1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Mark Evans, <[email protected]> 13 * 14 * Additional Authors: 15 * Florian la Roche <[email protected]> 16 * Alan Cox <[email protected]> 17 * David Hinds <[email protected]> 18 * Alexey Kuznetsov <[email protected]> 19 * Adam Sulmicki <[email protected]> 20 * Pekka Riikonen <[email protected]> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 149 #include "net-sysfs.h" 150 151 /* Instead of increasing this, you should create a hash table. */ 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct net_device *dev, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 /* protects napi_hash addition/deletion and napi_gen_id */ 192 static DEFINE_SPINLOCK(napi_hash_lock); 193 194 static unsigned int napi_gen_id = NR_CPUS; 195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 196 197 static seqcount_t devnet_rename_seq; 198 199 static inline void dev_base_seq_inc(struct net *net) 200 { 201 while (++net->dev_base_seq == 0) 202 ; 203 } 204 205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 206 { 207 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 208 209 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 210 } 211 212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 213 { 214 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 215 } 216 217 static inline void rps_lock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_lock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 static inline void rps_unlock(struct softnet_data *sd) 225 { 226 #ifdef CONFIG_RPS 227 spin_unlock(&sd->input_pkt_queue.lock); 228 #endif 229 } 230 231 /* Device list insertion */ 232 static void list_netdevice(struct net_device *dev) 233 { 234 struct net *net = dev_net(dev); 235 236 ASSERT_RTNL(); 237 238 write_lock_bh(&dev_base_lock); 239 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 240 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 241 hlist_add_head_rcu(&dev->index_hlist, 242 dev_index_hash(net, dev->ifindex)); 243 write_unlock_bh(&dev_base_lock); 244 245 dev_base_seq_inc(net); 246 } 247 248 /* Device list removal 249 * caller must respect a RCU grace period before freeing/reusing dev 250 */ 251 static void unlist_netdevice(struct net_device *dev) 252 { 253 ASSERT_RTNL(); 254 255 /* Unlink dev from the device chain */ 256 write_lock_bh(&dev_base_lock); 257 list_del_rcu(&dev->dev_list); 258 hlist_del_rcu(&dev->name_hlist); 259 hlist_del_rcu(&dev->index_hlist); 260 write_unlock_bh(&dev_base_lock); 261 262 dev_base_seq_inc(dev_net(dev)); 263 } 264 265 /* 266 * Our notifier list 267 */ 268 269 static RAW_NOTIFIER_HEAD(netdev_chain); 270 271 /* 272 * Device drivers call our routines to queue packets here. We empty the 273 * queue in the local softnet handler. 274 */ 275 276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 277 EXPORT_PER_CPU_SYMBOL(softnet_data); 278 279 #ifdef CONFIG_LOCKDEP 280 /* 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 282 * according to dev->type 283 */ 284 static const unsigned short netdev_lock_type[] = { 285 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 286 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 287 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 288 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 289 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 290 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 291 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 292 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 293 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 294 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 295 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 296 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 297 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 298 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 299 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 300 301 static const char *const netdev_lock_name[] = { 302 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 303 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 304 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 305 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 306 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 307 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 308 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 309 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 310 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 311 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 312 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 313 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 314 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 315 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 316 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 317 318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 320 321 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 322 { 323 int i; 324 325 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 326 if (netdev_lock_type[i] == dev_type) 327 return i; 328 /* the last key is used by default */ 329 return ARRAY_SIZE(netdev_lock_type) - 1; 330 } 331 332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 333 unsigned short dev_type) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev_type); 338 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 339 netdev_lock_name[i]); 340 } 341 342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 343 { 344 int i; 345 346 i = netdev_lock_pos(dev->type); 347 lockdep_set_class_and_name(&dev->addr_list_lock, 348 &netdev_addr_lock_key[i], 349 netdev_lock_name[i]); 350 } 351 #else 352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 353 unsigned short dev_type) 354 { 355 } 356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 357 { 358 } 359 #endif 360 361 /******************************************************************************* 362 * 363 * Protocol management and registration routines 364 * 365 *******************************************************************************/ 366 367 368 /* 369 * Add a protocol ID to the list. Now that the input handler is 370 * smarter we can dispense with all the messy stuff that used to be 371 * here. 372 * 373 * BEWARE!!! Protocol handlers, mangling input packets, 374 * MUST BE last in hash buckets and checking protocol handlers 375 * MUST start from promiscuous ptype_all chain in net_bh. 376 * It is true now, do not change it. 377 * Explanation follows: if protocol handler, mangling packet, will 378 * be the first on list, it is not able to sense, that packet 379 * is cloned and should be copied-on-write, so that it will 380 * change it and subsequent readers will get broken packet. 381 * --ANK (980803) 382 */ 383 384 static inline struct list_head *ptype_head(const struct packet_type *pt) 385 { 386 if (pt->type == htons(ETH_P_ALL)) 387 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 388 else 389 return pt->dev ? &pt->dev->ptype_specific : 390 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 391 } 392 393 /** 394 * dev_add_pack - add packet handler 395 * @pt: packet type declaration 396 * 397 * Add a protocol handler to the networking stack. The passed &packet_type 398 * is linked into kernel lists and may not be freed until it has been 399 * removed from the kernel lists. 400 * 401 * This call does not sleep therefore it can not 402 * guarantee all CPU's that are in middle of receiving packets 403 * will see the new packet type (until the next received packet). 404 */ 405 406 void dev_add_pack(struct packet_type *pt) 407 { 408 struct list_head *head = ptype_head(pt); 409 410 spin_lock(&ptype_lock); 411 list_add_rcu(&pt->list, head); 412 spin_unlock(&ptype_lock); 413 } 414 EXPORT_SYMBOL(dev_add_pack); 415 416 /** 417 * __dev_remove_pack - remove packet handler 418 * @pt: packet type declaration 419 * 420 * Remove a protocol handler that was previously added to the kernel 421 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 422 * from the kernel lists and can be freed or reused once this function 423 * returns. 424 * 425 * The packet type might still be in use by receivers 426 * and must not be freed until after all the CPU's have gone 427 * through a quiescent state. 428 */ 429 void __dev_remove_pack(struct packet_type *pt) 430 { 431 struct list_head *head = ptype_head(pt); 432 struct packet_type *pt1; 433 434 spin_lock(&ptype_lock); 435 436 list_for_each_entry(pt1, head, list) { 437 if (pt == pt1) { 438 list_del_rcu(&pt->list); 439 goto out; 440 } 441 } 442 443 pr_warn("dev_remove_pack: %p not found\n", pt); 444 out: 445 spin_unlock(&ptype_lock); 446 } 447 EXPORT_SYMBOL(__dev_remove_pack); 448 449 /** 450 * dev_remove_pack - remove packet handler 451 * @pt: packet type declaration 452 * 453 * Remove a protocol handler that was previously added to the kernel 454 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 455 * from the kernel lists and can be freed or reused once this function 456 * returns. 457 * 458 * This call sleeps to guarantee that no CPU is looking at the packet 459 * type after return. 460 */ 461 void dev_remove_pack(struct packet_type *pt) 462 { 463 __dev_remove_pack(pt); 464 465 synchronize_net(); 466 } 467 EXPORT_SYMBOL(dev_remove_pack); 468 469 470 /** 471 * dev_add_offload - register offload handlers 472 * @po: protocol offload declaration 473 * 474 * Add protocol offload handlers to the networking stack. The passed 475 * &proto_offload is linked into kernel lists and may not be freed until 476 * it has been removed from the kernel lists. 477 * 478 * This call does not sleep therefore it can not 479 * guarantee all CPU's that are in middle of receiving packets 480 * will see the new offload handlers (until the next received packet). 481 */ 482 void dev_add_offload(struct packet_offload *po) 483 { 484 struct packet_offload *elem; 485 486 spin_lock(&offload_lock); 487 list_for_each_entry(elem, &offload_base, list) { 488 if (po->priority < elem->priority) 489 break; 490 } 491 list_add_rcu(&po->list, elem->list.prev); 492 spin_unlock(&offload_lock); 493 } 494 EXPORT_SYMBOL(dev_add_offload); 495 496 /** 497 * __dev_remove_offload - remove offload handler 498 * @po: packet offload declaration 499 * 500 * Remove a protocol offload handler that was previously added to the 501 * kernel offload handlers by dev_add_offload(). The passed &offload_type 502 * is removed from the kernel lists and can be freed or reused once this 503 * function returns. 504 * 505 * The packet type might still be in use by receivers 506 * and must not be freed until after all the CPU's have gone 507 * through a quiescent state. 508 */ 509 static void __dev_remove_offload(struct packet_offload *po) 510 { 511 struct list_head *head = &offload_base; 512 struct packet_offload *po1; 513 514 spin_lock(&offload_lock); 515 516 list_for_each_entry(po1, head, list) { 517 if (po == po1) { 518 list_del_rcu(&po->list); 519 goto out; 520 } 521 } 522 523 pr_warn("dev_remove_offload: %p not found\n", po); 524 out: 525 spin_unlock(&offload_lock); 526 } 527 528 /** 529 * dev_remove_offload - remove packet offload handler 530 * @po: packet offload declaration 531 * 532 * Remove a packet offload handler that was previously added to the kernel 533 * offload handlers by dev_add_offload(). The passed &offload_type is 534 * removed from the kernel lists and can be freed or reused once this 535 * function returns. 536 * 537 * This call sleeps to guarantee that no CPU is looking at the packet 538 * type after return. 539 */ 540 void dev_remove_offload(struct packet_offload *po) 541 { 542 __dev_remove_offload(po); 543 544 synchronize_net(); 545 } 546 EXPORT_SYMBOL(dev_remove_offload); 547 548 /****************************************************************************** 549 * 550 * Device Boot-time Settings Routines 551 * 552 ******************************************************************************/ 553 554 /* Boot time configuration table */ 555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 556 557 /** 558 * netdev_boot_setup_add - add new setup entry 559 * @name: name of the device 560 * @map: configured settings for the device 561 * 562 * Adds new setup entry to the dev_boot_setup list. The function 563 * returns 0 on error and 1 on success. This is a generic routine to 564 * all netdevices. 565 */ 566 static int netdev_boot_setup_add(char *name, struct ifmap *map) 567 { 568 struct netdev_boot_setup *s; 569 int i; 570 571 s = dev_boot_setup; 572 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 573 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 574 memset(s[i].name, 0, sizeof(s[i].name)); 575 strlcpy(s[i].name, name, IFNAMSIZ); 576 memcpy(&s[i].map, map, sizeof(s[i].map)); 577 break; 578 } 579 } 580 581 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 582 } 583 584 /** 585 * netdev_boot_setup_check - check boot time settings 586 * @dev: the netdevice 587 * 588 * Check boot time settings for the device. 589 * The found settings are set for the device to be used 590 * later in the device probing. 591 * Returns 0 if no settings found, 1 if they are. 592 */ 593 int netdev_boot_setup_check(struct net_device *dev) 594 { 595 struct netdev_boot_setup *s = dev_boot_setup; 596 int i; 597 598 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 599 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 600 !strcmp(dev->name, s[i].name)) { 601 dev->irq = s[i].map.irq; 602 dev->base_addr = s[i].map.base_addr; 603 dev->mem_start = s[i].map.mem_start; 604 dev->mem_end = s[i].map.mem_end; 605 return 1; 606 } 607 } 608 return 0; 609 } 610 EXPORT_SYMBOL(netdev_boot_setup_check); 611 612 613 /** 614 * netdev_boot_base - get address from boot time settings 615 * @prefix: prefix for network device 616 * @unit: id for network device 617 * 618 * Check boot time settings for the base address of device. 619 * The found settings are set for the device to be used 620 * later in the device probing. 621 * Returns 0 if no settings found. 622 */ 623 unsigned long netdev_boot_base(const char *prefix, int unit) 624 { 625 const struct netdev_boot_setup *s = dev_boot_setup; 626 char name[IFNAMSIZ]; 627 int i; 628 629 sprintf(name, "%s%d", prefix, unit); 630 631 /* 632 * If device already registered then return base of 1 633 * to indicate not to probe for this interface 634 */ 635 if (__dev_get_by_name(&init_net, name)) 636 return 1; 637 638 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 639 if (!strcmp(name, s[i].name)) 640 return s[i].map.base_addr; 641 return 0; 642 } 643 644 /* 645 * Saves at boot time configured settings for any netdevice. 646 */ 647 int __init netdev_boot_setup(char *str) 648 { 649 int ints[5]; 650 struct ifmap map; 651 652 str = get_options(str, ARRAY_SIZE(ints), ints); 653 if (!str || !*str) 654 return 0; 655 656 /* Save settings */ 657 memset(&map, 0, sizeof(map)); 658 if (ints[0] > 0) 659 map.irq = ints[1]; 660 if (ints[0] > 1) 661 map.base_addr = ints[2]; 662 if (ints[0] > 2) 663 map.mem_start = ints[3]; 664 if (ints[0] > 3) 665 map.mem_end = ints[4]; 666 667 /* Add new entry to the list */ 668 return netdev_boot_setup_add(str, &map); 669 } 670 671 __setup("netdev=", netdev_boot_setup); 672 673 /******************************************************************************* 674 * 675 * Device Interface Subroutines 676 * 677 *******************************************************************************/ 678 679 /** 680 * dev_get_iflink - get 'iflink' value of a interface 681 * @dev: targeted interface 682 * 683 * Indicates the ifindex the interface is linked to. 684 * Physical interfaces have the same 'ifindex' and 'iflink' values. 685 */ 686 687 int dev_get_iflink(const struct net_device *dev) 688 { 689 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 690 return dev->netdev_ops->ndo_get_iflink(dev); 691 692 return dev->ifindex; 693 } 694 EXPORT_SYMBOL(dev_get_iflink); 695 696 /** 697 * dev_fill_metadata_dst - Retrieve tunnel egress information. 698 * @dev: targeted interface 699 * @skb: The packet. 700 * 701 * For better visibility of tunnel traffic OVS needs to retrieve 702 * egress tunnel information for a packet. Following API allows 703 * user to get this info. 704 */ 705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 706 { 707 struct ip_tunnel_info *info; 708 709 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 710 return -EINVAL; 711 712 info = skb_tunnel_info_unclone(skb); 713 if (!info) 714 return -ENOMEM; 715 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 716 return -EINVAL; 717 718 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 719 } 720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 721 722 /** 723 * __dev_get_by_name - find a device by its name 724 * @net: the applicable net namespace 725 * @name: name to find 726 * 727 * Find an interface by name. Must be called under RTNL semaphore 728 * or @dev_base_lock. If the name is found a pointer to the device 729 * is returned. If the name is not found then %NULL is returned. The 730 * reference counters are not incremented so the caller must be 731 * careful with locks. 732 */ 733 734 struct net_device *__dev_get_by_name(struct net *net, const char *name) 735 { 736 struct net_device *dev; 737 struct hlist_head *head = dev_name_hash(net, name); 738 739 hlist_for_each_entry(dev, head, name_hlist) 740 if (!strncmp(dev->name, name, IFNAMSIZ)) 741 return dev; 742 743 return NULL; 744 } 745 EXPORT_SYMBOL(__dev_get_by_name); 746 747 /** 748 * dev_get_by_name_rcu - find a device by its name 749 * @net: the applicable net namespace 750 * @name: name to find 751 * 752 * Find an interface by name. 753 * If the name is found a pointer to the device is returned. 754 * If the name is not found then %NULL is returned. 755 * The reference counters are not incremented so the caller must be 756 * careful with locks. The caller must hold RCU lock. 757 */ 758 759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 760 { 761 struct net_device *dev; 762 struct hlist_head *head = dev_name_hash(net, name); 763 764 hlist_for_each_entry_rcu(dev, head, name_hlist) 765 if (!strncmp(dev->name, name, IFNAMSIZ)) 766 return dev; 767 768 return NULL; 769 } 770 EXPORT_SYMBOL(dev_get_by_name_rcu); 771 772 /** 773 * dev_get_by_name - find a device by its name 774 * @net: the applicable net namespace 775 * @name: name to find 776 * 777 * Find an interface by name. This can be called from any 778 * context and does its own locking. The returned handle has 779 * the usage count incremented and the caller must use dev_put() to 780 * release it when it is no longer needed. %NULL is returned if no 781 * matching device is found. 782 */ 783 784 struct net_device *dev_get_by_name(struct net *net, const char *name) 785 { 786 struct net_device *dev; 787 788 rcu_read_lock(); 789 dev = dev_get_by_name_rcu(net, name); 790 if (dev) 791 dev_hold(dev); 792 rcu_read_unlock(); 793 return dev; 794 } 795 EXPORT_SYMBOL(dev_get_by_name); 796 797 /** 798 * __dev_get_by_index - find a device by its ifindex 799 * @net: the applicable net namespace 800 * @ifindex: index of device 801 * 802 * Search for an interface by index. Returns %NULL if the device 803 * is not found or a pointer to the device. The device has not 804 * had its reference counter increased so the caller must be careful 805 * about locking. The caller must hold either the RTNL semaphore 806 * or @dev_base_lock. 807 */ 808 809 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 810 { 811 struct net_device *dev; 812 struct hlist_head *head = dev_index_hash(net, ifindex); 813 814 hlist_for_each_entry(dev, head, index_hlist) 815 if (dev->ifindex == ifindex) 816 return dev; 817 818 return NULL; 819 } 820 EXPORT_SYMBOL(__dev_get_by_index); 821 822 /** 823 * dev_get_by_index_rcu - find a device by its ifindex 824 * @net: the applicable net namespace 825 * @ifindex: index of device 826 * 827 * Search for an interface by index. Returns %NULL if the device 828 * is not found or a pointer to the device. The device has not 829 * had its reference counter increased so the caller must be careful 830 * about locking. The caller must hold RCU lock. 831 */ 832 833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 834 { 835 struct net_device *dev; 836 struct hlist_head *head = dev_index_hash(net, ifindex); 837 838 hlist_for_each_entry_rcu(dev, head, index_hlist) 839 if (dev->ifindex == ifindex) 840 return dev; 841 842 return NULL; 843 } 844 EXPORT_SYMBOL(dev_get_by_index_rcu); 845 846 847 /** 848 * dev_get_by_index - find a device by its ifindex 849 * @net: the applicable net namespace 850 * @ifindex: index of device 851 * 852 * Search for an interface by index. Returns NULL if the device 853 * is not found or a pointer to the device. The device returned has 854 * had a reference added and the pointer is safe until the user calls 855 * dev_put to indicate they have finished with it. 856 */ 857 858 struct net_device *dev_get_by_index(struct net *net, int ifindex) 859 { 860 struct net_device *dev; 861 862 rcu_read_lock(); 863 dev = dev_get_by_index_rcu(net, ifindex); 864 if (dev) 865 dev_hold(dev); 866 rcu_read_unlock(); 867 return dev; 868 } 869 EXPORT_SYMBOL(dev_get_by_index); 870 871 /** 872 * dev_get_by_napi_id - find a device by napi_id 873 * @napi_id: ID of the NAPI struct 874 * 875 * Search for an interface by NAPI ID. Returns %NULL if the device 876 * is not found or a pointer to the device. The device has not had 877 * its reference counter increased so the caller must be careful 878 * about locking. The caller must hold RCU lock. 879 */ 880 881 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 882 { 883 struct napi_struct *napi; 884 885 WARN_ON_ONCE(!rcu_read_lock_held()); 886 887 if (napi_id < MIN_NAPI_ID) 888 return NULL; 889 890 napi = napi_by_id(napi_id); 891 892 return napi ? napi->dev : NULL; 893 } 894 EXPORT_SYMBOL(dev_get_by_napi_id); 895 896 /** 897 * netdev_get_name - get a netdevice name, knowing its ifindex. 898 * @net: network namespace 899 * @name: a pointer to the buffer where the name will be stored. 900 * @ifindex: the ifindex of the interface to get the name from. 901 * 902 * The use of raw_seqcount_begin() and cond_resched() before 903 * retrying is required as we want to give the writers a chance 904 * to complete when CONFIG_PREEMPT is not set. 905 */ 906 int netdev_get_name(struct net *net, char *name, int ifindex) 907 { 908 struct net_device *dev; 909 unsigned int seq; 910 911 retry: 912 seq = raw_seqcount_begin(&devnet_rename_seq); 913 rcu_read_lock(); 914 dev = dev_get_by_index_rcu(net, ifindex); 915 if (!dev) { 916 rcu_read_unlock(); 917 return -ENODEV; 918 } 919 920 strcpy(name, dev->name); 921 rcu_read_unlock(); 922 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 923 cond_resched(); 924 goto retry; 925 } 926 927 return 0; 928 } 929 930 /** 931 * dev_getbyhwaddr_rcu - find a device by its hardware address 932 * @net: the applicable net namespace 933 * @type: media type of device 934 * @ha: hardware address 935 * 936 * Search for an interface by MAC address. Returns NULL if the device 937 * is not found or a pointer to the device. 938 * The caller must hold RCU or RTNL. 939 * The returned device has not had its ref count increased 940 * and the caller must therefore be careful about locking 941 * 942 */ 943 944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 945 const char *ha) 946 { 947 struct net_device *dev; 948 949 for_each_netdev_rcu(net, dev) 950 if (dev->type == type && 951 !memcmp(dev->dev_addr, ha, dev->addr_len)) 952 return dev; 953 954 return NULL; 955 } 956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 957 958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 959 { 960 struct net_device *dev; 961 962 ASSERT_RTNL(); 963 for_each_netdev(net, dev) 964 if (dev->type == type) 965 return dev; 966 967 return NULL; 968 } 969 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 970 971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 972 { 973 struct net_device *dev, *ret = NULL; 974 975 rcu_read_lock(); 976 for_each_netdev_rcu(net, dev) 977 if (dev->type == type) { 978 dev_hold(dev); 979 ret = dev; 980 break; 981 } 982 rcu_read_unlock(); 983 return ret; 984 } 985 EXPORT_SYMBOL(dev_getfirstbyhwtype); 986 987 /** 988 * __dev_get_by_flags - find any device with given flags 989 * @net: the applicable net namespace 990 * @if_flags: IFF_* values 991 * @mask: bitmask of bits in if_flags to check 992 * 993 * Search for any interface with the given flags. Returns NULL if a device 994 * is not found or a pointer to the device. Must be called inside 995 * rtnl_lock(), and result refcount is unchanged. 996 */ 997 998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 999 unsigned short mask) 1000 { 1001 struct net_device *dev, *ret; 1002 1003 ASSERT_RTNL(); 1004 1005 ret = NULL; 1006 for_each_netdev(net, dev) { 1007 if (((dev->flags ^ if_flags) & mask) == 0) { 1008 ret = dev; 1009 break; 1010 } 1011 } 1012 return ret; 1013 } 1014 EXPORT_SYMBOL(__dev_get_by_flags); 1015 1016 /** 1017 * dev_valid_name - check if name is okay for network device 1018 * @name: name string 1019 * 1020 * Network device names need to be valid file names to 1021 * to allow sysfs to work. We also disallow any kind of 1022 * whitespace. 1023 */ 1024 bool dev_valid_name(const char *name) 1025 { 1026 if (*name == '\0') 1027 return false; 1028 if (strlen(name) >= IFNAMSIZ) 1029 return false; 1030 if (!strcmp(name, ".") || !strcmp(name, "..")) 1031 return false; 1032 1033 while (*name) { 1034 if (*name == '/' || *name == ':' || isspace(*name)) 1035 return false; 1036 name++; 1037 } 1038 return true; 1039 } 1040 EXPORT_SYMBOL(dev_valid_name); 1041 1042 /** 1043 * __dev_alloc_name - allocate a name for a device 1044 * @net: network namespace to allocate the device name in 1045 * @name: name format string 1046 * @buf: scratch buffer and result name string 1047 * 1048 * Passed a format string - eg "lt%d" it will try and find a suitable 1049 * id. It scans list of devices to build up a free map, then chooses 1050 * the first empty slot. The caller must hold the dev_base or rtnl lock 1051 * while allocating the name and adding the device in order to avoid 1052 * duplicates. 1053 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1054 * Returns the number of the unit assigned or a negative errno code. 1055 */ 1056 1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1058 { 1059 int i = 0; 1060 const char *p; 1061 const int max_netdevices = 8*PAGE_SIZE; 1062 unsigned long *inuse; 1063 struct net_device *d; 1064 1065 p = strnchr(name, IFNAMSIZ-1, '%'); 1066 if (p) { 1067 /* 1068 * Verify the string as this thing may have come from 1069 * the user. There must be either one "%d" and no other "%" 1070 * characters. 1071 */ 1072 if (p[1] != 'd' || strchr(p + 2, '%')) 1073 return -EINVAL; 1074 1075 /* Use one page as a bit array of possible slots */ 1076 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1077 if (!inuse) 1078 return -ENOMEM; 1079 1080 for_each_netdev(net, d) { 1081 if (!sscanf(d->name, name, &i)) 1082 continue; 1083 if (i < 0 || i >= max_netdevices) 1084 continue; 1085 1086 /* avoid cases where sscanf is not exact inverse of printf */ 1087 snprintf(buf, IFNAMSIZ, name, i); 1088 if (!strncmp(buf, d->name, IFNAMSIZ)) 1089 set_bit(i, inuse); 1090 } 1091 1092 i = find_first_zero_bit(inuse, max_netdevices); 1093 free_page((unsigned long) inuse); 1094 } 1095 1096 if (buf != name) 1097 snprintf(buf, IFNAMSIZ, name, i); 1098 if (!__dev_get_by_name(net, buf)) 1099 return i; 1100 1101 /* It is possible to run out of possible slots 1102 * when the name is long and there isn't enough space left 1103 * for the digits, or if all bits are used. 1104 */ 1105 return -ENFILE; 1106 } 1107 1108 /** 1109 * dev_alloc_name - allocate a name for a device 1110 * @dev: device 1111 * @name: name format string 1112 * 1113 * Passed a format string - eg "lt%d" it will try and find a suitable 1114 * id. It scans list of devices to build up a free map, then chooses 1115 * the first empty slot. The caller must hold the dev_base or rtnl lock 1116 * while allocating the name and adding the device in order to avoid 1117 * duplicates. 1118 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1119 * Returns the number of the unit assigned or a negative errno code. 1120 */ 1121 1122 int dev_alloc_name(struct net_device *dev, const char *name) 1123 { 1124 char buf[IFNAMSIZ]; 1125 struct net *net; 1126 int ret; 1127 1128 BUG_ON(!dev_net(dev)); 1129 net = dev_net(dev); 1130 ret = __dev_alloc_name(net, name, buf); 1131 if (ret >= 0) 1132 strlcpy(dev->name, buf, IFNAMSIZ); 1133 return ret; 1134 } 1135 EXPORT_SYMBOL(dev_alloc_name); 1136 1137 static int dev_alloc_name_ns(struct net *net, 1138 struct net_device *dev, 1139 const char *name) 1140 { 1141 char buf[IFNAMSIZ]; 1142 int ret; 1143 1144 ret = __dev_alloc_name(net, name, buf); 1145 if (ret >= 0) 1146 strlcpy(dev->name, buf, IFNAMSIZ); 1147 return ret; 1148 } 1149 1150 static int dev_get_valid_name(struct net *net, 1151 struct net_device *dev, 1152 const char *name) 1153 { 1154 BUG_ON(!net); 1155 1156 if (!dev_valid_name(name)) 1157 return -EINVAL; 1158 1159 if (strchr(name, '%')) 1160 return dev_alloc_name_ns(net, dev, name); 1161 else if (__dev_get_by_name(net, name)) 1162 return -EEXIST; 1163 else if (dev->name != name) 1164 strlcpy(dev->name, name, IFNAMSIZ); 1165 1166 return 0; 1167 } 1168 1169 /** 1170 * dev_change_name - change name of a device 1171 * @dev: device 1172 * @newname: name (or format string) must be at least IFNAMSIZ 1173 * 1174 * Change name of a device, can pass format strings "eth%d". 1175 * for wildcarding. 