xref: /linux-6.15/net/core/dev.c (revision b56c8c22)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/kallsyms.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 
130 #include "net-sysfs.h"
131 
132 /*
133  *	The list of packet types we will receive (as opposed to discard)
134  *	and the routines to invoke.
135  *
136  *	Why 16. Because with 16 the only overlap we get on a hash of the
137  *	low nibble of the protocol value is RARP/SNAP/X.25.
138  *
139  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
140  *             sure which should go first, but I bet it won't make much
141  *             difference if we are running VLANs.  The good news is that
142  *             this protocol won't be in the list unless compiled in, so
143  *             the average user (w/out VLANs) will not be adversely affected.
144  *             --BLG
145  *
146  *		0800	IP
147  *		8100    802.1Q VLAN
148  *		0001	802.3
149  *		0002	AX.25
150  *		0004	802.2
151  *		8035	RARP
152  *		0005	SNAP
153  *		0805	X.25
154  *		0806	ARP
155  *		8137	IPX
156  *		0009	Localtalk
157  *		86DD	IPv6
158  */
159 
160 #define PTYPE_HASH_SIZE	(16)
161 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
162 
163 static DEFINE_SPINLOCK(ptype_lock);
164 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
165 static struct list_head ptype_all __read_mostly;	/* Taps */
166 
167 #ifdef CONFIG_NET_DMA
168 struct net_dma {
169 	struct dma_client client;
170 	spinlock_t lock;
171 	cpumask_t channel_mask;
172 	struct dma_chan **channels;
173 };
174 
175 static enum dma_state_client
176 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
177 	enum dma_state state);
178 
179 static struct net_dma net_dma = {
180 	.client = {
181 		.event_callback = netdev_dma_event,
182 	},
183 };
184 #endif
185 
186 /*
187  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
188  * semaphore.
189  *
190  * Pure readers hold dev_base_lock for reading.
191  *
192  * Writers must hold the rtnl semaphore while they loop through the
193  * dev_base_head list, and hold dev_base_lock for writing when they do the
194  * actual updates.  This allows pure readers to access the list even
195  * while a writer is preparing to update it.
196  *
197  * To put it another way, dev_base_lock is held for writing only to
198  * protect against pure readers; the rtnl semaphore provides the
199  * protection against other writers.
200  *
201  * See, for example usages, register_netdevice() and
202  * unregister_netdevice(), which must be called with the rtnl
203  * semaphore held.
204  */
205 DEFINE_RWLOCK(dev_base_lock);
206 
207 EXPORT_SYMBOL(dev_base_lock);
208 
209 #define NETDEV_HASHBITS	8
210 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
211 
212 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
213 {
214 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
215 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
216 }
217 
218 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219 {
220 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
221 }
222 
223 /* Device list insertion */
224 static int list_netdevice(struct net_device *dev)
225 {
226 	struct net *net = dev_net(dev);
227 
228 	ASSERT_RTNL();
229 
230 	write_lock_bh(&dev_base_lock);
231 	list_add_tail(&dev->dev_list, &net->dev_base_head);
232 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
233 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
234 	write_unlock_bh(&dev_base_lock);
235 	return 0;
236 }
237 
238 /* Device list removal */
239 static void unlist_netdevice(struct net_device *dev)
240 {
241 	ASSERT_RTNL();
242 
243 	/* Unlink dev from the device chain */
244 	write_lock_bh(&dev_base_lock);
245 	list_del(&dev->dev_list);
246 	hlist_del(&dev->name_hlist);
247 	hlist_del(&dev->index_hlist);
248 	write_unlock_bh(&dev_base_lock);
249 }
250 
251 /*
252  *	Our notifier list
253  */
254 
255 static RAW_NOTIFIER_HEAD(netdev_chain);
256 
257 /*
258  *	Device drivers call our routines to queue packets here. We empty the
259  *	queue in the local softnet handler.
260  */
261 
262 DEFINE_PER_CPU(struct softnet_data, softnet_data);
263 
264 #ifdef CONFIG_LOCKDEP
265 /*
266  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
267  * according to dev->type
268  */
269 static const unsigned short netdev_lock_type[] =
270 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
271 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
272 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
273 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
274 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
275 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
276 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
277 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
278 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
279 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
280 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
281 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
282 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
283 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
284 	 ARPHRD_NONE};
285 
286 static const char *netdev_lock_name[] =
287 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
288 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
289 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
290 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
291 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
292 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
293 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
294 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
295 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
296 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
297 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
298 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
299 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
300 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
301 	 "_xmit_NONE"};
302 
303 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
304 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
305 
306 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
307 {
308 	int i;
309 
310 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
311 		if (netdev_lock_type[i] == dev_type)
312 			return i;
313 	/* the last key is used by default */
314 	return ARRAY_SIZE(netdev_lock_type) - 1;
315 }
316 
317 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
318 						 unsigned short dev_type)
319 {
320 	int i;
321 
322 	i = netdev_lock_pos(dev_type);
323 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
324 				   netdev_lock_name[i]);
325 }
326 
327 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
328 {
329 	int i;
330 
331 	i = netdev_lock_pos(dev->type);
332 	lockdep_set_class_and_name(&dev->addr_list_lock,
333 				   &netdev_addr_lock_key[i],
334 				   netdev_lock_name[i]);
335 }
336 #else
337 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
338 						 unsigned short dev_type)
339 {
340 }
341 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
342 {
343 }
344 #endif
345 
346 /*******************************************************************************
347 
348 		Protocol management and registration routines
349 
350 *******************************************************************************/
351 
352 /*
353  *	Add a protocol ID to the list. Now that the input handler is
354  *	smarter we can dispense with all the messy stuff that used to be
355  *	here.
356  *
357  *	BEWARE!!! Protocol handlers, mangling input packets,
358  *	MUST BE last in hash buckets and checking protocol handlers
359  *	MUST start from promiscuous ptype_all chain in net_bh.
360  *	It is true now, do not change it.
361  *	Explanation follows: if protocol handler, mangling packet, will
362  *	be the first on list, it is not able to sense, that packet
363  *	is cloned and should be copied-on-write, so that it will
364  *	change it and subsequent readers will get broken packet.
365  *							--ANK (980803)
366  */
367 
368 /**
369  *	dev_add_pack - add packet handler
370  *	@pt: packet type declaration
371  *
372  *	Add a protocol handler to the networking stack. The passed &packet_type
373  *	is linked into kernel lists and may not be freed until it has been
374  *	removed from the kernel lists.
375  *
376  *	This call does not sleep therefore it can not
377  *	guarantee all CPU's that are in middle of receiving packets
378  *	will see the new packet type (until the next received packet).
379  */
380 
381 void dev_add_pack(struct packet_type *pt)
382 {
383 	int hash;
384 
385 	spin_lock_bh(&ptype_lock);
386 	if (pt->type == htons(ETH_P_ALL))
387 		list_add_rcu(&pt->list, &ptype_all);
388 	else {
389 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
390 		list_add_rcu(&pt->list, &ptype_base[hash]);
391 	}
392 	spin_unlock_bh(&ptype_lock);
393 }
394 
395 /**
396  *	__dev_remove_pack	 - remove packet handler
397  *	@pt: packet type declaration
398  *
399  *	Remove a protocol handler that was previously added to the kernel
400  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
401  *	from the kernel lists and can be freed or reused once this function
402  *	returns.
403  *
404  *      The packet type might still be in use by receivers
405  *	and must not be freed until after all the CPU's have gone
406  *	through a quiescent state.
407  */
408 void __dev_remove_pack(struct packet_type *pt)
409 {
410 	struct list_head *head;
411 	struct packet_type *pt1;
412 
413 	spin_lock_bh(&ptype_lock);
414 
415 	if (pt->type == htons(ETH_P_ALL))
416 		head = &ptype_all;
417 	else
418 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
419 
420 	list_for_each_entry(pt1, head, list) {
421 		if (pt == pt1) {
422 			list_del_rcu(&pt->list);
423 			goto out;
424 		}
425 	}
426 
427 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
428 out:
429 	spin_unlock_bh(&ptype_lock);
430 }
431 /**
432  *	dev_remove_pack	 - remove packet handler
433  *	@pt: packet type declaration
434  *
435  *	Remove a protocol handler that was previously added to the kernel
436  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
437  *	from the kernel lists and can be freed or reused once this function
438  *	returns.
439  *
440  *	This call sleeps to guarantee that no CPU is looking at the packet
441  *	type after return.
442  */
443 void dev_remove_pack(struct packet_type *pt)
444 {
445 	__dev_remove_pack(pt);
446 
447 	synchronize_net();
448 }
449 
450 /******************************************************************************
451 
452 		      Device Boot-time Settings Routines
453 
454 *******************************************************************************/
455 
456 /* Boot time configuration table */
457 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
458 
459 /**
460  *	netdev_boot_setup_add	- add new setup entry
461  *	@name: name of the device
462  *	@map: configured settings for the device
463  *
464  *	Adds new setup entry to the dev_boot_setup list.  The function
465  *	returns 0 on error and 1 on success.  This is a generic routine to
466  *	all netdevices.
467  */
468 static int netdev_boot_setup_add(char *name, struct ifmap *map)
469 {
470 	struct netdev_boot_setup *s;
471 	int i;
472 
473 	s = dev_boot_setup;
474 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
475 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
476 			memset(s[i].name, 0, sizeof(s[i].name));
477 			strlcpy(s[i].name, name, IFNAMSIZ);
478 			memcpy(&s[i].map, map, sizeof(s[i].map));
479 			break;
480 		}
481 	}
482 
483 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
484 }
485 
486 /**
487  *	netdev_boot_setup_check	- check boot time settings
488  *	@dev: the netdevice
489  *
490  * 	Check boot time settings for the device.
491  *	The found settings are set for the device to be used
492  *	later in the device probing.
493  *	Returns 0 if no settings found, 1 if they are.
494  */
495 int netdev_boot_setup_check(struct net_device *dev)
496 {
497 	struct netdev_boot_setup *s = dev_boot_setup;
498 	int i;
499 
500 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
501 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
502 		    !strcmp(dev->name, s[i].name)) {
503 			dev->irq 	= s[i].map.irq;
504 			dev->base_addr 	= s[i].map.base_addr;
505 			dev->mem_start 	= s[i].map.mem_start;
506 			dev->mem_end 	= s[i].map.mem_end;
507 			return 1;
508 		}
509 	}
510 	return 0;
511 }
512 
513 
514 /**
515  *	netdev_boot_base	- get address from boot time settings
516  *	@prefix: prefix for network device
517  *	@unit: id for network device
518  *
519  * 	Check boot time settings for the base address of device.
520  *	The found settings are set for the device to be used
521  *	later in the device probing.
522  *	Returns 0 if no settings found.
523  */
524 unsigned long netdev_boot_base(const char *prefix, int unit)
525 {
526 	const struct netdev_boot_setup *s = dev_boot_setup;
527 	char name[IFNAMSIZ];
528 	int i;
529 
530 	sprintf(name, "%s%d", prefix, unit);
531 
532 	/*
533 	 * If device already registered then return base of 1
534 	 * to indicate not to probe for this interface
535 	 */
536 	if (__dev_get_by_name(&init_net, name))
537 		return 1;
538 
539 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
540 		if (!strcmp(name, s[i].name))
541 			return s[i].map.base_addr;
542 	return 0;
543 }
544 
545 /*
546  * Saves at boot time configured settings for any netdevice.
547  */
548 int __init netdev_boot_setup(char *str)
549 {
550 	int ints[5];
551 	struct ifmap map;
552 
553 	str = get_options(str, ARRAY_SIZE(ints), ints);
554 	if (!str || !*str)
555 		return 0;
556 
557 	/* Save settings */
558 	memset(&map, 0, sizeof(map));
559 	if (ints[0] > 0)
560 		map.irq = ints[1];
561 	if (ints[0] > 1)
562 		map.base_addr = ints[2];
563 	if (ints[0] > 2)
564 		map.mem_start = ints[3];
565 	if (ints[0] > 3)
566 		map.mem_end = ints[4];
567 
568 	/* Add new entry to the list */
569 	return netdev_boot_setup_add(str, &map);
570 }
571 
572 __setup("netdev=", netdev_boot_setup);
573 
574 /*******************************************************************************
575 
576 			    Device Interface Subroutines
577 
578 *******************************************************************************/
579 
580 /**
581  *	__dev_get_by_name	- find a device by its name
582  *	@net: the applicable net namespace
583  *	@name: name to find
584  *
585  *	Find an interface by name. Must be called under RTNL semaphore
586  *	or @dev_base_lock. If the name is found a pointer to the device
587  *	is returned. If the name is not found then %NULL is returned. The
588  *	reference counters are not incremented so the caller must be
589  *	careful with locks.
590  */
591 
592 struct net_device *__dev_get_by_name(struct net *net, const char *name)
593 {
594 	struct hlist_node *p;
595 
596 	hlist_for_each(p, dev_name_hash(net, name)) {
597 		struct net_device *dev
598 			= hlist_entry(p, struct net_device, name_hlist);
599 		if (!strncmp(dev->name, name, IFNAMSIZ))
600 			return dev;
601 	}
602 	return NULL;
603 }
604 
605 /**
606  *	dev_get_by_name		- find a device by its name
607  *	@net: the applicable net namespace
608  *	@name: name to find
609  *
610  *	Find an interface by name. This can be called from any
611  *	context and does its own locking. The returned handle has
612  *	the usage count incremented and the caller must use dev_put() to
613  *	release it when it is no longer needed. %NULL is returned if no
614  *	matching device is found.
615  */
616 
617 struct net_device *dev_get_by_name(struct net *net, const char *name)
618 {
619 	struct net_device *dev;
620 
621 	read_lock(&dev_base_lock);
622 	dev = __dev_get_by_name(net, name);
623 	if (dev)
624 		dev_hold(dev);
625 	read_unlock(&dev_base_lock);
626 	return dev;
627 }
628 
629 /**
630  *	__dev_get_by_index - find a device by its ifindex
631  *	@net: the applicable net namespace
632  *	@ifindex: index of device
633  *
634  *	Search for an interface by index. Returns %NULL if the device
635  *	is not found or a pointer to the device. The device has not
636  *	had its reference counter increased so the caller must be careful
637  *	about locking. The caller must hold either the RTNL semaphore
638  *	or @dev_base_lock.
639  */
640 
641 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
642 {
643 	struct hlist_node *p;
644 
645 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
646 		struct net_device *dev
647 			= hlist_entry(p, struct net_device, index_hlist);
648 		if (dev->ifindex == ifindex)
649 			return dev;
650 	}
651 	return NULL;
652 }
653 
654 
655 /**
656  *	dev_get_by_index - find a device by its ifindex
657  *	@net: the applicable net namespace
658  *	@ifindex: index of device
659  *
660  *	Search for an interface by index. Returns NULL if the device
661  *	is not found or a pointer to the device. The device returned has
662  *	had a reference added and the pointer is safe until the user calls
663  *	dev_put to indicate they have finished with it.
664  */
665 
666 struct net_device *dev_get_by_index(struct net *net, int ifindex)
667 {
668 	struct net_device *dev;
669 
670 	read_lock(&dev_base_lock);
671 	dev = __dev_get_by_index(net, ifindex);
672 	if (dev)
673 		dev_hold(dev);
674 	read_unlock(&dev_base_lock);
675 	return dev;
676 }
677 
678 /**
679  *	dev_getbyhwaddr - find a device by its hardware address
680  *	@net: the applicable net namespace
681  *	@type: media type of device
682  *	@ha: hardware address
683  *
684  *	Search for an interface by MAC address. Returns NULL if the device
685  *	is not found or a pointer to the device. The caller must hold the
686  *	rtnl semaphore. The returned device has not had its ref count increased
687  *	and the caller must therefore be careful about locking
688  *
689  *	BUGS:
690  *	If the API was consistent this would be __dev_get_by_hwaddr
691  */
692 
693 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
694 {
695 	struct net_device *dev;
696 
697 	ASSERT_RTNL();
698 
699 	for_each_netdev(net, dev)
700 		if (dev->type == type &&
701 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
702 			return dev;
703 
704 	return NULL;
705 }
706 
707 EXPORT_SYMBOL(dev_getbyhwaddr);
708 
709 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
710 {
711 	struct net_device *dev;
712 
713 	ASSERT_RTNL();
714 	for_each_netdev(net, dev)
715 		if (dev->type == type)
716 			return dev;
717 
718 	return NULL;
719 }
720 
721 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
722 
723 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
724 {
725 	struct net_device *dev;
726 
727 	rtnl_lock();
728 	dev = __dev_getfirstbyhwtype(net, type);
729 	if (dev)
730 		dev_hold(dev);
731 	rtnl_unlock();
732 	return dev;
733 }
734 
735 EXPORT_SYMBOL(dev_getfirstbyhwtype);
736 
737 /**
738  *	dev_get_by_flags - find any device with given flags
739  *	@net: the applicable net namespace
740  *	@if_flags: IFF_* values
741  *	@mask: bitmask of bits in if_flags to check
742  *
743  *	Search for any interface with the given flags. Returns NULL if a device
744  *	is not found or a pointer to the device. The device returned has
745  *	had a reference added and the pointer is safe until the user calls
746  *	dev_put to indicate they have finished with it.
747  */
748 
749 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
750 {
751 	struct net_device *dev, *ret;
752 
753 	ret = NULL;
754 	read_lock(&dev_base_lock);
755 	for_each_netdev(net, dev) {
756 		if (((dev->flags ^ if_flags) & mask) == 0) {
757 			dev_hold(dev);
758 			ret = dev;
759 			break;
760 		}
761 	}
762 	read_unlock(&dev_base_lock);
763 	return ret;
764 }
765 
766 /**
767  *	dev_valid_name - check if name is okay for network device
768  *	@name: name string
769  *
770  *	Network device names need to be valid file names to
771  *	to allow sysfs to work.  We also disallow any kind of
772  *	whitespace.
773  */
774 int dev_valid_name(const char *name)
775 {
776 	if (*name == '\0')
777 		return 0;
778 	if (strlen(name) >= IFNAMSIZ)
779 		return 0;
780 	if (!strcmp(name, ".") || !strcmp(name, ".."))
