1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <[email protected]> 8 * Mark Evans, <[email protected]> 9 * 10 * Additional Authors: 11 * Florian la Roche <[email protected]> 12 * Alan Cox <[email protected]> 13 * David Hinds <[email protected]> 14 * Alexey Kuznetsov <[email protected]> 15 * Adam Sulmicki <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/kthread.h> 95 #include <linux/bpf.h> 96 #include <linux/bpf_trace.h> 97 #include <net/net_namespace.h> 98 #include <net/sock.h> 99 #include <net/busy_poll.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/stat.h> 102 #include <net/dsa.h> 103 #include <net/dst.h> 104 #include <net/dst_metadata.h> 105 #include <net/gro.h> 106 #include <net/pkt_sched.h> 107 #include <net/pkt_cls.h> 108 #include <net/checksum.h> 109 #include <net/xfrm.h> 110 #include <linux/highmem.h> 111 #include <linux/init.h> 112 #include <linux/module.h> 113 #include <linux/netpoll.h> 114 #include <linux/rcupdate.h> 115 #include <linux/delay.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <net/mpls.h> 127 #include <linux/ipv6.h> 128 #include <linux/in.h> 129 #include <linux/jhash.h> 130 #include <linux/random.h> 131 #include <trace/events/napi.h> 132 #include <trace/events/net.h> 133 #include <trace/events/skb.h> 134 #include <trace/events/qdisc.h> 135 #include <linux/inetdevice.h> 136 #include <linux/cpu_rmap.h> 137 #include <linux/static_key.h> 138 #include <linux/hashtable.h> 139 #include <linux/vmalloc.h> 140 #include <linux/if_macvlan.h> 141 #include <linux/errqueue.h> 142 #include <linux/hrtimer.h> 143 #include <linux/netfilter_netdev.h> 144 #include <linux/crash_dump.h> 145 #include <linux/sctp.h> 146 #include <net/udp_tunnel.h> 147 #include <linux/net_namespace.h> 148 #include <linux/indirect_call_wrapper.h> 149 #include <net/devlink.h> 150 #include <linux/pm_runtime.h> 151 #include <linux/prandom.h> 152 #include <linux/once_lite.h> 153 154 #include "dev.h" 155 #include "net-sysfs.h" 156 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 162 static int netif_rx_internal(struct sk_buff *skb); 163 static int call_netdevice_notifiers_info(unsigned long val, 164 struct netdev_notifier_info *info); 165 static int call_netdevice_notifiers_extack(unsigned long val, 166 struct net_device *dev, 167 struct netlink_ext_ack *extack); 168 static struct napi_struct *napi_by_id(unsigned int napi_id); 169 170 /* 171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 172 * semaphore. 173 * 174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 175 * 176 * Writers must hold the rtnl semaphore while they loop through the 177 * dev_base_head list, and hold dev_base_lock for writing when they do the 178 * actual updates. This allows pure readers to access the list even 179 * while a writer is preparing to update it. 180 * 181 * To put it another way, dev_base_lock is held for writing only to 182 * protect against pure readers; the rtnl semaphore provides the 183 * protection against other writers. 184 * 185 * See, for example usages, register_netdevice() and 186 * unregister_netdevice(), which must be called with the rtnl 187 * semaphore held. 188 */ 189 DEFINE_RWLOCK(dev_base_lock); 190 EXPORT_SYMBOL(dev_base_lock); 191 192 static DEFINE_MUTEX(ifalias_mutex); 193 194 /* protects napi_hash addition/deletion and napi_gen_id */ 195 static DEFINE_SPINLOCK(napi_hash_lock); 196 197 static unsigned int napi_gen_id = NR_CPUS; 198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 199 200 static DECLARE_RWSEM(devnet_rename_sem); 201 202 static inline void dev_base_seq_inc(struct net *net) 203 { 204 while (++net->dev_base_seq == 0) 205 ; 206 } 207 208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 209 { 210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 211 212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 213 } 214 215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 216 { 217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 218 } 219 220 static inline void rps_lock_irqsave(struct softnet_data *sd, 221 unsigned long *flags) 222 { 223 if (IS_ENABLED(CONFIG_RPS)) 224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags); 225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 226 local_irq_save(*flags); 227 } 228 229 static inline void rps_lock_irq_disable(struct softnet_data *sd) 230 { 231 if (IS_ENABLED(CONFIG_RPS)) 232 spin_lock_irq(&sd->input_pkt_queue.lock); 233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 234 local_irq_disable(); 235 } 236 237 static inline void rps_unlock_irq_restore(struct softnet_data *sd, 238 unsigned long *flags) 239 { 240 if (IS_ENABLED(CONFIG_RPS)) 241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags); 242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 243 local_irq_restore(*flags); 244 } 245 246 static inline void rps_unlock_irq_enable(struct softnet_data *sd) 247 { 248 if (IS_ENABLED(CONFIG_RPS)) 249 spin_unlock_irq(&sd->input_pkt_queue.lock); 250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 251 local_irq_enable(); 252 } 253 254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 255 const char *name) 256 { 257 struct netdev_name_node *name_node; 258 259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 260 if (!name_node) 261 return NULL; 262 INIT_HLIST_NODE(&name_node->hlist); 263 name_node->dev = dev; 264 name_node->name = name; 265 return name_node; 266 } 267 268 static struct netdev_name_node * 269 netdev_name_node_head_alloc(struct net_device *dev) 270 { 271 struct netdev_name_node *name_node; 272 273 name_node = netdev_name_node_alloc(dev, dev->name); 274 if (!name_node) 275 return NULL; 276 INIT_LIST_HEAD(&name_node->list); 277 return name_node; 278 } 279 280 static void netdev_name_node_free(struct netdev_name_node *name_node) 281 { 282 kfree(name_node); 283 } 284 285 static void netdev_name_node_add(struct net *net, 286 struct netdev_name_node *name_node) 287 { 288 hlist_add_head_rcu(&name_node->hlist, 289 dev_name_hash(net, name_node->name)); 290 } 291 292 static void netdev_name_node_del(struct netdev_name_node *name_node) 293 { 294 hlist_del_rcu(&name_node->hlist); 295 } 296 297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 298 const char *name) 299 { 300 struct hlist_head *head = dev_name_hash(net, name); 301 struct netdev_name_node *name_node; 302 303 hlist_for_each_entry(name_node, head, hlist) 304 if (!strcmp(name_node->name, name)) 305 return name_node; 306 return NULL; 307 } 308 309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 310 const char *name) 311 { 312 struct hlist_head *head = dev_name_hash(net, name); 313 struct netdev_name_node *name_node; 314 315 hlist_for_each_entry_rcu(name_node, head, hlist) 316 if (!strcmp(name_node->name, name)) 317 return name_node; 318 return NULL; 319 } 320 321 bool netdev_name_in_use(struct net *net, const char *name) 322 { 323 return netdev_name_node_lookup(net, name); 324 } 325 EXPORT_SYMBOL(netdev_name_in_use); 326 327 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 328 { 329 struct netdev_name_node *name_node; 330 struct net *net = dev_net(dev); 331 332 name_node = netdev_name_node_lookup(net, name); 333 if (name_node) 334 return -EEXIST; 335 name_node = netdev_name_node_alloc(dev, name); 336 if (!name_node) 337 return -ENOMEM; 338 netdev_name_node_add(net, name_node); 339 /* The node that holds dev->name acts as a head of per-device list. */ 340 list_add_tail(&name_node->list, &dev->name_node->list); 341 342 return 0; 343 } 344 345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 346 { 347 list_del(&name_node->list); 348 netdev_name_node_del(name_node); 349 kfree(name_node->name); 350 netdev_name_node_free(name_node); 351 } 352 353 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 354 { 355 struct netdev_name_node *name_node; 356 struct net *net = dev_net(dev); 357 358 name_node = netdev_name_node_lookup(net, name); 359 if (!name_node) 360 return -ENOENT; 361 /* lookup might have found our primary name or a name belonging 362 * to another device. 363 */ 364 if (name_node == dev->name_node || name_node->dev != dev) 365 return -EINVAL; 366 367 __netdev_name_node_alt_destroy(name_node); 368 369 return 0; 370 } 371 372 static void netdev_name_node_alt_flush(struct net_device *dev) 373 { 374 struct netdev_name_node *name_node, *tmp; 375 376 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 377 __netdev_name_node_alt_destroy(name_node); 378 } 379 380 /* Device list insertion */ 381 static void list_netdevice(struct net_device *dev) 382 { 383 struct net *net = dev_net(dev); 384 385 ASSERT_RTNL(); 386 387 write_lock(&dev_base_lock); 388 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 389 netdev_name_node_add(net, dev->name_node); 390 hlist_add_head_rcu(&dev->index_hlist, 391 dev_index_hash(net, dev->ifindex)); 392 write_unlock(&dev_base_lock); 393 394 dev_base_seq_inc(net); 395 } 396 397 /* Device list removal 398 * caller must respect a RCU grace period before freeing/reusing dev 399 */ 400 static void unlist_netdevice(struct net_device *dev) 401 { 402 ASSERT_RTNL(); 403 404 /* Unlink dev from the device chain */ 405 write_lock(&dev_base_lock); 406 list_del_rcu(&dev->dev_list); 407 netdev_name_node_del(dev->name_node); 408 hlist_del_rcu(&dev->index_hlist); 409 write_unlock(&dev_base_lock); 410 411 dev_base_seq_inc(dev_net(dev)); 412 } 413 414 /* 415 * Our notifier list 416 */ 417 418 static RAW_NOTIFIER_HEAD(netdev_chain); 419 420 /* 421 * Device drivers call our routines to queue packets here. We empty the 422 * queue in the local softnet handler. 423 */ 424 425 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 426 EXPORT_PER_CPU_SYMBOL(softnet_data); 427 428 #ifdef CONFIG_LOCKDEP 429 /* 430 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 431 * according to dev->type 432 */ 433 static const unsigned short netdev_lock_type[] = { 434 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 435 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 436 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 437 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 438 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 439 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 440 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 441 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 442 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 443 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 444 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 445 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 446 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 447 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 448 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 449 450 static const char *const netdev_lock_name[] = { 451 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 452 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 453 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 454 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 455 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 456 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 457 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 458 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 459 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 460 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 461 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 462 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 463 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 464 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 465 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 466 467 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 468 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 469 470 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 471 { 472 int i; 473 474 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 475 if (netdev_lock_type[i] == dev_type) 476 return i; 477 /* the last key is used by default */ 478 return ARRAY_SIZE(netdev_lock_type) - 1; 479 } 480 481 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 482 unsigned short dev_type) 483 { 484 int i; 485 486 i = netdev_lock_pos(dev_type); 487 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 488 netdev_lock_name[i]); 489 } 490 491 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 492 { 493 int i; 494 495 i = netdev_lock_pos(dev->type); 496 lockdep_set_class_and_name(&dev->addr_list_lock, 497 &netdev_addr_lock_key[i], 498 netdev_lock_name[i]); 499 } 500 #else 501 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 502 unsigned short dev_type) 503 { 504 } 505 506 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 507 { 508 } 509 #endif 510 511 /******************************************************************************* 512 * 513 * Protocol management and registration routines 514 * 515 *******************************************************************************/ 516 517 518 /* 519 * Add a protocol ID to the list. Now that the input handler is 520 * smarter we can dispense with all the messy stuff that used to be 521 * here. 522 * 523 * BEWARE!!! Protocol handlers, mangling input packets, 524 * MUST BE last in hash buckets and checking protocol handlers 525 * MUST start from promiscuous ptype_all chain in net_bh. 526 * It is true now, do not change it. 527 * Explanation follows: if protocol handler, mangling packet, will 528 * be the first on list, it is not able to sense, that packet 529 * is cloned and should be copied-on-write, so that it will 530 * change it and subsequent readers will get broken packet. 531 * --ANK (980803) 532 */ 533 534 static inline struct list_head *ptype_head(const struct packet_type *pt) 535 { 536 if (pt->type == htons(ETH_P_ALL)) 537 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 538 else 539 return pt->dev ? &pt->dev->ptype_specific : 540 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 541 } 542 543 /** 544 * dev_add_pack - add packet handler 545 * @pt: packet type declaration 546 * 547 * Add a protocol handler to the networking stack. The passed &packet_type 548 * is linked into kernel lists and may not be freed until it has been 549 * removed from the kernel lists. 550 * 551 * This call does not sleep therefore it can not 552 * guarantee all CPU's that are in middle of receiving packets 553 * will see the new packet type (until the next received packet). 554 */ 555 556 void dev_add_pack(struct packet_type *pt) 557 { 558 struct list_head *head = ptype_head(pt); 559 560 spin_lock(&ptype_lock); 561 list_add_rcu(&pt->list, head); 562 spin_unlock(&ptype_lock); 563 } 564 EXPORT_SYMBOL(dev_add_pack); 565 566 /** 567 * __dev_remove_pack - remove packet handler 568 * @pt: packet type declaration 569 * 570 * Remove a protocol handler that was previously added to the kernel 571 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 572 * from the kernel lists and can be freed or reused once this function 573 * returns. 574 * 575 * The packet type might still be in use by receivers 576 * and must not be freed until after all the CPU's have gone 577 * through a quiescent state. 578 */ 579 void __dev_remove_pack(struct packet_type *pt) 580 { 581 struct list_head *head = ptype_head(pt); 582 struct packet_type *pt1; 583 584 spin_lock(&ptype_lock); 585 586 list_for_each_entry(pt1, head, list) { 587 if (pt == pt1) { 588 list_del_rcu(&pt->list); 589 goto out; 590 } 591 } 592 593 pr_warn("dev_remove_pack: %p not found\n", pt); 594 out: 595 spin_unlock(&ptype_lock); 596 } 597 EXPORT_SYMBOL(__dev_remove_pack); 598 599 /** 600 * dev_remove_pack - remove packet handler 601 * @pt: packet type declaration 602 * 603 * Remove a protocol handler that was previously added to the kernel 604 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 605 * from the kernel lists and can be freed or reused once this function 606 * returns. 607 * 608 * This call sleeps to guarantee that no CPU is looking at the packet 609 * type after return. 610 */ 611 void dev_remove_pack(struct packet_type *pt) 612 { 613 __dev_remove_pack(pt); 614 615 synchronize_net(); 616 } 617 EXPORT_SYMBOL(dev_remove_pack); 618 619 620 /******************************************************************************* 621 * 622 * Device Interface Subroutines 623 * 624 *******************************************************************************/ 625 626 /** 627 * dev_get_iflink - get 'iflink' value of a interface 628 * @dev: targeted interface 629 * 630 * Indicates the ifindex the interface is linked to. 631 * Physical interfaces have the same 'ifindex' and 'iflink' values. 632 */ 633 634 int dev_get_iflink(const struct net_device *dev) 635 { 636 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 637 return dev->netdev_ops->ndo_get_iflink(dev); 638 639 return dev->ifindex; 640 } 641 EXPORT_SYMBOL(dev_get_iflink); 642 643 /** 644 * dev_fill_metadata_dst - Retrieve tunnel egress information. 645 * @dev: targeted interface 646 * @skb: The packet. 647 * 648 * For better visibility of tunnel traffic OVS needs to retrieve 649 * egress tunnel information for a packet. Following API allows 650 * user to get this info. 651 */ 652 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 653 { 654 struct ip_tunnel_info *info; 655 656 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 657 return -EINVAL; 658 659 info = skb_tunnel_info_unclone(skb); 660 if (!info) 661 return -ENOMEM; 662 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 663 return -EINVAL; 664 665 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 666 } 667 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 668 669 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack) 670 { 671 int k = stack->num_paths++; 672 673 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX)) 674 return NULL; 675 676 return &stack->path[k]; 677 } 678 679 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr, 680 struct net_device_path_stack *stack) 681 { 682 const struct net_device *last_dev; 683 struct net_device_path_ctx ctx = { 684 .dev = dev, 685 .daddr = daddr, 686 }; 687 struct net_device_path *path; 688 int ret = 0; 689 690 stack->num_paths = 0; 691 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) { 692 last_dev = ctx.dev; 693 path = dev_fwd_path(stack); 694 if (!path) 695 return -1; 696 697 memset(path, 0, sizeof(struct net_device_path)); 698 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path); 699 if (ret < 0) 700 return -1; 701 702 if (WARN_ON_ONCE(last_dev == ctx.dev)) 703 return -1; 704 } 705 706 if (!ctx.dev) 707 return ret; 708 709 path = dev_fwd_path(stack); 710 if (!path) 711 return -1; 712 path->type = DEV_PATH_ETHERNET; 713 path->dev = ctx.dev; 714 715 return ret; 716 } 717 EXPORT_SYMBOL_GPL(dev_fill_forward_path); 718 719 /** 720 * __dev_get_by_name - find a device by its name 721 * @net: the applicable net namespace 722 * @name: name to find 723 * 724 * Find an interface by name. Must be called under RTNL semaphore 725 * or @dev_base_lock. If the name is found a pointer to the device 726 * is returned. If the name is not found then %NULL is returned. The 727 * reference counters are not incremented so the caller must be 728 * careful with locks. 729 */ 730 731 struct net_device *__dev_get_by_name(struct net *net, const char *name) 732 { 733 struct netdev_name_node *node_name; 734 735 node_name = netdev_name_node_lookup(net, name); 736 return node_name ? node_name->dev : NULL; 737 } 738 EXPORT_SYMBOL(__dev_get_by_name); 739 740 /** 741 * dev_get_by_name_rcu - find a device by its name 742 * @net: the applicable net namespace 743 * @name: name to find 744 * 745 * Find an interface by name. 746 * If the name is found a pointer to the device is returned. 747 * If the name is not found then %NULL is returned. 748 * The reference counters are not incremented so the caller must be 749 * careful with locks. The caller must hold RCU lock. 750 */ 751 752 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 753 { 754 struct netdev_name_node *node_name; 755 756 node_name = netdev_name_node_lookup_rcu(net, name); 757 return node_name ? node_name->dev : NULL; 758 } 759 EXPORT_SYMBOL(dev_get_by_name_rcu); 760 761 /** 762 * dev_get_by_name - find a device by its name 763 * @net: the applicable net namespace 764 * @name: name to find 765 * 766 * Find an interface by name. This can be called from any 767 * context and does its own locking. The returned handle has 768 * the usage count incremented and the caller must use dev_put() to 769 * release it when it is no longer needed. %NULL is returned if no 770 * matching device is found. 771 */ 772 773 struct net_device *dev_get_by_name(struct net *net, const char *name) 774 { 775 struct net_device *dev; 776 777 rcu_read_lock(); 778 dev = dev_get_by_name_rcu(net, name); 779 dev_hold(dev); 780 rcu_read_unlock(); 781 return dev; 782 } 783 EXPORT_SYMBOL(dev_get_by_name); 784 785 /** 786 * __dev_get_by_index - find a device by its ifindex 787 * @net: the applicable net namespace 788 * @ifindex: index of device 789 * 790 * Search for an interface by index. Returns %NULL if the device 791 * is not found or a pointer to the device. The device has not 792 * had its reference counter increased so the caller must be careful 793 * about locking. The caller must hold either the RTNL semaphore 794 * or @dev_base_lock. 795 */ 796 797 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 798 { 799 struct net_device *dev; 800 struct hlist_head *head = dev_index_hash(net, ifindex); 801 802 hlist_for_each_entry(dev, head, index_hlist) 803 if (dev->ifindex == ifindex) 804 return dev; 805 806 return NULL; 807 } 808 EXPORT_SYMBOL(__dev_get_by_index); 809 810 /** 811 * dev_get_by_index_rcu - find a device by its ifindex 812 * @net: the applicable net namespace 813 * @ifindex: index of device 814 * 815 * Search for an interface by index. Returns %NULL if the device 816 * is not found or a pointer to the device. The device has not 817 * had its reference counter increased so the caller must be careful 818 * about locking. The caller must hold RCU lock. 819 */ 820 821 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 822 { 823 struct net_device *dev; 824 struct hlist_head *head = dev_index_hash(net, ifindex); 825 826 hlist_for_each_entry_rcu(dev, head, index_hlist) 827 if (dev->ifindex == ifindex) 828 return dev; 829 830 return NULL; 831 } 832 EXPORT_SYMBOL(dev_get_by_index_rcu); 833 834 835 /** 836 * dev_get_by_index - find a device by its ifindex 837 * @net: the applicable net namespace 838 * @ifindex: index of device 839 * 840 * Search for an interface by index. Returns NULL if the device 841 * is not found or a pointer to the device. The device returned has 842 * had a reference added and the pointer is safe until the user calls 843 * dev_put to indicate they have finished with it. 844 */ 845 846 struct net_device *dev_get_by_index(struct net *net, int ifindex) 847 { 848 struct net_device *dev; 849 850 rcu_read_lock(); 851 dev = dev_get_by_index_rcu(net, ifindex); 852 dev_hold(dev); 853 rcu_read_unlock(); 854 return dev; 855 } 856 EXPORT_SYMBOL(dev_get_by_index); 857 858 /** 859 * dev_get_by_napi_id - find a device by napi_id 860 * @napi_id: ID of the NAPI struct 861 * 862 * Search for an interface by NAPI ID. Returns %NULL if the device 863 * is not found or a pointer to the device. The device has not had 864 * its reference counter increased so the caller must be careful 865 * about locking. The caller must hold RCU lock. 866 */ 867 868 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 869 { 870 struct napi_struct *napi; 871 872 WARN_ON_ONCE(!rcu_read_lock_held()); 873 874 if (napi_id < MIN_NAPI_ID) 875 return NULL; 876 877 napi = napi_by_id(napi_id); 878 879 return napi ? napi->dev : NULL; 880 } 881 EXPORT_SYMBOL(dev_get_by_napi_id); 882 883 /** 884 * netdev_get_name - get a netdevice name, knowing its ifindex. 885 * @net: network namespace 886 * @name: a pointer to the buffer where the name will be stored. 887 * @ifindex: the ifindex of the interface to get the name from. 888 */ 889 int netdev_get_name(struct net *net, char *name, int ifindex) 890 { 891 struct net_device *dev; 892 int ret; 893 894 down_read(&devnet_rename_sem); 895 rcu_read_lock(); 896 897 dev = dev_get_by_index_rcu(net, ifindex); 898 if (!dev) { 899 ret = -ENODEV; 900 goto out; 901 } 902 903 strcpy(name, dev->name); 904 905 ret = 0; 906 out: 907 rcu_read_unlock(); 908 up_read(&devnet_rename_sem); 909 return ret; 910 } 911 912 /** 913 * dev_getbyhwaddr_rcu - find a device by its hardware address 914 * @net: the applicable net namespace 915 * @type: media type of device 916 * @ha: hardware address 917 * 918 * Search for an interface by MAC address. Returns NULL if the device 919 * is not found or a pointer to the device. 920 * The caller must hold RCU or RTNL. 921 * The returned device has not had its ref count increased 922 * and the caller must therefore be careful about locking 923 * 924 */ 925 926 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 927 const char *ha) 928 { 929 struct net_device *dev; 930 931 for_each_netdev_rcu(net, dev) 932 if (dev->type == type && 933 !memcmp(dev->dev_addr, ha, dev->addr_len)) 934 return dev; 935 936 return NULL; 937 } 938 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 939 940 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 941 { 942 struct net_device *dev, *ret = NULL; 943 944 rcu_read_lock(); 945 for_each_netdev_rcu(net, dev) 946 if (dev->type == type) { 947 dev_hold(dev); 948 ret = dev; 949 break; 950 } 951 rcu_read_unlock(); 952 return ret; 953 } 954 EXPORT_SYMBOL(dev_getfirstbyhwtype); 955 956 /** 957 * __dev_get_by_flags - find any device with given flags 958 * @net: the applicable net namespace 959 * @if_flags: IFF_* values 960 * @mask: bitmask of bits in if_flags to check 961 * 962 * Search for any interface with the given flags. Returns NULL if a device 963 * is not found or a pointer to the device. Must be called inside 964 * rtnl_lock(), and result refcount is unchanged. 965 */ 966 967 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 968 unsigned short mask) 969 { 970 struct net_device *dev, *ret; 971 972 ASSERT_RTNL(); 973 974 ret = NULL; 975 for_each_netdev(net, dev) { 976 if (((dev->flags ^ if_flags) & mask) == 0) { 977 ret = dev; 978 break; 979 } 980 } 981 return ret; 982 } 983 EXPORT_SYMBOL(__dev_get_by_flags); 984 985 /** 986 * dev_valid_name - check if name is okay for network device 987 * @name: name string 988 * 989 * Network device names need to be valid file names to 990 * allow sysfs to work. We also disallow any kind of 991 * whitespace. 992 */ 993 bool dev_valid_name(const char *name) 994 { 995 if (*name == '\0') 996 return false; 997 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 998 return false; 999 if (!strcmp(name, ".") || !strcmp(name, "..")) 1000 return false; 1001 1002 while (*name) { 1003 if (*name == '/' || *name == ':' || isspace(*name)) 1004 return false; 1005 name++; 1006 } 1007 return true; 1008 } 1009 EXPORT_SYMBOL(dev_valid_name); 1010 1011 /** 1012 * __dev_alloc_name - allocate a name for a device 1013 * @net: network namespace to allocate the device name in 1014 * @name: name format string 1015 * @buf: scratch buffer and result name string 1016 * 1017 * Passed a format string - eg "lt%d" it will try and find a suitable 1018 * id. It scans list of devices to build up a free map, then chooses 1019 * the first empty slot. The caller must hold the dev_base or rtnl lock 1020 * while allocating the name and adding the device in order to avoid 1021 * duplicates. 1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1023 * Returns the number of the unit assigned or a negative errno code. 1024 */ 1025 1026 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1027 { 1028 int i = 0; 1029 const char *p; 1030 const int max_netdevices = 8*PAGE_SIZE; 1031 unsigned long *inuse; 1032 struct net_device *d; 1033 1034 if (!dev_valid_name(name)) 1035 return -EINVAL; 1036 1037 p = strchr(name, '%'); 1038 if (p) { 1039 /* 1040 * Verify the string as this thing may have come from 1041 * the user. There must be either one "%d" and no other "%" 1042 * characters. 1043 */ 1044 if (p[1] != 'd' || strchr(p + 2, '%')) 1045 return -EINVAL; 1046 1047 /* Use one page as a bit array of possible slots */ 1048 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1049 if (!inuse) 1050 return -ENOMEM; 1051 1052 for_each_netdev(net, d) { 1053 struct netdev_name_node *name_node; 1054 list_for_each_entry(name_node, &d->name_node->list, list) { 1055 if (!sscanf(name_node->name, name, &i)) 1056 continue; 1057 if (i < 0 || i >= max_netdevices) 1058 continue; 1059 1060 /* avoid cases where sscanf is not exact inverse of printf */ 1061 snprintf(buf, IFNAMSIZ, name, i); 1062 if (!strncmp(buf, name_node->name, IFNAMSIZ)) 1063 __set_bit(i, inuse); 1064 } 1065 if (!sscanf(d->name, name, &i)) 1066 continue; 1067 if (i < 0 || i >= max_netdevices) 1068 continue; 1069 1070 /* avoid cases where sscanf is not exact inverse of printf */ 1071 snprintf(buf, IFNAMSIZ, name, i); 1072 if (!strncmp(buf, d->name, IFNAMSIZ)) 1073 __set_bit(i, inuse); 1074 } 1075 1076 i = find_first_zero_bit(inuse, max_netdevices); 1077 free_page((unsigned long) inuse); 1078 } 1079 1080 snprintf(buf, IFNAMSIZ, name, i); 1081 if (!netdev_name_in_use(net, buf)) 1082 return i; 1083 1084 /* It is possible to run out of possible slots 1085 * when the name is long and there isn't enough space left 1086 * for the digits, or if all bits are used. 1087 */ 1088 return -ENFILE; 1089 } 1090 1091 static int dev_alloc_name_ns(struct net *net, 1092 struct net_device *dev, 1093 const char *name) 1094 { 1095 char buf[IFNAMSIZ]; 1096 int ret; 1097 1098 BUG_ON(!net); 1099 ret = __dev_alloc_name(net, name, buf); 1100 if (ret >= 0) 1101 strlcpy(dev->name, buf, IFNAMSIZ); 1102 return ret; 1103 } 1104 1105 /** 1106 * dev_alloc_name - allocate a name for a device 1107 * @dev: device 1108 * @name: name format string 1109 * 1110 * Passed a format string - eg "lt%d" it will try and find a suitable 1111 * id. It scans list of devices to build up a free map, then chooses 1112 * the first empty slot. The caller must hold the dev_base or rtnl lock 1113 * while allocating the name and adding the device in order to avoid 1114 * duplicates. 1115 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1116 * Returns the number of the unit assigned or a negative errno code. 1117 */ 1118 1119 int dev_alloc_name(struct net_device *dev, const char *name) 1120 { 1121 return dev_alloc_name_ns(dev_net(dev), dev, name); 1122 } 1123 EXPORT_SYMBOL(dev_alloc_name); 1124 1125 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1126 const char *name) 1127 { 1128 BUG_ON(!net); 1129 1130 if (!dev_valid_name(name)) 1131 return -EINVAL; 1132 1133 if (strchr(name, '%')) 1134 return dev_alloc_name_ns(net, dev, name); 1135 else if (netdev_name_in_use(net, name)) 1136 return -EEXIST; 1137 else if (dev->name != name) 1138 strlcpy(dev->name, name, IFNAMSIZ); 1139 1140 return 0; 1141 } 1142 1143 /** 1144 * dev_change_name - change name of a device 1145 * @dev: device 1146 * @newname: name (or format string) must be at least IFNAMSIZ 1147 * 1148 * Change name of a device, can pass format strings "eth%d". 1149 * for wildcarding. 1150 */ 1151 int dev_change_name(struct net_device *dev, const char *newname) 1152 { 1153 unsigned char old_assign_type; 1154 char oldname[IFNAMSIZ]; 1155 int err = 0; 1156 int ret; 1157 struct net *net; 1158 1159 ASSERT_RTNL(); 1160 BUG_ON(!dev_net(dev)); 1161 1162 net = dev_net(dev); 1163 1164 /* Some auto-enslaved devices e.g. failover slaves are 1165 * special, as userspace might rename the device after 1166 * the interface had been brought up and running since 1167 * the point kernel initiated auto-enslavement. Allow 1168 * live name change even when these slave devices are 1169 * up and running. 1170 * 1171 * Typically, users of these auto-enslaving devices 1172 * don't actually care about slave name change, as 1173 * they are supposed to operate on master interface 1174 * directly. 1175 */ 1176 if (dev->flags & IFF_UP && 1177 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1178 return -EBUSY; 1179 1180 down_write(&devnet_rename_sem); 1181 1182 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1183 up_write(&devnet_rename_sem); 1184 return 0; 1185 } 1186 1187 memcpy(oldname, dev->name, IFNAMSIZ); 1188 1189 err = dev_get_valid_name(net, dev, newname); 1190 if (err < 0) { 1191 up_write(&devnet_rename_sem); 1192 return err; 1193 } 1194 1195 if (oldname[0] && !strchr(oldname, '%')) 1196 netdev_info(dev, "renamed from %s\n", oldname); 1197 1198 old_assign_type = dev->name_assign_type; 1199 dev->name_assign_type = NET_NAME_RENAMED; 1200 1201 rollback: 1202 ret = device_rename(&dev->dev, dev->name); 1203 if (ret) { 1204 memcpy(dev->name, oldname, IFNAMSIZ); 1205 dev->name_assign_type = old_assign_type; 1206 up_write(&devnet_rename_sem); 1207 return ret; 1208 } 1209 1210 up_write(&devnet_rename_sem); 1211 1212 netdev_adjacent_rename_links(dev, oldname); 1213 1214 write_lock(&dev_base_lock); 1215 netdev_name_node_del(dev->name_node); 1216 write_unlock(&dev_base_lock); 1217 1218 synchronize_rcu(); 1219 1220 write_lock(&dev_base_lock); 1221 netdev_name_node_add(net, dev->name_node); 1222 write_unlock(&dev_base_lock); 1223 1224 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1225 ret = notifier_to_errno(ret); 1226 1227 if (ret) { 1228 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1229 if (err >= 0) { 1230 err = ret; 1231 down_write(&devnet_rename_sem); 1232 memcpy(dev->name, oldname, IFNAMSIZ); 1233 memcpy(oldname, newname, IFNAMSIZ); 1234 dev->name_assign_type = old_assign_type; 1235 old_assign_type = NET_NAME_RENAMED; 1236 goto rollback; 1237 } else { 1238 netdev_err(dev, "name change rollback failed: %d\n", 1239 ret); 1240 } 1241 } 1242 1243 return err; 1244 } 1245 1246 /** 1247 * dev_set_alias - change ifalias of a device 1248 * @dev: device 1249 * @alias: name up to IFALIASZ 1250 * @len: limit of bytes to copy from info 1251 * 1252 * Set ifalias for a device, 1253 */ 1254 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1255 { 1256 struct dev_ifalias *new_alias = NULL; 1257 1258 if (len >= IFALIASZ) 1259 return -EINVAL; 1260 1261 if (len) { 1262 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1263 if (!new_alias) 1264 return -ENOMEM; 1265 1266 memcpy(new_alias->ifalias, alias, len); 1267 new_alias->ifalias[len] = 0; 1268 } 1269 1270 mutex_lock(&ifalias_mutex); 1271 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1272 mutex_is_locked(&ifalias_mutex)); 1273 mutex_unlock(&ifalias_mutex); 1274 1275 if (new_alias) 1276 kfree_rcu(new_alias, rcuhead); 1277 1278 return len; 1279 } 1280 EXPORT_SYMBOL(dev_set_alias); 1281 1282 /** 1283 * dev_get_alias - get ifalias of a device 1284 * @dev: device 1285 * @name: buffer to store name of ifalias 1286 * @len: size of buffer 1287 * 1288 * get ifalias for a device. Caller must make sure dev cannot go 1289 * away, e.g. rcu read lock or own a reference count to device. 1290 */ 1291 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1292 { 1293 const struct dev_ifalias *alias; 1294 int ret = 0; 1295 1296 rcu_read_lock(); 1297 alias = rcu_dereference(dev->ifalias); 1298 if (alias) 1299 ret = snprintf(name, len, "%s", alias->ifalias); 1300 rcu_read_unlock(); 1301 1302 return ret; 1303 } 1304 1305 /** 1306 * netdev_features_change - device changes features 1307 * @dev: device to cause notification 1308 * 1309 * Called to indicate a device has changed features. 1310 */ 1311 void netdev_features_change(struct net_device *dev) 1312 { 1313 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1314 } 1315 EXPORT_SYMBOL(netdev_features_change); 1316 1317 /** 1318 * netdev_state_change - device changes state 1319 * @dev: device to cause notification 1320 * 1321 * Called to indicate a device has changed state. This function calls 1322 * the notifier chains for netdev_chain and sends a NEWLINK message 1323 * to the routing socket. 1324 */ 1325 void netdev_state_change(struct net_device *dev) 1326 { 1327 if (dev->flags & IFF_UP) { 1328 struct netdev_notifier_change_info change_info = { 1329 .info.dev = dev, 1330 }; 1331 1332 call_netdevice_notifiers_info(NETDEV_CHANGE, 1333 &change_info.info); 1334 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1335 } 1336 } 1337 EXPORT_SYMBOL(netdev_state_change); 1338 1339 /** 1340 * __netdev_notify_peers - notify network peers about existence of @dev, 1341 * to be called when rtnl lock is already held. 1342 * @dev: network device 1343 * 1344 * Generate traffic such that interested network peers are aware of 1345 * @dev, such as by generating a gratuitous ARP. This may be used when 1346 * a device wants to inform the rest of the network about some sort of 1347 * reconfiguration such as a failover event or virtual machine 1348 * migration. 1349 */ 1350 void __netdev_notify_peers(struct net_device *dev) 1351 { 1352 ASSERT_RTNL(); 1353 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1354 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1355 } 1356 EXPORT_SYMBOL(__netdev_notify_peers); 1357 1358 /** 1359 * netdev_notify_peers - notify network peers about existence of @dev 1360 * @dev: network device 1361 * 1362 * Generate traffic such that interested network peers are aware of 1363 * @dev, such as by generating a gratuitous ARP. This may be used when 1364 * a device wants to inform the rest of the network about some sort of 1365 * reconfiguration such as a failover event or virtual machine 1366 * migration. 1367 */ 1368 void netdev_notify_peers(struct net_device *dev) 1369 { 1370 rtnl_lock(); 1371 __netdev_notify_peers(dev); 1372 rtnl_unlock(); 1373 } 1374 EXPORT_SYMBOL(netdev_notify_peers); 1375 1376 static int napi_threaded_poll(void *data); 1377 1378 static int napi_kthread_create(struct napi_struct *n) 1379 { 1380 int err = 0; 1381 1382 /* Create and wake up the kthread once to put it in 1383 * TASK_INTERRUPTIBLE mode to avoid the blocked task 1384 * warning and work with loadavg. 1385 */ 1386 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d", 1387 n->dev->name, n->napi_id); 1388 if (IS_ERR(n->thread)) { 1389 err = PTR_ERR(n->thread); 1390 pr_err("kthread_run failed with err %d\n", err); 1391 n->thread = NULL; 1392 } 1393 1394 return err; 1395 } 1396 1397 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1398 { 1399 const struct net_device_ops *ops = dev->netdev_ops; 1400 int ret; 1401 1402 ASSERT_RTNL(); 1403 dev_addr_check(dev); 1404 1405 if (!netif_device_present(dev)) { 1406 /* may be detached because parent is runtime-suspended */ 1407 if (dev->dev.parent) 1408 pm_runtime_resume(dev->dev.parent); 1409 if (!netif_device_present(dev)) 1410 return -ENODEV; 1411 } 1412 1413 /* Block netpoll from trying to do any rx path servicing. 1414 * If we don't do this there is a chance ndo_poll_controller 1415 * or ndo_poll may be running while we open the device 1416 */ 1417 netpoll_poll_disable(dev); 1418 1419 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1420 ret = notifier_to_errno(ret); 1421 if (ret) 1422 return ret; 1423 1424 set_bit(__LINK_STATE_START, &dev->state); 1425 1426 if (ops->ndo_validate_addr) 1427 ret = ops->ndo_validate_addr(dev); 1428 1429 if (!ret && ops->ndo_open) 1430 ret = ops->ndo_open(dev); 1431 1432 netpoll_poll_enable(dev); 1433 1434 if (ret) 1435 clear_bit(__LINK_STATE_START, &dev->state); 1436 else { 1437 dev->flags |= IFF_UP; 1438 dev_set_rx_mode(dev); 1439 dev_activate(dev); 1440 add_device_randomness(dev->dev_addr, dev->addr_len); 1441 } 1442 1443 return ret; 1444 } 1445 1446 /** 1447 * dev_open - prepare an interface for use. 1448 * @dev: device to open 1449 * @extack: netlink extended ack 1450 * 1451 * Takes a device from down to up state. The device's private open 1452 * function is invoked and then the multicast lists are loaded. Finally 1453 * the device is moved into the up state and a %NETDEV_UP message is 1454 * sent to the netdev notifier chain. 1455 * 1456 * Calling this function on an active interface is a nop. On a failure 1457 * a negative errno code is returned. 