1176 */ 1177 int dev_change_name(struct net_device *dev, const char *newname) 1178 { 1179 unsigned char old_assign_type; 1180 char oldname[IFNAMSIZ]; 1181 int err = 0; 1182 int ret; 1183 struct net *net; 1184 1185 ASSERT_RTNL(); 1186 BUG_ON(!dev_net(dev)); 1187 1188 net = dev_net(dev); 1189 if (dev->flags & IFF_UP) 1190 return -EBUSY; 1191 1192 write_seqcount_begin(&devnet_rename_seq); 1193 1194 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1195 write_seqcount_end(&devnet_rename_seq); 1196 return 0; 1197 } 1198 1199 memcpy(oldname, dev->name, IFNAMSIZ); 1200 1201 err = dev_get_valid_name(net, dev, newname); 1202 if (err < 0) { 1203 write_seqcount_end(&devnet_rename_seq); 1204 return err; 1205 } 1206 1207 if (oldname[0] && !strchr(oldname, '%')) 1208 netdev_info(dev, "renamed from %s\n", oldname); 1209 1210 old_assign_type = dev->name_assign_type; 1211 dev->name_assign_type = NET_NAME_RENAMED; 1212 1213 rollback: 1214 ret = device_rename(&dev->dev, dev->name); 1215 if (ret) { 1216 memcpy(dev->name, oldname, IFNAMSIZ); 1217 dev->name_assign_type = old_assign_type; 1218 write_seqcount_end(&devnet_rename_seq); 1219 return ret; 1220 } 1221 1222 write_seqcount_end(&devnet_rename_seq); 1223 1224 netdev_adjacent_rename_links(dev, oldname); 1225 1226 write_lock_bh(&dev_base_lock); 1227 hlist_del_rcu(&dev->name_hlist); 1228 write_unlock_bh(&dev_base_lock); 1229 1230 synchronize_rcu(); 1231 1232 write_lock_bh(&dev_base_lock); 1233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1234 write_unlock_bh(&dev_base_lock); 1235 1236 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1237 ret = notifier_to_errno(ret); 1238 1239 if (ret) { 1240 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1241 if (err >= 0) { 1242 err = ret; 1243 write_seqcount_begin(&devnet_rename_seq); 1244 memcpy(dev->name, oldname, IFNAMSIZ); 1245 memcpy(oldname, newname, IFNAMSIZ); 1246 dev->name_assign_type = old_assign_type; 1247 old_assign_type = NET_NAME_RENAMED; 1248 goto rollback; 1249 } else { 1250 pr_err("%s: name change rollback failed: %d\n", 1251 dev->name, ret); 1252 } 1253 } 1254 1255 return err; 1256 } 1257 1258 /** 1259 * dev_set_alias - change ifalias of a device 1260 * @dev: device 1261 * @alias: name up to IFALIASZ 1262 * @len: limit of bytes to copy from info 1263 * 1264 * Set ifalias for a device, 1265 */ 1266 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1267 { 1268 char *new_ifalias; 1269 1270 ASSERT_RTNL(); 1271 1272 if (len >= IFALIASZ) 1273 return -EINVAL; 1274 1275 if (!len) { 1276 kfree(dev->ifalias); 1277 dev->ifalias = NULL; 1278 return 0; 1279 } 1280 1281 new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1282 if (!new_ifalias) 1283 return -ENOMEM; 1284 dev->ifalias = new_ifalias; 1285 memcpy(dev->ifalias, alias, len); 1286 dev->ifalias[len] = 0; 1287 1288 return len; 1289 } 1290 1291 1292 /** 1293 * netdev_features_change - device changes features 1294 * @dev: device to cause notification 1295 * 1296 * Called to indicate a device has changed features. 1297 */ 1298 void netdev_features_change(struct net_device *dev) 1299 { 1300 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1301 } 1302 EXPORT_SYMBOL(netdev_features_change); 1303 1304 /** 1305 * netdev_state_change - device changes state 1306 * @dev: device to cause notification 1307 * 1308 * Called to indicate a device has changed state. This function calls 1309 * the notifier chains for netdev_chain and sends a NEWLINK message 1310 * to the routing socket. 1311 */ 1312 void netdev_state_change(struct net_device *dev) 1313 { 1314 if (dev->flags & IFF_UP) { 1315 struct netdev_notifier_change_info change_info; 1316 1317 change_info.flags_changed = 0; 1318 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 1319 &change_info.info); 1320 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1321 } 1322 } 1323 EXPORT_SYMBOL(netdev_state_change); 1324 1325 /** 1326 * netdev_notify_peers - notify network peers about existence of @dev 1327 * @dev: network device 1328 * 1329 * Generate traffic such that interested network peers are aware of 1330 * @dev, such as by generating a gratuitous ARP. This may be used when 1331 * a device wants to inform the rest of the network about some sort of 1332 * reconfiguration such as a failover event or virtual machine 1333 * migration. 1334 */ 1335 void netdev_notify_peers(struct net_device *dev) 1336 { 1337 rtnl_lock(); 1338 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1339 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1340 rtnl_unlock(); 1341 } 1342 EXPORT_SYMBOL(netdev_notify_peers); 1343 1344 static int __dev_open(struct net_device *dev) 1345 { 1346 const struct net_device_ops *ops = dev->netdev_ops; 1347 int ret; 1348 1349 ASSERT_RTNL(); 1350 1351 if (!netif_device_present(dev)) 1352 return -ENODEV; 1353 1354 /* Block netpoll from trying to do any rx path servicing. 1355 * If we don't do this there is a chance ndo_poll_controller 1356 * or ndo_poll may be running while we open the device 1357 */ 1358 netpoll_poll_disable(dev); 1359 1360 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1361 ret = notifier_to_errno(ret); 1362 if (ret) 1363 return ret; 1364 1365 set_bit(__LINK_STATE_START, &dev->state); 1366 1367 if (ops->ndo_validate_addr) 1368 ret = ops->ndo_validate_addr(dev); 1369 1370 if (!ret && ops->ndo_open) 1371 ret = ops->ndo_open(dev); 1372 1373 netpoll_poll_enable(dev); 1374 1375 if (ret) 1376 clear_bit(__LINK_STATE_START, &dev->state); 1377 else { 1378 dev->flags |= IFF_UP; 1379 dev_set_rx_mode(dev); 1380 dev_activate(dev); 1381 add_device_randomness(dev->dev_addr, dev->addr_len); 1382 } 1383 1384 return ret; 1385 } 1386 1387 /** 1388 * dev_open - prepare an interface for use. 1389 * @dev: device to open 1390 * 1391 * Takes a device from down to up state. The device's private open 1392 * function is invoked and then the multicast lists are loaded. Finally 1393 * the device is moved into the up state and a %NETDEV_UP message is 1394 * sent to the netdev notifier chain. 1395 * 1396 * Calling this function on an active interface is a nop. On a failure 1397 * a negative errno code is returned. 1398 */ 1399 int dev_open(struct net_device *dev) 1400 { 1401 int ret; 1402 1403 if (dev->flags & IFF_UP) 1404 return 0; 1405 1406 ret = __dev_open(dev); 1407 if (ret < 0) 1408 return ret; 1409 1410 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1411 call_netdevice_notifiers(NETDEV_UP, dev); 1412 1413 return ret; 1414 } 1415 EXPORT_SYMBOL(dev_open); 1416 1417 static void __dev_close_many(struct list_head *head) 1418 { 1419 struct net_device *dev; 1420 1421 ASSERT_RTNL(); 1422 might_sleep(); 1423 1424 list_for_each_entry(dev, head, close_list) { 1425 /* Temporarily disable netpoll until the interface is down */ 1426 netpoll_poll_disable(dev); 1427 1428 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1429 1430 clear_bit(__LINK_STATE_START, &dev->state); 1431 1432 /* Synchronize to scheduled poll. We cannot touch poll list, it 1433 * can be even on different cpu. So just clear netif_running(). 1434 * 1435 * dev->stop() will invoke napi_disable() on all of it's 1436 * napi_struct instances on this device. 1437 */ 1438 smp_mb__after_atomic(); /* Commit netif_running(). */ 1439 } 1440 1441 dev_deactivate_many(head); 1442 1443 list_for_each_entry(dev, head, close_list) { 1444 const struct net_device_ops *ops = dev->netdev_ops; 1445 1446 /* 1447 * Call the device specific close. This cannot fail. 1448 * Only if device is UP 1449 * 1450 * We allow it to be called even after a DETACH hot-plug 1451 * event. 1452 */ 1453 if (ops->ndo_stop) 1454 ops->ndo_stop(dev); 1455 1456 dev->flags &= ~IFF_UP; 1457 netpoll_poll_enable(dev); 1458 } 1459 } 1460 1461 static void __dev_close(struct net_device *dev) 1462 { 1463 LIST_HEAD(single); 1464 1465 list_add(&dev->close_list, &single); 1466 __dev_close_many(&single); 1467 list_del(&single); 1468 } 1469 1470 void dev_close_many(struct list_head *head, bool unlink) 1471 { 1472 struct net_device *dev, *tmp; 1473 1474 /* Remove the devices that don't need to be closed */ 1475 list_for_each_entry_safe(dev, tmp, head, close_list) 1476 if (!(dev->flags & IFF_UP)) 1477 list_del_init(&dev->close_list); 1478 1479 __dev_close_many(head); 1480 1481 list_for_each_entry_safe(dev, tmp, head, close_list) { 1482 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1483 call_netdevice_notifiers(NETDEV_DOWN, dev); 1484 if (unlink) 1485 list_del_init(&dev->close_list); 1486 } 1487 } 1488 EXPORT_SYMBOL(dev_close_many); 1489 1490 /** 1491 * dev_close - shutdown an interface. 1492 * @dev: device to shutdown 1493 * 1494 * This function moves an active device into down state. A 1495 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1496 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1497 * chain. 1498 */ 1499 void dev_close(struct net_device *dev) 1500 { 1501 if (dev->flags & IFF_UP) { 1502 LIST_HEAD(single); 1503 1504 list_add(&dev->close_list, &single); 1505 dev_close_many(&single, true); 1506 list_del(&single); 1507 } 1508 } 1509 EXPORT_SYMBOL(dev_close); 1510 1511 1512 /** 1513 * dev_disable_lro - disable Large Receive Offload on a device 1514 * @dev: device 1515 * 1516 * Disable Large Receive Offload (LRO) on a net device. Must be 1517 * called under RTNL. This is needed if received packets may be 1518 * forwarded to another interface. 1519 */ 1520 void dev_disable_lro(struct net_device *dev) 1521 { 1522 struct net_device *lower_dev; 1523 struct list_head *iter; 1524 1525 dev->wanted_features &= ~NETIF_F_LRO; 1526 netdev_update_features(dev); 1527 1528 if (unlikely(dev->features & NETIF_F_LRO)) 1529 netdev_WARN(dev, "failed to disable LRO!\n"); 1530 1531 netdev_for_each_lower_dev(dev, lower_dev, iter) 1532 dev_disable_lro(lower_dev); 1533 } 1534 EXPORT_SYMBOL(dev_disable_lro); 1535 1536 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1537 struct net_device *dev) 1538 { 1539 struct netdev_notifier_info info; 1540 1541 netdev_notifier_info_init(&info, dev); 1542 return nb->notifier_call(nb, val, &info); 1543 } 1544 1545 static int dev_boot_phase = 1; 1546 1547 /** 1548 * register_netdevice_notifier - register a network notifier block 1549 * @nb: notifier 1550 * 1551 * Register a notifier to be called when network device events occur. 1552 * The notifier passed is linked into the kernel structures and must 1553 * not be reused until it has been unregistered. A negative errno code 1554 * is returned on a failure. 1555 * 1556 * When registered all registration and up events are replayed 1557 * to the new notifier to allow device to have a race free 1558 * view of the network device list. 1559 */ 1560 1561 int register_netdevice_notifier(struct notifier_block *nb) 1562 { 1563 struct net_device *dev; 1564 struct net_device *last; 1565 struct net *net; 1566 int err; 1567 1568 rtnl_lock(); 1569 err = raw_notifier_chain_register(&netdev_chain, nb); 1570 if (err) 1571 goto unlock; 1572 if (dev_boot_phase) 1573 goto unlock; 1574 for_each_net(net) { 1575 for_each_netdev(net, dev) { 1576 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1577 err = notifier_to_errno(err); 1578 if (err) 1579 goto rollback; 1580 1581 if (!(dev->flags & IFF_UP)) 1582 continue; 1583 1584 call_netdevice_notifier(nb, NETDEV_UP, dev); 1585 } 1586 } 1587 1588 unlock: 1589 rtnl_unlock(); 1590 return err; 1591 1592 rollback: 1593 last = dev; 1594 for_each_net(net) { 1595 for_each_netdev(net, dev) { 1596 if (dev == last) 1597 goto outroll; 1598 1599 if (dev->flags & IFF_UP) { 1600 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1601 dev); 1602 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1603 } 1604 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1605 } 1606 } 1607 1608 outroll: 1609 raw_notifier_chain_unregister(&netdev_chain, nb); 1610 goto unlock; 1611 } 1612 EXPORT_SYMBOL(register_netdevice_notifier); 1613 1614 /** 1615 * unregister_netdevice_notifier - unregister a network notifier block 1616 * @nb: notifier 1617 * 1618 * Unregister a notifier previously registered by 1619 * register_netdevice_notifier(). The notifier is unlinked into the 1620 * kernel structures and may then be reused. A negative errno code 1621 * is returned on a failure. 1622 * 1623 * After unregistering unregister and down device events are synthesized 1624 * for all devices on the device list to the removed notifier to remove 1625 * the need for special case cleanup code. 1626 */ 1627 1628 int unregister_netdevice_notifier(struct notifier_block *nb) 1629 { 1630 struct net_device *dev; 1631 struct net *net; 1632 int err; 1633 1634 rtnl_lock(); 1635 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1636 if (err) 1637 goto unlock; 1638 1639 for_each_net(net) { 1640 for_each_netdev(net, dev) { 1641 if (dev->flags & IFF_UP) { 1642 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1643 dev); 1644 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1645 } 1646 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1647 } 1648 } 1649 unlock: 1650 rtnl_unlock(); 1651 return err; 1652 } 1653 EXPORT_SYMBOL(unregister_netdevice_notifier); 1654 1655 /** 1656 * call_netdevice_notifiers_info - call all network notifier blocks 1657 * @val: value passed unmodified to notifier function 1658 * @dev: net_device pointer passed unmodified to notifier function 1659 * @info: notifier information data 1660 * 1661 * Call all network notifier blocks. Parameters and return value 1662 * are as for raw_notifier_call_chain(). 1663 */ 1664 1665 static int call_netdevice_notifiers_info(unsigned long val, 1666 struct net_device *dev, 1667 struct netdev_notifier_info *info) 1668 { 1669 ASSERT_RTNL(); 1670 netdev_notifier_info_init(info, dev); 1671 return raw_notifier_call_chain(&netdev_chain, val, info); 1672 } 1673 1674 /** 1675 * call_netdevice_notifiers - call all network notifier blocks 1676 * @val: value passed unmodified to notifier function 1677 * @dev: net_device pointer passed unmodified to notifier function 1678 * 1679 * Call all network notifier blocks. Parameters and return value 1680 * are as for raw_notifier_call_chain(). 1681 */ 1682 1683 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1684 { 1685 struct netdev_notifier_info info; 1686 1687 return call_netdevice_notifiers_info(val, dev, &info); 1688 } 1689 EXPORT_SYMBOL(call_netdevice_notifiers); 1690 1691 #ifdef CONFIG_NET_INGRESS 1692 static struct static_key ingress_needed __read_mostly; 1693 1694 void net_inc_ingress_queue(void) 1695 { 1696 static_key_slow_inc(&ingress_needed); 1697 } 1698 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1699 1700 void net_dec_ingress_queue(void) 1701 { 1702 static_key_slow_dec(&ingress_needed); 1703 } 1704 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1705 #endif 1706 1707 #ifdef CONFIG_NET_EGRESS 1708 static struct static_key egress_needed __read_mostly; 1709 1710 void net_inc_egress_queue(void) 1711 { 1712 static_key_slow_inc(&egress_needed); 1713 } 1714 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1715 1716 void net_dec_egress_queue(void) 1717 { 1718 static_key_slow_dec(&egress_needed); 1719 } 1720 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1721 #endif 1722 1723 static struct static_key netstamp_needed __read_mostly; 1724 #ifdef HAVE_JUMP_LABEL 1725 static atomic_t netstamp_needed_deferred; 1726 static atomic_t netstamp_wanted; 1727 static void netstamp_clear(struct work_struct *work) 1728 { 1729 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1730 int wanted; 1731 1732 wanted = atomic_add_return(deferred, &netstamp_wanted); 1733 if (wanted > 0) 1734 static_key_enable(&netstamp_needed); 1735 else 1736 static_key_disable(&netstamp_needed); 1737 } 1738 static DECLARE_WORK(netstamp_work, netstamp_clear); 1739 #endif 1740 1741 void net_enable_timestamp(void) 1742 { 1743 #ifdef HAVE_JUMP_LABEL 1744 int wanted; 1745 1746 while (1) { 1747 wanted = atomic_read(&netstamp_wanted); 1748 if (wanted <= 0) 1749 break; 1750 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1751 return; 1752 } 1753 atomic_inc(&netstamp_needed_deferred); 1754 schedule_work(&netstamp_work); 1755 #else 1756 static_key_slow_inc(&netstamp_needed); 1757 #endif 1758 } 1759 EXPORT_SYMBOL(net_enable_timestamp); 1760 1761 void net_disable_timestamp(void) 1762 { 1763 #ifdef HAVE_JUMP_LABEL 1764 int wanted; 1765 1766 while (1) { 1767 wanted = atomic_read(&netstamp_wanted); 1768 if (wanted <= 1) 1769 break; 1770 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1771 return; 1772 } 1773 atomic_dec(&netstamp_needed_deferred); 1774 schedule_work(&netstamp_work); 1775 #else 1776 static_key_slow_dec(&netstamp_needed); 1777 #endif 1778 } 1779 EXPORT_SYMBOL(net_disable_timestamp); 1780 1781 static inline void net_timestamp_set(struct sk_buff *skb) 1782 { 1783 skb->tstamp = 0; 1784 if (static_key_false(&netstamp_needed)) 1785 __net_timestamp(skb); 1786 } 1787 1788 #define net_timestamp_check(COND, SKB) \ 1789 if (static_key_false(&netstamp_needed)) { \ 1790 if ((COND) && !(SKB)->tstamp) \ 1791 __net_timestamp(SKB); \ 1792 } \ 1793 1794 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1795 { 1796 unsigned int len; 1797 1798 if (!(dev->flags & IFF_UP)) 1799 return false; 1800 1801 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1802 if (skb->len <= len) 1803 return true; 1804 1805 /* if TSO is enabled, we don't care about the length as the packet 1806 * could be forwarded without being segmented before 1807 */ 1808 if (skb_is_gso(skb)) 1809 return true; 1810 1811 return false; 1812 } 1813 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1814 1815 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1816 { 1817 int ret = ____dev_forward_skb(dev, skb); 1818 1819 if (likely(!ret)) { 1820 skb->protocol = eth_type_trans(skb, dev); 1821 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1822 } 1823 1824 return ret; 1825 } 1826 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1827 1828 /** 1829 * dev_forward_skb - loopback an skb to another netif 1830 * 1831 * @dev: destination network device 1832 * @skb: buffer to forward 1833 * 1834 * return values: 1835 * NET_RX_SUCCESS (no congestion) 1836 * NET_RX_DROP (packet was dropped, but freed) 1837 * 1838 * dev_forward_skb can be used for injecting an skb from the 1839 * start_xmit function of one device into the receive queue 1840 * of another device. 1841 * 1842 * The receiving device may be in another namespace, so 1843 * we have to clear all information in the skb that could 1844 * impact namespace isolation. 1845 */ 1846 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1847 { 1848 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1849 } 1850 EXPORT_SYMBOL_GPL(dev_forward_skb); 1851 1852 static inline int deliver_skb(struct sk_buff *skb, 1853 struct packet_type *pt_prev, 1854 struct net_device *orig_dev) 1855 { 1856 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 1857 return -ENOMEM; 1858 refcount_inc(&skb->users); 1859 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1860 } 1861 1862 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1863 struct packet_type **pt, 1864 struct net_device *orig_dev, 1865 __be16 type, 1866 struct list_head *ptype_list) 1867 { 1868 struct packet_type *ptype, *pt_prev = *pt; 1869 1870 list_for_each_entry_rcu(ptype, ptype_list, list) { 1871 if (ptype->type != type) 1872 continue; 1873 if (pt_prev) 1874 deliver_skb(skb, pt_prev, orig_dev); 1875 pt_prev = ptype; 1876 } 1877 *pt = pt_prev; 1878 } 1879 1880 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1881 { 1882 if (!ptype->af_packet_priv || !skb->sk) 1883 return false; 1884 1885 if (ptype->id_match) 1886 return ptype->id_match(ptype, skb->sk); 1887 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1888 return true; 1889 1890 return false; 1891 } 1892 1893 /* 1894 * Support routine. Sends outgoing frames to any network 1895 * taps currently in use. 1896 */ 1897 1898 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1899 { 1900 struct packet_type *ptype; 1901 struct sk_buff *skb2 = NULL; 1902 struct packet_type *pt_prev = NULL; 1903 struct list_head *ptype_list = &ptype_all; 1904 1905 rcu_read_lock(); 1906 again: 1907 list_for_each_entry_rcu(ptype, ptype_list, list) { 1908 /* Never send packets back to the socket 1909 * they originated from - MvS ([email protected]) 1910 */ 1911 if (skb_loop_sk(ptype, skb)) 1912 continue; 1913 1914 if (pt_prev) { 1915 deliver_skb(skb2, pt_prev, skb->dev); 1916 pt_prev = ptype; 1917 continue; 1918 } 1919 1920 /* need to clone skb, done only once */ 1921 skb2 = skb_clone(skb, GFP_ATOMIC); 1922 if (!skb2) 1923 goto out_unlock; 1924 1925 net_timestamp_set(skb2); 1926 1927 /* skb->nh should be correctly 1928 * set by sender, so that the second statement is 1929 * just protection against buggy protocols. 1930 */ 1931 skb_reset_mac_header(skb2); 1932 1933 if (skb_network_header(skb2) < skb2->data || 1934 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1935 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1936 ntohs(skb2->protocol), 1937 dev->name); 1938 skb_reset_network_header(skb2); 1939 } 1940 1941 skb2->transport_header = skb2->network_header; 1942 skb2->pkt_type = PACKET_OUTGOING; 1943 pt_prev = ptype; 1944 } 1945 1946 if (ptype_list == &ptype_all) { 1947 ptype_list = &dev->ptype_all; 1948 goto again; 1949 } 1950 out_unlock: 1951 if (pt_prev) 1952 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1953 rcu_read_unlock(); 1954 } 1955 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1956 1957 /** 1958 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1959 * @dev: Network device 1960 * @txq: number of queues available 1961 * 1962 * If real_num_tx_queues is changed the tc mappings may no longer be 1963 * valid. To resolve this verify the tc mapping remains valid and if 1964 * not NULL the mapping. With no priorities mapping to this 1965 * offset/count pair it will no longer be used. In the worst case TC0 1966 * is invalid nothing can be done so disable priority mappings. If is 1967 * expected that drivers will fix this mapping if they can before 1968 * calling netif_set_real_num_tx_queues. 1969 */ 1970 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1971 { 1972 int i; 1973 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1974 1975 /* If TC0 is invalidated disable TC mapping */ 1976 if (tc->offset + tc->count > txq) { 1977 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 1978 dev->num_tc = 0; 1979 return; 1980 } 1981 1982 /* Invalidated prio to tc mappings set to TC0 */ 1983 for (i = 1; i < TC_BITMASK + 1; i++) { 1984 int q = netdev_get_prio_tc_map(dev, i); 1985 1986 tc = &dev->tc_to_txq[q]; 1987 if (tc->offset + tc->count > txq) { 1988 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 1989 i, q); 1990 netdev_set_prio_tc_map(dev, i, 0); 1991 } 1992 } 1993 } 1994 1995 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 1996 { 1997 if (dev->num_tc) { 1998 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1999 int i; 2000 2001 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2002 if ((txq - tc->offset) < tc->count) 2003 return i; 2004 } 2005 2006 return -1; 2007 } 2008 2009 return 0; 2010 } 2011 2012 #ifdef CONFIG_XPS 2013 static DEFINE_MUTEX(xps_map_mutex); 2014 #define xmap_dereference(P) \ 2015 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2016 2017 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2018 int tci, u16 index) 2019 { 2020 struct xps_map *map = NULL; 2021 int pos; 2022 2023 if (dev_maps) 2024 map = xmap_dereference(dev_maps->cpu_map[tci]); 2025 if (!map) 2026 return false; 2027 2028 for (pos = map->len; pos--;) { 2029 if (map->queues[pos] != index) 2030 continue; 2031 2032 if (map->len > 1) { 2033 map->queues[pos] = map->queues[--map->len]; 2034 break; 2035 } 2036 2037 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2038 kfree_rcu(map, rcu); 2039 return false; 2040 } 2041 2042 return true; 2043 } 2044 2045 static bool remove_xps_queue_cpu(struct net_device *dev, 2046 struct xps_dev_maps *dev_maps, 2047 int cpu, u16 offset, u16 count) 2048 { 2049 int num_tc = dev->num_tc ? : 1; 2050 bool active = false; 2051 int tci; 2052 2053 for (tci = cpu * num_tc; num_tc--; tci++) { 2054 int i, j; 2055 2056 for (i = count, j = offset; i--; j++) { 2057 if (!remove_xps_queue(dev_maps, cpu, j)) 2058 break; 2059 } 2060 2061 active |= i < 0; 2062 } 2063 2064 return active; 2065 } 2066 2067 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2068 u16 count) 2069 { 2070 struct xps_dev_maps *dev_maps; 2071 int cpu, i; 2072 bool active = false; 2073 2074 mutex_lock(&xps_map_mutex); 2075 dev_maps = xmap_dereference(dev->xps_maps); 2076 2077 if (!dev_maps) 2078 goto out_no_maps; 2079 2080 for_each_possible_cpu(cpu) 2081 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2082 offset, count); 2083 2084 if (!active) { 2085 RCU_INIT_POINTER(dev->xps_maps, NULL); 2086 kfree_rcu(dev_maps, rcu); 2087 } 2088 2089 for (i = offset + (count - 1); count--; i--) 2090 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2091 NUMA_NO_NODE); 2092 2093 out_no_maps: 2094 mutex_unlock(&xps_map_mutex); 2095 } 2096 2097 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2098 { 2099 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2100 } 2101 2102 static struct xps_map *expand_xps_map(struct xps_map *map, 2103 int cpu, u16 index) 2104 { 2105 struct xps_map *new_map; 2106 int alloc_len = XPS_MIN_MAP_ALLOC; 2107 int i, pos; 2108 2109 for (pos = 0; map && pos < map->len; pos++) { 2110 if (map->queues[pos] != index) 2111 continue; 2112 return map; 2113 } 2114 2115 /* Need to add queue to this CPU's existing map */ 2116 if (map) { 2117 if (pos < map->alloc_len) 2118 return map; 2119 2120 alloc_len = map->alloc_len * 2; 2121 } 2122 2123 /* Need to allocate new map to store queue on this CPU's map */ 2124 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2125 cpu_to_node(cpu)); 2126 if (!new_map) 2127 return NULL; 2128 2129 for (i = 0; i < pos; i++) 2130 new_map->queues[i] = map->queues[i]; 2131 new_map->alloc_len = alloc_len; 2132 new_map->len = pos; 2133 2134 return new_map; 2135 } 2136 2137 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2138 u16 index) 2139 { 2140 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2141 int i, cpu, tci, numa_node_id = -2; 2142 int maps_sz, num_tc = 1, tc = 0; 2143 struct xps_map *map, *new_map; 2144 bool active = false; 2145 2146 if (dev->num_tc) { 2147 num_tc = dev->num_tc; 2148 tc = netdev_txq_to_tc(dev, index); 2149 if (tc < 0) 2150 return -EINVAL; 2151 } 2152 2153 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2154 if (maps_sz < L1_CACHE_BYTES) 2155 maps_sz = L1_CACHE_BYTES; 2156 2157 mutex_lock(&xps_map_mutex); 2158 2159 dev_maps = xmap_dereference(dev->xps_maps); 2160 2161 /* allocate memory for queue storage */ 2162 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2163 if (!new_dev_maps) 2164 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2165 if (!new_dev_maps) { 2166 mutex_unlock(&xps_map_mutex); 2167 return -ENOMEM; 2168 } 2169 2170 tci = cpu * num_tc + tc; 2171 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2172 NULL; 2173 2174 map = expand_xps_map(map, cpu, index); 2175 if (!map) 2176 goto error; 2177 2178 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2179 } 2180 2181 if (!new_dev_maps) 2182 goto out_no_new_maps; 2183 2184 for_each_possible_cpu(cpu) { 2185 /* copy maps belonging to foreign traffic classes */ 2186 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2187 /* fill in the new device map from the old device map */ 2188 map = xmap_dereference(dev_maps->cpu_map[tci]); 2189 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2190 } 2191 2192 /* We need to explicitly update tci as prevous loop 2193 * could break out early if dev_maps is NULL. 2194 */ 2195 tci = cpu * num_tc + tc; 2196 2197 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2198 /* add queue to CPU maps */ 2199 int pos = 0; 2200 2201 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2202 while ((pos < map->len) && (map->queues[pos] != index)) 2203 pos++; 2204 2205 if (pos == map->len) 2206 map->queues[map->len++] = index; 2207 #ifdef CONFIG_NUMA 2208 if (numa_node_id == -2) 2209 numa_node_id = cpu_to_node(cpu); 2210 else if (numa_node_id != cpu_to_node(cpu)) 2211 numa_node_id = -1; 2212 #endif 2213 } else if (dev_maps) { 2214 /* fill in the new device map from the old device map */ 2215 map = xmap_dereference(dev_maps->cpu_map[tci]); 2216 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2217 } 2218 2219 /* copy maps belonging to foreign traffic classes */ 2220 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2221 /* fill in the new device map from the old device map */ 2222 map = xmap_dereference(dev_maps->cpu_map[tci]); 2223 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2224 } 2225 } 2226 2227 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2228 2229 /* Cleanup old maps */ 2230 if (!dev_maps) 2231 goto out_no_old_maps; 2232 2233 for_each_possible_cpu(cpu) { 2234 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2235 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2236 map = xmap_dereference(dev_maps->cpu_map[tci]); 2237 if (map && map != new_map) 2238 kfree_rcu(map, rcu); 2239 } 2240 } 2241 2242 kfree_rcu(dev_maps, rcu); 2243 2244 out_no_old_maps: 2245 dev_maps = new_dev_maps; 2246 active = true; 2247 2248 out_no_new_maps: 2249 /* update Tx queue numa node */ 2250 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2251 (numa_node_id >= 0) ? numa_node_id : 2252 NUMA_NO_NODE); 2253 2254 if (!dev_maps) 2255 goto out_no_maps; 2256 2257 /* removes queue from unused CPUs */ 2258 for_each_possible_cpu(cpu) { 2259 for (i = tc, tci = cpu * num_tc; i--; tci++) 2260 active |= remove_xps_queue(dev_maps, tci, index); 2261 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2262 active |= remove_xps_queue(dev_maps, tci, index); 2263 for (i = num_tc - tc, tci++; --i; tci++) 2264 active |= remove_xps_queue(dev_maps, tci, index); 2265 } 2266 2267 /* free map if not active */ 2268 if (!active) { 2269 RCU_INIT_POINTER(dev->xps_maps, NULL); 2270 kfree_rcu(dev_maps, rcu); 2271 } 2272 2273 out_no_maps: 2274 mutex_unlock(&xps_map_mutex); 2275 2276 return 0; 2277 error: 2278 /* remove any maps that we added */ 2279 for_each_possible_cpu(cpu) { 2280 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2281 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2282 map = dev_maps ? 