781 		return 0;
782 
783 	while (*name) {
784 		if (*name == '/' || isspace(*name))
785 			return 0;
786 		name++;
787 	}
788 	return 1;
789 }
790 
791 /**
792  *	__dev_alloc_name - allocate a name for a device
793  *	@net: network namespace to allocate the device name in
794  *	@name: name format string
795  *	@buf:  scratch buffer and result name string
796  *
797  *	Passed a format string - eg "lt%d" it will try and find a suitable
798  *	id. It scans list of devices to build up a free map, then chooses
799  *	the first empty slot. The caller must hold the dev_base or rtnl lock
800  *	while allocating the name and adding the device in order to avoid
801  *	duplicates.
802  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
803  *	Returns the number of the unit assigned or a negative errno code.
804  */
805 
806 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
807 {
808 	int i = 0;
809 	const char *p;
810 	const int max_netdevices = 8*PAGE_SIZE;
811 	unsigned long *inuse;
812 	struct net_device *d;
813 
814 	p = strnchr(name, IFNAMSIZ-1, '%');
815 	if (p) {
816 		/*
817 		 * Verify the string as this thing may have come from
818 		 * the user.  There must be either one "%d" and no other "%"
819 		 * characters.
820 		 */
821 		if (p[1] != 'd' || strchr(p + 2, '%'))
822 			return -EINVAL;
823 
824 		/* Use one page as a bit array of possible slots */
825 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
826 		if (!inuse)
827 			return -ENOMEM;
828 
829 		for_each_netdev(net, d) {
830 			if (!sscanf(d->name, name, &i))
831 				continue;
832 			if (i < 0 || i >= max_netdevices)
833 				continue;
834 
835 			/*  avoid cases where sscanf is not exact inverse of printf */
836 			snprintf(buf, IFNAMSIZ, name, i);
837 			if (!strncmp(buf, d->name, IFNAMSIZ))
838 				set_bit(i, inuse);
839 		}
840 
841 		i = find_first_zero_bit(inuse, max_netdevices);
842 		free_page((unsigned long) inuse);
843 	}
844 
845 	snprintf(buf, IFNAMSIZ, name, i);
846 	if (!__dev_get_by_name(net, buf))
847 		return i;
848 
849 	/* It is possible to run out of possible slots
850 	 * when the name is long and there isn't enough space left
851 	 * for the digits, or if all bits are used.
852 	 */
853 	return -ENFILE;
854 }
855 
856 /**
857  *	dev_alloc_name - allocate a name for a device
858  *	@dev: device
859  *	@name: name format string
860  *
861  *	Passed a format string - eg "lt%d" it will try and find a suitable
862  *	id. It scans list of devices to build up a free map, then chooses
863  *	the first empty slot. The caller must hold the dev_base or rtnl lock
864  *	while allocating the name and adding the device in order to avoid
865  *	duplicates.
866  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
867  *	Returns the number of the unit assigned or a negative errno code.
868  */
869 
870 int dev_alloc_name(struct net_device *dev, const char *name)
871 {
872 	char buf[IFNAMSIZ];
873 	struct net *net;
874 	int ret;
875 
876 	BUG_ON(!dev_net(dev));
877 	net = dev_net(dev);
878 	ret = __dev_alloc_name(net, name, buf);
879 	if (ret >= 0)
880 		strlcpy(dev->name, buf, IFNAMSIZ);
881 	return ret;
882 }
883 
884 
885 /**
886  *	dev_change_name - change name of a device
887  *	@dev: device
888  *	@newname: name (or format string) must be at least IFNAMSIZ
889  *
890  *	Change name of a device, can pass format strings "eth%d".
891  *	for wildcarding.
892  */
893 int dev_change_name(struct net_device *dev, char *newname)
894 {
895 	char oldname[IFNAMSIZ];
896 	int err = 0;
897 	int ret;
898 	struct net *net;
899 
900 	ASSERT_RTNL();
901 	BUG_ON(!dev_net(dev));
902 
903 	net = dev_net(dev);
904 	if (dev->flags & IFF_UP)
905 		return -EBUSY;
906 
907 	if (!dev_valid_name(newname))
908 		return -EINVAL;
909 
910 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
911 		return 0;
912 
913 	memcpy(oldname, dev->name, IFNAMSIZ);
914 
915 	if (strchr(newname, '%')) {
916 		err = dev_alloc_name(dev, newname);
917 		if (err < 0)
918 			return err;
919 		strcpy(newname, dev->name);
920 	}
921 	else if (__dev_get_by_name(net, newname))
922 		return -EEXIST;
923 	else
924 		strlcpy(dev->name, newname, IFNAMSIZ);
925 
926 rollback:
927 	err = device_rename(&dev->dev, dev->name);
928 	if (err) {
929 		memcpy(dev->name, oldname, IFNAMSIZ);
930 		return err;
931 	}
932 
933 	write_lock_bh(&dev_base_lock);
934 	hlist_del(&dev->name_hlist);
935 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
936 	write_unlock_bh(&dev_base_lock);
937 
938 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
939 	ret = notifier_to_errno(ret);
940 
941 	if (ret) {
942 		if (err) {
943 			printk(KERN_ERR
944 			       "%s: name change rollback failed: %d.\n",
945 			       dev->name, ret);
946 		} else {
947 			err = ret;
948 			memcpy(dev->name, oldname, IFNAMSIZ);
949 			goto rollback;
950 		}
951 	}
952 
953 	return err;
954 }
955 
956 /**
957  *	netdev_features_change - device changes features
958  *	@dev: device to cause notification
959  *
960  *	Called to indicate a device has changed features.
961  */
962 void netdev_features_change(struct net_device *dev)
963 {
964 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
965 }
966 EXPORT_SYMBOL(netdev_features_change);
967 
968 /**
969  *	netdev_state_change - device changes state
970  *	@dev: device to cause notification
971  *
972  *	Called to indicate a device has changed state. This function calls
973  *	the notifier chains for netdev_chain and sends a NEWLINK message
974  *	to the routing socket.
975  */
976 void netdev_state_change(struct net_device *dev)
977 {
978 	if (dev->flags & IFF_UP) {
979 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
980 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
981 	}
982 }
983 
984 void netdev_bonding_change(struct net_device *dev)
985 {
986 	call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
987 }
988 EXPORT_SYMBOL(netdev_bonding_change);
989 
990 /**
991  *	dev_load 	- load a network module
992  *	@net: the applicable net namespace
993  *	@name: name of interface
994  *
995  *	If a network interface is not present and the process has suitable
996  *	privileges this function loads the module. If module loading is not
997  *	available in this kernel then it becomes a nop.
998  */
999 
1000 void dev_load(struct net *net, const char *name)
1001 {
1002 	struct net_device *dev;
1003 
1004 	read_lock(&dev_base_lock);
1005 	dev = __dev_get_by_name(net, name);
1006 	read_unlock(&dev_base_lock);
1007 
1008 	if (!dev && capable(CAP_SYS_MODULE))
1009 		request_module("%s", name);
1010 }
1011 
1012 /**
1013  *	dev_open	- prepare an interface for use.
1014  *	@dev:	device to open
1015  *
1016  *	Takes a device from down to up state. The device's private open
1017  *	function is invoked and then the multicast lists are loaded. Finally
1018  *	the device is moved into the up state and a %NETDEV_UP message is
1019  *	sent to the netdev notifier chain.
1020  *
1021  *	Calling this function on an active interface is a nop. On a failure
1022  *	a negative errno code is returned.
1023  */
1024 int dev_open(struct net_device *dev)
1025 {
1026 	int ret = 0;
1027 
1028 	ASSERT_RTNL();
1029 
1030 	/*
1031 	 *	Is it already up?
1032 	 */
1033 
1034 	if (dev->flags & IFF_UP)
1035 		return 0;
1036 
1037 	/*
1038 	 *	Is it even present?
1039 	 */
1040 	if (!netif_device_present(dev))
1041 		return -ENODEV;
1042 
1043 	/*
1044 	 *	Call device private open method
1045 	 */
1046 	set_bit(__LINK_STATE_START, &dev->state);
1047 
1048 	if (dev->validate_addr)
1049 		ret = dev->validate_addr(dev);
1050 
1051 	if (!ret && dev->open)
1052 		ret = dev->open(dev);
1053 
1054 	/*
1055 	 *	If it went open OK then:
1056 	 */
1057 
1058 	if (ret)
1059 		clear_bit(__LINK_STATE_START, &dev->state);
1060 	else {
1061 		/*
1062 		 *	Set the flags.
1063 		 */
1064 		dev->flags |= IFF_UP;
1065 
1066 		/*
1067 		 *	Initialize multicasting status
1068 		 */
1069 		dev_set_rx_mode(dev);
1070 
1071 		/*
1072 		 *	Wakeup transmit queue engine
1073 		 */
1074 		dev_activate(dev);
1075 
1076 		/*
1077 		 *	... and announce new interface.
1078 		 */
1079 		call_netdevice_notifiers(NETDEV_UP, dev);
1080 	}
1081 
1082 	return ret;
1083 }
1084 
1085 /**
1086  *	dev_close - shutdown an interface.
1087  *	@dev: device to shutdown
1088  *
1089  *	This function moves an active device into down state. A
1090  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1091  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1092  *	chain.
1093  */
1094 int dev_close(struct net_device *dev)
1095 {
1096 	ASSERT_RTNL();
1097 
1098 	might_sleep();
1099 
1100 	if (!(dev->flags & IFF_UP))
1101 		return 0;
1102 
1103 	/*
1104 	 *	Tell people we are going down, so that they can
1105 	 *	prepare to death, when device is still operating.
1106 	 */
1107 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1108 
1109 	clear_bit(__LINK_STATE_START, &dev->state);
1110 
1111 	/* Synchronize to scheduled poll. We cannot touch poll list,
1112 	 * it can be even on different cpu. So just clear netif_running().
1113 	 *
1114 	 * dev->stop() will invoke napi_disable() on all of it's
1115 	 * napi_struct instances on this device.
1116 	 */
1117 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1118 
1119 	dev_deactivate(dev);
1120 
1121 	/*
1122 	 *	Call the device specific close. This cannot fail.
1123 	 *	Only if device is UP
1124 	 *
1125 	 *	We allow it to be called even after a DETACH hot-plug
1126 	 *	event.
1127 	 */
1128 	if (dev->stop)
1129 		dev->stop(dev);
1130 
1131 	/*
1132 	 *	Device is now down.
1133 	 */
1134 
1135 	dev->flags &= ~IFF_UP;
1136 
1137 	/*
1138 	 * Tell people we are down
1139 	 */
1140 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1141 
1142 	return 0;
1143 }
1144 
1145 
1146 /**
1147  *	dev_disable_lro - disable Large Receive Offload on a device
1148  *	@dev: device
1149  *
1150  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1151  *	called under RTNL.  This is needed if received packets may be
1152  *	forwarded to another interface.
1153  */
1154 void dev_disable_lro(struct net_device *dev)
1155 {
1156 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1157 	    dev->ethtool_ops->set_flags) {
1158 		u32 flags = dev->ethtool_ops->get_flags(dev);
1159 		if (flags & ETH_FLAG_LRO) {
1160 			flags &= ~ETH_FLAG_LRO;
1161 			dev->ethtool_ops->set_flags(dev, flags);
1162 		}
1163 	}
1164 	WARN_ON(dev->features & NETIF_F_LRO);
1165 }
1166 EXPORT_SYMBOL(dev_disable_lro);
1167 
1168 
1169 static int dev_boot_phase = 1;
1170 
1171 /*
1172  *	Device change register/unregister. These are not inline or static
1173  *	as we export them to the world.
1174  */
1175 
1176 /**
1177  *	register_netdevice_notifier - register a network notifier block
1178  *	@nb: notifier
1179  *
1180  *	Register a notifier to be called when network device events occur.
1181  *	The notifier passed is linked into the kernel structures and must
1182  *	not be reused until it has been unregistered. A negative errno code
1183  *	is returned on a failure.
1184  *
1185  * 	When registered all registration and up events are replayed
1186  *	to the new notifier to allow device to have a race free
1187  *	view of the network device list.
1188  */
1189 
1190 int register_netdevice_notifier(struct notifier_block *nb)
1191 {
1192 	struct net_device *dev;
1193 	struct net_device *last;
1194 	struct net *net;
1195 	int err;
1196 
1197 	rtnl_lock();
1198 	err = raw_notifier_chain_register(&netdev_chain, nb);
1199 	if (err)
1200 		goto unlock;
1201 	if (dev_boot_phase)
1202 		goto unlock;
1203 	for_each_net(net) {
1204 		for_each_netdev(net, dev) {
1205 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1206 			err = notifier_to_errno(err);
1207 			if (err)
1208 				goto rollback;
1209 
1210 			if (!(dev->flags & IFF_UP))
1211 				continue;
1212 
1213 			nb->notifier_call(nb, NETDEV_UP, dev);
1214 		}
1215 	}
1216 
1217 unlock:
1218 	rtnl_unlock();
1219 	return err;
1220 
1221 rollback:
1222 	last = dev;
1223 	for_each_net(net) {
1224 		for_each_netdev(net, dev) {
1225 			if (dev == last)
1226 				break;
1227 
1228 			if (dev->flags & IFF_UP) {
1229 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1230 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1231 			}
1232 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1233 		}
1234 	}
1235 
1236 	raw_notifier_chain_unregister(&netdev_chain, nb);
1237 	goto unlock;
1238 }
1239 
1240 /**
1241  *	unregister_netdevice_notifier - unregister a network notifier block
1242  *	@nb: notifier
1243  *
1244  *	Unregister a notifier previously registered by
1245  *	register_netdevice_notifier(). The notifier is unlinked into the
1246  *	kernel structures and may then be reused. A negative errno code
1247  *	is returned on a failure.
1248  */
1249 
1250 int unregister_netdevice_notifier(struct notifier_block *nb)
1251 {
1252 	int err;
1253 
1254 	rtnl_lock();
1255 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1256 	rtnl_unlock();
1257 	return err;
1258 }
1259 
1260 /**
1261  *	call_netdevice_notifiers - call all network notifier blocks
1262  *      @val: value passed unmodified to notifier function
1263  *      @dev: net_device pointer passed unmodified to notifier function
1264  *
1265  *	Call all network notifier blocks.  Parameters and return value
1266  *	are as for raw_notifier_call_chain().
1267  */
1268 
1269 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1270 {
1271 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1272 }
1273 
1274 /* When > 0 there are consumers of rx skb time stamps */
1275 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1276 
1277 void net_enable_timestamp(void)
1278 {
1279 	atomic_inc(&netstamp_needed);
1280 }
1281 
1282 void net_disable_timestamp(void)
1283 {
1284 	atomic_dec(&netstamp_needed);
1285 }
1286 
1287 static inline void net_timestamp(struct sk_buff *skb)
1288 {
1289 	if (atomic_read(&netstamp_needed))
1290 		__net_timestamp(skb);
1291 	else
1292 		skb->tstamp.tv64 = 0;
1293 }
1294 
1295 /*
1296  *	Support routine. Sends outgoing frames to any network
1297  *	taps currently in use.
1298  */
1299 
1300 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1301 {
1302 	struct packet_type *ptype;
1303 
1304 	net_timestamp(skb);
1305 
1306 	rcu_read_lock();
1307 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1308 		/* Never send packets back to the socket
1309 		 * they originated from - MvS ([email protected])
1310 		 */
1311 		if ((ptype->dev == dev || !ptype->dev) &&
1312 		    (ptype->af_packet_priv == NULL ||
1313 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1314 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1315 			if (!skb2)
1316 				break;
1317 
1318 			/* skb->nh should be correctly
1319 			   set by sender, so that the second statement is
1320 			   just protection against buggy protocols.
1321 			 */
1322 			skb_reset_mac_header(skb2);
1323 
1324 			if (skb_network_header(skb2) < skb2->data ||
1325 			    skb2->network_header > skb2->tail) {
1326 				if (net_ratelimit())
1327 					printk(KERN_CRIT "protocol %04x is "
1328 					       "buggy, dev %s\n",
1329 					       skb2->protocol, dev->name);
1330 				skb_reset_network_header(skb2);
1331 			}
1332 
1333 			skb2->transport_header = skb2->network_header;
1334 			skb2->pkt_type = PACKET_OUTGOING;
1335 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1336 		}
1337 	}
1338 	rcu_read_unlock();
1339 }
1340 
1341 
1342 static inline void __netif_reschedule(struct Qdisc *q)
1343 {
1344 	struct softnet_data *sd;
1345 	unsigned long flags;
1346 
1347 	local_irq_save(flags);
1348 	sd = &__get_cpu_var(softnet_data);
1349 	q->next_sched = sd->output_queue;
1350 	sd->output_queue = q;
1351 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1352 	local_irq_restore(flags);
1353 }
1354 
1355 void __netif_schedule(struct Qdisc *q)
1356 {
1357 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1358 		__netif_reschedule(q);
1359 }
1360 EXPORT_SYMBOL(__netif_schedule);
1361 
1362 void dev_kfree_skb_irq(struct sk_buff *skb)
1363 {
1364 	if (atomic_dec_and_test(&skb->users)) {
1365 		struct softnet_data *sd;
1366 		unsigned long flags;
1367 
1368 		local_irq_save(flags);
1369 		sd = &__get_cpu_var(softnet_data);
1370 		skb->next = sd->completion_queue;
1371 		sd->completion_queue = skb;
1372 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1373 		local_irq_restore(flags);
1374 	}
1375 }
1376 EXPORT_SYMBOL(dev_kfree_skb_irq);
1377 
1378 void dev_kfree_skb_any(struct sk_buff *skb)
1379 {
1380 	if (in_irq() || irqs_disabled())
1381 		dev_kfree_skb_irq(skb);
1382 	else
1383 		dev_kfree_skb(skb);
1384 }
1385 EXPORT_SYMBOL(dev_kfree_skb_any);
1386 
1387 
1388 /**
1389  * netif_device_detach - mark device as removed
1390  * @dev: network device
1391  *
1392  * Mark device as removed from system and therefore no longer available.
1393  */
1394 void netif_device_detach(struct net_device *dev)
1395 {
1396 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1397 	    netif_running(dev)) {
1398 		netif_stop_queue(dev);
1399 	}
1400 }
1401 EXPORT_SYMBOL(netif_device_detach);
1402 
1403 /**
1404  * netif_device_attach - mark device as attached
1405  * @dev: network device
1406  *
1407  * Mark device as attached from system and restart if needed.
