1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <[email protected]> 8 * Mark Evans, <[email protected]> 9 * 10 * Additional Authors: 11 * Florian la Roche <[email protected]> 12 * Alan Cox <[email protected]> 13 * David Hinds <[email protected]> 14 * Alexey Kuznetsov <[email protected]> 15 * Adam Sulmicki <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitmap.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <net/tcx.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <trace/events/qdisc.h> 136 #include <trace/events/xdp.h> 137 #include <linux/inetdevice.h> 138 #include <linux/cpu_rmap.h> 139 #include <linux/static_key.h> 140 #include <linux/hashtable.h> 141 #include <linux/vmalloc.h> 142 #include <linux/if_macvlan.h> 143 #include <linux/errqueue.h> 144 #include <linux/hrtimer.h> 145 #include <linux/netfilter_netdev.h> 146 #include <linux/crash_dump.h> 147 #include <linux/sctp.h> 148 #include <net/udp_tunnel.h> 149 #include <linux/net_namespace.h> 150 #include <linux/indirect_call_wrapper.h> 151 #include <net/devlink.h> 152 #include <linux/pm_runtime.h> 153 #include <linux/prandom.h> 154 #include <linux/once_lite.h> 155 #include <net/netdev_rx_queue.h> 156 157 #include "dev.h" 158 #include "net-sysfs.h" 159 160 static DEFINE_SPINLOCK(ptype_lock); 161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 162 struct list_head ptype_all __read_mostly; /* Taps */ 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_extack(unsigned long val, 166 struct net_device *dev, 167 struct netlink_ext_ack *extack); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static DECLARE_RWSEM(devnet_rename_sem); 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock_irqsave(struct softnet_data *sd, 220 unsigned long *flags) 221 { 222 if (IS_ENABLED(CONFIG_RPS)) 223 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 224 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 225 local_irq_save(*flags); 226 } 227 228 static inline void rps_lock_irq_disable(struct softnet_data *sd) 229 { 230 if (IS_ENABLED(CONFIG_RPS)) 231 spin_lock_irq(&sd->input_pkt_queue.lock); 232 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 233 local_irq_disable(); 234 } 235 236 static inline void rps_unlock_irq_restore(struct softnet_data *sd, 237 unsigned long *flags) 238 { 239 if (IS_ENABLED(CONFIG_RPS)) 240 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 241 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 242 local_irq_restore(*flags); 243 } 244 245 static inline void rps_unlock_irq_enable(struct softnet_data *sd) 246 { 247 if (IS_ENABLED(CONFIG_RPS)) 248 spin_unlock_irq(&sd->input_pkt_queue.lock); 249 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 250 local_irq_enable(); 251 } 252 253 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 254 const char *name) 255 { 256 struct netdev_name_node *name_node; 257 258 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 259 if (!name_node) 260 return NULL; 261 INIT_HLIST_NODE(&name_node->hlist); 262 name_node->dev = dev; 263 name_node->name = name; 264 return name_node; 265 } 266 267 static struct netdev_name_node * 268 netdev_name_node_head_alloc(struct net_device *dev) 269 { 270 struct netdev_name_node *name_node; 271 272 name_node = netdev_name_node_alloc(dev, dev->name); 273 if (!name_node) 274 return NULL; 275 INIT_LIST_HEAD(&name_node->list); 276 return name_node; 277 } 278 279 static void netdev_name_node_free(struct netdev_name_node *name_node) 280 { 281 kfree(name_node); 282 } 283 284 static void netdev_name_node_add(struct net *net, 285 struct netdev_name_node *name_node) 286 { 287 hlist_add_head_rcu(&name_node->hlist, 288 dev_name_hash(net, name_node->name)); 289 } 290 291 static void netdev_name_node_del(struct netdev_name_node *name_node) 292 { 293 hlist_del_rcu(&name_node->hlist); 294 } 295 296 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 297 const char *name) 298 { 299 struct hlist_head *head = dev_name_hash(net, name); 300 struct netdev_name_node *name_node; 301 302 hlist_for_each_entry(name_node, head, hlist) 303 if (!strcmp(name_node->name, name)) 304 return name_node; 305 return NULL; 306 } 307 308 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 309 const char *name) 310 { 311 struct hlist_head *head = dev_name_hash(net, name); 312 struct netdev_name_node *name_node; 313 314 hlist_for_each_entry_rcu(name_node, head, hlist) 315 if (!strcmp(name_node->name, name)) 316 return name_node; 317 return NULL; 318 } 319 320 bool netdev_name_in_use(struct net *net, const char *name) 321 { 322 return netdev_name_node_lookup(net, name); 323 } 324 EXPORT_SYMBOL(netdev_name_in_use); 325 326 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 327 { 328 struct netdev_name_node *name_node; 329 struct net *net = dev_net(dev); 330 331 name_node = netdev_name_node_lookup(net, name); 332 if (name_node) 333 return -EEXIST; 334 name_node = netdev_name_node_alloc(dev, name); 335 if (!name_node) 336 return -ENOMEM; 337 netdev_name_node_add(net, name_node); 338 /* The node that holds dev->name acts as a head of per-device list. */ 339 list_add_tail_rcu(&name_node->list, &dev->name_node->list); 340 341 return 0; 342 } 343 344 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 345 { 346 list_del(&name_node->list); 347 kfree(name_node->name); 348 netdev_name_node_free(name_node); 349 } 350 351 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 352 { 353 struct netdev_name_node *name_node; 354 struct net *net = dev_net(dev); 355 356 name_node = netdev_name_node_lookup(net, name); 357 if (!name_node) 358 return -ENOENT; 359 /* lookup might have found our primary name or a name belonging 360 * to another device. 361 */ 362 if (name_node == dev->name_node || name_node->dev != dev) 363 return -EINVAL; 364 365 netdev_name_node_del(name_node); 366 synchronize_rcu(); 367 __netdev_name_node_alt_destroy(name_node); 368 369 return 0; 370 } 371 372 static void netdev_name_node_alt_flush(struct net_device *dev) 373 { 374 struct netdev_name_node *name_node, *tmp; 375 376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 377 __netdev_name_node_alt_destroy(name_node); 378 } 379 380 /* Device list insertion */ 381 static void list_netdevice(struct net_device *dev) 382 { 383 struct netdev_name_node *name_node; 384 struct net *net = dev_net(dev); 385 386 ASSERT_RTNL(); 387 388 write_lock(&dev_base_lock); 389 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 390 netdev_name_node_add(net, dev->name_node); 391 hlist_add_head_rcu(&dev->index_hlist, 392 dev_index_hash(net, dev->ifindex)); 393 write_unlock(&dev_base_lock); 394 395 netdev_for_each_altname(dev, name_node) 396 netdev_name_node_add(net, name_node); 397 398 /* We reserved the ifindex, this can't fail */ 399 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL)); 400 401 dev_base_seq_inc(net); 402 } 403 404 /* Device list removal 405 * caller must respect a RCU grace period before freeing/reusing dev 406 */ 407 static void unlist_netdevice(struct net_device *dev, bool lock) 408 { 409 struct netdev_name_node *name_node; 410 struct net *net = dev_net(dev); 411 412 ASSERT_RTNL(); 413 414 xa_erase(&net->dev_by_index, dev->ifindex); 415 416 netdev_for_each_altname(dev, name_node) 417 netdev_name_node_del(name_node); 418 419 /* Unlink dev from the device chain */ 420 if (lock) 421 write_lock(&dev_base_lock); 422 list_del_rcu(&dev->dev_list); 423 netdev_name_node_del(dev->name_node); 424 hlist_del_rcu(&dev->index_hlist); 425 if (lock) 426 write_unlock(&dev_base_lock); 427 428 dev_base_seq_inc(dev_net(dev)); 429 } 430 431 /* 432 * Our notifier list 433 */ 434 435 static RAW_NOTIFIER_HEAD(netdev_chain); 436 437 /* 438 * Device drivers call our routines to queue packets here. We empty the 439 * queue in the local softnet handler. 440 */ 441 442 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 443 EXPORT_PER_CPU_SYMBOL(softnet_data); 444 445 #ifdef CONFIG_LOCKDEP 446 /* 447 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 448 * according to dev->type 449 */ 450 static const unsigned short netdev_lock_type[] = { 451 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 452 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 453 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 454 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 455 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 456 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 457 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 458 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 459 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 460 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 461 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 462 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 463 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 464 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 465 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 466 467 static const char *const netdev_lock_name[] = { 468 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 469 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 470 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 471 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 472 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 473 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 474 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 475 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 476 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 477 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 478 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 479 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 480 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 481 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 482 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 483 484 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 485 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 486 487 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 488 { 489 int i; 490 491 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 492 if (netdev_lock_type[i] == dev_type) 493 return i; 494 /* the last key is used by default */ 495 return ARRAY_SIZE(netdev_lock_type) - 1; 496 } 497 498 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 499 unsigned short dev_type) 500 { 501 int i; 502 503 i = netdev_lock_pos(dev_type); 504 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 505 netdev_lock_name[i]); 506 } 507 508 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 509 { 510 int i; 511 512 i = netdev_lock_pos(dev->type); 513 lockdep_set_class_and_name(&dev->addr_list_lock, 514 &netdev_addr_lock_key[i], 515 netdev_lock_name[i]); 516 } 517 #else 518 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 519 unsigned short dev_type) 520 { 521 } 522 523 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 524 { 525 } 526 #endif 527 528 /******************************************************************************* 529 * 530 * Protocol management and registration routines 531 * 532 *******************************************************************************/ 533 534 535 /* 536 * Add a protocol ID to the list. Now that the input handler is 537 * smarter we can dispense with all the messy stuff that used to be 538 * here. 539 * 540 * BEWARE!!! Protocol handlers, mangling input packets, 541 * MUST BE last in hash buckets and checking protocol handlers 542 * MUST start from promiscuous ptype_all chain in net_bh. 543 * It is true now, do not change it. 544 * Explanation follows: if protocol handler, mangling packet, will 545 * be the first on list, it is not able to sense, that packet 546 * is cloned and should be copied-on-write, so that it will 547 * change it and subsequent readers will get broken packet. 548 * --ANK (980803) 549 */ 550 551 static inline struct list_head *ptype_head(const struct packet_type *pt) 552 { 553 if (pt->type == htons(ETH_P_ALL)) 554 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 555 else 556 return pt->dev ? &pt->dev->ptype_specific : 557 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 558 } 559 560 /** 561 * dev_add_pack - add packet handler 562 * @pt: packet type declaration 563 * 564 * Add a protocol handler to the networking stack. The passed &packet_type 565 * is linked into kernel lists and may not be freed until it has been 566 * removed from the kernel lists. 567 * 568 * This call does not sleep therefore it can not 569 * guarantee all CPU's that are in middle of receiving packets 570 * will see the new packet type (until the next received packet). 571 */ 572 573 void dev_add_pack(struct packet_type *pt) 574 { 575 struct list_head *head = ptype_head(pt); 576 577 spin_lock(&ptype_lock); 578 list_add_rcu(&pt->list, head); 579 spin_unlock(&ptype_lock); 580 } 581 EXPORT_SYMBOL(dev_add_pack); 582 583 /** 584 * __dev_remove_pack - remove packet handler 585 * @pt: packet type declaration 586 * 587 * Remove a protocol handler that was previously added to the kernel 588 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 589 * from the kernel lists and can be freed or reused once this function 590 * returns. 591 * 592 * The packet type might still be in use by receivers 593 * and must not be freed until after all the CPU's have gone 594 * through a quiescent state. 595 */ 596 void __dev_remove_pack(struct packet_type *pt) 597 { 598 struct list_head *head = ptype_head(pt); 599 struct packet_type *pt1; 600 601 spin_lock(&ptype_lock); 602 603 list_for_each_entry(pt1, head, list) { 604 if (pt == pt1) { 605 list_del_rcu(&pt->list); 606 goto out; 607 } 608 } 609 610 pr_warn("dev_remove_pack: %p not found\n", pt); 611 out: 612 spin_unlock(&ptype_lock); 613 } 614 EXPORT_SYMBOL(__dev_remove_pack); 615 616 /** 617 * dev_remove_pack - remove packet handler 618 * @pt: packet type declaration 619 * 620 * Remove a protocol handler that was previously added to the kernel 621 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 622 * from the kernel lists and can be freed or reused once this function 623 * returns. 624 * 625 * This call sleeps to guarantee that no CPU is looking at the packet 626 * type after return. 627 */ 628 void dev_remove_pack(struct packet_type *pt) 629 { 630 __dev_remove_pack(pt); 631 632 synchronize_net(); 633 } 634 EXPORT_SYMBOL(dev_remove_pack); 635 636 637 /******************************************************************************* 638 * 639 * Device Interface Subroutines 640 * 641 *******************************************************************************/ 642 643 /** 644 * dev_get_iflink - get 'iflink' value of a interface 645 * @dev: targeted interface 646 * 647 * Indicates the ifindex the interface is linked to. 648 * Physical interfaces have the same 'ifindex' and 'iflink' values. 649 */ 650 651 int dev_get_iflink(const struct net_device *dev) 652 { 653 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 654 return dev->netdev_ops->ndo_get_iflink(dev); 655 656 return dev->ifindex; 657 } 658 EXPORT_SYMBOL(dev_get_iflink); 659 660 /** 661 * dev_fill_metadata_dst - Retrieve tunnel egress information. 662 * @dev: targeted interface 663 * @skb: The packet. 664 * 665 * For better visibility of tunnel traffic OVS needs to retrieve 666 * egress tunnel information for a packet. Following API allows 667 * user to get this info. 668 */ 669 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 670 { 671 struct ip_tunnel_info *info; 672 673 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 674 return -EINVAL; 675 676 info = skb_tunnel_info_unclone(skb); 677 if (!info) 678 return -ENOMEM; 679 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 680 return -EINVAL; 681 682 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 683 } 684 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 685 686 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 687 { 688 int k = stack->num_paths++; 689 690 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 691 return NULL; 692 693 return &stack->path[k]; 694 } 695 696 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 697 struct net_device_path_stack *stack) 698 { 699 const struct net_device *last_dev; 700 struct net_device_path_ctx ctx = { 701 .dev = dev, 702 }; 703 struct net_device_path *path; 704 int ret = 0; 705 706 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr)); 707 stack->num_paths = 0; 708 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 709 last_dev = ctx.dev; 710 path = dev_fwd_path(stack); 711 if (!path) 712 return -1; 713 714 memset(path, 0, sizeof(struct net_device_path)); 715 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 716 if (ret < 0) 717 return -1; 718 719 if (WARN_ON_ONCE(last_dev == ctx.dev)) 720 return -1; 721 } 722 723 if (!ctx.dev) 724 return ret; 725 726 path = dev_fwd_path(stack); 727 if (!path) 728 return -1; 729 path->type = DEV_PATH_ETHERNET; 730 path->dev = ctx.dev; 731 732 return ret; 733 } 734 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 735 736 /** 737 * __dev_get_by_name - find a device by its name 738 * @net: the applicable net namespace 739 * @name: name to find 740 * 741 * Find an interface by name. Must be called under RTNL semaphore 742 * or @dev_base_lock. If the name is found a pointer to the device 743 * is returned. If the name is not found then %NULL is returned. The 744 * reference counters are not incremented so the caller must be 745 * careful with locks. 746 */ 747 748 struct net_device *__dev_get_by_name(struct net *net, const char *name) 749 { 750 struct netdev_name_node *node_name; 751 752 node_name = netdev_name_node_lookup(net, name); 753 return node_name ? node_name->dev : NULL; 754 } 755 EXPORT_SYMBOL(__dev_get_by_name); 756 757 /** 758 * dev_get_by_name_rcu - find a device by its name 759 * @net: the applicable net namespace 760 * @name: name to find 761 * 762 * Find an interface by name. 763 * If the name is found a pointer to the device is returned. 764 * If the name is not found then %NULL is returned. 765 * The reference counters are not incremented so the caller must be 766 * careful with locks. The caller must hold RCU lock. 767 */ 768 769 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 770 { 771 struct netdev_name_node *node_name; 772 773 node_name = netdev_name_node_lookup_rcu(net, name); 774 return node_name ? node_name->dev : NULL; 775 } 776 EXPORT_SYMBOL(dev_get_by_name_rcu); 777 778 /* Deprecated for new users, call netdev_get_by_name() instead */ 779 struct net_device *dev_get_by_name(struct net *net, const char *name) 780 { 781 struct net_device *dev; 782 783 rcu_read_lock(); 784 dev = dev_get_by_name_rcu(net, name); 785 dev_hold(dev); 786 rcu_read_unlock(); 787 return dev; 788 } 789 EXPORT_SYMBOL(dev_get_by_name); 790 791 /** 792 * netdev_get_by_name() - find a device by its name 793 * @net: the applicable net namespace 794 * @name: name to find 795 * @tracker: tracking object for the acquired reference 796 * @gfp: allocation flags for the tracker 797 * 798 * Find an interface by name. This can be called from any 799 * context and does its own locking. The returned handle has 800 * the usage count incremented and the caller must use netdev_put() to 801 * release it when it is no longer needed. %NULL is returned if no 802 * matching device is found. 803 */ 804 struct net_device *netdev_get_by_name(struct net *net, const char *name, 805 netdevice_tracker *tracker, gfp_t gfp) 806 { 807 struct net_device *dev; 808 809 dev = dev_get_by_name(net, name); 810 if (dev) 811 netdev_tracker_alloc(dev, tracker, gfp); 812 return dev; 813 } 814 EXPORT_SYMBOL(netdev_get_by_name); 815 816 /** 817 * __dev_get_by_index - find a device by its ifindex 818 * @net: the applicable net namespace 819 * @ifindex: index of device 820 * 821 * Search for an interface by index. Returns %NULL if the device 822 * is not found or a pointer to the device. The device has not 823 * had its reference counter increased so the caller must be careful 824 * about locking. The caller must hold either the RTNL semaphore 825 * or @dev_base_lock. 826 */ 827 828 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 829 { 830 struct net_device *dev; 831 struct hlist_head *head = dev_index_hash(net, ifindex); 832 833 hlist_for_each_entry(dev, head, index_hlist) 834 if (dev->ifindex == ifindex) 835 return dev; 836 837 return NULL; 838 } 839 EXPORT_SYMBOL(__dev_get_by_index); 840 841 /** 842 * dev_get_by_index_rcu - find a device by its ifindex 843 * @net: the applicable net namespace 844 * @ifindex: index of device 845 * 846 * Search for an interface by index. Returns %NULL if the device 847 * is not found or a pointer to the device. The device has not 848 * had its reference counter increased so the caller must be careful 849 * about locking. The caller must hold RCU lock. 850 */ 851 852 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 853 { 854 struct net_device *dev; 855 struct hlist_head *head = dev_index_hash(net, ifindex); 856 857 hlist_for_each_entry_rcu(dev, head, index_hlist) 858 if (dev->ifindex == ifindex) 859 return dev; 860 861 return NULL; 862 } 863 EXPORT_SYMBOL(dev_get_by_index_rcu); 864 865 /* Deprecated for new users, call netdev_get_by_index() instead */ 866 struct net_device *dev_get_by_index(struct net *net, int ifindex) 867 { 868 struct net_device *dev; 869 870 rcu_read_lock(); 871 dev = dev_get_by_index_rcu(net, ifindex); 872 dev_hold(dev); 873 rcu_read_unlock(); 874 return dev; 875 } 876 EXPORT_SYMBOL(dev_get_by_index); 877 878 /** 879 * netdev_get_by_index() - find a device by its ifindex 880 * @net: the applicable net namespace 881 * @ifindex: index of device 882 * @tracker: tracking object for the acquired reference 883 * @gfp: allocation flags for the tracker 884 * 885 * Search for an interface by index. Returns NULL if the device 886 * is not found or a pointer to the device. The device returned has 887 * had a reference added and the pointer is safe until the user calls 888 * netdev_put() to indicate they have finished with it. 889 */ 890 struct net_device *netdev_get_by_index(struct net *net, int ifindex, 891 netdevice_tracker *tracker, gfp_t gfp) 892 { 893 struct net_device *dev; 894 895 dev = dev_get_by_index(net, ifindex); 896 if (dev) 897 netdev_tracker_alloc(dev, tracker, gfp); 898 return dev; 899 } 900 EXPORT_SYMBOL(netdev_get_by_index); 901 902 /** 903 * dev_get_by_napi_id - find a device by napi_id 904 * @napi_id: ID of the NAPI struct 905 * 906 * Search for an interface by NAPI ID. Returns %NULL if the device 907 * is not found or a pointer to the device. The device has not had 908 * its reference counter increased so the caller must be careful 909 * about locking. The caller must hold RCU lock. 910 */ 911 912 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 913 { 914 struct napi_struct *napi; 915 916 WARN_ON_ONCE(!rcu_read_lock_held()); 917 918 if (napi_id < MIN_NAPI_ID) 919 return NULL; 920 921 napi = napi_by_id(napi_id); 922 923 return napi ? napi->dev : NULL; 924 } 925 EXPORT_SYMBOL(dev_get_by_napi_id); 926 927 /** 928 * netdev_get_name - get a netdevice name, knowing its ifindex. 929 * @net: network namespace 930 * @name: a pointer to the buffer where the name will be stored. 931 * @ifindex: the ifindex of the interface to get the name from. 932 */ 933 int netdev_get_name(struct net *net, char *name, int ifindex) 934 { 935 struct net_device *dev; 936 int ret; 937 938 down_read(&devnet_rename_sem); 939 rcu_read_lock(); 940 941 dev = dev_get_by_index_rcu(net, ifindex); 942 if (!dev) { 943 ret = -ENODEV; 944 goto out; 945 } 946 947 strcpy(name, dev->name); 948 949 ret = 0; 950 out: 951 rcu_read_unlock(); 952 up_read(&devnet_rename_sem); 953 return ret; 954 } 955 956 /** 957 * dev_getbyhwaddr_rcu - find a device by its hardware address 958 * @net: the applicable net namespace 959 * @type: media type of device 960 * @ha: hardware address 961 * 962 * Search for an interface by MAC address. Returns NULL if the device 963 * is not found or a pointer to the device. 964 * The caller must hold RCU or RTNL. 965 * The returned device has not had its ref count increased 966 * and the caller must therefore be careful about locking 967 * 968 */ 969 970 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 971 const char *ha) 972 { 973 struct net_device *dev; 974 975 for_each_netdev_rcu(net, dev) 976 if (dev->type == type && 977 !memcmp(dev->dev_addr, ha, dev->addr_len)) 978 return dev; 979 980 return NULL; 981 } 982 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 983 984 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 985 { 986 struct net_device *dev, *ret = NULL; 987 988 rcu_read_lock(); 989 for_each_netdev_rcu(net, dev) 990 if (dev->type == type) { 991 dev_hold(dev); 992 ret = dev; 993 break; 994 } 995 rcu_read_unlock(); 996 return ret; 997 } 998 EXPORT_SYMBOL(dev_getfirstbyhwtype); 999 1000 /** 1001 * __dev_get_by_flags - find any device with given flags 1002 * @net: the applicable net namespace 1003 * @if_flags: IFF_* values 1004 * @mask: bitmask of bits in if_flags to check 1005 * 1006 * Search for any interface with the given flags. Returns NULL if a device 1007 * is not found or a pointer to the device. Must be called inside 1008 * rtnl_lock(), and result refcount is unchanged. 1009 */ 1010 1011 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1012 unsigned short mask) 1013 { 1014 struct net_device *dev, *ret; 1015 1016 ASSERT_RTNL(); 1017 1018 ret = NULL; 1019 for_each_netdev(net, dev) { 1020 if (((dev->flags ^ if_flags) & mask) == 0) { 1021 ret = dev; 1022 break; 1023 } 1024 } 1025 return ret; 1026 } 1027 EXPORT_SYMBOL(__dev_get_by_flags); 1028 1029 /** 1030 * dev_valid_name - check if name is okay for network device 1031 * @name: name string 1032 * 1033 * Network device names need to be valid file names to 1034 * allow sysfs to work. We also disallow any kind of 1035 * whitespace. 1036 */ 1037 bool dev_valid_name(const char *name) 1038 { 1039 if (*name == '\0') 1040 return false; 1041 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1042 return false; 1043 if (!strcmp(name, ".") || !strcmp(name, "..")) 1044 return false; 1045 1046 while (*name) { 1047 if (*name == '/' || *name == ':' || isspace(*name)) 1048 return false; 1049 name++; 1050 } 1051 return true; 1052 } 1053 EXPORT_SYMBOL(dev_valid_name); 1054 1055 /** 1056 * __dev_alloc_name - allocate a name for a device 1057 * @net: network namespace to allocate the device name in 1058 * @name: name format string 1059 * @res: result name string 1060 * 1061 * Passed a format string - eg "lt%d" it will try and find a suitable 1062 * id. It scans list of devices to build up a free map, then chooses 1063 * the first empty slot. The caller must hold the dev_base or rtnl lock 1064 * while allocating the name and adding the device in order to avoid 1065 * duplicates. 1066 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1067 * Returns the number of the unit assigned or a negative errno code. 1068 */ 1069 1070 static int __dev_alloc_name(struct net *net, const char *name, char *res) 1071 { 1072 int i = 0; 1073 const char *p; 1074 const int max_netdevices = 8*PAGE_SIZE; 1075 unsigned long *inuse; 1076 struct net_device *d; 1077 char buf[IFNAMSIZ]; 1078 1079 /* Verify the string as this thing may have come from the user. 1080 * There must be one "%d" and no other "%" characters. 1081 */ 1082 p = strchr(name, '%'); 1083 if (!p || p[1] != 'd' || strchr(p + 2, '%')) 1084 return -EINVAL; 1085 1086 /* Use one page as a bit array of possible slots */ 1087 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC); 1088 if (!inuse) 1089 return -ENOMEM; 1090 1091 for_each_netdev(net, d) { 1092 struct netdev_name_node *name_node; 1093 1094 netdev_for_each_altname(d, name_node) { 1095 if (!sscanf(name_node->name, name, &i)) 1096 continue; 1097 if (i < 0 || i >= max_netdevices) 1098 continue; 1099 1100 /* avoid cases where sscanf is not exact inverse of printf */ 1101 snprintf(buf, IFNAMSIZ, name, i); 1102 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1103 __set_bit(i, inuse); 1104 } 1105 if (!sscanf(d->name, name, &i)) 1106 continue; 1107 if (i < 0 || i >= max_netdevices) 1108 continue; 1109 1110 /* avoid cases where sscanf is not exact inverse of printf */ 1111 snprintf(buf, IFNAMSIZ, name, i); 1112 if (!strncmp(buf, d->name, IFNAMSIZ)) 1113 __set_bit(i, inuse); 1114 } 1115 1116 i = find_first_zero_bit(inuse, max_netdevices); 1117 bitmap_free(inuse); 1118 if (i == max_netdevices) 1119 return -ENFILE; 1120 1121 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */ 1122 strscpy(buf, name, IFNAMSIZ); 1123 snprintf(res, IFNAMSIZ, buf, i); 1124 return i; 1125 } 1126 1127 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */ 1128 static int dev_prep_valid_name(struct net *net, struct net_device *dev, 1129 const char *want_name, char *out_name, 1130 int dup_errno) 1131 { 1132 if (!dev_valid_name(want_name)) 1133 return -EINVAL; 1134 1135 if (strchr(want_name, '%')) 1136 return __dev_alloc_name(net, want_name, out_name); 1137 1138 if (netdev_name_in_use(net, want_name)) 1139 return -dup_errno; 1140 if (out_name != want_name) 1141 strscpy(out_name, want_name, IFNAMSIZ); 1142 return 0; 1143 } 1144 1145 /** 1146 * dev_alloc_name - allocate a name for a device 1147 * @dev: device 1148 * @name: name format string 1149 * 1150 * Passed a format string - eg "lt%d" it will try and find a suitable 1151 * id. It scans list of devices to build up a free map, then chooses 1152 * the first empty slot. The caller must hold the dev_base or rtnl lock 1153 * while allocating the name and adding the device in order to avoid 1154 * duplicates. 1155 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1156 * Returns the number of the unit assigned or a negative errno code. 1157 */ 1158 1159 int dev_alloc_name(struct net_device *dev, const char *name) 1160 { 1161 return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE); 1162 } 1163 EXPORT_SYMBOL(dev_alloc_name); 1164 1165 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1166 const char *name) 1167 { 1168 int ret; 1169 1170 ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST); 1171 return ret < 0 ? ret : 0; 1172 } 1173 1174 /** 1175 * dev_change_name - change name of a device 1176 * @dev: device 1177 * @newname: name (or format string) must be at least IFNAMSIZ 1178 * 1179 * Change name of a device, can pass format strings "eth%d". 1180 * for wildcarding. 1181 */ 1182 int dev_change_name(struct net_device *dev, const char *newname) 1183 { 1184 unsigned char old_assign_type; 1185 char oldname[IFNAMSIZ]; 1186 int err = 0; 1187 int ret; 1188 struct net *net; 1189 1190 ASSERT_RTNL(); 1191 BUG_ON(!dev_net(dev)); 1192 1193 net = dev_net(dev); 1194 1195 down_write(&devnet_rename_sem); 1196 1197 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1198 up_write(&devnet_rename_sem); 1199 return 0; 1200 } 1201 1202 memcpy(oldname, dev->name, IFNAMSIZ); 1203 1204 err = dev_get_valid_name(net, dev, newname); 1205 if (err < 0) { 1206 up_write(&devnet_rename_sem); 1207 return err; 1208 } 1209 1210 if (oldname[0] && !strchr(oldname, '%')) 1211 netdev_info(dev, "renamed from %s%s\n", oldname, 1212 dev->flags & IFF_UP ? " (while UP)" : ""); 1213 1214 old_assign_type = dev->name_assign_type; 1215 dev->name_assign_type = NET_NAME_RENAMED; 1216 1217 rollback: 1218 ret = device_rename(&dev->dev, dev->name); 1219 if (ret) { 1220 memcpy(dev->name, oldname, IFNAMSIZ); 1221 dev->name_assign_type = old_assign_type; 1222 up_write(&devnet_rename_sem); 1223 return ret; 1224 } 1225 1226 up_write(&devnet_rename_sem); 1227 1228 netdev_adjacent_rename_links(dev, oldname); 1229 1230 write_lock(&dev_base_lock); 1231 netdev_name_node_del(dev->name_node); 1232 write_unlock(&dev_base_lock); 1233 1234 synchronize_rcu(); 1235 1236 write_lock(&dev_base_lock); 1237 netdev_name_node_add(net, dev->name_node); 1238 write_unlock(&dev_base_lock); 1239 1240 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1241 ret = notifier_to_errno(ret); 1242 1243 if (ret) { 1244 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1245 if (err >= 0) { 1246 err = ret; 1247 down_write(&devnet_rename_sem); 1248 memcpy(dev->name, oldname, IFNAMSIZ); 1249 memcpy(oldname, newname, IFNAMSIZ); 1250 dev->name_assign_type = old_assign_type; 1251 old_assign_type = NET_NAME_RENAMED; 1252 goto rollback; 1253 } else { 1254 netdev_err(dev, "name change rollback failed: %d\n", 1255 ret); 1256 } 1257 } 1258 1259 return err; 1260 } 1261 1262 /** 1263 * dev_set_alias - change ifalias of a device 1264 * @dev: device 1265 * @alias: name up to IFALIASZ 1266 * @len: limit of bytes to copy from info 1267 * 1268 * Set ifalias for a device, 1269 */ 1270 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1271 { 1272 struct dev_ifalias *new_alias = NULL; 1273 1274 if (len >= IFALIASZ) 1275 return -EINVAL; 1276 1277 if (len) { 1278 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1279 if (!new_alias) 1280 return -ENOMEM; 1281 1282 memcpy(new_alias->ifalias, alias, len); 1283 new_alias->ifalias[len] = 0; 1284 } 1285 1286 mutex_lock(&ifalias_mutex); 1287 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1288 mutex_is_locked(&ifalias_mutex)); 1289 mutex_unlock(&ifalias_mutex); 1290 1291 if (new_alias) 1292 kfree_rcu(new_alias, rcuhead); 1293 1294 return len; 1295 } 1296 EXPORT_SYMBOL(dev_set_alias); 1297 1298 /** 1299 * dev_get_alias - get ifalias of a device 1300 * @dev: device 1301 * @name: buffer to store name of ifalias 1302 * @len: size of buffer 1303 * 1304 * get ifalias for a device. Caller must make sure dev cannot go 1305 * away, e.g. rcu read lock or own a reference count to device. 1306 */ 1307 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1308 { 1309 const struct dev_ifalias *alias; 1310 int ret = 0; 1311 1312 rcu_read_lock(); 1313 alias = rcu_dereference(dev->ifalias); 1314 if (alias) 1315 ret = snprintf(name, len, "%s", alias->ifalias); 1316 rcu_read_unlock(); 1317 1318 return ret; 1319 } 1320 1321 /** 1322 * netdev_features_change - device changes features 1323 * @dev: device to cause notification 1324 * 1325 * Called to indicate a device has changed features. 1326 */ 1327 void netdev_features_change(struct net_device *dev) 1328 { 1329 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1330 } 1331 EXPORT_SYMBOL(netdev_features_change); 1332 1333 /** 1334 * netdev_state_change - device changes state 1335 * @dev: device to cause notification 1336 * 1337 * Called to indicate a device has changed state. This function calls 1338 * the notifier chains for netdev_chain and sends a NEWLINK message 1339 * to the routing socket. 1340 */ 1341 void netdev_state_change(struct net_device *dev) 1342 { 1343 if (dev->flags & IFF_UP) { 1344 struct netdev_notifier_change_info change_info = { 1345 .info.dev = dev, 1346 }; 1347 1348 call_netdevice_notifiers_info(NETDEV_CHANGE, 1349 &change_info.info); 1350 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL); 1351 } 1352 } 1353 EXPORT_SYMBOL(netdev_state_change); 1354 1355 /** 1356 * __netdev_notify_peers - notify network peers about existence of @dev, 1357 * to be called when rtnl lock is already held. 1358 * @dev: network device 1359 * 1360 * Generate traffic such that interested network peers are aware of 1361 * @dev, such as by generating a gratuitous ARP. This may be used when 1362 * a device wants to inform the rest of the network about some sort of 1363 * reconfiguration such as a failover event or virtual machine 1364 * migration. 1365 */ 1366 void __netdev_notify_peers(struct net_device *dev) 1367 { 1368 ASSERT_RTNL(); 1369 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1370 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1371 } 1372 EXPORT_SYMBOL(__netdev_notify_peers); 1373 1374 /** 1375 * netdev_notify_peers - notify network peers about existence of @dev 1376 * @dev: network device 1377 * 1378 * Generate traffic such that interested network peers are aware of 1379 * @dev, such as by generating a gratuitous ARP. This may be used when 1380 * a device wants to inform the rest of the network about some sort of 1381 * reconfiguration such as a failover event or virtual machine 1382 * migration. 1383 */ 1384 void netdev_notify_peers(struct net_device *dev) 1385 { 1386 rtnl_lock(); 1387 __netdev_notify_peers(dev); 1388 rtnl_unlock(); 1389 } 1390 EXPORT_SYMBOL(netdev_notify_peers); 1391 1392 static int napi_threaded_poll(void *data); 1393 1394 static int napi_kthread_create(struct napi_struct *n) 1395 { 1396 int err = 0; 1397 1398 /* Create and wake up the kthread once to put it in 1399 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1400 * warning and work with loadavg. 1401 */ 1402 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1403 n->dev->name, n->napi_id); 1404 if (IS_ERR(n->thread)) { 1405 err = PTR_ERR(n->thread); 1406 pr_err("kthread_run failed with err %d\n", err); 1407 n->thread = NULL; 1408 } 1409 1410 return err; 1411 } 1412 1413 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1414 { 1415 const struct net_device_ops *ops = dev->netdev_ops; 1416 int ret; 1417 1418 ASSERT_RTNL(); 1419 dev_addr_check(dev); 1420 1421 if (!netif_device_present(dev)) { 1422 /* may be detached because parent is runtime-suspended */ 1423 if (dev->dev.parent) 1424 pm_runtime_resume(dev->dev.parent); 1425 if (!netif_device_present(dev)) 1426 return -ENODEV; 1427 } 1428 1429 /* Block netpoll from trying to do any rx path servicing. 1430 * If we don't do this there is a chance ndo_poll_controller 1431 * or ndo_poll may be running while we open the device 1432 */ 1433 netpoll_poll_disable(dev); 1434 1435 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1436 ret = notifier_to_errno(ret); 1437 if (ret) 1438 return ret; 1439 1440 set_bit(__LINK_STATE_START, &dev->state); 1441 1442 if (ops->ndo_validate_addr) 1443 ret = ops->ndo_validate_addr(dev); 1444 1445 if (!ret && ops->ndo_open) 1446 ret = ops->ndo_open(dev); 1447 1448 netpoll_poll_enable(dev); 1449 1450 if (ret) 1451 clear_bit(__LINK_STATE_START, &dev->state); 1452 else { 1453 dev->flags |= IFF_UP; 1454 dev_set_rx_mode(dev); 1455 dev_activate(dev); 1456 add_device_randomness(dev->dev_addr, dev->addr_len); 1457 } 1458 1459 return ret; 1460 } 1461 1462 /** 1463 * dev_open - prepare an interface for use. 1464 * @dev: device to open 1465 * @extack: netlink extended ack 1466 * 1467 * Takes a device from down to up state. The device's private open 1468 * function is invoked and then the multicast lists are loaded. Finally 1469 * the device is moved into the up state and a %NETDEV_UP message is 1470 * sent to the netdev notifier chain. 1471 * 1472 * Calling this function on an active interface is a nop. On a failure 1473 * a negative errno code is returned. 1474 */ 1475 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1476 { 1477 int ret; 1478 1479 if (dev->flags & IFF_UP) 1480 return 0; 1481 1482 ret = __dev_open(dev, extack); 1483 if (ret < 0) 1484 return ret; 1485 1486 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1487 call_netdevice_notifiers(NETDEV_UP, dev); 1488 1489 return ret; 1490 } 1491 EXPORT_SYMBOL(dev_open); 1492 1493 static void __dev_close_many(struct list_head *head) 1494 { 1495 struct net_device *dev; 1496 1497 ASSERT_RTNL(); 1498 might_sleep(); 1499 1500 list_for_each_entry(dev, head, close_list) { 1501 /* Temporarily disable netpoll until the interface is down */ 1502 netpoll_poll_disable(dev); 1503 1504 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1505 1506 clear_bit(__LINK_STATE_START, &dev->state); 1507 1508 /* Synchronize to scheduled poll. We cannot touch poll list, it 1509 * can be even on different cpu. So just clear netif_running(). 1510 * 1511 * dev->stop() will invoke napi_disable() on all of it's 1512 * napi_struct instances on this device. 1513 */ 1514 smp_mb__after_atomic(); /* Commit netif_running(). */ 1515 } 1516 1517 dev_deactivate_many(head); 1518 1519 list_for_each_entry(dev, head, close_list) { 1520 const struct net_device_ops *ops = dev->netdev_ops; 1521 1522 /* 1523 * Call the device specific close. This cannot fail. 1524 * Only if device is UP 1525 * 1526 * We allow it to be called even after a DETACH hot-plug 1527 * event. 1528 */ 1529 if (ops->ndo_stop) 1530 ops->ndo_stop(dev); 1531 1532 dev->flags &= ~IFF_UP; 1533 netpoll_poll_enable(dev); 1534 } 1535 } 1536 1537 static void __dev_close(struct net_device *dev) 1538 { 1539 LIST_HEAD(single); 1540 1541 list_add(&dev->close_list, &single); 1542 __dev_close_many(&single); 1543 list_del(&single); 1544 } 1545 1546 void dev_close_many(struct list_head *head, bool unlink) 1547 { 1548 struct net_device *dev, *tmp; 1549 1550 /* Remove the devices that don't need to be closed */ 1551 list_for_each_entry_safe(dev, tmp, head, close_list) 1552 if (!(dev->flags & IFF_UP)) 1553 list_del_init(&dev->close_list); 1554 1555 __dev_close_many(head); 1556 1557 list_for_each_entry_safe(dev, tmp, head, close_list) { 1558 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL); 1559 call_netdevice_notifiers(NETDEV_DOWN, dev); 1560 if (unlink) 1561 list_del_init(&dev->close_list); 1562 } 1563 } 1564 EXPORT_SYMBOL(dev_close_many); 1565 1566 /** 1567 * dev_close - shutdown an interface. 1568 * @dev: device to shutdown 1569 * 1570 * This function moves an active device into down state. A 1571 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1572 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1573 * chain. 