1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Mark Evans, <[email protected]> 13 * 14 * Additional Authors: 15 * Florian la Roche <[email protected]> 16 * Alan Cox <[email protected]> 17 * David Hinds <[email protected]> 18 * Alexey Kuznetsov <[email protected]> 19 * Adam Sulmicki <[email protected]> 20 * Pekka Riikonen <[email protected]> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/skbuff.h> 97 #include <linux/bpf.h> 98 #include <linux/bpf_trace.h> 99 #include <net/net_namespace.h> 100 #include <net/sock.h> 101 #include <net/busy_poll.h> 102 #include <linux/rtnetlink.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/dst_metadata.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 #include <linux/static_key.h> 137 #include <linux/hashtable.h> 138 #include <linux/vmalloc.h> 139 #include <linux/if_macvlan.h> 140 #include <linux/errqueue.h> 141 #include <linux/hrtimer.h> 142 #include <linux/netfilter_ingress.h> 143 #include <linux/crash_dump.h> 144 #include <linux/sctp.h> 145 #include <net/udp_tunnel.h> 146 #include <linux/net_namespace.h> 147 #include <linux/indirect_call_wrapper.h> 148 #include <net/devlink.h> 149 150 #include "net-sysfs.h" 151 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct netdev_notifier_info *info); 166 static int call_netdevice_notifiers_extack(unsigned long val, 167 struct net_device *dev, 168 struct netlink_ext_ack *extack); 169 static struct napi_struct *napi_by_id(unsigned int napi_id); 170 171 /* 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 173 * semaphore. 174 * 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 176 * 177 * Writers must hold the rtnl semaphore while they loop through the 178 * dev_base_head list, and hold dev_base_lock for writing when they do the 179 * actual updates. This allows pure readers to access the list even 180 * while a writer is preparing to update it. 181 * 182 * To put it another way, dev_base_lock is held for writing only to 183 * protect against pure readers; the rtnl semaphore provides the 184 * protection against other writers. 185 * 186 * See, for example usages, register_netdevice() and 187 * unregister_netdevice(), which must be called with the rtnl 188 * semaphore held. 189 */ 190 DEFINE_RWLOCK(dev_base_lock); 191 EXPORT_SYMBOL(dev_base_lock); 192 193 static DEFINE_MUTEX(ifalias_mutex); 194 195 /* protects napi_hash addition/deletion and napi_gen_id */ 196 static DEFINE_SPINLOCK(napi_hash_lock); 197 198 static unsigned int napi_gen_id = NR_CPUS; 199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 200 201 static seqcount_t devnet_rename_seq; 202 203 static inline void dev_base_seq_inc(struct net *net) 204 { 205 while (++net->dev_base_seq == 0) 206 ; 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 /* Device list insertion */ 236 static void list_netdevice(struct net_device *dev) 237 { 238 struct net *net = dev_net(dev); 239 240 ASSERT_RTNL(); 241 242 write_lock_bh(&dev_base_lock); 243 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 244 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 245 hlist_add_head_rcu(&dev->index_hlist, 246 dev_index_hash(net, dev->ifindex)); 247 write_unlock_bh(&dev_base_lock); 248 249 dev_base_seq_inc(net); 250 } 251 252 /* Device list removal 253 * caller must respect a RCU grace period before freeing/reusing dev 254 */ 255 static void unlist_netdevice(struct net_device *dev) 256 { 257 ASSERT_RTNL(); 258 259 /* Unlink dev from the device chain */ 260 write_lock_bh(&dev_base_lock); 261 list_del_rcu(&dev->dev_list); 262 hlist_del_rcu(&dev->name_hlist); 263 hlist_del_rcu(&dev->index_hlist); 264 write_unlock_bh(&dev_base_lock); 265 266 dev_base_seq_inc(dev_net(dev)); 267 } 268 269 /* 270 * Our notifier list 271 */ 272 273 static RAW_NOTIFIER_HEAD(netdev_chain); 274 275 /* 276 * Device drivers call our routines to queue packets here. We empty the 277 * queue in the local softnet handler. 278 */ 279 280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 281 EXPORT_PER_CPU_SYMBOL(softnet_data); 282 283 #ifdef CONFIG_LOCKDEP 284 /* 285 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 286 * according to dev->type 287 */ 288 static const unsigned short netdev_lock_type[] = { 289 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 290 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 291 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 292 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 293 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 294 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 295 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 296 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 297 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 298 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 299 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 300 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 301 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 302 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 303 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 304 305 static const char *const netdev_lock_name[] = { 306 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 307 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 308 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 309 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 310 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 311 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 312 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 313 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 314 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 315 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 316 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 317 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 318 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 319 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 320 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 321 322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 324 325 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 326 { 327 int i; 328 329 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 330 if (netdev_lock_type[i] == dev_type) 331 return i; 332 /* the last key is used by default */ 333 return ARRAY_SIZE(netdev_lock_type) - 1; 334 } 335 336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 337 unsigned short dev_type) 338 { 339 int i; 340 341 i = netdev_lock_pos(dev_type); 342 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 343 netdev_lock_name[i]); 344 } 345 346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 347 { 348 int i; 349 350 i = netdev_lock_pos(dev->type); 351 lockdep_set_class_and_name(&dev->addr_list_lock, 352 &netdev_addr_lock_key[i], 353 netdev_lock_name[i]); 354 } 355 #else 356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 357 unsigned short dev_type) 358 { 359 } 360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 361 { 362 } 363 #endif 364 365 /******************************************************************************* 366 * 367 * Protocol management and registration routines 368 * 369 *******************************************************************************/ 370 371 372 /* 373 * Add a protocol ID to the list. Now that the input handler is 374 * smarter we can dispense with all the messy stuff that used to be 375 * here. 376 * 377 * BEWARE!!! Protocol handlers, mangling input packets, 378 * MUST BE last in hash buckets and checking protocol handlers 379 * MUST start from promiscuous ptype_all chain in net_bh. 380 * It is true now, do not change it. 381 * Explanation follows: if protocol handler, mangling packet, will 382 * be the first on list, it is not able to sense, that packet 383 * is cloned and should be copied-on-write, so that it will 384 * change it and subsequent readers will get broken packet. 385 * --ANK (980803) 386 */ 387 388 static inline struct list_head *ptype_head(const struct packet_type *pt) 389 { 390 if (pt->type == htons(ETH_P_ALL)) 391 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 392 else 393 return pt->dev ? &pt->dev->ptype_specific : 394 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 395 } 396 397 /** 398 * dev_add_pack - add packet handler 399 * @pt: packet type declaration 400 * 401 * Add a protocol handler to the networking stack. The passed &packet_type 402 * is linked into kernel lists and may not be freed until it has been 403 * removed from the kernel lists. 404 * 405 * This call does not sleep therefore it can not 406 * guarantee all CPU's that are in middle of receiving packets 407 * will see the new packet type (until the next received packet). 408 */ 409 410 void dev_add_pack(struct packet_type *pt) 411 { 412 struct list_head *head = ptype_head(pt); 413 414 spin_lock(&ptype_lock); 415 list_add_rcu(&pt->list, head); 416 spin_unlock(&ptype_lock); 417 } 418 EXPORT_SYMBOL(dev_add_pack); 419 420 /** 421 * __dev_remove_pack - remove packet handler 422 * @pt: packet type declaration 423 * 424 * Remove a protocol handler that was previously added to the kernel 425 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 426 * from the kernel lists and can be freed or reused once this function 427 * returns. 428 * 429 * The packet type might still be in use by receivers 430 * and must not be freed until after all the CPU's have gone 431 * through a quiescent state. 432 */ 433 void __dev_remove_pack(struct packet_type *pt) 434 { 435 struct list_head *head = ptype_head(pt); 436 struct packet_type *pt1; 437 438 spin_lock(&ptype_lock); 439 440 list_for_each_entry(pt1, head, list) { 441 if (pt == pt1) { 442 list_del_rcu(&pt->list); 443 goto out; 444 } 445 } 446 447 pr_warn("dev_remove_pack: %p not found\n", pt); 448 out: 449 spin_unlock(&ptype_lock); 450 } 451 EXPORT_SYMBOL(__dev_remove_pack); 452 453 /** 454 * dev_remove_pack - remove packet handler 455 * @pt: packet type declaration 456 * 457 * Remove a protocol handler that was previously added to the kernel 458 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 459 * from the kernel lists and can be freed or reused once this function 460 * returns. 461 * 462 * This call sleeps to guarantee that no CPU is looking at the packet 463 * type after return. 464 */ 465 void dev_remove_pack(struct packet_type *pt) 466 { 467 __dev_remove_pack(pt); 468 469 synchronize_net(); 470 } 471 EXPORT_SYMBOL(dev_remove_pack); 472 473 474 /** 475 * dev_add_offload - register offload handlers 476 * @po: protocol offload declaration 477 * 478 * Add protocol offload handlers to the networking stack. The passed 479 * &proto_offload is linked into kernel lists and may not be freed until 480 * it has been removed from the kernel lists. 481 * 482 * This call does not sleep therefore it can not 483 * guarantee all CPU's that are in middle of receiving packets 484 * will see the new offload handlers (until the next received packet). 485 */ 486 void dev_add_offload(struct packet_offload *po) 487 { 488 struct packet_offload *elem; 489 490 spin_lock(&offload_lock); 491 list_for_each_entry(elem, &offload_base, list) { 492 if (po->priority < elem->priority) 493 break; 494 } 495 list_add_rcu(&po->list, elem->list.prev); 496 spin_unlock(&offload_lock); 497 } 498 EXPORT_SYMBOL(dev_add_offload); 499 500 /** 501 * __dev_remove_offload - remove offload handler 502 * @po: packet offload declaration 503 * 504 * Remove a protocol offload handler that was previously added to the 505 * kernel offload handlers by dev_add_offload(). The passed &offload_type 506 * is removed from the kernel lists and can be freed or reused once this 507 * function returns. 508 * 509 * The packet type might still be in use by receivers 510 * and must not be freed until after all the CPU's have gone 511 * through a quiescent state. 512 */ 513 static void __dev_remove_offload(struct packet_offload *po) 514 { 515 struct list_head *head = &offload_base; 516 struct packet_offload *po1; 517 518 spin_lock(&offload_lock); 519 520 list_for_each_entry(po1, head, list) { 521 if (po == po1) { 522 list_del_rcu(&po->list); 523 goto out; 524 } 525 } 526 527 pr_warn("dev_remove_offload: %p not found\n", po); 528 out: 529 spin_unlock(&offload_lock); 530 } 531 532 /** 533 * dev_remove_offload - remove packet offload handler 534 * @po: packet offload declaration 535 * 536 * Remove a packet offload handler that was previously added to the kernel 537 * offload handlers by dev_add_offload(). The passed &offload_type is 538 * removed from the kernel lists and can be freed or reused once this 539 * function returns. 540 * 541 * This call sleeps to guarantee that no CPU is looking at the packet 542 * type after return. 543 */ 544 void dev_remove_offload(struct packet_offload *po) 545 { 546 __dev_remove_offload(po); 547 548 synchronize_net(); 549 } 550 EXPORT_SYMBOL(dev_remove_offload); 551 552 /****************************************************************************** 553 * 554 * Device Boot-time Settings Routines 555 * 556 ******************************************************************************/ 557 558 /* Boot time configuration table */ 559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 560 561 /** 562 * netdev_boot_setup_add - add new setup entry 563 * @name: name of the device 564 * @map: configured settings for the device 565 * 566 * Adds new setup entry to the dev_boot_setup list. The function 567 * returns 0 on error and 1 on success. This is a generic routine to 568 * all netdevices. 569 */ 570 static int netdev_boot_setup_add(char *name, struct ifmap *map) 571 { 572 struct netdev_boot_setup *s; 573 int i; 574 575 s = dev_boot_setup; 576 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 577 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 578 memset(s[i].name, 0, sizeof(s[i].name)); 579 strlcpy(s[i].name, name, IFNAMSIZ); 580 memcpy(&s[i].map, map, sizeof(s[i].map)); 581 break; 582 } 583 } 584 585 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 586 } 587 588 /** 589 * netdev_boot_setup_check - check boot time settings 590 * @dev: the netdevice 591 * 592 * Check boot time settings for the device. 593 * The found settings are set for the device to be used 594 * later in the device probing. 595 * Returns 0 if no settings found, 1 if they are. 596 */ 597 int netdev_boot_setup_check(struct net_device *dev) 598 { 599 struct netdev_boot_setup *s = dev_boot_setup; 600 int i; 601 602 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 603 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 604 !strcmp(dev->name, s[i].name)) { 605 dev->irq = s[i].map.irq; 606 dev->base_addr = s[i].map.base_addr; 607 dev->mem_start = s[i].map.mem_start; 608 dev->mem_end = s[i].map.mem_end; 609 return 1; 610 } 611 } 612 return 0; 613 } 614 EXPORT_SYMBOL(netdev_boot_setup_check); 615 616 617 /** 618 * netdev_boot_base - get address from boot time settings 619 * @prefix: prefix for network device 620 * @unit: id for network device 621 * 622 * Check boot time settings for the base address of device. 623 * The found settings are set for the device to be used 624 * later in the device probing. 625 * Returns 0 if no settings found. 626 */ 627 unsigned long netdev_boot_base(const char *prefix, int unit) 628 { 629 const struct netdev_boot_setup *s = dev_boot_setup; 630 char name[IFNAMSIZ]; 631 int i; 632 633 sprintf(name, "%s%d", prefix, unit); 634 635 /* 636 * If device already registered then return base of 1 637 * to indicate not to probe for this interface 638 */ 639 if (__dev_get_by_name(&init_net, name)) 640 return 1; 641 642 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 643 if (!strcmp(name, s[i].name)) 644 return s[i].map.base_addr; 645 return 0; 646 } 647 648 /* 649 * Saves at boot time configured settings for any netdevice. 650 */ 651 int __init netdev_boot_setup(char *str) 652 { 653 int ints[5]; 654 struct ifmap map; 655 656 str = get_options(str, ARRAY_SIZE(ints), ints); 657 if (!str || !*str) 658 return 0; 659 660 /* Save settings */ 661 memset(&map, 0, sizeof(map)); 662 if (ints[0] > 0) 663 map.irq = ints[1]; 664 if (ints[0] > 1) 665 map.base_addr = ints[2]; 666 if (ints[0] > 2) 667 map.mem_start = ints[3]; 668 if (ints[0] > 3) 669 map.mem_end = ints[4]; 670 671 /* Add new entry to the list */ 672 return netdev_boot_setup_add(str, &map); 673 } 674 675 __setup("netdev=", netdev_boot_setup); 676 677 /******************************************************************************* 678 * 679 * Device Interface Subroutines 680 * 681 *******************************************************************************/ 682 683 /** 684 * dev_get_iflink - get 'iflink' value of a interface 685 * @dev: targeted interface 686 * 687 * Indicates the ifindex the interface is linked to. 688 * Physical interfaces have the same 'ifindex' and 'iflink' values. 689 */ 690 691 int dev_get_iflink(const struct net_device *dev) 692 { 693 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 694 return dev->netdev_ops->ndo_get_iflink(dev); 695 696 return dev->ifindex; 697 } 698 EXPORT_SYMBOL(dev_get_iflink); 699 700 /** 701 * dev_fill_metadata_dst - Retrieve tunnel egress information. 702 * @dev: targeted interface 703 * @skb: The packet. 704 * 705 * For better visibility of tunnel traffic OVS needs to retrieve 706 * egress tunnel information for a packet. Following API allows 707 * user to get this info. 708 */ 709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 710 { 711 struct ip_tunnel_info *info; 712 713 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 714 return -EINVAL; 715 716 info = skb_tunnel_info_unclone(skb); 717 if (!info) 718 return -ENOMEM; 719 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 720 return -EINVAL; 721 722 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 723 } 724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 725 726 /** 727 * __dev_get_by_name - find a device by its name 728 * @net: the applicable net namespace 729 * @name: name to find 730 * 731 * Find an interface by name. Must be called under RTNL semaphore 732 * or @dev_base_lock. If the name is found a pointer to the device 733 * is returned. If the name is not found then %NULL is returned. The 734 * reference counters are not incremented so the caller must be 735 * careful with locks. 736 */ 737 738 struct net_device *__dev_get_by_name(struct net *net, const char *name) 739 { 740 struct net_device *dev; 741 struct hlist_head *head = dev_name_hash(net, name); 742 743 hlist_for_each_entry(dev, head, name_hlist) 744 if (!strncmp(dev->name, name, IFNAMSIZ)) 745 return dev; 746 747 return NULL; 748 } 749 EXPORT_SYMBOL(__dev_get_by_name); 750 751 /** 752 * dev_get_by_name_rcu - find a device by its name 753 * @net: the applicable net namespace 754 * @name: name to find 755 * 756 * Find an interface by name. 757 * If the name is found a pointer to the device is returned. 758 * If the name is not found then %NULL is returned. 759 * The reference counters are not incremented so the caller must be 760 * careful with locks. The caller must hold RCU lock. 761 */ 762 763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 764 { 765 struct net_device *dev; 766 struct hlist_head *head = dev_name_hash(net, name); 767 768 hlist_for_each_entry_rcu(dev, head, name_hlist) 769 if (!strncmp(dev->name, name, IFNAMSIZ)) 770 return dev; 771 772 return NULL; 773 } 774 EXPORT_SYMBOL(dev_get_by_name_rcu); 775 776 /** 777 * dev_get_by_name - find a device by its name 778 * @net: the applicable net namespace 779 * @name: name to find 780 * 781 * Find an interface by name. This can be called from any 782 * context and does its own locking. The returned handle has 783 * the usage count incremented and the caller must use dev_put() to 784 * release it when it is no longer needed. %NULL is returned if no 785 * matching device is found. 786 */ 787 788 struct net_device *dev_get_by_name(struct net *net, const char *name) 789 { 790 struct net_device *dev; 791 792 rcu_read_lock(); 793 dev = dev_get_by_name_rcu(net, name); 794 if (dev) 795 dev_hold(dev); 796 rcu_read_unlock(); 797 return dev; 798 } 799 EXPORT_SYMBOL(dev_get_by_name); 800 801 /** 802 * __dev_get_by_index - find a device by its ifindex 803 * @net: the applicable net namespace 804 * @ifindex: index of device 805 * 806 * Search for an interface by index. Returns %NULL if the device 807 * is not found or a pointer to the device. The device has not 808 * had its reference counter increased so the caller must be careful 809 * about locking. The caller must hold either the RTNL semaphore 810 * or @dev_base_lock. 811 */ 812 813 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 814 { 815 struct net_device *dev; 816 struct hlist_head *head = dev_index_hash(net, ifindex); 817 818 hlist_for_each_entry(dev, head, index_hlist) 819 if (dev->ifindex == ifindex) 820 return dev; 821 822 return NULL; 823 } 824 EXPORT_SYMBOL(__dev_get_by_index); 825 826 /** 827 * dev_get_by_index_rcu - find a device by its ifindex 828 * @net: the applicable net namespace 829 * @ifindex: index of device 830 * 831 * Search for an interface by index. Returns %NULL if the device 832 * is not found or a pointer to the device. The device has not 833 * had its reference counter increased so the caller must be careful 834 * about locking. The caller must hold RCU lock. 835 */ 836 837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 838 { 839 struct net_device *dev; 840 struct hlist_head *head = dev_index_hash(net, ifindex); 841 842 hlist_for_each_entry_rcu(dev, head, index_hlist) 843 if (dev->ifindex == ifindex) 844 return dev; 845 846 return NULL; 847 } 848 EXPORT_SYMBOL(dev_get_by_index_rcu); 849 850 851 /** 852 * dev_get_by_index - find a device by its ifindex 853 * @net: the applicable net namespace 854 * @ifindex: index of device 855 * 856 * Search for an interface by index. Returns NULL if the device 857 * is not found or a pointer to the device. The device returned has 858 * had a reference added and the pointer is safe until the user calls 859 * dev_put to indicate they have finished with it. 860 */ 861 862 struct net_device *dev_get_by_index(struct net *net, int ifindex) 863 { 864 struct net_device *dev; 865 866 rcu_read_lock(); 867 dev = dev_get_by_index_rcu(net, ifindex); 868 if (dev) 869 dev_hold(dev); 870 rcu_read_unlock(); 871 return dev; 872 } 873 EXPORT_SYMBOL(dev_get_by_index); 874 875 /** 876 * dev_get_by_napi_id - find a device by napi_id 877 * @napi_id: ID of the NAPI struct 878 * 879 * Search for an interface by NAPI ID. Returns %NULL if the device 880 * is not found or a pointer to the device. The device has not had 881 * its reference counter increased so the caller must be careful 882 * about locking. The caller must hold RCU lock. 883 */ 884 885 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 886 { 887 struct napi_struct *napi; 888 889 WARN_ON_ONCE(!rcu_read_lock_held()); 890 891 if (napi_id < MIN_NAPI_ID) 892 return NULL; 893 894 napi = napi_by_id(napi_id); 895 896 return napi ? napi->dev : NULL; 897 } 898 EXPORT_SYMBOL(dev_get_by_napi_id); 899 900 /** 901 * netdev_get_name - get a netdevice name, knowing its ifindex. 902 * @net: network namespace 903 * @name: a pointer to the buffer where the name will be stored. 904 * @ifindex: the ifindex of the interface to get the name from. 905 * 906 * The use of raw_seqcount_begin() and cond_resched() before 907 * retrying is required as we want to give the writers a chance 908 * to complete when CONFIG_PREEMPT is not set. 909 */ 910 int netdev_get_name(struct net *net, char *name, int ifindex) 911 { 912 struct net_device *dev; 913 unsigned int seq; 914 915 retry: 916 seq = raw_seqcount_begin(&devnet_rename_seq); 917 rcu_read_lock(); 918 dev = dev_get_by_index_rcu(net, ifindex); 919 if (!dev) { 920 rcu_read_unlock(); 921 return -ENODEV; 922 } 923 924 strcpy(name, dev->name); 925 rcu_read_unlock(); 926 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 927 cond_resched(); 928 goto retry; 929 } 930 931 return 0; 932 } 933 934 /** 935 * dev_getbyhwaddr_rcu - find a device by its hardware address 936 * @net: the applicable net namespace 937 * @type: media type of device 938 * @ha: hardware address 939 * 940 * Search for an interface by MAC address. Returns NULL if the device 941 * is not found or a pointer to the device. 942 * The caller must hold RCU or RTNL. 943 * The returned device has not had its ref count increased 944 * and the caller must therefore be careful about locking 945 * 946 */ 947 948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 949 const char *ha) 950 { 951 struct net_device *dev; 952 953 for_each_netdev_rcu(net, dev) 954 if (dev->type == type && 955 !memcmp(dev->dev_addr, ha, dev->addr_len)) 956 return dev; 957 958 return NULL; 959 } 960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 961 962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 963 { 964 struct net_device *dev; 965 966 ASSERT_RTNL(); 967 for_each_netdev(net, dev) 968 if (dev->type == type) 969 return dev; 970 971 return NULL; 972 } 973 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 974 975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 976 { 977 struct net_device *dev, *ret = NULL; 978 979 rcu_read_lock(); 980 for_each_netdev_rcu(net, dev) 981 if (dev->type == type) { 982 dev_hold(dev); 983 ret = dev; 984 break; 985 } 986 rcu_read_unlock(); 987 return ret; 988 } 989 EXPORT_SYMBOL(dev_getfirstbyhwtype); 990 991 /** 992 * __dev_get_by_flags - find any device with given flags 993 * @net: the applicable net namespace 994 * @if_flags: IFF_* values 995 * @mask: bitmask of bits in if_flags to check 996 * 997 * Search for any interface with the given flags. Returns NULL if a device 998 * is not found or a pointer to the device. Must be called inside 999 * rtnl_lock(), and result refcount is unchanged. 1000 */ 1001 1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1003 unsigned short mask) 1004 { 1005 struct net_device *dev, *ret; 1006 1007 ASSERT_RTNL(); 1008 1009 ret = NULL; 1010 for_each_netdev(net, dev) { 1011 if (((dev->flags ^ if_flags) & mask) == 0) { 1012 ret = dev; 1013 break; 1014 } 1015 } 1016 return ret; 1017 } 1018 EXPORT_SYMBOL(__dev_get_by_flags); 1019 1020 /** 1021 * dev_valid_name - check if name is okay for network device 1022 * @name: name string 1023 * 1024 * Network device names need to be valid file names to 1025 * to allow sysfs to work. We also disallow any kind of 1026 * whitespace. 1027 */ 1028 bool dev_valid_name(const char *name) 1029 { 1030 if (*name == '\0') 1031 return false; 1032 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1033 return false; 1034 if (!strcmp(name, ".") || !strcmp(name, "..")) 1035 return false; 1036 1037 while (*name) { 1038 if (*name == '/' || *name == ':' || isspace(*name)) 1039 return false; 1040 name++; 1041 } 1042 return true; 1043 } 1044 EXPORT_SYMBOL(dev_valid_name); 1045 1046 /** 1047 * __dev_alloc_name - allocate a name for a device 1048 * @net: network namespace to allocate the device name in 1049 * @name: name format string 1050 * @buf: scratch buffer and result name string 1051 * 1052 * Passed a format string - eg "lt%d" it will try and find a suitable 1053 * id. It scans list of devices to build up a free map, then chooses 1054 * the first empty slot. The caller must hold the dev_base or rtnl lock 1055 * while allocating the name and adding the device in order to avoid 1056 * duplicates. 1057 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1058 * Returns the number of the unit assigned or a negative errno code. 1059 */ 1060 1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1062 { 1063 int i = 0; 1064 const char *p; 1065 const int max_netdevices = 8*PAGE_SIZE; 1066 unsigned long *inuse; 1067 struct net_device *d; 1068 1069 if (!dev_valid_name(name)) 1070 return -EINVAL; 1071 1072 p = strchr(name, '%'); 1073 if (p) { 1074 /* 1075 * Verify the string as this thing may have come from 1076 * the user. There must be either one "%d" and no other "%" 1077 * characters. 1078 */ 1079 if (p[1] != 'd' || strchr(p + 2, '%')) 1080 return -EINVAL; 1081 1082 /* Use one page as a bit array of possible slots */ 1083 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1084 if (!inuse) 1085 return -ENOMEM; 1086 1087 for_each_netdev(net, d) { 1088 if (!sscanf(d->name, name, &i)) 1089 continue; 1090 if (i < 0 || i >= max_netdevices) 1091 continue; 1092 1093 /* avoid cases where sscanf is not exact inverse of printf */ 1094 snprintf(buf, IFNAMSIZ, name, i); 1095 if (!strncmp(buf, d->name, IFNAMSIZ)) 1096 set_bit(i, inuse); 1097 } 1098 1099 i = find_first_zero_bit(inuse, max_netdevices); 1100 free_page((unsigned long) inuse); 1101 } 1102 1103 snprintf(buf, IFNAMSIZ, name, i); 1104 if (!__dev_get_by_name(net, buf)) 1105 return i; 1106 1107 /* It is possible to run out of possible slots 1108 * when the name is long and there isn't enough space left 1109 * for the digits, or if all bits are used. 1110 */ 1111 return -ENFILE; 1112 } 1113 1114 static int dev_alloc_name_ns(struct net *net, 1115 struct net_device *dev, 1116 const char *name) 1117 { 1118 char buf[IFNAMSIZ]; 1119 int ret; 1120 1121 BUG_ON(!net); 1122 ret = __dev_alloc_name(net, name, buf); 1123 if (ret >= 0) 1124 strlcpy(dev->name, buf, IFNAMSIZ); 1125 return ret; 1126 } 1127 1128 /** 1129 * dev_alloc_name - allocate a name for a device 1130 * @dev: device 1131 * @name: name format string 1132 * 1133 * Passed a format string - eg "lt%d" it will try and find a suitable 1134 * id. It scans list of devices to build up a free map, then chooses 1135 * the first empty slot. The caller must hold the dev_base or rtnl lock 1136 * while allocating the name and adding the device in order to avoid 1137 * duplicates. 1138 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1139 * Returns the number of the unit assigned or a negative errno code. 1140 */ 1141 1142 int dev_alloc_name(struct net_device *dev, const char *name) 1143 { 1144 return dev_alloc_name_ns(dev_net(dev), dev, name); 1145 } 1146 EXPORT_SYMBOL(dev_alloc_name); 1147 1148 int dev_get_valid_name(struct net *net, struct net_device *dev, 1149 const char *name) 1150 { 1151 BUG_ON(!net); 1152 1153 if (!dev_valid_name(name)) 1154 return -EINVAL; 1155 1156 if (strchr(name, '%')) 1157 return dev_alloc_name_ns(net, dev, name); 1158 else if (__dev_get_by_name(net, name)) 1159 return -EEXIST; 1160 else if (dev->name != name) 1161 strlcpy(dev->name, name, IFNAMSIZ); 1162 1163 return 0; 1164 } 1165 EXPORT_SYMBOL(dev_get_valid_name); 1166 1167 /** 1168 * dev_change_name - change name of a device 1169 * @dev: device 1170 * @newname: name (or format string) must be at least IFNAMSIZ 1171 * 1172 * Change name of a device, can pass format strings "eth%d". 1173 * for wildcarding. 1174 */ 1175 int dev_change_name(struct net_device *dev, const char *newname) 1176 { 1177 unsigned char old_assign_type; 1178 char oldname[IFNAMSIZ]; 1179 int err = 0; 1180 int ret; 1181 struct net *net; 1182 1183 ASSERT_RTNL(); 1184 BUG_ON(!dev_net(dev)); 1185 1186 net = dev_net(dev); 1187 1188 /* Some auto-enslaved devices e.g. failover slaves are 1189 * special, as userspace might rename the device after 1190 * the interface had been brought up and running since 1191 * the point kernel initiated auto-enslavement. Allow 1192 * live name change even when these slave devices are 1193 * up and running. 1194 * 1195 * Typically, users of these auto-enslaving devices 1196 * don't actually care about slave name change, as 1197 * they are supposed to operate on master interface 1198 * directly. 1199 */ 1200 if (dev->flags & IFF_UP && 1201 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1202 return -EBUSY; 1203 1204 write_seqcount_begin(&devnet_rename_seq); 1205 1206 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1207 write_seqcount_end(&devnet_rename_seq); 1208 return 0; 1209 } 1210 1211 memcpy(oldname, dev->name, IFNAMSIZ); 1212 1213 err = dev_get_valid_name(net, dev, newname); 1214 if (err < 0) { 1215 write_seqcount_end(&devnet_rename_seq); 1216 return err; 1217 } 1218 1219 if (oldname[0] && !strchr(oldname, '%')) 1220 netdev_info(dev, "renamed from %s\n", oldname); 1221 1222 old_assign_type = dev->name_assign_type; 1223 dev->name_assign_type = NET_NAME_RENAMED; 1224 1225 rollback: 1226 ret = device_rename(&dev->dev, dev->name); 1227 if (ret) { 1228 memcpy(dev->name, oldname, IFNAMSIZ); 1229 dev->name_assign_type = old_assign_type; 1230 write_seqcount_end(&devnet_rename_seq); 1231 return ret; 1232 } 1233 1234 write_seqcount_end(&devnet_rename_seq); 1235 1236 netdev_adjacent_rename_links(dev, oldname); 1237 1238 write_lock_bh(&dev_base_lock); 1239 hlist_del_rcu(&dev->name_hlist); 1240 write_unlock_bh(&dev_base_lock); 1241 1242 synchronize_rcu(); 1243 1244 write_lock_bh(&dev_base_lock); 1245 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1246 write_unlock_bh(&dev_base_lock); 1247 1248 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1249 ret = notifier_to_errno(ret); 1250 1251 if (ret) { 1252 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1253 if (err >= 0) { 1254 err = ret; 1255 write_seqcount_begin(&devnet_rename_seq); 1256 memcpy(dev->name, oldname, IFNAMSIZ); 1257 memcpy(oldname, newname, IFNAMSIZ); 1258 dev->name_assign_type = old_assign_type; 1259 old_assign_type = NET_NAME_RENAMED; 1260 goto rollback; 1261 } else { 1262 pr_err("%s: name change rollback failed: %d\n", 1263 dev->name, ret); 1264 } 1265 } 1266 1267 return err; 1268 } 1269 1270 /** 1271 * dev_set_alias - change ifalias of a device 1272 * @dev: device 1273 * @alias: name up to IFALIASZ 1274 * @len: limit of bytes to copy from info 1275 * 1276 * Set ifalias for a device, 1277 */ 1278 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1279 { 1280 struct dev_ifalias *new_alias = NULL; 1281 1282 if (len >= IFALIASZ) 1283 return -EINVAL; 1284 1285 if (len) { 1286 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1287 if (!new_alias) 1288 return -ENOMEM; 1289 1290 memcpy(new_alias->ifalias, alias, len); 1291 new_alias->ifalias[len] = 0; 1292 } 1293 1294 mutex_lock(&ifalias_mutex); 1295 rcu_swap_protected(dev->ifalias, new_alias, 1296 mutex_is_locked(&ifalias_mutex)); 1297 mutex_unlock(&ifalias_mutex); 1298 1299 if (new_alias) 1300 kfree_rcu(new_alias, rcuhead); 1301 1302 return len; 1303 } 1304 EXPORT_SYMBOL(dev_set_alias); 1305 1306 /** 1307 * dev_get_alias - get ifalias of a device 1308 * @dev: device 1309 * @name: buffer to store name of ifalias 1310 * @len: size of buffer 1311 * 1312 * get ifalias for a device. Caller must make sure dev cannot go 1313 * away, e.g. rcu read lock or own a reference count to device. 