xref: /linux-6.15/net/core/dev.c (revision 8ef890df)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <[email protected]>
8  *				Mark Evans, <[email protected]>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <[email protected]>
12  *		Alan Cox <[email protected]>
13  *		David Hinds <[email protected]>
14  *		Alexey Kuznetsov <[email protected]>
15  *		Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
466 
467 #ifdef CONFIG_LOCKDEP
468 /*
469  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
470  * according to dev->type
471  */
472 static const unsigned short netdev_lock_type[] = {
473 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
474 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
475 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
476 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
477 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
478 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
479 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
480 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
481 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
482 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
483 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
484 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
485 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
486 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
487 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
488 
489 static const char *const netdev_lock_name[] = {
490 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
491 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
492 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
493 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
494 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
495 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
496 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
497 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
498 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
499 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
500 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
501 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
502 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
503 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
504 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
505 
506 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
508 
509 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
510 {
511 	int i;
512 
513 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
514 		if (netdev_lock_type[i] == dev_type)
515 			return i;
516 	/* the last key is used by default */
517 	return ARRAY_SIZE(netdev_lock_type) - 1;
518 }
519 
520 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
521 						 unsigned short dev_type)
522 {
523 	int i;
524 
525 	i = netdev_lock_pos(dev_type);
526 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
527 				   netdev_lock_name[i]);
528 }
529 
530 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
531 {
532 	int i;
533 
534 	i = netdev_lock_pos(dev->type);
535 	lockdep_set_class_and_name(&dev->addr_list_lock,
536 				   &netdev_addr_lock_key[i],
537 				   netdev_lock_name[i]);
538 }
539 #else
540 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
541 						 unsigned short dev_type)
542 {
543 }
544 
545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 {
547 }
548 #endif
549 
550 /*******************************************************************************
551  *
552  *		Protocol management and registration routines
553  *
554  *******************************************************************************/
555 
556 
557 /*
558  *	Add a protocol ID to the list. Now that the input handler is
559  *	smarter we can dispense with all the messy stuff that used to be
560  *	here.
561  *
562  *	BEWARE!!! Protocol handlers, mangling input packets,
563  *	MUST BE last in hash buckets and checking protocol handlers
564  *	MUST start from promiscuous ptype_all chain in net_bh.
565  *	It is true now, do not change it.
566  *	Explanation follows: if protocol handler, mangling packet, will
567  *	be the first on list, it is not able to sense, that packet
568  *	is cloned and should be copied-on-write, so that it will
569  *	change it and subsequent readers will get broken packet.
570  *							--ANK (980803)
571  */
572 
573 static inline struct list_head *ptype_head(const struct packet_type *pt)
574 {
575 	if (pt->type == htons(ETH_P_ALL))
576 		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
577 	else
578 		return pt->dev ? &pt->dev->ptype_specific :
579 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
580 }
581 
582 /**
583  *	dev_add_pack - add packet handler
584  *	@pt: packet type declaration
585  *
586  *	Add a protocol handler to the networking stack. The passed &packet_type
587  *	is linked into kernel lists and may not be freed until it has been
588  *	removed from the kernel lists.
589  *
590  *	This call does not sleep therefore it can not
591  *	guarantee all CPU's that are in middle of receiving packets
592  *	will see the new packet type (until the next received packet).
593  */
594 
595 void dev_add_pack(struct packet_type *pt)
596 {
597 	struct list_head *head = ptype_head(pt);
598 
599 	spin_lock(&ptype_lock);
600 	list_add_rcu(&pt->list, head);
601 	spin_unlock(&ptype_lock);
602 }
603 EXPORT_SYMBOL(dev_add_pack);
604 
605 /**
606  *	__dev_remove_pack	 - remove packet handler
607  *	@pt: packet type declaration
608  *
609  *	Remove a protocol handler that was previously added to the kernel
610  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
611  *	from the kernel lists and can be freed or reused once this function
612  *	returns.
613  *
614  *      The packet type might still be in use by receivers
615  *	and must not be freed until after all the CPU's have gone
616  *	through a quiescent state.
617  */
618 void __dev_remove_pack(struct packet_type *pt)
619 {
620 	struct list_head *head = ptype_head(pt);
621 	struct packet_type *pt1;
622 
623 	spin_lock(&ptype_lock);
624 
625 	list_for_each_entry(pt1, head, list) {
626 		if (pt == pt1) {
627 			list_del_rcu(&pt->list);
628 			goto out;
629 		}
630 	}
631 
632 	pr_warn("dev_remove_pack: %p not found\n", pt);
633 out:
634 	spin_unlock(&ptype_lock);
635 }
636 EXPORT_SYMBOL(__dev_remove_pack);
637 
638 /**
639  *	dev_remove_pack	 - remove packet handler
640  *	@pt: packet type declaration
641  *
642  *	Remove a protocol handler that was previously added to the kernel
643  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
644  *	from the kernel lists and can be freed or reused once this function
645  *	returns.
646  *
647  *	This call sleeps to guarantee that no CPU is looking at the packet
648  *	type after return.
649  */
650 void dev_remove_pack(struct packet_type *pt)
651 {
652 	__dev_remove_pack(pt);
653 
654 	synchronize_net();
655 }
656 EXPORT_SYMBOL(dev_remove_pack);
657 
658 
659 /*******************************************************************************
660  *
661  *			    Device Interface Subroutines
662  *
663  *******************************************************************************/
664 
665 /**
666  *	dev_get_iflink	- get 'iflink' value of a interface
667  *	@dev: targeted interface
668  *
669  *	Indicates the ifindex the interface is linked to.
670  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
671  */
672 
673 int dev_get_iflink(const struct net_device *dev)
674 {
675 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
676 		return dev->netdev_ops->ndo_get_iflink(dev);
677 
678 	return READ_ONCE(dev->ifindex);
679 }
680 EXPORT_SYMBOL(dev_get_iflink);
681 
682 /**
683  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
684  *	@dev: targeted interface
685  *	@skb: The packet.
686  *
687  *	For better visibility of tunnel traffic OVS needs to retrieve
688  *	egress tunnel information for a packet. Following API allows
689  *	user to get this info.
690  */
691 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
692 {
693 	struct ip_tunnel_info *info;
694 
695 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
696 		return -EINVAL;
697 
698 	info = skb_tunnel_info_unclone(skb);
699 	if (!info)
700 		return -ENOMEM;
701 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
702 		return -EINVAL;
703 
704 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
705 }
706 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
707 
708 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
709 {
710 	int k = stack->num_paths++;
711 
712 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
713 		return NULL;
714 
715 	return &stack->path[k];
716 }
717 
718 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
719 			  struct net_device_path_stack *stack)
720 {
721 	const struct net_device *last_dev;
722 	struct net_device_path_ctx ctx = {
723 		.dev	= dev,
724 	};
725 	struct net_device_path *path;
726 	int ret = 0;
727 
728 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
729 	stack->num_paths = 0;
730 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
731 		last_dev = ctx.dev;
732 		path = dev_fwd_path(stack);
733 		if (!path)
734 			return -1;
735 
736 		memset(path, 0, sizeof(struct net_device_path));
737 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
738 		if (ret < 0)
739 			return -1;
740 
741 		if (WARN_ON_ONCE(last_dev == ctx.dev))
742 			return -1;
743 	}
744 
745 	if (!ctx.dev)
746 		return ret;
747 
748 	path = dev_fwd_path(stack);
749 	if (!path)
750 		return -1;
751 	path->type = DEV_PATH_ETHERNET;
752 	path->dev = ctx.dev;
753 
754 	return ret;
755 }
756 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
757 
758 /* must be called under rcu_read_lock(), as we dont take a reference */
759 static struct napi_struct *napi_by_id(unsigned int napi_id)
760 {
761 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
762 	struct napi_struct *napi;
763 
764 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
765 		if (napi->napi_id == napi_id)
766 			return napi;
767 
768 	return NULL;
769 }
770 
771 /* must be called under rcu_read_lock(), as we dont take a reference */
772 static struct napi_struct *
773 netdev_napi_by_id(struct net *net, unsigned int napi_id)
774 {
775 	struct napi_struct *napi;
776 
777 	napi = napi_by_id(napi_id);
778 	if (!napi)
779 		return NULL;
780 
781 	if (WARN_ON_ONCE(!napi->dev))
782 		return NULL;
783 	if (!net_eq(net, dev_net(napi->dev)))
784 		return NULL;
785 
786 	return napi;
787 }
788 
789 /**
790  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
791  *	@net: the applicable net namespace
792  *	@napi_id: ID of a NAPI of a target device
793  *
794  *	Find a NAPI instance with @napi_id. Lock its device.
795  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
796  *	netdev_unlock() must be called to release it.
797  *
798  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
799  */
800 struct napi_struct *
801 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
802 {
803 	struct napi_struct *napi;
804 	struct net_device *dev;
805 
806 	rcu_read_lock();
807 	napi = netdev_napi_by_id(net, napi_id);
808 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
809 		rcu_read_unlock();
810 		return NULL;
811 	}
812 
813 	dev = napi->dev;
814 	dev_hold(dev);
815 	rcu_read_unlock();
816 
817 	dev = __netdev_put_lock(dev);
818 	if (!dev)
819 		return NULL;
820 
821 	rcu_read_lock();
822 	napi = netdev_napi_by_id(net, napi_id);
823 	if (napi && napi->dev != dev)
824 		napi = NULL;
825 	rcu_read_unlock();
826 
827 	if (!napi)
828 		netdev_unlock(dev);
829 	return napi;
830 }
831 
832 /**
833  *	__dev_get_by_name	- find a device by its name
834  *	@net: the applicable net namespace
835  *	@name: name to find
836  *
837  *	Find an interface by name. Must be called under RTNL semaphore.
838  *	If the name is found a pointer to the device is returned.
839  *	If the name is not found then %NULL is returned. The
840  *	reference counters are not incremented so the caller must be
841  *	careful with locks.
842  */
843 
844 struct net_device *__dev_get_by_name(struct net *net, const char *name)
845 {
846 	struct netdev_name_node *node_name;
847 
848 	node_name = netdev_name_node_lookup(net, name);
849 	return node_name ? node_name->dev : NULL;
850 }
851 EXPORT_SYMBOL(__dev_get_by_name);
852 
853 /**
854  * dev_get_by_name_rcu	- find a device by its name
855  * @net: the applicable net namespace
856  * @name: name to find
857  *
858  * Find an interface by name.
859  * If the name is found a pointer to the device is returned.
860  * If the name is not found then %NULL is returned.
861  * The reference counters are not incremented so the caller must be
862  * careful with locks. The caller must hold RCU lock.
863  */
864 
865 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
866 {
867 	struct netdev_name_node *node_name;
868 
869 	node_name = netdev_name_node_lookup_rcu(net, name);
870 	return node_name ? node_name->dev : NULL;
871 }
872 EXPORT_SYMBOL(dev_get_by_name_rcu);
873 
874 /* Deprecated for new users, call netdev_get_by_name() instead */
875 struct net_device *dev_get_by_name(struct net *net, const char *name)
876 {
877 	struct net_device *dev;
878 
879 	rcu_read_lock();
880 	dev = dev_get_by_name_rcu(net, name);
881 	dev_hold(dev);
882 	rcu_read_unlock();
883 	return dev;
884 }
885 EXPORT_SYMBOL(dev_get_by_name);
886 
887 /**
888  *	netdev_get_by_name() - find a device by its name
889  *	@net: the applicable net namespace
890  *	@name: name to find
891  *	@tracker: tracking object for the acquired reference
892  *	@gfp: allocation flags for the tracker
893  *
894  *	Find an interface by name. This can be called from any
895  *	context and does its own locking. The returned handle has
896  *	the usage count incremented and the caller must use netdev_put() to
897  *	release it when it is no longer needed. %NULL is returned if no
898  *	matching device is found.
899  */
900 struct net_device *netdev_get_by_name(struct net *net, const char *name,
901 				      netdevice_tracker *tracker, gfp_t gfp)
902 {
903 	struct net_device *dev;
904 
905 	dev = dev_get_by_name(net, name);
906 	if (dev)
907 		netdev_tracker_alloc(dev, tracker, gfp);
908 	return dev;
909 }
910 EXPORT_SYMBOL(netdev_get_by_name);
911 
912 /**
913  *	__dev_get_by_index - find a device by its ifindex
914  *	@net: the applicable net namespace
915  *	@ifindex: index of device
916  *
917  *	Search for an interface by index. Returns %NULL if the device
918  *	is not found or a pointer to the device. The device has not
919  *	had its reference counter increased so the caller must be careful
920  *	about locking. The caller must hold the RTNL semaphore.
921  */
922 
923 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
924 {
925 	struct net_device *dev;
926 	struct hlist_head *head = dev_index_hash(net, ifindex);
927 
928 	hlist_for_each_entry(dev, head, index_hlist)
929 		if (dev->ifindex == ifindex)
930 			return dev;
931 
932 	return NULL;
933 }
934 EXPORT_SYMBOL(__dev_get_by_index);
935 
936 /**
937  *	dev_get_by_index_rcu - find a device by its ifindex
938  *	@net: the applicable net namespace
939  *	@ifindex: index of device
940  *
941  *	Search for an interface by index. Returns %NULL if the device
942  *	is not found or a pointer to the device. The device has not
943  *	had its reference counter increased so the caller must be careful
944  *	about locking. The caller must hold RCU lock.
945  */
946 
947 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
948 {
949 	struct net_device *dev;
950 	struct hlist_head *head = dev_index_hash(net, ifindex);
951 
952 	hlist_for_each_entry_rcu(dev, head, index_hlist)
953 		if (dev->ifindex == ifindex)
954 			return dev;
955 
956 	return NULL;
957 }
958 EXPORT_SYMBOL(dev_get_by_index_rcu);
959 
960 /* Deprecated for new users, call netdev_get_by_index() instead */
961 struct net_device *dev_get_by_index(struct net *net, int ifindex)
962 {
963 	struct net_device *dev;
964 
965 	rcu_read_lock();
966 	dev = dev_get_by_index_rcu(net, ifindex);
967 	dev_hold(dev);
968 	rcu_read_unlock();
969 	return dev;
970 }
971 EXPORT_SYMBOL(dev_get_by_index);
972 
973 /**
974  *	netdev_get_by_index() - find a device by its ifindex
975  *	@net: the applicable net namespace
976  *	@ifindex: index of device
977  *	@tracker: tracking object for the acquired reference
978  *	@gfp: allocation flags for the tracker
979  *
980  *	Search for an interface by index. Returns NULL if the device
981  *	is not found or a pointer to the device. The device returned has
982  *	had a reference added and the pointer is safe until the user calls
983  *	netdev_put() to indicate they have finished with it.
984  */
985 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
986 				       netdevice_tracker *tracker, gfp_t gfp)
987 {
988 	struct net_device *dev;
989 
990 	dev = dev_get_by_index(net, ifindex);
991 	if (dev)
992 		netdev_tracker_alloc(dev, tracker, gfp);
993 	return dev;
994 }
995 EXPORT_SYMBOL(netdev_get_by_index);
996 
997 /**
998  *	dev_get_by_napi_id - find a device by napi_id
999  *	@napi_id: ID of the NAPI struct
1000  *
1001  *	Search for an interface by NAPI ID. Returns %NULL if the device
1002  *	is not found or a pointer to the device. The device has not had
1003  *	its reference counter increased so the caller must be careful
1004  *	about locking. The caller must hold RCU lock.
1005  */
1006 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1007 {
1008 	struct napi_struct *napi;
1009 
1010 	WARN_ON_ONCE(!rcu_read_lock_held());
1011 
1012 	if (!napi_id_valid(napi_id))
1013 		return NULL;
1014 
1015 	napi = napi_by_id(napi_id);
1016 
1017 	return napi ? napi->dev : NULL;
1018 }
1019 
1020 /* Release the held reference on the net_device, and if the net_device
1021  * is still registered try to lock the instance lock. If device is being
1022  * unregistered NULL will be returned (but the reference has been released,
1023  * either way!)
1024  *
1025  * This helper is intended for locking net_device after it has been looked up
1026  * using a lockless lookup helper. Lock prevents the instance from going away.
1027  */
1028 struct net_device *__netdev_put_lock(struct net_device *dev)
1029 {
1030 	netdev_lock(dev);
1031 	if (dev->reg_state > NETREG_REGISTERED) {
1032 		netdev_unlock(dev);
1033 		dev_put(dev);
1034 		return NULL;
1035 	}
1036 	dev_put(dev);
1037 	return dev;
1038 }
1039 
1040 /**
1041  *	netdev_get_by_index_lock() - find a device by its ifindex
1042  *	@net: the applicable net namespace
1043  *	@ifindex: index of device
1044  *
1045  *	Search for an interface by index. If a valid device
1046  *	with @ifindex is found it will be returned with netdev->lock held.
1047  *	netdev_unlock() must be called to release it.
1048  *
1049  *	Return: pointer to a device with lock held, NULL if not found.
1050  */
1051 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1052 {
1053 	struct net_device *dev;
1054 
1055 	dev = dev_get_by_index(net, ifindex);
1056 	if (!dev)
1057 		return NULL;
1058 
1059 	return __netdev_put_lock(dev);
1060 }
1061 
1062 /**
1063  * netdev_get_by_name_lock() - find a device by its name
1064  * @net: the applicable net namespace
1065  * @name: name of device
1066  *
1067  * Search for an interface by name. If a valid device
1068  * with @name is found it will be returned with netdev->lock held.
1069  * netdev_unlock() must be called to release it.
1070  *
1071  * Return: pointer to a device with lock held, NULL if not found.
1072  */
1073 struct net_device *netdev_get_by_name_lock(struct net *net, const char *name)
1074 {
1075 	struct net_device *dev;
1076 
1077 	dev = dev_get_by_name(net, name);
1078 	if (!dev)
1079 		return NULL;
1080 
1081 	return __netdev_put_lock(dev);
1082 }
1083 
1084 struct net_device *
1085 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1086 		    unsigned long *index)
1087 {
1088 	if (dev)
1089 		netdev_unlock(dev);
1090 
1091 	do {
1092 		rcu_read_lock();
1093 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1094 		if (!dev) {
1095 			rcu_read_unlock();
1096 			return NULL;
1097 		}
1098 		dev_hold(dev);
1099 		rcu_read_unlock();
1100 
1101 		dev = __netdev_put_lock(dev);
1102 		if (dev)
1103 			return dev;
1104 
1105 		(*index)++;
1106 	} while (true);
1107 }
1108 
1109 static DEFINE_SEQLOCK(netdev_rename_lock);
1110 
1111 void netdev_copy_name(struct net_device *dev, char *name)
1112 {
1113 	unsigned int seq;
1114 
1115 	do {
1116 		seq = read_seqbegin(&netdev_rename_lock);
1117 		strscpy(name, dev->name, IFNAMSIZ);
1118 	} while (read_seqretry(&netdev_rename_lock, seq));
1119 }
1120 
1121 /**
1122  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1123  *	@net: network namespace
1124  *	@name: a pointer to the buffer where the name will be stored.
1125  *	@ifindex: the ifindex of the interface to get the name from.
1126  */
1127 int netdev_get_name(struct net *net, char *name, int ifindex)
1128 {
1129 	struct net_device *dev;
1130 	int ret;
1131 
1132 	rcu_read_lock();
1133 
1134 	dev = dev_get_by_index_rcu(net, ifindex);
1135 	if (!dev) {
1136 		ret = -ENODEV;
1137 		goto out;
1138 	}
1139 
1140 	netdev_copy_name(dev, name);
1141 
1142 	ret = 0;
1143 out:
1144 	rcu_read_unlock();
1145 	return ret;
1146 }
1147 
1148 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1149 			 const char *ha)
1150 {
1151 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1152 }
1153 
1154 /**
1155  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1156  *	@net: the applicable net namespace
1157  *	@type: media type of device
1158  *	@ha: hardware address
1159  *
1160  *	Search for an interface by MAC address. Returns NULL if the device
1161  *	is not found or a pointer to the device.
1162  *	The caller must hold RCU.
1163  *	The returned device has not had its ref count increased
1164  *	and the caller must therefore be careful about locking
1165  *
1166  */
1167 
1168 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1169 				       const char *ha)
1170 {
1171 	struct net_device *dev;
1172 
1173 	for_each_netdev_rcu(net, dev)
1174 		if (dev_addr_cmp(dev, type, ha))
1175 			return dev;
1176 
1177 	return NULL;
1178 }
1179 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1180 
1181 /**
1182  * dev_getbyhwaddr() - find a device by its hardware address
1183  * @net: the applicable net namespace
1184  * @type: media type of device
1185  * @ha: hardware address
1186  *
1187  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1188  * rtnl_lock.
1189  *
1190  * Context: rtnl_lock() must be held.
1191  * Return: pointer to the net_device, or NULL if not found
1192  */
1193 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1194 				   const char *ha)
1195 {
1196 	struct net_device *dev;
1197 
1198 	ASSERT_RTNL();
1199 	for_each_netdev(net, dev)
1200 		if (dev_addr_cmp(dev, type, ha))
1201 			return dev;
1202 
1203 	return NULL;
1204 }
1205 EXPORT_SYMBOL(dev_getbyhwaddr);
1206 
1207 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1208 {
1209 	struct net_device *dev, *ret = NULL;
1210 
1211 	rcu_read_lock();
1212 	for_each_netdev_rcu(net, dev)
1213 		if (dev->type == type) {
1214 			dev_hold(dev);
1215 			ret = dev;
1216 			break;
1217 		}
1218 	rcu_read_unlock();
1219 	return ret;
1220 }
1221 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1222 
1223 /**
1224  *	__dev_get_by_flags - find any device with given flags
1225  *	@net: the applicable net namespace
1226  *	@if_flags: IFF_* values
1227  *	@mask: bitmask of bits in if_flags to check
1228  *
1229  *	Search for any interface with the given flags. Returns NULL if a device
1230  *	is not found or a pointer to the device. Must be called inside
1231  *	rtnl_lock(), and result refcount is unchanged.
1232  */
1233 
1234 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1235 				      unsigned short mask)
1236 {
1237 	struct net_device *dev, *ret;
1238 
1239 	ASSERT_RTNL();
1240 
1241 	ret = NULL;
1242 	for_each_netdev(net, dev) {
1243 		if (((dev->flags ^ if_flags) & mask) == 0) {
1244 			ret = dev;
1245 			break;
1246 		}
1247 	}
1248 	return ret;
1249 }
1250 EXPORT_SYMBOL(__dev_get_by_flags);
1251 
1252 /**
1253  *	dev_valid_name - check if name is okay for network device
1254  *	@name: name string
1255  *
1256  *	Network device names need to be valid file names to
1257  *	allow sysfs to work.  We also disallow any kind of
1258  *	whitespace.
1259  */
1260 bool dev_valid_name(const char *name)
1261 {
1262 	if (*name == '\0')
1263 		return false;
1264 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1265 		return false;
1266 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1267 		return false;
1268 
1269 	while (*name) {
1270 		if (*name == '/' || *name == ':' || isspace(*name))
1271 			return false;
1272 		name++;
1273 	}
1274 	return true;
1275 }
1276 EXPORT_SYMBOL(dev_valid_name);
1277 
1278 /**
1279  *	__dev_alloc_name - allocate a name for a device
1280  *	@net: network namespace to allocate the device name in
1281  *	@name: name format string
1282  *	@res: result name string
1283  *
1284  *	Passed a format string - eg "lt%d" it will try and find a suitable
1285  *	id. It scans list of devices to build up a free map, then chooses
1286  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1287  *	while allocating the name and adding the device in order to avoid
1288  *	duplicates.
1289  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1290  *	Returns the number of the unit assigned or a negative errno code.
1291  */
1292 
1293 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1294 {
1295 	int i = 0;
1296 	const char *p;
1297 	const int max_netdevices = 8*PAGE_SIZE;
1298 	unsigned long *inuse;
1299 	struct net_device *d;
1300 	char buf[IFNAMSIZ];
1301 
1302 	/* Verify the string as this thing may have come from the user.
1303 	 * There must be one "%d" and no other "%" characters.
1304 	 */
1305 	p = strchr(name, '%');
1306 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1307 		return -EINVAL;
1308 
1309 	/* Use one page as a bit array of possible slots */
1310 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1311 	if (!inuse)
1312 		return -ENOMEM;
1313 
1314 	for_each_netdev(net, d) {
1315 		struct netdev_name_node *name_node;
1316 
1317 		netdev_for_each_altname(d, name_node) {
1318 			if (!sscanf(name_node->name, name, &i))
1319 				continue;
1320 			if (i < 0 || i >= max_netdevices)
1321 				continue;
1322 
1323 			/* avoid cases where sscanf is not exact inverse of printf */
1324 			snprintf(buf, IFNAMSIZ, name, i);
1325 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1326 				__set_bit(i, inuse);
1327 		}
1328 		if (!sscanf(d->name, name, &i))
1329 			continue;
1330 		if (i < 0 || i >= max_netdevices)
1331 			continue;
1332 
1333 		/* avoid cases where sscanf is not exact inverse of printf */
1334 		snprintf(buf, IFNAMSIZ, name, i);
1335 		if (!strncmp(buf, d->name, IFNAMSIZ))
1336 			__set_bit(i, inuse);
1337 	}
1338 
1339 	i = find_first_zero_bit(inuse, max_netdevices);
1340 	bitmap_free(inuse);
1341 	if (i == max_netdevices)
1342 		return -ENFILE;
1343 
1344 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1345 	strscpy(buf, name, IFNAMSIZ);
1346 	snprintf(res, IFNAMSIZ, buf, i);
1347 	return i;
1348 }
1349 
1350 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1351 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1352 			       const char *want_name, char *out_name,
1353 			       int dup_errno)
1354 {
1355 	if (!dev_valid_name(want_name))
1356 		return -EINVAL;
1357 
1358 	if (strchr(want_name, '%'))
1359 		return __dev_alloc_name(net, want_name, out_name);
1360 
1361 	if (netdev_name_in_use(net, want_name))
1362 		return -dup_errno;
1363 	if (out_name != want_name)
1364 		strscpy(out_name, want_name, IFNAMSIZ);
1365 	return 0;
1366 }
1367 
1368 /**
1369  *	dev_alloc_name - allocate a name for a device
1370  *	@dev: device
1371  *	@name: name format string
1372  *
1373  *	Passed a format string - eg "lt%d" it will try and find a suitable
1374  *	id. It scans list of devices to build up a free map, then chooses
1375  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1376  *	while allocating the name and adding the device in order to avoid
1377  *	duplicates.
1378  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1379  *	Returns the number of the unit assigned or a negative errno code.
1380  */
1381 
1382 int dev_alloc_name(struct net_device *dev, const char *name)
1383 {
1384 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1385 }
1386 EXPORT_SYMBOL(dev_alloc_name);
1387 
1388 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1389 			      const char *name)
1390 {
1391 	int ret;
1392 
1393 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1394 	return ret < 0 ? ret : 0;
1395 }
1396 
1397 int netif_change_name(struct net_device *dev, const char *newname)
1398 {
1399 	struct net *net = dev_net(dev);
1400 	unsigned char old_assign_type;
1401 	char oldname[IFNAMSIZ];
1402 	int err = 0;
1403 	int ret;
1404 
1405 	ASSERT_RTNL_NET(net);
1406 
1407 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1408 		return 0;
1409 
1410 	memcpy(oldname, dev->name, IFNAMSIZ);
1411 
1412 	write_seqlock_bh(&netdev_rename_lock);
1413 	err = dev_get_valid_name(net, dev, newname);
1414 	write_sequnlock_bh(&netdev_rename_lock);
1415 
1416 	if (err < 0)
1417 		return err;
1418 
1419 	if (oldname[0] && !strchr(oldname, '%'))
1420 		netdev_info(dev, "renamed from %s%s\n", oldname,
1421 			    dev->flags & IFF_UP ? " (while UP)" : "");
1422 
1423 	old_assign_type = dev->name_assign_type;
1424 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1425 
1426 rollback:
1427 	ret = device_rename(&dev->dev, dev->name);
1428 	if (ret) {
1429 		write_seqlock_bh(&netdev_rename_lock);
1430 		memcpy(dev->name, oldname, IFNAMSIZ);
1431 		write_sequnlock_bh(&netdev_rename_lock);
1432 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1433 		return ret;
1434 	}
1435 
1436 	netdev_adjacent_rename_links(dev, oldname);
1437 
1438 	netdev_name_node_del(dev->name_node);
1439 
1440 	synchronize_net();
1441 
1442 	netdev_name_node_add(net, dev->name_node);
1443 
1444 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1445 	ret = notifier_to_errno(ret);
1446 
1447 	if (ret) {
1448 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1449 		if (err >= 0) {
1450 			err = ret;
1451 			write_seqlock_bh(&netdev_rename_lock);
1452 			memcpy(dev->name, oldname, IFNAMSIZ);
1453 			write_sequnlock_bh(&netdev_rename_lock);
1454 			memcpy(oldname, newname, IFNAMSIZ);
1455 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1456 			old_assign_type = NET_NAME_RENAMED;
1457 			goto rollback;
1458 		} else {
1459 			netdev_err(dev, "name change rollback failed: %d\n",
1460 				   ret);
1461 		}
1462 	}
1463 
1464 	return err;
1465 }
1466 
1467 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1468 {
1469 	struct dev_ifalias *new_alias = NULL;
1470 
1471 	if (len >= IFALIASZ)
1472 		return -EINVAL;
1473 
1474 	if (len) {
1475 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1476 		if (!new_alias)
1477 			return -ENOMEM;
1478 
1479 		memcpy(new_alias->ifalias, alias, len);
1480 		new_alias->ifalias[len] = 0;
1481 	}
1482 
1483 	mutex_lock(&ifalias_mutex);
1484 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1485 					mutex_is_locked(&ifalias_mutex));
1486 	mutex_unlock(&ifalias_mutex);
1487 
1488 	if (new_alias)
1489 		kfree_rcu(new_alias, rcuhead);
1490 
1491 	return len;
1492 }
1493 
1494 /**
1495  *	dev_get_alias - get ifalias of a device
1496  *	@dev: device
1497  *	@name: buffer to store name of ifalias
1498  *	@len: size of buffer
1499  *
1500  *	get ifalias for a device.  Caller must make sure dev cannot go
1501  *	away,  e.g. rcu read lock or own a reference count to device.
1502  */
1503 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1504 {
1505 	const struct dev_ifalias *alias;
1506 	int ret = 0;
1507 
1508 	rcu_read_lock();
1509 	alias = rcu_dereference(dev->ifalias);
1510 	if (alias)
1511 		ret = snprintf(name, len, "%s", alias->ifalias);
1512 	rcu_read_unlock();
1513 
1514 	return ret;
1515 }
1516 
1517 /**
1518  *	netdev_features_change - device changes features
1519  *	@dev: device to cause notification
1520  *
1521  *	Called to indicate a device has changed features.
1522  */
1523 void netdev_features_change(struct net_device *dev)
1524 {
1525 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1526 }
1527 EXPORT_SYMBOL(netdev_features_change);
1528 
1529 /**
1530  *	netdev_state_change - device changes state
1531  *	@dev: device to cause notification
1532  *
1533  *	Called to indicate a device has changed state. This function calls
1534  *	the notifier chains for netdev_chain and sends a NEWLINK message
1535  *	to the routing socket.
1536  */
1537 void netdev_state_change(struct net_device *dev)
1538 {
1539 	if (dev->flags & IFF_UP) {
1540 		struct netdev_notifier_change_info change_info = {
1541 			.info.dev = dev,
1542 		};
1543 
1544 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1545 					      &change_info.info);
1546 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1547 	}
1548 }
1549 EXPORT_SYMBOL(netdev_state_change);
1550 
1551 /**
1552  * __netdev_notify_peers - notify network peers about existence of @dev,
1553  * to be called when rtnl lock is already held.
1554  * @dev: network device
1555  *
1556  * Generate traffic such that interested network peers are aware of
1557  * @dev, such as by generating a gratuitous ARP. This may be used when
1558  * a device wants to inform the rest of the network about some sort of
1559  * reconfiguration such as a failover event or virtual machine
1560  * migration.
1561  */
1562 void __netdev_notify_peers(struct net_device *dev)
1563 {
1564 	ASSERT_RTNL();
1565 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1566 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1567 }
1568 EXPORT_SYMBOL(__netdev_notify_peers);
1569 
1570 /**
1571  * netdev_notify_peers - notify network peers about existence of @dev
1572  * @dev: network device
1573  *
1574  * Generate traffic such that interested network peers are aware of
1575  * @dev, such as by generating a gratuitous ARP. This may be used when
1576  * a device wants to inform the rest of the network about some sort of
1577  * reconfiguration such as a failover event or virtual machine
1578  * migration.
1579  */
1580 void netdev_notify_peers(struct net_device *dev)
1581 {
1582 	rtnl_lock();
1583 	__netdev_notify_peers(dev);
1584 	rtnl_unlock();
1585 }
1586 EXPORT_SYMBOL(netdev_notify_peers);
1587 
1588 static int napi_threaded_poll(void *data);
1589 
1590 static int napi_kthread_create(struct napi_struct *n)
1591 {
1592 	int err = 0;
1593 
1594 	/* Create and wake up the kthread once to put it in
1595 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1596 	 * warning and work with loadavg.
1597 	 */
1598 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1599 				n->dev->name, n->napi_id);
1600 	if (IS_ERR(n->thread)) {
1601 		err = PTR_ERR(n->thread);
1602 		pr_err("kthread_run failed with err %d\n", err);
1603 		n->thread = NULL;
1604 	}
1605 
1606 	return err;
1607 }
1608 
1609 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1610 {
1611 	const struct net_device_ops *ops = dev->netdev_ops;
1612 	int ret;
1613 
1614 	ASSERT_RTNL();
1615 	dev_addr_check(dev);
1616 
1617 	if (!netif_device_present(dev)) {
1618 		/* may be detached because parent is runtime-suspended */
1619 		if (dev->dev.parent)
1620 			pm_runtime_resume(dev->dev.parent);
1621 		if (!netif_device_present(dev))
1622 			return -ENODEV;
1623 	}
1624 
1625 	/* Block netpoll from trying to do any rx path servicing.
1626 	 * If we don't do this there is a chance ndo_poll_controller
1627 	 * or ndo_poll may be running while we open the device
1628 	 */
1629 	netpoll_poll_disable(dev);
1630 
1631 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1632 	ret = notifier_to_errno(ret);
1633 	if (ret)
1634 		return ret;
1635 
1636 	set_bit(__LINK_STATE_START, &dev->state);
1637 
1638 	netdev_ops_assert_locked(dev);
1639 
1640 	if (ops->ndo_validate_addr)
1641 		ret = ops->ndo_validate_addr(dev);
1642 
1643 	if (!ret && ops->ndo_open)
1644 		ret = ops->ndo_open(dev);
1645 
1646 	netpoll_poll_enable(dev);
1647 
1648 	if (ret)
1649 		clear_bit(__LINK_STATE_START, &dev->state);
1650 	else {
1651 		netif_set_up(dev, true);
1652 		dev_set_rx_mode(dev);
1653 		dev_activate(dev);
1654 		add_device_randomness(dev->dev_addr, dev->addr_len);
1655 	}
1656 
1657 	return ret;
1658 }
1659 
1660 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1661 {
1662 	int ret;
1663 
1664 	if (dev->flags & IFF_UP)
1665 		return 0;
1666 
1667 	ret = __dev_open(dev, extack);
1668 	if (ret < 0)
1669 		return ret;
1670 
1671 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1672 	call_netdevice_notifiers(NETDEV_UP, dev);
1673 
1674 	return ret;
1675 }
1676 
1677 static void __dev_close_many(struct list_head *head)
1678 {
1679 	struct net_device *dev;
1680 
1681 	ASSERT_RTNL();
1682 	might_sleep();
1683 
1684 	list_for_each_entry(dev, head, close_list) {
1685 		/* Temporarily disable netpoll until the interface is down */
1686 		netpoll_poll_disable(dev);
1687 
1688 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1689 
1690 		clear_bit(__LINK_STATE_START, &dev->state);
1691 
1692 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1693 		 * can be even on different cpu. So just clear netif_running().
1694 		 *
1695 		 * dev->stop() will invoke napi_disable() on all of it's
1696 		 * napi_struct instances on this device.
1697 		 */
1698 		smp_mb__after_atomic(); /* Commit netif_running(). */
1699 	}
1700 
1701 	dev_deactivate_many(head);
1702 
1703 	list_for_each_entry(dev, head, close_list) {
1704 		const struct net_device_ops *ops = dev->netdev_ops;
1705 
1706 		/*
1707 		 *	Call the device specific close. This cannot fail.
1708 		 *	Only if device is UP
1709 		 *
1710 		 *	We allow it to be called even after a DETACH hot-plug
1711 		 *	event.
1712 		 */
1713 
1714 		netdev_ops_assert_locked(dev);
1715 
1716 		if (ops->ndo_stop)
1717 			ops->ndo_stop(dev);
1718 
1719 		netif_set_up(dev, false);
1720 		netpoll_poll_enable(dev);
1721 	}
1722 }
1723 
1724 static void __dev_close(struct net_device *dev)
1725 {
1726 	LIST_HEAD(single);
1727 
1728 	list_add(&dev->close_list, &single);
1729 	__dev_close_many(&single);
1730 	list_del(&single);
1731 }
1732 
1733 void dev_close_many(struct list_head *head, bool unlink)
1734 {
1735 	struct net_device *dev, *tmp;
1736 
1737 	/* Remove the devices that don't need to be closed */
1738 	list_for_each_entry_safe(dev, tmp, head, close_list)
1739 		if (!(dev->flags & IFF_UP))
1740 			list_del_init(&dev->close_list);
1741 
1742 	__dev_close_many(head);
1743 
1744 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1745 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1746 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1747 		if (unlink)
1748 			list_del_init(&dev->close_list);
1749 	}
1750 }
1751 EXPORT_SYMBOL(dev_close_many);
1752 
1753 void netif_close(struct net_device *dev)
1754 {
1755 	if (dev->flags & IFF_UP) {
1756 		LIST_HEAD(single);
1757 
1758 		list_add(&dev->close_list, &single);
1759 		dev_close_many(&single, true);
1760 		list_del(&single);
1761 	}
1762 }
1763 
1764 int dev_setup_tc(struct net_device *dev, enum tc_setup_type type,
1765 		 void *type_data)
1766 {
1767 	const struct net_device_ops *ops = dev->netdev_ops;
1768 	int ret;
1769 
1770 	ASSERT_RTNL();
1771 
1772 	if (!ops->ndo_setup_tc)
1773 		return -EOPNOTSUPP;
1774 
1775 	netdev_lock_ops(dev);
1776 	ret = ops->ndo_setup_tc(dev, type, type_data);
1777 	netdev_unlock_ops(dev);
1778 
1779 	return ret;
1780 }
1781 EXPORT_SYMBOL(dev_setup_tc);
1782 
1783 void netif_disable_lro(struct net_device *dev)
1784 {
1785 	struct net_device *lower_dev;
1786 	struct list_head *iter;
1787 
1788 	dev->wanted_features &= ~NETIF_F_LRO;
1789 	netdev_update_features(dev);
1790 
1791 	if (unlikely(dev->features & NETIF_F_LRO))
1792 		netdev_WARN(dev, "failed to disable LRO!\n");
1793 
1794 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1795 		netdev_lock_ops(lower_dev);
1796 		netif_disable_lro(lower_dev);
1797 		netdev_unlock_ops(lower_dev);
1798 	}
1799 }
1800 
1801 /**
1802  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1803  *	@dev: device
1804  *
1805  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1806  *	called under RTNL.  This is needed if Generic XDP is installed on
1807  *	the device.
1808  */
1809 static void dev_disable_gro_hw(struct net_device *dev)
1810 {
1811 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1812 	netdev_update_features(dev);
1813 
1814 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1815 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1816 }
1817 
1818 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1819 {
1820 #define N(val) 						\
1821 	case NETDEV_##val:				\
1822 		return "NETDEV_" __stringify(val);
1823 	switch (cmd) {
1824 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1825 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1826 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1827 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1828 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1829 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1830 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1831 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1832 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1833 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1834 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1835 	N(XDP_FEAT_CHANGE)
1836 	}
1837 #undef N
1838 	return "UNKNOWN_NETDEV_EVENT";
1839 }
1840 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1841 
1842 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1843 				   struct net_device *dev)
1844 {
1845 	struct netdev_notifier_info info = {
1846 		.dev = dev,
1847 	};
1848 
1849 	return nb->notifier_call(nb, val, &info);
1850 }
1851 
1852 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1853 					     struct net_device *dev)
1854 {
1855 	int err;
1856 
1857 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1858 	err = notifier_to_errno(err);
1859 	if (err)
1860 		return err;
1861 
1862 	if (!(dev->flags & IFF_UP))
1863 		return 0;
1864 
1865 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1866 	return 0;
1867 }
1868 
1869 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1870 						struct net_device *dev)
1871 {
1872 	if (dev->flags & IFF_UP) {
1873 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1874 					dev);
1875 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1876 	}
1877 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1878 }
1879 
1880 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1881 						 struct net *net)
1882 {
1883 	struct net_device *dev;
1884 	int err;
1885 
1886 	for_each_netdev(net, dev) {
1887 		err = call_netdevice_register_notifiers(nb, dev);
1888 		if (err)
1889 			goto rollback;
1890 	}
1891 	return 0;
1892 
1893 rollback:
1894 	for_each_netdev_continue_reverse(net, dev)
1895 		call_netdevice_unregister_notifiers(nb, dev);
1896 	return err;
1897 }
1898 
1899 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1900 						    struct net *net)
1901 {
1902 	struct net_device *dev;
1903 
1904 	for_each_netdev(net, dev)
1905 		call_netdevice_unregister_notifiers(nb, dev);
1906 }
1907 
1908 static int dev_boot_phase = 1;
1909 
1910 /**
1911  * register_netdevice_notifier - register a network notifier block
1912  * @nb: notifier
1913  *
1914  * Register a notifier to be called when network device events occur.
1915  * The notifier passed is linked into the kernel structures and must
1916  * not be reused until it has been unregistered. A negative errno code
1917  * is returned on a failure.
1918  *
1919  * When registered all registration and up events are replayed
1920  * to the new notifier to allow device to have a race free
1921  * view of the network device list.
1922  */
1923 
1924 int register_netdevice_notifier(struct notifier_block *nb)
1925 {
1926 	struct net *net;
1927 	int err;
1928 
1929 	/* Close race with setup_net() and cleanup_net() */
1930 	down_write(&pernet_ops_rwsem);
1931 
1932 	/* When RTNL is removed, we need protection for netdev_chain. */
1933 	rtnl_lock();
1934 
1935 	err = raw_notifier_chain_register(&netdev_chain, nb);
1936 	if (err)
1937 		goto unlock;
1938 	if (dev_boot_phase)
1939 		goto unlock;
1940 	for_each_net(net) {
1941 		__rtnl_net_lock(net);
1942 		err = call_netdevice_register_net_notifiers(nb, net);
1943 		__rtnl_net_unlock(net);
1944 		if (err)
1945 			goto rollback;
1946 	}
1947 
1948 unlock:
1949 	rtnl_unlock();
1950 	up_write(&pernet_ops_rwsem);
1951 	return err;
1952 
1953 rollback:
1954 	for_each_net_continue_reverse(net) {
1955 		__rtnl_net_lock(net);
1956 		call_netdevice_unregister_net_notifiers(nb, net);
1957 		__rtnl_net_unlock(net);
1958 	}
1959 
1960 	raw_notifier_chain_unregister(&netdev_chain, nb);
1961 	goto unlock;
1962 }
1963 EXPORT_SYMBOL(register_netdevice_notifier);
1964 
1965 /**
1966  * unregister_netdevice_notifier - unregister a network notifier block
1967  * @nb: notifier
1968  *
1969  * Unregister a notifier previously registered by
1970  * register_netdevice_notifier(). The notifier is unlinked into the
1971  * kernel structures and may then be reused. A negative errno code
1972  * is returned on a failure.
1973  *
1974  * After unregistering unregister and down device events are synthesized
1975  * for all devices on the device list to the removed notifier to remove
1976  * the need for special case cleanup code.
1977  */
1978 
1979 int unregister_netdevice_notifier(struct notifier_block *nb)
1980 {
1981 	struct net *net;
1982 	int err;
1983 
1984 	/* Close race with setup_net() and cleanup_net() */
1985 	down_write(&pernet_ops_rwsem);
1986 	rtnl_lock();
1987 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1988 	if (err)
1989 		goto unlock;
1990 
1991 	for_each_net(net) {
1992 		__rtnl_net_lock(net);
1993 		call_netdevice_unregister_net_notifiers(nb, net);
1994 		__rtnl_net_unlock(net);
1995 	}
1996 
1997 unlock:
1998 	rtnl_unlock();
1999 	up_write(&pernet_ops_rwsem);
2000 	return err;
2001 }
2002 EXPORT_SYMBOL(unregister_netdevice_notifier);
2003 
2004 static int __register_netdevice_notifier_net(struct net *net,
2005 					     struct notifier_block *nb,
2006 					     bool ignore_call_fail)
2007 {
2008 	int err;
2009 
2010 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
2011 	if (err)
2012 		return err;
2013 	if (dev_boot_phase)
2014 		return 0;
2015 
2016 	err = call_netdevice_register_net_notifiers(nb, net);
2017 	if (err && !ignore_call_fail)
2018 		goto chain_unregister;
2019 
2020 	return 0;
2021 
2022 chain_unregister:
2023 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2024 	return err;
2025 }
2026 
2027 static int __unregister_netdevice_notifier_net(struct net *net,
2028 					       struct notifier_block *nb)
2029 {
2030 	int err;
2031 
2032 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2033 	if (err)
2034 		return err;
2035 
2036 	call_netdevice_unregister_net_notifiers(nb, net);
2037 	return 0;
2038 }
2039 
2040 /**
2041  * register_netdevice_notifier_net - register a per-netns network notifier block
2042  * @net: network namespace
2043  * @nb: notifier
2044  *
2045  * Register a notifier to be called when network device events occur.