1408  */
1409 void netif_device_attach(struct net_device *dev)
1410 {
1411 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1412 	    netif_running(dev)) {
1413 		netif_wake_queue(dev);
1414 		__netdev_watchdog_up(dev);
1415 	}
1416 }
1417 EXPORT_SYMBOL(netif_device_attach);
1418 
1419 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1420 {
1421 	return ((features & NETIF_F_GEN_CSUM) ||
1422 		((features & NETIF_F_IP_CSUM) &&
1423 		 protocol == htons(ETH_P_IP)) ||
1424 		((features & NETIF_F_IPV6_CSUM) &&
1425 		 protocol == htons(ETH_P_IPV6)));
1426 }
1427 
1428 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1429 {
1430 	if (can_checksum_protocol(dev->features, skb->protocol))
1431 		return true;
1432 
1433 	if (skb->protocol == htons(ETH_P_8021Q)) {
1434 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1435 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1436 					  veh->h_vlan_encapsulated_proto))
1437 			return true;
1438 	}
1439 
1440 	return false;
1441 }
1442 
1443 /*
1444  * Invalidate hardware checksum when packet is to be mangled, and
1445  * complete checksum manually on outgoing path.
1446  */
1447 int skb_checksum_help(struct sk_buff *skb)
1448 {
1449 	__wsum csum;
1450 	int ret = 0, offset;
1451 
1452 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1453 		goto out_set_summed;
1454 
1455 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1456 		/* Let GSO fix up the checksum. */
1457 		goto out_set_summed;
1458 	}
1459 
1460 	offset = skb->csum_start - skb_headroom(skb);
1461 	BUG_ON(offset >= skb_headlen(skb));
1462 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1463 
1464 	offset += skb->csum_offset;
1465 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1466 
1467 	if (skb_cloned(skb) &&
1468 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1469 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1470 		if (ret)
1471 			goto out;
1472 	}
1473 
1474 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1475 out_set_summed:
1476 	skb->ip_summed = CHECKSUM_NONE;
1477 out:
1478 	return ret;
1479 }
1480 
1481 /**
1482  *	skb_gso_segment - Perform segmentation on skb.
1483  *	@skb: buffer to segment
1484  *	@features: features for the output path (see dev->features)
1485  *
1486  *	This function segments the given skb and returns a list of segments.
1487  *
1488  *	It may return NULL if the skb requires no segmentation.  This is
1489  *	only possible when GSO is used for verifying header integrity.
1490  */
1491 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1492 {
1493 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1494 	struct packet_type *ptype;
1495 	__be16 type = skb->protocol;
1496 	int err;
1497 
1498 	BUG_ON(skb_shinfo(skb)->frag_list);
1499 
1500 	skb_reset_mac_header(skb);
1501 	skb->mac_len = skb->network_header - skb->mac_header;
1502 	__skb_pull(skb, skb->mac_len);
1503 
1504 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1505 		if (skb_header_cloned(skb) &&
1506 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1507 			return ERR_PTR(err);
1508 	}
1509 
1510 	rcu_read_lock();
1511 	list_for_each_entry_rcu(ptype,
1512 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1513 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1514 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1515 				err = ptype->gso_send_check(skb);
1516 				segs = ERR_PTR(err);
1517 				if (err || skb_gso_ok(skb, features))
1518 					break;
1519 				__skb_push(skb, (skb->data -
1520 						 skb_network_header(skb)));
1521 			}
1522 			segs = ptype->gso_segment(skb, features);
1523 			break;
1524 		}
1525 	}
1526 	rcu_read_unlock();
1527 
1528 	__skb_push(skb, skb->data - skb_mac_header(skb));
1529 
1530 	return segs;
1531 }
1532 
1533 EXPORT_SYMBOL(skb_gso_segment);
1534 
1535 /* Take action when hardware reception checksum errors are detected. */
1536 #ifdef CONFIG_BUG
1537 void netdev_rx_csum_fault(struct net_device *dev)
1538 {
1539 	if (net_ratelimit()) {
1540 		printk(KERN_ERR "%s: hw csum failure.\n",
1541 			dev ? dev->name : "<unknown>");
1542 		dump_stack();
1543 	}
1544 }
1545 EXPORT_SYMBOL(netdev_rx_csum_fault);
1546 #endif
1547 
1548 /* Actually, we should eliminate this check as soon as we know, that:
1549  * 1. IOMMU is present and allows to map all the memory.
1550  * 2. No high memory really exists on this machine.
1551  */
1552 
1553 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1554 {
1555 #ifdef CONFIG_HIGHMEM
1556 	int i;
1557 
1558 	if (dev->features & NETIF_F_HIGHDMA)
1559 		return 0;
1560 
1561 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1562 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1563 			return 1;
1564 
1565 #endif
1566 	return 0;
1567 }
1568 
1569 struct dev_gso_cb {
1570 	void (*destructor)(struct sk_buff *skb);
1571 };
1572 
1573 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1574 
1575 static void dev_gso_skb_destructor(struct sk_buff *skb)
1576 {
1577 	struct dev_gso_cb *cb;
1578 
1579 	do {
1580 		struct sk_buff *nskb = skb->next;
1581 
1582 		skb->next = nskb->next;
1583 		nskb->next = NULL;
1584 		kfree_skb(nskb);
1585 	} while (skb->next);
1586 
1587 	cb = DEV_GSO_CB(skb);
1588 	if (cb->destructor)
1589 		cb->destructor(skb);
1590 }
1591 
1592 /**
1593  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1594  *	@skb: buffer to segment
1595  *
1596  *	This function segments the given skb and stores the list of segments
1597  *	in skb->next.
1598  */
1599 static int dev_gso_segment(struct sk_buff *skb)
1600 {
1601 	struct net_device *dev = skb->dev;
1602 	struct sk_buff *segs;
1603 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1604 					 NETIF_F_SG : 0);
1605 
1606 	segs = skb_gso_segment(skb, features);
1607 
1608 	/* Verifying header integrity only. */
1609 	if (!segs)
1610 		return 0;
1611 
1612 	if (IS_ERR(segs))
1613 		return PTR_ERR(segs);
1614 
1615 	skb->next = segs;
1616 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1617 	skb->destructor = dev_gso_skb_destructor;
1618 
1619 	return 0;
1620 }
1621 
1622 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1623 			struct netdev_queue *txq)
1624 {
1625 	if (likely(!skb->next)) {
1626 		if (!list_empty(&ptype_all))
1627 			dev_queue_xmit_nit(skb, dev);
1628 
1629 		if (netif_needs_gso(dev, skb)) {
1630 			if (unlikely(dev_gso_segment(skb)))
1631 				goto out_kfree_skb;
1632 			if (skb->next)
1633 				goto gso;
1634 		}
1635 
1636 		return dev->hard_start_xmit(skb, dev);
1637 	}
1638 
1639 gso:
1640 	do {
1641 		struct sk_buff *nskb = skb->next;
1642 		int rc;
1643 
1644 		skb->next = nskb->next;
1645 		nskb->next = NULL;
1646 		rc = dev->hard_start_xmit(nskb, dev);
1647 		if (unlikely(rc)) {
1648 			nskb->next = skb->next;
1649 			skb->next = nskb;
1650 			return rc;
1651 		}
1652 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1653 			return NETDEV_TX_BUSY;
1654 	} while (skb->next);
1655 
1656 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1657 
1658 out_kfree_skb:
1659 	kfree_skb(skb);
1660 	return 0;
1661 }
1662 
1663 static u32 simple_tx_hashrnd;
1664 static int simple_tx_hashrnd_initialized = 0;
1665 
1666 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1667 {
1668 	u32 addr1, addr2, ports;
1669 	u32 hash, ihl;
1670 	u8 ip_proto;
1671 
1672 	if (unlikely(!simple_tx_hashrnd_initialized)) {
1673 		get_random_bytes(&simple_tx_hashrnd, 4);
1674 		simple_tx_hashrnd_initialized = 1;
1675 	}
1676 
1677 	switch (skb->protocol) {
1678 	case __constant_htons(ETH_P_IP):
1679 		ip_proto = ip_hdr(skb)->protocol;
1680 		addr1 = ip_hdr(skb)->saddr;
1681 		addr2 = ip_hdr(skb)->daddr;
1682 		ihl = ip_hdr(skb)->ihl;
1683 		break;
1684 	case __constant_htons(ETH_P_IPV6):
1685 		ip_proto = ipv6_hdr(skb)->nexthdr;
1686 		addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1687 		addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1688 		ihl = (40 >> 2);
1689 		break;
1690 	default:
1691 		return 0;
1692 	}
1693 
1694 
1695 	switch (ip_proto) {
1696 	case IPPROTO_TCP:
1697 	case IPPROTO_UDP:
1698 	case IPPROTO_DCCP:
1699 	case IPPROTO_ESP:
1700 	case IPPROTO_AH:
1701 	case IPPROTO_SCTP:
1702 	case IPPROTO_UDPLITE:
1703 		ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1704 		break;
1705 
1706 	default:
1707 		ports = 0;
1708 		break;
1709 	}
1710 
1711 	hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1712 
1713 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1714 }
1715 
1716 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1717 					struct sk_buff *skb)
1718 {
1719 	u16 queue_index = 0;
1720 
1721 	if (dev->select_queue)
1722 		queue_index = dev->select_queue(dev, skb);
1723 	else if (dev->real_num_tx_queues > 1)
1724 		queue_index = simple_tx_hash(dev, skb);
1725 
1726 	skb_set_queue_mapping(skb, queue_index);
1727 	return netdev_get_tx_queue(dev, queue_index);
1728 }
1729 
1730 /**
1731  *	dev_queue_xmit - transmit a buffer
1732  *	@skb: buffer to transmit
1733  *
1734  *	Queue a buffer for transmission to a network device. The caller must
1735  *	have set the device and priority and built the buffer before calling
1736  *	this function. The function can be called from an interrupt.
1737  *
1738  *	A negative errno code is returned on a failure. A success does not
1739  *	guarantee the frame will be transmitted as it may be dropped due
1740  *	to congestion or traffic shaping.
1741  *
1742  * -----------------------------------------------------------------------------------
1743  *      I notice this method can also return errors from the queue disciplines,
1744  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1745  *      be positive.
1746  *
1747  *      Regardless of the return value, the skb is consumed, so it is currently
1748  *      difficult to retry a send to this method.  (You can bump the ref count
1749  *      before sending to hold a reference for retry if you are careful.)
1750  *
1751  *      When calling this method, interrupts MUST be enabled.  This is because
1752  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1753  *          --BLG
1754  */
1755 int dev_queue_xmit(struct sk_buff *skb)
1756 {
1757 	struct net_device *dev = skb->dev;
1758 	struct netdev_queue *txq;
1759 	struct Qdisc *q;
1760 	int rc = -ENOMEM;
1761 
1762 	/* GSO will handle the following emulations directly. */
1763 	if (netif_needs_gso(dev, skb))
1764 		goto gso;
1765 
1766 	if (skb_shinfo(skb)->frag_list &&
1767 	    !(dev->features & NETIF_F_FRAGLIST) &&
1768 	    __skb_linearize(skb))
1769 		goto out_kfree_skb;
1770 
1771 	/* Fragmented skb is linearized if device does not support SG,
1772 	 * or if at least one of fragments is in highmem and device
1773 	 * does not support DMA from it.
1774 	 */
1775 	if (skb_shinfo(skb)->nr_frags &&
1776 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1777 	    __skb_linearize(skb))
1778 		goto out_kfree_skb;
1779 
1780 	/* If packet is not checksummed and device does not support
1781 	 * checksumming for this protocol, complete checksumming here.
1782 	 */
1783 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1784 		skb_set_transport_header(skb, skb->csum_start -
1785 					      skb_headroom(skb));
1786 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1787 			goto out_kfree_skb;
1788 	}
1789 
1790 gso:
1791 	/* Disable soft irqs for various locks below. Also
1792 	 * stops preemption for RCU.
1793 	 */
1794 	rcu_read_lock_bh();
1795 
1796 	txq = dev_pick_tx(dev, skb);
1797 	q = rcu_dereference(txq->qdisc);
1798 
1799 #ifdef CONFIG_NET_CLS_ACT
1800 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1801 #endif
1802 	if (q->enqueue) {
1803 		spinlock_t *root_lock = qdisc_lock(q);
1804 
1805 		spin_lock(root_lock);
1806 
1807 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1808 			kfree_skb(skb);
1809 			rc = NET_XMIT_DROP;
1810 		} else {
1811 			rc = qdisc_enqueue_root(skb, q);
1812 			qdisc_run(q);
1813 		}
1814 		spin_unlock(root_lock);
1815 
1816 		goto out;
1817 	}
1818 
1819 	/* The device has no queue. Common case for software devices:
1820 	   loopback, all the sorts of tunnels...
1821 
1822 	   Really, it is unlikely that netif_tx_lock protection is necessary
1823 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1824 	   counters.)
1825 	   However, it is possible, that they rely on protection
1826 	   made by us here.
1827 
1828 	   Check this and shot the lock. It is not prone from deadlocks.
1829 	   Either shot noqueue qdisc, it is even simpler 8)
1830 	 */
1831 	if (dev->flags & IFF_UP) {
1832 		int cpu = smp_processor_id(); /* ok because BHs are off */
1833 
1834 		if (txq->xmit_lock_owner != cpu) {
1835 
1836 			HARD_TX_LOCK(dev, txq, cpu);
1837 
1838 			if (!netif_tx_queue_stopped(txq)) {
1839 				rc = 0;
1840 				if (!dev_hard_start_xmit(skb, dev, txq)) {
1841 					HARD_TX_UNLOCK(dev, txq);
1842 					goto out;
1843 				}
1844 			}
1845 			HARD_TX_UNLOCK(dev, txq);
1846 			if (net_ratelimit())
1847 				printk(KERN_CRIT "Virtual device %s asks to "
1848 				       "queue packet!\n", dev->name);
1849 		} else {
1850 			/* Recursion is detected! It is possible,
1851 			 * unfortunately */
1852 			if (net_ratelimit())
1853 				printk(KERN_CRIT "Dead loop on virtual device "
1854 				       "%s, fix it urgently!\n", dev->name);
1855 		}
1856 	}
1857 
1858 	rc = -ENETDOWN;
1859 	rcu_read_unlock_bh();
1860 
1861 out_kfree_skb:
1862 	kfree_skb(skb);
1863 	return rc;
1864 out:
1865 	rcu_read_unlock_bh();
1866 	return rc;
1867 }
1868 
1869 
1870 /*=======================================================================
1871 			Receiver routines
1872   =======================================================================*/
1873 
1874 int netdev_max_backlog __read_mostly = 1000;
1875 int netdev_budget __read_mostly = 300;
1876 int weight_p __read_mostly = 64;            /* old backlog weight */
1877 
1878 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1879 
1880 
1881 /**
1882  *	netif_rx	-	post buffer to the network code
1883  *	@skb: buffer to post
1884  *
1885  *	This function receives a packet from a device driver and queues it for
1886  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1887  *	may be dropped during processing for congestion control or by the
1888  *	protocol layers.
1889  *
1890  *	return values:
1891  *	NET_RX_SUCCESS	(no congestion)
1892  *	NET_RX_DROP     (packet was dropped)
1893  *
1894  */
1895 
1896 int netif_rx(struct sk_buff *skb)
1897 {
1898 	struct softnet_data *queue;
1899 	unsigned long flags;
1900 
1901 	/* if netpoll wants it, pretend we never saw it */
1902 	if (netpoll_rx(skb))
1903 		return NET_RX_DROP;
1904 
1905 	if (!skb->tstamp.tv64)
1906 		net_timestamp(skb);
1907 
1908 	/*
1909 	 * The code is rearranged so that the path is the most
1910 	 * short when CPU is congested, but is still operating.
1911 	 */
1912 	local_irq_save(flags);
1913 	queue = &__get_cpu_var(softnet_data);
1914 
1915 	__get_cpu_var(netdev_rx_stat).total++;
1916 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1917 		if (queue->input_pkt_queue.qlen) {
1918 enqueue:
1919 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1920 			local_irq_restore(flags);
1921 			return NET_RX_SUCCESS;
1922 		}
1923 
1924 		napi_schedule(&queue->backlog);
1925 		goto enqueue;
1926 	}
1927 
1928 	__get_cpu_var(netdev_rx_stat).dropped++;
1929 	local_irq_restore(flags);
1930 
1931 	kfree_skb(skb);
1932 	return NET_RX_DROP;
1933 }
1934 
1935 int netif_rx_ni(struct sk_buff *skb)
1936 {
1937 	int err;
1938 
1939 	preempt_disable();
1940 	err = netif_rx(skb);
1941 	if (local_softirq_pending())
1942 		do_softirq();
1943 	preempt_enable();
1944 
1945 	return err;
1946 }
1947 
1948 EXPORT_SYMBOL(netif_rx_ni);
1949 
1950 static void net_tx_action(struct softirq_action *h)
1951 {
1952 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1953 
1954 	if (sd->completion_queue) {
1955 		struct sk_buff *clist;
1956 
1957 		local_irq_disable();
1958 		clist = sd->completion_queue;
1959 		sd->completion_queue = NULL;
1960 		local_irq_enable();
1961 
1962 		while (clist) {
1963 			struct sk_buff *skb = clist;
1964 			clist = clist->next;
1965 
1966 			WARN_ON(atomic_read(&skb->users));
1967 			__kfree_skb(skb);
1968 		}
1969 	}
1970 
1971 	if (sd->output_queue) {
1972 		struct Qdisc *head;
1973 
1974 		local_irq_disable();
1975 		head = sd->output_queue;
1976 		sd->output_queue = NULL;
1977 		local_irq_enable();
1978 
1979 		while (head) {
1980 			struct Qdisc *q = head;
1981 			spinlock_t *root_lock;
1982 
1983 			head = head->next_sched;
1984 
1985 			root_lock = qdisc_lock(q);
1986 			if (spin_trylock(root_lock)) {
1987 				smp_mb__before_clear_bit();
1988 				clear_bit(__QDISC_STATE_SCHED,
1989 					  &q->state);
1990 				qdisc_run(q);
1991 				spin_unlock(root_lock);
1992 			} else {
1993 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
1994 					      &q->state))
1995 					__netif_reschedule(q);
1996 			}
1997 		}
1998 	}
1999 }
2000 
2001 static inline int deliver_skb(struct sk_buff *skb,
2002 			      struct packet_type *pt_prev,
2003 			      struct net_device *orig_dev)
2004 {
2005 	atomic_inc(&skb->users);
2006 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2007 }
2008 
2009 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2010 /* These hooks defined here for ATM */
2011 struct net_bridge;
2012 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2013 						unsigned char *addr);
2014 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2015 
2016 /*
2017  * If bridge module is loaded call bridging hook.