1314 */ 1315 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1316 { 1317 const struct dev_ifalias *alias; 1318 int ret = 0; 1319 1320 rcu_read_lock(); 1321 alias = rcu_dereference(dev->ifalias); 1322 if (alias) 1323 ret = snprintf(name, len, "%s", alias->ifalias); 1324 rcu_read_unlock(); 1325 1326 return ret; 1327 } 1328 1329 /** 1330 * netdev_features_change - device changes features 1331 * @dev: device to cause notification 1332 * 1333 * Called to indicate a device has changed features. 1334 */ 1335 void netdev_features_change(struct net_device *dev) 1336 { 1337 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1338 } 1339 EXPORT_SYMBOL(netdev_features_change); 1340 1341 /** 1342 * netdev_state_change - device changes state 1343 * @dev: device to cause notification 1344 * 1345 * Called to indicate a device has changed state. This function calls 1346 * the notifier chains for netdev_chain and sends a NEWLINK message 1347 * to the routing socket. 1348 */ 1349 void netdev_state_change(struct net_device *dev) 1350 { 1351 if (dev->flags & IFF_UP) { 1352 struct netdev_notifier_change_info change_info = { 1353 .info.dev = dev, 1354 }; 1355 1356 call_netdevice_notifiers_info(NETDEV_CHANGE, 1357 &change_info.info); 1358 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1359 } 1360 } 1361 EXPORT_SYMBOL(netdev_state_change); 1362 1363 /** 1364 * netdev_notify_peers - notify network peers about existence of @dev 1365 * @dev: network device 1366 * 1367 * Generate traffic such that interested network peers are aware of 1368 * @dev, such as by generating a gratuitous ARP. This may be used when 1369 * a device wants to inform the rest of the network about some sort of 1370 * reconfiguration such as a failover event or virtual machine 1371 * migration. 1372 */ 1373 void netdev_notify_peers(struct net_device *dev) 1374 { 1375 rtnl_lock(); 1376 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1377 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1378 rtnl_unlock(); 1379 } 1380 EXPORT_SYMBOL(netdev_notify_peers); 1381 1382 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1383 { 1384 const struct net_device_ops *ops = dev->netdev_ops; 1385 int ret; 1386 1387 ASSERT_RTNL(); 1388 1389 if (!netif_device_present(dev)) 1390 return -ENODEV; 1391 1392 /* Block netpoll from trying to do any rx path servicing. 1393 * If we don't do this there is a chance ndo_poll_controller 1394 * or ndo_poll may be running while we open the device 1395 */ 1396 netpoll_poll_disable(dev); 1397 1398 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1399 ret = notifier_to_errno(ret); 1400 if (ret) 1401 return ret; 1402 1403 set_bit(__LINK_STATE_START, &dev->state); 1404 1405 if (ops->ndo_validate_addr) 1406 ret = ops->ndo_validate_addr(dev); 1407 1408 if (!ret && ops->ndo_open) 1409 ret = ops->ndo_open(dev); 1410 1411 netpoll_poll_enable(dev); 1412 1413 if (ret) 1414 clear_bit(__LINK_STATE_START, &dev->state); 1415 else { 1416 dev->flags |= IFF_UP; 1417 dev_set_rx_mode(dev); 1418 dev_activate(dev); 1419 add_device_randomness(dev->dev_addr, dev->addr_len); 1420 } 1421 1422 return ret; 1423 } 1424 1425 /** 1426 * dev_open - prepare an interface for use. 1427 * @dev: device to open 1428 * @extack: netlink extended ack 1429 * 1430 * Takes a device from down to up state. The device's private open 1431 * function is invoked and then the multicast lists are loaded. Finally 1432 * the device is moved into the up state and a %NETDEV_UP message is 1433 * sent to the netdev notifier chain. 1434 * 1435 * Calling this function on an active interface is a nop. On a failure 1436 * a negative errno code is returned. 1437 */ 1438 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1439 { 1440 int ret; 1441 1442 if (dev->flags & IFF_UP) 1443 return 0; 1444 1445 ret = __dev_open(dev, extack); 1446 if (ret < 0) 1447 return ret; 1448 1449 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1450 call_netdevice_notifiers(NETDEV_UP, dev); 1451 1452 return ret; 1453 } 1454 EXPORT_SYMBOL(dev_open); 1455 1456 static void __dev_close_many(struct list_head *head) 1457 { 1458 struct net_device *dev; 1459 1460 ASSERT_RTNL(); 1461 might_sleep(); 1462 1463 list_for_each_entry(dev, head, close_list) { 1464 /* Temporarily disable netpoll until the interface is down */ 1465 netpoll_poll_disable(dev); 1466 1467 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1468 1469 clear_bit(__LINK_STATE_START, &dev->state); 1470 1471 /* Synchronize to scheduled poll. We cannot touch poll list, it 1472 * can be even on different cpu. So just clear netif_running(). 1473 * 1474 * dev->stop() will invoke napi_disable() on all of it's 1475 * napi_struct instances on this device. 1476 */ 1477 smp_mb__after_atomic(); /* Commit netif_running(). */ 1478 } 1479 1480 dev_deactivate_many(head); 1481 1482 list_for_each_entry(dev, head, close_list) { 1483 const struct net_device_ops *ops = dev->netdev_ops; 1484 1485 /* 1486 * Call the device specific close. This cannot fail. 1487 * Only if device is UP 1488 * 1489 * We allow it to be called even after a DETACH hot-plug 1490 * event. 1491 */ 1492 if (ops->ndo_stop) 1493 ops->ndo_stop(dev); 1494 1495 dev->flags &= ~IFF_UP; 1496 netpoll_poll_enable(dev); 1497 } 1498 } 1499 1500 static void __dev_close(struct net_device *dev) 1501 { 1502 LIST_HEAD(single); 1503 1504 list_add(&dev->close_list, &single); 1505 __dev_close_many(&single); 1506 list_del(&single); 1507 } 1508 1509 void dev_close_many(struct list_head *head, bool unlink) 1510 { 1511 struct net_device *dev, *tmp; 1512 1513 /* Remove the devices that don't need to be closed */ 1514 list_for_each_entry_safe(dev, tmp, head, close_list) 1515 if (!(dev->flags & IFF_UP)) 1516 list_del_init(&dev->close_list); 1517 1518 __dev_close_many(head); 1519 1520 list_for_each_entry_safe(dev, tmp, head, close_list) { 1521 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1522 call_netdevice_notifiers(NETDEV_DOWN, dev); 1523 if (unlink) 1524 list_del_init(&dev->close_list); 1525 } 1526 } 1527 EXPORT_SYMBOL(dev_close_many); 1528 1529 /** 1530 * dev_close - shutdown an interface. 1531 * @dev: device to shutdown 1532 * 1533 * This function moves an active device into down state. A 1534 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1535 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1536 * chain. 1537 */ 1538 void dev_close(struct net_device *dev) 1539 { 1540 if (dev->flags & IFF_UP) { 1541 LIST_HEAD(single); 1542 1543 list_add(&dev->close_list, &single); 1544 dev_close_many(&single, true); 1545 list_del(&single); 1546 } 1547 } 1548 EXPORT_SYMBOL(dev_close); 1549 1550 1551 /** 1552 * dev_disable_lro - disable Large Receive Offload on a device 1553 * @dev: device 1554 * 1555 * Disable Large Receive Offload (LRO) on a net device. Must be 1556 * called under RTNL. This is needed if received packets may be 1557 * forwarded to another interface. 1558 */ 1559 void dev_disable_lro(struct net_device *dev) 1560 { 1561 struct net_device *lower_dev; 1562 struct list_head *iter; 1563 1564 dev->wanted_features &= ~NETIF_F_LRO; 1565 netdev_update_features(dev); 1566 1567 if (unlikely(dev->features & NETIF_F_LRO)) 1568 netdev_WARN(dev, "failed to disable LRO!\n"); 1569 1570 netdev_for_each_lower_dev(dev, lower_dev, iter) 1571 dev_disable_lro(lower_dev); 1572 } 1573 EXPORT_SYMBOL(dev_disable_lro); 1574 1575 /** 1576 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1577 * @dev: device 1578 * 1579 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1580 * called under RTNL. This is needed if Generic XDP is installed on 1581 * the device. 1582 */ 1583 static void dev_disable_gro_hw(struct net_device *dev) 1584 { 1585 dev->wanted_features &= ~NETIF_F_GRO_HW; 1586 netdev_update_features(dev); 1587 1588 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1589 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1590 } 1591 1592 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1593 { 1594 #define N(val) \ 1595 case NETDEV_##val: \ 1596 return "NETDEV_" __stringify(val); 1597 switch (cmd) { 1598 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1599 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1600 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1601 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1602 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1603 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1604 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1605 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1606 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1607 N(PRE_CHANGEADDR) 1608 } 1609 #undef N 1610 return "UNKNOWN_NETDEV_EVENT"; 1611 } 1612 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1613 1614 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1615 struct net_device *dev) 1616 { 1617 struct netdev_notifier_info info = { 1618 .dev = dev, 1619 }; 1620 1621 return nb->notifier_call(nb, val, &info); 1622 } 1623 1624 static int dev_boot_phase = 1; 1625 1626 /** 1627 * register_netdevice_notifier - register a network notifier block 1628 * @nb: notifier 1629 * 1630 * Register a notifier to be called when network device events occur. 1631 * The notifier passed is linked into the kernel structures and must 1632 * not be reused until it has been unregistered. A negative errno code 1633 * is returned on a failure. 1634 * 1635 * When registered all registration and up events are replayed 1636 * to the new notifier to allow device to have a race free 1637 * view of the network device list. 1638 */ 1639 1640 int register_netdevice_notifier(struct notifier_block *nb) 1641 { 1642 struct net_device *dev; 1643 struct net_device *last; 1644 struct net *net; 1645 int err; 1646 1647 /* Close race with setup_net() and cleanup_net() */ 1648 down_write(&pernet_ops_rwsem); 1649 rtnl_lock(); 1650 err = raw_notifier_chain_register(&netdev_chain, nb); 1651 if (err) 1652 goto unlock; 1653 if (dev_boot_phase) 1654 goto unlock; 1655 for_each_net(net) { 1656 for_each_netdev(net, dev) { 1657 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1658 err = notifier_to_errno(err); 1659 if (err) 1660 goto rollback; 1661 1662 if (!(dev->flags & IFF_UP)) 1663 continue; 1664 1665 call_netdevice_notifier(nb, NETDEV_UP, dev); 1666 } 1667 } 1668 1669 unlock: 1670 rtnl_unlock(); 1671 up_write(&pernet_ops_rwsem); 1672 return err; 1673 1674 rollback: 1675 last = dev; 1676 for_each_net(net) { 1677 for_each_netdev(net, dev) { 1678 if (dev == last) 1679 goto outroll; 1680 1681 if (dev->flags & IFF_UP) { 1682 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1683 dev); 1684 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1685 } 1686 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1687 } 1688 } 1689 1690 outroll: 1691 raw_notifier_chain_unregister(&netdev_chain, nb); 1692 goto unlock; 1693 } 1694 EXPORT_SYMBOL(register_netdevice_notifier); 1695 1696 /** 1697 * unregister_netdevice_notifier - unregister a network notifier block 1698 * @nb: notifier 1699 * 1700 * Unregister a notifier previously registered by 1701 * register_netdevice_notifier(). The notifier is unlinked into the 1702 * kernel structures and may then be reused. A negative errno code 1703 * is returned on a failure. 1704 * 1705 * After unregistering unregister and down device events are synthesized 1706 * for all devices on the device list to the removed notifier to remove 1707 * the need for special case cleanup code. 1708 */ 1709 1710 int unregister_netdevice_notifier(struct notifier_block *nb) 1711 { 1712 struct net_device *dev; 1713 struct net *net; 1714 int err; 1715 1716 /* Close race with setup_net() and cleanup_net() */ 1717 down_write(&pernet_ops_rwsem); 1718 rtnl_lock(); 1719 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1720 if (err) 1721 goto unlock; 1722 1723 for_each_net(net) { 1724 for_each_netdev(net, dev) { 1725 if (dev->flags & IFF_UP) { 1726 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1727 dev); 1728 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1729 } 1730 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1731 } 1732 } 1733 unlock: 1734 rtnl_unlock(); 1735 up_write(&pernet_ops_rwsem); 1736 return err; 1737 } 1738 EXPORT_SYMBOL(unregister_netdevice_notifier); 1739 1740 /** 1741 * call_netdevice_notifiers_info - call all network notifier blocks 1742 * @val: value passed unmodified to notifier function 1743 * @info: notifier information data 1744 * 1745 * Call all network notifier blocks. Parameters and return value 1746 * are as for raw_notifier_call_chain(). 1747 */ 1748 1749 static int call_netdevice_notifiers_info(unsigned long val, 1750 struct netdev_notifier_info *info) 1751 { 1752 ASSERT_RTNL(); 1753 return raw_notifier_call_chain(&netdev_chain, val, info); 1754 } 1755 1756 static int call_netdevice_notifiers_extack(unsigned long val, 1757 struct net_device *dev, 1758 struct netlink_ext_ack *extack) 1759 { 1760 struct netdev_notifier_info info = { 1761 .dev = dev, 1762 .extack = extack, 1763 }; 1764 1765 return call_netdevice_notifiers_info(val, &info); 1766 } 1767 1768 /** 1769 * call_netdevice_notifiers - call all network notifier blocks 1770 * @val: value passed unmodified to notifier function 1771 * @dev: net_device pointer passed unmodified to notifier function 1772 * 1773 * Call all network notifier blocks. Parameters and return value 1774 * are as for raw_notifier_call_chain(). 1775 */ 1776 1777 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1778 { 1779 return call_netdevice_notifiers_extack(val, dev, NULL); 1780 } 1781 EXPORT_SYMBOL(call_netdevice_notifiers); 1782 1783 /** 1784 * call_netdevice_notifiers_mtu - call all network notifier blocks 1785 * @val: value passed unmodified to notifier function 1786 * @dev: net_device pointer passed unmodified to notifier function 1787 * @arg: additional u32 argument passed to the notifier function 1788 * 1789 * Call all network notifier blocks. Parameters and return value 1790 * are as for raw_notifier_call_chain(). 1791 */ 1792 static int call_netdevice_notifiers_mtu(unsigned long val, 1793 struct net_device *dev, u32 arg) 1794 { 1795 struct netdev_notifier_info_ext info = { 1796 .info.dev = dev, 1797 .ext.mtu = arg, 1798 }; 1799 1800 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 1801 1802 return call_netdevice_notifiers_info(val, &info.info); 1803 } 1804 1805 #ifdef CONFIG_NET_INGRESS 1806 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 1807 1808 void net_inc_ingress_queue(void) 1809 { 1810 static_branch_inc(&ingress_needed_key); 1811 } 1812 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1813 1814 void net_dec_ingress_queue(void) 1815 { 1816 static_branch_dec(&ingress_needed_key); 1817 } 1818 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1819 #endif 1820 1821 #ifdef CONFIG_NET_EGRESS 1822 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 1823 1824 void net_inc_egress_queue(void) 1825 { 1826 static_branch_inc(&egress_needed_key); 1827 } 1828 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1829 1830 void net_dec_egress_queue(void) 1831 { 1832 static_branch_dec(&egress_needed_key); 1833 } 1834 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1835 #endif 1836 1837 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 1838 #ifdef CONFIG_JUMP_LABEL 1839 static atomic_t netstamp_needed_deferred; 1840 static atomic_t netstamp_wanted; 1841 static void netstamp_clear(struct work_struct *work) 1842 { 1843 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1844 int wanted; 1845 1846 wanted = atomic_add_return(deferred, &netstamp_wanted); 1847 if (wanted > 0) 1848 static_branch_enable(&netstamp_needed_key); 1849 else 1850 static_branch_disable(&netstamp_needed_key); 1851 } 1852 static DECLARE_WORK(netstamp_work, netstamp_clear); 1853 #endif 1854 1855 void net_enable_timestamp(void) 1856 { 1857 #ifdef CONFIG_JUMP_LABEL 1858 int wanted; 1859 1860 while (1) { 1861 wanted = atomic_read(&netstamp_wanted); 1862 if (wanted <= 0) 1863 break; 1864 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1865 return; 1866 } 1867 atomic_inc(&netstamp_needed_deferred); 1868 schedule_work(&netstamp_work); 1869 #else 1870 static_branch_inc(&netstamp_needed_key); 1871 #endif 1872 } 1873 EXPORT_SYMBOL(net_enable_timestamp); 1874 1875 void net_disable_timestamp(void) 1876 { 1877 #ifdef CONFIG_JUMP_LABEL 1878 int wanted; 1879 1880 while (1) { 1881 wanted = atomic_read(&netstamp_wanted); 1882 if (wanted <= 1) 1883 break; 1884 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1885 return; 1886 } 1887 atomic_dec(&netstamp_needed_deferred); 1888 schedule_work(&netstamp_work); 1889 #else 1890 static_branch_dec(&netstamp_needed_key); 1891 #endif 1892 } 1893 EXPORT_SYMBOL(net_disable_timestamp); 1894 1895 static inline void net_timestamp_set(struct sk_buff *skb) 1896 { 1897 skb->tstamp = 0; 1898 if (static_branch_unlikely(&netstamp_needed_key)) 1899 __net_timestamp(skb); 1900 } 1901 1902 #define net_timestamp_check(COND, SKB) \ 1903 if (static_branch_unlikely(&netstamp_needed_key)) { \ 1904 if ((COND) && !(SKB)->tstamp) \ 1905 __net_timestamp(SKB); \ 1906 } \ 1907 1908 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1909 { 1910 unsigned int len; 1911 1912 if (!(dev->flags & IFF_UP)) 1913 return false; 1914 1915 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1916 if (skb->len <= len) 1917 return true; 1918 1919 /* if TSO is enabled, we don't care about the length as the packet 1920 * could be forwarded without being segmented before 1921 */ 1922 if (skb_is_gso(skb)) 1923 return true; 1924 1925 return false; 1926 } 1927 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1928 1929 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1930 { 1931 int ret = ____dev_forward_skb(dev, skb); 1932 1933 if (likely(!ret)) { 1934 skb->protocol = eth_type_trans(skb, dev); 1935 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1936 } 1937 1938 return ret; 1939 } 1940 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1941 1942 /** 1943 * dev_forward_skb - loopback an skb to another netif 1944 * 1945 * @dev: destination network device 1946 * @skb: buffer to forward 1947 * 1948 * return values: 1949 * NET_RX_SUCCESS (no congestion) 1950 * NET_RX_DROP (packet was dropped, but freed) 1951 * 1952 * dev_forward_skb can be used for injecting an skb from the 1953 * start_xmit function of one device into the receive queue 1954 * of another device. 1955 * 1956 * The receiving device may be in another namespace, so 1957 * we have to clear all information in the skb that could 1958 * impact namespace isolation. 1959 */ 1960 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1961 { 1962 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1963 } 1964 EXPORT_SYMBOL_GPL(dev_forward_skb); 1965 1966 static inline int deliver_skb(struct sk_buff *skb, 1967 struct packet_type *pt_prev, 1968 struct net_device *orig_dev) 1969 { 1970 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1971 return -ENOMEM; 1972 refcount_inc(&skb->users); 1973 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1974 } 1975 1976 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1977 struct packet_type **pt, 1978 struct net_device *orig_dev, 1979 __be16 type, 1980 struct list_head *ptype_list) 1981 { 1982 struct packet_type *ptype, *pt_prev = *pt; 1983 1984 list_for_each_entry_rcu(ptype, ptype_list, list) { 1985 if (ptype->type != type) 1986 continue; 1987 if (pt_prev) 1988 deliver_skb(skb, pt_prev, orig_dev); 1989 pt_prev = ptype; 1990 } 1991 *pt = pt_prev; 1992 } 1993 1994 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1995 { 1996 if (!ptype->af_packet_priv || !skb->sk) 1997 return false; 1998 1999 if (ptype->id_match) 2000 return ptype->id_match(ptype, skb->sk); 2001 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2002 return true; 2003 2004 return false; 2005 } 2006 2007 /** 2008 * dev_nit_active - return true if any network interface taps are in use 2009 * 2010 * @dev: network device to check for the presence of taps 2011 */ 2012 bool dev_nit_active(struct net_device *dev) 2013 { 2014 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2015 } 2016 EXPORT_SYMBOL_GPL(dev_nit_active); 2017 2018 /* 2019 * Support routine. Sends outgoing frames to any network 2020 * taps currently in use. 2021 */ 2022 2023 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2024 { 2025 struct packet_type *ptype; 2026 struct sk_buff *skb2 = NULL; 2027 struct packet_type *pt_prev = NULL; 2028 struct list_head *ptype_list = &ptype_all; 2029 2030 rcu_read_lock(); 2031 again: 2032 list_for_each_entry_rcu(ptype, ptype_list, list) { 2033 if (ptype->ignore_outgoing) 2034 continue; 2035 2036 /* Never send packets back to the socket 2037 * they originated from - MvS ([email protected]) 2038 */ 2039 if (skb_loop_sk(ptype, skb)) 2040 continue; 2041 2042 if (pt_prev) { 2043 deliver_skb(skb2, pt_prev, skb->dev); 2044 pt_prev = ptype; 2045 continue; 2046 } 2047 2048 /* need to clone skb, done only once */ 2049 skb2 = skb_clone(skb, GFP_ATOMIC); 2050 if (!skb2) 2051 goto out_unlock; 2052 2053 net_timestamp_set(skb2); 2054 2055 /* skb->nh should be correctly 2056 * set by sender, so that the second statement is 2057 * just protection against buggy protocols. 2058 */ 2059 skb_reset_mac_header(skb2); 2060 2061 if (skb_network_header(skb2) < skb2->data || 2062 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2063 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2064 ntohs(skb2->protocol), 2065 dev->name); 2066 skb_reset_network_header(skb2); 2067 } 2068 2069 skb2->transport_header = skb2->network_header; 2070 skb2->pkt_type = PACKET_OUTGOING; 2071 pt_prev = ptype; 2072 } 2073 2074 if (ptype_list == &ptype_all) { 2075 ptype_list = &dev->ptype_all; 2076 goto again; 2077 } 2078 out_unlock: 2079 if (pt_prev) { 2080 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2081 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2082 else 2083 kfree_skb(skb2); 2084 } 2085 rcu_read_unlock(); 2086 } 2087 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2088 2089 /** 2090 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2091 * @dev: Network device 2092 * @txq: number of queues available 2093 * 2094 * If real_num_tx_queues is changed the tc mappings may no longer be 2095 * valid. To resolve this verify the tc mapping remains valid and if 2096 * not NULL the mapping. With no priorities mapping to this 2097 * offset/count pair it will no longer be used. In the worst case TC0 2098 * is invalid nothing can be done so disable priority mappings. If is 2099 * expected that drivers will fix this mapping if they can before 2100 * calling netif_set_real_num_tx_queues. 2101 */ 2102 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2103 { 2104 int i; 2105 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2106 2107 /* If TC0 is invalidated disable TC mapping */ 2108 if (tc->offset + tc->count > txq) { 2109 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2110 dev->num_tc = 0; 2111 return; 2112 } 2113 2114 /* Invalidated prio to tc mappings set to TC0 */ 2115 for (i = 1; i < TC_BITMASK + 1; i++) { 2116 int q = netdev_get_prio_tc_map(dev, i); 2117 2118 tc = &dev->tc_to_txq[q]; 2119 if (tc->offset + tc->count > txq) { 2120 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2121 i, q); 2122 netdev_set_prio_tc_map(dev, i, 0); 2123 } 2124 } 2125 } 2126 2127 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2128 { 2129 if (dev->num_tc) { 2130 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2131 int i; 2132 2133 /* walk through the TCs and see if it falls into any of them */ 2134 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2135 if ((txq - tc->offset) < tc->count) 2136 return i; 2137 } 2138 2139 /* didn't find it, just return -1 to indicate no match */ 2140 return -1; 2141 } 2142 2143 return 0; 2144 } 2145 EXPORT_SYMBOL(netdev_txq_to_tc); 2146 2147 #ifdef CONFIG_XPS 2148 struct static_key xps_needed __read_mostly; 2149 EXPORT_SYMBOL(xps_needed); 2150 struct static_key xps_rxqs_needed __read_mostly; 2151 EXPORT_SYMBOL(xps_rxqs_needed); 2152 static DEFINE_MUTEX(xps_map_mutex); 2153 #define xmap_dereference(P) \ 2154 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2155 2156 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2157 int tci, u16 index) 2158 { 2159 struct xps_map *map = NULL; 2160 int pos; 2161 2162 if (dev_maps) 2163 map = xmap_dereference(dev_maps->attr_map[tci]); 2164 if (!map) 2165 return false; 2166 2167 for (pos = map->len; pos--;) { 2168 if (map->queues[pos] != index) 2169 continue; 2170 2171 if (map->len > 1) { 2172 map->queues[pos] = map->queues[--map->len]; 2173 break; 2174 } 2175 2176 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2177 kfree_rcu(map, rcu); 2178 return false; 2179 } 2180 2181 return true; 2182 } 2183 2184 static bool remove_xps_queue_cpu(struct net_device *dev, 2185 struct xps_dev_maps *dev_maps, 2186 int cpu, u16 offset, u16 count) 2187 { 2188 int num_tc = dev->num_tc ? : 1; 2189 bool active = false; 2190 int tci; 2191 2192 for (tci = cpu * num_tc; num_tc--; tci++) { 2193 int i, j; 2194 2195 for (i = count, j = offset; i--; j++) { 2196 if (!remove_xps_queue(dev_maps, tci, j)) 2197 break; 2198 } 2199 2200 active |= i < 0; 2201 } 2202 2203 return active; 2204 } 2205 2206 static void reset_xps_maps(struct net_device *dev, 2207 struct xps_dev_maps *dev_maps, 2208 bool is_rxqs_map) 2209 { 2210 if (is_rxqs_map) { 2211 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2212 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2213 } else { 2214 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2215 } 2216 static_key_slow_dec_cpuslocked(&xps_needed); 2217 kfree_rcu(dev_maps, rcu); 2218 } 2219 2220 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2221 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2222 u16 offset, u16 count, bool is_rxqs_map) 2223 { 2224 bool active = false; 2225 int i, j; 2226 2227 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2228 j < nr_ids;) 2229 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2230 count); 2231 if (!active) 2232 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2233 2234 if (!is_rxqs_map) { 2235 for (i = offset + (count - 1); count--; i--) { 2236 netdev_queue_numa_node_write( 2237 netdev_get_tx_queue(dev, i), 2238 NUMA_NO_NODE); 2239 } 2240 } 2241 } 2242 2243 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2244 u16 count) 2245 { 2246 const unsigned long *possible_mask = NULL; 2247 struct xps_dev_maps *dev_maps; 2248 unsigned int nr_ids; 2249 2250 if (!static_key_false(&xps_needed)) 2251 return; 2252 2253 cpus_read_lock(); 2254 mutex_lock(&xps_map_mutex); 2255 2256 if (static_key_false(&xps_rxqs_needed)) { 2257 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2258 if (dev_maps) { 2259 nr_ids = dev->num_rx_queues; 2260 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2261 offset, count, true); 2262 } 2263 } 2264 2265 dev_maps = xmap_dereference(dev->xps_cpus_map); 2266 if (!dev_maps) 2267 goto out_no_maps; 2268 2269 if (num_possible_cpus() > 1) 2270 possible_mask = cpumask_bits(cpu_possible_mask); 2271 nr_ids = nr_cpu_ids; 2272 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2273 false); 2274 2275 out_no_maps: 2276 mutex_unlock(&xps_map_mutex); 2277 cpus_read_unlock(); 2278 } 2279 2280 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2281 { 2282 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2283 } 2284 2285 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2286 u16 index, bool is_rxqs_map) 2287 { 2288 struct xps_map *new_map; 2289 int alloc_len = XPS_MIN_MAP_ALLOC; 2290 int i, pos; 2291 2292 for (pos = 0; map && pos < map->len; pos++) { 2293 if (map->queues[pos] != index) 2294 continue; 2295 return map; 2296 } 2297 2298 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2299 if (map) { 2300 if (pos < map->alloc_len) 2301 return map; 2302 2303 alloc_len = map->alloc_len * 2; 2304 } 2305 2306 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2307 * map 2308 */ 2309 if (is_rxqs_map) 2310 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2311 else 2312 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2313 cpu_to_node(attr_index)); 2314 if (!new_map) 2315 return NULL; 2316 2317 for (i = 0; i < pos; i++) 2318 new_map->queues[i] = map->queues[i]; 2319 new_map->alloc_len = alloc_len; 2320 new_map->len = pos; 2321 2322 return new_map; 2323 } 2324 2325 /* Must be called under cpus_read_lock */ 2326 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2327 u16 index, bool is_rxqs_map) 2328 { 2329 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2330 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2331 int i, j, tci, numa_node_id = -2; 2332 int maps_sz, num_tc = 1, tc = 0; 2333 struct xps_map *map, *new_map; 2334 bool active = false; 2335 unsigned int nr_ids; 2336 2337 if (dev->num_tc) { 2338 /* Do not allow XPS on subordinate device directly */ 2339 num_tc = dev->num_tc; 2340 if (num_tc < 0) 2341 return -EINVAL; 2342 2343 /* If queue belongs to subordinate dev use its map */ 2344 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2345 2346 tc = netdev_txq_to_tc(dev, index); 2347 if (tc < 0) 2348 return -EINVAL; 2349 } 2350 2351 mutex_lock(&xps_map_mutex); 2352 if (is_rxqs_map) { 2353 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2354 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2355 nr_ids = dev->num_rx_queues; 2356 } else { 2357 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2358 if (num_possible_cpus() > 1) { 2359 online_mask = cpumask_bits(cpu_online_mask); 2360 possible_mask = cpumask_bits(cpu_possible_mask); 2361 } 2362 dev_maps = xmap_dereference(dev->xps_cpus_map); 2363 nr_ids = nr_cpu_ids; 2364 } 2365 2366 if (maps_sz < L1_CACHE_BYTES) 2367 maps_sz = L1_CACHE_BYTES; 2368 2369 /* allocate memory for queue storage */ 2370 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2371 j < nr_ids;) { 2372 if (!new_dev_maps) 2373 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2374 if (!new_dev_maps) { 2375 mutex_unlock(&xps_map_mutex); 2376 return -ENOMEM; 2377 } 2378 2379 tci = j * num_tc + tc; 2380 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2381 NULL; 2382 2383 map = expand_xps_map(map, j, index, is_rxqs_map); 2384 if (!map) 2385 goto error; 2386 2387 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2388 } 2389 2390 if (!new_dev_maps) 2391 goto out_no_new_maps; 2392 2393 if (!dev_maps) { 2394 /* Increment static keys at most once per type */ 2395 static_key_slow_inc_cpuslocked(&xps_needed); 2396 if (is_rxqs_map) 2397 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2398 } 2399 2400 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2401 j < nr_ids;) { 2402 /* copy maps belonging to foreign traffic classes */ 2403 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2404 /* fill in the new device map from the old device map */ 2405 map = xmap_dereference(dev_maps->attr_map[tci]); 2406 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2407 } 2408 2409 /* We need to explicitly update tci as prevous loop 2410 * could break out early if dev_maps is NULL. 2411 */ 2412 tci = j * num_tc + tc; 2413 2414 if (netif_attr_test_mask(j, mask, nr_ids) && 2415 netif_attr_test_online(j, online_mask, nr_ids)) { 2416 /* add tx-queue to CPU/rx-queue maps */ 2417 int pos = 0; 2418 2419 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2420 while ((pos < map->len) && (map->queues[pos] != index)) 2421 pos++; 2422 2423 if (pos == map->len) 2424 map->queues[map->len++] = index; 2425 #ifdef CONFIG_NUMA 2426 if (!is_rxqs_map) { 2427 if (numa_node_id == -2) 2428 numa_node_id = cpu_to_node(j); 2429 else if (numa_node_id != cpu_to_node(j)) 2430 numa_node_id = -1; 2431 } 2432 #endif 2433 } else if (dev_maps) { 2434 /* fill in the new device map from the old device map */ 2435 map = xmap_dereference(dev_maps->attr_map[tci]); 2436 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2437 } 2438 2439 /* copy maps belonging to foreign traffic classes */ 2440 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2441 /* fill in the new device map from the old device map */ 2442 map = xmap_dereference(dev_maps->attr_map[tci]); 2443 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2444 } 2445 } 2446 2447 if (is_rxqs_map) 2448 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2449 else 2450 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2451 2452 /* Cleanup old maps */ 2453 if (!dev_maps) 2454 goto out_no_old_maps; 2455 2456 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2457 j < nr_ids;) { 2458 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2459 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2460 map = xmap_dereference(dev_maps->attr_map[tci]); 2461 if (map && map != new_map) 2462 kfree_rcu(map, rcu); 2463 } 2464 } 2465 2466 kfree_rcu(dev_maps, rcu); 2467 2468 out_no_old_maps: 2469 dev_maps = new_dev_maps; 2470 active = true; 2471 2472 out_no_new_maps: 2473 if (!is_rxqs_map) { 2474 /* update Tx queue numa node */ 2475 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2476 (numa_node_id >= 0) ? 2477 numa_node_id : NUMA_NO_NODE); 2478 } 2479 2480 if (!dev_maps) 2481 goto out_no_maps; 2482 2483 /* removes tx-queue from unused CPUs/rx-queues */ 2484 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2485 j < nr_ids;) { 2486 for (i = tc, tci = j * num_tc; i--; tci++) 2487 active |= remove_xps_queue(dev_maps, tci, index); 2488 if (!netif_attr_test_mask(j, mask, nr_ids) || 2489 !netif_attr_test_online(j, online_mask, nr_ids)) 2490 active |= remove_xps_queue(dev_maps, tci, index); 2491 for (i = num_tc - tc, tci++; --i; tci++) 2492 active |= remove_xps_queue(dev_maps, tci, index); 2493 } 2494 2495 /* free map if not active */ 2496 if (!active) 2497 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2498 2499 out_no_maps: 2500 mutex_unlock(&xps_map_mutex); 2501 2502 return 0; 2503 error: 2504 /* remove any maps that we added */ 2505 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2506 j < nr_ids;) { 2507 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2508 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2509 map = dev_maps ? 