xref: /linux-6.15/net/core/dev.c (revision b0402403)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <[email protected]>
8  *				Mark Evans, <[email protected]>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <[email protected]>
12  *		Alan Cox <[email protected]>
13  *		David Hinds <[email protected]>
14  *		Alexey Kuznetsov <[email protected]>
15  *		Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156 
157 #include "dev.h"
158 #include "net-sysfs.h"
159 
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly;	/* Taps */
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 					   struct net_device *dev,
167 					   struct netlink_ext_ack *extack);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static DECLARE_RWSEM(devnet_rename_sem);
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock_irqsave(struct softnet_data *sd,
220 				    unsigned long *flags)
221 {
222 	if (IS_ENABLED(CONFIG_RPS))
223 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
224 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
225 		local_irq_save(*flags);
226 }
227 
228 static inline void rps_lock_irq_disable(struct softnet_data *sd)
229 {
230 	if (IS_ENABLED(CONFIG_RPS))
231 		spin_lock_irq(&sd->input_pkt_queue.lock);
232 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
233 		local_irq_disable();
234 }
235 
236 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
237 					  unsigned long *flags)
238 {
239 	if (IS_ENABLED(CONFIG_RPS))
240 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
241 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
242 		local_irq_restore(*flags);
243 }
244 
245 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
246 {
247 	if (IS_ENABLED(CONFIG_RPS))
248 		spin_unlock_irq(&sd->input_pkt_queue.lock);
249 	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
250 		local_irq_enable();
251 }
252 
253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
254 						       const char *name)
255 {
256 	struct netdev_name_node *name_node;
257 
258 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
259 	if (!name_node)
260 		return NULL;
261 	INIT_HLIST_NODE(&name_node->hlist);
262 	name_node->dev = dev;
263 	name_node->name = name;
264 	return name_node;
265 }
266 
267 static struct netdev_name_node *
268 netdev_name_node_head_alloc(struct net_device *dev)
269 {
270 	struct netdev_name_node *name_node;
271 
272 	name_node = netdev_name_node_alloc(dev, dev->name);
273 	if (!name_node)
274 		return NULL;
275 	INIT_LIST_HEAD(&name_node->list);
276 	return name_node;
277 }
278 
279 static void netdev_name_node_free(struct netdev_name_node *name_node)
280 {
281 	kfree(name_node);
282 }
283 
284 static void netdev_name_node_add(struct net *net,
285 				 struct netdev_name_node *name_node)
286 {
287 	hlist_add_head_rcu(&name_node->hlist,
288 			   dev_name_hash(net, name_node->name));
289 }
290 
291 static void netdev_name_node_del(struct netdev_name_node *name_node)
292 {
293 	hlist_del_rcu(&name_node->hlist);
294 }
295 
296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
297 							const char *name)
298 {
299 	struct hlist_head *head = dev_name_hash(net, name);
300 	struct netdev_name_node *name_node;
301 
302 	hlist_for_each_entry(name_node, head, hlist)
303 		if (!strcmp(name_node->name, name))
304 			return name_node;
305 	return NULL;
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
309 							    const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry_rcu(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 bool netdev_name_in_use(struct net *net, const char *name)
321 {
322 	return netdev_name_node_lookup(net, name);
323 }
324 EXPORT_SYMBOL(netdev_name_in_use);
325 
326 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
327 {
328 	struct netdev_name_node *name_node;
329 	struct net *net = dev_net(dev);
330 
331 	name_node = netdev_name_node_lookup(net, name);
332 	if (name_node)
333 		return -EEXIST;
334 	name_node = netdev_name_node_alloc(dev, name);
335 	if (!name_node)
336 		return -ENOMEM;
337 	netdev_name_node_add(net, name_node);
338 	/* The node that holds dev->name acts as a head of per-device list. */
339 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
340 
341 	return 0;
342 }
343 
344 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
345 {
346 	list_del(&name_node->list);
347 	kfree(name_node->name);
348 	netdev_name_node_free(name_node);
349 }
350 
351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352 {
353 	struct netdev_name_node *name_node;
354 	struct net *net = dev_net(dev);
355 
356 	name_node = netdev_name_node_lookup(net, name);
357 	if (!name_node)
358 		return -ENOENT;
359 	/* lookup might have found our primary name or a name belonging
360 	 * to another device.
361 	 */
362 	if (name_node == dev->name_node || name_node->dev != dev)
363 		return -EINVAL;
364 
365 	netdev_name_node_del(name_node);
366 	synchronize_rcu();
367 	__netdev_name_node_alt_destroy(name_node);
368 
369 	return 0;
370 }
371 
372 static void netdev_name_node_alt_flush(struct net_device *dev)
373 {
374 	struct netdev_name_node *name_node, *tmp;
375 
376 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
377 		__netdev_name_node_alt_destroy(name_node);
378 }
379 
380 /* Device list insertion */
381 static void list_netdevice(struct net_device *dev)
382 {
383 	struct netdev_name_node *name_node;
384 	struct net *net = dev_net(dev);
385 
386 	ASSERT_RTNL();
387 
388 	write_lock(&dev_base_lock);
389 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
390 	netdev_name_node_add(net, dev->name_node);
391 	hlist_add_head_rcu(&dev->index_hlist,
392 			   dev_index_hash(net, dev->ifindex));
393 	write_unlock(&dev_base_lock);
394 
395 	netdev_for_each_altname(dev, name_node)
396 		netdev_name_node_add(net, name_node);
397 
398 	/* We reserved the ifindex, this can't fail */
399 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
400 
401 	dev_base_seq_inc(net);
402 }
403 
404 /* Device list removal
405  * caller must respect a RCU grace period before freeing/reusing dev
406  */
407 static void unlist_netdevice(struct net_device *dev, bool lock)
408 {
409 	struct netdev_name_node *name_node;
410 	struct net *net = dev_net(dev);
411 
412 	ASSERT_RTNL();
413 
414 	xa_erase(&net->dev_by_index, dev->ifindex);
415 
416 	netdev_for_each_altname(dev, name_node)
417 		netdev_name_node_del(name_node);
418 
419 	/* Unlink dev from the device chain */
420 	if (lock)
421 		write_lock(&dev_base_lock);
422 	list_del_rcu(&dev->dev_list);
423 	netdev_name_node_del(dev->name_node);
424 	hlist_del_rcu(&dev->index_hlist);
425 	if (lock)
426 		write_unlock(&dev_base_lock);
427 
428 	dev_base_seq_inc(dev_net(dev));
429 }
430 
431 /*
432  *	Our notifier list
433  */
434 
435 static RAW_NOTIFIER_HEAD(netdev_chain);
436 
437 /*
438  *	Device drivers call our routines to queue packets here. We empty the
439  *	queue in the local softnet handler.
440  */
441 
442 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
443 EXPORT_PER_CPU_SYMBOL(softnet_data);
444 
445 #ifdef CONFIG_LOCKDEP
446 /*
447  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
448  * according to dev->type
449  */
450 static const unsigned short netdev_lock_type[] = {
451 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
452 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
453 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
454 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
455 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
456 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
457 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
458 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
459 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
460 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
461 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
462 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
463 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
464 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
465 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
466 
467 static const char *const netdev_lock_name[] = {
468 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
469 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
470 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
471 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
472 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
473 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
474 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
475 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
476 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
477 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
478 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
479 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
480 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
481 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
482 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
483 
484 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
485 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 
487 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
488 {
489 	int i;
490 
491 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
492 		if (netdev_lock_type[i] == dev_type)
493 			return i;
494 	/* the last key is used by default */
495 	return ARRAY_SIZE(netdev_lock_type) - 1;
496 }
497 
498 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
499 						 unsigned short dev_type)
500 {
501 	int i;
502 
503 	i = netdev_lock_pos(dev_type);
504 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
505 				   netdev_lock_name[i]);
506 }
507 
508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
509 {
510 	int i;
511 
512 	i = netdev_lock_pos(dev->type);
513 	lockdep_set_class_and_name(&dev->addr_list_lock,
514 				   &netdev_addr_lock_key[i],
515 				   netdev_lock_name[i]);
516 }
517 #else
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
519 						 unsigned short dev_type)
520 {
521 }
522 
523 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
524 {
525 }
526 #endif
527 
528 /*******************************************************************************
529  *
530  *		Protocol management and registration routines
531  *
532  *******************************************************************************/
533 
534 
535 /*
536  *	Add a protocol ID to the list. Now that the input handler is
537  *	smarter we can dispense with all the messy stuff that used to be
538  *	here.
539  *
540  *	BEWARE!!! Protocol handlers, mangling input packets,
541  *	MUST BE last in hash buckets and checking protocol handlers
542  *	MUST start from promiscuous ptype_all chain in net_bh.
543  *	It is true now, do not change it.
544  *	Explanation follows: if protocol handler, mangling packet, will
545  *	be the first on list, it is not able to sense, that packet
546  *	is cloned and should be copied-on-write, so that it will
547  *	change it and subsequent readers will get broken packet.
548  *							--ANK (980803)
549  */
550 
551 static inline struct list_head *ptype_head(const struct packet_type *pt)
552 {
553 	if (pt->type == htons(ETH_P_ALL))
554 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
555 	else
556 		return pt->dev ? &pt->dev->ptype_specific :
557 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
558 }
559 
560 /**
561  *	dev_add_pack - add packet handler
562  *	@pt: packet type declaration
563  *
564  *	Add a protocol handler to the networking stack. The passed &packet_type
565  *	is linked into kernel lists and may not be freed until it has been
566  *	removed from the kernel lists.
567  *
568  *	This call does not sleep therefore it can not
569  *	guarantee all CPU's that are in middle of receiving packets
570  *	will see the new packet type (until the next received packet).
571  */
572 
573 void dev_add_pack(struct packet_type *pt)
574 {
575 	struct list_head *head = ptype_head(pt);
576 
577 	spin_lock(&ptype_lock);
578 	list_add_rcu(&pt->list, head);
579 	spin_unlock(&ptype_lock);
580 }
581 EXPORT_SYMBOL(dev_add_pack);
582 
583 /**
584  *	__dev_remove_pack	 - remove packet handler
585  *	@pt: packet type declaration
586  *
587  *	Remove a protocol handler that was previously added to the kernel
588  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
589  *	from the kernel lists and can be freed or reused once this function
590  *	returns.
591  *
592  *      The packet type might still be in use by receivers
593  *	and must not be freed until after all the CPU's have gone
594  *	through a quiescent state.
595  */
596 void __dev_remove_pack(struct packet_type *pt)
597 {
598 	struct list_head *head = ptype_head(pt);
599 	struct packet_type *pt1;
600 
601 	spin_lock(&ptype_lock);
602 
603 	list_for_each_entry(pt1, head, list) {
604 		if (pt == pt1) {
605 			list_del_rcu(&pt->list);
606 			goto out;
607 		}
608 	}
609 
610 	pr_warn("dev_remove_pack: %p not found\n", pt);
611 out:
612 	spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(__dev_remove_pack);
615 
616 /**
617  *	dev_remove_pack	 - remove packet handler
618  *	@pt: packet type declaration
619  *
620  *	Remove a protocol handler that was previously added to the kernel
621  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
622  *	from the kernel lists and can be freed or reused once this function
623  *	returns.
624  *
625  *	This call sleeps to guarantee that no CPU is looking at the packet
626  *	type after return.
627  */
628 void dev_remove_pack(struct packet_type *pt)
629 {
630 	__dev_remove_pack(pt);
631 
632 	synchronize_net();
633 }
634 EXPORT_SYMBOL(dev_remove_pack);
635 
636 
637 /*******************************************************************************
638  *
639  *			    Device Interface Subroutines
640  *
641  *******************************************************************************/
642 
643 /**
644  *	dev_get_iflink	- get 'iflink' value of a interface
645  *	@dev: targeted interface
646  *
647  *	Indicates the ifindex the interface is linked to.
648  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
649  */
650 
651 int dev_get_iflink(const struct net_device *dev)
652 {
653 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
654 		return dev->netdev_ops->ndo_get_iflink(dev);
655 
656 	return dev->ifindex;
657 }
658 EXPORT_SYMBOL(dev_get_iflink);
659 
660 /**
661  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
662  *	@dev: targeted interface
663  *	@skb: The packet.
664  *
665  *	For better visibility of tunnel traffic OVS needs to retrieve
666  *	egress tunnel information for a packet. Following API allows
667  *	user to get this info.
668  */
669 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
670 {
671 	struct ip_tunnel_info *info;
672 
673 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
674 		return -EINVAL;
675 
676 	info = skb_tunnel_info_unclone(skb);
677 	if (!info)
678 		return -ENOMEM;
679 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
680 		return -EINVAL;
681 
682 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
683 }
684 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
685 
686 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
687 {
688 	int k = stack->num_paths++;
689 
690 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
691 		return NULL;
692 
693 	return &stack->path[k];
694 }
695 
696 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
697 			  struct net_device_path_stack *stack)
698 {
699 	const struct net_device *last_dev;
700 	struct net_device_path_ctx ctx = {
701 		.dev	= dev,
702 	};
703 	struct net_device_path *path;
704 	int ret = 0;
705 
706 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
707 	stack->num_paths = 0;
708 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
709 		last_dev = ctx.dev;
710 		path = dev_fwd_path(stack);
711 		if (!path)
712 			return -1;
713 
714 		memset(path, 0, sizeof(struct net_device_path));
715 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
716 		if (ret < 0)
717 			return -1;
718 
719 		if (WARN_ON_ONCE(last_dev == ctx.dev))
720 			return -1;
721 	}
722 
723 	if (!ctx.dev)
724 		return ret;
725 
726 	path = dev_fwd_path(stack);
727 	if (!path)
728 		return -1;
729 	path->type = DEV_PATH_ETHERNET;
730 	path->dev = ctx.dev;
731 
732 	return ret;
733 }
734 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
735 
736 /**
737  *	__dev_get_by_name	- find a device by its name
738  *	@net: the applicable net namespace
739  *	@name: name to find
740  *
741  *	Find an interface by name. Must be called under RTNL semaphore
742  *	or @dev_base_lock. If the name is found a pointer to the device
743  *	is returned. If the name is not found then %NULL is returned. The
744  *	reference counters are not incremented so the caller must be
745  *	careful with locks.
746  */
747 
748 struct net_device *__dev_get_by_name(struct net *net, const char *name)
749 {
750 	struct netdev_name_node *node_name;
751 
752 	node_name = netdev_name_node_lookup(net, name);
753 	return node_name ? node_name->dev : NULL;
754 }
755 EXPORT_SYMBOL(__dev_get_by_name);
756 
757 /**
758  * dev_get_by_name_rcu	- find a device by its name
759  * @net: the applicable net namespace
760  * @name: name to find
761  *
762  * Find an interface by name.
763  * If the name is found a pointer to the device is returned.
764  * If the name is not found then %NULL is returned.
765  * The reference counters are not incremented so the caller must be
766  * careful with locks. The caller must hold RCU lock.
767  */
768 
769 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
770 {
771 	struct netdev_name_node *node_name;
772 
773 	node_name = netdev_name_node_lookup_rcu(net, name);
774 	return node_name ? node_name->dev : NULL;
775 }
776 EXPORT_SYMBOL(dev_get_by_name_rcu);
777 
778 /* Deprecated for new users, call netdev_get_by_name() instead */
779 struct net_device *dev_get_by_name(struct net *net, const char *name)
780 {
781 	struct net_device *dev;
782 
783 	rcu_read_lock();
784 	dev = dev_get_by_name_rcu(net, name);
785 	dev_hold(dev);
786 	rcu_read_unlock();
787 	return dev;
788 }
789 EXPORT_SYMBOL(dev_get_by_name);
790 
791 /**
792  *	netdev_get_by_name() - find a device by its name
793  *	@net: the applicable net namespace
794  *	@name: name to find
795  *	@tracker: tracking object for the acquired reference
796  *	@gfp: allocation flags for the tracker
797  *
798  *	Find an interface by name. This can be called from any
799  *	context and does its own locking. The returned handle has
800  *	the usage count incremented and the caller must use netdev_put() to
801  *	release it when it is no longer needed. %NULL is returned if no
802  *	matching device is found.
803  */
804 struct net_device *netdev_get_by_name(struct net *net, const char *name,
805 				      netdevice_tracker *tracker, gfp_t gfp)
806 {
807 	struct net_device *dev;
808 
809 	dev = dev_get_by_name(net, name);
810 	if (dev)
811 		netdev_tracker_alloc(dev, tracker, gfp);
812 	return dev;
813 }
814 EXPORT_SYMBOL(netdev_get_by_name);
815 
816 /**
817  *	__dev_get_by_index - find a device by its ifindex
818  *	@net: the applicable net namespace
819  *	@ifindex: index of device
820  *
821  *	Search for an interface by index. Returns %NULL if the device
822  *	is not found or a pointer to the device. The device has not
823  *	had its reference counter increased so the caller must be careful
824  *	about locking. The caller must hold either the RTNL semaphore
825  *	or @dev_base_lock.
826  */
827 
828 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
829 {
830 	struct net_device *dev;
831 	struct hlist_head *head = dev_index_hash(net, ifindex);
832 
833 	hlist_for_each_entry(dev, head, index_hlist)
834 		if (dev->ifindex == ifindex)
835 			return dev;
836 
837 	return NULL;
838 }
839 EXPORT_SYMBOL(__dev_get_by_index);
840 
841 /**
842  *	dev_get_by_index_rcu - find a device by its ifindex
843  *	@net: the applicable net namespace
844  *	@ifindex: index of device
845  *
846  *	Search for an interface by index. Returns %NULL if the device
847  *	is not found or a pointer to the device. The device has not
848  *	had its reference counter increased so the caller must be careful
849  *	about locking. The caller must hold RCU lock.
850  */
851 
852 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
853 {
854 	struct net_device *dev;
855 	struct hlist_head *head = dev_index_hash(net, ifindex);
856 
857 	hlist_for_each_entry_rcu(dev, head, index_hlist)
858 		if (dev->ifindex == ifindex)
859 			return dev;
860 
861 	return NULL;
862 }
863 EXPORT_SYMBOL(dev_get_by_index_rcu);
864 
865 /* Deprecated for new users, call netdev_get_by_index() instead */
866 struct net_device *dev_get_by_index(struct net *net, int ifindex)
867 {
868 	struct net_device *dev;
869 
870 	rcu_read_lock();
871 	dev = dev_get_by_index_rcu(net, ifindex);
872 	dev_hold(dev);
873 	rcu_read_unlock();
874 	return dev;
875 }
876 EXPORT_SYMBOL(dev_get_by_index);
877 
878 /**
879  *	netdev_get_by_index() - find a device by its ifindex
880  *	@net: the applicable net namespace
881  *	@ifindex: index of device
882  *	@tracker: tracking object for the acquired reference
883  *	@gfp: allocation flags for the tracker
884  *
885  *	Search for an interface by index. Returns NULL if the device
886  *	is not found or a pointer to the device. The device returned has
887  *	had a reference added and the pointer is safe until the user calls
888  *	netdev_put() to indicate they have finished with it.
889  */
890 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
891 				       netdevice_tracker *tracker, gfp_t gfp)
892 {
893 	struct net_device *dev;
894 
895 	dev = dev_get_by_index(net, ifindex);
896 	if (dev)
897 		netdev_tracker_alloc(dev, tracker, gfp);
898 	return dev;
899 }
900 EXPORT_SYMBOL(netdev_get_by_index);
901 
902 /**
903  *	dev_get_by_napi_id - find a device by napi_id
904  *	@napi_id: ID of the NAPI struct
905  *
906  *	Search for an interface by NAPI ID. Returns %NULL if the device
907  *	is not found or a pointer to the device. The device has not had
908  *	its reference counter increased so the caller must be careful
909  *	about locking. The caller must hold RCU lock.
910  */
911 
912 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
913 {
914 	struct napi_struct *napi;
915 
916 	WARN_ON_ONCE(!rcu_read_lock_held());
917 
918 	if (napi_id < MIN_NAPI_ID)
919 		return NULL;
920 
921 	napi = napi_by_id(napi_id);
922 
923 	return napi ? napi->dev : NULL;
924 }
925 EXPORT_SYMBOL(dev_get_by_napi_id);
926 
927 /**
928  *	netdev_get_name - get a netdevice name, knowing its ifindex.
929  *	@net: network namespace
930  *	@name: a pointer to the buffer where the name will be stored.
931  *	@ifindex: the ifindex of the interface to get the name from.
932  */
933 int netdev_get_name(struct net *net, char *name, int ifindex)
934 {
935 	struct net_device *dev;
936 	int ret;
937 
938 	down_read(&devnet_rename_sem);
939 	rcu_read_lock();
940 
941 	dev = dev_get_by_index_rcu(net, ifindex);
942 	if (!dev) {
943 		ret = -ENODEV;
944 		goto out;
945 	}
946 
947 	strcpy(name, dev->name);
948 
949 	ret = 0;
950 out:
951 	rcu_read_unlock();
952 	up_read(&devnet_rename_sem);
953 	return ret;
954 }
955 
956 /**
957  *	dev_getbyhwaddr_rcu - find a device by its hardware address
958  *	@net: the applicable net namespace
959  *	@type: media type of device
960  *	@ha: hardware address
961  *
962  *	Search for an interface by MAC address. Returns NULL if the device
963  *	is not found or a pointer to the device.
964  *	The caller must hold RCU or RTNL.
965  *	The returned device has not had its ref count increased
966  *	and the caller must therefore be careful about locking
967  *
968  */
969 
970 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
971 				       const char *ha)
972 {
973 	struct net_device *dev;
974 
975 	for_each_netdev_rcu(net, dev)
976 		if (dev->type == type &&
977 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
978 			return dev;
979 
980 	return NULL;
981 }
982 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
983 
984 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
985 {
986 	struct net_device *dev, *ret = NULL;
987 
988 	rcu_read_lock();
989 	for_each_netdev_rcu(net, dev)
990 		if (dev->type == type) {
991 			dev_hold(dev);
992 			ret = dev;
993 			break;
994 		}
995 	rcu_read_unlock();
996 	return ret;
997 }
998 EXPORT_SYMBOL(dev_getfirstbyhwtype);
999 
1000 /**
1001  *	__dev_get_by_flags - find any device with given flags
1002  *	@net: the applicable net namespace
1003  *	@if_flags: IFF_* values
1004  *	@mask: bitmask of bits in if_flags to check
1005  *
1006  *	Search for any interface with the given flags. Returns NULL if a device
1007  *	is not found or a pointer to the device. Must be called inside
1008  *	rtnl_lock(), and result refcount is unchanged.
1009  */
1010 
1011 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1012 				      unsigned short mask)
1013 {
1014 	struct net_device *dev, *ret;
1015 
1016 	ASSERT_RTNL();
1017 
1018 	ret = NULL;
1019 	for_each_netdev(net, dev) {
1020 		if (((dev->flags ^ if_flags) & mask) == 0) {
1021 			ret = dev;
1022 			break;
1023 		}
1024 	}
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL(__dev_get_by_flags);
1028 
1029 /**
1030  *	dev_valid_name - check if name is okay for network device
1031  *	@name: name string
1032  *
1033  *	Network device names need to be valid file names to
1034  *	allow sysfs to work.  We also disallow any kind of
1035  *	whitespace.
1036  */
1037 bool dev_valid_name(const char *name)
1038 {
1039 	if (*name == '\0')
1040 		return false;
1041 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1042 		return false;
1043 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1044 		return false;
1045 
1046 	while (*name) {
1047 		if (*name == '/' || *name == ':' || isspace(*name))
1048 			return false;
1049 		name++;
1050 	}
1051 	return true;
1052 }
1053 EXPORT_SYMBOL(dev_valid_name);
1054 
1055 /**
1056  *	__dev_alloc_name - allocate a name for a device
1057  *	@net: network namespace to allocate the device name in
1058  *	@name: name format string
1059  *	@res: result name string
1060  *
1061  *	Passed a format string - eg "lt%d" it will try and find a suitable
1062  *	id. It scans list of devices to build up a free map, then chooses
1063  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1064  *	while allocating the name and adding the device in order to avoid
1065  *	duplicates.
1066  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1067  *	Returns the number of the unit assigned or a negative errno code.
1068  */
1069 
1070 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1071 {
1072 	int i = 0;
1073 	const char *p;
1074 	const int max_netdevices = 8*PAGE_SIZE;
1075 	unsigned long *inuse;
1076 	struct net_device *d;
1077 	char buf[IFNAMSIZ];
1078 
1079 	/* Verify the string as this thing may have come from the user.
1080 	 * There must be one "%d" and no other "%" characters.
1081 	 */
1082 	p = strchr(name, '%');
1083 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1084 		return -EINVAL;
1085 
1086 	/* Use one page as a bit array of possible slots */
1087 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1088 	if (!inuse)
1089 		return -ENOMEM;
1090 
1091 	for_each_netdev(net, d) {
1092 		struct netdev_name_node *name_node;
1093 
1094 		netdev_for_each_altname(d, name_node) {
1095 			if (!sscanf(name_node->name, name, &i))
1096 				continue;
1097 			if (i < 0 || i >= max_netdevices)
1098 				continue;
1099 
1100 			/* avoid cases where sscanf is not exact inverse of printf */
1101 			snprintf(buf, IFNAMSIZ, name, i);
1102 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1103 				__set_bit(i, inuse);
1104 		}
1105 		if (!sscanf(d->name, name, &i))
1106 			continue;
1107 		if (i < 0 || i >= max_netdevices)
1108 			continue;
1109 
1110 		/* avoid cases where sscanf is not exact inverse of printf */
1111 		snprintf(buf, IFNAMSIZ, name, i);
1112 		if (!strncmp(buf, d->name, IFNAMSIZ))
1113 			__set_bit(i, inuse);
1114 	}
1115 
1116 	i = find_first_zero_bit(inuse, max_netdevices);
1117 	bitmap_free(inuse);
1118 	if (i == max_netdevices)
1119 		return -ENFILE;
1120 
1121 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1122 	strscpy(buf, name, IFNAMSIZ);
1123 	snprintf(res, IFNAMSIZ, buf, i);
1124 	return i;
1125 }
1126 
1127 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1128 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1129 			       const char *want_name, char *out_name,
1130 			       int dup_errno)
1131 {
1132 	if (!dev_valid_name(want_name))
1133 		return -EINVAL;
1134 
1135 	if (strchr(want_name, '%'))
1136 		return __dev_alloc_name(net, want_name, out_name);
1137 
1138 	if (netdev_name_in_use(net, want_name))
1139 		return -dup_errno;
1140 	if (out_name != want_name)
1141 		strscpy(out_name, want_name, IFNAMSIZ);
1142 	return 0;
1143 }
1144 
1145 /**
1146  *	dev_alloc_name - allocate a name for a device
1147  *	@dev: device
1148  *	@name: name format string
1149  *
1150  *	Passed a format string - eg "lt%d" it will try and find a suitable
1151  *	id. It scans list of devices to build up a free map, then chooses
1152  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1153  *	while allocating the name and adding the device in order to avoid
1154  *	duplicates.
1155  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1156  *	Returns the number of the unit assigned or a negative errno code.
1157  */
1158 
1159 int dev_alloc_name(struct net_device *dev, const char *name)
1160 {
1161 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1162 }
1163 EXPORT_SYMBOL(dev_alloc_name);
1164 
1165 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1166 			      const char *name)
1167 {
1168 	int ret;
1169 
1170 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1171 	return ret < 0 ? ret : 0;
1172 }
1173 
1174 /**
1175  *	dev_change_name - change name of a device
1176  *	@dev: device
1177  *	@newname: name (or format string) must be at least IFNAMSIZ
1178  *
1179  *	Change name of a device, can pass format strings "eth%d".
1180  *	for wildcarding.
1181  */
1182 int dev_change_name(struct net_device *dev, const char *newname)
1183 {
1184 	unsigned char old_assign_type;
1185 	char oldname[IFNAMSIZ];
1186 	int err = 0;
1187 	int ret;
1188 	struct net *net;
1189 
1190 	ASSERT_RTNL();
1191 	BUG_ON(!dev_net(dev));
1192 
1193 	net = dev_net(dev);
1194 
1195 	down_write(&devnet_rename_sem);
1196 
1197 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1198 		up_write(&devnet_rename_sem);
1199 		return 0;
1200 	}
1201 
1202 	memcpy(oldname, dev->name, IFNAMSIZ);
1203 
1204 	err = dev_get_valid_name(net, dev, newname);
1205 	if (err < 0) {
1206 		up_write(&devnet_rename_sem);
1207 		return err;
1208 	}
1209 
1210 	if (oldname[0] && !strchr(oldname, '%'))
1211 		netdev_info(dev, "renamed from %s%s\n", oldname,
1212 			    dev->flags & IFF_UP ? " (while UP)" : "");
1213 
1214 	old_assign_type = dev->name_assign_type;
1215 	dev->name_assign_type = NET_NAME_RENAMED;
1216 
1217 rollback:
1218 	ret = device_rename(&dev->dev, dev->name);
1219 	if (ret) {
1220 		memcpy(dev->name, oldname, IFNAMSIZ);
1221 		dev->name_assign_type = old_assign_type;
1222 		up_write(&devnet_rename_sem);
1223 		return ret;
1224 	}
1225 
1226 	up_write(&devnet_rename_sem);
1227 
1228 	netdev_adjacent_rename_links(dev, oldname);
1229 
1230 	write_lock(&dev_base_lock);
1231 	netdev_name_node_del(dev->name_node);
1232 	write_unlock(&dev_base_lock);
1233 
1234 	synchronize_rcu();
1235 
1236 	write_lock(&dev_base_lock);
1237 	netdev_name_node_add(net, dev->name_node);
1238 	write_unlock(&dev_base_lock);
1239 
1240 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1241 	ret = notifier_to_errno(ret);
1242 
1243 	if (ret) {
1244 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1245 		if (err >= 0) {
1246 			err = ret;
1247 			down_write(&devnet_rename_sem);
1248 			memcpy(dev->name, oldname, IFNAMSIZ);
1249 			memcpy(oldname, newname, IFNAMSIZ);
1250 			dev->name_assign_type = old_assign_type;
1251 			old_assign_type = NET_NAME_RENAMED;
1252 			goto rollback;
1253 		} else {
1254 			netdev_err(dev, "name change rollback failed: %d\n",
1255 				   ret);
1256 		}
1257 	}
1258 
1259 	return err;
1260 }
1261 
1262 /**
1263  *	dev_set_alias - change ifalias of a device
1264  *	@dev: device
1265  *	@alias: name up to IFALIASZ
1266  *	@len: limit of bytes to copy from info
1267  *
1268  *	Set ifalias for a device,
1269  */
1270 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1271 {
1272 	struct dev_ifalias *new_alias = NULL;
1273 
1274 	if (len >= IFALIASZ)
1275 		return -EINVAL;
1276 
1277 	if (len) {
1278 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1279 		if (!new_alias)
1280 			return -ENOMEM;
1281 
1282 		memcpy(new_alias->ifalias, alias, len);
1283 		new_alias->ifalias[len] = 0;
1284 	}
1285 
1286 	mutex_lock(&ifalias_mutex);
1287 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1288 					mutex_is_locked(&ifalias_mutex));
1289 	mutex_unlock(&ifalias_mutex);
1290 
1291 	if (new_alias)
1292 		kfree_rcu(new_alias, rcuhead);
1293 
1294 	return len;
1295 }
1296 EXPORT_SYMBOL(dev_set_alias);
1297 
1298 /**
1299  *	dev_get_alias - get ifalias of a device
1300  *	@dev: device
1301  *	@name: buffer to store name of ifalias
1302  *	@len: size of buffer
1303  *
1304  *	get ifalias for a device.  Caller must make sure dev cannot go
1305  *	away,  e.g. rcu read lock or own a reference count to device.
1306  */
1307 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1308 {
1309 	const struct dev_ifalias *alias;
1310 	int ret = 0;
1311 
1312 	rcu_read_lock();
1313 	alias = rcu_dereference(dev->ifalias);
1314 	if (alias)
1315 		ret = snprintf(name, len, "%s", alias->ifalias);
1316 	rcu_read_unlock();
1317 
1318 	return ret;
1319 }
1320 
1321 /**
1322  *	netdev_features_change - device changes features
1323  *	@dev: device to cause notification
1324  *
1325  *	Called to indicate a device has changed features.
1326  */
1327 void netdev_features_change(struct net_device *dev)
1328 {
1329 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1330 }
1331 EXPORT_SYMBOL(netdev_features_change);
1332 
1333 /**
1334  *	netdev_state_change - device changes state
1335  *	@dev: device to cause notification
1336  *
1337  *	Called to indicate a device has changed state. This function calls
1338  *	the notifier chains for netdev_chain and sends a NEWLINK message
1339  *	to the routing socket.
1340  */
1341 void netdev_state_change(struct net_device *dev)
1342 {
1343 	if (dev->flags & IFF_UP) {
1344 		struct netdev_notifier_change_info change_info = {
1345 			.info.dev = dev,
1346 		};
1347 
1348 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1349 					      &change_info.info);
1350 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1351 	}
1352 }
1353 EXPORT_SYMBOL(netdev_state_change);
1354 
1355 /**
1356  * __netdev_notify_peers - notify network peers about existence of @dev,
1357  * to be called when rtnl lock is already held.
1358  * @dev: network device
1359  *
1360  * Generate traffic such that interested network peers are aware of
1361  * @dev, such as by generating a gratuitous ARP. This may be used when
1362  * a device wants to inform the rest of the network about some sort of
1363  * reconfiguration such as a failover event or virtual machine
1364  * migration.
1365  */
1366 void __netdev_notify_peers(struct net_device *dev)
1367 {
1368 	ASSERT_RTNL();
1369 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1370 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1371 }
1372 EXPORT_SYMBOL(__netdev_notify_peers);
1373 
1374 /**
1375  * netdev_notify_peers - notify network peers about existence of @dev
1376  * @dev: network device
1377  *
1378  * Generate traffic such that interested network peers are aware of
1379  * @dev, such as by generating a gratuitous ARP. This may be used when
1380  * a device wants to inform the rest of the network about some sort of
1381  * reconfiguration such as a failover event or virtual machine
1382  * migration.
1383  */
1384 void netdev_notify_peers(struct net_device *dev)
1385 {
1386 	rtnl_lock();
1387 	__netdev_notify_peers(dev);
1388 	rtnl_unlock();
1389 }
1390 EXPORT_SYMBOL(netdev_notify_peers);
1391 
1392 static int napi_threaded_poll(void *data);
1393 
1394 static int napi_kthread_create(struct napi_struct *n)
1395 {
1396 	int err = 0;
1397 
1398 	/* Create and wake up the kthread once to put it in
1399 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1400 	 * warning and work with loadavg.
1401 	 */
1402 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1403 				n->dev->name, n->napi_id);
1404 	if (IS_ERR(n->thread)) {
1405 		err = PTR_ERR(n->thread);
1406 		pr_err("kthread_run failed with err %d\n", err);
1407 		n->thread = NULL;
1408 	}
1409 
1410 	return err;
1411 }
1412 
1413 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1414 {
1415 	const struct net_device_ops *ops = dev->netdev_ops;
1416 	int ret;
1417 
1418 	ASSERT_RTNL();
1419 	dev_addr_check(dev);
1420 
1421 	if (!netif_device_present(dev)) {
1422 		/* may be detached because parent is runtime-suspended */
1423 		if (dev->dev.parent)
1424 			pm_runtime_resume(dev->dev.parent);
1425 		if (!netif_device_present(dev))
1426 			return -ENODEV;
1427 	}
1428 
1429 	/* Block netpoll from trying to do any rx path servicing.
1430 	 * If we don't do this there is a chance ndo_poll_controller
1431 	 * or ndo_poll may be running while we open the device
1432 	 */
1433 	netpoll_poll_disable(dev);
1434 
1435 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1436 	ret = notifier_to_errno(ret);
1437 	if (ret)
1438 		return ret;
1439 
1440 	set_bit(__LINK_STATE_START, &dev->state);
1441 
1442 	if (ops->ndo_validate_addr)
1443 		ret = ops->ndo_validate_addr(dev);
1444 
1445 	if (!ret && ops->ndo_open)
1446 		ret = ops->ndo_open(dev);
1447 
1448 	netpoll_poll_enable(dev);
1449 
1450 	if (ret)
1451 		clear_bit(__LINK_STATE_START, &dev->state);
1452 	else {
1453 		dev->flags |= IFF_UP;
1454 		dev_set_rx_mode(dev);
1455 		dev_activate(dev);
1456 		add_device_randomness(dev->dev_addr, dev->addr_len);
1457 	}
1458 
1459 	return ret;
1460 }
1461 
1462 /**
1463  *	dev_open	- prepare an interface for use.
1464  *	@dev: device to open
1465  *	@extack: netlink extended ack
1466  *
1467  *	Takes a device from down to up state. The device's private open
1468  *	function is invoked and then the multicast lists are loaded. Finally
1469  *	the device is moved into the up state and a %NETDEV_UP message is
1470  *	sent to the netdev notifier chain.
1471  *
1472  *	Calling this function on an active interface is a nop. On a failure
1473  *	a negative errno code is returned.
1474  */
1475 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1476 {
1477 	int ret;
1478 
1479 	if (dev->flags & IFF_UP)
1480 		return 0;
1481 
1482 	ret = __dev_open(dev, extack);
1483 	if (ret < 0)
1484 		return ret;
1485 
1486 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1487 	call_netdevice_notifiers(NETDEV_UP, dev);
1488 
1489 	return ret;
1490 }
1491 EXPORT_SYMBOL(dev_open);
1492 
1493 static void __dev_close_many(struct list_head *head)
1494 {
1495 	struct net_device *dev;
1496 
1497 	ASSERT_RTNL();
1498 	might_sleep();
1499 
1500 	list_for_each_entry(dev, head, close_list) {
1501 		/* Temporarily disable netpoll until the interface is down */
1502 		netpoll_poll_disable(dev);
1503 
1504 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1505 
1506 		clear_bit(__LINK_STATE_START, &dev->state);
1507 
1508 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1509 		 * can be even on different cpu. So just clear netif_running().
1510 		 *
1511 		 * dev->stop() will invoke napi_disable() on all of it's
1512 		 * napi_struct instances on this device.
1513 		 */
1514 		smp_mb__after_atomic(); /* Commit netif_running(). */
1515 	}
1516 
1517 	dev_deactivate_many(head);
1518 
1519 	list_for_each_entry(dev, head, close_list) {
1520 		const struct net_device_ops *ops = dev->netdev_ops;
1521 
1522 		/*
1523 		 *	Call the device specific close. This cannot fail.
1524 		 *	Only if device is UP
1525 		 *
1526 		 *	We allow it to be called even after a DETACH hot-plug
1527 		 *	event.
1528 		 */
1529 		if (ops->ndo_stop)
1530 			ops->ndo_stop(dev);
1531 
1532 		dev->flags &= ~IFF_UP;
1533 		netpoll_poll_enable(dev);
1534 	}
1535 }
1536 
1537 static void __dev_close(struct net_device *dev)
1538 {
1539 	LIST_HEAD(single);
1540 
1541 	list_add(&dev->close_list, &single);
1542 	__dev_close_many(&single);
1543 	list_del(&single);
1544 }
1545 
1546 void dev_close_many(struct list_head *head, bool unlink)
1547 {
1548 	struct net_device *dev, *tmp;
1549 
1550 	/* Remove the devices that don't need to be closed */
1551 	list_for_each_entry_safe(dev, tmp, head, close_list)
1552 		if (!(dev->flags & IFF_UP))
1553 			list_del_init(&dev->close_list);
1554 
1555 	__dev_close_many(head);
1556 
1557 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1558 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1559 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1560 		if (unlink)
1561 			list_del_init(&dev->close_list);
1562 	}
1563 }
1564 EXPORT_SYMBOL(dev_close_many);
1565 
1566 /**
1567  *	dev_close - shutdown an interface.
1568  *	@dev: device to shutdown
1569  *
1570  *	This function moves an active device into down state. A
1571  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1572  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1573  *	chain.
1574  */
1575 void dev_close(struct net_device *dev)
1576 {
1577 	if (dev->flags & IFF_UP) {
1578 		LIST_HEAD(single);
1579 
1580 		list_add(&dev->close_list, &single);
1581 		dev_close_many(&single, true);
1582 		list_del(&single);
1583 	}
1584 }
1585 EXPORT_SYMBOL(dev_close);
1586 
1587 
1588 /**
1589  *	dev_disable_lro - disable Large Receive Offload on a device
1590  *	@dev: device
1591  *
1592  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1593  *	called under RTNL.  This is needed if received packets may be
1594  *	forwarded to another interface.
1595  */
1596 void dev_disable_lro(struct net_device *dev)
1597 {
1598 	struct net_device *lower_dev;
1599 	struct list_head *iter;
1600 
1601 	dev->wanted_features &= ~NETIF_F_LRO;
1602 	netdev_update_features(dev);
1603 
1604 	if (unlikely(dev->features & NETIF_F_LRO))
1605 		netdev_WARN(dev, "failed to disable LRO!\n");
1606 
1607 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1608 		dev_disable_lro(lower_dev);
1609 }
1610 EXPORT_SYMBOL(dev_disable_lro);
1611 
1612 /**
1613  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1614  *	@dev: device
1615  *
1616  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1617  *	called under RTNL.  This is needed if Generic XDP is installed on
1618  *	the device.
1619  */
1620 static void dev_disable_gro_hw(struct net_device *dev)
1621 {
1622 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1623 	netdev_update_features(dev);
1624 
1625 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1626 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1627 }
1628 
1629 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1630 {
1631 #define N(val) 						\
1632 	case NETDEV_##val:				\
1633 		return "NETDEV_" __stringify(val);
1634 	switch (cmd) {
1635 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1636 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1637 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1638 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1639 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1640 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1641 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1642 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1643 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1644 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1645 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1646 	N(XDP_FEAT_CHANGE)
1647 	}
1648 #undef N
1649 	return "UNKNOWN_NETDEV_EVENT";
1650 }
1651 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1652 
1653 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1654 				   struct net_device *dev)
1655 {
1656 	struct netdev_notifier_info info = {
1657 		.dev = dev,
1658 	};
1659 
1660 	return nb->notifier_call(nb, val, &info);
1661 }
1662 
1663 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1664 					     struct net_device *dev)
1665 {
1666 	int err;
1667 
1668 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1669 	err = notifier_to_errno(err);
1670 	if (err)
1671 		return err;
1672 
1673 	if (!(dev->flags & IFF_UP))
1674 		return 0;
1675 
1676 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1677 	return 0;
1678 }
1679 
1680 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1681 						struct net_device *dev)
1682 {
1683 	if (dev->flags & IFF_UP) {
1684 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1685 					dev);
1686 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1687 	}
1688 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1689 }
1690 
1691 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1692 						 struct net *net)
1693 {
1694 	struct net_device *dev;
1695 	int err;
1696 
1697 	for_each_netdev(net, dev) {
1698 		err = call_netdevice_register_notifiers(nb, dev);
1699 		if (err)
1700 			goto rollback;
1701 	}
1702 	return 0;
1703 
1704 rollback:
1705 	for_each_netdev_continue_reverse(net, dev)
1706 		call_netdevice_unregister_notifiers(nb, dev);
1707 	return err;
1708 }
1709 
1710 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1711 						    struct net *net)
1712 {
1713 	struct net_device *dev;
1714 
1715 	for_each_netdev(net, dev)
1716 		call_netdevice_unregister_notifiers(nb, dev);
1717 }
1718 
1719 static int dev_boot_phase = 1;
1720 
1721 /**
1722  * register_netdevice_notifier - register a network notifier block
1723  * @nb: notifier
1724  *
1725  * Register a notifier to be called when network device events occur.
