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5933 		 * because we will call napi->poll() one more time.
5934 		 * This C code was suggested by Alexander Duyck to help gcc.
5935 		 */
5936 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5937 						    NAPIF_STATE_SCHED;
5938 	} while (cmpxchg(&n->state, val, new) != val);
5939 
5940 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5941 		__napi_schedule(n);
5942 		return false;
5943 	}
5944 
5945 	return true;
5946 }
5947 EXPORT_SYMBOL(napi_complete_done);
5948 
5949 /* must be called under rcu_read_lock(), as we dont take a reference */
5950 static struct napi_struct *napi_by_id(unsigned int napi_id)
5951 {
5952 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5953 	struct napi_struct *napi;
5954 
5955 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5956 		if (napi->napi_id == napi_id)
5957 			return napi;
5958 
5959 	return NULL;
5960 }
5961 
5962 #if defined(CONFIG_NET_RX_BUSY_POLL)
5963 
5964 #define BUSY_POLL_BUDGET 8
5965 
5966 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5967 {
5968 	int rc;
5969 
5970 	/* Busy polling means there is a high chance device driver hard irq
5971 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5972 	 * set in napi_schedule_prep().
5973 	 * Since we are about to call napi->poll() once more, we can safely
5974 	 * clear NAPI_STATE_MISSED.
5975 	 *
5976 	 * Note: x86 could use a single "lock and ..." instruction
5977 	 * to perform these two clear_bit()
5978 	 */
5979 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5980 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5981 
5982 	local_bh_disable();
5983 
5984 	/* All we really want here is to re-enable device interrupts.
5985 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5986 	 */
5987 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5988 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5989 	netpoll_poll_unlock(have_poll_lock);
5990 	if (rc == BUSY_POLL_BUDGET)
5991 		__napi_schedule(napi);
5992 	local_bh_enable();
5993 }
5994 
5995 void napi_busy_loop(unsigned int napi_id,
5996 		    bool (*loop_end)(void *, unsigned long),
5997 		    void *loop_end_arg)
5998 {
5999 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6000 	int (*napi_poll)(struct napi_struct *napi, int budget);
6001 	void *have_poll_lock = NULL;
6002 	struct napi_struct *napi;
6003 
6004 restart:
6005 	napi_poll = NULL;
6006 
6007 	rcu_read_lock();
6008 
6009 	napi = napi_by_id(napi_id);
6010 	if (!napi)
6011 		goto out;
6012 
6013 	preempt_disable();
6014 	for (;;) {
6015 		int work = 0;
6016 
6017 		local_bh_disable();
6018 		if (!napi_poll) {
6019 			unsigned long val = READ_ONCE(napi->state);
6020 
6021 			/* If multiple threads are competing for this napi,
6022 			 * we avoid dirtying napi->state as much as we can.
6023 			 */
6024 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6025 				   NAPIF_STATE_IN_BUSY_POLL))
6026 				goto count;
6027 			if (cmpxchg(&napi->state, val,
6028 				    val | NAPIF_STATE_IN_BUSY_POLL |
6029 					  NAPIF_STATE_SCHED) != val)
6030 				goto count;
6031 			have_poll_lock = netpoll_poll_lock(napi);
6032 			napi_poll = napi->poll;
6033 		}
6034 		work = napi_poll(napi, BUSY_POLL_BUDGET);
6035 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6036 count:
6037 		if (work > 0)
6038 			__NET_ADD_STATS(dev_net(napi->dev),
6039 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6040 		local_bh_enable();
6041 
6042 		if (!loop_end || loop_end(loop_end_arg, start_time))
6043 			break;
6044 
6045 		if (unlikely(need_resched())) {
6046 			if (napi_poll)
6047 				busy_poll_stop(napi, have_poll_lock);
6048 			preempt_enable();
6049 			rcu_read_unlock();
6050 			cond_resched();
6051 			if (loop_end(loop_end_arg, start_time))
6052 				return;
6053 			goto restart;
6054 		}
6055 		cpu_relax();
6056 	}
6057 	if (napi_poll)
6058 		busy_poll_stop(napi, have_poll_lock);
6059 	preempt_enable();
6060 out:
6061 	rcu_read_unlock();
6062 }
6063 EXPORT_SYMBOL(napi_busy_loop);
6064 
6065 #endif /* CONFIG_NET_RX_BUSY_POLL */
6066 
6067 static void napi_hash_add(struct napi_struct *napi)
6068 {
6069 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6070 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6071 		return;
6072 
6073 	spin_lock(&napi_hash_lock);
6074 
6075 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6076 	do {
6077 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6078 			napi_gen_id = MIN_NAPI_ID;
6079 	} while (napi_by_id(napi_gen_id));
6080 	napi->napi_id = napi_gen_id;
6081 
6082 	hlist_add_head_rcu(&napi->napi_hash_node,
6083 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6084 
6085 	spin_unlock(&napi_hash_lock);
6086 }
6087 
6088 /* Warning : caller is responsible to make sure rcu grace period
6089  * is respected before freeing memory containing @napi
6090  */
6091 bool napi_hash_del(struct napi_struct *napi)
6092 {
6093 	bool rcu_sync_needed = false;
6094 
6095 	spin_lock(&napi_hash_lock);
6096 
6097 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6098 		rcu_sync_needed = true;
6099 		hlist_del_rcu(&napi->napi_hash_node);
6100 	}
6101 	spin_unlock(&napi_hash_lock);
6102 	return rcu_sync_needed;
6103 }
6104 EXPORT_SYMBOL_GPL(napi_hash_del);
6105 
6106 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6107 {
6108 	struct napi_struct *napi;
6109 
6110 	napi = container_of(timer, struct napi_struct, timer);
6111 
6112 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6113 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6114 	 */
6115 	if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6116 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6117 		__napi_schedule_irqoff(napi);
6118 
6119 	return HRTIMER_NORESTART;
6120 }
6121 
6122 static void init_gro_hash(struct napi_struct *napi)
6123 {
6124 	int i;
6125 
6126 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6127 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6128 		napi->gro_hash[i].count = 0;
6129 	}
6130 	napi->gro_bitmask = 0;
6131 }
6132 
6133 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6134 		    int (*poll)(struct napi_struct *, int), int weight)
6135 {
6136 	INIT_LIST_HEAD(&napi->poll_list);
6137 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6138 	napi->timer.function = napi_watchdog;
6139 	init_gro_hash(napi);
6140 	napi->skb = NULL;
6141 	napi->poll = poll;
6142 	if (weight > NAPI_POLL_WEIGHT)
6143 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6144 			    weight, dev->name);
6145 	napi->weight = weight;
6146 	list_add(&napi->dev_list, &dev->napi_list);
6147 	napi->dev = dev;
6148 #ifdef CONFIG_NETPOLL
6149 	napi->poll_owner = -1;
6150 #endif
6151 	set_bit(NAPI_STATE_SCHED, &napi->state);
6152 	napi_hash_add(napi);
6153 }
6154 EXPORT_SYMBOL(netif_napi_add);
6155 
6156 void napi_disable(struct napi_struct *n)
6157 {
6158 	might_sleep();
6159 	set_bit(NAPI_STATE_DISABLE, &n->state);
6160 
6161 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6162 		msleep(1);
6163 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6164 		msleep(1);
6165 
6166 	hrtimer_cancel(&n->timer);
6167 
6168 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6169 }
6170 EXPORT_SYMBOL(napi_disable);
6171 
6172 static void flush_gro_hash(struct napi_struct *napi)
6173 {
6174 	int i;
6175 
6176 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6177 		struct sk_buff *skb, *n;
6178 
6179 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6180 			kfree_skb(skb);
6181 		napi->gro_hash[i].count = 0;
6182 	}
6183 }
6184 
6185 /* Must be called in process context */
6186 void netif_napi_del(struct napi_struct *napi)
6187 {
6188 	might_sleep();
6189 	if (napi_hash_del(napi))
6190 		synchronize_net();
6191 	list_del_init(&napi->dev_list);
6192 	napi_free_frags(napi);
6193 
6194 	flush_gro_hash(napi);
6195 	napi->gro_bitmask = 0;
6196 }
6197 EXPORT_SYMBOL(netif_napi_del);
6198 
6199 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6200 {
6201 	void *have;
6202 	int work, weight;
6203 
6204 	list_del_init(&n->poll_list);
6205 
6206 	have = netpoll_poll_lock(n);
6207 
6208 	weight = n->weight;
6209 
6210 	/* This NAPI_STATE_SCHED test is for avoiding a race
6211 	 * with netpoll's poll_napi().  Only the entity which
6212 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6213 	 * actually make the ->poll() call.  Therefore we avoid
6214 	 * accidentally calling ->poll() when NAPI is not scheduled.
6215 	 */
6216 	work = 0;
6217 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6218 		work = n->poll(n, weight);
6219 		trace_napi_poll(n, work, weight);
6220 	}
6221 
6222 	WARN_ON_ONCE(work > weight);
6223 
6224 	if (likely(work < weight))
6225 		goto out_unlock;
6226 
6227 	/* Drivers must not modify the NAPI state if they
6228 	 * consume the entire weight.  In such cases this code
6229 	 * still "owns" the NAPI instance and therefore can
6230 	 * move the instance around on the list at-will.
6231 	 */
6232 	if (unlikely(napi_disable_pending(n))) {
6233 		napi_complete(n);
6234 		goto out_unlock;
6235 	}
6236 
6237 	if (n->gro_bitmask) {
6238 		/* flush too old packets
6239 		 * If HZ < 1000, flush all packets.
6240 		 */
6241 		napi_gro_flush(n, HZ >= 1000);
6242 	}
6243 
6244 	/* Some drivers may have called napi_schedule
6245 	 * prior to exhausting their budget.
6246 	 */
6247 	if (unlikely(!list_empty(&n->poll_list))) {
6248 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6249 			     n->dev ? n->dev->name : "backlog");
6250 		goto out_unlock;
6251 	}
6252 
6253 	list_add_tail(&n->poll_list, repoll);
6254 
6255 out_unlock:
6256 	netpoll_poll_unlock(have);
6257 
6258 	return work;
6259 }
6260 
6261 static __latent_entropy void net_rx_action(struct softirq_action *h)
6262 {
6263 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6264 	unsigned long time_limit = jiffies +
6265 		usecs_to_jiffies(netdev_budget_usecs);
6266 	int budget = netdev_budget;
6267 	LIST_HEAD(list);
6268 	LIST_HEAD(repoll);
6269 
6270 	local_irq_disable();
6271 	list_splice_init(&sd->poll_list, &list);
6272 	local_irq_enable();
6273 
6274 	for (;;) {
6275 		struct napi_struct *n;
6276 
6277 		if (list_empty(&list)) {
6278 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6279 				goto out;
6280 			break;
6281 		}
6282 
6283 		n = list_first_entry(&list, struct napi_struct, poll_list);
6284 		budget -= napi_poll(n, &repoll);
6285 
6286 		/* If softirq window is exhausted then punt.
6287 		 * Allow this to run for 2 jiffies since which will allow
6288 		 * an average latency of 1.5/HZ.
6289 		 */
6290 		if (unlikely(budget <= 0 ||
6291 			     time_after_eq(jiffies, time_limit))) {
6292 			sd->time_squeeze++;
6293 			break;
6294 		}
6295 	}
6296 
6297 	local_irq_disable();
6298 
6299 	list_splice_tail_init(&sd->poll_list, &list);
6300 	list_splice_tail(&repoll, &list);
6301 	list_splice(&list, &sd->poll_list);
6302 	if (!list_empty(&sd->poll_list))
6303 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6304 
6305 	net_rps_action_and_irq_enable(sd);
6306 out:
6307 	__kfree_skb_flush();
6308 }
6309 
6310 struct netdev_adjacent {
6311 	struct net_device *dev;
6312 
6313 	/* upper master flag, there can only be one master device per list */
6314 	bool master;
6315 
6316 	/* counter for the number of times this device was added to us */
6317 	u16 ref_nr;
6318 
6319 	/* private field for the users */
6320 	void *private;
6321 
6322 	struct list_head list;
6323 	struct rcu_head rcu;
6324 };
6325 
6326 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6327 						 struct list_head *adj_list)
6328 {
6329 	struct netdev_adjacent *adj;
6330 
6331 	list_for_each_entry(adj, adj_list, list) {
6332 		if (adj->dev == adj_dev)
6333 			return adj;
6334 	}
6335 	return NULL;
6336 }
6337 
6338 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6339 {
6340 	struct net_device *dev = data;
6341 
6342 	return upper_dev == dev;
6343 }
6344 
6345 /**
6346  * netdev_has_upper_dev - Check if device is linked to an upper device
6347  * @dev: device
6348  * @upper_dev: upper device to check
6349  *
6350  * Find out if a device is linked to specified upper device and return true
6351  * in case it is. Note that this checks only immediate upper device,
6352  * not through a complete stack of devices. The caller must hold the RTNL lock.
6353  */
6354 bool netdev_has_upper_dev(struct net_device *dev,
6355 			  struct net_device *upper_dev)
6356 {
6357 	ASSERT_RTNL();
6358 
6359 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6360 					     upper_dev);
6361 }
6362 EXPORT_SYMBOL(netdev_has_upper_dev);
6363 
6364 /**
6365  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6366  * @dev: device
6367  * @upper_dev: upper device to check
6368  *
6369  * Find out if a device is linked to specified upper device and return true
6370  * in case it is. Note that this checks the entire upper device chain.
6371  * The caller must hold rcu lock.
6372  */
6373 
6374 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6375 				  struct net_device *upper_dev)
6376 {
6377 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6378 					       upper_dev);
6379 }
6380 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6381 
6382 /**
6383  * netdev_has_any_upper_dev - Check if device is linked to some device
6384  * @dev: device
6385  *
6386  * Find out if a device is linked to an upper device and return true in case
6387  * it is. The caller must hold the RTNL lock.
6388  */
6389 bool netdev_has_any_upper_dev(struct net_device *dev)
6390 {
6391 	ASSERT_RTNL();
6392 
6393 	return !list_empty(&dev->adj_list.upper);
6394 }
6395 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6396 
6397 /**
6398  * netdev_master_upper_dev_get - Get master upper device
6399  * @dev: device
6400  *
6401  * Find a master upper device and return pointer to it or NULL in case
6402  * it's not there. The caller must hold the RTNL lock.
