1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Mark Evans, <[email protected]> 13 * 14 * Additional Authors: 15 * Florian la Roche <[email protected]> 16 * Alan Cox <[email protected]> 17 * David Hinds <[email protected]> 18 * Alexey Kuznetsov <[email protected]> 19 * Adam Sulmicki <[email protected]> 20 * Pekka Riikonen <[email protected]> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <linux/uaccess.h> 76 #include <linux/bitops.h> 77 #include <linux/capability.h> 78 #include <linux/cpu.h> 79 #include <linux/types.h> 80 #include <linux/kernel.h> 81 #include <linux/hash.h> 82 #include <linux/slab.h> 83 #include <linux/sched.h> 84 #include <linux/sched/mm.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <linux/bpf.h> 99 #include <linux/bpf_trace.h> 100 #include <net/net_namespace.h> 101 #include <net/sock.h> 102 #include <net/busy_poll.h> 103 #include <linux/rtnetlink.h> 104 #include <linux/stat.h> 105 #include <net/dst.h> 106 #include <net/dst_metadata.h> 107 #include <net/pkt_sched.h> 108 #include <net/pkt_cls.h> 109 #include <net/checksum.h> 110 #include <net/xfrm.h> 111 #include <linux/highmem.h> 112 #include <linux/init.h> 113 #include <linux/module.h> 114 #include <linux/netpoll.h> 115 #include <linux/rcupdate.h> 116 #include <linux/delay.h> 117 #include <net/iw_handler.h> 118 #include <asm/current.h> 119 #include <linux/audit.h> 120 #include <linux/dmaengine.h> 121 #include <linux/err.h> 122 #include <linux/ctype.h> 123 #include <linux/if_arp.h> 124 #include <linux/if_vlan.h> 125 #include <linux/ip.h> 126 #include <net/ip.h> 127 #include <net/mpls.h> 128 #include <linux/ipv6.h> 129 #include <linux/in.h> 130 #include <linux/jhash.h> 131 #include <linux/random.h> 132 #include <trace/events/napi.h> 133 #include <trace/events/net.h> 134 #include <trace/events/skb.h> 135 #include <linux/pci.h> 136 #include <linux/inetdevice.h> 137 #include <linux/cpu_rmap.h> 138 #include <linux/static_key.h> 139 #include <linux/hashtable.h> 140 #include <linux/vmalloc.h> 141 #include <linux/if_macvlan.h> 142 #include <linux/errqueue.h> 143 #include <linux/hrtimer.h> 144 #include <linux/netfilter_ingress.h> 145 #include <linux/crash_dump.h> 146 #include <linux/sctp.h> 147 #include <net/udp_tunnel.h> 148 #include <linux/net_namespace.h> 149 150 #include "net-sysfs.h" 151 152 /* Instead of increasing this, you should create a hash table. */ 153 #define MAX_GRO_SKBS 8 154 155 /* This should be increased if a protocol with a bigger head is added. */ 156 #define GRO_MAX_HEAD (MAX_HEADER + 128) 157 158 static DEFINE_SPINLOCK(ptype_lock); 159 static DEFINE_SPINLOCK(offload_lock); 160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 161 struct list_head ptype_all __read_mostly; /* Taps */ 162 static struct list_head offload_base __read_mostly; 163 164 static int netif_rx_internal(struct sk_buff *skb); 165 static int call_netdevice_notifiers_info(unsigned long val, 166 struct netdev_notifier_info *info); 167 static struct napi_struct *napi_by_id(unsigned int napi_id); 168 169 /* 170 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 171 * semaphore. 172 * 173 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 174 * 175 * Writers must hold the rtnl semaphore while they loop through the 176 * dev_base_head list, and hold dev_base_lock for writing when they do the 177 * actual updates. This allows pure readers to access the list even 178 * while a writer is preparing to update it. 179 * 180 * To put it another way, dev_base_lock is held for writing only to 181 * protect against pure readers; the rtnl semaphore provides the 182 * protection against other writers. 183 * 184 * See, for example usages, register_netdevice() and 185 * unregister_netdevice(), which must be called with the rtnl 186 * semaphore held. 187 */ 188 DEFINE_RWLOCK(dev_base_lock); 189 EXPORT_SYMBOL(dev_base_lock); 190 191 static DEFINE_MUTEX(ifalias_mutex); 192 193 /* protects napi_hash addition/deletion and napi_gen_id */ 194 static DEFINE_SPINLOCK(napi_hash_lock); 195 196 static unsigned int napi_gen_id = NR_CPUS; 197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 198 199 static seqcount_t devnet_rename_seq; 200 201 static inline void dev_base_seq_inc(struct net *net) 202 { 203 while (++net->dev_base_seq == 0) 204 ; 205 } 206 207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 208 { 209 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 210 211 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 212 } 213 214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 215 { 216 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 217 } 218 219 static inline void rps_lock(struct softnet_data *sd) 220 { 221 #ifdef CONFIG_RPS 222 spin_lock(&sd->input_pkt_queue.lock); 223 #endif 224 } 225 226 static inline void rps_unlock(struct softnet_data *sd) 227 { 228 #ifdef CONFIG_RPS 229 spin_unlock(&sd->input_pkt_queue.lock); 230 #endif 231 } 232 233 /* Device list insertion */ 234 static void list_netdevice(struct net_device *dev) 235 { 236 struct net *net = dev_net(dev); 237 238 ASSERT_RTNL(); 239 240 write_lock_bh(&dev_base_lock); 241 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 242 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 243 hlist_add_head_rcu(&dev->index_hlist, 244 dev_index_hash(net, dev->ifindex)); 245 write_unlock_bh(&dev_base_lock); 246 247 dev_base_seq_inc(net); 248 } 249 250 /* Device list removal 251 * caller must respect a RCU grace period before freeing/reusing dev 252 */ 253 static void unlist_netdevice(struct net_device *dev) 254 { 255 ASSERT_RTNL(); 256 257 /* Unlink dev from the device chain */ 258 write_lock_bh(&dev_base_lock); 259 list_del_rcu(&dev->dev_list); 260 hlist_del_rcu(&dev->name_hlist); 261 hlist_del_rcu(&dev->index_hlist); 262 write_unlock_bh(&dev_base_lock); 263 264 dev_base_seq_inc(dev_net(dev)); 265 } 266 267 /* 268 * Our notifier list 269 */ 270 271 static RAW_NOTIFIER_HEAD(netdev_chain); 272 273 /* 274 * Device drivers call our routines to queue packets here. We empty the 275 * queue in the local softnet handler. 276 */ 277 278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 279 EXPORT_PER_CPU_SYMBOL(softnet_data); 280 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 284 * according to dev->type 285 */ 286 static const unsigned short netdev_lock_type[] = { 287 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 288 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 289 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 290 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 291 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 292 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 293 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 294 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 295 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 296 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 297 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 298 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 299 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 300 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 301 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 302 303 static const char *const netdev_lock_name[] = { 304 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 305 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 306 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 307 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 308 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 309 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 310 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 311 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 312 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 313 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 314 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 315 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 316 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 317 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 318 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 319 320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 322 323 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 324 { 325 int i; 326 327 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 328 if (netdev_lock_type[i] == dev_type) 329 return i; 330 /* the last key is used by default */ 331 return ARRAY_SIZE(netdev_lock_type) - 1; 332 } 333 334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 335 unsigned short dev_type) 336 { 337 int i; 338 339 i = netdev_lock_pos(dev_type); 340 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 345 { 346 int i; 347 348 i = netdev_lock_pos(dev->type); 349 lockdep_set_class_and_name(&dev->addr_list_lock, 350 &netdev_addr_lock_key[i], 351 netdev_lock_name[i]); 352 } 353 #else 354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 355 unsigned short dev_type) 356 { 357 } 358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 359 { 360 } 361 #endif 362 363 /******************************************************************************* 364 * 365 * Protocol management and registration routines 366 * 367 *******************************************************************************/ 368 369 370 /* 371 * Add a protocol ID to the list. Now that the input handler is 372 * smarter we can dispense with all the messy stuff that used to be 373 * here. 374 * 375 * BEWARE!!! Protocol handlers, mangling input packets, 376 * MUST BE last in hash buckets and checking protocol handlers 377 * MUST start from promiscuous ptype_all chain in net_bh. 378 * It is true now, do not change it. 379 * Explanation follows: if protocol handler, mangling packet, will 380 * be the first on list, it is not able to sense, that packet 381 * is cloned and should be copied-on-write, so that it will 382 * change it and subsequent readers will get broken packet. 383 * --ANK (980803) 384 */ 385 386 static inline struct list_head *ptype_head(const struct packet_type *pt) 387 { 388 if (pt->type == htons(ETH_P_ALL)) 389 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 390 else 391 return pt->dev ? &pt->dev->ptype_specific : 392 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 393 } 394 395 /** 396 * dev_add_pack - add packet handler 397 * @pt: packet type declaration 398 * 399 * Add a protocol handler to the networking stack. The passed &packet_type 400 * is linked into kernel lists and may not be freed until it has been 401 * removed from the kernel lists. 402 * 403 * This call does not sleep therefore it can not 404 * guarantee all CPU's that are in middle of receiving packets 405 * will see the new packet type (until the next received packet). 406 */ 407 408 void dev_add_pack(struct packet_type *pt) 409 { 410 struct list_head *head = ptype_head(pt); 411 412 spin_lock(&ptype_lock); 413 list_add_rcu(&pt->list, head); 414 spin_unlock(&ptype_lock); 415 } 416 EXPORT_SYMBOL(dev_add_pack); 417 418 /** 419 * __dev_remove_pack - remove packet handler 420 * @pt: packet type declaration 421 * 422 * Remove a protocol handler that was previously added to the kernel 423 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 424 * from the kernel lists and can be freed or reused once this function 425 * returns. 426 * 427 * The packet type might still be in use by receivers 428 * and must not be freed until after all the CPU's have gone 429 * through a quiescent state. 430 */ 431 void __dev_remove_pack(struct packet_type *pt) 432 { 433 struct list_head *head = ptype_head(pt); 434 struct packet_type *pt1; 435 436 spin_lock(&ptype_lock); 437 438 list_for_each_entry(pt1, head, list) { 439 if (pt == pt1) { 440 list_del_rcu(&pt->list); 441 goto out; 442 } 443 } 444 445 pr_warn("dev_remove_pack: %p not found\n", pt); 446 out: 447 spin_unlock(&ptype_lock); 448 } 449 EXPORT_SYMBOL(__dev_remove_pack); 450 451 /** 452 * dev_remove_pack - remove packet handler 453 * @pt: packet type declaration 454 * 455 * Remove a protocol handler that was previously added to the kernel 456 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 457 * from the kernel lists and can be freed or reused once this function 458 * returns. 459 * 460 * This call sleeps to guarantee that no CPU is looking at the packet 461 * type after return. 462 */ 463 void dev_remove_pack(struct packet_type *pt) 464 { 465 __dev_remove_pack(pt); 466 467 synchronize_net(); 468 } 469 EXPORT_SYMBOL(dev_remove_pack); 470 471 472 /** 473 * dev_add_offload - register offload handlers 474 * @po: protocol offload declaration 475 * 476 * Add protocol offload handlers to the networking stack. The passed 477 * &proto_offload is linked into kernel lists and may not be freed until 478 * it has been removed from the kernel lists. 479 * 480 * This call does not sleep therefore it can not 481 * guarantee all CPU's that are in middle of receiving packets 482 * will see the new offload handlers (until the next received packet). 483 */ 484 void dev_add_offload(struct packet_offload *po) 485 { 486 struct packet_offload *elem; 487 488 spin_lock(&offload_lock); 489 list_for_each_entry(elem, &offload_base, list) { 490 if (po->priority < elem->priority) 491 break; 492 } 493 list_add_rcu(&po->list, elem->list.prev); 494 spin_unlock(&offload_lock); 495 } 496 EXPORT_SYMBOL(dev_add_offload); 497 498 /** 499 * __dev_remove_offload - remove offload handler 500 * @po: packet offload declaration 501 * 502 * Remove a protocol offload handler that was previously added to the 503 * kernel offload handlers by dev_add_offload(). The passed &offload_type 504 * is removed from the kernel lists and can be freed or reused once this 505 * function returns. 506 * 507 * The packet type might still be in use by receivers 508 * and must not be freed until after all the CPU's have gone 509 * through a quiescent state. 510 */ 511 static void __dev_remove_offload(struct packet_offload *po) 512 { 513 struct list_head *head = &offload_base; 514 struct packet_offload *po1; 515 516 spin_lock(&offload_lock); 517 518 list_for_each_entry(po1, head, list) { 519 if (po == po1) { 520 list_del_rcu(&po->list); 521 goto out; 522 } 523 } 524 525 pr_warn("dev_remove_offload: %p not found\n", po); 526 out: 527 spin_unlock(&offload_lock); 528 } 529 530 /** 531 * dev_remove_offload - remove packet offload handler 532 * @po: packet offload declaration 533 * 534 * Remove a packet offload handler that was previously added to the kernel 535 * offload handlers by dev_add_offload(). The passed &offload_type is 536 * removed from the kernel lists and can be freed or reused once this 537 * function returns. 538 * 539 * This call sleeps to guarantee that no CPU is looking at the packet 540 * type after return. 541 */ 542 void dev_remove_offload(struct packet_offload *po) 543 { 544 __dev_remove_offload(po); 545 546 synchronize_net(); 547 } 548 EXPORT_SYMBOL(dev_remove_offload); 549 550 /****************************************************************************** 551 * 552 * Device Boot-time Settings Routines 553 * 554 ******************************************************************************/ 555 556 /* Boot time configuration table */ 557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 558 559 /** 560 * netdev_boot_setup_add - add new setup entry 561 * @name: name of the device 562 * @map: configured settings for the device 563 * 564 * Adds new setup entry to the dev_boot_setup list. The function 565 * returns 0 on error and 1 on success. This is a generic routine to 566 * all netdevices. 567 */ 568 static int netdev_boot_setup_add(char *name, struct ifmap *map) 569 { 570 struct netdev_boot_setup *s; 571 int i; 572 573 s = dev_boot_setup; 574 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 575 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 576 memset(s[i].name, 0, sizeof(s[i].name)); 577 strlcpy(s[i].name, name, IFNAMSIZ); 578 memcpy(&s[i].map, map, sizeof(s[i].map)); 579 break; 580 } 581 } 582 583 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 584 } 585 586 /** 587 * netdev_boot_setup_check - check boot time settings 588 * @dev: the netdevice 589 * 590 * Check boot time settings for the device. 591 * The found settings are set for the device to be used 592 * later in the device probing. 593 * Returns 0 if no settings found, 1 if they are. 594 */ 595 int netdev_boot_setup_check(struct net_device *dev) 596 { 597 struct netdev_boot_setup *s = dev_boot_setup; 598 int i; 599 600 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 601 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 602 !strcmp(dev->name, s[i].name)) { 603 dev->irq = s[i].map.irq; 604 dev->base_addr = s[i].map.base_addr; 605 dev->mem_start = s[i].map.mem_start; 606 dev->mem_end = s[i].map.mem_end; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 EXPORT_SYMBOL(netdev_boot_setup_check); 613 614 615 /** 616 * netdev_boot_base - get address from boot time settings 617 * @prefix: prefix for network device 618 * @unit: id for network device 619 * 620 * Check boot time settings for the base address of device. 621 * The found settings are set for the device to be used 622 * later in the device probing. 623 * Returns 0 if no settings found. 624 */ 625 unsigned long netdev_boot_base(const char *prefix, int unit) 626 { 627 const struct netdev_boot_setup *s = dev_boot_setup; 628 char name[IFNAMSIZ]; 629 int i; 630 631 sprintf(name, "%s%d", prefix, unit); 632 633 /* 634 * If device already registered then return base of 1 635 * to indicate not to probe for this interface 636 */ 637 if (__dev_get_by_name(&init_net, name)) 638 return 1; 639 640 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 641 if (!strcmp(name, s[i].name)) 642 return s[i].map.base_addr; 643 return 0; 644 } 645 646 /* 647 * Saves at boot time configured settings for any netdevice. 648 */ 649 int __init netdev_boot_setup(char *str) 650 { 651 int ints[5]; 652 struct ifmap map; 653 654 str = get_options(str, ARRAY_SIZE(ints), ints); 655 if (!str || !*str) 656 return 0; 657 658 /* Save settings */ 659 memset(&map, 0, sizeof(map)); 660 if (ints[0] > 0) 661 map.irq = ints[1]; 662 if (ints[0] > 1) 663 map.base_addr = ints[2]; 664 if (ints[0] > 2) 665 map.mem_start = ints[3]; 666 if (ints[0] > 3) 667 map.mem_end = ints[4]; 668 669 /* Add new entry to the list */ 670 return netdev_boot_setup_add(str, &map); 671 } 672 673 __setup("netdev=", netdev_boot_setup); 674 675 /******************************************************************************* 676 * 677 * Device Interface Subroutines 678 * 679 *******************************************************************************/ 680 681 /** 682 * dev_get_iflink - get 'iflink' value of a interface 683 * @dev: targeted interface 684 * 685 * Indicates the ifindex the interface is linked to. 686 * Physical interfaces have the same 'ifindex' and 'iflink' values. 687 */ 688 689 int dev_get_iflink(const struct net_device *dev) 690 { 691 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 692 return dev->netdev_ops->ndo_get_iflink(dev); 693 694 return dev->ifindex; 695 } 696 EXPORT_SYMBOL(dev_get_iflink); 697 698 /** 699 * dev_fill_metadata_dst - Retrieve tunnel egress information. 700 * @dev: targeted interface 701 * @skb: The packet. 702 * 703 * For better visibility of tunnel traffic OVS needs to retrieve 704 * egress tunnel information for a packet. Following API allows 705 * user to get this info. 706 */ 707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 708 { 709 struct ip_tunnel_info *info; 710 711 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 712 return -EINVAL; 713 714 info = skb_tunnel_info_unclone(skb); 715 if (!info) 716 return -ENOMEM; 717 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 718 return -EINVAL; 719 720 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 721 } 722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 723 724 /** 725 * __dev_get_by_name - find a device by its name 726 * @net: the applicable net namespace 727 * @name: name to find 728 * 729 * Find an interface by name. Must be called under RTNL semaphore 730 * or @dev_base_lock. If the name is found a pointer to the device 731 * is returned. If the name is not found then %NULL is returned. The 732 * reference counters are not incremented so the caller must be 733 * careful with locks. 734 */ 735 736 struct net_device *__dev_get_by_name(struct net *net, const char *name) 737 { 738 struct net_device *dev; 739 struct hlist_head *head = dev_name_hash(net, name); 740 741 hlist_for_each_entry(dev, head, name_hlist) 742 if (!strncmp(dev->name, name, IFNAMSIZ)) 743 return dev; 744 745 return NULL; 746 } 747 EXPORT_SYMBOL(__dev_get_by_name); 748 749 /** 750 * dev_get_by_name_rcu - find a device by its name 751 * @net: the applicable net namespace 752 * @name: name to find 753 * 754 * Find an interface by name. 755 * If the name is found a pointer to the device is returned. 756 * If the name is not found then %NULL is returned. 757 * The reference counters are not incremented so the caller must be 758 * careful with locks. The caller must hold RCU lock. 759 */ 760 761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 762 { 763 struct net_device *dev; 764 struct hlist_head *head = dev_name_hash(net, name); 765 766 hlist_for_each_entry_rcu(dev, head, name_hlist) 767 if (!strncmp(dev->name, name, IFNAMSIZ)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_get_by_name_rcu); 773 774 /** 775 * dev_get_by_name - find a device by its name 776 * @net: the applicable net namespace 777 * @name: name to find 778 * 779 * Find an interface by name. This can be called from any 780 * context and does its own locking. The returned handle has 781 * the usage count incremented and the caller must use dev_put() to 782 * release it when it is no longer needed. %NULL is returned if no 783 * matching device is found. 784 */ 785 786 struct net_device *dev_get_by_name(struct net *net, const char *name) 787 { 788 struct net_device *dev; 789 790 rcu_read_lock(); 791 dev = dev_get_by_name_rcu(net, name); 792 if (dev) 793 dev_hold(dev); 794 rcu_read_unlock(); 795 return dev; 796 } 797 EXPORT_SYMBOL(dev_get_by_name); 798 799 /** 800 * __dev_get_by_index - find a device by its ifindex 801 * @net: the applicable net namespace 802 * @ifindex: index of device 803 * 804 * Search for an interface by index. Returns %NULL if the device 805 * is not found or a pointer to the device. The device has not 806 * had its reference counter increased so the caller must be careful 807 * about locking. The caller must hold either the RTNL semaphore 808 * or @dev_base_lock. 809 */ 810 811 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 812 { 813 struct net_device *dev; 814 struct hlist_head *head = dev_index_hash(net, ifindex); 815 816 hlist_for_each_entry(dev, head, index_hlist) 817 if (dev->ifindex == ifindex) 818 return dev; 819 820 return NULL; 821 } 822 EXPORT_SYMBOL(__dev_get_by_index); 823 824 /** 825 * dev_get_by_index_rcu - find a device by its ifindex 826 * @net: the applicable net namespace 827 * @ifindex: index of device 828 * 829 * Search for an interface by index. Returns %NULL if the device 830 * is not found or a pointer to the device. The device has not 831 * had its reference counter increased so the caller must be careful 832 * about locking. The caller must hold RCU lock. 833 */ 834 835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 836 { 837 struct net_device *dev; 838 struct hlist_head *head = dev_index_hash(net, ifindex); 839 840 hlist_for_each_entry_rcu(dev, head, index_hlist) 841 if (dev->ifindex == ifindex) 842 return dev; 843 844 return NULL; 845 } 846 EXPORT_SYMBOL(dev_get_by_index_rcu); 847 848 849 /** 850 * dev_get_by_index - find a device by its ifindex 851 * @net: the applicable net namespace 852 * @ifindex: index of device 853 * 854 * Search for an interface by index. Returns NULL if the device 855 * is not found or a pointer to the device. The device returned has 856 * had a reference added and the pointer is safe until the user calls 857 * dev_put to indicate they have finished with it. 858 */ 859 860 struct net_device *dev_get_by_index(struct net *net, int ifindex) 861 { 862 struct net_device *dev; 863 864 rcu_read_lock(); 865 dev = dev_get_by_index_rcu(net, ifindex); 866 if (dev) 867 dev_hold(dev); 868 rcu_read_unlock(); 869 return dev; 870 } 871 EXPORT_SYMBOL(dev_get_by_index); 872 873 /** 874 * dev_get_by_napi_id - find a device by napi_id 875 * @napi_id: ID of the NAPI struct 876 * 877 * Search for an interface by NAPI ID. Returns %NULL if the device 878 * is not found or a pointer to the device. The device has not had 879 * its reference counter increased so the caller must be careful 880 * about locking. The caller must hold RCU lock. 881 */ 882 883 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 884 { 885 struct napi_struct *napi; 886 887 WARN_ON_ONCE(!rcu_read_lock_held()); 888 889 if (napi_id < MIN_NAPI_ID) 890 return NULL; 891 892 napi = napi_by_id(napi_id); 893 894 return napi ? napi->dev : NULL; 895 } 896 EXPORT_SYMBOL(dev_get_by_napi_id); 897 898 /** 899 * netdev_get_name - get a netdevice name, knowing its ifindex. 900 * @net: network namespace 901 * @name: a pointer to the buffer where the name will be stored. 902 * @ifindex: the ifindex of the interface to get the name from. 903 * 904 * The use of raw_seqcount_begin() and cond_resched() before 905 * retrying is required as we want to give the writers a chance 906 * to complete when CONFIG_PREEMPT is not set. 907 */ 908 int netdev_get_name(struct net *net, char *name, int ifindex) 909 { 910 struct net_device *dev; 911 unsigned int seq; 912 913 retry: 914 seq = raw_seqcount_begin(&devnet_rename_seq); 915 rcu_read_lock(); 916 dev = dev_get_by_index_rcu(net, ifindex); 917 if (!dev) { 918 rcu_read_unlock(); 919 return -ENODEV; 920 } 921 922 strcpy(name, dev->name); 923 rcu_read_unlock(); 924 if (read_seqcount_retry(&devnet_rename_seq, seq)) { 925 cond_resched(); 926 goto retry; 927 } 928 929 return 0; 930 } 931 932 /** 933 * dev_getbyhwaddr_rcu - find a device by its hardware address 934 * @net: the applicable net namespace 935 * @type: media type of device 936 * @ha: hardware address 937 * 938 * Search for an interface by MAC address. Returns NULL if the device 939 * is not found or a pointer to the device. 940 * The caller must hold RCU or RTNL. 941 * The returned device has not had its ref count increased 942 * and the caller must therefore be careful about locking 943 * 944 */ 945 946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 947 const char *ha) 948 { 949 struct net_device *dev; 950 951 for_each_netdev_rcu(net, dev) 952 if (dev->type == type && 953 !memcmp(dev->dev_addr, ha, dev->addr_len)) 954 return dev; 955 956 return NULL; 957 } 958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 959 960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 961 { 962 struct net_device *dev; 963 964 ASSERT_RTNL(); 965 for_each_netdev(net, dev) 966 if (dev->type == type) 967 return dev; 968 969 return NULL; 970 } 971 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 972 973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 974 { 975 struct net_device *dev, *ret = NULL; 976 977 rcu_read_lock(); 978 for_each_netdev_rcu(net, dev) 979 if (dev->type == type) { 980 dev_hold(dev); 981 ret = dev; 982 break; 983 } 984 rcu_read_unlock(); 985 return ret; 986 } 987 EXPORT_SYMBOL(dev_getfirstbyhwtype); 988 989 /** 990 * __dev_get_by_flags - find any device with given flags 991 * @net: the applicable net namespace 992 * @if_flags: IFF_* values 993 * @mask: bitmask of bits in if_flags to check 994 * 995 * Search for any interface with the given flags. Returns NULL if a device 996 * is not found or a pointer to the device. Must be called inside 997 * rtnl_lock(), and result refcount is unchanged. 998 */ 999 1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1001 unsigned short mask) 1002 { 1003 struct net_device *dev, *ret; 1004 1005 ASSERT_RTNL(); 1006 1007 ret = NULL; 1008 for_each_netdev(net, dev) { 1009 if (((dev->flags ^ if_flags) & mask) == 0) { 1010 ret = dev; 1011 break; 1012 } 1013 } 1014 return ret; 1015 } 1016 EXPORT_SYMBOL(__dev_get_by_flags); 1017 1018 /** 1019 * dev_valid_name - check if name is okay for network device 1020 * @name: name string 1021 * 1022 * Network device names need to be valid file names to 1023 * to allow sysfs to work. We also disallow any kind of 1024 * whitespace. 1025 */ 1026 bool dev_valid_name(const char *name) 1027 { 1028 if (*name == '\0') 1029 return false; 1030 if (strlen(name) >= IFNAMSIZ) 1031 return false; 1032 if (!strcmp(name, ".") || !strcmp(name, "..")) 1033 return false; 1034 1035 while (*name) { 1036 if (*name == '/' || *name == ':' || isspace(*name)) 1037 return false; 1038 name++; 1039 } 1040 return true; 1041 } 1042 EXPORT_SYMBOL(dev_valid_name); 1043 1044 /** 1045 * __dev_alloc_name - allocate a name for a device 1046 * @net: network namespace to allocate the device name in 1047 * @name: name format string 1048 * @buf: scratch buffer and result name string 1049 * 1050 * Passed a format string - eg "lt%d" it will try and find a suitable 1051 * id. It scans list of devices to build up a free map, then chooses 1052 * the first empty slot. The caller must hold the dev_base or rtnl lock 1053 * while allocating the name and adding the device in order to avoid 1054 * duplicates. 1055 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1056 * Returns the number of the unit assigned or a negative errno code. 1057 */ 1058 1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1060 { 1061 int i = 0; 1062 const char *p; 1063 const int max_netdevices = 8*PAGE_SIZE; 1064 unsigned long *inuse; 1065 struct net_device *d; 1066 1067 p = strnchr(name, IFNAMSIZ-1, '%'); 1068 if (p) { 1069 /* 1070 * Verify the string as this thing may have come from 1071 * the user. There must be either one "%d" and no other "%" 1072 * characters. 1073 */ 1074 if (p[1] != 'd' || strchr(p + 2, '%')) 1075 return -EINVAL; 1076 1077 /* Use one page as a bit array of possible slots */ 1078 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1079 if (!inuse) 1080 return -ENOMEM; 1081 1082 for_each_netdev(net, d) { 1083 if (!sscanf(d->name, name, &i)) 1084 continue; 1085 if (i < 0 || i >= max_netdevices) 1086 continue; 1087 1088 /* avoid cases where sscanf is not exact inverse of printf */ 1089 snprintf(buf, IFNAMSIZ, name, i); 1090 if (!strncmp(buf, d->name, IFNAMSIZ)) 1091 set_bit(i, inuse); 1092 } 1093 1094 i = find_first_zero_bit(inuse, max_netdevices); 1095 free_page((unsigned long) inuse); 1096 } 1097 1098 if (buf != name) 1099 snprintf(buf, IFNAMSIZ, name, i); 1100 if (!