2018  *  returns NULL if packet was consumed.
2019  */
2020 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2021 					struct sk_buff *skb) __read_mostly;
2022 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2023 					    struct packet_type **pt_prev, int *ret,
2024 					    struct net_device *orig_dev)
2025 {
2026 	struct net_bridge_port *port;
2027 
2028 	if (skb->pkt_type == PACKET_LOOPBACK ||
2029 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2030 		return skb;
2031 
2032 	if (*pt_prev) {
2033 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2034 		*pt_prev = NULL;
2035 	}
2036 
2037 	return br_handle_frame_hook(port, skb);
2038 }
2039 #else
2040 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2041 #endif
2042 
2043 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2044 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2045 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2046 
2047 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2048 					     struct packet_type **pt_prev,
2049 					     int *ret,
2050 					     struct net_device *orig_dev)
2051 {
2052 	if (skb->dev->macvlan_port == NULL)
2053 		return skb;
2054 
2055 	if (*pt_prev) {
2056 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2057 		*pt_prev = NULL;
2058 	}
2059 	return macvlan_handle_frame_hook(skb);
2060 }
2061 #else
2062 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2063 #endif
2064 
2065 #ifdef CONFIG_NET_CLS_ACT
2066 /* TODO: Maybe we should just force sch_ingress to be compiled in
2067  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2068  * a compare and 2 stores extra right now if we dont have it on
2069  * but have CONFIG_NET_CLS_ACT
2070  * NOTE: This doesnt stop any functionality; if you dont have
2071  * the ingress scheduler, you just cant add policies on ingress.
2072  *
2073  */
2074 static int ing_filter(struct sk_buff *skb)
2075 {
2076 	struct net_device *dev = skb->dev;
2077 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2078 	struct netdev_queue *rxq;
2079 	int result = TC_ACT_OK;
2080 	struct Qdisc *q;
2081 
2082 	if (MAX_RED_LOOP < ttl++) {
2083 		printk(KERN_WARNING
2084 		       "Redir loop detected Dropping packet (%d->%d)\n",
2085 		       skb->iif, dev->ifindex);
2086 		return TC_ACT_SHOT;
2087 	}
2088 
2089 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2090 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2091 
2092 	rxq = &dev->rx_queue;
2093 
2094 	q = rxq->qdisc;
2095 	if (q != &noop_qdisc) {
2096 		spin_lock(qdisc_lock(q));
2097 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2098 			result = qdisc_enqueue_root(skb, q);
2099 		spin_unlock(qdisc_lock(q));
2100 	}
2101 
2102 	return result;
2103 }
2104 
2105 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2106 					 struct packet_type **pt_prev,
2107 					 int *ret, struct net_device *orig_dev)
2108 {
2109 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2110 		goto out;
2111 
2112 	if (*pt_prev) {
2113 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2114 		*pt_prev = NULL;
2115 	} else {
2116 		/* Huh? Why does turning on AF_PACKET affect this? */
2117 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2118 	}
2119 
2120 	switch (ing_filter(skb)) {
2121 	case TC_ACT_SHOT:
2122 	case TC_ACT_STOLEN:
2123 		kfree_skb(skb);
2124 		return NULL;
2125 	}
2126 
2127 out:
2128 	skb->tc_verd = 0;
2129 	return skb;
2130 }
2131 #endif
2132 
2133 /*
2134  * 	netif_nit_deliver - deliver received packets to network taps
2135  * 	@skb: buffer
2136  *
2137  * 	This function is used to deliver incoming packets to network
2138  * 	taps. It should be used when the normal netif_receive_skb path
2139  * 	is bypassed, for example because of VLAN acceleration.
2140  */
2141 void netif_nit_deliver(struct sk_buff *skb)
2142 {
2143 	struct packet_type *ptype;
2144 
2145 	if (list_empty(&ptype_all))
2146 		return;
2147 
2148 	skb_reset_network_header(skb);
2149 	skb_reset_transport_header(skb);
2150 	skb->mac_len = skb->network_header - skb->mac_header;
2151 
2152 	rcu_read_lock();
2153 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2154 		if (!ptype->dev || ptype->dev == skb->dev)
2155 			deliver_skb(skb, ptype, skb->dev);
2156 	}
2157 	rcu_read_unlock();
2158 }
2159 
2160 /**
2161  *	netif_receive_skb - process receive buffer from network
2162  *	@skb: buffer to process
2163  *
2164  *	netif_receive_skb() is the main receive data processing function.
2165  *	It always succeeds. The buffer may be dropped during processing
2166  *	for congestion control or by the protocol layers.
2167  *
2168  *	This function may only be called from softirq context and interrupts
2169  *	should be enabled.
2170  *
2171  *	Return values (usually ignored):
2172  *	NET_RX_SUCCESS: no congestion
2173  *	NET_RX_DROP: packet was dropped
2174  */
2175 int netif_receive_skb(struct sk_buff *skb)
2176 {
2177 	struct packet_type *ptype, *pt_prev;
2178 	struct net_device *orig_dev;
2179 	struct net_device *null_or_orig;
2180 	int ret = NET_RX_DROP;
2181 	__be16 type;
2182 
2183 	/* if we've gotten here through NAPI, check netpoll */
2184 	if (netpoll_receive_skb(skb))
2185 		return NET_RX_DROP;
2186 
2187 	if (!skb->tstamp.tv64)
2188 		net_timestamp(skb);
2189 
2190 	if (!skb->iif)
2191 		skb->iif = skb->dev->ifindex;
2192 
2193 	null_or_orig = NULL;
2194 	orig_dev = skb->dev;
2195 	if (orig_dev->master) {
2196 		if (skb_bond_should_drop(skb))
2197 			null_or_orig = orig_dev; /* deliver only exact match */
2198 		else
2199 			skb->dev = orig_dev->master;
2200 	}
2201 
2202 	__get_cpu_var(netdev_rx_stat).total++;
2203 
2204 	skb_reset_network_header(skb);
2205 	skb_reset_transport_header(skb);
2206 	skb->mac_len = skb->network_header - skb->mac_header;
2207 
2208 	pt_prev = NULL;
2209 
2210 	rcu_read_lock();
2211 
2212 	/* Don't receive packets in an exiting network namespace */
2213 	if (!net_alive(dev_net(skb->dev)))
2214 		goto out;
2215 
2216 #ifdef CONFIG_NET_CLS_ACT
2217 	if (skb->tc_verd & TC_NCLS) {
2218 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2219 		goto ncls;
2220 	}
2221 #endif
2222 
2223 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2224 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2225 		    ptype->dev == orig_dev) {
2226 			if (pt_prev)
2227 				ret = deliver_skb(skb, pt_prev, orig_dev);
2228 			pt_prev = ptype;
2229 		}
2230 	}
2231 
2232 #ifdef CONFIG_NET_CLS_ACT
2233 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2234 	if (!skb)
2235 		goto out;
2236 ncls:
2237 #endif
2238 
2239 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2240 	if (!skb)
2241 		goto out;
2242 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2243 	if (!skb)
2244 		goto out;
2245 
2246 	type = skb->protocol;
2247 	list_for_each_entry_rcu(ptype,
2248 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2249 		if (ptype->type == type &&
2250 		    (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2251 		     ptype->dev == orig_dev)) {
2252 			if (pt_prev)
2253 				ret = deliver_skb(skb, pt_prev, orig_dev);
2254 			pt_prev = ptype;
2255 		}
2256 	}
2257 
2258 	if (pt_prev) {
2259 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2260 	} else {
2261 		kfree_skb(skb);
2262 		/* Jamal, now you will not able to escape explaining
2263 		 * me how you were going to use this. :-)
2264 		 */
2265 		ret = NET_RX_DROP;
2266 	}
2267 
2268 out:
2269 	rcu_read_unlock();
2270 	return ret;
2271 }
2272 
2273 /* Network device is going away, flush any packets still pending  */
2274 static void flush_backlog(void *arg)
2275 {
2276 	struct net_device *dev = arg;
2277 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2278 	struct sk_buff *skb, *tmp;
2279 
2280 	skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2281 		if (skb->dev == dev) {
2282 			__skb_unlink(skb, &queue->input_pkt_queue);
2283 			kfree_skb(skb);
2284 		}
2285 }
2286 
2287 static int process_backlog(struct napi_struct *napi, int quota)
2288 {
2289 	int work = 0;
2290 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2291 	unsigned long start_time = jiffies;
2292 
2293 	napi->weight = weight_p;
2294 	do {
2295 		struct sk_buff *skb;
2296 
2297 		local_irq_disable();
2298 		skb = __skb_dequeue(&queue->input_pkt_queue);
2299 		if (!skb) {
2300 			__napi_complete(napi);
2301 			local_irq_enable();
2302 			break;
2303 		}
2304 		local_irq_enable();
2305 
2306 		netif_receive_skb(skb);
2307 	} while (++work < quota && jiffies == start_time);
2308 
2309 	return work;
2310 }
2311 
2312 /**
2313  * __napi_schedule - schedule for receive
2314  * @n: entry to schedule
2315  *
2316  * The entry's receive function will be scheduled to run
2317  */
2318 void __napi_schedule(struct napi_struct *n)
2319 {
2320 	unsigned long flags;
2321 
2322 	local_irq_save(flags);
2323 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2324 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2325 	local_irq_restore(flags);
2326 }
2327 EXPORT_SYMBOL(__napi_schedule);
2328 
2329 
2330 static void net_rx_action(struct softirq_action *h)
2331 {
2332 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2333 	unsigned long start_time = jiffies;
2334 	int budget = netdev_budget;
2335 	void *have;
2336 
2337 	local_irq_disable();
2338 
2339 	while (!list_empty(list)) {
2340 		struct napi_struct *n;
2341 		int work, weight;
2342 
2343 		/* If softirq window is exhuasted then punt.
2344 		 *
2345 		 * Note that this is a slight policy change from the
2346 		 * previous NAPI code, which would allow up to 2
2347 		 * jiffies to pass before breaking out.  The test
2348 		 * used to be "jiffies - start_time > 1".
2349 		 */
2350 		if (unlikely(budget <= 0 || jiffies != start_time))
2351 			goto softnet_break;
2352 
2353 		local_irq_enable();
2354 
2355 		/* Even though interrupts have been re-enabled, this
2356 		 * access is safe because interrupts can only add new
2357 		 * entries to the tail of this list, and only ->poll()
2358 		 * calls can remove this head entry from the list.
2359 		 */
2360 		n = list_entry(list->next, struct napi_struct, poll_list);
2361 
2362 		have = netpoll_poll_lock(n);
2363 
2364 		weight = n->weight;
2365 
2366 		/* This NAPI_STATE_SCHED test is for avoiding a race
2367 		 * with netpoll's poll_napi().  Only the entity which
2368 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2369 		 * actually make the ->poll() call.  Therefore we avoid
2370 		 * accidently calling ->poll() when NAPI is not scheduled.
2371 		 */
2372 		work = 0;
2373 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2374 			work = n->poll(n, weight);
2375 
2376 		WARN_ON_ONCE(work > weight);
2377 
2378 		budget -= work;
2379 
2380 		local_irq_disable();
2381 
2382 		/* Drivers must not modify the NAPI state if they
2383 		 * consume the entire weight.  In such cases this code
2384 		 * still "owns" the NAPI instance and therefore can
2385 		 * move the instance around on the list at-will.
2386 		 */
2387 		if (unlikely(work == weight)) {
2388 			if (unlikely(napi_disable_pending(n)))
2389 				__napi_complete(n);
2390 			else
2391 				list_move_tail(&n->poll_list, list);
2392 		}
2393 
2394 		netpoll_poll_unlock(have);
2395 	}
2396 out:
2397 	local_irq_enable();
2398 
2399 #ifdef CONFIG_NET_DMA
2400 	/*
2401 	 * There may not be any more sk_buffs coming right now, so push
2402 	 * any pending DMA copies to hardware
2403 	 */
2404 	if (!cpus_empty(net_dma.channel_mask)) {
2405 		int chan_idx;
2406 		for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2407 			struct dma_chan *chan = net_dma.channels[chan_idx];
2408 			if (chan)
2409 				dma_async_memcpy_issue_pending(chan);
2410 		}
2411 	}
2412 #endif
2413 
2414 	return;
2415 
2416 softnet_break:
2417 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2418 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2419 	goto out;
2420 }
2421 
2422 static gifconf_func_t * gifconf_list [NPROTO];
2423 
2424 /**
2425  *	register_gifconf	-	register a SIOCGIF handler
2426  *	@family: Address family
2427  *	@gifconf: Function handler
2428  *
2429  *	Register protocol dependent address dumping routines. The handler
2430  *	that is passed must not be freed or reused until it has been replaced
2431  *	by another handler.
2432  */
2433 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2434 {
2435 	if (family >= NPROTO)
2436 		return -EINVAL;
2437 	gifconf_list[family] = gifconf;
2438 	return 0;
2439 }
2440 
2441 
2442 /*
2443  *	Map an interface index to its name (SIOCGIFNAME)
2444  */
2445 
2446 /*
2447  *	We need this ioctl for efficient implementation of the
2448  *	if_indextoname() function required by the IPv6 API.  Without
2449  *	it, we would have to search all the interfaces to find a
2450  *	match.  --pb
2451  */
2452 
2453 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2454 {
2455 	struct net_device *dev;
2456 	struct ifreq ifr;
2457 
2458 	/*
2459 	 *	Fetch the caller's info block.
2460 	 */
2461 
2462 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2463 		return -EFAULT;
2464 
2465 	read_lock(&dev_base_lock);
2466 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2467 	if (!dev) {
2468 		read_unlock(&dev_base_lock);
2469 		return -ENODEV;
2470 	}
2471 
2472 	strcpy(ifr.ifr_name, dev->name);
2473 	read_unlock(&dev_base_lock);
2474 
2475 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2476 		return -EFAULT;
2477 	return 0;
2478 }
2479 
2480 /*
2481  *	Perform a SIOCGIFCONF call. This structure will change
2482  *	size eventually, and there is nothing I can do about it.
2483  *	Thus we will need a 'compatibility mode'.
2484  */
2485 
2486 static int dev_ifconf(struct net *net, char __user *arg)
2487 {
2488 	struct ifconf ifc;
2489 	struct net_device *dev;
2490 	char __user *pos;
2491 	int len;
2492 	int total;
2493 	int i;
2494 
2495 	/*
2496 	 *	Fetch the caller's info block.
2497 	 */
2498 
2499 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2500 		return -EFAULT;
2501 
2502 	pos = ifc.ifc_buf;
2503 	len = ifc.ifc_len;
2504 
2505 	/*
2506 	 *	Loop over the interfaces, and write an info block for each.
2507 	 */
2508 
2509 	total = 0;
2510 	for_each_netdev(net, dev) {
2511 		for (i = 0; i < NPROTO; i++) {
2512 			if (gifconf_list[i]) {
2513 				int done;
2514 				if (!pos)
2515 					done = gifconf_list[i](dev, NULL, 0);
2516 				else
2517 					done = gifconf_list[i](dev, pos + total,
2518 							       len - total);
2519 				if (done < 0)
2520 					return -EFAULT;
2521 				total += done;
2522 			}
2523 		}
2524 	}
2525 
2526 	/*
2527 	 *	All done.  Write the updated control block back to the caller.
2528 	 */
2529 	ifc.ifc_len = total;
2530 
2531 	/*
2532 	 * 	Both BSD and Solaris return 0 here, so we do too.
2533 	 */
2534 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2535 }
2536 
2537 #ifdef CONFIG_PROC_FS
2538 /*
2539  *	This is invoked by the /proc filesystem handler to display a device
2540  *	in detail.
2541  */
2542 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2543 	__acquires(dev_base_lock)
2544 {
2545 	struct net *net = seq_file_net(seq);
2546 	loff_t off;
2547 	struct net_device *dev;
2548 
2549 	read_lock(&dev_base_lock);
2550 	if (!*pos)
2551 		return SEQ_START_TOKEN;
2552 
2553 	off = 1;
2554 	for_each_netdev(net, dev)
2555 		if (off++ == *pos)
2556 			return dev;
2557 
2558 	return NULL;
2559 }
2560 
2561 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2562 {
2563 	struct net *net = seq_file_net(seq);
2564 	++*pos;
2565 	return v == SEQ_START_TOKEN ?