1458 */ 1459 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1460 { 1461 int ret; 1462 1463 if (dev->flags & IFF_UP) 1464 return 0; 1465 1466 ret = __dev_open(dev, extack); 1467 if (ret < 0) 1468 return ret; 1469 1470 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1471 call_netdevice_notifiers(NETDEV_UP, dev); 1472 1473 return ret; 1474 } 1475 EXPORT_SYMBOL(dev_open); 1476 1477 static void __dev_close_many(struct list_head *head) 1478 { 1479 struct net_device *dev; 1480 1481 ASSERT_RTNL(); 1482 might_sleep(); 1483 1484 list_for_each_entry(dev, head, close_list) { 1485 /* Temporarily disable netpoll until the interface is down */ 1486 netpoll_poll_disable(dev); 1487 1488 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1489 1490 clear_bit(__LINK_STATE_START, &dev->state); 1491 1492 /* Synchronize to scheduled poll. We cannot touch poll list, it 1493 * can be even on different cpu. So just clear netif_running(). 1494 * 1495 * dev->stop() will invoke napi_disable() on all of it's 1496 * napi_struct instances on this device. 1497 */ 1498 smp_mb__after_atomic(); /* Commit netif_running(). */ 1499 } 1500 1501 dev_deactivate_many(head); 1502 1503 list_for_each_entry(dev, head, close_list) { 1504 const struct net_device_ops *ops = dev->netdev_ops; 1505 1506 /* 1507 * Call the device specific close. This cannot fail. 1508 * Only if device is UP 1509 * 1510 * We allow it to be called even after a DETACH hot-plug 1511 * event. 1512 */ 1513 if (ops->ndo_stop) 1514 ops->ndo_stop(dev); 1515 1516 dev->flags &= ~IFF_UP; 1517 netpoll_poll_enable(dev); 1518 } 1519 } 1520 1521 static void __dev_close(struct net_device *dev) 1522 { 1523 LIST_HEAD(single); 1524 1525 list_add(&dev->close_list, &single); 1526 __dev_close_many(&single); 1527 list_del(&single); 1528 } 1529 1530 void dev_close_many(struct list_head *head, bool unlink) 1531 { 1532 struct net_device *dev, *tmp; 1533 1534 /* Remove the devices that don't need to be closed */ 1535 list_for_each_entry_safe(dev, tmp, head, close_list) 1536 if (!(dev->flags & IFF_UP)) 1537 list_del_init(&dev->close_list); 1538 1539 __dev_close_many(head); 1540 1541 list_for_each_entry_safe(dev, tmp, head, close_list) { 1542 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1543 call_netdevice_notifiers(NETDEV_DOWN, dev); 1544 if (unlink) 1545 list_del_init(&dev->close_list); 1546 } 1547 } 1548 EXPORT_SYMBOL(dev_close_many); 1549 1550 /** 1551 * dev_close - shutdown an interface. 1552 * @dev: device to shutdown 1553 * 1554 * This function moves an active device into down state. A 1555 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1556 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1557 * chain. 1558 */ 1559 void dev_close(struct net_device *dev) 1560 { 1561 if (dev->flags & IFF_UP) { 1562 LIST_HEAD(single); 1563 1564 list_add(&dev->close_list, &single); 1565 dev_close_many(&single, true); 1566 list_del(&single); 1567 } 1568 } 1569 EXPORT_SYMBOL(dev_close); 1570 1571 1572 /** 1573 * dev_disable_lro - disable Large Receive Offload on a device 1574 * @dev: device 1575 * 1576 * Disable Large Receive Offload (LRO) on a net device. Must be 1577 * called under RTNL. This is needed if received packets may be 1578 * forwarded to another interface. 1579 */ 1580 void dev_disable_lro(struct net_device *dev) 1581 { 1582 struct net_device *lower_dev; 1583 struct list_head *iter; 1584 1585 dev->wanted_features &= ~NETIF_F_LRO; 1586 netdev_update_features(dev); 1587 1588 if (unlikely(dev->features & NETIF_F_LRO)) 1589 netdev_WARN(dev, "failed to disable LRO!\n"); 1590 1591 netdev_for_each_lower_dev(dev, lower_dev, iter) 1592 dev_disable_lro(lower_dev); 1593 } 1594 EXPORT_SYMBOL(dev_disable_lro); 1595 1596 /** 1597 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1598 * @dev: device 1599 * 1600 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1601 * called under RTNL. This is needed if Generic XDP is installed on 1602 * the device. 1603 */ 1604 static void dev_disable_gro_hw(struct net_device *dev) 1605 { 1606 dev->wanted_features &= ~NETIF_F_GRO_HW; 1607 netdev_update_features(dev); 1608 1609 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1610 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1611 } 1612 1613 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1614 { 1615 #define N(val) \ 1616 case NETDEV_##val: \ 1617 return "NETDEV_" __stringify(val); 1618 switch (cmd) { 1619 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1620 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1621 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1622 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1623 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1624 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1625 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1626 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1627 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1628 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE) 1629 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA) 1630 } 1631 #undef N 1632 return "UNKNOWN_NETDEV_EVENT"; 1633 } 1634 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1635 1636 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1637 struct net_device *dev) 1638 { 1639 struct netdev_notifier_info info = { 1640 .dev = dev, 1641 }; 1642 1643 return nb->notifier_call(nb, val, &info); 1644 } 1645 1646 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1647 struct net_device *dev) 1648 { 1649 int err; 1650 1651 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1652 err = notifier_to_errno(err); 1653 if (err) 1654 return err; 1655 1656 if (!(dev->flags & IFF_UP)) 1657 return 0; 1658 1659 call_netdevice_notifier(nb, NETDEV_UP, dev); 1660 return 0; 1661 } 1662 1663 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1664 struct net_device *dev) 1665 { 1666 if (dev->flags & IFF_UP) { 1667 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1668 dev); 1669 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1670 } 1671 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1672 } 1673 1674 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1675 struct net *net) 1676 { 1677 struct net_device *dev; 1678 int err; 1679 1680 for_each_netdev(net, dev) { 1681 err = call_netdevice_register_notifiers(nb, dev); 1682 if (err) 1683 goto rollback; 1684 } 1685 return 0; 1686 1687 rollback: 1688 for_each_netdev_continue_reverse(net, dev) 1689 call_netdevice_unregister_notifiers(nb, dev); 1690 return err; 1691 } 1692 1693 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1694 struct net *net) 1695 { 1696 struct net_device *dev; 1697 1698 for_each_netdev(net, dev) 1699 call_netdevice_unregister_notifiers(nb, dev); 1700 } 1701 1702 static int dev_boot_phase = 1; 1703 1704 /** 1705 * register_netdevice_notifier - register a network notifier block 1706 * @nb: notifier 1707 * 1708 * Register a notifier to be called when network device events occur. 1709 * The notifier passed is linked into the kernel structures and must 1710 * not be reused until it has been unregistered. A negative errno code 1711 * is returned on a failure. 1712 * 1713 * When registered all registration and up events are replayed 1714 * to the new notifier to allow device to have a race free 1715 * view of the network device list. 1716 */ 1717 1718 int register_netdevice_notifier(struct notifier_block *nb) 1719 { 1720 struct net *net; 1721 int err; 1722 1723 /* Close race with setup_net() and cleanup_net() */ 1724 down_write(&pernet_ops_rwsem); 1725 rtnl_lock(); 1726 err = raw_notifier_chain_register(&netdev_chain, nb); 1727 if (err) 1728 goto unlock; 1729 if (dev_boot_phase) 1730 goto unlock; 1731 for_each_net(net) { 1732 err = call_netdevice_register_net_notifiers(nb, net); 1733 if (err) 1734 goto rollback; 1735 } 1736 1737 unlock: 1738 rtnl_unlock(); 1739 up_write(&pernet_ops_rwsem); 1740 return err; 1741 1742 rollback: 1743 for_each_net_continue_reverse(net) 1744 call_netdevice_unregister_net_notifiers(nb, net); 1745 1746 raw_notifier_chain_unregister(&netdev_chain, nb); 1747 goto unlock; 1748 } 1749 EXPORT_SYMBOL(register_netdevice_notifier); 1750 1751 /** 1752 * unregister_netdevice_notifier - unregister a network notifier block 1753 * @nb: notifier 1754 * 1755 * Unregister a notifier previously registered by 1756 * register_netdevice_notifier(). The notifier is unlinked into the 1757 * kernel structures and may then be reused. A negative errno code 1758 * is returned on a failure. 1759 * 1760 * After unregistering unregister and down device events are synthesized 1761 * for all devices on the device list to the removed notifier to remove 1762 * the need for special case cleanup code. 1763 */ 1764 1765 int unregister_netdevice_notifier(struct notifier_block *nb) 1766 { 1767 struct net *net; 1768 int err; 1769 1770 /* Close race with setup_net() and cleanup_net() */ 1771 down_write(&pernet_ops_rwsem); 1772 rtnl_lock(); 1773 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1774 if (err) 1775 goto unlock; 1776 1777 for_each_net(net) 1778 call_netdevice_unregister_net_notifiers(nb, net); 1779 1780 unlock: 1781 rtnl_unlock(); 1782 up_write(&pernet_ops_rwsem); 1783 return err; 1784 } 1785 EXPORT_SYMBOL(unregister_netdevice_notifier); 1786 1787 static int __register_netdevice_notifier_net(struct net *net, 1788 struct notifier_block *nb, 1789 bool ignore_call_fail) 1790 { 1791 int err; 1792 1793 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1794 if (err) 1795 return err; 1796 if (dev_boot_phase) 1797 return 0; 1798 1799 err = call_netdevice_register_net_notifiers(nb, net); 1800 if (err && !ignore_call_fail) 1801 goto chain_unregister; 1802 1803 return 0; 1804 1805 chain_unregister: 1806 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1807 return err; 1808 } 1809 1810 static int __unregister_netdevice_notifier_net(struct net *net, 1811 struct notifier_block *nb) 1812 { 1813 int err; 1814 1815 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1816 if (err) 1817 return err; 1818 1819 call_netdevice_unregister_net_notifiers(nb, net); 1820 return 0; 1821 } 1822 1823 /** 1824 * register_netdevice_notifier_net - register a per-netns network notifier block 1825 * @net: network namespace 1826 * @nb: notifier 1827 * 1828 * Register a notifier to be called when network device events occur. 1829 * The notifier passed is linked into the kernel structures and must 1830 * not be reused until it has been unregistered. A negative errno code 1831 * is returned on a failure. 1832 * 1833 * When registered all registration and up events are replayed 1834 * to the new notifier to allow device to have a race free 1835 * view of the network device list. 1836 */ 1837 1838 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1839 { 1840 int err; 1841 1842 rtnl_lock(); 1843 err = __register_netdevice_notifier_net(net, nb, false); 1844 rtnl_unlock(); 1845 return err; 1846 } 1847 EXPORT_SYMBOL(register_netdevice_notifier_net); 1848 1849 /** 1850 * unregister_netdevice_notifier_net - unregister a per-netns 1851 * network notifier block 1852 * @net: network namespace 1853 * @nb: notifier 1854 * 1855 * Unregister a notifier previously registered by 1856 * register_netdevice_notifier(). The notifier is unlinked into the 1857 * kernel structures and may then be reused. A negative errno code 1858 * is returned on a failure. 1859 * 1860 * After unregistering unregister and down device events are synthesized 1861 * for all devices on the device list to the removed notifier to remove 1862 * the need for special case cleanup code. 1863 */ 1864 1865 int unregister_netdevice_notifier_net(struct net *net, 1866 struct notifier_block *nb) 1867 { 1868 int err; 1869 1870 rtnl_lock(); 1871 err = __unregister_netdevice_notifier_net(net, nb); 1872 rtnl_unlock(); 1873 return err; 1874 } 1875 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1876 1877 int register_netdevice_notifier_dev_net(struct net_device *dev, 1878 struct notifier_block *nb, 1879 struct netdev_net_notifier *nn) 1880 { 1881 int err; 1882 1883 rtnl_lock(); 1884 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1885 if (!err) { 1886 nn->nb = nb; 1887 list_add(&nn->list, &dev->net_notifier_list); 1888 } 1889 rtnl_unlock(); 1890 return err; 1891 } 1892 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1893 1894 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1895 struct notifier_block *nb, 1896 struct netdev_net_notifier *nn) 1897 { 1898 int err; 1899 1900 rtnl_lock(); 1901 list_del(&nn->list); 1902 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1903 rtnl_unlock(); 1904 return err; 1905 } 1906 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1907 1908 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 1909 struct net *net) 1910 { 1911 struct netdev_net_notifier *nn; 1912 1913 list_for_each_entry(nn, &dev->net_notifier_list, list) { 1914 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 1915 __register_netdevice_notifier_net(net, nn->nb, true); 1916 } 1917 } 1918 1919 /** 1920 * call_netdevice_notifiers_info - call all network notifier blocks 1921 * @val: value passed unmodified to notifier function 1922 * @info: notifier information data 1923 * 1924 * Call all network notifier blocks. Parameters and return value 1925 * are as for raw_notifier_call_chain(). 1926 */ 1927 1928 static int call_netdevice_notifiers_info(unsigned long val, 1929 struct netdev_notifier_info *info) 1930 { 1931 struct net *net = dev_net(info->dev); 1932 int ret; 1933 1934 ASSERT_RTNL(); 1935 1936 /* Run per-netns notifier block chain first, then run the global one. 1937 * Hopefully, one day, the global one is going to be removed after 1938 * all notifier block registrators get converted to be per-netns. 1939 */ 1940 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 1941 if (ret & NOTIFY_STOP_MASK) 1942 return ret; 1943 return raw_notifier_call_chain(&netdev_chain, val, info); 1944 } 1945 1946 /** 1947 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks 1948 * for and rollback on error 1949 * @val_up: value passed unmodified to notifier function 1950 * @val_down: value passed unmodified to the notifier function when 1951 * recovering from an error on @val_up 1952 * @info: notifier information data 1953 * 1954 * Call all per-netns network notifier blocks, but not notifier blocks on 1955 * the global notifier chain. Parameters and return value are as for 1956 * raw_notifier_call_chain_robust(). 1957 */ 1958 1959 static int 1960 call_netdevice_notifiers_info_robust(unsigned long val_up, 1961 unsigned long val_down, 1962 struct netdev_notifier_info *info) 1963 { 1964 struct net *net = dev_net(info->dev); 1965 1966 ASSERT_RTNL(); 1967 1968 return raw_notifier_call_chain_robust(&net->netdev_chain, 1969 val_up, val_down, info); 1970 } 1971 1972 static int call_netdevice_notifiers_extack(unsigned long val, 1973 struct net_device *dev, 1974 struct netlink_ext_ack *extack) 1975 { 1976 struct netdev_notifier_info info = { 1977 .dev = dev, 1978 .extack = extack, 1979 }; 1980 1981 return call_netdevice_notifiers_info(val, &info); 1982 } 1983 1984 /** 1985 * call_netdevice_notifiers - call all network notifier blocks 1986 * @val: value passed unmodified to notifier function 1987 * @dev: net_device pointer passed unmodified to notifier function 1988 * 1989 * Call all network notifier blocks. Parameters and return value 1990 * are as for raw_notifier_call_chain(). 1991 */ 1992 1993 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1994 { 1995 return call_netdevice_notifiers_extack(val, dev, NULL); 1996 } 1997 EXPORT_SYMBOL(call_netdevice_notifiers); 1998 1999 /** 2000 * call_netdevice_notifiers_mtu - call all network notifier blocks 2001 * @val: value passed unmodified to notifier function 2002 * @dev: net_device pointer passed unmodified to notifier function 2003 * @arg: additional u32 argument passed to the notifier function 2004 * 2005 * Call all network notifier blocks. Parameters and return value 2006 * are as for raw_notifier_call_chain(). 2007 */ 2008 static int call_netdevice_notifiers_mtu(unsigned long val, 2009 struct net_device *dev, u32 arg) 2010 { 2011 struct netdev_notifier_info_ext info = { 2012 .info.dev = dev, 2013 .ext.mtu = arg, 2014 }; 2015 2016 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2017 2018 return call_netdevice_notifiers_info(val, &info.info); 2019 } 2020 2021 #ifdef CONFIG_NET_INGRESS 2022 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2023 2024 void net_inc_ingress_queue(void) 2025 { 2026 static_branch_inc(&ingress_needed_key); 2027 } 2028 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2029 2030 void net_dec_ingress_queue(void) 2031 { 2032 static_branch_dec(&ingress_needed_key); 2033 } 2034 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2035 #endif 2036 2037 #ifdef CONFIG_NET_EGRESS 2038 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2039 2040 void net_inc_egress_queue(void) 2041 { 2042 static_branch_inc(&egress_needed_key); 2043 } 2044 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2045 2046 void net_dec_egress_queue(void) 2047 { 2048 static_branch_dec(&egress_needed_key); 2049 } 2050 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2051 #endif 2052 2053 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2054 EXPORT_SYMBOL(netstamp_needed_key); 2055 #ifdef CONFIG_JUMP_LABEL 2056 static atomic_t netstamp_needed_deferred; 2057 static atomic_t netstamp_wanted; 2058 static void netstamp_clear(struct work_struct *work) 2059 { 2060 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2061 int wanted; 2062 2063 wanted = atomic_add_return(deferred, &netstamp_wanted); 2064 if (wanted > 0) 2065 static_branch_enable(&netstamp_needed_key); 2066 else 2067 static_branch_disable(&netstamp_needed_key); 2068 } 2069 static DECLARE_WORK(netstamp_work, netstamp_clear); 2070 #endif 2071 2072 void net_enable_timestamp(void) 2073 { 2074 #ifdef CONFIG_JUMP_LABEL 2075 int wanted; 2076 2077 while (1) { 2078 wanted = atomic_read(&netstamp_wanted); 2079 if (wanted <= 0) 2080 break; 2081 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2082 return; 2083 } 2084 atomic_inc(&netstamp_needed_deferred); 2085 schedule_work(&netstamp_work); 2086 #else 2087 static_branch_inc(&netstamp_needed_key); 2088 #endif 2089 } 2090 EXPORT_SYMBOL(net_enable_timestamp); 2091 2092 void net_disable_timestamp(void) 2093 { 2094 #ifdef CONFIG_JUMP_LABEL 2095 int wanted; 2096 2097 while (1) { 2098 wanted = atomic_read(&netstamp_wanted); 2099 if (wanted <= 1) 2100 break; 2101 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2102 return; 2103 } 2104 atomic_dec(&netstamp_needed_deferred); 2105 schedule_work(&netstamp_work); 2106 #else 2107 static_branch_dec(&netstamp_needed_key); 2108 #endif 2109 } 2110 EXPORT_SYMBOL(net_disable_timestamp); 2111 2112 static inline void net_timestamp_set(struct sk_buff *skb) 2113 { 2114 skb->tstamp = 0; 2115 skb->mono_delivery_time = 0; 2116 if (static_branch_unlikely(&netstamp_needed_key)) 2117 skb->tstamp = ktime_get_real(); 2118 } 2119 2120 #define net_timestamp_check(COND, SKB) \ 2121 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2122 if ((COND) && !(SKB)->tstamp) \ 2123 (SKB)->tstamp = ktime_get_real(); \ 2124 } \ 2125 2126 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2127 { 2128 return __is_skb_forwardable(dev, skb, true); 2129 } 2130 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2131 2132 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb, 2133 bool check_mtu) 2134 { 2135 int ret = ____dev_forward_skb(dev, skb, check_mtu); 2136 2137 if (likely(!ret)) { 2138 skb->protocol = eth_type_trans(skb, dev); 2139 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2140 } 2141 2142 return ret; 2143 } 2144 2145 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2146 { 2147 return __dev_forward_skb2(dev, skb, true); 2148 } 2149 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2150 2151 /** 2152 * dev_forward_skb - loopback an skb to another netif 2153 * 2154 * @dev: destination network device 2155 * @skb: buffer to forward 2156 * 2157 * return values: 2158 * NET_RX_SUCCESS (no congestion) 2159 * NET_RX_DROP (packet was dropped, but freed) 2160 * 2161 * dev_forward_skb can be used for injecting an skb from the 2162 * start_xmit function of one device into the receive queue 2163 * of another device. 2164 * 2165 * The receiving device may be in another namespace, so 2166 * we have to clear all information in the skb that could 2167 * impact namespace isolation. 2168 */ 2169 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2170 { 2171 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2172 } 2173 EXPORT_SYMBOL_GPL(dev_forward_skb); 2174 2175 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb) 2176 { 2177 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb); 2178 } 2179 2180 static inline int deliver_skb(struct sk_buff *skb, 2181 struct packet_type *pt_prev, 2182 struct net_device *orig_dev) 2183 { 2184 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2185 return -ENOMEM; 2186 refcount_inc(&skb->users); 2187 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2188 } 2189 2190 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2191 struct packet_type **pt, 2192 struct net_device *orig_dev, 2193 __be16 type, 2194 struct list_head *ptype_list) 2195 { 2196 struct packet_type *ptype, *pt_prev = *pt; 2197 2198 list_for_each_entry_rcu(ptype, ptype_list, list) { 2199 if (ptype->type != type) 2200 continue; 2201 if (pt_prev) 2202 deliver_skb(skb, pt_prev, orig_dev); 2203 pt_prev = ptype; 2204 } 2205 *pt = pt_prev; 2206 } 2207 2208 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2209 { 2210 if (!ptype->af_packet_priv || !skb->sk) 2211 return false; 2212 2213 if (ptype->id_match) 2214 return ptype->id_match(ptype, skb->sk); 2215 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2216 return true; 2217 2218 return false; 2219 } 2220 2221 /** 2222 * dev_nit_active - return true if any network interface taps are in use 2223 * 2224 * @dev: network device to check for the presence of taps 2225 */ 2226 bool dev_nit_active(struct net_device *dev) 2227 { 2228 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2229 } 2230 EXPORT_SYMBOL_GPL(dev_nit_active); 2231 2232 /* 2233 * Support routine. Sends outgoing frames to any network 2234 * taps currently in use. 2235 */ 2236 2237 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2238 { 2239 struct packet_type *ptype; 2240 struct sk_buff *skb2 = NULL; 2241 struct packet_type *pt_prev = NULL; 2242 struct list_head *ptype_list = &ptype_all; 2243 2244 rcu_read_lock(); 2245 again: 2246 list_for_each_entry_rcu(ptype, ptype_list, list) { 2247 if (ptype->ignore_outgoing) 2248 continue; 2249 2250 /* Never send packets back to the socket 2251 * they originated from - MvS ([email protected]) 2252 */ 2253 if (skb_loop_sk(ptype, skb)) 2254 continue; 2255 2256 if (pt_prev) { 2257 deliver_skb(skb2, pt_prev, skb->dev); 2258 pt_prev = ptype; 2259 continue; 2260 } 2261 2262 /* need to clone skb, done only once */ 2263 skb2 = skb_clone(skb, GFP_ATOMIC); 2264 if (!skb2) 2265 goto out_unlock; 2266 2267 net_timestamp_set(skb2); 2268 2269 /* skb->nh should be correctly 2270 * set by sender, so that the second statement is 2271 * just protection against buggy protocols. 2272 */ 2273 skb_reset_mac_header(skb2); 2274 2275 if (skb_network_header(skb2) < skb2->data || 2276 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2277 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2278 ntohs(skb2->protocol), 2279 dev->name); 2280 skb_reset_network_header(skb2); 2281 } 2282 2283 skb2->transport_header = skb2->network_header; 2284 skb2->pkt_type = PACKET_OUTGOING; 2285 pt_prev = ptype; 2286 } 2287 2288 if (ptype_list == &ptype_all) { 2289 ptype_list = &dev->ptype_all; 2290 goto again; 2291 } 2292 out_unlock: 2293 if (pt_prev) { 2294 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2295 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2296 else 2297 kfree_skb(skb2); 2298 } 2299 rcu_read_unlock(); 2300 } 2301 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2302 2303 /** 2304 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2305 * @dev: Network device 2306 * @txq: number of queues available 2307 * 2308 * If real_num_tx_queues is changed the tc mappings may no longer be 2309 * valid. To resolve this verify the tc mapping remains valid and if 2310 * not NULL the mapping. With no priorities mapping to this 2311 * offset/count pair it will no longer be used. In the worst case TC0 2312 * is invalid nothing can be done so disable priority mappings. If is 2313 * expected that drivers will fix this mapping if they can before 2314 * calling netif_set_real_num_tx_queues. 2315 */ 2316 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2317 { 2318 int i; 2319 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2320 2321 /* If TC0 is invalidated disable TC mapping */ 2322 if (tc->offset + tc->count > txq) { 2323 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2324 dev->num_tc = 0; 2325 return; 2326 } 2327 2328 /* Invalidated prio to tc mappings set to TC0 */ 2329 for (i = 1; i < TC_BITMASK + 1; i++) { 2330 int q = netdev_get_prio_tc_map(dev, i); 2331 2332 tc = &dev->tc_to_txq[q]; 2333 if (tc->offset + tc->count > txq) { 2334 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2335 i, q); 2336 netdev_set_prio_tc_map(dev, i, 0); 2337 } 2338 } 2339 } 2340 2341 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2342 { 2343 if (dev->num_tc) { 2344 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2345 int i; 2346 2347 /* walk through the TCs and see if it falls into any of them */ 2348 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2349 if ((txq - tc->offset) < tc->count) 2350 return i; 2351 } 2352 2353 /* didn't find it, just return -1 to indicate no match */ 2354 return -1; 2355 } 2356 2357 return 0; 2358 } 2359 EXPORT_SYMBOL(netdev_txq_to_tc); 2360 2361 #ifdef CONFIG_XPS 2362 static struct static_key xps_needed __read_mostly; 2363 static struct static_key xps_rxqs_needed __read_mostly; 2364 static DEFINE_MUTEX(xps_map_mutex); 2365 #define xmap_dereference(P) \ 2366 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2367 2368 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2369 struct xps_dev_maps *old_maps, int tci, u16 index) 2370 { 2371 struct xps_map *map = NULL; 2372 int pos; 2373 2374 if (dev_maps) 2375 map = xmap_dereference(dev_maps->attr_map[tci]); 2376 if (!map) 2377 return false; 2378 2379 for (pos = map->len; pos--;) { 2380 if (map->queues[pos] != index) 2381 continue; 2382 2383 if (map->len > 1) { 2384 map->queues[pos] = map->queues[--map->len]; 2385 break; 2386 } 2387 2388 if (old_maps) 2389 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL); 2390 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2391 kfree_rcu(map, rcu); 2392 return false; 2393 } 2394 2395 return true; 2396 } 2397 2398 static bool remove_xps_queue_cpu(struct net_device *dev, 2399 struct xps_dev_maps *dev_maps, 2400 int cpu, u16 offset, u16 count) 2401 { 2402 int num_tc = dev_maps->num_tc; 2403 bool active = false; 2404 int tci; 2405 2406 for (tci = cpu * num_tc; num_tc--; tci++) { 2407 int i, j; 2408 2409 for (i = count, j = offset; i--; j++) { 2410 if (!remove_xps_queue(dev_maps, NULL, tci, j)) 2411 break; 2412 } 2413 2414 active |= i < 0; 2415 } 2416 2417 return active; 2418 } 2419 2420 static void reset_xps_maps(struct net_device *dev, 2421 struct xps_dev_maps *dev_maps, 2422 enum xps_map_type type) 2423 { 2424 static_key_slow_dec_cpuslocked(&xps_needed); 2425 if (type == XPS_RXQS) 2426 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2427 2428 RCU_INIT_POINTER(dev->xps_maps[type], NULL); 2429 2430 kfree_rcu(dev_maps, rcu); 2431 } 2432 2433 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type, 2434 u16 offset, u16 count) 2435 { 2436 struct xps_dev_maps *dev_maps; 2437 bool active = false; 2438 int i, j; 2439 2440 dev_maps = xmap_dereference(dev->xps_maps[type]); 2441 if (!dev_maps) 2442 return; 2443 2444 for (j = 0; j < dev_maps->nr_ids; j++) 2445 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count); 2446 if (!active) 2447 reset_xps_maps(dev, dev_maps, type); 2448 2449 if (type == XPS_CPUS) { 2450 for (i = offset + (count - 1); count--; i--) 2451 netdev_queue_numa_node_write( 2452 netdev_get_tx_queue(dev, i), NUMA_NO_NODE); 2453 } 2454 } 2455 2456 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2457 u16 count) 2458 { 2459 if (!static_key_false(&xps_needed)) 2460 return; 2461 2462 cpus_read_lock(); 2463 mutex_lock(&xps_map_mutex); 2464 2465 if (static_key_false(&xps_rxqs_needed)) 2466 clean_xps_maps(dev, XPS_RXQS, offset, count); 2467 2468 clean_xps_maps(dev, XPS_CPUS, offset, count); 2469 2470 mutex_unlock(&xps_map_mutex); 2471 cpus_read_unlock(); 2472 } 2473 2474 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2475 { 2476 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2477 } 2478 2479 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2480 u16 index, bool is_rxqs_map) 2481 { 2482 struct xps_map *new_map; 2483 int alloc_len = XPS_MIN_MAP_ALLOC; 2484 int i, pos; 2485 2486 for (pos = 0; map && pos < map->len; pos++) { 2487 if (map->queues[pos] != index) 2488 continue; 2489 return map; 2490 } 2491 2492 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2493 if (map) { 2494 if (pos < map->alloc_len) 2495 return map; 2496 2497 alloc_len = map->alloc_len * 2; 2498 } 2499 2500 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2501 * map 2502 */ 2503 if (is_rxqs_map) 2504 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2505 else 2506 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2507 cpu_to_node(attr_index)); 2508 if (!new_map) 2509 return NULL; 2510 2511 for (i = 0; i < pos; i++) 2512 new_map->queues[i] = map->queues[i]; 2513 new_map->alloc_len = alloc_len; 2514 new_map->len = pos; 2515 2516 return new_map; 2517 } 2518 2519 /* Copy xps maps at a given index */ 2520 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps, 2521 struct xps_dev_maps *new_dev_maps, int index, 2522 int tc, bool skip_tc) 2523 { 2524 int i, tci = index * dev_maps->num_tc; 2525 struct xps_map *map; 2526 2527 /* copy maps belonging to foreign traffic classes */ 2528 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2529 if (i == tc && skip_tc) 2530 continue; 2531 2532 /* fill in the new device map from the old device map */ 2533 map = xmap_dereference(dev_maps->attr_map[tci]); 2534 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2535 } 2536 } 2537 2538 /* Must be called under cpus_read_lock */ 2539 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2540 u16 index, enum xps_map_type type) 2541 { 2542 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL; 2543 const unsigned long *online_mask = NULL; 2544 bool active = false, copy = false; 2545 int i, j, tci, numa_node_id = -2; 2546 int maps_sz, num_tc = 1, tc = 0; 2547 struct xps_map *map, *new_map; 2548 unsigned int nr_ids; 2549 2550 if (dev->num_tc) { 2551 /* Do not allow XPS on subordinate device directly */ 2552 num_tc = dev->num_tc; 2553 if (num_tc < 0) 2554 return -EINVAL; 2555 2556 /* If queue belongs to subordinate dev use its map */ 2557 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2558 2559 tc = netdev_txq_to_tc(dev, index); 2560 if (tc < 0) 2561 return -EINVAL; 2562 } 2563 2564 mutex_lock(&xps_map_mutex); 2565 2566 dev_maps = xmap_dereference(dev->xps_maps[type]); 2567 if (type == XPS_RXQS) { 2568 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2569 nr_ids = dev->num_rx_queues; 2570 } else { 2571 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2572 if (num_possible_cpus() > 1) 2573 online_mask = cpumask_bits(cpu_online_mask); 2574 nr_ids = nr_cpu_ids; 2575 } 2576 2577 if (maps_sz < L1_CACHE_BYTES) 2578 maps_sz = L1_CACHE_BYTES; 2579 2580 /* The old dev_maps could be larger or smaller than the one we're 2581 * setting up now, as dev->num_tc or nr_ids could have been updated in 2582 * between. We could try to be smart, but let's be safe instead and only 2583 * copy foreign traffic classes if the two map sizes match. 2584 */ 2585 if (dev_maps && 2586 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids) 2587 copy = true; 2588 2589 /* allocate memory for queue storage */ 2590 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2591 j < nr_ids;) { 2592 if (!new_dev_maps) { 2593 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2594 if (!new_dev_maps) { 2595 mutex_unlock(&xps_map_mutex); 2596 return -ENOMEM; 2597 } 2598 2599 new_dev_maps->nr_ids = nr_ids; 2600 new_dev_maps->num_tc = num_tc; 2601 } 2602 2603 tci = j * num_tc + tc; 2604 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL; 2605 2606 map = expand_xps_map(map, j, index, type == XPS_RXQS); 2607 if (!map) 2608 goto error; 2609 2610 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2611 } 2612 2613 if (!new_dev_maps) 2614 goto out_no_new_maps; 2615 2616 if (!dev_maps) { 2617 /* Increment static keys at most once per type */ 2618 static_key_slow_inc_cpuslocked(&xps_needed); 2619 if (type == XPS_RXQS) 2620 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2621 } 2622 2623 for (j = 0; j < nr_ids; j++) { 2624 bool skip_tc = false; 2625 2626 tci = j * num_tc + tc; 2627 if (netif_attr_test_mask(j, mask, nr_ids) && 2628 netif_attr_test_online(j, online_mask, nr_ids)) { 2629 /* add tx-queue to CPU/rx-queue maps */ 2630 int pos = 0; 2631 2632 skip_tc = true; 2633 2634 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2635 while ((pos < map->len) && (map->queues[pos] != index)) 2636 pos++; 2637 2638 if (pos == map->len) 2639 map->queues[map->len++] = index; 2640 #ifdef CONFIG_NUMA 2641 if (type == XPS_CPUS) { 2642 if (numa_node_id == -2) 2643 numa_node_id = cpu_to_node(j); 2644 else if (numa_node_id != cpu_to_node(j)) 2645 numa_node_id = -1; 2646 } 2647 #endif 2648 } 2649 2650 if (copy) 2651 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc, 2652 skip_tc); 2653 } 2654 2655 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps); 2656 2657 /* Cleanup old maps */ 2658 if (!dev_maps) 2659 goto out_no_old_maps; 2660 2661 for (j = 0; j < dev_maps->nr_ids; j++) { 2662 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) { 2663 map = xmap_dereference(dev_maps->attr_map[tci]); 2664 if (!map) 2665 continue; 2666 2667 if (copy) { 2668 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2669 if (map == new_map) 2670 continue; 2671 } 2672 2673 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2674 kfree_rcu(map, rcu); 2675 } 2676 } 2677 2678 old_dev_maps = dev_maps; 2679 2680 out_no_old_maps: 2681 dev_maps = new_dev_maps; 2682 active = true; 2683 2684 out_no_new_maps: 2685 if (type == XPS_CPUS) 2686 /* update Tx queue numa node */ 2687 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2688 (numa_node_id >= 0) ? 2689 numa_node_id : NUMA_NO_NODE); 2690 2691 if (!dev_maps) 2692 goto out_no_maps; 2693 2694 /* removes tx-queue from unused CPUs/rx-queues */ 2695 for (j = 0; j < dev_maps->nr_ids; j++) { 2696 tci = j * dev_maps->num_tc; 2697 2698 for (i = 0; i < dev_maps->num_tc; i++, tci++) { 2699 if (i == tc && 2700 netif_attr_test_mask(j, mask, dev_maps->nr_ids) && 2701 netif_attr_test_online(j, online_mask, dev_maps->nr_ids)) 2702 continue; 2703 2704 active |= remove_xps_queue(dev_maps, 2705 copy ? old_dev_maps : NULL, 2706 tci, index); 2707 } 2708 } 2709 2710 if (old_dev_maps) 2711 kfree_rcu(old_dev_maps, rcu); 2712 2713 /* free map if not active */ 2714 if (!active) 2715 reset_xps_maps(dev, dev_maps, type); 2716 2717 out_no_maps: 2718 mutex_unlock(&xps_map_mutex); 2719 2720 return 0; 2721 error: 2722 /* remove any maps that we added */ 2723 for (j = 0; j < nr_ids; j++) { 2724 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2725 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2726 map = copy ? 2727 xmap_dereference(dev_maps->attr_map[tci]) : 2728 NULL; 2729 if (new_map && new_map != map) 2730 kfree(new_map); 2731 } 2732 } 2733 2734 mutex_unlock(&xps_map_mutex); 2735 2736 kfree(new_dev_maps); 2737 return -ENOMEM; 2738 } 2739 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2740 2741 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2742 u16 index) 2743 { 2744 int ret; 2745 2746 cpus_read_lock(); 2747 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS); 2748 cpus_read_unlock(); 2749 2750 return ret; 2751 } 2752 EXPORT_SYMBOL(netif_set_xps_queue); 2753 2754 #endif 2755 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2756 { 2757 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2758 2759 /* Unbind any subordinate channels */ 2760 while (txq-- != &dev->_tx[0]) { 2761 if (txq->sb_dev) 2762 netdev_unbind_sb_channel(dev, txq->sb_dev); 2763 } 2764 } 2765 2766 void netdev_reset_tc(struct net_device *dev) 2767 { 2768 #ifdef CONFIG_XPS 2769 netif_reset_xps_queues_gt(dev, 0); 2770 #endif 2771 netdev_unbind_all_sb_channels(dev); 2772 2773 /* Reset TC configuration of device */ 2774 dev->num_tc = 0; 2775 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2776 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2777 } 2778 EXPORT_SYMBOL(netdev_reset_tc); 2779 2780 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2781 { 2782 if (tc >= dev->num_tc) 2783 return -EINVAL; 2784 2785 #ifdef CONFIG_XPS 2786 netif_reset_xps_queues(dev, offset, count); 2787 #endif 2788 dev->tc_to_txq[tc].count = count; 2789 dev->tc_to_txq[tc].offset = offset; 2790 return 0; 2791 } 2792 EXPORT_SYMBOL(netdev_set_tc_queue); 2793 2794 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2795 { 2796 if (num_tc > TC_MAX_QUEUE) 2797 return -EINVAL; 2798 2799 #ifdef CONFIG_XPS 2800 netif_reset_xps_queues_gt(dev, 0); 2801 #endif 2802 netdev_unbind_all_sb_channels(dev); 2803 2804 dev->num_tc = num_tc; 2805 return 0; 2806 } 2807 EXPORT_SYMBOL(netdev_set_num_tc); 2808 2809 void netdev_unbind_sb_channel(struct net_device *dev, 2810 struct net_device *sb_dev) 2811 { 2812 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2813 2814 #ifdef CONFIG_XPS 2815 netif_reset_xps_queues_gt(sb_dev, 0); 2816 #endif 2817 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2818 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2819 2820 while (txq-- != &dev->_tx[0]) { 2821 if (txq->sb_dev == sb_dev) 2822 txq->sb_dev = NULL; 2823 } 2824 } 2825 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2826 2827 int netdev_bind_sb_channel_queue(struct net_device *dev, 2828 struct net_device *sb_dev, 2829 u8 tc, u16 count, u16 offset) 2830 { 2831 /* Make certain the sb_dev and dev are already configured */ 2832 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2833 return -EINVAL; 2834 2835 /* We cannot hand out queues we don't have */ 2836 if ((offset + count) > dev->real_num_tx_queues) 2837 return -EINVAL; 2838 2839 /* Record the mapping */ 2840 sb_dev->tc_to_txq[tc].count = count; 2841 sb_dev->tc_to_txq[tc].offset = offset; 2842 2843 /* Provide a way for Tx queue to find the tc_to_txq map or 2844 * XPS map for itself. 2845 */ 2846 while (count--) 2847 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2848 2849 return 0; 2850 } 2851 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2852 2853 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2854 { 2855 /* Do not use a multiqueue device to represent a subordinate channel */ 2856 if (netif_is_multiqueue(dev)) 2857 return -ENODEV; 2858 2859 /* We allow channels 1 - 32767 to be used for subordinate channels. 2860 * Channel 0 is meant to be "native" mode and used only to represent 2861 * the main root device. We allow writing 0 to reset the device back 2862 * to normal mode after being used as a subordinate channel. 2863 */ 2864 if (channel > S16_MAX) 2865 return -EINVAL; 2866 2867 dev->num_tc = -channel; 2868 2869 return 0; 2870 } 2871 EXPORT_SYMBOL(netdev_set_sb_channel); 2872 2873 /* 2874 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2875 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2876 */ 2877 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2878 { 2879 bool disabling; 2880 int rc; 2881 2882 disabling = txq < dev->real_num_tx_queues; 2883 2884 if (txq < 1 || txq > dev->num_tx_queues) 2885 return -EINVAL; 2886 2887 if (dev->reg_state == NETREG_REGISTERED || 2888 dev->reg_state == NETREG_UNREGISTERING) { 2889 ASSERT_RTNL(); 2890 2891 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2892 txq); 2893 if (rc) 2894 return rc; 2895 2896 if (dev->num_tc) 2897 netif_setup_tc(dev, txq); 2898 2899 dev_qdisc_change_real_num_tx(dev, txq); 2900 2901 dev->real_num_tx_queues = txq; 2902 2903 if (disabling) { 2904 synchronize_net(); 2905 qdisc_reset_all_tx_gt(dev, txq); 2906 #ifdef CONFIG_XPS 2907 netif_reset_xps_queues_gt(dev, txq); 2908 #endif 2909 } 2910 } else { 2911 dev->real_num_tx_queues = txq; 2912 } 2913 2914 return 0; 2915 } 2916 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2917 2918 #ifdef CONFIG_SYSFS 2919 /** 2920 * netif_set_real_num_rx_queues - set actual number of RX queues used 2921 * @dev: Network device 2922 * @rxq: Actual number of RX queues 2923 * 2924 * This must be called either with the rtnl_lock held or before 2925 * registration of the net device. Returns 0 on success, or a 2926 * negative error code. If called before registration, it always 2927 * succeeds. 