1574 */ 1575 void dev_close(struct net_device *dev) 1576 { 1577 if (dev->flags & IFF_UP) { 1578 LIST_HEAD(single); 1579 1580 list_add(&dev->close_list, &single); 1581 dev_close_many(&single, true); 1582 list_del(&single); 1583 } 1584 } 1585 EXPORT_SYMBOL(dev_close); 1586 1587 1588 /** 1589 * dev_disable_lro - disable Large Receive Offload on a device 1590 * @dev: device 1591 * 1592 * Disable Large Receive Offload (LRO) on a net device. Must be 1593 * called under RTNL. This is needed if received packets may be 1594 * forwarded to another interface. 1595 */ 1596 void dev_disable_lro(struct net_device *dev) 1597 { 1598 struct net_device *lower_dev; 1599 struct list_head *iter; 1600 1601 dev->wanted_features &= ~NETIF_F_LRO; 1602 netdev_update_features(dev); 1603 1604 if (unlikely(dev->features & NETIF_F_LRO)) 1605 netdev_WARN(dev, "failed to disable LRO!\n"); 1606 1607 netdev_for_each_lower_dev(dev, lower_dev, iter) 1608 dev_disable_lro(lower_dev); 1609 } 1610 EXPORT_SYMBOL(dev_disable_lro); 1611 1612 /** 1613 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1614 * @dev: device 1615 * 1616 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1617 * called under RTNL. This is needed if Generic XDP is installed on 1618 * the device. 1619 */ 1620 static void dev_disable_gro_hw(struct net_device *dev) 1621 { 1622 dev->wanted_features &= ~NETIF_F_GRO_HW; 1623 netdev_update_features(dev); 1624 1625 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1626 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1627 } 1628 1629 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1630 { 1631 #define N(val) \ 1632 case NETDEV_##val: \ 1633 return "NETDEV_" __stringify(val); 1634 switch (cmd) { 1635 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1636 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1637 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1638 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) 1639 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) 1640 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE) 1641 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1642 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1643 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1644 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1645 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1646 N(XDP_FEAT_CHANGE) 1647 } 1648 #undef N 1649 return "UNKNOWN_NETDEV_EVENT"; 1650 } 1651 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1652 1653 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1654 struct net_device *dev) 1655 { 1656 struct netdev_notifier_info info = { 1657 .dev = dev, 1658 }; 1659 1660 return nb->notifier_call(nb, val, &info); 1661 } 1662 1663 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1664 struct net_device *dev) 1665 { 1666 int err; 1667 1668 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1669 err = notifier_to_errno(err); 1670 if (err) 1671 return err; 1672 1673 if (!(dev->flags & IFF_UP)) 1674 return 0; 1675 1676 call_netdevice_notifier(nb, NETDEV_UP, dev); 1677 return 0; 1678 } 1679 1680 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1681 struct net_device *dev) 1682 { 1683 if (dev->flags & IFF_UP) { 1684 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1685 dev); 1686 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1687 } 1688 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1689 } 1690 1691 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1692 struct net *net) 1693 { 1694 struct net_device *dev; 1695 int err; 1696 1697 for_each_netdev(net, dev) { 1698 err = call_netdevice_register_notifiers(nb, dev); 1699 if (err) 1700 goto rollback; 1701 } 1702 return 0; 1703 1704 rollback: 1705 for_each_netdev_continue_reverse(net, dev) 1706 call_netdevice_unregister_notifiers(nb, dev); 1707 return err; 1708 } 1709 1710 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1711 struct net *net) 1712 { 1713 struct net_device *dev; 1714 1715 for_each_netdev(net, dev) 1716 call_netdevice_unregister_notifiers(nb, dev); 1717 } 1718 1719 static int dev_boot_phase = 1; 1720 1721 /** 1722 * register_netdevice_notifier - register a network notifier block 1723 * @nb: notifier 1724 * 1725 * Register a notifier to be called when network device events occur. 1726 * The notifier passed is linked into the kernel structures and must 1727 * not be reused until it has been unregistered. A negative errno code 1728 * is returned on a failure. 1729 * 1730 * When registered all registration and up events are replayed 1731 * to the new notifier to allow device to have a race free 1732 * view of the network device list. 1733 */ 1734 1735 int register_netdevice_notifier(struct notifier_block *nb) 1736 { 1737 struct net *net; 1738 int err; 1739 1740 /* Close race with setup_net() and cleanup_net() */ 1741 down_write(&pernet_ops_rwsem); 1742 rtnl_lock(); 1743 err = raw_notifier_chain_register(&netdev_chain, nb); 1744 if (err) 1745 goto unlock; 1746 if (dev_boot_phase) 1747 goto unlock; 1748 for_each_net(net) { 1749 err = call_netdevice_register_net_notifiers(nb, net); 1750 if (err) 1751 goto rollback; 1752 } 1753 1754 unlock: 1755 rtnl_unlock(); 1756 up_write(&pernet_ops_rwsem); 1757 return err; 1758 1759 rollback: 1760 for_each_net_continue_reverse(net) 1761 call_netdevice_unregister_net_notifiers(nb, net); 1762 1763 raw_notifier_chain_unregister(&netdev_chain, nb); 1764 goto unlock; 1765 } 1766 EXPORT_SYMBOL(register_netdevice_notifier); 1767 1768 /** 1769 * unregister_netdevice_notifier - unregister a network notifier block 1770 * @nb: notifier 1771 * 1772 * Unregister a notifier previously registered by 1773 * register_netdevice_notifier(). The notifier is unlinked into the 1774 * kernel structures and may then be reused. A negative errno code 1775 * is returned on a failure. 1776 * 1777 * After unregistering unregister and down device events are synthesized 1778 * for all devices on the device list to the removed notifier to remove 1779 * the need for special case cleanup code. 1780 */ 1781 1782 int unregister_netdevice_notifier(struct notifier_block *nb) 1783 { 1784 struct net *net; 1785 int err; 1786 1787 /* Close race with setup_net() and cleanup_net() */ 1788 down_write(&pernet_ops_rwsem); 1789 rtnl_lock(); 1790 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1791 if (err) 1792 goto unlock; 1793 1794 for_each_net(net) 1795 call_netdevice_unregister_net_notifiers(nb, net); 1796 1797 unlock: 1798 rtnl_unlock(); 1799 up_write(&pernet_ops_rwsem); 1800 return err; 1801 } 1802 EXPORT_SYMBOL(unregister_netdevice_notifier); 1803 1804 static int __register_netdevice_notifier_net(struct net *net, 1805 struct notifier_block *nb, 1806 bool ignore_call_fail) 1807 { 1808 int err; 1809 1810 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1811 if (err) 1812 return err; 1813 if (dev_boot_phase) 1814 return 0; 1815 1816 err = call_netdevice_register_net_notifiers(nb, net); 1817 if (err && !ignore_call_fail) 1818 goto chain_unregister; 1819 1820 return 0; 1821 1822 chain_unregister: 1823 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1824 return err; 1825 } 1826 1827 static int __unregister_netdevice_notifier_net(struct net *net, 1828 struct notifier_block *nb) 1829 { 1830 int err; 1831 1832 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1833 if (err) 1834 return err; 1835 1836 call_netdevice_unregister_net_notifiers(nb, net); 1837 return 0; 1838 } 1839 1840 /** 1841 * register_netdevice_notifier_net - register a per-netns network notifier block 1842 * @net: network namespace 1843 * @nb: notifier 1844 * 1845 * Register a notifier to be called when network device events occur. 1846 * The notifier passed is linked into the kernel structures and must 1847 * not be reused until it has been unregistered. A negative errno code 1848 * is returned on a failure. 1849 * 1850 * When registered all registration and up events are replayed 1851 * to the new notifier to allow device to have a race free 1852 * view of the network device list. 1853 */ 1854 1855 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1856 { 1857 int err; 1858 1859 rtnl_lock(); 1860 err = __register_netdevice_notifier_net(net, nb, false); 1861 rtnl_unlock(); 1862 return err; 1863 } 1864 EXPORT_SYMBOL(register_netdevice_notifier_net); 1865 1866 /** 1867 * unregister_netdevice_notifier_net - unregister a per-netns 1868 * network notifier block 1869 * @net: network namespace 1870 * @nb: notifier 1871 * 1872 * Unregister a notifier previously registered by 1873 * register_netdevice_notifier_net(). The notifier is unlinked from the 1874 * kernel structures and may then be reused. A negative errno code 1875 * is returned on a failure. 1876 * 1877 * After unregistering unregister and down device events are synthesized 1878 * for all devices on the device list to the removed notifier to remove 1879 * the need for special case cleanup code. 1880 */ 1881 1882 int unregister_netdevice_notifier_net(struct net *net, 1883 struct notifier_block *nb) 1884 { 1885 int err; 1886 1887 rtnl_lock(); 1888 err = __unregister_netdevice_notifier_net(net, nb); 1889 rtnl_unlock(); 1890 return err; 1891 } 1892 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1893 1894 static void __move_netdevice_notifier_net(struct net *src_net, 1895 struct net *dst_net, 1896 struct notifier_block *nb) 1897 { 1898 __unregister_netdevice_notifier_net(src_net, nb); 1899 __register_netdevice_notifier_net(dst_net, nb, true); 1900 } 1901 1902 int register_netdevice_notifier_dev_net(struct net_device *dev, 1903 struct notifier_block *nb, 1904 struct netdev_net_notifier *nn) 1905 { 1906 int err; 1907 1908 rtnl_lock(); 1909 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1910 if (!err) { 1911 nn->nb = nb; 1912 list_add(&nn->list, &dev->net_notifier_list); 1913 } 1914 rtnl_unlock(); 1915 return err; 1916 } 1917 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1918 1919 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1920 struct notifier_block *nb, 1921 struct netdev_net_notifier *nn) 1922 { 1923 int err; 1924 1925 rtnl_lock(); 1926 list_del(&nn->list); 1927 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1928 rtnl_unlock(); 1929 return err; 1930 } 1931 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1932 1933 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1934 struct net *net) 1935 { 1936 struct netdev_net_notifier *nn; 1937 1938 list_for_each_entry(nn, &dev->net_notifier_list, list) 1939 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb); 1940 } 1941 1942 /** 1943 * call_netdevice_notifiers_info - call all network notifier blocks 1944 * @val: value passed unmodified to notifier function 1945 * @info: notifier information data 1946 * 1947 * Call all network notifier blocks. Parameters and return value 1948 * are as for raw_notifier_call_chain(). 1949 */ 1950 1951 int call_netdevice_notifiers_info(unsigned long val, 1952 struct netdev_notifier_info *info) 1953 { 1954 struct net *net = dev_net(info->dev); 1955 int ret; 1956 1957 ASSERT_RTNL(); 1958 1959 /* Run per-netns notifier block chain first, then run the global one. 1960 * Hopefully, one day, the global one is going to be removed after 1961 * all notifier block registrators get converted to be per-netns. 1962 */ 1963 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1964 if (ret & NOTIFY_STOP_MASK) 1965 return ret; 1966 return raw_notifier_call_chain(&netdev_chain, val, info); 1967 } 1968 1969 /** 1970 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1971 * for and rollback on error 1972 * @val_up: value passed unmodified to notifier function 1973 * @val_down: value passed unmodified to the notifier function when 1974 * recovering from an error on @val_up 1975 * @info: notifier information data 1976 * 1977 * Call all per-netns network notifier blocks, but not notifier blocks on 1978 * the global notifier chain. Parameters and return value are as for 1979 * raw_notifier_call_chain_robust(). 1980 */ 1981 1982 static int 1983 call_netdevice_notifiers_info_robust(unsigned long val_up, 1984 unsigned long val_down, 1985 struct netdev_notifier_info *info) 1986 { 1987 struct net *net = dev_net(info->dev); 1988 1989 ASSERT_RTNL(); 1990 1991 return raw_notifier_call_chain_robust(&net->netdev_chain, 1992 val_up, val_down, info); 1993 } 1994 1995 static int call_netdevice_notifiers_extack(unsigned long val, 1996 struct net_device *dev, 1997 struct netlink_ext_ack *extack) 1998 { 1999 struct netdev_notifier_info info = { 2000 .dev = dev, 2001 .extack = extack, 2002 }; 2003 2004 return call_netdevice_notifiers_info(val, &info); 2005 } 2006 2007 /** 2008 * call_netdevice_notifiers - call all network notifier blocks 2009 * @val: value passed unmodified to notifier function 2010 * @dev: net_device pointer passed unmodified to notifier function 2011 * 2012 * Call all network notifier blocks. Parameters and return value 2013 * are as for raw_notifier_call_chain(). 2014 */ 2015 2016 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2017 { 2018 return call_netdevice_notifiers_extack(val, dev, NULL); 2019 } 2020 EXPORT_SYMBOL(call_netdevice_notifiers); 2021 2022 /** 2023 * call_netdevice_notifiers_mtu - call all network notifier blocks 2024 * @val: value passed unmodified to notifier function 2025 * @dev: net_device pointer passed unmodified to notifier function 2026 * @arg: additional u32 argument passed to the notifier function 2027 * 2028 * Call all network notifier blocks. Parameters and return value 2029 * are as for raw_notifier_call_chain(). 2030 */ 2031 static int call_netdevice_notifiers_mtu(unsigned long val, 2032 struct net_device *dev, u32 arg) 2033 { 2034 struct netdev_notifier_info_ext info = { 2035 .info.dev = dev, 2036 .ext.mtu = arg, 2037 }; 2038 2039 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2040 2041 return call_netdevice_notifiers_info(val, &info.info); 2042 } 2043 2044 #ifdef CONFIG_NET_INGRESS 2045 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2046 2047 void net_inc_ingress_queue(void) 2048 { 2049 static_branch_inc(&ingress_needed_key); 2050 } 2051 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2052 2053 void net_dec_ingress_queue(void) 2054 { 2055 static_branch_dec(&ingress_needed_key); 2056 } 2057 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2058 #endif 2059 2060 #ifdef CONFIG_NET_EGRESS 2061 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2062 2063 void net_inc_egress_queue(void) 2064 { 2065 static_branch_inc(&egress_needed_key); 2066 } 2067 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2068 2069 void net_dec_egress_queue(void) 2070 { 2071 static_branch_dec(&egress_needed_key); 2072 } 2073 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2074 #endif 2075 2076 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2077 EXPORT_SYMBOL(netstamp_needed_key); 2078 #ifdef CONFIG_JUMP_LABEL 2079 static atomic_t netstamp_needed_deferred; 2080 static atomic_t netstamp_wanted; 2081 static void netstamp_clear(struct work_struct *work) 2082 { 2083 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2084 int wanted; 2085 2086 wanted = atomic_add_return(deferred, &netstamp_wanted); 2087 if (wanted > 0) 2088 static_branch_enable(&netstamp_needed_key); 2089 else 2090 static_branch_disable(&netstamp_needed_key); 2091 } 2092 static DECLARE_WORK(netstamp_work, netstamp_clear); 2093 #endif 2094 2095 void net_enable_timestamp(void) 2096 { 2097 #ifdef CONFIG_JUMP_LABEL 2098 int wanted = atomic_read(&netstamp_wanted); 2099 2100 while (wanted > 0) { 2101 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1)) 2102 return; 2103 } 2104 atomic_inc(&netstamp_needed_deferred); 2105 schedule_work(&netstamp_work); 2106 #else 2107 static_branch_inc(&netstamp_needed_key); 2108 #endif 2109 } 2110 EXPORT_SYMBOL(net_enable_timestamp); 2111 2112 void net_disable_timestamp(void) 2113 { 2114 #ifdef CONFIG_JUMP_LABEL 2115 int wanted = atomic_read(&netstamp_wanted); 2116 2117 while (wanted > 1) { 2118 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1)) 2119 return; 2120 } 2121 atomic_dec(&netstamp_needed_deferred); 2122 schedule_work(&netstamp_work); 2123 #else 2124 static_branch_dec(&netstamp_needed_key); 2125 #endif 2126 } 2127 EXPORT_SYMBOL(net_disable_timestamp); 2128 2129 static inline void net_timestamp_set(struct sk_buff *skb) 2130 { 2131 skb->tstamp = 0; 2132 skb->mono_delivery_time = 0; 2133 if (static_branch_unlikely(&netstamp_needed_key)) 2134 skb->tstamp = ktime_get_real(); 2135 } 2136 2137 #define net_timestamp_check(COND, SKB) \ 2138 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2139 if ((COND) && !(SKB)->tstamp) \ 2140 (SKB)->tstamp = ktime_get_real(); \ 2141 } \ 2142 2143 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2144 { 2145 return __is_skb_forwardable(dev, skb, true); 2146 } 2147 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2148 2149 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2150 bool check_mtu) 2151 { 2152 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2153 2154 if (likely(!ret)) { 2155 skb->protocol = eth_type_trans(skb, dev); 2156 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2157 } 2158 2159 return ret; 2160 } 2161 2162 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2163 { 2164 return __dev_forward_skb2(dev, skb, true); 2165 } 2166 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2167 2168 /** 2169 * dev_forward_skb - loopback an skb to another netif 2170 * 2171 * @dev: destination network device 2172 * @skb: buffer to forward 2173 * 2174 * return values: 2175 * NET_RX_SUCCESS (no congestion) 2176 * NET_RX_DROP (packet was dropped, but freed) 2177 * 2178 * dev_forward_skb can be used for injecting an skb from the 2179 * start_xmit function of one device into the receive queue 2180 * of another device. 2181 * 2182 * The receiving device may be in another namespace, so 2183 * we have to clear all information in the skb that could 2184 * impact namespace isolation. 2185 */ 2186 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2187 { 2188 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2189 } 2190 EXPORT_SYMBOL_GPL(dev_forward_skb); 2191 2192 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2193 { 2194 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2195 } 2196 2197 static inline int deliver_skb(struct sk_buff *skb, 2198 struct packet_type *pt_prev, 2199 struct net_device *orig_dev) 2200 { 2201 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2202 return -ENOMEM; 2203 refcount_inc(&skb->users); 2204 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2205 } 2206 2207 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2208 struct packet_type **pt, 2209 struct net_device *orig_dev, 2210 __be16 type, 2211 struct list_head *ptype_list) 2212 { 2213 struct packet_type *ptype, *pt_prev = *pt; 2214 2215 list_for_each_entry_rcu(ptype, ptype_list, list) { 2216 if (ptype->type != type) 2217 continue; 2218 if (pt_prev) 2219 deliver_skb(skb, pt_prev, orig_dev); 2220 pt_prev = ptype; 2221 } 2222 *pt = pt_prev; 2223 } 2224 2225 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2226 { 2227 if (!ptype->af_packet_priv || !skb->sk) 2228 return false; 2229 2230 if (ptype->id_match) 2231 return ptype->id_match(ptype, skb->sk); 2232 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2233 return true; 2234 2235 return false; 2236 } 2237 2238 /** 2239 * dev_nit_active - return true if any network interface taps are in use 2240 * 2241 * @dev: network device to check for the presence of taps 2242 */ 2243 bool dev_nit_active(struct net_device *dev) 2244 { 2245 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2246 } 2247 EXPORT_SYMBOL_GPL(dev_nit_active); 2248 2249 /* 2250 * Support routine. Sends outgoing frames to any network 2251 * taps currently in use. 2252 */ 2253 2254 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2255 { 2256 struct packet_type *ptype; 2257 struct sk_buff *skb2 = NULL; 2258 struct packet_type *pt_prev = NULL; 2259 struct list_head *ptype_list = &ptype_all; 2260 2261 rcu_read_lock(); 2262 again: 2263 list_for_each_entry_rcu(ptype, ptype_list, list) { 2264 if (ptype->ignore_outgoing) 2265 continue; 2266 2267 /* Never send packets back to the socket 2268 * they originated from - MvS ([email protected]) 2269 */ 2270 if (skb_loop_sk(ptype, skb)) 2271 continue; 2272 2273 if (pt_prev) { 2274 deliver_skb(skb2, pt_prev, skb->dev); 2275 pt_prev = ptype; 2276 continue; 2277 } 2278 2279 /* need to clone skb, done only once */ 2280 skb2 = skb_clone(skb, GFP_ATOMIC); 2281 if (!skb2) 2282 goto out_unlock; 2283 2284 net_timestamp_set(skb2); 2285 2286 /* skb->nh should be correctly 2287 * set by sender, so that the second statement is 2288 * just protection against buggy protocols. 2289 */ 2290 skb_reset_mac_header(skb2); 2291 2292 if (skb_network_header(skb2) < skb2->data || 2293 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2294 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2295 ntohs(skb2->protocol), 2296 dev->name); 2297 skb_reset_network_header(skb2); 2298 } 2299 2300 skb2->transport_header = skb2->network_header; 2301 skb2->pkt_type = PACKET_OUTGOING; 2302 pt_prev = ptype; 2303 } 2304 2305 if (ptype_list == &ptype_all) { 2306 ptype_list = &dev->ptype_all; 2307 goto again; 2308 } 2309 out_unlock: 2310 if (pt_prev) { 2311 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2312 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2313 else 2314 kfree_skb(skb2); 2315 } 2316 rcu_read_unlock(); 2317 } 2318 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2319 2320 /** 2321 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2322 * @dev: Network device 2323 * @txq: number of queues available 2324 * 2325 * If real_num_tx_queues is changed the tc mappings may no longer be 2326 * valid. To resolve this verify the tc mapping remains valid and if 2327 * not NULL the mapping. With no priorities mapping to this 2328 * offset/count pair it will no longer be used. In the worst case TC0 2329 * is invalid nothing can be done so disable priority mappings. If is 2330 * expected that drivers will fix this mapping if they can before 2331 * calling netif_set_real_num_tx_queues. 2332 */ 2333 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2334 { 2335 int i; 2336 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2337 2338 /* If TC0 is invalidated disable TC mapping */ 2339 if (tc->offset + tc->count > txq) { 2340 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2341 dev->num_tc = 0; 2342 return; 2343 } 2344 2345 /* Invalidated prio to tc mappings set to TC0 */ 2346 for (i = 1; i < TC_BITMASK + 1; i++) { 2347 int q = netdev_get_prio_tc_map(dev, i); 2348 2349 tc = &dev->tc_to_txq[q]; 2350 if (tc->offset + tc->count > txq) { 2351 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2352 i, q); 2353 netdev_set_prio_tc_map(dev, i, 0); 2354 } 2355 } 2356 } 2357 2358 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2359 { 2360 if (dev->num_tc) { 2361 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2362 int i; 2363 2364 /* walk through the TCs and see if it falls into any of them */ 2365 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2366 if ((txq - tc->offset) < tc->count) 2367 return i; 2368 } 2369 2370 /* didn't find it, just return -1 to indicate no match */ 2371 return -1; 2372 } 2373 2374 return 0; 2375 } 2376 EXPORT_SYMBOL(netdev_txq_to_tc); 2377 2378 #ifdef CONFIG_XPS 2379 static struct static_key xps_needed __read_mostly; 2380 static struct static_key xps_rxqs_needed __read_mostly; 2381 static DEFINE_MUTEX(xps_map_mutex); 2382 #define xmap_dereference(P) \ 2383 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2384 2385 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2386 struct xps_dev_maps *old_maps, int tci, u16 index) 2387 { 2388 struct xps_map *map = NULL; 2389 int pos; 2390 2391 map = xmap_dereference(dev_maps->attr_map[tci]); 2392 if (!map) 2393 return false; 2394 2395 for (pos = map->len; pos--;) { 2396 if (map->queues[pos] != index) 2397 continue; 2398 2399 if (map->len > 1) { 2400 map->queues[pos] = map->queues[--map->len]; 2401 break; 2402 } 2403 2404 if (old_maps) 2405 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2406 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2407 kfree_rcu(map, rcu); 2408 return false; 2409 } 2410 2411 return true; 2412 } 2413 2414 static bool remove_xps_queue_cpu(struct net_device *dev, 2415 struct xps_dev_maps *dev_maps, 2416 int cpu, u16 offset, u16 count) 2417 { 2418 int num_tc = dev_maps->num_tc; 2419 bool active = false; 2420 int tci; 2421 2422 for (tci = cpu * num_tc; num_tc--; tci++) { 2423 int i, j; 2424 2425 for (i = count, j = offset; i--; j++) { 2426 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2427 break; 2428 } 2429 2430 active |= i < 0; 2431 } 2432 2433 return active; 2434 } 2435 2436 static void reset_xps_maps(struct net_device *dev, 2437 struct xps_dev_maps *dev_maps, 2438 enum xps_map_type type) 2439 { 2440 static_key_slow_dec_cpuslocked(&xps_needed); 2441 if (type == XPS_RXQS) 2442 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2443 2444 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2445 2446 kfree_rcu(dev_maps, rcu); 2447 } 2448 2449 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2450 u16 offset, u16 count) 2451 { 2452 struct xps_dev_maps *dev_maps; 2453 bool active = false; 2454 int i, j; 2455 2456 dev_maps = xmap_dereference(dev->xps_maps[type]); 2457 if (!dev_maps) 2458 return; 2459 2460 for (j = 0; j < dev_maps->nr_ids; j++) 2461 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2462 if (!active) 2463 reset_xps_maps(dev, dev_maps, type); 2464 2465 if (type == XPS_CPUS) { 2466 for (i = offset + (count - 1); count--; i--) 2467 netdev_queue_numa_node_write( 2468 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2469 } 2470 } 2471 2472 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2473 u16 count) 2474 { 2475 if (!static_key_false(&xps_needed)) 2476 return; 2477 2478 cpus_read_lock(); 2479 mutex_lock(&xps_map_mutex); 2480 2481 if (static_key_false(&xps_rxqs_needed)) 2482 clean_xps_maps(dev, XPS_RXQS, offset, count); 2483 2484 clean_xps_maps(dev, XPS_CPUS, offset, count); 2485 2486 mutex_unlock(&xps_map_mutex); 2487 cpus_read_unlock(); 2488 } 2489 2490 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2491 { 2492 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2493 } 2494 2495 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2496 u16 index, bool is_rxqs_map) 2497 { 2498 struct xps_map *new_map; 2499 int alloc_len = XPS_MIN_MAP_ALLOC; 2500 int i, pos; 2501 2502 for (pos = 0; map && pos < map->len; pos++) { 2503 if (map->queues[pos] != index) 2504 continue; 2505 return map; 2506 } 2507 2508 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2509 if (map) { 2510 if (pos < map->alloc_len) 2511 return map; 2512 2513 alloc_len = map->alloc_len * 2; 2514 } 2515 2516 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2517 * map 2518 */ 2519 if (is_rxqs_map) 2520 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2521 else 2522 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2523 cpu_to_node(attr_index)); 2524 if (!new_map) 2525 return NULL; 2526 2527 for (i = 0; i < pos; i++) 2528 new_map->queues[i] = map->queues[i]; 2529 new_map->alloc_len = alloc_len; 2530 new_map->len = pos; 2531 2532 return new_map; 2533 } 2534 2535 /* Copy xps maps at a given index */ 2536 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2537 struct xps_dev_maps *new_dev_maps, int index, 2538 int tc, bool skip_tc) 2539 { 2540 int i, tci = index * dev_maps->num_tc; 2541 struct xps_map *map; 2542 2543 /* copy maps belonging to foreign traffic classes */ 2544 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2545 if (i == tc && skip_tc) 2546 continue; 2547 2548 /* fill in the new device map from the old device map */ 2549 map = xmap_dereference(dev_maps->attr_map[tci]); 2550 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2551 } 2552 } 2553 2554 /* Must be called under cpus_read_lock */ 2555 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2556 u16 index, enum xps_map_type type) 2557 { 2558 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2559 const unsigned long *online_mask = NULL; 2560 bool active = false, copy = false; 2561 int i, j, tci, numa_node_id = -2; 2562 int maps_sz, num_tc = 1, tc = 0; 2563 struct xps_map *map, *new_map; 2564 unsigned int nr_ids; 2565 2566 WARN_ON_ONCE(index >= dev->num_tx_queues); 2567 2568 if (dev->num_tc) { 2569 /* Do not allow XPS on subordinate device directly */ 2570 num_tc = dev->num_tc; 2571 if (num_tc < 0) 2572 return -EINVAL; 2573 2574 /* If queue belongs to subordinate dev use its map */ 2575 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2576 2577 tc = netdev_txq_to_tc(dev, index); 2578 if (tc < 0) 2579 return -EINVAL; 2580 } 2581 2582 mutex_lock(&xps_map_mutex); 2583 2584 dev_maps = xmap_dereference(dev->xps_maps[type]); 2585 if (type == XPS_RXQS) { 2586 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2587 nr_ids = dev->num_rx_queues; 2588 } else { 2589 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2590 if (num_possible_cpus() > 1) 2591 online_mask = cpumask_bits(cpu_online_mask); 2592 nr_ids = nr_cpu_ids; 2593 } 2594 2595 if (maps_sz < L1_CACHE_BYTES) 2596 maps_sz = L1_CACHE_BYTES; 2597 2598 /* The old dev_maps could be larger or smaller than the one we're 2599 * setting up now, as dev->num_tc or nr_ids could have been updated in 2600 * between. We could try to be smart, but let's be safe instead and only 2601 * copy foreign traffic classes if the two map sizes match. 2602 */ 2603 if (dev_maps && 2604 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2605 copy = true; 2606 2607 /* allocate memory for queue storage */ 2608 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2609 j < nr_ids;) { 2610 if (!new_dev_maps) { 2611 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2612 if (!new_dev_maps) { 2613 mutex_unlock(&xps_map_mutex); 2614 return -ENOMEM; 2615 } 2616 2617 new_dev_maps->nr_ids = nr_ids; 2618 new_dev_maps->num_tc = num_tc; 2619 } 2620 2621 tci = j * num_tc + tc; 2622 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2623 2624 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2625 if (!map) 2626 goto error; 2627 2628 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2629 } 2630 2631 if (!new_dev_maps) 2632 goto out_no_new_maps; 2633 2634 if (!dev_maps) { 2635 /* Increment static keys at most once per type */ 2636 static_key_slow_inc_cpuslocked(&xps_needed); 2637 if (type == XPS_RXQS) 2638 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2639 } 2640 2641 for (j = 0; j < nr_ids; j++) { 2642 bool skip_tc = false; 2643 2644 tci = j * num_tc + tc; 2645 if (netif_attr_test_mask(j, mask, nr_ids) && 2646 netif_attr_test_online(j, online_mask, nr_ids)) { 2647 /* add tx-queue to CPU/rx-queue maps */ 2648 int pos = 0; 2649 2650 skip_tc = true; 2651 2652 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2653 while ((pos < map->len) && (map->queues[pos] != index)) 2654 pos++; 2655 2656 if (pos == map->len) 2657 map->queues[map->len++] = index; 2658 #ifdef CONFIG_NUMA 2659 if (type == XPS_CPUS) { 2660 if (numa_node_id == -2) 2661 numa_node_id = cpu_to_node(j); 2662 else if (numa_node_id != cpu_to_node(j)) 2663 numa_node_id = -1; 2664 } 2665 #endif 2666 } 2667 2668 if (copy) 2669 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2670 skip_tc); 2671 } 2672 2673 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2674 2675 /* Cleanup old maps */ 2676 if (!dev_maps) 2677 goto out_no_old_maps; 2678 2679 for (j = 0; j < dev_maps->nr_ids; j++) { 2680 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2681 map = xmap_dereference(dev_maps->attr_map[tci]); 2682 if (!map) 2683 continue; 2684 2685 if (copy) { 2686 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2687 if (map == new_map) 2688 continue; 2689 } 2690 2691 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2692 kfree_rcu(map, rcu); 2693 } 2694 } 2695 2696 old_dev_maps = dev_maps; 2697 2698 out_no_old_maps: 2699 dev_maps = new_dev_maps; 2700 active = true; 2701 2702 out_no_new_maps: 2703 if (type == XPS_CPUS) 2704 /* update Tx queue numa node */ 2705 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2706 (numa_node_id >= 0) ? 2707 numa_node_id : NUMA_NO_NODE); 2708 2709 if (!dev_maps) 2710 goto out_no_maps; 2711 2712 /* removes tx-queue from unused CPUs/rx-queues */ 2713 for (j = 0; j < dev_maps->nr_ids; j++) { 2714 tci = j * dev_maps->num_tc; 2715 2716 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2717 if (i == tc && 2718 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2719 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2720 continue; 2721 2722 active |= remove_xps_queue(dev_maps, 2723 copy ? old_dev_maps : NULL, 2724 tci, index); 2725 } 2726 } 2727 2728 if (old_dev_maps) 2729 kfree_rcu(old_dev_maps, rcu); 2730 2731 /* free map if not active */ 2732 if (!active) 2733 reset_xps_maps(dev, dev_maps, type); 2734 2735 out_no_maps: 2736 mutex_unlock(&xps_map_mutex); 2737 2738 return 0; 2739 error: 2740 /* remove any maps that we added */ 2741 for (j = 0; j < nr_ids; j++) { 2742 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2743 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2744 map = copy ? 2745 xmap_dereference(dev_maps->attr_map[tci]) : 2746 NULL; 2747 if (new_map && new_map != map) 2748 kfree(new_map); 2749 } 2750 } 2751 2752 mutex_unlock(&xps_map_mutex); 2753 2754 kfree(new_dev_maps); 2755 return -ENOMEM; 2756 } 2757 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2758 2759 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2760 u16 index) 2761 { 2762 int ret; 2763 2764 cpus_read_lock(); 2765 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2766 cpus_read_unlock(); 2767 2768 return ret; 2769 } 2770 EXPORT_SYMBOL(netif_set_xps_queue); 2771 2772 #endif 2773 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2774 { 2775 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2776 2777 /* Unbind any subordinate channels */ 2778 while (txq-- != &dev->_tx[0]) { 2779 if (txq->sb_dev) 2780 netdev_unbind_sb_channel(dev, txq->sb_dev); 2781 } 2782 } 2783 2784 void netdev_reset_tc(struct net_device *dev) 2785 { 2786 #ifdef CONFIG_XPS 2787 netif_reset_xps_queues_gt(dev, 0); 2788 #endif 2789 netdev_unbind_all_sb_channels(dev); 2790 2791 /* Reset TC configuration of device */ 2792 dev->num_tc = 0; 2793 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2794 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2795 } 2796 EXPORT_SYMBOL(netdev_reset_tc); 2797 2798 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2799 { 2800 if (tc >= dev->num_tc) 2801 return -EINVAL; 2802 2803 #ifdef CONFIG_XPS 2804 netif_reset_xps_queues(dev, offset, count); 2805 #endif 2806 dev->tc_to_txq[tc].count = count; 2807 dev->tc_to_txq[tc].offset = offset; 2808 return 0; 2809 } 2810 EXPORT_SYMBOL(netdev_set_tc_queue); 2811 2812 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2813 { 2814 if (num_tc > TC_MAX_QUEUE) 2815 return -EINVAL; 2816 2817 #ifdef CONFIG_XPS 2818 netif_reset_xps_queues_gt(dev, 0); 2819 #endif 2820 netdev_unbind_all_sb_channels(dev); 2821 2822 dev->num_tc = num_tc; 2823 return 0; 2824 } 2825 EXPORT_SYMBOL(netdev_set_num_tc); 2826 2827 void netdev_unbind_sb_channel(struct net_device *dev, 2828 struct net_device *sb_dev) 2829 { 2830 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2831 2832 #ifdef CONFIG_XPS 2833 netif_reset_xps_queues_gt(sb_dev, 0); 2834 #endif 2835 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2836 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2837 2838 while (txq-- != &dev->_tx[0]) { 2839 if (txq->sb_dev == sb_dev) 2840 txq->sb_dev = NULL; 2841 } 2842 } 2843 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2844 2845 int netdev_bind_sb_channel_queue(struct net_device *dev, 2846 struct net_device *sb_dev, 2847 u8 tc, u16 count, u16 offset) 2848 { 2849 /* Make certain the sb_dev and dev are already configured */ 2850 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2851 return -EINVAL; 2852 2853 /* We cannot hand out queues we don't have */ 2854 if ((offset + count) > dev->real_num_tx_queues) 2855 return -EINVAL; 2856 2857 /* Record the mapping */ 2858 sb_dev->tc_to_txq[tc].count = count; 2859 sb_dev->tc_to_txq[tc].offset = offset; 2860 2861 /* Provide a way for Tx queue to find the tc_to_txq map or 2862 * XPS map for itself. 2863 */ 2864 while (count--) 2865 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2866 2867 return 0; 2868 } 2869 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2870 2871 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2872 { 2873 /* Do not use a multiqueue device to represent a subordinate channel */ 2874 if (netif_is_multiqueue(dev)) 2875 return -ENODEV; 2876 2877 /* We allow channels 1 - 32767 to be used for subordinate channels. 2878 * Channel 0 is meant to be "native" mode and used only to represent 2879 * the main root device. We allow writing 0 to reset the device back 2880 * to normal mode after being used as a subordinate channel. 2881 */ 2882 if (channel > S16_MAX) 2883 return -EINVAL; 2884 2885 dev->num_tc = -channel; 2886 2887 return 0; 2888 } 2889 EXPORT_SYMBOL(netdev_set_sb_channel); 2890 2891 /* 2892 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2893 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2894 */ 2895 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2896 { 2897 bool disabling; 2898 int rc; 2899 2900 disabling = txq < dev->real_num_tx_queues; 2901 2902 if (txq < 1 || txq > dev->num_tx_queues) 2903 return -EINVAL; 2904 2905 if (dev->reg_state == NETREG_REGISTERED || 2906 dev->reg_state == NETREG_UNREGISTERING) { 2907 ASSERT_RTNL(); 2908 2909 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2910 txq); 2911 if (rc) 2912 return rc; 2913 2914 if (dev->num_tc) 2915 netif_setup_tc(dev, txq); 2916 2917 dev_qdisc_change_real_num_tx(dev, txq); 2918 2919 dev->real_num_tx_queues = txq; 2920 2921 if (disabling) { 2922 synchronize_net(); 2923 qdisc_reset_all_tx_gt(dev, txq); 2924 #ifdef CONFIG_XPS 2925 netif_reset_xps_queues_gt(dev, txq); 2926 #endif 2927 } 2928 } else { 2929 dev->real_num_tx_queues = txq; 2930 } 2931 2932 return 0; 2933 } 2934 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2935 2936 #ifdef CONFIG_SYSFS 2937 /** 2938 * netif_set_real_num_rx_queues - set actual number of RX queues used 2939 * @dev: Network device 2940 * @rxq: Actual number of RX queues 2941 * 2942 * This must be called either with the rtnl_lock held or before 2943 * registration of the net device. Returns 0 on success, or a 2944 * negative error code. If called before registration, it always 2945 * succeeds. 2946 */ 2947 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2948 { 2949 int rc; 2950 2951 if (rxq < 1 || rxq > dev->num_rx_queues) 2952 return -EINVAL; 2953 2954 if (dev->reg_state == NETREG_REGISTERED) { 2955 ASSERT_RTNL(); 2956 2957 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2958 rxq); 2959 if (rc) 2960 return rc; 2961 } 2962 2963 dev->real_num_rx_queues = rxq; 2964 return 0; 2965 } 2966 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2967 #endif 2968 2969 /** 2970 * netif_set_real_num_queues - set actual number of RX and TX queues used 2971 * @dev: Network device 2972 * @txq: Actual number of TX queues 2973 * @rxq: Actual number of RX queues 2974 * 2975 * Set the real number of both TX and RX queues. 2976 * Does nothing if the number of queues is already correct. 2977 */ 2978 int netif_set_real_num_queues(struct net_device *dev, 2979 unsigned int txq, unsigned int rxq) 2980 { 2981 unsigned int old_rxq = dev->real_num_rx_queues; 2982 int err; 2983 2984 if (txq < 1 || txq > dev->num_tx_queues || 2985 rxq < 1 || rxq > dev->num_rx_queues) 2986 return -EINVAL; 2987 2988 /* Start from increases, so the error path only does decreases - 2989 * decreases can't fail. 2990 */ 2991 if (rxq > dev->real_num_rx_queues) { 2992 err = netif_set_real_num_rx_queues(dev, rxq); 2993 if (err) 2994 return err; 2995 } 2996 if (txq > dev->real_num_tx_queues) { 2997 err = netif_set_real_num_tx_queues(dev, txq); 2998 if (err) 2999 goto undo_rx; 3000 } 3001 if (rxq < dev->real_num_rx_queues) 3002 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 3003 if (txq < dev->real_num_tx_queues) 3004 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 3005 3006 return 0; 3007 undo_rx: 3008 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 3009 return err; 3010 } 3011 EXPORT_SYMBOL(netif_set_real_num_queues); 3012 3013 /** 3014 * netif_set_tso_max_size() - set the max size of TSO frames supported 3015 * @dev: netdev to update 3016 * @size: max skb->len of a TSO frame 3017 * 3018 * Set the limit on the size of TSO super-frames the device can handle. 3019 * Unless explicitly set the stack will assume the value of 3020 * %GSO_LEGACY_MAX_SIZE. 3021 */ 3022 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3023 { 3024 dev->tso_max_size = min(GSO_MAX_SIZE, size); 3025 if (size < READ_ONCE(dev->gso_max_size)) 3026 netif_set_gso_max_size(dev, size); 3027 if (size < READ_ONCE(dev->gso_ipv4_max_size)) 3028 netif_set_gso_ipv4_max_size(dev, size); 3029 } 3030 EXPORT_SYMBOL(netif_set_tso_max_size); 3031 3032 /** 3033 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3034 * @dev: netdev to update 3035 * @segs: max number of TCP segments 3036 * 3037 * Set the limit on the number of TCP segments the device can generate from 3038 * a single TSO super-frame. 