2046  * The notifier passed is linked into the kernel structures and must
2047  * not be reused until it has been unregistered. A negative errno code
2048  * is returned on a failure.
2049  *
2050  * When registered all registration and up events are replayed
2051  * to the new notifier to allow device to have a race free
2052  * view of the network device list.
2053  */
2054 
2055 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2056 {
2057 	int err;
2058 
2059 	rtnl_net_lock(net);
2060 	err = __register_netdevice_notifier_net(net, nb, false);
2061 	rtnl_net_unlock(net);
2062 
2063 	return err;
2064 }
2065 EXPORT_SYMBOL(register_netdevice_notifier_net);
2066 
2067 /**
2068  * unregister_netdevice_notifier_net - unregister a per-netns
2069  *                                     network notifier block
2070  * @net: network namespace
2071  * @nb: notifier
2072  *
2073  * Unregister a notifier previously registered by
2074  * register_netdevice_notifier_net(). The notifier is unlinked from the
2075  * kernel structures and may then be reused. A negative errno code
2076  * is returned on a failure.
2077  *
2078  * After unregistering unregister and down device events are synthesized
2079  * for all devices on the device list to the removed notifier to remove
2080  * the need for special case cleanup code.
2081  */
2082 
2083 int unregister_netdevice_notifier_net(struct net *net,
2084 				      struct notifier_block *nb)
2085 {
2086 	int err;
2087 
2088 	rtnl_net_lock(net);
2089 	err = __unregister_netdevice_notifier_net(net, nb);
2090 	rtnl_net_unlock(net);
2091 
2092 	return err;
2093 }
2094 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2095 
2096 static void __move_netdevice_notifier_net(struct net *src_net,
2097 					  struct net *dst_net,
2098 					  struct notifier_block *nb)
2099 {
2100 	__unregister_netdevice_notifier_net(src_net, nb);
2101 	__register_netdevice_notifier_net(dst_net, nb, true);
2102 }
2103 
2104 static void rtnl_net_dev_lock(struct net_device *dev)
2105 {
2106 	bool again;
2107 
2108 	do {
2109 		struct net *net;
2110 
2111 		again = false;
2112 
2113 		/* netns might be being dismantled. */
2114 		rcu_read_lock();
2115 		net = dev_net_rcu(dev);
2116 		net_passive_inc(net);
2117 		rcu_read_unlock();
2118 
2119 		rtnl_net_lock(net);
2120 
2121 #ifdef CONFIG_NET_NS
2122 		/* dev might have been moved to another netns. */
2123 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2124 			rtnl_net_unlock(net);
2125 			net_passive_dec(net);
2126 			again = true;
2127 		}
2128 #endif
2129 	} while (again);
2130 }
2131 
2132 static void rtnl_net_dev_unlock(struct net_device *dev)
2133 {
2134 	struct net *net = dev_net(dev);
2135 
2136 	rtnl_net_unlock(net);
2137 	net_passive_dec(net);
2138 }
2139 
2140 int register_netdevice_notifier_dev_net(struct net_device *dev,
2141 					struct notifier_block *nb,
2142 					struct netdev_net_notifier *nn)
2143 {
2144 	int err;
2145 
2146 	rtnl_net_dev_lock(dev);
2147 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2148 	if (!err) {
2149 		nn->nb = nb;
2150 		list_add(&nn->list, &dev->net_notifier_list);
2151 	}
2152 	rtnl_net_dev_unlock(dev);
2153 
2154 	return err;
2155 }
2156 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2157 
2158 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2159 					  struct notifier_block *nb,
2160 					  struct netdev_net_notifier *nn)
2161 {
2162 	int err;
2163 
2164 	rtnl_net_dev_lock(dev);
2165 	list_del(&nn->list);
2166 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2167 	rtnl_net_dev_unlock(dev);
2168 
2169 	return err;
2170 }
2171 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2172 
2173 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2174 					     struct net *net)
2175 {
2176 	struct netdev_net_notifier *nn;
2177 
2178 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2179 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2180 }
2181 
2182 /**
2183  *	call_netdevice_notifiers_info - call all network notifier blocks
2184  *	@val: value passed unmodified to notifier function
2185  *	@info: notifier information data
2186  *
2187  *	Call all network notifier blocks.  Parameters and return value
2188  *	are as for raw_notifier_call_chain().
2189  */
2190 
2191 int call_netdevice_notifiers_info(unsigned long val,
2192 				  struct netdev_notifier_info *info)
2193 {
2194 	struct net *net = dev_net(info->dev);
2195 	int ret;
2196 
2197 	ASSERT_RTNL();
2198 
2199 	/* Run per-netns notifier block chain first, then run the global one.
2200 	 * Hopefully, one day, the global one is going to be removed after
2201 	 * all notifier block registrators get converted to be per-netns.
2202 	 */
2203 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2204 	if (ret & NOTIFY_STOP_MASK)
2205 		return ret;
2206 	return raw_notifier_call_chain(&netdev_chain, val, info);
2207 }
2208 
2209 /**
2210  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2211  *	                                       for and rollback on error
2212  *	@val_up: value passed unmodified to notifier function
2213  *	@val_down: value passed unmodified to the notifier function when
2214  *	           recovering from an error on @val_up
2215  *	@info: notifier information data
2216  *
2217  *	Call all per-netns network notifier blocks, but not notifier blocks on
2218  *	the global notifier chain. Parameters and return value are as for
2219  *	raw_notifier_call_chain_robust().
2220  */
2221 
2222 static int
2223 call_netdevice_notifiers_info_robust(unsigned long val_up,
2224 				     unsigned long val_down,
2225 				     struct netdev_notifier_info *info)
2226 {
2227 	struct net *net = dev_net(info->dev);
2228 
2229 	ASSERT_RTNL();
2230 
2231 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2232 					      val_up, val_down, info);
2233 }
2234 
2235 static int call_netdevice_notifiers_extack(unsigned long val,
2236 					   struct net_device *dev,
2237 					   struct netlink_ext_ack *extack)
2238 {
2239 	struct netdev_notifier_info info = {
2240 		.dev = dev,
2241 		.extack = extack,
2242 	};
2243 
2244 	return call_netdevice_notifiers_info(val, &info);
2245 }
2246 
2247 /**
2248  *	call_netdevice_notifiers - call all network notifier blocks
2249  *      @val: value passed unmodified to notifier function
2250  *      @dev: net_device pointer passed unmodified to notifier function
2251  *
2252  *	Call all network notifier blocks.  Parameters and return value
2253  *	are as for raw_notifier_call_chain().
2254  */
2255 
2256 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2257 {
2258 	return call_netdevice_notifiers_extack(val, dev, NULL);
2259 }
2260 EXPORT_SYMBOL(call_netdevice_notifiers);
2261 
2262 /**
2263  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2264  *	@val: value passed unmodified to notifier function
2265  *	@dev: net_device pointer passed unmodified to notifier function
2266  *	@arg: additional u32 argument passed to the notifier function
2267  *
2268  *	Call all network notifier blocks.  Parameters and return value
2269  *	are as for raw_notifier_call_chain().
2270  */
2271 static int call_netdevice_notifiers_mtu(unsigned long val,
2272 					struct net_device *dev, u32 arg)
2273 {
2274 	struct netdev_notifier_info_ext info = {
2275 		.info.dev = dev,
2276 		.ext.mtu = arg,
2277 	};
2278 
2279 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2280 
2281 	return call_netdevice_notifiers_info(val, &info.info);
2282 }
2283 
2284 #ifdef CONFIG_NET_INGRESS
2285 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2286 
2287 void net_inc_ingress_queue(void)
2288 {
2289 	static_branch_inc(&ingress_needed_key);
2290 }
2291 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2292 
2293 void net_dec_ingress_queue(void)
2294 {
2295 	static_branch_dec(&ingress_needed_key);
2296 }
2297 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2298 #endif
2299 
2300 #ifdef CONFIG_NET_EGRESS
2301 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2302 
2303 void net_inc_egress_queue(void)
2304 {
2305 	static_branch_inc(&egress_needed_key);
2306 }
2307 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2308 
2309 void net_dec_egress_queue(void)
2310 {
2311 	static_branch_dec(&egress_needed_key);
2312 }
2313 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2314 #endif
2315 
2316 #ifdef CONFIG_NET_CLS_ACT
2317 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2318 EXPORT_SYMBOL(tcf_sw_enabled_key);
2319 #endif
2320 
2321 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2322 EXPORT_SYMBOL(netstamp_needed_key);
2323 #ifdef CONFIG_JUMP_LABEL
2324 static atomic_t netstamp_needed_deferred;
2325 static atomic_t netstamp_wanted;
2326 static void netstamp_clear(struct work_struct *work)
2327 {
2328 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2329 	int wanted;
2330 
2331 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2332 	if (wanted > 0)
2333 		static_branch_enable(&netstamp_needed_key);
2334 	else
2335 		static_branch_disable(&netstamp_needed_key);
2336 }
2337 static DECLARE_WORK(netstamp_work, netstamp_clear);
2338 #endif
2339 
2340 void net_enable_timestamp(void)
2341 {
2342 #ifdef CONFIG_JUMP_LABEL
2343 	int wanted = atomic_read(&netstamp_wanted);
2344 
2345 	while (wanted > 0) {
2346 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2347 			return;
2348 	}
2349 	atomic_inc(&netstamp_needed_deferred);
2350 	schedule_work(&netstamp_work);
2351 #else
2352 	static_branch_inc(&netstamp_needed_key);
2353 #endif
2354 }
2355 EXPORT_SYMBOL(net_enable_timestamp);
2356 
2357 void net_disable_timestamp(void)
2358 {
2359 #ifdef CONFIG_JUMP_LABEL
2360 	int wanted = atomic_read(&netstamp_wanted);
2361 
2362 	while (wanted > 1) {
2363 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2364 			return;
2365 	}
2366 	atomic_dec(&netstamp_needed_deferred);
2367 	schedule_work(&netstamp_work);
2368 #else
2369 	static_branch_dec(&netstamp_needed_key);
2370 #endif
2371 }
2372 EXPORT_SYMBOL(net_disable_timestamp);
2373 
2374 static inline void net_timestamp_set(struct sk_buff *skb)
2375 {
2376 	skb->tstamp = 0;
2377 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2378 	if (static_branch_unlikely(&netstamp_needed_key))
2379 		skb->tstamp = ktime_get_real();
2380 }
2381 
2382 #define net_timestamp_check(COND, SKB)				\
2383 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2384 		if ((COND) && !(SKB)->tstamp)			\
2385 			(SKB)->tstamp = ktime_get_real();	\
2386 	}							\
2387 
2388 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2389 {
2390 	return __is_skb_forwardable(dev, skb, true);
2391 }
2392 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2393 
2394 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2395 			      bool check_mtu)
2396 {
2397 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2398 
2399 	if (likely(!ret)) {
2400 		skb->protocol = eth_type_trans(skb, dev);
2401 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2402 	}
2403 
2404 	return ret;
2405 }
2406 
2407 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2408 {
2409 	return __dev_forward_skb2(dev, skb, true);
2410 }
2411 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2412 
2413 /**
2414  * dev_forward_skb - loopback an skb to another netif
2415  *
2416  * @dev: destination network device
2417  * @skb: buffer to forward
2418  *
2419  * return values:
2420  *	NET_RX_SUCCESS	(no congestion)
2421  *	NET_RX_DROP     (packet was dropped, but freed)
2422  *
2423  * dev_forward_skb can be used for injecting an skb from the
2424  * start_xmit function of one device into the receive queue
2425  * of another device.
2426  *
2427  * The receiving device may be in another namespace, so
2428  * we have to clear all information in the skb that could
2429  * impact namespace isolation.
2430  */
2431 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2432 {
2433 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2434 }
2435 EXPORT_SYMBOL_GPL(dev_forward_skb);
2436 
2437 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2438 {
2439 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2440 }
2441 
2442 static inline int deliver_skb(struct sk_buff *skb,
2443 			      struct packet_type *pt_prev,
2444 			      struct net_device *orig_dev)
2445 {
2446 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2447 		return -ENOMEM;
2448 	refcount_inc(&skb->users);
2449 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2450 }
2451 
2452 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2453 					  struct packet_type **pt,
2454 					  struct net_device *orig_dev,
2455 					  __be16 type,
2456 					  struct list_head *ptype_list)
2457 {
2458 	struct packet_type *ptype, *pt_prev = *pt;
2459 
2460 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2461 		if (ptype->type != type)
2462 			continue;
2463 		if (pt_prev)
2464 			deliver_skb(skb, pt_prev, orig_dev);
2465 		pt_prev = ptype;
2466 	}
2467 	*pt = pt_prev;
2468 }
2469 
2470 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2471 {
2472 	if (!ptype->af_packet_priv || !skb->sk)
2473 		return false;
2474 
2475 	if (ptype->id_match)
2476 		return ptype->id_match(ptype, skb->sk);
2477 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2478 		return true;
2479 
2480 	return false;
2481 }
2482 
2483 /**
2484  * dev_nit_active - return true if any network interface taps are in use
2485  *
2486  * @dev: network device to check for the presence of taps
2487  */
2488 bool dev_nit_active(struct net_device *dev)
2489 {
2490 	return !list_empty(&net_hotdata.ptype_all) ||
2491 	       !list_empty(&dev->ptype_all);
2492 }
2493 EXPORT_SYMBOL_GPL(dev_nit_active);
2494 
2495 /*
2496  *	Support routine. Sends outgoing frames to any network
2497  *	taps currently in use.
2498  */
2499 
2500 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2501 {
2502 	struct list_head *ptype_list = &net_hotdata.ptype_all;
2503 	struct packet_type *ptype, *pt_prev = NULL;
2504 	struct sk_buff *skb2 = NULL;
2505 
2506 	rcu_read_lock();
2507 again:
2508 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2509 		if (READ_ONCE(ptype->ignore_outgoing))
2510 			continue;
2511 
2512 		/* Never send packets back to the socket
2513 		 * they originated from - MvS ([email protected])
2514 		 */
2515 		if (skb_loop_sk(ptype, skb))
2516 			continue;
2517 
2518 		if (pt_prev) {
2519 			deliver_skb(skb2, pt_prev, skb->dev);
2520 			pt_prev = ptype;
2521 			continue;
2522 		}
2523 
2524 		/* need to clone skb, done only once */
2525 		skb2 = skb_clone(skb, GFP_ATOMIC);
2526 		if (!skb2)
2527 			goto out_unlock;
2528 
2529 		net_timestamp_set(skb2);
2530 
2531 		/* skb->nh should be correctly
2532 		 * set by sender, so that the second statement is
2533 		 * just protection against buggy protocols.
2534 		 */
2535 		skb_reset_mac_header(skb2);
2536 
2537 		if (skb_network_header(skb2) < skb2->data ||
2538 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2539 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2540 					     ntohs(skb2->protocol),
2541 					     dev->name);
2542 			skb_reset_network_header(skb2);
2543 		}
2544 
2545 		skb2->transport_header = skb2->network_header;
2546 		skb2->pkt_type = PACKET_OUTGOING;
2547 		pt_prev = ptype;
2548 	}
2549 
2550 	if (ptype_list == &net_hotdata.ptype_all) {
2551 		ptype_list = &dev->ptype_all;
2552 		goto again;
2553 	}
2554 out_unlock:
2555 	if (pt_prev) {
2556 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2557 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2558 		else
2559 			kfree_skb(skb2);
2560 	}
2561 	rcu_read_unlock();
2562 }
2563 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2564 
2565 /**
2566  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2567  * @dev: Network device
2568  * @txq: number of queues available
2569  *
2570  * If real_num_tx_queues is changed the tc mappings may no longer be
2571  * valid. To resolve this verify the tc mapping remains valid and if
2572  * not NULL the mapping. With no priorities mapping to this
2573  * offset/count pair it will no longer be used. In the worst case TC0
2574  * is invalid nothing can be done so disable priority mappings. If is
2575  * expected that drivers will fix this mapping if they can before
2576  * calling netif_set_real_num_tx_queues.
2577  */
2578 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2579 {
2580 	int i;
2581 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2582 
2583 	/* If TC0 is invalidated disable TC mapping */
2584 	if (tc->offset + tc->count > txq) {
2585 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2586 		dev->num_tc = 0;
2587 		return;
2588 	}
2589 
2590 	/* Invalidated prio to tc mappings set to TC0 */
2591 	for (i = 1; i < TC_BITMASK + 1; i++) {
2592 		int q = netdev_get_prio_tc_map(dev, i);
2593 
2594 		tc = &dev->tc_to_txq[q];
2595 		if (tc->offset + tc->count > txq) {
2596 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2597 				    i, q);
2598 			netdev_set_prio_tc_map(dev, i, 0);
2599 		}
2600 	}
2601 }
2602 
2603 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2604 {
2605 	if (dev->num_tc) {
2606 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2607 		int i;
2608 
2609 		/* walk through the TCs and see if it falls into any of them */
2610 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2611 			if ((txq - tc->offset) < tc->count)
2612 				return i;
2613 		}
2614 
2615 		/* didn't find it, just return -1 to indicate no match */
2616 		return -1;
2617 	}
2618 
2619 	return 0;
2620 }
2621 EXPORT_SYMBOL(netdev_txq_to_tc);
2622 
2623 #ifdef CONFIG_XPS
2624 static struct static_key xps_needed __read_mostly;
2625 static struct static_key xps_rxqs_needed __read_mostly;
2626 static DEFINE_MUTEX(xps_map_mutex);
2627 #define xmap_dereference(P)		\
2628 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2629 
2630 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2631 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2632 {
2633 	struct xps_map *map = NULL;
2634 	int pos;
2635 
2636 	map = xmap_dereference(dev_maps->attr_map[tci]);
2637 	if (!map)
2638 		return false;
2639 
2640 	for (pos = map->len; pos--;) {
2641 		if (map->queues[pos] != index)
2642 			continue;
2643 
2644 		if (map->len > 1) {
2645 			map->queues[pos] = map->queues[--map->len];
2646 			break;
2647 		}
2648 
2649 		if (old_maps)
2650 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2651 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2652 		kfree_rcu(map, rcu);
2653 		return false;
2654 	}
2655 
2656 	return true;
2657 }
2658 
2659 static bool remove_xps_queue_cpu(struct net_device *dev,
2660 				 struct xps_dev_maps *dev_maps,
2661 				 int cpu, u16 offset, u16 count)
2662 {
2663 	int num_tc = dev_maps->num_tc;
2664 	bool active = false;
2665 	int tci;
2666 
2667 	for (tci = cpu * num_tc; num_tc--; tci++) {
2668 		int i, j;
2669 
2670 		for (i = count, j = offset; i--; j++) {
2671 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2672 				break;
2673 		}
2674 
2675 		active |= i < 0;
2676 	}
2677 
2678 	return active;
2679 }
2680 
2681 static void reset_xps_maps(struct net_device *dev,
2682 			   struct xps_dev_maps *dev_maps,
2683 			   enum xps_map_type type)
2684 {
2685 	static_key_slow_dec_cpuslocked(&xps_needed);
2686 	if (type == XPS_RXQS)
2687 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2688 
2689 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2690 
2691 	kfree_rcu(dev_maps, rcu);
2692 }
2693 
2694 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2695 			   u16 offset, u16 count)
2696 {
2697 	struct xps_dev_maps *dev_maps;
2698 	bool active = false;
2699 	int i, j;
2700 
2701 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2702 	if (!dev_maps)
2703 		return;
2704 
2705 	for (j = 0; j < dev_maps->nr_ids; j++)
2706 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2707 	if (!active)
2708 		reset_xps_maps(dev, dev_maps, type);
2709 
2710 	if (type == XPS_CPUS) {
2711 		for (i = offset + (count - 1); count--; i--)
2712 			netdev_queue_numa_node_write(
2713 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2714 	}
2715 }
2716 
2717 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2718 				   u16 count)
2719 {
2720 	if (!static_key_false(&xps_needed))
2721 		return;
2722 
2723 	cpus_read_lock();
2724 	mutex_lock(&xps_map_mutex);
2725 
2726 	if (static_key_false(&xps_rxqs_needed))
2727 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2728 
2729 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2730 
2731 	mutex_unlock(&xps_map_mutex);
2732 	cpus_read_unlock();
2733 }
2734 
2735 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2736 {
2737 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2738 }
2739 
2740 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2741 				      u16 index, bool is_rxqs_map)
2742 {
2743 	struct xps_map *new_map;
2744 	int alloc_len = XPS_MIN_MAP_ALLOC;
2745 	int i, pos;
2746 
2747 	for (pos = 0; map && pos < map->len; pos++) {
2748 		if (map->queues[pos] != index)
2749 			continue;
2750 		return map;
2751 	}
2752 
2753 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2754 	if (map) {
2755 		if (pos < map->alloc_len)
2756 			return map;
2757 
2758 		alloc_len = map->alloc_len * 2;
2759 	}
2760 
2761 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2762 	 *  map
2763 	 */
2764 	if (is_rxqs_map)
2765 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2766 	else
2767 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2768 				       cpu_to_node(attr_index));
2769 	if (!new_map)
2770 		return NULL;
2771 
2772 	for (i = 0; i < pos; i++)
2773 		new_map->queues[i] = map->queues[i];
2774 	new_map->alloc_len = alloc_len;
2775 	new_map->len = pos;
2776 
2777 	return new_map;
2778 }
2779 
2780 /* Copy xps maps at a given index */
2781 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2782 			      struct xps_dev_maps *new_dev_maps, int index,
2783 			      int tc, bool skip_tc)
2784 {
2785 	int i, tci = index * dev_maps->num_tc;
2786 	struct xps_map *map;
2787 
2788 	/* copy maps belonging to foreign traffic classes */
2789 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2790 		if (i == tc && skip_tc)
2791 			continue;
2792 
2793 		/* fill in the new device map from the old device map */
2794 		map = xmap_dereference(dev_maps->attr_map[tci]);
2795 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2796 	}
2797 }
2798 
2799 /* Must be called under cpus_read_lock */
2800 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2801 			  u16 index, enum xps_map_type type)
2802 {
2803 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2804 	const unsigned long *online_mask = NULL;
2805 	bool active = false, copy = false;
2806 	int i, j, tci, numa_node_id = -2;
2807 	int maps_sz, num_tc = 1, tc = 0;
2808 	struct xps_map *map, *new_map;
2809 	unsigned int nr_ids;
2810 
2811 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2812 
2813 	if (dev->num_tc) {
2814 		/* Do not allow XPS on subordinate device directly */
2815 		num_tc = dev->num_tc;
2816 		if (num_tc < 0)
2817 			return -EINVAL;
2818 
2819 		/* If queue belongs to subordinate dev use its map */
2820 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2821 
2822 		tc = netdev_txq_to_tc(dev, index);
2823 		if (tc < 0)
2824 			return -EINVAL;
2825 	}
2826 
2827 	mutex_lock(&xps_map_mutex);
2828 
2829 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2830 	if (type == XPS_RXQS) {
2831 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2832 		nr_ids = dev->num_rx_queues;
2833 	} else {
2834 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2835 		if (num_possible_cpus() > 1)
2836 			online_mask = cpumask_bits(cpu_online_mask);
2837 		nr_ids = nr_cpu_ids;
2838 	}
2839 
2840 	if (maps_sz < L1_CACHE_BYTES)
2841 		maps_sz = L1_CACHE_BYTES;
2842 
2843 	/* The old dev_maps could be larger or smaller than the one we're
2844 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2845 	 * between. We could try to be smart, but let's be safe instead and only
2846 	 * copy foreign traffic classes if the two map sizes match.
2847 	 */
2848 	if (dev_maps &&
2849 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2850 		copy = true;
2851 
2852 	/* allocate memory for queue storage */
2853 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2854 	     j < nr_ids;) {
2855 		if (!new_dev_maps) {
2856 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2857 			if (!new_dev_maps) {
2858 				mutex_unlock(&xps_map_mutex);
2859 				return -ENOMEM;
2860 			}
2861 
2862 			new_dev_maps->nr_ids = nr_ids;
2863 			new_dev_maps->num_tc = num_tc;
2864 		}
2865 
2866 		tci = j * num_tc + tc;
2867 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2868 
2869 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2870 		if (!map)
2871 			goto error;
2872 
2873 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2874 	}
2875 
2876 	if (!new_dev_maps)
2877 		goto out_no_new_maps;
2878 
2879 	if (!dev_maps) {
2880 		/* Increment static keys at most once per type */
2881 		static_key_slow_inc_cpuslocked(&xps_needed);
2882 		if (type == XPS_RXQS)
2883 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2884 	}
2885 
2886 	for (j = 0; j < nr_ids; j++) {
2887 		bool skip_tc = false;
2888 
2889 		tci = j * num_tc + tc;
2890 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2891 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2892 			/* add tx-queue to CPU/rx-queue maps */
2893 			int pos = 0;
2894 
2895 			skip_tc = true;
2896 
2897 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2898 			while ((pos < map->len) && (map->queues[pos] != index))
2899 				pos++;
2900 
2901 			if (pos == map->len)
2902 				map->queues[map->len++] = index;
2903 #ifdef CONFIG_NUMA
2904 			if (type == XPS_CPUS) {
2905 				if (numa_node_id == -2)
2906 					numa_node_id = cpu_to_node(j);
2907 				else if (numa_node_id != cpu_to_node(j))
2908 					numa_node_id = -1;
2909 			}
2910 #endif
2911 		}
2912 
2913 		if (copy)
2914 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2915 					  skip_tc);
2916 	}
2917 
2918 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2919 
2920 	/* Cleanup old maps */
2921 	if (!dev_maps)
2922 		goto out_no_old_maps;
2923 
2924 	for (j = 0; j < dev_maps->nr_ids; j++) {
2925 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2926 			map = xmap_dereference(dev_maps->attr_map[tci]);
2927 			if (!map)
2928 				continue;
2929 
2930 			if (copy) {
2931 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2932 				if (map == new_map)
2933 					continue;
2934 			}
2935 
2936 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2937 			kfree_rcu(map, rcu);
2938 		}
2939 	}
2940 
2941 	old_dev_maps = dev_maps;
2942 
2943 out_no_old_maps:
2944 	dev_maps = new_dev_maps;
2945 	active = true;
2946 
2947 out_no_new_maps:
2948 	if (type == XPS_CPUS)
2949 		/* update Tx queue numa node */
2950 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2951 					     (numa_node_id >= 0) ?
2952 					     numa_node_id : NUMA_NO_NODE);
2953 
2954 	if (!dev_maps)
2955 		goto out_no_maps;
2956 
2957 	/* removes tx-queue from unused CPUs/rx-queues */
2958 	for (j = 0; j < dev_maps->nr_ids; j++) {
2959 		tci = j * dev_maps->num_tc;
2960 
2961 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2962 			if (i == tc &&
2963 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2964 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2965 				continue;
2966 
2967 			active |= remove_xps_queue(dev_maps,
2968 						   copy ? old_dev_maps : NULL,
2969 						   tci, index);
2970 		}
2971 	}
2972 
2973 	if (old_dev_maps)
2974 		kfree_rcu(old_dev_maps, rcu);
2975 
2976 	/* free map if not active */
2977 	if (!active)
2978 		reset_xps_maps(dev, dev_maps, type);
2979 
2980 out_no_maps:
2981 	mutex_unlock(&xps_map_mutex);
2982 
2983 	return 0;
2984 error:
2985 	/* remove any maps that we added */
2986 	for (j = 0; j < nr_ids; j++) {
2987 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2988 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2989 			map = copy ?
2990 			      xmap_dereference(dev_maps->attr_map[tci]) :
2991 			      NULL;
2992 			if (new_map && new_map != map)
2993 				kfree(new_map);
2994 		}
2995 	}
2996 
2997 	mutex_unlock(&xps_map_mutex);
2998 
2999 	kfree(new_dev_maps);
3000 	return -ENOMEM;
3001 }
3002 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
3003 
3004 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3005 			u16 index)
3006 {
3007 	int ret;
3008 
3009 	cpus_read_lock();
3010 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
3011 	cpus_read_unlock();
3012 
3013 	return ret;
3014 }
3015 EXPORT_SYMBOL(netif_set_xps_queue);
3016 
3017 #endif
3018 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3019 {
3020 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3021 
3022 	/* Unbind any subordinate channels */
3023 	while (txq-- != &dev->_tx[0]) {
3024 		if (txq->sb_dev)
3025 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3026 	}
3027 }
3028 
3029 void netdev_reset_tc(struct net_device *dev)
3030 {
3031 #ifdef CONFIG_XPS
3032 	netif_reset_xps_queues_gt(dev, 0);
3033 #endif
3034 	netdev_unbind_all_sb_channels(dev);
3035 
3036 	/* Reset TC configuration of device */
3037 	dev->num_tc = 0;
3038 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3039 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3040 }
3041 EXPORT_SYMBOL(netdev_reset_tc);
3042 
3043 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3044 {
3045 	if (tc >= dev->num_tc)
3046 		return -EINVAL;
3047 
3048 #ifdef CONFIG_XPS
3049 	netif_reset_xps_queues(dev, offset, count);
3050 #endif
3051 	dev->tc_to_txq[tc].count = count;
3052 	dev->tc_to_txq[tc].offset = offset;
3053 	return 0;
3054 }
3055 EXPORT_SYMBOL(netdev_set_tc_queue);
3056 
3057 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3058 {
3059 	if (num_tc > TC_MAX_QUEUE)
3060 		return -EINVAL;
3061 
3062 #ifdef CONFIG_XPS
3063 	netif_reset_xps_queues_gt(dev, 0);
3064 #endif
3065 	netdev_unbind_all_sb_channels(dev);
3066 
3067 	dev->num_tc = num_tc;
3068 	return 0;
3069 }
3070 EXPORT_SYMBOL(netdev_set_num_tc);
3071 
3072 void netdev_unbind_sb_channel(struct net_device *dev,
3073 			      struct net_device *sb_dev)
3074 {
3075 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3076 
3077 #ifdef CONFIG_XPS
3078 	netif_reset_xps_queues_gt(sb_dev, 0);
3079 #endif
3080 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3081 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3082 
3083 	while (txq-- != &dev->_tx[0]) {
3084 		if (txq->sb_dev == sb_dev)
3085 			txq->sb_dev = NULL;
3086 	}
3087 }
3088 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3089 
3090 int netdev_bind_sb_channel_queue(struct net_device *dev,
3091 				 struct net_device *sb_dev,
3092 				 u8 tc, u16 count, u16 offset)
3093 {
3094 	/* Make certain the sb_dev and dev are already configured */
3095 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3096 		return -EINVAL;
3097 
3098 	/* We cannot hand out queues we don't have */
3099 	if ((offset + count) > dev->real_num_tx_queues)
3100 		return -EINVAL;
3101 
3102 	/* Record the mapping */
3103 	sb_dev->tc_to_txq[tc].count = count;
3104 	sb_dev->tc_to_txq[tc].offset = offset;
3105 
3106 	/* Provide a way for Tx queue to find the tc_to_txq map or
3107 	 * XPS map for itself.
3108 	 */
3109 	while (count--)
3110 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3111 
3112 	return 0;
3113 }
3114 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3115 
3116 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3117 {
3118 	/* Do not use a multiqueue device to represent a subordinate channel */
3119 	if (netif_is_multiqueue(dev))
3120 		return -ENODEV;
3121 
3122 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3123 	 * Channel 0 is meant to be "native" mode and used only to represent
3124 	 * the main root device. We allow writing 0 to reset the device back
3125 	 * to normal mode after being used as a subordinate channel.
3126 	 */
3127 	if (channel > S16_MAX)
3128 		return -EINVAL;
3129 
3130 	dev->num_tc = -channel;
3131 
3132 	return 0;
3133 }
3134 EXPORT_SYMBOL(netdev_set_sb_channel);
3135 
3136 /*
3137  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3138  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3139  */
3140 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3141 {
3142 	bool disabling;
3143 	int rc;
3144 
3145 	disabling = txq < dev->real_num_tx_queues;
3146 
3147 	if (txq < 1 || txq > dev->num_tx_queues)
3148 		return -EINVAL;
3149 
3150 	if (dev->reg_state == NETREG_REGISTERED ||
3151 	    dev->reg_state == NETREG_UNREGISTERING) {
3152 		ASSERT_RTNL();
3153 
3154 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3155 						  txq);
3156 		if (rc)
3157 			return rc;
3158 
3159 		if (dev->num_tc)
3160 			netif_setup_tc(dev, txq);
3161 
3162 		net_shaper_set_real_num_tx_queues(dev, txq);
3163 
3164 		dev_qdisc_change_real_num_tx(dev, txq);
3165 
3166 		dev->real_num_tx_queues = txq;
3167 
3168 		if (disabling) {
3169 			synchronize_net();
3170 			qdisc_reset_all_tx_gt(dev, txq);
3171 #ifdef CONFIG_XPS
3172 			netif_reset_xps_queues_gt(dev, txq);
3173 #endif
3174 		}
3175 	} else {
3176 		dev->real_num_tx_queues = txq;
3177 	}
3178 
3179 	return 0;
3180 }
3181 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3182 
3183 #ifdef CONFIG_SYSFS
3184 /**
3185  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3186  *	@dev: Network device
3187  *	@rxq: Actual number of RX queues
3188  *
3189  *	This must be called either with the rtnl_lock held or before
3190  *	registration of the net device.  Returns 0 on success, or a
3191  *	negative error code.  If called before registration, it always
3192  *	succeeds.
3193  */
3194 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3195 {
3196 	int rc;
3197 
3198 	if (rxq < 1 || rxq > dev->num_rx_queues)
3199 		return -EINVAL;
3200 
3201 	if (dev->reg_state == NETREG_REGISTERED) {
3202 		ASSERT_RTNL();
3203 
3204 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3205 						  rxq);
3206 		if (rc)
3207 			return rc;
3208 	}
3209 
3210 	dev->real_num_rx_queues = rxq;
3211 	return 0;
3212 }
3213 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3214 #endif
3215 
3216 /**
3217  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3218  *	@dev: Network device
3219  *	@txq: Actual number of TX queues
3220  *	@rxq: Actual number of RX queues
3221  *
3222  *	Set the real number of both TX and RX queues.
3223  *	Does nothing if the number of queues is already correct.
3224  */
3225 int netif_set_real_num_queues(struct net_device *dev,
3226 			      unsigned int txq, unsigned int rxq)
3227 {
3228 	unsigned int old_rxq = dev->real_num_rx_queues;
3229 	int err;
3230 
3231 	if (txq < 1 || txq > dev->num_tx_queues ||
3232 	    rxq < 1 || rxq > dev->num_rx_queues)
3233 		return -EINVAL;
3234 
3235 	/* Start from increases, so the error path only does decreases -
3236 	 * decreases can't fail.
3237 	 */
3238 	if (rxq > dev->real_num_rx_queues) {
3239 		err = netif_set_real_num_rx_queues(dev, rxq);
3240 		if (err)
3241 			return err;
3242 	}
3243 	if (txq > dev->real_num_tx_queues) {
3244 		err = netif_set_real_num_tx_queues(dev, txq);
3245 		if (err)
3246 			goto undo_rx;
3247 	}
3248 	if (rxq < dev->real_num_rx_queues)
3249 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3250 	if (txq < dev->real_num_tx_queues)
3251 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3252 
3253 	return 0;
3254 undo_rx:
3255 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3256 	return err;
3257 }
3258 EXPORT_SYMBOL(netif_set_real_num_queues);
3259 
3260 /**
3261  * netif_set_tso_max_size() - set the max size of TSO frames supported
3262  * @dev:	netdev to update
3263  * @size:	max skb->len of a TSO frame
3264  *
3265  * Set the limit on the size of TSO super-frames the device can handle.
3266  * Unless explicitly set the stack will assume the value of
3267  * %GSO_LEGACY_MAX_SIZE.
3268  */
3269 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3270 {
3271 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3272 	if (size < READ_ONCE(dev->gso_max_size))
3273 		netif_set_gso_max_size(dev, size);
3274 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3275 		netif_set_gso_ipv4_max_size(dev, size);
3276 }
3277 EXPORT_SYMBOL(netif_set_tso_max_size);
3278 
3279 /**
3280  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3281  * @dev:	netdev to update
3282  * @segs:	max number of TCP segments
3283  *
3284  * Set the limit on the number of TCP segments the device can generate from
3285  * a single TSO super-frame.
3286  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3287  */
3288 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3289 {
3290 	dev->tso_max_segs = segs;
3291 	if (segs < READ_ONCE(dev->gso_max_segs))
3292 		netif_set_gso_max_segs(dev, segs);
3293 }
3294 EXPORT_SYMBOL(netif_set_tso_max_segs);
3295 
3296 /**
3297  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3298  * @to:		netdev to update
3299  * @from:	netdev from which to copy the limits
3300  */
3301 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3302 {
3303 	netif_set_tso_max_size(to, from->tso_max_size);
3304 	netif_set_tso_max_segs(to, from->tso_max_segs);
3305 }
3306 EXPORT_SYMBOL(netif_inherit_tso_max);
3307 
3308 /**
3309  * netif_get_num_default_rss_queues - default number of RSS queues
3310  *
3311  * Default value is the number of physical cores if there are only 1 or 2, or
3312  * divided by 2 if there are more.
3313  */
3314 int netif_get_num_default_rss_queues(void)
3315 {
3316 	cpumask_var_t cpus;
3317 	int cpu, count = 0;
3318 
3319 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3320 		return 1;
3321 
3322 	cpumask_copy(cpus, cpu_online_mask);
3323 	for_each_cpu(cpu, cpus) {
3324 		++count;
3325 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3326 	}
3327 	free_cpumask_var(cpus);
3328 
3329 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3330 }
3331 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3332 
3333 static void __netif_reschedule(struct Qdisc *q)
3334 {
3335 	struct softnet_data *sd;
3336 	unsigned long flags;
3337 
3338 	local_irq_save(flags);
3339 	sd = this_cpu_ptr(&softnet_data);
3340 	q->next_sched = NULL;
3341 	*sd->output_queue_tailp = q;
3342 	sd->output_queue_tailp = &q->next_sched;
3343 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3344 	local_irq_restore(flags);
3345 }
3346 
3347 void __netif_schedule(struct Qdisc *q)
3348 {
3349 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3350 		__netif_reschedule(q);
3351 }
3352 EXPORT_SYMBOL(__netif_schedule);
3353 
3354 struct dev_kfree_skb_cb {
3355 	enum skb_drop_reason reason;
3356 };
3357 
3358 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3359 {
3360 	return (struct dev_kfree_skb_cb *)skb->cb;
3361 }
3362 
3363 void netif_schedule_queue(struct netdev_queue *txq)
3364 {
3365 	rcu_read_lock();
3366 	if (!netif_xmit_stopped(txq)) {
3367 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3368 
3369 		__netif_schedule(q);
3370 	}
3371 	rcu_read_unlock();
3372 }
3373 EXPORT_SYMBOL(netif_schedule_queue);
3374 
3375 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3376 {
3377 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3378 		struct Qdisc *q;
3379 
3380 		rcu_read_lock();
3381 		q = rcu_dereference(dev_queue->qdisc);
3382 		__netif_schedule(q);
3383 		rcu_read_unlock();
3384 	}
3385 }
3386 EXPORT_SYMBOL(netif_tx_wake_queue);
3387 
3388 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3389 {
3390 	unsigned long flags;
3391 
3392 	if (unlikely(!skb))
3393 		return;
3394 
3395 	if (likely(refcount_read(&skb->users) == 1)) {
3396 		smp_rmb();
3397 		refcount_set(&skb->users, 0);
3398 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3399 		return;
3400 	}
3401 	get_kfree_skb_cb(skb)->reason = reason;
3402 	local_irq_save(flags);
3403 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3404 	__this_cpu_write(softnet_data.completion_queue, skb);
3405 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3406 	local_irq_restore(flags);
3407 }
3408 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3409 
3410 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3411 {
3412 	if (in_hardirq() || irqs_disabled())
3413 		dev_kfree_skb_irq_reason(skb, reason);
3414 	else
3415 		kfree_skb_reason(skb, reason);
3416 }
3417 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3418 
3419 
3420 /**
3421  * netif_device_detach - mark device as removed
3422  * @dev: network device
3423  *
3424  * Mark device as removed from system and therefore no longer available.
3425  */
3426 void netif_device_detach(struct net_device *dev)
3427 {
3428 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3429 	    netif_running(dev)) {
3430 		netif_tx_stop_all_queues(dev);
3431 	}
3432 }
3433 EXPORT_SYMBOL(netif_device_detach);
3434 
3435 /**
3436  * netif_device_attach - mark device as attached
3437  * @dev: network device
3438  *
3439  * Mark device as attached from system and restart if needed.
3440  */
3441 void netif_device_attach(struct net_device *dev)
3442 {
3443 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3444 	    netif_running(dev)) {
3445 		netif_tx_wake_all_queues(dev);
3446 		netdev_watchdog_up(dev);
3447 	}
3448 }
3449 EXPORT_SYMBOL(netif_device_attach);
3450 
3451 /*
3452  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3453  * to be used as a distribution range.
3454  */
3455 static u16 skb_tx_hash(const struct net_device *dev,
3456 		       const struct net_device *sb_dev,
3457 		       struct sk_buff *skb)
3458 {
3459 	u32 hash;
3460 	u16 qoffset = 0;
3461 	u16 qcount = dev->real_num_tx_queues;
3462 
3463 	if (dev->num_tc) {
3464 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3465 
3466 		qoffset = sb_dev->tc_to_txq[tc].offset;
3467 		qcount = sb_dev->tc_to_txq[tc].count;
3468 		if (unlikely(!qcount)) {
3469 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3470 					     sb_dev->name, qoffset, tc);
3471 			qoffset = 0;
3472 			qcount = dev->real_num_tx_queues;
3473 		}
3474 	}
3475 
3476 	if (skb_rx_queue_recorded(skb)) {
3477 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3478 		hash = skb_get_rx_queue(skb);
3479 		if (hash >= qoffset)
3480 			hash -= qoffset;
3481 		while (unlikely(hash >= qcount))
3482 			hash -= qcount;
3483 		return hash + qoffset;
3484 	}
3485 
3486 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3487 }
3488 
3489 void skb_warn_bad_offload(const struct sk_buff *skb)
3490 {
3491 	static const netdev_features_t null_features;
3492 	struct net_device *dev = skb->dev;
3493 	const char *name = "";
3494 
3495 	if (!net_ratelimit())
3496 		return;
3497 
3498 	if (dev) {
3499 		if (dev->dev.parent)
3500 			name = dev_driver_string(dev->dev.parent);
3501 		else
3502 			name = netdev_name(dev);
3503 	}
3504 	skb_dump(KERN_WARNING, skb, false);
3505 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3506 	     name, dev ? &dev->features : &null_features,
3507 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3508 }
3509 
3510 /*
3511  * Invalidate hardware checksum when packet is to be mangled, and
3512  * complete checksum manually on outgoing path.
3513  */
3514 int skb_checksum_help(struct sk_buff *skb)
3515 {
3516 	__wsum csum;
3517 	int ret = 0, offset;
3518 
3519 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3520 		goto out_set_summed;
3521 
3522 	if (unlikely(skb_is_gso(skb))) {
3523 		skb_warn_bad_offload(skb);
3524 		return -EINVAL;
3525 	}
3526 
3527 	if (!skb_frags_readable(skb)) {
3528 		return -EFAULT;
3529 	}
3530 
3531 	/* Before computing a checksum, we should make sure no frag could
3532 	 * be modified by an external entity : checksum could be wrong.
3533 	 */
3534 	if (skb_has_shared_frag(skb)) {
3535 		ret = __skb_linearize(skb);
3536 		if (ret)
3537 			goto out;
3538 	}
3539 
3540 	offset = skb_checksum_start_offset(skb);
3541 	ret = -EINVAL;
3542 	if (unlikely(offset >= skb_headlen(skb))) {
3543 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3544 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3545 			  offset, skb_headlen(skb));
3546 		goto out;
3547 	}
3548 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3549 
3550 	offset += skb->csum_offset;
3551 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3552 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3553 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3554 			  offset + sizeof(__sum16), skb_headlen(skb));
3555 		goto out;
3556 	}
3557 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3558 	if (ret)
3559 		goto out;
3560 
3561 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3562 out_set_summed:
3563 	skb->ip_summed = CHECKSUM_NONE;
3564 out:
3565 	return ret;
3566 }
3567 EXPORT_SYMBOL(skb_checksum_help);
3568 
3569 int skb_crc32c_csum_help(struct sk_buff *skb)
3570 {
3571 	__le32 crc32c_csum;
3572 	int ret = 0, offset, start;
3573 
3574 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3575 		goto out;
3576 
3577 	if (unlikely(skb_is_gso(skb)))
3578 		goto out;
3579 
3580 	/* Before computing a checksum, we should make sure no frag could
3581 	 * be modified by an external entity : checksum could be wrong.