2928 */ 2929 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2930 { 2931 int rc; 2932 2933 if (rxq < 1 || rxq > dev->num_rx_queues) 2934 return -EINVAL; 2935 2936 if (dev->reg_state == NETREG_REGISTERED) { 2937 ASSERT_RTNL(); 2938 2939 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2940 rxq); 2941 if (rc) 2942 return rc; 2943 } 2944 2945 dev->real_num_rx_queues = rxq; 2946 return 0; 2947 } 2948 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2949 #endif 2950 2951 /** 2952 * netif_set_real_num_queues - set actual number of RX and TX queues used 2953 * @dev: Network device 2954 * @txq: Actual number of TX queues 2955 * @rxq: Actual number of RX queues 2956 * 2957 * Set the real number of both TX and RX queues. 2958 * Does nothing if the number of queues is already correct. 2959 */ 2960 int netif_set_real_num_queues(struct net_device *dev, 2961 unsigned int txq, unsigned int rxq) 2962 { 2963 unsigned int old_rxq = dev->real_num_rx_queues; 2964 int err; 2965 2966 if (txq < 1 || txq > dev->num_tx_queues || 2967 rxq < 1 || rxq > dev->num_rx_queues) 2968 return -EINVAL; 2969 2970 /* Start from increases, so the error path only does decreases - 2971 * decreases can't fail. 2972 */ 2973 if (rxq > dev->real_num_rx_queues) { 2974 err = netif_set_real_num_rx_queues(dev, rxq); 2975 if (err) 2976 return err; 2977 } 2978 if (txq > dev->real_num_tx_queues) { 2979 err = netif_set_real_num_tx_queues(dev, txq); 2980 if (err) 2981 goto undo_rx; 2982 } 2983 if (rxq < dev->real_num_rx_queues) 2984 WARN_ON(netif_set_real_num_rx_queues(dev, rxq)); 2985 if (txq < dev->real_num_tx_queues) 2986 WARN_ON(netif_set_real_num_tx_queues(dev, txq)); 2987 2988 return 0; 2989 undo_rx: 2990 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq)); 2991 return err; 2992 } 2993 EXPORT_SYMBOL(netif_set_real_num_queues); 2994 2995 /** 2996 * netif_set_tso_max_size() - set the max size of TSO frames supported 2997 * @dev: netdev to update 2998 * @size: max skb->len of a TSO frame 2999 * 3000 * Set the limit on the size of TSO super-frames the device can handle. 3001 * Unless explicitly set the stack will assume the value of %GSO_MAX_SIZE. 3002 */ 3003 void netif_set_tso_max_size(struct net_device *dev, unsigned int size) 3004 { 3005 dev->tso_max_size = size; 3006 if (size < READ_ONCE(dev->gso_max_size)) 3007 netif_set_gso_max_size(dev, size); 3008 } 3009 EXPORT_SYMBOL(netif_set_tso_max_size); 3010 3011 /** 3012 * netif_set_tso_max_segs() - set the max number of segs supported for TSO 3013 * @dev: netdev to update 3014 * @segs: max number of TCP segments 3015 * 3016 * Set the limit on the number of TCP segments the device can generate from 3017 * a single TSO super-frame. 3018 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS. 3019 */ 3020 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs) 3021 { 3022 dev->tso_max_segs = segs; 3023 if (segs < READ_ONCE(dev->gso_max_segs)) 3024 netif_set_gso_max_segs(dev, segs); 3025 } 3026 EXPORT_SYMBOL(netif_set_tso_max_segs); 3027 3028 /** 3029 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper 3030 * @to: netdev to update 3031 * @from: netdev from which to copy the limits 3032 */ 3033 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from) 3034 { 3035 netif_set_tso_max_size(to, from->tso_max_size); 3036 netif_set_tso_max_segs(to, from->tso_max_segs); 3037 } 3038 EXPORT_SYMBOL(netif_inherit_tso_max); 3039 3040 /** 3041 * netif_get_num_default_rss_queues - default number of RSS queues 3042 * 3043 * Default value is the number of physical cores if there are only 1 or 2, or 3044 * divided by 2 if there are more. 3045 */ 3046 int netif_get_num_default_rss_queues(void) 3047 { 3048 cpumask_var_t cpus; 3049 int cpu, count = 0; 3050 3051 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL))) 3052 return 1; 3053 3054 cpumask_copy(cpus, cpu_online_mask); 3055 for_each_cpu(cpu, cpus) { 3056 ++count; 3057 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu)); 3058 } 3059 free_cpumask_var(cpus); 3060 3061 return count > 2 ? DIV_ROUND_UP(count, 2) : count; 3062 } 3063 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3064 3065 static void __netif_reschedule(struct Qdisc *q) 3066 { 3067 struct softnet_data *sd; 3068 unsigned long flags; 3069 3070 local_irq_save(flags); 3071 sd = this_cpu_ptr(&softnet_data); 3072 q->next_sched = NULL; 3073 *sd->output_queue_tailp = q; 3074 sd->output_queue_tailp = &q->next_sched; 3075 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3076 local_irq_restore(flags); 3077 } 3078 3079 void __netif_schedule(struct Qdisc *q) 3080 { 3081 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3082 __netif_reschedule(q); 3083 } 3084 EXPORT_SYMBOL(__netif_schedule); 3085 3086 struct dev_kfree_skb_cb { 3087 enum skb_free_reason reason; 3088 }; 3089 3090 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3091 { 3092 return (struct dev_kfree_skb_cb *)skb->cb; 3093 } 3094 3095 void netif_schedule_queue(struct netdev_queue *txq) 3096 { 3097 rcu_read_lock(); 3098 if (!netif_xmit_stopped(txq)) { 3099 struct Qdisc *q = rcu_dereference(txq->qdisc); 3100 3101 __netif_schedule(q); 3102 } 3103 rcu_read_unlock(); 3104 } 3105 EXPORT_SYMBOL(netif_schedule_queue); 3106 3107 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3108 { 3109 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3110 struct Qdisc *q; 3111 3112 rcu_read_lock(); 3113 q = rcu_dereference(dev_queue->qdisc); 3114 __netif_schedule(q); 3115 rcu_read_unlock(); 3116 } 3117 } 3118 EXPORT_SYMBOL(netif_tx_wake_queue); 3119 3120 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3121 { 3122 unsigned long flags; 3123 3124 if (unlikely(!skb)) 3125 return; 3126 3127 if (likely(refcount_read(&skb->users) == 1)) { 3128 smp_rmb(); 3129 refcount_set(&skb->users, 0); 3130 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3131 return; 3132 } 3133 get_kfree_skb_cb(skb)->reason = reason; 3134 local_irq_save(flags); 3135 skb->next = __this_cpu_read(softnet_data.completion_queue); 3136 __this_cpu_write(softnet_data.completion_queue, skb); 3137 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3138 local_irq_restore(flags); 3139 } 3140 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3141 3142 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3143 { 3144 if (in_hardirq() || irqs_disabled()) 3145 __dev_kfree_skb_irq(skb, reason); 3146 else 3147 dev_kfree_skb(skb); 3148 } 3149 EXPORT_SYMBOL(__dev_kfree_skb_any); 3150 3151 3152 /** 3153 * netif_device_detach - mark device as removed 3154 * @dev: network device 3155 * 3156 * Mark device as removed from system and therefore no longer available. 3157 */ 3158 void netif_device_detach(struct net_device *dev) 3159 { 3160 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3161 netif_running(dev)) { 3162 netif_tx_stop_all_queues(dev); 3163 } 3164 } 3165 EXPORT_SYMBOL(netif_device_detach); 3166 3167 /** 3168 * netif_device_attach - mark device as attached 3169 * @dev: network device 3170 * 3171 * Mark device as attached from system and restart if needed. 3172 */ 3173 void netif_device_attach(struct net_device *dev) 3174 { 3175 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3176 netif_running(dev)) { 3177 netif_tx_wake_all_queues(dev); 3178 __netdev_watchdog_up(dev); 3179 } 3180 } 3181 EXPORT_SYMBOL(netif_device_attach); 3182 3183 /* 3184 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3185 * to be used as a distribution range. 3186 */ 3187 static u16 skb_tx_hash(const struct net_device *dev, 3188 const struct net_device *sb_dev, 3189 struct sk_buff *skb) 3190 { 3191 u32 hash; 3192 u16 qoffset = 0; 3193 u16 qcount = dev->real_num_tx_queues; 3194 3195 if (dev->num_tc) { 3196 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3197 3198 qoffset = sb_dev->tc_to_txq[tc].offset; 3199 qcount = sb_dev->tc_to_txq[tc].count; 3200 if (unlikely(!qcount)) { 3201 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n", 3202 sb_dev->name, qoffset, tc); 3203 qoffset = 0; 3204 qcount = dev->real_num_tx_queues; 3205 } 3206 } 3207 3208 if (skb_rx_queue_recorded(skb)) { 3209 hash = skb_get_rx_queue(skb); 3210 if (hash >= qoffset) 3211 hash -= qoffset; 3212 while (unlikely(hash >= qcount)) 3213 hash -= qcount; 3214 return hash + qoffset; 3215 } 3216 3217 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3218 } 3219 3220 static void skb_warn_bad_offload(const struct sk_buff *skb) 3221 { 3222 static const netdev_features_t null_features; 3223 struct net_device *dev = skb->dev; 3224 const char *name = ""; 3225 3226 if (!net_ratelimit()) 3227 return; 3228 3229 if (dev) { 3230 if (dev->dev.parent) 3231 name = dev_driver_string(dev->dev.parent); 3232 else 3233 name = netdev_name(dev); 3234 } 3235 skb_dump(KERN_WARNING, skb, false); 3236 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3237 name, dev ? &dev->features : &null_features, 3238 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3239 } 3240 3241 /* 3242 * Invalidate hardware checksum when packet is to be mangled, and 3243 * complete checksum manually on outgoing path. 3244 */ 3245 int skb_checksum_help(struct sk_buff *skb) 3246 { 3247 __wsum csum; 3248 int ret = 0, offset; 3249 3250 if (skb->ip_summed == CHECKSUM_COMPLETE) 3251 goto out_set_summed; 3252 3253 if (unlikely(skb_is_gso(skb))) { 3254 skb_warn_bad_offload(skb); 3255 return -EINVAL; 3256 } 3257 3258 /* Before computing a checksum, we should make sure no frag could 3259 * be modified by an external entity : checksum could be wrong. 3260 */ 3261 if (skb_has_shared_frag(skb)) { 3262 ret = __skb_linearize(skb); 3263 if (ret) 3264 goto out; 3265 } 3266 3267 offset = skb_checksum_start_offset(skb); 3268 ret = -EINVAL; 3269 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3270 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3271 goto out; 3272 } 3273 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3274 3275 offset += skb->csum_offset; 3276 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) { 3277 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false); 3278 goto out; 3279 } 3280 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3281 if (ret) 3282 goto out; 3283 3284 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3285 out_set_summed: 3286 skb->ip_summed = CHECKSUM_NONE; 3287 out: 3288 return ret; 3289 } 3290 EXPORT_SYMBOL(skb_checksum_help); 3291 3292 int skb_crc32c_csum_help(struct sk_buff *skb) 3293 { 3294 __le32 crc32c_csum; 3295 int ret = 0, offset, start; 3296 3297 if (skb->ip_summed != CHECKSUM_PARTIAL) 3298 goto out; 3299 3300 if (unlikely(skb_is_gso(skb))) 3301 goto out; 3302 3303 /* Before computing a checksum, we should make sure no frag could 3304 * be modified by an external entity : checksum could be wrong. 3305 */ 3306 if (unlikely(skb_has_shared_frag(skb))) { 3307 ret = __skb_linearize(skb); 3308 if (ret) 3309 goto out; 3310 } 3311 start = skb_checksum_start_offset(skb); 3312 offset = start + offsetof(struct sctphdr, checksum); 3313 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3314 ret = -EINVAL; 3315 goto out; 3316 } 3317 3318 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3319 if (ret) 3320 goto out; 3321 3322 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3323 skb->len - start, ~(__u32)0, 3324 crc32c_csum_stub)); 3325 *(__le32 *)(skb->data + offset) = crc32c_csum; 3326 skb->ip_summed = CHECKSUM_NONE; 3327 skb->csum_not_inet = 0; 3328 out: 3329 return ret; 3330 } 3331 3332 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3333 { 3334 __be16 type = skb->protocol; 3335 3336 /* Tunnel gso handlers can set protocol to ethernet. */ 3337 if (type == htons(ETH_P_TEB)) { 3338 struct ethhdr *eth; 3339 3340 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3341 return 0; 3342 3343 eth = (struct ethhdr *)skb->data; 3344 type = eth->h_proto; 3345 } 3346 3347 return __vlan_get_protocol(skb, type, depth); 3348 } 3349 3350 /* openvswitch calls this on rx path, so we need a different check. 3351 */ 3352 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3353 { 3354 if (tx_path) 3355 return skb->ip_summed != CHECKSUM_PARTIAL && 3356 skb->ip_summed != CHECKSUM_UNNECESSARY; 3357 3358 return skb->ip_summed == CHECKSUM_NONE; 3359 } 3360 3361 /** 3362 * __skb_gso_segment - Perform segmentation on skb. 3363 * @skb: buffer to segment 3364 * @features: features for the output path (see dev->features) 3365 * @tx_path: whether it is called in TX path 3366 * 3367 * This function segments the given skb and returns a list of segments. 3368 * 3369 * It may return NULL if the skb requires no segmentation. This is 3370 * only possible when GSO is used for verifying header integrity. 3371 * 3372 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3373 */ 3374 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3375 netdev_features_t features, bool tx_path) 3376 { 3377 struct sk_buff *segs; 3378 3379 if (unlikely(skb_needs_check(skb, tx_path))) { 3380 int err; 3381 3382 /* We're going to init ->check field in TCP or UDP header */ 3383 err = skb_cow_head(skb, 0); 3384 if (err < 0) 3385 return ERR_PTR(err); 3386 } 3387 3388 /* Only report GSO partial support if it will enable us to 3389 * support segmentation on this frame without needing additional 3390 * work. 3391 */ 3392 if (features & NETIF_F_GSO_PARTIAL) { 3393 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3394 struct net_device *dev = skb->dev; 3395 3396 partial_features |= dev->features & dev->gso_partial_features; 3397 if (!skb_gso_ok(skb, features | partial_features)) 3398 features &= ~NETIF_F_GSO_PARTIAL; 3399 } 3400 3401 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3402 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3403 3404 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3405 SKB_GSO_CB(skb)->encap_level = 0; 3406 3407 skb_reset_mac_header(skb); 3408 skb_reset_mac_len(skb); 3409 3410 segs = skb_mac_gso_segment(skb, features); 3411 3412 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3413 skb_warn_bad_offload(skb); 3414 3415 return segs; 3416 } 3417 EXPORT_SYMBOL(__skb_gso_segment); 3418 3419 /* Take action when hardware reception checksum errors are detected. */ 3420 #ifdef CONFIG_BUG 3421 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3422 { 3423 netdev_err(dev, "hw csum failure\n"); 3424 skb_dump(KERN_ERR, skb, true); 3425 dump_stack(); 3426 } 3427 3428 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3429 { 3430 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb); 3431 } 3432 EXPORT_SYMBOL(netdev_rx_csum_fault); 3433 #endif 3434 3435 /* XXX: check that highmem exists at all on the given machine. */ 3436 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3437 { 3438 #ifdef CONFIG_HIGHMEM 3439 int i; 3440 3441 if (!(dev->features & NETIF_F_HIGHDMA)) { 3442 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3443 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3444 3445 if (PageHighMem(skb_frag_page(frag))) 3446 return 1; 3447 } 3448 } 3449 #endif 3450 return 0; 3451 } 3452 3453 /* If MPLS offload request, verify we are testing hardware MPLS features 3454 * instead of standard features for the netdev. 3455 */ 3456 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3457 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3458 netdev_features_t features, 3459 __be16 type) 3460 { 3461 if (eth_p_mpls(type)) 3462 features &= skb->dev->mpls_features; 3463 3464 return features; 3465 } 3466 #else 3467 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3468 netdev_features_t features, 3469 __be16 type) 3470 { 3471 return features; 3472 } 3473 #endif 3474 3475 static netdev_features_t harmonize_features(struct sk_buff *skb, 3476 netdev_features_t features) 3477 { 3478 __be16 type; 3479 3480 type = skb_network_protocol(skb, NULL); 3481 features = net_mpls_features(skb, features, type); 3482 3483 if (skb->ip_summed != CHECKSUM_NONE && 3484 !can_checksum_protocol(features, type)) { 3485 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3486 } 3487 if (illegal_highdma(skb->dev, skb)) 3488 features &= ~NETIF_F_SG; 3489 3490 return features; 3491 } 3492 3493 netdev_features_t passthru_features_check(struct sk_buff *skb, 3494 struct net_device *dev, 3495 netdev_features_t features) 3496 { 3497 return features; 3498 } 3499 EXPORT_SYMBOL(passthru_features_check); 3500 3501 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3502 struct net_device *dev, 3503 netdev_features_t features) 3504 { 3505 return vlan_features_check(skb, features); 3506 } 3507 3508 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3509 struct net_device *dev, 3510 netdev_features_t features) 3511 { 3512 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3513 3514 if (gso_segs > READ_ONCE(dev->gso_max_segs)) 3515 return features & ~NETIF_F_GSO_MASK; 3516 3517 if (!skb_shinfo(skb)->gso_type) { 3518 skb_warn_bad_offload(skb); 3519 return features & ~NETIF_F_GSO_MASK; 3520 } 3521 3522 /* Support for GSO partial features requires software 3523 * intervention before we can actually process the packets 3524 * so we need to strip support for any partial features now 3525 * and we can pull them back in after we have partially 3526 * segmented the frame. 3527 */ 3528 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3529 features &= ~dev->gso_partial_features; 3530 3531 /* Make sure to clear the IPv4 ID mangling feature if the 3532 * IPv4 header has the potential to be fragmented. 3533 */ 3534 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3535 struct iphdr *iph = skb->encapsulation ? 3536 inner_ip_hdr(skb) : ip_hdr(skb); 3537 3538 if (!(iph->frag_off & htons(IP_DF))) 3539 features &= ~NETIF_F_TSO_MANGLEID; 3540 } 3541 3542 return features; 3543 } 3544 3545 netdev_features_t netif_skb_features(struct sk_buff *skb) 3546 { 3547 struct net_device *dev = skb->dev; 3548 netdev_features_t features = dev->features; 3549 3550 if (skb_is_gso(skb)) 3551 features = gso_features_check(skb, dev, features); 3552 3553 /* If encapsulation offload request, verify we are testing 3554 * hardware encapsulation features instead of standard 3555 * features for the netdev 3556 */ 3557 if (skb->encapsulation) 3558 features &= dev->hw_enc_features; 3559 3560 if (skb_vlan_tagged(skb)) 3561 features = netdev_intersect_features(features, 3562 dev->vlan_features | 3563 NETIF_F_HW_VLAN_CTAG_TX | 3564 NETIF_F_HW_VLAN_STAG_TX); 3565 3566 if (dev->netdev_ops->ndo_features_check) 3567 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3568 features); 3569 else 3570 features &= dflt_features_check(skb, dev, features); 3571 3572 return harmonize_features(skb, features); 3573 } 3574 EXPORT_SYMBOL(netif_skb_features); 3575 3576 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3577 struct netdev_queue *txq, bool more) 3578 { 3579 unsigned int len; 3580 int rc; 3581 3582 if (dev_nit_active(dev)) 3583 dev_queue_xmit_nit(skb, dev); 3584 3585 len = skb->len; 3586 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3587 trace_net_dev_start_xmit(skb, dev); 3588 rc = netdev_start_xmit(skb, dev, txq, more); 3589 trace_net_dev_xmit(skb, rc, dev, len); 3590 3591 return rc; 3592 } 3593 3594 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3595 struct netdev_queue *txq, int *ret) 3596 { 3597 struct sk_buff *skb = first; 3598 int rc = NETDEV_TX_OK; 3599 3600 while (skb) { 3601 struct sk_buff *next = skb->next; 3602 3603 skb_mark_not_on_list(skb); 3604 rc = xmit_one(skb, dev, txq, next != NULL); 3605 if (unlikely(!dev_xmit_complete(rc))) { 3606 skb->next = next; 3607 goto out; 3608 } 3609 3610 skb = next; 3611 if (netif_tx_queue_stopped(txq) && skb) { 3612 rc = NETDEV_TX_BUSY; 3613 break; 3614 } 3615 } 3616 3617 out: 3618 *ret = rc; 3619 return skb; 3620 } 3621 3622 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3623 netdev_features_t features) 3624 { 3625 if (skb_vlan_tag_present(skb) && 3626 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3627 skb = __vlan_hwaccel_push_inside(skb); 3628 return skb; 3629 } 3630 3631 int skb_csum_hwoffload_help(struct sk_buff *skb, 3632 const netdev_features_t features) 3633 { 3634 if (unlikely(skb_csum_is_sctp(skb))) 3635 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3636 skb_crc32c_csum_help(skb); 3637 3638 if (features & NETIF_F_HW_CSUM) 3639 return 0; 3640 3641 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) { 3642 switch (skb->csum_offset) { 3643 case offsetof(struct tcphdr, check): 3644 case offsetof(struct udphdr, check): 3645 return 0; 3646 } 3647 } 3648 3649 return skb_checksum_help(skb); 3650 } 3651 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3652 3653 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3654 { 3655 netdev_features_t features; 3656 3657 features = netif_skb_features(skb); 3658 skb = validate_xmit_vlan(skb, features); 3659 if (unlikely(!skb)) 3660 goto out_null; 3661 3662 skb = sk_validate_xmit_skb(skb, dev); 3663 if (unlikely(!skb)) 3664 goto out_null; 3665 3666 if (netif_needs_gso(skb, features)) { 3667 struct sk_buff *segs; 3668 3669 segs = skb_gso_segment(skb, features); 3670 if (IS_ERR(segs)) { 3671 goto out_kfree_skb; 3672 } else if (segs) { 3673 consume_skb(skb); 3674 skb = segs; 3675 } 3676 } else { 3677 if (skb_needs_linearize(skb, features) && 3678 __skb_linearize(skb)) 3679 goto out_kfree_skb; 3680 3681 /* If packet is not checksummed and device does not 3682 * support checksumming for this protocol, complete 3683 * checksumming here. 3684 */ 3685 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3686 if (skb->encapsulation) 3687 skb_set_inner_transport_header(skb, 3688 skb_checksum_start_offset(skb)); 3689 else 3690 skb_set_transport_header(skb, 3691 skb_checksum_start_offset(skb)); 3692 if (skb_csum_hwoffload_help(skb, features)) 3693 goto out_kfree_skb; 3694 } 3695 } 3696 3697 skb = validate_xmit_xfrm(skb, features, again); 3698 3699 return skb; 3700 3701 out_kfree_skb: 3702 kfree_skb(skb); 3703 out_null: 3704 dev_core_stats_tx_dropped_inc(dev); 3705 return NULL; 3706 } 3707 3708 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3709 { 3710 struct sk_buff *next, *head = NULL, *tail; 3711 3712 for (; skb != NULL; skb = next) { 3713 next = skb->next; 3714 skb_mark_not_on_list(skb); 3715 3716 /* in case skb wont be segmented, point to itself */ 3717 skb->prev = skb; 3718 3719 skb = validate_xmit_skb(skb, dev, again); 3720 if (!skb) 3721 continue; 3722 3723 if (!head) 3724 head = skb; 3725 else 3726 tail->next = skb; 3727 /* If skb was segmented, skb->prev points to 3728 * the last segment. If not, it still contains skb. 3729 */ 3730 tail = skb->prev; 3731 } 3732 return head; 3733 } 3734 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3735 3736 static void qdisc_pkt_len_init(struct sk_buff *skb) 3737 { 3738 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3739 3740 qdisc_skb_cb(skb)->pkt_len = skb->len; 3741 3742 /* To get more precise estimation of bytes sent on wire, 3743 * we add to pkt_len the headers size of all segments 3744 */ 3745 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3746 unsigned int hdr_len; 3747 u16 gso_segs = shinfo->gso_segs; 3748 3749 /* mac layer + network layer */ 3750 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3751 3752 /* + transport layer */ 3753 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3754 const struct tcphdr *th; 3755 struct tcphdr _tcphdr; 3756 3757 th = skb_header_pointer(skb, skb_transport_offset(skb), 3758 sizeof(_tcphdr), &_tcphdr); 3759 if (likely(th)) 3760 hdr_len += __tcp_hdrlen(th); 3761 } else { 3762 struct udphdr _udphdr; 3763 3764 if (skb_header_pointer(skb, skb_transport_offset(skb), 3765 sizeof(_udphdr), &_udphdr)) 3766 hdr_len += sizeof(struct udphdr); 3767 } 3768 3769 if (shinfo->gso_type & SKB_GSO_DODGY) 3770 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3771 shinfo->gso_size); 3772 3773 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3774 } 3775 } 3776 3777 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q, 3778 struct sk_buff **to_free, 3779 struct netdev_queue *txq) 3780 { 3781 int rc; 3782 3783 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK; 3784 if (rc == NET_XMIT_SUCCESS) 3785 trace_qdisc_enqueue(q, txq, skb); 3786 return rc; 3787 } 3788 3789 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3790 struct net_device *dev, 3791 struct netdev_queue *txq) 3792 { 3793 spinlock_t *root_lock = qdisc_lock(q); 3794 struct sk_buff *to_free = NULL; 3795 bool contended; 3796 int rc; 3797 3798 qdisc_calculate_pkt_len(skb, q); 3799 3800 if (q->flags & TCQ_F_NOLOCK) { 3801 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) && 3802 qdisc_run_begin(q)) { 3803 /* Retest nolock_qdisc_is_empty() within the protection 3804 * of q->seqlock to protect from racing with requeuing. 3805 */ 3806 if (unlikely(!nolock_qdisc_is_empty(q))) { 3807 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3808 __qdisc_run(q); 3809 qdisc_run_end(q); 3810 3811 goto no_lock_out; 3812 } 3813 3814 qdisc_bstats_cpu_update(q, skb); 3815 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) && 3816 !nolock_qdisc_is_empty(q)) 3817 __qdisc_run(q); 3818 3819 qdisc_run_end(q); 3820 return NET_XMIT_SUCCESS; 3821 } 3822 3823 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3824 qdisc_run(q); 3825 3826 no_lock_out: 3827 if (unlikely(to_free)) 3828 kfree_skb_list_reason(to_free, 3829 SKB_DROP_REASON_QDISC_DROP); 3830 return rc; 3831 } 3832 3833 /* 3834 * Heuristic to force contended enqueues to serialize on a 3835 * separate lock before trying to get qdisc main lock. 3836 * This permits qdisc->running owner to get the lock more 3837 * often and dequeue packets faster. 3838 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit 3839 * and then other tasks will only enqueue packets. The packets will be 3840 * sent after the qdisc owner is scheduled again. To prevent this 3841 * scenario the task always serialize on the lock. 3842 */ 3843 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT); 3844 if (unlikely(contended)) 3845 spin_lock(&q->busylock); 3846 3847 spin_lock(root_lock); 3848 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3849 __qdisc_drop(skb, &to_free); 3850 rc = NET_XMIT_DROP; 3851 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3852 qdisc_run_begin(q)) { 3853 /* 3854 * This is a work-conserving queue; there are no old skbs 3855 * waiting to be sent out; and the qdisc is not running - 3856 * xmit the skb directly. 3857 */ 3858 3859 qdisc_bstats_update(q, skb); 3860 3861 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3862 if (unlikely(contended)) { 3863 spin_unlock(&q->busylock); 3864 contended = false; 3865 } 3866 __qdisc_run(q); 3867 } 3868 3869 qdisc_run_end(q); 3870 rc = NET_XMIT_SUCCESS; 3871 } else { 3872 rc = dev_qdisc_enqueue(skb, q, &to_free, txq); 3873 if (qdisc_run_begin(q)) { 3874 if (unlikely(contended)) { 3875 spin_unlock(&q->busylock); 3876 contended = false; 3877 } 3878 __qdisc_run(q); 3879 qdisc_run_end(q); 3880 } 3881 } 3882 spin_unlock(root_lock); 3883 if (unlikely(to_free)) 3884 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP); 3885 if (unlikely(contended)) 3886 spin_unlock(&q->busylock); 3887 return rc; 3888 } 3889 3890 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3891 static void skb_update_prio(struct sk_buff *skb) 3892 { 3893 const struct netprio_map *map; 3894 const struct sock *sk; 3895 unsigned int prioidx; 3896 3897 if (skb->priority) 3898 return; 3899 map = rcu_dereference_bh(skb->dev->priomap); 3900 if (!map) 3901 return; 3902 sk = skb_to_full_sk(skb); 3903 if (!sk) 3904 return; 3905 3906 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3907 3908 if (prioidx < map->priomap_len) 3909 skb->priority = map->priomap[prioidx]; 3910 } 3911 #else 3912 #define skb_update_prio(skb) 3913 #endif 3914 3915 /** 3916 * dev_loopback_xmit - loop back @skb 3917 * @net: network namespace this loopback is happening in 3918 * @sk: sk needed to be a netfilter okfn 3919 * @skb: buffer to transmit 3920 */ 3921 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3922 { 3923 skb_reset_mac_header(skb); 3924 __skb_pull(skb, skb_network_offset(skb)); 3925 skb->pkt_type = PACKET_LOOPBACK; 3926 if (skb->ip_summed == CHECKSUM_NONE) 3927 skb->ip_summed = CHECKSUM_UNNECESSARY; 3928 WARN_ON(!skb_dst(skb)); 3929 skb_dst_force(skb); 3930 netif_rx(skb); 3931 return 0; 3932 } 3933 EXPORT_SYMBOL(dev_loopback_xmit); 3934 3935 #ifdef CONFIG_NET_EGRESS 3936 static struct sk_buff * 3937 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3938 { 3939 #ifdef CONFIG_NET_CLS_ACT 3940 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3941 struct tcf_result cl_res; 3942 3943 if (!miniq) 3944 return skb; 3945 3946 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3947 tc_skb_cb(skb)->mru = 0; 3948 tc_skb_cb(skb)->post_ct = false; 3949 mini_qdisc_bstats_cpu_update(miniq, skb); 3950 3951 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { 3952 case TC_ACT_OK: 3953 case TC_ACT_RECLASSIFY: 3954 skb->tc_index = TC_H_MIN(cl_res.classid); 3955 break; 3956 case TC_ACT_SHOT: 3957 mini_qdisc_qstats_cpu_drop(miniq); 3958 *ret = NET_XMIT_DROP; 3959 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS); 3960 return NULL; 3961 case TC_ACT_STOLEN: 3962 case TC_ACT_QUEUED: 3963 case TC_ACT_TRAP: 3964 *ret = NET_XMIT_SUCCESS; 3965 consume_skb(skb); 3966 return NULL; 3967 case TC_ACT_REDIRECT: 3968 /* No need to push/pop skb's mac_header here on egress! */ 3969 skb_do_redirect(skb); 3970 *ret = NET_XMIT_SUCCESS; 3971 return NULL; 3972 default: 3973 break; 3974 } 3975 #endif /* CONFIG_NET_CLS_ACT */ 3976 3977 return skb; 3978 } 3979 3980 static struct netdev_queue * 3981 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb) 3982 { 3983 int qm = skb_get_queue_mapping(skb); 3984 3985 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm)); 3986 } 3987 3988 static bool netdev_xmit_txqueue_skipped(void) 3989 { 3990 return __this_cpu_read(softnet_data.xmit.skip_txqueue); 3991 } 3992 3993 void netdev_xmit_skip_txqueue(bool skip) 3994 { 3995 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip); 3996 } 3997 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue); 3998 #endif /* CONFIG_NET_EGRESS */ 3999 4000 #ifdef CONFIG_XPS 4001 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 4002 struct xps_dev_maps *dev_maps, unsigned int tci) 4003 { 4004 int tc = netdev_get_prio_tc_map(dev, skb->priority); 4005 struct xps_map *map; 4006 int queue_index = -1; 4007 4008 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids) 4009 return queue_index; 4010 4011 tci *= dev_maps->num_tc; 4012 tci += tc; 4013 4014 map = rcu_dereference(dev_maps->attr_map[tci]); 4015 if (map) { 4016 if (map->len == 1) 4017 queue_index = map->queues[0]; 4018 else 4019 queue_index = map->queues[reciprocal_scale( 4020 skb_get_hash(skb), map->len)]; 4021 if (unlikely(queue_index >= dev->real_num_tx_queues)) 4022 queue_index = -1; 4023 } 4024 return queue_index; 4025 } 4026 #endif 4027 4028 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 4029 struct sk_buff *skb) 4030 { 4031 #ifdef CONFIG_XPS 4032 struct xps_dev_maps *dev_maps; 4033 struct sock *sk = skb->sk; 4034 int queue_index = -1; 4035 4036 if (!static_key_false(&xps_needed)) 4037 return -1; 4038 4039 rcu_read_lock(); 4040 if (!static_key_false(&xps_rxqs_needed)) 4041 goto get_cpus_map; 4042 4043 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]); 4044 if (dev_maps) { 4045 int tci = sk_rx_queue_get(sk); 4046 4047 if (tci >= 0) 4048 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4049 tci); 4050 } 4051 4052 get_cpus_map: 4053 if (queue_index < 0) { 4054 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]); 4055 if (dev_maps) { 4056 unsigned int tci = skb->sender_cpu - 1; 4057 4058 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 4059 tci); 4060 } 4061 } 4062 rcu_read_unlock(); 4063 4064 return queue_index; 4065 #else 4066 return -1; 4067 #endif 4068 } 4069 4070 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 4071 struct net_device *sb_dev) 4072 { 4073 return 0; 4074 } 4075 EXPORT_SYMBOL(dev_pick_tx_zero); 4076 4077 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 4078 struct net_device *sb_dev) 4079 { 4080 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 4081 } 4082 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 4083 4084 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 4085 struct net_device *sb_dev) 4086 { 4087 struct sock *sk = skb->sk; 4088 int queue_index = sk_tx_queue_get(sk); 4089 4090 sb_dev = sb_dev ? : dev; 4091 4092 if (queue_index < 0 || skb->ooo_okay || 4093 queue_index >= dev->real_num_tx_queues) { 4094 int new_index = get_xps_queue(dev, sb_dev, skb); 4095 4096 if (new_index < 0) 4097 new_index = skb_tx_hash(dev, sb_dev, skb); 4098 4099 if (queue_index != new_index && sk && 4100 sk_fullsock(sk) && 4101 rcu_access_pointer(sk->sk_dst_cache)) 4102 sk_tx_queue_set(sk, new_index); 4103 4104 queue_index = new_index; 4105 } 4106 4107 return queue_index; 4108 } 4109 EXPORT_SYMBOL(netdev_pick_tx); 4110 4111 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4112 struct sk_buff *skb, 4113 struct net_device *sb_dev) 4114 { 4115 int queue_index = 0; 4116 4117 #ifdef CONFIG_XPS 4118 u32 sender_cpu = skb->sender_cpu - 1; 4119 4120 if (sender_cpu >= (u32)NR_CPUS) 4121 skb->sender_cpu = raw_smp_processor_id() + 1; 4122 #endif 4123 4124 if (dev->real_num_tx_queues != 1) { 4125 const struct net_device_ops *ops = dev->netdev_ops; 4126 4127 if (ops->ndo_select_queue) 4128 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4129 else 4130 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4131 4132 queue_index = netdev_cap_txqueue(dev, queue_index); 4133 } 4134 4135 skb_set_queue_mapping(skb, queue_index); 4136 return netdev_get_tx_queue(dev, queue_index); 4137 } 4138 4139 /** 4140 * __dev_queue_xmit() - transmit a buffer 4141 * @skb: buffer to transmit 4142 * @sb_dev: suboordinate device used for L2 forwarding offload 4143 * 4144 * Queue a buffer for transmission to a network device. The caller must 4145 * have set the device and priority and built the buffer before calling 4146 * this function. The function can be called from an interrupt. 4147 * 4148 * When calling this method, interrupts MUST be enabled. This is because 4149 * the BH enable code must have IRQs enabled so that it will not deadlock. 4150 * 4151 * Regardless of the return value, the skb is consumed, so it is currently 4152 * difficult to retry a send to this method. (You can bump the ref count 4153 * before sending to hold a reference for retry if you are careful.) 4154 * 4155 * Return: 4156 * * 0 - buffer successfully transmitted 4157 * * positive qdisc return code - NET_XMIT_DROP etc. 4158 * * negative errno - other errors 4159 */ 4160 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4161 { 4162 struct net_device *dev = skb->dev; 4163 struct netdev_queue *txq = NULL; 4164 struct Qdisc *q; 4165 int rc = -ENOMEM; 4166 bool again = false; 4167 4168 skb_reset_mac_header(skb); 4169 4170 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4171 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED); 4172 4173 /* Disable soft irqs for various locks below. Also 4174 * stops preemption for RCU. 4175 */ 4176 rcu_read_lock_bh(); 4177 4178 skb_update_prio(skb); 4179 4180 qdisc_pkt_len_init(skb); 4181 #ifdef CONFIG_NET_CLS_ACT 4182 skb->tc_at_ingress = 0; 4183 #endif 4184 #ifdef CONFIG_NET_EGRESS 4185 if (static_branch_unlikely(&egress_needed_key)) { 4186 if (nf_hook_egress_active()) { 4187 skb = nf_hook_egress(skb, &rc, dev); 4188 if (!skb) 4189 goto out; 4190 } 4191 4192 netdev_xmit_skip_txqueue(false); 4193 4194 nf_skip_egress(skb, true); 4195 skb = sch_handle_egress(skb, &rc, dev); 4196 if (!skb) 4197 goto out; 4198 nf_skip_egress(skb, false); 4199 4200 if (netdev_xmit_txqueue_skipped()) 4201 txq = netdev_tx_queue_mapping(dev, skb); 4202 } 4203 #endif 4204 /* If device/qdisc don't need skb->dst, release it right now while 4205 * its hot in this cpu cache. 4206 */ 4207 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4208 skb_dst_drop(skb); 4209 else 4210 skb_dst_force(skb); 4211 4212 if (!txq) 4213 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4214 4215 q = rcu_dereference_bh(txq->qdisc); 4216 4217 trace_net_dev_queue(skb); 4218 if (q->enqueue) { 4219 rc = __dev_xmit_skb(skb, q, dev, txq); 4220 goto out; 4221 } 4222 4223 /* The device has no queue. Common case for software devices: 4224 * loopback, all the sorts of tunnels... 4225 4226 * Really, it is unlikely that netif_tx_lock protection is necessary 4227 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4228 * counters.) 4229 * However, it is possible, that they rely on protection 4230 * made by us here. 4231 4232 * Check this and shot the lock. It is not prone from deadlocks. 4233 *Either shot noqueue qdisc, it is even simpler 8) 4234 */ 4235 if (dev->flags & IFF_UP) { 4236 int cpu = smp_processor_id(); /* ok because BHs are off */ 4237 4238 /* Other cpus might concurrently change txq->xmit_lock_owner 4239 * to -1 or to their cpu id, but not to our id. 4240 */ 4241 if (READ_ONCE(txq->xmit_lock_owner) != cpu) { 4242 if (dev_xmit_recursion()) 4243 goto recursion_alert; 4244 4245 skb = validate_xmit_skb(skb, dev, &again); 4246 if (!skb) 4247 goto out; 4248 4249 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4250 HARD_TX_LOCK(dev, txq, cpu); 4251 4252 if (!netif_xmit_stopped(txq)) { 4253 dev_xmit_recursion_inc(); 4254 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4255 dev_xmit_recursion_dec(); 4256 if (dev_xmit_complete(rc)) { 4257 HARD_TX_UNLOCK(dev, txq); 4258 goto out; 4259 } 4260 } 4261 HARD_TX_UNLOCK(dev, txq); 4262 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4263 dev->name); 4264 } else { 4265 /* Recursion is detected! It is possible, 4266 * unfortunately 4267 */ 4268 recursion_alert: 4269 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4270 dev->name); 4271 } 4272 } 4273 4274 rc = -ENETDOWN; 4275 rcu_read_unlock_bh(); 4276 4277 dev_core_stats_tx_dropped_inc(dev); 4278 kfree_skb_list(skb); 4279 return rc; 4280 out: 4281 rcu_read_unlock_bh(); 4282 return rc; 4283 } 4284 EXPORT_SYMBOL(__dev_queue_xmit); 4285 4286 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4287 { 4288 struct net_device *dev = skb->dev; 4289 struct sk_buff *orig_skb = skb; 4290 struct netdev_queue *txq; 4291 int ret = NETDEV_TX_BUSY; 4292 bool again = false; 4293 4294 if (unlikely(!netif_running(dev) || 4295 !netif_carrier_ok(dev))) 4296 goto drop; 4297 4298 skb = validate_xmit_skb_list(skb, dev, &again); 4299 if (skb != orig_skb) 4300 goto drop; 4301 4302 skb_set_queue_mapping(skb, queue_id); 4303 txq = skb_get_tx_queue(dev, skb); 4304 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4305 4306 local_bh_disable(); 4307 4308 dev_xmit_recursion_inc(); 4309 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4310 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4311 ret = netdev_start_xmit(skb, dev, txq, false); 4312 HARD_TX_UNLOCK(dev, txq); 4313 dev_xmit_recursion_dec(); 4314 4315 local_bh_enable(); 4316 return ret; 4317 drop: 4318 dev_core_stats_tx_dropped_inc(dev); 4319 kfree_skb_list(skb); 4320 return NET_XMIT_DROP; 4321 } 4322 EXPORT_SYMBOL(__dev_direct_xmit); 4323 4324 /************************************************************************* 4325 * Receiver routines 4326 *************************************************************************/ 4327 4328 int netdev_max_backlog __read_mostly = 1000; 4329 EXPORT_SYMBOL(netdev_max_backlog); 4330 4331 int netdev_tstamp_prequeue __read_mostly = 1; 4332 int netdev_budget __read_mostly = 300; 4333 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4334 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4335 int weight_p __read_mostly = 64; /* old backlog weight */ 4336 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4337 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4338 int dev_rx_weight __read_mostly = 64; 4339 int dev_tx_weight __read_mostly = 64; 4340 4341 /* Called with irq disabled */ 4342 static inline void ____napi_schedule(struct softnet_data *sd, 4343 struct napi_struct *napi) 4344 { 4345 struct task_struct *thread; 4346 4347 lockdep_assert_irqs_disabled(); 4348 4349 if (test_bit(NAPI_STATE_THREADED, &napi->state)) { 4350 /* Paired with smp_mb__before_atomic() in 4351 * napi_enable()/dev_set_threaded(). 