1726  * The notifier passed is linked into the kernel structures and must
1727  * not be reused until it has been unregistered. A negative errno code
1728  * is returned on a failure.
1729  *
1730  * When registered all registration and up events are replayed
1731  * to the new notifier to allow device to have a race free
1732  * view of the network device list.
1733  */
1734 
1735 int register_netdevice_notifier(struct notifier_block *nb)
1736 {
1737 	struct net *net;
1738 	int err;
1739 
1740 	/* Close race with setup_net() and cleanup_net() */
1741 	down_write(&pernet_ops_rwsem);
1742 	rtnl_lock();
1743 	err = raw_notifier_chain_register(&netdev_chain, nb);
1744 	if (err)
1745 		goto unlock;
1746 	if (dev_boot_phase)
1747 		goto unlock;
1748 	for_each_net(net) {
1749 		err = call_netdevice_register_net_notifiers(nb, net);
1750 		if (err)
1751 			goto rollback;
1752 	}
1753 
1754 unlock:
1755 	rtnl_unlock();
1756 	up_write(&pernet_ops_rwsem);
1757 	return err;
1758 
1759 rollback:
1760 	for_each_net_continue_reverse(net)
1761 		call_netdevice_unregister_net_notifiers(nb, net);
1762 
1763 	raw_notifier_chain_unregister(&netdev_chain, nb);
1764 	goto unlock;
1765 }
1766 EXPORT_SYMBOL(register_netdevice_notifier);
1767 
1768 /**
1769  * unregister_netdevice_notifier - unregister a network notifier block
1770  * @nb: notifier
1771  *
1772  * Unregister a notifier previously registered by
1773  * register_netdevice_notifier(). The notifier is unlinked into the
1774  * kernel structures and may then be reused. A negative errno code
1775  * is returned on a failure.
1776  *
1777  * After unregistering unregister and down device events are synthesized
1778  * for all devices on the device list to the removed notifier to remove
1779  * the need for special case cleanup code.
1780  */
1781 
1782 int unregister_netdevice_notifier(struct notifier_block *nb)
1783 {
1784 	struct net *net;
1785 	int err;
1786 
1787 	/* Close race with setup_net() and cleanup_net() */
1788 	down_write(&pernet_ops_rwsem);
1789 	rtnl_lock();
1790 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1791 	if (err)
1792 		goto unlock;
1793 
1794 	for_each_net(net)
1795 		call_netdevice_unregister_net_notifiers(nb, net);
1796 
1797 unlock:
1798 	rtnl_unlock();
1799 	up_write(&pernet_ops_rwsem);
1800 	return err;
1801 }
1802 EXPORT_SYMBOL(unregister_netdevice_notifier);
1803 
1804 static int __register_netdevice_notifier_net(struct net *net,
1805 					     struct notifier_block *nb,
1806 					     bool ignore_call_fail)
1807 {
1808 	int err;
1809 
1810 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1811 	if (err)
1812 		return err;
1813 	if (dev_boot_phase)
1814 		return 0;
1815 
1816 	err = call_netdevice_register_net_notifiers(nb, net);
1817 	if (err && !ignore_call_fail)
1818 		goto chain_unregister;
1819 
1820 	return 0;
1821 
1822 chain_unregister:
1823 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
1824 	return err;
1825 }
1826 
1827 static int __unregister_netdevice_notifier_net(struct net *net,
1828 					       struct notifier_block *nb)
1829 {
1830 	int err;
1831 
1832 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1833 	if (err)
1834 		return err;
1835 
1836 	call_netdevice_unregister_net_notifiers(nb, net);
1837 	return 0;
1838 }
1839 
1840 /**
1841  * register_netdevice_notifier_net - register a per-netns network notifier block
1842  * @net: network namespace
1843  * @nb: notifier
1844  *
1845  * Register a notifier to be called when network device events occur.
1846  * The notifier passed is linked into the kernel structures and must
1847  * not be reused until it has been unregistered. A negative errno code
1848  * is returned on a failure.
1849  *
1850  * When registered all registration and up events are replayed
1851  * to the new notifier to allow device to have a race free
1852  * view of the network device list.
1853  */
1854 
1855 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1856 {
1857 	int err;
1858 
1859 	rtnl_lock();
1860 	err = __register_netdevice_notifier_net(net, nb, false);
1861 	rtnl_unlock();
1862 	return err;
1863 }
1864 EXPORT_SYMBOL(register_netdevice_notifier_net);
1865 
1866 /**
1867  * unregister_netdevice_notifier_net - unregister a per-netns
1868  *                                     network notifier block
1869  * @net: network namespace
1870  * @nb: notifier
1871  *
1872  * Unregister a notifier previously registered by
1873  * register_netdevice_notifier_net(). The notifier is unlinked from the
1874  * kernel structures and may then be reused. A negative errno code
1875  * is returned on a failure.
1876  *
1877  * After unregistering unregister and down device events are synthesized
1878  * for all devices on the device list to the removed notifier to remove
1879  * the need for special case cleanup code.
1880  */
1881 
1882 int unregister_netdevice_notifier_net(struct net *net,
1883 				      struct notifier_block *nb)
1884 {
1885 	int err;
1886 
1887 	rtnl_lock();
1888 	err = __unregister_netdevice_notifier_net(net, nb);
1889 	rtnl_unlock();
1890 	return err;
1891 }
1892 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1893 
1894 static void __move_netdevice_notifier_net(struct net *src_net,
1895 					  struct net *dst_net,
1896 					  struct notifier_block *nb)
1897 {
1898 	__unregister_netdevice_notifier_net(src_net, nb);
1899 	__register_netdevice_notifier_net(dst_net, nb, true);
1900 }
1901 
1902 int register_netdevice_notifier_dev_net(struct net_device *dev,
1903 					struct notifier_block *nb,
1904 					struct netdev_net_notifier *nn)
1905 {
1906 	int err;
1907 
1908 	rtnl_lock();
1909 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1910 	if (!err) {
1911 		nn->nb = nb;
1912 		list_add(&nn->list, &dev->net_notifier_list);
1913 	}
1914 	rtnl_unlock();
1915 	return err;
1916 }
1917 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1918 
1919 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1920 					  struct notifier_block *nb,
1921 					  struct netdev_net_notifier *nn)
1922 {
1923 	int err;
1924 
1925 	rtnl_lock();
1926 	list_del(&nn->list);
1927 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1928 	rtnl_unlock();
1929 	return err;
1930 }
1931 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1932 
1933 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1934 					     struct net *net)
1935 {
1936 	struct netdev_net_notifier *nn;
1937 
1938 	list_for_each_entry(nn, &dev->net_notifier_list, list)
1939 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1940 }
1941 
1942 /**
1943  *	call_netdevice_notifiers_info - call all network notifier blocks
1944  *	@val: value passed unmodified to notifier function
1945  *	@info: notifier information data
1946  *
1947  *	Call all network notifier blocks.  Parameters and return value
1948  *	are as for raw_notifier_call_chain().
1949  */
1950 
1951 int call_netdevice_notifiers_info(unsigned long val,
1952 				  struct netdev_notifier_info *info)
1953 {
1954 	struct net *net = dev_net(info->dev);
1955 	int ret;
1956 
1957 	ASSERT_RTNL();
1958 
1959 	/* Run per-netns notifier block chain first, then run the global one.
1960 	 * Hopefully, one day, the global one is going to be removed after
1961 	 * all notifier block registrators get converted to be per-netns.
1962 	 */
1963 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1964 	if (ret & NOTIFY_STOP_MASK)
1965 		return ret;
1966 	return raw_notifier_call_chain(&netdev_chain, val, info);
1967 }
1968 
1969 /**
1970  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1971  *	                                       for and rollback on error
1972  *	@val_up: value passed unmodified to notifier function
1973  *	@val_down: value passed unmodified to the notifier function when
1974  *	           recovering from an error on @val_up
1975  *	@info: notifier information data
1976  *
1977  *	Call all per-netns network notifier blocks, but not notifier blocks on
1978  *	the global notifier chain. Parameters and return value are as for
1979  *	raw_notifier_call_chain_robust().
1980  */
1981 
1982 static int
1983 call_netdevice_notifiers_info_robust(unsigned long val_up,
1984 				     unsigned long val_down,
1985 				     struct netdev_notifier_info *info)
1986 {
1987 	struct net *net = dev_net(info->dev);
1988 
1989 	ASSERT_RTNL();
1990 
1991 	return raw_notifier_call_chain_robust(&net->netdev_chain,
1992 					      val_up, val_down, info);
1993 }
1994 
1995 static int call_netdevice_notifiers_extack(unsigned long val,
1996 					   struct net_device *dev,
1997 					   struct netlink_ext_ack *extack)
1998 {
1999 	struct netdev_notifier_info info = {
2000 		.dev = dev,
2001 		.extack = extack,
2002 	};
2003 
2004 	return call_netdevice_notifiers_info(val, &info);
2005 }
2006 
2007 /**
2008  *	call_netdevice_notifiers - call all network notifier blocks
2009  *      @val: value passed unmodified to notifier function
2010  *      @dev: net_device pointer passed unmodified to notifier function
2011  *
2012  *	Call all network notifier blocks.  Parameters and return value
2013  *	are as for raw_notifier_call_chain().
2014  */
2015 
2016 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2017 {
2018 	return call_netdevice_notifiers_extack(val, dev, NULL);
2019 }
2020 EXPORT_SYMBOL(call_netdevice_notifiers);
2021 
2022 /**
2023  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2024  *	@val: value passed unmodified to notifier function
2025  *	@dev: net_device pointer passed unmodified to notifier function
2026  *	@arg: additional u32 argument passed to the notifier function
2027  *
2028  *	Call all network notifier blocks.  Parameters and return value
2029  *	are as for raw_notifier_call_chain().
2030  */
2031 static int call_netdevice_notifiers_mtu(unsigned long val,
2032 					struct net_device *dev, u32 arg)
2033 {
2034 	struct netdev_notifier_info_ext info = {
2035 		.info.dev = dev,
2036 		.ext.mtu = arg,
2037 	};
2038 
2039 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2040 
2041 	return call_netdevice_notifiers_info(val, &info.info);
2042 }
2043 
2044 #ifdef CONFIG_NET_INGRESS
2045 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2046 
2047 void net_inc_ingress_queue(void)
2048 {
2049 	static_branch_inc(&ingress_needed_key);
2050 }
2051 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2052 
2053 void net_dec_ingress_queue(void)
2054 {
2055 	static_branch_dec(&ingress_needed_key);
2056 }
2057 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2058 #endif
2059 
2060 #ifdef CONFIG_NET_EGRESS
2061 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2062 
2063 void net_inc_egress_queue(void)
2064 {
2065 	static_branch_inc(&egress_needed_key);
2066 }
2067 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2068 
2069 void net_dec_egress_queue(void)
2070 {
2071 	static_branch_dec(&egress_needed_key);
2072 }
2073 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2074 #endif
2075 
2076 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2077 EXPORT_SYMBOL(netstamp_needed_key);
2078 #ifdef CONFIG_JUMP_LABEL
2079 static atomic_t netstamp_needed_deferred;
2080 static atomic_t netstamp_wanted;
2081 static void netstamp_clear(struct work_struct *work)
2082 {
2083 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2084 	int wanted;
2085 
2086 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2087 	if (wanted > 0)
2088 		static_branch_enable(&netstamp_needed_key);
2089 	else
2090 		static_branch_disable(&netstamp_needed_key);
2091 }
2092 static DECLARE_WORK(netstamp_work, netstamp_clear);
2093 #endif
2094 
2095 void net_enable_timestamp(void)
2096 {
2097 #ifdef CONFIG_JUMP_LABEL
2098 	int wanted = atomic_read(&netstamp_wanted);
2099 
2100 	while (wanted > 0) {
2101 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2102 			return;
2103 	}
2104 	atomic_inc(&netstamp_needed_deferred);
2105 	schedule_work(&netstamp_work);
2106 #else
2107 	static_branch_inc(&netstamp_needed_key);
2108 #endif
2109 }
2110 EXPORT_SYMBOL(net_enable_timestamp);
2111 
2112 void net_disable_timestamp(void)
2113 {
2114 #ifdef CONFIG_JUMP_LABEL
2115 	int wanted = atomic_read(&netstamp_wanted);
2116 
2117 	while (wanted > 1) {
2118 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2119 			return;
2120 	}
2121 	atomic_dec(&netstamp_needed_deferred);
2122 	schedule_work(&netstamp_work);
2123 #else
2124 	static_branch_dec(&netstamp_needed_key);
2125 #endif
2126 }
2127 EXPORT_SYMBOL(net_disable_timestamp);
2128 
2129 static inline void net_timestamp_set(struct sk_buff *skb)
2130 {
2131 	skb->tstamp = 0;
2132 	skb->mono_delivery_time = 0;
2133 	if (static_branch_unlikely(&netstamp_needed_key))
2134 		skb->tstamp = ktime_get_real();
2135 }
2136 
2137 #define net_timestamp_check(COND, SKB)				\
2138 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2139 		if ((COND) && !(SKB)->tstamp)			\
2140 			(SKB)->tstamp = ktime_get_real();	\
2141 	}							\
2142 
2143 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2144 {
2145 	return __is_skb_forwardable(dev, skb, true);
2146 }
2147 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2148 
2149 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2150 			      bool check_mtu)
2151 {
2152 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2153 
2154 	if (likely(!ret)) {
2155 		skb->protocol = eth_type_trans(skb, dev);
2156 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2157 	}
2158 
2159 	return ret;
2160 }
2161 
2162 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2163 {
2164 	return __dev_forward_skb2(dev, skb, true);
2165 }
2166 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2167 
2168 /**
2169  * dev_forward_skb - loopback an skb to another netif
2170  *
2171  * @dev: destination network device
2172  * @skb: buffer to forward
2173  *
2174  * return values:
2175  *	NET_RX_SUCCESS	(no congestion)
2176  *	NET_RX_DROP     (packet was dropped, but freed)
2177  *
2178  * dev_forward_skb can be used for injecting an skb from the
2179  * start_xmit function of one device into the receive queue
2180  * of another device.
2181  *
2182  * The receiving device may be in another namespace, so
2183  * we have to clear all information in the skb that could
2184  * impact namespace isolation.
2185  */
2186 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2187 {
2188 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2189 }
2190 EXPORT_SYMBOL_GPL(dev_forward_skb);
2191 
2192 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2193 {
2194 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2195 }
2196 
2197 static inline int deliver_skb(struct sk_buff *skb,
2198 			      struct packet_type *pt_prev,
2199 			      struct net_device *orig_dev)
2200 {
2201 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2202 		return -ENOMEM;
2203 	refcount_inc(&skb->users);
2204 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2205 }
2206 
2207 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2208 					  struct packet_type **pt,
2209 					  struct net_device *orig_dev,
2210 					  __be16 type,
2211 					  struct list_head *ptype_list)
2212 {
2213 	struct packet_type *ptype, *pt_prev = *pt;
2214 
2215 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2216 		if (ptype->type != type)
2217 			continue;
2218 		if (pt_prev)
2219 			deliver_skb(skb, pt_prev, orig_dev);
2220 		pt_prev = ptype;
2221 	}
2222 	*pt = pt_prev;
2223 }
2224 
2225 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2226 {
2227 	if (!ptype->af_packet_priv || !skb->sk)
2228 		return false;
2229 
2230 	if (ptype->id_match)
2231 		return ptype->id_match(ptype, skb->sk);
2232 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2233 		return true;
2234 
2235 	return false;
2236 }
2237 
2238 /**
2239  * dev_nit_active - return true if any network interface taps are in use
2240  *
2241  * @dev: network device to check for the presence of taps
2242  */
2243 bool dev_nit_active(struct net_device *dev)
2244 {
2245 	return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2246 }
2247 EXPORT_SYMBOL_GPL(dev_nit_active);
2248 
2249 /*
2250  *	Support routine. Sends outgoing frames to any network
2251  *	taps currently in use.
2252  */
2253 
2254 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2255 {
2256 	struct packet_type *ptype;
2257 	struct sk_buff *skb2 = NULL;
2258 	struct packet_type *pt_prev = NULL;
2259 	struct list_head *ptype_list = &ptype_all;
2260 
2261 	rcu_read_lock();
2262 again:
2263 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2264 		if (ptype->ignore_outgoing)
2265 			continue;
2266 
2267 		/* Never send packets back to the socket
2268 		 * they originated from - MvS ([email protected])
2269 		 */
2270 		if (skb_loop_sk(ptype, skb))
2271 			continue;
2272 
2273 		if (pt_prev) {
2274 			deliver_skb(skb2, pt_prev, skb->dev);
2275 			pt_prev = ptype;
2276 			continue;
2277 		}
2278 
2279 		/* need to clone skb, done only once */
2280 		skb2 = skb_clone(skb, GFP_ATOMIC);
2281 		if (!skb2)
2282 			goto out_unlock;
2283 
2284 		net_timestamp_set(skb2);
2285 
2286 		/* skb->nh should be correctly
2287 		 * set by sender, so that the second statement is
2288 		 * just protection against buggy protocols.
2289 		 */
2290 		skb_reset_mac_header(skb2);
2291 
2292 		if (skb_network_header(skb2) < skb2->data ||
2293 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2294 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2295 					     ntohs(skb2->protocol),
2296 					     dev->name);
2297 			skb_reset_network_header(skb2);
2298 		}
2299 
2300 		skb2->transport_header = skb2->network_header;
2301 		skb2->pkt_type = PACKET_OUTGOING;
2302 		pt_prev = ptype;
2303 	}
2304 
2305 	if (ptype_list == &ptype_all) {
2306 		ptype_list = &dev->ptype_all;
2307 		goto again;
2308 	}
2309 out_unlock:
2310 	if (pt_prev) {
2311 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2312 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2313 		else
2314 			kfree_skb(skb2);
2315 	}
2316 	rcu_read_unlock();
2317 }
2318 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2319 
2320 /**
2321  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2322  * @dev: Network device
2323  * @txq: number of queues available
2324  *
2325  * If real_num_tx_queues is changed the tc mappings may no longer be
2326  * valid. To resolve this verify the tc mapping remains valid and if
2327  * not NULL the mapping. With no priorities mapping to this
2328  * offset/count pair it will no longer be used. In the worst case TC0
2329  * is invalid nothing can be done so disable priority mappings. If is
2330  * expected that drivers will fix this mapping if they can before
2331  * calling netif_set_real_num_tx_queues.
2332  */
2333 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2334 {
2335 	int i;
2336 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2337 
2338 	/* If TC0 is invalidated disable TC mapping */
2339 	if (tc->offset + tc->count > txq) {
2340 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2341 		dev->num_tc = 0;
2342 		return;
2343 	}
2344 
2345 	/* Invalidated prio to tc mappings set to TC0 */
2346 	for (i = 1; i < TC_BITMASK + 1; i++) {
2347 		int q = netdev_get_prio_tc_map(dev, i);
2348 
2349 		tc = &dev->tc_to_txq[q];
2350 		if (tc->offset + tc->count > txq) {
2351 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2352 				    i, q);
2353 			netdev_set_prio_tc_map(dev, i, 0);
2354 		}
2355 	}
2356 }
2357 
2358 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2359 {
2360 	if (dev->num_tc) {
2361 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2362 		int i;
2363 
2364 		/* walk through the TCs and see if it falls into any of them */
2365 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2366 			if ((txq - tc->offset) < tc->count)
2367 				return i;
2368 		}
2369 
2370 		/* didn't find it, just return -1 to indicate no match */
2371 		return -1;
2372 	}
2373 
2374 	return 0;
2375 }
2376 EXPORT_SYMBOL(netdev_txq_to_tc);
2377 
2378 #ifdef CONFIG_XPS
2379 static struct static_key xps_needed __read_mostly;
2380 static struct static_key xps_rxqs_needed __read_mostly;
2381 static DEFINE_MUTEX(xps_map_mutex);
2382 #define xmap_dereference(P)		\
2383 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2384 
2385 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2386 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2387 {
2388 	struct xps_map *map = NULL;
2389 	int pos;
2390 
2391 	map = xmap_dereference(dev_maps->attr_map[tci]);
2392 	if (!map)
2393 		return false;
2394 
2395 	for (pos = map->len; pos--;) {
2396 		if (map->queues[pos] != index)
2397 			continue;
2398 
2399 		if (map->len > 1) {
2400 			map->queues[pos] = map->queues[--map->len];
2401 			break;
2402 		}
2403 
2404 		if (old_maps)
2405 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2406 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2407 		kfree_rcu(map, rcu);
2408 		return false;
2409 	}
2410 
2411 	return true;
2412 }
2413 
2414 static bool remove_xps_queue_cpu(struct net_device *dev,
2415 				 struct xps_dev_maps *dev_maps,
2416 				 int cpu, u16 offset, u16 count)
2417 {
2418 	int num_tc = dev_maps->num_tc;
2419 	bool active = false;
2420 	int tci;
2421 
2422 	for (tci = cpu * num_tc; num_tc--; tci++) {
2423 		int i, j;
2424 
2425 		for (i = count, j = offset; i--; j++) {
2426 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2427 				break;
2428 		}
2429 
2430 		active |= i < 0;
2431 	}
2432 
2433 	return active;
2434 }
2435 
2436 static void reset_xps_maps(struct net_device *dev,
2437 			   struct xps_dev_maps *dev_maps,
2438 			   enum xps_map_type type)
2439 {
2440 	static_key_slow_dec_cpuslocked(&xps_needed);
2441 	if (type == XPS_RXQS)
2442 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2443 
2444 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2445 
2446 	kfree_rcu(dev_maps, rcu);
2447 }
2448 
2449 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2450 			   u16 offset, u16 count)
2451 {
2452 	struct xps_dev_maps *dev_maps;
2453 	bool active = false;
2454 	int i, j;
2455 
2456 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2457 	if (!dev_maps)
2458 		return;
2459 
2460 	for (j = 0; j < dev_maps->nr_ids; j++)
2461 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2462 	if (!active)
2463 		reset_xps_maps(dev, dev_maps, type);
2464 
2465 	if (type == XPS_CPUS) {
2466 		for (i = offset + (count - 1); count--; i--)
2467 			netdev_queue_numa_node_write(
2468 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2469 	}
2470 }
2471 
2472 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2473 				   u16 count)
2474 {
2475 	if (!static_key_false(&xps_needed))
2476 		return;
2477 
2478 	cpus_read_lock();
2479 	mutex_lock(&xps_map_mutex);
2480 
2481 	if (static_key_false(&xps_rxqs_needed))
2482 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2483 
2484 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2485 
2486 	mutex_unlock(&xps_map_mutex);
2487 	cpus_read_unlock();
2488 }
2489 
2490 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2491 {
2492 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2493 }
2494 
2495 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2496 				      u16 index, bool is_rxqs_map)
2497 {
2498 	struct xps_map *new_map;
2499 	int alloc_len = XPS_MIN_MAP_ALLOC;
2500 	int i, pos;
2501 
2502 	for (pos = 0; map && pos < map->len; pos++) {
2503 		if (map->queues[pos] != index)
2504 			continue;
2505 		return map;
2506 	}
2507 
2508 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2509 	if (map) {
2510 		if (pos < map->alloc_len)
2511 			return map;
2512 
2513 		alloc_len = map->alloc_len * 2;
2514 	}
2515 
2516 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2517 	 *  map
2518 	 */
2519 	if (is_rxqs_map)
2520 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2521 	else
2522 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2523 				       cpu_to_node(attr_index));
2524 	if (!new_map)
2525 		return NULL;
2526 
2527 	for (i = 0; i < pos; i++)
2528 		new_map->queues[i] = map->queues[i];
2529 	new_map->alloc_len = alloc_len;
2530 	new_map->len = pos;
2531 
2532 	return new_map;
2533 }
2534 
2535 /* Copy xps maps at a given index */
2536 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2537 			      struct xps_dev_maps *new_dev_maps, int index,
2538 			      int tc, bool skip_tc)
2539 {
2540 	int i, tci = index * dev_maps->num_tc;
2541 	struct xps_map *map;
2542 
2543 	/* copy maps belonging to foreign traffic classes */
2544 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2545 		if (i == tc && skip_tc)
2546 			continue;
2547 
2548 		/* fill in the new device map from the old device map */
2549 		map = xmap_dereference(dev_maps->attr_map[tci]);
2550 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2551 	}
2552 }
2553 
2554 /* Must be called under cpus_read_lock */
2555 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2556 			  u16 index, enum xps_map_type type)
2557 {
2558 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2559 	const unsigned long *online_mask = NULL;
2560 	bool active = false, copy = false;
2561 	int i, j, tci, numa_node_id = -2;
2562 	int maps_sz, num_tc = 1, tc = 0;
2563 	struct xps_map *map, *new_map;
2564 	unsigned int nr_ids;
2565 
2566 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2567 
2568 	if (dev->num_tc) {
2569 		/* Do not allow XPS on subordinate device directly */
2570 		num_tc = dev->num_tc;
2571 		if (num_tc < 0)
2572 			return -EINVAL;
2573 
2574 		/* If queue belongs to subordinate dev use its map */
2575 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2576 
2577 		tc = netdev_txq_to_tc(dev, index);
2578 		if (tc < 0)
2579 			return -EINVAL;
2580 	}
2581 
2582 	mutex_lock(&xps_map_mutex);
2583 
2584 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2585 	if (type == XPS_RXQS) {
2586 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2587 		nr_ids = dev->num_rx_queues;
2588 	} else {
2589 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2590 		if (num_possible_cpus() > 1)
2591 			online_mask = cpumask_bits(cpu_online_mask);
2592 		nr_ids = nr_cpu_ids;
2593 	}
2594 
2595 	if (maps_sz < L1_CACHE_BYTES)
2596 		maps_sz = L1_CACHE_BYTES;
2597 
2598 	/* The old dev_maps could be larger or smaller than the one we're
2599 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2600 	 * between. We could try to be smart, but let's be safe instead and only
2601 	 * copy foreign traffic classes if the two map sizes match.
2602 	 */
2603 	if (dev_maps &&
2604 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2605 		copy = true;
2606 
2607 	/* allocate memory for queue storage */
2608 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2609 	     j < nr_ids;) {
2610 		if (!new_dev_maps) {
2611 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2612 			if (!new_dev_maps) {
2613 				mutex_unlock(&xps_map_mutex);
2614 				return -ENOMEM;
2615 			}
2616 
2617 			new_dev_maps->nr_ids = nr_ids;
2618 			new_dev_maps->num_tc = num_tc;
2619 		}
2620 
2621 		tci = j * num_tc + tc;
2622 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2623 
2624 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2625 		if (!map)
2626 			goto error;
2627 
2628 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2629 	}
2630 
2631 	if (!new_dev_maps)
2632 		goto out_no_new_maps;
2633 
2634 	if (!dev_maps) {
2635 		/* Increment static keys at most once per type */
2636 		static_key_slow_inc_cpuslocked(&xps_needed);
2637 		if (type == XPS_RXQS)
2638 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2639 	}
2640 
2641 	for (j = 0; j < nr_ids; j++) {
2642 		bool skip_tc = false;
2643 
2644 		tci = j * num_tc + tc;
2645 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2646 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2647 			/* add tx-queue to CPU/rx-queue maps */
2648 			int pos = 0;
2649 
2650 			skip_tc = true;
2651 
2652 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2653 			while ((pos < map->len) && (map->queues[pos] != index))
2654 				pos++;
2655 
2656 			if (pos == map->len)
2657 				map->queues[map->len++] = index;
2658 #ifdef CONFIG_NUMA
2659 			if (type == XPS_CPUS) {
2660 				if (numa_node_id == -2)
2661 					numa_node_id = cpu_to_node(j);
2662 				else if (numa_node_id != cpu_to_node(j))
2663 					numa_node_id = -1;
2664 			}
2665 #endif
2666 		}
2667 
2668 		if (copy)
2669 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2670 					  skip_tc);
2671 	}
2672 
2673 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2674 
2675 	/* Cleanup old maps */
2676 	if (!dev_maps)
2677 		goto out_no_old_maps;
2678 
2679 	for (j = 0; j < dev_maps->nr_ids; j++) {
2680 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2681 			map = xmap_dereference(dev_maps->attr_map[tci]);
2682 			if (!map)
2683 				continue;
2684 
2685 			if (copy) {
2686 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2687 				if (map == new_map)
2688 					continue;
2689 			}
2690 
2691 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2692 			kfree_rcu(map, rcu);
2693 		}
2694 	}
2695 
2696 	old_dev_maps = dev_maps;
2697 
2698 out_no_old_maps:
2699 	dev_maps = new_dev_maps;
2700 	active = true;
2701 
2702 out_no_new_maps:
2703 	if (type == XPS_CPUS)
2704 		/* update Tx queue numa node */
2705 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2706 					     (numa_node_id >= 0) ?
2707 					     numa_node_id : NUMA_NO_NODE);
2708 
2709 	if (!dev_maps)
2710 		goto out_no_maps;
2711 
2712 	/* removes tx-queue from unused CPUs/rx-queues */
2713 	for (j = 0; j < dev_maps->nr_ids; j++) {
2714 		tci = j * dev_maps->num_tc;
2715 
2716 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2717 			if (i == tc &&
2718 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2719 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2720 				continue;
2721 
2722 			active |= remove_xps_queue(dev_maps,
2723 						   copy ? old_dev_maps : NULL,
2724 						   tci, index);
2725 		}
2726 	}
2727 
2728 	if (old_dev_maps)
2729 		kfree_rcu(old_dev_maps, rcu);
2730 
2731 	/* free map if not active */
2732 	if (!active)
2733 		reset_xps_maps(dev, dev_maps, type);
2734 
2735 out_no_maps:
2736 	mutex_unlock(&xps_map_mutex);
2737 
2738 	return 0;
2739 error:
2740 	/* remove any maps that we added */
2741 	for (j = 0; j < nr_ids; j++) {
2742 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2743 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2744 			map = copy ?
2745 			      xmap_dereference(dev_maps->attr_map[tci]) :
2746 			      NULL;
2747 			if (new_map && new_map != map)
2748 				kfree(new_map);
2749 		}
2750 	}
2751 
2752 	mutex_unlock(&xps_map_mutex);
2753 
2754 	kfree(new_dev_maps);
2755 	return -ENOMEM;
2756 }
2757 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2758 
2759 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2760 			u16 index)
2761 {
2762 	int ret;
2763 
2764 	cpus_read_lock();
2765 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2766 	cpus_read_unlock();
2767 
2768 	return ret;
2769 }
2770 EXPORT_SYMBOL(netif_set_xps_queue);
2771 
2772 #endif
2773 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2774 {
2775 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2776 
2777 	/* Unbind any subordinate channels */
2778 	while (txq-- != &dev->_tx[0]) {
2779 		if (txq->sb_dev)
2780 			netdev_unbind_sb_channel(dev, txq->sb_dev);
2781 	}
2782 }
2783 
2784 void netdev_reset_tc(struct net_device *dev)
2785 {
2786 #ifdef CONFIG_XPS
2787 	netif_reset_xps_queues_gt(dev, 0);
2788 #endif
2789 	netdev_unbind_all_sb_channels(dev);
2790 
2791 	/* Reset TC configuration of device */
2792 	dev->num_tc = 0;
2793 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2794 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2795 }
2796 EXPORT_SYMBOL(netdev_reset_tc);
2797 
2798 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2799 {
2800 	if (tc >= dev->num_tc)
2801 		return -EINVAL;
2802 
2803 #ifdef CONFIG_XPS
2804 	netif_reset_xps_queues(dev, offset, count);
2805 #endif
2806 	dev->tc_to_txq[tc].count = count;
2807 	dev->tc_to_txq[tc].offset = offset;
2808 	return 0;
2809 }
2810 EXPORT_SYMBOL(netdev_set_tc_queue);
2811 
2812 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2813 {
2814 	if (num_tc > TC_MAX_QUEUE)
2815 		return -EINVAL;
2816 
2817 #ifdef CONFIG_XPS
2818 	netif_reset_xps_queues_gt(dev, 0);
2819 #endif
2820 	netdev_unbind_all_sb_channels(dev);
2821 
2822 	dev->num_tc = num_tc;
2823 	return 0;
2824 }
2825 EXPORT_SYMBOL(netdev_set_num_tc);
2826 
2827 void netdev_unbind_sb_channel(struct net_device *dev,
2828 			      struct net_device *sb_dev)
2829 {
2830 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2831 
2832 #ifdef CONFIG_XPS
2833 	netif_reset_xps_queues_gt(sb_dev, 0);
2834 #endif
2835 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2836 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2837 
2838 	while (txq-- != &dev->_tx[0]) {
2839 		if (txq->sb_dev == sb_dev)
2840 			txq->sb_dev = NULL;
2841 	}
2842 }
2843 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2844 
2845 int netdev_bind_sb_channel_queue(struct net_device *dev,
2846 				 struct net_device *sb_dev,
2847 				 u8 tc, u16 count, u16 offset)
2848 {
2849 	/* Make certain the sb_dev and dev are already configured */
2850 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2851 		return -EINVAL;
2852 
2853 	/* We cannot hand out queues we don't have */
2854 	if ((offset + count) > dev->real_num_tx_queues)
2855 		return -EINVAL;
2856 
2857 	/* Record the mapping */
2858 	sb_dev->tc_to_txq[tc].count = count;
2859 	sb_dev->tc_to_txq[tc].offset = offset;
2860 
2861 	/* Provide a way for Tx queue to find the tc_to_txq map or
2862 	 * XPS map for itself.
2863 	 */
2864 	while (count--)
2865 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2866 
2867 	return 0;
2868 }
2869 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2870 
2871 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2872 {
2873 	/* Do not use a multiqueue device to represent a subordinate channel */
2874 	if (netif_is_multiqueue(dev))
2875 		return -ENODEV;
2876 
2877 	/* We allow channels 1 - 32767 to be used for subordinate channels.
2878 	 * Channel 0 is meant to be "native" mode and used only to represent
2879 	 * the main root device. We allow writing 0 to reset the device back
2880 	 * to normal mode after being used as a subordinate channel.
2881 	 */
2882 	if (channel > S16_MAX)
2883 		return -EINVAL;
2884 
2885 	dev->num_tc = -channel;
2886 
2887 	return 0;
2888 }
2889 EXPORT_SYMBOL(netdev_set_sb_channel);
2890 
2891 /*
2892  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2893  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2894  */
2895 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2896 {
2897 	bool disabling;
2898 	int rc;
2899 
2900 	disabling = txq < dev->real_num_tx_queues;
2901 
2902 	if (txq < 1 || txq > dev->num_tx_queues)
2903 		return -EINVAL;
2904 
2905 	if (dev->reg_state == NETREG_REGISTERED ||
2906 	    dev->reg_state == NETREG_UNREGISTERING) {
2907 		ASSERT_RTNL();
2908 
2909 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2910 						  txq);
2911 		if (rc)
2912 			return rc;
2913 
2914 		if (dev->num_tc)
2915 			netif_setup_tc(dev, txq);
2916 
2917 		dev_qdisc_change_real_num_tx(dev, txq);
2918 
2919 		dev->real_num_tx_queues = txq;
2920 
2921 		if (disabling) {
2922 			synchronize_net();
2923 			qdisc_reset_all_tx_gt(dev, txq);
2924 #ifdef CONFIG_XPS
2925 			netif_reset_xps_queues_gt(dev, txq);
2926 #endif
2927 		}
2928 	} else {
2929 		dev->real_num_tx_queues = txq;
2930 	}
2931 
2932 	return 0;
2933 }
2934 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2935 
2936 #ifdef CONFIG_SYSFS
2937 /**
2938  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2939  *	@dev: Network device
2940  *	@rxq: Actual number of RX queues
2941  *
2942  *	This must be called either with the rtnl_lock held or before
2943  *	registration of the net device.  Returns 0 on success, or a
2944  *	negative error code.  If called before registration, it always
2945  *	succeeds.
2946  */
2947 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2948 {
2949 	int rc;
2950 
2951 	if (rxq < 1 || rxq > dev->num_rx_queues)
2952 		return -EINVAL;
2953 
2954 	if (dev->reg_state == NETREG_REGISTERED) {
2955 		ASSERT_RTNL();
2956 
2957 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2958 						  rxq);
2959 		if (rc)
2960 			return rc;
2961 	}
2962 
2963 	dev->real_num_rx_queues = rxq;
2964 	return 0;
2965 }
2966 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2967 #endif
2968 
2969 /**
2970  *	netif_set_real_num_queues - set actual number of RX and TX queues used
2971  *	@dev: Network device
2972  *	@txq: Actual number of TX queues
2973  *	@rxq: Actual number of RX queues
2974  *
2975  *	Set the real number of both TX and RX queues.
2976  *	Does nothing if the number of queues is already correct.
2977  */
2978 int netif_set_real_num_queues(struct net_device *dev,
2979 			      unsigned int txq, unsigned int rxq)
2980 {
2981 	unsigned int old_rxq = dev->real_num_rx_queues;
2982 	int err;
2983 
2984 	if (txq < 1 || txq > dev->num_tx_queues ||
2985 	    rxq < 1 || rxq > dev->num_rx_queues)
2986 		return -EINVAL;
2987 
2988 	/* Start from increases, so the error path only does decreases -
2989 	 * decreases can't fail.
2990 	 */
2991 	if (rxq > dev->real_num_rx_queues) {
2992 		err = netif_set_real_num_rx_queues(dev, rxq);
2993 		if (err)
2994 			return err;
2995 	}
2996 	if (txq > dev->real_num_tx_queues) {
2997 		err = netif_set_real_num_tx_queues(dev, txq);
2998 		if (err)
2999 			goto undo_rx;
3000 	}
3001 	if (rxq < dev->real_num_rx_queues)
3002 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3003 	if (txq < dev->real_num_tx_queues)
3004 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3005 
3006 	return 0;
3007 undo_rx:
3008 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3009 	return err;
3010 }
3011 EXPORT_SYMBOL(netif_set_real_num_queues);
3012 
3013 /**
3014  * netif_set_tso_max_size() - set the max size of TSO frames supported
3015  * @dev:	netdev to update
3016  * @size:	max skb->len of a TSO frame
3017  *
3018  * Set the limit on the size of TSO super-frames the device can handle.
3019  * Unless explicitly set the stack will assume the value of
3020  * %GSO_LEGACY_MAX_SIZE.
3021  */
3022 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3023 {
3024 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3025 	if (size < READ_ONCE(dev->gso_max_size))
3026 		netif_set_gso_max_size(dev, size);
3027 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3028 		netif_set_gso_ipv4_max_size(dev, size);
3029 }
3030 EXPORT_SYMBOL(netif_set_tso_max_size);
3031 
3032 /**
3033  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3034  * @dev:	netdev to update
3035  * @segs:	max number of TCP segments
3036  *
3037  * Set the limit on the number of TCP segments the device can generate from
3038  * a single TSO super-frame.
3039  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3040  */
3041 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3042 {
3043 	dev->tso_max_segs = segs;
3044 	if (segs < READ_ONCE(dev->gso_max_segs))
3045 		netif_set_gso_max_segs(dev, segs);
3046 }
3047 EXPORT_SYMBOL(netif_set_tso_max_segs);
3048 
3049 /**
3050  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3051  * @to:		netdev to update
3052  * @from:	netdev from which to copy the limits
3053  */
3054 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3055 {
3056 	netif_set_tso_max_size(to, from->tso_max_size);
3057 	netif_set_tso_max_segs(to, from->tso_max_segs);
3058 }
3059 EXPORT_SYMBOL(netif_inherit_tso_max);
3060 
3061 /**
3062  * netif_get_num_default_rss_queues - default number of RSS queues
3063  *
3064  * Default value is the number of physical cores if there are only 1 or 2, or
3065  * divided by 2 if there are more.
3066  */
3067 int netif_get_num_default_rss_queues(void)
3068 {
3069 	cpumask_var_t cpus;
3070 	int cpu, count = 0;
3071 
3072 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3073 		return 1;
3074 
3075 	cpumask_copy(cpus, cpu_online_mask);
3076 	for_each_cpu(cpu, cpus) {
3077 		++count;
3078 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3079 	}
3080 	free_cpumask_var(cpus);
3081 
3082 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3083 }
3084 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3085 
3086 static void __netif_reschedule(struct Qdisc *q)
3087 {
3088 	struct softnet_data *sd;
3089 	unsigned long flags;
3090 
3091 	local_irq_save(flags);
3092 	sd = this_cpu_ptr(&softnet_data);
3093 	q->next_sched = NULL;
3094 	*sd->output_queue_tailp = q;
3095 	sd->output_queue_tailp = &q->next_sched;
3096 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3097 	local_irq_restore(flags);
3098 }
3099 
3100 void __netif_schedule(struct Qdisc *q)
3101 {
3102 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3103 		__netif_reschedule(q);
3104 }
3105 EXPORT_SYMBOL(__netif_schedule);
3106 
3107 struct dev_kfree_skb_cb {
3108 	enum skb_drop_reason reason;
3109 };
3110 
3111 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3112 {
3113 	return (struct dev_kfree_skb_cb *)skb->cb;
3114 }
3115 
3116 void netif_schedule_queue(struct netdev_queue *txq)
3117 {
3118 	rcu_read_lock();
3119 	if (!netif_xmit_stopped(txq)) {
3120 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3121 
3122 		__netif_schedule(q);
3123 	}
3124 	rcu_read_unlock();
3125 }
3126 EXPORT_SYMBOL(netif_schedule_queue);
3127 
3128 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3129 {
3130 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3131 		struct Qdisc *q;
3132 
3133 		rcu_read_lock();
3134 		q = rcu_dereference(dev_queue->qdisc);
3135 		__netif_schedule(q);
3136 		rcu_read_unlock();
3137 	}
3138 }
3139 EXPORT_SYMBOL(netif_tx_wake_queue);
3140 
3141 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3142 {
3143 	unsigned long flags;
3144 
3145 	if (unlikely(!skb))
3146 		return;
3147 
3148 	if (likely(refcount_read(&skb->users) == 1)) {
3149 		smp_rmb();
3150 		refcount_set(&skb->users, 0);
3151 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3152 		return;
3153 	}
3154 	get_kfree_skb_cb(skb)->reason = reason;
3155 	local_irq_save(flags);
3156 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3157 	__this_cpu_write(softnet_data.completion_queue, skb);
3158 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3159 	local_irq_restore(flags);
3160 }
3161 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3162 
3163 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3164 {
3165 	if (in_hardirq() || irqs_disabled())
3166 		dev_kfree_skb_irq_reason(skb, reason);
3167 	else
3168 		kfree_skb_reason(skb, reason);
3169 }
3170 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3171 
3172 
3173 /**
3174  * netif_device_detach - mark device as removed
3175  * @dev: network device
3176  *
3177  * Mark device as removed from system and therefore no longer available.
3178  */
3179 void netif_device_detach(struct net_device *dev)
3180 {
3181 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3182 	    netif_running(dev)) {
3183 		netif_tx_stop_all_queues(dev);
3184 	}
3185 }
3186 EXPORT_SYMBOL(netif_device_detach);
3187 
3188 /**
3189  * netif_device_attach - mark device as attached
3190  * @dev: network device
3191  *
3192  * Mark device as attached from system and restart if needed.
3193  */
3194 void netif_device_attach(struct net_device *dev)
3195 {
3196 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3197 	    netif_running(dev)) {
3198 		netif_tx_wake_all_queues(dev);
3199 		__netdev_watchdog_up(dev);
3200 	}
3201 }
3202 EXPORT_SYMBOL(netif_device_attach);
3203 
3204 /*
3205  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3206  * to be used as a distribution range.