2510 xmap_dereference(dev_maps->attr_map[tci]) : 2511 NULL; 2512 if (new_map && new_map != map) 2513 kfree(new_map); 2514 } 2515 } 2516 2517 mutex_unlock(&xps_map_mutex); 2518 2519 kfree(new_dev_maps); 2520 return -ENOMEM; 2521 } 2522 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2523 2524 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2525 u16 index) 2526 { 2527 int ret; 2528 2529 cpus_read_lock(); 2530 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2531 cpus_read_unlock(); 2532 2533 return ret; 2534 } 2535 EXPORT_SYMBOL(netif_set_xps_queue); 2536 2537 #endif 2538 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2539 { 2540 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2541 2542 /* Unbind any subordinate channels */ 2543 while (txq-- != &dev->_tx[0]) { 2544 if (txq->sb_dev) 2545 netdev_unbind_sb_channel(dev, txq->sb_dev); 2546 } 2547 } 2548 2549 void netdev_reset_tc(struct net_device *dev) 2550 { 2551 #ifdef CONFIG_XPS 2552 netif_reset_xps_queues_gt(dev, 0); 2553 #endif 2554 netdev_unbind_all_sb_channels(dev); 2555 2556 /* Reset TC configuration of device */ 2557 dev->num_tc = 0; 2558 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2559 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2560 } 2561 EXPORT_SYMBOL(netdev_reset_tc); 2562 2563 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2564 { 2565 if (tc >= dev->num_tc) 2566 return -EINVAL; 2567 2568 #ifdef CONFIG_XPS 2569 netif_reset_xps_queues(dev, offset, count); 2570 #endif 2571 dev->tc_to_txq[tc].count = count; 2572 dev->tc_to_txq[tc].offset = offset; 2573 return 0; 2574 } 2575 EXPORT_SYMBOL(netdev_set_tc_queue); 2576 2577 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2578 { 2579 if (num_tc > TC_MAX_QUEUE) 2580 return -EINVAL; 2581 2582 #ifdef CONFIG_XPS 2583 netif_reset_xps_queues_gt(dev, 0); 2584 #endif 2585 netdev_unbind_all_sb_channels(dev); 2586 2587 dev->num_tc = num_tc; 2588 return 0; 2589 } 2590 EXPORT_SYMBOL(netdev_set_num_tc); 2591 2592 void netdev_unbind_sb_channel(struct net_device *dev, 2593 struct net_device *sb_dev) 2594 { 2595 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2596 2597 #ifdef CONFIG_XPS 2598 netif_reset_xps_queues_gt(sb_dev, 0); 2599 #endif 2600 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2601 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2602 2603 while (txq-- != &dev->_tx[0]) { 2604 if (txq->sb_dev == sb_dev) 2605 txq->sb_dev = NULL; 2606 } 2607 } 2608 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2609 2610 int netdev_bind_sb_channel_queue(struct net_device *dev, 2611 struct net_device *sb_dev, 2612 u8 tc, u16 count, u16 offset) 2613 { 2614 /* Make certain the sb_dev and dev are already configured */ 2615 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2616 return -EINVAL; 2617 2618 /* We cannot hand out queues we don't have */ 2619 if ((offset + count) > dev->real_num_tx_queues) 2620 return -EINVAL; 2621 2622 /* Record the mapping */ 2623 sb_dev->tc_to_txq[tc].count = count; 2624 sb_dev->tc_to_txq[tc].offset = offset; 2625 2626 /* Provide a way for Tx queue to find the tc_to_txq map or 2627 * XPS map for itself. 2628 */ 2629 while (count--) 2630 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2631 2632 return 0; 2633 } 2634 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2635 2636 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2637 { 2638 /* Do not use a multiqueue device to represent a subordinate channel */ 2639 if (netif_is_multiqueue(dev)) 2640 return -ENODEV; 2641 2642 /* We allow channels 1 - 32767 to be used for subordinate channels. 2643 * Channel 0 is meant to be "native" mode and used only to represent 2644 * the main root device. We allow writing 0 to reset the device back 2645 * to normal mode after being used as a subordinate channel. 2646 */ 2647 if (channel > S16_MAX) 2648 return -EINVAL; 2649 2650 dev->num_tc = -channel; 2651 2652 return 0; 2653 } 2654 EXPORT_SYMBOL(netdev_set_sb_channel); 2655 2656 /* 2657 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2658 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2659 */ 2660 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2661 { 2662 bool disabling; 2663 int rc; 2664 2665 disabling = txq < dev->real_num_tx_queues; 2666 2667 if (txq < 1 || txq > dev->num_tx_queues) 2668 return -EINVAL; 2669 2670 if (dev->reg_state == NETREG_REGISTERED || 2671 dev->reg_state == NETREG_UNREGISTERING) { 2672 ASSERT_RTNL(); 2673 2674 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2675 txq); 2676 if (rc) 2677 return rc; 2678 2679 if (dev->num_tc) 2680 netif_setup_tc(dev, txq); 2681 2682 dev->real_num_tx_queues = txq; 2683 2684 if (disabling) { 2685 synchronize_net(); 2686 qdisc_reset_all_tx_gt(dev, txq); 2687 #ifdef CONFIG_XPS 2688 netif_reset_xps_queues_gt(dev, txq); 2689 #endif 2690 } 2691 } else { 2692 dev->real_num_tx_queues = txq; 2693 } 2694 2695 return 0; 2696 } 2697 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2698 2699 #ifdef CONFIG_SYSFS 2700 /** 2701 * netif_set_real_num_rx_queues - set actual number of RX queues used 2702 * @dev: Network device 2703 * @rxq: Actual number of RX queues 2704 * 2705 * This must be called either with the rtnl_lock held or before 2706 * registration of the net device. Returns 0 on success, or a 2707 * negative error code. If called before registration, it always 2708 * succeeds. 2709 */ 2710 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2711 { 2712 int rc; 2713 2714 if (rxq < 1 || rxq > dev->num_rx_queues) 2715 return -EINVAL; 2716 2717 if (dev->reg_state == NETREG_REGISTERED) { 2718 ASSERT_RTNL(); 2719 2720 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2721 rxq); 2722 if (rc) 2723 return rc; 2724 } 2725 2726 dev->real_num_rx_queues = rxq; 2727 return 0; 2728 } 2729 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2730 #endif 2731 2732 /** 2733 * netif_get_num_default_rss_queues - default number of RSS queues 2734 * 2735 * This routine should set an upper limit on the number of RSS queues 2736 * used by default by multiqueue devices. 2737 */ 2738 int netif_get_num_default_rss_queues(void) 2739 { 2740 return is_kdump_kernel() ? 2741 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2742 } 2743 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2744 2745 static void __netif_reschedule(struct Qdisc *q) 2746 { 2747 struct softnet_data *sd; 2748 unsigned long flags; 2749 2750 local_irq_save(flags); 2751 sd = this_cpu_ptr(&softnet_data); 2752 q->next_sched = NULL; 2753 *sd->output_queue_tailp = q; 2754 sd->output_queue_tailp = &q->next_sched; 2755 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2756 local_irq_restore(flags); 2757 } 2758 2759 void __netif_schedule(struct Qdisc *q) 2760 { 2761 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2762 __netif_reschedule(q); 2763 } 2764 EXPORT_SYMBOL(__netif_schedule); 2765 2766 struct dev_kfree_skb_cb { 2767 enum skb_free_reason reason; 2768 }; 2769 2770 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2771 { 2772 return (struct dev_kfree_skb_cb *)skb->cb; 2773 } 2774 2775 void netif_schedule_queue(struct netdev_queue *txq) 2776 { 2777 rcu_read_lock(); 2778 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2779 struct Qdisc *q = rcu_dereference(txq->qdisc); 2780 2781 __netif_schedule(q); 2782 } 2783 rcu_read_unlock(); 2784 } 2785 EXPORT_SYMBOL(netif_schedule_queue); 2786 2787 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2788 { 2789 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2790 struct Qdisc *q; 2791 2792 rcu_read_lock(); 2793 q = rcu_dereference(dev_queue->qdisc); 2794 __netif_schedule(q); 2795 rcu_read_unlock(); 2796 } 2797 } 2798 EXPORT_SYMBOL(netif_tx_wake_queue); 2799 2800 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2801 { 2802 unsigned long flags; 2803 2804 if (unlikely(!skb)) 2805 return; 2806 2807 if (likely(refcount_read(&skb->users) == 1)) { 2808 smp_rmb(); 2809 refcount_set(&skb->users, 0); 2810 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2811 return; 2812 } 2813 get_kfree_skb_cb(skb)->reason = reason; 2814 local_irq_save(flags); 2815 skb->next = __this_cpu_read(softnet_data.completion_queue); 2816 __this_cpu_write(softnet_data.completion_queue, skb); 2817 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2818 local_irq_restore(flags); 2819 } 2820 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2821 2822 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2823 { 2824 if (in_irq() || irqs_disabled()) 2825 __dev_kfree_skb_irq(skb, reason); 2826 else 2827 dev_kfree_skb(skb); 2828 } 2829 EXPORT_SYMBOL(__dev_kfree_skb_any); 2830 2831 2832 /** 2833 * netif_device_detach - mark device as removed 2834 * @dev: network device 2835 * 2836 * Mark device as removed from system and therefore no longer available. 2837 */ 2838 void netif_device_detach(struct net_device *dev) 2839 { 2840 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2841 netif_running(dev)) { 2842 netif_tx_stop_all_queues(dev); 2843 } 2844 } 2845 EXPORT_SYMBOL(netif_device_detach); 2846 2847 /** 2848 * netif_device_attach - mark device as attached 2849 * @dev: network device 2850 * 2851 * Mark device as attached from system and restart if needed. 2852 */ 2853 void netif_device_attach(struct net_device *dev) 2854 { 2855 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2856 netif_running(dev)) { 2857 netif_tx_wake_all_queues(dev); 2858 __netdev_watchdog_up(dev); 2859 } 2860 } 2861 EXPORT_SYMBOL(netif_device_attach); 2862 2863 /* 2864 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2865 * to be used as a distribution range. 2866 */ 2867 static u16 skb_tx_hash(const struct net_device *dev, 2868 const struct net_device *sb_dev, 2869 struct sk_buff *skb) 2870 { 2871 u32 hash; 2872 u16 qoffset = 0; 2873 u16 qcount = dev->real_num_tx_queues; 2874 2875 if (dev->num_tc) { 2876 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2877 2878 qoffset = sb_dev->tc_to_txq[tc].offset; 2879 qcount = sb_dev->tc_to_txq[tc].count; 2880 } 2881 2882 if (skb_rx_queue_recorded(skb)) { 2883 hash = skb_get_rx_queue(skb); 2884 while (unlikely(hash >= qcount)) 2885 hash -= qcount; 2886 return hash + qoffset; 2887 } 2888 2889 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2890 } 2891 2892 static void skb_warn_bad_offload(const struct sk_buff *skb) 2893 { 2894 static const netdev_features_t null_features; 2895 struct net_device *dev = skb->dev; 2896 const char *name = ""; 2897 2898 if (!net_ratelimit()) 2899 return; 2900 2901 if (dev) { 2902 if (dev->dev.parent) 2903 name = dev_driver_string(dev->dev.parent); 2904 else 2905 name = netdev_name(dev); 2906 } 2907 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2908 "gso_type=%d ip_summed=%d\n", 2909 name, dev ? &dev->features : &null_features, 2910 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2911 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2912 skb_shinfo(skb)->gso_type, skb->ip_summed); 2913 } 2914 2915 /* 2916 * Invalidate hardware checksum when packet is to be mangled, and 2917 * complete checksum manually on outgoing path. 2918 */ 2919 int skb_checksum_help(struct sk_buff *skb) 2920 { 2921 __wsum csum; 2922 int ret = 0, offset; 2923 2924 if (skb->ip_summed == CHECKSUM_COMPLETE) 2925 goto out_set_summed; 2926 2927 if (unlikely(skb_shinfo(skb)->gso_size)) { 2928 skb_warn_bad_offload(skb); 2929 return -EINVAL; 2930 } 2931 2932 /* Before computing a checksum, we should make sure no frag could 2933 * be modified by an external entity : checksum could be wrong. 2934 */ 2935 if (skb_has_shared_frag(skb)) { 2936 ret = __skb_linearize(skb); 2937 if (ret) 2938 goto out; 2939 } 2940 2941 offset = skb_checksum_start_offset(skb); 2942 BUG_ON(offset >= skb_headlen(skb)); 2943 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2944 2945 offset += skb->csum_offset; 2946 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2947 2948 if (skb_cloned(skb) && 2949 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2950 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2951 if (ret) 2952 goto out; 2953 } 2954 2955 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2956 out_set_summed: 2957 skb->ip_summed = CHECKSUM_NONE; 2958 out: 2959 return ret; 2960 } 2961 EXPORT_SYMBOL(skb_checksum_help); 2962 2963 int skb_crc32c_csum_help(struct sk_buff *skb) 2964 { 2965 __le32 crc32c_csum; 2966 int ret = 0, offset, start; 2967 2968 if (skb->ip_summed != CHECKSUM_PARTIAL) 2969 goto out; 2970 2971 if (unlikely(skb_is_gso(skb))) 2972 goto out; 2973 2974 /* Before computing a checksum, we should make sure no frag could 2975 * be modified by an external entity : checksum could be wrong. 2976 */ 2977 if (unlikely(skb_has_shared_frag(skb))) { 2978 ret = __skb_linearize(skb); 2979 if (ret) 2980 goto out; 2981 } 2982 start = skb_checksum_start_offset(skb); 2983 offset = start + offsetof(struct sctphdr, checksum); 2984 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2985 ret = -EINVAL; 2986 goto out; 2987 } 2988 if (skb_cloned(skb) && 2989 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2990 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2991 if (ret) 2992 goto out; 2993 } 2994 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2995 skb->len - start, ~(__u32)0, 2996 crc32c_csum_stub)); 2997 *(__le32 *)(skb->data + offset) = crc32c_csum; 2998 skb->ip_summed = CHECKSUM_NONE; 2999 skb->csum_not_inet = 0; 3000 out: 3001 return ret; 3002 } 3003 3004 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3005 { 3006 __be16 type = skb->protocol; 3007 3008 /* Tunnel gso handlers can set protocol to ethernet. */ 3009 if (type == htons(ETH_P_TEB)) { 3010 struct ethhdr *eth; 3011 3012 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3013 return 0; 3014 3015 eth = (struct ethhdr *)skb->data; 3016 type = eth->h_proto; 3017 } 3018 3019 return __vlan_get_protocol(skb, type, depth); 3020 } 3021 3022 /** 3023 * skb_mac_gso_segment - mac layer segmentation handler. 3024 * @skb: buffer to segment 3025 * @features: features for the output path (see dev->features) 3026 */ 3027 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3028 netdev_features_t features) 3029 { 3030 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3031 struct packet_offload *ptype; 3032 int vlan_depth = skb->mac_len; 3033 __be16 type = skb_network_protocol(skb, &vlan_depth); 3034 3035 if (unlikely(!type)) 3036 return ERR_PTR(-EINVAL); 3037 3038 __skb_pull(skb, vlan_depth); 3039 3040 rcu_read_lock(); 3041 list_for_each_entry_rcu(ptype, &offload_base, list) { 3042 if (ptype->type == type && ptype->callbacks.gso_segment) { 3043 segs = ptype->callbacks.gso_segment(skb, features); 3044 break; 3045 } 3046 } 3047 rcu_read_unlock(); 3048 3049 __skb_push(skb, skb->data - skb_mac_header(skb)); 3050 3051 return segs; 3052 } 3053 EXPORT_SYMBOL(skb_mac_gso_segment); 3054 3055 3056 /* openvswitch calls this on rx path, so we need a different check. 3057 */ 3058 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3059 { 3060 if (tx_path) 3061 return skb->ip_summed != CHECKSUM_PARTIAL && 3062 skb->ip_summed != CHECKSUM_UNNECESSARY; 3063 3064 return skb->ip_summed == CHECKSUM_NONE; 3065 } 3066 3067 /** 3068 * __skb_gso_segment - Perform segmentation on skb. 3069 * @skb: buffer to segment 3070 * @features: features for the output path (see dev->features) 3071 * @tx_path: whether it is called in TX path 3072 * 3073 * This function segments the given skb and returns a list of segments. 3074 * 3075 * It may return NULL if the skb requires no segmentation. This is 3076 * only possible when GSO is used for verifying header integrity. 3077 * 3078 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 3079 */ 3080 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3081 netdev_features_t features, bool tx_path) 3082 { 3083 struct sk_buff *segs; 3084 3085 if (unlikely(skb_needs_check(skb, tx_path))) { 3086 int err; 3087 3088 /* We're going to init ->check field in TCP or UDP header */ 3089 err = skb_cow_head(skb, 0); 3090 if (err < 0) 3091 return ERR_PTR(err); 3092 } 3093 3094 /* Only report GSO partial support if it will enable us to 3095 * support segmentation on this frame without needing additional 3096 * work. 3097 */ 3098 if (features & NETIF_F_GSO_PARTIAL) { 3099 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3100 struct net_device *dev = skb->dev; 3101 3102 partial_features |= dev->features & dev->gso_partial_features; 3103 if (!skb_gso_ok(skb, features | partial_features)) 3104 features &= ~NETIF_F_GSO_PARTIAL; 3105 } 3106 3107 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 3108 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3109 3110 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3111 SKB_GSO_CB(skb)->encap_level = 0; 3112 3113 skb_reset_mac_header(skb); 3114 skb_reset_mac_len(skb); 3115 3116 segs = skb_mac_gso_segment(skb, features); 3117 3118 if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3119 skb_warn_bad_offload(skb); 3120 3121 return segs; 3122 } 3123 EXPORT_SYMBOL(__skb_gso_segment); 3124 3125 /* Take action when hardware reception checksum errors are detected. */ 3126 #ifdef CONFIG_BUG 3127 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3128 { 3129 if (net_ratelimit()) { 3130 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3131 if (dev) 3132 pr_err("dev features: %pNF\n", &dev->features); 3133 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n", 3134 skb->len, skb->data_len, skb->pkt_type, 3135 skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type, 3136 skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum, 3137 skb->csum_complete_sw, skb->csum_valid, skb->csum_level); 3138 dump_stack(); 3139 } 3140 } 3141 EXPORT_SYMBOL(netdev_rx_csum_fault); 3142 #endif 3143 3144 /* XXX: check that highmem exists at all on the given machine. */ 3145 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3146 { 3147 #ifdef CONFIG_HIGHMEM 3148 int i; 3149 3150 if (!(dev->features & NETIF_F_HIGHDMA)) { 3151 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3152 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3153 3154 if (PageHighMem(skb_frag_page(frag))) 3155 return 1; 3156 } 3157 } 3158 #endif 3159 return 0; 3160 } 3161 3162 /* If MPLS offload request, verify we are testing hardware MPLS features 3163 * instead of standard features for the netdev. 3164 */ 3165 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3166 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3167 netdev_features_t features, 3168 __be16 type) 3169 { 3170 if (eth_p_mpls(type)) 3171 features &= skb->dev->mpls_features; 3172 3173 return features; 3174 } 3175 #else 3176 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3177 netdev_features_t features, 3178 __be16 type) 3179 { 3180 return features; 3181 } 3182 #endif 3183 3184 static netdev_features_t harmonize_features(struct sk_buff *skb, 3185 netdev_features_t features) 3186 { 3187 int tmp; 3188 __be16 type; 3189 3190 type = skb_network_protocol(skb, &tmp); 3191 features = net_mpls_features(skb, features, type); 3192 3193 if (skb->ip_summed != CHECKSUM_NONE && 3194 !can_checksum_protocol(features, type)) { 3195 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3196 } 3197 if (illegal_highdma(skb->dev, skb)) 3198 features &= ~NETIF_F_SG; 3199 3200 return features; 3201 } 3202 3203 netdev_features_t passthru_features_check(struct sk_buff *skb, 3204 struct net_device *dev, 3205 netdev_features_t features) 3206 { 3207 return features; 3208 } 3209 EXPORT_SYMBOL(passthru_features_check); 3210 3211 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3212 struct net_device *dev, 3213 netdev_features_t features) 3214 { 3215 return vlan_features_check(skb, features); 3216 } 3217 3218 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3219 struct net_device *dev, 3220 netdev_features_t features) 3221 { 3222 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3223 3224 if (gso_segs > dev->gso_max_segs) 3225 return features & ~NETIF_F_GSO_MASK; 3226 3227 /* Support for GSO partial features requires software 3228 * intervention before we can actually process the packets 3229 * so we need to strip support for any partial features now 3230 * and we can pull them back in after we have partially 3231 * segmented the frame. 3232 */ 3233 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3234 features &= ~dev->gso_partial_features; 3235 3236 /* Make sure to clear the IPv4 ID mangling feature if the 3237 * IPv4 header has the potential to be fragmented. 3238 */ 3239 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3240 struct iphdr *iph = skb->encapsulation ? 3241 inner_ip_hdr(skb) : ip_hdr(skb); 3242 3243 if (!(iph->frag_off & htons(IP_DF))) 3244 features &= ~NETIF_F_TSO_MANGLEID; 3245 } 3246 3247 return features; 3248 } 3249 3250 netdev_features_t netif_skb_features(struct sk_buff *skb) 3251 { 3252 struct net_device *dev = skb->dev; 3253 netdev_features_t features = dev->features; 3254 3255 if (skb_is_gso(skb)) 3256 features = gso_features_check(skb, dev, features); 3257 3258 /* If encapsulation offload request, verify we are testing 3259 * hardware encapsulation features instead of standard 3260 * features for the netdev 3261 */ 3262 if (skb->encapsulation) 3263 features &= dev->hw_enc_features; 3264 3265 if (skb_vlan_tagged(skb)) 3266 features = netdev_intersect_features(features, 3267 dev->vlan_features | 3268 NETIF_F_HW_VLAN_CTAG_TX | 3269 NETIF_F_HW_VLAN_STAG_TX); 3270 3271 if (dev->netdev_ops->ndo_features_check) 3272 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3273 features); 3274 else 3275 features &= dflt_features_check(skb, dev, features); 3276 3277 return harmonize_features(skb, features); 3278 } 3279 EXPORT_SYMBOL(netif_skb_features); 3280 3281 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3282 struct netdev_queue *txq, bool more) 3283 { 3284 unsigned int len; 3285 int rc; 3286 3287 if (dev_nit_active(dev)) 3288 dev_queue_xmit_nit(skb, dev); 3289 3290 len = skb->len; 3291 trace_net_dev_start_xmit(skb, dev); 3292 rc = netdev_start_xmit(skb, dev, txq, more); 3293 trace_net_dev_xmit(skb, rc, dev, len); 3294 3295 return rc; 3296 } 3297 3298 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3299 struct netdev_queue *txq, int *ret) 3300 { 3301 struct sk_buff *skb = first; 3302 int rc = NETDEV_TX_OK; 3303 3304 while (skb) { 3305 struct sk_buff *next = skb->next; 3306 3307 skb_mark_not_on_list(skb); 3308 rc = xmit_one(skb, dev, txq, next != NULL); 3309 if (unlikely(!dev_xmit_complete(rc))) { 3310 skb->next = next; 3311 goto out; 3312 } 3313 3314 skb = next; 3315 if (netif_tx_queue_stopped(txq) && skb) { 3316 rc = NETDEV_TX_BUSY; 3317 break; 3318 } 3319 } 3320 3321 out: 3322 *ret = rc; 3323 return skb; 3324 } 3325 3326 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3327 netdev_features_t features) 3328 { 3329 if (skb_vlan_tag_present(skb) && 3330 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3331 skb = __vlan_hwaccel_push_inside(skb); 3332 return skb; 3333 } 3334 3335 int skb_csum_hwoffload_help(struct sk_buff *skb, 3336 const netdev_features_t features) 3337 { 3338 if (unlikely(skb->csum_not_inet)) 3339 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3340 skb_crc32c_csum_help(skb); 3341 3342 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3343 } 3344 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3345 3346 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3347 { 3348 netdev_features_t features; 3349 3350 features = netif_skb_features(skb); 3351 skb = validate_xmit_vlan(skb, features); 3352 if (unlikely(!skb)) 3353 goto out_null; 3354 3355 skb = sk_validate_xmit_skb(skb, dev); 3356 if (unlikely(!skb)) 3357 goto out_null; 3358 3359 if (netif_needs_gso(skb, features)) { 3360 struct sk_buff *segs; 3361 3362 segs = skb_gso_segment(skb, features); 3363 if (IS_ERR(segs)) { 3364 goto out_kfree_skb; 3365 } else if (segs) { 3366 consume_skb(skb); 3367 skb = segs; 3368 } 3369 } else { 3370 if (skb_needs_linearize(skb, features) && 3371 __skb_linearize(skb)) 3372 goto out_kfree_skb; 3373 3374 /* If packet is not checksummed and device does not 3375 * support checksumming for this protocol, complete 3376 * checksumming here. 3377 */ 3378 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3379 if (skb->encapsulation) 3380 skb_set_inner_transport_header(skb, 3381 skb_checksum_start_offset(skb)); 3382 else 3383 skb_set_transport_header(skb, 3384 skb_checksum_start_offset(skb)); 3385 if (skb_csum_hwoffload_help(skb, features)) 3386 goto out_kfree_skb; 3387 } 3388 } 3389 3390 skb = validate_xmit_xfrm(skb, features, again); 3391 3392 return skb; 3393 3394 out_kfree_skb: 3395 kfree_skb(skb); 3396 out_null: 3397 atomic_long_inc(&dev->tx_dropped); 3398 return NULL; 3399 } 3400 3401 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3402 { 3403 struct sk_buff *next, *head = NULL, *tail; 3404 3405 for (; skb != NULL; skb = next) { 3406 next = skb->next; 3407 skb_mark_not_on_list(skb); 3408 3409 /* in case skb wont be segmented, point to itself */ 3410 skb->prev = skb; 3411 3412 skb = validate_xmit_skb(skb, dev, again); 3413 if (!skb) 3414 continue; 3415 3416 if (!head) 3417 head = skb; 3418 else 3419 tail->next = skb; 3420 /* If skb was segmented, skb->prev points to 3421 * the last segment. If not, it still contains skb. 3422 */ 3423 tail = skb->prev; 3424 } 3425 return head; 3426 } 3427 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3428 3429 static void qdisc_pkt_len_init(struct sk_buff *skb) 3430 { 3431 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3432 3433 qdisc_skb_cb(skb)->pkt_len = skb->len; 3434 3435 /* To get more precise estimation of bytes sent on wire, 3436 * we add to pkt_len the headers size of all segments 3437 */ 3438 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3439 unsigned int hdr_len; 3440 u16 gso_segs = shinfo->gso_segs; 3441 3442 /* mac layer + network layer */ 3443 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3444 3445 /* + transport layer */ 3446 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3447 const struct tcphdr *th; 3448 struct tcphdr _tcphdr; 3449 3450 th = skb_header_pointer(skb, skb_transport_offset(skb), 3451 sizeof(_tcphdr), &_tcphdr); 3452 if (likely(th)) 3453 hdr_len += __tcp_hdrlen(th); 3454 } else { 3455 struct udphdr _udphdr; 3456 3457 if (skb_header_pointer(skb, skb_transport_offset(skb), 3458 sizeof(_udphdr), &_udphdr)) 3459 hdr_len += sizeof(struct udphdr); 3460 } 3461 3462 if (shinfo->gso_type & SKB_GSO_DODGY) 3463 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3464 shinfo->gso_size); 3465 3466 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3467 } 3468 } 3469 3470 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3471 struct net_device *dev, 3472 struct netdev_queue *txq) 3473 { 3474 spinlock_t *root_lock = qdisc_lock(q); 3475 struct sk_buff *to_free = NULL; 3476 bool contended; 3477 int rc; 3478 3479 qdisc_calculate_pkt_len(skb, q); 3480 3481 if (q->flags & TCQ_F_NOLOCK) { 3482 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3483 __qdisc_drop(skb, &to_free); 3484 rc = NET_XMIT_DROP; 3485 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty && 3486 qdisc_run_begin(q)) { 3487 qdisc_bstats_cpu_update(q, skb); 3488 3489 if (sch_direct_xmit(skb, q, dev, txq, NULL, true)) 3490 __qdisc_run(q); 3491 3492 qdisc_run_end(q); 3493 rc = NET_XMIT_SUCCESS; 3494 } else { 3495 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3496 qdisc_run(q); 3497 } 3498 3499 if (unlikely(to_free)) 3500 kfree_skb_list(to_free); 3501 return rc; 3502 } 3503 3504 /* 3505 * Heuristic to force contended enqueues to serialize on a 3506 * separate lock before trying to get qdisc main lock. 3507 * This permits qdisc->running owner to get the lock more 3508 * often and dequeue packets faster. 3509 */ 3510 contended = qdisc_is_running(q); 3511 if (unlikely(contended)) 3512 spin_lock(&q->busylock); 3513 3514 spin_lock(root_lock); 3515 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3516 __qdisc_drop(skb, &to_free); 3517 rc = NET_XMIT_DROP; 3518 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3519 qdisc_run_begin(q)) { 3520 /* 3521 * This is a work-conserving queue; there are no old skbs 3522 * waiting to be sent out; and the qdisc is not running - 3523 * xmit the skb directly. 3524 */ 3525 3526 qdisc_bstats_update(q, skb); 3527 3528 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3529 if (unlikely(contended)) { 3530 spin_unlock(&q->busylock); 3531 contended = false; 3532 } 3533 __qdisc_run(q); 3534 } 3535 3536 qdisc_run_end(q); 3537 rc = NET_XMIT_SUCCESS; 3538 } else { 3539 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3540 if (qdisc_run_begin(q)) { 3541 if (unlikely(contended)) { 3542 spin_unlock(&q->busylock); 3543 contended = false; 3544 } 3545 __qdisc_run(q); 3546 qdisc_run_end(q); 3547 } 3548 } 3549 spin_unlock(root_lock); 3550 if (unlikely(to_free)) 3551 kfree_skb_list(to_free); 3552 if (unlikely(contended)) 3553 spin_unlock(&q->busylock); 3554 return rc; 3555 } 3556 3557 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3558 static void skb_update_prio(struct sk_buff *skb) 3559 { 3560 const struct netprio_map *map; 3561 const struct sock *sk; 3562 unsigned int prioidx; 3563 3564 if (skb->priority) 3565 return; 3566 map = rcu_dereference_bh(skb->dev->priomap); 3567 if (!map) 3568 return; 3569 sk = skb_to_full_sk(skb); 3570 if (!sk) 3571 return; 3572 3573 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3574 3575 if (prioidx < map->priomap_len) 3576 skb->priority = map->priomap[prioidx]; 3577 } 3578 #else 3579 #define skb_update_prio(skb) 3580 #endif 3581 3582 /** 3583 * dev_loopback_xmit - loop back @skb 3584 * @net: network namespace this loopback is happening in 3585 * @sk: sk needed to be a netfilter okfn 3586 * @skb: buffer to transmit 3587 */ 3588 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3589 { 3590 skb_reset_mac_header(skb); 3591 __skb_pull(skb, skb_network_offset(skb)); 3592 skb->pkt_type = PACKET_LOOPBACK; 3593 skb->ip_summed = CHECKSUM_UNNECESSARY; 3594 WARN_ON(!skb_dst(skb)); 3595 skb_dst_force(skb); 3596 netif_rx_ni(skb); 3597 return 0; 3598 } 3599 EXPORT_SYMBOL(dev_loopback_xmit); 3600 3601 #ifdef CONFIG_NET_EGRESS 3602 static struct sk_buff * 3603 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3604 { 3605 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3606 struct tcf_result cl_res; 3607 3608 if (!miniq) 3609 return skb; 3610 3611 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3612 mini_qdisc_bstats_cpu_update(miniq, skb); 3613 3614 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3615 case TC_ACT_OK: 3616 case TC_ACT_RECLASSIFY: 3617 skb->tc_index = TC_H_MIN(cl_res.classid); 3618 break; 3619 case TC_ACT_SHOT: 3620 mini_qdisc_qstats_cpu_drop(miniq); 3621 *ret = NET_XMIT_DROP; 3622 kfree_skb(skb); 3623 return NULL; 3624 case TC_ACT_STOLEN: 3625 case TC_ACT_QUEUED: 3626 case TC_ACT_TRAP: 3627 *ret = NET_XMIT_SUCCESS; 3628 consume_skb(skb); 3629 return NULL; 3630 case TC_ACT_REDIRECT: 3631 /* No need to push/pop skb's mac_header here on egress! */ 3632 skb_do_redirect(skb); 3633 *ret = NET_XMIT_SUCCESS; 3634 return NULL; 3635 default: 3636 break; 3637 } 3638 3639 return skb; 3640 } 3641 #endif /* CONFIG_NET_EGRESS */ 3642 3643 #ifdef CONFIG_XPS 3644 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3645 struct xps_dev_maps *dev_maps, unsigned int tci) 3646 { 3647 struct xps_map *map; 3648 int queue_index = -1; 3649 3650 if (dev->num_tc) { 3651 tci *= dev->num_tc; 3652 tci += netdev_get_prio_tc_map(dev, skb->priority); 3653 } 3654 3655 map = rcu_dereference(dev_maps->attr_map[tci]); 3656 if (map) { 3657 if (map->len == 1) 3658 queue_index = map->queues[0]; 3659 else 3660 queue_index = map->queues[reciprocal_scale( 3661 skb_get_hash(skb), map->len)]; 3662 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3663 queue_index = -1; 3664 } 3665 return queue_index; 3666 } 3667 #endif 3668 3669 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3670 struct sk_buff *skb) 3671 { 3672 #ifdef CONFIG_XPS 3673 struct xps_dev_maps *dev_maps; 3674 struct sock *sk = skb->sk; 3675 int queue_index = -1; 3676 3677 if (!static_key_false(&xps_needed)) 3678 return -1; 3679 3680 rcu_read_lock(); 3681 if (!static_key_false(&xps_rxqs_needed)) 3682 goto get_cpus_map; 3683 3684 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3685 if (dev_maps) { 3686 int tci = sk_rx_queue_get(sk); 3687 3688 if (tci >= 0 && tci < dev->num_rx_queues) 3689 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3690 tci); 3691 } 3692 3693 get_cpus_map: 3694 if (queue_index < 0) { 3695 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3696 if (dev_maps) { 3697 unsigned int tci = skb->sender_cpu - 1; 3698 3699 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3700 tci); 3701 } 3702 } 3703 rcu_read_unlock(); 3704 3705 return queue_index; 3706 #else 3707 return -1; 3708 #endif 3709 } 3710 3711 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3712 struct net_device *sb_dev) 3713 { 3714 return 0; 3715 } 3716 EXPORT_SYMBOL(dev_pick_tx_zero); 3717 3718 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3719 struct net_device *sb_dev) 3720 { 3721 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3722 } 3723 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3724 3725 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3726 struct net_device *sb_dev) 3727 { 3728 struct sock *sk = skb->sk; 3729 int queue_index = sk_tx_queue_get(sk); 3730 3731 sb_dev = sb_dev ? : dev; 3732 3733 if (queue_index < 0 || skb->ooo_okay || 3734 queue_index >= dev->real_num_tx_queues) { 3735 int new_index = get_xps_queue(dev, sb_dev, skb); 3736 3737 if (new_index < 0) 3738 new_index = skb_tx_hash(dev, sb_dev, skb); 3739 3740 if (queue_index != new_index && sk && 3741 sk_fullsock(sk) && 3742 rcu_access_pointer(sk->sk_dst_cache)) 3743 sk_tx_queue_set(sk, new_index); 3744 3745 queue_index = new_index; 3746 } 3747 3748 return queue_index; 3749 } 3750 EXPORT_SYMBOL(netdev_pick_tx); 3751 3752 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 3753 struct sk_buff *skb, 3754 struct net_device *sb_dev) 3755 { 3756 int queue_index = 0; 3757 3758 #ifdef CONFIG_XPS 3759 u32 sender_cpu = skb->sender_cpu - 1; 3760 3761 if (sender_cpu >= (u32)NR_CPUS) 3762 skb->sender_cpu = raw_smp_processor_id() + 1; 3763 #endif 3764 3765 if (dev->real_num_tx_queues != 1) { 3766 const struct net_device_ops *ops = dev->netdev_ops; 3767 3768 if (ops->ndo_select_queue) 3769 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 3770 else 3771 queue_index = netdev_pick_tx(dev, skb, sb_dev); 3772 3773 queue_index = netdev_cap_txqueue(dev, queue_index); 3774 } 3775 3776 skb_set_queue_mapping(skb, queue_index); 3777 return netdev_get_tx_queue(dev, queue_index); 3778 } 3779 3780 /** 3781 * __dev_queue_xmit - transmit a buffer 3782 * @skb: buffer to transmit 3783 * @sb_dev: suboordinate device used for L2 forwarding offload 3784 * 3785 * Queue a buffer for transmission to a network device. The caller must 3786 * have set the device and priority and built the buffer before calling 3787 * this function. The function can be called from an interrupt. 