xref: /linux-6.15/net/core/dev.c (revision 90a53e44)
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149 
150 #include "net-sysfs.h"
151 
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154 
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157 
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;	/* Taps */
162 static struct list_head offload_base __read_mostly;
163 
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166 					 struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168 
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190 
191 static DEFINE_MUTEX(ifalias_mutex);
192 
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195 
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198 
199 static seqcount_t devnet_rename_seq;
200 
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203 	while (++net->dev_base_seq == 0)
204 		;
205 }
206 
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210 
211 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213 
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218 
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222 	spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225 
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229 	spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232 
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236 	struct net *net = dev_net(dev);
237 
238 	ASSERT_RTNL();
239 
240 	write_lock_bh(&dev_base_lock);
241 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243 	hlist_add_head_rcu(&dev->index_hlist,
244 			   dev_index_hash(net, dev->ifindex));
245 	write_unlock_bh(&dev_base_lock);
246 
247 	dev_base_seq_inc(net);
248 }
249 
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255 	ASSERT_RTNL();
256 
257 	/* Unlink dev from the device chain */
258 	write_lock_bh(&dev_base_lock);
259 	list_del_rcu(&dev->dev_list);
260 	hlist_del_rcu(&dev->name_hlist);
261 	hlist_del_rcu(&dev->index_hlist);
262 	write_unlock_bh(&dev_base_lock);
263 
264 	dev_base_seq_inc(dev_net(dev));
265 }
266 
267 /*
268  *	Our notifier list
269  */
270 
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272 
273 /*
274  *	Device drivers call our routines to queue packets here. We empty the
275  *	queue in the local softnet handler.
276  */
277 
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280 
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302 
303 static const char *const netdev_lock_name[] = {
304 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319 
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322 
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325 	int i;
326 
327 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328 		if (netdev_lock_type[i] == dev_type)
329 			return i;
330 	/* the last key is used by default */
331 	return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333 
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335 						 unsigned short dev_type)
336 {
337 	int i;
338 
339 	i = netdev_lock_pos(dev_type);
340 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346 	int i;
347 
348 	i = netdev_lock_pos(dev->type);
349 	lockdep_set_class_and_name(&dev->addr_list_lock,
350 				   &netdev_addr_lock_key[i],
351 				   netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355 						 unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362 
363 /*******************************************************************************
364  *
365  *		Protocol management and registration routines
366  *
367  *******************************************************************************/
368 
369 
370 /*
371  *	Add a protocol ID to the list. Now that the input handler is
372  *	smarter we can dispense with all the messy stuff that used to be
373  *	here.
374  *
375  *	BEWARE!!! Protocol handlers, mangling input packets,
376  *	MUST BE last in hash buckets and checking protocol handlers
377  *	MUST start from promiscuous ptype_all chain in net_bh.
378  *	It is true now, do not change it.
379  *	Explanation follows: if protocol handler, mangling packet, will
380  *	be the first on list, it is not able to sense, that packet
381  *	is cloned and should be copied-on-write, so that it will
382  *	change it and subsequent readers will get broken packet.
383  *							--ANK (980803)
384  */
385 
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388 	if (pt->type == htons(ETH_P_ALL))
389 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390 	else
391 		return pt->dev ? &pt->dev->ptype_specific :
392 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394 
395 /**
396  *	dev_add_pack - add packet handler
397  *	@pt: packet type declaration
398  *
399  *	Add a protocol handler to the networking stack. The passed &packet_type
400  *	is linked into kernel lists and may not be freed until it has been
401  *	removed from the kernel lists.
402  *
403  *	This call does not sleep therefore it can not
404  *	guarantee all CPU's that are in middle of receiving packets
405  *	will see the new packet type (until the next received packet).
406  */
407 
408 void dev_add_pack(struct packet_type *pt)
409 {
410 	struct list_head *head = ptype_head(pt);
411 
412 	spin_lock(&ptype_lock);
413 	list_add_rcu(&pt->list, head);
414 	spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417 
418 /**
419  *	__dev_remove_pack	 - remove packet handler
420  *	@pt: packet type declaration
421  *
422  *	Remove a protocol handler that was previously added to the kernel
423  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *	from the kernel lists and can be freed or reused once this function
425  *	returns.
426  *
427  *      The packet type might still be in use by receivers
428  *	and must not be freed until after all the CPU's have gone
429  *	through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433 	struct list_head *head = ptype_head(pt);
434 	struct packet_type *pt1;
435 
436 	spin_lock(&ptype_lock);
437 
438 	list_for_each_entry(pt1, head, list) {
439 		if (pt == pt1) {
440 			list_del_rcu(&pt->list);
441 			goto out;
442 		}
443 	}
444 
445 	pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447 	spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450 
451 /**
452  *	dev_remove_pack	 - remove packet handler
453  *	@pt: packet type declaration
454  *
455  *	Remove a protocol handler that was previously added to the kernel
456  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *	from the kernel lists and can be freed or reused once this function
458  *	returns.
459  *
460  *	This call sleeps to guarantee that no CPU is looking at the packet
461  *	type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465 	__dev_remove_pack(pt);
466 
467 	synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470 
471 
472 /**
473  *	dev_add_offload - register offload handlers
474  *	@po: protocol offload declaration
475  *
476  *	Add protocol offload handlers to the networking stack. The passed
477  *	&proto_offload is linked into kernel lists and may not be freed until
478  *	it has been removed from the kernel lists.
479  *
480  *	This call does not sleep therefore it can not
481  *	guarantee all CPU's that are in middle of receiving packets
482  *	will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486 	struct packet_offload *elem;
487 
488 	spin_lock(&offload_lock);
489 	list_for_each_entry(elem, &offload_base, list) {
490 		if (po->priority < elem->priority)
491 			break;
492 	}
493 	list_add_rcu(&po->list, elem->list.prev);
494 	spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497 
498 /**
499  *	__dev_remove_offload	 - remove offload handler
500  *	@po: packet offload declaration
501  *
502  *	Remove a protocol offload handler that was previously added to the
503  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *	is removed from the kernel lists and can be freed or reused once this
505  *	function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *	and must not be freed until after all the CPU's have gone
509  *	through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513 	struct list_head *head = &offload_base;
514 	struct packet_offload *po1;
515 
516 	spin_lock(&offload_lock);
517 
518 	list_for_each_entry(po1, head, list) {
519 		if (po == po1) {
520 			list_del_rcu(&po->list);
521 			goto out;
522 		}
523 	}
524 
525 	pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527 	spin_unlock(&offload_lock);
528 }
529 
530 /**
531  *	dev_remove_offload	 - remove packet offload handler
532  *	@po: packet offload declaration
533  *
534  *	Remove a packet offload handler that was previously added to the kernel
535  *	offload handlers by dev_add_offload(). The passed &offload_type is
536  *	removed from the kernel lists and can be freed or reused once this
537  *	function returns.
538  *
539  *	This call sleeps to guarantee that no CPU is looking at the packet
540  *	type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544 	__dev_remove_offload(po);
545 
546 	synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549 
550 /******************************************************************************
551  *
552  *		      Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555 
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558 
559 /**
560  *	netdev_boot_setup_add	- add new setup entry
561  *	@name: name of the device
562  *	@map: configured settings for the device
563  *
564  *	Adds new setup entry to the dev_boot_setup list.  The function
565  *	returns 0 on error and 1 on success.  This is a generic routine to
566  *	all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570 	struct netdev_boot_setup *s;
571 	int i;
572 
573 	s = dev_boot_setup;
574 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576 			memset(s[i].name, 0, sizeof(s[i].name));
577 			strlcpy(s[i].name, name, IFNAMSIZ);
578 			memcpy(&s[i].map, map, sizeof(s[i].map));
579 			break;
580 		}
581 	}
582 
583 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585 
586 /**
587  * netdev_boot_setup_check	- check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597 	struct netdev_boot_setup *s = dev_boot_setup;
598 	int i;
599 
600 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602 		    !strcmp(dev->name, s[i].name)) {
603 			dev->irq = s[i].map.irq;
604 			dev->base_addr = s[i].map.base_addr;
605 			dev->mem_start = s[i].map.mem_start;
606 			dev->mem_end = s[i].map.mem_end;
607 			return 1;
608 		}
609 	}
610 	return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613 
614 
615 /**
616  * netdev_boot_base	- get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627 	const struct netdev_boot_setup *s = dev_boot_setup;
628 	char name[IFNAMSIZ];
629 	int i;
630 
631 	sprintf(name, "%s%d", prefix, unit);
632 
633 	/*
634 	 * If device already registered then return base of 1
635 	 * to indicate not to probe for this interface
636 	 */
637 	if (__dev_get_by_name(&init_net, name))
638 		return 1;
639 
640 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641 		if (!strcmp(name, s[i].name))
642 			return s[i].map.base_addr;
643 	return 0;
644 }
645 
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651 	int ints[5];
652 	struct ifmap map;
653 
654 	str = get_options(str, ARRAY_SIZE(ints), ints);
655 	if (!str || !*str)
656 		return 0;
657 
658 	/* Save settings */
659 	memset(&map, 0, sizeof(map));
660 	if (ints[0] > 0)
661 		map.irq = ints[1];
662 	if (ints[0] > 1)
663 		map.base_addr = ints[2];
664 	if (ints[0] > 2)
665 		map.mem_start = ints[3];
666 	if (ints[0] > 3)
667 		map.mem_end = ints[4];
668 
669 	/* Add new entry to the list */
670 	return netdev_boot_setup_add(str, &map);
671 }
672 
673 __setup("netdev=", netdev_boot_setup);
674 
675 /*******************************************************************************
676  *
677  *			    Device Interface Subroutines
678  *
679  *******************************************************************************/
680 
681 /**
682  *	dev_get_iflink	- get 'iflink' value of a interface
683  *	@dev: targeted interface
684  *
685  *	Indicates the ifindex the interface is linked to.
686  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688 
689 int dev_get_iflink(const struct net_device *dev)
690 {
691 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692 		return dev->netdev_ops->ndo_get_iflink(dev);
693 
694 	return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697 
698 /**
699  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *	@dev: targeted interface
701  *	@skb: The packet.
702  *
703  *	For better visibility of tunnel traffic OVS needs to retrieve
704  *	egress tunnel information for a packet. Following API allows
705  *	user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709 	struct ip_tunnel_info *info;
710 
711 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712 		return -EINVAL;
713 
714 	info = skb_tunnel_info_unclone(skb);
715 	if (!info)
716 		return -ENOMEM;
717 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718 		return -EINVAL;
719 
720 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723 
724 /**
725  *	__dev_get_by_name	- find a device by its name
726  *	@net: the applicable net namespace
727  *	@name: name to find
728  *
729  *	Find an interface by name. Must be called under RTNL semaphore
730  *	or @dev_base_lock. If the name is found a pointer to the device
731  *	is returned. If the name is not found then %NULL is returned. The
732  *	reference counters are not incremented so the caller must be
733  *	careful with locks.
734  */
735 
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738 	struct net_device *dev;
739 	struct hlist_head *head = dev_name_hash(net, name);
740 
741 	hlist_for_each_entry(dev, head, name_hlist)
742 		if (!strncmp(dev->name, name, IFNAMSIZ))
743 			return dev;
744 
745 	return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748 
749 /**
750  * dev_get_by_name_rcu	- find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760 
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763 	struct net_device *dev;
764 	struct hlist_head *head = dev_name_hash(net, name);
765 
766 	hlist_for_each_entry_rcu(dev, head, name_hlist)
767 		if (!strncmp(dev->name, name, IFNAMSIZ))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773 
774 /**
775  *	dev_get_by_name		- find a device by its name
776  *	@net: the applicable net namespace
777  *	@name: name to find
778  *
779  *	Find an interface by name. This can be called from any
780  *	context and does its own locking. The returned handle has
781  *	the usage count incremented and the caller must use dev_put() to
782  *	release it when it is no longer needed. %NULL is returned if no
783  *	matching device is found.
784  */
785 
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788 	struct net_device *dev;
789 
790 	rcu_read_lock();
791 	dev = dev_get_by_name_rcu(net, name);
792 	if (dev)
793 		dev_hold(dev);
794 	rcu_read_unlock();
795 	return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798 
799 /**
800  *	__dev_get_by_index - find a device by its ifindex
801  *	@net: the applicable net namespace
802  *	@ifindex: index of device
803  *
804  *	Search for an interface by index. Returns %NULL if the device
805  *	is not found or a pointer to the device. The device has not
806  *	had its reference counter increased so the caller must be careful
807  *	about locking. The caller must hold either the RTNL semaphore
808  *	or @dev_base_lock.
809  */
810 
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813 	struct net_device *dev;
814 	struct hlist_head *head = dev_index_hash(net, ifindex);
815 
816 	hlist_for_each_entry(dev, head, index_hlist)
817 		if (dev->ifindex == ifindex)
818 			return dev;
819 
820 	return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823 
824 /**
825  *	dev_get_by_index_rcu - find a device by its ifindex
826  *	@net: the applicable net namespace
827  *	@ifindex: index of device
828  *
829  *	Search for an interface by index. Returns %NULL if the device
830  *	is not found or a pointer to the device. The device has not
831  *	had its reference counter increased so the caller must be careful
832  *	about locking. The caller must hold RCU lock.
833  */
834 
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837 	struct net_device *dev;
838 	struct hlist_head *head = dev_index_hash(net, ifindex);
839 
840 	hlist_for_each_entry_rcu(dev, head, index_hlist)
841 		if (dev->ifindex == ifindex)
842 			return dev;
843 
844 	return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847 
848 
849 /**
850  *	dev_get_by_index - find a device by its ifindex
851  *	@net: the applicable net namespace
852  *	@ifindex: index of device
853  *
854  *	Search for an interface by index. Returns NULL if the device
855  *	is not found or a pointer to the device. The device returned has
856  *	had a reference added and the pointer is safe until the user calls
857  *	dev_put to indicate they have finished with it.
858  */
859 
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862 	struct net_device *dev;
863 
864 	rcu_read_lock();
865 	dev = dev_get_by_index_rcu(net, ifindex);
866 	if (dev)
867 		dev_hold(dev);
868 	rcu_read_unlock();
869 	return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872 
873 /**
874  *	dev_get_by_napi_id - find a device by napi_id
875  *	@napi_id: ID of the NAPI struct
876  *
877  *	Search for an interface by NAPI ID. Returns %NULL if the device
878  *	is not found or a pointer to the device. The device has not had
879  *	its reference counter increased so the caller must be careful
880  *	about locking. The caller must hold RCU lock.
881  */
882 
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885 	struct napi_struct *napi;
886 
887 	WARN_ON_ONCE(!rcu_read_lock_held());
888 
889 	if (napi_id < MIN_NAPI_ID)
890 		return NULL;
891 
892 	napi = napi_by_id(napi_id);
893 
894 	return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897 
898 /**
899  *	netdev_get_name - get a netdevice name, knowing its ifindex.
900  *	@net: network namespace
901  *	@name: a pointer to the buffer where the name will be stored.
902  *	@ifindex: the ifindex of the interface to get the name from.
903  *
904  *	The use of raw_seqcount_begin() and cond_resched() before
905  *	retrying is required as we want to give the writers a chance
906  *	to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910 	struct net_device *dev;
911 	unsigned int seq;
912 
913 retry:
914 	seq = raw_seqcount_begin(&devnet_rename_seq);
915 	rcu_read_lock();
916 	dev = dev_get_by_index_rcu(net, ifindex);
917 	if (!dev) {
918 		rcu_read_unlock();
919 		return -ENODEV;
920 	}
921 
922 	strcpy(name, dev->name);
923 	rcu_read_unlock();
924 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925 		cond_resched();
926 		goto retry;
927 	}
928 
929 	return 0;
930 }
931 
932 /**
933  *	dev_getbyhwaddr_rcu - find a device by its hardware address
934  *	@net: the applicable net namespace
935  *	@type: media type of device
936  *	@ha: hardware address
937  *
938  *	Search for an interface by MAC address. Returns NULL if the device
939  *	is not found or a pointer to the device.
940  *	The caller must hold RCU or RTNL.
941  *	The returned device has not had its ref count increased
942  *	and the caller must therefore be careful about locking
943  *
944  */
945 
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947 				       const char *ha)
948 {
949 	struct net_device *dev;
950 
951 	for_each_netdev_rcu(net, dev)
952 		if (dev->type == type &&
953 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959 
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962 	struct net_device *dev;
963 
964 	ASSERT_RTNL();
965 	for_each_netdev(net, dev)
966 		if (dev->type == type)
967 			return dev;
968 
969 	return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972 
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975 	struct net_device *dev, *ret = NULL;
976 
977 	rcu_read_lock();
978 	for_each_netdev_rcu(net, dev)
979 		if (dev->type == type) {
980 			dev_hold(dev);
981 			ret = dev;
982 			break;
983 		}
984 	rcu_read_unlock();
985 	return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988 
989 /**
990  *	__dev_get_by_flags - find any device with given flags
991  *	@net: the applicable net namespace
992  *	@if_flags: IFF_* values
993  *	@mask: bitmask of bits in if_flags to check
994  *
995  *	Search for any interface with the given flags. Returns NULL if a device
996  *	is not found or a pointer to the device. Must be called inside
997  *	rtnl_lock(), and result refcount is unchanged.
998  */
999 
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001 				      unsigned short mask)
1002 {
1003 	struct net_device *dev, *ret;
1004 
1005 	ASSERT_RTNL();
1006 
1007 	ret = NULL;
1008 	for_each_netdev(net, dev) {
1009 		if (((dev->flags ^ if_flags) & mask) == 0) {
1010 			ret = dev;
1011 			break;
1012 		}
1013 	}
1014 	return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017 
1018 /**
1019  *	dev_valid_name - check if name is okay for network device
1020  *	@name: name string
1021  *
1022  *	Network device names need to be valid file names to
1023  *	to allow sysfs to work.  We also disallow any kind of
1024  *	whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028 	if (*name == '\0')
1029 		return false;
1030 	if (strlen(name) >= IFNAMSIZ)
1031 		return false;
1032 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1033 		return false;
1034 
1035 	while (*name) {
1036 		if (*name == '/' || *name == ':' || isspace(*name))
1037 			return false;
1038 		name++;
1039 	}
1040 	return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043 
1044 /**
1045  *	__dev_alloc_name - allocate a name for a device
1046  *	@net: network namespace to allocate the device name in
1047  *	@name: name format string
1048  *	@buf:  scratch buffer and result name string
1049  *
1050  *	Passed a format string - eg "lt%d" it will try and find a suitable
1051  *	id. It scans list of devices to build up a free map, then chooses
1052  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *	while allocating the name and adding the device in order to avoid
1054  *	duplicates.
1055  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *	Returns the number of the unit assigned or a negative errno code.
1057  */
1058 
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061 	int i = 0;
1062 	const char *p;
1063 	const int max_netdevices = 8*PAGE_SIZE;
1064 	unsigned long *inuse;
1065 	struct net_device *d;
1066 
1067 	p = strnchr(name, IFNAMSIZ-1, '%');
1068 	if (p) {
1069 		/*
1070 		 * Verify the string as this thing may have come from
1071 		 * the user.  There must be either one "%d" and no other "%"
1072 		 * characters.
1073 		 */
1074 		if (p[1] != 'd' || strchr(p + 2, '%'))
1075 			return -EINVAL;
1076 
1077 		/* Use one page as a bit array of possible slots */
1078 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1079 		if (!inuse)
1080 			return -ENOMEM;
1081 
1082 		for_each_netdev(net, d) {
1083 			if (!sscanf(d->name, name, &i))
1084 				continue;
1085 			if (i < 0 || i >= max_netdevices)
1086 				continue;
1087 
1088 			/*  avoid cases where sscanf is not exact inverse of printf */
1089 			snprintf(buf, IFNAMSIZ, name, i);
1090 			if (!strncmp(buf, d->name, IFNAMSIZ))
1091 				set_bit(i, inuse);
1092 		}
1093 
1094 		i = find_first_zero_bit(inuse, max_netdevices);
1095 		free_page((unsigned long) inuse);
1096 	}
1097 
1098 	if (buf != name)
1099 		snprintf(buf, IFNAMSIZ, name, i);
1100 	if (!__dev_get_by_name(net, buf))
1101 		return i;
1102 
1103 	/* It is possible to run out of possible slots
1104 	 * when the name is long and there isn't enough space left
1105 	 * for the digits, or if all bits are used.
1106 	 */
1107 	return -ENFILE;
1108 }
1109 
1110 /**
1111  *	dev_alloc_name - allocate a name for a device
1112  *	@dev: device
1113  *	@name: name format string
1114  *
1115  *	Passed a format string - eg "lt%d" it will try and find a suitable
1116  *	id. It scans list of devices to build up a free map, then chooses
1117  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1118  *	while allocating the name and adding the device in order to avoid
1119  *	duplicates.
1120  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1121  *	Returns the number of the unit assigned or a negative errno code.
1122  */
1123 
1124 int dev_alloc_name(struct net_device *dev, const char *name)
1125 {
1126 	char buf[IFNAMSIZ];
1127 	struct net *net;
1128 	int ret;
1129 
1130 	BUG_ON(!dev_net(dev));
1131 	net = dev_net(dev);
1132 	ret = __dev_alloc_name(net, name, buf);
1133 	if (ret >= 0)
1134 		strlcpy(dev->name, buf, IFNAMSIZ);
1135 	return ret;
1136 }
1137 EXPORT_SYMBOL(dev_alloc_name);
1138 
1139 static int dev_alloc_name_ns(struct net *net,
1140 			     struct net_device *dev,
1141 			     const char *name)
1142 {
1143 	char buf[IFNAMSIZ];
1144 	int ret;
1145 
1146 	ret = __dev_alloc_name(net, name, buf);
1147 	if (ret >= 0)
1148 		strlcpy(dev->name, buf, IFNAMSIZ);
1149 	return ret;
1150 }
1151 
1152 static int dev_get_valid_name(struct net *net,
1153 			      struct net_device *dev,
1154 			      const char *name)
1155 {
1156 	BUG_ON(!net);
1157 
1158 	if (!dev_valid_name(name))
1159 		return -EINVAL;
1160 
1161 	if (strchr(name, '%'))
1162 		return dev_alloc_name_ns(net, dev, name);
1163 	else if (__dev_get_by_name(net, name))
1164 		return -EEXIST;
1165 	else if (dev->name != name)
1166 		strlcpy(dev->name, name, IFNAMSIZ);
1167 
1168 	return 0;
1169 }
1170 
1171 /**
1172  *	dev_change_name - change name of a device
1173  *	@dev: device
1174  *	@newname: name (or format string) must be at least IFNAMSIZ
1175  *
1176  *	Change name of a device, can pass format strings "eth%d".
1177  *	for wildcarding.
1178  */
1179 int dev_change_name(struct net_device *dev, const char *newname)
1180 {
1181 	unsigned char old_assign_type;
1182 	char oldname[IFNAMSIZ];
1183 	int err = 0;
1184 	int ret;
1185 	struct net *net;
1186 
1187 	ASSERT_RTNL();
1188 	BUG_ON(!dev_net(dev));
1189 
1190 	net = dev_net(dev);
1191 	if (dev->flags & IFF_UP)
1192 		return -EBUSY;
1193 
1194 	write_seqcount_begin(&devnet_rename_seq);
1195 
1196 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1197 		write_seqcount_end(&devnet_rename_seq);
1198 		return 0;
1199 	}
1200 
1201 	memcpy(oldname, dev->name, IFNAMSIZ);
1202 
1203 	err = dev_get_valid_name(net, dev, newname);
1204 	if (err < 0) {
1205 		write_seqcount_end(&devnet_rename_seq);
1206 		return err;
1207 	}
1208 
1209 	if (oldname[0] && !strchr(oldname, '%'))
1210 		netdev_info(dev, "renamed from %s\n", oldname);
1211 
1212 	old_assign_type = dev->name_assign_type;
1213 	dev->name_assign_type = NET_NAME_RENAMED;
1214 
1215 rollback:
1216 	ret = device_rename(&dev->dev, dev->name);
1217 	if (ret) {
1218 		memcpy(dev->name, oldname, IFNAMSIZ);
1219 		dev->name_assign_type = old_assign_type;
1220 		write_seqcount_end(&devnet_rename_seq);
1221 		return ret;
1222 	}
1223 
1224 	write_seqcount_end(&devnet_rename_seq);
1225 
1226 	netdev_adjacent_rename_links(dev, oldname);
1227 
1228 	write_lock_bh(&dev_base_lock);
1229 	hlist_del_rcu(&dev->name_hlist);
1230 	write_unlock_bh(&dev_base_lock);
1231 
1232 	synchronize_rcu();
1233 
1234 	write_lock_bh(&dev_base_lock);
1235 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1236 	write_unlock_bh(&dev_base_lock);
1237 
1238 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1239 	ret = notifier_to_errno(ret);
1240 
1241 	if (ret) {
1242 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1243 		if (err >= 0) {
1244 			err = ret;
1245 			write_seqcount_begin(&devnet_rename_seq);
1246 			memcpy(dev->name, oldname, IFNAMSIZ);
1247 			memcpy(oldname, newname, IFNAMSIZ);
1248 			dev->name_assign_type = old_assign_type;
1249 			old_assign_type = NET_NAME_RENAMED;
1250 			goto rollback;
1251 		} else {
1252 			pr_err("%s: name change rollback failed: %d\n",
1253 			       dev->name, ret);
1254 		}
1255 	}
1256 
1257 	return err;
1258 }
1259 
1260 /**
1261  *	dev_set_alias - change ifalias of a device
1262  *	@dev: device
1263  *	@alias: name up to IFALIASZ
1264  *	@len: limit of bytes to copy from info
1265  *
1266  *	Set ifalias for a device,
1267  */
1268 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1269 {
1270 	struct dev_ifalias *new_alias = NULL;
1271 
1272 	if (len >= IFALIASZ)
1273 		return -EINVAL;
1274 
1275 	if (len) {
1276 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1277 		if (!new_alias)
1278 			return -ENOMEM;
1279 
1280 		memcpy(new_alias->ifalias, alias, len);
1281 		new_alias->ifalias[len] = 0;
1282 	}
1283 
1284 	mutex_lock(&ifalias_mutex);
1285 	rcu_swap_protected(dev->ifalias, new_alias,
1286 			   mutex_is_locked(&ifalias_mutex));
1287 	mutex_unlock(&ifalias_mutex);
1288 
1289 	if (new_alias)
1290 		kfree_rcu(new_alias, rcuhead);
1291 
1292 	return len;
1293 }
1294 
1295 /**
1296  *	dev_get_alias - get ifalias of a device
1297  *	@dev: device
1298  *	@name: buffer to store name of ifalias
1299  *	@len: size of buffer
1300  *
1301  *	get ifalias for a device.  Caller must make sure dev cannot go
1302  *	away,  e.g. rcu read lock or own a reference count to device.
1303  */
1304 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1305 {
1306 	const struct dev_ifalias *alias;
1307 	int ret = 0;
1308 
1309 	rcu_read_lock();
1310 	alias = rcu_dereference(dev->ifalias);
1311 	if (alias)
1312 		ret = snprintf(name, len, "%s", alias->ifalias);
1313 	rcu_read_unlock();
1314 
1315 	return ret;
1316 }
1317 
1318 /**
1319  *	netdev_features_change - device changes features
1320  *	@dev: device to cause notification
1321  *
1322  *	Called to indicate a device has changed features.
1323  */
1324 void netdev_features_change(struct net_device *dev)
1325 {
1326 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1327 }
1328 EXPORT_SYMBOL(netdev_features_change);
1329 
1330 /**
1331  *	netdev_state_change - device changes state
1332  *	@dev: device to cause notification
1333  *
1334  *	Called to indicate a device has changed state. This function calls
1335  *	the notifier chains for netdev_chain and sends a NEWLINK message
1336  *	to the routing socket.
1337  */
1338 void netdev_state_change(struct net_device *dev)
1339 {
1340 	if (dev->flags & IFF_UP) {
1341 		struct netdev_notifier_change_info change_info = {
1342 			.info.dev = dev,
1343 		};
1344 
1345 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1346 					      &change_info.info);
1347 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1348 	}
1349 }
1350 EXPORT_SYMBOL(netdev_state_change);
1351 
1352 /**
1353  * netdev_notify_peers - notify network peers about existence of @dev
1354  * @dev: network device
1355  *
1356  * Generate traffic such that interested network peers are aware of
1357  * @dev, such as by generating a gratuitous ARP. This may be used when
1358  * a device wants to inform the rest of the network about some sort of
1359  * reconfiguration such as a failover event or virtual machine
1360  * migration.
1361  */
1362 void netdev_notify_peers(struct net_device *dev)
1363 {
1364 	rtnl_lock();
1365 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1366 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1367 	rtnl_unlock();
1368 }
1369 EXPORT_SYMBOL(netdev_notify_peers);
1370 
1371 static int __dev_open(struct net_device *dev)
1372 {
1373 	const struct net_device_ops *ops = dev->netdev_ops;
1374 	int ret;
1375 
1376 	ASSERT_RTNL();
1377 
1378 	if (!netif_device_present(dev))
1379 		return -ENODEV;
1380 
1381 	/* Block netpoll from trying to do any rx path servicing.
1382 	 * If we don't do this there is a chance ndo_poll_controller
1383 	 * or ndo_poll may be running while we open the device
1384 	 */
1385 	netpoll_poll_disable(dev);
1386 
1387 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1388 	ret = notifier_to_errno(ret);
1389 	if (ret)
1390 		return ret;
1391 
1392 	set_bit(__LINK_STATE_START, &dev->state);
1393 
1394 	if (ops->ndo_validate_addr)
1395 		ret = ops->ndo_validate_addr(dev);
1396 
1397 	if (!ret && ops->ndo_open)
1398 		ret = ops->ndo_open(dev);
1399 
1400 	netpoll_poll_enable(dev);
1401 
1402 	if (ret)
1403 		clear_bit(__LINK_STATE_START, &dev->state);
1404 	else {
1405 		dev->flags |= IFF_UP;
1406 		dev_set_rx_mode(dev);
1407 		dev_activate(dev);
1408 		add_device_randomness(dev->dev_addr, dev->addr_len);
1409 	}
1410 
1411 	return ret;
1412 }
1413 
1414 /**
1415  *	dev_open	- prepare an interface for use.
1416  *	@dev:	device to open
1417  *
1418  *	Takes a device from down to up state. The device's private open
1419  *	function is invoked and then the multicast lists are loaded. Finally
1420  *	the device is moved into the up state and a %NETDEV_UP message is
1421  *	sent to the netdev notifier chain.
1422  *
1423  *	Calling this function on an active interface is a nop. On a failure
1424  *	a negative errno code is returned.
1425  */
1426 int dev_open(struct net_device *dev)
1427 {
1428 	int ret;
1429 
1430 	if (dev->flags & IFF_UP)
1431 		return 0;
1432 
1433 	ret = __dev_open(dev);
1434 	if (ret < 0)
1435 		return ret;
1436 
1437 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1438 	call_netdevice_notifiers(NETDEV_UP, dev);
1439 
1440 	return ret;
1441 }
1442 EXPORT_SYMBOL(dev_open);
1443 
1444 static void __dev_close_many(struct list_head *head)
1445 {
1446 	struct net_device *dev;
1447 
1448 	ASSERT_RTNL();
1449 	might_sleep();
1450 
1451 	list_for_each_entry(dev, head, close_list) {
1452 		/* Temporarily disable netpoll until the interface is down */
1453 		netpoll_poll_disable(dev);
1454 
1455 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1456 
1457 		clear_bit(__LINK_STATE_START, &dev->state);
1458 
1459 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1460 		 * can be even on different cpu. So just clear netif_running().
1461 		 *
1462 		 * dev->stop() will invoke napi_disable() on all of it's
1463 		 * napi_struct instances on this device.
1464 		 */
1465 		smp_mb__after_atomic(); /* Commit netif_running(). */
1466 	}
1467 
1468 	dev_deactivate_many(head);
1469 
1470 	list_for_each_entry(dev, head, close_list) {
1471 		const struct net_device_ops *ops = dev->netdev_ops;
1472 
1473 		/*
1474 		 *	Call the device specific close. This cannot fail.
1475 		 *	Only if device is UP
1476 		 *
1477 		 *	We allow it to be called even after a DETACH hot-plug
1478 		 *	event.