3207  */
3208 static u16 skb_tx_hash(const struct net_device *dev,
3209 		       const struct net_device *sb_dev,
3210 		       struct sk_buff *skb)
3211 {
3212 	u32 hash;
3213 	u16 qoffset = 0;
3214 	u16 qcount = dev->real_num_tx_queues;
3215 
3216 	if (dev->num_tc) {
3217 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3218 
3219 		qoffset = sb_dev->tc_to_txq[tc].offset;
3220 		qcount = sb_dev->tc_to_txq[tc].count;
3221 		if (unlikely(!qcount)) {
3222 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3223 					     sb_dev->name, qoffset, tc);
3224 			qoffset = 0;
3225 			qcount = dev->real_num_tx_queues;
3226 		}
3227 	}
3228 
3229 	if (skb_rx_queue_recorded(skb)) {
3230 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3231 		hash = skb_get_rx_queue(skb);
3232 		if (hash >= qoffset)
3233 			hash -= qoffset;
3234 		while (unlikely(hash >= qcount))
3235 			hash -= qcount;
3236 		return hash + qoffset;
3237 	}
3238 
3239 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3240 }
3241 
3242 void skb_warn_bad_offload(const struct sk_buff *skb)
3243 {
3244 	static const netdev_features_t null_features;
3245 	struct net_device *dev = skb->dev;
3246 	const char *name = "";
3247 
3248 	if (!net_ratelimit())
3249 		return;
3250 
3251 	if (dev) {
3252 		if (dev->dev.parent)
3253 			name = dev_driver_string(dev->dev.parent);
3254 		else
3255 			name = netdev_name(dev);
3256 	}
3257 	skb_dump(KERN_WARNING, skb, false);
3258 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3259 	     name, dev ? &dev->features : &null_features,
3260 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3261 }
3262 
3263 /*
3264  * Invalidate hardware checksum when packet is to be mangled, and
3265  * complete checksum manually on outgoing path.
3266  */
3267 int skb_checksum_help(struct sk_buff *skb)
3268 {
3269 	__wsum csum;
3270 	int ret = 0, offset;
3271 
3272 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3273 		goto out_set_summed;
3274 
3275 	if (unlikely(skb_is_gso(skb))) {
3276 		skb_warn_bad_offload(skb);
3277 		return -EINVAL;
3278 	}
3279 
3280 	/* Before computing a checksum, we should make sure no frag could
3281 	 * be modified by an external entity : checksum could be wrong.
3282 	 */
3283 	if (skb_has_shared_frag(skb)) {
3284 		ret = __skb_linearize(skb);
3285 		if (ret)
3286 			goto out;
3287 	}
3288 
3289 	offset = skb_checksum_start_offset(skb);
3290 	ret = -EINVAL;
3291 	if (unlikely(offset >= skb_headlen(skb))) {
3292 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3293 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3294 			  offset, skb_headlen(skb));
3295 		goto out;
3296 	}
3297 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3298 
3299 	offset += skb->csum_offset;
3300 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3301 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3302 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3303 			  offset + sizeof(__sum16), skb_headlen(skb));
3304 		goto out;
3305 	}
3306 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3307 	if (ret)
3308 		goto out;
3309 
3310 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3311 out_set_summed:
3312 	skb->ip_summed = CHECKSUM_NONE;
3313 out:
3314 	return ret;
3315 }
3316 EXPORT_SYMBOL(skb_checksum_help);
3317 
3318 int skb_crc32c_csum_help(struct sk_buff *skb)
3319 {
3320 	__le32 crc32c_csum;
3321 	int ret = 0, offset, start;
3322 
3323 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3324 		goto out;
3325 
3326 	if (unlikely(skb_is_gso(skb)))
3327 		goto out;
3328 
3329 	/* Before computing a checksum, we should make sure no frag could
3330 	 * be modified by an external entity : checksum could be wrong.
3331 	 */
3332 	if (unlikely(skb_has_shared_frag(skb))) {
3333 		ret = __skb_linearize(skb);
3334 		if (ret)
3335 			goto out;
3336 	}
3337 	start = skb_checksum_start_offset(skb);
3338 	offset = start + offsetof(struct sctphdr, checksum);
3339 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3340 		ret = -EINVAL;
3341 		goto out;
3342 	}
3343 
3344 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3345 	if (ret)
3346 		goto out;
3347 
3348 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3349 						  skb->len - start, ~(__u32)0,
3350 						  crc32c_csum_stub));
3351 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3352 	skb_reset_csum_not_inet(skb);
3353 out:
3354 	return ret;
3355 }
3356 
3357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3358 {
3359 	__be16 type = skb->protocol;
3360 
3361 	/* Tunnel gso handlers can set protocol to ethernet. */
3362 	if (type == htons(ETH_P_TEB)) {
3363 		struct ethhdr *eth;
3364 
3365 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3366 			return 0;
3367 
3368 		eth = (struct ethhdr *)skb->data;
3369 		type = eth->h_proto;
3370 	}
3371 
3372 	return vlan_get_protocol_and_depth(skb, type, depth);
3373 }
3374 
3375 
3376 /* Take action when hardware reception checksum errors are detected. */
3377 #ifdef CONFIG_BUG
3378 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3379 {
3380 	netdev_err(dev, "hw csum failure\n");
3381 	skb_dump(KERN_ERR, skb, true);
3382 	dump_stack();
3383 }
3384 
3385 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3386 {
3387 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3388 }
3389 EXPORT_SYMBOL(netdev_rx_csum_fault);
3390 #endif
3391 
3392 /* XXX: check that highmem exists at all on the given machine. */
3393 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3394 {
3395 #ifdef CONFIG_HIGHMEM
3396 	int i;
3397 
3398 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3399 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3400 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3401 
3402 			if (PageHighMem(skb_frag_page(frag)))
3403 				return 1;
3404 		}
3405 	}
3406 #endif
3407 	return 0;
3408 }
3409 
3410 /* If MPLS offload request, verify we are testing hardware MPLS features
3411  * instead of standard features for the netdev.
3412  */
3413 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3414 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3415 					   netdev_features_t features,
3416 					   __be16 type)
3417 {
3418 	if (eth_p_mpls(type))
3419 		features &= skb->dev->mpls_features;
3420 
3421 	return features;
3422 }
3423 #else
3424 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3425 					   netdev_features_t features,
3426 					   __be16 type)
3427 {
3428 	return features;
3429 }
3430 #endif
3431 
3432 static netdev_features_t harmonize_features(struct sk_buff *skb,
3433 	netdev_features_t features)
3434 {
3435 	__be16 type;
3436 
3437 	type = skb_network_protocol(skb, NULL);
3438 	features = net_mpls_features(skb, features, type);
3439 
3440 	if (skb->ip_summed != CHECKSUM_NONE &&
3441 	    !can_checksum_protocol(features, type)) {
3442 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3443 	}
3444 	if (illegal_highdma(skb->dev, skb))
3445 		features &= ~NETIF_F_SG;
3446 
3447 	return features;
3448 }
3449 
3450 netdev_features_t passthru_features_check(struct sk_buff *skb,
3451 					  struct net_device *dev,
3452 					  netdev_features_t features)
3453 {
3454 	return features;
3455 }
3456 EXPORT_SYMBOL(passthru_features_check);
3457 
3458 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3459 					     struct net_device *dev,
3460 					     netdev_features_t features)
3461 {
3462 	return vlan_features_check(skb, features);
3463 }
3464 
3465 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3466 					    struct net_device *dev,
3467 					    netdev_features_t features)
3468 {
3469 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3470 
3471 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3472 		return features & ~NETIF_F_GSO_MASK;
3473 
3474 	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3475 		return features & ~NETIF_F_GSO_MASK;
3476 
3477 	if (!skb_shinfo(skb)->gso_type) {
3478 		skb_warn_bad_offload(skb);
3479 		return features & ~NETIF_F_GSO_MASK;
3480 	}
3481 
3482 	/* Support for GSO partial features requires software
3483 	 * intervention before we can actually process the packets
3484 	 * so we need to strip support for any partial features now
3485 	 * and we can pull them back in after we have partially
3486 	 * segmented the frame.
3487 	 */
3488 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3489 		features &= ~dev->gso_partial_features;
3490 
3491 	/* Make sure to clear the IPv4 ID mangling feature if the
3492 	 * IPv4 header has the potential to be fragmented.
3493 	 */
3494 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3495 		struct iphdr *iph = skb->encapsulation ?
3496 				    inner_ip_hdr(skb) : ip_hdr(skb);
3497 
3498 		if (!(iph->frag_off & htons(IP_DF)))
3499 			features &= ~NETIF_F_TSO_MANGLEID;
3500 	}
3501 
3502 	return features;
3503 }
3504 
3505 netdev_features_t netif_skb_features(struct sk_buff *skb)
3506 {
3507 	struct net_device *dev = skb->dev;
3508 	netdev_features_t features = dev->features;
3509 
3510 	if (skb_is_gso(skb))
3511 		features = gso_features_check(skb, dev, features);
3512 
3513 	/* If encapsulation offload request, verify we are testing
3514 	 * hardware encapsulation features instead of standard
3515 	 * features for the netdev
3516 	 */
3517 	if (skb->encapsulation)
3518 		features &= dev->hw_enc_features;
3519 
3520 	if (skb_vlan_tagged(skb))
3521 		features = netdev_intersect_features(features,
3522 						     dev->vlan_features |
3523 						     NETIF_F_HW_VLAN_CTAG_TX |
3524 						     NETIF_F_HW_VLAN_STAG_TX);
3525 
3526 	if (dev->netdev_ops->ndo_features_check)
3527 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3528 								features);
3529 	else
3530 		features &= dflt_features_check(skb, dev, features);
3531 
3532 	return harmonize_features(skb, features);
3533 }
3534 EXPORT_SYMBOL(netif_skb_features);
3535 
3536 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3537 		    struct netdev_queue *txq, bool more)
3538 {
3539 	unsigned int len;
3540 	int rc;
3541 
3542 	if (dev_nit_active(dev))
3543 		dev_queue_xmit_nit(skb, dev);
3544 
3545 	len = skb->len;
3546 	trace_net_dev_start_xmit(skb, dev);
3547 	rc = netdev_start_xmit(skb, dev, txq, more);
3548 	trace_net_dev_xmit(skb, rc, dev, len);
3549 
3550 	return rc;
3551 }
3552 
3553 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3554 				    struct netdev_queue *txq, int *ret)
3555 {
3556 	struct sk_buff *skb = first;
3557 	int rc = NETDEV_TX_OK;
3558 
3559 	while (skb) {
3560 		struct sk_buff *next = skb->next;
3561 
3562 		skb_mark_not_on_list(skb);
3563 		rc = xmit_one(skb, dev, txq, next != NULL);
3564 		if (unlikely(!dev_xmit_complete(rc))) {
3565 			skb->next = next;
3566 			goto out;
3567 		}
3568 
3569 		skb = next;
3570 		if (netif_tx_queue_stopped(txq) && skb) {
3571 			rc = NETDEV_TX_BUSY;
3572 			break;
3573 		}
3574 	}
3575 
3576 out:
3577 	*ret = rc;
3578 	return skb;
3579 }
3580 
3581 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3582 					  netdev_features_t features)
3583 {
3584 	if (skb_vlan_tag_present(skb) &&
3585 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3586 		skb = __vlan_hwaccel_push_inside(skb);
3587 	return skb;
3588 }
3589 
3590 int skb_csum_hwoffload_help(struct sk_buff *skb,
3591 			    const netdev_features_t features)
3592 {
3593 	if (unlikely(skb_csum_is_sctp(skb)))
3594 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3595 			skb_crc32c_csum_help(skb);
3596 
3597 	if (features & NETIF_F_HW_CSUM)
3598 		return 0;
3599 
3600 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3601 		switch (skb->csum_offset) {
3602 		case offsetof(struct tcphdr, check):
3603 		case offsetof(struct udphdr, check):
3604 			return 0;
3605 		}
3606 	}
3607 
3608 	return skb_checksum_help(skb);
3609 }
3610 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3611 
3612 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3613 {
3614 	netdev_features_t features;
3615 
3616 	features = netif_skb_features(skb);
3617 	skb = validate_xmit_vlan(skb, features);
3618 	if (unlikely(!skb))
3619 		goto out_null;
3620 
3621 	skb = sk_validate_xmit_skb(skb, dev);
3622 	if (unlikely(!skb))
3623 		goto out_null;
3624 
3625 	if (netif_needs_gso(skb, features)) {
3626 		struct sk_buff *segs;
3627 
3628 		segs = skb_gso_segment(skb, features);
3629 		if (IS_ERR(segs)) {
3630 			goto out_kfree_skb;
3631 		} else if (segs) {
3632 			consume_skb(skb);
3633 			skb = segs;
3634 		}
3635 	} else {
3636 		if (skb_needs_linearize(skb, features) &&
3637 		    __skb_linearize(skb))
3638 			goto out_kfree_skb;
3639 
3640 		/* If packet is not checksummed and device does not
3641 		 * support checksumming for this protocol, complete
3642 		 * checksumming here.
3643 		 */
3644 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3645 			if (skb->encapsulation)
3646 				skb_set_inner_transport_header(skb,
3647 							       skb_checksum_start_offset(skb));
3648 			else
3649 				skb_set_transport_header(skb,
3650 							 skb_checksum_start_offset(skb));
3651 			if (skb_csum_hwoffload_help(skb, features))
3652 				goto out_kfree_skb;
3653 		}
3654 	}
3655 
3656 	skb = validate_xmit_xfrm(skb, features, again);
3657 
3658 	return skb;
3659 
3660 out_kfree_skb:
3661 	kfree_skb(skb);
3662 out_null:
3663 	dev_core_stats_tx_dropped_inc(dev);
3664 	return NULL;
3665 }
3666 
3667 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3668 {
3669 	struct sk_buff *next, *head = NULL, *tail;
3670 
3671 	for (; skb != NULL; skb = next) {
3672 		next = skb->next;
3673 		skb_mark_not_on_list(skb);
3674 
3675 		/* in case skb wont be segmented, point to itself */
3676 		skb->prev = skb;
3677 
3678 		skb = validate_xmit_skb(skb, dev, again);
3679 		if (!skb)
3680 			continue;
3681 
3682 		if (!head)
3683 			head = skb;
3684 		else
3685 			tail->next = skb;
3686 		/* If skb was segmented, skb->prev points to
3687 		 * the last segment. If not, it still contains skb.
3688 		 */
3689 		tail = skb->prev;
3690 	}
3691 	return head;
3692 }
3693 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3694 
3695 static void qdisc_pkt_len_init(struct sk_buff *skb)
3696 {
3697 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3698 
3699 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3700 
3701 	/* To get more precise estimation of bytes sent on wire,
3702 	 * we add to pkt_len the headers size of all segments
3703 	 */
3704 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3705 		u16 gso_segs = shinfo->gso_segs;
3706 		unsigned int hdr_len;
3707 
3708 		/* mac layer + network layer */
3709 		hdr_len = skb_transport_offset(skb);
3710 
3711 		/* + transport layer */
3712 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3713 			const struct tcphdr *th;
3714 			struct tcphdr _tcphdr;
3715 
3716 			th = skb_header_pointer(skb, hdr_len,
3717 						sizeof(_tcphdr), &_tcphdr);
3718 			if (likely(th))
3719 				hdr_len += __tcp_hdrlen(th);
3720 		} else {
3721 			struct udphdr _udphdr;
3722 
3723 			if (skb_header_pointer(skb, hdr_len,
3724 					       sizeof(_udphdr), &_udphdr))
3725 				hdr_len += sizeof(struct udphdr);
3726 		}
3727 
3728 		if (shinfo->gso_type & SKB_GSO_DODGY)
3729 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3730 						shinfo->gso_size);
3731 
3732 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3733 	}
3734 }
3735 
3736 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3737 			     struct sk_buff **to_free,
3738 			     struct netdev_queue *txq)
3739 {
3740 	int rc;
3741 
3742 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3743 	if (rc == NET_XMIT_SUCCESS)
3744 		trace_qdisc_enqueue(q, txq, skb);
3745 	return rc;
3746 }
3747 
3748 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3749 				 struct net_device *dev,
3750 				 struct netdev_queue *txq)
3751 {
3752 	spinlock_t *root_lock = qdisc_lock(q);
3753 	struct sk_buff *to_free = NULL;
3754 	bool contended;
3755 	int rc;
3756 
3757 	qdisc_calculate_pkt_len(skb, q);
3758 
3759 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
3760 
3761 	if (q->flags & TCQ_F_NOLOCK) {
3762 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3763 		    qdisc_run_begin(q)) {
3764 			/* Retest nolock_qdisc_is_empty() within the protection
3765 			 * of q->seqlock to protect from racing with requeuing.
3766 			 */
3767 			if (unlikely(!nolock_qdisc_is_empty(q))) {
3768 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3769 				__qdisc_run(q);
3770 				qdisc_run_end(q);
3771 
3772 				goto no_lock_out;
3773 			}
3774 
3775 			qdisc_bstats_cpu_update(q, skb);
3776 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3777 			    !nolock_qdisc_is_empty(q))
3778 				__qdisc_run(q);
3779 
3780 			qdisc_run_end(q);
3781 			return NET_XMIT_SUCCESS;
3782 		}
3783 
3784 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3785 		qdisc_run(q);
3786 
3787 no_lock_out:
3788 		if (unlikely(to_free))
3789 			kfree_skb_list_reason(to_free,
3790 					      tcf_get_drop_reason(to_free));
3791 		return rc;
3792 	}
3793 
3794 	/*
3795 	 * Heuristic to force contended enqueues to serialize on a
3796 	 * separate lock before trying to get qdisc main lock.
3797 	 * This permits qdisc->running owner to get the lock more
3798 	 * often and dequeue packets faster.
3799 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3800 	 * and then other tasks will only enqueue packets. The packets will be
3801 	 * sent after the qdisc owner is scheduled again. To prevent this
3802 	 * scenario the task always serialize on the lock.
3803 	 */
3804 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3805 	if (unlikely(contended))
3806 		spin_lock(&q->busylock);
3807 
3808 	spin_lock(root_lock);
3809 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3810 		__qdisc_drop(skb, &to_free);
3811 		rc = NET_XMIT_DROP;
3812 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3813 		   qdisc_run_begin(q)) {
3814 		/*
3815 		 * This is a work-conserving queue; there are no old skbs
3816 		 * waiting to be sent out; and the qdisc is not running -
3817 		 * xmit the skb directly.
3818 		 */
3819 
3820 		qdisc_bstats_update(q, skb);
3821 
3822 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3823 			if (unlikely(contended)) {
3824 				spin_unlock(&q->busylock);
3825 				contended = false;
3826 			}
3827 			__qdisc_run(q);
3828 		}
3829 
3830 		qdisc_run_end(q);
3831 		rc = NET_XMIT_SUCCESS;
3832 	} else {
3833 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3834 		if (qdisc_run_begin(q)) {
3835 			if (unlikely(contended)) {
3836 				spin_unlock(&q->busylock);
3837 				contended = false;
3838 			}
3839 			__qdisc_run(q);
3840 			qdisc_run_end(q);
3841 		}
3842 	}
3843 	spin_unlock(root_lock);
3844 	if (unlikely(to_free))
3845 		kfree_skb_list_reason(to_free,
3846 				      tcf_get_drop_reason(to_free));
3847 	if (unlikely(contended))
3848 		spin_unlock(&q->busylock);
3849 	return rc;
3850 }
3851 
3852 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3853 static void skb_update_prio(struct sk_buff *skb)
3854 {
3855 	const struct netprio_map *map;
3856 	const struct sock *sk;
3857 	unsigned int prioidx;
3858 
3859 	if (skb->priority)
3860 		return;
3861 	map = rcu_dereference_bh(skb->dev->priomap);
3862 	if (!map)
3863 		return;
3864 	sk = skb_to_full_sk(skb);
3865 	if (!sk)
3866 		return;
3867 
3868 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3869 
3870 	if (prioidx < map->priomap_len)
3871 		skb->priority = map->priomap[prioidx];
3872 }
3873 #else
3874 #define skb_update_prio(skb)
3875 #endif
3876 
3877 /**
3878  *	dev_loopback_xmit - loop back @skb
3879  *	@net: network namespace this loopback is happening in
3880  *	@sk:  sk needed to be a netfilter okfn
3881  *	@skb: buffer to transmit
3882  */
3883 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3884 {
3885 	skb_reset_mac_header(skb);
3886 	__skb_pull(skb, skb_network_offset(skb));
3887 	skb->pkt_type = PACKET_LOOPBACK;
3888 	if (skb->ip_summed == CHECKSUM_NONE)
3889 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3890 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3891 	skb_dst_force(skb);
3892 	netif_rx(skb);
3893 	return 0;
3894 }
3895 EXPORT_SYMBOL(dev_loopback_xmit);
3896 
3897 #ifdef CONFIG_NET_EGRESS
3898 static struct netdev_queue *
3899 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3900 {
3901 	int qm = skb_get_queue_mapping(skb);
3902 
3903 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3904 }
3905 
3906 static bool netdev_xmit_txqueue_skipped(void)
3907 {
3908 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3909 }
3910 
3911 void netdev_xmit_skip_txqueue(bool skip)
3912 {
3913 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3914 }
3915 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3916 #endif /* CONFIG_NET_EGRESS */
3917 
3918 #ifdef CONFIG_NET_XGRESS
3919 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
3920 		  enum skb_drop_reason *drop_reason)
3921 {
3922 	int ret = TC_ACT_UNSPEC;
3923 #ifdef CONFIG_NET_CLS_ACT
3924 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3925 	struct tcf_result res;
3926 
3927 	if (!miniq)
3928 		return ret;
3929 
3930 	tc_skb_cb(skb)->mru = 0;
3931 	tc_skb_cb(skb)->post_ct = false;
3932 	tcf_set_drop_reason(skb, *drop_reason);
3933 
3934 	mini_qdisc_bstats_cpu_update(miniq, skb);
3935 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3936 	/* Only tcf related quirks below. */
3937 	switch (ret) {
3938 	case TC_ACT_SHOT:
3939 		*drop_reason = tcf_get_drop_reason(skb);
3940 		mini_qdisc_qstats_cpu_drop(miniq);
3941 		break;
3942 	case TC_ACT_OK:
3943 	case TC_ACT_RECLASSIFY:
3944 		skb->tc_index = TC_H_MIN(res.classid);
3945 		break;
3946 	}
3947 #endif /* CONFIG_NET_CLS_ACT */
3948 	return ret;
3949 }
3950 
3951 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3952 
3953 void tcx_inc(void)
3954 {
3955 	static_branch_inc(&tcx_needed_key);
3956 }
3957 
3958 void tcx_dec(void)
3959 {
3960 	static_branch_dec(&tcx_needed_key);
3961 }
3962 
3963 static __always_inline enum tcx_action_base
3964 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3965 	const bool needs_mac)
3966 {
3967 	const struct bpf_mprog_fp *fp;
3968 	const struct bpf_prog *prog;
3969 	int ret = TCX_NEXT;
3970 
3971 	if (needs_mac)
3972 		__skb_push(skb, skb->mac_len);
3973 	bpf_mprog_foreach_prog(entry, fp, prog) {
3974 		bpf_compute_data_pointers(skb);
3975 		ret = bpf_prog_run(prog, skb);
3976 		if (ret != TCX_NEXT)
3977 			break;
3978 	}
3979 	if (needs_mac)
3980 		__skb_pull(skb, skb->mac_len);
3981 	return tcx_action_code(skb, ret);
3982 }
3983 
3984 static __always_inline struct sk_buff *
3985 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3986 		   struct net_device *orig_dev, bool *another)
3987 {
3988 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
3989 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
3990 	int sch_ret;
3991 
3992 	if (!entry)
3993 		return skb;
3994 	if (*pt_prev) {
3995 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3996 		*pt_prev = NULL;
3997 	}
3998 
3999 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4000 	tcx_set_ingress(skb, true);
4001 
4002 	if (static_branch_unlikely(&tcx_needed_key)) {
4003 		sch_ret = tcx_run(entry, skb, true);
4004 		if (sch_ret != TC_ACT_UNSPEC)
4005 			goto ingress_verdict;
4006 	}
4007 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4008 ingress_verdict:
4009 	switch (sch_ret) {
4010 	case TC_ACT_REDIRECT:
4011 		/* skb_mac_header check was done by BPF, so we can safely
4012 		 * push the L2 header back before redirecting to another
4013 		 * netdev.
4014 		 */
4015 		__skb_push(skb, skb->mac_len);
4016 		if (skb_do_redirect(skb) == -EAGAIN) {
4017 			__skb_pull(skb, skb->mac_len);
4018 			*another = true;
4019 			break;
4020 		}
4021 		*ret = NET_RX_SUCCESS;
4022 		return NULL;
4023 	case TC_ACT_SHOT:
4024 		kfree_skb_reason(skb, drop_reason);
4025 		*ret = NET_RX_DROP;
4026 		return NULL;
4027 	/* used by tc_run */
4028 	case TC_ACT_STOLEN:
4029 	case TC_ACT_QUEUED:
4030 	case TC_ACT_TRAP:
4031 		consume_skb(skb);
4032 		fallthrough;
4033 	case TC_ACT_CONSUMED:
4034 		*ret = NET_RX_SUCCESS;
4035 		return NULL;
4036 	}
4037 
4038 	return skb;
4039 }
4040 
4041 static __always_inline struct sk_buff *
4042 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4043 {
4044 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4045 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4046 	int sch_ret;
4047 
4048 	if (!entry)
4049 		return skb;
4050 
4051 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4052 	 * already set by the caller.
4053 	 */
4054 	if (static_branch_unlikely(&tcx_needed_key)) {
4055 		sch_ret = tcx_run(entry, skb, false);
4056 		if (sch_ret != TC_ACT_UNSPEC)
4057 			goto egress_verdict;
4058 	}
4059 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4060 egress_verdict:
4061 	switch (sch_ret) {
4062 	case TC_ACT_REDIRECT:
4063 		/* No need to push/pop skb's mac_header here on egress! */
4064 		skb_do_redirect(skb);
4065 		*ret = NET_XMIT_SUCCESS;
4066 		return NULL;
4067 	case TC_ACT_SHOT:
4068 		kfree_skb_reason(skb, drop_reason);
4069 		*ret = NET_XMIT_DROP;
4070 		return NULL;
4071 	/* used by tc_run */
4072 	case TC_ACT_STOLEN:
4073 	case TC_ACT_QUEUED:
4074 	case TC_ACT_TRAP:
4075 		consume_skb(skb);
4076 		fallthrough;
4077 	case TC_ACT_CONSUMED:
4078 		*ret = NET_XMIT_SUCCESS;
4079 		return NULL;
4080 	}
4081 
4082 	return skb;
4083 }
4084 #else
4085 static __always_inline struct sk_buff *
4086 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4087 		   struct net_device *orig_dev, bool *another)
4088 {
4089 	return skb;
4090 }
4091 
4092 static __always_inline struct sk_buff *
4093 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4094 {
4095 	return skb;
4096 }
4097 #endif /* CONFIG_NET_XGRESS */
4098 
4099 #ifdef CONFIG_XPS
4100 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4101 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4102 {
4103 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4104 	struct xps_map *map;
4105 	int queue_index = -1;
4106 
4107 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4108 		return queue_index;
4109 
4110 	tci *= dev_maps->num_tc;
4111 	tci += tc;
4112 
4113 	map = rcu_dereference(dev_maps->attr_map[tci]);
4114 	if (map) {
4115 		if (map->len == 1)
4116 			queue_index = map->queues[0];
4117 		else
4118 			queue_index = map->queues[reciprocal_scale(
4119 						skb_get_hash(skb), map->len)];
4120 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4121 			queue_index = -1;
4122 	}
4123 	return queue_index;
4124 }
4125 #endif
4126 
4127 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4128 			 struct sk_buff *skb)
4129 {
4130 #ifdef CONFIG_XPS
4131 	struct xps_dev_maps *dev_maps;
4132 	struct sock *sk = skb->sk;
4133 	int queue_index = -1;
4134 
4135 	if (!static_key_false(&xps_needed))
4136 		return -1;
4137 
4138 	rcu_read_lock();
4139 	if (!static_key_false(&xps_rxqs_needed))
4140 		goto get_cpus_map;
4141 
4142 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4143 	if (dev_maps) {
4144 		int tci = sk_rx_queue_get(sk);
4145 
4146 		if (tci >= 0)
4147 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4148 							  tci);
4149 	}
4150 
4151 get_cpus_map:
4152 	if (queue_index < 0) {
4153 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4154 		if (dev_maps) {
4155 			unsigned int tci = skb->sender_cpu - 1;
4156 
4157 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4158 							  tci);
4159 		}
4160 	}
4161 	rcu_read_unlock();
4162 
4163 	return queue_index;
4164 #else
4165 	return -1;
4166 #endif
4167 }
4168 
4169 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4170 		     struct net_device *sb_dev)
4171 {
4172 	return 0;
4173 }
4174 EXPORT_SYMBOL(dev_pick_tx_zero);
4175 
4176 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4177 		       struct net_device *sb_dev)
4178 {
4179 	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4180 }
4181 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4182 
4183 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4184 		     struct net_device *sb_dev)
4185 {
4186 	struct sock *sk = skb->sk;
4187 	int queue_index = sk_tx_queue_get(sk);
4188 
4189 	sb_dev = sb_dev ? : dev;
4190 
4191 	if (queue_index < 0 || skb->ooo_okay ||
4192 	    queue_index >= dev->real_num_tx_queues) {
4193 		int new_index = get_xps_queue(dev, sb_dev, skb);
4194 
4195 		if (new_index < 0)
4196 			new_index = skb_tx_hash(dev, sb_dev, skb);
4197 
4198 		if (queue_index != new_index && sk &&
4199 		    sk_fullsock(sk) &&
4200 		    rcu_access_pointer(sk->sk_dst_cache))
4201 			sk_tx_queue_set(sk, new_index);
4202 
4203 		queue_index = new_index;
4204 	}
4205 
4206 	return queue_index;
4207 }
4208 EXPORT_SYMBOL(netdev_pick_tx);
4209 
4210 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4211 					 struct sk_buff *skb,
4212 					 struct net_device *sb_dev)
4213 {
4214 	int queue_index = 0;
4215 
4216 #ifdef CONFIG_XPS
4217 	u32 sender_cpu = skb->sender_cpu - 1;
4218 
4219 	if (sender_cpu >= (u32)NR_CPUS)
4220 		skb->sender_cpu = raw_smp_processor_id() + 1;
4221 #endif
4222 
4223 	if (dev->real_num_tx_queues != 1) {
4224 		const struct net_device_ops *ops = dev->netdev_ops;
4225 
4226 		if (ops->ndo_select_queue)
4227 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4228 		else
4229 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4230 
4231 		queue_index = netdev_cap_txqueue(dev, queue_index);
4232 	}
4233 
4234 	skb_set_queue_mapping(skb, queue_index);
4235 	return netdev_get_tx_queue(dev, queue_index);
4236 }
4237 
4238 /**
4239  * __dev_queue_xmit() - transmit a buffer
4240  * @skb:	buffer to transmit
4241  * @sb_dev:	suboordinate device used for L2 forwarding offload
4242  *
4243  * Queue a buffer for transmission to a network device. The caller must
4244  * have set the device and priority and built the buffer before calling
4245  * this function. The function can be called from an interrupt.
4246  *
4247  * When calling this method, interrupts MUST be enabled. This is because
4248  * the BH enable code must have IRQs enabled so that it will not deadlock.
4249  *
4250  * Regardless of the return value, the skb is consumed, so it is currently
4251  * difficult to retry a send to this method. (You can bump the ref count
4252  * before sending to hold a reference for retry if you are careful.)
4253  *
4254  * Return:
4255  * * 0				- buffer successfully transmitted
4256  * * positive qdisc return code	- NET_XMIT_DROP etc.
4257  * * negative errno		- other errors
4258  */
4259 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4260 {
4261 	struct net_device *dev = skb->dev;
4262 	struct netdev_queue *txq = NULL;
4263 	struct Qdisc *q;
4264 	int rc = -ENOMEM;
4265 	bool again = false;
4266 
4267 	skb_reset_mac_header(skb);
4268 	skb_assert_len(skb);
4269 
4270 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4271 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4272 
4273 	/* Disable soft irqs for various locks below. Also
4274 	 * stops preemption for RCU.
4275 	 */
4276 	rcu_read_lock_bh();
4277 
4278 	skb_update_prio(skb);
4279 
4280 	qdisc_pkt_len_init(skb);
4281 	tcx_set_ingress(skb, false);
4282 #ifdef CONFIG_NET_EGRESS
4283 	if (static_branch_unlikely(&egress_needed_key)) {
4284 		if (nf_hook_egress_active()) {
4285 			skb = nf_hook_egress(skb, &rc, dev);
4286 			if (!skb)
4287 				goto out;
4288 		}
4289 
4290 		netdev_xmit_skip_txqueue(false);
4291 
4292 		nf_skip_egress(skb, true);
4293 		skb = sch_handle_egress(skb, &rc, dev);
4294 		if (!skb)
4295 			goto out;
4296 		nf_skip_egress(skb, false);
4297 
4298 		if (netdev_xmit_txqueue_skipped())
4299 			txq = netdev_tx_queue_mapping(dev, skb);
4300 	}
4301 #endif
4302 	/* If device/qdisc don't need skb->dst, release it right now while
4303 	 * its hot in this cpu cache.
4304 	 */
4305 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4306 		skb_dst_drop(skb);
4307 	else
4308 		skb_dst_force(skb);
4309 
4310 	if (!txq)
4311 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4312 
4313 	q = rcu_dereference_bh(txq->qdisc);
4314 
4315 	trace_net_dev_queue(skb);
4316 	if (q->enqueue) {
4317 		rc = __dev_xmit_skb(skb, q, dev, txq);
4318 		goto out;
4319 	}
4320 
4321 	/* The device has no queue. Common case for software devices:
4322 	 * loopback, all the sorts of tunnels...
4323 
4324 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4325 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4326 	 * counters.)
4327 	 * However, it is possible, that they rely on protection
4328 	 * made by us here.
4329 
4330 	 * Check this and shot the lock. It is not prone from deadlocks.
4331 	 *Either shot noqueue qdisc, it is even simpler 8)
4332 	 */
4333 	if (dev->flags & IFF_UP) {
4334 		int cpu = smp_processor_id(); /* ok because BHs are off */
4335 
4336 		/* Other cpus might concurrently change txq->xmit_lock_owner
4337 		 * to -1 or to their cpu id, but not to our id.
4338 		 */
4339 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4340 			if (dev_xmit_recursion())
4341 				goto recursion_alert;
4342 
4343 			skb = validate_xmit_skb(skb, dev, &again);
4344 			if (!skb)
4345 				goto out;
4346 
4347 			HARD_TX_LOCK(dev, txq, cpu);
4348 
4349 			if (!netif_xmit_stopped(txq)) {
4350 				dev_xmit_recursion_inc();
4351 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4352 				dev_xmit_recursion_dec();
4353 				if (dev_xmit_complete(rc)) {
4354 					HARD_TX_UNLOCK(dev, txq);
4355 					goto out;
4356 				}
4357 			}
4358 			HARD_TX_UNLOCK(dev, txq);
4359 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4360 					     dev->name);
4361 		} else {
4362 			/* Recursion is detected! It is possible,
4363 			 * unfortunately
4364 			 */
4365 recursion_alert:
4366 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4367 					     dev->name);
4368 		}
4369 	}
4370 
4371 	rc = -ENETDOWN;
4372 	rcu_read_unlock_bh();
4373 
4374 	dev_core_stats_tx_dropped_inc(dev);
4375 	kfree_skb_list(skb);
4376 	return rc;
4377 out:
4378 	rcu_read_unlock_bh();
4379 	return rc;
4380 }
4381 EXPORT_SYMBOL(__dev_queue_xmit);
4382 
4383 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4384 {
4385 	struct net_device *dev = skb->dev;
4386 	struct sk_buff *orig_skb = skb;
4387 	struct netdev_queue *txq;
4388 	int ret = NETDEV_TX_BUSY;
4389 	bool again = false;
4390 
4391 	if (unlikely(!netif_running(dev) ||
4392 		     !netif_carrier_ok(dev)))
4393 		goto drop;
4394 
4395 	skb = validate_xmit_skb_list(skb, dev, &again);
4396 	if (skb != orig_skb)
4397 		goto drop;
4398 
4399 	skb_set_queue_mapping(skb, queue_id);
4400 	txq = skb_get_tx_queue(dev, skb);
4401 
4402 	local_bh_disable();
4403 
4404 	dev_xmit_recursion_inc();
4405 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4406 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4407 		ret = netdev_start_xmit(skb, dev, txq, false);
4408 	HARD_TX_UNLOCK(dev, txq);
4409 	dev_xmit_recursion_dec();
4410 
4411 	local_bh_enable();
4412 	return ret;
4413 drop:
4414 	dev_core_stats_tx_dropped_inc(dev);
4415 	kfree_skb_list(skb);
4416 	return NET_XMIT_DROP;
4417 }
4418 EXPORT_SYMBOL(__dev_direct_xmit);
4419 
4420 /*************************************************************************
4421  *			Receiver routines
4422  *************************************************************************/
4423 
4424 int netdev_max_backlog __read_mostly = 1000;
4425 EXPORT_SYMBOL(netdev_max_backlog);
4426 
4427 int netdev_tstamp_prequeue __read_mostly = 1;
4428 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4429 int netdev_budget __read_mostly = 300;
4430 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4431 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4432 int weight_p __read_mostly = 64;           /* old backlog weight */
4433 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4434 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4435 int dev_rx_weight __read_mostly = 64;
4436 int dev_tx_weight __read_mostly = 64;
4437 
4438 /* Called with irq disabled */
4439 static inline void ____napi_schedule(struct softnet_data *sd,
4440 				     struct napi_struct *napi)
4441 {
4442 	struct task_struct *thread;
4443 
4444 	lockdep_assert_irqs_disabled();
4445 
4446 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4447 		/* Paired with smp_mb__before_atomic() in
4448 		 * napi_enable()/dev_set_threaded().
4449 		 * Use READ_ONCE() to guarantee a complete
4450 		 * read on napi->thread. Only call
4451 		 * wake_up_process() when it's not NULL.
4452 		 */
4453 		thread = READ_ONCE(napi->thread);
4454 		if (thread) {
4455 			/* Avoid doing set_bit() if the thread is in
4456 			 * INTERRUPTIBLE state, cause napi_thread_wait()
4457 			 * makes sure to proceed with napi polling
4458 			 * if the thread is explicitly woken from here.
4459 			 */
4460 			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4461 				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4462 			wake_up_process(thread);
4463 			return;
4464 		}
4465 	}
4466 
4467 	list_add_tail(&napi->poll_list, &sd->poll_list);
4468 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4469 	/* If not called from net_rx_action()
4470 	 * we have to raise NET_RX_SOFTIRQ.
4471 	 */
4472 	if (!sd->in_net_rx_action)
4473 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4474 }
4475 
4476 #ifdef CONFIG_RPS
4477 
4478 /* One global table that all flow-based protocols share. */
4479 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4480 EXPORT_SYMBOL(rps_sock_flow_table);
4481 u32 rps_cpu_mask __read_mostly;
4482 EXPORT_SYMBOL(rps_cpu_mask);
4483 
4484 struct static_key_false rps_needed __read_mostly;
4485 EXPORT_SYMBOL(rps_needed);
4486 struct static_key_false rfs_needed __read_mostly;
4487 EXPORT_SYMBOL(rfs_needed);
4488 
4489 static struct rps_dev_flow *
4490 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4491 	    struct rps_dev_flow *rflow, u16 next_cpu)
4492 {
4493 	if (next_cpu < nr_cpu_ids) {
4494 #ifdef CONFIG_RFS_ACCEL
4495 		struct netdev_rx_queue *rxqueue;
4496 		struct rps_dev_flow_table *flow_table;
4497 		struct rps_dev_flow *old_rflow;
4498 		u32 flow_id;
4499 		u16 rxq_index;
4500 		int rc;
4501 
4502 		/* Should we steer this flow to a different hardware queue? */
4503 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4504 		    !(dev->features & NETIF_F_NTUPLE))
4505 			goto out;
4506 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4507 		if (rxq_index == skb_get_rx_queue(skb))
4508 			goto out;
4509 
4510 		rxqueue = dev->_rx + rxq_index;
4511 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4512 		if (!flow_table)
4513 			goto out;
4514 		flow_id = skb_get_hash(skb) & flow_table->mask;
4515 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4516 							rxq_index, flow_id);
4517 		if (rc < 0)
4518 			goto out;
4519 		old_rflow = rflow;
4520 		rflow = &flow_table->flows[flow_id];
4521 		rflow->filter = rc;
4522 		if (old_rflow->filter == rflow->filter)
4523 			old_rflow->filter = RPS_NO_FILTER;
4524 	out:
4525 #endif
4526 		rflow->last_qtail =
4527 			per_cpu(softnet_data, next_cpu).input_queue_head;
4528 	}
4529 
4530 	rflow->cpu = next_cpu;
4531 	return rflow;
4532 }
4533 
4534 /*
4535  * get_rps_cpu is called from netif_receive_skb and returns the target
4536  * CPU from the RPS map of the receiving queue for a given skb.
4537  * rcu_read_lock must be held on entry.
4538  */
4539 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4540 		       struct rps_dev_flow **rflowp)
4541 {
4542 	const struct rps_sock_flow_table *sock_flow_table;
4543 	struct netdev_rx_queue *rxqueue = dev->_rx;
4544 	struct rps_dev_flow_table *flow_table;
4545 	struct rps_map *map;
4546 	int cpu = -1;
4547 	u32 tcpu;
4548 	u32 hash;
4549 
4550 	if (skb_rx_queue_recorded(skb)) {
4551 		u16 index = skb_get_rx_queue(skb);
4552 
4553 		if (unlikely(index >= dev->real_num_rx_queues)) {
4554 			WARN_ONCE(dev->real_num_rx_queues > 1,
4555 				  "%s received packet on queue %u, but number "
4556 				  "of RX queues is %u\n",
4557 				  dev->name, index, dev->real_num_rx_queues);
4558 			goto done;
4559 		}
4560 		rxqueue += index;
4561 	}
4562 
4563 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4564 
4565 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4566 	map = rcu_dereference(rxqueue->rps_map);
4567 	if (!flow_table && !map)
4568 		goto done;
4569 
4570 	skb_reset_network_header(skb);
4571 	hash = skb_get_hash(skb);
4572 	if (!hash)
4573 		goto done;
4574 
4575 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
4576 	if (flow_table && sock_flow_table) {
4577 		struct rps_dev_flow *rflow;
4578 		u32 next_cpu;
4579 		u32 ident;
4580 
4581 		/* First check into global flow table if there is a match.
4582 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4583 		 */
4584 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4585 		if ((ident ^ hash) & ~rps_cpu_mask)
4586 			goto try_rps;
4587 
4588 		next_cpu = ident & rps_cpu_mask;
4589 
4590 		/* OK, now we know there is a match,
4591 		 * we can look at the local (per receive queue) flow table
4592 		 */
4593 		rflow = &flow_table->flows[hash & flow_table->mask];
4594 		tcpu = rflow->cpu;
4595 
4596 		/*
4597 		 * If the desired CPU (where last recvmsg was done) is
4598 		 * different from current CPU (one in the rx-queue flow
4599 		 * table entry), switch if one of the following holds:
4600 		 *   - Current CPU is unset (>= nr_cpu_ids).
