xref: /linux-6.15/net/core/dev.c (revision bbb03029)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 
149 #include "net-sysfs.h"
150 
151 /* Instead of increasing this, you should create a hash table. */
152 #define MAX_GRO_SKBS 8
153 
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156 
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;	/* Taps */
161 static struct list_head offload_base __read_mostly;
162 
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165 					 struct net_device *dev,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193 
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196 
197 static seqcount_t devnet_rename_seq;
198 
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201 	while (++net->dev_base_seq == 0)
202 		;
203 }
204 
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208 
209 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211 
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216 
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220 	spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223 
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227 	spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230 
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234 	struct net *net = dev_net(dev);
235 
236 	ASSERT_RTNL();
237 
238 	write_lock_bh(&dev_base_lock);
239 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241 	hlist_add_head_rcu(&dev->index_hlist,
242 			   dev_index_hash(net, dev->ifindex));
243 	write_unlock_bh(&dev_base_lock);
244 
245 	dev_base_seq_inc(net);
246 }
247 
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253 	ASSERT_RTNL();
254 
255 	/* Unlink dev from the device chain */
256 	write_lock_bh(&dev_base_lock);
257 	list_del_rcu(&dev->dev_list);
258 	hlist_del_rcu(&dev->name_hlist);
259 	hlist_del_rcu(&dev->index_hlist);
260 	write_unlock_bh(&dev_base_lock);
261 
262 	dev_base_seq_inc(dev_net(dev));
263 }
264 
265 /*
266  *	Our notifier list
267  */
268 
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270 
271 /*
272  *	Device drivers call our routines to queue packets here. We empty the
273  *	queue in the local softnet handler.
274  */
275 
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278 
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300 
301 static const char *const netdev_lock_name[] = {
302 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317 
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320 
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323 	int i;
324 
325 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326 		if (netdev_lock_type[i] == dev_type)
327 			return i;
328 	/* the last key is used by default */
329 	return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331 
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333 						 unsigned short dev_type)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev_type);
338 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339 				   netdev_lock_name[i]);
340 }
341 
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344 	int i;
345 
346 	i = netdev_lock_pos(dev->type);
347 	lockdep_set_class_and_name(&dev->addr_list_lock,
348 				   &netdev_addr_lock_key[i],
349 				   netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353 						 unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360 
361 /*******************************************************************************
362  *
363  *		Protocol management and registration routines
364  *
365  *******************************************************************************/
366 
367 
368 /*
369  *	Add a protocol ID to the list. Now that the input handler is
370  *	smarter we can dispense with all the messy stuff that used to be
371  *	here.
372  *
373  *	BEWARE!!! Protocol handlers, mangling input packets,
374  *	MUST BE last in hash buckets and checking protocol handlers
375  *	MUST start from promiscuous ptype_all chain in net_bh.
376  *	It is true now, do not change it.
377  *	Explanation follows: if protocol handler, mangling packet, will
378  *	be the first on list, it is not able to sense, that packet
379  *	is cloned and should be copied-on-write, so that it will
380  *	change it and subsequent readers will get broken packet.
381  *							--ANK (980803)
382  */
383 
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386 	if (pt->type == htons(ETH_P_ALL))
387 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388 	else
389 		return pt->dev ? &pt->dev->ptype_specific :
390 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392 
393 /**
394  *	dev_add_pack - add packet handler
395  *	@pt: packet type declaration
396  *
397  *	Add a protocol handler to the networking stack. The passed &packet_type
398  *	is linked into kernel lists and may not be freed until it has been
399  *	removed from the kernel lists.
400  *
401  *	This call does not sleep therefore it can not
402  *	guarantee all CPU's that are in middle of receiving packets
403  *	will see the new packet type (until the next received packet).
404  */
405 
406 void dev_add_pack(struct packet_type *pt)
407 {
408 	struct list_head *head = ptype_head(pt);
409 
410 	spin_lock(&ptype_lock);
411 	list_add_rcu(&pt->list, head);
412 	spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415 
416 /**
417  *	__dev_remove_pack	 - remove packet handler
418  *	@pt: packet type declaration
419  *
420  *	Remove a protocol handler that was previously added to the kernel
421  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *	from the kernel lists and can be freed or reused once this function
423  *	returns.
424  *
425  *      The packet type might still be in use by receivers
426  *	and must not be freed until after all the CPU's have gone
427  *	through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431 	struct list_head *head = ptype_head(pt);
432 	struct packet_type *pt1;
433 
434 	spin_lock(&ptype_lock);
435 
436 	list_for_each_entry(pt1, head, list) {
437 		if (pt == pt1) {
438 			list_del_rcu(&pt->list);
439 			goto out;
440 		}
441 	}
442 
443 	pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445 	spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448 
449 /**
450  *	dev_remove_pack	 - remove packet handler
451  *	@pt: packet type declaration
452  *
453  *	Remove a protocol handler that was previously added to the kernel
454  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *	from the kernel lists and can be freed or reused once this function
456  *	returns.
457  *
458  *	This call sleeps to guarantee that no CPU is looking at the packet
459  *	type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463 	__dev_remove_pack(pt);
464 
465 	synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468 
469 
470 /**
471  *	dev_add_offload - register offload handlers
472  *	@po: protocol offload declaration
473  *
474  *	Add protocol offload handlers to the networking stack. The passed
475  *	&proto_offload is linked into kernel lists and may not be freed until
476  *	it has been removed from the kernel lists.
477  *
478  *	This call does not sleep therefore it can not
479  *	guarantee all CPU's that are in middle of receiving packets
480  *	will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484 	struct packet_offload *elem;
485 
486 	spin_lock(&offload_lock);
487 	list_for_each_entry(elem, &offload_base, list) {
488 		if (po->priority < elem->priority)
489 			break;
490 	}
491 	list_add_rcu(&po->list, elem->list.prev);
492 	spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495 
496 /**
497  *	__dev_remove_offload	 - remove offload handler
498  *	@po: packet offload declaration
499  *
500  *	Remove a protocol offload handler that was previously added to the
501  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *	is removed from the kernel lists and can be freed or reused once this
503  *	function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *	and must not be freed until after all the CPU's have gone
507  *	through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511 	struct list_head *head = &offload_base;
512 	struct packet_offload *po1;
513 
514 	spin_lock(&offload_lock);
515 
516 	list_for_each_entry(po1, head, list) {
517 		if (po == po1) {
518 			list_del_rcu(&po->list);
519 			goto out;
520 		}
521 	}
522 
523 	pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525 	spin_unlock(&offload_lock);
526 }
527 
528 /**
529  *	dev_remove_offload	 - remove packet offload handler
530  *	@po: packet offload declaration
531  *
532  *	Remove a packet offload handler that was previously added to the kernel
533  *	offload handlers by dev_add_offload(). The passed &offload_type is
534  *	removed from the kernel lists and can be freed or reused once this
535  *	function returns.
536  *
537  *	This call sleeps to guarantee that no CPU is looking at the packet
538  *	type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542 	__dev_remove_offload(po);
543 
544 	synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547 
548 /******************************************************************************
549  *
550  *		      Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553 
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556 
557 /**
558  *	netdev_boot_setup_add	- add new setup entry
559  *	@name: name of the device
560  *	@map: configured settings for the device
561  *
562  *	Adds new setup entry to the dev_boot_setup list.  The function
563  *	returns 0 on error and 1 on success.  This is a generic routine to
564  *	all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568 	struct netdev_boot_setup *s;
569 	int i;
570 
571 	s = dev_boot_setup;
572 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574 			memset(s[i].name, 0, sizeof(s[i].name));
575 			strlcpy(s[i].name, name, IFNAMSIZ);
576 			memcpy(&s[i].map, map, sizeof(s[i].map));
577 			break;
578 		}
579 	}
580 
581 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583 
584 /**
585  * netdev_boot_setup_check	- check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595 	struct netdev_boot_setup *s = dev_boot_setup;
596 	int i;
597 
598 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600 		    !strcmp(dev->name, s[i].name)) {
601 			dev->irq = s[i].map.irq;
602 			dev->base_addr = s[i].map.base_addr;
603 			dev->mem_start = s[i].map.mem_start;
604 			dev->mem_end = s[i].map.mem_end;
605 			return 1;
606 		}
607 	}
608 	return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611 
612 
613 /**
614  * netdev_boot_base	- get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625 	const struct netdev_boot_setup *s = dev_boot_setup;
626 	char name[IFNAMSIZ];
627 	int i;
628 
629 	sprintf(name, "%s%d", prefix, unit);
630 
631 	/*
632 	 * If device already registered then return base of 1
633 	 * to indicate not to probe for this interface
634 	 */
635 	if (__dev_get_by_name(&init_net, name))
636 		return 1;
637 
638 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639 		if (!strcmp(name, s[i].name))
640 			return s[i].map.base_addr;
641 	return 0;
642 }
643 
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649 	int ints[5];
650 	struct ifmap map;
651 
652 	str = get_options(str, ARRAY_SIZE(ints), ints);
653 	if (!str || !*str)
654 		return 0;
655 
656 	/* Save settings */
657 	memset(&map, 0, sizeof(map));
658 	if (ints[0] > 0)
659 		map.irq = ints[1];
660 	if (ints[0] > 1)
661 		map.base_addr = ints[2];
662 	if (ints[0] > 2)
663 		map.mem_start = ints[3];
664 	if (ints[0] > 3)
665 		map.mem_end = ints[4];
666 
667 	/* Add new entry to the list */
668 	return netdev_boot_setup_add(str, &map);
669 }
670 
671 __setup("netdev=", netdev_boot_setup);
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 /**
723  *	__dev_get_by_name	- find a device by its name
724  *	@net: the applicable net namespace
725  *	@name: name to find
726  *
727  *	Find an interface by name. Must be called under RTNL semaphore
728  *	or @dev_base_lock. If the name is found a pointer to the device
729  *	is returned. If the name is not found then %NULL is returned. The
730  *	reference counters are not incremented so the caller must be
731  *	careful with locks.
732  */
733 
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736 	struct net_device *dev;
737 	struct hlist_head *head = dev_name_hash(net, name);
738 
739 	hlist_for_each_entry(dev, head, name_hlist)
740 		if (!strncmp(dev->name, name, IFNAMSIZ))
741 			return dev;
742 
743 	return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746 
747 /**
748  * dev_get_by_name_rcu	- find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758 
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761 	struct net_device *dev;
762 	struct hlist_head *head = dev_name_hash(net, name);
763 
764 	hlist_for_each_entry_rcu(dev, head, name_hlist)
765 		if (!strncmp(dev->name, name, IFNAMSIZ))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771 
772 /**
773  *	dev_get_by_name		- find a device by its name
774  *	@net: the applicable net namespace
775  *	@name: name to find
776  *
777  *	Find an interface by name. This can be called from any
778  *	context and does its own locking. The returned handle has
779  *	the usage count incremented and the caller must use dev_put() to
780  *	release it when it is no longer needed. %NULL is returned if no
781  *	matching device is found.
782  */
783 
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786 	struct net_device *dev;
787 
788 	rcu_read_lock();
789 	dev = dev_get_by_name_rcu(net, name);
790 	if (dev)
791 		dev_hold(dev);
792 	rcu_read_unlock();
793 	return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796 
797 /**
798  *	__dev_get_by_index - find a device by its ifindex
799  *	@net: the applicable net namespace
800  *	@ifindex: index of device
801  *
802  *	Search for an interface by index. Returns %NULL if the device
803  *	is not found or a pointer to the device. The device has not
804  *	had its reference counter increased so the caller must be careful
805  *	about locking. The caller must hold either the RTNL semaphore
806  *	or @dev_base_lock.
807  */
808 
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811 	struct net_device *dev;
812 	struct hlist_head *head = dev_index_hash(net, ifindex);
813 
814 	hlist_for_each_entry(dev, head, index_hlist)
815 		if (dev->ifindex == ifindex)
816 			return dev;
817 
818 	return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821 
822 /**
823  *	dev_get_by_index_rcu - find a device by its ifindex
824  *	@net: the applicable net namespace
825  *	@ifindex: index of device
826  *
827  *	Search for an interface by index. Returns %NULL if the device
828  *	is not found or a pointer to the device. The device has not
829  *	had its reference counter increased so the caller must be careful
830  *	about locking. The caller must hold RCU lock.
831  */
832 
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835 	struct net_device *dev;
836 	struct hlist_head *head = dev_index_hash(net, ifindex);
837 
838 	hlist_for_each_entry_rcu(dev, head, index_hlist)
839 		if (dev->ifindex == ifindex)
840 			return dev;
841 
842 	return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845 
846 
847 /**
848  *	dev_get_by_index - find a device by its ifindex
849  *	@net: the applicable net namespace
850  *	@ifindex: index of device
851  *
852  *	Search for an interface by index. Returns NULL if the device
853  *	is not found or a pointer to the device. The device returned has
854  *	had a reference added and the pointer is safe until the user calls
855  *	dev_put to indicate they have finished with it.
856  */
857 
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860 	struct net_device *dev;
861 
862 	rcu_read_lock();
863 	dev = dev_get_by_index_rcu(net, ifindex);
864 	if (dev)
865 		dev_hold(dev);
866 	rcu_read_unlock();
867 	return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870 
871 /**
872  *	dev_get_by_napi_id - find a device by napi_id
873  *	@napi_id: ID of the NAPI struct
874  *
875  *	Search for an interface by NAPI ID. Returns %NULL if the device
876  *	is not found or a pointer to the device. The device has not had
877  *	its reference counter increased so the caller must be careful
878  *	about locking. The caller must hold RCU lock.
879  */
880 
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883 	struct napi_struct *napi;
884 
885 	WARN_ON_ONCE(!rcu_read_lock_held());
886 
887 	if (napi_id < MIN_NAPI_ID)
888 		return NULL;
889 
890 	napi = napi_by_id(napi_id);
891 
892 	return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895 
896 /**
897  *	netdev_get_name - get a netdevice name, knowing its ifindex.
898  *	@net: network namespace
899  *	@name: a pointer to the buffer where the name will be stored.
900  *	@ifindex: the ifindex of the interface to get the name from.
901  *
902  *	The use of raw_seqcount_begin() and cond_resched() before
903  *	retrying is required as we want to give the writers a chance
904  *	to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908 	struct net_device *dev;
909 	unsigned int seq;
910 
911 retry:
912 	seq = raw_seqcount_begin(&devnet_rename_seq);
913 	rcu_read_lock();
914 	dev = dev_get_by_index_rcu(net, ifindex);
915 	if (!dev) {
916 		rcu_read_unlock();
917 		return -ENODEV;
918 	}
919 
920 	strcpy(name, dev->name);
921 	rcu_read_unlock();
922 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923 		cond_resched();
924 		goto retry;
925 	}
926 
927 	return 0;
928 }
929 
930 /**
931  *	dev_getbyhwaddr_rcu - find a device by its hardware address
932  *	@net: the applicable net namespace
933  *	@type: media type of device
934  *	@ha: hardware address
935  *
936  *	Search for an interface by MAC address. Returns NULL if the device
937  *	is not found or a pointer to the device.
938  *	The caller must hold RCU or RTNL.
939  *	The returned device has not had its ref count increased
940  *	and the caller must therefore be careful about locking
941  *
942  */
943 
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945 				       const char *ha)
946 {
947 	struct net_device *dev;
948 
949 	for_each_netdev_rcu(net, dev)
950 		if (dev->type == type &&
951 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
952 			return dev;
953 
954 	return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957 
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960 	struct net_device *dev;
961 
962 	ASSERT_RTNL();
963 	for_each_netdev(net, dev)
964 		if (dev->type == type)
965 			return dev;
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970 
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973 	struct net_device *dev, *ret = NULL;
974 
975 	rcu_read_lock();
976 	for_each_netdev_rcu(net, dev)
977 		if (dev->type == type) {
978 			dev_hold(dev);
979 			ret = dev;
980 			break;
981 		}
982 	rcu_read_unlock();
983 	return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986 
987 /**
988  *	__dev_get_by_flags - find any device with given flags
989  *	@net: the applicable net namespace
990  *	@if_flags: IFF_* values
991  *	@mask: bitmask of bits in if_flags to check
992  *
993  *	Search for any interface with the given flags. Returns NULL if a device
994  *	is not found or a pointer to the device. Must be called inside
995  *	rtnl_lock(), and result refcount is unchanged.
996  */
997 
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999 				      unsigned short mask)
1000 {
1001 	struct net_device *dev, *ret;
1002 
1003 	ASSERT_RTNL();
1004 
1005 	ret = NULL;
1006 	for_each_netdev(net, dev) {
1007 		if (((dev->flags ^ if_flags) & mask) == 0) {
1008 			ret = dev;
1009 			break;
1010 		}
1011 	}
1012 	return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015 
1016 /**
1017  *	dev_valid_name - check if name is okay for network device
1018  *	@name: name string
1019  *
1020  *	Network device names need to be valid file names to
1021  *	to allow sysfs to work.  We also disallow any kind of
1022  *	whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026 	if (*name == '\0')
1027 		return false;
1028 	if (strlen(name) >= IFNAMSIZ)
1029 		return false;
1030 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1031 		return false;
1032 
1033 	while (*name) {
1034 		if (*name == '/' || *name == ':' || isspace(*name))
1035 			return false;
1036 		name++;
1037 	}
1038 	return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041 
1042 /**
1043  *	__dev_alloc_name - allocate a name for a device
1044  *	@net: network namespace to allocate the device name in
1045  *	@name: name format string
1046  *	@buf:  scratch buffer and result name string
1047  *
1048  *	Passed a format string - eg "lt%d" it will try and find a suitable
1049  *	id. It scans list of devices to build up a free map, then chooses
1050  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *	while allocating the name and adding the device in order to avoid
1052  *	duplicates.
1053  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *	Returns the number of the unit assigned or a negative errno code.
1055  */
1056 
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059 	int i = 0;
1060 	const char *p;
1061 	const int max_netdevices = 8*PAGE_SIZE;
1062 	unsigned long *inuse;
1063 	struct net_device *d;
1064 
1065 	p = strnchr(name, IFNAMSIZ-1, '%');
1066 	if (p) {
1067 		/*
1068 		 * Verify the string as this thing may have come from
1069 		 * the user.  There must be either one "%d" and no other "%"
1070 		 * characters.
1071 		 */
1072 		if (p[1] != 'd' || strchr(p + 2, '%'))
1073 			return -EINVAL;
1074 
1075 		/* Use one page as a bit array of possible slots */
1076 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1077 		if (!inuse)
1078 			return -ENOMEM;
1079 
1080 		for_each_netdev(net, d) {
1081 			if (!sscanf(d->name, name, &i))
1082 				continue;
1083 			if (i < 0 || i >= max_netdevices)
1084 				continue;
1085 
1086 			/*  avoid cases where sscanf is not exact inverse of printf */
1087 			snprintf(buf, IFNAMSIZ, name, i);
1088 			if (!strncmp(buf, d->name, IFNAMSIZ))
1089 				set_bit(i, inuse);
1090 		}
1091 
1092 		i = find_first_zero_bit(inuse, max_netdevices);
1093 		free_page((unsigned long) inuse);
1094 	}
1095 
1096 	if (buf != name)
1097 		snprintf(buf, IFNAMSIZ, name, i);
1098 	if (!__dev_get_by_name(net, buf))
1099 		return i;
1100 
1101 	/* It is possible to run out of possible slots
1102 	 * when the name is long and there isn't enough space left
1103 	 * for the digits, or if all bits are used.
1104 	 */
1105 	return -ENFILE;
1106 }
1107 
1108 /**
1109  *	dev_alloc_name - allocate a name for a device
1110  *	@dev: device
1111  *	@name: name format string
1112  *
1113  *	Passed a format string - eg "lt%d" it will try and find a suitable
1114  *	id. It scans list of devices to build up a free map, then chooses
1115  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1116  *	while allocating the name and adding the device in order to avoid
1117  *	duplicates.
1118  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1119  *	Returns the number of the unit assigned or a negative errno code.
1120  */
1121 
1122 int dev_alloc_name(struct net_device *dev, const char *name)
1123 {
1124 	char buf[IFNAMSIZ];
1125 	struct net *net;
1126 	int ret;
1127 
1128 	BUG_ON(!dev_net(dev));
1129 	net = dev_net(dev);
1130 	ret = __dev_alloc_name(net, name, buf);
1131 	if (ret >= 0)
1132 		strlcpy(dev->name, buf, IFNAMSIZ);
1133 	return ret;
1134 }
1135 EXPORT_SYMBOL(dev_alloc_name);
1136 
1137 static int dev_alloc_name_ns(struct net *net,
1138 			     struct net_device *dev,
1139 			     const char *name)
1140 {
1141 	char buf[IFNAMSIZ];
1142 	int ret;
1143 
1144 	ret = __dev_alloc_name(net, name, buf);
1145 	if (ret >= 0)
1146 		strlcpy(dev->name, buf, IFNAMSIZ);
1147 	return ret;
1148 }
1149 
1150 static int dev_get_valid_name(struct net *net,
1151 			      struct net_device *dev,
1152 			      const char *name)
1153 {
1154 	BUG_ON(!net);
1155 
1156 	if (!dev_valid_name(name))
1157 		return -EINVAL;
1158 
1159 	if (strchr(name, '%'))
1160 		return dev_alloc_name_ns(net, dev, name);
1161 	else if (__dev_get_by_name(net, name))
1162 		return -EEXIST;
1163 	else if (dev->name != name)
1164 		strlcpy(dev->name, name, IFNAMSIZ);
1165 
1166 	return 0;
1167 }
1168 
1169 /**
1170  *	dev_change_name - change name of a device
1171  *	@dev: device
1172  *	@newname: name (or format string) must be at least IFNAMSIZ
1173  *
1174  *	Change name of a device, can pass format strings "eth%d".
1175  *	for wildcarding.
1176  */
1177 int dev_change_name(struct net_device *dev, const char *newname)
1178 {
1179 	unsigned char old_assign_type;
1180 	char oldname[IFNAMSIZ];
1181 	int err = 0;
1182 	int ret;
1183 	struct net *net;
1184 
1185 	ASSERT_RTNL();
1186 	BUG_ON(!dev_net(dev));
1187 
1188 	net = dev_net(dev);
1189 	if (dev->flags & IFF_UP)
1190 		return -EBUSY;
1191 
1192 	write_seqcount_begin(&devnet_rename_seq);
1193 
1194 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1195 		write_seqcount_end(&devnet_rename_seq);
1196 		return 0;
1197 	}
1198 
1199 	memcpy(oldname, dev->name, IFNAMSIZ);
1200 
1201 	err = dev_get_valid_name(net, dev, newname);
1202 	if (err < 0) {
1203 		write_seqcount_end(&devnet_rename_seq);
1204 		return err;
1205 	}
1206 
1207 	if (oldname[0] && !strchr(oldname, '%'))
1208 		netdev_info(dev, "renamed from %s\n", oldname);
1209 
1210 	old_assign_type = dev->name_assign_type;
1211 	dev->name_assign_type = NET_NAME_RENAMED;
1212 
1213 rollback:
1214 	ret = device_rename(&dev->dev, dev->name);
1215 	if (ret) {
1216 		memcpy(dev->name, oldname, IFNAMSIZ);
1217 		dev->name_assign_type = old_assign_type;
1218 		write_seqcount_end(&devnet_rename_seq);
1219 		return ret;
1220 	}
1221 
1222 	write_seqcount_end(&devnet_rename_seq);
1223 
1224 	netdev_adjacent_rename_links(dev, oldname);
1225 
1226 	write_lock_bh(&dev_base_lock);
1227 	hlist_del_rcu(&dev->name_hlist);
1228 	write_unlock_bh(&dev_base_lock);
1229 
1230 	synchronize_rcu();
1231 
1232 	write_lock_bh(&dev_base_lock);
1233 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1234 	write_unlock_bh(&dev_base_lock);
1235 
1236 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1237 	ret = notifier_to_errno(ret);
1238 
1239 	if (ret) {
1240 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1241 		if (err >= 0) {
1242 			err = ret;
1243 			write_seqcount_begin(&devnet_rename_seq);
1244 			memcpy(dev->name, oldname, IFNAMSIZ);
1245 			memcpy(oldname, newname, IFNAMSIZ);
1246 			dev->name_assign_type = old_assign_type;
1247 			old_assign_type = NET_NAME_RENAMED;
1248 			goto rollback;
1249 		} else {
1250 			pr_err("%s: name change rollback failed: %d\n",
1251 			       dev->name, ret);
1252 		}
1253 	}
1254 
1255 	return err;
1256 }
1257 
1258 /**
1259  *	dev_set_alias - change ifalias of a device
1260  *	@dev: device
1261  *	@alias: name up to IFALIASZ
1262  *	@len: limit of bytes to copy from info
1263  *
1264  *	Set ifalias for a device,
1265  */
1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1267 {
1268 	char *new_ifalias;
1269 
1270 	ASSERT_RTNL();
1271 
1272 	if (len >= IFALIASZ)
1273 		return -EINVAL;
1274 
1275 	if (!len) {
1276 		kfree(dev->ifalias);
1277 		dev->ifalias = NULL;
1278 		return 0;
1279 	}
1280 
1281 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1282 	if (!new_ifalias)
1283 		return -ENOMEM;
1284 	dev->ifalias = new_ifalias;
1285 	memcpy(dev->ifalias, alias, len);
1286 	dev->ifalias[len] = 0;
1287 
1288 	return len;
1289 }
1290 
1291 
1292 /**
1293  *	netdev_features_change - device changes features
1294  *	@dev: device to cause notification
1295  *
1296  *	Called to indicate a device has changed features.
1297  */
1298 void netdev_features_change(struct net_device *dev)
1299 {
1300 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1301 }
1302 EXPORT_SYMBOL(netdev_features_change);
1303 
1304 /**
1305  *	netdev_state_change - device changes state
1306  *	@dev: device to cause notification
1307  *
1308  *	Called to indicate a device has changed state. This function calls
1309  *	the notifier chains for netdev_chain and sends a NEWLINK message
1310  *	to the routing socket.
1311  */
1312 void netdev_state_change(struct net_device *dev)
1313 {
1314 	if (dev->flags & IFF_UP) {
1315 		struct netdev_notifier_change_info change_info;
1316 
1317 		change_info.flags_changed = 0;
1318 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1319 					      &change_info.info);
1320 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1321 	}
1322 }
1323 EXPORT_SYMBOL(netdev_state_change);
1324 
1325 /**
1326  * netdev_notify_peers - notify network peers about existence of @dev
1327  * @dev: network device
1328  *
1329  * Generate traffic such that interested network peers are aware of
1330  * @dev, such as by generating a gratuitous ARP. This may be used when
1331  * a device wants to inform the rest of the network about some sort of
1332  * reconfiguration such as a failover event or virtual machine
1333  * migration.
1334  */
1335 void netdev_notify_peers(struct net_device *dev)
1336 {
1337 	rtnl_lock();
1338 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1339 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1340 	rtnl_unlock();
1341 }
1342 EXPORT_SYMBOL(netdev_notify_peers);
1343 
1344 static int __dev_open(struct net_device *dev)
1345 {
1346 	const struct net_device_ops *ops = dev->netdev_ops;
1347 	int ret;
1348 
1349 	ASSERT_RTNL();
1350 
1351 	if (!netif_device_present(dev))
1352 		return -ENODEV;
1353 
1354 	/* Block netpoll from trying to do any rx path servicing.
1355 	 * If we don't do this there is a chance ndo_poll_controller
1356 	 * or ndo_poll may be running while we open the device
1357 	 */
1358 	netpoll_poll_disable(dev);
1359 
1360 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1361 	ret = notifier_to_errno(ret);
1362 	if (ret)
1363 		return ret;
1364 
1365 	set_bit(__LINK_STATE_START, &dev->state);
1366 
1367 	if (ops->ndo_validate_addr)
1368 		ret = ops->ndo_validate_addr(dev);
1369 
1370 	if (!ret && ops->ndo_open)
1371 		ret = ops->ndo_open(dev);
1372 
1373 	netpoll_poll_enable(dev);
1374 
1375 	if (ret)
1376 		clear_bit(__LINK_STATE_START, &dev->state);
1377 	else {
1378 		dev->flags |= IFF_UP;
1379 		dev_set_rx_mode(dev);
1380 		dev_activate(dev);
1381 		add_device_randomness(dev->dev_addr, dev->addr_len);
1382 	}
1383 
1384 	return ret;
1385 }
1386 
1387 /**
1388  *	dev_open	- prepare an interface for use.
1389  *	@dev:	device to open
1390  *
1391  *	Takes a device from down to up state. The device's private open
1392  *	function is invoked and then the multicast lists are loaded. Finally
1393  *	the device is moved into the up state and a %NETDEV_UP message is
1394  *	sent to the netdev notifier chain.
1395  *
1396  *	Calling this function on an active interface is a nop. On a failure
1397  *	a negative errno code is returned.
1398  */
1399 int dev_open(struct net_device *dev)
1400 {
1401 	int ret;
1402 
1403 	if (dev->flags & IFF_UP)
1404 		return 0;
1405 
1406 	ret = __dev_open(dev);
1407 	if (ret < 0)
1408 		return ret;
1409 
1410 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1411 	call_netdevice_notifiers(NETDEV_UP, dev);
1412 
1413 	return ret;
1414 }
1415 EXPORT_SYMBOL(dev_open);
1416 
1417 static void __dev_close_many(struct list_head *head)
1418 {
1419 	struct net_device *dev;
1420 
1421 	ASSERT_RTNL();
1422 	might_sleep();
1423 
1424 	list_for_each_entry(dev, head, close_list) {
1425 		/* Temporarily disable netpoll until the interface is down */
1426 		netpoll_poll_disable(dev);
1427 
1428 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1429 
1430 		clear_bit(__LINK_STATE_START, &dev->state);
1431 
1432 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1433 		 * can be even on different cpu. So just clear netif_running().
1434 		 *
1435 		 * dev->stop() will invoke napi_disable() on all of it's
1436 		 * napi_struct instances on this device.
1437 		 */
1438 		smp_mb__after_atomic(); /* Commit netif_running(). */
1439 	}
1440 
1441 	dev_deactivate_many(head);
1442 
1443 	list_for_each_entry(dev, head, close_list) {
1444 		const struct net_device_ops *ops = dev->netdev_ops;
1445 
1446 		/*
1447 		 *	Call the device specific close. This cannot fail.
1448 		 *	Only if device is UP
1449 		 *
1450 		 *	We allow it to be called even after a DETACH hot-plug
1451 		 *	event.
1452 		 */
1453 		if (ops->ndo_stop)
1454 			ops->ndo_stop(dev);
1455 
1456 		dev->flags &= ~IFF_UP;
1457 		netpoll_poll_enable(dev);
1458 	}
1459 }
1460 
1461 static void __dev_close(struct net_device *dev)
1462 {
1463 	LIST_HEAD(single);
1464 
1465 	list_add(&dev->close_list, &single);
1466 	__dev_close_many(&single);
1467 	list_del(&single);
1468 }
1469 
1470 void dev_close_many(struct list_head *head, bool unlink)
1471 {
1472 	struct net_device *dev, *tmp;
1473 
1474 	/* Remove the devices that don't need to be closed */
1475 	list_for_each_entry_safe(dev, tmp, head, close_list)
1476 		if (!(dev->flags & IFF_UP))
1477 			list_del_init(&dev->close_list);
1478 
1479 	__dev_close_many(head);
1480 
1481 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1482 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1483 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1484 		if (unlink)
1485 			list_del_init(&dev->close_list);
1486 	}
1487 }
1488 EXPORT_SYMBOL(dev_close_many);
1489 
1490 /**
1491  *	dev_close - shutdown an interface.