6403  */
6404 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6405 {
6406 	struct netdev_adjacent *upper;
6407 
6408 	ASSERT_RTNL();
6409 
6410 	if (list_empty(&dev->adj_list.upper))
6411 		return NULL;
6412 
6413 	upper = list_first_entry(&dev->adj_list.upper,
6414 				 struct netdev_adjacent, list);
6415 	if (likely(upper->master))
6416 		return upper->dev;
6417 	return NULL;
6418 }
6419 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6420 
6421 /**
6422  * netdev_has_any_lower_dev - Check if device is linked to some device
6423  * @dev: device
6424  *
6425  * Find out if a device is linked to a lower device and return true in case
6426  * it is. The caller must hold the RTNL lock.
6427  */
6428 static bool netdev_has_any_lower_dev(struct net_device *dev)
6429 {
6430 	ASSERT_RTNL();
6431 
6432 	return !list_empty(&dev->adj_list.lower);
6433 }
6434 
6435 void *netdev_adjacent_get_private(struct list_head *adj_list)
6436 {
6437 	struct netdev_adjacent *adj;
6438 
6439 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6440 
6441 	return adj->private;
6442 }
6443 EXPORT_SYMBOL(netdev_adjacent_get_private);
6444 
6445 /**
6446  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6447  * @dev: device
6448  * @iter: list_head ** of the current position
6449  *
6450  * Gets the next device from the dev's upper list, starting from iter
6451  * position. The caller must hold RCU read lock.
6452  */
6453 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6454 						 struct list_head **iter)
6455 {
6456 	struct netdev_adjacent *upper;
6457 
6458 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6459 
6460 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6461 
6462 	if (&upper->list == &dev->adj_list.upper)
6463 		return NULL;
6464 
6465 	*iter = &upper->list;
6466 
6467 	return upper->dev;
6468 }
6469 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6470 
6471 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6472 						    struct list_head **iter)
6473 {
6474 	struct netdev_adjacent *upper;
6475 
6476 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6477 
6478 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6479 
6480 	if (&upper->list == &dev->adj_list.upper)
6481 		return NULL;
6482 
6483 	*iter = &upper->list;
6484 
6485 	return upper->dev;
6486 }
6487 
6488 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6489 				  int (*fn)(struct net_device *dev,
6490 					    void *data),
6491 				  void *data)
6492 {
6493 	struct net_device *udev;
6494 	struct list_head *iter;
6495 	int ret;
6496 
6497 	for (iter = &dev->adj_list.upper,
6498 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
6499 	     udev;
6500 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6501 		/* first is the upper device itself */
6502 		ret = fn(udev, data);
6503 		if (ret)
6504 			return ret;
6505 
6506 		/* then look at all of its upper devices */
6507 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6508 		if (ret)
6509 			return ret;
6510 	}
6511 
6512 	return 0;
6513 }
6514 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6515 
6516 /**
6517  * netdev_lower_get_next_private - Get the next ->private from the
6518  *				   lower neighbour list
6519  * @dev: device
6520  * @iter: list_head ** of the current position
6521  *
6522  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6523  * list, starting from iter position. The caller must hold either hold the
6524  * RTNL lock or its own locking that guarantees that the neighbour lower
6525  * list will remain unchanged.
6526  */
6527 void *netdev_lower_get_next_private(struct net_device *dev,
6528 				    struct list_head **iter)
6529 {
6530 	struct netdev_adjacent *lower;
6531 
6532 	lower = list_entry(*iter, struct netdev_adjacent, list);
6533 
6534 	if (&lower->list == &dev->adj_list.lower)
6535 		return NULL;
6536 
6537 	*iter = lower->list.next;
6538 
6539 	return lower->private;
6540 }
6541 EXPORT_SYMBOL(netdev_lower_get_next_private);
6542 
6543 /**
6544  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6545  *				       lower neighbour list, RCU
6546  *				       variant
6547  * @dev: device
6548  * @iter: list_head ** of the current position
6549  *
6550  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6551  * list, starting from iter position. The caller must hold RCU read lock.
6552  */
6553 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6554 					struct list_head **iter)
6555 {
6556 	struct netdev_adjacent *lower;
6557 
6558 	WARN_ON_ONCE(!rcu_read_lock_held());
6559 
6560 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6561 
6562 	if (&lower->list == &dev->adj_list.lower)
6563 		return NULL;
6564 
6565 	*iter = &lower->list;
6566 
6567 	return lower->private;
6568 }
6569 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6570 
6571 /**
6572  * netdev_lower_get_next - Get the next device from the lower neighbour
6573  *                         list
6574  * @dev: device
6575  * @iter: list_head ** of the current position
6576  *
6577  * Gets the next netdev_adjacent from the dev's lower neighbour
6578  * list, starting from iter position. The caller must hold RTNL lock or
6579  * its own locking that guarantees that the neighbour lower
6580  * list will remain unchanged.
6581  */
6582 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6583 {
6584 	struct netdev_adjacent *lower;
6585 
6586 	lower = list_entry(*iter, struct netdev_adjacent, list);
6587 
6588 	if (&lower->list == &dev->adj_list.lower)
6589 		return NULL;
6590 
6591 	*iter = lower->list.next;
6592 
6593 	return lower->dev;
6594 }
6595 EXPORT_SYMBOL(netdev_lower_get_next);
6596 
6597 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6598 						struct list_head **iter)
6599 {
6600 	struct netdev_adjacent *lower;
6601 
6602 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6603 
6604 	if (&lower->list == &dev->adj_list.lower)
6605 		return NULL;
6606 
6607 	*iter = &lower->list;
6608 
6609 	return lower->dev;
6610 }
6611 
6612 int netdev_walk_all_lower_dev(struct net_device *dev,
6613 			      int (*fn)(struct net_device *dev,
6614 					void *data),
6615 			      void *data)
6616 {
6617 	struct net_device *ldev;
6618 	struct list_head *iter;
6619 	int ret;
6620 
6621 	for (iter = &dev->adj_list.lower,
6622 	     ldev = netdev_next_lower_dev(dev, &iter);
6623 	     ldev;
6624 	     ldev = netdev_next_lower_dev(dev, &iter)) {
6625 		/* first is the lower device itself */
6626 		ret = fn(ldev, data);
6627 		if (ret)
6628 			return ret;
6629 
6630 		/* then look at all of its lower devices */
6631 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6632 		if (ret)
6633 			return ret;
6634 	}
6635 
6636 	return 0;
6637 }
6638 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6639 
6640 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6641 						    struct list_head **iter)
6642 {
6643 	struct netdev_adjacent *lower;
6644 
6645 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6646 	if (&lower->list == &dev->adj_list.lower)
6647 		return NULL;
6648 
6649 	*iter = &lower->list;
6650 
6651 	return lower->dev;
6652 }
6653 
6654 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6655 				  int (*fn)(struct net_device *dev,
6656 					    void *data),
6657 				  void *data)
6658 {
6659 	struct net_device *ldev;
6660 	struct list_head *iter;
6661 	int ret;
6662 
6663 	for (iter = &dev->adj_list.lower,
6664 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6665 	     ldev;
6666 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6667 		/* first is the lower device itself */
6668 		ret = fn(ldev, data);
6669 		if (ret)
6670 			return ret;
6671 
6672 		/* then look at all of its lower devices */
6673 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6674 		if (ret)
6675 			return ret;
6676 	}
6677 
6678 	return 0;
6679 }
6680 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6681 
6682 /**
6683  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6684  *				       lower neighbour list, RCU
6685  *				       variant
6686  * @dev: device
6687  *
6688  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6689  * list. The caller must hold RCU read lock.
6690  */
6691 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6692 {
6693 	struct netdev_adjacent *lower;
6694 
6695 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6696 			struct netdev_adjacent, list);
6697 	if (lower)
6698 		return lower->private;
6699 	return NULL;
6700 }
6701 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6702 
6703 /**
6704  * netdev_master_upper_dev_get_rcu - Get master upper device
6705  * @dev: device
6706  *
6707  * Find a master upper device and return pointer to it or NULL in case
6708  * it's not there. The caller must hold the RCU read lock.
6709  */
6710 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6711 {
6712 	struct netdev_adjacent *upper;
6713 
6714 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6715 				       struct netdev_adjacent, list);
6716 	if (upper && likely(upper->master))
6717 		return upper->dev;
6718 	return NULL;
6719 }
6720 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6721 
6722 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6723 			      struct net_device *adj_dev,
6724 			      struct list_head *dev_list)
6725 {
6726 	char linkname[IFNAMSIZ+7];
6727 
6728 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6729 		"upper_%s" : "lower_%s", adj_dev->name);
6730 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6731 				 linkname);
6732 }
6733 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6734 			       char *name,
6735 			       struct list_head *dev_list)
6736 {
6737 	char linkname[IFNAMSIZ+7];
6738 
6739 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6740 		"upper_%s" : "lower_%s", name);
6741 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6742 }
6743 
6744 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6745 						 struct net_device *adj_dev,
6746 						 struct list_head *dev_list)
6747 {
6748 	return (dev_list == &dev->adj_list.upper ||
6749 		dev_list == &dev->adj_list.lower) &&
6750 		net_eq(dev_net(dev), dev_net(adj_dev));
6751 }
6752 
6753 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6754 					struct net_device *adj_dev,
6755 					struct list_head *dev_list,
6756 					void *private, bool master)
6757 {
6758 	struct netdev_adjacent *adj;
6759 	int ret;
6760 
6761 	adj = __netdev_find_adj(adj_dev, dev_list);
6762 
6763 	if (adj) {
6764 		adj->ref_nr += 1;
6765 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6766 			 dev->name, adj_dev->name, adj->ref_nr);
6767 
6768 		return 0;
6769 	}
6770 
6771 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6772 	if (!adj)
6773 		return -ENOMEM;
6774 
6775 	adj->dev = adj_dev;
6776 	adj->master = master;
6777 	adj->ref_nr = 1;
6778 	adj->private = private;
6779 	dev_hold(adj_dev);
6780 
6781 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6782 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6783 
6784 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6785 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6786 		if (ret)
6787 			goto free_adj;
6788 	}
6789 
6790 	/* Ensure that master link is always the first item in list. */
6791 	if (master) {
6792 		ret = sysfs_create_link(&(dev->dev.kobj),
6793 					&(adj_dev->dev.kobj), "master");
6794 		if (ret)
6795 			goto remove_symlinks;
6796 
6797 		list_add_rcu(&adj->list, dev_list);
6798 	} else {
6799 		list_add_tail_rcu(&adj->list, dev_list);
6800 	}
6801 
6802 	return 0;
6803 
6804 remove_symlinks:
6805 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6806 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6807 free_adj:
6808 	kfree(adj);
6809 	dev_put(adj_dev);
6810 
6811 	return ret;
6812 }
6813 
6814 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6815 					 struct net_device *adj_dev,
6816 					 u16 ref_nr,
6817 					 struct list_head *dev_list)
6818 {
6819 	struct netdev_adjacent *adj;
6820 
6821 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6822 		 dev->name, adj_dev->name, ref_nr);
6823 
6824 	adj = __netdev_find_adj(adj_dev, dev_list);
6825 
6826 	if (!adj) {
6827 		pr_err("Adjacency does not exist for device %s from %s\n",
6828 		       dev->name, adj_dev->name);
6829 		WARN_ON(1);
6830 		return;
6831 	}
6832 
6833 	if (adj->ref_nr > ref_nr) {
6834 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6835 			 dev->name, adj_dev->name, ref_nr,
6836 			 adj->ref_nr - ref_nr);
6837 		adj->ref_nr -= ref_nr;
6838 		return;
6839 	}
6840 
6841 	if (adj->master)
6842 		sysfs_remove_link(&(dev->dev.kobj), "master");
6843 
6844 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6845 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6846 
6847 	list_del_rcu(&adj->list);
6848 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6849 		 adj_dev->name, dev->name, adj_dev->name);
6850 	dev_put(adj_dev);
6851 	kfree_rcu(adj, rcu);
6852 }
6853 
6854 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6855 					    struct net_device *upper_dev,
6856 					    struct list_head *up_list,
6857 					    struct list_head *down_list,
6858 					    void *private, bool master)
6859 {
6860 	int ret;
6861 
6862 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6863 					   private, master);
6864 	if (ret)
6865 		return ret;
6866 
6867 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6868 					   private, false);
6869 	if (ret) {
6870 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6871 		return ret;
6872 	}
6873 
6874 	return 0;
6875 }
6876 
6877 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6878 					       struct net_device *upper_dev,
6879 					       u16 ref_nr,
6880 					       struct list_head *up_list,
6881 					       struct list_head *down_list)
6882 {
6883 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6884 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6885 }
6886 
6887 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6888 						struct net_device *upper_dev,
6889 						void *private, bool master)
6890 {
6891 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6892 						&dev->adj_list.upper,
6893 						&upper_dev->adj_list.lower,
6894 						private, master);
6895 }
6896 
6897 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6898 						   struct net_device *upper_dev)
6899 {
6900 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6901 					   &dev->adj_list.upper,
6902 					   &upper_dev->adj_list.lower);
6903 }
6904 
6905 static int __netdev_upper_dev_link(struct net_device *dev,
6906 				   struct net_device *upper_dev, bool master,
6907 				   void *upper_priv, void *upper_info,
6908 				   struct netlink_ext_ack *extack)
6909 {
6910 	struct netdev_notifier_changeupper_info changeupper_info = {
6911 		.info = {
6912 			.dev = dev,
6913 			.extack = extack,
6914 		},
6915 		.upper_dev = upper_dev,
6916 		.master = master,
6917 		.linking = true,
6918 		.upper_info = upper_info,
6919 	};
6920 	struct net_device *master_dev;
6921 	int ret = 0;
6922 
6923 	ASSERT_RTNL();
6924 
6925 	if (dev == upper_dev)
6926 		return -EBUSY;
6927 
6928 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6929 	if (netdev_has_upper_dev(upper_dev, dev))
6930 		return -EBUSY;
6931 
6932 	if (!master) {
6933 		if (netdev_has_upper_dev(dev, upper_dev))
6934 			return -EEXIST;
6935 	} else {
6936 		master_dev = netdev_master_upper_dev_get(dev);
6937 		if (master_dev)
6938 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
6939 	}
6940 
6941 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6942 					    &changeupper_info.info);
6943 	ret = notifier_to_errno(ret);
6944 	if (ret)
6945 		return ret;
6946 
6947 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6948 						   master);
6949 	if (ret)
6950 		return ret;
6951 
6952 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6953 					    &changeupper_info.info);
6954 	ret = notifier_to_errno(ret);
6955 	if (ret)
6956 		goto rollback;
6957 
6958 	return 0;
6959 
6960 rollback:
6961 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6962 
6963 	return ret;
6964 }
6965 
6966 /**
6967  * netdev_upper_dev_link - Add a link to the upper device
6968  * @dev: device
6969  * @upper_dev: new upper device
6970  * @extack: netlink extended ack
6971  *
6972  * Adds a link to device which is upper to this one. The caller must hold
6973  * the RTNL lock. On a failure a negative errno code is returned.