4601 		 *   - Current CPU is offline.
4602 		 *   - The current CPU's queue tail has advanced beyond the
4603 		 *     last packet that was enqueued using this table entry.
4604 		 *     This guarantees that all previous packets for the flow
4605 		 *     have been dequeued, thus preserving in order delivery.
4606 		 */
4607 		if (unlikely(tcpu != next_cpu) &&
4608 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4609 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4610 		      rflow->last_qtail)) >= 0)) {
4611 			tcpu = next_cpu;
4612 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4613 		}
4614 
4615 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4616 			*rflowp = rflow;
4617 			cpu = tcpu;
4618 			goto done;
4619 		}
4620 	}
4621 
4622 try_rps:
4623 
4624 	if (map) {
4625 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4626 		if (cpu_online(tcpu)) {
4627 			cpu = tcpu;
4628 			goto done;
4629 		}
4630 	}
4631 
4632 done:
4633 	return cpu;
4634 }
4635 
4636 #ifdef CONFIG_RFS_ACCEL
4637 
4638 /**
4639  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4640  * @dev: Device on which the filter was set
4641  * @rxq_index: RX queue index
4642  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4643  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4644  *
4645  * Drivers that implement ndo_rx_flow_steer() should periodically call
4646  * this function for each installed filter and remove the filters for
4647  * which it returns %true.
4648  */
4649 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4650 			 u32 flow_id, u16 filter_id)
4651 {
4652 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4653 	struct rps_dev_flow_table *flow_table;
4654 	struct rps_dev_flow *rflow;
4655 	bool expire = true;
4656 	unsigned int cpu;
4657 
4658 	rcu_read_lock();
4659 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4660 	if (flow_table && flow_id <= flow_table->mask) {
4661 		rflow = &flow_table->flows[flow_id];
4662 		cpu = READ_ONCE(rflow->cpu);
4663 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4664 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4665 			   rflow->last_qtail) <
4666 		     (int)(10 * flow_table->mask)))
4667 			expire = false;
4668 	}
4669 	rcu_read_unlock();
4670 	return expire;
4671 }
4672 EXPORT_SYMBOL(rps_may_expire_flow);
4673 
4674 #endif /* CONFIG_RFS_ACCEL */
4675 
4676 /* Called from hardirq (IPI) context */
4677 static void rps_trigger_softirq(void *data)
4678 {
4679 	struct softnet_data *sd = data;
4680 
4681 	____napi_schedule(sd, &sd->backlog);
4682 	sd->received_rps++;
4683 }
4684 
4685 #endif /* CONFIG_RPS */
4686 
4687 /* Called from hardirq (IPI) context */
4688 static void trigger_rx_softirq(void *data)
4689 {
4690 	struct softnet_data *sd = data;
4691 
4692 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4693 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4694 }
4695 
4696 /*
4697  * After we queued a packet into sd->input_pkt_queue,
4698  * we need to make sure this queue is serviced soon.
4699  *
4700  * - If this is another cpu queue, link it to our rps_ipi_list,
4701  *   and make sure we will process rps_ipi_list from net_rx_action().
4702  *
4703  * - If this is our own queue, NAPI schedule our backlog.
4704  *   Note that this also raises NET_RX_SOFTIRQ.
4705  */
4706 static void napi_schedule_rps(struct softnet_data *sd)
4707 {
4708 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4709 
4710 #ifdef CONFIG_RPS
4711 	if (sd != mysd) {
4712 		sd->rps_ipi_next = mysd->rps_ipi_list;
4713 		mysd->rps_ipi_list = sd;
4714 
4715 		/* If not called from net_rx_action() or napi_threaded_poll()
4716 		 * we have to raise NET_RX_SOFTIRQ.
4717 		 */
4718 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4719 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4720 		return;
4721 	}
4722 #endif /* CONFIG_RPS */
4723 	__napi_schedule_irqoff(&mysd->backlog);
4724 }
4725 
4726 #ifdef CONFIG_NET_FLOW_LIMIT
4727 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4728 #endif
4729 
4730 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4731 {
4732 #ifdef CONFIG_NET_FLOW_LIMIT
4733 	struct sd_flow_limit *fl;
4734 	struct softnet_data *sd;
4735 	unsigned int old_flow, new_flow;
4736 
4737 	if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4738 		return false;
4739 
4740 	sd = this_cpu_ptr(&softnet_data);
4741 
4742 	rcu_read_lock();
4743 	fl = rcu_dereference(sd->flow_limit);
4744 	if (fl) {
4745 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4746 		old_flow = fl->history[fl->history_head];
4747 		fl->history[fl->history_head] = new_flow;
4748 
4749 		fl->history_head++;
4750 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4751 
4752 		if (likely(fl->buckets[old_flow]))
4753 			fl->buckets[old_flow]--;
4754 
4755 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4756 			fl->count++;
4757 			rcu_read_unlock();
4758 			return true;
4759 		}
4760 	}
4761 	rcu_read_unlock();
4762 #endif
4763 	return false;
4764 }
4765 
4766 /*
4767  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4768  * queue (may be a remote CPU queue).
4769  */
4770 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4771 			      unsigned int *qtail)
4772 {
4773 	enum skb_drop_reason reason;
4774 	struct softnet_data *sd;
4775 	unsigned long flags;
4776 	unsigned int qlen;
4777 
4778 	reason = SKB_DROP_REASON_NOT_SPECIFIED;
4779 	sd = &per_cpu(softnet_data, cpu);
4780 
4781 	rps_lock_irqsave(sd, &flags);
4782 	if (!netif_running(skb->dev))
4783 		goto drop;
4784 	qlen = skb_queue_len(&sd->input_pkt_queue);
4785 	if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4786 		if (qlen) {
4787 enqueue:
4788 			__skb_queue_tail(&sd->input_pkt_queue, skb);
4789 			input_queue_tail_incr_save(sd, qtail);
4790 			rps_unlock_irq_restore(sd, &flags);
4791 			return NET_RX_SUCCESS;
4792 		}
4793 
4794 		/* Schedule NAPI for backlog device
4795 		 * We can use non atomic operation since we own the queue lock
4796 		 */
4797 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4798 			napi_schedule_rps(sd);
4799 		goto enqueue;
4800 	}
4801 	reason = SKB_DROP_REASON_CPU_BACKLOG;
4802 
4803 drop:
4804 	sd->dropped++;
4805 	rps_unlock_irq_restore(sd, &flags);
4806 
4807 	dev_core_stats_rx_dropped_inc(skb->dev);
4808 	kfree_skb_reason(skb, reason);
4809 	return NET_RX_DROP;
4810 }
4811 
4812 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4813 {
4814 	struct net_device *dev = skb->dev;
4815 	struct netdev_rx_queue *rxqueue;
4816 
4817 	rxqueue = dev->_rx;
4818 
4819 	if (skb_rx_queue_recorded(skb)) {
4820 		u16 index = skb_get_rx_queue(skb);
4821 
4822 		if (unlikely(index >= dev->real_num_rx_queues)) {
4823 			WARN_ONCE(dev->real_num_rx_queues > 1,
4824 				  "%s received packet on queue %u, but number "
4825 				  "of RX queues is %u\n",
4826 				  dev->name, index, dev->real_num_rx_queues);
4827 
4828 			return rxqueue; /* Return first rxqueue */
4829 		}
4830 		rxqueue += index;
4831 	}
4832 	return rxqueue;
4833 }
4834 
4835 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4836 			     struct bpf_prog *xdp_prog)
4837 {
4838 	void *orig_data, *orig_data_end, *hard_start;
4839 	struct netdev_rx_queue *rxqueue;
4840 	bool orig_bcast, orig_host;
4841 	u32 mac_len, frame_sz;
4842 	__be16 orig_eth_type;
4843 	struct ethhdr *eth;
4844 	u32 metalen, act;
4845 	int off;
4846 
4847 	/* The XDP program wants to see the packet starting at the MAC
4848 	 * header.
4849 	 */
4850 	mac_len = skb->data - skb_mac_header(skb);
4851 	hard_start = skb->data - skb_headroom(skb);
4852 
4853 	/* SKB "head" area always have tailroom for skb_shared_info */
4854 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4855 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4856 
4857 	rxqueue = netif_get_rxqueue(skb);
4858 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4859 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4860 			 skb_headlen(skb) + mac_len, true);
4861 
4862 	orig_data_end = xdp->data_end;
4863 	orig_data = xdp->data;
4864 	eth = (struct ethhdr *)xdp->data;
4865 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4866 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4867 	orig_eth_type = eth->h_proto;
4868 
4869 	act = bpf_prog_run_xdp(xdp_prog, xdp);
4870 
4871 	/* check if bpf_xdp_adjust_head was used */
4872 	off = xdp->data - orig_data;
4873 	if (off) {
4874 		if (off > 0)
4875 			__skb_pull(skb, off);
4876 		else if (off < 0)
4877 			__skb_push(skb, -off);
4878 
4879 		skb->mac_header += off;
4880 		skb_reset_network_header(skb);
4881 	}
4882 
4883 	/* check if bpf_xdp_adjust_tail was used */
4884 	off = xdp->data_end - orig_data_end;
4885 	if (off != 0) {
4886 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4887 		skb->len += off; /* positive on grow, negative on shrink */
4888 	}
4889 
4890 	/* check if XDP changed eth hdr such SKB needs update */
4891 	eth = (struct ethhdr *)xdp->data;
4892 	if ((orig_eth_type != eth->h_proto) ||
4893 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
4894 						  skb->dev->dev_addr)) ||
4895 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4896 		__skb_push(skb, ETH_HLEN);
4897 		skb->pkt_type = PACKET_HOST;
4898 		skb->protocol = eth_type_trans(skb, skb->dev);
4899 	}
4900 
4901 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4902 	 * before calling us again on redirect path. We do not call do_redirect
4903 	 * as we leave that up to the caller.
4904 	 *
4905 	 * Caller is responsible for managing lifetime of skb (i.e. calling
4906 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4907 	 */
4908 	switch (act) {
4909 	case XDP_REDIRECT:
4910 	case XDP_TX:
4911 		__skb_push(skb, mac_len);
4912 		break;
4913 	case XDP_PASS:
4914 		metalen = xdp->data - xdp->data_meta;
4915 		if (metalen)
4916 			skb_metadata_set(skb, metalen);
4917 		break;
4918 	}
4919 
4920 	return act;
4921 }
4922 
4923 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4924 				     struct xdp_buff *xdp,
4925 				     struct bpf_prog *xdp_prog)
4926 {
4927 	u32 act = XDP_DROP;
4928 
4929 	/* Reinjected packets coming from act_mirred or similar should
4930 	 * not get XDP generic processing.
4931 	 */
4932 	if (skb_is_redirected(skb))
4933 		return XDP_PASS;
4934 
4935 	/* XDP packets must be linear and must have sufficient headroom
4936 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4937 	 * native XDP provides, thus we need to do it here as well.
4938 	 */
4939 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4940 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4941 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4942 		int troom = skb->tail + skb->data_len - skb->end;
4943 
4944 		/* In case we have to go down the path and also linearize,
4945 		 * then lets do the pskb_expand_head() work just once here.
4946 		 */
4947 		if (pskb_expand_head(skb,
4948 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4949 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4950 			goto do_drop;
4951 		if (skb_linearize(skb))
4952 			goto do_drop;
4953 	}
4954 
4955 	act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4956 	switch (act) {
4957 	case XDP_REDIRECT:
4958 	case XDP_TX:
4959 	case XDP_PASS:
4960 		break;
4961 	default:
4962 		bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4963 		fallthrough;
4964 	case XDP_ABORTED:
4965 		trace_xdp_exception(skb->dev, xdp_prog, act);
4966 		fallthrough;
4967 	case XDP_DROP:
4968 	do_drop:
4969 		kfree_skb(skb);
4970 		break;
4971 	}
4972 
4973 	return act;
4974 }
4975 
4976 /* When doing generic XDP we have to bypass the qdisc layer and the
4977  * network taps in order to match in-driver-XDP behavior. This also means
4978  * that XDP packets are able to starve other packets going through a qdisc,
4979  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4980  * queues, so they do not have this starvation issue.
4981  */
4982 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4983 {
4984 	struct net_device *dev = skb->dev;
4985 	struct netdev_queue *txq;
4986 	bool free_skb = true;
4987 	int cpu, rc;
4988 
4989 	txq = netdev_core_pick_tx(dev, skb, NULL);
4990 	cpu = smp_processor_id();
4991 	HARD_TX_LOCK(dev, txq, cpu);
4992 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4993 		rc = netdev_start_xmit(skb, dev, txq, 0);
4994 		if (dev_xmit_complete(rc))
4995 			free_skb = false;
4996 	}
4997 	HARD_TX_UNLOCK(dev, txq);
4998 	if (free_skb) {
4999 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5000 		dev_core_stats_tx_dropped_inc(dev);
5001 		kfree_skb(skb);
5002 	}
5003 }
5004 
5005 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5006 
5007 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5008 {
5009 	if (xdp_prog) {
5010 		struct xdp_buff xdp;
5011 		u32 act;
5012 		int err;
5013 
5014 		act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5015 		if (act != XDP_PASS) {
5016 			switch (act) {
5017 			case XDP_REDIRECT:
5018 				err = xdp_do_generic_redirect(skb->dev, skb,
5019 							      &xdp, xdp_prog);
5020 				if (err)
5021 					goto out_redir;
5022 				break;
5023 			case XDP_TX:
5024 				generic_xdp_tx(skb, xdp_prog);
5025 				break;
5026 			}
5027 			return XDP_DROP;
5028 		}
5029 	}
5030 	return XDP_PASS;
5031 out_redir:
5032 	kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5033 	return XDP_DROP;
5034 }
5035 EXPORT_SYMBOL_GPL(do_xdp_generic);
5036 
5037 static int netif_rx_internal(struct sk_buff *skb)
5038 {
5039 	int ret;
5040 
5041 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5042 
5043 	trace_netif_rx(skb);
5044 
5045 #ifdef CONFIG_RPS
5046 	if (static_branch_unlikely(&rps_needed)) {
5047 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5048 		int cpu;
5049 
5050 		rcu_read_lock();
5051 
5052 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5053 		if (cpu < 0)
5054 			cpu = smp_processor_id();
5055 
5056 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5057 
5058 		rcu_read_unlock();
5059 	} else
5060 #endif
5061 	{
5062 		unsigned int qtail;
5063 
5064 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5065 	}
5066 	return ret;
5067 }
5068 
5069 /**
5070  *	__netif_rx	-	Slightly optimized version of netif_rx
5071  *	@skb: buffer to post
5072  *
5073  *	This behaves as netif_rx except that it does not disable bottom halves.
5074  *	As a result this function may only be invoked from the interrupt context
5075  *	(either hard or soft interrupt).
5076  */
5077 int __netif_rx(struct sk_buff *skb)
5078 {
5079 	int ret;
5080 
5081 	lockdep_assert_once(hardirq_count() | softirq_count());
5082 
5083 	trace_netif_rx_entry(skb);
5084 	ret = netif_rx_internal(skb);
5085 	trace_netif_rx_exit(ret);
5086 	return ret;
5087 }
5088 EXPORT_SYMBOL(__netif_rx);
5089 
5090 /**
5091  *	netif_rx	-	post buffer to the network code
5092  *	@skb: buffer to post
5093  *
5094  *	This function receives a packet from a device driver and queues it for
5095  *	the upper (protocol) levels to process via the backlog NAPI device. It
5096  *	always succeeds. The buffer may be dropped during processing for
5097  *	congestion control or by the protocol layers.
5098  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5099  *	driver should use NAPI and GRO.
5100  *	This function can used from interrupt and from process context. The
5101  *	caller from process context must not disable interrupts before invoking
5102  *	this function.
5103  *
5104  *	return values:
5105  *	NET_RX_SUCCESS	(no congestion)
5106  *	NET_RX_DROP     (packet was dropped)
5107  *
5108  */
5109 int netif_rx(struct sk_buff *skb)
5110 {
5111 	bool need_bh_off = !(hardirq_count() | softirq_count());
5112 	int ret;
5113 
5114 	if (need_bh_off)
5115 		local_bh_disable();
5116 	trace_netif_rx_entry(skb);
5117 	ret = netif_rx_internal(skb);
5118 	trace_netif_rx_exit(ret);
5119 	if (need_bh_off)
5120 		local_bh_enable();
5121 	return ret;
5122 }
5123 EXPORT_SYMBOL(netif_rx);
5124 
5125 static __latent_entropy void net_tx_action(struct softirq_action *h)
5126 {
5127 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5128 
5129 	if (sd->completion_queue) {
5130 		struct sk_buff *clist;
5131 
5132 		local_irq_disable();
5133 		clist = sd->completion_queue;
5134 		sd->completion_queue = NULL;
5135 		local_irq_enable();
5136 
5137 		while (clist) {
5138 			struct sk_buff *skb = clist;
5139 
5140 			clist = clist->next;
5141 
5142 			WARN_ON(refcount_read(&skb->users));
5143 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5144 				trace_consume_skb(skb, net_tx_action);
5145 			else
5146 				trace_kfree_skb(skb, net_tx_action,
5147 						get_kfree_skb_cb(skb)->reason);
5148 
5149 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5150 				__kfree_skb(skb);
5151 			else
5152 				__napi_kfree_skb(skb,
5153 						 get_kfree_skb_cb(skb)->reason);
5154 		}
5155 	}
5156 
5157 	if (sd->output_queue) {
5158 		struct Qdisc *head;
5159 
5160 		local_irq_disable();
5161 		head = sd->output_queue;
5162 		sd->output_queue = NULL;
5163 		sd->output_queue_tailp = &sd->output_queue;
5164 		local_irq_enable();
5165 
5166 		rcu_read_lock();
5167 
5168 		while (head) {
5169 			struct Qdisc *q = head;
5170 			spinlock_t *root_lock = NULL;
5171 
5172 			head = head->next_sched;
5173 
5174 			/* We need to make sure head->next_sched is read
5175 			 * before clearing __QDISC_STATE_SCHED
5176 			 */
5177 			smp_mb__before_atomic();
5178 
5179 			if (!(q->flags & TCQ_F_NOLOCK)) {
5180 				root_lock = qdisc_lock(q);
5181 				spin_lock(root_lock);
5182 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5183 						     &q->state))) {
5184 				/* There is a synchronize_net() between
5185 				 * STATE_DEACTIVATED flag being set and
5186 				 * qdisc_reset()/some_qdisc_is_busy() in
5187 				 * dev_deactivate(), so we can safely bail out
5188 				 * early here to avoid data race between
5189 				 * qdisc_deactivate() and some_qdisc_is_busy()
5190 				 * for lockless qdisc.
5191 				 */
5192 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5193 				continue;
5194 			}
5195 
5196 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5197 			qdisc_run(q);
5198 			if (root_lock)
5199 				spin_unlock(root_lock);
5200 		}
5201 
5202 		rcu_read_unlock();
5203 	}
5204 
5205 	xfrm_dev_backlog(sd);
5206 }
5207 
5208 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5209 /* This hook is defined here for ATM LANE */
5210 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5211 			     unsigned char *addr) __read_mostly;
5212 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5213 #endif
5214 
5215 /**
5216  *	netdev_is_rx_handler_busy - check if receive handler is registered
5217  *	@dev: device to check
5218  *
5219  *	Check if a receive handler is already registered for a given device.
5220  *	Return true if there one.
5221  *
5222  *	The caller must hold the rtnl_mutex.
5223  */
5224 bool netdev_is_rx_handler_busy(struct net_device *dev)
5225 {
5226 	ASSERT_RTNL();
5227 	return dev && rtnl_dereference(dev->rx_handler);
5228 }
5229 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5230 
5231 /**
5232  *	netdev_rx_handler_register - register receive handler
5233  *	@dev: device to register a handler for
5234  *	@rx_handler: receive handler to register
5235  *	@rx_handler_data: data pointer that is used by rx handler
5236  *
5237  *	Register a receive handler for a device. This handler will then be
5238  *	called from __netif_receive_skb. A negative errno code is returned
5239  *	on a failure.
5240  *
5241  *	The caller must hold the rtnl_mutex.
5242  *
5243  *	For a general description of rx_handler, see enum rx_handler_result.
5244  */
5245 int netdev_rx_handler_register(struct net_device *dev,
5246 			       rx_handler_func_t *rx_handler,
5247 			       void *rx_handler_data)
5248 {
5249 	if (netdev_is_rx_handler_busy(dev))
5250 		return -EBUSY;
5251 
5252 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5253 		return -EINVAL;
5254 
5255 	/* Note: rx_handler_data must be set before rx_handler */
5256 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5257 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5258 
5259 	return 0;
5260 }
5261 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5262 
5263 /**
5264  *	netdev_rx_handler_unregister - unregister receive handler
5265  *	@dev: device to unregister a handler from
5266  *
5267  *	Unregister a receive handler from a device.
5268  *
5269  *	The caller must hold the rtnl_mutex.
5270  */
5271 void netdev_rx_handler_unregister(struct net_device *dev)
5272 {
5273 
5274 	ASSERT_RTNL();
5275 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5276 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5277 	 * section has a guarantee to see a non NULL rx_handler_data
5278 	 * as well.
5279 	 */
5280 	synchronize_net();
5281 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5282 }
5283 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5284 
5285 /*
5286  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5287  * the special handling of PFMEMALLOC skbs.
5288  */
5289 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5290 {
5291 	switch (skb->protocol) {
5292 	case htons(ETH_P_ARP):
5293 	case htons(ETH_P_IP):
5294 	case htons(ETH_P_IPV6):
5295 	case htons(ETH_P_8021Q):
5296 	case htons(ETH_P_8021AD):
5297 		return true;
5298 	default:
5299 		return false;
5300 	}
5301 }
5302 
5303 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5304 			     int *ret, struct net_device *orig_dev)
5305 {
5306 	if (nf_hook_ingress_active(skb)) {
5307 		int ingress_retval;
5308 
5309 		if (*pt_prev) {
5310 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5311 			*pt_prev = NULL;
5312 		}
5313 
5314 		rcu_read_lock();
5315 		ingress_retval = nf_hook_ingress(skb);
5316 		rcu_read_unlock();
5317 		return ingress_retval;
5318 	}
5319 	return 0;
5320 }
5321 
5322 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5323 				    struct packet_type **ppt_prev)
5324 {
5325 	struct packet_type *ptype, *pt_prev;
5326 	rx_handler_func_t *rx_handler;
5327 	struct sk_buff *skb = *pskb;
5328 	struct net_device *orig_dev;
5329 	bool deliver_exact = false;
5330 	int ret = NET_RX_DROP;
5331 	__be16 type;
5332 
5333 	net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5334 
5335 	trace_netif_receive_skb(skb);
5336 
5337 	orig_dev = skb->dev;
5338 
5339 	skb_reset_network_header(skb);
5340 	if (!skb_transport_header_was_set(skb))
5341 		skb_reset_transport_header(skb);
5342 	skb_reset_mac_len(skb);
5343 
5344 	pt_prev = NULL;
5345 
5346 another_round:
5347 	skb->skb_iif = skb->dev->ifindex;
5348 
5349 	__this_cpu_inc(softnet_data.processed);
5350 
5351 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5352 		int ret2;
5353 
5354 		migrate_disable();
5355 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5356 		migrate_enable();
5357 
5358 		if (ret2 != XDP_PASS) {
5359 			ret = NET_RX_DROP;
5360 			goto out;
5361 		}
5362 	}
5363 
5364 	if (eth_type_vlan(skb->protocol)) {
5365 		skb = skb_vlan_untag(skb);
5366 		if (unlikely(!skb))
5367 			goto out;
5368 	}
5369 
5370 	if (skb_skip_tc_classify(skb))
5371 		goto skip_classify;
5372 
5373 	if (pfmemalloc)
5374 		goto skip_taps;
5375 
5376 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
5377 		if (pt_prev)
5378 			ret = deliver_skb(skb, pt_prev, orig_dev);
5379 		pt_prev = ptype;
5380 	}
5381 
5382 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5383 		if (pt_prev)
5384 			ret = deliver_skb(skb, pt_prev, orig_dev);
5385 		pt_prev = ptype;
5386 	}
5387 
5388 skip_taps:
5389 #ifdef CONFIG_NET_INGRESS
5390 	if (static_branch_unlikely(&ingress_needed_key)) {
5391 		bool another = false;
5392 
5393 		nf_skip_egress(skb, true);
5394 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5395 					 &another);
5396 		if (another)
5397 			goto another_round;
5398 		if (!skb)
5399 			goto out;
5400 
5401 		nf_skip_egress(skb, false);
5402 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5403 			goto out;
5404 	}
5405 #endif
5406 	skb_reset_redirect(skb);
5407 skip_classify:
5408 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5409 		goto drop;
5410 
5411 	if (skb_vlan_tag_present(skb)) {
5412 		if (pt_prev) {
5413 			ret = deliver_skb(skb, pt_prev, orig_dev);
5414 			pt_prev = NULL;
5415 		}
5416 		if (vlan_do_receive(&skb))
5417 			goto another_round;
5418 		else if (unlikely(!skb))
5419 			goto out;
5420 	}
5421 
5422 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5423 	if (rx_handler) {
5424 		if (pt_prev) {
5425 			ret = deliver_skb(skb, pt_prev, orig_dev);
5426 			pt_prev = NULL;
5427 		}
5428 		switch (rx_handler(&skb)) {
5429 		case RX_HANDLER_CONSUMED:
5430 			ret = NET_RX_SUCCESS;
5431 			goto out;
5432 		case RX_HANDLER_ANOTHER:
5433 			goto another_round;
5434 		case RX_HANDLER_EXACT:
5435 			deliver_exact = true;
5436 			break;
5437 		case RX_HANDLER_PASS:
5438 			break;
5439 		default:
5440 			BUG();
5441 		}
5442 	}
5443 
5444 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5445 check_vlan_id:
5446 		if (skb_vlan_tag_get_id(skb)) {
5447 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5448 			 * find vlan device.
5449 			 */
5450 			skb->pkt_type = PACKET_OTHERHOST;
5451 		} else if (eth_type_vlan(skb->protocol)) {
5452 			/* Outer header is 802.1P with vlan 0, inner header is
5453 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5454 			 * not find vlan dev for vlan id 0.
5455 			 */
5456 			__vlan_hwaccel_clear_tag(skb);
5457 			skb = skb_vlan_untag(skb);
5458 			if (unlikely(!skb))
5459 				goto out;
5460 			if (vlan_do_receive(&skb))
5461 				/* After stripping off 802.1P header with vlan 0
5462 				 * vlan dev is found for inner header.
5463 				 */
5464 				goto another_round;
5465 			else if (unlikely(!skb))
5466 				goto out;
5467 			else
5468 				/* We have stripped outer 802.1P vlan 0 header.
5469 				 * But could not find vlan dev.
5470 				 * check again for vlan id to set OTHERHOST.
5471 				 */
5472 				goto check_vlan_id;
5473 		}
5474 		/* Note: we might in the future use prio bits
5475 		 * and set skb->priority like in vlan_do_receive()
5476 		 * For the time being, just ignore Priority Code Point
5477 		 */
5478 		__vlan_hwaccel_clear_tag(skb);
5479 	}
5480 
5481 	type = skb->protocol;
5482 
5483 	/* deliver only exact match when indicated */
5484 	if (likely(!deliver_exact)) {
5485 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5486 				       &ptype_base[ntohs(type) &
5487 						   PTYPE_HASH_MASK]);
5488 	}
5489 
5490 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5491 			       &orig_dev->ptype_specific);
5492 
5493 	if (unlikely(skb->dev != orig_dev)) {
5494 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5495 				       &skb->dev->ptype_specific);
5496 	}
5497 
5498 	if (pt_prev) {
5499 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5500 			goto drop;
5501 		*ppt_prev = pt_prev;
5502 	} else {
5503 drop:
5504 		if (!deliver_exact)
5505 			dev_core_stats_rx_dropped_inc(skb->dev);
5506 		else
5507 			dev_core_stats_rx_nohandler_inc(skb->dev);
5508 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5509 		/* Jamal, now you will not able to escape explaining
5510 		 * me how you were going to use this. :-)
5511 		 */
5512 		ret = NET_RX_DROP;
5513 	}
5514 
5515 out:
5516 	/* The invariant here is that if *ppt_prev is not NULL
5517 	 * then skb should also be non-NULL.
5518 	 *
5519 	 * Apparently *ppt_prev assignment above holds this invariant due to
5520 	 * skb dereferencing near it.
5521 	 */
5522 	*pskb = skb;
5523 	return ret;
5524 }
5525 
5526 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5527 {
5528 	struct net_device *orig_dev = skb->dev;
5529 	struct packet_type *pt_prev = NULL;
5530 	int ret;
5531 
5532 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5533 	if (pt_prev)
5534 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5535 					 skb->dev, pt_prev, orig_dev);
5536 	return ret;
5537 }
5538 
5539 /**
5540  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5541  *	@skb: buffer to process
5542  *
5543  *	More direct receive version of netif_receive_skb().  It should
5544  *	only be used by callers that have a need to skip RPS and Generic XDP.
5545  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5546  *
5547  *	This function may only be called from softirq context and interrupts
5548  *	should be enabled.
5549  *
5550  *	Return values (usually ignored):
5551  *	NET_RX_SUCCESS: no congestion
5552  *	NET_RX_DROP: packet was dropped
5553  */
5554 int netif_receive_skb_core(struct sk_buff *skb)
5555 {
5556 	int ret;
5557 
5558 	rcu_read_lock();
5559 	ret = __netif_receive_skb_one_core(skb, false);
5560 	rcu_read_unlock();
5561 
5562 	return ret;
5563 }
5564 EXPORT_SYMBOL(netif_receive_skb_core);
5565 
5566 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5567 						  struct packet_type *pt_prev,
5568 						  struct net_device *orig_dev)
5569 {
5570 	struct sk_buff *skb, *next;
5571 
5572 	if (!pt_prev)
5573 		return;
5574 	if (list_empty(head))
5575 		return;
5576 	if (pt_prev->list_func != NULL)
5577 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5578 				   ip_list_rcv, head, pt_prev, orig_dev);
5579 	else
5580 		list_for_each_entry_safe(skb, next, head, list) {
5581 			skb_list_del_init(skb);
5582 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5583 		}
5584 }
5585 
5586 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5587 {
5588 	/* Fast-path assumptions:
5589 	 * - There is no RX handler.
5590 	 * - Only one packet_type matches.
5591 	 * If either of these fails, we will end up doing some per-packet
5592 	 * processing in-line, then handling the 'last ptype' for the whole
5593 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5594 	 * because the 'last ptype' must be constant across the sublist, and all
5595 	 * other ptypes are handled per-packet.
5596 	 */
5597 	/* Current (common) ptype of sublist */
5598 	struct packet_type *pt_curr = NULL;
5599 	/* Current (common) orig_dev of sublist */
5600 	struct net_device *od_curr = NULL;
5601 	struct list_head sublist;
5602 	struct sk_buff *skb, *next;
5603 
5604 	INIT_LIST_HEAD(&sublist);
5605 	list_for_each_entry_safe(skb, next, head, list) {
5606 		struct net_device *orig_dev = skb->dev;
5607 		struct packet_type *pt_prev = NULL;
5608 
5609 		skb_list_del_init(skb);
5610 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5611 		if (!pt_prev)
5612 			continue;
5613 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5614 			/* dispatch old sublist */
5615 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5616 			/* start new sublist */
5617 			INIT_LIST_HEAD(&sublist);
5618 			pt_curr = pt_prev;
5619 			od_curr = orig_dev;
5620 		}
5621 		list_add_tail(&skb->list, &sublist);
5622 	}
5623 
5624 	/* dispatch final sublist */
5625 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5626 }
5627 
5628 static int __netif_receive_skb(struct sk_buff *skb)
5629 {
5630 	int ret;
5631 
5632 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5633 		unsigned int noreclaim_flag;
5634 
5635 		/*
5636 		 * PFMEMALLOC skbs are special, they should
5637 		 * - be delivered to SOCK_MEMALLOC sockets only
5638 		 * - stay away from userspace
5639 		 * - have bounded memory usage
5640 		 *
5641 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
5642 		 * context down to all allocation sites.
5643 		 */
5644 		noreclaim_flag = memalloc_noreclaim_save();
5645 		ret = __netif_receive_skb_one_core(skb, true);
5646 		memalloc_noreclaim_restore(noreclaim_flag);
5647 	} else
5648 		ret = __netif_receive_skb_one_core(skb, false);
5649 
5650 	return ret;
5651 }
5652 
5653 static void __netif_receive_skb_list(struct list_head *head)
5654 {
5655 	unsigned long noreclaim_flag = 0;
5656 	struct sk_buff *skb, *next;
5657 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5658 
5659 	list_for_each_entry_safe(skb, next, head, list) {
5660 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5661 			struct list_head sublist;
5662 
5663 			/* Handle the previous sublist */
5664 			list_cut_before(&sublist, head, &skb->list);
5665 			if (!list_empty(&sublist))
5666 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
5667 			pfmemalloc = !pfmemalloc;
5668 			/* See comments in __netif_receive_skb */
5669 			if (pfmemalloc)
5670 				noreclaim_flag = memalloc_noreclaim_save();
5671 			else
5672 				memalloc_noreclaim_restore(noreclaim_flag);
5673 		}
5674 	}
5675 	/* Handle the remaining sublist */
5676 	if (!list_empty(head))
5677 		__netif_receive_skb_list_core(head, pfmemalloc);
5678 	/* Restore pflags */
5679 	if (pfmemalloc)
5680 		memalloc_noreclaim_restore(noreclaim_flag);
5681 }
5682 
5683 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5684 {
5685 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5686 	struct bpf_prog *new = xdp->prog;
5687 	int ret = 0;
5688 
5689 	switch (xdp->command) {
5690 	case XDP_SETUP_PROG:
5691 		rcu_assign_pointer(dev->xdp_prog, new);
5692 		if (old)
5693 			bpf_prog_put(old);
5694 
5695 		if (old && !new) {
5696 			static_branch_dec(&generic_xdp_needed_key);
5697 		} else if (new && !old) {
5698 			static_branch_inc(&generic_xdp_needed_key);
5699 			dev_disable_lro(dev);
5700 			dev_disable_gro_hw(dev);
5701 		}
5702 		break;
5703 
5704 	default:
5705 		ret = -EINVAL;
5706 		break;
5707 	}
5708 
5709 	return ret;
5710 }
5711 
5712 static int netif_receive_skb_internal(struct sk_buff *skb)
5713 {
5714 	int ret;
5715 
5716 	net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5717 
5718 	if (skb_defer_rx_timestamp(skb))
5719 		return NET_RX_SUCCESS;
5720 
5721 	rcu_read_lock();
5722 #ifdef CONFIG_RPS
5723 	if (static_branch_unlikely(&rps_needed)) {
5724 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5725 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5726 
5727 		if (cpu >= 0) {
5728 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5729 			rcu_read_unlock();
5730 			return ret;
5731 		}
5732 	}
5733 #endif
5734 	ret = __netif_receive_skb(skb);
5735 	rcu_read_unlock();
5736 	return ret;
5737 }
5738 
5739 void netif_receive_skb_list_internal(struct list_head *head)
5740 {
5741 	struct sk_buff *skb, *next;
5742 	struct list_head sublist;
5743 
5744 	INIT_LIST_HEAD(&sublist);
5745 	list_for_each_entry_safe(skb, next, head, list) {
5746 		net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5747 		skb_list_del_init(skb);
5748 		if (!skb_defer_rx_timestamp(skb))
5749 			list_add_tail(&skb->list, &sublist);
5750 	}
5751 	list_splice_init(&sublist, head);
5752 
5753 	rcu_read_lock();
5754 #ifdef CONFIG_RPS
5755 	if (static_branch_unlikely(&rps_needed)) {
5756 		list_for_each_entry_safe(skb, next, head, list) {
5757 			struct rps_dev_flow voidflow, *rflow = &voidflow;
5758 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5759 
5760 			if (cpu >= 0) {
5761 				/* Will be handled, remove from list */
5762 				skb_list_del_init(skb);
5763 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5764 			}
5765 		}
5766 	}
5767 #endif
5768 	__netif_receive_skb_list(head);
5769 	rcu_read_unlock();
5770 }
5771 
5772 /**
5773  *	netif_receive_skb - process receive buffer from network
5774  *	@skb: buffer to process
5775  *
5776  *	netif_receive_skb() is the main receive data processing function.
5777  *	It always succeeds. The buffer may be dropped during processing
5778  *	for congestion control or by the protocol layers.
5779  *
5780  *	This function may only be called from softirq context and interrupts
5781  *	should be enabled.
5782  *
5783  *	Return values (usually ignored):
5784  *	NET_RX_SUCCESS: no congestion
5785  *	NET_RX_DROP: packet was dropped
5786  */
5787 int netif_receive_skb(struct sk_buff *skb)
5788 {
5789 	int ret;
5790 
5791 	trace_netif_receive_skb_entry(skb);
5792 
5793 	ret = netif_receive_skb_internal(skb);
5794 	trace_netif_receive_skb_exit(ret);
5795 
5796 	return ret;
5797 }
5798 EXPORT_SYMBOL(netif_receive_skb);
5799 
5800 /**
5801  *	netif_receive_skb_list - process many receive buffers from network
5802  *	@head: list of skbs to process.
5803  *
5804  *	Since return value of netif_receive_skb() is normally ignored, and
5805  *	wouldn't be meaningful for a list, this function returns void.
5806  *
5807  *	This function may only be called from softirq context and interrupts
5808  *	should be enabled.
5809  */
5810 void netif_receive_skb_list(struct list_head *head)
5811 {
5812 	struct sk_buff *skb;
5813 
5814 	if (list_empty(head))
5815 		return;
5816 	if (trace_netif_receive_skb_list_entry_enabled()) {
5817 		list_for_each_entry(skb, head, list)
5818 			trace_netif_receive_skb_list_entry(skb);
5819 	}
5820 	netif_receive_skb_list_internal(head);
5821 	trace_netif_receive_skb_list_exit(0);
5822 }
5823 EXPORT_SYMBOL(netif_receive_skb_list);
5824 
5825 static DEFINE_PER_CPU(struct work_struct, flush_works);
5826 
5827 /* Network device is going away, flush any packets still pending */
5828 static void flush_backlog(struct work_struct *work)
5829 {
5830 	struct sk_buff *skb, *tmp;
5831 	struct softnet_data *sd;
5832 
5833 	local_bh_disable();
5834 	sd = this_cpu_ptr(&softnet_data);
5835 
5836 	rps_lock_irq_disable(sd);
5837 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5838 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5839 			__skb_unlink(skb, &sd->input_pkt_queue);
5840 			dev_kfree_skb_irq(skb);
5841 			input_queue_head_incr(sd);
5842 		}
5843 	}
5844 	rps_unlock_irq_enable(sd);
5845 
5846 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5847 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5848 			__skb_unlink(skb, &sd->process_queue);
5849 			kfree_skb(skb);
5850 			input_queue_head_incr(sd);
5851 		}
5852 	}
5853 	local_bh_enable();
5854 }
5855 
5856 static bool flush_required(int cpu)
5857 {
5858 #if IS_ENABLED(CONFIG_RPS)
5859 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5860 	bool do_flush;
5861 
5862 	rps_lock_irq_disable(sd);
5863 
5864 	/* as insertion into process_queue happens with the rps lock held,
5865 	 * process_queue access may race only with dequeue
5866 	 */
5867 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5868 		   !skb_queue_empty_lockless(&sd->process_queue);
5869 	rps_unlock_irq_enable(sd);
5870 
5871 	return do_flush;
5872 #endif
5873 	/* without RPS we can't safely check input_pkt_queue: during a
5874 	 * concurrent remote skb_queue_splice() we can detect as empty both
5875 	 * input_pkt_queue and process_queue even if the latter could end-up
5876 	 * containing a lot of packets.
5877 	 */
5878 	return true;
5879 }
5880 
5881 static void flush_all_backlogs(void)
5882 {
5883 	static cpumask_t flush_cpus;
5884 	unsigned int cpu;
5885 
5886 	/* since we are under rtnl lock protection we can use static data
5887 	 * for the cpumask and avoid allocating on stack the possibly
5888 	 * large mask
5889 	 */
5890 	ASSERT_RTNL();
5891 
5892 	cpus_read_lock();
5893 
5894 	cpumask_clear(&flush_cpus);
5895 	for_each_online_cpu(cpu) {
5896 		if (flush_required(cpu)) {
5897 			queue_work_on(cpu, system_highpri_wq,
5898 				      per_cpu_ptr(&flush_works, cpu));
5899 			cpumask_set_cpu(cpu, &flush_cpus);
5900 		}
5901 	}
5902 
5903 	/* we can have in flight packet[s] on the cpus we are not flushing,
5904 	 * synchronize_net() in unregister_netdevice_many() will take care of
5905 	 * them
5906 	 */
5907 	for_each_cpu(cpu, &flush_cpus)
5908 		flush_work(per_cpu_ptr(&flush_works, cpu));
5909 
5910 	cpus_read_unlock();
5911 }
5912 
5913 static void net_rps_send_ipi(struct softnet_data *remsd)
5914 {
5915 #ifdef CONFIG_RPS
5916 	while (remsd) {
5917 		struct softnet_data *next = remsd->rps_ipi_next;
5918 
5919 		if (cpu_online(remsd->cpu))
5920 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5921 		remsd = next;
5922 	}
5923 #endif
5924 }
5925 
5926 /*
5927  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5928  * Note: called with local irq disabled, but exits with local irq enabled.
5929  */
5930 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5931 {
5932 #ifdef CONFIG_RPS
5933 	struct softnet_data *remsd = sd->rps_ipi_list;
5934 
5935 	if (remsd) {
5936 		sd->rps_ipi_list = NULL;
5937 
5938 		local_irq_enable();
5939 
5940 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5941 		net_rps_send_ipi(remsd);
5942 	} else
5943 #endif
5944 		local_irq_enable();
5945 }
5946 
5947 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5948 {
5949 #ifdef CONFIG_RPS
5950 	return sd->rps_ipi_list != NULL;
5951 #else
5952 	return false;
5953 #endif
5954 }
5955 
5956 static int process_backlog(struct napi_struct *napi, int quota)
5957 {
5958 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5959 	bool again = true;
5960 	int work = 0;
5961 
5962 	/* Check if we have pending ipi, its better to send them now,
5963 	 * not waiting net_rx_action() end.
5964 	 */
5965 	if (sd_has_rps_ipi_waiting(sd)) {
5966 		local_irq_disable();
5967 		net_rps_action_and_irq_enable(sd);
5968 	}
5969 
5970 	napi->weight = READ_ONCE(dev_rx_weight);
5971 	while (again) {
5972 		struct sk_buff *skb;
5973 
5974 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5975 			rcu_read_lock();
5976 			__netif_receive_skb(skb);
5977 			rcu_read_unlock();
5978 			input_queue_head_incr(sd);
5979 			if (++work >= quota)
5980 				return work;
5981 
5982 		}
5983 
5984 		rps_lock_irq_disable(sd);
5985 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5986 			/*
5987 			 * Inline a custom version of __napi_complete().
5988 			 * only current cpu owns and manipulates this napi,
5989 			 * and NAPI_STATE_SCHED is the only possible flag set
5990 			 * on backlog.
5991 			 * We can use a plain write instead of clear_bit(),
5992 			 * and we dont need an smp_mb() memory barrier.