1479 		 */
1480 		if (ops->ndo_stop)
1481 			ops->ndo_stop(dev);
1482 
1483 		dev->flags &= ~IFF_UP;
1484 		netpoll_poll_enable(dev);
1485 	}
1486 }
1487 
1488 static void __dev_close(struct net_device *dev)
1489 {
1490 	LIST_HEAD(single);
1491 
1492 	list_add(&dev->close_list, &single);
1493 	__dev_close_many(&single);
1494 	list_del(&single);
1495 }
1496 
1497 void dev_close_many(struct list_head *head, bool unlink)
1498 {
1499 	struct net_device *dev, *tmp;
1500 
1501 	/* Remove the devices that don't need to be closed */
1502 	list_for_each_entry_safe(dev, tmp, head, close_list)
1503 		if (!(dev->flags & IFF_UP))
1504 			list_del_init(&dev->close_list);
1505 
1506 	__dev_close_many(head);
1507 
1508 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1509 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1510 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1511 		if (unlink)
1512 			list_del_init(&dev->close_list);
1513 	}
1514 }
1515 EXPORT_SYMBOL(dev_close_many);
1516 
1517 /**
1518  *	dev_close - shutdown an interface.
1519  *	@dev: device to shutdown
1520  *
1521  *	This function moves an active device into down state. A
1522  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1523  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1524  *	chain.
1525  */
1526 void dev_close(struct net_device *dev)
1527 {
1528 	if (dev->flags & IFF_UP) {
1529 		LIST_HEAD(single);
1530 
1531 		list_add(&dev->close_list, &single);
1532 		dev_close_many(&single, true);
1533 		list_del(&single);
1534 	}
1535 }
1536 EXPORT_SYMBOL(dev_close);
1537 
1538 
1539 /**
1540  *	dev_disable_lro - disable Large Receive Offload on a device
1541  *	@dev: device
1542  *
1543  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1544  *	called under RTNL.  This is needed if received packets may be
1545  *	forwarded to another interface.
1546  */
1547 void dev_disable_lro(struct net_device *dev)
1548 {
1549 	struct net_device *lower_dev;
1550 	struct list_head *iter;
1551 
1552 	dev->wanted_features &= ~NETIF_F_LRO;
1553 	netdev_update_features(dev);
1554 
1555 	if (unlikely(dev->features & NETIF_F_LRO))
1556 		netdev_WARN(dev, "failed to disable LRO!\n");
1557 
1558 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1559 		dev_disable_lro(lower_dev);
1560 }
1561 EXPORT_SYMBOL(dev_disable_lro);
1562 
1563 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1564 				   struct net_device *dev)
1565 {
1566 	struct netdev_notifier_info info = {
1567 		.dev = dev,
1568 	};
1569 
1570 	return nb->notifier_call(nb, val, &info);
1571 }
1572 
1573 static int dev_boot_phase = 1;
1574 
1575 /**
1576  * register_netdevice_notifier - register a network notifier block
1577  * @nb: notifier
1578  *
1579  * Register a notifier to be called when network device events occur.
1580  * The notifier passed is linked into the kernel structures and must
1581  * not be reused until it has been unregistered. A negative errno code
1582  * is returned on a failure.
1583  *
1584  * When registered all registration and up events are replayed
1585  * to the new notifier to allow device to have a race free
1586  * view of the network device list.
1587  */
1588 
1589 int register_netdevice_notifier(struct notifier_block *nb)
1590 {
1591 	struct net_device *dev;
1592 	struct net_device *last;
1593 	struct net *net;
1594 	int err;
1595 
1596 	rtnl_lock();
1597 	err = raw_notifier_chain_register(&netdev_chain, nb);
1598 	if (err)
1599 		goto unlock;
1600 	if (dev_boot_phase)
1601 		goto unlock;
1602 	for_each_net(net) {
1603 		for_each_netdev(net, dev) {
1604 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1605 			err = notifier_to_errno(err);
1606 			if (err)
1607 				goto rollback;
1608 
1609 			if (!(dev->flags & IFF_UP))
1610 				continue;
1611 
1612 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1613 		}
1614 	}
1615 
1616 unlock:
1617 	rtnl_unlock();
1618 	return err;
1619 
1620 rollback:
1621 	last = dev;
1622 	for_each_net(net) {
1623 		for_each_netdev(net, dev) {
1624 			if (dev == last)
1625 				goto outroll;
1626 
1627 			if (dev->flags & IFF_UP) {
1628 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1629 							dev);
1630 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1631 			}
1632 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1633 		}
1634 	}
1635 
1636 outroll:
1637 	raw_notifier_chain_unregister(&netdev_chain, nb);
1638 	goto unlock;
1639 }
1640 EXPORT_SYMBOL(register_netdevice_notifier);
1641 
1642 /**
1643  * unregister_netdevice_notifier - unregister a network notifier block
1644  * @nb: notifier
1645  *
1646  * Unregister a notifier previously registered by
1647  * register_netdevice_notifier(). The notifier is unlinked into the
1648  * kernel structures and may then be reused. A negative errno code
1649  * is returned on a failure.
1650  *
1651  * After unregistering unregister and down device events are synthesized
1652  * for all devices on the device list to the removed notifier to remove
1653  * the need for special case cleanup code.
1654  */
1655 
1656 int unregister_netdevice_notifier(struct notifier_block *nb)
1657 {
1658 	struct net_device *dev;
1659 	struct net *net;
1660 	int err;
1661 
1662 	rtnl_lock();
1663 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1664 	if (err)
1665 		goto unlock;
1666 
1667 	for_each_net(net) {
1668 		for_each_netdev(net, dev) {
1669 			if (dev->flags & IFF_UP) {
1670 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1671 							dev);
1672 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1673 			}
1674 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1675 		}
1676 	}
1677 unlock:
1678 	rtnl_unlock();
1679 	return err;
1680 }
1681 EXPORT_SYMBOL(unregister_netdevice_notifier);
1682 
1683 /**
1684  *	call_netdevice_notifiers_info - call all network notifier blocks
1685  *	@val: value passed unmodified to notifier function
1686  *	@dev: net_device pointer passed unmodified to notifier function
1687  *	@info: notifier information data
1688  *
1689  *	Call all network notifier blocks.  Parameters and return value
1690  *	are as for raw_notifier_call_chain().
1691  */
1692 
1693 static int call_netdevice_notifiers_info(unsigned long val,
1694 					 struct netdev_notifier_info *info)
1695 {
1696 	ASSERT_RTNL();
1697 	return raw_notifier_call_chain(&netdev_chain, val, info);
1698 }
1699 
1700 /**
1701  *	call_netdevice_notifiers - call all network notifier blocks
1702  *      @val: value passed unmodified to notifier function
1703  *      @dev: net_device pointer passed unmodified to notifier function
1704  *
1705  *	Call all network notifier blocks.  Parameters and return value
1706  *	are as for raw_notifier_call_chain().
1707  */
1708 
1709 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1710 {
1711 	struct netdev_notifier_info info = {
1712 		.dev = dev,
1713 	};
1714 
1715 	return call_netdevice_notifiers_info(val, &info);
1716 }
1717 EXPORT_SYMBOL(call_netdevice_notifiers);
1718 
1719 #ifdef CONFIG_NET_INGRESS
1720 static struct static_key ingress_needed __read_mostly;
1721 
1722 void net_inc_ingress_queue(void)
1723 {
1724 	static_key_slow_inc(&ingress_needed);
1725 }
1726 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1727 
1728 void net_dec_ingress_queue(void)
1729 {
1730 	static_key_slow_dec(&ingress_needed);
1731 }
1732 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1733 #endif
1734 
1735 #ifdef CONFIG_NET_EGRESS
1736 static struct static_key egress_needed __read_mostly;
1737 
1738 void net_inc_egress_queue(void)
1739 {
1740 	static_key_slow_inc(&egress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1743 
1744 void net_dec_egress_queue(void)
1745 {
1746 	static_key_slow_dec(&egress_needed);
1747 }
1748 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1749 #endif
1750 
1751 static struct static_key netstamp_needed __read_mostly;
1752 #ifdef HAVE_JUMP_LABEL
1753 static atomic_t netstamp_needed_deferred;
1754 static atomic_t netstamp_wanted;
1755 static void netstamp_clear(struct work_struct *work)
1756 {
1757 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1758 	int wanted;
1759 
1760 	wanted = atomic_add_return(deferred, &netstamp_wanted);
1761 	if (wanted > 0)
1762 		static_key_enable(&netstamp_needed);
1763 	else
1764 		static_key_disable(&netstamp_needed);
1765 }
1766 static DECLARE_WORK(netstamp_work, netstamp_clear);
1767 #endif
1768 
1769 void net_enable_timestamp(void)
1770 {
1771 #ifdef HAVE_JUMP_LABEL
1772 	int wanted;
1773 
1774 	while (1) {
1775 		wanted = atomic_read(&netstamp_wanted);
1776 		if (wanted <= 0)
1777 			break;
1778 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1779 			return;
1780 	}
1781 	atomic_inc(&netstamp_needed_deferred);
1782 	schedule_work(&netstamp_work);
1783 #else
1784 	static_key_slow_inc(&netstamp_needed);
1785 #endif
1786 }
1787 EXPORT_SYMBOL(net_enable_timestamp);
1788 
1789 void net_disable_timestamp(void)
1790 {
1791 #ifdef HAVE_JUMP_LABEL
1792 	int wanted;
1793 
1794 	while (1) {
1795 		wanted = atomic_read(&netstamp_wanted);
1796 		if (wanted <= 1)
1797 			break;
1798 		if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1799 			return;
1800 	}
1801 	atomic_dec(&netstamp_needed_deferred);
1802 	schedule_work(&netstamp_work);
1803 #else
1804 	static_key_slow_dec(&netstamp_needed);
1805 #endif
1806 }
1807 EXPORT_SYMBOL(net_disable_timestamp);
1808 
1809 static inline void net_timestamp_set(struct sk_buff *skb)
1810 {
1811 	skb->tstamp = 0;
1812 	if (static_key_false(&netstamp_needed))
1813 		__net_timestamp(skb);
1814 }
1815 
1816 #define net_timestamp_check(COND, SKB)			\
1817 	if (static_key_false(&netstamp_needed)) {		\
1818 		if ((COND) && !(SKB)->tstamp)	\
1819 			__net_timestamp(SKB);		\
1820 	}						\
1821 
1822 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1823 {
1824 	unsigned int len;
1825 
1826 	if (!(dev->flags & IFF_UP))
1827 		return false;
1828 
1829 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1830 	if (skb->len <= len)
1831 		return true;
1832 
1833 	/* if TSO is enabled, we don't care about the length as the packet
1834 	 * could be forwarded without being segmented before
1835 	 */
1836 	if (skb_is_gso(skb))
1837 		return true;
1838 
1839 	return false;
1840 }
1841 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1842 
1843 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1844 {
1845 	int ret = ____dev_forward_skb(dev, skb);
1846 
1847 	if (likely(!ret)) {
1848 		skb->protocol = eth_type_trans(skb, dev);
1849 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1850 	}
1851 
1852 	return ret;
1853 }
1854 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1855 
1856 /**
1857  * dev_forward_skb - loopback an skb to another netif
1858  *
1859  * @dev: destination network device
1860  * @skb: buffer to forward
1861  *
1862  * return values:
1863  *	NET_RX_SUCCESS	(no congestion)
1864  *	NET_RX_DROP     (packet was dropped, but freed)
1865  *
1866  * dev_forward_skb can be used for injecting an skb from the
1867  * start_xmit function of one device into the receive queue
1868  * of another device.
1869  *
1870  * The receiving device may be in another namespace, so
1871  * we have to clear all information in the skb that could
1872  * impact namespace isolation.
1873  */
1874 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1875 {
1876 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1877 }
1878 EXPORT_SYMBOL_GPL(dev_forward_skb);
1879 
1880 static inline int deliver_skb(struct sk_buff *skb,
1881 			      struct packet_type *pt_prev,
1882 			      struct net_device *orig_dev)
1883 {
1884 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1885 		return -ENOMEM;
1886 	refcount_inc(&skb->users);
1887 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1888 }
1889 
1890 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1891 					  struct packet_type **pt,
1892 					  struct net_device *orig_dev,
1893 					  __be16 type,
1894 					  struct list_head *ptype_list)
1895 {
1896 	struct packet_type *ptype, *pt_prev = *pt;
1897 
1898 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1899 		if (ptype->type != type)
1900 			continue;
1901 		if (pt_prev)
1902 			deliver_skb(skb, pt_prev, orig_dev);
1903 		pt_prev = ptype;
1904 	}
1905 	*pt = pt_prev;
1906 }
1907 
1908 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1909 {
1910 	if (!ptype->af_packet_priv || !skb->sk)
1911 		return false;
1912 
1913 	if (ptype->id_match)
1914 		return ptype->id_match(ptype, skb->sk);
1915 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1916 		return true;
1917 
1918 	return false;
1919 }
1920 
1921 /*
1922  *	Support routine. Sends outgoing frames to any network
1923  *	taps currently in use.
1924  */
1925 
1926 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1927 {
1928 	struct packet_type *ptype;
1929 	struct sk_buff *skb2 = NULL;
1930 	struct packet_type *pt_prev = NULL;
1931 	struct list_head *ptype_list = &ptype_all;
1932 
1933 	rcu_read_lock();
1934 again:
1935 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1936 		/* Never send packets back to the socket
1937 		 * they originated from - MvS ([email protected])
1938 		 */
1939 		if (skb_loop_sk(ptype, skb))
1940 			continue;
1941 
1942 		if (pt_prev) {
1943 			deliver_skb(skb2, pt_prev, skb->dev);
1944 			pt_prev = ptype;
1945 			continue;
1946 		}
1947 
1948 		/* need to clone skb, done only once */
1949 		skb2 = skb_clone(skb, GFP_ATOMIC);
1950 		if (!skb2)
1951 			goto out_unlock;
1952 
1953 		net_timestamp_set(skb2);
1954 
1955 		/* skb->nh should be correctly
1956 		 * set by sender, so that the second statement is
1957 		 * just protection against buggy protocols.
1958 		 */
1959 		skb_reset_mac_header(skb2);
1960 
1961 		if (skb_network_header(skb2) < skb2->data ||
1962 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1963 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1964 					     ntohs(skb2->protocol),
1965 					     dev->name);
1966 			skb_reset_network_header(skb2);
1967 		}
1968 
1969 		skb2->transport_header = skb2->network_header;
1970 		skb2->pkt_type = PACKET_OUTGOING;
1971 		pt_prev = ptype;
1972 	}
1973 
1974 	if (ptype_list == &ptype_all) {
1975 		ptype_list = &dev->ptype_all;
1976 		goto again;
1977 	}
1978 out_unlock:
1979 	if (pt_prev) {
1980 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1981 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1982 		else
1983 			kfree_skb(skb2);
1984 	}
1985 	rcu_read_unlock();
1986 }
1987 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1988 
1989 /**
1990  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1991  * @dev: Network device
1992  * @txq: number of queues available
1993  *
1994  * If real_num_tx_queues is changed the tc mappings may no longer be
1995  * valid. To resolve this verify the tc mapping remains valid and if
1996  * not NULL the mapping. With no priorities mapping to this
1997  * offset/count pair it will no longer be used. In the worst case TC0
1998  * is invalid nothing can be done so disable priority mappings. If is
1999  * expected that drivers will fix this mapping if they can before
2000  * calling netif_set_real_num_tx_queues.
2001  */
2002 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2003 {
2004 	int i;
2005 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2006 
2007 	/* If TC0 is invalidated disable TC mapping */
2008 	if (tc->offset + tc->count > txq) {
2009 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2010 		dev->num_tc = 0;
2011 		return;
2012 	}
2013 
2014 	/* Invalidated prio to tc mappings set to TC0 */
2015 	for (i = 1; i < TC_BITMASK + 1; i++) {
2016 		int q = netdev_get_prio_tc_map(dev, i);
2017 
2018 		tc = &dev->tc_to_txq[q];
2019 		if (tc->offset + tc->count > txq) {
2020 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2021 				i, q);
2022 			netdev_set_prio_tc_map(dev, i, 0);
2023 		}
2024 	}
2025 }
2026 
2027 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2028 {
2029 	if (dev->num_tc) {
2030 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2031 		int i;
2032 
2033 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2034 			if ((txq - tc->offset) < tc->count)
2035 				return i;
2036 		}
2037 
2038 		return -1;
2039 	}
2040 
2041 	return 0;
2042 }
2043 
2044 #ifdef CONFIG_XPS
2045 static DEFINE_MUTEX(xps_map_mutex);
2046 #define xmap_dereference(P)		\
2047 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2048 
2049 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2050 			     int tci, u16 index)
2051 {
2052 	struct xps_map *map = NULL;
2053 	int pos;
2054 
2055 	if (dev_maps)
2056 		map = xmap_dereference(dev_maps->cpu_map[tci]);
2057 	if (!map)
2058 		return false;
2059 
2060 	for (pos = map->len; pos--;) {
2061 		if (map->queues[pos] != index)
2062 			continue;
2063 
2064 		if (map->len > 1) {
2065 			map->queues[pos] = map->queues[--map->len];
2066 			break;
2067 		}
2068 
2069 		RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2070 		kfree_rcu(map, rcu);
2071 		return false;
2072 	}
2073 
2074 	return true;
2075 }
2076 
2077 static bool remove_xps_queue_cpu(struct net_device *dev,
2078 				 struct xps_dev_maps *dev_maps,
2079 				 int cpu, u16 offset, u16 count)
2080 {
2081 	int num_tc = dev->num_tc ? : 1;
2082 	bool active = false;
2083 	int tci;
2084 
2085 	for (tci = cpu * num_tc; num_tc--; tci++) {
2086 		int i, j;
2087 
2088 		for (i = count, j = offset; i--; j++) {
2089 			if (!remove_xps_queue(dev_maps, cpu, j))
2090 				break;
2091 		}
2092 
2093 		active |= i < 0;
2094 	}
2095 
2096 	return active;
2097 }
2098 
2099 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2100 				   u16 count)
2101 {
2102 	struct xps_dev_maps *dev_maps;
2103 	int cpu, i;
2104 	bool active = false;
2105 
2106 	mutex_lock(&xps_map_mutex);
2107 	dev_maps = xmap_dereference(dev->xps_maps);
2108 
2109 	if (!dev_maps)
2110 		goto out_no_maps;
2111 
2112 	for_each_possible_cpu(cpu)
2113 		active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2114 					       offset, count);
2115 
2116 	if (!active) {
2117 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2118 		kfree_rcu(dev_maps, rcu);
2119 	}
2120 
2121 	for (i = offset + (count - 1); count--; i--)
2122 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2123 					     NUMA_NO_NODE);
2124 
2125 out_no_maps:
2126 	mutex_unlock(&xps_map_mutex);
2127 }
2128 
2129 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2130 {
2131 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2132 }
2133 
2134 static struct xps_map *expand_xps_map(struct xps_map *map,
2135 				      int cpu, u16 index)
2136 {
2137 	struct xps_map *new_map;
2138 	int alloc_len = XPS_MIN_MAP_ALLOC;
2139 	int i, pos;
2140 
2141 	for (pos = 0; map && pos < map->len; pos++) {
2142 		if (map->queues[pos] != index)
2143 			continue;
2144 		return map;
2145 	}
2146 
2147 	/* Need to add queue to this CPU's existing map */
2148 	if (map) {
2149 		if (pos < map->alloc_len)
2150 			return map;
2151 
2152 		alloc_len = map->alloc_len * 2;
2153 	}
2154 
2155 	/* Need to allocate new map to store queue on this CPU's map */
2156 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2157 			       cpu_to_node(cpu));
2158 	if (!new_map)
2159 		return NULL;
2160 
2161 	for (i = 0; i < pos; i++)
2162 		new_map->queues[i] = map->queues[i];
2163 	new_map->alloc_len = alloc_len;
2164 	new_map->len = pos;
2165 
2166 	return new_map;
2167 }
2168 
2169 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2170 			u16 index)
2171 {
2172 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2173 	int i, cpu, tci, numa_node_id = -2;
2174 	int maps_sz, num_tc = 1, tc = 0;
2175 	struct xps_map *map, *new_map;
2176 	bool active = false;
2177 
2178 	if (dev->num_tc) {
2179 		num_tc = dev->num_tc;
2180 		tc = netdev_txq_to_tc(dev, index);
2181 		if (tc < 0)
2182 			return -EINVAL;
2183 	}
2184 
2185 	maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2186 	if (maps_sz < L1_CACHE_BYTES)
2187 		maps_sz = L1_CACHE_BYTES;
2188 
2189 	mutex_lock(&xps_map_mutex);
2190 
2191 	dev_maps = xmap_dereference(dev->xps_maps);
2192 
2193 	/* allocate memory for queue storage */
2194 	for_each_cpu_and(cpu, cpu_online_mask, mask) {
2195 		if (!new_dev_maps)
2196 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2197 		if (!new_dev_maps) {
2198 			mutex_unlock(&xps_map_mutex);
2199 			return -ENOMEM;
2200 		}
2201 
2202 		tci = cpu * num_tc + tc;
2203 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2204 				 NULL;
2205 
2206 		map = expand_xps_map(map, cpu, index);
2207 		if (!map)
2208 			goto error;
2209 
2210 		RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2211 	}
2212 
2213 	if (!new_dev_maps)
2214 		goto out_no_new_maps;
2215 
2216 	for_each_possible_cpu(cpu) {
2217 		/* copy maps belonging to foreign traffic classes */
2218 		for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2219 			/* fill in the new device map from the old device map */
2220 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2221 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222 		}
2223 
2224 		/* We need to explicitly update tci as prevous loop
2225 		 * could break out early if dev_maps is NULL.
2226 		 */
2227 		tci = cpu * num_tc + tc;
2228 
2229 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2230 			/* add queue to CPU maps */
2231 			int pos = 0;
2232 
2233 			map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2234 			while ((pos < map->len) && (map->queues[pos] != index))
2235 				pos++;
2236 
2237 			if (pos == map->len)
2238 				map->queues[map->len++] = index;
2239 #ifdef CONFIG_NUMA
2240 			if (numa_node_id == -2)
2241 				numa_node_id = cpu_to_node(cpu);
2242 			else if (numa_node_id != cpu_to_node(cpu))
2243 				numa_node_id = -1;
2244 #endif
2245 		} else if (dev_maps) {
2246 			/* fill in the new device map from the old device map */
2247 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2248 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2249 		}
2250 
2251 		/* copy maps belonging to foreign traffic classes */
2252 		for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2253 			/* fill in the new device map from the old device map */
2254 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2255 			RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2256 		}
2257 	}
2258 
2259 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2260 
2261 	/* Cleanup old maps */
2262 	if (!dev_maps)
2263 		goto out_no_old_maps;
2264 
2265 	for_each_possible_cpu(cpu) {
2266 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2267 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2268 			map = xmap_dereference(dev_maps->cpu_map[tci]);
2269 			if (map && map != new_map)
2270 				kfree_rcu(map, rcu);
2271 		}
2272 	}
2273 
2274 	kfree_rcu(dev_maps, rcu);
2275 
2276 out_no_old_maps:
2277 	dev_maps = new_dev_maps;
2278 	active = true;
2279 
2280 out_no_new_maps:
2281 	/* update Tx queue numa node */
2282 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2283 				     (numa_node_id >= 0) ? numa_node_id :
2284 				     NUMA_NO_NODE);
2285 
2286 	if (!dev_maps)
2287 		goto out_no_maps;
2288 
2289 	/* removes queue from unused CPUs */
2290 	for_each_possible_cpu(cpu) {
2291 		for (i = tc, tci = cpu * num_tc; i--; tci++)
2292 			active |= remove_xps_queue(dev_maps, tci, index);
2293 		if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2294 			active |= remove_xps_queue(dev_maps, tci, index);
2295 		for (i = num_tc - tc, tci++; --i; tci++)
2296 			active |= remove_xps_queue(dev_maps, tci, index);
2297 	}
2298 
2299 	/* free map if not active */
2300 	if (!active) {
2301 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2302 		kfree_rcu(dev_maps, rcu);
2303 	}
2304 
2305 out_no_maps:
2306 	mutex_unlock(&xps_map_mutex);
2307 
2308 	return 0;
2309 error:
2310 	/* remove any maps that we added */
2311 	for_each_possible_cpu(cpu) {
2312 		for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2313 			new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2314 			map = dev_maps ?
2315 			      xmap_dereference(dev_maps->cpu_map[tci]) :
2316 			      NULL;
2317 			if (new_map && new_map != map)
2318 				kfree(new_map);
2319 		}
2320 	}
2321 
2322 	mutex_unlock(&xps_map_mutex);
2323 
2324 	kfree(new_dev_maps);
2325 	return -ENOMEM;
2326 }
2327 EXPORT_SYMBOL(netif_set_xps_queue);
2328 
2329 #endif
2330 void netdev_reset_tc(struct net_device *dev)
2331 {
2332 #ifdef CONFIG_XPS
2333 	netif_reset_xps_queues_gt(dev, 0);
2334 #endif
2335 	dev->num_tc = 0;
2336 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2337 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2338 }
2339 EXPORT_SYMBOL(netdev_reset_tc);
2340 
2341 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2342 {
2343 	if (tc >= dev->num_tc)
2344 		return -EINVAL;
2345 
2346 #ifdef CONFIG_XPS
2347 	netif_reset_xps_queues(dev, offset, count);
2348 #endif
2349 	dev->tc_to_txq[tc].count = count;
2350 	dev->tc_to_txq[tc].offset = offset;
2351 	return 0;
2352 }
2353 EXPORT_SYMBOL(netdev_set_tc_queue);
2354 
2355 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2356 {
2357 	if (num_tc > TC_MAX_QUEUE)
2358 		return -EINVAL;
2359 
2360 #ifdef CONFIG_XPS
2361 	netif_reset_xps_queues_gt(dev, 0);
2362 #endif
2363 	dev->num_tc = num_tc;
2364 	return 0;
2365 }
2366 EXPORT_SYMBOL(netdev_set_num_tc);
2367 
2368 /*
2369  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2370  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2371  */
2372 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2373 {
2374 	int rc;
2375 
2376 	if (txq < 1 || txq > dev->num_tx_queues)
2377 		return -EINVAL;
2378 
2379 	if (dev->reg_state == NETREG_REGISTERED ||
2380 	    dev->reg_state == NETREG_UNREGISTERING) {
2381 		ASSERT_RTNL();
2382 
2383 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2384 						  txq);
2385 		if (rc)
2386 			return rc;
2387 
2388 		if (dev->num_tc)
2389 			netif_setup_tc(dev, txq);
2390 
2391 		if (txq < dev->real_num_tx_queues) {
2392 			qdisc_reset_all_tx_gt(dev, txq);
2393 #ifdef CONFIG_XPS
2394 			netif_reset_xps_queues_gt(dev, txq);
2395 #endif
2396 		}
2397 	}
2398 
2399 	dev->real_num_tx_queues = txq;
2400 	return 0;
2401 }
2402 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2403 
2404 #ifdef CONFIG_SYSFS
2405 /**
2406  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2407  *	@dev: Network device
2408  *	@rxq: Actual number of RX queues
2409  *
2410  *	This must be called either with the rtnl_lock held or before
2411  *	registration of the net device.  Returns 0 on success, or a
2412  *	negative error code.  If called before registration, it always
2413  *	succeeds.
2414  */
2415 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2416 {
2417 	int rc;
2418 
2419 	if (rxq < 1 || rxq > dev->num_rx_queues)
2420 		return -EINVAL;
2421 
2422 	if (dev->reg_state == NETREG_REGISTERED) {
2423 		ASSERT_RTNL();
2424 
2425 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2426 						  rxq);
2427 		if (rc)
2428 			return rc;
2429 	}
2430 
2431 	dev->real_num_rx_queues = rxq;
2432 	return 0;
2433 }
2434 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2435 #endif
2436 
2437 /**
2438  * netif_get_num_default_rss_queues - default number of RSS queues
2439  *
2440  * This routine should set an upper limit on the number of RSS queues
2441  * used by default by multiqueue devices.
2442  */
2443 int netif_get_num_default_rss_queues(void)
2444 {
2445 	return is_kdump_kernel() ?
2446 		1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2447 }
2448 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2449 
2450 static void __netif_reschedule(struct Qdisc *q)
2451 {
2452 	struct softnet_data *sd;
2453 	unsigned long flags;
2454 
2455 	local_irq_save(flags);
2456 	sd = this_cpu_ptr(&softnet_data);
2457 	q->next_sched = NULL;
2458 	*sd->output_queue_tailp = q;
2459 	sd->output_queue_tailp = &q->next_sched;
2460 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2461 	local_irq_restore(flags);
2462 }
2463 
2464 void __netif_schedule(struct Qdisc *q)
2465 {
2466 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2467 		__netif_reschedule(q);
2468 }
2469 EXPORT_SYMBOL(__netif_schedule);
2470 
2471 struct dev_kfree_skb_cb {
2472 	enum skb_free_reason reason;
2473 };
2474 
2475 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2476 {
2477 	return (struct dev_kfree_skb_cb *)skb->cb;
2478 }
2479 
2480 void netif_schedule_queue(struct netdev_queue *txq)
2481 {
2482 	rcu_read_lock();
2483 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2484 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2485 
2486 		__netif_schedule(q);
2487 	}
2488 	rcu_read_unlock();
2489 }
2490 EXPORT_SYMBOL(netif_schedule_queue);
2491 
2492 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2493 {
2494 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2495 		struct Qdisc *q;
2496 
2497 		rcu_read_lock();
2498 		q = rcu_dereference(dev_queue->qdisc);
2499 		__netif_schedule(q);
2500 		rcu_read_unlock();
2501 	}
2502 }
2503 EXPORT_SYMBOL(netif_tx_wake_queue);
2504 
2505 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2506 {
2507 	unsigned long flags;
2508 
2509 	if (unlikely(!skb))
2510 		return;
2511 
2512 	if (likely(refcount_read(&skb->users) == 1)) {
2513 		smp_rmb();
2514 		refcount_set(&skb->users, 0);
2515 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
2516 		return;
2517 	}
2518 	get_kfree_skb_cb(skb)->reason = reason;
2519 	local_irq_save(flags);
2520 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2521 	__this_cpu_write(softnet_data.completion_queue, skb);
2522 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2523 	local_irq_restore(flags);
2524 }
2525 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2526 
2527 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2528 {
2529 	if (in_irq() || irqs_disabled())
2530 		__dev_kfree_skb_irq(skb, reason);
2531 	else
2532 		dev_kfree_skb(skb);
2533 }
2534 EXPORT_SYMBOL(__dev_kfree_skb_any);
2535 
2536 
2537 /**
2538  * netif_device_detach - mark device as removed
2539  * @dev: network device
2540  *
2541  * Mark device as removed from system and therefore no longer available.
2542  */
2543 void netif_device_detach(struct net_device *dev)
2544 {
2545 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2546 	    netif_running(dev)) {
2547 		netif_tx_stop_all_queues(dev);
2548 	}
2549 }
2550 EXPORT_SYMBOL(netif_device_detach);
2551 
2552 /**
2553  * netif_device_attach - mark device as attached
2554  * @dev: network device
2555  *
2556  * Mark device as attached from system and restart if needed.
2557  */
2558 void netif_device_attach(struct net_device *dev)
2559 {
2560 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2561 	    netif_running(dev)) {
2562 		netif_tx_wake_all_queues(dev);
2563 		__netdev_watchdog_up(dev);
2564 	}
2565 }
2566 EXPORT_SYMBOL(netif_device_attach);
2567 
2568 /*
2569  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2570  * to be used as a distribution range.