__dev_get_by_name(net, buf)) 1101 return i; 1102 1103 /* It is possible to run out of possible slots 1104 * when the name is long and there isn't enough space left 1105 * for the digits, or if all bits are used. 1106 */ 1107 return -ENFILE; 1108 } 1109 1110 /** 1111 * dev_alloc_name - allocate a name for a device 1112 * @dev: device 1113 * @name: name format string 1114 * 1115 * Passed a format string - eg "lt%d" it will try and find a suitable 1116 * id. It scans list of devices to build up a free map, then chooses 1117 * the first empty slot. The caller must hold the dev_base or rtnl lock 1118 * while allocating the name and adding the device in order to avoid 1119 * duplicates. 1120 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1121 * Returns the number of the unit assigned or a negative errno code. 1122 */ 1123 1124 int dev_alloc_name(struct net_device *dev, const char *name) 1125 { 1126 char buf[IFNAMSIZ]; 1127 struct net *net; 1128 int ret; 1129 1130 BUG_ON(!dev_net(dev)); 1131 net = dev_net(dev); 1132 ret = __dev_alloc_name(net, name, buf); 1133 if (ret >= 0) 1134 strlcpy(dev->name, buf, IFNAMSIZ); 1135 return ret; 1136 } 1137 EXPORT_SYMBOL(dev_alloc_name); 1138 1139 static int dev_alloc_name_ns(struct net *net, 1140 struct net_device *dev, 1141 const char *name) 1142 { 1143 char buf[IFNAMSIZ]; 1144 int ret; 1145 1146 ret = __dev_alloc_name(net, name, buf); 1147 if (ret >= 0) 1148 strlcpy(dev->name, buf, IFNAMSIZ); 1149 return ret; 1150 } 1151 1152 static int dev_get_valid_name(struct net *net, 1153 struct net_device *dev, 1154 const char *name) 1155 { 1156 BUG_ON(!net); 1157 1158 if (!dev_valid_name(name)) 1159 return -EINVAL; 1160 1161 if (strchr(name, '%')) 1162 return dev_alloc_name_ns(net, dev, name); 1163 else if (__dev_get_by_name(net, name)) 1164 return -EEXIST; 1165 else if (dev->name != name) 1166 strlcpy(dev->name, name, IFNAMSIZ); 1167 1168 return 0; 1169 } 1170 1171 /** 1172 * dev_change_name - change name of a device 1173 * @dev: device 1174 * @newname: name (or format string) must be at least IFNAMSIZ 1175 * 1176 * Change name of a device, can pass format strings "eth%d". 1177 * for wildcarding. 1178 */ 1179 int dev_change_name(struct net_device *dev, const char *newname) 1180 { 1181 unsigned char old_assign_type; 1182 char oldname[IFNAMSIZ]; 1183 int err = 0; 1184 int ret; 1185 struct net *net; 1186 1187 ASSERT_RTNL(); 1188 BUG_ON(!dev_net(dev)); 1189 1190 net = dev_net(dev); 1191 if (dev->flags & IFF_UP) 1192 return -EBUSY; 1193 1194 write_seqcount_begin(&devnet_rename_seq); 1195 1196 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1197 write_seqcount_end(&devnet_rename_seq); 1198 return 0; 1199 } 1200 1201 memcpy(oldname, dev->name, IFNAMSIZ); 1202 1203 err = dev_get_valid_name(net, dev, newname); 1204 if (err < 0) { 1205 write_seqcount_end(&devnet_rename_seq); 1206 return err; 1207 } 1208 1209 if (oldname[0] && !strchr(oldname, '%')) 1210 netdev_info(dev, "renamed from %s\n", oldname); 1211 1212 old_assign_type = dev->name_assign_type; 1213 dev->name_assign_type = NET_NAME_RENAMED; 1214 1215 rollback: 1216 ret = device_rename(&dev->dev, dev->name); 1217 if (ret) { 1218 memcpy(dev->name, oldname, IFNAMSIZ); 1219 dev->name_assign_type = old_assign_type; 1220 write_seqcount_end(&devnet_rename_seq); 1221 return ret; 1222 } 1223 1224 write_seqcount_end(&devnet_rename_seq); 1225 1226 netdev_adjacent_rename_links(dev, oldname); 1227 1228 write_lock_bh(&dev_base_lock); 1229 hlist_del_rcu(&dev->name_hlist); 1230 write_unlock_bh(&dev_base_lock); 1231 1232 synchronize_rcu(); 1233 1234 write_lock_bh(&dev_base_lock); 1235 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1236 write_unlock_bh(&dev_base_lock); 1237 1238 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1239 ret = notifier_to_errno(ret); 1240 1241 if (ret) { 1242 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1243 if (err >= 0) { 1244 err = ret; 1245 write_seqcount_begin(&devnet_rename_seq); 1246 memcpy(dev->name, oldname, IFNAMSIZ); 1247 memcpy(oldname, newname, IFNAMSIZ); 1248 dev->name_assign_type = old_assign_type; 1249 old_assign_type = NET_NAME_RENAMED; 1250 goto rollback; 1251 } else { 1252 pr_err("%s: name change rollback failed: %d\n", 1253 dev->name, ret); 1254 } 1255 } 1256 1257 return err; 1258 } 1259 1260 /** 1261 * dev_set_alias - change ifalias of a device 1262 * @dev: device 1263 * @alias: name up to IFALIASZ 1264 * @len: limit of bytes to copy from info 1265 * 1266 * Set ifalias for a device, 1267 */ 1268 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1269 { 1270 struct dev_ifalias *new_alias = NULL; 1271 1272 if (len >= IFALIASZ) 1273 return -EINVAL; 1274 1275 if (len) { 1276 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1277 if (!new_alias) 1278 return -ENOMEM; 1279 1280 memcpy(new_alias->ifalias, alias, len); 1281 new_alias->ifalias[len] = 0; 1282 } 1283 1284 mutex_lock(&ifalias_mutex); 1285 rcu_swap_protected(dev->ifalias, new_alias, 1286 mutex_is_locked(&ifalias_mutex)); 1287 mutex_unlock(&ifalias_mutex); 1288 1289 if (new_alias) 1290 kfree_rcu(new_alias, rcuhead); 1291 1292 return len; 1293 } 1294 1295 /** 1296 * dev_get_alias - get ifalias of a device 1297 * @dev: device 1298 * @name: buffer to store name of ifalias 1299 * @len: size of buffer 1300 * 1301 * get ifalias for a device. Caller must make sure dev cannot go 1302 * away, e.g. rcu read lock or own a reference count to device. 1303 */ 1304 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1305 { 1306 const struct dev_ifalias *alias; 1307 int ret = 0; 1308 1309 rcu_read_lock(); 1310 alias = rcu_dereference(dev->ifalias); 1311 if (alias) 1312 ret = snprintf(name, len, "%s", alias->ifalias); 1313 rcu_read_unlock(); 1314 1315 return ret; 1316 } 1317 1318 /** 1319 * netdev_features_change - device changes features 1320 * @dev: device to cause notification 1321 * 1322 * Called to indicate a device has changed features. 1323 */ 1324 void netdev_features_change(struct net_device *dev) 1325 { 1326 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1327 } 1328 EXPORT_SYMBOL(netdev_features_change); 1329 1330 /** 1331 * netdev_state_change - device changes state 1332 * @dev: device to cause notification 1333 * 1334 * Called to indicate a device has changed state. This function calls 1335 * the notifier chains for netdev_chain and sends a NEWLINK message 1336 * to the routing socket. 1337 */ 1338 void netdev_state_change(struct net_device *dev) 1339 { 1340 if (dev->flags & IFF_UP) { 1341 struct netdev_notifier_change_info change_info = { 1342 .info.dev = dev, 1343 }; 1344 1345 call_netdevice_notifiers_info(NETDEV_CHANGE, 1346 &change_info.info); 1347 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1348 } 1349 } 1350 EXPORT_SYMBOL(netdev_state_change); 1351 1352 /** 1353 * netdev_notify_peers - notify network peers about existence of @dev 1354 * @dev: network device 1355 * 1356 * Generate traffic such that interested network peers are aware of 1357 * @dev, such as by generating a gratuitous ARP. This may be used when 1358 * a device wants to inform the rest of the network about some sort of 1359 * reconfiguration such as a failover event or virtual machine 1360 * migration. 1361 */ 1362 void netdev_notify_peers(struct net_device *dev) 1363 { 1364 rtnl_lock(); 1365 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1366 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1367 rtnl_unlock(); 1368 } 1369 EXPORT_SYMBOL(netdev_notify_peers); 1370 1371 static int __dev_open(struct net_device *dev) 1372 { 1373 const struct net_device_ops *ops = dev->netdev_ops; 1374 int ret; 1375 1376 ASSERT_RTNL(); 1377 1378 if (!netif_device_present(dev)) 1379 return -ENODEV; 1380 1381 /* Block netpoll from trying to do any rx path servicing. 1382 * If we don't do this there is a chance ndo_poll_controller 1383 * or ndo_poll may be running while we open the device 1384 */ 1385 netpoll_poll_disable(dev); 1386 1387 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1388 ret = notifier_to_errno(ret); 1389 if (ret) 1390 return ret; 1391 1392 set_bit(__LINK_STATE_START, &dev->state); 1393 1394 if (ops->ndo_validate_addr) 1395 ret = ops->ndo_validate_addr(dev); 1396 1397 if (!ret && ops->ndo_open) 1398 ret = ops->ndo_open(dev); 1399 1400 netpoll_poll_enable(dev); 1401 1402 if (ret) 1403 clear_bit(__LINK_STATE_START, &dev->state); 1404 else { 1405 dev->flags |= IFF_UP; 1406 dev_set_rx_mode(dev); 1407 dev_activate(dev); 1408 add_device_randomness(dev->dev_addr, dev->addr_len); 1409 } 1410 1411 return ret; 1412 } 1413 1414 /** 1415 * dev_open - prepare an interface for use. 1416 * @dev: device to open 1417 * 1418 * Takes a device from down to up state. The device's private open 1419 * function is invoked and then the multicast lists are loaded. Finally 1420 * the device is moved into the up state and a %NETDEV_UP message is 1421 * sent to the netdev notifier chain. 1422 * 1423 * Calling this function on an active interface is a nop. On a failure 1424 * a negative errno code is returned. 1425 */ 1426 int dev_open(struct net_device *dev) 1427 { 1428 int ret; 1429 1430 if (dev->flags & IFF_UP) 1431 return 0; 1432 1433 ret = __dev_open(dev); 1434 if (ret < 0) 1435 return ret; 1436 1437 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1438 call_netdevice_notifiers(NETDEV_UP, dev); 1439 1440 return ret; 1441 } 1442 EXPORT_SYMBOL(dev_open); 1443 1444 static void __dev_close_many(struct list_head *head) 1445 { 1446 struct net_device *dev; 1447 1448 ASSERT_RTNL(); 1449 might_sleep(); 1450 1451 list_for_each_entry(dev, head, close_list) { 1452 /* Temporarily disable netpoll until the interface is down */ 1453 netpoll_poll_disable(dev); 1454 1455 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1456 1457 clear_bit(__LINK_STATE_START, &dev->state); 1458 1459 /* Synchronize to scheduled poll. We cannot touch poll list, it 1460 * can be even on different cpu. So just clear netif_running(). 1461 * 1462 * dev->stop() will invoke napi_disable() on all of it's 1463 * napi_struct instances on this device. 1464 */ 1465 smp_mb__after_atomic(); /* Commit netif_running(). */ 1466 } 1467 1468 dev_deactivate_many(head); 1469 1470 list_for_each_entry(dev, head, close_list) { 1471 const struct net_device_ops *ops = dev->netdev_ops; 1472 1473 /* 1474 * Call the device specific close. This cannot fail. 1475 * Only if device is UP 1476 * 1477 * We allow it to be called even after a DETACH hot-plug 1478 * event. 1479 */ 1480 if (ops->ndo_stop) 1481 ops->ndo_stop(dev); 1482 1483 dev->flags &= ~IFF_UP; 1484 netpoll_poll_enable(dev); 1485 } 1486 } 1487 1488 static void __dev_close(struct net_device *dev) 1489 { 1490 LIST_HEAD(single); 1491 1492 list_add(&dev->close_list, &single); 1493 __dev_close_many(&single); 1494 list_del(&single); 1495 } 1496 1497 void dev_close_many(struct list_head *head, bool unlink) 1498 { 1499 struct net_device *dev, *tmp; 1500 1501 /* Remove the devices that don't need to be closed */ 1502 list_for_each_entry_safe(dev, tmp, head, close_list) 1503 if (!(dev->flags & IFF_UP)) 1504 list_del_init(&dev->close_list); 1505 1506 __dev_close_many(head); 1507 1508 list_for_each_entry_safe(dev, tmp, head, close_list) { 1509 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1510 call_netdevice_notifiers(NETDEV_DOWN, dev); 1511 if (unlink) 1512 list_del_init(&dev->close_list); 1513 } 1514 } 1515 EXPORT_SYMBOL(dev_close_many); 1516 1517 /** 1518 * dev_close - shutdown an interface. 1519 * @dev: device to shutdown 1520 * 1521 * This function moves an active device into down state. A 1522 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1523 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1524 * chain. 1525 */ 1526 void dev_close(struct net_device *dev) 1527 { 1528 if (dev->flags & IFF_UP) { 1529 LIST_HEAD(single); 1530 1531 list_add(&dev->close_list, &single); 1532 dev_close_many(&single, true); 1533 list_del(&single); 1534 } 1535 } 1536 EXPORT_SYMBOL(dev_close); 1537 1538 1539 /** 1540 * dev_disable_lro - disable Large Receive Offload on a device 1541 * @dev: device 1542 * 1543 * Disable Large Receive Offload (LRO) on a net device. Must be 1544 * called under RTNL. This is needed if received packets may be 1545 * forwarded to another interface. 1546 */ 1547 void dev_disable_lro(struct net_device *dev) 1548 { 1549 struct net_device *lower_dev; 1550 struct list_head *iter; 1551 1552 dev->wanted_features &= ~NETIF_F_LRO; 1553 netdev_update_features(dev); 1554 1555 if (unlikely(dev->features & NETIF_F_LRO)) 1556 netdev_WARN(dev, "failed to disable LRO!\n"); 1557 1558 netdev_for_each_lower_dev(dev, lower_dev, iter) 1559 dev_disable_lro(lower_dev); 1560 } 1561 EXPORT_SYMBOL(dev_disable_lro); 1562 1563 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1564 struct net_device *dev) 1565 { 1566 struct netdev_notifier_info info = { 1567 .dev = dev, 1568 }; 1569 1570 return nb->notifier_call(nb, val, &info); 1571 } 1572 1573 static int dev_boot_phase = 1; 1574 1575 /** 1576 * register_netdevice_notifier - register a network notifier block 1577 * @nb: notifier 1578 * 1579 * Register a notifier to be called when network device events occur. 1580 * The notifier passed is linked into the kernel structures and must 1581 * not be reused until it has been unregistered. A negative errno code 1582 * is returned on a failure. 1583 * 1584 * When registered all registration and up events are replayed 1585 * to the new notifier to allow device to have a race free 1586 * view of the network device list. 1587 */ 1588 1589 int register_netdevice_notifier(struct notifier_block *nb) 1590 { 1591 struct net_device *dev; 1592 struct net_device *last; 1593 struct net *net; 1594 int err; 1595 1596 rtnl_lock(); 1597 err = raw_notifier_chain_register(&netdev_chain, nb); 1598 if (err) 1599 goto unlock; 1600 if (dev_boot_phase) 1601 goto unlock; 1602 for_each_net(net) { 1603 for_each_netdev(net, dev) { 1604 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1605 err = notifier_to_errno(err); 1606 if (err) 1607 goto rollback; 1608 1609 if (!(dev->flags & IFF_UP)) 1610 continue; 1611 1612 call_netdevice_notifier(nb, NETDEV_UP, dev); 1613 } 1614 } 1615 1616 unlock: 1617 rtnl_unlock(); 1618 return err; 1619 1620 rollback: 1621 last = dev; 1622 for_each_net(net) { 1623 for_each_netdev(net, dev) { 1624 if (dev == last) 1625 goto outroll; 1626 1627 if (dev->flags & IFF_UP) { 1628 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1629 dev); 1630 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1631 } 1632 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1633 } 1634 } 1635 1636 outroll: 1637 raw_notifier_chain_unregister(&netdev_chain, nb); 1638 goto unlock; 1639 } 1640 EXPORT_SYMBOL(register_netdevice_notifier); 1641 1642 /** 1643 * unregister_netdevice_notifier - unregister a network notifier block 1644 * @nb: notifier 1645 * 1646 * Unregister a notifier previously registered by 1647 * register_netdevice_notifier(). The notifier is unlinked into the 1648 * kernel structures and may then be reused. A negative errno code 1649 * is returned on a failure. 1650 * 1651 * After unregistering unregister and down device events are synthesized 1652 * for all devices on the device list to the removed notifier to remove 1653 * the need for special case cleanup code. 1654 */ 1655 1656 int unregister_netdevice_notifier(struct notifier_block *nb) 1657 { 1658 struct net_device *dev; 1659 struct net *net; 1660 int err; 1661 1662 rtnl_lock(); 1663 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1664 if (err) 1665 goto unlock; 1666 1667 for_each_net(net) { 1668 for_each_netdev(net, dev) { 1669 if (dev->flags & IFF_UP) { 1670 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1671 dev); 1672 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1673 } 1674 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1675 } 1676 } 1677 unlock: 1678 rtnl_unlock(); 1679 return err; 1680 } 1681 EXPORT_SYMBOL(unregister_netdevice_notifier); 1682 1683 /** 1684 * call_netdevice_notifiers_info - call all network notifier blocks 1685 * @val: value passed unmodified to notifier function 1686 * @dev: net_device pointer passed unmodified to notifier function 1687 * @info: notifier information data 1688 * 1689 * Call all network notifier blocks. Parameters and return value 1690 * are as for raw_notifier_call_chain(). 1691 */ 1692 1693 static int call_netdevice_notifiers_info(unsigned long val, 1694 struct netdev_notifier_info *info) 1695 { 1696 ASSERT_RTNL(); 1697 return raw_notifier_call_chain(&netdev_chain, val, info); 1698 } 1699 1700 /** 1701 * call_netdevice_notifiers - call all network notifier blocks 1702 * @val: value passed unmodified to notifier function 1703 * @dev: net_device pointer passed unmodified to notifier function 1704 * 1705 * Call all network notifier blocks. Parameters and return value 1706 * are as for raw_notifier_call_chain(). 1707 */ 1708 1709 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1710 { 1711 struct netdev_notifier_info info = { 1712 .dev = dev, 1713 }; 1714 1715 return call_netdevice_notifiers_info(val, &info); 1716 } 1717 EXPORT_SYMBOL(call_netdevice_notifiers); 1718 1719 #ifdef CONFIG_NET_INGRESS 1720 static struct static_key ingress_needed __read_mostly; 1721 1722 void net_inc_ingress_queue(void) 1723 { 1724 static_key_slow_inc(&ingress_needed); 1725 } 1726 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 1727 1728 void net_dec_ingress_queue(void) 1729 { 1730 static_key_slow_dec(&ingress_needed); 1731 } 1732 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 1733 #endif 1734 1735 #ifdef CONFIG_NET_EGRESS 1736 static struct static_key egress_needed __read_mostly; 1737 1738 void net_inc_egress_queue(void) 1739 { 1740 static_key_slow_inc(&egress_needed); 1741 } 1742 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 1743 1744 void net_dec_egress_queue(void) 1745 { 1746 static_key_slow_dec(&egress_needed); 1747 } 1748 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 1749 #endif 1750 1751 static struct static_key netstamp_needed __read_mostly; 1752 #ifdef HAVE_JUMP_LABEL 1753 static atomic_t netstamp_needed_deferred; 1754 static atomic_t netstamp_wanted; 1755 static void netstamp_clear(struct work_struct *work) 1756 { 1757 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 1758 int wanted; 1759 1760 wanted = atomic_add_return(deferred, &netstamp_wanted); 1761 if (wanted > 0) 1762 static_key_enable(&netstamp_needed); 1763 else 1764 static_key_disable(&netstamp_needed); 1765 } 1766 static DECLARE_WORK(netstamp_work, netstamp_clear); 1767 #endif 1768 1769 void net_enable_timestamp(void) 1770 { 1771 #ifdef HAVE_JUMP_LABEL 1772 int wanted; 1773 1774 while (1) { 1775 wanted = atomic_read(&netstamp_wanted); 1776 if (wanted <= 0) 1777 break; 1778 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 1779 return; 1780 } 1781 atomic_inc(&netstamp_needed_deferred); 1782 schedule_work(&netstamp_work); 1783 #else 1784 static_key_slow_inc(&netstamp_needed); 1785 #endif 1786 } 1787 EXPORT_SYMBOL(net_enable_timestamp); 1788 1789 void net_disable_timestamp(void) 1790 { 1791 #ifdef HAVE_JUMP_LABEL 1792 int wanted; 1793 1794 while (1) { 1795 wanted = atomic_read(&netstamp_wanted); 1796 if (wanted <= 1) 1797 break; 1798 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 1799 return; 1800 } 1801 atomic_dec(&netstamp_needed_deferred); 1802 schedule_work(&netstamp_work); 1803 #else 1804 static_key_slow_dec(&netstamp_needed); 1805 #endif 1806 } 1807 EXPORT_SYMBOL(net_disable_timestamp); 1808 1809 static inline void net_timestamp_set(struct sk_buff *skb) 1810 { 1811 skb->tstamp = 0; 1812 if (static_key_false(&netstamp_needed)) 1813 __net_timestamp(skb); 1814 } 1815 1816 #define net_timestamp_check(COND, SKB) \ 1817 if (static_key_false(&netstamp_needed)) { \ 1818 if ((COND) && !(SKB)->tstamp) \ 1819 __net_timestamp(SKB); \ 1820 } \ 1821 1822 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 1823 { 1824 unsigned int len; 1825 1826 if (!(dev->flags & IFF_UP)) 1827 return false; 1828 1829 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1830 if (skb->len <= len) 1831 return true; 1832 1833 /* if TSO is enabled, we don't care about the length as the packet 1834 * could be forwarded without being segmented before 1835 */ 1836 if (skb_is_gso(skb)) 1837 return true; 1838 1839 return false; 1840 } 1841 EXPORT_SYMBOL_GPL(is_skb_forwardable); 1842 1843 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1844 { 1845 int ret = ____dev_forward_skb(dev, skb); 1846 1847 if (likely(!ret)) { 1848 skb->protocol = eth_type_trans(skb, dev); 1849 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 1850 } 1851 1852 return ret; 1853 } 1854 EXPORT_SYMBOL_GPL(__dev_forward_skb); 1855 1856 /** 1857 * dev_forward_skb - loopback an skb to another netif 1858 * 1859 * @dev: destination network device 1860 * @skb: buffer to forward 1861 * 1862 * return values: 1863 * NET_RX_SUCCESS (no congestion) 1864 * NET_RX_DROP (packet was dropped, but freed) 1865 * 1866 * dev_forward_skb can be used for injecting an skb from the 1867 * start_xmit function of one device into the receive queue 1868 * of another device. 1869 * 1870 * The receiving device may be in another namespace, so 1871 * we have to clear all information in the skb that could 1872 * impact namespace isolation. 1873 */ 1874 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1875 { 1876 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 1877 } 1878 EXPORT_SYMBOL_GPL(dev_forward_skb); 1879 1880 static inline int deliver_skb(struct sk_buff *skb, 1881 struct packet_type *pt_prev, 1882 struct net_device *orig_dev) 1883 { 1884 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 1885 return -ENOMEM; 1886 refcount_inc(&skb->users); 1887 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1888 } 1889 1890 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 1891 struct packet_type **pt, 1892 struct net_device *orig_dev, 1893 __be16 type, 1894 struct list_head *ptype_list) 1895 { 1896 struct packet_type *ptype, *pt_prev = *pt; 1897 1898 list_for_each_entry_rcu(ptype, ptype_list, list) { 1899 if (ptype->type != type) 1900 continue; 1901 if (pt_prev) 1902 deliver_skb(skb, pt_prev, orig_dev); 1903 pt_prev = ptype; 1904 } 1905 *pt = pt_prev; 1906 } 1907 1908 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 1909 { 1910 if (!ptype->af_packet_priv || !skb->sk) 1911 return false; 1912 1913 if (ptype->id_match) 1914 return ptype->id_match(ptype, skb->sk); 1915 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 1916 return true; 1917 1918 return false; 1919 } 1920 1921 /* 1922 * Support routine. Sends outgoing frames to any network 1923 * taps currently in use. 1924 */ 1925 1926 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1927 { 1928 struct packet_type *ptype; 1929 struct sk_buff *skb2 = NULL; 1930 struct packet_type *pt_prev = NULL; 1931 struct list_head *ptype_list = &ptype_all; 1932 1933 rcu_read_lock(); 1934 again: 1935 list_for_each_entry_rcu(ptype, ptype_list, list) { 1936 /* Never send packets back to the socket 1937 * they originated from - MvS ([email protected]) 1938 */ 1939 if (skb_loop_sk(ptype, skb)) 1940 continue; 1941 1942 if (pt_prev) { 1943 deliver_skb(skb2, pt_prev, skb->dev); 1944 pt_prev = ptype; 1945 continue; 1946 } 1947 1948 /* need to clone skb, done only once */ 1949 skb2 = skb_clone(skb, GFP_ATOMIC); 1950 if (!skb2) 1951 goto out_unlock; 1952 1953 net_timestamp_set(skb2); 1954 1955 /* skb->nh should be correctly 1956 * set by sender, so that the second statement is 1957 * just protection against buggy protocols. 1958 */ 1959 skb_reset_mac_header(skb2); 1960 1961 if (skb_network_header(skb2) < skb2->data || 1962 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 1963 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 1964 ntohs(skb2->protocol), 1965 dev->name); 1966 skb_reset_network_header(skb2); 1967 } 1968 1969 skb2->transport_header = skb2->network_header; 1970 skb2->pkt_type = PACKET_OUTGOING; 1971 pt_prev = ptype; 1972 } 1973 1974 if (ptype_list == &ptype_all) { 1975 ptype_list = &dev->ptype_all; 1976 goto again; 1977 } 1978 out_unlock: 1979 if (pt_prev) { 1980 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 1981 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1982 else 1983 kfree_skb(skb2); 1984 } 1985 rcu_read_unlock(); 1986 } 1987 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 1988 1989 /** 1990 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1991 * @dev: Network device 1992 * @txq: number of queues available 1993 * 1994 * If real_num_tx_queues is changed the tc mappings may no longer be 1995 * valid. To resolve this verify the tc mapping remains valid and if 1996 * not NULL the mapping. With no priorities mapping to this 1997 * offset/count pair it will no longer be used. In the worst case TC0 1998 * is invalid nothing can be done so disable priority mappings. If is 1999 * expected that drivers will fix this mapping if they can before 2000 * calling netif_set_real_num_tx_queues. 2001 */ 2002 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2003 { 2004 int i; 2005 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2006 2007 /* If TC0 is invalidated disable TC mapping */ 2008 if (tc->offset + tc->count > txq) { 2009 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2010 dev->num_tc = 0; 2011 return; 2012 } 2013 2014 /* Invalidated prio to tc mappings set to TC0 */ 2015 for (i = 1; i < TC_BITMASK + 1; i++) { 2016 int q = netdev_get_prio_tc_map(dev, i); 2017 2018 tc = &dev->tc_to_txq[q]; 2019 if (tc->offset + tc->count > txq) { 2020 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2021 i, q); 2022 netdev_set_prio_tc_map(dev, i, 0); 2023 } 2024 } 2025 } 2026 2027 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2028 { 2029 if (dev->num_tc) { 2030 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2031 int i; 2032 2033 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2034 if ((txq - tc->offset) < tc->count) 2035 return i; 2036 } 2037 2038 return -1; 2039 } 2040 2041 return 0; 2042 } 2043 2044 #ifdef CONFIG_XPS 2045 static DEFINE_MUTEX(xps_map_mutex); 2046 #define xmap_dereference(P) \ 2047 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2048 2049 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2050 int tci, u16 index) 2051 { 2052 struct xps_map *map = NULL; 2053 int pos; 2054 2055 if (dev_maps) 2056 map = xmap_dereference(dev_maps->cpu_map[tci]); 2057 if (!map) 2058 return false; 2059 2060 for (pos = map->len; pos--;) { 2061 if (map->queues[pos] != index) 2062 continue; 2063 2064 if (map->len > 1) { 2065 map->queues[pos] = map->queues[--map->len]; 2066 break; 2067 } 2068 2069 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL); 2070 kfree_rcu(map, rcu); 2071 return false; 2072 } 2073 2074 return true; 2075 } 2076 2077 static bool remove_xps_queue_cpu(struct net_device *dev, 2078 struct xps_dev_maps *dev_maps, 2079 int cpu, u16 offset, u16 count) 2080 { 2081 int num_tc = dev->num_tc ? : 1; 2082 bool active = false; 2083 int tci; 2084 2085 for (tci = cpu * num_tc; num_tc--; tci++) { 2086 int i, j; 2087 2088 for (i = count, j = offset; i--; j++) { 2089 if (!remove_xps_queue(dev_maps, cpu, j)) 2090 break; 2091 } 2092 2093 active |= i < 0; 2094 } 2095 2096 return active; 2097 } 2098 2099 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2100 u16 count) 2101 { 2102 struct xps_dev_maps *dev_maps; 2103 int cpu, i; 2104 bool active = false; 2105 2106 mutex_lock(&xps_map_mutex); 2107 dev_maps = xmap_dereference(dev->xps_maps); 2108 2109 if (!dev_maps) 2110 goto out_no_maps; 2111 2112 for_each_possible_cpu(cpu) 2113 active |= remove_xps_queue_cpu(dev, dev_maps, cpu, 2114 offset, count); 2115 2116 if (!active) { 2117 RCU_INIT_POINTER(dev->xps_maps, NULL); 2118 kfree_rcu(dev_maps, rcu); 2119 } 2120 2121 for (i = offset + (count - 1); count--; i--) 2122 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i), 2123 NUMA_NO_NODE); 2124 2125 out_no_maps: 2126 mutex_unlock(&xps_map_mutex); 2127 } 2128 2129 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2130 { 2131 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2132 } 2133 2134 static struct xps_map *expand_xps_map(struct xps_map *map, 2135 int cpu, u16 index) 2136 { 2137 struct xps_map *new_map; 2138 int alloc_len = XPS_MIN_MAP_ALLOC; 2139 int i, pos; 2140 2141 for (pos = 0; map && pos < map->len; pos++) { 2142 if (map->queues[pos] != index) 2143 continue; 2144 return map; 2145 } 2146 2147 /* Need to add queue to this CPU's existing map */ 2148 if (map) { 2149 if (pos < map->alloc_len) 2150 return map; 2151 2152 alloc_len = map->alloc_len * 2; 2153 } 2154 2155 /* Need to allocate new map to store queue on this CPU's map */ 2156 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2157 cpu_to_node(cpu)); 2158 if (!new_map) 2159 return NULL; 2160 2161 for (i = 0; i < pos; i++) 2162 new_map->queues[i] = map->queues[i]; 2163 new_map->alloc_len = alloc_len; 2164 new_map->len = pos; 2165 2166 return new_map; 2167 } 2168 2169 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2170 u16 index) 2171 { 2172 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2173 int i, cpu, tci, numa_node_id = -2; 2174 int maps_sz, num_tc = 1, tc = 0; 2175 struct xps_map *map, *new_map; 2176 bool active = false; 2177 2178 if (dev->num_tc) { 2179 num_tc = dev->num_tc; 2180 tc = netdev_txq_to_tc(dev, index); 2181 if (tc < 0) 2182 return -EINVAL; 2183 } 2184 2185 maps_sz = XPS_DEV_MAPS_SIZE(num_tc); 2186 if (maps_sz < L1_CACHE_BYTES) 2187 maps_sz = L1_CACHE_BYTES; 2188 2189 mutex_lock(&xps_map_mutex); 2190 2191 dev_maps = xmap_dereference(dev->xps_maps); 2192 2193 /* allocate memory for queue storage */ 2194 for_each_cpu_and(cpu, cpu_online_mask, mask) { 2195 if (!new_dev_maps) 2196 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2197 if (!new_dev_maps) { 2198 mutex_unlock(&xps_map_mutex); 2199 return -ENOMEM; 2200 } 2201 2202 tci = cpu * num_tc + tc; 2203 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) : 2204 NULL; 2205 2206 map = expand_xps_map(map, cpu, index); 2207 if (!map) 2208 goto error; 2209 2210 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2211 } 2212 2213 if (!new_dev_maps) 2214 goto out_no_new_maps; 2215 2216 for_each_possible_cpu(cpu) { 2217 /* copy maps belonging to foreign traffic classes */ 2218 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) { 2219 /* fill in the new device map from the old device map */ 2220 map = xmap_dereference(dev_maps->cpu_map[tci]); 2221 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2222 } 2223 2224 /* We need to explicitly update tci as prevous loop 2225 * could break out early if dev_maps is NULL. 2226 */ 2227 tci = cpu * num_tc + tc; 2228 2229 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) { 2230 /* add queue to CPU maps */ 2231 int pos = 0; 2232 2233 map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2234 while ((pos < map->len) && (map->queues[pos] != index)) 2235 pos++; 2236 2237 if (pos == map->len) 2238 map->queues[map->len++] = index; 2239 #ifdef CONFIG_NUMA 2240 if (numa_node_id == -2) 2241 numa_node_id = cpu_to_node(cpu); 2242 else if (numa_node_id != cpu_to_node(cpu)) 2243 numa_node_id = -1; 2244 #endif 2245 } else if (dev_maps) { 2246 /* fill in the new device map from the old device map */ 2247 map = xmap_dereference(dev_maps->cpu_map[tci]); 2248 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2249 } 2250 2251 /* copy maps belonging to foreign traffic classes */ 2252 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2253 /* fill in the new device map from the old device map */ 2254 map = xmap_dereference(dev_maps->cpu_map[tci]); 2255 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map); 2256 } 2257 } 2258 2259 rcu_assign_pointer(dev->xps_maps, new_dev_maps); 2260 2261 /* Cleanup old maps */ 2262 if (!dev_maps) 2263 goto out_no_old_maps; 2264 2265 for_each_possible_cpu(cpu) { 2266 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2267 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2268 map = xmap_dereference(dev_maps->cpu_map[tci]); 2269 if (map && map != new_map) 2270 kfree_rcu(map, rcu); 2271 } 2272 } 2273 2274 kfree_rcu(dev_maps, rcu); 2275 2276 out_no_old_maps: 2277 dev_maps = new_dev_maps; 2278 active = true; 2279 2280 out_no_new_maps: 2281 /* update Tx queue numa node */ 2282 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2283 (numa_node_id >= 0) ? numa_node_id : 2284 NUMA_NO_NODE); 2285 2286 if (!dev_maps) 2287 goto out_no_maps; 2288 2289 /* removes queue from unused CPUs */ 2290 for_each_possible_cpu(cpu) { 2291 for (i = tc, tci = cpu * num_tc; i--; tci++) 2292 active |= remove_xps_queue(dev_maps, tci, index); 2293 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu)) 2294 active |= remove_xps_queue(dev_maps, tci, index); 2295 for (i = num_tc - tc, tci++; --i; tci++) 2296 active |= remove_xps_queue(dev_maps, tci, index); 2297 } 2298 2299 /* free map if not active */ 2300 if (!active) { 2301 RCU_INIT_POINTER(dev->xps_maps, NULL); 2302 kfree_rcu(dev_maps, rcu); 2303 } 2304 2305 out_no_maps: 2306 mutex_unlock(&xps_map_mutex); 2307 2308 return 0; 2309 error: 2310 /* remove any maps that we added */ 2311 for_each_possible_cpu(cpu) { 2312 for (i = num_tc, tci = cpu * num_tc; i--; tci++) { 2313 new_map = xmap_dereference(new_dev_maps->cpu_map[tci]); 2314 map = dev_maps ? 