4352 * Use READ_ONCE() to guarantee a complete 4353 * read on napi->thread. Only call 4354 * wake_up_process() when it's not NULL. 4355 */ 4356 thread = READ_ONCE(napi->thread); 4357 if (thread) { 4358 /* Avoid doing set_bit() if the thread is in 4359 * INTERRUPTIBLE state, cause napi_thread_wait() 4360 * makes sure to proceed with napi polling 4361 * if the thread is explicitly woken from here. 4362 */ 4363 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE) 4364 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state); 4365 wake_up_process(thread); 4366 return; 4367 } 4368 } 4369 4370 list_add_tail(&napi->poll_list, &sd->poll_list); 4371 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4372 } 4373 4374 #ifdef CONFIG_RPS 4375 4376 /* One global table that all flow-based protocols share. */ 4377 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4378 EXPORT_SYMBOL(rps_sock_flow_table); 4379 u32 rps_cpu_mask __read_mostly; 4380 EXPORT_SYMBOL(rps_cpu_mask); 4381 4382 struct static_key_false rps_needed __read_mostly; 4383 EXPORT_SYMBOL(rps_needed); 4384 struct static_key_false rfs_needed __read_mostly; 4385 EXPORT_SYMBOL(rfs_needed); 4386 4387 static struct rps_dev_flow * 4388 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4389 struct rps_dev_flow *rflow, u16 next_cpu) 4390 { 4391 if (next_cpu < nr_cpu_ids) { 4392 #ifdef CONFIG_RFS_ACCEL 4393 struct netdev_rx_queue *rxqueue; 4394 struct rps_dev_flow_table *flow_table; 4395 struct rps_dev_flow *old_rflow; 4396 u32 flow_id; 4397 u16 rxq_index; 4398 int rc; 4399 4400 /* Should we steer this flow to a different hardware queue? */ 4401 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4402 !(dev->features & NETIF_F_NTUPLE)) 4403 goto out; 4404 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4405 if (rxq_index == skb_get_rx_queue(skb)) 4406 goto out; 4407 4408 rxqueue = dev->_rx + rxq_index; 4409 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4410 if (!flow_table) 4411 goto out; 4412 flow_id = skb_get_hash(skb) & flow_table->mask; 4413 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4414 rxq_index, flow_id); 4415 if (rc < 0) 4416 goto out; 4417 old_rflow = rflow; 4418 rflow = &flow_table->flows[flow_id]; 4419 rflow->filter = rc; 4420 if (old_rflow->filter == rflow->filter) 4421 old_rflow->filter = RPS_NO_FILTER; 4422 out: 4423 #endif 4424 rflow->last_qtail = 4425 per_cpu(softnet_data, next_cpu).input_queue_head; 4426 } 4427 4428 rflow->cpu = next_cpu; 4429 return rflow; 4430 } 4431 4432 /* 4433 * get_rps_cpu is called from netif_receive_skb and returns the target 4434 * CPU from the RPS map of the receiving queue for a given skb. 4435 * rcu_read_lock must be held on entry. 4436 */ 4437 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4438 struct rps_dev_flow **rflowp) 4439 { 4440 const struct rps_sock_flow_table *sock_flow_table; 4441 struct netdev_rx_queue *rxqueue = dev->_rx; 4442 struct rps_dev_flow_table *flow_table; 4443 struct rps_map *map; 4444 int cpu = -1; 4445 u32 tcpu; 4446 u32 hash; 4447 4448 if (skb_rx_queue_recorded(skb)) { 4449 u16 index = skb_get_rx_queue(skb); 4450 4451 if (unlikely(index >= dev->real_num_rx_queues)) { 4452 WARN_ONCE(dev->real_num_rx_queues > 1, 4453 "%s received packet on queue %u, but number " 4454 "of RX queues is %u\n", 4455 dev->name, index, dev->real_num_rx_queues); 4456 goto done; 4457 } 4458 rxqueue += index; 4459 } 4460 4461 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4462 4463 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4464 map = rcu_dereference(rxqueue->rps_map); 4465 if (!flow_table && !map) 4466 goto done; 4467 4468 skb_reset_network_header(skb); 4469 hash = skb_get_hash(skb); 4470 if (!hash) 4471 goto done; 4472 4473 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4474 if (flow_table && sock_flow_table) { 4475 struct rps_dev_flow *rflow; 4476 u32 next_cpu; 4477 u32 ident; 4478 4479 /* First check into global flow table if there is a match */ 4480 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4481 if ((ident ^ hash) & ~rps_cpu_mask) 4482 goto try_rps; 4483 4484 next_cpu = ident & rps_cpu_mask; 4485 4486 /* OK, now we know there is a match, 4487 * we can look at the local (per receive queue) flow table 4488 */ 4489 rflow = &flow_table->flows[hash & flow_table->mask]; 4490 tcpu = rflow->cpu; 4491 4492 /* 4493 * If the desired CPU (where last recvmsg was done) is 4494 * different from current CPU (one in the rx-queue flow 4495 * table entry), switch if one of the following holds: 4496 * - Current CPU is unset (>= nr_cpu_ids). 4497 * - Current CPU is offline. 4498 * - The current CPU's queue tail has advanced beyond the 4499 * last packet that was enqueued using this table entry. 4500 * This guarantees that all previous packets for the flow 4501 * have been dequeued, thus preserving in order delivery. 4502 */ 4503 if (unlikely(tcpu != next_cpu) && 4504 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4505 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4506 rflow->last_qtail)) >= 0)) { 4507 tcpu = next_cpu; 4508 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4509 } 4510 4511 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4512 *rflowp = rflow; 4513 cpu = tcpu; 4514 goto done; 4515 } 4516 } 4517 4518 try_rps: 4519 4520 if (map) { 4521 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4522 if (cpu_online(tcpu)) { 4523 cpu = tcpu; 4524 goto done; 4525 } 4526 } 4527 4528 done: 4529 return cpu; 4530 } 4531 4532 #ifdef CONFIG_RFS_ACCEL 4533 4534 /** 4535 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4536 * @dev: Device on which the filter was set 4537 * @rxq_index: RX queue index 4538 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4539 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4540 * 4541 * Drivers that implement ndo_rx_flow_steer() should periodically call 4542 * this function for each installed filter and remove the filters for 4543 * which it returns %true. 4544 */ 4545 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4546 u32 flow_id, u16 filter_id) 4547 { 4548 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4549 struct rps_dev_flow_table *flow_table; 4550 struct rps_dev_flow *rflow; 4551 bool expire = true; 4552 unsigned int cpu; 4553 4554 rcu_read_lock(); 4555 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4556 if (flow_table && flow_id <= flow_table->mask) { 4557 rflow = &flow_table->flows[flow_id]; 4558 cpu = READ_ONCE(rflow->cpu); 4559 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4560 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4561 rflow->last_qtail) < 4562 (int)(10 * flow_table->mask))) 4563 expire = false; 4564 } 4565 rcu_read_unlock(); 4566 return expire; 4567 } 4568 EXPORT_SYMBOL(rps_may_expire_flow); 4569 4570 #endif /* CONFIG_RFS_ACCEL */ 4571 4572 /* Called from hardirq (IPI) context */ 4573 static void rps_trigger_softirq(void *data) 4574 { 4575 struct softnet_data *sd = data; 4576 4577 ____napi_schedule(sd, &sd->backlog); 4578 sd->received_rps++; 4579 } 4580 4581 #endif /* CONFIG_RPS */ 4582 4583 /* Called from hardirq (IPI) context */ 4584 static void trigger_rx_softirq(void *data __always_unused) 4585 { 4586 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4587 } 4588 4589 /* 4590 * Check if this softnet_data structure is another cpu one 4591 * If yes, queue it to our IPI list and return 1 4592 * If no, return 0 4593 */ 4594 static int napi_schedule_rps(struct softnet_data *sd) 4595 { 4596 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4597 4598 #ifdef CONFIG_RPS 4599 if (sd != mysd) { 4600 sd->rps_ipi_next = mysd->rps_ipi_list; 4601 mysd->rps_ipi_list = sd; 4602 4603 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4604 return 1; 4605 } 4606 #endif /* CONFIG_RPS */ 4607 __napi_schedule_irqoff(&mysd->backlog); 4608 return 0; 4609 } 4610 4611 #ifdef CONFIG_NET_FLOW_LIMIT 4612 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4613 #endif 4614 4615 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4616 { 4617 #ifdef CONFIG_NET_FLOW_LIMIT 4618 struct sd_flow_limit *fl; 4619 struct softnet_data *sd; 4620 unsigned int old_flow, new_flow; 4621 4622 if (qlen < (netdev_max_backlog >> 1)) 4623 return false; 4624 4625 sd = this_cpu_ptr(&softnet_data); 4626 4627 rcu_read_lock(); 4628 fl = rcu_dereference(sd->flow_limit); 4629 if (fl) { 4630 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4631 old_flow = fl->history[fl->history_head]; 4632 fl->history[fl->history_head] = new_flow; 4633 4634 fl->history_head++; 4635 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4636 4637 if (likely(fl->buckets[old_flow])) 4638 fl->buckets[old_flow]--; 4639 4640 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4641 fl->count++; 4642 rcu_read_unlock(); 4643 return true; 4644 } 4645 } 4646 rcu_read_unlock(); 4647 #endif 4648 return false; 4649 } 4650 4651 /* 4652 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4653 * queue (may be a remote CPU queue). 4654 */ 4655 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4656 unsigned int *qtail) 4657 { 4658 enum skb_drop_reason reason; 4659 struct softnet_data *sd; 4660 unsigned long flags; 4661 unsigned int qlen; 4662 4663 reason = SKB_DROP_REASON_NOT_SPECIFIED; 4664 sd = &per_cpu(softnet_data, cpu); 4665 4666 rps_lock_irqsave(sd, &flags); 4667 if (!netif_running(skb->dev)) 4668 goto drop; 4669 qlen = skb_queue_len(&sd->input_pkt_queue); 4670 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4671 if (qlen) { 4672 enqueue: 4673 __skb_queue_tail(&sd->input_pkt_queue, skb); 4674 input_queue_tail_incr_save(sd, qtail); 4675 rps_unlock_irq_restore(sd, &flags); 4676 return NET_RX_SUCCESS; 4677 } 4678 4679 /* Schedule NAPI for backlog device 4680 * We can use non atomic operation since we own the queue lock 4681 */ 4682 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) 4683 napi_schedule_rps(sd); 4684 goto enqueue; 4685 } 4686 reason = SKB_DROP_REASON_CPU_BACKLOG; 4687 4688 drop: 4689 sd->dropped++; 4690 rps_unlock_irq_restore(sd, &flags); 4691 4692 dev_core_stats_rx_dropped_inc(skb->dev); 4693 kfree_skb_reason(skb, reason); 4694 return NET_RX_DROP; 4695 } 4696 4697 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4698 { 4699 struct net_device *dev = skb->dev; 4700 struct netdev_rx_queue *rxqueue; 4701 4702 rxqueue = dev->_rx; 4703 4704 if (skb_rx_queue_recorded(skb)) { 4705 u16 index = skb_get_rx_queue(skb); 4706 4707 if (unlikely(index >= dev->real_num_rx_queues)) { 4708 WARN_ONCE(dev->real_num_rx_queues > 1, 4709 "%s received packet on queue %u, but number " 4710 "of RX queues is %u\n", 4711 dev->name, index, dev->real_num_rx_queues); 4712 4713 return rxqueue; /* Return first rxqueue */ 4714 } 4715 rxqueue += index; 4716 } 4717 return rxqueue; 4718 } 4719 4720 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp, 4721 struct bpf_prog *xdp_prog) 4722 { 4723 void *orig_data, *orig_data_end, *hard_start; 4724 struct netdev_rx_queue *rxqueue; 4725 bool orig_bcast, orig_host; 4726 u32 mac_len, frame_sz; 4727 __be16 orig_eth_type; 4728 struct ethhdr *eth; 4729 u32 metalen, act; 4730 int off; 4731 4732 /* The XDP program wants to see the packet starting at the MAC 4733 * header. 4734 */ 4735 mac_len = skb->data - skb_mac_header(skb); 4736 hard_start = skb->data - skb_headroom(skb); 4737 4738 /* SKB "head" area always have tailroom for skb_shared_info */ 4739 frame_sz = (void *)skb_end_pointer(skb) - hard_start; 4740 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4741 4742 rxqueue = netif_get_rxqueue(skb); 4743 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq); 4744 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len, 4745 skb_headlen(skb) + mac_len, true); 4746 4747 orig_data_end = xdp->data_end; 4748 orig_data = xdp->data; 4749 eth = (struct ethhdr *)xdp->data; 4750 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr); 4751 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4752 orig_eth_type = eth->h_proto; 4753 4754 act = bpf_prog_run_xdp(xdp_prog, xdp); 4755 4756 /* check if bpf_xdp_adjust_head was used */ 4757 off = xdp->data - orig_data; 4758 if (off) { 4759 if (off > 0) 4760 __skb_pull(skb, off); 4761 else if (off < 0) 4762 __skb_push(skb, -off); 4763 4764 skb->mac_header += off; 4765 skb_reset_network_header(skb); 4766 } 4767 4768 /* check if bpf_xdp_adjust_tail was used */ 4769 off = xdp->data_end - orig_data_end; 4770 if (off != 0) { 4771 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4772 skb->len += off; /* positive on grow, negative on shrink */ 4773 } 4774 4775 /* check if XDP changed eth hdr such SKB needs update */ 4776 eth = (struct ethhdr *)xdp->data; 4777 if ((orig_eth_type != eth->h_proto) || 4778 (orig_host != ether_addr_equal_64bits(eth->h_dest, 4779 skb->dev->dev_addr)) || 4780 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4781 __skb_push(skb, ETH_HLEN); 4782 skb->pkt_type = PACKET_HOST; 4783 skb->protocol = eth_type_trans(skb, skb->dev); 4784 } 4785 4786 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull 4787 * before calling us again on redirect path. We do not call do_redirect 4788 * as we leave that up to the caller. 4789 * 4790 * Caller is responsible for managing lifetime of skb (i.e. calling 4791 * kfree_skb in response to actions it cannot handle/XDP_DROP). 4792 */ 4793 switch (act) { 4794 case XDP_REDIRECT: 4795 case XDP_TX: 4796 __skb_push(skb, mac_len); 4797 break; 4798 case XDP_PASS: 4799 metalen = xdp->data - xdp->data_meta; 4800 if (metalen) 4801 skb_metadata_set(skb, metalen); 4802 break; 4803 } 4804 4805 return act; 4806 } 4807 4808 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4809 struct xdp_buff *xdp, 4810 struct bpf_prog *xdp_prog) 4811 { 4812 u32 act = XDP_DROP; 4813 4814 /* Reinjected packets coming from act_mirred or similar should 4815 * not get XDP generic processing. 4816 */ 4817 if (skb_is_redirected(skb)) 4818 return XDP_PASS; 4819 4820 /* XDP packets must be linear and must have sufficient headroom 4821 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4822 * native XDP provides, thus we need to do it here as well. 4823 */ 4824 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4825 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4826 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4827 int troom = skb->tail + skb->data_len - skb->end; 4828 4829 /* In case we have to go down the path and also linearize, 4830 * then lets do the pskb_expand_head() work just once here. 4831 */ 4832 if (pskb_expand_head(skb, 4833 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4834 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4835 goto do_drop; 4836 if (skb_linearize(skb)) 4837 goto do_drop; 4838 } 4839 4840 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog); 4841 switch (act) { 4842 case XDP_REDIRECT: 4843 case XDP_TX: 4844 case XDP_PASS: 4845 break; 4846 default: 4847 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act); 4848 fallthrough; 4849 case XDP_ABORTED: 4850 trace_xdp_exception(skb->dev, xdp_prog, act); 4851 fallthrough; 4852 case XDP_DROP: 4853 do_drop: 4854 kfree_skb(skb); 4855 break; 4856 } 4857 4858 return act; 4859 } 4860 4861 /* When doing generic XDP we have to bypass the qdisc layer and the 4862 * network taps in order to match in-driver-XDP behavior. 4863 */ 4864 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4865 { 4866 struct net_device *dev = skb->dev; 4867 struct netdev_queue *txq; 4868 bool free_skb = true; 4869 int cpu, rc; 4870 4871 txq = netdev_core_pick_tx(dev, skb, NULL); 4872 cpu = smp_processor_id(); 4873 HARD_TX_LOCK(dev, txq, cpu); 4874 if (!netif_xmit_stopped(txq)) { 4875 rc = netdev_start_xmit(skb, dev, txq, 0); 4876 if (dev_xmit_complete(rc)) 4877 free_skb = false; 4878 } 4879 HARD_TX_UNLOCK(dev, txq); 4880 if (free_skb) { 4881 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4882 kfree_skb(skb); 4883 } 4884 } 4885 4886 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4887 4888 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4889 { 4890 if (xdp_prog) { 4891 struct xdp_buff xdp; 4892 u32 act; 4893 int err; 4894 4895 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4896 if (act != XDP_PASS) { 4897 switch (act) { 4898 case XDP_REDIRECT: 4899 err = xdp_do_generic_redirect(skb->dev, skb, 4900 &xdp, xdp_prog); 4901 if (err) 4902 goto out_redir; 4903 break; 4904 case XDP_TX: 4905 generic_xdp_tx(skb, xdp_prog); 4906 break; 4907 } 4908 return XDP_DROP; 4909 } 4910 } 4911 return XDP_PASS; 4912 out_redir: 4913 kfree_skb_reason(skb, SKB_DROP_REASON_XDP); 4914 return XDP_DROP; 4915 } 4916 EXPORT_SYMBOL_GPL(do_xdp_generic); 4917 4918 static int netif_rx_internal(struct sk_buff *skb) 4919 { 4920 int ret; 4921 4922 net_timestamp_check(netdev_tstamp_prequeue, skb); 4923 4924 trace_netif_rx(skb); 4925 4926 #ifdef CONFIG_RPS 4927 if (static_branch_unlikely(&rps_needed)) { 4928 struct rps_dev_flow voidflow, *rflow = &voidflow; 4929 int cpu; 4930 4931 rcu_read_lock(); 4932 4933 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4934 if (cpu < 0) 4935 cpu = smp_processor_id(); 4936 4937 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4938 4939 rcu_read_unlock(); 4940 } else 4941 #endif 4942 { 4943 unsigned int qtail; 4944 4945 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail); 4946 } 4947 return ret; 4948 } 4949 4950 /** 4951 * __netif_rx - Slightly optimized version of netif_rx 4952 * @skb: buffer to post 4953 * 4954 * This behaves as netif_rx except that it does not disable bottom halves. 4955 * As a result this function may only be invoked from the interrupt context 4956 * (either hard or soft interrupt). 4957 */ 4958 int __netif_rx(struct sk_buff *skb) 4959 { 4960 int ret; 4961 4962 lockdep_assert_once(hardirq_count() | softirq_count()); 4963 4964 trace_netif_rx_entry(skb); 4965 ret = netif_rx_internal(skb); 4966 trace_netif_rx_exit(ret); 4967 return ret; 4968 } 4969 EXPORT_SYMBOL(__netif_rx); 4970 4971 /** 4972 * netif_rx - post buffer to the network code 4973 * @skb: buffer to post 4974 * 4975 * This function receives a packet from a device driver and queues it for 4976 * the upper (protocol) levels to process via the backlog NAPI device. It 4977 * always succeeds. The buffer may be dropped during processing for 4978 * congestion control or by the protocol layers. 4979 * The network buffer is passed via the backlog NAPI device. Modern NIC 4980 * driver should use NAPI and GRO. 4981 * This function can used from interrupt and from process context. The 4982 * caller from process context must not disable interrupts before invoking 4983 * this function. 4984 * 4985 * return values: 4986 * NET_RX_SUCCESS (no congestion) 4987 * NET_RX_DROP (packet was dropped) 4988 * 4989 */ 4990 int netif_rx(struct sk_buff *skb) 4991 { 4992 bool need_bh_off = !(hardirq_count() | softirq_count()); 4993 int ret; 4994 4995 if (need_bh_off) 4996 local_bh_disable(); 4997 trace_netif_rx_entry(skb); 4998 ret = netif_rx_internal(skb); 4999 trace_netif_rx_exit(ret); 5000 if (need_bh_off) 5001 local_bh_enable(); 5002 return ret; 5003 } 5004 EXPORT_SYMBOL(netif_rx); 5005 5006 static __latent_entropy void net_tx_action(struct softirq_action *h) 5007 { 5008 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5009 5010 if (sd->completion_queue) { 5011 struct sk_buff *clist; 5012 5013 local_irq_disable(); 5014 clist = sd->completion_queue; 5015 sd->completion_queue = NULL; 5016 local_irq_enable(); 5017 5018 while (clist) { 5019 struct sk_buff *skb = clist; 5020 5021 clist = clist->next; 5022 5023 WARN_ON(refcount_read(&skb->users)); 5024 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 5025 trace_consume_skb(skb); 5026 else 5027 trace_kfree_skb(skb, net_tx_action, 5028 SKB_DROP_REASON_NOT_SPECIFIED); 5029 5030 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 5031 __kfree_skb(skb); 5032 else 5033 __kfree_skb_defer(skb); 5034 } 5035 } 5036 5037 if (sd->output_queue) { 5038 struct Qdisc *head; 5039 5040 local_irq_disable(); 5041 head = sd->output_queue; 5042 sd->output_queue = NULL; 5043 sd->output_queue_tailp = &sd->output_queue; 5044 local_irq_enable(); 5045 5046 rcu_read_lock(); 5047 5048 while (head) { 5049 struct Qdisc *q = head; 5050 spinlock_t *root_lock = NULL; 5051 5052 head = head->next_sched; 5053 5054 /* We need to make sure head->next_sched is read 5055 * before clearing __QDISC_STATE_SCHED 5056 */ 5057 smp_mb__before_atomic(); 5058 5059 if (!(q->flags & TCQ_F_NOLOCK)) { 5060 root_lock = qdisc_lock(q); 5061 spin_lock(root_lock); 5062 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, 5063 &q->state))) { 5064 /* There is a synchronize_net() between 5065 * STATE_DEACTIVATED flag being set and 5066 * qdisc_reset()/some_qdisc_is_busy() in 5067 * dev_deactivate(), so we can safely bail out 5068 * early here to avoid data race between 5069 * qdisc_deactivate() and some_qdisc_is_busy() 5070 * for lockless qdisc. 5071 */ 5072 clear_bit(__QDISC_STATE_SCHED, &q->state); 5073 continue; 5074 } 5075 5076 clear_bit(__QDISC_STATE_SCHED, &q->state); 5077 qdisc_run(q); 5078 if (root_lock) 5079 spin_unlock(root_lock); 5080 } 5081 5082 rcu_read_unlock(); 5083 } 5084 5085 xfrm_dev_backlog(sd); 5086 } 5087 5088 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 5089 /* This hook is defined here for ATM LANE */ 5090 int (*br_fdb_test_addr_hook)(struct net_device *dev, 5091 unsigned char *addr) __read_mostly; 5092 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 5093 #endif 5094 5095 static inline struct sk_buff * 5096 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 5097 struct net_device *orig_dev, bool *another) 5098 { 5099 #ifdef CONFIG_NET_CLS_ACT 5100 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 5101 struct tcf_result cl_res; 5102 5103 /* If there's at least one ingress present somewhere (so 5104 * we get here via enabled static key), remaining devices 5105 * that are not configured with an ingress qdisc will bail 5106 * out here. 5107 */ 5108 if (!miniq) 5109 return skb; 5110 5111 if (*pt_prev) { 5112 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5113 *pt_prev = NULL; 5114 } 5115 5116 qdisc_skb_cb(skb)->pkt_len = skb->len; 5117 tc_skb_cb(skb)->mru = 0; 5118 tc_skb_cb(skb)->post_ct = false; 5119 skb->tc_at_ingress = 1; 5120 mini_qdisc_bstats_cpu_update(miniq, skb); 5121 5122 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) { 5123 case TC_ACT_OK: 5124 case TC_ACT_RECLASSIFY: 5125 skb->tc_index = TC_H_MIN(cl_res.classid); 5126 break; 5127 case TC_ACT_SHOT: 5128 mini_qdisc_qstats_cpu_drop(miniq); 5129 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS); 5130 return NULL; 5131 case TC_ACT_STOLEN: 5132 case TC_ACT_QUEUED: 5133 case TC_ACT_TRAP: 5134 consume_skb(skb); 5135 return NULL; 5136 case TC_ACT_REDIRECT: 5137 /* skb_mac_header check was done by cls/act_bpf, so 5138 * we can safely push the L2 header back before 5139 * redirecting to another netdev 5140 */ 5141 __skb_push(skb, skb->mac_len); 5142 if (skb_do_redirect(skb) == -EAGAIN) { 5143 __skb_pull(skb, skb->mac_len); 5144 *another = true; 5145 break; 5146 } 5147 return NULL; 5148 case TC_ACT_CONSUMED: 5149 return NULL; 5150 default: 5151 break; 5152 } 5153 #endif /* CONFIG_NET_CLS_ACT */ 5154 return skb; 5155 } 5156 5157 /** 5158 * netdev_is_rx_handler_busy - check if receive handler is registered 5159 * @dev: device to check 5160 * 5161 * Check if a receive handler is already registered for a given device. 5162 * Return true if there one. 5163 * 5164 * The caller must hold the rtnl_mutex. 5165 */ 5166 bool netdev_is_rx_handler_busy(struct net_device *dev) 5167 { 5168 ASSERT_RTNL(); 5169 return dev && rtnl_dereference(dev->rx_handler); 5170 } 5171 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5172 5173 /** 5174 * netdev_rx_handler_register - register receive handler 5175 * @dev: device to register a handler for 5176 * @rx_handler: receive handler to register 5177 * @rx_handler_data: data pointer that is used by rx handler 5178 * 5179 * Register a receive handler for a device. This handler will then be 5180 * called from __netif_receive_skb. A negative errno code is returned 5181 * on a failure. 5182 * 5183 * The caller must hold the rtnl_mutex. 5184 * 5185 * For a general description of rx_handler, see enum rx_handler_result. 5186 */ 5187 int netdev_rx_handler_register(struct net_device *dev, 5188 rx_handler_func_t *rx_handler, 5189 void *rx_handler_data) 5190 { 5191 if (netdev_is_rx_handler_busy(dev)) 5192 return -EBUSY; 5193 5194 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5195 return -EINVAL; 5196 5197 /* Note: rx_handler_data must be set before rx_handler */ 5198 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5199 rcu_assign_pointer(dev->rx_handler, rx_handler); 5200 5201 return 0; 5202 } 5203 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5204 5205 /** 5206 * netdev_rx_handler_unregister - unregister receive handler 5207 * @dev: device to unregister a handler from 5208 * 5209 * Unregister a receive handler from a device. 5210 * 5211 * The caller must hold the rtnl_mutex. 5212 */ 5213 void netdev_rx_handler_unregister(struct net_device *dev) 5214 { 5215 5216 ASSERT_RTNL(); 5217 RCU_INIT_POINTER(dev->rx_handler, NULL); 5218 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5219 * section has a guarantee to see a non NULL rx_handler_data 5220 * as well. 5221 */ 5222 synchronize_net(); 5223 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5224 } 5225 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5226 5227 /* 5228 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5229 * the special handling of PFMEMALLOC skbs. 5230 */ 5231 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5232 { 5233 switch (skb->protocol) { 5234 case htons(ETH_P_ARP): 5235 case htons(ETH_P_IP): 5236 case htons(ETH_P_IPV6): 5237 case htons(ETH_P_8021Q): 5238 case htons(ETH_P_8021AD): 5239 return true; 5240 default: 5241 return false; 5242 } 5243 } 5244 5245 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5246 int *ret, struct net_device *orig_dev) 5247 { 5248 if (nf_hook_ingress_active(skb)) { 5249 int ingress_retval; 5250 5251 if (*pt_prev) { 5252 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5253 *pt_prev = NULL; 5254 } 5255 5256 rcu_read_lock(); 5257 ingress_retval = nf_hook_ingress(skb); 5258 rcu_read_unlock(); 5259 return ingress_retval; 5260 } 5261 return 0; 5262 } 5263 5264 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5265 struct packet_type **ppt_prev) 5266 { 5267 struct packet_type *ptype, *pt_prev; 5268 rx_handler_func_t *rx_handler; 5269 struct sk_buff *skb = *pskb; 5270 struct net_device *orig_dev; 5271 bool deliver_exact = false; 5272 int ret = NET_RX_DROP; 5273 __be16 type; 5274 5275 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5276 5277 trace_netif_receive_skb(skb); 5278 5279 orig_dev = skb->dev; 5280 5281 skb_reset_network_header(skb); 5282 if (!skb_transport_header_was_set(skb)) 5283 skb_reset_transport_header(skb); 5284 skb_reset_mac_len(skb); 5285 5286 pt_prev = NULL; 5287 5288 another_round: 5289 skb->skb_iif = skb->dev->ifindex; 5290 5291 __this_cpu_inc(softnet_data.processed); 5292 5293 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5294 int ret2; 5295 5296 migrate_disable(); 5297 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5298 migrate_enable(); 5299 5300 if (ret2 != XDP_PASS) { 5301 ret = NET_RX_DROP; 5302 goto out; 5303 } 5304 } 5305 5306 if (eth_type_vlan(skb->protocol)) { 5307 skb = skb_vlan_untag(skb); 5308 if (unlikely(!skb)) 5309 goto out; 5310 } 5311 5312 if (skb_skip_tc_classify(skb)) 5313 goto skip_classify; 5314 5315 if (pfmemalloc) 5316 goto skip_taps; 5317 5318 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5319 if (pt_prev) 5320 ret = deliver_skb(skb, pt_prev, orig_dev); 5321 pt_prev = ptype; 5322 } 5323 5324 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5325 if (pt_prev) 5326 ret = deliver_skb(skb, pt_prev, orig_dev); 5327 pt_prev = ptype; 5328 } 5329 5330 skip_taps: 5331 #ifdef CONFIG_NET_INGRESS 5332 if (static_branch_unlikely(&ingress_needed_key)) { 5333 bool another = false; 5334 5335 nf_skip_egress(skb, true); 5336 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5337 &another); 5338 if (another) 5339 goto another_round; 5340 if (!skb) 5341 goto out; 5342 5343 nf_skip_egress(skb, false); 5344 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5345 goto out; 5346 } 5347 #endif 5348 skb_reset_redirect(skb); 5349 skip_classify: 5350 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5351 goto drop; 5352 5353 if (skb_vlan_tag_present(skb)) { 5354 if (pt_prev) { 5355 ret = deliver_skb(skb, pt_prev, orig_dev); 5356 pt_prev = NULL; 5357 } 5358 if (vlan_do_receive(&skb)) 5359 goto another_round; 5360 else if (unlikely(!skb)) 5361 goto out; 5362 } 5363 5364 rx_handler = rcu_dereference(skb->dev->rx_handler); 5365 if (rx_handler) { 5366 if (pt_prev) { 5367 ret = deliver_skb(skb, pt_prev, orig_dev); 5368 pt_prev = NULL; 5369 } 5370 switch (rx_handler(&skb)) { 5371 case RX_HANDLER_CONSUMED: 5372 ret = NET_RX_SUCCESS; 5373 goto out; 5374 case RX_HANDLER_ANOTHER: 5375 goto another_round; 5376 case RX_HANDLER_EXACT: 5377 deliver_exact = true; 5378 break; 5379 case RX_HANDLER_PASS: 5380 break; 5381 default: 5382 BUG(); 5383 } 5384 } 5385 5386 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5387 check_vlan_id: 5388 if (skb_vlan_tag_get_id(skb)) { 5389 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5390 * find vlan device. 5391 */ 5392 skb->pkt_type = PACKET_OTHERHOST; 5393 } else if (eth_type_vlan(skb->protocol)) { 5394 /* Outer header is 802.1P with vlan 0, inner header is 5395 * 802.1Q or 802.1AD and vlan_do_receive() above could 5396 * not find vlan dev for vlan id 0. 5397 */ 5398 __vlan_hwaccel_clear_tag(skb); 5399 skb = skb_vlan_untag(skb); 5400 if (unlikely(!skb)) 5401 goto out; 5402 if (vlan_do_receive(&skb)) 5403 /* After stripping off 802.1P header with vlan 0 5404 * vlan dev is found for inner header. 5405 */ 5406 goto another_round; 5407 else if (unlikely(!skb)) 5408 goto out; 5409 else 5410 /* We have stripped outer 802.1P vlan 0 header. 5411 * But could not find vlan dev. 5412 * check again for vlan id to set OTHERHOST. 5413 */ 5414 goto check_vlan_id; 5415 } 5416 /* Note: we might in the future use prio bits 5417 * and set skb->priority like in vlan_do_receive() 5418 * For the time being, just ignore Priority Code Point 5419 */ 5420 __vlan_hwaccel_clear_tag(skb); 5421 } 5422 5423 type = skb->protocol; 5424 5425 /* deliver only exact match when indicated */ 5426 if (likely(!deliver_exact)) { 5427 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5428 &ptype_base[ntohs(type) & 5429 PTYPE_HASH_MASK]); 5430 } 5431 5432 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5433 &orig_dev->ptype_specific); 5434 5435 if (unlikely(skb->dev != orig_dev)) { 5436 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5437 &skb->dev->ptype_specific); 5438 } 5439 5440 if (pt_prev) { 5441 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5442 goto drop; 5443 *ppt_prev = pt_prev; 5444 } else { 5445 drop: 5446 if (!deliver_exact) 5447 dev_core_stats_rx_dropped_inc(skb->dev); 5448 else 5449 dev_core_stats_rx_nohandler_inc(skb->dev); 5450 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO); 5451 /* Jamal, now you will not able to escape explaining 5452 * me how you were going to use this. :-) 5453 */ 5454 ret = NET_RX_DROP; 5455 } 5456 5457 out: 5458 /* The invariant here is that if *ppt_prev is not NULL 5459 * then skb should also be non-NULL. 5460 * 5461 * Apparently *ppt_prev assignment above holds this invariant due to 5462 * skb dereferencing near it. 5463 */ 5464 *pskb = skb; 5465 return ret; 5466 } 5467 5468 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5469 { 5470 struct net_device *orig_dev = skb->dev; 5471 struct packet_type *pt_prev = NULL; 5472 int ret; 5473 5474 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5475 if (pt_prev) 5476 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5477 skb->dev, pt_prev, orig_dev); 5478 return ret; 5479 } 5480 5481 /** 5482 * netif_receive_skb_core - special purpose version of netif_receive_skb 5483 * @skb: buffer to process 5484 * 5485 * More direct receive version of netif_receive_skb(). It should 5486 * only be used by callers that have a need to skip RPS and Generic XDP. 5487 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5488 * 5489 * This function may only be called from softirq context and interrupts 5490 * should be enabled. 5491 * 5492 * Return values (usually ignored): 5493 * NET_RX_SUCCESS: no congestion 5494 * NET_RX_DROP: packet was dropped 5495 */ 5496 int netif_receive_skb_core(struct sk_buff *skb) 5497 { 5498 int ret; 5499 5500 rcu_read_lock(); 5501 ret = __netif_receive_skb_one_core(skb, false); 5502 rcu_read_unlock(); 5503 5504 return ret; 5505 } 5506 EXPORT_SYMBOL(netif_receive_skb_core); 5507 5508 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5509 struct packet_type *pt_prev, 5510 struct net_device *orig_dev) 5511 { 5512 struct sk_buff *skb, *next; 5513 5514 if (!pt_prev) 5515 return; 5516 if (list_empty(head)) 5517 return; 5518 if (pt_prev->list_func != NULL) 5519 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5520 ip_list_rcv, head, pt_prev, orig_dev); 5521 else 5522 list_for_each_entry_safe(skb, next, head, list) { 5523 skb_list_del_init(skb); 5524 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5525 } 5526 } 5527 5528 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5529 { 5530 /* Fast-path assumptions: 5531 * - There is no RX handler. 5532 * - Only one packet_type matches. 5533 * If either of these fails, we will end up doing some per-packet 5534 * processing in-line, then handling the 'last ptype' for the whole 5535 * sublist. This can't cause out-of-order delivery to any single ptype, 5536 * because the 'last ptype' must be constant across the sublist, and all 5537 * other ptypes are handled per-packet. 5538 */ 5539 /* Current (common) ptype of sublist */ 5540 struct packet_type *pt_curr = NULL; 5541 /* Current (common) orig_dev of sublist */ 5542 struct net_device *od_curr = NULL; 5543 struct list_head sublist; 5544 struct sk_buff *skb, *next; 5545 5546 INIT_LIST_HEAD(&sublist); 5547 list_for_each_entry_safe(skb, next, head, list) { 5548 struct net_device *orig_dev = skb->dev; 5549 struct packet_type *pt_prev = NULL; 5550 5551 skb_list_del_init(skb); 5552 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5553 if (!pt_prev) 5554 continue; 5555 if (pt_curr != pt_prev || od_curr != orig_dev) { 5556 /* dispatch old sublist */ 5557 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5558 /* start new sublist */ 5559 INIT_LIST_HEAD(&sublist); 5560 pt_curr = pt_prev; 5561 od_curr = orig_dev; 5562 } 5563 list_add_tail(&skb->list, &sublist); 5564 } 5565 5566 /* dispatch final sublist */ 5567 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5568 } 5569 5570 static int __netif_receive_skb(struct sk_buff *skb) 5571 { 5572 int ret; 5573 5574 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5575 unsigned int noreclaim_flag; 5576 5577 /* 5578 * PFMEMALLOC skbs are special, they should 5579 * - be delivered to SOCK_MEMALLOC sockets only 5580 * - stay away from userspace 5581 * - have bounded memory usage 5582 * 5583 * Use PF_MEMALLOC as this saves us from propagating the allocation 5584 * context down to all allocation sites. 5585 */ 5586 noreclaim_flag = memalloc_noreclaim_save(); 5587 ret = __netif_receive_skb_one_core(skb, true); 5588 memalloc_noreclaim_restore(noreclaim_flag); 5589 } else 5590 ret = __netif_receive_skb_one_core(skb, false); 5591 5592 return ret; 5593 } 5594 5595 static void __netif_receive_skb_list(struct list_head *head) 5596 { 5597 unsigned long noreclaim_flag = 0; 5598 struct sk_buff *skb, *next; 5599 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5600 5601 list_for_each_entry_safe(skb, next, head, list) { 5602 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5603 struct list_head sublist; 5604 5605 /* Handle the previous sublist */ 5606 list_cut_before(&sublist, head, &skb->list); 5607 if (!list_empty(&sublist)) 5608 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5609 pfmemalloc = !pfmemalloc; 5610 /* See comments in __netif_receive_skb */ 5611 if (pfmemalloc) 5612 noreclaim_flag = memalloc_noreclaim_save(); 5613 else 5614 memalloc_noreclaim_restore(noreclaim_flag); 5615 } 5616 } 5617 /* Handle the remaining sublist */ 5618 if (!list_empty(head)) 5619 __netif_receive_skb_list_core(head, pfmemalloc); 5620 /* Restore pflags */ 5621 if (pfmemalloc) 5622 memalloc_noreclaim_restore(noreclaim_flag); 5623 } 5624 5625 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5626 { 5627 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5628 struct bpf_prog *new = xdp->prog; 5629 int ret = 0; 5630 5631 switch (xdp->command) { 5632 case XDP_SETUP_PROG: 5633 rcu_assign_pointer(dev->xdp_prog, new); 5634 if (old) 5635 bpf_prog_put(old); 5636 5637 if (old && !new) { 5638 static_branch_dec(&generic_xdp_needed_key); 5639 } else if (new && !old) { 5640 static_branch_inc(&generic_xdp_needed_key); 5641 dev_disable_lro(dev); 5642 dev_disable_gro_hw(dev); 5643 } 5644 break; 5645 5646 default: 5647 ret = -EINVAL; 5648 break; 5649 } 5650 5651 return ret; 5652 } 5653 5654 static int netif_receive_skb_internal(struct sk_buff *skb) 5655 { 5656 int ret; 5657 5658 net_timestamp_check(netdev_tstamp_prequeue, skb); 5659 5660 if (skb_defer_rx_timestamp(skb)) 5661 return NET_RX_SUCCESS; 5662 5663 rcu_read_lock(); 5664 #ifdef CONFIG_RPS 5665 if (static_branch_unlikely(&rps_needed)) { 5666 struct rps_dev_flow voidflow, *rflow = &voidflow; 5667 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5668 5669 if (cpu >= 0) { 5670 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5671 rcu_read_unlock(); 5672 return ret; 5673 } 5674 } 5675 #endif 5676 ret = __netif_receive_skb(skb); 5677 rcu_read_unlock(); 5678 return ret; 5679 } 5680 5681 void netif_receive_skb_list_internal(struct list_head *head) 5682 { 5683 struct sk_buff *skb, *next; 5684 struct list_head sublist; 5685 5686 INIT_LIST_HEAD(&sublist); 5687 list_for_each_entry_safe(skb, next, head, list) { 5688 net_timestamp_check(netdev_tstamp_prequeue, skb); 5689 skb_list_del_init(skb); 5690 if (!skb_defer_rx_timestamp(skb)) 5691 list_add_tail(&skb->list, &sublist); 5692 } 5693 list_splice_init(&sublist, head); 5694 5695 rcu_read_lock(); 5696 #ifdef CONFIG_RPS 5697 if (static_branch_unlikely(&rps_needed)) { 5698 list_for_each_entry_safe(skb, next, head, list) { 5699 struct rps_dev_flow voidflow, *rflow = &voidflow; 5700 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5701 5702 if (cpu >= 0) { 5703 /* Will be handled, remove from list */ 5704 skb_list_del_init(skb); 5705 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5706 } 5707 } 5708 } 5709 #endif 5710 __netif_receive_skb_list(head); 5711 rcu_read_unlock(); 5712 } 5713 5714 /** 5715 * netif_receive_skb - process receive buffer from network 5716 * @skb: buffer to process 5717 * 5718 * netif_receive_skb() is the main receive data processing function. 5719 * It always succeeds. The buffer may be dropped during processing 5720 * for congestion control or by the protocol layers. 5721 * 5722 * This function may only be called from softirq context and interrupts 5723 * should be enabled. 5724 * 5725 * Return values (usually ignored): 5726 * NET_RX_SUCCESS: no congestion 5727 * NET_RX_DROP: packet was dropped 5728 */ 5729 int netif_receive_skb(struct sk_buff *skb) 5730 { 5731 int ret; 5732 5733 trace_netif_receive_skb_entry(skb); 5734 5735 ret = netif_receive_skb_internal(skb); 5736 trace_netif_receive_skb_exit(ret); 5737 5738 return ret; 5739 } 5740 EXPORT_SYMBOL(netif_receive_skb); 5741 5742 /** 5743 * netif_receive_skb_list - process many receive buffers from network 5744 * @head: list of skbs to process. 