2566 		first_net_device(net) : next_net_device((struct net_device *)v);
2567 }
2568 
2569 void dev_seq_stop(struct seq_file *seq, void *v)
2570 	__releases(dev_base_lock)
2571 {
2572 	read_unlock(&dev_base_lock);
2573 }
2574 
2575 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2576 {
2577 	struct net_device_stats *stats = dev->get_stats(dev);
2578 
2579 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2580 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2581 		   dev->name, stats->rx_bytes, stats->rx_packets,
2582 		   stats->rx_errors,
2583 		   stats->rx_dropped + stats->rx_missed_errors,
2584 		   stats->rx_fifo_errors,
2585 		   stats->rx_length_errors + stats->rx_over_errors +
2586 		    stats->rx_crc_errors + stats->rx_frame_errors,
2587 		   stats->rx_compressed, stats->multicast,
2588 		   stats->tx_bytes, stats->tx_packets,
2589 		   stats->tx_errors, stats->tx_dropped,
2590 		   stats->tx_fifo_errors, stats->collisions,
2591 		   stats->tx_carrier_errors +
2592 		    stats->tx_aborted_errors +
2593 		    stats->tx_window_errors +
2594 		    stats->tx_heartbeat_errors,
2595 		   stats->tx_compressed);
2596 }
2597 
2598 /*
2599  *	Called from the PROCfs module. This now uses the new arbitrary sized
2600  *	/proc/net interface to create /proc/net/dev
2601  */
2602 static int dev_seq_show(struct seq_file *seq, void *v)
2603 {
2604 	if (v == SEQ_START_TOKEN)
2605 		seq_puts(seq, "Inter-|   Receive                            "
2606 			      "                    |  Transmit\n"
2607 			      " face |bytes    packets errs drop fifo frame "
2608 			      "compressed multicast|bytes    packets errs "
2609 			      "drop fifo colls carrier compressed\n");
2610 	else
2611 		dev_seq_printf_stats(seq, v);
2612 	return 0;
2613 }
2614 
2615 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2616 {
2617 	struct netif_rx_stats *rc = NULL;
2618 
2619 	while (*pos < nr_cpu_ids)
2620 		if (cpu_online(*pos)) {
2621 			rc = &per_cpu(netdev_rx_stat, *pos);
2622 			break;
2623 		} else
2624 			++*pos;
2625 	return rc;
2626 }
2627 
2628 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2629 {
2630 	return softnet_get_online(pos);
2631 }
2632 
2633 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2634 {
2635 	++*pos;
2636 	return softnet_get_online(pos);
2637 }
2638 
2639 static void softnet_seq_stop(struct seq_file *seq, void *v)
2640 {
2641 }
2642 
2643 static int softnet_seq_show(struct seq_file *seq, void *v)
2644 {
2645 	struct netif_rx_stats *s = v;
2646 
2647 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2648 		   s->total, s->dropped, s->time_squeeze, 0,
2649 		   0, 0, 0, 0, /* was fastroute */
2650 		   s->cpu_collision );
2651 	return 0;
2652 }
2653 
2654 static const struct seq_operations dev_seq_ops = {
2655 	.start = dev_seq_start,
2656 	.next  = dev_seq_next,
2657 	.stop  = dev_seq_stop,
2658 	.show  = dev_seq_show,
2659 };
2660 
2661 static int dev_seq_open(struct inode *inode, struct file *file)
2662 {
2663 	return seq_open_net(inode, file, &dev_seq_ops,
2664 			    sizeof(struct seq_net_private));
2665 }
2666 
2667 static const struct file_operations dev_seq_fops = {
2668 	.owner	 = THIS_MODULE,
2669 	.open    = dev_seq_open,
2670 	.read    = seq_read,
2671 	.llseek  = seq_lseek,
2672 	.release = seq_release_net,
2673 };
2674 
2675 static const struct seq_operations softnet_seq_ops = {
2676 	.start = softnet_seq_start,
2677 	.next  = softnet_seq_next,
2678 	.stop  = softnet_seq_stop,
2679 	.show  = softnet_seq_show,
2680 };
2681 
2682 static int softnet_seq_open(struct inode *inode, struct file *file)
2683 {
2684 	return seq_open(file, &softnet_seq_ops);
2685 }
2686 
2687 static const struct file_operations softnet_seq_fops = {
2688 	.owner	 = THIS_MODULE,
2689 	.open    = softnet_seq_open,
2690 	.read    = seq_read,
2691 	.llseek  = seq_lseek,
2692 	.release = seq_release,
2693 };
2694 
2695 static void *ptype_get_idx(loff_t pos)
2696 {
2697 	struct packet_type *pt = NULL;
2698 	loff_t i = 0;
2699 	int t;
2700 
2701 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2702 		if (i == pos)
2703 			return pt;
2704 		++i;
2705 	}
2706 
2707 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
2708 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2709 			if (i == pos)
2710 				return pt;
2711 			++i;
2712 		}
2713 	}
2714 	return NULL;
2715 }
2716 
2717 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2718 	__acquires(RCU)
2719 {
2720 	rcu_read_lock();
2721 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2722 }
2723 
2724 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2725 {
2726 	struct packet_type *pt;
2727 	struct list_head *nxt;
2728 	int hash;
2729 
2730 	++*pos;
2731 	if (v == SEQ_START_TOKEN)
2732 		return ptype_get_idx(0);
2733 
2734 	pt = v;
2735 	nxt = pt->list.next;
2736 	if (pt->type == htons(ETH_P_ALL)) {
2737 		if (nxt != &ptype_all)
2738 			goto found;
2739 		hash = 0;
2740 		nxt = ptype_base[0].next;
2741 	} else
2742 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
2743 
2744 	while (nxt == &ptype_base[hash]) {
2745 		if (++hash >= PTYPE_HASH_SIZE)
2746 			return NULL;
2747 		nxt = ptype_base[hash].next;
2748 	}
2749 found:
2750 	return list_entry(nxt, struct packet_type, list);
2751 }
2752 
2753 static void ptype_seq_stop(struct seq_file *seq, void *v)
2754 	__releases(RCU)
2755 {
2756 	rcu_read_unlock();
2757 }
2758 
2759 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2760 {
2761 #ifdef CONFIG_KALLSYMS
2762 	unsigned long offset = 0, symsize;
2763 	const char *symname;
2764 	char *modname;
2765 	char namebuf[128];
2766 
2767 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2768 				  &modname, namebuf);
2769 
2770 	if (symname) {
2771 		char *delim = ":";
2772 
2773 		if (!modname)
2774 			modname = delim = "";
2775 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2776 			   symname, offset);
2777 		return;
2778 	}
2779 #endif
2780 
2781 	seq_printf(seq, "[%p]", sym);
2782 }
2783 
2784 static int ptype_seq_show(struct seq_file *seq, void *v)
2785 {
2786 	struct packet_type *pt = v;
2787 
2788 	if (v == SEQ_START_TOKEN)
2789 		seq_puts(seq, "Type Device      Function\n");
2790 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
2791 		if (pt->type == htons(ETH_P_ALL))
2792 			seq_puts(seq, "ALL ");
2793 		else
2794 			seq_printf(seq, "%04x", ntohs(pt->type));
2795 
2796 		seq_printf(seq, " %-8s ",
2797 			   pt->dev ? pt->dev->name : "");
2798 		ptype_seq_decode(seq,  pt->func);
2799 		seq_putc(seq, '\n');
2800 	}
2801 
2802 	return 0;
2803 }
2804 
2805 static const struct seq_operations ptype_seq_ops = {
2806 	.start = ptype_seq_start,
2807 	.next  = ptype_seq_next,
2808 	.stop  = ptype_seq_stop,
2809 	.show  = ptype_seq_show,
2810 };
2811 
2812 static int ptype_seq_open(struct inode *inode, struct file *file)
2813 {
2814 	return seq_open_net(inode, file, &ptype_seq_ops,
2815 			sizeof(struct seq_net_private));
2816 }
2817 
2818 static const struct file_operations ptype_seq_fops = {
2819 	.owner	 = THIS_MODULE,
2820 	.open    = ptype_seq_open,
2821 	.read    = seq_read,
2822 	.llseek  = seq_lseek,
2823 	.release = seq_release_net,
2824 };
2825 
2826 
2827 static int __net_init dev_proc_net_init(struct net *net)
2828 {
2829 	int rc = -ENOMEM;
2830 
2831 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2832 		goto out;
2833 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2834 		goto out_dev;
2835 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2836 		goto out_softnet;
2837 
2838 	if (wext_proc_init(net))
2839 		goto out_ptype;
2840 	rc = 0;
2841 out:
2842 	return rc;
2843 out_ptype:
2844 	proc_net_remove(net, "ptype");
2845 out_softnet:
2846 	proc_net_remove(net, "softnet_stat");
2847 out_dev:
2848 	proc_net_remove(net, "dev");
2849 	goto out;
2850 }
2851 
2852 static void __net_exit dev_proc_net_exit(struct net *net)
2853 {
2854 	wext_proc_exit(net);
2855 
2856 	proc_net_remove(net, "ptype");
2857 	proc_net_remove(net, "softnet_stat");
2858 	proc_net_remove(net, "dev");
2859 }
2860 
2861 static struct pernet_operations __net_initdata dev_proc_ops = {
2862 	.init = dev_proc_net_init,
2863 	.exit = dev_proc_net_exit,
2864 };
2865 
2866 static int __init dev_proc_init(void)
2867 {
2868 	return register_pernet_subsys(&dev_proc_ops);
2869 }
2870 #else
2871 #define dev_proc_init() 0
2872 #endif	/* CONFIG_PROC_FS */
2873 
2874 
2875 /**
2876  *	netdev_set_master	-	set up master/slave pair
2877  *	@slave: slave device
2878  *	@master: new master device
2879  *
2880  *	Changes the master device of the slave. Pass %NULL to break the
2881  *	bonding. The caller must hold the RTNL semaphore. On a failure
2882  *	a negative errno code is returned. On success the reference counts
2883  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2884  *	function returns zero.
2885  */
2886 int netdev_set_master(struct net_device *slave, struct net_device *master)
2887 {
2888 	struct net_device *old = slave->master;
2889 
2890 	ASSERT_RTNL();
2891 
2892 	if (master) {
2893 		if (old)
2894 			return -EBUSY;
2895 		dev_hold(master);
2896 	}
2897 
2898 	slave->master = master;
2899 
2900 	synchronize_net();
2901 
2902 	if (old)
2903 		dev_put(old);
2904 
2905 	if (master)
2906 		slave->flags |= IFF_SLAVE;
2907 	else
2908 		slave->flags &= ~IFF_SLAVE;
2909 
2910 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2911 	return 0;
2912 }
2913 
2914 static int __dev_set_promiscuity(struct net_device *dev, int inc)
2915 {
2916 	unsigned short old_flags = dev->flags;
2917 
2918 	ASSERT_RTNL();
2919 
2920 	dev->flags |= IFF_PROMISC;
2921 	dev->promiscuity += inc;
2922 	if (dev->promiscuity == 0) {
2923 		/*
2924 		 * Avoid overflow.
2925 		 * If inc causes overflow, untouch promisc and return error.
2926 		 */
2927 		if (inc < 0)
2928 			dev->flags &= ~IFF_PROMISC;
2929 		else {
2930 			dev->promiscuity -= inc;
2931 			printk(KERN_WARNING "%s: promiscuity touches roof, "
2932 				"set promiscuity failed, promiscuity feature "
2933 				"of device might be broken.\n", dev->name);
2934 			return -EOVERFLOW;
2935 		}
2936 	}
2937 	if (dev->flags != old_flags) {
2938 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2939 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2940 							       "left");
2941 		if (audit_enabled)
2942 			audit_log(current->audit_context, GFP_ATOMIC,
2943 				AUDIT_ANOM_PROMISCUOUS,
2944 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2945 				dev->name, (dev->flags & IFF_PROMISC),
2946 				(old_flags & IFF_PROMISC),
2947 				audit_get_loginuid(current),
2948 				current->uid, current->gid,
2949 				audit_get_sessionid(current));
2950 
2951 		if (dev->change_rx_flags)
2952 			dev->change_rx_flags(dev, IFF_PROMISC);
2953 	}
2954 	return 0;
2955 }
2956 
2957 /**
2958  *	dev_set_promiscuity	- update promiscuity count on a device
2959  *	@dev: device
2960  *	@inc: modifier
2961  *
2962  *	Add or remove promiscuity from a device. While the count in the device
2963  *	remains above zero the interface remains promiscuous. Once it hits zero
2964  *	the device reverts back to normal filtering operation. A negative inc
2965  *	value is used to drop promiscuity on the device.
2966  *	Return 0 if successful or a negative errno code on error.
2967  */
2968 int dev_set_promiscuity(struct net_device *dev, int inc)
2969 {
2970 	unsigned short old_flags = dev->flags;
2971 	int err;
2972 
2973 	err = __dev_set_promiscuity(dev, inc);
2974 	if (err < 0)
2975 		return err;
2976 	if (dev->flags != old_flags)
2977 		dev_set_rx_mode(dev);
2978 	return err;
2979 }
2980 
2981 /**
2982  *	dev_set_allmulti	- update allmulti count on a device
2983  *	@dev: device
2984  *	@inc: modifier
2985  *
2986  *	Add or remove reception of all multicast frames to a device. While the
2987  *	count in the device remains above zero the interface remains listening
2988  *	to all interfaces. Once it hits zero the device reverts back to normal
2989  *	filtering operation. A negative @inc value is used to drop the counter
2990  *	when releasing a resource needing all multicasts.
2991  *	Return 0 if successful or a negative errno code on error.
2992  */
2993 
2994 int dev_set_allmulti(struct net_device *dev, int inc)
2995 {
2996 	unsigned short old_flags = dev->flags;
2997 
2998 	ASSERT_RTNL();
2999 
3000 	dev->flags |= IFF_ALLMULTI;
3001 	dev->allmulti += inc;
3002 	if (dev->allmulti == 0) {
3003 		/*
3004 		 * Avoid overflow.
3005 		 * If inc causes overflow, untouch allmulti and return error.
3006 		 */
3007 		if (inc < 0)
3008 			dev->flags &= ~IFF_ALLMULTI;
3009 		else {
3010 			dev->allmulti -= inc;
3011 			printk(KERN_WARNING "%s: allmulti touches roof, "
3012 				"set allmulti failed, allmulti feature of "
3013 				"device might be broken.\n", dev->name);
3014 			return -EOVERFLOW;
3015 		}
3016 	}
3017 	if (dev->flags ^ old_flags) {
3018 		if (dev->change_rx_flags)
3019 			dev->change_rx_flags(dev, IFF_ALLMULTI);
3020 		dev_set_rx_mode(dev);
3021 	}
3022 	return 0;
3023 }
3024 
3025 /*
3026  *	Upload unicast and multicast address lists to device and
3027  *	configure RX filtering. When the device doesn't support unicast
3028  *	filtering it is put in promiscuous mode while unicast addresses
3029  *	are present.
3030  */
3031 void __dev_set_rx_mode(struct net_device *dev)
3032 {
3033 	/* dev_open will call this function so the list will stay sane. */
3034 	if (!(dev->flags&IFF_UP))
3035 		return;
3036 
3037 	if (!netif_device_present(dev))
3038 		return;
3039 
3040 	if (dev->set_rx_mode)
3041 		dev->set_rx_mode(dev);
3042 	else {
3043 		/* Unicast addresses changes may only happen under the rtnl,
3044 		 * therefore calling __dev_set_promiscuity here is safe.
3045 		 */
3046 		if (dev->uc_count > 0 && !dev->uc_promisc) {
3047 			__dev_set_promiscuity(dev, 1);
3048 			dev->uc_promisc = 1;
3049 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
3050 			__dev_set_promiscuity(dev, -1);
3051 			dev->uc_promisc = 0;
3052 		}
3053 
3054 		if (dev->set_multicast_list)
3055 			dev->set_multicast_list(dev);
3056 	}
3057 }
3058 
3059 void dev_set_rx_mode(struct net_device *dev)
3060 {
3061 	netif_addr_lock_bh(dev);
3062 	__dev_set_rx_mode(dev);
3063 	netif_addr_unlock_bh(dev);
3064 }
3065 
3066 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3067 		      void *addr, int alen, int glbl)
3068 {
3069 	struct dev_addr_list *da;
3070 
3071 	for (; (da = *list) != NULL; list = &da->next) {
3072 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3073 		    alen == da->da_addrlen) {
3074 			if (glbl) {
3075 				int old_glbl = da->da_gusers;
3076 				da->da_gusers = 0;
3077 				if (old_glbl == 0)
3078 					break;
3079 			}
3080 			if (--da->da_users)
3081 				return 0;
3082 
3083 			*list = da->next;
3084 			kfree(da);
3085 			(*count)--;
3086 			return 0;
3087 		}
3088 	}
3089 	return -ENOENT;
3090 }
3091 
3092 int __dev_addr_add(struct dev_addr_list **list, int *count,
3093 		   void *addr, int alen, int glbl)
3094 {
3095 	struct dev_addr_list *da;
3096 
3097 	for (da = *list; da != NULL; da = da->next) {
3098 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3099 		    da->da_addrlen == alen) {
3100 			if (glbl) {
3101 				int old_glbl = da->da_gusers;
3102 				da->da_gusers = 1;
3103 				if (old_glbl)
3104 					return 0;
3105 			}
3106 			da->da_users++;
3107 			return 0;
3108 		}
3109 	}
3110 
3111 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
3112 	if (da == NULL)
3113 		return -ENOMEM;
3114 	memcpy(da->da_addr, addr, alen);
3115 	da->da_addrlen = alen;
3116 	da->da_users = 1;
3117 	da->da_gusers = glbl ? 1 : 0;
3118 	da->next = *list;
3119 	*list = da;
3120 	(*count)++;
3121 	return 0;
3122 }
3123 
3124 /**
3125  *	dev_unicast_delete	- Release secondary unicast address.
3126  *	@dev: device
3127  *	@addr: address to delete
3128  *	@alen: length of @addr
3129  *
3130  *	Release reference to a secondary unicast address and remove it
3131  *	from the device if the reference count drops to zero.
3132  *
3133  * 	The caller must hold the rtnl_mutex.
3134  */
3135 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3136 {
3137 	int err;
3138 
3139 	ASSERT_RTNL();
3140 
3141 	netif_addr_lock_bh(dev);
3142 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3143 	if (!err)
3144 		__dev_set_rx_mode(dev);
3145 	netif_addr_unlock_bh(dev);
3146 	return err;
3147 }
3148 EXPORT_SYMBOL(dev_unicast_delete);
3149 
3150 /**
3151  *	dev_unicast_add		- add a secondary unicast address
3152  *	@dev: device
3153  *	@addr: address to add
3154  *	@alen: length of @addr
3155  *
3156  *	Add a secondary unicast address to the device or increase
3157  *	the reference count if it already exists.
3158  *
3159  *	The caller must hold the rtnl_mutex.