2571  */
2572 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2573 		  unsigned int num_tx_queues)
2574 {
2575 	u32 hash;
2576 	u16 qoffset = 0;
2577 	u16 qcount = num_tx_queues;
2578 
2579 	if (skb_rx_queue_recorded(skb)) {
2580 		hash = skb_get_rx_queue(skb);
2581 		while (unlikely(hash >= num_tx_queues))
2582 			hash -= num_tx_queues;
2583 		return hash;
2584 	}
2585 
2586 	if (dev->num_tc) {
2587 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2588 
2589 		qoffset = dev->tc_to_txq[tc].offset;
2590 		qcount = dev->tc_to_txq[tc].count;
2591 	}
2592 
2593 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2594 }
2595 EXPORT_SYMBOL(__skb_tx_hash);
2596 
2597 static void skb_warn_bad_offload(const struct sk_buff *skb)
2598 {
2599 	static const netdev_features_t null_features;
2600 	struct net_device *dev = skb->dev;
2601 	const char *name = "";
2602 
2603 	if (!net_ratelimit())
2604 		return;
2605 
2606 	if (dev) {
2607 		if (dev->dev.parent)
2608 			name = dev_driver_string(dev->dev.parent);
2609 		else
2610 			name = netdev_name(dev);
2611 	}
2612 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2613 	     "gso_type=%d ip_summed=%d\n",
2614 	     name, dev ? &dev->features : &null_features,
2615 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2616 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2617 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2618 }
2619 
2620 /*
2621  * Invalidate hardware checksum when packet is to be mangled, and
2622  * complete checksum manually on outgoing path.
2623  */
2624 int skb_checksum_help(struct sk_buff *skb)
2625 {
2626 	__wsum csum;
2627 	int ret = 0, offset;
2628 
2629 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2630 		goto out_set_summed;
2631 
2632 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2633 		skb_warn_bad_offload(skb);
2634 		return -EINVAL;
2635 	}
2636 
2637 	/* Before computing a checksum, we should make sure no frag could
2638 	 * be modified by an external entity : checksum could be wrong.
2639 	 */
2640 	if (skb_has_shared_frag(skb)) {
2641 		ret = __skb_linearize(skb);
2642 		if (ret)
2643 			goto out;
2644 	}
2645 
2646 	offset = skb_checksum_start_offset(skb);
2647 	BUG_ON(offset >= skb_headlen(skb));
2648 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2649 
2650 	offset += skb->csum_offset;
2651 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2652 
2653 	if (skb_cloned(skb) &&
2654 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2655 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2656 		if (ret)
2657 			goto out;
2658 	}
2659 
2660 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2661 out_set_summed:
2662 	skb->ip_summed = CHECKSUM_NONE;
2663 out:
2664 	return ret;
2665 }
2666 EXPORT_SYMBOL(skb_checksum_help);
2667 
2668 int skb_crc32c_csum_help(struct sk_buff *skb)
2669 {
2670 	__le32 crc32c_csum;
2671 	int ret = 0, offset, start;
2672 
2673 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2674 		goto out;
2675 
2676 	if (unlikely(skb_is_gso(skb)))
2677 		goto out;
2678 
2679 	/* Before computing a checksum, we should make sure no frag could
2680 	 * be modified by an external entity : checksum could be wrong.
2681 	 */
2682 	if (unlikely(skb_has_shared_frag(skb))) {
2683 		ret = __skb_linearize(skb);
2684 		if (ret)
2685 			goto out;
2686 	}
2687 	start = skb_checksum_start_offset(skb);
2688 	offset = start + offsetof(struct sctphdr, checksum);
2689 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2690 		ret = -EINVAL;
2691 		goto out;
2692 	}
2693 	if (skb_cloned(skb) &&
2694 	    !skb_clone_writable(skb, offset + sizeof(__le32))) {
2695 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2696 		if (ret)
2697 			goto out;
2698 	}
2699 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2700 						  skb->len - start, ~(__u32)0,
2701 						  crc32c_csum_stub));
2702 	*(__le32 *)(skb->data + offset) = crc32c_csum;
2703 	skb->ip_summed = CHECKSUM_NONE;
2704 	skb->csum_not_inet = 0;
2705 out:
2706 	return ret;
2707 }
2708 
2709 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2710 {
2711 	__be16 type = skb->protocol;
2712 
2713 	/* Tunnel gso handlers can set protocol to ethernet. */
2714 	if (type == htons(ETH_P_TEB)) {
2715 		struct ethhdr *eth;
2716 
2717 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2718 			return 0;
2719 
2720 		eth = (struct ethhdr *)skb_mac_header(skb);
2721 		type = eth->h_proto;
2722 	}
2723 
2724 	return __vlan_get_protocol(skb, type, depth);
2725 }
2726 
2727 /**
2728  *	skb_mac_gso_segment - mac layer segmentation handler.
2729  *	@skb: buffer to segment
2730  *	@features: features for the output path (see dev->features)
2731  */
2732 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2733 				    netdev_features_t features)
2734 {
2735 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2736 	struct packet_offload *ptype;
2737 	int vlan_depth = skb->mac_len;
2738 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2739 
2740 	if (unlikely(!type))
2741 		return ERR_PTR(-EINVAL);
2742 
2743 	__skb_pull(skb, vlan_depth);
2744 
2745 	rcu_read_lock();
2746 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2747 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2748 			segs = ptype->callbacks.gso_segment(skb, features);
2749 			break;
2750 		}
2751 	}
2752 	rcu_read_unlock();
2753 
2754 	__skb_push(skb, skb->data - skb_mac_header(skb));
2755 
2756 	return segs;
2757 }
2758 EXPORT_SYMBOL(skb_mac_gso_segment);
2759 
2760 
2761 /* openvswitch calls this on rx path, so we need a different check.
2762  */
2763 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2764 {
2765 	if (tx_path)
2766 		return skb->ip_summed != CHECKSUM_PARTIAL;
2767 
2768 	return skb->ip_summed == CHECKSUM_NONE;
2769 }
2770 
2771 /**
2772  *	__skb_gso_segment - Perform segmentation on skb.
2773  *	@skb: buffer to segment
2774  *	@features: features for the output path (see dev->features)
2775  *	@tx_path: whether it is called in TX path
2776  *
2777  *	This function segments the given skb and returns a list of segments.
2778  *
2779  *	It may return NULL if the skb requires no segmentation.  This is
2780  *	only possible when GSO is used for verifying header integrity.
2781  *
2782  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2783  */
2784 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2785 				  netdev_features_t features, bool tx_path)
2786 {
2787 	struct sk_buff *segs;
2788 
2789 	if (unlikely(skb_needs_check(skb, tx_path))) {
2790 		int err;
2791 
2792 		/* We're going to init ->check field in TCP or UDP header */
2793 		err = skb_cow_head(skb, 0);
2794 		if (err < 0)
2795 			return ERR_PTR(err);
2796 	}
2797 
2798 	/* Only report GSO partial support if it will enable us to
2799 	 * support segmentation on this frame without needing additional
2800 	 * work.
2801 	 */
2802 	if (features & NETIF_F_GSO_PARTIAL) {
2803 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2804 		struct net_device *dev = skb->dev;
2805 
2806 		partial_features |= dev->features & dev->gso_partial_features;
2807 		if (!skb_gso_ok(skb, features | partial_features))
2808 			features &= ~NETIF_F_GSO_PARTIAL;
2809 	}
2810 
2811 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2812 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2813 
2814 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2815 	SKB_GSO_CB(skb)->encap_level = 0;
2816 
2817 	skb_reset_mac_header(skb);
2818 	skb_reset_mac_len(skb);
2819 
2820 	segs = skb_mac_gso_segment(skb, features);
2821 
2822 	if (unlikely(skb_needs_check(skb, tx_path)))
2823 		skb_warn_bad_offload(skb);
2824 
2825 	return segs;
2826 }
2827 EXPORT_SYMBOL(__skb_gso_segment);
2828 
2829 /* Take action when hardware reception checksum errors are detected. */
2830 #ifdef CONFIG_BUG
2831 void netdev_rx_csum_fault(struct net_device *dev)
2832 {
2833 	if (net_ratelimit()) {
2834 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2835 		dump_stack();
2836 	}
2837 }
2838 EXPORT_SYMBOL(netdev_rx_csum_fault);
2839 #endif
2840 
2841 /* Actually, we should eliminate this check as soon as we know, that:
2842  * 1. IOMMU is present and allows to map all the memory.
2843  * 2. No high memory really exists on this machine.
2844  */
2845 
2846 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2847 {
2848 #ifdef CONFIG_HIGHMEM
2849 	int i;
2850 
2851 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2852 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2853 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2854 
2855 			if (PageHighMem(skb_frag_page(frag)))
2856 				return 1;
2857 		}
2858 	}
2859 
2860 	if (PCI_DMA_BUS_IS_PHYS) {
2861 		struct device *pdev = dev->dev.parent;
2862 
2863 		if (!pdev)
2864 			return 0;
2865 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2866 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2867 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2868 
2869 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2870 				return 1;
2871 		}
2872 	}
2873 #endif
2874 	return 0;
2875 }
2876 
2877 /* If MPLS offload request, verify we are testing hardware MPLS features
2878  * instead of standard features for the netdev.
2879  */
2880 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2881 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2882 					   netdev_features_t features,
2883 					   __be16 type)
2884 {
2885 	if (eth_p_mpls(type))
2886 		features &= skb->dev->mpls_features;
2887 
2888 	return features;
2889 }
2890 #else
2891 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2892 					   netdev_features_t features,
2893 					   __be16 type)
2894 {
2895 	return features;
2896 }
2897 #endif
2898 
2899 static netdev_features_t harmonize_features(struct sk_buff *skb,
2900 	netdev_features_t features)
2901 {
2902 	int tmp;
2903 	__be16 type;
2904 
2905 	type = skb_network_protocol(skb, &tmp);
2906 	features = net_mpls_features(skb, features, type);
2907 
2908 	if (skb->ip_summed != CHECKSUM_NONE &&
2909 	    !can_checksum_protocol(features, type)) {
2910 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2911 	}
2912 	if (illegal_highdma(skb->dev, skb))
2913 		features &= ~NETIF_F_SG;
2914 
2915 	return features;
2916 }
2917 
2918 netdev_features_t passthru_features_check(struct sk_buff *skb,
2919 					  struct net_device *dev,
2920 					  netdev_features_t features)
2921 {
2922 	return features;
2923 }
2924 EXPORT_SYMBOL(passthru_features_check);
2925 
2926 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2927 					     struct net_device *dev,
2928 					     netdev_features_t features)
2929 {
2930 	return vlan_features_check(skb, features);
2931 }
2932 
2933 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2934 					    struct net_device *dev,
2935 					    netdev_features_t features)
2936 {
2937 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2938 
2939 	if (gso_segs > dev->gso_max_segs)
2940 		return features & ~NETIF_F_GSO_MASK;
2941 
2942 	/* Support for GSO partial features requires software
2943 	 * intervention before we can actually process the packets
2944 	 * so we need to strip support for any partial features now
2945 	 * and we can pull them back in after we have partially
2946 	 * segmented the frame.
2947 	 */
2948 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2949 		features &= ~dev->gso_partial_features;
2950 
2951 	/* Make sure to clear the IPv4 ID mangling feature if the
2952 	 * IPv4 header has the potential to be fragmented.
2953 	 */
2954 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2955 		struct iphdr *iph = skb->encapsulation ?
2956 				    inner_ip_hdr(skb) : ip_hdr(skb);
2957 
2958 		if (!(iph->frag_off & htons(IP_DF)))
2959 			features &= ~NETIF_F_TSO_MANGLEID;
2960 	}
2961 
2962 	return features;
2963 }
2964 
2965 netdev_features_t netif_skb_features(struct sk_buff *skb)
2966 {
2967 	struct net_device *dev = skb->dev;
2968 	netdev_features_t features = dev->features;
2969 
2970 	if (skb_is_gso(skb))
2971 		features = gso_features_check(skb, dev, features);
2972 
2973 	/* If encapsulation offload request, verify we are testing
2974 	 * hardware encapsulation features instead of standard
2975 	 * features for the netdev
2976 	 */
2977 	if (skb->encapsulation)
2978 		features &= dev->hw_enc_features;
2979 
2980 	if (skb_vlan_tagged(skb))
2981 		features = netdev_intersect_features(features,
2982 						     dev->vlan_features |
2983 						     NETIF_F_HW_VLAN_CTAG_TX |
2984 						     NETIF_F_HW_VLAN_STAG_TX);
2985 
2986 	if (dev->netdev_ops->ndo_features_check)
2987 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2988 								features);
2989 	else
2990 		features &= dflt_features_check(skb, dev, features);
2991 
2992 	return harmonize_features(skb, features);
2993 }
2994 EXPORT_SYMBOL(netif_skb_features);
2995 
2996 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2997 		    struct netdev_queue *txq, bool more)
2998 {
2999 	unsigned int len;
3000 	int rc;
3001 
3002 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3003 		dev_queue_xmit_nit(skb, dev);
3004 
3005 	len = skb->len;
3006 	trace_net_dev_start_xmit(skb, dev);
3007 	rc = netdev_start_xmit(skb, dev, txq, more);
3008 	trace_net_dev_xmit(skb, rc, dev, len);
3009 
3010 	return rc;
3011 }
3012 
3013 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3014 				    struct netdev_queue *txq, int *ret)
3015 {
3016 	struct sk_buff *skb = first;
3017 	int rc = NETDEV_TX_OK;
3018 
3019 	while (skb) {
3020 		struct sk_buff *next = skb->next;
3021 
3022 		skb->next = NULL;
3023 		rc = xmit_one(skb, dev, txq, next != NULL);
3024 		if (unlikely(!dev_xmit_complete(rc))) {
3025 			skb->next = next;
3026 			goto out;
3027 		}
3028 
3029 		skb = next;
3030 		if (netif_xmit_stopped(txq) && skb) {
3031 			rc = NETDEV_TX_BUSY;
3032 			break;
3033 		}
3034 	}
3035 
3036 out:
3037 	*ret = rc;
3038 	return skb;
3039 }
3040 
3041 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3042 					  netdev_features_t features)
3043 {
3044 	if (skb_vlan_tag_present(skb) &&
3045 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3046 		skb = __vlan_hwaccel_push_inside(skb);
3047 	return skb;
3048 }
3049 
3050 int skb_csum_hwoffload_help(struct sk_buff *skb,
3051 			    const netdev_features_t features)
3052 {
3053 	if (unlikely(skb->csum_not_inet))
3054 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3055 			skb_crc32c_csum_help(skb);
3056 
3057 	return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3058 }
3059 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3060 
3061 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
3062 {
3063 	netdev_features_t features;
3064 
3065 	features = netif_skb_features(skb);
3066 	skb = validate_xmit_vlan(skb, features);
3067 	if (unlikely(!skb))
3068 		goto out_null;
3069 
3070 	if (netif_needs_gso(skb, features)) {
3071 		struct sk_buff *segs;
3072 
3073 		segs = skb_gso_segment(skb, features);
3074 		if (IS_ERR(segs)) {
3075 			goto out_kfree_skb;
3076 		} else if (segs) {
3077 			consume_skb(skb);
3078 			skb = segs;
3079 		}
3080 	} else {
3081 		if (skb_needs_linearize(skb, features) &&
3082 		    __skb_linearize(skb))
3083 			goto out_kfree_skb;
3084 
3085 		if (validate_xmit_xfrm(skb, features))
3086 			goto out_kfree_skb;
3087 
3088 		/* If packet is not checksummed and device does not
3089 		 * support checksumming for this protocol, complete
3090 		 * checksumming here.
3091 		 */
3092 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3093 			if (skb->encapsulation)
3094 				skb_set_inner_transport_header(skb,
3095 							       skb_checksum_start_offset(skb));
3096 			else
3097 				skb_set_transport_header(skb,
3098 							 skb_checksum_start_offset(skb));
3099 			if (skb_csum_hwoffload_help(skb, features))
3100 				goto out_kfree_skb;
3101 		}
3102 	}
3103 
3104 	return skb;
3105 
3106 out_kfree_skb:
3107 	kfree_skb(skb);
3108 out_null:
3109 	atomic_long_inc(&dev->tx_dropped);
3110 	return NULL;
3111 }
3112 
3113 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3114 {
3115 	struct sk_buff *next, *head = NULL, *tail;
3116 
3117 	for (; skb != NULL; skb = next) {
3118 		next = skb->next;
3119 		skb->next = NULL;
3120 
3121 		/* in case skb wont be segmented, point to itself */
3122 		skb->prev = skb;
3123 
3124 		skb = validate_xmit_skb(skb, dev);
3125 		if (!skb)
3126 			continue;
3127 
3128 		if (!head)
3129 			head = skb;
3130 		else
3131 			tail->next = skb;
3132 		/* If skb was segmented, skb->prev points to
3133 		 * the last segment. If not, it still contains skb.
3134 		 */
3135 		tail = skb->prev;
3136 	}
3137 	return head;
3138 }
3139 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3140 
3141 static void qdisc_pkt_len_init(struct sk_buff *skb)
3142 {
3143 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3144 
3145 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3146 
3147 	/* To get more precise estimation of bytes sent on wire,
3148 	 * we add to pkt_len the headers size of all segments
3149 	 */
3150 	if (shinfo->gso_size)  {
3151 		unsigned int hdr_len;
3152 		u16 gso_segs = shinfo->gso_segs;
3153 
3154 		/* mac layer + network layer */
3155 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3156 
3157 		/* + transport layer */
3158 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3159 			hdr_len += tcp_hdrlen(skb);
3160 		else
3161 			hdr_len += sizeof(struct udphdr);
3162 
3163 		if (shinfo->gso_type & SKB_GSO_DODGY)
3164 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3165 						shinfo->gso_size);
3166 
3167 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3168 	}
3169 }
3170 
3171 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3172 				 struct net_device *dev,
3173 				 struct netdev_queue *txq)
3174 {
3175 	spinlock_t *root_lock = qdisc_lock(q);
3176 	struct sk_buff *to_free = NULL;
3177 	bool contended;
3178 	int rc;
3179 
3180 	qdisc_calculate_pkt_len(skb, q);
3181 	/*
3182 	 * Heuristic to force contended enqueues to serialize on a
3183 	 * separate lock before trying to get qdisc main lock.
3184 	 * This permits qdisc->running owner to get the lock more
3185 	 * often and dequeue packets faster.
3186 	 */
3187 	contended = qdisc_is_running(q);
3188 	if (unlikely(contended))
3189 		spin_lock(&q->busylock);
3190 
3191 	spin_lock(root_lock);
3192 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3193 		__qdisc_drop(skb, &to_free);
3194 		rc = NET_XMIT_DROP;
3195 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3196 		   qdisc_run_begin(q)) {
3197 		/*
3198 		 * This is a work-conserving queue; there are no old skbs
3199 		 * waiting to be sent out; and the qdisc is not running -
3200 		 * xmit the skb directly.
3201 		 */
3202 
3203 		qdisc_bstats_update(q, skb);
3204 
3205 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3206 			if (unlikely(contended)) {
3207 				spin_unlock(&q->busylock);
3208 				contended = false;
3209 			}
3210 			__qdisc_run(q);
3211 		} else
3212 			qdisc_run_end(q);
3213 
3214 		rc = NET_XMIT_SUCCESS;
3215 	} else {
3216 		rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3217 		if (qdisc_run_begin(q)) {
3218 			if (unlikely(contended)) {
3219 				spin_unlock(&q->busylock);
3220 				contended = false;
3221 			}
3222 			__qdisc_run(q);
3223 		}
3224 	}
3225 	spin_unlock(root_lock);
3226 	if (unlikely(to_free))
3227 		kfree_skb_list(to_free);
3228 	if (unlikely(contended))
3229 		spin_unlock(&q->busylock);
3230 	return rc;
3231 }
3232 
3233 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3234 static void skb_update_prio(struct sk_buff *skb)
3235 {
3236 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3237 
3238 	if (!skb->priority && skb->sk && map) {
3239 		unsigned int prioidx =
3240 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3241 
3242 		if (prioidx < map->priomap_len)
3243 			skb->priority = map->priomap[prioidx];
3244 	}
3245 }
3246 #else
3247 #define skb_update_prio(skb)
3248 #endif
3249 
3250 DEFINE_PER_CPU(int, xmit_recursion);
3251 EXPORT_SYMBOL(xmit_recursion);
3252 
3253 /**
3254  *	dev_loopback_xmit - loop back @skb
3255  *	@net: network namespace this loopback is happening in
3256  *	@sk:  sk needed to be a netfilter okfn
3257  *	@skb: buffer to transmit
3258  */
3259 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3260 {
3261 	skb_reset_mac_header(skb);
3262 	__skb_pull(skb, skb_network_offset(skb));
3263 	skb->pkt_type = PACKET_LOOPBACK;
3264 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3265 	WARN_ON(!skb_dst(skb));
3266 	skb_dst_force(skb);
3267 	netif_rx_ni(skb);
3268 	return 0;
3269 }
3270 EXPORT_SYMBOL(dev_loopback_xmit);
3271 
3272 #ifdef CONFIG_NET_EGRESS
3273 static struct sk_buff *
3274 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3275 {
3276 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3277 	struct tcf_result cl_res;
3278 
3279 	if (!cl)
3280 		return skb;
3281 
3282 	/* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3283 	qdisc_bstats_cpu_update(cl->q, skb);
3284 
3285 	switch (tcf_classify(skb, cl, &cl_res, false)) {
3286 	case TC_ACT_OK:
3287 	case TC_ACT_RECLASSIFY:
3288 		skb->tc_index = TC_H_MIN(cl_res.classid);
3289 		break;
3290 	case TC_ACT_SHOT:
3291 		qdisc_qstats_cpu_drop(cl->q);
3292 		*ret = NET_XMIT_DROP;
3293 		kfree_skb(skb);
3294 		return NULL;
3295 	case TC_ACT_STOLEN:
3296 	case TC_ACT_QUEUED:
3297 	case TC_ACT_TRAP:
3298 		*ret = NET_XMIT_SUCCESS;
3299 		consume_skb(skb);
3300 		return NULL;
3301 	case TC_ACT_REDIRECT:
3302 		/* No need to push/pop skb's mac_header here on egress! */
3303 		skb_do_redirect(skb);
3304 		*ret = NET_XMIT_SUCCESS;
3305 		return NULL;
3306 	default:
3307 		break;
3308 	}
3309 
3310 	return skb;
3311 }
3312 #endif /* CONFIG_NET_EGRESS */
3313 
3314 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3315 {
3316 #ifdef CONFIG_XPS
3317 	struct xps_dev_maps *dev_maps;
3318 	struct xps_map *map;
3319 	int queue_index = -1;
3320 
3321 	rcu_read_lock();
3322 	dev_maps = rcu_dereference(dev->xps_maps);
3323 	if (dev_maps) {
3324 		unsigned int tci = skb->sender_cpu - 1;
3325 
3326 		if (dev->num_tc) {
3327 			tci *= dev->num_tc;
3328 			tci += netdev_get_prio_tc_map(dev, skb->priority);
3329 		}
3330 
3331 		map = rcu_dereference(dev_maps->cpu_map[tci]);
3332 		if (map) {
3333 			if (map->len == 1)
3334 				queue_index = map->queues[0];
3335 			else
3336 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3337 									   map->len)];
3338 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3339 				queue_index = -1;
3340 		}
3341 	}
3342 	rcu_read_unlock();
3343 
3344 	return queue_index;
3345 #else
3346 	return -1;
3347 #endif
3348 }
3349 
3350 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3351 {
3352 	struct sock *sk = skb->sk;
3353 	int queue_index = sk_tx_queue_get(sk);
3354 
3355 	if (queue_index < 0 || skb->ooo_okay ||
3356 	    queue_index >= dev->real_num_tx_queues) {
3357 		int new_index = get_xps_queue(dev, skb);
3358 
3359 		if (new_index < 0)
3360 			new_index = skb_tx_hash(dev, skb);
3361 
3362 		if (queue_index != new_index && sk &&
3363 		    sk_fullsock(sk) &&
3364 		    rcu_access_pointer(sk->sk_dst_cache))
3365 			sk_tx_queue_set(sk, new_index);
3366 
3367 		queue_index = new_index;
3368 	}
3369 
3370 	return queue_index;
3371 }
3372 
3373 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3374 				    struct sk_buff *skb,
3375 				    void *accel_priv)
3376 {
3377 	int queue_index = 0;
3378 
3379 #ifdef CONFIG_XPS
3380 	u32 sender_cpu = skb->sender_cpu - 1;
3381 
3382 	if (sender_cpu >= (u32)NR_CPUS)
3383 		skb->sender_cpu = raw_smp_processor_id() + 1;
3384 #endif
3385 
3386 	if (dev->real_num_tx_queues != 1) {
3387 		const struct net_device_ops *ops = dev->netdev_ops;
3388 
3389 		if (ops->ndo_select_queue)
3390 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3391 							    __netdev_pick_tx);
3392 		else
3393 			queue_index = __netdev_pick_tx(dev, skb);
3394 
3395 		if (!accel_priv)
3396 			queue_index = netdev_cap_txqueue(dev, queue_index);
3397 	}
3398 
3399 	skb_set_queue_mapping(skb, queue_index);
3400 	return netdev_get_tx_queue(dev, queue_index);
3401 }
3402 
3403 /**
3404  *	__dev_queue_xmit - transmit a buffer
3405  *	@skb: buffer to transmit
3406  *	@accel_priv: private data used for L2 forwarding offload
3407  *
3408  *	Queue a buffer for transmission to a network device. The caller must
3409  *	have set the device and priority and built the buffer before calling
3410  *	this function. The function can be called from an interrupt.
3411  *
3412  *	A negative errno code is returned on a failure. A success does not
3413  *	guarantee the frame will be transmitted as it may be dropped due
3414  *	to congestion or traffic shaping.
3415  *
3416  * -----------------------------------------------------------------------------------
3417  *      I notice this method can also return errors from the queue disciplines,
3418  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3419  *      be positive.
3420  *
3421  *      Regardless of the return value, the skb is consumed, so it is currently
3422  *      difficult to retry a send to this method.  (You can bump the ref count
3423  *      before sending to hold a reference for retry if you are careful.)
3424  *
3425  *      When calling this method, interrupts MUST be enabled.  This is because
3426  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3427  *          --BLG
3428  */
3429 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3430 {
3431 	struct net_device *dev = skb->dev;
3432 	struct netdev_queue *txq;
3433 	struct Qdisc *q;
3434 	int rc = -ENOMEM;
3435 
3436 	skb_reset_mac_header(skb);
3437 
3438 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3439 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3440 
3441 	/* Disable soft irqs for various locks below. Also
3442 	 * stops preemption for RCU.
3443 	 */
3444 	rcu_read_lock_bh();
3445 
3446 	skb_update_prio(skb);
3447 
3448 	qdisc_pkt_len_init(skb);
3449 #ifdef CONFIG_NET_CLS_ACT
3450 	skb->tc_at_ingress = 0;
3451 # ifdef CONFIG_NET_EGRESS
3452 	if (static_key_false(&egress_needed)) {
3453 		skb = sch_handle_egress(skb, &rc, dev);
3454 		if (!skb)
3455 			goto out;
3456 	}
3457 # endif
3458 #endif
3459 	/* If device/qdisc don't need skb->dst, release it right now while
3460 	 * its hot in this cpu cache.
3461 	 */
3462 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3463 		skb_dst_drop(skb);
3464 	else
3465 		skb_dst_force(skb);
3466 
3467 	txq = netdev_pick_tx(dev, skb, accel_priv);
3468 	q = rcu_dereference_bh(txq->qdisc);
3469 
3470 	trace_net_dev_queue(skb);
3471 	if (q->enqueue) {
3472 		rc = __dev_xmit_skb(skb, q, dev, txq);
3473 		goto out;
3474 	}
3475 
3476 	/* The device has no queue. Common case for software devices:
3477 	 * loopback, all the sorts of tunnels...
3478 
3479 	 * Really, it is unlikely that netif_tx_lock protection is necessary
3480 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3481 	 * counters.)
3482 	 * However, it is possible, that they rely on protection
3483 	 * made by us here.
3484 
3485 	 * Check this and shot the lock. It is not prone from deadlocks.
3486 	 *Either shot noqueue qdisc, it is even simpler 8)
3487 	 */
3488 	if (dev->flags & IFF_UP) {
3489 		int cpu = smp_processor_id(); /* ok because BHs are off */
3490 
3491 		if (txq->xmit_lock_owner != cpu) {
3492 			if (unlikely(__this_cpu_read(xmit_recursion) >
3493 				     XMIT_RECURSION_LIMIT))
3494 				goto recursion_alert;
3495 
3496 			skb = validate_xmit_skb(skb, dev);
3497 			if (!skb)
3498 				goto out;
3499 
3500 			HARD_TX_LOCK(dev, txq, cpu);
3501 
3502 			if (!netif_xmit_stopped(txq)) {
3503 				__this_cpu_inc(xmit_recursion);
3504 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3505 				__this_cpu_dec(xmit_recursion);
3506 				if (dev_xmit_complete(rc)) {
3507 					HARD_TX_UNLOCK(dev, txq);
3508 					goto out;
3509 				}
3510 			}
3511 			HARD_TX_UNLOCK(dev, txq);
3512 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3513 					     dev->name);
3514 		} else {
3515 			/* Recursion is detected! It is possible,
3516 			 * unfortunately
3517 			 */
3518 recursion_alert:
3519 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3520 					     dev->name);
3521 		}
3522 	}
3523 
3524 	rc = -ENETDOWN;
3525 	rcu_read_unlock_bh();
3526 
3527 	atomic_long_inc(&dev->tx_dropped);
3528 	kfree_skb_list(skb);
3529 	return rc;
3530 out:
3531 	rcu_read_unlock_bh();
3532 	return rc;
3533 }
3534 
3535 int dev_queue_xmit(struct sk_buff *skb)
3536 {
3537 	return __dev_queue_xmit(skb, NULL);
3538 }
3539 EXPORT_SYMBOL(dev_queue_xmit);
3540 
3541 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3542 {
3543 	return __dev_queue_xmit(skb, accel_priv);
3544 }
3545 EXPORT_SYMBOL(dev_queue_xmit_accel);
3546 
3547 
3548 /*************************************************************************
3549  *			Receiver routines
3550  *************************************************************************/
3551 
3552 int netdev_max_backlog __read_mostly = 1000;
3553 EXPORT_SYMBOL(netdev_max_backlog);
3554 
3555 int netdev_tstamp_prequeue __read_mostly = 1;
3556 int netdev_budget __read_mostly = 300;
3557 unsigned int __read_mostly netdev_budget_usecs = 2000;
3558 int weight_p __read_mostly = 64;           /* old backlog weight */
3559 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3560 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3561 int dev_rx_weight __read_mostly = 64;
3562 int dev_tx_weight __read_mostly = 64;
3563 
3564 /* Called with irq disabled */
3565 static inline void ____napi_schedule(struct softnet_data *sd,
3566 				     struct napi_struct *napi)
3567 {
3568 	list_add_tail(&napi->poll_list, &sd->poll_list);
3569 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3570 }
3571 
3572 #ifdef CONFIG_RPS
3573 
3574 /* One global table that all flow-based protocols share. */
3575 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3576 EXPORT_SYMBOL(rps_sock_flow_table);
3577 u32 rps_cpu_mask __read_mostly;
3578 EXPORT_SYMBOL(rps_cpu_mask);
3579 
3580 struct static_key rps_needed __read_mostly;
3581 EXPORT_SYMBOL(rps_needed);
3582 struct static_key rfs_needed __read_mostly;
3583 EXPORT_SYMBOL(rfs_needed);
3584 
3585 static struct rps_dev_flow *
3586 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3587 	    struct rps_dev_flow *rflow, u16 next_cpu)
3588 {
3589 	if (next_cpu < nr_cpu_ids) {
3590 #ifdef CONFIG_RFS_ACCEL
3591 		struct netdev_rx_queue *rxqueue;
3592 		struct rps_dev_flow_table *flow_table;
3593 		struct rps_dev_flow *old_rflow;
3594 		u32 flow_id;
3595 		u16 rxq_index;
3596 		int rc;
3597 
3598 		/* Should we steer this flow to a different hardware queue? */
3599 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3600 		    !(dev->features & NETIF_F_NTUPLE))
3601 			goto out;
3602 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3603 		if (rxq_index == skb_get_rx_queue(skb))
3604 			goto out;
3605 
3606 		rxqueue = dev->_rx + rxq_index;
3607 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3608 		if (!flow_table)
3609 			goto out;
3610 		flow_id = skb_get_hash(skb) & flow_table->mask;
3611 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3612 							rxq_index, flow_id);
3613 		if (rc < 0)
3614 			goto out;
3615 		old_rflow = rflow;
3616 		rflow = &flow_table->flows[flow_id];
3617 		rflow->filter = rc;
3618 		if (old_rflow->filter == rflow->filter)
3619 			old_rflow->filter = RPS_NO_FILTER;
3620 	out:
3621 #endif
3622 		rflow->last_qtail =
3623 			per_cpu(softnet_data, next_cpu).input_queue_head;
3624 	}
3625 
3626 	rflow->cpu = next_cpu;
3627 	return rflow;
3628 }
3629 
3630 /*
3631  * get_rps_cpu is called from netif_receive_skb and returns the target
3632  * CPU from the RPS map of the receiving queue for a given skb.