5745 * 5746 * Since return value of netif_receive_skb() is normally ignored, and 5747 * wouldn't be meaningful for a list, this function returns void. 5748 * 5749 * This function may only be called from softirq context and interrupts 5750 * should be enabled. 5751 */ 5752 void netif_receive_skb_list(struct list_head *head) 5753 { 5754 struct sk_buff *skb; 5755 5756 if (list_empty(head)) 5757 return; 5758 if (trace_netif_receive_skb_list_entry_enabled()) { 5759 list_for_each_entry(skb, head, list) 5760 trace_netif_receive_skb_list_entry(skb); 5761 } 5762 netif_receive_skb_list_internal(head); 5763 trace_netif_receive_skb_list_exit(0); 5764 } 5765 EXPORT_SYMBOL(netif_receive_skb_list); 5766 5767 static DEFINE_PER_CPU(struct work_struct, flush_works); 5768 5769 /* Network device is going away, flush any packets still pending */ 5770 static void flush_backlog(struct work_struct *work) 5771 { 5772 struct sk_buff *skb, *tmp; 5773 struct softnet_data *sd; 5774 5775 local_bh_disable(); 5776 sd = this_cpu_ptr(&softnet_data); 5777 5778 rps_lock_irq_disable(sd); 5779 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5780 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5781 __skb_unlink(skb, &sd->input_pkt_queue); 5782 dev_kfree_skb_irq(skb); 5783 input_queue_head_incr(sd); 5784 } 5785 } 5786 rps_unlock_irq_enable(sd); 5787 5788 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5789 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5790 __skb_unlink(skb, &sd->process_queue); 5791 kfree_skb(skb); 5792 input_queue_head_incr(sd); 5793 } 5794 } 5795 local_bh_enable(); 5796 } 5797 5798 static bool flush_required(int cpu) 5799 { 5800 #if IS_ENABLED(CONFIG_RPS) 5801 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5802 bool do_flush; 5803 5804 rps_lock_irq_disable(sd); 5805 5806 /* as insertion into process_queue happens with the rps lock held, 5807 * process_queue access may race only with dequeue 5808 */ 5809 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5810 !skb_queue_empty_lockless(&sd->process_queue); 5811 rps_unlock_irq_enable(sd); 5812 5813 return do_flush; 5814 #endif 5815 /* without RPS we can't safely check input_pkt_queue: during a 5816 * concurrent remote skb_queue_splice() we can detect as empty both 5817 * input_pkt_queue and process_queue even if the latter could end-up 5818 * containing a lot of packets. 5819 */ 5820 return true; 5821 } 5822 5823 static void flush_all_backlogs(void) 5824 { 5825 static cpumask_t flush_cpus; 5826 unsigned int cpu; 5827 5828 /* since we are under rtnl lock protection we can use static data 5829 * for the cpumask and avoid allocating on stack the possibly 5830 * large mask 5831 */ 5832 ASSERT_RTNL(); 5833 5834 cpus_read_lock(); 5835 5836 cpumask_clear(&flush_cpus); 5837 for_each_online_cpu(cpu) { 5838 if (flush_required(cpu)) { 5839 queue_work_on(cpu, system_highpri_wq, 5840 per_cpu_ptr(&flush_works, cpu)); 5841 cpumask_set_cpu(cpu, &flush_cpus); 5842 } 5843 } 5844 5845 /* we can have in flight packet[s] on the cpus we are not flushing, 5846 * synchronize_net() in unregister_netdevice_many() will take care of 5847 * them 5848 */ 5849 for_each_cpu(cpu, &flush_cpus) 5850 flush_work(per_cpu_ptr(&flush_works, cpu)); 5851 5852 cpus_read_unlock(); 5853 } 5854 5855 static void net_rps_send_ipi(struct softnet_data *remsd) 5856 { 5857 #ifdef CONFIG_RPS 5858 while (remsd) { 5859 struct softnet_data *next = remsd->rps_ipi_next; 5860 5861 if (cpu_online(remsd->cpu)) 5862 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5863 remsd = next; 5864 } 5865 #endif 5866 } 5867 5868 /* 5869 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5870 * Note: called with local irq disabled, but exits with local irq enabled. 5871 */ 5872 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5873 { 5874 #ifdef CONFIG_RPS 5875 struct softnet_data *remsd = sd->rps_ipi_list; 5876 5877 if (remsd) { 5878 sd->rps_ipi_list = NULL; 5879 5880 local_irq_enable(); 5881 5882 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5883 net_rps_send_ipi(remsd); 5884 } else 5885 #endif 5886 local_irq_enable(); 5887 } 5888 5889 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5890 { 5891 #ifdef CONFIG_RPS 5892 return sd->rps_ipi_list != NULL; 5893 #else 5894 return false; 5895 #endif 5896 } 5897 5898 static int process_backlog(struct napi_struct *napi, int quota) 5899 { 5900 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5901 bool again = true; 5902 int work = 0; 5903 5904 /* Check if we have pending ipi, its better to send them now, 5905 * not waiting net_rx_action() end. 5906 */ 5907 if (sd_has_rps_ipi_waiting(sd)) { 5908 local_irq_disable(); 5909 net_rps_action_and_irq_enable(sd); 5910 } 5911 5912 napi->weight = dev_rx_weight; 5913 while (again) { 5914 struct sk_buff *skb; 5915 5916 while ((skb = __skb_dequeue(&sd->process_queue))) { 5917 rcu_read_lock(); 5918 __netif_receive_skb(skb); 5919 rcu_read_unlock(); 5920 input_queue_head_incr(sd); 5921 if (++work >= quota) 5922 return work; 5923 5924 } 5925 5926 rps_lock_irq_disable(sd); 5927 if (skb_queue_empty(&sd->input_pkt_queue)) { 5928 /* 5929 * Inline a custom version of __napi_complete(). 5930 * only current cpu owns and manipulates this napi, 5931 * and NAPI_STATE_SCHED is the only possible flag set 5932 * on backlog. 5933 * We can use a plain write instead of clear_bit(), 5934 * and we dont need an smp_mb() memory barrier. 5935 */ 5936 napi->state = 0; 5937 again = false; 5938 } else { 5939 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5940 &sd->process_queue); 5941 } 5942 rps_unlock_irq_enable(sd); 5943 } 5944 5945 return work; 5946 } 5947 5948 /** 5949 * __napi_schedule - schedule for receive 5950 * @n: entry to schedule 5951 * 5952 * The entry's receive function will be scheduled to run. 5953 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5954 */ 5955 void __napi_schedule(struct napi_struct *n) 5956 { 5957 unsigned long flags; 5958 5959 local_irq_save(flags); 5960 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5961 local_irq_restore(flags); 5962 } 5963 EXPORT_SYMBOL(__napi_schedule); 5964 5965 /** 5966 * napi_schedule_prep - check if napi can be scheduled 5967 * @n: napi context 5968 * 5969 * Test if NAPI routine is already running, and if not mark 5970 * it as running. This is used as a condition variable to 5971 * insure only one NAPI poll instance runs. We also make 5972 * sure there is no pending NAPI disable. 5973 */ 5974 bool napi_schedule_prep(struct napi_struct *n) 5975 { 5976 unsigned long val, new; 5977 5978 do { 5979 val = READ_ONCE(n->state); 5980 if (unlikely(val & NAPIF_STATE_DISABLE)) 5981 return false; 5982 new = val | NAPIF_STATE_SCHED; 5983 5984 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5985 * This was suggested by Alexander Duyck, as compiler 5986 * emits better code than : 5987 * if (val & NAPIF_STATE_SCHED) 5988 * new |= NAPIF_STATE_MISSED; 5989 */ 5990 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5991 NAPIF_STATE_MISSED; 5992 } while (cmpxchg(&n->state, val, new) != val); 5993 5994 return !(val & NAPIF_STATE_SCHED); 5995 } 5996 EXPORT_SYMBOL(napi_schedule_prep); 5997 5998 /** 5999 * __napi_schedule_irqoff - schedule for receive 6000 * @n: entry to schedule 6001 * 6002 * Variant of __napi_schedule() assuming hard irqs are masked. 6003 * 6004 * On PREEMPT_RT enabled kernels this maps to __napi_schedule() 6005 * because the interrupt disabled assumption might not be true 6006 * due to force-threaded interrupts and spinlock substitution. 6007 */ 6008 void __napi_schedule_irqoff(struct napi_struct *n) 6009 { 6010 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 6011 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6012 else 6013 __napi_schedule(n); 6014 } 6015 EXPORT_SYMBOL(__napi_schedule_irqoff); 6016 6017 bool napi_complete_done(struct napi_struct *n, int work_done) 6018 { 6019 unsigned long flags, val, new, timeout = 0; 6020 bool ret = true; 6021 6022 /* 6023 * 1) Don't let napi dequeue from the cpu poll list 6024 * just in case its running on a different cpu. 6025 * 2) If we are busy polling, do nothing here, we have 6026 * the guarantee we will be called later. 6027 */ 6028 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6029 NAPIF_STATE_IN_BUSY_POLL))) 6030 return false; 6031 6032 if (work_done) { 6033 if (n->gro_bitmask) 6034 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6035 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6036 } 6037 if (n->defer_hard_irqs_count > 0) { 6038 n->defer_hard_irqs_count--; 6039 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6040 if (timeout) 6041 ret = false; 6042 } 6043 if (n->gro_bitmask) { 6044 /* When the NAPI instance uses a timeout and keeps postponing 6045 * it, we need to bound somehow the time packets are kept in 6046 * the GRO layer 6047 */ 6048 napi_gro_flush(n, !!timeout); 6049 } 6050 6051 gro_normal_list(n); 6052 6053 if (unlikely(!list_empty(&n->poll_list))) { 6054 /* If n->poll_list is not empty, we need to mask irqs */ 6055 local_irq_save(flags); 6056 list_del_init(&n->poll_list); 6057 local_irq_restore(flags); 6058 } 6059 6060 do { 6061 val = READ_ONCE(n->state); 6062 6063 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6064 6065 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6066 NAPIF_STATE_SCHED_THREADED | 6067 NAPIF_STATE_PREFER_BUSY_POLL); 6068 6069 /* If STATE_MISSED was set, leave STATE_SCHED set, 6070 * because we will call napi->poll() one more time. 6071 * This C code was suggested by Alexander Duyck to help gcc. 6072 */ 6073 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6074 NAPIF_STATE_SCHED; 6075 } while (cmpxchg(&n->state, val, new) != val); 6076 6077 if (unlikely(val & NAPIF_STATE_MISSED)) { 6078 __napi_schedule(n); 6079 return false; 6080 } 6081 6082 if (timeout) 6083 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6084 HRTIMER_MODE_REL_PINNED); 6085 return ret; 6086 } 6087 EXPORT_SYMBOL(napi_complete_done); 6088 6089 /* must be called under rcu_read_lock(), as we dont take a reference */ 6090 static struct napi_struct *napi_by_id(unsigned int napi_id) 6091 { 6092 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6093 struct napi_struct *napi; 6094 6095 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6096 if (napi->napi_id == napi_id) 6097 return napi; 6098 6099 return NULL; 6100 } 6101 6102 #if defined(CONFIG_NET_RX_BUSY_POLL) 6103 6104 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6105 { 6106 if (!skip_schedule) { 6107 gro_normal_list(napi); 6108 __napi_schedule(napi); 6109 return; 6110 } 6111 6112 if (napi->gro_bitmask) { 6113 /* flush too old packets 6114 * If HZ < 1000, flush all packets. 6115 */ 6116 napi_gro_flush(napi, HZ >= 1000); 6117 } 6118 6119 gro_normal_list(napi); 6120 clear_bit(NAPI_STATE_SCHED, &napi->state); 6121 } 6122 6123 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6124 u16 budget) 6125 { 6126 bool skip_schedule = false; 6127 unsigned long timeout; 6128 int rc; 6129 6130 /* Busy polling means there is a high chance device driver hard irq 6131 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6132 * set in napi_schedule_prep(). 6133 * Since we are about to call napi->poll() once more, we can safely 6134 * clear NAPI_STATE_MISSED. 6135 * 6136 * Note: x86 could use a single "lock and ..." instruction 6137 * to perform these two clear_bit() 6138 */ 6139 clear_bit(NAPI_STATE_MISSED, &napi->state); 6140 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6141 6142 local_bh_disable(); 6143 6144 if (prefer_busy_poll) { 6145 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6146 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6147 if (napi->defer_hard_irqs_count && timeout) { 6148 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6149 skip_schedule = true; 6150 } 6151 } 6152 6153 /* All we really want here is to re-enable device interrupts. 6154 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6155 */ 6156 rc = napi->poll(napi, budget); 6157 /* We can't gro_normal_list() here, because napi->poll() might have 6158 * rearmed the napi (napi_complete_done()) in which case it could 6159 * already be running on another CPU. 6160 */ 6161 trace_napi_poll(napi, rc, budget); 6162 netpoll_poll_unlock(have_poll_lock); 6163 if (rc == budget) 6164 __busy_poll_stop(napi, skip_schedule); 6165 local_bh_enable(); 6166 } 6167 6168 void napi_busy_loop(unsigned int napi_id, 6169 bool (*loop_end)(void *, unsigned long), 6170 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6171 { 6172 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6173 int (*napi_poll)(struct napi_struct *napi, int budget); 6174 void *have_poll_lock = NULL; 6175 struct napi_struct *napi; 6176 6177 restart: 6178 napi_poll = NULL; 6179 6180 rcu_read_lock(); 6181 6182 napi = napi_by_id(napi_id); 6183 if (!napi) 6184 goto out; 6185 6186 preempt_disable(); 6187 for (;;) { 6188 int work = 0; 6189 6190 local_bh_disable(); 6191 if (!napi_poll) { 6192 unsigned long val = READ_ONCE(napi->state); 6193 6194 /* If multiple threads are competing for this napi, 6195 * we avoid dirtying napi->state as much as we can. 6196 */ 6197 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6198 NAPIF_STATE_IN_BUSY_POLL)) { 6199 if (prefer_busy_poll) 6200 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6201 goto count; 6202 } 6203 if (cmpxchg(&napi->state, val, 6204 val | NAPIF_STATE_IN_BUSY_POLL | 6205 NAPIF_STATE_SCHED) != val) { 6206 if (prefer_busy_poll) 6207 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6208 goto count; 6209 } 6210 have_poll_lock = netpoll_poll_lock(napi); 6211 napi_poll = napi->poll; 6212 } 6213 work = napi_poll(napi, budget); 6214 trace_napi_poll(napi, work, budget); 6215 gro_normal_list(napi); 6216 count: 6217 if (work > 0) 6218 __NET_ADD_STATS(dev_net(napi->dev), 6219 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6220 local_bh_enable(); 6221 6222 if (!loop_end || loop_end(loop_end_arg, start_time)) 6223 break; 6224 6225 if (unlikely(need_resched())) { 6226 if (napi_poll) 6227 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6228 preempt_enable(); 6229 rcu_read_unlock(); 6230 cond_resched(); 6231 if (loop_end(loop_end_arg, start_time)) 6232 return; 6233 goto restart; 6234 } 6235 cpu_relax(); 6236 } 6237 if (napi_poll) 6238 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6239 preempt_enable(); 6240 out: 6241 rcu_read_unlock(); 6242 } 6243 EXPORT_SYMBOL(napi_busy_loop); 6244 6245 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6246 6247 static void napi_hash_add(struct napi_struct *napi) 6248 { 6249 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6250 return; 6251 6252 spin_lock(&napi_hash_lock); 6253 6254 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6255 do { 6256 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6257 napi_gen_id = MIN_NAPI_ID; 6258 } while (napi_by_id(napi_gen_id)); 6259 napi->napi_id = napi_gen_id; 6260 6261 hlist_add_head_rcu(&napi->napi_hash_node, 6262 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6263 6264 spin_unlock(&napi_hash_lock); 6265 } 6266 6267 /* Warning : caller is responsible to make sure rcu grace period 6268 * is respected before freeing memory containing @napi 6269 */ 6270 static void napi_hash_del(struct napi_struct *napi) 6271 { 6272 spin_lock(&napi_hash_lock); 6273 6274 hlist_del_init_rcu(&napi->napi_hash_node); 6275 6276 spin_unlock(&napi_hash_lock); 6277 } 6278 6279 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6280 { 6281 struct napi_struct *napi; 6282 6283 napi = container_of(timer, struct napi_struct, timer); 6284 6285 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6286 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6287 */ 6288 if (!napi_disable_pending(napi) && 6289 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6290 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6291 __napi_schedule_irqoff(napi); 6292 } 6293 6294 return HRTIMER_NORESTART; 6295 } 6296 6297 static void init_gro_hash(struct napi_struct *napi) 6298 { 6299 int i; 6300 6301 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6302 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6303 napi->gro_hash[i].count = 0; 6304 } 6305 napi->gro_bitmask = 0; 6306 } 6307 6308 int dev_set_threaded(struct net_device *dev, bool threaded) 6309 { 6310 struct napi_struct *napi; 6311 int err = 0; 6312 6313 if (dev->threaded == threaded) 6314 return 0; 6315 6316 if (threaded) { 6317 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6318 if (!napi->thread) { 6319 err = napi_kthread_create(napi); 6320 if (err) { 6321 threaded = false; 6322 break; 6323 } 6324 } 6325 } 6326 } 6327 6328 dev->threaded = threaded; 6329 6330 /* Make sure kthread is created before THREADED bit 6331 * is set. 6332 */ 6333 smp_mb__before_atomic(); 6334 6335 /* Setting/unsetting threaded mode on a napi might not immediately 6336 * take effect, if the current napi instance is actively being 6337 * polled. In this case, the switch between threaded mode and 6338 * softirq mode will happen in the next round of napi_schedule(). 6339 * This should not cause hiccups/stalls to the live traffic. 6340 */ 6341 list_for_each_entry(napi, &dev->napi_list, dev_list) { 6342 if (threaded) 6343 set_bit(NAPI_STATE_THREADED, &napi->state); 6344 else 6345 clear_bit(NAPI_STATE_THREADED, &napi->state); 6346 } 6347 6348 return err; 6349 } 6350 EXPORT_SYMBOL(dev_set_threaded); 6351 6352 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi, 6353 int (*poll)(struct napi_struct *, int), int weight) 6354 { 6355 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6356 return; 6357 6358 INIT_LIST_HEAD(&napi->poll_list); 6359 INIT_HLIST_NODE(&napi->napi_hash_node); 6360 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6361 napi->timer.function = napi_watchdog; 6362 init_gro_hash(napi); 6363 napi->skb = NULL; 6364 INIT_LIST_HEAD(&napi->rx_list); 6365 napi->rx_count = 0; 6366 napi->poll = poll; 6367 if (weight > NAPI_POLL_WEIGHT) 6368 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6369 weight); 6370 napi->weight = weight; 6371 napi->dev = dev; 6372 #ifdef CONFIG_NETPOLL 6373 napi->poll_owner = -1; 6374 #endif 6375 set_bit(NAPI_STATE_SCHED, &napi->state); 6376 set_bit(NAPI_STATE_NPSVC, &napi->state); 6377 list_add_rcu(&napi->dev_list, &dev->napi_list); 6378 napi_hash_add(napi); 6379 /* Create kthread for this napi if dev->threaded is set. 6380 * Clear dev->threaded if kthread creation failed so that 6381 * threaded mode will not be enabled in napi_enable(). 6382 */ 6383 if (dev->threaded && napi_kthread_create(napi)) 6384 dev->threaded = 0; 6385 } 6386 EXPORT_SYMBOL(netif_napi_add_weight); 6387 6388 void napi_disable(struct napi_struct *n) 6389 { 6390 unsigned long val, new; 6391 6392 might_sleep(); 6393 set_bit(NAPI_STATE_DISABLE, &n->state); 6394 6395 for ( ; ; ) { 6396 val = READ_ONCE(n->state); 6397 if (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) { 6398 usleep_range(20, 200); 6399 continue; 6400 } 6401 6402 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC; 6403 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL); 6404 6405 if (cmpxchg(&n->state, val, new) == val) 6406 break; 6407 } 6408 6409 hrtimer_cancel(&n->timer); 6410 6411 clear_bit(NAPI_STATE_DISABLE, &n->state); 6412 } 6413 EXPORT_SYMBOL(napi_disable); 6414 6415 /** 6416 * napi_enable - enable NAPI scheduling 6417 * @n: NAPI context 6418 * 6419 * Resume NAPI from being scheduled on this context. 6420 * Must be paired with napi_disable. 6421 */ 6422 void napi_enable(struct napi_struct *n) 6423 { 6424 unsigned long val, new; 6425 6426 do { 6427 val = READ_ONCE(n->state); 6428 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val)); 6429 6430 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC); 6431 if (n->dev->threaded && n->thread) 6432 new |= NAPIF_STATE_THREADED; 6433 } while (cmpxchg(&n->state, val, new) != val); 6434 } 6435 EXPORT_SYMBOL(napi_enable); 6436 6437 static void flush_gro_hash(struct napi_struct *napi) 6438 { 6439 int i; 6440 6441 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6442 struct sk_buff *skb, *n; 6443 6444 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6445 kfree_skb(skb); 6446 napi->gro_hash[i].count = 0; 6447 } 6448 } 6449 6450 /* Must be called in process context */ 6451 void __netif_napi_del(struct napi_struct *napi) 6452 { 6453 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6454 return; 6455 6456 napi_hash_del(napi); 6457 list_del_rcu(&napi->dev_list); 6458 napi_free_frags(napi); 6459 6460 flush_gro_hash(napi); 6461 napi->gro_bitmask = 0; 6462 6463 if (napi->thread) { 6464 kthread_stop(napi->thread); 6465 napi->thread = NULL; 6466 } 6467 } 6468 EXPORT_SYMBOL(__netif_napi_del); 6469 6470 static int __napi_poll(struct napi_struct *n, bool *repoll) 6471 { 6472 int work, weight; 6473 6474 weight = n->weight; 6475 6476 /* This NAPI_STATE_SCHED test is for avoiding a race 6477 * with netpoll's poll_napi(). Only the entity which 6478 * obtains the lock and sees NAPI_STATE_SCHED set will 6479 * actually make the ->poll() call. Therefore we avoid 6480 * accidentally calling ->poll() when NAPI is not scheduled. 6481 */ 6482 work = 0; 6483 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6484 work = n->poll(n, weight); 6485 trace_napi_poll(n, work, weight); 6486 } 6487 6488 if (unlikely(work > weight)) 6489 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6490 n->poll, work, weight); 6491 6492 if (likely(work < weight)) 6493 return work; 6494 6495 /* Drivers must not modify the NAPI state if they 6496 * consume the entire weight. In such cases this code 6497 * still "owns" the NAPI instance and therefore can 6498 * move the instance around on the list at-will. 6499 */ 6500 if (unlikely(napi_disable_pending(n))) { 6501 napi_complete(n); 6502 return work; 6503 } 6504 6505 /* The NAPI context has more processing work, but busy-polling 6506 * is preferred. Exit early. 6507 */ 6508 if (napi_prefer_busy_poll(n)) { 6509 if (napi_complete_done(n, work)) { 6510 /* If timeout is not set, we need to make sure 6511 * that the NAPI is re-scheduled. 6512 */ 6513 napi_schedule(n); 6514 } 6515 return work; 6516 } 6517 6518 if (n->gro_bitmask) { 6519 /* flush too old packets 6520 * If HZ < 1000, flush all packets. 6521 */ 6522 napi_gro_flush(n, HZ >= 1000); 6523 } 6524 6525 gro_normal_list(n); 6526 6527 /* Some drivers may have called napi_schedule 6528 * prior to exhausting their budget. 6529 */ 6530 if (unlikely(!list_empty(&n->poll_list))) { 6531 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6532 n->dev ? n->dev->name : "backlog"); 6533 return work; 6534 } 6535 6536 *repoll = true; 6537 6538 return work; 6539 } 6540 6541 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6542 { 6543 bool do_repoll = false; 6544 void *have; 6545 int work; 6546 6547 list_del_init(&n->poll_list); 6548 6549 have = netpoll_poll_lock(n); 6550 6551 work = __napi_poll(n, &do_repoll); 6552 6553 if (do_repoll) 6554 list_add_tail(&n->poll_list, repoll); 6555 6556 netpoll_poll_unlock(have); 6557 6558 return work; 6559 } 6560 6561 static int napi_thread_wait(struct napi_struct *napi) 6562 { 6563 bool woken = false; 6564 6565 set_current_state(TASK_INTERRUPTIBLE); 6566 6567 while (!kthread_should_stop()) { 6568 /* Testing SCHED_THREADED bit here to make sure the current 6569 * kthread owns this napi and could poll on this napi. 6570 * Testing SCHED bit is not enough because SCHED bit might be 6571 * set by some other busy poll thread or by napi_disable(). 6572 */ 6573 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) { 6574 WARN_ON(!list_empty(&napi->poll_list)); 6575 __set_current_state(TASK_RUNNING); 6576 return 0; 6577 } 6578 6579 schedule(); 6580 /* woken being true indicates this thread owns this napi. */ 6581 woken = true; 6582 set_current_state(TASK_INTERRUPTIBLE); 6583 } 6584 __set_current_state(TASK_RUNNING); 6585 6586 return -1; 6587 } 6588 6589 static int napi_threaded_poll(void *data) 6590 { 6591 struct napi_struct *napi = data; 6592 void *have; 6593 6594 while (!napi_thread_wait(napi)) { 6595 for (;;) { 6596 bool repoll = false; 6597 6598 local_bh_disable(); 6599 6600 have = netpoll_poll_lock(napi); 6601 __napi_poll(napi, &repoll); 6602 netpoll_poll_unlock(have); 6603 6604 local_bh_enable(); 6605 6606 if (!repoll) 6607 break; 6608 6609 cond_resched(); 6610 } 6611 } 6612 return 0; 6613 } 6614 6615 static void skb_defer_free_flush(struct softnet_data *sd) 6616 { 6617 struct sk_buff *skb, *next; 6618 unsigned long flags; 6619 6620 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */ 6621 if (!READ_ONCE(sd->defer_list)) 6622 return; 6623 6624 spin_lock_irqsave(&sd->defer_lock, flags); 6625 skb = sd->defer_list; 6626 sd->defer_list = NULL; 6627 sd->defer_count = 0; 6628 spin_unlock_irqrestore(&sd->defer_lock, flags); 6629 6630 while (skb != NULL) { 6631 next = skb->next; 6632 __kfree_skb(skb); 6633 skb = next; 6634 } 6635 } 6636 6637 static __latent_entropy void net_rx_action(struct softirq_action *h) 6638 { 6639 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6640 unsigned long time_limit = jiffies + 6641 usecs_to_jiffies(netdev_budget_usecs); 6642 int budget = netdev_budget; 6643 LIST_HEAD(list); 6644 LIST_HEAD(repoll); 6645 6646 local_irq_disable(); 6647 list_splice_init(&sd->poll_list, &list); 6648 local_irq_enable(); 6649 6650 for (;;) { 6651 struct napi_struct *n; 6652 6653 if (list_empty(&list)) { 6654 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6655 goto end; 6656 break; 6657 } 6658 6659 n = list_first_entry(&list, struct napi_struct, poll_list); 6660 budget -= napi_poll(n, &repoll); 6661 6662 /* If softirq window is exhausted then punt. 6663 * Allow this to run for 2 jiffies since which will allow 6664 * an average latency of 1.5/HZ. 6665 */ 6666 if (unlikely(budget <= 0 || 6667 time_after_eq(jiffies, time_limit))) { 6668 sd->time_squeeze++; 6669 break; 6670 } 6671 } 6672 6673 local_irq_disable(); 6674 6675 list_splice_tail_init(&sd->poll_list, &list); 6676 list_splice_tail(&repoll, &list); 6677 list_splice(&list, &sd->poll_list); 6678 if (!list_empty(&sd->poll_list)) 6679 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6680 6681 net_rps_action_and_irq_enable(sd); 6682 end: 6683 skb_defer_free_flush(sd); 6684 } 6685 6686 struct netdev_adjacent { 6687 struct net_device *dev; 6688 netdevice_tracker dev_tracker; 6689 6690 /* upper master flag, there can only be one master device per list */ 6691 bool master; 6692 6693 /* lookup ignore flag */ 6694 bool ignore; 6695 6696 /* counter for the number of times this device was added to us */ 6697 u16 ref_nr; 6698 6699 /* private field for the users */ 6700 void *private; 6701 6702 struct list_head list; 6703 struct rcu_head rcu; 6704 }; 6705 6706 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6707 struct list_head *adj_list) 6708 { 6709 struct netdev_adjacent *adj; 6710 6711 list_for_each_entry(adj, adj_list, list) { 6712 if (adj->dev == adj_dev) 6713 return adj; 6714 } 6715 return NULL; 6716 } 6717 6718 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6719 struct netdev_nested_priv *priv) 6720 { 6721 struct net_device *dev = (struct net_device *)priv->data; 6722 6723 return upper_dev == dev; 6724 } 6725 6726 /** 6727 * netdev_has_upper_dev - Check if device is linked to an upper device 6728 * @dev: device 6729 * @upper_dev: upper device to check 6730 * 6731 * Find out if a device is linked to specified upper device and return true 6732 * in case it is. Note that this checks only immediate upper device, 6733 * not through a complete stack of devices. The caller must hold the RTNL lock. 6734 */ 6735 bool netdev_has_upper_dev(struct net_device *dev, 6736 struct net_device *upper_dev) 6737 { 6738 struct netdev_nested_priv priv = { 6739 .data = (void *)upper_dev, 6740 }; 6741 6742 ASSERT_RTNL(); 6743 6744 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6745 &priv); 6746 } 6747 EXPORT_SYMBOL(netdev_has_upper_dev); 6748 6749 /** 6750 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device 6751 * @dev: device 6752 * @upper_dev: upper device to check 6753 * 6754 * Find out if a device is linked to specified upper device and return true 6755 * in case it is. Note that this checks the entire upper device chain. 6756 * The caller must hold rcu lock. 6757 */ 6758 6759 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6760 struct net_device *upper_dev) 6761 { 6762 struct netdev_nested_priv priv = { 6763 .data = (void *)upper_dev, 6764 }; 6765 6766 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6767 &priv); 6768 } 6769 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6770 6771 /** 6772 * netdev_has_any_upper_dev - Check if device is linked to some device 6773 * @dev: device 6774 * 6775 * Find out if a device is linked to an upper device and return true in case 6776 * it is. The caller must hold the RTNL lock. 6777 */ 6778 bool netdev_has_any_upper_dev(struct net_device *dev) 6779 { 6780 ASSERT_RTNL(); 6781 6782 return !list_empty(&dev->adj_list.upper); 6783 } 6784 EXPORT_SYMBOL(netdev_has_any_upper_dev); 6785 6786 /** 6787 * netdev_master_upper_dev_get - Get master upper device 6788 * @dev: device 6789 * 6790 * Find a master upper device and return pointer to it or NULL in case 6791 * it's not there. The caller must hold the RTNL lock. 6792 */ 6793 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 6794 { 6795 struct netdev_adjacent *upper; 6796 6797 ASSERT_RTNL(); 6798 6799 if (list_empty(&dev->adj_list.upper)) 6800 return NULL; 6801 6802 upper = list_first_entry(&dev->adj_list.upper, 6803 struct netdev_adjacent, list); 6804 if (likely(upper->master)) 6805 return upper->dev; 6806 return NULL; 6807 } 6808 EXPORT_SYMBOL(netdev_master_upper_dev_get); 6809 6810 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 6811 { 6812 struct netdev_adjacent *upper; 6813 6814 ASSERT_RTNL(); 6815 6816 if (list_empty(&dev->adj_list.upper)) 6817 return NULL; 6818 6819 upper = list_first_entry(&dev->adj_list.upper, 6820 struct netdev_adjacent, list); 6821 if (likely(upper->master) && !upper->ignore) 6822 return upper->dev; 6823 return NULL; 6824 } 6825 6826 /** 6827 * netdev_has_any_lower_dev - Check if device is linked to some device 6828 * @dev: device 6829 * 6830 * Find out if a device is linked to a lower device and return true in case 6831 * it is. The caller must hold the RTNL lock. 6832 */ 6833 static bool netdev_has_any_lower_dev(struct net_device *dev) 6834 { 6835 ASSERT_RTNL(); 6836 6837 return !list_empty(&dev->adj_list.lower); 6838 } 6839 6840 void *netdev_adjacent_get_private(struct list_head *adj_list) 6841 { 6842 struct netdev_adjacent *adj; 6843 6844 adj = list_entry(adj_list, struct netdev_adjacent, list); 6845 6846 return adj->private; 6847 } 6848 EXPORT_SYMBOL(netdev_adjacent_get_private); 6849 6850 /** 6851 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 6852 * @dev: device 6853 * @iter: list_head ** of the current position 6854 * 6855 * Gets the next device from the dev's upper list, starting from iter 6856 * position. The caller must hold RCU read lock. 6857 */ 6858 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 6859 struct list_head **iter) 6860 { 6861 struct netdev_adjacent *upper; 6862 6863 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6864 6865 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6866 6867 if (&upper->list == &dev->adj_list.upper) 6868 return NULL; 6869 6870 *iter = &upper->list; 6871 6872 return upper->dev; 6873 } 6874 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 6875 6876 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 6877 struct list_head **iter, 6878 bool *ignore) 6879 { 6880 struct netdev_adjacent *upper; 6881 6882 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 6883 6884 if (&upper->list == &dev->adj_list.upper) 6885 return NULL; 6886 6887 *iter = &upper->list; 6888 *ignore = upper->ignore; 6889 6890 return upper->dev; 6891 } 6892 6893 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 6894 struct list_head **iter) 6895 { 6896 struct netdev_adjacent *upper; 6897 6898 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 6899 6900 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6901 6902 if (&upper->list == &dev->adj_list.upper) 6903 return NULL; 6904 6905 *iter = &upper->list; 6906 6907 return upper->dev; 6908 } 6909 6910 static int __netdev_walk_all_upper_dev(struct net_device *dev, 6911 int (*fn)(struct net_device *dev, 6912 struct netdev_nested_priv *priv), 6913 struct netdev_nested_priv *priv) 6914 { 6915 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6916 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6917 int ret, cur = 0; 6918 bool ignore; 6919 6920 now = dev; 6921 iter = &dev->adj_list.upper; 6922 6923 while (1) { 6924 if (now != dev) { 6925 ret = fn(now, priv); 6926 if (ret) 6927 return ret; 6928 } 6929 6930 next = NULL; 6931 while (1) { 6932 udev = __netdev_next_upper_dev(now, &iter, &ignore); 6933 if (!udev) 6934 break; 6935 if (ignore) 6936 continue; 6937 6938 next = udev; 6939 niter = &udev->adj_list.upper; 6940 dev_stack[cur] = now; 6941 iter_stack[cur++] = iter; 6942 break; 6943 } 6944 6945 if (!next) { 6946 if (!cur) 6947 return 0; 6948 next = dev_stack[--cur]; 6949 niter = iter_stack[cur]; 6950 } 6951 6952 now = next; 6953 iter = niter; 6954 } 6955 6956 return 0; 6957 } 6958 6959 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 6960 int (*fn)(struct net_device *dev, 6961 struct netdev_nested_priv *priv), 6962 struct netdev_nested_priv *priv) 6963 { 6964 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 6965 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 6966 int ret, cur = 0; 6967 6968 now = dev; 6969 iter = &dev->adj_list.upper; 6970 6971 while (1) { 6972 if (now != dev) { 6973 ret = fn(now, priv); 6974 if (ret) 6975 return ret; 6976 } 6977 6978 next = NULL; 6979 while (1) { 6980 udev = netdev_next_upper_dev_rcu(now, &iter); 6981 if (!udev) 6982 break; 6983 6984 next = udev; 6985 niter = &udev->adj_list.upper; 6986 dev_stack[cur] = now; 6987 iter_stack[cur++] = iter; 6988 break; 6989 } 6990 6991 if (!next) { 6992 if (!cur) 6993 return 0; 6994 next = dev_stack[--cur]; 6995 niter = iter_stack[cur]; 6996 } 6997 6998 now = next; 6999 iter = niter; 7000 } 7001 7002 return 0; 7003 } 7004 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7005 7006 static bool __netdev_has_upper_dev(struct net_device *dev, 7007 struct net_device *upper_dev) 7008 { 7009 struct netdev_nested_priv priv = { 7010 .flags = 0, 7011 .data = (void *)upper_dev, 7012 }; 7013 7014 ASSERT_RTNL(); 7015 7016 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7017 &priv); 7018 } 7019 7020 /** 7021 * netdev_lower_get_next_private - Get the next ->private from the 7022 * lower neighbour list 7023 * @dev: device 7024 * @iter: list_head ** of the current position 7025 * 7026 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7027 * list, starting from iter position. The caller must hold either hold the 7028 * RTNL lock or its own locking that guarantees that the neighbour lower 7029 * list will remain unchanged. 7030 */ 7031 void *netdev_lower_get_next_private(struct net_device *dev, 7032 struct list_head **iter) 7033 { 7034 struct netdev_adjacent *lower; 7035 7036 lower = list_entry(*iter, struct netdev_adjacent, list); 7037 7038 if (&lower->list == &dev->adj_list.lower) 7039 return NULL; 7040 7041 *iter = lower->list.next; 7042 7043 return lower->private; 7044 } 7045 EXPORT_SYMBOL(netdev_lower_get_next_private); 7046 7047 /** 7048 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7049 * lower neighbour list, RCU 7050 * variant 7051 * @dev: device 7052 * @iter: list_head ** of the current position 7053 * 7054 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7055 * list, starting from iter position. The caller must hold RCU read lock. 7056 */ 7057 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7058 struct list_head **iter) 7059 { 7060 struct netdev_adjacent *lower; 7061 7062 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 7063 7064 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7065 7066 if (&lower->list == &dev->adj_list.lower) 7067 return NULL; 7068 7069 *iter = &lower->list; 7070 7071 return lower->private; 7072 } 7073 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7074 7075 /** 7076 * netdev_lower_get_next - Get the next device from the lower neighbour 7077 * list 7078 * @dev: device 7079 * @iter: list_head ** of the current position 7080 * 7081 * Gets the next netdev_adjacent from the dev's lower neighbour 7082 * list, starting from iter position. The caller must hold RTNL lock or 7083 * its own locking that guarantees that the neighbour lower 7084 * list will remain unchanged. 