6974  * On success the reference counts are adjusted and the function
6975  * returns zero.
6976  */
6977 int netdev_upper_dev_link(struct net_device *dev,
6978 			  struct net_device *upper_dev,
6979 			  struct netlink_ext_ack *extack)
6980 {
6981 	return __netdev_upper_dev_link(dev, upper_dev, false,
6982 				       NULL, NULL, extack);
6983 }
6984 EXPORT_SYMBOL(netdev_upper_dev_link);
6985 
6986 /**
6987  * netdev_master_upper_dev_link - Add a master link to the upper device
6988  * @dev: device
6989  * @upper_dev: new upper device
6990  * @upper_priv: upper device private
6991  * @upper_info: upper info to be passed down via notifier
6992  * @extack: netlink extended ack
6993  *
6994  * Adds a link to device which is upper to this one. In this case, only
6995  * one master upper device can be linked, although other non-master devices
6996  * might be linked as well. The caller must hold the RTNL lock.
6997  * On a failure a negative errno code is returned. On success the reference
6998  * counts are adjusted and the function returns zero.
6999  */
7000 int netdev_master_upper_dev_link(struct net_device *dev,
7001 				 struct net_device *upper_dev,
7002 				 void *upper_priv, void *upper_info,
7003 				 struct netlink_ext_ack *extack)
7004 {
7005 	return __netdev_upper_dev_link(dev, upper_dev, true,
7006 				       upper_priv, upper_info, extack);
7007 }
7008 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7009 
7010 /**
7011  * netdev_upper_dev_unlink - Removes a link to upper device
7012  * @dev: device
7013  * @upper_dev: new upper device
7014  *
7015  * Removes a link to device which is upper to this one. The caller must hold
7016  * the RTNL lock.
7017  */
7018 void netdev_upper_dev_unlink(struct net_device *dev,
7019 			     struct net_device *upper_dev)
7020 {
7021 	struct netdev_notifier_changeupper_info changeupper_info = {
7022 		.info = {
7023 			.dev = dev,
7024 		},
7025 		.upper_dev = upper_dev,
7026 		.linking = false,
7027 	};
7028 
7029 	ASSERT_RTNL();
7030 
7031 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7032 
7033 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7034 				      &changeupper_info.info);
7035 
7036 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7037 
7038 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7039 				      &changeupper_info.info);
7040 }
7041 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7042 
7043 /**
7044  * netdev_bonding_info_change - Dispatch event about slave change
7045  * @dev: device
7046  * @bonding_info: info to dispatch
7047  *
7048  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7049  * The caller must hold the RTNL lock.
7050  */
7051 void netdev_bonding_info_change(struct net_device *dev,
7052 				struct netdev_bonding_info *bonding_info)
7053 {
7054 	struct netdev_notifier_bonding_info info = {
7055 		.info.dev = dev,
7056 	};
7057 
7058 	memcpy(&info.bonding_info, bonding_info,
7059 	       sizeof(struct netdev_bonding_info));
7060 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7061 				      &info.info);
7062 }
7063 EXPORT_SYMBOL(netdev_bonding_info_change);
7064 
7065 static void netdev_adjacent_add_links(struct net_device *dev)
7066 {
7067 	struct netdev_adjacent *iter;
7068 
7069 	struct net *net = dev_net(dev);
7070 
7071 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7072 		if (!net_eq(net, dev_net(iter->dev)))
7073 			continue;
7074 		netdev_adjacent_sysfs_add(iter->dev, dev,
7075 					  &iter->dev->adj_list.lower);
7076 		netdev_adjacent_sysfs_add(dev, iter->dev,
7077 					  &dev->adj_list.upper);
7078 	}
7079 
7080 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7081 		if (!net_eq(net, dev_net(iter->dev)))
7082 			continue;
7083 		netdev_adjacent_sysfs_add(iter->dev, dev,
7084 					  &iter->dev->adj_list.upper);
7085 		netdev_adjacent_sysfs_add(dev, iter->dev,
7086 					  &dev->adj_list.lower);
7087 	}
7088 }
7089 
7090 static void netdev_adjacent_del_links(struct net_device *dev)
7091 {
7092 	struct netdev_adjacent *iter;
7093 
7094 	struct net *net = dev_net(dev);
7095 
7096 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7097 		if (!net_eq(net, dev_net(iter->dev)))
7098 			continue;
7099 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7100 					  &iter->dev->adj_list.lower);
7101 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7102 					  &dev->adj_list.upper);
7103 	}
7104 
7105 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7106 		if (!net_eq(net, dev_net(iter->dev)))
7107 			continue;
7108 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
7109 					  &iter->dev->adj_list.upper);
7110 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
7111 					  &dev->adj_list.lower);
7112 	}
7113 }
7114 
7115 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7116 {
7117 	struct netdev_adjacent *iter;
7118 
7119 	struct net *net = dev_net(dev);
7120 
7121 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
7122 		if (!net_eq(net, dev_net(iter->dev)))
7123 			continue;
7124 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7125 					  &iter->dev->adj_list.lower);
7126 		netdev_adjacent_sysfs_add(iter->dev, dev,
7127 					  &iter->dev->adj_list.lower);
7128 	}
7129 
7130 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
7131 		if (!net_eq(net, dev_net(iter->dev)))
7132 			continue;
7133 		netdev_adjacent_sysfs_del(iter->dev, oldname,
7134 					  &iter->dev->adj_list.upper);
7135 		netdev_adjacent_sysfs_add(iter->dev, dev,
7136 					  &iter->dev->adj_list.upper);
7137 	}
7138 }
7139 
7140 void *netdev_lower_dev_get_private(struct net_device *dev,
7141 				   struct net_device *lower_dev)
7142 {
7143 	struct netdev_adjacent *lower;
7144 
7145 	if (!lower_dev)
7146 		return NULL;
7147 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7148 	if (!lower)
7149 		return NULL;
7150 
7151 	return lower->private;
7152 }
7153 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7154 
7155 
7156 int dev_get_nest_level(struct net_device *dev)
7157 {
7158 	struct net_device *lower = NULL;
7159 	struct list_head *iter;
7160 	int max_nest = -1;
7161 	int nest;
7162 
7163 	ASSERT_RTNL();
7164 
7165 	netdev_for_each_lower_dev(dev, lower, iter) {
7166 		nest = dev_get_nest_level(lower);
7167 		if (max_nest < nest)
7168 			max_nest = nest;
7169 	}
7170 
7171 	return max_nest + 1;
7172 }
7173 EXPORT_SYMBOL(dev_get_nest_level);
7174 
7175 /**
7176  * netdev_lower_change - Dispatch event about lower device state change
7177  * @lower_dev: device
7178  * @lower_state_info: state to dispatch
7179  *
7180  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7181  * The caller must hold the RTNL lock.
7182  */
7183 void netdev_lower_state_changed(struct net_device *lower_dev,
7184 				void *lower_state_info)
7185 {
7186 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7187 		.info.dev = lower_dev,
7188 	};
7189 
7190 	ASSERT_RTNL();
7191 	changelowerstate_info.lower_state_info = lower_state_info;
7192 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7193 				      &changelowerstate_info.info);
7194 }
7195 EXPORT_SYMBOL(netdev_lower_state_changed);
7196 
7197 static void dev_change_rx_flags(struct net_device *dev, int flags)
7198 {
7199 	const struct net_device_ops *ops = dev->netdev_ops;
7200 
7201 	if (ops->ndo_change_rx_flags)
7202 		ops->ndo_change_rx_flags(dev, flags);
7203 }
7204 
7205 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7206 {
7207 	unsigned int old_flags = dev->flags;
7208 	kuid_t uid;
7209 	kgid_t gid;
7210 
7211 	ASSERT_RTNL();
7212 
7213 	dev->flags |= IFF_PROMISC;
7214 	dev->promiscuity += inc;
7215 	if (dev->promiscuity == 0) {
7216 		/*
7217 		 * Avoid overflow.
7218 		 * If inc causes overflow, untouch promisc and return error.
7219 		 */
7220 		if (inc < 0)
7221 			dev->flags &= ~IFF_PROMISC;
7222 		else {
7223 			dev->promiscuity -= inc;
7224 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7225 				dev->name);
7226 			return -EOVERFLOW;
7227 		}
7228 	}
7229 	if (dev->flags != old_flags) {
7230 		pr_info("device %s %s promiscuous mode\n",
7231 			dev->name,
7232 			dev->flags & IFF_PROMISC ? "entered" : "left");
7233 		if (audit_enabled) {
7234 			current_uid_gid(&uid, &gid);
7235 			audit_log(audit_context(), GFP_ATOMIC,
7236 				  AUDIT_ANOM_PROMISCUOUS,
7237 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7238 				  dev->name, (dev->flags & IFF_PROMISC),
7239 				  (old_flags & IFF_PROMISC),
7240 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7241 				  from_kuid(&init_user_ns, uid),
7242 				  from_kgid(&init_user_ns, gid),
7243 				  audit_get_sessionid(current));
7244 		}
7245 
7246 		dev_change_rx_flags(dev, IFF_PROMISC);
7247 	}
7248 	if (notify)
7249 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
7250 	return 0;
7251 }
7252 
7253 /**
7254  *	dev_set_promiscuity	- update promiscuity count on a device
7255  *	@dev: device
7256  *	@inc: modifier
7257  *
7258  *	Add or remove promiscuity from a device. While the count in the device
7259  *	remains above zero the interface remains promiscuous. Once it hits zero
7260  *	the device reverts back to normal filtering operation. A negative inc
7261  *	value is used to drop promiscuity on the device.
7262  *	Return 0 if successful or a negative errno code on error.
7263  */
7264 int dev_set_promiscuity(struct net_device *dev, int inc)
7265 {
7266 	unsigned int old_flags = dev->flags;
7267 	int err;
7268 
7269 	err = __dev_set_promiscuity(dev, inc, true);
7270 	if (err < 0)
7271 		return err;
7272 	if (dev->flags != old_flags)
7273 		dev_set_rx_mode(dev);
7274 	return err;
7275 }
7276 EXPORT_SYMBOL(dev_set_promiscuity);
7277 
7278 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7279 {
7280 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7281 
7282 	ASSERT_RTNL();
7283 
7284 	dev->flags |= IFF_ALLMULTI;
7285 	dev->allmulti += inc;
7286 	if (dev->allmulti == 0) {
7287 		/*
7288 		 * Avoid overflow.
7289 		 * If inc causes overflow, untouch allmulti and return error.
7290 		 */
7291 		if (inc < 0)
7292 			dev->flags &= ~IFF_ALLMULTI;
7293 		else {
7294 			dev->allmulti -= inc;
7295 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7296 				dev->name);
7297 			return -EOVERFLOW;
7298 		}
7299 	}
7300 	if (dev->flags ^ old_flags) {
7301 		dev_change_rx_flags(dev, IFF_ALLMULTI);
7302 		dev_set_rx_mode(dev);
7303 		if (notify)
7304 			__dev_notify_flags(dev, old_flags,
7305 					   dev->gflags ^ old_gflags);
7306 	}
7307 	return 0;
7308 }
7309 
7310 /**
7311  *	dev_set_allmulti	- update allmulti count on a device
7312  *	@dev: device
7313  *	@inc: modifier
7314  *
7315  *	Add or remove reception of all multicast frames to a device. While the
7316  *	count in the device remains above zero the interface remains listening
7317  *	to all interfaces. Once it hits zero the device reverts back to normal
7318  *	filtering operation. A negative @inc value is used to drop the counter
7319  *	when releasing a resource needing all multicasts.
7320  *	Return 0 if successful or a negative errno code on error.
7321  */
7322 
7323 int dev_set_allmulti(struct net_device *dev, int inc)
7324 {
7325 	return __dev_set_allmulti(dev, inc, true);
7326 }
7327 EXPORT_SYMBOL(dev_set_allmulti);
7328 
7329 /*
7330  *	Upload unicast and multicast address lists to device and
7331  *	configure RX filtering. When the device doesn't support unicast
7332  *	filtering it is put in promiscuous mode while unicast addresses
7333  *	are present.
7334  */
7335 void __dev_set_rx_mode(struct net_device *dev)
7336 {
7337 	const struct net_device_ops *ops = dev->netdev_ops;
7338 
7339 	/* dev_open will call this function so the list will stay sane. */
7340 	if (!(dev->flags&IFF_UP))
7341 		return;
7342 
7343 	if (!netif_device_present(dev))
7344 		return;
7345 
7346 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7347 		/* Unicast addresses changes may only happen under the rtnl,
7348 		 * therefore calling __dev_set_promiscuity here is safe.
7349 		 */
7350 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7351 			__dev_set_promiscuity(dev, 1, false);
7352 			dev->uc_promisc = true;
7353 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7354 			__dev_set_promiscuity(dev, -1, false);
7355 			dev->uc_promisc = false;
7356 		}
7357 	}
7358 
7359 	if (ops->ndo_set_rx_mode)
7360 		ops->ndo_set_rx_mode(dev);
7361 }
7362 
7363 void dev_set_rx_mode(struct net_device *dev)
7364 {
7365 	netif_addr_lock_bh(dev);
7366 	__dev_set_rx_mode(dev);
7367 	netif_addr_unlock_bh(dev);
7368 }
7369 
7370 /**
7371  *	dev_get_flags - get flags reported to userspace
7372  *	@dev: device
7373  *
7374  *	Get the combination of flag bits exported through APIs to userspace.