3582 	 */
3583 	if (unlikely(skb_has_shared_frag(skb))) {
3584 		ret = __skb_linearize(skb);
3585 		if (ret)
3586 			goto out;
3587 	}
3588 	start = skb_checksum_start_offset(skb);
3589 	offset = start + offsetof(struct sctphdr, checksum);
3590 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3591 		ret = -EINVAL;
3592 		goto out;
3593 	}
3594 
3595 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3596 	if (ret)
3597 		goto out;
3598 
3599 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3600 						  skb->len - start, ~(__u32)0,
3601 						  crc32c_csum_stub));
3602 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3603 	skb_reset_csum_not_inet(skb);
3604 out:
3605 	return ret;
3606 }
3607 EXPORT_SYMBOL(skb_crc32c_csum_help);
3608 
3609 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3610 {
3611 	__be16 type = skb->protocol;
3612 
3613 	/* Tunnel gso handlers can set protocol to ethernet. */
3614 	if (type == htons(ETH_P_TEB)) {
3615 		struct ethhdr *eth;
3616 
3617 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3618 			return 0;
3619 
3620 		eth = (struct ethhdr *)skb->data;
3621 		type = eth->h_proto;
3622 	}
3623 
3624 	return vlan_get_protocol_and_depth(skb, type, depth);
3625 }
3626 
3627 
3628 /* Take action when hardware reception checksum errors are detected. */
3629 #ifdef CONFIG_BUG
3630 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3631 {
3632 	netdev_err(dev, "hw csum failure\n");
3633 	skb_dump(KERN_ERR, skb, true);
3634 	dump_stack();
3635 }
3636 
3637 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3638 {
3639 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3640 }
3641 EXPORT_SYMBOL(netdev_rx_csum_fault);
3642 #endif
3643 
3644 /* XXX: check that highmem exists at all on the given machine. */
3645 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3646 {
3647 #ifdef CONFIG_HIGHMEM
3648 	int i;
3649 
3650 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3651 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3652 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3653 			struct page *page = skb_frag_page(frag);
3654 
3655 			if (page && PageHighMem(page))
3656 				return 1;
3657 		}
3658 	}
3659 #endif
3660 	return 0;
3661 }
3662 
3663 /* If MPLS offload request, verify we are testing hardware MPLS features
3664  * instead of standard features for the netdev.
3665  */
3666 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3667 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3668 					   netdev_features_t features,
3669 					   __be16 type)
3670 {
3671 	if (eth_p_mpls(type))
3672 		features &= skb->dev->mpls_features;
3673 
3674 	return features;
3675 }
3676 #else
3677 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3678 					   netdev_features_t features,
3679 					   __be16 type)
3680 {
3681 	return features;
3682 }
3683 #endif
3684 
3685 static netdev_features_t harmonize_features(struct sk_buff *skb,
3686 	netdev_features_t features)
3687 {
3688 	__be16 type;
3689 
3690 	type = skb_network_protocol(skb, NULL);
3691 	features = net_mpls_features(skb, features, type);
3692 
3693 	if (skb->ip_summed != CHECKSUM_NONE &&
3694 	    !can_checksum_protocol(features, type)) {
3695 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3696 	}
3697 	if (illegal_highdma(skb->dev, skb))
3698 		features &= ~NETIF_F_SG;
3699 
3700 	return features;
3701 }
3702 
3703 netdev_features_t passthru_features_check(struct sk_buff *skb,
3704 					  struct net_device *dev,
3705 					  netdev_features_t features)
3706 {
3707 	return features;
3708 }
3709 EXPORT_SYMBOL(passthru_features_check);
3710 
3711 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3712 					     struct net_device *dev,
3713 					     netdev_features_t features)
3714 {
3715 	return vlan_features_check(skb, features);
3716 }
3717 
3718 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3719 					    struct net_device *dev,
3720 					    netdev_features_t features)
3721 {
3722 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3723 
3724 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3725 		return features & ~NETIF_F_GSO_MASK;
3726 
3727 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3728 		return features & ~NETIF_F_GSO_MASK;
3729 
3730 	if (!skb_shinfo(skb)->gso_type) {
3731 		skb_warn_bad_offload(skb);
3732 		return features & ~NETIF_F_GSO_MASK;
3733 	}
3734 
3735 	/* Support for GSO partial features requires software
3736 	 * intervention before we can actually process the packets
3737 	 * so we need to strip support for any partial features now
3738 	 * and we can pull them back in after we have partially
3739 	 * segmented the frame.
3740 	 */
3741 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3742 		features &= ~dev->gso_partial_features;
3743 
3744 	/* Make sure to clear the IPv4 ID mangling feature if the
3745 	 * IPv4 header has the potential to be fragmented.
3746 	 */
3747 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3748 		struct iphdr *iph = skb->encapsulation ?
3749 				    inner_ip_hdr(skb) : ip_hdr(skb);
3750 
3751 		if (!(iph->frag_off & htons(IP_DF)))
3752 			features &= ~NETIF_F_TSO_MANGLEID;
3753 	}
3754 
3755 	return features;
3756 }
3757 
3758 netdev_features_t netif_skb_features(struct sk_buff *skb)
3759 {
3760 	struct net_device *dev = skb->dev;
3761 	netdev_features_t features = dev->features;
3762 
3763 	if (skb_is_gso(skb))
3764 		features = gso_features_check(skb, dev, features);
3765 
3766 	/* If encapsulation offload request, verify we are testing
3767 	 * hardware encapsulation features instead of standard
3768 	 * features for the netdev
3769 	 */
3770 	if (skb->encapsulation)
3771 		features &= dev->hw_enc_features;
3772 
3773 	if (skb_vlan_tagged(skb))
3774 		features = netdev_intersect_features(features,
3775 						     dev->vlan_features |
3776 						     NETIF_F_HW_VLAN_CTAG_TX |
3777 						     NETIF_F_HW_VLAN_STAG_TX);
3778 
3779 	if (dev->netdev_ops->ndo_features_check)
3780 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3781 								features);
3782 	else
3783 		features &= dflt_features_check(skb, dev, features);
3784 
3785 	return harmonize_features(skb, features);
3786 }
3787 EXPORT_SYMBOL(netif_skb_features);
3788 
3789 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3790 		    struct netdev_queue *txq, bool more)
3791 {
3792 	unsigned int len;
3793 	int rc;
3794 
3795 	if (dev_nit_active(dev))
3796 		dev_queue_xmit_nit(skb, dev);
3797 
3798 	len = skb->len;
3799 	trace_net_dev_start_xmit(skb, dev);
3800 	rc = netdev_start_xmit(skb, dev, txq, more);
3801 	trace_net_dev_xmit(skb, rc, dev, len);
3802 
3803 	return rc;
3804 }
3805 
3806 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3807 				    struct netdev_queue *txq, int *ret)
3808 {
3809 	struct sk_buff *skb = first;
3810 	int rc = NETDEV_TX_OK;
3811 
3812 	while (skb) {
3813 		struct sk_buff *next = skb->next;
3814 
3815 		skb_mark_not_on_list(skb);
3816 		rc = xmit_one(skb, dev, txq, next != NULL);
3817 		if (unlikely(!dev_xmit_complete(rc))) {
3818 			skb->next = next;
3819 			goto out;
3820 		}
3821 
3822 		skb = next;
3823 		if (netif_tx_queue_stopped(txq) && skb) {
3824 			rc = NETDEV_TX_BUSY;
3825 			break;
3826 		}
3827 	}
3828 
3829 out:
3830 	*ret = rc;
3831 	return skb;
3832 }
3833 
3834 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3835 					  netdev_features_t features)
3836 {
3837 	if (skb_vlan_tag_present(skb) &&
3838 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3839 		skb = __vlan_hwaccel_push_inside(skb);
3840 	return skb;
3841 }
3842 
3843 int skb_csum_hwoffload_help(struct sk_buff *skb,
3844 			    const netdev_features_t features)
3845 {
3846 	if (unlikely(skb_csum_is_sctp(skb)))
3847 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3848 			skb_crc32c_csum_help(skb);
3849 
3850 	if (features & NETIF_F_HW_CSUM)
3851 		return 0;
3852 
3853 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3854 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3855 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3856 		    !ipv6_has_hopopt_jumbo(skb))
3857 			goto sw_checksum;
3858 
3859 		switch (skb->csum_offset) {
3860 		case offsetof(struct tcphdr, check):
3861 		case offsetof(struct udphdr, check):
3862 			return 0;
3863 		}
3864 	}
3865 
3866 sw_checksum:
3867 	return skb_checksum_help(skb);
3868 }
3869 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3870 
3871 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3872 {
3873 	netdev_features_t features;
3874 
3875 	features = netif_skb_features(skb);
3876 	skb = validate_xmit_vlan(skb, features);
3877 	if (unlikely(!skb))
3878 		goto out_null;
3879 
3880 	skb = sk_validate_xmit_skb(skb, dev);
3881 	if (unlikely(!skb))
3882 		goto out_null;
3883 
3884 	if (netif_needs_gso(skb, features)) {
3885 		struct sk_buff *segs;
3886 
3887 		segs = skb_gso_segment(skb, features);
3888 		if (IS_ERR(segs)) {
3889 			goto out_kfree_skb;
3890 		} else if (segs) {
3891 			consume_skb(skb);
3892 			skb = segs;
3893 		}
3894 	} else {
3895 		if (skb_needs_linearize(skb, features) &&
3896 		    __skb_linearize(skb))
3897 			goto out_kfree_skb;
3898 
3899 		/* If packet is not checksummed and device does not
3900 		 * support checksumming for this protocol, complete
3901 		 * checksumming here.
3902 		 */
3903 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3904 			if (skb->encapsulation)
3905 				skb_set_inner_transport_header(skb,
3906 							       skb_checksum_start_offset(skb));
3907 			else
3908 				skb_set_transport_header(skb,
3909 							 skb_checksum_start_offset(skb));
3910 			if (skb_csum_hwoffload_help(skb, features))
3911 				goto out_kfree_skb;
3912 		}
3913 	}
3914 
3915 	skb = validate_xmit_xfrm(skb, features, again);
3916 
3917 	return skb;
3918 
3919 out_kfree_skb:
3920 	kfree_skb(skb);
3921 out_null:
3922 	dev_core_stats_tx_dropped_inc(dev);
3923 	return NULL;
3924 }
3925 
3926 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3927 {
3928 	struct sk_buff *next, *head = NULL, *tail;
3929 
3930 	for (; skb != NULL; skb = next) {
3931 		next = skb->next;
3932 		skb_mark_not_on_list(skb);
3933 
3934 		/* in case skb won't be segmented, point to itself */
3935 		skb->prev = skb;
3936 
3937 		skb = validate_xmit_skb(skb, dev, again);
3938 		if (!skb)
3939 			continue;
3940 
3941 		if (!head)
3942 			head = skb;
3943 		else
3944 			tail->next = skb;
3945 		/* If skb was segmented, skb->prev points to
3946 		 * the last segment. If not, it still contains skb.
3947 		 */
3948 		tail = skb->prev;
3949 	}
3950 	return head;
3951 }
3952 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3953 
3954 static void qdisc_pkt_len_init(struct sk_buff *skb)
3955 {
3956 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3957 
3958 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3959 
3960 	/* To get more precise estimation of bytes sent on wire,
3961 	 * we add to pkt_len the headers size of all segments
3962 	 */
3963 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3964 		u16 gso_segs = shinfo->gso_segs;
3965 		unsigned int hdr_len;
3966 
3967 		/* mac layer + network layer */
3968 		hdr_len = skb_transport_offset(skb);
3969 
3970 		/* + transport layer */
3971 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3972 			const struct tcphdr *th;
3973 			struct tcphdr _tcphdr;
3974 
3975 			th = skb_header_pointer(skb, hdr_len,
3976 						sizeof(_tcphdr), &_tcphdr);
3977 			if (likely(th))
3978 				hdr_len += __tcp_hdrlen(th);
3979 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3980 			struct udphdr _udphdr;
3981 
3982 			if (skb_header_pointer(skb, hdr_len,
3983 					       sizeof(_udphdr), &_udphdr))
3984 				hdr_len += sizeof(struct udphdr);
3985 		}
3986 
3987 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3988 			int payload = skb->len - hdr_len;
3989 
3990 			/* Malicious packet. */
3991 			if (payload <= 0)
3992 				return;
3993 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3994 		}
3995 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3996 	}
3997 }
3998 
3999 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
4000 			     struct sk_buff **to_free,
4001 			     struct netdev_queue *txq)
4002 {
4003 	int rc;
4004 
4005 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
4006 	if (rc == NET_XMIT_SUCCESS)
4007 		trace_qdisc_enqueue(q, txq, skb);
4008 	return rc;
4009 }
4010 
4011 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
4012 				 struct net_device *dev,
4013 				 struct netdev_queue *txq)
4014 {
4015 	spinlock_t *root_lock = qdisc_lock(q);
4016 	struct sk_buff *to_free = NULL;
4017 	bool contended;
4018 	int rc;
4019 
4020 	qdisc_calculate_pkt_len(skb, q);
4021 
4022 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4023 
4024 	if (q->flags & TCQ_F_NOLOCK) {
4025 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4026 		    qdisc_run_begin(q)) {
4027 			/* Retest nolock_qdisc_is_empty() within the protection
4028 			 * of q->seqlock to protect from racing with requeuing.
4029 			 */
4030 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4031 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4032 				__qdisc_run(q);
4033 				qdisc_run_end(q);
4034 
4035 				goto no_lock_out;
4036 			}
4037 
4038 			qdisc_bstats_cpu_update(q, skb);
4039 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4040 			    !nolock_qdisc_is_empty(q))
4041 				__qdisc_run(q);
4042 
4043 			qdisc_run_end(q);
4044 			return NET_XMIT_SUCCESS;
4045 		}
4046 
4047 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4048 		qdisc_run(q);
4049 
4050 no_lock_out:
4051 		if (unlikely(to_free))
4052 			kfree_skb_list_reason(to_free,
4053 					      tcf_get_drop_reason(to_free));
4054 		return rc;
4055 	}
4056 
4057 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4058 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4059 		return NET_XMIT_DROP;
4060 	}
4061 	/*
4062 	 * Heuristic to force contended enqueues to serialize on a
4063 	 * separate lock before trying to get qdisc main lock.
4064 	 * This permits qdisc->running owner to get the lock more
4065 	 * often and dequeue packets faster.
4066 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4067 	 * and then other tasks will only enqueue packets. The packets will be
4068 	 * sent after the qdisc owner is scheduled again. To prevent this
4069 	 * scenario the task always serialize on the lock.
4070 	 */
4071 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4072 	if (unlikely(contended))
4073 		spin_lock(&q->busylock);
4074 
4075 	spin_lock(root_lock);
4076 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4077 		__qdisc_drop(skb, &to_free);
4078 		rc = NET_XMIT_DROP;
4079 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4080 		   qdisc_run_begin(q)) {
4081 		/*
4082 		 * This is a work-conserving queue; there are no old skbs
4083 		 * waiting to be sent out; and the qdisc is not running -
4084 		 * xmit the skb directly.
4085 		 */
4086 
4087 		qdisc_bstats_update(q, skb);
4088 
4089 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4090 			if (unlikely(contended)) {
4091 				spin_unlock(&q->busylock);
4092 				contended = false;
4093 			}
4094 			__qdisc_run(q);
4095 		}
4096 
4097 		qdisc_run_end(q);
4098 		rc = NET_XMIT_SUCCESS;
4099 	} else {
4100 		WRITE_ONCE(q->owner, smp_processor_id());
4101 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4102 		WRITE_ONCE(q->owner, -1);
4103 		if (qdisc_run_begin(q)) {
4104 			if (unlikely(contended)) {
4105 				spin_unlock(&q->busylock);
4106 				contended = false;
4107 			}
4108 			__qdisc_run(q);
4109 			qdisc_run_end(q);
4110 		}
4111 	}
4112 	spin_unlock(root_lock);
4113 	if (unlikely(to_free))
4114 		kfree_skb_list_reason(to_free,
4115 				      tcf_get_drop_reason(to_free));
4116 	if (unlikely(contended))
4117 		spin_unlock(&q->busylock);
4118 	return rc;
4119 }
4120 
4121 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4122 static void skb_update_prio(struct sk_buff *skb)
4123 {
4124 	const struct netprio_map *map;
4125 	const struct sock *sk;
4126 	unsigned int prioidx;
4127 
4128 	if (skb->priority)
4129 		return;
4130 	map = rcu_dereference_bh(skb->dev->priomap);
4131 	if (!map)
4132 		return;
4133 	sk = skb_to_full_sk(skb);
4134 	if (!sk)
4135 		return;
4136 
4137 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4138 
4139 	if (prioidx < map->priomap_len)
4140 		skb->priority = map->priomap[prioidx];
4141 }
4142 #else
4143 #define skb_update_prio(skb)
4144 #endif
4145 
4146 /**
4147  *	dev_loopback_xmit - loop back @skb
4148  *	@net: network namespace this loopback is happening in
4149  *	@sk:  sk needed to be a netfilter okfn
4150  *	@skb: buffer to transmit
4151  */
4152 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4153 {
4154 	skb_reset_mac_header(skb);
4155 	__skb_pull(skb, skb_network_offset(skb));
4156 	skb->pkt_type = PACKET_LOOPBACK;
4157 	if (skb->ip_summed == CHECKSUM_NONE)
4158 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4159 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4160 	skb_dst_force(skb);
4161 	netif_rx(skb);
4162 	return 0;
4163 }
4164 EXPORT_SYMBOL(dev_loopback_xmit);
4165 
4166 #ifdef CONFIG_NET_EGRESS
4167 static struct netdev_queue *
4168 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4169 {
4170 	int qm = skb_get_queue_mapping(skb);
4171 
4172 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4173 }
4174 
4175 #ifndef CONFIG_PREEMPT_RT
4176 static bool netdev_xmit_txqueue_skipped(void)
4177 {
4178 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4179 }
4180 
4181 void netdev_xmit_skip_txqueue(bool skip)
4182 {
4183 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4184 }
4185 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4186 
4187 #else
4188 static bool netdev_xmit_txqueue_skipped(void)
4189 {
4190 	return current->net_xmit.skip_txqueue;
4191 }
4192 
4193 void netdev_xmit_skip_txqueue(bool skip)
4194 {
4195 	current->net_xmit.skip_txqueue = skip;
4196 }
4197 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4198 #endif
4199 #endif /* CONFIG_NET_EGRESS */
4200 
4201 #ifdef CONFIG_NET_XGRESS
4202 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4203 		  enum skb_drop_reason *drop_reason)
4204 {
4205 	int ret = TC_ACT_UNSPEC;
4206 #ifdef CONFIG_NET_CLS_ACT
4207 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4208 	struct tcf_result res;
4209 
4210 	if (!miniq)
4211 		return ret;
4212 
4213 	/* Global bypass */
4214 	if (!static_branch_likely(&tcf_sw_enabled_key))
4215 		return ret;
4216 
4217 	/* Block-wise bypass */
4218 	if (tcf_block_bypass_sw(miniq->block))
4219 		return ret;
4220 
4221 	tc_skb_cb(skb)->mru = 0;
4222 	tc_skb_cb(skb)->post_ct = false;
4223 	tcf_set_drop_reason(skb, *drop_reason);
4224 
4225 	mini_qdisc_bstats_cpu_update(miniq, skb);
4226 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4227 	/* Only tcf related quirks below. */
4228 	switch (ret) {
4229 	case TC_ACT_SHOT:
4230 		*drop_reason = tcf_get_drop_reason(skb);
4231 		mini_qdisc_qstats_cpu_drop(miniq);
4232 		break;
4233 	case TC_ACT_OK:
4234 	case TC_ACT_RECLASSIFY:
4235 		skb->tc_index = TC_H_MIN(res.classid);
4236 		break;
4237 	}
4238 #endif /* CONFIG_NET_CLS_ACT */
4239 	return ret;
4240 }
4241 
4242 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4243 
4244 void tcx_inc(void)
4245 {
4246 	static_branch_inc(&tcx_needed_key);
4247 }
4248 
4249 void tcx_dec(void)
4250 {
4251 	static_branch_dec(&tcx_needed_key);
4252 }
4253 
4254 static __always_inline enum tcx_action_base
4255 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4256 	const bool needs_mac)
4257 {
4258 	const struct bpf_mprog_fp *fp;
4259 	const struct bpf_prog *prog;
4260 	int ret = TCX_NEXT;
4261 
4262 	if (needs_mac)
4263 		__skb_push(skb, skb->mac_len);
4264 	bpf_mprog_foreach_prog(entry, fp, prog) {
4265 		bpf_compute_data_pointers(skb);
4266 		ret = bpf_prog_run(prog, skb);
4267 		if (ret != TCX_NEXT)
4268 			break;
4269 	}
4270 	if (needs_mac)
4271 		__skb_pull(skb, skb->mac_len);
4272 	return tcx_action_code(skb, ret);
4273 }
4274 
4275 static __always_inline struct sk_buff *
4276 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4277 		   struct net_device *orig_dev, bool *another)
4278 {
4279 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4280 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4281 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4282 	int sch_ret;
4283 
4284 	if (!entry)
4285 		return skb;
4286 
4287 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4288 	if (*pt_prev) {
4289 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4290 		*pt_prev = NULL;
4291 	}
4292 
4293 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4294 	tcx_set_ingress(skb, true);
4295 
4296 	if (static_branch_unlikely(&tcx_needed_key)) {
4297 		sch_ret = tcx_run(entry, skb, true);
4298 		if (sch_ret != TC_ACT_UNSPEC)
4299 			goto ingress_verdict;
4300 	}
4301 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4302 ingress_verdict:
4303 	switch (sch_ret) {
4304 	case TC_ACT_REDIRECT:
4305 		/* skb_mac_header check was done by BPF, so we can safely
4306 		 * push the L2 header back before redirecting to another
4307 		 * netdev.
4308 		 */
4309 		__skb_push(skb, skb->mac_len);
4310 		if (skb_do_redirect(skb) == -EAGAIN) {
4311 			__skb_pull(skb, skb->mac_len);
4312 			*another = true;
4313 			break;
4314 		}
4315 		*ret = NET_RX_SUCCESS;
4316 		bpf_net_ctx_clear(bpf_net_ctx);
4317 		return NULL;
4318 	case TC_ACT_SHOT:
4319 		kfree_skb_reason(skb, drop_reason);
4320 		*ret = NET_RX_DROP;
4321 		bpf_net_ctx_clear(bpf_net_ctx);
4322 		return NULL;
4323 	/* used by tc_run */
4324 	case TC_ACT_STOLEN:
4325 	case TC_ACT_QUEUED:
4326 	case TC_ACT_TRAP:
4327 		consume_skb(skb);
4328 		fallthrough;
4329 	case TC_ACT_CONSUMED:
4330 		*ret = NET_RX_SUCCESS;
4331 		bpf_net_ctx_clear(bpf_net_ctx);
4332 		return NULL;
4333 	}
4334 	bpf_net_ctx_clear(bpf_net_ctx);
4335 
4336 	return skb;
4337 }
4338 
4339 static __always_inline struct sk_buff *
4340 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4341 {
4342 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4343 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4344 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4345 	int sch_ret;
4346 
4347 	if (!entry)
4348 		return skb;
4349 
4350 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4351 
4352 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4353 	 * already set by the caller.
4354 	 */
4355 	if (static_branch_unlikely(&tcx_needed_key)) {
4356 		sch_ret = tcx_run(entry, skb, false);
4357 		if (sch_ret != TC_ACT_UNSPEC)
4358 			goto egress_verdict;
4359 	}
4360 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4361 egress_verdict:
4362 	switch (sch_ret) {
4363 	case TC_ACT_REDIRECT:
4364 		/* No need to push/pop skb's mac_header here on egress! */
4365 		skb_do_redirect(skb);
4366 		*ret = NET_XMIT_SUCCESS;
4367 		bpf_net_ctx_clear(bpf_net_ctx);
4368 		return NULL;
4369 	case TC_ACT_SHOT:
4370 		kfree_skb_reason(skb, drop_reason);
4371 		*ret = NET_XMIT_DROP;
4372 		bpf_net_ctx_clear(bpf_net_ctx);
4373 		return NULL;
4374 	/* used by tc_run */
4375 	case TC_ACT_STOLEN:
4376 	case TC_ACT_QUEUED:
4377 	case TC_ACT_TRAP:
4378 		consume_skb(skb);
4379 		fallthrough;
4380 	case TC_ACT_CONSUMED:
4381 		*ret = NET_XMIT_SUCCESS;
4382 		bpf_net_ctx_clear(bpf_net_ctx);
4383 		return NULL;
4384 	}
4385 	bpf_net_ctx_clear(bpf_net_ctx);
4386 
4387 	return skb;
4388 }
4389 #else
4390 static __always_inline struct sk_buff *
4391 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4392 		   struct net_device *orig_dev, bool *another)
4393 {
4394 	return skb;
4395 }
4396 
4397 static __always_inline struct sk_buff *
4398 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4399 {
4400 	return skb;
4401 }
4402 #endif /* CONFIG_NET_XGRESS */
4403 
4404 #ifdef CONFIG_XPS
4405 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4406 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4407 {
4408 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4409 	struct xps_map *map;
4410 	int queue_index = -1;
4411 
4412 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4413 		return queue_index;
4414 
4415 	tci *= dev_maps->num_tc;
4416 	tci += tc;
4417 
4418 	map = rcu_dereference(dev_maps->attr_map[tci]);
4419 	if (map) {
4420 		if (map->len == 1)
4421 			queue_index = map->queues[0];
4422 		else
4423 			queue_index = map->queues[reciprocal_scale(
4424 						skb_get_hash(skb), map->len)];
4425 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4426 			queue_index = -1;
4427 	}
4428 	return queue_index;
4429 }
4430 #endif
4431 
4432 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4433 			 struct sk_buff *skb)
4434 {
4435 #ifdef CONFIG_XPS
4436 	struct xps_dev_maps *dev_maps;
4437 	struct sock *sk = skb->sk;
4438 	int queue_index = -1;
4439 
4440 	if (!static_key_false(&xps_needed))
4441 		return -1;
4442 
4443 	rcu_read_lock();
4444 	if (!static_key_false(&xps_rxqs_needed))
4445 		goto get_cpus_map;
4446 
4447 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4448 	if (dev_maps) {
4449 		int tci = sk_rx_queue_get(sk);
4450 
4451 		if (tci >= 0)
4452 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4453 							  tci);
4454 	}
4455 
4456 get_cpus_map:
4457 	if (queue_index < 0) {
4458 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4459 		if (dev_maps) {
4460 			unsigned int tci = skb->sender_cpu - 1;
4461 
4462 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4463 							  tci);
4464 		}
4465 	}
4466 	rcu_read_unlock();
4467 
4468 	return queue_index;
4469 #else
4470 	return -1;
4471 #endif
4472 }
4473 
4474 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4475 		     struct net_device *sb_dev)
4476 {
4477 	return 0;
4478 }
4479 EXPORT_SYMBOL(dev_pick_tx_zero);
4480 
4481 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4482 		     struct net_device *sb_dev)
4483 {
4484 	struct sock *sk = skb->sk;
4485 	int queue_index = sk_tx_queue_get(sk);
4486 
4487 	sb_dev = sb_dev ? : dev;
4488 
4489 	if (queue_index < 0 || skb->ooo_okay ||
4490 	    queue_index >= dev->real_num_tx_queues) {
4491 		int new_index = get_xps_queue(dev, sb_dev, skb);
4492 
4493 		if (new_index < 0)
4494 			new_index = skb_tx_hash(dev, sb_dev, skb);
4495 
4496 		if (queue_index != new_index && sk &&
4497 		    sk_fullsock(sk) &&
4498 		    rcu_access_pointer(sk->sk_dst_cache))
4499 			sk_tx_queue_set(sk, new_index);
4500 
4501 		queue_index = new_index;
4502 	}
4503 
4504 	return queue_index;
4505 }
4506 EXPORT_SYMBOL(netdev_pick_tx);
4507 
4508 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4509 					 struct sk_buff *skb,
4510 					 struct net_device *sb_dev)
4511 {
4512 	int queue_index = 0;
4513 
4514 #ifdef CONFIG_XPS
4515 	u32 sender_cpu = skb->sender_cpu - 1;
4516 
4517 	if (sender_cpu >= (u32)NR_CPUS)
4518 		skb->sender_cpu = raw_smp_processor_id() + 1;
4519 #endif
4520 
4521 	if (dev->real_num_tx_queues != 1) {
4522 		const struct net_device_ops *ops = dev->netdev_ops;
4523 
4524 		if (ops->ndo_select_queue)
4525 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4526 		else
4527 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4528 
4529 		queue_index = netdev_cap_txqueue(dev, queue_index);
4530 	}
4531 
4532 	skb_set_queue_mapping(skb, queue_index);
4533 	return netdev_get_tx_queue(dev, queue_index);
4534 }
4535 
4536 /**
4537  * __dev_queue_xmit() - transmit a buffer
4538  * @skb:	buffer to transmit
4539  * @sb_dev:	suboordinate device used for L2 forwarding offload
4540  *
4541  * Queue a buffer for transmission to a network device. The caller must
4542  * have set the device and priority and built the buffer before calling
4543  * this function. The function can be called from an interrupt.
4544  *
4545  * When calling this method, interrupts MUST be enabled. This is because
4546  * the BH enable code must have IRQs enabled so that it will not deadlock.
4547  *
4548  * Regardless of the return value, the skb is consumed, so it is currently
4549  * difficult to retry a send to this method. (You can bump the ref count
4550  * before sending to hold a reference for retry if you are careful.)
4551  *
4552  * Return:
4553  * * 0				- buffer successfully transmitted
4554  * * positive qdisc return code	- NET_XMIT_DROP etc.
4555  * * negative errno		- other errors
4556  */
4557 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4558 {
4559 	struct net_device *dev = skb->dev;
4560 	struct netdev_queue *txq = NULL;
4561 	struct Qdisc *q;
4562 	int rc = -ENOMEM;
4563 	bool again = false;
4564 
4565 	skb_reset_mac_header(skb);
4566 	skb_assert_len(skb);
4567 
4568 	if (unlikely(skb_shinfo(skb)->tx_flags &
4569 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4570 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4571 
4572 	/* Disable soft irqs for various locks below. Also
4573 	 * stops preemption for RCU.
4574 	 */
4575 	rcu_read_lock_bh();
4576 
4577 	skb_update_prio(skb);
4578 
4579 	qdisc_pkt_len_init(skb);
4580 	tcx_set_ingress(skb, false);
4581 #ifdef CONFIG_NET_EGRESS
4582 	if (static_branch_unlikely(&egress_needed_key)) {
4583 		if (nf_hook_egress_active()) {
4584 			skb = nf_hook_egress(skb, &rc, dev);
4585 			if (!skb)
4586 				goto out;
4587 		}
4588 
4589 		netdev_xmit_skip_txqueue(false);
4590 
4591 		nf_skip_egress(skb, true);
4592 		skb = sch_handle_egress(skb, &rc, dev);
4593 		if (!skb)
4594 			goto out;
4595 		nf_skip_egress(skb, false);
4596 
4597 		if (netdev_xmit_txqueue_skipped())
4598 			txq = netdev_tx_queue_mapping(dev, skb);
4599 	}
4600 #endif
4601 	/* If device/qdisc don't need skb->dst, release it right now while
4602 	 * its hot in this cpu cache.
4603 	 */
4604 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4605 		skb_dst_drop(skb);
4606 	else
4607 		skb_dst_force(skb);
4608 
4609 	if (!txq)
4610 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4611 
4612 	q = rcu_dereference_bh(txq->qdisc);
4613 
4614 	trace_net_dev_queue(skb);
4615 	if (q->enqueue) {
4616 		rc = __dev_xmit_skb(skb, q, dev, txq);
4617 		goto out;
4618 	}
4619 
4620 	/* The device has no queue. Common case for software devices:
4621 	 * loopback, all the sorts of tunnels...
4622 
4623 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4624 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4625 	 * counters.)
4626 	 * However, it is possible, that they rely on protection
4627 	 * made by us here.
4628 
4629 	 * Check this and shot the lock. It is not prone from deadlocks.
4630 	 *Either shot noqueue qdisc, it is even simpler 8)
4631 	 */
4632 	if (dev->flags & IFF_UP) {
4633 		int cpu = smp_processor_id(); /* ok because BHs are off */
4634 
4635 		/* Other cpus might concurrently change txq->xmit_lock_owner
4636 		 * to -1 or to their cpu id, but not to our id.
4637 		 */
4638 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4639 			if (dev_xmit_recursion())
4640 				goto recursion_alert;
4641 
4642 			skb = validate_xmit_skb(skb, dev, &again);
4643 			if (!skb)
4644 				goto out;
4645 
4646 			HARD_TX_LOCK(dev, txq, cpu);
4647 
4648 			if (!netif_xmit_stopped(txq)) {
4649 				dev_xmit_recursion_inc();
4650 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4651 				dev_xmit_recursion_dec();
4652 				if (dev_xmit_complete(rc)) {
4653 					HARD_TX_UNLOCK(dev, txq);
4654 					goto out;
4655 				}
4656 			}
4657 			HARD_TX_UNLOCK(dev, txq);
4658 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4659 					     dev->name);
4660 		} else {
4661 			/* Recursion is detected! It is possible,
4662 			 * unfortunately
4663 			 */
4664 recursion_alert:
4665 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4666 					     dev->name);
4667 		}
4668 	}
4669 
4670 	rc = -ENETDOWN;
4671 	rcu_read_unlock_bh();
4672 
4673 	dev_core_stats_tx_dropped_inc(dev);
4674 	kfree_skb_list(skb);
4675 	return rc;
4676 out:
4677 	rcu_read_unlock_bh();
4678 	return rc;
4679 }
4680 EXPORT_SYMBOL(__dev_queue_xmit);
4681 
4682 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4683 {
4684 	struct net_device *dev = skb->dev;
4685 	struct sk_buff *orig_skb = skb;
4686 	struct netdev_queue *txq;
4687 	int ret = NETDEV_TX_BUSY;
4688 	bool again = false;
4689 
4690 	if (unlikely(!netif_running(dev) ||
4691 		     !netif_carrier_ok(dev)))
4692 		goto drop;
4693 
4694 	skb = validate_xmit_skb_list(skb, dev, &again);
4695 	if (skb != orig_skb)
4696 		goto drop;
4697 
4698 	skb_set_queue_mapping(skb, queue_id);
4699 	txq = skb_get_tx_queue(dev, skb);
4700 
4701 	local_bh_disable();
4702 
4703 	dev_xmit_recursion_inc();
4704 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4705 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4706 		ret = netdev_start_xmit(skb, dev, txq, false);
4707 	HARD_TX_UNLOCK(dev, txq);
4708 	dev_xmit_recursion_dec();
4709 
4710 	local_bh_enable();
4711 	return ret;
4712 drop:
4713 	dev_core_stats_tx_dropped_inc(dev);
4714 	kfree_skb_list(skb);
4715 	return NET_XMIT_DROP;
4716 }
4717 EXPORT_SYMBOL(__dev_direct_xmit);
4718 
4719 /*************************************************************************
4720  *			Receiver routines
4721  *************************************************************************/
4722 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4723 
4724 int weight_p __read_mostly = 64;           /* old backlog weight */
4725 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4726 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4727 
4728 /* Called with irq disabled */
4729 static inline void ____napi_schedule(struct softnet_data *sd,
4730 				     struct napi_struct *napi)
4731 {
4732 	struct task_struct *thread;
4733 
4734 	lockdep_assert_irqs_disabled();
4735 
4736 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4737 		/* Paired with smp_mb__before_atomic() in
4738 		 * napi_enable()/dev_set_threaded().
4739 		 * Use READ_ONCE() to guarantee a complete
4740 		 * read on napi->thread. Only call
4741 		 * wake_up_process() when it's not NULL.
4742 		 */
4743 		thread = READ_ONCE(napi->thread);
4744 		if (thread) {
4745 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4746 				goto use_local_napi;
4747 
4748 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4749 			wake_up_process(thread);
4750 			return;
4751 		}
4752 	}
4753 
4754 use_local_napi:
4755 	list_add_tail(&napi->poll_list, &sd->poll_list);
4756 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4757 	/* If not called from net_rx_action()
4758 	 * we have to raise NET_RX_SOFTIRQ.
4759 	 */
4760 	if (!sd->in_net_rx_action)
4761 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4762 }
4763 
4764 #ifdef CONFIG_RPS
4765 
4766 struct static_key_false rps_needed __read_mostly;
4767 EXPORT_SYMBOL(rps_needed);
4768 struct static_key_false rfs_needed __read_mostly;
4769 EXPORT_SYMBOL(rfs_needed);
4770 
4771 static struct rps_dev_flow *
4772 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4773 	    struct rps_dev_flow *rflow, u16 next_cpu)
4774 {
4775 	if (next_cpu < nr_cpu_ids) {
4776 		u32 head;
4777 #ifdef CONFIG_RFS_ACCEL
4778 		struct netdev_rx_queue *rxqueue;
4779 		struct rps_dev_flow_table *flow_table;
4780 		struct rps_dev_flow *old_rflow;
4781 		u16 rxq_index;
4782 		u32 flow_id;
4783 		int rc;
4784 
4785 		/* Should we steer this flow to a different hardware queue? */
4786 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4787 		    !(dev->features & NETIF_F_NTUPLE))
4788 			goto out;
4789 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4790 		if (rxq_index == skb_get_rx_queue(skb))
4791 			goto out;
4792 
4793 		rxqueue = dev->_rx + rxq_index;
4794 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4795 		if (!flow_table)
4796 			goto out;
4797 		flow_id = skb_get_hash(skb) & flow_table->mask;
4798 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4799 							rxq_index, flow_id);
4800 		if (rc < 0)
4801 			goto out;
4802 		old_rflow = rflow;
4803 		rflow = &flow_table->flows[flow_id];
4804 		WRITE_ONCE(rflow->filter, rc);
4805 		if (old_rflow->filter == rc)
4806 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4807 	out:
4808 #endif
4809 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4810 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4811 	}
4812 
4813 	WRITE_ONCE(rflow->cpu, next_cpu);
4814 	return rflow;
4815 }
4816 
4817 /*
4818  * get_rps_cpu is called from netif_receive_skb and returns the target
4819  * CPU from the RPS map of the receiving queue for a given skb.
4820  * rcu_read_lock must be held on entry.
4821  */
4822 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4823 		       struct rps_dev_flow **rflowp)
4824 {
4825 	const struct rps_sock_flow_table *sock_flow_table;
4826 	struct netdev_rx_queue *rxqueue = dev->_rx;
4827 	struct rps_dev_flow_table *flow_table;
4828 	struct rps_map *map;
4829 	int cpu = -1;
4830 	u32 tcpu;
4831 	u32 hash;
4832 
4833 	if (skb_rx_queue_recorded(skb)) {
4834 		u16 index = skb_get_rx_queue(skb);
4835 
4836 		if (unlikely(index >= dev->real_num_rx_queues)) {
4837 			WARN_ONCE(dev->real_num_rx_queues > 1,
4838 				  "%s received packet on queue %u, but number "
4839 				  "of RX queues is %u\n",
4840 				  dev->name, index, dev->real_num_rx_queues);
4841 			goto done;
4842 		}
4843 		rxqueue += index;
4844 	}
4845 
4846 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4847 
4848 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4849 	map = rcu_dereference(rxqueue->rps_map);
4850 	if (!flow_table && !map)
4851 		goto done;
4852 
4853 	skb_reset_network_header(skb);
4854 	hash = skb_get_hash(skb);
4855 	if (!hash)
4856 		goto done;
4857 
4858 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4859 	if (flow_table && sock_flow_table) {
4860 		struct rps_dev_flow *rflow;
4861 		u32 next_cpu;
4862 		u32 ident;
4863 
4864 		/* First check into global flow table if there is a match.
4865 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4866 		 */
4867 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4868 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4869 			goto try_rps;
4870 
4871 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4872 
4873 		/* OK, now we know there is a match,
4874 		 * we can look at the local (per receive queue) flow table
4875 		 */
4876 		rflow = &flow_table->flows[hash & flow_table->mask];
4877 		tcpu = rflow->cpu;
4878 
4879 		/*
4880 		 * If the desired CPU (where last recvmsg was done) is
4881 		 * different from current CPU (one in the rx-queue flow
4882 		 * table entry), switch if one of the following holds:
4883 		 *   - Current CPU is unset (>= nr_cpu_ids).
4884 		 *   - Current CPU is offline.
4885 		 *   - The current CPU's queue tail has advanced beyond the
4886 		 *     last packet that was enqueued using this table entry.
4887 		 *     This guarantees that all previous packets for the flow
4888 		 *     have been dequeued, thus preserving in order delivery.
4889 		 */
4890 		if (unlikely(tcpu != next_cpu) &&
4891 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4892 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4893 		      rflow->last_qtail)) >= 0)) {
4894 			tcpu = next_cpu;
4895 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4896 		}
4897 
4898 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4899 			*rflowp = rflow;
4900 			cpu = tcpu;
4901 			goto done;
4902 		}
4903 	}
4904 
4905 try_rps:
4906 
4907 	if (map) {
4908 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4909 		if (cpu_online(tcpu)) {
4910 			cpu = tcpu;
4911 			goto done;
4912 		}
4913 	}
4914 
4915 done:
4916 	return cpu;
4917 }
4918 
4919 #ifdef CONFIG_RFS_ACCEL
4920 
4921 /**
4922  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4923  * @dev: Device on which the filter was set
4924  * @rxq_index: RX queue index
4925  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4926  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4927  *
4928  * Drivers that implement ndo_rx_flow_steer() should periodically call
4929  * this function for each installed filter and remove the filters for
4930  * which it returns %true.
4931  */
4932 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4933 			 u32 flow_id, u16 filter_id)
4934 {
4935 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4936 	struct rps_dev_flow_table *flow_table;
4937 	struct rps_dev_flow *rflow;
4938 	bool expire = true;
4939 	unsigned int cpu;
4940 
4941 	rcu_read_lock();
4942 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4943 	if (flow_table && flow_id <= flow_table->mask) {
4944 		rflow = &flow_table->flows[flow_id];
4945 		cpu = READ_ONCE(rflow->cpu);
4946 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4947 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4948 			   READ_ONCE(rflow->last_qtail)) <
4949 		     (int)(10 * flow_table->mask)))
4950 			expire = false;
4951 	}
4952 	rcu_read_unlock();
4953 	return expire;
4954 }
4955 EXPORT_SYMBOL(rps_may_expire_flow);
4956 
4957 #endif /* CONFIG_RFS_ACCEL */
4958 
4959 /* Called from hardirq (IPI) context */
4960 static void rps_trigger_softirq(void *data)
4961 {
4962 	struct softnet_data *sd = data;
4963 
4964 	____napi_schedule(sd, &sd->backlog);
4965 	sd->received_rps++;
4966 }
4967 
4968 #endif /* CONFIG_RPS */
4969 
4970 /* Called from hardirq (IPI) context */
4971 static void trigger_rx_softirq(void *data)
4972 {
4973 	struct softnet_data *sd = data;
4974 
4975 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4976 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4977 }
4978 
4979 /*
4980  * After we queued a packet into sd->input_pkt_queue,
4981  * we need to make sure this queue is serviced soon.
4982  *
4983  * - If this is another cpu queue, link it to our rps_ipi_list,
4984  *   and make sure we will process rps_ipi_list from net_rx_action().
4985  *
4986  * - If this is our own queue, NAPI schedule our backlog.
4987  *   Note that this also raises NET_RX_SOFTIRQ.
4988  */
4989 static void napi_schedule_rps(struct softnet_data *sd)
4990 {
4991 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4992 
4993 #ifdef CONFIG_RPS
4994 	if (sd != mysd) {
4995 		if (use_backlog_threads()) {
4996 			__napi_schedule_irqoff(&sd->backlog);
4997 			return;
4998 		}
4999 
5000 		sd->rps_ipi_next = mysd->rps_ipi_list;
5001 		mysd->rps_ipi_list = sd;
5002 
5003 		/* If not called from net_rx_action() or napi_threaded_poll()
5004 		 * we have to raise NET_RX_SOFTIRQ.
5005 		 */
5006 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
5007 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5008 		return;
5009 	}
5010 #endif /* CONFIG_RPS */
5011 	__napi_schedule_irqoff(&mysd->backlog);
5012 }
5013 
5014 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5015 {
5016 	unsigned long flags;
5017 
5018 	if (use_backlog_threads()) {
5019 		backlog_lock_irq_save(sd, &flags);
5020 
5021 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5022 			__napi_schedule_irqoff(&sd->backlog);
5023 
5024 		backlog_unlock_irq_restore(sd, &flags);
5025 
5026 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5027 		smp_call_function_single_async(cpu, &sd->defer_csd);
5028 	}
5029 }
5030 
5031 #ifdef CONFIG_NET_FLOW_LIMIT
5032 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5033 #endif
5034 
5035 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5036 {
5037 #ifdef CONFIG_NET_FLOW_LIMIT
5038 	struct sd_flow_limit *fl;
5039 	struct softnet_data *sd;
5040 	unsigned int old_flow, new_flow;
5041 
5042 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5043 		return false;
5044 
5045 	sd = this_cpu_ptr(&softnet_data);
5046 
5047 	rcu_read_lock();
5048 	fl = rcu_dereference(sd->flow_limit);
5049 	if (fl) {
5050 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5051 		old_flow = fl->history[fl->history_head];
5052 		fl->history[fl->history_head] = new_flow;
5053 
5054 		fl->history_head++;
5055 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5056 
5057 		if (likely(fl->buckets[old_flow]))
5058 			fl->buckets[old_flow]--;
5059 
5060 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5061 			fl->count++;
5062 			rcu_read_unlock();
5063 			return true;
5064 		}
5065 	}
5066 	rcu_read_unlock();
5067 #endif
5068 	return false;
5069 }
5070 
5071 /*
5072  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5073  * queue (may be a remote CPU queue).