2283 xmap_dereference(dev_maps->cpu_map[tci]) : 2284 NULL; 2285 if (new_map && new_map != map) 2286 kfree(new_map); 2287 } 2288 } 2289 2290 mutex_unlock(&xps_map_mutex); 2291 2292 kfree(new_dev_maps); 2293 return -ENOMEM; 2294 } 2295 EXPORT_SYMBOL(netif_set_xps_queue); 2296 2297 #endif 2298 void netdev_reset_tc(struct net_device *dev) 2299 { 2300 #ifdef CONFIG_XPS 2301 netif_reset_xps_queues_gt(dev, 0); 2302 #endif 2303 dev->num_tc = 0; 2304 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2305 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2306 } 2307 EXPORT_SYMBOL(netdev_reset_tc); 2308 2309 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2310 { 2311 if (tc >= dev->num_tc) 2312 return -EINVAL; 2313 2314 #ifdef CONFIG_XPS 2315 netif_reset_xps_queues(dev, offset, count); 2316 #endif 2317 dev->tc_to_txq[tc].count = count; 2318 dev->tc_to_txq[tc].offset = offset; 2319 return 0; 2320 } 2321 EXPORT_SYMBOL(netdev_set_tc_queue); 2322 2323 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2324 { 2325 if (num_tc > TC_MAX_QUEUE) 2326 return -EINVAL; 2327 2328 #ifdef CONFIG_XPS 2329 netif_reset_xps_queues_gt(dev, 0); 2330 #endif 2331 dev->num_tc = num_tc; 2332 return 0; 2333 } 2334 EXPORT_SYMBOL(netdev_set_num_tc); 2335 2336 /* 2337 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2338 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2339 */ 2340 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2341 { 2342 int rc; 2343 2344 if (txq < 1 || txq > dev->num_tx_queues) 2345 return -EINVAL; 2346 2347 if (dev->reg_state == NETREG_REGISTERED || 2348 dev->reg_state == NETREG_UNREGISTERING) { 2349 ASSERT_RTNL(); 2350 2351 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2352 txq); 2353 if (rc) 2354 return rc; 2355 2356 if (dev->num_tc) 2357 netif_setup_tc(dev, txq); 2358 2359 if (txq < dev->real_num_tx_queues) { 2360 qdisc_reset_all_tx_gt(dev, txq); 2361 #ifdef CONFIG_XPS 2362 netif_reset_xps_queues_gt(dev, txq); 2363 #endif 2364 } 2365 } 2366 2367 dev->real_num_tx_queues = txq; 2368 return 0; 2369 } 2370 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2371 2372 #ifdef CONFIG_SYSFS 2373 /** 2374 * netif_set_real_num_rx_queues - set actual number of RX queues used 2375 * @dev: Network device 2376 * @rxq: Actual number of RX queues 2377 * 2378 * This must be called either with the rtnl_lock held or before 2379 * registration of the net device. Returns 0 on success, or a 2380 * negative error code. If called before registration, it always 2381 * succeeds. 2382 */ 2383 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2384 { 2385 int rc; 2386 2387 if (rxq < 1 || rxq > dev->num_rx_queues) 2388 return -EINVAL; 2389 2390 if (dev->reg_state == NETREG_REGISTERED) { 2391 ASSERT_RTNL(); 2392 2393 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2394 rxq); 2395 if (rc) 2396 return rc; 2397 } 2398 2399 dev->real_num_rx_queues = rxq; 2400 return 0; 2401 } 2402 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2403 #endif 2404 2405 /** 2406 * netif_get_num_default_rss_queues - default number of RSS queues 2407 * 2408 * This routine should set an upper limit on the number of RSS queues 2409 * used by default by multiqueue devices. 2410 */ 2411 int netif_get_num_default_rss_queues(void) 2412 { 2413 return is_kdump_kernel() ? 2414 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2415 } 2416 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2417 2418 static void __netif_reschedule(struct Qdisc *q) 2419 { 2420 struct softnet_data *sd; 2421 unsigned long flags; 2422 2423 local_irq_save(flags); 2424 sd = this_cpu_ptr(&softnet_data); 2425 q->next_sched = NULL; 2426 *sd->output_queue_tailp = q; 2427 sd->output_queue_tailp = &q->next_sched; 2428 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2429 local_irq_restore(flags); 2430 } 2431 2432 void __netif_schedule(struct Qdisc *q) 2433 { 2434 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2435 __netif_reschedule(q); 2436 } 2437 EXPORT_SYMBOL(__netif_schedule); 2438 2439 struct dev_kfree_skb_cb { 2440 enum skb_free_reason reason; 2441 }; 2442 2443 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2444 { 2445 return (struct dev_kfree_skb_cb *)skb->cb; 2446 } 2447 2448 void netif_schedule_queue(struct netdev_queue *txq) 2449 { 2450 rcu_read_lock(); 2451 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2452 struct Qdisc *q = rcu_dereference(txq->qdisc); 2453 2454 __netif_schedule(q); 2455 } 2456 rcu_read_unlock(); 2457 } 2458 EXPORT_SYMBOL(netif_schedule_queue); 2459 2460 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2461 { 2462 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2463 struct Qdisc *q; 2464 2465 rcu_read_lock(); 2466 q = rcu_dereference(dev_queue->qdisc); 2467 __netif_schedule(q); 2468 rcu_read_unlock(); 2469 } 2470 } 2471 EXPORT_SYMBOL(netif_tx_wake_queue); 2472 2473 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2474 { 2475 unsigned long flags; 2476 2477 if (unlikely(!skb)) 2478 return; 2479 2480 if (likely(refcount_read(&skb->users) == 1)) { 2481 smp_rmb(); 2482 refcount_set(&skb->users, 0); 2483 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2484 return; 2485 } 2486 get_kfree_skb_cb(skb)->reason = reason; 2487 local_irq_save(flags); 2488 skb->next = __this_cpu_read(softnet_data.completion_queue); 2489 __this_cpu_write(softnet_data.completion_queue, skb); 2490 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2491 local_irq_restore(flags); 2492 } 2493 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2494 2495 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2496 { 2497 if (in_irq() || irqs_disabled()) 2498 __dev_kfree_skb_irq(skb, reason); 2499 else 2500 dev_kfree_skb(skb); 2501 } 2502 EXPORT_SYMBOL(__dev_kfree_skb_any); 2503 2504 2505 /** 2506 * netif_device_detach - mark device as removed 2507 * @dev: network device 2508 * 2509 * Mark device as removed from system and therefore no longer available. 2510 */ 2511 void netif_device_detach(struct net_device *dev) 2512 { 2513 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2514 netif_running(dev)) { 2515 netif_tx_stop_all_queues(dev); 2516 } 2517 } 2518 EXPORT_SYMBOL(netif_device_detach); 2519 2520 /** 2521 * netif_device_attach - mark device as attached 2522 * @dev: network device 2523 * 2524 * Mark device as attached from system and restart if needed. 2525 */ 2526 void netif_device_attach(struct net_device *dev) 2527 { 2528 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2529 netif_running(dev)) { 2530 netif_tx_wake_all_queues(dev); 2531 __netdev_watchdog_up(dev); 2532 } 2533 } 2534 EXPORT_SYMBOL(netif_device_attach); 2535 2536 /* 2537 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2538 * to be used as a distribution range. 2539 */ 2540 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2541 unsigned int num_tx_queues) 2542 { 2543 u32 hash; 2544 u16 qoffset = 0; 2545 u16 qcount = num_tx_queues; 2546 2547 if (skb_rx_queue_recorded(skb)) { 2548 hash = skb_get_rx_queue(skb); 2549 while (unlikely(hash >= num_tx_queues)) 2550 hash -= num_tx_queues; 2551 return hash; 2552 } 2553 2554 if (dev->num_tc) { 2555 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2556 2557 qoffset = dev->tc_to_txq[tc].offset; 2558 qcount = dev->tc_to_txq[tc].count; 2559 } 2560 2561 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2562 } 2563 EXPORT_SYMBOL(__skb_tx_hash); 2564 2565 static void skb_warn_bad_offload(const struct sk_buff *skb) 2566 { 2567 static const netdev_features_t null_features; 2568 struct net_device *dev = skb->dev; 2569 const char *name = ""; 2570 2571 if (!net_ratelimit()) 2572 return; 2573 2574 if (dev) { 2575 if (dev->dev.parent) 2576 name = dev_driver_string(dev->dev.parent); 2577 else 2578 name = netdev_name(dev); 2579 } 2580 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2581 "gso_type=%d ip_summed=%d\n", 2582 name, dev ? &dev->features : &null_features, 2583 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2584 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2585 skb_shinfo(skb)->gso_type, skb->ip_summed); 2586 } 2587 2588 /* 2589 * Invalidate hardware checksum when packet is to be mangled, and 2590 * complete checksum manually on outgoing path. 2591 */ 2592 int skb_checksum_help(struct sk_buff *skb) 2593 { 2594 __wsum csum; 2595 int ret = 0, offset; 2596 2597 if (skb->ip_summed == CHECKSUM_COMPLETE) 2598 goto out_set_summed; 2599 2600 if (unlikely(skb_shinfo(skb)->gso_size)) { 2601 skb_warn_bad_offload(skb); 2602 return -EINVAL; 2603 } 2604 2605 /* Before computing a checksum, we should make sure no frag could 2606 * be modified by an external entity : checksum could be wrong. 2607 */ 2608 if (skb_has_shared_frag(skb)) { 2609 ret = __skb_linearize(skb); 2610 if (ret) 2611 goto out; 2612 } 2613 2614 offset = skb_checksum_start_offset(skb); 2615 BUG_ON(offset >= skb_headlen(skb)); 2616 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2617 2618 offset += skb->csum_offset; 2619 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2620 2621 if (skb_cloned(skb) && 2622 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2623 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2624 if (ret) 2625 goto out; 2626 } 2627 2628 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2629 out_set_summed: 2630 skb->ip_summed = CHECKSUM_NONE; 2631 out: 2632 return ret; 2633 } 2634 EXPORT_SYMBOL(skb_checksum_help); 2635 2636 int skb_crc32c_csum_help(struct sk_buff *skb) 2637 { 2638 __le32 crc32c_csum; 2639 int ret = 0, offset, start; 2640 2641 if (skb->ip_summed != CHECKSUM_PARTIAL) 2642 goto out; 2643 2644 if (unlikely(skb_is_gso(skb))) 2645 goto out; 2646 2647 /* Before computing a checksum, we should make sure no frag could 2648 * be modified by an external entity : checksum could be wrong. 2649 */ 2650 if (unlikely(skb_has_shared_frag(skb))) { 2651 ret = __skb_linearize(skb); 2652 if (ret) 2653 goto out; 2654 } 2655 start = skb_checksum_start_offset(skb); 2656 offset = start + offsetof(struct sctphdr, checksum); 2657 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2658 ret = -EINVAL; 2659 goto out; 2660 } 2661 if (skb_cloned(skb) && 2662 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2663 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2664 if (ret) 2665 goto out; 2666 } 2667 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2668 skb->len - start, ~(__u32)0, 2669 crc32c_csum_stub)); 2670 *(__le32 *)(skb->data + offset) = crc32c_csum; 2671 skb->ip_summed = CHECKSUM_NONE; 2672 skb->csum_not_inet = 0; 2673 out: 2674 return ret; 2675 } 2676 2677 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2678 { 2679 __be16 type = skb->protocol; 2680 2681 /* Tunnel gso handlers can set protocol to ethernet. */ 2682 if (type == htons(ETH_P_TEB)) { 2683 struct ethhdr *eth; 2684 2685 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2686 return 0; 2687 2688 eth = (struct ethhdr *)skb_mac_header(skb); 2689 type = eth->h_proto; 2690 } 2691 2692 return __vlan_get_protocol(skb, type, depth); 2693 } 2694 2695 /** 2696 * skb_mac_gso_segment - mac layer segmentation handler. 2697 * @skb: buffer to segment 2698 * @features: features for the output path (see dev->features) 2699 */ 2700 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2701 netdev_features_t features) 2702 { 2703 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2704 struct packet_offload *ptype; 2705 int vlan_depth = skb->mac_len; 2706 __be16 type = skb_network_protocol(skb, &vlan_depth); 2707 2708 if (unlikely(!type)) 2709 return ERR_PTR(-EINVAL); 2710 2711 __skb_pull(skb, vlan_depth); 2712 2713 rcu_read_lock(); 2714 list_for_each_entry_rcu(ptype, &offload_base, list) { 2715 if (ptype->type == type && ptype->callbacks.gso_segment) { 2716 segs = ptype->callbacks.gso_segment(skb, features); 2717 break; 2718 } 2719 } 2720 rcu_read_unlock(); 2721 2722 __skb_push(skb, skb->data - skb_mac_header(skb)); 2723 2724 return segs; 2725 } 2726 EXPORT_SYMBOL(skb_mac_gso_segment); 2727 2728 2729 /* openvswitch calls this on rx path, so we need a different check. 2730 */ 2731 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2732 { 2733 if (tx_path) 2734 return skb->ip_summed != CHECKSUM_PARTIAL && 2735 skb->ip_summed != CHECKSUM_NONE; 2736 2737 return skb->ip_summed == CHECKSUM_NONE; 2738 } 2739 2740 /** 2741 * __skb_gso_segment - Perform segmentation on skb. 2742 * @skb: buffer to segment 2743 * @features: features for the output path (see dev->features) 2744 * @tx_path: whether it is called in TX path 2745 * 2746 * This function segments the given skb and returns a list of segments. 2747 * 2748 * It may return NULL if the skb requires no segmentation. This is 2749 * only possible when GSO is used for verifying header integrity. 2750 * 2751 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2752 */ 2753 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2754 netdev_features_t features, bool tx_path) 2755 { 2756 struct sk_buff *segs; 2757 2758 if (unlikely(skb_needs_check(skb, tx_path))) { 2759 int err; 2760 2761 /* We're going to init ->check field in TCP or UDP header */ 2762 err = skb_cow_head(skb, 0); 2763 if (err < 0) 2764 return ERR_PTR(err); 2765 } 2766 2767 /* Only report GSO partial support if it will enable us to 2768 * support segmentation on this frame without needing additional 2769 * work. 2770 */ 2771 if (features & NETIF_F_GSO_PARTIAL) { 2772 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2773 struct net_device *dev = skb->dev; 2774 2775 partial_features |= dev->features & dev->gso_partial_features; 2776 if (!skb_gso_ok(skb, features | partial_features)) 2777 features &= ~NETIF_F_GSO_PARTIAL; 2778 } 2779 2780 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2781 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2782 2783 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2784 SKB_GSO_CB(skb)->encap_level = 0; 2785 2786 skb_reset_mac_header(skb); 2787 skb_reset_mac_len(skb); 2788 2789 segs = skb_mac_gso_segment(skb, features); 2790 2791 if (unlikely(skb_needs_check(skb, tx_path))) 2792 skb_warn_bad_offload(skb); 2793 2794 return segs; 2795 } 2796 EXPORT_SYMBOL(__skb_gso_segment); 2797 2798 /* Take action when hardware reception checksum errors are detected. */ 2799 #ifdef CONFIG_BUG 2800 void netdev_rx_csum_fault(struct net_device *dev) 2801 { 2802 if (net_ratelimit()) { 2803 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2804 dump_stack(); 2805 } 2806 } 2807 EXPORT_SYMBOL(netdev_rx_csum_fault); 2808 #endif 2809 2810 /* Actually, we should eliminate this check as soon as we know, that: 2811 * 1. IOMMU is present and allows to map all the memory. 2812 * 2. No high memory really exists on this machine. 2813 */ 2814 2815 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2816 { 2817 #ifdef CONFIG_HIGHMEM 2818 int i; 2819 2820 if (!(dev->features & NETIF_F_HIGHDMA)) { 2821 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2822 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2823 2824 if (PageHighMem(skb_frag_page(frag))) 2825 return 1; 2826 } 2827 } 2828 2829 if (PCI_DMA_BUS_IS_PHYS) { 2830 struct device *pdev = dev->dev.parent; 2831 2832 if (!pdev) 2833 return 0; 2834 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2835 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2836 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2837 2838 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2839 return 1; 2840 } 2841 } 2842 #endif 2843 return 0; 2844 } 2845 2846 /* If MPLS offload request, verify we are testing hardware MPLS features 2847 * instead of standard features for the netdev. 2848 */ 2849 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2850 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2851 netdev_features_t features, 2852 __be16 type) 2853 { 2854 if (eth_p_mpls(type)) 2855 features &= skb->dev->mpls_features; 2856 2857 return features; 2858 } 2859 #else 2860 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2861 netdev_features_t features, 2862 __be16 type) 2863 { 2864 return features; 2865 } 2866 #endif 2867 2868 static netdev_features_t harmonize_features(struct sk_buff *skb, 2869 netdev_features_t features) 2870 { 2871 int tmp; 2872 __be16 type; 2873 2874 type = skb_network_protocol(skb, &tmp); 2875 features = net_mpls_features(skb, features, type); 2876 2877 if (skb->ip_summed != CHECKSUM_NONE && 2878 !can_checksum_protocol(features, type)) { 2879 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2880 } 2881 if (illegal_highdma(skb->dev, skb)) 2882 features &= ~NETIF_F_SG; 2883 2884 return features; 2885 } 2886 2887 netdev_features_t passthru_features_check(struct sk_buff *skb, 2888 struct net_device *dev, 2889 netdev_features_t features) 2890 { 2891 return features; 2892 } 2893 EXPORT_SYMBOL(passthru_features_check); 2894 2895 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2896 struct net_device *dev, 2897 netdev_features_t features) 2898 { 2899 return vlan_features_check(skb, features); 2900 } 2901 2902 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2903 struct net_device *dev, 2904 netdev_features_t features) 2905 { 2906 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2907 2908 if (gso_segs > dev->gso_max_segs) 2909 return features & ~NETIF_F_GSO_MASK; 2910 2911 /* Support for GSO partial features requires software 2912 * intervention before we can actually process the packets 2913 * so we need to strip support for any partial features now 2914 * and we can pull them back in after we have partially 2915 * segmented the frame. 2916 */ 2917 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2918 features &= ~dev->gso_partial_features; 2919 2920 /* Make sure to clear the IPv4 ID mangling feature if the 2921 * IPv4 header has the potential to be fragmented. 2922 */ 2923 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2924 struct iphdr *iph = skb->encapsulation ? 2925 inner_ip_hdr(skb) : ip_hdr(skb); 2926 2927 if (!(iph->frag_off & htons(IP_DF))) 2928 features &= ~NETIF_F_TSO_MANGLEID; 2929 } 2930 2931 return features; 2932 } 2933 2934 netdev_features_t netif_skb_features(struct sk_buff *skb) 2935 { 2936 struct net_device *dev = skb->dev; 2937 netdev_features_t features = dev->features; 2938 2939 if (skb_is_gso(skb)) 2940 features = gso_features_check(skb, dev, features); 2941 2942 /* If encapsulation offload request, verify we are testing 2943 * hardware encapsulation features instead of standard 2944 * features for the netdev 2945 */ 2946 if (skb->encapsulation) 2947 features &= dev->hw_enc_features; 2948 2949 if (skb_vlan_tagged(skb)) 2950 features = netdev_intersect_features(features, 2951 dev->vlan_features | 2952 NETIF_F_HW_VLAN_CTAG_TX | 2953 NETIF_F_HW_VLAN_STAG_TX); 2954 2955 if (dev->netdev_ops->ndo_features_check) 2956 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2957 features); 2958 else 2959 features &= dflt_features_check(skb, dev, features); 2960 2961 return harmonize_features(skb, features); 2962 } 2963 EXPORT_SYMBOL(netif_skb_features); 2964 2965 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2966 struct netdev_queue *txq, bool more) 2967 { 2968 unsigned int len; 2969 int rc; 2970 2971 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 2972 dev_queue_xmit_nit(skb, dev); 2973 2974 len = skb->len; 2975 trace_net_dev_start_xmit(skb, dev); 2976 rc = netdev_start_xmit(skb, dev, txq, more); 2977 trace_net_dev_xmit(skb, rc, dev, len); 2978 2979 return rc; 2980 } 2981 2982 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 2983 struct netdev_queue *txq, int *ret) 2984 { 2985 struct sk_buff *skb = first; 2986 int rc = NETDEV_TX_OK; 2987 2988 while (skb) { 2989 struct sk_buff *next = skb->next; 2990 2991 skb->next = NULL; 2992 rc = xmit_one(skb, dev, txq, next != NULL); 2993 if (unlikely(!dev_xmit_complete(rc))) { 2994 skb->next = next; 2995 goto out; 2996 } 2997 2998 skb = next; 2999 if (netif_xmit_stopped(txq) && skb) { 3000 rc = NETDEV_TX_BUSY; 3001 break; 3002 } 3003 } 3004 3005 out: 3006 *ret = rc; 3007 return skb; 3008 } 3009 3010 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3011 netdev_features_t features) 3012 { 3013 if (skb_vlan_tag_present(skb) && 3014 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3015 skb = __vlan_hwaccel_push_inside(skb); 3016 return skb; 3017 } 3018 3019 int skb_csum_hwoffload_help(struct sk_buff *skb, 3020 const netdev_features_t features) 3021 { 3022 if (unlikely(skb->csum_not_inet)) 3023 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3024 skb_crc32c_csum_help(skb); 3025 3026 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3027 } 3028 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3029 3030 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 3031 { 3032 netdev_features_t features; 3033 3034 features = netif_skb_features(skb); 3035 skb = validate_xmit_vlan(skb, features); 3036 if (unlikely(!skb)) 3037 goto out_null; 3038 3039 if (netif_needs_gso(skb, features)) { 3040 struct sk_buff *segs; 3041 3042 segs = skb_gso_segment(skb, features); 3043 if (IS_ERR(segs)) { 3044 goto out_kfree_skb; 3045 } else if (segs) { 3046 consume_skb(skb); 3047 skb = segs; 3048 } 3049 } else { 3050 if (skb_needs_linearize(skb, features) && 3051 __skb_linearize(skb)) 3052 goto out_kfree_skb; 3053 3054 if (validate_xmit_xfrm(skb, features)) 3055 goto out_kfree_skb; 3056 3057 /* If packet is not checksummed and device does not 3058 * support checksumming for this protocol, complete 3059 * checksumming here. 3060 */ 3061 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3062 if (skb->encapsulation) 3063 skb_set_inner_transport_header(skb, 3064 skb_checksum_start_offset(skb)); 3065 else 3066 skb_set_transport_header(skb, 3067 skb_checksum_start_offset(skb)); 3068 if (skb_csum_hwoffload_help(skb, features)) 3069 goto out_kfree_skb; 3070 } 3071 } 3072 3073 return skb; 3074 3075 out_kfree_skb: 3076 kfree_skb(skb); 3077 out_null: 3078 atomic_long_inc(&dev->tx_dropped); 3079 return NULL; 3080 } 3081 3082 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3083 { 3084 struct sk_buff *next, *head = NULL, *tail; 3085 3086 for (; skb != NULL; skb = next) { 3087 next = skb->next; 3088 skb->next = NULL; 3089 3090 /* in case skb wont be segmented, point to itself */ 3091 skb->prev = skb; 3092 3093 skb = validate_xmit_skb(skb, dev); 3094 if (!skb) 3095 continue; 3096 3097 if (!head) 3098 head = skb; 3099 else 3100 tail->next = skb; 3101 /* If skb was segmented, skb->prev points to 3102 * the last segment. If not, it still contains skb. 3103 */ 3104 tail = skb->prev; 3105 } 3106 return head; 3107 } 3108 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3109 3110 static void qdisc_pkt_len_init(struct sk_buff *skb) 3111 { 3112 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3113 3114 qdisc_skb_cb(skb)->pkt_len = skb->len; 3115 3116 /* To get more precise estimation of bytes sent on wire, 3117 * we add to pkt_len the headers size of all segments 3118 */ 3119 if (shinfo->gso_size) { 3120 unsigned int hdr_len; 3121 u16 gso_segs = shinfo->gso_segs; 3122 3123 /* mac layer + network layer */ 3124 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3125 3126 /* + transport layer */ 3127 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3128 hdr_len += tcp_hdrlen(skb); 3129 else 3130 hdr_len += sizeof(struct udphdr); 3131 3132 if (shinfo->gso_type & SKB_GSO_DODGY) 3133 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3134 shinfo->gso_size); 3135 3136 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3137 } 3138 } 3139 3140 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3141 struct net_device *dev, 3142 struct netdev_queue *txq) 3143 { 3144 spinlock_t *root_lock = qdisc_lock(q); 3145 struct sk_buff *to_free = NULL; 3146 bool contended; 3147 int rc; 3148 3149 qdisc_calculate_pkt_len(skb, q); 3150 /* 3151 * Heuristic to force contended enqueues to serialize on a 3152 * separate lock before trying to get qdisc main lock. 3153 * This permits qdisc->running owner to get the lock more 3154 * often and dequeue packets faster. 3155 */ 3156 contended = qdisc_is_running(q); 3157 if (unlikely(contended)) 3158 spin_lock(&q->busylock); 3159 3160 spin_lock(root_lock); 3161 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3162 __qdisc_drop(skb, &to_free); 3163 rc = NET_XMIT_DROP; 3164 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3165 qdisc_run_begin(q)) { 3166 /* 3167 * This is a work-conserving queue; there are no old skbs 3168 * waiting to be sent out; and the qdisc is not running - 3169 * xmit the skb directly. 3170 */ 3171 3172 qdisc_bstats_update(q, skb); 3173 3174 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3175 if (unlikely(contended)) { 3176 spin_unlock(&q->busylock); 3177 contended = false; 3178 } 3179 __qdisc_run(q); 3180 } else 3181 qdisc_run_end(q); 3182 3183 rc = NET_XMIT_SUCCESS; 3184 } else { 3185 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3186 if (qdisc_run_begin(q)) { 3187 if (unlikely(contended)) { 3188 spin_unlock(&q->busylock); 3189 contended = false; 3190 } 3191 __qdisc_run(q); 3192 } 3193 } 3194 spin_unlock(root_lock); 3195 if (unlikely(to_free)) 3196 kfree_skb_list(to_free); 3197 if (unlikely(contended)) 3198 spin_unlock(&q->busylock); 3199 return rc; 3200 } 3201 3202 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3203 static void skb_update_prio(struct sk_buff *skb) 3204 { 3205 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3206 3207 if (!skb->priority && skb->sk && map) { 3208 unsigned int prioidx = 3209 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3210 3211 if (prioidx < map->priomap_len) 3212 skb->priority = map->priomap[prioidx]; 3213 } 3214 } 3215 #else 3216 #define skb_update_prio(skb) 3217 #endif 3218 3219 DEFINE_PER_CPU(int, xmit_recursion); 3220 EXPORT_SYMBOL(xmit_recursion); 3221 3222 /** 3223 * dev_loopback_xmit - loop back @skb 3224 * @net: network namespace this loopback is happening in 3225 * @sk: sk needed to be a netfilter okfn 3226 * @skb: buffer to transmit 3227 */ 3228 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3229 { 3230 skb_reset_mac_header(skb); 3231 __skb_pull(skb, skb_network_offset(skb)); 3232 skb->pkt_type = PACKET_LOOPBACK; 3233 skb->ip_summed = CHECKSUM_UNNECESSARY; 3234 WARN_ON(!skb_dst(skb)); 3235 skb_dst_force(skb); 3236 netif_rx_ni(skb); 3237 return 0; 3238 } 3239 EXPORT_SYMBOL(dev_loopback_xmit); 3240 3241 #ifdef CONFIG_NET_EGRESS 3242 static struct sk_buff * 3243 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3244 { 3245 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3246 struct tcf_result cl_res; 3247 3248 if (!cl) 3249 return skb; 3250 3251 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3252 qdisc_bstats_cpu_update(cl->q, skb); 3253 3254 switch (tcf_classify(skb, cl, &cl_res, false)) { 3255 case TC_ACT_OK: 3256 case TC_ACT_RECLASSIFY: 3257 skb->tc_index = TC_H_MIN(cl_res.classid); 3258 break; 3259 case TC_ACT_SHOT: 3260 qdisc_qstats_cpu_drop(cl->q); 3261 *ret = NET_XMIT_DROP; 3262 kfree_skb(skb); 3263 return NULL; 3264 case TC_ACT_STOLEN: 3265 case TC_ACT_QUEUED: 3266 case TC_ACT_TRAP: 3267 *ret = NET_XMIT_SUCCESS; 3268 consume_skb(skb); 3269 return NULL; 3270 case TC_ACT_REDIRECT: 3271 /* No need to push/pop skb's mac_header here on egress! */ 3272 skb_do_redirect(skb); 3273 *ret = NET_XMIT_SUCCESS; 3274 return NULL; 3275 default: 3276 break; 3277 } 3278 3279 return skb; 3280 } 3281 #endif /* CONFIG_NET_EGRESS */ 3282 3283 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3284 { 3285 #ifdef CONFIG_XPS 3286 struct xps_dev_maps *dev_maps; 3287 struct xps_map *map; 3288 int queue_index = -1; 3289 3290 rcu_read_lock(); 3291 dev_maps = rcu_dereference(dev->xps_maps); 3292 if (dev_maps) { 3293 unsigned int tci = skb->sender_cpu - 1; 3294 3295 if (dev->num_tc) { 3296 tci *= dev->num_tc; 3297 tci += netdev_get_prio_tc_map(dev, skb->priority); 3298 } 3299 3300 map = rcu_dereference(dev_maps->cpu_map[tci]); 3301 if (map) { 3302 if (map->len == 1) 3303 queue_index = map->queues[0]; 3304 else 3305 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3306 map->len)]; 3307 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3308 queue_index = -1; 3309 } 3310 } 3311 rcu_read_unlock(); 3312 3313 return queue_index; 3314 #else 3315 return -1; 3316 #endif 3317 } 3318 3319 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3320 { 3321 struct sock *sk = skb->sk; 3322 int queue_index = sk_tx_queue_get(sk); 3323 3324 if (queue_index < 0 || skb->ooo_okay || 3325 queue_index >= dev->real_num_tx_queues) { 3326 int new_index = get_xps_queue(dev, skb); 3327 3328 if (new_index < 0) 3329 new_index = skb_tx_hash(dev, skb); 3330 3331 if (queue_index != new_index && sk && 3332 sk_fullsock(sk) && 3333 rcu_access_pointer(sk->sk_dst_cache)) 3334 sk_tx_queue_set(sk, new_index); 3335 3336 queue_index = new_index; 3337 } 3338 3339 return queue_index; 3340 } 3341 3342 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3343 struct sk_buff *skb, 3344 void *accel_priv) 3345 { 3346 int queue_index = 0; 3347 3348 #ifdef CONFIG_XPS 3349 u32 sender_cpu = skb->sender_cpu - 1; 3350 3351 if (sender_cpu >= (u32)NR_CPUS) 3352 skb->sender_cpu = raw_smp_processor_id() + 1; 3353 #endif 3354 3355 if (dev->real_num_tx_queues != 1) { 3356 const struct net_device_ops *ops = dev->netdev_ops; 3357 3358 if (ops->ndo_select_queue) 3359 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3360 __netdev_pick_tx); 3361 else 3362 queue_index = __netdev_pick_tx(dev, skb); 3363 3364 if (!accel_priv) 3365 queue_index = netdev_cap_txqueue(dev, queue_index); 3366 } 3367 3368 skb_set_queue_mapping(skb, queue_index); 3369 return netdev_get_tx_queue(dev, queue_index); 3370 } 3371 3372 /** 3373 * __dev_queue_xmit - transmit a buffer 3374 * @skb: buffer to transmit 3375 * @accel_priv: private data used for L2 forwarding offload 3376 * 3377 * Queue a buffer for transmission to a network device. The caller must 3378 * have set the device and priority and built the buffer before calling 3379 * this function. The function can be called from an interrupt. 3380 * 3381 * A negative errno code is returned on a failure. A success does not 3382 * guarantee the frame will be transmitted as it may be dropped due 3383 * to congestion or traffic shaping. 3384 * 3385 * ----------------------------------------------------------------------------------- 3386 * I notice this method can also return errors from the queue disciplines, 3387 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3388 * be positive. 3389 * 3390 * Regardless of the return value, the skb is consumed, so it is currently 3391 * difficult to retry a send to this method. (You can bump the ref count 3392 * before sending to hold a reference for retry if you are careful.) 