1492  *	@dev: device to shutdown
1493  *
1494  *	This function moves an active device into down state. A
1495  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1496  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1497  *	chain.
1498  */
1499 void dev_close(struct net_device *dev)
1500 {
1501 	if (dev->flags & IFF_UP) {
1502 		LIST_HEAD(single);
1503 
1504 		list_add(&dev->close_list, &single);
1505 		dev_close_many(&single, true);
1506 		list_del(&single);
1507 	}
1508 }
1509 EXPORT_SYMBOL(dev_close);
1510 
1511 
1512 /**
1513  *	dev_disable_lro - disable Large Receive Offload on a device
1514  *	@dev: device
1515  *
1516  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1517  *	called under RTNL.  This is needed if received packets may be
1518  *	forwarded to another interface.
1519  */
1520 void dev_disable_lro(struct net_device *dev)
1521 {
1522 	struct net_device *lower_dev;
1523 	struct list_head *iter;
1524 
1525 	dev->wanted_features &= ~NETIF_F_LRO;
1526 	netdev_update_features(dev);
1527 
1528 	if (unlikely(dev->features & NETIF_F_LRO))
1529 		netdev_WARN(dev, "failed to disable LRO!\n");
1530 
1531 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1532 		dev_disable_lro(lower_dev);
1533 }
1534 EXPORT_SYMBOL(dev_disable_lro);
1535 
1536 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1537 				   struct net_device *dev)
1538 {
1539 	struct netdev_notifier_info info;
1540 
1541 	netdev_notifier_info_init(&info, dev);
1542 	return nb->notifier_call(nb, val, &info);
1543 }
1544 
1545 static int dev_boot_phase = 1;
1546 
1547 /**
1548  * register_netdevice_notifier - register a network notifier block
1549  * @nb: notifier
1550  *
1551  * Register a notifier to be called when network device events occur.
1552  * The notifier passed is linked into the kernel structures and must
1553  * not be reused until it has been unregistered. A negative errno code
1554  * is returned on a failure.
1555  *
1556  * When registered all registration and up events are replayed
1557  * to the new notifier to allow device to have a race free
1558  * view of the network device list.
1559  */
1560 
1561 int register_netdevice_notifier(struct notifier_block *nb)
1562 {
1563 	struct net_device *dev;
1564 	struct net_device *last;
1565 	struct net *net;
1566 	int err;
1567 
1568 	rtnl_lock();
1569 	err = raw_notifier_chain_register(&netdev_chain, nb);
1570 	if (err)
1571 		goto unlock;
1572 	if (dev_boot_phase)
1573 		goto unlock;
1574 	for_each_net(net) {
1575 		for_each_netdev(net, dev) {
1576 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1577 			err = notifier_to_errno(err);
1578 			if (err)
1579 				goto rollback;
1580 
1581 			if (!(dev->flags & IFF_UP))
1582 				continue;
1583 
1584 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1585 		}
1586 	}
1587 
1588 unlock:
1589 	rtnl_unlock();
1590 	return err;
1591 
1592 rollback:
1593 	last = dev;
1594 	for_each_net(net) {
1595 		for_each_netdev(net, dev) {
1596 			if (dev == last)
1597 				goto outroll;
1598 
1599 			if (dev->flags & IFF_UP) {
1600 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1601 							dev);
1602 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1603 			}
1604 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1605 		}
1606 	}
1607 
1608 outroll:
1609 	raw_notifier_chain_unregister(&netdev_chain, nb);
1610 	goto unlock;
1611 }
1612 EXPORT_SYMBOL(register_netdevice_notifier);
1613 
1614 /**
1615  * unregister_netdevice_notifier - unregister a network notifier block
1616  * @nb: notifier
1617  *
1618  * Unregister a notifier previously registered by
1619  * register_netdevice_notifier(). The notifier is unlinked into the
1620  * kernel structures and may then be reused. A negative errno code
1621  * is returned on a failure.
1622  *
1623  * After unregistering unregister and down device events are synthesized
1624  * for all devices on the device list to the removed notifier to remove
1625  * the need for special case cleanup code.
1626  */
1627 
1628 int unregister_netdevice_notifier(struct notifier_block *nb)
1629 {
1630 	struct net_device *dev;
1631 	struct net *net;
1632 	int err;
1633 
1634 	rtnl_lock();
1635 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1636 	if (err)
1637 		goto unlock;
1638 
1639 	for_each_net(net) {
1640 		for_each_netdev(net, dev) {
1641 			if (dev->flags & IFF_UP) {
1642 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1643 							dev);
1644 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1645 			}
1646 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1647 		}
1648 	}
1649 unlock:
1650 	rtnl_unlock();
1651 	return err;
1652 }
1653 EXPORT_SYMBOL(unregister_netdevice_notifier);
1654 
1655 /**
1656  *	call_netdevice_notifiers_info - call all network notifier blocks
1657  *	@val: value passed unmodified to notifier function
1658  *	@dev: net_device pointer passed unmodified to notifier function
1659  *	@info: notifier information data
1660  *
1661  *	Call all network notifier blocks.  Parameters and return value
1662  *	are as for raw_notifier_call_chain().
1663  */
1664 
1665 static int call_netdevice_notifiers_info(unsigned long val,
1666 					 struct net_device *dev,
1667 					 struct netdev_notifier_info *info)
1668 {
1669 	ASSERT_RTNL();
1670 	netdev_notifier_info_init(info, dev);
1671 	return raw_notifier_call_chain(&netdev_chain, val, info);
1672 }
1673 
1674 /**
1675  *	call_netdevice_notifiers - call all network notifier blocks
1676  *      @val: value passed unmodified to notifier function
1677  *      @dev: net_device pointer passed unmodified to notifier function
1678  *
1679  *	Call all network notifier blocks.  Parameters and return value
1680  *	are as for raw_notifier_call_chain().
1681  */
1682 
1683 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1684 {
1685 	struct netdev_notifier_info info;
1686 
1687 	return call_netdevice_notifiers_info(val, dev, &info);
1688 }
1689 EXPORT_SYMBOL(call_netdevice_notifiers);
1690 
1691 #ifdef CONFIG_NET_INGRESS
1692 static struct static_key ingress_needed __read_mostly;
1693 
1694 void net_inc_ingress_queue(void)
1695 {
1696 	static_key_slow_inc(&ingress_needed);
1697 }
1698 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1699 
1700 void net_dec_ingress_queue(void)
1701 {
1702 	static_key_slow_dec(&ingress_needed);
1703 }
1704 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1705 #endif
1706 
1707 #ifdef CONFIG_NET_EGRESS
1708 static struct static_key egress_needed __read_mostly;
1709 
1710 void net_inc_egress_queue(void)
1711 {
1712 	static_key_slow_inc(&egress_needed);
1713 }
1714 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1715 
1716 void net_dec_egress_queue(void)
1717 {
1718 	static_key_slow_dec(&egress_needed);
1719 }
1720 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1721 #endif
1722 
1723 static struct static_key netstamp_needed __read_mostly;
1724 #ifdef HAVE_JUMP_LABEL
1725 static atomic_t netstamp_needed_deferred;
1726 static atomic_t netstamp_wanted;
1727 static void netstamp_clear(struct work_struct *work)
1728 {
1729 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1730 	int wanted;
1731 
1732 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1733 	if (wanted > 0)
1734 		static_key_enable(&netstamp_needed);
1735 	else
1736 		static_key_disable(&netstamp_needed);
1737 }
1738 static DECLARE_WORK(netstamp_work, netstamp_clear);
1739 #endif
1740 
1741 void net_enable_timestamp(void)
1742 {
1743 #ifdef HAVE_JUMP_LABEL
1744 	int wanted;
1745 
1746 	while (1) {
1747 		wanted = atomic_read(&netstamp_wanted);
1748 		if (wanted <= 0)
1749 			break;
1750 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1751 			return;
1752 	}
1753 	atomic_inc(&netstamp_needed_deferred);
1754 	schedule_work(&netstamp_work);
1755 #else
1756 	static_key_slow_inc(&netstamp_needed);
1757 #endif
1758 }
1759 EXPORT_SYMBOL(net_enable_timestamp);
1760 
1761 void net_disable_timestamp(void)
1762 {
1763 #ifdef HAVE_JUMP_LABEL
1764 	int wanted;
1765 
1766 	while (1) {
1767 		wanted = atomic_read(&netstamp_wanted);
1768 		if (wanted <= 1)
1769 			break;
1770 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1771 			return;
1772 	}
1773 	atomic_dec(&netstamp_needed_deferred);
1774 	schedule_work(&netstamp_work);
1775 #else
1776 	static_key_slow_dec(&netstamp_needed);
1777 #endif
1778 }
1779 EXPORT_SYMBOL(net_disable_timestamp);
1780 
1781 static inline void net_timestamp_set(struct sk_buff *skb)
1782 {
1783 	skb->tstamp = 0;
1784 	if (static_key_false(&netstamp_needed))
1785 		__net_timestamp(skb);
1786 }
1787 
1788 #define net_timestamp_check(COND, SKB)			\
1789 	if (static_key_false(&netstamp_needed)) {		\
1790 		if ((COND) && !(SKB)->tstamp)	\
1791 			__net_timestamp(SKB);		\
1792 	}						\
1793 
1794 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1795 {
1796 	unsigned int len;
1797 
1798 	if (!(dev->flags & IFF_UP))
1799 		return false;
1800 
1801 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1802 	if (skb->len <= len)
1803 		return true;
1804 
1805 	/* if TSO is enabled, we don't care about the length as the packet
1806 	 * could be forwarded without being segmented before
1807 	 */
1808 	if (skb_is_gso(skb))
1809 		return true;
1810 
1811 	return false;
1812 }
1813 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1814 
1815 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1816 {
1817 	int ret = ____dev_forward_skb(dev, skb);
1818 
1819 	if (likely(!ret)) {
1820 		skb->protocol = eth_type_trans(skb, dev);
1821 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1822 	}
1823 
1824 	return ret;
1825 }
1826 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1827 
1828 /**
1829  * dev_forward_skb - loopback an skb to another netif
1830  *
1831  * @dev: destination network device
1832  * @skb: buffer to forward
1833  *
1834  * return values:
1835  *	NET_RX_SUCCESS	(no congestion)
1836  *	NET_RX_DROP     (packet was dropped, but freed)
1837  *
1838  * dev_forward_skb can be used for injecting an skb from the
1839  * start_xmit function of one device into the receive queue
1840  * of another device.
1841  *
1842  * The receiving device may be in another namespace, so
1843  * we have to clear all information in the skb that could
1844  * impact namespace isolation.
1845  */
1846 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1847 {
1848 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1849 }
1850 EXPORT_SYMBOL_GPL(dev_forward_skb);
1851 
1852 static inline int deliver_skb(struct sk_buff *skb,
1853 			      struct packet_type *pt_prev,
1854 			      struct net_device *orig_dev)
1855 {
1856 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1857 		return -ENOMEM;
1858 	refcount_inc(&skb->users);
1859 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1860 }
1861 
1862 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1863 					  struct packet_type **pt,
1864 					  struct net_device *orig_dev,
1865 					  __be16 type,
1866 					  struct list_head *ptype_list)
1867 {
1868 	struct packet_type *ptype, *pt_prev = *pt;
1869 
1870 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1871 		if (ptype->type != type)
1872 			continue;
1873 		if (pt_prev)
1874 			deliver_skb(skb, pt_prev, orig_dev);
1875 		pt_prev = ptype;
1876 	}
1877 	*pt = pt_prev;
1878 }
1879 
1880 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1881 {
1882 	if (!ptype->af_packet_priv || !skb->sk)
1883 		return false;
1884 
1885 	if (ptype->id_match)
1886 		return ptype->id_match(ptype, skb->sk);
1887 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1888 		return true;
1889 
1890 	return false;
1891 }
1892 
1893 /*
1894  *	Support routine. Sends outgoing frames to any network
1895  *	taps currently in use.
1896  */
1897 
1898 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1899 {
1900 	struct packet_type *ptype;
1901 	struct sk_buff *skb2 = NULL;
1902 	struct packet_type *pt_prev = NULL;
1903 	struct list_head *ptype_list = &ptype_all;
1904 
1905 	rcu_read_lock();
1906 again:
1907 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1908 		/* Never send packets back to the socket
1909 		 * they originated from - MvS ([email protected])
1910 		 */
1911 		if (skb_loop_sk(ptype, skb))
1912 			continue;
1913 
1914 		if (pt_prev) {
1915 			deliver_skb(skb2, pt_prev, skb->dev);
1916 			pt_prev = ptype;
1917 			continue;
1918 		}
1919 
1920 		/* need to clone skb, done only once */
1921 		skb2 = skb_clone(skb, GFP_ATOMIC);
1922 		if (!skb2)
1923 			goto out_unlock;
1924 
1925 		net_timestamp_set(skb2);
1926 
1927 		/* skb->nh should be correctly
1928 		 * set by sender, so that the second statement is
1929 		 * just protection against buggy protocols.
1930 		 */
1931 		skb_reset_mac_header(skb2);
1932 
1933 		if (skb_network_header(skb2) < skb2->data ||
1934 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1935 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1936 					     ntohs(skb2->protocol),
1937 					     dev->name);
1938 			skb_reset_network_header(skb2);
1939 		}
1940 
1941 		skb2->transport_header = skb2->network_header;
1942 		skb2->pkt_type = PACKET_OUTGOING;
1943 		pt_prev = ptype;
1944 	}
1945 
1946 	if (ptype_list == &ptype_all) {
1947 		ptype_list = &dev->ptype_all;
1948 		goto again;
1949 	}
1950 out_unlock:
1951 	if (pt_prev)
1952 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1953 	rcu_read_unlock();
1954 }
1955 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1956 
1957 /**
1958  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1959  * @dev: Network device
1960  * @txq: number of queues available
1961  *
1962  * If real_num_tx_queues is changed the tc mappings may no longer be
1963  * valid. To resolve this verify the tc mapping remains valid and if
1964  * not NULL the mapping. With no priorities mapping to this
1965  * offset/count pair it will no longer be used. In the worst case TC0
1966  * is invalid nothing can be done so disable priority mappings. If is
1967  * expected that drivers will fix this mapping if they can before
1968  * calling netif_set_real_num_tx_queues.
1969  */
1970 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1971 {
1972 	int i;
1973 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1974 
1975 	/* If TC0 is invalidated disable TC mapping */
1976 	if (tc->offset + tc->count > txq) {
1977 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1978 		dev->num_tc = 0;
1979 		return;
1980 	}
1981 
1982 	/* Invalidated prio to tc mappings set to TC0 */
1983 	for (i = 1; i < TC_BITMASK + 1; i++) {
1984 		int q = netdev_get_prio_tc_map(dev, i);
1985 
1986 		tc = &dev->tc_to_txq[q];
1987 		if (tc->offset + tc->count > txq) {
1988 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1989 				i, q);
1990 			netdev_set_prio_tc_map(dev, i, 0);
1991 		}
1992 	}
1993 }
1994 
1995 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1996 {
1997 	if (dev->num_tc) {
1998 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1999 		int i;
2000 
2001 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2002 			if ((txq - tc->offset) < tc->count)
2003 				return i;
2004 		}
2005 
2006 		return -1;
2007 	}
2008 
2009 	return 0;
2010 }
2011 
2012 #ifdef CONFIG_XPS
2013 static DEFINE_MUTEX(xps_map_mutex);
2014 #define xmap_dereference(P)		\
2015 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2016 
2017 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2018 			     int tci, u16 index)
2019 {
2020 	struct xps_map *map = NULL;
2021 	int pos;
2022 
2023 	if (dev_maps)
2024 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2025 	if (!map)
2026 		return false;
2027 
2028 	for (pos = map->len; pos--;) {
2029 		if (map->queues[pos] != index)
2030 			continue;
2031 
2032 		if (map->len > 1) {
2033 			map->queues[pos] = map->queues[--map->len];
2034 			break;
2035 		}
2036 
2037 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2038 		kfree_rcu(map, rcu);
2039 		return false;
2040 	}
2041 
2042 	return true;
2043 }
2044 
2045 static bool remove_xps_queue_cpu(struct net_device *dev,
2046 				 struct xps_dev_maps *dev_maps,
2047 				 int cpu, u16 offset, u16 count)
2048 {
2049 	int num_tc = dev->num_tc ? : 1;
2050 	bool active = false;
2051 	int tci;
2052 
2053 	for (tci = cpu * num_tc; num_tc--; tci++) {
2054 		int i, j;
2055 
2056 		for (i = count, j = offset; i--; j++) {
2057 			if (!remove_xps_queue(dev_maps, cpu, j))
2058 				break;
2059 		}
2060 
2061 		active |= i < 0;
2062 	}
2063 
2064 	return active;
2065 }
2066 
2067 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2068 				   u16 count)
2069 {
2070 	struct xps_dev_maps *dev_maps;
2071 	int cpu, i;
2072 	bool active = false;
2073 
2074 	mutex_lock(&xps_map_mutex);
2075 	dev_maps = xmap_dereference(dev->xps_maps);
2076 
2077 	if (!dev_maps)
2078 		goto out_no_maps;
2079 
2080 	for_each_possible_cpu(cpu)
2081 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2082 					       offset, count);
2083 
2084 	if (!active) {
2085 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2086 		kfree_rcu(dev_maps, rcu);
2087 	}
2088 
2089 	for (i = offset + (count - 1); count--; i--)
2090 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2091 					     NUMA_NO_NODE);
2092 
2093 out_no_maps:
2094 	mutex_unlock(&xps_map_mutex);
2095 }
2096 
2097 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2098 {
2099 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2100 }
2101 
2102 static struct xps_map *expand_xps_map(struct xps_map *map,
2103 				      int cpu, u16 index)
2104 {
2105 	struct xps_map *new_map;
2106 	int alloc_len = XPS_MIN_MAP_ALLOC;
2107 	int i, pos;
2108 
2109 	for (pos = 0; map && pos < map->len; pos++) {
2110 		if (map->queues[pos] != index)
2111 			continue;
2112 		return map;
2113 	}
2114 
2115 	/* Need to add queue to this CPU's existing map */
2116 	if (map) {
2117 		if (pos < map->alloc_len)
2118 			return map;
2119 
2120 		alloc_len = map->alloc_len * 2;
2121 	}
2122 
2123 	/* Need to allocate new map to store queue on this CPU's map */
2124 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2125 			       cpu_to_node(cpu));
2126 	if (!new_map)
2127 		return NULL;
2128 
2129 	for (i = 0; i < pos; i++)
2130 		new_map->queues[i] = map->queues[i];
2131 	new_map->alloc_len = alloc_len;
2132 	new_map->len = pos;
2133 
2134 	return new_map;
2135 }
2136 
2137 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2138 			u16 index)
2139 {
2140 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2141 	int i, cpu, tci, numa_node_id = -2;
2142 	int maps_sz, num_tc = 1, tc = 0;
2143 	struct xps_map *map, *new_map;
2144 	bool active = false;
2145 
2146 	if (dev->num_tc) {
2147 		num_tc = dev->num_tc;
2148 		tc = netdev_txq_to_tc(dev, index);
2149 		if (tc < 0)
2150 			return -EINVAL;
2151 	}
2152 
2153 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2154 	if (maps_sz < L1_CACHE_BYTES)
2155 		maps_sz = L1_CACHE_BYTES;
2156 
2157 	mutex_lock(&xps_map_mutex);
2158 
2159 	dev_maps = xmap_dereference(dev->xps_maps);
2160 
2161 	/* allocate memory for queue storage */
2162 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2163 		if (!new_dev_maps)
2164 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2165 		if (!new_dev_maps) {
2166 			mutex_unlock(&xps_map_mutex);
2167 			return -ENOMEM;
2168 		}
2169 
2170 		tci = cpu * num_tc + tc;
2171 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2172 				 NULL;
2173 
2174 		map = expand_xps_map(map, cpu, index);
2175 		if (!map)
2176 			goto error;
2177 
2178 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2179 	}
2180 
2181 	if (!new_dev_maps)
2182 		goto out_no_new_maps;
2183 
2184 	for_each_possible_cpu(cpu) {
2185 		/* copy maps belonging to foreign traffic classes */
2186 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2187 			/* fill in the new device map from the old device map */
2188 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2189 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2190 		}
2191 
2192 		/* We need to explicitly update tci as prevous loop
2193 		 * could break out early if dev_maps is NULL.
2194 		 */
2195 		tci = cpu * num_tc + tc;
2196 
2197 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2198 			/* add queue to CPU maps */
2199 			int pos = 0;
2200 
2201 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2202 			while ((pos < map->len) && (map->queues[pos] != index))
2203 				pos++;
2204 
2205 			if (pos == map->len)
2206 				map->queues[map->len++] = index;
2207 #ifdef CONFIG_NUMA
2208 			if (numa_node_id == -2)
2209 				numa_node_id = cpu_to_node(cpu);
2210 			else if (numa_node_id != cpu_to_node(cpu))
2211 				numa_node_id = -1;
2212 #endif
2213 		} else if (dev_maps) {
2214 			/* fill in the new device map from the old device map */
2215 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2216 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2217 		}
2218 
2219 		/* copy maps belonging to foreign traffic classes */
2220 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2221 			/* fill in the new device map from the old device map */
2222 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2223 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2224 		}
2225 	}
2226 
2227 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2228 
2229 	/* Cleanup old maps */
2230 	if (!dev_maps)
2231 		goto out_no_old_maps;
2232 
2233 	for_each_possible_cpu(cpu) {
2234 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2235 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2236 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2237 			if (map && map != new_map)
2238 				kfree_rcu(map, rcu);
2239 		}
2240 	}
2241 
2242 	kfree_rcu(dev_maps, rcu);
2243 
2244 out_no_old_maps:
2245 	dev_maps = new_dev_maps;
2246 	active = true;
2247 
2248 out_no_new_maps:
2249 	/* update Tx queue numa node */
2250 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2251 				     (numa_node_id >= 0) ? numa_node_id :
2252 				     NUMA_NO_NODE);
2253 
2254 	if (!dev_maps)
2255 		goto out_no_maps;
2256 
2257 	/* removes queue from unused CPUs */
2258 	for_each_possible_cpu(cpu) {
2259 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2260 			active |= remove_xps_queue(dev_maps, tci, index);
2261 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2262 			active |= remove_xps_queue(dev_maps, tci, index);
2263 		for (i = num_tc - tc, tci++; --i; tci++)
2264 			active |= remove_xps_queue(dev_maps, tci, index);
2265 	}
2266 
2267 	/* free map if not active */
2268 	if (!active) {
2269 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2270 		kfree_rcu(dev_maps, rcu);
2271 	}
2272 
2273 out_no_maps:
2274 	mutex_unlock(&xps_map_mutex);
2275 
2276 	return 0;
2277 error:
2278 	/* remove any maps that we added */
2279 	for_each_possible_cpu(cpu) {
2280 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2281 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2282 			map = dev_maps ?
2283 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2284 			      NULL;
2285 			if (new_map && new_map != map)
2286 				kfree(new_map);
2287 		}
2288 	}
2289 
2290 	mutex_unlock(&xps_map_mutex);
2291 
2292 	kfree(new_dev_maps);
2293 	return -ENOMEM;
2294 }
2295 EXPORT_SYMBOL(netif_set_xps_queue);
2296 
2297 #endif
2298 void netdev_reset_tc(struct net_device *dev)
2299 {
2300 #ifdef CONFIG_XPS
2301 	netif_reset_xps_queues_gt(dev, 0);
2302 #endif
2303 	dev->num_tc = 0;
2304 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2305 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2306 }
2307 EXPORT_SYMBOL(netdev_reset_tc);
2308 
2309 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2310 {
2311 	if (tc >= dev->num_tc)
2312 		return -EINVAL;
2313 
2314 #ifdef CONFIG_XPS
2315 	netif_reset_xps_queues(dev, offset, count);
2316 #endif
2317 	dev->tc_to_txq[tc].count = count;
2318 	dev->tc_to_txq[tc].offset = offset;
2319 	return 0;
2320 }
2321 EXPORT_SYMBOL(netdev_set_tc_queue);
2322 
2323 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2324 {
2325 	if (num_tc > TC_MAX_QUEUE)
2326 		return -EINVAL;
2327 
2328 #ifdef CONFIG_XPS
2329 	netif_reset_xps_queues_gt(dev, 0);
2330 #endif
2331 	dev->num_tc = num_tc;
2332 	return 0;
2333 }
2334 EXPORT_SYMBOL(netdev_set_num_tc);
2335 
2336 /*
2337  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2338  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2339  */
2340 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2341 {
2342 	int rc;
2343 
2344 	if (txq < 1 || txq > dev->num_tx_queues)
2345 		return -EINVAL;
2346 
2347 	if (dev->reg_state == NETREG_REGISTERED ||
2348 	    dev->reg_state == NETREG_UNREGISTERING) {
2349 		ASSERT_RTNL();
2350 
2351 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2352 						  txq);
2353 		if (rc)
2354 			return rc;
2355 
2356 		if (dev->num_tc)
2357 			netif_setup_tc(dev, txq);
2358 
2359 		if (txq < dev->real_num_tx_queues) {
2360 			qdisc_reset_all_tx_gt(dev, txq);
2361 #ifdef CONFIG_XPS
2362 			netif_reset_xps_queues_gt(dev, txq);
2363 #endif
2364 		}
2365 	}
2366 
2367 	dev->real_num_tx_queues = txq;
2368 	return 0;
2369 }
2370 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2371 
2372 #ifdef CONFIG_SYSFS
2373 /**
2374  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2375  *	@dev: Network device
2376  *	@rxq: Actual number of RX queues
2377  *
2378  *	This must be called either with the rtnl_lock held or before
2379  *	registration of the net device.  Returns 0 on success, or a
2380  *	negative error code.  If called before registration, it always
2381  *	succeeds.
2382  */
2383 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2384 {
2385 	int rc;
2386 
2387 	if (rxq < 1 || rxq > dev->num_rx_queues)
2388 		return -EINVAL;
2389 
2390 	if (dev->reg_state == NETREG_REGISTERED) {
2391 		ASSERT_RTNL();
2392 
2393 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2394 						  rxq);
2395 		if (rc)
2396 			return rc;
2397 	}
2398 
2399 	dev->real_num_rx_queues = rxq;
2400 	return 0;
2401 }
2402 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2403 #endif
2404 
2405 /**
2406  * netif_get_num_default_rss_queues - default number of RSS queues
2407  *
2408  * This routine should set an upper limit on the number of RSS queues
2409  * used by default by multiqueue devices.
2410  */
2411 int netif_get_num_default_rss_queues(void)
2412 {
2413 	return is_kdump_kernel() ?
2414 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2415 }
2416 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2417 
2418 static void __netif_reschedule(struct Qdisc *q)
2419 {
2420 	struct softnet_data *sd;
2421 	unsigned long flags;
2422 
2423 	local_irq_save(flags);
2424 	sd = this_cpu_ptr(&softnet_data);
2425 	q->next_sched = NULL;
2426 	*sd->output_queue_tailp = q;
2427 	sd->output_queue_tailp = &q->next_sched;
2428 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2429 	local_irq_restore(flags);
2430 }
2431 
2432 void __netif_schedule(struct Qdisc *q)
2433 {
2434 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2435 		__netif_reschedule(q);
2436 }
2437 EXPORT_SYMBOL(__netif_schedule);
2438 
2439 struct dev_kfree_skb_cb {
2440 	enum skb_free_reason reason;
2441 };
2442 
2443 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2444 {
2445 	return (struct dev_kfree_skb_cb *)skb->cb;
2446 }
2447 
2448 void netif_schedule_queue(struct netdev_queue *txq)
2449 {
2450 	rcu_read_lock();
2451 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2452 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2453 
2454 		__netif_schedule(q);
2455 	}
2456 	rcu_read_unlock();
2457 }
2458 EXPORT_SYMBOL(netif_schedule_queue);
2459 
2460 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2461 {
2462 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2463 		struct Qdisc *q;
2464 
2465 		rcu_read_lock();
2466 		q = rcu_dereference(dev_queue->qdisc);
2467 		__netif_schedule(q);
2468 		rcu_read_unlock();
2469 	}
2470 }
2471 EXPORT_SYMBOL(netif_tx_wake_queue);
2472 
2473 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2474 {
2475 	unsigned long flags;
2476 
2477 	if (unlikely(!skb))
2478 		return;
2479 
2480 	if (likely(refcount_read(&skb->users) == 1)) {
2481 		smp_rmb();
2482 		refcount_set(&skb->users, 0);
2483 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2484 		return;
2485 	}
2486 	get_kfree_skb_cb(skb)->reason = reason;
2487 	local_irq_save(flags);
2488 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2489 	__this_cpu_write(softnet_data.completion_queue, skb);
2490 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2491 	local_irq_restore(flags);
2492 }
2493 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2494 
2495 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2496 {
2497 	if (in_irq() || irqs_disabled())
2498 		__dev_kfree_skb_irq(skb, reason);
2499 	else
2500 		dev_kfree_skb(skb);
2501 }
2502 EXPORT_SYMBOL(__dev_kfree_skb_any);
2503 
2504 
2505 /**
2506  * netif_device_detach - mark device as removed
2507  * @dev: network device
2508  *
2509  * Mark device as removed from system and therefore no longer available.
2510  */
2511 void netif_device_detach(struct net_device *dev)
2512 {
2513 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2514 	    netif_running(dev)) {
2515 		netif_tx_stop_all_queues(dev);
2516 	}
2517 }
2518 EXPORT_SYMBOL(netif_device_detach);
2519 
2520 /**
2521  * netif_device_attach - mark device as attached
2522  * @dev: network device
2523  *
2524  * Mark device as attached from system and restart if needed.
2525  */
2526 void netif_device_attach(struct net_device *dev)
2527 {
2528 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2529 	    netif_running(dev)) {
2530 		netif_tx_wake_all_queues(dev);
2531 		__netdev_watchdog_up(dev);
2532 	}
2533 }
2534 EXPORT_SYMBOL(netif_device_attach);
2535 
2536 /*
2537  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2538  * to be used as a distribution range.
2539  */
2540 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2541 		  unsigned int num_tx_queues)
2542 {
2543 	u32 hash;
2544 	u16 qoffset = 0;
2545 	u16 qcount = num_tx_queues;
2546 
2547 	if (skb_rx_queue_recorded(skb)) {
2548 		hash = skb_get_rx_queue(skb);
2549 		while (unlikely(hash >= num_tx_queues))
2550 			hash -= num_tx_queues;
2551 		return hash;
2552 	}
2553 
2554 	if (dev->num_tc) {
2555 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2556 
2557 		qoffset = dev->tc_to_txq[tc].offset;
2558 		qcount = dev->tc_to_txq[tc].count;
2559 	}
2560 
2561 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2562 }
2563 EXPORT_SYMBOL(__skb_tx_hash);
2564 
2565 static void skb_warn_bad_offload(const struct sk_buff *skb)
2566 {
2567 	static const netdev_features_t null_features;
2568 	struct net_device *dev = skb->dev;
2569 	const char *name = "";
2570 
2571 	if (!net_ratelimit())
2572 		return;
2573 
2574 	if (dev) {
2575 		if (dev->dev.parent)
2576 			name = dev_driver_string(dev->dev.parent);
2577 		else
2578 			name = netdev_name(dev);
2579 	}
2580 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2581 	     "gso_type=%d ip_summed=%d\n",
2582 	     name, dev ? &dev->features : &null_features,
2583 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2584 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2585 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2586 }
2587 
2588 /*
2589  * Invalidate hardware checksum when packet is to be mangled, and
2590  * complete checksum manually on outgoing path.