3633  * rcu_read_lock must be held on entry.
3634  */
3635 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3636 		       struct rps_dev_flow **rflowp)
3637 {
3638 	const struct rps_sock_flow_table *sock_flow_table;
3639 	struct netdev_rx_queue *rxqueue = dev->_rx;
3640 	struct rps_dev_flow_table *flow_table;
3641 	struct rps_map *map;
3642 	int cpu = -1;
3643 	u32 tcpu;
3644 	u32 hash;
3645 
3646 	if (skb_rx_queue_recorded(skb)) {
3647 		u16 index = skb_get_rx_queue(skb);
3648 
3649 		if (unlikely(index >= dev->real_num_rx_queues)) {
3650 			WARN_ONCE(dev->real_num_rx_queues > 1,
3651 				  "%s received packet on queue %u, but number "
3652 				  "of RX queues is %u\n",
3653 				  dev->name, index, dev->real_num_rx_queues);
3654 			goto done;
3655 		}
3656 		rxqueue += index;
3657 	}
3658 
3659 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3660 
3661 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3662 	map = rcu_dereference(rxqueue->rps_map);
3663 	if (!flow_table && !map)
3664 		goto done;
3665 
3666 	skb_reset_network_header(skb);
3667 	hash = skb_get_hash(skb);
3668 	if (!hash)
3669 		goto done;
3670 
3671 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3672 	if (flow_table && sock_flow_table) {
3673 		struct rps_dev_flow *rflow;
3674 		u32 next_cpu;
3675 		u32 ident;
3676 
3677 		/* First check into global flow table if there is a match */
3678 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3679 		if ((ident ^ hash) & ~rps_cpu_mask)
3680 			goto try_rps;
3681 
3682 		next_cpu = ident & rps_cpu_mask;
3683 
3684 		/* OK, now we know there is a match,
3685 		 * we can look at the local (per receive queue) flow table
3686 		 */
3687 		rflow = &flow_table->flows[hash & flow_table->mask];
3688 		tcpu = rflow->cpu;
3689 
3690 		/*
3691 		 * If the desired CPU (where last recvmsg was done) is
3692 		 * different from current CPU (one in the rx-queue flow
3693 		 * table entry), switch if one of the following holds:
3694 		 *   - Current CPU is unset (>= nr_cpu_ids).
3695 		 *   - Current CPU is offline.
3696 		 *   - The current CPU's queue tail has advanced beyond the
3697 		 *     last packet that was enqueued using this table entry.
3698 		 *     This guarantees that all previous packets for the flow
3699 		 *     have been dequeued, thus preserving in order delivery.
3700 		 */
3701 		if (unlikely(tcpu != next_cpu) &&
3702 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3703 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3704 		      rflow->last_qtail)) >= 0)) {
3705 			tcpu = next_cpu;
3706 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3707 		}
3708 
3709 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3710 			*rflowp = rflow;
3711 			cpu = tcpu;
3712 			goto done;
3713 		}
3714 	}
3715 
3716 try_rps:
3717 
3718 	if (map) {
3719 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3720 		if (cpu_online(tcpu)) {
3721 			cpu = tcpu;
3722 			goto done;
3723 		}
3724 	}
3725 
3726 done:
3727 	return cpu;
3728 }
3729 
3730 #ifdef CONFIG_RFS_ACCEL
3731 
3732 /**
3733  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3734  * @dev: Device on which the filter was set
3735  * @rxq_index: RX queue index
3736  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3737  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3738  *
3739  * Drivers that implement ndo_rx_flow_steer() should periodically call
3740  * this function for each installed filter and remove the filters for
3741  * which it returns %true.
3742  */
3743 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3744 			 u32 flow_id, u16 filter_id)
3745 {
3746 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3747 	struct rps_dev_flow_table *flow_table;
3748 	struct rps_dev_flow *rflow;
3749 	bool expire = true;
3750 	unsigned int cpu;
3751 
3752 	rcu_read_lock();
3753 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3754 	if (flow_table && flow_id <= flow_table->mask) {
3755 		rflow = &flow_table->flows[flow_id];
3756 		cpu = ACCESS_ONCE(rflow->cpu);
3757 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3758 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3759 			   rflow->last_qtail) <
3760 		     (int)(10 * flow_table->mask)))
3761 			expire = false;
3762 	}
3763 	rcu_read_unlock();
3764 	return expire;
3765 }
3766 EXPORT_SYMBOL(rps_may_expire_flow);
3767 
3768 #endif /* CONFIG_RFS_ACCEL */
3769 
3770 /* Called from hardirq (IPI) context */
3771 static void rps_trigger_softirq(void *data)
3772 {
3773 	struct softnet_data *sd = data;
3774 
3775 	____napi_schedule(sd, &sd->backlog);
3776 	sd->received_rps++;
3777 }
3778 
3779 #endif /* CONFIG_RPS */
3780 
3781 /*
3782  * Check if this softnet_data structure is another cpu one
3783  * If yes, queue it to our IPI list and return 1
3784  * If no, return 0
3785  */
3786 static int rps_ipi_queued(struct softnet_data *sd)
3787 {
3788 #ifdef CONFIG_RPS
3789 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3790 
3791 	if (sd != mysd) {
3792 		sd->rps_ipi_next = mysd->rps_ipi_list;
3793 		mysd->rps_ipi_list = sd;
3794 
3795 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3796 		return 1;
3797 	}
3798 #endif /* CONFIG_RPS */
3799 	return 0;
3800 }
3801 
3802 #ifdef CONFIG_NET_FLOW_LIMIT
3803 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3804 #endif
3805 
3806 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3807 {
3808 #ifdef CONFIG_NET_FLOW_LIMIT
3809 	struct sd_flow_limit *fl;
3810 	struct softnet_data *sd;
3811 	unsigned int old_flow, new_flow;
3812 
3813 	if (qlen < (netdev_max_backlog >> 1))
3814 		return false;
3815 
3816 	sd = this_cpu_ptr(&softnet_data);
3817 
3818 	rcu_read_lock();
3819 	fl = rcu_dereference(sd->flow_limit);
3820 	if (fl) {
3821 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3822 		old_flow = fl->history[fl->history_head];
3823 		fl->history[fl->history_head] = new_flow;
3824 
3825 		fl->history_head++;
3826 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3827 
3828 		if (likely(fl->buckets[old_flow]))
3829 			fl->buckets[old_flow]--;
3830 
3831 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3832 			fl->count++;
3833 			rcu_read_unlock();
3834 			return true;
3835 		}
3836 	}
3837 	rcu_read_unlock();
3838 #endif
3839 	return false;
3840 }
3841 
3842 /*
3843  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3844  * queue (may be a remote CPU queue).
3845  */
3846 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3847 			      unsigned int *qtail)
3848 {
3849 	struct softnet_data *sd;
3850 	unsigned long flags;
3851 	unsigned int qlen;
3852 
3853 	sd = &per_cpu(softnet_data, cpu);
3854 
3855 	local_irq_save(flags);
3856 
3857 	rps_lock(sd);
3858 	if (!netif_running(skb->dev))
3859 		goto drop;
3860 	qlen = skb_queue_len(&sd->input_pkt_queue);
3861 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3862 		if (qlen) {
3863 enqueue:
3864 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3865 			input_queue_tail_incr_save(sd, qtail);
3866 			rps_unlock(sd);
3867 			local_irq_restore(flags);
3868 			return NET_RX_SUCCESS;
3869 		}
3870 
3871 		/* Schedule NAPI for backlog device
3872 		 * We can use non atomic operation since we own the queue lock
3873 		 */
3874 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3875 			if (!rps_ipi_queued(sd))
3876 				____napi_schedule(sd, &sd->backlog);
3877 		}
3878 		goto enqueue;
3879 	}
3880 
3881 drop:
3882 	sd->dropped++;
3883 	rps_unlock(sd);
3884 
3885 	local_irq_restore(flags);
3886 
3887 	atomic_long_inc(&skb->dev->rx_dropped);
3888 	kfree_skb(skb);
3889 	return NET_RX_DROP;
3890 }
3891 
3892 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3893 				     struct bpf_prog *xdp_prog)
3894 {
3895 	u32 metalen, act = XDP_DROP;
3896 	struct xdp_buff xdp;
3897 	void *orig_data;
3898 	int hlen, off;
3899 	u32 mac_len;
3900 
3901 	/* Reinjected packets coming from act_mirred or similar should
3902 	 * not get XDP generic processing.
3903 	 */
3904 	if (skb_cloned(skb))
3905 		return XDP_PASS;
3906 
3907 	/* XDP packets must be linear and must have sufficient headroom
3908 	 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3909 	 * native XDP provides, thus we need to do it here as well.
3910 	 */
3911 	if (skb_is_nonlinear(skb) ||
3912 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3913 		int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3914 		int troom = skb->tail + skb->data_len - skb->end;
3915 
3916 		/* In case we have to go down the path and also linearize,
3917 		 * then lets do the pskb_expand_head() work just once here.
3918 		 */
3919 		if (pskb_expand_head(skb,
3920 				     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3921 				     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3922 			goto do_drop;
3923 		if (troom > 0 && __skb_linearize(skb))
3924 			goto do_drop;
3925 	}
3926 
3927 	/* The XDP program wants to see the packet starting at the MAC
3928 	 * header.
3929 	 */
3930 	mac_len = skb->data - skb_mac_header(skb);
3931 	hlen = skb_headlen(skb) + mac_len;
3932 	xdp.data = skb->data - mac_len;
3933 	xdp.data_meta = xdp.data;
3934 	xdp.data_end = xdp.data + hlen;
3935 	xdp.data_hard_start = skb->data - skb_headroom(skb);
3936 	orig_data = xdp.data;
3937 
3938 	act = bpf_prog_run_xdp(xdp_prog, &xdp);
3939 
3940 	off = xdp.data - orig_data;
3941 	if (off > 0)
3942 		__skb_pull(skb, off);
3943 	else if (off < 0)
3944 		__skb_push(skb, -off);
3945 	skb->mac_header += off;
3946 
3947 	switch (act) {
3948 	case XDP_REDIRECT:
3949 	case XDP_TX:
3950 		__skb_push(skb, mac_len);
3951 		break;
3952 	case XDP_PASS:
3953 		metalen = xdp.data - xdp.data_meta;
3954 		if (metalen)
3955 			skb_metadata_set(skb, metalen);
3956 		break;
3957 	default:
3958 		bpf_warn_invalid_xdp_action(act);
3959 		/* fall through */
3960 	case XDP_ABORTED:
3961 		trace_xdp_exception(skb->dev, xdp_prog, act);
3962 		/* fall through */
3963 	case XDP_DROP:
3964 	do_drop:
3965 		kfree_skb(skb);
3966 		break;
3967 	}
3968 
3969 	return act;
3970 }
3971 
3972 /* When doing generic XDP we have to bypass the qdisc layer and the
3973  * network taps in order to match in-driver-XDP behavior.
3974  */
3975 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
3976 {
3977 	struct net_device *dev = skb->dev;
3978 	struct netdev_queue *txq;
3979 	bool free_skb = true;
3980 	int cpu, rc;
3981 
3982 	txq = netdev_pick_tx(dev, skb, NULL);
3983 	cpu = smp_processor_id();
3984 	HARD_TX_LOCK(dev, txq, cpu);
3985 	if (!netif_xmit_stopped(txq)) {
3986 		rc = netdev_start_xmit(skb, dev, txq, 0);
3987 		if (dev_xmit_complete(rc))
3988 			free_skb = false;
3989 	}
3990 	HARD_TX_UNLOCK(dev, txq);
3991 	if (free_skb) {
3992 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
3993 		kfree_skb(skb);
3994 	}
3995 }
3996 EXPORT_SYMBOL_GPL(generic_xdp_tx);
3997 
3998 static struct static_key generic_xdp_needed __read_mostly;
3999 
4000 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4001 {
4002 	if (xdp_prog) {
4003 		u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4004 		int err;
4005 
4006 		if (act != XDP_PASS) {
4007 			switch (act) {
4008 			case XDP_REDIRECT:
4009 				err = xdp_do_generic_redirect(skb->dev, skb,
4010 							      xdp_prog);
4011 				if (err)
4012 					goto out_redir;
4013 			/* fallthru to submit skb */
4014 			case XDP_TX:
4015 				generic_xdp_tx(skb, xdp_prog);
4016 				break;
4017 			}
4018 			return XDP_DROP;
4019 		}
4020 	}
4021 	return XDP_PASS;
4022 out_redir:
4023 	kfree_skb(skb);
4024 	return XDP_DROP;
4025 }
4026 EXPORT_SYMBOL_GPL(do_xdp_generic);
4027 
4028 static int netif_rx_internal(struct sk_buff *skb)
4029 {
4030 	int ret;
4031 
4032 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4033 
4034 	trace_netif_rx(skb);
4035 
4036 	if (static_key_false(&generic_xdp_needed)) {
4037 		int ret;
4038 
4039 		preempt_disable();
4040 		rcu_read_lock();
4041 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4042 		rcu_read_unlock();
4043 		preempt_enable();
4044 
4045 		/* Consider XDP consuming the packet a success from
4046 		 * the netdev point of view we do not want to count
4047 		 * this as an error.
4048 		 */
4049 		if (ret != XDP_PASS)
4050 			return NET_RX_SUCCESS;
4051 	}
4052 
4053 #ifdef CONFIG_RPS
4054 	if (static_key_false(&rps_needed)) {
4055 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4056 		int cpu;
4057 
4058 		preempt_disable();
4059 		rcu_read_lock();
4060 
4061 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
4062 		if (cpu < 0)
4063 			cpu = smp_processor_id();
4064 
4065 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4066 
4067 		rcu_read_unlock();
4068 		preempt_enable();
4069 	} else
4070 #endif
4071 	{
4072 		unsigned int qtail;
4073 
4074 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4075 		put_cpu();
4076 	}
4077 	return ret;
4078 }
4079 
4080 /**
4081  *	netif_rx	-	post buffer to the network code
4082  *	@skb: buffer to post
4083  *
4084  *	This function receives a packet from a device driver and queues it for
4085  *	the upper (protocol) levels to process.  It always succeeds. The buffer
4086  *	may be dropped during processing for congestion control or by the
4087  *	protocol layers.
4088  *
4089  *	return values:
4090  *	NET_RX_SUCCESS	(no congestion)
4091  *	NET_RX_DROP     (packet was dropped)
4092  *
4093  */
4094 
4095 int netif_rx(struct sk_buff *skb)
4096 {
4097 	trace_netif_rx_entry(skb);
4098 
4099 	return netif_rx_internal(skb);
4100 }
4101 EXPORT_SYMBOL(netif_rx);
4102 
4103 int netif_rx_ni(struct sk_buff *skb)
4104 {
4105 	int err;
4106 
4107 	trace_netif_rx_ni_entry(skb);
4108 
4109 	preempt_disable();
4110 	err = netif_rx_internal(skb);
4111 	if (local_softirq_pending())
4112 		do_softirq();
4113 	preempt_enable();
4114 
4115 	return err;
4116 }
4117 EXPORT_SYMBOL(netif_rx_ni);
4118 
4119 static __latent_entropy void net_tx_action(struct softirq_action *h)
4120 {
4121 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4122 
4123 	if (sd->completion_queue) {
4124 		struct sk_buff *clist;
4125 
4126 		local_irq_disable();
4127 		clist = sd->completion_queue;
4128 		sd->completion_queue = NULL;
4129 		local_irq_enable();
4130 
4131 		while (clist) {
4132 			struct sk_buff *skb = clist;
4133 
4134 			clist = clist->next;
4135 
4136 			WARN_ON(refcount_read(&skb->users));
4137 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4138 				trace_consume_skb(skb);
4139 			else
4140 				trace_kfree_skb(skb, net_tx_action);
4141 
4142 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4143 				__kfree_skb(skb);
4144 			else
4145 				__kfree_skb_defer(skb);
4146 		}
4147 
4148 		__kfree_skb_flush();
4149 	}
4150 
4151 	if (sd->output_queue) {
4152 		struct Qdisc *head;
4153 
4154 		local_irq_disable();
4155 		head = sd->output_queue;
4156 		sd->output_queue = NULL;
4157 		sd->output_queue_tailp = &sd->output_queue;
4158 		local_irq_enable();
4159 
4160 		while (head) {
4161 			struct Qdisc *q = head;
4162 			spinlock_t *root_lock;
4163 
4164 			head = head->next_sched;
4165 
4166 			root_lock = qdisc_lock(q);
4167 			spin_lock(root_lock);
4168 			/* We need to make sure head->next_sched is read
4169 			 * before clearing __QDISC_STATE_SCHED
4170 			 */
4171 			smp_mb__before_atomic();
4172 			clear_bit(__QDISC_STATE_SCHED, &q->state);
4173 			qdisc_run(q);
4174 			spin_unlock(root_lock);
4175 		}
4176 	}
4177 }
4178 
4179 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4180 /* This hook is defined here for ATM LANE */
4181 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4182 			     unsigned char *addr) __read_mostly;
4183 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4184 #endif
4185 
4186 static inline struct sk_buff *
4187 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4188 		   struct net_device *orig_dev)
4189 {
4190 #ifdef CONFIG_NET_CLS_ACT
4191 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
4192 	struct tcf_result cl_res;
4193 
4194 	/* If there's at least one ingress present somewhere (so
4195 	 * we get here via enabled static key), remaining devices
4196 	 * that are not configured with an ingress qdisc will bail
4197 	 * out here.
4198 	 */
4199 	if (!cl)
4200 		return skb;
4201 	if (*pt_prev) {
4202 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4203 		*pt_prev = NULL;
4204 	}
4205 
4206 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4207 	skb->tc_at_ingress = 1;
4208 	qdisc_bstats_cpu_update(cl->q, skb);
4209 
4210 	switch (tcf_classify(skb, cl, &cl_res, false)) {
4211 	case TC_ACT_OK:
4212 	case TC_ACT_RECLASSIFY:
4213 		skb->tc_index = TC_H_MIN(cl_res.classid);
4214 		break;
4215 	case TC_ACT_SHOT:
4216 		qdisc_qstats_cpu_drop(cl->q);
4217 		kfree_skb(skb);
4218 		return NULL;
4219 	case TC_ACT_STOLEN:
4220 	case TC_ACT_QUEUED:
4221 	case TC_ACT_TRAP:
4222 		consume_skb(skb);
4223 		return NULL;
4224 	case TC_ACT_REDIRECT:
4225 		/* skb_mac_header check was done by cls/act_bpf, so
4226 		 * we can safely push the L2 header back before
4227 		 * redirecting to another netdev
4228 		 */
4229 		__skb_push(skb, skb->mac_len);
4230 		skb_do_redirect(skb);
4231 		return NULL;
4232 	default:
4233 		break;
4234 	}
4235 #endif /* CONFIG_NET_CLS_ACT */
4236 	return skb;
4237 }
4238 
4239 /**
4240  *	netdev_is_rx_handler_busy - check if receive handler is registered
4241  *	@dev: device to check
4242  *
4243  *	Check if a receive handler is already registered for a given device.
4244  *	Return true if there one.
4245  *
4246  *	The caller must hold the rtnl_mutex.
4247  */
4248 bool netdev_is_rx_handler_busy(struct net_device *dev)
4249 {
4250 	ASSERT_RTNL();
4251 	return dev && rtnl_dereference(dev->rx_handler);
4252 }
4253 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4254 
4255 /**
4256  *	netdev_rx_handler_register - register receive handler
4257  *	@dev: device to register a handler for
4258  *	@rx_handler: receive handler to register
4259  *	@rx_handler_data: data pointer that is used by rx handler
4260  *
4261  *	Register a receive handler for a device. This handler will then be
4262  *	called from __netif_receive_skb. A negative errno code is returned
4263  *	on a failure.
4264  *
4265  *	The caller must hold the rtnl_mutex.
4266  *
4267  *	For a general description of rx_handler, see enum rx_handler_result.
4268  */
4269 int netdev_rx_handler_register(struct net_device *dev,
4270 			       rx_handler_func_t *rx_handler,
4271 			       void *rx_handler_data)
4272 {
4273 	if (netdev_is_rx_handler_busy(dev))
4274 		return -EBUSY;
4275 
4276 	/* Note: rx_handler_data must be set before rx_handler */
4277 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4278 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4279 
4280 	return 0;
4281 }
4282 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4283 
4284 /**
4285  *	netdev_rx_handler_unregister - unregister receive handler
4286  *	@dev: device to unregister a handler from
4287  *
4288  *	Unregister a receive handler from a device.
4289  *
4290  *	The caller must hold the rtnl_mutex.
4291  */
4292 void netdev_rx_handler_unregister(struct net_device *dev)
4293 {
4294 
4295 	ASSERT_RTNL();
4296 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4297 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4298 	 * section has a guarantee to see a non NULL rx_handler_data
4299 	 * as well.
4300 	 */
4301 	synchronize_net();
4302 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4303 }
4304 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4305 
4306 /*
4307  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4308  * the special handling of PFMEMALLOC skbs.
4309  */
4310 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4311 {
4312 	switch (skb->protocol) {
4313 	case htons(ETH_P_ARP):
4314 	case htons(ETH_P_IP):
4315 	case htons(ETH_P_IPV6):
4316 	case htons(ETH_P_8021Q):
4317 	case htons(ETH_P_8021AD):
4318 		return true;
4319 	default:
4320 		return false;
4321 	}
4322 }
4323 
4324 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4325 			     int *ret, struct net_device *orig_dev)
4326 {
4327 #ifdef CONFIG_NETFILTER_INGRESS
4328 	if (nf_hook_ingress_active(skb)) {
4329 		int ingress_retval;
4330 
4331 		if (*pt_prev) {
4332 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4333 			*pt_prev = NULL;
4334 		}
4335 
4336 		rcu_read_lock();
4337 		ingress_retval = nf_hook_ingress(skb);
4338 		rcu_read_unlock();
4339 		return ingress_retval;
4340 	}
4341 #endif /* CONFIG_NETFILTER_INGRESS */
4342 	return 0;
4343 }
4344 
4345 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4346 {
4347 	struct packet_type *ptype, *pt_prev;
4348 	rx_handler_func_t *rx_handler;
4349 	struct net_device *orig_dev;
4350 	bool deliver_exact = false;
4351 	int ret = NET_RX_DROP;
4352 	__be16 type;
4353 
4354 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4355 
4356 	trace_netif_receive_skb(skb);
4357 
4358 	orig_dev = skb->dev;
4359 
4360 	skb_reset_network_header(skb);
4361 	if (!skb_transport_header_was_set(skb))
4362 		skb_reset_transport_header(skb);
4363 	skb_reset_mac_len(skb);
4364 
4365 	pt_prev = NULL;
4366 
4367 another_round:
4368 	skb->skb_iif = skb->dev->ifindex;
4369 
4370 	__this_cpu_inc(softnet_data.processed);
4371 
4372 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4373 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4374 		skb = skb_vlan_untag(skb);
4375 		if (unlikely(!skb))
4376 			goto out;
4377 	}
4378 
4379 	if (skb_skip_tc_classify(skb))
4380 		goto skip_classify;
4381 
4382 	if (pfmemalloc)
4383 		goto skip_taps;
4384 
4385 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4386 		if (pt_prev)
4387 			ret = deliver_skb(skb, pt_prev, orig_dev);
4388 		pt_prev = ptype;
4389 	}
4390 
4391 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4392 		if (pt_prev)
4393 			ret = deliver_skb(skb, pt_prev, orig_dev);
4394 		pt_prev = ptype;
4395 	}
4396 
4397 skip_taps:
4398 #ifdef CONFIG_NET_INGRESS
4399 	if (static_key_false(&ingress_needed)) {
4400 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4401 		if (!skb)
4402 			goto out;
4403 
4404 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4405 			goto out;
4406 	}
4407 #endif
4408 	skb_reset_tc(skb);
4409 skip_classify:
4410 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4411 		goto drop;
4412 
4413 	if (skb_vlan_tag_present(skb)) {
4414 		if (pt_prev) {
4415 			ret = deliver_skb(skb, pt_prev, orig_dev);
4416 			pt_prev = NULL;
4417 		}
4418 		if (vlan_do_receive(&skb))
4419 			goto another_round;
4420 		else if (unlikely(!skb))
4421 			goto out;
4422 	}
4423 
4424 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4425 	if (rx_handler) {
4426 		if (pt_prev) {
4427 			ret = deliver_skb(skb, pt_prev, orig_dev);
4428 			pt_prev = NULL;
4429 		}
4430 		switch (rx_handler(&skb)) {
4431 		case RX_HANDLER_CONSUMED:
4432 			ret = NET_RX_SUCCESS;
4433 			goto out;
4434 		case RX_HANDLER_ANOTHER:
4435 			goto another_round;
4436 		case RX_HANDLER_EXACT:
4437 			deliver_exact = true;
4438 		case RX_HANDLER_PASS:
4439 			break;
4440 		default:
4441 			BUG();
4442 		}
4443 	}
4444 
4445 	if (unlikely(skb_vlan_tag_present(skb))) {
4446 		if (skb_vlan_tag_get_id(skb))
4447 			skb->pkt_type = PACKET_OTHERHOST;
4448 		/* Note: we might in the future use prio bits
4449 		 * and set skb->priority like in vlan_do_receive()
4450 		 * For the time being, just ignore Priority Code Point
4451 		 */
4452 		skb->vlan_tci = 0;
4453 	}
4454 
4455 	type = skb->protocol;
4456 
4457 	/* deliver only exact match when indicated */
4458 	if (likely(!deliver_exact)) {
4459 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4460 				       &ptype_base[ntohs(type) &
4461 						   PTYPE_HASH_MASK]);
4462 	}
4463 
4464 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4465 			       &orig_dev->ptype_specific);
4466 
4467 	if (unlikely(skb->dev != orig_dev)) {
4468 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4469 				       &skb->dev->ptype_specific);
4470 	}
4471 
4472 	if (pt_prev) {
4473 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4474 			goto drop;
4475 		else
4476 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4477 	} else {
4478 drop:
4479 		if (!deliver_exact)
4480 			atomic_long_inc(&skb->dev->rx_dropped);
4481 		else
4482 			atomic_long_inc(&skb->dev->rx_nohandler);
4483 		kfree_skb(skb);
4484 		/* Jamal, now you will not able to escape explaining
4485 		 * me how you were going to use this. :-)
4486 		 */
4487 		ret = NET_RX_DROP;
4488 	}
4489 
4490 out:
4491 	return ret;
4492 }
4493 
4494 static int __netif_receive_skb(struct sk_buff *skb)
4495 {
4496 	int ret;
4497 
4498 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4499 		unsigned int noreclaim_flag;
4500 
4501 		/*
4502 		 * PFMEMALLOC skbs are special, they should
4503 		 * - be delivered to SOCK_MEMALLOC sockets only
4504 		 * - stay away from userspace
4505 		 * - have bounded memory usage
4506 		 *
4507 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4508 		 * context down to all allocation sites.
4509 		 */
4510 		noreclaim_flag = memalloc_noreclaim_save();
4511 		ret = __netif_receive_skb_core(skb, true);
4512 		memalloc_noreclaim_restore(noreclaim_flag);
4513 	} else
4514 		ret = __netif_receive_skb_core(skb, false);
4515 
4516 	return ret;
4517 }
4518 
4519 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4520 {
4521 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4522 	struct bpf_prog *new = xdp->prog;
4523 	int ret = 0;
4524 
4525 	switch (xdp->command) {
4526 	case XDP_SETUP_PROG:
4527 		rcu_assign_pointer(dev->xdp_prog, new);
4528 		if (old)
4529 			bpf_prog_put(old);
4530 
4531 		if (old && !new) {
4532 			static_key_slow_dec(&generic_xdp_needed);
4533 		} else if (new && !old) {
4534 			static_key_slow_inc(&generic_xdp_needed);
4535 			dev_disable_lro(dev);
4536 		}
4537 		break;
4538 
4539 	case XDP_QUERY_PROG:
4540 		xdp->prog_attached = !!old;
4541 		xdp->prog_id = old ? old->aux->id : 0;
4542 		break;
4543 
4544 	default:
4545 		ret = -EINVAL;
4546 		break;
4547 	}
4548 
4549 	return ret;
4550 }
4551 
4552 static int netif_receive_skb_internal(struct sk_buff *skb)
4553 {
4554 	int ret;
4555 
4556 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4557 
4558 	if (skb_defer_rx_timestamp(skb))
4559 		return NET_RX_SUCCESS;
4560 
4561 	if (static_key_false(&generic_xdp_needed)) {
4562 		int ret;
4563 
4564 		preempt_disable();
4565 		rcu_read_lock();
4566 		ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4567 		rcu_read_unlock();
4568 		preempt_enable();
4569 
4570 		if (ret != XDP_PASS)
4571 			return NET_RX_DROP;
4572 	}
4573 
4574 	rcu_read_lock();
4575 #ifdef CONFIG_RPS
4576 	if (static_key_false(&rps_needed)) {
4577 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4578 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4579 
4580 		if (cpu >= 0) {
4581 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4582 			rcu_read_unlock();
4583 			return ret;
4584 		}
4585 	}
4586 #endif
4587 	ret = __netif_receive_skb(skb);
4588 	rcu_read_unlock();
4589 	return ret;
4590 }
4591 
4592 /**
4593  *	netif_receive_skb - process receive buffer from network
4594  *	@skb: buffer to process
4595  *
4596  *	netif_receive_skb() is the main receive data processing function.
4597  *	It always succeeds. The buffer may be dropped during processing
4598  *	for congestion control or by the protocol layers.
4599  *
4600  *	This function may only be called from softirq context and interrupts
4601  *	should be enabled.
4602  *
4603  *	Return values (usually ignored):
4604  *	NET_RX_SUCCESS: no congestion
4605  *	NET_RX_DROP: packet was dropped
4606  */
4607 int netif_receive_skb(struct sk_buff *skb)
4608 {
4609 	trace_netif_receive_skb_entry(skb);
4610 
4611 	return netif_receive_skb_internal(skb);
4612 }
4613 EXPORT_SYMBOL(netif_receive_skb);
4614 
4615 DEFINE_PER_CPU(struct work_struct, flush_works);
4616 
4617 /* Network device is going away, flush any packets still pending */
4618 static void flush_backlog(struct work_struct *work)
4619 {
4620 	struct sk_buff *skb, *tmp;
4621 	struct softnet_data *sd;
4622 
4623 	local_bh_disable();
4624 	sd = this_cpu_ptr(&softnet_data);
4625 
4626 	local_irq_disable();
4627 	rps_lock(sd);
4628 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4629 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4630 			__skb_unlink(skb, &sd->input_pkt_queue);
4631 			kfree_skb(skb);
4632 			input_queue_head_incr(sd);
4633 		}
4634 	}
4635 	rps_unlock(sd);
4636 	local_irq_enable();
4637 
4638 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4639 		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4640 			__skb_unlink(skb, &sd->process_queue);
4641 			kfree_skb(skb);
4642 			input_queue_head_incr(sd);
4643 		}
4644 	}
4645 	local_bh_enable();
4646 }
4647 
4648 static void flush_all_backlogs(void)
4649 {
4650 	unsigned int cpu;
4651 
4652 	get_online_cpus();
4653 
4654 	for_each_online_cpu(cpu)
4655 		queue_work_on(cpu, system_highpri_wq,
4656 			      per_cpu_ptr(&flush_works, cpu));
4657 
4658 	for_each_online_cpu(cpu)
4659 		flush_work(per_cpu_ptr(&flush_works, cpu));
4660 
4661 	put_online_cpus();
4662 }
4663 
4664 static int napi_gro_complete(struct sk_buff *skb)
4665 {
4666 	struct packet_offload *ptype;
4667 	__be16 type = skb->protocol;
4668 	struct list_head *head = &offload_base;
4669 	int err = -ENOENT;
4670 
4671 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4672 
4673 	if (NAPI_GRO_CB(skb)->count == 1) {
4674 		skb_shinfo(skb)->gso_size = 0;
4675 		goto out;
4676 	}
4677 
4678 	rcu_read_lock();
4679 	list_for_each_entry_rcu(ptype, head, list) {
4680 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4681 			continue;
4682 
4683 		err = ptype->callbacks.gro_complete(skb, 0);
4684 		break;
4685 	}
4686 	rcu_read_unlock();
4687 
4688 	if (err) {
4689 		WARN_ON(&ptype->list == head);
4690 		kfree_skb(skb);
4691 		return NET_RX_SUCCESS;
4692 	}
4693 
4694 out:
4695 	return netif_receive_skb_internal(skb);
4696 }
4697 
4698 /* napi->gro_list contains packets ordered by age.