3788 * 3789 * A negative errno code is returned on a failure. A success does not 3790 * guarantee the frame will be transmitted as it may be dropped due 3791 * to congestion or traffic shaping. 3792 * 3793 * ----------------------------------------------------------------------------------- 3794 * I notice this method can also return errors from the queue disciplines, 3795 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3796 * be positive. 3797 * 3798 * Regardless of the return value, the skb is consumed, so it is currently 3799 * difficult to retry a send to this method. (You can bump the ref count 3800 * before sending to hold a reference for retry if you are careful.) 3801 * 3802 * When calling this method, interrupts MUST be enabled. This is because 3803 * the BH enable code must have IRQs enabled so that it will not deadlock. 3804 * --BLG 3805 */ 3806 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 3807 { 3808 struct net_device *dev = skb->dev; 3809 struct netdev_queue *txq; 3810 struct Qdisc *q; 3811 int rc = -ENOMEM; 3812 bool again = false; 3813 3814 skb_reset_mac_header(skb); 3815 3816 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3817 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3818 3819 /* Disable soft irqs for various locks below. Also 3820 * stops preemption for RCU. 3821 */ 3822 rcu_read_lock_bh(); 3823 3824 skb_update_prio(skb); 3825 3826 qdisc_pkt_len_init(skb); 3827 #ifdef CONFIG_NET_CLS_ACT 3828 skb->tc_at_ingress = 0; 3829 # ifdef CONFIG_NET_EGRESS 3830 if (static_branch_unlikely(&egress_needed_key)) { 3831 skb = sch_handle_egress(skb, &rc, dev); 3832 if (!skb) 3833 goto out; 3834 } 3835 # endif 3836 #endif 3837 /* If device/qdisc don't need skb->dst, release it right now while 3838 * its hot in this cpu cache. 3839 */ 3840 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3841 skb_dst_drop(skb); 3842 else 3843 skb_dst_force(skb); 3844 3845 txq = netdev_core_pick_tx(dev, skb, sb_dev); 3846 q = rcu_dereference_bh(txq->qdisc); 3847 3848 trace_net_dev_queue(skb); 3849 if (q->enqueue) { 3850 rc = __dev_xmit_skb(skb, q, dev, txq); 3851 goto out; 3852 } 3853 3854 /* The device has no queue. Common case for software devices: 3855 * loopback, all the sorts of tunnels... 3856 3857 * Really, it is unlikely that netif_tx_lock protection is necessary 3858 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3859 * counters.) 3860 * However, it is possible, that they rely on protection 3861 * made by us here. 3862 3863 * Check this and shot the lock. It is not prone from deadlocks. 3864 *Either shot noqueue qdisc, it is even simpler 8) 3865 */ 3866 if (dev->flags & IFF_UP) { 3867 int cpu = smp_processor_id(); /* ok because BHs are off */ 3868 3869 if (txq->xmit_lock_owner != cpu) { 3870 if (dev_xmit_recursion()) 3871 goto recursion_alert; 3872 3873 skb = validate_xmit_skb(skb, dev, &again); 3874 if (!skb) 3875 goto out; 3876 3877 HARD_TX_LOCK(dev, txq, cpu); 3878 3879 if (!netif_xmit_stopped(txq)) { 3880 dev_xmit_recursion_inc(); 3881 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3882 dev_xmit_recursion_dec(); 3883 if (dev_xmit_complete(rc)) { 3884 HARD_TX_UNLOCK(dev, txq); 3885 goto out; 3886 } 3887 } 3888 HARD_TX_UNLOCK(dev, txq); 3889 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3890 dev->name); 3891 } else { 3892 /* Recursion is detected! It is possible, 3893 * unfortunately 3894 */ 3895 recursion_alert: 3896 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3897 dev->name); 3898 } 3899 } 3900 3901 rc = -ENETDOWN; 3902 rcu_read_unlock_bh(); 3903 3904 atomic_long_inc(&dev->tx_dropped); 3905 kfree_skb_list(skb); 3906 return rc; 3907 out: 3908 rcu_read_unlock_bh(); 3909 return rc; 3910 } 3911 3912 int dev_queue_xmit(struct sk_buff *skb) 3913 { 3914 return __dev_queue_xmit(skb, NULL); 3915 } 3916 EXPORT_SYMBOL(dev_queue_xmit); 3917 3918 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 3919 { 3920 return __dev_queue_xmit(skb, sb_dev); 3921 } 3922 EXPORT_SYMBOL(dev_queue_xmit_accel); 3923 3924 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 3925 { 3926 struct net_device *dev = skb->dev; 3927 struct sk_buff *orig_skb = skb; 3928 struct netdev_queue *txq; 3929 int ret = NETDEV_TX_BUSY; 3930 bool again = false; 3931 3932 if (unlikely(!netif_running(dev) || 3933 !netif_carrier_ok(dev))) 3934 goto drop; 3935 3936 skb = validate_xmit_skb_list(skb, dev, &again); 3937 if (skb != orig_skb) 3938 goto drop; 3939 3940 skb_set_queue_mapping(skb, queue_id); 3941 txq = skb_get_tx_queue(dev, skb); 3942 3943 local_bh_disable(); 3944 3945 HARD_TX_LOCK(dev, txq, smp_processor_id()); 3946 if (!netif_xmit_frozen_or_drv_stopped(txq)) 3947 ret = netdev_start_xmit(skb, dev, txq, false); 3948 HARD_TX_UNLOCK(dev, txq); 3949 3950 local_bh_enable(); 3951 3952 if (!dev_xmit_complete(ret)) 3953 kfree_skb(skb); 3954 3955 return ret; 3956 drop: 3957 atomic_long_inc(&dev->tx_dropped); 3958 kfree_skb_list(skb); 3959 return NET_XMIT_DROP; 3960 } 3961 EXPORT_SYMBOL(dev_direct_xmit); 3962 3963 /************************************************************************* 3964 * Receiver routines 3965 *************************************************************************/ 3966 3967 int netdev_max_backlog __read_mostly = 1000; 3968 EXPORT_SYMBOL(netdev_max_backlog); 3969 3970 int netdev_tstamp_prequeue __read_mostly = 1; 3971 int netdev_budget __read_mostly = 300; 3972 unsigned int __read_mostly netdev_budget_usecs = 2000; 3973 int weight_p __read_mostly = 64; /* old backlog weight */ 3974 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3975 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3976 int dev_rx_weight __read_mostly = 64; 3977 int dev_tx_weight __read_mostly = 64; 3978 3979 /* Called with irq disabled */ 3980 static inline void ____napi_schedule(struct softnet_data *sd, 3981 struct napi_struct *napi) 3982 { 3983 list_add_tail(&napi->poll_list, &sd->poll_list); 3984 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3985 } 3986 3987 #ifdef CONFIG_RPS 3988 3989 /* One global table that all flow-based protocols share. */ 3990 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3991 EXPORT_SYMBOL(rps_sock_flow_table); 3992 u32 rps_cpu_mask __read_mostly; 3993 EXPORT_SYMBOL(rps_cpu_mask); 3994 3995 struct static_key_false rps_needed __read_mostly; 3996 EXPORT_SYMBOL(rps_needed); 3997 struct static_key_false rfs_needed __read_mostly; 3998 EXPORT_SYMBOL(rfs_needed); 3999 4000 static struct rps_dev_flow * 4001 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4002 struct rps_dev_flow *rflow, u16 next_cpu) 4003 { 4004 if (next_cpu < nr_cpu_ids) { 4005 #ifdef CONFIG_RFS_ACCEL 4006 struct netdev_rx_queue *rxqueue; 4007 struct rps_dev_flow_table *flow_table; 4008 struct rps_dev_flow *old_rflow; 4009 u32 flow_id; 4010 u16 rxq_index; 4011 int rc; 4012 4013 /* Should we steer this flow to a different hardware queue? */ 4014 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4015 !(dev->features & NETIF_F_NTUPLE)) 4016 goto out; 4017 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4018 if (rxq_index == skb_get_rx_queue(skb)) 4019 goto out; 4020 4021 rxqueue = dev->_rx + rxq_index; 4022 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4023 if (!flow_table) 4024 goto out; 4025 flow_id = skb_get_hash(skb) & flow_table->mask; 4026 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4027 rxq_index, flow_id); 4028 if (rc < 0) 4029 goto out; 4030 old_rflow = rflow; 4031 rflow = &flow_table->flows[flow_id]; 4032 rflow->filter = rc; 4033 if (old_rflow->filter == rflow->filter) 4034 old_rflow->filter = RPS_NO_FILTER; 4035 out: 4036 #endif 4037 rflow->last_qtail = 4038 per_cpu(softnet_data, next_cpu).input_queue_head; 4039 } 4040 4041 rflow->cpu = next_cpu; 4042 return rflow; 4043 } 4044 4045 /* 4046 * get_rps_cpu is called from netif_receive_skb and returns the target 4047 * CPU from the RPS map of the receiving queue for a given skb. 4048 * rcu_read_lock must be held on entry. 4049 */ 4050 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4051 struct rps_dev_flow **rflowp) 4052 { 4053 const struct rps_sock_flow_table *sock_flow_table; 4054 struct netdev_rx_queue *rxqueue = dev->_rx; 4055 struct rps_dev_flow_table *flow_table; 4056 struct rps_map *map; 4057 int cpu = -1; 4058 u32 tcpu; 4059 u32 hash; 4060 4061 if (skb_rx_queue_recorded(skb)) { 4062 u16 index = skb_get_rx_queue(skb); 4063 4064 if (unlikely(index >= dev->real_num_rx_queues)) { 4065 WARN_ONCE(dev->real_num_rx_queues > 1, 4066 "%s received packet on queue %u, but number " 4067 "of RX queues is %u\n", 4068 dev->name, index, dev->real_num_rx_queues); 4069 goto done; 4070 } 4071 rxqueue += index; 4072 } 4073 4074 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4075 4076 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4077 map = rcu_dereference(rxqueue->rps_map); 4078 if (!flow_table && !map) 4079 goto done; 4080 4081 skb_reset_network_header(skb); 4082 hash = skb_get_hash(skb); 4083 if (!hash) 4084 goto done; 4085 4086 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4087 if (flow_table && sock_flow_table) { 4088 struct rps_dev_flow *rflow; 4089 u32 next_cpu; 4090 u32 ident; 4091 4092 /* First check into global flow table if there is a match */ 4093 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4094 if ((ident ^ hash) & ~rps_cpu_mask) 4095 goto try_rps; 4096 4097 next_cpu = ident & rps_cpu_mask; 4098 4099 /* OK, now we know there is a match, 4100 * we can look at the local (per receive queue) flow table 4101 */ 4102 rflow = &flow_table->flows[hash & flow_table->mask]; 4103 tcpu = rflow->cpu; 4104 4105 /* 4106 * If the desired CPU (where last recvmsg was done) is 4107 * different from current CPU (one in the rx-queue flow 4108 * table entry), switch if one of the following holds: 4109 * - Current CPU is unset (>= nr_cpu_ids). 4110 * - Current CPU is offline. 4111 * - The current CPU's queue tail has advanced beyond the 4112 * last packet that was enqueued using this table entry. 4113 * This guarantees that all previous packets for the flow 4114 * have been dequeued, thus preserving in order delivery. 4115 */ 4116 if (unlikely(tcpu != next_cpu) && 4117 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4118 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4119 rflow->last_qtail)) >= 0)) { 4120 tcpu = next_cpu; 4121 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4122 } 4123 4124 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4125 *rflowp = rflow; 4126 cpu = tcpu; 4127 goto done; 4128 } 4129 } 4130 4131 try_rps: 4132 4133 if (map) { 4134 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4135 if (cpu_online(tcpu)) { 4136 cpu = tcpu; 4137 goto done; 4138 } 4139 } 4140 4141 done: 4142 return cpu; 4143 } 4144 4145 #ifdef CONFIG_RFS_ACCEL 4146 4147 /** 4148 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4149 * @dev: Device on which the filter was set 4150 * @rxq_index: RX queue index 4151 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4152 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4153 * 4154 * Drivers that implement ndo_rx_flow_steer() should periodically call 4155 * this function for each installed filter and remove the filters for 4156 * which it returns %true. 4157 */ 4158 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4159 u32 flow_id, u16 filter_id) 4160 { 4161 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4162 struct rps_dev_flow_table *flow_table; 4163 struct rps_dev_flow *rflow; 4164 bool expire = true; 4165 unsigned int cpu; 4166 4167 rcu_read_lock(); 4168 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4169 if (flow_table && flow_id <= flow_table->mask) { 4170 rflow = &flow_table->flows[flow_id]; 4171 cpu = READ_ONCE(rflow->cpu); 4172 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4173 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4174 rflow->last_qtail) < 4175 (int)(10 * flow_table->mask))) 4176 expire = false; 4177 } 4178 rcu_read_unlock(); 4179 return expire; 4180 } 4181 EXPORT_SYMBOL(rps_may_expire_flow); 4182 4183 #endif /* CONFIG_RFS_ACCEL */ 4184 4185 /* Called from hardirq (IPI) context */ 4186 static void rps_trigger_softirq(void *data) 4187 { 4188 struct softnet_data *sd = data; 4189 4190 ____napi_schedule(sd, &sd->backlog); 4191 sd->received_rps++; 4192 } 4193 4194 #endif /* CONFIG_RPS */ 4195 4196 /* 4197 * Check if this softnet_data structure is another cpu one 4198 * If yes, queue it to our IPI list and return 1 4199 * If no, return 0 4200 */ 4201 static int rps_ipi_queued(struct softnet_data *sd) 4202 { 4203 #ifdef CONFIG_RPS 4204 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4205 4206 if (sd != mysd) { 4207 sd->rps_ipi_next = mysd->rps_ipi_list; 4208 mysd->rps_ipi_list = sd; 4209 4210 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4211 return 1; 4212 } 4213 #endif /* CONFIG_RPS */ 4214 return 0; 4215 } 4216 4217 #ifdef CONFIG_NET_FLOW_LIMIT 4218 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4219 #endif 4220 4221 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4222 { 4223 #ifdef CONFIG_NET_FLOW_LIMIT 4224 struct sd_flow_limit *fl; 4225 struct softnet_data *sd; 4226 unsigned int old_flow, new_flow; 4227 4228 if (qlen < (netdev_max_backlog >> 1)) 4229 return false; 4230 4231 sd = this_cpu_ptr(&softnet_data); 4232 4233 rcu_read_lock(); 4234 fl = rcu_dereference(sd->flow_limit); 4235 if (fl) { 4236 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4237 old_flow = fl->history[fl->history_head]; 4238 fl->history[fl->history_head] = new_flow; 4239 4240 fl->history_head++; 4241 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4242 4243 if (likely(fl->buckets[old_flow])) 4244 fl->buckets[old_flow]--; 4245 4246 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4247 fl->count++; 4248 rcu_read_unlock(); 4249 return true; 4250 } 4251 } 4252 rcu_read_unlock(); 4253 #endif 4254 return false; 4255 } 4256 4257 /* 4258 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4259 * queue (may be a remote CPU queue). 4260 */ 4261 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4262 unsigned int *qtail) 4263 { 4264 struct softnet_data *sd; 4265 unsigned long flags; 4266 unsigned int qlen; 4267 4268 sd = &per_cpu(softnet_data, cpu); 4269 4270 local_irq_save(flags); 4271 4272 rps_lock(sd); 4273 if (!netif_running(skb->dev)) 4274 goto drop; 4275 qlen = skb_queue_len(&sd->input_pkt_queue); 4276 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4277 if (qlen) { 4278 enqueue: 4279 __skb_queue_tail(&sd->input_pkt_queue, skb); 4280 input_queue_tail_incr_save(sd, qtail); 4281 rps_unlock(sd); 4282 local_irq_restore(flags); 4283 return NET_RX_SUCCESS; 4284 } 4285 4286 /* Schedule NAPI for backlog device 4287 * We can use non atomic operation since we own the queue lock 4288 */ 4289 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4290 if (!rps_ipi_queued(sd)) 4291 ____napi_schedule(sd, &sd->backlog); 4292 } 4293 goto enqueue; 4294 } 4295 4296 drop: 4297 sd->dropped++; 4298 rps_unlock(sd); 4299 4300 local_irq_restore(flags); 4301 4302 atomic_long_inc(&skb->dev->rx_dropped); 4303 kfree_skb(skb); 4304 return NET_RX_DROP; 4305 } 4306 4307 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4308 { 4309 struct net_device *dev = skb->dev; 4310 struct netdev_rx_queue *rxqueue; 4311 4312 rxqueue = dev->_rx; 4313 4314 if (skb_rx_queue_recorded(skb)) { 4315 u16 index = skb_get_rx_queue(skb); 4316 4317 if (unlikely(index >= dev->real_num_rx_queues)) { 4318 WARN_ONCE(dev->real_num_rx_queues > 1, 4319 "%s received packet on queue %u, but number " 4320 "of RX queues is %u\n", 4321 dev->name, index, dev->real_num_rx_queues); 4322 4323 return rxqueue; /* Return first rxqueue */ 4324 } 4325 rxqueue += index; 4326 } 4327 return rxqueue; 4328 } 4329 4330 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4331 struct xdp_buff *xdp, 4332 struct bpf_prog *xdp_prog) 4333 { 4334 struct netdev_rx_queue *rxqueue; 4335 void *orig_data, *orig_data_end; 4336 u32 metalen, act = XDP_DROP; 4337 __be16 orig_eth_type; 4338 struct ethhdr *eth; 4339 bool orig_bcast; 4340 int hlen, off; 4341 u32 mac_len; 4342 4343 /* Reinjected packets coming from act_mirred or similar should 4344 * not get XDP generic processing. 4345 */ 4346 if (skb_cloned(skb) || skb_is_tc_redirected(skb)) 4347 return XDP_PASS; 4348 4349 /* XDP packets must be linear and must have sufficient headroom 4350 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4351 * native XDP provides, thus we need to do it here as well. 4352 */ 4353 if (skb_is_nonlinear(skb) || 4354 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4355 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4356 int troom = skb->tail + skb->data_len - skb->end; 4357 4358 /* In case we have to go down the path and also linearize, 4359 * then lets do the pskb_expand_head() work just once here. 4360 */ 4361 if (pskb_expand_head(skb, 4362 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4363 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4364 goto do_drop; 4365 if (skb_linearize(skb)) 4366 goto do_drop; 4367 } 4368 4369 /* The XDP program wants to see the packet starting at the MAC 4370 * header. 4371 */ 4372 mac_len = skb->data - skb_mac_header(skb); 4373 hlen = skb_headlen(skb) + mac_len; 4374 xdp->data = skb->data - mac_len; 4375 xdp->data_meta = xdp->data; 4376 xdp->data_end = xdp->data + hlen; 4377 xdp->data_hard_start = skb->data - skb_headroom(skb); 4378 orig_data_end = xdp->data_end; 4379 orig_data = xdp->data; 4380 eth = (struct ethhdr *)xdp->data; 4381 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4382 orig_eth_type = eth->h_proto; 4383 4384 rxqueue = netif_get_rxqueue(skb); 4385 xdp->rxq = &rxqueue->xdp_rxq; 4386 4387 act = bpf_prog_run_xdp(xdp_prog, xdp); 4388 4389 off = xdp->data - orig_data; 4390 if (off > 0) 4391 __skb_pull(skb, off); 4392 else if (off < 0) 4393 __skb_push(skb, -off); 4394 skb->mac_header += off; 4395 4396 /* check if bpf_xdp_adjust_tail was used. it can only "shrink" 4397 * pckt. 4398 */ 4399 off = orig_data_end - xdp->data_end; 4400 if (off != 0) { 4401 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4402 skb->len -= off; 4403 4404 } 4405 4406 /* check if XDP changed eth hdr such SKB needs update */ 4407 eth = (struct ethhdr *)xdp->data; 4408 if ((orig_eth_type != eth->h_proto) || 4409 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4410 __skb_push(skb, ETH_HLEN); 4411 skb->protocol = eth_type_trans(skb, skb->dev); 4412 } 4413 4414 switch (act) { 4415 case XDP_REDIRECT: 4416 case XDP_TX: 4417 __skb_push(skb, mac_len); 4418 break; 4419 case XDP_PASS: 4420 metalen = xdp->data - xdp->data_meta; 4421 if (metalen) 4422 skb_metadata_set(skb, metalen); 4423 break; 4424 default: 4425 bpf_warn_invalid_xdp_action(act); 4426 /* fall through */ 4427 case XDP_ABORTED: 4428 trace_xdp_exception(skb->dev, xdp_prog, act); 4429 /* fall through */ 4430 case XDP_DROP: 4431 do_drop: 4432 kfree_skb(skb); 4433 break; 4434 } 4435 4436 return act; 4437 } 4438 4439 /* When doing generic XDP we have to bypass the qdisc layer and the 4440 * network taps in order to match in-driver-XDP behavior. 4441 */ 4442 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4443 { 4444 struct net_device *dev = skb->dev; 4445 struct netdev_queue *txq; 4446 bool free_skb = true; 4447 int cpu, rc; 4448 4449 txq = netdev_core_pick_tx(dev, skb, NULL); 4450 cpu = smp_processor_id(); 4451 HARD_TX_LOCK(dev, txq, cpu); 4452 if (!netif_xmit_stopped(txq)) { 4453 rc = netdev_start_xmit(skb, dev, txq, 0); 4454 if (dev_xmit_complete(rc)) 4455 free_skb = false; 4456 } 4457 HARD_TX_UNLOCK(dev, txq); 4458 if (free_skb) { 4459 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4460 kfree_skb(skb); 4461 } 4462 } 4463 EXPORT_SYMBOL_GPL(generic_xdp_tx); 4464 4465 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4466 4467 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4468 { 4469 if (xdp_prog) { 4470 struct xdp_buff xdp; 4471 u32 act; 4472 int err; 4473 4474 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4475 if (act != XDP_PASS) { 4476 switch (act) { 4477 case XDP_REDIRECT: 4478 err = xdp_do_generic_redirect(skb->dev, skb, 4479 &xdp, xdp_prog); 4480 if (err) 4481 goto out_redir; 4482 break; 4483 case XDP_TX: 4484 generic_xdp_tx(skb, xdp_prog); 4485 break; 4486 } 4487 return XDP_DROP; 4488 } 4489 } 4490 return XDP_PASS; 4491 out_redir: 4492 kfree_skb(skb); 4493 return XDP_DROP; 4494 } 4495 EXPORT_SYMBOL_GPL(do_xdp_generic); 4496 4497 static int netif_rx_internal(struct sk_buff *skb) 4498 { 4499 int ret; 4500 4501 net_timestamp_check(netdev_tstamp_prequeue, skb); 4502 4503 trace_netif_rx(skb); 4504 4505 #ifdef CONFIG_RPS 4506 if (static_branch_unlikely(&rps_needed)) { 4507 struct rps_dev_flow voidflow, *rflow = &voidflow; 4508 int cpu; 4509 4510 preempt_disable(); 4511 rcu_read_lock(); 4512 4513 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4514 if (cpu < 0) 4515 cpu = smp_processor_id(); 4516 4517 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4518 4519 rcu_read_unlock(); 4520 preempt_enable(); 4521 } else 4522 #endif 4523 { 4524 unsigned int qtail; 4525 4526 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4527 put_cpu(); 4528 } 4529 return ret; 4530 } 4531 4532 /** 4533 * netif_rx - post buffer to the network code 4534 * @skb: buffer to post 4535 * 4536 * This function receives a packet from a device driver and queues it for 4537 * the upper (protocol) levels to process. It always succeeds. The buffer 4538 * may be dropped during processing for congestion control or by the 4539 * protocol layers. 4540 * 4541 * return values: 4542 * NET_RX_SUCCESS (no congestion) 4543 * NET_RX_DROP (packet was dropped) 4544 * 4545 */ 4546 4547 int netif_rx(struct sk_buff *skb) 4548 { 4549 int ret; 4550 4551 trace_netif_rx_entry(skb); 4552 4553 ret = netif_rx_internal(skb); 4554 trace_netif_rx_exit(ret); 4555 4556 return ret; 4557 } 4558 EXPORT_SYMBOL(netif_rx); 4559 4560 int netif_rx_ni(struct sk_buff *skb) 4561 { 4562 int err; 4563 4564 trace_netif_rx_ni_entry(skb); 4565 4566 preempt_disable(); 4567 err = netif_rx_internal(skb); 4568 if (local_softirq_pending()) 4569 do_softirq(); 4570 preempt_enable(); 4571 trace_netif_rx_ni_exit(err); 4572 4573 return err; 4574 } 4575 EXPORT_SYMBOL(netif_rx_ni); 4576 4577 static __latent_entropy void net_tx_action(struct softirq_action *h) 4578 { 4579 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4580 4581 if (sd->completion_queue) { 4582 struct sk_buff *clist; 4583 4584 local_irq_disable(); 4585 clist = sd->completion_queue; 4586 sd->completion_queue = NULL; 4587 local_irq_enable(); 4588 4589 while (clist) { 4590 struct sk_buff *skb = clist; 4591 4592 clist = clist->next; 4593 4594 WARN_ON(refcount_read(&skb->users)); 4595 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4596 trace_consume_skb(skb); 4597 else 4598 trace_kfree_skb(skb, net_tx_action); 4599 4600 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4601 __kfree_skb(skb); 4602 else 4603 __kfree_skb_defer(skb); 4604 } 4605 4606 __kfree_skb_flush(); 4607 } 4608 4609 if (sd->output_queue) { 4610 struct Qdisc *head; 4611 4612 local_irq_disable(); 4613 head = sd->output_queue; 4614 sd->output_queue = NULL; 4615 sd->output_queue_tailp = &sd->output_queue; 4616 local_irq_enable(); 4617 4618 while (head) { 4619 struct Qdisc *q = head; 4620 spinlock_t *root_lock = NULL; 4621 4622 head = head->next_sched; 4623 4624 if (!(q->flags & TCQ_F_NOLOCK)) { 4625 root_lock = qdisc_lock(q); 4626 spin_lock(root_lock); 4627 } 4628 /* We need to make sure head->next_sched is read 4629 * before clearing __QDISC_STATE_SCHED 4630 */ 4631 smp_mb__before_atomic(); 4632 clear_bit(__QDISC_STATE_SCHED, &q->state); 4633 qdisc_run(q); 4634 if (root_lock) 4635 spin_unlock(root_lock); 4636 } 4637 } 4638 4639 xfrm_dev_backlog(sd); 4640 } 4641 4642 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4643 /* This hook is defined here for ATM LANE */ 4644 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4645 unsigned char *addr) __read_mostly; 4646 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4647 #endif 4648 4649 static inline struct sk_buff * 4650 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4651 struct net_device *orig_dev) 4652 { 4653 #ifdef CONFIG_NET_CLS_ACT 4654 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4655 struct tcf_result cl_res; 4656 4657 /* If there's at least one ingress present somewhere (so 4658 * we get here via enabled static key), remaining devices 4659 * that are not configured with an ingress qdisc will bail 4660 * out here. 4661 */ 4662 if (!miniq) 4663 return skb; 4664 4665 if (*pt_prev) { 4666 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4667 *pt_prev = NULL; 4668 } 4669 4670 qdisc_skb_cb(skb)->pkt_len = skb->len; 4671 skb->tc_at_ingress = 1; 4672 mini_qdisc_bstats_cpu_update(miniq, skb); 4673 4674 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 4675 case TC_ACT_OK: 4676 case TC_ACT_RECLASSIFY: 4677 skb->tc_index = TC_H_MIN(cl_res.classid); 4678 break; 4679 case TC_ACT_SHOT: 4680 mini_qdisc_qstats_cpu_drop(miniq); 4681 kfree_skb(skb); 4682 return NULL; 4683 case TC_ACT_STOLEN: 4684 case TC_ACT_QUEUED: 4685 case TC_ACT_TRAP: 4686 consume_skb(skb); 4687 return NULL; 4688 case TC_ACT_REDIRECT: 4689 /* skb_mac_header check was done by cls/act_bpf, so 4690 * we can safely push the L2 header back before 4691 * redirecting to another netdev 4692 */ 4693 __skb_push(skb, skb->mac_len); 4694 skb_do_redirect(skb); 4695 return NULL; 4696 case TC_ACT_REINSERT: 4697 /* this does not scrub the packet, and updates stats on error */ 4698 skb_tc_reinsert(skb, &cl_res); 4699 return NULL; 4700 default: 4701 break; 4702 } 4703 #endif /* CONFIG_NET_CLS_ACT */ 4704 return skb; 4705 } 4706 4707 /** 4708 * netdev_is_rx_handler_busy - check if receive handler is registered 4709 * @dev: device to check 4710 * 4711 * Check if a receive handler is already registered for a given device. 4712 * Return true if there one. 4713 * 4714 * The caller must hold the rtnl_mutex. 4715 */ 4716 bool netdev_is_rx_handler_busy(struct net_device *dev) 4717 { 4718 ASSERT_RTNL(); 4719 return dev && rtnl_dereference(dev->rx_handler); 4720 } 4721 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4722 4723 /** 4724 * netdev_rx_handler_register - register receive handler 4725 * @dev: device to register a handler for 4726 * @rx_handler: receive handler to register 4727 * @rx_handler_data: data pointer that is used by rx handler 4728 * 4729 * Register a receive handler for a device. This handler will then be 4730 * called from __netif_receive_skb. A negative errno code is returned 4731 * on a failure. 4732 * 4733 * The caller must hold the rtnl_mutex. 4734 * 4735 * For a general description of rx_handler, see enum rx_handler_result. 4736 */ 4737 int netdev_rx_handler_register(struct net_device *dev, 4738 rx_handler_func_t *rx_handler, 4739 void *rx_handler_data) 4740 { 4741 if (netdev_is_rx_handler_busy(dev)) 4742 return -EBUSY; 4743 4744 if (dev->priv_flags & IFF_NO_RX_HANDLER) 4745 return -EINVAL; 4746 4747 /* Note: rx_handler_data must be set before rx_handler */ 4748 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4749 rcu_assign_pointer(dev->rx_handler, rx_handler); 4750 4751 return 0; 4752 } 4753 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4754 4755 /** 4756 * netdev_rx_handler_unregister - unregister receive handler 4757 * @dev: device to unregister a handler from 4758 * 4759 * Unregister a receive handler from a device. 4760 * 4761 * The caller must hold the rtnl_mutex. 4762 */ 4763 void netdev_rx_handler_unregister(struct net_device *dev) 4764 { 4765 4766 ASSERT_RTNL(); 4767 RCU_INIT_POINTER(dev->rx_handler, NULL); 4768 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4769 * section has a guarantee to see a non NULL rx_handler_data 4770 * as well. 4771 */ 4772 synchronize_net(); 4773 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4774 } 4775 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4776 4777 /* 4778 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4779 * the special handling of PFMEMALLOC skbs. 4780 */ 4781 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4782 { 4783 switch (skb->protocol) { 4784 case htons(ETH_P_ARP): 4785 case htons(ETH_P_IP): 4786 case htons(ETH_P_IPV6): 4787 case htons(ETH_P_8021Q): 4788 case htons(ETH_P_8021AD): 4789 return true; 4790 default: 4791 return false; 4792 } 4793 } 4794 4795 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4796 int *ret, struct net_device *orig_dev) 4797 { 4798 #ifdef CONFIG_NETFILTER_INGRESS 4799 if (nf_hook_ingress_active(skb)) { 4800 int ingress_retval; 4801 4802 if (*pt_prev) { 4803 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4804 *pt_prev = NULL; 4805 } 4806 4807 rcu_read_lock(); 4808 ingress_retval = nf_hook_ingress(skb); 4809 rcu_read_unlock(); 4810 return ingress_retval; 4811 } 4812 #endif /* CONFIG_NETFILTER_INGRESS */ 4813 return 0; 4814 } 4815 4816 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc, 4817 struct packet_type **ppt_prev) 4818 { 4819 struct packet_type *ptype, *pt_prev; 4820 rx_handler_func_t *rx_handler; 4821 struct net_device *orig_dev; 4822 bool deliver_exact = false; 4823 int ret = NET_RX_DROP; 4824 __be16 type; 4825 4826 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4827 4828 trace_netif_receive_skb(skb); 4829 4830 orig_dev = skb->dev; 4831 4832 skb_reset_network_header(skb); 4833 if (!skb_transport_header_was_set(skb)) 4834 skb_reset_transport_header(skb); 4835 skb_reset_mac_len(skb); 4836 4837 pt_prev = NULL; 4838 4839 another_round: 4840 skb->skb_iif = skb->dev->ifindex; 4841 4842 __this_cpu_inc(softnet_data.processed); 4843 4844 if (static_branch_unlikely(&generic_xdp_needed_key)) { 4845 int ret2; 4846 4847 preempt_disable(); 4848 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4849 preempt_enable(); 4850 4851 if (ret2 != XDP_PASS) 4852 return NET_RX_DROP; 4853 skb_reset_mac_len(skb); 4854 } 4855 4856 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4857 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4858 skb = skb_vlan_untag(skb); 4859 if (unlikely(!skb)) 4860 goto out; 4861 } 4862 4863 if (skb_skip_tc_classify(skb)) 4864 goto skip_classify; 4865 4866 if (pfmemalloc) 4867 goto skip_taps; 4868 4869 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4870 if (pt_prev) 4871 ret = deliver_skb(skb, pt_prev, orig_dev); 4872 pt_prev = ptype; 4873 } 4874 4875 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4876 if (pt_prev) 4877 ret = deliver_skb(skb, pt_prev, orig_dev); 4878 pt_prev = ptype; 4879 } 4880 4881 skip_taps: 4882 #ifdef CONFIG_NET_INGRESS 4883 if (static_branch_unlikely(&ingress_needed_key)) { 4884 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4885 if (!skb) 4886 goto out; 4887 4888 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4889 goto out; 4890 } 4891 #endif 4892 skb_reset_tc(skb); 4893 skip_classify: 4894 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4895 goto drop; 4896 4897 if (skb_vlan_tag_present(skb)) { 4898 if (pt_prev) { 4899 ret = deliver_skb(skb, pt_prev, orig_dev); 4900 pt_prev = NULL; 4901 } 4902 if (vlan_do_receive(&skb)) 4903 goto another_round; 4904 else if (unlikely(!skb)) 4905 goto out; 4906 } 4907 4908 rx_handler = rcu_dereference(skb->dev->rx_handler); 4909 if (rx_handler) { 4910 if (pt_prev) { 4911 ret = deliver_skb(skb, pt_prev, orig_dev); 4912 pt_prev = NULL; 4913 } 4914 switch (rx_handler(&skb)) { 4915 case RX_HANDLER_CONSUMED: 4916 ret = NET_RX_SUCCESS; 4917 goto out; 4918 case RX_HANDLER_ANOTHER: 4919 goto another_round; 4920 case RX_HANDLER_EXACT: 4921 deliver_exact = true; 4922 case RX_HANDLER_PASS: 4923 break; 4924 default: 4925 BUG(); 4926 } 4927 } 4928 4929 if (unlikely(skb_vlan_tag_present(skb))) { 4930 if (skb_vlan_tag_get_id(skb)) 4931 skb->pkt_type = PACKET_OTHERHOST; 4932 /* Note: we might in the future use prio bits 4933 * and set skb->priority like in vlan_do_receive() 4934 * For the time being, just ignore Priority Code Point 4935 */ 4936 __vlan_hwaccel_clear_tag(skb); 4937 } 4938 4939 type = skb->protocol; 4940 4941 /* deliver only exact match when indicated */ 4942 if (likely(!deliver_exact)) { 4943 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4944 &ptype_base[ntohs(type) & 4945 PTYPE_HASH_MASK]); 4946 } 4947 4948 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4949 &orig_dev->ptype_specific); 4950 4951 if (unlikely(skb->dev != orig_dev)) { 4952 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4953 &skb->dev->ptype_specific); 4954 } 4955 4956 if (pt_prev) { 4957 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4958 goto drop; 4959 *ppt_prev = pt_prev; 4960 } else { 4961 drop: 4962 if (!deliver_exact) 4963 atomic_long_inc(&skb->dev->rx_dropped); 4964 else 4965 atomic_long_inc(&skb->dev->rx_nohandler); 4966 kfree_skb(skb); 4967 /* Jamal, now you will not able to escape explaining 4968 * me how you were going to use this. :-) 4969 */ 4970 ret = NET_RX_DROP; 4971 } 4972 4973 out: 4974 return ret; 4975 } 4976 4977 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 4978 { 4979 struct net_device *orig_dev = skb->dev; 4980 struct packet_type *pt_prev = NULL; 4981 int ret; 4982 4983 ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 4984 if (pt_prev) 4985 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 4986 skb->dev, pt_prev, orig_dev); 4987 return ret; 4988 } 4989 4990 /** 4991 * netif_receive_skb_core - special purpose version of netif_receive_skb 4992 * @skb: buffer to process 4993 * 4994 * More direct receive version of netif_receive_skb(). It should 4995 * only be used by callers that have a need to skip RPS and Generic XDP. 4996 * Caller must also take care of handling if (page_is_)pfmemalloc. 4997 * 4998 * This function may only be called from softirq context and interrupts 4999 * should be enabled. 5000 * 5001 * Return values (usually ignored): 5002 * NET_RX_SUCCESS: no congestion 5003 * NET_RX_DROP: packet was dropped 5004 */ 5005 int netif_receive_skb_core(struct sk_buff *skb) 5006 { 5007 int ret; 5008 5009 rcu_read_lock(); 5010 ret = __netif_receive_skb_one_core(skb, false); 5011 rcu_read_unlock(); 5012 5013 return ret; 5014 } 5015 EXPORT_SYMBOL(netif_receive_skb_core); 5016 5017 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5018 struct packet_type *pt_prev, 5019 struct net_device *orig_dev) 5020 { 5021 struct sk_buff *skb, *next; 5022 5023 if (!pt_prev) 5024 return; 5025 if (list_empty(head)) 5026 return; 5027 if (pt_prev->list_func != NULL) 5028 pt_prev->list_func(head, pt_prev, orig_dev); 5029 else 5030 list_for_each_entry_safe(skb, next, head, list) { 5031 skb_list_del_init(skb); 5032 INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5033 skb->dev, pt_prev, orig_dev); 5034 } 5035 } 5036 5037 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5038 { 5039 /* Fast-path assumptions: 5040 * - There is no RX handler. 