2591  */
2592 int skb_checksum_help(struct sk_buff *skb)
2593 {
2594 	__wsum csum;
2595 	int ret = 0, offset;
2596 
2597 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2598 		goto out_set_summed;
2599 
2600 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2601 		skb_warn_bad_offload(skb);
2602 		return -EINVAL;
2603 	}
2604 
2605 	/* Before computing a checksum, we should make sure no frag could
2606 	 * be modified by an external entity : checksum could be wrong.
2607 	 */
2608 	if (skb_has_shared_frag(skb)) {
2609 		ret = __skb_linearize(skb);
2610 		if (ret)
2611 			goto out;
2612 	}
2613 
2614 	offset = skb_checksum_start_offset(skb);
2615 	BUG_ON(offset >= skb_headlen(skb));
2616 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2617 
2618 	offset += skb->csum_offset;
2619 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2620 
2621 	if (skb_cloned(skb) &&
2622 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2623 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2624 		if (ret)
2625 			goto out;
2626 	}
2627 
2628 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2629 out_set_summed:
2630 	skb->ip_summed = CHECKSUM_NONE;
2631 out:
2632 	return ret;
2633 }
2634 EXPORT_SYMBOL(skb_checksum_help);
2635 
2636 int skb_crc32c_csum_help(struct sk_buff *skb)
2637 {
2638 	__le32 crc32c_csum;
2639 	int ret = 0, offset, start;
2640 
2641 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2642 		goto out;
2643 
2644 	if (unlikely(skb_is_gso(skb)))
2645 		goto out;
2646 
2647 	/* Before computing a checksum, we should make sure no frag could
2648 	 * be modified by an external entity : checksum could be wrong.
2649 	 */
2650 	if (unlikely(skb_has_shared_frag(skb))) {
2651 		ret = __skb_linearize(skb);
2652 		if (ret)
2653 			goto out;
2654 	}
2655 	start = skb_checksum_start_offset(skb);
2656 	offset = start + offsetof(struct sctphdr, checksum);
2657 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2658 		ret = -EINVAL;
2659 		goto out;
2660 	}
2661 	if (skb_cloned(skb) &&
2662 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2663 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2664 		if (ret)
2665 			goto out;
2666 	}
2667 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2668 						  skb->len - start, ~(__u32)0,
2669 						  crc32c_csum_stub));
2670 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2671 	skb->ip_summed = CHECKSUM_NONE;
2672 	skb->csum_not_inet = 0;
2673 out:
2674 	return ret;
2675 }
2676 
2677 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2678 {
2679 	__be16 type = skb->protocol;
2680 
2681 	/* Tunnel gso handlers can set protocol to ethernet. */
2682 	if (type == htons(ETH_P_TEB)) {
2683 		struct ethhdr *eth;
2684 
2685 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2686 			return 0;
2687 
2688 		eth = (struct ethhdr *)skb_mac_header(skb);
2689 		type = eth->h_proto;
2690 	}
2691 
2692 	return __vlan_get_protocol(skb, type, depth);
2693 }
2694 
2695 /**
2696  *	skb_mac_gso_segment - mac layer segmentation handler.
2697  *	@skb: buffer to segment
2698  *	@features: features for the output path (see dev->features)
2699  */
2700 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2701 				    netdev_features_t features)
2702 {
2703 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2704 	struct packet_offload *ptype;
2705 	int vlan_depth = skb->mac_len;
2706 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2707 
2708 	if (unlikely(!type))
2709 		return ERR_PTR(-EINVAL);
2710 
2711 	__skb_pull(skb, vlan_depth);
2712 
2713 	rcu_read_lock();
2714 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2715 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2716 			segs = ptype->callbacks.gso_segment(skb, features);
2717 			break;
2718 		}
2719 	}
2720 	rcu_read_unlock();
2721 
2722 	__skb_push(skb, skb->data - skb_mac_header(skb));
2723 
2724 	return segs;
2725 }
2726 EXPORT_SYMBOL(skb_mac_gso_segment);
2727 
2728 
2729 /* openvswitch calls this on rx path, so we need a different check.
2730  */
2731 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2732 {
2733 	if (tx_path)
2734 		return skb->ip_summed != CHECKSUM_PARTIAL &&
2735 		       skb->ip_summed != CHECKSUM_NONE;
2736 
2737 	return skb->ip_summed == CHECKSUM_NONE;
2738 }
2739 
2740 /**
2741  *	__skb_gso_segment - Perform segmentation on skb.
2742  *	@skb: buffer to segment
2743  *	@features: features for the output path (see dev->features)
2744  *	@tx_path: whether it is called in TX path
2745  *
2746  *	This function segments the given skb and returns a list of segments.
2747  *
2748  *	It may return NULL if the skb requires no segmentation.  This is
2749  *	only possible when GSO is used for verifying header integrity.
2750  *
2751  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2752  */
2753 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2754 				  netdev_features_t features, bool tx_path)
2755 {
2756 	struct sk_buff *segs;
2757 
2758 	if (unlikely(skb_needs_check(skb, tx_path))) {
2759 		int err;
2760 
2761 		/* We're going to init ->check field in TCP or UDP header */
2762 		err = skb_cow_head(skb, 0);
2763 		if (err < 0)
2764 			return ERR_PTR(err);
2765 	}
2766 
2767 	/* Only report GSO partial support if it will enable us to
2768 	 * support segmentation on this frame without needing additional
2769 	 * work.
2770 	 */
2771 	if (features & NETIF_F_GSO_PARTIAL) {
2772 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2773 		struct net_device *dev = skb->dev;
2774 
2775 		partial_features |= dev->features & dev->gso_partial_features;
2776 		if (!skb_gso_ok(skb, features | partial_features))
2777 			features &= ~NETIF_F_GSO_PARTIAL;
2778 	}
2779 
2780 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2781 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2782 
2783 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2784 	SKB_GSO_CB(skb)->encap_level = 0;
2785 
2786 	skb_reset_mac_header(skb);
2787 	skb_reset_mac_len(skb);
2788 
2789 	segs = skb_mac_gso_segment(skb, features);
2790 
2791 	if (unlikely(skb_needs_check(skb, tx_path)))
2792 		skb_warn_bad_offload(skb);
2793 
2794 	return segs;
2795 }
2796 EXPORT_SYMBOL(__skb_gso_segment);
2797 
2798 /* Take action when hardware reception checksum errors are detected. */
2799 #ifdef CONFIG_BUG
2800 void netdev_rx_csum_fault(struct net_device *dev)
2801 {
2802 	if (net_ratelimit()) {
2803 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2804 		dump_stack();
2805 	}
2806 }
2807 EXPORT_SYMBOL(netdev_rx_csum_fault);
2808 #endif
2809 
2810 /* Actually, we should eliminate this check as soon as we know, that:
2811  * 1. IOMMU is present and allows to map all the memory.
2812  * 2. No high memory really exists on this machine.
2813  */
2814 
2815 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2816 {
2817 #ifdef CONFIG_HIGHMEM
2818 	int i;
2819 
2820 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2821 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2822 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2823 
2824 			if (PageHighMem(skb_frag_page(frag)))
2825 				return 1;
2826 		}
2827 	}
2828 
2829 	if (PCI_DMA_BUS_IS_PHYS) {
2830 		struct device *pdev = dev->dev.parent;
2831 
2832 		if (!pdev)
2833 			return 0;
2834 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2835 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2836 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2837 
2838 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2839 				return 1;
2840 		}
2841 	}
2842 #endif
2843 	return 0;
2844 }
2845 
2846 /* If MPLS offload request, verify we are testing hardware MPLS features
2847  * instead of standard features for the netdev.
2848  */
2849 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2850 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2851 					   netdev_features_t features,
2852 					   __be16 type)
2853 {
2854 	if (eth_p_mpls(type))
2855 		features &= skb->dev->mpls_features;
2856 
2857 	return features;
2858 }
2859 #else
2860 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2861 					   netdev_features_t features,
2862 					   __be16 type)
2863 {
2864 	return features;
2865 }
2866 #endif
2867 
2868 static netdev_features_t harmonize_features(struct sk_buff *skb,
2869 	netdev_features_t features)
2870 {
2871 	int tmp;
2872 	__be16 type;
2873 
2874 	type = skb_network_protocol(skb, &tmp);
2875 	features = net_mpls_features(skb, features, type);
2876 
2877 	if (skb->ip_summed != CHECKSUM_NONE &&
2878 	    !can_checksum_protocol(features, type)) {
2879 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2880 	}
2881 	if (illegal_highdma(skb->dev, skb))
2882 		features &= ~NETIF_F_SG;
2883 
2884 	return features;
2885 }
2886 
2887 netdev_features_t passthru_features_check(struct sk_buff *skb,
2888 					  struct net_device *dev,
2889 					  netdev_features_t features)
2890 {
2891 	return features;
2892 }
2893 EXPORT_SYMBOL(passthru_features_check);
2894 
2895 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2896 					     struct net_device *dev,
2897 					     netdev_features_t features)
2898 {
2899 	return vlan_features_check(skb, features);
2900 }
2901 
2902 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2903 					    struct net_device *dev,
2904 					    netdev_features_t features)
2905 {
2906 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2907 
2908 	if (gso_segs > dev->gso_max_segs)
2909 		return features & ~NETIF_F_GSO_MASK;
2910 
2911 	/* Support for GSO partial features requires software
2912 	 * intervention before we can actually process the packets
2913 	 * so we need to strip support for any partial features now
2914 	 * and we can pull them back in after we have partially
2915 	 * segmented the frame.
2916 	 */
2917 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2918 		features &= ~dev->gso_partial_features;
2919 
2920 	/* Make sure to clear the IPv4 ID mangling feature if the
2921 	 * IPv4 header has the potential to be fragmented.
2922 	 */
2923 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2924 		struct iphdr *iph = skb->encapsulation ?
2925 				    inner_ip_hdr(skb) : ip_hdr(skb);
2926 
2927 		if (!(iph->frag_off & htons(IP_DF)))
2928 			features &= ~NETIF_F_TSO_MANGLEID;
2929 	}
2930 
2931 	return features;
2932 }
2933 
2934 netdev_features_t netif_skb_features(struct sk_buff *skb)
2935 {
2936 	struct net_device *dev = skb->dev;
2937 	netdev_features_t features = dev->features;
2938 
2939 	if (skb_is_gso(skb))
2940 		features = gso_features_check(skb, dev, features);
2941 
2942 	/* If encapsulation offload request, verify we are testing
2943 	 * hardware encapsulation features instead of standard
2944 	 * features for the netdev
2945 	 */
2946 	if (skb->encapsulation)
2947 		features &= dev->hw_enc_features;
2948 
2949 	if (skb_vlan_tagged(skb))
2950 		features = netdev_intersect_features(features,
2951 						     dev->vlan_features |
2952 						     NETIF_F_HW_VLAN_CTAG_TX |
2953 						     NETIF_F_HW_VLAN_STAG_TX);
2954 
2955 	if (dev->netdev_ops->ndo_features_check)
2956 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2957 								features);
2958 	else
2959 		features &= dflt_features_check(skb, dev, features);
2960 
2961 	return harmonize_features(skb, features);
2962 }
2963 EXPORT_SYMBOL(netif_skb_features);
2964 
2965 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2966 		    struct netdev_queue *txq, bool more)
2967 {
2968 	unsigned int len;
2969 	int rc;
2970 
2971 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2972 		dev_queue_xmit_nit(skb, dev);
2973 
2974 	len = skb->len;
2975 	trace_net_dev_start_xmit(skb, dev);
2976 	rc = netdev_start_xmit(skb, dev, txq, more);
2977 	trace_net_dev_xmit(skb, rc, dev, len);
2978 
2979 	return rc;
2980 }
2981 
2982 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2983 				    struct netdev_queue *txq, int *ret)
2984 {
2985 	struct sk_buff *skb = first;
2986 	int rc = NETDEV_TX_OK;
2987 
2988 	while (skb) {
2989 		struct sk_buff *next = skb->next;
2990 
2991 		skb->next = NULL;
2992 		rc = xmit_one(skb, dev, txq, next != NULL);
2993 		if (unlikely(!dev_xmit_complete(rc))) {
2994 			skb->next = next;
2995 			goto out;
2996 		}
2997 
2998 		skb = next;
2999 		if (netif_xmit_stopped(txq) && skb) {
3000 			rc = NETDEV_TX_BUSY;
3001 			break;
3002 		}
3003 	}
3004 
3005 out:
3006 	*ret = rc;
3007 	return skb;
3008 }
3009 
3010 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3011 					  netdev_features_t features)
3012 {
3013 	if (skb_vlan_tag_present(skb) &&
3014 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3015 		skb = __vlan_hwaccel_push_inside(skb);
3016 	return skb;
3017 }
3018 
3019 int skb_csum_hwoffload_help(struct sk_buff *skb,
3020 			    const netdev_features_t features)
3021 {
3022 	if (unlikely(skb->csum_not_inet))
3023 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3024 			skb_crc32c_csum_help(skb);
3025 
3026 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3027 }
3028 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3029 
3030 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3031 {
3032 	netdev_features_t features;
3033 
3034 	features = netif_skb_features(skb);
3035 	skb = validate_xmit_vlan(skb, features);
3036 	if (unlikely(!skb))
3037 		goto out_null;
3038 
3039 	if (netif_needs_gso(skb, features)) {
3040 		struct sk_buff *segs;
3041 
3042 		segs = skb_gso_segment(skb, features);
3043 		if (IS_ERR(segs)) {
3044 			goto out_kfree_skb;
3045 		} else if (segs) {
3046 			consume_skb(skb);
3047 			skb = segs;
3048 		}
3049 	} else {
3050 		if (skb_needs_linearize(skb, features) &&
3051 		    __skb_linearize(skb))
3052 			goto out_kfree_skb;
3053 
3054 		if (validate_xmit_xfrm(skb, features))
3055 			goto out_kfree_skb;
3056 
3057 		/* If packet is not checksummed and device does not
3058 		 * support checksumming for this protocol, complete
3059 		 * checksumming here.
3060 		 */
3061 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3062 			if (skb->encapsulation)
3063 				skb_set_inner_transport_header(skb,
3064 							       skb_checksum_start_offset(skb));
3065 			else
3066 				skb_set_transport_header(skb,
3067 							 skb_checksum_start_offset(skb));
3068 			if (skb_csum_hwoffload_help(skb, features))
3069 				goto out_kfree_skb;
3070 		}
3071 	}
3072 
3073 	return skb;
3074 
3075 out_kfree_skb:
3076 	kfree_skb(skb);
3077 out_null:
3078 	atomic_long_inc(&dev->tx_dropped);
3079 	return NULL;
3080 }
3081 
3082 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3083 {
3084 	struct sk_buff *next, *head = NULL, *tail;
3085 
3086 	for (; skb != NULL; skb = next) {
3087 		next = skb->next;
3088 		skb->next = NULL;
3089 
3090 		/* in case skb wont be segmented, point to itself */
3091 		skb->prev = skb;
3092 
3093 		skb = validate_xmit_skb(skb, dev);
3094 		if (!skb)
3095 			continue;
3096 
3097 		if (!head)
3098 			head = skb;
3099 		else
3100 			tail->next = skb;
3101 		/* If skb was segmented, skb->prev points to
3102 		 * the last segment. If not, it still contains skb.
3103 		 */
3104 		tail = skb->prev;
3105 	}
3106 	return head;
3107 }
3108 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3109 
3110 static void qdisc_pkt_len_init(struct sk_buff *skb)
3111 {
3112 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3113 
3114 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3115 
3116 	/* To get more precise estimation of bytes sent on wire,
3117 	 * we add to pkt_len the headers size of all segments
3118 	 */
3119 	if (shinfo->gso_size)  {
3120 		unsigned int hdr_len;
3121 		u16 gso_segs = shinfo->gso_segs;
3122 
3123 		/* mac layer + network layer */
3124 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3125 
3126 		/* + transport layer */
3127 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3128 			hdr_len += tcp_hdrlen(skb);
3129 		else
3130 			hdr_len += sizeof(struct udphdr);
3131 
3132 		if (shinfo->gso_type & SKB_GSO_DODGY)
3133 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3134 						shinfo->gso_size);
3135 
3136 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3137 	}
3138 }
3139 
3140 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3141 				 struct net_device *dev,
3142 				 struct netdev_queue *txq)
3143 {
3144 	spinlock_t *root_lock = qdisc_lock(q);
3145 	struct sk_buff *to_free = NULL;
3146 	bool contended;
3147 	int rc;
3148 
3149 	qdisc_calculate_pkt_len(skb, q);
3150 	/*
3151 	 * Heuristic to force contended enqueues to serialize on a
3152 	 * separate lock before trying to get qdisc main lock.
3153 	 * This permits qdisc->running owner to get the lock more
3154 	 * often and dequeue packets faster.
3155 	 */
3156 	contended = qdisc_is_running(q);
3157 	if (unlikely(contended))
3158 		spin_lock(&q->busylock);
3159 
3160 	spin_lock(root_lock);
3161 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3162 		__qdisc_drop(skb, &to_free);
3163 		rc = NET_XMIT_DROP;
3164 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3165 		   qdisc_run_begin(q)) {
3166 		/*
3167 		 * This is a work-conserving queue; there are no old skbs
3168 		 * waiting to be sent out; and the qdisc is not running -
3169 		 * xmit the skb directly.
3170 		 */
3171 
3172 		qdisc_bstats_update(q, skb);
3173 
3174 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3175 			if (unlikely(contended)) {
3176 				spin_unlock(&q->busylock);
3177 				contended = false;
3178 			}
3179 			__qdisc_run(q);
3180 		} else
3181 			qdisc_run_end(q);
3182 
3183 		rc = NET_XMIT_SUCCESS;
3184 	} else {
3185 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3186 		if (qdisc_run_begin(q)) {
3187 			if (unlikely(contended)) {
3188 				spin_unlock(&q->busylock);
3189 				contended = false;
3190 			}
3191 			__qdisc_run(q);
3192 		}
3193 	}
3194 	spin_unlock(root_lock);
3195 	if (unlikely(to_free))
3196 		kfree_skb_list(to_free);
3197 	if (unlikely(contended))
3198 		spin_unlock(&q->busylock);
3199 	return rc;
3200 }
3201 
3202 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3203 static void skb_update_prio(struct sk_buff *skb)
3204 {
3205 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3206 
3207 	if (!skb->priority && skb->sk && map) {
3208 		unsigned int prioidx =
3209 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3210 
3211 		if (prioidx < map->priomap_len)
3212 			skb->priority = map->priomap[prioidx];
3213 	}
3214 }
3215 #else
3216 #define skb_update_prio(skb)
3217 #endif
3218 
3219 DEFINE_PER_CPU(int, xmit_recursion);
3220 EXPORT_SYMBOL(xmit_recursion);
3221 
3222 /**
3223  *	dev_loopback_xmit - loop back @skb
3224  *	@net: network namespace this loopback is happening in
3225  *	@sk:  sk needed to be a netfilter okfn
3226  *	@skb: buffer to transmit
3227  */
3228 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3229 {
3230 	skb_reset_mac_header(skb);
3231 	__skb_pull(skb, skb_network_offset(skb));
3232 	skb->pkt_type = PACKET_LOOPBACK;
3233 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3234 	WARN_ON(!skb_dst(skb));
3235 	skb_dst_force(skb);
3236 	netif_rx_ni(skb);
3237 	return 0;
3238 }
3239 EXPORT_SYMBOL(dev_loopback_xmit);
3240 
3241 #ifdef CONFIG_NET_EGRESS
3242 static struct sk_buff *
3243 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3244 {
3245 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3246 	struct tcf_result cl_res;
3247 
3248 	if (!cl)
3249 		return skb;
3250 
3251 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3252 	qdisc_bstats_cpu_update(cl->q, skb);
3253 
3254 	switch (tcf_classify(skb, cl, &cl_res, false)) {
3255 	case TC_ACT_OK:
3256 	case TC_ACT_RECLASSIFY:
3257 		skb->tc_index = TC_H_MIN(cl_res.classid);
3258 		break;
3259 	case TC_ACT_SHOT:
3260 		qdisc_qstats_cpu_drop(cl->q);
3261 		*ret = NET_XMIT_DROP;
3262 		kfree_skb(skb);
3263 		return NULL;
3264 	case TC_ACT_STOLEN:
3265 	case TC_ACT_QUEUED:
3266 	case TC_ACT_TRAP:
3267 		*ret = NET_XMIT_SUCCESS;
3268 		consume_skb(skb);
3269 		return NULL;
3270 	case TC_ACT_REDIRECT:
3271 		/* No need to push/pop skb's mac_header here on egress! */
3272 		skb_do_redirect(skb);
3273 		*ret = NET_XMIT_SUCCESS;
3274 		return NULL;
3275 	default:
3276 		break;
3277 	}
3278 
3279 	return skb;
3280 }
3281 #endif /* CONFIG_NET_EGRESS */
3282 
3283 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3284 {
3285 #ifdef CONFIG_XPS
3286 	struct xps_dev_maps *dev_maps;
3287 	struct xps_map *map;
3288 	int queue_index = -1;
3289 
3290 	rcu_read_lock();
3291 	dev_maps = rcu_dereference(dev->xps_maps);
3292 	if (dev_maps) {
3293 		unsigned int tci = skb->sender_cpu - 1;
3294 
3295 		if (dev->num_tc) {
3296 			tci *= dev->num_tc;
3297 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3298 		}
3299 
3300 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3301 		if (map) {
3302 			if (map->len == 1)
3303 				queue_index = map->queues[0];
3304 			else
3305 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3306 									   map->len)];
3307 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3308 				queue_index = -1;
3309 		}
3310 	}
3311 	rcu_read_unlock();
3312 
3313 	return queue_index;
3314 #else
3315 	return -1;
3316 #endif
3317 }
3318 
3319 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3320 {
3321 	struct sock *sk = skb->sk;
3322 	int queue_index = sk_tx_queue_get(sk);
3323 
3324 	if (queue_index < 0 || skb->ooo_okay ||
3325 	    queue_index >= dev->real_num_tx_queues) {
3326 		int new_index = get_xps_queue(dev, skb);
3327 
3328 		if (new_index < 0)
3329 			new_index = skb_tx_hash(dev, skb);
3330 
3331 		if (queue_index != new_index && sk &&
3332 		    sk_fullsock(sk) &&
3333 		    rcu_access_pointer(sk->sk_dst_cache))
3334 			sk_tx_queue_set(sk, new_index);
3335 
3336 		queue_index = new_index;
3337 	}
3338 
3339 	return queue_index;
3340 }
3341 
3342 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3343 				    struct sk_buff *skb,
3344 				    void *accel_priv)
3345 {
3346 	int queue_index = 0;
3347 
3348 #ifdef CONFIG_XPS
3349 	u32 sender_cpu = skb->sender_cpu - 1;
3350 
3351 	if (sender_cpu >= (u32)NR_CPUS)
3352 		skb->sender_cpu = raw_smp_processor_id() + 1;
3353 #endif
3354 
3355 	if (dev->real_num_tx_queues != 1) {
3356 		const struct net_device_ops *ops = dev->netdev_ops;
3357 
3358 		if (ops->ndo_select_queue)
3359 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3360 							    __netdev_pick_tx);
3361 		else
3362 			queue_index = __netdev_pick_tx(dev, skb);
3363 
3364 		if (!accel_priv)
3365 			queue_index = netdev_cap_txqueue(dev, queue_index);
3366 	}
3367 
3368 	skb_set_queue_mapping(skb, queue_index);
3369 	return netdev_get_tx_queue(dev, queue_index);
3370 }
3371 
3372 /**
3373  *	__dev_queue_xmit - transmit a buffer
3374  *	@skb: buffer to transmit
3375  *	@accel_priv: private data used for L2 forwarding offload
3376  *
3377  *	Queue a buffer for transmission to a network device. The caller must
3378  *	have set the device and priority and built the buffer before calling
3379  *	this function. The function can be called from an interrupt.
3380  *
3381  *	A negative errno code is returned on a failure. A success does not
3382  *	guarantee the frame will be transmitted as it may be dropped due
3383  *	to congestion or traffic shaping.
3384  *
3385  * -----------------------------------------------------------------------------------
3386  *      I notice this method can also return errors from the queue disciplines,
3387  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3388  *      be positive.
3389  *
3390  *      Regardless of the return value, the skb is consumed, so it is currently
3391  *      difficult to retry a send to this method.  (You can bump the ref count
3392  *      before sending to hold a reference for retry if you are careful.)
3393  *
3394  *      When calling this method, interrupts MUST be enabled.  This is because
3395  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3396  *          --BLG
3397  */
3398 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3399 {
3400 	struct net_device *dev = skb->dev;
3401 	struct netdev_queue *txq;
3402 	struct Qdisc *q;
3403 	int rc = -ENOMEM;
3404 
3405 	skb_reset_mac_header(skb);
3406 
3407 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3408 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3409 
3410 	/* Disable soft irqs for various locks below. Also
3411 	 * stops preemption for RCU.
3412 	 */
3413 	rcu_read_lock_bh();
3414 
3415 	skb_update_prio(skb);
3416 
3417 	qdisc_pkt_len_init(skb);
3418 #ifdef CONFIG_NET_CLS_ACT
3419 	skb->tc_at_ingress = 0;
3420 # ifdef CONFIG_NET_EGRESS
3421 	if (static_key_false(&egress_needed)) {
3422 		skb = sch_handle_egress(skb, &rc, dev);
3423 		if (!skb)
3424 			goto out;
3425 	}
3426 # endif
3427 #endif
3428 	/* If device/qdisc don't need skb->dst, release it right now while
3429 	 * its hot in this cpu cache.
3430 	 */
3431 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3432 		skb_dst_drop(skb);
3433 	else
3434 		skb_dst_force(skb);
3435 
3436 	txq = netdev_pick_tx(dev, skb, accel_priv);
3437 	q = rcu_dereference_bh(txq->qdisc);
3438 
3439 	trace_net_dev_queue(skb);
3440 	if (q->enqueue) {
3441 		rc = __dev_xmit_skb(skb, q, dev, txq);
3442 		goto out;
3443 	}
3444 
3445 	/* The device has no queue. Common case for software devices:
3446 	 * loopback, all the sorts of tunnels...
3447 
3448 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3449 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3450 	 * counters.)
3451 	 * However, it is possible, that they rely on protection
3452 	 * made by us here.
3453 
3454 	 * Check this and shot the lock. It is not prone from deadlocks.
3455 	 *Either shot noqueue qdisc, it is even simpler 8)
3456 	 */
3457 	if (dev->flags & IFF_UP) {
3458 		int cpu = smp_processor_id(); /* ok because BHs are off */
3459 
3460 		if (txq->xmit_lock_owner != cpu) {
3461 			if (unlikely(__this_cpu_read(xmit_recursion) >
3462 				     XMIT_RECURSION_LIMIT))
3463 				goto recursion_alert;
3464 
3465 			skb = validate_xmit_skb(skb, dev);
3466 			if (!skb)
3467 				goto out;
3468 
3469 			HARD_TX_LOCK(dev, txq, cpu);
3470 
3471 			if (!netif_xmit_stopped(txq)) {
3472 				__this_cpu_inc(xmit_recursion);
3473 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3474 				__this_cpu_dec(xmit_recursion);
3475 				if (dev_xmit_complete(rc)) {
3476 					HARD_TX_UNLOCK(dev, txq);
3477 					goto out;
3478 				}
3479 			}
3480 			HARD_TX_UNLOCK(dev, txq);
3481 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3482 					     dev->name);
3483 		} else {
3484 			/* Recursion is detected! It is possible,
3485 			 * unfortunately
3486 			 */
3487 recursion_alert:
3488 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3489 					     dev->name);
3490 		}
3491 	}
3492 
3493 	rc = -ENETDOWN;
3494 	rcu_read_unlock_bh();
3495 
3496 	atomic_long_inc(&dev->tx_dropped);
3497 	kfree_skb_list(skb);
3498 	return rc;
3499 out:
3500 	rcu_read_unlock_bh();
3501 	return rc;
3502 }
3503 
3504 int dev_queue_xmit(struct sk_buff *skb)
3505 {
3506 	return __dev_queue_xmit(skb, NULL);
3507 }
3508 EXPORT_SYMBOL(dev_queue_xmit);
3509 
3510 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3511 {
3512 	return __dev_queue_xmit(skb, accel_priv);
3513 }
3514 EXPORT_SYMBOL(dev_queue_xmit_accel);
3515 
3516 
3517 /*************************************************************************
3518  *			Receiver routines
3519  *************************************************************************/
3520 
3521 int netdev_max_backlog __read_mostly = 1000;
3522 EXPORT_SYMBOL(netdev_max_backlog);
3523 
3524 int netdev_tstamp_prequeue __read_mostly = 1;
3525 int netdev_budget __read_mostly = 300;
3526 unsigned int __read_mostly netdev_budget_usecs = 2000;
3527 int weight_p __read_mostly = 64;           /* old backlog weight */
3528 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3529 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3530 int dev_rx_weight __read_mostly = 64;
3531 int dev_tx_weight __read_mostly = 64;
3532 
3533 /* Called with irq disabled */
3534 static inline void ____napi_schedule(struct softnet_data *sd,
3535 				     struct napi_struct *napi)
3536 {
3537 	list_add_tail(&napi->poll_list, &sd->poll_list);
3538 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3539 }
3540 
3541 #ifdef CONFIG_RPS
3542 
3543 /* One global table that all flow-based protocols share. */
3544 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3545 EXPORT_SYMBOL(rps_sock_flow_table);
3546 u32 rps_cpu_mask __read_mostly;
3547 EXPORT_SYMBOL(rps_cpu_mask);
3548 
3549 struct static_key rps_needed __read_mostly;
3550 EXPORT_SYMBOL(rps_needed);
3551 struct static_key rfs_needed __read_mostly;
3552 EXPORT_SYMBOL(rfs_needed);
3553 
3554 static struct rps_dev_flow *
3555 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3556 	    struct rps_dev_flow *rflow, u16 next_cpu)
3557 {
3558 	if (next_cpu < nr_cpu_ids) {
3559 #ifdef CONFIG_RFS_ACCEL
3560 		struct netdev_rx_queue *rxqueue;
3561 		struct rps_dev_flow_table *flow_table;
3562 		struct rps_dev_flow *old_rflow;
3563 		u32 flow_id;
3564 		u16 rxq_index;
3565 		int rc;
3566 
3567 		/* Should we steer this flow to a different hardware queue? */
3568 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3569 		    !(dev->features & NETIF_F_NTUPLE))
3570 			goto out;
3571 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3572 		if (rxq_index == skb_get_rx_queue(skb))
3573 			goto out;
3574 
3575 		rxqueue = dev->_rx + rxq_index;
3576 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3577 		if (!flow_table)
3578 			goto out;
3579 		flow_id = skb_get_hash(skb) & flow_table->mask;
3580 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3581 							rxq_index, flow_id);
3582 		if (rc < 0)
3583 			goto out;
3584 		old_rflow = rflow;
3585 		rflow = &flow_table->flows[flow_id];
3586 		rflow->filter = rc;
3587 		if (old_rflow->filter == rflow->filter)
3588 			old_rflow->filter = RPS_NO_FILTER;
3589 	out:
3590 #endif
3591 		rflow->last_qtail =
3592 			per_cpu(softnet_data, next_cpu).input_queue_head;
3593 	}
3594 
3595 	rflow->cpu = next_cpu;
3596 	return rflow;
3597 }
3598 
3599 /*
3600  * get_rps_cpu is called from netif_receive_skb and returns the target
3601  * CPU from the RPS map of the receiving queue for a given skb.