5993 			 */
5994 			napi->state = 0;
5995 			again = false;
5996 		} else {
5997 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5998 						   &sd->process_queue);
5999 		}
6000 		rps_unlock_irq_enable(sd);
6001 	}
6002 
6003 	return work;
6004 }
6005 
6006 /**
6007  * __napi_schedule - schedule for receive
6008  * @n: entry to schedule
6009  *
6010  * The entry's receive function will be scheduled to run.
6011  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6012  */
6013 void __napi_schedule(struct napi_struct *n)
6014 {
6015 	unsigned long flags;
6016 
6017 	local_irq_save(flags);
6018 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6019 	local_irq_restore(flags);
6020 }
6021 EXPORT_SYMBOL(__napi_schedule);
6022 
6023 /**
6024  *	napi_schedule_prep - check if napi can be scheduled
6025  *	@n: napi context
6026  *
6027  * Test if NAPI routine is already running, and if not mark
6028  * it as running.  This is used as a condition variable to
6029  * insure only one NAPI poll instance runs.  We also make
6030  * sure there is no pending NAPI disable.
6031  */
6032 bool napi_schedule_prep(struct napi_struct *n)
6033 {
6034 	unsigned long new, val = READ_ONCE(n->state);
6035 
6036 	do {
6037 		if (unlikely(val & NAPIF_STATE_DISABLE))
6038 			return false;
6039 		new = val | NAPIF_STATE_SCHED;
6040 
6041 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6042 		 * This was suggested by Alexander Duyck, as compiler
6043 		 * emits better code than :
6044 		 * if (val & NAPIF_STATE_SCHED)
6045 		 *     new |= NAPIF_STATE_MISSED;
6046 		 */
6047 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6048 						   NAPIF_STATE_MISSED;
6049 	} while (!try_cmpxchg(&n->state, &val, new));
6050 
6051 	return !(val & NAPIF_STATE_SCHED);
6052 }
6053 EXPORT_SYMBOL(napi_schedule_prep);
6054 
6055 /**
6056  * __napi_schedule_irqoff - schedule for receive
6057  * @n: entry to schedule
6058  *
6059  * Variant of __napi_schedule() assuming hard irqs are masked.
6060  *
6061  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6062  * because the interrupt disabled assumption might not be true
6063  * due to force-threaded interrupts and spinlock substitution.
6064  */
6065 void __napi_schedule_irqoff(struct napi_struct *n)
6066 {
6067 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6068 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6069 	else
6070 		__napi_schedule(n);
6071 }
6072 EXPORT_SYMBOL(__napi_schedule_irqoff);
6073 
6074 bool napi_complete_done(struct napi_struct *n, int work_done)
6075 {
6076 	unsigned long flags, val, new, timeout = 0;
6077 	bool ret = true;
6078 
6079 	/*
6080 	 * 1) Don't let napi dequeue from the cpu poll list
6081 	 *    just in case its running on a different cpu.
6082 	 * 2) If we are busy polling, do nothing here, we have
6083 	 *    the guarantee we will be called later.
6084 	 */
6085 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6086 				 NAPIF_STATE_IN_BUSY_POLL)))
6087 		return false;
6088 
6089 	if (work_done) {
6090 		if (n->gro_bitmask)
6091 			timeout = READ_ONCE(n->dev->gro_flush_timeout);
6092 		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6093 	}
6094 	if (n->defer_hard_irqs_count > 0) {
6095 		n->defer_hard_irqs_count--;
6096 		timeout = READ_ONCE(n->dev->gro_flush_timeout);
6097 		if (timeout)
6098 			ret = false;
6099 	}
6100 	if (n->gro_bitmask) {
6101 		/* When the NAPI instance uses a timeout and keeps postponing
6102 		 * it, we need to bound somehow the time packets are kept in
6103 		 * the GRO layer
6104 		 */
6105 		napi_gro_flush(n, !!timeout);
6106 	}
6107 
6108 	gro_normal_list(n);
6109 
6110 	if (unlikely(!list_empty(&n->poll_list))) {
6111 		/* If n->poll_list is not empty, we need to mask irqs */
6112 		local_irq_save(flags);
6113 		list_del_init(&n->poll_list);
6114 		local_irq_restore(flags);
6115 	}
6116 	WRITE_ONCE(n->list_owner, -1);
6117 
6118 	val = READ_ONCE(n->state);
6119 	do {
6120 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6121 
6122 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6123 			      NAPIF_STATE_SCHED_THREADED |
6124 			      NAPIF_STATE_PREFER_BUSY_POLL);
6125 
6126 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6127 		 * because we will call napi->poll() one more time.
6128 		 * This C code was suggested by Alexander Duyck to help gcc.
6129 		 */
6130 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6131 						    NAPIF_STATE_SCHED;
6132 	} while (!try_cmpxchg(&n->state, &val, new));
6133 
6134 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6135 		__napi_schedule(n);
6136 		return false;
6137 	}
6138 
6139 	if (timeout)
6140 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6141 			      HRTIMER_MODE_REL_PINNED);
6142 	return ret;
6143 }
6144 EXPORT_SYMBOL(napi_complete_done);
6145 
6146 /* must be called under rcu_read_lock(), as we dont take a reference */
6147 struct napi_struct *napi_by_id(unsigned int napi_id)
6148 {
6149 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6150 	struct napi_struct *napi;
6151 
6152 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6153 		if (napi->napi_id == napi_id)
6154 			return napi;
6155 
6156 	return NULL;
6157 }
6158 
6159 #if defined(CONFIG_NET_RX_BUSY_POLL)
6160 
6161 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6162 {
6163 	if (!skip_schedule) {
6164 		gro_normal_list(napi);
6165 		__napi_schedule(napi);
6166 		return;
6167 	}
6168 
6169 	if (napi->gro_bitmask) {
6170 		/* flush too old packets
6171 		 * If HZ < 1000, flush all packets.
6172 		 */
6173 		napi_gro_flush(napi, HZ >= 1000);
6174 	}
6175 
6176 	gro_normal_list(napi);
6177 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6178 }
6179 
6180 enum {
6181 	NAPI_F_PREFER_BUSY_POLL	= 1,
6182 	NAPI_F_END_ON_RESCHED	= 2,
6183 };
6184 
6185 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6186 			   unsigned flags, u16 budget)
6187 {
6188 	bool skip_schedule = false;
6189 	unsigned long timeout;
6190 	int rc;
6191 
6192 	/* Busy polling means there is a high chance device driver hard irq
6193 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6194 	 * set in napi_schedule_prep().
6195 	 * Since we are about to call napi->poll() once more, we can safely
6196 	 * clear NAPI_STATE_MISSED.
6197 	 *
6198 	 * Note: x86 could use a single "lock and ..." instruction
6199 	 * to perform these two clear_bit()
6200 	 */
6201 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6202 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6203 
6204 	local_bh_disable();
6205 
6206 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6207 		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6208 		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6209 		if (napi->defer_hard_irqs_count && timeout) {
6210 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6211 			skip_schedule = true;
6212 		}
6213 	}
6214 
6215 	/* All we really want here is to re-enable device interrupts.
6216 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6217 	 */
6218 	rc = napi->poll(napi, budget);
6219 	/* We can't gro_normal_list() here, because napi->poll() might have
6220 	 * rearmed the napi (napi_complete_done()) in which case it could
6221 	 * already be running on another CPU.
6222 	 */
6223 	trace_napi_poll(napi, rc, budget);
6224 	netpoll_poll_unlock(have_poll_lock);
6225 	if (rc == budget)
6226 		__busy_poll_stop(napi, skip_schedule);
6227 	local_bh_enable();
6228 }
6229 
6230 static void __napi_busy_loop(unsigned int napi_id,
6231 		      bool (*loop_end)(void *, unsigned long),
6232 		      void *loop_end_arg, unsigned flags, u16 budget)
6233 {
6234 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6235 	int (*napi_poll)(struct napi_struct *napi, int budget);
6236 	void *have_poll_lock = NULL;
6237 	struct napi_struct *napi;
6238 
6239 	WARN_ON_ONCE(!rcu_read_lock_held());
6240 
6241 restart:
6242 	napi_poll = NULL;
6243 
6244 	napi = napi_by_id(napi_id);
6245 	if (!napi)
6246 		return;
6247 
6248 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6249 		preempt_disable();
6250 	for (;;) {
6251 		int work = 0;
6252 
6253 		local_bh_disable();
6254 		if (!napi_poll) {
6255 			unsigned long val = READ_ONCE(napi->state);
6256 
6257 			/* If multiple threads are competing for this napi,
6258 			 * we avoid dirtying napi->state as much as we can.
6259 			 */
6260 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6261 				   NAPIF_STATE_IN_BUSY_POLL)) {
6262 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6263 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6264 				goto count;
6265 			}
6266 			if (cmpxchg(&napi->state, val,
6267 				    val | NAPIF_STATE_IN_BUSY_POLL |
6268 					  NAPIF_STATE_SCHED) != val) {
6269 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6270 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6271 				goto count;
6272 			}
6273 			have_poll_lock = netpoll_poll_lock(napi);
6274 			napi_poll = napi->poll;
6275 		}
6276 		work = napi_poll(napi, budget);
6277 		trace_napi_poll(napi, work, budget);
6278 		gro_normal_list(napi);
6279 count:
6280 		if (work > 0)
6281 			__NET_ADD_STATS(dev_net(napi->dev),
6282 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6283 		local_bh_enable();
6284 
6285 		if (!loop_end || loop_end(loop_end_arg, start_time))
6286 			break;
6287 
6288 		if (unlikely(need_resched())) {
6289 			if (flags & NAPI_F_END_ON_RESCHED)
6290 				break;
6291 			if (napi_poll)
6292 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6293 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6294 				preempt_enable();
6295 			rcu_read_unlock();
6296 			cond_resched();
6297 			rcu_read_lock();
6298 			if (loop_end(loop_end_arg, start_time))
6299 				return;
6300 			goto restart;
6301 		}
6302 		cpu_relax();
6303 	}
6304 	if (napi_poll)
6305 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6306 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6307 		preempt_enable();
6308 }
6309 
6310 void napi_busy_loop_rcu(unsigned int napi_id,
6311 			bool (*loop_end)(void *, unsigned long),
6312 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6313 {
6314 	unsigned flags = NAPI_F_END_ON_RESCHED;
6315 
6316 	if (prefer_busy_poll)
6317 		flags |= NAPI_F_PREFER_BUSY_POLL;
6318 
6319 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6320 }
6321 
6322 void napi_busy_loop(unsigned int napi_id,
6323 		    bool (*loop_end)(void *, unsigned long),
6324 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6325 {
6326 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6327 
6328 	rcu_read_lock();
6329 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6330 	rcu_read_unlock();
6331 }
6332 EXPORT_SYMBOL(napi_busy_loop);
6333 
6334 #endif /* CONFIG_NET_RX_BUSY_POLL */
6335 
6336 static void napi_hash_add(struct napi_struct *napi)
6337 {
6338 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6339 		return;
6340 
6341 	spin_lock(&napi_hash_lock);
6342 
6343 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6344 	do {
6345 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6346 			napi_gen_id = MIN_NAPI_ID;
6347 	} while (napi_by_id(napi_gen_id));
6348 	napi->napi_id = napi_gen_id;
6349 
6350 	hlist_add_head_rcu(&napi->napi_hash_node,
6351 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6352 
6353 	spin_unlock(&napi_hash_lock);
6354 }
6355 
6356 /* Warning : caller is responsible to make sure rcu grace period
6357  * is respected before freeing memory containing @napi
6358  */
6359 static void napi_hash_del(struct napi_struct *napi)
6360 {
6361 	spin_lock(&napi_hash_lock);
6362 
6363 	hlist_del_init_rcu(&napi->napi_hash_node);
6364 
6365 	spin_unlock(&napi_hash_lock);
6366 }
6367 
6368 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6369 {
6370 	struct napi_struct *napi;
6371 
6372 	napi = container_of(timer, struct napi_struct, timer);
6373 
6374 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6375 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6376 	 */
6377 	if (!napi_disable_pending(napi) &&
6378 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6379 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6380 		__napi_schedule_irqoff(napi);
6381 	}
6382 
6383 	return HRTIMER_NORESTART;
6384 }
6385 
6386 static void init_gro_hash(struct napi_struct *napi)
6387 {
6388 	int i;
6389 
6390 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6391 		INIT_LIST_HEAD(&napi->gro_hash[i].list);
6392 		napi->gro_hash[i].count = 0;
6393 	}
6394 	napi->gro_bitmask = 0;
6395 }
6396 
6397 int dev_set_threaded(struct net_device *dev, bool threaded)
6398 {
6399 	struct napi_struct *napi;
6400 	int err = 0;
6401 
6402 	if (dev->threaded == threaded)
6403 		return 0;
6404 
6405 	if (threaded) {
6406 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6407 			if (!napi->thread) {
6408 				err = napi_kthread_create(napi);
6409 				if (err) {
6410 					threaded = false;
6411 					break;
6412 				}
6413 			}
6414 		}
6415 	}
6416 
6417 	dev->threaded = threaded;
6418 
6419 	/* Make sure kthread is created before THREADED bit
6420 	 * is set.
6421 	 */
6422 	smp_mb__before_atomic();
6423 
6424 	/* Setting/unsetting threaded mode on a napi might not immediately
6425 	 * take effect, if the current napi instance is actively being
6426 	 * polled. In this case, the switch between threaded mode and
6427 	 * softirq mode will happen in the next round of napi_schedule().
6428 	 * This should not cause hiccups/stalls to the live traffic.
6429 	 */
6430 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6431 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6432 
6433 	return err;
6434 }
6435 EXPORT_SYMBOL(dev_set_threaded);
6436 
6437 /**
6438  * netif_queue_set_napi - Associate queue with the napi
6439  * @dev: device to which NAPI and queue belong
6440  * @queue_index: Index of queue
6441  * @type: queue type as RX or TX
6442  * @napi: NAPI context, pass NULL to clear previously set NAPI
6443  *
6444  * Set queue with its corresponding napi context. This should be done after
6445  * registering the NAPI handler for the queue-vector and the queues have been
6446  * mapped to the corresponding interrupt vector.
6447  */
6448 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6449 			  enum netdev_queue_type type, struct napi_struct *napi)
6450 {
6451 	struct netdev_rx_queue *rxq;
6452 	struct netdev_queue *txq;
6453 
6454 	if (WARN_ON_ONCE(napi && !napi->dev))
6455 		return;
6456 	if (dev->reg_state >= NETREG_REGISTERED)
6457 		ASSERT_RTNL();
6458 
6459 	switch (type) {
6460 	case NETDEV_QUEUE_TYPE_RX:
6461 		rxq = __netif_get_rx_queue(dev, queue_index);
6462 		rxq->napi = napi;
6463 		return;
6464 	case NETDEV_QUEUE_TYPE_TX:
6465 		txq = netdev_get_tx_queue(dev, queue_index);
6466 		txq->napi = napi;
6467 		return;
6468 	default:
6469 		return;
6470 	}
6471 }
6472 EXPORT_SYMBOL(netif_queue_set_napi);
6473 
6474 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6475 			   int (*poll)(struct napi_struct *, int), int weight)
6476 {
6477 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6478 		return;
6479 
6480 	INIT_LIST_HEAD(&napi->poll_list);
6481 	INIT_HLIST_NODE(&napi->napi_hash_node);
6482 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6483 	napi->timer.function = napi_watchdog;
6484 	init_gro_hash(napi);
6485 	napi->skb = NULL;
6486 	INIT_LIST_HEAD(&napi->rx_list);
6487 	napi->rx_count = 0;
6488 	napi->poll = poll;
6489 	if (weight > NAPI_POLL_WEIGHT)
6490 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6491 				weight);
6492 	napi->weight = weight;
6493 	napi->dev = dev;
6494 #ifdef CONFIG_NETPOLL
6495 	napi->poll_owner = -1;
6496 #endif
6497 	napi->list_owner = -1;
6498 	set_bit(NAPI_STATE_SCHED, &napi->state);
6499 	set_bit(NAPI_STATE_NPSVC, &napi->state);
6500 	list_add_rcu(&napi->dev_list, &dev->napi_list);
6501 	napi_hash_add(napi);
6502 	napi_get_frags_check(napi);
6503 	/* Create kthread for this napi if dev->threaded is set.
6504 	 * Clear dev->threaded if kthread creation failed so that
6505 	 * threaded mode will not be enabled in napi_enable().
6506 	 */
6507 	if (dev->threaded && napi_kthread_create(napi))
6508 		dev->threaded = 0;
6509 	netif_napi_set_irq(napi, -1);
6510 }
6511 EXPORT_SYMBOL(netif_napi_add_weight);
6512 
6513 void napi_disable(struct napi_struct *n)
6514 {
6515 	unsigned long val, new;
6516 
6517 	might_sleep();
6518 	set_bit(NAPI_STATE_DISABLE, &n->state);
6519 
6520 	val = READ_ONCE(n->state);
6521 	do {
6522 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6523 			usleep_range(20, 200);
6524 			val = READ_ONCE(n->state);
6525 		}
6526 
6527 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6528 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6529 	} while (!try_cmpxchg(&n->state, &val, new));
6530 
6531 	hrtimer_cancel(&n->timer);
6532 
6533 	clear_bit(NAPI_STATE_DISABLE, &n->state);
6534 }
6535 EXPORT_SYMBOL(napi_disable);
6536 
6537 /**
6538  *	napi_enable - enable NAPI scheduling
6539  *	@n: NAPI context
6540  *
6541  * Resume NAPI from being scheduled on this context.
6542  * Must be paired with napi_disable.
6543  */
6544 void napi_enable(struct napi_struct *n)
6545 {
6546 	unsigned long new, val = READ_ONCE(n->state);
6547 
6548 	do {
6549 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6550 
6551 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6552 		if (n->dev->threaded && n->thread)
6553 			new |= NAPIF_STATE_THREADED;
6554 	} while (!try_cmpxchg(&n->state, &val, new));
6555 }
6556 EXPORT_SYMBOL(napi_enable);
6557 
6558 static void flush_gro_hash(struct napi_struct *napi)
6559 {
6560 	int i;
6561 
6562 	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6563 		struct sk_buff *skb, *n;
6564 
6565 		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6566 			kfree_skb(skb);
6567 		napi->gro_hash[i].count = 0;
6568 	}
6569 }
6570 
6571 /* Must be called in process context */
6572 void __netif_napi_del(struct napi_struct *napi)
6573 {
6574 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6575 		return;
6576 
6577 	napi_hash_del(napi);
6578 	list_del_rcu(&napi->dev_list);
6579 	napi_free_frags(napi);
6580 
6581 	flush_gro_hash(napi);
6582 	napi->gro_bitmask = 0;
6583 
6584 	if (napi->thread) {
6585 		kthread_stop(napi->thread);
6586 		napi->thread = NULL;
6587 	}
6588 }
6589 EXPORT_SYMBOL(__netif_napi_del);
6590 
6591 static int __napi_poll(struct napi_struct *n, bool *repoll)
6592 {
6593 	int work, weight;
6594 
6595 	weight = n->weight;
6596 
6597 	/* This NAPI_STATE_SCHED test is for avoiding a race
6598 	 * with netpoll's poll_napi().  Only the entity which
6599 	 * obtains the lock and sees NAPI_STATE_SCHED set will
6600 	 * actually make the ->poll() call.  Therefore we avoid
6601 	 * accidentally calling ->poll() when NAPI is not scheduled.
6602 	 */
6603 	work = 0;
6604 	if (napi_is_scheduled(n)) {
6605 		work = n->poll(n, weight);
6606 		trace_napi_poll(n, work, weight);
6607 
6608 		xdp_do_check_flushed(n);
6609 	}
6610 
6611 	if (unlikely(work > weight))
6612 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6613 				n->poll, work, weight);
6614 
6615 	if (likely(work < weight))
6616 		return work;
6617 
6618 	/* Drivers must not modify the NAPI state if they
6619 	 * consume the entire weight.  In such cases this code
6620 	 * still "owns" the NAPI instance and therefore can
6621 	 * move the instance around on the list at-will.
6622 	 */
6623 	if (unlikely(napi_disable_pending(n))) {
6624 		napi_complete(n);
6625 		return work;
6626 	}
6627 
6628 	/* The NAPI context has more processing work, but busy-polling
6629 	 * is preferred. Exit early.
6630 	 */
6631 	if (napi_prefer_busy_poll(n)) {
6632 		if (napi_complete_done(n, work)) {
6633 			/* If timeout is not set, we need to make sure
6634 			 * that the NAPI is re-scheduled.
6635 			 */
6636 			napi_schedule(n);
6637 		}
6638 		return work;
6639 	}
6640 
6641 	if (n->gro_bitmask) {
6642 		/* flush too old packets
6643 		 * If HZ < 1000, flush all packets.
6644 		 */
6645 		napi_gro_flush(n, HZ >= 1000);
6646 	}
6647 
6648 	gro_normal_list(n);
6649 
6650 	/* Some drivers may have called napi_schedule
6651 	 * prior to exhausting their budget.
6652 	 */
6653 	if (unlikely(!list_empty(&n->poll_list))) {
6654 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6655 			     n->dev ? n->dev->name : "backlog");
6656 		return work;
6657 	}
6658 
6659 	*repoll = true;
6660 
6661 	return work;
6662 }
6663 
6664 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6665 {
6666 	bool do_repoll = false;
6667 	void *have;
6668 	int work;
6669 
6670 	list_del_init(&n->poll_list);
6671 
6672 	have = netpoll_poll_lock(n);
6673 
6674 	work = __napi_poll(n, &do_repoll);
6675 
6676 	if (do_repoll)
6677 		list_add_tail(&n->poll_list, repoll);
6678 
6679 	netpoll_poll_unlock(have);
6680 
6681 	return work;
6682 }
6683 
6684 static int napi_thread_wait(struct napi_struct *napi)
6685 {
6686 	bool woken = false;
6687 
6688 	set_current_state(TASK_INTERRUPTIBLE);
6689 
6690 	while (!kthread_should_stop()) {
6691 		/* Testing SCHED_THREADED bit here to make sure the current
6692 		 * kthread owns this napi and could poll on this napi.
6693 		 * Testing SCHED bit is not enough because SCHED bit might be
6694 		 * set by some other busy poll thread or by napi_disable().
6695 		 */
6696 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6697 			WARN_ON(!list_empty(&napi->poll_list));
6698 			__set_current_state(TASK_RUNNING);
6699 			return 0;
6700 		}
6701 
6702 		schedule();
6703 		/* woken being true indicates this thread owns this napi. */
6704 		woken = true;
6705 		set_current_state(TASK_INTERRUPTIBLE);
6706 	}
6707 	__set_current_state(TASK_RUNNING);
6708 
6709 	return -1;
6710 }
6711 
6712 static void skb_defer_free_flush(struct softnet_data *sd)
6713 {
6714 	struct sk_buff *skb, *next;
6715 
6716 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6717 	if (!READ_ONCE(sd->defer_list))
6718 		return;
6719 
6720 	spin_lock(&sd->defer_lock);
6721 	skb = sd->defer_list;
6722 	sd->defer_list = NULL;
6723 	sd->defer_count = 0;
6724 	spin_unlock(&sd->defer_lock);
6725 
6726 	while (skb != NULL) {
6727 		next = skb->next;
6728 		napi_consume_skb(skb, 1);
6729 		skb = next;
6730 	}
6731 }
6732 
6733 static int napi_threaded_poll(void *data)
6734 {
6735 	struct napi_struct *napi = data;
6736 	struct softnet_data *sd;
6737 	void *have;
6738 
6739 	while (!napi_thread_wait(napi)) {
6740 		for (;;) {
6741 			bool repoll = false;
6742 
6743 			local_bh_disable();
6744 			sd = this_cpu_ptr(&softnet_data);
6745 			sd->in_napi_threaded_poll = true;
6746 
6747 			have = netpoll_poll_lock(napi);
6748 			__napi_poll(napi, &repoll);
6749 			netpoll_poll_unlock(have);
6750 
6751 			sd->in_napi_threaded_poll = false;
6752 			barrier();
6753 
6754 			if (sd_has_rps_ipi_waiting(sd)) {
6755 				local_irq_disable();
6756 				net_rps_action_and_irq_enable(sd);
6757 			}
6758 			skb_defer_free_flush(sd);
6759 			local_bh_enable();
6760 
6761 			if (!repoll)
6762 				break;
6763 
6764 			cond_resched();
6765 		}
6766 	}
6767 	return 0;
6768 }
6769 
6770 static __latent_entropy void net_rx_action(struct softirq_action *h)
6771 {
6772 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6773 	unsigned long time_limit = jiffies +
6774 		usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6775 	int budget = READ_ONCE(netdev_budget);
6776 	LIST_HEAD(list);
6777 	LIST_HEAD(repoll);
6778 
6779 start:
6780 	sd->in_net_rx_action = true;
6781 	local_irq_disable();
6782 	list_splice_init(&sd->poll_list, &list);
6783 	local_irq_enable();
6784 
6785 	for (;;) {
6786 		struct napi_struct *n;
6787 
6788 		skb_defer_free_flush(sd);
6789 
6790 		if (list_empty(&list)) {
6791 			if (list_empty(&repoll)) {
6792 				sd->in_net_rx_action = false;
6793 				barrier();
6794 				/* We need to check if ____napi_schedule()
6795 				 * had refilled poll_list while
6796 				 * sd->in_net_rx_action was true.
6797 				 */
6798 				if (!list_empty(&sd->poll_list))
6799 					goto start;
6800 				if (!sd_has_rps_ipi_waiting(sd))
6801 					goto end;
6802 			}
6803 			break;
6804 		}
6805 
6806 		n = list_first_entry(&list, struct napi_struct, poll_list);
6807 		budget -= napi_poll(n, &repoll);
6808 
6809 		/* If softirq window is exhausted then punt.
6810 		 * Allow this to run for 2 jiffies since which will allow
6811 		 * an average latency of 1.5/HZ.
6812 		 */
6813 		if (unlikely(budget <= 0 ||
6814 			     time_after_eq(jiffies, time_limit))) {
6815 			sd->time_squeeze++;
6816 			break;
6817 		}
6818 	}
6819 
6820 	local_irq_disable();
6821 
6822 	list_splice_tail_init(&sd->poll_list, &list);
6823 	list_splice_tail(&repoll, &list);
6824 	list_splice(&list, &sd->poll_list);
6825 	if (!list_empty(&sd->poll_list))
6826 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
6827 	else
6828 		sd->in_net_rx_action = false;
6829 
6830 	net_rps_action_and_irq_enable(sd);
6831 end:;
6832 }
6833 
6834 struct netdev_adjacent {
6835 	struct net_device *dev;
6836 	netdevice_tracker dev_tracker;
6837 
6838 	/* upper master flag, there can only be one master device per list */
6839 	bool master;
6840 
6841 	/* lookup ignore flag */
6842 	bool ignore;
6843 
6844 	/* counter for the number of times this device was added to us */
6845 	u16 ref_nr;
6846 
6847 	/* private field for the users */
6848 	void *private;
6849 
6850 	struct list_head list;
6851 	struct rcu_head rcu;
6852 };
6853 
6854 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6855 						 struct list_head *adj_list)
6856 {
6857 	struct netdev_adjacent *adj;
6858 
6859 	list_for_each_entry(adj, adj_list, list) {
6860 		if (adj->dev == adj_dev)
6861 			return adj;
6862 	}
6863 	return NULL;
6864 }
6865 
6866 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6867 				    struct netdev_nested_priv *priv)
6868 {
6869 	struct net_device *dev = (struct net_device *)priv->data;
6870 
6871 	return upper_dev == dev;
6872 }
6873 
6874 /**
6875  * netdev_has_upper_dev - Check if device is linked to an upper device
6876  * @dev: device
6877  * @upper_dev: upper device to check
6878  *
6879  * Find out if a device is linked to specified upper device and return true
6880  * in case it is. Note that this checks only immediate upper device,
6881  * not through a complete stack of devices. The caller must hold the RTNL lock.
6882  */
6883 bool netdev_has_upper_dev(struct net_device *dev,
6884 			  struct net_device *upper_dev)
6885 {
6886 	struct netdev_nested_priv priv = {
6887 		.data = (void *)upper_dev,
6888 	};
6889 
6890 	ASSERT_RTNL();
6891 
6892 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6893 					     &priv);
6894 }
6895 EXPORT_SYMBOL(netdev_has_upper_dev);
6896 
6897 /**
6898  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6899  * @dev: device
6900  * @upper_dev: upper device to check
6901  *
6902  * Find out if a device is linked to specified upper device and return true
6903  * in case it is. Note that this checks the entire upper device chain.
6904  * The caller must hold rcu lock.
6905  */
6906 
6907 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6908 				  struct net_device *upper_dev)
6909 {
6910 	struct netdev_nested_priv priv = {
6911 		.data = (void *)upper_dev,
6912 	};
6913 
6914 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6915 					       &priv);
6916 }
6917 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6918 
6919 /**
6920  * netdev_has_any_upper_dev - Check if device is linked to some device
6921  * @dev: device
6922  *
6923  * Find out if a device is linked to an upper device and return true in case
6924  * it is. The caller must hold the RTNL lock.
6925  */
6926 bool netdev_has_any_upper_dev(struct net_device *dev)
6927 {
6928 	ASSERT_RTNL();
6929 
6930 	return !list_empty(&dev->adj_list.upper);
6931 }
6932 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6933 
6934 /**
6935  * netdev_master_upper_dev_get - Get master upper device
6936  * @dev: device
6937  *
6938  * Find a master upper device and return pointer to it or NULL in case
6939  * it's not there. The caller must hold the RTNL lock.
6940  */
6941 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6942 {
6943 	struct netdev_adjacent *upper;
6944 
6945 	ASSERT_RTNL();
6946 
6947 	if (list_empty(&dev->adj_list.upper))
6948 		return NULL;
6949 
6950 	upper = list_first_entry(&dev->adj_list.upper,
6951 				 struct netdev_adjacent, list);
6952 	if (likely(upper->master))
6953 		return upper->dev;
6954 	return NULL;
6955 }
6956 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6957 
6958 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6959 {
6960 	struct netdev_adjacent *upper;
6961 
6962 	ASSERT_RTNL();
6963 
6964 	if (list_empty(&dev->adj_list.upper))
6965 		return NULL;
6966 
6967 	upper = list_first_entry(&dev->adj_list.upper,
6968 				 struct netdev_adjacent, list);
6969 	if (likely(upper->master) && !upper->ignore)
6970 		return upper->dev;
6971 	return NULL;
6972 }
6973 
6974 /**
6975  * netdev_has_any_lower_dev - Check if device is linked to some device
6976  * @dev: device
6977  *
6978  * Find out if a device is linked to a lower device and return true in case
6979  * it is. The caller must hold the RTNL lock.
6980  */
6981 static bool netdev_has_any_lower_dev(struct net_device *dev)
6982 {
6983 	ASSERT_RTNL();
6984 
6985 	return !list_empty(&dev->adj_list.lower);
6986 }
6987 
6988 void *netdev_adjacent_get_private(struct list_head *adj_list)
6989 {
6990 	struct netdev_adjacent *adj;
6991 
6992 	adj = list_entry(adj_list, struct netdev_adjacent, list);
6993 
6994 	return adj->private;
6995 }
6996 EXPORT_SYMBOL(netdev_adjacent_get_private);
6997 
6998 /**
6999  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7000  * @dev: device
7001  * @iter: list_head ** of the current position
7002  *
7003  * Gets the next device from the dev's upper list, starting from iter
7004  * position. The caller must hold RCU read lock.
7005  */
7006 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7007 						 struct list_head **iter)
7008 {
7009 	struct netdev_adjacent *upper;
7010 
7011 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7012 
7013 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7014 
7015 	if (&upper->list == &dev->adj_list.upper)
7016 		return NULL;
7017 
7018 	*iter = &upper->list;
7019 
7020 	return upper->dev;
7021 }
7022 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7023 
7024 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7025 						  struct list_head **iter,
7026 						  bool *ignore)
7027 {
7028 	struct netdev_adjacent *upper;
7029 
7030 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7031 
7032 	if (&upper->list == &dev->adj_list.upper)
7033 		return NULL;
7034 
7035 	*iter = &upper->list;
7036 	*ignore = upper->ignore;
7037 
7038 	return upper->dev;
7039 }
7040 
7041 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7042 						    struct list_head **iter)
7043 {
7044 	struct netdev_adjacent *upper;
7045 
7046 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7047 
7048 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7049 
7050 	if (&upper->list == &dev->adj_list.upper)
7051 		return NULL;
7052 
7053 	*iter = &upper->list;
7054 
7055 	return upper->dev;
7056 }
7057 
7058 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7059 				       int (*fn)(struct net_device *dev,
7060 					 struct netdev_nested_priv *priv),
7061 				       struct netdev_nested_priv *priv)
7062 {
7063 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7064 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7065 	int ret, cur = 0;
7066 	bool ignore;
7067 
7068 	now = dev;
7069 	iter = &dev->adj_list.upper;
7070 
7071 	while (1) {
7072 		if (now != dev) {
7073 			ret = fn(now, priv);
7074 			if (ret)
7075 				return ret;
7076 		}
7077 
7078 		next = NULL;
7079 		while (1) {
7080 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7081 			if (!udev)
7082 				break;
7083 			if (ignore)
7084 				continue;
7085 
7086 			next = udev;
7087 			niter = &udev->adj_list.upper;
7088 			dev_stack[cur] = now;
7089 			iter_stack[cur++] = iter;
7090 			break;
7091 		}
7092 
7093 		if (!next) {
7094 			if (!cur)
7095 				return 0;
7096 			next = dev_stack[--cur];
7097 			niter = iter_stack[cur];
7098 		}
7099 
7100 		now = next;
7101 		iter = niter;
7102 	}
7103 
7104 	return 0;
7105 }
7106 
7107 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7108 				  int (*fn)(struct net_device *dev,
7109 					    struct netdev_nested_priv *priv),
7110 				  struct netdev_nested_priv *priv)
7111 {
7112 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7113 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7114 	int ret, cur = 0;
7115 
7116 	now = dev;
7117 	iter = &dev->adj_list.upper;
7118 
7119 	while (1) {
7120 		if (now != dev) {
7121 			ret = fn(now, priv);
7122 			if (ret)
7123 				return ret;
7124 		}
7125 
7126 		next = NULL;
7127 		while (1) {
7128 			udev = netdev_next_upper_dev_rcu(now, &iter);
7129 			if (!udev)
7130 				break;
7131 
7132 			next = udev;
7133 			niter = &udev->adj_list.upper;
7134 			dev_stack[cur] = now;
7135 			iter_stack[cur++] = iter;
7136 			break;
7137 		}
7138 
7139 		if (!next) {
7140 			if (!cur)
7141 				return 0;
7142 			next = dev_stack[--cur];
7143 			niter = iter_stack[cur];
7144 		}
7145 
7146 		now = next;
7147 		iter = niter;
7148 	}
7149 
7150 	return 0;
7151 }
7152 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7153 
7154 static bool __netdev_has_upper_dev(struct net_device *dev,
7155 				   struct net_device *upper_dev)
7156 {
7157 	struct netdev_nested_priv priv = {
7158 		.flags = 0,
7159 		.data = (void *)upper_dev,
7160 	};
7161 
7162 	ASSERT_RTNL();
7163 
7164 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7165 					   &priv);
7166 }
7167 
7168 /**
7169  * netdev_lower_get_next_private - Get the next ->private from the
7170  *				   lower neighbour list
7171  * @dev: device
7172  * @iter: list_head ** of the current position
7173  *
7174  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7175  * list, starting from iter position. The caller must hold either hold the
7176  * RTNL lock or its own locking that guarantees that the neighbour lower
7177  * list will remain unchanged.
7178  */
7179 void *netdev_lower_get_next_private(struct net_device *dev,
7180 				    struct list_head **iter)
7181 {
7182 	struct netdev_adjacent *lower;
7183 
7184 	lower = list_entry(*iter, struct netdev_adjacent, list);
7185 
7186 	if (&lower->list == &dev->adj_list.lower)
7187 		return NULL;
7188 
7189 	*iter = lower->list.next;
7190 
7191 	return lower->private;
7192 }
7193 EXPORT_SYMBOL(netdev_lower_get_next_private);
7194 
7195 /**
7196  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7197  *				       lower neighbour list, RCU
7198  *				       variant
7199  * @dev: device
7200  * @iter: list_head ** of the current position
7201  *
7202  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7203  * list, starting from iter position. The caller must hold RCU read lock.
7204  */
7205 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7206 					struct list_head **iter)
7207 {
7208 	struct netdev_adjacent *lower;
7209 
7210 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7211 
7212 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7213 
7214 	if (&lower->list == &dev->adj_list.lower)
7215 		return NULL;
7216 
7217 	*iter = &lower->list;
7218 
7219 	return lower->private;
7220 }
7221 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7222 
7223 /**
7224  * netdev_lower_get_next - Get the next device from the lower neighbour
7225  *                         list
7226  * @dev: device
7227  * @iter: list_head ** of the current position
7228  *
7229  * Gets the next netdev_adjacent from the dev's lower neighbour
7230  * list, starting from iter position. The caller must hold RTNL lock or
7231  * its own locking that guarantees that the neighbour lower
7232  * list will remain unchanged.
7233  */
7234 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7235 {
7236 	struct netdev_adjacent *lower;
7237 
7238 	lower = list_entry(*iter, struct netdev_adjacent, list);
7239 
7240 	if (&lower->list == &dev->adj_list.lower)
7241 		return NULL;
7242 
7243 	*iter = lower->list.next;
7244 
7245 	return lower->dev;
7246 }
7247 EXPORT_SYMBOL(netdev_lower_get_next);
7248 
7249 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7250 						struct list_head **iter)
7251 {
7252 	struct netdev_adjacent *lower;
7253 
7254 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7255 
7256 	if (&lower->list == &dev->adj_list.lower)
7257 		return NULL;
7258 
7259 	*iter = &lower->list;
7260 
7261 	return lower->dev;
7262 }
7263 
7264 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7265 						  struct list_head **iter,
7266 						  bool *ignore)
7267 {
7268 	struct netdev_adjacent *lower;
7269 
7270 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7271 
7272 	if (&lower->list == &dev->adj_list.lower)
7273 		return NULL;
7274 
7275 	*iter = &lower->list;
7276 	*ignore = lower->ignore;
7277 
7278 	return lower->dev;
7279 }
7280 
7281 int netdev_walk_all_lower_dev(struct net_device *dev,
7282 			      int (*fn)(struct net_device *dev,
7283 					struct netdev_nested_priv *priv),
7284 			      struct netdev_nested_priv *priv)
7285 {
7286 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7287 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7288 	int ret, cur = 0;
7289 
7290 	now = dev;
7291 	iter = &dev->adj_list.lower;
7292 
7293 	while (1) {
7294 		if (now != dev) {
7295 			ret = fn(now, priv);
7296 			if (ret)
7297 				return ret;
7298 		}
7299 
7300 		next = NULL;
7301 		while (1) {
7302 			ldev = netdev_next_lower_dev(now, &iter);
7303 			if (!ldev)
7304 				break;
7305 
7306 			next = ldev;
7307 			niter = &ldev->adj_list.lower;
7308 			dev_stack[cur] = now;
7309 			iter_stack[cur++] = iter;
7310 			break;
7311 		}
7312 
7313 		if (!next) {
7314 			if (!cur)
7315 				return 0;
7316 			next = dev_stack[--cur];
7317 			niter = iter_stack[cur];
7318 		}
7319 
7320 		now = next;
7321 		iter = niter;
7322 	}
7323 
7324 	return 0;
7325 }
7326 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7327 
7328 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7329 				       int (*fn)(struct net_device *dev,
7330 					 struct netdev_nested_priv *priv),
7331 				       struct netdev_nested_priv *priv)
7332 {
7333 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7334 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7335 	int ret, cur = 0;
7336 	bool ignore;
7337 
7338 	now = dev;
7339 	iter = &dev->adj_list.lower;
7340 
7341 	while (1) {
7342 		if (now != dev) {
7343 			ret = fn(now, priv);
7344 			if (ret)
7345 				return ret;
7346 		}
7347 
7348 		next = NULL;
7349 		while (1) {
7350 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7351 			if (!ldev)
7352 				break;
7353 			if (ignore)
7354 				continue;
7355 
7356 			next = ldev;
7357 			niter = &ldev->adj_list.lower;
7358 			dev_stack[cur] = now;
7359 			iter_stack[cur++] = iter;
7360 			break;
7361 		}
7362 
7363 		if (!next) {
7364 			if (!cur)
7365 				return 0;
7366 			next = dev_stack[--cur];
7367 			niter = iter_stack[cur];
7368 		}
7369 
7370 		now = next;
7371 		iter = niter;
7372 	}
7373 
7374 	return 0;
7375 }
7376 
7377 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7378 					     struct list_head **iter)
7379 {
7380 	struct netdev_adjacent *lower;
7381 
7382 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7383 	if (&lower->list == &dev->adj_list.lower)
7384 		return NULL;
7385 
7386 	*iter = &lower->list;
7387 
7388 	return lower->dev;
7389 }
7390 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7391 
7392 static u8 __netdev_upper_depth(struct net_device *dev)
7393 {
7394 	struct net_device *udev;
7395 	struct list_head *iter;
7396 	u8 max_depth = 0;
7397 	bool ignore;
7398 
7399 	for (iter = &dev->adj_list.upper,
7400 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7401 	     udev;
7402 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7403 		if (ignore)
7404 			continue;
7405 		if (max_depth < udev->upper_level)
7406 			max_depth = udev->upper_level;
7407 	}
7408 
7409 	return max_depth;
7410 }
7411 
7412 static u8 __netdev_lower_depth(struct net_device *dev)
7413 {
7414 	struct net_device *ldev;
7415 	struct list_head *iter;
7416 	u8 max_depth = 0;
7417 	bool ignore;
7418 
7419 	for (iter = &dev->adj_list.lower,
7420 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7421 	     ldev;
7422 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7423 		if (ignore)
7424 			continue;
7425 		if (max_depth < ldev->lower_level)
7426 			max_depth = ldev->lower_level;
7427 	}
7428 
7429 	return max_depth;
7430 }
7431 
7432 static int __netdev_update_upper_level(struct net_device *dev,
7433 				       struct netdev_nested_priv *__unused)
7434 {
7435 	dev->upper_level = __netdev_upper_depth(dev) + 1;
7436 	return 0;
7437 }
7438 
7439 #ifdef CONFIG_LOCKDEP
7440 static LIST_HEAD(net_unlink_list);
7441 
7442 static void net_unlink_todo(struct net_device *dev)
7443 {
7444 	if (list_empty(&dev->unlink_list))
7445 		list_add_tail(&dev->unlink_list, &net_unlink_list);
7446 }
7447 #endif
7448 
7449 static int __netdev_update_lower_level(struct net_device *dev,
7450 				       struct netdev_nested_priv *priv)
7451 {
7452 	dev->lower_level = __netdev_lower_depth(dev) + 1;
7453 
7454 #ifdef CONFIG_LOCKDEP
7455 	if (!priv)
7456 		return 0;
7457 
7458 	if (priv->flags & NESTED_SYNC_IMM)
7459 		dev->nested_level = dev->lower_level - 1;
7460 	if (priv->flags & NESTED_SYNC_TODO)
7461 		net_unlink_todo(dev);
7462 #endif
7463 	return 0;
7464 }
7465 
7466 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7467 				  int (*fn)(struct net_device *dev,
7468 					    struct netdev_nested_priv *priv),
7469 				  struct netdev_nested_priv *priv)
7470 {
7471 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7472 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7473 	int ret, cur = 0;
7474 
7475 	now = dev;
7476 	iter = &dev->adj_list.lower;
7477 
7478 	while (1) {
7479 		if (now != dev) {
7480 			ret = fn(now, priv);
7481 			if (ret)
7482 				return ret;
7483 		}
7484 
7485 		next = NULL;
7486 		while (1) {
7487 			ldev = netdev_next_lower_dev_rcu(now, &iter);
7488 			if (!ldev)
7489 				break;
7490 
7491 			next = ldev;
7492 			niter = &ldev->adj_list.lower;
7493 			dev_stack[cur] = now;
7494 			iter_stack[cur++] = iter;
7495 			break;
7496 		}
7497 
7498 		if (!next) {
7499 			if (!cur)
7500 				return 0;
7501 			next = dev_stack[--cur];
7502 			niter = iter_stack[cur];
7503 		}
7504 
7505 		now = next;
7506 		iter = niter;
7507 	}
7508 
7509 	return 0;
7510 }
7511 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7512 
7513 /**
7514  * netdev_lower_get_first_private_rcu - Get the first ->private from the
7515  *				       lower neighbour list, RCU
7516  *				       variant
7517  * @dev: device
7518  *
7519  * Gets the first netdev_adjacent->private from the dev's lower neighbour
7520  * list. The caller must hold RCU read lock.