5041 * - Only one packet_type matches. 5042 * If either of these fails, we will end up doing some per-packet 5043 * processing in-line, then handling the 'last ptype' for the whole 5044 * sublist. This can't cause out-of-order delivery to any single ptype, 5045 * because the 'last ptype' must be constant across the sublist, and all 5046 * other ptypes are handled per-packet. 5047 */ 5048 /* Current (common) ptype of sublist */ 5049 struct packet_type *pt_curr = NULL; 5050 /* Current (common) orig_dev of sublist */ 5051 struct net_device *od_curr = NULL; 5052 struct list_head sublist; 5053 struct sk_buff *skb, *next; 5054 5055 INIT_LIST_HEAD(&sublist); 5056 list_for_each_entry_safe(skb, next, head, list) { 5057 struct net_device *orig_dev = skb->dev; 5058 struct packet_type *pt_prev = NULL; 5059 5060 skb_list_del_init(skb); 5061 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev); 5062 if (!pt_prev) 5063 continue; 5064 if (pt_curr != pt_prev || od_curr != orig_dev) { 5065 /* dispatch old sublist */ 5066 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5067 /* start new sublist */ 5068 INIT_LIST_HEAD(&sublist); 5069 pt_curr = pt_prev; 5070 od_curr = orig_dev; 5071 } 5072 list_add_tail(&skb->list, &sublist); 5073 } 5074 5075 /* dispatch final sublist */ 5076 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5077 } 5078 5079 static int __netif_receive_skb(struct sk_buff *skb) 5080 { 5081 int ret; 5082 5083 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5084 unsigned int noreclaim_flag; 5085 5086 /* 5087 * PFMEMALLOC skbs are special, they should 5088 * - be delivered to SOCK_MEMALLOC sockets only 5089 * - stay away from userspace 5090 * - have bounded memory usage 5091 * 5092 * Use PF_MEMALLOC as this saves us from propagating the allocation 5093 * context down to all allocation sites. 5094 */ 5095 noreclaim_flag = memalloc_noreclaim_save(); 5096 ret = __netif_receive_skb_one_core(skb, true); 5097 memalloc_noreclaim_restore(noreclaim_flag); 5098 } else 5099 ret = __netif_receive_skb_one_core(skb, false); 5100 5101 return ret; 5102 } 5103 5104 static void __netif_receive_skb_list(struct list_head *head) 5105 { 5106 unsigned long noreclaim_flag = 0; 5107 struct sk_buff *skb, *next; 5108 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5109 5110 list_for_each_entry_safe(skb, next, head, list) { 5111 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5112 struct list_head sublist; 5113 5114 /* Handle the previous sublist */ 5115 list_cut_before(&sublist, head, &skb->list); 5116 if (!list_empty(&sublist)) 5117 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5118 pfmemalloc = !pfmemalloc; 5119 /* See comments in __netif_receive_skb */ 5120 if (pfmemalloc) 5121 noreclaim_flag = memalloc_noreclaim_save(); 5122 else 5123 memalloc_noreclaim_restore(noreclaim_flag); 5124 } 5125 } 5126 /* Handle the remaining sublist */ 5127 if (!list_empty(head)) 5128 __netif_receive_skb_list_core(head, pfmemalloc); 5129 /* Restore pflags */ 5130 if (pfmemalloc) 5131 memalloc_noreclaim_restore(noreclaim_flag); 5132 } 5133 5134 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5135 { 5136 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5137 struct bpf_prog *new = xdp->prog; 5138 int ret = 0; 5139 5140 switch (xdp->command) { 5141 case XDP_SETUP_PROG: 5142 rcu_assign_pointer(dev->xdp_prog, new); 5143 if (old) 5144 bpf_prog_put(old); 5145 5146 if (old && !new) { 5147 static_branch_dec(&generic_xdp_needed_key); 5148 } else if (new && !old) { 5149 static_branch_inc(&generic_xdp_needed_key); 5150 dev_disable_lro(dev); 5151 dev_disable_gro_hw(dev); 5152 } 5153 break; 5154 5155 case XDP_QUERY_PROG: 5156 xdp->prog_id = old ? old->aux->id : 0; 5157 break; 5158 5159 default: 5160 ret = -EINVAL; 5161 break; 5162 } 5163 5164 return ret; 5165 } 5166 5167 static int netif_receive_skb_internal(struct sk_buff *skb) 5168 { 5169 int ret; 5170 5171 net_timestamp_check(netdev_tstamp_prequeue, skb); 5172 5173 if (skb_defer_rx_timestamp(skb)) 5174 return NET_RX_SUCCESS; 5175 5176 rcu_read_lock(); 5177 #ifdef CONFIG_RPS 5178 if (static_branch_unlikely(&rps_needed)) { 5179 struct rps_dev_flow voidflow, *rflow = &voidflow; 5180 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5181 5182 if (cpu >= 0) { 5183 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5184 rcu_read_unlock(); 5185 return ret; 5186 } 5187 } 5188 #endif 5189 ret = __netif_receive_skb(skb); 5190 rcu_read_unlock(); 5191 return ret; 5192 } 5193 5194 static void netif_receive_skb_list_internal(struct list_head *head) 5195 { 5196 struct sk_buff *skb, *next; 5197 struct list_head sublist; 5198 5199 INIT_LIST_HEAD(&sublist); 5200 list_for_each_entry_safe(skb, next, head, list) { 5201 net_timestamp_check(netdev_tstamp_prequeue, skb); 5202 skb_list_del_init(skb); 5203 if (!skb_defer_rx_timestamp(skb)) 5204 list_add_tail(&skb->list, &sublist); 5205 } 5206 list_splice_init(&sublist, head); 5207 5208 rcu_read_lock(); 5209 #ifdef CONFIG_RPS 5210 if (static_branch_unlikely(&rps_needed)) { 5211 list_for_each_entry_safe(skb, next, head, list) { 5212 struct rps_dev_flow voidflow, *rflow = &voidflow; 5213 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5214 5215 if (cpu >= 0) { 5216 /* Will be handled, remove from list */ 5217 skb_list_del_init(skb); 5218 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5219 } 5220 } 5221 } 5222 #endif 5223 __netif_receive_skb_list(head); 5224 rcu_read_unlock(); 5225 } 5226 5227 /** 5228 * netif_receive_skb - process receive buffer from network 5229 * @skb: buffer to process 5230 * 5231 * netif_receive_skb() is the main receive data processing function. 5232 * It always succeeds. The buffer may be dropped during processing 5233 * for congestion control or by the protocol layers. 5234 * 5235 * This function may only be called from softirq context and interrupts 5236 * should be enabled. 5237 * 5238 * Return values (usually ignored): 5239 * NET_RX_SUCCESS: no congestion 5240 * NET_RX_DROP: packet was dropped 5241 */ 5242 int netif_receive_skb(struct sk_buff *skb) 5243 { 5244 int ret; 5245 5246 trace_netif_receive_skb_entry(skb); 5247 5248 ret = netif_receive_skb_internal(skb); 5249 trace_netif_receive_skb_exit(ret); 5250 5251 return ret; 5252 } 5253 EXPORT_SYMBOL(netif_receive_skb); 5254 5255 /** 5256 * netif_receive_skb_list - process many receive buffers from network 5257 * @head: list of skbs to process. 5258 * 5259 * Since return value of netif_receive_skb() is normally ignored, and 5260 * wouldn't be meaningful for a list, this function returns void. 5261 * 5262 * This function may only be called from softirq context and interrupts 5263 * should be enabled. 5264 */ 5265 void netif_receive_skb_list(struct list_head *head) 5266 { 5267 struct sk_buff *skb; 5268 5269 if (list_empty(head)) 5270 return; 5271 if (trace_netif_receive_skb_list_entry_enabled()) { 5272 list_for_each_entry(skb, head, list) 5273 trace_netif_receive_skb_list_entry(skb); 5274 } 5275 netif_receive_skb_list_internal(head); 5276 trace_netif_receive_skb_list_exit(0); 5277 } 5278 EXPORT_SYMBOL(netif_receive_skb_list); 5279 5280 DEFINE_PER_CPU(struct work_struct, flush_works); 5281 5282 /* Network device is going away, flush any packets still pending */ 5283 static void flush_backlog(struct work_struct *work) 5284 { 5285 struct sk_buff *skb, *tmp; 5286 struct softnet_data *sd; 5287 5288 local_bh_disable(); 5289 sd = this_cpu_ptr(&softnet_data); 5290 5291 local_irq_disable(); 5292 rps_lock(sd); 5293 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5294 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5295 __skb_unlink(skb, &sd->input_pkt_queue); 5296 kfree_skb(skb); 5297 input_queue_head_incr(sd); 5298 } 5299 } 5300 rps_unlock(sd); 5301 local_irq_enable(); 5302 5303 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5304 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5305 __skb_unlink(skb, &sd->process_queue); 5306 kfree_skb(skb); 5307 input_queue_head_incr(sd); 5308 } 5309 } 5310 local_bh_enable(); 5311 } 5312 5313 static void flush_all_backlogs(void) 5314 { 5315 unsigned int cpu; 5316 5317 get_online_cpus(); 5318 5319 for_each_online_cpu(cpu) 5320 queue_work_on(cpu, system_highpri_wq, 5321 per_cpu_ptr(&flush_works, cpu)); 5322 5323 for_each_online_cpu(cpu) 5324 flush_work(per_cpu_ptr(&flush_works, cpu)); 5325 5326 put_online_cpus(); 5327 } 5328 5329 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5330 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5331 static int napi_gro_complete(struct sk_buff *skb) 5332 { 5333 struct packet_offload *ptype; 5334 __be16 type = skb->protocol; 5335 struct list_head *head = &offload_base; 5336 int err = -ENOENT; 5337 5338 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5339 5340 if (NAPI_GRO_CB(skb)->count == 1) { 5341 skb_shinfo(skb)->gso_size = 0; 5342 goto out; 5343 } 5344 5345 rcu_read_lock(); 5346 list_for_each_entry_rcu(ptype, head, list) { 5347 if (ptype->type != type || !ptype->callbacks.gro_complete) 5348 continue; 5349 5350 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5351 ipv6_gro_complete, inet_gro_complete, 5352 skb, 0); 5353 break; 5354 } 5355 rcu_read_unlock(); 5356 5357 if (err) { 5358 WARN_ON(&ptype->list == head); 5359 kfree_skb(skb); 5360 return NET_RX_SUCCESS; 5361 } 5362 5363 out: 5364 return netif_receive_skb_internal(skb); 5365 } 5366 5367 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5368 bool flush_old) 5369 { 5370 struct list_head *head = &napi->gro_hash[index].list; 5371 struct sk_buff *skb, *p; 5372 5373 list_for_each_entry_safe_reverse(skb, p, head, list) { 5374 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5375 return; 5376 skb_list_del_init(skb); 5377 napi_gro_complete(skb); 5378 napi->gro_hash[index].count--; 5379 } 5380 5381 if (!napi->gro_hash[index].count) 5382 __clear_bit(index, &napi->gro_bitmask); 5383 } 5384 5385 /* napi->gro_hash[].list contains packets ordered by age. 5386 * youngest packets at the head of it. 5387 * Complete skbs in reverse order to reduce latencies. 5388 */ 5389 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5390 { 5391 unsigned long bitmask = napi->gro_bitmask; 5392 unsigned int i, base = ~0U; 5393 5394 while ((i = ffs(bitmask)) != 0) { 5395 bitmask >>= i; 5396 base += i; 5397 __napi_gro_flush_chain(napi, base, flush_old); 5398 } 5399 } 5400 EXPORT_SYMBOL(napi_gro_flush); 5401 5402 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5403 struct sk_buff *skb) 5404 { 5405 unsigned int maclen = skb->dev->hard_header_len; 5406 u32 hash = skb_get_hash_raw(skb); 5407 struct list_head *head; 5408 struct sk_buff *p; 5409 5410 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5411 list_for_each_entry(p, head, list) { 5412 unsigned long diffs; 5413 5414 NAPI_GRO_CB(p)->flush = 0; 5415 5416 if (hash != skb_get_hash_raw(p)) { 5417 NAPI_GRO_CB(p)->same_flow = 0; 5418 continue; 5419 } 5420 5421 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5422 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5423 if (skb_vlan_tag_present(p)) 5424 diffs |= p->vlan_tci ^ skb->vlan_tci; 5425 diffs |= skb_metadata_dst_cmp(p, skb); 5426 diffs |= skb_metadata_differs(p, skb); 5427 if (maclen == ETH_HLEN) 5428 diffs |= compare_ether_header(skb_mac_header(p), 5429 skb_mac_header(skb)); 5430 else if (!diffs) 5431 diffs = memcmp(skb_mac_header(p), 5432 skb_mac_header(skb), 5433 maclen); 5434 NAPI_GRO_CB(p)->same_flow = !diffs; 5435 } 5436 5437 return head; 5438 } 5439 5440 static void skb_gro_reset_offset(struct sk_buff *skb) 5441 { 5442 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5443 const skb_frag_t *frag0 = &pinfo->frags[0]; 5444 5445 NAPI_GRO_CB(skb)->data_offset = 0; 5446 NAPI_GRO_CB(skb)->frag0 = NULL; 5447 NAPI_GRO_CB(skb)->frag0_len = 0; 5448 5449 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 5450 pinfo->nr_frags && 5451 !PageHighMem(skb_frag_page(frag0))) { 5452 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5453 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5454 skb_frag_size(frag0), 5455 skb->end - skb->tail); 5456 } 5457 } 5458 5459 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5460 { 5461 struct skb_shared_info *pinfo = skb_shinfo(skb); 5462 5463 BUG_ON(skb->end - skb->tail < grow); 5464 5465 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5466 5467 skb->data_len -= grow; 5468 skb->tail += grow; 5469 5470 pinfo->frags[0].page_offset += grow; 5471 skb_frag_size_sub(&pinfo->frags[0], grow); 5472 5473 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5474 skb_frag_unref(skb, 0); 5475 memmove(pinfo->frags, pinfo->frags + 1, 5476 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5477 } 5478 } 5479 5480 static void gro_flush_oldest(struct list_head *head) 5481 { 5482 struct sk_buff *oldest; 5483 5484 oldest = list_last_entry(head, struct sk_buff, list); 5485 5486 /* We are called with head length >= MAX_GRO_SKBS, so this is 5487 * impossible. 5488 */ 5489 if (WARN_ON_ONCE(!oldest)) 5490 return; 5491 5492 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5493 * SKB to the chain. 5494 */ 5495 skb_list_del_init(oldest); 5496 napi_gro_complete(oldest); 5497 } 5498 5499 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5500 struct sk_buff *)); 5501 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5502 struct sk_buff *)); 5503 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5504 { 5505 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5506 struct list_head *head = &offload_base; 5507 struct packet_offload *ptype; 5508 __be16 type = skb->protocol; 5509 struct list_head *gro_head; 5510 struct sk_buff *pp = NULL; 5511 enum gro_result ret; 5512 int same_flow; 5513 int grow; 5514 5515 if (netif_elide_gro(skb->dev)) 5516 goto normal; 5517 5518 gro_head = gro_list_prepare(napi, skb); 5519 5520 rcu_read_lock(); 5521 list_for_each_entry_rcu(ptype, head, list) { 5522 if (ptype->type != type || !ptype->callbacks.gro_receive) 5523 continue; 5524 5525 skb_set_network_header(skb, skb_gro_offset(skb)); 5526 skb_reset_mac_len(skb); 5527 NAPI_GRO_CB(skb)->same_flow = 0; 5528 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5529 NAPI_GRO_CB(skb)->free = 0; 5530 NAPI_GRO_CB(skb)->encap_mark = 0; 5531 NAPI_GRO_CB(skb)->recursion_counter = 0; 5532 NAPI_GRO_CB(skb)->is_fou = 0; 5533 NAPI_GRO_CB(skb)->is_atomic = 1; 5534 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5535 5536 /* Setup for GRO checksum validation */ 5537 switch (skb->ip_summed) { 5538 case CHECKSUM_COMPLETE: 5539 NAPI_GRO_CB(skb)->csum = skb->csum; 5540 NAPI_GRO_CB(skb)->csum_valid = 1; 5541 NAPI_GRO_CB(skb)->csum_cnt = 0; 5542 break; 5543 case CHECKSUM_UNNECESSARY: 5544 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5545 NAPI_GRO_CB(skb)->csum_valid = 0; 5546 break; 5547 default: 5548 NAPI_GRO_CB(skb)->csum_cnt = 0; 5549 NAPI_GRO_CB(skb)->csum_valid = 0; 5550 } 5551 5552 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5553 ipv6_gro_receive, inet_gro_receive, 5554 gro_head, skb); 5555 break; 5556 } 5557 rcu_read_unlock(); 5558 5559 if (&ptype->list == head) 5560 goto normal; 5561 5562 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 5563 ret = GRO_CONSUMED; 5564 goto ok; 5565 } 5566 5567 same_flow = NAPI_GRO_CB(skb)->same_flow; 5568 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5569 5570 if (pp) { 5571 skb_list_del_init(pp); 5572 napi_gro_complete(pp); 5573 napi->gro_hash[hash].count--; 5574 } 5575 5576 if (same_flow) 5577 goto ok; 5578 5579 if (NAPI_GRO_CB(skb)->flush) 5580 goto normal; 5581 5582 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5583 gro_flush_oldest(gro_head); 5584 } else { 5585 napi->gro_hash[hash].count++; 5586 } 5587 NAPI_GRO_CB(skb)->count = 1; 5588 NAPI_GRO_CB(skb)->age = jiffies; 5589 NAPI_GRO_CB(skb)->last = skb; 5590 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5591 list_add(&skb->list, gro_head); 5592 ret = GRO_HELD; 5593 5594 pull: 5595 grow = skb_gro_offset(skb) - skb_headlen(skb); 5596 if (grow > 0) 5597 gro_pull_from_frag0(skb, grow); 5598 ok: 5599 if (napi->gro_hash[hash].count) { 5600 if (!test_bit(hash, &napi->gro_bitmask)) 5601 __set_bit(hash, &napi->gro_bitmask); 5602 } else if (test_bit(hash, &napi->gro_bitmask)) { 5603 __clear_bit(hash, &napi->gro_bitmask); 5604 } 5605 5606 return ret; 5607 5608 normal: 5609 ret = GRO_NORMAL; 5610 goto pull; 5611 } 5612 5613 struct packet_offload *gro_find_receive_by_type(__be16 type) 5614 { 5615 struct list_head *offload_head = &offload_base; 5616 struct packet_offload *ptype; 5617 5618 list_for_each_entry_rcu(ptype, offload_head, list) { 5619 if (ptype->type != type || !ptype->callbacks.gro_receive) 5620 continue; 5621 return ptype; 5622 } 5623 return NULL; 5624 } 5625 EXPORT_SYMBOL(gro_find_receive_by_type); 5626 5627 struct packet_offload *gro_find_complete_by_type(__be16 type) 5628 { 5629 struct list_head *offload_head = &offload_base; 5630 struct packet_offload *ptype; 5631 5632 list_for_each_entry_rcu(ptype, offload_head, list) { 5633 if (ptype->type != type || !ptype->callbacks.gro_complete) 5634 continue; 5635 return ptype; 5636 } 5637 return NULL; 5638 } 5639 EXPORT_SYMBOL(gro_find_complete_by_type); 5640 5641 static void napi_skb_free_stolen_head(struct sk_buff *skb) 5642 { 5643 skb_dst_drop(skb); 5644 secpath_reset(skb); 5645 kmem_cache_free(skbuff_head_cache, skb); 5646 } 5647 5648 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 5649 { 5650 switch (ret) { 5651 case GRO_NORMAL: 5652 if (netif_receive_skb_internal(skb)) 5653 ret = GRO_DROP; 5654 break; 5655 5656 case GRO_DROP: 5657 kfree_skb(skb); 5658 break; 5659 5660 case GRO_MERGED_FREE: 5661 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5662 napi_skb_free_stolen_head(skb); 5663 else 5664 __kfree_skb(skb); 5665 break; 5666 5667 case GRO_HELD: 5668 case GRO_MERGED: 5669 case GRO_CONSUMED: 5670 break; 5671 } 5672 5673 return ret; 5674 } 5675 5676 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5677 { 5678 gro_result_t ret; 5679 5680 skb_mark_napi_id(skb, napi); 5681 trace_napi_gro_receive_entry(skb); 5682 5683 skb_gro_reset_offset(skb); 5684 5685 ret = napi_skb_finish(dev_gro_receive(napi, skb), skb); 5686 trace_napi_gro_receive_exit(ret); 5687 5688 return ret; 5689 } 5690 EXPORT_SYMBOL(napi_gro_receive); 5691 5692 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 5693 { 5694 if (unlikely(skb->pfmemalloc)) { 5695 consume_skb(skb); 5696 return; 5697 } 5698 __skb_pull(skb, skb_headlen(skb)); 5699 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 5700 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 5701 __vlan_hwaccel_clear_tag(skb); 5702 skb->dev = napi->dev; 5703 skb->skb_iif = 0; 5704 5705 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 5706 skb->pkt_type = PACKET_HOST; 5707 5708 skb->encapsulation = 0; 5709 skb_shinfo(skb)->gso_type = 0; 5710 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 5711 secpath_reset(skb); 5712 5713 napi->skb = skb; 5714 } 5715 5716 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5717 { 5718 struct sk_buff *skb = napi->skb; 5719 5720 if (!skb) { 5721 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5722 if (skb) { 5723 napi->skb = skb; 5724 skb_mark_napi_id(skb, napi); 5725 } 5726 } 5727 return skb; 5728 } 5729 EXPORT_SYMBOL(napi_get_frags); 5730 5731 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5732 struct sk_buff *skb, 5733 gro_result_t ret) 5734 { 5735 switch (ret) { 5736 case GRO_NORMAL: 5737 case GRO_HELD: 5738 __skb_push(skb, ETH_HLEN); 5739 skb->protocol = eth_type_trans(skb, skb->dev); 5740 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5741 ret = GRO_DROP; 5742 break; 5743 5744 case GRO_DROP: 5745 napi_reuse_skb(napi, skb); 5746 break; 5747 5748 case GRO_MERGED_FREE: 5749 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5750 napi_skb_free_stolen_head(skb); 5751 else 5752 napi_reuse_skb(napi, skb); 5753 break; 5754 5755 case GRO_MERGED: 5756 case GRO_CONSUMED: 5757 break; 5758 } 5759 5760 return ret; 5761 } 5762 5763 /* Upper GRO stack assumes network header starts at gro_offset=0 5764 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5765 * We copy ethernet header into skb->data to have a common layout. 5766 */ 5767 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5768 { 5769 struct sk_buff *skb = napi->skb; 5770 const struct ethhdr *eth; 5771 unsigned int hlen = sizeof(*eth); 5772 5773 napi->skb = NULL; 5774 5775 skb_reset_mac_header(skb); 5776 skb_gro_reset_offset(skb); 5777 5778 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5779 eth = skb_gro_header_slow(skb, hlen, 0); 5780 if (unlikely(!eth)) { 5781 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5782 __func__, napi->dev->name); 5783 napi_reuse_skb(napi, skb); 5784 return NULL; 5785 } 5786 } else { 5787 eth = (const struct ethhdr *)skb->data; 5788 gro_pull_from_frag0(skb, hlen); 5789 NAPI_GRO_CB(skb)->frag0 += hlen; 5790 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5791 } 5792 __skb_pull(skb, hlen); 5793 5794 /* 5795 * This works because the only protocols we care about don't require 5796 * special handling. 5797 * We'll fix it up properly in napi_frags_finish() 5798 */ 5799 skb->protocol = eth->h_proto; 5800 5801 return skb; 5802 } 5803 5804 gro_result_t napi_gro_frags(struct napi_struct *napi) 5805 { 5806 gro_result_t ret; 5807 struct sk_buff *skb = napi_frags_skb(napi); 5808 5809 if (!skb) 5810 return GRO_DROP; 5811 5812 trace_napi_gro_frags_entry(skb); 5813 5814 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5815 trace_napi_gro_frags_exit(ret); 5816 5817 return ret; 5818 } 5819 EXPORT_SYMBOL(napi_gro_frags); 5820 5821 /* Compute the checksum from gro_offset and return the folded value 5822 * after adding in any pseudo checksum. 5823 */ 5824 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5825 { 5826 __wsum wsum; 5827 __sum16 sum; 5828 5829 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5830 5831 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5832 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5833 /* See comments in __skb_checksum_complete(). */ 5834 if (likely(!sum)) { 5835 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5836 !skb->csum_complete_sw) 5837 netdev_rx_csum_fault(skb->dev, skb); 5838 } 5839 5840 NAPI_GRO_CB(skb)->csum = wsum; 5841 NAPI_GRO_CB(skb)->csum_valid = 1; 5842 5843 return sum; 5844 } 5845 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5846 5847 static void net_rps_send_ipi(struct softnet_data *remsd) 5848 { 5849 #ifdef CONFIG_RPS 5850 while (remsd) { 5851 struct softnet_data *next = remsd->rps_ipi_next; 5852 5853 if (cpu_online(remsd->cpu)) 5854 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5855 remsd = next; 5856 } 5857 #endif 5858 } 5859 5860 /* 5861 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5862 * Note: called with local irq disabled, but exits with local irq enabled. 5863 */ 5864 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5865 { 5866 #ifdef CONFIG_RPS 5867 struct softnet_data *remsd = sd->rps_ipi_list; 5868 5869 if (remsd) { 5870 sd->rps_ipi_list = NULL; 5871 5872 local_irq_enable(); 5873 5874 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5875 net_rps_send_ipi(remsd); 5876 } else 5877 #endif 5878 local_irq_enable(); 5879 } 5880 5881 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5882 { 5883 #ifdef CONFIG_RPS 5884 return sd->rps_ipi_list != NULL; 5885 #else 5886 return false; 5887 #endif 5888 } 5889 5890 static int process_backlog(struct napi_struct *napi, int quota) 5891 { 5892 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5893 bool again = true; 5894 int work = 0; 5895 5896 /* Check if we have pending ipi, its better to send them now, 5897 * not waiting net_rx_action() end. 5898 */ 5899 if (sd_has_rps_ipi_waiting(sd)) { 5900 local_irq_disable(); 5901 net_rps_action_and_irq_enable(sd); 5902 } 5903 5904 napi->weight = dev_rx_weight; 5905 while (again) { 5906 struct sk_buff *skb; 5907 5908 while ((skb = __skb_dequeue(&sd->process_queue))) { 5909 rcu_read_lock(); 5910 __netif_receive_skb(skb); 5911 rcu_read_unlock(); 5912 input_queue_head_incr(sd); 5913 if (++work >= quota) 5914 return work; 5915 5916 } 5917 5918 local_irq_disable(); 5919 rps_lock(sd); 5920 if (skb_queue_empty(&sd->input_pkt_queue)) { 5921 /* 5922 * Inline a custom version of __napi_complete(). 5923 * only current cpu owns and manipulates this napi, 5924 * and NAPI_STATE_SCHED is the only possible flag set 5925 * on backlog. 5926 * We can use a plain write instead of clear_bit(), 5927 * and we dont need an smp_mb() memory barrier. 5928 */ 5929 napi->state = 0; 5930 again = false; 5931 } else { 5932 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5933 &sd->process_queue); 5934 } 5935 rps_unlock(sd); 5936 local_irq_enable(); 5937 } 5938 5939 return work; 5940 } 5941 5942 /** 5943 * __napi_schedule - schedule for receive 5944 * @n: entry to schedule 5945 * 5946 * The entry's receive function will be scheduled to run. 5947 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5948 */ 5949 void __napi_schedule(struct napi_struct *n) 5950 { 5951 unsigned long flags; 5952 5953 local_irq_save(flags); 5954 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5955 local_irq_restore(flags); 5956 } 5957 EXPORT_SYMBOL(__napi_schedule); 5958 5959 /** 5960 * napi_schedule_prep - check if napi can be scheduled 5961 * @n: napi context 5962 * 5963 * Test if NAPI routine is already running, and if not mark 5964 * it as running. This is used as a condition variable 5965 * insure only one NAPI poll instance runs. We also make 5966 * sure there is no pending NAPI disable. 5967 */ 5968 bool napi_schedule_prep(struct napi_struct *n) 5969 { 5970 unsigned long val, new; 5971 5972 do { 5973 val = READ_ONCE(n->state); 5974 if (unlikely(val & NAPIF_STATE_DISABLE)) 5975 return false; 5976 new = val | NAPIF_STATE_SCHED; 5977 5978 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5979 * This was suggested by Alexander Duyck, as compiler 5980 * emits better code than : 5981 * if (val & NAPIF_STATE_SCHED) 5982 * new |= NAPIF_STATE_MISSED; 5983 */ 5984 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5985 NAPIF_STATE_MISSED; 5986 } while (cmpxchg(&n->state, val, new) != val); 5987 5988 return !(val & NAPIF_STATE_SCHED); 5989 } 5990 EXPORT_SYMBOL(napi_schedule_prep); 5991 5992 /** 5993 * __napi_schedule_irqoff - schedule for receive 5994 * @n: entry to schedule 5995 * 5996 * Variant of __napi_schedule() assuming hard irqs are masked 5997 */ 5998 void __napi_schedule_irqoff(struct napi_struct *n) 5999 { 6000 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6001 } 6002 EXPORT_SYMBOL(__napi_schedule_irqoff); 6003 6004 bool napi_complete_done(struct napi_struct *n, int work_done) 6005 { 6006 unsigned long flags, val, new; 6007 6008 /* 6009 * 1) Don't let napi dequeue from the cpu poll list 6010 * just in case its running on a different cpu. 6011 * 2) If we are busy polling, do nothing here, we have 6012 * the guarantee we will be called later. 6013 */ 6014 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6015 NAPIF_STATE_IN_BUSY_POLL))) 6016 return false; 6017 6018 if (n->gro_bitmask) { 6019 unsigned long timeout = 0; 6020 6021 if (work_done) 6022 timeout = n->dev->gro_flush_timeout; 6023 6024 /* When the NAPI instance uses a timeout and keeps postponing 6025 * it, we need to bound somehow the time packets are kept in 6026 * the GRO layer 6027 */ 6028 napi_gro_flush(n, !!timeout); 6029 if (timeout) 6030 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6031 HRTIMER_MODE_REL_PINNED); 6032 } 6033 if (unlikely(!list_empty(&n->poll_list))) { 6034 /* If n->poll_list is not empty, we need to mask irqs */ 6035 local_irq_save(flags); 6036 list_del_init(&n->poll_list); 6037 local_irq_restore(flags); 6038 } 6039 6040 do { 6041 val = READ_ONCE(n->state); 6042 6043 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6044 6045 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 6046 6047 /* If STATE_MISSED was set, leave STATE_SCHED set, 6048 * because we will call napi->poll() one more time. 6049 * This C code was suggested by Alexander Duyck to help gcc. 6050 */ 6051 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6052 NAPIF_STATE_SCHED; 6053 } while (cmpxchg(&n->state, val, new) != val); 6054 6055 if (unlikely(val & NAPIF_STATE_MISSED)) { 6056 __napi_schedule(n); 6057 return false; 6058 } 6059 6060 return true; 6061 } 6062 EXPORT_SYMBOL(napi_complete_done); 6063 6064 /* must be called under rcu_read_lock(), as we dont take a reference */ 6065 static struct napi_struct *napi_by_id(unsigned int napi_id) 6066 { 6067 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6068 struct napi_struct *napi; 6069 6070 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6071 if (napi->napi_id == napi_id) 6072 return napi; 6073 6074 return NULL; 6075 } 6076 6077 #if defined(CONFIG_NET_RX_BUSY_POLL) 6078 6079 #define BUSY_POLL_BUDGET 8 6080 6081 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 6082 { 6083 int rc; 6084 6085 /* Busy polling means there is a high chance device driver hard irq 6086 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6087 * set in napi_schedule_prep(). 6088 * Since we are about to call napi->poll() once more, we can safely 6089 * clear NAPI_STATE_MISSED. 6090 * 6091 * Note: x86 could use a single "lock and ..." instruction 6092 * to perform these two clear_bit() 6093 */ 6094 clear_bit(NAPI_STATE_MISSED, &napi->state); 6095 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6096 6097 local_bh_disable(); 6098 6099 /* All we really want here is to re-enable device interrupts. 6100 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6101 */ 6102 rc = napi->poll(napi, BUSY_POLL_BUDGET); 6103 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 6104 netpoll_poll_unlock(have_poll_lock); 6105 if (rc == BUSY_POLL_BUDGET) 6106 __napi_schedule(napi); 6107 local_bh_enable(); 6108 } 6109 6110 void napi_busy_loop(unsigned int napi_id, 6111 bool (*loop_end)(void *, unsigned long), 6112 void *loop_end_arg) 6113 { 6114 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6115 int (*napi_poll)(struct napi_struct *napi, int budget); 6116 void *have_poll_lock = NULL; 6117 struct napi_struct *napi; 6118 6119 restart: 6120 napi_poll = NULL; 6121 6122 rcu_read_lock(); 6123 6124 napi = napi_by_id(napi_id); 6125 if (!napi) 6126 goto out; 6127 6128 preempt_disable(); 6129 for (;;) { 6130 int work = 0; 6131 6132 local_bh_disable(); 6133 if (!napi_poll) { 6134 unsigned long val = READ_ONCE(napi->state); 6135 6136 /* If multiple threads are competing for this napi, 6137 * we avoid dirtying napi->state as much as we can. 6138 */ 6139 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6140 NAPIF_STATE_IN_BUSY_POLL)) 6141 goto count; 6142 if (cmpxchg(&napi->state, val, 6143 val | NAPIF_STATE_IN_BUSY_POLL | 6144 NAPIF_STATE_SCHED) != val) 6145 goto count; 6146 have_poll_lock = netpoll_poll_lock(napi); 6147 napi_poll = napi->poll; 6148 } 6149 work = napi_poll(napi, BUSY_POLL_BUDGET); 6150 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 6151 count: 6152 if (work > 0) 6153 __NET_ADD_STATS(dev_net(napi->dev), 6154 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6155 local_bh_enable(); 6156 6157 if (!loop_end || loop_end(loop_end_arg, start_time)) 6158 break; 6159 6160 if (unlikely(need_resched())) { 6161 if (napi_poll) 6162 busy_poll_stop(napi, have_poll_lock); 6163 preempt_enable(); 6164 rcu_read_unlock(); 6165 cond_resched(); 6166 if (loop_end(loop_end_arg, start_time)) 6167 return; 6168 goto restart; 6169 } 6170 cpu_relax(); 6171 } 6172 if (napi_poll) 6173 busy_poll_stop(napi, have_poll_lock); 6174 preempt_enable(); 6175 out: 6176 rcu_read_unlock(); 6177 } 6178 EXPORT_SYMBOL(napi_busy_loop); 6179 6180 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6181 6182 static void napi_hash_add(struct napi_struct *napi) 6183 { 6184 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 6185 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 6186 return; 6187 6188 spin_lock(&napi_hash_lock); 6189 6190 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6191 do { 6192 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6193 napi_gen_id = MIN_NAPI_ID; 6194 } while (napi_by_id(napi_gen_id)); 6195 napi->napi_id = napi_gen_id; 6196 6197 hlist_add_head_rcu(&napi->napi_hash_node, 6198 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6199 6200 spin_unlock(&napi_hash_lock); 6201 } 6202 6203 /* Warning : caller is responsible to make sure rcu grace period 6204 * is respected before freeing memory containing @napi 6205 */ 6206 bool napi_hash_del(struct napi_struct *napi) 6207 { 6208 bool rcu_sync_needed = false; 6209 6210 spin_lock(&napi_hash_lock); 6211 6212 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 6213 rcu_sync_needed = true; 6214 hlist_del_rcu(&napi->napi_hash_node); 6215 } 6216 spin_unlock(&napi_hash_lock); 6217 return rcu_sync_needed; 6218 } 6219 EXPORT_SYMBOL_GPL(napi_hash_del); 6220 6221 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6222 { 6223 struct napi_struct *napi; 6224 6225 napi = container_of(timer, struct napi_struct, timer); 6226 6227 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6228 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6229 */ 6230 if (napi->gro_bitmask && !napi_disable_pending(napi) && 6231 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 6232 __napi_schedule_irqoff(napi); 6233 6234 return HRTIMER_NORESTART; 6235 } 6236 6237 static void init_gro_hash(struct napi_struct *napi) 6238 { 6239 int i; 6240 6241 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6242 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6243 napi->gro_hash[i].count = 0; 6244 } 6245 napi->gro_bitmask = 0; 6246 } 6247 6248 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6249 int (*poll)(struct napi_struct *, int), int weight) 6250 { 6251 INIT_LIST_HEAD(&napi->poll_list); 6252 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6253 napi->timer.function = napi_watchdog; 6254 init_gro_hash(napi); 6255 napi->skb = NULL; 6256 napi->poll = poll; 6257 if (weight > NAPI_POLL_WEIGHT) 6258 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6259 weight); 6260 napi->weight = weight; 6261 list_add(&napi->dev_list, &dev->napi_list); 6262 napi->dev = dev; 6263 #ifdef CONFIG_NETPOLL 6264 napi->poll_owner = -1; 6265 #endif 6266 set_bit(NAPI_STATE_SCHED, &napi->state); 6267 napi_hash_add(napi); 6268 } 6269 EXPORT_SYMBOL(netif_napi_add); 6270 6271 void napi_disable(struct napi_struct *n) 6272 { 6273 might_sleep(); 6274 set_bit(NAPI_STATE_DISABLE, &n->state); 6275 6276 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6277 msleep(1); 6278 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6279 msleep(1); 6280 6281 hrtimer_cancel(&n->timer); 6282 6283 clear_bit(NAPI_STATE_DISABLE, &n->state); 6284 } 6285 EXPORT_SYMBOL(napi_disable); 6286 6287 static void flush_gro_hash(struct napi_struct *napi) 6288 { 6289 int i; 6290 6291 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6292 struct sk_buff *skb, *n; 6293 6294 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6295 kfree_skb(skb); 6296 napi->gro_hash[i].count = 0; 6297 } 6298 } 6299 6300 /* Must be called in process context */ 6301 void netif_napi_del(struct napi_struct *napi) 6302 { 6303 might_sleep(); 6304 if (napi_hash_del(napi)) 6305 synchronize_net(); 6306 list_del_init(&napi->dev_list); 6307 napi_free_frags(napi); 6308 6309 flush_gro_hash(napi); 6310 napi->gro_bitmask = 0; 6311 } 6312 EXPORT_SYMBOL(netif_napi_del); 6313 6314 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6315 { 6316 void *have; 6317 int work, weight; 6318 6319 list_del_init(&n->poll_list); 6320 6321 have = netpoll_poll_lock(n); 6322 6323 weight = n->weight; 6324 6325 /* This NAPI_STATE_SCHED test is for avoiding a race 6326 * with netpoll's poll_napi(). Only the entity which 6327 * obtains the lock and sees NAPI_STATE_SCHED set will 6328 * actually make the ->poll() call. Therefore we avoid 6329 * accidentally calling ->poll() when NAPI is not scheduled. 