4699  * youngest packets at the head of it.
4700  * Complete skbs in reverse order to reduce latencies.
4701  */
4702 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4703 {
4704 	struct sk_buff *skb, *prev = NULL;
4705 
4706 	/* scan list and build reverse chain */
4707 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4708 		skb->prev = prev;
4709 		prev = skb;
4710 	}
4711 
4712 	for (skb = prev; skb; skb = prev) {
4713 		skb->next = NULL;
4714 
4715 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4716 			return;
4717 
4718 		prev = skb->prev;
4719 		napi_gro_complete(skb);
4720 		napi->gro_count--;
4721 	}
4722 
4723 	napi->gro_list = NULL;
4724 }
4725 EXPORT_SYMBOL(napi_gro_flush);
4726 
4727 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4728 {
4729 	struct sk_buff *p;
4730 	unsigned int maclen = skb->dev->hard_header_len;
4731 	u32 hash = skb_get_hash_raw(skb);
4732 
4733 	for (p = napi->gro_list; p; p = p->next) {
4734 		unsigned long diffs;
4735 
4736 		NAPI_GRO_CB(p)->flush = 0;
4737 
4738 		if (hash != skb_get_hash_raw(p)) {
4739 			NAPI_GRO_CB(p)->same_flow = 0;
4740 			continue;
4741 		}
4742 
4743 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4744 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4745 		diffs |= skb_metadata_dst_cmp(p, skb);
4746 		diffs |= skb_metadata_differs(p, skb);
4747 		if (maclen == ETH_HLEN)
4748 			diffs |= compare_ether_header(skb_mac_header(p),
4749 						      skb_mac_header(skb));
4750 		else if (!diffs)
4751 			diffs = memcmp(skb_mac_header(p),
4752 				       skb_mac_header(skb),
4753 				       maclen);
4754 		NAPI_GRO_CB(p)->same_flow = !diffs;
4755 	}
4756 }
4757 
4758 static void skb_gro_reset_offset(struct sk_buff *skb)
4759 {
4760 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4761 	const skb_frag_t *frag0 = &pinfo->frags[0];
4762 
4763 	NAPI_GRO_CB(skb)->data_offset = 0;
4764 	NAPI_GRO_CB(skb)->frag0 = NULL;
4765 	NAPI_GRO_CB(skb)->frag0_len = 0;
4766 
4767 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4768 	    pinfo->nr_frags &&
4769 	    !PageHighMem(skb_frag_page(frag0))) {
4770 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4771 		NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4772 						    skb_frag_size(frag0),
4773 						    skb->end - skb->tail);
4774 	}
4775 }
4776 
4777 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4778 {
4779 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4780 
4781 	BUG_ON(skb->end - skb->tail < grow);
4782 
4783 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4784 
4785 	skb->data_len -= grow;
4786 	skb->tail += grow;
4787 
4788 	pinfo->frags[0].page_offset += grow;
4789 	skb_frag_size_sub(&pinfo->frags[0], grow);
4790 
4791 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4792 		skb_frag_unref(skb, 0);
4793 		memmove(pinfo->frags, pinfo->frags + 1,
4794 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4795 	}
4796 }
4797 
4798 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4799 {
4800 	struct sk_buff **pp = NULL;
4801 	struct packet_offload *ptype;
4802 	__be16 type = skb->protocol;
4803 	struct list_head *head = &offload_base;
4804 	int same_flow;
4805 	enum gro_result ret;
4806 	int grow;
4807 
4808 	if (netif_elide_gro(skb->dev))
4809 		goto normal;
4810 
4811 	gro_list_prepare(napi, skb);
4812 
4813 	rcu_read_lock();
4814 	list_for_each_entry_rcu(ptype, head, list) {
4815 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4816 			continue;
4817 
4818 		skb_set_network_header(skb, skb_gro_offset(skb));
4819 		skb_reset_mac_len(skb);
4820 		NAPI_GRO_CB(skb)->same_flow = 0;
4821 		NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4822 		NAPI_GRO_CB(skb)->free = 0;
4823 		NAPI_GRO_CB(skb)->encap_mark = 0;
4824 		NAPI_GRO_CB(skb)->recursion_counter = 0;
4825 		NAPI_GRO_CB(skb)->is_fou = 0;
4826 		NAPI_GRO_CB(skb)->is_atomic = 1;
4827 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4828 
4829 		/* Setup for GRO checksum validation */
4830 		switch (skb->ip_summed) {
4831 		case CHECKSUM_COMPLETE:
4832 			NAPI_GRO_CB(skb)->csum = skb->csum;
4833 			NAPI_GRO_CB(skb)->csum_valid = 1;
4834 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4835 			break;
4836 		case CHECKSUM_UNNECESSARY:
4837 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4838 			NAPI_GRO_CB(skb)->csum_valid = 0;
4839 			break;
4840 		default:
4841 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4842 			NAPI_GRO_CB(skb)->csum_valid = 0;
4843 		}
4844 
4845 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4846 		break;
4847 	}
4848 	rcu_read_unlock();
4849 
4850 	if (&ptype->list == head)
4851 		goto normal;
4852 
4853 	if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4854 		ret = GRO_CONSUMED;
4855 		goto ok;
4856 	}
4857 
4858 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4859 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4860 
4861 	if (pp) {
4862 		struct sk_buff *nskb = *pp;
4863 
4864 		*pp = nskb->next;
4865 		nskb->next = NULL;
4866 		napi_gro_complete(nskb);
4867 		napi->gro_count--;
4868 	}
4869 
4870 	if (same_flow)
4871 		goto ok;
4872 
4873 	if (NAPI_GRO_CB(skb)->flush)
4874 		goto normal;
4875 
4876 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4877 		struct sk_buff *nskb = napi->gro_list;
4878 
4879 		/* locate the end of the list to select the 'oldest' flow */
4880 		while (nskb->next) {
4881 			pp = &nskb->next;
4882 			nskb = *pp;
4883 		}
4884 		*pp = NULL;
4885 		nskb->next = NULL;
4886 		napi_gro_complete(nskb);
4887 	} else {
4888 		napi->gro_count++;
4889 	}
4890 	NAPI_GRO_CB(skb)->count = 1;
4891 	NAPI_GRO_CB(skb)->age = jiffies;
4892 	NAPI_GRO_CB(skb)->last = skb;
4893 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4894 	skb->next = napi->gro_list;
4895 	napi->gro_list = skb;
4896 	ret = GRO_HELD;
4897 
4898 pull:
4899 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4900 	if (grow > 0)
4901 		gro_pull_from_frag0(skb, grow);
4902 ok:
4903 	return ret;
4904 
4905 normal:
4906 	ret = GRO_NORMAL;
4907 	goto pull;
4908 }
4909 
4910 struct packet_offload *gro_find_receive_by_type(__be16 type)
4911 {
4912 	struct list_head *offload_head = &offload_base;
4913 	struct packet_offload *ptype;
4914 
4915 	list_for_each_entry_rcu(ptype, offload_head, list) {
4916 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4917 			continue;
4918 		return ptype;
4919 	}
4920 	return NULL;
4921 }
4922 EXPORT_SYMBOL(gro_find_receive_by_type);
4923 
4924 struct packet_offload *gro_find_complete_by_type(__be16 type)
4925 {
4926 	struct list_head *offload_head = &offload_base;
4927 	struct packet_offload *ptype;
4928 
4929 	list_for_each_entry_rcu(ptype, offload_head, list) {
4930 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4931 			continue;
4932 		return ptype;
4933 	}
4934 	return NULL;
4935 }
4936 EXPORT_SYMBOL(gro_find_complete_by_type);
4937 
4938 static void napi_skb_free_stolen_head(struct sk_buff *skb)
4939 {
4940 	skb_dst_drop(skb);
4941 	secpath_reset(skb);
4942 	kmem_cache_free(skbuff_head_cache, skb);
4943 }
4944 
4945 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4946 {
4947 	switch (ret) {
4948 	case GRO_NORMAL:
4949 		if (netif_receive_skb_internal(skb))
4950 			ret = GRO_DROP;
4951 		break;
4952 
4953 	case GRO_DROP:
4954 		kfree_skb(skb);
4955 		break;
4956 
4957 	case GRO_MERGED_FREE:
4958 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
4959 			napi_skb_free_stolen_head(skb);
4960 		else
4961 			__kfree_skb(skb);
4962 		break;
4963 
4964 	case GRO_HELD:
4965 	case GRO_MERGED:
4966 	case GRO_CONSUMED:
4967 		break;
4968 	}
4969 
4970 	return ret;
4971 }
4972 
4973 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4974 {
4975 	skb_mark_napi_id(skb, napi);
4976 	trace_napi_gro_receive_entry(skb);
4977 
4978 	skb_gro_reset_offset(skb);
4979 
4980 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4981 }
4982 EXPORT_SYMBOL(napi_gro_receive);
4983 
4984 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4985 {
4986 	if (unlikely(skb->pfmemalloc)) {
4987 		consume_skb(skb);
4988 		return;
4989 	}
4990 	__skb_pull(skb, skb_headlen(skb));
4991 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4992 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4993 	skb->vlan_tci = 0;
4994 	skb->dev = napi->dev;
4995 	skb->skb_iif = 0;
4996 	skb->encapsulation = 0;
4997 	skb_shinfo(skb)->gso_type = 0;
4998 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4999 	secpath_reset(skb);
5000 
5001 	napi->skb = skb;
5002 }
5003 
5004 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5005 {
5006 	struct sk_buff *skb = napi->skb;
5007 
5008 	if (!skb) {
5009 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5010 		if (skb) {
5011 			napi->skb = skb;
5012 			skb_mark_napi_id(skb, napi);
5013 		}
5014 	}
5015 	return skb;
5016 }
5017 EXPORT_SYMBOL(napi_get_frags);
5018 
5019 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5020 				      struct sk_buff *skb,
5021 				      gro_result_t ret)
5022 {
5023 	switch (ret) {
5024 	case GRO_NORMAL:
5025 	case GRO_HELD:
5026 		__skb_push(skb, ETH_HLEN);
5027 		skb->protocol = eth_type_trans(skb, skb->dev);
5028 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5029 			ret = GRO_DROP;
5030 		break;
5031 
5032 	case GRO_DROP:
5033 		napi_reuse_skb(napi, skb);
5034 		break;
5035 
5036 	case GRO_MERGED_FREE:
5037 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5038 			napi_skb_free_stolen_head(skb);
5039 		else
5040 			napi_reuse_skb(napi, skb);
5041 		break;
5042 
5043 	case GRO_MERGED:
5044 	case GRO_CONSUMED:
5045 		break;
5046 	}
5047 
5048 	return ret;
5049 }
5050 
5051 /* Upper GRO stack assumes network header starts at gro_offset=0
5052  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5053  * We copy ethernet header into skb->data to have a common layout.
5054  */
5055 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5056 {
5057 	struct sk_buff *skb = napi->skb;
5058 	const struct ethhdr *eth;
5059 	unsigned int hlen = sizeof(*eth);
5060 
5061 	napi->skb = NULL;
5062 
5063 	skb_reset_mac_header(skb);
5064 	skb_gro_reset_offset(skb);
5065 
5066 	eth = skb_gro_header_fast(skb, 0);
5067 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
5068 		eth = skb_gro_header_slow(skb, hlen, 0);
5069 		if (unlikely(!eth)) {
5070 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5071 					     __func__, napi->dev->name);
5072 			napi_reuse_skb(napi, skb);
5073 			return NULL;
5074 		}
5075 	} else {
5076 		gro_pull_from_frag0(skb, hlen);
5077 		NAPI_GRO_CB(skb)->frag0 += hlen;
5078 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
5079 	}
5080 	__skb_pull(skb, hlen);
5081 
5082 	/*
5083 	 * This works because the only protocols we care about don't require
5084 	 * special handling.
5085 	 * We'll fix it up properly in napi_frags_finish()
5086 	 */
5087 	skb->protocol = eth->h_proto;
5088 
5089 	return skb;
5090 }
5091 
5092 gro_result_t napi_gro_frags(struct napi_struct *napi)
5093 {
5094 	struct sk_buff *skb = napi_frags_skb(napi);
5095 
5096 	if (!skb)
5097 		return GRO_DROP;
5098 
5099 	trace_napi_gro_frags_entry(skb);
5100 
5101 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5102 }
5103 EXPORT_SYMBOL(napi_gro_frags);
5104 
5105 /* Compute the checksum from gro_offset and return the folded value
5106  * after adding in any pseudo checksum.
5107  */
5108 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5109 {
5110 	__wsum wsum;
5111 	__sum16 sum;
5112 
5113 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5114 
5115 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5116 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5117 	if (likely(!sum)) {
5118 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5119 		    !skb->csum_complete_sw)
5120 			netdev_rx_csum_fault(skb->dev);
5121 	}
5122 
5123 	NAPI_GRO_CB(skb)->csum = wsum;
5124 	NAPI_GRO_CB(skb)->csum_valid = 1;
5125 
5126 	return sum;
5127 }
5128 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5129 
5130 static void net_rps_send_ipi(struct softnet_data *remsd)
5131 {
5132 #ifdef CONFIG_RPS
5133 	while (remsd) {
5134 		struct softnet_data *next = remsd->rps_ipi_next;
5135 
5136 		if (cpu_online(remsd->cpu))
5137 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
5138 		remsd = next;
5139 	}
5140 #endif
5141 }
5142 
5143 /*
5144  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5145  * Note: called with local irq disabled, but exits with local irq enabled.
5146  */
5147 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5148 {
5149 #ifdef CONFIG_RPS
5150 	struct softnet_data *remsd = sd->rps_ipi_list;
5151 
5152 	if (remsd) {
5153 		sd->rps_ipi_list = NULL;
5154 
5155 		local_irq_enable();
5156 
5157 		/* Send pending IPI's to kick RPS processing on remote cpus. */
5158 		net_rps_send_ipi(remsd);
5159 	} else
5160 #endif
5161 		local_irq_enable();
5162 }
5163 
5164 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5165 {
5166 #ifdef CONFIG_RPS
5167 	return sd->rps_ipi_list != NULL;
5168 #else
5169 	return false;
5170 #endif
5171 }
5172 
5173 static int process_backlog(struct napi_struct *napi, int quota)
5174 {
5175 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5176 	bool again = true;
5177 	int work = 0;
5178 
5179 	/* Check if we have pending ipi, its better to send them now,
5180 	 * not waiting net_rx_action() end.
5181 	 */
5182 	if (sd_has_rps_ipi_waiting(sd)) {
5183 		local_irq_disable();
5184 		net_rps_action_and_irq_enable(sd);
5185 	}
5186 
5187 	napi->weight = dev_rx_weight;
5188 	while (again) {
5189 		struct sk_buff *skb;
5190 
5191 		while ((skb = __skb_dequeue(&sd->process_queue))) {
5192 			rcu_read_lock();
5193 			__netif_receive_skb(skb);
5194 			rcu_read_unlock();
5195 			input_queue_head_incr(sd);
5196 			if (++work >= quota)
5197 				return work;
5198 
5199 		}
5200 
5201 		local_irq_disable();
5202 		rps_lock(sd);
5203 		if (skb_queue_empty(&sd->input_pkt_queue)) {
5204 			/*
5205 			 * Inline a custom version of __napi_complete().
5206 			 * only current cpu owns and manipulates this napi,
5207 			 * and NAPI_STATE_SCHED is the only possible flag set
5208 			 * on backlog.
5209 			 * We can use a plain write instead of clear_bit(),
5210 			 * and we dont need an smp_mb() memory barrier.
5211 			 */
5212 			napi->state = 0;
5213 			again = false;
5214 		} else {
5215 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
5216 						   &sd->process_queue);
5217 		}
5218 		rps_unlock(sd);
5219 		local_irq_enable();
5220 	}
5221 
5222 	return work;
5223 }
5224 
5225 /**
5226  * __napi_schedule - schedule for receive
5227  * @n: entry to schedule
5228  *
5229  * The entry's receive function will be scheduled to run.
5230  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5231  */
5232 void __napi_schedule(struct napi_struct *n)
5233 {
5234 	unsigned long flags;
5235 
5236 	local_irq_save(flags);
5237 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5238 	local_irq_restore(flags);
5239 }
5240 EXPORT_SYMBOL(__napi_schedule);
5241 
5242 /**
5243  *	napi_schedule_prep - check if napi can be scheduled
5244  *	@n: napi context
5245  *
5246  * Test if NAPI routine is already running, and if not mark
5247  * it as running.  This is used as a condition variable
5248  * insure only one NAPI poll instance runs.  We also make
5249  * sure there is no pending NAPI disable.
5250  */
5251 bool napi_schedule_prep(struct napi_struct *n)
5252 {
5253 	unsigned long val, new;
5254 
5255 	do {
5256 		val = READ_ONCE(n->state);
5257 		if (unlikely(val & NAPIF_STATE_DISABLE))
5258 			return false;
5259 		new = val | NAPIF_STATE_SCHED;
5260 
5261 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
5262 		 * This was suggested by Alexander Duyck, as compiler
5263 		 * emits better code than :
5264 		 * if (val & NAPIF_STATE_SCHED)
5265 		 *     new |= NAPIF_STATE_MISSED;
5266 		 */
5267 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5268 						   NAPIF_STATE_MISSED;
5269 	} while (cmpxchg(&n->state, val, new) != val);
5270 
5271 	return !(val & NAPIF_STATE_SCHED);
5272 }
5273 EXPORT_SYMBOL(napi_schedule_prep);
5274 
5275 /**
5276  * __napi_schedule_irqoff - schedule for receive
5277  * @n: entry to schedule
5278  *
5279  * Variant of __napi_schedule() assuming hard irqs are masked
5280  */
5281 void __napi_schedule_irqoff(struct napi_struct *n)
5282 {
5283 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
5284 }
5285 EXPORT_SYMBOL(__napi_schedule_irqoff);
5286 
5287 bool napi_complete_done(struct napi_struct *n, int work_done)
5288 {
5289 	unsigned long flags, val, new;
5290 
5291 	/*
5292 	 * 1) Don't let napi dequeue from the cpu poll list
5293 	 *    just in case its running on a different cpu.
5294 	 * 2) If we are busy polling, do nothing here, we have
5295 	 *    the guarantee we will be called later.
5296 	 */
5297 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5298 				 NAPIF_STATE_IN_BUSY_POLL)))
5299 		return false;
5300 
5301 	if (n->gro_list) {
5302 		unsigned long timeout = 0;
5303 
5304 		if (work_done)
5305 			timeout = n->dev->gro_flush_timeout;
5306 
5307 		if (timeout)
5308 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
5309 				      HRTIMER_MODE_REL_PINNED);
5310 		else
5311 			napi_gro_flush(n, false);
5312 	}
5313 	if (unlikely(!list_empty(&n->poll_list))) {
5314 		/* If n->poll_list is not empty, we need to mask irqs */
5315 		local_irq_save(flags);
5316 		list_del_init(&n->poll_list);
5317 		local_irq_restore(flags);
5318 	}
5319 
5320 	do {
5321 		val = READ_ONCE(n->state);
5322 
5323 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5324 
5325 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5326 
5327 		/* If STATE_MISSED was set, leave STATE_SCHED set,
5328 		 * because we will call napi->poll() one more time.
5329 		 * This C code was suggested by Alexander Duyck to help gcc.
5330 		 */
5331 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5332 						    NAPIF_STATE_SCHED;
5333 	} while (cmpxchg(&n->state, val, new) != val);
5334 
5335 	if (unlikely(val & NAPIF_STATE_MISSED)) {
5336 		__napi_schedule(n);
5337 		return false;
5338 	}
5339 
5340 	return true;
5341 }
5342 EXPORT_SYMBOL(napi_complete_done);
5343 
5344 /* must be called under rcu_read_lock(), as we dont take a reference */
5345 static struct napi_struct *napi_by_id(unsigned int napi_id)
5346 {
5347 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5348 	struct napi_struct *napi;
5349 
5350 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5351 		if (napi->napi_id == napi_id)
5352 			return napi;
5353 
5354 	return NULL;
5355 }
5356 
5357 #if defined(CONFIG_NET_RX_BUSY_POLL)
5358 
5359 #define BUSY_POLL_BUDGET 8
5360 
5361 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5362 {
5363 	int rc;
5364 
5365 	/* Busy polling means there is a high chance device driver hard irq
5366 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5367 	 * set in napi_schedule_prep().
5368 	 * Since we are about to call napi->poll() once more, we can safely
5369 	 * clear NAPI_STATE_MISSED.
5370 	 *
5371 	 * Note: x86 could use a single "lock and ..." instruction
5372 	 * to perform these two clear_bit()
5373 	 */
5374 	clear_bit(NAPI_STATE_MISSED, &napi->state);
5375 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5376 
5377 	local_bh_disable();
5378 
5379 	/* All we really want here is to re-enable device interrupts.
5380 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5381 	 */
5382 	rc = napi->poll(napi, BUSY_POLL_BUDGET);
5383 	trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5384 	netpoll_poll_unlock(have_poll_lock);
5385 	if (rc == BUSY_POLL_BUDGET)
5386 		__napi_schedule(napi);
5387 	local_bh_enable();
5388 }
5389 
5390 void napi_busy_loop(unsigned int napi_id,
5391 		    bool (*loop_end)(void *, unsigned long),
5392 		    void *loop_end_arg)
5393 {
5394 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5395 	int (*napi_poll)(struct napi_struct *napi, int budget);
5396 	void *have_poll_lock = NULL;
5397 	struct napi_struct *napi;
5398 
5399 restart:
5400 	napi_poll = NULL;
5401 
5402 	rcu_read_lock();
5403 
5404 	napi = napi_by_id(napi_id);
5405 	if (!napi)
5406 		goto out;
5407 
5408 	preempt_disable();
5409 	for (;;) {
5410 		int work = 0;
5411 
5412 		local_bh_disable();
5413 		if (!napi_poll) {
5414 			unsigned long val = READ_ONCE(napi->state);
5415 
5416 			/* If multiple threads are competing for this napi,
5417 			 * we avoid dirtying napi->state as much as we can.
5418 			 */
5419 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5420 				   NAPIF_STATE_IN_BUSY_POLL))
5421 				goto count;
5422 			if (cmpxchg(&napi->state, val,
5423 				    val | NAPIF_STATE_IN_BUSY_POLL |
5424 					  NAPIF_STATE_SCHED) != val)
5425 				goto count;
5426 			have_poll_lock = netpoll_poll_lock(napi);
5427 			napi_poll = napi->poll;
5428 		}
5429 		work = napi_poll(napi, BUSY_POLL_BUDGET);
5430 		trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5431 count:
5432 		if (work > 0)
5433 			__NET_ADD_STATS(dev_net(napi->dev),
5434 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
5435 		local_bh_enable();
5436 
5437 		if (!loop_end || loop_end(loop_end_arg, start_time))
5438 			break;
5439 
5440 		if (unlikely(need_resched())) {
5441 			if (napi_poll)
5442 				busy_poll_stop(napi, have_poll_lock);
5443 			preempt_enable();
5444 			rcu_read_unlock();
5445 			cond_resched();
5446 			if (loop_end(loop_end_arg, start_time))
5447 				return;
5448 			goto restart;
5449 		}
5450 		cpu_relax();
5451 	}
5452 	if (napi_poll)
5453 		busy_poll_stop(napi, have_poll_lock);
5454 	preempt_enable();
5455 out:
5456 	rcu_read_unlock();
5457 }
5458 EXPORT_SYMBOL(napi_busy_loop);
5459 
5460 #endif /* CONFIG_NET_RX_BUSY_POLL */
5461 
5462 static void napi_hash_add(struct napi_struct *napi)
5463 {
5464 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5465 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5466 		return;
5467 
5468 	spin_lock(&napi_hash_lock);
5469 
5470 	/* 0..NR_CPUS range is reserved for sender_cpu use */
5471 	do {
5472 		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5473 			napi_gen_id = MIN_NAPI_ID;
5474 	} while (napi_by_id(napi_gen_id));
5475 	napi->napi_id = napi_gen_id;
5476 
5477 	hlist_add_head_rcu(&napi->napi_hash_node,
5478 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5479 
5480 	spin_unlock(&napi_hash_lock);
5481 }
5482 
5483 /* Warning : caller is responsible to make sure rcu grace period
5484  * is respected before freeing memory containing @napi
5485  */
5486 bool napi_hash_del(struct napi_struct *napi)
5487 {
5488 	bool rcu_sync_needed = false;
5489 
5490 	spin_lock(&napi_hash_lock);
5491 
5492 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5493 		rcu_sync_needed = true;
5494 		hlist_del_rcu(&napi->napi_hash_node);
5495 	}
5496 	spin_unlock(&napi_hash_lock);
5497 	return rcu_sync_needed;
5498 }
5499 EXPORT_SYMBOL_GPL(napi_hash_del);
5500 
5501 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5502 {
5503 	struct napi_struct *napi;
5504 
5505 	napi = container_of(timer, struct napi_struct, timer);
5506 
5507 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
5508 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5509 	 */
5510 	if (napi->gro_list && !napi_disable_pending(napi) &&
5511 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5512 		__napi_schedule_irqoff(napi);
5513 
5514 	return HRTIMER_NORESTART;
5515 }
5516 
5517 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5518 		    int (*poll)(struct napi_struct *, int), int weight)
5519 {
5520 	INIT_LIST_HEAD(&napi->poll_list);
5521 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5522 	napi->timer.function = napi_watchdog;
5523 	napi->gro_count = 0;
5524 	napi->gro_list = NULL;
5525 	napi->skb = NULL;
5526 	napi->poll = poll;
5527 	if (weight > NAPI_POLL_WEIGHT)
5528 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5529 			    weight, dev->name);
5530 	napi->weight = weight;
5531 	list_add(&napi->dev_list, &dev->napi_list);
5532 	napi->dev = dev;
5533 #ifdef CONFIG_NETPOLL
5534 	napi->poll_owner = -1;
5535 #endif
5536 	set_bit(NAPI_STATE_SCHED, &napi->state);
5537 	napi_hash_add(napi);
5538 }
5539 EXPORT_SYMBOL(netif_napi_add);
5540 
5541 void napi_disable(struct napi_struct *n)
5542 {
5543 	might_sleep();
5544 	set_bit(NAPI_STATE_DISABLE, &n->state);
5545 
5546 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5547 		msleep(1);
5548 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5549 		msleep(1);
5550 
5551 	hrtimer_cancel(&n->timer);
5552 
5553 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5554 }
5555 EXPORT_SYMBOL(napi_disable);
5556 
5557 /* Must be called in process context */
5558 void netif_napi_del(struct napi_struct *napi)
5559 {
5560 	might_sleep();
5561 	if (napi_hash_del(napi))
5562 		synchronize_net();
5563 	list_del_init(&napi->dev_list);
5564 	napi_free_frags(napi);
5565 
5566 	kfree_skb_list(napi->gro_list);
5567 	napi->gro_list = NULL;
5568 	napi->gro_count = 0;
5569 }
5570 EXPORT_SYMBOL(netif_napi_del);
5571 
5572 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5573 {
5574 	void *have;
5575 	int work, weight;
5576 
5577 	list_del_init(&n->poll_list);
5578 
5579 	have = netpoll_poll_lock(n);
5580 
5581 	weight = n->weight;
5582 
5583 	/* This NAPI_STATE_SCHED test is for avoiding a race
5584 	 * with netpoll's poll_napi().  Only the entity which
5585 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5586 	 * actually make the ->poll() call.  Therefore we avoid
5587 	 * accidentally calling ->poll() when NAPI is not scheduled.
5588 	 */
5589 	work = 0;
5590 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5591 		work = n->poll(n, weight);
5592 		trace_napi_poll(n, work, weight);
5593 	}
5594 
5595 	WARN_ON_ONCE(work > weight);
5596 
5597 	if (likely(work < weight))
5598 		goto out_unlock;
5599 
5600 	/* Drivers must not modify the NAPI state if they
5601 	 * consume the entire weight.  In such cases this code
5602 	 * still "owns" the NAPI instance and therefore can
5603 	 * move the instance around on the list at-will.
5604 	 */
5605 	if (unlikely(napi_disable_pending(n))) {
5606 		napi_complete(n);
5607 		goto out_unlock;
5608 	}
5609 
5610 	if (n->gro_list) {
5611 		/* flush too old packets
5612 		 * If HZ < 1000, flush all packets.
5613 		 */
5614 		napi_gro_flush(n, HZ >= 1000);
5615 	}
5616 
5617 	/* Some drivers may have called napi_schedule
5618 	 * prior to exhausting their budget.
5619 	 */
5620 	if (unlikely(!list_empty(&n->poll_list))) {
5621 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5622 			     n->dev ? n->dev->name : "backlog");
5623 		goto out_unlock;
5624 	}
5625 
5626 	list_add_tail(&n->poll_list, repoll);
5627 
5628 out_unlock:
5629 	netpoll_poll_unlock(have);
5630 
5631 	return work;
5632 }
5633 
5634 static __latent_entropy void net_rx_action(struct softirq_action *h)
5635 {
5636 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5637 	unsigned long time_limit = jiffies +
5638 		usecs_to_jiffies(netdev_budget_usecs);
5639 	int budget = netdev_budget;
5640 	LIST_HEAD(list);
5641 	LIST_HEAD(repoll);
5642 
5643 	local_irq_disable();
5644 	list_splice_init(&sd->poll_list, &list);
5645 	local_irq_enable();
5646 
5647 	for (;;) {
5648 		struct napi_struct *n;
5649 
5650 		if (list_empty(&list)) {
5651 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5652 				goto out;
5653 			break;
5654 		}
5655 
5656 		n = list_first_entry(&list, struct napi_struct, poll_list);
5657 		budget -= napi_poll(n, &repoll);
5658 
5659 		/* If softirq window is exhausted then punt.
5660 		 * Allow this to run for 2 jiffies since which will allow
5661 		 * an average latency of 1.5/HZ.
5662 		 */
5663 		if (unlikely(budget <= 0 ||
5664 			     time_after_eq(jiffies, time_limit))) {
5665 			sd->time_squeeze++;
5666 			break;
5667 		}
5668 	}
5669 
5670 	local_irq_disable();
5671 
5672 	list_splice_tail_init(&sd->poll_list, &list);
5673 	list_splice_tail(&repoll, &list);
5674 	list_splice(&list, &sd->poll_list);
5675 	if (!list_empty(&sd->poll_list))
5676 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5677 
5678 	net_rps_action_and_irq_enable(sd);
5679 out:
5680 	__kfree_skb_flush();
5681 }
5682 
5683 struct netdev_adjacent {
5684 	struct net_device *dev;
5685 
5686 	/* upper master flag, there can only be one master device per list */
5687 	bool master;
5688 
5689 	/* counter for the number of times this device was added to us */
5690 	u16 ref_nr;
5691 
5692 	/* private field for the users */
5693 	void *private;
5694 
5695 	struct list_head list;
5696 	struct rcu_head rcu;
5697 };
5698 
5699 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5700 						 struct list_head *adj_list)
5701 {
5702 	struct netdev_adjacent *adj;
5703 
5704 	list_for_each_entry(adj, adj_list, list) {
5705 		if (adj->dev == adj_dev)
5706 			return adj;
5707 	}
5708 	return NULL;
5709 }
5710 
5711 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5712 {
5713 	struct net_device *dev = data;
5714 
5715 	return upper_dev == dev;
5716 }
5717 
5718 /**
5719  * netdev_has_upper_dev - Check if device is linked to an upper device
5720  * @dev: device
5721  * @upper_dev: upper device to check
5722  *
5723  * Find out if a device is linked to specified upper device and return true
5724  * in case it is. Note that this checks only immediate upper device,
5725  * not through a complete stack of devices. The caller must hold the RTNL lock.