7375  */
7376 unsigned int dev_get_flags(const struct net_device *dev)
7377 {
7378 	unsigned int flags;
7379 
7380 	flags = (dev->flags & ~(IFF_PROMISC |
7381 				IFF_ALLMULTI |
7382 				IFF_RUNNING |
7383 				IFF_LOWER_UP |
7384 				IFF_DORMANT)) |
7385 		(dev->gflags & (IFF_PROMISC |
7386 				IFF_ALLMULTI));
7387 
7388 	if (netif_running(dev)) {
7389 		if (netif_oper_up(dev))
7390 			flags |= IFF_RUNNING;
7391 		if (netif_carrier_ok(dev))
7392 			flags |= IFF_LOWER_UP;
7393 		if (netif_dormant(dev))
7394 			flags |= IFF_DORMANT;
7395 	}
7396 
7397 	return flags;
7398 }
7399 EXPORT_SYMBOL(dev_get_flags);
7400 
7401 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7402 {
7403 	unsigned int old_flags = dev->flags;
7404 	int ret;
7405 
7406 	ASSERT_RTNL();
7407 
7408 	/*
7409 	 *	Set the flags on our device.
7410 	 */
7411 
7412 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7413 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7414 			       IFF_AUTOMEDIA)) |
7415 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7416 				    IFF_ALLMULTI));
7417 
7418 	/*
7419 	 *	Load in the correct multicast list now the flags have changed.
7420 	 */
7421 
7422 	if ((old_flags ^ flags) & IFF_MULTICAST)
7423 		dev_change_rx_flags(dev, IFF_MULTICAST);
7424 
7425 	dev_set_rx_mode(dev);
7426 
7427 	/*
7428 	 *	Have we downed the interface. We handle IFF_UP ourselves
7429 	 *	according to user attempts to set it, rather than blindly
7430 	 *	setting it.
7431 	 */
7432 
7433 	ret = 0;
7434 	if ((old_flags ^ flags) & IFF_UP) {
7435 		if (old_flags & IFF_UP)
7436 			__dev_close(dev);
7437 		else
7438 			ret = __dev_open(dev);
7439 	}
7440 
7441 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
7442 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
7443 		unsigned int old_flags = dev->flags;
7444 
7445 		dev->gflags ^= IFF_PROMISC;
7446 
7447 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
7448 			if (dev->flags != old_flags)
7449 				dev_set_rx_mode(dev);
7450 	}
7451 
7452 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7453 	 * is important. Some (broken) drivers set IFF_PROMISC, when
7454 	 * IFF_ALLMULTI is requested not asking us and not reporting.
7455 	 */
7456 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7457 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7458 
7459 		dev->gflags ^= IFF_ALLMULTI;
7460 		__dev_set_allmulti(dev, inc, false);
7461 	}
7462 
7463 	return ret;
7464 }
7465 
7466 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7467 			unsigned int gchanges)
7468 {
7469 	unsigned int changes = dev->flags ^ old_flags;
7470 
7471 	if (gchanges)
7472 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7473 
7474 	if (changes & IFF_UP) {
7475 		if (dev->flags & IFF_UP)
7476 			call_netdevice_notifiers(NETDEV_UP, dev);
7477 		else
7478 			call_netdevice_notifiers(NETDEV_DOWN, dev);
7479 	}
7480 
7481 	if (dev->flags & IFF_UP &&
7482 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7483 		struct netdev_notifier_change_info change_info = {
7484 			.info = {
7485 				.dev = dev,
7486 			},
7487 			.flags_changed = changes,
7488 		};
7489 
7490 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7491 	}
7492 }
7493 
7494 /**
7495  *	dev_change_flags - change device settings
7496  *	@dev: device
7497  *	@flags: device state flags
7498  *
7499  *	Change settings on device based state flags. The flags are
7500  *	in the userspace exported format.
7501  */
7502 int dev_change_flags(struct net_device *dev, unsigned int flags)
7503 {
7504 	int ret;
7505 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7506 
7507 	ret = __dev_change_flags(dev, flags);
7508 	if (ret < 0)
7509 		return ret;
7510 
7511 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7512 	__dev_notify_flags(dev, old_flags, changes);
7513 	return ret;
7514 }
7515 EXPORT_SYMBOL(dev_change_flags);
7516 
7517 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7518 {
7519 	const struct net_device_ops *ops = dev->netdev_ops;
7520 
7521 	if (ops->ndo_change_mtu)
7522 		return ops->ndo_change_mtu(dev, new_mtu);
7523 
7524 	dev->mtu = new_mtu;
7525 	return 0;
7526 }
7527 EXPORT_SYMBOL(__dev_set_mtu);
7528 
7529 /**
7530  *	dev_set_mtu_ext - Change maximum transfer unit
7531  *	@dev: device
7532  *	@new_mtu: new transfer unit
7533  *	@extack: netlink extended ack
7534  *
7535  *	Change the maximum transfer size of the network device.
7536  */
7537 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7538 		    struct netlink_ext_ack *extack)
7539 {
7540 	int err, orig_mtu;
7541 
7542 	if (new_mtu == dev->mtu)
7543 		return 0;
7544 
7545 	/* MTU must be positive, and in range */
7546 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7547 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7548 		return -EINVAL;
7549 	}
7550 
7551 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7552 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7553 		return -EINVAL;
7554 	}
7555 
7556 	if (!netif_device_present(dev))
7557 		return -ENODEV;
7558 
7559 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7560 	err = notifier_to_errno(err);
7561 	if (err)
7562 		return err;
7563 
7564 	orig_mtu = dev->mtu;
7565 	err = __dev_set_mtu(dev, new_mtu);
7566 
7567 	if (!err) {
7568 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7569 		err = notifier_to_errno(err);
7570 		if (err) {
7571 			/* setting mtu back and notifying everyone again,
7572 			 * so that they have a chance to revert changes.
7573 			 */
7574 			__dev_set_mtu(dev, orig_mtu);
7575 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7576 		}
7577 	}
7578 	return err;
7579 }
7580 
7581 int dev_set_mtu(struct net_device *dev, int new_mtu)
7582 {
7583 	struct netlink_ext_ack extack;
7584 	int err;
7585 
7586 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
7587 	if (err)
7588 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7589 	return err;
7590 }
7591 EXPORT_SYMBOL(dev_set_mtu);
7592 
7593 /**
7594  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
7595  *	@dev: device
7596  *	@new_len: new tx queue length
7597  */
7598 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7599 {
7600 	unsigned int orig_len = dev->tx_queue_len;
7601 	int res;
7602 
7603 	if (new_len != (unsigned int)new_len)
7604 		return -ERANGE;
7605 
7606 	if (new_len != orig_len) {
7607 		dev->tx_queue_len = new_len;
7608 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7609 		res = notifier_to_errno(res);
7610 		if (res) {
7611 			netdev_err(dev,
7612 				   "refused to change device tx_queue_len\n");
7613 			dev->tx_queue_len = orig_len;
7614 			return res;
7615 		}
7616 		return dev_qdisc_change_tx_queue_len(dev);
7617 	}
7618 
7619 	return 0;
7620 }
7621 
7622 /**
7623  *	dev_set_group - Change group this device belongs to
7624  *	@dev: device
7625  *	@new_group: group this device should belong to
7626  */
7627 void dev_set_group(struct net_device *dev, int new_group)
7628 {
7629 	dev->group = new_group;
7630 }
7631 EXPORT_SYMBOL(dev_set_group);
7632 
7633 /**
7634  *	dev_set_mac_address - Change Media Access Control Address
7635  *	@dev: device
7636  *	@sa: new address
7637  *
7638  *	Change the hardware (MAC) address of the device
7639  */
7640 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7641 {
7642 	const struct net_device_ops *ops = dev->netdev_ops;
7643 	int err;
7644 
7645 	if (!ops->ndo_set_mac_address)
7646 		return -EOPNOTSUPP;
7647 	if (sa->sa_family != dev->type)
7648 		return -EINVAL;
7649 	if (!netif_device_present(dev))
7650 		return -ENODEV;
7651 	err = ops->ndo_set_mac_address(dev, sa);
7652 	if (err)
7653 		return err;
7654 	dev->addr_assign_type = NET_ADDR_SET;
7655 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7656 	add_device_randomness(dev->dev_addr, dev->addr_len);
7657 	return 0;
7658 }
7659 EXPORT_SYMBOL(dev_set_mac_address);
7660 
7661 /**
7662  *	dev_change_carrier - Change device carrier
7663  *	@dev: device
7664  *	@new_carrier: new value
7665  *
7666  *	Change device carrier
7667  */
7668 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7669 {
7670 	const struct net_device_ops *ops = dev->netdev_ops;
7671 
7672 	if (!ops->ndo_change_carrier)
7673 		return -EOPNOTSUPP;
7674 	if (!netif_device_present(dev))
7675 		return -ENODEV;
7676 	return ops->ndo_change_carrier(dev, new_carrier);
7677 }
7678 EXPORT_SYMBOL(dev_change_carrier);
7679 
7680 /**
7681  *	dev_get_phys_port_id - Get device physical port ID
7682  *	@dev: device
7683  *	@ppid: port ID
7684  *
7685  *	Get device physical port ID
7686  */
7687 int dev_get_phys_port_id(struct net_device *dev,
7688 			 struct netdev_phys_item_id *ppid)
7689 {
7690 	const struct net_device_ops *ops = dev->netdev_ops;
7691 
7692 	if (!ops->ndo_get_phys_port_id)
7693 		return -EOPNOTSUPP;
7694 	return ops->ndo_get_phys_port_id(dev, ppid);
7695 }
7696 EXPORT_SYMBOL(dev_get_phys_port_id);
7697 
7698 /**
7699  *	dev_get_phys_port_name - Get device physical port name
7700  *	@dev: device
7701  *	@name: port name
7702  *	@len: limit of bytes to copy to name
7703  *
7704  *	Get device physical port name
7705  */
7706 int dev_get_phys_port_name(struct net_device *dev,
7707 			   char *name, size_t len)
7708 {
7709 	const struct net_device_ops *ops = dev->netdev_ops;
7710 
7711 	if (!ops->ndo_get_phys_port_name)
7712 		return -EOPNOTSUPP;
7713 	return ops->ndo_get_phys_port_name(dev, name, len);
7714 }
7715 EXPORT_SYMBOL(dev_get_phys_port_name);
7716 
7717 /**
7718  *	dev_change_proto_down - update protocol port state information
7719  *	@dev: device
7720  *	@proto_down: new value
7721  *
7722  *	This info can be used by switch drivers to set the phys state of the
7723  *	port.
7724  */
7725 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7726 {
7727 	const struct net_device_ops *ops = dev->netdev_ops;
7728 
7729 	if (!ops->ndo_change_proto_down)
7730 		return -EOPNOTSUPP;
7731 	if (!netif_device_present(dev))
7732 		return -ENODEV;
7733 	return ops->ndo_change_proto_down(dev, proto_down);
7734 }
7735 EXPORT_SYMBOL(dev_change_proto_down);
7736 
7737 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7738 		    enum bpf_netdev_command cmd)
7739 {
7740 	struct netdev_bpf xdp;
7741 
7742 	if (!bpf_op)
7743 		return 0;
7744 
7745 	memset(&xdp, 0, sizeof(xdp));
7746 	xdp.command = cmd;
7747 
7748 	/* Query must always succeed. */
7749 	WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7750 
7751 	return xdp.prog_id;
7752 }
7753 
7754 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7755 			   struct netlink_ext_ack *extack, u32 flags,
7756 			   struct bpf_prog *prog)
7757 {
7758 	struct netdev_bpf xdp;
7759 
7760 	memset(&xdp, 0, sizeof(xdp));
7761 	if (flags & XDP_FLAGS_HW_MODE)
7762 		xdp.command = XDP_SETUP_PROG_HW;
7763 	else
7764 		xdp.command = XDP_SETUP_PROG;
7765 	xdp.extack = extack;
7766 	xdp.flags = flags;
7767 	xdp.prog = prog;
7768 
7769 	return bpf_op(dev, &xdp);
7770 }
7771 
7772 static void dev_xdp_uninstall(struct net_device *dev)
7773 {
7774 	struct netdev_bpf xdp;
7775 	bpf_op_t ndo_bpf;
7776 
7777 	/* Remove generic XDP */
7778 	WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7779 
7780 	/* Remove from the driver */
7781 	ndo_bpf = dev->netdev_ops->ndo_bpf;
7782 	if (!ndo_bpf)
7783 		return;
7784 
7785 	memset(&xdp, 0, sizeof(xdp));
7786 	xdp.command = XDP_QUERY_PROG;
7787 	WARN_ON(ndo_bpf(dev, &xdp));
7788 	if (xdp.prog_id)
7789 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7790 					NULL));
7791 
7792 	/* Remove HW offload */
7793 	memset(&xdp, 0, sizeof(xdp));
7794 	xdp.command = XDP_QUERY_PROG_HW;
7795 	if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7796 		WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7797 					NULL));
7798 }
7799 
7800 /**
7801  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7802  *	@dev: device
7803  *	@extack: netlink extended ack
7804  *	@fd: new program fd or negative value to clear
7805  *	@flags: xdp-related flags
7806  *
7807  *	Set or clear a bpf program for a device
7808  */
7809 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7810 		      int fd, u32 flags)
7811 {
7812 	const struct net_device_ops *ops = dev->netdev_ops;
7813 	enum bpf_netdev_command query;
7814 	struct bpf_prog *prog = NULL;
7815 	bpf_op_t bpf_op, bpf_chk;
7816 	int err;
7817 
7818 	ASSERT_RTNL();
7819 
7820 	query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7821 
7822 	bpf_op = bpf_chk = ops->ndo_bpf;
7823 	if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7824 		return -EOPNOTSUPP;
7825 	if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7826 		bpf_op = generic_xdp_install;
7827 	if (bpf_op == bpf_chk)
7828 		bpf_chk = generic_xdp_install;
7829 
7830 	if (fd >= 0) {
7831 		if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7832 		    __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7833 			return -EEXIST;
7834 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7835 		    __dev_xdp_query(dev, bpf_op, query))
7836 			return -EBUSY;
7837 
7838 		prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7839 					     bpf_op == ops->ndo_bpf);
7840 		if (IS_ERR(prog))
7841 			return PTR_ERR(prog);
7842 
7843 		if (!(flags & XDP_FLAGS_HW_MODE) &&
7844 		    bpf_prog_is_dev_bound(prog->aux)) {
7845 			NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7846 			bpf_prog_put(prog);
7847 			return -EINVAL;
7848 		}
7849 	}
7850 
7851 	err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7852 	if (err < 0 && prog)
7853 		bpf_prog_put(prog);
7854 
7855 	return err;
7856 }
7857 
7858 /**
7859  *	dev_new_index	-	allocate an ifindex
7860  *	@net: the applicable net namespace
7861  *
7862  *	Returns a suitable unique value for a new device interface
7863  *	number.  The caller must hold the rtnl semaphore or the
7864  *	dev_base_lock to be sure it remains unique.