3039 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3040 */ 3041 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3042 { 3043 dev->tso_max_segs = segs; 3044 if (segs < READ_ONCE(dev->gso_max_segs)) 3045 netif_set_gso_max_segs(dev, segs); 3046 } 3047 EXPORT_SYMBOL(netif_set_tso_max_segs); 3048 3049 /** 3050 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3051 * @to: netdev to update 3052 * @from: netdev from which to copy the limits 3053 */ 3054 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3055 { 3056 netif_set_tso_max_size(to, from->tso_max_size); 3057 netif_set_tso_max_segs(to, from->tso_max_segs); 3058 } 3059 EXPORT_SYMBOL(netif_inherit_tso_max); 3060 3061 /** 3062 * netif_get_num_default_rss_queues - default number of RSS queues 3063 * 3064 * Default value is the number of physical cores if there are only 1 or 2, or 3065 * divided by 2 if there are more. 3066 */ 3067 int netif_get_num_default_rss_queues(void) 3068 { 3069 cpumask_var_t cpus; 3070 int cpu, count = 0; 3071 3072 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3073 return 1; 3074 3075 cpumask_copy(cpus, cpu_online_mask); 3076 for_each_cpu(cpu, cpus) { 3077 ++count; 3078 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3079 } 3080 free_cpumask_var(cpus); 3081 3082 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3083 } 3084 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3085 3086 static void __netif_reschedule(struct Qdisc *q) 3087 { 3088 struct softnet_data *sd; 3089 unsigned long flags; 3090 3091 local_irq_save(flags); 3092 sd = this_cpu_ptr(&softnet_data); 3093 q->next_sched = NULL; 3094 *sd->output_queue_tailp = q; 3095 sd->output_queue_tailp = &q->next_sched; 3096 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3097 local_irq_restore(flags); 3098 } 3099 3100 void __netif_schedule(struct Qdisc *q) 3101 { 3102 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3103 __netif_reschedule(q); 3104 } 3105 EXPORT_SYMBOL(__netif_schedule); 3106 3107 struct dev_kfree_skb_cb { 3108 enum skb_drop_reason reason; 3109 }; 3110 3111 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3112 { 3113 return (struct dev_kfree_skb_cb *)skb->cb; 3114 } 3115 3116 void netif_schedule_queue(struct netdev_queue *txq) 3117 { 3118 rcu_read_lock(); 3119 if (!netif_xmit_stopped(txq)) { 3120 struct Qdisc *q = rcu_dereference(txq->qdisc); 3121 3122 __netif_schedule(q); 3123 } 3124 rcu_read_unlock(); 3125 } 3126 EXPORT_SYMBOL(netif_schedule_queue); 3127 3128 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3129 { 3130 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3131 struct Qdisc *q; 3132 3133 rcu_read_lock(); 3134 q = rcu_dereference(dev_queue->qdisc); 3135 __netif_schedule(q); 3136 rcu_read_unlock(); 3137 } 3138 } 3139 EXPORT_SYMBOL(netif_tx_wake_queue); 3140 3141 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3142 { 3143 unsigned long flags; 3144 3145 if (unlikely(!skb)) 3146 return; 3147 3148 if (likely(refcount_read(&skb->users) == 1)) { 3149 smp_rmb(); 3150 refcount_set(&skb->users, 0); 3151 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3152 return; 3153 } 3154 get_kfree_skb_cb(skb)->reason = reason; 3155 local_irq_save(flags); 3156 skb->next = __this_cpu_read(softnet_data.completion_queue); 3157 __this_cpu_write(softnet_data.completion_queue, skb); 3158 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3159 local_irq_restore(flags); 3160 } 3161 EXPORT_SYMBOL(dev_kfree_skb_irq_reason); 3162 3163 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason) 3164 { 3165 if (in_hardirq() || irqs_disabled()) 3166 dev_kfree_skb_irq_reason(skb, reason); 3167 else 3168 kfree_skb_reason(skb, reason); 3169 } 3170 EXPORT_SYMBOL(dev_kfree_skb_any_reason); 3171 3172 3173 /** 3174 * netif_device_detach - mark device as removed 3175 * @dev: network device 3176 * 3177 * Mark device as removed from system and therefore no longer available. 3178 */ 3179 void netif_device_detach(struct net_device *dev) 3180 { 3181 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3182 netif_running(dev)) { 3183 netif_tx_stop_all_queues(dev); 3184 } 3185 } 3186 EXPORT_SYMBOL(netif_device_detach); 3187 3188 /** 3189 * netif_device_attach - mark device as attached 3190 * @dev: network device 3191 * 3192 * Mark device as attached from system and restart if needed. 3193 */ 3194 void netif_device_attach(struct net_device *dev) 3195 { 3196 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3197 netif_running(dev)) { 3198 netif_tx_wake_all_queues(dev); 3199 __netdev_watchdog_up(dev); 3200 } 3201 } 3202 EXPORT_SYMBOL(netif_device_attach); 3203 3204 /* 3205 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3206 * to be used as a distribution range. 3207 */ 3208 static u16 skb_tx_hash(const struct net_device *dev, 3209 const struct net_device *sb_dev, 3210 struct sk_buff *skb) 3211 { 3212 u32 hash; 3213 u16 qoffset = 0; 3214 u16 qcount = dev->real_num_tx_queues; 3215 3216 if (dev->num_tc) { 3217 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3218 3219 qoffset = sb_dev->tc_to_txq[tc].offset; 3220 qcount = sb_dev->tc_to_txq[tc].count; 3221 if (unlikely(!qcount)) { 3222 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3223 sb_dev->name, qoffset, tc); 3224 qoffset = 0; 3225 qcount = dev->real_num_tx_queues; 3226 } 3227 } 3228 3229 if (skb_rx_queue_recorded(skb)) { 3230 DEBUG_NET_WARN_ON_ONCE(qcount == 0); 3231 hash = skb_get_rx_queue(skb); 3232 if (hash >= qoffset) 3233 hash -= qoffset; 3234 while (unlikely(hash >= qcount)) 3235 hash -= qcount; 3236 return hash + qoffset; 3237 } 3238 3239 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3240 } 3241 3242 void skb_warn_bad_offload(const struct sk_buff *skb) 3243 { 3244 static const netdev_features_t null_features; 3245 struct net_device *dev = skb->dev; 3246 const char *name = ""; 3247 3248 if (!net_ratelimit()) 3249 return; 3250 3251 if (dev) { 3252 if (dev->dev.parent) 3253 name = dev_driver_string(dev->dev.parent); 3254 else 3255 name = netdev_name(dev); 3256 } 3257 skb_dump(KERN_WARNING, skb, false); 3258 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3259 name, dev ? &dev->features : &null_features, 3260 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3261 } 3262 3263 /* 3264 * Invalidate hardware checksum when packet is to be mangled, and 3265 * complete checksum manually on outgoing path. 3266 */ 3267 int skb_checksum_help(struct sk_buff *skb) 3268 { 3269 __wsum csum; 3270 int ret = 0, offset; 3271 3272 if (skb->ip_summed == CHECKSUM_COMPLETE) 3273 goto out_set_summed; 3274 3275 if (unlikely(skb_is_gso(skb))) { 3276 skb_warn_bad_offload(skb); 3277 return -EINVAL; 3278 } 3279 3280 /* Before computing a checksum, we should make sure no frag could 3281 * be modified by an external entity : checksum could be wrong. 3282 */ 3283 if (skb_has_shared_frag(skb)) { 3284 ret = __skb_linearize(skb); 3285 if (ret) 3286 goto out; 3287 } 3288 3289 offset = skb_checksum_start_offset(skb); 3290 ret = -EINVAL; 3291 if (unlikely(offset >= skb_headlen(skb))) { 3292 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3293 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n", 3294 offset, skb_headlen(skb)); 3295 goto out; 3296 } 3297 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3298 3299 offset += skb->csum_offset; 3300 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) { 3301 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3302 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n", 3303 offset + sizeof(__sum16), skb_headlen(skb)); 3304 goto out; 3305 } 3306 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3307 if (ret) 3308 goto out; 3309 3310 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3311 out_set_summed: 3312 skb->ip_summed = CHECKSUM_NONE; 3313 out: 3314 return ret; 3315 } 3316 EXPORT_SYMBOL(skb_checksum_help); 3317 3318 int skb_crc32c_csum_help(struct sk_buff *skb) 3319 { 3320 __le32 crc32c_csum; 3321 int ret = 0, offset, start; 3322 3323 if (skb->ip_summed != CHECKSUM_PARTIAL) 3324 goto out; 3325 3326 if (unlikely(skb_is_gso(skb))) 3327 goto out; 3328 3329 /* Before computing a checksum, we should make sure no frag could 3330 * be modified by an external entity : checksum could be wrong. 3331 */ 3332 if (unlikely(skb_has_shared_frag(skb))) { 3333 ret = __skb_linearize(skb); 3334 if (ret) 3335 goto out; 3336 } 3337 start = skb_checksum_start_offset(skb); 3338 offset = start + offsetof(struct sctphdr, checksum); 3339 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3340 ret = -EINVAL; 3341 goto out; 3342 } 3343 3344 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3345 if (ret) 3346 goto out; 3347 3348 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3349 skb->len - start, ~(__u32)0, 3350 crc32c_csum_stub)); 3351 *(__le32 *)(skb->data + offset) = crc32c_csum; 3352 skb_reset_csum_not_inet(skb); 3353 out: 3354 return ret; 3355 } 3356 3357 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3358 { 3359 __be16 type = skb->protocol; 3360 3361 /* Tunnel gso handlers can set protocol to ethernet. */ 3362 if (type == htons(ETH_P_TEB)) { 3363 struct ethhdr *eth; 3364 3365 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3366 return 0; 3367 3368 eth = (struct ethhdr *)skb->data; 3369 type = eth->h_proto; 3370 } 3371 3372 return vlan_get_protocol_and_depth(skb, type, depth); 3373 } 3374 3375 3376 /* Take action when hardware reception checksum errors are detected. */ 3377 #ifdef CONFIG_BUG 3378 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3379 { 3380 netdev_err(dev, "hw csum failure\n"); 3381 skb_dump(KERN_ERR, skb, true); 3382 dump_stack(); 3383 } 3384 3385 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3386 { 3387 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3388 } 3389 EXPORT_SYMBOL(netdev_rx_csum_fault); 3390 #endif 3391 3392 /* XXX: check that highmem exists at all on the given machine. */ 3393 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3394 { 3395 #ifdef CONFIG_HIGHMEM 3396 int i; 3397 3398 if (!(dev->features & NETIF_F_HIGHDMA)) { 3399 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3400 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3401 3402 if (PageHighMem(skb_frag_page(frag))) 3403 return 1; 3404 } 3405 } 3406 #endif 3407 return 0; 3408 } 3409 3410 /* If MPLS offload request, verify we are testing hardware MPLS features 3411 * instead of standard features for the netdev. 3412 */ 3413 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3414 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3415 netdev_features_t features, 3416 __be16 type) 3417 { 3418 if (eth_p_mpls(type)) 3419 features &= skb->dev->mpls_features; 3420 3421 return features; 3422 } 3423 #else 3424 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3425 netdev_features_t features, 3426 __be16 type) 3427 { 3428 return features; 3429 } 3430 #endif 3431 3432 static netdev_features_t harmonize_features(struct sk_buff *skb, 3433 netdev_features_t features) 3434 { 3435 __be16 type; 3436 3437 type = skb_network_protocol(skb, NULL); 3438 features = net_mpls_features(skb, features, type); 3439 3440 if (skb->ip_summed != CHECKSUM_NONE && 3441 !can_checksum_protocol(features, type)) { 3442 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3443 } 3444 if (illegal_highdma(skb->dev, skb)) 3445 features &= ~NETIF_F_SG; 3446 3447 return features; 3448 } 3449 3450 netdev_features_t passthru_features_check(struct sk_buff *skb, 3451 struct net_device *dev, 3452 netdev_features_t features) 3453 { 3454 return features; 3455 } 3456 EXPORT_SYMBOL(passthru_features_check); 3457 3458 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3459 struct net_device *dev, 3460 netdev_features_t features) 3461 { 3462 return vlan_features_check(skb, features); 3463 } 3464 3465 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3466 struct net_device *dev, 3467 netdev_features_t features) 3468 { 3469 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3470 3471 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3472 return features & ~NETIF_F_GSO_MASK; 3473 3474 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size))) 3475 return features & ~NETIF_F_GSO_MASK; 3476 3477 if (!skb_shinfo(skb)->gso_type) { 3478 skb_warn_bad_offload(skb); 3479 return features & ~NETIF_F_GSO_MASK; 3480 } 3481 3482 /* Support for GSO partial features requires software 3483 * intervention before we can actually process the packets 3484 * so we need to strip support for any partial features now 3485 * and we can pull them back in after we have partially 3486 * segmented the frame. 3487 */ 3488 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3489 features &= ~dev->gso_partial_features; 3490 3491 /* Make sure to clear the IPv4 ID mangling feature if the 3492 * IPv4 header has the potential to be fragmented. 3493 */ 3494 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3495 struct iphdr *iph = skb->encapsulation ? 3496 inner_ip_hdr(skb) : ip_hdr(skb); 3497 3498 if (!(iph->frag_off & htons(IP_DF))) 3499 features &= ~NETIF_F_TSO_MANGLEID; 3500 } 3501 3502 return features; 3503 } 3504 3505 netdev_features_t netif_skb_features(struct sk_buff *skb) 3506 { 3507 struct net_device *dev = skb->dev; 3508 netdev_features_t features = dev->features; 3509 3510 if (skb_is_gso(skb)) 3511 features = gso_features_check(skb, dev, features); 3512 3513 /* If encapsulation offload request, verify we are testing 3514 * hardware encapsulation features instead of standard 3515 * features for the netdev 3516 */ 3517 if (skb->encapsulation) 3518 features &= dev->hw_enc_features; 3519 3520 if (skb_vlan_tagged(skb)) 3521 features = netdev_intersect_features(features, 3522 dev->vlan_features | 3523 NETIF_F_HW_VLAN_CTAG_TX | 3524 NETIF_F_HW_VLAN_STAG_TX); 3525 3526 if (dev->netdev_ops->ndo_features_check) 3527 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3528 features); 3529 else 3530 features &= dflt_features_check(skb, dev, features); 3531 3532 return harmonize_features(skb, features); 3533 } 3534 EXPORT_SYMBOL(netif_skb_features); 3535 3536 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3537 struct netdev_queue *txq, bool more) 3538 { 3539 unsigned int len; 3540 int rc; 3541 3542 if (dev_nit_active(dev)) 3543 dev_queue_xmit_nit(skb, dev); 3544 3545 len = skb->len; 3546 trace_net_dev_start_xmit(skb, dev); 3547 rc = netdev_start_xmit(skb, dev, txq, more); 3548 trace_net_dev_xmit(skb, rc, dev, len); 3549 3550 return rc; 3551 } 3552 3553 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3554 struct netdev_queue *txq, int *ret) 3555 { 3556 struct sk_buff *skb = first; 3557 int rc = NETDEV_TX_OK; 3558 3559 while (skb) { 3560 struct sk_buff *next = skb->next; 3561 3562 skb_mark_not_on_list(skb); 3563 rc = xmit_one(skb, dev, txq, next != NULL); 3564 if (unlikely(!dev_xmit_complete(rc))) { 3565 skb->next = next; 3566 goto out; 3567 } 3568 3569 skb = next; 3570 if (netif_tx_queue_stopped(txq) && skb) { 3571 rc = NETDEV_TX_BUSY; 3572 break; 3573 } 3574 } 3575 3576 out: 3577 *ret = rc; 3578 return skb; 3579 } 3580 3581 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3582 netdev_features_t features) 3583 { 3584 if (skb_vlan_tag_present(skb) && 3585 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3586 skb = __vlan_hwaccel_push_inside(skb); 3587 return skb; 3588 } 3589 3590 int skb_csum_hwoffload_help(struct sk_buff *skb, 3591 const netdev_features_t features) 3592 { 3593 if (unlikely(skb_csum_is_sctp(skb))) 3594 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3595 skb_crc32c_csum_help(skb); 3596 3597 if (features & NETIF_F_HW_CSUM) 3598 return 0; 3599 3600 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3601 switch (skb->csum_offset) { 3602 case offsetof(struct tcphdr, check): 3603 case offsetof(struct udphdr, check): 3604 return 0; 3605 } 3606 } 3607 3608 return skb_checksum_help(skb); 3609 } 3610 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3611 3612 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3613 { 3614 netdev_features_t features; 3615 3616 features = netif_skb_features(skb); 3617 skb = validate_xmit_vlan(skb, features); 3618 if (unlikely(!skb)) 3619 goto out_null; 3620 3621 skb = sk_validate_xmit_skb(skb, dev); 3622 if (unlikely(!skb)) 3623 goto out_null; 3624 3625 if (netif_needs_gso(skb, features)) { 3626 struct sk_buff *segs; 3627 3628 segs = skb_gso_segment(skb, features); 3629 if (IS_ERR(segs)) { 3630 goto out_kfree_skb; 3631 } else if (segs) { 3632 consume_skb(skb); 3633 skb = segs; 3634 } 3635 } else { 3636 if (skb_needs_linearize(skb, features) && 3637 __skb_linearize(skb)) 3638 goto out_kfree_skb; 3639 3640 /* If packet is not checksummed and device does not 3641 * support checksumming for this protocol, complete 3642 * checksumming here. 3643 */ 3644 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3645 if (skb->encapsulation) 3646 skb_set_inner_transport_header(skb, 3647 skb_checksum_start_offset(skb)); 3648 else 3649 skb_set_transport_header(skb, 3650 skb_checksum_start_offset(skb)); 3651 if (skb_csum_hwoffload_help(skb, features)) 3652 goto out_kfree_skb; 3653 } 3654 } 3655 3656 skb = validate_xmit_xfrm(skb, features, again); 3657 3658 return skb; 3659 3660 out_kfree_skb: 3661 kfree_skb(skb); 3662 out_null: 3663 dev_core_stats_tx_dropped_inc(dev); 3664 return NULL; 3665 } 3666 3667 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3668 { 3669 struct sk_buff *next, *head = NULL, *tail; 3670 3671 for (; skb != NULL; skb = next) { 3672 next = skb->next; 3673 skb_mark_not_on_list(skb); 3674 3675 /* in case skb wont be segmented, point to itself */ 3676 skb->prev = skb; 3677 3678 skb = validate_xmit_skb(skb, dev, again); 3679 if (!skb) 3680 continue; 3681 3682 if (!head) 3683 head = skb; 3684 else 3685 tail->next = skb; 3686 /* If skb was segmented, skb->prev points to 3687 * the last segment. If not, it still contains skb. 3688 */ 3689 tail = skb->prev; 3690 } 3691 return head; 3692 } 3693 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3694 3695 static void qdisc_pkt_len_init(struct sk_buff *skb) 3696 { 3697 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3698 3699 qdisc_skb_cb(skb)->pkt_len = skb->len; 3700 3701 /* To get more precise estimation of bytes sent on wire, 3702 * we add to pkt_len the headers size of all segments 3703 */ 3704 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3705 u16 gso_segs = shinfo->gso_segs; 3706 unsigned int hdr_len; 3707 3708 /* mac layer + network layer */ 3709 hdr_len = skb_transport_offset(skb); 3710 3711 /* + transport layer */ 3712 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3713 const struct tcphdr *th; 3714 struct tcphdr _tcphdr; 3715 3716 th = skb_header_pointer(skb, hdr_len, 3717 sizeof(_tcphdr), &_tcphdr); 3718 if (likely(th)) 3719 hdr_len += __tcp_hdrlen(th); 3720 } else { 3721 struct udphdr _udphdr; 3722 3723 if (skb_header_pointer(skb, hdr_len, 3724 sizeof(_udphdr), &_udphdr)) 3725 hdr_len += sizeof(struct udphdr); 3726 } 3727 3728 if (shinfo->gso_type & SKB_GSO_DODGY) 3729 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3730 shinfo->gso_size); 3731 3732 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3733 } 3734 } 3735 3736 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3737 struct sk_buff **to_free, 3738 struct netdev_queue *txq) 3739 { 3740 int rc; 3741 3742 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3743 if (rc == NET_XMIT_SUCCESS) 3744 trace_qdisc_enqueue(q, txq, skb); 3745 return rc; 3746 } 3747 3748 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3749 struct net_device *dev, 3750 struct netdev_queue *txq) 3751 { 3752 spinlock_t *root_lock = qdisc_lock(q); 3753 struct sk_buff *to_free = NULL; 3754 bool contended; 3755 int rc; 3756 3757 qdisc_calculate_pkt_len(skb, q); 3758 3759 tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP); 3760 3761 if (q->flags & TCQ_F_NOLOCK) { 3762 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3763 qdisc_run_begin(q)) { 3764 /* Retest nolock_qdisc_is_empty() within the protection 3765 * of q->seqlock to protect from racing with requeuing. 3766 */ 3767 if (unlikely(!nolock_qdisc_is_empty(q))) { 3768 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3769 __qdisc_run(q); 3770 qdisc_run_end(q); 3771 3772 goto no_lock_out; 3773 } 3774 3775 qdisc_bstats_cpu_update(q, skb); 3776 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3777 !nolock_qdisc_is_empty(q)) 3778 __qdisc_run(q); 3779 3780 qdisc_run_end(q); 3781 return NET_XMIT_SUCCESS; 3782 } 3783 3784 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3785 qdisc_run(q); 3786 3787 no_lock_out: 3788 if (unlikely(to_free)) 3789 kfree_skb_list_reason(to_free, 3790 tcf_get_drop_reason(to_free)); 3791 return rc; 3792 } 3793 3794 /* 3795 * Heuristic to force contended enqueues to serialize on a 3796 * separate lock before trying to get qdisc main lock. 3797 * This permits qdisc->running owner to get the lock more 3798 * often and dequeue packets faster. 3799 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3800 * and then other tasks will only enqueue packets. The packets will be 3801 * sent after the qdisc owner is scheduled again. To prevent this 3802 * scenario the task always serialize on the lock. 3803 */ 3804 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3805 if (unlikely(contended)) 3806 spin_lock(&q->busylock); 3807 3808 spin_lock(root_lock); 3809 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3810 __qdisc_drop(skb, &to_free); 3811 rc = NET_XMIT_DROP; 3812 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3813 qdisc_run_begin(q)) { 3814 /* 3815 * This is a work-conserving queue; there are no old skbs 3816 * waiting to be sent out; and the qdisc is not running - 3817 * xmit the skb directly. 3818 */ 3819 3820 qdisc_bstats_update(q, skb); 3821 3822 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3823 if (unlikely(contended)) { 3824 spin_unlock(&q->busylock); 3825 contended = false; 3826 } 3827 __qdisc_run(q); 3828 } 3829 3830 qdisc_run_end(q); 3831 rc = NET_XMIT_SUCCESS; 3832 } else { 3833 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3834 if (qdisc_run_begin(q)) { 3835 if (unlikely(contended)) { 3836 spin_unlock(&q->busylock); 3837 contended = false; 3838 } 3839 __qdisc_run(q); 3840 qdisc_run_end(q); 3841 } 3842 } 3843 spin_unlock(root_lock); 3844 if (unlikely(to_free)) 3845 kfree_skb_list_reason(to_free, 3846 tcf_get_drop_reason(to_free)); 3847 if (unlikely(contended)) 3848 spin_unlock(&q->busylock); 3849 return rc; 3850 } 3851 3852 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3853 static void skb_update_prio(struct sk_buff *skb) 3854 { 3855 const struct netprio_map *map; 3856 const struct sock *sk; 3857 unsigned int prioidx; 3858 3859 if (skb->priority) 3860 return; 3861 map = rcu_dereference_bh(skb->dev->priomap); 3862 if (!map) 3863 return; 3864 sk = skb_to_full_sk(skb); 3865 if (!sk) 3866 return; 3867 3868 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3869 3870 if (prioidx < map->priomap_len) 3871 skb->priority = map->priomap[prioidx]; 3872 } 3873 #else 3874 #define skb_update_prio(skb) 3875 #endif 3876 3877 /** 3878 * dev_loopback_xmit - loop back @skb 3879 * @net: network namespace this loopback is happening in 3880 * @sk: sk needed to be a netfilter okfn 3881 * @skb: buffer to transmit 3882 */ 3883 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3884 { 3885 skb_reset_mac_header(skb); 3886 __skb_pull(skb, skb_network_offset(skb)); 3887 skb->pkt_type = PACKET_LOOPBACK; 3888 if (skb->ip_summed == CHECKSUM_NONE) 3889 skb->ip_summed = CHECKSUM_UNNECESSARY; 3890 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb)); 3891 skb_dst_force(skb); 3892 netif_rx(skb); 3893 return 0; 3894 } 3895 EXPORT_SYMBOL(dev_loopback_xmit); 3896 3897 #ifdef CONFIG_NET_EGRESS 3898 static struct netdev_queue * 3899 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3900 { 3901 int qm = skb_get_queue_mapping(skb); 3902 3903 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3904 } 3905 3906 static bool netdev_xmit_txqueue_skipped(void) 3907 { 3908 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3909 } 3910 3911 void netdev_xmit_skip_txqueue(bool skip) 3912 { 3913 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3914 } 3915 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3916 #endif /* CONFIG_NET_EGRESS */ 3917 3918 #ifdef CONFIG_NET_XGRESS 3919 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb, 3920 enum skb_drop_reason *drop_reason) 3921 { 3922 int ret = TC_ACT_UNSPEC; 3923 #ifdef CONFIG_NET_CLS_ACT 3924 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq); 3925 struct tcf_result res; 3926 3927 if (!miniq) 3928 return ret; 3929 3930 tc_skb_cb(skb)->mru = 0; 3931 tc_skb_cb(skb)->post_ct = false; 3932 tcf_set_drop_reason(skb, *drop_reason); 3933 3934 mini_qdisc_bstats_cpu_update(miniq, skb); 3935 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false); 3936 /* Only tcf related quirks below. */ 3937 switch (ret) { 3938 case TC_ACT_SHOT: 3939 *drop_reason = tcf_get_drop_reason(skb); 3940 mini_qdisc_qstats_cpu_drop(miniq); 3941 break; 3942 case TC_ACT_OK: 3943 case TC_ACT_RECLASSIFY: 3944 skb->tc_index = TC_H_MIN(res.classid); 3945 break; 3946 } 3947 #endif /* CONFIG_NET_CLS_ACT */ 3948 return ret; 3949 } 3950 3951 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key); 3952 3953 void tcx_inc(void) 3954 { 3955 static_branch_inc(&tcx_needed_key); 3956 } 3957 3958 void tcx_dec(void) 3959 { 3960 static_branch_dec(&tcx_needed_key); 3961 } 3962 3963 static __always_inline enum tcx_action_base 3964 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb, 3965 const bool needs_mac) 3966 { 3967 const struct bpf_mprog_fp *fp; 3968 const struct bpf_prog *prog; 3969 int ret = TCX_NEXT; 3970 3971 if (needs_mac) 3972 __skb_push(skb, skb->mac_len); 3973 bpf_mprog_foreach_prog(entry, fp, prog) { 3974 bpf_compute_data_pointers(skb); 3975 ret = bpf_prog_run(prog, skb); 3976 if (ret != TCX_NEXT) 3977 break; 3978 } 3979 if (needs_mac) 3980 __skb_pull(skb, skb->mac_len); 3981 return tcx_action_code(skb, ret); 3982 } 3983 3984 static __always_inline struct sk_buff * 3985 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 3986 struct net_device *orig_dev, bool *another) 3987 { 3988 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress); 3989 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS; 3990 int sch_ret; 3991 3992 if (!entry) 3993 return skb; 3994 if (*pt_prev) { 3995 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3996 *pt_prev = NULL; 3997 } 3998 3999 qdisc_skb_cb(skb)->pkt_len = skb->len; 4000 tcx_set_ingress(skb, true); 4001 4002 if (static_branch_unlikely(&tcx_needed_key)) { 4003 sch_ret = tcx_run(entry, skb, true); 4004 if (sch_ret != TC_ACT_UNSPEC) 4005 goto ingress_verdict; 4006 } 4007 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4008 ingress_verdict: 4009 switch (sch_ret) { 4010 case TC_ACT_REDIRECT: 4011 /* skb_mac_header check was done by BPF, so we can safely 4012 * push the L2 header back before redirecting to another 4013 * netdev. 4014 */ 4015 __skb_push(skb, skb->mac_len); 4016 if (skb_do_redirect(skb) == -EAGAIN) { 4017 __skb_pull(skb, skb->mac_len); 4018 *another = true; 4019 break; 4020 } 4021 *ret = NET_RX_SUCCESS; 4022 return NULL; 4023 case TC_ACT_SHOT: 4024 kfree_skb_reason(skb, drop_reason); 4025 *ret = NET_RX_DROP; 4026 return NULL; 4027 /* used by tc_run */ 4028 case TC_ACT_STOLEN: 4029 case TC_ACT_QUEUED: 4030 case TC_ACT_TRAP: 4031 consume_skb(skb); 4032 fallthrough; 4033 case TC_ACT_CONSUMED: 4034 *ret = NET_RX_SUCCESS; 4035 return NULL; 4036 } 4037 4038 return skb; 4039 } 4040 4041 static __always_inline struct sk_buff * 4042 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4043 { 4044 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress); 4045 enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS; 4046 int sch_ret; 4047 4048 if (!entry) 4049 return skb; 4050 4051 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was 4052 * already set by the caller. 4053 */ 4054 if (static_branch_unlikely(&tcx_needed_key)) { 4055 sch_ret = tcx_run(entry, skb, false); 4056 if (sch_ret != TC_ACT_UNSPEC) 4057 goto egress_verdict; 4058 } 4059 sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason); 4060 egress_verdict: 4061 switch (sch_ret) { 4062 case TC_ACT_REDIRECT: 4063 /* No need to push/pop skb's mac_header here on egress! */ 4064 skb_do_redirect(skb); 4065 *ret = NET_XMIT_SUCCESS; 4066 return NULL; 4067 case TC_ACT_SHOT: 4068 kfree_skb_reason(skb, drop_reason); 4069 *ret = NET_XMIT_DROP; 4070 return NULL; 4071 /* used by tc_run */ 4072 case TC_ACT_STOLEN: 4073 case TC_ACT_QUEUED: 4074 case TC_ACT_TRAP: 4075 consume_skb(skb); 4076 fallthrough; 4077 case TC_ACT_CONSUMED: 4078 *ret = NET_XMIT_SUCCESS; 4079 return NULL; 4080 } 4081 4082 return skb; 4083 } 4084 #else 4085 static __always_inline struct sk_buff * 4086 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4087 struct net_device *orig_dev, bool *another) 4088 { 4089 return skb; 4090 } 4091 4092 static __always_inline struct sk_buff * 4093 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 4094 { 4095 return skb; 4096 } 4097 #endif /* CONFIG_NET_XGRESS */ 4098 4099 #ifdef CONFIG_XPS 4100 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4101 struct xps_dev_maps *dev_maps, unsigned int tci) 4102 { 4103 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4104 struct xps_map *map; 4105 int queue_index = -1; 4106 4107 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4108 return queue_index; 4109 4110 tci *= dev_maps->num_tc; 4111 tci += tc; 4112 4113 map = rcu_dereference(dev_maps->attr_map[tci]); 4114 if (map) { 4115 if (map->len == 1) 4116 queue_index = map->queues[0]; 4117 else 4118 queue_index = map->queues[reciprocal_scale( 4119 skb_get_hash(skb), map->len)]; 4120 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4121 queue_index = -1; 4122 } 4123 return queue_index; 4124 } 4125 #endif 4126 4127 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4128 struct sk_buff *skb) 4129 { 4130 #ifdef CONFIG_XPS 4131 struct xps_dev_maps *dev_maps; 4132 struct sock *sk = skb->sk; 4133 int queue_index = -1; 4134 4135 if (!static_key_false(&xps_needed)) 4136 return -1; 4137 4138 rcu_read_lock(); 4139 if (!static_key_false(&xps_rxqs_needed)) 4140 goto get_cpus_map; 4141 4142 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4143 if (dev_maps) { 4144 int tci = sk_rx_queue_get(sk); 4145 4146 if (tci >= 0) 4147 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4148 tci); 4149 } 4150 4151 get_cpus_map: 4152 if (queue_index < 0) { 4153 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4154 if (dev_maps) { 4155 unsigned int tci = skb->sender_cpu - 1; 4156 4157 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4158 tci); 4159 } 4160 } 4161 rcu_read_unlock(); 4162 4163 return queue_index; 4164 #else 4165 return -1; 4166 #endif 4167 } 4168 4169 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4170 struct net_device *sb_dev) 4171 { 4172 return 0; 4173 } 4174 EXPORT_SYMBOL(dev_pick_tx_zero); 4175 4176 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4177 struct net_device *sb_dev) 4178 { 4179 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4180 } 4181 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4182 4183 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4184 struct net_device *sb_dev) 4185 { 4186 struct sock *sk = skb->sk; 4187 int queue_index = sk_tx_queue_get(sk); 4188 4189 sb_dev = sb_dev ? : dev; 4190 4191 if (queue_index < 0 || skb->ooo_okay || 4192 queue_index >= dev->real_num_tx_queues) { 4193 int new_index = get_xps_queue(dev, sb_dev, skb); 4194 4195 if (new_index < 0) 4196 new_index = skb_tx_hash(dev, sb_dev, skb); 4197 4198 if (queue_index != new_index && sk && 4199 sk_fullsock(sk) && 4200 rcu_access_pointer(sk->sk_dst_cache)) 4201 sk_tx_queue_set(sk, new_index); 4202 4203 queue_index = new_index; 4204 } 4205 4206 return queue_index; 4207 } 4208 EXPORT_SYMBOL(netdev_pick_tx); 4209 4210 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4211 struct sk_buff *skb, 4212 struct net_device *sb_dev) 4213 { 4214 int queue_index = 0; 4215 4216 #ifdef CONFIG_XPS 4217 u32 sender_cpu = skb->sender_cpu - 1; 4218 4219 if (sender_cpu >= (u32)NR_CPUS) 4220 skb->sender_cpu = raw_smp_processor_id() + 1; 4221 #endif 4222 4223 if (dev->real_num_tx_queues != 1) { 4224 const struct net_device_ops *ops = dev->netdev_ops; 4225 4226 if (ops->ndo_select_queue) 4227 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4228 else 4229 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4230 4231 queue_index = netdev_cap_txqueue(dev, queue_index); 4232 } 4233 4234 skb_set_queue_mapping(skb, queue_index); 4235 return netdev_get_tx_queue(dev, queue_index); 4236 } 4237 4238 /** 4239 * __dev_queue_xmit() - transmit a buffer 4240 * @skb: buffer to transmit 4241 * @sb_dev: suboordinate device used for L2 forwarding offload 4242 * 4243 * Queue a buffer for transmission to a network device. The caller must 4244 * have set the device and priority and built the buffer before calling 4245 * this function. The function can be called from an interrupt. 4246 * 4247 * When calling this method, interrupts MUST be enabled. This is because 4248 * the BH enable code must have IRQs enabled so that it will not deadlock. 4249 * 4250 * Regardless of the return value, the skb is consumed, so it is currently 4251 * difficult to retry a send to this method. (You can bump the ref count 4252 * before sending to hold a reference for retry if you are careful.) 4253 * 4254 * Return: 4255 * * 0 - buffer successfully transmitted 4256 * * positive qdisc return code - NET_XMIT_DROP etc. 4257 * * negative errno - other errors 4258 */ 4259 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4260 { 4261 struct net_device *dev = skb->dev; 4262 struct netdev_queue *txq = NULL; 4263 struct Qdisc *q; 4264 int rc = -ENOMEM; 4265 bool again = false; 4266 4267 skb_reset_mac_header(skb); 4268 skb_assert_len(skb); 4269 4270 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4271 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4272 4273 /* Disable soft irqs for various locks below. Also 4274 * stops preemption for RCU. 4275 */ 4276 rcu_read_lock_bh(); 4277 4278 skb_update_prio(skb); 4279 4280 qdisc_pkt_len_init(skb); 4281 tcx_set_ingress(skb, false); 4282 #ifdef CONFIG_NET_EGRESS 4283 if (static_branch_unlikely(&egress_needed_key)) { 4284 if (nf_hook_egress_active()) { 4285 skb = nf_hook_egress(skb, &rc, dev); 4286 if (!skb) 4287 goto out; 4288 } 4289 4290 netdev_xmit_skip_txqueue(false); 4291 4292 nf_skip_egress(skb, true); 4293 skb = sch_handle_egress(skb, &rc, dev); 4294 if (!skb) 4295 goto out; 4296 nf_skip_egress(skb, false); 4297 4298 if (netdev_xmit_txqueue_skipped()) 4299 txq = netdev_tx_queue_mapping(dev, skb); 4300 } 4301 #endif 4302 /* If device/qdisc don't need skb->dst, release it right now while 4303 * its hot in this cpu cache. 4304 */ 4305 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4306 skb_dst_drop(skb); 4307 else 4308 skb_dst_force(skb); 4309 4310 if (!txq) 4311 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4312 4313 q = rcu_dereference_bh(txq->qdisc); 4314 4315 trace_net_dev_queue(skb); 4316 if (q->enqueue) { 4317 rc = __dev_xmit_skb(skb, q, dev, txq); 4318 goto out; 4319 } 4320 4321 /* The device has no queue. Common case for software devices: 4322 * loopback, all the sorts of tunnels... 4323 4324 * Really, it is unlikely that netif_tx_lock protection is necessary 4325 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4326 * counters.) 4327 * However, it is possible, that they rely on protection 4328 * made by us here. 4329 4330 * Check this and shot the lock. It is not prone from deadlocks. 4331 *Either shot noqueue qdisc, it is even simpler 8) 4332 */ 4333 if (dev->flags & IFF_UP) { 4334 int cpu = smp_processor_id(); /* ok because BHs are off */ 4335 4336 /* Other cpus might concurrently change txq->xmit_lock_owner 4337 * to -1 or to their cpu id, but not to our id. 4338 */ 4339 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4340 if (dev_xmit_recursion()) 4341 goto recursion_alert; 4342 4343 skb = validate_xmit_skb(skb, dev, &again); 4344 if (!skb) 4345 goto out; 4346 4347 HARD_TX_LOCK(dev, txq, cpu); 4348 4349 if (!netif_xmit_stopped(txq)) { 4350 dev_xmit_recursion_inc(); 4351 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4352 dev_xmit_recursion_dec(); 4353 if (dev_xmit_complete(rc)) { 4354 HARD_TX_UNLOCK(dev, txq); 4355 goto out; 4356 } 4357 } 4358 HARD_TX_UNLOCK(dev, txq); 4359 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4360 dev->name); 4361 } else { 4362 /* Recursion is detected! It is possible, 4363 * unfortunately 4364 */ 4365 recursion_alert: 4366 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4367 dev->name); 4368 } 4369 } 4370 4371 rc = -ENETDOWN; 4372 rcu_read_unlock_bh(); 4373 4374 dev_core_stats_tx_dropped_inc(dev); 4375 kfree_skb_list(skb); 4376 return rc; 4377 out: 4378 rcu_read_unlock_bh(); 4379 return rc; 4380 } 4381 EXPORT_SYMBOL(__dev_queue_xmit); 4382 4383 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4384 { 4385 struct net_device *dev = skb->dev; 4386 struct sk_buff *orig_skb = skb; 4387 struct netdev_queue *txq; 4388 int ret = NETDEV_TX_BUSY; 4389 bool again = false; 4390 4391 if (unlikely(!netif_running(dev) || 4392 !netif_carrier_ok(dev))) 4393 goto drop; 4394 4395 skb = validate_xmit_skb_list(skb, dev, &again); 4396 if (skb != orig_skb) 4397 goto drop; 4398 4399 skb_set_queue_mapping(skb, queue_id); 4400 txq = skb_get_tx_queue(dev, skb); 4401 4402 local_bh_disable(); 4403 4404 dev_xmit_recursion_inc(); 4405 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4406 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4407 ret = netdev_start_xmit(skb, dev, txq, false); 4408 HARD_TX_UNLOCK(dev, txq); 4409 dev_xmit_recursion_dec(); 4410 4411 local_bh_enable(); 4412 return ret; 4413 drop: 4414 dev_core_stats_tx_dropped_inc(dev); 4415 kfree_skb_list(skb); 4416 return NET_XMIT_DROP; 4417 } 4418 EXPORT_SYMBOL(__dev_direct_xmit); 4419 4420 /************************************************************************* 4421 * Receiver routines 4422 *************************************************************************/ 4423 4424 int netdev_max_backlog __read_mostly = 1000; 4425 EXPORT_SYMBOL(netdev_max_backlog); 4426 4427 int netdev_tstamp_prequeue __read_mostly = 1; 4428 unsigned int sysctl_skb_defer_max __read_mostly = 64; 4429 int netdev_budget __read_mostly = 300; 4430 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4431 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4432 int weight_p __read_mostly = 64; /* old backlog weight */ 4433 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4434 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4435 int dev_rx_weight __read_mostly = 64; 4436 int dev_tx_weight __read_mostly = 64; 4437 4438 /* Called with irq disabled */ 4439 static inline void ____napi_schedule(struct softnet_data *sd, 4440 struct napi_struct *napi) 4441 { 4442 struct task_struct *thread; 4443 4444 lockdep_assert_irqs_disabled(); 4445 4446 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4447 /* Paired with smp_mb__before_atomic() in 4448 * napi_enable()/dev_set_threaded(). 4449 * Use READ_ONCE() to guarantee a complete 4450 * read on napi->thread. Only call 4451 * wake_up_process() when it's not NULL. 4452 */ 4453 thread = READ_ONCE(napi->thread); 4454 if (thread) { 4455 /* Avoid doing set_bit() if the thread is in 4456 * INTERRUPTIBLE state, cause napi_thread_wait() 4457 * makes sure to proceed with napi polling 4458 * if the thread is explicitly woken from here. 4459 */ 4460 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4461 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4462 wake_up_process(thread); 4463 return; 4464 } 4465 } 4466 4467 list_add_tail(&napi->poll_list, &sd->poll_list); 4468 WRITE_ONCE(napi->list_owner, smp_processor_id()); 4469 /* If not called from net_rx_action() 4470 * we have to raise NET_RX_SOFTIRQ. 4471 */ 4472 if (!sd->in_net_rx_action) 4473 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4474 } 4475 4476 #ifdef CONFIG_RPS 4477 4478 /* One global table that all flow-based protocols share. */ 4479 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4480 EXPORT_SYMBOL(rps_sock_flow_table); 4481 u32 rps_cpu_mask __read_mostly; 4482 EXPORT_SYMBOL(rps_cpu_mask); 4483 4484 struct static_key_false rps_needed __read_mostly; 4485 EXPORT_SYMBOL(rps_needed); 4486 struct static_key_false rfs_needed __read_mostly; 4487 EXPORT_SYMBOL(rfs_needed); 4488 4489 static struct rps_dev_flow * 4490 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4491 struct rps_dev_flow *rflow, u16 next_cpu) 4492 { 4493 if (next_cpu < nr_cpu_ids) { 4494 #ifdef CONFIG_RFS_ACCEL 4495 struct netdev_rx_queue *rxqueue; 4496 struct rps_dev_flow_table *flow_table; 4497 struct rps_dev_flow *old_rflow; 4498 u32 flow_id; 4499 u16 rxq_index; 4500 int rc; 4501 4502 /* Should we steer this flow to a different hardware queue? */ 4503 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4504 !(dev->features & NETIF_F_NTUPLE)) 4505 goto out; 4506 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4507 if (rxq_index == skb_get_rx_queue(skb)) 4508 goto out; 4509 4510 rxqueue = dev->_rx + rxq_index; 4511 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4512 if (!flow_table) 4513 goto out; 4514 flow_id = skb_get_hash(skb) & flow_table->mask; 4515 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4516 rxq_index, flow_id); 4517 if (rc < 0) 4518 goto out; 4519 old_rflow = rflow; 4520 rflow = &flow_table->flows[flow_id]; 4521 rflow->filter = rc; 4522 if (old_rflow->filter == rflow->filter) 4523 old_rflow->filter = RPS_NO_FILTER; 4524 out: 4525 #endif 4526 rflow->last_qtail = 4527 per_cpu(softnet_data, next_cpu).input_queue_head; 4528 } 4529 4530 rflow->cpu = next_cpu; 4531 return rflow; 4532 } 4533 4534 /* 4535 * get_rps_cpu is called from netif_receive_skb and returns the target 4536 * CPU from the RPS map of the receiving queue for a given skb. 4537 * rcu_read_lock must be held on entry. 