2315 xmap_dereference(dev_maps->cpu_map[tci]) : 2316 NULL; 2317 if (new_map && new_map != map) 2318 kfree(new_map); 2319 } 2320 } 2321 2322 mutex_unlock(&xps_map_mutex); 2323 2324 kfree(new_dev_maps); 2325 return -ENOMEM; 2326 } 2327 EXPORT_SYMBOL(netif_set_xps_queue); 2328 2329 #endif 2330 void netdev_reset_tc(struct net_device *dev) 2331 { 2332 #ifdef CONFIG_XPS 2333 netif_reset_xps_queues_gt(dev, 0); 2334 #endif 2335 dev->num_tc = 0; 2336 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2337 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2338 } 2339 EXPORT_SYMBOL(netdev_reset_tc); 2340 2341 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2342 { 2343 if (tc >= dev->num_tc) 2344 return -EINVAL; 2345 2346 #ifdef CONFIG_XPS 2347 netif_reset_xps_queues(dev, offset, count); 2348 #endif 2349 dev->tc_to_txq[tc].count = count; 2350 dev->tc_to_txq[tc].offset = offset; 2351 return 0; 2352 } 2353 EXPORT_SYMBOL(netdev_set_tc_queue); 2354 2355 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2356 { 2357 if (num_tc > TC_MAX_QUEUE) 2358 return -EINVAL; 2359 2360 #ifdef CONFIG_XPS 2361 netif_reset_xps_queues_gt(dev, 0); 2362 #endif 2363 dev->num_tc = num_tc; 2364 return 0; 2365 } 2366 EXPORT_SYMBOL(netdev_set_num_tc); 2367 2368 /* 2369 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2370 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 2371 */ 2372 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2373 { 2374 int rc; 2375 2376 if (txq < 1 || txq > dev->num_tx_queues) 2377 return -EINVAL; 2378 2379 if (dev->reg_state == NETREG_REGISTERED || 2380 dev->reg_state == NETREG_UNREGISTERING) { 2381 ASSERT_RTNL(); 2382 2383 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2384 txq); 2385 if (rc) 2386 return rc; 2387 2388 if (dev->num_tc) 2389 netif_setup_tc(dev, txq); 2390 2391 if (txq < dev->real_num_tx_queues) { 2392 qdisc_reset_all_tx_gt(dev, txq); 2393 #ifdef CONFIG_XPS 2394 netif_reset_xps_queues_gt(dev, txq); 2395 #endif 2396 } 2397 } 2398 2399 dev->real_num_tx_queues = txq; 2400 return 0; 2401 } 2402 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2403 2404 #ifdef CONFIG_SYSFS 2405 /** 2406 * netif_set_real_num_rx_queues - set actual number of RX queues used 2407 * @dev: Network device 2408 * @rxq: Actual number of RX queues 2409 * 2410 * This must be called either with the rtnl_lock held or before 2411 * registration of the net device. Returns 0 on success, or a 2412 * negative error code. If called before registration, it always 2413 * succeeds. 2414 */ 2415 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2416 { 2417 int rc; 2418 2419 if (rxq < 1 || rxq > dev->num_rx_queues) 2420 return -EINVAL; 2421 2422 if (dev->reg_state == NETREG_REGISTERED) { 2423 ASSERT_RTNL(); 2424 2425 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 2426 rxq); 2427 if (rc) 2428 return rc; 2429 } 2430 2431 dev->real_num_rx_queues = rxq; 2432 return 0; 2433 } 2434 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 2435 #endif 2436 2437 /** 2438 * netif_get_num_default_rss_queues - default number of RSS queues 2439 * 2440 * This routine should set an upper limit on the number of RSS queues 2441 * used by default by multiqueue devices. 2442 */ 2443 int netif_get_num_default_rss_queues(void) 2444 { 2445 return is_kdump_kernel() ? 2446 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 2447 } 2448 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 2449 2450 static void __netif_reschedule(struct Qdisc *q) 2451 { 2452 struct softnet_data *sd; 2453 unsigned long flags; 2454 2455 local_irq_save(flags); 2456 sd = this_cpu_ptr(&softnet_data); 2457 q->next_sched = NULL; 2458 *sd->output_queue_tailp = q; 2459 sd->output_queue_tailp = &q->next_sched; 2460 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2461 local_irq_restore(flags); 2462 } 2463 2464 void __netif_schedule(struct Qdisc *q) 2465 { 2466 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 2467 __netif_reschedule(q); 2468 } 2469 EXPORT_SYMBOL(__netif_schedule); 2470 2471 struct dev_kfree_skb_cb { 2472 enum skb_free_reason reason; 2473 }; 2474 2475 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 2476 { 2477 return (struct dev_kfree_skb_cb *)skb->cb; 2478 } 2479 2480 void netif_schedule_queue(struct netdev_queue *txq) 2481 { 2482 rcu_read_lock(); 2483 if (!(txq->state & QUEUE_STATE_ANY_XOFF)) { 2484 struct Qdisc *q = rcu_dereference(txq->qdisc); 2485 2486 __netif_schedule(q); 2487 } 2488 rcu_read_unlock(); 2489 } 2490 EXPORT_SYMBOL(netif_schedule_queue); 2491 2492 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 2493 { 2494 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 2495 struct Qdisc *q; 2496 2497 rcu_read_lock(); 2498 q = rcu_dereference(dev_queue->qdisc); 2499 __netif_schedule(q); 2500 rcu_read_unlock(); 2501 } 2502 } 2503 EXPORT_SYMBOL(netif_tx_wake_queue); 2504 2505 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 2506 { 2507 unsigned long flags; 2508 2509 if (unlikely(!skb)) 2510 return; 2511 2512 if (likely(refcount_read(&skb->users) == 1)) { 2513 smp_rmb(); 2514 refcount_set(&skb->users, 0); 2515 } else if (likely(!refcount_dec_and_test(&skb->users))) { 2516 return; 2517 } 2518 get_kfree_skb_cb(skb)->reason = reason; 2519 local_irq_save(flags); 2520 skb->next = __this_cpu_read(softnet_data.completion_queue); 2521 __this_cpu_write(softnet_data.completion_queue, skb); 2522 raise_softirq_irqoff(NET_TX_SOFTIRQ); 2523 local_irq_restore(flags); 2524 } 2525 EXPORT_SYMBOL(__dev_kfree_skb_irq); 2526 2527 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 2528 { 2529 if (in_irq() || irqs_disabled()) 2530 __dev_kfree_skb_irq(skb, reason); 2531 else 2532 dev_kfree_skb(skb); 2533 } 2534 EXPORT_SYMBOL(__dev_kfree_skb_any); 2535 2536 2537 /** 2538 * netif_device_detach - mark device as removed 2539 * @dev: network device 2540 * 2541 * Mark device as removed from system and therefore no longer available. 2542 */ 2543 void netif_device_detach(struct net_device *dev) 2544 { 2545 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 2546 netif_running(dev)) { 2547 netif_tx_stop_all_queues(dev); 2548 } 2549 } 2550 EXPORT_SYMBOL(netif_device_detach); 2551 2552 /** 2553 * netif_device_attach - mark device as attached 2554 * @dev: network device 2555 * 2556 * Mark device as attached from system and restart if needed. 2557 */ 2558 void netif_device_attach(struct net_device *dev) 2559 { 2560 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 2561 netif_running(dev)) { 2562 netif_tx_wake_all_queues(dev); 2563 __netdev_watchdog_up(dev); 2564 } 2565 } 2566 EXPORT_SYMBOL(netif_device_attach); 2567 2568 /* 2569 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2570 * to be used as a distribution range. 2571 */ 2572 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb, 2573 unsigned int num_tx_queues) 2574 { 2575 u32 hash; 2576 u16 qoffset = 0; 2577 u16 qcount = num_tx_queues; 2578 2579 if (skb_rx_queue_recorded(skb)) { 2580 hash = skb_get_rx_queue(skb); 2581 while (unlikely(hash >= num_tx_queues)) 2582 hash -= num_tx_queues; 2583 return hash; 2584 } 2585 2586 if (dev->num_tc) { 2587 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2588 2589 qoffset = dev->tc_to_txq[tc].offset; 2590 qcount = dev->tc_to_txq[tc].count; 2591 } 2592 2593 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 2594 } 2595 EXPORT_SYMBOL(__skb_tx_hash); 2596 2597 static void skb_warn_bad_offload(const struct sk_buff *skb) 2598 { 2599 static const netdev_features_t null_features; 2600 struct net_device *dev = skb->dev; 2601 const char *name = ""; 2602 2603 if (!net_ratelimit()) 2604 return; 2605 2606 if (dev) { 2607 if (dev->dev.parent) 2608 name = dev_driver_string(dev->dev.parent); 2609 else 2610 name = netdev_name(dev); 2611 } 2612 WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d " 2613 "gso_type=%d ip_summed=%d\n", 2614 name, dev ? &dev->features : &null_features, 2615 skb->sk ? &skb->sk->sk_route_caps : &null_features, 2616 skb->len, skb->data_len, skb_shinfo(skb)->gso_size, 2617 skb_shinfo(skb)->gso_type, skb->ip_summed); 2618 } 2619 2620 /* 2621 * Invalidate hardware checksum when packet is to be mangled, and 2622 * complete checksum manually on outgoing path. 2623 */ 2624 int skb_checksum_help(struct sk_buff *skb) 2625 { 2626 __wsum csum; 2627 int ret = 0, offset; 2628 2629 if (skb->ip_summed == CHECKSUM_COMPLETE) 2630 goto out_set_summed; 2631 2632 if (unlikely(skb_shinfo(skb)->gso_size)) { 2633 skb_warn_bad_offload(skb); 2634 return -EINVAL; 2635 } 2636 2637 /* Before computing a checksum, we should make sure no frag could 2638 * be modified by an external entity : checksum could be wrong. 2639 */ 2640 if (skb_has_shared_frag(skb)) { 2641 ret = __skb_linearize(skb); 2642 if (ret) 2643 goto out; 2644 } 2645 2646 offset = skb_checksum_start_offset(skb); 2647 BUG_ON(offset >= skb_headlen(skb)); 2648 csum = skb_checksum(skb, offset, skb->len - offset, 0); 2649 2650 offset += skb->csum_offset; 2651 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 2652 2653 if (skb_cloned(skb) && 2654 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 2655 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2656 if (ret) 2657 goto out; 2658 } 2659 2660 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 2661 out_set_summed: 2662 skb->ip_summed = CHECKSUM_NONE; 2663 out: 2664 return ret; 2665 } 2666 EXPORT_SYMBOL(skb_checksum_help); 2667 2668 int skb_crc32c_csum_help(struct sk_buff *skb) 2669 { 2670 __le32 crc32c_csum; 2671 int ret = 0, offset, start; 2672 2673 if (skb->ip_summed != CHECKSUM_PARTIAL) 2674 goto out; 2675 2676 if (unlikely(skb_is_gso(skb))) 2677 goto out; 2678 2679 /* Before computing a checksum, we should make sure no frag could 2680 * be modified by an external entity : checksum could be wrong. 2681 */ 2682 if (unlikely(skb_has_shared_frag(skb))) { 2683 ret = __skb_linearize(skb); 2684 if (ret) 2685 goto out; 2686 } 2687 start = skb_checksum_start_offset(skb); 2688 offset = start + offsetof(struct sctphdr, checksum); 2689 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 2690 ret = -EINVAL; 2691 goto out; 2692 } 2693 if (skb_cloned(skb) && 2694 !skb_clone_writable(skb, offset + sizeof(__le32))) { 2695 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 2696 if (ret) 2697 goto out; 2698 } 2699 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 2700 skb->len - start, ~(__u32)0, 2701 crc32c_csum_stub)); 2702 *(__le32 *)(skb->data + offset) = crc32c_csum; 2703 skb->ip_summed = CHECKSUM_NONE; 2704 skb->csum_not_inet = 0; 2705 out: 2706 return ret; 2707 } 2708 2709 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 2710 { 2711 __be16 type = skb->protocol; 2712 2713 /* Tunnel gso handlers can set protocol to ethernet. */ 2714 if (type == htons(ETH_P_TEB)) { 2715 struct ethhdr *eth; 2716 2717 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 2718 return 0; 2719 2720 eth = (struct ethhdr *)skb_mac_header(skb); 2721 type = eth->h_proto; 2722 } 2723 2724 return __vlan_get_protocol(skb, type, depth); 2725 } 2726 2727 /** 2728 * skb_mac_gso_segment - mac layer segmentation handler. 2729 * @skb: buffer to segment 2730 * @features: features for the output path (see dev->features) 2731 */ 2732 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 2733 netdev_features_t features) 2734 { 2735 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 2736 struct packet_offload *ptype; 2737 int vlan_depth = skb->mac_len; 2738 __be16 type = skb_network_protocol(skb, &vlan_depth); 2739 2740 if (unlikely(!type)) 2741 return ERR_PTR(-EINVAL); 2742 2743 __skb_pull(skb, vlan_depth); 2744 2745 rcu_read_lock(); 2746 list_for_each_entry_rcu(ptype, &offload_base, list) { 2747 if (ptype->type == type && ptype->callbacks.gso_segment) { 2748 segs = ptype->callbacks.gso_segment(skb, features); 2749 break; 2750 } 2751 } 2752 rcu_read_unlock(); 2753 2754 __skb_push(skb, skb->data - skb_mac_header(skb)); 2755 2756 return segs; 2757 } 2758 EXPORT_SYMBOL(skb_mac_gso_segment); 2759 2760 2761 /* openvswitch calls this on rx path, so we need a different check. 2762 */ 2763 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 2764 { 2765 if (tx_path) 2766 return skb->ip_summed != CHECKSUM_PARTIAL; 2767 2768 return skb->ip_summed == CHECKSUM_NONE; 2769 } 2770 2771 /** 2772 * __skb_gso_segment - Perform segmentation on skb. 2773 * @skb: buffer to segment 2774 * @features: features for the output path (see dev->features) 2775 * @tx_path: whether it is called in TX path 2776 * 2777 * This function segments the given skb and returns a list of segments. 2778 * 2779 * It may return NULL if the skb requires no segmentation. This is 2780 * only possible when GSO is used for verifying header integrity. 2781 * 2782 * Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb. 2783 */ 2784 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 2785 netdev_features_t features, bool tx_path) 2786 { 2787 struct sk_buff *segs; 2788 2789 if (unlikely(skb_needs_check(skb, tx_path))) { 2790 int err; 2791 2792 /* We're going to init ->check field in TCP or UDP header */ 2793 err = skb_cow_head(skb, 0); 2794 if (err < 0) 2795 return ERR_PTR(err); 2796 } 2797 2798 /* Only report GSO partial support if it will enable us to 2799 * support segmentation on this frame without needing additional 2800 * work. 2801 */ 2802 if (features & NETIF_F_GSO_PARTIAL) { 2803 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 2804 struct net_device *dev = skb->dev; 2805 2806 partial_features |= dev->features & dev->gso_partial_features; 2807 if (!skb_gso_ok(skb, features | partial_features)) 2808 features &= ~NETIF_F_GSO_PARTIAL; 2809 } 2810 2811 BUILD_BUG_ON(SKB_SGO_CB_OFFSET + 2812 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 2813 2814 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 2815 SKB_GSO_CB(skb)->encap_level = 0; 2816 2817 skb_reset_mac_header(skb); 2818 skb_reset_mac_len(skb); 2819 2820 segs = skb_mac_gso_segment(skb, features); 2821 2822 if (unlikely(skb_needs_check(skb, tx_path))) 2823 skb_warn_bad_offload(skb); 2824 2825 return segs; 2826 } 2827 EXPORT_SYMBOL(__skb_gso_segment); 2828 2829 /* Take action when hardware reception checksum errors are detected. */ 2830 #ifdef CONFIG_BUG 2831 void netdev_rx_csum_fault(struct net_device *dev) 2832 { 2833 if (net_ratelimit()) { 2834 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 2835 dump_stack(); 2836 } 2837 } 2838 EXPORT_SYMBOL(netdev_rx_csum_fault); 2839 #endif 2840 2841 /* Actually, we should eliminate this check as soon as we know, that: 2842 * 1. IOMMU is present and allows to map all the memory. 2843 * 2. No high memory really exists on this machine. 2844 */ 2845 2846 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 2847 { 2848 #ifdef CONFIG_HIGHMEM 2849 int i; 2850 2851 if (!(dev->features & NETIF_F_HIGHDMA)) { 2852 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2853 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2854 2855 if (PageHighMem(skb_frag_page(frag))) 2856 return 1; 2857 } 2858 } 2859 2860 if (PCI_DMA_BUS_IS_PHYS) { 2861 struct device *pdev = dev->dev.parent; 2862 2863 if (!pdev) 2864 return 0; 2865 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2866 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2867 dma_addr_t addr = page_to_phys(skb_frag_page(frag)); 2868 2869 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 2870 return 1; 2871 } 2872 } 2873 #endif 2874 return 0; 2875 } 2876 2877 /* If MPLS offload request, verify we are testing hardware MPLS features 2878 * instead of standard features for the netdev. 2879 */ 2880 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 2881 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2882 netdev_features_t features, 2883 __be16 type) 2884 { 2885 if (eth_p_mpls(type)) 2886 features &= skb->dev->mpls_features; 2887 2888 return features; 2889 } 2890 #else 2891 static netdev_features_t net_mpls_features(struct sk_buff *skb, 2892 netdev_features_t features, 2893 __be16 type) 2894 { 2895 return features; 2896 } 2897 #endif 2898 2899 static netdev_features_t harmonize_features(struct sk_buff *skb, 2900 netdev_features_t features) 2901 { 2902 int tmp; 2903 __be16 type; 2904 2905 type = skb_network_protocol(skb, &tmp); 2906 features = net_mpls_features(skb, features, type); 2907 2908 if (skb->ip_summed != CHECKSUM_NONE && 2909 !can_checksum_protocol(features, type)) { 2910 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 2911 } 2912 if (illegal_highdma(skb->dev, skb)) 2913 features &= ~NETIF_F_SG; 2914 2915 return features; 2916 } 2917 2918 netdev_features_t passthru_features_check(struct sk_buff *skb, 2919 struct net_device *dev, 2920 netdev_features_t features) 2921 { 2922 return features; 2923 } 2924 EXPORT_SYMBOL(passthru_features_check); 2925 2926 static netdev_features_t dflt_features_check(const struct sk_buff *skb, 2927 struct net_device *dev, 2928 netdev_features_t features) 2929 { 2930 return vlan_features_check(skb, features); 2931 } 2932 2933 static netdev_features_t gso_features_check(const struct sk_buff *skb, 2934 struct net_device *dev, 2935 netdev_features_t features) 2936 { 2937 u16 gso_segs = skb_shinfo(skb)->gso_segs; 2938 2939 if (gso_segs > dev->gso_max_segs) 2940 return features & ~NETIF_F_GSO_MASK; 2941 2942 /* Support for GSO partial features requires software 2943 * intervention before we can actually process the packets 2944 * so we need to strip support for any partial features now 2945 * and we can pull them back in after we have partially 2946 * segmented the frame. 2947 */ 2948 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 2949 features &= ~dev->gso_partial_features; 2950 2951 /* Make sure to clear the IPv4 ID mangling feature if the 2952 * IPv4 header has the potential to be fragmented. 2953 */ 2954 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 2955 struct iphdr *iph = skb->encapsulation ? 2956 inner_ip_hdr(skb) : ip_hdr(skb); 2957 2958 if (!(iph->frag_off & htons(IP_DF))) 2959 features &= ~NETIF_F_TSO_MANGLEID; 2960 } 2961 2962 return features; 2963 } 2964 2965 netdev_features_t netif_skb_features(struct sk_buff *skb) 2966 { 2967 struct net_device *dev = skb->dev; 2968 netdev_features_t features = dev->features; 2969 2970 if (skb_is_gso(skb)) 2971 features = gso_features_check(skb, dev, features); 2972 2973 /* If encapsulation offload request, verify we are testing 2974 * hardware encapsulation features instead of standard 2975 * features for the netdev 2976 */ 2977 if (skb->encapsulation) 2978 features &= dev->hw_enc_features; 2979 2980 if (skb_vlan_tagged(skb)) 2981 features = netdev_intersect_features(features, 2982 dev->vlan_features | 2983 NETIF_F_HW_VLAN_CTAG_TX | 2984 NETIF_F_HW_VLAN_STAG_TX); 2985 2986 if (dev->netdev_ops->ndo_features_check) 2987 features &= dev->netdev_ops->ndo_features_check(skb, dev, 2988 features); 2989 else 2990 features &= dflt_features_check(skb, dev, features); 2991 2992 return harmonize_features(skb, features); 2993 } 2994 EXPORT_SYMBOL(netif_skb_features); 2995 2996 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 2997 struct netdev_queue *txq, bool more) 2998 { 2999 unsigned int len; 3000 int rc; 3001 3002 if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all)) 3003 dev_queue_xmit_nit(skb, dev); 3004 3005 len = skb->len; 3006 trace_net_dev_start_xmit(skb, dev); 3007 rc = netdev_start_xmit(skb, dev, txq, more); 3008 trace_net_dev_xmit(skb, rc, dev, len); 3009 3010 return rc; 3011 } 3012 3013 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3014 struct netdev_queue *txq, int *ret) 3015 { 3016 struct sk_buff *skb = first; 3017 int rc = NETDEV_TX_OK; 3018 3019 while (skb) { 3020 struct sk_buff *next = skb->next; 3021 3022 skb->next = NULL; 3023 rc = xmit_one(skb, dev, txq, next != NULL); 3024 if (unlikely(!dev_xmit_complete(rc))) { 3025 skb->next = next; 3026 goto out; 3027 } 3028 3029 skb = next; 3030 if (netif_xmit_stopped(txq) && skb) { 3031 rc = NETDEV_TX_BUSY; 3032 break; 3033 } 3034 } 3035 3036 out: 3037 *ret = rc; 3038 return skb; 3039 } 3040 3041 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3042 netdev_features_t features) 3043 { 3044 if (skb_vlan_tag_present(skb) && 3045 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3046 skb = __vlan_hwaccel_push_inside(skb); 3047 return skb; 3048 } 3049 3050 int skb_csum_hwoffload_help(struct sk_buff *skb, 3051 const netdev_features_t features) 3052 { 3053 if (unlikely(skb->csum_not_inet)) 3054 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3055 skb_crc32c_csum_help(skb); 3056 3057 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3058 } 3059 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3060 3061 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev) 3062 { 3063 netdev_features_t features; 3064 3065 features = netif_skb_features(skb); 3066 skb = validate_xmit_vlan(skb, features); 3067 if (unlikely(!skb)) 3068 goto out_null; 3069 3070 if (netif_needs_gso(skb, features)) { 3071 struct sk_buff *segs; 3072 3073 segs = skb_gso_segment(skb, features); 3074 if (IS_ERR(segs)) { 3075 goto out_kfree_skb; 3076 } else if (segs) { 3077 consume_skb(skb); 3078 skb = segs; 3079 } 3080 } else { 3081 if (skb_needs_linearize(skb, features) && 3082 __skb_linearize(skb)) 3083 goto out_kfree_skb; 3084 3085 if (validate_xmit_xfrm(skb, features)) 3086 goto out_kfree_skb; 3087 3088 /* If packet is not checksummed and device does not 3089 * support checksumming for this protocol, complete 3090 * checksumming here. 3091 */ 3092 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3093 if (skb->encapsulation) 3094 skb_set_inner_transport_header(skb, 3095 skb_checksum_start_offset(skb)); 3096 else 3097 skb_set_transport_header(skb, 3098 skb_checksum_start_offset(skb)); 3099 if (skb_csum_hwoffload_help(skb, features)) 3100 goto out_kfree_skb; 3101 } 3102 } 3103 3104 return skb; 3105 3106 out_kfree_skb: 3107 kfree_skb(skb); 3108 out_null: 3109 atomic_long_inc(&dev->tx_dropped); 3110 return NULL; 3111 } 3112 3113 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev) 3114 { 3115 struct sk_buff *next, *head = NULL, *tail; 3116 3117 for (; skb != NULL; skb = next) { 3118 next = skb->next; 3119 skb->next = NULL; 3120 3121 /* in case skb wont be segmented, point to itself */ 3122 skb->prev = skb; 3123 3124 skb = validate_xmit_skb(skb, dev); 3125 if (!skb) 3126 continue; 3127 3128 if (!head) 3129 head = skb; 3130 else 3131 tail->next = skb; 3132 /* If skb was segmented, skb->prev points to 3133 * the last segment. If not, it still contains skb. 3134 */ 3135 tail = skb->prev; 3136 } 3137 return head; 3138 } 3139 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3140 3141 static void qdisc_pkt_len_init(struct sk_buff *skb) 3142 { 3143 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3144 3145 qdisc_skb_cb(skb)->pkt_len = skb->len; 3146 3147 /* To get more precise estimation of bytes sent on wire, 3148 * we add to pkt_len the headers size of all segments 3149 */ 3150 if (shinfo->gso_size) { 3151 unsigned int hdr_len; 3152 u16 gso_segs = shinfo->gso_segs; 3153 3154 /* mac layer + network layer */ 3155 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3156 3157 /* + transport layer */ 3158 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) 3159 hdr_len += tcp_hdrlen(skb); 3160 else 3161 hdr_len += sizeof(struct udphdr); 3162 3163 if (shinfo->gso_type & SKB_GSO_DODGY) 3164 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3165 shinfo->gso_size); 3166 3167 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3168 } 3169 } 3170 3171 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3172 struct net_device *dev, 3173 struct netdev_queue *txq) 3174 { 3175 spinlock_t *root_lock = qdisc_lock(q); 3176 struct sk_buff *to_free = NULL; 3177 bool contended; 3178 int rc; 3179 3180 qdisc_calculate_pkt_len(skb, q); 3181 /* 3182 * Heuristic to force contended enqueues to serialize on a 3183 * separate lock before trying to get qdisc main lock. 3184 * This permits qdisc->running owner to get the lock more 3185 * often and dequeue packets faster. 3186 */ 3187 contended = qdisc_is_running(q); 3188 if (unlikely(contended)) 3189 spin_lock(&q->busylock); 3190 3191 spin_lock(root_lock); 3192 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3193 __qdisc_drop(skb, &to_free); 3194 rc = NET_XMIT_DROP; 3195 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3196 qdisc_run_begin(q)) { 3197 /* 3198 * This is a work-conserving queue; there are no old skbs 3199 * waiting to be sent out; and the qdisc is not running - 3200 * xmit the skb directly. 3201 */ 3202 3203 qdisc_bstats_update(q, skb); 3204 3205 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3206 if (unlikely(contended)) { 3207 spin_unlock(&q->busylock); 3208 contended = false; 3209 } 3210 __qdisc_run(q); 3211 } else 3212 qdisc_run_end(q); 3213 3214 rc = NET_XMIT_SUCCESS; 3215 } else { 3216 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3217 if (qdisc_run_begin(q)) { 3218 if (unlikely(contended)) { 3219 spin_unlock(&q->busylock); 3220 contended = false; 3221 } 3222 __qdisc_run(q); 3223 } 3224 } 3225 spin_unlock(root_lock); 3226 if (unlikely(to_free)) 3227 kfree_skb_list(to_free); 3228 if (unlikely(contended)) 3229 spin_unlock(&q->busylock); 3230 return rc; 3231 } 3232 3233 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3234 static void skb_update_prio(struct sk_buff *skb) 3235 { 3236 struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap); 3237 3238 if (!skb->priority && skb->sk && map) { 3239 unsigned int prioidx = 3240 sock_cgroup_prioidx(&skb->sk->sk_cgrp_data); 3241 3242 if (prioidx < map->priomap_len) 3243 skb->priority = map->priomap[prioidx]; 3244 } 3245 } 3246 #else 3247 #define skb_update_prio(skb) 3248 #endif 3249 3250 DEFINE_PER_CPU(int, xmit_recursion); 3251 EXPORT_SYMBOL(xmit_recursion); 3252 3253 /** 3254 * dev_loopback_xmit - loop back @skb 3255 * @net: network namespace this loopback is happening in 3256 * @sk: sk needed to be a netfilter okfn 3257 * @skb: buffer to transmit 3258 */ 3259 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3260 { 3261 skb_reset_mac_header(skb); 3262 __skb_pull(skb, skb_network_offset(skb)); 3263 skb->pkt_type = PACKET_LOOPBACK; 3264 skb->ip_summed = CHECKSUM_UNNECESSARY; 3265 WARN_ON(!skb_dst(skb)); 3266 skb_dst_force(skb); 3267 netif_rx_ni(skb); 3268 return 0; 3269 } 3270 EXPORT_SYMBOL(dev_loopback_xmit); 3271 3272 #ifdef CONFIG_NET_EGRESS 3273 static struct sk_buff * 3274 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3275 { 3276 struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list); 3277 struct tcf_result cl_res; 3278 3279 if (!cl) 3280 return skb; 3281 3282 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3283 qdisc_bstats_cpu_update(cl->q, skb); 3284 3285 switch (tcf_classify(skb, cl, &cl_res, false)) { 3286 case TC_ACT_OK: 3287 case TC_ACT_RECLASSIFY: 3288 skb->tc_index = TC_H_MIN(cl_res.classid); 3289 break; 3290 case TC_ACT_SHOT: 3291 qdisc_qstats_cpu_drop(cl->q); 3292 *ret = NET_XMIT_DROP; 3293 kfree_skb(skb); 3294 return NULL; 3295 case TC_ACT_STOLEN: 3296 case TC_ACT_QUEUED: 3297 case TC_ACT_TRAP: 3298 *ret = NET_XMIT_SUCCESS; 3299 consume_skb(skb); 3300 return NULL; 3301 case TC_ACT_REDIRECT: 3302 /* No need to push/pop skb's mac_header here on egress! */ 3303 skb_do_redirect(skb); 3304 *ret = NET_XMIT_SUCCESS; 3305 return NULL; 3306 default: 3307 break; 3308 } 3309 3310 return skb; 3311 } 3312 #endif /* CONFIG_NET_EGRESS */ 3313 3314 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 3315 { 3316 #ifdef CONFIG_XPS 3317 struct xps_dev_maps *dev_maps; 3318 struct xps_map *map; 3319 int queue_index = -1; 3320 3321 rcu_read_lock(); 3322 dev_maps = rcu_dereference(dev->xps_maps); 3323 if (dev_maps) { 3324 unsigned int tci = skb->sender_cpu - 1; 3325 3326 if (dev->num_tc) { 3327 tci *= dev->num_tc; 3328 tci += netdev_get_prio_tc_map(dev, skb->priority); 3329 } 3330 3331 map = rcu_dereference(dev_maps->cpu_map[tci]); 3332 if (map) { 3333 if (map->len == 1) 3334 queue_index = map->queues[0]; 3335 else 3336 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb), 3337 map->len)]; 3338 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3339 queue_index = -1; 3340 } 3341 } 3342 rcu_read_unlock(); 3343 3344 return queue_index; 3345 #else 3346 return -1; 3347 #endif 3348 } 3349 3350 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb) 3351 { 3352 struct sock *sk = skb->sk; 3353 int queue_index = sk_tx_queue_get(sk); 3354 3355 if (queue_index < 0 || skb->ooo_okay || 3356 queue_index >= dev->real_num_tx_queues) { 3357 int new_index = get_xps_queue(dev, skb); 3358 3359 if (new_index < 0) 3360 new_index = skb_tx_hash(dev, skb); 3361 3362 if (queue_index != new_index && sk && 3363 sk_fullsock(sk) && 3364 rcu_access_pointer(sk->sk_dst_cache)) 3365 sk_tx_queue_set(sk, new_index); 3366 3367 queue_index = new_index; 3368 } 3369 3370 return queue_index; 3371 } 3372 3373 struct netdev_queue *netdev_pick_tx(struct net_device *dev, 3374 struct sk_buff *skb, 3375 void *accel_priv) 3376 { 3377 int queue_index = 0; 3378 3379 #ifdef CONFIG_XPS 3380 u32 sender_cpu = skb->sender_cpu - 1; 3381 3382 if (sender_cpu >= (u32)NR_CPUS) 3383 skb->sender_cpu = raw_smp_processor_id() + 1; 3384 #endif 3385 3386 if (dev->real_num_tx_queues != 1) { 3387 const struct net_device_ops *ops = dev->netdev_ops; 3388 3389 if (ops->ndo_select_queue) 3390 queue_index = ops->ndo_select_queue(dev, skb, accel_priv, 3391 __netdev_pick_tx); 3392 else 3393 queue_index = __netdev_pick_tx(dev, skb); 3394 3395 if (!accel_priv) 3396 queue_index = netdev_cap_txqueue(dev, queue_index); 3397 } 3398 3399 skb_set_queue_mapping(skb, queue_index); 3400 return netdev_get_tx_queue(dev, queue_index); 3401 } 3402 3403 /** 3404 * __dev_queue_xmit - transmit a buffer 3405 * @skb: buffer to transmit 3406 * @accel_priv: private data used for L2 forwarding offload 3407 * 3408 * Queue a buffer for transmission to a network device. The caller must 3409 * have set the device and priority and built the buffer before calling 3410 * this function. The function can be called from an interrupt. 