5074  */
5075 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5076 			      unsigned int *qtail)
5077 {
5078 	enum skb_drop_reason reason;
5079 	struct softnet_data *sd;
5080 	unsigned long flags;
5081 	unsigned int qlen;
5082 	int max_backlog;
5083 	u32 tail;
5084 
5085 	reason = SKB_DROP_REASON_DEV_READY;
5086 	if (!netif_running(skb->dev))
5087 		goto bad_dev;
5088 
5089 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5090 	sd = &per_cpu(softnet_data, cpu);
5091 
5092 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5093 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5094 	if (unlikely(qlen > max_backlog))
5095 		goto cpu_backlog_drop;
5096 	backlog_lock_irq_save(sd, &flags);
5097 	qlen = skb_queue_len(&sd->input_pkt_queue);
5098 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5099 		if (!qlen) {
5100 			/* Schedule NAPI for backlog device. We can use
5101 			 * non atomic operation as we own the queue lock.
5102 			 */
5103 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5104 						&sd->backlog.state))
5105 				napi_schedule_rps(sd);
5106 		}
5107 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5108 		tail = rps_input_queue_tail_incr(sd);
5109 		backlog_unlock_irq_restore(sd, &flags);
5110 
5111 		/* save the tail outside of the critical section */
5112 		rps_input_queue_tail_save(qtail, tail);
5113 		return NET_RX_SUCCESS;
5114 	}
5115 
5116 	backlog_unlock_irq_restore(sd, &flags);
5117 
5118 cpu_backlog_drop:
5119 	atomic_inc(&sd->dropped);
5120 bad_dev:
5121 	dev_core_stats_rx_dropped_inc(skb->dev);
5122 	kfree_skb_reason(skb, reason);
5123 	return NET_RX_DROP;
5124 }
5125 
5126 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5127 {
5128 	struct net_device *dev = skb->dev;
5129 	struct netdev_rx_queue *rxqueue;
5130 
5131 	rxqueue = dev->_rx;
5132 
5133 	if (skb_rx_queue_recorded(skb)) {
5134 		u16 index = skb_get_rx_queue(skb);
5135 
5136 		if (unlikely(index >= dev->real_num_rx_queues)) {
5137 			WARN_ONCE(dev->real_num_rx_queues > 1,
5138 				  "%s received packet on queue %u, but number "
5139 				  "of RX queues is %u\n",
5140 				  dev->name, index, dev->real_num_rx_queues);
5141 
5142 			return rxqueue; /* Return first rxqueue */
5143 		}
5144 		rxqueue += index;
5145 	}
5146 	return rxqueue;
5147 }
5148 
5149 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5150 			     const struct bpf_prog *xdp_prog)
5151 {
5152 	void *orig_data, *orig_data_end, *hard_start;
5153 	struct netdev_rx_queue *rxqueue;
5154 	bool orig_bcast, orig_host;
5155 	u32 mac_len, frame_sz;
5156 	__be16 orig_eth_type;
5157 	struct ethhdr *eth;
5158 	u32 metalen, act;
5159 	int off;
5160 
5161 	/* The XDP program wants to see the packet starting at the MAC
5162 	 * header.
5163 	 */
5164 	mac_len = skb->data - skb_mac_header(skb);
5165 	hard_start = skb->data - skb_headroom(skb);
5166 
5167 	/* SKB "head" area always have tailroom for skb_shared_info */
5168 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5169 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5170 
5171 	rxqueue = netif_get_rxqueue(skb);
5172 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5173 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5174 			 skb_headlen(skb) + mac_len, true);
5175 	if (skb_is_nonlinear(skb)) {
5176 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5177 		xdp_buff_set_frags_flag(xdp);
5178 	} else {
5179 		xdp_buff_clear_frags_flag(xdp);
5180 	}
5181 
5182 	orig_data_end = xdp->data_end;
5183 	orig_data = xdp->data;
5184 	eth = (struct ethhdr *)xdp->data;
5185 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5186 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5187 	orig_eth_type = eth->h_proto;
5188 
5189 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5190 
5191 	/* check if bpf_xdp_adjust_head was used */
5192 	off = xdp->data - orig_data;
5193 	if (off) {
5194 		if (off > 0)
5195 			__skb_pull(skb, off);
5196 		else if (off < 0)
5197 			__skb_push(skb, -off);
5198 
5199 		skb->mac_header += off;
5200 		skb_reset_network_header(skb);
5201 	}
5202 
5203 	/* check if bpf_xdp_adjust_tail was used */
5204 	off = xdp->data_end - orig_data_end;
5205 	if (off != 0) {
5206 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5207 		skb->len += off; /* positive on grow, negative on shrink */
5208 	}
5209 
5210 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5211 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5212 	 */
5213 	if (xdp_buff_has_frags(xdp))
5214 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5215 	else
5216 		skb->data_len = 0;
5217 
5218 	/* check if XDP changed eth hdr such SKB needs update */
5219 	eth = (struct ethhdr *)xdp->data;
5220 	if ((orig_eth_type != eth->h_proto) ||
5221 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5222 						  skb->dev->dev_addr)) ||
5223 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5224 		__skb_push(skb, ETH_HLEN);
5225 		skb->pkt_type = PACKET_HOST;
5226 		skb->protocol = eth_type_trans(skb, skb->dev);
5227 	}
5228 
5229 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5230 	 * before calling us again on redirect path. We do not call do_redirect
5231 	 * as we leave that up to the caller.
5232 	 *
5233 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5234 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5235 	 */
5236 	switch (act) {
5237 	case XDP_REDIRECT:
5238 	case XDP_TX:
5239 		__skb_push(skb, mac_len);
5240 		break;
5241 	case XDP_PASS:
5242 		metalen = xdp->data - xdp->data_meta;
5243 		if (metalen)
5244 			skb_metadata_set(skb, metalen);
5245 		break;
5246 	}
5247 
5248 	return act;
5249 }
5250 
5251 static int
5252 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5253 {
5254 	struct sk_buff *skb = *pskb;
5255 	int err, hroom, troom;
5256 
5257 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5258 		return 0;
5259 
5260 	/* In case we have to go down the path and also linearize,
5261 	 * then lets do the pskb_expand_head() work just once here.
5262 	 */
5263 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5264 	troom = skb->tail + skb->data_len - skb->end;
5265 	err = pskb_expand_head(skb,
5266 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5267 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5268 	if (err)
5269 		return err;
5270 
5271 	return skb_linearize(skb);
5272 }
5273 
5274 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5275 				     struct xdp_buff *xdp,
5276 				     const struct bpf_prog *xdp_prog)
5277 {
5278 	struct sk_buff *skb = *pskb;
5279 	u32 mac_len, act = XDP_DROP;
5280 
5281 	/* Reinjected packets coming from act_mirred or similar should
5282 	 * not get XDP generic processing.
5283 	 */
5284 	if (skb_is_redirected(skb))
5285 		return XDP_PASS;
5286 
5287 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5288 	 * bytes. This is the guarantee that also native XDP provides,
5289 	 * thus we need to do it here as well.
5290 	 */
5291 	mac_len = skb->data - skb_mac_header(skb);
5292 	__skb_push(skb, mac_len);
5293 
5294 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5295 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5296 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5297 			goto do_drop;
5298 	}
5299 
5300 	__skb_pull(*pskb, mac_len);
5301 
5302 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5303 	switch (act) {
5304 	case XDP_REDIRECT:
5305 	case XDP_TX:
5306 	case XDP_PASS:
5307 		break;
5308 	default:
5309 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5310 		fallthrough;
5311 	case XDP_ABORTED:
5312 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5313 		fallthrough;
5314 	case XDP_DROP:
5315 	do_drop:
5316 		kfree_skb(*pskb);
5317 		break;
5318 	}
5319 
5320 	return act;
5321 }
5322 
5323 /* When doing generic XDP we have to bypass the qdisc layer and the
5324  * network taps in order to match in-driver-XDP behavior. This also means
5325  * that XDP packets are able to starve other packets going through a qdisc,
5326  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5327  * queues, so they do not have this starvation issue.
5328  */
5329 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5330 {
5331 	struct net_device *dev = skb->dev;
5332 	struct netdev_queue *txq;
5333 	bool free_skb = true;
5334 	int cpu, rc;
5335 
5336 	txq = netdev_core_pick_tx(dev, skb, NULL);
5337 	cpu = smp_processor_id();
5338 	HARD_TX_LOCK(dev, txq, cpu);
5339 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5340 		rc = netdev_start_xmit(skb, dev, txq, 0);
5341 		if (dev_xmit_complete(rc))
5342 			free_skb = false;
5343 	}
5344 	HARD_TX_UNLOCK(dev, txq);
5345 	if (free_skb) {
5346 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5347 		dev_core_stats_tx_dropped_inc(dev);
5348 		kfree_skb(skb);
5349 	}
5350 }
5351 
5352 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5353 
5354 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5355 {
5356 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5357 
5358 	if (xdp_prog) {
5359 		struct xdp_buff xdp;
5360 		u32 act;
5361 		int err;
5362 
5363 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5364 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5365 		if (act != XDP_PASS) {
5366 			switch (act) {
5367 			case XDP_REDIRECT:
5368 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5369 							      &xdp, xdp_prog);
5370 				if (err)
5371 					goto out_redir;
5372 				break;
5373 			case XDP_TX:
5374 				generic_xdp_tx(*pskb, xdp_prog);
5375 				break;
5376 			}
5377 			bpf_net_ctx_clear(bpf_net_ctx);
5378 			return XDP_DROP;
5379 		}
5380 		bpf_net_ctx_clear(bpf_net_ctx);
5381 	}
5382 	return XDP_PASS;
5383 out_redir:
5384 	bpf_net_ctx_clear(bpf_net_ctx);
5385 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5386 	return XDP_DROP;
5387 }
5388 EXPORT_SYMBOL_GPL(do_xdp_generic);
5389 
5390 static int netif_rx_internal(struct sk_buff *skb)
5391 {
5392 	int ret;
5393 
5394 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5395 
5396 	trace_netif_rx(skb);
5397 
5398 #ifdef CONFIG_RPS
5399 	if (static_branch_unlikely(&rps_needed)) {
5400 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5401 		int cpu;
5402 
5403 		rcu_read_lock();
5404 
5405 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5406 		if (cpu < 0)
5407 			cpu = smp_processor_id();
5408 
5409 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5410 
5411 		rcu_read_unlock();
5412 	} else
5413 #endif
5414 	{
5415 		unsigned int qtail;
5416 
5417 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5418 	}
5419 	return ret;
5420 }
5421 
5422 /**
5423  *	__netif_rx	-	Slightly optimized version of netif_rx
5424  *	@skb: buffer to post
5425  *
5426  *	This behaves as netif_rx except that it does not disable bottom halves.
5427  *	As a result this function may only be invoked from the interrupt context
5428  *	(either hard or soft interrupt).
5429  */
5430 int __netif_rx(struct sk_buff *skb)
5431 {
5432 	int ret;
5433 
5434 	lockdep_assert_once(hardirq_count() | softirq_count());
5435 
5436 	trace_netif_rx_entry(skb);
5437 	ret = netif_rx_internal(skb);
5438 	trace_netif_rx_exit(ret);
5439 	return ret;
5440 }
5441 EXPORT_SYMBOL(__netif_rx);
5442 
5443 /**
5444  *	netif_rx	-	post buffer to the network code
5445  *	@skb: buffer to post
5446  *
5447  *	This function receives a packet from a device driver and queues it for
5448  *	the upper (protocol) levels to process via the backlog NAPI device. It
5449  *	always succeeds. The buffer may be dropped during processing for
5450  *	congestion control or by the protocol layers.
5451  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5452  *	driver should use NAPI and GRO.
5453  *	This function can used from interrupt and from process context. The
5454  *	caller from process context must not disable interrupts before invoking
5455  *	this function.
5456  *
5457  *	return values:
5458  *	NET_RX_SUCCESS	(no congestion)
5459  *	NET_RX_DROP     (packet was dropped)
5460  *
5461  */
5462 int netif_rx(struct sk_buff *skb)
5463 {
5464 	bool need_bh_off = !(hardirq_count() | softirq_count());
5465 	int ret;
5466 
5467 	if (need_bh_off)
5468 		local_bh_disable();
5469 	trace_netif_rx_entry(skb);
5470 	ret = netif_rx_internal(skb);
5471 	trace_netif_rx_exit(ret);
5472 	if (need_bh_off)
5473 		local_bh_enable();
5474 	return ret;
5475 }
5476 EXPORT_SYMBOL(netif_rx);
5477 
5478 static __latent_entropy void net_tx_action(void)
5479 {
5480 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5481 
5482 	if (sd->completion_queue) {
5483 		struct sk_buff *clist;
5484 
5485 		local_irq_disable();
5486 		clist = sd->completion_queue;
5487 		sd->completion_queue = NULL;
5488 		local_irq_enable();
5489 
5490 		while (clist) {
5491 			struct sk_buff *skb = clist;
5492 
5493 			clist = clist->next;
5494 
5495 			WARN_ON(refcount_read(&skb->users));
5496 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5497 				trace_consume_skb(skb, net_tx_action);
5498 			else
5499 				trace_kfree_skb(skb, net_tx_action,
5500 						get_kfree_skb_cb(skb)->reason, NULL);
5501 
5502 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5503 				__kfree_skb(skb);
5504 			else
5505 				__napi_kfree_skb(skb,
5506 						 get_kfree_skb_cb(skb)->reason);
5507 		}
5508 	}
5509 
5510 	if (sd->output_queue) {
5511 		struct Qdisc *head;
5512 
5513 		local_irq_disable();
5514 		head = sd->output_queue;
5515 		sd->output_queue = NULL;
5516 		sd->output_queue_tailp = &sd->output_queue;
5517 		local_irq_enable();
5518 
5519 		rcu_read_lock();
5520 
5521 		while (head) {
5522 			struct Qdisc *q = head;
5523 			spinlock_t *root_lock = NULL;
5524 
5525 			head = head->next_sched;
5526 
5527 			/* We need to make sure head->next_sched is read
5528 			 * before clearing __QDISC_STATE_SCHED
5529 			 */
5530 			smp_mb__before_atomic();
5531 
5532 			if (!(q->flags & TCQ_F_NOLOCK)) {
5533 				root_lock = qdisc_lock(q);
5534 				spin_lock(root_lock);
5535 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5536 						     &q->state))) {
5537 				/* There is a synchronize_net() between
5538 				 * STATE_DEACTIVATED flag being set and
5539 				 * qdisc_reset()/some_qdisc_is_busy() in
5540 				 * dev_deactivate(), so we can safely bail out
5541 				 * early here to avoid data race between
5542 				 * qdisc_deactivate() and some_qdisc_is_busy()
5543 				 * for lockless qdisc.
5544 				 */
5545 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5546 				continue;
5547 			}
5548 
5549 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5550 			qdisc_run(q);
5551 			if (root_lock)
5552 				spin_unlock(root_lock);
5553 		}
5554 
5555 		rcu_read_unlock();
5556 	}
5557 
5558 	xfrm_dev_backlog(sd);
5559 }
5560 
5561 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5562 /* This hook is defined here for ATM LANE */
5563 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5564 			     unsigned char *addr) __read_mostly;
5565 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5566 #endif
5567 
5568 /**
5569  *	netdev_is_rx_handler_busy - check if receive handler is registered
5570  *	@dev: device to check
5571  *
5572  *	Check if a receive handler is already registered for a given device.
5573  *	Return true if there one.
5574  *
5575  *	The caller must hold the rtnl_mutex.
5576  */
5577 bool netdev_is_rx_handler_busy(struct net_device *dev)
5578 {
5579 	ASSERT_RTNL();
5580 	return dev && rtnl_dereference(dev->rx_handler);
5581 }
5582 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5583 
5584 /**
5585  *	netdev_rx_handler_register - register receive handler
5586  *	@dev: device to register a handler for
5587  *	@rx_handler: receive handler to register
5588  *	@rx_handler_data: data pointer that is used by rx handler
5589  *
5590  *	Register a receive handler for a device. This handler will then be
5591  *	called from __netif_receive_skb. A negative errno code is returned
5592  *	on a failure.
5593  *
5594  *	The caller must hold the rtnl_mutex.
5595  *
5596  *	For a general description of rx_handler, see enum rx_handler_result.
5597  */
5598 int netdev_rx_handler_register(struct net_device *dev,
5599 			       rx_handler_func_t *rx_handler,
5600 			       void *rx_handler_data)
5601 {
5602 	if (netdev_is_rx_handler_busy(dev))
5603 		return -EBUSY;
5604 
5605 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5606 		return -EINVAL;
5607 
5608 	/* Note: rx_handler_data must be set before rx_handler */
5609 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5610 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5611 
5612 	return 0;
5613 }
5614 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5615 
5616 /**
5617  *	netdev_rx_handler_unregister - unregister receive handler
5618  *	@dev: device to unregister a handler from
5619  *
5620  *	Unregister a receive handler from a device.
5621  *
5622  *	The caller must hold the rtnl_mutex.
5623  */
5624 void netdev_rx_handler_unregister(struct net_device *dev)
5625 {
5626 
5627 	ASSERT_RTNL();
5628 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5629 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5630 	 * section has a guarantee to see a non NULL rx_handler_data
5631 	 * as well.
5632 	 */
5633 	synchronize_net();
5634 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5635 }
5636 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5637 
5638 /*
5639  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5640  * the special handling of PFMEMALLOC skbs.
5641  */
5642 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5643 {
5644 	switch (skb->protocol) {
5645 	case htons(ETH_P_ARP):
5646 	case htons(ETH_P_IP):
5647 	case htons(ETH_P_IPV6):
5648 	case htons(ETH_P_8021Q):
5649 	case htons(ETH_P_8021AD):
5650 		return true;
5651 	default:
5652 		return false;
5653 	}
5654 }
5655 
5656 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5657 			     int *ret, struct net_device *orig_dev)
5658 {
5659 	if (nf_hook_ingress_active(skb)) {
5660 		int ingress_retval;
5661 
5662 		if (*pt_prev) {
5663 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5664 			*pt_prev = NULL;
5665 		}
5666 
5667 		rcu_read_lock();
5668 		ingress_retval = nf_hook_ingress(skb);
5669 		rcu_read_unlock();
5670 		return ingress_retval;
5671 	}
5672 	return 0;
5673 }
5674 
5675 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5676 				    struct packet_type **ppt_prev)
5677 {
5678 	struct packet_type *ptype, *pt_prev;
5679 	rx_handler_func_t *rx_handler;
5680 	struct sk_buff *skb = *pskb;
5681 	struct net_device *orig_dev;
5682 	bool deliver_exact = false;
5683 	int ret = NET_RX_DROP;
5684 	__be16 type;
5685 
5686 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5687 
5688 	trace_netif_receive_skb(skb);
5689 
5690 	orig_dev = skb->dev;
5691 
5692 	skb_reset_network_header(skb);
5693 #if !defined(CONFIG_DEBUG_NET)
5694 	/* We plan to no longer reset the transport header here.
5695 	 * Give some time to fuzzers and dev build to catch bugs
5696 	 * in network stacks.
5697 	 */
5698 	if (!skb_transport_header_was_set(skb))
5699 		skb_reset_transport_header(skb);
5700 #endif
5701 	skb_reset_mac_len(skb);
5702 
5703 	pt_prev = NULL;
5704 
5705 another_round:
5706 	skb->skb_iif = skb->dev->ifindex;
5707 
5708 	__this_cpu_inc(softnet_data.processed);
5709 
5710 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5711 		int ret2;
5712 
5713 		migrate_disable();
5714 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5715 				      &skb);
5716 		migrate_enable();
5717 
5718 		if (ret2 != XDP_PASS) {
5719 			ret = NET_RX_DROP;
5720 			goto out;
5721 		}
5722 	}
5723 
5724 	if (eth_type_vlan(skb->protocol)) {
5725 		skb = skb_vlan_untag(skb);
5726 		if (unlikely(!skb))
5727 			goto out;
5728 	}
5729 
5730 	if (skb_skip_tc_classify(skb))
5731 		goto skip_classify;
5732 
5733 	if (pfmemalloc)
5734 		goto skip_taps;
5735 
5736 	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
5737 		if (pt_prev)
5738 			ret = deliver_skb(skb, pt_prev, orig_dev);
5739 		pt_prev = ptype;
5740 	}
5741 
5742 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5743 		if (pt_prev)
5744 			ret = deliver_skb(skb, pt_prev, orig_dev);
5745 		pt_prev = ptype;
5746 	}
5747 
5748 skip_taps:
5749 #ifdef CONFIG_NET_INGRESS
5750 	if (static_branch_unlikely(&ingress_needed_key)) {
5751 		bool another = false;
5752 
5753 		nf_skip_egress(skb, true);
5754 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5755 					 &another);
5756 		if (another)
5757 			goto another_round;
5758 		if (!skb)
5759 			goto out;
5760 
5761 		nf_skip_egress(skb, false);
5762 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5763 			goto out;
5764 	}
5765 #endif
5766 	skb_reset_redirect(skb);
5767 skip_classify:
5768 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5769 		goto drop;
5770 
5771 	if (skb_vlan_tag_present(skb)) {
5772 		if (pt_prev) {
5773 			ret = deliver_skb(skb, pt_prev, orig_dev);
5774 			pt_prev = NULL;
5775 		}
5776 		if (vlan_do_receive(&skb))
5777 			goto another_round;
5778 		else if (unlikely(!skb))
5779 			goto out;
5780 	}
5781 
5782 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5783 	if (rx_handler) {
5784 		if (pt_prev) {
5785 			ret = deliver_skb(skb, pt_prev, orig_dev);
5786 			pt_prev = NULL;
5787 		}
5788 		switch (rx_handler(&skb)) {
5789 		case RX_HANDLER_CONSUMED:
5790 			ret = NET_RX_SUCCESS;
5791 			goto out;
5792 		case RX_HANDLER_ANOTHER:
5793 			goto another_round;
5794 		case RX_HANDLER_EXACT:
5795 			deliver_exact = true;
5796 			break;
5797 		case RX_HANDLER_PASS:
5798 			break;
5799 		default:
5800 			BUG();
5801 		}
5802 	}
5803 
5804 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5805 check_vlan_id:
5806 		if (skb_vlan_tag_get_id(skb)) {
5807 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5808 			 * find vlan device.
5809 			 */
5810 			skb->pkt_type = PACKET_OTHERHOST;
5811 		} else if (eth_type_vlan(skb->protocol)) {
5812 			/* Outer header is 802.1P with vlan 0, inner header is
5813 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5814 			 * not find vlan dev for vlan id 0.
5815 			 */
5816 			__vlan_hwaccel_clear_tag(skb);
5817 			skb = skb_vlan_untag(skb);
5818 			if (unlikely(!skb))
5819 				goto out;
5820 			if (vlan_do_receive(&skb))
5821 				/* After stripping off 802.1P header with vlan 0
5822 				 * vlan dev is found for inner header.
5823 				 */
5824 				goto another_round;
5825 			else if (unlikely(!skb))
5826 				goto out;
5827 			else
5828 				/* We have stripped outer 802.1P vlan 0 header.
5829 				 * But could not find vlan dev.
5830 				 * check again for vlan id to set OTHERHOST.
5831 				 */
5832 				goto check_vlan_id;
5833 		}
5834 		/* Note: we might in the future use prio bits
5835 		 * and set skb->priority like in vlan_do_receive()
5836 		 * For the time being, just ignore Priority Code Point
5837 		 */
5838 		__vlan_hwaccel_clear_tag(skb);
5839 	}
5840 
5841 	type = skb->protocol;
5842 
5843 	/* deliver only exact match when indicated */
5844 	if (likely(!deliver_exact)) {
5845 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5846 				       &ptype_base[ntohs(type) &
5847 						   PTYPE_HASH_MASK]);
5848 	}
5849 
5850 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5851 			       &orig_dev->ptype_specific);
5852 
5853 	if (unlikely(skb->dev != orig_dev)) {
5854 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5855 				       &skb->dev->ptype_specific);
5856 	}
5857 
5858 	if (pt_prev) {
5859 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5860 			goto drop;
5861 		*ppt_prev = pt_prev;
5862 	} else {
5863 drop:
5864 		if (!deliver_exact)
5865 			dev_core_stats_rx_dropped_inc(skb->dev);
5866 		else
5867 			dev_core_stats_rx_nohandler_inc(skb->dev);
5868 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5869 		/* Jamal, now you will not able to escape explaining
5870 		 * me how you were going to use this. :-)
5871 		 */
5872 		ret = NET_RX_DROP;
5873 	}
5874 
5875 out:
5876 	/* The invariant here is that if *ppt_prev is not NULL
5877 	 * then skb should also be non-NULL.
5878 	 *
5879 	 * Apparently *ppt_prev assignment above holds this invariant due to
5880 	 * skb dereferencing near it.
5881 	 */
5882 	*pskb = skb;
5883 	return ret;
5884 }
5885 
5886 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5887 {
5888 	struct net_device *orig_dev = skb->dev;
5889 	struct packet_type *pt_prev = NULL;
5890 	int ret;
5891 
5892 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5893 	if (pt_prev)
5894 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5895 					 skb->dev, pt_prev, orig_dev);
5896 	return ret;
5897 }
5898 
5899 /**
5900  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5901  *	@skb: buffer to process
5902  *
5903  *	More direct receive version of netif_receive_skb().  It should
5904  *	only be used by callers that have a need to skip RPS and Generic XDP.
5905  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5906  *
5907  *	This function may only be called from softirq context and interrupts
5908  *	should be enabled.
5909  *
5910  *	Return values (usually ignored):
5911  *	NET_RX_SUCCESS: no congestion
5912  *	NET_RX_DROP: packet was dropped
5913  */
5914 int netif_receive_skb_core(struct sk_buff *skb)
5915 {
5916 	int ret;
5917 
5918 	rcu_read_lock();
5919 	ret = __netif_receive_skb_one_core(skb, false);
5920 	rcu_read_unlock();
5921 
5922 	return ret;
5923 }
5924 EXPORT_SYMBOL(netif_receive_skb_core);
5925 
5926 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5927 						  struct packet_type *pt_prev,
5928 						  struct net_device *orig_dev)
5929 {
5930 	struct sk_buff *skb, *next;
5931 
5932 	if (!pt_prev)
5933 		return;
5934 	if (list_empty(head))
5935 		return;
5936 	if (pt_prev->list_func != NULL)
5937 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5938 				   ip_list_rcv, head, pt_prev, orig_dev);
5939 	else
5940 		list_for_each_entry_safe(skb, next, head, list) {
5941 			skb_list_del_init(skb);
5942 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5943 		}
5944 }
5945 
5946 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5947 {
5948 	/* Fast-path assumptions:
5949 	 * - There is no RX handler.
5950 	 * - Only one packet_type matches.
5951 	 * If either of these fails, we will end up doing some per-packet
5952 	 * processing in-line, then handling the 'last ptype' for the whole
5953 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5954 	 * because the 'last ptype' must be constant across the sublist, and all
5955 	 * other ptypes are handled per-packet.
5956 	 */
5957 	/* Current (common) ptype of sublist */
5958 	struct packet_type *pt_curr = NULL;
5959 	/* Current (common) orig_dev of sublist */
5960 	struct net_device *od_curr = NULL;
5961 	struct sk_buff *skb, *next;
5962 	LIST_HEAD(sublist);
5963 
5964 	list_for_each_entry_safe(skb, next, head, list) {
5965 		struct net_device *orig_dev = skb->dev;
5966 		struct packet_type *pt_prev = NULL;
5967 
5968 		skb_list_del_init(skb);
5969 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5970 		if (!pt_prev)
5971 			continue;
5972 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5973 			/* dispatch old sublist */
5974 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5975 			/* start new sublist */
5976 			INIT_LIST_HEAD(&sublist);
5977 			pt_curr = pt_prev;
5978 			od_curr = orig_dev;
5979 		}
5980 		list_add_tail(&skb->list, &sublist);
5981 	}
5982 
5983 	/* dispatch final sublist */
5984 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5985 }
5986 
5987 static int __netif_receive_skb(struct sk_buff *skb)
5988 {
5989 	int ret;
5990 
5991 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5992 		unsigned int noreclaim_flag;
5993 
5994 		/*
5995 		 * PFMEMALLOC skbs are special, they should
5996 		 * - be delivered to SOCK_MEMALLOC sockets only
5997 		 * - stay away from userspace
5998 		 * - have bounded memory usage
5999 		 *
6000 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6001 		 * context down to all allocation sites.
6002 		 */
6003 		noreclaim_flag = memalloc_noreclaim_save();
6004 		ret = __netif_receive_skb_one_core(skb, true);
6005 		memalloc_noreclaim_restore(noreclaim_flag);
6006 	} else
6007 		ret = __netif_receive_skb_one_core(skb, false);
6008 
6009 	return ret;
6010 }
6011 
6012 static void __netif_receive_skb_list(struct list_head *head)
6013 {
6014 	unsigned long noreclaim_flag = 0;
6015 	struct sk_buff *skb, *next;
6016 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6017 
6018 	list_for_each_entry_safe(skb, next, head, list) {
6019 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6020 			struct list_head sublist;
6021 
6022 			/* Handle the previous sublist */
6023 			list_cut_before(&sublist, head, &skb->list);
6024 			if (!list_empty(&sublist))
6025 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6026 			pfmemalloc = !pfmemalloc;
6027 			/* See comments in __netif_receive_skb */
6028 			if (pfmemalloc)
6029 				noreclaim_flag = memalloc_noreclaim_save();
6030 			else
6031 				memalloc_noreclaim_restore(noreclaim_flag);
6032 		}
6033 	}
6034 	/* Handle the remaining sublist */
6035 	if (!list_empty(head))
6036 		__netif_receive_skb_list_core(head, pfmemalloc);
6037 	/* Restore pflags */
6038 	if (pfmemalloc)
6039 		memalloc_noreclaim_restore(noreclaim_flag);
6040 }
6041 
6042 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6043 {
6044 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6045 	struct bpf_prog *new = xdp->prog;
6046 	int ret = 0;
6047 
6048 	switch (xdp->command) {
6049 	case XDP_SETUP_PROG:
6050 		rcu_assign_pointer(dev->xdp_prog, new);
6051 		if (old)
6052 			bpf_prog_put(old);
6053 
6054 		if (old && !new) {
6055 			static_branch_dec(&generic_xdp_needed_key);
6056 		} else if (new && !old) {
6057 			static_branch_inc(&generic_xdp_needed_key);
6058 			netif_disable_lro(dev);
6059 			dev_disable_gro_hw(dev);
6060 		}
6061 		break;
6062 
6063 	default:
6064 		ret = -EINVAL;
6065 		break;
6066 	}
6067 
6068 	return ret;
6069 }
6070 
6071 static int netif_receive_skb_internal(struct sk_buff *skb)
6072 {
6073 	int ret;
6074 
6075 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6076 
6077 	if (skb_defer_rx_timestamp(skb))
6078 		return NET_RX_SUCCESS;
6079 
6080 	rcu_read_lock();
6081 #ifdef CONFIG_RPS
6082 	if (static_branch_unlikely(&rps_needed)) {
6083 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6084 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6085 
6086 		if (cpu >= 0) {
6087 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6088 			rcu_read_unlock();
6089 			return ret;
6090 		}
6091 	}
6092 #endif
6093 	ret = __netif_receive_skb(skb);
6094 	rcu_read_unlock();
6095 	return ret;
6096 }
6097 
6098 void netif_receive_skb_list_internal(struct list_head *head)
6099 {
6100 	struct sk_buff *skb, *next;
6101 	LIST_HEAD(sublist);
6102 
6103 	list_for_each_entry_safe(skb, next, head, list) {
6104 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6105 				    skb);
6106 		skb_list_del_init(skb);
6107 		if (!skb_defer_rx_timestamp(skb))
6108 			list_add_tail(&skb->list, &sublist);
6109 	}
6110 	list_splice_init(&sublist, head);
6111 
6112 	rcu_read_lock();
6113 #ifdef CONFIG_RPS
6114 	if (static_branch_unlikely(&rps_needed)) {
6115 		list_for_each_entry_safe(skb, next, head, list) {
6116 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6117 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6118 
6119 			if (cpu >= 0) {
6120 				/* Will be handled, remove from list */
6121 				skb_list_del_init(skb);
6122 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6123 			}
6124 		}
6125 	}
6126 #endif
6127 	__netif_receive_skb_list(head);
6128 	rcu_read_unlock();
6129 }
6130 
6131 /**
6132  *	netif_receive_skb - process receive buffer from network
6133  *	@skb: buffer to process
6134  *
6135  *	netif_receive_skb() is the main receive data processing function.
6136  *	It always succeeds. The buffer may be dropped during processing
6137  *	for congestion control or by the protocol layers.
6138  *
6139  *	This function may only be called from softirq context and interrupts
6140  *	should be enabled.
6141  *
6142  *	Return values (usually ignored):
6143  *	NET_RX_SUCCESS: no congestion
6144  *	NET_RX_DROP: packet was dropped
6145  */
6146 int netif_receive_skb(struct sk_buff *skb)
6147 {
6148 	int ret;
6149 
6150 	trace_netif_receive_skb_entry(skb);
6151 
6152 	ret = netif_receive_skb_internal(skb);
6153 	trace_netif_receive_skb_exit(ret);
6154 
6155 	return ret;
6156 }
6157 EXPORT_SYMBOL(netif_receive_skb);
6158 
6159 /**
6160  *	netif_receive_skb_list - process many receive buffers from network
6161  *	@head: list of skbs to process.
6162  *
6163  *	Since return value of netif_receive_skb() is normally ignored, and
6164  *	wouldn't be meaningful for a list, this function returns void.
6165  *
6166  *	This function may only be called from softirq context and interrupts
6167  *	should be enabled.
6168  */
6169 void netif_receive_skb_list(struct list_head *head)
6170 {
6171 	struct sk_buff *skb;
6172 
6173 	if (list_empty(head))
6174 		return;
6175 	if (trace_netif_receive_skb_list_entry_enabled()) {
6176 		list_for_each_entry(skb, head, list)
6177 			trace_netif_receive_skb_list_entry(skb);
6178 	}
6179 	netif_receive_skb_list_internal(head);
6180 	trace_netif_receive_skb_list_exit(0);
6181 }
6182 EXPORT_SYMBOL(netif_receive_skb_list);
6183 
6184 /* Network device is going away, flush any packets still pending */
6185 static void flush_backlog(struct work_struct *work)
6186 {
6187 	struct sk_buff *skb, *tmp;
6188 	struct sk_buff_head list;
6189 	struct softnet_data *sd;
6190 
6191 	__skb_queue_head_init(&list);
6192 	local_bh_disable();
6193 	sd = this_cpu_ptr(&softnet_data);
6194 
6195 	backlog_lock_irq_disable(sd);
6196 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6197 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6198 			__skb_unlink(skb, &sd->input_pkt_queue);
6199 			__skb_queue_tail(&list, skb);
6200 			rps_input_queue_head_incr(sd);
6201 		}
6202 	}
6203 	backlog_unlock_irq_enable(sd);
6204 
6205 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6206 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6207 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6208 			__skb_unlink(skb, &sd->process_queue);
6209 			__skb_queue_tail(&list, skb);
6210 			rps_input_queue_head_incr(sd);
6211 		}
6212 	}
6213 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6214 	local_bh_enable();
6215 
6216 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6217 }
6218 
6219 static bool flush_required(int cpu)
6220 {
6221 #if IS_ENABLED(CONFIG_RPS)
6222 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6223 	bool do_flush;
6224 
6225 	backlog_lock_irq_disable(sd);
6226 
6227 	/* as insertion into process_queue happens with the rps lock held,
6228 	 * process_queue access may race only with dequeue
6229 	 */
6230 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6231 		   !skb_queue_empty_lockless(&sd->process_queue);
6232 	backlog_unlock_irq_enable(sd);
6233 
6234 	return do_flush;
6235 #endif
6236 	/* without RPS we can't safely check input_pkt_queue: during a
6237 	 * concurrent remote skb_queue_splice() we can detect as empty both
6238 	 * input_pkt_queue and process_queue even if the latter could end-up
6239 	 * containing a lot of packets.
6240 	 */
6241 	return true;
6242 }
6243 
6244 struct flush_backlogs {
6245 	cpumask_t		flush_cpus;
6246 	struct work_struct	w[];
6247 };
6248 
6249 static struct flush_backlogs *flush_backlogs_alloc(void)
6250 {
6251 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6252 		       GFP_KERNEL);
6253 }
6254 
6255 static struct flush_backlogs *flush_backlogs_fallback;
6256 static DEFINE_MUTEX(flush_backlogs_mutex);
6257 
6258 static void flush_all_backlogs(void)
6259 {
6260 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6261 	unsigned int cpu;
6262 
6263 	if (!ptr) {
6264 		mutex_lock(&flush_backlogs_mutex);
6265 		ptr = flush_backlogs_fallback;
6266 	}
6267 	cpumask_clear(&ptr->flush_cpus);
6268 
6269 	cpus_read_lock();
6270 
6271 	for_each_online_cpu(cpu) {
6272 		if (flush_required(cpu)) {
6273 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6274 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6275 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6276 		}
6277 	}
6278 
6279 	/* we can have in flight packet[s] on the cpus we are not flushing,
6280 	 * synchronize_net() in unregister_netdevice_many() will take care of
6281 	 * them.
6282 	 */
6283 	for_each_cpu(cpu, &ptr->flush_cpus)
6284 		flush_work(&ptr->w[cpu]);
6285 
6286 	cpus_read_unlock();
6287 
6288 	if (ptr != flush_backlogs_fallback)
6289 		kfree(ptr);
6290 	else
6291 		mutex_unlock(&flush_backlogs_mutex);
6292 }
6293 
6294 static void net_rps_send_ipi(struct softnet_data *remsd)
6295 {
6296 #ifdef CONFIG_RPS
6297 	while (remsd) {
6298 		struct softnet_data *next = remsd->rps_ipi_next;
6299 
6300 		if (cpu_online(remsd->cpu))
6301 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6302 		remsd = next;
6303 	}
6304 #endif
6305 }
6306 
6307 /*
6308  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6309  * Note: called with local irq disabled, but exits with local irq enabled.
6310  */
6311 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6312 {
6313 #ifdef CONFIG_RPS
6314 	struct softnet_data *remsd = sd->rps_ipi_list;
6315 
6316 	if (!use_backlog_threads() && remsd) {
6317 		sd->rps_ipi_list = NULL;
6318 
6319 		local_irq_enable();
6320 
6321 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6322 		net_rps_send_ipi(remsd);
6323 	} else
6324 #endif
6325 		local_irq_enable();
6326 }
6327 
6328 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6329 {
6330 #ifdef CONFIG_RPS
6331 	return !use_backlog_threads() && sd->rps_ipi_list;
6332 #else
6333 	return false;
6334 #endif
6335 }
6336 
6337 static int process_backlog(struct napi_struct *napi, int quota)
6338 {
6339 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6340 	bool again = true;
6341 	int work = 0;
6342 
6343 	/* Check if we have pending ipi, its better to send them now,
6344 	 * not waiting net_rx_action() end.
6345 	 */
6346 	if (sd_has_rps_ipi_waiting(sd)) {
6347 		local_irq_disable();
6348 		net_rps_action_and_irq_enable(sd);
6349 	}
6350 
6351 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6352 	while (again) {
6353 		struct sk_buff *skb;
6354 
6355 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6356 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6357 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6358 			rcu_read_lock();
6359 			__netif_receive_skb(skb);
6360 			rcu_read_unlock();
6361 			if (++work >= quota) {
6362 				rps_input_queue_head_add(sd, work);
6363 				return work;
6364 			}
6365 
6366 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6367 		}
6368 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6369 
6370 		backlog_lock_irq_disable(sd);
6371 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6372 			/*
6373 			 * Inline a custom version of __napi_complete().
6374 			 * only current cpu owns and manipulates this napi,
6375 			 * and NAPI_STATE_SCHED is the only possible flag set
6376 			 * on backlog.
6377 			 * We can use a plain write instead of clear_bit(),
6378 			 * and we dont need an smp_mb() memory barrier.
6379 			 */
6380 			napi->state &= NAPIF_STATE_THREADED;
6381 			again = false;
6382 		} else {
6383 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6384 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6385 						   &sd->process_queue);
6386 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6387 		}
6388 		backlog_unlock_irq_enable(sd);
6389 	}
6390 
6391 	if (work)
6392 		rps_input_queue_head_add(sd, work);
6393 	return work;
6394 }
6395 
6396 /**
6397  * __napi_schedule - schedule for receive
6398  * @n: entry to schedule
6399  *
6400  * The entry's receive function will be scheduled to run.
6401  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6402  */
6403 void __napi_schedule(struct napi_struct *n)
6404 {
6405 	unsigned long flags;
6406 
6407 	local_irq_save(flags);
6408 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6409 	local_irq_restore(flags);
6410 }
6411 EXPORT_SYMBOL(__napi_schedule);
6412 
6413 /**
6414  *	napi_schedule_prep - check if napi can be scheduled
6415  *	@n: napi context
6416  *
6417  * Test if NAPI routine is already running, and if not mark
6418  * it as running.  This is used as a condition variable to
6419  * insure only one NAPI poll instance runs.  We also make
6420  * sure there is no pending NAPI disable.
6421  */
6422 bool napi_schedule_prep(struct napi_struct *n)
6423 {
6424 	unsigned long new, val = READ_ONCE(n->state);
6425 
6426 	do {
6427 		if (unlikely(val & NAPIF_STATE_DISABLE))
6428 			return false;
6429 		new = val | NAPIF_STATE_SCHED;
6430 
6431 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6432 		 * This was suggested by Alexander Duyck, as compiler
6433 		 * emits better code than :
6434 		 * if (val & NAPIF_STATE_SCHED)
6435 		 *     new |= NAPIF_STATE_MISSED;
6436 		 */
6437 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6438 						   NAPIF_STATE_MISSED;
6439 	} while (!try_cmpxchg(&n->state, &val, new));
6440 
6441 	return !(val & NAPIF_STATE_SCHED);
6442 }
6443 EXPORT_SYMBOL(napi_schedule_prep);
6444 
6445 /**
6446  * __napi_schedule_irqoff - schedule for receive
6447  * @n: entry to schedule
6448  *
6449  * Variant of __napi_schedule() assuming hard irqs are masked.
6450  *
6451  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6452  * because the interrupt disabled assumption might not be true
6453  * due to force-threaded interrupts and spinlock substitution.
6454  */
6455 void __napi_schedule_irqoff(struct napi_struct *n)
6456 {
6457 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6458 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6459 	else
6460 		__napi_schedule(n);
6461 }
6462 EXPORT_SYMBOL(__napi_schedule_irqoff);
6463 
6464 bool napi_complete_done(struct napi_struct *n, int work_done)
6465 {
6466 	unsigned long flags, val, new, timeout = 0;
6467 	bool ret = true;
6468 
6469 	/*
6470 	 * 1) Don't let napi dequeue from the cpu poll list
6471 	 *    just in case its running on a different cpu.
6472 	 * 2) If we are busy polling, do nothing here, we have
6473 	 *    the guarantee we will be called later.
6474 	 */
6475 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6476 				 NAPIF_STATE_IN_BUSY_POLL)))
6477 		return false;
6478 
6479 	if (work_done) {
6480 		if (n->gro.bitmask)
6481 			timeout = napi_get_gro_flush_timeout(n);
6482 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6483 	}
6484 	if (n->defer_hard_irqs_count > 0) {
6485 		n->defer_hard_irqs_count--;
6486 		timeout = napi_get_gro_flush_timeout(n);
6487 		if (timeout)
6488 			ret = false;
6489 	}
6490 
6491 	/*
6492 	 * When the NAPI instance uses a timeout and keeps postponing
6493 	 * it, we need to bound somehow the time packets are kept in
6494 	 * the GRO layer.
6495 	 */
6496 	gro_flush(&n->gro, !!timeout);
6497 	gro_normal_list(&n->gro);
6498 
6499 	if (unlikely(!list_empty(&n->poll_list))) {
6500 		/* If n->poll_list is not empty, we need to mask irqs */
6501 		local_irq_save(flags);
6502 		list_del_init(&n->poll_list);
6503 		local_irq_restore(flags);
6504 	}
6505 	WRITE_ONCE(n->list_owner, -1);
6506 
6507 	val = READ_ONCE(n->state);
6508 	do {
6509 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6510 
6511 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6512 			      NAPIF_STATE_SCHED_THREADED |
6513 			      NAPIF_STATE_PREFER_BUSY_POLL);
6514 
6515 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6516 		 * because we will call napi->poll() one more time.
6517 		 * This C code was suggested by Alexander Duyck to help gcc.