4538 */ 4539 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4540 struct rps_dev_flow **rflowp) 4541 { 4542 const struct rps_sock_flow_table *sock_flow_table; 4543 struct netdev_rx_queue *rxqueue = dev->_rx; 4544 struct rps_dev_flow_table *flow_table; 4545 struct rps_map *map; 4546 int cpu = -1; 4547 u32 tcpu; 4548 u32 hash; 4549 4550 if (skb_rx_queue_recorded(skb)) { 4551 u16 index = skb_get_rx_queue(skb); 4552 4553 if (unlikely(index >= dev->real_num_rx_queues)) { 4554 WARN_ONCE(dev->real_num_rx_queues > 1, 4555 "%s received packet on queue %u, but number " 4556 "of RX queues is %u\n", 4557 dev->name, index, dev->real_num_rx_queues); 4558 goto done; 4559 } 4560 rxqueue += index; 4561 } 4562 4563 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4564 4565 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4566 map = rcu_dereference(rxqueue->rps_map); 4567 if (!flow_table && !map) 4568 goto done; 4569 4570 skb_reset_network_header(skb); 4571 hash = skb_get_hash(skb); 4572 if (!hash) 4573 goto done; 4574 4575 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4576 if (flow_table && sock_flow_table) { 4577 struct rps_dev_flow *rflow; 4578 u32 next_cpu; 4579 u32 ident; 4580 4581 /* First check into global flow table if there is a match. 4582 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow(). 4583 */ 4584 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]); 4585 if ((ident ^ hash) & ~rps_cpu_mask) 4586 goto try_rps; 4587 4588 next_cpu = ident & rps_cpu_mask; 4589 4590 /* OK, now we know there is a match, 4591 * we can look at the local (per receive queue) flow table 4592 */ 4593 rflow = &flow_table->flows[hash & flow_table->mask]; 4594 tcpu = rflow->cpu; 4595 4596 /* 4597 * If the desired CPU (where last recvmsg was done) is 4598 * different from current CPU (one in the rx-queue flow 4599 * table entry), switch if one of the following holds: 4600 * - Current CPU is unset (>= nr_cpu_ids). 4601 * - Current CPU is offline. 4602 * - The current CPU's queue tail has advanced beyond the 4603 * last packet that was enqueued using this table entry. 4604 * This guarantees that all previous packets for the flow 4605 * have been dequeued, thus preserving in order delivery. 4606 */ 4607 if (unlikely(tcpu != next_cpu) && 4608 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4609 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4610 rflow->last_qtail)) >= 0)) { 4611 tcpu = next_cpu; 4612 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4613 } 4614 4615 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4616 *rflowp = rflow; 4617 cpu = tcpu; 4618 goto done; 4619 } 4620 } 4621 4622 try_rps: 4623 4624 if (map) { 4625 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4626 if (cpu_online(tcpu)) { 4627 cpu = tcpu; 4628 goto done; 4629 } 4630 } 4631 4632 done: 4633 return cpu; 4634 } 4635 4636 #ifdef CONFIG_RFS_ACCEL 4637 4638 /** 4639 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4640 * @dev: Device on which the filter was set 4641 * @rxq_index: RX queue index 4642 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4643 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4644 * 4645 * Drivers that implement ndo_rx_flow_steer() should periodically call 4646 * this function for each installed filter and remove the filters for 4647 * which it returns %true. 4648 */ 4649 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4650 u32 flow_id, u16 filter_id) 4651 { 4652 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4653 struct rps_dev_flow_table *flow_table; 4654 struct rps_dev_flow *rflow; 4655 bool expire = true; 4656 unsigned int cpu; 4657 4658 rcu_read_lock(); 4659 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4660 if (flow_table && flow_id <= flow_table->mask) { 4661 rflow = &flow_table->flows[flow_id]; 4662 cpu = READ_ONCE(rflow->cpu); 4663 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4664 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4665 rflow->last_qtail) < 4666 (int)(10 * flow_table->mask))) 4667 expire = false; 4668 } 4669 rcu_read_unlock(); 4670 return expire; 4671 } 4672 EXPORT_SYMBOL(rps_may_expire_flow); 4673 4674 #endif /* CONFIG_RFS_ACCEL */ 4675 4676 /* Called from hardirq (IPI) context */ 4677 static void rps_trigger_softirq(void *data) 4678 { 4679 struct softnet_data *sd = data; 4680 4681 ____napi_schedule(sd, &sd->backlog); 4682 sd->received_rps++; 4683 } 4684 4685 #endif /* CONFIG_RPS */ 4686 4687 /* Called from hardirq (IPI) context */ 4688 static void trigger_rx_softirq(void *data) 4689 { 4690 struct softnet_data *sd = data; 4691 4692 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4693 smp_store_release(&sd->defer_ipi_scheduled, 0); 4694 } 4695 4696 /* 4697 * After we queued a packet into sd->input_pkt_queue, 4698 * we need to make sure this queue is serviced soon. 4699 * 4700 * - If this is another cpu queue, link it to our rps_ipi_list, 4701 * and make sure we will process rps_ipi_list from net_rx_action(). 4702 * 4703 * - If this is our own queue, NAPI schedule our backlog. 4704 * Note that this also raises NET_RX_SOFTIRQ. 4705 */ 4706 static void napi_schedule_rps(struct softnet_data *sd) 4707 { 4708 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4709 4710 #ifdef CONFIG_RPS 4711 if (sd != mysd) { 4712 sd->rps_ipi_next = mysd->rps_ipi_list; 4713 mysd->rps_ipi_list = sd; 4714 4715 /* If not called from net_rx_action() or napi_threaded_poll() 4716 * we have to raise NET_RX_SOFTIRQ. 4717 */ 4718 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll) 4719 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4720 return; 4721 } 4722 #endif /* CONFIG_RPS */ 4723 __napi_schedule_irqoff(&mysd->backlog); 4724 } 4725 4726 #ifdef CONFIG_NET_FLOW_LIMIT 4727 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4728 #endif 4729 4730 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4731 { 4732 #ifdef CONFIG_NET_FLOW_LIMIT 4733 struct sd_flow_limit *fl; 4734 struct softnet_data *sd; 4735 unsigned int old_flow, new_flow; 4736 4737 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1)) 4738 return false; 4739 4740 sd = this_cpu_ptr(&softnet_data); 4741 4742 rcu_read_lock(); 4743 fl = rcu_dereference(sd->flow_limit); 4744 if (fl) { 4745 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4746 old_flow = fl->history[fl->history_head]; 4747 fl->history[fl->history_head] = new_flow; 4748 4749 fl->history_head++; 4750 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4751 4752 if (likely(fl->buckets[old_flow])) 4753 fl->buckets[old_flow]--; 4754 4755 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4756 fl->count++; 4757 rcu_read_unlock(); 4758 return true; 4759 } 4760 } 4761 rcu_read_unlock(); 4762 #endif 4763 return false; 4764 } 4765 4766 /* 4767 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4768 * queue (may be a remote CPU queue). 4769 */ 4770 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4771 unsigned int *qtail) 4772 { 4773 enum skb_drop_reason reason; 4774 struct softnet_data *sd; 4775 unsigned long flags; 4776 unsigned int qlen; 4777 4778 reason = SKB_DROP_REASON_NOT_SPECIFIED; 4779 sd = &per_cpu(softnet_data, cpu); 4780 4781 rps_lock_irqsave(sd, &flags); 4782 if (!netif_running(skb->dev)) 4783 goto drop; 4784 qlen = skb_queue_len(&sd->input_pkt_queue); 4785 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) { 4786 if (qlen) { 4787 enqueue: 4788 __skb_queue_tail(&sd->input_pkt_queue, skb); 4789 input_queue_tail_incr_save(sd, qtail); 4790 rps_unlock_irq_restore(sd, &flags); 4791 return NET_RX_SUCCESS; 4792 } 4793 4794 /* Schedule NAPI for backlog device 4795 * We can use non atomic operation since we own the queue lock 4796 */ 4797 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4798 napi_schedule_rps(sd); 4799 goto enqueue; 4800 } 4801 reason = SKB_DROP_REASON_CPU_BACKLOG; 4802 4803 drop: 4804 sd->dropped++; 4805 rps_unlock_irq_restore(sd, &flags); 4806 4807 dev_core_stats_rx_dropped_inc(skb->dev); 4808 kfree_skb_reason(skb, reason); 4809 return NET_RX_DROP; 4810 } 4811 4812 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4813 { 4814 struct net_device *dev = skb->dev; 4815 struct netdev_rx_queue *rxqueue; 4816 4817 rxqueue = dev->_rx; 4818 4819 if (skb_rx_queue_recorded(skb)) { 4820 u16 index = skb_get_rx_queue(skb); 4821 4822 if (unlikely(index >= dev->real_num_rx_queues)) { 4823 WARN_ONCE(dev->real_num_rx_queues > 1, 4824 "%s received packet on queue %u, but number " 4825 "of RX queues is %u\n", 4826 dev->name, index, dev->real_num_rx_queues); 4827 4828 return rxqueue; /* Return first rxqueue */ 4829 } 4830 rxqueue += index; 4831 } 4832 return rxqueue; 4833 } 4834 4835 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4836 struct bpf_prog *xdp_prog) 4837 { 4838 void *orig_data, *orig_data_end, *hard_start; 4839 struct netdev_rx_queue *rxqueue; 4840 bool orig_bcast, orig_host; 4841 u32 mac_len, frame_sz; 4842 __be16 orig_eth_type; 4843 struct ethhdr *eth; 4844 u32 metalen, act; 4845 int off; 4846 4847 /* The XDP program wants to see the packet starting at the MAC 4848 * header. 4849 */ 4850 mac_len = skb->data - skb_mac_header(skb); 4851 hard_start = skb->data - skb_headroom(skb); 4852 4853 /* SKB "head" area always have tailroom for skb_shared_info */ 4854 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4855 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4856 4857 rxqueue = netif_get_rxqueue(skb); 4858 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4859 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4860 skb_headlen(skb) + mac_len, true); 4861 4862 orig_data_end = xdp->data_end; 4863 orig_data = xdp->data; 4864 eth = (struct ethhdr *)xdp->data; 4865 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4866 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4867 orig_eth_type = eth->h_proto; 4868 4869 act = bpf_prog_run_xdp(xdp_prog, xdp); 4870 4871 /* check if bpf_xdp_adjust_head was used */ 4872 off = xdp->data - orig_data; 4873 if (off) { 4874 if (off > 0) 4875 __skb_pull(skb, off); 4876 else if (off < 0) 4877 __skb_push(skb, -off); 4878 4879 skb->mac_header += off; 4880 skb_reset_network_header(skb); 4881 } 4882 4883 /* check if bpf_xdp_adjust_tail was used */ 4884 off = xdp->data_end - orig_data_end; 4885 if (off != 0) { 4886 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4887 skb->len += off; /* positive on grow, negative on shrink */ 4888 } 4889 4890 /* check if XDP changed eth hdr such SKB needs update */ 4891 eth = (struct ethhdr *)xdp->data; 4892 if ((orig_eth_type != eth->h_proto) || 4893 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4894 skb->dev->dev_addr)) || 4895 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4896 __skb_push(skb, ETH_HLEN); 4897 skb->pkt_type = PACKET_HOST; 4898 skb->protocol = eth_type_trans(skb, skb->dev); 4899 } 4900 4901 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4902 * before calling us again on redirect path. We do not call do_redirect 4903 * as we leave that up to the caller. 4904 * 4905 * Caller is responsible for managing lifetime of skb (i.e. calling 4906 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4907 */ 4908 switch (act) { 4909 case XDP_REDIRECT: 4910 case XDP_TX: 4911 __skb_push(skb, mac_len); 4912 break; 4913 case XDP_PASS: 4914 metalen = xdp->data - xdp->data_meta; 4915 if (metalen) 4916 skb_metadata_set(skb, metalen); 4917 break; 4918 } 4919 4920 return act; 4921 } 4922 4923 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4924 struct xdp_buff *xdp, 4925 struct bpf_prog *xdp_prog) 4926 { 4927 u32 act = XDP_DROP; 4928 4929 /* Reinjected packets coming from act_mirred or similar should 4930 * not get XDP generic processing. 4931 */ 4932 if (skb_is_redirected(skb)) 4933 return XDP_PASS; 4934 4935 /* XDP packets must be linear and must have sufficient headroom 4936 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4937 * native XDP provides, thus we need to do it here as well. 4938 */ 4939 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4940 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4941 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4942 int troom = skb->tail + skb->data_len - skb->end; 4943 4944 /* In case we have to go down the path and also linearize, 4945 * then lets do the pskb_expand_head() work just once here. 4946 */ 4947 if (pskb_expand_head(skb, 4948 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4949 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4950 goto do_drop; 4951 if (skb_linearize(skb)) 4952 goto do_drop; 4953 } 4954 4955 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); 4956 switch (act) { 4957 case XDP_REDIRECT: 4958 case XDP_TX: 4959 case XDP_PASS: 4960 break; 4961 default: 4962 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act); 4963 fallthrough; 4964 case XDP_ABORTED: 4965 trace_xdp_exception(skb->dev, xdp_prog, act); 4966 fallthrough; 4967 case XDP_DROP: 4968 do_drop: 4969 kfree_skb(skb); 4970 break; 4971 } 4972 4973 return act; 4974 } 4975 4976 /* When doing generic XDP we have to bypass the qdisc layer and the 4977 * network taps in order to match in-driver-XDP behavior. This also means 4978 * that XDP packets are able to starve other packets going through a qdisc, 4979 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX 4980 * queues, so they do not have this starvation issue. 4981 */ 4982 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4983 { 4984 struct net_device *dev = skb->dev; 4985 struct netdev_queue *txq; 4986 bool free_skb = true; 4987 int cpu, rc; 4988 4989 txq = netdev_core_pick_tx(dev, skb, NULL); 4990 cpu = smp_processor_id(); 4991 HARD_TX_LOCK(dev, txq, cpu); 4992 if (!netif_xmit_frozen_or_drv_stopped(txq)) { 4993 rc = netdev_start_xmit(skb, dev, txq, 0); 4994 if (dev_xmit_complete(rc)) 4995 free_skb = false; 4996 } 4997 HARD_TX_UNLOCK(dev, txq); 4998 if (free_skb) { 4999 trace_xdp_exception(dev, xdp_prog, XDP_TX); 5000 dev_core_stats_tx_dropped_inc(dev); 5001 kfree_skb(skb); 5002 } 5003 } 5004 5005 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 5006 5007 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 5008 { 5009 if (xdp_prog) { 5010 struct xdp_buff xdp; 5011 u32 act; 5012 int err; 5013 5014 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 5015 if (act != XDP_PASS) { 5016 switch (act) { 5017 case XDP_REDIRECT: 5018 err = xdp_do_generic_redirect(skb->dev, skb, 5019 &xdp, xdp_prog); 5020 if (err) 5021 goto out_redir; 5022 break; 5023 case XDP_TX: 5024 generic_xdp_tx(skb, xdp_prog); 5025 break; 5026 } 5027 return XDP_DROP; 5028 } 5029 } 5030 return XDP_PASS; 5031 out_redir: 5032 kfree_skb_reason(skb, SKB_DROP_REASON_XDP); 5033 return XDP_DROP; 5034 } 5035 EXPORT_SYMBOL_GPL(do_xdp_generic); 5036 5037 static int netif_rx_internal(struct sk_buff *skb) 5038 { 5039 int ret; 5040 5041 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5042 5043 trace_netif_rx(skb); 5044 5045 #ifdef CONFIG_RPS 5046 if (static_branch_unlikely(&rps_needed)) { 5047 struct rps_dev_flow voidflow, *rflow = &voidflow; 5048 int cpu; 5049 5050 rcu_read_lock(); 5051 5052 cpu = get_rps_cpu(skb->dev, skb, &rflow); 5053 if (cpu < 0) 5054 cpu = smp_processor_id(); 5055 5056 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5057 5058 rcu_read_unlock(); 5059 } else 5060 #endif 5061 { 5062 unsigned int qtail; 5063 5064 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 5065 } 5066 return ret; 5067 } 5068 5069 /** 5070 * __netif_rx - Slightly optimized version of netif_rx 5071 * @skb: buffer to post 5072 * 5073 * This behaves as netif_rx except that it does not disable bottom halves. 5074 * As a result this function may only be invoked from the interrupt context 5075 * (either hard or soft interrupt). 5076 */ 5077 int __netif_rx(struct sk_buff *skb) 5078 { 5079 int ret; 5080 5081 lockdep_assert_once(hardirq_count() | softirq_count()); 5082 5083 trace_netif_rx_entry(skb); 5084 ret = netif_rx_internal(skb); 5085 trace_netif_rx_exit(ret); 5086 return ret; 5087 } 5088 EXPORT_SYMBOL(__netif_rx); 5089 5090 /** 5091 * netif_rx - post buffer to the network code 5092 * @skb: buffer to post 5093 * 5094 * This function receives a packet from a device driver and queues it for 5095 * the upper (protocol) levels to process via the backlog NAPI device. It 5096 * always succeeds. The buffer may be dropped during processing for 5097 * congestion control or by the protocol layers. 5098 * The network buffer is passed via the backlog NAPI device. Modern NIC 5099 * driver should use NAPI and GRO. 5100 * This function can used from interrupt and from process context. The 5101 * caller from process context must not disable interrupts before invoking 5102 * this function. 5103 * 5104 * return values: 5105 * NET_RX_SUCCESS (no congestion) 5106 * NET_RX_DROP (packet was dropped) 5107 * 5108 */ 5109 int netif_rx(struct sk_buff *skb) 5110 { 5111 bool need_bh_off = !(hardirq_count() | softirq_count()); 5112 int ret; 5113 5114 if (need_bh_off) 5115 local_bh_disable(); 5116 trace_netif_rx_entry(skb); 5117 ret = netif_rx_internal(skb); 5118 trace_netif_rx_exit(ret); 5119 if (need_bh_off) 5120 local_bh_enable(); 5121 return ret; 5122 } 5123 EXPORT_SYMBOL(netif_rx); 5124 5125 static __latent_entropy void net_tx_action(struct softirq_action *h) 5126 { 5127 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5128 5129 if (sd->completion_queue) { 5130 struct sk_buff *clist; 5131 5132 local_irq_disable(); 5133 clist = sd->completion_queue; 5134 sd->completion_queue = NULL; 5135 local_irq_enable(); 5136 5137 while (clist) { 5138 struct sk_buff *skb = clist; 5139 5140 clist = clist->next; 5141 5142 WARN_ON(refcount_read(&skb->users)); 5143 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED)) 5144 trace_consume_skb(skb, net_tx_action); 5145 else 5146 trace_kfree_skb(skb, net_tx_action, 5147 get_kfree_skb_cb(skb)->reason); 5148 5149 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5150 __kfree_skb(skb); 5151 else 5152 __napi_kfree_skb(skb, 5153 get_kfree_skb_cb(skb)->reason); 5154 } 5155 } 5156 5157 if (sd->output_queue) { 5158 struct Qdisc *head; 5159 5160 local_irq_disable(); 5161 head = sd->output_queue; 5162 sd->output_queue = NULL; 5163 sd->output_queue_tailp = &sd->output_queue; 5164 local_irq_enable(); 5165 5166 rcu_read_lock(); 5167 5168 while (head) { 5169 struct Qdisc *q = head; 5170 spinlock_t *root_lock = NULL; 5171 5172 head = head->next_sched; 5173 5174 /* We need to make sure head->next_sched is read 5175 * before clearing __QDISC_STATE_SCHED 5176 */ 5177 smp_mb__before_atomic(); 5178 5179 if (!(q->flags & TCQ_F_NOLOCK)) { 5180 root_lock = qdisc_lock(q); 5181 spin_lock(root_lock); 5182 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5183 &q->state))) { 5184 /* There is a synchronize_net() between 5185 * STATE_DEACTIVATED flag being set and 5186 * qdisc_reset()/some_qdisc_is_busy() in 5187 * dev_deactivate(), so we can safely bail out 5188 * early here to avoid data race between 5189 * qdisc_deactivate() and some_qdisc_is_busy() 5190 * for lockless qdisc. 5191 */ 5192 clear_bit(__QDISC_STATE_SCHED, &q->state); 5193 continue; 5194 } 5195 5196 clear_bit(__QDISC_STATE_SCHED, &q->state); 5197 qdisc_run(q); 5198 if (root_lock) 5199 spin_unlock(root_lock); 5200 } 5201 5202 rcu_read_unlock(); 5203 } 5204 5205 xfrm_dev_backlog(sd); 5206 } 5207 5208 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5209 /* This hook is defined here for ATM LANE */ 5210 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5211 unsigned char *addr) __read_mostly; 5212 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5213 #endif 5214 5215 /** 5216 * netdev_is_rx_handler_busy - check if receive handler is registered 5217 * @dev: device to check 5218 * 5219 * Check if a receive handler is already registered for a given device. 5220 * Return true if there one. 5221 * 5222 * The caller must hold the rtnl_mutex. 5223 */ 5224 bool netdev_is_rx_handler_busy(struct net_device *dev) 5225 { 5226 ASSERT_RTNL(); 5227 return dev && rtnl_dereference(dev->rx_handler); 5228 } 5229 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5230 5231 /** 5232 * netdev_rx_handler_register - register receive handler 5233 * @dev: device to register a handler for 5234 * @rx_handler: receive handler to register 5235 * @rx_handler_data: data pointer that is used by rx handler 5236 * 5237 * Register a receive handler for a device. This handler will then be 5238 * called from __netif_receive_skb. A negative errno code is returned 5239 * on a failure. 5240 * 5241 * The caller must hold the rtnl_mutex. 5242 * 5243 * For a general description of rx_handler, see enum rx_handler_result. 5244 */ 5245 int netdev_rx_handler_register(struct net_device *dev, 5246 rx_handler_func_t *rx_handler, 5247 void *rx_handler_data) 5248 { 5249 if (netdev_is_rx_handler_busy(dev)) 5250 return -EBUSY; 5251 5252 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5253 return -EINVAL; 5254 5255 /* Note: rx_handler_data must be set before rx_handler */ 5256 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5257 rcu_assign_pointer(dev->rx_handler, rx_handler); 5258 5259 return 0; 5260 } 5261 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5262 5263 /** 5264 * netdev_rx_handler_unregister - unregister receive handler 5265 * @dev: device to unregister a handler from 5266 * 5267 * Unregister a receive handler from a device. 5268 * 5269 * The caller must hold the rtnl_mutex. 5270 */ 5271 void netdev_rx_handler_unregister(struct net_device *dev) 5272 { 5273 5274 ASSERT_RTNL(); 5275 RCU_INIT_POINTER(dev->rx_handler, NULL); 5276 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5277 * section has a guarantee to see a non NULL rx_handler_data 5278 * as well. 5279 */ 5280 synchronize_net(); 5281 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5282 } 5283 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5284 5285 /* 5286 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5287 * the special handling of PFMEMALLOC skbs. 5288 */ 5289 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5290 { 5291 switch (skb->protocol) { 5292 case htons(ETH_P_ARP): 5293 case htons(ETH_P_IP): 5294 case htons(ETH_P_IPV6): 5295 case htons(ETH_P_8021Q): 5296 case htons(ETH_P_8021AD): 5297 return true; 5298 default: 5299 return false; 5300 } 5301 } 5302 5303 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5304 int *ret, struct net_device *orig_dev) 5305 { 5306 if (nf_hook_ingress_active(skb)) { 5307 int ingress_retval; 5308 5309 if (*pt_prev) { 5310 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5311 *pt_prev = NULL; 5312 } 5313 5314 rcu_read_lock(); 5315 ingress_retval = nf_hook_ingress(skb); 5316 rcu_read_unlock(); 5317 return ingress_retval; 5318 } 5319 return 0; 5320 } 5321 5322 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5323 struct packet_type **ppt_prev) 5324 { 5325 struct packet_type *ptype, *pt_prev; 5326 rx_handler_func_t *rx_handler; 5327 struct sk_buff *skb = *pskb; 5328 struct net_device *orig_dev; 5329 bool deliver_exact = false; 5330 int ret = NET_RX_DROP; 5331 __be16 type; 5332 5333 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb); 5334 5335 trace_netif_receive_skb(skb); 5336 5337 orig_dev = skb->dev; 5338 5339 skb_reset_network_header(skb); 5340 if (!skb_transport_header_was_set(skb)) 5341 skb_reset_transport_header(skb); 5342 skb_reset_mac_len(skb); 5343 5344 pt_prev = NULL; 5345 5346 another_round: 5347 skb->skb_iif = skb->dev->ifindex; 5348 5349 __this_cpu_inc(softnet_data.processed); 5350 5351 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5352 int ret2; 5353 5354 migrate_disable(); 5355 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5356 migrate_enable(); 5357 5358 if (ret2 != XDP_PASS) { 5359 ret = NET_RX_DROP; 5360 goto out; 5361 } 5362 } 5363 5364 if (eth_type_vlan(skb->protocol)) { 5365 skb = skb_vlan_untag(skb); 5366 if (unlikely(!skb)) 5367 goto out; 5368 } 5369 5370 if (skb_skip_tc_classify(skb)) 5371 goto skip_classify; 5372 5373 if (pfmemalloc) 5374 goto skip_taps; 5375 5376 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5377 if (pt_prev) 5378 ret = deliver_skb(skb, pt_prev, orig_dev); 5379 pt_prev = ptype; 5380 } 5381 5382 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5383 if (pt_prev) 5384 ret = deliver_skb(skb, pt_prev, orig_dev); 5385 pt_prev = ptype; 5386 } 5387 5388 skip_taps: 5389 #ifdef CONFIG_NET_INGRESS 5390 if (static_branch_unlikely(&ingress_needed_key)) { 5391 bool another = false; 5392 5393 nf_skip_egress(skb, true); 5394 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5395 &another); 5396 if (another) 5397 goto another_round; 5398 if (!skb) 5399 goto out; 5400 5401 nf_skip_egress(skb, false); 5402 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5403 goto out; 5404 } 5405 #endif 5406 skb_reset_redirect(skb); 5407 skip_classify: 5408 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5409 goto drop; 5410 5411 if (skb_vlan_tag_present(skb)) { 5412 if (pt_prev) { 5413 ret = deliver_skb(skb, pt_prev, orig_dev); 5414 pt_prev = NULL; 5415 } 5416 if (vlan_do_receive(&skb)) 5417 goto another_round; 5418 else if (unlikely(!skb)) 5419 goto out; 5420 } 5421 5422 rx_handler = rcu_dereference(skb->dev->rx_handler); 5423 if (rx_handler) { 5424 if (pt_prev) { 5425 ret = deliver_skb(skb, pt_prev, orig_dev); 5426 pt_prev = NULL; 5427 } 5428 switch (rx_handler(&skb)) { 5429 case RX_HANDLER_CONSUMED: 5430 ret = NET_RX_SUCCESS; 5431 goto out; 5432 case RX_HANDLER_ANOTHER: 5433 goto another_round; 5434 case RX_HANDLER_EXACT: 5435 deliver_exact = true; 5436 break; 5437 case RX_HANDLER_PASS: 5438 break; 5439 default: 5440 BUG(); 5441 } 5442 } 5443 5444 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5445 check_vlan_id: 5446 if (skb_vlan_tag_get_id(skb)) { 5447 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5448 * find vlan device. 5449 */ 5450 skb->pkt_type = PACKET_OTHERHOST; 5451 } else if (eth_type_vlan(skb->protocol)) { 5452 /* Outer header is 802.1P with vlan 0, inner header is 5453 * 802.1Q or 802.1AD and vlan_do_receive() above could 5454 * not find vlan dev for vlan id 0. 5455 */ 5456 __vlan_hwaccel_clear_tag(skb); 5457 skb = skb_vlan_untag(skb); 5458 if (unlikely(!skb)) 5459 goto out; 5460 if (vlan_do_receive(&skb)) 5461 /* After stripping off 802.1P header with vlan 0 5462 * vlan dev is found for inner header. 5463 */ 5464 goto another_round; 5465 else if (unlikely(!skb)) 5466 goto out; 5467 else 5468 /* We have stripped outer 802.1P vlan 0 header. 5469 * But could not find vlan dev. 5470 * check again for vlan id to set OTHERHOST. 5471 */ 5472 goto check_vlan_id; 5473 } 5474 /* Note: we might in the future use prio bits 5475 * and set skb->priority like in vlan_do_receive() 5476 * For the time being, just ignore Priority Code Point 5477 */ 5478 __vlan_hwaccel_clear_tag(skb); 5479 } 5480 5481 type = skb->protocol; 5482 5483 /* deliver only exact match when indicated */ 5484 if (likely(!deliver_exact)) { 5485 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5486 &ptype_base[ntohs(type) & 5487 PTYPE_HASH_MASK]); 5488 } 5489 5490 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5491 &orig_dev->ptype_specific); 5492 5493 if (unlikely(skb->dev != orig_dev)) { 5494 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5495 &skb->dev->ptype_specific); 5496 } 5497 5498 if (pt_prev) { 5499 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5500 goto drop; 5501 *ppt_prev = pt_prev; 5502 } else { 5503 drop: 5504 if (!deliver_exact) 5505 dev_core_stats_rx_dropped_inc(skb->dev); 5506 else 5507 dev_core_stats_rx_nohandler_inc(skb->dev); 5508 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5509 /* Jamal, now you will not able to escape explaining 5510 * me how you were going to use this. :-) 5511 */ 5512 ret = NET_RX_DROP; 5513 } 5514 5515 out: 5516 /* The invariant here is that if *ppt_prev is not NULL 5517 * then skb should also be non-NULL. 5518 * 5519 * Apparently *ppt_prev assignment above holds this invariant due to 5520 * skb dereferencing near it. 5521 */ 5522 *pskb = skb; 5523 return ret; 5524 } 5525 5526 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5527 { 5528 struct net_device *orig_dev = skb->dev; 5529 struct packet_type *pt_prev = NULL; 5530 int ret; 5531 5532 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5533 if (pt_prev) 5534 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5535 skb->dev, pt_prev, orig_dev); 5536 return ret; 5537 } 5538 5539 /** 5540 * netif_receive_skb_core - special purpose version of netif_receive_skb 5541 * @skb: buffer to process 5542 * 5543 * More direct receive version of netif_receive_skb(). It should 5544 * only be used by callers that have a need to skip RPS and Generic XDP. 5545 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5546 * 5547 * This function may only be called from softirq context and interrupts 5548 * should be enabled. 5549 * 5550 * Return values (usually ignored): 5551 * NET_RX_SUCCESS: no congestion 5552 * NET_RX_DROP: packet was dropped 5553 */ 5554 int netif_receive_skb_core(struct sk_buff *skb) 5555 { 5556 int ret; 5557 5558 rcu_read_lock(); 5559 ret = __netif_receive_skb_one_core(skb, false); 5560 rcu_read_unlock(); 5561 5562 return ret; 5563 } 5564 EXPORT_SYMBOL(netif_receive_skb_core); 5565 5566 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5567 struct packet_type *pt_prev, 5568 struct net_device *orig_dev) 5569 { 5570 struct sk_buff *skb, *next; 5571 5572 if (!pt_prev) 5573 return; 5574 if (list_empty(head)) 5575 return; 5576 if (pt_prev->list_func != NULL) 5577 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5578 ip_list_rcv, head, pt_prev, orig_dev); 5579 else 5580 list_for_each_entry_safe(skb, next, head, list) { 5581 skb_list_del_init(skb); 5582 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5583 } 5584 } 5585 5586 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5587 { 5588 /* Fast-path assumptions: 5589 * - There is no RX handler. 5590 * - Only one packet_type matches. 5591 * If either of these fails, we will end up doing some per-packet 5592 * processing in-line, then handling the 'last ptype' for the whole 5593 * sublist. This can't cause out-of-order delivery to any single ptype, 5594 * because the 'last ptype' must be constant across the sublist, and all 5595 * other ptypes are handled per-packet. 5596 */ 5597 /* Current (common) ptype of sublist */ 5598 struct packet_type *pt_curr = NULL; 5599 /* Current (common) orig_dev of sublist */ 5600 struct net_device *od_curr = NULL; 5601 struct list_head sublist; 5602 struct sk_buff *skb, *next; 5603 5604 INIT_LIST_HEAD(&sublist); 5605 list_for_each_entry_safe(skb, next, head, list) { 5606 struct net_device *orig_dev = skb->dev; 5607 struct packet_type *pt_prev = NULL; 5608 5609 skb_list_del_init(skb); 5610 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5611 if (!pt_prev) 5612 continue; 5613 if (pt_curr != pt_prev || od_curr != orig_dev) { 5614 /* dispatch old sublist */ 5615 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5616 /* start new sublist */ 5617 INIT_LIST_HEAD(&sublist); 5618 pt_curr = pt_prev; 5619 od_curr = orig_dev; 5620 } 5621 list_add_tail(&skb->list, &sublist); 5622 } 5623 5624 /* dispatch final sublist */ 5625 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5626 } 5627 5628 static int __netif_receive_skb(struct sk_buff *skb) 5629 { 5630 int ret; 5631 5632 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5633 unsigned int noreclaim_flag; 5634 5635 /* 5636 * PFMEMALLOC skbs are special, they should 5637 * - be delivered to SOCK_MEMALLOC sockets only 5638 * - stay away from userspace 5639 * - have bounded memory usage 5640 * 5641 * Use PF_MEMALLOC as this saves us from propagating the allocation 5642 * context down to all allocation sites. 5643 */ 5644 noreclaim_flag = memalloc_noreclaim_save(); 5645 ret = __netif_receive_skb_one_core(skb, true); 5646 memalloc_noreclaim_restore(noreclaim_flag); 5647 } else 5648 ret = __netif_receive_skb_one_core(skb, false); 5649 5650 return ret; 5651 } 5652 5653 static void __netif_receive_skb_list(struct list_head *head) 5654 { 5655 unsigned long noreclaim_flag = 0; 5656 struct sk_buff *skb, *next; 5657 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5658 5659 list_for_each_entry_safe(skb, next, head, list) { 5660 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5661 struct list_head sublist; 5662 5663 /* Handle the previous sublist */ 5664 list_cut_before(&sublist, head, &skb->list); 5665 if (!list_empty(&sublist)) 5666 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5667 pfmemalloc = !pfmemalloc; 5668 /* See comments in __netif_receive_skb */ 5669 if (pfmemalloc) 5670 noreclaim_flag = memalloc_noreclaim_save(); 5671 else 5672 memalloc_noreclaim_restore(noreclaim_flag); 5673 } 5674 } 5675 /* Handle the remaining sublist */ 5676 if (!list_empty(head)) 5677 __netif_receive_skb_list_core(head, pfmemalloc); 5678 /* Restore pflags */ 5679 if (pfmemalloc) 5680 memalloc_noreclaim_restore(noreclaim_flag); 5681 } 5682 5683 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5684 { 5685 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5686 struct bpf_prog *new = xdp->prog; 5687 int ret = 0; 5688 5689 switch (xdp->command) { 5690 case XDP_SETUP_PROG: 5691 rcu_assign_pointer(dev->xdp_prog, new); 5692 if (old) 5693 bpf_prog_put(old); 5694 5695 if (old && !new) { 5696 static_branch_dec(&generic_xdp_needed_key); 5697 } else if (new && !old) { 5698 static_branch_inc(&generic_xdp_needed_key); 5699 dev_disable_lro(dev); 5700 dev_disable_gro_hw(dev); 5701 } 5702 break; 5703 5704 default: 5705 ret = -EINVAL; 5706 break; 5707 } 5708 5709 return ret; 5710 } 5711 5712 static int netif_receive_skb_internal(struct sk_buff *skb) 5713 { 5714 int ret; 5715 5716 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5717 5718 if (skb_defer_rx_timestamp(skb)) 5719 return NET_RX_SUCCESS; 5720 5721 rcu_read_lock(); 5722 #ifdef CONFIG_RPS 5723 if (static_branch_unlikely(&rps_needed)) { 5724 struct rps_dev_flow voidflow, *rflow = &voidflow; 5725 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5726 5727 if (cpu >= 0) { 5728 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5729 rcu_read_unlock(); 5730 return ret; 5731 } 5732 } 5733 #endif 5734 ret = __netif_receive_skb(skb); 5735 rcu_read_unlock(); 5736 return ret; 5737 } 5738 5739 void netif_receive_skb_list_internal(struct list_head *head) 5740 { 5741 struct sk_buff *skb, *next; 5742 struct list_head sublist; 5743 5744 INIT_LIST_HEAD(&sublist); 5745 list_for_each_entry_safe(skb, next, head, list) { 5746 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb); 5747 skb_list_del_init(skb); 5748 if (!skb_defer_rx_timestamp(skb)) 5749 list_add_tail(&skb->list, &sublist); 5750 } 5751 list_splice_init(&sublist, head); 5752 5753 rcu_read_lock(); 5754 #ifdef CONFIG_RPS 5755 if (static_branch_unlikely(&rps_needed)) { 5756 list_for_each_entry_safe(skb, next, head, list) { 5757 struct rps_dev_flow voidflow, *rflow = &voidflow; 5758 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5759 5760 if (cpu >= 0) { 5761 /* Will be handled, remove from list */ 5762 skb_list_del_init(skb); 5763 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5764 } 5765 } 5766 } 5767 #endif 5768 __netif_receive_skb_list(head); 5769 rcu_read_unlock(); 5770 } 5771 5772 /** 5773 * netif_receive_skb - process receive buffer from network 5774 * @skb: buffer to process 5775 * 5776 * netif_receive_skb() is the main receive data processing function. 5777 * It always succeeds. The buffer may be dropped during processing 5778 * for congestion control or by the protocol layers. 5779 * 5780 * This function may only be called from softirq context and interrupts 5781 * should be enabled. 5782 * 5783 * Return values (usually ignored): 5784 * NET_RX_SUCCESS: no congestion 5785 * NET_RX_DROP: packet was dropped 5786 */ 5787 int netif_receive_skb(struct sk_buff *skb) 5788 { 5789 int ret; 5790 5791 trace_netif_receive_skb_entry(skb); 5792 5793 ret = netif_receive_skb_internal(skb); 5794 trace_netif_receive_skb_exit(ret); 5795 5796 return ret; 5797 } 5798 EXPORT_SYMBOL(netif_receive_skb); 5799 5800 /** 5801 * netif_receive_skb_list - process many receive buffers from network 5802 * @head: list of skbs to process. 5803 * 5804 * Since return value of netif_receive_skb() is normally ignored, and 5805 * wouldn't be meaningful for a list, this function returns void. 5806 * 5807 * This function may only be called from softirq context and interrupts 5808 * should be enabled. 5809 */ 5810 void netif_receive_skb_list(struct list_head *head) 5811 { 5812 struct sk_buff *skb; 5813 5814 if (list_empty(head)) 5815 return; 5816 if (trace_netif_receive_skb_list_entry_enabled()) { 5817 list_for_each_entry(skb, head, list) 5818 trace_netif_receive_skb_list_entry(skb); 5819 } 5820 netif_receive_skb_list_internal(head); 5821 trace_netif_receive_skb_list_exit(0); 5822 } 5823 EXPORT_SYMBOL(netif_receive_skb_list); 5824 5825 static DEFINE_PER_CPU(struct work_struct, flush_works); 5826 5827 /* Network device is going away, flush any packets still pending */ 5828 static void flush_backlog(struct work_struct *work) 5829 { 5830 struct sk_buff *skb, *tmp; 5831 struct softnet_data *sd; 5832 5833 local_bh_disable(); 5834 sd = this_cpu_ptr(&softnet_data); 5835 5836 rps_lock_irq_disable(sd); 5837 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5838 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5839 __skb_unlink(skb, &sd->input_pkt_queue); 5840 dev_kfree_skb_irq(skb); 5841 input_queue_head_incr(sd); 5842 } 5843 } 5844 rps_unlock_irq_enable(sd); 5845 5846 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5847 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5848 __skb_unlink(skb, &sd->process_queue); 5849 kfree_skb(skb); 5850 input_queue_head_incr(sd); 5851 } 5852 } 5853 local_bh_enable(); 5854 } 5855 5856 static bool flush_required(int cpu) 5857 { 5858 #if IS_ENABLED(CONFIG_RPS) 5859 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5860 bool do_flush; 5861 5862 rps_lock_irq_disable(sd); 5863 5864 /* as insertion into process_queue happens with the rps lock held, 5865 * process_queue access may race only with dequeue 5866 */ 5867 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5868 !skb_queue_empty_lockless(&sd->process_queue); 5869 rps_unlock_irq_enable(sd); 5870 5871 return do_flush; 5872 #endif 5873 /* without RPS we can't safely check input_pkt_queue: during a 5874 * concurrent remote skb_queue_splice() we can detect as empty both 5875 * input_pkt_queue and process_queue even if the latter could end-up 5876 * containing a lot of packets. 5877 */ 5878 return true; 5879 } 5880 5881 static void flush_all_backlogs(void) 5882 { 5883 static cpumask_t flush_cpus; 5884 unsigned int cpu; 5885 5886 /* since we are under rtnl lock protection we can use static data 5887 * for the cpumask and avoid allocating on stack the possibly 5888 * large mask 5889 */ 5890 ASSERT_RTNL(); 5891 5892 cpus_read_lock(); 5893 5894 cpumask_clear(&flush_cpus); 5895 for_each_online_cpu(cpu) { 5896 if (flush_required(cpu)) { 5897 queue_work_on(cpu, system_highpri_wq, 5898 per_cpu_ptr(&flush_works, cpu)); 5899 cpumask_set_cpu(cpu, &flush_cpus); 5900 } 5901 } 5902 5903 /* we can have in flight packet[s] on the cpus we are not flushing, 5904 * synchronize_net() in unregister_netdevice_many() will take care of 5905 * them 5906 */ 5907 for_each_cpu(cpu, &flush_cpus) 5908 flush_work(per_cpu_ptr(&flush_works, cpu)); 5909 5910 cpus_read_unlock(); 5911 } 5912 5913 static void net_rps_send_ipi(struct softnet_data *remsd) 5914 { 5915 #ifdef CONFIG_RPS 5916 while (remsd) { 5917 struct softnet_data *next = remsd->rps_ipi_next; 5918 5919 if (cpu_online(remsd->cpu)) 5920 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5921 remsd = next; 5922 } 5923 #endif 5924 } 5925 5926 /* 5927 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5928 * Note: called with local irq disabled, but exits with local irq enabled. 5929 */ 5930 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5931 { 5932 #ifdef CONFIG_RPS 5933 struct softnet_data *remsd = sd->rps_ipi_list; 5934 5935 if (remsd) { 5936 sd->rps_ipi_list = NULL; 5937 5938 local_irq_enable(); 5939 5940 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5941 net_rps_send_ipi(remsd); 5942 } else 5943 #endif 5944 local_irq_enable(); 5945 } 5946 5947 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5948 { 5949 #ifdef CONFIG_RPS 5950 return sd->rps_ipi_list != NULL; 5951 #else 5952 return false; 5953 #endif 5954 } 5955 5956 static int process_backlog(struct napi_struct *napi, int quota) 5957 { 5958 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5959 bool again = true; 5960 int work = 0; 5961 5962 /* Check if we have pending ipi, its better to send them now, 5963 * not waiting net_rx_action() end. 5964 */ 5965 if (sd_has_rps_ipi_waiting(sd)) { 5966 local_irq_disable(); 5967 net_rps_action_and_irq_enable(sd); 5968 } 5969 5970 napi->weight = READ_ONCE(dev_rx_weight); 5971 while (again) { 5972 struct sk_buff *skb; 5973 5974 while ((skb = __skb_dequeue(&sd->process_queue))) { 5975 rcu_read_lock(); 5976 __netif_receive_skb(skb); 5977 rcu_read_unlock(); 5978 input_queue_head_incr(sd); 5979 if (++work >= quota) 5980 return work; 5981 5982 } 5983 5984 rps_lock_irq_disable(sd); 5985 if (skb_queue_empty(&sd->input_pkt_queue)) { 5986 /* 5987 * Inline a custom version of __napi_complete(). 5988 * only current cpu owns and manipulates this napi, 5989 * and NAPI_STATE_SCHED is the only possible flag set 5990 * on backlog. 