5726  */
5727 bool netdev_has_upper_dev(struct net_device *dev,
5728 			  struct net_device *upper_dev)
5729 {
5730 	ASSERT_RTNL();
5731 
5732 	return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5733 					     upper_dev);
5734 }
5735 EXPORT_SYMBOL(netdev_has_upper_dev);
5736 
5737 /**
5738  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5739  * @dev: device
5740  * @upper_dev: upper device to check
5741  *
5742  * Find out if a device is linked to specified upper device and return true
5743  * in case it is. Note that this checks the entire upper device chain.
5744  * The caller must hold rcu lock.
5745  */
5746 
5747 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5748 				  struct net_device *upper_dev)
5749 {
5750 	return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5751 					       upper_dev);
5752 }
5753 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5754 
5755 /**
5756  * netdev_has_any_upper_dev - Check if device is linked to some device
5757  * @dev: device
5758  *
5759  * Find out if a device is linked to an upper device and return true in case
5760  * it is. The caller must hold the RTNL lock.
5761  */
5762 bool netdev_has_any_upper_dev(struct net_device *dev)
5763 {
5764 	ASSERT_RTNL();
5765 
5766 	return !list_empty(&dev->adj_list.upper);
5767 }
5768 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5769 
5770 /**
5771  * netdev_master_upper_dev_get - Get master upper device
5772  * @dev: device
5773  *
5774  * Find a master upper device and return pointer to it or NULL in case
5775  * it's not there. The caller must hold the RTNL lock.
5776  */
5777 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5778 {
5779 	struct netdev_adjacent *upper;
5780 
5781 	ASSERT_RTNL();
5782 
5783 	if (list_empty(&dev->adj_list.upper))
5784 		return NULL;
5785 
5786 	upper = list_first_entry(&dev->adj_list.upper,
5787 				 struct netdev_adjacent, list);
5788 	if (likely(upper->master))
5789 		return upper->dev;
5790 	return NULL;
5791 }
5792 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5793 
5794 /**
5795  * netdev_has_any_lower_dev - Check if device is linked to some device
5796  * @dev: device
5797  *
5798  * Find out if a device is linked to a lower device and return true in case
5799  * it is. The caller must hold the RTNL lock.
5800  */
5801 static bool netdev_has_any_lower_dev(struct net_device *dev)
5802 {
5803 	ASSERT_RTNL();
5804 
5805 	return !list_empty(&dev->adj_list.lower);
5806 }
5807 
5808 void *netdev_adjacent_get_private(struct list_head *adj_list)
5809 {
5810 	struct netdev_adjacent *adj;
5811 
5812 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5813 
5814 	return adj->private;
5815 }
5816 EXPORT_SYMBOL(netdev_adjacent_get_private);
5817 
5818 /**
5819  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5820  * @dev: device
5821  * @iter: list_head ** of the current position
5822  *
5823  * Gets the next device from the dev's upper list, starting from iter
5824  * position. The caller must hold RCU read lock.
5825  */
5826 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5827 						 struct list_head **iter)
5828 {
5829 	struct netdev_adjacent *upper;
5830 
5831 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5832 
5833 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5834 
5835 	if (&upper->list == &dev->adj_list.upper)
5836 		return NULL;
5837 
5838 	*iter = &upper->list;
5839 
5840 	return upper->dev;
5841 }
5842 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5843 
5844 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5845 						    struct list_head **iter)
5846 {
5847 	struct netdev_adjacent *upper;
5848 
5849 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5850 
5851 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5852 
5853 	if (&upper->list == &dev->adj_list.upper)
5854 		return NULL;
5855 
5856 	*iter = &upper->list;
5857 
5858 	return upper->dev;
5859 }
5860 
5861 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5862 				  int (*fn)(struct net_device *dev,
5863 					    void *data),
5864 				  void *data)
5865 {
5866 	struct net_device *udev;
5867 	struct list_head *iter;
5868 	int ret;
5869 
5870 	for (iter = &dev->adj_list.upper,
5871 	     udev = netdev_next_upper_dev_rcu(dev, &iter);
5872 	     udev;
5873 	     udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5874 		/* first is the upper device itself */
5875 		ret = fn(udev, data);
5876 		if (ret)
5877 			return ret;
5878 
5879 		/* then look at all of its upper devices */
5880 		ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5881 		if (ret)
5882 			return ret;
5883 	}
5884 
5885 	return 0;
5886 }
5887 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5888 
5889 /**
5890  * netdev_lower_get_next_private - Get the next ->private from the
5891  *				   lower neighbour list
5892  * @dev: device
5893  * @iter: list_head ** of the current position
5894  *
5895  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5896  * list, starting from iter position. The caller must hold either hold the
5897  * RTNL lock or its own locking that guarantees that the neighbour lower
5898  * list will remain unchanged.
5899  */
5900 void *netdev_lower_get_next_private(struct net_device *dev,
5901 				    struct list_head **iter)
5902 {
5903 	struct netdev_adjacent *lower;
5904 
5905 	lower = list_entry(*iter, struct netdev_adjacent, list);
5906 
5907 	if (&lower->list == &dev->adj_list.lower)
5908 		return NULL;
5909 
5910 	*iter = lower->list.next;
5911 
5912 	return lower->private;
5913 }
5914 EXPORT_SYMBOL(netdev_lower_get_next_private);
5915 
5916 /**
5917  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5918  *				       lower neighbour list, RCU
5919  *				       variant
5920  * @dev: device
5921  * @iter: list_head ** of the current position
5922  *
5923  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5924  * list, starting from iter position. The caller must hold RCU read lock.
5925  */
5926 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5927 					struct list_head **iter)
5928 {
5929 	struct netdev_adjacent *lower;
5930 
5931 	WARN_ON_ONCE(!rcu_read_lock_held());
5932 
5933 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5934 
5935 	if (&lower->list == &dev->adj_list.lower)
5936 		return NULL;
5937 
5938 	*iter = &lower->list;
5939 
5940 	return lower->private;
5941 }
5942 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5943 
5944 /**
5945  * netdev_lower_get_next - Get the next device from the lower neighbour
5946  *                         list
5947  * @dev: device
5948  * @iter: list_head ** of the current position
5949  *
5950  * Gets the next netdev_adjacent from the dev's lower neighbour
5951  * list, starting from iter position. The caller must hold RTNL lock or
5952  * its own locking that guarantees that the neighbour lower
5953  * list will remain unchanged.
5954  */
5955 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5956 {
5957 	struct netdev_adjacent *lower;
5958 
5959 	lower = list_entry(*iter, struct netdev_adjacent, list);
5960 
5961 	if (&lower->list == &dev->adj_list.lower)
5962 		return NULL;
5963 
5964 	*iter = lower->list.next;
5965 
5966 	return lower->dev;
5967 }
5968 EXPORT_SYMBOL(netdev_lower_get_next);
5969 
5970 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5971 						struct list_head **iter)
5972 {
5973 	struct netdev_adjacent *lower;
5974 
5975 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5976 
5977 	if (&lower->list == &dev->adj_list.lower)
5978 		return NULL;
5979 
5980 	*iter = &lower->list;
5981 
5982 	return lower->dev;
5983 }
5984 
5985 int netdev_walk_all_lower_dev(struct net_device *dev,
5986 			      int (*fn)(struct net_device *dev,
5987 					void *data),
5988 			      void *data)
5989 {
5990 	struct net_device *ldev;
5991 	struct list_head *iter;
5992 	int ret;
5993 
5994 	for (iter = &dev->adj_list.lower,
5995 	     ldev = netdev_next_lower_dev(dev, &iter);
5996 	     ldev;
5997 	     ldev = netdev_next_lower_dev(dev, &iter)) {
5998 		/* first is the lower device itself */
5999 		ret = fn(ldev, data);
6000 		if (ret)
6001 			return ret;
6002 
6003 		/* then look at all of its lower devices */
6004 		ret = netdev_walk_all_lower_dev(ldev, fn, data);
6005 		if (ret)
6006 			return ret;
6007 	}
6008 
6009 	return 0;
6010 }
6011 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6012 
6013 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6014 						    struct list_head **iter)
6015 {
6016 	struct netdev_adjacent *lower;
6017 
6018 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6019 	if (&lower->list == &dev->adj_list.lower)
6020 		return NULL;
6021 
6022 	*iter = &lower->list;
6023 
6024 	return lower->dev;
6025 }
6026 
6027 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6028 				  int (*fn)(struct net_device *dev,
6029 					    void *data),
6030 				  void *data)
6031 {
6032 	struct net_device *ldev;
6033 	struct list_head *iter;
6034 	int ret;
6035 
6036 	for (iter = &dev->adj_list.lower,
6037 	     ldev = netdev_next_lower_dev_rcu(dev, &iter);
6038 	     ldev;
6039 	     ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6040 		/* first is the lower device itself */
6041 		ret = fn(ldev, data);
6042 		if (ret)
6043 			return ret;
6044 
6045 		/* then look at all of its lower devices */
6046 		ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6047 		if (ret)
6048 			return ret;
6049 	}
6050 
6051 	return 0;
6052 }
6053 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6054 
6055 /**
6056  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6057  *				       lower neighbour list, RCU
6058  *				       variant
6059  * @dev: device
6060  *
6061  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6062  * list. The caller must hold RCU read lock.
6063  */
6064 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6065 {
6066 	struct netdev_adjacent *lower;
6067 
6068 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
6069 			struct netdev_adjacent, list);
6070 	if (lower)
6071 		return lower->private;
6072 	return NULL;
6073 }
6074 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6075 
6076 /**
6077  * netdev_master_upper_dev_get_rcu - Get master upper device
6078  * @dev: device
6079  *
6080  * Find a master upper device and return pointer to it or NULL in case
6081  * it's not there. The caller must hold the RCU read lock.
6082  */
6083 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6084 {
6085 	struct netdev_adjacent *upper;
6086 
6087 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
6088 				       struct netdev_adjacent, list);
6089 	if (upper && likely(upper->master))
6090 		return upper->dev;
6091 	return NULL;
6092 }
6093 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6094 
6095 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6096 			      struct net_device *adj_dev,
6097 			      struct list_head *dev_list)
6098 {
6099 	char linkname[IFNAMSIZ+7];
6100 
6101 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6102 		"upper_%s" : "lower_%s", adj_dev->name);
6103 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6104 				 linkname);
6105 }
6106 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6107 			       char *name,
6108 			       struct list_head *dev_list)
6109 {
6110 	char linkname[IFNAMSIZ+7];
6111 
6112 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
6113 		"upper_%s" : "lower_%s", name);
6114 	sysfs_remove_link(&(dev->dev.kobj), linkname);
6115 }
6116 
6117 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6118 						 struct net_device *adj_dev,
6119 						 struct list_head *dev_list)
6120 {
6121 	return (dev_list == &dev->adj_list.upper ||
6122 		dev_list == &dev->adj_list.lower) &&
6123 		net_eq(dev_net(dev), dev_net(adj_dev));
6124 }
6125 
6126 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6127 					struct net_device *adj_dev,
6128 					struct list_head *dev_list,
6129 					void *private, bool master)
6130 {
6131 	struct netdev_adjacent *adj;
6132 	int ret;
6133 
6134 	adj = __netdev_find_adj(adj_dev, dev_list);
6135 
6136 	if (adj) {
6137 		adj->ref_nr += 1;
6138 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6139 			 dev->name, adj_dev->name, adj->ref_nr);
6140 
6141 		return 0;
6142 	}
6143 
6144 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6145 	if (!adj)
6146 		return -ENOMEM;
6147 
6148 	adj->dev = adj_dev;
6149 	adj->master = master;
6150 	adj->ref_nr = 1;
6151 	adj->private = private;
6152 	dev_hold(adj_dev);
6153 
6154 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6155 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6156 
6157 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6158 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6159 		if (ret)
6160 			goto free_adj;
6161 	}
6162 
6163 	/* Ensure that master link is always the first item in list. */
6164 	if (master) {
6165 		ret = sysfs_create_link(&(dev->dev.kobj),
6166 					&(adj_dev->dev.kobj), "master");
6167 		if (ret)
6168 			goto remove_symlinks;
6169 
6170 		list_add_rcu(&adj->list, dev_list);
6171 	} else {
6172 		list_add_tail_rcu(&adj->list, dev_list);
6173 	}
6174 
6175 	return 0;
6176 
6177 remove_symlinks:
6178 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6179 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6180 free_adj:
6181 	kfree(adj);
6182 	dev_put(adj_dev);
6183 
6184 	return ret;
6185 }
6186 
6187 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6188 					 struct net_device *adj_dev,
6189 					 u16 ref_nr,
6190 					 struct list_head *dev_list)
6191 {
6192 	struct netdev_adjacent *adj;
6193 
6194 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6195 		 dev->name, adj_dev->name, ref_nr);
6196 
6197 	adj = __netdev_find_adj(adj_dev, dev_list);
6198 
6199 	if (!adj) {
6200 		pr_err("Adjacency does not exist for device %s from %s\n",
6201 		       dev->name, adj_dev->name);
6202 		WARN_ON(1);
6203 		return;
6204 	}
6205 
6206 	if (adj->ref_nr > ref_nr) {
6207 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6208 			 dev->name, adj_dev->name, ref_nr,
6209 			 adj->ref_nr - ref_nr);
6210 		adj->ref_nr -= ref_nr;
6211 		return;
6212 	}
6213 
6214 	if (adj->master)
6215 		sysfs_remove_link(&(dev->dev.kobj), "master");
6216 
6217 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6218 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6219 
6220 	list_del_rcu(&adj->list);
6221 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6222 		 adj_dev->name, dev->name, adj_dev->name);
6223 	dev_put(adj_dev);
6224 	kfree_rcu(adj, rcu);
6225 }
6226 
6227 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6228 					    struct net_device *upper_dev,
6229 					    struct list_head *up_list,
6230 					    struct list_head *down_list,
6231 					    void *private, bool master)
6232 {
6233 	int ret;
6234 
6235 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6236 					   private, master);
6237 	if (ret)
6238 		return ret;
6239 
6240 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6241 					   private, false);
6242 	if (ret) {
6243 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6244 		return ret;
6245 	}
6246 
6247 	return 0;
6248 }
6249 
6250 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6251 					       struct net_device *upper_dev,
6252 					       u16 ref_nr,
6253 					       struct list_head *up_list,
6254 					       struct list_head *down_list)
6255 {
6256 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6257 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6258 }
6259 
6260 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6261 						struct net_device *upper_dev,
6262 						void *private, bool master)
6263 {
6264 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6265 						&dev->adj_list.upper,
6266 						&upper_dev->adj_list.lower,
6267 						private, master);
6268 }
6269 
6270 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6271 						   struct net_device *upper_dev)
6272 {
6273 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6274 					   &dev->adj_list.upper,
6275 					   &upper_dev->adj_list.lower);
6276 }
6277 
6278 static int __netdev_upper_dev_link(struct net_device *dev,
6279 				   struct net_device *upper_dev, bool master,
6280 				   void *upper_priv, void *upper_info,
6281 				   struct netlink_ext_ack *extack)
6282 {
6283 	struct netdev_notifier_changeupper_info changeupper_info = {
6284 		.info = {
6285 			.dev = dev,
6286 			.extack = extack,
6287 		},
6288 		.upper_dev = upper_dev,
6289 		.master = master,
6290 		.linking = true,
6291 		.upper_info = upper_info,
6292 	};
6293 	int ret = 0;
6294 
6295 	ASSERT_RTNL();
6296 
6297 	if (dev == upper_dev)
6298 		return -EBUSY;
6299 
6300 	/* To prevent loops, check if dev is not upper device to upper_dev. */
6301 	if (netdev_has_upper_dev(upper_dev, dev))
6302 		return -EBUSY;
6303 
6304 	if (netdev_has_upper_dev(dev, upper_dev))
6305 		return -EEXIST;
6306 
6307 	if (master && netdev_master_upper_dev_get(dev))
6308 		return -EBUSY;
6309 
6310 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6311 					    &changeupper_info.info);
6312 	ret = notifier_to_errno(ret);
6313 	if (ret)
6314 		return ret;
6315 
6316 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6317 						   master);
6318 	if (ret)
6319 		return ret;
6320 
6321 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6322 					    &changeupper_info.info);
6323 	ret = notifier_to_errno(ret);
6324 	if (ret)
6325 		goto rollback;
6326 
6327 	return 0;
6328 
6329 rollback:
6330 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6331 
6332 	return ret;
6333 }
6334 
6335 /**
6336  * netdev_upper_dev_link - Add a link to the upper device
6337  * @dev: device
6338  * @upper_dev: new upper device
6339  *
6340  * Adds a link to device which is upper to this one. The caller must hold
6341  * the RTNL lock. On a failure a negative errno code is returned.
6342  * On success the reference counts are adjusted and the function
6343  * returns zero.
6344  */
6345 int netdev_upper_dev_link(struct net_device *dev,
6346 			  struct net_device *upper_dev,
6347 			  struct netlink_ext_ack *extack)
6348 {
6349 	return __netdev_upper_dev_link(dev, upper_dev, false,
6350 				       NULL, NULL, extack);
6351 }
6352 EXPORT_SYMBOL(netdev_upper_dev_link);
6353 
6354 /**
6355  * netdev_master_upper_dev_link - Add a master link to the upper device
6356  * @dev: device
6357  * @upper_dev: new upper device
6358  * @upper_priv: upper device private
6359  * @upper_info: upper info to be passed down via notifier
6360  *
6361  * Adds a link to device which is upper to this one. In this case, only
6362  * one master upper device can be linked, although other non-master devices
6363  * might be linked as well. The caller must hold the RTNL lock.
6364  * On a failure a negative errno code is returned. On success the reference
6365  * counts are adjusted and the function returns zero.
6366  */
6367 int netdev_master_upper_dev_link(struct net_device *dev,
6368 				 struct net_device *upper_dev,
6369 				 void *upper_priv, void *upper_info,
6370 				 struct netlink_ext_ack *extack)
6371 {
6372 	return __netdev_upper_dev_link(dev, upper_dev, true,
6373 				       upper_priv, upper_info, extack);
6374 }
6375 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6376 
6377 /**
6378  * netdev_upper_dev_unlink - Removes a link to upper device
6379  * @dev: device
6380  * @upper_dev: new upper device
6381  *
6382  * Removes a link to device which is upper to this one. The caller must hold
6383  * the RTNL lock.
6384  */
6385 void netdev_upper_dev_unlink(struct net_device *dev,
6386 			     struct net_device *upper_dev)
6387 {
6388 	struct netdev_notifier_changeupper_info changeupper_info = {
6389 		.info = {
6390 			.dev = dev,
6391 		},
6392 		.upper_dev = upper_dev,
6393 		.linking = false,
6394 	};
6395 
6396 	ASSERT_RTNL();
6397 
6398 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6399 
6400 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6401 				      &changeupper_info.info);
6402 
6403 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6404 
6405 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6406 				      &changeupper_info.info);
6407 }
6408 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6409 
6410 /**
6411  * netdev_bonding_info_change - Dispatch event about slave change
6412  * @dev: device
6413  * @bonding_info: info to dispatch
6414  *
6415  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6416  * The caller must hold the RTNL lock.
6417  */
6418 void netdev_bonding_info_change(struct net_device *dev,
6419 				struct netdev_bonding_info *bonding_info)
6420 {
6421 	struct netdev_notifier_bonding_info info = {
6422 		.info.dev = dev,
6423 	};
6424 
6425 	memcpy(&info.bonding_info, bonding_info,
6426 	       sizeof(struct netdev_bonding_info));
6427 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6428 				      &info.info);
6429 }
6430 EXPORT_SYMBOL(netdev_bonding_info_change);
6431 
6432 static void netdev_adjacent_add_links(struct net_device *dev)
6433 {
6434 	struct netdev_adjacent *iter;
6435 
6436 	struct net *net = dev_net(dev);
6437 
6438 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6439 		if (!net_eq(net, dev_net(iter->dev)))
6440 			continue;
6441 		netdev_adjacent_sysfs_add(iter->dev, dev,
6442 					  &iter->dev->adj_list.lower);
6443 		netdev_adjacent_sysfs_add(dev, iter->dev,
6444 					  &dev->adj_list.upper);
6445 	}
6446 
6447 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6448 		if (!net_eq(net, dev_net(iter->dev)))
6449 			continue;
6450 		netdev_adjacent_sysfs_add(iter->dev, dev,
6451 					  &iter->dev->adj_list.upper);
6452 		netdev_adjacent_sysfs_add(dev, iter->dev,
6453 					  &dev->adj_list.lower);
6454 	}
6455 }
6456 
6457 static void netdev_adjacent_del_links(struct net_device *dev)
6458 {
6459 	struct netdev_adjacent *iter;
6460 
6461 	struct net *net = dev_net(dev);
6462 
6463 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6464 		if (!net_eq(net, dev_net(iter->dev)))
6465 			continue;
6466 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6467 					  &iter->dev->adj_list.lower);
6468 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6469 					  &dev->adj_list.upper);
6470 	}
6471 
6472 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6473 		if (!net_eq(net, dev_net(iter->dev)))
6474 			continue;
6475 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
6476 					  &iter->dev->adj_list.upper);
6477 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
6478 					  &dev->adj_list.lower);
6479 	}
6480 }
6481 
6482 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6483 {
6484 	struct netdev_adjacent *iter;
6485 
6486 	struct net *net = dev_net(dev);
6487 
6488 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
6489 		if (!net_eq(net, dev_net(iter->dev)))
6490 			continue;
6491 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6492 					  &iter->dev->adj_list.lower);
6493 		netdev_adjacent_sysfs_add(iter->dev, dev,
6494 					  &iter->dev->adj_list.lower);
6495 	}
6496 
6497 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
6498 		if (!net_eq(net, dev_net(iter->dev)))
6499 			continue;
6500 		netdev_adjacent_sysfs_del(iter->dev, oldname,
6501 					  &iter->dev->adj_list.upper);
6502 		netdev_adjacent_sysfs_add(iter->dev, dev,
6503 					  &iter->dev->adj_list.upper);
6504 	}
6505 }
6506 
6507 void *netdev_lower_dev_get_private(struct net_device *dev,
6508 				   struct net_device *lower_dev)
6509 {
6510 	struct netdev_adjacent *lower;
6511 
6512 	if (!lower_dev)
6513 		return NULL;
6514 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6515 	if (!lower)
6516 		return NULL;
6517 
6518 	return lower->private;
6519 }
6520 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6521 
6522 
6523 int dev_get_nest_level(struct net_device *dev)
6524 {
6525 	struct net_device *lower = NULL;
6526 	struct list_head *iter;
6527 	int max_nest = -1;
6528 	int nest;
6529 
6530 	ASSERT_RTNL();
6531 
6532 	netdev_for_each_lower_dev(dev, lower, iter) {
6533 		nest = dev_get_nest_level(lower);
6534 		if (max_nest < nest)
6535 			max_nest = nest;
6536 	}
6537 
6538 	return max_nest + 1;
6539 }
6540 EXPORT_SYMBOL(dev_get_nest_level);
6541 
6542 /**
6543  * netdev_lower_change - Dispatch event about lower device state change
6544  * @lower_dev: device
6545  * @lower_state_info: state to dispatch
6546  *
6547  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6548  * The caller must hold the RTNL lock.
6549  */
6550 void netdev_lower_state_changed(struct net_device *lower_dev,
6551 				void *lower_state_info)
6552 {
6553 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6554 		.info.dev = lower_dev,
6555 	};
6556 
6557 	ASSERT_RTNL();
6558 	changelowerstate_info.lower_state_info = lower_state_info;
6559 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6560 				      &changelowerstate_info.info);
6561 }
6562 EXPORT_SYMBOL(netdev_lower_state_changed);
6563 
6564 static void dev_change_rx_flags(struct net_device *dev, int flags)
6565 {
6566 	const struct net_device_ops *ops = dev->netdev_ops;
6567 
6568 	if (ops->ndo_change_rx_flags)
6569 		ops->ndo_change_rx_flags(dev, flags);
6570 }
6571 
6572 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6573 {
6574 	unsigned int old_flags = dev->flags;
6575 	kuid_t uid;
6576 	kgid_t gid;
6577 
6578 	ASSERT_RTNL();
6579 
6580 	dev->flags |= IFF_PROMISC;
6581 	dev->promiscuity += inc;
6582 	if (dev->promiscuity == 0) {
6583 		/*
6584 		 * Avoid overflow.
6585 		 * If inc causes overflow, untouch promisc and return error.
6586 		 */
6587 		if (inc < 0)
6588 			dev->flags &= ~IFF_PROMISC;
6589 		else {
6590 			dev->promiscuity -= inc;
6591 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6592 				dev->name);
6593 			return -EOVERFLOW;
6594 		}
6595 	}
6596 	if (dev->flags != old_flags) {
6597 		pr_info("device %s %s promiscuous mode\n",
6598 			dev->name,
6599 			dev->flags & IFF_PROMISC ? "entered" : "left");
6600 		if (audit_enabled) {
6601 			current_uid_gid(&uid, &gid);
6602 			audit_log(current->audit_context, GFP_ATOMIC,
6603 				AUDIT_ANOM_PROMISCUOUS,
6604 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6605 				dev->name, (dev->flags & IFF_PROMISC),
6606 				(old_flags & IFF_PROMISC),
6607 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6608 				from_kuid(&init_user_ns, uid),
6609 				from_kgid(&init_user_ns, gid),
6610 				audit_get_sessionid(current));
6611 		}
6612 
6613 		dev_change_rx_flags(dev, IFF_PROMISC);
6614 	}
6615 	if (notify)
6616 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6617 	return 0;
6618 }
6619 
6620 /**
6621  *	dev_set_promiscuity	- update promiscuity count on a device
6622  *	@dev: device
6623  *	@inc: modifier
6624  *
6625  *	Add or remove promiscuity from a device. While the count in the device
6626  *	remains above zero the interface remains promiscuous. Once it hits zero
6627  *	the device reverts back to normal filtering operation. A negative inc
6628  *	value is used to drop promiscuity on the device.
6629  *	Return 0 if successful or a negative errno code on error.
6630  */
6631 int dev_set_promiscuity(struct net_device *dev, int inc)
6632 {
6633 	unsigned int old_flags = dev->flags;
6634 	int err;
6635 
6636 	err = __dev_set_promiscuity(dev, inc, true);
6637 	if (err < 0)
6638 		return err;
6639 	if (dev->flags != old_flags)
6640 		dev_set_rx_mode(dev);
6641 	return err;
6642 }
6643 EXPORT_SYMBOL(dev_set_promiscuity);
6644 
6645 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6646 {
6647 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6648 
6649 	ASSERT_RTNL();
6650 
6651 	dev->flags |= IFF_ALLMULTI;
6652 	dev->allmulti += inc;
6653 	if (dev->allmulti == 0) {
6654 		/*
6655 		 * Avoid overflow.
6656 		 * If inc causes overflow, untouch allmulti and return error.
6657 		 */
6658 		if (inc < 0)
6659 			dev->flags &= ~IFF_ALLMULTI;
6660 		else {
6661 			dev->allmulti -= inc;
6662 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6663 				dev->name);
6664 			return -EOVERFLOW;
6665 		}
6666 	}
6667 	if (dev->flags ^ old_flags) {
6668 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6669 		dev_set_rx_mode(dev);
6670 		if (notify)
6671 			__dev_notify_flags(dev, old_flags,
6672 					   dev->gflags ^ old_gflags);
6673 	}
6674 	return 0;
6675 }
6676 
6677 /**
6678  *	dev_set_allmulti	- update allmulti count on a device
6679  *	@dev: device
6680  *	@inc: modifier
6681  *
6682  *	Add or remove reception of all multicast frames to a device. While the
6683  *	count in the device remains above zero the interface remains listening
6684  *	to all interfaces. Once it hits zero the device reverts back to normal
6685  *	filtering operation. A negative @inc value is used to drop the counter
6686  *	when releasing a resource needing all multicasts.
6687  *	Return 0 if successful or a negative errno code on error.
6688  */
6689 
6690 int dev_set_allmulti(struct net_device *dev, int inc)
6691 {
6692 	return __dev_set_allmulti(dev, inc, true);
6693 }
6694 EXPORT_SYMBOL(dev_set_allmulti);
6695 
6696 /*
6697  *	Upload unicast and multicast address lists to device and
6698  *	configure RX filtering. When the device doesn't support unicast
6699  *	filtering it is put in promiscuous mode while unicast addresses
6700  *	are present.
6701  */
6702 void __dev_set_rx_mode(struct net_device *dev)
6703 {
6704 	const struct net_device_ops *ops = dev->netdev_ops;
6705 
6706 	/* dev_open will call this function so the list will stay sane. */
6707 	if (!(dev->flags&IFF_UP))
6708 		return;
6709 
6710 	if (!netif_device_present(dev))
6711 		return;
6712 
6713 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6714 		/* Unicast addresses changes may only happen under the rtnl,
6715 		 * therefore calling __dev_set_promiscuity here is safe.
6716 		 */
6717 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6718 			__dev_set_promiscuity(dev, 1, false);
6719 			dev->uc_promisc = true;
6720 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6721 			__dev_set_promiscuity(dev, -1, false);
6722 			dev->uc_promisc = false;
6723 		}
6724 	}
6725 
6726 	if (ops->ndo_set_rx_mode)
6727 		ops->ndo_set_rx_mode(dev);
6728 }
6729 
6730 void dev_set_rx_mode(struct net_device *dev)
6731 {
6732 	netif_addr_lock_bh(dev);
6733 	__dev_set_rx_mode(dev);
6734 	netif_addr_unlock_bh(dev);
6735 }
6736 
6737 /**
6738  *	dev_get_flags - get flags reported to userspace
6739  *	@dev: device
6740  *
6741  *	Get the combination of flag bits exported through APIs to userspace.
6742  */
6743 unsigned int dev_get_flags(const struct net_device *dev)
6744 {
6745 	unsigned int flags;
6746 
6747 	flags = (dev->flags & ~(IFF_PROMISC |
6748 				IFF_ALLMULTI |
6749 				IFF_RUNNING |
6750 				IFF_LOWER_UP |
6751 				IFF_DORMANT)) |
6752 		(dev->gflags & (IFF_PROMISC |
6753 				IFF_ALLMULTI));
6754 
6755 	if (netif_running(dev)) {
6756 		if (netif_oper_up(dev))
6757 			flags |= IFF_RUNNING;
6758 		if (netif_carrier_ok(dev))
6759 			flags |= IFF_LOWER_UP;
6760 		if (netif_dormant(dev))
6761 			flags |= IFF_DORMANT;
6762 	}
6763 
6764 	return flags;
6765 }
6766 EXPORT_SYMBOL(dev_get_flags);
6767 
6768 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6769 {
6770 	unsigned int old_flags = dev->flags;
6771 	int ret;
6772 
6773 	ASSERT_RTNL();
6774 
6775 	/*
6776 	 *	Set the flags on our device.
6777 	 */
6778 
6779 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6780 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6781 			       IFF_AUTOMEDIA)) |
6782 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6783 				    IFF_ALLMULTI));
6784 
6785 	/*
6786 	 *	Load in the correct multicast list now the flags have changed.
6787 	 */
6788 
6789 	if ((old_flags ^ flags) & IFF_MULTICAST)
6790 		dev_change_rx_flags(dev, IFF_MULTICAST);
6791 
6792 	dev_set_rx_mode(dev);
6793 
6794 	/*
6795 	 *	Have we downed the interface. We handle IFF_UP ourselves
6796 	 *	according to user attempts to set it, rather than blindly
6797 	 *	setting it.
6798 	 */
6799 
6800 	ret = 0;
6801 	if ((old_flags ^ flags) & IFF_UP) {
6802 		if (old_flags & IFF_UP)
6803 			__dev_close(dev);
6804 		else
6805 			ret = __dev_open(dev);
6806 	}
6807 
6808 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6809 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6810 		unsigned int old_flags = dev->flags;
6811 
6812 		dev->gflags ^= IFF_PROMISC;
6813 
6814 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6815 			if (dev->flags != old_flags)
6816 				dev_set_rx_mode(dev);
6817 	}
6818 
6819 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6820 	 * is important. Some (broken) drivers set IFF_PROMISC, when
6821 	 * IFF_ALLMULTI is requested not asking us and not reporting.