6518 		 */
6519 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6520 						    NAPIF_STATE_SCHED;
6521 	} while (!try_cmpxchg(&n->state, &val, new));
6522 
6523 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6524 		__napi_schedule(n);
6525 		return false;
6526 	}
6527 
6528 	if (timeout)
6529 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6530 			      HRTIMER_MODE_REL_PINNED);
6531 	return ret;
6532 }
6533 EXPORT_SYMBOL(napi_complete_done);
6534 
6535 static void skb_defer_free_flush(struct softnet_data *sd)
6536 {
6537 	struct sk_buff *skb, *next;
6538 
6539 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6540 	if (!READ_ONCE(sd->defer_list))
6541 		return;
6542 
6543 	spin_lock(&sd->defer_lock);
6544 	skb = sd->defer_list;
6545 	sd->defer_list = NULL;
6546 	sd->defer_count = 0;
6547 	spin_unlock(&sd->defer_lock);
6548 
6549 	while (skb != NULL) {
6550 		next = skb->next;
6551 		napi_consume_skb(skb, 1);
6552 		skb = next;
6553 	}
6554 }
6555 
6556 #if defined(CONFIG_NET_RX_BUSY_POLL)
6557 
6558 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6559 {
6560 	if (!skip_schedule) {
6561 		gro_normal_list(&napi->gro);
6562 		__napi_schedule(napi);
6563 		return;
6564 	}
6565 
6566 	/* Flush too old packets. If HZ < 1000, flush all packets */
6567 	gro_flush(&napi->gro, HZ >= 1000);
6568 	gro_normal_list(&napi->gro);
6569 
6570 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6571 }
6572 
6573 enum {
6574 	NAPI_F_PREFER_BUSY_POLL	= 1,
6575 	NAPI_F_END_ON_RESCHED	= 2,
6576 };
6577 
6578 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6579 			   unsigned flags, u16 budget)
6580 {
6581 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6582 	bool skip_schedule = false;
6583 	unsigned long timeout;
6584 	int rc;
6585 
6586 	/* Busy polling means there is a high chance device driver hard irq
6587 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6588 	 * set in napi_schedule_prep().
6589 	 * Since we are about to call napi->poll() once more, we can safely
6590 	 * clear NAPI_STATE_MISSED.
6591 	 *
6592 	 * Note: x86 could use a single "lock and ..." instruction
6593 	 * to perform these two clear_bit()
6594 	 */
6595 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6596 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6597 
6598 	local_bh_disable();
6599 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6600 
6601 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6602 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6603 		timeout = napi_get_gro_flush_timeout(napi);
6604 		if (napi->defer_hard_irqs_count && timeout) {
6605 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6606 			skip_schedule = true;
6607 		}
6608 	}
6609 
6610 	/* All we really want here is to re-enable device interrupts.
6611 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6612 	 */
6613 	rc = napi->poll(napi, budget);
6614 	/* We can't gro_normal_list() here, because napi->poll() might have
6615 	 * rearmed the napi (napi_complete_done()) in which case it could
6616 	 * already be running on another CPU.
6617 	 */
6618 	trace_napi_poll(napi, rc, budget);
6619 	netpoll_poll_unlock(have_poll_lock);
6620 	if (rc == budget)
6621 		__busy_poll_stop(napi, skip_schedule);
6622 	bpf_net_ctx_clear(bpf_net_ctx);
6623 	local_bh_enable();
6624 }
6625 
6626 static void __napi_busy_loop(unsigned int napi_id,
6627 		      bool (*loop_end)(void *, unsigned long),
6628 		      void *loop_end_arg, unsigned flags, u16 budget)
6629 {
6630 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6631 	int (*napi_poll)(struct napi_struct *napi, int budget);
6632 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6633 	void *have_poll_lock = NULL;
6634 	struct napi_struct *napi;
6635 
6636 	WARN_ON_ONCE(!rcu_read_lock_held());
6637 
6638 restart:
6639 	napi_poll = NULL;
6640 
6641 	napi = napi_by_id(napi_id);
6642 	if (!napi)
6643 		return;
6644 
6645 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6646 		preempt_disable();
6647 	for (;;) {
6648 		int work = 0;
6649 
6650 		local_bh_disable();
6651 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6652 		if (!napi_poll) {
6653 			unsigned long val = READ_ONCE(napi->state);
6654 
6655 			/* If multiple threads are competing for this napi,
6656 			 * we avoid dirtying napi->state as much as we can.
6657 			 */
6658 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6659 				   NAPIF_STATE_IN_BUSY_POLL)) {
6660 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6661 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6662 				goto count;
6663 			}
6664 			if (cmpxchg(&napi->state, val,
6665 				    val | NAPIF_STATE_IN_BUSY_POLL |
6666 					  NAPIF_STATE_SCHED) != val) {
6667 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6668 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6669 				goto count;
6670 			}
6671 			have_poll_lock = netpoll_poll_lock(napi);
6672 			napi_poll = napi->poll;
6673 		}
6674 		work = napi_poll(napi, budget);
6675 		trace_napi_poll(napi, work, budget);
6676 		gro_normal_list(&napi->gro);
6677 count:
6678 		if (work > 0)
6679 			__NET_ADD_STATS(dev_net(napi->dev),
6680 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6681 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6682 		bpf_net_ctx_clear(bpf_net_ctx);
6683 		local_bh_enable();
6684 
6685 		if (!loop_end || loop_end(loop_end_arg, start_time))
6686 			break;
6687 
6688 		if (unlikely(need_resched())) {
6689 			if (flags & NAPI_F_END_ON_RESCHED)
6690 				break;
6691 			if (napi_poll)
6692 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6693 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6694 				preempt_enable();
6695 			rcu_read_unlock();
6696 			cond_resched();
6697 			rcu_read_lock();
6698 			if (loop_end(loop_end_arg, start_time))
6699 				return;
6700 			goto restart;
6701 		}
6702 		cpu_relax();
6703 	}
6704 	if (napi_poll)
6705 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6706 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6707 		preempt_enable();
6708 }
6709 
6710 void napi_busy_loop_rcu(unsigned int napi_id,
6711 			bool (*loop_end)(void *, unsigned long),
6712 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6713 {
6714 	unsigned flags = NAPI_F_END_ON_RESCHED;
6715 
6716 	if (prefer_busy_poll)
6717 		flags |= NAPI_F_PREFER_BUSY_POLL;
6718 
6719 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6720 }
6721 
6722 void napi_busy_loop(unsigned int napi_id,
6723 		    bool (*loop_end)(void *, unsigned long),
6724 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6725 {
6726 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6727 
6728 	rcu_read_lock();
6729 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6730 	rcu_read_unlock();
6731 }
6732 EXPORT_SYMBOL(napi_busy_loop);
6733 
6734 void napi_suspend_irqs(unsigned int napi_id)
6735 {
6736 	struct napi_struct *napi;
6737 
6738 	rcu_read_lock();
6739 	napi = napi_by_id(napi_id);
6740 	if (napi) {
6741 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6742 
6743 		if (timeout)
6744 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6745 				      HRTIMER_MODE_REL_PINNED);
6746 	}
6747 	rcu_read_unlock();
6748 }
6749 
6750 void napi_resume_irqs(unsigned int napi_id)
6751 {
6752 	struct napi_struct *napi;
6753 
6754 	rcu_read_lock();
6755 	napi = napi_by_id(napi_id);
6756 	if (napi) {
6757 		/* If irq_suspend_timeout is set to 0 between the call to
6758 		 * napi_suspend_irqs and now, the original value still
6759 		 * determines the safety timeout as intended and napi_watchdog
6760 		 * will resume irq processing.
6761 		 */
6762 		if (napi_get_irq_suspend_timeout(napi)) {
6763 			local_bh_disable();
6764 			napi_schedule(napi);
6765 			local_bh_enable();
6766 		}
6767 	}
6768 	rcu_read_unlock();
6769 }
6770 
6771 #endif /* CONFIG_NET_RX_BUSY_POLL */
6772 
6773 static void __napi_hash_add_with_id(struct napi_struct *napi,
6774 				    unsigned int napi_id)
6775 {
6776 	napi->gro.cached_napi_id = napi_id;
6777 
6778 	WRITE_ONCE(napi->napi_id, napi_id);
6779 	hlist_add_head_rcu(&napi->napi_hash_node,
6780 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6781 }
6782 
6783 static void napi_hash_add_with_id(struct napi_struct *napi,
6784 				  unsigned int napi_id)
6785 {
6786 	unsigned long flags;
6787 
6788 	spin_lock_irqsave(&napi_hash_lock, flags);
6789 	WARN_ON_ONCE(napi_by_id(napi_id));
6790 	__napi_hash_add_with_id(napi, napi_id);
6791 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6792 }
6793 
6794 static void napi_hash_add(struct napi_struct *napi)
6795 {
6796 	unsigned long flags;
6797 
6798 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6799 		return;
6800 
6801 	spin_lock_irqsave(&napi_hash_lock, flags);
6802 
6803 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6804 	do {
6805 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6806 			napi_gen_id = MIN_NAPI_ID;
6807 	} while (napi_by_id(napi_gen_id));
6808 
6809 	__napi_hash_add_with_id(napi, napi_gen_id);
6810 
6811 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6812 }
6813 
6814 /* Warning : caller is responsible to make sure rcu grace period
6815  * is respected before freeing memory containing @napi
6816  */
6817 static void napi_hash_del(struct napi_struct *napi)
6818 {
6819 	unsigned long flags;
6820 
6821 	spin_lock_irqsave(&napi_hash_lock, flags);
6822 
6823 	hlist_del_init_rcu(&napi->napi_hash_node);
6824 
6825 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6826 }
6827 
6828 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6829 {
6830 	struct napi_struct *napi;
6831 
6832 	napi = container_of(timer, struct napi_struct, timer);
6833 
6834 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6835 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6836 	 */
6837 	if (!napi_disable_pending(napi) &&
6838 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6839 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6840 		__napi_schedule_irqoff(napi);
6841 	}
6842 
6843 	return HRTIMER_NORESTART;
6844 }
6845 
6846 int dev_set_threaded(struct net_device *dev, bool threaded)
6847 {
6848 	struct napi_struct *napi;
6849 	int err = 0;
6850 
6851 	netdev_assert_locked_or_invisible(dev);
6852 
6853 	if (dev->threaded == threaded)
6854 		return 0;
6855 
6856 	if (threaded) {
6857 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6858 			if (!napi->thread) {
6859 				err = napi_kthread_create(napi);
6860 				if (err) {
6861 					threaded = false;
6862 					break;
6863 				}
6864 			}
6865 		}
6866 	}
6867 
6868 	WRITE_ONCE(dev->threaded, threaded);
6869 
6870 	/* Make sure kthread is created before THREADED bit
6871 	 * is set.
6872 	 */
6873 	smp_mb__before_atomic();
6874 
6875 	/* Setting/unsetting threaded mode on a napi might not immediately
6876 	 * take effect, if the current napi instance is actively being
6877 	 * polled. In this case, the switch between threaded mode and
6878 	 * softirq mode will happen in the next round of napi_schedule().
6879 	 * This should not cause hiccups/stalls to the live traffic.
6880 	 */
6881 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6882 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6883 
6884 	return err;
6885 }
6886 EXPORT_SYMBOL(dev_set_threaded);
6887 
6888 /**
6889  * netif_queue_set_napi - Associate queue with the napi
6890  * @dev: device to which NAPI and queue belong
6891  * @queue_index: Index of queue
6892  * @type: queue type as RX or TX
6893  * @napi: NAPI context, pass NULL to clear previously set NAPI
6894  *
6895  * Set queue with its corresponding napi context. This should be done after
6896  * registering the NAPI handler for the queue-vector and the queues have been
6897  * mapped to the corresponding interrupt vector.
6898  */
6899 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6900 			  enum netdev_queue_type type, struct napi_struct *napi)
6901 {
6902 	struct netdev_rx_queue *rxq;
6903 	struct netdev_queue *txq;
6904 
6905 	if (WARN_ON_ONCE(napi && !napi->dev))
6906 		return;
6907 	if (dev->reg_state >= NETREG_REGISTERED)
6908 		ASSERT_RTNL();
6909 
6910 	switch (type) {
6911 	case NETDEV_QUEUE_TYPE_RX:
6912 		rxq = __netif_get_rx_queue(dev, queue_index);
6913 		rxq->napi = napi;
6914 		return;
6915 	case NETDEV_QUEUE_TYPE_TX:
6916 		txq = netdev_get_tx_queue(dev, queue_index);
6917 		txq->napi = napi;
6918 		return;
6919 	default:
6920 		return;
6921 	}
6922 }
6923 EXPORT_SYMBOL(netif_queue_set_napi);
6924 
6925 static void
6926 netif_napi_irq_notify(struct irq_affinity_notify *notify,
6927 		      const cpumask_t *mask)
6928 {
6929 	struct napi_struct *napi =
6930 		container_of(notify, struct napi_struct, notify);
6931 #ifdef CONFIG_RFS_ACCEL
6932 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6933 	int err;
6934 #endif
6935 
6936 	if (napi->config && napi->dev->irq_affinity_auto)
6937 		cpumask_copy(&napi->config->affinity_mask, mask);
6938 
6939 #ifdef CONFIG_RFS_ACCEL
6940 	if (napi->dev->rx_cpu_rmap_auto) {
6941 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6942 		if (err)
6943 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6944 				    err);
6945 	}
6946 #endif
6947 }
6948 
6949 #ifdef CONFIG_RFS_ACCEL
6950 static void netif_napi_affinity_release(struct kref *ref)
6951 {
6952 	struct napi_struct *napi =
6953 		container_of(ref, struct napi_struct, notify.kref);
6954 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6955 
6956 	netdev_assert_locked(napi->dev);
6957 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6958 				   &napi->state));
6959 
6960 	if (!napi->dev->rx_cpu_rmap_auto)
6961 		return;
6962 	rmap->obj[napi->napi_rmap_idx] = NULL;
6963 	napi->napi_rmap_idx = -1;
6964 	cpu_rmap_put(rmap);
6965 }
6966 
6967 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6968 {
6969 	if (dev->rx_cpu_rmap_auto)
6970 		return 0;
6971 
6972 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6973 	if (!dev->rx_cpu_rmap)
6974 		return -ENOMEM;
6975 
6976 	dev->rx_cpu_rmap_auto = true;
6977 	return 0;
6978 }
6979 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6980 
6981 static void netif_del_cpu_rmap(struct net_device *dev)
6982 {
6983 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6984 
6985 	if (!dev->rx_cpu_rmap_auto)
6986 		return;
6987 
6988 	/* Free the rmap */
6989 	cpu_rmap_put(rmap);
6990 	dev->rx_cpu_rmap = NULL;
6991 	dev->rx_cpu_rmap_auto = false;
6992 }
6993 
6994 #else
6995 static void netif_napi_affinity_release(struct kref *ref)
6996 {
6997 }
6998 
6999 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
7000 {
7001 	return 0;
7002 }
7003 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7004 
7005 static void netif_del_cpu_rmap(struct net_device *dev)
7006 {
7007 }
7008 #endif
7009 
7010 void netif_set_affinity_auto(struct net_device *dev)
7011 {
7012 	unsigned int i, maxqs, numa;
7013 
7014 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7015 	numa = dev_to_node(&dev->dev);
7016 
7017 	for (i = 0; i < maxqs; i++)
7018 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7019 				&dev->napi_config[i].affinity_mask);
7020 
7021 	dev->irq_affinity_auto = true;
7022 }
7023 EXPORT_SYMBOL(netif_set_affinity_auto);
7024 
7025 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7026 {
7027 	int rc;
7028 
7029 	netdev_assert_locked_or_invisible(napi->dev);
7030 
7031 	if (napi->irq == irq)
7032 		return;
7033 
7034 	/* Remove existing resources */
7035 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7036 		irq_set_affinity_notifier(napi->irq, NULL);
7037 
7038 	napi->irq = irq;
7039 	if (irq < 0 ||
7040 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7041 		return;
7042 
7043 	/* Abort for buggy drivers */
7044 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7045 		return;
7046 
7047 #ifdef CONFIG_RFS_ACCEL
7048 	if (napi->dev->rx_cpu_rmap_auto) {
7049 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7050 		if (rc < 0)
7051 			return;
7052 
7053 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7054 		napi->napi_rmap_idx = rc;
7055 	}
7056 #endif
7057 
7058 	/* Use core IRQ notifier */
7059 	napi->notify.notify = netif_napi_irq_notify;
7060 	napi->notify.release = netif_napi_affinity_release;
7061 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7062 	if (rc) {
7063 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7064 			    rc);
7065 		goto put_rmap;
7066 	}
7067 
7068 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7069 	return;
7070 
7071 put_rmap:
7072 #ifdef CONFIG_RFS_ACCEL
7073 	if (napi->dev->rx_cpu_rmap_auto) {
7074 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7075 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7076 		napi->napi_rmap_idx = -1;
7077 	}
7078 #endif
7079 	napi->notify.notify = NULL;
7080 	napi->notify.release = NULL;
7081 }
7082 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7083 
7084 static void napi_restore_config(struct napi_struct *n)
7085 {
7086 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7087 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7088 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7089 
7090 	if (n->dev->irq_affinity_auto &&
7091 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7092 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7093 
7094 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7095 	 * napi_hash_add to generate one for us.
7096 	 */
7097 	if (n->config->napi_id) {
7098 		napi_hash_add_with_id(n, n->config->napi_id);
7099 	} else {
7100 		napi_hash_add(n);
7101 		n->config->napi_id = n->napi_id;
7102 	}
7103 }
7104 
7105 static void napi_save_config(struct napi_struct *n)
7106 {
7107 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7108 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7109 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7110 	napi_hash_del(n);
7111 }
7112 
7113 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7114  * inherit an existing ID try to insert it at the right position.
7115  */
7116 static void
7117 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7118 {
7119 	unsigned int new_id, pos_id;
7120 	struct list_head *higher;
7121 	struct napi_struct *pos;
7122 
7123 	new_id = UINT_MAX;
7124 	if (napi->config && napi->config->napi_id)
7125 		new_id = napi->config->napi_id;
7126 
7127 	higher = &dev->napi_list;
7128 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7129 		if (napi_id_valid(pos->napi_id))
7130 			pos_id = pos->napi_id;
7131 		else if (pos->config)
7132 			pos_id = pos->config->napi_id;
7133 		else
7134 			pos_id = UINT_MAX;
7135 
7136 		if (pos_id <= new_id)
7137 			break;
7138 		higher = &pos->dev_list;
7139 	}
7140 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7141 }
7142 
7143 /* Double check that napi_get_frags() allocates skbs with
7144  * skb->head being backed by slab, not a page fragment.
7145  * This is to make sure bug fixed in 3226b158e67c
7146  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7147  * does not accidentally come back.
7148  */
7149 static void napi_get_frags_check(struct napi_struct *napi)
7150 {
7151 	struct sk_buff *skb;
7152 
7153 	local_bh_disable();
7154 	skb = napi_get_frags(napi);
7155 	WARN_ON_ONCE(skb && skb->head_frag);
7156 	napi_free_frags(napi);
7157 	local_bh_enable();
7158 }
7159 
7160 void netif_napi_add_weight_locked(struct net_device *dev,
7161 				  struct napi_struct *napi,
7162 				  int (*poll)(struct napi_struct *, int),
7163 				  int weight)
7164 {
7165 	netdev_assert_locked(dev);
7166 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7167 		return;
7168 
7169 	INIT_LIST_HEAD(&napi->poll_list);
7170 	INIT_HLIST_NODE(&napi->napi_hash_node);
7171 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7172 	napi->timer.function = napi_watchdog;
7173 	gro_init(&napi->gro);
7174 	napi->skb = NULL;
7175 	napi->poll = poll;
7176 	if (weight > NAPI_POLL_WEIGHT)
7177 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7178 				weight);
7179 	napi->weight = weight;
7180 	napi->dev = dev;
7181 #ifdef CONFIG_NETPOLL
7182 	napi->poll_owner = -1;
7183 #endif
7184 	napi->list_owner = -1;
7185 	set_bit(NAPI_STATE_SCHED, &napi->state);
7186 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7187 	netif_napi_dev_list_add(dev, napi);
7188 
7189 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7190 	 * configuration will be loaded in napi_enable
7191 	 */
7192 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7193 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7194 
7195 	napi_get_frags_check(napi);
7196 	/* Create kthread for this napi if dev->threaded is set.
7197 	 * Clear dev->threaded if kthread creation failed so that
7198 	 * threaded mode will not be enabled in napi_enable().
7199 	 */
7200 	if (dev->threaded && napi_kthread_create(napi))
7201 		dev->threaded = false;
7202 	netif_napi_set_irq_locked(napi, -1);
7203 }
7204 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7205 
7206 void napi_disable_locked(struct napi_struct *n)
7207 {
7208 	unsigned long val, new;
7209 
7210 	might_sleep();
7211 	netdev_assert_locked(n->dev);
7212 
7213 	set_bit(NAPI_STATE_DISABLE, &n->state);
7214 
7215 	val = READ_ONCE(n->state);
7216 	do {
7217 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7218 			usleep_range(20, 200);
7219 			val = READ_ONCE(n->state);
7220 		}
7221 
7222 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7223 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7224 	} while (!try_cmpxchg(&n->state, &val, new));
7225 
7226 	hrtimer_cancel(&n->timer);
7227 
7228 	if (n->config)
7229 		napi_save_config(n);
7230 	else
7231 		napi_hash_del(n);
7232 
7233 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7234 }
7235 EXPORT_SYMBOL(napi_disable_locked);
7236 
7237 /**
7238  * napi_disable() - prevent NAPI from scheduling
7239  * @n: NAPI context
7240  *
7241  * Stop NAPI from being scheduled on this context.
7242  * Waits till any outstanding processing completes.
7243  * Takes netdev_lock() for associated net_device.
7244  */
7245 void napi_disable(struct napi_struct *n)
7246 {
7247 	netdev_lock(n->dev);
7248 	napi_disable_locked(n);
7249 	netdev_unlock(n->dev);
7250 }
7251 EXPORT_SYMBOL(napi_disable);
7252 
7253 void napi_enable_locked(struct napi_struct *n)
7254 {
7255 	unsigned long new, val = READ_ONCE(n->state);
7256 
7257 	if (n->config)
7258 		napi_restore_config(n);
7259 	else
7260 		napi_hash_add(n);
7261 
7262 	do {
7263 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7264 
7265 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7266 		if (n->dev->threaded && n->thread)
7267 			new |= NAPIF_STATE_THREADED;
7268 	} while (!try_cmpxchg(&n->state, &val, new));
7269 }
7270 EXPORT_SYMBOL(napi_enable_locked);
7271 
7272 /**
7273  * napi_enable() - enable NAPI scheduling
7274  * @n: NAPI context
7275  *
7276  * Enable scheduling of a NAPI instance.
7277  * Must be paired with napi_disable().
7278  * Takes netdev_lock() for associated net_device.
7279  */
7280 void napi_enable(struct napi_struct *n)
7281 {
7282 	netdev_lock(n->dev);
7283 	napi_enable_locked(n);
7284 	netdev_unlock(n->dev);
7285 }
7286 EXPORT_SYMBOL(napi_enable);
7287 
7288 /* Must be called in process context */
7289 void __netif_napi_del_locked(struct napi_struct *napi)
7290 {
7291 	netdev_assert_locked(napi->dev);
7292 
7293 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7294 		return;
7295 
7296 	/* Make sure NAPI is disabled (or was never enabled). */
7297 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7298 
7299 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7300 		irq_set_affinity_notifier(napi->irq, NULL);
7301 
7302 	if (napi->config) {
7303 		napi->index = -1;
7304 		napi->config = NULL;
7305 	}
7306 
7307 	list_del_rcu(&napi->dev_list);
7308 	napi_free_frags(napi);
7309 
7310 	gro_cleanup(&napi->gro);
7311 
7312 	if (napi->thread) {
7313 		kthread_stop(napi->thread);
7314 		napi->thread = NULL;
7315 	}
7316 }
7317 EXPORT_SYMBOL(__netif_napi_del_locked);
7318 
7319 static int __napi_poll(struct napi_struct *n, bool *repoll)
7320 {
7321 	int work, weight;
7322 
7323 	weight = n->weight;
7324 
7325 	/* This NAPI_STATE_SCHED test is for avoiding a race
7326 	 * with netpoll's poll_napi().  Only the entity which
7327 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7328 	 * actually make the ->poll() call.  Therefore we avoid
7329 	 * accidentally calling ->poll() when NAPI is not scheduled.
7330 	 */
7331 	work = 0;
7332 	if (napi_is_scheduled(n)) {
7333 		work = n->poll(n, weight);
7334 		trace_napi_poll(n, work, weight);
7335 
7336 		xdp_do_check_flushed(n);
7337 	}
7338 
7339 	if (unlikely(work > weight))
7340 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7341 				n->poll, work, weight);
7342 
7343 	if (likely(work < weight))
7344 		return work;
7345 
7346 	/* Drivers must not modify the NAPI state if they
7347 	 * consume the entire weight.  In such cases this code
7348 	 * still "owns" the NAPI instance and therefore can
7349 	 * move the instance around on the list at-will.
7350 	 */
7351 	if (unlikely(napi_disable_pending(n))) {
7352 		napi_complete(n);
7353 		return work;
7354 	}
7355 
7356 	/* The NAPI context has more processing work, but busy-polling
7357 	 * is preferred. Exit early.
7358 	 */
7359 	if (napi_prefer_busy_poll(n)) {
7360 		if (napi_complete_done(n, work)) {
7361 			/* If timeout is not set, we need to make sure
7362 			 * that the NAPI is re-scheduled.
7363 			 */
7364 			napi_schedule(n);
7365 		}
7366 		return work;
7367 	}
7368 
7369 	/* Flush too old packets. If HZ < 1000, flush all packets */
7370 	gro_flush(&n->gro, HZ >= 1000);
7371 	gro_normal_list(&n->gro);
7372 
7373 	/* Some drivers may have called napi_schedule
7374 	 * prior to exhausting their budget.
7375 	 */
7376 	if (unlikely(!list_empty(&n->poll_list))) {
7377 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7378 			     n->dev ? n->dev->name : "backlog");
7379 		return work;
7380 	}
7381 
7382 	*repoll = true;
7383 
7384 	return work;
7385 }
7386 
7387 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7388 {
7389 	bool do_repoll = false;
7390 	void *have;
7391 	int work;
7392 
7393 	list_del_init(&n->poll_list);
7394 
7395 	have = netpoll_poll_lock(n);
7396 
7397 	work = __napi_poll(n, &do_repoll);
7398 
7399 	if (do_repoll)
7400 		list_add_tail(&n->poll_list, repoll);
7401 
7402 	netpoll_poll_unlock(have);
7403 
7404 	return work;
7405 }
7406 
7407 static int napi_thread_wait(struct napi_struct *napi)
7408 {
7409 	set_current_state(TASK_INTERRUPTIBLE);
7410 
7411 	while (!kthread_should_stop()) {
7412 		/* Testing SCHED_THREADED bit here to make sure the current
7413 		 * kthread owns this napi and could poll on this napi.
7414 		 * Testing SCHED bit is not enough because SCHED bit might be
7415 		 * set by some other busy poll thread or by napi_disable().
7416 		 */
7417 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7418 			WARN_ON(!list_empty(&napi->poll_list));
7419 			__set_current_state(TASK_RUNNING);
7420 			return 0;
7421 		}
7422 
7423 		schedule();
7424 		set_current_state(TASK_INTERRUPTIBLE);
7425 	}
7426 	__set_current_state(TASK_RUNNING);
7427 
7428 	return -1;
7429 }
7430 
7431 static void napi_threaded_poll_loop(struct napi_struct *napi)
7432 {
7433 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7434 	struct softnet_data *sd;
7435 	unsigned long last_qs = jiffies;
7436 
7437 	for (;;) {
7438 		bool repoll = false;
7439 		void *have;
7440 
7441 		local_bh_disable();
7442 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7443 
7444 		sd = this_cpu_ptr(&softnet_data);
7445 		sd->in_napi_threaded_poll = true;
7446 
7447 		have = netpoll_poll_lock(napi);
7448 		__napi_poll(napi, &repoll);
7449 		netpoll_poll_unlock(have);
7450 
7451 		sd->in_napi_threaded_poll = false;
7452 		barrier();
7453 
7454 		if (sd_has_rps_ipi_waiting(sd)) {
7455 			local_irq_disable();
7456 			net_rps_action_and_irq_enable(sd);
7457 		}
7458 		skb_defer_free_flush(sd);
7459 		bpf_net_ctx_clear(bpf_net_ctx);
7460 		local_bh_enable();
7461 
7462 		if (!repoll)
7463 			break;
7464 
7465 		rcu_softirq_qs_periodic(last_qs);
7466 		cond_resched();
7467 	}
7468 }
7469 
7470 static int napi_threaded_poll(void *data)
7471 {
7472 	struct napi_struct *napi = data;
7473 
7474 	while (!napi_thread_wait(napi))
7475 		napi_threaded_poll_loop(napi);
7476 
7477 	return 0;
7478 }
7479 
7480 static __latent_entropy void net_rx_action(void)
7481 {
7482 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7483 	unsigned long time_limit = jiffies +
7484 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7485 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7486 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7487 	LIST_HEAD(list);
7488 	LIST_HEAD(repoll);
7489 
7490 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7491 start:
7492 	sd->in_net_rx_action = true;
7493 	local_irq_disable();
7494 	list_splice_init(&sd->poll_list, &list);
7495 	local_irq_enable();
7496 
7497 	for (;;) {
7498 		struct napi_struct *n;
7499 
7500 		skb_defer_free_flush(sd);
7501 
7502 		if (list_empty(&list)) {
7503 			if (list_empty(&repoll)) {
7504 				sd->in_net_rx_action = false;
7505 				barrier();
7506 				/* We need to check if ____napi_schedule()
7507 				 * had refilled poll_list while
7508 				 * sd->in_net_rx_action was true.
7509 				 */
7510 				if (!list_empty(&sd->poll_list))
7511 					goto start;
7512 				if (!sd_has_rps_ipi_waiting(sd))
7513 					goto end;
7514 			}
7515 			break;
7516 		}
7517 
7518 		n = list_first_entry(&list, struct napi_struct, poll_list);
7519 		budget -= napi_poll(n, &repoll);
7520 
7521 		/* If softirq window is exhausted then punt.
7522 		 * Allow this to run for 2 jiffies since which will allow
7523 		 * an average latency of 1.5/HZ.
7524 		 */
7525 		if (unlikely(budget <= 0 ||
7526 			     time_after_eq(jiffies, time_limit))) {
7527 			sd->time_squeeze++;
7528 			break;
7529 		}
7530 	}
7531 
7532 	local_irq_disable();
7533 
7534 	list_splice_tail_init(&sd->poll_list, &list);
7535 	list_splice_tail(&repoll, &list);
7536 	list_splice(&list, &sd->poll_list);
7537 	if (!list_empty(&sd->poll_list))
7538 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7539 	else
7540 		sd->in_net_rx_action = false;
7541 
7542 	net_rps_action_and_irq_enable(sd);
7543 end:
7544 	bpf_net_ctx_clear(bpf_net_ctx);
7545 }
7546 
7547 struct netdev_adjacent {
7548 	struct net_device *dev;
7549 	netdevice_tracker dev_tracker;
7550 
7551 	/* upper master flag, there can only be one master device per list */
7552 	bool master;
7553 
7554 	/* lookup ignore flag */
7555 	bool ignore;
7556 
7557 	/* counter for the number of times this device was added to us */
7558 	u16 ref_nr;
7559 
7560 	/* private field for the users */
7561 	void *private;
7562 
7563 	struct list_head list;
7564 	struct rcu_head rcu;
7565 };
7566 
7567 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7568 						 struct list_head *adj_list)
7569 {
7570 	struct netdev_adjacent *adj;
7571 
7572 	list_for_each_entry(adj, adj_list, list) {
7573 		if (adj->dev == adj_dev)
7574 			return adj;
7575 	}
7576 	return NULL;
7577 }
7578 
7579 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7580 				    struct netdev_nested_priv *priv)
7581 {
7582 	struct net_device *dev = (struct net_device *)priv->data;
7583 
7584 	return upper_dev == dev;
7585 }
7586 
7587 /**
7588  * netdev_has_upper_dev - Check if device is linked to an upper device
7589  * @dev: device
7590  * @upper_dev: upper device to check
7591  *
7592  * Find out if a device is linked to specified upper device and return true
7593  * in case it is. Note that this checks only immediate upper device,
7594  * not through a complete stack of devices. The caller must hold the RTNL lock.
7595  */
7596 bool netdev_has_upper_dev(struct net_device *dev,
7597 			  struct net_device *upper_dev)
7598 {
7599 	struct netdev_nested_priv priv = {
7600 		.data = (void *)upper_dev,
7601 	};
7602 
7603 	ASSERT_RTNL();
7604 
7605 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7606 					     &priv);
7607 }
7608 EXPORT_SYMBOL(netdev_has_upper_dev);
7609 
7610 /**
7611  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7612  * @dev: device
7613  * @upper_dev: upper device to check
7614  *
7615  * Find out if a device is linked to specified upper device and return true
7616  * in case it is. Note that this checks the entire upper device chain.
7617  * The caller must hold rcu lock.
7618  */
7619 
7620 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7621 				  struct net_device *upper_dev)
7622 {
7623 	struct netdev_nested_priv priv = {
7624 		.data = (void *)upper_dev,
7625 	};
7626 
7627 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7628 					       &priv);
7629 }
7630 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7631 
7632 /**
7633  * netdev_has_any_upper_dev - Check if device is linked to some device
7634  * @dev: device
7635  *
7636  * Find out if a device is linked to an upper device and return true in case
7637  * it is. The caller must hold the RTNL lock.
7638  */
7639 bool netdev_has_any_upper_dev(struct net_device *dev)
7640 {
7641 	ASSERT_RTNL();
7642 
7643 	return !list_empty(&dev->adj_list.upper);
7644 }
7645 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7646 
7647 /**
7648  * netdev_master_upper_dev_get - Get master upper device
7649  * @dev: device
7650  *
7651  * Find a master upper device and return pointer to it or NULL in case
7652  * it's not there. The caller must hold the RTNL lock.
7653  */
7654 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7655 {
7656 	struct netdev_adjacent *upper;
7657 
7658 	ASSERT_RTNL();
7659 
7660 	if (list_empty(&dev->adj_list.upper))
7661 		return NULL;
7662 
7663 	upper = list_first_entry(&dev->adj_list.upper,
7664 				 struct netdev_adjacent, list);
7665 	if (likely(upper->master))
7666 		return upper->dev;
7667 	return NULL;
7668 }
7669 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7670 
7671 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7672 {
7673 	struct netdev_adjacent *upper;
7674 
7675 	ASSERT_RTNL();
7676 
7677 	if (list_empty(&dev->adj_list.upper))
7678 		return NULL;
7679 
7680 	upper = list_first_entry(&dev->adj_list.upper,
7681 				 struct netdev_adjacent, list);
7682 	if (likely(upper->master) && !upper->ignore)
7683 		return upper->dev;
7684 	return NULL;
7685 }
7686 
7687 /**
7688  * netdev_has_any_lower_dev - Check if device is linked to some device
7689  * @dev: device
7690  *
7691  * Find out if a device is linked to a lower device and return true in case
7692  * it is. The caller must hold the RTNL lock.
7693  */
7694 static bool netdev_has_any_lower_dev(struct net_device *dev)
7695 {
7696 	ASSERT_RTNL();
7697 
7698 	return !list_empty(&dev->adj_list.lower);
7699 }
7700 
7701 void *netdev_adjacent_get_private(struct list_head *adj_list)
7702 {
7703 	struct netdev_adjacent *adj;
7704 
7705 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7706 
7707 	return adj->private;
7708 }
7709 EXPORT_SYMBOL(netdev_adjacent_get_private);
7710 
7711 /**
7712  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7713  * @dev: device
7714  * @iter: list_head ** of the current position
7715  *
7716  * Gets the next device from the dev's upper list, starting from iter
7717  * position. The caller must hold RCU read lock.
7718  */
7719 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7720 						 struct list_head **iter)
7721 {
7722 	struct netdev_adjacent *upper;
7723 
7724 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7725 
7726 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7727 
7728 	if (&upper->list == &dev->adj_list.upper)
7729 		return NULL;
7730 
7731 	*iter = &upper->list;
7732 
7733 	return upper->dev;
7734 }
7735 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7736 
7737 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7738 						  struct list_head **iter,
7739 						  bool *ignore)
7740 {
7741 	struct netdev_adjacent *upper;
7742 
7743 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7744 
7745 	if (&upper->list == &dev->adj_list.upper)
7746 		return NULL;
7747 
7748 	*iter = &upper->list;
7749 	*ignore = upper->ignore;
7750 
7751 	return upper->dev;
7752 }
7753 
7754 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7755 						    struct list_head **iter)
7756 {
7757 	struct netdev_adjacent *upper;
7758 
7759 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7760 
7761 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7762 
7763 	if (&upper->list == &dev->adj_list.upper)
7764 		return NULL;
7765 
7766 	*iter = &upper->list;
7767 
7768 	return upper->dev;
7769 }
7770 
7771 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7772 				       int (*fn)(struct net_device *dev,
7773 					 struct netdev_nested_priv *priv),
7774 				       struct netdev_nested_priv *priv)
7775 {
7776 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7777 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7778 	int ret, cur = 0;
7779 	bool ignore;
7780 
7781 	now = dev;
7782 	iter = &dev->adj_list.upper;
7783 
7784 	while (1) {
7785 		if (now != dev) {
7786 			ret = fn(now, priv);
7787 			if (ret)
7788 				return ret;
7789 		}
7790 
7791 		next = NULL;
7792 		while (1) {
7793 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7794 			if (!udev)
7795 				break;
7796 			if (ignore)
7797 				continue;
7798 
7799 			next = udev;
7800 			niter = &udev->adj_list.upper;
7801 			dev_stack[cur] = now;
7802 			iter_stack[cur++] = iter;
7803 			break;
7804 		}
7805 
7806 		if (!next) {
7807 			if (!cur)
7808 				return 0;
7809 			next = dev_stack[--cur];
7810 			niter = iter_stack[cur];
7811 		}
7812 
7813 		now = next;
7814 		iter = niter;
7815 	}
7816 
7817 	return 0;
7818 }
7819 
7820 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7821 				  int (*fn)(struct net_device *dev,
7822 					    struct netdev_nested_priv *priv),
7823 				  struct netdev_nested_priv *priv)
7824 {
7825 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7826 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7827 	int ret, cur = 0;
7828 
7829 	now = dev;
7830 	iter = &dev->adj_list.upper;
7831 
7832 	while (1) {
7833 		if (now != dev) {
7834 			ret = fn(now, priv);
7835 			if (ret)
7836 				return ret;
7837 		}
7838 
7839 		next = NULL;
7840 		while (1) {
7841 			udev = netdev_next_upper_dev_rcu(now, &iter);
7842 			if (!udev)
7843 				break;
7844 
7845 			next = udev;
7846 			niter = &udev->adj_list.upper;
7847 			dev_stack[cur] = now;
7848 			iter_stack[cur++] = iter;
7849 			break;
7850 		}
7851 
7852 		if (!next) {
7853 			if (!cur)
7854 				return 0;
7855 			next = dev_stack[--cur];
7856 			niter = iter_stack[cur];
7857 		}
7858 
7859 		now = next;
7860 		iter = niter;
7861 	}
7862 
7863 	return 0;
7864 }
7865 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7866 
7867 static bool __netdev_has_upper_dev(struct net_device *dev,
7868 				   struct net_device *upper_dev)
7869 {
7870 	struct netdev_nested_priv priv = {
7871 		.flags = 0,
7872 		.data = (void *)upper_dev,
7873 	};
7874 
7875 	ASSERT_RTNL();
7876 
7877 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7878 					   &priv);
7879 }
7880 
7881 /**
7882  * netdev_lower_get_next_private - Get the next ->private from the
7883  *				   lower neighbour list
7884  * @dev: device
7885  * @iter: list_head ** of the current position
7886  *
7887  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7888  * list, starting from iter position. The caller must hold either hold the
7889  * RTNL lock or its own locking that guarantees that the neighbour lower
7890  * list will remain unchanged.
7891  */
7892 void *netdev_lower_get_next_private(struct net_device *dev,
7893 				    struct list_head **iter)
7894 {
7895 	struct netdev_adjacent *lower;
7896 
7897 	lower = list_entry(*iter, struct netdev_adjacent, list);
7898 
7899 	if (&lower->list == &dev->adj_list.lower)
7900 		return NULL;
7901 
7902 	*iter = lower->list.next;
7903 
7904 	return lower->private;
7905 }
7906 EXPORT_SYMBOL(netdev_lower_get_next_private);
7907 
7908 /**
7909  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7910  *				       lower neighbour list, RCU
7911  *				       variant
7912  * @dev: device
7913  * @iter: list_head ** of the current position
7914  *
7915  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7916  * list, starting from iter position. The caller must hold RCU read lock.
7917  */
7918 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7919 					struct list_head **iter)
7920 {
7921 	struct netdev_adjacent *lower;
7922 
7923 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7924 
7925 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7926 
7927 	if (&lower->list == &dev->adj_list.lower)
7928 		return NULL;
7929 
7930 	*iter = &lower->list;
7931 
7932 	return lower->private;
7933 }
7934 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7935 
7936 /**
7937  * netdev_lower_get_next - Get the next device from the lower neighbour
7938  *                         list
7939  * @dev: device
7940  * @iter: list_head ** of the current position
7941  *
7942  * Gets the next netdev_adjacent from the dev's lower neighbour
7943  * list, starting from iter position. The caller must hold RTNL lock or
7944  * its own locking that guarantees that the neighbour lower
7945  * list will remain unchanged.
7946  */
7947 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7948 {
7949 	struct netdev_adjacent *lower;
7950 
7951 	lower = list_entry(*iter, struct netdev_adjacent, list);
7952 
7953 	if (&lower->list == &dev->adj_list.lower)
7954 		return NULL;
7955 
7956 	*iter = lower->list.next;
7957 
7958 	return lower->dev;
7959 }
7960 EXPORT_SYMBOL(netdev_lower_get_next);
7961 
7962 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7963 						struct list_head **iter)
7964 {
7965 	struct netdev_adjacent *lower;
7966 
7967 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7968 
7969 	if (&lower->list == &dev->adj_list.lower)
7970 		return NULL;
7971 
7972 	*iter = &lower->list;
7973 
7974 	return lower->dev;
7975 }
7976 
7977 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7978 						  struct list_head **iter,
7979 						  bool *ignore)
7980 {
7981 	struct netdev_adjacent *lower;
7982 
7983 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7984 
7985 	if (&lower->list == &dev->adj_list.lower)
7986 		return NULL;
7987 
7988 	*iter = &lower->list;
7989 	*ignore = lower->ignore;
7990 
7991 	return lower->dev;
7992 }
7993 
7994 int netdev_walk_all_lower_dev(struct net_device *dev,
7995 			      int (*fn)(struct net_device *dev,
7996 					struct netdev_nested_priv *priv),
7997 			      struct netdev_nested_priv *priv)
7998 {
7999 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8000 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8001 	int ret, cur = 0;
8002 
8003 	now = dev;
8004 	iter = &dev->adj_list.lower;
8005 
8006 	while (1) {
8007 		if (now != dev) {
8008 			ret = fn(now, priv);
8009 			if (ret)
8010 				return ret;
8011 		}
8012 
8013 		next = NULL;
8014 		while (1) {
8015 			ldev = netdev_next_lower_dev(now, &iter);
8016 			if (!ldev)
8017 				break;
8018 
8019 			next = ldev;
8020 			niter = &ldev->adj_list.lower;
8021 			dev_stack[cur] = now;
8022 			iter_stack[cur++] = iter;
8023 			break;
8024 		}
8025 
8026 		if (!next) {
8027 			if (!cur)
8028 				return 0;
8029 			next = dev_stack[--cur];
8030 			niter = iter_stack[cur];
8031 		}
8032 
8033 		now = next;
8034 		iter = niter;
8035 	}
8036 
8037 	return 0;
8038 }
8039 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8040 
8041 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8042 				       int (*fn)(struct net_device *dev,
8043 					 struct netdev_nested_priv *priv),
8044 				       struct netdev_nested_priv *priv)
8045 {
8046 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8047 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8048 	int ret, cur = 0;
8049 	bool ignore;
8050 
8051 	now = dev;
8052 	iter = &dev->adj_list.lower;
8053 
8054 	while (1) {
8055 		if (now != dev) {
8056 			ret = fn(now, priv);
8057 			if (ret)
8058 				return ret;
8059 		}
8060 
8061 		next = NULL;
8062 		while (1) {
8063 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8064 			if (!ldev)
8065 				break;
8066 			if (ignore)
8067 				continue;
8068 
8069 			next = ldev;
8070 			niter = &ldev->adj_list.lower;
8071 			dev_stack[cur] = now;
8072 			iter_stack[cur++] = iter;
8073 			break;
8074 		}
8075 
8076 		if (!next) {
8077 			if (!cur)
8078 				return 0;
8079 			next = dev_stack[--cur];
8080 			niter = iter_stack[cur];
8081 		}
8082 
8083 		now = next;
8084 		iter = niter;
8085 	}
8086 
8087 	return 0;
8088 }
8089 
8090 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8091 					     struct list_head **iter)
8092 {
8093 	struct netdev_adjacent *lower;
8094 
8095 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8096 	if (&lower->list == &dev->adj_list.lower)
8097 		return NULL;
8098 
8099 	*iter = &lower->list;
8100 
8101 	return lower->dev;
8102 }
8103 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8104 
8105 static u8 __netdev_upper_depth(struct net_device *dev)
8106 {
8107 	struct net_device *udev;
8108 	struct list_head *iter;
8109 	u8 max_depth = 0;
8110 	bool ignore;
8111 
8112 	for (iter = &dev->adj_list.upper,
8113 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8114 	     udev;
8115 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8116 		if (ignore)
8117 			continue;
8118 		if (max_depth < udev->upper_level)
8119 			max_depth = udev->upper_level;
8120 	}
8121 
8122 	return max_depth;
8123 }
8124 
8125 static u8 __netdev_lower_depth(struct net_device *dev)
8126 {
8127 	struct net_device *ldev;
8128 	struct list_head *iter;
8129 	u8 max_depth = 0;
8130 	bool ignore;
8131 
8132 	for (iter = &dev->adj_list.lower,
8133 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8134 	     ldev;
8135 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8136 		if (ignore)
8137 			continue;
8138 		if (max_depth < ldev->lower_level)
8139 			max_depth = ldev->lower_level;
8140 	}
8141 
8142 	return max_depth;
8143 }
8144 
8145 static int __netdev_update_upper_level(struct net_device *dev,
8146 				       struct netdev_nested_priv *__unused)
8147 {
8148 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8149 	return 0;
8150 }
8151 
8152 #ifdef CONFIG_LOCKDEP
8153 static LIST_HEAD(net_unlink_list);
8154 
8155 static void net_unlink_todo(struct net_device *dev)
8156 {
8157 	if (list_empty(&dev->unlink_list))
8158 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8159 }
8160 #endif
8161 
8162 static int __netdev_update_lower_level(struct net_device *dev,
8163 				       struct netdev_nested_priv *priv)
8164 {
8165 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8166 
8167 #ifdef CONFIG_LOCKDEP
8168 	if (!priv)
8169 		return 0;
8170 
8171 	if (priv->flags & NESTED_SYNC_IMM)
8172 		dev->nested_level = dev->lower_level - 1;
8173 	if (priv->flags & NESTED_SYNC_TODO)
8174 		net_unlink_todo(dev);
8175 #endif
8176 	return 0;
8177 }
8178 
8179 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8180 				  int (*fn)(struct net_device *dev,
8181 					    struct netdev_nested_priv *priv),
8182 				  struct netdev_nested_priv *priv)
8183 {
8184 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8185 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8186 	int ret, cur = 0;
8187 
8188 	now = dev;
8189 	iter = &dev->adj_list.lower;
8190 
8191 	while (1) {
8192 		if (now != dev) {
8193 			ret = fn(now, priv);
8194 			if (ret)
8195 				return ret;
8196 		}
8197 
8198 		next = NULL;
8199 		while (1) {
8200 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8201 			if (!ldev)
8202 				break;
8203 
8204 			next = ldev;
8205 			niter = &ldev->adj_list.lower;
8206 			dev_stack[cur] = now;
8207 			iter_stack[cur++] = iter;
8208 			break;
8209 		}
8210 
8211 		if (!next) {
8212 			if (!cur)
8213 				return 0;
8214 			next = dev_stack[--cur];
8215 			niter = iter_stack[cur];
8216 		}
8217 
8218 		now = next;
8219 		iter = niter;
8220 	}
8221 
8222 	return 0;
8223 }
8224 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8225 
8226 /**
8227  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8228  *				       lower neighbour list, RCU
8229  *				       variant
8230  * @dev: device
8231  *
8232  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8233  * list. The caller must hold RCU read lock.