7865  */
7866 static int dev_new_index(struct net *net)
7867 {
7868 	int ifindex = net->ifindex;
7869 
7870 	for (;;) {
7871 		if (++ifindex <= 0)
7872 			ifindex = 1;
7873 		if (!__dev_get_by_index(net, ifindex))
7874 			return net->ifindex = ifindex;
7875 	}
7876 }
7877 
7878 /* Delayed registration/unregisteration */
7879 static LIST_HEAD(net_todo_list);
7880 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7881 
7882 static void net_set_todo(struct net_device *dev)
7883 {
7884 	list_add_tail(&dev->todo_list, &net_todo_list);
7885 	dev_net(dev)->dev_unreg_count++;
7886 }
7887 
7888 static void rollback_registered_many(struct list_head *head)
7889 {
7890 	struct net_device *dev, *tmp;
7891 	LIST_HEAD(close_head);
7892 
7893 	BUG_ON(dev_boot_phase);
7894 	ASSERT_RTNL();
7895 
7896 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7897 		/* Some devices call without registering
7898 		 * for initialization unwind. Remove those
7899 		 * devices and proceed with the remaining.
7900 		 */
7901 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7902 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7903 				 dev->name, dev);
7904 
7905 			WARN_ON(1);
7906 			list_del(&dev->unreg_list);
7907 			continue;
7908 		}
7909 		dev->dismantle = true;
7910 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7911 	}
7912 
7913 	/* If device is running, close it first. */
7914 	list_for_each_entry(dev, head, unreg_list)
7915 		list_add_tail(&dev->close_list, &close_head);
7916 	dev_close_many(&close_head, true);
7917 
7918 	list_for_each_entry(dev, head, unreg_list) {
7919 		/* And unlink it from device chain. */
7920 		unlist_netdevice(dev);
7921 
7922 		dev->reg_state = NETREG_UNREGISTERING;
7923 	}
7924 	flush_all_backlogs();
7925 
7926 	synchronize_net();
7927 
7928 	list_for_each_entry(dev, head, unreg_list) {
7929 		struct sk_buff *skb = NULL;
7930 
7931 		/* Shutdown queueing discipline. */
7932 		dev_shutdown(dev);
7933 
7934 		dev_xdp_uninstall(dev);
7935 
7936 		/* Notify protocols, that we are about to destroy
7937 		 * this device. They should clean all the things.
7938 		 */
7939 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7940 
7941 		if (!dev->rtnl_link_ops ||
7942 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7943 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7944 						     GFP_KERNEL, NULL, 0);
7945 
7946 		/*
7947 		 *	Flush the unicast and multicast chains
7948 		 */
7949 		dev_uc_flush(dev);
7950 		dev_mc_flush(dev);
7951 
7952 		if (dev->netdev_ops->ndo_uninit)
7953 			dev->netdev_ops->ndo_uninit(dev);
7954 
7955 		if (skb)
7956 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7957 
7958 		/* Notifier chain MUST detach us all upper devices. */
7959 		WARN_ON(netdev_has_any_upper_dev(dev));
7960 		WARN_ON(netdev_has_any_lower_dev(dev));
7961 
7962 		/* Remove entries from kobject tree */
7963 		netdev_unregister_kobject(dev);
7964 #ifdef CONFIG_XPS
7965 		/* Remove XPS queueing entries */
7966 		netif_reset_xps_queues_gt(dev, 0);
7967 #endif
7968 	}
7969 
7970 	synchronize_net();
7971 
7972 	list_for_each_entry(dev, head, unreg_list)
7973 		dev_put(dev);
7974 }
7975 
7976 static void rollback_registered(struct net_device *dev)
7977 {
7978 	LIST_HEAD(single);
7979 
7980 	list_add(&dev->unreg_list, &single);
7981 	rollback_registered_many(&single);
7982 	list_del(&single);
7983 }
7984 
7985 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7986 	struct net_device *upper, netdev_features_t features)
7987 {
7988 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7989 	netdev_features_t feature;
7990 	int feature_bit;
7991 
7992 	for_each_netdev_feature(&upper_disables, feature_bit) {
7993 		feature = __NETIF_F_BIT(feature_bit);
7994 		if (!(upper->wanted_features & feature)
7995 		    && (features & feature)) {
7996 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7997 				   &feature, upper->name);
7998 			features &= ~feature;
7999 		}
8000 	}
8001 
8002 	return features;
8003 }
8004 
8005 static void netdev_sync_lower_features(struct net_device *upper,
8006 	struct net_device *lower, netdev_features_t features)
8007 {
8008 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8009 	netdev_features_t feature;
8010 	int feature_bit;
8011 
8012 	for_each_netdev_feature(&upper_disables, feature_bit) {
8013 		feature = __NETIF_F_BIT(feature_bit);
8014 		if (!(features & feature) && (lower->features & feature)) {
8015 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8016 				   &feature, lower->name);
8017 			lower->wanted_features &= ~feature;
8018 			netdev_update_features(lower);
8019 
8020 			if (unlikely(lower->features & feature))
8021 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8022 					    &feature, lower->name);
8023 		}
8024 	}
8025 }
8026 
8027 static netdev_features_t netdev_fix_features(struct net_device *dev,
8028 	netdev_features_t features)
8029 {
8030 	/* Fix illegal checksum combinations */
8031 	if ((features & NETIF_F_HW_CSUM) &&
8032 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8033 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8034 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8035 	}
8036 
8037 	/* TSO requires that SG is present as well. */
8038 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8039 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8040 		features &= ~NETIF_F_ALL_TSO;
8041 	}
8042 
8043 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8044 					!(features & NETIF_F_IP_CSUM)) {
8045 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8046 		features &= ~NETIF_F_TSO;
8047 		features &= ~NETIF_F_TSO_ECN;
8048 	}
8049 
8050 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8051 					 !(features & NETIF_F_IPV6_CSUM)) {
8052 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8053 		features &= ~NETIF_F_TSO6;
8054 	}
8055 
8056 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8057 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8058 		features &= ~NETIF_F_TSO_MANGLEID;
8059 
8060 	/* TSO ECN requires that TSO is present as well. */
8061 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8062 		features &= ~NETIF_F_TSO_ECN;
8063 
8064 	/* Software GSO depends on SG. */
8065 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8066 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8067 		features &= ~NETIF_F_GSO;
8068 	}
8069 
8070 	/* GSO partial features require GSO partial be set */
8071 	if ((features & dev->gso_partial_features) &&
8072 	    !(features & NETIF_F_GSO_PARTIAL)) {
8073 		netdev_dbg(dev,
8074 			   "Dropping partially supported GSO features since no GSO partial.\n");
8075 		features &= ~dev->gso_partial_features;
8076 	}
8077 
8078 	if (!(features & NETIF_F_RXCSUM)) {
8079 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8080 		 * successfully merged by hardware must also have the
8081 		 * checksum verified by hardware.  If the user does not
8082 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
8083 		 */
8084 		if (features & NETIF_F_GRO_HW) {
8085 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8086 			features &= ~NETIF_F_GRO_HW;
8087 		}
8088 	}
8089 
8090 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
8091 	if (features & NETIF_F_RXFCS) {
8092 		if (features & NETIF_F_LRO) {
8093 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8094 			features &= ~NETIF_F_LRO;
8095 		}
8096 
8097 		if (features & NETIF_F_GRO_HW) {
8098 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8099 			features &= ~NETIF_F_GRO_HW;
8100 		}
8101 	}
8102 
8103 	return features;
8104 }
8105 
8106 int __netdev_update_features(struct net_device *dev)
8107 {
8108 	struct net_device *upper, *lower;
8109 	netdev_features_t features;
8110 	struct list_head *iter;
8111 	int err = -1;
8112 
8113 	ASSERT_RTNL();
8114 
8115 	features = netdev_get_wanted_features(dev);
8116 
8117 	if (dev->netdev_ops->ndo_fix_features)
8118 		features = dev->netdev_ops->ndo_fix_features(dev, features);
8119 
8120 	/* driver might be less strict about feature dependencies */
8121 	features = netdev_fix_features(dev, features);
8122 
8123 	/* some features can't be enabled if they're off an an upper device */
8124 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
8125 		features = netdev_sync_upper_features(dev, upper, features);
8126 
8127 	if (dev->features == features)
8128 		goto sync_lower;
8129 
8130 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8131 		&dev->features, &features);
8132 
8133 	if (dev->netdev_ops->ndo_set_features)
8134 		err = dev->netdev_ops->ndo_set_features(dev, features);
8135 	else
8136 		err = 0;
8137 
8138 	if (unlikely(err < 0)) {
8139 		netdev_err(dev,
8140 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
8141 			err, &features, &dev->features);
8142 		/* return non-0 since some features might have changed and
8143 		 * it's better to fire a spurious notification than miss it
8144 		 */
8145 		return -1;
8146 	}
8147 
8148 sync_lower:
8149 	/* some features must be disabled on lower devices when disabled
8150 	 * on an upper device (think: bonding master or bridge)
8151 	 */
8152 	netdev_for_each_lower_dev(dev, lower, iter)
8153 		netdev_sync_lower_features(dev, lower, features);
8154 
8155 	if (!err) {
8156 		netdev_features_t diff = features ^ dev->features;
8157 
8158 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8159 			/* udp_tunnel_{get,drop}_rx_info both need
8160 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8161 			 * device, or they won't do anything.
8162 			 * Thus we need to update dev->features
8163 			 * *before* calling udp_tunnel_get_rx_info,
8164 			 * but *after* calling udp_tunnel_drop_rx_info.
8165 			 */
8166 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8167 				dev->features = features;
8168 				udp_tunnel_get_rx_info(dev);
8169 			} else {
8170 				udp_tunnel_drop_rx_info(dev);
8171 			}
8172 		}
8173 
8174 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8175 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8176 				dev->features = features;
8177 				err |= vlan_get_rx_ctag_filter_info(dev);
8178 			} else {
8179 				vlan_drop_rx_ctag_filter_info(dev);
8180 			}
8181 		}
8182 
8183 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8184 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8185 				dev->features = features;
8186 				err |= vlan_get_rx_stag_filter_info(dev);
8187 			} else {
8188 				vlan_drop_rx_stag_filter_info(dev);
8189 			}
8190 		}
8191 
8192 		dev->features = features;
8193 	}
8194 
8195 	return err < 0 ? 0 : 1;
8196 }
8197 
8198 /**
8199  *	netdev_update_features - recalculate device features
8200  *	@dev: the device to check
8201  *
8202  *	Recalculate dev->features set and send notifications if it
8203  *	has changed. Should be called after driver or hardware dependent
8204  *	conditions might have changed that influence the features.
8205  */
8206 void netdev_update_features(struct net_device *dev)
8207 {
8208 	if (__netdev_update_features(dev))
8209 		netdev_features_change(dev);
8210 }
8211 EXPORT_SYMBOL(netdev_update_features);
8212 
8213 /**
8214  *	netdev_change_features - recalculate device features
8215  *	@dev: the device to check
8216  *
8217  *	Recalculate dev->features set and send notifications even
8218  *	if they have not changed. Should be called instead of
8219  *	netdev_update_features() if also dev->vlan_features might
8220  *	have changed to allow the changes to be propagated to stacked
8221  *	VLAN devices.
8222  */
8223 void netdev_change_features(struct net_device *dev)
8224 {
8225 	__netdev_update_features(dev);
8226 	netdev_features_change(dev);
8227 }
8228 EXPORT_SYMBOL(netdev_change_features);
8229 
8230 /**
8231  *	netif_stacked_transfer_operstate -	transfer operstate
8232  *	@rootdev: the root or lower level device to transfer state from
8233  *	@dev: the device to transfer operstate to
8234  *
8235  *	Transfer operational state from root to device. This is normally
8236  *	called when a stacking relationship exists between the root
8237  *	device and the device(a leaf device).