3411 * 3412 * A negative errno code is returned on a failure. A success does not 3413 * guarantee the frame will be transmitted as it may be dropped due 3414 * to congestion or traffic shaping. 3415 * 3416 * ----------------------------------------------------------------------------------- 3417 * I notice this method can also return errors from the queue disciplines, 3418 * including NET_XMIT_DROP, which is a positive value. So, errors can also 3419 * be positive. 3420 * 3421 * Regardless of the return value, the skb is consumed, so it is currently 3422 * difficult to retry a send to this method. (You can bump the ref count 3423 * before sending to hold a reference for retry if you are careful.) 3424 * 3425 * When calling this method, interrupts MUST be enabled. This is because 3426 * the BH enable code must have IRQs enabled so that it will not deadlock. 3427 * --BLG 3428 */ 3429 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv) 3430 { 3431 struct net_device *dev = skb->dev; 3432 struct netdev_queue *txq; 3433 struct Qdisc *q; 3434 int rc = -ENOMEM; 3435 3436 skb_reset_mac_header(skb); 3437 3438 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 3439 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 3440 3441 /* Disable soft irqs for various locks below. Also 3442 * stops preemption for RCU. 3443 */ 3444 rcu_read_lock_bh(); 3445 3446 skb_update_prio(skb); 3447 3448 qdisc_pkt_len_init(skb); 3449 #ifdef CONFIG_NET_CLS_ACT 3450 skb->tc_at_ingress = 0; 3451 # ifdef CONFIG_NET_EGRESS 3452 if (static_key_false(&egress_needed)) { 3453 skb = sch_handle_egress(skb, &rc, dev); 3454 if (!skb) 3455 goto out; 3456 } 3457 # endif 3458 #endif 3459 /* If device/qdisc don't need skb->dst, release it right now while 3460 * its hot in this cpu cache. 3461 */ 3462 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 3463 skb_dst_drop(skb); 3464 else 3465 skb_dst_force(skb); 3466 3467 txq = netdev_pick_tx(dev, skb, accel_priv); 3468 q = rcu_dereference_bh(txq->qdisc); 3469 3470 trace_net_dev_queue(skb); 3471 if (q->enqueue) { 3472 rc = __dev_xmit_skb(skb, q, dev, txq); 3473 goto out; 3474 } 3475 3476 /* The device has no queue. Common case for software devices: 3477 * loopback, all the sorts of tunnels... 3478 3479 * Really, it is unlikely that netif_tx_lock protection is necessary 3480 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 3481 * counters.) 3482 * However, it is possible, that they rely on protection 3483 * made by us here. 3484 3485 * Check this and shot the lock. It is not prone from deadlocks. 3486 *Either shot noqueue qdisc, it is even simpler 8) 3487 */ 3488 if (dev->flags & IFF_UP) { 3489 int cpu = smp_processor_id(); /* ok because BHs are off */ 3490 3491 if (txq->xmit_lock_owner != cpu) { 3492 if (unlikely(__this_cpu_read(xmit_recursion) > 3493 XMIT_RECURSION_LIMIT)) 3494 goto recursion_alert; 3495 3496 skb = validate_xmit_skb(skb, dev); 3497 if (!skb) 3498 goto out; 3499 3500 HARD_TX_LOCK(dev, txq, cpu); 3501 3502 if (!netif_xmit_stopped(txq)) { 3503 __this_cpu_inc(xmit_recursion); 3504 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 3505 __this_cpu_dec(xmit_recursion); 3506 if (dev_xmit_complete(rc)) { 3507 HARD_TX_UNLOCK(dev, txq); 3508 goto out; 3509 } 3510 } 3511 HARD_TX_UNLOCK(dev, txq); 3512 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 3513 dev->name); 3514 } else { 3515 /* Recursion is detected! It is possible, 3516 * unfortunately 3517 */ 3518 recursion_alert: 3519 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 3520 dev->name); 3521 } 3522 } 3523 3524 rc = -ENETDOWN; 3525 rcu_read_unlock_bh(); 3526 3527 atomic_long_inc(&dev->tx_dropped); 3528 kfree_skb_list(skb); 3529 return rc; 3530 out: 3531 rcu_read_unlock_bh(); 3532 return rc; 3533 } 3534 3535 int dev_queue_xmit(struct sk_buff *skb) 3536 { 3537 return __dev_queue_xmit(skb, NULL); 3538 } 3539 EXPORT_SYMBOL(dev_queue_xmit); 3540 3541 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv) 3542 { 3543 return __dev_queue_xmit(skb, accel_priv); 3544 } 3545 EXPORT_SYMBOL(dev_queue_xmit_accel); 3546 3547 3548 /************************************************************************* 3549 * Receiver routines 3550 *************************************************************************/ 3551 3552 int netdev_max_backlog __read_mostly = 1000; 3553 EXPORT_SYMBOL(netdev_max_backlog); 3554 3555 int netdev_tstamp_prequeue __read_mostly = 1; 3556 int netdev_budget __read_mostly = 300; 3557 unsigned int __read_mostly netdev_budget_usecs = 2000; 3558 int weight_p __read_mostly = 64; /* old backlog weight */ 3559 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 3560 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 3561 int dev_rx_weight __read_mostly = 64; 3562 int dev_tx_weight __read_mostly = 64; 3563 3564 /* Called with irq disabled */ 3565 static inline void ____napi_schedule(struct softnet_data *sd, 3566 struct napi_struct *napi) 3567 { 3568 list_add_tail(&napi->poll_list, &sd->poll_list); 3569 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3570 } 3571 3572 #ifdef CONFIG_RPS 3573 3574 /* One global table that all flow-based protocols share. */ 3575 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 3576 EXPORT_SYMBOL(rps_sock_flow_table); 3577 u32 rps_cpu_mask __read_mostly; 3578 EXPORT_SYMBOL(rps_cpu_mask); 3579 3580 struct static_key rps_needed __read_mostly; 3581 EXPORT_SYMBOL(rps_needed); 3582 struct static_key rfs_needed __read_mostly; 3583 EXPORT_SYMBOL(rfs_needed); 3584 3585 static struct rps_dev_flow * 3586 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3587 struct rps_dev_flow *rflow, u16 next_cpu) 3588 { 3589 if (next_cpu < nr_cpu_ids) { 3590 #ifdef CONFIG_RFS_ACCEL 3591 struct netdev_rx_queue *rxqueue; 3592 struct rps_dev_flow_table *flow_table; 3593 struct rps_dev_flow *old_rflow; 3594 u32 flow_id; 3595 u16 rxq_index; 3596 int rc; 3597 3598 /* Should we steer this flow to a different hardware queue? */ 3599 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 3600 !(dev->features & NETIF_F_NTUPLE)) 3601 goto out; 3602 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 3603 if (rxq_index == skb_get_rx_queue(skb)) 3604 goto out; 3605 3606 rxqueue = dev->_rx + rxq_index; 3607 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3608 if (!flow_table) 3609 goto out; 3610 flow_id = skb_get_hash(skb) & flow_table->mask; 3611 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 3612 rxq_index, flow_id); 3613 if (rc < 0) 3614 goto out; 3615 old_rflow = rflow; 3616 rflow = &flow_table->flows[flow_id]; 3617 rflow->filter = rc; 3618 if (old_rflow->filter == rflow->filter) 3619 old_rflow->filter = RPS_NO_FILTER; 3620 out: 3621 #endif 3622 rflow->last_qtail = 3623 per_cpu(softnet_data, next_cpu).input_queue_head; 3624 } 3625 3626 rflow->cpu = next_cpu; 3627 return rflow; 3628 } 3629 3630 /* 3631 * get_rps_cpu is called from netif_receive_skb and returns the target 3632 * CPU from the RPS map of the receiving queue for a given skb. 3633 * rcu_read_lock must be held on entry. 3634 */ 3635 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 3636 struct rps_dev_flow **rflowp) 3637 { 3638 const struct rps_sock_flow_table *sock_flow_table; 3639 struct netdev_rx_queue *rxqueue = dev->_rx; 3640 struct rps_dev_flow_table *flow_table; 3641 struct rps_map *map; 3642 int cpu = -1; 3643 u32 tcpu; 3644 u32 hash; 3645 3646 if (skb_rx_queue_recorded(skb)) { 3647 u16 index = skb_get_rx_queue(skb); 3648 3649 if (unlikely(index >= dev->real_num_rx_queues)) { 3650 WARN_ONCE(dev->real_num_rx_queues > 1, 3651 "%s received packet on queue %u, but number " 3652 "of RX queues is %u\n", 3653 dev->name, index, dev->real_num_rx_queues); 3654 goto done; 3655 } 3656 rxqueue += index; 3657 } 3658 3659 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 3660 3661 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3662 map = rcu_dereference(rxqueue->rps_map); 3663 if (!flow_table && !map) 3664 goto done; 3665 3666 skb_reset_network_header(skb); 3667 hash = skb_get_hash(skb); 3668 if (!hash) 3669 goto done; 3670 3671 sock_flow_table = rcu_dereference(rps_sock_flow_table); 3672 if (flow_table && sock_flow_table) { 3673 struct rps_dev_flow *rflow; 3674 u32 next_cpu; 3675 u32 ident; 3676 3677 /* First check into global flow table if there is a match */ 3678 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 3679 if ((ident ^ hash) & ~rps_cpu_mask) 3680 goto try_rps; 3681 3682 next_cpu = ident & rps_cpu_mask; 3683 3684 /* OK, now we know there is a match, 3685 * we can look at the local (per receive queue) flow table 3686 */ 3687 rflow = &flow_table->flows[hash & flow_table->mask]; 3688 tcpu = rflow->cpu; 3689 3690 /* 3691 * If the desired CPU (where last recvmsg was done) is 3692 * different from current CPU (one in the rx-queue flow 3693 * table entry), switch if one of the following holds: 3694 * - Current CPU is unset (>= nr_cpu_ids). 3695 * - Current CPU is offline. 3696 * - The current CPU's queue tail has advanced beyond the 3697 * last packet that was enqueued using this table entry. 3698 * This guarantees that all previous packets for the flow 3699 * have been dequeued, thus preserving in order delivery. 3700 */ 3701 if (unlikely(tcpu != next_cpu) && 3702 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 3703 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 3704 rflow->last_qtail)) >= 0)) { 3705 tcpu = next_cpu; 3706 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 3707 } 3708 3709 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 3710 *rflowp = rflow; 3711 cpu = tcpu; 3712 goto done; 3713 } 3714 } 3715 3716 try_rps: 3717 3718 if (map) { 3719 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 3720 if (cpu_online(tcpu)) { 3721 cpu = tcpu; 3722 goto done; 3723 } 3724 } 3725 3726 done: 3727 return cpu; 3728 } 3729 3730 #ifdef CONFIG_RFS_ACCEL 3731 3732 /** 3733 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 3734 * @dev: Device on which the filter was set 3735 * @rxq_index: RX queue index 3736 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 3737 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 3738 * 3739 * Drivers that implement ndo_rx_flow_steer() should periodically call 3740 * this function for each installed filter and remove the filters for 3741 * which it returns %true. 3742 */ 3743 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 3744 u32 flow_id, u16 filter_id) 3745 { 3746 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 3747 struct rps_dev_flow_table *flow_table; 3748 struct rps_dev_flow *rflow; 3749 bool expire = true; 3750 unsigned int cpu; 3751 3752 rcu_read_lock(); 3753 flow_table = rcu_dereference(rxqueue->rps_flow_table); 3754 if (flow_table && flow_id <= flow_table->mask) { 3755 rflow = &flow_table->flows[flow_id]; 3756 cpu = ACCESS_ONCE(rflow->cpu); 3757 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 3758 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 3759 rflow->last_qtail) < 3760 (int)(10 * flow_table->mask))) 3761 expire = false; 3762 } 3763 rcu_read_unlock(); 3764 return expire; 3765 } 3766 EXPORT_SYMBOL(rps_may_expire_flow); 3767 3768 #endif /* CONFIG_RFS_ACCEL */ 3769 3770 /* Called from hardirq (IPI) context */ 3771 static void rps_trigger_softirq(void *data) 3772 { 3773 struct softnet_data *sd = data; 3774 3775 ____napi_schedule(sd, &sd->backlog); 3776 sd->received_rps++; 3777 } 3778 3779 #endif /* CONFIG_RPS */ 3780 3781 /* 3782 * Check if this softnet_data structure is another cpu one 3783 * If yes, queue it to our IPI list and return 1 3784 * If no, return 0 3785 */ 3786 static int rps_ipi_queued(struct softnet_data *sd) 3787 { 3788 #ifdef CONFIG_RPS 3789 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 3790 3791 if (sd != mysd) { 3792 sd->rps_ipi_next = mysd->rps_ipi_list; 3793 mysd->rps_ipi_list = sd; 3794 3795 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3796 return 1; 3797 } 3798 #endif /* CONFIG_RPS */ 3799 return 0; 3800 } 3801 3802 #ifdef CONFIG_NET_FLOW_LIMIT 3803 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 3804 #endif 3805 3806 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 3807 { 3808 #ifdef CONFIG_NET_FLOW_LIMIT 3809 struct sd_flow_limit *fl; 3810 struct softnet_data *sd; 3811 unsigned int old_flow, new_flow; 3812 3813 if (qlen < (netdev_max_backlog >> 1)) 3814 return false; 3815 3816 sd = this_cpu_ptr(&softnet_data); 3817 3818 rcu_read_lock(); 3819 fl = rcu_dereference(sd->flow_limit); 3820 if (fl) { 3821 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 3822 old_flow = fl->history[fl->history_head]; 3823 fl->history[fl->history_head] = new_flow; 3824 3825 fl->history_head++; 3826 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 3827 3828 if (likely(fl->buckets[old_flow])) 3829 fl->buckets[old_flow]--; 3830 3831 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 3832 fl->count++; 3833 rcu_read_unlock(); 3834 return true; 3835 } 3836 } 3837 rcu_read_unlock(); 3838 #endif 3839 return false; 3840 } 3841 3842 /* 3843 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 3844 * queue (may be a remote CPU queue). 3845 */ 3846 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 3847 unsigned int *qtail) 3848 { 3849 struct softnet_data *sd; 3850 unsigned long flags; 3851 unsigned int qlen; 3852 3853 sd = &per_cpu(softnet_data, cpu); 3854 3855 local_irq_save(flags); 3856 3857 rps_lock(sd); 3858 if (!netif_running(skb->dev)) 3859 goto drop; 3860 qlen = skb_queue_len(&sd->input_pkt_queue); 3861 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 3862 if (qlen) { 3863 enqueue: 3864 __skb_queue_tail(&sd->input_pkt_queue, skb); 3865 input_queue_tail_incr_save(sd, qtail); 3866 rps_unlock(sd); 3867 local_irq_restore(flags); 3868 return NET_RX_SUCCESS; 3869 } 3870 3871 /* Schedule NAPI for backlog device 3872 * We can use non atomic operation since we own the queue lock 3873 */ 3874 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 3875 if (!rps_ipi_queued(sd)) 3876 ____napi_schedule(sd, &sd->backlog); 3877 } 3878 goto enqueue; 3879 } 3880 3881 drop: 3882 sd->dropped++; 3883 rps_unlock(sd); 3884 3885 local_irq_restore(flags); 3886 3887 atomic_long_inc(&skb->dev->rx_dropped); 3888 kfree_skb(skb); 3889 return NET_RX_DROP; 3890 } 3891 3892 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 3893 struct bpf_prog *xdp_prog) 3894 { 3895 u32 metalen, act = XDP_DROP; 3896 struct xdp_buff xdp; 3897 void *orig_data; 3898 int hlen, off; 3899 u32 mac_len; 3900 3901 /* Reinjected packets coming from act_mirred or similar should 3902 * not get XDP generic processing. 3903 */ 3904 if (skb_cloned(skb)) 3905 return XDP_PASS; 3906 3907 /* XDP packets must be linear and must have sufficient headroom 3908 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 3909 * native XDP provides, thus we need to do it here as well. 3910 */ 3911 if (skb_is_nonlinear(skb) || 3912 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 3913 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 3914 int troom = skb->tail + skb->data_len - skb->end; 3915 3916 /* In case we have to go down the path and also linearize, 3917 * then lets do the pskb_expand_head() work just once here. 3918 */ 3919 if (pskb_expand_head(skb, 3920 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 3921 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 3922 goto do_drop; 3923 if (troom > 0 && __skb_linearize(skb)) 3924 goto do_drop; 3925 } 3926 3927 /* The XDP program wants to see the packet starting at the MAC 3928 * header. 3929 */ 3930 mac_len = skb->data - skb_mac_header(skb); 3931 hlen = skb_headlen(skb) + mac_len; 3932 xdp.data = skb->data - mac_len; 3933 xdp.data_meta = xdp.data; 3934 xdp.data_end = xdp.data + hlen; 3935 xdp.data_hard_start = skb->data - skb_headroom(skb); 3936 orig_data = xdp.data; 3937 3938 act = bpf_prog_run_xdp(xdp_prog, &xdp); 3939 3940 off = xdp.data - orig_data; 3941 if (off > 0) 3942 __skb_pull(skb, off); 3943 else if (off < 0) 3944 __skb_push(skb, -off); 3945 skb->mac_header += off; 3946 3947 switch (act) { 3948 case XDP_REDIRECT: 3949 case XDP_TX: 3950 __skb_push(skb, mac_len); 3951 break; 3952 case XDP_PASS: 3953 metalen = xdp.data - xdp.data_meta; 3954 if (metalen) 3955 skb_metadata_set(skb, metalen); 3956 break; 3957 default: 3958 bpf_warn_invalid_xdp_action(act); 3959 /* fall through */ 3960 case XDP_ABORTED: 3961 trace_xdp_exception(skb->dev, xdp_prog, act); 3962 /* fall through */ 3963 case XDP_DROP: 3964 do_drop: 3965 kfree_skb(skb); 3966 break; 3967 } 3968 3969 return act; 3970 } 3971 3972 /* When doing generic XDP we have to bypass the qdisc layer and the 3973 * network taps in order to match in-driver-XDP behavior. 3974 */ 3975 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 3976 { 3977 struct net_device *dev = skb->dev; 3978 struct netdev_queue *txq; 3979 bool free_skb = true; 3980 int cpu, rc; 3981 3982 txq = netdev_pick_tx(dev, skb, NULL); 3983 cpu = smp_processor_id(); 3984 HARD_TX_LOCK(dev, txq, cpu); 3985 if (!netif_xmit_stopped(txq)) { 3986 rc = netdev_start_xmit(skb, dev, txq, 0); 3987 if (dev_xmit_complete(rc)) 3988 free_skb = false; 3989 } 3990 HARD_TX_UNLOCK(dev, txq); 3991 if (free_skb) { 3992 trace_xdp_exception(dev, xdp_prog, XDP_TX); 3993 kfree_skb(skb); 3994 } 3995 } 3996 EXPORT_SYMBOL_GPL(generic_xdp_tx); 3997 3998 static struct static_key generic_xdp_needed __read_mostly; 3999 4000 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4001 { 4002 if (xdp_prog) { 4003 u32 act = netif_receive_generic_xdp(skb, xdp_prog); 4004 int err; 4005 4006 if (act != XDP_PASS) { 4007 switch (act) { 4008 case XDP_REDIRECT: 4009 err = xdp_do_generic_redirect(skb->dev, skb, 4010 xdp_prog); 4011 if (err) 4012 goto out_redir; 4013 /* fallthru to submit skb */ 4014 case XDP_TX: 4015 generic_xdp_tx(skb, xdp_prog); 4016 break; 4017 } 4018 return XDP_DROP; 4019 } 4020 } 4021 return XDP_PASS; 4022 out_redir: 4023 kfree_skb(skb); 4024 return XDP_DROP; 4025 } 4026 EXPORT_SYMBOL_GPL(do_xdp_generic); 4027 4028 static int netif_rx_internal(struct sk_buff *skb) 4029 { 4030 int ret; 4031 4032 net_timestamp_check(netdev_tstamp_prequeue, skb); 4033 4034 trace_netif_rx(skb); 4035 4036 if (static_key_false(&generic_xdp_needed)) { 4037 int ret; 4038 4039 preempt_disable(); 4040 rcu_read_lock(); 4041 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4042 rcu_read_unlock(); 4043 preempt_enable(); 4044 4045 /* Consider XDP consuming the packet a success from 4046 * the netdev point of view we do not want to count 4047 * this as an error. 4048 */ 4049 if (ret != XDP_PASS) 4050 return NET_RX_SUCCESS; 4051 } 4052 4053 #ifdef CONFIG_RPS 4054 if (static_key_false(&rps_needed)) { 4055 struct rps_dev_flow voidflow, *rflow = &voidflow; 4056 int cpu; 4057 4058 preempt_disable(); 4059 rcu_read_lock(); 4060 4061 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4062 if (cpu < 0) 4063 cpu = smp_processor_id(); 4064 4065 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4066 4067 rcu_read_unlock(); 4068 preempt_enable(); 4069 } else 4070 #endif 4071 { 4072 unsigned int qtail; 4073 4074 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4075 put_cpu(); 4076 } 4077 return ret; 4078 } 4079 4080 /** 4081 * netif_rx - post buffer to the network code 4082 * @skb: buffer to post 4083 * 4084 * This function receives a packet from a device driver and queues it for 4085 * the upper (protocol) levels to process. It always succeeds. The buffer 4086 * may be dropped during processing for congestion control or by the 4087 * protocol layers. 4088 * 4089 * return values: 4090 * NET_RX_SUCCESS (no congestion) 4091 * NET_RX_DROP (packet was dropped) 4092 * 4093 */ 4094 4095 int netif_rx(struct sk_buff *skb) 4096 { 4097 trace_netif_rx_entry(skb); 4098 4099 return netif_rx_internal(skb); 4100 } 4101 EXPORT_SYMBOL(netif_rx); 4102 4103 int netif_rx_ni(struct sk_buff *skb) 4104 { 4105 int err; 4106 4107 trace_netif_rx_ni_entry(skb); 4108 4109 preempt_disable(); 4110 err = netif_rx_internal(skb); 4111 if (local_softirq_pending()) 4112 do_softirq(); 4113 preempt_enable(); 4114 4115 return err; 4116 } 4117 EXPORT_SYMBOL(netif_rx_ni); 4118 4119 static __latent_entropy void net_tx_action(struct softirq_action *h) 4120 { 4121 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4122 4123 if (sd->completion_queue) { 4124 struct sk_buff *clist; 4125 4126 local_irq_disable(); 4127 clist = sd->completion_queue; 4128 sd->completion_queue = NULL; 4129 local_irq_enable(); 4130 4131 while (clist) { 4132 struct sk_buff *skb = clist; 4133 4134 clist = clist->next; 4135 4136 WARN_ON(refcount_read(&skb->users)); 4137 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4138 trace_consume_skb(skb); 4139 else 4140 trace_kfree_skb(skb, net_tx_action); 4141 4142 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4143 __kfree_skb(skb); 4144 else 4145 __kfree_skb_defer(skb); 4146 } 4147 4148 __kfree_skb_flush(); 4149 } 4150 4151 if (sd->output_queue) { 4152 struct Qdisc *head; 4153 4154 local_irq_disable(); 4155 head = sd->output_queue; 4156 sd->output_queue = NULL; 4157 sd->output_queue_tailp = &sd->output_queue; 4158 local_irq_enable(); 4159 4160 while (head) { 4161 struct Qdisc *q = head; 4162 spinlock_t *root_lock; 4163 4164 head = head->next_sched; 4165 4166 root_lock = qdisc_lock(q); 4167 spin_lock(root_lock); 4168 /* We need to make sure head->next_sched is read 4169 * before clearing __QDISC_STATE_SCHED 4170 */ 4171 smp_mb__before_atomic(); 4172 clear_bit(__QDISC_STATE_SCHED, &q->state); 4173 qdisc_run(q); 4174 spin_unlock(root_lock); 4175 } 4176 } 4177 } 4178 4179 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4180 /* This hook is defined here for ATM LANE */ 4181 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4182 unsigned char *addr) __read_mostly; 4183 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4184 #endif 4185 4186 static inline struct sk_buff * 4187 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4188 struct net_device *orig_dev) 4189 { 4190 #ifdef CONFIG_NET_CLS_ACT 4191 struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list); 4192 struct tcf_result cl_res; 4193 4194 /* If there's at least one ingress present somewhere (so 4195 * we get here via enabled static key), remaining devices 4196 * that are not configured with an ingress qdisc will bail 4197 * out here. 4198 */ 4199 if (!cl) 4200 return skb; 4201 if (*pt_prev) { 4202 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4203 *pt_prev = NULL; 4204 } 4205 4206 qdisc_skb_cb(skb)->pkt_len = skb->len; 4207 skb->tc_at_ingress = 1; 4208 qdisc_bstats_cpu_update(cl->q, skb); 4209 4210 switch (tcf_classify(skb, cl, &cl_res, false)) { 4211 case TC_ACT_OK: 4212 case TC_ACT_RECLASSIFY: 4213 skb->tc_index = TC_H_MIN(cl_res.classid); 4214 break; 4215 case TC_ACT_SHOT: 4216 qdisc_qstats_cpu_drop(cl->q); 4217 kfree_skb(skb); 4218 return NULL; 4219 case TC_ACT_STOLEN: 4220 case TC_ACT_QUEUED: 4221 case TC_ACT_TRAP: 4222 consume_skb(skb); 4223 return NULL; 4224 case TC_ACT_REDIRECT: 4225 /* skb_mac_header check was done by cls/act_bpf, so 4226 * we can safely push the L2 header back before 4227 * redirecting to another netdev 4228 */ 4229 __skb_push(skb, skb->mac_len); 4230 skb_do_redirect(skb); 4231 return NULL; 4232 default: 4233 break; 4234 } 4235 #endif /* CONFIG_NET_CLS_ACT */ 4236 return skb; 4237 } 4238 4239 /** 4240 * netdev_is_rx_handler_busy - check if receive handler is registered 4241 * @dev: device to check 4242 * 4243 * Check if a receive handler is already registered for a given device. 4244 * Return true if there one. 4245 * 4246 * The caller must hold the rtnl_mutex. 4247 */ 4248 bool netdev_is_rx_handler_busy(struct net_device *dev) 4249 { 4250 ASSERT_RTNL(); 4251 return dev && rtnl_dereference(dev->rx_handler); 4252 } 4253 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 4254 4255 /** 4256 * netdev_rx_handler_register - register receive handler 4257 * @dev: device to register a handler for 4258 * @rx_handler: receive handler to register 4259 * @rx_handler_data: data pointer that is used by rx handler 4260 * 4261 * Register a receive handler for a device. This handler will then be 4262 * called from __netif_receive_skb. A negative errno code is returned 4263 * on a failure. 4264 * 4265 * The caller must hold the rtnl_mutex. 4266 * 4267 * For a general description of rx_handler, see enum rx_handler_result. 4268 */ 4269 int netdev_rx_handler_register(struct net_device *dev, 4270 rx_handler_func_t *rx_handler, 4271 void *rx_handler_data) 4272 { 4273 if (netdev_is_rx_handler_busy(dev)) 4274 return -EBUSY; 4275 4276 /* Note: rx_handler_data must be set before rx_handler */ 4277 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 4278 rcu_assign_pointer(dev->rx_handler, rx_handler); 4279 4280 return 0; 4281 } 4282 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 4283 4284 /** 4285 * netdev_rx_handler_unregister - unregister receive handler 4286 * @dev: device to unregister a handler from 4287 * 4288 * Unregister a receive handler from a device. 4289 * 4290 * The caller must hold the rtnl_mutex. 4291 */ 4292 void netdev_rx_handler_unregister(struct net_device *dev) 4293 { 4294 4295 ASSERT_RTNL(); 4296 RCU_INIT_POINTER(dev->rx_handler, NULL); 4297 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 4298 * section has a guarantee to see a non NULL rx_handler_data 4299 * as well. 4300 */ 4301 synchronize_net(); 4302 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 4303 } 4304 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 4305 4306 /* 4307 * Limit the use of PFMEMALLOC reserves to those protocols that implement 4308 * the special handling of PFMEMALLOC skbs. 4309 */ 4310 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 4311 { 4312 switch (skb->protocol) { 4313 case htons(ETH_P_ARP): 4314 case htons(ETH_P_IP): 4315 case htons(ETH_P_IPV6): 4316 case htons(ETH_P_8021Q): 4317 case htons(ETH_P_8021AD): 4318 return true; 4319 default: 4320 return false; 4321 } 4322 } 4323 4324 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 4325 int *ret, struct net_device *orig_dev) 4326 { 4327 #ifdef CONFIG_NETFILTER_INGRESS 4328 if (nf_hook_ingress_active(skb)) { 4329 int ingress_retval; 4330 4331 if (*pt_prev) { 4332 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4333 *pt_prev = NULL; 4334 } 4335 4336 rcu_read_lock(); 4337 ingress_retval = nf_hook_ingress(skb); 4338 rcu_read_unlock(); 4339 return ingress_retval; 4340 } 4341 #endif /* CONFIG_NETFILTER_INGRESS */ 4342 return 0; 4343 } 4344 4345 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc) 4346 { 4347 struct packet_type *ptype, *pt_prev; 4348 rx_handler_func_t *rx_handler; 4349 struct net_device *orig_dev; 4350 bool deliver_exact = false; 4351 int ret = NET_RX_DROP; 4352 __be16 type; 4353 4354 net_timestamp_check(!netdev_tstamp_prequeue, skb); 4355 4356 trace_netif_receive_skb(skb); 4357 4358 orig_dev = skb->dev; 4359 4360 skb_reset_network_header(skb); 4361 if (!skb_transport_header_was_set(skb)) 4362 skb_reset_transport_header(skb); 4363 skb_reset_mac_len(skb); 4364 4365 pt_prev = NULL; 4366 4367 another_round: 4368 skb->skb_iif = skb->dev->ifindex; 4369 4370 __this_cpu_inc(softnet_data.processed); 4371 4372 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 4373 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 4374 skb = skb_vlan_untag(skb); 4375 if (unlikely(!skb)) 4376 goto out; 4377 } 4378 4379 if (skb_skip_tc_classify(skb)) 4380 goto skip_classify; 4381 4382 if (pfmemalloc) 4383 goto skip_taps; 4384 4385 list_for_each_entry_rcu(ptype, &ptype_all, list) { 4386 if (pt_prev) 4387 ret = deliver_skb(skb, pt_prev, orig_dev); 4388 pt_prev = ptype; 4389 } 4390 4391 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 4392 if (pt_prev) 4393 ret = deliver_skb(skb, pt_prev, orig_dev); 4394 pt_prev = ptype; 4395 } 4396 4397 skip_taps: 4398 #ifdef CONFIG_NET_INGRESS 4399 if (static_key_false(&ingress_needed)) { 4400 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev); 4401 if (!skb) 4402 goto out; 4403 4404 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 4405 goto out; 4406 } 4407 #endif 4408 skb_reset_tc(skb); 4409 skip_classify: 4410 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 4411 goto drop; 4412 4413 if (skb_vlan_tag_present(skb)) { 4414 if (pt_prev) { 4415 ret = deliver_skb(skb, pt_prev, orig_dev); 4416 pt_prev = NULL; 4417 } 4418 if (vlan_do_receive(&skb)) 4419 goto another_round; 4420 else if (unlikely(!skb)) 4421 goto out; 4422 } 4423 4424 rx_handler = rcu_dereference(skb->dev->rx_handler); 4425 if (rx_handler) { 4426 if (pt_prev) { 4427 ret = deliver_skb(skb, pt_prev, orig_dev); 4428 pt_prev = NULL; 4429 } 4430 switch (rx_handler(&skb)) { 4431 case RX_HANDLER_CONSUMED: 4432 ret = NET_RX_SUCCESS; 4433 goto out; 4434 case RX_HANDLER_ANOTHER: 4435 goto another_round; 4436 case RX_HANDLER_EXACT: 4437 deliver_exact = true; 4438 case RX_HANDLER_PASS: 4439 break; 4440 default: 4441 BUG(); 4442 } 4443 } 4444 4445 if (unlikely(skb_vlan_tag_present(skb))) { 4446 if (skb_vlan_tag_get_id(skb)) 4447 skb->pkt_type = PACKET_OTHERHOST; 4448 /* Note: we might in the future use prio bits 4449 * and set skb->priority like in vlan_do_receive() 4450 * For the time being, just ignore Priority Code Point 4451 */ 4452 skb->vlan_tci = 0; 4453 } 4454 4455 type = skb->protocol; 4456 4457 /* deliver only exact match when indicated */ 4458 if (likely(!deliver_exact)) { 4459 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4460 &ptype_base[ntohs(type) & 4461 PTYPE_HASH_MASK]); 4462 } 4463 4464 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4465 &orig_dev->ptype_specific); 4466 4467 if (unlikely(skb->dev != orig_dev)) { 4468 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 4469 &skb->dev->ptype_specific); 4470 } 4471 4472 if (pt_prev) { 4473 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 4474 goto drop; 4475 else 4476 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 4477 } else { 4478 drop: 4479 if (!deliver_exact) 4480 atomic_long_inc(&skb->dev->rx_dropped); 4481 else 4482 atomic_long_inc(&skb->dev->rx_nohandler); 4483 kfree_skb(skb); 4484 /* Jamal, now you will not able to escape explaining 4485 * me how you were going to use this. :-) 4486 */ 4487 ret = NET_RX_DROP; 4488 } 4489 4490 out: 4491 return ret; 4492 } 4493 4494 static int __netif_receive_skb(struct sk_buff *skb) 4495 { 4496 int ret; 4497 4498 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 4499 unsigned int noreclaim_flag; 4500 4501 /* 4502 * PFMEMALLOC skbs are special, they should 4503 * - be delivered to SOCK_MEMALLOC sockets only 4504 * - stay away from userspace 4505 * - have bounded memory usage 4506 * 4507 * Use PF_MEMALLOC as this saves us from propagating the allocation 4508 * context down to all allocation sites. 