7521  */
7522 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7523 {
7524 	struct netdev_adjacent *lower;
7525 
7526 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
7527 			struct netdev_adjacent, list);
7528 	if (lower)
7529 		return lower->private;
7530 	return NULL;
7531 }
7532 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7533 
7534 /**
7535  * netdev_master_upper_dev_get_rcu - Get master upper device
7536  * @dev: device
7537  *
7538  * Find a master upper device and return pointer to it or NULL in case
7539  * it's not there. The caller must hold the RCU read lock.
7540  */
7541 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7542 {
7543 	struct netdev_adjacent *upper;
7544 
7545 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
7546 				       struct netdev_adjacent, list);
7547 	if (upper && likely(upper->master))
7548 		return upper->dev;
7549 	return NULL;
7550 }
7551 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7552 
7553 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7554 			      struct net_device *adj_dev,
7555 			      struct list_head *dev_list)
7556 {
7557 	char linkname[IFNAMSIZ+7];
7558 
7559 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7560 		"upper_%s" : "lower_%s", adj_dev->name);
7561 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7562 				 linkname);
7563 }
7564 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7565 			       char *name,
7566 			       struct list_head *dev_list)
7567 {
7568 	char linkname[IFNAMSIZ+7];
7569 
7570 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
7571 		"upper_%s" : "lower_%s", name);
7572 	sysfs_remove_link(&(dev->dev.kobj), linkname);
7573 }
7574 
7575 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7576 						 struct net_device *adj_dev,
7577 						 struct list_head *dev_list)
7578 {
7579 	return (dev_list == &dev->adj_list.upper ||
7580 		dev_list == &dev->adj_list.lower) &&
7581 		net_eq(dev_net(dev), dev_net(adj_dev));
7582 }
7583 
7584 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7585 					struct net_device *adj_dev,
7586 					struct list_head *dev_list,
7587 					void *private, bool master)
7588 {
7589 	struct netdev_adjacent *adj;
7590 	int ret;
7591 
7592 	adj = __netdev_find_adj(adj_dev, dev_list);
7593 
7594 	if (adj) {
7595 		adj->ref_nr += 1;
7596 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7597 			 dev->name, adj_dev->name, adj->ref_nr);
7598 
7599 		return 0;
7600 	}
7601 
7602 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7603 	if (!adj)
7604 		return -ENOMEM;
7605 
7606 	adj->dev = adj_dev;
7607 	adj->master = master;
7608 	adj->ref_nr = 1;
7609 	adj->private = private;
7610 	adj->ignore = false;
7611 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7612 
7613 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7614 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7615 
7616 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7617 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7618 		if (ret)
7619 			goto free_adj;
7620 	}
7621 
7622 	/* Ensure that master link is always the first item in list. */
7623 	if (master) {
7624 		ret = sysfs_create_link(&(dev->dev.kobj),
7625 					&(adj_dev->dev.kobj), "master");
7626 		if (ret)
7627 			goto remove_symlinks;
7628 
7629 		list_add_rcu(&adj->list, dev_list);
7630 	} else {
7631 		list_add_tail_rcu(&adj->list, dev_list);
7632 	}
7633 
7634 	return 0;
7635 
7636 remove_symlinks:
7637 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7638 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7639 free_adj:
7640 	netdev_put(adj_dev, &adj->dev_tracker);
7641 	kfree(adj);
7642 
7643 	return ret;
7644 }
7645 
7646 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7647 					 struct net_device *adj_dev,
7648 					 u16 ref_nr,
7649 					 struct list_head *dev_list)
7650 {
7651 	struct netdev_adjacent *adj;
7652 
7653 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7654 		 dev->name, adj_dev->name, ref_nr);
7655 
7656 	adj = __netdev_find_adj(adj_dev, dev_list);
7657 
7658 	if (!adj) {
7659 		pr_err("Adjacency does not exist for device %s from %s\n",
7660 		       dev->name, adj_dev->name);
7661 		WARN_ON(1);
7662 		return;
7663 	}
7664 
7665 	if (adj->ref_nr > ref_nr) {
7666 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7667 			 dev->name, adj_dev->name, ref_nr,
7668 			 adj->ref_nr - ref_nr);
7669 		adj->ref_nr -= ref_nr;
7670 		return;
7671 	}
7672 
7673 	if (adj->master)
7674 		sysfs_remove_link(&(dev->dev.kobj), "master");
7675 
7676 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7677 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7678 
7679 	list_del_rcu(&adj->list);
7680 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7681 		 adj_dev->name, dev->name, adj_dev->name);
7682 	netdev_put(adj_dev, &adj->dev_tracker);
7683 	kfree_rcu(adj, rcu);
7684 }
7685 
7686 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7687 					    struct net_device *upper_dev,
7688 					    struct list_head *up_list,
7689 					    struct list_head *down_list,
7690 					    void *private, bool master)
7691 {
7692 	int ret;
7693 
7694 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7695 					   private, master);
7696 	if (ret)
7697 		return ret;
7698 
7699 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7700 					   private, false);
7701 	if (ret) {
7702 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7703 		return ret;
7704 	}
7705 
7706 	return 0;
7707 }
7708 
7709 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7710 					       struct net_device *upper_dev,
7711 					       u16 ref_nr,
7712 					       struct list_head *up_list,
7713 					       struct list_head *down_list)
7714 {
7715 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7716 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7717 }
7718 
7719 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7720 						struct net_device *upper_dev,
7721 						void *private, bool master)
7722 {
7723 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7724 						&dev->adj_list.upper,
7725 						&upper_dev->adj_list.lower,
7726 						private, master);
7727 }
7728 
7729 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7730 						   struct net_device *upper_dev)
7731 {
7732 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7733 					   &dev->adj_list.upper,
7734 					   &upper_dev->adj_list.lower);
7735 }
7736 
7737 static int __netdev_upper_dev_link(struct net_device *dev,
7738 				   struct net_device *upper_dev, bool master,
7739 				   void *upper_priv, void *upper_info,
7740 				   struct netdev_nested_priv *priv,
7741 				   struct netlink_ext_ack *extack)
7742 {
7743 	struct netdev_notifier_changeupper_info changeupper_info = {
7744 		.info = {
7745 			.dev = dev,
7746 			.extack = extack,
7747 		},
7748 		.upper_dev = upper_dev,
7749 		.master = master,
7750 		.linking = true,
7751 		.upper_info = upper_info,
7752 	};
7753 	struct net_device *master_dev;
7754 	int ret = 0;
7755 
7756 	ASSERT_RTNL();
7757 
7758 	if (dev == upper_dev)
7759 		return -EBUSY;
7760 
7761 	/* To prevent loops, check if dev is not upper device to upper_dev. */
7762 	if (__netdev_has_upper_dev(upper_dev, dev))
7763 		return -EBUSY;
7764 
7765 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7766 		return -EMLINK;
7767 
7768 	if (!master) {
7769 		if (__netdev_has_upper_dev(dev, upper_dev))
7770 			return -EEXIST;
7771 	} else {
7772 		master_dev = __netdev_master_upper_dev_get(dev);
7773 		if (master_dev)
7774 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
7775 	}
7776 
7777 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7778 					    &changeupper_info.info);
7779 	ret = notifier_to_errno(ret);
7780 	if (ret)
7781 		return ret;
7782 
7783 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7784 						   master);
7785 	if (ret)
7786 		return ret;
7787 
7788 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7789 					    &changeupper_info.info);
7790 	ret = notifier_to_errno(ret);
7791 	if (ret)
7792 		goto rollback;
7793 
7794 	__netdev_update_upper_level(dev, NULL);
7795 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7796 
7797 	__netdev_update_lower_level(upper_dev, priv);
7798 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7799 				    priv);
7800 
7801 	return 0;
7802 
7803 rollback:
7804 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7805 
7806 	return ret;
7807 }
7808 
7809 /**
7810  * netdev_upper_dev_link - Add a link to the upper device
7811  * @dev: device
7812  * @upper_dev: new upper device
7813  * @extack: netlink extended ack
7814  *
7815  * Adds a link to device which is upper to this one. The caller must hold
7816  * the RTNL lock. On a failure a negative errno code is returned.
7817  * On success the reference counts are adjusted and the function
7818  * returns zero.
7819  */
7820 int netdev_upper_dev_link(struct net_device *dev,
7821 			  struct net_device *upper_dev,
7822 			  struct netlink_ext_ack *extack)
7823 {
7824 	struct netdev_nested_priv priv = {
7825 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7826 		.data = NULL,
7827 	};
7828 
7829 	return __netdev_upper_dev_link(dev, upper_dev, false,
7830 				       NULL, NULL, &priv, extack);
7831 }
7832 EXPORT_SYMBOL(netdev_upper_dev_link);
7833 
7834 /**
7835  * netdev_master_upper_dev_link - Add a master link to the upper device
7836  * @dev: device
7837  * @upper_dev: new upper device
7838  * @upper_priv: upper device private
7839  * @upper_info: upper info to be passed down via notifier
7840  * @extack: netlink extended ack
7841  *
7842  * Adds a link to device which is upper to this one. In this case, only
7843  * one master upper device can be linked, although other non-master devices
7844  * might be linked as well. The caller must hold the RTNL lock.
7845  * On a failure a negative errno code is returned. On success the reference
7846  * counts are adjusted and the function returns zero.
7847  */
7848 int netdev_master_upper_dev_link(struct net_device *dev,
7849 				 struct net_device *upper_dev,
7850 				 void *upper_priv, void *upper_info,
7851 				 struct netlink_ext_ack *extack)
7852 {
7853 	struct netdev_nested_priv priv = {
7854 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7855 		.data = NULL,
7856 	};
7857 
7858 	return __netdev_upper_dev_link(dev, upper_dev, true,
7859 				       upper_priv, upper_info, &priv, extack);
7860 }
7861 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7862 
7863 static void __netdev_upper_dev_unlink(struct net_device *dev,
7864 				      struct net_device *upper_dev,
7865 				      struct netdev_nested_priv *priv)
7866 {
7867 	struct netdev_notifier_changeupper_info changeupper_info = {
7868 		.info = {
7869 			.dev = dev,
7870 		},
7871 		.upper_dev = upper_dev,
7872 		.linking = false,
7873 	};
7874 
7875 	ASSERT_RTNL();
7876 
7877 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7878 
7879 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7880 				      &changeupper_info.info);
7881 
7882 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7883 
7884 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7885 				      &changeupper_info.info);
7886 
7887 	__netdev_update_upper_level(dev, NULL);
7888 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7889 
7890 	__netdev_update_lower_level(upper_dev, priv);
7891 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7892 				    priv);
7893 }
7894 
7895 /**
7896  * netdev_upper_dev_unlink - Removes a link to upper device
7897  * @dev: device
7898  * @upper_dev: new upper device
7899  *
7900  * Removes a link to device which is upper to this one. The caller must hold
7901  * the RTNL lock.
7902  */
7903 void netdev_upper_dev_unlink(struct net_device *dev,
7904 			     struct net_device *upper_dev)
7905 {
7906 	struct netdev_nested_priv priv = {
7907 		.flags = NESTED_SYNC_TODO,
7908 		.data = NULL,
7909 	};
7910 
7911 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
7912 }
7913 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7914 
7915 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7916 				      struct net_device *lower_dev,
7917 				      bool val)
7918 {
7919 	struct netdev_adjacent *adj;
7920 
7921 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7922 	if (adj)
7923 		adj->ignore = val;
7924 
7925 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7926 	if (adj)
7927 		adj->ignore = val;
7928 }
7929 
7930 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7931 					struct net_device *lower_dev)
7932 {
7933 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7934 }
7935 
7936 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7937 				       struct net_device *lower_dev)
7938 {
7939 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7940 }
7941 
7942 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7943 				   struct net_device *new_dev,
7944 				   struct net_device *dev,
7945 				   struct netlink_ext_ack *extack)
7946 {
7947 	struct netdev_nested_priv priv = {
7948 		.flags = 0,
7949 		.data = NULL,
7950 	};
7951 	int err;
7952 
7953 	if (!new_dev)
7954 		return 0;
7955 
7956 	if (old_dev && new_dev != old_dev)
7957 		netdev_adjacent_dev_disable(dev, old_dev);
7958 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7959 				      extack);
7960 	if (err) {
7961 		if (old_dev && new_dev != old_dev)
7962 			netdev_adjacent_dev_enable(dev, old_dev);
7963 		return err;
7964 	}
7965 
7966 	return 0;
7967 }
7968 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7969 
7970 void netdev_adjacent_change_commit(struct net_device *old_dev,
7971 				   struct net_device *new_dev,
7972 				   struct net_device *dev)
7973 {
7974 	struct netdev_nested_priv priv = {
7975 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7976 		.data = NULL,
7977 	};
7978 
7979 	if (!new_dev || !old_dev)
7980 		return;
7981 
7982 	if (new_dev == old_dev)
7983 		return;
7984 
7985 	netdev_adjacent_dev_enable(dev, old_dev);
7986 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
7987 }
7988 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7989 
7990 void netdev_adjacent_change_abort(struct net_device *old_dev,
7991 				  struct net_device *new_dev,
7992 				  struct net_device *dev)
7993 {
7994 	struct netdev_nested_priv priv = {
7995 		.flags = 0,
7996 		.data = NULL,
7997 	};
7998 
7999 	if (!new_dev)
8000 		return;
8001 
8002 	if (old_dev && new_dev != old_dev)
8003 		netdev_adjacent_dev_enable(dev, old_dev);
8004 
8005 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8006 }
8007 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8008 
8009 /**
8010  * netdev_bonding_info_change - Dispatch event about slave change
8011  * @dev: device
8012  * @bonding_info: info to dispatch
8013  *
8014  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8015  * The caller must hold the RTNL lock.
8016  */
8017 void netdev_bonding_info_change(struct net_device *dev,
8018 				struct netdev_bonding_info *bonding_info)
8019 {
8020 	struct netdev_notifier_bonding_info info = {
8021 		.info.dev = dev,
8022 	};
8023 
8024 	memcpy(&info.bonding_info, bonding_info,
8025 	       sizeof(struct netdev_bonding_info));
8026 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8027 				      &info.info);
8028 }
8029 EXPORT_SYMBOL(netdev_bonding_info_change);
8030 
8031 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8032 					   struct netlink_ext_ack *extack)
8033 {
8034 	struct netdev_notifier_offload_xstats_info info = {
8035 		.info.dev = dev,
8036 		.info.extack = extack,
8037 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8038 	};
8039 	int err;
8040 	int rc;
8041 
8042 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8043 					 GFP_KERNEL);
8044 	if (!dev->offload_xstats_l3)
8045 		return -ENOMEM;
8046 
8047 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8048 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8049 						  &info.info);
8050 	err = notifier_to_errno(rc);
8051 	if (err)
8052 		goto free_stats;
8053 
8054 	return 0;
8055 
8056 free_stats:
8057 	kfree(dev->offload_xstats_l3);
8058 	dev->offload_xstats_l3 = NULL;
8059 	return err;
8060 }
8061 
8062 int netdev_offload_xstats_enable(struct net_device *dev,
8063 				 enum netdev_offload_xstats_type type,
8064 				 struct netlink_ext_ack *extack)
8065 {
8066 	ASSERT_RTNL();
8067 
8068 	if (netdev_offload_xstats_enabled(dev, type))
8069 		return -EALREADY;
8070 
8071 	switch (type) {
8072 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8073 		return netdev_offload_xstats_enable_l3(dev, extack);
8074 	}
8075 
8076 	WARN_ON(1);
8077 	return -EINVAL;
8078 }
8079 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8080 
8081 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8082 {
8083 	struct netdev_notifier_offload_xstats_info info = {
8084 		.info.dev = dev,
8085 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8086 	};
8087 
8088 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8089 				      &info.info);
8090 	kfree(dev->offload_xstats_l3);
8091 	dev->offload_xstats_l3 = NULL;
8092 }
8093 
8094 int netdev_offload_xstats_disable(struct net_device *dev,
8095 				  enum netdev_offload_xstats_type type)
8096 {
8097 	ASSERT_RTNL();
8098 
8099 	if (!netdev_offload_xstats_enabled(dev, type))
8100 		return -EALREADY;
8101 
8102 	switch (type) {
8103 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8104 		netdev_offload_xstats_disable_l3(dev);
8105 		return 0;
8106 	}
8107 
8108 	WARN_ON(1);
8109 	return -EINVAL;
8110 }
8111 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8112 
8113 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8114 {
8115 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8116 }
8117 
8118 static struct rtnl_hw_stats64 *
8119 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8120 			      enum netdev_offload_xstats_type type)
8121 {
8122 	switch (type) {
8123 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8124 		return dev->offload_xstats_l3;
8125 	}
8126 
8127 	WARN_ON(1);
8128 	return NULL;
8129 }
8130 
8131 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8132 				   enum netdev_offload_xstats_type type)
8133 {
8134 	ASSERT_RTNL();
8135 
8136 	return netdev_offload_xstats_get_ptr(dev, type);
8137 }
8138 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8139 
8140 struct netdev_notifier_offload_xstats_ru {
8141 	bool used;
8142 };
8143 
8144 struct netdev_notifier_offload_xstats_rd {
8145 	struct rtnl_hw_stats64 stats;
8146 	bool used;
8147 };
8148 
8149 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8150 				  const struct rtnl_hw_stats64 *src)
8151 {
8152 	dest->rx_packets	  += src->rx_packets;
8153 	dest->tx_packets	  += src->tx_packets;
8154 	dest->rx_bytes		  += src->rx_bytes;
8155 	dest->tx_bytes		  += src->tx_bytes;
8156 	dest->rx_errors		  += src->rx_errors;
8157 	dest->tx_errors		  += src->tx_errors;
8158 	dest->rx_dropped	  += src->rx_dropped;
8159 	dest->tx_dropped	  += src->tx_dropped;
8160 	dest->multicast		  += src->multicast;
8161 }
8162 
8163 static int netdev_offload_xstats_get_used(struct net_device *dev,
8164 					  enum netdev_offload_xstats_type type,
8165 					  bool *p_used,
8166 					  struct netlink_ext_ack *extack)
8167 {
8168 	struct netdev_notifier_offload_xstats_ru report_used = {};
8169 	struct netdev_notifier_offload_xstats_info info = {
8170 		.info.dev = dev,
8171 		.info.extack = extack,
8172 		.type = type,
8173 		.report_used = &report_used,
8174 	};
8175 	int rc;
8176 
8177 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8178 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8179 					   &info.info);
8180 	*p_used = report_used.used;
8181 	return notifier_to_errno(rc);
8182 }
8183 
8184 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8185 					   enum netdev_offload_xstats_type type,
8186 					   struct rtnl_hw_stats64 *p_stats,
8187 					   bool *p_used,
8188 					   struct netlink_ext_ack *extack)
8189 {
8190 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8191 	struct netdev_notifier_offload_xstats_info info = {
8192 		.info.dev = dev,
8193 		.info.extack = extack,
8194 		.type = type,
8195 		.report_delta = &report_delta,
8196 	};
8197 	struct rtnl_hw_stats64 *stats;
8198 	int rc;
8199 
8200 	stats = netdev_offload_xstats_get_ptr(dev, type);
8201 	if (WARN_ON(!stats))
8202 		return -EINVAL;
8203 
8204 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8205 					   &info.info);
8206 
8207 	/* Cache whatever we got, even if there was an error, otherwise the
8208 	 * successful stats retrievals would get lost.
8209 	 */
8210 	netdev_hw_stats64_add(stats, &report_delta.stats);
8211 
8212 	if (p_stats)
8213 		*p_stats = *stats;
8214 	*p_used = report_delta.used;
8215 
8216 	return notifier_to_errno(rc);
8217 }
8218 
8219 int netdev_offload_xstats_get(struct net_device *dev,
8220 			      enum netdev_offload_xstats_type type,
8221 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8222 			      struct netlink_ext_ack *extack)
8223 {
8224 	ASSERT_RTNL();
8225 
8226 	if (p_stats)
8227 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8228 						       p_used, extack);
8229 	else
8230 		return netdev_offload_xstats_get_used(dev, type, p_used,
8231 						      extack);
8232 }
8233 EXPORT_SYMBOL(netdev_offload_xstats_get);
8234 
8235 void
8236 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8237 				   const struct rtnl_hw_stats64 *stats)
8238 {
8239 	report_delta->used = true;
8240 	netdev_hw_stats64_add(&report_delta->stats, stats);
8241 }
8242 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8243 
8244 void
8245 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8246 {
8247 	report_used->used = true;
8248 }
8249 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8250 
8251 void netdev_offload_xstats_push_delta(struct net_device *dev,
8252 				      enum netdev_offload_xstats_type type,
8253 				      const struct rtnl_hw_stats64 *p_stats)
8254 {
8255 	struct rtnl_hw_stats64 *stats;
8256 
8257 	ASSERT_RTNL();
8258 
8259 	stats = netdev_offload_xstats_get_ptr(dev, type);
8260 	if (WARN_ON(!stats))
8261 		return;
8262 
8263 	netdev_hw_stats64_add(stats, p_stats);
8264 }
8265 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8266 
8267 /**
8268  * netdev_get_xmit_slave - Get the xmit slave of master device
8269  * @dev: device
8270  * @skb: The packet
8271  * @all_slaves: assume all the slaves are active
8272  *
8273  * The reference counters are not incremented so the caller must be
8274  * careful with locks. The caller must hold RCU lock.
8275  * %NULL is returned if no slave is found.
8276  */
8277 
8278 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8279 					 struct sk_buff *skb,
8280 					 bool all_slaves)
8281 {
8282 	const struct net_device_ops *ops = dev->netdev_ops;
8283 
8284 	if (!ops->ndo_get_xmit_slave)
8285 		return NULL;
8286 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8287 }
8288 EXPORT_SYMBOL(netdev_get_xmit_slave);
8289 
8290 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8291 						  struct sock *sk)
8292 {
8293 	const struct net_device_ops *ops = dev->netdev_ops;
8294 
8295 	if (!ops->ndo_sk_get_lower_dev)
8296 		return NULL;
8297 	return ops->ndo_sk_get_lower_dev(dev, sk);
8298 }
8299 
8300 /**
8301  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8302  * @dev: device
8303  * @sk: the socket
8304  *
8305  * %NULL is returned if no lower device is found.
8306  */
8307 
8308 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8309 					    struct sock *sk)
8310 {
8311 	struct net_device *lower;
8312 
8313 	lower = netdev_sk_get_lower_dev(dev, sk);
8314 	while (lower) {
8315 		dev = lower;
8316 		lower = netdev_sk_get_lower_dev(dev, sk);
8317 	}
8318 
8319 	return dev;
8320 }
8321 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8322 
8323 static void netdev_adjacent_add_links(struct net_device *dev)
8324 {
8325 	struct netdev_adjacent *iter;
8326 
8327 	struct net *net = dev_net(dev);
8328 
8329 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8330 		if (!net_eq(net, dev_net(iter->dev)))
8331 			continue;
8332 		netdev_adjacent_sysfs_add(iter->dev, dev,
8333 					  &iter->dev->adj_list.lower);
8334 		netdev_adjacent_sysfs_add(dev, iter->dev,
8335 					  &dev->adj_list.upper);
8336 	}
8337 
8338 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8339 		if (!net_eq(net, dev_net(iter->dev)))
8340 			continue;
8341 		netdev_adjacent_sysfs_add(iter->dev, dev,
8342 					  &iter->dev->adj_list.upper);
8343 		netdev_adjacent_sysfs_add(dev, iter->dev,
8344 					  &dev->adj_list.lower);
8345 	}
8346 }
8347 
8348 static void netdev_adjacent_del_links(struct net_device *dev)
8349 {
8350 	struct netdev_adjacent *iter;
8351 
8352 	struct net *net = dev_net(dev);
8353 
8354 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8355 		if (!net_eq(net, dev_net(iter->dev)))
8356 			continue;
8357 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8358 					  &iter->dev->adj_list.lower);
8359 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8360 					  &dev->adj_list.upper);
8361 	}
8362 
8363 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8364 		if (!net_eq(net, dev_net(iter->dev)))
8365 			continue;
8366 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
8367 					  &iter->dev->adj_list.upper);
8368 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
8369 					  &dev->adj_list.lower);
8370 	}
8371 }
8372 
8373 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8374 {
8375 	struct netdev_adjacent *iter;
8376 
8377 	struct net *net = dev_net(dev);
8378 
8379 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
8380 		if (!net_eq(net, dev_net(iter->dev)))
8381 			continue;
8382 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8383 					  &iter->dev->adj_list.lower);
8384 		netdev_adjacent_sysfs_add(iter->dev, dev,
8385 					  &iter->dev->adj_list.lower);
8386 	}
8387 
8388 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
8389 		if (!net_eq(net, dev_net(iter->dev)))
8390 			continue;
8391 		netdev_adjacent_sysfs_del(iter->dev, oldname,
8392 					  &iter->dev->adj_list.upper);
8393 		netdev_adjacent_sysfs_add(iter->dev, dev,
8394 					  &iter->dev->adj_list.upper);
8395 	}
8396 }
8397 
8398 void *netdev_lower_dev_get_private(struct net_device *dev,
8399 				   struct net_device *lower_dev)
8400 {
8401 	struct netdev_adjacent *lower;
8402 
8403 	if (!lower_dev)
8404 		return NULL;
8405 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8406 	if (!lower)
8407 		return NULL;
8408 
8409 	return lower->private;
8410 }
8411 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8412 
8413 
8414 /**
8415  * netdev_lower_state_changed - Dispatch event about lower device state change
8416  * @lower_dev: device
8417  * @lower_state_info: state to dispatch
8418  *
8419  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8420  * The caller must hold the RTNL lock.
8421  */
8422 void netdev_lower_state_changed(struct net_device *lower_dev,
8423 				void *lower_state_info)
8424 {
8425 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8426 		.info.dev = lower_dev,
8427 	};
8428 
8429 	ASSERT_RTNL();
8430 	changelowerstate_info.lower_state_info = lower_state_info;
8431 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8432 				      &changelowerstate_info.info);
8433 }
8434 EXPORT_SYMBOL(netdev_lower_state_changed);
8435 
8436 static void dev_change_rx_flags(struct net_device *dev, int flags)
8437 {
8438 	const struct net_device_ops *ops = dev->netdev_ops;
8439 
8440 	if (ops->ndo_change_rx_flags)
8441 		ops->ndo_change_rx_flags(dev, flags);
8442 }
8443 
8444 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8445 {
8446 	unsigned int old_flags = dev->flags;
8447 	kuid_t uid;
8448 	kgid_t gid;
8449 
8450 	ASSERT_RTNL();
8451 
8452 	dev->flags |= IFF_PROMISC;
8453 	dev->promiscuity += inc;
8454 	if (dev->promiscuity == 0) {
8455 		/*
8456 		 * Avoid overflow.
8457 		 * If inc causes overflow, untouch promisc and return error.
8458 		 */
8459 		if (inc < 0)
8460 			dev->flags &= ~IFF_PROMISC;
8461 		else {
8462 			dev->promiscuity -= inc;
8463 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8464 			return -EOVERFLOW;
8465 		}
8466 	}
8467 	if (dev->flags != old_flags) {
8468 		netdev_info(dev, "%s promiscuous mode\n",
8469 			    dev->flags & IFF_PROMISC ? "entered" : "left");
8470 		if (audit_enabled) {
8471 			current_uid_gid(&uid, &gid);
8472 			audit_log(audit_context(), GFP_ATOMIC,
8473 				  AUDIT_ANOM_PROMISCUOUS,
8474 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8475 				  dev->name, (dev->flags & IFF_PROMISC),
8476 				  (old_flags & IFF_PROMISC),
8477 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
8478 				  from_kuid(&init_user_ns, uid),
8479 				  from_kgid(&init_user_ns, gid),
8480 				  audit_get_sessionid(current));
8481 		}
8482 
8483 		dev_change_rx_flags(dev, IFF_PROMISC);
8484 	}
8485 	if (notify)
8486 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8487 	return 0;
8488 }
8489 
8490 /**
8491  *	dev_set_promiscuity	- update promiscuity count on a device
8492  *	@dev: device
8493  *	@inc: modifier
8494  *
8495  *	Add or remove promiscuity from a device. While the count in the device
8496  *	remains above zero the interface remains promiscuous. Once it hits zero
8497  *	the device reverts back to normal filtering operation. A negative inc
8498  *	value is used to drop promiscuity on the device.
8499  *	Return 0 if successful or a negative errno code on error.
8500  */
8501 int dev_set_promiscuity(struct net_device *dev, int inc)
8502 {
8503 	unsigned int old_flags = dev->flags;
8504 	int err;
8505 
8506 	err = __dev_set_promiscuity(dev, inc, true);
8507 	if (err < 0)
8508 		return err;
8509 	if (dev->flags != old_flags)
8510 		dev_set_rx_mode(dev);
8511 	return err;
8512 }
8513 EXPORT_SYMBOL(dev_set_promiscuity);
8514 
8515 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8516 {
8517 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8518 
8519 	ASSERT_RTNL();
8520 
8521 	dev->flags |= IFF_ALLMULTI;
8522 	dev->allmulti += inc;
8523 	if (dev->allmulti == 0) {
8524 		/*
8525 		 * Avoid overflow.
8526 		 * If inc causes overflow, untouch allmulti and return error.
8527 		 */
8528 		if (inc < 0)
8529 			dev->flags &= ~IFF_ALLMULTI;
8530 		else {
8531 			dev->allmulti -= inc;
8532 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8533 			return -EOVERFLOW;
8534 		}
8535 	}
8536 	if (dev->flags ^ old_flags) {
8537 		netdev_info(dev, "%s allmulticast mode\n",
8538 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
8539 		dev_change_rx_flags(dev, IFF_ALLMULTI);
8540 		dev_set_rx_mode(dev);
8541 		if (notify)
8542 			__dev_notify_flags(dev, old_flags,
8543 					   dev->gflags ^ old_gflags, 0, NULL);
8544 	}
8545 	return 0;
8546 }
8547 
8548 /**
8549  *	dev_set_allmulti	- update allmulti count on a device
8550  *	@dev: device
8551  *	@inc: modifier
8552  *
8553  *	Add or remove reception of all multicast frames to a device. While the
8554  *	count in the device remains above zero the interface remains listening
8555  *	to all interfaces. Once it hits zero the device reverts back to normal
8556  *	filtering operation. A negative @inc value is used to drop the counter
8557  *	when releasing a resource needing all multicasts.
8558  *	Return 0 if successful or a negative errno code on error.
8559  */
8560 
8561 int dev_set_allmulti(struct net_device *dev, int inc)
8562 {
8563 	return __dev_set_allmulti(dev, inc, true);
8564 }
8565 EXPORT_SYMBOL(dev_set_allmulti);
8566 
8567 /*
8568  *	Upload unicast and multicast address lists to device and
8569  *	configure RX filtering. When the device doesn't support unicast
8570  *	filtering it is put in promiscuous mode while unicast addresses
8571  *	are present.
8572  */
8573 void __dev_set_rx_mode(struct net_device *dev)
8574 {
8575 	const struct net_device_ops *ops = dev->netdev_ops;
8576 
8577 	/* dev_open will call this function so the list will stay sane. */
8578 	if (!(dev->flags&IFF_UP))
8579 		return;
8580 
8581 	if (!netif_device_present(dev))
8582 		return;
8583 
8584 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8585 		/* Unicast addresses changes may only happen under the rtnl,
8586 		 * therefore calling __dev_set_promiscuity here is safe.
8587 		 */
8588 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8589 			__dev_set_promiscuity(dev, 1, false);
8590 			dev->uc_promisc = true;
8591 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8592 			__dev_set_promiscuity(dev, -1, false);
8593 			dev->uc_promisc = false;
8594 		}
8595 	}
8596 
8597 	if (ops->ndo_set_rx_mode)
8598 		ops->ndo_set_rx_mode(dev);
8599 }
8600 
8601 void dev_set_rx_mode(struct net_device *dev)
8602 {
8603 	netif_addr_lock_bh(dev);
8604 	__dev_set_rx_mode(dev);
8605 	netif_addr_unlock_bh(dev);
8606 }
8607 
8608 /**
8609  *	dev_get_flags - get flags reported to userspace
8610  *	@dev: device
8611  *
8612  *	Get the combination of flag bits exported through APIs to userspace.
8613  */
8614 unsigned int dev_get_flags(const struct net_device *dev)
8615 {
8616 	unsigned int flags;
8617 
8618 	flags = (dev->flags & ~(IFF_PROMISC |
8619 				IFF_ALLMULTI |
8620 				IFF_RUNNING |
8621 				IFF_LOWER_UP |
8622 				IFF_DORMANT)) |
8623 		(dev->gflags & (IFF_PROMISC |
8624 				IFF_ALLMULTI));
8625 
8626 	if (netif_running(dev)) {
8627 		if (netif_oper_up(dev))
8628 			flags |= IFF_RUNNING;
8629 		if (netif_carrier_ok(dev))
8630 			flags |= IFF_LOWER_UP;
8631 		if (netif_dormant(dev))
8632 			flags |= IFF_DORMANT;
8633 	}
8634 
8635 	return flags;
8636 }
8637 EXPORT_SYMBOL(dev_get_flags);
8638 
8639 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8640 		       struct netlink_ext_ack *extack)
8641 {
8642 	unsigned int old_flags = dev->flags;
8643 	int ret;
8644 
8645 	ASSERT_RTNL();
8646 
8647 	/*
8648 	 *	Set the flags on our device.
8649 	 */
8650 
8651 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8652 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8653 			       IFF_AUTOMEDIA)) |
8654 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8655 				    IFF_ALLMULTI));
8656 
8657 	/*
8658 	 *	Load in the correct multicast list now the flags have changed.
8659 	 */
8660 
8661 	if ((old_flags ^ flags) & IFF_MULTICAST)
8662 		dev_change_rx_flags(dev, IFF_MULTICAST);
8663 
8664 	dev_set_rx_mode(dev);
8665 
8666 	/*
8667 	 *	Have we downed the interface. We handle IFF_UP ourselves
8668 	 *	according to user attempts to set it, rather than blindly
8669 	 *	setting it.
8670 	 */
8671 
8672 	ret = 0;
8673 	if ((old_flags ^ flags) & IFF_UP) {
8674 		if (old_flags & IFF_UP)
8675 			__dev_close(dev);
8676 		else
8677 			ret = __dev_open(dev, extack);
8678 	}
8679 
8680 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
8681 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
8682 		unsigned int old_flags = dev->flags;
8683 
8684 		dev->gflags ^= IFF_PROMISC;
8685 
8686 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
8687 			if (dev->flags != old_flags)
8688 				dev_set_rx_mode(dev);
8689 	}
8690 
8691 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8692 	 * is important. Some (broken) drivers set IFF_PROMISC, when
8693 	 * IFF_ALLMULTI is requested not asking us and not reporting.
8694 	 */
8695 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8696 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8697 
8698 		dev->gflags ^= IFF_ALLMULTI;
8699 		__dev_set_allmulti(dev, inc, false);
8700 	}
8701 
8702 	return ret;
8703 }
8704 
8705 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8706 			unsigned int gchanges, u32 portid,
8707 			const struct nlmsghdr *nlh)
8708 {
8709 	unsigned int changes = dev->flags ^ old_flags;
8710 
8711 	if (gchanges)
8712 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8713 
8714 	if (changes & IFF_UP) {
8715 		if (dev->flags & IFF_UP)
8716 			call_netdevice_notifiers(NETDEV_UP, dev);
8717 		else
8718 			call_netdevice_notifiers(NETDEV_DOWN, dev);
8719 	}
8720 
8721 	if (dev->flags & IFF_UP &&
8722 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8723 		struct netdev_notifier_change_info change_info = {
8724 			.info = {
8725 				.dev = dev,
8726 			},
8727 			.flags_changed = changes,
8728 		};
8729 
8730 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8731 	}
8732 }
8733 
8734 /**
8735  *	dev_change_flags - change device settings
8736  *	@dev: device
8737  *	@flags: device state flags
8738  *	@extack: netlink extended ack
8739  *
8740  *	Change settings on device based state flags. The flags are
8741  *	in the userspace exported format.
8742  */
8743 int dev_change_flags(struct net_device *dev, unsigned int flags,
8744 		     struct netlink_ext_ack *extack)
8745 {
8746 	int ret;
8747 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8748 
8749 	ret = __dev_change_flags(dev, flags, extack);
8750 	if (ret < 0)
8751 		return ret;
8752 
8753 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8754 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
8755 	return ret;
8756 }
8757 EXPORT_SYMBOL(dev_change_flags);
8758 
8759 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8760 {
8761 	const struct net_device_ops *ops = dev->netdev_ops;
8762 
8763 	if (ops->ndo_change_mtu)
8764 		return ops->ndo_change_mtu(dev, new_mtu);
8765 
8766 	/* Pairs with all the lockless reads of dev->mtu in the stack */
8767 	WRITE_ONCE(dev->mtu, new_mtu);
8768 	return 0;
8769 }
8770 EXPORT_SYMBOL(__dev_set_mtu);
8771 
8772 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8773 		     struct netlink_ext_ack *extack)
8774 {
8775 	/* MTU must be positive, and in range */
8776 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8777 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8778 		return -EINVAL;
8779 	}
8780 
8781 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8782 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8783 		return -EINVAL;
8784 	}
8785 	return 0;
8786 }
8787 
8788 /**
8789  *	dev_set_mtu_ext - Change maximum transfer unit
8790  *	@dev: device
8791  *	@new_mtu: new transfer unit
8792  *	@extack: netlink extended ack
8793  *
8794  *	Change the maximum transfer size of the network device.
8795  */
8796 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8797 		    struct netlink_ext_ack *extack)
8798 {
8799 	int err, orig_mtu;
8800 
8801 	if (new_mtu == dev->mtu)
8802 		return 0;
8803 
8804 	err = dev_validate_mtu(dev, new_mtu, extack);
8805 	if (err)
8806 		return err;
8807 
8808 	if (!netif_device_present(dev))
8809 		return -ENODEV;
8810 
8811 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8812 	err = notifier_to_errno(err);
8813 	if (err)
8814 		return err;
8815 
8816 	orig_mtu = dev->mtu;
8817 	err = __dev_set_mtu(dev, new_mtu);
8818 
8819 	if (!err) {
8820 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8821 						   orig_mtu);
8822 		err = notifier_to_errno(err);
8823 		if (err) {
8824 			/* setting mtu back and notifying everyone again,
8825 			 * so that they have a chance to revert changes.