7085 */ 7086 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7087 { 7088 struct netdev_adjacent *lower; 7089 7090 lower = list_entry(*iter, struct netdev_adjacent, list); 7091 7092 if (&lower->list == &dev->adj_list.lower) 7093 return NULL; 7094 7095 *iter = lower->list.next; 7096 7097 return lower->dev; 7098 } 7099 EXPORT_SYMBOL(netdev_lower_get_next); 7100 7101 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7102 struct list_head **iter) 7103 { 7104 struct netdev_adjacent *lower; 7105 7106 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7107 7108 if (&lower->list == &dev->adj_list.lower) 7109 return NULL; 7110 7111 *iter = &lower->list; 7112 7113 return lower->dev; 7114 } 7115 7116 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7117 struct list_head **iter, 7118 bool *ignore) 7119 { 7120 struct netdev_adjacent *lower; 7121 7122 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7123 7124 if (&lower->list == &dev->adj_list.lower) 7125 return NULL; 7126 7127 *iter = &lower->list; 7128 *ignore = lower->ignore; 7129 7130 return lower->dev; 7131 } 7132 7133 int netdev_walk_all_lower_dev(struct net_device *dev, 7134 int (*fn)(struct net_device *dev, 7135 struct netdev_nested_priv *priv), 7136 struct netdev_nested_priv *priv) 7137 { 7138 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7139 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7140 int ret, cur = 0; 7141 7142 now = dev; 7143 iter = &dev->adj_list.lower; 7144 7145 while (1) { 7146 if (now != dev) { 7147 ret = fn(now, priv); 7148 if (ret) 7149 return ret; 7150 } 7151 7152 next = NULL; 7153 while (1) { 7154 ldev = netdev_next_lower_dev(now, &iter); 7155 if (!ldev) 7156 break; 7157 7158 next = ldev; 7159 niter = &ldev->adj_list.lower; 7160 dev_stack[cur] = now; 7161 iter_stack[cur++] = iter; 7162 break; 7163 } 7164 7165 if (!next) { 7166 if (!cur) 7167 return 0; 7168 next = dev_stack[--cur]; 7169 niter = iter_stack[cur]; 7170 } 7171 7172 now = next; 7173 iter = niter; 7174 } 7175 7176 return 0; 7177 } 7178 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7179 7180 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7181 int (*fn)(struct net_device *dev, 7182 struct netdev_nested_priv *priv), 7183 struct netdev_nested_priv *priv) 7184 { 7185 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7186 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7187 int ret, cur = 0; 7188 bool ignore; 7189 7190 now = dev; 7191 iter = &dev->adj_list.lower; 7192 7193 while (1) { 7194 if (now != dev) { 7195 ret = fn(now, priv); 7196 if (ret) 7197 return ret; 7198 } 7199 7200 next = NULL; 7201 while (1) { 7202 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7203 if (!ldev) 7204 break; 7205 if (ignore) 7206 continue; 7207 7208 next = ldev; 7209 niter = &ldev->adj_list.lower; 7210 dev_stack[cur] = now; 7211 iter_stack[cur++] = iter; 7212 break; 7213 } 7214 7215 if (!next) { 7216 if (!cur) 7217 return 0; 7218 next = dev_stack[--cur]; 7219 niter = iter_stack[cur]; 7220 } 7221 7222 now = next; 7223 iter = niter; 7224 } 7225 7226 return 0; 7227 } 7228 7229 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7230 struct list_head **iter) 7231 { 7232 struct netdev_adjacent *lower; 7233 7234 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7235 if (&lower->list == &dev->adj_list.lower) 7236 return NULL; 7237 7238 *iter = &lower->list; 7239 7240 return lower->dev; 7241 } 7242 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7243 7244 static u8 __netdev_upper_depth(struct net_device *dev) 7245 { 7246 struct net_device *udev; 7247 struct list_head *iter; 7248 u8 max_depth = 0; 7249 bool ignore; 7250 7251 for (iter = &dev->adj_list.upper, 7252 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7253 udev; 7254 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7255 if (ignore) 7256 continue; 7257 if (max_depth < udev->upper_level) 7258 max_depth = udev->upper_level; 7259 } 7260 7261 return max_depth; 7262 } 7263 7264 static u8 __netdev_lower_depth(struct net_device *dev) 7265 { 7266 struct net_device *ldev; 7267 struct list_head *iter; 7268 u8 max_depth = 0; 7269 bool ignore; 7270 7271 for (iter = &dev->adj_list.lower, 7272 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7273 ldev; 7274 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7275 if (ignore) 7276 continue; 7277 if (max_depth < ldev->lower_level) 7278 max_depth = ldev->lower_level; 7279 } 7280 7281 return max_depth; 7282 } 7283 7284 static int __netdev_update_upper_level(struct net_device *dev, 7285 struct netdev_nested_priv *__unused) 7286 { 7287 dev->upper_level = __netdev_upper_depth(dev) + 1; 7288 return 0; 7289 } 7290 7291 #ifdef CONFIG_LOCKDEP 7292 static LIST_HEAD(net_unlink_list); 7293 7294 static void net_unlink_todo(struct net_device *dev) 7295 { 7296 if (list_empty(&dev->unlink_list)) 7297 list_add_tail(&dev->unlink_list, &net_unlink_list); 7298 } 7299 #endif 7300 7301 static int __netdev_update_lower_level(struct net_device *dev, 7302 struct netdev_nested_priv *priv) 7303 { 7304 dev->lower_level = __netdev_lower_depth(dev) + 1; 7305 7306 #ifdef CONFIG_LOCKDEP 7307 if (!priv) 7308 return 0; 7309 7310 if (priv->flags & NESTED_SYNC_IMM) 7311 dev->nested_level = dev->lower_level - 1; 7312 if (priv->flags & NESTED_SYNC_TODO) 7313 net_unlink_todo(dev); 7314 #endif 7315 return 0; 7316 } 7317 7318 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7319 int (*fn)(struct net_device *dev, 7320 struct netdev_nested_priv *priv), 7321 struct netdev_nested_priv *priv) 7322 { 7323 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7324 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7325 int ret, cur = 0; 7326 7327 now = dev; 7328 iter = &dev->adj_list.lower; 7329 7330 while (1) { 7331 if (now != dev) { 7332 ret = fn(now, priv); 7333 if (ret) 7334 return ret; 7335 } 7336 7337 next = NULL; 7338 while (1) { 7339 ldev = netdev_next_lower_dev_rcu(now, &iter); 7340 if (!ldev) 7341 break; 7342 7343 next = ldev; 7344 niter = &ldev->adj_list.lower; 7345 dev_stack[cur] = now; 7346 iter_stack[cur++] = iter; 7347 break; 7348 } 7349 7350 if (!next) { 7351 if (!cur) 7352 return 0; 7353 next = dev_stack[--cur]; 7354 niter = iter_stack[cur]; 7355 } 7356 7357 now = next; 7358 iter = niter; 7359 } 7360 7361 return 0; 7362 } 7363 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7364 7365 /** 7366 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7367 * lower neighbour list, RCU 7368 * variant 7369 * @dev: device 7370 * 7371 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7372 * list. The caller must hold RCU read lock. 7373 */ 7374 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7375 { 7376 struct netdev_adjacent *lower; 7377 7378 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7379 struct netdev_adjacent, list); 7380 if (lower) 7381 return lower->private; 7382 return NULL; 7383 } 7384 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7385 7386 /** 7387 * netdev_master_upper_dev_get_rcu - Get master upper device 7388 * @dev: device 7389 * 7390 * Find a master upper device and return pointer to it or NULL in case 7391 * it's not there. The caller must hold the RCU read lock. 7392 */ 7393 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7394 { 7395 struct netdev_adjacent *upper; 7396 7397 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7398 struct netdev_adjacent, list); 7399 if (upper && likely(upper->master)) 7400 return upper->dev; 7401 return NULL; 7402 } 7403 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7404 7405 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7406 struct net_device *adj_dev, 7407 struct list_head *dev_list) 7408 { 7409 char linkname[IFNAMSIZ+7]; 7410 7411 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7412 "upper_%s" : "lower_%s", adj_dev->name); 7413 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7414 linkname); 7415 } 7416 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7417 char *name, 7418 struct list_head *dev_list) 7419 { 7420 char linkname[IFNAMSIZ+7]; 7421 7422 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7423 "upper_%s" : "lower_%s", name); 7424 sysfs_remove_link(&(dev->dev.kobj), linkname); 7425 } 7426 7427 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7428 struct net_device *adj_dev, 7429 struct list_head *dev_list) 7430 { 7431 return (dev_list == &dev->adj_list.upper || 7432 dev_list == &dev->adj_list.lower) && 7433 net_eq(dev_net(dev), dev_net(adj_dev)); 7434 } 7435 7436 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7437 struct net_device *adj_dev, 7438 struct list_head *dev_list, 7439 void *private, bool master) 7440 { 7441 struct netdev_adjacent *adj; 7442 int ret; 7443 7444 adj = __netdev_find_adj(adj_dev, dev_list); 7445 7446 if (adj) { 7447 adj->ref_nr += 1; 7448 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7449 dev->name, adj_dev->name, adj->ref_nr); 7450 7451 return 0; 7452 } 7453 7454 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7455 if (!adj) 7456 return -ENOMEM; 7457 7458 adj->dev = adj_dev; 7459 adj->master = master; 7460 adj->ref_nr = 1; 7461 adj->private = private; 7462 adj->ignore = false; 7463 dev_hold_track(adj_dev, &adj->dev_tracker, GFP_KERNEL); 7464 7465 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7466 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7467 7468 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7469 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7470 if (ret) 7471 goto free_adj; 7472 } 7473 7474 /* Ensure that master link is always the first item in list. */ 7475 if (master) { 7476 ret = sysfs_create_link(&(dev->dev.kobj), 7477 &(adj_dev->dev.kobj), "master"); 7478 if (ret) 7479 goto remove_symlinks; 7480 7481 list_add_rcu(&adj->list, dev_list); 7482 } else { 7483 list_add_tail_rcu(&adj->list, dev_list); 7484 } 7485 7486 return 0; 7487 7488 remove_symlinks: 7489 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7490 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7491 free_adj: 7492 dev_put_track(adj_dev, &adj->dev_tracker); 7493 kfree(adj); 7494 7495 return ret; 7496 } 7497 7498 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7499 struct net_device *adj_dev, 7500 u16 ref_nr, 7501 struct list_head *dev_list) 7502 { 7503 struct netdev_adjacent *adj; 7504 7505 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7506 dev->name, adj_dev->name, ref_nr); 7507 7508 adj = __netdev_find_adj(adj_dev, dev_list); 7509 7510 if (!adj) { 7511 pr_err("Adjacency does not exist for device %s from %s\n", 7512 dev->name, adj_dev->name); 7513 WARN_ON(1); 7514 return; 7515 } 7516 7517 if (adj->ref_nr > ref_nr) { 7518 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7519 dev->name, adj_dev->name, ref_nr, 7520 adj->ref_nr - ref_nr); 7521 adj->ref_nr -= ref_nr; 7522 return; 7523 } 7524 7525 if (adj->master) 7526 sysfs_remove_link(&(dev->dev.kobj), "master"); 7527 7528 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7529 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7530 7531 list_del_rcu(&adj->list); 7532 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7533 adj_dev->name, dev->name, adj_dev->name); 7534 dev_put_track(adj_dev, &adj->dev_tracker); 7535 kfree_rcu(adj, rcu); 7536 } 7537 7538 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7539 struct net_device *upper_dev, 7540 struct list_head *up_list, 7541 struct list_head *down_list, 7542 void *private, bool master) 7543 { 7544 int ret; 7545 7546 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7547 private, master); 7548 if (ret) 7549 return ret; 7550 7551 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7552 private, false); 7553 if (ret) { 7554 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7555 return ret; 7556 } 7557 7558 return 0; 7559 } 7560 7561 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7562 struct net_device *upper_dev, 7563 u16 ref_nr, 7564 struct list_head *up_list, 7565 struct list_head *down_list) 7566 { 7567 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7568 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7569 } 7570 7571 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7572 struct net_device *upper_dev, 7573 void *private, bool master) 7574 { 7575 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7576 &dev->adj_list.upper, 7577 &upper_dev->adj_list.lower, 7578 private, master); 7579 } 7580 7581 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7582 struct net_device *upper_dev) 7583 { 7584 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7585 &dev->adj_list.upper, 7586 &upper_dev->adj_list.lower); 7587 } 7588 7589 static int __netdev_upper_dev_link(struct net_device *dev, 7590 struct net_device *upper_dev, bool master, 7591 void *upper_priv, void *upper_info, 7592 struct netdev_nested_priv *priv, 7593 struct netlink_ext_ack *extack) 7594 { 7595 struct netdev_notifier_changeupper_info changeupper_info = { 7596 .info = { 7597 .dev = dev, 7598 .extack = extack, 7599 }, 7600 .upper_dev = upper_dev, 7601 .master = master, 7602 .linking = true, 7603 .upper_info = upper_info, 7604 }; 7605 struct net_device *master_dev; 7606 int ret = 0; 7607 7608 ASSERT_RTNL(); 7609 7610 if (dev == upper_dev) 7611 return -EBUSY; 7612 7613 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7614 if (__netdev_has_upper_dev(upper_dev, dev)) 7615 return -EBUSY; 7616 7617 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7618 return -EMLINK; 7619 7620 if (!master) { 7621 if (__netdev_has_upper_dev(dev, upper_dev)) 7622 return -EEXIST; 7623 } else { 7624 master_dev = __netdev_master_upper_dev_get(dev); 7625 if (master_dev) 7626 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7627 } 7628 7629 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7630 &changeupper_info.info); 7631 ret = notifier_to_errno(ret); 7632 if (ret) 7633 return ret; 7634 7635 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7636 master); 7637 if (ret) 7638 return ret; 7639 7640 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7641 &changeupper_info.info); 7642 ret = notifier_to_errno(ret); 7643 if (ret) 7644 goto rollback; 7645 7646 __netdev_update_upper_level(dev, NULL); 7647 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7648 7649 __netdev_update_lower_level(upper_dev, priv); 7650 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7651 priv); 7652 7653 return 0; 7654 7655 rollback: 7656 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7657 7658 return ret; 7659 } 7660 7661 /** 7662 * netdev_upper_dev_link - Add a link to the upper device 7663 * @dev: device 7664 * @upper_dev: new upper device 7665 * @extack: netlink extended ack 7666 * 7667 * Adds a link to device which is upper to this one. The caller must hold 7668 * the RTNL lock. On a failure a negative errno code is returned. 7669 * On success the reference counts are adjusted and the function 7670 * returns zero. 7671 */ 7672 int netdev_upper_dev_link(struct net_device *dev, 7673 struct net_device *upper_dev, 7674 struct netlink_ext_ack *extack) 7675 { 7676 struct netdev_nested_priv priv = { 7677 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7678 .data = NULL, 7679 }; 7680 7681 return __netdev_upper_dev_link(dev, upper_dev, false, 7682 NULL, NULL, &priv, extack); 7683 } 7684 EXPORT_SYMBOL(netdev_upper_dev_link); 7685 7686 /** 7687 * netdev_master_upper_dev_link - Add a master link to the upper device 7688 * @dev: device 7689 * @upper_dev: new upper device 7690 * @upper_priv: upper device private 7691 * @upper_info: upper info to be passed down via notifier 7692 * @extack: netlink extended ack 7693 * 7694 * Adds a link to device which is upper to this one. In this case, only 7695 * one master upper device can be linked, although other non-master devices 7696 * might be linked as well. The caller must hold the RTNL lock. 7697 * On a failure a negative errno code is returned. On success the reference 7698 * counts are adjusted and the function returns zero. 7699 */ 7700 int netdev_master_upper_dev_link(struct net_device *dev, 7701 struct net_device *upper_dev, 7702 void *upper_priv, void *upper_info, 7703 struct netlink_ext_ack *extack) 7704 { 7705 struct netdev_nested_priv priv = { 7706 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7707 .data = NULL, 7708 }; 7709 7710 return __netdev_upper_dev_link(dev, upper_dev, true, 7711 upper_priv, upper_info, &priv, extack); 7712 } 7713 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7714 7715 static void __netdev_upper_dev_unlink(struct net_device *dev, 7716 struct net_device *upper_dev, 7717 struct netdev_nested_priv *priv) 7718 { 7719 struct netdev_notifier_changeupper_info changeupper_info = { 7720 .info = { 7721 .dev = dev, 7722 }, 7723 .upper_dev = upper_dev, 7724 .linking = false, 7725 }; 7726 7727 ASSERT_RTNL(); 7728 7729 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7730 7731 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7732 &changeupper_info.info); 7733 7734 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7735 7736 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7737 &changeupper_info.info); 7738 7739 __netdev_update_upper_level(dev, NULL); 7740 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7741 7742 __netdev_update_lower_level(upper_dev, priv); 7743 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7744 priv); 7745 } 7746 7747 /** 7748 * netdev_upper_dev_unlink - Removes a link to upper device 7749 * @dev: device 7750 * @upper_dev: new upper device 7751 * 7752 * Removes a link to device which is upper to this one. The caller must hold 7753 * the RTNL lock. 7754 */ 7755 void netdev_upper_dev_unlink(struct net_device *dev, 7756 struct net_device *upper_dev) 7757 { 7758 struct netdev_nested_priv priv = { 7759 .flags = NESTED_SYNC_TODO, 7760 .data = NULL, 7761 }; 7762 7763 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7764 } 7765 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7766 7767 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7768 struct net_device *lower_dev, 7769 bool val) 7770 { 7771 struct netdev_adjacent *adj; 7772 7773 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7774 if (adj) 7775 adj->ignore = val; 7776 7777 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7778 if (adj) 7779 adj->ignore = val; 7780 } 7781 7782 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7783 struct net_device *lower_dev) 7784 { 7785 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7786 } 7787 7788 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7789 struct net_device *lower_dev) 7790 { 7791 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 7792 } 7793 7794 int netdev_adjacent_change_prepare(struct net_device *old_dev, 7795 struct net_device *new_dev, 7796 struct net_device *dev, 7797 struct netlink_ext_ack *extack) 7798 { 7799 struct netdev_nested_priv priv = { 7800 .flags = 0, 7801 .data = NULL, 7802 }; 7803 int err; 7804 7805 if (!new_dev) 7806 return 0; 7807 7808 if (old_dev && new_dev != old_dev) 7809 netdev_adjacent_dev_disable(dev, old_dev); 7810 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 7811 extack); 7812 if (err) { 7813 if (old_dev && new_dev != old_dev) 7814 netdev_adjacent_dev_enable(dev, old_dev); 7815 return err; 7816 } 7817 7818 return 0; 7819 } 7820 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 7821 7822 void netdev_adjacent_change_commit(struct net_device *old_dev, 7823 struct net_device *new_dev, 7824 struct net_device *dev) 7825 { 7826 struct netdev_nested_priv priv = { 7827 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7828 .data = NULL, 7829 }; 7830 7831 if (!new_dev || !old_dev) 7832 return; 7833 7834 if (new_dev == old_dev) 7835 return; 7836 7837 netdev_adjacent_dev_enable(dev, old_dev); 7838 __netdev_upper_dev_unlink(old_dev, dev, &priv); 7839 } 7840 EXPORT_SYMBOL(netdev_adjacent_change_commit); 7841 7842 void netdev_adjacent_change_abort(struct net_device *old_dev, 7843 struct net_device *new_dev, 7844 struct net_device *dev) 7845 { 7846 struct netdev_nested_priv priv = { 7847 .flags = 0, 7848 .data = NULL, 7849 }; 7850 7851 if (!new_dev) 7852 return; 7853 7854 if (old_dev && new_dev != old_dev) 7855 netdev_adjacent_dev_enable(dev, old_dev); 7856 7857 __netdev_upper_dev_unlink(new_dev, dev, &priv); 7858 } 7859 EXPORT_SYMBOL(netdev_adjacent_change_abort); 7860 7861 /** 7862 * netdev_bonding_info_change - Dispatch event about slave change 7863 * @dev: device 7864 * @bonding_info: info to dispatch 7865 * 7866 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 7867 * The caller must hold the RTNL lock. 7868 */ 7869 void netdev_bonding_info_change(struct net_device *dev, 7870 struct netdev_bonding_info *bonding_info) 7871 { 7872 struct netdev_notifier_bonding_info info = { 7873 .info.dev = dev, 7874 }; 7875 7876 memcpy(&info.bonding_info, bonding_info, 7877 sizeof(struct netdev_bonding_info)); 7878 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 7879 &info.info); 7880 } 7881 EXPORT_SYMBOL(netdev_bonding_info_change); 7882 7883 static int netdev_offload_xstats_enable_l3(struct net_device *dev, 7884 struct netlink_ext_ack *extack) 7885 { 7886 struct netdev_notifier_offload_xstats_info info = { 7887 .info.dev = dev, 7888 .info.extack = extack, 7889 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7890 }; 7891 int err; 7892 int rc; 7893 7894 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3), 7895 GFP_KERNEL); 7896 if (!dev->offload_xstats_l3) 7897 return -ENOMEM; 7898 7899 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE, 7900 NETDEV_OFFLOAD_XSTATS_DISABLE, 7901 &info.info); 7902 err = notifier_to_errno(rc); 7903 if (err) 7904 goto free_stats; 7905 7906 return 0; 7907 7908 free_stats: 7909 kfree(dev->offload_xstats_l3); 7910 dev->offload_xstats_l3 = NULL; 7911 return err; 7912 } 7913 7914 int netdev_offload_xstats_enable(struct net_device *dev, 7915 enum netdev_offload_xstats_type type, 7916 struct netlink_ext_ack *extack) 7917 { 7918 ASSERT_RTNL(); 7919 7920 if (netdev_offload_xstats_enabled(dev, type)) 7921 return -EALREADY; 7922 7923 switch (type) { 7924 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7925 return netdev_offload_xstats_enable_l3(dev, extack); 7926 } 7927 7928 WARN_ON(1); 7929 return -EINVAL; 7930 } 7931 EXPORT_SYMBOL(netdev_offload_xstats_enable); 7932 7933 static void netdev_offload_xstats_disable_l3(struct net_device *dev) 7934 { 7935 struct netdev_notifier_offload_xstats_info info = { 7936 .info.dev = dev, 7937 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3, 7938 }; 7939 7940 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE, 7941 &info.info); 7942 kfree(dev->offload_xstats_l3); 7943 dev->offload_xstats_l3 = NULL; 7944 } 7945 7946 int netdev_offload_xstats_disable(struct net_device *dev, 7947 enum netdev_offload_xstats_type type) 7948 { 7949 ASSERT_RTNL(); 7950 7951 if (!netdev_offload_xstats_enabled(dev, type)) 7952 return -EALREADY; 7953 7954 switch (type) { 7955 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7956 netdev_offload_xstats_disable_l3(dev); 7957 return 0; 7958 } 7959 7960 WARN_ON(1); 7961 return -EINVAL; 7962 } 7963 EXPORT_SYMBOL(netdev_offload_xstats_disable); 7964 7965 static void netdev_offload_xstats_disable_all(struct net_device *dev) 7966 { 7967 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3); 7968 } 7969 7970 static struct rtnl_hw_stats64 * 7971 netdev_offload_xstats_get_ptr(const struct net_device *dev, 7972 enum netdev_offload_xstats_type type) 7973 { 7974 switch (type) { 7975 case NETDEV_OFFLOAD_XSTATS_TYPE_L3: 7976 return dev->offload_xstats_l3; 7977 } 7978 7979 WARN_ON(1); 7980 return NULL; 7981 } 7982 7983 bool netdev_offload_xstats_enabled(const struct net_device *dev, 7984 enum netdev_offload_xstats_type type) 7985 { 7986 ASSERT_RTNL(); 7987 7988 return netdev_offload_xstats_get_ptr(dev, type); 7989 } 7990 EXPORT_SYMBOL(netdev_offload_xstats_enabled); 7991 7992 struct netdev_notifier_offload_xstats_ru { 7993 bool used; 7994 }; 7995 7996 struct netdev_notifier_offload_xstats_rd { 7997 struct rtnl_hw_stats64 stats; 7998 bool used; 7999 }; 8000 8001 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest, 8002 const struct rtnl_hw_stats64 *src) 8003 { 8004 dest->rx_packets += src->rx_packets; 8005 dest->tx_packets += src->tx_packets; 8006 dest->rx_bytes += src->rx_bytes; 8007 dest->tx_bytes += src->tx_bytes; 8008 dest->rx_errors += src->rx_errors; 8009 dest->tx_errors += src->tx_errors; 8010 dest->rx_dropped += src->rx_dropped; 8011 dest->tx_dropped += src->tx_dropped; 8012 dest->multicast += src->multicast; 8013 } 8014 8015 static int netdev_offload_xstats_get_used(struct net_device *dev, 8016 enum netdev_offload_xstats_type type, 8017 bool *p_used, 8018 struct netlink_ext_ack *extack) 8019 { 8020 struct netdev_notifier_offload_xstats_ru report_used = {}; 8021 struct netdev_notifier_offload_xstats_info info = { 8022 .info.dev = dev, 8023 .info.extack = extack, 8024 .type = type, 8025 .report_used = &report_used, 8026 }; 8027 int rc; 8028 8029 WARN_ON(!netdev_offload_xstats_enabled(dev, type)); 8030 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED, 8031 &info.info); 8032 *p_used = report_used.used; 8033 return notifier_to_errno(rc); 8034 } 8035 8036 static int netdev_offload_xstats_get_stats(struct net_device *dev, 8037 enum netdev_offload_xstats_type type, 8038 struct rtnl_hw_stats64 *p_stats, 8039 bool *p_used, 8040 struct netlink_ext_ack *extack) 8041 { 8042 struct netdev_notifier_offload_xstats_rd report_delta = {}; 8043 struct netdev_notifier_offload_xstats_info info = { 8044 .info.dev = dev, 8045 .info.extack = extack, 8046 .type = type, 8047 .report_delta = &report_delta, 8048 }; 8049 struct rtnl_hw_stats64 *stats; 8050 int rc; 8051 8052 stats = netdev_offload_xstats_get_ptr(dev, type); 8053 if (WARN_ON(!stats)) 8054 return -EINVAL; 8055 8056 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA, 8057 &info.info); 8058 8059 /* Cache whatever we got, even if there was an error, otherwise the 8060 * successful stats retrievals would get lost. 8061 */ 8062 netdev_hw_stats64_add(stats, &report_delta.stats); 8063 8064 if (p_stats) 8065 *p_stats = *stats; 8066 *p_used = report_delta.used; 8067 8068 return notifier_to_errno(rc); 8069 } 8070 8071 int netdev_offload_xstats_get(struct net_device *dev, 8072 enum netdev_offload_xstats_type type, 8073 struct rtnl_hw_stats64 *p_stats, bool *p_used, 8074 struct netlink_ext_ack *extack) 8075 { 8076 ASSERT_RTNL(); 8077 8078 if (p_stats) 8079 return netdev_offload_xstats_get_stats(dev, type, p_stats, 8080 p_used, extack); 8081 else 8082 return netdev_offload_xstats_get_used(dev, type, p_used, 8083 extack); 8084 } 8085 EXPORT_SYMBOL(netdev_offload_xstats_get); 8086 8087 void 8088 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta, 8089 const struct rtnl_hw_stats64 *stats) 8090 { 8091 report_delta->used = true; 8092 netdev_hw_stats64_add(&report_delta->stats, stats); 8093 } 8094 EXPORT_SYMBOL(netdev_offload_xstats_report_delta); 8095 8096 void 8097 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used) 8098 { 8099 report_used->used = true; 8100 } 8101 EXPORT_SYMBOL(netdev_offload_xstats_report_used); 8102 8103 void netdev_offload_xstats_push_delta(struct net_device *dev, 8104 enum netdev_offload_xstats_type type, 8105 const struct rtnl_hw_stats64 *p_stats) 8106 { 8107 struct rtnl_hw_stats64 *stats; 8108 8109 ASSERT_RTNL(); 8110 8111 stats = netdev_offload_xstats_get_ptr(dev, type); 8112 if (WARN_ON(!stats)) 8113 return; 8114 8115 netdev_hw_stats64_add(stats, p_stats); 8116 } 8117 EXPORT_SYMBOL(netdev_offload_xstats_push_delta); 8118 8119 /** 8120 * netdev_get_xmit_slave - Get the xmit slave of master device 8121 * @dev: device 8122 * @skb: The packet 8123 * @all_slaves: assume all the slaves are active 8124 * 8125 * The reference counters are not incremented so the caller must be 8126 * careful with locks. The caller must hold RCU lock. 8127 * %NULL is returned if no slave is found. 8128 */ 8129 8130 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8131 struct sk_buff *skb, 8132 bool all_slaves) 8133 { 8134 const struct net_device_ops *ops = dev->netdev_ops; 8135 8136 if (!ops->ndo_get_xmit_slave) 8137 return NULL; 8138 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8139 } 8140 EXPORT_SYMBOL(netdev_get_xmit_slave); 8141 8142 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev, 8143 struct sock *sk) 8144 { 8145 const struct net_device_ops *ops = dev->netdev_ops; 8146 8147 if (!ops->ndo_sk_get_lower_dev) 8148 return NULL; 8149 return ops->ndo_sk_get_lower_dev(dev, sk); 8150 } 8151 8152 /** 8153 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket 8154 * @dev: device 8155 * @sk: the socket 8156 * 8157 * %NULL is returned if no lower device is found. 8158 */ 8159 8160 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev, 8161 struct sock *sk) 8162 { 8163 struct net_device *lower; 8164 8165 lower = netdev_sk_get_lower_dev(dev, sk); 8166 while (lower) { 8167 dev = lower; 8168 lower = netdev_sk_get_lower_dev(dev, sk); 8169 } 8170 8171 return dev; 8172 } 8173 EXPORT_SYMBOL(netdev_sk_get_lowest_dev); 8174 8175 static void netdev_adjacent_add_links(struct net_device *dev) 8176 { 8177 struct netdev_adjacent *iter; 8178 8179 struct net *net = dev_net(dev); 8180 8181 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8182 if (!net_eq(net, dev_net(iter->dev))) 8183 continue; 8184 netdev_adjacent_sysfs_add(iter->dev, dev, 8185 &iter->dev->adj_list.lower); 8186 netdev_adjacent_sysfs_add(dev, iter->dev, 8187 &dev->adj_list.upper); 8188 } 8189 8190 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8191 if (!net_eq(net, dev_net(iter->dev))) 8192 continue; 8193 netdev_adjacent_sysfs_add(iter->dev, dev, 8194 &iter->dev->adj_list.upper); 8195 netdev_adjacent_sysfs_add(dev, iter->dev, 8196 &dev->adj_list.lower); 8197 } 8198 } 8199 8200 static void netdev_adjacent_del_links(struct net_device *dev) 8201 { 8202 struct netdev_adjacent *iter; 8203 8204 struct net *net = dev_net(dev); 8205 8206 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8207 if (!net_eq(net, dev_net(iter->dev))) 8208 continue; 8209 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8210 &iter->dev->adj_list.lower); 8211 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8212 &dev->adj_list.upper); 8213 } 8214 8215 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8216 if (!net_eq(net, dev_net(iter->dev))) 8217 continue; 8218 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8219 &iter->dev->adj_list.upper); 8220 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8221 &dev->adj_list.lower); 8222 } 8223 } 8224 8225 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8226 { 8227 struct netdev_adjacent *iter; 8228 8229 struct net *net = dev_net(dev); 8230 8231 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8232 if (!net_eq(net, dev_net(iter->dev))) 8233 continue; 8234 netdev_adjacent_sysfs_del(iter->dev, oldname, 8235 &iter->dev->adj_list.lower); 8236 netdev_adjacent_sysfs_add(iter->dev, dev, 8237 &iter->dev->adj_list.lower); 8238 } 8239 8240 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8241 if (!net_eq(net, dev_net(iter->dev))) 8242 continue; 8243 netdev_adjacent_sysfs_del(iter->dev, oldname, 8244 &iter->dev->adj_list.upper); 8245 netdev_adjacent_sysfs_add(iter->dev, dev, 8246 &iter->dev->adj_list.upper); 8247 } 8248 } 8249 8250 void *netdev_lower_dev_get_private(struct net_device *dev, 8251 struct net_device *lower_dev) 8252 { 8253 struct netdev_adjacent *lower; 8254 8255 if (!lower_dev) 8256 return NULL; 8257 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8258 if (!lower) 8259 return NULL; 8260 8261 return lower->private; 8262 } 8263 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8264 8265 8266 /** 8267 * netdev_lower_state_changed - Dispatch event about lower device state change 8268 * @lower_dev: device 8269 * @lower_state_info: state to dispatch 8270 * 8271 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8272 * The caller must hold the RTNL lock. 8273 */ 8274 void netdev_lower_state_changed(struct net_device *lower_dev, 8275 void *lower_state_info) 8276 { 8277 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8278 .info.dev = lower_dev, 8279 }; 8280 8281 ASSERT_RTNL(); 8282 changelowerstate_info.lower_state_info = lower_state_info; 8283 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8284 &changelowerstate_info.info); 8285 } 8286 EXPORT_SYMBOL(netdev_lower_state_changed); 8287 8288 static void dev_change_rx_flags(struct net_device *dev, int flags) 8289 { 8290 const struct net_device_ops *ops = dev->netdev_ops; 8291 8292 if (ops->ndo_change_rx_flags) 8293 ops->ndo_change_rx_flags(dev, flags); 8294 } 8295 8296 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8297 { 8298 unsigned int old_flags = dev->flags; 8299 kuid_t uid; 8300 kgid_t gid; 8301 8302 ASSERT_RTNL(); 8303 8304 dev->flags |= IFF_PROMISC; 8305 dev->promiscuity += inc; 8306 if (dev->promiscuity == 0) { 8307 /* 8308 * Avoid overflow. 8309 * If inc causes overflow, untouch promisc and return error. 8310 */ 8311 if (inc < 0) 8312 dev->flags &= ~IFF_PROMISC; 8313 else { 8314 dev->promiscuity -= inc; 8315 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n"); 8316 return -EOVERFLOW; 8317 } 8318 } 8319 if (dev->flags != old_flags) { 8320 pr_info("device %s %s promiscuous mode\n", 8321 dev->name, 8322 dev->flags & IFF_PROMISC ? "entered" : "left"); 8323 if (audit_enabled) { 8324 current_uid_gid(&uid, &gid); 8325 audit_log(audit_context(), GFP_ATOMIC, 8326 AUDIT_ANOM_PROMISCUOUS, 8327 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8328 dev->name, (dev->flags & IFF_PROMISC), 8329 (old_flags & IFF_PROMISC), 8330 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8331 from_kuid(&init_user_ns, uid), 8332 from_kgid(&init_user_ns, gid), 8333 audit_get_sessionid(current)); 8334 } 8335 8336 dev_change_rx_flags(dev, IFF_PROMISC); 8337 } 8338 if (notify) 8339 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8340 return 0; 8341 } 8342 8343 /** 8344 * dev_set_promiscuity - update promiscuity count on a device 8345 * @dev: device 8346 * @inc: modifier 8347 * 8348 * Add or remove promiscuity from a device. While the count in the device 8349 * remains above zero the interface remains promiscuous. Once it hits zero 8350 * the device reverts back to normal filtering operation. A negative inc 8351 * value is used to drop promiscuity on the device. 8352 * Return 0 if successful or a negative errno code on error. 8353 */ 8354 int dev_set_promiscuity(struct net_device *dev, int inc) 8355 { 8356 unsigned int old_flags = dev->flags; 8357 int err; 8358 8359 err = __dev_set_promiscuity(dev, inc, true); 8360 if (err < 0) 8361 return err; 8362 if (dev->flags != old_flags) 8363 dev_set_rx_mode(dev); 8364 return err; 8365 } 8366 EXPORT_SYMBOL(dev_set_promiscuity); 8367 8368 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8369 { 8370 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8371 8372 ASSERT_RTNL(); 8373 8374 dev->flags |= IFF_ALLMULTI; 8375 dev->allmulti += inc; 8376 if (dev->allmulti == 0) { 8377 /* 8378 * Avoid overflow. 8379 * If inc causes overflow, untouch allmulti and return error. 8380 */ 8381 if (inc < 0) 8382 dev->flags &= ~IFF_ALLMULTI; 8383 else { 8384 dev->allmulti -= inc; 8385 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n"); 8386 return -EOVERFLOW; 8387 } 8388 } 8389 if (dev->flags ^ old_flags) { 8390 dev_change_rx_flags(dev, IFF_ALLMULTI); 8391 dev_set_rx_mode(dev); 8392 if (notify) 8393 __dev_notify_flags(dev, old_flags, 8394 dev->gflags ^ old_gflags); 8395 } 8396 return 0; 8397 } 8398 8399 /** 8400 * dev_set_allmulti - update allmulti count on a device 8401 * @dev: device 8402 * @inc: modifier 8403 * 8404 * Add or remove reception of all multicast frames to a device. While the 8405 * count in the device remains above zero the interface remains listening 8406 * to all interfaces. Once it hits zero the device reverts back to normal 8407 * filtering operation. A negative @inc value is used to drop the counter 8408 * when releasing a resource needing all multicasts. 8409 * Return 0 if successful or a negative errno code on error. 8410 */ 8411 8412 int dev_set_allmulti(struct net_device *dev, int inc) 8413 { 8414 return __dev_set_allmulti(dev, inc, true); 8415 } 8416 EXPORT_SYMBOL(dev_set_allmulti); 8417 8418 /* 8419 * Upload unicast and multicast address lists to device and 8420 * configure RX filtering. When the device doesn't support unicast 8421 * filtering it is put in promiscuous mode while unicast addresses 8422 * are present. 8423 */ 8424 void __dev_set_rx_mode(struct net_device *dev) 8425 { 8426 const struct net_device_ops *ops = dev->netdev_ops; 8427 8428 /* dev_open will call this function so the list will stay sane. */ 8429 if (!(dev->flags&IFF_UP)) 8430 return; 8431 8432 if (!netif_device_present(dev)) 8433 return; 8434 8435 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8436 /* Unicast addresses changes may only happen under the rtnl, 8437 * therefore calling __dev_set_promiscuity here is safe. 8438 */ 8439 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8440 __dev_set_promiscuity(dev, 1, false); 8441 dev->uc_promisc = true; 8442 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8443 __dev_set_promiscuity(dev, -1, false); 8444 dev->uc_promisc = false; 8445 } 8446 } 8447 8448 if (ops->ndo_set_rx_mode) 8449 ops->ndo_set_rx_mode(dev); 8450 } 8451 8452 void dev_set_rx_mode(struct net_device *dev) 8453 { 8454 netif_addr_lock_bh(dev); 8455 __dev_set_rx_mode(dev); 8456 netif_addr_unlock_bh(dev); 8457 } 8458 8459 /** 8460 * dev_get_flags - get flags reported to userspace 8461 * @dev: device 8462 * 8463 * Get the combination of flag bits exported through APIs to userspace. 8464 */ 8465 unsigned int dev_get_flags(const struct net_device *dev) 8466 { 8467 unsigned int flags; 8468 8469 flags = (dev->flags & ~(IFF_PROMISC | 8470 IFF_ALLMULTI | 8471 IFF_RUNNING | 8472 IFF_LOWER_UP | 8473 IFF_DORMANT)) | 8474 (dev->gflags & (IFF_PROMISC | 8475 IFF_ALLMULTI)); 8476 8477 if (netif_running(dev)) { 8478 if (netif_oper_up(dev)) 8479 flags |= IFF_RUNNING; 8480 if (netif_carrier_ok(dev)) 8481 flags |= IFF_LOWER_UP; 8482 if (netif_dormant(dev)) 8483 flags |= IFF_DORMANT; 8484 } 8485 8486 return flags; 8487 } 8488 EXPORT_SYMBOL(dev_get_flags); 8489 8490 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8491 struct netlink_ext_ack *extack) 8492 { 8493 unsigned int old_flags = dev->flags; 8494 int ret; 8495 8496 ASSERT_RTNL(); 8497 8498 /* 8499 * Set the flags on our device. 8500 */ 8501 8502 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8503 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8504 IFF_AUTOMEDIA)) | 8505 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8506 IFF_ALLMULTI)); 8507 8508 /* 8509 * Load in the correct multicast list now the flags have changed. 8510 */ 8511 8512 if ((old_flags ^ flags) & IFF_MULTICAST) 8513 dev_change_rx_flags(dev, IFF_MULTICAST); 8514 8515 dev_set_rx_mode(dev); 8516 8517 /* 8518 * Have we downed the interface. We handle IFF_UP ourselves 8519 * according to user attempts to set it, rather than blindly 8520 * setting it. 8521 */ 8522 8523 ret = 0; 8524 if ((old_flags ^ flags) & IFF_UP) { 8525 if (old_flags & IFF_UP) 8526 __dev_close(dev); 8527 else 8528 ret = __dev_open(dev, extack); 8529 } 8530 8531 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8532 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8533 unsigned int old_flags = dev->flags; 8534 8535 dev->gflags ^= IFF_PROMISC; 8536 8537 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8538 if (dev->flags != old_flags) 8539 dev_set_rx_mode(dev); 8540 } 8541 8542 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8543 * is important. Some (broken) drivers set IFF_PROMISC, when 8544 * IFF_ALLMULTI is requested not asking us and not reporting. 8545 */ 8546 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8547 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8548 8549 dev->gflags ^= IFF_ALLMULTI; 8550 __dev_set_allmulti(dev, inc, false); 8551 } 8552 8553 return ret; 8554 } 8555 8556 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8557 unsigned int gchanges) 8558 { 8559 unsigned int changes = dev->flags ^ old_flags; 8560 8561 if (gchanges) 8562 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8563 8564 if (changes & IFF_UP) { 8565 if (dev->flags & IFF_UP) 8566 call_netdevice_notifiers(NETDEV_UP, dev); 8567 else 8568 call_netdevice_notifiers(NETDEV_DOWN, dev); 8569 } 8570 8571 if (dev->flags & IFF_UP && 8572 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8573 struct netdev_notifier_change_info change_info = { 8574 .info = { 8575 .dev = dev, 8576 }, 8577 .flags_changed = changes, 8578 }; 8579 8580 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8581 } 8582 } 8583 8584 /** 8585 * dev_change_flags - change device settings 8586 * @dev: device 8587 * @flags: device state flags 8588 * @extack: netlink extended ack 8589 * 8590 * Change settings on device based state flags. The flags are 8591 * in the userspace exported format. 8592 */ 8593 int dev_change_flags(struct net_device *dev, unsigned int flags, 8594 struct netlink_ext_ack *extack) 8595 { 8596 int ret; 8597 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8598 8599 ret = __dev_change_flags(dev, flags, extack); 8600 if (ret < 0) 8601 return ret; 8602 8603 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8604 __dev_notify_flags(dev, old_flags, changes); 8605 return ret; 8606 } 8607 EXPORT_SYMBOL(dev_change_flags); 8608 8609 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8610 { 8611 const struct net_device_ops *ops = dev->netdev_ops; 8612 8613 if (ops->ndo_change_mtu) 8614 return ops->ndo_change_mtu(dev, new_mtu); 8615 8616 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8617 WRITE_ONCE(dev->mtu, new_mtu); 8618 return 0; 8619 } 8620 EXPORT_SYMBOL(__dev_set_mtu); 8621 8622 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8623 struct netlink_ext_ack *extack) 8624 { 8625 /* MTU must be positive, and in range */ 8626 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8627 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8628 return -EINVAL; 8629 } 8630 8631 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8632 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8633 return -EINVAL; 8634 } 8635 return 0; 8636 } 8637 8638 /** 8639 * dev_set_mtu_ext - Change maximum transfer unit 8640 * @dev: device 8641 * @new_mtu: new transfer unit 8642 * @extack: netlink extended ack 8643 * 8644 * Change the maximum transfer size of the network device. 8645 */ 8646 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8647 struct netlink_ext_ack *extack) 8648 { 8649 int err, orig_mtu; 8650 8651 if (new_mtu == dev->mtu) 8652 return 0; 8653 8654 err = dev_validate_mtu(dev, new_mtu, extack); 8655 if (err) 8656 return err; 8657 8658 if (!netif_device_present(dev)) 8659 return -ENODEV; 8660 8661 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8662 err = notifier_to_errno(err); 8663 if (err) 8664 return err; 8665 8666 orig_mtu = dev->mtu; 8667 err = __dev_set_mtu(dev, new_mtu); 8668 8669 if (!err) { 8670 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8671 orig_mtu); 8672 err = notifier_to_errno(err); 8673 if (err) { 8674 /* setting mtu back and notifying everyone again, 8675 * so that they have a chance to revert changes. 