4509 */ 4510 noreclaim_flag = memalloc_noreclaim_save(); 4511 ret = __netif_receive_skb_core(skb, true); 4512 memalloc_noreclaim_restore(noreclaim_flag); 4513 } else 4514 ret = __netif_receive_skb_core(skb, false); 4515 4516 return ret; 4517 } 4518 4519 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp) 4520 { 4521 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 4522 struct bpf_prog *new = xdp->prog; 4523 int ret = 0; 4524 4525 switch (xdp->command) { 4526 case XDP_SETUP_PROG: 4527 rcu_assign_pointer(dev->xdp_prog, new); 4528 if (old) 4529 bpf_prog_put(old); 4530 4531 if (old && !new) { 4532 static_key_slow_dec(&generic_xdp_needed); 4533 } else if (new && !old) { 4534 static_key_slow_inc(&generic_xdp_needed); 4535 dev_disable_lro(dev); 4536 } 4537 break; 4538 4539 case XDP_QUERY_PROG: 4540 xdp->prog_attached = !!old; 4541 xdp->prog_id = old ? old->aux->id : 0; 4542 break; 4543 4544 default: 4545 ret = -EINVAL; 4546 break; 4547 } 4548 4549 return ret; 4550 } 4551 4552 static int netif_receive_skb_internal(struct sk_buff *skb) 4553 { 4554 int ret; 4555 4556 net_timestamp_check(netdev_tstamp_prequeue, skb); 4557 4558 if (skb_defer_rx_timestamp(skb)) 4559 return NET_RX_SUCCESS; 4560 4561 if (static_key_false(&generic_xdp_needed)) { 4562 int ret; 4563 4564 preempt_disable(); 4565 rcu_read_lock(); 4566 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 4567 rcu_read_unlock(); 4568 preempt_enable(); 4569 4570 if (ret != XDP_PASS) 4571 return NET_RX_DROP; 4572 } 4573 4574 rcu_read_lock(); 4575 #ifdef CONFIG_RPS 4576 if (static_key_false(&rps_needed)) { 4577 struct rps_dev_flow voidflow, *rflow = &voidflow; 4578 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 4579 4580 if (cpu >= 0) { 4581 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4582 rcu_read_unlock(); 4583 return ret; 4584 } 4585 } 4586 #endif 4587 ret = __netif_receive_skb(skb); 4588 rcu_read_unlock(); 4589 return ret; 4590 } 4591 4592 /** 4593 * netif_receive_skb - process receive buffer from network 4594 * @skb: buffer to process 4595 * 4596 * netif_receive_skb() is the main receive data processing function. 4597 * It always succeeds. The buffer may be dropped during processing 4598 * for congestion control or by the protocol layers. 4599 * 4600 * This function may only be called from softirq context and interrupts 4601 * should be enabled. 4602 * 4603 * Return values (usually ignored): 4604 * NET_RX_SUCCESS: no congestion 4605 * NET_RX_DROP: packet was dropped 4606 */ 4607 int netif_receive_skb(struct sk_buff *skb) 4608 { 4609 trace_netif_receive_skb_entry(skb); 4610 4611 return netif_receive_skb_internal(skb); 4612 } 4613 EXPORT_SYMBOL(netif_receive_skb); 4614 4615 DEFINE_PER_CPU(struct work_struct, flush_works); 4616 4617 /* Network device is going away, flush any packets still pending */ 4618 static void flush_backlog(struct work_struct *work) 4619 { 4620 struct sk_buff *skb, *tmp; 4621 struct softnet_data *sd; 4622 4623 local_bh_disable(); 4624 sd = this_cpu_ptr(&softnet_data); 4625 4626 local_irq_disable(); 4627 rps_lock(sd); 4628 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 4629 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4630 __skb_unlink(skb, &sd->input_pkt_queue); 4631 kfree_skb(skb); 4632 input_queue_head_incr(sd); 4633 } 4634 } 4635 rps_unlock(sd); 4636 local_irq_enable(); 4637 4638 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 4639 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 4640 __skb_unlink(skb, &sd->process_queue); 4641 kfree_skb(skb); 4642 input_queue_head_incr(sd); 4643 } 4644 } 4645 local_bh_enable(); 4646 } 4647 4648 static void flush_all_backlogs(void) 4649 { 4650 unsigned int cpu; 4651 4652 get_online_cpus(); 4653 4654 for_each_online_cpu(cpu) 4655 queue_work_on(cpu, system_highpri_wq, 4656 per_cpu_ptr(&flush_works, cpu)); 4657 4658 for_each_online_cpu(cpu) 4659 flush_work(per_cpu_ptr(&flush_works, cpu)); 4660 4661 put_online_cpus(); 4662 } 4663 4664 static int napi_gro_complete(struct sk_buff *skb) 4665 { 4666 struct packet_offload *ptype; 4667 __be16 type = skb->protocol; 4668 struct list_head *head = &offload_base; 4669 int err = -ENOENT; 4670 4671 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 4672 4673 if (NAPI_GRO_CB(skb)->count == 1) { 4674 skb_shinfo(skb)->gso_size = 0; 4675 goto out; 4676 } 4677 4678 rcu_read_lock(); 4679 list_for_each_entry_rcu(ptype, head, list) { 4680 if (ptype->type != type || !ptype->callbacks.gro_complete) 4681 continue; 4682 4683 err = ptype->callbacks.gro_complete(skb, 0); 4684 break; 4685 } 4686 rcu_read_unlock(); 4687 4688 if (err) { 4689 WARN_ON(&ptype->list == head); 4690 kfree_skb(skb); 4691 return NET_RX_SUCCESS; 4692 } 4693 4694 out: 4695 return netif_receive_skb_internal(skb); 4696 } 4697 4698 /* napi->gro_list contains packets ordered by age. 4699 * youngest packets at the head of it. 4700 * Complete skbs in reverse order to reduce latencies. 4701 */ 4702 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 4703 { 4704 struct sk_buff *skb, *prev = NULL; 4705 4706 /* scan list and build reverse chain */ 4707 for (skb = napi->gro_list; skb != NULL; skb = skb->next) { 4708 skb->prev = prev; 4709 prev = skb; 4710 } 4711 4712 for (skb = prev; skb; skb = prev) { 4713 skb->next = NULL; 4714 4715 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 4716 return; 4717 4718 prev = skb->prev; 4719 napi_gro_complete(skb); 4720 napi->gro_count--; 4721 } 4722 4723 napi->gro_list = NULL; 4724 } 4725 EXPORT_SYMBOL(napi_gro_flush); 4726 4727 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb) 4728 { 4729 struct sk_buff *p; 4730 unsigned int maclen = skb->dev->hard_header_len; 4731 u32 hash = skb_get_hash_raw(skb); 4732 4733 for (p = napi->gro_list; p; p = p->next) { 4734 unsigned long diffs; 4735 4736 NAPI_GRO_CB(p)->flush = 0; 4737 4738 if (hash != skb_get_hash_raw(p)) { 4739 NAPI_GRO_CB(p)->same_flow = 0; 4740 continue; 4741 } 4742 4743 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 4744 diffs |= p->vlan_tci ^ skb->vlan_tci; 4745 diffs |= skb_metadata_dst_cmp(p, skb); 4746 diffs |= skb_metadata_differs(p, skb); 4747 if (maclen == ETH_HLEN) 4748 diffs |= compare_ether_header(skb_mac_header(p), 4749 skb_mac_header(skb)); 4750 else if (!diffs) 4751 diffs = memcmp(skb_mac_header(p), 4752 skb_mac_header(skb), 4753 maclen); 4754 NAPI_GRO_CB(p)->same_flow = !diffs; 4755 } 4756 } 4757 4758 static void skb_gro_reset_offset(struct sk_buff *skb) 4759 { 4760 const struct skb_shared_info *pinfo = skb_shinfo(skb); 4761 const skb_frag_t *frag0 = &pinfo->frags[0]; 4762 4763 NAPI_GRO_CB(skb)->data_offset = 0; 4764 NAPI_GRO_CB(skb)->frag0 = NULL; 4765 NAPI_GRO_CB(skb)->frag0_len = 0; 4766 4767 if (skb_mac_header(skb) == skb_tail_pointer(skb) && 4768 pinfo->nr_frags && 4769 !PageHighMem(skb_frag_page(frag0))) { 4770 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 4771 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 4772 skb_frag_size(frag0), 4773 skb->end - skb->tail); 4774 } 4775 } 4776 4777 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 4778 { 4779 struct skb_shared_info *pinfo = skb_shinfo(skb); 4780 4781 BUG_ON(skb->end - skb->tail < grow); 4782 4783 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 4784 4785 skb->data_len -= grow; 4786 skb->tail += grow; 4787 4788 pinfo->frags[0].page_offset += grow; 4789 skb_frag_size_sub(&pinfo->frags[0], grow); 4790 4791 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 4792 skb_frag_unref(skb, 0); 4793 memmove(pinfo->frags, pinfo->frags + 1, 4794 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 4795 } 4796 } 4797 4798 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4799 { 4800 struct sk_buff **pp = NULL; 4801 struct packet_offload *ptype; 4802 __be16 type = skb->protocol; 4803 struct list_head *head = &offload_base; 4804 int same_flow; 4805 enum gro_result ret; 4806 int grow; 4807 4808 if (netif_elide_gro(skb->dev)) 4809 goto normal; 4810 4811 gro_list_prepare(napi, skb); 4812 4813 rcu_read_lock(); 4814 list_for_each_entry_rcu(ptype, head, list) { 4815 if (ptype->type != type || !ptype->callbacks.gro_receive) 4816 continue; 4817 4818 skb_set_network_header(skb, skb_gro_offset(skb)); 4819 skb_reset_mac_len(skb); 4820 NAPI_GRO_CB(skb)->same_flow = 0; 4821 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 4822 NAPI_GRO_CB(skb)->free = 0; 4823 NAPI_GRO_CB(skb)->encap_mark = 0; 4824 NAPI_GRO_CB(skb)->recursion_counter = 0; 4825 NAPI_GRO_CB(skb)->is_fou = 0; 4826 NAPI_GRO_CB(skb)->is_atomic = 1; 4827 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 4828 4829 /* Setup for GRO checksum validation */ 4830 switch (skb->ip_summed) { 4831 case CHECKSUM_COMPLETE: 4832 NAPI_GRO_CB(skb)->csum = skb->csum; 4833 NAPI_GRO_CB(skb)->csum_valid = 1; 4834 NAPI_GRO_CB(skb)->csum_cnt = 0; 4835 break; 4836 case CHECKSUM_UNNECESSARY: 4837 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 4838 NAPI_GRO_CB(skb)->csum_valid = 0; 4839 break; 4840 default: 4841 NAPI_GRO_CB(skb)->csum_cnt = 0; 4842 NAPI_GRO_CB(skb)->csum_valid = 0; 4843 } 4844 4845 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb); 4846 break; 4847 } 4848 rcu_read_unlock(); 4849 4850 if (&ptype->list == head) 4851 goto normal; 4852 4853 if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) { 4854 ret = GRO_CONSUMED; 4855 goto ok; 4856 } 4857 4858 same_flow = NAPI_GRO_CB(skb)->same_flow; 4859 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 4860 4861 if (pp) { 4862 struct sk_buff *nskb = *pp; 4863 4864 *pp = nskb->next; 4865 nskb->next = NULL; 4866 napi_gro_complete(nskb); 4867 napi->gro_count--; 4868 } 4869 4870 if (same_flow) 4871 goto ok; 4872 4873 if (NAPI_GRO_CB(skb)->flush) 4874 goto normal; 4875 4876 if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) { 4877 struct sk_buff *nskb = napi->gro_list; 4878 4879 /* locate the end of the list to select the 'oldest' flow */ 4880 while (nskb->next) { 4881 pp = &nskb->next; 4882 nskb = *pp; 4883 } 4884 *pp = NULL; 4885 nskb->next = NULL; 4886 napi_gro_complete(nskb); 4887 } else { 4888 napi->gro_count++; 4889 } 4890 NAPI_GRO_CB(skb)->count = 1; 4891 NAPI_GRO_CB(skb)->age = jiffies; 4892 NAPI_GRO_CB(skb)->last = skb; 4893 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 4894 skb->next = napi->gro_list; 4895 napi->gro_list = skb; 4896 ret = GRO_HELD; 4897 4898 pull: 4899 grow = skb_gro_offset(skb) - skb_headlen(skb); 4900 if (grow > 0) 4901 gro_pull_from_frag0(skb, grow); 4902 ok: 4903 return ret; 4904 4905 normal: 4906 ret = GRO_NORMAL; 4907 goto pull; 4908 } 4909 4910 struct packet_offload *gro_find_receive_by_type(__be16 type) 4911 { 4912 struct list_head *offload_head = &offload_base; 4913 struct packet_offload *ptype; 4914 4915 list_for_each_entry_rcu(ptype, offload_head, list) { 4916 if (ptype->type != type || !ptype->callbacks.gro_receive) 4917 continue; 4918 return ptype; 4919 } 4920 return NULL; 4921 } 4922 EXPORT_SYMBOL(gro_find_receive_by_type); 4923 4924 struct packet_offload *gro_find_complete_by_type(__be16 type) 4925 { 4926 struct list_head *offload_head = &offload_base; 4927 struct packet_offload *ptype; 4928 4929 list_for_each_entry_rcu(ptype, offload_head, list) { 4930 if (ptype->type != type || !ptype->callbacks.gro_complete) 4931 continue; 4932 return ptype; 4933 } 4934 return NULL; 4935 } 4936 EXPORT_SYMBOL(gro_find_complete_by_type); 4937 4938 static void napi_skb_free_stolen_head(struct sk_buff *skb) 4939 { 4940 skb_dst_drop(skb); 4941 secpath_reset(skb); 4942 kmem_cache_free(skbuff_head_cache, skb); 4943 } 4944 4945 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 4946 { 4947 switch (ret) { 4948 case GRO_NORMAL: 4949 if (netif_receive_skb_internal(skb)) 4950 ret = GRO_DROP; 4951 break; 4952 4953 case GRO_DROP: 4954 kfree_skb(skb); 4955 break; 4956 4957 case GRO_MERGED_FREE: 4958 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 4959 napi_skb_free_stolen_head(skb); 4960 else 4961 __kfree_skb(skb); 4962 break; 4963 4964 case GRO_HELD: 4965 case GRO_MERGED: 4966 case GRO_CONSUMED: 4967 break; 4968 } 4969 4970 return ret; 4971 } 4972 4973 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 4974 { 4975 skb_mark_napi_id(skb, napi); 4976 trace_napi_gro_receive_entry(skb); 4977 4978 skb_gro_reset_offset(skb); 4979 4980 return napi_skb_finish(dev_gro_receive(napi, skb), skb); 4981 } 4982 EXPORT_SYMBOL(napi_gro_receive); 4983 4984 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 4985 { 4986 if (unlikely(skb->pfmemalloc)) { 4987 consume_skb(skb); 4988 return; 4989 } 4990 __skb_pull(skb, skb_headlen(skb)); 4991 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 4992 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 4993 skb->vlan_tci = 0; 4994 skb->dev = napi->dev; 4995 skb->skb_iif = 0; 4996 skb->encapsulation = 0; 4997 skb_shinfo(skb)->gso_type = 0; 4998 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 4999 secpath_reset(skb); 5000 5001 napi->skb = skb; 5002 } 5003 5004 struct sk_buff *napi_get_frags(struct napi_struct *napi) 5005 { 5006 struct sk_buff *skb = napi->skb; 5007 5008 if (!skb) { 5009 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 5010 if (skb) { 5011 napi->skb = skb; 5012 skb_mark_napi_id(skb, napi); 5013 } 5014 } 5015 return skb; 5016 } 5017 EXPORT_SYMBOL(napi_get_frags); 5018 5019 static gro_result_t napi_frags_finish(struct napi_struct *napi, 5020 struct sk_buff *skb, 5021 gro_result_t ret) 5022 { 5023 switch (ret) { 5024 case GRO_NORMAL: 5025 case GRO_HELD: 5026 __skb_push(skb, ETH_HLEN); 5027 skb->protocol = eth_type_trans(skb, skb->dev); 5028 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb)) 5029 ret = GRO_DROP; 5030 break; 5031 5032 case GRO_DROP: 5033 napi_reuse_skb(napi, skb); 5034 break; 5035 5036 case GRO_MERGED_FREE: 5037 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 5038 napi_skb_free_stolen_head(skb); 5039 else 5040 napi_reuse_skb(napi, skb); 5041 break; 5042 5043 case GRO_MERGED: 5044 case GRO_CONSUMED: 5045 break; 5046 } 5047 5048 return ret; 5049 } 5050 5051 /* Upper GRO stack assumes network header starts at gro_offset=0 5052 * Drivers could call both napi_gro_frags() and napi_gro_receive() 5053 * We copy ethernet header into skb->data to have a common layout. 5054 */ 5055 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 5056 { 5057 struct sk_buff *skb = napi->skb; 5058 const struct ethhdr *eth; 5059 unsigned int hlen = sizeof(*eth); 5060 5061 napi->skb = NULL; 5062 5063 skb_reset_mac_header(skb); 5064 skb_gro_reset_offset(skb); 5065 5066 eth = skb_gro_header_fast(skb, 0); 5067 if (unlikely(skb_gro_header_hard(skb, hlen))) { 5068 eth = skb_gro_header_slow(skb, hlen, 0); 5069 if (unlikely(!eth)) { 5070 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 5071 __func__, napi->dev->name); 5072 napi_reuse_skb(napi, skb); 5073 return NULL; 5074 } 5075 } else { 5076 gro_pull_from_frag0(skb, hlen); 5077 NAPI_GRO_CB(skb)->frag0 += hlen; 5078 NAPI_GRO_CB(skb)->frag0_len -= hlen; 5079 } 5080 __skb_pull(skb, hlen); 5081 5082 /* 5083 * This works because the only protocols we care about don't require 5084 * special handling. 5085 * We'll fix it up properly in napi_frags_finish() 5086 */ 5087 skb->protocol = eth->h_proto; 5088 5089 return skb; 5090 } 5091 5092 gro_result_t napi_gro_frags(struct napi_struct *napi) 5093 { 5094 struct sk_buff *skb = napi_frags_skb(napi); 5095 5096 if (!skb) 5097 return GRO_DROP; 5098 5099 trace_napi_gro_frags_entry(skb); 5100 5101 return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 5102 } 5103 EXPORT_SYMBOL(napi_gro_frags); 5104 5105 /* Compute the checksum from gro_offset and return the folded value 5106 * after adding in any pseudo checksum. 5107 */ 5108 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 5109 { 5110 __wsum wsum; 5111 __sum16 sum; 5112 5113 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 5114 5115 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 5116 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 5117 if (likely(!sum)) { 5118 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 5119 !skb->csum_complete_sw) 5120 netdev_rx_csum_fault(skb->dev); 5121 } 5122 5123 NAPI_GRO_CB(skb)->csum = wsum; 5124 NAPI_GRO_CB(skb)->csum_valid = 1; 5125 5126 return sum; 5127 } 5128 EXPORT_SYMBOL(__skb_gro_checksum_complete); 5129 5130 static void net_rps_send_ipi(struct softnet_data *remsd) 5131 { 5132 #ifdef CONFIG_RPS 5133 while (remsd) { 5134 struct softnet_data *next = remsd->rps_ipi_next; 5135 5136 if (cpu_online(remsd->cpu)) 5137 smp_call_function_single_async(remsd->cpu, &remsd->csd); 5138 remsd = next; 5139 } 5140 #endif 5141 } 5142 5143 /* 5144 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 5145 * Note: called with local irq disabled, but exits with local irq enabled. 5146 */ 5147 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 5148 { 5149 #ifdef CONFIG_RPS 5150 struct softnet_data *remsd = sd->rps_ipi_list; 5151 5152 if (remsd) { 5153 sd->rps_ipi_list = NULL; 5154 5155 local_irq_enable(); 5156 5157 /* Send pending IPI's to kick RPS processing on remote cpus. */ 5158 net_rps_send_ipi(remsd); 5159 } else 5160 #endif 5161 local_irq_enable(); 5162 } 5163 5164 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 5165 { 5166 #ifdef CONFIG_RPS 5167 return sd->rps_ipi_list != NULL; 5168 #else 5169 return false; 5170 #endif 5171 } 5172 5173 static int process_backlog(struct napi_struct *napi, int quota) 5174 { 5175 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 5176 bool again = true; 5177 int work = 0; 5178 5179 /* Check if we have pending ipi, its better to send them now, 5180 * not waiting net_rx_action() end. 5181 */ 5182 if (sd_has_rps_ipi_waiting(sd)) { 5183 local_irq_disable(); 5184 net_rps_action_and_irq_enable(sd); 5185 } 5186 5187 napi->weight = dev_rx_weight; 5188 while (again) { 5189 struct sk_buff *skb; 5190 5191 while ((skb = __skb_dequeue(&sd->process_queue))) { 5192 rcu_read_lock(); 5193 __netif_receive_skb(skb); 5194 rcu_read_unlock(); 5195 input_queue_head_incr(sd); 5196 if (++work >= quota) 5197 return work; 5198 5199 } 5200 5201 local_irq_disable(); 5202 rps_lock(sd); 5203 if (skb_queue_empty(&sd->input_pkt_queue)) { 5204 /* 5205 * Inline a custom version of __napi_complete(). 5206 * only current cpu owns and manipulates this napi, 5207 * and NAPI_STATE_SCHED is the only possible flag set 5208 * on backlog. 5209 * We can use a plain write instead of clear_bit(), 5210 * and we dont need an smp_mb() memory barrier. 5211 */ 5212 napi->state = 0; 5213 again = false; 5214 } else { 5215 skb_queue_splice_tail_init(&sd->input_pkt_queue, 5216 &sd->process_queue); 5217 } 5218 rps_unlock(sd); 5219 local_irq_enable(); 5220 } 5221 5222 return work; 5223 } 5224 5225 /** 5226 * __napi_schedule - schedule for receive 5227 * @n: entry to schedule 5228 * 5229 * The entry's receive function will be scheduled to run. 5230 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 5231 */ 5232 void __napi_schedule(struct napi_struct *n) 5233 { 5234 unsigned long flags; 5235 5236 local_irq_save(flags); 5237 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5238 local_irq_restore(flags); 5239 } 5240 EXPORT_SYMBOL(__napi_schedule); 5241 5242 /** 5243 * napi_schedule_prep - check if napi can be scheduled 5244 * @n: napi context 5245 * 5246 * Test if NAPI routine is already running, and if not mark 5247 * it as running. This is used as a condition variable 5248 * insure only one NAPI poll instance runs. We also make 5249 * sure there is no pending NAPI disable. 5250 */ 5251 bool napi_schedule_prep(struct napi_struct *n) 5252 { 5253 unsigned long val, new; 5254 5255 do { 5256 val = READ_ONCE(n->state); 5257 if (unlikely(val & NAPIF_STATE_DISABLE)) 5258 return false; 5259 new = val | NAPIF_STATE_SCHED; 5260 5261 /* Sets STATE_MISSED bit if STATE_SCHED was already set 5262 * This was suggested by Alexander Duyck, as compiler 5263 * emits better code than : 5264 * if (val & NAPIF_STATE_SCHED) 5265 * new |= NAPIF_STATE_MISSED; 5266 */ 5267 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 5268 NAPIF_STATE_MISSED; 5269 } while (cmpxchg(&n->state, val, new) != val); 5270 5271 return !(val & NAPIF_STATE_SCHED); 5272 } 5273 EXPORT_SYMBOL(napi_schedule_prep); 5274 5275 /** 5276 * __napi_schedule_irqoff - schedule for receive 5277 * @n: entry to schedule 5278 * 5279 * Variant of __napi_schedule() assuming hard irqs are masked 5280 */ 5281 void __napi_schedule_irqoff(struct napi_struct *n) 5282 { 5283 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 5284 } 5285 EXPORT_SYMBOL(__napi_schedule_irqoff); 5286 5287 bool napi_complete_done(struct napi_struct *n, int work_done) 5288 { 5289 unsigned long flags, val, new; 5290 5291 /* 5292 * 1) Don't let napi dequeue from the cpu poll list 5293 * just in case its running on a different cpu. 5294 * 2) If we are busy polling, do nothing here, we have 5295 * the guarantee we will be called later. 5296 */ 5297 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 5298 NAPIF_STATE_IN_BUSY_POLL))) 5299 return false; 5300 5301 if (n->gro_list) { 5302 unsigned long timeout = 0; 5303 5304 if (work_done) 5305 timeout = n->dev->gro_flush_timeout; 5306 5307 if (timeout) 5308 hrtimer_start(&n->timer, ns_to_ktime(timeout), 5309 HRTIMER_MODE_REL_PINNED); 5310 else 5311 napi_gro_flush(n, false); 5312 } 5313 if (unlikely(!list_empty(&n->poll_list))) { 5314 /* If n->poll_list is not empty, we need to mask irqs */ 5315 local_irq_save(flags); 5316 list_del_init(&n->poll_list); 5317 local_irq_restore(flags); 5318 } 5319 5320 do { 5321 val = READ_ONCE(n->state); 5322 5323 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 5324 5325 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED); 5326 5327 /* If STATE_MISSED was set, leave STATE_SCHED set, 5328 * because we will call napi->poll() one more time. 5329 * This C code was suggested by Alexander Duyck to help gcc. 5330 */ 5331 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 5332 NAPIF_STATE_SCHED; 5333 } while (cmpxchg(&n->state, val, new) != val); 5334 5335 if (unlikely(val & NAPIF_STATE_MISSED)) { 5336 __napi_schedule(n); 5337 return false; 5338 } 5339 5340 return true; 5341 } 5342 EXPORT_SYMBOL(napi_complete_done); 5343 5344 /* must be called under rcu_read_lock(), as we dont take a reference */ 5345 static struct napi_struct *napi_by_id(unsigned int napi_id) 5346 { 5347 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 5348 struct napi_struct *napi; 5349 5350 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 5351 if (napi->napi_id == napi_id) 5352 return napi; 5353 5354 return NULL; 5355 } 5356 5357 #if defined(CONFIG_NET_RX_BUSY_POLL) 5358 5359 #define BUSY_POLL_BUDGET 8 5360 5361 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock) 5362 { 5363 int rc; 5364 5365 /* Busy polling means there is a high chance device driver hard irq 5366 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 5367 * set in napi_schedule_prep(). 5368 * Since we are about to call napi->poll() once more, we can safely 5369 * clear NAPI_STATE_MISSED. 5370 * 5371 * Note: x86 could use a single "lock and ..." instruction 5372 * to perform these two clear_bit() 5373 */ 5374 clear_bit(NAPI_STATE_MISSED, &napi->state); 5375 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 5376 5377 local_bh_disable(); 5378 5379 /* All we really want here is to re-enable device interrupts. 5380 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 5381 */ 5382 rc = napi->poll(napi, BUSY_POLL_BUDGET); 5383 trace_napi_poll(napi, rc, BUSY_POLL_BUDGET); 5384 netpoll_poll_unlock(have_poll_lock); 5385 if (rc == BUSY_POLL_BUDGET) 5386 __napi_schedule(napi); 5387 local_bh_enable(); 5388 } 5389 5390 void napi_busy_loop(unsigned int napi_id, 5391 bool (*loop_end)(void *, unsigned long), 5392 void *loop_end_arg) 5393 { 5394 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 5395 int (*napi_poll)(struct napi_struct *napi, int budget); 5396 void *have_poll_lock = NULL; 5397 struct napi_struct *napi; 5398 5399 restart: 5400 napi_poll = NULL; 5401 5402 rcu_read_lock(); 5403 5404 napi = napi_by_id(napi_id); 5405 if (!napi) 5406 goto out; 5407 5408 preempt_disable(); 5409 for (;;) { 5410 int work = 0; 5411 5412 local_bh_disable(); 5413 if (!napi_poll) { 5414 unsigned long val = READ_ONCE(napi->state); 5415 5416 /* If multiple threads are competing for this napi, 5417 * we avoid dirtying napi->state as much as we can. 5418 */ 5419 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 5420 NAPIF_STATE_IN_BUSY_POLL)) 5421 goto count; 5422 if (cmpxchg(&napi->state, val, 5423 val | NAPIF_STATE_IN_BUSY_POLL | 5424 NAPIF_STATE_SCHED) != val) 5425 goto count; 5426 have_poll_lock = netpoll_poll_lock(napi); 5427 napi_poll = napi->poll; 5428 } 5429 work = napi_poll(napi, BUSY_POLL_BUDGET); 5430 trace_napi_poll(napi, work, BUSY_POLL_BUDGET); 5431 count: 5432 if (work > 0) 5433 __NET_ADD_STATS(dev_net(napi->dev), 5434 LINUX_MIB_BUSYPOLLRXPACKETS, work); 5435 local_bh_enable(); 5436 5437 if (!loop_end || loop_end(loop_end_arg, start_time)) 5438 break; 5439 5440 if (unlikely(need_resched())) { 5441 if (napi_poll) 5442 busy_poll_stop(napi, have_poll_lock); 5443 preempt_enable(); 5444 rcu_read_unlock(); 5445 cond_resched(); 5446 if (loop_end(loop_end_arg, start_time)) 5447 return; 5448 goto restart; 5449 } 5450 cpu_relax(); 5451 } 5452 if (napi_poll) 5453 busy_poll_stop(napi, have_poll_lock); 5454 preempt_enable(); 5455 out: 5456 rcu_read_unlock(); 5457 } 5458 EXPORT_SYMBOL(napi_busy_loop); 5459 5460 #endif /* CONFIG_NET_RX_BUSY_POLL */ 5461 5462 static void napi_hash_add(struct napi_struct *napi) 5463 { 5464 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) || 5465 test_and_set_bit(NAPI_STATE_HASHED, &napi->state)) 5466 return; 5467 5468 spin_lock(&napi_hash_lock); 5469 5470 /* 0..NR_CPUS range is reserved for sender_cpu use */ 5471 do { 5472 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 5473 napi_gen_id = MIN_NAPI_ID; 5474 } while (napi_by_id(napi_gen_id)); 5475 napi->napi_id = napi_gen_id; 5476 5477 hlist_add_head_rcu(&napi->napi_hash_node, 5478 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 5479 5480 spin_unlock(&napi_hash_lock); 5481 } 5482 5483 /* Warning : caller is responsible to make sure rcu grace period 5484 * is respected before freeing memory containing @napi 5485 */ 5486 bool napi_hash_del(struct napi_struct *napi) 5487 { 5488 bool rcu_sync_needed = false; 5489 5490 spin_lock(&napi_hash_lock); 5491 5492 if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) { 5493 rcu_sync_needed = true; 5494 hlist_del_rcu(&napi->napi_hash_node); 5495 } 5496 spin_unlock(&napi_hash_lock); 5497 return rcu_sync_needed; 5498 } 5499 EXPORT_SYMBOL_GPL(napi_hash_del); 5500 5501 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 5502 { 5503 struct napi_struct *napi; 5504 5505 napi = container_of(timer, struct napi_struct, timer); 5506 5507 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 5508 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 5509 */ 5510 if (napi->gro_list && !napi_disable_pending(napi) && 5511 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) 5512 __napi_schedule_irqoff(napi); 5513 5514 return HRTIMER_NORESTART; 5515 } 5516 5517 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 5518 int (*poll)(struct napi_struct *, int), int weight) 5519 { 5520 INIT_LIST_HEAD(&napi->poll_list); 5521 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 5522 napi->timer.function = napi_watchdog; 5523 napi->gro_count = 0; 5524 napi->gro_list = NULL; 5525 napi->skb = NULL; 5526 napi->poll = poll; 5527 if (weight > NAPI_POLL_WEIGHT) 5528 pr_err_once("netif_napi_add() called with weight %d on device %s\n", 5529 weight, dev->name); 5530 napi->weight = weight; 5531 list_add(&napi->dev_list, &dev->napi_list); 5532 napi->dev = dev; 5533 #ifdef CONFIG_NETPOLL 5534 napi->poll_owner = -1; 5535 #endif 5536 set_bit(NAPI_STATE_SCHED, &napi->state); 5537 napi_hash_add(napi); 5538 } 5539 EXPORT_SYMBOL(netif_napi_add); 5540 5541 void napi_disable(struct napi_struct *n) 5542 { 5543 might_sleep(); 5544 set_bit(NAPI_STATE_DISABLE, &n->state); 5545 5546 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 5547 msleep(1); 5548 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 5549 msleep(1); 5550 5551 hrtimer_cancel(&n->timer); 5552 5553 clear_bit(NAPI_STATE_DISABLE, &n->state); 5554 } 5555 EXPORT_SYMBOL(napi_disable); 5556 5557 /* Must be called in process context */ 5558 void netif_napi_del(struct napi_struct *napi) 5559 { 5560 might_sleep(); 5561 if (napi_hash_del(napi)) 5562 synchronize_net(); 5563 list_del_init(&napi->dev_list); 5564 napi_free_frags(napi); 5565 5566 kfree_skb_list(napi->gro_list); 5567 napi->gro_list = NULL; 5568 napi->gro_count = 0; 5569 } 5570 EXPORT_SYMBOL(netif_napi_del); 5571 5572 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 5573 { 5574 void *have; 5575 int work, weight; 5576 5577 list_del_init(&n->poll_list); 5578 5579 have = netpoll_poll_lock(n); 5580 5581 weight = n->weight; 5582 5583 /* This NAPI_STATE_SCHED test is for avoiding a race 5584 * with netpoll's poll_napi(). Only the entity which 5585 * obtains the lock and sees NAPI_STATE_SCHED set will 5586 * actually make the ->poll() call. Therefore we avoid 5587 * accidentally calling ->poll() when NAPI is not scheduled. 5588 */ 5589 work = 0; 5590 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 5591 work = n->poll(n, weight); 5592 trace_napi_poll(n, work, weight); 5593 } 5594 5595 WARN_ON_ONCE(work > weight); 5596 5597 if (likely(work < weight)) 5598 goto out_unlock; 5599 5600 /* Drivers must not modify the NAPI state if they 5601 * consume the entire weight. In such cases this code 5602 * still "owns" the NAPI instance and therefore can 5603 * move the instance around on the list at-will. 5604 */ 5605 if (unlikely(napi_disable_pending(n))) { 5606 napi_complete(n); 5607 goto out_unlock; 5608 } 5609 5610 if (n->gro_list) { 5611 /* flush too old packets 5612 * If HZ < 1000, flush all packets. 5613 */ 5614 napi_gro_flush(n, HZ >= 1000); 5615 } 5616 5617 /* Some drivers may have called napi_schedule 5618 * prior to exhausting their budget. 