8826 			 */
8827 			__dev_set_mtu(dev, orig_mtu);
8828 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8829 						     new_mtu);
8830 		}
8831 	}
8832 	return err;
8833 }
8834 
8835 int dev_set_mtu(struct net_device *dev, int new_mtu)
8836 {
8837 	struct netlink_ext_ack extack;
8838 	int err;
8839 
8840 	memset(&extack, 0, sizeof(extack));
8841 	err = dev_set_mtu_ext(dev, new_mtu, &extack);
8842 	if (err && extack._msg)
8843 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8844 	return err;
8845 }
8846 EXPORT_SYMBOL(dev_set_mtu);
8847 
8848 /**
8849  *	dev_change_tx_queue_len - Change TX queue length of a netdevice
8850  *	@dev: device
8851  *	@new_len: new tx queue length
8852  */
8853 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8854 {
8855 	unsigned int orig_len = dev->tx_queue_len;
8856 	int res;
8857 
8858 	if (new_len != (unsigned int)new_len)
8859 		return -ERANGE;
8860 
8861 	if (new_len != orig_len) {
8862 		dev->tx_queue_len = new_len;
8863 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8864 		res = notifier_to_errno(res);
8865 		if (res)
8866 			goto err_rollback;
8867 		res = dev_qdisc_change_tx_queue_len(dev);
8868 		if (res)
8869 			goto err_rollback;
8870 	}
8871 
8872 	return 0;
8873 
8874 err_rollback:
8875 	netdev_err(dev, "refused to change device tx_queue_len\n");
8876 	dev->tx_queue_len = orig_len;
8877 	return res;
8878 }
8879 
8880 /**
8881  *	dev_set_group - Change group this device belongs to
8882  *	@dev: device
8883  *	@new_group: group this device should belong to
8884  */
8885 void dev_set_group(struct net_device *dev, int new_group)
8886 {
8887 	dev->group = new_group;
8888 }
8889 
8890 /**
8891  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8892  *	@dev: device
8893  *	@addr: new address
8894  *	@extack: netlink extended ack
8895  */
8896 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8897 			      struct netlink_ext_ack *extack)
8898 {
8899 	struct netdev_notifier_pre_changeaddr_info info = {
8900 		.info.dev = dev,
8901 		.info.extack = extack,
8902 		.dev_addr = addr,
8903 	};
8904 	int rc;
8905 
8906 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8907 	return notifier_to_errno(rc);
8908 }
8909 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8910 
8911 /**
8912  *	dev_set_mac_address - Change Media Access Control Address
8913  *	@dev: device
8914  *	@sa: new address
8915  *	@extack: netlink extended ack
8916  *
8917  *	Change the hardware (MAC) address of the device
8918  */
8919 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8920 			struct netlink_ext_ack *extack)
8921 {
8922 	const struct net_device_ops *ops = dev->netdev_ops;
8923 	int err;
8924 
8925 	if (!ops->ndo_set_mac_address)
8926 		return -EOPNOTSUPP;
8927 	if (sa->sa_family != dev->type)
8928 		return -EINVAL;
8929 	if (!netif_device_present(dev))
8930 		return -ENODEV;
8931 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8932 	if (err)
8933 		return err;
8934 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8935 		err = ops->ndo_set_mac_address(dev, sa);
8936 		if (err)
8937 			return err;
8938 	}
8939 	dev->addr_assign_type = NET_ADDR_SET;
8940 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8941 	add_device_randomness(dev->dev_addr, dev->addr_len);
8942 	return 0;
8943 }
8944 EXPORT_SYMBOL(dev_set_mac_address);
8945 
8946 static DECLARE_RWSEM(dev_addr_sem);
8947 
8948 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8949 			     struct netlink_ext_ack *extack)
8950 {
8951 	int ret;
8952 
8953 	down_write(&dev_addr_sem);
8954 	ret = dev_set_mac_address(dev, sa, extack);
8955 	up_write(&dev_addr_sem);
8956 	return ret;
8957 }
8958 EXPORT_SYMBOL(dev_set_mac_address_user);
8959 
8960 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8961 {
8962 	size_t size = sizeof(sa->sa_data_min);
8963 	struct net_device *dev;
8964 	int ret = 0;
8965 
8966 	down_read(&dev_addr_sem);
8967 	rcu_read_lock();
8968 
8969 	dev = dev_get_by_name_rcu(net, dev_name);
8970 	if (!dev) {
8971 		ret = -ENODEV;
8972 		goto unlock;
8973 	}
8974 	if (!dev->addr_len)
8975 		memset(sa->sa_data, 0, size);
8976 	else
8977 		memcpy(sa->sa_data, dev->dev_addr,
8978 		       min_t(size_t, size, dev->addr_len));
8979 	sa->sa_family = dev->type;
8980 
8981 unlock:
8982 	rcu_read_unlock();
8983 	up_read(&dev_addr_sem);
8984 	return ret;
8985 }
8986 EXPORT_SYMBOL(dev_get_mac_address);
8987 
8988 /**
8989  *	dev_change_carrier - Change device carrier
8990  *	@dev: device
8991  *	@new_carrier: new value
8992  *
8993  *	Change device carrier
8994  */
8995 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8996 {
8997 	const struct net_device_ops *ops = dev->netdev_ops;
8998 
8999 	if (!ops->ndo_change_carrier)
9000 		return -EOPNOTSUPP;
9001 	if (!netif_device_present(dev))
9002 		return -ENODEV;
9003 	return ops->ndo_change_carrier(dev, new_carrier);
9004 }
9005 
9006 /**
9007  *	dev_get_phys_port_id - Get device physical port ID
9008  *	@dev: device
9009  *	@ppid: port ID
9010  *
9011  *	Get device physical port ID
9012  */
9013 int dev_get_phys_port_id(struct net_device *dev,
9014 			 struct netdev_phys_item_id *ppid)
9015 {
9016 	const struct net_device_ops *ops = dev->netdev_ops;
9017 
9018 	if (!ops->ndo_get_phys_port_id)
9019 		return -EOPNOTSUPP;
9020 	return ops->ndo_get_phys_port_id(dev, ppid);
9021 }
9022 
9023 /**
9024  *	dev_get_phys_port_name - Get device physical port name
9025  *	@dev: device
9026  *	@name: port name
9027  *	@len: limit of bytes to copy to name
9028  *
9029  *	Get device physical port name
9030  */
9031 int dev_get_phys_port_name(struct net_device *dev,
9032 			   char *name, size_t len)
9033 {
9034 	const struct net_device_ops *ops = dev->netdev_ops;
9035 	int err;
9036 
9037 	if (ops->ndo_get_phys_port_name) {
9038 		err = ops->ndo_get_phys_port_name(dev, name, len);
9039 		if (err != -EOPNOTSUPP)
9040 			return err;
9041 	}
9042 	return devlink_compat_phys_port_name_get(dev, name, len);
9043 }
9044 
9045 /**
9046  *	dev_get_port_parent_id - Get the device's port parent identifier
9047  *	@dev: network device
9048  *	@ppid: pointer to a storage for the port's parent identifier
9049  *	@recurse: allow/disallow recursion to lower devices
9050  *
9051  *	Get the devices's port parent identifier
9052  */
9053 int dev_get_port_parent_id(struct net_device *dev,
9054 			   struct netdev_phys_item_id *ppid,
9055 			   bool recurse)
9056 {
9057 	const struct net_device_ops *ops = dev->netdev_ops;
9058 	struct netdev_phys_item_id first = { };
9059 	struct net_device *lower_dev;
9060 	struct list_head *iter;
9061 	int err;
9062 
9063 	if (ops->ndo_get_port_parent_id) {
9064 		err = ops->ndo_get_port_parent_id(dev, ppid);
9065 		if (err != -EOPNOTSUPP)
9066 			return err;
9067 	}
9068 
9069 	err = devlink_compat_switch_id_get(dev, ppid);
9070 	if (!recurse || err != -EOPNOTSUPP)
9071 		return err;
9072 
9073 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9074 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9075 		if (err)
9076 			break;
9077 		if (!first.id_len)
9078 			first = *ppid;
9079 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9080 			return -EOPNOTSUPP;
9081 	}
9082 
9083 	return err;
9084 }
9085 EXPORT_SYMBOL(dev_get_port_parent_id);
9086 
9087 /**
9088  *	netdev_port_same_parent_id - Indicate if two network devices have
9089  *	the same port parent identifier
9090  *	@a: first network device
9091  *	@b: second network device
9092  */
9093 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9094 {
9095 	struct netdev_phys_item_id a_id = { };
9096 	struct netdev_phys_item_id b_id = { };
9097 
9098 	if (dev_get_port_parent_id(a, &a_id, true) ||
9099 	    dev_get_port_parent_id(b, &b_id, true))
9100 		return false;
9101 
9102 	return netdev_phys_item_id_same(&a_id, &b_id);
9103 }
9104 EXPORT_SYMBOL(netdev_port_same_parent_id);
9105 
9106 /**
9107  *	dev_change_proto_down - set carrier according to proto_down.
9108  *
9109  *	@dev: device
9110  *	@proto_down: new value
9111  */
9112 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9113 {
9114 	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9115 		return -EOPNOTSUPP;
9116 	if (!netif_device_present(dev))
9117 		return -ENODEV;
9118 	if (proto_down)
9119 		netif_carrier_off(dev);
9120 	else
9121 		netif_carrier_on(dev);
9122 	dev->proto_down = proto_down;
9123 	return 0;
9124 }
9125 
9126 /**
9127  *	dev_change_proto_down_reason - proto down reason
9128  *
9129  *	@dev: device
9130  *	@mask: proto down mask
9131  *	@value: proto down value
9132  */
9133 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9134 				  u32 value)
9135 {
9136 	int b;
9137 
9138 	if (!mask) {
9139 		dev->proto_down_reason = value;
9140 	} else {
9141 		for_each_set_bit(b, &mask, 32) {
9142 			if (value & (1 << b))
9143 				dev->proto_down_reason |= BIT(b);
9144 			else
9145 				dev->proto_down_reason &= ~BIT(b);
9146 		}
9147 	}
9148 }
9149 
9150 struct bpf_xdp_link {
9151 	struct bpf_link link;
9152 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9153 	int flags;
9154 };
9155 
9156 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9157 {
9158 	if (flags & XDP_FLAGS_HW_MODE)
9159 		return XDP_MODE_HW;
9160 	if (flags & XDP_FLAGS_DRV_MODE)
9161 		return XDP_MODE_DRV;
9162 	if (flags & XDP_FLAGS_SKB_MODE)
9163 		return XDP_MODE_SKB;
9164 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9165 }
9166 
9167 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9168 {
9169 	switch (mode) {
9170 	case XDP_MODE_SKB:
9171 		return generic_xdp_install;
9172 	case XDP_MODE_DRV:
9173 	case XDP_MODE_HW:
9174 		return dev->netdev_ops->ndo_bpf;
9175 	default:
9176 		return NULL;
9177 	}
9178 }
9179 
9180 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9181 					 enum bpf_xdp_mode mode)
9182 {
9183 	return dev->xdp_state[mode].link;
9184 }
9185 
9186 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9187 				     enum bpf_xdp_mode mode)
9188 {
9189 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9190 
9191 	if (link)
9192 		return link->link.prog;
9193 	return dev->xdp_state[mode].prog;
9194 }
9195 
9196 u8 dev_xdp_prog_count(struct net_device *dev)
9197 {
9198 	u8 count = 0;
9199 	int i;
9200 
9201 	for (i = 0; i < __MAX_XDP_MODE; i++)
9202 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9203 			count++;
9204 	return count;
9205 }
9206 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9207 
9208 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9209 {
9210 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9211 
9212 	return prog ? prog->aux->id : 0;
9213 }
9214 
9215 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9216 			     struct bpf_xdp_link *link)
9217 {
9218 	dev->xdp_state[mode].link = link;
9219 	dev->xdp_state[mode].prog = NULL;
9220 }
9221 
9222 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9223 			     struct bpf_prog *prog)
9224 {
9225 	dev->xdp_state[mode].link = NULL;
9226 	dev->xdp_state[mode].prog = prog;
9227 }
9228 
9229 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9230 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9231 			   u32 flags, struct bpf_prog *prog)
9232 {
9233 	struct netdev_bpf xdp;
9234 	int err;
9235 
9236 	memset(&xdp, 0, sizeof(xdp));
9237 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9238 	xdp.extack = extack;
9239 	xdp.flags = flags;
9240 	xdp.prog = prog;
9241 
9242 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9243 	 * "moved" into driver), so they don't increment it on their own, but
9244 	 * they do decrement refcnt when program is detached or replaced.
9245 	 * Given net_device also owns link/prog, we need to bump refcnt here
9246 	 * to prevent drivers from underflowing it.
9247 	 */
9248 	if (prog)
9249 		bpf_prog_inc(prog);
9250 	err = bpf_op(dev, &xdp);
9251 	if (err) {
9252 		if (prog)
9253 			bpf_prog_put(prog);
9254 		return err;
9255 	}
9256 
9257 	if (mode != XDP_MODE_HW)
9258 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9259 
9260 	return 0;
9261 }
9262 
9263 static void dev_xdp_uninstall(struct net_device *dev)
9264 {
9265 	struct bpf_xdp_link *link;
9266 	struct bpf_prog *prog;
9267 	enum bpf_xdp_mode mode;
9268 	bpf_op_t bpf_op;
9269 
9270 	ASSERT_RTNL();
9271 
9272 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9273 		prog = dev_xdp_prog(dev, mode);
9274 		if (!prog)
9275 			continue;
9276 
9277 		bpf_op = dev_xdp_bpf_op(dev, mode);
9278 		if (!bpf_op)
9279 			continue;
9280 
9281 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9282 
9283 		/* auto-detach link from net device */
9284 		link = dev_xdp_link(dev, mode);
9285 		if (link)
9286 			link->dev = NULL;
9287 		else
9288 			bpf_prog_put(prog);
9289 
9290 		dev_xdp_set_link(dev, mode, NULL);
9291 	}
9292 }
9293 
9294 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9295 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9296 			  struct bpf_prog *old_prog, u32 flags)
9297 {
9298 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9299 	struct bpf_prog *cur_prog;
9300 	struct net_device *upper;
9301 	struct list_head *iter;
9302 	enum bpf_xdp_mode mode;
9303 	bpf_op_t bpf_op;
9304 	int err;
9305 
9306 	ASSERT_RTNL();
9307 
9308 	/* either link or prog attachment, never both */
9309 	if (link && (new_prog || old_prog))
9310 		return -EINVAL;
9311 	/* link supports only XDP mode flags */
9312 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9313 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9314 		return -EINVAL;
9315 	}
9316 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9317 	if (num_modes > 1) {
9318 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9319 		return -EINVAL;
9320 	}
9321 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9322 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9323 		NL_SET_ERR_MSG(extack,
9324 			       "More than one program loaded, unset mode is ambiguous");
9325 		return -EINVAL;
9326 	}
9327 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9328 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9329 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9330 		return -EINVAL;
9331 	}
9332 
9333 	mode = dev_xdp_mode(dev, flags);
9334 	/* can't replace attached link */
9335 	if (dev_xdp_link(dev, mode)) {
9336 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9337 		return -EBUSY;
9338 	}
9339 
9340 	/* don't allow if an upper device already has a program */
9341 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9342 		if (dev_xdp_prog_count(upper) > 0) {
9343 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9344 			return -EEXIST;
9345 		}
9346 	}
9347 
9348 	cur_prog = dev_xdp_prog(dev, mode);
9349 	/* can't replace attached prog with link */
9350 	if (link && cur_prog) {
9351 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9352 		return -EBUSY;
9353 	}
9354 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9355 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
9356 		return -EEXIST;
9357 	}
9358 
9359 	/* put effective new program into new_prog */
9360 	if (link)
9361 		new_prog = link->link.prog;
9362 
9363 	if (new_prog) {
9364 		bool offload = mode == XDP_MODE_HW;
9365 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9366 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
9367 
9368 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9369 			NL_SET_ERR_MSG(extack, "XDP program already attached");
9370 			return -EBUSY;
9371 		}
9372 		if (!offload && dev_xdp_prog(dev, other_mode)) {
9373 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9374 			return -EEXIST;
9375 		}
9376 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9377 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9378 			return -EINVAL;
9379 		}
9380 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9381 			NL_SET_ERR_MSG(extack, "Program bound to different device");
9382 			return -EINVAL;
9383 		}
9384 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9385 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9386 			return -EINVAL;
9387 		}
9388 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9389 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9390 			return -EINVAL;
9391 		}
9392 	}
9393 
9394 	/* don't call drivers if the effective program didn't change */
9395 	if (new_prog != cur_prog) {
9396 		bpf_op = dev_xdp_bpf_op(dev, mode);
9397 		if (!bpf_op) {
9398 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9399 			return -EOPNOTSUPP;
9400 		}
9401 
9402 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9403 		if (err)
9404 			return err;
9405 	}
9406 
9407 	if (link)
9408 		dev_xdp_set_link(dev, mode, link);
9409 	else
9410 		dev_xdp_set_prog(dev, mode, new_prog);
9411 	if (cur_prog)
9412 		bpf_prog_put(cur_prog);
9413 
9414 	return 0;
9415 }
9416 
9417 static int dev_xdp_attach_link(struct net_device *dev,
9418 			       struct netlink_ext_ack *extack,
9419 			       struct bpf_xdp_link *link)
9420 {
9421 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9422 }
9423 
9424 static int dev_xdp_detach_link(struct net_device *dev,
9425 			       struct netlink_ext_ack *extack,
9426 			       struct bpf_xdp_link *link)
9427 {
9428 	enum bpf_xdp_mode mode;
9429 	bpf_op_t bpf_op;
9430 
9431 	ASSERT_RTNL();
9432 
9433 	mode = dev_xdp_mode(dev, link->flags);
9434 	if (dev_xdp_link(dev, mode) != link)
9435 		return -EINVAL;
9436 
9437 	bpf_op = dev_xdp_bpf_op(dev, mode);
9438 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9439 	dev_xdp_set_link(dev, mode, NULL);
9440 	return 0;
9441 }
9442 
9443 static void bpf_xdp_link_release(struct bpf_link *link)
9444 {
9445 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9446 
9447 	rtnl_lock();
9448 
9449 	/* if racing with net_device's tear down, xdp_link->dev might be
9450 	 * already NULL, in which case link was already auto-detached
9451 	 */
9452 	if (xdp_link->dev) {
9453 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9454 		xdp_link->dev = NULL;
9455 	}
9456 
9457 	rtnl_unlock();
9458 }
9459 
9460 static int bpf_xdp_link_detach(struct bpf_link *link)
9461 {
9462 	bpf_xdp_link_release(link);
9463 	return 0;
9464 }
9465 
9466 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9467 {
9468 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9469 
9470 	kfree(xdp_link);
9471 }
9472 
9473 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9474 				     struct seq_file *seq)
9475 {
9476 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9477 	u32 ifindex = 0;
9478 
9479 	rtnl_lock();
9480 	if (xdp_link->dev)
9481 		ifindex = xdp_link->dev->ifindex;
9482 	rtnl_unlock();
9483 
9484 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
9485 }
9486 
9487 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9488 				       struct bpf_link_info *info)
9489 {
9490 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9491 	u32 ifindex = 0;
9492 
9493 	rtnl_lock();
9494 	if (xdp_link->dev)
9495 		ifindex = xdp_link->dev->ifindex;
9496 	rtnl_unlock();
9497 
9498 	info->xdp.ifindex = ifindex;
9499 	return 0;
9500 }
9501 
9502 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9503 			       struct bpf_prog *old_prog)
9504 {
9505 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9506 	enum bpf_xdp_mode mode;
9507 	bpf_op_t bpf_op;
9508 	int err = 0;
9509 
9510 	rtnl_lock();
9511 
9512 	/* link might have been auto-released already, so fail */
9513 	if (!xdp_link->dev) {
9514 		err = -ENOLINK;
9515 		goto out_unlock;
9516 	}
9517 
9518 	if (old_prog && link->prog != old_prog) {
9519 		err = -EPERM;
9520 		goto out_unlock;
9521 	}
9522 	old_prog = link->prog;
9523 	if (old_prog->type != new_prog->type ||
9524 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
9525 		err = -EINVAL;
9526 		goto out_unlock;
9527 	}
9528 
9529 	if (old_prog == new_prog) {
9530 		/* no-op, don't disturb drivers */
9531 		bpf_prog_put(new_prog);
9532 		goto out_unlock;
9533 	}
9534 
9535 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9536 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9537 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9538 			      xdp_link->flags, new_prog);
9539 	if (err)
9540 		goto out_unlock;
9541 
9542 	old_prog = xchg(&link->prog, new_prog);
9543 	bpf_prog_put(old_prog);
9544 
9545 out_unlock:
9546 	rtnl_unlock();
9547 	return err;
9548 }
9549 
9550 static const struct bpf_link_ops bpf_xdp_link_lops = {
9551 	.release = bpf_xdp_link_release,
9552 	.dealloc = bpf_xdp_link_dealloc,
9553 	.detach = bpf_xdp_link_detach,
9554 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
9555 	.fill_link_info = bpf_xdp_link_fill_link_info,
9556 	.update_prog = bpf_xdp_link_update,
9557 };
9558 
9559 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9560 {
9561 	struct net *net = current->nsproxy->net_ns;
9562 	struct bpf_link_primer link_primer;
9563 	struct netlink_ext_ack extack = {};
9564 	struct bpf_xdp_link *link;
9565 	struct net_device *dev;
9566 	int err, fd;
9567 
9568 	rtnl_lock();
9569 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9570 	if (!dev) {
9571 		rtnl_unlock();
9572 		return -EINVAL;
9573 	}
9574 
9575 	link = kzalloc(sizeof(*link), GFP_USER);
9576 	if (!link) {
9577 		err = -ENOMEM;
9578 		goto unlock;
9579 	}
9580 
9581 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9582 	link->dev = dev;
9583 	link->flags = attr->link_create.flags;
9584 
9585 	err = bpf_link_prime(&link->link, &link_primer);
9586 	if (err) {
9587 		kfree(link);
9588 		goto unlock;
9589 	}
9590 
9591 	err = dev_xdp_attach_link(dev, &extack, link);
9592 	rtnl_unlock();
9593 
9594 	if (err) {
9595 		link->dev = NULL;
9596 		bpf_link_cleanup(&link_primer);
9597 		trace_bpf_xdp_link_attach_failed(extack._msg);
9598 		goto out_put_dev;
9599 	}
9600 
9601 	fd = bpf_link_settle(&link_primer);
9602 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
9603 	dev_put(dev);
9604 	return fd;
9605 
9606 unlock:
9607 	rtnl_unlock();
9608 
9609 out_put_dev:
9610 	dev_put(dev);
9611 	return err;
9612 }
9613 
9614 /**
9615  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
9616  *	@dev: device
9617  *	@extack: netlink extended ack
9618  *	@fd: new program fd or negative value to clear
9619  *	@expected_fd: old program fd that userspace expects to replace or clear
9620  *	@flags: xdp-related flags
9621  *
9622  *	Set or clear a bpf program for a device
9623  */
9624 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9625 		      int fd, int expected_fd, u32 flags)
9626 {
9627 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9628 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9629 	int err;
9630 
9631 	ASSERT_RTNL();
9632 
9633 	if (fd >= 0) {
9634 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9635 						 mode != XDP_MODE_SKB);
9636 		if (IS_ERR(new_prog))
9637 			return PTR_ERR(new_prog);
9638 	}
9639 
9640 	if (expected_fd >= 0) {
9641 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9642 						 mode != XDP_MODE_SKB);
9643 		if (IS_ERR(old_prog)) {
9644 			err = PTR_ERR(old_prog);
9645 			old_prog = NULL;
9646 			goto err_out;
9647 		}
9648 	}
9649 
9650 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9651 
9652 err_out:
9653 	if (err && new_prog)
9654 		bpf_prog_put(new_prog);
9655 	if (old_prog)
9656 		bpf_prog_put(old_prog);
9657 	return err;
9658 }
9659 
9660 /**
9661  * dev_index_reserve() - allocate an ifindex in a namespace
9662  * @net: the applicable net namespace
9663  * @ifindex: requested ifindex, pass %0 to get one allocated
9664  *
9665  * Allocate a ifindex for a new device. Caller must either use the ifindex
9666  * to store the device (via list_netdevice()) or call dev_index_release()
9667  * to give the index up.
9668  *
9669  * Return: a suitable unique value for a new device interface number or -errno.
9670  */
9671 static int dev_index_reserve(struct net *net, u32 ifindex)
9672 {
9673 	int err;
9674 
9675 	if (ifindex > INT_MAX) {
9676 		DEBUG_NET_WARN_ON_ONCE(1);
9677 		return -EINVAL;
9678 	}
9679 
9680 	if (!ifindex)
9681 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9682 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
9683 	else
9684 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9685 	if (err < 0)
9686 		return err;
9687 
9688 	return ifindex;
9689 }
9690 
9691 static void dev_index_release(struct net *net, int ifindex)
9692 {
9693 	/* Expect only unused indexes, unlist_netdevice() removes the used */
9694 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9695 }
9696 
9697 /* Delayed registration/unregisteration */
9698 LIST_HEAD(net_todo_list);
9699 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9700 
9701 static void net_set_todo(struct net_device *dev)
9702 {
9703 	list_add_tail(&dev->todo_list, &net_todo_list);
9704 	atomic_inc(&dev_net(dev)->dev_unreg_count);
9705 }
9706 
9707 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9708 	struct net_device *upper, netdev_features_t features)
9709 {
9710 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9711 	netdev_features_t feature;
9712 	int feature_bit;
9713 
9714 	for_each_netdev_feature(upper_disables, feature_bit) {
9715 		feature = __NETIF_F_BIT(feature_bit);
9716 		if (!(upper->wanted_features & feature)
9717 		    && (features & feature)) {
9718 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9719 				   &feature, upper->name);
9720 			features &= ~feature;
9721 		}
9722 	}
9723 
9724 	return features;
9725 }
9726 
9727 static void netdev_sync_lower_features(struct net_device *upper,
9728 	struct net_device *lower, netdev_features_t features)
9729 {
9730 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9731 	netdev_features_t feature;
9732 	int feature_bit;
9733 
9734 	for_each_netdev_feature(upper_disables, feature_bit) {
9735 		feature = __NETIF_F_BIT(feature_bit);
9736 		if (!(features & feature) && (lower->features & feature)) {
9737 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9738 				   &feature, lower->name);
9739 			lower->wanted_features &= ~feature;
9740 			__netdev_update_features(lower);
9741 
9742 			if (unlikely(lower->features & feature))
9743 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9744 					    &feature, lower->name);
9745 			else
9746 				netdev_features_change(lower);
9747 		}
9748 	}
9749 }
9750 
9751 static netdev_features_t netdev_fix_features(struct net_device *dev,
9752 	netdev_features_t features)
9753 {
9754 	/* Fix illegal checksum combinations */
9755 	if ((features & NETIF_F_HW_CSUM) &&
9756 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9757 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9758 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9759 	}
9760 
9761 	/* TSO requires that SG is present as well. */
9762 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9763 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9764 		features &= ~NETIF_F_ALL_TSO;
9765 	}
9766 
9767 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9768 					!(features & NETIF_F_IP_CSUM)) {
9769 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9770 		features &= ~NETIF_F_TSO;
9771 		features &= ~NETIF_F_TSO_ECN;
9772 	}
9773 
9774 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9775 					 !(features & NETIF_F_IPV6_CSUM)) {
9776 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9777 		features &= ~NETIF_F_TSO6;
9778 	}
9779 
9780 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9781 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9782 		features &= ~NETIF_F_TSO_MANGLEID;
9783 
9784 	/* TSO ECN requires that TSO is present as well. */
9785 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9786 		features &= ~NETIF_F_TSO_ECN;
9787 
9788 	/* Software GSO depends on SG. */
9789 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9790 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9791 		features &= ~NETIF_F_GSO;
9792 	}
9793 
9794 	/* GSO partial features require GSO partial be set */
9795 	if ((features & dev->gso_partial_features) &&
9796 	    !(features & NETIF_F_GSO_PARTIAL)) {
9797 		netdev_dbg(dev,
9798 			   "Dropping partially supported GSO features since no GSO partial.\n");
9799 		features &= ~dev->gso_partial_features;
9800 	}
9801 
9802 	if (!(features & NETIF_F_RXCSUM)) {
9803 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9804 		 * successfully merged by hardware must also have the
9805 		 * checksum verified by hardware.  If the user does not
9806 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
9807 		 */
9808 		if (features & NETIF_F_GRO_HW) {
9809 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9810 			features &= ~NETIF_F_GRO_HW;
9811 		}
9812 	}
9813 
9814 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
9815 	if (features & NETIF_F_RXFCS) {
9816 		if (features & NETIF_F_LRO) {
9817 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9818 			features &= ~NETIF_F_LRO;
9819 		}
9820 
9821 		if (features & NETIF_F_GRO_HW) {
9822 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9823 			features &= ~NETIF_F_GRO_HW;
9824 		}
9825 	}
9826 
9827 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9828 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9829 		features &= ~NETIF_F_LRO;
9830 	}
9831 
9832 	if (features & NETIF_F_HW_TLS_TX) {
9833 		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9834 			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9835 		bool hw_csum = features & NETIF_F_HW_CSUM;
9836 
9837 		if (!ip_csum && !hw_csum) {
9838 			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9839 			features &= ~NETIF_F_HW_TLS_TX;
9840 		}
9841 	}
9842 
9843 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9844 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9845 		features &= ~NETIF_F_HW_TLS_RX;
9846 	}
9847 
9848 	return features;
9849 }
9850 
9851 int __netdev_update_features(struct net_device *dev)
9852 {
9853 	struct net_device *upper, *lower;
9854 	netdev_features_t features;
9855 	struct list_head *iter;
9856 	int err = -1;
9857 
9858 	ASSERT_RTNL();
9859 
9860 	features = netdev_get_wanted_features(dev);
9861 
9862 	if (dev->netdev_ops->ndo_fix_features)
9863 		features = dev->netdev_ops->ndo_fix_features(dev, features);
9864 
9865 	/* driver might be less strict about feature dependencies */
9866 	features = netdev_fix_features(dev, features);
9867 
9868 	/* some features can't be enabled if they're off on an upper device */
9869 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
9870 		features = netdev_sync_upper_features(dev, upper, features);
9871 
9872 	if (dev->features == features)
9873 		goto sync_lower;
9874 
9875 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9876 		&dev->features, &features);
9877 
9878 	if (dev->netdev_ops->ndo_set_features)
9879 		err = dev->netdev_ops->ndo_set_features(dev, features);
9880 	else
9881 		err = 0;
9882 
9883 	if (unlikely(err < 0)) {
9884 		netdev_err(dev,
9885 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
9886 			err, &features, &dev->features);
9887 		/* return non-0 since some features might have changed and
9888 		 * it's better to fire a spurious notification than miss it
9889 		 */
9890 		return -1;
9891 	}
9892 
9893 sync_lower:
9894 	/* some features must be disabled on lower devices when disabled
9895 	 * on an upper device (think: bonding master or bridge)
9896 	 */
9897 	netdev_for_each_lower_dev(dev, lower, iter)
9898 		netdev_sync_lower_features(dev, lower, features);
9899 
9900 	if (!err) {
9901 		netdev_features_t diff = features ^ dev->features;
9902 
9903 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9904 			/* udp_tunnel_{get,drop}_rx_info both need
9905 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9906 			 * device, or they won't do anything.
9907 			 * Thus we need to update dev->features
9908 			 * *before* calling udp_tunnel_get_rx_info,
9909 			 * but *after* calling udp_tunnel_drop_rx_info.
9910 			 */
9911 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9912 				dev->features = features;
9913 				udp_tunnel_get_rx_info(dev);
9914 			} else {
9915 				udp_tunnel_drop_rx_info(dev);
9916 			}
9917 		}
9918 
9919 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9920 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9921 				dev->features = features;
9922 				err |= vlan_get_rx_ctag_filter_info(dev);
9923 			} else {
9924 				vlan_drop_rx_ctag_filter_info(dev);
9925 			}
9926 		}
9927 
9928 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9929 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9930 				dev->features = features;
9931 				err |= vlan_get_rx_stag_filter_info(dev);
9932 			} else {
9933 				vlan_drop_rx_stag_filter_info(dev);
9934 			}
9935 		}
9936 
9937 		dev->features = features;
9938 	}
9939 
9940 	return err < 0 ? 0 : 1;
9941 }
9942 
9943 /**
9944  *	netdev_update_features - recalculate device features
9945  *	@dev: the device to check
9946  *
9947  *	Recalculate dev->features set and send notifications if it
9948  *	has changed. Should be called after driver or hardware dependent
9949  *	conditions might have changed that influence the features.
9950  */
9951 void netdev_update_features(struct net_device *dev)
9952 {
9953 	if (__netdev_update_features(dev))
9954 		netdev_features_change(dev);
9955 }
9956 EXPORT_SYMBOL(netdev_update_features);
9957 
9958 /**
9959  *	netdev_change_features - recalculate device features
9960  *	@dev: the device to check
9961  *
9962  *	Recalculate dev->features set and send notifications even
9963  *	if they have not changed. Should be called instead of
9964  *	netdev_update_features() if also dev->vlan_features might
9965  *	have changed to allow the changes to be propagated to stacked
9966  *	VLAN devices.
9967  */
9968 void netdev_change_features(struct net_device *dev)
9969 {
9970 	__netdev_update_features(dev);
9971 	netdev_features_change(dev);
9972 }
9973 EXPORT_SYMBOL(netdev_change_features);
9974 
9975 /**
9976  *	netif_stacked_transfer_operstate -	transfer operstate
9977  *	@rootdev: the root or lower level device to transfer state from
9978  *	@dev: the device to transfer operstate to
9979  *
9980  *	Transfer operational state from root to device. This is normally
9981  *	called when a stacking relationship exists between the root
9982  *	device and the device(a leaf device).
9983  */
9984 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9985 					struct net_device *dev)
9986 {
9987 	if (rootdev->operstate == IF_OPER_DORMANT)
9988 		netif_dormant_on(dev);
9989 	else
9990 		netif_dormant_off(dev);
9991 
9992 	if (rootdev->operstate == IF_OPER_TESTING)
9993 		netif_testing_on(dev);
9994 	else
9995 		netif_testing_off(dev);
9996 
9997 	if (netif_carrier_ok(rootdev))
9998 		netif_carrier_on(dev);
9999 	else
10000 		netif_carrier_off(dev);
10001 }
10002 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10003 
10004 static int netif_alloc_rx_queues(struct net_device *dev)
10005 {
10006 	unsigned int i, count = dev->num_rx_queues;
10007 	struct netdev_rx_queue *rx;
10008 	size_t sz = count * sizeof(*rx);
10009 	int err = 0;
10010 
10011 	BUG_ON(count < 1);
10012 
10013 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10014 	if (!rx)
10015 		return -ENOMEM;
10016 
10017 	dev->_rx = rx;
10018 
10019 	for (i = 0; i < count; i++) {
10020 		rx[i].dev = dev;
10021 
10022 		/* XDP RX-queue setup */
10023 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10024 		if (err < 0)
10025 			goto err_rxq_info;
10026 	}
10027 	return 0;
10028 
10029 err_rxq_info:
10030 	/* Rollback successful reg's and free other resources */
10031 	while (i--)
10032 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10033 	kvfree(dev->_rx);
10034 	dev->_rx = NULL;
10035 	return err;
10036 }
10037 
10038 static void netif_free_rx_queues(struct net_device *dev)
10039 {
10040 	unsigned int i, count = dev->num_rx_queues;
10041 
10042 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10043 	if (!dev->_rx)
10044 		return;
10045 
10046 	for (i = 0; i < count; i++)
10047 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10048 
10049 	kvfree(dev->_rx);
10050 }
10051 
10052 static void netdev_init_one_queue(struct net_device *dev,
10053 				  struct netdev_queue *queue, void *_unused)
10054 {
10055 	/* Initialize queue lock */
10056 	spin_lock_init(&queue->_xmit_lock);
10057 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10058 	queue->xmit_lock_owner = -1;
10059 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10060 	queue->dev = dev;
10061 #ifdef CONFIG_BQL
10062 	dql_init(&queue->dql, HZ);
10063 #endif
10064 }
10065 
10066 static void netif_free_tx_queues(struct net_device *dev)
10067 {
10068 	kvfree(dev->_tx);
10069 }
10070 
10071 static int netif_alloc_netdev_queues(struct net_device *dev)
10072 {
10073 	unsigned int count = dev->num_tx_queues;
10074 	struct netdev_queue *tx;
10075 	size_t sz = count * sizeof(*tx);
10076 
10077 	if (count < 1 || count > 0xffff)
10078 		return -EINVAL;
10079 
10080 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10081 	if (!tx)
10082 		return -ENOMEM;
10083 
10084 	dev->_tx = tx;
10085 
10086 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10087 	spin_lock_init(&dev->tx_global_lock);
10088 
10089 	return 0;
10090 }
10091 
10092 void netif_tx_stop_all_queues(struct net_device *dev)
10093 {
10094 	unsigned int i;
10095 
10096 	for (i = 0; i < dev->num_tx_queues; i++) {
10097 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10098 
10099 		netif_tx_stop_queue(txq);
10100 	}
10101 }
10102 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10103 
10104 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10105 {
10106 	void __percpu *v;
10107 
10108 	/* Drivers implementing ndo_get_peer_dev must support tstat
10109 	 * accounting, so that skb_do_redirect() can bump the dev's
10110 	 * RX stats upon network namespace switch.
10111 	 */
10112 	if (dev->netdev_ops->ndo_get_peer_dev &&
10113 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10114 		return -EOPNOTSUPP;
10115 
10116 	switch (dev->pcpu_stat_type) {
10117 	case NETDEV_PCPU_STAT_NONE:
10118 		return 0;
10119 	case NETDEV_PCPU_STAT_LSTATS:
10120 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10121 		break;
10122 	case NETDEV_PCPU_STAT_TSTATS:
10123 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10124 		break;
10125 	case NETDEV_PCPU_STAT_DSTATS:
10126 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10127 		break;
10128 	default:
10129 		return -EINVAL;
10130 	}
10131 
10132 	return v ? 0 : -ENOMEM;
10133 }
10134 
10135 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10136 {
10137 	switch (dev->pcpu_stat_type) {
10138 	case NETDEV_PCPU_STAT_NONE:
10139 		return;
10140 	case NETDEV_PCPU_STAT_LSTATS:
10141 		free_percpu(dev->lstats);
10142 		break;
10143 	case NETDEV_PCPU_STAT_TSTATS:
10144 		free_percpu(dev->tstats);
10145 		break;
10146 	case NETDEV_PCPU_STAT_DSTATS:
10147 		free_percpu(dev->dstats);
10148 		break;
10149 	}
10150 }
10151 
10152 /**
10153  * register_netdevice() - register a network device
10154  * @dev: device to register
10155  *
10156  * Take a prepared network device structure and make it externally accessible.
10157  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10158  * Callers must hold the rtnl lock - you may want register_netdev()
10159  * instead of this.
10160  */
10161 int register_netdevice(struct net_device *dev)
10162 {
10163 	int ret;
10164 	struct net *net = dev_net(dev);
10165 
10166 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10167 		     NETDEV_FEATURE_COUNT);
10168 	BUG_ON(dev_boot_phase);
10169 	ASSERT_RTNL();
10170 
10171 	might_sleep();
10172 
10173 	/* When net_device's are persistent, this will be fatal. */
10174 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10175 	BUG_ON(!net);
10176 
10177 	ret = ethtool_check_ops(dev->ethtool_ops);
10178 	if (ret)
10179 		return ret;
10180 
10181 	spin_lock_init(&dev->addr_list_lock);
10182 	netdev_set_addr_lockdep_class(dev);
10183 
10184 	ret = dev_get_valid_name(net, dev, dev->name);
10185 	if (ret < 0)
10186 		goto out;
10187 
10188 	ret = -ENOMEM;
10189 	dev->name_node = netdev_name_node_head_alloc(dev);
10190 	if (!dev->name_node)
10191 		goto out;
10192 
10193 	/* Init, if this function is available */
10194 	if (dev->netdev_ops->ndo_init) {
10195 		ret = dev->netdev_ops->ndo_init(dev);
10196 		if (ret) {
10197 			if (ret > 0)
10198 				ret = -EIO;
10199 			goto err_free_name;
10200 		}
10201 	}
10202 
10203 	if (((dev->hw_features | dev->features) &
10204 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10205 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10206 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10207 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10208 		ret = -EINVAL;
10209 		goto err_uninit;
10210 	}
10211 
10212 	ret = netdev_do_alloc_pcpu_stats(dev);
10213 	if (ret)
10214 		goto err_uninit;
10215 
10216 	ret = dev_index_reserve(net, dev->ifindex);
10217 	if (ret < 0)
10218 		goto err_free_pcpu;
10219 	dev->ifindex = ret;
10220 
10221 	/* Transfer changeable features to wanted_features and enable
10222 	 * software offloads (GSO and GRO).
10223 	 */
10224 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10225 	dev->features |= NETIF_F_SOFT_FEATURES;
10226 
10227 	if (dev->udp_tunnel_nic_info) {
10228 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10229 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10230 	}
10231 
10232 	dev->wanted_features = dev->features & dev->hw_features;
10233 
10234 	if (!(dev->flags & IFF_LOOPBACK))
10235 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10236 
10237 	/* If IPv4 TCP segmentation offload is supported we should also
10238 	 * allow the device to enable segmenting the frame with the option
10239 	 * of ignoring a static IP ID value.  This doesn't enable the
10240 	 * feature itself but allows the user to enable it later.
10241 	 */
10242 	if (dev->hw_features & NETIF_F_TSO)
10243 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10244 	if (dev->vlan_features & NETIF_F_TSO)
10245 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10246 	if (dev->mpls_features & NETIF_F_TSO)
10247 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10248 	if (dev->hw_enc_features & NETIF_F_TSO)
10249 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10250 
10251 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10252 	 */
10253 	dev->vlan_features |= NETIF_F_HIGHDMA;
10254 
10255 	/* Make NETIF_F_SG inheritable to tunnel devices.
10256 	 */
10257 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10258 
10259 	/* Make NETIF_F_SG inheritable to MPLS.
10260 	 */
10261 	dev->mpls_features |= NETIF_F_SG;
10262 
10263 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10264 	ret = notifier_to_errno(ret);
10265 	if (ret)
10266 		goto err_ifindex_release;
10267 
10268 	ret = netdev_register_kobject(dev);
10269 	write_lock(&dev_base_lock);
10270 	dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10271 	write_unlock(&dev_base_lock);
10272 	if (ret)
10273 		goto err_uninit_notify;
10274 
10275 	__netdev_update_features(dev);
10276 
10277 	/*
10278 	 *	Default initial state at registry is that the
10279 	 *	device is present.
10280 	 */
10281 
10282 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10283 
10284 	linkwatch_init_dev(dev);
10285 
10286 	dev_init_scheduler(dev);
10287 
10288 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10289 	list_netdevice(dev);
10290 
10291 	add_device_randomness(dev->dev_addr, dev->addr_len);
10292 
10293 	/* If the device has permanent device address, driver should
10294 	 * set dev_addr and also addr_assign_type should be set to
10295 	 * NET_ADDR_PERM (default value).
10296 	 */
10297 	if (dev->addr_assign_type == NET_ADDR_PERM)
10298 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10299 
10300 	/* Notify protocols, that a new device appeared. */
10301 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10302 	ret = notifier_to_errno(ret);
10303 	if (ret) {
10304 		/* Expect explicit free_netdev() on failure */
10305 		dev->needs_free_netdev = false;
10306 		unregister_netdevice_queue(dev, NULL);
10307 		goto out;
10308 	}
10309 	/*
10310 	 *	Prevent userspace races by waiting until the network
10311 	 *	device is fully setup before sending notifications.
10312 	 */
10313 	if (!dev->rtnl_link_ops ||
10314 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10315 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10316 
10317 out:
10318 	return ret;
10319 
10320 err_uninit_notify:
10321 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10322 err_ifindex_release:
10323 	dev_index_release(net, dev->ifindex);
10324 err_free_pcpu:
10325 	netdev_do_free_pcpu_stats(dev);
10326 err_uninit:
10327 	if (dev->netdev_ops->ndo_uninit)
10328 		dev->netdev_ops->ndo_uninit(dev);
10329 	if (dev->priv_destructor)
10330 		dev->priv_destructor(dev);
10331 err_free_name:
10332 	netdev_name_node_free(dev->name_node);
10333 	goto out;
10334 }
10335 EXPORT_SYMBOL(register_netdevice);
10336 
10337 /**
10338  *	init_dummy_netdev	- init a dummy network device for NAPI
10339  *	@dev: device to init
10340  *
10341  *	This takes a network device structure and initialize the minimum
10342  *	amount of fields so it can be used to schedule NAPI polls without
10343  *	registering a full blown interface. This is to be used by drivers
10344  *	that need to tie several hardware interfaces to a single NAPI
10345  *	poll scheduler due to HW limitations.
10346  */
10347 int init_dummy_netdev(struct net_device *dev)
10348 {
10349 	/* Clear everything. Note we don't initialize spinlocks
10350 	 * are they aren't supposed to be taken by any of the
10351 	 * NAPI code and this dummy netdev is supposed to be
10352 	 * only ever used for NAPI polls
10353 	 */
10354 	memset(dev, 0, sizeof(struct net_device));
10355 
10356 	/* make sure we BUG if trying to hit standard
10357 	 * register/unregister code path
10358 	 */
10359 	dev->reg_state = NETREG_DUMMY;
10360 
10361 	/* NAPI wants this */
10362 	INIT_LIST_HEAD(&dev->napi_list);
10363 
10364 	/* a dummy interface is started by default */
10365 	set_bit(__LINK_STATE_PRESENT, &dev->state);
10366 	set_bit(__LINK_STATE_START, &dev->state);
10367 
10368 	/* napi_busy_loop stats accounting wants this */
10369 	dev_net_set(dev, &init_net);
10370 
10371 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10372 	 * because users of this 'device' dont need to change
10373 	 * its refcount.
10374 	 */
10375 
10376 	return 0;
10377 }
10378 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10379 
10380 
10381 /**
10382  *	register_netdev	- register a network device
10383  *	@dev: device to register
10384  *
10385  *	Take a completed network device structure and add it to the kernel
10386  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10387  *	chain. 0 is returned on success. A negative errno code is returned
10388  *	on a failure to set up the device, or if the name is a duplicate.
10389  *
10390  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10391  *	and expands the device name if you passed a format string to
10392  *	alloc_netdev.
10393  */
10394 int register_netdev(struct net_device *dev)
10395 {
10396 	int err;
10397 
10398 	if (rtnl_lock_killable())
10399 		return -EINTR;
10400 	err = register_netdevice(dev);
10401 	rtnl_unlock();
10402 	return err;
10403 }
10404 EXPORT_SYMBOL(register_netdev);
10405 
10406 int netdev_refcnt_read(const struct net_device *dev)
10407 {
10408 #ifdef CONFIG_PCPU_DEV_REFCNT
10409 	int i, refcnt = 0;
10410 
10411 	for_each_possible_cpu(i)
10412 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10413 	return refcnt;
10414 #else
10415 	return refcount_read(&dev->dev_refcnt);
10416 #endif
10417 }
10418 EXPORT_SYMBOL(netdev_refcnt_read);
10419 
10420 int netdev_unregister_timeout_secs __read_mostly = 10;
10421 
10422 #define WAIT_REFS_MIN_MSECS 1
10423 #define WAIT_REFS_MAX_MSECS 250
10424 /**
10425  * netdev_wait_allrefs_any - wait until all references are gone.