8676 */ 8677 __dev_set_mtu(dev, orig_mtu); 8678 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8679 new_mtu); 8680 } 8681 } 8682 return err; 8683 } 8684 8685 int dev_set_mtu(struct net_device *dev, int new_mtu) 8686 { 8687 struct netlink_ext_ack extack; 8688 int err; 8689 8690 memset(&extack, 0, sizeof(extack)); 8691 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8692 if (err && extack._msg) 8693 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8694 return err; 8695 } 8696 EXPORT_SYMBOL(dev_set_mtu); 8697 8698 /** 8699 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8700 * @dev: device 8701 * @new_len: new tx queue length 8702 */ 8703 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8704 { 8705 unsigned int orig_len = dev->tx_queue_len; 8706 int res; 8707 8708 if (new_len != (unsigned int)new_len) 8709 return -ERANGE; 8710 8711 if (new_len != orig_len) { 8712 dev->tx_queue_len = new_len; 8713 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8714 res = notifier_to_errno(res); 8715 if (res) 8716 goto err_rollback; 8717 res = dev_qdisc_change_tx_queue_len(dev); 8718 if (res) 8719 goto err_rollback; 8720 } 8721 8722 return 0; 8723 8724 err_rollback: 8725 netdev_err(dev, "refused to change device tx_queue_len\n"); 8726 dev->tx_queue_len = orig_len; 8727 return res; 8728 } 8729 8730 /** 8731 * dev_set_group - Change group this device belongs to 8732 * @dev: device 8733 * @new_group: group this device should belong to 8734 */ 8735 void dev_set_group(struct net_device *dev, int new_group) 8736 { 8737 dev->group = new_group; 8738 } 8739 8740 /** 8741 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8742 * @dev: device 8743 * @addr: new address 8744 * @extack: netlink extended ack 8745 */ 8746 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8747 struct netlink_ext_ack *extack) 8748 { 8749 struct netdev_notifier_pre_changeaddr_info info = { 8750 .info.dev = dev, 8751 .info.extack = extack, 8752 .dev_addr = addr, 8753 }; 8754 int rc; 8755 8756 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8757 return notifier_to_errno(rc); 8758 } 8759 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8760 8761 /** 8762 * dev_set_mac_address - Change Media Access Control Address 8763 * @dev: device 8764 * @sa: new address 8765 * @extack: netlink extended ack 8766 * 8767 * Change the hardware (MAC) address of the device 8768 */ 8769 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8770 struct netlink_ext_ack *extack) 8771 { 8772 const struct net_device_ops *ops = dev->netdev_ops; 8773 int err; 8774 8775 if (!ops->ndo_set_mac_address) 8776 return -EOPNOTSUPP; 8777 if (sa->sa_family != dev->type) 8778 return -EINVAL; 8779 if (!netif_device_present(dev)) 8780 return -ENODEV; 8781 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8782 if (err) 8783 return err; 8784 err = ops->ndo_set_mac_address(dev, sa); 8785 if (err) 8786 return err; 8787 dev->addr_assign_type = NET_ADDR_SET; 8788 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8789 add_device_randomness(dev->dev_addr, dev->addr_len); 8790 return 0; 8791 } 8792 EXPORT_SYMBOL(dev_set_mac_address); 8793 8794 static DECLARE_RWSEM(dev_addr_sem); 8795 8796 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa, 8797 struct netlink_ext_ack *extack) 8798 { 8799 int ret; 8800 8801 down_write(&dev_addr_sem); 8802 ret = dev_set_mac_address(dev, sa, extack); 8803 up_write(&dev_addr_sem); 8804 return ret; 8805 } 8806 EXPORT_SYMBOL(dev_set_mac_address_user); 8807 8808 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name) 8809 { 8810 size_t size = sizeof(sa->sa_data); 8811 struct net_device *dev; 8812 int ret = 0; 8813 8814 down_read(&dev_addr_sem); 8815 rcu_read_lock(); 8816 8817 dev = dev_get_by_name_rcu(net, dev_name); 8818 if (!dev) { 8819 ret = -ENODEV; 8820 goto unlock; 8821 } 8822 if (!dev->addr_len) 8823 memset(sa->sa_data, 0, size); 8824 else 8825 memcpy(sa->sa_data, dev->dev_addr, 8826 min_t(size_t, size, dev->addr_len)); 8827 sa->sa_family = dev->type; 8828 8829 unlock: 8830 rcu_read_unlock(); 8831 up_read(&dev_addr_sem); 8832 return ret; 8833 } 8834 EXPORT_SYMBOL(dev_get_mac_address); 8835 8836 /** 8837 * dev_change_carrier - Change device carrier 8838 * @dev: device 8839 * @new_carrier: new value 8840 * 8841 * Change device carrier 8842 */ 8843 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8844 { 8845 const struct net_device_ops *ops = dev->netdev_ops; 8846 8847 if (!ops->ndo_change_carrier) 8848 return -EOPNOTSUPP; 8849 if (!netif_device_present(dev)) 8850 return -ENODEV; 8851 return ops->ndo_change_carrier(dev, new_carrier); 8852 } 8853 8854 /** 8855 * dev_get_phys_port_id - Get device physical port ID 8856 * @dev: device 8857 * @ppid: port ID 8858 * 8859 * Get device physical port ID 8860 */ 8861 int dev_get_phys_port_id(struct net_device *dev, 8862 struct netdev_phys_item_id *ppid) 8863 { 8864 const struct net_device_ops *ops = dev->netdev_ops; 8865 8866 if (!ops->ndo_get_phys_port_id) 8867 return -EOPNOTSUPP; 8868 return ops->ndo_get_phys_port_id(dev, ppid); 8869 } 8870 8871 /** 8872 * dev_get_phys_port_name - Get device physical port name 8873 * @dev: device 8874 * @name: port name 8875 * @len: limit of bytes to copy to name 8876 * 8877 * Get device physical port name 8878 */ 8879 int dev_get_phys_port_name(struct net_device *dev, 8880 char *name, size_t len) 8881 { 8882 const struct net_device_ops *ops = dev->netdev_ops; 8883 int err; 8884 8885 if (ops->ndo_get_phys_port_name) { 8886 err = ops->ndo_get_phys_port_name(dev, name, len); 8887 if (err != -EOPNOTSUPP) 8888 return err; 8889 } 8890 return devlink_compat_phys_port_name_get(dev, name, len); 8891 } 8892 8893 /** 8894 * dev_get_port_parent_id - Get the device's port parent identifier 8895 * @dev: network device 8896 * @ppid: pointer to a storage for the port's parent identifier 8897 * @recurse: allow/disallow recursion to lower devices 8898 * 8899 * Get the devices's port parent identifier 8900 */ 8901 int dev_get_port_parent_id(struct net_device *dev, 8902 struct netdev_phys_item_id *ppid, 8903 bool recurse) 8904 { 8905 const struct net_device_ops *ops = dev->netdev_ops; 8906 struct netdev_phys_item_id first = { }; 8907 struct net_device *lower_dev; 8908 struct list_head *iter; 8909 int err; 8910 8911 if (ops->ndo_get_port_parent_id) { 8912 err = ops->ndo_get_port_parent_id(dev, ppid); 8913 if (err != -EOPNOTSUPP) 8914 return err; 8915 } 8916 8917 err = devlink_compat_switch_id_get(dev, ppid); 8918 if (!recurse || err != -EOPNOTSUPP) 8919 return err; 8920 8921 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8922 err = dev_get_port_parent_id(lower_dev, ppid, true); 8923 if (err) 8924 break; 8925 if (!first.id_len) 8926 first = *ppid; 8927 else if (memcmp(&first, ppid, sizeof(*ppid))) 8928 return -EOPNOTSUPP; 8929 } 8930 8931 return err; 8932 } 8933 EXPORT_SYMBOL(dev_get_port_parent_id); 8934 8935 /** 8936 * netdev_port_same_parent_id - Indicate if two network devices have 8937 * the same port parent identifier 8938 * @a: first network device 8939 * @b: second network device 8940 */ 8941 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8942 { 8943 struct netdev_phys_item_id a_id = { }; 8944 struct netdev_phys_item_id b_id = { }; 8945 8946 if (dev_get_port_parent_id(a, &a_id, true) || 8947 dev_get_port_parent_id(b, &b_id, true)) 8948 return false; 8949 8950 return netdev_phys_item_id_same(&a_id, &b_id); 8951 } 8952 EXPORT_SYMBOL(netdev_port_same_parent_id); 8953 8954 /** 8955 * dev_change_proto_down - set carrier according to proto_down. 8956 * 8957 * @dev: device 8958 * @proto_down: new value 8959 */ 8960 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8961 { 8962 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN)) 8963 return -EOPNOTSUPP; 8964 if (!netif_device_present(dev)) 8965 return -ENODEV; 8966 if (proto_down) 8967 netif_carrier_off(dev); 8968 else 8969 netif_carrier_on(dev); 8970 dev->proto_down = proto_down; 8971 return 0; 8972 } 8973 8974 /** 8975 * dev_change_proto_down_reason - proto down reason 8976 * 8977 * @dev: device 8978 * @mask: proto down mask 8979 * @value: proto down value 8980 */ 8981 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 8982 u32 value) 8983 { 8984 int b; 8985 8986 if (!mask) { 8987 dev->proto_down_reason = value; 8988 } else { 8989 for_each_set_bit(b, &mask, 32) { 8990 if (value & (1 << b)) 8991 dev->proto_down_reason |= BIT(b); 8992 else 8993 dev->proto_down_reason &= ~BIT(b); 8994 } 8995 } 8996 } 8997 8998 struct bpf_xdp_link { 8999 struct bpf_link link; 9000 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 9001 int flags; 9002 }; 9003 9004 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 9005 { 9006 if (flags & XDP_FLAGS_HW_MODE) 9007 return XDP_MODE_HW; 9008 if (flags & XDP_FLAGS_DRV_MODE) 9009 return XDP_MODE_DRV; 9010 if (flags & XDP_FLAGS_SKB_MODE) 9011 return XDP_MODE_SKB; 9012 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 9013 } 9014 9015 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 9016 { 9017 switch (mode) { 9018 case XDP_MODE_SKB: 9019 return generic_xdp_install; 9020 case XDP_MODE_DRV: 9021 case XDP_MODE_HW: 9022 return dev->netdev_ops->ndo_bpf; 9023 default: 9024 return NULL; 9025 } 9026 } 9027 9028 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 9029 enum bpf_xdp_mode mode) 9030 { 9031 return dev->xdp_state[mode].link; 9032 } 9033 9034 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 9035 enum bpf_xdp_mode mode) 9036 { 9037 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 9038 9039 if (link) 9040 return link->link.prog; 9041 return dev->xdp_state[mode].prog; 9042 } 9043 9044 u8 dev_xdp_prog_count(struct net_device *dev) 9045 { 9046 u8 count = 0; 9047 int i; 9048 9049 for (i = 0; i < __MAX_XDP_MODE; i++) 9050 if (dev->xdp_state[i].prog || dev->xdp_state[i].link) 9051 count++; 9052 return count; 9053 } 9054 EXPORT_SYMBOL_GPL(dev_xdp_prog_count); 9055 9056 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 9057 { 9058 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 9059 9060 return prog ? prog->aux->id : 0; 9061 } 9062 9063 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 9064 struct bpf_xdp_link *link) 9065 { 9066 dev->xdp_state[mode].link = link; 9067 dev->xdp_state[mode].prog = NULL; 9068 } 9069 9070 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 9071 struct bpf_prog *prog) 9072 { 9073 dev->xdp_state[mode].link = NULL; 9074 dev->xdp_state[mode].prog = prog; 9075 } 9076 9077 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 9078 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 9079 u32 flags, struct bpf_prog *prog) 9080 { 9081 struct netdev_bpf xdp; 9082 int err; 9083 9084 memset(&xdp, 0, sizeof(xdp)); 9085 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9086 xdp.extack = extack; 9087 xdp.flags = flags; 9088 xdp.prog = prog; 9089 9090 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9091 * "moved" into driver), so they don't increment it on their own, but 9092 * they do decrement refcnt when program is detached or replaced. 9093 * Given net_device also owns link/prog, we need to bump refcnt here 9094 * to prevent drivers from underflowing it. 9095 */ 9096 if (prog) 9097 bpf_prog_inc(prog); 9098 err = bpf_op(dev, &xdp); 9099 if (err) { 9100 if (prog) 9101 bpf_prog_put(prog); 9102 return err; 9103 } 9104 9105 if (mode != XDP_MODE_HW) 9106 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9107 9108 return 0; 9109 } 9110 9111 static void dev_xdp_uninstall(struct net_device *dev) 9112 { 9113 struct bpf_xdp_link *link; 9114 struct bpf_prog *prog; 9115 enum bpf_xdp_mode mode; 9116 bpf_op_t bpf_op; 9117 9118 ASSERT_RTNL(); 9119 9120 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9121 prog = dev_xdp_prog(dev, mode); 9122 if (!prog) 9123 continue; 9124 9125 bpf_op = dev_xdp_bpf_op(dev, mode); 9126 if (!bpf_op) 9127 continue; 9128 9129 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9130 9131 /* auto-detach link from net device */ 9132 link = dev_xdp_link(dev, mode); 9133 if (link) 9134 link->dev = NULL; 9135 else 9136 bpf_prog_put(prog); 9137 9138 dev_xdp_set_link(dev, mode, NULL); 9139 } 9140 } 9141 9142 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9143 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9144 struct bpf_prog *old_prog, u32 flags) 9145 { 9146 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES); 9147 struct bpf_prog *cur_prog; 9148 struct net_device *upper; 9149 struct list_head *iter; 9150 enum bpf_xdp_mode mode; 9151 bpf_op_t bpf_op; 9152 int err; 9153 9154 ASSERT_RTNL(); 9155 9156 /* either link or prog attachment, never both */ 9157 if (link && (new_prog || old_prog)) 9158 return -EINVAL; 9159 /* link supports only XDP mode flags */ 9160 if (link && (flags & ~XDP_FLAGS_MODES)) { 9161 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9162 return -EINVAL; 9163 } 9164 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */ 9165 if (num_modes > 1) { 9166 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9167 return -EINVAL; 9168 } 9169 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */ 9170 if (!num_modes && dev_xdp_prog_count(dev) > 1) { 9171 NL_SET_ERR_MSG(extack, 9172 "More than one program loaded, unset mode is ambiguous"); 9173 return -EINVAL; 9174 } 9175 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9176 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9177 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9178 return -EINVAL; 9179 } 9180 9181 mode = dev_xdp_mode(dev, flags); 9182 /* can't replace attached link */ 9183 if (dev_xdp_link(dev, mode)) { 9184 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9185 return -EBUSY; 9186 } 9187 9188 /* don't allow if an upper device already has a program */ 9189 netdev_for_each_upper_dev_rcu(dev, upper, iter) { 9190 if (dev_xdp_prog_count(upper) > 0) { 9191 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program"); 9192 return -EEXIST; 9193 } 9194 } 9195 9196 cur_prog = dev_xdp_prog(dev, mode); 9197 /* can't replace attached prog with link */ 9198 if (link && cur_prog) { 9199 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9200 return -EBUSY; 9201 } 9202 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9203 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9204 return -EEXIST; 9205 } 9206 9207 /* put effective new program into new_prog */ 9208 if (link) 9209 new_prog = link->link.prog; 9210 9211 if (new_prog) { 9212 bool offload = mode == XDP_MODE_HW; 9213 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9214 ? XDP_MODE_DRV : XDP_MODE_SKB; 9215 9216 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9217 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9218 return -EBUSY; 9219 } 9220 if (!offload && dev_xdp_prog(dev, other_mode)) { 9221 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9222 return -EEXIST; 9223 } 9224 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9225 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9226 return -EINVAL; 9227 } 9228 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9229 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9230 return -EINVAL; 9231 } 9232 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9233 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9234 return -EINVAL; 9235 } 9236 } 9237 9238 /* don't call drivers if the effective program didn't change */ 9239 if (new_prog != cur_prog) { 9240 bpf_op = dev_xdp_bpf_op(dev, mode); 9241 if (!bpf_op) { 9242 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9243 return -EOPNOTSUPP; 9244 } 9245 9246 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9247 if (err) 9248 return err; 9249 } 9250 9251 if (link) 9252 dev_xdp_set_link(dev, mode, link); 9253 else 9254 dev_xdp_set_prog(dev, mode, new_prog); 9255 if (cur_prog) 9256 bpf_prog_put(cur_prog); 9257 9258 return 0; 9259 } 9260 9261 static int dev_xdp_attach_link(struct net_device *dev, 9262 struct netlink_ext_ack *extack, 9263 struct bpf_xdp_link *link) 9264 { 9265 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9266 } 9267 9268 static int dev_xdp_detach_link(struct net_device *dev, 9269 struct netlink_ext_ack *extack, 9270 struct bpf_xdp_link *link) 9271 { 9272 enum bpf_xdp_mode mode; 9273 bpf_op_t bpf_op; 9274 9275 ASSERT_RTNL(); 9276 9277 mode = dev_xdp_mode(dev, link->flags); 9278 if (dev_xdp_link(dev, mode) != link) 9279 return -EINVAL; 9280 9281 bpf_op = dev_xdp_bpf_op(dev, mode); 9282 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9283 dev_xdp_set_link(dev, mode, NULL); 9284 return 0; 9285 } 9286 9287 static void bpf_xdp_link_release(struct bpf_link *link) 9288 { 9289 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9290 9291 rtnl_lock(); 9292 9293 /* if racing with net_device's tear down, xdp_link->dev might be 9294 * already NULL, in which case link was already auto-detached 9295 */ 9296 if (xdp_link->dev) { 9297 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9298 xdp_link->dev = NULL; 9299 } 9300 9301 rtnl_unlock(); 9302 } 9303 9304 static int bpf_xdp_link_detach(struct bpf_link *link) 9305 { 9306 bpf_xdp_link_release(link); 9307 return 0; 9308 } 9309 9310 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9311 { 9312 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9313 9314 kfree(xdp_link); 9315 } 9316 9317 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9318 struct seq_file *seq) 9319 { 9320 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9321 u32 ifindex = 0; 9322 9323 rtnl_lock(); 9324 if (xdp_link->dev) 9325 ifindex = xdp_link->dev->ifindex; 9326 rtnl_unlock(); 9327 9328 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9329 } 9330 9331 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9332 struct bpf_link_info *info) 9333 { 9334 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9335 u32 ifindex = 0; 9336 9337 rtnl_lock(); 9338 if (xdp_link->dev) 9339 ifindex = xdp_link->dev->ifindex; 9340 rtnl_unlock(); 9341 9342 info->xdp.ifindex = ifindex; 9343 return 0; 9344 } 9345 9346 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9347 struct bpf_prog *old_prog) 9348 { 9349 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9350 enum bpf_xdp_mode mode; 9351 bpf_op_t bpf_op; 9352 int err = 0; 9353 9354 rtnl_lock(); 9355 9356 /* link might have been auto-released already, so fail */ 9357 if (!xdp_link->dev) { 9358 err = -ENOLINK; 9359 goto out_unlock; 9360 } 9361 9362 if (old_prog && link->prog != old_prog) { 9363 err = -EPERM; 9364 goto out_unlock; 9365 } 9366 old_prog = link->prog; 9367 if (old_prog->type != new_prog->type || 9368 old_prog->expected_attach_type != new_prog->expected_attach_type) { 9369 err = -EINVAL; 9370 goto out_unlock; 9371 } 9372 9373 if (old_prog == new_prog) { 9374 /* no-op, don't disturb drivers */ 9375 bpf_prog_put(new_prog); 9376 goto out_unlock; 9377 } 9378 9379 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9380 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9381 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9382 xdp_link->flags, new_prog); 9383 if (err) 9384 goto out_unlock; 9385 9386 old_prog = xchg(&link->prog, new_prog); 9387 bpf_prog_put(old_prog); 9388 9389 out_unlock: 9390 rtnl_unlock(); 9391 return err; 9392 } 9393 9394 static const struct bpf_link_ops bpf_xdp_link_lops = { 9395 .release = bpf_xdp_link_release, 9396 .dealloc = bpf_xdp_link_dealloc, 9397 .detach = bpf_xdp_link_detach, 9398 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9399 .fill_link_info = bpf_xdp_link_fill_link_info, 9400 .update_prog = bpf_xdp_link_update, 9401 }; 9402 9403 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9404 { 9405 struct net *net = current->nsproxy->net_ns; 9406 struct bpf_link_primer link_primer; 9407 struct bpf_xdp_link *link; 9408 struct net_device *dev; 9409 int err, fd; 9410 9411 rtnl_lock(); 9412 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9413 if (!dev) { 9414 rtnl_unlock(); 9415 return -EINVAL; 9416 } 9417 9418 link = kzalloc(sizeof(*link), GFP_USER); 9419 if (!link) { 9420 err = -ENOMEM; 9421 goto unlock; 9422 } 9423 9424 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9425 link->dev = dev; 9426 link->flags = attr->link_create.flags; 9427 9428 err = bpf_link_prime(&link->link, &link_primer); 9429 if (err) { 9430 kfree(link); 9431 goto unlock; 9432 } 9433 9434 err = dev_xdp_attach_link(dev, NULL, link); 9435 rtnl_unlock(); 9436 9437 if (err) { 9438 link->dev = NULL; 9439 bpf_link_cleanup(&link_primer); 9440 goto out_put_dev; 9441 } 9442 9443 fd = bpf_link_settle(&link_primer); 9444 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9445 dev_put(dev); 9446 return fd; 9447 9448 unlock: 9449 rtnl_unlock(); 9450 9451 out_put_dev: 9452 dev_put(dev); 9453 return err; 9454 } 9455 9456 /** 9457 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9458 * @dev: device 9459 * @extack: netlink extended ack 9460 * @fd: new program fd or negative value to clear 9461 * @expected_fd: old program fd that userspace expects to replace or clear 9462 * @flags: xdp-related flags 9463 * 9464 * Set or clear a bpf program for a device 9465 */ 9466 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9467 int fd, int expected_fd, u32 flags) 9468 { 9469 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9470 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9471 int err; 9472 9473 ASSERT_RTNL(); 9474 9475 if (fd >= 0) { 9476 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9477 mode != XDP_MODE_SKB); 9478 if (IS_ERR(new_prog)) 9479 return PTR_ERR(new_prog); 9480 } 9481 9482 if (expected_fd >= 0) { 9483 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9484 mode != XDP_MODE_SKB); 9485 if (IS_ERR(old_prog)) { 9486 err = PTR_ERR(old_prog); 9487 old_prog = NULL; 9488 goto err_out; 9489 } 9490 } 9491 9492 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9493 9494 err_out: 9495 if (err && new_prog) 9496 bpf_prog_put(new_prog); 9497 if (old_prog) 9498 bpf_prog_put(old_prog); 9499 return err; 9500 } 9501 9502 /** 9503 * dev_new_index - allocate an ifindex 9504 * @net: the applicable net namespace 9505 * 9506 * Returns a suitable unique value for a new device interface 9507 * number. The caller must hold the rtnl semaphore or the 9508 * dev_base_lock to be sure it remains unique. 9509 */ 9510 static int dev_new_index(struct net *net) 9511 { 9512 int ifindex = net->ifindex; 9513 9514 for (;;) { 9515 if (++ifindex <= 0) 9516 ifindex = 1; 9517 if (!__dev_get_by_index(net, ifindex)) 9518 return net->ifindex = ifindex; 9519 } 9520 } 9521 9522 /* Delayed registration/unregisteration */ 9523 LIST_HEAD(net_todo_list); 9524 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9525 9526 static void net_set_todo(struct net_device *dev) 9527 { 9528 list_add_tail(&dev->todo_list, &net_todo_list); 9529 atomic_inc(&dev_net(dev)->dev_unreg_count); 9530 } 9531 9532 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9533 struct net_device *upper, netdev_features_t features) 9534 { 9535 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9536 netdev_features_t feature; 9537 int feature_bit; 9538 9539 for_each_netdev_feature(upper_disables, feature_bit) { 9540 feature = __NETIF_F_BIT(feature_bit); 9541 if (!(upper->wanted_features & feature) 9542 && (features & feature)) { 9543 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9544 &feature, upper->name); 9545 features &= ~feature; 9546 } 9547 } 9548 9549 return features; 9550 } 9551 9552 static void netdev_sync_lower_features(struct net_device *upper, 9553 struct net_device *lower, netdev_features_t features) 9554 { 9555 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9556 netdev_features_t feature; 9557 int feature_bit; 9558 9559 for_each_netdev_feature(upper_disables, feature_bit) { 9560 feature = __NETIF_F_BIT(feature_bit); 9561 if (!(features & feature) && (lower->features & feature)) { 9562 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9563 &feature, lower->name); 9564 lower->wanted_features &= ~feature; 9565 __netdev_update_features(lower); 9566 9567 if (unlikely(lower->features & feature)) 9568 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9569 &feature, lower->name); 9570 else 9571 netdev_features_change(lower); 9572 } 9573 } 9574 } 9575 9576 static netdev_features_t netdev_fix_features(struct net_device *dev, 9577 netdev_features_t features) 9578 { 9579 /* Fix illegal checksum combinations */ 9580 if ((features & NETIF_F_HW_CSUM) && 9581 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9582 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9583 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9584 } 9585 9586 /* TSO requires that SG is present as well. */ 9587 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9588 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9589 features &= ~NETIF_F_ALL_TSO; 9590 } 9591 9592 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9593 !(features & NETIF_F_IP_CSUM)) { 9594 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9595 features &= ~NETIF_F_TSO; 9596 features &= ~NETIF_F_TSO_ECN; 9597 } 9598 9599 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9600 !(features & NETIF_F_IPV6_CSUM)) { 9601 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9602 features &= ~NETIF_F_TSO6; 9603 } 9604 9605 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9606 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9607 features &= ~NETIF_F_TSO_MANGLEID; 9608 9609 /* TSO ECN requires that TSO is present as well. */ 9610 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9611 features &= ~NETIF_F_TSO_ECN; 9612 9613 /* Software GSO depends on SG. */ 9614 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9615 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9616 features &= ~NETIF_F_GSO; 9617 } 9618 9619 /* GSO partial features require GSO partial be set */ 9620 if ((features & dev->gso_partial_features) && 9621 !(features & NETIF_F_GSO_PARTIAL)) { 9622 netdev_dbg(dev, 9623 "Dropping partially supported GSO features since no GSO partial.\n"); 9624 features &= ~dev->gso_partial_features; 9625 } 9626 9627 if (!(features & NETIF_F_RXCSUM)) { 9628 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9629 * successfully merged by hardware must also have the 9630 * checksum verified by hardware. If the user does not 9631 * want to enable RXCSUM, logically, we should disable GRO_HW. 9632 */ 9633 if (features & NETIF_F_GRO_HW) { 9634 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9635 features &= ~NETIF_F_GRO_HW; 9636 } 9637 } 9638 9639 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9640 if (features & NETIF_F_RXFCS) { 9641 if (features & NETIF_F_LRO) { 9642 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9643 features &= ~NETIF_F_LRO; 9644 } 9645 9646 if (features & NETIF_F_GRO_HW) { 9647 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9648 features &= ~NETIF_F_GRO_HW; 9649 } 9650 } 9651 9652 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) { 9653 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n"); 9654 features &= ~NETIF_F_LRO; 9655 } 9656 9657 if (features & NETIF_F_HW_TLS_TX) { 9658 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) == 9659 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 9660 bool hw_csum = features & NETIF_F_HW_CSUM; 9661 9662 if (!ip_csum && !hw_csum) { 9663 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n"); 9664 features &= ~NETIF_F_HW_TLS_TX; 9665 } 9666 } 9667 9668 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) { 9669 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n"); 9670 features &= ~NETIF_F_HW_TLS_RX; 9671 } 9672 9673 return features; 9674 } 9675 9676 int __netdev_update_features(struct net_device *dev) 9677 { 9678 struct net_device *upper, *lower; 9679 netdev_features_t features; 9680 struct list_head *iter; 9681 int err = -1; 9682 9683 ASSERT_RTNL(); 9684 9685 features = netdev_get_wanted_features(dev); 9686 9687 if (dev->netdev_ops->ndo_fix_features) 9688 features = dev->netdev_ops->ndo_fix_features(dev, features); 9689 9690 /* driver might be less strict about feature dependencies */ 9691 features = netdev_fix_features(dev, features); 9692 9693 /* some features can't be enabled if they're off on an upper device */ 9694 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9695 features = netdev_sync_upper_features(dev, upper, features); 9696 9697 if (dev->features == features) 9698 goto sync_lower; 9699 9700 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9701 &dev->features, &features); 9702 9703 if (dev->netdev_ops->ndo_set_features) 9704 err = dev->netdev_ops->ndo_set_features(dev, features); 9705 else 9706 err = 0; 9707 9708 if (unlikely(err < 0)) { 9709 netdev_err(dev, 9710 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9711 err, &features, &dev->features); 9712 /* return non-0 since some features might have changed and 9713 * it's better to fire a spurious notification than miss it 9714 */ 9715 return -1; 9716 } 9717 9718 sync_lower: 9719 /* some features must be disabled on lower devices when disabled 9720 * on an upper device (think: bonding master or bridge) 9721 */ 9722 netdev_for_each_lower_dev(dev, lower, iter) 9723 netdev_sync_lower_features(dev, lower, features); 9724 9725 if (!err) { 9726 netdev_features_t diff = features ^ dev->features; 9727 9728 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9729 /* udp_tunnel_{get,drop}_rx_info both need 9730 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9731 * device, or they won't do anything. 9732 * Thus we need to update dev->features 9733 * *before* calling udp_tunnel_get_rx_info, 9734 * but *after* calling udp_tunnel_drop_rx_info. 9735 */ 9736 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9737 dev->features = features; 9738 udp_tunnel_get_rx_info(dev); 9739 } else { 9740 udp_tunnel_drop_rx_info(dev); 9741 } 9742 } 9743 9744 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9745 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9746 dev->features = features; 9747 err |= vlan_get_rx_ctag_filter_info(dev); 9748 } else { 9749 vlan_drop_rx_ctag_filter_info(dev); 9750 } 9751 } 9752 9753 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9754 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9755 dev->features = features; 9756 err |= vlan_get_rx_stag_filter_info(dev); 9757 } else { 9758 vlan_drop_rx_stag_filter_info(dev); 9759 } 9760 } 9761 9762 dev->features = features; 9763 } 9764 9765 return err < 0 ? 0 : 1; 9766 } 9767 9768 /** 9769 * netdev_update_features - recalculate device features 9770 * @dev: the device to check 9771 * 9772 * Recalculate dev->features set and send notifications if it 9773 * has changed. Should be called after driver or hardware dependent 9774 * conditions might have changed that influence the features. 9775 */ 9776 void netdev_update_features(struct net_device *dev) 9777 { 9778 if (__netdev_update_features(dev)) 9779 netdev_features_change(dev); 9780 } 9781 EXPORT_SYMBOL(netdev_update_features); 9782 9783 /** 9784 * netdev_change_features - recalculate device features 9785 * @dev: the device to check 9786 * 9787 * Recalculate dev->features set and send notifications even 9788 * if they have not changed. Should be called instead of 9789 * netdev_update_features() if also dev->vlan_features might 9790 * have changed to allow the changes to be propagated to stacked 9791 * VLAN devices. 9792 */ 9793 void netdev_change_features(struct net_device *dev) 9794 { 9795 __netdev_update_features(dev); 9796 netdev_features_change(dev); 9797 } 9798 EXPORT_SYMBOL(netdev_change_features); 9799 9800 /** 9801 * netif_stacked_transfer_operstate - transfer operstate 9802 * @rootdev: the root or lower level device to transfer state from 9803 * @dev: the device to transfer operstate to 9804 * 9805 * Transfer operational state from root to device. This is normally 9806 * called when a stacking relationship exists between the root 9807 * device and the device(a leaf device). 9808 */ 9809 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9810 struct net_device *dev) 9811 { 9812 if (rootdev->operstate == IF_OPER_DORMANT) 9813 netif_dormant_on(dev); 9814 else 9815 netif_dormant_off(dev); 9816 9817 if (rootdev->operstate == IF_OPER_TESTING) 9818 netif_testing_on(dev); 9819 else 9820 netif_testing_off(dev); 9821 9822 if (netif_carrier_ok(rootdev)) 9823 netif_carrier_on(dev); 9824 else 9825 netif_carrier_off(dev); 9826 } 9827 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9828 9829 static int netif_alloc_rx_queues(struct net_device *dev) 9830 { 9831 unsigned int i, count = dev->num_rx_queues; 9832 struct netdev_rx_queue *rx; 9833 size_t sz = count * sizeof(*rx); 9834 int err = 0; 9835 9836 BUG_ON(count < 1); 9837 9838 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9839 if (!rx) 9840 return -ENOMEM; 9841 9842 dev->_rx = rx; 9843 9844 for (i = 0; i < count; i++) { 9845 rx[i].dev = dev; 9846 9847 /* XDP RX-queue setup */ 9848 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0); 9849 if (err < 0) 9850 goto err_rxq_info; 9851 } 9852 return 0; 9853 9854 err_rxq_info: 9855 /* Rollback successful reg's and free other resources */ 9856 while (i--) 9857 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9858 kvfree(dev->_rx); 9859 dev->_rx = NULL; 9860 return err; 9861 } 9862 9863 static void netif_free_rx_queues(struct net_device *dev) 9864 { 9865 unsigned int i, count = dev->num_rx_queues; 9866 9867 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9868 if (!dev->_rx) 9869 return; 9870 9871 for (i = 0; i < count; i++) 9872 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9873 9874 kvfree(dev->_rx); 9875 } 9876 9877 static void netdev_init_one_queue(struct net_device *dev, 9878 struct netdev_queue *queue, void *_unused) 9879 { 9880 /* Initialize queue lock */ 9881 spin_lock_init(&queue->_xmit_lock); 9882 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9883 queue->xmit_lock_owner = -1; 9884 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9885 queue->dev = dev; 9886 #ifdef CONFIG_BQL 9887 dql_init(&queue->dql, HZ); 9888 #endif 9889 } 9890 9891 static void netif_free_tx_queues(struct net_device *dev) 9892 { 9893 kvfree(dev->_tx); 9894 } 9895 9896 static int netif_alloc_netdev_queues(struct net_device *dev) 9897 { 9898 unsigned int count = dev->num_tx_queues; 9899 struct netdev_queue *tx; 9900 size_t sz = count * sizeof(*tx); 9901 9902 if (count < 1 || count > 0xffff) 9903 return -EINVAL; 9904 9905 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 9906 if (!tx) 9907 return -ENOMEM; 9908 9909 dev->_tx = tx; 9910 9911 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9912 spin_lock_init(&dev->tx_global_lock); 9913 9914 return 0; 9915 } 9916 9917 void netif_tx_stop_all_queues(struct net_device *dev) 9918 { 9919 unsigned int i; 9920 9921 for (i = 0; i < dev->num_tx_queues; i++) { 9922 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9923 9924 netif_tx_stop_queue(txq); 9925 } 9926 } 9927 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9928 9929 /** 9930 * register_netdevice - register a network device 9931 * @dev: device to register 9932 * 9933 * Take a completed network device structure and add it to the kernel 9934 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9935 * chain. 0 is returned on success. A negative errno code is returned 9936 * on a failure to set up the device, or if the name is a duplicate. 9937 * 9938 * Callers must hold the rtnl semaphore. You may want 9939 * register_netdev() instead of this. 9940 * 9941 * BUGS: 9942 * The locking appears insufficient to guarantee two parallel registers 9943 * will not get the same name. 9944 */ 9945 9946 int register_netdevice(struct net_device *dev) 9947 { 9948 int ret; 9949 struct net *net = dev_net(dev); 9950 9951 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9952 NETDEV_FEATURE_COUNT); 9953 BUG_ON(dev_boot_phase); 9954 ASSERT_RTNL(); 9955 9956 might_sleep(); 9957 9958 /* When net_device's are persistent, this will be fatal. */ 9959 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9960 BUG_ON(!net); 9961 9962 ret = ethtool_check_ops(dev->ethtool_ops); 9963 if (ret) 9964 return ret; 9965 9966 spin_lock_init(&dev->addr_list_lock); 9967 netdev_set_addr_lockdep_class(dev); 9968 9969 ret = dev_get_valid_name(net, dev, dev->name); 9970 if (ret < 0) 9971 goto out; 9972 9973 ret = -ENOMEM; 9974 dev->name_node = netdev_name_node_head_alloc(dev); 9975 if (!dev->name_node) 9976 goto out; 9977 9978 /* Init, if this function is available */ 9979 if (dev->netdev_ops->ndo_init) { 9980 ret = dev->netdev_ops->ndo_init(dev); 9981 if (ret) { 9982 if (ret > 0) 9983 ret = -EIO; 9984 goto err_free_name; 9985 } 9986 } 9987 9988 if (((dev->hw_features | dev->features) & 9989 NETIF_F_HW_VLAN_CTAG_FILTER) && 9990 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9991 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9992 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9993 ret = -EINVAL; 9994 goto err_uninit; 9995 } 9996 9997 ret = -EBUSY; 9998 if (!dev->ifindex) 9999 dev->ifindex = dev_new_index(net); 10000 else if (__dev_get_by_index(net, dev->ifindex)) 10001 goto err_uninit; 10002 10003 /* Transfer changeable features to wanted_features and enable 10004 * software offloads (GSO and GRO). 10005 */ 10006 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 10007 dev->features |= NETIF_F_SOFT_FEATURES; 10008 10009 if (dev->udp_tunnel_nic_info) { 10010 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10011 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 10012 } 10013 10014 dev->wanted_features = dev->features & dev->hw_features; 10015 10016 if (!(dev->flags & IFF_LOOPBACK)) 10017 dev->hw_features |= NETIF_F_NOCACHE_COPY; 10018 10019 /* If IPv4 TCP segmentation offload is supported we should also 10020 * allow the device to enable segmenting the frame with the option 10021 * of ignoring a static IP ID value. This doesn't enable the 10022 * feature itself but allows the user to enable it later. 10023 */ 10024 if (dev->hw_features & NETIF_F_TSO) 10025 dev->hw_features |= NETIF_F_TSO_MANGLEID; 10026 if (dev->vlan_features & NETIF_F_TSO) 10027 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 10028 if (dev->mpls_features & NETIF_F_TSO) 10029 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 10030 if (dev->hw_enc_features & NETIF_F_TSO) 10031 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 10032 10033 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 10034 */ 10035 dev->vlan_features |= NETIF_F_HIGHDMA; 10036 10037 /* Make NETIF_F_SG inheritable to tunnel devices. 10038 */ 10039 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10040 10041 /* Make NETIF_F_SG inheritable to MPLS. 10042 */ 10043 dev->mpls_features |= NETIF_F_SG; 10044 10045 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10046 ret = notifier_to_errno(ret); 10047 if (ret) 10048 goto err_uninit; 10049 10050 ret = netdev_register_kobject(dev); 10051 if (ret) { 10052 dev->reg_state = NETREG_UNREGISTERED; 10053 goto err_uninit; 10054 } 10055 dev->reg_state = NETREG_REGISTERED; 10056 10057 __netdev_update_features(dev); 10058 10059 /* 10060 * Default initial state at registry is that the 10061 * device is present. 10062 */ 10063 10064 set_bit(__LINK_STATE_PRESENT, &dev->state); 10065 10066 linkwatch_init_dev(dev); 10067 10068 dev_init_scheduler(dev); 10069 10070 dev_hold_track(dev, &dev->dev_registered_tracker, GFP_KERNEL); 10071 list_netdevice(dev); 10072 10073 add_device_randomness(dev->dev_addr, dev->addr_len); 10074 10075 /* If the device has permanent device address, driver should 10076 * set dev_addr and also addr_assign_type should be set to 10077 * NET_ADDR_PERM (default value). 10078 */ 10079 if (dev->addr_assign_type == NET_ADDR_PERM) 10080 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10081 10082 /* Notify protocols, that a new device appeared. */ 10083 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10084 ret = notifier_to_errno(ret); 10085 if (ret) { 10086 /* Expect explicit free_netdev() on failure */ 10087 dev->needs_free_netdev = false; 10088 unregister_netdevice_queue(dev, NULL); 10089 goto out; 10090 } 10091 /* 10092 * Prevent userspace races by waiting until the network 10093 * device is fully setup before sending notifications. 10094 */ 10095 if (!dev->rtnl_link_ops || 10096 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10097 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10098 10099 out: 10100 return ret; 10101 10102 err_uninit: 10103 if (dev->netdev_ops->ndo_uninit) 10104 dev->netdev_ops->ndo_uninit(dev); 10105 if (dev->priv_destructor) 10106 dev->priv_destructor(dev); 10107 err_free_name: 10108 netdev_name_node_free(dev->name_node); 10109 goto out; 10110 } 10111 EXPORT_SYMBOL(register_netdevice); 10112 10113 /** 10114 * init_dummy_netdev - init a dummy network device for NAPI 10115 * @dev: device to init 10116 * 10117 * This takes a network device structure and initialize the minimum 10118 * amount of fields so it can be used to schedule NAPI polls without 10119 * registering a full blown interface. This is to be used by drivers 10120 * that need to tie several hardware interfaces to a single NAPI 10121 * poll scheduler due to HW limitations. 