3393 * 3394 * When calling this method, interrupts MUST be enabled. This is because 3395 * the BH enable code must have IRQs enabled so that it will not deadlock. 3396 * --BLG 3397 */ 3398 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3399 { 3400 struct net_device *dev = skb->dev; 3401 struct netdev_queue *txq; 3402 struct Qdisc *q; 3403 int rc = -ENOMEM; 3404 3405 skb_reset_mac_header(skb); 3406 3407 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3408 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3409 3410 /* Disable soft irqs for various locks below. Also 3411 * stops preemption for RCU. 3412 */ 3413 rcu_read_lock_bh(); 3414 3415 skb_update_prio(skb); 3416 3417 qdisc_pkt_len_init(skb); 3418 #ifdef CONFIG_NET_CLS_ACT 3419 skb->tc_at_ingress = 0; 3420 # ifdef CONFIG_NET_EGRESS 3421 if (static_key_false(&egress_needed)) { 3422 skb = sch_handle_egress(skb, &rc, dev); 3423 if (!skb) 3424 goto out; 3425 } 3426 # endif 3427 #endif 3428 /* If device/qdisc don't need skb->dst, release it right now while 3429 * its hot in this cpu cache. 3430 */ 3431 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3432 skb_dst_drop(skb); 3433 else 3434 skb_dst_force(skb); 3435 3436 txq = netdev_pick_tx(dev, skb, accel_priv); 3437 q = rcu_dereference_bh(txq->qdisc); 3438 3439 trace_net_dev_queue(skb); 3440 if (q->enqueue) { 3441 rc = __dev_xmit_skb(skb, q, dev, txq); 3442 goto out; 3443 } 3444 3445 /* The device has no queue. Common case for software devices: 3446 * loopback, all the sorts of tunnels... 3447 3448 * Really, it is unlikely that netif_tx_lock protection is necessary 3449 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3450 * counters.) 3451 * However, it is possible, that they rely on protection 3452 * made by us here. 3453 3454 * Check this and shot the lock. It is not prone from deadlocks. 3455 *Either shot noqueue qdisc, it is even simpler 8) 3456 */ 3457 if (dev->flags & IFF_UP) { 3458 int cpu = smp_processor_id(); /* ok because BHs are off */ 3459 3460 if (txq->xmit_lock_owner != cpu) { 3461 if (unlikely(__this_cpu_read(xmit_recursion) > 3462 XMIT_RECURSION_LIMIT)) 3463 goto recursion_alert; 3464 3465 skb = validate_xmit_skb(skb, dev); 3466 if (!skb) 3467 goto out; 3468 3469 HARD_TX_LOCK(dev, txq, cpu); 3470 3471 if (!netif_xmit_stopped(txq)) { 3472 __this_cpu_inc(xmit_recursion); 3473 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3474 __this_cpu_dec(xmit_recursion); 3475 if (dev_xmit_complete(rc)) { 3476 HARD_TX_UNLOCK(dev, txq); 3477 goto out; 3478 } 3479 } 3480 HARD_TX_UNLOCK(dev, txq); 3481 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3482 dev->name); 3483 } else { 3484 /* Recursion is detected! It is possible, 3485 * unfortunately 3486 */ 3487 recursion_alert: 3488 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3489 dev->name); 3490 } 3491 } 3492 3493 rc = -ENETDOWN; 3494 rcu_read_unlock_bh(); 3495 3496 atomic_long_inc(&dev->tx_dropped); 3497 kfree_skb_list(skb); 3498 return rc; 3499 out: 3500 rcu_read_unlock_bh(); 3501 return rc; 3502 } 3503 3504 int dev_queue_xmit(struct sk_buff *skb) 3505 { 3506 return __dev_queue_xmit(skb, NULL); 3507 } 3508 EXPORT_SYMBOL(dev_queue_xmit); 3509 3510 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3511 { 3512 return __dev_queue_xmit(skb, accel_priv); 3513 } 3514 EXPORT_SYMBOL(dev_queue_xmit_accel); 3515 3516 3517 /************************************************************************* 3518 * Receiver routines 3519 *************************************************************************/ 3520 3521 int netdev_max_backlog __read_mostly = 1000; 3522 EXPORT_SYMBOL(netdev_max_backlog); 3523 3524 int netdev_tstamp_prequeue __read_mostly = 1; 3525 int netdev_budget __read_mostly = 300; 3526 unsigned int __read_mostly netdev_budget_usecs = 2000; 3527 int weight_p __read_mostly = 64; /* old backlog weight */ 3528 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3529 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3530 int dev_rx_weight __read_mostly = 64; 3531 int dev_tx_weight __read_mostly = 64; 3532 3533 /* Called with irq disabled */ 3534 static inline void ____napi_schedule(struct softnet_data *sd, 3535 struct napi_struct *napi) 3536 { 3537 list_add_tail(&napi->poll_list, &sd->poll_list); 3538 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3539 } 3540 3541 #ifdef CONFIG_RPS 3542 3543 /* One global table that all flow-based protocols share. */ 3544 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3545 EXPORT_SYMBOL(rps_sock_flow_table); 3546 u32 rps_cpu_mask __read_mostly; 3547 EXPORT_SYMBOL(rps_cpu_mask); 3548 3549 struct static_key rps_needed __read_mostly; 3550 EXPORT_SYMBOL(rps_needed); 3551 struct static_key rfs_needed __read_mostly; 3552 EXPORT_SYMBOL(rfs_needed); 3553 3554 static struct rps_dev_flow * 3555 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3556 struct rps_dev_flow *rflow, u16 next_cpu) 3557 { 3558 if (next_cpu < nr_cpu_ids) { 3559 #ifdef CONFIG_RFS_ACCEL 3560 struct netdev_rx_queue *rxqueue; 3561 struct rps_dev_flow_table *flow_table; 3562 struct rps_dev_flow *old_rflow; 3563 u32 flow_id; 3564 u16 rxq_index; 3565 int rc; 3566 3567 /* Should we steer this flow to a different hardware queue? */ 3568 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3569 !(dev->features & NETIF_F_NTUPLE)) 3570 goto out; 3571 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3572 if (rxq_index == skb_get_rx_queue(skb)) 3573 goto out; 3574 3575 rxqueue = dev->_rx + rxq_index; 3576 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3577 if (!flow_table) 3578 goto out; 3579 flow_id = skb_get_hash(skb) & flow_table->mask; 3580 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3581 rxq_index, flow_id); 3582 if (rc < 0) 3583 goto out; 3584 old_rflow = rflow; 3585 rflow = &flow_table->flows[flow_id]; 3586 rflow->filter = rc; 3587 if (old_rflow->filter == rflow->filter) 3588 old_rflow->filter = RPS_NO_FILTER; 3589 out: 3590 #endif 3591 rflow->last_qtail = 3592 per_cpu(softnet_data, next_cpu).input_queue_head; 3593 } 3594 3595 rflow->cpu = next_cpu; 3596 return rflow; 3597 } 3598 3599 /* 3600 * get_rps_cpu is called from netif_receive_skb and returns the target 3601 * CPU from the RPS map of the receiving queue for a given skb. 3602 * rcu_read_lock must be held on entry. 3603 */ 3604 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3605 struct rps_dev_flow **rflowp) 3606 { 3607 const struct rps_sock_flow_table *sock_flow_table; 3608 struct netdev_rx_queue *rxqueue = dev->_rx; 3609 struct rps_dev_flow_table *flow_table; 3610 struct rps_map *map; 3611 int cpu = -1; 3612 u32 tcpu; 3613 u32 hash; 3614 3615 if (skb_rx_queue_recorded(skb)) { 3616 u16 index = skb_get_rx_queue(skb); 3617 3618 if (unlikely(index >= dev->real_num_rx_queues)) { 3619 WARN_ONCE(dev->real_num_rx_queues > 1, 3620 "%s received packet on queue %u, but number " 3621 "of RX queues is %u\n", 3622 dev->name, index, dev->real_num_rx_queues); 3623 goto done; 3624 } 3625 rxqueue += index; 3626 } 3627 3628 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3629 3630 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3631 map = rcu_dereference(rxqueue->rps_map); 3632 if (!flow_table && !map) 3633 goto done; 3634 3635 skb_reset_network_header(skb); 3636 hash = skb_get_hash(skb); 3637 if (!hash) 3638 goto done; 3639 3640 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3641 if (flow_table && sock_flow_table) { 3642 struct rps_dev_flow *rflow; 3643 u32 next_cpu; 3644 u32 ident; 3645 3646 /* First check into global flow table if there is a match */ 3647 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3648 if ((ident ^ hash) & ~rps_cpu_mask) 3649 goto try_rps; 3650 3651 next_cpu = ident & rps_cpu_mask; 3652 3653 /* OK, now we know there is a match, 3654 * we can look at the local (per receive queue) flow table 3655 */ 3656 rflow = &flow_table->flows[hash & flow_table->mask]; 3657 tcpu = rflow->cpu; 3658 3659 /* 3660 * If the desired CPU (where last recvmsg was done) is 3661 * different from current CPU (one in the rx-queue flow 3662 * table entry), switch if one of the following holds: 3663 * - Current CPU is unset (>= nr_cpu_ids). 3664 * - Current CPU is offline. 3665 * - The current CPU's queue tail has advanced beyond the 3666 * last packet that was enqueued using this table entry. 3667 * This guarantees that all previous packets for the flow 3668 * have been dequeued, thus preserving in order delivery. 3669 */ 3670 if (unlikely(tcpu != next_cpu) && 3671 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3672 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3673 rflow->last_qtail)) >= 0)) { 3674 tcpu = next_cpu; 3675 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3676 } 3677 3678 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3679 *rflowp = rflow; 3680 cpu = tcpu; 3681 goto done; 3682 } 3683 } 3684 3685 try_rps: 3686 3687 if (map) { 3688 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3689 if (cpu_online(tcpu)) { 3690 cpu = tcpu; 3691 goto done; 3692 } 3693 } 3694 3695 done: 3696 return cpu; 3697 } 3698 3699 #ifdef CONFIG_RFS_ACCEL 3700 3701 /** 3702 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3703 * @dev: Device on which the filter was set 3704 * @rxq_index: RX queue index 3705 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3706 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3707 * 3708 * Drivers that implement ndo_rx_flow_steer() should periodically call 3709 * this function for each installed filter and remove the filters for 3710 * which it returns %true. 3711 */ 3712 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3713 u32 flow_id, u16 filter_id) 3714 { 3715 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3716 struct rps_dev_flow_table *flow_table; 3717 struct rps_dev_flow *rflow; 3718 bool expire = true; 3719 unsigned int cpu; 3720 3721 rcu_read_lock(); 3722 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3723 if (flow_table && flow_id <= flow_table->mask) { 3724 rflow = &flow_table->flows[flow_id]; 3725 cpu = ACCESS_ONCE(rflow->cpu); 3726 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3727 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3728 rflow->last_qtail) < 3729 (int)(10 * flow_table->mask))) 3730 expire = false; 3731 } 3732 rcu_read_unlock(); 3733 return expire; 3734 } 3735 EXPORT_SYMBOL(rps_may_expire_flow); 3736 3737 #endif /* CONFIG_RFS_ACCEL */ 3738 3739 /* Called from hardirq (IPI) context */ 3740 static void rps_trigger_softirq(void *data) 3741 { 3742 struct softnet_data *sd = data; 3743 3744 ____napi_schedule(sd, &sd->backlog); 3745 sd->received_rps++; 3746 } 3747 3748 #endif /* CONFIG_RPS */ 3749 3750 /* 3751 * Check if this softnet_data structure is another cpu one 3752 * If yes, queue it to our IPI list and return 1 3753 * If no, return 0 3754 */ 3755 static int rps_ipi_queued(struct softnet_data *sd) 3756 { 3757 #ifdef CONFIG_RPS 3758 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3759 3760 if (sd != mysd) { 3761 sd->rps_ipi_next = mysd->rps_ipi_list; 3762 mysd->rps_ipi_list = sd; 3763 3764 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3765 return 1; 3766 } 3767 #endif /* CONFIG_RPS */ 3768 return 0; 3769 } 3770 3771 #ifdef CONFIG_NET_FLOW_LIMIT 3772 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3773 #endif 3774 3775 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3776 { 3777 #ifdef CONFIG_NET_FLOW_LIMIT 3778 struct sd_flow_limit *fl; 3779 struct softnet_data *sd; 3780 unsigned int old_flow, new_flow; 3781 3782 if (qlen < (netdev_max_backlog >> 1)) 3783 return false; 3784 3785 sd = this_cpu_ptr(&softnet_data); 3786 3787 rcu_read_lock(); 3788 fl = rcu_dereference(sd->flow_limit); 3789 if (fl) { 3790 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3791 old_flow = fl->history[fl->history_head]; 3792 fl->history[fl->history_head] = new_flow; 3793 3794 fl->history_head++; 3795 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3796 3797 if (likely(fl->buckets[old_flow])) 3798 fl->buckets[old_flow]--; 3799 3800 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3801 fl->count++; 3802 rcu_read_unlock(); 3803 return true; 3804 } 3805 } 3806 rcu_read_unlock(); 3807 #endif 3808 return false; 3809 } 3810 3811 /* 3812 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3813 * queue (may be a remote CPU queue). 3814 */ 3815 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3816 unsigned int *qtail) 3817 { 3818 struct softnet_data *sd; 3819 unsigned long flags; 3820 unsigned int qlen; 3821 3822 sd = &per_cpu(softnet_data, cpu); 3823 3824 local_irq_save(flags); 3825 3826 rps_lock(sd); 3827 if (!netif_running(skb->dev)) 3828 goto drop; 3829 qlen = skb_queue_len(&sd->input_pkt_queue); 3830 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3831 if (qlen) { 3832 enqueue: 3833 __skb_queue_tail(&sd->input_pkt_queue, skb); 3834 input_queue_tail_incr_save(sd, qtail); 3835 rps_unlock(sd); 3836 local_irq_restore(flags); 3837 return NET_RX_SUCCESS; 3838 } 3839 3840 /* Schedule NAPI for backlog device 3841 * We can use non atomic operation since we own the queue lock 3842 */ 3843 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3844 if (!rps_ipi_queued(sd)) 3845 ____napi_schedule(sd, &sd->backlog); 3846 } 3847 goto enqueue; 3848 } 3849 3850 drop: 3851 sd->dropped++; 3852 rps_unlock(sd); 3853 3854 local_irq_restore(flags); 3855 3856 atomic_long_inc(&skb->dev->rx_dropped); 3857 kfree_skb(skb); 3858 return NET_RX_DROP; 3859 } 3860 3861 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3862 struct bpf_prog *xdp_prog) 3863 { 3864 struct xdp_buff xdp; 3865 u32 act = XDP_DROP; 3866 void *orig_data; 3867 int hlen, off; 3868 u32 mac_len; 3869 3870 /* Reinjected packets coming from act_mirred or similar should 3871 * not get XDP generic processing. 3872 */ 3873 if (skb_cloned(skb)) 3874 return XDP_PASS; 3875 3876 if (skb_linearize(skb)) 3877 goto do_drop; 3878 3879 /* The XDP program wants to see the packet starting at the MAC 3880 * header. 3881 */ 3882 mac_len = skb->data - skb_mac_header(skb); 3883 hlen = skb_headlen(skb) + mac_len; 3884 xdp.data = skb->data - mac_len; 3885 xdp.data_end = xdp.data + hlen; 3886 xdp.data_hard_start = skb->data - skb_headroom(skb); 3887 orig_data = xdp.data; 3888 3889 act = bpf_prog_run_xdp(xdp_prog, &xdp); 3890 3891 off = xdp.data - orig_data; 3892 if (off > 0) 3893 __skb_pull(skb, off); 3894 else if (off < 0) 3895 __skb_push(skb, -off); 3896 3897 switch (act) { 3898 case XDP_REDIRECT: 3899 case XDP_TX: 3900 __skb_push(skb, mac_len); 3901 /* fall through */ 3902 case XDP_PASS: 3903 break; 3904 3905 default: 3906 bpf_warn_invalid_xdp_action(act); 3907 /* fall through */ 3908 case XDP_ABORTED: 3909 trace_xdp_exception(skb->dev, xdp_prog, act); 3910 /* fall through */ 3911 case XDP_DROP: 3912 do_drop: 3913 kfree_skb(skb); 3914 break; 3915 } 3916 3917 return act; 3918 } 3919 3920 /* When doing generic XDP we have to bypass the qdisc layer and the 3921 * network taps in order to match in-driver-XDP behavior. 3922 */ 3923 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 3924 { 3925 struct net_device *dev = skb->dev; 3926 struct netdev_queue *txq; 3927 bool free_skb = true; 3928 int cpu, rc; 3929 3930 txq = netdev_pick_tx(dev, skb, NULL); 3931 cpu = smp_processor_id(); 3932 HARD_TX_LOCK(dev, txq, cpu); 3933 if (!netif_xmit_stopped(txq)) { 3934 rc = netdev_start_xmit(skb, dev, txq, 0); 3935 if (dev_xmit_complete(rc)) 3936 free_skb = false; 3937 } 3938 HARD_TX_UNLOCK(dev, txq); 3939 if (free_skb) { 3940 trace_xdp_exception(dev, xdp_prog, XDP_TX); 3941 kfree_skb(skb); 3942 } 3943 } 3944 3945 static struct static_key generic_xdp_needed __read_mostly; 3946 3947 static int do_xdp_generic(struct sk_buff *skb) 3948 { 3949 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog); 3950 3951 if (xdp_prog) { 3952 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 3953 int err; 3954 3955 if (act != XDP_PASS) { 3956 switch (act) { 3957 case XDP_REDIRECT: 3958 err = xdp_do_generic_redirect(skb->dev, skb); 3959 if (err) 3960 goto out_redir; 3961 /* fallthru to submit skb */ 3962 case XDP_TX: 3963 generic_xdp_tx(skb, xdp_prog); 3964 break; 3965 } 3966 return XDP_DROP; 3967 } 3968 } 3969 return XDP_PASS; 3970 out_redir: 3971 trace_xdp_exception(skb->dev, xdp_prog, XDP_REDIRECT); 3972 kfree_skb(skb); 3973 return XDP_DROP; 3974 } 3975 3976 static int netif_rx_internal(struct sk_buff *skb) 3977 { 3978 int ret; 3979 3980 net_timestamp_check(netdev_tstamp_prequeue, skb); 3981 3982 trace_netif_rx(skb); 3983 3984 if (static_key_false(&generic_xdp_needed)) { 3985 int ret = do_xdp_generic(skb); 3986 3987 /* Consider XDP consuming the packet a success from 3988 * the netdev point of view we do not want to count 3989 * this as an error. 3990 */ 3991 if (ret != XDP_PASS) 3992 return NET_RX_SUCCESS; 3993 } 3994 3995 #ifdef CONFIG_RPS 3996 if (static_key_false(&rps_needed)) { 3997 struct rps_dev_flow voidflow, *rflow = &voidflow; 3998 int cpu; 3999 4000 preempt_disable(); 4001 rcu_read_lock(); 4002 4003 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4004 if (cpu < 0) 4005 cpu = smp_processor_id(); 4006 4007 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4008 4009 rcu_read_unlock(); 4010 preempt_enable(); 4011 } else 4012 #endif 4013 { 4014 unsigned int qtail; 4015 4016 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4017 put_cpu(); 4018 } 4019 return ret; 4020 } 4021 4022 /** 4023 * netif_rx - post buffer to the network code 4024 * @skb: buffer to post 4025 * 4026 * This function receives a packet from a device driver and queues it for 4027 * the upper (protocol) levels to process. It always succeeds. The buffer 4028 * may be dropped during processing for congestion control or by the 4029 * protocol layers. 4030 * 4031 * return values: 4032 * NET_RX_SUCCESS (no congestion) 4033 * NET_RX_DROP (packet was dropped) 4034 * 4035 */ 4036 4037 int netif_rx(struct sk_buff *skb) 4038 { 4039 trace_netif_rx_entry(skb); 4040 4041 return netif_rx_internal(skb); 4042 } 4043 EXPORT_SYMBOL(netif_rx); 4044 4045 int netif_rx_ni(struct sk_buff *skb) 4046 { 4047 int err; 4048 4049 trace_netif_rx_ni_entry(skb); 4050 4051 preempt_disable(); 4052 err = netif_rx_internal(skb); 4053 if (local_softirq_pending()) 4054 do_softirq(); 4055 preempt_enable(); 4056 4057 return err; 4058 } 4059 EXPORT_SYMBOL(netif_rx_ni); 4060 4061 static __latent_entropy void net_tx_action(struct softirq_action *h) 4062 { 4063 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4064 4065 if (sd->completion_queue) { 4066 struct sk_buff *clist; 4067 4068 local_irq_disable(); 4069 clist = sd->completion_queue; 4070 sd->completion_queue = NULL; 4071 local_irq_enable(); 4072 4073 while (clist) { 4074 struct sk_buff *skb = clist; 4075 4076 clist = clist->next; 4077 4078 WARN_ON(refcount_read(&skb->users)); 4079 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4080 trace_consume_skb(skb); 4081 else 4082 trace_kfree_skb(skb, net_tx_action); 4083 4084 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4085 __kfree_skb(skb); 4086 else 4087 __kfree_skb_defer(skb); 4088 } 4089 4090 __kfree_skb_flush(); 4091 } 4092 4093 if (sd->output_queue) { 4094 struct Qdisc *head; 4095 4096 local_irq_disable(); 4097 head = sd->output_queue; 4098 sd->output_queue = NULL; 4099 sd->output_queue_tailp = &sd->output_queue; 4100 local_irq_enable(); 4101 4102 while (head) { 4103 struct Qdisc *q = head; 4104 spinlock_t *root_lock; 4105 4106 head = head->next_sched; 4107 4108 root_lock = qdisc_lock(q); 4109 spin_lock(root_lock); 4110 /* We need to make sure head->next_sched is read 4111 * before clearing __QDISC_STATE_SCHED 4112 */ 4113 smp_mb__before_atomic(); 4114 clear_bit(__QDISC_STATE_SCHED, &q->state); 4115 qdisc_run(q); 4116 spin_unlock(root_lock); 4117 } 4118 } 4119 } 4120 4121 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4122 /* This hook is defined here for ATM LANE */ 4123 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4124 unsigned char *addr) __read_mostly; 4125 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4126 #endif 4127 4128 static inline struct sk_buff * 4129 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4130 struct net_device *orig_dev) 4131 { 4132 #ifdef CONFIG_NET_CLS_ACT 4133 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 4134 struct tcf_result cl_res; 4135 4136 /* If there's at least one ingress present somewhere (so 4137 * we get here via enabled static key), remaining devices 4138 * that are not configured with an ingress qdisc will bail 4139 * out here. 4140 */ 4141 if (!cl) 4142 return skb; 4143 if (*pt_prev) { 4144 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4145 *pt_prev = NULL; 4146 } 4147 4148 qdisc_skb_cb(skb)->pkt_len = skb->len; 4149 skb->tc_at_ingress = 1; 4150 qdisc_bstats_cpu_update(cl->q, skb); 4151 4152 switch (tcf_classify(skb, cl, &cl_res, false)) { 4153 case TC_ACT_OK: 4154 case TC_ACT_RECLASSIFY: 4155 skb->tc_index = TC_H_MIN(cl_res.classid); 4156 break; 4157 case TC_ACT_SHOT: 4158 qdisc_qstats_cpu_drop(cl->q); 4159 kfree_skb(skb); 4160 return NULL; 4161 case TC_ACT_STOLEN: 4162 case TC_ACT_QUEUED: 4163 case TC_ACT_TRAP: 4164 consume_skb(skb); 4165 return NULL; 4166 case TC_ACT_REDIRECT: 4167 /* skb_mac_header check was done by cls/act_bpf, so 4168 * we can safely push the L2 header back before 4169 * redirecting to another netdev 4170 */ 4171 __skb_push(skb, skb->mac_len); 4172 skb_do_redirect(skb); 4173 return NULL; 4174 default: 4175 break; 4176 } 4177 #endif /* CONFIG_NET_CLS_ACT */ 4178 return skb; 4179 } 4180 4181 /** 4182 * netdev_is_rx_handler_busy - check if receive handler is registered 4183 * @dev: device to check 4184 * 4185 * Check if a receive handler is already registered for a given device. 4186 * Return true if there one. 4187 * 4188 * The caller must hold the rtnl_mutex. 4189 */ 4190 bool netdev_is_rx_handler_busy(struct net_device *dev) 4191 { 4192 ASSERT_RTNL(); 4193 return dev && rtnl_dereference(dev->rx_handler); 4194 } 4195 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4196 4197 /** 4198 * netdev_rx_handler_register - register receive handler 4199 * @dev: device to register a handler for 4200 * @rx_handler: receive handler to register 4201 * @rx_handler_data: data pointer that is used by rx handler 4202 * 4203 * Register a receive handler for a device. This handler will then be 4204 * called from __netif_receive_skb. A negative errno code is returned 4205 * on a failure. 4206 * 4207 * The caller must hold the rtnl_mutex. 4208 * 4209 * For a general description of rx_handler, see enum rx_handler_result. 4210 */ 4211 int netdev_rx_handler_register(struct net_device *dev, 4212 rx_handler_func_t *rx_handler, 4213 void *rx_handler_data) 4214 { 4215 if (netdev_is_rx_handler_busy(dev)) 4216 return -EBUSY; 4217 4218 /* Note: rx_handler_data must be set before rx_handler */ 4219 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4220 rcu_assign_pointer(dev->rx_handler, rx_handler); 4221 4222 return 0; 4223 } 4224 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4225 4226 /** 4227 * netdev_rx_handler_unregister - unregister receive handler 4228 * @dev: device to unregister a handler from 4229 * 4230 * Unregister a receive handler from a device. 4231 * 4232 * The caller must hold the rtnl_mutex. 4233 */ 4234 void netdev_rx_handler_unregister(struct net_device *dev) 4235 { 4236 4237 ASSERT_RTNL(); 4238 RCU_INIT_POINTER(dev->rx_handler, NULL); 4239 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4240 * section has a guarantee to see a non NULL rx_handler_data 4241 * as well. 4242 */ 4243 synchronize_net(); 4244 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4245 } 4246 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4247 4248 /* 4249 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4250 * the special handling of PFMEMALLOC skbs. 4251 */ 4252 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4253 { 4254 switch (skb->protocol) { 4255 case htons(ETH_P_ARP): 4256 case htons(ETH_P_IP): 4257 case htons(ETH_P_IPV6): 4258 case htons(ETH_P_8021Q): 4259 case htons(ETH_P_8021AD): 4260 return true; 4261 default: 4262 return false; 4263 } 4264 } 4265 4266 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4267 int *ret, struct net_device *orig_dev) 4268 { 4269 #ifdef CONFIG_NETFILTER_INGRESS 4270 if (nf_hook_ingress_active(skb)) { 4271 int ingress_retval; 4272 4273 if (*pt_prev) { 4274 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4275 *pt_prev = NULL; 4276 } 4277 4278 rcu_read_lock(); 4279 ingress_retval = nf_hook_ingress(skb); 4280 rcu_read_unlock(); 4281 return ingress_retval; 4282 } 4283 #endif /* CONFIG_NETFILTER_INGRESS */ 4284 return 0; 4285 } 4286 4287 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4288 { 4289 struct packet_type *ptype, *pt_prev; 4290 rx_handler_func_t *rx_handler; 4291 struct net_device *orig_dev; 4292 bool deliver_exact = false; 4293 int ret = NET_RX_DROP; 4294 __be16 type; 4295 4296 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4297 4298 trace_netif_receive_skb(skb); 4299 4300 orig_dev = skb->dev; 4301 4302 skb_reset_network_header(skb); 4303 if (!skb_transport_header_was_set(skb)) 4304 skb_reset_transport_header(skb); 4305 skb_reset_mac_len(skb); 4306 4307 pt_prev = NULL; 4308 4309 another_round: 4310 skb->skb_iif = skb->dev->ifindex; 4311 4312 __this_cpu_inc(softnet_data.processed); 4313 4314 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4315 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4316 skb = skb_vlan_untag(skb); 4317 if (unlikely(!skb)) 4318 goto out; 4319 } 4320 4321 if (skb_skip_tc_classify(skb)) 4322 goto skip_classify; 4323 4324 if (pfmemalloc) 4325 goto skip_taps; 4326 4327 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4328 if (pt_prev) 4329 ret = deliver_skb(skb, pt_prev, orig_dev); 4330 pt_prev = ptype; 4331 } 4332 4333 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4334 if (pt_prev) 4335 ret = deliver_skb(skb, pt_prev, orig_dev); 4336 pt_prev = ptype; 4337 } 4338 4339 skip_taps: 4340 #ifdef CONFIG_NET_INGRESS 4341 if (static_key_false(&ingress_needed)) { 4342 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4343 if (!skb) 4344 goto out; 4345 4346 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4347 goto out; 4348 } 4349 #endif 4350 skb_reset_tc(skb); 4351 skip_classify: 4352 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4353 goto drop; 4354 4355 if (skb_vlan_tag_present(skb)) { 4356 if (pt_prev) { 4357 ret = deliver_skb(skb, pt_prev, orig_dev); 4358 pt_prev = NULL; 4359 } 4360 if (vlan_do_receive(&skb)) 4361 goto another_round; 4362 else if (unlikely(!skb)) 4363 goto out; 4364 } 4365 4366 rx_handler = rcu_dereference(skb->dev->rx_handler); 4367 if (rx_handler) { 4368 if (pt_prev) { 4369 ret = deliver_skb(skb, pt_prev, orig_dev); 4370 pt_prev = NULL; 4371 } 4372 switch (rx_handler(&skb)) { 4373 case RX_HANDLER_CONSUMED: 4374 ret = NET_RX_SUCCESS; 4375 goto out; 4376 case RX_HANDLER_ANOTHER: 4377 goto another_round; 4378 case RX_HANDLER_EXACT: 4379 deliver_exact = true; 4380 case RX_HANDLER_PASS: 4381 break; 4382 default: 4383 BUG(); 4384 } 4385 } 4386 4387 if (unlikely(skb_vlan_tag_present(skb))) { 4388 if (skb_vlan_tag_get_id(skb)) 4389 skb->pkt_type = PACKET_OTHERHOST; 4390 /* Note: we might in the future use prio bits 4391 * and set skb->priority like in vlan_do_receive() 4392 * For the time being, just ignore Priority Code Point 4393 */ 4394 skb->vlan_tci = 0; 4395 } 4396 4397 type = skb->protocol; 4398 4399 /* deliver only exact match when indicated */ 4400 if (likely(!deliver_exact)) { 4401 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4402 &ptype_base[ntohs(type) & 4403 PTYPE_HASH_MASK]); 4404 } 4405 4406 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4407 &orig_dev->ptype_specific); 4408 4409 if (unlikely(skb->dev != orig_dev)) { 4410 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4411 &skb->dev->ptype_specific); 4412 } 4413 4414 if (pt_prev) { 4415 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC))) 4416 goto drop; 4417 else 4418 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4419 } else { 4420 drop: 4421 if (!deliver_exact) 4422 atomic_long_inc(&skb->dev->rx_dropped); 4423 else 4424 atomic_long_inc(&skb->dev->rx_nohandler); 4425 kfree_skb(skb); 4426 /* Jamal, now you will not able to escape explaining 4427 * me how you were going to use this. :-) 4428 */ 4429 ret = NET_RX_DROP; 4430 } 4431 4432 out: 4433 return ret; 4434 } 4435 4436 static int __netif_receive_skb(struct sk_buff *skb) 4437 { 4438 int ret; 4439 4440 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4441 unsigned int noreclaim_flag; 4442 4443 /* 4444 * PFMEMALLOC skbs are special, they should 4445 * - be delivered to SOCK_MEMALLOC sockets only 4446 * - stay away from userspace 4447 * - have bounded memory usage 4448 * 4449 * Use PF_MEMALLOC as this saves us from propagating the allocation 4450 * context down to all allocation sites. 4451 */ 4452 noreclaim_flag = memalloc_noreclaim_save(); 4453 ret = __netif_receive_skb_core(skb, true); 4454 memalloc_noreclaim_restore(noreclaim_flag); 4455 } else 4456 ret = __netif_receive_skb_core(skb, false); 4457 4458 return ret; 4459 } 4460 4461 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp) 4462 { 4463 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4464 struct bpf_prog *new = xdp->prog; 4465 int ret = 0; 4466 4467 switch (xdp->command) { 4468 case XDP_SETUP_PROG: 4469 rcu_assign_pointer(dev->xdp_prog, new); 4470 if (old) 4471 bpf_prog_put(old); 4472 4473 if (old && !new) { 4474 static_key_slow_dec(&generic_xdp_needed); 4475 } else if (new && !old) { 4476 static_key_slow_inc(&generic_xdp_needed); 4477 dev_disable_lro(dev); 4478 } 4479 break; 4480 4481 case XDP_QUERY_PROG: 4482 xdp->prog_attached = !!old; 4483 xdp->prog_id = old ? old->aux->id : 0; 4484 break; 4485 4486 default: 4487 ret = -EINVAL; 4488 break; 4489 } 4490 4491 return ret; 4492 } 4493 4494 static int netif_receive_skb_internal(struct sk_buff *skb) 4495 { 4496 int ret; 4497 4498 net_timestamp_check(netdev_tstamp_prequeue, skb); 4499 4500 if (skb_defer_rx_timestamp(skb)) 4501 return NET_RX_SUCCESS; 4502 4503 rcu_read_lock(); 4504 4505 if (static_key_false(&generic_xdp_needed)) { 4506 int ret = do_xdp_generic(skb); 4507 4508 if (ret != XDP_PASS) { 4509 rcu_read_unlock(); 4510 return NET_RX_DROP; 4511 } 4512 } 4513 4514 #ifdef CONFIG_RPS 4515 if (static_key_false(&rps_needed)) { 4516 struct rps_dev_flow voidflow, *rflow = &voidflow; 4517 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4518 4519 if (cpu >= 0) { 4520 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4521 rcu_read_unlock(); 4522 return ret; 4523 } 4524 } 4525 #endif 4526 ret = __netif_receive_skb(skb); 4527 rcu_read_unlock(); 4528 return ret; 4529 } 4530 4531 /** 4532 * netif_receive_skb - process receive buffer from network 4533 * @skb: buffer to process 4534 * 4535 * netif_receive_skb() is the main receive data processing function. 