6822 	 */
6823 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6824 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6825 
6826 		dev->gflags ^= IFF_ALLMULTI;
6827 		__dev_set_allmulti(dev, inc, false);
6828 	}
6829 
6830 	return ret;
6831 }
6832 
6833 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6834 			unsigned int gchanges)
6835 {
6836 	unsigned int changes = dev->flags ^ old_flags;
6837 
6838 	if (gchanges)
6839 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6840 
6841 	if (changes & IFF_UP) {
6842 		if (dev->flags & IFF_UP)
6843 			call_netdevice_notifiers(NETDEV_UP, dev);
6844 		else
6845 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6846 	}
6847 
6848 	if (dev->flags & IFF_UP &&
6849 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6850 		struct netdev_notifier_change_info change_info = {
6851 			.info = {
6852 				.dev = dev,
6853 			},
6854 			.flags_changed = changes,
6855 		};
6856 
6857 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6858 	}
6859 }
6860 
6861 /**
6862  *	dev_change_flags - change device settings
6863  *	@dev: device
6864  *	@flags: device state flags
6865  *
6866  *	Change settings on device based state flags. The flags are
6867  *	in the userspace exported format.
6868  */
6869 int dev_change_flags(struct net_device *dev, unsigned int flags)
6870 {
6871 	int ret;
6872 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6873 
6874 	ret = __dev_change_flags(dev, flags);
6875 	if (ret < 0)
6876 		return ret;
6877 
6878 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6879 	__dev_notify_flags(dev, old_flags, changes);
6880 	return ret;
6881 }
6882 EXPORT_SYMBOL(dev_change_flags);
6883 
6884 int __dev_set_mtu(struct net_device *dev, int new_mtu)
6885 {
6886 	const struct net_device_ops *ops = dev->netdev_ops;
6887 
6888 	if (ops->ndo_change_mtu)
6889 		return ops->ndo_change_mtu(dev, new_mtu);
6890 
6891 	dev->mtu = new_mtu;
6892 	return 0;
6893 }
6894 EXPORT_SYMBOL(__dev_set_mtu);
6895 
6896 /**
6897  *	dev_set_mtu - Change maximum transfer unit
6898  *	@dev: device
6899  *	@new_mtu: new transfer unit
6900  *
6901  *	Change the maximum transfer size of the network device.
6902  */
6903 int dev_set_mtu(struct net_device *dev, int new_mtu)
6904 {
6905 	int err, orig_mtu;
6906 
6907 	if (new_mtu == dev->mtu)
6908 		return 0;
6909 
6910 	/* MTU must be positive, and in range */
6911 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6912 		net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6913 				    dev->name, new_mtu, dev->min_mtu);
6914 		return -EINVAL;
6915 	}
6916 
6917 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6918 		net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6919 				    dev->name, new_mtu, dev->max_mtu);
6920 		return -EINVAL;
6921 	}
6922 
6923 	if (!netif_device_present(dev))
6924 		return -ENODEV;
6925 
6926 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6927 	err = notifier_to_errno(err);
6928 	if (err)
6929 		return err;
6930 
6931 	orig_mtu = dev->mtu;
6932 	err = __dev_set_mtu(dev, new_mtu);
6933 
6934 	if (!err) {
6935 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6936 		err = notifier_to_errno(err);
6937 		if (err) {
6938 			/* setting mtu back and notifying everyone again,
6939 			 * so that they have a chance to revert changes.
6940 			 */
6941 			__dev_set_mtu(dev, orig_mtu);
6942 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6943 		}
6944 	}
6945 	return err;
6946 }
6947 EXPORT_SYMBOL(dev_set_mtu);
6948 
6949 /**
6950  *	dev_set_group - Change group this device belongs to
6951  *	@dev: device
6952  *	@new_group: group this device should belong to
6953  */
6954 void dev_set_group(struct net_device *dev, int new_group)
6955 {
6956 	dev->group = new_group;
6957 }
6958 EXPORT_SYMBOL(dev_set_group);
6959 
6960 /**
6961  *	dev_set_mac_address - Change Media Access Control Address
6962  *	@dev: device
6963  *	@sa: new address
6964  *
6965  *	Change the hardware (MAC) address of the device
6966  */
6967 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6968 {
6969 	const struct net_device_ops *ops = dev->netdev_ops;
6970 	int err;
6971 
6972 	if (!ops->ndo_set_mac_address)
6973 		return -EOPNOTSUPP;
6974 	if (sa->sa_family != dev->type)
6975 		return -EINVAL;
6976 	if (!netif_device_present(dev))
6977 		return -ENODEV;
6978 	err = ops->ndo_set_mac_address(dev, sa);
6979 	if (err)
6980 		return err;
6981 	dev->addr_assign_type = NET_ADDR_SET;
6982 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6983 	add_device_randomness(dev->dev_addr, dev->addr_len);
6984 	return 0;
6985 }
6986 EXPORT_SYMBOL(dev_set_mac_address);
6987 
6988 /**
6989  *	dev_change_carrier - Change device carrier
6990  *	@dev: device
6991  *	@new_carrier: new value
6992  *
6993  *	Change device carrier
6994  */
6995 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6996 {
6997 	const struct net_device_ops *ops = dev->netdev_ops;
6998 
6999 	if (!ops->ndo_change_carrier)
7000 		return -EOPNOTSUPP;
7001 	if (!netif_device_present(dev))
7002 		return -ENODEV;
7003 	return ops->ndo_change_carrier(dev, new_carrier);
7004 }
7005 EXPORT_SYMBOL(dev_change_carrier);
7006 
7007 /**
7008  *	dev_get_phys_port_id - Get device physical port ID
7009  *	@dev: device
7010  *	@ppid: port ID
7011  *
7012  *	Get device physical port ID
7013  */
7014 int dev_get_phys_port_id(struct net_device *dev,
7015 			 struct netdev_phys_item_id *ppid)
7016 {
7017 	const struct net_device_ops *ops = dev->netdev_ops;
7018 
7019 	if (!ops->ndo_get_phys_port_id)
7020 		return -EOPNOTSUPP;
7021 	return ops->ndo_get_phys_port_id(dev, ppid);
7022 }
7023 EXPORT_SYMBOL(dev_get_phys_port_id);
7024 
7025 /**
7026  *	dev_get_phys_port_name - Get device physical port name
7027  *	@dev: device
7028  *	@name: port name
7029  *	@len: limit of bytes to copy to name
7030  *
7031  *	Get device physical port name
7032  */
7033 int dev_get_phys_port_name(struct net_device *dev,
7034 			   char *name, size_t len)
7035 {
7036 	const struct net_device_ops *ops = dev->netdev_ops;
7037 
7038 	if (!ops->ndo_get_phys_port_name)
7039 		return -EOPNOTSUPP;
7040 	return ops->ndo_get_phys_port_name(dev, name, len);
7041 }
7042 EXPORT_SYMBOL(dev_get_phys_port_name);
7043 
7044 /**
7045  *	dev_change_proto_down - update protocol port state information
7046  *	@dev: device
7047  *	@proto_down: new value
7048  *
7049  *	This info can be used by switch drivers to set the phys state of the
7050  *	port.
7051  */
7052 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7053 {
7054 	const struct net_device_ops *ops = dev->netdev_ops;
7055 
7056 	if (!ops->ndo_change_proto_down)
7057 		return -EOPNOTSUPP;
7058 	if (!netif_device_present(dev))
7059 		return -ENODEV;
7060 	return ops->ndo_change_proto_down(dev, proto_down);
7061 }
7062 EXPORT_SYMBOL(dev_change_proto_down);
7063 
7064 u8 __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op, u32 *prog_id)
7065 {
7066 	struct netdev_xdp xdp;
7067 
7068 	memset(&xdp, 0, sizeof(xdp));
7069 	xdp.command = XDP_QUERY_PROG;
7070 
7071 	/* Query must always succeed. */
7072 	WARN_ON(xdp_op(dev, &xdp) < 0);
7073 	if (prog_id)
7074 		*prog_id = xdp.prog_id;
7075 
7076 	return xdp.prog_attached;
7077 }
7078 
7079 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
7080 			   struct netlink_ext_ack *extack, u32 flags,
7081 			   struct bpf_prog *prog)
7082 {
7083 	struct netdev_xdp xdp;
7084 
7085 	memset(&xdp, 0, sizeof(xdp));
7086 	if (flags & XDP_FLAGS_HW_MODE)
7087 		xdp.command = XDP_SETUP_PROG_HW;
7088 	else
7089 		xdp.command = XDP_SETUP_PROG;
7090 	xdp.extack = extack;
7091 	xdp.flags = flags;
7092 	xdp.prog = prog;
7093 
7094 	return xdp_op(dev, &xdp);
7095 }
7096 
7097 /**
7098  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
7099  *	@dev: device
7100  *	@extack: netlink extended ack
7101  *	@fd: new program fd or negative value to clear
7102  *	@flags: xdp-related flags
7103  *
7104  *	Set or clear a bpf program for a device
7105  */
7106 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7107 		      int fd, u32 flags)
7108 {
7109 	const struct net_device_ops *ops = dev->netdev_ops;
7110 	struct bpf_prog *prog = NULL;
7111 	xdp_op_t xdp_op, xdp_chk;
7112 	int err;
7113 
7114 	ASSERT_RTNL();
7115 
7116 	xdp_op = xdp_chk = ops->ndo_xdp;
7117 	if (!xdp_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7118 		return -EOPNOTSUPP;
7119 	if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
7120 		xdp_op = generic_xdp_install;
7121 	if (xdp_op == xdp_chk)
7122 		xdp_chk = generic_xdp_install;
7123 
7124 	if (fd >= 0) {
7125 		if (xdp_chk && __dev_xdp_attached(dev, xdp_chk, NULL))
7126 			return -EEXIST;
7127 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7128 		    __dev_xdp_attached(dev, xdp_op, NULL))
7129 			return -EBUSY;
7130 
7131 		prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
7132 		if (IS_ERR(prog))
7133 			return PTR_ERR(prog);
7134 	}
7135 
7136 	err = dev_xdp_install(dev, xdp_op, extack, flags, prog);
7137 	if (err < 0 && prog)
7138 		bpf_prog_put(prog);
7139 
7140 	return err;
7141 }
7142 
7143 /**
7144  *	dev_new_index	-	allocate an ifindex
7145  *	@net: the applicable net namespace
7146  *
7147  *	Returns a suitable unique value for a new device interface
7148  *	number.  The caller must hold the rtnl semaphore or the
7149  *	dev_base_lock to be sure it remains unique.
7150  */
7151 static int dev_new_index(struct net *net)
7152 {
7153 	int ifindex = net->ifindex;
7154 
7155 	for (;;) {
7156 		if (++ifindex <= 0)
7157 			ifindex = 1;
7158 		if (!__dev_get_by_index(net, ifindex))
7159 			return net->ifindex = ifindex;
7160 	}
7161 }
7162 
7163 /* Delayed registration/unregisteration */
7164 static LIST_HEAD(net_todo_list);
7165 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7166 
7167 static void net_set_todo(struct net_device *dev)
7168 {
7169 	list_add_tail(&dev->todo_list, &net_todo_list);
7170 	dev_net(dev)->dev_unreg_count++;
7171 }
7172 
7173 static void rollback_registered_many(struct list_head *head)
7174 {
7175 	struct net_device *dev, *tmp;
7176 	LIST_HEAD(close_head);
7177 
7178 	BUG_ON(dev_boot_phase);
7179 	ASSERT_RTNL();
7180 
7181 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7182 		/* Some devices call without registering
7183 		 * for initialization unwind. Remove those
7184 		 * devices and proceed with the remaining.
7185 		 */
7186 		if (dev->reg_state == NETREG_UNINITIALIZED) {
7187 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7188 				 dev->name, dev);
7189 
7190 			WARN_ON(1);
7191 			list_del(&dev->unreg_list);
7192 			continue;
7193 		}
7194 		dev->dismantle = true;
7195 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
7196 	}
7197 
7198 	/* If device is running, close it first. */
7199 	list_for_each_entry(dev, head, unreg_list)
7200 		list_add_tail(&dev->close_list, &close_head);
7201 	dev_close_many(&close_head, true);
7202 
7203 	list_for_each_entry(dev, head, unreg_list) {
7204 		/* And unlink it from device chain. */
7205 		unlist_netdevice(dev);
7206 
7207 		dev->reg_state = NETREG_UNREGISTERING;
7208 	}
7209 	flush_all_backlogs();
7210 
7211 	synchronize_net();
7212 
7213 	list_for_each_entry(dev, head, unreg_list) {
7214 		struct sk_buff *skb = NULL;
7215 
7216 		/* Shutdown queueing discipline. */
7217 		dev_shutdown(dev);
7218 
7219 
7220 		/* Notify protocols, that we are about to destroy
7221 		 * this device. They should clean all the things.
7222 		 */
7223 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7224 
7225 		if (!dev->rtnl_link_ops ||
7226 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7227 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7228 						     GFP_KERNEL, NULL);
7229 
7230 		/*
7231 		 *	Flush the unicast and multicast chains
7232 		 */
7233 		dev_uc_flush(dev);
7234 		dev_mc_flush(dev);
7235 
7236 		if (dev->netdev_ops->ndo_uninit)
7237 			dev->netdev_ops->ndo_uninit(dev);
7238 
7239 		if (skb)
7240 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7241 
7242 		/* Notifier chain MUST detach us all upper devices. */
7243 		WARN_ON(netdev_has_any_upper_dev(dev));
7244 		WARN_ON(netdev_has_any_lower_dev(dev));
7245 
7246 		/* Remove entries from kobject tree */
7247 		netdev_unregister_kobject(dev);
7248 #ifdef CONFIG_XPS
7249 		/* Remove XPS queueing entries */
7250 		netif_reset_xps_queues_gt(dev, 0);
7251 #endif
7252 	}
7253 
7254 	synchronize_net();
7255 
7256 	list_for_each_entry(dev, head, unreg_list)
7257 		dev_put(dev);
7258 }
7259 
7260 static void rollback_registered(struct net_device *dev)
7261 {
7262 	LIST_HEAD(single);
7263 
7264 	list_add(&dev->unreg_list, &single);
7265 	rollback_registered_many(&single);
7266 	list_del(&single);
7267 }
7268 
7269 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7270 	struct net_device *upper, netdev_features_t features)
7271 {
7272 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7273 	netdev_features_t feature;
7274 	int feature_bit;
7275 
7276 	for_each_netdev_feature(&upper_disables, feature_bit) {
7277 		feature = __NETIF_F_BIT(feature_bit);
7278 		if (!(upper->wanted_features & feature)
7279 		    && (features & feature)) {
7280 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7281 				   &feature, upper->name);
7282 			features &= ~feature;
7283 		}
7284 	}
7285 
7286 	return features;
7287 }
7288 
7289 static void netdev_sync_lower_features(struct net_device *upper,
7290 	struct net_device *lower, netdev_features_t features)
7291 {
7292 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7293 	netdev_features_t feature;
7294 	int feature_bit;
7295 
7296 	for_each_netdev_feature(&upper_disables, feature_bit) {
7297 		feature = __NETIF_F_BIT(feature_bit);
7298 		if (!(features & feature) && (lower->features & feature)) {
7299 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7300 				   &feature, lower->name);
7301 			lower->wanted_features &= ~feature;
7302 			netdev_update_features(lower);
7303 
7304 			if (unlikely(lower->features & feature))
7305 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7306 					    &feature, lower->name);
7307 		}
7308 	}
7309 }
7310 
7311 static netdev_features_t netdev_fix_features(struct net_device *dev,
7312 	netdev_features_t features)
7313 {
7314 	/* Fix illegal checksum combinations */
7315 	if ((features & NETIF_F_HW_CSUM) &&
7316 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7317 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7318 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7319 	}
7320 
7321 	/* TSO requires that SG is present as well. */
7322 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7323 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7324 		features &= ~NETIF_F_ALL_TSO;
7325 	}
7326 
7327 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7328 					!(features & NETIF_F_IP_CSUM)) {
7329 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7330 		features &= ~NETIF_F_TSO;
7331 		features &= ~NETIF_F_TSO_ECN;
7332 	}
7333 
7334 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7335 					 !(features & NETIF_F_IPV6_CSUM)) {
7336 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7337 		features &= ~NETIF_F_TSO6;
7338 	}
7339 
7340 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7341 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7342 		features &= ~NETIF_F_TSO_MANGLEID;
7343 
7344 	/* TSO ECN requires that TSO is present as well. */
7345 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7346 		features &= ~NETIF_F_TSO_ECN;
7347 
7348 	/* Software GSO depends on SG. */
7349 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7350 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7351 		features &= ~NETIF_F_GSO;
7352 	}
7353 
7354 	/* GSO partial features require GSO partial be set */
7355 	if ((features & dev->gso_partial_features) &&
7356 	    !(features & NETIF_F_GSO_PARTIAL)) {
7357 		netdev_dbg(dev,
7358 			   "Dropping partially supported GSO features since no GSO partial.\n");
7359 		features &= ~dev->gso_partial_features;
7360 	}
7361 
7362 	return features;
7363 }
7364 
7365 int __netdev_update_features(struct net_device *dev)
7366 {
7367 	struct net_device *upper, *lower;
7368 	netdev_features_t features;
7369 	struct list_head *iter;
7370 	int err = -1;
7371 
7372 	ASSERT_RTNL();
7373 
7374 	features = netdev_get_wanted_features(dev);
7375 
7376 	if (dev->netdev_ops->ndo_fix_features)
7377 		features = dev->netdev_ops->ndo_fix_features(dev, features);
7378 
7379 	/* driver might be less strict about feature dependencies */
7380 	features = netdev_fix_features(dev, features);
7381 
7382 	/* some features can't be enabled if they're off an an upper device */
7383 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
7384 		features = netdev_sync_upper_features(dev, upper, features);
7385 
7386 	if (dev->features == features)
7387 		goto sync_lower;
7388 
7389 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7390 		&dev->features, &features);
7391 
7392 	if (dev->netdev_ops->ndo_set_features)
7393 		err = dev->netdev_ops->ndo_set_features(dev, features);
7394 	else
7395 		err = 0;
7396 
7397 	if (unlikely(err < 0)) {
7398 		netdev_err(dev,
7399 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
7400 			err, &features, &dev->features);
7401 		/* return non-0 since some features might have changed and
7402 		 * it's better to fire a spurious notification than miss it
7403 		 */
7404 		return -1;
7405 	}
7406 
7407 sync_lower:
7408 	/* some features must be disabled on lower devices when disabled
7409 	 * on an upper device (think: bonding master or bridge)
7410 	 */
7411 	netdev_for_each_lower_dev(dev, lower, iter)
7412 		netdev_sync_lower_features(dev, lower, features);
7413 
7414 	if (!err) {
7415 		netdev_features_t diff = features ^ dev->features;
7416 
7417 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7418 			/* udp_tunnel_{get,drop}_rx_info both need
7419 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7420 			 * device, or they won't do anything.
7421 			 * Thus we need to update dev->features
7422 			 * *before* calling udp_tunnel_get_rx_info,
7423 			 * but *after* calling udp_tunnel_drop_rx_info.
7424 			 */
7425 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7426 				dev->features = features;
7427 				udp_tunnel_get_rx_info(dev);
7428 			} else {
7429 				udp_tunnel_drop_rx_info(dev);
7430 			}
7431 		}
7432 
7433 		dev->features = features;
7434 	}
7435 
7436 	return err < 0 ? 0 : 1;
7437 }
7438 
7439 /**
7440  *	netdev_update_features - recalculate device features
7441  *	@dev: the device to check
7442  *
7443  *	Recalculate dev->features set and send notifications if it
7444  *	has changed. Should be called after driver or hardware dependent
7445  *	conditions might have changed that influence the features.
7446  */
7447 void netdev_update_features(struct net_device *dev)
7448 {
7449 	if (__netdev_update_features(dev))
7450 		netdev_features_change(dev);
7451 }
7452 EXPORT_SYMBOL(netdev_update_features);
7453 
7454 /**
7455  *	netdev_change_features - recalculate device features
7456  *	@dev: the device to check
7457  *
7458  *	Recalculate dev->features set and send notifications even
7459  *	if they have not changed. Should be called instead of
7460  *	netdev_update_features() if also dev->vlan_features might
7461  *	have changed to allow the changes to be propagated to stacked
7462  *	VLAN devices.
7463  */
7464 void netdev_change_features(struct net_device *dev)
7465 {
7466 	__netdev_update_features(dev);
7467 	netdev_features_change(dev);
7468 }
7469 EXPORT_SYMBOL(netdev_change_features);
7470 
7471 /**
7472  *	netif_stacked_transfer_operstate -	transfer operstate
7473  *	@rootdev: the root or lower level device to transfer state from
7474  *	@dev: the device to transfer operstate to
7475  *
7476  *	Transfer operational state from root to device. This is normally
7477  *	called when a stacking relationship exists between the root
7478  *	device and the device(a leaf device).
7479  */
7480 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7481 					struct net_device *dev)
7482 {
7483 	if (rootdev->operstate == IF_OPER_DORMANT)
7484 		netif_dormant_on(dev);
7485 	else
7486 		netif_dormant_off(dev);
7487 
7488 	if (netif_carrier_ok(rootdev))
7489 		netif_carrier_on(dev);
7490 	else
7491 		netif_carrier_off(dev);
7492 }
7493 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7494 
7495 #ifdef CONFIG_SYSFS
7496 static int netif_alloc_rx_queues(struct net_device *dev)
7497 {
7498 	unsigned int i, count = dev->num_rx_queues;
7499 	struct netdev_rx_queue *rx;
7500 	size_t sz = count * sizeof(*rx);
7501 
7502 	BUG_ON(count < 1);
7503 
7504 	rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7505 	if (!rx)
7506 		return -ENOMEM;
7507 
7508 	dev->_rx = rx;
7509 
7510 	for (i = 0; i < count; i++)
7511 		rx[i].dev = dev;
7512 	return 0;
7513 }
7514 #endif
7515 
7516 static void netdev_init_one_queue(struct net_device *dev,
7517 				  struct netdev_queue *queue, void *_unused)
7518 {
7519 	/* Initialize queue lock */
7520 	spin_lock_init(&queue->_xmit_lock);
7521 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7522 	queue->xmit_lock_owner = -1;
7523 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7524 	queue->dev = dev;
7525 #ifdef CONFIG_BQL
7526 	dql_init(&queue->dql, HZ);
7527 #endif
7528 }
7529 
7530 static void netif_free_tx_queues(struct net_device *dev)
7531 {
7532 	kvfree(dev->_tx);
7533 }
7534 
7535 static int netif_alloc_netdev_queues(struct net_device *dev)
7536 {
7537 	unsigned int count = dev->num_tx_queues;
7538 	struct netdev_queue *tx;
7539 	size_t sz = count * sizeof(*tx);
7540 
7541 	if (count < 1 || count > 0xffff)
7542 		return -EINVAL;
7543 
7544 	tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7545 	if (!tx)
7546 		return -ENOMEM;
7547 
7548 	dev->_tx = tx;
7549 
7550 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7551 	spin_lock_init(&dev->tx_global_lock);
7552 
7553 	return 0;
7554 }
7555 
7556 void netif_tx_stop_all_queues(struct net_device *dev)
7557 {
7558 	unsigned int i;
7559 
7560 	for (i = 0; i < dev->num_tx_queues; i++) {
7561 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7562 
7563 		netif_tx_stop_queue(txq);
7564 	}
7565 }
7566 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7567 
7568 /**
7569  *	register_netdevice	- register a network device
7570  *	@dev: device to register
7571  *
7572  *	Take a completed network device structure and add it to the kernel
7573  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7574  *	chain. 0 is returned on success. A negative errno code is returned
7575  *	on a failure to set up the device, or if the name is a duplicate.
7576  *
7577  *	Callers must hold the rtnl semaphore. You may want
7578  *	register_netdev() instead of this.
7579  *
7580  *	BUGS:
7581  *	The locking appears insufficient to guarantee two parallel registers
7582  *	will not get the same name.
7583  */
7584 
7585 int register_netdevice(struct net_device *dev)
7586 {
7587 	int ret;
7588 	struct net *net = dev_net(dev);
7589 
7590 	BUG_ON(dev_boot_phase);
7591 	ASSERT_RTNL();
7592 
7593 	might_sleep();
7594 
7595 	/* When net_device's are persistent, this will be fatal. */
7596 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7597 	BUG_ON(!net);
7598 
7599 	spin_lock_init(&dev->addr_list_lock);
7600 	netdev_set_addr_lockdep_class(dev);
7601 
7602 	ret = dev_get_valid_name(net, dev, dev->name);
7603 	if (ret < 0)
7604 		goto out;
7605 
7606 	/* Init, if this function is available */
7607 	if (dev->netdev_ops->ndo_init) {
7608 		ret = dev->netdev_ops->ndo_init(dev);
7609 		if (ret) {
7610 			if (ret > 0)
7611 				ret = -EIO;
7612 			goto out;
7613 		}
7614 	}
7615 
7616 	if (((dev->hw_features | dev->features) &
7617 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7618 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7619 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7620 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7621 		ret = -EINVAL;
7622 		goto err_uninit;
7623 	}
7624 
7625 	ret = -EBUSY;
7626 	if (!dev->ifindex)
7627 		dev->ifindex = dev_new_index(net);
7628 	else if (__dev_get_by_index(net, dev->ifindex))
7629 		goto err_uninit;
7630 
7631 	/* Transfer changeable features to wanted_features and enable
7632 	 * software offloads (GSO and GRO).
7633 	 */
7634 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7635 	dev->features |= NETIF_F_SOFT_FEATURES;
7636 
7637 	if (dev->netdev_ops->ndo_udp_tunnel_add) {
7638 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7639 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7640 	}
7641 
7642 	dev->wanted_features = dev->features & dev->hw_features;
7643 
7644 	if (!(dev->flags & IFF_LOOPBACK))
7645 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7646 
7647 	/* If IPv4 TCP segmentation offload is supported we should also
7648 	 * allow the device to enable segmenting the frame with the option
7649 	 * of ignoring a static IP ID value.  This doesn't enable the
7650 	 * feature itself but allows the user to enable it later.
7651 	 */
7652 	if (dev->hw_features & NETIF_F_TSO)
7653 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7654 	if (dev->vlan_features & NETIF_F_TSO)
7655 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7656 	if (dev->mpls_features & NETIF_F_TSO)
7657 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7658 	if (dev->hw_enc_features & NETIF_F_TSO)
7659 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7660 
7661 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7662 	 */
7663 	dev->vlan_features |= NETIF_F_HIGHDMA;
7664 
7665 	/* Make NETIF_F_SG inheritable to tunnel devices.
7666 	 */
7667 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7668 
7669 	/* Make NETIF_F_SG inheritable to MPLS.
7670 	 */
7671 	dev->mpls_features |= NETIF_F_SG;
7672 
7673 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7674 	ret = notifier_to_errno(ret);
7675 	if (ret)
7676 		goto err_uninit;
7677 
7678 	ret = netdev_register_kobject(dev);
7679 	if (ret)
7680 		goto err_uninit;
7681 	dev->reg_state = NETREG_REGISTERED;
7682 
7683 	__netdev_update_features(dev);
7684 
7685 	/*
7686 	 *	Default initial state at registry is that the
7687 	 *	device is present.
7688 	 */
7689 
7690 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7691 
7692 	linkwatch_init_dev(dev);
7693 
7694 	dev_init_scheduler(dev);
7695 	dev_hold(dev);
7696 	list_netdevice(dev);
7697 	add_device_randomness(dev->dev_addr, dev->addr_len);
7698 
7699 	/* If the device has permanent device address, driver should
7700 	 * set dev_addr and also addr_assign_type should be set to
7701 	 * NET_ADDR_PERM (default value).
7702 	 */
7703 	if (dev->addr_assign_type == NET_ADDR_PERM)
7704 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7705 
7706 	/* Notify protocols, that a new device appeared. */
7707 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7708 	ret = notifier_to_errno(ret);
7709 	if (ret) {
7710 		rollback_registered(dev);
7711 		dev->reg_state = NETREG_UNREGISTERED;
7712 	}
7713 	/*
7714 	 *	Prevent userspace races by waiting until the network
7715 	 *	device is fully setup before sending notifications.
7716 	 */
7717 	if (!dev->rtnl_link_ops ||
7718 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7719 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7720 
7721 out:
7722 	return ret;
7723 
7724 err_uninit:
7725 	if (dev->netdev_ops->ndo_uninit)
7726 		dev->netdev_ops->ndo_uninit(dev);
7727 	if (dev->priv_destructor)
7728 		dev->priv_destructor(dev);
7729 	goto out;
7730 }
7731 EXPORT_SYMBOL(register_netdevice);
7732 
7733 /**
7734  *	init_dummy_netdev	- init a dummy network device for NAPI
7735  *	@dev: device to init
7736  *
7737  *	This takes a network device structure and initialize the minimum
7738  *	amount of fields so it can be used to schedule NAPI polls without
7739  *	registering a full blown interface. This is to be used by drivers
7740  *	that need to tie several hardware interfaces to a single NAPI
7741  *	poll scheduler due to HW limitations.
7742  */
7743 int init_dummy_netdev(struct net_device *dev)
7744 {
7745 	/* Clear everything. Note we don't initialize spinlocks
7746 	 * are they aren't supposed to be taken by any of the
7747 	 * NAPI code and this dummy netdev is supposed to be
7748 	 * only ever used for NAPI polls
7749 	 */
7750 	memset(dev, 0, sizeof(struct net_device));
7751 
7752 	/* make sure we BUG if trying to hit standard
7753 	 * register/unregister code path
7754 	 */
7755 	dev->reg_state = NETREG_DUMMY;
7756 
7757 	/* NAPI wants this */
7758 	INIT_LIST_HEAD(&dev->napi_list);
7759 
7760 	/* a dummy interface is started by default */
7761 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7762 	set_bit(__LINK_STATE_START, &dev->state);
7763 
7764 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7765 	 * because users of this 'device' dont need to change
7766 	 * its refcount.
7767 	 */
7768 
7769 	return 0;
7770 }
7771 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7772 
7773 
7774 /**
7775  *	register_netdev	- register a network device
7776  *	@dev: device to register
7777  *
7778  *	Take a completed network device structure and add it to the kernel
7779  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7780  *	chain. 0 is returned on success. A negative errno code is returned
7781  *	on a failure to set up the device, or if the name is a duplicate.
7782  *
7783  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7784  *	and expands the device name if you passed a format string to
7785  *	alloc_netdev.
7786  */
7787 int register_netdev(struct net_device *dev)
7788 {
7789 	int err;
7790 
7791 	rtnl_lock();
7792 	err = register_netdevice(dev);
7793 	rtnl_unlock();
7794 	return err;
7795 }
7796 EXPORT_SYMBOL(register_netdev);
7797 
7798 int netdev_refcnt_read(const struct net_device *dev)
7799 {
7800 	int i, refcnt = 0;
7801 
7802 	for_each_possible_cpu(i)
7803 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7804 	return refcnt;
7805 }
7806 EXPORT_SYMBOL(netdev_refcnt_read);
7807 
7808 /**
7809  * netdev_wait_allrefs - wait until all references are gone.
7810  * @dev: target net_device
7811  *
7812  * This is called when unregistering network devices.
7813  *
7814  * Any protocol or device that holds a reference should register
7815  * for netdevice notification, and cleanup and put back the
7816  * reference if they receive an UNREGISTER event.
7817  * We can get stuck here if buggy protocols don't correctly
7818  * call dev_put.