10122 */ 10123 int init_dummy_netdev(struct net_device *dev) 10124 { 10125 /* Clear everything. Note we don't initialize spinlocks 10126 * are they aren't supposed to be taken by any of the 10127 * NAPI code and this dummy netdev is supposed to be 10128 * only ever used for NAPI polls 10129 */ 10130 memset(dev, 0, sizeof(struct net_device)); 10131 10132 /* make sure we BUG if trying to hit standard 10133 * register/unregister code path 10134 */ 10135 dev->reg_state = NETREG_DUMMY; 10136 10137 /* NAPI wants this */ 10138 INIT_LIST_HEAD(&dev->napi_list); 10139 10140 /* a dummy interface is started by default */ 10141 set_bit(__LINK_STATE_PRESENT, &dev->state); 10142 set_bit(__LINK_STATE_START, &dev->state); 10143 10144 /* napi_busy_loop stats accounting wants this */ 10145 dev_net_set(dev, &init_net); 10146 10147 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10148 * because users of this 'device' dont need to change 10149 * its refcount. 10150 */ 10151 10152 return 0; 10153 } 10154 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10155 10156 10157 /** 10158 * register_netdev - register a network device 10159 * @dev: device to register 10160 * 10161 * Take a completed network device structure and add it to the kernel 10162 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10163 * chain. 0 is returned on success. A negative errno code is returned 10164 * on a failure to set up the device, or if the name is a duplicate. 10165 * 10166 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10167 * and expands the device name if you passed a format string to 10168 * alloc_netdev. 10169 */ 10170 int register_netdev(struct net_device *dev) 10171 { 10172 int err; 10173 10174 if (rtnl_lock_killable()) 10175 return -EINTR; 10176 err = register_netdevice(dev); 10177 rtnl_unlock(); 10178 return err; 10179 } 10180 EXPORT_SYMBOL(register_netdev); 10181 10182 int netdev_refcnt_read(const struct net_device *dev) 10183 { 10184 #ifdef CONFIG_PCPU_DEV_REFCNT 10185 int i, refcnt = 0; 10186 10187 for_each_possible_cpu(i) 10188 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10189 return refcnt; 10190 #else 10191 return refcount_read(&dev->dev_refcnt); 10192 #endif 10193 } 10194 EXPORT_SYMBOL(netdev_refcnt_read); 10195 10196 int netdev_unregister_timeout_secs __read_mostly = 10; 10197 10198 #define WAIT_REFS_MIN_MSECS 1 10199 #define WAIT_REFS_MAX_MSECS 250 10200 /** 10201 * netdev_wait_allrefs_any - wait until all references are gone. 10202 * @list: list of net_devices to wait on 10203 * 10204 * This is called when unregistering network devices. 10205 * 10206 * Any protocol or device that holds a reference should register 10207 * for netdevice notification, and cleanup and put back the 10208 * reference if they receive an UNREGISTER event. 10209 * We can get stuck here if buggy protocols don't correctly 10210 * call dev_put. 10211 */ 10212 static struct net_device *netdev_wait_allrefs_any(struct list_head *list) 10213 { 10214 unsigned long rebroadcast_time, warning_time; 10215 struct net_device *dev; 10216 int wait = 0; 10217 10218 rebroadcast_time = warning_time = jiffies; 10219 10220 list_for_each_entry(dev, list, todo_list) 10221 if (netdev_refcnt_read(dev) == 1) 10222 return dev; 10223 10224 while (true) { 10225 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10226 rtnl_lock(); 10227 10228 /* Rebroadcast unregister notification */ 10229 list_for_each_entry(dev, list, todo_list) 10230 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10231 10232 __rtnl_unlock(); 10233 rcu_barrier(); 10234 rtnl_lock(); 10235 10236 list_for_each_entry(dev, list, todo_list) 10237 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10238 &dev->state)) { 10239 /* We must not have linkwatch events 10240 * pending on unregister. If this 10241 * happens, we simply run the queue 10242 * unscheduled, resulting in a noop 10243 * for this device. 10244 */ 10245 linkwatch_run_queue(); 10246 break; 10247 } 10248 10249 __rtnl_unlock(); 10250 10251 rebroadcast_time = jiffies; 10252 } 10253 10254 if (!wait) { 10255 rcu_barrier(); 10256 wait = WAIT_REFS_MIN_MSECS; 10257 } else { 10258 msleep(wait); 10259 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10260 } 10261 10262 list_for_each_entry(dev, list, todo_list) 10263 if (netdev_refcnt_read(dev) == 1) 10264 return dev; 10265 10266 if (time_after(jiffies, warning_time + 10267 netdev_unregister_timeout_secs * HZ)) { 10268 list_for_each_entry(dev, list, todo_list) { 10269 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10270 dev->name, netdev_refcnt_read(dev)); 10271 ref_tracker_dir_print(&dev->refcnt_tracker, 10); 10272 } 10273 10274 warning_time = jiffies; 10275 } 10276 } 10277 } 10278 10279 /* The sequence is: 10280 * 10281 * rtnl_lock(); 10282 * ... 10283 * register_netdevice(x1); 10284 * register_netdevice(x2); 10285 * ... 10286 * unregister_netdevice(y1); 10287 * unregister_netdevice(y2); 10288 * ... 10289 * rtnl_unlock(); 10290 * free_netdev(y1); 10291 * free_netdev(y2); 10292 * 10293 * We are invoked by rtnl_unlock(). 10294 * This allows us to deal with problems: 10295 * 1) We can delete sysfs objects which invoke hotplug 10296 * without deadlocking with linkwatch via keventd. 10297 * 2) Since we run with the RTNL semaphore not held, we can sleep 10298 * safely in order to wait for the netdev refcnt to drop to zero. 10299 * 10300 * We must not return until all unregister events added during 10301 * the interval the lock was held have been completed. 10302 */ 10303 void netdev_run_todo(void) 10304 { 10305 struct net_device *dev, *tmp; 10306 struct list_head list; 10307 #ifdef CONFIG_LOCKDEP 10308 struct list_head unlink_list; 10309 10310 list_replace_init(&net_unlink_list, &unlink_list); 10311 10312 while (!list_empty(&unlink_list)) { 10313 struct net_device *dev = list_first_entry(&unlink_list, 10314 struct net_device, 10315 unlink_list); 10316 list_del_init(&dev->unlink_list); 10317 dev->nested_level = dev->lower_level - 1; 10318 } 10319 #endif 10320 10321 /* Snapshot list, allow later requests */ 10322 list_replace_init(&net_todo_list, &list); 10323 10324 __rtnl_unlock(); 10325 10326 /* Wait for rcu callbacks to finish before next phase */ 10327 if (!list_empty(&list)) 10328 rcu_barrier(); 10329 10330 list_for_each_entry_safe(dev, tmp, &list, todo_list) { 10331 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10332 netdev_WARN(dev, "run_todo but not unregistering\n"); 10333 list_del(&dev->todo_list); 10334 continue; 10335 } 10336 10337 dev->reg_state = NETREG_UNREGISTERED; 10338 linkwatch_forget_dev(dev); 10339 } 10340 10341 while (!list_empty(&list)) { 10342 dev = netdev_wait_allrefs_any(&list); 10343 list_del(&dev->todo_list); 10344 10345 /* paranoia */ 10346 BUG_ON(netdev_refcnt_read(dev) != 1); 10347 BUG_ON(!list_empty(&dev->ptype_all)); 10348 BUG_ON(!list_empty(&dev->ptype_specific)); 10349 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10350 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10351 #if IS_ENABLED(CONFIG_DECNET) 10352 WARN_ON(dev->dn_ptr); 10353 #endif 10354 if (dev->priv_destructor) 10355 dev->priv_destructor(dev); 10356 if (dev->needs_free_netdev) 10357 free_netdev(dev); 10358 10359 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count)) 10360 wake_up(&netdev_unregistering_wq); 10361 10362 /* Free network device */ 10363 kobject_put(&dev->dev.kobj); 10364 } 10365 } 10366 10367 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10368 * all the same fields in the same order as net_device_stats, with only 10369 * the type differing, but rtnl_link_stats64 may have additional fields 10370 * at the end for newer counters. 10371 */ 10372 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10373 const struct net_device_stats *netdev_stats) 10374 { 10375 #if BITS_PER_LONG == 64 10376 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10377 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10378 /* zero out counters that only exist in rtnl_link_stats64 */ 10379 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10380 sizeof(*stats64) - sizeof(*netdev_stats)); 10381 #else 10382 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10383 const unsigned long *src = (const unsigned long *)netdev_stats; 10384 u64 *dst = (u64 *)stats64; 10385 10386 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10387 for (i = 0; i < n; i++) 10388 dst[i] = src[i]; 10389 /* zero out counters that only exist in rtnl_link_stats64 */ 10390 memset((char *)stats64 + n * sizeof(u64), 0, 10391 sizeof(*stats64) - n * sizeof(u64)); 10392 #endif 10393 } 10394 EXPORT_SYMBOL(netdev_stats_to_stats64); 10395 10396 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev) 10397 { 10398 struct net_device_core_stats __percpu *p; 10399 10400 p = alloc_percpu_gfp(struct net_device_core_stats, 10401 GFP_ATOMIC | __GFP_NOWARN); 10402 10403 if (p && cmpxchg(&dev->core_stats, NULL, p)) 10404 free_percpu(p); 10405 10406 /* This READ_ONCE() pairs with the cmpxchg() above */ 10407 return READ_ONCE(dev->core_stats); 10408 } 10409 EXPORT_SYMBOL(netdev_core_stats_alloc); 10410 10411 /** 10412 * dev_get_stats - get network device statistics 10413 * @dev: device to get statistics from 10414 * @storage: place to store stats 10415 * 10416 * Get network statistics from device. Return @storage. 10417 * The device driver may provide its own method by setting 10418 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10419 * otherwise the internal statistics structure is used. 10420 */ 10421 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10422 struct rtnl_link_stats64 *storage) 10423 { 10424 const struct net_device_ops *ops = dev->netdev_ops; 10425 const struct net_device_core_stats __percpu *p; 10426 10427 if (ops->ndo_get_stats64) { 10428 memset(storage, 0, sizeof(*storage)); 10429 ops->ndo_get_stats64(dev, storage); 10430 } else if (ops->ndo_get_stats) { 10431 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10432 } else { 10433 netdev_stats_to_stats64(storage, &dev->stats); 10434 } 10435 10436 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */ 10437 p = READ_ONCE(dev->core_stats); 10438 if (p) { 10439 const struct net_device_core_stats *core_stats; 10440 int i; 10441 10442 for_each_possible_cpu(i) { 10443 core_stats = per_cpu_ptr(p, i); 10444 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped); 10445 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped); 10446 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler); 10447 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped); 10448 } 10449 } 10450 return storage; 10451 } 10452 EXPORT_SYMBOL(dev_get_stats); 10453 10454 /** 10455 * dev_fetch_sw_netstats - get per-cpu network device statistics 10456 * @s: place to store stats 10457 * @netstats: per-cpu network stats to read from 10458 * 10459 * Read per-cpu network statistics and populate the related fields in @s. 10460 */ 10461 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10462 const struct pcpu_sw_netstats __percpu *netstats) 10463 { 10464 int cpu; 10465 10466 for_each_possible_cpu(cpu) { 10467 const struct pcpu_sw_netstats *stats; 10468 struct pcpu_sw_netstats tmp; 10469 unsigned int start; 10470 10471 stats = per_cpu_ptr(netstats, cpu); 10472 do { 10473 start = u64_stats_fetch_begin_irq(&stats->syncp); 10474 tmp.rx_packets = stats->rx_packets; 10475 tmp.rx_bytes = stats->rx_bytes; 10476 tmp.tx_packets = stats->tx_packets; 10477 tmp.tx_bytes = stats->tx_bytes; 10478 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10479 10480 s->rx_packets += tmp.rx_packets; 10481 s->rx_bytes += tmp.rx_bytes; 10482 s->tx_packets += tmp.tx_packets; 10483 s->tx_bytes += tmp.tx_bytes; 10484 } 10485 } 10486 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10487 10488 /** 10489 * dev_get_tstats64 - ndo_get_stats64 implementation 10490 * @dev: device to get statistics from 10491 * @s: place to store stats 10492 * 10493 * Populate @s from dev->stats and dev->tstats. Can be used as 10494 * ndo_get_stats64() callback. 10495 */ 10496 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10497 { 10498 netdev_stats_to_stats64(s, &dev->stats); 10499 dev_fetch_sw_netstats(s, dev->tstats); 10500 } 10501 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10502 10503 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10504 { 10505 struct netdev_queue *queue = dev_ingress_queue(dev); 10506 10507 #ifdef CONFIG_NET_CLS_ACT 10508 if (queue) 10509 return queue; 10510 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10511 if (!queue) 10512 return NULL; 10513 netdev_init_one_queue(dev, queue, NULL); 10514 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10515 queue->qdisc_sleeping = &noop_qdisc; 10516 rcu_assign_pointer(dev->ingress_queue, queue); 10517 #endif 10518 return queue; 10519 } 10520 10521 static const struct ethtool_ops default_ethtool_ops; 10522 10523 void netdev_set_default_ethtool_ops(struct net_device *dev, 10524 const struct ethtool_ops *ops) 10525 { 10526 if (dev->ethtool_ops == &default_ethtool_ops) 10527 dev->ethtool_ops = ops; 10528 } 10529 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10530 10531 void netdev_freemem(struct net_device *dev) 10532 { 10533 char *addr = (char *)dev - dev->padded; 10534 10535 kvfree(addr); 10536 } 10537 10538 /** 10539 * alloc_netdev_mqs - allocate network device 10540 * @sizeof_priv: size of private data to allocate space for 10541 * @name: device name format string 10542 * @name_assign_type: origin of device name 10543 * @setup: callback to initialize device 10544 * @txqs: the number of TX subqueues to allocate 10545 * @rxqs: the number of RX subqueues to allocate 10546 * 10547 * Allocates a struct net_device with private data area for driver use 10548 * and performs basic initialization. Also allocates subqueue structs 10549 * for each queue on the device. 10550 */ 10551 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10552 unsigned char name_assign_type, 10553 void (*setup)(struct net_device *), 10554 unsigned int txqs, unsigned int rxqs) 10555 { 10556 struct net_device *dev; 10557 unsigned int alloc_size; 10558 struct net_device *p; 10559 10560 BUG_ON(strlen(name) >= sizeof(dev->name)); 10561 10562 if (txqs < 1) { 10563 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10564 return NULL; 10565 } 10566 10567 if (rxqs < 1) { 10568 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10569 return NULL; 10570 } 10571 10572 alloc_size = sizeof(struct net_device); 10573 if (sizeof_priv) { 10574 /* ensure 32-byte alignment of private area */ 10575 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10576 alloc_size += sizeof_priv; 10577 } 10578 /* ensure 32-byte alignment of whole construct */ 10579 alloc_size += NETDEV_ALIGN - 1; 10580 10581 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL); 10582 if (!p) 10583 return NULL; 10584 10585 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10586 dev->padded = (char *)dev - (char *)p; 10587 10588 ref_tracker_dir_init(&dev->refcnt_tracker, 128); 10589 #ifdef CONFIG_PCPU_DEV_REFCNT 10590 dev->pcpu_refcnt = alloc_percpu(int); 10591 if (!dev->pcpu_refcnt) 10592 goto free_dev; 10593 __dev_hold(dev); 10594 #else 10595 refcount_set(&dev->dev_refcnt, 1); 10596 #endif 10597 10598 if (dev_addr_init(dev)) 10599 goto free_pcpu; 10600 10601 dev_mc_init(dev); 10602 dev_uc_init(dev); 10603 10604 dev_net_set(dev, &init_net); 10605 10606 dev->gso_max_size = GSO_MAX_SIZE; 10607 dev->gso_max_segs = GSO_MAX_SEGS; 10608 dev->gro_max_size = GRO_MAX_SIZE; 10609 dev->tso_max_size = TSO_LEGACY_MAX_SIZE; 10610 dev->tso_max_segs = TSO_MAX_SEGS; 10611 dev->upper_level = 1; 10612 dev->lower_level = 1; 10613 #ifdef CONFIG_LOCKDEP 10614 dev->nested_level = 0; 10615 INIT_LIST_HEAD(&dev->unlink_list); 10616 #endif 10617 10618 INIT_LIST_HEAD(&dev->napi_list); 10619 INIT_LIST_HEAD(&dev->unreg_list); 10620 INIT_LIST_HEAD(&dev->close_list); 10621 INIT_LIST_HEAD(&dev->link_watch_list); 10622 INIT_LIST_HEAD(&dev->adj_list.upper); 10623 INIT_LIST_HEAD(&dev->adj_list.lower); 10624 INIT_LIST_HEAD(&dev->ptype_all); 10625 INIT_LIST_HEAD(&dev->ptype_specific); 10626 INIT_LIST_HEAD(&dev->net_notifier_list); 10627 #ifdef CONFIG_NET_SCHED 10628 hash_init(dev->qdisc_hash); 10629 #endif 10630 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10631 setup(dev); 10632 10633 if (!dev->tx_queue_len) { 10634 dev->priv_flags |= IFF_NO_QUEUE; 10635 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10636 } 10637 10638 dev->num_tx_queues = txqs; 10639 dev->real_num_tx_queues = txqs; 10640 if (netif_alloc_netdev_queues(dev)) 10641 goto free_all; 10642 10643 dev->num_rx_queues = rxqs; 10644 dev->real_num_rx_queues = rxqs; 10645 if (netif_alloc_rx_queues(dev)) 10646 goto free_all; 10647 10648 strcpy(dev->name, name); 10649 dev->name_assign_type = name_assign_type; 10650 dev->group = INIT_NETDEV_GROUP; 10651 if (!dev->ethtool_ops) 10652 dev->ethtool_ops = &default_ethtool_ops; 10653 10654 nf_hook_netdev_init(dev); 10655 10656 return dev; 10657 10658 free_all: 10659 free_netdev(dev); 10660 return NULL; 10661 10662 free_pcpu: 10663 #ifdef CONFIG_PCPU_DEV_REFCNT 10664 free_percpu(dev->pcpu_refcnt); 10665 free_dev: 10666 #endif 10667 netdev_freemem(dev); 10668 return NULL; 10669 } 10670 EXPORT_SYMBOL(alloc_netdev_mqs); 10671 10672 /** 10673 * free_netdev - free network device 10674 * @dev: device 10675 * 10676 * This function does the last stage of destroying an allocated device 10677 * interface. The reference to the device object is released. If this 10678 * is the last reference then it will be freed.Must be called in process 10679 * context. 10680 */ 10681 void free_netdev(struct net_device *dev) 10682 { 10683 struct napi_struct *p, *n; 10684 10685 might_sleep(); 10686 10687 /* When called immediately after register_netdevice() failed the unwind 10688 * handling may still be dismantling the device. Handle that case by 10689 * deferring the free. 10690 */ 10691 if (dev->reg_state == NETREG_UNREGISTERING) { 10692 ASSERT_RTNL(); 10693 dev->needs_free_netdev = true; 10694 return; 10695 } 10696 10697 netif_free_tx_queues(dev); 10698 netif_free_rx_queues(dev); 10699 10700 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10701 10702 /* Flush device addresses */ 10703 dev_addr_flush(dev); 10704 10705 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10706 netif_napi_del(p); 10707 10708 ref_tracker_dir_exit(&dev->refcnt_tracker); 10709 #ifdef CONFIG_PCPU_DEV_REFCNT 10710 free_percpu(dev->pcpu_refcnt); 10711 dev->pcpu_refcnt = NULL; 10712 #endif 10713 free_percpu(dev->core_stats); 10714 dev->core_stats = NULL; 10715 free_percpu(dev->xdp_bulkq); 10716 dev->xdp_bulkq = NULL; 10717 10718 /* Compatibility with error handling in drivers */ 10719 if (dev->reg_state == NETREG_UNINITIALIZED) { 10720 netdev_freemem(dev); 10721 return; 10722 } 10723 10724 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10725 dev->reg_state = NETREG_RELEASED; 10726 10727 /* will free via device release */ 10728 put_device(&dev->dev); 10729 } 10730 EXPORT_SYMBOL(free_netdev); 10731 10732 /** 10733 * synchronize_net - Synchronize with packet receive processing 10734 * 10735 * Wait for packets currently being received to be done. 10736 * Does not block later packets from starting. 10737 */ 10738 void synchronize_net(void) 10739 { 10740 might_sleep(); 10741 if (rtnl_is_locked()) 10742 synchronize_rcu_expedited(); 10743 else 10744 synchronize_rcu(); 10745 } 10746 EXPORT_SYMBOL(synchronize_net); 10747 10748 /** 10749 * unregister_netdevice_queue - remove device from the kernel 10750 * @dev: device 10751 * @head: list 10752 * 10753 * This function shuts down a device interface and removes it 10754 * from the kernel tables. 10755 * If head not NULL, device is queued to be unregistered later. 10756 * 10757 * Callers must hold the rtnl semaphore. You may want 10758 * unregister_netdev() instead of this. 10759 */ 10760 10761 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10762 { 10763 ASSERT_RTNL(); 10764 10765 if (head) { 10766 list_move_tail(&dev->unreg_list, head); 10767 } else { 10768 LIST_HEAD(single); 10769 10770 list_add(&dev->unreg_list, &single); 10771 unregister_netdevice_many(&single); 10772 } 10773 } 10774 EXPORT_SYMBOL(unregister_netdevice_queue); 10775 10776 /** 10777 * unregister_netdevice_many - unregister many devices 10778 * @head: list of devices 10779 * 10780 * Note: As most callers use a stack allocated list_head, 10781 * we force a list_del() to make sure stack wont be corrupted later. 10782 */ 10783 void unregister_netdevice_many(struct list_head *head) 10784 { 10785 struct net_device *dev, *tmp; 10786 LIST_HEAD(close_head); 10787 10788 BUG_ON(dev_boot_phase); 10789 ASSERT_RTNL(); 10790 10791 if (list_empty(head)) 10792 return; 10793 10794 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 10795 /* Some devices call without registering 10796 * for initialization unwind. Remove those 10797 * devices and proceed with the remaining. 10798 */ 10799 if (dev->reg_state == NETREG_UNINITIALIZED) { 10800 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 10801 dev->name, dev); 10802 10803 WARN_ON(1); 10804 list_del(&dev->unreg_list); 10805 continue; 10806 } 10807 dev->dismantle = true; 10808 BUG_ON(dev->reg_state != NETREG_REGISTERED); 10809 } 10810 10811 /* If device is running, close it first. */ 10812 list_for_each_entry(dev, head, unreg_list) 10813 list_add_tail(&dev->close_list, &close_head); 10814 dev_close_many(&close_head, true); 10815 10816 list_for_each_entry(dev, head, unreg_list) { 10817 /* And unlink it from device chain. */ 10818 unlist_netdevice(dev); 10819 10820 dev->reg_state = NETREG_UNREGISTERING; 10821 } 10822 flush_all_backlogs(); 10823 10824 synchronize_net(); 10825 10826 list_for_each_entry(dev, head, unreg_list) { 10827 struct sk_buff *skb = NULL; 10828 10829 /* Shutdown queueing discipline. */ 10830 dev_shutdown(dev); 10831 10832 dev_xdp_uninstall(dev); 10833 10834 netdev_offload_xstats_disable_all(dev); 10835 10836 /* Notify protocols, that we are about to destroy 10837 * this device. They should clean all the things. 10838 */ 10839 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10840 10841 if (!dev->rtnl_link_ops || 10842 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10843 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 10844 GFP_KERNEL, NULL, 0); 10845 10846 /* 10847 * Flush the unicast and multicast chains 10848 */ 10849 dev_uc_flush(dev); 10850 dev_mc_flush(dev); 10851 10852 netdev_name_node_alt_flush(dev); 10853 netdev_name_node_free(dev->name_node); 10854 10855 if (dev->netdev_ops->ndo_uninit) 10856 dev->netdev_ops->ndo_uninit(dev); 10857 10858 if (skb) 10859 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 10860 10861 /* Notifier chain MUST detach us all upper devices. */ 10862 WARN_ON(netdev_has_any_upper_dev(dev)); 10863 WARN_ON(netdev_has_any_lower_dev(dev)); 10864 10865 /* Remove entries from kobject tree */ 10866 netdev_unregister_kobject(dev); 10867 #ifdef CONFIG_XPS 10868 /* Remove XPS queueing entries */ 10869 netif_reset_xps_queues_gt(dev, 0); 10870 #endif 10871 } 10872 10873 synchronize_net(); 10874 10875 list_for_each_entry(dev, head, unreg_list) { 10876 dev_put_track(dev, &dev->dev_registered_tracker); 10877 net_set_todo(dev); 10878 } 10879 10880 list_del(head); 10881 } 10882 EXPORT_SYMBOL(unregister_netdevice_many); 10883 10884 /** 10885 * unregister_netdev - remove device from the kernel 10886 * @dev: device 10887 * 10888 * This function shuts down a device interface and removes it 10889 * from the kernel tables. 10890 * 10891 * This is just a wrapper for unregister_netdevice that takes 10892 * the rtnl semaphore. In general you want to use this and not 10893 * unregister_netdevice. 10894 */ 10895 void unregister_netdev(struct net_device *dev) 10896 { 10897 rtnl_lock(); 10898 unregister_netdevice(dev); 10899 rtnl_unlock(); 10900 } 10901 EXPORT_SYMBOL(unregister_netdev); 10902 10903 /** 10904 * __dev_change_net_namespace - move device to different nethost namespace 10905 * @dev: device 10906 * @net: network namespace 10907 * @pat: If not NULL name pattern to try if the current device name 10908 * is already taken in the destination network namespace. 10909 * @new_ifindex: If not zero, specifies device index in the target 10910 * namespace. 10911 * 10912 * This function shuts down a device interface and moves it 10913 * to a new network namespace. On success 0 is returned, on 10914 * a failure a netagive errno code is returned. 10915 * 10916 * Callers must hold the rtnl semaphore. 10917 */ 10918 10919 int __dev_change_net_namespace(struct net_device *dev, struct net *net, 10920 const char *pat, int new_ifindex) 10921 { 10922 struct net *net_old = dev_net(dev); 10923 int err, new_nsid; 10924 10925 ASSERT_RTNL(); 10926 10927 /* Don't allow namespace local devices to be moved. */ 10928 err = -EINVAL; 10929 if (dev->features & NETIF_F_NETNS_LOCAL) 10930 goto out; 10931 10932 /* Ensure the device has been registrered */ 10933 if (dev->reg_state != NETREG_REGISTERED) 10934 goto out; 10935 10936 /* Get out if there is nothing todo */ 10937 err = 0; 10938 if (net_eq(net_old, net)) 10939 goto out; 10940 10941 /* Pick the destination device name, and ensure 10942 * we can use it in the destination network namespace. 10943 */ 10944 err = -EEXIST; 10945 if (netdev_name_in_use(net, dev->name)) { 10946 /* We get here if we can't use the current device name */ 10947 if (!pat) 10948 goto out; 10949 err = dev_get_valid_name(net, dev, pat); 10950 if (err < 0) 10951 goto out; 10952 } 10953 10954 /* Check that new_ifindex isn't used yet. */ 10955 err = -EBUSY; 10956 if (new_ifindex && __dev_get_by_index(net, new_ifindex)) 10957 goto out; 10958 10959 /* 10960 * And now a mini version of register_netdevice unregister_netdevice. 10961 */ 10962 10963 /* If device is running close it first. */ 10964 dev_close(dev); 10965 10966 /* And unlink it from device chain */ 10967 unlist_netdevice(dev); 10968 10969 synchronize_net(); 10970 10971 /* Shutdown queueing discipline. */ 10972 dev_shutdown(dev); 10973 10974 /* Notify protocols, that we are about to destroy 10975 * this device. They should clean all the things. 10976 * 10977 * Note that dev->reg_state stays at NETREG_REGISTERED. 10978 * This is wanted because this way 8021q and macvlan know 10979 * the device is just moving and can keep their slaves up. 10980 */ 10981 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10982 rcu_barrier(); 10983 10984 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10985 /* If there is an ifindex conflict assign a new one */ 10986 if (!new_ifindex) { 10987 if (__dev_get_by_index(net, dev->ifindex)) 10988 new_ifindex = dev_new_index(net); 10989 else 10990 new_ifindex = dev->ifindex; 10991 } 10992 10993 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10994 new_ifindex); 10995 10996 /* 10997 * Flush the unicast and multicast chains 10998 */ 10999 dev_uc_flush(dev); 11000 dev_mc_flush(dev); 11001 11002 /* Send a netdev-removed uevent to the old namespace */ 11003 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 11004 netdev_adjacent_del_links(dev); 11005 11006 /* Move per-net netdevice notifiers that are following the netdevice */ 11007 move_netdevice_notifiers_dev_net(dev, net); 11008 11009 /* Actually switch the network namespace */ 11010 dev_net_set(dev, net); 11011 dev->ifindex = new_ifindex; 11012 11013 /* Send a netdev-add uevent to the new namespace */ 11014 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 11015 netdev_adjacent_add_links(dev); 11016 11017 /* Fixup kobjects */ 11018 err = device_rename(&dev->dev, dev->name); 11019 WARN_ON(err); 11020 11021 /* Adapt owner in case owning user namespace of target network 11022 * namespace is different from the original one. 11023 */ 11024 err = netdev_change_owner(dev, net_old, net); 11025 WARN_ON(err); 11026 11027 /* Add the device back in the hashes */ 11028 list_netdevice(dev); 11029 11030 /* Notify protocols, that a new device appeared. */ 11031 call_netdevice_notifiers(NETDEV_REGISTER, dev); 11032 11033 /* 11034 * Prevent userspace races by waiting until the network 11035 * device is fully setup before sending notifications. 11036 */ 11037 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 11038 11039 synchronize_net(); 11040 err = 0; 11041 out: 11042 return err; 11043 } 11044 EXPORT_SYMBOL_GPL(__dev_change_net_namespace); 11045 11046 static int dev_cpu_dead(unsigned int oldcpu) 11047 { 11048 struct sk_buff **list_skb; 11049 struct sk_buff *skb; 11050 unsigned int cpu; 11051 struct softnet_data *sd, *oldsd, *remsd = NULL; 11052 11053 local_irq_disable(); 11054 cpu = smp_processor_id(); 11055 sd = &per_cpu(softnet_data, cpu); 11056 oldsd = &per_cpu(softnet_data, oldcpu); 11057 11058 /* Find end of our completion_queue. */ 11059 list_skb = &sd->completion_queue; 11060 while (*list_skb) 11061 list_skb = &(*list_skb)->next; 11062 /* Append completion queue from offline CPU. */ 11063 *list_skb = oldsd->completion_queue; 11064 oldsd->completion_queue = NULL; 11065 11066 /* Append output queue from offline CPU. */ 11067 if (oldsd->output_queue) { 11068 *sd->output_queue_tailp = oldsd->output_queue; 11069 sd->output_queue_tailp = oldsd->output_queue_tailp; 11070 oldsd->output_queue = NULL; 11071 oldsd->output_queue_tailp = &oldsd->output_queue; 11072 } 11073 /* Append NAPI poll list from offline CPU, with one exception : 11074 * process_backlog() must be called by cpu owning percpu backlog. 11075 * We properly handle process_queue & input_pkt_queue later. 11076 */ 11077 while (!list_empty(&oldsd->poll_list)) { 11078 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 11079 struct napi_struct, 11080 poll_list); 11081 11082 list_del_init(&napi->poll_list); 11083 if (napi->poll == process_backlog) 11084 napi->state = 0; 11085 else 11086 ____napi_schedule(sd, napi); 11087 } 11088 11089 raise_softirq_irqoff(NET_TX_SOFTIRQ); 11090 local_irq_enable(); 11091 11092 #ifdef CONFIG_RPS 11093 remsd = oldsd->rps_ipi_list; 11094 oldsd->rps_ipi_list = NULL; 11095 #endif 11096 /* send out pending IPI's on offline CPU */ 11097 net_rps_send_ipi(remsd); 11098 11099 /* Process offline CPU's input_pkt_queue */ 11100 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 11101 netif_rx(skb); 11102 input_queue_head_incr(oldsd); 11103 } 11104 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 11105 netif_rx(skb); 11106 input_queue_head_incr(oldsd); 11107 } 11108 11109 return 0; 11110 } 11111 11112 /** 11113 * netdev_increment_features - increment feature set by one 11114 * @all: current feature set 11115 * @one: new feature set 11116 * @mask: mask feature set 11117 * 11118 * Computes a new feature set after adding a device with feature set 11119 * @one to the master device with current feature set @all. Will not 11120 * enable anything that is off in @mask. Returns the new feature set. 11121 */ 11122 netdev_features_t netdev_increment_features(netdev_features_t all, 11123 netdev_features_t one, netdev_features_t mask) 11124 { 11125 if (mask & NETIF_F_HW_CSUM) 11126 mask |= NETIF_F_CSUM_MASK; 11127 mask |= NETIF_F_VLAN_CHALLENGED; 11128 11129 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 11130 all &= one | ~NETIF_F_ALL_FOR_ALL; 11131 11132 /* If one device supports hw checksumming, set for all. */ 11133 if (all & NETIF_F_HW_CSUM) 11134 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 11135 11136 return all; 11137 } 11138 EXPORT_SYMBOL(netdev_increment_features); 11139 11140 static struct hlist_head * __net_init netdev_create_hash(void) 11141 { 11142 int i; 11143 struct hlist_head *hash; 11144 11145 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 11146 if (hash != NULL) 11147 for (i = 0; i < NETDEV_HASHENTRIES; i++) 11148 INIT_HLIST_HEAD(&hash[i]); 11149 11150 return hash; 11151 } 11152 11153 /* Initialize per network namespace state */ 11154 static int __net_init netdev_init(struct net *net) 11155 { 11156 BUILD_BUG_ON(GRO_HASH_BUCKETS > 11157 8 * sizeof_field(struct napi_struct, gro_bitmask)); 11158 11159 INIT_LIST_HEAD(&net->dev_base_head); 11160 11161 net->dev_name_head = netdev_create_hash(); 11162 if (net->dev_name_head == NULL) 11163 goto err_name; 11164 11165 net->dev_index_head = netdev_create_hash(); 11166 if (net->dev_index_head == NULL) 11167 goto err_idx; 11168 11169 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 11170 11171 return 0; 11172 11173 err_idx: 11174 kfree(net->dev_name_head); 11175 err_name: 11176 return -ENOMEM; 11177 } 11178 11179 /** 11180 * netdev_drivername - network driver for the device 11181 * @dev: network device 11182 * 11183 * Determine network driver for device. 11184 */ 11185 const char *netdev_drivername(const struct net_device *dev) 11186 { 11187 const struct device_driver *driver; 11188 const struct device *parent; 11189 const char *empty = ""; 11190 11191 parent = dev->dev.parent; 11192 if (!parent) 11193 return empty; 11194 11195 driver = parent->driver; 11196 if (driver && driver->name) 11197 return driver->name; 11198 return empty; 11199 } 11200 11201 static void __netdev_printk(const char *level, const struct net_device *dev, 11202 struct va_format *vaf) 11203 { 11204 if (dev && dev->dev.parent) { 11205 dev_printk_emit(level[1] - '0', 11206 dev->dev.parent, 11207 "%s %s %s%s: %pV", 11208 dev_driver_string(dev->dev.parent), 11209 dev_name(dev->dev.parent), 11210 netdev_name(dev), netdev_reg_state(dev), 11211 vaf); 11212 } else if (dev) { 11213 printk("%s%s%s: %pV", 11214 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11215 } else { 11216 printk("%s(NULL net_device): %pV", level, vaf); 11217 } 11218 } 11219 11220 void netdev_printk(const char *level, const struct net_device *dev, 11221 const char *format, ...) 11222 { 11223 struct va_format vaf; 11224 va_list args; 11225 11226 va_start(args, format); 11227 11228 vaf.fmt = format; 11229 vaf.va = &args; 11230 11231 __netdev_printk(level, dev, &vaf); 11232 11233 va_end(args); 11234 } 11235 EXPORT_SYMBOL(netdev_printk); 11236 11237 #define define_netdev_printk_level(func, level) \ 11238 void func(const struct net_device *dev, const char *fmt, ...) \ 11239 { \ 11240 struct va_format vaf; \ 11241 va_list args; \ 11242 \ 11243 va_start(args, fmt); \ 11244 \ 11245 vaf.fmt = fmt; \ 11246 vaf.va = &args; \ 11247 \ 11248 __netdev_printk(level, dev, &vaf); \ 11249 \ 11250 va_end(args); \ 11251 } \ 11252 EXPORT_SYMBOL(func); 11253 11254 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11255 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11256 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11257 define_netdev_printk_level(netdev_err, KERN_ERR); 11258 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11259 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11260 define_netdev_printk_level(netdev_info, KERN_INFO); 11261 11262 static void __net_exit netdev_exit(struct net *net) 11263 { 11264 kfree(net->dev_name_head); 11265 kfree(net->dev_index_head); 11266 if (net != &init_net) 11267 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11268 } 11269 11270 static struct pernet_operations __net_initdata netdev_net_ops = { 11271 .init = netdev_init, 11272 .exit = netdev_exit, 11273 }; 11274 11275 static void __net_exit default_device_exit_net(struct net *net) 11276 { 11277 struct net_device *dev, *aux; 11278 /* 11279 * Push all migratable network devices back to the 11280 * initial network namespace 11281 */ 11282 ASSERT_RTNL(); 11283 for_each_netdev_safe(net, dev, aux) { 11284 int err; 11285 char fb_name[IFNAMSIZ]; 11286 11287 /* Ignore unmoveable devices (i.e. loopback) */ 11288 if (dev->features & NETIF_F_NETNS_LOCAL) 11289 continue; 11290 11291 /* Leave virtual devices for the generic cleanup */ 11292 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund) 11293 continue; 11294 11295 /* Push remaining network devices to init_net */ 11296 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11297 if (netdev_name_in_use(&init_net, fb_name)) 11298 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11299 err = dev_change_net_namespace(dev, &init_net, fb_name); 11300 if (err) { 11301 pr_emerg("%s: failed to move %s to init_net: %d\n", 11302 __func__, dev->name, err); 11303 BUG(); 11304 } 11305 } 11306 } 11307 11308 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11309 { 11310 /* At exit all network devices most be removed from a network 11311 * namespace. Do this in the reverse order of registration. 11312 * Do this across as many network namespaces as possible to 11313 * improve batching efficiency. 11314 */ 11315 struct net_device *dev; 11316 struct net *net; 11317 LIST_HEAD(dev_kill_list); 11318 11319 rtnl_lock(); 11320 list_for_each_entry(net, net_list, exit_list) { 11321 default_device_exit_net(net); 11322 cond_resched(); 11323 } 11324 11325 list_for_each_entry(net, net_list, exit_list) { 11326 for_each_netdev_reverse(net, dev) { 11327 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11328 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11329 else 11330 unregister_netdevice_queue(dev, &dev_kill_list); 11331 } 11332 } 11333 unregister_netdevice_many(&dev_kill_list); 11334 rtnl_unlock(); 11335 } 11336 11337 static struct pernet_operations __net_initdata default_device_ops = { 11338 .exit_batch = default_device_exit_batch, 11339 }; 11340 11341 /* 11342 * Initialize the DEV module. At boot time this walks the device list and 11343 * unhooks any devices that fail to initialise (normally hardware not 11344 * present) and leaves us with a valid list of present and active devices. 11345 * 11346 */ 11347 11348 /* 11349 * This is called single threaded during boot, so no need 11350 * to take the rtnl semaphore. 11351 */ 11352 static int __init net_dev_init(void) 11353 { 11354 int i, rc = -ENOMEM; 11355 11356 BUG_ON(!dev_boot_phase); 11357 11358 if (dev_proc_init()) 11359 goto out; 11360 11361 if (netdev_kobject_init()) 11362 goto out; 11363 11364 INIT_LIST_HEAD(&ptype_all); 11365 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11366 INIT_LIST_HEAD(&ptype_base[i]); 11367 11368 if (register_pernet_subsys(&netdev_net_ops)) 11369 goto out; 11370 11371 /* 11372 * Initialise the packet receive queues. 11373 */ 11374 11375 for_each_possible_cpu(i) { 11376 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11377 struct softnet_data *sd = &per_cpu(softnet_data, i); 11378 11379 INIT_WORK(flush, flush_backlog); 11380 11381 skb_queue_head_init(&sd->input_pkt_queue); 11382 skb_queue_head_init(&sd->process_queue); 11383 #ifdef CONFIG_XFRM_OFFLOAD 11384 skb_queue_head_init(&sd->xfrm_backlog); 11385 #endif 11386 INIT_LIST_HEAD(&sd->poll_list); 11387 sd->output_queue_tailp = &sd->output_queue; 11388 #ifdef CONFIG_RPS 11389 INIT_CSD(&sd->csd, rps_trigger_softirq, sd); 11390 sd->cpu = i; 11391 #endif 11392 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, NULL); 11393 spin_lock_init(&sd->defer_lock); 11394 11395 init_gro_hash(&sd->backlog); 11396 sd->backlog.poll = process_backlog; 11397 sd->backlog.weight = weight_p; 11398 } 11399 11400 dev_boot_phase = 0; 11401 11402 /* The loopback device is special if any other network devices 11403 * is present in a network namespace the loopback device must 11404 * be present. Since we now dynamically allocate and free the 11405 * loopback device ensure this invariant is maintained by 11406 * keeping the loopback device as the first device on the 11407 * list of network devices. Ensuring the loopback devices 11408 * is the first device that appears and the last network device 11409 * that disappears. 11410 */ 11411 if (register_pernet_device(&loopback_net_ops)) 11412 goto out; 11413 11414 if (register_pernet_device(&default_device_ops)) 11415 goto out; 11416 11417 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11418 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11419 11420 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11421 NULL, dev_cpu_dead); 11422 WARN_ON(rc < 0); 11423 rc = 0; 11424 out: 11425 return rc; 11426 } 11427 11428 subsys_initcall(net_dev_init); 11429