3602  * rcu_read_lock must be held on entry.
3603  */
3604 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3605 		       struct rps_dev_flow **rflowp)
3606 {
3607 	const struct rps_sock_flow_table *sock_flow_table;
3608 	struct netdev_rx_queue *rxqueue = dev->_rx;
3609 	struct rps_dev_flow_table *flow_table;
3610 	struct rps_map *map;
3611 	int cpu = -1;
3612 	u32 tcpu;
3613 	u32 hash;
3614 
3615 	if (skb_rx_queue_recorded(skb)) {
3616 		u16 index = skb_get_rx_queue(skb);
3617 
3618 		if (unlikely(index >= dev->real_num_rx_queues)) {
3619 			WARN_ONCE(dev->real_num_rx_queues > 1,
3620 				  "%s received packet on queue %u, but number "
3621 				  "of RX queues is %u\n",
3622 				  dev->name, index, dev->real_num_rx_queues);
3623 			goto done;
3624 		}
3625 		rxqueue += index;
3626 	}
3627 
3628 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3629 
3630 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3631 	map = rcu_dereference(rxqueue->rps_map);
3632 	if (!flow_table && !map)
3633 		goto done;
3634 
3635 	skb_reset_network_header(skb);
3636 	hash = skb_get_hash(skb);
3637 	if (!hash)
3638 		goto done;
3639 
3640 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3641 	if (flow_table && sock_flow_table) {
3642 		struct rps_dev_flow *rflow;
3643 		u32 next_cpu;
3644 		u32 ident;
3645 
3646 		/* First check into global flow table if there is a match */
3647 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3648 		if ((ident ^ hash) & ~rps_cpu_mask)
3649 			goto try_rps;
3650 
3651 		next_cpu = ident & rps_cpu_mask;
3652 
3653 		/* OK, now we know there is a match,
3654 		 * we can look at the local (per receive queue) flow table
3655 		 */
3656 		rflow = &flow_table->flows[hash & flow_table->mask];
3657 		tcpu = rflow->cpu;
3658 
3659 		/*
3660 		 * If the desired CPU (where last recvmsg was done) is
3661 		 * different from current CPU (one in the rx-queue flow
3662 		 * table entry), switch if one of the following holds:
3663 		 *   - Current CPU is unset (>= nr_cpu_ids).
3664 		 *   - Current CPU is offline.
3665 		 *   - The current CPU's queue tail has advanced beyond the
3666 		 *     last packet that was enqueued using this table entry.
3667 		 *     This guarantees that all previous packets for the flow
3668 		 *     have been dequeued, thus preserving in order delivery.
3669 		 */
3670 		if (unlikely(tcpu != next_cpu) &&
3671 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3672 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3673 		      rflow->last_qtail)) >= 0)) {
3674 			tcpu = next_cpu;
3675 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3676 		}
3677 
3678 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3679 			*rflowp = rflow;
3680 			cpu = tcpu;
3681 			goto done;
3682 		}
3683 	}
3684 
3685 try_rps:
3686 
3687 	if (map) {
3688 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3689 		if (cpu_online(tcpu)) {
3690 			cpu = tcpu;
3691 			goto done;
3692 		}
3693 	}
3694 
3695 done:
3696 	return cpu;
3697 }
3698 
3699 #ifdef CONFIG_RFS_ACCEL
3700 
3701 /**
3702  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3703  * @dev: Device on which the filter was set
3704  * @rxq_index: RX queue index
3705  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3706  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3707  *
3708  * Drivers that implement ndo_rx_flow_steer() should periodically call
3709  * this function for each installed filter and remove the filters for
3710  * which it returns %true.
3711  */
3712 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3713 			 u32 flow_id, u16 filter_id)
3714 {
3715 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3716 	struct rps_dev_flow_table *flow_table;
3717 	struct rps_dev_flow *rflow;
3718 	bool expire = true;
3719 	unsigned int cpu;
3720 
3721 	rcu_read_lock();
3722 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3723 	if (flow_table && flow_id <= flow_table->mask) {
3724 		rflow = &flow_table->flows[flow_id];
3725 		cpu = ACCESS_ONCE(rflow->cpu);
3726 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3727 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3728 			   rflow->last_qtail) <
3729 		     (int)(10 * flow_table->mask)))
3730 			expire = false;
3731 	}
3732 	rcu_read_unlock();
3733 	return expire;
3734 }
3735 EXPORT_SYMBOL(rps_may_expire_flow);
3736 
3737 #endif /* CONFIG_RFS_ACCEL */
3738 
3739 /* Called from hardirq (IPI) context */
3740 static void rps_trigger_softirq(void *data)
3741 {
3742 	struct softnet_data *sd = data;
3743 
3744 	____napi_schedule(sd, &sd->backlog);
3745 	sd->received_rps++;
3746 }
3747 
3748 #endif /* CONFIG_RPS */
3749 
3750 /*
3751  * Check if this softnet_data structure is another cpu one
3752  * If yes, queue it to our IPI list and return 1
3753  * If no, return 0
3754  */
3755 static int rps_ipi_queued(struct softnet_data *sd)
3756 {
3757 #ifdef CONFIG_RPS
3758 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3759 
3760 	if (sd != mysd) {
3761 		sd->rps_ipi_next = mysd->rps_ipi_list;
3762 		mysd->rps_ipi_list = sd;
3763 
3764 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3765 		return 1;
3766 	}
3767 #endif /* CONFIG_RPS */
3768 	return 0;
3769 }
3770 
3771 #ifdef CONFIG_NET_FLOW_LIMIT
3772 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3773 #endif
3774 
3775 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3776 {
3777 #ifdef CONFIG_NET_FLOW_LIMIT
3778 	struct sd_flow_limit *fl;
3779 	struct softnet_data *sd;
3780 	unsigned int old_flow, new_flow;
3781 
3782 	if (qlen < (netdev_max_backlog >> 1))
3783 		return false;
3784 
3785 	sd = this_cpu_ptr(&softnet_data);
3786 
3787 	rcu_read_lock();
3788 	fl = rcu_dereference(sd->flow_limit);
3789 	if (fl) {
3790 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3791 		old_flow = fl->history[fl->history_head];
3792 		fl->history[fl->history_head] = new_flow;
3793 
3794 		fl->history_head++;
3795 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3796 
3797 		if (likely(fl->buckets[old_flow]))
3798 			fl->buckets[old_flow]--;
3799 
3800 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3801 			fl->count++;
3802 			rcu_read_unlock();
3803 			return true;
3804 		}
3805 	}
3806 	rcu_read_unlock();
3807 #endif
3808 	return false;
3809 }
3810 
3811 /*
3812  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3813  * queue (may be a remote CPU queue).
3814  */
3815 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3816 			      unsigned int *qtail)
3817 {
3818 	struct softnet_data *sd;
3819 	unsigned long flags;
3820 	unsigned int qlen;
3821 
3822 	sd = &per_cpu(softnet_data, cpu);
3823 
3824 	local_irq_save(flags);
3825 
3826 	rps_lock(sd);
3827 	if (!netif_running(skb->dev))
3828 		goto drop;
3829 	qlen = skb_queue_len(&sd->input_pkt_queue);
3830 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3831 		if (qlen) {
3832 enqueue:
3833 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3834 			input_queue_tail_incr_save(sd, qtail);
3835 			rps_unlock(sd);
3836 			local_irq_restore(flags);
3837 			return NET_RX_SUCCESS;
3838 		}
3839 
3840 		/* Schedule NAPI for backlog device
3841 		 * We can use non atomic operation since we own the queue lock
3842 		 */
3843 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3844 			if (!rps_ipi_queued(sd))
3845 				____napi_schedule(sd, &sd->backlog);
3846 		}
3847 		goto enqueue;
3848 	}
3849 
3850 drop:
3851 	sd->dropped++;
3852 	rps_unlock(sd);
3853 
3854 	local_irq_restore(flags);
3855 
3856 	atomic_long_inc(&skb->dev->rx_dropped);
3857 	kfree_skb(skb);
3858 	return NET_RX_DROP;
3859 }
3860 
3861 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3862 				     struct bpf_prog *xdp_prog)
3863 {
3864 	struct xdp_buff xdp;
3865 	u32 act = XDP_DROP;
3866 	void *orig_data;
3867 	int hlen, off;
3868 	u32 mac_len;
3869 
3870 	/* Reinjected packets coming from act_mirred or similar should
3871 	 * not get XDP generic processing.
3872 	 */
3873 	if (skb_cloned(skb))
3874 		return XDP_PASS;
3875 
3876 	if (skb_linearize(skb))
3877 		goto do_drop;
3878 
3879 	/* The XDP program wants to see the packet starting at the MAC
3880 	 * header.
3881 	 */
3882 	mac_len = skb->data - skb_mac_header(skb);
3883 	hlen = skb_headlen(skb) + mac_len;
3884 	xdp.data = skb->data - mac_len;
3885 	xdp.data_end = xdp.data + hlen;
3886 	xdp.data_hard_start = skb->data - skb_headroom(skb);
3887 	orig_data = xdp.data;
3888 
3889 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
3890 
3891 	off = xdp.data - orig_data;
3892 	if (off > 0)
3893 		__skb_pull(skb, off);
3894 	else if (off < 0)
3895 		__skb_push(skb, -off);
3896 
3897 	switch (act) {
3898 	case XDP_REDIRECT:
3899 	case XDP_TX:
3900 		__skb_push(skb, mac_len);
3901 		/* fall through */
3902 	case XDP_PASS:
3903 		break;
3904 
3905 	default:
3906 		bpf_warn_invalid_xdp_action(act);
3907 		/* fall through */
3908 	case XDP_ABORTED:
3909 		trace_xdp_exception(skb->dev, xdp_prog, act);
3910 		/* fall through */
3911 	case XDP_DROP:
3912 	do_drop:
3913 		kfree_skb(skb);
3914 		break;
3915 	}
3916 
3917 	return act;
3918 }
3919 
3920 /* When doing generic XDP we have to bypass the qdisc layer and the
3921  * network taps in order to match in-driver-XDP behavior.
3922  */
3923 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3924 {
3925 	struct net_device *dev = skb->dev;
3926 	struct netdev_queue *txq;
3927 	bool free_skb = true;
3928 	int cpu, rc;
3929 
3930 	txq = netdev_pick_tx(dev, skb, NULL);
3931 	cpu = smp_processor_id();
3932 	HARD_TX_LOCK(dev, txq, cpu);
3933 	if (!netif_xmit_stopped(txq)) {
3934 		rc = netdev_start_xmit(skb, dev, txq, 0);
3935 		if (dev_xmit_complete(rc))
3936 			free_skb = false;
3937 	}
3938 	HARD_TX_UNLOCK(dev, txq);
3939 	if (free_skb) {
3940 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
3941 		kfree_skb(skb);
3942 	}
3943 }
3944 
3945 static struct static_key generic_xdp_needed __read_mostly;
3946 
3947 static int do_xdp_generic(struct sk_buff *skb)
3948 {
3949 	struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
3950 
3951 	if (xdp_prog) {
3952 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
3953 		int err;
3954 
3955 		if (act != XDP_PASS) {
3956 			switch (act) {
3957 			case XDP_REDIRECT:
3958 				err = xdp_do_generic_redirect(skb->dev, skb);
3959 				if (err)
3960 					goto out_redir;
3961 			/* fallthru to submit skb */
3962 			case XDP_TX:
3963 				generic_xdp_tx(skb, xdp_prog);
3964 				break;
3965 			}
3966 			return XDP_DROP;
3967 		}
3968 	}
3969 	return XDP_PASS;
3970 out_redir:
3971 	trace_xdp_exception(skb->dev, xdp_prog, XDP_REDIRECT);
3972 	kfree_skb(skb);
3973 	return XDP_DROP;
3974 }
3975 
3976 static int netif_rx_internal(struct sk_buff *skb)
3977 {
3978 	int ret;
3979 
3980 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3981 
3982 	trace_netif_rx(skb);
3983 
3984 	if (static_key_false(&generic_xdp_needed)) {
3985 		int ret = do_xdp_generic(skb);
3986 
3987 		/* Consider XDP consuming the packet a success from
3988 		 * the netdev point of view we do not want to count
3989 		 * this as an error.
3990 		 */
3991 		if (ret != XDP_PASS)
3992 			return NET_RX_SUCCESS;
3993 	}
3994 
3995 #ifdef CONFIG_RPS
3996 	if (static_key_false(&rps_needed)) {
3997 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3998 		int cpu;
3999 
4000 		preempt_disable();
4001 		rcu_read_lock();
4002 
4003 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4004 		if (cpu < 0)
4005 			cpu = smp_processor_id();
4006 
4007 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4008 
4009 		rcu_read_unlock();
4010 		preempt_enable();
4011 	} else
4012 #endif
4013 	{
4014 		unsigned int qtail;
4015 
4016 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4017 		put_cpu();
4018 	}
4019 	return ret;
4020 }
4021 
4022 /**
4023  *	netif_rx	-	post buffer to the network code
4024  *	@skb: buffer to post
4025  *
4026  *	This function receives a packet from a device driver and queues it for
4027  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4028  *	may be dropped during processing for congestion control or by the
4029  *	protocol layers.
4030  *
4031  *	return values:
4032  *	NET_RX_SUCCESS	(no congestion)
4033  *	NET_RX_DROP     (packet was dropped)
4034  *
4035  */
4036 
4037 int netif_rx(struct sk_buff *skb)
4038 {
4039 	trace_netif_rx_entry(skb);
4040 
4041 	return netif_rx_internal(skb);
4042 }
4043 EXPORT_SYMBOL(netif_rx);
4044 
4045 int netif_rx_ni(struct sk_buff *skb)
4046 {
4047 	int err;
4048 
4049 	trace_netif_rx_ni_entry(skb);
4050 
4051 	preempt_disable();
4052 	err = netif_rx_internal(skb);
4053 	if (local_softirq_pending())
4054 		do_softirq();
4055 	preempt_enable();
4056 
4057 	return err;
4058 }
4059 EXPORT_SYMBOL(netif_rx_ni);
4060 
4061 static __latent_entropy void net_tx_action(struct softirq_action *h)
4062 {
4063 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4064 
4065 	if (sd->completion_queue) {
4066 		struct sk_buff *clist;
4067 
4068 		local_irq_disable();
4069 		clist = sd->completion_queue;
4070 		sd->completion_queue = NULL;
4071 		local_irq_enable();
4072 
4073 		while (clist) {
4074 			struct sk_buff *skb = clist;
4075 
4076 			clist = clist->next;
4077 
4078 			WARN_ON(refcount_read(&skb->users));
4079 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4080 				trace_consume_skb(skb);
4081 			else
4082 				trace_kfree_skb(skb, net_tx_action);
4083 
4084 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4085 				__kfree_skb(skb);
4086 			else
4087 				__kfree_skb_defer(skb);
4088 		}
4089 
4090 		__kfree_skb_flush();
4091 	}
4092 
4093 	if (sd->output_queue) {
4094 		struct Qdisc *head;
4095 
4096 		local_irq_disable();
4097 		head = sd->output_queue;
4098 		sd->output_queue = NULL;
4099 		sd->output_queue_tailp = &sd->output_queue;
4100 		local_irq_enable();
4101 
4102 		while (head) {
4103 			struct Qdisc *q = head;
4104 			spinlock_t *root_lock;
4105 
4106 			head = head->next_sched;
4107 
4108 			root_lock = qdisc_lock(q);
4109 			spin_lock(root_lock);
4110 			/* We need to make sure head->next_sched is read
4111 			 * before clearing __QDISC_STATE_SCHED
4112 			 */
4113 			smp_mb__before_atomic();
4114 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4115 			qdisc_run(q);
4116 			spin_unlock(root_lock);
4117 		}
4118 	}
4119 }
4120 
4121 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4122 /* This hook is defined here for ATM LANE */
4123 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4124 			     unsigned char *addr) __read_mostly;
4125 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4126 #endif
4127 
4128 static inline struct sk_buff *
4129 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4130 		   struct net_device *orig_dev)
4131 {
4132 #ifdef CONFIG_NET_CLS_ACT
4133 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4134 	struct tcf_result cl_res;
4135 
4136 	/* If there's at least one ingress present somewhere (so
4137 	 * we get here via enabled static key), remaining devices
4138 	 * that are not configured with an ingress qdisc will bail
4139 	 * out here.
4140 	 */
4141 	if (!cl)
4142 		return skb;
4143 	if (*pt_prev) {
4144 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4145 		*pt_prev = NULL;
4146 	}
4147 
4148 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4149 	skb->tc_at_ingress = 1;
4150 	qdisc_bstats_cpu_update(cl->q, skb);
4151 
4152 	switch (tcf_classify(skb, cl, &cl_res, false)) {
4153 	case TC_ACT_OK:
4154 	case TC_ACT_RECLASSIFY:
4155 		skb->tc_index = TC_H_MIN(cl_res.classid);
4156 		break;
4157 	case TC_ACT_SHOT:
4158 		qdisc_qstats_cpu_drop(cl->q);
4159 		kfree_skb(skb);
4160 		return NULL;
4161 	case TC_ACT_STOLEN:
4162 	case TC_ACT_QUEUED:
4163 	case TC_ACT_TRAP:
4164 		consume_skb(skb);
4165 		return NULL;
4166 	case TC_ACT_REDIRECT:
4167 		/* skb_mac_header check was done by cls/act_bpf, so
4168 		 * we can safely push the L2 header back before
4169 		 * redirecting to another netdev
4170 		 */
4171 		__skb_push(skb, skb->mac_len);
4172 		skb_do_redirect(skb);
4173 		return NULL;
4174 	default:
4175 		break;
4176 	}
4177 #endif /* CONFIG_NET_CLS_ACT */
4178 	return skb;
4179 }
4180 
4181 /**
4182  *	netdev_is_rx_handler_busy - check if receive handler is registered
4183  *	@dev: device to check
4184  *
4185  *	Check if a receive handler is already registered for a given device.
4186  *	Return true if there one.
4187  *
4188  *	The caller must hold the rtnl_mutex.
4189  */
4190 bool netdev_is_rx_handler_busy(struct net_device *dev)
4191 {
4192 	ASSERT_RTNL();
4193 	return dev && rtnl_dereference(dev->rx_handler);
4194 }
4195 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4196 
4197 /**
4198  *	netdev_rx_handler_register - register receive handler
4199  *	@dev: device to register a handler for
4200  *	@rx_handler: receive handler to register
4201  *	@rx_handler_data: data pointer that is used by rx handler
4202  *
4203  *	Register a receive handler for a device. This handler will then be
4204  *	called from __netif_receive_skb. A negative errno code is returned
4205  *	on a failure.
4206  *
4207  *	The caller must hold the rtnl_mutex.
4208  *
4209  *	For a general description of rx_handler, see enum rx_handler_result.
4210  */
4211 int netdev_rx_handler_register(struct net_device *dev,
4212 			       rx_handler_func_t *rx_handler,
4213 			       void *rx_handler_data)
4214 {
4215 	if (netdev_is_rx_handler_busy(dev))
4216 		return -EBUSY;
4217 
4218 	/* Note: rx_handler_data must be set before rx_handler */
4219 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4220 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4221 
4222 	return 0;
4223 }
4224 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4225 
4226 /**
4227  *	netdev_rx_handler_unregister - unregister receive handler
4228  *	@dev: device to unregister a handler from
4229  *
4230  *	Unregister a receive handler from a device.
4231  *
4232  *	The caller must hold the rtnl_mutex.
4233  */
4234 void netdev_rx_handler_unregister(struct net_device *dev)
4235 {
4236 
4237 	ASSERT_RTNL();
4238 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4239 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4240 	 * section has a guarantee to see a non NULL rx_handler_data
4241 	 * as well.
4242 	 */
4243 	synchronize_net();
4244 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4245 }
4246 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4247 
4248 /*
4249  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4250  * the special handling of PFMEMALLOC skbs.
4251  */
4252 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4253 {
4254 	switch (skb->protocol) {
4255 	case htons(ETH_P_ARP):
4256 	case htons(ETH_P_IP):
4257 	case htons(ETH_P_IPV6):
4258 	case htons(ETH_P_8021Q):
4259 	case htons(ETH_P_8021AD):
4260 		return true;
4261 	default:
4262 		return false;
4263 	}
4264 }
4265 
4266 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4267 			     int *ret, struct net_device *orig_dev)
4268 {
4269 #ifdef CONFIG_NETFILTER_INGRESS
4270 	if (nf_hook_ingress_active(skb)) {
4271 		int ingress_retval;
4272 
4273 		if (*pt_prev) {
4274 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4275 			*pt_prev = NULL;
4276 		}
4277 
4278 		rcu_read_lock();
4279 		ingress_retval = nf_hook_ingress(skb);
4280 		rcu_read_unlock();
4281 		return ingress_retval;
4282 	}
4283 #endif /* CONFIG_NETFILTER_INGRESS */
4284 	return 0;
4285 }
4286 
4287 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4288 {
4289 	struct packet_type *ptype, *pt_prev;
4290 	rx_handler_func_t *rx_handler;
4291 	struct net_device *orig_dev;
4292 	bool deliver_exact = false;
4293 	int ret = NET_RX_DROP;
4294 	__be16 type;
4295 
4296 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4297 
4298 	trace_netif_receive_skb(skb);
4299 
4300 	orig_dev = skb->dev;
4301 
4302 	skb_reset_network_header(skb);
4303 	if (!skb_transport_header_was_set(skb))
4304 		skb_reset_transport_header(skb);
4305 	skb_reset_mac_len(skb);
4306 
4307 	pt_prev = NULL;
4308 
4309 another_round:
4310 	skb->skb_iif = skb->dev->ifindex;
4311 
4312 	__this_cpu_inc(softnet_data.processed);
4313 
4314 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4315 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4316 		skb = skb_vlan_untag(skb);
4317 		if (unlikely(!skb))
4318 			goto out;
4319 	}
4320 
4321 	if (skb_skip_tc_classify(skb))
4322 		goto skip_classify;
4323 
4324 	if (pfmemalloc)
4325 		goto skip_taps;
4326 
4327 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4328 		if (pt_prev)
4329 			ret = deliver_skb(skb, pt_prev, orig_dev);
4330 		pt_prev = ptype;
4331 	}
4332 
4333 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4334 		if (pt_prev)
4335 			ret = deliver_skb(skb, pt_prev, orig_dev);
4336 		pt_prev = ptype;
4337 	}
4338 
4339 skip_taps:
4340 #ifdef CONFIG_NET_INGRESS
4341 	if (static_key_false(&ingress_needed)) {
4342 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4343 		if (!skb)
4344 			goto out;
4345 
4346 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4347 			goto out;
4348 	}
4349 #endif
4350 	skb_reset_tc(skb);
4351 skip_classify:
4352 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4353 		goto drop;
4354 
4355 	if (skb_vlan_tag_present(skb)) {
4356 		if (pt_prev) {
4357 			ret = deliver_skb(skb, pt_prev, orig_dev);
4358 			pt_prev = NULL;
4359 		}
4360 		if (vlan_do_receive(&skb))
4361 			goto another_round;
4362 		else if (unlikely(!skb))
4363 			goto out;
4364 	}
4365 
4366 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4367 	if (rx_handler) {
4368 		if (pt_prev) {
4369 			ret = deliver_skb(skb, pt_prev, orig_dev);
4370 			pt_prev = NULL;
4371 		}
4372 		switch (rx_handler(&skb)) {
4373 		case RX_HANDLER_CONSUMED:
4374 			ret = NET_RX_SUCCESS;
4375 			goto out;
4376 		case RX_HANDLER_ANOTHER:
4377 			goto another_round;
4378 		case RX_HANDLER_EXACT:
4379 			deliver_exact = true;
4380 		case RX_HANDLER_PASS:
4381 			break;
4382 		default:
4383 			BUG();
4384 		}
4385 	}
4386 
4387 	if (unlikely(skb_vlan_tag_present(skb))) {
4388 		if (skb_vlan_tag_get_id(skb))
4389 			skb->pkt_type = PACKET_OTHERHOST;
4390 		/* Note: we might in the future use prio bits
4391 		 * and set skb->priority like in vlan_do_receive()
4392 		 * For the time being, just ignore Priority Code Point
4393 		 */
4394 		skb->vlan_tci = 0;
4395 	}
4396 
4397 	type = skb->protocol;
4398 
4399 	/* deliver only exact match when indicated */
4400 	if (likely(!deliver_exact)) {
4401 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4402 				       &ptype_base[ntohs(type) &
4403 						   PTYPE_HASH_MASK]);
4404 	}
4405 
4406 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4407 			       &orig_dev->ptype_specific);
4408 
4409 	if (unlikely(skb->dev != orig_dev)) {
4410 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4411 				       &skb->dev->ptype_specific);
4412 	}
4413 
4414 	if (pt_prev) {
4415 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4416 			goto drop;
4417 		else
4418 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4419 	} else {
4420 drop:
4421 		if (!deliver_exact)
4422 			atomic_long_inc(&skb->dev->rx_dropped);
4423 		else
4424 			atomic_long_inc(&skb->dev->rx_nohandler);
4425 		kfree_skb(skb);
4426 		/* Jamal, now you will not able to escape explaining
4427 		 * me how you were going to use this. :-)
4428 		 */
4429 		ret = NET_RX_DROP;
4430 	}
4431 
4432 out:
4433 	return ret;
4434 }
4435 
4436 static int __netif_receive_skb(struct sk_buff *skb)
4437 {
4438 	int ret;
4439 
4440 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4441 		unsigned int noreclaim_flag;
4442 
4443 		/*
4444 		 * PFMEMALLOC skbs are special, they should
4445 		 * - be delivered to SOCK_MEMALLOC sockets only
4446 		 * - stay away from userspace
4447 		 * - have bounded memory usage
4448 		 *
4449 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4450 		 * context down to all allocation sites.
4451 		 */
4452 		noreclaim_flag = memalloc_noreclaim_save();
4453 		ret = __netif_receive_skb_core(skb, true);
4454 		memalloc_noreclaim_restore(noreclaim_flag);
4455 	} else
4456 		ret = __netif_receive_skb_core(skb, false);
4457 
4458 	return ret;
4459 }
4460 
4461 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4462 {
4463 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4464 	struct bpf_prog *new = xdp->prog;
4465 	int ret = 0;
4466 
4467 	switch (xdp->command) {
4468 	case XDP_SETUP_PROG:
4469 		rcu_assign_pointer(dev->xdp_prog, new);
4470 		if (old)
4471 			bpf_prog_put(old);
4472 
4473 		if (old && !new) {
4474 			static_key_slow_dec(&generic_xdp_needed);
4475 		} else if (new && !old) {
4476 			static_key_slow_inc(&generic_xdp_needed);
4477 			dev_disable_lro(dev);
4478 		}
4479 		break;
4480 
4481 	case XDP_QUERY_PROG:
4482 		xdp->prog_attached = !!old;
4483 		xdp->prog_id = old ? old->aux->id : 0;
4484 		break;
4485 
4486 	default:
4487 		ret = -EINVAL;
4488 		break;
4489 	}
4490 
4491 	return ret;
4492 }
4493 
4494 static int netif_receive_skb_internal(struct sk_buff *skb)
4495 {
4496 	int ret;
4497 
4498 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4499 
4500 	if (skb_defer_rx_timestamp(skb))
4501 		return NET_RX_SUCCESS;
4502 
4503 	rcu_read_lock();
4504 
4505 	if (static_key_false(&generic_xdp_needed)) {
4506 		int ret = do_xdp_generic(skb);
4507 
4508 		if (ret != XDP_PASS) {
4509 			rcu_read_unlock();
4510 			return NET_RX_DROP;
4511 		}
4512 	}
4513 
4514 #ifdef CONFIG_RPS
4515 	if (static_key_false(&rps_needed)) {
4516 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4517 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4518 
4519 		if (cpu >= 0) {
4520 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4521 			rcu_read_unlock();
4522 			return ret;
4523 		}
4524 	}
4525 #endif
4526 	ret = __netif_receive_skb(skb);
4527 	rcu_read_unlock();
4528 	return ret;
4529 }
4530 
4531 /**
4532  *	netif_receive_skb - process receive buffer from network
4533  *	@skb: buffer to process
4534  *
4535  *	netif_receive_skb() is the main receive data processing function.
4536  *	It always succeeds. The buffer may be dropped during processing
4537  *	for congestion control or by the protocol layers.
4538  *
4539  *	This function may only be called from softirq context and interrupts
4540  *	should be enabled.
4541  *
4542  *	Return values (usually ignored):
4543  *	NET_RX_SUCCESS: no congestion
4544  *	NET_RX_DROP: packet was dropped
4545  */
4546 int netif_receive_skb(struct sk_buff *skb)
4547 {
4548 	trace_netif_receive_skb_entry(skb);
4549 
4550 	return netif_receive_skb_internal(skb);
4551 }
4552 EXPORT_SYMBOL(netif_receive_skb);
4553 
4554 DEFINE_PER_CPU(struct work_struct, flush_works);
4555 
4556 /* Network device is going away, flush any packets still pending */
4557 static void flush_backlog(struct work_struct *work)
4558 {
4559 	struct sk_buff *skb, *tmp;
4560 	struct softnet_data *sd;
4561 
4562 	local_bh_disable();
4563 	sd = this_cpu_ptr(&softnet_data);
4564 
4565 	local_irq_disable();
4566 	rps_lock(sd);
4567 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4568 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4569 			__skb_unlink(skb, &sd->input_pkt_queue);
4570 			kfree_skb(skb);
4571 			input_queue_head_incr(sd);
4572 		}
4573 	}
4574 	rps_unlock(sd);
4575 	local_irq_enable();
4576 
4577 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4578 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4579 			__skb_unlink(skb, &sd->process_queue);
4580 			kfree_skb(skb);
4581 			input_queue_head_incr(sd);
4582 		}
4583 	}
4584 	local_bh_enable();
4585 }
4586 
4587 static void flush_all_backlogs(void)
4588 {
4589 	unsigned int cpu;
4590 
4591 	get_online_cpus();
4592 
4593 	for_each_online_cpu(cpu)
4594 		queue_work_on(cpu, system_highpri_wq,
4595 			      per_cpu_ptr(&flush_works, cpu));
4596 
4597 	for_each_online_cpu(cpu)
4598 		flush_work(per_cpu_ptr(&flush_works, cpu));
4599 
4600 	put_online_cpus();
4601 }
4602 
4603 static int napi_gro_complete(struct sk_buff *skb)
4604 {
4605 	struct packet_offload *ptype;
4606 	__be16 type = skb->protocol;
4607 	struct list_head *head = &offload_base;
4608 	int err = -ENOENT;
4609 
4610 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4611 
4612 	if (NAPI_GRO_CB(skb)->count == 1) {
4613 		skb_shinfo(skb)->gso_size = 0;
4614 		goto out;
4615 	}
4616 
4617 	rcu_read_lock();
4618 	list_for_each_entry_rcu(ptype, head, list) {
4619 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4620 			continue;
4621 
4622 		err = ptype->callbacks.gro_complete(skb, 0);
4623 		break;
4624 	}
4625 	rcu_read_unlock();
4626 
4627 	if (err) {
4628 		WARN_ON(&ptype->list == head);
4629 		kfree_skb(skb);
4630 		return NET_RX_SUCCESS;
4631 	}
4632 
4633 out:
4634 	return netif_receive_skb_internal(skb);
4635 }
4636 
4637 /* napi->gro_list contains packets ordered by age.