5991 * We can use a plain write instead of clear_bit(), 5992 * and we dont need an smp_mb() memory barrier. 5993 */ 5994 napi->state = 0; 5995 again = false; 5996 } else { 5997 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5998 &sd->process_queue); 5999 } 6000 rps_unlock_irq_enable(sd); 6001 } 6002 6003 return work; 6004 } 6005 6006 /** 6007 * __napi_schedule - schedule for receive 6008 * @n: entry to schedule 6009 * 6010 * The entry's receive function will be scheduled to run. 6011 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6012 */ 6013 void __napi_schedule(struct napi_struct *n) 6014 { 6015 unsigned long flags; 6016 6017 local_irq_save(flags); 6018 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6019 local_irq_restore(flags); 6020 } 6021 EXPORT_SYMBOL(__napi_schedule); 6022 6023 /** 6024 * napi_schedule_prep - check if napi can be scheduled 6025 * @n: napi context 6026 * 6027 * Test if NAPI routine is already running, and if not mark 6028 * it as running. This is used as a condition variable to 6029 * insure only one NAPI poll instance runs. We also make 6030 * sure there is no pending NAPI disable. 6031 */ 6032 bool napi_schedule_prep(struct napi_struct *n) 6033 { 6034 unsigned long new, val = READ_ONCE(n->state); 6035 6036 do { 6037 if (unlikely(val & NAPIF_STATE_DISABLE)) 6038 return false; 6039 new = val | NAPIF_STATE_SCHED; 6040 6041 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6042 * This was suggested by Alexander Duyck, as compiler 6043 * emits better code than : 6044 * if (val & NAPIF_STATE_SCHED) 6045 * new |= NAPIF_STATE_MISSED; 6046 */ 6047 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6048 NAPIF_STATE_MISSED; 6049 } while (!try_cmpxchg(&n->state, &val, new)); 6050 6051 return !(val & NAPIF_STATE_SCHED); 6052 } 6053 EXPORT_SYMBOL(napi_schedule_prep); 6054 6055 /** 6056 * __napi_schedule_irqoff - schedule for receive 6057 * @n: entry to schedule 6058 * 6059 * Variant of __napi_schedule() assuming hard irqs are masked. 6060 * 6061 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6062 * because the interrupt disabled assumption might not be true 6063 * due to force-threaded interrupts and spinlock substitution. 6064 */ 6065 void __napi_schedule_irqoff(struct napi_struct *n) 6066 { 6067 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6068 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6069 else 6070 __napi_schedule(n); 6071 } 6072 EXPORT_SYMBOL(__napi_schedule_irqoff); 6073 6074 bool napi_complete_done(struct napi_struct *n, int work_done) 6075 { 6076 unsigned long flags, val, new, timeout = 0; 6077 bool ret = true; 6078 6079 /* 6080 * 1) Don't let napi dequeue from the cpu poll list 6081 * just in case its running on a different cpu. 6082 * 2) If we are busy polling, do nothing here, we have 6083 * the guarantee we will be called later. 6084 */ 6085 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6086 NAPIF_STATE_IN_BUSY_POLL))) 6087 return false; 6088 6089 if (work_done) { 6090 if (n->gro_bitmask) 6091 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6092 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6093 } 6094 if (n->defer_hard_irqs_count > 0) { 6095 n->defer_hard_irqs_count--; 6096 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6097 if (timeout) 6098 ret = false; 6099 } 6100 if (n->gro_bitmask) { 6101 /* When the NAPI instance uses a timeout and keeps postponing 6102 * it, we need to bound somehow the time packets are kept in 6103 * the GRO layer 6104 */ 6105 napi_gro_flush(n, !!timeout); 6106 } 6107 6108 gro_normal_list(n); 6109 6110 if (unlikely(!list_empty(&n->poll_list))) { 6111 /* If n->poll_list is not empty, we need to mask irqs */ 6112 local_irq_save(flags); 6113 list_del_init(&n->poll_list); 6114 local_irq_restore(flags); 6115 } 6116 WRITE_ONCE(n->list_owner, -1); 6117 6118 val = READ_ONCE(n->state); 6119 do { 6120 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6121 6122 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6123 NAPIF_STATE_SCHED_THREADED | 6124 NAPIF_STATE_PREFER_BUSY_POLL); 6125 6126 /* If STATE_MISSED was set, leave STATE_SCHED set, 6127 * because we will call napi->poll() one more time. 6128 * This C code was suggested by Alexander Duyck to help gcc. 6129 */ 6130 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6131 NAPIF_STATE_SCHED; 6132 } while (!try_cmpxchg(&n->state, &val, new)); 6133 6134 if (unlikely(val & NAPIF_STATE_MISSED)) { 6135 __napi_schedule(n); 6136 return false; 6137 } 6138 6139 if (timeout) 6140 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6141 HRTIMER_MODE_REL_PINNED); 6142 return ret; 6143 } 6144 EXPORT_SYMBOL(napi_complete_done); 6145 6146 /* must be called under rcu_read_lock(), as we dont take a reference */ 6147 struct napi_struct *napi_by_id(unsigned int napi_id) 6148 { 6149 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6150 struct napi_struct *napi; 6151 6152 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6153 if (napi->napi_id == napi_id) 6154 return napi; 6155 6156 return NULL; 6157 } 6158 6159 #if defined(CONFIG_NET_RX_BUSY_POLL) 6160 6161 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6162 { 6163 if (!skip_schedule) { 6164 gro_normal_list(napi); 6165 __napi_schedule(napi); 6166 return; 6167 } 6168 6169 if (napi->gro_bitmask) { 6170 /* flush too old packets 6171 * If HZ < 1000, flush all packets. 6172 */ 6173 napi_gro_flush(napi, HZ >= 1000); 6174 } 6175 6176 gro_normal_list(napi); 6177 clear_bit(NAPI_STATE_SCHED, &napi->state); 6178 } 6179 6180 enum { 6181 NAPI_F_PREFER_BUSY_POLL = 1, 6182 NAPI_F_END_ON_RESCHED = 2, 6183 }; 6184 6185 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, 6186 unsigned flags, u16 budget) 6187 { 6188 bool skip_schedule = false; 6189 unsigned long timeout; 6190 int rc; 6191 6192 /* Busy polling means there is a high chance device driver hard irq 6193 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6194 * set in napi_schedule_prep(). 6195 * Since we are about to call napi->poll() once more, we can safely 6196 * clear NAPI_STATE_MISSED. 6197 * 6198 * Note: x86 could use a single "lock and ..." instruction 6199 * to perform these two clear_bit() 6200 */ 6201 clear_bit(NAPI_STATE_MISSED, &napi->state); 6202 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6203 6204 local_bh_disable(); 6205 6206 if (flags & NAPI_F_PREFER_BUSY_POLL) { 6207 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6208 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6209 if (napi->defer_hard_irqs_count && timeout) { 6210 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6211 skip_schedule = true; 6212 } 6213 } 6214 6215 /* All we really want here is to re-enable device interrupts. 6216 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6217 */ 6218 rc = napi->poll(napi, budget); 6219 /* We can't gro_normal_list() here, because napi->poll() might have 6220 * rearmed the napi (napi_complete_done()) in which case it could 6221 * already be running on another CPU. 6222 */ 6223 trace_napi_poll(napi, rc, budget); 6224 netpoll_poll_unlock(have_poll_lock); 6225 if (rc == budget) 6226 __busy_poll_stop(napi, skip_schedule); 6227 local_bh_enable(); 6228 } 6229 6230 static void __napi_busy_loop(unsigned int napi_id, 6231 bool (*loop_end)(void *, unsigned long), 6232 void *loop_end_arg, unsigned flags, u16 budget) 6233 { 6234 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6235 int (*napi_poll)(struct napi_struct *napi, int budget); 6236 void *have_poll_lock = NULL; 6237 struct napi_struct *napi; 6238 6239 WARN_ON_ONCE(!rcu_read_lock_held()); 6240 6241 restart: 6242 napi_poll = NULL; 6243 6244 napi = napi_by_id(napi_id); 6245 if (!napi) 6246 return; 6247 6248 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6249 preempt_disable(); 6250 for (;;) { 6251 int work = 0; 6252 6253 local_bh_disable(); 6254 if (!napi_poll) { 6255 unsigned long val = READ_ONCE(napi->state); 6256 6257 /* If multiple threads are competing for this napi, 6258 * we avoid dirtying napi->state as much as we can. 6259 */ 6260 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6261 NAPIF_STATE_IN_BUSY_POLL)) { 6262 if (flags & NAPI_F_PREFER_BUSY_POLL) 6263 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6264 goto count; 6265 } 6266 if (cmpxchg(&napi->state, val, 6267 val | NAPIF_STATE_IN_BUSY_POLL | 6268 NAPIF_STATE_SCHED) != val) { 6269 if (flags & NAPI_F_PREFER_BUSY_POLL) 6270 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6271 goto count; 6272 } 6273 have_poll_lock = netpoll_poll_lock(napi); 6274 napi_poll = napi->poll; 6275 } 6276 work = napi_poll(napi, budget); 6277 trace_napi_poll(napi, work, budget); 6278 gro_normal_list(napi); 6279 count: 6280 if (work > 0) 6281 __NET_ADD_STATS(dev_net(napi->dev), 6282 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6283 local_bh_enable(); 6284 6285 if (!loop_end || loop_end(loop_end_arg, start_time)) 6286 break; 6287 6288 if (unlikely(need_resched())) { 6289 if (flags & NAPI_F_END_ON_RESCHED) 6290 break; 6291 if (napi_poll) 6292 busy_poll_stop(napi, have_poll_lock, flags, budget); 6293 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6294 preempt_enable(); 6295 rcu_read_unlock(); 6296 cond_resched(); 6297 rcu_read_lock(); 6298 if (loop_end(loop_end_arg, start_time)) 6299 return; 6300 goto restart; 6301 } 6302 cpu_relax(); 6303 } 6304 if (napi_poll) 6305 busy_poll_stop(napi, have_poll_lock, flags, budget); 6306 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6307 preempt_enable(); 6308 } 6309 6310 void napi_busy_loop_rcu(unsigned int napi_id, 6311 bool (*loop_end)(void *, unsigned long), 6312 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6313 { 6314 unsigned flags = NAPI_F_END_ON_RESCHED; 6315 6316 if (prefer_busy_poll) 6317 flags |= NAPI_F_PREFER_BUSY_POLL; 6318 6319 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6320 } 6321 6322 void napi_busy_loop(unsigned int napi_id, 6323 bool (*loop_end)(void *, unsigned long), 6324 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6325 { 6326 unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0; 6327 6328 rcu_read_lock(); 6329 __napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget); 6330 rcu_read_unlock(); 6331 } 6332 EXPORT_SYMBOL(napi_busy_loop); 6333 6334 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6335 6336 static void napi_hash_add(struct napi_struct *napi) 6337 { 6338 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6339 return; 6340 6341 spin_lock(&napi_hash_lock); 6342 6343 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6344 do { 6345 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6346 napi_gen_id = MIN_NAPI_ID; 6347 } while (napi_by_id(napi_gen_id)); 6348 napi->napi_id = napi_gen_id; 6349 6350 hlist_add_head_rcu(&napi->napi_hash_node, 6351 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6352 6353 spin_unlock(&napi_hash_lock); 6354 } 6355 6356 /* Warning : caller is responsible to make sure rcu grace period 6357 * is respected before freeing memory containing @napi 6358 */ 6359 static void napi_hash_del(struct napi_struct *napi) 6360 { 6361 spin_lock(&napi_hash_lock); 6362 6363 hlist_del_init_rcu(&napi->napi_hash_node); 6364 6365 spin_unlock(&napi_hash_lock); 6366 } 6367 6368 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6369 { 6370 struct napi_struct *napi; 6371 6372 napi = container_of(timer, struct napi_struct, timer); 6373 6374 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6375 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6376 */ 6377 if (!napi_disable_pending(napi) && 6378 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6379 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6380 __napi_schedule_irqoff(napi); 6381 } 6382 6383 return HRTIMER_NORESTART; 6384 } 6385 6386 static void init_gro_hash(struct napi_struct *napi) 6387 { 6388 int i; 6389 6390 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6391 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6392 napi->gro_hash[i].count = 0; 6393 } 6394 napi->gro_bitmask = 0; 6395 } 6396 6397 int dev_set_threaded(struct net_device *dev, bool threaded) 6398 { 6399 struct napi_struct *napi; 6400 int err = 0; 6401 6402 if (dev->threaded == threaded) 6403 return 0; 6404 6405 if (threaded) { 6406 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6407 if (!napi->thread) { 6408 err = napi_kthread_create(napi); 6409 if (err) { 6410 threaded = false; 6411 break; 6412 } 6413 } 6414 } 6415 } 6416 6417 dev->threaded = threaded; 6418 6419 /* Make sure kthread is created before THREADED bit 6420 * is set. 6421 */ 6422 smp_mb__before_atomic(); 6423 6424 /* Setting/unsetting threaded mode on a napi might not immediately 6425 * take effect, if the current napi instance is actively being 6426 * polled. In this case, the switch between threaded mode and 6427 * softirq mode will happen in the next round of napi_schedule(). 6428 * This should not cause hiccups/stalls to the live traffic. 6429 */ 6430 list_for_each_entry(napi, &dev->napi_list, dev_list) 6431 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded); 6432 6433 return err; 6434 } 6435 EXPORT_SYMBOL(dev_set_threaded); 6436 6437 /** 6438 * netif_queue_set_napi - Associate queue with the napi 6439 * @dev: device to which NAPI and queue belong 6440 * @queue_index: Index of queue 6441 * @type: queue type as RX or TX 6442 * @napi: NAPI context, pass NULL to clear previously set NAPI 6443 * 6444 * Set queue with its corresponding napi context. This should be done after 6445 * registering the NAPI handler for the queue-vector and the queues have been 6446 * mapped to the corresponding interrupt vector. 6447 */ 6448 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index, 6449 enum netdev_queue_type type, struct napi_struct *napi) 6450 { 6451 struct netdev_rx_queue *rxq; 6452 struct netdev_queue *txq; 6453 6454 if (WARN_ON_ONCE(napi && !napi->dev)) 6455 return; 6456 if (dev->reg_state >= NETREG_REGISTERED) 6457 ASSERT_RTNL(); 6458 6459 switch (type) { 6460 case NETDEV_QUEUE_TYPE_RX: 6461 rxq = __netif_get_rx_queue(dev, queue_index); 6462 rxq->napi = napi; 6463 return; 6464 case NETDEV_QUEUE_TYPE_TX: 6465 txq = netdev_get_tx_queue(dev, queue_index); 6466 txq->napi = napi; 6467 return; 6468 default: 6469 return; 6470 } 6471 } 6472 EXPORT_SYMBOL(netif_queue_set_napi); 6473 6474 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6475 int (*poll)(struct napi_struct *, int), int weight) 6476 { 6477 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6478 return; 6479 6480 INIT_LIST_HEAD(&napi->poll_list); 6481 INIT_HLIST_NODE(&napi->napi_hash_node); 6482 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6483 napi->timer.function = napi_watchdog; 6484 init_gro_hash(napi); 6485 napi->skb = NULL; 6486 INIT_LIST_HEAD(&napi->rx_list); 6487 napi->rx_count = 0; 6488 napi->poll = poll; 6489 if (weight > NAPI_POLL_WEIGHT) 6490 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6491 weight); 6492 napi->weight = weight; 6493 napi->dev = dev; 6494 #ifdef CONFIG_NETPOLL 6495 napi->poll_owner = -1; 6496 #endif 6497 napi->list_owner = -1; 6498 set_bit(NAPI_STATE_SCHED, &napi->state); 6499 set_bit(NAPI_STATE_NPSVC, &napi->state); 6500 list_add_rcu(&napi->dev_list, &dev->napi_list); 6501 napi_hash_add(napi); 6502 napi_get_frags_check(napi); 6503 /* Create kthread for this napi if dev->threaded is set. 6504 * Clear dev->threaded if kthread creation failed so that 6505 * threaded mode will not be enabled in napi_enable(). 6506 */ 6507 if (dev->threaded && napi_kthread_create(napi)) 6508 dev->threaded = 0; 6509 netif_napi_set_irq(napi, -1); 6510 } 6511 EXPORT_SYMBOL(netif_napi_add_weight); 6512 6513 void napi_disable(struct napi_struct *n) 6514 { 6515 unsigned long val, new; 6516 6517 might_sleep(); 6518 set_bit(NAPI_STATE_DISABLE, &n->state); 6519 6520 val = READ_ONCE(n->state); 6521 do { 6522 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6523 usleep_range(20, 200); 6524 val = READ_ONCE(n->state); 6525 } 6526 6527 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6528 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6529 } while (!try_cmpxchg(&n->state, &val, new)); 6530 6531 hrtimer_cancel(&n->timer); 6532 6533 clear_bit(NAPI_STATE_DISABLE, &n->state); 6534 } 6535 EXPORT_SYMBOL(napi_disable); 6536 6537 /** 6538 * napi_enable - enable NAPI scheduling 6539 * @n: NAPI context 6540 * 6541 * Resume NAPI from being scheduled on this context. 6542 * Must be paired with napi_disable. 6543 */ 6544 void napi_enable(struct napi_struct *n) 6545 { 6546 unsigned long new, val = READ_ONCE(n->state); 6547 6548 do { 6549 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6550 6551 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6552 if (n->dev->threaded && n->thread) 6553 new |= NAPIF_STATE_THREADED; 6554 } while (!try_cmpxchg(&n->state, &val, new)); 6555 } 6556 EXPORT_SYMBOL(napi_enable); 6557 6558 static void flush_gro_hash(struct napi_struct *napi) 6559 { 6560 int i; 6561 6562 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6563 struct sk_buff *skb, *n; 6564 6565 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6566 kfree_skb(skb); 6567 napi->gro_hash[i].count = 0; 6568 } 6569 } 6570 6571 /* Must be called in process context */ 6572 void __netif_napi_del(struct napi_struct *napi) 6573 { 6574 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6575 return; 6576 6577 napi_hash_del(napi); 6578 list_del_rcu(&napi->dev_list); 6579 napi_free_frags(napi); 6580 6581 flush_gro_hash(napi); 6582 napi->gro_bitmask = 0; 6583 6584 if (napi->thread) { 6585 kthread_stop(napi->thread); 6586 napi->thread = NULL; 6587 } 6588 } 6589 EXPORT_SYMBOL(__netif_napi_del); 6590 6591 static int __napi_poll(struct napi_struct *n, bool *repoll) 6592 { 6593 int work, weight; 6594 6595 weight = n->weight; 6596 6597 /* This NAPI_STATE_SCHED test is for avoiding a race 6598 * with netpoll's poll_napi(). Only the entity which 6599 * obtains the lock and sees NAPI_STATE_SCHED set will 6600 * actually make the ->poll() call. Therefore we avoid 6601 * accidentally calling ->poll() when NAPI is not scheduled. 6602 */ 6603 work = 0; 6604 if (napi_is_scheduled(n)) { 6605 work = n->poll(n, weight); 6606 trace_napi_poll(n, work, weight); 6607 6608 xdp_do_check_flushed(n); 6609 } 6610 6611 if (unlikely(work > weight)) 6612 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6613 n->poll, work, weight); 6614 6615 if (likely(work < weight)) 6616 return work; 6617 6618 /* Drivers must not modify the NAPI state if they 6619 * consume the entire weight. In such cases this code 6620 * still "owns" the NAPI instance and therefore can 6621 * move the instance around on the list at-will. 6622 */ 6623 if (unlikely(napi_disable_pending(n))) { 6624 napi_complete(n); 6625 return work; 6626 } 6627 6628 /* The NAPI context has more processing work, but busy-polling 6629 * is preferred. Exit early. 6630 */ 6631 if (napi_prefer_busy_poll(n)) { 6632 if (napi_complete_done(n, work)) { 6633 /* If timeout is not set, we need to make sure 6634 * that the NAPI is re-scheduled. 6635 */ 6636 napi_schedule(n); 6637 } 6638 return work; 6639 } 6640 6641 if (n->gro_bitmask) { 6642 /* flush too old packets 6643 * If HZ < 1000, flush all packets. 6644 */ 6645 napi_gro_flush(n, HZ >= 1000); 6646 } 6647 6648 gro_normal_list(n); 6649 6650 /* Some drivers may have called napi_schedule 6651 * prior to exhausting their budget. 6652 */ 6653 if (unlikely(!list_empty(&n->poll_list))) { 6654 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6655 n->dev ? n->dev->name : "backlog"); 6656 return work; 6657 } 6658 6659 *repoll = true; 6660 6661 return work; 6662 } 6663 6664 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6665 { 6666 bool do_repoll = false; 6667 void *have; 6668 int work; 6669 6670 list_del_init(&n->poll_list); 6671 6672 have = netpoll_poll_lock(n); 6673 6674 work = __napi_poll(n, &do_repoll); 6675 6676 if (do_repoll) 6677 list_add_tail(&n->poll_list, repoll); 6678 6679 netpoll_poll_unlock(have); 6680 6681 return work; 6682 } 6683 6684 static int napi_thread_wait(struct napi_struct *napi) 6685 { 6686 bool woken = false; 6687 6688 set_current_state(TASK_INTERRUPTIBLE); 6689 6690 while (!kthread_should_stop()) { 6691 /* Testing SCHED_THREADED bit here to make sure the current 6692 * kthread owns this napi and could poll on this napi. 6693 * Testing SCHED bit is not enough because SCHED bit might be 6694 * set by some other busy poll thread or by napi_disable(). 6695 */ 6696 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6697 WARN_ON(!list_empty(&napi->poll_list)); 6698 __set_current_state(TASK_RUNNING); 6699 return 0; 6700 } 6701 6702 schedule(); 6703 /* woken being true indicates this thread owns this napi. */ 6704 woken = true; 6705 set_current_state(TASK_INTERRUPTIBLE); 6706 } 6707 __set_current_state(TASK_RUNNING); 6708 6709 return -1; 6710 } 6711 6712 static void skb_defer_free_flush(struct softnet_data *sd) 6713 { 6714 struct sk_buff *skb, *next; 6715 6716 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6717 if (!READ_ONCE(sd->defer_list)) 6718 return; 6719 6720 spin_lock(&sd->defer_lock); 6721 skb = sd->defer_list; 6722 sd->defer_list = NULL; 6723 sd->defer_count = 0; 6724 spin_unlock(&sd->defer_lock); 6725 6726 while (skb != NULL) { 6727 next = skb->next; 6728 napi_consume_skb(skb, 1); 6729 skb = next; 6730 } 6731 } 6732 6733 static int napi_threaded_poll(void *data) 6734 { 6735 struct napi_struct *napi = data; 6736 struct softnet_data *sd; 6737 void *have; 6738 6739 while (!napi_thread_wait(napi)) { 6740 for (;;) { 6741 bool repoll = false; 6742 6743 local_bh_disable(); 6744 sd = this_cpu_ptr(&softnet_data); 6745 sd->in_napi_threaded_poll = true; 6746 6747 have = netpoll_poll_lock(napi); 6748 __napi_poll(napi, &repoll); 6749 netpoll_poll_unlock(have); 6750 6751 sd->in_napi_threaded_poll = false; 6752 barrier(); 6753 6754 if (sd_has_rps_ipi_waiting(sd)) { 6755 local_irq_disable(); 6756 net_rps_action_and_irq_enable(sd); 6757 } 6758 skb_defer_free_flush(sd); 6759 local_bh_enable(); 6760 6761 if (!repoll) 6762 break; 6763 6764 cond_resched(); 6765 } 6766 } 6767 return 0; 6768 } 6769 6770 static __latent_entropy void net_rx_action(struct softirq_action *h) 6771 { 6772 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6773 unsigned long time_limit = jiffies + 6774 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs)); 6775 int budget = READ_ONCE(netdev_budget); 6776 LIST_HEAD(list); 6777 LIST_HEAD(repoll); 6778 6779 start: 6780 sd->in_net_rx_action = true; 6781 local_irq_disable(); 6782 list_splice_init(&sd->poll_list, &list); 6783 local_irq_enable(); 6784 6785 for (;;) { 6786 struct napi_struct *n; 6787 6788 skb_defer_free_flush(sd); 6789 6790 if (list_empty(&list)) { 6791 if (list_empty(&repoll)) { 6792 sd->in_net_rx_action = false; 6793 barrier(); 6794 /* We need to check if ____napi_schedule() 6795 * had refilled poll_list while 6796 * sd->in_net_rx_action was true. 6797 */ 6798 if (!list_empty(&sd->poll_list)) 6799 goto start; 6800 if (!sd_has_rps_ipi_waiting(sd)) 6801 goto end; 6802 } 6803 break; 6804 } 6805 6806 n = list_first_entry(&list, struct napi_struct, poll_list); 6807 budget -= napi_poll(n, &repoll); 6808 6809 /* If softirq window is exhausted then punt. 6810 * Allow this to run for 2 jiffies since which will allow 6811 * an average latency of 1.5/HZ. 6812 */ 6813 if (unlikely(budget <= 0 || 6814 time_after_eq(jiffies, time_limit))) { 6815 sd->time_squeeze++; 6816 break; 6817 } 6818 } 6819 6820 local_irq_disable(); 6821 6822 list_splice_tail_init(&sd->poll_list, &list); 6823 list_splice_tail(&repoll, &list); 6824 list_splice(&list, &sd->poll_list); 6825 if (!list_empty(&sd->poll_list)) 6826 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6827 else 6828 sd->in_net_rx_action = false; 6829 6830 net_rps_action_and_irq_enable(sd); 6831 end:; 6832 } 6833 6834 struct netdev_adjacent { 6835 struct net_device *dev; 6836 netdevice_tracker dev_tracker; 6837 6838 /* upper master flag, there can only be one master device per list */ 6839 bool master; 6840 6841 /* lookup ignore flag */ 6842 bool ignore; 6843 6844 /* counter for the number of times this device was added to us */ 6845 u16 ref_nr; 6846 6847 /* private field for the users */ 6848 void *private; 6849 6850 struct list_head list; 6851 struct rcu_head rcu; 6852 }; 6853 6854 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6855 struct list_head *adj_list) 6856 { 6857 struct netdev_adjacent *adj; 6858 6859 list_for_each_entry(adj, adj_list, list) { 6860 if (adj->dev == adj_dev) 6861 return adj; 6862 } 6863 return NULL; 6864 } 6865 6866 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6867 struct netdev_nested_priv *priv) 6868 { 6869 struct net_device *dev = (struct net_device *)priv->data; 6870 6871 return upper_dev == dev; 6872 } 6873 6874 /** 6875 * netdev_has_upper_dev - Check if device is linked to an upper device 6876 * @dev: device 6877 * @upper_dev: upper device to check 6878 * 6879 * Find out if a device is linked to specified upper device and return true 6880 * in case it is. Note that this checks only immediate upper device, 6881 * not through a complete stack of devices. The caller must hold the RTNL lock. 6882 */ 6883 bool netdev_has_upper_dev(struct net_device *dev, 6884 struct net_device *upper_dev) 6885 { 6886 struct netdev_nested_priv priv = { 6887 .data = (void *)upper_dev, 6888 }; 6889 6890 ASSERT_RTNL(); 6891 6892 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6893 &priv); 6894 } 6895 EXPORT_SYMBOL(netdev_has_upper_dev); 6896 6897 /** 6898 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6899 * @dev: device 6900 * @upper_dev: upper device to check 6901 * 6902 * Find out if a device is linked to specified upper device and return true 6903 * in case it is. Note that this checks the entire upper device chain. 6904 * The caller must hold rcu lock. 6905 */ 6906 6907 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6908 struct net_device *upper_dev) 6909 { 6910 struct netdev_nested_priv priv = { 6911 .data = (void *)upper_dev, 6912 }; 6913 6914 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6915 &priv); 6916 } 6917 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6918 6919 /** 6920 * netdev_has_any_upper_dev - Check if device is linked to some device 6921 * @dev: device 6922 * 6923 * Find out if a device is linked to an upper device and return true in case 6924 * it is. The caller must hold the RTNL lock. 6925 */ 6926 bool netdev_has_any_upper_dev(struct net_device *dev) 6927 { 6928 ASSERT_RTNL(); 6929 6930 return !list_empty(&dev->adj_list.upper); 6931 } 6932 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6933 6934 /** 6935 * netdev_master_upper_dev_get - Get master upper device 6936 * @dev: device 6937 * 6938 * Find a master upper device and return pointer to it or NULL in case 6939 * it's not there. The caller must hold the RTNL lock. 6940 */ 6941 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6942 { 6943 struct netdev_adjacent *upper; 6944 6945 ASSERT_RTNL(); 6946 6947 if (list_empty(&dev->adj_list.upper)) 6948 return NULL; 6949 6950 upper = list_first_entry(&dev->adj_list.upper, 6951 struct netdev_adjacent, list); 6952 if (likely(upper->master)) 6953 return upper->dev; 6954 return NULL; 6955 } 6956 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6957 6958 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6959 { 6960 struct netdev_adjacent *upper; 6961 6962 ASSERT_RTNL(); 6963 6964 if (list_empty(&dev->adj_list.upper)) 6965 return NULL; 6966 6967 upper = list_first_entry(&dev->adj_list.upper, 6968 struct netdev_adjacent, list); 6969 if (likely(upper->master) && !upper->ignore) 6970 return upper->dev; 6971 return NULL; 6972 } 6973 6974 /** 6975 * netdev_has_any_lower_dev - Check if device is linked to some device 6976 * @dev: device 6977 * 6978 * Find out if a device is linked to a lower device and return true in case 6979 * it is. The caller must hold the RTNL lock. 6980 */ 6981 static bool netdev_has_any_lower_dev(struct net_device *dev) 6982 { 6983 ASSERT_RTNL(); 6984 6985 return !list_empty(&dev->adj_list.lower); 6986 } 6987 6988 void *netdev_adjacent_get_private(struct list_head *adj_list) 6989 { 6990 struct netdev_adjacent *adj; 6991 6992 adj = list_entry(adj_list, struct netdev_adjacent, list); 6993 6994 return adj->private; 6995 } 6996 EXPORT_SYMBOL(netdev_adjacent_get_private); 6997 6998 /** 6999 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7000 * @dev: device 7001 * @iter: list_head ** of the current position 7002 * 7003 * Gets the next device from the dev's upper list, starting from iter 7004 * position. The caller must hold RCU read lock. 7005 */ 7006 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7007 struct list_head **iter) 7008 { 7009 struct netdev_adjacent *upper; 7010 7011 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7012 7013 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7014 7015 if (&upper->list == &dev->adj_list.upper) 7016 return NULL; 7017 7018 *iter = &upper->list; 7019 7020 return upper->dev; 7021 } 7022 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7023 7024 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7025 struct list_head **iter, 7026 bool *ignore) 7027 { 7028 struct netdev_adjacent *upper; 7029 7030 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7031 7032 if (&upper->list == &dev->adj_list.upper) 7033 return NULL; 7034 7035 *iter = &upper->list; 7036 *ignore = upper->ignore; 7037 7038 return upper->dev; 7039 } 7040 7041 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7042 struct list_head **iter) 7043 { 7044 struct netdev_adjacent *upper; 7045 7046 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7047 7048 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7049 7050 if (&upper->list == &dev->adj_list.upper) 7051 return NULL; 7052 7053 *iter = &upper->list; 7054 7055 return upper->dev; 7056 } 7057 7058 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7059 int (*fn)(struct net_device *dev, 7060 struct netdev_nested_priv *priv), 7061 struct netdev_nested_priv *priv) 7062 { 7063 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7064 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7065 int ret, cur = 0; 7066 bool ignore; 7067 7068 now = dev; 7069 iter = &dev->adj_list.upper; 7070 7071 while (1) { 7072 if (now != dev) { 7073 ret = fn(now, priv); 7074 if (ret) 7075 return ret; 7076 } 7077 7078 next = NULL; 7079 while (1) { 7080 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7081 if (!udev) 7082 break; 7083 if (ignore) 7084 continue; 7085 7086 next = udev; 7087 niter = &udev->adj_list.upper; 7088 dev_stack[cur] = now; 7089 iter_stack[cur++] = iter; 7090 break; 7091 } 7092 7093 if (!next) { 7094 if (!cur) 7095 return 0; 7096 next = dev_stack[--cur]; 7097 niter = iter_stack[cur]; 7098 } 7099 7100 now = next; 7101 iter = niter; 7102 } 7103 7104 return 0; 7105 } 7106 7107 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7108 int (*fn)(struct net_device *dev, 7109 struct netdev_nested_priv *priv), 7110 struct netdev_nested_priv *priv) 7111 { 7112 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7113 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7114 int ret, cur = 0; 7115 7116 now = dev; 7117 iter = &dev->adj_list.upper; 7118 7119 while (1) { 7120 if (now != dev) { 7121 ret = fn(now, priv); 7122 if (ret) 7123 return ret; 7124 } 7125 7126 next = NULL; 7127 while (1) { 7128 udev = netdev_next_upper_dev_rcu(now, &iter); 7129 if (!udev) 7130 break; 7131 7132 next = udev; 7133 niter = &udev->adj_list.upper; 7134 dev_stack[cur] = now; 7135 iter_stack[cur++] = iter; 7136 break; 7137 } 7138 7139 if (!next) { 7140 if (!cur) 7141 return 0; 7142 next = dev_stack[--cur]; 7143 niter = iter_stack[cur]; 7144 } 7145 7146 now = next; 7147 iter = niter; 7148 } 7149 7150 return 0; 7151 } 7152 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7153 7154 static bool __netdev_has_upper_dev(struct net_device *dev, 7155 struct net_device *upper_dev) 7156 { 7157 struct netdev_nested_priv priv = { 7158 .flags = 0, 7159 .data = (void *)upper_dev, 7160 }; 7161 7162 ASSERT_RTNL(); 7163 7164 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7165 &priv); 7166 } 7167 7168 /** 7169 * netdev_lower_get_next_private - Get the next ->private from the 7170 * lower neighbour list 7171 * @dev: device 7172 * @iter: list_head ** of the current position 7173 * 7174 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7175 * list, starting from iter position. The caller must hold either hold the 7176 * RTNL lock or its own locking that guarantees that the neighbour lower 7177 * list will remain unchanged. 7178 */ 7179 void *netdev_lower_get_next_private(struct net_device *dev, 7180 struct list_head **iter) 7181 { 7182 struct netdev_adjacent *lower; 7183 7184 lower = list_entry(*iter, struct netdev_adjacent, list); 7185 7186 if (&lower->list == &dev->adj_list.lower) 7187 return NULL; 7188 7189 *iter = lower->list.next; 7190 7191 return lower->private; 7192 } 7193 EXPORT_SYMBOL(netdev_lower_get_next_private); 7194 7195 /** 7196 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7197 * lower neighbour list, RCU 7198 * variant 7199 * @dev: device 7200 * @iter: list_head ** of the current position 7201 * 7202 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7203 * list, starting from iter position. The caller must hold RCU read lock. 7204 */ 7205 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7206 struct list_head **iter) 7207 { 7208 struct netdev_adjacent *lower; 7209 7210 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7211 7212 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7213 7214 if (&lower->list == &dev->adj_list.lower) 7215 return NULL; 7216 7217 *iter = &lower->list; 7218 7219 return lower->private; 7220 } 7221 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7222 7223 /** 7224 * netdev_lower_get_next - Get the next device from the lower neighbour 7225 * list 7226 * @dev: device 7227 * @iter: list_head ** of the current position 7228 * 7229 * Gets the next netdev_adjacent from the dev's lower neighbour 7230 * list, starting from iter position. The caller must hold RTNL lock or 7231 * its own locking that guarantees that the neighbour lower 7232 * list will remain unchanged. 7233 */ 7234 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7235 { 7236 struct netdev_adjacent *lower; 7237 7238 lower = list_entry(*iter, struct netdev_adjacent, list); 7239 7240 if (&lower->list == &dev->adj_list.lower) 7241 return NULL; 7242 7243 *iter = lower->list.next; 7244 7245 return lower->dev; 7246 } 7247 EXPORT_SYMBOL(netdev_lower_get_next); 7248 7249 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7250 struct list_head **iter) 7251 { 7252 struct netdev_adjacent *lower; 7253 7254 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7255 7256 if (&lower->list == &dev->adj_list.lower) 7257 return NULL; 7258 7259 *iter = &lower->list; 7260 7261 return lower->dev; 7262 } 7263 7264 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7265 struct list_head **iter, 7266 bool *ignore) 7267 { 7268 struct netdev_adjacent *lower; 7269 7270 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7271 7272 if (&lower->list == &dev->adj_list.lower) 7273 return NULL; 7274 7275 *iter = &lower->list; 7276 *ignore = lower->ignore; 7277 7278 return lower->dev; 7279 } 7280 7281 int netdev_walk_all_lower_dev(struct net_device *dev, 7282 int (*fn)(struct net_device *dev, 7283 struct netdev_nested_priv *priv), 7284 struct netdev_nested_priv *priv) 7285 { 7286 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7287 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7288 int ret, cur = 0; 7289 7290 now = dev; 7291 iter = &dev->adj_list.lower; 7292 7293 while (1) { 7294 if (now != dev) { 7295 ret = fn(now, priv); 7296 if (ret) 7297 return ret; 7298 } 7299 7300 next = NULL; 7301 while (1) { 7302 ldev = netdev_next_lower_dev(now, &iter); 7303 if (!ldev) 7304 break; 7305 7306 next = ldev; 7307 niter = &ldev->adj_list.lower; 7308 dev_stack[cur] = now; 7309 iter_stack[cur++] = iter; 7310 break; 7311 } 7312 7313 if (!next) { 7314 if (!cur) 7315 return 0; 7316 next = dev_stack[--cur]; 7317 niter = iter_stack[cur]; 7318 } 7319 7320 now = next; 7321 iter = niter; 7322 } 7323 7324 return 0; 7325 } 7326 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7327 7328 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7329 int (*fn)(struct net_device *dev, 7330 struct netdev_nested_priv *priv), 7331 struct netdev_nested_priv *priv) 7332 { 7333 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7334 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7335 int ret, cur = 0; 7336 bool ignore; 7337 7338 now = dev; 7339 iter = &dev->adj_list.lower; 7340 7341 while (1) { 7342 if (now != dev) { 7343 ret = fn(now, priv); 7344 if (ret) 7345 return ret; 7346 } 7347 7348 next = NULL; 7349 while (1) { 7350 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7351 if (!ldev) 7352 break; 7353 if (ignore) 7354 continue; 7355 7356 next = ldev; 7357 niter = &ldev->adj_list.lower; 7358 dev_stack[cur] = now; 7359 iter_stack[cur++] = iter; 7360 break; 7361 } 7362 7363 if (!next) { 7364 if (!cur) 7365 return 0; 7366 next = dev_stack[--cur]; 7367 niter = iter_stack[cur]; 7368 } 7369 7370 now = next; 7371 iter = niter; 7372 } 7373 7374 return 0; 7375 } 7376 7377 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7378 struct list_head **iter) 7379 { 7380 struct netdev_adjacent *lower; 7381 7382 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7383 if (&lower->list == &dev->adj_list.lower) 7384 return NULL; 7385 7386 *iter = &lower->list; 7387 7388 return lower->dev; 7389 } 7390 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7391 7392 static u8 __netdev_upper_depth(struct net_device *dev) 7393 { 7394 struct net_device *udev; 7395 struct list_head *iter; 7396 u8 max_depth = 0; 7397 bool ignore; 7398 7399 for (iter = &dev->adj_list.upper, 7400 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7401 udev; 7402 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7403 if (ignore) 7404 continue; 7405 if (max_depth < udev->upper_level) 7406 max_depth = udev->upper_level; 7407 } 7408 7409 return max_depth; 7410 } 7411 7412 static u8 __netdev_lower_depth(struct net_device *dev) 7413 { 7414 struct net_device *ldev; 7415 struct list_head *iter; 7416 u8 max_depth = 0; 7417 bool ignore; 7418 7419 for (iter = &dev->adj_list.lower, 7420 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7421 ldev; 7422 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7423 if (ignore) 7424 continue; 7425 if (max_depth < ldev->lower_level) 7426 max_depth = ldev->lower_level; 7427 } 7428 7429 return max_depth; 7430 } 7431 7432 static int __netdev_update_upper_level(struct net_device *dev, 7433 struct netdev_nested_priv *__unused) 7434 { 7435 dev->upper_level = __netdev_upper_depth(dev) + 1; 7436 return 0; 7437 } 7438 7439 #ifdef CONFIG_LOCKDEP 7440 static LIST_HEAD(net_unlink_list); 7441 7442 static void net_unlink_todo(struct net_device *dev) 7443 { 7444 if (list_empty(&dev->unlink_list)) 7445 list_add_tail(&dev->unlink_list, &net_unlink_list); 7446 } 7447 #endif 7448 7449 static int __netdev_update_lower_level(struct net_device *dev, 7450 struct netdev_nested_priv *priv) 7451 { 7452 dev->lower_level = __netdev_lower_depth(dev) + 1; 7453 7454 #ifdef CONFIG_LOCKDEP 7455 if (!priv) 7456 return 0; 7457 7458 if (priv->flags & NESTED_SYNC_IMM) 7459 dev->nested_level = dev->lower_level - 1; 7460 if (priv->flags & NESTED_SYNC_TODO) 7461 net_unlink_todo(dev); 7462 #endif 7463 return 0; 7464 } 7465 7466 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7467 int (*fn)(struct net_device *dev, 7468 struct netdev_nested_priv *priv), 7469 struct netdev_nested_priv *priv) 7470 { 7471 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7472 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7473 int ret, cur = 0; 7474 7475 now = dev; 7476 iter = &dev->adj_list.lower; 7477 7478 while (1) { 7479 if (now != dev) { 7480 ret = fn(now, priv); 7481 if (ret) 7482 return ret; 7483 } 7484 7485 next = NULL; 7486 while (1) { 7487 ldev = netdev_next_lower_dev_rcu(now, &iter); 7488 if (!ldev) 7489 break; 7490 7491 next = ldev; 7492 niter = &ldev->adj_list.lower; 7493 dev_stack[cur] = now; 7494 iter_stack[cur++] = iter; 7495 break; 7496 } 7497 7498 if (!next) { 7499 if (!cur) 7500 return 0; 7501 next = dev_stack[--cur]; 7502 niter = iter_stack[cur]; 7503 } 7504 7505 now = next; 7506 iter = niter; 7507 } 7508 7509 return 0; 7510 } 7511 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7512 7513 /** 7514 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7515 * lower neighbour list, RCU 7516 * variant 7517 * @dev: device 7518 * 7519 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7520 * list. The caller must hold RCU read lock. 7521 */ 7522 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7523 { 7524 struct netdev_adjacent *lower; 7525 7526 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7527 struct netdev_adjacent, list); 7528 if (lower) 7529 return lower->private; 7530 return NULL; 7531 } 7532 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7533 7534 /** 7535 * netdev_master_upper_dev_get_rcu - Get master upper device 7536 * @dev: device 7537 * 7538 * Find a master upper device and return pointer to it or NULL in case 7539 * it's not there. The caller must hold the RCU read lock. 7540 */ 7541 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7542 { 7543 struct netdev_adjacent *upper; 7544 7545 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7546 struct netdev_adjacent, list); 7547 if (upper && likely(upper->master)) 7548 return upper->dev; 7549 