6330 */ 6331 work = 0; 6332 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6333 work = n->poll(n, weight); 6334 trace_napi_poll(n, work, weight); 6335 } 6336 6337 WARN_ON_ONCE(work > weight); 6338 6339 if (likely(work < weight)) 6340 goto out_unlock; 6341 6342 /* Drivers must not modify the NAPI state if they 6343 * consume the entire weight. In such cases this code 6344 * still "owns" the NAPI instance and therefore can 6345 * move the instance around on the list at-will. 6346 */ 6347 if (unlikely(napi_disable_pending(n))) { 6348 napi_complete(n); 6349 goto out_unlock; 6350 } 6351 6352 if (n->gro_bitmask) { 6353 /* flush too old packets 6354 * If HZ < 1000, flush all packets. 6355 */ 6356 napi_gro_flush(n, HZ >= 1000); 6357 } 6358 6359 /* Some drivers may have called napi_schedule 6360 * prior to exhausting their budget. 6361 */ 6362 if (unlikely(!list_empty(&n->poll_list))) { 6363 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6364 n->dev ? n->dev->name : "backlog"); 6365 goto out_unlock; 6366 } 6367 6368 list_add_tail(&n->poll_list, repoll); 6369 6370 out_unlock: 6371 netpoll_poll_unlock(have); 6372 6373 return work; 6374 } 6375 6376 static __latent_entropy void net_rx_action(struct softirq_action *h) 6377 { 6378 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6379 unsigned long time_limit = jiffies + 6380 usecs_to_jiffies(netdev_budget_usecs); 6381 int budget = netdev_budget; 6382 LIST_HEAD(list); 6383 LIST_HEAD(repoll); 6384 6385 local_irq_disable(); 6386 list_splice_init(&sd->poll_list, &list); 6387 local_irq_enable(); 6388 6389 for (;;) { 6390 struct napi_struct *n; 6391 6392 if (list_empty(&list)) { 6393 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6394 goto out; 6395 break; 6396 } 6397 6398 n = list_first_entry(&list, struct napi_struct, poll_list); 6399 budget -= napi_poll(n, &repoll); 6400 6401 /* If softirq window is exhausted then punt. 6402 * Allow this to run for 2 jiffies since which will allow 6403 * an average latency of 1.5/HZ. 6404 */ 6405 if (unlikely(budget <= 0 || 6406 time_after_eq(jiffies, time_limit))) { 6407 sd->time_squeeze++; 6408 break; 6409 } 6410 } 6411 6412 local_irq_disable(); 6413 6414 list_splice_tail_init(&sd->poll_list, &list); 6415 list_splice_tail(&repoll, &list); 6416 list_splice(&list, &sd->poll_list); 6417 if (!list_empty(&sd->poll_list)) 6418 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6419 6420 net_rps_action_and_irq_enable(sd); 6421 out: 6422 __kfree_skb_flush(); 6423 } 6424 6425 struct netdev_adjacent { 6426 struct net_device *dev; 6427 6428 /* upper master flag, there can only be one master device per list */ 6429 bool master; 6430 6431 /* counter for the number of times this device was added to us */ 6432 u16 ref_nr; 6433 6434 /* private field for the users */ 6435 void *private; 6436 6437 struct list_head list; 6438 struct rcu_head rcu; 6439 }; 6440 6441 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6442 struct list_head *adj_list) 6443 { 6444 struct netdev_adjacent *adj; 6445 6446 list_for_each_entry(adj, adj_list, list) { 6447 if (adj->dev == adj_dev) 6448 return adj; 6449 } 6450 return NULL; 6451 } 6452 6453 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 6454 { 6455 struct net_device *dev = data; 6456 6457 return upper_dev == dev; 6458 } 6459 6460 /** 6461 * netdev_has_upper_dev - Check if device is linked to an upper device 6462 * @dev: device 6463 * @upper_dev: upper device to check 6464 * 6465 * Find out if a device is linked to specified upper device and return true 6466 * in case it is. Note that this checks only immediate upper device, 6467 * not through a complete stack of devices. The caller must hold the RTNL lock. 6468 */ 6469 bool netdev_has_upper_dev(struct net_device *dev, 6470 struct net_device *upper_dev) 6471 { 6472 ASSERT_RTNL(); 6473 6474 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6475 upper_dev); 6476 } 6477 EXPORT_SYMBOL(netdev_has_upper_dev); 6478 6479 /** 6480 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6481 * @dev: device 6482 * @upper_dev: upper device to check 6483 * 6484 * Find out if a device is linked to specified upper device and return true 6485 * in case it is. Note that this checks the entire upper device chain. 6486 * The caller must hold rcu lock. 6487 */ 6488 6489 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6490 struct net_device *upper_dev) 6491 { 6492 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 6493 upper_dev); 6494 } 6495 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6496 6497 /** 6498 * netdev_has_any_upper_dev - Check if device is linked to some device 6499 * @dev: device 6500 * 6501 * Find out if a device is linked to an upper device and return true in case 6502 * it is. The caller must hold the RTNL lock. 6503 */ 6504 bool netdev_has_any_upper_dev(struct net_device *dev) 6505 { 6506 ASSERT_RTNL(); 6507 6508 return !list_empty(&dev->adj_list.upper); 6509 } 6510 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6511 6512 /** 6513 * netdev_master_upper_dev_get - Get master upper device 6514 * @dev: device 6515 * 6516 * Find a master upper device and return pointer to it or NULL in case 6517 * it's not there. The caller must hold the RTNL lock. 6518 */ 6519 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6520 { 6521 struct netdev_adjacent *upper; 6522 6523 ASSERT_RTNL(); 6524 6525 if (list_empty(&dev->adj_list.upper)) 6526 return NULL; 6527 6528 upper = list_first_entry(&dev->adj_list.upper, 6529 struct netdev_adjacent, list); 6530 if (likely(upper->master)) 6531 return upper->dev; 6532 return NULL; 6533 } 6534 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6535 6536 /** 6537 * netdev_has_any_lower_dev - Check if device is linked to some device 6538 * @dev: device 6539 * 6540 * Find out if a device is linked to a lower device and return true in case 6541 * it is. The caller must hold the RTNL lock. 6542 */ 6543 static bool netdev_has_any_lower_dev(struct net_device *dev) 6544 { 6545 ASSERT_RTNL(); 6546 6547 return !list_empty(&dev->adj_list.lower); 6548 } 6549 6550 void *netdev_adjacent_get_private(struct list_head *adj_list) 6551 { 6552 struct netdev_adjacent *adj; 6553 6554 adj = list_entry(adj_list, struct netdev_adjacent, list); 6555 6556 return adj->private; 6557 } 6558 EXPORT_SYMBOL(netdev_adjacent_get_private); 6559 6560 /** 6561 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6562 * @dev: device 6563 * @iter: list_head ** of the current position 6564 * 6565 * Gets the next device from the dev's upper list, starting from iter 6566 * position. The caller must hold RCU read lock. 6567 */ 6568 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6569 struct list_head **iter) 6570 { 6571 struct netdev_adjacent *upper; 6572 6573 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6574 6575 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6576 6577 if (&upper->list == &dev->adj_list.upper) 6578 return NULL; 6579 6580 *iter = &upper->list; 6581 6582 return upper->dev; 6583 } 6584 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6585 6586 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6587 struct list_head **iter) 6588 { 6589 struct netdev_adjacent *upper; 6590 6591 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6592 6593 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6594 6595 if (&upper->list == &dev->adj_list.upper) 6596 return NULL; 6597 6598 *iter = &upper->list; 6599 6600 return upper->dev; 6601 } 6602 6603 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6604 int (*fn)(struct net_device *dev, 6605 void *data), 6606 void *data) 6607 { 6608 struct net_device *udev; 6609 struct list_head *iter; 6610 int ret; 6611 6612 for (iter = &dev->adj_list.upper, 6613 udev = netdev_next_upper_dev_rcu(dev, &iter); 6614 udev; 6615 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 6616 /* first is the upper device itself */ 6617 ret = fn(udev, data); 6618 if (ret) 6619 return ret; 6620 6621 /* then look at all of its upper devices */ 6622 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 6623 if (ret) 6624 return ret; 6625 } 6626 6627 return 0; 6628 } 6629 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 6630 6631 /** 6632 * netdev_lower_get_next_private - Get the next ->private from the 6633 * lower neighbour list 6634 * @dev: device 6635 * @iter: list_head ** of the current position 6636 * 6637 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6638 * list, starting from iter position. The caller must hold either hold the 6639 * RTNL lock or its own locking that guarantees that the neighbour lower 6640 * list will remain unchanged. 6641 */ 6642 void *netdev_lower_get_next_private(struct net_device *dev, 6643 struct list_head **iter) 6644 { 6645 struct netdev_adjacent *lower; 6646 6647 lower = list_entry(*iter, struct netdev_adjacent, list); 6648 6649 if (&lower->list == &dev->adj_list.lower) 6650 return NULL; 6651 6652 *iter = lower->list.next; 6653 6654 return lower->private; 6655 } 6656 EXPORT_SYMBOL(netdev_lower_get_next_private); 6657 6658 /** 6659 * netdev_lower_get_next_private_rcu - Get the next ->private from the 6660 * lower neighbour list, RCU 6661 * variant 6662 * @dev: device 6663 * @iter: list_head ** of the current position 6664 * 6665 * Gets the next netdev_adjacent->private from the dev's lower neighbour 6666 * list, starting from iter position. The caller must hold RCU read lock. 6667 */ 6668 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 6669 struct list_head **iter) 6670 { 6671 struct netdev_adjacent *lower; 6672 6673 WARN_ON_ONCE(!rcu_read_lock_held()); 6674 6675 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6676 6677 if (&lower->list == &dev->adj_list.lower) 6678 return NULL; 6679 6680 *iter = &lower->list; 6681 6682 return lower->private; 6683 } 6684 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 6685 6686 /** 6687 * netdev_lower_get_next - Get the next device from the lower neighbour 6688 * list 6689 * @dev: device 6690 * @iter: list_head ** of the current position 6691 * 6692 * Gets the next netdev_adjacent from the dev's lower neighbour 6693 * list, starting from iter position. The caller must hold RTNL lock or 6694 * its own locking that guarantees that the neighbour lower 6695 * list will remain unchanged. 6696 */ 6697 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 6698 { 6699 struct netdev_adjacent *lower; 6700 6701 lower = list_entry(*iter, struct netdev_adjacent, list); 6702 6703 if (&lower->list == &dev->adj_list.lower) 6704 return NULL; 6705 6706 *iter = lower->list.next; 6707 6708 return lower->dev; 6709 } 6710 EXPORT_SYMBOL(netdev_lower_get_next); 6711 6712 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 6713 struct list_head **iter) 6714 { 6715 struct netdev_adjacent *lower; 6716 6717 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 6718 6719 if (&lower->list == &dev->adj_list.lower) 6720 return NULL; 6721 6722 *iter = &lower->list; 6723 6724 return lower->dev; 6725 } 6726 6727 int netdev_walk_all_lower_dev(struct net_device *dev, 6728 int (*fn)(struct net_device *dev, 6729 void *data), 6730 void *data) 6731 { 6732 struct net_device *ldev; 6733 struct list_head *iter; 6734 int ret; 6735 6736 for (iter = &dev->adj_list.lower, 6737 ldev = netdev_next_lower_dev(dev, &iter); 6738 ldev; 6739 ldev = netdev_next_lower_dev(dev, &iter)) { 6740 /* first is the lower device itself */ 6741 ret = fn(ldev, data); 6742 if (ret) 6743 return ret; 6744 6745 /* then look at all of its lower devices */ 6746 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6747 if (ret) 6748 return ret; 6749 } 6750 6751 return 0; 6752 } 6753 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6754 6755 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6756 struct list_head **iter) 6757 { 6758 struct netdev_adjacent *lower; 6759 6760 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6761 if (&lower->list == &dev->adj_list.lower) 6762 return NULL; 6763 6764 *iter = &lower->list; 6765 6766 return lower->dev; 6767 } 6768 6769 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6770 int (*fn)(struct net_device *dev, 6771 void *data), 6772 void *data) 6773 { 6774 struct net_device *ldev; 6775 struct list_head *iter; 6776 int ret; 6777 6778 for (iter = &dev->adj_list.lower, 6779 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6780 ldev; 6781 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6782 /* first is the lower device itself */ 6783 ret = fn(ldev, data); 6784 if (ret) 6785 return ret; 6786 6787 /* then look at all of its lower devices */ 6788 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6789 if (ret) 6790 return ret; 6791 } 6792 6793 return 0; 6794 } 6795 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6796 6797 /** 6798 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6799 * lower neighbour list, RCU 6800 * variant 6801 * @dev: device 6802 * 6803 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6804 * list. The caller must hold RCU read lock. 6805 */ 6806 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6807 { 6808 struct netdev_adjacent *lower; 6809 6810 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6811 struct netdev_adjacent, list); 6812 if (lower) 6813 return lower->private; 6814 return NULL; 6815 } 6816 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6817 6818 /** 6819 * netdev_master_upper_dev_get_rcu - Get master upper device 6820 * @dev: device 6821 * 6822 * Find a master upper device and return pointer to it or NULL in case 6823 * it's not there. The caller must hold the RCU read lock. 6824 */ 6825 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6826 { 6827 struct netdev_adjacent *upper; 6828 6829 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6830 struct netdev_adjacent, list); 6831 if (upper && likely(upper->master)) 6832 return upper->dev; 6833 return NULL; 6834 } 6835 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6836 6837 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6838 struct net_device *adj_dev, 6839 struct list_head *dev_list) 6840 { 6841 char linkname[IFNAMSIZ+7]; 6842 6843 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6844 "upper_%s" : "lower_%s", adj_dev->name); 6845 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6846 linkname); 6847 } 6848 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6849 char *name, 6850 struct list_head *dev_list) 6851 { 6852 char linkname[IFNAMSIZ+7]; 6853 6854 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6855 "upper_%s" : "lower_%s", name); 6856 sysfs_remove_link(&(dev->dev.kobj), linkname); 6857 } 6858 6859 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6860 struct net_device *adj_dev, 6861 struct list_head *dev_list) 6862 { 6863 return (dev_list == &dev->adj_list.upper || 6864 dev_list == &dev->adj_list.lower) && 6865 net_eq(dev_net(dev), dev_net(adj_dev)); 6866 } 6867 6868 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6869 struct net_device *adj_dev, 6870 struct list_head *dev_list, 6871 void *private, bool master) 6872 { 6873 struct netdev_adjacent *adj; 6874 int ret; 6875 6876 adj = __netdev_find_adj(adj_dev, dev_list); 6877 6878 if (adj) { 6879 adj->ref_nr += 1; 6880 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6881 dev->name, adj_dev->name, adj->ref_nr); 6882 6883 return 0; 6884 } 6885 6886 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6887 if (!adj) 6888 return -ENOMEM; 6889 6890 adj->dev = adj_dev; 6891 adj->master = master; 6892 adj->ref_nr = 1; 6893 adj->private = private; 6894 dev_hold(adj_dev); 6895 6896 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6897 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6898 6899 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6900 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6901 if (ret) 6902 goto free_adj; 6903 } 6904 6905 /* Ensure that master link is always the first item in list. */ 6906 if (master) { 6907 ret = sysfs_create_link(&(dev->dev.kobj), 6908 &(adj_dev->dev.kobj), "master"); 6909 if (ret) 6910 goto remove_symlinks; 6911 6912 list_add_rcu(&adj->list, dev_list); 6913 } else { 6914 list_add_tail_rcu(&adj->list, dev_list); 6915 } 6916 6917 return 0; 6918 6919 remove_symlinks: 6920 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6921 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6922 free_adj: 6923 kfree(adj); 6924 dev_put(adj_dev); 6925 6926 return ret; 6927 } 6928 6929 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6930 struct net_device *adj_dev, 6931 u16 ref_nr, 6932 struct list_head *dev_list) 6933 { 6934 struct netdev_adjacent *adj; 6935 6936 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6937 dev->name, adj_dev->name, ref_nr); 6938 6939 adj = __netdev_find_adj(adj_dev, dev_list); 6940 6941 if (!adj) { 6942 pr_err("Adjacency does not exist for device %s from %s\n", 6943 dev->name, adj_dev->name); 6944 WARN_ON(1); 6945 return; 6946 } 6947 6948 if (adj->ref_nr > ref_nr) { 6949 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6950 dev->name, adj_dev->name, ref_nr, 6951 adj->ref_nr - ref_nr); 6952 adj->ref_nr -= ref_nr; 6953 return; 6954 } 6955 6956 if (adj->master) 6957 sysfs_remove_link(&(dev->dev.kobj), "master"); 6958 6959 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6960 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6961 6962 list_del_rcu(&adj->list); 6963 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6964 adj_dev->name, dev->name, adj_dev->name); 6965 dev_put(adj_dev); 6966 kfree_rcu(adj, rcu); 6967 } 6968 6969 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6970 struct net_device *upper_dev, 6971 struct list_head *up_list, 6972 struct list_head *down_list, 6973 void *private, bool master) 6974 { 6975 int ret; 6976 6977 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6978 private, master); 6979 if (ret) 6980 return ret; 6981 6982 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6983 private, false); 6984 if (ret) { 6985 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6986 return ret; 6987 } 6988 6989 return 0; 6990 } 6991 6992 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6993 struct net_device *upper_dev, 6994 u16 ref_nr, 6995 struct list_head *up_list, 6996 struct list_head *down_list) 6997 { 6998 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6999 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7000 } 7001 7002 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7003 struct net_device *upper_dev, 7004 void *private, bool master) 7005 { 7006 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7007 &dev->adj_list.upper, 7008 &upper_dev->adj_list.lower, 7009 private, master); 7010 } 7011 7012 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7013 struct net_device *upper_dev) 7014 { 7015 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7016 &dev->adj_list.upper, 7017 &upper_dev->adj_list.lower); 7018 } 7019 7020 static int __netdev_upper_dev_link(struct net_device *dev, 7021 struct net_device *upper_dev, bool master, 7022 void *upper_priv, void *upper_info, 7023 struct netlink_ext_ack *extack) 7024 { 7025 struct netdev_notifier_changeupper_info changeupper_info = { 7026 .info = { 7027 .dev = dev, 7028 .extack = extack, 7029 }, 7030 .upper_dev = upper_dev, 7031 .master = master, 7032 .linking = true, 7033 .upper_info = upper_info, 7034 }; 7035 struct net_device *master_dev; 7036 int ret = 0; 7037 7038 ASSERT_RTNL(); 7039 7040 if (dev == upper_dev) 7041 return -EBUSY; 7042 7043 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7044 if (netdev_has_upper_dev(upper_dev, dev)) 7045 return -EBUSY; 7046 7047 if (!master) { 7048 if (netdev_has_upper_dev(dev, upper_dev)) 7049 return -EEXIST; 7050 } else { 7051 master_dev = netdev_master_upper_dev_get(dev); 7052 if (master_dev) 7053 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7054 } 7055 7056 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7057 &changeupper_info.info); 7058 ret = notifier_to_errno(ret); 7059 if (ret) 7060 return ret; 7061 7062 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7063 master); 7064 if (ret) 7065 return ret; 7066 7067 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7068 &changeupper_info.info); 7069 ret = notifier_to_errno(ret); 7070 if (ret) 7071 goto rollback; 7072 7073 return 0; 7074 7075 rollback: 7076 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7077 7078 return ret; 7079 } 7080 7081 /** 7082 * netdev_upper_dev_link - Add a link to the upper device 7083 * @dev: device 7084 * @upper_dev: new upper device 7085 * @extack: netlink extended ack 7086 * 7087 * Adds a link to device which is upper to this one. The caller must hold 7088 * the RTNL lock. On a failure a negative errno code is returned. 7089 * On success the reference counts are adjusted and the function 7090 * returns zero. 7091 */ 7092 int netdev_upper_dev_link(struct net_device *dev, 7093 struct net_device *upper_dev, 7094 struct netlink_ext_ack *extack) 7095 { 7096 return __netdev_upper_dev_link(dev, upper_dev, false, 7097 NULL, NULL, extack); 7098 } 7099 EXPORT_SYMBOL(netdev_upper_dev_link); 7100 7101 /** 7102 * netdev_master_upper_dev_link - Add a master link to the upper device 7103 * @dev: device 7104 * @upper_dev: new upper device 7105 * @upper_priv: upper device private 7106 * @upper_info: upper info to be passed down via notifier 7107 * @extack: netlink extended ack 7108 * 7109 * Adds a link to device which is upper to this one. In this case, only 7110 * one master upper device can be linked, although other non-master devices 7111 * might be linked as well. The caller must hold the RTNL lock. 7112 * On a failure a negative errno code is returned. On success the reference 7113 * counts are adjusted and the function returns zero. 7114 */ 7115 int netdev_master_upper_dev_link(struct net_device *dev, 7116 struct net_device *upper_dev, 7117 void *upper_priv, void *upper_info, 7118 struct netlink_ext_ack *extack) 7119 { 7120 return __netdev_upper_dev_link(dev, upper_dev, true, 7121 upper_priv, upper_info, extack); 7122 } 7123 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7124 7125 /** 7126 * netdev_upper_dev_unlink - Removes a link to upper device 7127 * @dev: device 7128 * @upper_dev: new upper device 7129 * 7130 * Removes a link to device which is upper to this one. The caller must hold 7131 * the RTNL lock. 7132 */ 7133 void netdev_upper_dev_unlink(struct net_device *dev, 7134 struct net_device *upper_dev) 7135 { 7136 struct netdev_notifier_changeupper_info changeupper_info = { 7137 .info = { 7138 .dev = dev, 7139 }, 7140 .upper_dev = upper_dev, 7141 .linking = false, 7142 }; 7143 7144 ASSERT_RTNL(); 7145 7146 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7147 7148 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7149 &changeupper_info.info); 7150 7151 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7152 7153 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7154 &changeupper_info.info); 7155 } 7156 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7157 7158 /** 7159 * netdev_bonding_info_change - Dispatch event about slave change 7160 * @dev: device 7161 * @bonding_info: info to dispatch 7162 * 7163 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7164 * The caller must hold the RTNL lock. 7165 */ 7166 void netdev_bonding_info_change(struct net_device *dev, 7167 struct netdev_bonding_info *bonding_info) 7168 { 7169 struct netdev_notifier_bonding_info info = { 7170 .info.dev = dev, 7171 }; 7172 7173 memcpy(&info.bonding_info, bonding_info, 7174 sizeof(struct netdev_bonding_info)); 7175 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7176 &info.info); 7177 } 7178 EXPORT_SYMBOL(netdev_bonding_info_change); 7179 7180 static void netdev_adjacent_add_links(struct net_device *dev) 7181 { 7182 struct netdev_adjacent *iter; 7183 7184 struct net *net = dev_net(dev); 7185 7186 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7187 if (!net_eq(net, dev_net(iter->dev))) 7188 continue; 7189 netdev_adjacent_sysfs_add(iter->dev, dev, 7190 &iter->dev->adj_list.lower); 7191 netdev_adjacent_sysfs_add(dev, iter->dev, 7192 &dev->adj_list.upper); 7193 } 7194 7195 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7196 if (!net_eq(net, dev_net(iter->dev))) 7197 continue; 7198 netdev_adjacent_sysfs_add(iter->dev, dev, 7199 &iter->dev->adj_list.upper); 7200 netdev_adjacent_sysfs_add(dev, iter->dev, 7201 &dev->adj_list.lower); 7202 } 7203 } 7204 7205 static void netdev_adjacent_del_links(struct net_device *dev) 7206 { 7207 struct netdev_adjacent *iter; 7208 7209 struct net *net = dev_net(dev); 7210 7211 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7212 if (!net_eq(net, dev_net(iter->dev))) 7213 continue; 7214 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7215 &iter->dev->adj_list.lower); 7216 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7217 &dev->adj_list.upper); 7218 } 7219 7220 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7221 if (!net_eq(net, dev_net(iter->dev))) 7222 continue; 7223 netdev_adjacent_sysfs_del(iter->dev, dev->name, 7224 &iter->dev->adj_list.upper); 7225 netdev_adjacent_sysfs_del(dev, iter->dev->name, 7226 &dev->adj_list.lower); 7227 } 7228 } 7229 7230 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 7231 { 7232 struct netdev_adjacent *iter; 7233 7234 struct net *net = dev_net(dev); 7235 7236 list_for_each_entry(iter, &dev->adj_list.upper, list) { 7237 if (!net_eq(net, dev_net(iter->dev))) 7238 continue; 7239 netdev_adjacent_sysfs_del(iter->dev, oldname, 7240 &iter->dev->adj_list.lower); 7241 netdev_adjacent_sysfs_add(iter->dev, dev, 7242 &iter->dev->adj_list.lower); 7243 } 7244 7245 list_for_each_entry(iter, &dev->adj_list.lower, list) { 7246 if (!net_eq(net, dev_net(iter->dev))) 7247 continue; 7248 netdev_adjacent_sysfs_del(iter->dev, oldname, 7249 &iter->dev->adj_list.upper); 7250 netdev_adjacent_sysfs_add(iter->dev, dev, 7251 &iter->dev->adj_list.upper); 7252 } 7253 } 7254 7255 void *netdev_lower_dev_get_private(struct net_device *dev, 7256 struct net_device *lower_dev) 7257 { 7258 struct netdev_adjacent *lower; 7259 7260 if (!lower_dev) 7261 return NULL; 7262 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 7263 if (!lower) 7264 return NULL; 7265 7266 return lower->private; 7267 } 7268 EXPORT_SYMBOL(netdev_lower_dev_get_private); 7269 7270 7271 int dev_get_nest_level(struct net_device *dev) 7272 { 7273 struct net_device *lower = NULL; 7274 struct list_head *iter; 7275 int max_nest = -1; 7276 int nest; 7277 7278 ASSERT_RTNL(); 7279 7280 netdev_for_each_lower_dev(dev, lower, iter) { 7281 nest = dev_get_nest_level(lower); 7282 if (max_nest < nest) 7283 max_nest = nest; 7284 } 7285 7286 return max_nest + 1; 7287 } 7288 EXPORT_SYMBOL(dev_get_nest_level); 7289 7290 /** 7291 * netdev_lower_change - Dispatch event about lower device state change 7292 * @lower_dev: device 7293 * @lower_state_info: state to dispatch 7294 * 7295 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 7296 * The caller must hold the RTNL lock. 7297 */ 7298 void netdev_lower_state_changed(struct net_device *lower_dev, 7299 void *lower_state_info) 7300 { 7301 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 7302 .info.dev = lower_dev, 7303 }; 7304 7305 ASSERT_RTNL(); 7306 changelowerstate_info.lower_state_info = lower_state_info; 7307 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 7308 &changelowerstate_info.info); 7309 } 7310 EXPORT_SYMBOL(netdev_lower_state_changed); 7311 7312 static void dev_change_rx_flags(struct net_device *dev, int flags) 7313 { 7314 const struct net_device_ops *ops = dev->netdev_ops; 7315 7316 if (ops->ndo_change_rx_flags) 7317 ops->ndo_change_rx_flags(dev, flags); 7318 } 7319 7320 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 7321 { 7322 unsigned int old_flags = dev->flags; 7323 kuid_t uid; 7324 kgid_t gid; 7325 7326 ASSERT_RTNL(); 7327 7328 dev->flags |= IFF_PROMISC; 7329 dev->promiscuity += inc; 7330 if (dev->promiscuity == 0) { 7331 /* 7332 * Avoid overflow. 7333 * If inc causes overflow, untouch promisc and return error. 7334 */ 7335 if (inc < 0) 7336 dev->flags &= ~IFF_PROMISC; 7337 else { 7338 dev->promiscuity -= inc; 7339 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 7340 dev->name); 7341 return -EOVERFLOW; 7342 } 7343 } 7344 if (dev->flags != old_flags) { 7345 pr_info("device %s %s promiscuous mode\n", 7346 dev->name, 7347 dev->flags & IFF_PROMISC ? "entered" : "left"); 7348 if (audit_enabled) { 7349 current_uid_gid(&uid, &gid); 7350 audit_log(audit_context(), GFP_ATOMIC, 7351 AUDIT_ANOM_PROMISCUOUS, 7352 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 7353 dev->name, (dev->flags & IFF_PROMISC), 7354 (old_flags & IFF_PROMISC), 7355 from_kuid(&init_user_ns, audit_get_loginuid(current)), 7356 from_kuid(&init_user_ns, uid), 7357 from_kgid(&init_user_ns, gid), 7358 audit_get_sessionid(current)); 7359 } 7360 7361 dev_change_rx_flags(dev, IFF_PROMISC); 7362 } 7363 if (notify) 7364 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 7365 return 0; 7366 } 7367 7368 /** 7369 * dev_set_promiscuity - update promiscuity count on a device 7370 * @dev: device 7371 * @inc: modifier 7372 * 7373 * Add or remove promiscuity from a device. While the count in the device 7374 * remains above zero the interface remains promiscuous. Once it hits zero 7375 * the device reverts back to normal filtering operation. A negative inc 7376 * value is used to drop promiscuity on the device. 7377 * Return 0 if successful or a negative errno code on error. 7378 */ 7379 int dev_set_promiscuity(struct net_device *dev, int inc) 7380 { 7381 unsigned int old_flags = dev->flags; 7382 int err; 7383 7384 err = __dev_set_promiscuity(dev, inc, true); 7385 if (err < 0) 7386 return err; 7387 if (dev->flags != old_flags) 7388 dev_set_rx_mode(dev); 7389 return err; 7390 } 7391 EXPORT_SYMBOL(dev_set_promiscuity); 7392 7393 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 7394 { 7395 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 7396 7397 ASSERT_RTNL(); 7398 7399 dev->flags |= IFF_ALLMULTI; 7400 dev->allmulti += inc; 7401 if (dev->allmulti == 0) { 7402 /* 7403 * Avoid overflow. 7404 * If inc causes overflow, untouch allmulti and return error. 7405 */ 7406 if (inc < 0) 7407 dev->flags &= ~IFF_ALLMULTI; 7408 else { 7409 dev->allmulti -= inc; 7410 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 7411 dev->name); 7412 return -EOVERFLOW; 7413 } 7414 } 7415 if (dev->flags ^ old_flags) { 7416 dev_change_rx_flags(dev, IFF_ALLMULTI); 7417 dev_set_rx_mode(dev); 7418 if (notify) 7419 __dev_notify_flags(dev, old_flags, 7420 dev->gflags ^ old_gflags); 7421 } 7422 return 0; 7423 } 7424 7425 /** 7426 * dev_set_allmulti - update allmulti count on a device 7427 * @dev: device 7428 * @inc: modifier 7429 * 7430 * Add or remove reception of all multicast frames to a device. While the 7431 * count in the device remains above zero the interface remains listening 7432 * to all interfaces. Once it hits zero the device reverts back to normal 7433 * filtering operation. A negative @inc value is used to drop the counter 7434 * when releasing a resource needing all multicasts. 7435 * Return 0 if successful or a negative errno code on error. 7436 */ 7437 7438 int dev_set_allmulti(struct net_device *dev, int inc) 7439 { 7440 return __dev_set_allmulti(dev, inc, true); 7441 } 7442 EXPORT_SYMBOL(dev_set_allmulti); 7443 7444 /* 7445 * Upload unicast and multicast address lists to device and 7446 * configure RX filtering. When the device doesn't support unicast 7447 * filtering it is put in promiscuous mode while unicast addresses 7448 * are present. 7449 */ 7450 void __dev_set_rx_mode(struct net_device *dev) 7451 { 7452 const struct net_device_ops *ops = dev->netdev_ops; 7453 7454 /* dev_open will call this function so the list will stay sane. */ 7455 if (!(dev->flags&IFF_UP)) 7456 return; 7457 7458 if (!netif_device_present(dev)) 7459 return; 7460 7461 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 7462 /* Unicast addresses changes may only happen under the rtnl, 7463 * therefore calling __dev_set_promiscuity here is safe. 7464 */ 7465 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 7466 __dev_set_promiscuity(dev, 1, false); 7467 dev->uc_promisc = true; 7468 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 7469 __dev_set_promiscuity(dev, -1, false); 7470 dev->uc_promisc = false; 7471 } 7472 } 7473 7474 if (ops->ndo_set_rx_mode) 7475 ops->ndo_set_rx_mode(dev); 7476 } 7477 7478 void dev_set_rx_mode(struct net_device *dev) 7479 { 7480 netif_addr_lock_bh(dev); 7481 __dev_set_rx_mode(dev); 7482 netif_addr_unlock_bh(dev); 7483 } 7484 7485 /** 7486 * dev_get_flags - get flags reported to userspace 7487 * @dev: device 7488 * 7489 * Get the combination of flag bits exported through APIs to userspace. 