3160  */
3161 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3162 {
3163 	int err;
3164 
3165 	ASSERT_RTNL();
3166 
3167 	netif_addr_lock_bh(dev);
3168 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3169 	if (!err)
3170 		__dev_set_rx_mode(dev);
3171 	netif_addr_unlock_bh(dev);
3172 	return err;
3173 }
3174 EXPORT_SYMBOL(dev_unicast_add);
3175 
3176 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3177 		    struct dev_addr_list **from, int *from_count)
3178 {
3179 	struct dev_addr_list *da, *next;
3180 	int err = 0;
3181 
3182 	da = *from;
3183 	while (da != NULL) {
3184 		next = da->next;
3185 		if (!da->da_synced) {
3186 			err = __dev_addr_add(to, to_count,
3187 					     da->da_addr, da->da_addrlen, 0);
3188 			if (err < 0)
3189 				break;
3190 			da->da_synced = 1;
3191 			da->da_users++;
3192 		} else if (da->da_users == 1) {
3193 			__dev_addr_delete(to, to_count,
3194 					  da->da_addr, da->da_addrlen, 0);
3195 			__dev_addr_delete(from, from_count,
3196 					  da->da_addr, da->da_addrlen, 0);
3197 		}
3198 		da = next;
3199 	}
3200 	return err;
3201 }
3202 
3203 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3204 		       struct dev_addr_list **from, int *from_count)
3205 {
3206 	struct dev_addr_list *da, *next;
3207 
3208 	da = *from;
3209 	while (da != NULL) {
3210 		next = da->next;
3211 		if (da->da_synced) {
3212 			__dev_addr_delete(to, to_count,
3213 					  da->da_addr, da->da_addrlen, 0);
3214 			da->da_synced = 0;
3215 			__dev_addr_delete(from, from_count,
3216 					  da->da_addr, da->da_addrlen, 0);
3217 		}
3218 		da = next;
3219 	}
3220 }
3221 
3222 /**
3223  *	dev_unicast_sync - Synchronize device's unicast list to another device
3224  *	@to: destination device
3225  *	@from: source device
3226  *
3227  *	Add newly added addresses to the destination device and release
3228  *	addresses that have no users left. The source device must be
3229  *	locked by netif_tx_lock_bh.
3230  *
3231  *	This function is intended to be called from the dev->set_rx_mode
3232  *	function of layered software devices.
3233  */
3234 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3235 {
3236 	int err = 0;
3237 
3238 	netif_addr_lock_bh(to);
3239 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3240 			      &from->uc_list, &from->uc_count);
3241 	if (!err)
3242 		__dev_set_rx_mode(to);
3243 	netif_addr_unlock_bh(to);
3244 	return err;
3245 }
3246 EXPORT_SYMBOL(dev_unicast_sync);
3247 
3248 /**
3249  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3250  *	@to: destination device
3251  *	@from: source device
3252  *
3253  *	Remove all addresses that were added to the destination device by
3254  *	dev_unicast_sync(). This function is intended to be called from the
3255  *	dev->stop function of layered software devices.
3256  */
3257 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3258 {
3259 	netif_addr_lock_bh(from);
3260 	netif_addr_lock(to);
3261 
3262 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3263 			  &from->uc_list, &from->uc_count);
3264 	__dev_set_rx_mode(to);
3265 
3266 	netif_addr_unlock(to);
3267 	netif_addr_unlock_bh(from);
3268 }
3269 EXPORT_SYMBOL(dev_unicast_unsync);
3270 
3271 static void __dev_addr_discard(struct dev_addr_list **list)
3272 {
3273 	struct dev_addr_list *tmp;
3274 
3275 	while (*list != NULL) {
3276 		tmp = *list;
3277 		*list = tmp->next;
3278 		if (tmp->da_users > tmp->da_gusers)
3279 			printk("__dev_addr_discard: address leakage! "
3280 			       "da_users=%d\n", tmp->da_users);
3281 		kfree(tmp);
3282 	}
3283 }
3284 
3285 static void dev_addr_discard(struct net_device *dev)
3286 {
3287 	netif_addr_lock_bh(dev);
3288 
3289 	__dev_addr_discard(&dev->uc_list);
3290 	dev->uc_count = 0;
3291 
3292 	__dev_addr_discard(&dev->mc_list);
3293 	dev->mc_count = 0;
3294 
3295 	netif_addr_unlock_bh(dev);
3296 }
3297 
3298 unsigned dev_get_flags(const struct net_device *dev)
3299 {
3300 	unsigned flags;
3301 
3302 	flags = (dev->flags & ~(IFF_PROMISC |
3303 				IFF_ALLMULTI |
3304 				IFF_RUNNING |
3305 				IFF_LOWER_UP |
3306 				IFF_DORMANT)) |
3307 		(dev->gflags & (IFF_PROMISC |
3308 				IFF_ALLMULTI));
3309 
3310 	if (netif_running(dev)) {
3311 		if (netif_oper_up(dev))
3312 			flags |= IFF_RUNNING;
3313 		if (netif_carrier_ok(dev))
3314 			flags |= IFF_LOWER_UP;
3315 		if (netif_dormant(dev))
3316 			flags |= IFF_DORMANT;
3317 	}
3318 
3319 	return flags;
3320 }
3321 
3322 int dev_change_flags(struct net_device *dev, unsigned flags)
3323 {
3324 	int ret, changes;
3325 	int old_flags = dev->flags;
3326 
3327 	ASSERT_RTNL();
3328 
3329 	/*
3330 	 *	Set the flags on our device.
3331 	 */
3332 
3333 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3334 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3335 			       IFF_AUTOMEDIA)) |
3336 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3337 				    IFF_ALLMULTI));
3338 
3339 	/*
3340 	 *	Load in the correct multicast list now the flags have changed.
3341 	 */
3342 
3343 	if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
3344 		dev->change_rx_flags(dev, IFF_MULTICAST);
3345 
3346 	dev_set_rx_mode(dev);
3347 
3348 	/*
3349 	 *	Have we downed the interface. We handle IFF_UP ourselves
3350 	 *	according to user attempts to set it, rather than blindly
3351 	 *	setting it.
3352 	 */
3353 
3354 	ret = 0;
3355 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3356 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3357 
3358 		if (!ret)
3359 			dev_set_rx_mode(dev);
3360 	}
3361 
3362 	if (dev->flags & IFF_UP &&
3363 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3364 					  IFF_VOLATILE)))
3365 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3366 
3367 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3368 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3369 		dev->gflags ^= IFF_PROMISC;
3370 		dev_set_promiscuity(dev, inc);
3371 	}
3372 
3373 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3374 	   is important. Some (broken) drivers set IFF_PROMISC, when
3375 	   IFF_ALLMULTI is requested not asking us and not reporting.
3376 	 */
3377 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3378 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3379 		dev->gflags ^= IFF_ALLMULTI;
3380 		dev_set_allmulti(dev, inc);
3381 	}
3382 
3383 	/* Exclude state transition flags, already notified */
3384 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3385 	if (changes)
3386 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3387 
3388 	return ret;
3389 }
3390 
3391 int dev_set_mtu(struct net_device *dev, int new_mtu)
3392 {
3393 	int err;
3394 
3395 	if (new_mtu == dev->mtu)
3396 		return 0;
3397 
3398 	/*	MTU must be positive.	 */
3399 	if (new_mtu < 0)
3400 		return -EINVAL;
3401 
3402 	if (!netif_device_present(dev))
3403 		return -ENODEV;
3404 
3405 	err = 0;
3406 	if (dev->change_mtu)
3407 		err = dev->change_mtu(dev, new_mtu);
3408 	else
3409 		dev->mtu = new_mtu;
3410 	if (!err && dev->flags & IFF_UP)
3411 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3412 	return err;
3413 }
3414 
3415 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3416 {
3417 	int err;
3418 
3419 	if (!dev->set_mac_address)
3420 		return -EOPNOTSUPP;
3421 	if (sa->sa_family != dev->type)
3422 		return -EINVAL;
3423 	if (!netif_device_present(dev))
3424 		return -ENODEV;
3425 	err = dev->set_mac_address(dev, sa);
3426 	if (!err)
3427 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3428 	return err;
3429 }
3430 
3431 /*
3432  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3433  */
3434 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3435 {
3436 	int err;
3437 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3438 
3439 	if (!dev)
3440 		return -ENODEV;
3441 
3442 	switch (cmd) {
3443 		case SIOCGIFFLAGS:	/* Get interface flags */
3444 			ifr->ifr_flags = dev_get_flags(dev);
3445 			return 0;
3446 
3447 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3448 					   (currently unused) */
3449 			ifr->ifr_metric = 0;
3450 			return 0;
3451 
3452 		case SIOCGIFMTU:	/* Get the MTU of a device */
3453 			ifr->ifr_mtu = dev->mtu;
3454 			return 0;
3455 
3456 		case SIOCGIFHWADDR:
3457 			if (!dev->addr_len)
3458 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3459 			else
3460 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3461 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3462 			ifr->ifr_hwaddr.sa_family = dev->type;
3463 			return 0;
3464 
3465 		case SIOCGIFSLAVE:
3466 			err = -EINVAL;
3467 			break;
3468 
3469 		case SIOCGIFMAP:
3470 			ifr->ifr_map.mem_start = dev->mem_start;
3471 			ifr->ifr_map.mem_end   = dev->mem_end;
3472 			ifr->ifr_map.base_addr = dev->base_addr;
3473 			ifr->ifr_map.irq       = dev->irq;
3474 			ifr->ifr_map.dma       = dev->dma;
3475 			ifr->ifr_map.port      = dev->if_port;
3476 			return 0;
3477 
3478 		case SIOCGIFINDEX:
3479 			ifr->ifr_ifindex = dev->ifindex;
3480 			return 0;
3481 
3482 		case SIOCGIFTXQLEN:
3483 			ifr->ifr_qlen = dev->tx_queue_len;
3484 			return 0;
3485 
3486 		default:
3487 			/* dev_ioctl() should ensure this case
3488 			 * is never reached
3489 			 */
3490 			WARN_ON(1);
3491 			err = -EINVAL;
3492 			break;
3493 
3494 	}
3495 	return err;
3496 }
3497 
3498 /*
3499  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3500  */
3501 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3502 {
3503 	int err;
3504 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3505 
3506 	if (!dev)
3507 		return -ENODEV;
3508 
3509 	switch (cmd) {
3510 		case SIOCSIFFLAGS:	/* Set interface flags */
3511 			return dev_change_flags(dev, ifr->ifr_flags);
3512 
3513 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3514 					   (currently unused) */
3515 			return -EOPNOTSUPP;
3516 
3517 		case SIOCSIFMTU:	/* Set the MTU of a device */
3518 			return dev_set_mtu(dev, ifr->ifr_mtu);
3519 
3520 		case SIOCSIFHWADDR:
3521 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3522 
3523 		case SIOCSIFHWBROADCAST:
3524 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3525 				return -EINVAL;
3526 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3527 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3528 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3529 			return 0;
3530 
3531 		case SIOCSIFMAP:
3532 			if (dev->set_config) {
3533 				if (!netif_device_present(dev))
3534 					return -ENODEV;
3535 				return dev->set_config(dev, &ifr->ifr_map);
3536 			}
3537 			return -EOPNOTSUPP;
3538 
3539 		case SIOCADDMULTI:
3540 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3541 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3542 				return -EINVAL;
3543 			if (!netif_device_present(dev))
3544 				return -ENODEV;
3545 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3546 					  dev->addr_len, 1);
3547 
3548 		case SIOCDELMULTI:
3549 			if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
3550 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3551 				return -EINVAL;
3552 			if (!netif_device_present(dev))
3553 				return -ENODEV;
3554 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3555 					     dev->addr_len, 1);
3556 
3557 		case SIOCSIFTXQLEN:
3558 			if (ifr->ifr_qlen < 0)
3559 				return -EINVAL;
3560 			dev->tx_queue_len = ifr->ifr_qlen;
3561 			return 0;
3562 
3563 		case SIOCSIFNAME:
3564 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3565 			return dev_change_name(dev, ifr->ifr_newname);
3566 
3567 		/*
3568 		 *	Unknown or private ioctl
3569 		 */
3570 
3571 		default:
3572 			if ((cmd >= SIOCDEVPRIVATE &&
3573 			    cmd <= SIOCDEVPRIVATE + 15) ||
3574 			    cmd == SIOCBONDENSLAVE ||
3575 			    cmd == SIOCBONDRELEASE ||
3576 			    cmd == SIOCBONDSETHWADDR ||
3577 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3578 			    cmd == SIOCBONDINFOQUERY ||
3579 			    cmd == SIOCBONDCHANGEACTIVE ||
3580 			    cmd == SIOCGMIIPHY ||
3581 			    cmd == SIOCGMIIREG ||
3582 			    cmd == SIOCSMIIREG ||
3583 			    cmd == SIOCBRADDIF ||
3584 			    cmd == SIOCBRDELIF ||
3585 			    cmd == SIOCWANDEV) {
3586 				err = -EOPNOTSUPP;
3587 				if (dev->do_ioctl) {
3588 					if (netif_device_present(dev))
3589 						err = dev->do_ioctl(dev, ifr,
3590 								    cmd);
3591 					else
3592 						err = -ENODEV;
3593 				}
3594 			} else
3595 				err = -EINVAL;
3596 
3597 	}
3598 	return err;
3599 }
3600 
3601 /*
3602  *	This function handles all "interface"-type I/O control requests. The actual
3603  *	'doing' part of this is dev_ifsioc above.
3604  */
3605 
3606 /**
3607  *	dev_ioctl	-	network device ioctl
3608  *	@net: the applicable net namespace
3609  *	@cmd: command to issue
3610  *	@arg: pointer to a struct ifreq in user space
3611  *
3612  *	Issue ioctl functions to devices. This is normally called by the
3613  *	user space syscall interfaces but can sometimes be useful for
3614  *	other purposes. The return value is the return from the syscall if
3615  *	positive or a negative errno code on error.
3616  */
3617 
3618 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3619 {
3620 	struct ifreq ifr;
3621 	int ret;
3622 	char *colon;
3623 
3624 	/* One special case: SIOCGIFCONF takes ifconf argument
3625 	   and requires shared lock, because it sleeps writing
3626 	   to user space.
3627 	 */
3628 
3629 	if (cmd == SIOCGIFCONF) {
3630 		rtnl_lock();
3631 		ret = dev_ifconf(net, (char __user *) arg);
3632 		rtnl_unlock();
3633 		return ret;
3634 	}
3635 	if (cmd == SIOCGIFNAME)
3636 		return dev_ifname(net, (struct ifreq __user *)arg);
3637 
3638 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3639 		return -EFAULT;
3640 
3641 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3642 
3643 	colon = strchr(ifr.ifr_name, ':');
3644 	if (colon)
3645 		*colon = 0;
3646 
3647 	/*
3648 	 *	See which interface the caller is talking about.
3649 	 */
3650 
3651 	switch (cmd) {
3652 		/*
3653 		 *	These ioctl calls:
3654 		 *	- can be done by all.
3655 		 *	- atomic and do not require locking.
3656 		 *	- return a value
3657 		 */
3658 		case SIOCGIFFLAGS:
3659 		case SIOCGIFMETRIC:
3660 		case SIOCGIFMTU:
3661 		case SIOCGIFHWADDR:
3662 		case SIOCGIFSLAVE:
3663 		case SIOCGIFMAP:
3664 		case SIOCGIFINDEX:
3665 		case SIOCGIFTXQLEN:
3666 			dev_load(net, ifr.ifr_name);
3667 			read_lock(&dev_base_lock);
3668 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3669 			read_unlock(&dev_base_lock);
3670 			if (!ret) {
3671 				if (colon)
3672 					*colon = ':';
3673 				if (copy_to_user(arg, &ifr,
3674 						 sizeof(struct ifreq)))
3675 					ret = -EFAULT;
3676 			}
3677 			return ret;
3678 
3679 		case SIOCETHTOOL:
3680 			dev_load(net, ifr.ifr_name);
3681 			rtnl_lock();
3682 			ret = dev_ethtool(net, &ifr);
3683 			rtnl_unlock();
3684 			if (!ret) {
3685 				if (colon)
3686 					*colon = ':';
3687 				if (copy_to_user(arg, &ifr,
3688 						 sizeof(struct ifreq)))
3689 					ret = -EFAULT;
3690 			}
3691 			return ret;
3692 
3693 		/*
3694 		 *	These ioctl calls:
3695 		 *	- require superuser power.
3696 		 *	- require strict serialization.
3697 		 *	- return a value
3698 		 */
3699 		case SIOCGMIIPHY:
3700 		case SIOCGMIIREG:
3701 		case SIOCSIFNAME:
3702 			if (!capable(CAP_NET_ADMIN))
3703 				return -EPERM;
3704 			dev_load(net, ifr.ifr_name);
3705 			rtnl_lock();
3706 			ret = dev_ifsioc(net, &ifr, cmd);
3707 			rtnl_unlock();
3708 			if (!ret) {
3709 				if (colon)
3710 					*colon = ':';
3711 				if (copy_to_user(arg, &ifr,
3712 						 sizeof(struct ifreq)))
3713 					ret = -EFAULT;
3714 			}
3715 			return ret;
3716 
3717 		/*
3718 		 *	These ioctl calls:
3719 		 *	- require superuser power.
3720 		 *	- require strict serialization.
3721 		 *	- do not return a value
3722 		 */
3723 		case SIOCSIFFLAGS:
3724 		case SIOCSIFMETRIC:
3725 		case SIOCSIFMTU:
3726 		case SIOCSIFMAP:
3727 		case SIOCSIFHWADDR:
3728 		case SIOCSIFSLAVE:
3729 		case SIOCADDMULTI:
3730 		case SIOCDELMULTI:
3731 		case SIOCSIFHWBROADCAST:
3732 		case SIOCSIFTXQLEN:
3733 		case SIOCSMIIREG:
3734 		case SIOCBONDENSLAVE:
3735 		case SIOCBONDRELEASE:
3736 		case SIOCBONDSETHWADDR:
3737 		case SIOCBONDCHANGEACTIVE:
3738 		case SIOCBRADDIF:
3739 		case SIOCBRDELIF:
3740 			if (!capable(CAP_NET_ADMIN))
3741 				return -EPERM;
3742 			/* fall through */
3743 		case SIOCBONDSLAVEINFOQUERY:
3744 		case SIOCBONDINFOQUERY:
3745 			dev_load(net, ifr.ifr_name);
3746 			rtnl_lock();
3747 			ret = dev_ifsioc(net, &ifr, cmd);
3748 			rtnl_unlock();
3749 			return ret;
3750 
3751 		case SIOCGIFMEM:
3752 			/* Get the per device memory space. We can add this but
3753 			 * currently do not support it */
3754 		case SIOCSIFMEM:
3755 			/* Set the per device memory buffer space.
3756 			 * Not applicable in our case */
3757 		case SIOCSIFLINK:
3758 			return -EINVAL;
3759 
3760 		/*
3761 		 *	Unknown or private ioctl.