return NULL; 7550 } 7551 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7552 7553 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7554 struct net_device *adj_dev, 7555 struct list_head *dev_list) 7556 { 7557 char linkname[IFNAMSIZ+7]; 7558 7559 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7560 "upper_%s" : "lower_%s", adj_dev->name); 7561 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7562 linkname); 7563 } 7564 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7565 char *name, 7566 struct list_head *dev_list) 7567 { 7568 char linkname[IFNAMSIZ+7]; 7569 7570 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7571 "upper_%s" : "lower_%s", name); 7572 sysfs_remove_link(&(dev->dev.kobj), linkname); 7573 } 7574 7575 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7576 struct net_device *adj_dev, 7577 struct list_head *dev_list) 7578 { 7579 return (dev_list == &dev->adj_list.upper || 7580 dev_list == &dev->adj_list.lower) && 7581 net_eq(dev_net(dev), dev_net(adj_dev)); 7582 } 7583 7584 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7585 struct net_device *adj_dev, 7586 struct list_head *dev_list, 7587 void *private, bool master) 7588 { 7589 struct netdev_adjacent *adj; 7590 int ret; 7591 7592 adj = __netdev_find_adj(adj_dev, dev_list); 7593 7594 if (adj) { 7595 adj->ref_nr += 1; 7596 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7597 dev->name, adj_dev->name, adj->ref_nr); 7598 7599 return 0; 7600 } 7601 7602 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7603 if (!adj) 7604 return -ENOMEM; 7605 7606 adj->dev = adj_dev; 7607 adj->master = master; 7608 adj->ref_nr = 1; 7609 adj->private = private; 7610 adj->ignore = false; 7611 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7612 7613 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7614 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7615 7616 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7617 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7618 if (ret) 7619 goto free_adj; 7620 } 7621 7622 /* Ensure that master link is always the first item in list. */ 7623 if (master) { 7624 ret = sysfs_create_link(&(dev->dev.kobj), 7625 &(adj_dev->dev.kobj), "master"); 7626 if (ret) 7627 goto remove_symlinks; 7628 7629 list_add_rcu(&adj->list, dev_list); 7630 } else { 7631 list_add_tail_rcu(&adj->list, dev_list); 7632 } 7633 7634 return 0; 7635 7636 remove_symlinks: 7637 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7638 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7639 free_adj: 7640 netdev_put(adj_dev, &adj->dev_tracker); 7641 kfree(adj); 7642 7643 return ret; 7644 } 7645 7646 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7647 struct net_device *adj_dev, 7648 u16 ref_nr, 7649 struct list_head *dev_list) 7650 { 7651 struct netdev_adjacent *adj; 7652 7653 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7654 dev->name, adj_dev->name, ref_nr); 7655 7656 adj = __netdev_find_adj(adj_dev, dev_list); 7657 7658 if (!adj) { 7659 pr_err("Adjacency does not exist for device %s from %s\n", 7660 dev->name, adj_dev->name); 7661 WARN_ON(1); 7662 return; 7663 } 7664 7665 if (adj->ref_nr > ref_nr) { 7666 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7667 dev->name, adj_dev->name, ref_nr, 7668 adj->ref_nr - ref_nr); 7669 adj->ref_nr -= ref_nr; 7670 return; 7671 } 7672 7673 if (adj->master) 7674 sysfs_remove_link(&(dev->dev.kobj), "master"); 7675 7676 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7677 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7678 7679 list_del_rcu(&adj->list); 7680 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7681 adj_dev->name, dev->name, adj_dev->name); 7682 netdev_put(adj_dev, &adj->dev_tracker); 7683 kfree_rcu(adj, rcu); 7684 } 7685 7686 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7687 struct net_device *upper_dev, 7688 struct list_head *up_list, 7689 struct list_head *down_list, 7690 void *private, bool master) 7691 { 7692 int ret; 7693 7694 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7695 private, master); 7696 if (ret) 7697 return ret; 7698 7699 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7700 private, false); 7701 if (ret) { 7702 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7703 return ret; 7704 } 7705 7706 return 0; 7707 } 7708 7709 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7710 struct net_device *upper_dev, 7711 u16 ref_nr, 7712 struct list_head *up_list, 7713 struct list_head *down_list) 7714 { 7715 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7716 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7717 } 7718 7719 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7720 struct net_device *upper_dev, 7721 void *private, bool master) 7722 { 7723 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7724 &dev->adj_list.upper, 7725 &upper_dev->adj_list.lower, 7726 private, master); 7727 } 7728 7729 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7730 struct net_device *upper_dev) 7731 { 7732 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7733 &dev->adj_list.upper, 7734 &upper_dev->adj_list.lower); 7735 } 7736 7737 static int __netdev_upper_dev_link(struct net_device *dev, 7738 struct net_device *upper_dev, bool master, 7739 void *upper_priv, void *upper_info, 7740 struct netdev_nested_priv *priv, 7741 struct netlink_ext_ack *extack) 7742 { 7743 struct netdev_notifier_changeupper_info changeupper_info = { 7744 .info = { 7745 .dev = dev, 7746 .extack = extack, 7747 }, 7748 .upper_dev = upper_dev, 7749 .master = master, 7750 .linking = true, 7751 .upper_info = upper_info, 7752 }; 7753 struct net_device *master_dev; 7754 int ret = 0; 7755 7756 ASSERT_RTNL(); 7757 7758 if (dev == upper_dev) 7759 return -EBUSY; 7760 7761 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7762 if (__netdev_has_upper_dev(upper_dev, dev)) 7763 return -EBUSY; 7764 7765 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7766 return -EMLINK; 7767 7768 if (!master) { 7769 if (__netdev_has_upper_dev(dev, upper_dev)) 7770 return -EEXIST; 7771 } else { 7772 master_dev = __netdev_master_upper_dev_get(dev); 7773 if (master_dev) 7774 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7775 } 7776 7777 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7778 &changeupper_info.info); 7779 ret = notifier_to_errno(ret); 7780 if (ret) 7781 return ret; 7782 7783 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7784 master); 7785 if (ret) 7786 return ret; 7787 7788 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7789 &changeupper_info.info); 7790 ret = notifier_to_errno(ret); 7791 if (ret) 7792 goto rollback; 7793 7794 __netdev_update_upper_level(dev, NULL); 7795 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7796 7797 __netdev_update_lower_level(upper_dev, priv); 7798 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7799 priv); 7800 7801 return 0; 7802 7803 rollback: 7804 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7805 7806 return ret; 7807 } 7808 7809 /** 7810 * netdev_upper_dev_link - Add a link to the upper device 7811 * @dev: device 7812 * @upper_dev: new upper device 7813 * @extack: netlink extended ack 7814 * 7815 * Adds a link to device which is upper to this one. The caller must hold 7816 * the RTNL lock. On a failure a negative errno code is returned. 7817 * On success the reference counts are adjusted and the function 7818 * returns zero. 7819 */ 7820 int netdev_upper_dev_link(struct net_device *dev, 7821 struct net_device *upper_dev, 7822 struct netlink_ext_ack *extack) 7823 { 7824 struct netdev_nested_priv priv = { 7825 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7826 .data = NULL, 7827 }; 7828 7829 return __netdev_upper_dev_link(dev, upper_dev, false, 7830 NULL, NULL, &priv, extack); 7831 } 7832 EXPORT_SYMBOL(netdev_upper_dev_link); 7833 7834 /** 7835 * netdev_master_upper_dev_link - Add a master link to the upper device 7836 * @dev: device 7837 * @upper_dev: new upper device 7838 * @upper_priv: upper device private 7839 * @upper_info: upper info to be passed down via notifier 7840 * @extack: netlink extended ack 7841 * 7842 * Adds a link to device which is upper to this one. In this case, only 7843 * one master upper device can be linked, although other non-master devices 7844 * might be linked as well. The caller must hold the RTNL lock. 7845 * On a failure a negative errno code is returned. On success the reference 7846 * counts are adjusted and the function returns zero. 7847 */ 7848 int netdev_master_upper_dev_link(struct net_device *dev, 7849 struct net_device *upper_dev, 7850 void *upper_priv, void *upper_info, 7851 struct netlink_ext_ack *extack) 7852 { 7853 struct netdev_nested_priv priv = { 7854 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7855 .data = NULL, 7856 }; 7857 7858 return __netdev_upper_dev_link(dev, upper_dev, true, 7859 upper_priv, upper_info, &priv, extack); 7860 } 7861 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7862 7863 static void __netdev_upper_dev_unlink(struct net_device *dev, 7864 struct net_device *upper_dev, 7865 struct netdev_nested_priv *priv) 7866 { 7867 struct netdev_notifier_changeupper_info changeupper_info = { 7868 .info = { 7869 .dev = dev, 7870 }, 7871 .upper_dev = upper_dev, 7872 .linking = false, 7873 }; 7874 7875 ASSERT_RTNL(); 7876 7877 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7878 7879 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7880 &changeupper_info.info); 7881 7882 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7883 7884 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7885 &changeupper_info.info); 7886 7887 __netdev_update_upper_level(dev, NULL); 7888 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7889 7890 __netdev_update_lower_level(upper_dev, priv); 7891 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7892 priv); 7893 } 7894 7895 /** 7896 * netdev_upper_dev_unlink - Removes a link to upper device 7897 * @dev: device 7898 * @upper_dev: new upper device 7899 * 7900 * Removes a link to device which is upper to this one. The caller must hold 7901 * the RTNL lock. 7902 */ 7903 void netdev_upper_dev_unlink(struct net_device *dev, 7904 struct net_device *upper_dev) 7905 { 7906 struct netdev_nested_priv priv = { 7907 .flags = NESTED_SYNC_TODO, 7908 .data = NULL, 7909 }; 7910 7911 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7912 } 7913 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7914 7915 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7916 struct net_device *lower_dev, 7917 bool val) 7918 { 7919 struct netdev_adjacent *adj; 7920 7921 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7922 if (adj) 7923 adj->ignore = val; 7924 7925 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7926 if (adj) 7927 adj->ignore = val; 7928 } 7929 7930 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7931 struct net_device *lower_dev) 7932 { 7933 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7934 } 7935 7936 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7937 struct net_device *lower_dev) 7938 { 7939 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7940 } 7941 7942 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7943 struct net_device *new_dev, 7944 struct net_device *dev, 7945 struct netlink_ext_ack *extack) 7946 { 7947 struct netdev_nested_priv priv = { 7948 .flags = 0, 7949 .data = NULL, 7950 }; 7951 int err; 7952 7953 if (!new_dev) 7954 return 0; 7955 7956 if (old_dev && new_dev != old_dev) 7957 netdev_adjacent_dev_disable(dev, old_dev); 7958 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7959 extack); 7960 if (err) { 7961 if (old_dev && new_dev != old_dev) 7962 netdev_adjacent_dev_enable(dev, old_dev); 7963 return err; 7964 } 7965 7966 return 0; 7967 } 7968 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7969 7970 void netdev_adjacent_change_commit(struct net_device *old_dev, 7971 struct net_device *new_dev, 7972 struct net_device *dev) 7973 { 7974 struct netdev_nested_priv priv = { 7975 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7976 .data = NULL, 7977 }; 7978 7979 if (!new_dev || !old_dev) 7980 return; 7981 7982 if (new_dev == old_dev) 7983 return; 7984 7985 netdev_adjacent_dev_enable(dev, old_dev); 7986 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7987 } 7988 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7989 7990 void netdev_adjacent_change_abort(struct net_device *old_dev, 7991 struct net_device *new_dev, 7992 struct net_device *dev) 7993 { 7994 struct netdev_nested_priv priv = { 7995 .flags = 0, 7996 .data = NULL, 7997 }; 7998 7999 if (!new_dev) 8000 return; 8001 8002 if (old_dev && new_dev != old_dev) 8003 netdev_adjacent_dev_enable(dev, old_dev); 8004 8005 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8006 } 8007 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8008 8009 /** 8010 * netdev_bonding_info_change - Dispatch event about slave change 8011 * @dev: device 8012 * @bonding_info: info to dispatch 8013 * 8014 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8015 * The caller must hold the RTNL lock. 8016 */ 8017 void netdev_bonding_info_change(struct net_device *dev, 8018 struct netdev_bonding_info *bonding_info) 8019 { 8020 struct netdev_notifier_bonding_info info = { 8021 .info.dev = dev, 8022 }; 8023 8024 memcpy(&info.bonding_info, bonding_info, 8025 sizeof(struct netdev_bonding_info)); 8026 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8027 &info.info); 8028 } 8029 EXPORT_SYMBOL(netdev_bonding_info_change); 8030 8031 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 8032 struct netlink_ext_ack *extack) 8033 { 8034 struct netdev_notifier_offload_xstats_info info = { 8035 .info.dev = dev, 8036 .info.extack = extack, 8037 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8038 }; 8039 int err; 8040 int rc; 8041 8042 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 8043 GFP_KERNEL); 8044 if (!dev->offload_xstats_l3) 8045 return -ENOMEM; 8046 8047 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 8048 NETDEV_OFFLOAD_XSTATS_DISABLE, 8049 &info.info); 8050 err = notifier_to_errno(rc); 8051 if (err) 8052 goto free_stats; 8053 8054 return 0; 8055 8056 free_stats: 8057 kfree(dev->offload_xstats_l3); 8058 dev->offload_xstats_l3 = NULL; 8059 return err; 8060 } 8061 8062 int netdev_offload_xstats_enable(struct net_device *dev, 8063 enum netdev_offload_xstats_type type, 8064 struct netlink_ext_ack *extack) 8065 { 8066 ASSERT_RTNL(); 8067 8068 if (netdev_offload_xstats_enabled(dev, type)) 8069 return -EALREADY; 8070 8071 switch (type) { 8072 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8073 return netdev_offload_xstats_enable_l3(dev, extack); 8074 } 8075 8076 WARN_ON(1); 8077 return -EINVAL; 8078 } 8079 EXPORT_SYMBOL(netdev_offload_xstats_enable); 8080 8081 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 8082 { 8083 struct netdev_notifier_offload_xstats_info info = { 8084 .info.dev = dev, 8085 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 8086 }; 8087 8088 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 8089 &info.info); 8090 kfree(dev->offload_xstats_l3); 8091 dev->offload_xstats_l3 = NULL; 8092 } 8093 8094 int netdev_offload_xstats_disable(struct net_device *dev, 8095 enum netdev_offload_xstats_type type) 8096 { 8097 ASSERT_RTNL(); 8098 8099 if (!netdev_offload_xstats_enabled(dev, type)) 8100 return -EALREADY; 8101 8102 switch (type) { 8103 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8104 netdev_offload_xstats_disable_l3(dev); 8105 return 0; 8106 } 8107 8108 WARN_ON(1); 8109 return -EINVAL; 8110 } 8111 EXPORT_SYMBOL(netdev_offload_xstats_disable); 8112 8113 static void netdev_offload_xstats_disable_all(struct net_device *dev) 8114 { 8115 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 8116 } 8117 8118 static struct rtnl_hw_stats64 * 8119 netdev_offload_xstats_get_ptr(const struct net_device *dev, 8120 enum netdev_offload_xstats_type type) 8121 { 8122 switch (type) { 8123 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 8124 return dev->offload_xstats_l3; 8125 } 8126 8127 WARN_ON(1); 8128 return NULL; 8129 } 8130 8131 bool netdev_offload_xstats_enabled(const struct net_device *dev, 8132 enum netdev_offload_xstats_type type) 8133 { 8134 ASSERT_RTNL(); 8135 8136 return netdev_offload_xstats_get_ptr(dev, type); 8137 } 8138 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 8139 8140 struct netdev_notifier_offload_xstats_ru { 8141 bool used; 8142 }; 8143 8144 struct netdev_notifier_offload_xstats_rd { 8145 struct rtnl_hw_stats64 stats; 8146 bool used; 8147 }; 8148 8149 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8150 const struct rtnl_hw_stats64 *src) 8151 { 8152 dest->rx_packets += src->rx_packets; 8153 dest->tx_packets += src->tx_packets; 8154 dest->rx_bytes += src->rx_bytes; 8155 dest->tx_bytes += src->tx_bytes; 8156 dest->rx_errors += src->rx_errors; 8157 dest->tx_errors += src->tx_errors; 8158 dest->rx_dropped += src->rx_dropped; 8159 dest->tx_dropped += src->tx_dropped; 8160 dest->multicast += src->multicast; 8161 } 8162 8163 static int netdev_offload_xstats_get_used(struct net_device *dev, 8164 enum netdev_offload_xstats_type type, 8165 bool *p_used, 8166 struct netlink_ext_ack *extack) 8167 { 8168 struct netdev_notifier_offload_xstats_ru report_used = {}; 8169 struct netdev_notifier_offload_xstats_info info = { 8170 .info.dev = dev, 8171 .info.extack = extack, 8172 .type = type, 8173 .report_used = &report_used, 8174 }; 8175 int rc; 8176 8177 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8178 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8179 &info.info); 8180 *p_used = report_used.used; 8181 return notifier_to_errno(rc); 8182 } 8183 8184 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8185 enum netdev_offload_xstats_type type, 8186 struct rtnl_hw_stats64 *p_stats, 8187 bool *p_used, 8188 struct netlink_ext_ack *extack) 8189 { 8190 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8191 struct netdev_notifier_offload_xstats_info info = { 8192 .info.dev = dev, 8193 .info.extack = extack, 8194 .type = type, 8195 .report_delta = &report_delta, 8196 }; 8197 struct rtnl_hw_stats64 *stats; 8198 int rc; 8199 8200 stats = netdev_offload_xstats_get_ptr(dev, type); 8201 if (WARN_ON(!stats)) 8202 return -EINVAL; 8203 8204 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8205 &info.info); 8206 8207 /* Cache whatever we got, even if there was an error, otherwise the 8208 * successful stats retrievals would get lost. 8209 */ 8210 netdev_hw_stats64_add(stats, &report_delta.stats); 8211 8212 if (p_stats) 8213 *p_stats = *stats; 8214 *p_used = report_delta.used; 8215 8216 return notifier_to_errno(rc); 8217 } 8218 8219 int netdev_offload_xstats_get(struct net_device *dev, 8220 enum netdev_offload_xstats_type type, 8221 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8222 struct netlink_ext_ack *extack) 8223 { 8224 ASSERT_RTNL(); 8225 8226 if (p_stats) 8227 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8228 p_used, extack); 8229 else 8230 return netdev_offload_xstats_get_used(dev, type, p_used, 8231 extack); 8232 } 8233 EXPORT_SYMBOL(netdev_offload_xstats_get); 8234 8235 void 8236 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8237 const struct rtnl_hw_stats64 *stats) 8238 { 8239 report_delta->used = true; 8240 netdev_hw_stats64_add(&report_delta->stats, stats); 8241 } 8242 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8243 8244 void 8245 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8246 { 8247 report_used->used = true; 8248 } 8249 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8250 8251 void netdev_offload_xstats_push_delta(struct net_device *dev, 8252 enum netdev_offload_xstats_type type, 8253 const struct rtnl_hw_stats64 *p_stats) 8254 { 8255 struct rtnl_hw_stats64 *stats; 8256 8257 ASSERT_RTNL(); 8258 8259 stats = netdev_offload_xstats_get_ptr(dev, type); 8260 if (WARN_ON(!stats)) 8261 return; 8262 8263 netdev_hw_stats64_add(stats, p_stats); 8264 } 8265 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8266 8267 /** 8268 * netdev_get_xmit_slave - Get the xmit slave of master device 8269 * @dev: device 8270 * @skb: The packet 8271 * @all_slaves: assume all the slaves are active 8272 * 8273 * The reference counters are not incremented so the caller must be 8274 * careful with locks. The caller must hold RCU lock. 8275 * %NULL is returned if no slave is found. 8276 */ 8277 8278 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8279 struct sk_buff *skb, 8280 bool all_slaves) 8281 { 8282 const struct net_device_ops *ops = dev->netdev_ops; 8283 8284 if (!ops->ndo_get_xmit_slave) 8285 return NULL; 8286 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8287 } 8288 EXPORT_SYMBOL(netdev_get_xmit_slave); 8289 8290 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8291 struct sock *sk) 8292 { 8293 const struct net_device_ops *ops = dev->netdev_ops; 8294 8295 if (!ops->ndo_sk_get_lower_dev) 8296 return NULL; 8297 return ops->ndo_sk_get_lower_dev(dev, sk); 8298 } 8299 8300 /** 8301 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8302 * @dev: device 8303 * @sk: the socket 8304 * 8305 * %NULL is returned if no lower device is found. 8306 */ 8307 8308 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8309 struct sock *sk) 8310 { 8311 struct net_device *lower; 8312 8313 lower = netdev_sk_get_lower_dev(dev, sk); 8314 while (lower) { 8315 dev = lower; 8316 lower = netdev_sk_get_lower_dev(dev, sk); 8317 } 8318 8319 return dev; 8320 } 8321 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8322 8323 static void netdev_adjacent_add_links(struct net_device *dev) 8324 { 8325 struct netdev_adjacent *iter; 8326 8327 struct net *net = dev_net(dev); 8328 8329 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8330 if (!net_eq(net, dev_net(iter->dev))) 8331 continue; 8332 netdev_adjacent_sysfs_add(iter->dev, dev, 8333 &iter->dev->adj_list.lower); 8334 netdev_adjacent_sysfs_add(dev, iter->dev, 8335 &dev->adj_list.upper); 8336 } 8337 8338 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8339 if (!net_eq(net, dev_net(iter->dev))) 8340 continue; 8341 netdev_adjacent_sysfs_add(iter->dev, dev, 8342 &iter->dev->adj_list.upper); 8343 netdev_adjacent_sysfs_add(dev, iter->dev, 8344 &dev->adj_list.lower); 8345 } 8346 } 8347 8348 static void netdev_adjacent_del_links(struct net_device *dev) 8349 { 8350 struct netdev_adjacent *iter; 8351 8352 struct net *net = dev_net(dev); 8353 8354 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8355 if (!net_eq(net, dev_net(iter->dev))) 8356 continue; 8357 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8358 &iter->dev->adj_list.lower); 8359 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8360 &dev->adj_list.upper); 8361 } 8362 8363 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8364 if (!net_eq(net, dev_net(iter->dev))) 8365 continue; 8366 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8367 &iter->dev->adj_list.upper); 8368 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8369 &dev->adj_list.lower); 8370 } 8371 } 8372 8373 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8374 { 8375 struct netdev_adjacent *iter; 8376 8377 struct net *net = dev_net(dev); 8378 8379 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8380 if (!net_eq(net, dev_net(iter->dev))) 8381 continue; 8382 netdev_adjacent_sysfs_del(iter->dev, oldname, 8383 &iter->dev->adj_list.lower); 8384 netdev_adjacent_sysfs_add(iter->dev, dev, 8385 &iter->dev->adj_list.lower); 8386 } 8387 8388 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8389 if (!net_eq(net, dev_net(iter->dev))) 8390 continue; 8391 netdev_adjacent_sysfs_del(iter->dev, oldname, 8392 &iter->dev->adj_list.upper); 8393 netdev_adjacent_sysfs_add(iter->dev, dev, 8394 &iter->dev->adj_list.upper); 8395 } 8396 } 8397 8398 void *netdev_lower_dev_get_private(struct net_device *dev, 8399 struct net_device *lower_dev) 8400 { 8401 struct netdev_adjacent *lower; 8402 8403 if (!lower_dev) 8404 return NULL; 8405 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8406 if (!lower) 8407 return NULL; 8408 8409 return lower->private; 8410 } 8411 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8412 8413 8414 /** 8415 * netdev_lower_state_changed - Dispatch event about lower device state change 8416 * @lower_dev: device 8417 * @lower_state_info: state to dispatch 8418 * 8419 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8420 * The caller must hold the RTNL lock. 8421 */ 8422 void netdev_lower_state_changed(struct net_device *lower_dev, 8423 void *lower_state_info) 8424 { 8425 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8426 .info.dev = lower_dev, 8427 }; 8428 8429 ASSERT_RTNL(); 8430 changelowerstate_info.lower_state_info = lower_state_info; 8431 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8432 &changelowerstate_info.info); 8433 } 8434 EXPORT_SYMBOL(netdev_lower_state_changed); 8435 8436 static void dev_change_rx_flags(struct net_device *dev, int flags) 8437 { 8438 const struct net_device_ops *ops = dev->netdev_ops; 8439 8440 if (ops->ndo_change_rx_flags) 8441 ops->ndo_change_rx_flags(dev, flags); 8442 } 8443 8444 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8445 { 8446 unsigned int old_flags = dev->flags; 8447 kuid_t uid; 8448 kgid_t gid; 8449 8450 ASSERT_RTNL(); 8451 8452 dev->flags |= IFF_PROMISC; 8453 dev->promiscuity += inc; 8454 if (dev->promiscuity == 0) { 8455 /* 8456 * Avoid overflow. 8457 * If inc causes overflow, untouch promisc and return error. 8458 */ 8459 if (inc < 0) 8460 dev->flags &= ~IFF_PROMISC; 8461 else { 8462 dev->promiscuity -= inc; 8463 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8464 return -EOVERFLOW; 8465 } 8466 } 8467 if (dev->flags != old_flags) { 8468 netdev_info(dev, "%s promiscuous mode\n", 8469 dev->flags & IFF_PROMISC ? "entered" : "left"); 8470 if (audit_enabled) { 8471 current_uid_gid(&uid, &gid); 8472 audit_log(audit_context(), GFP_ATOMIC, 8473 AUDIT_ANOM_PROMISCUOUS, 8474 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8475 dev->name, (dev->flags & IFF_PROMISC), 8476 (old_flags & IFF_PROMISC), 8477 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8478 from_kuid(&init_user_ns, uid), 8479 from_kgid(&init_user_ns, gid), 8480 audit_get_sessionid(current)); 8481 } 8482 8483 dev_change_rx_flags(dev, IFF_PROMISC); 8484 } 8485 if (notify) 8486 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL); 8487 return 0; 8488 } 8489 8490 /** 8491 * dev_set_promiscuity - update promiscuity count on a device 8492 * @dev: device 8493 * @inc: modifier 8494 * 8495 * Add or remove promiscuity from a device. While the count in the device 8496 * remains above zero the interface remains promiscuous. Once it hits zero 8497 * the device reverts back to normal filtering operation. A negative inc 8498 * value is used to drop promiscuity on the device. 8499 * Return 0 if successful or a negative errno code on error. 8500 */ 8501 int dev_set_promiscuity(struct net_device *dev, int inc) 8502 { 8503 unsigned int old_flags = dev->flags; 8504 int err; 8505 8506 err = __dev_set_promiscuity(dev, inc, true); 8507 if (err < 0) 8508 return err; 8509 if (dev->flags != old_flags) 8510 dev_set_rx_mode(dev); 8511 return err; 8512 } 8513 EXPORT_SYMBOL(dev_set_promiscuity); 8514 8515 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8516 { 8517 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8518 8519 ASSERT_RTNL(); 8520 8521 dev->flags |= IFF_ALLMULTI; 8522 dev->allmulti += inc; 8523 if (dev->allmulti == 0) { 8524 /* 8525 * Avoid overflow. 8526 * If inc causes overflow, untouch allmulti and return error. 8527 */ 8528 if (inc < 0) 8529 dev->flags &= ~IFF_ALLMULTI; 8530 else { 8531 dev->allmulti -= inc; 8532 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8533 return -EOVERFLOW; 8534 } 8535 } 8536 if (dev->flags ^ old_flags) { 8537 netdev_info(dev, "%s allmulticast mode\n", 8538 dev->flags & IFF_ALLMULTI ? "entered" : "left"); 8539 dev_change_rx_flags(dev, IFF_ALLMULTI); 8540 dev_set_rx_mode(dev); 8541 if (notify) 8542 __dev_notify_flags(dev, old_flags, 8543 dev->gflags ^ old_gflags, 0, NULL); 8544 } 8545 return 0; 8546 } 8547 8548 /** 8549 * dev_set_allmulti - update allmulti count on a device 8550 * @dev: device 8551 * @inc: modifier 8552 * 8553 * Add or remove reception of all multicast frames to a device. While the 8554 * count in the device remains above zero the interface remains listening 8555 * to all interfaces. Once it hits zero the device reverts back to normal 8556 * filtering operation. A negative @inc value is used to drop the counter 8557 * when releasing a resource needing all multicasts. 8558 * Return 0 if successful or a negative errno code on error. 8559 */ 8560 8561 int dev_set_allmulti(struct net_device *dev, int inc) 8562 { 8563 return __dev_set_allmulti(dev, inc, true); 8564 } 8565 EXPORT_SYMBOL(dev_set_allmulti); 8566 8567 /* 8568 * Upload unicast and multicast address lists to device and 8569 * configure RX filtering. When the device doesn't support unicast 8570 * filtering it is put in promiscuous mode while unicast addresses 8571 * are present. 8572 */ 8573 void __dev_set_rx_mode(struct net_device *dev) 8574 { 8575 const struct net_device_ops *ops = dev->netdev_ops; 8576 8577 /* dev_open will call this function so the list will stay sane. */ 8578 if (!(dev->flags&IFF_UP)) 8579 return; 8580 8581 if (!netif_device_present(dev)) 8582 return; 8583 8584 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8585 /* Unicast addresses changes may only happen under the rtnl, 8586 * therefore calling __dev_set_promiscuity here is safe. 8587 */ 8588 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8589 __dev_set_promiscuity(dev, 1, false); 8590 dev->uc_promisc = true; 8591 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8592 __dev_set_promiscuity(dev, -1, false); 8593 dev->uc_promisc = false; 8594 } 8595 } 8596 8597 if (ops->ndo_set_rx_mode) 8598 ops->ndo_set_rx_mode(dev); 8599 } 8600 8601 void dev_set_rx_mode(struct net_device *dev) 8602 { 8603 netif_addr_lock_bh(dev); 8604 __dev_set_rx_mode(dev); 8605 netif_addr_unlock_bh(dev); 8606 } 8607 8608 /** 8609 * dev_get_flags - get flags reported to userspace 8610 * @dev: device 8611 * 8612 * Get the combination of flag bits exported through APIs to userspace. 8613 */ 8614 unsigned int dev_get_flags(const struct net_device *dev) 8615 { 8616 unsigned int flags; 8617 8618 flags = (dev->flags & ~(IFF_PROMISC | 8619 IFF_ALLMULTI | 8620 IFF_RUNNING | 8621 IFF_LOWER_UP | 8622 IFF_DORMANT)) | 8623 (dev->gflags & (IFF_PROMISC | 8624 IFF_ALLMULTI)); 8625 8626 if (netif_running(dev)) { 8627 if (netif_oper_up(dev)) 8628 flags |= IFF_RUNNING; 8629 if (netif_carrier_ok(dev)) 8630 flags |= IFF_LOWER_UP; 8631 if (netif_dormant(dev)) 8632 flags |= IFF_DORMANT; 8633 } 8634 8635 return flags; 8636 } 8637 EXPORT_SYMBOL(dev_get_flags); 8638 8639 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8640 struct netlink_ext_ack *extack) 8641 { 8642 unsigned int old_flags = dev->flags; 8643 int ret; 8644 8645 ASSERT_RTNL(); 8646 8647 /* 8648 * Set the flags on our device. 8649 */ 8650 8651 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8652 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8653 IFF_AUTOMEDIA)) | 8654 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8655 IFF_ALLMULTI)); 8656 8657 /* 8658 * Load in the correct multicast list now the flags have changed. 8659 */ 8660 8661 if ((old_flags ^ flags) & IFF_MULTICAST) 8662 dev_change_rx_flags(dev, IFF_MULTICAST); 8663 8664 dev_set_rx_mode(dev); 8665 8666 /* 8667 * Have we downed the interface. We handle IFF_UP ourselves 8668 * according to user attempts to set it, rather than blindly 8669 * setting it. 8670 */ 8671 8672 ret = 0; 8673 if ((old_flags ^ flags) & IFF_UP) { 8674 if (old_flags & IFF_UP) 8675 __dev_close(dev); 8676 else 8677 ret = __dev_open(dev, extack); 8678 } 8679 8680 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8681 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8682 unsigned int old_flags = dev->flags; 8683 8684 dev->gflags ^= IFF_PROMISC; 8685 8686 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8687 if (dev->flags != old_flags) 8688 dev_set_rx_mode(dev); 8689 } 8690 8691 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8692 * is important. Some (broken) drivers set IFF_PROMISC, when 8693 * IFF_ALLMULTI is requested not asking us and not reporting. 8694 */ 8695 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8696 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8697 8698 dev->gflags ^= IFF_ALLMULTI; 8699 __dev_set_allmulti(dev, inc, false); 8700 } 8701 8702 return ret; 8703 } 8704 8705 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8706 unsigned int gchanges, u32 portid, 8707 const struct nlmsghdr *nlh) 8708 { 8709 unsigned int changes = dev->flags ^ old_flags; 8710 8711 if (gchanges) 8712 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh); 8713 8714 if (changes & IFF_UP) { 8715 if (dev->flags & IFF_UP) 8716 call_netdevice_notifiers(NETDEV_UP, dev); 8717 else 8718 call_netdevice_notifiers(NETDEV_DOWN, dev); 8719 } 8720 8721 if (dev->flags & IFF_UP && 8722 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8723 struct netdev_notifier_change_info change_info = { 8724 .info = { 8725 .dev = dev, 8726 }, 8727 .flags_changed = changes, 8728 }; 8729 8730 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8731 } 8732 } 8733 8734 /** 8735 * dev_change_flags - change device settings 8736 * @dev: device 8737 * @flags: device state flags 8738 * @extack: netlink extended ack 8739 * 8740 * Change settings on device based state flags. The flags are 8741 * in the userspace exported format. 8742 */ 8743 int dev_change_flags(struct net_device *dev, unsigned int flags, 8744 struct netlink_ext_ack *extack) 8745 { 8746 int ret; 8747 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8748 8749 ret = __dev_change_flags(dev, flags, extack); 8750 if (ret < 0) 8751 return ret; 8752 8753 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8754 __dev_notify_flags(dev, old_flags, changes, 0, NULL); 8755 return ret; 8756 } 8757 EXPORT_SYMBOL(dev_change_flags); 8758 8759 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8760 { 8761 const struct net_device_ops *ops = dev->netdev_ops; 8762 8763 if (ops->ndo_change_mtu) 8764 return ops->ndo_change_mtu(dev, new_mtu); 8765 8766 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8767 WRITE_ONCE(dev->mtu, new_mtu); 8768 return 0; 8769 } 8770 EXPORT_SYMBOL(__dev_set_mtu); 8771 8772 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8773 struct netlink_ext_ack *extack) 8774 { 8775 /* MTU must be positive, and in range */ 8776 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8777 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8778 return -EINVAL; 8779 } 8780 8781 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8782 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8783 return -EINVAL; 8784 } 8785 return 0; 8786 } 8787 8788 /** 8789 * dev_set_mtu_ext - Change maximum transfer unit 8790 * @dev: device 8791 * @new_mtu: new transfer unit 8792 * @extack: netlink extended ack 8793 * 8794 * Change the maximum transfer size of the network device. 8795 */ 8796 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8797 struct netlink_ext_ack *extack) 8798 { 8799 int err, orig_mtu; 8800 8801 if (new_mtu == dev->mtu) 8802 return 0; 8803 8804 err = dev_validate_mtu(dev, new_mtu, extack); 8805 if (err) 8806 return err; 8807 8808 if (!netif_device_present(dev)) 8809 return -ENODEV; 8810 8811 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8812 err = notifier_to_errno(err); 8813 if (err) 8814 return err; 8815 8816 orig_mtu = dev->mtu; 8817 err = __dev_set_mtu(dev, new_mtu); 8818 8819 if (!err) { 8820 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8821 orig_mtu); 8822 err = notifier_to_errno(err); 8823 if (err) { 8824 /* setting mtu back and notifying everyone again, 8825 * so that they have a chance to revert changes. 8826 */ 8827 __dev_set_mtu(dev, orig_mtu); 8828 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8829 new_mtu); 8830 } 8831 } 8832 return err; 8833 } 8834 8835 int dev_set_mtu(struct net_device *dev, int new_mtu) 8836 { 8837 struct netlink_ext_ack extack; 8838 int err; 8839 8840 memset(&extack, 0, sizeof(extack)); 8841 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8842 if (err && extack._msg) 8843 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8844 return err; 8845 } 8846 EXPORT_SYMBOL(dev_set_mtu); 8847 8848 /** 8849 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8850 * @dev: device 8851 * @new_len: new tx queue length 8852 */ 8853 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8854 { 8855 unsigned int orig_len = dev->tx_queue_len; 8856 int res; 8857 8858 if (new_len != (unsigned int)new_len) 8859 return -ERANGE; 8860 8861 if (new_len != orig_len) { 8862 dev->tx_queue_len = new_len; 8863 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8864 res = notifier_to_errno(res); 8865 if (res) 8866 goto err_rollback; 8867 res = dev_qdisc_change_tx_queue_len(dev); 8868 if (res) 8869 goto err_rollback; 8870 } 8871 8872 return 0; 8873 8874 err_rollback: 8875 netdev_err(dev, "refused to change device tx_queue_len\n"); 8876 dev->tx_queue_len = orig_len; 8877 return res; 8878 } 8879 8880 /** 8881 * dev_set_group - Change group this device belongs to 8882 * @dev: device 8883 * @new_group: group this device should belong to 8884 */ 8885 void dev_set_group(struct net_device *dev, int new_group) 8886 { 8887 dev->group = new_group; 8888 } 8889 8890 /** 8891 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8892 * @dev: device 8893 * @addr: new address 8894 * @extack: netlink extended ack 8895 */ 8896 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8897 struct netlink_ext_ack *extack) 8898 { 8899 struct netdev_notifier_pre_changeaddr_info info = { 8900 .info.dev = dev, 8901 .info.extack = extack, 8902 .dev_addr = addr, 8903 }; 8904 int rc; 8905 8906 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8907 return notifier_to_errno(rc); 8908 } 8909 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8910 8911 /** 8912 * dev_set_mac_address - Change Media Access Control Address 8913 * @dev: device 8914 * @sa: new address 8915 * @extack: netlink extended ack 8916 * 8917 * Change the hardware (MAC) address of the device 8918 */ 8919 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8920 struct netlink_ext_ack *extack) 8921 { 8922 const struct net_device_ops *ops = dev->netdev_ops; 8923 int err; 8924 8925 if (!ops->ndo_set_mac_address) 8926 return -EOPNOTSUPP; 8927 if (sa->sa_family != dev->type) 8928 return -EINVAL; 8929 if (!netif_device_present(dev)) 8930 return -ENODEV; 8931 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8932 if (err) 8933 return err; 8934 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) { 8935 err = ops->ndo_set_mac_address(dev, sa); 8936 if (err) 8937 return err; 8938 } 8939 dev->addr_assign_type = NET_ADDR_SET; 8940 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8941 add_device_randomness(dev->dev_addr, dev->addr_len); 8942 return 0; 8943 } 8944 EXPORT_SYMBOL(dev_set_mac_address); 8945 8946 static DECLARE_RWSEM(dev_addr_sem); 8947 8948 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8949 struct netlink_ext_ack *extack) 8950 { 8951 int ret; 8952 8953 down_write(&dev_addr_sem); 8954 ret = dev_set_mac_address(dev, sa, extack); 8955 up_write(&dev_addr_sem); 8956 return ret; 8957 } 8958 EXPORT_SYMBOL(dev_set_mac_address_user); 8959 8960 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8961 { 8962 size_t size = sizeof(sa->sa_data_min); 8963 struct net_device *dev; 8964 int ret = 0; 8965 8966 down_read(&dev_addr_sem); 8967 rcu_read_lock(); 8968 8969 dev = dev_get_by_name_rcu(net, dev_name); 8970 if (!dev) { 8971 ret = -ENODEV; 8972 goto unlock; 8973 } 8974 if (!dev->addr_len) 8975 memset(sa->sa_data, 0, size); 8976 else 8977 memcpy(sa->sa_data, dev->dev_addr, 8978 min_t(size_t, size, dev->addr_len)); 8979 sa->sa_family = dev->type; 8980 8981 unlock: 8982 rcu_read_unlock(); 8983 up_read(&dev_addr_sem); 8984 return ret; 8985 } 8986 EXPORT_SYMBOL(dev_get_mac_address); 8987 8988 /** 8989 * dev_change_carrier - Change device carrier 8990 * @dev: device 8991 * @new_carrier: new value 8992 * 8993 * Change device carrier 8994 */ 8995 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8996 { 8997 const struct net_device_ops *ops = dev->netdev_ops; 8998 8999 if (!ops->ndo_change_carrier) 9000 return -EOPNOTSUPP; 9001 if (!netif_device_present(dev)) 9002 return -ENODEV; 9003 return ops->ndo_change_carrier(dev, new_carrier); 9004 } 9005 9006 /** 9007 * dev_get_phys_port_id - Get device physical port ID 9008 * @dev: device 9009 * @ppid: port ID 9010 * 9011 * Get device physical port ID 9012 */ 9013 int dev_get_phys_port_id(struct net_device *dev, 9014 struct netdev_phys_item_id *ppid) 9015 { 9016 const struct net_device_ops *ops = dev->netdev_ops; 9017 9018 if (!ops->ndo_get_phys_port_id) 9019 return -EOPNOTSUPP; 9020 return ops->ndo_get_phys_port_id(dev, ppid); 9021 } 9022 9023 /** 9024 * dev_get_phys_port_name - Get device physical port name 9025 * @dev: device 9026 * @name: port name 9027 * @len: limit of bytes to copy to name 9028 * 9029 * Get device physical port name 9030 */ 9031 int dev_get_phys_port_name(struct net_device *dev, 9032 char *name, size_t len) 9033 { 9034 const struct net_device_ops *ops = dev->netdev_ops; 9035 int err; 9036 9037 if (ops->ndo_get_phys_port_name) { 9038 err = ops->ndo_get_phys_port_name(dev, name, len); 9039 if (err != -EOPNOTSUPP) 9040 return err; 9041 } 9042 return devlink_compat_phys_port_name_get(dev, name, len); 9043 } 9044 9045 /** 9046 * dev_get_port_parent_id - Get the device's port parent identifier 9047 * @dev: network device 9048 * @ppid: pointer to a storage for the port's parent identifier 9049 * @recurse: allow/disallow recursion to lower devices 9050 * 9051 * Get the devices's port parent identifier 9052 */ 9053 int dev_get_port_parent_id(struct net_device *dev, 9054 struct netdev_phys_item_id *ppid, 9055 bool recurse) 9056 { 9057 const struct net_device_ops *ops = dev->netdev_ops; 9058 struct netdev_phys_item_id first = { }; 9059 struct net_device *lower_dev; 9060 struct list_head *iter; 9061 int err; 9062 9063 if (ops->ndo_get_port_parent_id) { 9064 err = ops->ndo_get_port_parent_id(dev, ppid); 9065 if (err != -EOPNOTSUPP) 9066 return err; 9067 } 9068 9069 err = devlink_compat_switch_id_get(dev, ppid); 9070 if (!recurse || err != -EOPNOTSUPP) 9071 return err; 9072 9073 netdev_for_each_lower_dev(dev, lower_dev, iter) { 9074 err = dev_get_port_parent_id(lower_dev, ppid, true); 9075 if (err) 9076 break; 9077 if (!first.id_len) 9078 first = *ppid; 9079 else if (memcmp(&first, ppid, sizeof(*ppid))) 9080 return -EOPNOTSUPP; 9081 } 9082 9083 return err; 9084 } 9085 EXPORT_SYMBOL(dev_get_port_parent_id); 9086 9087 /** 9088 * netdev_port_same_parent_id - Indicate if two network devices have 9089 * the same port parent identifier 9090 * @a: first network device 9091 * @b: second network device 9092 */ 9093 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 9094 { 9095 struct netdev_phys_item_id a_id = { }; 9096 struct netdev_phys_item_id b_id = { }; 9097 9098 if (dev_get_port_parent_id(a, &a_id, true) || 9099 dev_get_port_parent_id(b, &b_id, true)) 9100 return false; 9101 9102 return netdev_phys_item_id_same(&a_id, &b_id); 9103 } 9104 EXPORT_SYMBOL(netdev_port_same_parent_id); 9105 9106 /** 9107 * dev_change_proto_down - set carrier according to proto_down. 9108 * 9109 * @dev: device 9110 * @proto_down: new value 9111 */ 9112 int dev_change_proto_down(struct net_device *dev, bool proto_down) 9113 { 9114 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 9115 return -EOPNOTSUPP; 9116 if (!netif_device_present(dev)) 9117 return -ENODEV; 9118 if (proto_down) 9119 netif_carrier_off(dev); 9120 else 9121 netif_carrier_on(dev); 9122 dev->proto_down = proto_down; 9123 return 0; 9124 } 9125 9126 /** 9127 * dev_change_proto_down_reason - proto down reason 9128 * 9129 * @dev: device 9130 * @mask: proto down mask 9131 * @value: proto down value 9132 */ 9133 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 9134 u32 value) 9135 { 9136 int b; 9137 9138 if (!mask) { 9139 dev->proto_down_reason = value; 9140 } else { 9141 for_each_set_bit(b, &mask, 32) { 9142 if (value & (1 << b)) 9143 dev->proto_down_reason |= BIT(b); 9144 else 9145 dev->proto_down_reason &= ~BIT(b); 9146 } 9147 } 9148 } 9149 9150 struct bpf_xdp_link { 9151 struct bpf_link link; 9152 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9153 int flags; 9154 }; 9155 9156 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9157 { 9158 if (flags & XDP_FLAGS_HW_MODE) 9159 return XDP_MODE_HW; 9160 if (flags & XDP_FLAGS_DRV_MODE) 9161 return XDP_MODE_DRV; 9162 if (flags & XDP_FLAGS_SKB_MODE) 9163 return XDP_MODE_SKB; 9164 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9165 } 9166 9167 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9168 { 9169 switch (mode) { 9170 case XDP_MODE_SKB: 9171 return generic_xdp_install; 9172 case XDP_MODE_DRV: 9173 case XDP_MODE_HW: 9174 return dev->netdev_ops->ndo_bpf; 9175 default: 9176 return NULL; 9177 } 9178 } 9179 9180 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9181 enum bpf_xdp_mode mode) 9182 { 9183 return dev->xdp_state[mode].link; 9184 } 9185 9186 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9187 enum bpf_xdp_mode mode) 9188 { 9189 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9190 9191 if (link) 9192 return link->link.prog; 9193 return dev->xdp_state[mode].prog; 9194 } 9195 9196 u8 dev_xdp_prog_count(struct net_device *dev) 9197 { 9198 u8 count = 0; 9199 int i; 9200 9201 for (i = 0; i < __MAX_XDP_MODE; i++) 9202 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9203 count++; 9204 return count; 9205 } 9206 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9207 9208 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9209 { 9210 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9211 9212 return prog ? prog->aux->id : 0; 9213 } 9214 9215 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9216 struct bpf_xdp_link *link) 9217 { 9218 dev->xdp_state[mode].link = link; 9219 dev->xdp_state[mode].prog = NULL; 9220 } 9221 9222 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9223 struct bpf_prog *prog) 9224 { 9225 dev->xdp_state[mode].link = NULL; 9226 dev->xdp_state[mode].prog = prog; 9227 } 9228 9229 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9230 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9231 u32 flags, struct bpf_prog *prog) 9232 { 9233 struct netdev_bpf xdp; 9234 int err; 9235 9236 memset(&xdp, 0, sizeof(xdp)); 9237 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9238 xdp.extack = extack; 9239 xdp.flags = flags; 9240 xdp.prog = prog; 9241 9242 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9243 * "moved" into driver), so they don't increment it on their own, but 9244 * they do decrement refcnt when program is detached or replaced. 