4638  * youngest packets at the head of it.
4639  * Complete skbs in reverse order to reduce latencies.
4640  */
4641 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4642 {
4643 	struct sk_buff *skb, *prev = NULL;
4644 
4645 	/* scan list and build reverse chain */
4646 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4647 		skb->prev = prev;
4648 		prev = skb;
4649 	}
4650 
4651 	for (skb = prev; skb; skb = prev) {
4652 		skb->next = NULL;
4653 
4654 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4655 			return;
4656 
4657 		prev = skb->prev;
4658 		napi_gro_complete(skb);
4659 		napi->gro_count--;
4660 	}
4661 
4662 	napi->gro_list = NULL;
4663 }
4664 EXPORT_SYMBOL(napi_gro_flush);
4665 
4666 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4667 {
4668 	struct sk_buff *p;
4669 	unsigned int maclen = skb->dev->hard_header_len;
4670 	u32 hash = skb_get_hash_raw(skb);
4671 
4672 	for (p = napi->gro_list; p; p = p->next) {
4673 		unsigned long diffs;
4674 
4675 		NAPI_GRO_CB(p)->flush = 0;
4676 
4677 		if (hash != skb_get_hash_raw(p)) {
4678 			NAPI_GRO_CB(p)->same_flow = 0;
4679 			continue;
4680 		}
4681 
4682 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4683 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4684 		diffs |= skb_metadata_dst_cmp(p, skb);
4685 		if (maclen == ETH_HLEN)
4686 			diffs |= compare_ether_header(skb_mac_header(p),
4687 						      skb_mac_header(skb));
4688 		else if (!diffs)
4689 			diffs = memcmp(skb_mac_header(p),
4690 				       skb_mac_header(skb),
4691 				       maclen);
4692 		NAPI_GRO_CB(p)->same_flow = !diffs;
4693 	}
4694 }
4695 
4696 static void skb_gro_reset_offset(struct sk_buff *skb)
4697 {
4698 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4699 	const skb_frag_t *frag0 = &pinfo->frags[0];
4700 
4701 	NAPI_GRO_CB(skb)->data_offset = 0;
4702 	NAPI_GRO_CB(skb)->frag0 = NULL;
4703 	NAPI_GRO_CB(skb)->frag0_len = 0;
4704 
4705 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4706 	    pinfo->nr_frags &&
4707 	    !PageHighMem(skb_frag_page(frag0))) {
4708 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4709 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4710 						    skb_frag_size(frag0),
4711 						    skb->end - skb->tail);
4712 	}
4713 }
4714 
4715 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4716 {
4717 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4718 
4719 	BUG_ON(skb->end - skb->tail < grow);
4720 
4721 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4722 
4723 	skb->data_len -= grow;
4724 	skb->tail += grow;
4725 
4726 	pinfo->frags[0].page_offset += grow;
4727 	skb_frag_size_sub(&pinfo->frags[0], grow);
4728 
4729 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4730 		skb_frag_unref(skb, 0);
4731 		memmove(pinfo->frags, pinfo->frags + 1,
4732 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4733 	}
4734 }
4735 
4736 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4737 {
4738 	struct sk_buff **pp = NULL;
4739 	struct packet_offload *ptype;
4740 	__be16 type = skb->protocol;
4741 	struct list_head *head = &offload_base;
4742 	int same_flow;
4743 	enum gro_result ret;
4744 	int grow;
4745 
4746 	if (netif_elide_gro(skb->dev))
4747 		goto normal;
4748 
4749 	gro_list_prepare(napi, skb);
4750 
4751 	rcu_read_lock();
4752 	list_for_each_entry_rcu(ptype, head, list) {
4753 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4754 			continue;
4755 
4756 		skb_set_network_header(skb, skb_gro_offset(skb));
4757 		skb_reset_mac_len(skb);
4758 		NAPI_GRO_CB(skb)->same_flow = 0;
4759 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4760 		NAPI_GRO_CB(skb)->free = 0;
4761 		NAPI_GRO_CB(skb)->encap_mark = 0;
4762 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4763 		NAPI_GRO_CB(skb)->is_fou = 0;
4764 		NAPI_GRO_CB(skb)->is_atomic = 1;
4765 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4766 
4767 		/* Setup for GRO checksum validation */
4768 		switch (skb->ip_summed) {
4769 		case CHECKSUM_COMPLETE:
4770 			NAPI_GRO_CB(skb)->csum = skb->csum;
4771 			NAPI_GRO_CB(skb)->csum_valid = 1;
4772 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4773 			break;
4774 		case CHECKSUM_UNNECESSARY:
4775 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4776 			NAPI_GRO_CB(skb)->csum_valid = 0;
4777 			break;
4778 		default:
4779 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4780 			NAPI_GRO_CB(skb)->csum_valid = 0;
4781 		}
4782 
4783 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4784 		break;
4785 	}
4786 	rcu_read_unlock();
4787 
4788 	if (&ptype->list == head)
4789 		goto normal;
4790 
4791 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4792 		ret = GRO_CONSUMED;
4793 		goto ok;
4794 	}
4795 
4796 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4797 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4798 
4799 	if (pp) {
4800 		struct sk_buff *nskb = *pp;
4801 
4802 		*pp = nskb->next;
4803 		nskb->next = NULL;
4804 		napi_gro_complete(nskb);
4805 		napi->gro_count--;
4806 	}
4807 
4808 	if (same_flow)
4809 		goto ok;
4810 
4811 	if (NAPI_GRO_CB(skb)->flush)
4812 		goto normal;
4813 
4814 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4815 		struct sk_buff *nskb = napi->gro_list;
4816 
4817 		/* locate the end of the list to select the 'oldest' flow */
4818 		while (nskb->next) {
4819 			pp = &nskb->next;
4820 			nskb = *pp;
4821 		}
4822 		*pp = NULL;
4823 		nskb->next = NULL;
4824 		napi_gro_complete(nskb);
4825 	} else {
4826 		napi->gro_count++;
4827 	}
4828 	NAPI_GRO_CB(skb)->count = 1;
4829 	NAPI_GRO_CB(skb)->age = jiffies;
4830 	NAPI_GRO_CB(skb)->last = skb;
4831 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4832 	skb->next = napi->gro_list;
4833 	napi->gro_list = skb;
4834 	ret = GRO_HELD;
4835 
4836 pull:
4837 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4838 	if (grow > 0)
4839 		gro_pull_from_frag0(skb, grow);
4840 ok:
4841 	return ret;
4842 
4843 normal:
4844 	ret = GRO_NORMAL;
4845 	goto pull;
4846 }
4847 
4848 struct packet_offload *gro_find_receive_by_type(__be16 type)
4849 {
4850 	struct list_head *offload_head = &offload_base;
4851 	struct packet_offload *ptype;
4852 
4853 	list_for_each_entry_rcu(ptype, offload_head, list) {
4854 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4855 			continue;
4856 		return ptype;
4857 	}
4858 	return NULL;
4859 }
4860 EXPORT_SYMBOL(gro_find_receive_by_type);
4861 
4862 struct packet_offload *gro_find_complete_by_type(__be16 type)
4863 {
4864 	struct list_head *offload_head = &offload_base;
4865 	struct packet_offload *ptype;
4866 
4867 	list_for_each_entry_rcu(ptype, offload_head, list) {
4868 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4869 			continue;
4870 		return ptype;
4871 	}
4872 	return NULL;
4873 }
4874 EXPORT_SYMBOL(gro_find_complete_by_type);
4875 
4876 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4877 {
4878 	skb_dst_drop(skb);
4879 	secpath_reset(skb);
4880 	kmem_cache_free(skbuff_head_cache, skb);
4881 }
4882 
4883 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4884 {
4885 	switch (ret) {
4886 	case GRO_NORMAL:
4887 		if (netif_receive_skb_internal(skb))
4888 			ret = GRO_DROP;
4889 		break;
4890 
4891 	case GRO_DROP:
4892 		kfree_skb(skb);
4893 		break;
4894 
4895 	case GRO_MERGED_FREE:
4896 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4897 			napi_skb_free_stolen_head(skb);
4898 		else
4899 			__kfree_skb(skb);
4900 		break;
4901 
4902 	case GRO_HELD:
4903 	case GRO_MERGED:
4904 	case GRO_CONSUMED:
4905 		break;
4906 	}
4907 
4908 	return ret;
4909 }
4910 
4911 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4912 {
4913 	skb_mark_napi_id(skb, napi);
4914 	trace_napi_gro_receive_entry(skb);
4915 
4916 	skb_gro_reset_offset(skb);
4917 
4918 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4919 }
4920 EXPORT_SYMBOL(napi_gro_receive);
4921 
4922 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4923 {
4924 	if (unlikely(skb->pfmemalloc)) {
4925 		consume_skb(skb);
4926 		return;
4927 	}
4928 	__skb_pull(skb, skb_headlen(skb));
4929 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4930 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4931 	skb->vlan_tci = 0;
4932 	skb->dev = napi->dev;
4933 	skb->skb_iif = 0;
4934 	skb->encapsulation = 0;
4935 	skb_shinfo(skb)->gso_type = 0;
4936 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4937 	secpath_reset(skb);
4938 
4939 	napi->skb = skb;
4940 }
4941 
4942 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4943 {
4944 	struct sk_buff *skb = napi->skb;
4945 
4946 	if (!skb) {
4947 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4948 		if (skb) {
4949 			napi->skb = skb;
4950 			skb_mark_napi_id(skb, napi);
4951 		}
4952 	}
4953 	return skb;
4954 }
4955 EXPORT_SYMBOL(napi_get_frags);
4956 
4957 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4958 				      struct sk_buff *skb,
4959 				      gro_result_t ret)
4960 {
4961 	switch (ret) {
4962 	case GRO_NORMAL:
4963 	case GRO_HELD:
4964 		__skb_push(skb, ETH_HLEN);
4965 		skb->protocol = eth_type_trans(skb, skb->dev);
4966 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4967 			ret = GRO_DROP;
4968 		break;
4969 
4970 	case GRO_DROP:
4971 		napi_reuse_skb(napi, skb);
4972 		break;
4973 
4974 	case GRO_MERGED_FREE:
4975 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4976 			napi_skb_free_stolen_head(skb);
4977 		else
4978 			napi_reuse_skb(napi, skb);
4979 		break;
4980 
4981 	case GRO_MERGED:
4982 	case GRO_CONSUMED:
4983 		break;
4984 	}
4985 
4986 	return ret;
4987 }
4988 
4989 /* Upper GRO stack assumes network header starts at gro_offset=0
4990  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4991  * We copy ethernet header into skb->data to have a common layout.
4992  */
4993 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4994 {
4995 	struct sk_buff *skb = napi->skb;
4996 	const struct ethhdr *eth;
4997 	unsigned int hlen = sizeof(*eth);
4998 
4999 	napi->skb = NULL;
5000 
5001 	skb_reset_mac_header(skb);
5002 	skb_gro_reset_offset(skb);
5003 
5004 	eth = skb_gro_header_fast(skb, 0);
5005 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5006 		eth = skb_gro_header_slow(skb, hlen, 0);
5007 		if (unlikely(!eth)) {
5008 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5009 					     __func__, napi->dev->name);
5010 			napi_reuse_skb(napi, skb);
5011 			return NULL;
5012 		}
5013 	} else {
5014 		gro_pull_from_frag0(skb, hlen);
5015 		NAPI_GRO_CB(skb)->frag0 += hlen;
5016 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5017 	}
5018 	__skb_pull(skb, hlen);
5019 
5020 	/*
5021 	 * This works because the only protocols we care about don't require
5022 	 * special handling.
5023 	 * We'll fix it up properly in napi_frags_finish()
5024 	 */
5025 	skb->protocol = eth->h_proto;
5026 
5027 	return skb;
5028 }
5029 
5030 gro_result_t napi_gro_frags(struct napi_struct *napi)
5031 {
5032 	struct sk_buff *skb = napi_frags_skb(napi);
5033 
5034 	if (!skb)
5035 		return GRO_DROP;
5036 
5037 	trace_napi_gro_frags_entry(skb);
5038 
5039 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5040 }
5041 EXPORT_SYMBOL(napi_gro_frags);
5042 
5043 /* Compute the checksum from gro_offset and return the folded value
5044  * after adding in any pseudo checksum.
5045  */
5046 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5047 {
5048 	__wsum wsum;
5049 	__sum16 sum;
5050 
5051 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5052 
5053 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5054 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5055 	if (likely(!sum)) {
5056 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5057 		    !skb->csum_complete_sw)
5058 			netdev_rx_csum_fault(skb->dev);
5059 	}
5060 
5061 	NAPI_GRO_CB(skb)->csum = wsum;
5062 	NAPI_GRO_CB(skb)->csum_valid = 1;
5063 
5064 	return sum;
5065 }
5066 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5067 
5068 static void net_rps_send_ipi(struct softnet_data *remsd)
5069 {
5070 #ifdef CONFIG_RPS
5071 	while (remsd) {
5072 		struct softnet_data *next = remsd->rps_ipi_next;
5073 
5074 		if (cpu_online(remsd->cpu))
5075 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5076 		remsd = next;
5077 	}
5078 #endif
5079 }
5080 
5081 /*
5082  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5083  * Note: called with local irq disabled, but exits with local irq enabled.
5084  */
5085 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5086 {
5087 #ifdef CONFIG_RPS
5088 	struct softnet_data *remsd = sd->rps_ipi_list;
5089 
5090 	if (remsd) {
5091 		sd->rps_ipi_list = NULL;
5092 
5093 		local_irq_enable();
5094 
5095 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5096 		net_rps_send_ipi(remsd);
5097 	} else
5098 #endif
5099 		local_irq_enable();
5100 }
5101 
5102 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5103 {
5104 #ifdef CONFIG_RPS
5105 	return sd->rps_ipi_list != NULL;
5106 #else
5107 	return false;
5108 #endif
5109 }
5110 
5111 static int process_backlog(struct napi_struct *napi, int quota)
5112 {
5113 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5114 	bool again = true;
5115 	int work = 0;
5116 
5117 	/* Check if we have pending ipi, its better to send them now,
5118 	 * not waiting net_rx_action() end.
5119 	 */
5120 	if (sd_has_rps_ipi_waiting(sd)) {
5121 		local_irq_disable();
5122 		net_rps_action_and_irq_enable(sd);
5123 	}
5124 
5125 	napi->weight = dev_rx_weight;
5126 	while (again) {
5127 		struct sk_buff *skb;
5128 
5129 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5130 			rcu_read_lock();
5131 			__netif_receive_skb(skb);
5132 			rcu_read_unlock();
5133 			input_queue_head_incr(sd);
5134 			if (++work >= quota)
5135 				return work;
5136 
5137 		}
5138 
5139 		local_irq_disable();
5140 		rps_lock(sd);
5141 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5142 			/*
5143 			 * Inline a custom version of __napi_complete().
5144 			 * only current cpu owns and manipulates this napi,
5145 			 * and NAPI_STATE_SCHED is the only possible flag set
5146 			 * on backlog.
5147 			 * We can use a plain write instead of clear_bit(),
5148 			 * and we dont need an smp_mb() memory barrier.
5149 			 */
5150 			napi->state = 0;
5151 			again = false;
5152 		} else {
5153 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5154 						   &sd->process_queue);
5155 		}
5156 		rps_unlock(sd);
5157 		local_irq_enable();
5158 	}
5159 
5160 	return work;
5161 }
5162 
5163 /**
5164  * __napi_schedule - schedule for receive
5165  * @n: entry to schedule
5166  *
5167  * The entry's receive function will be scheduled to run.
5168  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5169  */
5170 void __napi_schedule(struct napi_struct *n)
5171 {
5172 	unsigned long flags;
5173 
5174 	local_irq_save(flags);
5175 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5176 	local_irq_restore(flags);
5177 }
5178 EXPORT_SYMBOL(__napi_schedule);
5179 
5180 /**
5181  *	napi_schedule_prep - check if napi can be scheduled
5182  *	@n: napi context
5183  *
5184  * Test if NAPI routine is already running, and if not mark
5185  * it as running.  This is used as a condition variable
5186  * insure only one NAPI poll instance runs.  We also make
5187  * sure there is no pending NAPI disable.
5188  */
5189 bool napi_schedule_prep(struct napi_struct *n)
5190 {
5191 	unsigned long val, new;
5192 
5193 	do {
5194 		val = READ_ONCE(n->state);
5195 		if (unlikely(val & NAPIF_STATE_DISABLE))
5196 			return false;
5197 		new = val | NAPIF_STATE_SCHED;
5198 
5199 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5200 		 * This was suggested by Alexander Duyck, as compiler
5201 		 * emits better code than :
5202 		 * if (val & NAPIF_STATE_SCHED)
5203 		 *     new |= NAPIF_STATE_MISSED;
5204 		 */
5205 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5206 						   NAPIF_STATE_MISSED;
5207 	} while (cmpxchg(&n->state, val, new) != val);
5208 
5209 	return !(val & NAPIF_STATE_SCHED);
5210 }
5211 EXPORT_SYMBOL(napi_schedule_prep);
5212 
5213 /**
5214  * __napi_schedule_irqoff - schedule for receive
5215  * @n: entry to schedule
5216  *
5217  * Variant of __napi_schedule() assuming hard irqs are masked
5218  */
5219 void __napi_schedule_irqoff(struct napi_struct *n)
5220 {
5221 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5222 }
5223 EXPORT_SYMBOL(__napi_schedule_irqoff);
5224 
5225 bool napi_complete_done(struct napi_struct *n, int work_done)
5226 {
5227 	unsigned long flags, val, new;
5228 
5229 	/*
5230 	 * 1) Don't let napi dequeue from the cpu poll list
5231 	 *    just in case its running on a different cpu.
5232 	 * 2) If we are busy polling, do nothing here, we have
5233 	 *    the guarantee we will be called later.
5234 	 */
5235 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5236 				 NAPIF_STATE_IN_BUSY_POLL)))
5237 		return false;
5238 
5239 	if (n->gro_list) {
5240 		unsigned long timeout = 0;
5241 
5242 		if (work_done)
5243 			timeout = n->dev->gro_flush_timeout;
5244 
5245 		if (timeout)
5246 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5247 				      HRTIMER_MODE_REL_PINNED);
5248 		else
5249 			napi_gro_flush(n, false);
5250 	}
5251 	if (unlikely(!list_empty(&n->poll_list))) {
5252 		/* If n->poll_list is not empty, we need to mask irqs */
5253 		local_irq_save(flags);
5254 		list_del_init(&n->poll_list);
5255 		local_irq_restore(flags);
5256 	}
5257 
5258 	do {
5259 		val = READ_ONCE(n->state);
5260 
5261 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5262 
5263 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5264 
5265 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5266 		 * because we will call napi->poll() one more time.
5267 		 * This C code was suggested by Alexander Duyck to help gcc.
5268 		 */
5269 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5270 						    NAPIF_STATE_SCHED;
5271 	} while (cmpxchg(&n->state, val, new) != val);
5272 
5273 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5274 		__napi_schedule(n);
5275 		return false;
5276 	}
5277 
5278 	return true;
5279 }
5280 EXPORT_SYMBOL(napi_complete_done);
5281 
5282 /* must be called under rcu_read_lock(), as we dont take a reference */
5283 static struct napi_struct *napi_by_id(unsigned int napi_id)
5284 {
5285 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5286 	struct napi_struct *napi;
5287 
5288 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5289 		if (napi->napi_id == napi_id)
5290 			return napi;
5291 
5292 	return NULL;
5293 }
5294 
5295 #if defined(CONFIG_NET_RX_BUSY_POLL)
5296 
5297 #define BUSY_POLL_BUDGET 8
5298 
5299 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5300 {
5301 	int rc;
5302 
5303 	/* Busy polling means there is a high chance device driver hard irq
5304 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5305 	 * set in napi_schedule_prep().
5306 	 * Since we are about to call napi->poll() once more, we can safely
5307 	 * clear NAPI_STATE_MISSED.
5308 	 *
5309 	 * Note: x86 could use a single "lock and ..." instruction
5310 	 * to perform these two clear_bit()
5311 	 */
5312 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5313 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5314 
5315 	local_bh_disable();
5316 
5317 	/* All we really want here is to re-enable device interrupts.
5318 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5319 	 */
5320 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5321 	netpoll_poll_unlock(have_poll_lock);
5322 	if (rc == BUSY_POLL_BUDGET)
5323 		__napi_schedule(napi);
5324 	local_bh_enable();
5325 }
5326 
5327 void napi_busy_loop(unsigned int napi_id,
5328 		    bool (*loop_end)(void *, unsigned long),
5329 		    void *loop_end_arg)
5330 {
5331 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5332 	int (*napi_poll)(struct napi_struct *napi, int budget);
5333 	void *have_poll_lock = NULL;
5334 	struct napi_struct *napi;
5335 
5336 restart:
5337 	napi_poll = NULL;
5338 
5339 	rcu_read_lock();
5340 
5341 	napi = napi_by_id(napi_id);
5342 	if (!napi)
5343 		goto out;
5344 
5345 	preempt_disable();
5346 	for (;;) {
5347 		int work = 0;
5348 
5349 		local_bh_disable();
5350 		if (!napi_poll) {
5351 			unsigned long val = READ_ONCE(napi->state);
5352 
5353 			/* If multiple threads are competing for this napi,
5354 			 * we avoid dirtying napi->state as much as we can.
5355 			 */
5356 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5357 				   NAPIF_STATE_IN_BUSY_POLL))
5358 				goto count;
5359 			if (cmpxchg(&napi->state, val,
5360 				    val | NAPIF_STATE_IN_BUSY_POLL |
5361 					  NAPIF_STATE_SCHED) != val)
5362 				goto count;
5363 			have_poll_lock = netpoll_poll_lock(napi);
5364 			napi_poll = napi->poll;
5365 		}
5366 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5367 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5368 count:
5369 		if (work > 0)
5370 			__NET_ADD_STATS(dev_net(napi->dev),
5371 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5372 		local_bh_enable();
5373 
5374 		if (!loop_end || loop_end(loop_end_arg, start_time))
5375 			break;
5376 
5377 		if (unlikely(need_resched())) {
5378 			if (napi_poll)
5379 				busy_poll_stop(napi, have_poll_lock);
5380 			preempt_enable();
5381 			rcu_read_unlock();
5382 			cond_resched();
5383 			if (loop_end(loop_end_arg, start_time))
5384 				return;
5385 			goto restart;
5386 		}
5387 		cpu_relax();
5388 	}
5389 	if (napi_poll)
5390 		busy_poll_stop(napi, have_poll_lock);
5391 	preempt_enable();
5392 out:
5393 	rcu_read_unlock();
5394 }
5395 EXPORT_SYMBOL(napi_busy_loop);
5396 
5397 #endif /* CONFIG_NET_RX_BUSY_POLL */
5398 
5399 static void napi_hash_add(struct napi_struct *napi)
5400 {
5401 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5402 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5403 		return;
5404 
5405 	spin_lock(&napi_hash_lock);
5406 
5407 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5408 	do {
5409 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5410 			napi_gen_id = MIN_NAPI_ID;
5411 	} while (napi_by_id(napi_gen_id));
5412 	napi->napi_id = napi_gen_id;
5413 
5414 	hlist_add_head_rcu(&napi->napi_hash_node,
5415 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5416 
5417 	spin_unlock(&napi_hash_lock);
5418 }
5419 
5420 /* Warning : caller is responsible to make sure rcu grace period
5421  * is respected before freeing memory containing @napi
5422  */
5423 bool napi_hash_del(struct napi_struct *napi)
5424 {
5425 	bool rcu_sync_needed = false;
5426 
5427 	spin_lock(&napi_hash_lock);
5428 
5429 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5430 		rcu_sync_needed = true;
5431 		hlist_del_rcu(&napi->napi_hash_node);
5432 	}
5433 	spin_unlock(&napi_hash_lock);
5434 	return rcu_sync_needed;
5435 }
5436 EXPORT_SYMBOL_GPL(napi_hash_del);
5437 
5438 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5439 {
5440 	struct napi_struct *napi;
5441 
5442 	napi = container_of(timer, struct napi_struct, timer);
5443 
5444 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5445 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5446 	 */
5447 	if (napi->gro_list && !napi_disable_pending(napi) &&
5448 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5449 		__napi_schedule_irqoff(napi);
5450 
5451 	return HRTIMER_NORESTART;
5452 }
5453 
5454 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5455 		    int (*poll)(struct napi_struct *, int), int weight)
5456 {
5457 	INIT_LIST_HEAD(&napi->poll_list);
5458 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5459 	napi->timer.function = napi_watchdog;
5460 	napi->gro_count = 0;
5461 	napi->gro_list = NULL;
5462 	napi->skb = NULL;
5463 	napi->poll = poll;
5464 	if (weight > NAPI_POLL_WEIGHT)
5465 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5466 			    weight, dev->name);
5467 	napi->weight = weight;
5468 	list_add(&napi->dev_list, &dev->napi_list);
5469 	napi->dev = dev;
5470 #ifdef CONFIG_NETPOLL
5471 	napi->poll_owner = -1;
5472 #endif
5473 	set_bit(NAPI_STATE_SCHED, &napi->state);
5474 	napi_hash_add(napi);
5475 }
5476 EXPORT_SYMBOL(netif_napi_add);
5477 
5478 void napi_disable(struct napi_struct *n)
5479 {
5480 	might_sleep();
5481 	set_bit(NAPI_STATE_DISABLE, &n->state);
5482 
5483 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5484 		msleep(1);
5485 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5486 		msleep(1);
5487 
5488 	hrtimer_cancel(&n->timer);
5489 
5490 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5491 }
5492 EXPORT_SYMBOL(napi_disable);
5493 
5494 /* Must be called in process context */
5495 void netif_napi_del(struct napi_struct *napi)
5496 {
5497 	might_sleep();
5498 	if (napi_hash_del(napi))
5499 		synchronize_net();
5500 	list_del_init(&napi->dev_list);
5501 	napi_free_frags(napi);
5502 
5503 	kfree_skb_list(napi->gro_list);
5504 	napi->gro_list = NULL;
5505 	napi->gro_count = 0;
5506 }
5507 EXPORT_SYMBOL(netif_napi_del);
5508 
5509 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5510 {
5511 	void *have;
5512 	int work, weight;
5513 
5514 	list_del_init(&n->poll_list);
5515 
5516 	have = netpoll_poll_lock(n);
5517 
5518 	weight = n->weight;
5519 
5520 	/* This NAPI_STATE_SCHED test is for avoiding a race
5521 	 * with netpoll's poll_napi().  Only the entity which
5522 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5523 	 * actually make the ->poll() call.  Therefore we avoid
5524 	 * accidentally calling ->poll() when NAPI is not scheduled.
5525 	 */
5526 	work = 0;
5527 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5528 		work = n->poll(n, weight);
5529 		trace_napi_poll(n, work, weight);
5530 	}
5531 
5532 	WARN_ON_ONCE(work > weight);
5533 
5534 	if (likely(work < weight))
5535 		goto out_unlock;
5536 
5537 	/* Drivers must not modify the NAPI state if they
5538 	 * consume the entire weight.  In such cases this code
5539 	 * still "owns" the NAPI instance and therefore can
5540 	 * move the instance around on the list at-will.
5541 	 */
5542 	if (unlikely(napi_disable_pending(n))) {
5543 		napi_complete(n);
5544 		goto out_unlock;
5545 	}
5546 
5547 	if (n->gro_list) {
5548 		/* flush too old packets
5549 		 * If HZ < 1000, flush all packets.
5550 		 */
5551 		napi_gro_flush(n, HZ >= 1000);
5552 	}
5553 
5554 	/* Some drivers may have called napi_schedule
5555 	 * prior to exhausting their budget.
5556 	 */
5557 	if (unlikely(!list_empty(&n->poll_list))) {
5558 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5559 			     n->dev ? n->dev->name : "backlog");
5560 		goto out_unlock;
5561 	}
5562 
5563 	list_add_tail(&n->poll_list, repoll);
5564 
5565 out_unlock:
5566 	netpoll_poll_unlock(have);
5567 
5568 	return work;
5569 }
5570 
5571 static __latent_entropy void net_rx_action(struct softirq_action *h)
5572 {
5573 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5574 	unsigned long time_limit = jiffies +
5575 		usecs_to_jiffies(netdev_budget_usecs);
5576 	int budget = netdev_budget;
5577 	LIST_HEAD(list);
5578 	LIST_HEAD(repoll);
5579 
5580 	local_irq_disable();
5581 	list_splice_init(&sd->poll_list, &list);
5582 	local_irq_enable();
5583 
5584 	for (;;) {
5585 		struct napi_struct *n;
5586 
5587 		if (list_empty(&list)) {
5588 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5589 				goto out;
5590 			break;
5591 		}
5592 
5593 		n = list_first_entry(&list, struct napi_struct, poll_list);
5594 		budget -= napi_poll(n, &repoll);
5595 
5596 		/* If softirq window is exhausted then punt.
5597 		 * Allow this to run for 2 jiffies since which will allow
5598 		 * an average latency of 1.5/HZ.
5599 		 */
5600 		if (unlikely(budget <= 0 ||
5601 			     time_after_eq(jiffies, time_limit))) {
5602 			sd->time_squeeze++;
5603 			break;
5604 		}
5605 	}
5606 
5607 	local_irq_disable();
5608 
5609 	list_splice_tail_init(&sd->poll_list, &list);
5610 	list_splice_tail(&repoll, &list);
5611 	list_splice(&list, &sd->poll_list);
5612 	if (!list_empty(&sd->poll_list))
5613 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5614 
5615 	net_rps_action_and_irq_enable(sd);
5616 out:
5617 	__kfree_skb_flush();
5618 }
5619 
5620 struct netdev_adjacent {
5621 	struct net_device *dev;
5622 
5623 	/* upper master flag, there can only be one master device per list */
5624 	bool master;
5625 
5626 	/* counter for the number of times this device was added to us */
5627 	u16 ref_nr;
5628 
5629 	/* private field for the users */
5630 	void *private;
5631 
5632 	struct list_head list;
5633 	struct rcu_head rcu;
5634 };
5635 
5636 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5637 						 struct list_head *adj_list)
5638 {
5639 	struct netdev_adjacent *adj;
5640 
5641 	list_for_each_entry(adj, adj_list, list) {
5642 		if (adj->dev == adj_dev)
5643 			return adj;
5644 	}
5645 	return NULL;
5646 }
5647 
5648 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5649 {
5650 	struct net_device *dev = data;
5651 
5652 	return upper_dev == dev;
5653 }
5654 
5655 /**
5656  * netdev_has_upper_dev - Check if device is linked to an upper device
5657  * @dev: device
5658  * @upper_dev: upper device to check
5659  *
5660  * Find out if a device is linked to specified upper device and return true
5661  * in case it is. Note that this checks only immediate upper device,
5662  * not through a complete stack of devices. The caller must hold the RTNL lock.