7819  */
7820 static void netdev_wait_allrefs(struct net_device *dev)
7821 {
7822 	unsigned long rebroadcast_time, warning_time;
7823 	int refcnt;
7824 
7825 	linkwatch_forget_dev(dev);
7826 
7827 	rebroadcast_time = warning_time = jiffies;
7828 	refcnt = netdev_refcnt_read(dev);
7829 
7830 	while (refcnt != 0) {
7831 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7832 			rtnl_lock();
7833 
7834 			/* Rebroadcast unregister notification */
7835 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7836 
7837 			__rtnl_unlock();
7838 			rcu_barrier();
7839 			rtnl_lock();
7840 
7841 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7842 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7843 				     &dev->state)) {
7844 				/* We must not have linkwatch events
7845 				 * pending on unregister. If this
7846 				 * happens, we simply run the queue
7847 				 * unscheduled, resulting in a noop
7848 				 * for this device.
7849 				 */
7850 				linkwatch_run_queue();
7851 			}
7852 
7853 			__rtnl_unlock();
7854 
7855 			rebroadcast_time = jiffies;
7856 		}
7857 
7858 		msleep(250);
7859 
7860 		refcnt = netdev_refcnt_read(dev);
7861 
7862 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7863 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7864 				 dev->name, refcnt);
7865 			warning_time = jiffies;
7866 		}
7867 	}
7868 }
7869 
7870 /* The sequence is:
7871  *
7872  *	rtnl_lock();
7873  *	...
7874  *	register_netdevice(x1);
7875  *	register_netdevice(x2);
7876  *	...
7877  *	unregister_netdevice(y1);
7878  *	unregister_netdevice(y2);
7879  *      ...
7880  *	rtnl_unlock();
7881  *	free_netdev(y1);
7882  *	free_netdev(y2);
7883  *
7884  * We are invoked by rtnl_unlock().
7885  * This allows us to deal with problems:
7886  * 1) We can delete sysfs objects which invoke hotplug
7887  *    without deadlocking with linkwatch via keventd.
7888  * 2) Since we run with the RTNL semaphore not held, we can sleep
7889  *    safely in order to wait for the netdev refcnt to drop to zero.
7890  *
7891  * We must not return until all unregister events added during
7892  * the interval the lock was held have been completed.
7893  */
7894 void netdev_run_todo(void)
7895 {
7896 	struct list_head list;
7897 
7898 	/* Snapshot list, allow later requests */
7899 	list_replace_init(&net_todo_list, &list);
7900 
7901 	__rtnl_unlock();
7902 
7903 
7904 	/* Wait for rcu callbacks to finish before next phase */
7905 	if (!list_empty(&list))
7906 		rcu_barrier();
7907 
7908 	while (!list_empty(&list)) {
7909 		struct net_device *dev
7910 			= list_first_entry(&list, struct net_device, todo_list);
7911 		list_del(&dev->todo_list);
7912 
7913 		rtnl_lock();
7914 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7915 		__rtnl_unlock();
7916 
7917 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7918 			pr_err("network todo '%s' but state %d\n",
7919 			       dev->name, dev->reg_state);
7920 			dump_stack();
7921 			continue;
7922 		}
7923 
7924 		dev->reg_state = NETREG_UNREGISTERED;
7925 
7926 		netdev_wait_allrefs(dev);
7927 
7928 		/* paranoia */
7929 		BUG_ON(netdev_refcnt_read(dev));
7930 		BUG_ON(!list_empty(&dev->ptype_all));
7931 		BUG_ON(!list_empty(&dev->ptype_specific));
7932 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7933 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7934 		WARN_ON(dev->dn_ptr);
7935 
7936 		if (dev->priv_destructor)
7937 			dev->priv_destructor(dev);
7938 		if (dev->needs_free_netdev)
7939 			free_netdev(dev);
7940 
7941 		/* Report a network device has been unregistered */
7942 		rtnl_lock();
7943 		dev_net(dev)->dev_unreg_count--;
7944 		__rtnl_unlock();
7945 		wake_up(&netdev_unregistering_wq);
7946 
7947 		/* Free network device */
7948 		kobject_put(&dev->dev.kobj);
7949 	}
7950 }
7951 
7952 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7953  * all the same fields in the same order as net_device_stats, with only
7954  * the type differing, but rtnl_link_stats64 may have additional fields
7955  * at the end for newer counters.
7956  */
7957 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7958 			     const struct net_device_stats *netdev_stats)
7959 {
7960 #if BITS_PER_LONG == 64
7961 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7962 	memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
7963 	/* zero out counters that only exist in rtnl_link_stats64 */
7964 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7965 	       sizeof(*stats64) - sizeof(*netdev_stats));
7966 #else
7967 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7968 	const unsigned long *src = (const unsigned long *)netdev_stats;
7969 	u64 *dst = (u64 *)stats64;
7970 
7971 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7972 	for (i = 0; i < n; i++)
7973 		dst[i] = src[i];
7974 	/* zero out counters that only exist in rtnl_link_stats64 */
7975 	memset((char *)stats64 + n * sizeof(u64), 0,
7976 	       sizeof(*stats64) - n * sizeof(u64));
7977 #endif
7978 }
7979 EXPORT_SYMBOL(netdev_stats_to_stats64);
7980 
7981 /**
7982  *	dev_get_stats	- get network device statistics
7983  *	@dev: device to get statistics from
7984  *	@storage: place to store stats
7985  *
7986  *	Get network statistics from device. Return @storage.
7987  *	The device driver may provide its own method by setting
7988  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7989  *	otherwise the internal statistics structure is used.
7990  */
7991 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7992 					struct rtnl_link_stats64 *storage)
7993 {
7994 	const struct net_device_ops *ops = dev->netdev_ops;
7995 
7996 	if (ops->ndo_get_stats64) {
7997 		memset(storage, 0, sizeof(*storage));
7998 		ops->ndo_get_stats64(dev, storage);
7999 	} else if (ops->ndo_get_stats) {
8000 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8001 	} else {
8002 		netdev_stats_to_stats64(storage, &dev->stats);
8003 	}
8004 	storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8005 	storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8006 	storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8007 	return storage;
8008 }
8009 EXPORT_SYMBOL(dev_get_stats);
8010 
8011 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8012 {
8013 	struct netdev_queue *queue = dev_ingress_queue(dev);
8014 
8015 #ifdef CONFIG_NET_CLS_ACT
8016 	if (queue)
8017 		return queue;
8018 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8019 	if (!queue)
8020 		return NULL;
8021 	netdev_init_one_queue(dev, queue, NULL);
8022 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8023 	queue->qdisc_sleeping = &noop_qdisc;
8024 	rcu_assign_pointer(dev->ingress_queue, queue);
8025 #endif
8026 	return queue;
8027 }
8028 
8029 static const struct ethtool_ops default_ethtool_ops;
8030 
8031 void netdev_set_default_ethtool_ops(struct net_device *dev,
8032 				    const struct ethtool_ops *ops)
8033 {
8034 	if (dev->ethtool_ops == &default_ethtool_ops)
8035 		dev->ethtool_ops = ops;
8036 }
8037 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8038 
8039 void netdev_freemem(struct net_device *dev)
8040 {
8041 	char *addr = (char *)dev - dev->padded;
8042 
8043 	kvfree(addr);
8044 }
8045 
8046 /**
8047  * alloc_netdev_mqs - allocate network device
8048  * @sizeof_priv: size of private data to allocate space for
8049  * @name: device name format string
8050  * @name_assign_type: origin of device name
8051  * @setup: callback to initialize device
8052  * @txqs: the number of TX subqueues to allocate
8053  * @rxqs: the number of RX subqueues to allocate
8054  *
8055  * Allocates a struct net_device with private data area for driver use
8056  * and performs basic initialization.  Also allocates subqueue structs
8057  * for each queue on the device.
8058  */
8059 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8060 		unsigned char name_assign_type,
8061 		void (*setup)(struct net_device *),
8062 		unsigned int txqs, unsigned int rxqs)
8063 {
8064 	struct net_device *dev;
8065 	unsigned int alloc_size;
8066 	struct net_device *p;
8067 
8068 	BUG_ON(strlen(name) >= sizeof(dev->name));
8069 
8070 	if (txqs < 1) {
8071 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8072 		return NULL;
8073 	}
8074 
8075 #ifdef CONFIG_SYSFS
8076 	if (rxqs < 1) {
8077 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8078 		return NULL;
8079 	}
8080 #endif
8081 
8082 	alloc_size = sizeof(struct net_device);
8083 	if (sizeof_priv) {
8084 		/* ensure 32-byte alignment of private area */
8085 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8086 		alloc_size += sizeof_priv;
8087 	}
8088 	/* ensure 32-byte alignment of whole construct */
8089 	alloc_size += NETDEV_ALIGN - 1;
8090 
8091 	p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8092 	if (!p)
8093 		return NULL;
8094 
8095 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
8096 	dev->padded = (char *)dev - (char *)p;
8097 
8098 	dev->pcpu_refcnt = alloc_percpu(int);
8099 	if (!dev->pcpu_refcnt)
8100 		goto free_dev;
8101 
8102 	if (dev_addr_init(dev))
8103 		goto free_pcpu;
8104 
8105 	dev_mc_init(dev);
8106 	dev_uc_init(dev);
8107 
8108 	dev_net_set(dev, &init_net);
8109 
8110 	dev->gso_max_size = GSO_MAX_SIZE;
8111 	dev->gso_max_segs = GSO_MAX_SEGS;
8112 
8113 	INIT_LIST_HEAD(&dev->napi_list);
8114 	INIT_LIST_HEAD(&dev->unreg_list);
8115 	INIT_LIST_HEAD(&dev->close_list);
8116 	INIT_LIST_HEAD(&dev->link_watch_list);
8117 	INIT_LIST_HEAD(&dev->adj_list.upper);
8118 	INIT_LIST_HEAD(&dev->adj_list.lower);
8119 	INIT_LIST_HEAD(&dev->ptype_all);
8120 	INIT_LIST_HEAD(&dev->ptype_specific);
8121 #ifdef CONFIG_NET_SCHED
8122 	hash_init(dev->qdisc_hash);
8123 #endif
8124 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8125 	setup(dev);
8126 
8127 	if (!dev->tx_queue_len) {
8128 		dev->priv_flags |= IFF_NO_QUEUE;
8129 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8130 	}
8131 
8132 	dev->num_tx_queues = txqs;
8133 	dev->real_num_tx_queues = txqs;
8134 	if (netif_alloc_netdev_queues(dev))
8135 		goto free_all;
8136 
8137 #ifdef CONFIG_SYSFS
8138 	dev->num_rx_queues = rxqs;
8139 	dev->real_num_rx_queues = rxqs;
8140 	if (netif_alloc_rx_queues(dev))
8141 		goto free_all;
8142 #endif
8143 
8144 	strcpy(dev->name, name);
8145 	dev->name_assign_type = name_assign_type;
8146 	dev->group = INIT_NETDEV_GROUP;
8147 	if (!dev->ethtool_ops)
8148 		dev->ethtool_ops = &default_ethtool_ops;
8149 
8150 	nf_hook_ingress_init(dev);
8151 
8152 	return dev;
8153 
8154 free_all:
8155 	free_netdev(dev);
8156 	return NULL;
8157 
8158 free_pcpu:
8159 	free_percpu(dev->pcpu_refcnt);
8160 free_dev:
8161 	netdev_freemem(dev);
8162 	return NULL;
8163 }
8164 EXPORT_SYMBOL(alloc_netdev_mqs);
8165 
8166 /**
8167  * free_netdev - free network device
8168  * @dev: device
8169  *
8170  * This function does the last stage of destroying an allocated device
8171  * interface. The reference to the device object is released. If this
8172  * is the last reference then it will be freed.Must be called in process
8173  * context.
8174  */
8175 void free_netdev(struct net_device *dev)
8176 {
8177 	struct napi_struct *p, *n;
8178 	struct bpf_prog *prog;
8179 
8180 	might_sleep();
8181 	netif_free_tx_queues(dev);
8182 #ifdef CONFIG_SYSFS
8183 	kvfree(dev->_rx);
8184 #endif
8185 
8186 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8187 
8188 	/* Flush device addresses */
8189 	dev_addr_flush(dev);
8190 
8191 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8192 		netif_napi_del(p);
8193 
8194 	free_percpu(dev->pcpu_refcnt);
8195 	dev->pcpu_refcnt = NULL;
8196 
8197 	prog = rcu_dereference_protected(dev->xdp_prog, 1);
8198 	if (prog) {
8199 		bpf_prog_put(prog);
8200 		static_key_slow_dec(&generic_xdp_needed);
8201 	}
8202 
8203 	/*  Compatibility with error handling in drivers */
8204 	if (dev->reg_state == NETREG_UNINITIALIZED) {
8205 		netdev_freemem(dev);
8206 		return;
8207 	}
8208 
8209 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8210 	dev->reg_state = NETREG_RELEASED;
8211 
8212 	/* will free via device release */
8213 	put_device(&dev->dev);
8214 }
8215 EXPORT_SYMBOL(free_netdev);
8216 
8217 /**
8218  *	synchronize_net -  Synchronize with packet receive processing
8219  *
8220  *	Wait for packets currently being received to be done.
8221  *	Does not block later packets from starting.
8222  */
8223 void synchronize_net(void)
8224 {
8225 	might_sleep();
8226 	if (rtnl_is_locked())
8227 		synchronize_rcu_expedited();
8228 	else
8229 		synchronize_rcu();
8230 }
8231 EXPORT_SYMBOL(synchronize_net);
8232 
8233 /**
8234  *	unregister_netdevice_queue - remove device from the kernel
8235  *	@dev: device
8236  *	@head: list
8237  *
8238  *	This function shuts down a device interface and removes it
8239  *	from the kernel tables.
8240  *	If head not NULL, device is queued to be unregistered later.
8241  *
8242  *	Callers must hold the rtnl semaphore.  You may want
8243  *	unregister_netdev() instead of this.
8244  */
8245 
8246 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8247 {
8248 	ASSERT_RTNL();
8249 
8250 	if (head) {
8251 		list_move_tail(&dev->unreg_list, head);
8252 	} else {
8253 		rollback_registered(dev);
8254 		/* Finish processing unregister after unlock */
8255 		net_set_todo(dev);
8256 	}
8257 }
8258 EXPORT_SYMBOL(unregister_netdevice_queue);
8259 
8260 /**
8261  *	unregister_netdevice_many - unregister many devices
8262  *	@head: list of devices
8263  *
8264  *  Note: As most callers use a stack allocated list_head,
8265  *  we force a list_del() to make sure stack wont be corrupted later.
8266  */
8267 void unregister_netdevice_many(struct list_head *head)
8268 {
8269 	struct net_device *dev;
8270 
8271 	if (!list_empty(head)) {
8272 		rollback_registered_many(head);
8273 		list_for_each_entry(dev, head, unreg_list)
8274 			net_set_todo(dev);
8275 		list_del(head);
8276 	}
8277 }
8278 EXPORT_SYMBOL(unregister_netdevice_many);
8279 
8280 /**
8281  *	unregister_netdev - remove device from the kernel
8282  *	@dev: device
8283  *
8284  *	This function shuts down a device interface and removes it
8285  *	from the kernel tables.
8286  *
8287  *	This is just a wrapper for unregister_netdevice that takes
8288  *	the rtnl semaphore.  In general you want to use this and not
8289  *	unregister_netdevice.
8290  */
8291 void unregister_netdev(struct net_device *dev)
8292 {
8293 	rtnl_lock();
8294 	unregister_netdevice(dev);
8295 	rtnl_unlock();
8296 }
8297 EXPORT_SYMBOL(unregister_netdev);
8298 
8299 /**
8300  *	dev_change_net_namespace - move device to different nethost namespace
8301  *	@dev: device
8302  *	@net: network namespace
8303  *	@pat: If not NULL name pattern to try if the current device name
8304  *	      is already taken in the destination network namespace.
8305  *
8306  *	This function shuts down a device interface and moves it
8307  *	to a new network namespace. On success 0 is returned, on
8308  *	a failure a netagive errno code is returned.
8309  *
8310  *	Callers must hold the rtnl semaphore.
8311  */
8312 
8313 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8314 {
8315 	int err, new_nsid;
8316 
8317 	ASSERT_RTNL();
8318 
8319 	/* Don't allow namespace local devices to be moved. */
8320 	err = -EINVAL;
8321 	if (dev->features & NETIF_F_NETNS_LOCAL)
8322 		goto out;
8323 
8324 	/* Ensure the device has been registrered */
8325 	if (dev->reg_state != NETREG_REGISTERED)
8326 		goto out;
8327 
8328 	/* Get out if there is nothing todo */
8329 	err = 0;
8330 	if (net_eq(dev_net(dev), net))
8331 		goto out;
8332 
8333 	/* Pick the destination device name, and ensure
8334 	 * we can use it in the destination network namespace.
8335 	 */
8336 	err = -EEXIST;
8337 	if (__dev_get_by_name(net, dev->name)) {
8338 		/* We get here if we can't use the current device name */
8339 		if (!pat)
8340 			goto out;
8341 		if (dev_get_valid_name(net, dev, pat) < 0)
8342 			goto out;
8343 	}
8344 
8345 	/*
8346 	 * And now a mini version of register_netdevice unregister_netdevice.
8347 	 */
8348 
8349 	/* If device is running close it first. */
8350 	dev_close(dev);
8351 
8352 	/* And unlink it from device chain */
8353 	err = -ENODEV;
8354 	unlist_netdevice(dev);
8355 
8356 	synchronize_net();
8357 
8358 	/* Shutdown queueing discipline. */
8359 	dev_shutdown(dev);
8360 
8361 	/* Notify protocols, that we are about to destroy
8362 	 * this device. They should clean all the things.
8363 	 *
8364 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
8365 	 * This is wanted because this way 8021q and macvlan know
8366 	 * the device is just moving and can keep their slaves up.
8367 	 */
8368 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8369 	rcu_barrier();
8370 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8371 	if (dev->rtnl_link_ops && dev->rtnl_link_ops->get_link_net)
8372 		new_nsid = peernet2id_alloc(dev_net(dev), net);
8373 	else
8374 		new_nsid = peernet2id(dev_net(dev), net);
8375 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid);
8376 
8377 	/*
8378 	 *	Flush the unicast and multicast chains
8379 	 */
8380 	dev_uc_flush(dev);
8381 	dev_mc_flush(dev);
8382 
8383 	/* Send a netdev-removed uevent to the old namespace */
8384 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8385 	netdev_adjacent_del_links(dev);
8386 
8387 	/* Actually switch the network namespace */
8388 	dev_net_set(dev, net);
8389 
8390 	/* If there is an ifindex conflict assign a new one */
8391 	if (__dev_get_by_index(net, dev->ifindex))
8392 		dev->ifindex = dev_new_index(net);
8393 
8394 	/* Send a netdev-add uevent to the new namespace */
8395 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8396 	netdev_adjacent_add_links(dev);
8397 
8398 	/* Fixup kobjects */
8399 	err = device_rename(&dev->dev, dev->name);
8400 	WARN_ON(err);
8401 
8402 	/* Add the device back in the hashes */
8403 	list_netdevice(dev);
8404 
8405 	/* Notify protocols, that a new device appeared. */
8406 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
8407 
8408 	/*
8409 	 *	Prevent userspace races by waiting until the network
8410 	 *	device is fully setup before sending notifications.
8411 	 */
8412 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8413 
8414 	synchronize_net();
8415 	err = 0;
8416 out:
8417 	return err;
8418 }
8419 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8420 
8421 static int dev_cpu_dead(unsigned int oldcpu)
8422 {
8423 	struct sk_buff **list_skb;
8424 	struct sk_buff *skb;
8425 	unsigned int cpu;
8426 	struct softnet_data *sd, *oldsd, *remsd = NULL;
8427 
8428 	local_irq_disable();
8429 	cpu = smp_processor_id();
8430 	sd = &per_cpu(softnet_data, cpu);
8431 	oldsd = &per_cpu(softnet_data, oldcpu);
8432 
8433 	/* Find end of our completion_queue. */
8434 	list_skb = &sd->completion_queue;
8435 	while (*list_skb)
8436 		list_skb = &(*list_skb)->next;
8437 	/* Append completion queue from offline CPU. */
8438 	*list_skb = oldsd->completion_queue;
8439 	oldsd->completion_queue = NULL;
8440 
8441 	/* Append output queue from offline CPU. */
8442 	if (oldsd->output_queue) {
8443 		*sd->output_queue_tailp = oldsd->output_queue;
8444 		sd->output_queue_tailp = oldsd->output_queue_tailp;
8445 		oldsd->output_queue = NULL;
8446 		oldsd->output_queue_tailp = &oldsd->output_queue;
8447 	}
8448 	/* Append NAPI poll list from offline CPU, with one exception :
8449 	 * process_backlog() must be called by cpu owning percpu backlog.
8450 	 * We properly handle process_queue & input_pkt_queue later.
8451 	 */
8452 	while (!list_empty(&oldsd->poll_list)) {
8453 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8454 							    struct napi_struct,
8455 							    poll_list);
8456 
8457 		list_del_init(&napi->poll_list);
8458 		if (napi->poll == process_backlog)
8459 			napi->state = 0;
8460 		else
8461 			____napi_schedule(sd, napi);
8462 	}
8463 
8464 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
8465 	local_irq_enable();
8466 
8467 #ifdef CONFIG_RPS
8468 	remsd = oldsd->rps_ipi_list;
8469 	oldsd->rps_ipi_list = NULL;
8470 #endif
8471 	/* send out pending IPI's on offline CPU */
8472 	net_rps_send_ipi(remsd);
8473 
8474 	/* Process offline CPU's input_pkt_queue */
8475 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8476 		netif_rx_ni(skb);
8477 		input_queue_head_incr(oldsd);
8478 	}
8479 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8480 		netif_rx_ni(skb);
8481 		input_queue_head_incr(oldsd);
8482 	}
8483 
8484 	return 0;
8485 }
8486 
8487 /**
8488  *	netdev_increment_features - increment feature set by one
8489  *	@all: current feature set
8490  *	@one: new feature set
8491  *	@mask: mask feature set
8492  *
8493  *	Computes a new feature set after adding a device with feature set
8494  *	@one to the master device with current feature set @all.  Will not
8495  *	enable anything that is off in @mask. Returns the new feature set.
8496  */
8497 netdev_features_t netdev_increment_features(netdev_features_t all,
8498 	netdev_features_t one, netdev_features_t mask)
8499 {
8500 	if (mask & NETIF_F_HW_CSUM)
8501 		mask |= NETIF_F_CSUM_MASK;
8502 	mask |= NETIF_F_VLAN_CHALLENGED;
8503 
8504 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8505 	all &= one | ~NETIF_F_ALL_FOR_ALL;
8506 
8507 	/* If one device supports hw checksumming, set for all. */
8508 	if (all & NETIF_F_HW_CSUM)
8509 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8510 
8511 	return all;
8512 }
8513 EXPORT_SYMBOL(netdev_increment_features);
8514 
8515 static struct hlist_head * __net_init netdev_create_hash(void)
8516 {
8517 	int i;
8518 	struct hlist_head *hash;
8519 
8520 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8521 	if (hash != NULL)
8522 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
8523 			INIT_HLIST_HEAD(&hash[i]);
8524 
8525 	return hash;
8526 }
8527 
8528 /* Initialize per network namespace state */
8529 static int __net_init netdev_init(struct net *net)
8530 {
8531 	if (net != &init_net)
8532 		INIT_LIST_HEAD(&net->dev_base_head);
8533 
8534 	net->dev_name_head = netdev_create_hash();
8535 	if (net->dev_name_head == NULL)
8536 		goto err_name;
8537 
8538 	net->dev_index_head = netdev_create_hash();
8539 	if (net->dev_index_head == NULL)
8540 		goto err_idx;
8541 
8542 	return 0;
8543 
8544 err_idx:
8545 	kfree(net->dev_name_head);
8546 err_name:
8547 	return -ENOMEM;
8548 }
8549 
8550 /**
8551  *	netdev_drivername - network driver for the device
8552  *	@dev: network device
8553  *
8554  *	Determine network driver for device.
8555  */
8556 const char *netdev_drivername(const struct net_device *dev)
8557 {
8558 	const struct device_driver *driver;
8559 	const struct device *parent;
8560 	const char *empty = "";
8561 
8562 	parent = dev->dev.parent;
8563 	if (!parent)
8564 		return empty;
8565 
8566 	driver = parent->driver;
8567 	if (driver && driver->name)
8568 		return driver->name;
8569 	return empty;
8570 }
8571 
8572 static void __netdev_printk(const char *level, const struct net_device *dev,
8573 			    struct va_format *vaf)
8574 {
8575 	if (dev && dev->dev.parent) {
8576 		dev_printk_emit(level[1] - '0',
8577 				dev->dev.parent,
8578 				"%s %s %s%s: %pV",
8579 				dev_driver_string(dev->dev.parent),
8580 				dev_name(dev->dev.parent),
8581 				netdev_name(dev), netdev_reg_state(dev),
8582 				vaf);
8583 	} else if (dev) {
8584 		printk("%s%s%s: %pV",
8585 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
8586 	} else {
8587 		printk("%s(NULL net_device): %pV", level, vaf);
8588 	}
8589 }
8590 
8591 void netdev_printk(const char *level, const struct net_device *dev,
8592 		   const char *format, ...)
8593 {
8594 	struct va_format vaf;
8595 	va_list args;
8596 
8597 	va_start(args, format);
8598 
8599 	vaf.fmt = format;
8600 	vaf.va = &args;
8601 
8602 	__netdev_printk(level, dev, &vaf);
8603 
8604 	va_end(args);
8605 }
8606 EXPORT_SYMBOL(netdev_printk);
8607 
8608 #define define_netdev_printk_level(func, level)			\
8609 void func(const struct net_device *dev, const char *fmt, ...)	\
8610 {								\
8611 	struct va_format vaf;					\
8612 	va_list args;						\
8613 								\
8614 	va_start(args, fmt);					\
8615 								\
8616 	vaf.fmt = fmt;						\
8617 	vaf.va = &args;						\
8618 								\
8619 	__netdev_printk(level, dev, &vaf);			\
8620 								\
8621 	va_end(args);						\
8622 }								\
8623 EXPORT_SYMBOL(func);
8624 
8625 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8626 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8627 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8628 define_netdev_printk_level(netdev_err, KERN_ERR);
8629 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8630 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8631 define_netdev_printk_level(netdev_info, KERN_INFO);
8632 
8633 static void __net_exit netdev_exit(struct net *net)
8634 {
8635 	kfree(net->dev_name_head);
8636 	kfree(net->dev_index_head);
8637 }
8638 
8639 static struct pernet_operations __net_initdata netdev_net_ops = {
8640 	.init = netdev_init,
8641 	.exit = netdev_exit,
8642 };
8643 
8644 static void __net_exit default_device_exit(struct net *net)
8645 {
8646 	struct net_device *dev, *aux;
8647 	/*
8648 	 * Push all migratable network devices back to the
8649 	 * initial network namespace
8650 	 */
8651 	rtnl_lock();
8652 	for_each_netdev_safe(net, dev, aux) {
8653 		int err;
8654 		char fb_name[IFNAMSIZ];
8655 
8656 		/* Ignore unmoveable devices (i.e. loopback) */
8657 		if (dev->features & NETIF_F_NETNS_LOCAL)
8658 			continue;
8659 
8660 		/* Leave virtual devices for the generic cleanup */
8661 		if (dev->rtnl_link_ops)
8662 			continue;
8663 
8664 		/* Push remaining network devices to init_net */
8665 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8666 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8667 		if (err) {
8668 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8669 				 __func__, dev->name, err);
8670 			BUG();
8671 		}
8672 	}
8673 	rtnl_unlock();
8674 }
8675 
8676 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8677 {
8678 	/* Return with the rtnl_lock held when there are no network
8679 	 * devices unregistering in any network namespace in net_list.
8680 	 */
8681 	struct net *net;
8682 	bool unregistering;
8683 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8684 
8685 	add_wait_queue(&netdev_unregistering_wq, &wait);
8686 	for (;;) {
8687 		unregistering = false;
8688 		rtnl_lock();
8689 		list_for_each_entry(net, net_list, exit_list) {
8690 			if (net->dev_unreg_count > 0) {
8691 				unregistering = true;
8692 				break;
8693 			}
8694 		}
8695 		if (!unregistering)
8696 			break;
8697 		__rtnl_unlock();
8698 
8699 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8700 	}
8701 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8702 }
8703 
8704 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8705 {
8706 	/* At exit all network devices most be removed from a network
8707 	 * namespace.  Do this in the reverse order of registration.
8708 	 * Do this across as many network namespaces as possible to
8709 	 * improve batching efficiency.
8710 	 */
8711 	struct net_device *dev;
8712 	struct net *net;
8713 	LIST_HEAD(dev_kill_list);
8714 
8715 	/* To prevent network device cleanup code from dereferencing
8716 	 * loopback devices or network devices that have been freed
8717 	 * wait here for all pending unregistrations to complete,
8718 	 * before unregistring the loopback device and allowing the
8719 	 * network namespace be freed.
8720 	 *
8721 	 * The netdev todo list containing all network devices
8722 	 * unregistrations that happen in default_device_exit_batch
8723 	 * will run in the rtnl_unlock() at the end of
8724 	 * default_device_exit_batch.
8725 	 */
8726 	rtnl_lock_unregistering(net_list);
8727 	list_for_each_entry(net, net_list, exit_list) {
8728 		for_each_netdev_reverse(net, dev) {
8729 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8730 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8731 			else
8732 				unregister_netdevice_queue(dev, &dev_kill_list);
8733 		}
8734 	}
8735 	unregister_netdevice_many(&dev_kill_list);
8736 	rtnl_unlock();
8737 }
8738 
8739 static struct pernet_operations __net_initdata default_device_ops = {
8740 	.exit = default_device_exit,
8741 	.exit_batch = default_device_exit_batch,
8742 };
8743 
8744 /*
8745  *	Initialize the DEV module. At boot time this walks the device list and
8746  *	unhooks any devices that fail to initialise (normally hardware not
8747  *	present) and leaves us with a valid list of present and active devices.
8748  *
8749  */
8750 
8751 /*
8752  *       This is called single threaded during boot, so no need
8753  *       to take the rtnl semaphore.
8754  */
8755 static int __init net_dev_init(void)
8756 {
8757 	int i, rc = -ENOMEM;
8758 
8759 	BUG_ON(!dev_boot_phase);
8760 
8761 	if (dev_proc_init())
8762 		goto out;
8763 
8764 	if (netdev_kobject_init())
8765 		goto out;
8766 
8767 	INIT_LIST_HEAD(&ptype_all);
8768 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8769 		INIT_LIST_HEAD(&ptype_base[i]);
8770 
8771 	INIT_LIST_HEAD(&offload_base);
8772 
8773 	if (register_pernet_subsys(&netdev_net_ops))
8774 		goto out;
8775 
8776 	/*
8777 	 *	Initialise the packet receive queues.
8778 	 */
8779 
8780 	for_each_possible_cpu(i) {
8781 		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8782 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8783 
8784 		INIT_WORK(flush, flush_backlog);
8785 
8786 		skb_queue_head_init(&sd->input_pkt_queue);
8787 		skb_queue_head_init(&sd->process_queue);
8788 		INIT_LIST_HEAD(&sd->poll_list);
8789 		sd->output_queue_tailp = &sd->output_queue;
8790 #ifdef CONFIG_RPS
8791 		sd->csd.func = rps_trigger_softirq;
8792 		sd->csd.info = sd;
8793 		sd->cpu = i;
8794 #endif
8795 
8796 		sd->backlog.poll = process_backlog;
8797 		sd->backlog.weight = weight_p;
8798 	}
8799 
8800 	dev_boot_phase = 0;
8801 
8802 	/* The loopback device is special if any other network devices
8803 	 * is present in a network namespace the loopback device must
8804 	 * be present. Since we now dynamically allocate and free the
8805 	 * loopback device ensure this invariant is maintained by
8806 	 * keeping the loopback device as the first device on the
8807 	 * list of network devices.  Ensuring the loopback devices
8808 	 * is the first device that appears and the last network device
8809 	 * that disappears.
8810 	 */
8811 	if (register_pernet_device(&loopback_net_ops))
8812 		goto out;
8813 
8814 	if (register_pernet_device(&default_device_ops))
8815 		goto out;
8816 
8817 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8818 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8819 
8820 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8821 				       NULL, dev_cpu_dead);
8822 	WARN_ON(rc < 0);
8823 	rc = 0;
8824 out:
8825 	return rc;
8826 }
8827 
8828 subsys_initcall(net_dev_init);
8829