9245 * Given net_device also owns link/prog, we need to bump refcnt here 9246 * to prevent drivers from underflowing it. 9247 */ 9248 if (prog) 9249 bpf_prog_inc(prog); 9250 err = bpf_op(dev, &xdp); 9251 if (err) { 9252 if (prog) 9253 bpf_prog_put(prog); 9254 return err; 9255 } 9256 9257 if (mode != XDP_MODE_HW) 9258 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9259 9260 return 0; 9261 } 9262 9263 static void dev_xdp_uninstall(struct net_device *dev) 9264 { 9265 struct bpf_xdp_link *link; 9266 struct bpf_prog *prog; 9267 enum bpf_xdp_mode mode; 9268 bpf_op_t bpf_op; 9269 9270 ASSERT_RTNL(); 9271 9272 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9273 prog = dev_xdp_prog(dev, mode); 9274 if (!prog) 9275 continue; 9276 9277 bpf_op = dev_xdp_bpf_op(dev, mode); 9278 if (!bpf_op) 9279 continue; 9280 9281 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9282 9283 /* auto-detach link from net device */ 9284 link = dev_xdp_link(dev, mode); 9285 if (link) 9286 link->dev = NULL; 9287 else 9288 bpf_prog_put(prog); 9289 9290 dev_xdp_set_link(dev, mode, NULL); 9291 } 9292 } 9293 9294 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9295 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9296 struct bpf_prog *old_prog, u32 flags) 9297 { 9298 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9299 struct bpf_prog *cur_prog; 9300 struct net_device *upper; 9301 struct list_head *iter; 9302 enum bpf_xdp_mode mode; 9303 bpf_op_t bpf_op; 9304 int err; 9305 9306 ASSERT_RTNL(); 9307 9308 /* either link or prog attachment, never both */ 9309 if (link && (new_prog || old_prog)) 9310 return -EINVAL; 9311 /* link supports only XDP mode flags */ 9312 if (link && (flags & ~XDP_FLAGS_MODES)) { 9313 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9314 return -EINVAL; 9315 } 9316 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9317 if (num_modes > 1) { 9318 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9319 return -EINVAL; 9320 } 9321 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9322 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9323 NL_SET_ERR_MSG(extack, 9324 "More than one program loaded, unset mode is ambiguous"); 9325 return -EINVAL; 9326 } 9327 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9328 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9329 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9330 return -EINVAL; 9331 } 9332 9333 mode = dev_xdp_mode(dev, flags); 9334 /* can't replace attached link */ 9335 if (dev_xdp_link(dev, mode)) { 9336 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9337 return -EBUSY; 9338 } 9339 9340 /* don't allow if an upper device already has a program */ 9341 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9342 if (dev_xdp_prog_count(upper) > 0) { 9343 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9344 return -EEXIST; 9345 } 9346 } 9347 9348 cur_prog = dev_xdp_prog(dev, mode); 9349 /* can't replace attached prog with link */ 9350 if (link && cur_prog) { 9351 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9352 return -EBUSY; 9353 } 9354 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9355 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9356 return -EEXIST; 9357 } 9358 9359 /* put effective new program into new_prog */ 9360 if (link) 9361 new_prog = link->link.prog; 9362 9363 if (new_prog) { 9364 bool offload = mode == XDP_MODE_HW; 9365 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9366 ? XDP_MODE_DRV : XDP_MODE_SKB; 9367 9368 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9369 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9370 return -EBUSY; 9371 } 9372 if (!offload && dev_xdp_prog(dev, other_mode)) { 9373 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9374 return -EEXIST; 9375 } 9376 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) { 9377 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported"); 9378 return -EINVAL; 9379 } 9380 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) { 9381 NL_SET_ERR_MSG(extack, "Program bound to different device"); 9382 return -EINVAL; 9383 } 9384 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9385 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9386 return -EINVAL; 9387 } 9388 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9389 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9390 return -EINVAL; 9391 } 9392 } 9393 9394 /* don't call drivers if the effective program didn't change */ 9395 if (new_prog != cur_prog) { 9396 bpf_op = dev_xdp_bpf_op(dev, mode); 9397 if (!bpf_op) { 9398 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9399 return -EOPNOTSUPP; 9400 } 9401 9402 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9403 if (err) 9404 return err; 9405 } 9406 9407 if (link) 9408 dev_xdp_set_link(dev, mode, link); 9409 else 9410 dev_xdp_set_prog(dev, mode, new_prog); 9411 if (cur_prog) 9412 bpf_prog_put(cur_prog); 9413 9414 return 0; 9415 } 9416 9417 static int dev_xdp_attach_link(struct net_device *dev, 9418 struct netlink_ext_ack *extack, 9419 struct bpf_xdp_link *link) 9420 { 9421 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9422 } 9423 9424 static int dev_xdp_detach_link(struct net_device *dev, 9425 struct netlink_ext_ack *extack, 9426 struct bpf_xdp_link *link) 9427 { 9428 enum bpf_xdp_mode mode; 9429 bpf_op_t bpf_op; 9430 9431 ASSERT_RTNL(); 9432 9433 mode = dev_xdp_mode(dev, link->flags); 9434 if (dev_xdp_link(dev, mode) != link) 9435 return -EINVAL; 9436 9437 bpf_op = dev_xdp_bpf_op(dev, mode); 9438 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9439 dev_xdp_set_link(dev, mode, NULL); 9440 return 0; 9441 } 9442 9443 static void bpf_xdp_link_release(struct bpf_link *link) 9444 { 9445 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9446 9447 rtnl_lock(); 9448 9449 /* if racing with net_device's tear down, xdp_link->dev might be 9450 * already NULL, in which case link was already auto-detached 9451 */ 9452 if (xdp_link->dev) { 9453 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9454 xdp_link->dev = NULL; 9455 } 9456 9457 rtnl_unlock(); 9458 } 9459 9460 static int bpf_xdp_link_detach(struct bpf_link *link) 9461 { 9462 bpf_xdp_link_release(link); 9463 return 0; 9464 } 9465 9466 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9467 { 9468 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9469 9470 kfree(xdp_link); 9471 } 9472 9473 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9474 struct seq_file *seq) 9475 { 9476 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9477 u32 ifindex = 0; 9478 9479 rtnl_lock(); 9480 if (xdp_link->dev) 9481 ifindex = xdp_link->dev->ifindex; 9482 rtnl_unlock(); 9483 9484 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9485 } 9486 9487 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9488 struct bpf_link_info *info) 9489 { 9490 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9491 u32 ifindex = 0; 9492 9493 rtnl_lock(); 9494 if (xdp_link->dev) 9495 ifindex = xdp_link->dev->ifindex; 9496 rtnl_unlock(); 9497 9498 info->xdp.ifindex = ifindex; 9499 return 0; 9500 } 9501 9502 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9503 struct bpf_prog *old_prog) 9504 { 9505 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9506 enum bpf_xdp_mode mode; 9507 bpf_op_t bpf_op; 9508 int err = 0; 9509 9510 rtnl_lock(); 9511 9512 /* link might have been auto-released already, so fail */ 9513 if (!xdp_link->dev) { 9514 err = -ENOLINK; 9515 goto out_unlock; 9516 } 9517 9518 if (old_prog && link->prog != old_prog) { 9519 err = -EPERM; 9520 goto out_unlock; 9521 } 9522 old_prog = link->prog; 9523 if (old_prog->type != new_prog->type || 9524 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9525 err = -EINVAL; 9526 goto out_unlock; 9527 } 9528 9529 if (old_prog == new_prog) { 9530 /* no-op, don't disturb drivers */ 9531 bpf_prog_put(new_prog); 9532 goto out_unlock; 9533 } 9534 9535 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9536 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9537 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9538 xdp_link->flags, new_prog); 9539 if (err) 9540 goto out_unlock; 9541 9542 old_prog = xchg(&link->prog, new_prog); 9543 bpf_prog_put(old_prog); 9544 9545 out_unlock: 9546 rtnl_unlock(); 9547 return err; 9548 } 9549 9550 static const struct bpf_link_ops bpf_xdp_link_lops = { 9551 .release = bpf_xdp_link_release, 9552 .dealloc = bpf_xdp_link_dealloc, 9553 .detach = bpf_xdp_link_detach, 9554 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9555 .fill_link_info = bpf_xdp_link_fill_link_info, 9556 .update_prog = bpf_xdp_link_update, 9557 }; 9558 9559 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9560 { 9561 struct net *net = current->nsproxy->net_ns; 9562 struct bpf_link_primer link_primer; 9563 struct netlink_ext_ack extack = {}; 9564 struct bpf_xdp_link *link; 9565 struct net_device *dev; 9566 int err, fd; 9567 9568 rtnl_lock(); 9569 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9570 if (!dev) { 9571 rtnl_unlock(); 9572 return -EINVAL; 9573 } 9574 9575 link = kzalloc(sizeof(*link), GFP_USER); 9576 if (!link) { 9577 err = -ENOMEM; 9578 goto unlock; 9579 } 9580 9581 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9582 link->dev = dev; 9583 link->flags = attr->link_create.flags; 9584 9585 err = bpf_link_prime(&link->link, &link_primer); 9586 if (err) { 9587 kfree(link); 9588 goto unlock; 9589 } 9590 9591 err = dev_xdp_attach_link(dev, &extack, link); 9592 rtnl_unlock(); 9593 9594 if (err) { 9595 link->dev = NULL; 9596 bpf_link_cleanup(&link_primer); 9597 trace_bpf_xdp_link_attach_failed(extack._msg); 9598 goto out_put_dev; 9599 } 9600 9601 fd = bpf_link_settle(&link_primer); 9602 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9603 dev_put(dev); 9604 return fd; 9605 9606 unlock: 9607 rtnl_unlock(); 9608 9609 out_put_dev: 9610 dev_put(dev); 9611 return err; 9612 } 9613 9614 /** 9615 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9616 * @dev: device 9617 * @extack: netlink extended ack 9618 * @fd: new program fd or negative value to clear 9619 * @expected_fd: old program fd that userspace expects to replace or clear 9620 * @flags: xdp-related flags 9621 * 9622 * Set or clear a bpf program for a device 9623 */ 9624 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9625 int fd, int expected_fd, u32 flags) 9626 { 9627 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9628 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9629 int err; 9630 9631 ASSERT_RTNL(); 9632 9633 if (fd >= 0) { 9634 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9635 mode != XDP_MODE_SKB); 9636 if (IS_ERR(new_prog)) 9637 return PTR_ERR(new_prog); 9638 } 9639 9640 if (expected_fd >= 0) { 9641 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9642 mode != XDP_MODE_SKB); 9643 if (IS_ERR(old_prog)) { 9644 err = PTR_ERR(old_prog); 9645 old_prog = NULL; 9646 goto err_out; 9647 } 9648 } 9649 9650 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9651 9652 err_out: 9653 if (err && new_prog) 9654 bpf_prog_put(new_prog); 9655 if (old_prog) 9656 bpf_prog_put(old_prog); 9657 return err; 9658 } 9659 9660 /** 9661 * dev_index_reserve() - allocate an ifindex in a namespace 9662 * @net: the applicable net namespace 9663 * @ifindex: requested ifindex, pass %0 to get one allocated 9664 * 9665 * Allocate a ifindex for a new device. Caller must either use the ifindex 9666 * to store the device (via list_netdevice()) or call dev_index_release() 9667 * to give the index up. 9668 * 9669 * Return: a suitable unique value for a new device interface number or -errno. 9670 */ 9671 static int dev_index_reserve(struct net *net, u32 ifindex) 9672 { 9673 int err; 9674 9675 if (ifindex > INT_MAX) { 9676 DEBUG_NET_WARN_ON_ONCE(1); 9677 return -EINVAL; 9678 } 9679 9680 if (!ifindex) 9681 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL, 9682 xa_limit_31b, &net->ifindex, GFP_KERNEL); 9683 else 9684 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL); 9685 if (err < 0) 9686 return err; 9687 9688 return ifindex; 9689 } 9690 9691 static void dev_index_release(struct net *net, int ifindex) 9692 { 9693 /* Expect only unused indexes, unlist_netdevice() removes the used */ 9694 WARN_ON(xa_erase(&net->dev_by_index, ifindex)); 9695 } 9696 9697 /* Delayed registration/unregisteration */ 9698 LIST_HEAD(net_todo_list); 9699 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9700 9701 static void net_set_todo(struct net_device *dev) 9702 { 9703 list_add_tail(&dev->todo_list, &net_todo_list); 9704 atomic_inc(&dev_net(dev)->dev_unreg_count); 9705 } 9706 9707 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9708 struct net_device *upper, netdev_features_t features) 9709 { 9710 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9711 netdev_features_t feature; 9712 int feature_bit; 9713 9714 for_each_netdev_feature(upper_disables, feature_bit) { 9715 feature = __NETIF_F_BIT(feature_bit); 9716 if (!(upper->wanted_features & feature) 9717 && (features & feature)) { 9718 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9719 &feature, upper->name); 9720 features &= ~feature; 9721 } 9722 } 9723 9724 return features; 9725 } 9726 9727 static void netdev_sync_lower_features(struct net_device *upper, 9728 struct net_device *lower, netdev_features_t features) 9729 { 9730 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9731 netdev_features_t feature; 9732 int feature_bit; 9733 9734 for_each_netdev_feature(upper_disables, feature_bit) { 9735 feature = __NETIF_F_BIT(feature_bit); 9736 if (!(features & feature) && (lower->features & feature)) { 9737 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9738 &feature, lower->name); 9739 lower->wanted_features &= ~feature; 9740 __netdev_update_features(lower); 9741 9742 if (unlikely(lower->features & feature)) 9743 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9744 &feature, lower->name); 9745 else 9746 netdev_features_change(lower); 9747 } 9748 } 9749 } 9750 9751 static netdev_features_t netdev_fix_features(struct net_device *dev, 9752 netdev_features_t features) 9753 { 9754 /* Fix illegal checksum combinations */ 9755 if ((features & NETIF_F_HW_CSUM) && 9756 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9757 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9758 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9759 } 9760 9761 /* TSO requires that SG is present as well. */ 9762 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9763 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9764 features &= ~NETIF_F_ALL_TSO; 9765 } 9766 9767 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9768 !(features & NETIF_F_IP_CSUM)) { 9769 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9770 features &= ~NETIF_F_TSO; 9771 features &= ~NETIF_F_TSO_ECN; 9772 } 9773 9774 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9775 !(features & NETIF_F_IPV6_CSUM)) { 9776 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9777 features &= ~NETIF_F_TSO6; 9778 } 9779 9780 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9781 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9782 features &= ~NETIF_F_TSO_MANGLEID; 9783 9784 /* TSO ECN requires that TSO is present as well. */ 9785 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9786 features &= ~NETIF_F_TSO_ECN; 9787 9788 /* Software GSO depends on SG. */ 9789 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9790 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9791 features &= ~NETIF_F_GSO; 9792 } 9793 9794 /* GSO partial features require GSO partial be set */ 9795 if ((features & dev->gso_partial_features) && 9796 !(features & NETIF_F_GSO_PARTIAL)) { 9797 netdev_dbg(dev, 9798 "Dropping partially supported GSO features since no GSO partial.\n"); 9799 features &= ~dev->gso_partial_features; 9800 } 9801 9802 if (!(features & NETIF_F_RXCSUM)) { 9803 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9804 * successfully merged by hardware must also have the 9805 * checksum verified by hardware. If the user does not 9806 * want to enable RXCSUM, logically, we should disable GRO_HW. 9807 */ 9808 if (features & NETIF_F_GRO_HW) { 9809 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9810 features &= ~NETIF_F_GRO_HW; 9811 } 9812 } 9813 9814 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9815 if (features & NETIF_F_RXFCS) { 9816 if (features & NETIF_F_LRO) { 9817 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9818 features &= ~NETIF_F_LRO; 9819 } 9820 9821 if (features & NETIF_F_GRO_HW) { 9822 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9823 features &= ~NETIF_F_GRO_HW; 9824 } 9825 } 9826 9827 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9828 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9829 features &= ~NETIF_F_LRO; 9830 } 9831 9832 if (features & NETIF_F_HW_TLS_TX) { 9833 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9834 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9835 bool hw_csum = features & NETIF_F_HW_CSUM; 9836 9837 if (!ip_csum && !hw_csum) { 9838 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9839 features &= ~NETIF_F_HW_TLS_TX; 9840 } 9841 } 9842 9843 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9844 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9845 features &= ~NETIF_F_HW_TLS_RX; 9846 } 9847 9848 return features; 9849 } 9850 9851 int __netdev_update_features(struct net_device *dev) 9852 { 9853 struct net_device *upper, *lower; 9854 netdev_features_t features; 9855 struct list_head *iter; 9856 int err = -1; 9857 9858 ASSERT_RTNL(); 9859 9860 features = netdev_get_wanted_features(dev); 9861 9862 if (dev->netdev_ops->ndo_fix_features) 9863 features = dev->netdev_ops->ndo_fix_features(dev, features); 9864 9865 /* driver might be less strict about feature dependencies */ 9866 features = netdev_fix_features(dev, features); 9867 9868 /* some features can't be enabled if they're off on an upper device */ 9869 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9870 features = netdev_sync_upper_features(dev, upper, features); 9871 9872 if (dev->features == features) 9873 goto sync_lower; 9874 9875 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9876 &dev->features, &features); 9877 9878 if (dev->netdev_ops->ndo_set_features) 9879 err = dev->netdev_ops->ndo_set_features(dev, features); 9880 else 9881 err = 0; 9882 9883 if (unlikely(err < 0)) { 9884 netdev_err(dev, 9885 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9886 err, &features, &dev->features); 9887 /* return non-0 since some features might have changed and 9888 * it's better to fire a spurious notification than miss it 9889 */ 9890 return -1; 9891 } 9892 9893 sync_lower: 9894 /* some features must be disabled on lower devices when disabled 9895 * on an upper device (think: bonding master or bridge) 9896 */ 9897 netdev_for_each_lower_dev(dev, lower, iter) 9898 netdev_sync_lower_features(dev, lower, features); 9899 9900 if (!err) { 9901 netdev_features_t diff = features ^ dev->features; 9902 9903 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9904 /* udp_tunnel_{get,drop}_rx_info both need 9905 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9906 * device, or they won't do anything. 9907 * Thus we need to update dev->features 9908 * *before* calling udp_tunnel_get_rx_info, 9909 * but *after* calling udp_tunnel_drop_rx_info. 9910 */ 9911 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9912 dev->features = features; 9913 udp_tunnel_get_rx_info(dev); 9914 } else { 9915 udp_tunnel_drop_rx_info(dev); 9916 } 9917 } 9918 9919 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9920 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9921 dev->features = features; 9922 err |= vlan_get_rx_ctag_filter_info(dev); 9923 } else { 9924 vlan_drop_rx_ctag_filter_info(dev); 9925 } 9926 } 9927 9928 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9929 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9930 dev->features = features; 9931 err |= vlan_get_rx_stag_filter_info(dev); 9932 } else { 9933 vlan_drop_rx_stag_filter_info(dev); 9934 } 9935 } 9936 9937 dev->features = features; 9938 } 9939 9940 return err < 0 ? 0 : 1; 9941 } 9942 9943 /** 9944 * netdev_update_features - recalculate device features 9945 * @dev: the device to check 9946 * 9947 * Recalculate dev->features set and send notifications if it 9948 * has changed. Should be called after driver or hardware dependent 9949 * conditions might have changed that influence the features. 9950 */ 9951 void netdev_update_features(struct net_device *dev) 9952 { 9953 if (__netdev_update_features(dev)) 9954 netdev_features_change(dev); 9955 } 9956 EXPORT_SYMBOL(netdev_update_features); 9957 9958 /** 9959 * netdev_change_features - recalculate device features 9960 * @dev: the device to check 9961 * 9962 * Recalculate dev->features set and send notifications even 9963 * if they have not changed. Should be called instead of 9964 * netdev_update_features() if also dev->vlan_features might 9965 * have changed to allow the changes to be propagated to stacked 9966 * VLAN devices. 9967 */ 9968 void netdev_change_features(struct net_device *dev) 9969 { 9970 __netdev_update_features(dev); 9971 netdev_features_change(dev); 9972 } 9973 EXPORT_SYMBOL(netdev_change_features); 9974 9975 /** 9976 * netif_stacked_transfer_operstate - transfer operstate 9977 * @rootdev: the root or lower level device to transfer state from 9978 * @dev: the device to transfer operstate to 9979 * 9980 * Transfer operational state from root to device. This is normally 9981 * called when a stacking relationship exists between the root 9982 * device and the device(a leaf device). 9983 */ 9984 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9985 struct net_device *dev) 9986 { 9987 if (rootdev->operstate == IF_OPER_DORMANT) 9988 netif_dormant_on(dev); 9989 else 9990 netif_dormant_off(dev); 9991 9992 if (rootdev->operstate == IF_OPER_TESTING) 9993 netif_testing_on(dev); 9994 else 9995 netif_testing_off(dev); 9996 9997 if (netif_carrier_ok(rootdev)) 9998 netif_carrier_on(dev); 9999 else 10000 netif_carrier_off(dev); 10001 } 10002 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 10003 10004 static int netif_alloc_rx_queues(struct net_device *dev) 10005 { 10006 unsigned int i, count = dev->num_rx_queues; 10007 struct netdev_rx_queue *rx; 10008 size_t sz = count * sizeof(*rx); 10009 int err = 0; 10010 10011 BUG_ON(count < 1); 10012 10013 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10014 if (!rx) 10015 return -ENOMEM; 10016 10017 dev->_rx = rx; 10018 10019 for (i = 0; i < count; i++) { 10020 rx[i].dev = dev; 10021 10022 /* XDP RX-queue setup */ 10023 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 10024 if (err < 0) 10025 goto err_rxq_info; 10026 } 10027 return 0; 10028 10029 err_rxq_info: 10030 /* Rollback successful reg's and free other resources */ 10031 while (i--) 10032 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 10033 kvfree(dev->_rx); 10034 dev->_rx = NULL; 10035 return err; 10036 } 10037 10038 static void netif_free_rx_queues(struct net_device *dev) 10039 { 10040 unsigned int i, count = dev->num_rx_queues; 10041 10042 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 10043 if (!dev->_rx) 10044 return; 10045 10046 for (i = 0; i < count; i++) 10047 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 10048 10049 kvfree(dev->_rx); 10050 } 10051 10052 static void netdev_init_one_queue(struct net_device *dev, 10053 struct netdev_queue *queue, void *_unused) 10054 { 10055 /* Initialize queue lock */ 10056 spin_lock_init(&queue->_xmit_lock); 10057 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 10058 queue->xmit_lock_owner = -1; 10059 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 10060 queue->dev = dev; 10061 #ifdef CONFIG_BQL 10062 dql_init(&queue->dql, HZ); 10063 #endif 10064 } 10065 10066 static void netif_free_tx_queues(struct net_device *dev) 10067 { 10068 kvfree(dev->_tx); 10069 } 10070 10071 static int netif_alloc_netdev_queues(struct net_device *dev) 10072 { 10073 unsigned int count = dev->num_tx_queues; 10074 struct netdev_queue *tx; 10075 size_t sz = count * sizeof(*tx); 10076 10077 if (count < 1 || count > 0xffff) 10078 return -EINVAL; 10079 10080 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10081 if (!tx) 10082 return -ENOMEM; 10083 10084 dev->_tx = tx; 10085 10086 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 10087 spin_lock_init(&dev->tx_global_lock); 10088 10089 return 0; 10090 } 10091 10092 void netif_tx_stop_all_queues(struct net_device *dev) 10093 { 10094 unsigned int i; 10095 10096 for (i = 0; i < dev->num_tx_queues; i++) { 10097 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 10098 10099 netif_tx_stop_queue(txq); 10100 } 10101 } 10102 EXPORT_SYMBOL(netif_tx_stop_all_queues); 10103 10104 static int netdev_do_alloc_pcpu_stats(struct net_device *dev) 10105 { 10106 void __percpu *v; 10107 10108 /* Drivers implementing ndo_get_peer_dev must support tstat 10109 * accounting, so that skb_do_redirect() can bump the dev's 10110 * RX stats upon network namespace switch. 10111 */ 10112 if (dev->netdev_ops->ndo_get_peer_dev && 10113 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS) 10114 return -EOPNOTSUPP; 10115 10116 switch (dev->pcpu_stat_type) { 10117 case NETDEV_PCPU_STAT_NONE: 10118 return 0; 10119 case NETDEV_PCPU_STAT_LSTATS: 10120 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats); 10121 break; 10122 case NETDEV_PCPU_STAT_TSTATS: 10123 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats); 10124 break; 10125 case NETDEV_PCPU_STAT_DSTATS: 10126 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 10127 break; 10128 default: 10129 return -EINVAL; 10130 } 10131 10132 return v ? 0 : -ENOMEM; 10133 } 10134 10135 static void netdev_do_free_pcpu_stats(struct net_device *dev) 10136 { 10137 switch (dev->pcpu_stat_type) { 10138 case NETDEV_PCPU_STAT_NONE: 10139 return; 10140 case NETDEV_PCPU_STAT_LSTATS: 10141 free_percpu(dev->lstats); 10142 break; 10143 case NETDEV_PCPU_STAT_TSTATS: 10144 free_percpu(dev->tstats); 10145 break; 10146 case NETDEV_PCPU_STAT_DSTATS: 10147 free_percpu(dev->dstats); 10148 break; 10149 } 10150 } 10151 10152 /** 10153 * register_netdevice() - register a network device 10154 * @dev: device to register 10155 * 10156 * Take a prepared network device structure and make it externally accessible. 10157 * A %NETDEV_REGISTER message is sent to the netdev notifier chain. 10158 * Callers must hold the rtnl lock - you may want register_netdev() 10159 * instead of this. 10160 */ 10161 int register_netdevice(struct net_device *dev) 10162 { 10163 int ret; 10164 struct net *net = dev_net(dev); 10165 10166 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 10167 NETDEV_FEATURE_COUNT); 10168 BUG_ON(dev_boot_phase); 10169 ASSERT_RTNL(); 10170 10171 might_sleep(); 10172 10173 /* When net_device's are persistent, this will be fatal. */ 10174 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 10175 BUG_ON(!net); 10176 10177 ret = ethtool_check_ops(dev->ethtool_ops); 10178 if (ret) 10179 return ret; 10180 10181 spin_lock_init(&dev->addr_list_lock); 10182 netdev_set_addr_lockdep_class(dev); 10183 10184 ret = dev_get_valid_name(net, dev, dev->name); 10185 if (ret < 0) 10186 goto out; 10187 10188 ret = -ENOMEM; 10189 dev->name_node = netdev_name_node_head_alloc(dev); 10190 if (!dev->name_node) 10191 goto out; 10192 10193 /* Init, if this function is available */ 10194 if (dev->netdev_ops->ndo_init) { 10195 ret = dev->netdev_ops->ndo_init(dev); 10196 if (ret) { 10197 if (ret > 0) 10198 ret = -EIO; 10199 goto err_free_name; 10200 } 10201 } 10202 10203 if (((dev->hw_features | dev->features) & 10204 NETIF_F_HW_VLAN_CTAG_FILTER) && 10205 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 10206 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 10207 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 10208 ret = -EINVAL; 10209 goto err_uninit; 10210 } 10211 10212 ret = netdev_do_alloc_pcpu_stats(dev); 10213 if (ret) 10214 goto err_uninit; 10215 10216 ret = dev_index_reserve(net, dev->ifindex); 10217 if (ret < 0) 10218 goto err_free_pcpu; 10219 dev->ifindex = ret; 10220 10221 /* Transfer changeable features to wanted_features and enable 10222 * software offloads (GSO and GRO). 10223 */ 10224 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10225 dev->features |= NETIF_F_SOFT_FEATURES; 10226 10227 if (dev->udp_tunnel_nic_info) { 10228 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10229 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10230 } 10231 10232 dev->wanted_features = dev->features & dev->hw_features; 10233 10234 if (!(dev->flags & IFF_LOOPBACK)) 10235 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10236 10237 /* If IPv4 TCP segmentation offload is supported we should also 10238 * allow the device to enable segmenting the frame with the option 10239 * of ignoring a static IP ID value. This doesn't enable the 10240 * feature itself but allows the user to enable it later. 10241 */ 10242 if (dev->hw_features & NETIF_F_TSO) 10243 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10244 if (dev->vlan_features & NETIF_F_TSO) 10245 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10246 if (dev->mpls_features & NETIF_F_TSO) 10247 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10248 if (dev->hw_enc_features & NETIF_F_TSO) 10249 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10250 10251 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10252 */ 10253 dev->vlan_features |= NETIF_F_HIGHDMA; 10254 10255 /* Make NETIF_F_SG inheritable to tunnel devices. 10256 */ 10257 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10258 10259 /* Make NETIF_F_SG inheritable to MPLS. 10260 */ 10261 dev->mpls_features |= NETIF_F_SG; 10262 10263 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10264 ret = notifier_to_errno(ret); 10265 if (ret) 10266 goto err_ifindex_release; 10267 10268 ret = netdev_register_kobject(dev); 10269 write_lock(&dev_base_lock); 10270 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED; 10271 write_unlock(&dev_base_lock); 10272 if (ret) 10273 goto err_uninit_notify; 10274 10275 __netdev_update_features(dev); 10276 10277 /* 10278 * Default initial state at registry is that the 10279 * device is present. 10280 */ 10281 10282 set_bit(__LINK_STATE_PRESENT, &dev->state); 10283 10284 linkwatch_init_dev(dev); 10285 10286 dev_init_scheduler(dev); 10287 10288 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10289 list_netdevice(dev); 10290 10291 add_device_randomness(dev->dev_addr, dev->addr_len); 10292 10293 /* If the device has permanent device address, driver should 10294 * set dev_addr and also addr_assign_type should be set to 10295 * NET_ADDR_PERM (default value). 10296 */ 10297 if (dev->addr_assign_type == NET_ADDR_PERM) 10298 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10299 10300 /* Notify protocols, that a new device appeared. */ 10301 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10302 ret = notifier_to_errno(ret); 10303 if (ret) { 10304 /* Expect explicit free_netdev() on failure */ 10305 dev->needs_free_netdev = false; 10306 unregister_netdevice_queue(dev, NULL); 10307 goto out; 10308 } 10309 /* 10310 * Prevent userspace races by waiting until the network 10311 * device is fully setup before sending notifications. 10312 */ 10313 if (!dev->rtnl_link_ops || 10314 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10315 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 10316 10317 out: 10318 return ret; 10319 10320 err_uninit_notify: 10321 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 10322 err_ifindex_release: 10323 dev_index_release(net, dev->ifindex); 10324 err_free_pcpu: 10325 netdev_do_free_pcpu_stats(dev); 10326 err_uninit: 10327 if (dev->netdev_ops->ndo_uninit) 10328 dev->netdev_ops->ndo_uninit(dev); 10329 if (dev->priv_destructor) 10330 dev->priv_destructor(dev); 10331 err_free_name: 10332 netdev_name_node_free(dev->name_node); 10333 goto out; 10334 } 10335 EXPORT_SYMBOL(register_netdevice); 10336 10337 /** 10338 * init_dummy_netdev - init a dummy network device for NAPI 10339 * @dev: device to init 10340 * 10341 * This takes a network device structure and initialize the minimum 10342 * amount of fields so it can be used to schedule NAPI polls without 10343 * registering a full blown interface. This is to be used by drivers 10344 * that need to tie several hardware interfaces to a single NAPI 10345 * poll scheduler due to HW limitations. 10346 */ 10347 int init_dummy_netdev(struct net_device *dev) 10348 { 10349 /* Clear everything. Note we don't initialize spinlocks 10350 * are they aren't supposed to be taken by any of the 10351 * NAPI code and this dummy netdev is supposed to be 10352 * only ever used for NAPI polls 10353 */ 10354 memset(dev, 0, sizeof(struct net_device)); 10355 10356 /* make sure we BUG if trying to hit standard 10357 * register/unregister code path 10358 */ 10359 dev->reg_state = NETREG_DUMMY; 10360 10361 /* NAPI wants this */ 10362 INIT_LIST_HEAD(&dev->napi_list); 10363 10364 /* a dummy interface is started by default */ 10365 set_bit(__LINK_STATE_PRESENT, &dev->state); 10366 set_bit(__LINK_STATE_START, &dev->state); 10367 10368 /* napi_busy_loop stats accounting wants this */ 10369 dev_net_set(dev, &init_net); 10370 10371 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10372 * because users of this 'device' dont need to change 10373 * its refcount. 10374 */ 10375 10376 return 0; 10377 } 10378 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10379 10380 10381 /** 10382 * register_netdev - register a network device 10383 * @dev: device to register 10384 * 10385 * Take a completed network device structure and add it to the kernel 10386 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10387 * chain. 0 is returned on success. A negative errno code is returned 10388 * on a failure to set up the device, or if the name is a duplicate. 10389 * 10390 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10391 * and expands the device name if you passed a format string to 10392 * alloc_netdev. 10393 */ 10394 int register_netdev(struct net_device *dev) 10395 { 10396 int err; 10397 10398 if (rtnl_lock_killable()) 10399 return -EINTR; 10400 err = register_netdevice(dev); 10401 rtnl_unlock(); 10402 return err; 10403 } 10404 EXPORT_SYMBOL(register_netdev); 10405 10406 int netdev_refcnt_read(const struct net_device *dev) 10407 { 10408 #ifdef CONFIG_PCPU_DEV_REFCNT 10409 int i, refcnt = 0; 10410 10411 for_each_possible_cpu(i) 10412 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10413 return refcnt; 10414 #else 10415 return refcount_read(&dev->dev_refcnt); 10416 #endif 10417 } 10418 EXPORT_SYMBOL(netdev_refcnt_read); 10419 10420 int netdev_unregister_timeout_secs __read_mostly = 10; 10421 10422 #define WAIT_REFS_MIN_MSECS 1 10423 #define WAIT_REFS_MAX_MSECS 250 10424 /** 10425 * netdev_wait_allrefs_any - wait until all references are gone. 10426 * @list: list of net_devices to wait on 10427 * 10428 * This is called when unregistering network devices. 10429 * 10430 * Any protocol or device that holds a reference should register 10431 * for netdevice notification, and cleanup and put back the 10432 * reference if they receive an UNREGISTER event. 10433 * We can get stuck here if buggy protocols don't correctly 10434 * call dev_put. 10435 */ 10436 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10437 { 10438 unsigned long rebroadcast_time, warning_time; 10439 struct net_device *dev; 10440 int wait = 0; 10441 10442 rebroadcast_time = warning_time = jiffies; 10443 10444 list_for_each_entry(dev, list, todo_list) 10445 if (netdev_refcnt_read(dev) == 1) 10446 return dev; 10447 10448 while (true) { 10449 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10450 rtnl_lock(); 10451 10452 /* Rebroadcast unregister notification */ 10453 list_for_each_entry(dev, list, todo_list) 10454 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10455 10456 __rtnl_unlock(); 10457 rcu_barrier(); 10458 rtnl_lock(); 10459 10460 list_for_each_entry(dev, list, todo_list) 10461 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10462 &dev->state)) { 10463 /* We must not have linkwatch events 10464 * pending on unregister. If this 10465 * happens, we simply run the queue 10466 * unscheduled, resulting in a noop 10467 * for this device. 