7490 */ 7491 unsigned int dev_get_flags(const struct net_device *dev) 7492 { 7493 unsigned int flags; 7494 7495 flags = (dev->flags & ~(IFF_PROMISC | 7496 IFF_ALLMULTI | 7497 IFF_RUNNING | 7498 IFF_LOWER_UP | 7499 IFF_DORMANT)) | 7500 (dev->gflags & (IFF_PROMISC | 7501 IFF_ALLMULTI)); 7502 7503 if (netif_running(dev)) { 7504 if (netif_oper_up(dev)) 7505 flags |= IFF_RUNNING; 7506 if (netif_carrier_ok(dev)) 7507 flags |= IFF_LOWER_UP; 7508 if (netif_dormant(dev)) 7509 flags |= IFF_DORMANT; 7510 } 7511 7512 return flags; 7513 } 7514 EXPORT_SYMBOL(dev_get_flags); 7515 7516 int __dev_change_flags(struct net_device *dev, unsigned int flags, 7517 struct netlink_ext_ack *extack) 7518 { 7519 unsigned int old_flags = dev->flags; 7520 int ret; 7521 7522 ASSERT_RTNL(); 7523 7524 /* 7525 * Set the flags on our device. 7526 */ 7527 7528 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 7529 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 7530 IFF_AUTOMEDIA)) | 7531 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 7532 IFF_ALLMULTI)); 7533 7534 /* 7535 * Load in the correct multicast list now the flags have changed. 7536 */ 7537 7538 if ((old_flags ^ flags) & IFF_MULTICAST) 7539 dev_change_rx_flags(dev, IFF_MULTICAST); 7540 7541 dev_set_rx_mode(dev); 7542 7543 /* 7544 * Have we downed the interface. We handle IFF_UP ourselves 7545 * according to user attempts to set it, rather than blindly 7546 * setting it. 7547 */ 7548 7549 ret = 0; 7550 if ((old_flags ^ flags) & IFF_UP) { 7551 if (old_flags & IFF_UP) 7552 __dev_close(dev); 7553 else 7554 ret = __dev_open(dev, extack); 7555 } 7556 7557 if ((flags ^ dev->gflags) & IFF_PROMISC) { 7558 int inc = (flags & IFF_PROMISC) ? 1 : -1; 7559 unsigned int old_flags = dev->flags; 7560 7561 dev->gflags ^= IFF_PROMISC; 7562 7563 if (__dev_set_promiscuity(dev, inc, false) >= 0) 7564 if (dev->flags != old_flags) 7565 dev_set_rx_mode(dev); 7566 } 7567 7568 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 7569 * is important. Some (broken) drivers set IFF_PROMISC, when 7570 * IFF_ALLMULTI is requested not asking us and not reporting. 7571 */ 7572 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 7573 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 7574 7575 dev->gflags ^= IFF_ALLMULTI; 7576 __dev_set_allmulti(dev, inc, false); 7577 } 7578 7579 return ret; 7580 } 7581 7582 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 7583 unsigned int gchanges) 7584 { 7585 unsigned int changes = dev->flags ^ old_flags; 7586 7587 if (gchanges) 7588 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 7589 7590 if (changes & IFF_UP) { 7591 if (dev->flags & IFF_UP) 7592 call_netdevice_notifiers(NETDEV_UP, dev); 7593 else 7594 call_netdevice_notifiers(NETDEV_DOWN, dev); 7595 } 7596 7597 if (dev->flags & IFF_UP && 7598 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 7599 struct netdev_notifier_change_info change_info = { 7600 .info = { 7601 .dev = dev, 7602 }, 7603 .flags_changed = changes, 7604 }; 7605 7606 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 7607 } 7608 } 7609 7610 /** 7611 * dev_change_flags - change device settings 7612 * @dev: device 7613 * @flags: device state flags 7614 * @extack: netlink extended ack 7615 * 7616 * Change settings on device based state flags. The flags are 7617 * in the userspace exported format. 7618 */ 7619 int dev_change_flags(struct net_device *dev, unsigned int flags, 7620 struct netlink_ext_ack *extack) 7621 { 7622 int ret; 7623 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 7624 7625 ret = __dev_change_flags(dev, flags, extack); 7626 if (ret < 0) 7627 return ret; 7628 7629 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 7630 __dev_notify_flags(dev, old_flags, changes); 7631 return ret; 7632 } 7633 EXPORT_SYMBOL(dev_change_flags); 7634 7635 int __dev_set_mtu(struct net_device *dev, int new_mtu) 7636 { 7637 const struct net_device_ops *ops = dev->netdev_ops; 7638 7639 if (ops->ndo_change_mtu) 7640 return ops->ndo_change_mtu(dev, new_mtu); 7641 7642 dev->mtu = new_mtu; 7643 return 0; 7644 } 7645 EXPORT_SYMBOL(__dev_set_mtu); 7646 7647 /** 7648 * dev_set_mtu_ext - Change maximum transfer unit 7649 * @dev: device 7650 * @new_mtu: new transfer unit 7651 * @extack: netlink extended ack 7652 * 7653 * Change the maximum transfer size of the network device. 7654 */ 7655 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 7656 struct netlink_ext_ack *extack) 7657 { 7658 int err, orig_mtu; 7659 7660 if (new_mtu == dev->mtu) 7661 return 0; 7662 7663 /* MTU must be positive, and in range */ 7664 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 7665 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 7666 return -EINVAL; 7667 } 7668 7669 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 7670 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 7671 return -EINVAL; 7672 } 7673 7674 if (!netif_device_present(dev)) 7675 return -ENODEV; 7676 7677 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 7678 err = notifier_to_errno(err); 7679 if (err) 7680 return err; 7681 7682 orig_mtu = dev->mtu; 7683 err = __dev_set_mtu(dev, new_mtu); 7684 7685 if (!err) { 7686 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7687 orig_mtu); 7688 err = notifier_to_errno(err); 7689 if (err) { 7690 /* setting mtu back and notifying everyone again, 7691 * so that they have a chance to revert changes. 7692 */ 7693 __dev_set_mtu(dev, orig_mtu); 7694 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 7695 new_mtu); 7696 } 7697 } 7698 return err; 7699 } 7700 7701 int dev_set_mtu(struct net_device *dev, int new_mtu) 7702 { 7703 struct netlink_ext_ack extack; 7704 int err; 7705 7706 memset(&extack, 0, sizeof(extack)); 7707 err = dev_set_mtu_ext(dev, new_mtu, &extack); 7708 if (err && extack._msg) 7709 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 7710 return err; 7711 } 7712 EXPORT_SYMBOL(dev_set_mtu); 7713 7714 /** 7715 * dev_change_tx_queue_len - Change TX queue length of a netdevice 7716 * @dev: device 7717 * @new_len: new tx queue length 7718 */ 7719 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 7720 { 7721 unsigned int orig_len = dev->tx_queue_len; 7722 int res; 7723 7724 if (new_len != (unsigned int)new_len) 7725 return -ERANGE; 7726 7727 if (new_len != orig_len) { 7728 dev->tx_queue_len = new_len; 7729 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 7730 res = notifier_to_errno(res); 7731 if (res) 7732 goto err_rollback; 7733 res = dev_qdisc_change_tx_queue_len(dev); 7734 if (res) 7735 goto err_rollback; 7736 } 7737 7738 return 0; 7739 7740 err_rollback: 7741 netdev_err(dev, "refused to change device tx_queue_len\n"); 7742 dev->tx_queue_len = orig_len; 7743 return res; 7744 } 7745 7746 /** 7747 * dev_set_group - Change group this device belongs to 7748 * @dev: device 7749 * @new_group: group this device should belong to 7750 */ 7751 void dev_set_group(struct net_device *dev, int new_group) 7752 { 7753 dev->group = new_group; 7754 } 7755 EXPORT_SYMBOL(dev_set_group); 7756 7757 /** 7758 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 7759 * @dev: device 7760 * @addr: new address 7761 * @extack: netlink extended ack 7762 */ 7763 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 7764 struct netlink_ext_ack *extack) 7765 { 7766 struct netdev_notifier_pre_changeaddr_info info = { 7767 .info.dev = dev, 7768 .info.extack = extack, 7769 .dev_addr = addr, 7770 }; 7771 int rc; 7772 7773 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 7774 return notifier_to_errno(rc); 7775 } 7776 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 7777 7778 /** 7779 * dev_set_mac_address - Change Media Access Control Address 7780 * @dev: device 7781 * @sa: new address 7782 * @extack: netlink extended ack 7783 * 7784 * Change the hardware (MAC) address of the device 7785 */ 7786 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 7787 struct netlink_ext_ack *extack) 7788 { 7789 const struct net_device_ops *ops = dev->netdev_ops; 7790 int err; 7791 7792 if (!ops->ndo_set_mac_address) 7793 return -EOPNOTSUPP; 7794 if (sa->sa_family != dev->type) 7795 return -EINVAL; 7796 if (!netif_device_present(dev)) 7797 return -ENODEV; 7798 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 7799 if (err) 7800 return err; 7801 err = ops->ndo_set_mac_address(dev, sa); 7802 if (err) 7803 return err; 7804 dev->addr_assign_type = NET_ADDR_SET; 7805 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 7806 add_device_randomness(dev->dev_addr, dev->addr_len); 7807 return 0; 7808 } 7809 EXPORT_SYMBOL(dev_set_mac_address); 7810 7811 /** 7812 * dev_change_carrier - Change device carrier 7813 * @dev: device 7814 * @new_carrier: new value 7815 * 7816 * Change device carrier 7817 */ 7818 int dev_change_carrier(struct net_device *dev, bool new_carrier) 7819 { 7820 const struct net_device_ops *ops = dev->netdev_ops; 7821 7822 if (!ops->ndo_change_carrier) 7823 return -EOPNOTSUPP; 7824 if (!netif_device_present(dev)) 7825 return -ENODEV; 7826 return ops->ndo_change_carrier(dev, new_carrier); 7827 } 7828 EXPORT_SYMBOL(dev_change_carrier); 7829 7830 /** 7831 * dev_get_phys_port_id - Get device physical port ID 7832 * @dev: device 7833 * @ppid: port ID 7834 * 7835 * Get device physical port ID 7836 */ 7837 int dev_get_phys_port_id(struct net_device *dev, 7838 struct netdev_phys_item_id *ppid) 7839 { 7840 const struct net_device_ops *ops = dev->netdev_ops; 7841 7842 if (!ops->ndo_get_phys_port_id) 7843 return -EOPNOTSUPP; 7844 return ops->ndo_get_phys_port_id(dev, ppid); 7845 } 7846 EXPORT_SYMBOL(dev_get_phys_port_id); 7847 7848 /** 7849 * dev_get_phys_port_name - Get device physical port name 7850 * @dev: device 7851 * @name: port name 7852 * @len: limit of bytes to copy to name 7853 * 7854 * Get device physical port name 7855 */ 7856 int dev_get_phys_port_name(struct net_device *dev, 7857 char *name, size_t len) 7858 { 7859 const struct net_device_ops *ops = dev->netdev_ops; 7860 int err; 7861 7862 if (ops->ndo_get_phys_port_name) { 7863 err = ops->ndo_get_phys_port_name(dev, name, len); 7864 if (err != -EOPNOTSUPP) 7865 return err; 7866 } 7867 return devlink_compat_phys_port_name_get(dev, name, len); 7868 } 7869 EXPORT_SYMBOL(dev_get_phys_port_name); 7870 7871 /** 7872 * dev_get_port_parent_id - Get the device's port parent identifier 7873 * @dev: network device 7874 * @ppid: pointer to a storage for the port's parent identifier 7875 * @recurse: allow/disallow recursion to lower devices 7876 * 7877 * Get the devices's port parent identifier 7878 */ 7879 int dev_get_port_parent_id(struct net_device *dev, 7880 struct netdev_phys_item_id *ppid, 7881 bool recurse) 7882 { 7883 const struct net_device_ops *ops = dev->netdev_ops; 7884 struct netdev_phys_item_id first = { }; 7885 struct net_device *lower_dev; 7886 struct list_head *iter; 7887 int err; 7888 7889 if (ops->ndo_get_port_parent_id) { 7890 err = ops->ndo_get_port_parent_id(dev, ppid); 7891 if (err != -EOPNOTSUPP) 7892 return err; 7893 } 7894 7895 err = devlink_compat_switch_id_get(dev, ppid); 7896 if (!err || err != -EOPNOTSUPP) 7897 return err; 7898 7899 if (!recurse) 7900 return -EOPNOTSUPP; 7901 7902 netdev_for_each_lower_dev(dev, lower_dev, iter) { 7903 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 7904 if (err) 7905 break; 7906 if (!first.id_len) 7907 first = *ppid; 7908 else if (memcmp(&first, ppid, sizeof(*ppid))) 7909 return -ENODATA; 7910 } 7911 7912 return err; 7913 } 7914 EXPORT_SYMBOL(dev_get_port_parent_id); 7915 7916 /** 7917 * netdev_port_same_parent_id - Indicate if two network devices have 7918 * the same port parent identifier 7919 * @a: first network device 7920 * @b: second network device 7921 */ 7922 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 7923 { 7924 struct netdev_phys_item_id a_id = { }; 7925 struct netdev_phys_item_id b_id = { }; 7926 7927 if (dev_get_port_parent_id(a, &a_id, true) || 7928 dev_get_port_parent_id(b, &b_id, true)) 7929 return false; 7930 7931 return netdev_phys_item_id_same(&a_id, &b_id); 7932 } 7933 EXPORT_SYMBOL(netdev_port_same_parent_id); 7934 7935 /** 7936 * dev_change_proto_down - update protocol port state information 7937 * @dev: device 7938 * @proto_down: new value 7939 * 7940 * This info can be used by switch drivers to set the phys state of the 7941 * port. 7942 */ 7943 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7944 { 7945 const struct net_device_ops *ops = dev->netdev_ops; 7946 7947 if (!ops->ndo_change_proto_down) 7948 return -EOPNOTSUPP; 7949 if (!netif_device_present(dev)) 7950 return -ENODEV; 7951 return ops->ndo_change_proto_down(dev, proto_down); 7952 } 7953 EXPORT_SYMBOL(dev_change_proto_down); 7954 7955 /** 7956 * dev_change_proto_down_generic - generic implementation for 7957 * ndo_change_proto_down that sets carrier according to 7958 * proto_down. 7959 * 7960 * @dev: device 7961 * @proto_down: new value 7962 */ 7963 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 7964 { 7965 if (proto_down) 7966 netif_carrier_off(dev); 7967 else 7968 netif_carrier_on(dev); 7969 dev->proto_down = proto_down; 7970 return 0; 7971 } 7972 EXPORT_SYMBOL(dev_change_proto_down_generic); 7973 7974 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op, 7975 enum bpf_netdev_command cmd) 7976 { 7977 struct netdev_bpf xdp; 7978 7979 if (!bpf_op) 7980 return 0; 7981 7982 memset(&xdp, 0, sizeof(xdp)); 7983 xdp.command = cmd; 7984 7985 /* Query must always succeed. */ 7986 WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG); 7987 7988 return xdp.prog_id; 7989 } 7990 7991 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op, 7992 struct netlink_ext_ack *extack, u32 flags, 7993 struct bpf_prog *prog) 7994 { 7995 struct netdev_bpf xdp; 7996 7997 memset(&xdp, 0, sizeof(xdp)); 7998 if (flags & XDP_FLAGS_HW_MODE) 7999 xdp.command = XDP_SETUP_PROG_HW; 8000 else 8001 xdp.command = XDP_SETUP_PROG; 8002 xdp.extack = extack; 8003 xdp.flags = flags; 8004 xdp.prog = prog; 8005 8006 return bpf_op(dev, &xdp); 8007 } 8008 8009 static void dev_xdp_uninstall(struct net_device *dev) 8010 { 8011 struct netdev_bpf xdp; 8012 bpf_op_t ndo_bpf; 8013 8014 /* Remove generic XDP */ 8015 WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL)); 8016 8017 /* Remove from the driver */ 8018 ndo_bpf = dev->netdev_ops->ndo_bpf; 8019 if (!ndo_bpf) 8020 return; 8021 8022 memset(&xdp, 0, sizeof(xdp)); 8023 xdp.command = XDP_QUERY_PROG; 8024 WARN_ON(ndo_bpf(dev, &xdp)); 8025 if (xdp.prog_id) 8026 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8027 NULL)); 8028 8029 /* Remove HW offload */ 8030 memset(&xdp, 0, sizeof(xdp)); 8031 xdp.command = XDP_QUERY_PROG_HW; 8032 if (!ndo_bpf(dev, &xdp) && xdp.prog_id) 8033 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, 8034 NULL)); 8035 } 8036 8037 /** 8038 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 8039 * @dev: device 8040 * @extack: netlink extended ack 8041 * @fd: new program fd or negative value to clear 8042 * @flags: xdp-related flags 8043 * 8044 * Set or clear a bpf program for a device 8045 */ 8046 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 8047 int fd, u32 flags) 8048 { 8049 const struct net_device_ops *ops = dev->netdev_ops; 8050 enum bpf_netdev_command query; 8051 struct bpf_prog *prog = NULL; 8052 bpf_op_t bpf_op, bpf_chk; 8053 bool offload; 8054 int err; 8055 8056 ASSERT_RTNL(); 8057 8058 offload = flags & XDP_FLAGS_HW_MODE; 8059 query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG; 8060 8061 bpf_op = bpf_chk = ops->ndo_bpf; 8062 if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) { 8063 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode"); 8064 return -EOPNOTSUPP; 8065 } 8066 if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE)) 8067 bpf_op = generic_xdp_install; 8068 if (bpf_op == bpf_chk) 8069 bpf_chk = generic_xdp_install; 8070 8071 if (fd >= 0) { 8072 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) { 8073 NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time"); 8074 return -EEXIST; 8075 } 8076 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 8077 __dev_xdp_query(dev, bpf_op, query)) { 8078 NL_SET_ERR_MSG(extack, "XDP program already attached"); 8079 return -EBUSY; 8080 } 8081 8082 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 8083 bpf_op == ops->ndo_bpf); 8084 if (IS_ERR(prog)) 8085 return PTR_ERR(prog); 8086 8087 if (!offload && bpf_prog_is_dev_bound(prog->aux)) { 8088 NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported"); 8089 bpf_prog_put(prog); 8090 return -EINVAL; 8091 } 8092 } 8093 8094 err = dev_xdp_install(dev, bpf_op, extack, flags, prog); 8095 if (err < 0 && prog) 8096 bpf_prog_put(prog); 8097 8098 return err; 8099 } 8100 8101 /** 8102 * dev_new_index - allocate an ifindex 8103 * @net: the applicable net namespace 8104 * 8105 * Returns a suitable unique value for a new device interface 8106 * number. The caller must hold the rtnl semaphore or the 8107 * dev_base_lock to be sure it remains unique. 8108 */ 8109 static int dev_new_index(struct net *net) 8110 { 8111 int ifindex = net->ifindex; 8112 8113 for (;;) { 8114 if (++ifindex <= 0) 8115 ifindex = 1; 8116 if (!__dev_get_by_index(net, ifindex)) 8117 return net->ifindex = ifindex; 8118 } 8119 } 8120 8121 /* Delayed registration/unregisteration */ 8122 static LIST_HEAD(net_todo_list); 8123 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 8124 8125 static void net_set_todo(struct net_device *dev) 8126 { 8127 list_add_tail(&dev->todo_list, &net_todo_list); 8128 dev_net(dev)->dev_unreg_count++; 8129 } 8130 8131 static void rollback_registered_many(struct list_head *head) 8132 { 8133 struct net_device *dev, *tmp; 8134 LIST_HEAD(close_head); 8135 8136 BUG_ON(dev_boot_phase); 8137 ASSERT_RTNL(); 8138 8139 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 8140 /* Some devices call without registering 8141 * for initialization unwind. Remove those 8142 * devices and proceed with the remaining. 8143 */ 8144 if (dev->reg_state == NETREG_UNINITIALIZED) { 8145 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 8146 dev->name, dev); 8147 8148 WARN_ON(1); 8149 list_del(&dev->unreg_list); 8150 continue; 8151 } 8152 dev->dismantle = true; 8153 BUG_ON(dev->reg_state != NETREG_REGISTERED); 8154 } 8155 8156 /* If device is running, close it first. */ 8157 list_for_each_entry(dev, head, unreg_list) 8158 list_add_tail(&dev->close_list, &close_head); 8159 dev_close_many(&close_head, true); 8160 8161 list_for_each_entry(dev, head, unreg_list) { 8162 /* And unlink it from device chain. */ 8163 unlist_netdevice(dev); 8164 8165 dev->reg_state = NETREG_UNREGISTERING; 8166 } 8167 flush_all_backlogs(); 8168 8169 synchronize_net(); 8170 8171 list_for_each_entry(dev, head, unreg_list) { 8172 struct sk_buff *skb = NULL; 8173 8174 /* Shutdown queueing discipline. */ 8175 dev_shutdown(dev); 8176 8177 dev_xdp_uninstall(dev); 8178 8179 /* Notify protocols, that we are about to destroy 8180 * this device. They should clean all the things. 8181 */ 8182 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8183 8184 if (!dev->rtnl_link_ops || 8185 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8186 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 8187 GFP_KERNEL, NULL, 0); 8188 8189 /* 8190 * Flush the unicast and multicast chains 8191 */ 8192 dev_uc_flush(dev); 8193 dev_mc_flush(dev); 8194 8195 if (dev->netdev_ops->ndo_uninit) 8196 dev->netdev_ops->ndo_uninit(dev); 8197 8198 if (skb) 8199 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 8200 8201 /* Notifier chain MUST detach us all upper devices. */ 8202 WARN_ON(netdev_has_any_upper_dev(dev)); 8203 WARN_ON(netdev_has_any_lower_dev(dev)); 8204 8205 /* Remove entries from kobject tree */ 8206 netdev_unregister_kobject(dev); 8207 #ifdef CONFIG_XPS 8208 /* Remove XPS queueing entries */ 8209 netif_reset_xps_queues_gt(dev, 0); 8210 #endif 8211 } 8212 8213 synchronize_net(); 8214 8215 list_for_each_entry(dev, head, unreg_list) 8216 dev_put(dev); 8217 } 8218 8219 static void rollback_registered(struct net_device *dev) 8220 { 8221 LIST_HEAD(single); 8222 8223 list_add(&dev->unreg_list, &single); 8224 rollback_registered_many(&single); 8225 list_del(&single); 8226 } 8227 8228 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 8229 struct net_device *upper, netdev_features_t features) 8230 { 8231 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8232 netdev_features_t feature; 8233 int feature_bit; 8234 8235 for_each_netdev_feature(upper_disables, feature_bit) { 8236 feature = __NETIF_F_BIT(feature_bit); 8237 if (!(upper->wanted_features & feature) 8238 && (features & feature)) { 8239 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 8240 &feature, upper->name); 8241 features &= ~feature; 8242 } 8243 } 8244 8245 return features; 8246 } 8247 8248 static void netdev_sync_lower_features(struct net_device *upper, 8249 struct net_device *lower, netdev_features_t features) 8250 { 8251 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 8252 netdev_features_t feature; 8253 int feature_bit; 8254 8255 for_each_netdev_feature(upper_disables, feature_bit) { 8256 feature = __NETIF_F_BIT(feature_bit); 8257 if (!(features & feature) && (lower->features & feature)) { 8258 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 8259 &feature, lower->name); 8260 lower->wanted_features &= ~feature; 8261 netdev_update_features(lower); 8262 8263 if (unlikely(lower->features & feature)) 8264 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 8265 &feature, lower->name); 8266 } 8267 } 8268 } 8269 8270 static netdev_features_t netdev_fix_features(struct net_device *dev, 8271 netdev_features_t features) 8272 { 8273 /* Fix illegal checksum combinations */ 8274 if ((features & NETIF_F_HW_CSUM) && 8275 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 8276 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 8277 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 8278 } 8279 8280 /* TSO requires that SG is present as well. */ 8281 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 8282 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 8283 features &= ~NETIF_F_ALL_TSO; 8284 } 8285 8286 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 8287 !(features & NETIF_F_IP_CSUM)) { 8288 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 8289 features &= ~NETIF_F_TSO; 8290 features &= ~NETIF_F_TSO_ECN; 8291 } 8292 8293 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 8294 !(features & NETIF_F_IPV6_CSUM)) { 8295 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 8296 features &= ~NETIF_F_TSO6; 8297 } 8298 8299 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 8300 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 8301 features &= ~NETIF_F_TSO_MANGLEID; 8302 8303 /* TSO ECN requires that TSO is present as well. */ 8304 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 8305 features &= ~NETIF_F_TSO_ECN; 8306 8307 /* Software GSO depends on SG. */ 8308 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 8309 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 8310 features &= ~NETIF_F_GSO; 8311 } 8312 8313 /* GSO partial features require GSO partial be set */ 8314 if ((features & dev->gso_partial_features) && 8315 !(features & NETIF_F_GSO_PARTIAL)) { 8316 netdev_dbg(dev, 8317 "Dropping partially supported GSO features since no GSO partial.\n"); 8318 features &= ~dev->gso_partial_features; 8319 } 8320 8321 if (!(features & NETIF_F_RXCSUM)) { 8322 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 8323 * successfully merged by hardware must also have the 8324 * checksum verified by hardware. If the user does not 8325 * want to enable RXCSUM, logically, we should disable GRO_HW. 8326 */ 8327 if (features & NETIF_F_GRO_HW) { 8328 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 8329 features &= ~NETIF_F_GRO_HW; 8330 } 8331 } 8332 8333 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 8334 if (features & NETIF_F_RXFCS) { 8335 if (features & NETIF_F_LRO) { 8336 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 8337 features &= ~NETIF_F_LRO; 8338 } 8339 8340 if (features & NETIF_F_GRO_HW) { 8341 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 8342 features &= ~NETIF_F_GRO_HW; 8343 } 8344 } 8345 8346 return features; 8347 } 8348 8349 int __netdev_update_features(struct net_device *dev) 8350 { 8351 struct net_device *upper, *lower; 8352 netdev_features_t features; 8353 struct list_head *iter; 8354 int err = -1; 8355 8356 ASSERT_RTNL(); 8357 8358 features = netdev_get_wanted_features(dev); 8359 8360 if (dev->netdev_ops->ndo_fix_features) 8361 features = dev->netdev_ops->ndo_fix_features(dev, features); 8362 8363 /* driver might be less strict about feature dependencies */ 8364 features = netdev_fix_features(dev, features); 8365 8366 /* some features can't be enabled if they're off an an upper device */ 8367 netdev_for_each_upper_dev_rcu(dev, upper, iter) 8368 features = netdev_sync_upper_features(dev, upper, features); 8369 8370 if (dev->features == features) 8371 goto sync_lower; 8372 8373 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 8374 &dev->features, &features); 8375 8376 if (dev->netdev_ops->ndo_set_features) 8377 err = dev->netdev_ops->ndo_set_features(dev, features); 8378 else 8379 err = 0; 8380 8381 if (unlikely(err < 0)) { 8382 netdev_err(dev, 8383 "set_features() failed (%d); wanted %pNF, left %pNF\n", 8384 err, &features, &dev->features); 8385 /* return non-0 since some features might have changed and 8386 * it's better to fire a spurious notification than miss it 8387 */ 8388 return -1; 8389 } 8390 8391 sync_lower: 8392 /* some features must be disabled on lower devices when disabled 8393 * on an upper device (think: bonding master or bridge) 8394 */ 8395 netdev_for_each_lower_dev(dev, lower, iter) 8396 netdev_sync_lower_features(dev, lower, features); 8397 8398 if (!err) { 8399 netdev_features_t diff = features ^ dev->features; 8400 8401 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 8402 /* udp_tunnel_{get,drop}_rx_info both need 8403 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 8404 * device, or they won't do anything. 8405 * Thus we need to update dev->features 8406 * *before* calling udp_tunnel_get_rx_info, 8407 * but *after* calling udp_tunnel_drop_rx_info. 8408 */ 8409 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 8410 dev->features = features; 8411 udp_tunnel_get_rx_info(dev); 8412 } else { 8413 udp_tunnel_drop_rx_info(dev); 8414 } 8415 } 8416 8417 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 8418 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 8419 dev->features = features; 8420 err |= vlan_get_rx_ctag_filter_info(dev); 8421 } else { 8422 vlan_drop_rx_ctag_filter_info(dev); 8423 } 8424 } 8425 8426 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 8427 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 8428 dev->features = features; 8429 err |= vlan_get_rx_stag_filter_info(dev); 8430 } else { 8431 vlan_drop_rx_stag_filter_info(dev); 8432 } 8433 } 8434 8435 dev->features = features; 8436 } 8437 8438 return err < 0 ? 0 : 1; 8439 } 8440 8441 /** 8442 * netdev_update_features - recalculate device features 8443 * @dev: the device to check 8444 * 8445 * Recalculate dev->features set and send notifications if it 8446 * has changed. Should be called after driver or hardware dependent 8447 * conditions might have changed that influence the features. 8448 */ 8449 void netdev_update_features(struct net_device *dev) 8450 { 8451 if (__netdev_update_features(dev)) 8452 netdev_features_change(dev); 8453 } 8454 EXPORT_SYMBOL(netdev_update_features); 8455 8456 /** 8457 * netdev_change_features - recalculate device features 8458 * @dev: the device to check 8459 * 8460 * Recalculate dev->features set and send notifications even 8461 * if they have not changed. Should be called instead of 8462 * netdev_update_features() if also dev->vlan_features might 8463 * have changed to allow the changes to be propagated to stacked 8464 * VLAN devices. 8465 */ 8466 void netdev_change_features(struct net_device *dev) 8467 { 8468 __netdev_update_features(dev); 8469 netdev_features_change(dev); 8470 } 8471 EXPORT_SYMBOL(netdev_change_features); 8472 8473 /** 8474 * netif_stacked_transfer_operstate - transfer operstate 8475 * @rootdev: the root or lower level device to transfer state from 8476 * @dev: the device to transfer operstate to 8477 * 8478 * Transfer operational state from root to device. This is normally 8479 * called when a stacking relationship exists between the root 8480 * device and the device(a leaf device). 8481 */ 8482 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 8483 struct net_device *dev) 8484 { 8485 if (rootdev->operstate == IF_OPER_DORMANT) 8486 netif_dormant_on(dev); 8487 else 8488 netif_dormant_off(dev); 8489 8490 if (netif_carrier_ok(rootdev)) 8491 netif_carrier_on(dev); 8492 else 8493 netif_carrier_off(dev); 8494 } 8495 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 8496 8497 static int netif_alloc_rx_queues(struct net_device *dev) 8498 { 8499 unsigned int i, count = dev->num_rx_queues; 8500 struct netdev_rx_queue *rx; 8501 size_t sz = count * sizeof(*rx); 8502 int err = 0; 8503 8504 BUG_ON(count < 1); 8505 8506 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8507 if (!rx) 8508 return -ENOMEM; 8509 8510 dev->_rx = rx; 8511 8512 for (i = 0; i < count; i++) { 8513 rx[i].dev = dev; 8514 8515 /* XDP RX-queue setup */ 8516 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 8517 if (err < 0) 8518 goto err_rxq_info; 8519 } 8520 return 0; 8521 8522 err_rxq_info: 8523 /* Rollback successful reg's and free other resources */ 8524 while (i--) 8525 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 8526 kvfree(dev->_rx); 8527 dev->_rx = NULL; 8528 return err; 8529 } 8530 8531 static void netif_free_rx_queues(struct net_device *dev) 8532 { 8533 unsigned int i, count = dev->num_rx_queues; 8534 8535 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 8536 if (!dev->_rx) 8537 return; 8538 8539 for (i = 0; i < count; i++) 8540 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 8541 8542 kvfree(dev->_rx); 8543 } 8544 8545 static void netdev_init_one_queue(struct net_device *dev, 8546 struct netdev_queue *queue, void *_unused) 8547 { 8548 /* Initialize queue lock */ 8549 spin_lock_init(&queue->_xmit_lock); 8550 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 8551 queue->xmit_lock_owner = -1; 8552 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 8553 queue->dev = dev; 8554 #ifdef CONFIG_BQL 8555 dql_init(&queue->dql, HZ); 8556 #endif 8557 } 8558 8559 static void netif_free_tx_queues(struct net_device *dev) 8560 { 8561 kvfree(dev->_tx); 8562 } 8563 8564 static int netif_alloc_netdev_queues(struct net_device *dev) 8565 { 8566 unsigned int count = dev->num_tx_queues; 8567 struct netdev_queue *tx; 8568 size_t sz = count * sizeof(*tx); 8569 8570 if (count < 1 || count > 0xffff) 8571 return -EINVAL; 8572 8573 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8574 if (!tx) 8575 return -ENOMEM; 8576 8577 dev->_tx = tx; 8578 8579 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 8580 spin_lock_init(&dev->tx_global_lock); 8581 8582 return 0; 8583 } 8584 8585 void netif_tx_stop_all_queues(struct net_device *dev) 8586 { 8587 unsigned int i; 8588 8589 for (i = 0; i < dev->num_tx_queues; i++) { 8590 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 8591 8592 netif_tx_stop_queue(txq); 8593 } 8594 } 8595 EXPORT_SYMBOL(netif_tx_stop_all_queues); 8596 8597 /** 8598 * register_netdevice - register a network device 8599 * @dev: device to register 8600 * 8601 * Take a completed network device structure and add it to the kernel 8602 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8603 * chain. 0 is returned on success. A negative errno code is returned 8604 * on a failure to set up the device, or if the name is a duplicate. 8605 * 8606 * Callers must hold the rtnl semaphore. You may want 8607 * register_netdev() instead of this. 8608 * 8609 * BUGS: 8610 * The locking appears insufficient to guarantee two parallel registers 8611 * will not get the same name. 8612 */ 8613 8614 int register_netdevice(struct net_device *dev) 8615 { 8616 int ret; 8617 struct net *net = dev_net(dev); 8618 8619 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 8620 NETDEV_FEATURE_COUNT); 8621 BUG_ON(dev_boot_phase); 8622 ASSERT_RTNL(); 8623 8624 might_sleep(); 8625 8626 /* When net_device's are persistent, this will be fatal. */ 8627 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 8628 BUG_ON(!net); 8629 8630 spin_lock_init(&dev->addr_list_lock); 8631 netdev_set_addr_lockdep_class(dev); 8632 8633 ret = dev_get_valid_name(net, dev, dev->name); 8634 if (ret < 0) 8635 goto out; 8636 8637 /* Init, if this function is available */ 8638 if (dev->netdev_ops->ndo_init) { 8639 ret = dev->netdev_ops->ndo_init(dev); 8640 if (ret) { 8641 if (ret > 0) 8642 ret = -EIO; 8643 goto out; 8644 } 8645 } 8646 8647 if (((dev->hw_features | dev->features) & 8648 NETIF_F_HW_VLAN_CTAG_FILTER) && 8649 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 8650 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 8651 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 8652 ret = -EINVAL; 8653 goto err_uninit; 8654 } 8655 8656 ret = -EBUSY; 8657 if (!dev->ifindex) 8658 dev->ifindex = dev_new_index(net); 8659 else if (__dev_get_by_index(net, dev->ifindex)) 8660 goto err_uninit; 8661 8662 /* Transfer changeable features to wanted_features and enable 8663 * software offloads (GSO and GRO). 8664 */ 8665 dev->hw_features |= NETIF_F_SOFT_FEATURES; 8666 dev->features |= NETIF_F_SOFT_FEATURES; 8667 8668 if (dev->netdev_ops->ndo_udp_tunnel_add) { 8669 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8670 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 8671 } 8672 8673 dev->wanted_features = dev->features & dev->hw_features; 8674 8675 if (!(dev->flags & IFF_LOOPBACK)) 8676 dev->hw_features |= NETIF_F_NOCACHE_COPY; 8677 8678 /* If IPv4 TCP segmentation offload is supported we should also 8679 * allow the device to enable segmenting the frame with the option 8680 * of ignoring a static IP ID value. This doesn't enable the 8681 * feature itself but allows the user to enable it later. 