5663  */
5664 bool netdev_has_upper_dev(struct net_device *dev,
5665 			  struct net_device *upper_dev)
5666 {
5667 	ASSERT_RTNL();
5668 
5669 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5670 					     upper_dev);
5671 }
5672 EXPORT_SYMBOL(netdev_has_upper_dev);
5673 
5674 /**
5675  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5676  * @dev: device
5677  * @upper_dev: upper device to check
5678  *
5679  * Find out if a device is linked to specified upper device and return true
5680  * in case it is. Note that this checks the entire upper device chain.
5681  * The caller must hold rcu lock.
5682  */
5683 
5684 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5685 				  struct net_device *upper_dev)
5686 {
5687 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5688 					       upper_dev);
5689 }
5690 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5691 
5692 /**
5693  * netdev_has_any_upper_dev - Check if device is linked to some device
5694  * @dev: device
5695  *
5696  * Find out if a device is linked to an upper device and return true in case
5697  * it is. The caller must hold the RTNL lock.
5698  */
5699 static bool netdev_has_any_upper_dev(struct net_device *dev)
5700 {
5701 	ASSERT_RTNL();
5702 
5703 	return !list_empty(&dev->adj_list.upper);
5704 }
5705 
5706 /**
5707  * netdev_master_upper_dev_get - Get master upper device
5708  * @dev: device
5709  *
5710  * Find a master upper device and return pointer to it or NULL in case
5711  * it's not there. The caller must hold the RTNL lock.
5712  */
5713 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5714 {
5715 	struct netdev_adjacent *upper;
5716 
5717 	ASSERT_RTNL();
5718 
5719 	if (list_empty(&dev->adj_list.upper))
5720 		return NULL;
5721 
5722 	upper = list_first_entry(&dev->adj_list.upper,
5723 				 struct netdev_adjacent, list);
5724 	if (likely(upper->master))
5725 		return upper->dev;
5726 	return NULL;
5727 }
5728 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5729 
5730 /**
5731  * netdev_has_any_lower_dev - Check if device is linked to some device
5732  * @dev: device
5733  *
5734  * Find out if a device is linked to a lower device and return true in case
5735  * it is. The caller must hold the RTNL lock.
5736  */
5737 static bool netdev_has_any_lower_dev(struct net_device *dev)
5738 {
5739 	ASSERT_RTNL();
5740 
5741 	return !list_empty(&dev->adj_list.lower);
5742 }
5743 
5744 void *netdev_adjacent_get_private(struct list_head *adj_list)
5745 {
5746 	struct netdev_adjacent *adj;
5747 
5748 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5749 
5750 	return adj->private;
5751 }
5752 EXPORT_SYMBOL(netdev_adjacent_get_private);
5753 
5754 /**
5755  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5756  * @dev: device
5757  * @iter: list_head ** of the current position
5758  *
5759  * Gets the next device from the dev's upper list, starting from iter
5760  * position. The caller must hold RCU read lock.
5761  */
5762 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5763 						 struct list_head **iter)
5764 {
5765 	struct netdev_adjacent *upper;
5766 
5767 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5768 
5769 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5770 
5771 	if (&upper->list == &dev->adj_list.upper)
5772 		return NULL;
5773 
5774 	*iter = &upper->list;
5775 
5776 	return upper->dev;
5777 }
5778 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5779 
5780 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5781 						    struct list_head **iter)
5782 {
5783 	struct netdev_adjacent *upper;
5784 
5785 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5786 
5787 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5788 
5789 	if (&upper->list == &dev->adj_list.upper)
5790 		return NULL;
5791 
5792 	*iter = &upper->list;
5793 
5794 	return upper->dev;
5795 }
5796 
5797 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5798 				  int (*fn)(struct net_device *dev,
5799 					    void *data),
5800 				  void *data)
5801 {
5802 	struct net_device *udev;
5803 	struct list_head *iter;
5804 	int ret;
5805 
5806 	for (iter = &dev->adj_list.upper,
5807 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5808 	     udev;
5809 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5810 		/* first is the upper device itself */
5811 		ret = fn(udev, data);
5812 		if (ret)
5813 			return ret;
5814 
5815 		/* then look at all of its upper devices */
5816 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5817 		if (ret)
5818 			return ret;
5819 	}
5820 
5821 	return 0;
5822 }
5823 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5824 
5825 /**
5826  * netdev_lower_get_next_private - Get the next ->private from the
5827  *				   lower neighbour list
5828  * @dev: device
5829  * @iter: list_head ** of the current position
5830  *
5831  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5832  * list, starting from iter position. The caller must hold either hold the
5833  * RTNL lock or its own locking that guarantees that the neighbour lower
5834  * list will remain unchanged.
5835  */
5836 void *netdev_lower_get_next_private(struct net_device *dev,
5837 				    struct list_head **iter)
5838 {
5839 	struct netdev_adjacent *lower;
5840 
5841 	lower = list_entry(*iter, struct netdev_adjacent, list);
5842 
5843 	if (&lower->list == &dev->adj_list.lower)
5844 		return NULL;
5845 
5846 	*iter = lower->list.next;
5847 
5848 	return lower->private;
5849 }
5850 EXPORT_SYMBOL(netdev_lower_get_next_private);
5851 
5852 /**
5853  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5854  *				       lower neighbour list, RCU
5855  *				       variant
5856  * @dev: device
5857  * @iter: list_head ** of the current position
5858  *
5859  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5860  * list, starting from iter position. The caller must hold RCU read lock.
5861  */
5862 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5863 					struct list_head **iter)
5864 {
5865 	struct netdev_adjacent *lower;
5866 
5867 	WARN_ON_ONCE(!rcu_read_lock_held());
5868 
5869 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5870 
5871 	if (&lower->list == &dev->adj_list.lower)
5872 		return NULL;
5873 
5874 	*iter = &lower->list;
5875 
5876 	return lower->private;
5877 }
5878 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5879 
5880 /**
5881  * netdev_lower_get_next - Get the next device from the lower neighbour
5882  *                         list
5883  * @dev: device
5884  * @iter: list_head ** of the current position
5885  *
5886  * Gets the next netdev_adjacent from the dev's lower neighbour
5887  * list, starting from iter position. The caller must hold RTNL lock or
5888  * its own locking that guarantees that the neighbour lower
5889  * list will remain unchanged.
5890  */
5891 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5892 {
5893 	struct netdev_adjacent *lower;
5894 
5895 	lower = list_entry(*iter, struct netdev_adjacent, list);
5896 
5897 	if (&lower->list == &dev->adj_list.lower)
5898 		return NULL;
5899 
5900 	*iter = lower->list.next;
5901 
5902 	return lower->dev;
5903 }
5904 EXPORT_SYMBOL(netdev_lower_get_next);
5905 
5906 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5907 						struct list_head **iter)
5908 {
5909 	struct netdev_adjacent *lower;
5910 
5911 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5912 
5913 	if (&lower->list == &dev->adj_list.lower)
5914 		return NULL;
5915 
5916 	*iter = &lower->list;
5917 
5918 	return lower->dev;
5919 }
5920 
5921 int netdev_walk_all_lower_dev(struct net_device *dev,
5922 			      int (*fn)(struct net_device *dev,
5923 					void *data),
5924 			      void *data)
5925 {
5926 	struct net_device *ldev;
5927 	struct list_head *iter;
5928 	int ret;
5929 
5930 	for (iter = &dev->adj_list.lower,
5931 	     ldev = netdev_next_lower_dev(dev, &iter);
5932 	     ldev;
5933 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5934 		/* first is the lower device itself */
5935 		ret = fn(ldev, data);
5936 		if (ret)
5937 			return ret;
5938 
5939 		/* then look at all of its lower devices */
5940 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
5941 		if (ret)
5942 			return ret;
5943 	}
5944 
5945 	return 0;
5946 }
5947 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5948 
5949 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5950 						    struct list_head **iter)
5951 {
5952 	struct netdev_adjacent *lower;
5953 
5954 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5955 	if (&lower->list == &dev->adj_list.lower)
5956 		return NULL;
5957 
5958 	*iter = &lower->list;
5959 
5960 	return lower->dev;
5961 }
5962 
5963 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5964 				  int (*fn)(struct net_device *dev,
5965 					    void *data),
5966 				  void *data)
5967 {
5968 	struct net_device *ldev;
5969 	struct list_head *iter;
5970 	int ret;
5971 
5972 	for (iter = &dev->adj_list.lower,
5973 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
5974 	     ldev;
5975 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5976 		/* first is the lower device itself */
5977 		ret = fn(ldev, data);
5978 		if (ret)
5979 			return ret;
5980 
5981 		/* then look at all of its lower devices */
5982 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5983 		if (ret)
5984 			return ret;
5985 	}
5986 
5987 	return 0;
5988 }
5989 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5990 
5991 /**
5992  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5993  *				       lower neighbour list, RCU
5994  *				       variant
5995  * @dev: device
5996  *
5997  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5998  * list. The caller must hold RCU read lock.
5999  */
6000 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6001 {
6002 	struct netdev_adjacent *lower;
6003 
6004 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6005 			struct netdev_adjacent, list);
6006 	if (lower)
6007 		return lower->private;
6008 	return NULL;
6009 }
6010 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6011 
6012 /**
6013  * netdev_master_upper_dev_get_rcu - Get master upper device
6014  * @dev: device
6015  *
6016  * Find a master upper device and return pointer to it or NULL in case
6017  * it's not there. The caller must hold the RCU read lock.
6018  */
6019 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6020 {
6021 	struct netdev_adjacent *upper;
6022 
6023 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6024 				       struct netdev_adjacent, list);
6025 	if (upper && likely(upper->master))
6026 		return upper->dev;
6027 	return NULL;
6028 }
6029 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6030 
6031 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6032 			      struct net_device *adj_dev,
6033 			      struct list_head *dev_list)
6034 {
6035 	char linkname[IFNAMSIZ+7];
6036 
6037 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6038 		"upper_%s" : "lower_%s", adj_dev->name);
6039 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6040 				 linkname);
6041 }
6042 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6043 			       char *name,
6044 			       struct list_head *dev_list)
6045 {
6046 	char linkname[IFNAMSIZ+7];
6047 
6048 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6049 		"upper_%s" : "lower_%s", name);
6050 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6051 }
6052 
6053 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6054 						 struct net_device *adj_dev,
6055 						 struct list_head *dev_list)
6056 {
6057 	return (dev_list == &dev->adj_list.upper ||
6058 		dev_list == &dev->adj_list.lower) &&
6059 		net_eq(dev_net(dev), dev_net(adj_dev));
6060 }
6061 
6062 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6063 					struct net_device *adj_dev,
6064 					struct list_head *dev_list,
6065 					void *private, bool master)
6066 {
6067 	struct netdev_adjacent *adj;
6068 	int ret;
6069 
6070 	adj = __netdev_find_adj(adj_dev, dev_list);
6071 
6072 	if (adj) {
6073 		adj->ref_nr += 1;
6074 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6075 			 dev->name, adj_dev->name, adj->ref_nr);
6076 
6077 		return 0;
6078 	}
6079 
6080 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6081 	if (!adj)
6082 		return -ENOMEM;
6083 
6084 	adj->dev = adj_dev;
6085 	adj->master = master;
6086 	adj->ref_nr = 1;
6087 	adj->private = private;
6088 	dev_hold(adj_dev);
6089 
6090 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6091 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6092 
6093 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6094 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6095 		if (ret)
6096 			goto free_adj;
6097 	}
6098 
6099 	/* Ensure that master link is always the first item in list. */
6100 	if (master) {
6101 		ret = sysfs_create_link(&(dev->dev.kobj),
6102 					&(adj_dev->dev.kobj), "master");
6103 		if (ret)
6104 			goto remove_symlinks;
6105 
6106 		list_add_rcu(&adj->list, dev_list);
6107 	} else {
6108 		list_add_tail_rcu(&adj->list, dev_list);
6109 	}
6110 
6111 	return 0;
6112 
6113 remove_symlinks:
6114 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6115 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6116 free_adj:
6117 	kfree(adj);
6118 	dev_put(adj_dev);
6119 
6120 	return ret;
6121 }
6122 
6123 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6124 					 struct net_device *adj_dev,
6125 					 u16 ref_nr,
6126 					 struct list_head *dev_list)
6127 {
6128 	struct netdev_adjacent *adj;
6129 
6130 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6131 		 dev->name, adj_dev->name, ref_nr);
6132 
6133 	adj = __netdev_find_adj(adj_dev, dev_list);
6134 
6135 	if (!adj) {
6136 		pr_err("Adjacency does not exist for device %s from %s\n",
6137 		       dev->name, adj_dev->name);
6138 		WARN_ON(1);
6139 		return;
6140 	}
6141 
6142 	if (adj->ref_nr > ref_nr) {
6143 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6144 			 dev->name, adj_dev->name, ref_nr,
6145 			 adj->ref_nr - ref_nr);
6146 		adj->ref_nr -= ref_nr;
6147 		return;
6148 	}
6149 
6150 	if (adj->master)
6151 		sysfs_remove_link(&(dev->dev.kobj), "master");
6152 
6153 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6154 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6155 
6156 	list_del_rcu(&adj->list);
6157 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6158 		 adj_dev->name, dev->name, adj_dev->name);
6159 	dev_put(adj_dev);
6160 	kfree_rcu(adj, rcu);
6161 }
6162 
6163 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6164 					    struct net_device *upper_dev,
6165 					    struct list_head *up_list,
6166 					    struct list_head *down_list,
6167 					    void *private, bool master)
6168 {
6169 	int ret;
6170 
6171 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6172 					   private, master);
6173 	if (ret)
6174 		return ret;
6175 
6176 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6177 					   private, false);
6178 	if (ret) {
6179 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6180 		return ret;
6181 	}
6182 
6183 	return 0;
6184 }
6185 
6186 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6187 					       struct net_device *upper_dev,
6188 					       u16 ref_nr,
6189 					       struct list_head *up_list,
6190 					       struct list_head *down_list)
6191 {
6192 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6193 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6194 }
6195 
6196 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6197 						struct net_device *upper_dev,
6198 						void *private, bool master)
6199 {
6200 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6201 						&dev->adj_list.upper,
6202 						&upper_dev->adj_list.lower,
6203 						private, master);
6204 }
6205 
6206 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6207 						   struct net_device *upper_dev)
6208 {
6209 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6210 					   &dev->adj_list.upper,
6211 					   &upper_dev->adj_list.lower);
6212 }
6213 
6214 static int __netdev_upper_dev_link(struct net_device *dev,
6215 				   struct net_device *upper_dev, bool master,
6216 				   void *upper_priv, void *upper_info)
6217 {
6218 	struct netdev_notifier_changeupper_info changeupper_info;
6219 	int ret = 0;
6220 
6221 	ASSERT_RTNL();
6222 
6223 	if (dev == upper_dev)
6224 		return -EBUSY;
6225 
6226 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6227 	if (netdev_has_upper_dev(upper_dev, dev))
6228 		return -EBUSY;
6229 
6230 	if (netdev_has_upper_dev(dev, upper_dev))
6231 		return -EEXIST;
6232 
6233 	if (master && netdev_master_upper_dev_get(dev))
6234 		return -EBUSY;
6235 
6236 	changeupper_info.upper_dev = upper_dev;
6237 	changeupper_info.master = master;
6238 	changeupper_info.linking = true;
6239 	changeupper_info.upper_info = upper_info;
6240 
6241 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6242 					    &changeupper_info.info);
6243 	ret = notifier_to_errno(ret);
6244 	if (ret)
6245 		return ret;
6246 
6247 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6248 						   master);
6249 	if (ret)
6250 		return ret;
6251 
6252 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6253 					    &changeupper_info.info);
6254 	ret = notifier_to_errno(ret);
6255 	if (ret)
6256 		goto rollback;
6257 
6258 	return 0;
6259 
6260 rollback:
6261 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6262 
6263 	return ret;
6264 }
6265 
6266 /**
6267  * netdev_upper_dev_link - Add a link to the upper device
6268  * @dev: device
6269  * @upper_dev: new upper device
6270  *
6271  * Adds a link to device which is upper to this one. The caller must hold
6272  * the RTNL lock. On a failure a negative errno code is returned.
6273  * On success the reference counts are adjusted and the function
6274  * returns zero.
6275  */
6276 int netdev_upper_dev_link(struct net_device *dev,
6277 			  struct net_device *upper_dev)
6278 {
6279 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6280 }
6281 EXPORT_SYMBOL(netdev_upper_dev_link);
6282 
6283 /**
6284  * netdev_master_upper_dev_link - Add a master link to the upper device
6285  * @dev: device
6286  * @upper_dev: new upper device
6287  * @upper_priv: upper device private
6288  * @upper_info: upper info to be passed down via notifier
6289  *
6290  * Adds a link to device which is upper to this one. In this case, only
6291  * one master upper device can be linked, although other non-master devices
6292  * might be linked as well. The caller must hold the RTNL lock.
6293  * On a failure a negative errno code is returned. On success the reference
6294  * counts are adjusted and the function returns zero.
6295  */
6296 int netdev_master_upper_dev_link(struct net_device *dev,
6297 				 struct net_device *upper_dev,
6298 				 void *upper_priv, void *upper_info)
6299 {
6300 	return __netdev_upper_dev_link(dev, upper_dev, true,
6301 				       upper_priv, upper_info);
6302 }
6303 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6304 
6305 /**
6306  * netdev_upper_dev_unlink - Removes a link to upper device
6307  * @dev: device
6308  * @upper_dev: new upper device
6309  *
6310  * Removes a link to device which is upper to this one. The caller must hold
6311  * the RTNL lock.
6312  */
6313 void netdev_upper_dev_unlink(struct net_device *dev,
6314 			     struct net_device *upper_dev)
6315 {
6316 	struct netdev_notifier_changeupper_info changeupper_info;
6317 
6318 	ASSERT_RTNL();
6319 
6320 	changeupper_info.upper_dev = upper_dev;
6321 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6322 	changeupper_info.linking = false;
6323 
6324 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6325 				      &changeupper_info.info);
6326 
6327 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6328 
6329 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6330 				      &changeupper_info.info);
6331 }
6332 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6333 
6334 /**
6335  * netdev_bonding_info_change - Dispatch event about slave change
6336  * @dev: device
6337  * @bonding_info: info to dispatch
6338  *
6339  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6340  * The caller must hold the RTNL lock.
6341  */
6342 void netdev_bonding_info_change(struct net_device *dev,
6343 				struct netdev_bonding_info *bonding_info)
6344 {
6345 	struct netdev_notifier_bonding_info	info;
6346 
6347 	memcpy(&info.bonding_info, bonding_info,
6348 	       sizeof(struct netdev_bonding_info));
6349 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6350 				      &info.info);
6351 }
6352 EXPORT_SYMBOL(netdev_bonding_info_change);
6353 
6354 static void netdev_adjacent_add_links(struct net_device *dev)
6355 {
6356 	struct netdev_adjacent *iter;
6357 
6358 	struct net *net = dev_net(dev);
6359 
6360 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6361 		if (!net_eq(net, dev_net(iter->dev)))
6362 			continue;
6363 		netdev_adjacent_sysfs_add(iter->dev, dev,
6364 					  &iter->dev->adj_list.lower);
6365 		netdev_adjacent_sysfs_add(dev, iter->dev,
6366 					  &dev->adj_list.upper);
6367 	}
6368 
6369 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6370 		if (!net_eq(net, dev_net(iter->dev)))
6371 			continue;
6372 		netdev_adjacent_sysfs_add(iter->dev, dev,
6373 					  &iter->dev->adj_list.upper);
6374 		netdev_adjacent_sysfs_add(dev, iter->dev,
6375 					  &dev->adj_list.lower);
6376 	}
6377 }
6378 
6379 static void netdev_adjacent_del_links(struct net_device *dev)
6380 {
6381 	struct netdev_adjacent *iter;
6382 
6383 	struct net *net = dev_net(dev);
6384 
6385 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6386 		if (!net_eq(net, dev_net(iter->dev)))
6387 			continue;
6388 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6389 					  &iter->dev->adj_list.lower);
6390 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6391 					  &dev->adj_list.upper);
6392 	}
6393 
6394 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6395 		if (!net_eq(net, dev_net(iter->dev)))
6396 			continue;
6397 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6398 					  &iter->dev->adj_list.upper);
6399 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6400 					  &dev->adj_list.lower);
6401 	}
6402 }
6403 
6404 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6405 {
6406 	struct netdev_adjacent *iter;
6407 
6408 	struct net *net = dev_net(dev);
6409 
6410 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6411 		if (!net_eq(net, dev_net(iter->dev)))
6412 			continue;
6413 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6414 					  &iter->dev->adj_list.lower);
6415 		netdev_adjacent_sysfs_add(iter->dev, dev,
6416 					  &iter->dev->adj_list.lower);
6417 	}
6418 
6419 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6420 		if (!net_eq(net, dev_net(iter->dev)))
6421 			continue;
6422 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6423 					  &iter->dev->adj_list.upper);
6424 		netdev_adjacent_sysfs_add(iter->dev, dev,
6425 					  &iter->dev->adj_list.upper);
6426 	}
6427 }
6428 
6429 void *netdev_lower_dev_get_private(struct net_device *dev,
6430 				   struct net_device *lower_dev)
6431 {
6432 	struct netdev_adjacent *lower;
6433 
6434 	if (!lower_dev)
6435 		return NULL;
6436 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6437 	if (!lower)
6438 		return NULL;
6439 
6440 	return lower->private;
6441 }
6442 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6443 
6444 
6445 int dev_get_nest_level(struct net_device *dev)
6446 {
6447 	struct net_device *lower = NULL;
6448 	struct list_head *iter;
6449 	int max_nest = -1;
6450 	int nest;
6451 
6452 	ASSERT_RTNL();
6453 
6454 	netdev_for_each_lower_dev(dev, lower, iter) {
6455 		nest = dev_get_nest_level(lower);
6456 		if (max_nest < nest)
6457 			max_nest = nest;
6458 	}
6459 
6460 	return max_nest + 1;
6461 }
6462 EXPORT_SYMBOL(dev_get_nest_level);
6463 
6464 /**
6465  * netdev_lower_change - Dispatch event about lower device state change
6466  * @lower_dev: device
6467  * @lower_state_info: state to dispatch
6468  *
6469  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6470  * The caller must hold the RTNL lock.
6471  */
6472 void netdev_lower_state_changed(struct net_device *lower_dev,
6473 				void *lower_state_info)
6474 {
6475 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6476 
6477 	ASSERT_RTNL();
6478 	changelowerstate_info.lower_state_info = lower_state_info;
6479 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6480 				      &changelowerstate_info.info);
6481 }
6482 EXPORT_SYMBOL(netdev_lower_state_changed);
6483 
6484 static void dev_change_rx_flags(struct net_device *dev, int flags)
6485 {
6486 	const struct net_device_ops *ops = dev->netdev_ops;
6487 
6488 	if (ops->ndo_change_rx_flags)
6489 		ops->ndo_change_rx_flags(dev, flags);
6490 }
6491 
6492 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6493 {
6494 	unsigned int old_flags = dev->flags;
6495 	kuid_t uid;
6496 	kgid_t gid;
6497 
6498 	ASSERT_RTNL();
6499 
6500 	dev->flags |= IFF_PROMISC;
6501 	dev->promiscuity += inc;
6502 	if (dev->promiscuity == 0) {
6503 		/*
6504 		 * Avoid overflow.
6505 		 * If inc causes overflow, untouch promisc and return error.
6506 		 */
6507 		if (inc < 0)
6508 			dev->flags &= ~IFF_PROMISC;
6509 		else {
6510 			dev->promiscuity -= inc;
6511 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6512 				dev->name);
6513 			return -EOVERFLOW;
6514 		}
6515 	}
6516 	if (dev->flags != old_flags) {
6517 		pr_info("device %s %s promiscuous mode\n",
6518 			dev->name,
6519 			dev->flags & IFF_PROMISC ? "entered" : "left");
6520 		if (audit_enabled) {
6521 			current_uid_gid(&uid, &gid);
6522 			audit_log(current->audit_context, GFP_ATOMIC,
6523 				AUDIT_ANOM_PROMISCUOUS,
6524 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6525 				dev->name, (dev->flags & IFF_PROMISC),
6526 				(old_flags & IFF_PROMISC),
6527 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6528 				from_kuid(&init_user_ns, uid),
6529 				from_kgid(&init_user_ns, gid),
6530 				audit_get_sessionid(current));
6531 		}
6532 
6533 		dev_change_rx_flags(dev, IFF_PROMISC);
6534 	}
6535 	if (notify)
6536 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6537 	return 0;
6538 }
6539 
6540 /**
6541  *	dev_set_promiscuity	- update promiscuity count on a device
6542  *	@dev: device
6543  *	@inc: modifier
6544  *
6545  *	Add or remove promiscuity from a device. While the count in the device
6546  *	remains above zero the interface remains promiscuous. Once it hits zero
6547  *	the device reverts back to normal filtering operation. A negative inc
6548  *	value is used to drop promiscuity on the device.
6549  *	Return 0 if successful or a negative errno code on error.
6550  */
6551 int dev_set_promiscuity(struct net_device *dev, int inc)
6552 {
6553 	unsigned int old_flags = dev->flags;
6554 	int err;
6555 
6556 	err = __dev_set_promiscuity(dev, inc, true);
6557 	if (err < 0)
6558 		return err;
6559 	if (dev->flags != old_flags)
6560 		dev_set_rx_mode(dev);
6561 	return err;
6562 }
6563 EXPORT_SYMBOL(dev_set_promiscuity);
6564 
6565 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6566 {
6567 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6568 
6569 	ASSERT_RTNL();
6570 
6571 	dev->flags |= IFF_ALLMULTI;
6572 	dev->allmulti += inc;
6573 	if (dev->allmulti == 0) {
6574 		/*
6575 		 * Avoid overflow.
6576 		 * If inc causes overflow, untouch allmulti and return error.
6577 		 */
6578 		if (inc < 0)
6579 			dev->flags &= ~IFF_ALLMULTI;
6580 		else {
6581 			dev->allmulti -= inc;
6582 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6583 				dev->name);
6584 			return -EOVERFLOW;
6585 		}
6586 	}
6587 	if (dev->flags ^ old_flags) {
6588 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6589 		dev_set_rx_mode(dev);
6590 		if (notify)
6591 			__dev_notify_flags(dev, old_flags,
6592 					   dev->gflags ^ old_gflags);
6593 	}
6594 	return 0;
6595 }
6596 
6597 /**
6598  *	dev_set_allmulti	- update allmulti count on a device
6599  *	@dev: device
6600  *	@inc: modifier
6601  *
6602  *	Add or remove reception of all multicast frames to a device. While the
6603  *	count in the device remains above zero the interface remains listening
6604  *	to all interfaces. Once it hits zero the device reverts back to normal
6605  *	filtering operation. A negative @inc value is used to drop the counter
6606  *	when releasing a resource needing all multicasts.
6607  *	Return 0 if successful or a negative errno code on error.
6608  */
6609 
6610 int dev_set_allmulti(struct net_device *dev, int inc)
6611 {
6612 	return __dev_set_allmulti(dev, inc, true);
6613 }
6614 EXPORT_SYMBOL(dev_set_allmulti);
6615 
6616 /*
6617  *	Upload unicast and multicast address lists to device and
6618  *	configure RX filtering. When the device doesn't support unicast
6619  *	filtering it is put in promiscuous mode while unicast addresses
6620  *	are present.
6621  */
6622 void __dev_set_rx_mode(struct net_device *dev)
6623 {
6624 	const struct net_device_ops *ops = dev->netdev_ops;
6625 
6626 	/* dev_open will call this function so the list will stay sane. */
6627 	if (!(dev->flags&IFF_UP))
6628 		return;
6629 
6630 	if (!netif_device_present(dev))
6631 		return;
6632 
6633 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6634 		/* Unicast addresses changes may only happen under the rtnl,
6635 		 * therefore calling __dev_set_promiscuity here is safe.
6636 		 */
6637 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6638 			__dev_set_promiscuity(dev, 1, false);
6639 			dev->uc_promisc = true;
6640 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6641 			__dev_set_promiscuity(dev, -1, false);
6642 			dev->uc_promisc = false;
6643 		}
6644 	}
6645 
6646 	if (ops->ndo_set_rx_mode)
6647 		ops->ndo_set_rx_mode(dev);
6648 }
6649 
6650 void dev_set_rx_mode(struct net_device *dev)
6651 {
6652 	netif_addr_lock_bh(dev);
6653 	__dev_set_rx_mode(dev);
6654 	netif_addr_unlock_bh(dev);
6655 }
6656 
6657 /**
6658  *	dev_get_flags - get flags reported to userspace
6659  *	@dev: device
6660  *
6661  *	Get the combination of flag bits exported through APIs to userspace.
6662  */
6663 unsigned int dev_get_flags(const struct net_device *dev)
6664 {
6665 	unsigned int flags;
6666 
6667 	flags = (dev->flags & ~(IFF_PROMISC |
6668 				IFF_ALLMULTI |
6669 				IFF_RUNNING |
6670 				IFF_LOWER_UP |
6671 				IFF_DORMANT)) |
6672 		(dev->gflags & (IFF_PROMISC |
6673 				IFF_ALLMULTI));
6674 
6675 	if (netif_running(dev)) {
6676 		if (netif_oper_up(dev))
6677 			flags |= IFF_RUNNING;
6678 		if (netif_carrier_ok(dev))
6679 			flags |= IFF_LOWER_UP;
6680 		if (netif_dormant(dev))
6681 			flags |= IFF_DORMANT;
6682 	}
6683 
6684 	return flags;
6685 }
6686 EXPORT_SYMBOL(dev_get_flags);
6687 
6688 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6689 {
6690 	unsigned int old_flags = dev->flags;
6691 	int ret;
6692 
6693 	ASSERT_RTNL();
6694 
6695 	/*
6696 	 *	Set the flags on our device.
6697 	 */
6698 
6699 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6700 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6701 			       IFF_AUTOMEDIA)) |
6702 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6703 				    IFF_ALLMULTI));
6704 
6705 	/*
6706 	 *	Load in the correct multicast list now the flags have changed.
6707 	 */
6708 
6709 	if ((old_flags ^ flags) & IFF_MULTICAST)
6710 		dev_change_rx_flags(dev, IFF_MULTICAST);
6711 
6712 	dev_set_rx_mode(dev);
6713 
6714 	/*
6715 	 *	Have we downed the interface. We handle IFF_UP ourselves
6716 	 *	according to user attempts to set it, rather than blindly
6717 	 *	setting it.