3762 		 */
3763 		default:
3764 			if (cmd == SIOCWANDEV ||
3765 			    (cmd >= SIOCDEVPRIVATE &&
3766 			     cmd <= SIOCDEVPRIVATE + 15)) {
3767 				dev_load(net, ifr.ifr_name);
3768 				rtnl_lock();
3769 				ret = dev_ifsioc(net, &ifr, cmd);
3770 				rtnl_unlock();
3771 				if (!ret && copy_to_user(arg, &ifr,
3772 							 sizeof(struct ifreq)))
3773 					ret = -EFAULT;
3774 				return ret;
3775 			}
3776 			/* Take care of Wireless Extensions */
3777 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3778 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3779 			return -EINVAL;
3780 	}
3781 }
3782 
3783 
3784 /**
3785  *	dev_new_index	-	allocate an ifindex
3786  *	@net: the applicable net namespace
3787  *
3788  *	Returns a suitable unique value for a new device interface
3789  *	number.  The caller must hold the rtnl semaphore or the
3790  *	dev_base_lock to be sure it remains unique.
3791  */
3792 static int dev_new_index(struct net *net)
3793 {
3794 	static int ifindex;
3795 	for (;;) {
3796 		if (++ifindex <= 0)
3797 			ifindex = 1;
3798 		if (!__dev_get_by_index(net, ifindex))
3799 			return ifindex;
3800 	}
3801 }
3802 
3803 /* Delayed registration/unregisteration */
3804 static DEFINE_SPINLOCK(net_todo_list_lock);
3805 static LIST_HEAD(net_todo_list);
3806 
3807 static void net_set_todo(struct net_device *dev)
3808 {
3809 	spin_lock(&net_todo_list_lock);
3810 	list_add_tail(&dev->todo_list, &net_todo_list);
3811 	spin_unlock(&net_todo_list_lock);
3812 }
3813 
3814 static void rollback_registered(struct net_device *dev)
3815 {
3816 	BUG_ON(dev_boot_phase);
3817 	ASSERT_RTNL();
3818 
3819 	/* Some devices call without registering for initialization unwind. */
3820 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3821 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3822 				  "was registered\n", dev->name, dev);
3823 
3824 		WARN_ON(1);
3825 		return;
3826 	}
3827 
3828 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3829 
3830 	/* If device is running, close it first. */
3831 	dev_close(dev);
3832 
3833 	/* And unlink it from device chain. */
3834 	unlist_netdevice(dev);
3835 
3836 	dev->reg_state = NETREG_UNREGISTERING;
3837 
3838 	synchronize_net();
3839 
3840 	/* Shutdown queueing discipline. */
3841 	dev_shutdown(dev);
3842 
3843 
3844 	/* Notify protocols, that we are about to destroy
3845 	   this device. They should clean all the things.
3846 	*/
3847 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3848 
3849 	/*
3850 	 *	Flush the unicast and multicast chains
3851 	 */
3852 	dev_addr_discard(dev);
3853 
3854 	if (dev->uninit)
3855 		dev->uninit(dev);
3856 
3857 	/* Notifier chain MUST detach us from master device. */
3858 	WARN_ON(dev->master);
3859 
3860 	/* Remove entries from kobject tree */
3861 	netdev_unregister_kobject(dev);
3862 
3863 	synchronize_net();
3864 
3865 	dev_put(dev);
3866 }
3867 
3868 static void __netdev_init_queue_locks_one(struct net_device *dev,
3869 					  struct netdev_queue *dev_queue,
3870 					  void *_unused)
3871 {
3872 	spin_lock_init(&dev_queue->_xmit_lock);
3873 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3874 	dev_queue->xmit_lock_owner = -1;
3875 }
3876 
3877 static void netdev_init_queue_locks(struct net_device *dev)
3878 {
3879 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3880 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
3881 }
3882 
3883 /**
3884  *	register_netdevice	- register a network device
3885  *	@dev: device to register
3886  *
3887  *	Take a completed network device structure and add it to the kernel
3888  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3889  *	chain. 0 is returned on success. A negative errno code is returned
3890  *	on a failure to set up the device, or if the name is a duplicate.
3891  *
3892  *	Callers must hold the rtnl semaphore. You may want
3893  *	register_netdev() instead of this.
3894  *
3895  *	BUGS:
3896  *	The locking appears insufficient to guarantee two parallel registers
3897  *	will not get the same name.
3898  */
3899 
3900 int register_netdevice(struct net_device *dev)
3901 {
3902 	struct hlist_head *head;
3903 	struct hlist_node *p;
3904 	int ret;
3905 	struct net *net;
3906 
3907 	BUG_ON(dev_boot_phase);
3908 	ASSERT_RTNL();
3909 
3910 	might_sleep();
3911 
3912 	/* When net_device's are persistent, this will be fatal. */
3913 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3914 	BUG_ON(!dev_net(dev));
3915 	net = dev_net(dev);
3916 
3917 	spin_lock_init(&dev->addr_list_lock);
3918 	netdev_set_addr_lockdep_class(dev);
3919 	netdev_init_queue_locks(dev);
3920 
3921 	dev->iflink = -1;
3922 
3923 	/* Init, if this function is available */
3924 	if (dev->init) {
3925 		ret = dev->init(dev);
3926 		if (ret) {
3927 			if (ret > 0)
3928 				ret = -EIO;
3929 			goto out;
3930 		}
3931 	}
3932 
3933 	if (!dev_valid_name(dev->name)) {
3934 		ret = -EINVAL;
3935 		goto err_uninit;
3936 	}
3937 
3938 	dev->ifindex = dev_new_index(net);
3939 	if (dev->iflink == -1)
3940 		dev->iflink = dev->ifindex;
3941 
3942 	/* Check for existence of name */
3943 	head = dev_name_hash(net, dev->name);
3944 	hlist_for_each(p, head) {
3945 		struct net_device *d
3946 			= hlist_entry(p, struct net_device, name_hlist);
3947 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3948 			ret = -EEXIST;
3949 			goto err_uninit;
3950 		}
3951 	}
3952 
3953 	/* Fix illegal checksum combinations */
3954 	if ((dev->features & NETIF_F_HW_CSUM) &&
3955 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3956 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3957 		       dev->name);
3958 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3959 	}
3960 
3961 	if ((dev->features & NETIF_F_NO_CSUM) &&
3962 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3963 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3964 		       dev->name);
3965 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3966 	}
3967 
3968 
3969 	/* Fix illegal SG+CSUM combinations. */
3970 	if ((dev->features & NETIF_F_SG) &&
3971 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3972 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3973 		       dev->name);
3974 		dev->features &= ~NETIF_F_SG;
3975 	}
3976 
3977 	/* TSO requires that SG is present as well. */
3978 	if ((dev->features & NETIF_F_TSO) &&
3979 	    !(dev->features & NETIF_F_SG)) {
3980 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3981 		       dev->name);
3982 		dev->features &= ~NETIF_F_TSO;
3983 	}
3984 	if (dev->features & NETIF_F_UFO) {
3985 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3986 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3987 					"NETIF_F_HW_CSUM feature.\n",
3988 							dev->name);
3989 			dev->features &= ~NETIF_F_UFO;
3990 		}
3991 		if (!(dev->features & NETIF_F_SG)) {
3992 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3993 					"NETIF_F_SG feature.\n",
3994 					dev->name);
3995 			dev->features &= ~NETIF_F_UFO;
3996 		}
3997 	}
3998 
3999 	/* Enable software GSO if SG is supported. */
4000 	if (dev->features & NETIF_F_SG)
4001 		dev->features |= NETIF_F_GSO;
4002 
4003 	netdev_initialize_kobject(dev);
4004 	ret = netdev_register_kobject(dev);
4005 	if (ret)
4006 		goto err_uninit;
4007 	dev->reg_state = NETREG_REGISTERED;
4008 
4009 	/*
4010 	 *	Default initial state at registry is that the
4011 	 *	device is present.
4012 	 */
4013 
4014 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4015 
4016 	dev_init_scheduler(dev);
4017 	dev_hold(dev);
4018 	list_netdevice(dev);
4019 
4020 	/* Notify protocols, that a new device appeared. */
4021 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4022 	ret = notifier_to_errno(ret);
4023 	if (ret) {
4024 		rollback_registered(dev);
4025 		dev->reg_state = NETREG_UNREGISTERED;
4026 	}
4027 
4028 out:
4029 	return ret;
4030 
4031 err_uninit:
4032 	if (dev->uninit)
4033 		dev->uninit(dev);
4034 	goto out;
4035 }
4036 
4037 /**
4038  *	register_netdev	- register a network device
4039  *	@dev: device to register
4040  *
4041  *	Take a completed network device structure and add it to the kernel
4042  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4043  *	chain. 0 is returned on success. A negative errno code is returned
4044  *	on a failure to set up the device, or if the name is a duplicate.
4045  *
4046  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
4047  *	and expands the device name if you passed a format string to
4048  *	alloc_netdev.
4049  */
4050 int register_netdev(struct net_device *dev)
4051 {
4052 	int err;
4053 
4054 	rtnl_lock();
4055 
4056 	/*
4057 	 * If the name is a format string the caller wants us to do a
4058 	 * name allocation.
4059 	 */
4060 	if (strchr(dev->name, '%')) {
4061 		err = dev_alloc_name(dev, dev->name);
4062 		if (err < 0)
4063 			goto out;
4064 	}
4065 
4066 	err = register_netdevice(dev);
4067 out:
4068 	rtnl_unlock();
4069 	return err;
4070 }
4071 EXPORT_SYMBOL(register_netdev);
4072 
4073 /*
4074  * netdev_wait_allrefs - wait until all references are gone.
4075  *
4076  * This is called when unregistering network devices.
4077  *
4078  * Any protocol or device that holds a reference should register
4079  * for netdevice notification, and cleanup and put back the
4080  * reference if they receive an UNREGISTER event.
4081  * We can get stuck here if buggy protocols don't correctly
4082  * call dev_put.
4083  */
4084 static void netdev_wait_allrefs(struct net_device *dev)
4085 {
4086 	unsigned long rebroadcast_time, warning_time;
4087 
4088 	rebroadcast_time = warning_time = jiffies;
4089 	while (atomic_read(&dev->refcnt) != 0) {
4090 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4091 			rtnl_lock();
4092 
4093 			/* Rebroadcast unregister notification */
4094 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4095 
4096 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4097 				     &dev->state)) {
4098 				/* We must not have linkwatch events
4099 				 * pending on unregister. If this
4100 				 * happens, we simply run the queue
4101 				 * unscheduled, resulting in a noop
4102 				 * for this device.
4103 				 */
4104 				linkwatch_run_queue();
4105 			}
4106 
4107 			__rtnl_unlock();
4108 
4109 			rebroadcast_time = jiffies;
4110 		}
4111 
4112 		msleep(250);
4113 
4114 		if (time_after(jiffies, warning_time + 10 * HZ)) {
4115 			printk(KERN_EMERG "unregister_netdevice: "
4116 			       "waiting for %s to become free. Usage "
4117 			       "count = %d\n",
4118 			       dev->name, atomic_read(&dev->refcnt));
4119 			warning_time = jiffies;
4120 		}
4121 	}
4122 }
4123 
4124 /* The sequence is:
4125  *
4126  *	rtnl_lock();
4127  *	...
4128  *	register_netdevice(x1);
4129  *	register_netdevice(x2);
4130  *	...
4131  *	unregister_netdevice(y1);
4132  *	unregister_netdevice(y2);
4133  *      ...
4134  *	rtnl_unlock();
4135  *	free_netdev(y1);
4136  *	free_netdev(y2);
4137  *
4138  * We are invoked by rtnl_unlock() after it drops the semaphore.
4139  * This allows us to deal with problems:
4140  * 1) We can delete sysfs objects which invoke hotplug
4141  *    without deadlocking with linkwatch via keventd.
4142  * 2) Since we run with the RTNL semaphore not held, we can sleep
4143  *    safely in order to wait for the netdev refcnt to drop to zero.
4144  */
4145 static DEFINE_MUTEX(net_todo_run_mutex);
4146 void netdev_run_todo(void)
4147 {
4148 	struct list_head list;
4149 
4150 	/* Need to guard against multiple cpu's getting out of order. */
4151 	mutex_lock(&net_todo_run_mutex);
4152 
4153 	/* Not safe to do outside the semaphore.  We must not return
4154 	 * until all unregister events invoked by the local processor
4155 	 * have been completed (either by this todo run, or one on
4156 	 * another cpu).
4157 	 */
4158 	if (list_empty(&net_todo_list))
4159 		goto out;
4160 
4161 	/* Snapshot list, allow later requests */
4162 	spin_lock(&net_todo_list_lock);
4163 	list_replace_init(&net_todo_list, &list);
4164 	spin_unlock(&net_todo_list_lock);
4165 
4166 	while (!list_empty(&list)) {
4167 		struct net_device *dev
4168 			= list_entry(list.next, struct net_device, todo_list);
4169 		list_del(&dev->todo_list);
4170 
4171 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4172 			printk(KERN_ERR "network todo '%s' but state %d\n",
4173 			       dev->name, dev->reg_state);
4174 			dump_stack();
4175 			continue;
4176 		}
4177 
4178 		dev->reg_state = NETREG_UNREGISTERED;
4179 
4180 		on_each_cpu(flush_backlog, dev, 1);
4181 
4182 		netdev_wait_allrefs(dev);
4183 
4184 		/* paranoia */
4185 		BUG_ON(atomic_read(&dev->refcnt));
4186 		WARN_ON(dev->ip_ptr);
4187 		WARN_ON(dev->ip6_ptr);
4188 		WARN_ON(dev->dn_ptr);
4189 
4190 		if (dev->destructor)
4191 			dev->destructor(dev);
4192 
4193 		/* Free network device */
4194 		kobject_put(&dev->dev.kobj);
4195 	}
4196 
4197 out:
4198 	mutex_unlock(&net_todo_run_mutex);
4199 }
4200 
4201 static struct net_device_stats *internal_stats(struct net_device *dev)
4202 {
4203 	return &dev->stats;
4204 }
4205 
4206 static void netdev_init_one_queue(struct net_device *dev,
4207 				  struct netdev_queue *queue,
4208 				  void *_unused)
4209 {
4210 	queue->dev = dev;
4211 }
4212 
4213 static void netdev_init_queues(struct net_device *dev)
4214 {
4215 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4216 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4217 	spin_lock_init(&dev->tx_global_lock);
4218 }
4219 
4220 /**
4221  *	alloc_netdev_mq - allocate network device
4222  *	@sizeof_priv:	size of private data to allocate space for
4223  *	@name:		device name format string
4224  *	@setup:		callback to initialize device
4225  *	@queue_count:	the number of subqueues to allocate
4226  *
4227  *	Allocates a struct net_device with private data area for driver use
4228  *	and performs basic initialization.  Also allocates subquue structs
4229  *	for each queue on the device at the end of the netdevice.
4230  */
4231 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4232 		void (*setup)(struct net_device *), unsigned int queue_count)
4233 {
4234 	struct netdev_queue *tx;
4235 	struct net_device *dev;
4236 	size_t alloc_size;
4237 	void *p;
4238 
4239 	BUG_ON(strlen(name) >= sizeof(dev->name));
4240 
4241 	alloc_size = sizeof(struct net_device);
4242 	if (sizeof_priv) {
4243 		/* ensure 32-byte alignment of private area */
4244 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4245 		alloc_size += sizeof_priv;
4246 	}
4247 	/* ensure 32-byte alignment of whole construct */
4248 	alloc_size += NETDEV_ALIGN_CONST;
4249 
4250 	p = kzalloc(alloc_size, GFP_KERNEL);
4251 	if (!p) {
4252 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4253 		return NULL;
4254 	}
4255 
4256 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4257 	if (!tx) {
4258 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
4259 		       "tx qdiscs.\n");
4260 		kfree(p);
4261 		return NULL;
4262 	}
4263 
4264 	dev = (struct net_device *)
4265 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4266 	dev->padded = (char *)dev - (char *)p;
4267 	dev_net_set(dev, &init_net);
4268 
4269 	dev->_tx = tx;
4270 	dev->num_tx_queues = queue_count;
4271 	dev->real_num_tx_queues = queue_count;
4272 
4273 	if (sizeof_priv) {
4274 		dev->priv = ((char *)dev +
4275 			     ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
4276 			      & ~NETDEV_ALIGN_CONST));
4277 	}
4278 
4279 	dev->gso_max_size = GSO_MAX_SIZE;
4280 
4281 	netdev_init_queues(dev);
4282 
4283 	dev->get_stats = internal_stats;
4284 	netpoll_netdev_init(dev);
4285 	setup(dev);
4286 	strcpy(dev->name, name);
4287 	return dev;
4288 }
4289 EXPORT_SYMBOL(alloc_netdev_mq);
4290 
4291 /**
4292  *	free_netdev - free network device
4293  *	@dev: device
4294  *
4295  *	This function does the last stage of destroying an allocated device
4296  * 	interface. The reference to the device object is released.
4297  *	If this is the last reference then it will be freed.
4298  */
4299 void free_netdev(struct net_device *dev)
4300 {
4301 	release_net(dev_net(dev));
4302 
4303 	kfree(dev->_tx);
4304 
4305 	/*  Compatibility with error handling in drivers */
4306 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4307 		kfree((char *)dev - dev->padded);
4308 		return;
4309 	}
4310 
4311 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4312 	dev->reg_state = NETREG_RELEASED;
4313 
4314 	/* will free via device release */
4315 	put_device(&dev->dev);
4316 }
4317 
4318 /* Synchronize with packet receive processing. */
4319 void synchronize_net(void)
4320 {
4321 	might_sleep();
4322 	synchronize_rcu();
4323 }
4324 
4325 /**
4326  *	unregister_netdevice - remove device from the kernel
4327  *	@dev: device
4328  *
4329  *	This function shuts down a device interface and removes it
4330  *	from the kernel tables.
4331  *
4332  *	Callers must hold the rtnl semaphore.  You may want
4333  *	unregister_netdev() instead of this.
4334  */
4335 
4336 void unregister_netdevice(struct net_device *dev)
4337 {
4338 	ASSERT_RTNL();
4339 
4340 	rollback_registered(dev);
4341 	/* Finish processing unregister after unlock */
4342 	net_set_todo(dev);
4343 }
4344 
4345 /**
4346  *	unregister_netdev - remove device from the kernel
4347  *	@dev: device
4348  *
4349  *	This function shuts down a device interface and removes it
4350  *	from the kernel tables.