10426  * @list: list of net_devices to wait on
10427  *
10428  * This is called when unregistering network devices.
10429  *
10430  * Any protocol or device that holds a reference should register
10431  * for netdevice notification, and cleanup and put back the
10432  * reference if they receive an UNREGISTER event.
10433  * We can get stuck here if buggy protocols don't correctly
10434  * call dev_put.
10435  */
10436 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10437 {
10438 	unsigned long rebroadcast_time, warning_time;
10439 	struct net_device *dev;
10440 	int wait = 0;
10441 
10442 	rebroadcast_time = warning_time = jiffies;
10443 
10444 	list_for_each_entry(dev, list, todo_list)
10445 		if (netdev_refcnt_read(dev) == 1)
10446 			return dev;
10447 
10448 	while (true) {
10449 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10450 			rtnl_lock();
10451 
10452 			/* Rebroadcast unregister notification */
10453 			list_for_each_entry(dev, list, todo_list)
10454 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10455 
10456 			__rtnl_unlock();
10457 			rcu_barrier();
10458 			rtnl_lock();
10459 
10460 			list_for_each_entry(dev, list, todo_list)
10461 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10462 					     &dev->state)) {
10463 					/* We must not have linkwatch events
10464 					 * pending on unregister. If this
10465 					 * happens, we simply run the queue
10466 					 * unscheduled, resulting in a noop
10467 					 * for this device.
10468 					 */
10469 					linkwatch_run_queue();
10470 					break;
10471 				}
10472 
10473 			__rtnl_unlock();
10474 
10475 			rebroadcast_time = jiffies;
10476 		}
10477 
10478 		if (!wait) {
10479 			rcu_barrier();
10480 			wait = WAIT_REFS_MIN_MSECS;
10481 		} else {
10482 			msleep(wait);
10483 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10484 		}
10485 
10486 		list_for_each_entry(dev, list, todo_list)
10487 			if (netdev_refcnt_read(dev) == 1)
10488 				return dev;
10489 
10490 		if (time_after(jiffies, warning_time +
10491 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10492 			list_for_each_entry(dev, list, todo_list) {
10493 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10494 					 dev->name, netdev_refcnt_read(dev));
10495 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10496 			}
10497 
10498 			warning_time = jiffies;
10499 		}
10500 	}
10501 }
10502 
10503 /* The sequence is:
10504  *
10505  *	rtnl_lock();
10506  *	...
10507  *	register_netdevice(x1);
10508  *	register_netdevice(x2);
10509  *	...
10510  *	unregister_netdevice(y1);
10511  *	unregister_netdevice(y2);
10512  *      ...
10513  *	rtnl_unlock();
10514  *	free_netdev(y1);
10515  *	free_netdev(y2);
10516  *
10517  * We are invoked by rtnl_unlock().
10518  * This allows us to deal with problems:
10519  * 1) We can delete sysfs objects which invoke hotplug
10520  *    without deadlocking with linkwatch via keventd.
10521  * 2) Since we run with the RTNL semaphore not held, we can sleep
10522  *    safely in order to wait for the netdev refcnt to drop to zero.
10523  *
10524  * We must not return until all unregister events added during
10525  * the interval the lock was held have been completed.
10526  */
10527 void netdev_run_todo(void)
10528 {
10529 	struct net_device *dev, *tmp;
10530 	struct list_head list;
10531 #ifdef CONFIG_LOCKDEP
10532 	struct list_head unlink_list;
10533 
10534 	list_replace_init(&net_unlink_list, &unlink_list);
10535 
10536 	while (!list_empty(&unlink_list)) {
10537 		struct net_device *dev = list_first_entry(&unlink_list,
10538 							  struct net_device,
10539 							  unlink_list);
10540 		list_del_init(&dev->unlink_list);
10541 		dev->nested_level = dev->lower_level - 1;
10542 	}
10543 #endif
10544 
10545 	/* Snapshot list, allow later requests */
10546 	list_replace_init(&net_todo_list, &list);
10547 
10548 	__rtnl_unlock();
10549 
10550 	/* Wait for rcu callbacks to finish before next phase */
10551 	if (!list_empty(&list))
10552 		rcu_barrier();
10553 
10554 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10555 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10556 			netdev_WARN(dev, "run_todo but not unregistering\n");
10557 			list_del(&dev->todo_list);
10558 			continue;
10559 		}
10560 
10561 		write_lock(&dev_base_lock);
10562 		dev->reg_state = NETREG_UNREGISTERED;
10563 		write_unlock(&dev_base_lock);
10564 		linkwatch_sync_dev(dev);
10565 	}
10566 
10567 	while (!list_empty(&list)) {
10568 		dev = netdev_wait_allrefs_any(&list);
10569 		list_del(&dev->todo_list);
10570 
10571 		/* paranoia */
10572 		BUG_ON(netdev_refcnt_read(dev) != 1);
10573 		BUG_ON(!list_empty(&dev->ptype_all));
10574 		BUG_ON(!list_empty(&dev->ptype_specific));
10575 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10576 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10577 
10578 		netdev_do_free_pcpu_stats(dev);
10579 		if (dev->priv_destructor)
10580 			dev->priv_destructor(dev);
10581 		if (dev->needs_free_netdev)
10582 			free_netdev(dev);
10583 
10584 		if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10585 			wake_up(&netdev_unregistering_wq);
10586 
10587 		/* Free network device */
10588 		kobject_put(&dev->dev.kobj);
10589 	}
10590 }
10591 
10592 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10593  * all the same fields in the same order as net_device_stats, with only
10594  * the type differing, but rtnl_link_stats64 may have additional fields
10595  * at the end for newer counters.
10596  */
10597 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10598 			     const struct net_device_stats *netdev_stats)
10599 {
10600 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10601 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10602 	u64 *dst = (u64 *)stats64;
10603 
10604 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10605 	for (i = 0; i < n; i++)
10606 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10607 	/* zero out counters that only exist in rtnl_link_stats64 */
10608 	memset((char *)stats64 + n * sizeof(u64), 0,
10609 	       sizeof(*stats64) - n * sizeof(u64));
10610 }
10611 EXPORT_SYMBOL(netdev_stats_to_stats64);
10612 
10613 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10614 		struct net_device *dev)
10615 {
10616 	struct net_device_core_stats __percpu *p;
10617 
10618 	p = alloc_percpu_gfp(struct net_device_core_stats,
10619 			     GFP_ATOMIC | __GFP_NOWARN);
10620 
10621 	if (p && cmpxchg(&dev->core_stats, NULL, p))
10622 		free_percpu(p);
10623 
10624 	/* This READ_ONCE() pairs with the cmpxchg() above */
10625 	return READ_ONCE(dev->core_stats);
10626 }
10627 
10628 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10629 {
10630 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10631 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10632 	unsigned long __percpu *field;
10633 
10634 	if (unlikely(!p)) {
10635 		p = netdev_core_stats_alloc(dev);
10636 		if (!p)
10637 			return;
10638 	}
10639 
10640 	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10641 	this_cpu_inc(*field);
10642 }
10643 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10644 
10645 /**
10646  *	dev_get_stats	- get network device statistics
10647  *	@dev: device to get statistics from
10648  *	@storage: place to store stats
10649  *
10650  *	Get network statistics from device. Return @storage.
10651  *	The device driver may provide its own method by setting
10652  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10653  *	otherwise the internal statistics structure is used.
10654  */
10655 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10656 					struct rtnl_link_stats64 *storage)
10657 {
10658 	const struct net_device_ops *ops = dev->netdev_ops;
10659 	const struct net_device_core_stats __percpu *p;
10660 
10661 	if (ops->ndo_get_stats64) {
10662 		memset(storage, 0, sizeof(*storage));
10663 		ops->ndo_get_stats64(dev, storage);
10664 	} else if (ops->ndo_get_stats) {
10665 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10666 	} else {
10667 		netdev_stats_to_stats64(storage, &dev->stats);
10668 	}
10669 
10670 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10671 	p = READ_ONCE(dev->core_stats);
10672 	if (p) {
10673 		const struct net_device_core_stats *core_stats;
10674 		int i;
10675 
10676 		for_each_possible_cpu(i) {
10677 			core_stats = per_cpu_ptr(p, i);
10678 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10679 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10680 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10681 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10682 		}
10683 	}
10684 	return storage;
10685 }
10686 EXPORT_SYMBOL(dev_get_stats);
10687 
10688 /**
10689  *	dev_fetch_sw_netstats - get per-cpu network device statistics
10690  *	@s: place to store stats
10691  *	@netstats: per-cpu network stats to read from
10692  *
10693  *	Read per-cpu network statistics and populate the related fields in @s.
10694  */
10695 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10696 			   const struct pcpu_sw_netstats __percpu *netstats)
10697 {
10698 	int cpu;
10699 
10700 	for_each_possible_cpu(cpu) {
10701 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10702 		const struct pcpu_sw_netstats *stats;
10703 		unsigned int start;
10704 
10705 		stats = per_cpu_ptr(netstats, cpu);
10706 		do {
10707 			start = u64_stats_fetch_begin(&stats->syncp);
10708 			rx_packets = u64_stats_read(&stats->rx_packets);
10709 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10710 			tx_packets = u64_stats_read(&stats->tx_packets);
10711 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10712 		} while (u64_stats_fetch_retry(&stats->syncp, start));
10713 
10714 		s->rx_packets += rx_packets;
10715 		s->rx_bytes   += rx_bytes;
10716 		s->tx_packets += tx_packets;
10717 		s->tx_bytes   += tx_bytes;
10718 	}
10719 }
10720 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10721 
10722 /**
10723  *	dev_get_tstats64 - ndo_get_stats64 implementation
10724  *	@dev: device to get statistics from
10725  *	@s: place to store stats
10726  *
10727  *	Populate @s from dev->stats and dev->tstats. Can be used as
10728  *	ndo_get_stats64() callback.
10729  */
10730 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10731 {
10732 	netdev_stats_to_stats64(s, &dev->stats);
10733 	dev_fetch_sw_netstats(s, dev->tstats);
10734 }
10735 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10736 
10737 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10738 {
10739 	struct netdev_queue *queue = dev_ingress_queue(dev);
10740 
10741 #ifdef CONFIG_NET_CLS_ACT
10742 	if (queue)
10743 		return queue;
10744 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10745 	if (!queue)
10746 		return NULL;
10747 	netdev_init_one_queue(dev, queue, NULL);
10748 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10749 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10750 	rcu_assign_pointer(dev->ingress_queue, queue);
10751 #endif
10752 	return queue;
10753 }
10754 
10755 static const struct ethtool_ops default_ethtool_ops;
10756 
10757 void netdev_set_default_ethtool_ops(struct net_device *dev,
10758 				    const struct ethtool_ops *ops)
10759 {
10760 	if (dev->ethtool_ops == &default_ethtool_ops)
10761 		dev->ethtool_ops = ops;
10762 }
10763 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10764 
10765 /**
10766  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10767  * @dev: netdev to enable the IRQ coalescing on
10768  *
10769  * Sets a conservative default for SW IRQ coalescing. Users can use
10770  * sysfs attributes to override the default values.
10771  */
10772 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10773 {
10774 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10775 
10776 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10777 		dev->gro_flush_timeout = 20000;
10778 		dev->napi_defer_hard_irqs = 1;
10779 	}
10780 }
10781 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10782 
10783 void netdev_freemem(struct net_device *dev)
10784 {
10785 	char *addr = (char *)dev - dev->padded;
10786 
10787 	kvfree(addr);
10788 }
10789 
10790 /**
10791  * alloc_netdev_mqs - allocate network device
10792  * @sizeof_priv: size of private data to allocate space for
10793  * @name: device name format string
10794  * @name_assign_type: origin of device name
10795  * @setup: callback to initialize device
10796  * @txqs: the number of TX subqueues to allocate
10797  * @rxqs: the number of RX subqueues to allocate
10798  *
10799  * Allocates a struct net_device with private data area for driver use
10800  * and performs basic initialization.  Also allocates subqueue structs
10801  * for each queue on the device.
10802  */
10803 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10804 		unsigned char name_assign_type,
10805 		void (*setup)(struct net_device *),
10806 		unsigned int txqs, unsigned int rxqs)
10807 {
10808 	struct net_device *dev;
10809 	unsigned int alloc_size;
10810 	struct net_device *p;
10811 
10812 	BUG_ON(strlen(name) >= sizeof(dev->name));
10813 
10814 	if (txqs < 1) {
10815 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10816 		return NULL;
10817 	}
10818 
10819 	if (rxqs < 1) {
10820 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10821 		return NULL;
10822 	}
10823 
10824 	alloc_size = sizeof(struct net_device);
10825 	if (sizeof_priv) {
10826 		/* ensure 32-byte alignment of private area */
10827 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10828 		alloc_size += sizeof_priv;
10829 	}
10830 	/* ensure 32-byte alignment of whole construct */
10831 	alloc_size += NETDEV_ALIGN - 1;
10832 
10833 	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10834 	if (!p)
10835 		return NULL;
10836 
10837 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10838 	dev->padded = (char *)dev - (char *)p;
10839 
10840 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10841 #ifdef CONFIG_PCPU_DEV_REFCNT
10842 	dev->pcpu_refcnt = alloc_percpu(int);
10843 	if (!dev->pcpu_refcnt)
10844 		goto free_dev;
10845 	__dev_hold(dev);
10846 #else
10847 	refcount_set(&dev->dev_refcnt, 1);
10848 #endif
10849 
10850 	if (dev_addr_init(dev))
10851 		goto free_pcpu;
10852 
10853 	dev_mc_init(dev);
10854 	dev_uc_init(dev);
10855 
10856 	dev_net_set(dev, &init_net);
10857 
10858 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10859 	dev->xdp_zc_max_segs = 1;
10860 	dev->gso_max_segs = GSO_MAX_SEGS;
10861 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10862 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10863 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10864 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10865 	dev->tso_max_segs = TSO_MAX_SEGS;
10866 	dev->upper_level = 1;
10867 	dev->lower_level = 1;
10868 #ifdef CONFIG_LOCKDEP
10869 	dev->nested_level = 0;
10870 	INIT_LIST_HEAD(&dev->unlink_list);
10871 #endif
10872 
10873 	INIT_LIST_HEAD(&dev->napi_list);
10874 	INIT_LIST_HEAD(&dev->unreg_list);
10875 	INIT_LIST_HEAD(&dev->close_list);
10876 	INIT_LIST_HEAD(&dev->link_watch_list);
10877 	INIT_LIST_HEAD(&dev->adj_list.upper);
10878 	INIT_LIST_HEAD(&dev->adj_list.lower);
10879 	INIT_LIST_HEAD(&dev->ptype_all);
10880 	INIT_LIST_HEAD(&dev->ptype_specific);
10881 	INIT_LIST_HEAD(&dev->net_notifier_list);
10882 #ifdef CONFIG_NET_SCHED
10883 	hash_init(dev->qdisc_hash);
10884 #endif
10885 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10886 	setup(dev);
10887 
10888 	if (!dev->tx_queue_len) {
10889 		dev->priv_flags |= IFF_NO_QUEUE;
10890 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10891 	}
10892 
10893 	dev->num_tx_queues = txqs;
10894 	dev->real_num_tx_queues = txqs;
10895 	if (netif_alloc_netdev_queues(dev))
10896 		goto free_all;
10897 
10898 	dev->num_rx_queues = rxqs;
10899 	dev->real_num_rx_queues = rxqs;
10900 	if (netif_alloc_rx_queues(dev))
10901 		goto free_all;
10902 
10903 	strcpy(dev->name, name);
10904 	dev->name_assign_type = name_assign_type;
10905 	dev->group = INIT_NETDEV_GROUP;
10906 	if (!dev->ethtool_ops)
10907 		dev->ethtool_ops = &default_ethtool_ops;
10908 
10909 	nf_hook_netdev_init(dev);
10910 
10911 	return dev;
10912 
10913 free_all:
10914 	free_netdev(dev);
10915 	return NULL;
10916 
10917 free_pcpu:
10918 #ifdef CONFIG_PCPU_DEV_REFCNT
10919 	free_percpu(dev->pcpu_refcnt);
10920 free_dev:
10921 #endif
10922 	netdev_freemem(dev);
10923 	return NULL;
10924 }
10925 EXPORT_SYMBOL(alloc_netdev_mqs);
10926 
10927 /**
10928  * free_netdev - free network device
10929  * @dev: device
10930  *
10931  * This function does the last stage of destroying an allocated device
10932  * interface. The reference to the device object is released. If this
10933  * is the last reference then it will be freed.Must be called in process
10934  * context.
10935  */
10936 void free_netdev(struct net_device *dev)
10937 {
10938 	struct napi_struct *p, *n;
10939 
10940 	might_sleep();
10941 
10942 	/* When called immediately after register_netdevice() failed the unwind
10943 	 * handling may still be dismantling the device. Handle that case by
10944 	 * deferring the free.
10945 	 */
10946 	if (dev->reg_state == NETREG_UNREGISTERING) {
10947 		ASSERT_RTNL();
10948 		dev->needs_free_netdev = true;
10949 		return;
10950 	}
10951 
10952 	netif_free_tx_queues(dev);
10953 	netif_free_rx_queues(dev);
10954 
10955 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10956 
10957 	/* Flush device addresses */
10958 	dev_addr_flush(dev);
10959 
10960 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10961 		netif_napi_del(p);
10962 
10963 	ref_tracker_dir_exit(&dev->refcnt_tracker);
10964 #ifdef CONFIG_PCPU_DEV_REFCNT
10965 	free_percpu(dev->pcpu_refcnt);
10966 	dev->pcpu_refcnt = NULL;
10967 #endif
10968 	free_percpu(dev->core_stats);
10969 	dev->core_stats = NULL;
10970 	free_percpu(dev->xdp_bulkq);
10971 	dev->xdp_bulkq = NULL;
10972 
10973 	/*  Compatibility with error handling in drivers */
10974 	if (dev->reg_state == NETREG_UNINITIALIZED) {
10975 		netdev_freemem(dev);
10976 		return;
10977 	}
10978 
10979 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10980 	dev->reg_state = NETREG_RELEASED;
10981 
10982 	/* will free via device release */
10983 	put_device(&dev->dev);
10984 }
10985 EXPORT_SYMBOL(free_netdev);
10986 
10987 /**
10988  *	synchronize_net -  Synchronize with packet receive processing
10989  *
10990  *	Wait for packets currently being received to be done.
10991  *	Does not block later packets from starting.
10992  */
10993 void synchronize_net(void)
10994 {
10995 	might_sleep();
10996 	if (rtnl_is_locked())
10997 		synchronize_rcu_expedited();
10998 	else
10999 		synchronize_rcu();
11000 }
11001 EXPORT_SYMBOL(synchronize_net);
11002 
11003 /**
11004  *	unregister_netdevice_queue - remove device from the kernel
11005  *	@dev: device
11006  *	@head: list
11007  *
11008  *	This function shuts down a device interface and removes it
11009  *	from the kernel tables.
11010  *	If head not NULL, device is queued to be unregistered later.
11011  *
11012  *	Callers must hold the rtnl semaphore.  You may want
11013  *	unregister_netdev() instead of this.
11014  */
11015 
11016 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11017 {
11018 	ASSERT_RTNL();
11019 
11020 	if (head) {
11021 		list_move_tail(&dev->unreg_list, head);
11022 	} else {
11023 		LIST_HEAD(single);
11024 
11025 		list_add(&dev->unreg_list, &single);
11026 		unregister_netdevice_many(&single);
11027 	}
11028 }
11029 EXPORT_SYMBOL(unregister_netdevice_queue);
11030 
11031 void unregister_netdevice_many_notify(struct list_head *head,
11032 				      u32 portid, const struct nlmsghdr *nlh)
11033 {
11034 	struct net_device *dev, *tmp;
11035 	LIST_HEAD(close_head);
11036 
11037 	BUG_ON(dev_boot_phase);
11038 	ASSERT_RTNL();
11039 
11040 	if (list_empty(head))
11041 		return;
11042 
11043 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11044 		/* Some devices call without registering
11045 		 * for initialization unwind. Remove those
11046 		 * devices and proceed with the remaining.
11047 		 */
11048 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11049 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11050 				 dev->name, dev);
11051 
11052 			WARN_ON(1);
11053 			list_del(&dev->unreg_list);
11054 			continue;
11055 		}
11056 		dev->dismantle = true;
11057 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11058 	}
11059 
11060 	/* If device is running, close it first. */
11061 	list_for_each_entry(dev, head, unreg_list)
11062 		list_add_tail(&dev->close_list, &close_head);
11063 	dev_close_many(&close_head, true);
11064 
11065 	list_for_each_entry(dev, head, unreg_list) {
11066 		/* And unlink it from device chain. */
11067 		write_lock(&dev_base_lock);
11068 		unlist_netdevice(dev, false);
11069 		dev->reg_state = NETREG_UNREGISTERING;
11070 		write_unlock(&dev_base_lock);
11071 	}
11072 	flush_all_backlogs();
11073 
11074 	synchronize_net();
11075 
11076 	list_for_each_entry(dev, head, unreg_list) {
11077 		struct sk_buff *skb = NULL;
11078 
11079 		/* Shutdown queueing discipline. */
11080 		dev_shutdown(dev);
11081 		dev_tcx_uninstall(dev);
11082 		dev_xdp_uninstall(dev);
11083 		bpf_dev_bound_netdev_unregister(dev);
11084 
11085 		netdev_offload_xstats_disable_all(dev);
11086 
11087 		/* Notify protocols, that we are about to destroy
11088 		 * this device. They should clean all the things.
11089 		 */
11090 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11091 
11092 		if (!dev->rtnl_link_ops ||
11093 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11094 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11095 						     GFP_KERNEL, NULL, 0,
11096 						     portid, nlh);
11097 
11098 		/*
11099 		 *	Flush the unicast and multicast chains
11100 		 */
11101 		dev_uc_flush(dev);
11102 		dev_mc_flush(dev);
11103 
11104 		netdev_name_node_alt_flush(dev);
11105 		netdev_name_node_free(dev->name_node);
11106 
11107 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11108 
11109 		if (dev->netdev_ops->ndo_uninit)
11110 			dev->netdev_ops->ndo_uninit(dev);
11111 
11112 		if (skb)
11113 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11114 
11115 		/* Notifier chain MUST detach us all upper devices. */
11116 		WARN_ON(netdev_has_any_upper_dev(dev));
11117 		WARN_ON(netdev_has_any_lower_dev(dev));
11118 
11119 		/* Remove entries from kobject tree */
11120 		netdev_unregister_kobject(dev);
11121 #ifdef CONFIG_XPS
11122 		/* Remove XPS queueing entries */
11123 		netif_reset_xps_queues_gt(dev, 0);
11124 #endif
11125 	}
11126 
11127 	synchronize_net();
11128 
11129 	list_for_each_entry(dev, head, unreg_list) {
11130 		netdev_put(dev, &dev->dev_registered_tracker);
11131 		net_set_todo(dev);
11132 	}
11133 
11134 	list_del(head);
11135 }
11136 
11137 /**
11138  *	unregister_netdevice_many - unregister many devices
11139  *	@head: list of devices
11140  *
11141  *  Note: As most callers use a stack allocated list_head,
11142  *  we force a list_del() to make sure stack wont be corrupted later.
11143  */
11144 void unregister_netdevice_many(struct list_head *head)
11145 {
11146 	unregister_netdevice_many_notify(head, 0, NULL);
11147 }
11148 EXPORT_SYMBOL(unregister_netdevice_many);
11149 
11150 /**
11151  *	unregister_netdev - remove device from the kernel
11152  *	@dev: device
11153  *
11154  *	This function shuts down a device interface and removes it
11155  *	from the kernel tables.
11156  *
11157  *	This is just a wrapper for unregister_netdevice that takes
11158  *	the rtnl semaphore.  In general you want to use this and not
11159  *	unregister_netdevice.
11160  */
11161 void unregister_netdev(struct net_device *dev)
11162 {
11163 	rtnl_lock();
11164 	unregister_netdevice(dev);
11165 	rtnl_unlock();
11166 }
11167 EXPORT_SYMBOL(unregister_netdev);
11168 
11169 /**
11170  *	__dev_change_net_namespace - move device to different nethost namespace
11171  *	@dev: device
11172  *	@net: network namespace
11173  *	@pat: If not NULL name pattern to try if the current device name
11174  *	      is already taken in the destination network namespace.
11175  *	@new_ifindex: If not zero, specifies device index in the target
11176  *	              namespace.
11177  *
11178  *	This function shuts down a device interface and moves it
11179  *	to a new network namespace. On success 0 is returned, on
11180  *	a failure a netagive errno code is returned.
11181  *
11182  *	Callers must hold the rtnl semaphore.
11183  */
11184 
11185 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11186 			       const char *pat, int new_ifindex)
11187 {
11188 	struct netdev_name_node *name_node;
11189 	struct net *net_old = dev_net(dev);
11190 	char new_name[IFNAMSIZ] = {};
11191 	int err, new_nsid;
11192 
11193 	ASSERT_RTNL();
11194 
11195 	/* Don't allow namespace local devices to be moved. */
11196 	err = -EINVAL;
11197 	if (dev->features & NETIF_F_NETNS_LOCAL)
11198 		goto out;
11199 
11200 	/* Ensure the device has been registrered */
11201 	if (dev->reg_state != NETREG_REGISTERED)
11202 		goto out;
11203 
11204 	/* Get out if there is nothing todo */
11205 	err = 0;
11206 	if (net_eq(net_old, net))
11207 		goto out;
11208 
11209 	/* Pick the destination device name, and ensure
11210 	 * we can use it in the destination network namespace.
11211 	 */
11212 	err = -EEXIST;
11213 	if (netdev_name_in_use(net, dev->name)) {
11214 		/* We get here if we can't use the current device name */
11215 		if (!pat)
11216 			goto out;
11217 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11218 		if (err < 0)
11219 			goto out;
11220 	}
11221 	/* Check that none of the altnames conflicts. */
11222 	err = -EEXIST;
11223 	netdev_for_each_altname(dev, name_node)
11224 		if (netdev_name_in_use(net, name_node->name))
11225 			goto out;
11226 
11227 	/* Check that new_ifindex isn't used yet. */
11228 	if (new_ifindex) {
11229 		err = dev_index_reserve(net, new_ifindex);
11230 		if (err < 0)
11231 			goto out;
11232 	} else {
11233 		/* If there is an ifindex conflict assign a new one */
11234 		err = dev_index_reserve(net, dev->ifindex);
11235 		if (err == -EBUSY)
11236 			err = dev_index_reserve(net, 0);
11237 		if (err < 0)
11238 			goto out;
11239 		new_ifindex = err;
11240 	}
11241 
11242 	/*
11243 	 * And now a mini version of register_netdevice unregister_netdevice.
11244 	 */
11245 
11246 	/* If device is running close it first. */
11247 	dev_close(dev);
11248 
11249 	/* And unlink it from device chain */
11250 	unlist_netdevice(dev, true);
11251 
11252 	synchronize_net();
11253 
11254 	/* Shutdown queueing discipline. */
11255 	dev_shutdown(dev);
11256 
11257 	/* Notify protocols, that we are about to destroy
11258 	 * this device. They should clean all the things.
11259 	 *
11260 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11261 	 * This is wanted because this way 8021q and macvlan know
11262 	 * the device is just moving and can keep their slaves up.
11263 	 */
11264 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11265 	rcu_barrier();
11266 
11267 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11268 
11269 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11270 			    new_ifindex);
11271 
11272 	/*
11273 	 *	Flush the unicast and multicast chains
11274 	 */
11275 	dev_uc_flush(dev);
11276 	dev_mc_flush(dev);
11277 
11278 	/* Send a netdev-removed uevent to the old namespace */
11279 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11280 	netdev_adjacent_del_links(dev);
11281 
11282 	/* Move per-net netdevice notifiers that are following the netdevice */
11283 	move_netdevice_notifiers_dev_net(dev, net);
11284 
11285 	/* Actually switch the network namespace */
11286 	dev_net_set(dev, net);
11287 	dev->ifindex = new_ifindex;
11288 
11289 	if (new_name[0]) /* Rename the netdev to prepared name */
11290 		strscpy(dev->name, new_name, IFNAMSIZ);
11291 
11292 	/* Fixup kobjects */
11293 	dev_set_uevent_suppress(&dev->dev, 1);
11294 	err = device_rename(&dev->dev, dev->name);
11295 	dev_set_uevent_suppress(&dev->dev, 0);
11296 	WARN_ON(err);
11297 
11298 	/* Send a netdev-add uevent to the new namespace */
11299 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11300 	netdev_adjacent_add_links(dev);
11301 
11302 	/* Adapt owner in case owning user namespace of target network
11303 	 * namespace is different from the original one.
11304 	 */
11305 	err = netdev_change_owner(dev, net_old, net);
11306 	WARN_ON(err);
11307 
11308 	/* Add the device back in the hashes */
11309 	list_netdevice(dev);
11310 
11311 	/* Notify protocols, that a new device appeared. */
11312 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11313 
11314 	/*
11315 	 *	Prevent userspace races by waiting until the network
11316 	 *	device is fully setup before sending notifications.
11317 	 */
11318 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11319 
11320 	synchronize_net();
11321 	err = 0;
11322 out:
11323 	return err;
11324 }
11325 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11326 
11327 static int dev_cpu_dead(unsigned int oldcpu)
11328 {
11329 	struct sk_buff **list_skb;
11330 	struct sk_buff *skb;
11331 	unsigned int cpu;
11332 	struct softnet_data *sd, *oldsd, *remsd = NULL;
11333 
11334 	local_irq_disable();
11335 	cpu = smp_processor_id();
11336 	sd = &per_cpu(softnet_data, cpu);
11337 	oldsd = &per_cpu(softnet_data, oldcpu);
11338 
11339 	/* Find end of our completion_queue. */
11340 	list_skb = &sd->completion_queue;
11341 	while (*list_skb)
11342 		list_skb = &(*list_skb)->next;
11343 	/* Append completion queue from offline CPU. */
11344 	*list_skb = oldsd->completion_queue;
11345 	oldsd->completion_queue = NULL;
11346 
11347 	/* Append output queue from offline CPU. */
11348 	if (oldsd->output_queue) {
11349 		*sd->output_queue_tailp = oldsd->output_queue;
11350 		sd->output_queue_tailp = oldsd->output_queue_tailp;
11351 		oldsd->output_queue = NULL;
11352 		oldsd->output_queue_tailp = &oldsd->output_queue;
11353 	}
11354 	/* Append NAPI poll list from offline CPU, with one exception :
11355 	 * process_backlog() must be called by cpu owning percpu backlog.
11356 	 * We properly handle process_queue & input_pkt_queue later.
11357 	 */
11358 	while (!list_empty(&oldsd->poll_list)) {
11359 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11360 							    struct napi_struct,
11361 							    poll_list);
11362 
11363 		list_del_init(&napi->poll_list);
11364 		if (napi->poll == process_backlog)
11365 			napi->state = 0;
11366 		else
11367 			____napi_schedule(sd, napi);
11368 	}
11369 
11370 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11371 	local_irq_enable();
11372 
11373 #ifdef CONFIG_RPS
11374 	remsd = oldsd->rps_ipi_list;
11375 	oldsd->rps_ipi_list = NULL;
11376 #endif
11377 	/* send out pending IPI's on offline CPU */
11378 	net_rps_send_ipi(remsd);
11379 
11380 	/* Process offline CPU's input_pkt_queue */
11381 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11382 		netif_rx(skb);
11383 		input_queue_head_incr(oldsd);
11384 	}
11385 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11386 		netif_rx(skb);
11387 		input_queue_head_incr(oldsd);
11388 	}
11389 
11390 	return 0;
11391 }
11392 
11393 /**
11394  *	netdev_increment_features - increment feature set by one
11395  *	@all: current feature set
11396  *	@one: new feature set
11397  *	@mask: mask feature set
11398  *
11399  *	Computes a new feature set after adding a device with feature set
11400  *	@one to the master device with current feature set @all.  Will not
11401  *	enable anything that is off in @mask. Returns the new feature set.
11402  */
11403 netdev_features_t netdev_increment_features(netdev_features_t all,
11404 	netdev_features_t one, netdev_features_t mask)
11405 {
11406 	if (mask & NETIF_F_HW_CSUM)
11407 		mask |= NETIF_F_CSUM_MASK;
11408 	mask |= NETIF_F_VLAN_CHALLENGED;
11409 
11410 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11411 	all &= one | ~NETIF_F_ALL_FOR_ALL;
11412 
11413 	/* If one device supports hw checksumming, set for all. */
11414 	if (all & NETIF_F_HW_CSUM)
11415 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11416 
11417 	return all;
11418 }
11419 EXPORT_SYMBOL(netdev_increment_features);
11420 
11421 static struct hlist_head * __net_init netdev_create_hash(void)
11422 {
11423 	int i;
11424 	struct hlist_head *hash;
11425 
11426 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11427 	if (hash != NULL)
11428 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11429 			INIT_HLIST_HEAD(&hash[i]);
11430 
11431 	return hash;
11432 }
11433 
11434 /* Initialize per network namespace state */
11435 static int __net_init netdev_init(struct net *net)
11436 {
11437 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11438 		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11439 
11440 	INIT_LIST_HEAD(&net->dev_base_head);
11441 
11442 	net->dev_name_head = netdev_create_hash();
11443 	if (net->dev_name_head == NULL)
11444 		goto err_name;
11445 
11446 	net->dev_index_head = netdev_create_hash();
11447 	if (net->dev_index_head == NULL)
11448 		goto err_idx;
11449 
11450 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11451 
11452 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11453 
11454 	return 0;
11455 
11456 err_idx:
11457 	kfree(net->dev_name_head);
11458 err_name:
11459 	return -ENOMEM;
11460 }
11461 
11462 /**
11463  *	netdev_drivername - network driver for the device
11464  *	@dev: network device
11465  *
11466  *	Determine network driver for device.
11467  */
11468 const char *netdev_drivername(const struct net_device *dev)
11469 {
11470 	const struct device_driver *driver;
11471 	const struct device *parent;
11472 	const char *empty = "";
11473 
11474 	parent = dev->dev.parent;
11475 	if (!parent)
11476 		return empty;
11477 
11478 	driver = parent->driver;
11479 	if (driver && driver->name)
11480 		return driver->name;
11481 	return empty;
11482 }
11483 
11484 static void __netdev_printk(const char *level, const struct net_device *dev,
11485 			    struct va_format *vaf)
11486 {
11487 	if (dev && dev->dev.parent) {
11488 		dev_printk_emit(level[1] - '0',
11489 				dev->dev.parent,
11490 				"%s %s %s%s: %pV",
11491 				dev_driver_string(dev->dev.parent),
11492 				dev_name(dev->dev.parent),
11493 				netdev_name(dev), netdev_reg_state(dev),
11494 				vaf);
11495 	} else if (dev) {
11496 		printk("%s%s%s: %pV",
11497 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11498 	} else {
11499 		printk("%s(NULL net_device): %pV", level, vaf);
11500 	}
11501 }
11502 
11503 void netdev_printk(const char *level, const struct net_device *dev,
11504 		   const char *format, ...)
11505 {
11506 	struct va_format vaf;
11507 	va_list args;
11508 
11509 	va_start(args, format);
11510 
11511 	vaf.fmt = format;
11512 	vaf.va = &args;
11513 
11514 	__netdev_printk(level, dev, &vaf);
11515 
11516 	va_end(args);
11517 }
11518 EXPORT_SYMBOL(netdev_printk);
11519 
11520 #define define_netdev_printk_level(func, level)			\
11521 void func(const struct net_device *dev, const char *fmt, ...)	\
11522 {								\
11523 	struct va_format vaf;					\
11524 	va_list args;						\
11525 								\
11526 	va_start(args, fmt);					\
11527 								\
11528 	vaf.fmt = fmt;						\
11529 	vaf.va = &args;						\
11530 								\
11531 	__netdev_printk(level, dev, &vaf);			\
11532 								\
11533 	va_end(args);						\
11534 }								\
11535 EXPORT_SYMBOL(func);
11536 
11537 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11538 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11539 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11540 define_netdev_printk_level(netdev_err, KERN_ERR);
11541 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11542 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11543 define_netdev_printk_level(netdev_info, KERN_INFO);
11544 
11545 static void __net_exit netdev_exit(struct net *net)
11546 {
11547 	kfree(net->dev_name_head);
11548 	kfree(net->dev_index_head);
11549 	xa_destroy(&net->dev_by_index);
11550 	if (net != &init_net)
11551 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11552 }
11553 
11554 static struct pernet_operations __net_initdata netdev_net_ops = {
11555 	.init = netdev_init,
11556 	.exit = netdev_exit,
11557 };
11558 
11559 static void __net_exit default_device_exit_net(struct net *net)
11560 {
11561 	struct netdev_name_node *name_node, *tmp;
11562 	struct net_device *dev, *aux;
11563 	/*
11564 	 * Push all migratable network devices back to the
11565 	 * initial network namespace
11566 	 */
11567 	ASSERT_RTNL();
11568 	for_each_netdev_safe(net, dev, aux) {
11569 		int err;
11570 		char fb_name[IFNAMSIZ];
11571 
11572 		/* Ignore unmoveable devices (i.e. loopback) */
11573 		if (dev->features & NETIF_F_NETNS_LOCAL)
11574 			continue;
11575 
11576 		/* Leave virtual devices for the generic cleanup */
11577 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11578 			continue;
11579 
11580 		/* Push remaining network devices to init_net */
11581 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11582 		if (netdev_name_in_use(&init_net, fb_name))
11583 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11584 
11585 		netdev_for_each_altname_safe(dev, name_node, tmp)
11586 			if (netdev_name_in_use(&init_net, name_node->name)) {
11587 				netdev_name_node_del(name_node);
11588 				synchronize_rcu();
11589 				__netdev_name_node_alt_destroy(name_node);
11590 			}
11591 
11592 		err = dev_change_net_namespace(dev, &init_net, fb_name);
11593 		if (err) {
11594 			pr_emerg("%s: failed to move %s to init_net: %d\n",
11595 				 __func__, dev->name, err);
11596 			BUG();
11597 		}
11598 	}
11599 }
11600 
11601 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11602 {
11603 	/* At exit all network devices most be removed from a network
11604 	 * namespace.  Do this in the reverse order of registration.
11605 	 * Do this across as many network namespaces as possible to
11606 	 * improve batching efficiency.
11607 	 */
11608 	struct net_device *dev;
11609 	struct net *net;
11610 	LIST_HEAD(dev_kill_list);
11611 
11612 	rtnl_lock();
11613 	list_for_each_entry(net, net_list, exit_list) {
11614 		default_device_exit_net(net);
11615 		cond_resched();
11616 	}
11617 
11618 	list_for_each_entry(net, net_list, exit_list) {
11619 		for_each_netdev_reverse(net, dev) {
11620 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11621 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11622 			else
11623 				unregister_netdevice_queue(dev, &dev_kill_list);
11624 		}
11625 	}
11626 	unregister_netdevice_many(&dev_kill_list);
11627 	rtnl_unlock();
11628 }
11629 
11630 static struct pernet_operations __net_initdata default_device_ops = {
11631 	.exit_batch = default_device_exit_batch,
11632 };
11633 
11634 static void __init net_dev_struct_check(void)
11635 {
11636 	/* TX read-mostly hotpath */
11637 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11638 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11639 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11640 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11641 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11642 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11643 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11644 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11645 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11646 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11647 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11648 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11649 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11650 #ifdef CONFIG_XPS
11651 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11652 #endif
11653 #ifdef CONFIG_NETFILTER_EGRESS
11654 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11655 #endif
11656 #ifdef CONFIG_NET_XGRESS
11657 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11658 #endif
11659 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11660 
11661 	/* TXRX read-mostly hotpath */
11662 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11663 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11664 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11665 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11666 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11667 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 38);
11668 
11669 	/* RX read-mostly hotpath */
11670 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11671 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11672 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11673 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11674 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11675 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11676 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11677 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11678 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11679 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11680 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11681 #ifdef CONFIG_NETPOLL
11682 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11683 #endif
11684 #ifdef CONFIG_NET_XGRESS
11685 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11686 #endif
11687 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11688 }
11689 
11690 /*
11691  *	Initialize the DEV module. At boot time this walks the device list and
11692  *	unhooks any devices that fail to initialise (normally hardware not
11693  *	present) and leaves us with a valid list of present and active devices.
11694  *
11695  */
11696 
11697 /*
11698  *       This is called single threaded during boot, so no need
11699  *       to take the rtnl semaphore.
11700  */
11701 static int __init net_dev_init(void)
11702 {
11703 	int i, rc = -ENOMEM;
11704 
11705 	BUG_ON(!dev_boot_phase);
11706 
11707 	net_dev_struct_check();
11708 
11709 	if (dev_proc_init())
11710 		goto out;
11711 
11712 	if (netdev_kobject_init())
11713 		goto out;
11714 
11715 	INIT_LIST_HEAD(&ptype_all);
11716 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11717 		INIT_LIST_HEAD(&ptype_base[i]);
11718 
11719 	if (register_pernet_subsys(&netdev_net_ops))
11720 		goto out;
11721 
11722 	/*
11723 	 *	Initialise the packet receive queues.
11724 	 */
11725 
11726 	for_each_possible_cpu(i) {
11727 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11728 		struct softnet_data *sd = &per_cpu(softnet_data, i);
11729 
11730 		INIT_WORK(flush, flush_backlog);
11731 
11732 		skb_queue_head_init(&sd->input_pkt_queue);
11733 		skb_queue_head_init(&sd->process_queue);
11734 #ifdef CONFIG_XFRM_OFFLOAD
11735 		skb_queue_head_init(&sd->xfrm_backlog);
11736 #endif
11737 		INIT_LIST_HEAD(&sd->poll_list);
11738 		sd->output_queue_tailp = &sd->output_queue;
11739 #ifdef CONFIG_RPS
11740 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11741 		sd->cpu = i;
11742 #endif
11743 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11744 		spin_lock_init(&sd->defer_lock);
11745 
11746 		init_gro_hash(&sd->backlog);
11747 		sd->backlog.poll = process_backlog;
11748 		sd->backlog.weight = weight_p;
11749 	}
11750 
11751 	dev_boot_phase = 0;
11752 
11753 	/* The loopback device is special if any other network devices
11754 	 * is present in a network namespace the loopback device must
11755 	 * be present. Since we now dynamically allocate and free the
11756 	 * loopback device ensure this invariant is maintained by
11757 	 * keeping the loopback device as the first device on the
11758 	 * list of network devices.  Ensuring the loopback devices
11759 	 * is the first device that appears and the last network device
11760 	 * that disappears.
11761 	 */
11762 	if (register_pernet_device(&loopback_net_ops))
11763 		goto out;
11764 
11765 	if (register_pernet_device(&default_device_ops))
11766 		goto out;
11767 
11768 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11769 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11770 
11771 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11772 				       NULL, dev_cpu_dead);
11773 	WARN_ON(rc < 0);
11774 	rc = 0;
11775 out:
11776 	return rc;
11777 }
11778 
11779 subsys_initcall(net_dev_init);
11780