8234  */
8235 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8236 {
8237 	struct netdev_adjacent *lower;
8238 
8239 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8240 			struct netdev_adjacent, list);
8241 	if (lower)
8242 		return lower->private;
8243 	return NULL;
8244 }
8245 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8246 
8247 /**
8248  * netdev_master_upper_dev_get_rcu - Get master upper device
8249  * @dev: device
8250  *
8251  * Find a master upper device and return pointer to it or NULL in case
8252  * it's not there. The caller must hold the RCU read lock.
8253  */
8254 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8255 {
8256 	struct netdev_adjacent *upper;
8257 
8258 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8259 				       struct netdev_adjacent, list);
8260 	if (upper && likely(upper->master))
8261 		return upper->dev;
8262 	return NULL;
8263 }
8264 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8265 
8266 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8267 			      struct net_device *adj_dev,
8268 			      struct list_head *dev_list)
8269 {
8270 	char linkname[IFNAMSIZ+7];
8271 
8272 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8273 		"upper_%s" : "lower_%s", adj_dev->name);
8274 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8275 				 linkname);
8276 }
8277 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8278 			       char *name,
8279 			       struct list_head *dev_list)
8280 {
8281 	char linkname[IFNAMSIZ+7];
8282 
8283 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8284 		"upper_%s" : "lower_%s", name);
8285 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8286 }
8287 
8288 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8289 						 struct net_device *adj_dev,
8290 						 struct list_head *dev_list)
8291 {
8292 	return (dev_list == &dev->adj_list.upper ||
8293 		dev_list == &dev->adj_list.lower) &&
8294 		net_eq(dev_net(dev), dev_net(adj_dev));
8295 }
8296 
8297 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8298 					struct net_device *adj_dev,
8299 					struct list_head *dev_list,
8300 					void *private, bool master)
8301 {
8302 	struct netdev_adjacent *adj;
8303 	int ret;
8304 
8305 	adj = __netdev_find_adj(adj_dev, dev_list);
8306 
8307 	if (adj) {
8308 		adj->ref_nr += 1;
8309 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8310 			 dev->name, adj_dev->name, adj->ref_nr);
8311 
8312 		return 0;
8313 	}
8314 
8315 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8316 	if (!adj)
8317 		return -ENOMEM;
8318 
8319 	adj->dev = adj_dev;
8320 	adj->master = master;
8321 	adj->ref_nr = 1;
8322 	adj->private = private;
8323 	adj->ignore = false;
8324 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8325 
8326 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8327 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8328 
8329 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8330 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8331 		if (ret)
8332 			goto free_adj;
8333 	}
8334 
8335 	/* Ensure that master link is always the first item in list. */
8336 	if (master) {
8337 		ret = sysfs_create_link(&(dev->dev.kobj),
8338 					&(adj_dev->dev.kobj), "master");
8339 		if (ret)
8340 			goto remove_symlinks;
8341 
8342 		list_add_rcu(&adj->list, dev_list);
8343 	} else {
8344 		list_add_tail_rcu(&adj->list, dev_list);
8345 	}
8346 
8347 	return 0;
8348 
8349 remove_symlinks:
8350 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8351 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8352 free_adj:
8353 	netdev_put(adj_dev, &adj->dev_tracker);
8354 	kfree(adj);
8355 
8356 	return ret;
8357 }
8358 
8359 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8360 					 struct net_device *adj_dev,
8361 					 u16 ref_nr,
8362 					 struct list_head *dev_list)
8363 {
8364 	struct netdev_adjacent *adj;
8365 
8366 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8367 		 dev->name, adj_dev->name, ref_nr);
8368 
8369 	adj = __netdev_find_adj(adj_dev, dev_list);
8370 
8371 	if (!adj) {
8372 		pr_err("Adjacency does not exist for device %s from %s\n",
8373 		       dev->name, adj_dev->name);
8374 		WARN_ON(1);
8375 		return;
8376 	}
8377 
8378 	if (adj->ref_nr > ref_nr) {
8379 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8380 			 dev->name, adj_dev->name, ref_nr,
8381 			 adj->ref_nr - ref_nr);
8382 		adj->ref_nr -= ref_nr;
8383 		return;
8384 	}
8385 
8386 	if (adj->master)
8387 		sysfs_remove_link(&(dev->dev.kobj), "master");
8388 
8389 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8390 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8391 
8392 	list_del_rcu(&adj->list);
8393 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8394 		 adj_dev->name, dev->name, adj_dev->name);
8395 	netdev_put(adj_dev, &adj->dev_tracker);
8396 	kfree_rcu(adj, rcu);
8397 }
8398 
8399 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8400 					    struct net_device *upper_dev,
8401 					    struct list_head *up_list,
8402 					    struct list_head *down_list,
8403 					    void *private, bool master)
8404 {
8405 	int ret;
8406 
8407 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8408 					   private, master);
8409 	if (ret)
8410 		return ret;
8411 
8412 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8413 					   private, false);
8414 	if (ret) {
8415 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8416 		return ret;
8417 	}
8418 
8419 	return 0;
8420 }
8421 
8422 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8423 					       struct net_device *upper_dev,
8424 					       u16 ref_nr,
8425 					       struct list_head *up_list,
8426 					       struct list_head *down_list)
8427 {
8428 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8429 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8430 }
8431 
8432 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8433 						struct net_device *upper_dev,
8434 						void *private, bool master)
8435 {
8436 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8437 						&dev->adj_list.upper,
8438 						&upper_dev->adj_list.lower,
8439 						private, master);
8440 }
8441 
8442 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8443 						   struct net_device *upper_dev)
8444 {
8445 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8446 					   &dev->adj_list.upper,
8447 					   &upper_dev->adj_list.lower);
8448 }
8449 
8450 static int __netdev_upper_dev_link(struct net_device *dev,
8451 				   struct net_device *upper_dev, bool master,
8452 				   void *upper_priv, void *upper_info,
8453 				   struct netdev_nested_priv *priv,
8454 				   struct netlink_ext_ack *extack)
8455 {
8456 	struct netdev_notifier_changeupper_info changeupper_info = {
8457 		.info = {
8458 			.dev = dev,
8459 			.extack = extack,
8460 		},
8461 		.upper_dev = upper_dev,
8462 		.master = master,
8463 		.linking = true,
8464 		.upper_info = upper_info,
8465 	};
8466 	struct net_device *master_dev;
8467 	int ret = 0;
8468 
8469 	ASSERT_RTNL();
8470 
8471 	if (dev == upper_dev)
8472 		return -EBUSY;
8473 
8474 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8475 	if (__netdev_has_upper_dev(upper_dev, dev))
8476 		return -EBUSY;
8477 
8478 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8479 		return -EMLINK;
8480 
8481 	if (!master) {
8482 		if (__netdev_has_upper_dev(dev, upper_dev))
8483 			return -EEXIST;
8484 	} else {
8485 		master_dev = __netdev_master_upper_dev_get(dev);
8486 		if (master_dev)
8487 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8488 	}
8489 
8490 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8491 					    &changeupper_info.info);
8492 	ret = notifier_to_errno(ret);
8493 	if (ret)
8494 		return ret;
8495 
8496 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8497 						   master);
8498 	if (ret)
8499 		return ret;
8500 
8501 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8502 					    &changeupper_info.info);
8503 	ret = notifier_to_errno(ret);
8504 	if (ret)
8505 		goto rollback;
8506 
8507 	__netdev_update_upper_level(dev, NULL);
8508 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8509 
8510 	__netdev_update_lower_level(upper_dev, priv);
8511 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8512 				    priv);
8513 
8514 	return 0;
8515 
8516 rollback:
8517 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8518 
8519 	return ret;
8520 }
8521 
8522 /**
8523  * netdev_upper_dev_link - Add a link to the upper device
8524  * @dev: device
8525  * @upper_dev: new upper device
8526  * @extack: netlink extended ack
8527  *
8528  * Adds a link to device which is upper to this one. The caller must hold
8529  * the RTNL lock. On a failure a negative errno code is returned.
8530  * On success the reference counts are adjusted and the function
8531  * returns zero.
8532  */
8533 int netdev_upper_dev_link(struct net_device *dev,
8534 			  struct net_device *upper_dev,
8535 			  struct netlink_ext_ack *extack)
8536 {
8537 	struct netdev_nested_priv priv = {
8538 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8539 		.data = NULL,
8540 	};
8541 
8542 	return __netdev_upper_dev_link(dev, upper_dev, false,
8543 				       NULL, NULL, &priv, extack);
8544 }
8545 EXPORT_SYMBOL(netdev_upper_dev_link);
8546 
8547 /**
8548  * netdev_master_upper_dev_link - Add a master link to the upper device
8549  * @dev: device
8550  * @upper_dev: new upper device
8551  * @upper_priv: upper device private
8552  * @upper_info: upper info to be passed down via notifier
8553  * @extack: netlink extended ack
8554  *
8555  * Adds a link to device which is upper to this one. In this case, only
8556  * one master upper device can be linked, although other non-master devices
8557  * might be linked as well. The caller must hold the RTNL lock.
8558  * On a failure a negative errno code is returned. On success the reference
8559  * counts are adjusted and the function returns zero.
8560  */
8561 int netdev_master_upper_dev_link(struct net_device *dev,
8562 				 struct net_device *upper_dev,
8563 				 void *upper_priv, void *upper_info,
8564 				 struct netlink_ext_ack *extack)
8565 {
8566 	struct netdev_nested_priv priv = {
8567 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8568 		.data = NULL,
8569 	};
8570 
8571 	return __netdev_upper_dev_link(dev, upper_dev, true,
8572 				       upper_priv, upper_info, &priv, extack);
8573 }
8574 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8575 
8576 static void __netdev_upper_dev_unlink(struct net_device *dev,
8577 				      struct net_device *upper_dev,
8578 				      struct netdev_nested_priv *priv)
8579 {
8580 	struct netdev_notifier_changeupper_info changeupper_info = {
8581 		.info = {
8582 			.dev = dev,
8583 		},
8584 		.upper_dev = upper_dev,
8585 		.linking = false,
8586 	};
8587 
8588 	ASSERT_RTNL();
8589 
8590 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8591 
8592 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8593 				      &changeupper_info.info);
8594 
8595 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8596 
8597 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8598 				      &changeupper_info.info);
8599 
8600 	__netdev_update_upper_level(dev, NULL);
8601 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8602 
8603 	__netdev_update_lower_level(upper_dev, priv);
8604 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8605 				    priv);
8606 }
8607 
8608 /**
8609  * netdev_upper_dev_unlink - Removes a link to upper device
8610  * @dev: device
8611  * @upper_dev: new upper device
8612  *
8613  * Removes a link to device which is upper to this one. The caller must hold
8614  * the RTNL lock.
8615  */
8616 void netdev_upper_dev_unlink(struct net_device *dev,
8617 			     struct net_device *upper_dev)
8618 {
8619 	struct netdev_nested_priv priv = {
8620 		.flags = NESTED_SYNC_TODO,
8621 		.data = NULL,
8622 	};
8623 
8624 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8625 }
8626 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8627 
8628 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8629 				      struct net_device *lower_dev,
8630 				      bool val)
8631 {
8632 	struct netdev_adjacent *adj;
8633 
8634 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8635 	if (adj)
8636 		adj->ignore = val;
8637 
8638 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8639 	if (adj)
8640 		adj->ignore = val;
8641 }
8642 
8643 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8644 					struct net_device *lower_dev)
8645 {
8646 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8647 }
8648 
8649 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8650 				       struct net_device *lower_dev)
8651 {
8652 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8653 }
8654 
8655 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8656 				   struct net_device *new_dev,
8657 				   struct net_device *dev,
8658 				   struct netlink_ext_ack *extack)
8659 {
8660 	struct netdev_nested_priv priv = {
8661 		.flags = 0,
8662 		.data = NULL,
8663 	};
8664 	int err;
8665 
8666 	if (!new_dev)
8667 		return 0;
8668 
8669 	if (old_dev && new_dev != old_dev)
8670 		netdev_adjacent_dev_disable(dev, old_dev);
8671 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8672 				      extack);
8673 	if (err) {
8674 		if (old_dev && new_dev != old_dev)
8675 			netdev_adjacent_dev_enable(dev, old_dev);
8676 		return err;
8677 	}
8678 
8679 	return 0;
8680 }
8681 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8682 
8683 void netdev_adjacent_change_commit(struct net_device *old_dev,
8684 				   struct net_device *new_dev,
8685 				   struct net_device *dev)
8686 {
8687 	struct netdev_nested_priv priv = {
8688 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8689 		.data = NULL,
8690 	};
8691 
8692 	if (!new_dev || !old_dev)
8693 		return;
8694 
8695 	if (new_dev == old_dev)
8696 		return;
8697 
8698 	netdev_adjacent_dev_enable(dev, old_dev);
8699 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8700 }
8701 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8702 
8703 void netdev_adjacent_change_abort(struct net_device *old_dev,
8704 				  struct net_device *new_dev,
8705 				  struct net_device *dev)
8706 {
8707 	struct netdev_nested_priv priv = {
8708 		.flags = 0,
8709 		.data = NULL,
8710 	};
8711 
8712 	if (!new_dev)
8713 		return;
8714 
8715 	if (old_dev && new_dev != old_dev)
8716 		netdev_adjacent_dev_enable(dev, old_dev);
8717 
8718 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8719 }
8720 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8721 
8722 /**
8723  * netdev_bonding_info_change - Dispatch event about slave change
8724  * @dev: device
8725  * @bonding_info: info to dispatch
8726  *
8727  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8728  * The caller must hold the RTNL lock.
8729  */
8730 void netdev_bonding_info_change(struct net_device *dev,
8731 				struct netdev_bonding_info *bonding_info)
8732 {
8733 	struct netdev_notifier_bonding_info info = {
8734 		.info.dev = dev,
8735 	};
8736 
8737 	memcpy(&info.bonding_info, bonding_info,
8738 	       sizeof(struct netdev_bonding_info));
8739 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8740 				      &info.info);
8741 }
8742 EXPORT_SYMBOL(netdev_bonding_info_change);
8743 
8744 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8745 					   struct netlink_ext_ack *extack)
8746 {
8747 	struct netdev_notifier_offload_xstats_info info = {
8748 		.info.dev = dev,
8749 		.info.extack = extack,
8750 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8751 	};
8752 	int err;
8753 	int rc;
8754 
8755 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8756 					 GFP_KERNEL);
8757 	if (!dev->offload_xstats_l3)
8758 		return -ENOMEM;
8759 
8760 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8761 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8762 						  &info.info);
8763 	err = notifier_to_errno(rc);
8764 	if (err)
8765 		goto free_stats;
8766 
8767 	return 0;
8768 
8769 free_stats:
8770 	kfree(dev->offload_xstats_l3);
8771 	dev->offload_xstats_l3 = NULL;
8772 	return err;
8773 }
8774 
8775 int netdev_offload_xstats_enable(struct net_device *dev,
8776 				 enum netdev_offload_xstats_type type,
8777 				 struct netlink_ext_ack *extack)
8778 {
8779 	ASSERT_RTNL();
8780 
8781 	if (netdev_offload_xstats_enabled(dev, type))
8782 		return -EALREADY;
8783 
8784 	switch (type) {
8785 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8786 		return netdev_offload_xstats_enable_l3(dev, extack);
8787 	}
8788 
8789 	WARN_ON(1);
8790 	return -EINVAL;
8791 }
8792 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8793 
8794 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8795 {
8796 	struct netdev_notifier_offload_xstats_info info = {
8797 		.info.dev = dev,
8798 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8799 	};
8800 
8801 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8802 				      &info.info);
8803 	kfree(dev->offload_xstats_l3);
8804 	dev->offload_xstats_l3 = NULL;
8805 }
8806 
8807 int netdev_offload_xstats_disable(struct net_device *dev,
8808 				  enum netdev_offload_xstats_type type)
8809 {
8810 	ASSERT_RTNL();
8811 
8812 	if (!netdev_offload_xstats_enabled(dev, type))
8813 		return -EALREADY;
8814 
8815 	switch (type) {
8816 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8817 		netdev_offload_xstats_disable_l3(dev);
8818 		return 0;
8819 	}
8820 
8821 	WARN_ON(1);
8822 	return -EINVAL;
8823 }
8824 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8825 
8826 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8827 {
8828 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8829 }
8830 
8831 static struct rtnl_hw_stats64 *
8832 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8833 			      enum netdev_offload_xstats_type type)
8834 {
8835 	switch (type) {
8836 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8837 		return dev->offload_xstats_l3;
8838 	}
8839 
8840 	WARN_ON(1);
8841 	return NULL;
8842 }
8843 
8844 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8845 				   enum netdev_offload_xstats_type type)
8846 {
8847 	ASSERT_RTNL();
8848 
8849 	return netdev_offload_xstats_get_ptr(dev, type);
8850 }
8851 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8852 
8853 struct netdev_notifier_offload_xstats_ru {
8854 	bool used;
8855 };
8856 
8857 struct netdev_notifier_offload_xstats_rd {
8858 	struct rtnl_hw_stats64 stats;
8859 	bool used;
8860 };
8861 
8862 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8863 				  const struct rtnl_hw_stats64 *src)
8864 {
8865 	dest->rx_packets	  += src->rx_packets;
8866 	dest->tx_packets	  += src->tx_packets;
8867 	dest->rx_bytes		  += src->rx_bytes;
8868 	dest->tx_bytes		  += src->tx_bytes;
8869 	dest->rx_errors		  += src->rx_errors;
8870 	dest->tx_errors		  += src->tx_errors;
8871 	dest->rx_dropped	  += src->rx_dropped;
8872 	dest->tx_dropped	  += src->tx_dropped;
8873 	dest->multicast		  += src->multicast;
8874 }
8875 
8876 static int netdev_offload_xstats_get_used(struct net_device *dev,
8877 					  enum netdev_offload_xstats_type type,
8878 					  bool *p_used,
8879 					  struct netlink_ext_ack *extack)
8880 {
8881 	struct netdev_notifier_offload_xstats_ru report_used = {};
8882 	struct netdev_notifier_offload_xstats_info info = {
8883 		.info.dev = dev,
8884 		.info.extack = extack,
8885 		.type = type,
8886 		.report_used = &report_used,
8887 	};
8888 	int rc;
8889 
8890 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8891 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8892 					   &info.info);
8893 	*p_used = report_used.used;
8894 	return notifier_to_errno(rc);
8895 }
8896 
8897 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8898 					   enum netdev_offload_xstats_type type,
8899 					   struct rtnl_hw_stats64 *p_stats,
8900 					   bool *p_used,
8901 					   struct netlink_ext_ack *extack)
8902 {
8903 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8904 	struct netdev_notifier_offload_xstats_info info = {
8905 		.info.dev = dev,
8906 		.info.extack = extack,
8907 		.type = type,
8908 		.report_delta = &report_delta,
8909 	};
8910 	struct rtnl_hw_stats64 *stats;
8911 	int rc;
8912 
8913 	stats = netdev_offload_xstats_get_ptr(dev, type);
8914 	if (WARN_ON(!stats))
8915 		return -EINVAL;
8916 
8917 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8918 					   &info.info);
8919 
8920 	/* Cache whatever we got, even if there was an error, otherwise the
8921 	 * successful stats retrievals would get lost.
8922 	 */
8923 	netdev_hw_stats64_add(stats, &report_delta.stats);
8924 
8925 	if (p_stats)
8926 		*p_stats = *stats;
8927 	*p_used = report_delta.used;
8928 
8929 	return notifier_to_errno(rc);
8930 }
8931 
8932 int netdev_offload_xstats_get(struct net_device *dev,
8933 			      enum netdev_offload_xstats_type type,
8934 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8935 			      struct netlink_ext_ack *extack)
8936 {
8937 	ASSERT_RTNL();
8938 
8939 	if (p_stats)
8940 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8941 						       p_used, extack);
8942 	else
8943 		return netdev_offload_xstats_get_used(dev, type, p_used,
8944 						      extack);
8945 }
8946 EXPORT_SYMBOL(netdev_offload_xstats_get);
8947 
8948 void
8949 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8950 				   const struct rtnl_hw_stats64 *stats)
8951 {
8952 	report_delta->used = true;
8953 	netdev_hw_stats64_add(&report_delta->stats, stats);
8954 }
8955 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8956 
8957 void
8958 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8959 {
8960 	report_used->used = true;
8961 }
8962 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8963 
8964 void netdev_offload_xstats_push_delta(struct net_device *dev,
8965 				      enum netdev_offload_xstats_type type,
8966 				      const struct rtnl_hw_stats64 *p_stats)
8967 {
8968 	struct rtnl_hw_stats64 *stats;
8969 
8970 	ASSERT_RTNL();
8971 
8972 	stats = netdev_offload_xstats_get_ptr(dev, type);
8973 	if (WARN_ON(!stats))
8974 		return;
8975 
8976 	netdev_hw_stats64_add(stats, p_stats);
8977 }
8978 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8979 
8980 /**
8981  * netdev_get_xmit_slave - Get the xmit slave of master device
8982  * @dev: device
8983  * @skb: The packet
8984  * @all_slaves: assume all the slaves are active
8985  *
8986  * The reference counters are not incremented so the caller must be
8987  * careful with locks. The caller must hold RCU lock.
8988  * %NULL is returned if no slave is found.
8989  */
8990 
8991 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8992 					 struct sk_buff *skb,
8993 					 bool all_slaves)
8994 {
8995 	const struct net_device_ops *ops = dev->netdev_ops;
8996 
8997 	if (!ops->ndo_get_xmit_slave)
8998 		return NULL;
8999 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
9000 }
9001 EXPORT_SYMBOL(netdev_get_xmit_slave);
9002 
9003 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9004 						  struct sock *sk)
9005 {
9006 	const struct net_device_ops *ops = dev->netdev_ops;
9007 
9008 	if (!ops->ndo_sk_get_lower_dev)
9009 		return NULL;
9010 	return ops->ndo_sk_get_lower_dev(dev, sk);
9011 }
9012 
9013 /**
9014  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9015  * @dev: device
9016  * @sk: the socket
9017  *
9018  * %NULL is returned if no lower device is found.
9019  */
9020 
9021 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9022 					    struct sock *sk)
9023 {
9024 	struct net_device *lower;
9025 
9026 	lower = netdev_sk_get_lower_dev(dev, sk);
9027 	while (lower) {
9028 		dev = lower;
9029 		lower = netdev_sk_get_lower_dev(dev, sk);
9030 	}
9031 
9032 	return dev;
9033 }
9034 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9035 
9036 static void netdev_adjacent_add_links(struct net_device *dev)
9037 {
9038 	struct netdev_adjacent *iter;
9039 
9040 	struct net *net = dev_net(dev);
9041 
9042 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9043 		if (!net_eq(net, dev_net(iter->dev)))
9044 			continue;
9045 		netdev_adjacent_sysfs_add(iter->dev, dev,
9046 					  &iter->dev->adj_list.lower);
9047 		netdev_adjacent_sysfs_add(dev, iter->dev,
9048 					  &dev->adj_list.upper);
9049 	}
9050 
9051 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9052 		if (!net_eq(net, dev_net(iter->dev)))
9053 			continue;
9054 		netdev_adjacent_sysfs_add(iter->dev, dev,
9055 					  &iter->dev->adj_list.upper);
9056 		netdev_adjacent_sysfs_add(dev, iter->dev,
9057 					  &dev->adj_list.lower);
9058 	}
9059 }
9060 
9061 static void netdev_adjacent_del_links(struct net_device *dev)
9062 {
9063 	struct netdev_adjacent *iter;
9064 
9065 	struct net *net = dev_net(dev);
9066 
9067 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9068 		if (!net_eq(net, dev_net(iter->dev)))
9069 			continue;
9070 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9071 					  &iter->dev->adj_list.lower);
9072 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9073 					  &dev->adj_list.upper);
9074 	}
9075 
9076 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9077 		if (!net_eq(net, dev_net(iter->dev)))
9078 			continue;
9079 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9080 					  &iter->dev->adj_list.upper);
9081 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9082 					  &dev->adj_list.lower);
9083 	}
9084 }
9085 
9086 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9087 {
9088 	struct netdev_adjacent *iter;
9089 
9090 	struct net *net = dev_net(dev);
9091 
9092 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9093 		if (!net_eq(net, dev_net(iter->dev)))
9094 			continue;
9095 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9096 					  &iter->dev->adj_list.lower);
9097 		netdev_adjacent_sysfs_add(iter->dev, dev,
9098 					  &iter->dev->adj_list.lower);
9099 	}
9100 
9101 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9102 		if (!net_eq(net, dev_net(iter->dev)))
9103 			continue;
9104 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9105 					  &iter->dev->adj_list.upper);
9106 		netdev_adjacent_sysfs_add(iter->dev, dev,
9107 					  &iter->dev->adj_list.upper);
9108 	}
9109 }
9110 
9111 void *netdev_lower_dev_get_private(struct net_device *dev,
9112 				   struct net_device *lower_dev)
9113 {
9114 	struct netdev_adjacent *lower;
9115 
9116 	if (!lower_dev)
9117 		return NULL;
9118 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9119 	if (!lower)
9120 		return NULL;
9121 
9122 	return lower->private;
9123 }
9124 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9125 
9126 
9127 /**
9128  * netdev_lower_state_changed - Dispatch event about lower device state change
9129  * @lower_dev: device
9130  * @lower_state_info: state to dispatch
9131  *
9132  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9133  * The caller must hold the RTNL lock.
9134  */
9135 void netdev_lower_state_changed(struct net_device *lower_dev,
9136 				void *lower_state_info)
9137 {
9138 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9139 		.info.dev = lower_dev,
9140 	};
9141 
9142 	ASSERT_RTNL();
9143 	changelowerstate_info.lower_state_info = lower_state_info;
9144 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9145 				      &changelowerstate_info.info);
9146 }
9147 EXPORT_SYMBOL(netdev_lower_state_changed);
9148 
9149 static void dev_change_rx_flags(struct net_device *dev, int flags)
9150 {
9151 	const struct net_device_ops *ops = dev->netdev_ops;
9152 
9153 	if (ops->ndo_change_rx_flags)
9154 		ops->ndo_change_rx_flags(dev, flags);
9155 }
9156 
9157 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9158 {
9159 	unsigned int old_flags = dev->flags;
9160 	unsigned int promiscuity, flags;
9161 	kuid_t uid;
9162 	kgid_t gid;
9163 
9164 	ASSERT_RTNL();
9165 
9166 	promiscuity = dev->promiscuity + inc;
9167 	if (promiscuity == 0) {
9168 		/*
9169 		 * Avoid overflow.
9170 		 * If inc causes overflow, untouch promisc and return error.
9171 		 */
9172 		if (unlikely(inc > 0)) {
9173 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9174 			return -EOVERFLOW;
9175 		}
9176 		flags = old_flags & ~IFF_PROMISC;
9177 	} else {
9178 		flags = old_flags | IFF_PROMISC;
9179 	}
9180 	WRITE_ONCE(dev->promiscuity, promiscuity);
9181 	if (flags != old_flags) {
9182 		WRITE_ONCE(dev->flags, flags);
9183 		netdev_info(dev, "%s promiscuous mode\n",
9184 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9185 		if (audit_enabled) {
9186 			current_uid_gid(&uid, &gid);
9187 			audit_log(audit_context(), GFP_ATOMIC,
9188 				  AUDIT_ANOM_PROMISCUOUS,
9189 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9190 				  dev->name, (dev->flags & IFF_PROMISC),
9191 				  (old_flags & IFF_PROMISC),
9192 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9193 				  from_kuid(&init_user_ns, uid),
9194 				  from_kgid(&init_user_ns, gid),
9195 				  audit_get_sessionid(current));
9196 		}
9197 
9198 		dev_change_rx_flags(dev, IFF_PROMISC);
9199 	}
9200 	if (notify)
9201 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9202 	return 0;
9203 }
9204 
9205 /**
9206  *	dev_set_promiscuity	- update promiscuity count on a device
9207  *	@dev: device
9208  *	@inc: modifier
9209  *
9210  *	Add or remove promiscuity from a device. While the count in the device
9211  *	remains above zero the interface remains promiscuous. Once it hits zero
9212  *	the device reverts back to normal filtering operation. A negative inc
9213  *	value is used to drop promiscuity on the device.
9214  *	Return 0 if successful or a negative errno code on error.
9215  */
9216 int dev_set_promiscuity(struct net_device *dev, int inc)
9217 {
9218 	unsigned int old_flags = dev->flags;
9219 	int err;
9220 
9221 	err = __dev_set_promiscuity(dev, inc, true);
9222 	if (err < 0)
9223 		return err;
9224 	if (dev->flags != old_flags)
9225 		dev_set_rx_mode(dev);
9226 	return err;
9227 }
9228 EXPORT_SYMBOL(dev_set_promiscuity);
9229 
9230 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9231 {
9232 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9233 	unsigned int allmulti, flags;
9234 
9235 	ASSERT_RTNL();
9236 
9237 	allmulti = dev->allmulti + inc;
9238 	if (allmulti == 0) {
9239 		/*
9240 		 * Avoid overflow.
9241 		 * If inc causes overflow, untouch allmulti and return error.
9242 		 */
9243 		if (unlikely(inc > 0)) {
9244 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9245 			return -EOVERFLOW;
9246 		}
9247 		flags = old_flags & ~IFF_ALLMULTI;
9248 	} else {
9249 		flags = old_flags | IFF_ALLMULTI;
9250 	}
9251 	WRITE_ONCE(dev->allmulti, allmulti);
9252 	if (flags != old_flags) {
9253 		WRITE_ONCE(dev->flags, flags);
9254 		netdev_info(dev, "%s allmulticast mode\n",
9255 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9256 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9257 		dev_set_rx_mode(dev);
9258 		if (notify)
9259 			__dev_notify_flags(dev, old_flags,
9260 					   dev->gflags ^ old_gflags, 0, NULL);
9261 	}
9262 	return 0;
9263 }
9264 
9265 /*
9266  *	Upload unicast and multicast address lists to device and
9267  *	configure RX filtering. When the device doesn't support unicast
9268  *	filtering it is put in promiscuous mode while unicast addresses
9269  *	are present.
9270  */
9271 void __dev_set_rx_mode(struct net_device *dev)
9272 {
9273 	const struct net_device_ops *ops = dev->netdev_ops;
9274 
9275 	/* dev_open will call this function so the list will stay sane. */
9276 	if (!(dev->flags&IFF_UP))
9277 		return;
9278 
9279 	if (!netif_device_present(dev))
9280 		return;
9281 
9282 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9283 		/* Unicast addresses changes may only happen under the rtnl,
9284 		 * therefore calling __dev_set_promiscuity here is safe.
9285 		 */
9286 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9287 			__dev_set_promiscuity(dev, 1, false);
9288 			dev->uc_promisc = true;
9289 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9290 			__dev_set_promiscuity(dev, -1, false);
9291 			dev->uc_promisc = false;
9292 		}
9293 	}
9294 
9295 	if (ops->ndo_set_rx_mode)
9296 		ops->ndo_set_rx_mode(dev);
9297 }
9298 
9299 void dev_set_rx_mode(struct net_device *dev)
9300 {
9301 	netif_addr_lock_bh(dev);
9302 	__dev_set_rx_mode(dev);
9303 	netif_addr_unlock_bh(dev);
9304 }
9305 
9306 /**
9307  *	dev_get_flags - get flags reported to userspace
9308  *	@dev: device
9309  *
9310  *	Get the combination of flag bits exported through APIs to userspace.
9311  */
9312 unsigned int dev_get_flags(const struct net_device *dev)
9313 {
9314 	unsigned int flags;
9315 
9316 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9317 				IFF_ALLMULTI |
9318 				IFF_RUNNING |
9319 				IFF_LOWER_UP |
9320 				IFF_DORMANT)) |
9321 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9322 				IFF_ALLMULTI));
9323 
9324 	if (netif_running(dev)) {
9325 		if (netif_oper_up(dev))
9326 			flags |= IFF_RUNNING;
9327 		if (netif_carrier_ok(dev))
9328 			flags |= IFF_LOWER_UP;
9329 		if (netif_dormant(dev))
9330 			flags |= IFF_DORMANT;
9331 	}
9332 
9333 	return flags;
9334 }
9335 EXPORT_SYMBOL(dev_get_flags);
9336 
9337 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9338 		       struct netlink_ext_ack *extack)
9339 {
9340 	unsigned int old_flags = dev->flags;
9341 	int ret;
9342 
9343 	ASSERT_RTNL();
9344 
9345 	/*
9346 	 *	Set the flags on our device.
9347 	 */
9348 
9349 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9350 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9351 			       IFF_AUTOMEDIA)) |
9352 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9353 				    IFF_ALLMULTI));
9354 
9355 	/*
9356 	 *	Load in the correct multicast list now the flags have changed.
9357 	 */
9358 
9359 	if ((old_flags ^ flags) & IFF_MULTICAST)
9360 		dev_change_rx_flags(dev, IFF_MULTICAST);
9361 
9362 	dev_set_rx_mode(dev);
9363 
9364 	/*
9365 	 *	Have we downed the interface. We handle IFF_UP ourselves
9366 	 *	according to user attempts to set it, rather than blindly
9367 	 *	setting it.
9368 	 */
9369 
9370 	ret = 0;
9371 	if ((old_flags ^ flags) & IFF_UP) {
9372 		if (old_flags & IFF_UP)
9373 			__dev_close(dev);
9374 		else
9375 			ret = __dev_open(dev, extack);
9376 	}
9377 
9378 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9379 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9380 		old_flags = dev->flags;
9381 
9382 		dev->gflags ^= IFF_PROMISC;
9383 
9384 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9385 			if (dev->flags != old_flags)
9386 				dev_set_rx_mode(dev);
9387 	}
9388 
9389 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9390 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9391 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9392 	 */
9393 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9394 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9395 
9396 		dev->gflags ^= IFF_ALLMULTI;
9397 		netif_set_allmulti(dev, inc, false);
9398 	}
9399 
9400 	return ret;
9401 }
9402 
9403 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9404 			unsigned int gchanges, u32 portid,
9405 			const struct nlmsghdr *nlh)
9406 {
9407 	unsigned int changes = dev->flags ^ old_flags;
9408 
9409 	if (gchanges)
9410 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9411 
9412 	if (changes & IFF_UP) {
9413 		if (dev->flags & IFF_UP)
9414 			call_netdevice_notifiers(NETDEV_UP, dev);
9415 		else
9416 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9417 	}
9418 
9419 	if (dev->flags & IFF_UP &&
9420 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9421 		struct netdev_notifier_change_info change_info = {
9422 			.info = {
9423 				.dev = dev,
9424 			},
9425 			.flags_changed = changes,
9426 		};
9427 
9428 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9429 	}
9430 }
9431 
9432 int netif_change_flags(struct net_device *dev, unsigned int flags,
9433 		       struct netlink_ext_ack *extack)
9434 {
9435 	int ret;
9436 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9437 
9438 	ret = __dev_change_flags(dev, flags, extack);
9439 	if (ret < 0)
9440 		return ret;
9441 
9442 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9443 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9444 	return ret;
9445 }
9446 
9447 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9448 {
9449 	const struct net_device_ops *ops = dev->netdev_ops;
9450 
9451 	if (ops->ndo_change_mtu)
9452 		return ops->ndo_change_mtu(dev, new_mtu);
9453 
9454 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9455 	WRITE_ONCE(dev->mtu, new_mtu);
9456 	return 0;
9457 }
9458 EXPORT_SYMBOL(__dev_set_mtu);
9459 
9460 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9461 		     struct netlink_ext_ack *extack)
9462 {
9463 	/* MTU must be positive, and in range */
9464 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9465 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9466 		return -EINVAL;
9467 	}
9468 
9469 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9470 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9471 		return -EINVAL;
9472 	}
9473 	return 0;
9474 }
9475 
9476 /**
9477  *	netif_set_mtu_ext - Change maximum transfer unit
9478  *	@dev: device
9479  *	@new_mtu: new transfer unit
9480  *	@extack: netlink extended ack
9481  *
9482  *	Change the maximum transfer size of the network device.
9483  */
9484 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9485 		      struct netlink_ext_ack *extack)
9486 {
9487 	int err, orig_mtu;
9488 
9489 	if (new_mtu == dev->mtu)
9490 		return 0;
9491 
9492 	err = dev_validate_mtu(dev, new_mtu, extack);
9493 	if (err)
9494 		return err;
9495 
9496 	if (!netif_device_present(dev))
9497 		return -ENODEV;
9498 
9499 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9500 	err = notifier_to_errno(err);
9501 	if (err)
9502 		return err;
9503 
9504 	orig_mtu = dev->mtu;
9505 	err = __dev_set_mtu(dev, new_mtu);
9506 
9507 	if (!err) {
9508 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9509 						   orig_mtu);
9510 		err = notifier_to_errno(err);
9511 		if (err) {
9512 			/* setting mtu back and notifying everyone again,
9513 			 * so that they have a chance to revert changes.