4351  *
4352  *	This is just a wrapper for unregister_netdevice that takes
4353  *	the rtnl semaphore.  In general you want to use this and not
4354  *	unregister_netdevice.
4355  */
4356 void unregister_netdev(struct net_device *dev)
4357 {
4358 	rtnl_lock();
4359 	unregister_netdevice(dev);
4360 	rtnl_unlock();
4361 }
4362 
4363 EXPORT_SYMBOL(unregister_netdev);
4364 
4365 /**
4366  *	dev_change_net_namespace - move device to different nethost namespace
4367  *	@dev: device
4368  *	@net: network namespace
4369  *	@pat: If not NULL name pattern to try if the current device name
4370  *	      is already taken in the destination network namespace.
4371  *
4372  *	This function shuts down a device interface and moves it
4373  *	to a new network namespace. On success 0 is returned, on
4374  *	a failure a netagive errno code is returned.
4375  *
4376  *	Callers must hold the rtnl semaphore.
4377  */
4378 
4379 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4380 {
4381 	char buf[IFNAMSIZ];
4382 	const char *destname;
4383 	int err;
4384 
4385 	ASSERT_RTNL();
4386 
4387 	/* Don't allow namespace local devices to be moved. */
4388 	err = -EINVAL;
4389 	if (dev->features & NETIF_F_NETNS_LOCAL)
4390 		goto out;
4391 
4392 	/* Ensure the device has been registrered */
4393 	err = -EINVAL;
4394 	if (dev->reg_state != NETREG_REGISTERED)
4395 		goto out;
4396 
4397 	/* Get out if there is nothing todo */
4398 	err = 0;
4399 	if (net_eq(dev_net(dev), net))
4400 		goto out;
4401 
4402 	/* Pick the destination device name, and ensure
4403 	 * we can use it in the destination network namespace.
4404 	 */
4405 	err = -EEXIST;
4406 	destname = dev->name;
4407 	if (__dev_get_by_name(net, destname)) {
4408 		/* We get here if we can't use the current device name */
4409 		if (!pat)
4410 			goto out;
4411 		if (!dev_valid_name(pat))
4412 			goto out;
4413 		if (strchr(pat, '%')) {
4414 			if (__dev_alloc_name(net, pat, buf) < 0)
4415 				goto out;
4416 			destname = buf;
4417 		} else
4418 			destname = pat;
4419 		if (__dev_get_by_name(net, destname))
4420 			goto out;
4421 	}
4422 
4423 	/*
4424 	 * And now a mini version of register_netdevice unregister_netdevice.
4425 	 */
4426 
4427 	/* If device is running close it first. */
4428 	dev_close(dev);
4429 
4430 	/* And unlink it from device chain */
4431 	err = -ENODEV;
4432 	unlist_netdevice(dev);
4433 
4434 	synchronize_net();
4435 
4436 	/* Shutdown queueing discipline. */
4437 	dev_shutdown(dev);
4438 
4439 	/* Notify protocols, that we are about to destroy
4440 	   this device. They should clean all the things.
4441 	*/
4442 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4443 
4444 	/*
4445 	 *	Flush the unicast and multicast chains
4446 	 */
4447 	dev_addr_discard(dev);
4448 
4449 	/* Actually switch the network namespace */
4450 	dev_net_set(dev, net);
4451 
4452 	/* Assign the new device name */
4453 	if (destname != dev->name)
4454 		strcpy(dev->name, destname);
4455 
4456 	/* If there is an ifindex conflict assign a new one */
4457 	if (__dev_get_by_index(net, dev->ifindex)) {
4458 		int iflink = (dev->iflink == dev->ifindex);
4459 		dev->ifindex = dev_new_index(net);
4460 		if (iflink)
4461 			dev->iflink = dev->ifindex;
4462 	}
4463 
4464 	/* Fixup kobjects */
4465 	netdev_unregister_kobject(dev);
4466 	err = netdev_register_kobject(dev);
4467 	WARN_ON(err);
4468 
4469 	/* Add the device back in the hashes */
4470 	list_netdevice(dev);
4471 
4472 	/* Notify protocols, that a new device appeared. */
4473 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4474 
4475 	synchronize_net();
4476 	err = 0;
4477 out:
4478 	return err;
4479 }
4480 
4481 static int dev_cpu_callback(struct notifier_block *nfb,
4482 			    unsigned long action,
4483 			    void *ocpu)
4484 {
4485 	struct sk_buff **list_skb;
4486 	struct Qdisc **list_net;
4487 	struct sk_buff *skb;
4488 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4489 	struct softnet_data *sd, *oldsd;
4490 
4491 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4492 		return NOTIFY_OK;
4493 
4494 	local_irq_disable();
4495 	cpu = smp_processor_id();
4496 	sd = &per_cpu(softnet_data, cpu);
4497 	oldsd = &per_cpu(softnet_data, oldcpu);
4498 
4499 	/* Find end of our completion_queue. */
4500 	list_skb = &sd->completion_queue;
4501 	while (*list_skb)
4502 		list_skb = &(*list_skb)->next;
4503 	/* Append completion queue from offline CPU. */
4504 	*list_skb = oldsd->completion_queue;
4505 	oldsd->completion_queue = NULL;
4506 
4507 	/* Find end of our output_queue. */
4508 	list_net = &sd->output_queue;
4509 	while (*list_net)
4510 		list_net = &(*list_net)->next_sched;
4511 	/* Append output queue from offline CPU. */
4512 	*list_net = oldsd->output_queue;
4513 	oldsd->output_queue = NULL;
4514 
4515 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4516 	local_irq_enable();
4517 
4518 	/* Process offline CPU's input_pkt_queue */
4519 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4520 		netif_rx(skb);
4521 
4522 	return NOTIFY_OK;
4523 }
4524 
4525 #ifdef CONFIG_NET_DMA
4526 /**
4527  * net_dma_rebalance - try to maintain one DMA channel per CPU
4528  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4529  *
4530  * This is called when the number of channels allocated to the net_dma client
4531  * changes.  The net_dma client tries to have one DMA channel per CPU.
4532  */
4533 
4534 static void net_dma_rebalance(struct net_dma *net_dma)
4535 {
4536 	unsigned int cpu, i, n, chan_idx;
4537 	struct dma_chan *chan;
4538 
4539 	if (cpus_empty(net_dma->channel_mask)) {
4540 		for_each_online_cpu(cpu)
4541 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4542 		return;
4543 	}
4544 
4545 	i = 0;
4546 	cpu = first_cpu(cpu_online_map);
4547 
4548 	for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4549 		chan = net_dma->channels[chan_idx];
4550 
4551 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4552 		   + (i < (num_online_cpus() %
4553 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4554 
4555 		while(n) {
4556 			per_cpu(softnet_data, cpu).net_dma = chan;
4557 			cpu = next_cpu(cpu, cpu_online_map);
4558 			n--;
4559 		}
4560 		i++;
4561 	}
4562 }
4563 
4564 /**
4565  * netdev_dma_event - event callback for the net_dma_client
4566  * @client: should always be net_dma_client
4567  * @chan: DMA channel for the event
4568  * @state: DMA state to be handled
4569  */
4570 static enum dma_state_client
4571 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4572 	enum dma_state state)
4573 {
4574 	int i, found = 0, pos = -1;
4575 	struct net_dma *net_dma =
4576 		container_of(client, struct net_dma, client);
4577 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4578 
4579 	spin_lock(&net_dma->lock);
4580 	switch (state) {
4581 	case DMA_RESOURCE_AVAILABLE:
4582 		for (i = 0; i < nr_cpu_ids; i++)
4583 			if (net_dma->channels[i] == chan) {
4584 				found = 1;
4585 				break;
4586 			} else if (net_dma->channels[i] == NULL && pos < 0)
4587 				pos = i;
4588 
4589 		if (!found && pos >= 0) {
4590 			ack = DMA_ACK;
4591 			net_dma->channels[pos] = chan;
4592 			cpu_set(pos, net_dma->channel_mask);
4593 			net_dma_rebalance(net_dma);
4594 		}
4595 		break;
4596 	case DMA_RESOURCE_REMOVED:
4597 		for (i = 0; i < nr_cpu_ids; i++)
4598 			if (net_dma->channels[i] == chan) {
4599 				found = 1;
4600 				pos = i;
4601 				break;
4602 			}
4603 
4604 		if (found) {
4605 			ack = DMA_ACK;
4606 			cpu_clear(pos, net_dma->channel_mask);
4607 			net_dma->channels[i] = NULL;
4608 			net_dma_rebalance(net_dma);
4609 		}
4610 		break;
4611 	default:
4612 		break;
4613 	}
4614 	spin_unlock(&net_dma->lock);
4615 
4616 	return ack;
4617 }
4618 
4619 /**
4620  * netdev_dma_regiser - register the networking subsystem as a DMA client
4621  */
4622 static int __init netdev_dma_register(void)
4623 {
4624 	net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4625 								GFP_KERNEL);
4626 	if (unlikely(!net_dma.channels)) {
4627 		printk(KERN_NOTICE
4628 				"netdev_dma: no memory for net_dma.channels\n");
4629 		return -ENOMEM;
4630 	}
4631 	spin_lock_init(&net_dma.lock);
4632 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4633 	dma_async_client_register(&net_dma.client);
4634 	dma_async_client_chan_request(&net_dma.client);
4635 	return 0;
4636 }
4637 
4638 #else
4639 static int __init netdev_dma_register(void) { return -ENODEV; }
4640 #endif /* CONFIG_NET_DMA */
4641 
4642 /**
4643  *	netdev_compute_feature - compute conjunction of two feature sets
4644  *	@all: first feature set
4645  *	@one: second feature set
4646  *
4647  *	Computes a new feature set after adding a device with feature set
4648  *	@one to the master device with current feature set @all.  Returns
4649  *	the new feature set.
4650  */
4651 int netdev_compute_features(unsigned long all, unsigned long one)
4652 {
4653 	/* if device needs checksumming, downgrade to hw checksumming */
4654 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4655 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4656 
4657 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4658 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4659 		all ^= NETIF_F_HW_CSUM
4660 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4661 
4662 	if (one & NETIF_F_GSO)
4663 		one |= NETIF_F_GSO_SOFTWARE;
4664 	one |= NETIF_F_GSO;
4665 
4666 	/* If even one device supports robust GSO, enable it for all. */
4667 	if (one & NETIF_F_GSO_ROBUST)
4668 		all |= NETIF_F_GSO_ROBUST;
4669 
4670 	all &= one | NETIF_F_LLTX;
4671 
4672 	if (!(all & NETIF_F_ALL_CSUM))
4673 		all &= ~NETIF_F_SG;
4674 	if (!(all & NETIF_F_SG))
4675 		all &= ~NETIF_F_GSO_MASK;
4676 
4677 	return all;
4678 }
4679 EXPORT_SYMBOL(netdev_compute_features);
4680 
4681 static struct hlist_head *netdev_create_hash(void)
4682 {
4683 	int i;
4684 	struct hlist_head *hash;
4685 
4686 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4687 	if (hash != NULL)
4688 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4689 			INIT_HLIST_HEAD(&hash[i]);
4690 
4691 	return hash;
4692 }
4693 
4694 /* Initialize per network namespace state */
4695 static int __net_init netdev_init(struct net *net)
4696 {
4697 	INIT_LIST_HEAD(&net->dev_base_head);
4698 
4699 	net->dev_name_head = netdev_create_hash();
4700 	if (net->dev_name_head == NULL)
4701 		goto err_name;
4702 
4703 	net->dev_index_head = netdev_create_hash();
4704 	if (net->dev_index_head == NULL)
4705 		goto err_idx;
4706 
4707 	return 0;
4708 
4709 err_idx:
4710 	kfree(net->dev_name_head);
4711 err_name:
4712 	return -ENOMEM;
4713 }
4714 
4715 char *netdev_drivername(struct net_device *dev, char *buffer, int len)
4716 {
4717 	struct device_driver *driver;
4718 	struct device *parent;
4719 
4720 	if (len <= 0 || !buffer)
4721 		return buffer;
4722 	buffer[0] = 0;
4723 
4724 	parent = dev->dev.parent;
4725 
4726 	if (!parent)
4727 		return buffer;
4728 
4729 	driver = parent->driver;
4730 	if (driver && driver->name)
4731 		strlcpy(buffer, driver->name, len);
4732 	return buffer;
4733 }
4734 
4735 static void __net_exit netdev_exit(struct net *net)
4736 {
4737 	kfree(net->dev_name_head);
4738 	kfree(net->dev_index_head);
4739 }
4740 
4741 static struct pernet_operations __net_initdata netdev_net_ops = {
4742 	.init = netdev_init,
4743 	.exit = netdev_exit,
4744 };
4745 
4746 static void __net_exit default_device_exit(struct net *net)
4747 {
4748 	struct net_device *dev, *next;
4749 	/*
4750 	 * Push all migratable of the network devices back to the
4751 	 * initial network namespace
4752 	 */
4753 	rtnl_lock();
4754 	for_each_netdev_safe(net, dev, next) {
4755 		int err;
4756 		char fb_name[IFNAMSIZ];
4757 
4758 		/* Ignore unmoveable devices (i.e. loopback) */
4759 		if (dev->features & NETIF_F_NETNS_LOCAL)
4760 			continue;
4761 
4762 		/* Push remaing network devices to init_net */
4763 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4764 		err = dev_change_net_namespace(dev, &init_net, fb_name);
4765 		if (err) {
4766 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
4767 				__func__, dev->name, err);
4768 			BUG();
4769 		}
4770 	}
4771 	rtnl_unlock();
4772 }
4773 
4774 static struct pernet_operations __net_initdata default_device_ops = {
4775 	.exit = default_device_exit,
4776 };
4777 
4778 /*
4779  *	Initialize the DEV module. At boot time this walks the device list and
4780  *	unhooks any devices that fail to initialise (normally hardware not
4781  *	present) and leaves us with a valid list of present and active devices.
4782  *
4783  */
4784 
4785 /*
4786  *       This is called single threaded during boot, so no need
4787  *       to take the rtnl semaphore.
4788  */
4789 static int __init net_dev_init(void)
4790 {
4791 	int i, rc = -ENOMEM;
4792 
4793 	BUG_ON(!dev_boot_phase);
4794 
4795 	if (dev_proc_init())
4796 		goto out;
4797 
4798 	if (netdev_kobject_init())
4799 		goto out;
4800 
4801 	INIT_LIST_HEAD(&ptype_all);
4802 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
4803 		INIT_LIST_HEAD(&ptype_base[i]);
4804 
4805 	if (register_pernet_subsys(&netdev_net_ops))
4806 		goto out;
4807 
4808 	if (register_pernet_device(&default_device_ops))
4809 		goto out;
4810 
4811 	/*
4812 	 *	Initialise the packet receive queues.
4813 	 */
4814 
4815 	for_each_possible_cpu(i) {
4816 		struct softnet_data *queue;
4817 
4818 		queue = &per_cpu(softnet_data, i);
4819 		skb_queue_head_init(&queue->input_pkt_queue);
4820 		queue->completion_queue = NULL;
4821 		INIT_LIST_HEAD(&queue->poll_list);
4822 
4823 		queue->backlog.poll = process_backlog;
4824 		queue->backlog.weight = weight_p;
4825 	}
4826 
4827 	netdev_dma_register();
4828 
4829 	dev_boot_phase = 0;
4830 
4831 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
4832 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
4833 
4834 	hotcpu_notifier(dev_cpu_callback, 0);
4835 	dst_init();
4836 	dev_mcast_init();
4837 	rc = 0;
4838 out:
4839 	return rc;
4840 }
4841 
4842 subsys_initcall(net_dev_init);
4843 
4844 EXPORT_SYMBOL(__dev_get_by_index);
4845 EXPORT_SYMBOL(__dev_get_by_name);
4846 EXPORT_SYMBOL(__dev_remove_pack);
4847 EXPORT_SYMBOL(dev_valid_name);
4848 EXPORT_SYMBOL(dev_add_pack);
4849 EXPORT_SYMBOL(dev_alloc_name);
4850 EXPORT_SYMBOL(dev_close);
4851 EXPORT_SYMBOL(dev_get_by_flags);
4852 EXPORT_SYMBOL(dev_get_by_index);
4853 EXPORT_SYMBOL(dev_get_by_name);
4854 EXPORT_SYMBOL(dev_open);
4855 EXPORT_SYMBOL(dev_queue_xmit);
4856 EXPORT_SYMBOL(dev_remove_pack);
4857 EXPORT_SYMBOL(dev_set_allmulti);
4858 EXPORT_SYMBOL(dev_set_promiscuity);
4859 EXPORT_SYMBOL(dev_change_flags);
4860 EXPORT_SYMBOL(dev_set_mtu);
4861 EXPORT_SYMBOL(dev_set_mac_address);
4862 EXPORT_SYMBOL(free_netdev);
4863 EXPORT_SYMBOL(netdev_boot_setup_check);
4864 EXPORT_SYMBOL(netdev_set_master);
4865 EXPORT_SYMBOL(netdev_state_change);
4866 EXPORT_SYMBOL(netif_receive_skb);
4867 EXPORT_SYMBOL(netif_rx);
4868 EXPORT_SYMBOL(register_gifconf);
4869 EXPORT_SYMBOL(register_netdevice);
4870 EXPORT_SYMBOL(register_netdevice_notifier);
4871 EXPORT_SYMBOL(skb_checksum_help);
4872 EXPORT_SYMBOL(synchronize_net);
4873 EXPORT_SYMBOL(unregister_netdevice);
4874 EXPORT_SYMBOL(unregister_netdevice_notifier);
4875 EXPORT_SYMBOL(net_enable_timestamp);
4876 EXPORT_SYMBOL(net_disable_timestamp);
4877 EXPORT_SYMBOL(dev_get_flags);
4878 
4879 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4880 EXPORT_SYMBOL(br_handle_frame_hook);
4881 EXPORT_SYMBOL(br_fdb_get_hook);
4882 EXPORT_SYMBOL(br_fdb_put_hook);
4883 #endif
4884 
4885 #ifdef CONFIG_KMOD
4886 EXPORT_SYMBOL(dev_load);
4887 #endif
4888 
4889 EXPORT_PER_CPU_SYMBOL(softnet_data);
4890