5619 */ 5620 if (unlikely(!list_empty(&n->poll_list))) { 5621 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 5622 n->dev ? n->dev->name : "backlog"); 5623 goto out_unlock; 5624 } 5625 5626 list_add_tail(&n->poll_list, repoll); 5627 5628 out_unlock: 5629 netpoll_poll_unlock(have); 5630 5631 return work; 5632 } 5633 5634 static __latent_entropy void net_rx_action(struct softirq_action *h) 5635 { 5636 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 5637 unsigned long time_limit = jiffies + 5638 usecs_to_jiffies(netdev_budget_usecs); 5639 int budget = netdev_budget; 5640 LIST_HEAD(list); 5641 LIST_HEAD(repoll); 5642 5643 local_irq_disable(); 5644 list_splice_init(&sd->poll_list, &list); 5645 local_irq_enable(); 5646 5647 for (;;) { 5648 struct napi_struct *n; 5649 5650 if (list_empty(&list)) { 5651 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 5652 goto out; 5653 break; 5654 } 5655 5656 n = list_first_entry(&list, struct napi_struct, poll_list); 5657 budget -= napi_poll(n, &repoll); 5658 5659 /* If softirq window is exhausted then punt. 5660 * Allow this to run for 2 jiffies since which will allow 5661 * an average latency of 1.5/HZ. 5662 */ 5663 if (unlikely(budget <= 0 || 5664 time_after_eq(jiffies, time_limit))) { 5665 sd->time_squeeze++; 5666 break; 5667 } 5668 } 5669 5670 local_irq_disable(); 5671 5672 list_splice_tail_init(&sd->poll_list, &list); 5673 list_splice_tail(&repoll, &list); 5674 list_splice(&list, &sd->poll_list); 5675 if (!list_empty(&sd->poll_list)) 5676 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 5677 5678 net_rps_action_and_irq_enable(sd); 5679 out: 5680 __kfree_skb_flush(); 5681 } 5682 5683 struct netdev_adjacent { 5684 struct net_device *dev; 5685 5686 /* upper master flag, there can only be one master device per list */ 5687 bool master; 5688 5689 /* counter for the number of times this device was added to us */ 5690 u16 ref_nr; 5691 5692 /* private field for the users */ 5693 void *private; 5694 5695 struct list_head list; 5696 struct rcu_head rcu; 5697 }; 5698 5699 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 5700 struct list_head *adj_list) 5701 { 5702 struct netdev_adjacent *adj; 5703 5704 list_for_each_entry(adj, adj_list, list) { 5705 if (adj->dev == adj_dev) 5706 return adj; 5707 } 5708 return NULL; 5709 } 5710 5711 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data) 5712 { 5713 struct net_device *dev = data; 5714 5715 return upper_dev == dev; 5716 } 5717 5718 /** 5719 * netdev_has_upper_dev - Check if device is linked to an upper device 5720 * @dev: device 5721 * @upper_dev: upper device to check 5722 * 5723 * Find out if a device is linked to specified upper device and return true 5724 * in case it is. Note that this checks only immediate upper device, 5725 * not through a complete stack of devices. The caller must hold the RTNL lock. 5726 */ 5727 bool netdev_has_upper_dev(struct net_device *dev, 5728 struct net_device *upper_dev) 5729 { 5730 ASSERT_RTNL(); 5731 5732 return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5733 upper_dev); 5734 } 5735 EXPORT_SYMBOL(netdev_has_upper_dev); 5736 5737 /** 5738 * netdev_has_upper_dev_all - Check if device is linked to an upper device 5739 * @dev: device 5740 * @upper_dev: upper device to check 5741 * 5742 * Find out if a device is linked to specified upper device and return true 5743 * in case it is. Note that this checks the entire upper device chain. 5744 * The caller must hold rcu lock. 5745 */ 5746 5747 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 5748 struct net_device *upper_dev) 5749 { 5750 return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev, 5751 upper_dev); 5752 } 5753 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 5754 5755 /** 5756 * netdev_has_any_upper_dev - Check if device is linked to some device 5757 * @dev: device 5758 * 5759 * Find out if a device is linked to an upper device and return true in case 5760 * it is. The caller must hold the RTNL lock. 5761 */ 5762 bool netdev_has_any_upper_dev(struct net_device *dev) 5763 { 5764 ASSERT_RTNL(); 5765 5766 return !list_empty(&dev->adj_list.upper); 5767 } 5768 EXPORT_SYMBOL(netdev_has_any_upper_dev); 5769 5770 /** 5771 * netdev_master_upper_dev_get - Get master upper device 5772 * @dev: device 5773 * 5774 * Find a master upper device and return pointer to it or NULL in case 5775 * it's not there. The caller must hold the RTNL lock. 5776 */ 5777 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 5778 { 5779 struct netdev_adjacent *upper; 5780 5781 ASSERT_RTNL(); 5782 5783 if (list_empty(&dev->adj_list.upper)) 5784 return NULL; 5785 5786 upper = list_first_entry(&dev->adj_list.upper, 5787 struct netdev_adjacent, list); 5788 if (likely(upper->master)) 5789 return upper->dev; 5790 return NULL; 5791 } 5792 EXPORT_SYMBOL(netdev_master_upper_dev_get); 5793 5794 /** 5795 * netdev_has_any_lower_dev - Check if device is linked to some device 5796 * @dev: device 5797 * 5798 * Find out if a device is linked to a lower device and return true in case 5799 * it is. The caller must hold the RTNL lock. 5800 */ 5801 static bool netdev_has_any_lower_dev(struct net_device *dev) 5802 { 5803 ASSERT_RTNL(); 5804 5805 return !list_empty(&dev->adj_list.lower); 5806 } 5807 5808 void *netdev_adjacent_get_private(struct list_head *adj_list) 5809 { 5810 struct netdev_adjacent *adj; 5811 5812 adj = list_entry(adj_list, struct netdev_adjacent, list); 5813 5814 return adj->private; 5815 } 5816 EXPORT_SYMBOL(netdev_adjacent_get_private); 5817 5818 /** 5819 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 5820 * @dev: device 5821 * @iter: list_head ** of the current position 5822 * 5823 * Gets the next device from the dev's upper list, starting from iter 5824 * position. The caller must hold RCU read lock. 5825 */ 5826 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 5827 struct list_head **iter) 5828 { 5829 struct netdev_adjacent *upper; 5830 5831 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5832 5833 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5834 5835 if (&upper->list == &dev->adj_list.upper) 5836 return NULL; 5837 5838 *iter = &upper->list; 5839 5840 return upper->dev; 5841 } 5842 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 5843 5844 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 5845 struct list_head **iter) 5846 { 5847 struct netdev_adjacent *upper; 5848 5849 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 5850 5851 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5852 5853 if (&upper->list == &dev->adj_list.upper) 5854 return NULL; 5855 5856 *iter = &upper->list; 5857 5858 return upper->dev; 5859 } 5860 5861 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 5862 int (*fn)(struct net_device *dev, 5863 void *data), 5864 void *data) 5865 { 5866 struct net_device *udev; 5867 struct list_head *iter; 5868 int ret; 5869 5870 for (iter = &dev->adj_list.upper, 5871 udev = netdev_next_upper_dev_rcu(dev, &iter); 5872 udev; 5873 udev = netdev_next_upper_dev_rcu(dev, &iter)) { 5874 /* first is the upper device itself */ 5875 ret = fn(udev, data); 5876 if (ret) 5877 return ret; 5878 5879 /* then look at all of its upper devices */ 5880 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data); 5881 if (ret) 5882 return ret; 5883 } 5884 5885 return 0; 5886 } 5887 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 5888 5889 /** 5890 * netdev_lower_get_next_private - Get the next ->private from the 5891 * lower neighbour list 5892 * @dev: device 5893 * @iter: list_head ** of the current position 5894 * 5895 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5896 * list, starting from iter position. The caller must hold either hold the 5897 * RTNL lock or its own locking that guarantees that the neighbour lower 5898 * list will remain unchanged. 5899 */ 5900 void *netdev_lower_get_next_private(struct net_device *dev, 5901 struct list_head **iter) 5902 { 5903 struct netdev_adjacent *lower; 5904 5905 lower = list_entry(*iter, struct netdev_adjacent, list); 5906 5907 if (&lower->list == &dev->adj_list.lower) 5908 return NULL; 5909 5910 *iter = lower->list.next; 5911 5912 return lower->private; 5913 } 5914 EXPORT_SYMBOL(netdev_lower_get_next_private); 5915 5916 /** 5917 * netdev_lower_get_next_private_rcu - Get the next ->private from the 5918 * lower neighbour list, RCU 5919 * variant 5920 * @dev: device 5921 * @iter: list_head ** of the current position 5922 * 5923 * Gets the next netdev_adjacent->private from the dev's lower neighbour 5924 * list, starting from iter position. The caller must hold RCU read lock. 5925 */ 5926 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 5927 struct list_head **iter) 5928 { 5929 struct netdev_adjacent *lower; 5930 5931 WARN_ON_ONCE(!rcu_read_lock_held()); 5932 5933 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 5934 5935 if (&lower->list == &dev->adj_list.lower) 5936 return NULL; 5937 5938 *iter = &lower->list; 5939 5940 return lower->private; 5941 } 5942 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 5943 5944 /** 5945 * netdev_lower_get_next - Get the next device from the lower neighbour 5946 * list 5947 * @dev: device 5948 * @iter: list_head ** of the current position 5949 * 5950 * Gets the next netdev_adjacent from the dev's lower neighbour 5951 * list, starting from iter position. The caller must hold RTNL lock or 5952 * its own locking that guarantees that the neighbour lower 5953 * list will remain unchanged. 5954 */ 5955 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 5956 { 5957 struct netdev_adjacent *lower; 5958 5959 lower = list_entry(*iter, struct netdev_adjacent, list); 5960 5961 if (&lower->list == &dev->adj_list.lower) 5962 return NULL; 5963 5964 *iter = lower->list.next; 5965 5966 return lower->dev; 5967 } 5968 EXPORT_SYMBOL(netdev_lower_get_next); 5969 5970 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 5971 struct list_head **iter) 5972 { 5973 struct netdev_adjacent *lower; 5974 5975 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 5976 5977 if (&lower->list == &dev->adj_list.lower) 5978 return NULL; 5979 5980 *iter = &lower->list; 5981 5982 return lower->dev; 5983 } 5984 5985 int netdev_walk_all_lower_dev(struct net_device *dev, 5986 int (*fn)(struct net_device *dev, 5987 void *data), 5988 void *data) 5989 { 5990 struct net_device *ldev; 5991 struct list_head *iter; 5992 int ret; 5993 5994 for (iter = &dev->adj_list.lower, 5995 ldev = netdev_next_lower_dev(dev, &iter); 5996 ldev; 5997 ldev = netdev_next_lower_dev(dev, &iter)) { 5998 /* first is the lower device itself */ 5999 ret = fn(ldev, data); 6000 if (ret) 6001 return ret; 6002 6003 /* then look at all of its lower devices */ 6004 ret = netdev_walk_all_lower_dev(ldev, fn, data); 6005 if (ret) 6006 return ret; 6007 } 6008 6009 return 0; 6010 } 6011 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 6012 6013 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 6014 struct list_head **iter) 6015 { 6016 struct netdev_adjacent *lower; 6017 6018 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 6019 if (&lower->list == &dev->adj_list.lower) 6020 return NULL; 6021 6022 *iter = &lower->list; 6023 6024 return lower->dev; 6025 } 6026 6027 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 6028 int (*fn)(struct net_device *dev, 6029 void *data), 6030 void *data) 6031 { 6032 struct net_device *ldev; 6033 struct list_head *iter; 6034 int ret; 6035 6036 for (iter = &dev->adj_list.lower, 6037 ldev = netdev_next_lower_dev_rcu(dev, &iter); 6038 ldev; 6039 ldev = netdev_next_lower_dev_rcu(dev, &iter)) { 6040 /* first is the lower device itself */ 6041 ret = fn(ldev, data); 6042 if (ret) 6043 return ret; 6044 6045 /* then look at all of its lower devices */ 6046 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data); 6047 if (ret) 6048 return ret; 6049 } 6050 6051 return 0; 6052 } 6053 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 6054 6055 /** 6056 * netdev_lower_get_first_private_rcu - Get the first ->private from the 6057 * lower neighbour list, RCU 6058 * variant 6059 * @dev: device 6060 * 6061 * Gets the first netdev_adjacent->private from the dev's lower neighbour 6062 * list. The caller must hold RCU read lock. 6063 */ 6064 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 6065 { 6066 struct netdev_adjacent *lower; 6067 6068 lower = list_first_or_null_rcu(&dev->adj_list.lower, 6069 struct netdev_adjacent, list); 6070 if (lower) 6071 return lower->private; 6072 return NULL; 6073 } 6074 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 6075 6076 /** 6077 * netdev_master_upper_dev_get_rcu - Get master upper device 6078 * @dev: device 6079 * 6080 * Find a master upper device and return pointer to it or NULL in case 6081 * it's not there. The caller must hold the RCU read lock. 6082 */ 6083 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 6084 { 6085 struct netdev_adjacent *upper; 6086 6087 upper = list_first_or_null_rcu(&dev->adj_list.upper, 6088 struct netdev_adjacent, list); 6089 if (upper && likely(upper->master)) 6090 return upper->dev; 6091 return NULL; 6092 } 6093 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 6094 6095 static int netdev_adjacent_sysfs_add(struct net_device *dev, 6096 struct net_device *adj_dev, 6097 struct list_head *dev_list) 6098 { 6099 char linkname[IFNAMSIZ+7]; 6100 6101 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6102 "upper_%s" : "lower_%s", adj_dev->name); 6103 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 6104 linkname); 6105 } 6106 static void netdev_adjacent_sysfs_del(struct net_device *dev, 6107 char *name, 6108 struct list_head *dev_list) 6109 { 6110 char linkname[IFNAMSIZ+7]; 6111 6112 sprintf(linkname, dev_list == &dev->adj_list.upper ? 6113 "upper_%s" : "lower_%s", name); 6114 sysfs_remove_link(&(dev->dev.kobj), linkname); 6115 } 6116 6117 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 6118 struct net_device *adj_dev, 6119 struct list_head *dev_list) 6120 { 6121 return (dev_list == &dev->adj_list.upper || 6122 dev_list == &dev->adj_list.lower) && 6123 net_eq(dev_net(dev), dev_net(adj_dev)); 6124 } 6125 6126 static int __netdev_adjacent_dev_insert(struct net_device *dev, 6127 struct net_device *adj_dev, 6128 struct list_head *dev_list, 6129 void *private, bool master) 6130 { 6131 struct netdev_adjacent *adj; 6132 int ret; 6133 6134 adj = __netdev_find_adj(adj_dev, dev_list); 6135 6136 if (adj) { 6137 adj->ref_nr += 1; 6138 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 6139 dev->name, adj_dev->name, adj->ref_nr); 6140 6141 return 0; 6142 } 6143 6144 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 6145 if (!adj) 6146 return -ENOMEM; 6147 6148 adj->dev = adj_dev; 6149 adj->master = master; 6150 adj->ref_nr = 1; 6151 adj->private = private; 6152 dev_hold(adj_dev); 6153 6154 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 6155 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 6156 6157 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 6158 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 6159 if (ret) 6160 goto free_adj; 6161 } 6162 6163 /* Ensure that master link is always the first item in list. */ 6164 if (master) { 6165 ret = sysfs_create_link(&(dev->dev.kobj), 6166 &(adj_dev->dev.kobj), "master"); 6167 if (ret) 6168 goto remove_symlinks; 6169 6170 list_add_rcu(&adj->list, dev_list); 6171 } else { 6172 list_add_tail_rcu(&adj->list, dev_list); 6173 } 6174 6175 return 0; 6176 6177 remove_symlinks: 6178 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6179 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6180 free_adj: 6181 kfree(adj); 6182 dev_put(adj_dev); 6183 6184 return ret; 6185 } 6186 6187 static void __netdev_adjacent_dev_remove(struct net_device *dev, 6188 struct net_device *adj_dev, 6189 u16 ref_nr, 6190 struct list_head *dev_list) 6191 { 6192 struct netdev_adjacent *adj; 6193 6194 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 6195 dev->name, adj_dev->name, ref_nr); 6196 6197 adj = __netdev_find_adj(adj_dev, dev_list); 6198 6199 if (!adj) { 6200 pr_err("Adjacency does not exist for device %s from %s\n", 6201 dev->name, adj_dev->name); 6202 WARN_ON(1); 6203 return; 6204 } 6205 6206 if (adj->ref_nr > ref_nr) { 6207 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 6208 dev->name, adj_dev->name, ref_nr, 6209 adj->ref_nr - ref_nr); 6210 adj->ref_nr -= ref_nr; 6211 return; 6212 } 6213 6214 if (adj->master) 6215 sysfs_remove_link(&(dev->dev.kobj), "master"); 6216 6217 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 6218 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 6219 6220 list_del_rcu(&adj->list); 6221 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 6222 adj_dev->name, dev->name, adj_dev->name); 6223 dev_put(adj_dev); 6224 kfree_rcu(adj, rcu); 6225 } 6226 6227 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 6228 struct net_device *upper_dev, 6229 struct list_head *up_list, 6230 struct list_head *down_list, 6231 void *private, bool master) 6232 { 6233 int ret; 6234 6235 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 6236 private, master); 6237 if (ret) 6238 return ret; 6239 6240 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 6241 private, false); 6242 if (ret) { 6243 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 6244 return ret; 6245 } 6246 6247 return 0; 6248 } 6249 6250 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 6251 struct net_device *upper_dev, 6252 u16 ref_nr, 6253 struct list_head *up_list, 6254 struct list_head *down_list) 6255 { 6256 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 6257 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 6258 } 6259 6260 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 6261 struct net_device *upper_dev, 6262 void *private, bool master) 6263 { 6264 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 6265 &dev->adj_list.upper, 6266 &upper_dev->adj_list.lower, 6267 private, master); 6268 } 6269 6270 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 6271 struct net_device *upper_dev) 6272 { 6273 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 6274 &dev->adj_list.upper, 6275 &upper_dev->adj_list.lower); 6276 } 6277 6278 static int __netdev_upper_dev_link(struct net_device *dev, 6279 struct net_device *upper_dev, bool master, 6280 void *upper_priv, void *upper_info, 6281 struct netlink_ext_ack *extack) 6282 { 6283 struct netdev_notifier_changeupper_info changeupper_info = { 6284 .info = { 6285 .dev = dev, 6286 .extack = extack, 6287 }, 6288 .upper_dev = upper_dev, 6289 .master = master, 6290 .linking = true, 6291 .upper_info = upper_info, 6292 }; 6293 int ret = 0; 6294 6295 ASSERT_RTNL(); 6296 6297 if (dev == upper_dev) 6298 return -EBUSY; 6299 6300 /* To prevent loops, check if dev is not upper device to upper_dev. */ 6301 if (netdev_has_upper_dev(upper_dev, dev)) 6302 return -EBUSY; 6303 6304 if (netdev_has_upper_dev(dev, upper_dev)) 6305 return -EEXIST; 6306 6307 if (master && netdev_master_upper_dev_get(dev)) 6308 return -EBUSY; 6309 6310 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6311 &changeupper_info.info); 6312 ret = notifier_to_errno(ret); 6313 if (ret) 6314 return ret; 6315 6316 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 6317 master); 6318 if (ret) 6319 return ret; 6320 6321 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6322 &changeupper_info.info); 6323 ret = notifier_to_errno(ret); 6324 if (ret) 6325 goto rollback; 6326 6327 return 0; 6328 6329 rollback: 6330 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6331 6332 return ret; 6333 } 6334 6335 /** 6336 * netdev_upper_dev_link - Add a link to the upper device 6337 * @dev: device 6338 * @upper_dev: new upper device 6339 * 6340 * Adds a link to device which is upper to this one. The caller must hold 6341 * the RTNL lock. On a failure a negative errno code is returned. 6342 * On success the reference counts are adjusted and the function 6343 * returns zero. 6344 */ 6345 int netdev_upper_dev_link(struct net_device *dev, 6346 struct net_device *upper_dev, 6347 struct netlink_ext_ack *extack) 6348 { 6349 return __netdev_upper_dev_link(dev, upper_dev, false, 6350 NULL, NULL, extack); 6351 } 6352 EXPORT_SYMBOL(netdev_upper_dev_link); 6353 6354 /** 6355 * netdev_master_upper_dev_link - Add a master link to the upper device 6356 * @dev: device 6357 * @upper_dev: new upper device 6358 * @upper_priv: upper device private 6359 * @upper_info: upper info to be passed down via notifier 6360 * 6361 * Adds a link to device which is upper to this one. In this case, only 6362 * one master upper device can be linked, although other non-master devices 6363 * might be linked as well. The caller must hold the RTNL lock. 6364 * On a failure a negative errno code is returned. On success the reference 6365 * counts are adjusted and the function returns zero. 6366 */ 6367 int netdev_master_upper_dev_link(struct net_device *dev, 6368 struct net_device *upper_dev, 6369 void *upper_priv, void *upper_info, 6370 struct netlink_ext_ack *extack) 6371 { 6372 return __netdev_upper_dev_link(dev, upper_dev, true, 6373 upper_priv, upper_info, extack); 6374 } 6375 EXPORT_SYMBOL(netdev_master_upper_dev_link); 6376 6377 /** 6378 * netdev_upper_dev_unlink - Removes a link to upper device 6379 * @dev: device 6380 * @upper_dev: new upper device 6381 * 6382 * Removes a link to device which is upper to this one. The caller must hold 6383 * the RTNL lock. 6384 */ 6385 void netdev_upper_dev_unlink(struct net_device *dev, 6386 struct net_device *upper_dev) 6387 { 6388 struct netdev_notifier_changeupper_info changeupper_info = { 6389 .info = { 6390 .dev = dev, 6391 }, 6392 .upper_dev = upper_dev, 6393 .linking = false, 6394 }; 6395 6396 ASSERT_RTNL(); 6397 6398 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 6399 6400 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 6401 &changeupper_info.info); 6402 6403 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 6404 6405 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 6406 &changeupper_info.info); 6407 } 6408 EXPORT_SYMBOL(netdev_upper_dev_unlink); 6409 6410 /** 6411 * netdev_bonding_info_change - Dispatch event about slave change 6412 * @dev: device 6413 * @bonding_info: info to dispatch 6414 * 6415 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 6416 * The caller must hold the RTNL lock. 6417 */ 6418 void netdev_bonding_info_change(struct net_device *dev, 6419 struct netdev_bonding_info *bonding_info) 6420 { 6421 struct netdev_notifier_bonding_info info = { 6422 .info.dev = dev, 6423 }; 6424 6425 memcpy(&info.bonding_info, bonding_info, 6426 sizeof(struct netdev_bonding_info)); 6427 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 6428 &info.info); 6429 } 6430 EXPORT_SYMBOL(netdev_bonding_info_change); 6431 6432 static void netdev_adjacent_add_links(struct net_device *dev) 6433 { 6434 struct netdev_adjacent *iter; 6435 6436 struct net *net = dev_net(dev); 6437 6438 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6439 if (!net_eq(net, dev_net(iter->dev))) 6440 continue; 6441 netdev_adjacent_sysfs_add(iter->dev, dev, 6442 &iter->dev->adj_list.lower); 6443 netdev_adjacent_sysfs_add(dev, iter->dev, 6444 &dev->adj_list.upper); 6445 } 6446 6447 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6448 if (!net_eq(net, dev_net(iter->dev))) 6449 continue; 6450 netdev_adjacent_sysfs_add(iter->dev, dev, 6451 &iter->dev->adj_list.upper); 6452 netdev_adjacent_sysfs_add(dev, iter->dev, 6453 &dev->adj_list.lower); 6454 } 6455 } 6456 6457 static void netdev_adjacent_del_links(struct net_device *dev) 6458 { 6459 struct netdev_adjacent *iter; 6460 6461 struct net *net = dev_net(dev); 6462 6463 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6464 if (!net_eq(net, dev_net(iter->dev))) 6465 continue; 6466 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6467 &iter->dev->adj_list.lower); 6468 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6469 &dev->adj_list.upper); 6470 } 6471 6472 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6473 if (!net_eq(net, dev_net(iter->dev))) 6474 continue; 6475 netdev_adjacent_sysfs_del(iter->dev, dev->name, 6476 &iter->dev->adj_list.upper); 6477 netdev_adjacent_sysfs_del(dev, iter->dev->name, 6478 &dev->adj_list.lower); 6479 } 6480 } 6481 6482 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 6483 { 6484 struct netdev_adjacent *iter; 6485 6486 struct net *net = dev_net(dev); 6487 6488 list_for_each_entry(iter, &dev->adj_list.upper, list) { 6489 if (!net_eq(net, dev_net(iter->dev))) 6490 continue; 6491 netdev_adjacent_sysfs_del(iter->dev, oldname, 6492 &iter->dev->adj_list.lower); 6493 netdev_adjacent_sysfs_add(iter->dev, dev, 6494 &iter->dev->adj_list.lower); 6495 } 6496 6497 list_for_each_entry(iter, &dev->adj_list.lower, list) { 6498 if (!net_eq(net, dev_net(iter->dev))) 6499 continue; 6500 netdev_adjacent_sysfs_del(iter->dev, oldname, 6501 &iter->dev->adj_list.upper); 6502 netdev_adjacent_sysfs_add(iter->dev, dev, 6503 &iter->dev->adj_list.upper); 6504 } 6505 } 6506 6507 void *netdev_lower_dev_get_private(struct net_device *dev, 6508 struct net_device *lower_dev) 6509 { 6510 struct netdev_adjacent *lower; 6511 6512 if (!lower_dev) 6513 return NULL; 6514 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 6515 if (!lower) 6516 return NULL; 6517 6518 return lower->private; 6519 } 6520 EXPORT_SYMBOL(netdev_lower_dev_get_private); 6521 6522 6523 int dev_get_nest_level(struct net_device *dev) 6524 { 6525 struct net_device *lower = NULL; 6526 struct list_head *iter; 6527 int max_nest = -1; 6528 int nest; 6529 6530 ASSERT_RTNL(); 6531 6532 netdev_for_each_lower_dev(dev, lower, iter) { 6533 nest = dev_get_nest_level(lower); 6534 if (max_nest < nest) 6535 max_nest = nest; 6536 } 6537 6538 return max_nest + 1; 6539 } 6540 EXPORT_SYMBOL(dev_get_nest_level); 6541 6542 /** 6543 * netdev_lower_change - Dispatch event about lower device state change 6544 * @lower_dev: device 6545 * @lower_state_info: state to dispatch 6546 * 6547 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 6548 * The caller must hold the RTNL lock. 6549 */ 6550 void netdev_lower_state_changed(struct net_device *lower_dev, 6551 void *lower_state_info) 6552 { 6553 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 6554 .info.dev = lower_dev, 6555 }; 6556 6557 ASSERT_RTNL(); 6558 changelowerstate_info.lower_state_info = lower_state_info; 6559 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 6560 &changelowerstate_info.info); 6561 } 6562 EXPORT_SYMBOL(netdev_lower_state_changed); 6563 6564 static void dev_change_rx_flags(struct net_device *dev, int flags) 6565 { 6566 const struct net_device_ops *ops = dev->netdev_ops; 6567 6568 if (ops->ndo_change_rx_flags) 6569 ops->ndo_change_rx_flags(dev, flags); 6570 } 6571 6572 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 6573 { 6574 unsigned int old_flags = dev->flags; 6575 kuid_t uid; 6576 kgid_t gid; 6577 6578 ASSERT_RTNL(); 6579 6580 dev->flags |= IFF_PROMISC; 6581 dev->promiscuity += inc; 6582 if (dev->promiscuity == 0) { 6583 /* 6584 * Avoid overflow. 6585 * If inc causes overflow, untouch promisc and return error. 6586 */ 6587 if (inc < 0) 6588 dev->flags &= ~IFF_PROMISC; 6589 else { 6590 dev->promiscuity -= inc; 6591 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 6592 dev->name); 6593 return -EOVERFLOW; 6594 } 6595 } 6596 if (dev->flags != old_flags) { 6597 pr_info("device %s %s promiscuous mode\n", 6598 dev->name, 6599 dev->flags & IFF_PROMISC ? "entered" : "left"); 6600 if (audit_enabled) { 6601 current_uid_gid(&uid, &gid); 6602 audit_log(current->audit_context, GFP_ATOMIC, 6603 AUDIT_ANOM_PROMISCUOUS, 6604 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 6605 dev->name, (dev->flags & IFF_PROMISC), 6606 (old_flags & IFF_PROMISC), 6607 from_kuid(&init_user_ns, audit_get_loginuid(current)), 6608 from_kuid(&init_user_ns, uid), 6609 from_kgid(&init_user_ns, gid), 6610 audit_get_sessionid(current)); 6611 } 6612 6613 dev_change_rx_flags(dev, IFF_PROMISC); 6614 } 6615 if (notify) 6616 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 6617 return 0; 6618 } 6619 6620 /** 6621 * dev_set_promiscuity - update promiscuity count on a device 6622 * @dev: device 6623 * @inc: modifier 6624 * 6625 * Add or remove promiscuity from a device. While the count in the device 6626 * remains above zero the interface remains promiscuous. Once it hits zero 6627 * the device reverts back to normal filtering operation. A negative inc 6628 * value is used to drop promiscuity on the device. 6629 * Return 0 if successful or a negative errno code on error. 6630 */ 6631 int dev_set_promiscuity(struct net_device *dev, int inc) 6632 { 6633 unsigned int old_flags = dev->flags; 6634 int err; 6635 6636 err = __dev_set_promiscuity(dev, inc, true); 6637 if (err < 0) 6638 return err; 6639 if (dev->flags != old_flags) 6640 dev_set_rx_mode(dev); 6641 return err; 6642 } 6643 EXPORT_SYMBOL(dev_set_promiscuity); 6644 6645 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 6646 { 6647 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 6648 6649 ASSERT_RTNL(); 6650 6651 dev->flags |= IFF_ALLMULTI; 6652 dev->allmulti += inc; 6653 if (dev->allmulti == 0) { 6654 /* 6655 * Avoid overflow. 6656 * If inc causes overflow, untouch allmulti and return error. 6657 */ 6658 if (inc < 0) 6659 dev->flags &= ~IFF_ALLMULTI; 6660 else { 6661 dev->allmulti -= inc; 6662 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 6663 dev->name); 6664 return -EOVERFLOW; 6665 } 6666 } 6667 if (dev->flags ^ old_flags) { 6668 dev_change_rx_flags(dev, IFF_ALLMULTI); 6669 dev_set_rx_mode(dev); 6670 if (notify) 6671 __dev_notify_flags(dev, old_flags, 6672 dev->gflags ^ old_gflags); 6673 } 6674 return 0; 6675 } 6676 6677 /** 6678 * dev_set_allmulti - update allmulti count on a device 6679 * @dev: device 6680 * @inc: modifier 6681 * 6682 * Add or remove reception of all multicast frames to a device. While the 6683 * count in the device remains above zero the interface remains listening 6684 * to all interfaces. Once it hits zero the device reverts back to normal 6685 * filtering operation. A negative @inc value is used to drop the counter 6686 * when releasing a resource needing all multicasts. 6687 * Return 0 if successful or a negative errno code on error. 6688 */ 6689 6690 int dev_set_allmulti(struct net_device *dev, int inc) 6691 { 6692 return __dev_set_allmulti(dev, inc, true); 6693 } 6694 EXPORT_SYMBOL(dev_set_allmulti); 6695 6696 /* 6697 * Upload unicast and multicast address lists to device and 6698 * configure RX filtering. When the device doesn't support unicast 6699 * filtering it is put in promiscuous mode while unicast addresses 6700 * are present. 6701 */ 6702 void __dev_set_rx_mode(struct net_device *dev) 6703 { 6704 const struct net_device_ops *ops = dev->netdev_ops; 6705 6706 /* dev_open will call this function so the list will stay sane. */ 6707 if (!