4536 * It always succeeds. The buffer may be dropped during processing 4537 * for congestion control or by the protocol layers. 4538 * 4539 * This function may only be called from softirq context and interrupts 4540 * should be enabled. 4541 * 4542 * Return values (usually ignored): 4543 * NET_RX_SUCCESS: no congestion 4544 * NET_RX_DROP: packet was dropped 4545 */ 4546 int netif_receive_skb(struct sk_buff *skb) 4547 { 4548 trace_netif_receive_skb_entry(skb); 4549 4550 return netif_receive_skb_internal(skb); 4551 } 4552 EXPORT_SYMBOL(netif_receive_skb); 4553 4554 DEFINE_PER_CPU(struct work_struct, flush_works); 4555 4556 /* Network device is going away, flush any packets still pending */ 4557 static void flush_backlog(struct work_struct *work) 4558 { 4559 struct sk_buff *skb, *tmp; 4560 struct softnet_data *sd; 4561 4562 local_bh_disable(); 4563 sd = this_cpu_ptr(&softnet_data); 4564 4565 local_irq_disable(); 4566 rps_lock(sd); 4567 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4568 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4569 __skb_unlink(skb, &sd->input_pkt_queue); 4570 kfree_skb(skb); 4571 input_queue_head_incr(sd); 4572 } 4573 } 4574 rps_unlock(sd); 4575 local_irq_enable(); 4576 4577 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4578 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4579 __skb_unlink(skb, &sd->process_queue); 4580 kfree_skb(skb); 4581 input_queue_head_incr(sd); 4582 } 4583 } 4584 local_bh_enable(); 4585 } 4586 4587 static void flush_all_backlogs(void) 4588 { 4589 unsigned int cpu; 4590 4591 get_online_cpus(); 4592 4593 for_each_online_cpu(cpu) 4594 queue_work_on(cpu, system_highpri_wq, 4595 per_cpu_ptr(&flush_works, cpu)); 4596 4597 for_each_online_cpu(cpu) 4598 flush_work(per_cpu_ptr(&flush_works, cpu)); 4599 4600 put_online_cpus(); 4601 } 4602 4603 static int napi_gro_complete(struct sk_buff *skb) 4604 { 4605 struct packet_offload *ptype; 4606 __be16 type = skb->protocol; 4607 struct list_head *head = &offload_base; 4608 int err = -ENOENT; 4609 4610 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4611 4612 if (NAPI_GRO_CB(skb)->count == 1) { 4613 skb_shinfo(skb)->gso_size = 0; 4614 goto out; 4615 } 4616 4617 rcu_read_lock(); 4618 list_for_each_entry_rcu(ptype, head, list) { 4619 if (ptype->type != type || !ptype->callbacks.gro_complete) 4620 continue; 4621 4622 err = ptype->callbacks.gro_complete(skb, 0); 4623 break; 4624 } 4625 rcu_read_unlock(); 4626 4627 if (err) { 4628 WARN_ON(&ptype->list == head); 4629 kfree_skb(skb); 4630 return NET_RX_SUCCESS; 4631 } 4632 4633 out: 4634 return netif_receive_skb_internal(skb); 4635 } 4636 4637 /* napi->gro_list contains packets ordered by age. 4638 * youngest packets at the head of it. 4639 * Complete skbs in reverse order to reduce latencies. 4640 */ 4641 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4642 { 4643 struct sk_buff *skb, *prev = NULL; 4644 4645 /* scan list and build reverse chain */ 4646 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4647 skb->prev = prev; 4648 prev = skb; 4649 } 4650 4651 for (skb = prev; skb; skb = prev) { 4652 skb->next = NULL; 4653 4654 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4655 return; 4656 4657 prev = skb->prev; 4658 napi_gro_complete(skb); 4659 napi->gro_count--; 4660 } 4661 4662 napi->gro_list = NULL; 4663 } 4664 EXPORT_SYMBOL(napi_gro_flush); 4665 4666 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4667 { 4668 struct sk_buff *p; 4669 unsigned int maclen = skb->dev->hard_header_len; 4670 u32 hash = skb_get_hash_raw(skb); 4671 4672 for (p = napi->gro_list; p; p = p->next) { 4673 unsigned long diffs; 4674 4675 NAPI_GRO_CB(p)->flush = 0; 4676 4677 if (hash != skb_get_hash_raw(p)) { 4678 NAPI_GRO_CB(p)->same_flow = 0; 4679 continue; 4680 } 4681 4682 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4683 diffs |= p->vlan_tci ^ skb->vlan_tci; 4684 diffs |= skb_metadata_dst_cmp(p, skb); 4685 if (maclen == ETH_HLEN) 4686 diffs |= compare_ether_header(skb_mac_header(p), 4687 skb_mac_header(skb)); 4688 else if (!diffs) 4689 diffs = memcmp(skb_mac_header(p), 4690 skb_mac_header(skb), 4691 maclen); 4692 NAPI_GRO_CB(p)->same_flow = !diffs; 4693 } 4694 } 4695 4696 static void skb_gro_reset_offset(struct sk_buff *skb) 4697 { 4698 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4699 const skb_frag_t *frag0 = &pinfo->frags[0]; 4700 4701 NAPI_GRO_CB(skb)->data_offset = 0; 4702 NAPI_GRO_CB(skb)->frag0 = NULL; 4703 NAPI_GRO_CB(skb)->frag0_len = 0; 4704 4705 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4706 pinfo->nr_frags && 4707 !PageHighMem(skb_frag_page(frag0))) { 4708 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4709 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4710 skb_frag_size(frag0), 4711 skb->end - skb->tail); 4712 } 4713 } 4714 4715 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4716 { 4717 struct skb_shared_info *pinfo = skb_shinfo(skb); 4718 4719 BUG_ON(skb->end - skb->tail < grow); 4720 4721 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4722 4723 skb->data_len -= grow; 4724 skb->tail += grow; 4725 4726 pinfo->frags[0].page_offset += grow; 4727 skb_frag_size_sub(&pinfo->frags[0], grow); 4728 4729 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4730 skb_frag_unref(skb, 0); 4731 memmove(pinfo->frags, pinfo->frags + 1, 4732 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4733 } 4734 } 4735 4736 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4737 { 4738 struct sk_buff **pp = NULL; 4739 struct packet_offload *ptype; 4740 __be16 type = skb->protocol; 4741 struct list_head *head = &offload_base; 4742 int same_flow; 4743 enum gro_result ret; 4744 int grow; 4745 4746 if (netif_elide_gro(skb->dev)) 4747 goto normal; 4748 4749 gro_list_prepare(napi, skb); 4750 4751 rcu_read_lock(); 4752 list_for_each_entry_rcu(ptype, head, list) { 4753 if (ptype->type != type || !ptype->callbacks.gro_receive) 4754 continue; 4755 4756 skb_set_network_header(skb, skb_gro_offset(skb)); 4757 skb_reset_mac_len(skb); 4758 NAPI_GRO_CB(skb)->same_flow = 0; 4759 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4760 NAPI_GRO_CB(skb)->free = 0; 4761 NAPI_GRO_CB(skb)->encap_mark = 0; 4762 NAPI_GRO_CB(skb)->recursion_counter = 0; 4763 NAPI_GRO_CB(skb)->is_fou = 0; 4764 NAPI_GRO_CB(skb)->is_atomic = 1; 4765 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4766 4767 /* Setup for GRO checksum validation */ 4768 switch (skb->ip_summed) { 4769 case CHECKSUM_COMPLETE: 4770 NAPI_GRO_CB(skb)->csum = skb->csum; 4771 NAPI_GRO_CB(skb)->csum_valid = 1; 4772 NAPI_GRO_CB(skb)->csum_cnt = 0; 4773 break; 4774 case CHECKSUM_UNNECESSARY: 4775 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4776 NAPI_GRO_CB(skb)->csum_valid = 0; 4777 break; 4778 default: 4779 NAPI_GRO_CB(skb)->csum_cnt = 0; 4780 NAPI_GRO_CB(skb)->csum_valid = 0; 4781 } 4782 4783 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4784 break; 4785 } 4786 rcu_read_unlock(); 4787 4788 if (&ptype->list == head) 4789 goto normal; 4790 4791 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4792 ret = GRO_CONSUMED; 4793 goto ok; 4794 } 4795 4796 same_flow = NAPI_GRO_CB(skb)->same_flow; 4797 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4798 4799 if (pp) { 4800 struct sk_buff *nskb = *pp; 4801 4802 *pp = nskb->next; 4803 nskb->next = NULL; 4804 napi_gro_complete(nskb); 4805 napi->gro_count--; 4806 } 4807 4808 if (same_flow) 4809 goto ok; 4810 4811 if (NAPI_GRO_CB(skb)->flush) 4812 goto normal; 4813 4814 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4815 struct sk_buff *nskb = napi->gro_list; 4816 4817 /* locate the end of the list to select the 'oldest' flow */ 4818 while (nskb->next) { 4819 pp = &nskb->next; 4820 nskb = *pp; 4821 } 4822 *pp = NULL; 4823 nskb->next = NULL; 4824 napi_gro_complete(nskb); 4825 } else { 4826 napi->gro_count++; 4827 } 4828 NAPI_GRO_CB(skb)->count = 1; 4829 NAPI_GRO_CB(skb)->age = jiffies; 4830 NAPI_GRO_CB(skb)->last = skb; 4831 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4832 skb->next = napi->gro_list; 4833 napi->gro_list = skb; 4834 ret = GRO_HELD; 4835 4836 pull: 4837 grow = skb_gro_offset(skb) - skb_headlen(skb); 4838 if (grow > 0) 4839 gro_pull_from_frag0(skb, grow); 4840 ok: 4841 return ret; 4842 4843 normal: 4844 ret = GRO_NORMAL; 4845 goto pull; 4846 } 4847 4848 struct packet_offload *gro_find_receive_by_type(__be16 type) 4849 { 4850 struct list_head *offload_head = &offload_base; 4851 struct packet_offload *ptype; 4852 4853 list_for_each_entry_rcu(ptype, offload_head, list) { 4854 if (ptype->type != type || !ptype->callbacks.gro_receive) 4855 continue; 4856 return ptype; 4857 } 4858 return NULL; 4859 } 4860 EXPORT_SYMBOL(gro_find_receive_by_type); 4861 4862 struct packet_offload *gro_find_complete_by_type(__be16 type) 4863 { 4864 struct list_head *offload_head = &offload_base; 4865 struct packet_offload *ptype; 4866 4867 list_for_each_entry_rcu(ptype, offload_head, list) { 4868 if (ptype->type != type || !ptype->callbacks.gro_complete) 4869 continue; 4870 return ptype; 4871 } 4872 return NULL; 4873 } 4874 EXPORT_SYMBOL(gro_find_complete_by_type); 4875 4876 static void napi_skb_free_stolen_head(struct sk_buff *skb) 4877 { 4878 skb_dst_drop(skb); 4879 secpath_reset(skb); 4880 kmem_cache_free(skbuff_head_cache, skb); 4881 } 4882 4883 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4884 { 4885 switch (ret) { 4886 case GRO_NORMAL: 4887 if (netif_receive_skb_internal(skb)) 4888 ret = GRO_DROP; 4889 break; 4890 4891 case GRO_DROP: 4892 kfree_skb(skb); 4893 break; 4894 4895 case GRO_MERGED_FREE: 4896 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4897 napi_skb_free_stolen_head(skb); 4898 else 4899 __kfree_skb(skb); 4900 break; 4901 4902 case GRO_HELD: 4903 case GRO_MERGED: 4904 case GRO_CONSUMED: 4905 break; 4906 } 4907 4908 return ret; 4909 } 4910 4911 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4912 { 4913 skb_mark_napi_id(skb, napi); 4914 trace_napi_gro_receive_entry(skb); 4915 4916 skb_gro_reset_offset(skb); 4917 4918 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4919 } 4920 EXPORT_SYMBOL(napi_gro_receive); 4921 4922 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4923 { 4924 if (unlikely(skb->pfmemalloc)) { 4925 consume_skb(skb); 4926 return; 4927 } 4928 __skb_pull(skb, skb_headlen(skb)); 4929 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4930 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4931 skb->vlan_tci = 0; 4932 skb->dev = napi->dev; 4933 skb->skb_iif = 0; 4934 skb->encapsulation = 0; 4935 skb_shinfo(skb)->gso_type = 0; 4936 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4937 secpath_reset(skb); 4938 4939 napi->skb = skb; 4940 } 4941 4942 struct sk_buff *napi_get_frags(struct napi_struct *napi) 4943 { 4944 struct sk_buff *skb = napi->skb; 4945 4946 if (!skb) { 4947 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 4948 if (skb) { 4949 napi->skb = skb; 4950 skb_mark_napi_id(skb, napi); 4951 } 4952 } 4953 return skb; 4954 } 4955 EXPORT_SYMBOL(napi_get_frags); 4956 4957 static gro_result_t napi_frags_finish(struct napi_struct *napi, 4958 struct sk_buff *skb, 4959 gro_result_t ret) 4960 { 4961 switch (ret) { 4962 case GRO_NORMAL: 4963 case GRO_HELD: 4964 __skb_push(skb, ETH_HLEN); 4965 skb->protocol = eth_type_trans(skb, skb->dev); 4966 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 4967 ret = GRO_DROP; 4968 break; 4969 4970 case GRO_DROP: 4971 napi_reuse_skb(napi, skb); 4972 break; 4973 4974 case GRO_MERGED_FREE: 4975 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4976 napi_skb_free_stolen_head(skb); 4977 else 4978 napi_reuse_skb(napi, skb); 4979 break; 4980 4981 case GRO_MERGED: 4982 case GRO_CONSUMED: 4983 break; 4984 } 4985 4986 return ret; 4987 } 4988 4989 /* Upper GRO stack assumes network header starts at gro_offset=0 4990 * Drivers could call both napi_gro_frags() and napi_gro_receive() 4991 * We copy ethernet header into skb->data to have a common layout. 4992 */ 4993 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 4994 { 4995 struct sk_buff *skb = napi->skb; 4996 const struct ethhdr *eth; 4997 unsigned int hlen = sizeof(*eth); 4998 4999 napi->skb = NULL; 5000 5001 skb_reset_mac_header(skb); 5002 skb_gro_reset_offset(skb); 5003 5004 eth = skb_gro_header_fast(skb, 0); 5005 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5006 eth = skb_gro_header_slow(skb, hlen, 0); 5007 if (unlikely(!eth)) { 5008 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5009 __func__, napi->dev->name); 5010 napi_reuse_skb(napi, skb); 5011 return NULL; 5012 } 5013 } else { 5014 gro_pull_from_frag0(skb, hlen); 5015 NAPI_GRO_CB(skb)->frag0 += hlen; 5016 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5017 } 5018 __skb_pull(skb, hlen); 5019 5020 /* 5021 * This works because the only protocols we care about don't require 5022 * special handling. 5023 * We'll fix it up properly in napi_frags_finish() 5024 */ 5025 skb->protocol = eth->h_proto; 5026 5027 return skb; 5028 } 5029 5030 gro_result_t napi_gro_frags(struct napi_struct *napi) 5031 { 5032 struct sk_buff *skb = napi_frags_skb(napi); 5033 5034 if (!skb) 5035 return GRO_DROP; 5036 5037 trace_napi_gro_frags_entry(skb); 5038 5039 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5040 } 5041 EXPORT_SYMBOL(napi_gro_frags); 5042 5043 /* Compute the checksum from gro_offset and return the folded value 5044 * after adding in any pseudo checksum. 5045 */ 5046 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5047 { 5048 __wsum wsum; 5049 __sum16 sum; 5050 5051 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5052 5053 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5054 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5055 if (likely(!sum)) { 5056 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5057 !skb->csum_complete_sw) 5058 netdev_rx_csum_fault(skb->dev); 5059 } 5060 5061 NAPI_GRO_CB(skb)->csum = wsum; 5062 NAPI_GRO_CB(skb)->csum_valid = 1; 5063 5064 return sum; 5065 } 5066 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5067 5068 static void net_rps_send_ipi(struct softnet_data *remsd) 5069 { 5070 #ifdef CONFIG_RPS 5071 while (remsd) { 5072 struct softnet_data *next = remsd->rps_ipi_next; 5073 5074 if (cpu_online(remsd->cpu)) 5075 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5076 remsd = next; 5077 } 5078 #endif 5079 } 5080 5081 /* 5082 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5083 * Note: called with local irq disabled, but exits with local irq enabled. 5084 */ 5085 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5086 { 5087 #ifdef CONFIG_RPS 5088 struct softnet_data *remsd = sd->rps_ipi_list; 5089 5090 if (remsd) { 5091 sd->rps_ipi_list = NULL; 5092 5093 local_irq_enable(); 5094 5095 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5096 net_rps_send_ipi(remsd); 5097 } else 5098 #endif 5099 local_irq_enable(); 5100 } 5101 5102 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5103 { 5104 #ifdef CONFIG_RPS 5105 return sd->rps_ipi_list != NULL; 5106 #else 5107 return false; 5108 #endif 5109 } 5110 5111 static int process_backlog(struct napi_struct *napi, int quota) 5112 { 5113 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5114 bool again = true; 5115 int work = 0; 5116 5117 /* Check if we have pending ipi, its better to send them now, 5118 * not waiting net_rx_action() end. 5119 */ 5120 if (sd_has_rps_ipi_waiting(sd)) { 5121 local_irq_disable(); 5122 net_rps_action_and_irq_enable(sd); 5123 } 5124 5125 napi->weight = dev_rx_weight; 5126 while (again) { 5127 struct sk_buff *skb; 5128 5129 while ((skb = __skb_dequeue(&sd->process_queue))) { 5130 rcu_read_lock(); 5131 __netif_receive_skb(skb); 5132 rcu_read_unlock(); 5133 input_queue_head_incr(sd); 5134 if (++work >= quota) 5135 return work; 5136 5137 } 5138 5139 local_irq_disable(); 5140 rps_lock(sd); 5141 if (skb_queue_empty(&sd->input_pkt_queue)) { 5142 /* 5143 * Inline a custom version of __napi_complete(). 5144 * only current cpu owns and manipulates this napi, 5145 * and NAPI_STATE_SCHED is the only possible flag set 5146 * on backlog. 5147 * We can use a plain write instead of clear_bit(), 5148 * and we dont need an smp_mb() memory barrier. 5149 */ 5150 napi->state = 0; 5151 again = false; 5152 } else { 5153 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5154 &sd->process_queue); 5155 } 5156 rps_unlock(sd); 5157 local_irq_enable(); 5158 } 5159 5160 return work; 5161 } 5162 5163 /** 5164 * __napi_schedule - schedule for receive 5165 * @n: entry to schedule 5166 * 5167 * The entry's receive function will be scheduled to run. 5168 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5169 */ 5170 void __napi_schedule(struct napi_struct *n) 5171 { 5172 unsigned long flags; 5173 5174 local_irq_save(flags); 5175 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5176 local_irq_restore(flags); 5177 } 5178 EXPORT_SYMBOL(__napi_schedule); 5179 5180 /** 5181 * napi_schedule_prep - check if napi can be scheduled 5182 * @n: napi context 5183 * 5184 * Test if NAPI routine is already running, and if not mark 5185 * it as running. This is used as a condition variable 5186 * insure only one NAPI poll instance runs. We also make 5187 * sure there is no pending NAPI disable. 5188 */ 5189 bool napi_schedule_prep(struct napi_struct *n) 5190 { 5191 unsigned long val, new; 5192 5193 do { 5194 val = READ_ONCE(n->state); 5195 if (unlikely(val & NAPIF_STATE_DISABLE)) 5196 return false; 5197 new = val | NAPIF_STATE_SCHED; 5198 5199 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5200 * This was suggested by Alexander Duyck, as compiler 5201 * emits better code than : 5202 * if (val & NAPIF_STATE_SCHED) 5203 * new |= NAPIF_STATE_MISSED; 5204 */ 5205 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5206 NAPIF_STATE_MISSED; 5207 } while (cmpxchg(&n->state, val, new) != val); 5208 5209 return !(val & NAPIF_STATE_SCHED); 5210 } 5211 EXPORT_SYMBOL(napi_schedule_prep); 5212 5213 /** 5214 * __napi_schedule_irqoff - schedule for receive 5215 * @n: entry to schedule 5216 * 5217 * Variant of __napi_schedule() assuming hard irqs are masked 5218 */ 5219 void __napi_schedule_irqoff(struct napi_struct *n) 5220 { 5221 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5222 } 5223 EXPORT_SYMBOL(__napi_schedule_irqoff); 5224 5225 bool napi_complete_done(struct napi_struct *n, int work_done) 5226 { 5227 unsigned long flags, val, new; 5228 5229 /* 5230 * 1) Don't let napi dequeue from the cpu poll list 5231 * just in case its running on a different cpu. 5232 * 2) If we are busy polling, do nothing here, we have 5233 * the guarantee we will be called later. 5234 */ 5235 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5236 NAPIF_STATE_IN_BUSY_POLL))) 5237 return false; 5238 5239 if (n->gro_list) { 5240 unsigned long timeout = 0; 5241 5242 if (work_done) 5243 timeout = n->dev->gro_flush_timeout; 5244 5245 if (timeout) 5246 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5247 HRTIMER_MODE_REL_PINNED); 5248 else 5249 napi_gro_flush(n, false); 5250 } 5251 if (unlikely(!list_empty(&n->poll_list))) { 5252 /* If n->poll_list is not empty, we need to mask irqs */ 5253 local_irq_save(flags); 5254 list_del_init(&n->poll_list); 5255 local_irq_restore(flags); 5256 } 5257 5258 do { 5259 val = READ_ONCE(n->state); 5260 5261 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5262 5263 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5264 5265 /* If STATE_MISSED was set, leave STATE_SCHED set, 5266 * because we will call napi->poll() one more time. 5267 * This C code was suggested by Alexander Duyck to help gcc. 5268 */ 5269 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5270 NAPIF_STATE_SCHED; 5271 } while (cmpxchg(&n->state, val, new) != val); 5272 5273 if (unlikely(val & NAPIF_STATE_MISSED)) { 5274 __napi_schedule(n); 5275 return false; 5276 } 5277 5278 return true; 5279 } 5280 EXPORT_SYMBOL(napi_complete_done); 5281 5282 /* must be called under rcu_read_lock(), as we dont take a reference */ 5283 static struct napi_struct *napi_by_id(unsigned int napi_id) 5284 { 5285 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5286 struct napi_struct *napi; 5287 5288 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5289 if (napi->napi_id == napi_id) 5290 return napi; 5291 5292 return NULL; 5293 } 5294 5295 #if defined(CONFIG_NET_RX_BUSY_POLL) 5296 5297 #define BUSY_POLL_BUDGET 8 5298 5299 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5300 { 5301 int rc; 5302 5303 /* Busy polling means there is a high chance device driver hard irq 5304 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5305 * set in napi_schedule_prep(). 5306 * Since we are about to call napi->poll() once more, we can safely 5307 * clear NAPI_STATE_MISSED. 5308 * 5309 * Note: x86 could use a single "lock and ..." instruction 5310 * to perform these two clear_bit() 5311 */ 5312 clear_bit(NAPI_STATE_MISSED, &napi->state); 5313 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5314 5315 local_bh_disable(); 5316 5317 /* All we really want here is to re-enable device interrupts. 5318 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5319 */ 5320 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5321 netpoll_poll_unlock(have_poll_lock); 5322 if (rc == BUSY_POLL_BUDGET) 5323 __napi_schedule(napi); 5324 local_bh_enable(); 5325 } 5326 5327 void napi_busy_loop(unsigned int napi_id, 5328 bool (*loop_end)(void *, unsigned long), 5329 void *loop_end_arg) 5330 { 5331 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5332 int (*napi_poll)(struct napi_struct *napi, int budget); 5333 void *have_poll_lock = NULL; 5334 struct napi_struct *napi; 5335 5336 restart: 5337 napi_poll = NULL; 5338 5339 rcu_read_lock(); 5340 5341 napi = napi_by_id(napi_id); 5342 if (!napi) 5343 goto out; 5344 5345 preempt_disable(); 5346 for (;;) { 5347 int work = 0; 5348 5349 local_bh_disable(); 5350 if (!napi_poll) { 5351 unsigned long val = READ_ONCE(napi->state); 5352 5353 /* If multiple threads are competing for this napi, 5354 * we avoid dirtying napi->state as much as we can. 5355 */ 5356 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5357 NAPIF_STATE_IN_BUSY_POLL)) 5358 goto count; 5359 if (cmpxchg(&napi->state, val, 5360 val | NAPIF_STATE_IN_BUSY_POLL | 5361 NAPIF_STATE_SCHED) != val) 5362 goto count; 5363 have_poll_lock = netpoll_poll_lock(napi); 5364 napi_poll = napi->poll; 5365 } 5366 work = napi_poll(napi, BUSY_POLL_BUDGET); 5367 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5368 count: 5369 if (work > 0) 5370 __NET_ADD_STATS(dev_net(napi->dev), 5371 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5372 local_bh_enable(); 5373 5374 if (!loop_end || loop_end(loop_end_arg, start_time)) 5375 break; 5376 5377 if (unlikely(need_resched())) { 5378 if (napi_poll) 5379 busy_poll_stop(napi, have_poll_lock); 5380 preempt_enable(); 5381 rcu_read_unlock(); 5382 cond_resched(); 5383 if (loop_end(loop_end_arg, start_time)) 5384 return; 5385 goto restart; 5386 } 5387 cpu_relax(); 5388 } 5389 if (napi_poll) 5390 busy_poll_stop(napi, have_poll_lock); 5391 preempt_enable(); 5392 out: 5393 rcu_read_unlock(); 5394 } 5395 EXPORT_SYMBOL(napi_busy_loop); 5396 5397 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5398 5399 static void napi_hash_add(struct napi_struct *napi) 5400 { 5401 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5402 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5403 return; 5404 5405 spin_lock(&napi_hash_lock); 5406 5407 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5408 do { 5409 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5410 napi_gen_id = MIN_NAPI_ID; 5411 } while (napi_by_id(napi_gen_id)); 5412 napi->napi_id = napi_gen_id; 5413 5414 hlist_add_head_rcu(&napi->napi_hash_node, 5415 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5416 5417 spin_unlock(&napi_hash_lock); 5418 } 5419 5420 /* Warning : caller is responsible to make sure rcu grace period 5421 * is respected before freeing memory containing @napi 5422 */ 5423 bool napi_hash_del(struct napi_struct *napi) 5424 { 5425 bool rcu_sync_needed = false; 5426 5427 spin_lock(&napi_hash_lock); 5428 5429 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5430 rcu_sync_needed = true; 5431 hlist_del_rcu(&napi->napi_hash_node); 5432 } 5433 spin_unlock(&napi_hash_lock); 5434 return rcu_sync_needed; 5435 } 5436 EXPORT_SYMBOL_GPL(napi_hash_del); 5437 5438 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5439 { 5440 struct napi_struct *napi; 5441 5442 napi = container_of(timer, struct napi_struct, timer); 5443 5444 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5445 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5446 */ 5447 if (napi->gro_list && !napi_disable_pending(napi) && 5448 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5449 __napi_schedule_irqoff(napi); 5450 5451 return HRTIMER_NORESTART; 5452 } 5453 5454 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5455 int (*poll)(struct napi_struct *, int), int weight) 5456 { 5457 INIT_LIST_HEAD(&napi->poll_list); 5458 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5459 napi->timer.function = napi_watchdog; 5460 napi->gro_count = 0; 5461 napi->gro_list = NULL; 5462 napi->skb = NULL; 5463 napi->poll = poll; 5464 if (weight > NAPI_POLL_WEIGHT) 5465 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5466 weight, dev->name); 5467 napi->weight = weight; 5468 list_add(&napi->dev_list, &dev->napi_list); 5469 napi->dev = dev; 5470 #ifdef CONFIG_NETPOLL 5471 napi->poll_owner = -1; 5472 #endif 5473 set_bit(NAPI_STATE_SCHED, &napi->state); 5474 napi_hash_add(napi); 5475 } 5476 EXPORT_SYMBOL(netif_napi_add); 5477 5478 void napi_disable(struct napi_struct *n) 5479 { 5480 might_sleep(); 5481 set_bit(NAPI_STATE_DISABLE, &n->state); 5482 5483 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5484 msleep(1); 5485 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5486 msleep(1); 5487 5488 hrtimer_cancel(&n->timer); 5489 5490 clear_bit(NAPI_STATE_DISABLE, &n->state); 5491 } 5492 EXPORT_SYMBOL(napi_disable); 5493 5494 /* Must be called in process context */ 5495 void netif_napi_del(struct napi_struct *napi) 5496 { 5497 might_sleep(); 5498 if (napi_hash_del(napi)) 5499 synchronize_net(); 5500 list_del_init(&napi->dev_list); 5501 napi_free_frags(napi); 5502 5503 kfree_skb_list(napi->gro_list); 5504 napi->gro_list = NULL; 5505 napi->gro_count = 0; 5506 } 5507 EXPORT_SYMBOL(netif_napi_del); 5508 5509 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5510 { 5511 void *have; 5512 int work, weight; 5513 5514 list_del_init(&n->poll_list); 5515 5516 have = netpoll_poll_lock(n); 5517 5518 weight = n->weight; 5519 5520 /* This NAPI_STATE_SCHED test is for avoiding a race 5521 * with netpoll's poll_napi(). Only the entity which 5522 * obtains the lock and sees NAPI_STATE_SCHED set will 5523 * actually make the ->poll() call. Therefore we avoid 5524 * accidentally calling ->poll() when NAPI is not scheduled. 5525 */ 5526 work = 0; 5527 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5528 work = n->poll(n, weight); 5529 trace_napi_poll(n, work, weight); 5530 } 5531 5532 WARN_ON_ONCE(work > weight); 5533 5534 if (likely(work < weight)) 5535 goto out_unlock; 5536 5537 /* Drivers must not modify the NAPI state if they 5538 * consume the entire weight. In such cases this code 5539 * still "owns" the NAPI instance and therefore can 5540 * move the instance around on the list at-will. 5541 */ 5542 if (unlikely(napi_disable_pending(n))) { 5543 napi_complete(n); 5544 goto out_unlock; 5545 } 5546 5547 if (n->gro_list) { 5548 /* flush too old packets 5549 * If HZ < 1000, flush all packets. 5550 */ 5551 napi_gro_flush(n, HZ >= 1000); 5552 } 5553 5554 /* Some drivers may have called napi_schedule 5555 * prior to exhausting their budget. 