8682 */ 8683 if (dev->hw_features & NETIF_F_TSO) 8684 dev->hw_features |= NETIF_F_TSO_MANGLEID; 8685 if (dev->vlan_features & NETIF_F_TSO) 8686 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 8687 if (dev->mpls_features & NETIF_F_TSO) 8688 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 8689 if (dev->hw_enc_features & NETIF_F_TSO) 8690 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 8691 8692 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 8693 */ 8694 dev->vlan_features |= NETIF_F_HIGHDMA; 8695 8696 /* Make NETIF_F_SG inheritable to tunnel devices. 8697 */ 8698 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 8699 8700 /* Make NETIF_F_SG inheritable to MPLS. 8701 */ 8702 dev->mpls_features |= NETIF_F_SG; 8703 8704 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 8705 ret = notifier_to_errno(ret); 8706 if (ret) 8707 goto err_uninit; 8708 8709 ret = netdev_register_kobject(dev); 8710 if (ret) 8711 goto err_uninit; 8712 dev->reg_state = NETREG_REGISTERED; 8713 8714 __netdev_update_features(dev); 8715 8716 /* 8717 * Default initial state at registry is that the 8718 * device is present. 8719 */ 8720 8721 set_bit(__LINK_STATE_PRESENT, &dev->state); 8722 8723 linkwatch_init_dev(dev); 8724 8725 dev_init_scheduler(dev); 8726 dev_hold(dev); 8727 list_netdevice(dev); 8728 add_device_randomness(dev->dev_addr, dev->addr_len); 8729 8730 /* If the device has permanent device address, driver should 8731 * set dev_addr and also addr_assign_type should be set to 8732 * NET_ADDR_PERM (default value). 8733 */ 8734 if (dev->addr_assign_type == NET_ADDR_PERM) 8735 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 8736 8737 /* Notify protocols, that a new device appeared. */ 8738 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 8739 ret = notifier_to_errno(ret); 8740 if (ret) { 8741 rollback_registered(dev); 8742 dev->reg_state = NETREG_UNREGISTERED; 8743 } 8744 /* 8745 * Prevent userspace races by waiting until the network 8746 * device is fully setup before sending notifications. 8747 */ 8748 if (!dev->rtnl_link_ops || 8749 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 8750 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8751 8752 out: 8753 return ret; 8754 8755 err_uninit: 8756 if (dev->netdev_ops->ndo_uninit) 8757 dev->netdev_ops->ndo_uninit(dev); 8758 if (dev->priv_destructor) 8759 dev->priv_destructor(dev); 8760 goto out; 8761 } 8762 EXPORT_SYMBOL(register_netdevice); 8763 8764 /** 8765 * init_dummy_netdev - init a dummy network device for NAPI 8766 * @dev: device to init 8767 * 8768 * This takes a network device structure and initialize the minimum 8769 * amount of fields so it can be used to schedule NAPI polls without 8770 * registering a full blown interface. This is to be used by drivers 8771 * that need to tie several hardware interfaces to a single NAPI 8772 * poll scheduler due to HW limitations. 8773 */ 8774 int init_dummy_netdev(struct net_device *dev) 8775 { 8776 /* Clear everything. Note we don't initialize spinlocks 8777 * are they aren't supposed to be taken by any of the 8778 * NAPI code and this dummy netdev is supposed to be 8779 * only ever used for NAPI polls 8780 */ 8781 memset(dev, 0, sizeof(struct net_device)); 8782 8783 /* make sure we BUG if trying to hit standard 8784 * register/unregister code path 8785 */ 8786 dev->reg_state = NETREG_DUMMY; 8787 8788 /* NAPI wants this */ 8789 INIT_LIST_HEAD(&dev->napi_list); 8790 8791 /* a dummy interface is started by default */ 8792 set_bit(__LINK_STATE_PRESENT, &dev->state); 8793 set_bit(__LINK_STATE_START, &dev->state); 8794 8795 /* napi_busy_loop stats accounting wants this */ 8796 dev_net_set(dev, &init_net); 8797 8798 /* Note : We dont allocate pcpu_refcnt for dummy devices, 8799 * because users of this 'device' dont need to change 8800 * its refcount. 8801 */ 8802 8803 return 0; 8804 } 8805 EXPORT_SYMBOL_GPL(init_dummy_netdev); 8806 8807 8808 /** 8809 * register_netdev - register a network device 8810 * @dev: device to register 8811 * 8812 * Take a completed network device structure and add it to the kernel 8813 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 8814 * chain. 0 is returned on success. A negative errno code is returned 8815 * on a failure to set up the device, or if the name is a duplicate. 8816 * 8817 * This is a wrapper around register_netdevice that takes the rtnl semaphore 8818 * and expands the device name if you passed a format string to 8819 * alloc_netdev. 8820 */ 8821 int register_netdev(struct net_device *dev) 8822 { 8823 int err; 8824 8825 if (rtnl_lock_killable()) 8826 return -EINTR; 8827 err = register_netdevice(dev); 8828 rtnl_unlock(); 8829 return err; 8830 } 8831 EXPORT_SYMBOL(register_netdev); 8832 8833 int netdev_refcnt_read(const struct net_device *dev) 8834 { 8835 int i, refcnt = 0; 8836 8837 for_each_possible_cpu(i) 8838 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 8839 return refcnt; 8840 } 8841 EXPORT_SYMBOL(netdev_refcnt_read); 8842 8843 /** 8844 * netdev_wait_allrefs - wait until all references are gone. 8845 * @dev: target net_device 8846 * 8847 * This is called when unregistering network devices. 8848 * 8849 * Any protocol or device that holds a reference should register 8850 * for netdevice notification, and cleanup and put back the 8851 * reference if they receive an UNREGISTER event. 8852 * We can get stuck here if buggy protocols don't correctly 8853 * call dev_put. 8854 */ 8855 static void netdev_wait_allrefs(struct net_device *dev) 8856 { 8857 unsigned long rebroadcast_time, warning_time; 8858 int refcnt; 8859 8860 linkwatch_forget_dev(dev); 8861 8862 rebroadcast_time = warning_time = jiffies; 8863 refcnt = netdev_refcnt_read(dev); 8864 8865 while (refcnt != 0) { 8866 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 8867 rtnl_lock(); 8868 8869 /* Rebroadcast unregister notification */ 8870 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8871 8872 __rtnl_unlock(); 8873 rcu_barrier(); 8874 rtnl_lock(); 8875 8876 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 8877 &dev->state)) { 8878 /* We must not have linkwatch events 8879 * pending on unregister. If this 8880 * happens, we simply run the queue 8881 * unscheduled, resulting in a noop 8882 * for this device. 8883 */ 8884 linkwatch_run_queue(); 8885 } 8886 8887 __rtnl_unlock(); 8888 8889 rebroadcast_time = jiffies; 8890 } 8891 8892 msleep(250); 8893 8894 refcnt = netdev_refcnt_read(dev); 8895 8896 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 8897 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 8898 dev->name, refcnt); 8899 warning_time = jiffies; 8900 } 8901 } 8902 } 8903 8904 /* The sequence is: 8905 * 8906 * rtnl_lock(); 8907 * ... 8908 * register_netdevice(x1); 8909 * register_netdevice(x2); 8910 * ... 8911 * unregister_netdevice(y1); 8912 * unregister_netdevice(y2); 8913 * ... 8914 * rtnl_unlock(); 8915 * free_netdev(y1); 8916 * free_netdev(y2); 8917 * 8918 * We are invoked by rtnl_unlock(). 8919 * This allows us to deal with problems: 8920 * 1) We can delete sysfs objects which invoke hotplug 8921 * without deadlocking with linkwatch via keventd. 8922 * 2) Since we run with the RTNL semaphore not held, we can sleep 8923 * safely in order to wait for the netdev refcnt to drop to zero. 8924 * 8925 * We must not return until all unregister events added during 8926 * the interval the lock was held have been completed. 8927 */ 8928 void netdev_run_todo(void) 8929 { 8930 struct list_head list; 8931 8932 /* Snapshot list, allow later requests */ 8933 list_replace_init(&net_todo_list, &list); 8934 8935 __rtnl_unlock(); 8936 8937 8938 /* Wait for rcu callbacks to finish before next phase */ 8939 if (!list_empty(&list)) 8940 rcu_barrier(); 8941 8942 while (!list_empty(&list)) { 8943 struct net_device *dev 8944 = list_first_entry(&list, struct net_device, todo_list); 8945 list_del(&dev->todo_list); 8946 8947 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 8948 pr_err("network todo '%s' but state %d\n", 8949 dev->name, dev->reg_state); 8950 dump_stack(); 8951 continue; 8952 } 8953 8954 dev->reg_state = NETREG_UNREGISTERED; 8955 8956 netdev_wait_allrefs(dev); 8957 8958 /* paranoia */ 8959 BUG_ON(netdev_refcnt_read(dev)); 8960 BUG_ON(!list_empty(&dev->ptype_all)); 8961 BUG_ON(!list_empty(&dev->ptype_specific)); 8962 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 8963 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 8964 #if IS_ENABLED(CONFIG_DECNET) 8965 WARN_ON(dev->dn_ptr); 8966 #endif 8967 if (dev->priv_destructor) 8968 dev->priv_destructor(dev); 8969 if (dev->needs_free_netdev) 8970 free_netdev(dev); 8971 8972 /* Report a network device has been unregistered */ 8973 rtnl_lock(); 8974 dev_net(dev)->dev_unreg_count--; 8975 __rtnl_unlock(); 8976 wake_up(&netdev_unregistering_wq); 8977 8978 /* Free network device */ 8979 kobject_put(&dev->dev.kobj); 8980 } 8981 } 8982 8983 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 8984 * all the same fields in the same order as net_device_stats, with only 8985 * the type differing, but rtnl_link_stats64 may have additional fields 8986 * at the end for newer counters. 8987 */ 8988 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 8989 const struct net_device_stats *netdev_stats) 8990 { 8991 #if BITS_PER_LONG == 64 8992 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 8993 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 8994 /* zero out counters that only exist in rtnl_link_stats64 */ 8995 memset((char *)stats64 + sizeof(*netdev_stats), 0, 8996 sizeof(*stats64) - sizeof(*netdev_stats)); 8997 #else 8998 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 8999 const unsigned long *src = (const unsigned long *)netdev_stats; 9000 u64 *dst = (u64 *)stats64; 9001 9002 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 9003 for (i = 0; i < n; i++) 9004 dst[i] = src[i]; 9005 /* zero out counters that only exist in rtnl_link_stats64 */ 9006 memset((char *)stats64 + n * sizeof(u64), 0, 9007 sizeof(*stats64) - n * sizeof(u64)); 9008 #endif 9009 } 9010 EXPORT_SYMBOL(netdev_stats_to_stats64); 9011 9012 /** 9013 * dev_get_stats - get network device statistics 9014 * @dev: device to get statistics from 9015 * @storage: place to store stats 9016 * 9017 * Get network statistics from device. Return @storage. 9018 * The device driver may provide its own method by setting 9019 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 9020 * otherwise the internal statistics structure is used. 9021 */ 9022 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 9023 struct rtnl_link_stats64 *storage) 9024 { 9025 const struct net_device_ops *ops = dev->netdev_ops; 9026 9027 if (ops->ndo_get_stats64) { 9028 memset(storage, 0, sizeof(*storage)); 9029 ops->ndo_get_stats64(dev, storage); 9030 } else if (ops->ndo_get_stats) { 9031 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 9032 } else { 9033 netdev_stats_to_stats64(storage, &dev->stats); 9034 } 9035 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 9036 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 9037 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 9038 return storage; 9039 } 9040 EXPORT_SYMBOL(dev_get_stats); 9041 9042 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 9043 { 9044 struct netdev_queue *queue = dev_ingress_queue(dev); 9045 9046 #ifdef CONFIG_NET_CLS_ACT 9047 if (queue) 9048 return queue; 9049 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 9050 if (!queue) 9051 return NULL; 9052 netdev_init_one_queue(dev, queue, NULL); 9053 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 9054 queue->qdisc_sleeping = &noop_qdisc; 9055 rcu_assign_pointer(dev->ingress_queue, queue); 9056 #endif 9057 return queue; 9058 } 9059 9060 static const struct ethtool_ops default_ethtool_ops; 9061 9062 void netdev_set_default_ethtool_ops(struct net_device *dev, 9063 const struct ethtool_ops *ops) 9064 { 9065 if (dev->ethtool_ops == &default_ethtool_ops) 9066 dev->ethtool_ops = ops; 9067 } 9068 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 9069 9070 void netdev_freemem(struct net_device *dev) 9071 { 9072 char *addr = (char *)dev - dev->padded; 9073 9074 kvfree(addr); 9075 } 9076 9077 /** 9078 * alloc_netdev_mqs - allocate network device 9079 * @sizeof_priv: size of private data to allocate space for 9080 * @name: device name format string 9081 * @name_assign_type: origin of device name 9082 * @setup: callback to initialize device 9083 * @txqs: the number of TX subqueues to allocate 9084 * @rxqs: the number of RX subqueues to allocate 9085 * 9086 * Allocates a struct net_device with private data area for driver use 9087 * and performs basic initialization. Also allocates subqueue structs 9088 * for each queue on the device. 9089 */ 9090 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 9091 unsigned char name_assign_type, 9092 void (*setup)(struct net_device *), 9093 unsigned int txqs, unsigned int rxqs) 9094 { 9095 struct net_device *dev; 9096 unsigned int alloc_size; 9097 struct net_device *p; 9098 9099 BUG_ON(strlen(name) >= sizeof(dev->name)); 9100 9101 if (txqs < 1) { 9102 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 9103 return NULL; 9104 } 9105 9106 if (rxqs < 1) { 9107 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 9108 return NULL; 9109 } 9110 9111 alloc_size = sizeof(struct net_device); 9112 if (sizeof_priv) { 9113 /* ensure 32-byte alignment of private area */ 9114 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 9115 alloc_size += sizeof_priv; 9116 } 9117 /* ensure 32-byte alignment of whole construct */ 9118 alloc_size += NETDEV_ALIGN - 1; 9119 9120 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9121 if (!p) 9122 return NULL; 9123 9124 dev = PTR_ALIGN(p, NETDEV_ALIGN); 9125 dev->padded = (char *)dev - (char *)p; 9126 9127 dev->pcpu_refcnt = alloc_percpu(int); 9128 if (!dev->pcpu_refcnt) 9129 goto free_dev; 9130 9131 if (dev_addr_init(dev)) 9132 goto free_pcpu; 9133 9134 dev_mc_init(dev); 9135 dev_uc_init(dev); 9136 9137 dev_net_set(dev, &init_net); 9138 9139 dev->gso_max_size = GSO_MAX_SIZE; 9140 dev->gso_max_segs = GSO_MAX_SEGS; 9141 9142 INIT_LIST_HEAD(&dev->napi_list); 9143 INIT_LIST_HEAD(&dev->unreg_list); 9144 INIT_LIST_HEAD(&dev->close_list); 9145 INIT_LIST_HEAD(&dev->link_watch_list); 9146 INIT_LIST_HEAD(&dev->adj_list.upper); 9147 INIT_LIST_HEAD(&dev->adj_list.lower); 9148 INIT_LIST_HEAD(&dev->ptype_all); 9149 INIT_LIST_HEAD(&dev->ptype_specific); 9150 #ifdef CONFIG_NET_SCHED 9151 hash_init(dev->qdisc_hash); 9152 #endif 9153 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 9154 setup(dev); 9155 9156 if (!dev->tx_queue_len) { 9157 dev->priv_flags |= IFF_NO_QUEUE; 9158 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 9159 } 9160 9161 dev->num_tx_queues = txqs; 9162 dev->real_num_tx_queues = txqs; 9163 if (netif_alloc_netdev_queues(dev)) 9164 goto free_all; 9165 9166 dev->num_rx_queues = rxqs; 9167 dev->real_num_rx_queues = rxqs; 9168 if (netif_alloc_rx_queues(dev)) 9169 goto free_all; 9170 9171 strcpy(dev->name, name); 9172 dev->name_assign_type = name_assign_type; 9173 dev->group = INIT_NETDEV_GROUP; 9174 if (!dev->ethtool_ops) 9175 dev->ethtool_ops = &default_ethtool_ops; 9176 9177 nf_hook_ingress_init(dev); 9178 9179 return dev; 9180 9181 free_all: 9182 free_netdev(dev); 9183 return NULL; 9184 9185 free_pcpu: 9186 free_percpu(dev->pcpu_refcnt); 9187 free_dev: 9188 netdev_freemem(dev); 9189 return NULL; 9190 } 9191 EXPORT_SYMBOL(alloc_netdev_mqs); 9192 9193 /** 9194 * free_netdev - free network device 9195 * @dev: device 9196 * 9197 * This function does the last stage of destroying an allocated device 9198 * interface. The reference to the device object is released. If this 9199 * is the last reference then it will be freed.Must be called in process 9200 * context. 9201 */ 9202 void free_netdev(struct net_device *dev) 9203 { 9204 struct napi_struct *p, *n; 9205 9206 might_sleep(); 9207 netif_free_tx_queues(dev); 9208 netif_free_rx_queues(dev); 9209 9210 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 9211 9212 /* Flush device addresses */ 9213 dev_addr_flush(dev); 9214 9215 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 9216 netif_napi_del(p); 9217 9218 free_percpu(dev->pcpu_refcnt); 9219 dev->pcpu_refcnt = NULL; 9220 9221 /* Compatibility with error handling in drivers */ 9222 if (dev->reg_state == NETREG_UNINITIALIZED) { 9223 netdev_freemem(dev); 9224 return; 9225 } 9226 9227 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 9228 dev->reg_state = NETREG_RELEASED; 9229 9230 /* will free via device release */ 9231 put_device(&dev->dev); 9232 } 9233 EXPORT_SYMBOL(free_netdev); 9234 9235 /** 9236 * synchronize_net - Synchronize with packet receive processing 9237 * 9238 * Wait for packets currently being received to be done. 9239 * Does not block later packets from starting. 9240 */ 9241 void synchronize_net(void) 9242 { 9243 might_sleep(); 9244 if (rtnl_is_locked()) 9245 synchronize_rcu_expedited(); 9246 else 9247 synchronize_rcu(); 9248 } 9249 EXPORT_SYMBOL(synchronize_net); 9250 9251 /** 9252 * unregister_netdevice_queue - remove device from the kernel 9253 * @dev: device 9254 * @head: list 9255 * 9256 * This function shuts down a device interface and removes it 9257 * from the kernel tables. 9258 * If head not NULL, device is queued to be unregistered later. 9259 * 9260 * Callers must hold the rtnl semaphore. You may want 9261 * unregister_netdev() instead of this. 9262 */ 9263 9264 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 9265 { 9266 ASSERT_RTNL(); 9267 9268 if (head) { 9269 list_move_tail(&dev->unreg_list, head); 9270 } else { 9271 rollback_registered(dev); 9272 /* Finish processing unregister after unlock */ 9273 net_set_todo(dev); 9274 } 9275 } 9276 EXPORT_SYMBOL(unregister_netdevice_queue); 9277 9278 /** 9279 * unregister_netdevice_many - unregister many devices 9280 * @head: list of devices 9281 * 9282 * Note: As most callers use a stack allocated list_head, 9283 * we force a list_del() to make sure stack wont be corrupted later. 9284 */ 9285 void unregister_netdevice_many(struct list_head *head) 9286 { 9287 struct net_device *dev; 9288 9289 if (!list_empty(head)) { 9290 rollback_registered_many(head); 9291 list_for_each_entry(dev, head, unreg_list) 9292 net_set_todo(dev); 9293 list_del(head); 9294 } 9295 } 9296 EXPORT_SYMBOL(unregister_netdevice_many); 9297 9298 /** 9299 * unregister_netdev - remove device from the kernel 9300 * @dev: device 9301 * 9302 * This function shuts down a device interface and removes it 9303 * from the kernel tables. 9304 * 9305 * This is just a wrapper for unregister_netdevice that takes 9306 * the rtnl semaphore. In general you want to use this and not 9307 * unregister_netdevice. 9308 */ 9309 void unregister_netdev(struct net_device *dev) 9310 { 9311 rtnl_lock(); 9312 unregister_netdevice(dev); 9313 rtnl_unlock(); 9314 } 9315 EXPORT_SYMBOL(unregister_netdev); 9316 9317 /** 9318 * dev_change_net_namespace - move device to different nethost namespace 9319 * @dev: device 9320 * @net: network namespace 9321 * @pat: If not NULL name pattern to try if the current device name 9322 * is already taken in the destination network namespace. 9323 * 9324 * This function shuts down a device interface and moves it 9325 * to a new network namespace. On success 0 is returned, on 9326 * a failure a netagive errno code is returned. 9327 * 9328 * Callers must hold the rtnl semaphore. 9329 */ 9330 9331 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 9332 { 9333 int err, new_nsid, new_ifindex; 9334 9335 ASSERT_RTNL(); 9336 9337 /* Don't allow namespace local devices to be moved. */ 9338 err = -EINVAL; 9339 if (dev->features & NETIF_F_NETNS_LOCAL) 9340 goto out; 9341 9342 /* Ensure the device has been registrered */ 9343 if (dev->reg_state != NETREG_REGISTERED) 9344 goto out; 9345 9346 /* Get out if there is nothing todo */ 9347 err = 0; 9348 if (net_eq(dev_net(dev), net)) 9349 goto out; 9350 9351 /* Pick the destination device name, and ensure 9352 * we can use it in the destination network namespace. 9353 */ 9354 err = -EEXIST; 9355 if (__dev_get_by_name(net, dev->name)) { 9356 /* We get here if we can't use the current device name */ 9357 if (!pat) 9358 goto out; 9359 err = dev_get_valid_name(net, dev, pat); 9360 if (err < 0) 9361 goto out; 9362 } 9363 9364 /* 9365 * And now a mini version of register_netdevice unregister_netdevice. 9366 */ 9367 9368 /* If device is running close it first. */ 9369 dev_close(dev); 9370 9371 /* And unlink it from device chain */ 9372 unlist_netdevice(dev); 9373 9374 synchronize_net(); 9375 9376 /* Shutdown queueing discipline. */ 9377 dev_shutdown(dev); 9378 9379 /* Notify protocols, that we are about to destroy 9380 * this device. They should clean all the things. 9381 * 9382 * Note that dev->reg_state stays at NETREG_REGISTERED. 9383 * This is wanted because this way 8021q and macvlan know 9384 * the device is just moving and can keep their slaves up. 9385 */ 9386 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9387 rcu_barrier(); 9388 9389 new_nsid = peernet2id_alloc(dev_net(dev), net); 9390 /* If there is an ifindex conflict assign a new one */ 9391 if (__dev_get_by_index(net, dev->ifindex)) 9392 new_ifindex = dev_new_index(net); 9393 else 9394 new_ifindex = dev->ifindex; 9395 9396 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 9397 new_ifindex); 9398 9399 /* 9400 * Flush the unicast and multicast chains 9401 */ 9402 dev_uc_flush(dev); 9403 dev_mc_flush(dev); 9404 9405 /* Send a netdev-removed uevent to the old namespace */ 9406 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 9407 netdev_adjacent_del_links(dev); 9408 9409 /* Actually switch the network namespace */ 9410 dev_net_set(dev, net); 9411 dev->ifindex = new_ifindex; 9412 9413 /* Send a netdev-add uevent to the new namespace */ 9414 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 9415 netdev_adjacent_add_links(dev); 9416 9417 /* Fixup kobjects */ 9418 err = device_rename(&dev->dev, dev->name); 9419 WARN_ON(err); 9420 9421 /* Add the device back in the hashes */ 9422 list_netdevice(dev); 9423 9424 /* Notify protocols, that a new device appeared. */ 9425 call_netdevice_notifiers(NETDEV_REGISTER, dev); 9426 9427 /* 9428 * Prevent userspace races by waiting until the network 9429 * device is fully setup before sending notifications. 9430 */ 9431 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 9432 9433 synchronize_net(); 9434 err = 0; 9435 out: 9436 return err; 9437 } 9438 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 9439 9440 static int dev_cpu_dead(unsigned int oldcpu) 9441 { 9442 struct sk_buff **list_skb; 9443 struct sk_buff *skb; 9444 unsigned int cpu; 9445 struct softnet_data *sd, *oldsd, *remsd = NULL; 9446 9447 local_irq_disable(); 9448 cpu = smp_processor_id(); 9449 sd = &per_cpu(softnet_data, cpu); 9450 oldsd = &per_cpu(softnet_data, oldcpu); 9451 9452 /* Find end of our completion_queue. */ 9453 list_skb = &sd->completion_queue; 9454 while (*list_skb) 9455 list_skb = &(*list_skb)->next; 9456 /* Append completion queue from offline CPU. */ 9457 *list_skb = oldsd->completion_queue; 9458 oldsd->completion_queue = NULL; 9459 9460 /* Append output queue from offline CPU. */ 9461 if (oldsd->output_queue) { 9462 *sd->output_queue_tailp = oldsd->output_queue; 9463 sd->output_queue_tailp = oldsd->output_queue_tailp; 9464 oldsd->output_queue = NULL; 9465 oldsd->output_queue_tailp = &oldsd->output_queue; 9466 } 9467 /* Append NAPI poll list from offline CPU, with one exception : 9468 * process_backlog() must be called by cpu owning percpu backlog. 9469 * We properly handle process_queue & input_pkt_queue later. 9470 */ 9471 while (!list_empty(&oldsd->poll_list)) { 9472 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 9473 struct napi_struct, 9474 poll_list); 9475 9476 list_del_init(&napi->poll_list); 9477 if (napi->poll == process_backlog) 9478 napi->state = 0; 9479 else 9480 ____napi_schedule(sd, napi); 9481 } 9482 9483 raise_softirq_irqoff(NET_TX_SOFTIRQ); 9484 local_irq_enable(); 9485 9486 #ifdef CONFIG_RPS 9487 remsd = oldsd->rps_ipi_list; 9488 oldsd->rps_ipi_list = NULL; 9489 #endif 9490 /* send out pending IPI's on offline CPU */ 9491 net_rps_send_ipi(remsd); 9492 9493 /* Process offline CPU's input_pkt_queue */ 9494 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 9495 netif_rx_ni(skb); 9496 input_queue_head_incr(oldsd); 9497 } 9498 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 9499 netif_rx_ni(skb); 9500 input_queue_head_incr(oldsd); 9501 } 9502 9503 return 0; 9504 } 9505 9506 /** 9507 * netdev_increment_features - increment feature set by one 9508 * @all: current feature set 9509 * @one: new feature set 9510 * @mask: mask feature set 9511 * 9512 * Computes a new feature set after adding a device with feature set 9513 * @one to the master device with current feature set @all. Will not 9514 * enable anything that is off in @mask. Returns the new feature set. 9515 */ 9516 netdev_features_t netdev_increment_features(netdev_features_t all, 9517 netdev_features_t one, netdev_features_t mask) 9518 { 9519 if (mask & NETIF_F_HW_CSUM) 9520 mask |= NETIF_F_CSUM_MASK; 9521 mask |= NETIF_F_VLAN_CHALLENGED; 9522 9523 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 9524 all &= one | ~NETIF_F_ALL_FOR_ALL; 9525 9526 /* If one device supports hw checksumming, set for all. */ 9527 if (all & NETIF_F_HW_CSUM) 9528 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 9529 9530 return all; 9531 } 9532 EXPORT_SYMBOL(netdev_increment_features); 9533 9534 static struct hlist_head * __net_init netdev_create_hash(void) 9535 { 9536 int i; 9537 struct hlist_head *hash; 9538 9539 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 9540 if (hash != NULL) 9541 for (i = 0; i < NETDEV_HASHENTRIES; i++) 9542 INIT_HLIST_HEAD(&hash[i]); 9543 9544 return hash; 9545 } 9546 9547 /* Initialize per network namespace state */ 9548 static int __net_init netdev_init(struct net *net) 9549 { 9550 BUILD_BUG_ON(GRO_HASH_BUCKETS > 9551 8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask)); 9552 9553 if (net != &init_net) 9554 INIT_LIST_HEAD(&net->dev_base_head); 9555 9556 net->dev_name_head = netdev_create_hash(); 9557 if (net->dev_name_head == NULL) 9558 goto err_name; 9559 9560 net->dev_index_head = netdev_create_hash(); 9561 if (net->dev_index_head == NULL) 9562 goto err_idx; 9563 9564 return 0; 9565 9566 err_idx: 9567 kfree(net->dev_name_head); 9568 err_name: 9569 return -ENOMEM; 9570 } 9571 9572 /** 9573 * netdev_drivername - network driver for the device 9574 * @dev: network device 9575 * 9576 * Determine network driver for device. 9577 */ 9578 const char *netdev_drivername(const struct net_device *dev) 9579 { 9580 const struct device_driver *driver; 9581 const struct device *parent; 9582 const char *empty = ""; 9583 9584 parent = dev->dev.parent; 9585 if (!parent) 9586 return empty; 9587 9588 driver = parent->driver; 9589 if (driver && driver->name) 9590 return driver->name; 9591 return empty; 9592 } 9593 9594 static void __netdev_printk(const char *level, const struct net_device *dev, 9595 struct va_format *vaf) 9596 { 9597 if (dev && dev->dev.parent) { 9598 dev_printk_emit(level[1] - '0', 9599 dev->dev.parent, 9600 "%s %s %s%s: %pV", 9601 dev_driver_string(dev->dev.parent), 9602 dev_name(dev->dev.parent), 9603 netdev_name(dev), netdev_reg_state(dev), 9604 vaf); 9605 } else if (dev) { 9606 printk("%s%s%s: %pV", 9607 level, netdev_name(dev), netdev_reg_state(dev), vaf); 9608 } else { 9609 printk("%s(NULL net_device): %pV", level, vaf); 9610 } 9611 } 9612 9613 void netdev_printk(const char *level, const struct net_device *dev, 9614 const char *format, ...) 9615 { 9616 struct va_format vaf; 9617 va_list args; 9618 9619 va_start(args, format); 9620 9621 vaf.fmt = format; 9622 vaf.va = &args; 9623 9624 __netdev_printk(level, dev, &vaf); 9625 9626 va_end(args); 9627 } 9628 EXPORT_SYMBOL(netdev_printk); 9629 9630 #define define_netdev_printk_level(func, level) \ 9631 void func(const struct net_device *dev, const char *fmt, ...) \ 9632 { \ 9633 struct va_format vaf; \ 9634 va_list args; \ 9635 \ 9636 va_start(args, fmt); \ 9637 \ 9638 vaf.fmt = fmt; \ 9639 vaf.va = &args; \ 9640 \ 9641 __netdev_printk(level, dev, &vaf); \ 9642 \ 9643 va_end(args); \ 9644 } \ 9645 EXPORT_SYMBOL(func); 9646 9647 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 9648 define_netdev_printk_level(netdev_alert, KERN_ALERT); 9649 define_netdev_printk_level(netdev_crit, KERN_CRIT); 9650 define_netdev_printk_level(netdev_err, KERN_ERR); 9651 define_netdev_printk_level(netdev_warn, KERN_WARNING); 9652 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 9653 define_netdev_printk_level(netdev_info, KERN_INFO); 9654 9655 static void __net_exit netdev_exit(struct net *net) 9656 { 9657 kfree(net->dev_name_head); 9658 kfree(net->dev_index_head); 9659 if (net != &init_net) 9660 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 9661 } 9662 9663 static struct pernet_operations __net_initdata netdev_net_ops = { 9664 .init = netdev_init, 9665 .exit = netdev_exit, 9666 }; 9667 9668 static void __net_exit default_device_exit(struct net *net) 9669 { 9670 struct net_device *dev, *aux; 9671 /* 9672 * Push all migratable network devices back to the 9673 * initial network namespace 9674 */ 9675 rtnl_lock(); 9676 for_each_netdev_safe(net, dev, aux) { 9677 int err; 9678 char fb_name[IFNAMSIZ]; 9679 9680 /* Ignore unmoveable devices (i.e. loopback) */ 9681 if (dev->features & NETIF_F_NETNS_LOCAL) 9682 continue; 9683 9684 /* Leave virtual devices for the generic cleanup */ 9685 if (dev->rtnl_link_ops) 9686 continue; 9687 9688 /* Push remaining network devices to init_net */ 9689 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 9690 err = dev_change_net_namespace(dev, &init_net, fb_name); 9691 if (err) { 9692 pr_emerg("%s: failed to move %s to init_net: %d\n", 9693 __func__, dev->name, err); 9694 BUG(); 9695 } 9696 } 9697 rtnl_unlock(); 9698 } 9699 9700 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 9701 { 9702 /* Return with the rtnl_lock held when there are no network 9703 * devices unregistering in any network namespace in net_list. 9704 */ 9705 struct net *net; 9706 bool unregistering; 9707 DEFINE_WAIT_FUNC(wait, woken_wake_function); 9708 9709 add_wait_queue(&netdev_unregistering_wq, &wait); 9710 for (;;) { 9711 unregistering = false; 9712 rtnl_lock(); 9713 list_for_each_entry(net, net_list, exit_list) { 9714 if (net->dev_unreg_count > 0) { 9715 unregistering = true; 9716 break; 9717 } 9718 } 9719 if (!unregistering) 9720 break; 9721 __rtnl_unlock(); 9722 9723 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 9724 } 9725 remove_wait_queue(&netdev_unregistering_wq, &wait); 9726 } 9727 9728 static void __net_exit default_device_exit_batch(struct list_head *net_list) 9729 { 9730 /* At exit all network devices most be removed from a network 9731 * namespace. Do this in the reverse order of registration. 9732 * Do this across as many network namespaces as possible to 9733 * improve batching efficiency. 9734 */ 9735 struct net_device *dev; 9736 struct net *net; 9737 LIST_HEAD(dev_kill_list); 9738 9739 /* To prevent network device cleanup code from dereferencing 9740 * loopback devices or network devices that have been freed 9741 * wait here for all pending unregistrations to complete, 9742 * before unregistring the loopback device and allowing the 9743 * network namespace be freed. 9744 * 9745 * The netdev todo list containing all network devices 9746 * unregistrations that happen in default_device_exit_batch 9747 * will run in the rtnl_unlock() at the end of 9748 * default_device_exit_batch. 9749 */ 9750 rtnl_lock_unregistering(net_list); 9751 list_for_each_entry(net, net_list, exit_list) { 9752 for_each_netdev_reverse(net, dev) { 9753 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 9754 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 9755 else 9756 unregister_netdevice_queue(dev, &dev_kill_list); 9757 } 9758 } 9759 unregister_netdevice_many(&dev_kill_list); 9760 rtnl_unlock(); 9761 } 9762 9763 static struct pernet_operations __net_initdata default_device_ops = { 9764 .exit = default_device_exit, 9765 .exit_batch = default_device_exit_batch, 9766 }; 9767 9768 /* 9769 * Initialize the DEV module. At boot time this walks the device list and 9770 * unhooks any devices that fail to initialise (normally hardware not 9771 * present) and leaves us with a valid list of present and active devices. 9772 * 9773 */ 9774 9775 /* 9776 * This is called single threaded during boot, so no need 9777 * to take the rtnl semaphore. 9778 */ 9779 static int __init net_dev_init(void) 9780 { 9781 int i, rc = -ENOMEM; 9782 9783 BUG_ON(!dev_boot_phase); 9784 9785 if (dev_proc_init()) 9786 goto out; 9787 9788 if (netdev_kobject_init()) 9789 goto out; 9790 9791 INIT_LIST_HEAD(&ptype_all); 9792 for (i = 0; i < PTYPE_HASH_SIZE; i++) 9793 INIT_LIST_HEAD(&ptype_base[i]); 9794 9795 INIT_LIST_HEAD(&offload_base); 9796 9797 if (register_pernet_subsys(&netdev_net_ops)) 9798 goto out; 9799 9800 /* 9801 * Initialise the packet receive queues. 9802 */ 9803 9804 for_each_possible_cpu(i) { 9805 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 9806 struct softnet_data *sd = &per_cpu(softnet_data, i); 9807 9808 INIT_WORK(flush, flush_backlog); 9809 9810 skb_queue_head_init(&sd->input_pkt_queue); 9811 skb_queue_head_init(&sd->process_queue); 9812 #ifdef CONFIG_XFRM_OFFLOAD 9813 skb_queue_head_init(&sd->xfrm_backlog); 9814 #endif 9815 INIT_LIST_HEAD(&sd->poll_list); 9816 sd->output_queue_tailp = &sd->output_queue; 9817 #ifdef CONFIG_RPS 9818 sd->csd.func = rps_trigger_softirq; 9819 sd->csd.info = sd; 9820 sd->cpu = i; 9821 #endif 9822 9823 init_gro_hash(&sd->backlog); 9824 sd->backlog.poll = process_backlog; 9825 sd->backlog.weight = weight_p; 9826 } 9827 9828 dev_boot_phase = 0; 9829 9830 /* The loopback device is special if any other network devices 9831 * is present in a network namespace the loopback device must 9832 * be present. Since we now dynamically allocate and free the 9833 * loopback device ensure this invariant is maintained by 9834 * keeping the loopback device as the first device on the 9835 * list of network devices. Ensuring the loopback devices 9836 * is the first device that appears and the last network device 9837 * that disappears. 9838 */ 9839 if (register_pernet_device(&loopback_net_ops)) 9840 goto out; 9841 9842 if (register_pernet_device(&default_device_ops)) 9843 goto out; 9844 9845 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 9846 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 9847 9848 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 9849 NULL, dev_cpu_dead); 9850 WARN_ON(rc < 0); 9851 rc = 0; 9852 out: 9853 return rc; 9854 } 9855 9856 subsys_initcall(net_dev_init); 9857