(dev->flags&IFF_UP)) 6708 return; 6709 6710 if (!netif_device_present(dev)) 6711 return; 6712 6713 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 6714 /* Unicast addresses changes may only happen under the rtnl, 6715 * therefore calling __dev_set_promiscuity here is safe. 6716 */ 6717 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 6718 __dev_set_promiscuity(dev, 1, false); 6719 dev->uc_promisc = true; 6720 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 6721 __dev_set_promiscuity(dev, -1, false); 6722 dev->uc_promisc = false; 6723 } 6724 } 6725 6726 if (ops->ndo_set_rx_mode) 6727 ops->ndo_set_rx_mode(dev); 6728 } 6729 6730 void dev_set_rx_mode(struct net_device *dev) 6731 { 6732 netif_addr_lock_bh(dev); 6733 __dev_set_rx_mode(dev); 6734 netif_addr_unlock_bh(dev); 6735 } 6736 6737 /** 6738 * dev_get_flags - get flags reported to userspace 6739 * @dev: device 6740 * 6741 * Get the combination of flag bits exported through APIs to userspace. 6742 */ 6743 unsigned int dev_get_flags(const struct net_device *dev) 6744 { 6745 unsigned int flags; 6746 6747 flags = (dev->flags & ~(IFF_PROMISC | 6748 IFF_ALLMULTI | 6749 IFF_RUNNING | 6750 IFF_LOWER_UP | 6751 IFF_DORMANT)) | 6752 (dev->gflags & (IFF_PROMISC | 6753 IFF_ALLMULTI)); 6754 6755 if (netif_running(dev)) { 6756 if (netif_oper_up(dev)) 6757 flags |= IFF_RUNNING; 6758 if (netif_carrier_ok(dev)) 6759 flags |= IFF_LOWER_UP; 6760 if (netif_dormant(dev)) 6761 flags |= IFF_DORMANT; 6762 } 6763 6764 return flags; 6765 } 6766 EXPORT_SYMBOL(dev_get_flags); 6767 6768 int __dev_change_flags(struct net_device *dev, unsigned int flags) 6769 { 6770 unsigned int old_flags = dev->flags; 6771 int ret; 6772 6773 ASSERT_RTNL(); 6774 6775 /* 6776 * Set the flags on our device. 6777 */ 6778 6779 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 6780 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 6781 IFF_AUTOMEDIA)) | 6782 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 6783 IFF_ALLMULTI)); 6784 6785 /* 6786 * Load in the correct multicast list now the flags have changed. 6787 */ 6788 6789 if ((old_flags ^ flags) & IFF_MULTICAST) 6790 dev_change_rx_flags(dev, IFF_MULTICAST); 6791 6792 dev_set_rx_mode(dev); 6793 6794 /* 6795 * Have we downed the interface. We handle IFF_UP ourselves 6796 * according to user attempts to set it, rather than blindly 6797 * setting it. 6798 */ 6799 6800 ret = 0; 6801 if ((old_flags ^ flags) & IFF_UP) { 6802 if (old_flags & IFF_UP) 6803 __dev_close(dev); 6804 else 6805 ret = __dev_open(dev); 6806 } 6807 6808 if ((flags ^ dev->gflags) & IFF_PROMISC) { 6809 int inc = (flags & IFF_PROMISC) ? 1 : -1; 6810 unsigned int old_flags = dev->flags; 6811 6812 dev->gflags ^= IFF_PROMISC; 6813 6814 if (__dev_set_promiscuity(dev, inc, false) >= 0) 6815 if (dev->flags != old_flags) 6816 dev_set_rx_mode(dev); 6817 } 6818 6819 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 6820 * is important. Some (broken) drivers set IFF_PROMISC, when 6821 * IFF_ALLMULTI is requested not asking us and not reporting. 6822 */ 6823 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 6824 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 6825 6826 dev->gflags ^= IFF_ALLMULTI; 6827 __dev_set_allmulti(dev, inc, false); 6828 } 6829 6830 return ret; 6831 } 6832 6833 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 6834 unsigned int gchanges) 6835 { 6836 unsigned int changes = dev->flags ^ old_flags; 6837 6838 if (gchanges) 6839 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 6840 6841 if (changes & IFF_UP) { 6842 if (dev->flags & IFF_UP) 6843 call_netdevice_notifiers(NETDEV_UP, dev); 6844 else 6845 call_netdevice_notifiers(NETDEV_DOWN, dev); 6846 } 6847 6848 if (dev->flags & IFF_UP && 6849 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 6850 struct netdev_notifier_change_info change_info = { 6851 .info = { 6852 .dev = dev, 6853 }, 6854 .flags_changed = changes, 6855 }; 6856 6857 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 6858 } 6859 } 6860 6861 /** 6862 * dev_change_flags - change device settings 6863 * @dev: device 6864 * @flags: device state flags 6865 * 6866 * Change settings on device based state flags. The flags are 6867 * in the userspace exported format. 6868 */ 6869 int dev_change_flags(struct net_device *dev, unsigned int flags) 6870 { 6871 int ret; 6872 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 6873 6874 ret = __dev_change_flags(dev, flags); 6875 if (ret < 0) 6876 return ret; 6877 6878 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 6879 __dev_notify_flags(dev, old_flags, changes); 6880 return ret; 6881 } 6882 EXPORT_SYMBOL(dev_change_flags); 6883 6884 int __dev_set_mtu(struct net_device *dev, int new_mtu) 6885 { 6886 const struct net_device_ops *ops = dev->netdev_ops; 6887 6888 if (ops->ndo_change_mtu) 6889 return ops->ndo_change_mtu(dev, new_mtu); 6890 6891 dev->mtu = new_mtu; 6892 return 0; 6893 } 6894 EXPORT_SYMBOL(__dev_set_mtu); 6895 6896 /** 6897 * dev_set_mtu - Change maximum transfer unit 6898 * @dev: device 6899 * @new_mtu: new transfer unit 6900 * 6901 * Change the maximum transfer size of the network device. 6902 */ 6903 int dev_set_mtu(struct net_device *dev, int new_mtu) 6904 { 6905 int err, orig_mtu; 6906 6907 if (new_mtu == dev->mtu) 6908 return 0; 6909 6910 /* MTU must be positive, and in range */ 6911 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 6912 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n", 6913 dev->name, new_mtu, dev->min_mtu); 6914 return -EINVAL; 6915 } 6916 6917 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 6918 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n", 6919 dev->name, new_mtu, dev->max_mtu); 6920 return -EINVAL; 6921 } 6922 6923 if (!netif_device_present(dev)) 6924 return -ENODEV; 6925 6926 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 6927 err = notifier_to_errno(err); 6928 if (err) 6929 return err; 6930 6931 orig_mtu = dev->mtu; 6932 err = __dev_set_mtu(dev, new_mtu); 6933 6934 if (!err) { 6935 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6936 err = notifier_to_errno(err); 6937 if (err) { 6938 /* setting mtu back and notifying everyone again, 6939 * so that they have a chance to revert changes. 6940 */ 6941 __dev_set_mtu(dev, orig_mtu); 6942 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 6943 } 6944 } 6945 return err; 6946 } 6947 EXPORT_SYMBOL(dev_set_mtu); 6948 6949 /** 6950 * dev_set_group - Change group this device belongs to 6951 * @dev: device 6952 * @new_group: group this device should belong to 6953 */ 6954 void dev_set_group(struct net_device *dev, int new_group) 6955 { 6956 dev->group = new_group; 6957 } 6958 EXPORT_SYMBOL(dev_set_group); 6959 6960 /** 6961 * dev_set_mac_address - Change Media Access Control Address 6962 * @dev: device 6963 * @sa: new address 6964 * 6965 * Change the hardware (MAC) address of the device 6966 */ 6967 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 6968 { 6969 const struct net_device_ops *ops = dev->netdev_ops; 6970 int err; 6971 6972 if (!ops->ndo_set_mac_address) 6973 return -EOPNOTSUPP; 6974 if (sa->sa_family != dev->type) 6975 return -EINVAL; 6976 if (!netif_device_present(dev)) 6977 return -ENODEV; 6978 err = ops->ndo_set_mac_address(dev, sa); 6979 if (err) 6980 return err; 6981 dev->addr_assign_type = NET_ADDR_SET; 6982 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 6983 add_device_randomness(dev->dev_addr, dev->addr_len); 6984 return 0; 6985 } 6986 EXPORT_SYMBOL(dev_set_mac_address); 6987 6988 /** 6989 * dev_change_carrier - Change device carrier 6990 * @dev: device 6991 * @new_carrier: new value 6992 * 6993 * Change device carrier 6994 */ 6995 int dev_change_carrier(struct net_device *dev, bool new_carrier) 6996 { 6997 const struct net_device_ops *ops = dev->netdev_ops; 6998 6999 if (!ops->ndo_change_carrier) 7000 return -EOPNOTSUPP; 7001 if (!netif_device_present(dev)) 7002 return -ENODEV; 7003 return ops->ndo_change_carrier(dev, new_carrier); 7004 } 7005 EXPORT_SYMBOL(dev_change_carrier); 7006 7007 /** 7008 * dev_get_phys_port_id - Get device physical port ID 7009 * @dev: device 7010 * @ppid: port ID 7011 * 7012 * Get device physical port ID 7013 */ 7014 int dev_get_phys_port_id(struct net_device *dev, 7015 struct netdev_phys_item_id *ppid) 7016 { 7017 const struct net_device_ops *ops = dev->netdev_ops; 7018 7019 if (!ops->ndo_get_phys_port_id) 7020 return -EOPNOTSUPP; 7021 return ops->ndo_get_phys_port_id(dev, ppid); 7022 } 7023 EXPORT_SYMBOL(dev_get_phys_port_id); 7024 7025 /** 7026 * dev_get_phys_port_name - Get device physical port name 7027 * @dev: device 7028 * @name: port name 7029 * @len: limit of bytes to copy to name 7030 * 7031 * Get device physical port name 7032 */ 7033 int dev_get_phys_port_name(struct net_device *dev, 7034 char *name, size_t len) 7035 { 7036 const struct net_device_ops *ops = dev->netdev_ops; 7037 7038 if (!ops->ndo_get_phys_port_name) 7039 return -EOPNOTSUPP; 7040 return ops->ndo_get_phys_port_name(dev, name, len); 7041 } 7042 EXPORT_SYMBOL(dev_get_phys_port_name); 7043 7044 /** 7045 * dev_change_proto_down - update protocol port state information 7046 * @dev: device 7047 * @proto_down: new value 7048 * 7049 * This info can be used by switch drivers to set the phys state of the 7050 * port. 7051 */ 7052 int dev_change_proto_down(struct net_device *dev, bool proto_down) 7053 { 7054 const struct net_device_ops *ops = dev->netdev_ops; 7055 7056 if (!ops->ndo_change_proto_down) 7057 return -EOPNOTSUPP; 7058 if (!netif_device_present(dev)) 7059 return -ENODEV; 7060 return ops->ndo_change_proto_down(dev, proto_down); 7061 } 7062 EXPORT_SYMBOL(dev_change_proto_down); 7063 7064 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id) 7065 { 7066 struct netdev_xdp xdp; 7067 7068 memset(&xdp, 0, sizeof(xdp)); 7069 xdp.command = XDP_QUERY_PROG; 7070 7071 /* Query must always succeed. */ 7072 WARN_ON(xdp_op(dev, &xdp) < 0); 7073 if (prog_id) 7074 *prog_id = xdp.prog_id; 7075 7076 return xdp.prog_attached; 7077 } 7078 7079 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op, 7080 struct netlink_ext_ack *extack, u32 flags, 7081 struct bpf_prog *prog) 7082 { 7083 struct netdev_xdp xdp; 7084 7085 memset(&xdp, 0, sizeof(xdp)); 7086 if (flags & XDP_FLAGS_HW_MODE) 7087 xdp.command = XDP_SETUP_PROG_HW; 7088 else 7089 xdp.command = XDP_SETUP_PROG; 7090 xdp.extack = extack; 7091 xdp.flags = flags; 7092 xdp.prog = prog; 7093 7094 return xdp_op(dev, &xdp); 7095 } 7096 7097 /** 7098 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 7099 * @dev: device 7100 * @extack: netlink extended ack 7101 * @fd: new program fd or negative value to clear 7102 * @flags: xdp-related flags 7103 * 7104 * Set or clear a bpf program for a device 7105 */ 7106 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 7107 int fd, u32 flags) 7108 { 7109 const struct net_device_ops *ops = dev->netdev_ops; 7110 struct bpf_prog *prog = NULL; 7111 xdp_op_t xdp_op, xdp_chk; 7112 int err; 7113 7114 ASSERT_RTNL(); 7115 7116 xdp_op = xdp_chk = ops->ndo_xdp; 7117 if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) 7118 return -EOPNOTSUPP; 7119 if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE)) 7120 xdp_op = generic_xdp_install; 7121 if (xdp_op == xdp_chk) 7122 xdp_chk = generic_xdp_install; 7123 7124 if (fd >= 0) { 7125 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL)) 7126 return -EEXIST; 7127 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && 7128 __dev_xdp_attached(dev, xdp_op, NULL)) 7129 return -EBUSY; 7130 7131 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP); 7132 if (IS_ERR(prog)) 7133 return PTR_ERR(prog); 7134 } 7135 7136 err = dev_xdp_install(dev, xdp_op, extack, flags, prog); 7137 if (err < 0 && prog) 7138 bpf_prog_put(prog); 7139 7140 return err; 7141 } 7142 7143 /** 7144 * dev_new_index - allocate an ifindex 7145 * @net: the applicable net namespace 7146 * 7147 * Returns a suitable unique value for a new device interface 7148 * number. The caller must hold the rtnl semaphore or the 7149 * dev_base_lock to be sure it remains unique. 7150 */ 7151 static int dev_new_index(struct net *net) 7152 { 7153 int ifindex = net->ifindex; 7154 7155 for (;;) { 7156 if (++ifindex <= 0) 7157 ifindex = 1; 7158 if (!__dev_get_by_index(net, ifindex)) 7159 return net->ifindex = ifindex; 7160 } 7161 } 7162 7163 /* Delayed registration/unregisteration */ 7164 static LIST_HEAD(net_todo_list); 7165 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 7166 7167 static void net_set_todo(struct net_device *dev) 7168 { 7169 list_add_tail(&dev->todo_list, &net_todo_list); 7170 dev_net(dev)->dev_unreg_count++; 7171 } 7172 7173 static void rollback_registered_many(struct list_head *head) 7174 { 7175 struct net_device *dev, *tmp; 7176 LIST_HEAD(close_head); 7177 7178 BUG_ON(dev_boot_phase); 7179 ASSERT_RTNL(); 7180 7181 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 7182 /* Some devices call without registering 7183 * for initialization unwind. Remove those 7184 * devices and proceed with the remaining. 7185 */ 7186 if (dev->reg_state == NETREG_UNINITIALIZED) { 7187 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 7188 dev->name, dev); 7189 7190 WARN_ON(1); 7191 list_del(&dev->unreg_list); 7192 continue; 7193 } 7194 dev->dismantle = true; 7195 BUG_ON(dev->reg_state != NETREG_REGISTERED); 7196 } 7197 7198 /* If device is running, close it first. */ 7199 list_for_each_entry(dev, head, unreg_list) 7200 list_add_tail(&dev->close_list, &close_head); 7201 dev_close_many(&close_head, true); 7202 7203 list_for_each_entry(dev, head, unreg_list) { 7204 /* And unlink it from device chain. */ 7205 unlist_netdevice(dev); 7206 7207 dev->reg_state = NETREG_UNREGISTERING; 7208 } 7209 flush_all_backlogs(); 7210 7211 synchronize_net(); 7212 7213 list_for_each_entry(dev, head, unreg_list) { 7214 struct sk_buff *skb = NULL; 7215 7216 /* Shutdown queueing discipline. */ 7217 dev_shutdown(dev); 7218 7219 7220 /* Notify protocols, that we are about to destroy 7221 * this device. They should clean all the things. 7222 */ 7223 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7224 7225 if (!dev->rtnl_link_ops || 7226 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7227 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 7228 GFP_KERNEL, NULL); 7229 7230 /* 7231 * Flush the unicast and multicast chains 7232 */ 7233 dev_uc_flush(dev); 7234 dev_mc_flush(dev); 7235 7236 if (dev->netdev_ops->ndo_uninit) 7237 dev->netdev_ops->ndo_uninit(dev); 7238 7239 if (skb) 7240 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 7241 7242 /* Notifier chain MUST detach us all upper devices. */ 7243 WARN_ON(netdev_has_any_upper_dev(dev)); 7244 WARN_ON(netdev_has_any_lower_dev(dev)); 7245 7246 /* Remove entries from kobject tree */ 7247 netdev_unregister_kobject(dev); 7248 #ifdef CONFIG_XPS 7249 /* Remove XPS queueing entries */ 7250 netif_reset_xps_queues_gt(dev, 0); 7251 #endif 7252 } 7253 7254 synchronize_net(); 7255 7256 list_for_each_entry(dev, head, unreg_list) 7257 dev_put(dev); 7258 } 7259 7260 static void rollback_registered(struct net_device *dev) 7261 { 7262 LIST_HEAD(single); 7263 7264 list_add(&dev->unreg_list, &single); 7265 rollback_registered_many(&single); 7266 list_del(&single); 7267 } 7268 7269 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 7270 struct net_device *upper, netdev_features_t features) 7271 { 7272 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7273 netdev_features_t feature; 7274 int feature_bit; 7275 7276 for_each_netdev_feature(&upper_disables, feature_bit) { 7277 feature = __NETIF_F_BIT(feature_bit); 7278 if (!(upper->wanted_features & feature) 7279 && (features & feature)) { 7280 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 7281 &feature, upper->name); 7282 features &= ~feature; 7283 } 7284 } 7285 7286 return features; 7287 } 7288 7289 static void netdev_sync_lower_features(struct net_device *upper, 7290 struct net_device *lower, netdev_features_t features) 7291 { 7292 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 7293 netdev_features_t feature; 7294 int feature_bit; 7295 7296 for_each_netdev_feature(&upper_disables, feature_bit) { 7297 feature = __NETIF_F_BIT(feature_bit); 7298 if (!(features & feature) && (lower->features & feature)) { 7299 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 7300 &feature, lower->name); 7301 lower->wanted_features &= ~feature; 7302 netdev_update_features(lower); 7303 7304 if (unlikely(lower->features & feature)) 7305 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 7306 &feature, lower->name); 7307 } 7308 } 7309 } 7310 7311 static netdev_features_t netdev_fix_features(struct net_device *dev, 7312 netdev_features_t features) 7313 { 7314 /* Fix illegal checksum combinations */ 7315 if ((features & NETIF_F_HW_CSUM) && 7316 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 7317 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 7318 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 7319 } 7320 7321 /* TSO requires that SG is present as well. */ 7322 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 7323 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 7324 features &= ~NETIF_F_ALL_TSO; 7325 } 7326 7327 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 7328 !(features & NETIF_F_IP_CSUM)) { 7329 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 7330 features &= ~NETIF_F_TSO; 7331 features &= ~NETIF_F_TSO_ECN; 7332 } 7333 7334 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 7335 !(features & NETIF_F_IPV6_CSUM)) { 7336 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 7337 features &= ~NETIF_F_TSO6; 7338 } 7339 7340 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 7341 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 7342 features &= ~NETIF_F_TSO_MANGLEID; 7343 7344 /* TSO ECN requires that TSO is present as well. */ 7345 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 7346 features &= ~NETIF_F_TSO_ECN; 7347 7348 /* Software GSO depends on SG. */ 7349 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 7350 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 7351 features &= ~NETIF_F_GSO; 7352 } 7353 7354 /* GSO partial features require GSO partial be set */ 7355 if ((features & dev->gso_partial_features) && 7356 !(features & NETIF_F_GSO_PARTIAL)) { 7357 netdev_dbg(dev, 7358 "Dropping partially supported GSO features since no GSO partial.\n"); 7359 features &= ~dev->gso_partial_features; 7360 } 7361 7362 return features; 7363 } 7364 7365 int __netdev_update_features(struct net_device *dev) 7366 { 7367 struct net_device *upper, *lower; 7368 netdev_features_t features; 7369 struct list_head *iter; 7370 int err = -1; 7371 7372 ASSERT_RTNL(); 7373 7374 features = netdev_get_wanted_features(dev); 7375 7376 if (dev->netdev_ops->ndo_fix_features) 7377 features = dev->netdev_ops->ndo_fix_features(dev, features); 7378 7379 /* driver might be less strict about feature dependencies */ 7380 features = netdev_fix_features(dev, features); 7381 7382 /* some features can't be enabled if they're off an an upper device */ 7383 netdev_for_each_upper_dev_rcu(dev, upper, iter) 7384 features = netdev_sync_upper_features(dev, upper, features); 7385 7386 if (dev->features == features) 7387 goto sync_lower; 7388 7389 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 7390 &dev->features, &features); 7391 7392 if (dev->netdev_ops->ndo_set_features) 7393 err = dev->netdev_ops->ndo_set_features(dev, features); 7394 else 7395 err = 0; 7396 7397 if (unlikely(err < 0)) { 7398 netdev_err(dev, 7399 "set_features() failed (%d); wanted %pNF, left %pNF\n", 7400 err, &features, &dev->features); 7401 /* return non-0 since some features might have changed and 7402 * it's better to fire a spurious notification than miss it 7403 */ 7404 return -1; 7405 } 7406 7407 sync_lower: 7408 /* some features must be disabled on lower devices when disabled 7409 * on an upper device (think: bonding master or bridge) 7410 */ 7411 netdev_for_each_lower_dev(dev, lower, iter) 7412 netdev_sync_lower_features(dev, lower, features); 7413 7414 if (!err) { 7415 netdev_features_t diff = features ^ dev->features; 7416 7417 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 7418 /* udp_tunnel_{get,drop}_rx_info both need 7419 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 7420 * device, or they won't do anything. 7421 * Thus we need to update dev->features 7422 * *before* calling udp_tunnel_get_rx_info, 7423 * but *after* calling udp_tunnel_drop_rx_info. 7424 */ 7425 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 7426 dev->features = features; 7427 udp_tunnel_get_rx_info(dev); 7428 } else { 7429 udp_tunnel_drop_rx_info(dev); 7430 } 7431 } 7432 7433 dev->features = features; 7434 } 7435 7436 return err < 0 ? 0 : 1; 7437 } 7438 7439 /** 7440 * netdev_update_features - recalculate device features 7441 * @dev: the device to check 7442 * 7443 * Recalculate dev->features set and send notifications if it 7444 * has changed. Should be called after driver or hardware dependent 7445 * conditions might have changed that influence the features. 7446 */ 7447 void netdev_update_features(struct net_device *dev) 7448 { 7449 if (__netdev_update_features(dev)) 7450 netdev_features_change(dev); 7451 } 7452 EXPORT_SYMBOL(netdev_update_features); 7453 7454 /** 7455 * netdev_change_features - recalculate device features 7456 * @dev: the device to check 7457 * 7458 * Recalculate dev->features set and send notifications even 7459 * if they have not changed. Should be called instead of 7460 * netdev_update_features() if also dev->vlan_features might 7461 * have changed to allow the changes to be propagated to stacked 7462 * VLAN devices. 7463 */ 7464 void netdev_change_features(struct net_device *dev) 7465 { 7466 __netdev_update_features(dev); 7467 netdev_features_change(dev); 7468 } 7469 EXPORT_SYMBOL(netdev_change_features); 7470 7471 /** 7472 * netif_stacked_transfer_operstate - transfer operstate 7473 * @rootdev: the root or lower level device to transfer state from 7474 * @dev: the device to transfer operstate to 7475 * 7476 * Transfer operational state from root to device. This is normally 7477 * called when a stacking relationship exists between the root 7478 * device and the device(a leaf device). 7479 */ 7480 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 7481 struct net_device *dev) 7482 { 7483 if (rootdev->operstate == IF_OPER_DORMANT) 7484 netif_dormant_on(dev); 7485 else 7486 netif_dormant_off(dev); 7487 7488 if (netif_carrier_ok(rootdev)) 7489 netif_carrier_on(dev); 7490 else 7491 netif_carrier_off(dev); 7492 } 7493 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 7494 7495 #ifdef CONFIG_SYSFS 7496 static int netif_alloc_rx_queues(struct net_device *dev) 7497 { 7498 unsigned int i, count = dev->num_rx_queues; 7499 struct netdev_rx_queue *rx; 7500 size_t sz = count * sizeof(*rx); 7501 7502 BUG_ON(count < 1); 7503 7504 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7505 if (!rx) 7506 return -ENOMEM; 7507 7508 dev->_rx = rx; 7509 7510 for (i = 0; i < count; i++) 7511 rx[i].dev = dev; 7512 return 0; 7513 } 7514 #endif 7515 7516 static void netdev_init_one_queue(struct net_device *dev, 7517 struct netdev_queue *queue, void *_unused) 7518 { 7519 /* Initialize queue lock */ 7520 spin_lock_init(&queue->_xmit_lock); 7521 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 7522 queue->xmit_lock_owner = -1; 7523 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 7524 queue->dev = dev; 7525 #ifdef CONFIG_BQL 7526 dql_init(&queue->dql, HZ); 7527 #endif 7528 } 7529 7530 static void netif_free_tx_queues(struct net_device *dev) 7531 { 7532 kvfree(dev->_tx); 7533 } 7534 7535 static int netif_alloc_netdev_queues(struct net_device *dev) 7536 { 7537 unsigned int count = dev->num_tx_queues; 7538 struct netdev_queue *tx; 7539 size_t sz = count * sizeof(*tx); 7540 7541 if (count < 1 || count > 0xffff) 7542 return -EINVAL; 7543 7544 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 7545 if (!tx) 7546 return -ENOMEM; 7547 7548 dev->_tx = tx; 7549 7550 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 7551 spin_lock_init(&dev->tx_global_lock); 7552 7553 return 0; 7554 } 7555 7556 void netif_tx_stop_all_queues(struct net_device *dev) 7557 { 7558 unsigned int i; 7559 7560 for (i = 0; i < dev->num_tx_queues; i++) { 7561 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 7562 7563 netif_tx_stop_queue(txq); 7564 } 7565 } 7566 EXPORT_SYMBOL(netif_tx_stop_all_queues); 7567 7568 /** 7569 * register_netdevice - register a network device 7570 * @dev: device to register 7571 * 7572 * Take a completed network device structure and add it to the kernel 7573 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7574 * chain. 0 is returned on success. A negative errno code is returned 7575 * on a failure to set up the device, or if the name is a duplicate. 7576 * 7577 * Callers must hold the rtnl semaphore. You may want 7578 * register_netdev() instead of this. 7579 * 7580 * BUGS: 7581 * The locking appears insufficient to guarantee two parallel registers 7582 * will not get the same name. 7583 */ 7584 7585 int register_netdevice(struct net_device *dev) 7586 { 7587 int ret; 7588 struct net *net = dev_net(dev); 7589 7590 BUG_ON(dev_boot_phase); 7591 ASSERT_RTNL(); 7592 7593 might_sleep(); 7594 7595 /* When net_device's are persistent, this will be fatal. */ 7596 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 7597 BUG_ON(!net); 7598 7599 spin_lock_init(&dev->addr_list_lock); 7600 netdev_set_addr_lockdep_class(dev); 7601 7602 ret = dev_get_valid_name(net, dev, dev->name); 7603 if (ret < 0) 7604 goto out; 7605 7606 /* Init, if this function is available */ 7607 if (dev->netdev_ops->ndo_init) { 7608 ret = dev->netdev_ops->ndo_init(dev); 7609 if (ret) { 7610 if (ret > 0) 7611 ret = -EIO; 7612 goto out; 7613 } 7614 } 7615 7616 if (((dev->hw_features | dev->features) & 7617 NETIF_F_HW_VLAN_CTAG_FILTER) && 7618 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 7619 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 7620 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 7621 ret = -EINVAL; 7622 goto err_uninit; 7623 } 7624 7625 ret = -EBUSY; 7626 if (!dev->ifindex) 7627 dev->ifindex = dev_new_index(net); 7628 else if (__dev_get_by_index(net, dev->ifindex)) 7629 goto err_uninit; 7630 7631 /* Transfer changeable features to wanted_features and enable 7632 * software offloads (GSO and GRO). 7633 */ 7634 dev->hw_features |= NETIF_F_SOFT_FEATURES; 7635 dev->features |= NETIF_F_SOFT_FEATURES; 7636 7637 if (dev->netdev_ops->ndo_udp_tunnel_add) { 7638 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7639 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 7640 } 7641 7642 dev->wanted_features = dev->features & dev->hw_features; 7643 7644 if (!(dev->flags & IFF_LOOPBACK)) 7645 dev->hw_features |= NETIF_F_NOCACHE_COPY; 7646 7647 /* If IPv4 TCP segmentation offload is supported we should also 7648 * allow the device to enable segmenting the frame with the option 7649 * of ignoring a static IP ID value. This doesn't enable the 7650 * feature itself but allows the user to enable it later. 7651 */ 7652 if (dev->hw_features & NETIF_F_TSO) 7653 dev->hw_features |= NETIF_F_TSO_MANGLEID; 7654 if (dev->vlan_features & NETIF_F_TSO) 7655 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 7656 if (dev->mpls_features & NETIF_F_TSO) 7657 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 7658 if (dev->hw_enc_features & NETIF_F_TSO) 7659 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 7660 7661 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 7662 */ 7663 dev->vlan_features |= NETIF_F_HIGHDMA; 7664 7665 /* Make NETIF_F_SG inheritable to tunnel devices. 7666 */ 7667 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 7668 7669 /* Make NETIF_F_SG inheritable to MPLS. 7670 */ 7671 dev->mpls_features |= NETIF_F_SG; 7672 7673 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 7674 ret = notifier_to_errno(ret); 7675 if (ret) 7676 goto err_uninit; 7677 7678 ret = netdev_register_kobject(dev); 7679 if (ret) 7680 goto err_uninit; 7681 dev->reg_state = NETREG_REGISTERED; 7682 7683 __netdev_update_features(dev); 7684 7685 /* 7686 * Default initial state at registry is that the 7687 * device is present. 7688 */ 7689 7690 set_bit(__LINK_STATE_PRESENT, &dev->state); 7691 7692 linkwatch_init_dev(dev); 7693 7694 dev_init_scheduler(dev); 7695 dev_hold(dev); 7696 list_netdevice(dev); 7697 add_device_randomness(dev->dev_addr, dev->addr_len); 7698 7699 /* If the device has permanent device address, driver should 7700 * set dev_addr and also addr_assign_type should be set to 7701 * NET_ADDR_PERM (default value). 7702 */ 7703 if (dev->addr_assign_type == NET_ADDR_PERM) 7704 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 7705 7706 /* Notify protocols, that a new device appeared. */ 7707 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 7708 ret = notifier_to_errno(ret); 7709 if (ret) { 7710 rollback_registered(dev); 7711 dev->reg_state = NETREG_UNREGISTERED; 7712 } 7713 /* 7714 * Prevent userspace races by waiting until the network 7715 * device is fully setup before sending notifications. 7716 */ 7717 if (!dev->rtnl_link_ops || 7718 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 7719 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 7720 7721 out: 7722 return ret; 7723 7724 err_uninit: 7725 if (dev->netdev_ops->ndo_uninit) 7726 dev->netdev_ops->ndo_uninit(dev); 7727 if (dev->priv_destructor) 7728 dev->priv_destructor(dev); 7729 goto out; 7730 } 7731 EXPORT_SYMBOL(register_netdevice); 7732 7733 /** 7734 * init_dummy_netdev - init a dummy network device for NAPI 7735 * @dev: device to init 7736 * 7737 * This takes a network device structure and initialize the minimum 7738 * amount of fields so it can be used to schedule NAPI polls without 7739 * registering a full blown interface. This is to be used by drivers 7740 * that need to tie several hardware interfaces to a single NAPI 7741 * poll scheduler due to HW limitations. 7742 */ 7743 int init_dummy_netdev(struct net_device *dev) 7744 { 7745 /* Clear everything. Note we don't initialize spinlocks 7746 * are they aren't supposed to be taken by any of the 7747 * NAPI code and this dummy netdev is supposed to be 7748 * only ever used for NAPI polls 7749 */ 7750 memset(dev, 0, sizeof(struct net_device)); 7751 7752 /* make sure we BUG if trying to hit standard 7753 * register/unregister code path 7754 */ 7755 dev->reg_state = NETREG_DUMMY; 7756 7757 /* NAPI wants this */ 7758 INIT_LIST_HEAD(&dev->napi_list); 7759 7760 /* a dummy interface is started by default */ 7761 set_bit(__LINK_STATE_PRESENT, &dev->state); 7762 set_bit(__LINK_STATE_START, &dev->state); 7763 7764 /* Note : We dont allocate pcpu_refcnt for dummy devices, 7765 * because users of this 'device' dont need to change 7766 * its refcount. 7767 */ 7768 7769 return 0; 7770 } 7771 EXPORT_SYMBOL_GPL(init_dummy_netdev); 7772 7773 7774 /** 7775 * register_netdev - register a network device 7776 * @dev: device to register 7777 * 7778 * Take a completed network device structure and add it to the kernel 7779 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 7780 * chain. 