5556 */ 5557 if (unlikely(!list_empty(&n->poll_list))) { 5558 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5559 n->dev ? n->dev->name : "backlog"); 5560 goto out_unlock; 5561 } 5562 5563 list_add_tail(&n->poll_list, repoll); 5564 5565 out_unlock: 5566 netpoll_poll_unlock(have); 5567 5568 return work; 5569 } 5570 5571 static __latent_entropy void net_rx_action(struct softirq_action *h) 5572 { 5573 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5574 unsigned long time_limit = jiffies + 5575 usecs_to_jiffies(netdev_budget_usecs); 5576 int budget = netdev_budget; 5577 LIST_HEAD(list); 5578 LIST_HEAD(repoll); 5579 5580 local_irq_disable(); 5581 list_splice_init(&sd->poll_list, &list); 5582 local_irq_enable(); 5583 5584 for (;;) { 5585 struct napi_struct *n; 5586 5587 if (list_empty(&list)) { 5588 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5589 goto out; 5590 break; 5591 } 5592 5593 n = list_first_entry(&list, struct napi_struct, poll_list); 5594 budget -= napi_poll(n, &repoll); 5595 5596 /* If softirq window is exhausted then punt. 5597 * Allow this to run for 2 jiffies since which will allow 5598 * an average latency of 1.5/HZ. 5599 */ 5600 if (unlikely(budget <= 0 || 5601 time_after_eq(jiffies, time_limit))) { 5602 sd->time_squeeze++; 5603 break; 5604 } 5605 } 5606 5607 local_irq_disable(); 5608 5609 list_splice_tail_init(&sd->poll_list, &list); 5610 list_splice_tail(&repoll, &list); 5611 list_splice(&list, &sd->poll_list); 5612 if (!list_empty(&sd->poll_list)) 5613 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5614 5615 net_rps_action_and_irq_enable(sd); 5616 out: 5617 __kfree_skb_flush(); 5618 } 5619 5620 struct netdev_adjacent { 5621 struct net_device *dev; 5622 5623 /* upper master flag, there can only be one master device per list */ 5624 bool master; 5625 5626 /* counter for the number of times this device was added to us */ 5627 u16 ref_nr; 5628 5629 /* private field for the users */ 5630 void *private; 5631 5632 struct list_head list; 5633 struct rcu_head rcu; 5634 }; 5635 5636 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5637 struct list_head *adj_list) 5638 { 5639 struct netdev_adjacent *adj; 5640 5641 list_for_each_entry(adj, adj_list, list) { 5642 if (adj->dev == adj_dev) 5643 return adj; 5644 } 5645 return NULL; 5646 } 5647 5648 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5649 { 5650 struct net_device *dev = data; 5651 5652 return upper_dev == dev; 5653 } 5654 5655 /** 5656 * netdev_has_upper_dev - Check if device is linked to an upper device 5657 * @dev: device 5658 * @upper_dev: upper device to check 5659 * 5660 * Find out if a device is linked to specified upper device and return true 5661 * in case it is. Note that this checks only immediate upper device, 5662 * not through a complete stack of devices. The caller must hold the RTNL lock. 5663 */ 5664 bool netdev_has_upper_dev(struct net_device *dev, 5665 struct net_device *upper_dev) 5666 { 5667 ASSERT_RTNL(); 5668 5669 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5670 upper_dev); 5671 } 5672 EXPORT_SYMBOL(netdev_has_upper_dev); 5673 5674 /** 5675 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5676 * @dev: device 5677 * @upper_dev: upper device to check 5678 * 5679 * Find out if a device is linked to specified upper device and return true 5680 * in case it is. Note that this checks the entire upper device chain. 5681 * The caller must hold rcu lock. 5682 */ 5683 5684 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5685 struct net_device *upper_dev) 5686 { 5687 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5688 upper_dev); 5689 } 5690 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5691 5692 /** 5693 * netdev_has_any_upper_dev - Check if device is linked to some device 5694 * @dev: device 5695 * 5696 * Find out if a device is linked to an upper device and return true in case 5697 * it is. The caller must hold the RTNL lock. 5698 */ 5699 static bool netdev_has_any_upper_dev(struct net_device *dev) 5700 { 5701 ASSERT_RTNL(); 5702 5703 return !list_empty(&dev->adj_list.upper); 5704 } 5705 5706 /** 5707 * netdev_master_upper_dev_get - Get master upper device 5708 * @dev: device 5709 * 5710 * Find a master upper device and return pointer to it or NULL in case 5711 * it's not there. The caller must hold the RTNL lock. 5712 */ 5713 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5714 { 5715 struct netdev_adjacent *upper; 5716 5717 ASSERT_RTNL(); 5718 5719 if (list_empty(&dev->adj_list.upper)) 5720 return NULL; 5721 5722 upper = list_first_entry(&dev->adj_list.upper, 5723 struct netdev_adjacent, list); 5724 if (likely(upper->master)) 5725 return upper->dev; 5726 return NULL; 5727 } 5728 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5729 5730 /** 5731 * netdev_has_any_lower_dev - Check if device is linked to some device 5732 * @dev: device 5733 * 5734 * Find out if a device is linked to a lower device and return true in case 5735 * it is. The caller must hold the RTNL lock. 5736 */ 5737 static bool netdev_has_any_lower_dev(struct net_device *dev) 5738 { 5739 ASSERT_RTNL(); 5740 5741 return !list_empty(&dev->adj_list.lower); 5742 } 5743 5744 void *netdev_adjacent_get_private(struct list_head *adj_list) 5745 { 5746 struct netdev_adjacent *adj; 5747 5748 adj = list_entry(adj_list, struct netdev_adjacent, list); 5749 5750 return adj->private; 5751 } 5752 EXPORT_SYMBOL(netdev_adjacent_get_private); 5753 5754 /** 5755 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5756 * @dev: device 5757 * @iter: list_head ** of the current position 5758 * 5759 * Gets the next device from the dev's upper list, starting from iter 5760 * position. The caller must hold RCU read lock. 5761 */ 5762 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5763 struct list_head **iter) 5764 { 5765 struct netdev_adjacent *upper; 5766 5767 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5768 5769 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5770 5771 if (&upper->list == &dev->adj_list.upper) 5772 return NULL; 5773 5774 *iter = &upper->list; 5775 5776 return upper->dev; 5777 } 5778 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5779 5780 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5781 struct list_head **iter) 5782 { 5783 struct netdev_adjacent *upper; 5784 5785 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5786 5787 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5788 5789 if (&upper->list == &dev->adj_list.upper) 5790 return NULL; 5791 5792 *iter = &upper->list; 5793 5794 return upper->dev; 5795 } 5796 5797 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5798 int (*fn)(struct net_device *dev, 5799 void *data), 5800 void *data) 5801 { 5802 struct net_device *udev; 5803 struct list_head *iter; 5804 int ret; 5805 5806 for (iter = &dev->adj_list.upper, 5807 udev = netdev_next_upper_dev_rcu(dev, &iter); 5808 udev; 5809 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5810 /* first is the upper device itself */ 5811 ret = fn(udev, data); 5812 if (ret) 5813 return ret; 5814 5815 /* then look at all of its upper devices */ 5816 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5817 if (ret) 5818 return ret; 5819 } 5820 5821 return 0; 5822 } 5823 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5824 5825 /** 5826 * netdev_lower_get_next_private - Get the next ->private from the 5827 * lower neighbour list 5828 * @dev: device 5829 * @iter: list_head ** of the current position 5830 * 5831 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5832 * list, starting from iter position. The caller must hold either hold the 5833 * RTNL lock or its own locking that guarantees that the neighbour lower 5834 * list will remain unchanged. 5835 */ 5836 void *netdev_lower_get_next_private(struct net_device *dev, 5837 struct list_head **iter) 5838 { 5839 struct netdev_adjacent *lower; 5840 5841 lower = list_entry(*iter, struct netdev_adjacent, list); 5842 5843 if (&lower->list == &dev->adj_list.lower) 5844 return NULL; 5845 5846 *iter = lower->list.next; 5847 5848 return lower->private; 5849 } 5850 EXPORT_SYMBOL(netdev_lower_get_next_private); 5851 5852 /** 5853 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5854 * lower neighbour list, RCU 5855 * variant 5856 * @dev: device 5857 * @iter: list_head ** of the current position 5858 * 5859 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5860 * list, starting from iter position. The caller must hold RCU read lock. 5861 */ 5862 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5863 struct list_head **iter) 5864 { 5865 struct netdev_adjacent *lower; 5866 5867 WARN_ON_ONCE(!rcu_read_lock_held()); 5868 5869 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5870 5871 if (&lower->list == &dev->adj_list.lower) 5872 return NULL; 5873 5874 *iter = &lower->list; 5875 5876 return lower->private; 5877 } 5878 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5879 5880 /** 5881 * netdev_lower_get_next - Get the next device from the lower neighbour 5882 * list 5883 * @dev: device 5884 * @iter: list_head ** of the current position 5885 * 5886 * Gets the next netdev_adjacent from the dev's lower neighbour 5887 * list, starting from iter position. The caller must hold RTNL lock or 5888 * its own locking that guarantees that the neighbour lower 5889 * list will remain unchanged. 5890 */ 5891 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5892 { 5893 struct netdev_adjacent *lower; 5894 5895 lower = list_entry(*iter, struct netdev_adjacent, list); 5896 5897 if (&lower->list == &dev->adj_list.lower) 5898 return NULL; 5899 5900 *iter = lower->list.next; 5901 5902 return lower->dev; 5903 } 5904 EXPORT_SYMBOL(netdev_lower_get_next); 5905 5906 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5907 struct list_head **iter) 5908 { 5909 struct netdev_adjacent *lower; 5910 5911 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5912 5913 if (&lower->list == &dev->adj_list.lower) 5914 return NULL; 5915 5916 *iter = &lower->list; 5917 5918 return lower->dev; 5919 } 5920 5921 int netdev_walk_all_lower_dev(struct net_device *dev, 5922 int (*fn)(struct net_device *dev, 5923 void *data), 5924 void *data) 5925 { 5926 struct net_device *ldev; 5927 struct list_head *iter; 5928 int ret; 5929 5930 for (iter = &dev->adj_list.lower, 5931 ldev = netdev_next_lower_dev(dev, &iter); 5932 ldev; 5933 ldev = netdev_next_lower_dev(dev, &iter)) { 5934 /* first is the lower device itself */ 5935 ret = fn(ldev, data); 5936 if (ret) 5937 return ret; 5938 5939 /* then look at all of its lower devices */ 5940 ret = netdev_walk_all_lower_dev(ldev, fn, data); 5941 if (ret) 5942 return ret; 5943 } 5944 5945 return 0; 5946 } 5947 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 5948 5949 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 5950 struct list_head **iter) 5951 { 5952 struct netdev_adjacent *lower; 5953 5954 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5955 if (&lower->list == &dev->adj_list.lower) 5956 return NULL; 5957 5958 *iter = &lower->list; 5959 5960 return lower->dev; 5961 } 5962 5963 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 5964 int (*fn)(struct net_device *dev, 5965 void *data), 5966 void *data) 5967 { 5968 struct net_device *ldev; 5969 struct list_head *iter; 5970 int ret; 5971 5972 for (iter = &dev->adj_list.lower, 5973 ldev = netdev_next_lower_dev_rcu(dev, &iter); 5974 ldev; 5975 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 5976 /* first is the lower device itself */ 5977 ret = fn(ldev, data); 5978 if (ret) 5979 return ret; 5980 5981 /* then look at all of its lower devices */ 5982 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 5983 if (ret) 5984 return ret; 5985 } 5986 5987 return 0; 5988 } 5989 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 5990 5991 /** 5992 * netdev_lower_get_first_private_rcu - Get the first ->private from the 5993 * lower neighbour list, RCU 5994 * variant 5995 * @dev: device 5996 * 5997 * Gets the first netdev_adjacent->private from the dev's lower neighbour 5998 * list. The caller must hold RCU read lock. 5999 */ 6000 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6001 { 6002 struct netdev_adjacent *lower; 6003 6004 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6005 struct netdev_adjacent, list); 6006 if (lower) 6007 return lower->private; 6008 return NULL; 6009 } 6010 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6011 6012 /** 6013 * netdev_master_upper_dev_get_rcu - Get master upper device 6014 * @dev: device 6015 * 6016 * Find a master upper device and return pointer to it or NULL in case 6017 * it's not there. The caller must hold the RCU read lock. 6018 */ 6019 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6020 { 6021 struct netdev_adjacent *upper; 6022 6023 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6024 struct netdev_adjacent, list); 6025 if (upper && likely(upper->master)) 6026 return upper->dev; 6027 return NULL; 6028 } 6029 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6030 6031 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6032 struct net_device *adj_dev, 6033 struct list_head *dev_list) 6034 { 6035 char linkname[IFNAMSIZ+7]; 6036 6037 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6038 "upper_%s" : "lower_%s", adj_dev->name); 6039 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6040 linkname); 6041 } 6042 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6043 char *name, 6044 struct list_head *dev_list) 6045 { 6046 char linkname[IFNAMSIZ+7]; 6047 6048 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6049 "upper_%s" : "lower_%s", name); 6050 sysfs_remove_link(&(dev->dev.kobj), linkname); 6051 } 6052 6053 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6054 struct net_device *adj_dev, 6055 struct list_head *dev_list) 6056 { 6057 return (dev_list == &dev->adj_list.upper || 6058 dev_list == &dev->adj_list.lower) && 6059 net_eq(dev_net(dev), dev_net(adj_dev)); 6060 } 6061 6062 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6063 struct net_device *adj_dev, 6064 struct list_head *dev_list, 6065 void *private, bool master) 6066 { 6067 struct netdev_adjacent *adj; 6068 int ret; 6069 6070 adj = __netdev_find_adj(adj_dev, dev_list); 6071 6072 if (adj) { 6073 adj->ref_nr += 1; 6074 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6075 dev->name, adj_dev->name, adj->ref_nr); 6076 6077 return 0; 6078 } 6079 6080 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6081 if (!adj) 6082 return -ENOMEM; 6083 6084 adj->dev = adj_dev; 6085 adj->master = master; 6086 adj->ref_nr = 1; 6087 adj->private = private; 6088 dev_hold(adj_dev); 6089 6090 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6091 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6092 6093 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6094 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6095 if (ret) 6096 goto free_adj; 6097 } 6098 6099 /* Ensure that master link is always the first item in list. */ 6100 if (master) { 6101 ret = sysfs_create_link(&(dev->dev.kobj), 6102 &(adj_dev->dev.kobj), "master"); 6103 if (ret) 6104 goto remove_symlinks; 6105 6106 list_add_rcu(&adj->list, dev_list); 6107 } else { 6108 list_add_tail_rcu(&adj->list, dev_list); 6109 } 6110 6111 return 0; 6112 6113 remove_symlinks: 6114 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6115 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6116 free_adj: 6117 kfree(adj); 6118 dev_put(adj_dev); 6119 6120 return ret; 6121 } 6122 6123 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6124 struct net_device *adj_dev, 6125 u16 ref_nr, 6126 struct list_head *dev_list) 6127 { 6128 struct netdev_adjacent *adj; 6129 6130 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6131 dev->name, adj_dev->name, ref_nr); 6132 6133 adj = __netdev_find_adj(adj_dev, dev_list); 6134 6135 if (!adj) { 6136 pr_err("Adjacency does not exist for device %s from %s\n", 6137 dev->name, adj_dev->name); 6138 WARN_ON(1); 6139 return; 6140 } 6141 6142 if (adj->ref_nr > ref_nr) { 6143 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6144 dev->name, adj_dev->name, ref_nr, 6145 adj->ref_nr - ref_nr); 6146 adj->ref_nr -= ref_nr; 6147 return; 6148 } 6149 6150 if (adj->master) 6151 sysfs_remove_link(&(dev->dev.kobj), "master"); 6152 6153 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6154 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6155 6156 list_del_rcu(&adj->list); 6157 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6158 adj_dev->name, dev->name, adj_dev->name); 6159 dev_put(adj_dev); 6160 kfree_rcu(adj, rcu); 6161 } 6162 6163 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6164 struct net_device *upper_dev, 6165 struct list_head *up_list, 6166 struct list_head *down_list, 6167 void *private, bool master) 6168 { 6169 int ret; 6170 6171 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6172 private, master); 6173 if (ret) 6174 return ret; 6175 6176 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6177 private, false); 6178 if (ret) { 6179 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6180 return ret; 6181 } 6182 6183 return 0; 6184 } 6185 6186 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6187 struct net_device *upper_dev, 6188 u16 ref_nr, 6189 struct list_head *up_list, 6190 struct list_head *down_list) 6191 { 6192 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6193 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6194 } 6195 6196 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6197 struct net_device *upper_dev, 6198 void *private, bool master) 6199 { 6200 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6201 &dev->adj_list.upper, 6202 &upper_dev->adj_list.lower, 6203 private, master); 6204 } 6205 6206 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6207 struct net_device *upper_dev) 6208 { 6209 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6210 &dev->adj_list.upper, 6211 &upper_dev->adj_list.lower); 6212 } 6213 6214 static int __netdev_upper_dev_link(struct net_device *dev, 6215 struct net_device *upper_dev, bool master, 6216 void *upper_priv, void *upper_info) 6217 { 6218 struct netdev_notifier_changeupper_info changeupper_info; 6219 int ret = 0; 6220 6221 ASSERT_RTNL(); 6222 6223 if (dev == upper_dev) 6224 return -EBUSY; 6225 6226 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6227 if (netdev_has_upper_dev(upper_dev, dev)) 6228 return -EBUSY; 6229 6230 if (netdev_has_upper_dev(dev, upper_dev)) 6231 return -EEXIST; 6232 6233 if (master && netdev_master_upper_dev_get(dev)) 6234 return -EBUSY; 6235 6236 changeupper_info.upper_dev = upper_dev; 6237 changeupper_info.master = master; 6238 changeupper_info.linking = true; 6239 changeupper_info.upper_info = upper_info; 6240 6241 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6242 &changeupper_info.info); 6243 ret = notifier_to_errno(ret); 6244 if (ret) 6245 return ret; 6246 6247 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6248 master); 6249 if (ret) 6250 return ret; 6251 6252 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6253 &changeupper_info.info); 6254 ret = notifier_to_errno(ret); 6255 if (ret) 6256 goto rollback; 6257 6258 return 0; 6259 6260 rollback: 6261 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6262 6263 return ret; 6264 } 6265 6266 /** 6267 * netdev_upper_dev_link - Add a link to the upper device 6268 * @dev: device 6269 * @upper_dev: new upper device 6270 * 6271 * Adds a link to device which is upper to this one. The caller must hold 6272 * the RTNL lock. On a failure a negative errno code is returned. 6273 * On success the reference counts are adjusted and the function 6274 * returns zero. 6275 */ 6276 int netdev_upper_dev_link(struct net_device *dev, 6277 struct net_device *upper_dev) 6278 { 6279 return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL); 6280 } 6281 EXPORT_SYMBOL(netdev_upper_dev_link); 6282 6283 /** 6284 * netdev_master_upper_dev_link - Add a master link to the upper device 6285 * @dev: device 6286 * @upper_dev: new upper device 6287 * @upper_priv: upper device private 6288 * @upper_info: upper info to be passed down via notifier 6289 * 6290 * Adds a link to device which is upper to this one. In this case, only 6291 * one master upper device can be linked, although other non-master devices 6292 * might be linked as well. The caller must hold the RTNL lock. 6293 * On a failure a negative errno code is returned. On success the reference 6294 * counts are adjusted and the function returns zero. 6295 */ 6296 int netdev_master_upper_dev_link(struct net_device *dev, 6297 struct net_device *upper_dev, 6298 void *upper_priv, void *upper_info) 6299 { 6300 return __netdev_upper_dev_link(dev, upper_dev, true, 6301 upper_priv, upper_info); 6302 } 6303 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6304 6305 /** 6306 * netdev_upper_dev_unlink - Removes a link to upper device 6307 * @dev: device 6308 * @upper_dev: new upper device 6309 * 6310 * Removes a link to device which is upper to this one. The caller must hold 6311 * the RTNL lock. 6312 */ 6313 void netdev_upper_dev_unlink(struct net_device *dev, 6314 struct net_device *upper_dev) 6315 { 6316 struct netdev_notifier_changeupper_info changeupper_info; 6317 6318 ASSERT_RTNL(); 6319 6320 changeupper_info.upper_dev = upper_dev; 6321 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6322 changeupper_info.linking = false; 6323 6324 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev, 6325 &changeupper_info.info); 6326 6327 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6328 6329 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev, 6330 &changeupper_info.info); 6331 } 6332 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6333 6334 /** 6335 * netdev_bonding_info_change - Dispatch event about slave change 6336 * @dev: device 6337 * @bonding_info: info to dispatch 6338 * 6339 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6340 * The caller must hold the RTNL lock. 6341 */ 6342 void netdev_bonding_info_change(struct net_device *dev, 6343 struct netdev_bonding_info *bonding_info) 6344 { 6345 struct netdev_notifier_bonding_info info; 6346 6347 memcpy(&info.bonding_info, bonding_info, 6348 sizeof(struct netdev_bonding_info)); 6349 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev, 6350 &info.info); 6351 } 6352 EXPORT_SYMBOL(netdev_bonding_info_change); 6353 6354 static void netdev_adjacent_add_links(struct net_device *dev) 6355 { 6356 struct netdev_adjacent *iter; 6357 6358 struct net *net = dev_net(dev); 6359 6360 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6361 if (!net_eq(net, dev_net(iter->dev))) 6362 continue; 6363 netdev_adjacent_sysfs_add(iter->dev, dev, 6364 &iter->dev->adj_list.lower); 6365 netdev_adjacent_sysfs_add(dev, iter->dev, 6366 &dev->adj_list.upper); 6367 } 6368 6369 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6370 if (!net_eq(net, dev_net(iter->dev))) 6371 continue; 6372 netdev_adjacent_sysfs_add(iter->dev, dev, 6373 &iter->dev->adj_list.upper); 6374 netdev_adjacent_sysfs_add(dev, iter->dev, 6375 &dev->adj_list.lower); 6376 } 6377 } 6378 6379 static void netdev_adjacent_del_links(struct net_device *dev) 6380 { 6381 struct netdev_adjacent *iter; 6382 6383 struct net *net = dev_net(dev); 6384 6385 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6386 if (!net_eq(net, dev_net(iter->dev))) 6387 continue; 6388 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6389 &iter->dev->adj_list.lower); 6390 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6391 &dev->adj_list.upper); 6392 } 6393 6394 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6395 if (!net_eq(net, dev_net(iter->dev))) 6396 continue; 6397 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6398 &iter->dev->adj_list.upper); 6399 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6400 &dev->adj_list.lower); 6401 } 6402 } 6403 6404 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6405 { 6406 struct netdev_adjacent *iter; 6407 6408 struct net *net = dev_net(dev); 6409 6410 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6411 if (!net_eq(net, dev_net(iter->dev))) 6412 continue; 6413 netdev_adjacent_sysfs_del(iter->dev, oldname, 6414 &iter->dev->adj_list.lower); 6415 netdev_adjacent_sysfs_add(iter->dev, dev, 6416 &iter->dev->adj_list.lower); 6417 } 6418 6419 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6420 if (!net_eq(net, dev_net(iter->dev))) 6421 continue; 6422 netdev_adjacent_sysfs_del(iter->dev, oldname, 6423 &iter->dev->adj_list.upper); 6424 netdev_adjacent_sysfs_add(iter->dev, dev, 6425 &iter->dev->adj_list.upper); 6426 } 6427 } 6428 6429 void *netdev_lower_dev_get_private(struct net_device *dev, 6430 struct net_device *lower_dev) 6431 { 6432 struct netdev_adjacent *lower; 6433 6434 if (!lower_dev) 6435 return NULL; 6436 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6437 if (!lower) 6438 return NULL; 6439 6440 return lower->private; 6441 } 6442 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6443 6444 6445 int dev_get_nest_level(struct net_device *dev) 6446 { 6447 struct net_device *lower = NULL; 6448 struct list_head *iter; 6449 int max_nest = -1; 6450 int nest; 6451 6452 ASSERT_RTNL(); 6453 6454 netdev_for_each_lower_dev(dev, lower, iter) { 6455 nest = dev_get_nest_level(lower); 6456 if (max_nest < nest) 6457 max_nest = nest; 6458 } 6459 6460 return max_nest + 1; 6461 } 6462 EXPORT_SYMBOL(dev_get_nest_level); 6463 6464 /** 6465 * netdev_lower_change - Dispatch event about lower device state change 6466 * @lower_dev: device 6467 * @lower_state_info: state to dispatch 6468 * 6469 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6470 * The caller must hold the RTNL lock. 6471 */ 6472 void netdev_lower_state_changed(struct net_device *lower_dev, 6473 void *lower_state_info) 6474 { 6475 struct netdev_notifier_changelowerstate_info changelowerstate_info; 6476 6477 ASSERT_RTNL(); 6478 changelowerstate_info.lower_state_info = lower_state_info; 6479 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev, 6480 &changelowerstate_info.info); 6481 } 6482 EXPORT_SYMBOL(netdev_lower_state_changed); 6483 6484 static void dev_change_rx_flags(struct net_device *dev, int flags) 6485 { 6486 const struct net_device_ops *ops = dev->netdev_ops; 6487 6488 if (ops->ndo_change_rx_flags) 6489 ops->ndo_change_rx_flags(dev, flags); 6490 } 6491 6492 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6493 { 6494 unsigned int old_flags = dev->flags; 6495 kuid_t uid; 6496 kgid_t gid; 6497 6498 ASSERT_RTNL(); 6499 6500 dev->flags |= IFF_PROMISC; 6501 dev->promiscuity += inc; 6502 if (dev->promiscuity == 0) { 6503 /* 6504 * Avoid overflow. 6505 * If inc causes overflow, untouch promisc and return error. 6506 */ 6507 if (inc < 0) 6508 dev->flags &= ~IFF_PROMISC; 6509 else { 6510 dev->promiscuity -= inc; 6511 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6512 dev->name); 6513 return -EOVERFLOW; 6514 } 6515 } 6516 if (dev->flags != old_flags) { 6517 pr_info("device %s %s promiscuous mode\n", 6518 dev->name, 6519 dev->flags & IFF_PROMISC ? "entered" : "left"); 6520 if (audit_enabled) { 6521 current_uid_gid(&uid, &gid); 6522 audit_log(current->audit_context, GFP_ATOMIC, 6523 AUDIT_ANOM_PROMISCUOUS, 6524 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6525 dev->name, (dev->flags & IFF_PROMISC), 6526 (old_flags & IFF_PROMISC), 6527 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6528 from_kuid(&init_user_ns, uid), 6529 from_kgid(&init_user_ns, gid), 6530 audit_get_sessionid(current)); 6531 } 6532 6533 dev_change_rx_flags(dev, IFF_PROMISC); 6534 } 6535 if (notify) 6536 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6537 return 0; 6538 } 6539 6540 /** 6541 * dev_set_promiscuity - update promiscuity count on a device 6542 * @dev: device 6543 * @inc: modifier 6544 * 6545 * Add or remove promiscuity from a device. While the count in the device 6546 * remains above zero the interface remains promiscuous. Once it hits zero 6547 * the device reverts back to normal filtering operation. A negative inc 6548 * value is used to drop promiscuity on the device. 6549 * Return 0 if successful or a negative errno code on error. 6550 */ 6551 int dev_set_promiscuity(struct net_device *dev, int inc) 6552 { 6553 unsigned int old_flags = dev->flags; 6554 int err; 6555 6556 err = __dev_set_promiscuity(dev, inc, true); 6557 if (err < 0) 6558 return err; 6559 if (dev->flags != old_flags) 6560 dev_set_rx_mode(dev); 6561 return err; 6562 } 6563 EXPORT_SYMBOL(dev_set_promiscuity); 6564 6565 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6566 { 6567 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6568 6569 ASSERT_RTNL(); 6570 6571 dev->flags |= IFF_ALLMULTI; 6572 dev->allmulti += inc; 6573 if (dev->allmulti == 0) { 6574 /* 6575 * Avoid overflow. 6576 * If inc causes overflow, untouch allmulti and return error. 6577 */ 6578 if (inc < 0) 6579 dev->flags &= ~IFF_ALLMULTI; 6580 else { 6581 dev->allmulti -= inc; 6582 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6583 dev->name); 6584 return -EOVERFLOW; 6585 } 6586 } 6587 if (dev->flags ^ old_flags) { 6588 dev_change_rx_flags(dev, IFF_ALLMULTI); 6589 dev_set_rx_mode(dev); 6590 if (notify) 6591 __dev_notify_flags(dev, old_flags, 6592 dev->gflags ^ old_gflags); 6593 } 6594 return 0; 6595 } 6596 6597 /** 6598 * dev_set_allmulti - update allmulti count on a device 6599 * @dev: device 6600 * @inc: modifier 6601 * 6602 * Add or remove reception of all multicast frames to a device. While the 6603 * count in the device remains above zero the interface remains listening 6604 * to all interfaces. Once it hits zero the device reverts back to normal 6605 * filtering operation. A negative @inc value is used to drop the counter 6606 * when releasing a resource needing all multicasts. 6607 * Return 0 if successful or a negative errno code on error. 6608 */ 6609 6610 int dev_set_allmulti(struct net_device *dev, int inc) 6611 { 6612 return __dev_set_allmulti(dev, inc, true); 6613 } 6614 EXPORT_SYMBOL(dev_set_allmulti); 6615 6616 /* 6617 * Upload unicast and multicast address lists to device and 6618 * configure RX filtering. When the device doesn't support unicast 6619 * filtering it is put in promiscuous mode while unicast addresses 6620 * are present. 6621 */ 6622 void __dev_set_rx_mode(struct net_device *dev) 6623 { 6624 const struct net_device_ops *ops = dev->netdev_ops; 6625 6626 /* dev_open will call this function so the list will stay sane. */ 6627 if (!(dev->flags&IFF_UP)) 6628 return; 6629 6630 if (!netif_device_present(dev)) 6631 return; 6632 6633 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6634 /* Unicast addresses changes may only happen under the rtnl, 6635 * therefore calling __dev_set_promiscuity here is safe. 6636 */ 6637 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6638 __dev_set_promiscuity(dev, 1, false); 6639 dev->uc_promisc = true; 6640 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6641 __dev_set_promiscuity(dev, -1, false); 6642 dev->uc_promisc = false; 6643 } 6644 } 6645 6646 if (ops->ndo_set_rx_mode) 6647 ops->ndo_set_rx_mode(dev); 6648 } 6649 6650 void dev_set_rx_mode(struct net_device *dev) 6651 { 6652 netif_addr_lock_bh(dev); 6653 __dev_set_rx_mode(dev); 6654 netif_addr_unlock_bh(dev); 6655 } 6656 6657 /** 6658 * dev_get_flags - get flags reported to userspace 6659 * @dev: device 6660 * 6661 * Get the combination of flag bits exported through APIs to userspace. 