6718 	 */
6719 
6720 	ret = 0;
6721 	if ((old_flags ^ flags) & IFF_UP) {
6722 		if (old_flags & IFF_UP)
6723 			__dev_close(dev);
6724 		else
6725 			ret = __dev_open(dev);
6726 	}
6727 
6728 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6729 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6730 		unsigned int old_flags = dev->flags;
6731 
6732 		dev->gflags ^= IFF_PROMISC;
6733 
6734 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6735 			if (dev->flags != old_flags)
6736 				dev_set_rx_mode(dev);
6737 	}
6738 
6739 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6740 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6741 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6742 	 */
6743 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6744 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6745 
6746 		dev->gflags ^= IFF_ALLMULTI;
6747 		__dev_set_allmulti(dev, inc, false);
6748 	}
6749 
6750 	return ret;
6751 }
6752 
6753 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6754 			unsigned int gchanges)
6755 {
6756 	unsigned int changes = dev->flags ^ old_flags;
6757 
6758 	if (gchanges)
6759 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6760 
6761 	if (changes & IFF_UP) {
6762 		if (dev->flags & IFF_UP)
6763 			call_netdevice_notifiers(NETDEV_UP, dev);
6764 		else
6765 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6766 	}
6767 
6768 	if (dev->flags & IFF_UP &&
6769 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6770 		struct netdev_notifier_change_info change_info;
6771 
6772 		change_info.flags_changed = changes;
6773 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6774 					      &change_info.info);
6775 	}
6776 }
6777 
6778 /**
6779  *	dev_change_flags - change device settings
6780  *	@dev: device
6781  *	@flags: device state flags
6782  *
6783  *	Change settings on device based state flags. The flags are
6784  *	in the userspace exported format.
6785  */
6786 int dev_change_flags(struct net_device *dev, unsigned int flags)
6787 {
6788 	int ret;
6789 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6790 
6791 	ret = __dev_change_flags(dev, flags);
6792 	if (ret < 0)
6793 		return ret;
6794 
6795 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6796 	__dev_notify_flags(dev, old_flags, changes);
6797 	return ret;
6798 }
6799 EXPORT_SYMBOL(dev_change_flags);
6800 
6801 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6802 {
6803 	const struct net_device_ops *ops = dev->netdev_ops;
6804 
6805 	if (ops->ndo_change_mtu)
6806 		return ops->ndo_change_mtu(dev, new_mtu);
6807 
6808 	dev->mtu = new_mtu;
6809 	return 0;
6810 }
6811 EXPORT_SYMBOL(__dev_set_mtu);
6812 
6813 /**
6814  *	dev_set_mtu - Change maximum transfer unit
6815  *	@dev: device
6816  *	@new_mtu: new transfer unit
6817  *
6818  *	Change the maximum transfer size of the network device.
6819  */
6820 int dev_set_mtu(struct net_device *dev, int new_mtu)
6821 {
6822 	int err, orig_mtu;
6823 
6824 	if (new_mtu == dev->mtu)
6825 		return 0;
6826 
6827 	/* MTU must be positive, and in range */
6828 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6829 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6830 				    dev->name, new_mtu, dev->min_mtu);
6831 		return -EINVAL;
6832 	}
6833 
6834 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6835 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6836 				    dev->name, new_mtu, dev->max_mtu);
6837 		return -EINVAL;
6838 	}
6839 
6840 	if (!netif_device_present(dev))
6841 		return -ENODEV;
6842 
6843 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6844 	err = notifier_to_errno(err);
6845 	if (err)
6846 		return err;
6847 
6848 	orig_mtu = dev->mtu;
6849 	err = __dev_set_mtu(dev, new_mtu);
6850 
6851 	if (!err) {
6852 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6853 		err = notifier_to_errno(err);
6854 		if (err) {
6855 			/* setting mtu back and notifying everyone again,
6856 			 * so that they have a chance to revert changes.
6857 			 */
6858 			__dev_set_mtu(dev, orig_mtu);
6859 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6860 		}
6861 	}
6862 	return err;
6863 }
6864 EXPORT_SYMBOL(dev_set_mtu);
6865 
6866 /**
6867  *	dev_set_group - Change group this device belongs to
6868  *	@dev: device
6869  *	@new_group: group this device should belong to
6870  */
6871 void dev_set_group(struct net_device *dev, int new_group)
6872 {
6873 	dev->group = new_group;
6874 }
6875 EXPORT_SYMBOL(dev_set_group);
6876 
6877 /**
6878  *	dev_set_mac_address - Change Media Access Control Address
6879  *	@dev: device
6880  *	@sa: new address
6881  *
6882  *	Change the hardware (MAC) address of the device
6883  */
6884 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6885 {
6886 	const struct net_device_ops *ops = dev->netdev_ops;
6887 	int err;
6888 
6889 	if (!ops->ndo_set_mac_address)
6890 		return -EOPNOTSUPP;
6891 	if (sa->sa_family != dev->type)
6892 		return -EINVAL;
6893 	if (!netif_device_present(dev))
6894 		return -ENODEV;
6895 	err = ops->ndo_set_mac_address(dev, sa);
6896 	if (err)
6897 		return err;
6898 	dev->addr_assign_type = NET_ADDR_SET;
6899 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6900 	add_device_randomness(dev->dev_addr, dev->addr_len);
6901 	return 0;
6902 }
6903 EXPORT_SYMBOL(dev_set_mac_address);
6904 
6905 /**
6906  *	dev_change_carrier - Change device carrier
6907  *	@dev: device
6908  *	@new_carrier: new value
6909  *
6910  *	Change device carrier
6911  */
6912 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6913 {
6914 	const struct net_device_ops *ops = dev->netdev_ops;
6915 
6916 	if (!ops->ndo_change_carrier)
6917 		return -EOPNOTSUPP;
6918 	if (!netif_device_present(dev))
6919 		return -ENODEV;
6920 	return ops->ndo_change_carrier(dev, new_carrier);
6921 }
6922 EXPORT_SYMBOL(dev_change_carrier);
6923 
6924 /**
6925  *	dev_get_phys_port_id - Get device physical port ID
6926  *	@dev: device
6927  *	@ppid: port ID
6928  *
6929  *	Get device physical port ID
6930  */
6931 int dev_get_phys_port_id(struct net_device *dev,
6932 			 struct netdev_phys_item_id *ppid)
6933 {
6934 	const struct net_device_ops *ops = dev->netdev_ops;
6935 
6936 	if (!ops->ndo_get_phys_port_id)
6937 		return -EOPNOTSUPP;
6938 	return ops->ndo_get_phys_port_id(dev, ppid);
6939 }
6940 EXPORT_SYMBOL(dev_get_phys_port_id);
6941 
6942 /**
6943  *	dev_get_phys_port_name - Get device physical port name
6944  *	@dev: device
6945  *	@name: port name
6946  *	@len: limit of bytes to copy to name
6947  *
6948  *	Get device physical port name
6949  */
6950 int dev_get_phys_port_name(struct net_device *dev,
6951 			   char *name, size_t len)
6952 {
6953 	const struct net_device_ops *ops = dev->netdev_ops;
6954 
6955 	if (!ops->ndo_get_phys_port_name)
6956 		return -EOPNOTSUPP;
6957 	return ops->ndo_get_phys_port_name(dev, name, len);
6958 }
6959 EXPORT_SYMBOL(dev_get_phys_port_name);
6960 
6961 /**
6962  *	dev_change_proto_down - update protocol port state information
6963  *	@dev: device
6964  *	@proto_down: new value
6965  *
6966  *	This info can be used by switch drivers to set the phys state of the
6967  *	port.
6968  */
6969 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6970 {
6971 	const struct net_device_ops *ops = dev->netdev_ops;
6972 
6973 	if (!ops->ndo_change_proto_down)
6974 		return -EOPNOTSUPP;
6975 	if (!netif_device_present(dev))
6976 		return -ENODEV;
6977 	return ops->ndo_change_proto_down(dev, proto_down);
6978 }
6979 EXPORT_SYMBOL(dev_change_proto_down);
6980 
6981 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
6982 {
6983 	struct netdev_xdp xdp;
6984 
6985 	memset(&xdp, 0, sizeof(xdp));
6986 	xdp.command = XDP_QUERY_PROG;
6987 
6988 	/* Query must always succeed. */
6989 	WARN_ON(xdp_op(dev, &xdp) < 0);
6990 	if (prog_id)
6991 		*prog_id = xdp.prog_id;
6992 
6993 	return xdp.prog_attached;
6994 }
6995 
6996 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6997 			   struct netlink_ext_ack *extack, u32 flags,
6998 			   struct bpf_prog *prog)
6999 {
7000 	struct netdev_xdp xdp;
7001 
7002 	memset(&xdp, 0, sizeof(xdp));
7003 	if (flags & XDP_FLAGS_HW_MODE)
7004 		xdp.command = XDP_SETUP_PROG_HW;
7005 	else
7006 		xdp.command = XDP_SETUP_PROG;
7007 	xdp.extack = extack;
7008 	xdp.flags = flags;
7009 	xdp.prog = prog;
7010 
7011 	return xdp_op(dev, &xdp);
7012 }
7013 
7014 /**
7015  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7016  *	@dev: device
7017  *	@extack: netlink extended ack
7018  *	@fd: new program fd or negative value to clear
7019  *	@flags: xdp-related flags
7020  *
7021  *	Set or clear a bpf program for a device
7022  */
7023 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7024 		      int fd, u32 flags)
7025 {
7026 	const struct net_device_ops *ops = dev->netdev_ops;
7027 	struct bpf_prog *prog = NULL;
7028 	xdp_op_t xdp_op, xdp_chk;
7029 	int err;
7030 
7031 	ASSERT_RTNL();
7032 
7033 	xdp_op = xdp_chk = ops->ndo_xdp;
7034 	if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7035 		return -EOPNOTSUPP;
7036 	if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7037 		xdp_op = generic_xdp_install;
7038 	if (xdp_op == xdp_chk)
7039 		xdp_chk = generic_xdp_install;
7040 
7041 	if (fd >= 0) {
7042 		if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7043 			return -EEXIST;
7044 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7045 		    __dev_xdp_attached(dev, xdp_op, NULL))
7046 			return -EBUSY;
7047 
7048 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7049 		if (IS_ERR(prog))
7050 			return PTR_ERR(prog);
7051 	}
7052 
7053 	err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7054 	if (err < 0 && prog)
7055 		bpf_prog_put(prog);
7056 
7057 	return err;
7058 }
7059 
7060 /**
7061  *	dev_new_index	-	allocate an ifindex
7062  *	@net: the applicable net namespace
7063  *
7064  *	Returns a suitable unique value for a new device interface
7065  *	number.  The caller must hold the rtnl semaphore or the
7066  *	dev_base_lock to be sure it remains unique.
7067  */
7068 static int dev_new_index(struct net *net)
7069 {
7070 	int ifindex = net->ifindex;
7071 
7072 	for (;;) {
7073 		if (++ifindex <= 0)
7074 			ifindex = 1;
7075 		if (!__dev_get_by_index(net, ifindex))
7076 			return net->ifindex = ifindex;
7077 	}
7078 }
7079 
7080 /* Delayed registration/unregisteration */
7081 static LIST_HEAD(net_todo_list);
7082 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7083 
7084 static void net_set_todo(struct net_device *dev)
7085 {
7086 	list_add_tail(&dev->todo_list, &net_todo_list);
7087 	dev_net(dev)->dev_unreg_count++;
7088 }
7089 
7090 static void rollback_registered_many(struct list_head *head)
7091 {
7092 	struct net_device *dev, *tmp;
7093 	LIST_HEAD(close_head);
7094 
7095 	BUG_ON(dev_boot_phase);
7096 	ASSERT_RTNL();
7097 
7098 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7099 		/* Some devices call without registering
7100 		 * for initialization unwind. Remove those
7101 		 * devices and proceed with the remaining.
7102 		 */
7103 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7104 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7105 				 dev->name, dev);
7106 
7107 			WARN_ON(1);
7108 			list_del(&dev->unreg_list);
7109 			continue;
7110 		}
7111 		dev->dismantle = true;
7112 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7113 	}
7114 
7115 	/* If device is running, close it first. */
7116 	list_for_each_entry(dev, head, unreg_list)
7117 		list_add_tail(&dev->close_list, &close_head);
7118 	dev_close_many(&close_head, true);
7119 
7120 	list_for_each_entry(dev, head, unreg_list) {
7121 		/* And unlink it from device chain. */
7122 		unlist_netdevice(dev);
7123 
7124 		dev->reg_state = NETREG_UNREGISTERING;
7125 	}
7126 	flush_all_backlogs();
7127 
7128 	synchronize_net();
7129 
7130 	list_for_each_entry(dev, head, unreg_list) {
7131 		struct sk_buff *skb = NULL;
7132 
7133 		/* Shutdown queueing discipline. */
7134 		dev_shutdown(dev);
7135 
7136 
7137 		/* Notify protocols, that we are about to destroy
7138 		 * this device. They should clean all the things.
7139 		 */
7140 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7141 
7142 		if (!dev->rtnl_link_ops ||
7143 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7144 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7145 						     GFP_KERNEL);
7146 
7147 		/*
7148 		 *	Flush the unicast and multicast chains
7149 		 */
7150 		dev_uc_flush(dev);
7151 		dev_mc_flush(dev);
7152 
7153 		if (dev->netdev_ops->ndo_uninit)
7154 			dev->netdev_ops->ndo_uninit(dev);
7155 
7156 		if (skb)
7157 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7158 
7159 		/* Notifier chain MUST detach us all upper devices. */
7160 		WARN_ON(netdev_has_any_upper_dev(dev));
7161 		WARN_ON(netdev_has_any_lower_dev(dev));
7162 
7163 		/* Remove entries from kobject tree */
7164 		netdev_unregister_kobject(dev);
7165 #ifdef CONFIG_XPS
7166 		/* Remove XPS queueing entries */
7167 		netif_reset_xps_queues_gt(dev, 0);
7168 #endif
7169 	}
7170 
7171 	synchronize_net();
7172 
7173 	list_for_each_entry(dev, head, unreg_list)
7174 		dev_put(dev);
7175 }
7176 
7177 static void rollback_registered(struct net_device *dev)
7178 {
7179 	LIST_HEAD(single);
7180 
7181 	list_add(&dev->unreg_list, &single);
7182 	rollback_registered_many(&single);
7183 	list_del(&single);
7184 }
7185 
7186 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7187 	struct net_device *upper, netdev_features_t features)
7188 {
7189 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7190 	netdev_features_t feature;
7191 	int feature_bit;
7192 
7193 	for_each_netdev_feature(&upper_disables, feature_bit) {
7194 		feature = __NETIF_F_BIT(feature_bit);
7195 		if (!(upper->wanted_features & feature)
7196 		    && (features & feature)) {
7197 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7198 				   &feature, upper->name);
7199 			features &= ~feature;
7200 		}
7201 	}
7202 
7203 	return features;
7204 }
7205 
7206 static void netdev_sync_lower_features(struct net_device *upper,
7207 	struct net_device *lower, netdev_features_t features)
7208 {
7209 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7210 	netdev_features_t feature;
7211 	int feature_bit;
7212 
7213 	for_each_netdev_feature(&upper_disables, feature_bit) {
7214 		feature = __NETIF_F_BIT(feature_bit);
7215 		if (!(features & feature) && (lower->features & feature)) {
7216 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7217 				   &feature, lower->name);
7218 			lower->wanted_features &= ~feature;
7219 			netdev_update_features(lower);
7220 
7221 			if (unlikely(lower->features & feature))
7222 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7223 					    &feature, lower->name);
7224 		}
7225 	}
7226 }
7227 
7228 static netdev_features_t netdev_fix_features(struct net_device *dev,
7229 	netdev_features_t features)
7230 {
7231 	/* Fix illegal checksum combinations */
7232 	if ((features & NETIF_F_HW_CSUM) &&
7233 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7234 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7235 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7236 	}
7237 
7238 	/* TSO requires that SG is present as well. */
7239 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7240 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7241 		features &= ~NETIF_F_ALL_TSO;
7242 	}
7243 
7244 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7245 					!(features & NETIF_F_IP_CSUM)) {
7246 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7247 		features &= ~NETIF_F_TSO;
7248 		features &= ~NETIF_F_TSO_ECN;
7249 	}
7250 
7251 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7252 					 !(features & NETIF_F_IPV6_CSUM)) {
7253 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7254 		features &= ~NETIF_F_TSO6;
7255 	}
7256 
7257 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7258 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7259 		features &= ~NETIF_F_TSO_MANGLEID;
7260 
7261 	/* TSO ECN requires that TSO is present as well. */
7262 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7263 		features &= ~NETIF_F_TSO_ECN;
7264 
7265 	/* Software GSO depends on SG. */
7266 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7267 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7268 		features &= ~NETIF_F_GSO;
7269 	}
7270 
7271 	/* GSO partial features require GSO partial be set */
7272 	if ((features & dev->gso_partial_features) &&
7273 	    !(features & NETIF_F_GSO_PARTIAL)) {
7274 		netdev_dbg(dev,
7275 			   "Dropping partially supported GSO features since no GSO partial.\n");
7276 		features &= ~dev->gso_partial_features;
7277 	}
7278 
7279 	return features;
7280 }
7281 
7282 int __netdev_update_features(struct net_device *dev)
7283 {
7284 	struct net_device *upper, *lower;
7285 	netdev_features_t features;
7286 	struct list_head *iter;
7287 	int err = -1;
7288 
7289 	ASSERT_RTNL();
7290 
7291 	features = netdev_get_wanted_features(dev);
7292 
7293 	if (dev->netdev_ops->ndo_fix_features)
7294 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7295 
7296 	/* driver might be less strict about feature dependencies */
7297 	features = netdev_fix_features(dev, features);
7298 
7299 	/* some features can't be enabled if they're off an an upper device */
7300 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7301 		features = netdev_sync_upper_features(dev, upper, features);
7302 
7303 	if (dev->features == features)
7304 		goto sync_lower;
7305 
7306 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7307 		&dev->features, &features);
7308 
7309 	if (dev->netdev_ops->ndo_set_features)
7310 		err = dev->netdev_ops->ndo_set_features(dev, features);
7311 	else
7312 		err = 0;
7313 
7314 	if (unlikely(err < 0)) {
7315 		netdev_err(dev,
7316 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7317 			err, &features, &dev->features);
7318 		/* return non-0 since some features might have changed and
7319 		 * it's better to fire a spurious notification than miss it
7320 		 */
7321 		return -1;
7322 	}
7323 
7324 sync_lower:
7325 	/* some features must be disabled on lower devices when disabled
7326 	 * on an upper device (think: bonding master or bridge)
7327 	 */
7328 	netdev_for_each_lower_dev(dev, lower, iter)
7329 		netdev_sync_lower_features(dev, lower, features);
7330 
7331 	if (!err) {
7332 		netdev_features_t diff = features ^ dev->features;
7333 
7334 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7335 			/* udp_tunnel_{get,drop}_rx_info both need
7336 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7337 			 * device, or they won't do anything.
7338 			 * Thus we need to update dev->features
7339 			 * *before* calling udp_tunnel_get_rx_info,
7340 			 * but *after* calling udp_tunnel_drop_rx_info.
7341 			 */
7342 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7343 				dev->features = features;
7344 				udp_tunnel_get_rx_info(dev);
7345 			} else {
7346 				udp_tunnel_drop_rx_info(dev);
7347 			}
7348 		}
7349 
7350 		dev->features = features;
7351 	}
7352 
7353 	return err < 0 ? 0 : 1;
7354 }
7355 
7356 /**
7357  *	netdev_update_features - recalculate device features
7358  *	@dev: the device to check
7359  *
7360  *	Recalculate dev->features set and send notifications if it
7361  *	has changed. Should be called after driver or hardware dependent
7362  *	conditions might have changed that influence the features.
7363  */
7364 void netdev_update_features(struct net_device *dev)
7365 {
7366 	if (__netdev_update_features(dev))
7367 		netdev_features_change(dev);
7368 }
7369 EXPORT_SYMBOL(netdev_update_features);
7370 
7371 /**
7372  *	netdev_change_features - recalculate device features
7373  *	@dev: the device to check
7374  *
7375  *	Recalculate dev->features set and send notifications even
7376  *	if they have not changed. Should be called instead of
7377  *	netdev_update_features() if also dev->vlan_features might
7378  *	have changed to allow the changes to be propagated to stacked
7379  *	VLAN devices.
7380  */
7381 void netdev_change_features(struct net_device *dev)
7382 {
7383 	__netdev_update_features(dev);
7384 	netdev_features_change(dev);
7385 }
7386 EXPORT_SYMBOL(netdev_change_features);
7387 
7388 /**
7389  *	netif_stacked_transfer_operstate -	transfer operstate
7390  *	@rootdev: the root or lower level device to transfer state from
7391  *	@dev: the device to transfer operstate to
7392  *
7393  *	Transfer operational state from root to device. This is normally
7394  *	called when a stacking relationship exists between the root
7395  *	device and the device(a leaf device).
7396  */
7397 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7398 					struct net_device *dev)
7399 {
7400 	if (rootdev->operstate == IF_OPER_DORMANT)
7401 		netif_dormant_on(dev);
7402 	else
7403 		netif_dormant_off(dev);
7404 
7405 	if (netif_carrier_ok(rootdev))
7406 		netif_carrier_on(dev);
7407 	else
7408 		netif_carrier_off(dev);
7409 }
7410 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7411 
7412 #ifdef CONFIG_SYSFS
7413 static int netif_alloc_rx_queues(struct net_device *dev)
7414 {
7415 	unsigned int i, count = dev->num_rx_queues;
7416 	struct netdev_rx_queue *rx;
7417 	size_t sz = count * sizeof(*rx);
7418 
7419 	BUG_ON(count < 1);
7420 
7421 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7422 	if (!rx)
7423 		return -ENOMEM;
7424 
7425 	dev->_rx = rx;
7426 
7427 	for (i = 0; i < count; i++)
7428 		rx[i].dev = dev;
7429 	return 0;
7430 }
7431 #endif
7432 
7433 static void netdev_init_one_queue(struct net_device *dev,
7434 				  struct netdev_queue *queue, void *_unused)
7435 {
7436 	/* Initialize queue lock */
7437 	spin_lock_init(&queue->_xmit_lock);
7438 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7439 	queue->xmit_lock_owner = -1;
7440 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7441 	queue->dev = dev;
7442 #ifdef CONFIG_BQL
7443 	dql_init(&queue->dql, HZ);
7444 #endif
7445 }
7446 
7447 static void netif_free_tx_queues(struct net_device *dev)
7448 {
7449 	kvfree(dev->_tx);
7450 }
7451 
7452 static int netif_alloc_netdev_queues(struct net_device *dev)
7453 {
7454 	unsigned int count = dev->num_tx_queues;
7455 	struct netdev_queue *tx;
7456 	size_t sz = count * sizeof(*tx);
7457 
7458 	if (count < 1 || count > 0xffff)
7459 		return -EINVAL;
7460 
7461 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7462 	if (!tx)
7463 		return -ENOMEM;
7464 
7465 	dev->_tx = tx;
7466 
7467 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7468 	spin_lock_init(&dev->tx_global_lock);
7469 
7470 	return 0;
7471 }
7472 
7473 void netif_tx_stop_all_queues(struct net_device *dev)
7474 {
7475 	unsigned int i;
7476 
7477 	for (i = 0; i < dev->num_tx_queues; i++) {
7478 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7479 
7480 		netif_tx_stop_queue(txq);
7481 	}
7482 }
7483 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7484 
7485 /**
7486  *	register_netdevice	- register a network device
7487  *	@dev: device to register
7488  *
7489  *	Take a completed network device structure and add it to the kernel
7490  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7491  *	chain. 0 is returned on success. A negative errno code is returned
7492  *	on a failure to set up the device, or if the name is a duplicate.
7493  *
7494  *	Callers must hold the rtnl semaphore. You may want
7495  *	register_netdev() instead of this.
7496  *
7497  *	BUGS:
7498  *	The locking appears insufficient to guarantee two parallel registers
7499  *	will not get the same name.
7500  */
7501 
7502 int register_netdevice(struct net_device *dev)
7503 {
7504 	int ret;
7505 	struct net *net = dev_net(dev);
7506 
7507 	BUG_ON(dev_boot_phase);
7508 	ASSERT_RTNL();
7509 
7510 	might_sleep();
7511 
7512 	/* When net_device's are persistent, this will be fatal. */
7513 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7514 	BUG_ON(!net);
7515 
7516 	spin_lock_init(&dev->addr_list_lock);
7517 	netdev_set_addr_lockdep_class(dev);
7518 
7519 	ret = dev_get_valid_name(net, dev, dev->name);
7520 	if (ret < 0)
7521 		goto out;
7522 
7523 	/* Init, if this function is available */
7524 	if (dev->netdev_ops->ndo_init) {
7525 		ret = dev->netdev_ops->ndo_init(dev);
7526 		if (ret) {
7527 			if (ret > 0)
7528 				ret = -EIO;
7529 			goto out;
7530 		}
7531 	}
7532 
7533 	if (((dev->hw_features | dev->features) &
7534 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7535 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7536 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7537 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7538 		ret = -EINVAL;
7539 		goto err_uninit;
7540 	}
7541 
7542 	ret = -EBUSY;
7543 	if (!dev->ifindex)
7544 		dev->ifindex = dev_new_index(net);
7545 	else if (__dev_get_by_index(net, dev->ifindex))
7546 		goto err_uninit;
7547 
7548 	/* Transfer changeable features to wanted_features and enable
7549 	 * software offloads (GSO and GRO).
7550 	 */
7551 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7552 	dev->features |= NETIF_F_SOFT_FEATURES;
7553 
7554 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7555 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7556 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7557 	}
7558 
7559 	dev->wanted_features = dev->features & dev->hw_features;
7560 
7561 	if (!(dev->flags & IFF_LOOPBACK))
7562 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7563 
7564 	/* If IPv4 TCP segmentation offload is supported we should also
7565 	 * allow the device to enable segmenting the frame with the option
7566 	 * of ignoring a static IP ID value.  This doesn't enable the
7567 	 * feature itself but allows the user to enable it later.
7568 	 */
7569 	if (dev->hw_features & NETIF_F_TSO)
7570 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7571 	if (dev->vlan_features & NETIF_F_TSO)
7572 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7573 	if (dev->mpls_features & NETIF_F_TSO)
7574 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7575 	if (dev->hw_enc_features & NETIF_F_TSO)
7576 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7577 
7578 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7579 	 */
7580 	dev->vlan_features |= NETIF_F_HIGHDMA;
7581 
7582 	/* Make NETIF_F_SG inheritable to tunnel devices.
7583 	 */
7584 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7585 
7586 	/* Make NETIF_F_SG inheritable to MPLS.
7587 	 */
7588 	dev->mpls_features |= NETIF_F_SG;
7589 
7590 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7591 	ret = notifier_to_errno(ret);
7592 	if (ret)
7593 		goto err_uninit;
7594 
7595 	ret = netdev_register_kobject(dev);
7596 	if (ret)
7597 		goto err_uninit;
7598 	dev->reg_state = NETREG_REGISTERED;
7599 
7600 	__netdev_update_features(dev);
7601 
7602 	/*
7603 	 *	Default initial state at registry is that the
7604 	 *	device is present.
7605 	 */
7606 
7607 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7608 
7609 	linkwatch_init_dev(dev);
7610 
7611 	dev_init_scheduler(dev);
7612 	dev_hold(dev);
7613 	list_netdevice(dev);
7614 	add_device_randomness(dev->dev_addr, dev->addr_len);
7615 
7616 	/* If the device has permanent device address, driver should
7617 	 * set dev_addr and also addr_assign_type should be set to
7618 	 * NET_ADDR_PERM (default value).
7619 	 */
7620 	if (dev->addr_assign_type == NET_ADDR_PERM)
7621 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7622 
7623 	/* Notify protocols, that a new device appeared. */
7624 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7625 	ret = notifier_to_errno(ret);
7626 	if (ret) {
7627 		rollback_registered(dev);
7628 		dev->reg_state = NETREG_UNREGISTERED;
7629 	}
7630 	/*
7631 	 *	Prevent userspace races by waiting until the network
7632 	 *	device is fully setup before sending notifications.
7633 	 */
7634 	if (!dev->rtnl_link_ops ||
7635 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7636 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7637 
7638 out:
7639 	return ret;
7640 
7641 err_uninit:
7642 	if (dev->netdev_ops->ndo_uninit)
7643 		dev->netdev_ops->ndo_uninit(dev);
7644 	if (dev->priv_destructor)
7645 		dev->priv_destructor(dev);
7646 	goto out;
7647 }
7648 EXPORT_SYMBOL(register_netdevice);
7649 
7650 /**
7651  *	init_dummy_netdev	- init a dummy network device for NAPI
7652  *	@dev: device to init
7653  *
7654  *	This takes a network device structure and initialize the minimum
7655  *	amount of fields so it can be used to schedule NAPI polls without
7656  *	registering a full blown interface. This is to be used by drivers
7657  *	that need to tie several hardware interfaces to a single NAPI
7658  *	poll scheduler due to HW limitations.
7659  */
7660 int init_dummy_netdev(struct net_device *dev)
7661 {
7662 	/* Clear everything. Note we don't initialize spinlocks
7663 	 * are they aren't supposed to be taken by any of the
7664 	 * NAPI code and this dummy netdev is supposed to be
7665 	 * only ever used for NAPI polls
7666 	 */
7667 	memset(dev, 0, sizeof(struct net_device));
7668 
7669 	/* make sure we BUG if trying to hit standard
7670 	 * register/unregister code path
7671 	 */
7672 	dev->reg_state = NETREG_DUMMY;
7673 
7674 	/* NAPI wants this */
7675 	INIT_LIST_HEAD(&dev->napi_list);
7676 
7677 	/* a dummy interface is started by default */
7678 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7679 	set_bit(__LINK_STATE_START, &dev->state);
7680 
7681 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7682 	 * because users of this 'device' dont need to change
7683 	 * its refcount.
7684 	 */
7685 
7686 	return 0;
7687 }
7688 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7689 
7690 
7691 /**
7692  *	register_netdev	- register a network device
7693  *	@dev: device to register
7694  *
7695  *	Take a completed network device structure and add it to the kernel
7696  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7697  *	chain. 0 is returned on success. A negative errno code is returned
7698  *	on a failure to set up the device, or if the name is a duplicate.
7699  *
7700  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7701  *	and expands the device name if you passed a format string to
7702  *	alloc_netdev.
7703  */
7704 int register_netdev(struct net_device *dev)
7705 {
7706 	int err;
7707 
7708 	rtnl_lock();
7709 	err = register_netdevice(dev);
7710 	rtnl_unlock();
7711 	return err;
7712 }
7713 EXPORT_SYMBOL(register_netdev);
7714 
7715 int netdev_refcnt_read(const struct net_device *dev)
7716 {
7717 	int i, refcnt = 0;
7718 
7719 	for_each_possible_cpu(i)
7720 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7721 	return refcnt;
7722 }
7723 EXPORT_SYMBOL(netdev_refcnt_read);
7724 
7725 /**
7726  * netdev_wait_allrefs - wait until all references are gone.
7727  * @dev: target net_device
7728  *
7729  * This is called when unregistering network devices.
7730  *
7731  * Any protocol or device that holds a reference should register
7732  * for netdevice notification, and cleanup and put back the
7733  * reference if they receive an UNREGISTER event.
7734  * We can get stuck here if buggy protocols don't correctly
7735  * call dev_put.
7736  */
7737 static void netdev_wait_allrefs(struct net_device *dev)
7738 {
7739 	unsigned long rebroadcast_time, warning_time;
7740 	int refcnt;
7741 
7742 	linkwatch_forget_dev(dev);
7743 
7744 	rebroadcast_time = warning_time = jiffies;
7745 	refcnt = netdev_refcnt_read(dev);
7746 
7747 	while (refcnt != 0) {
7748 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7749 			rtnl_lock();
7750 
7751 			/* Rebroadcast unregister notification */
7752 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7753 
7754 			__rtnl_unlock();
7755 			rcu_barrier();
7756 			rtnl_lock();
7757 
7758 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7759 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7760 				     &dev->state)) {
7761 				/* We must not have linkwatch events
7762 				 * pending on unregister. If this
7763 				 * happens, we simply run the queue
7764 				 * unscheduled, resulting in a noop
7765 				 * for this device.