9514 			 */
9515 			__dev_set_mtu(dev, orig_mtu);
9516 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9517 						     new_mtu);
9518 		}
9519 	}
9520 	return err;
9521 }
9522 
9523 int netif_set_mtu(struct net_device *dev, int new_mtu)
9524 {
9525 	struct netlink_ext_ack extack;
9526 	int err;
9527 
9528 	memset(&extack, 0, sizeof(extack));
9529 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9530 	if (err && extack._msg)
9531 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9532 	return err;
9533 }
9534 EXPORT_SYMBOL(netif_set_mtu);
9535 
9536 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9537 {
9538 	unsigned int orig_len = dev->tx_queue_len;
9539 	int res;
9540 
9541 	if (new_len != (unsigned int)new_len)
9542 		return -ERANGE;
9543 
9544 	if (new_len != orig_len) {
9545 		WRITE_ONCE(dev->tx_queue_len, new_len);
9546 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9547 		res = notifier_to_errno(res);
9548 		if (res)
9549 			goto err_rollback;
9550 		res = dev_qdisc_change_tx_queue_len(dev);
9551 		if (res)
9552 			goto err_rollback;
9553 	}
9554 
9555 	return 0;
9556 
9557 err_rollback:
9558 	netdev_err(dev, "refused to change device tx_queue_len\n");
9559 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9560 	return res;
9561 }
9562 
9563 void netif_set_group(struct net_device *dev, int new_group)
9564 {
9565 	dev->group = new_group;
9566 }
9567 
9568 /**
9569  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9570  *	@dev: device
9571  *	@addr: new address
9572  *	@extack: netlink extended ack
9573  */
9574 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9575 			      struct netlink_ext_ack *extack)
9576 {
9577 	struct netdev_notifier_pre_changeaddr_info info = {
9578 		.info.dev = dev,
9579 		.info.extack = extack,
9580 		.dev_addr = addr,
9581 	};
9582 	int rc;
9583 
9584 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9585 	return notifier_to_errno(rc);
9586 }
9587 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9588 
9589 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9590 			  struct netlink_ext_ack *extack)
9591 {
9592 	const struct net_device_ops *ops = dev->netdev_ops;
9593 	int err;
9594 
9595 	if (!ops->ndo_set_mac_address)
9596 		return -EOPNOTSUPP;
9597 	if (sa->sa_family != dev->type)
9598 		return -EINVAL;
9599 	if (!netif_device_present(dev))
9600 		return -ENODEV;
9601 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9602 	if (err)
9603 		return err;
9604 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9605 		err = ops->ndo_set_mac_address(dev, sa);
9606 		if (err)
9607 			return err;
9608 	}
9609 	dev->addr_assign_type = NET_ADDR_SET;
9610 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9611 	add_device_randomness(dev->dev_addr, dev->addr_len);
9612 	return 0;
9613 }
9614 
9615 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9616 {
9617 	size_t size = sizeof(sa->sa_data_min);
9618 	struct net_device *dev;
9619 
9620 	dev = netdev_get_by_name_lock(net, dev_name);
9621 	if (!dev)
9622 		return -ENODEV;
9623 
9624 	if (!dev->addr_len)
9625 		memset(sa->sa_data, 0, size);
9626 	else
9627 		memcpy(sa->sa_data, dev->dev_addr,
9628 		       min_t(size_t, size, dev->addr_len));
9629 	sa->sa_family = dev->type;
9630 	netdev_unlock(dev);
9631 
9632 	return 0;
9633 }
9634 EXPORT_SYMBOL(dev_get_mac_address);
9635 
9636 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9637 {
9638 	const struct net_device_ops *ops = dev->netdev_ops;
9639 
9640 	if (!ops->ndo_change_carrier)
9641 		return -EOPNOTSUPP;
9642 	if (!netif_device_present(dev))
9643 		return -ENODEV;
9644 	return ops->ndo_change_carrier(dev, new_carrier);
9645 }
9646 
9647 /**
9648  *	dev_get_phys_port_id - Get device physical port ID
9649  *	@dev: device
9650  *	@ppid: port ID
9651  *
9652  *	Get device physical port ID
9653  */
9654 int dev_get_phys_port_id(struct net_device *dev,
9655 			 struct netdev_phys_item_id *ppid)
9656 {
9657 	const struct net_device_ops *ops = dev->netdev_ops;
9658 
9659 	if (!ops->ndo_get_phys_port_id)
9660 		return -EOPNOTSUPP;
9661 	return ops->ndo_get_phys_port_id(dev, ppid);
9662 }
9663 
9664 /**
9665  *	dev_get_phys_port_name - Get device physical port name
9666  *	@dev: device
9667  *	@name: port name
9668  *	@len: limit of bytes to copy to name
9669  *
9670  *	Get device physical port name
9671  */
9672 int dev_get_phys_port_name(struct net_device *dev,
9673 			   char *name, size_t len)
9674 {
9675 	const struct net_device_ops *ops = dev->netdev_ops;
9676 	int err;
9677 
9678 	if (ops->ndo_get_phys_port_name) {
9679 		err = ops->ndo_get_phys_port_name(dev, name, len);
9680 		if (err != -EOPNOTSUPP)
9681 			return err;
9682 	}
9683 	return devlink_compat_phys_port_name_get(dev, name, len);
9684 }
9685 
9686 /**
9687  *	dev_get_port_parent_id - Get the device's port parent identifier
9688  *	@dev: network device
9689  *	@ppid: pointer to a storage for the port's parent identifier
9690  *	@recurse: allow/disallow recursion to lower devices
9691  *
9692  *	Get the devices's port parent identifier
9693  */
9694 int dev_get_port_parent_id(struct net_device *dev,
9695 			   struct netdev_phys_item_id *ppid,
9696 			   bool recurse)
9697 {
9698 	const struct net_device_ops *ops = dev->netdev_ops;
9699 	struct netdev_phys_item_id first = { };
9700 	struct net_device *lower_dev;
9701 	struct list_head *iter;
9702 	int err;
9703 
9704 	if (ops->ndo_get_port_parent_id) {
9705 		err = ops->ndo_get_port_parent_id(dev, ppid);
9706 		if (err != -EOPNOTSUPP)
9707 			return err;
9708 	}
9709 
9710 	err = devlink_compat_switch_id_get(dev, ppid);
9711 	if (!recurse || err != -EOPNOTSUPP)
9712 		return err;
9713 
9714 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9715 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9716 		if (err)
9717 			break;
9718 		if (!first.id_len)
9719 			first = *ppid;
9720 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9721 			return -EOPNOTSUPP;
9722 	}
9723 
9724 	return err;
9725 }
9726 EXPORT_SYMBOL(dev_get_port_parent_id);
9727 
9728 /**
9729  *	netdev_port_same_parent_id - Indicate if two network devices have
9730  *	the same port parent identifier
9731  *	@a: first network device
9732  *	@b: second network device
9733  */
9734 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9735 {
9736 	struct netdev_phys_item_id a_id = { };
9737 	struct netdev_phys_item_id b_id = { };
9738 
9739 	if (dev_get_port_parent_id(a, &a_id, true) ||
9740 	    dev_get_port_parent_id(b, &b_id, true))
9741 		return false;
9742 
9743 	return netdev_phys_item_id_same(&a_id, &b_id);
9744 }
9745 EXPORT_SYMBOL(netdev_port_same_parent_id);
9746 
9747 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9748 {
9749 	if (!dev->change_proto_down)
9750 		return -EOPNOTSUPP;
9751 	if (!netif_device_present(dev))
9752 		return -ENODEV;
9753 	if (proto_down)
9754 		netif_carrier_off(dev);
9755 	else
9756 		netif_carrier_on(dev);
9757 	WRITE_ONCE(dev->proto_down, proto_down);
9758 	return 0;
9759 }
9760 
9761 /**
9762  *	netdev_change_proto_down_reason_locked - proto down reason
9763  *
9764  *	@dev: device
9765  *	@mask: proto down mask
9766  *	@value: proto down value
9767  */
9768 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9769 					    unsigned long mask, u32 value)
9770 {
9771 	u32 proto_down_reason;
9772 	int b;
9773 
9774 	if (!mask) {
9775 		proto_down_reason = value;
9776 	} else {
9777 		proto_down_reason = dev->proto_down_reason;
9778 		for_each_set_bit(b, &mask, 32) {
9779 			if (value & (1 << b))
9780 				proto_down_reason |= BIT(b);
9781 			else
9782 				proto_down_reason &= ~BIT(b);
9783 		}
9784 	}
9785 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9786 }
9787 
9788 struct bpf_xdp_link {
9789 	struct bpf_link link;
9790 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9791 	int flags;
9792 };
9793 
9794 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9795 {
9796 	if (flags & XDP_FLAGS_HW_MODE)
9797 		return XDP_MODE_HW;
9798 	if (flags & XDP_FLAGS_DRV_MODE)
9799 		return XDP_MODE_DRV;
9800 	if (flags & XDP_FLAGS_SKB_MODE)
9801 		return XDP_MODE_SKB;
9802 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9803 }
9804 
9805 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9806 {
9807 	switch (mode) {
9808 	case XDP_MODE_SKB:
9809 		return generic_xdp_install;
9810 	case XDP_MODE_DRV:
9811 	case XDP_MODE_HW:
9812 		return dev->netdev_ops->ndo_bpf;
9813 	default:
9814 		return NULL;
9815 	}
9816 }
9817 
9818 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9819 					 enum bpf_xdp_mode mode)
9820 {
9821 	return dev->xdp_state[mode].link;
9822 }
9823 
9824 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9825 				     enum bpf_xdp_mode mode)
9826 {
9827 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9828 
9829 	if (link)
9830 		return link->link.prog;
9831 	return dev->xdp_state[mode].prog;
9832 }
9833 
9834 u8 dev_xdp_prog_count(struct net_device *dev)
9835 {
9836 	u8 count = 0;
9837 	int i;
9838 
9839 	for (i = 0; i < __MAX_XDP_MODE; i++)
9840 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9841 			count++;
9842 	return count;
9843 }
9844 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9845 
9846 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9847 {
9848 	u8 count = 0;
9849 	int i;
9850 
9851 	for (i = 0; i < __MAX_XDP_MODE; i++)
9852 		if (dev->xdp_state[i].prog &&
9853 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9854 			count++;
9855 	return count;
9856 }
9857 
9858 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9859 {
9860 	if (!dev->netdev_ops->ndo_bpf)
9861 		return -EOPNOTSUPP;
9862 
9863 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9864 	    bpf->command == XDP_SETUP_PROG &&
9865 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9866 		NL_SET_ERR_MSG(bpf->extack,
9867 			       "unable to propagate XDP to device using tcp-data-split");
9868 		return -EBUSY;
9869 	}
9870 
9871 	if (dev_get_min_mp_channel_count(dev)) {
9872 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9873 		return -EBUSY;
9874 	}
9875 
9876 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9877 }
9878 
9879 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9880 {
9881 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9882 
9883 	return prog ? prog->aux->id : 0;
9884 }
9885 
9886 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9887 			     struct bpf_xdp_link *link)
9888 {
9889 	dev->xdp_state[mode].link = link;
9890 	dev->xdp_state[mode].prog = NULL;
9891 }
9892 
9893 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9894 			     struct bpf_prog *prog)
9895 {
9896 	dev->xdp_state[mode].link = NULL;
9897 	dev->xdp_state[mode].prog = prog;
9898 }
9899 
9900 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9901 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9902 			   u32 flags, struct bpf_prog *prog)
9903 {
9904 	struct netdev_bpf xdp;
9905 	int err;
9906 
9907 	netdev_ops_assert_locked(dev);
9908 
9909 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9910 	    prog && !prog->aux->xdp_has_frags) {
9911 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9912 		return -EBUSY;
9913 	}
9914 
9915 	if (dev_get_min_mp_channel_count(dev)) {
9916 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9917 		return -EBUSY;
9918 	}
9919 
9920 	memset(&xdp, 0, sizeof(xdp));
9921 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9922 	xdp.extack = extack;
9923 	xdp.flags = flags;
9924 	xdp.prog = prog;
9925 
9926 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9927 	 * "moved" into driver), so they don't increment it on their own, but
9928 	 * they do decrement refcnt when program is detached or replaced.
9929 	 * Given net_device also owns link/prog, we need to bump refcnt here
9930 	 * to prevent drivers from underflowing it.
9931 	 */
9932 	if (prog)
9933 		bpf_prog_inc(prog);
9934 	err = bpf_op(dev, &xdp);
9935 	if (err) {
9936 		if (prog)
9937 			bpf_prog_put(prog);
9938 		return err;
9939 	}
9940 
9941 	if (mode != XDP_MODE_HW)
9942 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9943 
9944 	return 0;
9945 }
9946 
9947 static void dev_xdp_uninstall(struct net_device *dev)
9948 {
9949 	struct bpf_xdp_link *link;
9950 	struct bpf_prog *prog;
9951 	enum bpf_xdp_mode mode;
9952 	bpf_op_t bpf_op;
9953 
9954 	ASSERT_RTNL();
9955 
9956 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9957 		prog = dev_xdp_prog(dev, mode);
9958 		if (!prog)
9959 			continue;
9960 
9961 		bpf_op = dev_xdp_bpf_op(dev, mode);
9962 		if (!bpf_op)
9963 			continue;
9964 
9965 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9966 
9967 		/* auto-detach link from net device */
9968 		link = dev_xdp_link(dev, mode);
9969 		if (link)
9970 			link->dev = NULL;
9971 		else
9972 			bpf_prog_put(prog);
9973 
9974 		dev_xdp_set_link(dev, mode, NULL);
9975 	}
9976 }
9977 
9978 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9979 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9980 			  struct bpf_prog *old_prog, u32 flags)
9981 {
9982 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9983 	struct bpf_prog *cur_prog;
9984 	struct net_device *upper;
9985 	struct list_head *iter;
9986 	enum bpf_xdp_mode mode;
9987 	bpf_op_t bpf_op;
9988 	int err;
9989 
9990 	ASSERT_RTNL();
9991 
9992 	/* either link or prog attachment, never both */
9993 	if (link && (new_prog || old_prog))
9994 		return -EINVAL;
9995 	/* link supports only XDP mode flags */
9996 	if (link && (flags & ~XDP_FLAGS_MODES)) {
9997 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9998 		return -EINVAL;
9999 	}
10000 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10001 	if (num_modes > 1) {
10002 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10003 		return -EINVAL;
10004 	}
10005 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10006 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10007 		NL_SET_ERR_MSG(extack,
10008 			       "More than one program loaded, unset mode is ambiguous");
10009 		return -EINVAL;
10010 	}
10011 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10012 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10013 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10014 		return -EINVAL;
10015 	}
10016 
10017 	mode = dev_xdp_mode(dev, flags);
10018 	/* can't replace attached link */
10019 	if (dev_xdp_link(dev, mode)) {
10020 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10021 		return -EBUSY;
10022 	}
10023 
10024 	/* don't allow if an upper device already has a program */
10025 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10026 		if (dev_xdp_prog_count(upper) > 0) {
10027 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10028 			return -EEXIST;
10029 		}
10030 	}
10031 
10032 	cur_prog = dev_xdp_prog(dev, mode);
10033 	/* can't replace attached prog with link */
10034 	if (link && cur_prog) {
10035 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10036 		return -EBUSY;
10037 	}
10038 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10039 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10040 		return -EEXIST;
10041 	}
10042 
10043 	/* put effective new program into new_prog */
10044 	if (link)
10045 		new_prog = link->link.prog;
10046 
10047 	if (new_prog) {
10048 		bool offload = mode == XDP_MODE_HW;
10049 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10050 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10051 
10052 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10053 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10054 			return -EBUSY;
10055 		}
10056 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10057 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10058 			return -EEXIST;
10059 		}
10060 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10061 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10062 			return -EINVAL;
10063 		}
10064 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10065 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10066 			return -EINVAL;
10067 		}
10068 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10069 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10070 			return -EINVAL;
10071 		}
10072 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10073 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10074 			return -EINVAL;
10075 		}
10076 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10077 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10078 			return -EINVAL;
10079 		}
10080 	}
10081 
10082 	/* don't call drivers if the effective program didn't change */
10083 	if (new_prog != cur_prog) {
10084 		bpf_op = dev_xdp_bpf_op(dev, mode);
10085 		if (!bpf_op) {
10086 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10087 			return -EOPNOTSUPP;
10088 		}
10089 
10090 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10091 		if (err)
10092 			return err;
10093 	}
10094 
10095 	if (link)
10096 		dev_xdp_set_link(dev, mode, link);
10097 	else
10098 		dev_xdp_set_prog(dev, mode, new_prog);
10099 	if (cur_prog)
10100 		bpf_prog_put(cur_prog);
10101 
10102 	return 0;
10103 }
10104 
10105 static int dev_xdp_attach_link(struct net_device *dev,
10106 			       struct netlink_ext_ack *extack,
10107 			       struct bpf_xdp_link *link)
10108 {
10109 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10110 }
10111 
10112 static int dev_xdp_detach_link(struct net_device *dev,
10113 			       struct netlink_ext_ack *extack,
10114 			       struct bpf_xdp_link *link)
10115 {
10116 	enum bpf_xdp_mode mode;
10117 	bpf_op_t bpf_op;
10118 
10119 	ASSERT_RTNL();
10120 
10121 	mode = dev_xdp_mode(dev, link->flags);
10122 	if (dev_xdp_link(dev, mode) != link)
10123 		return -EINVAL;
10124 
10125 	bpf_op = dev_xdp_bpf_op(dev, mode);
10126 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10127 	dev_xdp_set_link(dev, mode, NULL);
10128 	return 0;
10129 }
10130 
10131 static void bpf_xdp_link_release(struct bpf_link *link)
10132 {
10133 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10134 
10135 	rtnl_lock();
10136 
10137 	/* if racing with net_device's tear down, xdp_link->dev might be
10138 	 * already NULL, in which case link was already auto-detached
10139 	 */
10140 	if (xdp_link->dev) {
10141 		netdev_lock_ops(xdp_link->dev);
10142 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10143 		netdev_unlock_ops(xdp_link->dev);
10144 		xdp_link->dev = NULL;
10145 	}
10146 
10147 	rtnl_unlock();
10148 }
10149 
10150 static int bpf_xdp_link_detach(struct bpf_link *link)
10151 {
10152 	bpf_xdp_link_release(link);
10153 	return 0;
10154 }
10155 
10156 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10157 {
10158 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10159 
10160 	kfree(xdp_link);
10161 }
10162 
10163 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10164 				     struct seq_file *seq)
10165 {
10166 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10167 	u32 ifindex = 0;
10168 
10169 	rtnl_lock();
10170 	if (xdp_link->dev)
10171 		ifindex = xdp_link->dev->ifindex;
10172 	rtnl_unlock();
10173 
10174 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10175 }
10176 
10177 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10178 				       struct bpf_link_info *info)
10179 {
10180 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10181 	u32 ifindex = 0;
10182 
10183 	rtnl_lock();
10184 	if (xdp_link->dev)
10185 		ifindex = xdp_link->dev->ifindex;
10186 	rtnl_unlock();
10187 
10188 	info->xdp.ifindex = ifindex;
10189 	return 0;
10190 }
10191 
10192 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10193 			       struct bpf_prog *old_prog)
10194 {
10195 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10196 	enum bpf_xdp_mode mode;
10197 	bpf_op_t bpf_op;
10198 	int err = 0;
10199 
10200 	rtnl_lock();
10201 
10202 	/* link might have been auto-released already, so fail */
10203 	if (!xdp_link->dev) {
10204 		err = -ENOLINK;
10205 		goto out_unlock;
10206 	}
10207 
10208 	if (old_prog && link->prog != old_prog) {
10209 		err = -EPERM;
10210 		goto out_unlock;
10211 	}
10212 	old_prog = link->prog;
10213 	if (old_prog->type != new_prog->type ||
10214 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10215 		err = -EINVAL;
10216 		goto out_unlock;
10217 	}
10218 
10219 	if (old_prog == new_prog) {
10220 		/* no-op, don't disturb drivers */
10221 		bpf_prog_put(new_prog);
10222 		goto out_unlock;
10223 	}
10224 
10225 	netdev_lock_ops(xdp_link->dev);
10226 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10227 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10228 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10229 			      xdp_link->flags, new_prog);
10230 	netdev_unlock_ops(xdp_link->dev);
10231 	if (err)
10232 		goto out_unlock;
10233 
10234 	old_prog = xchg(&link->prog, new_prog);
10235 	bpf_prog_put(old_prog);
10236 
10237 out_unlock:
10238 	rtnl_unlock();
10239 	return err;
10240 }
10241 
10242 static const struct bpf_link_ops bpf_xdp_link_lops = {
10243 	.release = bpf_xdp_link_release,
10244 	.dealloc = bpf_xdp_link_dealloc,
10245 	.detach = bpf_xdp_link_detach,
10246 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10247 	.fill_link_info = bpf_xdp_link_fill_link_info,
10248 	.update_prog = bpf_xdp_link_update,
10249 };
10250 
10251 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10252 {
10253 	struct net *net = current->nsproxy->net_ns;
10254 	struct bpf_link_primer link_primer;
10255 	struct netlink_ext_ack extack = {};
10256 	struct bpf_xdp_link *link;
10257 	struct net_device *dev;
10258 	int err, fd;
10259 
10260 	rtnl_lock();
10261 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10262 	if (!dev) {
10263 		rtnl_unlock();
10264 		return -EINVAL;
10265 	}
10266 
10267 	link = kzalloc(sizeof(*link), GFP_USER);
10268 	if (!link) {
10269 		err = -ENOMEM;
10270 		goto unlock;
10271 	}
10272 
10273 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10274 	link->dev = dev;
10275 	link->flags = attr->link_create.flags;
10276 
10277 	err = bpf_link_prime(&link->link, &link_primer);
10278 	if (err) {
10279 		kfree(link);
10280 		goto unlock;
10281 	}
10282 
10283 	err = dev_xdp_attach_link(dev, &extack, link);
10284 	rtnl_unlock();
10285 
10286 	if (err) {
10287 		link->dev = NULL;
10288 		bpf_link_cleanup(&link_primer);
10289 		trace_bpf_xdp_link_attach_failed(extack._msg);
10290 		goto out_put_dev;
10291 	}
10292 
10293 	fd = bpf_link_settle(&link_primer);
10294 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10295 	dev_put(dev);
10296 	return fd;
10297 
10298 unlock:
10299 	rtnl_unlock();
10300 
10301 out_put_dev:
10302 	dev_put(dev);
10303 	return err;
10304 }
10305 
10306 /**
10307  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10308  *	@dev: device
10309  *	@extack: netlink extended ack
10310  *	@fd: new program fd or negative value to clear
10311  *	@expected_fd: old program fd that userspace expects to replace or clear
10312  *	@flags: xdp-related flags
10313  *
10314  *	Set or clear a bpf program for a device
10315  */
10316 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10317 		      int fd, int expected_fd, u32 flags)
10318 {
10319 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10320 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10321 	int err;
10322 
10323 	ASSERT_RTNL();
10324 
10325 	if (fd >= 0) {
10326 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10327 						 mode != XDP_MODE_SKB);
10328 		if (IS_ERR(new_prog))
10329 			return PTR_ERR(new_prog);
10330 	}
10331 
10332 	if (expected_fd >= 0) {
10333 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10334 						 mode != XDP_MODE_SKB);
10335 		if (IS_ERR(old_prog)) {
10336 			err = PTR_ERR(old_prog);
10337 			old_prog = NULL;
10338 			goto err_out;
10339 		}
10340 	}
10341 
10342 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10343 
10344 err_out:
10345 	if (err && new_prog)
10346 		bpf_prog_put(new_prog);
10347 	if (old_prog)
10348 		bpf_prog_put(old_prog);
10349 	return err;
10350 }
10351 
10352 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10353 {
10354 	int i;
10355 
10356 	ASSERT_RTNL();
10357 
10358 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10359 		if (dev->_rx[i].mp_params.mp_priv)
10360 			/* The channel count is the idx plus 1. */
10361 			return i + 1;
10362 
10363 	return 0;
10364 }
10365 
10366 /**
10367  * dev_index_reserve() - allocate an ifindex in a namespace
10368  * @net: the applicable net namespace
10369  * @ifindex: requested ifindex, pass %0 to get one allocated
10370  *
10371  * Allocate a ifindex for a new device. Caller must either use the ifindex
10372  * to store the device (via list_netdevice()) or call dev_index_release()
10373  * to give the index up.
10374  *
10375  * Return: a suitable unique value for a new device interface number or -errno.
10376  */
10377 static int dev_index_reserve(struct net *net, u32 ifindex)
10378 {
10379 	int err;
10380 
10381 	if (ifindex > INT_MAX) {
10382 		DEBUG_NET_WARN_ON_ONCE(1);
10383 		return -EINVAL;
10384 	}
10385 
10386 	if (!ifindex)
10387 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10388 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10389 	else
10390 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10391 	if (err < 0)
10392 		return err;
10393 
10394 	return ifindex;
10395 }
10396 
10397 static void dev_index_release(struct net *net, int ifindex)
10398 {
10399 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10400 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10401 }
10402 
10403 static bool from_cleanup_net(void)
10404 {
10405 #ifdef CONFIG_NET_NS
10406 	return current == cleanup_net_task;
10407 #else
10408 	return false;
10409 #endif
10410 }
10411 
10412 /* Delayed registration/unregisteration */
10413 LIST_HEAD(net_todo_list);
10414 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10415 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10416 
10417 static void net_set_todo(struct net_device *dev)
10418 {
10419 	list_add_tail(&dev->todo_list, &net_todo_list);
10420 }
10421 
10422 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10423 	struct net_device *upper, netdev_features_t features)
10424 {
10425 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10426 	netdev_features_t feature;
10427 	int feature_bit;
10428 
10429 	for_each_netdev_feature(upper_disables, feature_bit) {
10430 		feature = __NETIF_F_BIT(feature_bit);
10431 		if (!(upper->wanted_features & feature)
10432 		    && (features & feature)) {
10433 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10434 				   &feature, upper->name);
10435 			features &= ~feature;
10436 		}
10437 	}
10438 
10439 	return features;
10440 }
10441 
10442 static void netdev_sync_lower_features(struct net_device *upper,
10443 	struct net_device *lower, netdev_features_t features)
10444 {
10445 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10446 	netdev_features_t feature;
10447 	int feature_bit;
10448 
10449 	for_each_netdev_feature(upper_disables, feature_bit) {
10450 		feature = __NETIF_F_BIT(feature_bit);
10451 		if (!(features & feature) && (lower->features & feature)) {
10452 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10453 				   &feature, lower->name);
10454 			lower->wanted_features &= ~feature;
10455 			__netdev_update_features(lower);
10456 
10457 			if (unlikely(lower->features & feature))
10458 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10459 					    &feature, lower->name);
10460 			else
10461 				netdev_features_change(lower);
10462 		}
10463 	}
10464 }
10465 
10466 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10467 {
10468 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10469 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10470 	bool hw_csum = features & NETIF_F_HW_CSUM;
10471 
10472 	return ip_csum || hw_csum;
10473 }
10474 
10475 static netdev_features_t netdev_fix_features(struct net_device *dev,
10476 	netdev_features_t features)
10477 {
10478 	/* Fix illegal checksum combinations */
10479 	if ((features & NETIF_F_HW_CSUM) &&
10480 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10481 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10482 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10483 	}
10484 
10485 	/* TSO requires that SG is present as well. */
10486 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10487 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10488 		features &= ~NETIF_F_ALL_TSO;
10489 	}
10490 
10491 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10492 					!(features & NETIF_F_IP_CSUM)) {
10493 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10494 		features &= ~NETIF_F_TSO;
10495 		features &= ~NETIF_F_TSO_ECN;
10496 	}
10497 
10498 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10499 					 !(features & NETIF_F_IPV6_CSUM)) {
10500 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10501 		features &= ~NETIF_F_TSO6;
10502 	}
10503 
10504 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10505 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10506 		features &= ~NETIF_F_TSO_MANGLEID;
10507 
10508 	/* TSO ECN requires that TSO is present as well. */
10509 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10510 		features &= ~NETIF_F_TSO_ECN;
10511 
10512 	/* Software GSO depends on SG. */
10513 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10514 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10515 		features &= ~NETIF_F_GSO;
10516 	}
10517 
10518 	/* GSO partial features require GSO partial be set */
10519 	if ((features & dev->gso_partial_features) &&
10520 	    !(features & NETIF_F_GSO_PARTIAL)) {
10521 		netdev_dbg(dev,
10522 			   "Dropping partially supported GSO features since no GSO partial.\n");
10523 		features &= ~dev->gso_partial_features;
10524 	}
10525 
10526 	if (!(features & NETIF_F_RXCSUM)) {
10527 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10528 		 * successfully merged by hardware must also have the
10529 		 * checksum verified by hardware.  If the user does not
10530 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10531 		 */
10532 		if (features & NETIF_F_GRO_HW) {
10533 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10534 			features &= ~NETIF_F_GRO_HW;
10535 		}
10536 	}
10537 
10538 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10539 	if (features & NETIF_F_RXFCS) {
10540 		if (features & NETIF_F_LRO) {
10541 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10542 			features &= ~NETIF_F_LRO;
10543 		}
10544 
10545 		if (features & NETIF_F_GRO_HW) {
10546 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10547 			features &= ~NETIF_F_GRO_HW;
10548 		}
10549 	}
10550 
10551 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10552 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10553 		features &= ~NETIF_F_LRO;
10554 	}
10555 
10556 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10557 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10558 		features &= ~NETIF_F_HW_TLS_TX;
10559 	}
10560 
10561 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10562 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10563 		features &= ~NETIF_F_HW_TLS_RX;
10564 	}
10565 
10566 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10567 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10568 		features &= ~NETIF_F_GSO_UDP_L4;
10569 	}
10570 
10571 	return features;
10572 }
10573 
10574 int __netdev_update_features(struct net_device *dev)
10575 {
10576 	struct net_device *upper, *lower;
10577 	netdev_features_t features;
10578 	struct list_head *iter;
10579 	int err = -1;
10580 
10581 	ASSERT_RTNL();
10582 	netdev_ops_assert_locked(dev);
10583 
10584 	features = netdev_get_wanted_features(dev);
10585 
10586 	if (dev->netdev_ops->ndo_fix_features)
10587 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10588 
10589 	/* driver might be less strict about feature dependencies */
10590 	features = netdev_fix_features(dev, features);
10591 
10592 	/* some features can't be enabled if they're off on an upper device */
10593 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10594 		features = netdev_sync_upper_features(dev, upper, features);
10595 
10596 	if (dev->features == features)
10597 		goto sync_lower;
10598 
10599 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10600 		&dev->features, &features);
10601 
10602 	if (dev->netdev_ops->ndo_set_features)
10603 		err = dev->netdev_ops->ndo_set_features(dev, features);
10604 	else
10605 		err = 0;
10606 
10607 	if (unlikely(err < 0)) {
10608 		netdev_err(dev,
10609 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10610 			err, &features, &dev->features);
10611 		/* return non-0 since some features might have changed and
10612 		 * it's better to fire a spurious notification than miss it
10613 		 */
10614 		return -1;
10615 	}
10616 
10617 sync_lower:
10618 	/* some features must be disabled on lower devices when disabled
10619 	 * on an upper device (think: bonding master or bridge)
10620 	 */
10621 	netdev_for_each_lower_dev(dev, lower, iter)
10622 		netdev_sync_lower_features(dev, lower, features);
10623 
10624 	if (!err) {
10625 		netdev_features_t diff = features ^ dev->features;
10626 
10627 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10628 			/* udp_tunnel_{get,drop}_rx_info both need
10629 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10630 			 * device, or they won't do anything.
10631 			 * Thus we need to update dev->features
10632 			 * *before* calling udp_tunnel_get_rx_info,
10633 			 * but *after* calling udp_tunnel_drop_rx_info.
10634 			 */
10635 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10636 				dev->features = features;
10637 				udp_tunnel_get_rx_info(dev);
10638 			} else {
10639 				udp_tunnel_drop_rx_info(dev);
10640 			}
10641 		}
10642 
10643 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10644 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10645 				dev->features = features;
10646 				err |= vlan_get_rx_ctag_filter_info(dev);
10647 			} else {
10648 				vlan_drop_rx_ctag_filter_info(dev);
10649 			}
10650 		}
10651 
10652 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10653 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10654 				dev->features = features;
10655 				err |= vlan_get_rx_stag_filter_info(dev);
10656 			} else {
10657 				vlan_drop_rx_stag_filter_info(dev);
10658 			}
10659 		}
10660 
10661 		dev->features = features;
10662 	}
10663 
10664 	return err < 0 ? 0 : 1;
10665 }
10666 
10667 /**
10668  *	netdev_update_features - recalculate device features
10669  *	@dev: the device to check
10670  *
10671  *	Recalculate dev->features set and send notifications if it
10672  *	has changed. Should be called after driver or hardware dependent
10673  *	conditions might have changed that influence the features.
10674  */
10675 void netdev_update_features(struct net_device *dev)
10676 {
10677 	if (__netdev_update_features(dev))
10678 		netdev_features_change(dev);
10679 }
10680 EXPORT_SYMBOL(netdev_update_features);
10681 
10682 /**
10683  *	netdev_change_features - recalculate device features
10684  *	@dev: the device to check
10685  *
10686  *	Recalculate dev->features set and send notifications even
10687  *	if they have not changed. Should be called instead of
10688  *	netdev_update_features() if also dev->vlan_features might
10689  *	have changed to allow the changes to be propagated to stacked
10690  *	VLAN devices.
10691  */
10692 void netdev_change_features(struct net_device *dev)
10693 {
10694 	__netdev_update_features(dev);
10695 	netdev_features_change(dev);
10696 }
10697 EXPORT_SYMBOL(netdev_change_features);
10698 
10699 /**
10700  *	netif_stacked_transfer_operstate -	transfer operstate
10701  *	@rootdev: the root or lower level device to transfer state from
10702  *	@dev: the device to transfer operstate to
10703  *
10704  *	Transfer operational state from root to device. This is normally
10705  *	called when a stacking relationship exists between the root
10706  *	device and the device(a leaf device).
10707  */
10708 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10709 					struct net_device *dev)
10710 {
10711 	if (rootdev->operstate == IF_OPER_DORMANT)
10712 		netif_dormant_on(dev);
10713 	else
10714 		netif_dormant_off(dev);
10715 
10716 	if (rootdev->operstate == IF_OPER_TESTING)
10717 		netif_testing_on(dev);
10718 	else
10719 		netif_testing_off(dev);
10720 
10721 	if (netif_carrier_ok(rootdev))
10722 		netif_carrier_on(dev);
10723 	else
10724 		netif_carrier_off(dev);
10725 }
10726 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10727 
10728 static int netif_alloc_rx_queues(struct net_device *dev)
10729 {
10730 	unsigned int i, count = dev->num_rx_queues;
10731 	struct netdev_rx_queue *rx;
10732 	size_t sz = count * sizeof(*rx);
10733 	int err = 0;
10734 
10735 	BUG_ON(count < 1);
10736 
10737 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10738 	if (!rx)
10739 		return -ENOMEM;
10740 
10741 	dev->_rx = rx;
10742 
10743 	for (i = 0; i < count; i++) {
10744 		rx[i].dev = dev;
10745 
10746 		/* XDP RX-queue setup */
10747 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10748 		if (err < 0)
10749 			goto err_rxq_info;
10750 	}
10751 	return 0;
10752 
10753 err_rxq_info:
10754 	/* Rollback successful reg's and free other resources */
10755 	while (i--)
10756 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10757 	kvfree(dev->_rx);
10758 	dev->_rx = NULL;
10759 	return err;
10760 }
10761 
10762 static void netif_free_rx_queues(struct net_device *dev)
10763 {
10764 	unsigned int i, count = dev->num_rx_queues;
10765 
10766 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10767 	if (!dev->_rx)
10768 		return;
10769 
10770 	for (i = 0; i < count; i++)
10771 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10772 
10773 	kvfree(dev->_rx);
10774 }
10775 
10776 static void netdev_init_one_queue(struct net_device *dev,
10777 				  struct netdev_queue *queue, void *_unused)
10778 {
10779 	/* Initialize queue lock */
10780 	spin_lock_init(&queue->_xmit_lock);
10781 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10782 	queue->xmit_lock_owner = -1;
10783 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10784 	queue->dev = dev;
10785 #ifdef CONFIG_BQL
10786 	dql_init(&queue->dql, HZ);
10787 #endif
10788 }
10789 
10790 static void netif_free_tx_queues(struct net_device *dev)
10791 {
10792 	kvfree(dev->_tx);
10793 }
10794 
10795 static int netif_alloc_netdev_queues(struct net_device *dev)
10796 {
10797 	unsigned int count = dev->num_tx_queues;
10798 	struct netdev_queue *tx;
10799 	size_t sz = count * sizeof(*tx);
10800 
10801 	if (count < 1 || count > 0xffff)
10802 		return -EINVAL;
10803 
10804 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10805 	if (!tx)
10806 		return -ENOMEM;
10807 
10808 	dev->_tx = tx;
10809 
10810 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10811 	spin_lock_init(&dev->tx_global_lock);
10812 
10813 	return 0;
10814 }
10815 
10816 void netif_tx_stop_all_queues(struct net_device *dev)
10817 {
10818 	unsigned int i;
10819 
10820 	for (i = 0; i < dev->num_tx_queues; i++) {
10821 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10822 
10823 		netif_tx_stop_queue(txq);
10824 	}
10825 }
10826 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10827 
10828 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10829 {
10830 	void __percpu *v;
10831 
10832 	/* Drivers implementing ndo_get_peer_dev must support tstat
10833 	 * accounting, so that skb_do_redirect() can bump the dev's
10834 	 * RX stats upon network namespace switch.
10835 	 */
10836 	if (dev->netdev_ops->ndo_get_peer_dev &&
10837 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10838 		return -EOPNOTSUPP;
10839 
10840 	switch (dev->pcpu_stat_type) {
10841 	case NETDEV_PCPU_STAT_NONE:
10842 		return 0;
10843 	case NETDEV_PCPU_STAT_LSTATS:
10844 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10845 		break;
10846 	case NETDEV_PCPU_STAT_TSTATS:
10847 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10848 		break;
10849 	case NETDEV_PCPU_STAT_DSTATS:
10850 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10851 		break;
10852 	default:
10853 		return -EINVAL;
10854 	}
10855 
10856 	return v ? 0 : -ENOMEM;
10857 }
10858 
10859 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10860 {
10861 	switch (dev->pcpu_stat_type) {
10862 	case NETDEV_PCPU_STAT_NONE:
10863 		return;
10864 	case NETDEV_PCPU_STAT_LSTATS:
10865 		free_percpu(dev->lstats);
10866 		break;
10867 	case NETDEV_PCPU_STAT_TSTATS:
10868 		free_percpu(dev->tstats);
10869 		break;
10870 	case NETDEV_PCPU_STAT_DSTATS:
10871 		free_percpu(dev->dstats);
10872 		break;
10873 	}
10874 }
10875 
10876 static void netdev_free_phy_link_topology(struct net_device *dev)
10877 {
10878 	struct phy_link_topology *topo = dev->link_topo;
10879 
10880 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10881 		xa_destroy(&topo->phys);
10882 		kfree(topo);
10883 		dev->link_topo = NULL;
10884 	}
10885 }
10886 
10887 /**
10888  * register_netdevice() - register a network device
10889  * @dev: device to register
10890  *
10891  * Take a prepared network device structure and make it externally accessible.
10892  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10893  * Callers must hold the rtnl lock - you may want register_netdev()
10894  * instead of this.
10895  */
10896 int register_netdevice(struct net_device *dev)
10897 {
10898 	int ret;
10899 	struct net *net = dev_net(dev);
10900 
10901 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10902 		     NETDEV_FEATURE_COUNT);
10903 	BUG_ON(dev_boot_phase);
10904 	ASSERT_RTNL();
10905 
10906 	might_sleep();
10907 
10908 	/* When net_device's are persistent, this will be fatal. */
10909 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10910 	BUG_ON(!net);
10911 
10912 	ret = ethtool_check_ops(dev->ethtool_ops);
10913 	if (ret)
10914 		return ret;
10915 
10916 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10917 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10918 	mutex_init(&dev->ethtool->rss_lock);
10919 
10920 	spin_lock_init(&dev->addr_list_lock);
10921 	netdev_set_addr_lockdep_class(dev);
10922 
10923 	ret = dev_get_valid_name(net, dev, dev->name);
10924 	if (ret < 0)
10925 		goto out;
10926 
10927 	ret = -ENOMEM;
10928 	dev->name_node = netdev_name_node_head_alloc(dev);
10929 	if (!dev->name_node)
10930 		goto out;
10931 
10932 	/* Init, if this function is available */
10933 	if (dev->netdev_ops->ndo_init) {
10934 		ret = dev->netdev_ops->ndo_init(dev);
10935 		if (ret) {
10936 			if (ret > 0)
10937 				ret = -EIO;
10938 			goto err_free_name;
10939 		}
10940 	}
10941 
10942 	if (((dev->hw_features | dev->features) &
10943 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10944 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10945 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10946 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10947 		ret = -EINVAL;
10948 		goto err_uninit;
10949 	}
10950 
10951 	ret = netdev_do_alloc_pcpu_stats(dev);
10952 	if (ret)
10953 		goto err_uninit;
10954 
10955 	ret = dev_index_reserve(net, dev->ifindex);
10956 	if (ret < 0)
10957 		goto err_free_pcpu;
10958 	dev->ifindex = ret;
10959 
10960 	/* Transfer changeable features to wanted_features and enable
10961 	 * software offloads (GSO and GRO).
10962 	 */
10963 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10964 	dev->features |= NETIF_F_SOFT_FEATURES;
10965 
10966 	if (dev->udp_tunnel_nic_info) {
10967 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10968 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10969 	}
10970 
10971 	dev->wanted_features = dev->features & dev->hw_features;
10972 
10973 	if (!(dev->flags & IFF_LOOPBACK))
10974 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10975 
10976 	/* If IPv4 TCP segmentation offload is supported we should also
10977 	 * allow the device to enable segmenting the frame with the option
10978 	 * of ignoring a static IP ID value.  This doesn't enable the
10979 	 * feature itself but allows the user to enable it later.
10980 	 */
10981 	if (dev->hw_features & NETIF_F_TSO)
10982 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10983 	if (dev->vlan_features & NETIF_F_TSO)
10984 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10985 	if (dev->mpls_features & NETIF_F_TSO)
10986 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10987 	if (dev->hw_enc_features & NETIF_F_TSO)
10988 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10989 
10990 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10991 	 */
10992 	dev->vlan_features |= NETIF_F_HIGHDMA;
10993 
10994 	/* Make NETIF_F_SG inheritable to tunnel devices.
10995 	 */
10996 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10997 
10998 	/* Make NETIF_F_SG inheritable to MPLS.
10999 	 */
11000 	dev->mpls_features |= NETIF_F_SG;
11001 
11002 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11003 	ret = notifier_to_errno(ret);
11004 	if (ret)
11005 		goto err_ifindex_release;
11006 
11007 	ret = netdev_register_kobject(dev);
11008 
11009 	netdev_lock(dev);
11010 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11011 	netdev_unlock(dev);
11012 
11013 	if (ret)
11014 		goto err_uninit_notify;
11015 
11016 	netdev_lock_ops(dev);
11017 	__netdev_update_features(dev);
11018 	netdev_unlock_ops(dev);
11019 
11020 	/*
11021 	 *	Default initial state at registry is that the
11022 	 *	device is present.
11023 	 */
11024 
11025 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11026 
11027 	linkwatch_init_dev(dev);
11028 
11029 	dev_init_scheduler(dev);
11030 
11031 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11032 	list_netdevice(dev);
11033 
11034 	add_device_randomness(dev->dev_addr, dev->addr_len);
11035 
11036 	/* If the device has permanent device address, driver should
11037 	 * set dev_addr and also addr_assign_type should be set to
11038 	 * NET_ADDR_PERM (default value).
11039 	 */
11040 	if (dev->addr_assign_type == NET_ADDR_PERM)
11041 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11042 
11043 	/* Notify protocols, that a new device appeared. */
11044 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11045 	ret = notifier_to_errno(ret);
11046 	if (ret) {
11047 		/* Expect explicit free_netdev() on failure */
11048 		dev->needs_free_netdev = false;
11049 		unregister_netdevice_queue(dev, NULL);
11050 		goto out;
11051 	}
11052 	/*
11053 	 *	Prevent userspace races by waiting until the network
11054 	 *	device is fully setup before sending notifications.
11055 	 */
11056 	if (!dev->rtnl_link_ops ||
11057 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11058 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11059 
11060 out:
11061 	return ret;
11062 
11063 err_uninit_notify:
11064 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11065 err_ifindex_release:
11066 	dev_index_release(net, dev->ifindex);
11067 err_free_pcpu:
11068 	netdev_do_free_pcpu_stats(dev);
11069 err_uninit:
11070 	if (dev->netdev_ops->ndo_uninit)
11071 		dev->netdev_ops->ndo_uninit(dev);
11072 	if (dev->priv_destructor)
11073 		dev->priv_destructor(dev);
11074 err_free_name:
11075 	netdev_name_node_free(dev->name_node);
11076 	goto out;
11077 }
11078 EXPORT_SYMBOL(register_netdevice);
11079 
11080 /* Initialize the core of a dummy net device.
11081  * The setup steps dummy netdevs need which normal netdevs get by going
11082  * through register_netdevice().
11083  */
11084 static void init_dummy_netdev(struct net_device *dev)
11085 {
11086 	/* make sure we BUG if trying to hit standard
11087 	 * register/unregister code path
11088 	 */
11089 	dev->reg_state = NETREG_DUMMY;
11090 
11091 	/* a dummy interface is started by default */
11092 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11093 	set_bit(__LINK_STATE_START, &dev->state);
11094 
11095 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11096 	 * because users of this 'device' dont need to change
11097 	 * its refcount.
11098 	 */
11099 }
11100 
11101 /**
11102  *	register_netdev	- register a network device
11103  *	@dev: device to register
11104  *
11105  *	Take a completed network device structure and add it to the kernel
11106  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11107  *	chain. 0 is returned on success. A negative errno code is returned
11108  *	on a failure to set up the device, or if the name is a duplicate.
11109  *
11110  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11111  *	and expands the device name if you passed a format string to
11112  *	alloc_netdev.
11113  */
11114 int register_netdev(struct net_device *dev)
11115 {
11116 	struct net *net = dev_net(dev);
11117 	int err;
11118 
11119 	if (rtnl_net_lock_killable(net))
11120 		return -EINTR;
11121 
11122 	err = register_netdevice(dev);
11123 
11124 	rtnl_net_unlock(net);
11125 
11126 	return err;
11127 }
11128 EXPORT_SYMBOL(register_netdev);
11129 
11130 int netdev_refcnt_read(const struct net_device *dev)
11131 {
11132 #ifdef CONFIG_PCPU_DEV_REFCNT
11133 	int i, refcnt = 0;
11134 
11135 	for_each_possible_cpu(i)
11136 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11137 	return refcnt;
11138 #else
11139 	return refcount_read(&dev->dev_refcnt);
11140 #endif
11141 }
11142 EXPORT_SYMBOL(netdev_refcnt_read);
11143 
11144 int netdev_unregister_timeout_secs __read_mostly = 10;
11145 
11146 #define WAIT_REFS_MIN_MSECS 1
11147 #define WAIT_REFS_MAX_MSECS 250
11148 /**
11149  * netdev_wait_allrefs_any - wait until all references are gone.
11150  * @list: list of net_devices to wait on
11151  *
11152  * This is called when unregistering network devices.
11153  *
11154  * Any protocol or device that holds a reference should register
11155  * for netdevice notification, and cleanup and put back the
11156  * reference if they receive an UNREGISTER event.
11157  * We can get stuck here if buggy protocols don't correctly
11158  * call dev_put.
11159  */
11160 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11161 {
11162 	unsigned long rebroadcast_time, warning_time;
11163 	struct net_device *dev;
11164 	int wait = 0;
11165 
11166 	rebroadcast_time = warning_time = jiffies;
11167 
11168 	list_for_each_entry(dev, list, todo_list)
11169 		if (netdev_refcnt_read(dev) == 1)
11170 			return dev;
11171 
11172 	while (true) {
11173 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11174 			rtnl_lock();
11175 
11176 			/* Rebroadcast unregister notification */
11177 			list_for_each_entry(dev, list, todo_list)
11178 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11179 
11180 			__rtnl_unlock();
11181 			rcu_barrier();
11182 			rtnl_lock();
11183 
11184 			list_for_each_entry(dev, list, todo_list)
11185 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11186 					     &dev->state)) {
11187 					/* We must not have linkwatch events
11188 					 * pending on unregister. If this
11189 					 * happens, we simply run the queue
11190 					 * unscheduled, resulting in a noop
11191 					 * for this device.
11192 					 */
11193 					linkwatch_run_queue();
11194 					break;
11195 				}
11196 
11197 			__rtnl_unlock();
11198 
11199 			rebroadcast_time = jiffies;
11200 		}
11201 
11202 		rcu_barrier();
11203 
11204 		if (!wait) {
11205 			wait = WAIT_REFS_MIN_MSECS;
11206 		} else {
11207 			msleep(wait);
11208 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11209 		}
11210 
11211 		list_for_each_entry(dev, list, todo_list)
11212 			if (netdev_refcnt_read(dev) == 1)
11213 				return dev;
11214 
11215 		if (time_after(jiffies, warning_time +
11216 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11217 			list_for_each_entry(dev, list, todo_list) {
11218 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11219 					 dev->name, netdev_refcnt_read(dev));
11220 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11221 			}
11222 
11223 			warning_time = jiffies;
11224 		}
11225 	}
11226 }
11227 
11228 /* The sequence is:
11229  *
11230  *	rtnl_lock();
11231  *	...
11232  *	register_netdevice(x1);
11233  *	register_netdevice(x2);
11234  *	...
11235  *	unregister_netdevice(y1);
11236  *	unregister_netdevice(y2);
11237  *      ...
11238  *	rtnl_unlock();
11239  *	free_netdev(y1);
11240  *	free_netdev(y2);
11241  *
11242  * We are invoked by rtnl_unlock().
11243  * This allows us to deal with problems:
11244  * 1) We can delete sysfs objects which invoke hotplug
11245  *    without deadlocking with linkwatch via keventd.
11246  * 2) Since we run with the RTNL semaphore not held, we can sleep
11247  *    safely in order to wait for the netdev refcnt to drop to zero.
11248  *
11249  * We must not return until all unregister events added during
11250  * the interval the lock was held have been completed.