8238  */
8239 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8240 					struct net_device *dev)
8241 {
8242 	if (rootdev->operstate == IF_OPER_DORMANT)
8243 		netif_dormant_on(dev);
8244 	else
8245 		netif_dormant_off(dev);
8246 
8247 	if (netif_carrier_ok(rootdev))
8248 		netif_carrier_on(dev);
8249 	else
8250 		netif_carrier_off(dev);
8251 }
8252 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8253 
8254 static int netif_alloc_rx_queues(struct net_device *dev)
8255 {
8256 	unsigned int i, count = dev->num_rx_queues;
8257 	struct netdev_rx_queue *rx;
8258 	size_t sz = count * sizeof(*rx);
8259 	int err = 0;
8260 
8261 	BUG_ON(count < 1);
8262 
8263 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8264 	if (!rx)
8265 		return -ENOMEM;
8266 
8267 	dev->_rx = rx;
8268 
8269 	for (i = 0; i < count; i++) {
8270 		rx[i].dev = dev;
8271 
8272 		/* XDP RX-queue setup */
8273 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8274 		if (err < 0)
8275 			goto err_rxq_info;
8276 	}
8277 	return 0;
8278 
8279 err_rxq_info:
8280 	/* Rollback successful reg's and free other resources */
8281 	while (i--)
8282 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8283 	kvfree(dev->_rx);
8284 	dev->_rx = NULL;
8285 	return err;
8286 }
8287 
8288 static void netif_free_rx_queues(struct net_device *dev)
8289 {
8290 	unsigned int i, count = dev->num_rx_queues;
8291 
8292 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8293 	if (!dev->_rx)
8294 		return;
8295 
8296 	for (i = 0; i < count; i++)
8297 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8298 
8299 	kvfree(dev->_rx);
8300 }
8301 
8302 static void netdev_init_one_queue(struct net_device *dev,
8303 				  struct netdev_queue *queue, void *_unused)
8304 {
8305 	/* Initialize queue lock */
8306 	spin_lock_init(&queue->_xmit_lock);
8307 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8308 	queue->xmit_lock_owner = -1;
8309 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8310 	queue->dev = dev;
8311 #ifdef CONFIG_BQL
8312 	dql_init(&queue->dql, HZ);
8313 #endif
8314 }
8315 
8316 static void netif_free_tx_queues(struct net_device *dev)
8317 {
8318 	kvfree(dev->_tx);
8319 }
8320 
8321 static int netif_alloc_netdev_queues(struct net_device *dev)
8322 {
8323 	unsigned int count = dev->num_tx_queues;
8324 	struct netdev_queue *tx;
8325 	size_t sz = count * sizeof(*tx);
8326 
8327 	if (count < 1 || count > 0xffff)
8328 		return -EINVAL;
8329 
8330 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8331 	if (!tx)
8332 		return -ENOMEM;
8333 
8334 	dev->_tx = tx;
8335 
8336 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8337 	spin_lock_init(&dev->tx_global_lock);
8338 
8339 	return 0;
8340 }
8341 
8342 void netif_tx_stop_all_queues(struct net_device *dev)
8343 {
8344 	unsigned int i;
8345 
8346 	for (i = 0; i < dev->num_tx_queues; i++) {
8347 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8348 
8349 		netif_tx_stop_queue(txq);
8350 	}
8351 }
8352 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8353 
8354 /**
8355  *	register_netdevice	- register a network device
8356  *	@dev: device to register
8357  *
8358  *	Take a completed network device structure and add it to the kernel
8359  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8360  *	chain. 0 is returned on success. A negative errno code is returned
8361  *	on a failure to set up the device, or if the name is a duplicate.
8362  *
8363  *	Callers must hold the rtnl semaphore. You may want
8364  *	register_netdev() instead of this.
8365  *
8366  *	BUGS:
8367  *	The locking appears insufficient to guarantee two parallel registers
8368  *	will not get the same name.
8369  */
8370 
8371 int register_netdevice(struct net_device *dev)
8372 {
8373 	int ret;
8374 	struct net *net = dev_net(dev);
8375 
8376 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8377 		     NETDEV_FEATURE_COUNT);
8378 	BUG_ON(dev_boot_phase);
8379 	ASSERT_RTNL();
8380 
8381 	might_sleep();
8382 
8383 	/* When net_device's are persistent, this will be fatal. */
8384 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8385 	BUG_ON(!net);
8386 
8387 	spin_lock_init(&dev->addr_list_lock);
8388 	netdev_set_addr_lockdep_class(dev);
8389 
8390 	ret = dev_get_valid_name(net, dev, dev->name);
8391 	if (ret < 0)
8392 		goto out;
8393 
8394 	/* Init, if this function is available */
8395 	if (dev->netdev_ops->ndo_init) {
8396 		ret = dev->netdev_ops->ndo_init(dev);
8397 		if (ret) {
8398 			if (ret > 0)
8399 				ret = -EIO;
8400 			goto out;
8401 		}
8402 	}
8403 
8404 	if (((dev->hw_features | dev->features) &
8405 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
8406 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8407 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8408 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8409 		ret = -EINVAL;
8410 		goto err_uninit;
8411 	}
8412 
8413 	ret = -EBUSY;
8414 	if (!dev->ifindex)
8415 		dev->ifindex = dev_new_index(net);
8416 	else if (__dev_get_by_index(net, dev->ifindex))
8417 		goto err_uninit;
8418 
8419 	/* Transfer changeable features to wanted_features and enable
8420 	 * software offloads (GSO and GRO).
8421 	 */
8422 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
8423 	dev->features |= NETIF_F_SOFT_FEATURES;
8424 
8425 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
8426 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8427 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8428 	}
8429 
8430 	dev->wanted_features = dev->features & dev->hw_features;
8431 
8432 	if (!(dev->flags & IFF_LOOPBACK))
8433 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
8434 
8435 	/* If IPv4 TCP segmentation offload is supported we should also
8436 	 * allow the device to enable segmenting the frame with the option
8437 	 * of ignoring a static IP ID value.  This doesn't enable the
8438 	 * feature itself but allows the user to enable it later.
8439 	 */
8440 	if (dev->hw_features & NETIF_F_TSO)
8441 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
8442 	if (dev->vlan_features & NETIF_F_TSO)
8443 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8444 	if (dev->mpls_features & NETIF_F_TSO)
8445 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8446 	if (dev->hw_enc_features & NETIF_F_TSO)
8447 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8448 
8449 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8450 	 */
8451 	dev->vlan_features |= NETIF_F_HIGHDMA;
8452 
8453 	/* Make NETIF_F_SG inheritable to tunnel devices.
8454 	 */
8455 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8456 
8457 	/* Make NETIF_F_SG inheritable to MPLS.
8458 	 */
8459 	dev->mpls_features |= NETIF_F_SG;
8460 
8461 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8462 	ret = notifier_to_errno(ret);
8463 	if (ret)
8464 		goto err_uninit;
8465 
8466 	ret = netdev_register_kobject(dev);
8467 	if (ret)
8468 		goto err_uninit;
8469 	dev->reg_state = NETREG_REGISTERED;
8470 
8471 	__netdev_update_features(dev);
8472 
8473 	/*
8474 	 *	Default initial state at registry is that the
8475 	 *	device is present.
8476 	 */
8477 
8478 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8479 
8480 	linkwatch_init_dev(dev);
8481 
8482 	dev_init_scheduler(dev);
8483 	dev_hold(dev);
8484 	list_netdevice(dev);
8485 	add_device_randomness(dev->dev_addr, dev->addr_len);
8486 
8487 	/* If the device has permanent device address, driver should
8488 	 * set dev_addr and also addr_assign_type should be set to
8489 	 * NET_ADDR_PERM (default value).
8490 	 */
8491 	if (dev->addr_assign_type == NET_ADDR_PERM)
8492 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8493 
8494 	/* Notify protocols, that a new device appeared. */
8495 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8496 	ret = notifier_to_errno(ret);
8497 	if (ret) {
8498 		rollback_registered(dev);
8499 		dev->reg_state = NETREG_UNREGISTERED;
8500 	}
8501 	/*
8502 	 *	Prevent userspace races by waiting until the network
8503 	 *	device is fully setup before sending notifications.
8504 	 */
8505 	if (!dev->rtnl_link_ops ||
8506 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8507 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8508 
8509 out:
8510 	return ret;
8511 
8512 err_uninit:
8513 	if (dev->netdev_ops->ndo_uninit)
8514 		dev->netdev_ops->ndo_uninit(dev);
8515 	if (dev->priv_destructor)
8516 		dev->priv_destructor(dev);
8517 	goto out;
8518 }
8519 EXPORT_SYMBOL(register_netdevice);
8520 
8521 /**
8522  *	init_dummy_netdev	- init a dummy network device for NAPI
8523  *	@dev: device to init
8524  *
8525  *	This takes a network device structure and initialize the minimum
8526  *	amount of fields so it can be used to schedule NAPI polls without
8527  *	registering a full blown interface. This is to be used by drivers
8528  *	that need to tie several hardware interfaces to a single NAPI
8529  *	poll scheduler due to HW limitations.
8530  */
8531 int init_dummy_netdev(struct net_device *dev)
8532 {
8533 	/* Clear everything. Note we don't initialize spinlocks
8534 	 * are they aren't supposed to be taken by any of the
8535 	 * NAPI code and this dummy netdev is supposed to be
8536 	 * only ever used for NAPI polls
8537 	 */
8538 	memset(dev, 0, sizeof(struct net_device));
8539 
8540 	/* make sure we BUG if trying to hit standard
8541 	 * register/unregister code path
8542 	 */
8543 	dev->reg_state = NETREG_DUMMY;
8544 
8545 	/* NAPI wants this */
8546 	INIT_LIST_HEAD(&dev->napi_list);
8547 
8548 	/* a dummy interface is started by default */
8549 	set_bit(__LINK_STATE_PRESENT, &dev->state);
8550 	set_bit(__LINK_STATE_START, &dev->state);
8551 
8552 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
8553 	 * because users of this 'device' dont need to change
8554 	 * its refcount.
8555 	 */
8556 
8557 	return 0;
8558 }
8559 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8560 
8561 
8562 /**
8563  *	register_netdev	- register a network device
8564  *	@dev: device to register
8565  *
8566  *	Take a completed network device structure and add it to the kernel
8567  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8568  *	chain. 0 is returned on success. A negative errno code is returned
8569  *	on a failure to set up the device, or if the name is a duplicate.
8570  *
8571  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
8572  *	and expands the device name if you passed a format string to
8573  *	alloc_netdev.
8574  */
8575 int register_netdev(struct net_device *dev)
8576 {
8577 	int err;
8578 
8579 	if (rtnl_lock_killable())
8580 		return -EINTR;
8581 	err = register_netdevice(dev);
8582 	rtnl_unlock();
8583 	return err;
8584 }
8585 EXPORT_SYMBOL(register_netdev);
8586 
8587 int netdev_refcnt_read(const struct net_device *dev)
8588 {
8589 	int i, refcnt = 0;
8590 
8591 	for_each_possible_cpu(i)
8592 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8593 	return refcnt;
8594 }
8595 EXPORT_SYMBOL(netdev_refcnt_read);
8596 
8597 /**
8598  * netdev_wait_allrefs - wait until all references are gone.
8599  * @dev: target net_device
8600  *
8601  * This is called when unregistering network devices.
8602  *
8603  * Any protocol or device that holds a reference should register
8604  * for netdevice notification, and cleanup and put back the
8605  * reference if they receive an UNREGISTER event.
8606  * We can get stuck here if buggy protocols don't correctly
8607  * call dev_put.
8608  */
8609 static void netdev_wait_allrefs(struct net_device *dev)
8610 {
8611 	unsigned long rebroadcast_time, warning_time;
8612 	int refcnt;
8613 
8614 	linkwatch_forget_dev(dev);
8615 
8616 	rebroadcast_time = warning_time = jiffies;
8617 	refcnt = netdev_refcnt_read(dev);
8618 
8619 	while (refcnt != 0) {
8620 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8621 			rtnl_lock();
8622 
8623 			/* Rebroadcast unregister notification */
8624 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8625 
8626 			__rtnl_unlock();
8627 			rcu_barrier();
8628 			rtnl_lock();
8629 
8630 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8631 				     &dev->state)) {
8632 				/* We must not have linkwatch events
8633 				 * pending on unregister. If this
8634 				 * happens, we simply run the queue
8635 				 * unscheduled, resulting in a noop
8636 				 * for this device.
8637 				 */
8638 				linkwatch_run_queue();
8639 			}
8640 
8641 			__rtnl_unlock();
8642 
8643 			rebroadcast_time = jiffies;
8644 		}
8645 
8646 		msleep(250);
8647 
8648 		refcnt = netdev_refcnt_read(dev);
8649 
8650 		if (time_after(jiffies, warning_time + 10 * HZ)) {
8651 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8652 				 dev->name, refcnt);
8653 			warning_time = jiffies;
8654 		}
8655 	}
8656 }
8657 
8658 /* The sequence is:
8659  *
8660  *	rtnl_lock();
8661  *	...
8662  *	register_netdevice(x1);
8663  *	register_netdevice(x2);
8664  *	...
8665  *	unregister_netdevice(y1);
8666  *	unregister_netdevice(y2);
8667  *      ...
8668  *	rtnl_unlock();
8669  *	free_netdev(y1);
8670  *	free_netdev(y2);
8671  *
8672  * We are invoked by rtnl_unlock().
8673  * This allows us to deal with problems:
8674  * 1) We can delete sysfs objects which invoke hotplug
8675  *    without deadlocking with linkwatch via keventd.
8676  * 2) Since we run with the RTNL semaphore not held, we can sleep
8677  *    safely in order to wait for the netdev refcnt to drop to zero.
8678  *
8679  * We must not return until all unregister events added during
8680  * the interval the lock was held have been completed.
8681  */
8682 void netdev_run_todo(void)
8683 {
8684 	struct list_head list;
8685 
8686 	/* Snapshot list, allow later requests */
8687 	list_replace_init(&net_todo_list, &list);
8688 
8689 	__rtnl_unlock();
8690 
8691 
8692 	/* Wait for rcu callbacks to finish before next phase */
8693 	if (!list_empty(&list))
8694 		rcu_barrier();
8695 
8696 	while (!list_empty(&list)) {
8697 		struct net_device *dev
8698 			= list_first_entry(&list, struct net_device, todo_list);
8699 		list_del(&dev->todo_list);
8700 
8701 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8702 			pr_err("network todo '%s' but state %d\n",
8703 			       dev->name, dev->reg_state);
8704 			dump_stack();
8705 			continue;
8706 		}
8707 
8708 		dev->reg_state = NETREG_UNREGISTERED;
8709 
8710 		netdev_wait_allrefs(dev);
8711 
8712 		/* paranoia */
8713 		BUG_ON(netdev_refcnt_read(dev));
8714 		BUG_ON(!list_empty(&dev->ptype_all));
8715 		BUG_ON(!list_empty(&dev->ptype_specific));
8716 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
8717 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8718 #if IS_ENABLED(CONFIG_DECNET)
8719 		WARN_ON(dev->dn_ptr);
8720 #endif
8721 		if (dev->priv_destructor)
8722 			dev->priv_destructor(dev);
8723 		if (dev->needs_free_netdev)
8724 			free_netdev(dev);
8725 
8726 		/* Report a network device has been unregistered */
8727 		rtnl_lock();
8728 		dev_net(dev)->dev_unreg_count--;
8729 		__rtnl_unlock();
8730 		wake_up(&netdev_unregistering_wq);
8731 
8732 		/* Free network device */
8733 		kobject_put(&dev->dev.kobj);
8734 	}
8735 }
8736 
8737 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8738  * all the same fields in the same order as net_device_stats, with only
8739  * the type differing, but rtnl_link_stats64 may have additional fields
8740  * at the end for newer counters.