6662 */ 6663 unsigned int dev_get_flags(const struct net_device *dev) 6664 { 6665 unsigned int flags; 6666 6667 flags = (dev->flags & ~(IFF_PROMISC | 6668 IFF_ALLMULTI | 6669 IFF_RUNNING | 6670 IFF_LOWER_UP | 6671 IFF_DORMANT)) | 6672 (dev->gflags & (IFF_PROMISC | 6673 IFF_ALLMULTI)); 6674 6675 if (netif_running(dev)) { 6676 if (netif_oper_up(dev)) 6677 flags |= IFF_RUNNING; 6678 if (netif_carrier_ok(dev)) 6679 flags |= IFF_LOWER_UP; 6680 if (netif_dormant(dev)) 6681 flags |= IFF_DORMANT; 6682 } 6683 6684 return flags; 6685 } 6686 EXPORT_SYMBOL(dev_get_flags); 6687 6688 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6689 { 6690 unsigned int old_flags = dev->flags; 6691 int ret; 6692 6693 ASSERT_RTNL(); 6694 6695 /* 6696 * Set the flags on our device. 6697 */ 6698 6699 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6700 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6701 IFF_AUTOMEDIA)) | 6702 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6703 IFF_ALLMULTI)); 6704 6705 /* 6706 * Load in the correct multicast list now the flags have changed. 6707 */ 6708 6709 if ((old_flags ^ flags) & IFF_MULTICAST) 6710 dev_change_rx_flags(dev, IFF_MULTICAST); 6711 6712 dev_set_rx_mode(dev); 6713 6714 /* 6715 * Have we downed the interface. We handle IFF_UP ourselves 6716 * according to user attempts to set it, rather than blindly 6717 * setting it. 6718 */ 6719 6720 ret = 0; 6721 if ((old_flags ^ flags) & IFF_UP) { 6722 if (old_flags & IFF_UP) 6723 __dev_close(dev); 6724 else 6725 ret = __dev_open(dev); 6726 } 6727 6728 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6729 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6730 unsigned int old_flags = dev->flags; 6731 6732 dev->gflags ^= IFF_PROMISC; 6733 6734 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6735 if (dev->flags != old_flags) 6736 dev_set_rx_mode(dev); 6737 } 6738 6739 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6740 * is important. Some (broken) drivers set IFF_PROMISC, when 6741 * IFF_ALLMULTI is requested not asking us and not reporting. 6742 */ 6743 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6744 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6745 6746 dev->gflags ^= IFF_ALLMULTI; 6747 __dev_set_allmulti(dev, inc, false); 6748 } 6749 6750 return ret; 6751 } 6752 6753 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6754 unsigned int gchanges) 6755 { 6756 unsigned int changes = dev->flags ^ old_flags; 6757 6758 if (gchanges) 6759 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6760 6761 if (changes & IFF_UP) { 6762 if (dev->flags & IFF_UP) 6763 call_netdevice_notifiers(NETDEV_UP, dev); 6764 else 6765 call_netdevice_notifiers(NETDEV_DOWN, dev); 6766 } 6767 6768 if (dev->flags & IFF_UP && 6769 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6770 struct netdev_notifier_change_info change_info; 6771 6772 change_info.flags_changed = changes; 6773 call_netdevice_notifiers_info(NETDEV_CHANGE, dev, 6774 &change_info.info); 6775 } 6776 } 6777 6778 /** 6779 * dev_change_flags - change device settings 6780 * @dev: device 6781 * @flags: device state flags 6782 * 6783 * Change settings on device based state flags. The flags are 6784 * in the userspace exported format. 6785 */ 6786 int dev_change_flags(struct net_device *dev, unsigned int flags) 6787 { 6788 int ret; 6789 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6790 6791 ret = __dev_change_flags(dev, flags); 6792 if (ret < 0) 6793 return ret; 6794 6795 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6796 __dev_notify_flags(dev, old_flags, changes); 6797 return ret; 6798 } 6799 EXPORT_SYMBOL(dev_change_flags); 6800 6801 int __dev_set_mtu(struct net_device *dev, int new_mtu) 6802 { 6803 const struct net_device_ops *ops = dev->netdev_ops; 6804 6805 if (ops->ndo_change_mtu) 6806 return ops->ndo_change_mtu(dev, new_mtu); 6807 6808 dev->mtu = new_mtu; 6809 return 0; 6810 } 6811 EXPORT_SYMBOL(__dev_set_mtu); 6812 6813 /** 6814 * dev_set_mtu - Change maximum transfer unit 6815 * @dev: device 6816 * @new_mtu: new transfer unit 6817 * 6818 * Change the maximum transfer size of the network device. 6819 */ 6820 int dev_set_mtu(struct net_device *dev, int new_mtu) 6821 { 6822 int err, orig_mtu; 6823 6824 if (new_mtu == dev->mtu) 6825 return 0; 6826 6827 /* MTU must be positive, and in range */ 6828 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6829 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6830 dev->name, new_mtu, dev->min_mtu); 6831 return -EINVAL; 6832 } 6833 6834 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6835 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6836 dev->name, new_mtu, dev->max_mtu); 6837 return -EINVAL; 6838 } 6839 6840 if (!netif_device_present(dev)) 6841 return -ENODEV; 6842 6843 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6844 err = notifier_to_errno(err); 6845 if (err) 6846 return err; 6847 6848 orig_mtu = dev->mtu; 6849 err = __dev_set_mtu(dev, new_mtu); 6850 6851 if (!err) { 6852 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6853 err = notifier_to_errno(err); 6854 if (err) { 6855 /* setting mtu back and notifying everyone again, 6856 * so that they have a chance to revert changes. 6857 */ 6858 __dev_set_mtu(dev, orig_mtu); 6859 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6860 } 6861 } 6862 return err; 6863 } 6864 EXPORT_SYMBOL(dev_set_mtu); 6865 6866 /** 6867 * dev_set_group - Change group this device belongs to 6868 * @dev: device 6869 * @new_group: group this device should belong to 6870 */ 6871 void dev_set_group(struct net_device *dev, int new_group) 6872 { 6873 dev->group = new_group; 6874 } 6875 EXPORT_SYMBOL(dev_set_group); 6876 6877 /** 6878 * dev_set_mac_address - Change Media Access Control Address 6879 * @dev: device 6880 * @sa: new address 6881 * 6882 * Change the hardware (MAC) address of the device 6883 */ 6884 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6885 { 6886 const struct net_device_ops *ops = dev->netdev_ops; 6887 int err; 6888 6889 if (!ops->ndo_set_mac_address) 6890 return -EOPNOTSUPP; 6891 if (sa->sa_family != dev->type) 6892 return -EINVAL; 6893 if (!netif_device_present(dev)) 6894 return -ENODEV; 6895 err = ops->ndo_set_mac_address(dev, sa); 6896 if (err) 6897 return err; 6898 dev->addr_assign_type = NET_ADDR_SET; 6899 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6900 add_device_randomness(dev->dev_addr, dev->addr_len); 6901 return 0; 6902 } 6903 EXPORT_SYMBOL(dev_set_mac_address); 6904 6905 /** 6906 * dev_change_carrier - Change device carrier 6907 * @dev: device 6908 * @new_carrier: new value 6909 * 6910 * Change device carrier 6911 */ 6912 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6913 { 6914 const struct net_device_ops *ops = dev->netdev_ops; 6915 6916 if (!ops->ndo_change_carrier) 6917 return -EOPNOTSUPP; 6918 if (!netif_device_present(dev)) 6919 return -ENODEV; 6920 return ops->ndo_change_carrier(dev, new_carrier); 6921 } 6922 EXPORT_SYMBOL(dev_change_carrier); 6923 6924 /** 6925 * dev_get_phys_port_id - Get device physical port ID 6926 * @dev: device 6927 * @ppid: port ID 6928 * 6929 * Get device physical port ID 6930 */ 6931 int dev_get_phys_port_id(struct net_device *dev, 6932 struct netdev_phys_item_id *ppid) 6933 { 6934 const struct net_device_ops *ops = dev->netdev_ops; 6935 6936 if (!ops->ndo_get_phys_port_id) 6937 return -EOPNOTSUPP; 6938 return ops->ndo_get_phys_port_id(dev, ppid); 6939 } 6940 EXPORT_SYMBOL(dev_get_phys_port_id); 6941 6942 /** 6943 * dev_get_phys_port_name - Get device physical port name 6944 * @dev: device 6945 * @name: port name 6946 * @len: limit of bytes to copy to name 6947 * 6948 * Get device physical port name 6949 */ 6950 int dev_get_phys_port_name(struct net_device *dev, 6951 char *name, size_t len) 6952 { 6953 const struct net_device_ops *ops = dev->netdev_ops; 6954 6955 if (!ops->ndo_get_phys_port_name) 6956 return -EOPNOTSUPP; 6957 return ops->ndo_get_phys_port_name(dev, name, len); 6958 } 6959 EXPORT_SYMBOL(dev_get_phys_port_name); 6960 6961 /** 6962 * dev_change_proto_down - update protocol port state information 6963 * @dev: device 6964 * @proto_down: new value 6965 * 6966 * This info can be used by switch drivers to set the phys state of the 6967 * port. 6968 */ 6969 int dev_change_proto_down(struct net_device *dev, bool proto_down) 6970 { 6971 const struct net_device_ops *ops = dev->netdev_ops; 6972 6973 if (!ops->ndo_change_proto_down) 6974 return -EOPNOTSUPP; 6975 if (!netif_device_present(dev)) 6976 return -ENODEV; 6977 return ops->ndo_change_proto_down(dev, proto_down); 6978 } 6979 EXPORT_SYMBOL(dev_change_proto_down); 6980 6981 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id) 6982 { 6983 struct netdev_xdp xdp; 6984 6985 memset(&xdp, 0, sizeof(xdp)); 6986 xdp.command = XDP_QUERY_PROG; 6987 6988 /* Query must always succeed. */ 6989 WARN_ON(xdp_op(dev, &xdp) < 0); 6990 if (prog_id) 6991 *prog_id = xdp.prog_id; 6992 6993 return xdp.prog_attached; 6994 } 6995 6996 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op, 6997 struct netlink_ext_ack *extack, u32 flags, 6998 struct bpf_prog *prog) 6999 { 7000 struct netdev_xdp xdp; 7001 7002 memset(&xdp, 0, sizeof(xdp)); 7003 if (flags & XDP_FLAGS_HW_MODE) 7004 xdp.command = XDP_SETUP_PROG_HW; 7005 else 7006 xdp.command = XDP_SETUP_PROG; 7007 xdp.extack = extack; 7008 xdp.flags = flags; 7009 xdp.prog = prog; 7010 7011 return xdp_op(dev, &xdp); 7012 } 7013 7014 /** 7015 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7016 * @dev: device 7017 * @extack: netlink extended ack 7018 * @fd: new program fd or negative value to clear 7019 * @flags: xdp-related flags 7020 * 7021 * Set or clear a bpf program for a device 7022 */ 7023 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7024 int fd, u32 flags) 7025 { 7026 const struct net_device_ops *ops = dev->netdev_ops; 7027 struct bpf_prog *prog = NULL; 7028 xdp_op_t xdp_op, xdp_chk; 7029 int err; 7030 7031 ASSERT_RTNL(); 7032 7033 xdp_op = xdp_chk = ops->ndo_xdp; 7034 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7035 return -EOPNOTSUPP; 7036 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE)) 7037 xdp_op = generic_xdp_install; 7038 if (xdp_op == xdp_chk) 7039 xdp_chk = generic_xdp_install; 7040 7041 if (fd >= 0) { 7042 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL)) 7043 return -EEXIST; 7044 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7045 __dev_xdp_attached(dev, xdp_op, NULL)) 7046 return -EBUSY; 7047 7048 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 7049 if (IS_ERR(prog)) 7050 return PTR_ERR(prog); 7051 } 7052 7053 err = dev_xdp_install(dev, xdp_op, extack, flags, prog); 7054 if (err < 0 && prog) 7055 bpf_prog_put(prog); 7056 7057 return err; 7058 } 7059 7060 /** 7061 * dev_new_index - allocate an ifindex 7062 * @net: the applicable net namespace 7063 * 7064 * Returns a suitable unique value for a new device interface 7065 * number. The caller must hold the rtnl semaphore or the 7066 * dev_base_lock to be sure it remains unique. 7067 */ 7068 static int dev_new_index(struct net *net) 7069 { 7070 int ifindex = net->ifindex; 7071 7072 for (;;) { 7073 if (++ifindex <= 0) 7074 ifindex = 1; 7075 if (!__dev_get_by_index(net, ifindex)) 7076 return net->ifindex = ifindex; 7077 } 7078 } 7079 7080 /* Delayed registration/unregisteration */ 7081 static LIST_HEAD(net_todo_list); 7082 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7083 7084 static void net_set_todo(struct net_device *dev) 7085 { 7086 list_add_tail(&dev->todo_list, &net_todo_list); 7087 dev_net(dev)->dev_unreg_count++; 7088 } 7089 7090 static void rollback_registered_many(struct list_head *head) 7091 { 7092 struct net_device *dev, *tmp; 7093 LIST_HEAD(close_head); 7094 7095 BUG_ON(dev_boot_phase); 7096 ASSERT_RTNL(); 7097 7098 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7099 /* Some devices call without registering 7100 * for initialization unwind. Remove those 7101 * devices and proceed with the remaining. 7102 */ 7103 if (dev->reg_state == NETREG_UNINITIALIZED) { 7104 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7105 dev->name, dev); 7106 7107 WARN_ON(1); 7108 list_del(&dev->unreg_list); 7109 continue; 7110 } 7111 dev->dismantle = true; 7112 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7113 } 7114 7115 /* If device is running, close it first. */ 7116 list_for_each_entry(dev, head, unreg_list) 7117 list_add_tail(&dev->close_list, &close_head); 7118 dev_close_many(&close_head, true); 7119 7120 list_for_each_entry(dev, head, unreg_list) { 7121 /* And unlink it from device chain. */ 7122 unlist_netdevice(dev); 7123 7124 dev->reg_state = NETREG_UNREGISTERING; 7125 } 7126 flush_all_backlogs(); 7127 7128 synchronize_net(); 7129 7130 list_for_each_entry(dev, head, unreg_list) { 7131 struct sk_buff *skb = NULL; 7132 7133 /* Shutdown queueing discipline. */ 7134 dev_shutdown(dev); 7135 7136 7137 /* Notify protocols, that we are about to destroy 7138 * this device. They should clean all the things. 7139 */ 7140 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7141 7142 if (!dev->rtnl_link_ops || 7143 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7144 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7145 GFP_KERNEL); 7146 7147 /* 7148 * Flush the unicast and multicast chains 7149 */ 7150 dev_uc_flush(dev); 7151 dev_mc_flush(dev); 7152 7153 if (dev->netdev_ops->ndo_uninit) 7154 dev->netdev_ops->ndo_uninit(dev); 7155 7156 if (skb) 7157 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7158 7159 /* Notifier chain MUST detach us all upper devices. */ 7160 WARN_ON(netdev_has_any_upper_dev(dev)); 7161 WARN_ON(netdev_has_any_lower_dev(dev)); 7162 7163 /* Remove entries from kobject tree */ 7164 netdev_unregister_kobject(dev); 7165 #ifdef CONFIG_XPS 7166 /* Remove XPS queueing entries */ 7167 netif_reset_xps_queues_gt(dev, 0); 7168 #endif 7169 } 7170 7171 synchronize_net(); 7172 7173 list_for_each_entry(dev, head, unreg_list) 7174 dev_put(dev); 7175 } 7176 7177 static void rollback_registered(struct net_device *dev) 7178 { 7179 LIST_HEAD(single); 7180 7181 list_add(&dev->unreg_list, &single); 7182 rollback_registered_many(&single); 7183 list_del(&single); 7184 } 7185 7186 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7187 struct net_device *upper, netdev_features_t features) 7188 { 7189 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7190 netdev_features_t feature; 7191 int feature_bit; 7192 7193 for_each_netdev_feature(&upper_disables, feature_bit) { 7194 feature = __NETIF_F_BIT(feature_bit); 7195 if (!(upper->wanted_features & feature) 7196 && (features & feature)) { 7197 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7198 &feature, upper->name); 7199 features &= ~feature; 7200 } 7201 } 7202 7203 return features; 7204 } 7205 7206 static void netdev_sync_lower_features(struct net_device *upper, 7207 struct net_device *lower, netdev_features_t features) 7208 { 7209 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7210 netdev_features_t feature; 7211 int feature_bit; 7212 7213 for_each_netdev_feature(&upper_disables, feature_bit) { 7214 feature = __NETIF_F_BIT(feature_bit); 7215 if (!(features & feature) && (lower->features & feature)) { 7216 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7217 &feature, lower->name); 7218 lower->wanted_features &= ~feature; 7219 netdev_update_features(lower); 7220 7221 if (unlikely(lower->features & feature)) 7222 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7223 &feature, lower->name); 7224 } 7225 } 7226 } 7227 7228 static netdev_features_t netdev_fix_features(struct net_device *dev, 7229 netdev_features_t features) 7230 { 7231 /* Fix illegal checksum combinations */ 7232 if ((features & NETIF_F_HW_CSUM) && 7233 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7234 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7235 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7236 } 7237 7238 /* TSO requires that SG is present as well. */ 7239 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7240 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7241 features &= ~NETIF_F_ALL_TSO; 7242 } 7243 7244 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7245 !(features & NETIF_F_IP_CSUM)) { 7246 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7247 features &= ~NETIF_F_TSO; 7248 features &= ~NETIF_F_TSO_ECN; 7249 } 7250 7251 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7252 !(features & NETIF_F_IPV6_CSUM)) { 7253 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7254 features &= ~NETIF_F_TSO6; 7255 } 7256 7257 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7258 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7259 features &= ~NETIF_F_TSO_MANGLEID; 7260 7261 /* TSO ECN requires that TSO is present as well. */ 7262 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7263 features &= ~NETIF_F_TSO_ECN; 7264 7265 /* Software GSO depends on SG. */ 7266 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7267 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7268 features &= ~NETIF_F_GSO; 7269 } 7270 7271 /* GSO partial features require GSO partial be set */ 7272 if ((features & dev->gso_partial_features) && 7273 !(features & NETIF_F_GSO_PARTIAL)) { 7274 netdev_dbg(dev, 7275 "Dropping partially supported GSO features since no GSO partial.\n"); 7276 features &= ~dev->gso_partial_features; 7277 } 7278 7279 return features; 7280 } 7281 7282 int __netdev_update_features(struct net_device *dev) 7283 { 7284 struct net_device *upper, *lower; 7285 netdev_features_t features; 7286 struct list_head *iter; 7287 int err = -1; 7288 7289 ASSERT_RTNL(); 7290 7291 features = netdev_get_wanted_features(dev); 7292 7293 if (dev->netdev_ops->ndo_fix_features) 7294 features = dev->netdev_ops->ndo_fix_features(dev, features); 7295 7296 /* driver might be less strict about feature dependencies */ 7297 features = netdev_fix_features(dev, features); 7298 7299 /* some features can't be enabled if they're off an an upper device */ 7300 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7301 features = netdev_sync_upper_features(dev, upper, features); 7302 7303 if (dev->features == features) 7304 goto sync_lower; 7305 7306 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7307 &dev->features, &features); 7308 7309 if (dev->netdev_ops->ndo_set_features) 7310 err = dev->netdev_ops->ndo_set_features(dev, features); 7311 else 7312 err = 0; 7313 7314 if (unlikely(err < 0)) { 7315 netdev_err(dev, 7316 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7317 err, &features, &dev->features); 7318 /* return non-0 since some features might have changed and 7319 * it's better to fire a spurious notification than miss it 7320 */ 7321 return -1; 7322 } 7323 7324 sync_lower: 7325 /* some features must be disabled on lower devices when disabled 7326 * on an upper device (think: bonding master or bridge) 7327 */ 7328 netdev_for_each_lower_dev(dev, lower, iter) 7329 netdev_sync_lower_features(dev, lower, features); 7330 7331 if (!err) { 7332 netdev_features_t diff = features ^ dev->features; 7333 7334 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7335 /* udp_tunnel_{get,drop}_rx_info both need 7336 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7337 * device, or they won't do anything. 7338 * Thus we need to update dev->features 7339 * *before* calling udp_tunnel_get_rx_info, 7340 * but *after* calling udp_tunnel_drop_rx_info. 7341 */ 7342 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7343 dev->features = features; 7344 udp_tunnel_get_rx_info(dev); 7345 } else { 7346 udp_tunnel_drop_rx_info(dev); 7347 } 7348 } 7349 7350 dev->features = features; 7351 } 7352 7353 return err < 0 ? 0 : 1; 7354 } 7355 7356 /** 7357 * netdev_update_features - recalculate device features 7358 * @dev: the device to check 7359 * 7360 * Recalculate dev->features set and send notifications if it 7361 * has changed. Should be called after driver or hardware dependent 7362 * conditions might have changed that influence the features. 7363 */ 7364 void netdev_update_features(struct net_device *dev) 7365 { 7366 if (__netdev_update_features(dev)) 7367 netdev_features_change(dev); 7368 } 7369 EXPORT_SYMBOL(netdev_update_features); 7370 7371 /** 7372 * netdev_change_features - recalculate device features 7373 * @dev: the device to check 7374 * 7375 * Recalculate dev->features set and send notifications even 7376 * if they have not changed. Should be called instead of 7377 * netdev_update_features() if also dev->vlan_features might 7378 * have changed to allow the changes to be propagated to stacked 7379 * VLAN devices. 7380 */ 7381 void netdev_change_features(struct net_device *dev) 7382 { 7383 __netdev_update_features(dev); 7384 netdev_features_change(dev); 7385 } 7386 EXPORT_SYMBOL(netdev_change_features); 7387 7388 /** 7389 * netif_stacked_transfer_operstate - transfer operstate 7390 * @rootdev: the root or lower level device to transfer state from 7391 * @dev: the device to transfer operstate to 7392 * 7393 * Transfer operational state from root to device. This is normally 7394 * called when a stacking relationship exists between the root 7395 * device and the device(a leaf device). 7396 */ 7397 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7398 struct net_device *dev) 7399 { 7400 if (rootdev->operstate == IF_OPER_DORMANT) 7401 netif_dormant_on(dev); 7402 else 7403 netif_dormant_off(dev); 7404 7405 if (netif_carrier_ok(rootdev)) 7406 netif_carrier_on(dev); 7407 else 7408 netif_carrier_off(dev); 7409 } 7410 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7411 7412 #ifdef CONFIG_SYSFS 7413 static int netif_alloc_rx_queues(struct net_device *dev) 7414 { 7415 unsigned int i, count = dev->num_rx_queues; 7416 struct netdev_rx_queue *rx; 7417 size_t sz = count * sizeof(*rx); 7418 7419 BUG_ON(count < 1); 7420 7421 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7422 if (!rx) 7423 return -ENOMEM; 7424 7425 dev->_rx = rx; 7426 7427 for (i = 0; i < count; i++) 7428 rx[i].dev = dev; 7429 return 0; 7430 } 7431 #endif 7432 7433 static void netdev_init_one_queue(struct net_device *dev, 7434 struct netdev_queue *queue, void *_unused) 7435 { 7436 /* Initialize queue lock */ 7437 spin_lock_init(&queue->_xmit_lock); 7438 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7439 queue->xmit_lock_owner = -1; 7440 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7441 queue->dev = dev; 7442 #ifdef CONFIG_BQL 7443 dql_init(&queue->dql, HZ); 7444 #endif 7445 } 7446 7447 static void netif_free_tx_queues(struct net_device *dev) 7448 { 7449 kvfree(dev->_tx); 7450 } 7451 7452 static int netif_alloc_netdev_queues(struct net_device *dev) 7453 { 7454 unsigned int count = dev->num_tx_queues; 7455 struct netdev_queue *tx; 7456 size_t sz = count * sizeof(*tx); 7457 7458 if (count < 1 || count > 0xffff) 7459 return -EINVAL; 7460 7461 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7462 if (!tx) 7463 return -ENOMEM; 7464 7465 dev->_tx = tx; 7466 7467 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7468 spin_lock_init(&dev->tx_global_lock); 7469 7470 return 0; 7471 } 7472 7473 void netif_tx_stop_all_queues(struct net_device *dev) 7474 { 7475 unsigned int i; 7476 7477 for (i = 0; i < dev->num_tx_queues; i++) { 7478 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7479 7480 netif_tx_stop_queue(txq); 7481 } 7482 } 7483 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7484 7485 /** 7486 * register_netdevice - register a network device 7487 * @dev: device to register 7488 * 7489 * Take a completed network device structure and add it to the kernel 7490 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7491 * chain. 0 is returned on success. A negative errno code is returned 7492 * on a failure to set up the device, or if the name is a duplicate. 7493 * 7494 * Callers must hold the rtnl semaphore. You may want 7495 * register_netdev() instead of this. 7496 * 7497 * BUGS: 7498 * The locking appears insufficient to guarantee two parallel registers 7499 * will not get the same name. 7500 */ 7501 7502 int register_netdevice(struct net_device *dev) 7503 { 7504 int ret; 7505 struct net *net = dev_net(dev); 7506 7507 BUG_ON(dev_boot_phase); 7508 ASSERT_RTNL(); 7509 7510 might_sleep(); 7511 7512 /* When net_device's are persistent, this will be fatal. */ 7513 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7514 BUG_ON(!net); 7515 7516 spin_lock_init(&dev->addr_list_lock); 7517 netdev_set_addr_lockdep_class(dev); 7518 7519 ret = dev_get_valid_name(net, dev, dev->name); 7520 if (ret < 0) 7521 goto out; 7522 7523 /* Init, if this function is available */ 7524 if (dev->netdev_ops->ndo_init) { 7525 ret = dev->netdev_ops->ndo_init(dev); 7526 if (ret) { 7527 if (ret > 0) 7528 ret = -EIO; 7529 goto out; 7530 } 7531 } 7532 7533 if (((dev->hw_features | dev->features) & 7534 NETIF_F_HW_VLAN_CTAG_FILTER) && 7535 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7536 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7537 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7538 ret = -EINVAL; 7539 goto err_uninit; 7540 } 7541 7542 ret = -EBUSY; 7543 if (!dev->ifindex) 7544 dev->ifindex = dev_new_index(net); 7545 else if (__dev_get_by_index(net, dev->ifindex)) 7546 goto err_uninit; 7547 7548 /* Transfer changeable features to wanted_features and enable 7549 * software offloads (GSO and GRO). 7550 */ 7551 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7552 dev->features |= NETIF_F_SOFT_FEATURES; 7553 7554 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7555 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7556 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7557 } 7558 7559 dev->wanted_features = dev->features & dev->hw_features; 7560 7561 if (!(dev->flags & IFF_LOOPBACK)) 7562 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7563 7564 /* If IPv4 TCP segmentation offload is supported we should also 7565 * allow the device to enable segmenting the frame with the option 7566 * of ignoring a static IP ID value. This doesn't enable the 7567 * feature itself but allows the user to enable it later. 7568 */ 7569 if (dev->hw_features & NETIF_F_TSO) 7570 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7571 if (dev->vlan_features & NETIF_F_TSO) 7572 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7573 if (dev->mpls_features & NETIF_F_TSO) 7574 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7575 if (dev->hw_enc_features & NETIF_F_TSO) 7576 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7577 7578 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7579 */ 7580 dev->vlan_features |= NETIF_F_HIGHDMA; 7581 7582 /* Make NETIF_F_SG inheritable to tunnel devices. 7583 */ 7584 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7585 7586 /* Make NETIF_F_SG inheritable to MPLS. 7587 */ 7588 dev->mpls_features |= NETIF_F_SG; 7589 7590 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7591 ret = notifier_to_errno(ret); 7592 if (ret) 7593 goto err_uninit; 7594 7595 ret = netdev_register_kobject(dev); 7596 if (ret) 7597 goto err_uninit; 7598 dev->reg_state = NETREG_REGISTERED; 7599 7600 __netdev_update_features(dev); 7601 7602 /* 7603 * Default initial state at registry is that the 7604 * device is present. 7605 */ 7606 7607 set_bit(__LINK_STATE_PRESENT, &dev->state); 7608 7609 linkwatch_init_dev(dev); 7610 7611 dev_init_scheduler(dev); 7612 dev_hold(dev); 7613 list_netdevice(dev); 7614 add_device_randomness(dev->dev_addr, dev->addr_len); 7615 7616 /* If the device has permanent device address, driver should 7617 * set dev_addr and also addr_assign_type should be set to 7618 * NET_ADDR_PERM (default value). 7619 */ 7620 if (dev->addr_assign_type == NET_ADDR_PERM) 7621 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7622 7623 /* Notify protocols, that a new device appeared. */ 7624 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7625 ret = notifier_to_errno(ret); 7626 if (ret) { 7627 rollback_registered(dev); 7628 dev->reg_state = NETREG_UNREGISTERED; 7629 } 7630 /* 7631 * Prevent userspace races by waiting until the network 7632 * device is fully setup before sending notifications. 7633 */ 7634 if (!dev->rtnl_link_ops || 7635 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7636 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7637 7638 out: 7639 return ret; 7640 7641 err_uninit: 7642 if (dev->netdev_ops->ndo_uninit) 7643 dev->netdev_ops->ndo_uninit(dev); 7644 if (dev->priv_destructor) 7645 dev->priv_destructor(dev); 7646 goto out; 7647 } 7648 EXPORT_SYMBOL(register_netdevice); 7649 7650 /** 7651 * init_dummy_netdev - init a dummy network device for NAPI 7652 * @dev: device to init 7653 * 7654 * This takes a network device structure and initialize the minimum 7655 * amount of fields so it can be used to schedule NAPI polls without 7656 * registering a full blown interface. This is to be used by drivers 7657 * that need to tie several hardware interfaces to a single NAPI 7658 * poll scheduler due to HW limitations. 7659 */ 7660 int init_dummy_netdev(struct net_device *dev) 7661 { 7662 /* Clear everything. Note we don't initialize spinlocks 7663 * are they aren't supposed to be taken by any of the 7664 * NAPI code and this dummy netdev is supposed to be 7665 * only ever used for NAPI polls 7666 */ 7667 memset(dev, 0, sizeof(struct net_device)); 7668 7669 /* make sure we BUG if trying to hit standard 7670 * register/unregister code path 7671 */ 7672 dev->reg_state = NETREG_DUMMY; 7673 7674 /* NAPI wants this */ 7675 INIT_LIST_HEAD(&dev->napi_list); 7676 7677 /* a dummy interface is started by default */ 7678 set_bit(__LINK_STATE_PRESENT, &dev->state); 7679 set_bit(__LINK_STATE_START, &dev->state); 7680 7681 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7682 * because users of this 'device' dont need to change 7683 * its refcount. 7684 */ 7685 7686 return 0; 7687 } 7688 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7689 7690 7691 /** 7692 * register_netdev - register a network device 7693 * @dev: device to register 7694 * 7695 * Take a completed network device structure and add it to the kernel 7696 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7697 * chain. 0 is returned on success. A negative errno code is returned 7698 * on a failure to set up the device, or if the name is a duplicate. 7699 * 7700 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7701 * and expands the device name if you passed a format string to 7702 * alloc_netdev. 