7766 				 */
7767 				linkwatch_run_queue();
7768 			}
7769 
7770 			__rtnl_unlock();
7771 
7772 			rebroadcast_time = jiffies;
7773 		}
7774 
7775 		msleep(250);
7776 
7777 		refcnt = netdev_refcnt_read(dev);
7778 
7779 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7780 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7781 				 dev->name, refcnt);
7782 			warning_time = jiffies;
7783 		}
7784 	}
7785 }
7786 
7787 /* The sequence is:
7788  *
7789  *	rtnl_lock();
7790  *	...
7791  *	register_netdevice(x1);
7792  *	register_netdevice(x2);
7793  *	...
7794  *	unregister_netdevice(y1);
7795  *	unregister_netdevice(y2);
7796  *      ...
7797  *	rtnl_unlock();
7798  *	free_netdev(y1);
7799  *	free_netdev(y2);
7800  *
7801  * We are invoked by rtnl_unlock().
7802  * This allows us to deal with problems:
7803  * 1) We can delete sysfs objects which invoke hotplug
7804  *    without deadlocking with linkwatch via keventd.
7805  * 2) Since we run with the RTNL semaphore not held, we can sleep
7806  *    safely in order to wait for the netdev refcnt to drop to zero.
7807  *
7808  * We must not return until all unregister events added during
7809  * the interval the lock was held have been completed.
7810  */
7811 void netdev_run_todo(void)
7812 {
7813 	struct list_head list;
7814 
7815 	/* Snapshot list, allow later requests */
7816 	list_replace_init(&net_todo_list, &list);
7817 
7818 	__rtnl_unlock();
7819 
7820 
7821 	/* Wait for rcu callbacks to finish before next phase */
7822 	if (!list_empty(&list))
7823 		rcu_barrier();
7824 
7825 	while (!list_empty(&list)) {
7826 		struct net_device *dev
7827 			= list_first_entry(&list, struct net_device, todo_list);
7828 		list_del(&dev->todo_list);
7829 
7830 		rtnl_lock();
7831 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7832 		__rtnl_unlock();
7833 
7834 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7835 			pr_err("network todo '%s' but state %d\n",
7836 			       dev->name, dev->reg_state);
7837 			dump_stack();
7838 			continue;
7839 		}
7840 
7841 		dev->reg_state = NETREG_UNREGISTERED;
7842 
7843 		netdev_wait_allrefs(dev);
7844 
7845 		/* paranoia */
7846 		BUG_ON(netdev_refcnt_read(dev));
7847 		BUG_ON(!list_empty(&dev->ptype_all));
7848 		BUG_ON(!list_empty(&dev->ptype_specific));
7849 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7850 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7851 		WARN_ON(dev->dn_ptr);
7852 
7853 		if (dev->priv_destructor)
7854 			dev->priv_destructor(dev);
7855 		if (dev->needs_free_netdev)
7856 			free_netdev(dev);
7857 
7858 		/* Report a network device has been unregistered */
7859 		rtnl_lock();
7860 		dev_net(dev)->dev_unreg_count--;
7861 		__rtnl_unlock();
7862 		wake_up(&netdev_unregistering_wq);
7863 
7864 		/* Free network device */
7865 		kobject_put(&dev->dev.kobj);
7866 	}
7867 }
7868 
7869 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7870  * all the same fields in the same order as net_device_stats, with only
7871  * the type differing, but rtnl_link_stats64 may have additional fields
7872  * at the end for newer counters.
7873  */
7874 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7875 			     const struct net_device_stats *netdev_stats)
7876 {
7877 #if BITS_PER_LONG == 64
7878 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7879 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7880 	/* zero out counters that only exist in rtnl_link_stats64 */
7881 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7882 	       sizeof(*stats64) - sizeof(*netdev_stats));
7883 #else
7884 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7885 	const unsigned long *src = (const unsigned long *)netdev_stats;
7886 	u64 *dst = (u64 *)stats64;
7887 
7888 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7889 	for (i = 0; i < n; i++)
7890 		dst[i] = src[i];
7891 	/* zero out counters that only exist in rtnl_link_stats64 */
7892 	memset((char *)stats64 + n * sizeof(u64), 0,
7893 	       sizeof(*stats64) - n * sizeof(u64));
7894 #endif
7895 }
7896 EXPORT_SYMBOL(netdev_stats_to_stats64);
7897 
7898 /**
7899  *	dev_get_stats	- get network device statistics
7900  *	@dev: device to get statistics from
7901  *	@storage: place to store stats
7902  *
7903  *	Get network statistics from device. Return @storage.
7904  *	The device driver may provide its own method by setting
7905  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7906  *	otherwise the internal statistics structure is used.
7907  */
7908 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7909 					struct rtnl_link_stats64 *storage)
7910 {
7911 	const struct net_device_ops *ops = dev->netdev_ops;
7912 
7913 	if (ops->ndo_get_stats64) {
7914 		memset(storage, 0, sizeof(*storage));
7915 		ops->ndo_get_stats64(dev, storage);
7916 	} else if (ops->ndo_get_stats) {
7917 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7918 	} else {
7919 		netdev_stats_to_stats64(storage, &dev->stats);
7920 	}
7921 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
7922 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
7923 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
7924 	return storage;
7925 }
7926 EXPORT_SYMBOL(dev_get_stats);
7927 
7928 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7929 {
7930 	struct netdev_queue *queue = dev_ingress_queue(dev);
7931 
7932 #ifdef CONFIG_NET_CLS_ACT
7933 	if (queue)
7934 		return queue;
7935 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7936 	if (!queue)
7937 		return NULL;
7938 	netdev_init_one_queue(dev, queue, NULL);
7939 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7940 	queue->qdisc_sleeping = &noop_qdisc;
7941 	rcu_assign_pointer(dev->ingress_queue, queue);
7942 #endif
7943 	return queue;
7944 }
7945 
7946 static const struct ethtool_ops default_ethtool_ops;
7947 
7948 void netdev_set_default_ethtool_ops(struct net_device *dev,
7949 				    const struct ethtool_ops *ops)
7950 {
7951 	if (dev->ethtool_ops == &default_ethtool_ops)
7952 		dev->ethtool_ops = ops;
7953 }
7954 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7955 
7956 void netdev_freemem(struct net_device *dev)
7957 {
7958 	char *addr = (char *)dev - dev->padded;
7959 
7960 	kvfree(addr);
7961 }
7962 
7963 /**
7964  * alloc_netdev_mqs - allocate network device
7965  * @sizeof_priv: size of private data to allocate space for
7966  * @name: device name format string
7967  * @name_assign_type: origin of device name
7968  * @setup: callback to initialize device
7969  * @txqs: the number of TX subqueues to allocate
7970  * @rxqs: the number of RX subqueues to allocate
7971  *
7972  * Allocates a struct net_device with private data area for driver use
7973  * and performs basic initialization.  Also allocates subqueue structs
7974  * for each queue on the device.
7975  */
7976 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7977 		unsigned char name_assign_type,
7978 		void (*setup)(struct net_device *),
7979 		unsigned int txqs, unsigned int rxqs)
7980 {
7981 	struct net_device *dev;
7982 	size_t alloc_size;
7983 	struct net_device *p;
7984 
7985 	BUG_ON(strlen(name) >= sizeof(dev->name));
7986 
7987 	if (txqs < 1) {
7988 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7989 		return NULL;
7990 	}
7991 
7992 #ifdef CONFIG_SYSFS
7993 	if (rxqs < 1) {
7994 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7995 		return NULL;
7996 	}
7997 #endif
7998 
7999 	alloc_size = sizeof(struct net_device);
8000 	if (sizeof_priv) {
8001 		/* ensure 32-byte alignment of private area */
8002 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8003 		alloc_size += sizeof_priv;
8004 	}
8005 	/* ensure 32-byte alignment of whole construct */
8006 	alloc_size += NETDEV_ALIGN - 1;
8007 
8008 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8009 	if (!p)
8010 		return NULL;
8011 
8012 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8013 	dev->padded = (char *)dev - (char *)p;
8014 
8015 	dev->pcpu_refcnt = alloc_percpu(int);
8016 	if (!dev->pcpu_refcnt)
8017 		goto free_dev;
8018 
8019 	if (dev_addr_init(dev))
8020 		goto free_pcpu;
8021 
8022 	dev_mc_init(dev);
8023 	dev_uc_init(dev);
8024 
8025 	dev_net_set(dev, &init_net);
8026 
8027 	dev->gso_max_size = GSO_MAX_SIZE;
8028 	dev->gso_max_segs = GSO_MAX_SEGS;
8029 
8030 	INIT_LIST_HEAD(&dev->napi_list);
8031 	INIT_LIST_HEAD(&dev->unreg_list);
8032 	INIT_LIST_HEAD(&dev->close_list);
8033 	INIT_LIST_HEAD(&dev->link_watch_list);
8034 	INIT_LIST_HEAD(&dev->adj_list.upper);
8035 	INIT_LIST_HEAD(&dev->adj_list.lower);
8036 	INIT_LIST_HEAD(&dev->ptype_all);
8037 	INIT_LIST_HEAD(&dev->ptype_specific);
8038 #ifdef CONFIG_NET_SCHED
8039 	hash_init(dev->qdisc_hash);
8040 #endif
8041 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8042 	setup(dev);
8043 
8044 	if (!dev->tx_queue_len) {
8045 		dev->priv_flags |= IFF_NO_QUEUE;
8046 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8047 	}
8048 
8049 	dev->num_tx_queues = txqs;
8050 	dev->real_num_tx_queues = txqs;
8051 	if (netif_alloc_netdev_queues(dev))
8052 		goto free_all;
8053 
8054 #ifdef CONFIG_SYSFS
8055 	dev->num_rx_queues = rxqs;
8056 	dev->real_num_rx_queues = rxqs;
8057 	if (netif_alloc_rx_queues(dev))
8058 		goto free_all;
8059 #endif
8060 
8061 	strcpy(dev->name, name);
8062 	dev->name_assign_type = name_assign_type;
8063 	dev->group = INIT_NETDEV_GROUP;
8064 	if (!dev->ethtool_ops)
8065 		dev->ethtool_ops = &default_ethtool_ops;
8066 
8067 	nf_hook_ingress_init(dev);
8068 
8069 	return dev;
8070 
8071 free_all:
8072 	free_netdev(dev);
8073 	return NULL;
8074 
8075 free_pcpu:
8076 	free_percpu(dev->pcpu_refcnt);
8077 free_dev:
8078 	netdev_freemem(dev);
8079 	return NULL;
8080 }
8081 EXPORT_SYMBOL(alloc_netdev_mqs);
8082 
8083 /**
8084  * free_netdev - free network device
8085  * @dev: device
8086  *
8087  * This function does the last stage of destroying an allocated device
8088  * interface. The reference to the device object is released. If this
8089  * is the last reference then it will be freed.Must be called in process
8090  * context.
8091  */
8092 void free_netdev(struct net_device *dev)
8093 {
8094 	struct napi_struct *p, *n;
8095 	struct bpf_prog *prog;
8096 
8097 	might_sleep();
8098 	netif_free_tx_queues(dev);
8099 #ifdef CONFIG_SYSFS
8100 	kvfree(dev->_rx);
8101 #endif
8102 
8103 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8104 
8105 	/* Flush device addresses */
8106 	dev_addr_flush(dev);
8107 
8108 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8109 		netif_napi_del(p);
8110 
8111 	free_percpu(dev->pcpu_refcnt);
8112 	dev->pcpu_refcnt = NULL;
8113 
8114 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8115 	if (prog) {
8116 		bpf_prog_put(prog);
8117 		static_key_slow_dec(&generic_xdp_needed);
8118 	}
8119 
8120 	/*  Compatibility with error handling in drivers */
8121 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8122 		netdev_freemem(dev);
8123 		return;
8124 	}
8125 
8126 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8127 	dev->reg_state = NETREG_RELEASED;
8128 
8129 	/* will free via device release */
8130 	put_device(&dev->dev);
8131 }
8132 EXPORT_SYMBOL(free_netdev);
8133 
8134 /**
8135  *	synchronize_net -  Synchronize with packet receive processing
8136  *
8137  *	Wait for packets currently being received to be done.
8138  *	Does not block later packets from starting.
8139  */
8140 void synchronize_net(void)
8141 {
8142 	might_sleep();
8143 	if (rtnl_is_locked())
8144 		synchronize_rcu_expedited();
8145 	else
8146 		synchronize_rcu();
8147 }
8148 EXPORT_SYMBOL(synchronize_net);
8149 
8150 /**
8151  *	unregister_netdevice_queue - remove device from the kernel
8152  *	@dev: device
8153  *	@head: list
8154  *
8155  *	This function shuts down a device interface and removes it
8156  *	from the kernel tables.
8157  *	If head not NULL, device is queued to be unregistered later.
8158  *
8159  *	Callers must hold the rtnl semaphore.  You may want
8160  *	unregister_netdev() instead of this.
8161  */
8162 
8163 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8164 {
8165 	ASSERT_RTNL();
8166 
8167 	if (head) {
8168 		list_move_tail(&dev->unreg_list, head);
8169 	} else {
8170 		rollback_registered(dev);
8171 		/* Finish processing unregister after unlock */
8172 		net_set_todo(dev);
8173 	}
8174 }
8175 EXPORT_SYMBOL(unregister_netdevice_queue);
8176 
8177 /**
8178  *	unregister_netdevice_many - unregister many devices
8179  *	@head: list of devices
8180  *
8181  *  Note: As most callers use a stack allocated list_head,
8182  *  we force a list_del() to make sure stack wont be corrupted later.
8183  */
8184 void unregister_netdevice_many(struct list_head *head)
8185 {
8186 	struct net_device *dev;
8187 
8188 	if (!list_empty(head)) {
8189 		rollback_registered_many(head);
8190 		list_for_each_entry(dev, head, unreg_list)
8191 			net_set_todo(dev);
8192 		list_del(head);
8193 	}
8194 }
8195 EXPORT_SYMBOL(unregister_netdevice_many);
8196 
8197 /**
8198  *	unregister_netdev - remove device from the kernel
8199  *	@dev: device
8200  *
8201  *	This function shuts down a device interface and removes it
8202  *	from the kernel tables.
8203  *
8204  *	This is just a wrapper for unregister_netdevice that takes
8205  *	the rtnl semaphore.  In general you want to use this and not
8206  *	unregister_netdevice.
8207  */
8208 void unregister_netdev(struct net_device *dev)
8209 {
8210 	rtnl_lock();
8211 	unregister_netdevice(dev);
8212 	rtnl_unlock();
8213 }
8214 EXPORT_SYMBOL(unregister_netdev);
8215 
8216 /**
8217  *	dev_change_net_namespace - move device to different nethost namespace
8218  *	@dev: device
8219  *	@net: network namespace
8220  *	@pat: If not NULL name pattern to try if the current device name
8221  *	      is already taken in the destination network namespace.
8222  *
8223  *	This function shuts down a device interface and moves it
8224  *	to a new network namespace. On success 0 is returned, on
8225  *	a failure a netagive errno code is returned.
8226  *
8227  *	Callers must hold the rtnl semaphore.
8228  */
8229 
8230 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8231 {
8232 	int err;
8233 
8234 	ASSERT_RTNL();
8235 
8236 	/* Don't allow namespace local devices to be moved. */
8237 	err = -EINVAL;
8238 	if (dev->features & NETIF_F_NETNS_LOCAL)
8239 		goto out;
8240 
8241 	/* Ensure the device has been registrered */
8242 	if (dev->reg_state != NETREG_REGISTERED)
8243 		goto out;
8244 
8245 	/* Get out if there is nothing todo */
8246 	err = 0;
8247 	if (net_eq(dev_net(dev), net))
8248 		goto out;
8249 
8250 	/* Pick the destination device name, and ensure
8251 	 * we can use it in the destination network namespace.
8252 	 */
8253 	err = -EEXIST;
8254 	if (__dev_get_by_name(net, dev->name)) {
8255 		/* We get here if we can't use the current device name */
8256 		if (!pat)
8257 			goto out;
8258 		if (dev_get_valid_name(net, dev, pat) < 0)
8259 			goto out;
8260 	}
8261 
8262 	/*
8263 	 * And now a mini version of register_netdevice unregister_netdevice.
8264 	 */
8265 
8266 	/* If device is running close it first. */
8267 	dev_close(dev);
8268 
8269 	/* And unlink it from device chain */
8270 	err = -ENODEV;
8271 	unlist_netdevice(dev);
8272 
8273 	synchronize_net();
8274 
8275 	/* Shutdown queueing discipline. */
8276 	dev_shutdown(dev);
8277 
8278 	/* Notify protocols, that we are about to destroy
8279 	 * this device. They should clean all the things.
8280 	 *
8281 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8282 	 * This is wanted because this way 8021q and macvlan know
8283 	 * the device is just moving and can keep their slaves up.
8284 	 */
8285 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8286 	rcu_barrier();
8287 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8288 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8289 
8290 	/*
8291 	 *	Flush the unicast and multicast chains
8292 	 */
8293 	dev_uc_flush(dev);
8294 	dev_mc_flush(dev);
8295 
8296 	/* Send a netdev-removed uevent to the old namespace */
8297 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8298 	netdev_adjacent_del_links(dev);
8299 
8300 	/* Actually switch the network namespace */
8301 	dev_net_set(dev, net);
8302 
8303 	/* If there is an ifindex conflict assign a new one */
8304 	if (__dev_get_by_index(net, dev->ifindex))
8305 		dev->ifindex = dev_new_index(net);
8306 
8307 	/* Send a netdev-add uevent to the new namespace */
8308 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8309 	netdev_adjacent_add_links(dev);
8310 
8311 	/* Fixup kobjects */
8312 	err = device_rename(&dev->dev, dev->name);
8313 	WARN_ON(err);
8314 
8315 	/* Add the device back in the hashes */
8316 	list_netdevice(dev);
8317 
8318 	/* Notify protocols, that a new device appeared. */
8319 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8320 
8321 	/*
8322 	 *	Prevent userspace races by waiting until the network
8323 	 *	device is fully setup before sending notifications.
8324 	 */
8325 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8326 
8327 	synchronize_net();
8328 	err = 0;
8329 out:
8330 	return err;
8331 }
8332 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8333 
8334 static int dev_cpu_dead(unsigned int oldcpu)
8335 {
8336 	struct sk_buff **list_skb;
8337 	struct sk_buff *skb;
8338 	unsigned int cpu;
8339 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8340 
8341 	local_irq_disable();
8342 	cpu = smp_processor_id();
8343 	sd = &per_cpu(softnet_data, cpu);
8344 	oldsd = &per_cpu(softnet_data, oldcpu);
8345 
8346 	/* Find end of our completion_queue. */
8347 	list_skb = &sd->completion_queue;
8348 	while (*list_skb)
8349 		list_skb = &(*list_skb)->next;
8350 	/* Append completion queue from offline CPU. */
8351 	*list_skb = oldsd->completion_queue;
8352 	oldsd->completion_queue = NULL;
8353 
8354 	/* Append output queue from offline CPU. */
8355 	if (oldsd->output_queue) {
8356 		*sd->output_queue_tailp = oldsd->output_queue;
8357 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8358 		oldsd->output_queue = NULL;
8359 		oldsd->output_queue_tailp = &oldsd->output_queue;
8360 	}
8361 	/* Append NAPI poll list from offline CPU, with one exception :
8362 	 * process_backlog() must be called by cpu owning percpu backlog.
8363 	 * We properly handle process_queue & input_pkt_queue later.
8364 	 */
8365 	while (!list_empty(&oldsd->poll_list)) {
8366 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8367 							    struct napi_struct,
8368 							    poll_list);
8369 
8370 		list_del_init(&napi->poll_list);
8371 		if (napi->poll == process_backlog)
8372 			napi->state = 0;
8373 		else
8374 			____napi_schedule(sd, napi);
8375 	}
8376 
8377 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8378 	local_irq_enable();
8379 
8380 #ifdef CONFIG_RPS
8381 	remsd = oldsd->rps_ipi_list;
8382 	oldsd->rps_ipi_list = NULL;
8383 #endif
8384 	/* send out pending IPI's on offline CPU */
8385 	net_rps_send_ipi(remsd);
8386 
8387 	/* Process offline CPU's input_pkt_queue */
8388 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8389 		netif_rx_ni(skb);
8390 		input_queue_head_incr(oldsd);
8391 	}
8392 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8393 		netif_rx_ni(skb);
8394 		input_queue_head_incr(oldsd);
8395 	}
8396 
8397 	return 0;
8398 }
8399 
8400 /**
8401  *	netdev_increment_features - increment feature set by one
8402  *	@all: current feature set
8403  *	@one: new feature set
8404  *	@mask: mask feature set
8405  *
8406  *	Computes a new feature set after adding a device with feature set
8407  *	@one to the master device with current feature set @all.  Will not
8408  *	enable anything that is off in @mask. Returns the new feature set.
8409  */
8410 netdev_features_t netdev_increment_features(netdev_features_t all,
8411 	netdev_features_t one, netdev_features_t mask)
8412 {
8413 	if (mask & NETIF_F_HW_CSUM)
8414 		mask |= NETIF_F_CSUM_MASK;
8415 	mask |= NETIF_F_VLAN_CHALLENGED;
8416 
8417 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8418 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8419 
8420 	/* If one device supports hw checksumming, set for all. */
8421 	if (all & NETIF_F_HW_CSUM)
8422 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8423 
8424 	return all;
8425 }
8426 EXPORT_SYMBOL(netdev_increment_features);
8427 
8428 static struct hlist_head * __net_init netdev_create_hash(void)
8429 {
8430 	int i;
8431 	struct hlist_head *hash;
8432 
8433 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8434 	if (hash != NULL)
8435 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8436 			INIT_HLIST_HEAD(&hash[i]);
8437 
8438 	return hash;
8439 }
8440 
8441 /* Initialize per network namespace state */
8442 static int __net_init netdev_init(struct net *net)
8443 {
8444 	if (net != &init_net)
8445 		INIT_LIST_HEAD(&net->dev_base_head);
8446 
8447 	net->dev_name_head = netdev_create_hash();
8448 	if (net->dev_name_head == NULL)
8449 		goto err_name;
8450 
8451 	net->dev_index_head = netdev_create_hash();
8452 	if (net->dev_index_head == NULL)
8453 		goto err_idx;
8454 
8455 	return 0;
8456 
8457 err_idx:
8458 	kfree(net->dev_name_head);
8459 err_name:
8460 	return -ENOMEM;
8461 }
8462 
8463 /**
8464  *	netdev_drivername - network driver for the device
8465  *	@dev: network device
8466  *
8467  *	Determine network driver for device.
8468  */
8469 const char *netdev_drivername(const struct net_device *dev)
8470 {
8471 	const struct device_driver *driver;
8472 	const struct device *parent;
8473 	const char *empty = "";
8474 
8475 	parent = dev->dev.parent;
8476 	if (!parent)
8477 		return empty;
8478 
8479 	driver = parent->driver;
8480 	if (driver && driver->name)
8481 		return driver->name;
8482 	return empty;
8483 }
8484 
8485 static void __netdev_printk(const char *level, const struct net_device *dev,
8486 			    struct va_format *vaf)
8487 {
8488 	if (dev && dev->dev.parent) {
8489 		dev_printk_emit(level[1] - '0',
8490 				dev->dev.parent,
8491 				"%s %s %s%s: %pV",
8492 				dev_driver_string(dev->dev.parent),
8493 				dev_name(dev->dev.parent),
8494 				netdev_name(dev), netdev_reg_state(dev),
8495 				vaf);
8496 	} else if (dev) {
8497 		printk("%s%s%s: %pV",
8498 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8499 	} else {
8500 		printk("%s(NULL net_device): %pV", level, vaf);
8501 	}
8502 }
8503 
8504 void netdev_printk(const char *level, const struct net_device *dev,
8505 		   const char *format, ...)
8506 {
8507 	struct va_format vaf;
8508 	va_list args;
8509 
8510 	va_start(args, format);
8511 
8512 	vaf.fmt = format;
8513 	vaf.va = &args;
8514 
8515 	__netdev_printk(level, dev, &vaf);
8516 
8517 	va_end(args);
8518 }
8519 EXPORT_SYMBOL(netdev_printk);
8520 
8521 #define define_netdev_printk_level(func, level)			\
8522 void func(const struct net_device *dev, const char *fmt, ...)	\
8523 {								\
8524 	struct va_format vaf;					\
8525 	va_list args;						\
8526 								\
8527 	va_start(args, fmt);					\
8528 								\
8529 	vaf.fmt = fmt;						\
8530 	vaf.va = &args;						\
8531 								\
8532 	__netdev_printk(level, dev, &vaf);			\
8533 								\
8534 	va_end(args);						\
8535 }								\
8536 EXPORT_SYMBOL(func);
8537 
8538 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8539 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8540 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8541 define_netdev_printk_level(netdev_err, KERN_ERR);
8542 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8543 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8544 define_netdev_printk_level(netdev_info, KERN_INFO);
8545 
8546 static void __net_exit netdev_exit(struct net *net)
8547 {
8548 	kfree(net->dev_name_head);
8549 	kfree(net->dev_index_head);
8550 }
8551 
8552 static struct pernet_operations __net_initdata netdev_net_ops = {
8553 	.init = netdev_init,
8554 	.exit = netdev_exit,
8555 };
8556 
8557 static void __net_exit default_device_exit(struct net *net)
8558 {
8559 	struct net_device *dev, *aux;
8560 	/*
8561 	 * Push all migratable network devices back to the
8562 	 * initial network namespace
8563 	 */
8564 	rtnl_lock();
8565 	for_each_netdev_safe(net, dev, aux) {
8566 		int err;
8567 		char fb_name[IFNAMSIZ];
8568 
8569 		/* Ignore unmoveable devices (i.e. loopback) */
8570 		if (dev->features & NETIF_F_NETNS_LOCAL)
8571 			continue;
8572 
8573 		/* Leave virtual devices for the generic cleanup */
8574 		if (dev->rtnl_link_ops)
8575 			continue;
8576 
8577 		/* Push remaining network devices to init_net */
8578 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8579 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8580 		if (err) {
8581 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8582 				 __func__, dev->name, err);
8583 			BUG();
8584 		}
8585 	}
8586 	rtnl_unlock();
8587 }
8588 
8589 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8590 {
8591 	/* Return with the rtnl_lock held when there are no network
8592 	 * devices unregistering in any network namespace in net_list.
8593 	 */
8594 	struct net *net;
8595 	bool unregistering;
8596 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8597 
8598 	add_wait_queue(&netdev_unregistering_wq, &wait);
8599 	for (;;) {
8600 		unregistering = false;
8601 		rtnl_lock();
8602 		list_for_each_entry(net, net_list, exit_list) {
8603 			if (net->dev_unreg_count > 0) {
8604 				unregistering = true;
8605 				break;
8606 			}
8607 		}
8608 		if (!unregistering)
8609 			break;
8610 		__rtnl_unlock();
8611 
8612 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8613 	}
8614 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8615 }
8616 
8617 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8618 {
8619 	/* At exit all network devices most be removed from a network
8620 	 * namespace.  Do this in the reverse order of registration.
8621 	 * Do this across as many network namespaces as possible to
8622 	 * improve batching efficiency.
8623 	 */
8624 	struct net_device *dev;
8625 	struct net *net;
8626 	LIST_HEAD(dev_kill_list);
8627 
8628 	/* To prevent network device cleanup code from dereferencing
8629 	 * loopback devices or network devices that have been freed
8630 	 * wait here for all pending unregistrations to complete,
8631 	 * before unregistring the loopback device and allowing the
8632 	 * network namespace be freed.
8633 	 *
8634 	 * The netdev todo list containing all network devices
8635 	 * unregistrations that happen in default_device_exit_batch
8636 	 * will run in the rtnl_unlock() at the end of
8637 	 * default_device_exit_batch.
8638 	 */
8639 	rtnl_lock_unregistering(net_list);
8640 	list_for_each_entry(net, net_list, exit_list) {
8641 		for_each_netdev_reverse(net, dev) {
8642 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8643 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8644 			else
8645 				unregister_netdevice_queue(dev, &dev_kill_list);
8646 		}
8647 	}
8648 	unregister_netdevice_many(&dev_kill_list);
8649 	rtnl_unlock();
8650 }
8651 
8652 static struct pernet_operations __net_initdata default_device_ops = {
8653 	.exit = default_device_exit,
8654 	.exit_batch = default_device_exit_batch,
8655 };
8656 
8657 /*
8658  *	Initialize the DEV module. At boot time this walks the device list and
8659  *	unhooks any devices that fail to initialise (normally hardware not
8660  *	present) and leaves us with a valid list of present and active devices.
8661  *
8662  */
8663 
8664 /*
8665  *       This is called single threaded during boot, so no need
8666  *       to take the rtnl semaphore.
8667  */
8668 static int __init net_dev_init(void)
8669 {
8670 	int i, rc = -ENOMEM;
8671 
8672 	BUG_ON(!dev_boot_phase);
8673 
8674 	if (dev_proc_init())
8675 		goto out;
8676 
8677 	if (netdev_kobject_init())
8678 		goto out;
8679 
8680 	INIT_LIST_HEAD(&ptype_all);
8681 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8682 		INIT_LIST_HEAD(&ptype_base[i]);
8683 
8684 	INIT_LIST_HEAD(&offload_base);
8685 
8686 	if (register_pernet_subsys(&netdev_net_ops))
8687 		goto out;
8688 
8689 	/*
8690 	 *	Initialise the packet receive queues.
8691 	 */
8692 
8693 	for_each_possible_cpu(i) {
8694 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8695 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8696 
8697 		INIT_WORK(flush, flush_backlog);
8698 
8699 		skb_queue_head_init(&sd->input_pkt_queue);
8700 		skb_queue_head_init(&sd->process_queue);
8701 		INIT_LIST_HEAD(&sd->poll_list);
8702 		sd->output_queue_tailp = &sd->output_queue;
8703 #ifdef CONFIG_RPS
8704 		sd->csd.func = rps_trigger_softirq;
8705 		sd->csd.info = sd;
8706 		sd->cpu = i;
8707 #endif
8708 
8709 		sd->backlog.poll = process_backlog;
8710 		sd->backlog.weight = weight_p;
8711 	}
8712 
8713 	dev_boot_phase = 0;
8714 
8715 	/* The loopback device is special if any other network devices
8716 	 * is present in a network namespace the loopback device must
8717 	 * be present. Since we now dynamically allocate and free the
8718 	 * loopback device ensure this invariant is maintained by
8719 	 * keeping the loopback device as the first device on the
8720 	 * list of network devices.  Ensuring the loopback devices
8721 	 * is the first device that appears and the last network device
8722 	 * that disappears.
8723 	 */
8724 	if (register_pernet_device(&loopback_net_ops))
8725 		goto out;
8726 
8727 	if (register_pernet_device(&default_device_ops))
8728 		goto out;
8729 
8730 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8731 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8732 
8733 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8734 				       NULL, dev_cpu_dead);
8735 	WARN_ON(rc < 0);
8736 	rc = 0;
8737 out:
8738 	return rc;
8739 }
8740 
8741 subsys_initcall(net_dev_init);
8742