8741  */
8742 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8743 			     const struct net_device_stats *netdev_stats)
8744 {
8745 #if BITS_PER_LONG == 64
8746 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8747 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8748 	/* zero out counters that only exist in rtnl_link_stats64 */
8749 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
8750 	       sizeof(*stats64) - sizeof(*netdev_stats));
8751 #else
8752 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8753 	const unsigned long *src = (const unsigned long *)netdev_stats;
8754 	u64 *dst = (u64 *)stats64;
8755 
8756 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8757 	for (i = 0; i < n; i++)
8758 		dst[i] = src[i];
8759 	/* zero out counters that only exist in rtnl_link_stats64 */
8760 	memset((char *)stats64 + n * sizeof(u64), 0,
8761 	       sizeof(*stats64) - n * sizeof(u64));
8762 #endif
8763 }
8764 EXPORT_SYMBOL(netdev_stats_to_stats64);
8765 
8766 /**
8767  *	dev_get_stats	- get network device statistics
8768  *	@dev: device to get statistics from
8769  *	@storage: place to store stats
8770  *
8771  *	Get network statistics from device. Return @storage.
8772  *	The device driver may provide its own method by setting
8773  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8774  *	otherwise the internal statistics structure is used.
8775  */
8776 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8777 					struct rtnl_link_stats64 *storage)
8778 {
8779 	const struct net_device_ops *ops = dev->netdev_ops;
8780 
8781 	if (ops->ndo_get_stats64) {
8782 		memset(storage, 0, sizeof(*storage));
8783 		ops->ndo_get_stats64(dev, storage);
8784 	} else if (ops->ndo_get_stats) {
8785 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8786 	} else {
8787 		netdev_stats_to_stats64(storage, &dev->stats);
8788 	}
8789 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8790 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8791 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8792 	return storage;
8793 }
8794 EXPORT_SYMBOL(dev_get_stats);
8795 
8796 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8797 {
8798 	struct netdev_queue *queue = dev_ingress_queue(dev);
8799 
8800 #ifdef CONFIG_NET_CLS_ACT
8801 	if (queue)
8802 		return queue;
8803 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8804 	if (!queue)
8805 		return NULL;
8806 	netdev_init_one_queue(dev, queue, NULL);
8807 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8808 	queue->qdisc_sleeping = &noop_qdisc;
8809 	rcu_assign_pointer(dev->ingress_queue, queue);
8810 #endif
8811 	return queue;
8812 }
8813 
8814 static const struct ethtool_ops default_ethtool_ops;
8815 
8816 void netdev_set_default_ethtool_ops(struct net_device *dev,
8817 				    const struct ethtool_ops *ops)
8818 {
8819 	if (dev->ethtool_ops == &default_ethtool_ops)
8820 		dev->ethtool_ops = ops;
8821 }
8822 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8823 
8824 void netdev_freemem(struct net_device *dev)
8825 {
8826 	char *addr = (char *)dev - dev->padded;
8827 
8828 	kvfree(addr);
8829 }
8830 
8831 /**
8832  * alloc_netdev_mqs - allocate network device
8833  * @sizeof_priv: size of private data to allocate space for
8834  * @name: device name format string
8835  * @name_assign_type: origin of device name
8836  * @setup: callback to initialize device
8837  * @txqs: the number of TX subqueues to allocate
8838  * @rxqs: the number of RX subqueues to allocate
8839  *
8840  * Allocates a struct net_device with private data area for driver use
8841  * and performs basic initialization.  Also allocates subqueue structs
8842  * for each queue on the device.
8843  */
8844 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8845 		unsigned char name_assign_type,
8846 		void (*setup)(struct net_device *),
8847 		unsigned int txqs, unsigned int rxqs)
8848 {
8849 	struct net_device *dev;
8850 	unsigned int alloc_size;
8851 	struct net_device *p;
8852 
8853 	BUG_ON(strlen(name) >= sizeof(dev->name));
8854 
8855 	if (txqs < 1) {
8856 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8857 		return NULL;
8858 	}
8859 
8860 	if (rxqs < 1) {
8861 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8862 		return NULL;
8863 	}
8864 
8865 	alloc_size = sizeof(struct net_device);
8866 	if (sizeof_priv) {
8867 		/* ensure 32-byte alignment of private area */
8868 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8869 		alloc_size += sizeof_priv;
8870 	}
8871 	/* ensure 32-byte alignment of whole construct */
8872 	alloc_size += NETDEV_ALIGN - 1;
8873 
8874 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8875 	if (!p)
8876 		return NULL;
8877 
8878 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8879 	dev->padded = (char *)dev - (char *)p;
8880 
8881 	dev->pcpu_refcnt = alloc_percpu(int);
8882 	if (!dev->pcpu_refcnt)
8883 		goto free_dev;
8884 
8885 	if (dev_addr_init(dev))
8886 		goto free_pcpu;
8887 
8888 	dev_mc_init(dev);
8889 	dev_uc_init(dev);
8890 
8891 	dev_net_set(dev, &init_net);
8892 
8893 	dev->gso_max_size = GSO_MAX_SIZE;
8894 	dev->gso_max_segs = GSO_MAX_SEGS;
8895 
8896 	INIT_LIST_HEAD(&dev->napi_list);
8897 	INIT_LIST_HEAD(&dev->unreg_list);
8898 	INIT_LIST_HEAD(&dev->close_list);
8899 	INIT_LIST_HEAD(&dev->link_watch_list);
8900 	INIT_LIST_HEAD(&dev->adj_list.upper);
8901 	INIT_LIST_HEAD(&dev->adj_list.lower);
8902 	INIT_LIST_HEAD(&dev->ptype_all);
8903 	INIT_LIST_HEAD(&dev->ptype_specific);
8904 #ifdef CONFIG_NET_SCHED
8905 	hash_init(dev->qdisc_hash);
8906 #endif
8907 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8908 	setup(dev);
8909 
8910 	if (!dev->tx_queue_len) {
8911 		dev->priv_flags |= IFF_NO_QUEUE;
8912 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8913 	}
8914 
8915 	dev->num_tx_queues = txqs;
8916 	dev->real_num_tx_queues = txqs;
8917 	if (netif_alloc_netdev_queues(dev))
8918 		goto free_all;
8919 
8920 	dev->num_rx_queues = rxqs;
8921 	dev->real_num_rx_queues = rxqs;
8922 	if (netif_alloc_rx_queues(dev))
8923 		goto free_all;
8924 
8925 	strcpy(dev->name, name);
8926 	dev->name_assign_type = name_assign_type;
8927 	dev->group = INIT_NETDEV_GROUP;
8928 	if (!dev->ethtool_ops)
8929 		dev->ethtool_ops = &default_ethtool_ops;
8930 
8931 	nf_hook_ingress_init(dev);
8932 
8933 	return dev;
8934 
8935 free_all:
8936 	free_netdev(dev);
8937 	return NULL;
8938 
8939 free_pcpu:
8940 	free_percpu(dev->pcpu_refcnt);
8941 free_dev:
8942 	netdev_freemem(dev);
8943 	return NULL;
8944 }
8945 EXPORT_SYMBOL(alloc_netdev_mqs);
8946 
8947 /**
8948  * free_netdev - free network device
8949  * @dev: device
8950  *
8951  * This function does the last stage of destroying an allocated device
8952  * interface. The reference to the device object is released. If this
8953  * is the last reference then it will be freed.Must be called in process
8954  * context.
8955  */
8956 void free_netdev(struct net_device *dev)
8957 {
8958 	struct napi_struct *p, *n;
8959 
8960 	might_sleep();
8961 	netif_free_tx_queues(dev);
8962 	netif_free_rx_queues(dev);
8963 
8964 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8965 
8966 	/* Flush device addresses */
8967 	dev_addr_flush(dev);
8968 
8969 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8970 		netif_napi_del(p);
8971 
8972 	free_percpu(dev->pcpu_refcnt);
8973 	dev->pcpu_refcnt = NULL;
8974 
8975 	/*  Compatibility with error handling in drivers */
8976 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8977 		netdev_freemem(dev);
8978 		return;
8979 	}
8980 
8981 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8982 	dev->reg_state = NETREG_RELEASED;
8983 
8984 	/* will free via device release */
8985 	put_device(&dev->dev);
8986 }
8987 EXPORT_SYMBOL(free_netdev);
8988 
8989 /**
8990  *	synchronize_net -  Synchronize with packet receive processing
8991  *
8992  *	Wait for packets currently being received to be done.
8993  *	Does not block later packets from starting.
8994  */
8995 void synchronize_net(void)
8996 {
8997 	might_sleep();
8998 	if (rtnl_is_locked())
8999 		synchronize_rcu_expedited();
9000 	else
9001 		synchronize_rcu();
9002 }
9003 EXPORT_SYMBOL(synchronize_net);
9004 
9005 /**
9006  *	unregister_netdevice_queue - remove device from the kernel
9007  *	@dev: device
9008  *	@head: list
9009  *
9010  *	This function shuts down a device interface and removes it
9011  *	from the kernel tables.
9012  *	If head not NULL, device is queued to be unregistered later.
9013  *
9014  *	Callers must hold the rtnl semaphore.  You may want
9015  *	unregister_netdev() instead of this.
9016  */
9017 
9018 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9019 {
9020 	ASSERT_RTNL();
9021 
9022 	if (head) {
9023 		list_move_tail(&dev->unreg_list, head);
9024 	} else {
9025 		rollback_registered(dev);
9026 		/* Finish processing unregister after unlock */
9027 		net_set_todo(dev);
9028 	}
9029 }
9030 EXPORT_SYMBOL(unregister_netdevice_queue);
9031 
9032 /**
9033  *	unregister_netdevice_many - unregister many devices
9034  *	@head: list of devices
9035  *
9036  *  Note: As most callers use a stack allocated list_head,
9037  *  we force a list_del() to make sure stack wont be corrupted later.
9038  */
9039 void unregister_netdevice_many(struct list_head *head)
9040 {
9041 	struct net_device *dev;
9042 
9043 	if (!list_empty(head)) {
9044 		rollback_registered_many(head);
9045 		list_for_each_entry(dev, head, unreg_list)
9046 			net_set_todo(dev);
9047 		list_del(head);
9048 	}
9049 }
9050 EXPORT_SYMBOL(unregister_netdevice_many);
9051 
9052 /**
9053  *	unregister_netdev - remove device from the kernel
9054  *	@dev: device
9055  *
9056  *	This function shuts down a device interface and removes it
9057  *	from the kernel tables.
9058  *
9059  *	This is just a wrapper for unregister_netdevice that takes
9060  *	the rtnl semaphore.  In general you want to use this and not
9061  *	unregister_netdevice.
9062  */
9063 void unregister_netdev(struct net_device *dev)
9064 {
9065 	rtnl_lock();
9066 	unregister_netdevice(dev);
9067 	rtnl_unlock();
9068 }
9069 EXPORT_SYMBOL(unregister_netdev);
9070 
9071 /**
9072  *	dev_change_net_namespace - move device to different nethost namespace
9073  *	@dev: device
9074  *	@net: network namespace
9075  *	@pat: If not NULL name pattern to try if the current device name
9076  *	      is already taken in the destination network namespace.
9077  *
9078  *	This function shuts down a device interface and moves it
9079  *	to a new network namespace. On success 0 is returned, on
9080  *	a failure a netagive errno code is returned.
9081  *
9082  *	Callers must hold the rtnl semaphore.
9083  */
9084 
9085 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9086 {
9087 	int err, new_nsid, new_ifindex;
9088 
9089 	ASSERT_RTNL();
9090 
9091 	/* Don't allow namespace local devices to be moved. */
9092 	err = -EINVAL;
9093 	if (dev->features & NETIF_F_NETNS_LOCAL)
9094 		goto out;
9095 
9096 	/* Ensure the device has been registrered */
9097 	if (dev->reg_state != NETREG_REGISTERED)
9098 		goto out;
9099 
9100 	/* Get out if there is nothing todo */
9101 	err = 0;
9102 	if (net_eq(dev_net(dev), net))
9103 		goto out;
9104 
9105 	/* Pick the destination device name, and ensure
9106 	 * we can use it in the destination network namespace.
9107 	 */
9108 	err = -EEXIST;
9109 	if (__dev_get_by_name(net, dev->name)) {
9110 		/* We get here if we can't use the current device name */
9111 		if (!pat)
9112 			goto out;
9113 		err = dev_get_valid_name(net, dev, pat);
9114 		if (err < 0)
9115 			goto out;
9116 	}
9117 
9118 	/*
9119 	 * And now a mini version of register_netdevice unregister_netdevice.
9120 	 */
9121 
9122 	/* If device is running close it first. */
9123 	dev_close(dev);
9124 
9125 	/* And unlink it from device chain */
9126 	unlist_netdevice(dev);
9127 
9128 	synchronize_net();
9129 
9130 	/* Shutdown queueing discipline. */
9131 	dev_shutdown(dev);
9132 
9133 	/* Notify protocols, that we are about to destroy
9134 	 * this device. They should clean all the things.
9135 	 *
9136 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
9137 	 * This is wanted because this way 8021q and macvlan know
9138 	 * the device is just moving and can keep their slaves up.
9139 	 */
9140 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9141 	rcu_barrier();
9142 
9143 	new_nsid = peernet2id_alloc(dev_net(dev), net);
9144 	/* If there is an ifindex conflict assign a new one */
9145 	if (__dev_get_by_index(net, dev->ifindex))
9146 		new_ifindex = dev_new_index(net);
9147 	else
9148 		new_ifindex = dev->ifindex;
9149 
9150 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9151 			    new_ifindex);
9152 
9153 	/*
9154 	 *	Flush the unicast and multicast chains
9155 	 */
9156 	dev_uc_flush(dev);
9157 	dev_mc_flush(dev);
9158 
9159 	/* Send a netdev-removed uevent to the old namespace */
9160 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9161 	netdev_adjacent_del_links(dev);
9162 
9163 	/* Actually switch the network namespace */
9164 	dev_net_set(dev, net);
9165 	dev->ifindex = new_ifindex;
9166 
9167 	/* Send a netdev-add uevent to the new namespace */
9168 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9169 	netdev_adjacent_add_links(dev);
9170 
9171 	/* Fixup kobjects */
9172 	err = device_rename(&dev->dev, dev->name);
9173 	WARN_ON(err);
9174 
9175 	/* Add the device back in the hashes */
9176 	list_netdevice(dev);
9177 
9178 	/* Notify protocols, that a new device appeared. */
9179 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
9180 
9181 	/*
9182 	 *	Prevent userspace races by waiting until the network
9183 	 *	device is fully setup before sending notifications.