7703 */ 7704 int register_netdev(struct net_device *dev) 7705 { 7706 int err; 7707 7708 rtnl_lock(); 7709 err = register_netdevice(dev); 7710 rtnl_unlock(); 7711 return err; 7712 } 7713 EXPORT_SYMBOL(register_netdev); 7714 7715 int netdev_refcnt_read(const struct net_device *dev) 7716 { 7717 int i, refcnt = 0; 7718 7719 for_each_possible_cpu(i) 7720 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7721 return refcnt; 7722 } 7723 EXPORT_SYMBOL(netdev_refcnt_read); 7724 7725 /** 7726 * netdev_wait_allrefs - wait until all references are gone. 7727 * @dev: target net_device 7728 * 7729 * This is called when unregistering network devices. 7730 * 7731 * Any protocol or device that holds a reference should register 7732 * for netdevice notification, and cleanup and put back the 7733 * reference if they receive an UNREGISTER event. 7734 * We can get stuck here if buggy protocols don't correctly 7735 * call dev_put. 7736 */ 7737 static void netdev_wait_allrefs(struct net_device *dev) 7738 { 7739 unsigned long rebroadcast_time, warning_time; 7740 int refcnt; 7741 7742 linkwatch_forget_dev(dev); 7743 7744 rebroadcast_time = warning_time = jiffies; 7745 refcnt = netdev_refcnt_read(dev); 7746 7747 while (refcnt != 0) { 7748 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7749 rtnl_lock(); 7750 7751 /* Rebroadcast unregister notification */ 7752 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7753 7754 __rtnl_unlock(); 7755 rcu_barrier(); 7756 rtnl_lock(); 7757 7758 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7759 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7760 &dev->state)) { 7761 /* We must not have linkwatch events 7762 * pending on unregister. If this 7763 * happens, we simply run the queue 7764 * unscheduled, resulting in a noop 7765 * for this device. 7766 */ 7767 linkwatch_run_queue(); 7768 } 7769 7770 __rtnl_unlock(); 7771 7772 rebroadcast_time = jiffies; 7773 } 7774 7775 msleep(250); 7776 7777 refcnt = netdev_refcnt_read(dev); 7778 7779 if (time_after(jiffies, warning_time + 10 * HZ)) { 7780 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7781 dev->name, refcnt); 7782 warning_time = jiffies; 7783 } 7784 } 7785 } 7786 7787 /* The sequence is: 7788 * 7789 * rtnl_lock(); 7790 * ... 7791 * register_netdevice(x1); 7792 * register_netdevice(x2); 7793 * ... 7794 * unregister_netdevice(y1); 7795 * unregister_netdevice(y2); 7796 * ... 7797 * rtnl_unlock(); 7798 * free_netdev(y1); 7799 * free_netdev(y2); 7800 * 7801 * We are invoked by rtnl_unlock(). 7802 * This allows us to deal with problems: 7803 * 1) We can delete sysfs objects which invoke hotplug 7804 * without deadlocking with linkwatch via keventd. 7805 * 2) Since we run with the RTNL semaphore not held, we can sleep 7806 * safely in order to wait for the netdev refcnt to drop to zero. 7807 * 7808 * We must not return until all unregister events added during 7809 * the interval the lock was held have been completed. 7810 */ 7811 void netdev_run_todo(void) 7812 { 7813 struct list_head list; 7814 7815 /* Snapshot list, allow later requests */ 7816 list_replace_init(&net_todo_list, &list); 7817 7818 __rtnl_unlock(); 7819 7820 7821 /* Wait for rcu callbacks to finish before next phase */ 7822 if (!list_empty(&list)) 7823 rcu_barrier(); 7824 7825 while (!list_empty(&list)) { 7826 struct net_device *dev 7827 = list_first_entry(&list, struct net_device, todo_list); 7828 list_del(&dev->todo_list); 7829 7830 rtnl_lock(); 7831 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7832 __rtnl_unlock(); 7833 7834 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7835 pr_err("network todo '%s' but state %d\n", 7836 dev->name, dev->reg_state); 7837 dump_stack(); 7838 continue; 7839 } 7840 7841 dev->reg_state = NETREG_UNREGISTERED; 7842 7843 netdev_wait_allrefs(dev); 7844 7845 /* paranoia */ 7846 BUG_ON(netdev_refcnt_read(dev)); 7847 BUG_ON(!list_empty(&dev->ptype_all)); 7848 BUG_ON(!list_empty(&dev->ptype_specific)); 7849 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7850 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7851 WARN_ON(dev->dn_ptr); 7852 7853 if (dev->priv_destructor) 7854 dev->priv_destructor(dev); 7855 if (dev->needs_free_netdev) 7856 free_netdev(dev); 7857 7858 /* Report a network device has been unregistered */ 7859 rtnl_lock(); 7860 dev_net(dev)->dev_unreg_count--; 7861 __rtnl_unlock(); 7862 wake_up(&netdev_unregistering_wq); 7863 7864 /* Free network device */ 7865 kobject_put(&dev->dev.kobj); 7866 } 7867 } 7868 7869 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7870 * all the same fields in the same order as net_device_stats, with only 7871 * the type differing, but rtnl_link_stats64 may have additional fields 7872 * at the end for newer counters. 7873 */ 7874 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7875 const struct net_device_stats *netdev_stats) 7876 { 7877 #if BITS_PER_LONG == 64 7878 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7879 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 7880 /* zero out counters that only exist in rtnl_link_stats64 */ 7881 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7882 sizeof(*stats64) - sizeof(*netdev_stats)); 7883 #else 7884 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7885 const unsigned long *src = (const unsigned long *)netdev_stats; 7886 u64 *dst = (u64 *)stats64; 7887 7888 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7889 for (i = 0; i < n; i++) 7890 dst[i] = src[i]; 7891 /* zero out counters that only exist in rtnl_link_stats64 */ 7892 memset((char *)stats64 + n * sizeof(u64), 0, 7893 sizeof(*stats64) - n * sizeof(u64)); 7894 #endif 7895 } 7896 EXPORT_SYMBOL(netdev_stats_to_stats64); 7897 7898 /** 7899 * dev_get_stats - get network device statistics 7900 * @dev: device to get statistics from 7901 * @storage: place to store stats 7902 * 7903 * Get network statistics from device. Return @storage. 7904 * The device driver may provide its own method by setting 7905 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7906 * otherwise the internal statistics structure is used. 7907 */ 7908 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7909 struct rtnl_link_stats64 *storage) 7910 { 7911 const struct net_device_ops *ops = dev->netdev_ops; 7912 7913 if (ops->ndo_get_stats64) { 7914 memset(storage, 0, sizeof(*storage)); 7915 ops->ndo_get_stats64(dev, storage); 7916 } else if (ops->ndo_get_stats) { 7917 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 7918 } else { 7919 netdev_stats_to_stats64(storage, &dev->stats); 7920 } 7921 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 7922 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 7923 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 7924 return storage; 7925 } 7926 EXPORT_SYMBOL(dev_get_stats); 7927 7928 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 7929 { 7930 struct netdev_queue *queue = dev_ingress_queue(dev); 7931 7932 #ifdef CONFIG_NET_CLS_ACT 7933 if (queue) 7934 return queue; 7935 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 7936 if (!queue) 7937 return NULL; 7938 netdev_init_one_queue(dev, queue, NULL); 7939 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 7940 queue->qdisc_sleeping = &noop_qdisc; 7941 rcu_assign_pointer(dev->ingress_queue, queue); 7942 #endif 7943 return queue; 7944 } 7945 7946 static const struct ethtool_ops default_ethtool_ops; 7947 7948 void netdev_set_default_ethtool_ops(struct net_device *dev, 7949 const struct ethtool_ops *ops) 7950 { 7951 if (dev->ethtool_ops == &default_ethtool_ops) 7952 dev->ethtool_ops = ops; 7953 } 7954 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 7955 7956 void netdev_freemem(struct net_device *dev) 7957 { 7958 char *addr = (char *)dev - dev->padded; 7959 7960 kvfree(addr); 7961 } 7962 7963 /** 7964 * alloc_netdev_mqs - allocate network device 7965 * @sizeof_priv: size of private data to allocate space for 7966 * @name: device name format string 7967 * @name_assign_type: origin of device name 7968 * @setup: callback to initialize device 7969 * @txqs: the number of TX subqueues to allocate 7970 * @rxqs: the number of RX subqueues to allocate 7971 * 7972 * Allocates a struct net_device with private data area for driver use 7973 * and performs basic initialization. Also allocates subqueue structs 7974 * for each queue on the device. 7975 */ 7976 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 7977 unsigned char name_assign_type, 7978 void (*setup)(struct net_device *), 7979 unsigned int txqs, unsigned int rxqs) 7980 { 7981 struct net_device *dev; 7982 size_t alloc_size; 7983 struct net_device *p; 7984 7985 BUG_ON(strlen(name) >= sizeof(dev->name)); 7986 7987 if (txqs < 1) { 7988 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 7989 return NULL; 7990 } 7991 7992 #ifdef CONFIG_SYSFS 7993 if (rxqs < 1) { 7994 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 7995 return NULL; 7996 } 7997 #endif 7998 7999 alloc_size = sizeof(struct net_device); 8000 if (sizeof_priv) { 8001 /* ensure 32-byte alignment of private area */ 8002 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8003 alloc_size += sizeof_priv; 8004 } 8005 /* ensure 32-byte alignment of whole construct */ 8006 alloc_size += NETDEV_ALIGN - 1; 8007 8008 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8009 if (!p) 8010 return NULL; 8011 8012 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8013 dev->padded = (char *)dev - (char *)p; 8014 8015 dev->pcpu_refcnt = alloc_percpu(int); 8016 if (!dev->pcpu_refcnt) 8017 goto free_dev; 8018 8019 if (dev_addr_init(dev)) 8020 goto free_pcpu; 8021 8022 dev_mc_init(dev); 8023 dev_uc_init(dev); 8024 8025 dev_net_set(dev, &init_net); 8026 8027 dev->gso_max_size = GSO_MAX_SIZE; 8028 dev->gso_max_segs = GSO_MAX_SEGS; 8029 8030 INIT_LIST_HEAD(&dev->napi_list); 8031 INIT_LIST_HEAD(&dev->unreg_list); 8032 INIT_LIST_HEAD(&dev->close_list); 8033 INIT_LIST_HEAD(&dev->link_watch_list); 8034 INIT_LIST_HEAD(&dev->adj_list.upper); 8035 INIT_LIST_HEAD(&dev->adj_list.lower); 8036 INIT_LIST_HEAD(&dev->ptype_all); 8037 INIT_LIST_HEAD(&dev->ptype_specific); 8038 #ifdef CONFIG_NET_SCHED 8039 hash_init(dev->qdisc_hash); 8040 #endif 8041 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8042 setup(dev); 8043 8044 if (!dev->tx_queue_len) { 8045 dev->priv_flags |= IFF_NO_QUEUE; 8046 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8047 } 8048 8049 dev->num_tx_queues = txqs; 8050 dev->real_num_tx_queues = txqs; 8051 if (netif_alloc_netdev_queues(dev)) 8052 goto free_all; 8053 8054 #ifdef CONFIG_SYSFS 8055 dev->num_rx_queues = rxqs; 8056 dev->real_num_rx_queues = rxqs; 8057 if (netif_alloc_rx_queues(dev)) 8058 goto free_all; 8059 #endif 8060 8061 strcpy(dev->name, name); 8062 dev->name_assign_type = name_assign_type; 8063 dev->group = INIT_NETDEV_GROUP; 8064 if (!dev->ethtool_ops) 8065 dev->ethtool_ops = &default_ethtool_ops; 8066 8067 nf_hook_ingress_init(dev); 8068 8069 return dev; 8070 8071 free_all: 8072 free_netdev(dev); 8073 return NULL; 8074 8075 free_pcpu: 8076 free_percpu(dev->pcpu_refcnt); 8077 free_dev: 8078 netdev_freemem(dev); 8079 return NULL; 8080 } 8081 EXPORT_SYMBOL(alloc_netdev_mqs); 8082 8083 /** 8084 * free_netdev - free network device 8085 * @dev: device 8086 * 8087 * This function does the last stage of destroying an allocated device 8088 * interface. The reference to the device object is released. If this 8089 * is the last reference then it will be freed.Must be called in process 8090 * context. 8091 */ 8092 void free_netdev(struct net_device *dev) 8093 { 8094 struct napi_struct *p, *n; 8095 struct bpf_prog *prog; 8096 8097 might_sleep(); 8098 netif_free_tx_queues(dev); 8099 #ifdef CONFIG_SYSFS 8100 kvfree(dev->_rx); 8101 #endif 8102 8103 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8104 8105 /* Flush device addresses */ 8106 dev_addr_flush(dev); 8107 8108 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8109 netif_napi_del(p); 8110 8111 free_percpu(dev->pcpu_refcnt); 8112 dev->pcpu_refcnt = NULL; 8113 8114 prog = rcu_dereference_protected(dev->xdp_prog, 1); 8115 if (prog) { 8116 bpf_prog_put(prog); 8117 static_key_slow_dec(&generic_xdp_needed); 8118 } 8119 8120 /* Compatibility with error handling in drivers */ 8121 if (dev->reg_state == NETREG_UNINITIALIZED) { 8122 netdev_freemem(dev); 8123 return; 8124 } 8125 8126 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8127 dev->reg_state = NETREG_RELEASED; 8128 8129 /* will free via device release */ 8130 put_device(&dev->dev); 8131 } 8132 EXPORT_SYMBOL(free_netdev); 8133 8134 /** 8135 * synchronize_net - Synchronize with packet receive processing 8136 * 8137 * Wait for packets currently being received to be done. 8138 * Does not block later packets from starting. 8139 */ 8140 void synchronize_net(void) 8141 { 8142 might_sleep(); 8143 if (rtnl_is_locked()) 8144 synchronize_rcu_expedited(); 8145 else 8146 synchronize_rcu(); 8147 } 8148 EXPORT_SYMBOL(synchronize_net); 8149 8150 /** 8151 * unregister_netdevice_queue - remove device from the kernel 8152 * @dev: device 8153 * @head: list 8154 * 8155 * This function shuts down a device interface and removes it 8156 * from the kernel tables. 8157 * If head not NULL, device is queued to be unregistered later. 8158 * 8159 * Callers must hold the rtnl semaphore. You may want 8160 * unregister_netdev() instead of this. 8161 */ 8162 8163 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8164 { 8165 ASSERT_RTNL(); 8166 8167 if (head) { 8168 list_move_tail(&dev->unreg_list, head); 8169 } else { 8170 rollback_registered(dev); 8171 /* Finish processing unregister after unlock */ 8172 net_set_todo(dev); 8173 } 8174 } 8175 EXPORT_SYMBOL(unregister_netdevice_queue); 8176 8177 /** 8178 * unregister_netdevice_many - unregister many devices 8179 * @head: list of devices 8180 * 8181 * Note: As most callers use a stack allocated list_head, 8182 * we force a list_del() to make sure stack wont be corrupted later. 8183 */ 8184 void unregister_netdevice_many(struct list_head *head) 8185 { 8186 struct net_device *dev; 8187 8188 if (!list_empty(head)) { 8189 rollback_registered_many(head); 8190 list_for_each_entry(dev, head, unreg_list) 8191 net_set_todo(dev); 8192 list_del(head); 8193 } 8194 } 8195 EXPORT_SYMBOL(unregister_netdevice_many); 8196 8197 /** 8198 * unregister_netdev - remove device from the kernel 8199 * @dev: device 8200 * 8201 * This function shuts down a device interface and removes it 8202 * from the kernel tables. 8203 * 8204 * This is just a wrapper for unregister_netdevice that takes 8205 * the rtnl semaphore. In general you want to use this and not 8206 * unregister_netdevice. 8207 */ 8208 void unregister_netdev(struct net_device *dev) 8209 { 8210 rtnl_lock(); 8211 unregister_netdevice(dev); 8212 rtnl_unlock(); 8213 } 8214 EXPORT_SYMBOL(unregister_netdev); 8215 8216 /** 8217 * dev_change_net_namespace - move device to different nethost namespace 8218 * @dev: device 8219 * @net: network namespace 8220 * @pat: If not NULL name pattern to try if the current device name 8221 * is already taken in the destination network namespace. 8222 * 8223 * This function shuts down a device interface and moves it 8224 * to a new network namespace. On success 0 is returned, on 8225 * a failure a netagive errno code is returned. 8226 * 8227 * Callers must hold the rtnl semaphore. 8228 */ 8229 8230 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8231 { 8232 int err; 8233 8234 ASSERT_RTNL(); 8235 8236 /* Don't allow namespace local devices to be moved. */ 8237 err = -EINVAL; 8238 if (dev->features & NETIF_F_NETNS_LOCAL) 8239 goto out; 8240 8241 /* Ensure the device has been registrered */ 8242 if (dev->reg_state != NETREG_REGISTERED) 8243 goto out; 8244 8245 /* Get out if there is nothing todo */ 8246 err = 0; 8247 if (net_eq(dev_net(dev), net)) 8248 goto out; 8249 8250 /* Pick the destination device name, and ensure 8251 * we can use it in the destination network namespace. 8252 */ 8253 err = -EEXIST; 8254 if (__dev_get_by_name(net, dev->name)) { 8255 /* We get here if we can't use the current device name */ 8256 if (!pat) 8257 goto out; 8258 if (dev_get_valid_name(net, dev, pat) < 0) 8259 goto out; 8260 } 8261 8262 /* 8263 * And now a mini version of register_netdevice unregister_netdevice. 8264 */ 8265 8266 /* If device is running close it first. */ 8267 dev_close(dev); 8268 8269 /* And unlink it from device chain */ 8270 err = -ENODEV; 8271 unlist_netdevice(dev); 8272 8273 synchronize_net(); 8274 8275 /* Shutdown queueing discipline. */ 8276 dev_shutdown(dev); 8277 8278 /* Notify protocols, that we are about to destroy 8279 * this device. They should clean all the things. 8280 * 8281 * Note that dev->reg_state stays at NETREG_REGISTERED. 8282 * This is wanted because this way 8021q and macvlan know 8283 * the device is just moving and can keep their slaves up. 8284 */ 8285 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8286 rcu_barrier(); 8287 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8288 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL); 8289 8290 /* 8291 * Flush the unicast and multicast chains 8292 */ 8293 dev_uc_flush(dev); 8294 dev_mc_flush(dev); 8295 8296 /* Send a netdev-removed uevent to the old namespace */ 8297 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8298 netdev_adjacent_del_links(dev); 8299 8300 /* Actually switch the network namespace */ 8301 dev_net_set(dev, net); 8302 8303 /* If there is an ifindex conflict assign a new one */ 8304 if (__dev_get_by_index(net, dev->ifindex)) 8305 dev->ifindex = dev_new_index(net); 8306 8307 /* Send a netdev-add uevent to the new namespace */ 8308 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8309 netdev_adjacent_add_links(dev); 8310 8311 /* Fixup kobjects */ 8312 err = device_rename(&dev->dev, dev->name); 8313 WARN_ON(err); 8314 8315 /* Add the device back in the hashes */ 8316 list_netdevice(dev); 8317 8318 /* Notify protocols, that a new device appeared. */ 8319 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8320 8321 /* 8322 * Prevent userspace races by waiting until the network 8323 * device is fully setup before sending notifications. 8324 */ 8325 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8326 8327 synchronize_net(); 8328 err = 0; 8329 out: 8330 return err; 8331 } 8332 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8333 8334 static int dev_cpu_dead(unsigned int oldcpu) 8335 { 8336 struct sk_buff **list_skb; 8337 struct sk_buff *skb; 8338 unsigned int cpu; 8339 struct softnet_data *sd, *oldsd, *remsd = NULL; 8340 8341 local_irq_disable(); 8342 cpu = smp_processor_id(); 8343 sd = &per_cpu(softnet_data, cpu); 8344 oldsd = &per_cpu(softnet_data, oldcpu); 8345 8346 /* Find end of our completion_queue. */ 8347 list_skb = &sd->completion_queue; 8348 while (*list_skb) 8349 list_skb = &(*list_skb)->next; 8350 /* Append completion queue from offline CPU. */ 8351 *list_skb = oldsd->completion_queue; 8352 oldsd->completion_queue = NULL; 8353 8354 /* Append output queue from offline CPU. */ 8355 if (oldsd->output_queue) { 8356 *sd->output_queue_tailp = oldsd->output_queue; 8357 sd->output_queue_tailp = oldsd->output_queue_tailp; 8358 oldsd->output_queue = NULL; 8359 oldsd->output_queue_tailp = &oldsd->output_queue; 8360 } 8361 /* Append NAPI poll list from offline CPU, with one exception : 8362 * process_backlog() must be called by cpu owning percpu backlog. 8363 * We properly handle process_queue & input_pkt_queue later. 8364 */ 8365 while (!list_empty(&oldsd->poll_list)) { 8366 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8367 struct napi_struct, 8368 poll_list); 8369 8370 list_del_init(&napi->poll_list); 8371 if (napi->poll == process_backlog) 8372 napi->state = 0; 8373 else 8374 ____napi_schedule(sd, napi); 8375 } 8376 8377 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8378 local_irq_enable(); 8379 8380 #ifdef CONFIG_RPS 8381 remsd = oldsd->rps_ipi_list; 8382 oldsd->rps_ipi_list = NULL; 8383 #endif 8384 /* send out pending IPI's on offline CPU */ 8385 net_rps_send_ipi(remsd); 8386 8387 /* Process offline CPU's input_pkt_queue */ 8388 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8389 netif_rx_ni(skb); 8390 input_queue_head_incr(oldsd); 8391 } 8392 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8393 netif_rx_ni(skb); 8394 input_queue_head_incr(oldsd); 8395 } 8396 8397 return 0; 8398 } 8399 8400 /** 8401 * netdev_increment_features - increment feature set by one 8402 * @all: current feature set 8403 * @one: new feature set 8404 * @mask: mask feature set 8405 * 8406 * Computes a new feature set after adding a device with feature set 8407 * @one to the master device with current feature set @all. Will not 8408 * enable anything that is off in @mask. Returns the new feature set. 8409 */ 8410 netdev_features_t netdev_increment_features(netdev_features_t all, 8411 netdev_features_t one, netdev_features_t mask) 8412 { 8413 if (mask & NETIF_F_HW_CSUM) 8414 mask |= NETIF_F_CSUM_MASK; 8415 mask |= NETIF_F_VLAN_CHALLENGED; 8416 8417 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8418 all &= one | ~NETIF_F_ALL_FOR_ALL; 8419 8420 /* If one device supports hw checksumming, set for all. */ 8421 if (all & NETIF_F_HW_CSUM) 8422 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8423 8424 return all; 8425 } 8426 EXPORT_SYMBOL(netdev_increment_features); 8427 8428 static struct hlist_head * __net_init netdev_create_hash(void) 8429 { 8430 int i; 8431 struct hlist_head *hash; 8432 8433 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8434 if (hash != NULL) 8435 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8436 INIT_HLIST_HEAD(&hash[i]); 8437 8438 return hash; 8439 } 8440 8441 /* Initialize per network namespace state */ 8442 static int __net_init netdev_init(struct net *net) 8443 { 8444 if (net != &init_net) 8445 INIT_LIST_HEAD(&net->dev_base_head); 8446 8447 net->dev_name_head = netdev_create_hash(); 8448 if (net->dev_name_head == NULL) 8449 goto err_name; 8450 8451 net->dev_index_head = netdev_create_hash(); 8452 if (net->dev_index_head == NULL) 8453 goto err_idx; 8454 8455 return 0; 8456 8457 err_idx: 8458 kfree(net->dev_name_head); 8459 err_name: 8460 return -ENOMEM; 8461 } 8462 8463 /** 8464 * netdev_drivername - network driver for the device 8465 * @dev: network device 8466 * 8467 * Determine network driver for device. 8468 */ 8469 const char *netdev_drivername(const struct net_device *dev) 8470 { 8471 const struct device_driver *driver; 8472 const struct device *parent; 8473 const char *empty = ""; 8474 8475 parent = dev->dev.parent; 8476 if (!parent) 8477 return empty; 8478 8479 driver = parent->driver; 8480 if (driver && driver->name) 8481 return driver->name; 8482 return empty; 8483 } 8484 8485 static void __netdev_printk(const char *level, const struct net_device *dev, 8486 struct va_format *vaf) 8487 { 8488 if (dev && dev->dev.parent) { 8489 dev_printk_emit(level[1] - '0', 8490 dev->dev.parent, 8491 "%s %s %s%s: %pV", 8492 dev_driver_string(dev->dev.parent), 8493 dev_name(dev->dev.parent), 8494 netdev_name(dev), netdev_reg_state(dev), 8495 vaf); 8496 } else if (dev) { 8497 printk("%s%s%s: %pV", 8498 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8499 } else { 8500 printk("%s(NULL net_device): %pV", level, vaf); 8501 } 8502 } 8503 8504 void netdev_printk(const char *level, const struct net_device *dev, 8505 const char *format, ...) 8506 { 8507 struct va_format vaf; 8508 va_list args; 8509 8510 va_start(args, format); 8511 8512 vaf.fmt = format; 8513 vaf.va = &args; 8514 8515 __netdev_printk(level, dev, &vaf); 8516 8517 va_end(args); 8518 } 8519 EXPORT_SYMBOL(netdev_printk); 8520 8521 #define define_netdev_printk_level(func, level) \ 8522 void func(const struct net_device *dev, const char *fmt, ...) \ 8523 { \ 8524 struct va_format vaf; \ 8525 va_list args; \ 8526 \ 8527 va_start(args, fmt); \ 8528 \ 8529 vaf.fmt = fmt; \ 8530 vaf.va = &args; \ 8531 \ 8532 __netdev_printk(level, dev, &vaf); \ 8533 \ 8534 va_end(args); \ 8535 } \ 8536 EXPORT_SYMBOL(func); 8537 8538 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8539 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8540 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8541 define_netdev_printk_level(netdev_err, KERN_ERR); 8542 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8543 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8544 define_netdev_printk_level(netdev_info, KERN_INFO); 8545 8546 static void __net_exit netdev_exit(struct net *net) 8547 { 8548 kfree(net->dev_name_head); 8549 kfree(net->dev_index_head); 8550 } 8551 8552 static struct pernet_operations __net_initdata netdev_net_ops = { 8553 .init = netdev_init, 8554 .exit = netdev_exit, 8555 }; 8556 8557 static void __net_exit default_device_exit(struct net *net) 8558 { 8559 struct net_device *dev, *aux; 8560 /* 8561 * Push all migratable network devices back to the 8562 * initial network namespace 8563 */ 8564 rtnl_lock(); 8565 for_each_netdev_safe(net, dev, aux) { 8566 int err; 8567 char fb_name[IFNAMSIZ]; 8568 8569 /* Ignore unmoveable devices (i.e. loopback) */ 8570 if (dev->features & NETIF_F_NETNS_LOCAL) 8571 continue; 8572 8573 /* Leave virtual devices for the generic cleanup */ 8574 if (dev->rtnl_link_ops) 8575 continue; 8576 8577 /* Push remaining network devices to init_net */ 8578 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8579 err = dev_change_net_namespace(dev, &init_net, fb_name); 8580 if (err) { 8581 pr_emerg("%s: failed to move %s to init_net: %d\n", 8582 __func__, dev->name, err); 8583 BUG(); 8584 } 8585 } 8586 rtnl_unlock(); 8587 } 8588 8589 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8590 { 8591 /* Return with the rtnl_lock held when there are no network 8592 * devices unregistering in any network namespace in net_list. 8593 */ 8594 struct net *net; 8595 bool unregistering; 8596 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8597 8598 add_wait_queue(&netdev_unregistering_wq, &wait); 8599 for (;;) { 8600 unregistering = false; 8601 rtnl_lock(); 8602 list_for_each_entry(net, net_list, exit_list) { 8603 if (net->dev_unreg_count > 0) { 8604 unregistering = true; 8605 break; 8606 } 8607 } 8608 if (!unregistering) 8609 break; 8610 __rtnl_unlock(); 8611 8612 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8613 } 8614 remove_wait_queue(&netdev_unregistering_wq, &wait); 8615 } 8616 8617 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8618 { 8619 /* At exit all network devices most be removed from a network 8620 * namespace. Do this in the reverse order of registration. 8621 * Do this across as many network namespaces as possible to 8622 * improve batching efficiency. 8623 */ 8624 struct net_device *dev; 8625 struct net *net; 8626 LIST_HEAD(dev_kill_list); 8627 8628 /* To prevent network device cleanup code from dereferencing 8629 * loopback devices or network devices that have been freed 8630 * wait here for all pending unregistrations to complete, 8631 * before unregistring the loopback device and allowing the 8632 * network namespace be freed. 8633 * 8634 * The netdev todo list containing all network devices 8635 * unregistrations that happen in default_device_exit_batch 8636 * will run in the rtnl_unlock() at the end of 8637 * default_device_exit_batch. 8638 */ 8639 rtnl_lock_unregistering(net_list); 8640 list_for_each_entry(net, net_list, exit_list) { 8641 for_each_netdev_reverse(net, dev) { 8642 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8643 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8644 else 8645 unregister_netdevice_queue(dev, &dev_kill_list); 8646 } 8647 } 8648 unregister_netdevice_many(&dev_kill_list); 8649 rtnl_unlock(); 8650 } 8651 8652 static struct pernet_operations __net_initdata default_device_ops = { 8653 .exit = default_device_exit, 8654 .exit_batch = default_device_exit_batch, 8655 }; 8656 8657 /* 8658 * Initialize the DEV module. At boot time this walks the device list and 8659 * unhooks any devices that fail to initialise (normally hardware not 8660 * present) and leaves us with a valid list of present and active devices. 8661 * 8662 */ 8663 8664 /* 8665 * This is called single threaded during boot, so no need 8666 * to take the rtnl semaphore. 8667 */ 8668 static int __init net_dev_init(void) 8669 { 8670 int i, rc = -ENOMEM; 8671 8672 BUG_ON(!dev_boot_phase); 8673 8674 if (dev_proc_init()) 8675 goto out; 8676 8677 if (netdev_kobject_init()) 8678 goto out; 8679 8680 INIT_LIST_HEAD(&ptype_all); 8681 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8682 INIT_LIST_HEAD(&ptype_base[i]); 8683 8684 INIT_LIST_HEAD(&offload_base); 8685 8686 if (register_pernet_subsys(&netdev_net_ops)) 8687 goto out; 8688 8689 /* 8690 * Initialise the packet receive queues. 8691 */ 8692 8693 for_each_possible_cpu(i) { 8694 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8695 struct softnet_data *sd = &per_cpu(softnet_data, i); 8696 8697 INIT_WORK(flush, flush_backlog); 8698 8699 skb_queue_head_init(&sd->input_pkt_queue); 8700 skb_queue_head_init(&sd->process_queue); 8701 INIT_LIST_HEAD(&sd->poll_list); 8702 sd->output_queue_tailp = &sd->output_queue; 8703 #ifdef CONFIG_RPS 8704 sd->csd.func = rps_trigger_softirq; 8705 sd->csd.info = sd; 8706 sd->cpu = i; 8707 #endif 8708 8709 sd->backlog.poll = process_backlog; 8710 sd->backlog.weight = weight_p; 8711 } 8712 8713 dev_boot_phase = 0; 8714 8715 /* The loopback device is special if any other network devices 8716 * is present in a network namespace the loopback device must 8717 * be present. Since we now dynamically allocate and free the 8718 * loopback device ensure this invariant is maintained by 8719 * keeping the loopback device as the first device on the 8720 * list of network devices. Ensuring the loopback devices 8721 * is the first device that appears and the last network device 8722 * that disappears. 8723 */ 8724 if (register_pernet_device(&loopback_net_ops)) 8725 goto out; 8726 8727 if (register_pernet_device(&default_device_ops)) 8728 goto out; 8729 8730 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8731 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8732 8733 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8734 NULL, dev_cpu_dead); 8735 WARN_ON(rc < 0); 8736 rc = 0; 8737 out: 8738 return rc; 8739 } 8740 8741 subsys_initcall(net_dev_init); 8742