0 is returned on success. A negative errno code is returned 7781 * on a failure to set up the device, or if the name is a duplicate. 7782 * 7783 * This is a wrapper around register_netdevice that takes the rtnl semaphore 7784 * and expands the device name if you passed a format string to 7785 * alloc_netdev. 7786 */ 7787 int register_netdev(struct net_device *dev) 7788 { 7789 int err; 7790 7791 rtnl_lock(); 7792 err = register_netdevice(dev); 7793 rtnl_unlock(); 7794 return err; 7795 } 7796 EXPORT_SYMBOL(register_netdev); 7797 7798 int netdev_refcnt_read(const struct net_device *dev) 7799 { 7800 int i, refcnt = 0; 7801 7802 for_each_possible_cpu(i) 7803 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 7804 return refcnt; 7805 } 7806 EXPORT_SYMBOL(netdev_refcnt_read); 7807 7808 /** 7809 * netdev_wait_allrefs - wait until all references are gone. 7810 * @dev: target net_device 7811 * 7812 * This is called when unregistering network devices. 7813 * 7814 * Any protocol or device that holds a reference should register 7815 * for netdevice notification, and cleanup and put back the 7816 * reference if they receive an UNREGISTER event. 7817 * We can get stuck here if buggy protocols don't correctly 7818 * call dev_put. 7819 */ 7820 static void netdev_wait_allrefs(struct net_device *dev) 7821 { 7822 unsigned long rebroadcast_time, warning_time; 7823 int refcnt; 7824 7825 linkwatch_forget_dev(dev); 7826 7827 rebroadcast_time = warning_time = jiffies; 7828 refcnt = netdev_refcnt_read(dev); 7829 7830 while (refcnt != 0) { 7831 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 7832 rtnl_lock(); 7833 7834 /* Rebroadcast unregister notification */ 7835 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 7836 7837 __rtnl_unlock(); 7838 rcu_barrier(); 7839 rtnl_lock(); 7840 7841 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7842 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 7843 &dev->state)) { 7844 /* We must not have linkwatch events 7845 * pending on unregister. If this 7846 * happens, we simply run the queue 7847 * unscheduled, resulting in a noop 7848 * for this device. 7849 */ 7850 linkwatch_run_queue(); 7851 } 7852 7853 __rtnl_unlock(); 7854 7855 rebroadcast_time = jiffies; 7856 } 7857 7858 msleep(250); 7859 7860 refcnt = netdev_refcnt_read(dev); 7861 7862 if (time_after(jiffies, warning_time + 10 * HZ)) { 7863 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 7864 dev->name, refcnt); 7865 warning_time = jiffies; 7866 } 7867 } 7868 } 7869 7870 /* The sequence is: 7871 * 7872 * rtnl_lock(); 7873 * ... 7874 * register_netdevice(x1); 7875 * register_netdevice(x2); 7876 * ... 7877 * unregister_netdevice(y1); 7878 * unregister_netdevice(y2); 7879 * ... 7880 * rtnl_unlock(); 7881 * free_netdev(y1); 7882 * free_netdev(y2); 7883 * 7884 * We are invoked by rtnl_unlock(). 7885 * This allows us to deal with problems: 7886 * 1) We can delete sysfs objects which invoke hotplug 7887 * without deadlocking with linkwatch via keventd. 7888 * 2) Since we run with the RTNL semaphore not held, we can sleep 7889 * safely in order to wait for the netdev refcnt to drop to zero. 7890 * 7891 * We must not return until all unregister events added during 7892 * the interval the lock was held have been completed. 7893 */ 7894 void netdev_run_todo(void) 7895 { 7896 struct list_head list; 7897 7898 /* Snapshot list, allow later requests */ 7899 list_replace_init(&net_todo_list, &list); 7900 7901 __rtnl_unlock(); 7902 7903 7904 /* Wait for rcu callbacks to finish before next phase */ 7905 if (!list_empty(&list)) 7906 rcu_barrier(); 7907 7908 while (!list_empty(&list)) { 7909 struct net_device *dev 7910 = list_first_entry(&list, struct net_device, todo_list); 7911 list_del(&dev->todo_list); 7912 7913 rtnl_lock(); 7914 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 7915 __rtnl_unlock(); 7916 7917 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 7918 pr_err("network todo '%s' but state %d\n", 7919 dev->name, dev->reg_state); 7920 dump_stack(); 7921 continue; 7922 } 7923 7924 dev->reg_state = NETREG_UNREGISTERED; 7925 7926 netdev_wait_allrefs(dev); 7927 7928 /* paranoia */ 7929 BUG_ON(netdev_refcnt_read(dev)); 7930 BUG_ON(!list_empty(&dev->ptype_all)); 7931 BUG_ON(!list_empty(&dev->ptype_specific)); 7932 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 7933 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 7934 WARN_ON(dev->dn_ptr); 7935 7936 if (dev->priv_destructor) 7937 dev->priv_destructor(dev); 7938 if (dev->needs_free_netdev) 7939 free_netdev(dev); 7940 7941 /* Report a network device has been unregistered */ 7942 rtnl_lock(); 7943 dev_net(dev)->dev_unreg_count--; 7944 __rtnl_unlock(); 7945 wake_up(&netdev_unregistering_wq); 7946 7947 /* Free network device */ 7948 kobject_put(&dev->dev.kobj); 7949 } 7950 } 7951 7952 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 7953 * all the same fields in the same order as net_device_stats, with only 7954 * the type differing, but rtnl_link_stats64 may have additional fields 7955 * at the end for newer counters. 7956 */ 7957 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 7958 const struct net_device_stats *netdev_stats) 7959 { 7960 #if BITS_PER_LONG == 64 7961 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 7962 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 7963 /* zero out counters that only exist in rtnl_link_stats64 */ 7964 memset((char *)stats64 + sizeof(*netdev_stats), 0, 7965 sizeof(*stats64) - sizeof(*netdev_stats)); 7966 #else 7967 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 7968 const unsigned long *src = (const unsigned long *)netdev_stats; 7969 u64 *dst = (u64 *)stats64; 7970 7971 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 7972 for (i = 0; i < n; i++) 7973 dst[i] = src[i]; 7974 /* zero out counters that only exist in rtnl_link_stats64 */ 7975 memset((char *)stats64 + n * sizeof(u64), 0, 7976 sizeof(*stats64) - n * sizeof(u64)); 7977 #endif 7978 } 7979 EXPORT_SYMBOL(netdev_stats_to_stats64); 7980 7981 /** 7982 * dev_get_stats - get network device statistics 7983 * @dev: device to get statistics from 7984 * @storage: place to store stats 7985 * 7986 * Get network statistics from device. Return @storage. 7987 * The device driver may provide its own method by setting 7988 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 7989 * otherwise the internal statistics structure is used. 7990 */ 7991 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 7992 struct rtnl_link_stats64 *storage) 7993 { 7994 const struct net_device_ops *ops = dev->netdev_ops; 7995 7996 if (ops->ndo_get_stats64) { 7997 memset(storage, 0, sizeof(*storage)); 7998 ops->ndo_get_stats64(dev, storage); 7999 } else if (ops->ndo_get_stats) { 8000 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 8001 } else { 8002 netdev_stats_to_stats64(storage, &dev->stats); 8003 } 8004 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 8005 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 8006 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 8007 return storage; 8008 } 8009 EXPORT_SYMBOL(dev_get_stats); 8010 8011 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 8012 { 8013 struct netdev_queue *queue = dev_ingress_queue(dev); 8014 8015 #ifdef CONFIG_NET_CLS_ACT 8016 if (queue) 8017 return queue; 8018 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 8019 if (!queue) 8020 return NULL; 8021 netdev_init_one_queue(dev, queue, NULL); 8022 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 8023 queue->qdisc_sleeping = &noop_qdisc; 8024 rcu_assign_pointer(dev->ingress_queue, queue); 8025 #endif 8026 return queue; 8027 } 8028 8029 static const struct ethtool_ops default_ethtool_ops; 8030 8031 void netdev_set_default_ethtool_ops(struct net_device *dev, 8032 const struct ethtool_ops *ops) 8033 { 8034 if (dev->ethtool_ops == &default_ethtool_ops) 8035 dev->ethtool_ops = ops; 8036 } 8037 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 8038 8039 void netdev_freemem(struct net_device *dev) 8040 { 8041 char *addr = (char *)dev - dev->padded; 8042 8043 kvfree(addr); 8044 } 8045 8046 /** 8047 * alloc_netdev_mqs - allocate network device 8048 * @sizeof_priv: size of private data to allocate space for 8049 * @name: device name format string 8050 * @name_assign_type: origin of device name 8051 * @setup: callback to initialize device 8052 * @txqs: the number of TX subqueues to allocate 8053 * @rxqs: the number of RX subqueues to allocate 8054 * 8055 * Allocates a struct net_device with private data area for driver use 8056 * and performs basic initialization. Also allocates subqueue structs 8057 * for each queue on the device. 8058 */ 8059 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 8060 unsigned char name_assign_type, 8061 void (*setup)(struct net_device *), 8062 unsigned int txqs, unsigned int rxqs) 8063 { 8064 struct net_device *dev; 8065 unsigned int alloc_size; 8066 struct net_device *p; 8067 8068 BUG_ON(strlen(name) >= sizeof(dev->name)); 8069 8070 if (txqs < 1) { 8071 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 8072 return NULL; 8073 } 8074 8075 #ifdef CONFIG_SYSFS 8076 if (rxqs < 1) { 8077 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 8078 return NULL; 8079 } 8080 #endif 8081 8082 alloc_size = sizeof(struct net_device); 8083 if (sizeof_priv) { 8084 /* ensure 32-byte alignment of private area */ 8085 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 8086 alloc_size += sizeof_priv; 8087 } 8088 /* ensure 32-byte alignment of whole construct */ 8089 alloc_size += NETDEV_ALIGN - 1; 8090 8091 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 8092 if (!p) 8093 return NULL; 8094 8095 dev = PTR_ALIGN(p, NETDEV_ALIGN); 8096 dev->padded = (char *)dev - (char *)p; 8097 8098 dev->pcpu_refcnt = alloc_percpu(int); 8099 if (!dev->pcpu_refcnt) 8100 goto free_dev; 8101 8102 if (dev_addr_init(dev)) 8103 goto free_pcpu; 8104 8105 dev_mc_init(dev); 8106 dev_uc_init(dev); 8107 8108 dev_net_set(dev, &init_net); 8109 8110 dev->gso_max_size = GSO_MAX_SIZE; 8111 dev->gso_max_segs = GSO_MAX_SEGS; 8112 8113 INIT_LIST_HEAD(&dev->napi_list); 8114 INIT_LIST_HEAD(&dev->unreg_list); 8115 INIT_LIST_HEAD(&dev->close_list); 8116 INIT_LIST_HEAD(&dev->link_watch_list); 8117 INIT_LIST_HEAD(&dev->adj_list.upper); 8118 INIT_LIST_HEAD(&dev->adj_list.lower); 8119 INIT_LIST_HEAD(&dev->ptype_all); 8120 INIT_LIST_HEAD(&dev->ptype_specific); 8121 #ifdef CONFIG_NET_SCHED 8122 hash_init(dev->qdisc_hash); 8123 #endif 8124 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 8125 setup(dev); 8126 8127 if (!dev->tx_queue_len) { 8128 dev->priv_flags |= IFF_NO_QUEUE; 8129 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 8130 } 8131 8132 dev->num_tx_queues = txqs; 8133 dev->real_num_tx_queues = txqs; 8134 if (netif_alloc_netdev_queues(dev)) 8135 goto free_all; 8136 8137 #ifdef CONFIG_SYSFS 8138 dev->num_rx_queues = rxqs; 8139 dev->real_num_rx_queues = rxqs; 8140 if (netif_alloc_rx_queues(dev)) 8141 goto free_all; 8142 #endif 8143 8144 strcpy(dev->name, name); 8145 dev->name_assign_type = name_assign_type; 8146 dev->group = INIT_NETDEV_GROUP; 8147 if (!dev->ethtool_ops) 8148 dev->ethtool_ops = &default_ethtool_ops; 8149 8150 nf_hook_ingress_init(dev); 8151 8152 return dev; 8153 8154 free_all: 8155 free_netdev(dev); 8156 return NULL; 8157 8158 free_pcpu: 8159 free_percpu(dev->pcpu_refcnt); 8160 free_dev: 8161 netdev_freemem(dev); 8162 return NULL; 8163 } 8164 EXPORT_SYMBOL(alloc_netdev_mqs); 8165 8166 /** 8167 * free_netdev - free network device 8168 * @dev: device 8169 * 8170 * This function does the last stage of destroying an allocated device 8171 * interface. The reference to the device object is released. If this 8172 * is the last reference then it will be freed.Must be called in process 8173 * context. 8174 */ 8175 void free_netdev(struct net_device *dev) 8176 { 8177 struct napi_struct *p, *n; 8178 struct bpf_prog *prog; 8179 8180 might_sleep(); 8181 netif_free_tx_queues(dev); 8182 #ifdef CONFIG_SYSFS 8183 kvfree(dev->_rx); 8184 #endif 8185 8186 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 8187 8188 /* Flush device addresses */ 8189 dev_addr_flush(dev); 8190 8191 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 8192 netif_napi_del(p); 8193 8194 free_percpu(dev->pcpu_refcnt); 8195 dev->pcpu_refcnt = NULL; 8196 8197 prog = rcu_dereference_protected(dev->xdp_prog, 1); 8198 if (prog) { 8199 bpf_prog_put(prog); 8200 static_key_slow_dec(&generic_xdp_needed); 8201 } 8202 8203 /* Compatibility with error handling in drivers */ 8204 if (dev->reg_state == NETREG_UNINITIALIZED) { 8205 netdev_freemem(dev); 8206 return; 8207 } 8208 8209 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 8210 dev->reg_state = NETREG_RELEASED; 8211 8212 /* will free via device release */ 8213 put_device(&dev->dev); 8214 } 8215 EXPORT_SYMBOL(free_netdev); 8216 8217 /** 8218 * synchronize_net - Synchronize with packet receive processing 8219 * 8220 * Wait for packets currently being received to be done. 8221 * Does not block later packets from starting. 8222 */ 8223 void synchronize_net(void) 8224 { 8225 might_sleep(); 8226 if (rtnl_is_locked()) 8227 synchronize_rcu_expedited(); 8228 else 8229 synchronize_rcu(); 8230 } 8231 EXPORT_SYMBOL(synchronize_net); 8232 8233 /** 8234 * unregister_netdevice_queue - remove device from the kernel 8235 * @dev: device 8236 * @head: list 8237 * 8238 * This function shuts down a device interface and removes it 8239 * from the kernel tables. 8240 * If head not NULL, device is queued to be unregistered later. 8241 * 8242 * Callers must hold the rtnl semaphore. You may want 8243 * unregister_netdev() instead of this. 8244 */ 8245 8246 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 8247 { 8248 ASSERT_RTNL(); 8249 8250 if (head) { 8251 list_move_tail(&dev->unreg_list, head); 8252 } else { 8253 rollback_registered(dev); 8254 /* Finish processing unregister after unlock */ 8255 net_set_todo(dev); 8256 } 8257 } 8258 EXPORT_SYMBOL(unregister_netdevice_queue); 8259 8260 /** 8261 * unregister_netdevice_many - unregister many devices 8262 * @head: list of devices 8263 * 8264 * Note: As most callers use a stack allocated list_head, 8265 * we force a list_del() to make sure stack wont be corrupted later. 8266 */ 8267 void unregister_netdevice_many(struct list_head *head) 8268 { 8269 struct net_device *dev; 8270 8271 if (!list_empty(head)) { 8272 rollback_registered_many(head); 8273 list_for_each_entry(dev, head, unreg_list) 8274 net_set_todo(dev); 8275 list_del(head); 8276 } 8277 } 8278 EXPORT_SYMBOL(unregister_netdevice_many); 8279 8280 /** 8281 * unregister_netdev - remove device from the kernel 8282 * @dev: device 8283 * 8284 * This function shuts down a device interface and removes it 8285 * from the kernel tables. 8286 * 8287 * This is just a wrapper for unregister_netdevice that takes 8288 * the rtnl semaphore. In general you want to use this and not 8289 * unregister_netdevice. 8290 */ 8291 void unregister_netdev(struct net_device *dev) 8292 { 8293 rtnl_lock(); 8294 unregister_netdevice(dev); 8295 rtnl_unlock(); 8296 } 8297 EXPORT_SYMBOL(unregister_netdev); 8298 8299 /** 8300 * dev_change_net_namespace - move device to different nethost namespace 8301 * @dev: device 8302 * @net: network namespace 8303 * @pat: If not NULL name pattern to try if the current device name 8304 * is already taken in the destination network namespace. 8305 * 8306 * This function shuts down a device interface and moves it 8307 * to a new network namespace. On success 0 is returned, on 8308 * a failure a netagive errno code is returned. 8309 * 8310 * Callers must hold the rtnl semaphore. 8311 */ 8312 8313 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 8314 { 8315 int err, new_nsid; 8316 8317 ASSERT_RTNL(); 8318 8319 /* Don't allow namespace local devices to be moved. */ 8320 err = -EINVAL; 8321 if (dev->features & NETIF_F_NETNS_LOCAL) 8322 goto out; 8323 8324 /* Ensure the device has been registrered */ 8325 if (dev->reg_state != NETREG_REGISTERED) 8326 goto out; 8327 8328 /* Get out if there is nothing todo */ 8329 err = 0; 8330 if (net_eq(dev_net(dev), net)) 8331 goto out; 8332 8333 /* Pick the destination device name, and ensure 8334 * we can use it in the destination network namespace. 8335 */ 8336 err = -EEXIST; 8337 if (__dev_get_by_name(net, dev->name)) { 8338 /* We get here if we can't use the current device name */ 8339 if (!pat) 8340 goto out; 8341 if (dev_get_valid_name(net, dev, pat) < 0) 8342 goto out; 8343 } 8344 8345 /* 8346 * And now a mini version of register_netdevice unregister_netdevice. 8347 */ 8348 8349 /* If device is running close it first. */ 8350 dev_close(dev); 8351 8352 /* And unlink it from device chain */ 8353 err = -ENODEV; 8354 unlist_netdevice(dev); 8355 8356 synchronize_net(); 8357 8358 /* Shutdown queueing discipline. */ 8359 dev_shutdown(dev); 8360 8361 /* Notify protocols, that we are about to destroy 8362 * this device. They should clean all the things. 8363 * 8364 * Note that dev->reg_state stays at NETREG_REGISTERED. 8365 * This is wanted because this way 8021q and macvlan know 8366 * the device is just moving and can keep their slaves up. 8367 */ 8368 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 8369 rcu_barrier(); 8370 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev); 8371 if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net) 8372 new_nsid = peernet2id_alloc(dev_net(dev), net); 8373 else 8374 new_nsid = peernet2id(dev_net(dev), net); 8375 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid); 8376 8377 /* 8378 * Flush the unicast and multicast chains 8379 */ 8380 dev_uc_flush(dev); 8381 dev_mc_flush(dev); 8382 8383 /* Send a netdev-removed uevent to the old namespace */ 8384 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 8385 netdev_adjacent_del_links(dev); 8386 8387 /* Actually switch the network namespace */ 8388 dev_net_set(dev, net); 8389 8390 /* If there is an ifindex conflict assign a new one */ 8391 if (__dev_get_by_index(net, dev->ifindex)) 8392 dev->ifindex = dev_new_index(net); 8393 8394 /* Send a netdev-add uevent to the new namespace */ 8395 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 8396 netdev_adjacent_add_links(dev); 8397 8398 /* Fixup kobjects */ 8399 err = device_rename(&dev->dev, dev->name); 8400 WARN_ON(err); 8401 8402 /* Add the device back in the hashes */ 8403 list_netdevice(dev); 8404 8405 /* Notify protocols, that a new device appeared. */ 8406 call_netdevice_notifiers(NETDEV_REGISTER, dev); 8407 8408 /* 8409 * Prevent userspace races by waiting until the network 8410 * device is fully setup before sending notifications. 8411 */ 8412 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 8413 8414 synchronize_net(); 8415 err = 0; 8416 out: 8417 return err; 8418 } 8419 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 8420 8421 static int dev_cpu_dead(unsigned int oldcpu) 8422 { 8423 struct sk_buff **list_skb; 8424 struct sk_buff *skb; 8425 unsigned int cpu; 8426 struct softnet_data *sd, *oldsd, *remsd = NULL; 8427 8428 local_irq_disable(); 8429 cpu = smp_processor_id(); 8430 sd = &per_cpu(softnet_data, cpu); 8431 oldsd = &per_cpu(softnet_data, oldcpu); 8432 8433 /* Find end of our completion_queue. */ 8434 list_skb = &sd->completion_queue; 8435 while (*list_skb) 8436 list_skb = &(*list_skb)->next; 8437 /* Append completion queue from offline CPU. */ 8438 *list_skb = oldsd->completion_queue; 8439 oldsd->completion_queue = NULL; 8440 8441 /* Append output queue from offline CPU. */ 8442 if (oldsd->output_queue) { 8443 *sd->output_queue_tailp = oldsd->output_queue; 8444 sd->output_queue_tailp = oldsd->output_queue_tailp; 8445 oldsd->output_queue = NULL; 8446 oldsd->output_queue_tailp = &oldsd->output_queue; 8447 } 8448 /* Append NAPI poll list from offline CPU, with one exception : 8449 * process_backlog() must be called by cpu owning percpu backlog. 8450 * We properly handle process_queue & input_pkt_queue later. 8451 */ 8452 while (!list_empty(&oldsd->poll_list)) { 8453 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 8454 struct napi_struct, 8455 poll_list); 8456 8457 list_del_init(&napi->poll_list); 8458 if (napi->poll == process_backlog) 8459 napi->state = 0; 8460 else 8461 ____napi_schedule(sd, napi); 8462 } 8463 8464 raise_softirq_irqoff(NET_TX_SOFTIRQ); 8465 local_irq_enable(); 8466 8467 #ifdef CONFIG_RPS 8468 remsd = oldsd->rps_ipi_list; 8469 oldsd->rps_ipi_list = NULL; 8470 #endif 8471 /* send out pending IPI's on offline CPU */ 8472 net_rps_send_ipi(remsd); 8473 8474 /* Process offline CPU's input_pkt_queue */ 8475 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 8476 netif_rx_ni(skb); 8477 input_queue_head_incr(oldsd); 8478 } 8479 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 8480 netif_rx_ni(skb); 8481 input_queue_head_incr(oldsd); 8482 } 8483 8484 return 0; 8485 } 8486 8487 /** 8488 * netdev_increment_features - increment feature set by one 8489 * @all: current feature set 8490 * @one: new feature set 8491 * @mask: mask feature set 8492 * 8493 * Computes a new feature set after adding a device with feature set 8494 * @one to the master device with current feature set @all. Will not 8495 * enable anything that is off in @mask. Returns the new feature set. 8496 */ 8497 netdev_features_t netdev_increment_features(netdev_features_t all, 8498 netdev_features_t one, netdev_features_t mask) 8499 { 8500 if (mask & NETIF_F_HW_CSUM) 8501 mask |= NETIF_F_CSUM_MASK; 8502 mask |= NETIF_F_VLAN_CHALLENGED; 8503 8504 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 8505 all &= one | ~NETIF_F_ALL_FOR_ALL; 8506 8507 /* If one device supports hw checksumming, set for all. */ 8508 if (all & NETIF_F_HW_CSUM) 8509 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 8510 8511 return all; 8512 } 8513 EXPORT_SYMBOL(netdev_increment_features); 8514 8515 static struct hlist_head * __net_init netdev_create_hash(void) 8516 { 8517 int i; 8518 struct hlist_head *hash; 8519 8520 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 8521 if (hash != NULL) 8522 for (i = 0; i < NETDEV_HASHENTRIES; i++) 8523 INIT_HLIST_HEAD(&hash[i]); 8524 8525 return hash; 8526 } 8527 8528 /* Initialize per network namespace state */ 8529 static int __net_init netdev_init(struct net *net) 8530 { 8531 if (net != &init_net) 8532 INIT_LIST_HEAD(&net->dev_base_head); 8533 8534 net->dev_name_head = netdev_create_hash(); 8535 if (net->dev_name_head == NULL) 8536 goto err_name; 8537 8538 net->dev_index_head = netdev_create_hash(); 8539 if (net->dev_index_head == NULL) 8540 goto err_idx; 8541 8542 return 0; 8543 8544 err_idx: 8545 kfree(net->dev_name_head); 8546 err_name: 8547 return -ENOMEM; 8548 } 8549 8550 /** 8551 * netdev_drivername - network driver for the device 8552 * @dev: network device 8553 * 8554 * Determine network driver for device. 8555 */ 8556 const char *netdev_drivername(const struct net_device *dev) 8557 { 8558 const struct device_driver *driver; 8559 const struct device *parent; 8560 const char *empty = ""; 8561 8562 parent = dev->dev.parent; 8563 if (!parent) 8564 return empty; 8565 8566 driver = parent->driver; 8567 if (driver && driver->name) 8568 return driver->name; 8569 return empty; 8570 } 8571 8572 static void __netdev_printk(const char *level, const struct net_device *dev, 8573 struct va_format *vaf) 8574 { 8575 if (dev && dev->dev.parent) { 8576 dev_printk_emit(level[1] - '0', 8577 dev->dev.parent, 8578 "%s %s %s%s: %pV", 8579 dev_driver_string(dev->dev.parent), 8580 dev_name(dev->dev.parent), 8581 netdev_name(dev), netdev_reg_state(dev), 8582 vaf); 8583 } else if (dev) { 8584 printk("%s%s%s: %pV", 8585 level, netdev_name(dev), netdev_reg_state(dev), vaf); 8586 } else { 8587 printk("%s(NULL net_device): %pV", level, vaf); 8588 } 8589 } 8590 8591 void netdev_printk(const char *level, const struct net_device *dev, 8592 const char *format, ...) 8593 { 8594 struct va_format vaf; 8595 va_list args; 8596 8597 va_start(args, format); 8598 8599 vaf.fmt = format; 8600 vaf.va = &args; 8601 8602 __netdev_printk(level, dev, &vaf); 8603 8604 va_end(args); 8605 } 8606 EXPORT_SYMBOL(netdev_printk); 8607 8608 #define define_netdev_printk_level(func, level) \ 8609 void func(const struct net_device *dev, const char *fmt, ...) \ 8610 { \ 8611 struct va_format vaf; \ 8612 va_list args; \ 8613 \ 8614 va_start(args, fmt); \ 8615 \ 8616 vaf.fmt = fmt; \ 8617 vaf.va = &args; \ 8618 \ 8619 __netdev_printk(level, dev, &vaf); \ 8620 \ 8621 va_end(args); \ 8622 } \ 8623 EXPORT_SYMBOL(func); 8624 8625 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 8626 define_netdev_printk_level(netdev_alert, KERN_ALERT); 8627 define_netdev_printk_level(netdev_crit, KERN_CRIT); 8628 define_netdev_printk_level(netdev_err, KERN_ERR); 8629 define_netdev_printk_level(netdev_warn, KERN_WARNING); 8630 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 8631 define_netdev_printk_level(netdev_info, KERN_INFO); 8632 8633 static void __net_exit netdev_exit(struct net *net) 8634 { 8635 kfree(net->dev_name_head); 8636 kfree(net->dev_index_head); 8637 } 8638 8639 static struct pernet_operations __net_initdata netdev_net_ops = { 8640 .init = netdev_init, 8641 .exit = netdev_exit, 8642 }; 8643 8644 static void __net_exit default_device_exit(struct net *net) 8645 { 8646 struct net_device *dev, *aux; 8647 /* 8648 * Push all migratable network devices back to the 8649 * initial network namespace 8650 */ 8651 rtnl_lock(); 8652 for_each_netdev_safe(net, dev, aux) { 8653 int err; 8654 char fb_name[IFNAMSIZ]; 8655 8656 /* Ignore unmoveable devices (i.e. loopback) */ 8657 if (dev->features & NETIF_F_NETNS_LOCAL) 8658 continue; 8659 8660 /* Leave virtual devices for the generic cleanup */ 8661 if (dev->rtnl_link_ops) 8662 continue; 8663 8664 /* Push remaining network devices to init_net */ 8665 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 8666 err = dev_change_net_namespace(dev, &init_net, fb_name); 8667 if (err) { 8668 pr_emerg("%s: failed to move %s to init_net: %d\n", 8669 __func__, dev->name, err); 8670 BUG(); 8671 } 8672 } 8673 rtnl_unlock(); 8674 } 8675 8676 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 8677 { 8678 /* Return with the rtnl_lock held when there are no network 8679 * devices unregistering in any network namespace in net_list. 8680 */ 8681 struct net *net; 8682 bool unregistering; 8683 DEFINE_WAIT_FUNC(wait, woken_wake_function); 8684 8685 add_wait_queue(&netdev_unregistering_wq, &wait); 8686 for (;;) { 8687 unregistering = false; 8688 rtnl_lock(); 8689 list_for_each_entry(net, net_list, exit_list) { 8690 if (net->dev_unreg_count > 0) { 8691 unregistering = true; 8692 break; 8693 } 8694 } 8695 if (!unregistering) 8696 break; 8697 __rtnl_unlock(); 8698 8699 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 8700 } 8701 remove_wait_queue(&netdev_unregistering_wq, &wait); 8702 } 8703 8704 static void __net_exit default_device_exit_batch(struct list_head *net_list) 8705 { 8706 /* At exit all network devices most be removed from a network 8707 * namespace. Do this in the reverse order of registration. 8708 * Do this across as many network namespaces as possible to 8709 * improve batching efficiency. 8710 */ 8711 struct net_device *dev; 8712 struct net *net; 8713 LIST_HEAD(dev_kill_list); 8714 8715 /* To prevent network device cleanup code from dereferencing 8716 * loopback devices or network devices that have been freed 8717 * wait here for all pending unregistrations to complete, 8718 * before unregistring the loopback device and allowing the 8719 * network namespace be freed. 8720 * 8721 * The netdev todo list containing all network devices 8722 * unregistrations that happen in default_device_exit_batch 8723 * will run in the rtnl_unlock() at the end of 8724 * default_device_exit_batch. 8725 */ 8726 rtnl_lock_unregistering(net_list); 8727 list_for_each_entry(net, net_list, exit_list) { 8728 for_each_netdev_reverse(net, dev) { 8729 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 8730 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 8731 else 8732 unregister_netdevice_queue(dev, &dev_kill_list); 8733 } 8734 } 8735 unregister_netdevice_many(&dev_kill_list); 8736 rtnl_unlock(); 8737 } 8738 8739 static struct pernet_operations __net_initdata default_device_ops = { 8740 .exit = default_device_exit, 8741 .exit_batch = default_device_exit_batch, 8742 }; 8743 8744 /* 8745 * Initialize the DEV module. At boot time this walks the device list and 8746 * unhooks any devices that fail to initialise (normally hardware not 8747 * present) and leaves us with a valid list of present and active devices. 8748 * 8749 */ 8750 8751 /* 8752 * This is called single threaded during boot, so no need 8753 * to take the rtnl semaphore. 8754 */ 8755 static int __init net_dev_init(void) 8756 { 8757 int i, rc = -ENOMEM; 8758 8759 BUG_ON(!dev_boot_phase); 8760 8761 if (dev_proc_init()) 8762 goto out; 8763 8764 if (netdev_kobject_init()) 8765 goto out; 8766 8767 INIT_LIST_HEAD(&ptype_all); 8768 for (i = 0; i < PTYPE_HASH_SIZE; i++) 8769 INIT_LIST_HEAD(&ptype_base[i]); 8770 8771 INIT_LIST_HEAD(&offload_base); 8772 8773 if (register_pernet_subsys(&netdev_net_ops)) 8774 goto out; 8775 8776 /* 8777 * Initialise the packet receive queues. 8778 */ 8779 8780 for_each_possible_cpu(i) { 8781 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 8782 struct softnet_data *sd = &per_cpu(softnet_data, i); 8783 8784 INIT_WORK(flush, flush_backlog); 8785 8786 skb_queue_head_init(&sd->input_pkt_queue); 8787 skb_queue_head_init(&sd->process_queue); 8788 INIT_LIST_HEAD(&sd->poll_list); 8789 sd->output_queue_tailp = &sd->output_queue; 8790 #ifdef CONFIG_RPS 8791 sd->csd.func = rps_trigger_softirq; 8792 sd->csd.info = sd; 8793 sd->cpu = i; 8794 #endif 8795 8796 sd->backlog.poll = process_backlog; 8797 sd->backlog.weight = weight_p; 8798 } 8799 8800 dev_boot_phase = 0; 8801 8802 /* The loopback device is special if any other network devices 8803 * is present in a network namespace the loopback device must 8804 * be present. Since we now dynamically allocate and free the 8805 * loopback device ensure this invariant is maintained by 8806 * keeping the loopback device as the first device on the 8807 * list of network devices. Ensuring the loopback devices 8808 * is the first device that appears and the last network device 8809 * that disappears. 8810 */ 8811 if (register_pernet_device(&loopback_net_ops)) 8812 goto out; 8813 8814 if (register_pernet_device(&default_device_ops)) 8815 goto out; 8816 8817 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 8818 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 8819 8820 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 8821 NULL, dev_cpu_dead); 8822 WARN_ON(rc < 0); 8823 rc = 0; 8824 out: 8825 return rc; 8826 } 8827 8828 subsys_initcall(net_dev_init); 8829