9184 	 */
9185 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9186 
9187 	synchronize_net();
9188 	err = 0;
9189 out:
9190 	return err;
9191 }
9192 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9193 
9194 static int dev_cpu_dead(unsigned int oldcpu)
9195 {
9196 	struct sk_buff **list_skb;
9197 	struct sk_buff *skb;
9198 	unsigned int cpu;
9199 	struct softnet_data *sd, *oldsd, *remsd = NULL;
9200 
9201 	local_irq_disable();
9202 	cpu = smp_processor_id();
9203 	sd = &per_cpu(softnet_data, cpu);
9204 	oldsd = &per_cpu(softnet_data, oldcpu);
9205 
9206 	/* Find end of our completion_queue. */
9207 	list_skb = &sd->completion_queue;
9208 	while (*list_skb)
9209 		list_skb = &(*list_skb)->next;
9210 	/* Append completion queue from offline CPU. */
9211 	*list_skb = oldsd->completion_queue;
9212 	oldsd->completion_queue = NULL;
9213 
9214 	/* Append output queue from offline CPU. */
9215 	if (oldsd->output_queue) {
9216 		*sd->output_queue_tailp = oldsd->output_queue;
9217 		sd->output_queue_tailp = oldsd->output_queue_tailp;
9218 		oldsd->output_queue = NULL;
9219 		oldsd->output_queue_tailp = &oldsd->output_queue;
9220 	}
9221 	/* Append NAPI poll list from offline CPU, with one exception :
9222 	 * process_backlog() must be called by cpu owning percpu backlog.
9223 	 * We properly handle process_queue & input_pkt_queue later.
9224 	 */
9225 	while (!list_empty(&oldsd->poll_list)) {
9226 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9227 							    struct napi_struct,
9228 							    poll_list);
9229 
9230 		list_del_init(&napi->poll_list);
9231 		if (napi->poll == process_backlog)
9232 			napi->state = 0;
9233 		else
9234 			____napi_schedule(sd, napi);
9235 	}
9236 
9237 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
9238 	local_irq_enable();
9239 
9240 #ifdef CONFIG_RPS
9241 	remsd = oldsd->rps_ipi_list;
9242 	oldsd->rps_ipi_list = NULL;
9243 #endif
9244 	/* send out pending IPI's on offline CPU */
9245 	net_rps_send_ipi(remsd);
9246 
9247 	/* Process offline CPU's input_pkt_queue */
9248 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9249 		netif_rx_ni(skb);
9250 		input_queue_head_incr(oldsd);
9251 	}
9252 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9253 		netif_rx_ni(skb);
9254 		input_queue_head_incr(oldsd);
9255 	}
9256 
9257 	return 0;
9258 }
9259 
9260 /**
9261  *	netdev_increment_features - increment feature set by one
9262  *	@all: current feature set
9263  *	@one: new feature set
9264  *	@mask: mask feature set
9265  *
9266  *	Computes a new feature set after adding a device with feature set
9267  *	@one to the master device with current feature set @all.  Will not
9268  *	enable anything that is off in @mask. Returns the new feature set.
9269  */
9270 netdev_features_t netdev_increment_features(netdev_features_t all,
9271 	netdev_features_t one, netdev_features_t mask)
9272 {
9273 	if (mask & NETIF_F_HW_CSUM)
9274 		mask |= NETIF_F_CSUM_MASK;
9275 	mask |= NETIF_F_VLAN_CHALLENGED;
9276 
9277 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9278 	all &= one | ~NETIF_F_ALL_FOR_ALL;
9279 
9280 	/* If one device supports hw checksumming, set for all. */
9281 	if (all & NETIF_F_HW_CSUM)
9282 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9283 
9284 	return all;
9285 }
9286 EXPORT_SYMBOL(netdev_increment_features);
9287 
9288 static struct hlist_head * __net_init netdev_create_hash(void)
9289 {
9290 	int i;
9291 	struct hlist_head *hash;
9292 
9293 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9294 	if (hash != NULL)
9295 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
9296 			INIT_HLIST_HEAD(&hash[i]);
9297 
9298 	return hash;
9299 }
9300 
9301 /* Initialize per network namespace state */
9302 static int __net_init netdev_init(struct net *net)
9303 {
9304 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
9305 		     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9306 
9307 	if (net != &init_net)
9308 		INIT_LIST_HEAD(&net->dev_base_head);
9309 
9310 	net->dev_name_head = netdev_create_hash();
9311 	if (net->dev_name_head == NULL)
9312 		goto err_name;
9313 
9314 	net->dev_index_head = netdev_create_hash();
9315 	if (net->dev_index_head == NULL)
9316 		goto err_idx;
9317 
9318 	return 0;
9319 
9320 err_idx:
9321 	kfree(net->dev_name_head);
9322 err_name:
9323 	return -ENOMEM;
9324 }
9325 
9326 /**
9327  *	netdev_drivername - network driver for the device
9328  *	@dev: network device
9329  *
9330  *	Determine network driver for device.
9331  */
9332 const char *netdev_drivername(const struct net_device *dev)
9333 {
9334 	const struct device_driver *driver;
9335 	const struct device *parent;
9336 	const char *empty = "";
9337 
9338 	parent = dev->dev.parent;
9339 	if (!parent)
9340 		return empty;
9341 
9342 	driver = parent->driver;
9343 	if (driver && driver->name)
9344 		return driver->name;
9345 	return empty;
9346 }
9347 
9348 static void __netdev_printk(const char *level, const struct net_device *dev,
9349 			    struct va_format *vaf)
9350 {
9351 	if (dev && dev->dev.parent) {
9352 		dev_printk_emit(level[1] - '0',
9353 				dev->dev.parent,
9354 				"%s %s %s%s: %pV",
9355 				dev_driver_string(dev->dev.parent),
9356 				dev_name(dev->dev.parent),
9357 				netdev_name(dev), netdev_reg_state(dev),
9358 				vaf);
9359 	} else if (dev) {
9360 		printk("%s%s%s: %pV",
9361 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9362 	} else {
9363 		printk("%s(NULL net_device): %pV", level, vaf);
9364 	}
9365 }
9366 
9367 void netdev_printk(const char *level, const struct net_device *dev,
9368 		   const char *format, ...)
9369 {
9370 	struct va_format vaf;
9371 	va_list args;
9372 
9373 	va_start(args, format);
9374 
9375 	vaf.fmt = format;
9376 	vaf.va = &args;
9377 
9378 	__netdev_printk(level, dev, &vaf);
9379 
9380 	va_end(args);
9381 }
9382 EXPORT_SYMBOL(netdev_printk);
9383 
9384 #define define_netdev_printk_level(func, level)			\
9385 void func(const struct net_device *dev, const char *fmt, ...)	\
9386 {								\
9387 	struct va_format vaf;					\
9388 	va_list args;						\
9389 								\
9390 	va_start(args, fmt);					\
9391 								\
9392 	vaf.fmt = fmt;						\
9393 	vaf.va = &args;						\
9394 								\
9395 	__netdev_printk(level, dev, &vaf);			\
9396 								\
9397 	va_end(args);						\
9398 }								\
9399 EXPORT_SYMBOL(func);
9400 
9401 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9402 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9403 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9404 define_netdev_printk_level(netdev_err, KERN_ERR);
9405 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9406 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9407 define_netdev_printk_level(netdev_info, KERN_INFO);
9408 
9409 static void __net_exit netdev_exit(struct net *net)
9410 {
9411 	kfree(net->dev_name_head);
9412 	kfree(net->dev_index_head);
9413 	if (net != &init_net)
9414 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9415 }
9416 
9417 static struct pernet_operations __net_initdata netdev_net_ops = {
9418 	.init = netdev_init,
9419 	.exit = netdev_exit,
9420 };
9421 
9422 static void __net_exit default_device_exit(struct net *net)
9423 {
9424 	struct net_device *dev, *aux;
9425 	/*
9426 	 * Push all migratable network devices back to the
9427 	 * initial network namespace
9428 	 */
9429 	rtnl_lock();
9430 	for_each_netdev_safe(net, dev, aux) {
9431 		int err;
9432 		char fb_name[IFNAMSIZ];
9433 
9434 		/* Ignore unmoveable devices (i.e. loopback) */
9435 		if (dev->features & NETIF_F_NETNS_LOCAL)
9436 			continue;
9437 
9438 		/* Leave virtual devices for the generic cleanup */
9439 		if (dev->rtnl_link_ops)
9440 			continue;
9441 
9442 		/* Push remaining network devices to init_net */
9443 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9444 		err = dev_change_net_namespace(dev, &init_net, fb_name);
9445 		if (err) {
9446 			pr_emerg("%s: failed to move %s to init_net: %d\n",
9447 				 __func__, dev->name, err);
9448 			BUG();
9449 		}
9450 	}
9451 	rtnl_unlock();
9452 }
9453 
9454 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9455 {
9456 	/* Return with the rtnl_lock held when there are no network
9457 	 * devices unregistering in any network namespace in net_list.
9458 	 */
9459 	struct net *net;
9460 	bool unregistering;
9461 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
9462 
9463 	add_wait_queue(&netdev_unregistering_wq, &wait);
9464 	for (;;) {
9465 		unregistering = false;
9466 		rtnl_lock();
9467 		list_for_each_entry(net, net_list, exit_list) {
9468 			if (net->dev_unreg_count > 0) {
9469 				unregistering = true;
9470 				break;
9471 			}
9472 		}
9473 		if (!unregistering)
9474 			break;
9475 		__rtnl_unlock();
9476 
9477 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9478 	}
9479 	remove_wait_queue(&netdev_unregistering_wq, &wait);
9480 }
9481 
9482 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9483 {
9484 	/* At exit all network devices most be removed from a network
9485 	 * namespace.  Do this in the reverse order of registration.
9486 	 * Do this across as many network namespaces as possible to
9487 	 * improve batching efficiency.
9488 	 */
9489 	struct net_device *dev;
9490 	struct net *net;
9491 	LIST_HEAD(dev_kill_list);
9492 
9493 	/* To prevent network device cleanup code from dereferencing
9494 	 * loopback devices or network devices that have been freed
9495 	 * wait here for all pending unregistrations to complete,
9496 	 * before unregistring the loopback device and allowing the
9497 	 * network namespace be freed.
9498 	 *
9499 	 * The netdev todo list containing all network devices
9500 	 * unregistrations that happen in default_device_exit_batch
9501 	 * will run in the rtnl_unlock() at the end of
9502 	 * default_device_exit_batch.
9503 	 */
9504 	rtnl_lock_unregistering(net_list);
9505 	list_for_each_entry(net, net_list, exit_list) {
9506 		for_each_netdev_reverse(net, dev) {
9507 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9508 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9509 			else
9510 				unregister_netdevice_queue(dev, &dev_kill_list);
9511 		}
9512 	}
9513 	unregister_netdevice_many(&dev_kill_list);
9514 	rtnl_unlock();
9515 }
9516 
9517 static struct pernet_operations __net_initdata default_device_ops = {
9518 	.exit = default_device_exit,
9519 	.exit_batch = default_device_exit_batch,
9520 };
9521 
9522 /*
9523  *	Initialize the DEV module. At boot time this walks the device list and
9524  *	unhooks any devices that fail to initialise (normally hardware not
9525  *	present) and leaves us with a valid list of present and active devices.
9526  *
9527  */
9528 
9529 /*
9530  *       This is called single threaded during boot, so no need
9531  *       to take the rtnl semaphore.
9532  */
9533 static int __init net_dev_init(void)
9534 {
9535 	int i, rc = -ENOMEM;
9536 
9537 	BUG_ON(!dev_boot_phase);
9538 
9539 	if (dev_proc_init())
9540 		goto out;
9541 
9542 	if (netdev_kobject_init())
9543 		goto out;
9544 
9545 	INIT_LIST_HEAD(&ptype_all);
9546 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
9547 		INIT_LIST_HEAD(&ptype_base[i]);
9548 
9549 	INIT_LIST_HEAD(&offload_base);
9550 
9551 	if (register_pernet_subsys(&netdev_net_ops))
9552 		goto out;
9553 
9554 	/*
9555 	 *	Initialise the packet receive queues.
9556 	 */
9557 
9558 	for_each_possible_cpu(i) {
9559 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9560 		struct softnet_data *sd = &per_cpu(softnet_data, i);
9561 
9562 		INIT_WORK(flush, flush_backlog);
9563 
9564 		skb_queue_head_init(&sd->input_pkt_queue);
9565 		skb_queue_head_init(&sd->process_queue);
9566 #ifdef CONFIG_XFRM_OFFLOAD
9567 		skb_queue_head_init(&sd->xfrm_backlog);
9568 #endif
9569 		INIT_LIST_HEAD(&sd->poll_list);
9570 		sd->output_queue_tailp = &sd->output_queue;
9571 #ifdef CONFIG_RPS
9572 		sd->csd.func = rps_trigger_softirq;
9573 		sd->csd.info = sd;
9574 		sd->cpu = i;
9575 #endif
9576 
9577 		init_gro_hash(&sd->backlog);
9578 		sd->backlog.poll = process_backlog;
9579 		sd->backlog.weight = weight_p;
9580 	}
9581 
9582 	dev_boot_phase = 0;
9583 
9584 	/* The loopback device is special if any other network devices
9585 	 * is present in a network namespace the loopback device must
9586 	 * be present. Since we now dynamically allocate and free the
9587 	 * loopback device ensure this invariant is maintained by
9588 	 * keeping the loopback device as the first device on the
9589 	 * list of network devices.  Ensuring the loopback devices
9590 	 * is the first device that appears and the last network device
9591 	 * that disappears.
9592 	 */
9593 	if (register_pernet_device(&loopback_net_ops))
9594 		goto out;
9595 
9596 	if (register_pernet_device(&default_device_ops))
9597 		goto out;
9598 
9599 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9600 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9601 
9602 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9603 				       NULL, dev_cpu_dead);
9604 	WARN_ON(rc < 0);
9605 	rc = 0;
9606 out:
9607 	return rc;
9608 }
9609 
9610 subsys_initcall(net_dev_init);
9611