10468 */ 10469 linkwatch_run_queue(); 10470 break; 10471 } 10472 10473 __rtnl_unlock(); 10474 10475 rebroadcast_time = jiffies; 10476 } 10477 10478 if (!wait) { 10479 rcu_barrier(); 10480 wait = WAIT_REFS_MIN_MSECS; 10481 } else { 10482 msleep(wait); 10483 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10484 } 10485 10486 list_for_each_entry(dev, list, todo_list) 10487 if (netdev_refcnt_read(dev) == 1) 10488 return dev; 10489 10490 if (time_after(jiffies, warning_time + 10491 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) { 10492 list_for_each_entry(dev, list, todo_list) { 10493 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10494 dev->name, netdev_refcnt_read(dev)); 10495 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10496 } 10497 10498 warning_time = jiffies; 10499 } 10500 } 10501 } 10502 10503 /* The sequence is: 10504 * 10505 * rtnl_lock(); 10506 * ... 10507 * register_netdevice(x1); 10508 * register_netdevice(x2); 10509 * ... 10510 * unregister_netdevice(y1); 10511 * unregister_netdevice(y2); 10512 * ... 10513 * rtnl_unlock(); 10514 * free_netdev(y1); 10515 * free_netdev(y2); 10516 * 10517 * We are invoked by rtnl_unlock(). 10518 * This allows us to deal with problems: 10519 * 1) We can delete sysfs objects which invoke hotplug 10520 * without deadlocking with linkwatch via keventd. 10521 * 2) Since we run with the RTNL semaphore not held, we can sleep 10522 * safely in order to wait for the netdev refcnt to drop to zero. 10523 * 10524 * We must not return until all unregister events added during 10525 * the interval the lock was held have been completed. 10526 */ 10527 void netdev_run_todo(void) 10528 { 10529 struct net_device *dev, *tmp; 10530 struct list_head list; 10531 #ifdef CONFIG_LOCKDEP 10532 struct list_head unlink_list; 10533 10534 list_replace_init(&net_unlink_list, &unlink_list); 10535 10536 while (!list_empty(&unlink_list)) { 10537 struct net_device *dev = list_first_entry(&unlink_list, 10538 struct net_device, 10539 unlink_list); 10540 list_del_init(&dev->unlink_list); 10541 dev->nested_level = dev->lower_level - 1; 10542 } 10543 #endif 10544 10545 /* Snapshot list, allow later requests */ 10546 list_replace_init(&net_todo_list, &list); 10547 10548 __rtnl_unlock(); 10549 10550 /* Wait for rcu callbacks to finish before next phase */ 10551 if (!list_empty(&list)) 10552 rcu_barrier(); 10553 10554 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10555 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10556 netdev_WARN(dev, "run_todo but not unregistering\n"); 10557 list_del(&dev->todo_list); 10558 continue; 10559 } 10560 10561 write_lock(&dev_base_lock); 10562 dev->reg_state = NETREG_UNREGISTERED; 10563 write_unlock(&dev_base_lock); 10564 linkwatch_sync_dev(dev); 10565 } 10566 10567 while (!list_empty(&list)) { 10568 dev = netdev_wait_allrefs_any(&list); 10569 list_del(&dev->todo_list); 10570 10571 /* paranoia */ 10572 BUG_ON(netdev_refcnt_read(dev) != 1); 10573 BUG_ON(!list_empty(&dev->ptype_all)); 10574 BUG_ON(!list_empty(&dev->ptype_specific)); 10575 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10576 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10577 10578 netdev_do_free_pcpu_stats(dev); 10579 if (dev->priv_destructor) 10580 dev->priv_destructor(dev); 10581 if (dev->needs_free_netdev) 10582 free_netdev(dev); 10583 10584 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count)) 10585 wake_up(&netdev_unregistering_wq); 10586 10587 /* Free network device */ 10588 kobject_put(&dev->dev.kobj); 10589 } 10590 } 10591 10592 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10593 * all the same fields in the same order as net_device_stats, with only 10594 * the type differing, but rtnl_link_stats64 may have additional fields 10595 * at the end for newer counters. 10596 */ 10597 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10598 const struct net_device_stats *netdev_stats) 10599 { 10600 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t); 10601 const atomic_long_t *src = (atomic_long_t *)netdev_stats; 10602 u64 *dst = (u64 *)stats64; 10603 10604 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10605 for (i = 0; i < n; i++) 10606 dst[i] = (unsigned long)atomic_long_read(&src[i]); 10607 /* zero out counters that only exist in rtnl_link_stats64 */ 10608 memset((char *)stats64 + n * sizeof(u64), 0, 10609 sizeof(*stats64) - n * sizeof(u64)); 10610 } 10611 EXPORT_SYMBOL(netdev_stats_to_stats64); 10612 10613 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc( 10614 struct net_device *dev) 10615 { 10616 struct net_device_core_stats __percpu *p; 10617 10618 p = alloc_percpu_gfp(struct net_device_core_stats, 10619 GFP_ATOMIC | __GFP_NOWARN); 10620 10621 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10622 free_percpu(p); 10623 10624 /* This READ_ONCE() pairs with the cmpxchg() above */ 10625 return READ_ONCE(dev->core_stats); 10626 } 10627 10628 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset) 10629 { 10630 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10631 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats); 10632 unsigned long __percpu *field; 10633 10634 if (unlikely(!p)) { 10635 p = netdev_core_stats_alloc(dev); 10636 if (!p) 10637 return; 10638 } 10639 10640 field = (__force unsigned long __percpu *)((__force void *)p + offset); 10641 this_cpu_inc(*field); 10642 } 10643 EXPORT_SYMBOL_GPL(netdev_core_stats_inc); 10644 10645 /** 10646 * dev_get_stats - get network device statistics 10647 * @dev: device to get statistics from 10648 * @storage: place to store stats 10649 * 10650 * Get network statistics from device. Return @storage. 10651 * The device driver may provide its own method by setting 10652 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10653 * otherwise the internal statistics structure is used. 10654 */ 10655 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10656 struct rtnl_link_stats64 *storage) 10657 { 10658 const struct net_device_ops *ops = dev->netdev_ops; 10659 const struct net_device_core_stats __percpu *p; 10660 10661 if (ops->ndo_get_stats64) { 10662 memset(storage, 0, sizeof(*storage)); 10663 ops->ndo_get_stats64(dev, storage); 10664 } else if (ops->ndo_get_stats) { 10665 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10666 } else { 10667 netdev_stats_to_stats64(storage, &dev->stats); 10668 } 10669 10670 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10671 p = READ_ONCE(dev->core_stats); 10672 if (p) { 10673 const struct net_device_core_stats *core_stats; 10674 int i; 10675 10676 for_each_possible_cpu(i) { 10677 core_stats = per_cpu_ptr(p, i); 10678 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10679 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10680 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10681 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10682 } 10683 } 10684 return storage; 10685 } 10686 EXPORT_SYMBOL(dev_get_stats); 10687 10688 /** 10689 * dev_fetch_sw_netstats - get per-cpu network device statistics 10690 * @s: place to store stats 10691 * @netstats: per-cpu network stats to read from 10692 * 10693 * Read per-cpu network statistics and populate the related fields in @s. 10694 */ 10695 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10696 const struct pcpu_sw_netstats __percpu *netstats) 10697 { 10698 int cpu; 10699 10700 for_each_possible_cpu(cpu) { 10701 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 10702 const struct pcpu_sw_netstats *stats; 10703 unsigned int start; 10704 10705 stats = per_cpu_ptr(netstats, cpu); 10706 do { 10707 start = u64_stats_fetch_begin(&stats->syncp); 10708 rx_packets = u64_stats_read(&stats->rx_packets); 10709 rx_bytes = u64_stats_read(&stats->rx_bytes); 10710 tx_packets = u64_stats_read(&stats->tx_packets); 10711 tx_bytes = u64_stats_read(&stats->tx_bytes); 10712 } while (u64_stats_fetch_retry(&stats->syncp, start)); 10713 10714 s->rx_packets += rx_packets; 10715 s->rx_bytes += rx_bytes; 10716 s->tx_packets += tx_packets; 10717 s->tx_bytes += tx_bytes; 10718 } 10719 } 10720 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10721 10722 /** 10723 * dev_get_tstats64 - ndo_get_stats64 implementation 10724 * @dev: device to get statistics from 10725 * @s: place to store stats 10726 * 10727 * Populate @s from dev->stats and dev->tstats. Can be used as 10728 * ndo_get_stats64() callback. 10729 */ 10730 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10731 { 10732 netdev_stats_to_stats64(s, &dev->stats); 10733 dev_fetch_sw_netstats(s, dev->tstats); 10734 } 10735 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10736 10737 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10738 { 10739 struct netdev_queue *queue = dev_ingress_queue(dev); 10740 10741 #ifdef CONFIG_NET_CLS_ACT 10742 if (queue) 10743 return queue; 10744 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10745 if (!queue) 10746 return NULL; 10747 netdev_init_one_queue(dev, queue, NULL); 10748 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10749 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc); 10750 rcu_assign_pointer(dev->ingress_queue, queue); 10751 #endif 10752 return queue; 10753 } 10754 10755 static const struct ethtool_ops default_ethtool_ops; 10756 10757 void netdev_set_default_ethtool_ops(struct net_device *dev, 10758 const struct ethtool_ops *ops) 10759 { 10760 if (dev->ethtool_ops == &default_ethtool_ops) 10761 dev->ethtool_ops = ops; 10762 } 10763 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10764 10765 /** 10766 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default 10767 * @dev: netdev to enable the IRQ coalescing on 10768 * 10769 * Sets a conservative default for SW IRQ coalescing. Users can use 10770 * sysfs attributes to override the default values. 10771 */ 10772 void netdev_sw_irq_coalesce_default_on(struct net_device *dev) 10773 { 10774 WARN_ON(dev->reg_state == NETREG_REGISTERED); 10775 10776 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) { 10777 dev->gro_flush_timeout = 20000; 10778 dev->napi_defer_hard_irqs = 1; 10779 } 10780 } 10781 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on); 10782 10783 void netdev_freemem(struct net_device *dev) 10784 { 10785 char *addr = (char *)dev - dev->padded; 10786 10787 kvfree(addr); 10788 } 10789 10790 /** 10791 * alloc_netdev_mqs - allocate network device 10792 * @sizeof_priv: size of private data to allocate space for 10793 * @name: device name format string 10794 * @name_assign_type: origin of device name 10795 * @setup: callback to initialize device 10796 * @txqs: the number of TX subqueues to allocate 10797 * @rxqs: the number of RX subqueues to allocate 10798 * 10799 * Allocates a struct net_device with private data area for driver use 10800 * and performs basic initialization. Also allocates subqueue structs 10801 * for each queue on the device. 10802 */ 10803 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10804 unsigned char name_assign_type, 10805 void (*setup)(struct net_device *), 10806 unsigned int txqs, unsigned int rxqs) 10807 { 10808 struct net_device *dev; 10809 unsigned int alloc_size; 10810 struct net_device *p; 10811 10812 BUG_ON(strlen(name) >= sizeof(dev->name)); 10813 10814 if (txqs < 1) { 10815 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10816 return NULL; 10817 } 10818 10819 if (rxqs < 1) { 10820 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10821 return NULL; 10822 } 10823 10824 alloc_size = sizeof(struct net_device); 10825 if (sizeof_priv) { 10826 /* ensure 32-byte alignment of private area */ 10827 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10828 alloc_size += sizeof_priv; 10829 } 10830 /* ensure 32-byte alignment of whole construct */ 10831 alloc_size += NETDEV_ALIGN - 1; 10832 10833 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10834 if (!p) 10835 return NULL; 10836 10837 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10838 dev->padded = (char *)dev - (char *)p; 10839 10840 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name); 10841 #ifdef CONFIG_PCPU_DEV_REFCNT 10842 dev->pcpu_refcnt = alloc_percpu(int); 10843 if (!dev->pcpu_refcnt) 10844 goto free_dev; 10845 __dev_hold(dev); 10846 #else 10847 refcount_set(&dev->dev_refcnt, 1); 10848 #endif 10849 10850 if (dev_addr_init(dev)) 10851 goto free_pcpu; 10852 10853 dev_mc_init(dev); 10854 dev_uc_init(dev); 10855 10856 dev_net_set(dev, &init_net); 10857 10858 dev->gso_max_size = GSO_LEGACY_MAX_SIZE; 10859 dev->xdp_zc_max_segs = 1; 10860 dev->gso_max_segs = GSO_MAX_SEGS; 10861 dev->gro_max_size = GRO_LEGACY_MAX_SIZE; 10862 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE; 10863 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE; 10864 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 10865 dev->tso_max_segs = TSO_MAX_SEGS; 10866 dev->upper_level = 1; 10867 dev->lower_level = 1; 10868 #ifdef CONFIG_LOCKDEP 10869 dev->nested_level = 0; 10870 INIT_LIST_HEAD(&dev->unlink_list); 10871 #endif 10872 10873 INIT_LIST_HEAD(&dev->napi_list); 10874 INIT_LIST_HEAD(&dev->unreg_list); 10875 INIT_LIST_HEAD(&dev->close_list); 10876 INIT_LIST_HEAD(&dev->link_watch_list); 10877 INIT_LIST_HEAD(&dev->adj_list.upper); 10878 INIT_LIST_HEAD(&dev->adj_list.lower); 10879 INIT_LIST_HEAD(&dev->ptype_all); 10880 INIT_LIST_HEAD(&dev->ptype_specific); 10881 INIT_LIST_HEAD(&dev->net_notifier_list); 10882 #ifdef CONFIG_NET_SCHED 10883 hash_init(dev->qdisc_hash); 10884 #endif 10885 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10886 setup(dev); 10887 10888 if (!dev->tx_queue_len) { 10889 dev->priv_flags |= IFF_NO_QUEUE; 10890 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10891 } 10892 10893 dev->num_tx_queues = txqs; 10894 dev->real_num_tx_queues = txqs; 10895 if (netif_alloc_netdev_queues(dev)) 10896 goto free_all; 10897 10898 dev->num_rx_queues = rxqs; 10899 dev->real_num_rx_queues = rxqs; 10900 if (netif_alloc_rx_queues(dev)) 10901 goto free_all; 10902 10903 strcpy(dev->name, name); 10904 dev->name_assign_type = name_assign_type; 10905 dev->group = INIT_NETDEV_GROUP; 10906 if (!dev->ethtool_ops) 10907 dev->ethtool_ops = &default_ethtool_ops; 10908 10909 nf_hook_netdev_init(dev); 10910 10911 return dev; 10912 10913 free_all: 10914 free_netdev(dev); 10915 return NULL; 10916 10917 free_pcpu: 10918 #ifdef CONFIG_PCPU_DEV_REFCNT 10919 free_percpu(dev->pcpu_refcnt); 10920 free_dev: 10921 #endif 10922 netdev_freemem(dev); 10923 return NULL; 10924 } 10925 EXPORT_SYMBOL(alloc_netdev_mqs); 10926 10927 /** 10928 * free_netdev - free network device 10929 * @dev: device 10930 * 10931 * This function does the last stage of destroying an allocated device 10932 * interface. The reference to the device object is released. If this 10933 * is the last reference then it will be freed.Must be called in process 10934 * context. 10935 */ 10936 void free_netdev(struct net_device *dev) 10937 { 10938 struct napi_struct *p, *n; 10939 10940 might_sleep(); 10941 10942 /* When called immediately after register_netdevice() failed the unwind 10943 * handling may still be dismantling the device. Handle that case by 10944 * deferring the free. 10945 */ 10946 if (dev->reg_state == NETREG_UNREGISTERING) { 10947 ASSERT_RTNL(); 10948 dev->needs_free_netdev = true; 10949 return; 10950 } 10951 10952 netif_free_tx_queues(dev); 10953 netif_free_rx_queues(dev); 10954 10955 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10956 10957 /* Flush device addresses */ 10958 dev_addr_flush(dev); 10959 10960 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10961 netif_napi_del(p); 10962 10963 ref_tracker_dir_exit(&dev->refcnt_tracker); 10964 #ifdef CONFIG_PCPU_DEV_REFCNT 10965 free_percpu(dev->pcpu_refcnt); 10966 dev->pcpu_refcnt = NULL; 10967 #endif 10968 free_percpu(dev->core_stats); 10969 dev->core_stats = NULL; 10970 free_percpu(dev->xdp_bulkq); 10971 dev->xdp_bulkq = NULL; 10972 10973 /* Compatibility with error handling in drivers */ 10974 if (dev->reg_state == NETREG_UNINITIALIZED) { 10975 netdev_freemem(dev); 10976 return; 10977 } 10978 10979 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10980 dev->reg_state = NETREG_RELEASED; 10981 10982 /* will free via device release */ 10983 put_device(&dev->dev); 10984 } 10985 EXPORT_SYMBOL(free_netdev); 10986 10987 /** 10988 * synchronize_net - Synchronize with packet receive processing 10989 * 10990 * Wait for packets currently being received to be done. 10991 * Does not block later packets from starting. 10992 */ 10993 void synchronize_net(void) 10994 { 10995 might_sleep(); 10996 if (rtnl_is_locked()) 10997 synchronize_rcu_expedited(); 10998 else 10999 synchronize_rcu(); 11000 } 11001 EXPORT_SYMBOL(synchronize_net); 11002 11003 /** 11004 * unregister_netdevice_queue - remove device from the kernel 11005 * @dev: device 11006 * @head: list 11007 * 11008 * This function shuts down a device interface and removes it 11009 * from the kernel tables. 11010 * If head not NULL, device is queued to be unregistered later. 11011 * 11012 * Callers must hold the rtnl semaphore. You may want 11013 * unregister_netdev() instead of this. 11014 */ 11015 11016 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 11017 { 11018 ASSERT_RTNL(); 11019 11020 if (head) { 11021 list_move_tail(&dev->unreg_list, head); 11022 } else { 11023 LIST_HEAD(single); 11024 11025 list_add(&dev->unreg_list, &single); 11026 unregister_netdevice_many(&single); 11027 } 11028 } 11029 EXPORT_SYMBOL(unregister_netdevice_queue); 11030 11031 void unregister_netdevice_many_notify(struct list_head *head, 11032 u32 portid, const struct nlmsghdr *nlh) 11033 { 11034 struct net_device *dev, *tmp; 11035 LIST_HEAD(close_head); 11036 11037 BUG_ON(dev_boot_phase); 11038 ASSERT_RTNL(); 11039 11040 if (list_empty(head)) 11041 return; 11042 11043 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 11044 /* Some devices call without registering 11045 * for initialization unwind. Remove those 11046 * devices and proceed with the remaining. 11047 */ 11048 if (dev->reg_state == NETREG_UNINITIALIZED) { 11049 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 11050 dev->name, dev); 11051 11052 WARN_ON(1); 11053 list_del(&dev->unreg_list); 11054 continue; 11055 } 11056 dev->dismantle = true; 11057 BUG_ON(dev->reg_state != NETREG_REGISTERED); 11058 } 11059 11060 /* If device is running, close it first. */ 11061 list_for_each_entry(dev, head, unreg_list) 11062 list_add_tail(&dev->close_list, &close_head); 11063 dev_close_many(&close_head, true); 11064 11065 list_for_each_entry(dev, head, unreg_list) { 11066 /* And unlink it from device chain. */ 11067 write_lock(&dev_base_lock); 11068 unlist_netdevice(dev, false); 11069 dev->reg_state = NETREG_UNREGISTERING; 11070 write_unlock(&dev_base_lock); 11071 } 11072 flush_all_backlogs(); 11073 11074 synchronize_net(); 11075 11076 list_for_each_entry(dev, head, unreg_list) { 11077 struct sk_buff *skb = NULL; 11078 11079 /* Shutdown queueing discipline. */ 11080 dev_shutdown(dev); 11081 dev_tcx_uninstall(dev); 11082 dev_xdp_uninstall(dev); 11083 bpf_dev_bound_netdev_unregister(dev); 11084 11085 netdev_offload_xstats_disable_all(dev); 11086 11087 /* Notify protocols, that we are about to destroy 11088 * this device. They should clean all the things. 11089 */ 11090 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11091 11092 if (!dev->rtnl_link_ops || 11093 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 11094 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 11095 GFP_KERNEL, NULL, 0, 11096 portid, nlh); 11097 11098 /* 11099 * Flush the unicast and multicast chains 11100 */ 11101 dev_uc_flush(dev); 11102 dev_mc_flush(dev); 11103 11104 netdev_name_node_alt_flush(dev); 11105 netdev_name_node_free(dev->name_node); 11106 11107 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev); 11108 11109 if (dev->netdev_ops->ndo_uninit) 11110 dev->netdev_ops->ndo_uninit(dev); 11111 11112 if (skb) 11113 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh); 11114 11115 /* Notifier chain MUST detach us all upper devices. */ 11116 WARN_ON(netdev_has_any_upper_dev(dev)); 11117 WARN_ON(netdev_has_any_lower_dev(dev)); 11118 11119 /* Remove entries from kobject tree */ 11120 netdev_unregister_kobject(dev); 11121 #ifdef CONFIG_XPS 11122 /* Remove XPS queueing entries */ 11123 netif_reset_xps_queues_gt(dev, 0); 11124 #endif 11125 } 11126 11127 synchronize_net(); 11128 11129 list_for_each_entry(dev, head, unreg_list) { 11130 netdev_put(dev, &dev->dev_registered_tracker); 11131 net_set_todo(dev); 11132 } 11133 11134 list_del(head); 11135 } 11136 11137 /** 11138 * unregister_netdevice_many - unregister many devices 11139 * @head: list of devices 11140 * 11141 * Note: As most callers use a stack allocated list_head, 11142 * we force a list_del() to make sure stack wont be corrupted later. 11143 */ 11144 void unregister_netdevice_many(struct list_head *head) 11145 { 11146 unregister_netdevice_many_notify(head, 0, NULL); 11147 } 11148 EXPORT_SYMBOL(unregister_netdevice_many); 11149 11150 /** 11151 * unregister_netdev - remove device from the kernel 11152 * @dev: device 11153 * 11154 * This function shuts down a device interface and removes it 11155 * from the kernel tables. 11156 * 11157 * This is just a wrapper for unregister_netdevice that takes 11158 * the rtnl semaphore. In general you want to use this and not 11159 * unregister_netdevice. 11160 */ 11161 void unregister_netdev(struct net_device *dev) 11162 { 11163 rtnl_lock(); 11164 unregister_netdevice(dev); 11165 rtnl_unlock(); 11166 } 11167 EXPORT_SYMBOL(unregister_netdev); 11168 11169 /** 11170 * __dev_change_net_namespace - move device to different nethost namespace 11171 * @dev: device 11172 * @net: network namespace 11173 * @pat: If not NULL name pattern to try if the current device name 11174 * is already taken in the destination network namespace. 11175 * @new_ifindex: If not zero, specifies device index in the target 11176 * namespace. 11177 * 11178 * This function shuts down a device interface and moves it 11179 * to a new network namespace. On success 0 is returned, on 11180 * a failure a netagive errno code is returned. 11181 * 11182 * Callers must hold the rtnl semaphore. 11183 */ 11184 11185 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 11186 const char *pat, int new_ifindex) 11187 { 11188 struct netdev_name_node *name_node; 11189 struct net *net_old = dev_net(dev); 11190 char new_name[IFNAMSIZ] = {}; 11191 int err, new_nsid; 11192 11193 ASSERT_RTNL(); 11194 11195 /* Don't allow namespace local devices to be moved. */ 11196 err = -EINVAL; 11197 if (dev->features & NETIF_F_NETNS_LOCAL) 11198 goto out; 11199 11200 /* Ensure the device has been registrered */ 11201 if (dev->reg_state != NETREG_REGISTERED) 11202 goto out; 11203 11204 /* Get out if there is nothing todo */ 11205 err = 0; 11206 if (net_eq(net_old, net)) 11207 goto out; 11208 11209 /* Pick the destination device name, and ensure 11210 * we can use it in the destination network namespace. 11211 */ 11212 err = -EEXIST; 11213 if (netdev_name_in_use(net, dev->name)) { 11214 /* We get here if we can't use the current device name */ 11215 if (!pat) 11216 goto out; 11217 err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST); 11218 if (err < 0) 11219 goto out; 11220 } 11221 /* Check that none of the altnames conflicts. */ 11222 err = -EEXIST; 11223 netdev_for_each_altname(dev, name_node) 11224 if (netdev_name_in_use(net, name_node->name)) 11225 goto out; 11226 11227 /* Check that new_ifindex isn't used yet. */ 11228 if (new_ifindex) { 11229 err = dev_index_reserve(net, new_ifindex); 11230 if (err < 0) 11231 goto out; 11232 } else { 11233 /* If there is an ifindex conflict assign a new one */ 11234 err = dev_index_reserve(net, dev->ifindex); 11235 if (err == -EBUSY) 11236 err = dev_index_reserve(net, 0); 11237 if (err < 0) 11238 goto out; 11239 new_ifindex = err; 11240 } 11241 11242 /* 11243 * And now a mini version of register_netdevice unregister_netdevice. 11244 */ 11245 11246 /* If device is running close it first. */ 11247 dev_close(dev); 11248 11249 /* And unlink it from device chain */ 11250 unlist_netdevice(dev, true); 11251 11252 synchronize_net(); 11253 11254 /* Shutdown queueing discipline. */ 11255 dev_shutdown(dev); 11256 11257 /* Notify protocols, that we are about to destroy 11258 * this device. They should clean all the things. 11259 * 11260 * Note that dev->reg_state stays at NETREG_REGISTERED. 11261 * This is wanted because this way 8021q and macvlan know 11262 * the device is just moving and can keep their slaves up. 11263 */ 11264 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 11265 rcu_barrier(); 11266 11267 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 11268 11269 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 11270 new_ifindex); 11271 11272 /* 11273 * Flush the unicast and multicast chains 11274 */ 11275 dev_uc_flush(dev); 11276 dev_mc_flush(dev); 11277 11278 /* Send a netdev-removed uevent to the old namespace */ 11279 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11280 netdev_adjacent_del_links(dev); 11281 11282 /* Move per-net netdevice notifiers that are following the netdevice */ 11283 move_netdevice_notifiers_dev_net(dev, net); 11284 11285 /* Actually switch the network namespace */ 11286 dev_net_set(dev, net); 11287 dev->ifindex = new_ifindex; 11288 11289 if (new_name[0]) /* Rename the netdev to prepared name */ 11290 strscpy(dev->name, new_name, IFNAMSIZ); 11291 11292 /* Fixup kobjects */ 11293 dev_set_uevent_suppress(&dev->dev, 1); 11294 err = device_rename(&dev->dev, dev->name); 11295 dev_set_uevent_suppress(&dev->dev, 0); 11296 WARN_ON(err); 11297 11298 /* Send a netdev-add uevent to the new namespace */ 11299 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11300 netdev_adjacent_add_links(dev); 11301 11302 /* Adapt owner in case owning user namespace of target network 11303 * namespace is different from the original one. 11304 */ 11305 err = netdev_change_owner(dev, net_old, net); 11306 WARN_ON(err); 11307 11308 /* Add the device back in the hashes */ 11309 list_netdevice(dev); 11310 11311 /* Notify protocols, that a new device appeared. */ 11312 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11313 11314 /* 11315 * Prevent userspace races by waiting until the network 11316 * device is fully setup before sending notifications. 11317 */ 11318 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL); 11319 11320 synchronize_net(); 11321 err = 0; 11322 out: 11323 return err; 11324 } 11325 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11326 11327 static int dev_cpu_dead(unsigned int oldcpu) 11328 { 11329 struct sk_buff **list_skb; 11330 struct sk_buff *skb; 11331 unsigned int cpu; 11332 struct softnet_data *sd, *oldsd, *remsd = NULL; 11333 11334 local_irq_disable(); 11335 cpu = smp_processor_id(); 11336 sd = &per_cpu(softnet_data, cpu); 11337 oldsd = &per_cpu(softnet_data, oldcpu); 11338 11339 /* Find end of our completion_queue. */ 11340 list_skb = &sd->completion_queue; 11341 while (*list_skb) 11342 list_skb = &(*list_skb)->next; 11343 /* Append completion queue from offline CPU. */ 11344 *list_skb = oldsd->completion_queue; 11345 oldsd->completion_queue = NULL; 11346 11347 /* Append output queue from offline CPU. */ 11348 if (oldsd->output_queue) { 11349 *sd->output_queue_tailp = oldsd->output_queue; 11350 sd->output_queue_tailp = oldsd->output_queue_tailp; 11351 oldsd->output_queue = NULL; 11352 oldsd->output_queue_tailp = &oldsd->output_queue; 11353 } 11354 /* Append NAPI poll list from offline CPU, with one exception : 11355 * process_backlog() must be called by cpu owning percpu backlog. 11356 * We properly handle process_queue & input_pkt_queue later. 11357 */ 11358 while (!list_empty(&oldsd->poll_list)) { 11359 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11360 struct napi_struct, 11361 poll_list); 11362 11363 list_del_init(&napi->poll_list); 11364 if (napi->poll == process_backlog) 11365 napi->state = 0; 11366 else 11367 ____napi_schedule(sd, napi); 11368 } 11369 11370 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11371 local_irq_enable(); 11372 11373 #ifdef CONFIG_RPS 11374 remsd = oldsd->rps_ipi_list; 11375 oldsd->rps_ipi_list = NULL; 11376 #endif 11377 /* send out pending IPI's on offline CPU */ 11378 net_rps_send_ipi(remsd); 11379 11380 /* Process offline CPU's input_pkt_queue */ 11381 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11382 netif_rx(skb); 11383 input_queue_head_incr(oldsd); 11384 } 11385 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11386 netif_rx(skb); 11387 input_queue_head_incr(oldsd); 11388 } 11389 11390 return 0; 11391 } 11392 11393 /** 11394 * netdev_increment_features - increment feature set by one 11395 * @all: current feature set 11396 * @one: new feature set 11397 * @mask: mask feature set 11398 * 11399 * Computes a new feature set after adding a device with feature set 11400 * @one to the master device with current feature set @all. Will not 11401 * enable anything that is off in @mask. Returns the new feature set. 11402 */ 11403 netdev_features_t netdev_increment_features(netdev_features_t all, 11404 netdev_features_t one, netdev_features_t mask) 11405 { 11406 if (mask & NETIF_F_HW_CSUM) 11407 mask |= NETIF_F_CSUM_MASK; 11408 mask |= NETIF_F_VLAN_CHALLENGED; 11409 11410 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11411 all &= one | ~NETIF_F_ALL_FOR_ALL; 11412 11413 /* If one device supports hw checksumming, set for all. */ 11414 if (all & NETIF_F_HW_CSUM) 11415 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11416 11417 return all; 11418 } 11419 EXPORT_SYMBOL(netdev_increment_features); 11420 11421 static struct hlist_head * __net_init netdev_create_hash(void) 11422 { 11423 int i; 11424 struct hlist_head *hash; 11425 11426 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11427 if (hash != NULL) 11428 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11429 INIT_HLIST_HEAD(&hash[i]); 11430 11431 return hash; 11432 } 11433 11434 /* Initialize per network namespace state */ 11435 static int __net_init netdev_init(struct net *net) 11436 { 11437 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11438 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11439 11440 INIT_LIST_HEAD(&net->dev_base_head); 11441 11442 net->dev_name_head = netdev_create_hash(); 11443 if (net->dev_name_head == NULL) 11444 goto err_name; 11445 11446 net->dev_index_head = netdev_create_hash(); 11447 if (net->dev_index_head == NULL) 11448 goto err_idx; 11449 11450 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1); 11451 11452 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11453 11454 return 0; 11455 11456 err_idx: 11457 kfree(net->dev_name_head); 11458 err_name: 11459 return -ENOMEM; 11460 } 11461 11462 /** 11463 * netdev_drivername - network driver for the device 11464 * @dev: network device 11465 * 11466 * Determine network driver for device. 11467 */ 11468 const char *netdev_drivername(const struct net_device *dev) 11469 { 11470 const struct device_driver *driver; 11471 const struct device *parent; 11472 const char *empty = ""; 11473 11474 parent = dev->dev.parent; 11475 if (!parent) 11476 return empty; 11477 11478 driver = parent->driver; 11479 if (driver && driver->name) 11480 return driver->name; 11481 return empty; 11482 } 11483 11484 static void __netdev_printk(const char *level, const struct net_device *dev, 11485 struct va_format *vaf) 11486 { 11487 if (dev && dev->dev.parent) { 11488 dev_printk_emit(level[1] - '0', 11489 dev->dev.parent, 11490 "%s %s %s%s: %pV", 11491 dev_driver_string(dev->dev.parent), 11492 dev_name(dev->dev.parent), 11493 netdev_name(dev), netdev_reg_state(dev), 11494 vaf); 11495 } else if (dev) { 11496 printk("%s%s%s: %pV", 11497 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11498 } else { 11499 printk("%s(NULL net_device): %pV", level, vaf); 11500 } 11501 } 11502 11503 void netdev_printk(const char *level, const struct net_device *dev, 11504 const char *format, ...) 11505 { 11506 struct va_format vaf; 11507 va_list args; 11508 11509 va_start(args, format); 11510 11511 vaf.fmt = format; 11512 vaf.va = &args; 11513 11514 __netdev_printk(level, dev, &vaf); 11515 11516 va_end(args); 11517 } 11518 EXPORT_SYMBOL(netdev_printk); 11519 11520 #define define_netdev_printk_level(func, level) \ 11521 void func(const struct net_device *dev, const char *fmt, ...) \ 11522 { \ 11523 struct va_format vaf; \ 11524 va_list args; \ 11525 \ 11526 va_start(args, fmt); \ 11527 \ 11528 vaf.fmt = fmt; \ 11529 vaf.va = &args; \ 11530 \ 11531 __netdev_printk(level, dev, &vaf); \ 11532 \ 11533 va_end(args); \ 11534 } \ 11535 EXPORT_SYMBOL(func); 11536 11537 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11538 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11539 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11540 define_netdev_printk_level(netdev_err, KERN_ERR); 11541 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11542 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11543 define_netdev_printk_level(netdev_info, KERN_INFO); 11544 11545 static void __net_exit netdev_exit(struct net *net) 11546 { 11547 kfree(net->dev_name_head); 11548 kfree(net->dev_index_head); 11549 xa_destroy(&net->dev_by_index); 11550 if (net != &init_net) 11551 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11552 } 11553 11554 static struct pernet_operations __net_initdata netdev_net_ops = { 11555 .init = netdev_init, 11556 .exit = netdev_exit, 11557 }; 11558 11559 static void __net_exit default_device_exit_net(struct net *net) 11560 { 11561 struct netdev_name_node *name_node, *tmp; 11562 struct net_device *dev, *aux; 11563 /* 11564 * Push all migratable network devices back to the 11565 * initial network namespace 11566 */ 11567 ASSERT_RTNL(); 11568 for_each_netdev_safe(net, dev, aux) { 11569 int err; 11570 char fb_name[IFNAMSIZ]; 11571 11572 /* Ignore unmoveable devices (i.e. loopback) */ 11573 if (dev->features & NETIF_F_NETNS_LOCAL) 11574 continue; 11575 11576 /* Leave virtual devices for the generic cleanup */ 11577 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11578 continue; 11579 11580 /* Push remaining network devices to init_net */ 11581 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11582 if (netdev_name_in_use(&init_net, fb_name)) 11583 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11584 11585 netdev_for_each_altname_safe(dev, name_node, tmp) 11586 if (netdev_name_in_use(&init_net, name_node->name)) { 11587 netdev_name_node_del(name_node); 11588 synchronize_rcu(); 11589 __netdev_name_node_alt_destroy(name_node); 11590 } 11591 11592 err = dev_change_net_namespace(dev, &init_net, fb_name); 11593 if (err) { 11594 pr_emerg("%s: failed to move %s to init_net: %d\n", 11595 __func__, dev->name, err); 11596 BUG(); 11597 } 11598 } 11599 } 11600 11601 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11602 { 11603 /* At exit all network devices most be removed from a network 11604 * namespace. Do this in the reverse order of registration. 11605 * Do this across as many network namespaces as possible to 11606 * improve batching efficiency. 11607 */ 11608 struct net_device *dev; 11609 struct net *net; 11610 LIST_HEAD(dev_kill_list); 11611 11612 rtnl_lock(); 11613 list_for_each_entry(net, net_list, exit_list) { 11614 default_device_exit_net(net); 11615 cond_resched(); 11616 } 11617 11618 list_for_each_entry(net, net_list, exit_list) { 11619 for_each_netdev_reverse(net, dev) { 11620 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11621 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11622 else 11623 unregister_netdevice_queue(dev, &dev_kill_list); 11624 } 11625 } 11626 unregister_netdevice_many(&dev_kill_list); 11627 rtnl_unlock(); 11628 } 11629 11630 static struct pernet_operations __net_initdata default_device_ops = { 11631 .exit_batch = default_device_exit_batch, 11632 }; 11633 11634 static void __init net_dev_struct_check(void) 11635 { 11636 /* TX read-mostly hotpath */ 11637 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags); 11638 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops); 11639 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops); 11640 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx); 11641 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues); 11642 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size); 11643 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size); 11644 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs); 11645 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features); 11646 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc); 11647 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu); 11648 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom); 11649 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq); 11650 #ifdef CONFIG_XPS 11651 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps); 11652 #endif 11653 #ifdef CONFIG_NETFILTER_EGRESS 11654 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress); 11655 #endif 11656 #ifdef CONFIG_NET_XGRESS 11657 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress); 11658 #endif 11659 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160); 11660 11661 /* TXRX read-mostly hotpath */ 11662 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats); 11663 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags); 11664 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len); 11665 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features); 11666 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr); 11667 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 38); 11668 11669 /* RX read-mostly hotpath */ 11670 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific); 11671 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex); 11672 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues); 11673 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx); 11674 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout); 11675 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs); 11676 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size); 11677 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size); 11678 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler); 11679 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data); 11680 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net); 11681 #ifdef CONFIG_NETPOLL 11682 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo); 11683 #endif 11684 #ifdef CONFIG_NET_XGRESS 11685 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress); 11686 #endif 11687 CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104); 11688 } 11689 11690 /* 11691 * Initialize the DEV module. At boot time this walks the device list and 11692 * unhooks any devices that fail to initialise (normally hardware not 11693 * present) and leaves us with a valid list of present and active devices. 11694 * 11695 */ 11696 11697 /* 11698 * This is called single threaded during boot, so no need 11699 * to take the rtnl semaphore. 11700 */ 11701 static int __init net_dev_init(void) 11702 { 11703 int i, rc = -ENOMEM; 11704 11705 BUG_ON(!dev_boot_phase); 11706 11707 net_dev_struct_check(); 11708 11709 if (dev_proc_init()) 11710 goto out; 11711 11712 if (netdev_kobject_init()) 11713 goto out; 11714 11715 INIT_LIST_HEAD(&ptype_all); 11716 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11717 INIT_LIST_HEAD(&ptype_base[i]); 11718 11719 if (register_pernet_subsys(&netdev_net_ops)) 11720 goto out; 11721 11722 /* 11723 * Initialise the packet receive queues. 11724 */ 11725 11726 for_each_possible_cpu(i) { 11727 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11728 struct softnet_data *sd = &per_cpu(softnet_data, i); 11729 11730 INIT_WORK(flush, flush_backlog); 11731 11732 skb_queue_head_init(&sd->input_pkt_queue); 11733 skb_queue_head_init(&sd->process_queue); 11734 #ifdef CONFIG_XFRM_OFFLOAD 11735 skb_queue_head_init(&sd->xfrm_backlog); 11736 #endif 11737 INIT_LIST_HEAD(&sd->poll_list); 11738 sd->output_queue_tailp = &sd->output_queue; 11739 #ifdef CONFIG_RPS 11740 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11741 sd->cpu = i; 11742 #endif 11743 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd); 11744 spin_lock_init(&sd->defer_lock); 11745 11746 init_gro_hash(&sd->backlog); 11747 sd->backlog.poll = process_backlog; 11748 sd->backlog.weight = weight_p; 11749 } 11750 11751 dev_boot_phase = 0; 11752 11753 /* The loopback device is special if any other network devices 11754 * is present in a network namespace the loopback device must 11755 * be present. Since we now dynamically allocate and free the 11756 * loopback device ensure this invariant is maintained by 11757 * keeping the loopback device as the first device on the 11758 * list of network devices. Ensuring the loopback devices 11759 * is the first device that appears and the last network device 11760 * that disappears. 11761 */ 11762 if (register_pernet_device(&loopback_net_ops)) 11763 goto out; 11764 11765 if (register_pernet_device(&default_device_ops)) 11766 goto out; 11767 11768 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11769 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11770 11771 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11772 NULL, dev_cpu_dead); 11773 WARN_ON(rc < 0); 11774 rc = 0; 11775 out: 11776 return rc; 11777 } 11778 11779 subsys_initcall(net_dev_init); 11780