11251  */
11252 void netdev_run_todo(void)
11253 {
11254 	struct net_device *dev, *tmp;
11255 	struct list_head list;
11256 	int cnt;
11257 #ifdef CONFIG_LOCKDEP
11258 	struct list_head unlink_list;
11259 
11260 	list_replace_init(&net_unlink_list, &unlink_list);
11261 
11262 	while (!list_empty(&unlink_list)) {
11263 		dev = list_first_entry(&unlink_list, struct net_device,
11264 				       unlink_list);
11265 		list_del_init(&dev->unlink_list);
11266 		dev->nested_level = dev->lower_level - 1;
11267 	}
11268 #endif
11269 
11270 	/* Snapshot list, allow later requests */
11271 	list_replace_init(&net_todo_list, &list);
11272 
11273 	__rtnl_unlock();
11274 
11275 	/* Wait for rcu callbacks to finish before next phase */
11276 	if (!list_empty(&list))
11277 		rcu_barrier();
11278 
11279 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11280 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11281 			netdev_WARN(dev, "run_todo but not unregistering\n");
11282 			list_del(&dev->todo_list);
11283 			continue;
11284 		}
11285 
11286 		netdev_lock(dev);
11287 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11288 		netdev_unlock(dev);
11289 		linkwatch_sync_dev(dev);
11290 	}
11291 
11292 	cnt = 0;
11293 	while (!list_empty(&list)) {
11294 		dev = netdev_wait_allrefs_any(&list);
11295 		list_del(&dev->todo_list);
11296 
11297 		/* paranoia */
11298 		BUG_ON(netdev_refcnt_read(dev) != 1);
11299 		BUG_ON(!list_empty(&dev->ptype_all));
11300 		BUG_ON(!list_empty(&dev->ptype_specific));
11301 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11302 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11303 
11304 		netdev_do_free_pcpu_stats(dev);
11305 		if (dev->priv_destructor)
11306 			dev->priv_destructor(dev);
11307 		if (dev->needs_free_netdev)
11308 			free_netdev(dev);
11309 
11310 		cnt++;
11311 
11312 		/* Free network device */
11313 		kobject_put(&dev->dev.kobj);
11314 	}
11315 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11316 		wake_up(&netdev_unregistering_wq);
11317 }
11318 
11319 /* Collate per-cpu network dstats statistics
11320  *
11321  * Read per-cpu network statistics from dev->dstats and populate the related
11322  * fields in @s.
11323  */
11324 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11325 			     const struct pcpu_dstats __percpu *dstats)
11326 {
11327 	int cpu;
11328 
11329 	for_each_possible_cpu(cpu) {
11330 		u64 rx_packets, rx_bytes, rx_drops;
11331 		u64 tx_packets, tx_bytes, tx_drops;
11332 		const struct pcpu_dstats *stats;
11333 		unsigned int start;
11334 
11335 		stats = per_cpu_ptr(dstats, cpu);
11336 		do {
11337 			start = u64_stats_fetch_begin(&stats->syncp);
11338 			rx_packets = u64_stats_read(&stats->rx_packets);
11339 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11340 			rx_drops   = u64_stats_read(&stats->rx_drops);
11341 			tx_packets = u64_stats_read(&stats->tx_packets);
11342 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11343 			tx_drops   = u64_stats_read(&stats->tx_drops);
11344 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11345 
11346 		s->rx_packets += rx_packets;
11347 		s->rx_bytes   += rx_bytes;
11348 		s->rx_dropped += rx_drops;
11349 		s->tx_packets += tx_packets;
11350 		s->tx_bytes   += tx_bytes;
11351 		s->tx_dropped += tx_drops;
11352 	}
11353 }
11354 
11355 /* ndo_get_stats64 implementation for dtstats-based accounting.
11356  *
11357  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11358  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11359  */
11360 static void dev_get_dstats64(const struct net_device *dev,
11361 			     struct rtnl_link_stats64 *s)
11362 {
11363 	netdev_stats_to_stats64(s, &dev->stats);
11364 	dev_fetch_dstats(s, dev->dstats);
11365 }
11366 
11367 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11368  * all the same fields in the same order as net_device_stats, with only
11369  * the type differing, but rtnl_link_stats64 may have additional fields
11370  * at the end for newer counters.
11371  */
11372 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11373 			     const struct net_device_stats *netdev_stats)
11374 {
11375 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11376 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11377 	u64 *dst = (u64 *)stats64;
11378 
11379 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11380 	for (i = 0; i < n; i++)
11381 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11382 	/* zero out counters that only exist in rtnl_link_stats64 */
11383 	memset((char *)stats64 + n * sizeof(u64), 0,
11384 	       sizeof(*stats64) - n * sizeof(u64));
11385 }
11386 EXPORT_SYMBOL(netdev_stats_to_stats64);
11387 
11388 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11389 		struct net_device *dev)
11390 {
11391 	struct net_device_core_stats __percpu *p;
11392 
11393 	p = alloc_percpu_gfp(struct net_device_core_stats,
11394 			     GFP_ATOMIC | __GFP_NOWARN);
11395 
11396 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11397 		free_percpu(p);
11398 
11399 	/* This READ_ONCE() pairs with the cmpxchg() above */
11400 	return READ_ONCE(dev->core_stats);
11401 }
11402 
11403 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11404 {
11405 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11406 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11407 	unsigned long __percpu *field;
11408 
11409 	if (unlikely(!p)) {
11410 		p = netdev_core_stats_alloc(dev);
11411 		if (!p)
11412 			return;
11413 	}
11414 
11415 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11416 	this_cpu_inc(*field);
11417 }
11418 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11419 
11420 /**
11421  *	dev_get_stats	- get network device statistics
11422  *	@dev: device to get statistics from
11423  *	@storage: place to store stats
11424  *
11425  *	Get network statistics from device. Return @storage.
11426  *	The device driver may provide its own method by setting
11427  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11428  *	otherwise the internal statistics structure is used.
11429  */
11430 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11431 					struct rtnl_link_stats64 *storage)
11432 {
11433 	const struct net_device_ops *ops = dev->netdev_ops;
11434 	const struct net_device_core_stats __percpu *p;
11435 
11436 	/*
11437 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11438 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11439 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11440 	 */
11441 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11442 		     offsetof(struct pcpu_dstats, rx_bytes));
11443 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11444 		     offsetof(struct pcpu_dstats, rx_packets));
11445 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11446 		     offsetof(struct pcpu_dstats, tx_bytes));
11447 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11448 		     offsetof(struct pcpu_dstats, tx_packets));
11449 
11450 	if (ops->ndo_get_stats64) {
11451 		memset(storage, 0, sizeof(*storage));
11452 		ops->ndo_get_stats64(dev, storage);
11453 	} else if (ops->ndo_get_stats) {
11454 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11455 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11456 		dev_get_tstats64(dev, storage);
11457 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11458 		dev_get_dstats64(dev, storage);
11459 	} else {
11460 		netdev_stats_to_stats64(storage, &dev->stats);
11461 	}
11462 
11463 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11464 	p = READ_ONCE(dev->core_stats);
11465 	if (p) {
11466 		const struct net_device_core_stats *core_stats;
11467 		int i;
11468 
11469 		for_each_possible_cpu(i) {
11470 			core_stats = per_cpu_ptr(p, i);
11471 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11472 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11473 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11474 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11475 		}
11476 	}
11477 	return storage;
11478 }
11479 EXPORT_SYMBOL(dev_get_stats);
11480 
11481 /**
11482  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11483  *	@s: place to store stats
11484  *	@netstats: per-cpu network stats to read from
11485  *
11486  *	Read per-cpu network statistics and populate the related fields in @s.
11487  */
11488 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11489 			   const struct pcpu_sw_netstats __percpu *netstats)
11490 {
11491 	int cpu;
11492 
11493 	for_each_possible_cpu(cpu) {
11494 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11495 		const struct pcpu_sw_netstats *stats;
11496 		unsigned int start;
11497 
11498 		stats = per_cpu_ptr(netstats, cpu);
11499 		do {
11500 			start = u64_stats_fetch_begin(&stats->syncp);
11501 			rx_packets = u64_stats_read(&stats->rx_packets);
11502 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11503 			tx_packets = u64_stats_read(&stats->tx_packets);
11504 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11505 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11506 
11507 		s->rx_packets += rx_packets;
11508 		s->rx_bytes   += rx_bytes;
11509 		s->tx_packets += tx_packets;
11510 		s->tx_bytes   += tx_bytes;
11511 	}
11512 }
11513 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11514 
11515 /**
11516  *	dev_get_tstats64 - ndo_get_stats64 implementation
11517  *	@dev: device to get statistics from
11518  *	@s: place to store stats
11519  *
11520  *	Populate @s from dev->stats and dev->tstats. Can be used as
11521  *	ndo_get_stats64() callback.
11522  */
11523 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11524 {
11525 	netdev_stats_to_stats64(s, &dev->stats);
11526 	dev_fetch_sw_netstats(s, dev->tstats);
11527 }
11528 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11529 
11530 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11531 {
11532 	struct netdev_queue *queue = dev_ingress_queue(dev);
11533 
11534 #ifdef CONFIG_NET_CLS_ACT
11535 	if (queue)
11536 		return queue;
11537 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11538 	if (!queue)
11539 		return NULL;
11540 	netdev_init_one_queue(dev, queue, NULL);
11541 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11542 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11543 	rcu_assign_pointer(dev->ingress_queue, queue);
11544 #endif
11545 	return queue;
11546 }
11547 
11548 static const struct ethtool_ops default_ethtool_ops;
11549 
11550 void netdev_set_default_ethtool_ops(struct net_device *dev,
11551 				    const struct ethtool_ops *ops)
11552 {
11553 	if (dev->ethtool_ops == &default_ethtool_ops)
11554 		dev->ethtool_ops = ops;
11555 }
11556 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11557 
11558 /**
11559  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11560  * @dev: netdev to enable the IRQ coalescing on
11561  *
11562  * Sets a conservative default for SW IRQ coalescing. Users can use
11563  * sysfs attributes to override the default values.
11564  */
11565 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11566 {
11567 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11568 
11569 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11570 		netdev_set_gro_flush_timeout(dev, 20000);
11571 		netdev_set_defer_hard_irqs(dev, 1);
11572 	}
11573 }
11574 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11575 
11576 /**
11577  * alloc_netdev_mqs - allocate network device
11578  * @sizeof_priv: size of private data to allocate space for
11579  * @name: device name format string
11580  * @name_assign_type: origin of device name
11581  * @setup: callback to initialize device
11582  * @txqs: the number of TX subqueues to allocate
11583  * @rxqs: the number of RX subqueues to allocate
11584  *
11585  * Allocates a struct net_device with private data area for driver use
11586  * and performs basic initialization.  Also allocates subqueue structs
11587  * for each queue on the device.
11588  */
11589 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11590 		unsigned char name_assign_type,
11591 		void (*setup)(struct net_device *),
11592 		unsigned int txqs, unsigned int rxqs)
11593 {
11594 	struct net_device *dev;
11595 	size_t napi_config_sz;
11596 	unsigned int maxqs;
11597 
11598 	BUG_ON(strlen(name) >= sizeof(dev->name));
11599 
11600 	if (txqs < 1) {
11601 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11602 		return NULL;
11603 	}
11604 
11605 	if (rxqs < 1) {
11606 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11607 		return NULL;
11608 	}
11609 
11610 	maxqs = max(txqs, rxqs);
11611 
11612 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11613 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11614 	if (!dev)
11615 		return NULL;
11616 
11617 	dev->priv_len = sizeof_priv;
11618 
11619 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11620 #ifdef CONFIG_PCPU_DEV_REFCNT
11621 	dev->pcpu_refcnt = alloc_percpu(int);
11622 	if (!dev->pcpu_refcnt)
11623 		goto free_dev;
11624 	__dev_hold(dev);
11625 #else
11626 	refcount_set(&dev->dev_refcnt, 1);
11627 #endif
11628 
11629 	if (dev_addr_init(dev))
11630 		goto free_pcpu;
11631 
11632 	dev_mc_init(dev);
11633 	dev_uc_init(dev);
11634 
11635 	dev_net_set(dev, &init_net);
11636 
11637 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11638 	dev->xdp_zc_max_segs = 1;
11639 	dev->gso_max_segs = GSO_MAX_SEGS;
11640 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11641 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11642 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11643 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11644 	dev->tso_max_segs = TSO_MAX_SEGS;
11645 	dev->upper_level = 1;
11646 	dev->lower_level = 1;
11647 #ifdef CONFIG_LOCKDEP
11648 	dev->nested_level = 0;
11649 	INIT_LIST_HEAD(&dev->unlink_list);
11650 #endif
11651 
11652 	INIT_LIST_HEAD(&dev->napi_list);
11653 	INIT_LIST_HEAD(&dev->unreg_list);
11654 	INIT_LIST_HEAD(&dev->close_list);
11655 	INIT_LIST_HEAD(&dev->link_watch_list);
11656 	INIT_LIST_HEAD(&dev->adj_list.upper);
11657 	INIT_LIST_HEAD(&dev->adj_list.lower);
11658 	INIT_LIST_HEAD(&dev->ptype_all);
11659 	INIT_LIST_HEAD(&dev->ptype_specific);
11660 	INIT_LIST_HEAD(&dev->net_notifier_list);
11661 #ifdef CONFIG_NET_SCHED
11662 	hash_init(dev->qdisc_hash);
11663 #endif
11664 
11665 	mutex_init(&dev->lock);
11666 
11667 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11668 	setup(dev);
11669 
11670 	if (!dev->tx_queue_len) {
11671 		dev->priv_flags |= IFF_NO_QUEUE;
11672 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11673 	}
11674 
11675 	dev->num_tx_queues = txqs;
11676 	dev->real_num_tx_queues = txqs;
11677 	if (netif_alloc_netdev_queues(dev))
11678 		goto free_all;
11679 
11680 	dev->num_rx_queues = rxqs;
11681 	dev->real_num_rx_queues = rxqs;
11682 	if (netif_alloc_rx_queues(dev))
11683 		goto free_all;
11684 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11685 	if (!dev->ethtool)
11686 		goto free_all;
11687 
11688 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11689 	if (!dev->cfg)
11690 		goto free_all;
11691 	dev->cfg_pending = dev->cfg;
11692 
11693 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11694 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11695 	if (!dev->napi_config)
11696 		goto free_all;
11697 
11698 	strscpy(dev->name, name);
11699 	dev->name_assign_type = name_assign_type;
11700 	dev->group = INIT_NETDEV_GROUP;
11701 	if (!dev->ethtool_ops)
11702 		dev->ethtool_ops = &default_ethtool_ops;
11703 
11704 	nf_hook_netdev_init(dev);
11705 
11706 	return dev;
11707 
11708 free_all:
11709 	free_netdev(dev);
11710 	return NULL;
11711 
11712 free_pcpu:
11713 #ifdef CONFIG_PCPU_DEV_REFCNT
11714 	free_percpu(dev->pcpu_refcnt);
11715 free_dev:
11716 #endif
11717 	kvfree(dev);
11718 	return NULL;
11719 }
11720 EXPORT_SYMBOL(alloc_netdev_mqs);
11721 
11722 static void netdev_napi_exit(struct net_device *dev)
11723 {
11724 	if (!list_empty(&dev->napi_list)) {
11725 		struct napi_struct *p, *n;
11726 
11727 		netdev_lock(dev);
11728 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11729 			__netif_napi_del_locked(p);
11730 		netdev_unlock(dev);
11731 
11732 		synchronize_net();
11733 	}
11734 
11735 	kvfree(dev->napi_config);
11736 }
11737 
11738 /**
11739  * free_netdev - free network device
11740  * @dev: device
11741  *
11742  * This function does the last stage of destroying an allocated device
11743  * interface. The reference to the device object is released. If this
11744  * is the last reference then it will be freed.Must be called in process
11745  * context.
11746  */
11747 void free_netdev(struct net_device *dev)
11748 {
11749 	might_sleep();
11750 
11751 	/* When called immediately after register_netdevice() failed the unwind
11752 	 * handling may still be dismantling the device. Handle that case by
11753 	 * deferring the free.
11754 	 */
11755 	if (dev->reg_state == NETREG_UNREGISTERING) {
11756 		ASSERT_RTNL();
11757 		dev->needs_free_netdev = true;
11758 		return;
11759 	}
11760 
11761 	WARN_ON(dev->cfg != dev->cfg_pending);
11762 	kfree(dev->cfg);
11763 	kfree(dev->ethtool);
11764 	netif_free_tx_queues(dev);
11765 	netif_free_rx_queues(dev);
11766 
11767 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11768 
11769 	/* Flush device addresses */
11770 	dev_addr_flush(dev);
11771 
11772 	netdev_napi_exit(dev);
11773 
11774 	netif_del_cpu_rmap(dev);
11775 
11776 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11777 #ifdef CONFIG_PCPU_DEV_REFCNT
11778 	free_percpu(dev->pcpu_refcnt);
11779 	dev->pcpu_refcnt = NULL;
11780 #endif
11781 	free_percpu(dev->core_stats);
11782 	dev->core_stats = NULL;
11783 	free_percpu(dev->xdp_bulkq);
11784 	dev->xdp_bulkq = NULL;
11785 
11786 	netdev_free_phy_link_topology(dev);
11787 
11788 	mutex_destroy(&dev->lock);
11789 
11790 	/*  Compatibility with error handling in drivers */
11791 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11792 	    dev->reg_state == NETREG_DUMMY) {
11793 		kvfree(dev);
11794 		return;
11795 	}
11796 
11797 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11798 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11799 
11800 	/* will free via device release */
11801 	put_device(&dev->dev);
11802 }
11803 EXPORT_SYMBOL(free_netdev);
11804 
11805 /**
11806  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11807  * @sizeof_priv: size of private data to allocate space for
11808  *
11809  * Return: the allocated net_device on success, NULL otherwise
11810  */
11811 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11812 {
11813 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11814 			    init_dummy_netdev);
11815 }
11816 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11817 
11818 /**
11819  *	synchronize_net -  Synchronize with packet receive processing
11820  *
11821  *	Wait for packets currently being received to be done.
11822  *	Does not block later packets from starting.
11823  */
11824 void synchronize_net(void)
11825 {
11826 	might_sleep();
11827 	if (from_cleanup_net() || rtnl_is_locked())
11828 		synchronize_rcu_expedited();
11829 	else
11830 		synchronize_rcu();
11831 }
11832 EXPORT_SYMBOL(synchronize_net);
11833 
11834 static void netdev_rss_contexts_free(struct net_device *dev)
11835 {
11836 	struct ethtool_rxfh_context *ctx;
11837 	unsigned long context;
11838 
11839 	mutex_lock(&dev->ethtool->rss_lock);
11840 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11841 		struct ethtool_rxfh_param rxfh;
11842 
11843 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11844 		rxfh.key = ethtool_rxfh_context_key(ctx);
11845 		rxfh.hfunc = ctx->hfunc;
11846 		rxfh.input_xfrm = ctx->input_xfrm;
11847 		rxfh.rss_context = context;
11848 		rxfh.rss_delete = true;
11849 
11850 		xa_erase(&dev->ethtool->rss_ctx, context);
11851 		if (dev->ethtool_ops->create_rxfh_context)
11852 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11853 							      context, NULL);
11854 		else
11855 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11856 		kfree(ctx);
11857 	}
11858 	xa_destroy(&dev->ethtool->rss_ctx);
11859 	mutex_unlock(&dev->ethtool->rss_lock);
11860 }
11861 
11862 /**
11863  *	unregister_netdevice_queue - remove device from the kernel
11864  *	@dev: device
11865  *	@head: list
11866  *
11867  *	This function shuts down a device interface and removes it
11868  *	from the kernel tables.
11869  *	If head not NULL, device is queued to be unregistered later.
11870  *
11871  *	Callers must hold the rtnl semaphore.  You may want
11872  *	unregister_netdev() instead of this.
11873  */
11874 
11875 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11876 {
11877 	ASSERT_RTNL();
11878 
11879 	if (head) {
11880 		list_move_tail(&dev->unreg_list, head);
11881 	} else {
11882 		LIST_HEAD(single);
11883 
11884 		list_add(&dev->unreg_list, &single);
11885 		unregister_netdevice_many(&single);
11886 	}
11887 }
11888 EXPORT_SYMBOL(unregister_netdevice_queue);
11889 
11890 static void dev_memory_provider_uninstall(struct net_device *dev)
11891 {
11892 	unsigned int i;
11893 
11894 	for (i = 0; i < dev->real_num_rx_queues; i++) {
11895 		struct netdev_rx_queue *rxq = &dev->_rx[i];
11896 		struct pp_memory_provider_params *p = &rxq->mp_params;
11897 
11898 		if (p->mp_ops && p->mp_ops->uninstall)
11899 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11900 	}
11901 }
11902 
11903 void unregister_netdevice_many_notify(struct list_head *head,
11904 				      u32 portid, const struct nlmsghdr *nlh)
11905 {
11906 	struct net_device *dev, *tmp;
11907 	LIST_HEAD(close_head);
11908 	int cnt = 0;
11909 
11910 	BUG_ON(dev_boot_phase);
11911 	ASSERT_RTNL();
11912 
11913 	if (list_empty(head))
11914 		return;
11915 
11916 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11917 		/* Some devices call without registering
11918 		 * for initialization unwind. Remove those
11919 		 * devices and proceed with the remaining.
11920 		 */
11921 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11922 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11923 				 dev->name, dev);
11924 
11925 			WARN_ON(1);
11926 			list_del(&dev->unreg_list);
11927 			continue;
11928 		}
11929 		dev->dismantle = true;
11930 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11931 	}
11932 
11933 	/* If device is running, close it first. */
11934 	list_for_each_entry(dev, head, unreg_list) {
11935 		list_add_tail(&dev->close_list, &close_head);
11936 		netdev_lock_ops(dev);
11937 	}
11938 	dev_close_many(&close_head, true);
11939 
11940 	list_for_each_entry(dev, head, unreg_list) {
11941 		netdev_unlock_ops(dev);
11942 		/* And unlink it from device chain. */
11943 		unlist_netdevice(dev);
11944 		netdev_lock(dev);
11945 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11946 		netdev_unlock(dev);
11947 	}
11948 	flush_all_backlogs();
11949 
11950 	synchronize_net();
11951 
11952 	list_for_each_entry(dev, head, unreg_list) {
11953 		struct sk_buff *skb = NULL;
11954 
11955 		/* Shutdown queueing discipline. */
11956 		dev_shutdown(dev);
11957 		dev_tcx_uninstall(dev);
11958 		netdev_lock_ops(dev);
11959 		dev_xdp_uninstall(dev);
11960 		netdev_unlock_ops(dev);
11961 		bpf_dev_bound_netdev_unregister(dev);
11962 		dev_memory_provider_uninstall(dev);
11963 
11964 		netdev_offload_xstats_disable_all(dev);
11965 
11966 		/* Notify protocols, that we are about to destroy
11967 		 * this device. They should clean all the things.
11968 		 */
11969 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11970 
11971 		if (!dev->rtnl_link_ops ||
11972 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11973 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11974 						     GFP_KERNEL, NULL, 0,
11975 						     portid, nlh);
11976 
11977 		/*
11978 		 *	Flush the unicast and multicast chains
11979 		 */
11980 		dev_uc_flush(dev);
11981 		dev_mc_flush(dev);
11982 
11983 		netdev_name_node_alt_flush(dev);
11984 		netdev_name_node_free(dev->name_node);
11985 
11986 		netdev_rss_contexts_free(dev);
11987 
11988 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11989 
11990 		if (dev->netdev_ops->ndo_uninit)
11991 			dev->netdev_ops->ndo_uninit(dev);
11992 
11993 		mutex_destroy(&dev->ethtool->rss_lock);
11994 
11995 		net_shaper_flush_netdev(dev);
11996 
11997 		if (skb)
11998 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11999 
12000 		/* Notifier chain MUST detach us all upper devices. */
12001 		WARN_ON(netdev_has_any_upper_dev(dev));
12002 		WARN_ON(netdev_has_any_lower_dev(dev));
12003 
12004 		/* Remove entries from kobject tree */
12005 		netdev_unregister_kobject(dev);
12006 #ifdef CONFIG_XPS
12007 		/* Remove XPS queueing entries */
12008 		netif_reset_xps_queues_gt(dev, 0);
12009 #endif
12010 	}
12011 
12012 	synchronize_net();
12013 
12014 	list_for_each_entry(dev, head, unreg_list) {
12015 		netdev_put(dev, &dev->dev_registered_tracker);
12016 		net_set_todo(dev);
12017 		cnt++;
12018 	}
12019 	atomic_add(cnt, &dev_unreg_count);
12020 
12021 	list_del(head);
12022 }
12023 
12024 /**
12025  *	unregister_netdevice_many - unregister many devices
12026  *	@head: list of devices
12027  *
12028  *  Note: As most callers use a stack allocated list_head,
12029  *  we force a list_del() to make sure stack won't be corrupted later.
12030  */
12031 void unregister_netdevice_many(struct list_head *head)
12032 {
12033 	unregister_netdevice_many_notify(head, 0, NULL);
12034 }
12035 EXPORT_SYMBOL(unregister_netdevice_many);
12036 
12037 /**
12038  *	unregister_netdev - remove device from the kernel
12039  *	@dev: device
12040  *
12041  *	This function shuts down a device interface and removes it
12042  *	from the kernel tables.
12043  *
12044  *	This is just a wrapper for unregister_netdevice that takes
12045  *	the rtnl semaphore.  In general you want to use this and not
12046  *	unregister_netdevice.
12047  */
12048 void unregister_netdev(struct net_device *dev)
12049 {
12050 	rtnl_net_dev_lock(dev);
12051 	unregister_netdevice(dev);
12052 	rtnl_net_dev_unlock(dev);
12053 }
12054 EXPORT_SYMBOL(unregister_netdev);
12055 
12056 int netif_change_net_namespace(struct net_device *dev, struct net *net,
12057 			       const char *pat, int new_ifindex,
12058 			       struct netlink_ext_ack *extack)
12059 {
12060 	struct netdev_name_node *name_node;
12061 	struct net *net_old = dev_net(dev);
12062 	char new_name[IFNAMSIZ] = {};
12063 	int err, new_nsid;
12064 
12065 	ASSERT_RTNL();
12066 
12067 	/* Don't allow namespace local devices to be moved. */
12068 	err = -EINVAL;
12069 	if (dev->netns_immutable) {
12070 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12071 		goto out;
12072 	}
12073 
12074 	/* Ensure the device has been registered */
12075 	if (dev->reg_state != NETREG_REGISTERED) {
12076 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12077 		goto out;
12078 	}
12079 
12080 	/* Get out if there is nothing todo */
12081 	err = 0;
12082 	if (net_eq(net_old, net))
12083 		goto out;
12084 
12085 	/* Pick the destination device name, and ensure
12086 	 * we can use it in the destination network namespace.
12087 	 */
12088 	err = -EEXIST;
12089 	if (netdev_name_in_use(net, dev->name)) {
12090 		/* We get here if we can't use the current device name */
12091 		if (!pat) {
12092 			NL_SET_ERR_MSG(extack,
12093 				       "An interface with the same name exists in the target netns");
12094 			goto out;
12095 		}
12096 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12097 		if (err < 0) {
12098 			NL_SET_ERR_MSG_FMT(extack,
12099 					   "Unable to use '%s' for the new interface name in the target netns",
12100 					   pat);
12101 			goto out;
12102 		}
12103 	}
12104 	/* Check that none of the altnames conflicts. */
12105 	err = -EEXIST;
12106 	netdev_for_each_altname(dev, name_node) {
12107 		if (netdev_name_in_use(net, name_node->name)) {
12108 			NL_SET_ERR_MSG_FMT(extack,
12109 					   "An interface with the altname %s exists in the target netns",
12110 					   name_node->name);
12111 			goto out;
12112 		}
12113 	}
12114 
12115 	/* Check that new_ifindex isn't used yet. */
12116 	if (new_ifindex) {
12117 		err = dev_index_reserve(net, new_ifindex);
12118 		if (err < 0) {
12119 			NL_SET_ERR_MSG_FMT(extack,
12120 					   "The ifindex %d is not available in the target netns",
12121 					   new_ifindex);
12122 			goto out;
12123 		}
12124 	} else {
12125 		/* If there is an ifindex conflict assign a new one */
12126 		err = dev_index_reserve(net, dev->ifindex);
12127 		if (err == -EBUSY)
12128 			err = dev_index_reserve(net, 0);
12129 		if (err < 0) {
12130 			NL_SET_ERR_MSG(extack,
12131 				       "Unable to allocate a new ifindex in the target netns");
12132 			goto out;
12133 		}
12134 		new_ifindex = err;
12135 	}
12136 
12137 	/*
12138 	 * And now a mini version of register_netdevice unregister_netdevice.
12139 	 */
12140 
12141 	/* If device is running close it first. */
12142 	netif_close(dev);
12143 
12144 	/* And unlink it from device chain */
12145 	unlist_netdevice(dev);
12146 
12147 	synchronize_net();
12148 
12149 	/* Shutdown queueing discipline. */
12150 	dev_shutdown(dev);
12151 
12152 	/* Notify protocols, that we are about to destroy
12153 	 * this device. They should clean all the things.
12154 	 *
12155 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12156 	 * This is wanted because this way 8021q and macvlan know
12157 	 * the device is just moving and can keep their slaves up.
12158 	 */
12159 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12160 	rcu_barrier();
12161 
12162 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12163 
12164 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12165 			    new_ifindex);
12166 
12167 	/*
12168 	 *	Flush the unicast and multicast chains
12169 	 */
12170 	dev_uc_flush(dev);
12171 	dev_mc_flush(dev);
12172 
12173 	/* Send a netdev-removed uevent to the old namespace */
12174 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12175 	netdev_adjacent_del_links(dev);
12176 
12177 	/* Move per-net netdevice notifiers that are following the netdevice */
12178 	move_netdevice_notifiers_dev_net(dev, net);
12179 
12180 	/* Actually switch the network namespace */
12181 	dev_net_set(dev, net);
12182 	dev->ifindex = new_ifindex;
12183 
12184 	if (new_name[0]) {
12185 		/* Rename the netdev to prepared name */
12186 		write_seqlock_bh(&netdev_rename_lock);
12187 		strscpy(dev->name, new_name, IFNAMSIZ);
12188 		write_sequnlock_bh(&netdev_rename_lock);
12189 	}
12190 
12191 	/* Fixup kobjects */
12192 	dev_set_uevent_suppress(&dev->dev, 1);
12193 	err = device_rename(&dev->dev, dev->name);
12194 	dev_set_uevent_suppress(&dev->dev, 0);
12195 	WARN_ON(err);
12196 
12197 	/* Send a netdev-add uevent to the new namespace */
12198 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12199 	netdev_adjacent_add_links(dev);
12200 
12201 	/* Adapt owner in case owning user namespace of target network
12202 	 * namespace is different from the original one.
12203 	 */
12204 	err = netdev_change_owner(dev, net_old, net);
12205 	WARN_ON(err);
12206 
12207 	/* Add the device back in the hashes */
12208 	list_netdevice(dev);
12209 
12210 	/* Notify protocols, that a new device appeared. */
12211 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12212 
12213 	/*
12214 	 *	Prevent userspace races by waiting until the network
12215 	 *	device is fully setup before sending notifications.
12216 	 */
12217 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12218 
12219 	synchronize_net();
12220 	err = 0;
12221 out:
12222 	return err;
12223 }
12224 
12225 static int dev_cpu_dead(unsigned int oldcpu)
12226 {
12227 	struct sk_buff **list_skb;
12228 	struct sk_buff *skb;
12229 	unsigned int cpu;
12230 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12231 
12232 	local_irq_disable();
12233 	cpu = smp_processor_id();
12234 	sd = &per_cpu(softnet_data, cpu);
12235 	oldsd = &per_cpu(softnet_data, oldcpu);
12236 
12237 	/* Find end of our completion_queue. */
12238 	list_skb = &sd->completion_queue;
12239 	while (*list_skb)
12240 		list_skb = &(*list_skb)->next;
12241 	/* Append completion queue from offline CPU. */
12242 	*list_skb = oldsd->completion_queue;
12243 	oldsd->completion_queue = NULL;
12244 
12245 	/* Append output queue from offline CPU. */
12246 	if (oldsd->output_queue) {
12247 		*sd->output_queue_tailp = oldsd->output_queue;
12248 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12249 		oldsd->output_queue = NULL;
12250 		oldsd->output_queue_tailp = &oldsd->output_queue;
12251 	}
12252 	/* Append NAPI poll list from offline CPU, with one exception :
12253 	 * process_backlog() must be called by cpu owning percpu backlog.
12254 	 * We properly handle process_queue & input_pkt_queue later.
12255 	 */
12256 	while (!list_empty(&oldsd->poll_list)) {
12257 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12258 							    struct napi_struct,
12259 							    poll_list);
12260 
12261 		list_del_init(&napi->poll_list);
12262 		if (napi->poll == process_backlog)
12263 			napi->state &= NAPIF_STATE_THREADED;
12264 		else
12265 			____napi_schedule(sd, napi);
12266 	}
12267 
12268 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12269 	local_irq_enable();
12270 
12271 	if (!use_backlog_threads()) {
12272 #ifdef CONFIG_RPS
12273 		remsd = oldsd->rps_ipi_list;
12274 		oldsd->rps_ipi_list = NULL;
12275 #endif
12276 		/* send out pending IPI's on offline CPU */
12277 		net_rps_send_ipi(remsd);
12278 	}
12279 
12280 	/* Process offline CPU's input_pkt_queue */
12281 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12282 		netif_rx(skb);
12283 		rps_input_queue_head_incr(oldsd);
12284 	}
12285 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12286 		netif_rx(skb);
12287 		rps_input_queue_head_incr(oldsd);
12288 	}
12289 
12290 	return 0;
12291 }
12292 
12293 /**
12294  *	netdev_increment_features - increment feature set by one
12295  *	@all: current feature set
12296  *	@one: new feature set
12297  *	@mask: mask feature set
12298  *
12299  *	Computes a new feature set after adding a device with feature set
12300  *	@one to the master device with current feature set @all.  Will not
12301  *	enable anything that is off in @mask. Returns the new feature set.
12302  */
12303 netdev_features_t netdev_increment_features(netdev_features_t all,
12304 	netdev_features_t one, netdev_features_t mask)
12305 {
12306 	if (mask & NETIF_F_HW_CSUM)
12307 		mask |= NETIF_F_CSUM_MASK;
12308 	mask |= NETIF_F_VLAN_CHALLENGED;
12309 
12310 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12311 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12312 
12313 	/* If one device supports hw checksumming, set for all. */
12314 	if (all & NETIF_F_HW_CSUM)
12315 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12316 
12317 	return all;
12318 }
12319 EXPORT_SYMBOL(netdev_increment_features);
12320 
12321 static struct hlist_head * __net_init netdev_create_hash(void)
12322 {
12323 	int i;
12324 	struct hlist_head *hash;
12325 
12326 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12327 	if (hash != NULL)
12328 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12329 			INIT_HLIST_HEAD(&hash[i]);
12330 
12331 	return hash;
12332 }
12333 
12334 /* Initialize per network namespace state */
12335 static int __net_init netdev_init(struct net *net)
12336 {
12337 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12338 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12339 
12340 	INIT_LIST_HEAD(&net->dev_base_head);
12341 
12342 	net->dev_name_head = netdev_create_hash();
12343 	if (net->dev_name_head == NULL)
12344 		goto err_name;
12345 
12346 	net->dev_index_head = netdev_create_hash();
12347 	if (net->dev_index_head == NULL)
12348 		goto err_idx;
12349 
12350 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12351 
12352 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12353 
12354 	return 0;
12355 
12356 err_idx:
12357 	kfree(net->dev_name_head);
12358 err_name:
12359 	return -ENOMEM;
12360 }
12361 
12362 /**
12363  *	netdev_drivername - network driver for the device
12364  *	@dev: network device
12365  *
12366  *	Determine network driver for device.
12367  */
12368 const char *netdev_drivername(const struct net_device *dev)
12369 {
12370 	const struct device_driver *driver;
12371 	const struct device *parent;
12372 	const char *empty = "";
12373 
12374 	parent = dev->dev.parent;
12375 	if (!parent)
12376 		return empty;
12377 
12378 	driver = parent->driver;
12379 	if (driver && driver->name)
12380 		return driver->name;
12381 	return empty;
12382 }
12383 
12384 static void __netdev_printk(const char *level, const struct net_device *dev,
12385 			    struct va_format *vaf)
12386 {
12387 	if (dev && dev->dev.parent) {
12388 		dev_printk_emit(level[1] - '0',
12389 				dev->dev.parent,
12390 				"%s %s %s%s: %pV",
12391 				dev_driver_string(dev->dev.parent),
12392 				dev_name(dev->dev.parent),
12393 				netdev_name(dev), netdev_reg_state(dev),
12394 				vaf);
12395 	} else if (dev) {
12396 		printk("%s%s%s: %pV",
12397 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12398 	} else {
12399 		printk("%s(NULL net_device): %pV", level, vaf);
12400 	}
12401 }
12402 
12403 void netdev_printk(const char *level, const struct net_device *dev,
12404 		   const char *format, ...)
12405 {
12406 	struct va_format vaf;
12407 	va_list args;
12408 
12409 	va_start(args, format);
12410 
12411 	vaf.fmt = format;
12412 	vaf.va = &args;
12413 
12414 	__netdev_printk(level, dev, &vaf);
12415 
12416 	va_end(args);
12417 }
12418 EXPORT_SYMBOL(netdev_printk);
12419 
12420 #define define_netdev_printk_level(func, level)			\
12421 void func(const struct net_device *dev, const char *fmt, ...)	\
12422 {								\
12423 	struct va_format vaf;					\
12424 	va_list args;						\
12425 								\
12426 	va_start(args, fmt);					\
12427 								\
12428 	vaf.fmt = fmt;						\
12429 	vaf.va = &args;						\
12430 								\
12431 	__netdev_printk(level, dev, &vaf);			\
12432 								\
12433 	va_end(args);						\
12434 }								\
12435 EXPORT_SYMBOL(func);
12436 
12437 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12438 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12439 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12440 define_netdev_printk_level(netdev_err, KERN_ERR);
12441 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12442 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12443 define_netdev_printk_level(netdev_info, KERN_INFO);
12444 
12445 static void __net_exit netdev_exit(struct net *net)
12446 {
12447 	kfree(net->dev_name_head);
12448 	kfree(net->dev_index_head);
12449 	xa_destroy(&net->dev_by_index);
12450 	if (net != &init_net)
12451 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12452 }
12453 
12454 static struct pernet_operations __net_initdata netdev_net_ops = {
12455 	.init = netdev_init,
12456 	.exit = netdev_exit,
12457 };
12458 
12459 static void __net_exit default_device_exit_net(struct net *net)
12460 {
12461 	struct netdev_name_node *name_node, *tmp;
12462 	struct net_device *dev, *aux;
12463 	/*
12464 	 * Push all migratable network devices back to the
12465 	 * initial network namespace
12466 	 */
12467 	ASSERT_RTNL();
12468 	for_each_netdev_safe(net, dev, aux) {
12469 		int err;
12470 		char fb_name[IFNAMSIZ];
12471 
12472 		/* Ignore unmoveable devices (i.e. loopback) */
12473 		if (dev->netns_immutable)
12474 			continue;
12475 
12476 		/* Leave virtual devices for the generic cleanup */
12477 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12478 			continue;
12479 
12480 		/* Push remaining network devices to init_net */
12481 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12482 		if (netdev_name_in_use(&init_net, fb_name))
12483 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12484 
12485 		netdev_for_each_altname_safe(dev, name_node, tmp)
12486 			if (netdev_name_in_use(&init_net, name_node->name))
12487 				__netdev_name_node_alt_destroy(name_node);
12488 
12489 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12490 		if (err) {
12491 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12492 				 __func__, dev->name, err);
12493 			BUG();
12494 		}
12495 	}
12496 }
12497 
12498 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12499 {
12500 	/* At exit all network devices most be removed from a network
12501 	 * namespace.  Do this in the reverse order of registration.
12502 	 * Do this across as many network namespaces as possible to
12503 	 * improve batching efficiency.
12504 	 */
12505 	struct net_device *dev;
12506 	struct net *net;
12507 	LIST_HEAD(dev_kill_list);
12508 
12509 	rtnl_lock();
12510 	list_for_each_entry(net, net_list, exit_list) {
12511 		default_device_exit_net(net);
12512 		cond_resched();
12513 	}
12514 
12515 	list_for_each_entry(net, net_list, exit_list) {
12516 		for_each_netdev_reverse(net, dev) {
12517 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12518 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12519 			else
12520 				unregister_netdevice_queue(dev, &dev_kill_list);
12521 		}
12522 	}
12523 	unregister_netdevice_many(&dev_kill_list);
12524 	rtnl_unlock();
12525 }
12526 
12527 static struct pernet_operations __net_initdata default_device_ops = {
12528 	.exit_batch = default_device_exit_batch,
12529 };
12530 
12531 static void __init net_dev_struct_check(void)
12532 {
12533 	/* TX read-mostly hotpath */
12534 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12535 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12536 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12537 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12538 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12539 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12540 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12541 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12542 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12543 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12544 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12545 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12546 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12547 #ifdef CONFIG_XPS
12548 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12549 #endif
12550 #ifdef CONFIG_NETFILTER_EGRESS
12551 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12552 #endif
12553 #ifdef CONFIG_NET_XGRESS
12554 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12555 #endif
12556 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12557 
12558 	/* TXRX read-mostly hotpath */
12559 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12560 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12561 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12562 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12563 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12564 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12565 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12566 
12567 	/* RX read-mostly hotpath */
12568 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12569 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12570 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12571 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12572 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12573 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12574 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12575 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12576 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12577 #ifdef CONFIG_NETPOLL
12578 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12579 #endif
12580 #ifdef CONFIG_NET_XGRESS
12581 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12582 #endif
12583 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12584 }
12585 
12586 /*
12587  *	Initialize the DEV module. At boot time this walks the device list and
12588  *	unhooks any devices that fail to initialise (normally hardware not
12589  *	present) and leaves us with a valid list of present and active devices.
12590  *
12591  */
12592 
12593 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12594 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12595 
12596 static int net_page_pool_create(int cpuid)
12597 {
12598 #if IS_ENABLED(CONFIG_PAGE_POOL)
12599 	struct page_pool_params page_pool_params = {
12600 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12601 		.flags = PP_FLAG_SYSTEM_POOL,
12602 		.nid = cpu_to_mem(cpuid),
12603 	};
12604 	struct page_pool *pp_ptr;
12605 	int err;
12606 
12607 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12608 	if (IS_ERR(pp_ptr))
12609 		return -ENOMEM;
12610 
12611 	err = xdp_reg_page_pool(pp_ptr);
12612 	if (err) {
12613 		page_pool_destroy(pp_ptr);
12614 		return err;
12615 	}
12616 
12617 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12618 #endif
12619 	return 0;
12620 }
12621 
12622 static int backlog_napi_should_run(unsigned int cpu)
12623 {
12624 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12625 	struct napi_struct *napi = &sd->backlog;
12626 
12627 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12628 }
12629 
12630 static void run_backlog_napi(unsigned int cpu)
12631 {
12632 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12633 
12634 	napi_threaded_poll_loop(&sd->backlog);
12635 }
12636 
12637 static void backlog_napi_setup(unsigned int cpu)
12638 {
12639 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12640 	struct napi_struct *napi = &sd->backlog;
12641 
12642 	napi->thread = this_cpu_read(backlog_napi);
12643 	set_bit(NAPI_STATE_THREADED, &napi->state);
12644 }
12645 
12646 static struct smp_hotplug_thread backlog_threads = {
12647 	.store			= &backlog_napi,
12648 	.thread_should_run	= backlog_napi_should_run,
12649 	.thread_fn		= run_backlog_napi,
12650 	.thread_comm		= "backlog_napi/%u",
12651 	.setup			= backlog_napi_setup,
12652 };
12653 
12654 /*
12655  *       This is called single threaded during boot, so no need
12656  *       to take the rtnl semaphore.
12657  */
12658 static int __init net_dev_init(void)
12659 {
12660 	int i, rc = -ENOMEM;
12661 
12662 	BUG_ON(!dev_boot_phase);
12663 
12664 	net_dev_struct_check();
12665 
12666 	if (dev_proc_init())
12667 		goto out;
12668 
12669 	if (netdev_kobject_init())
12670 		goto out;
12671 
12672 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12673 		INIT_LIST_HEAD(&ptype_base[i]);
12674 
12675 	if (register_pernet_subsys(&netdev_net_ops))
12676 		goto out;
12677 
12678 	/*
12679 	 *	Initialise the packet receive queues.
12680 	 */
12681 
12682 	flush_backlogs_fallback = flush_backlogs_alloc();
12683 	if (!flush_backlogs_fallback)
12684 		goto out;
12685 
12686 	for_each_possible_cpu(i) {
12687 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12688 
12689 		skb_queue_head_init(&sd->input_pkt_queue);
12690 		skb_queue_head_init(&sd->process_queue);
12691 #ifdef CONFIG_XFRM_OFFLOAD
12692 		skb_queue_head_init(&sd->xfrm_backlog);
12693 #endif
12694 		INIT_LIST_HEAD(&sd->poll_list);
12695 		sd->output_queue_tailp = &sd->output_queue;
12696 #ifdef CONFIG_RPS
12697 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12698 		sd->cpu = i;
12699 #endif
12700 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12701 		spin_lock_init(&sd->defer_lock);
12702 
12703 		gro_init(&sd->backlog.gro);
12704 		sd->backlog.poll = process_backlog;
12705 		sd->backlog.weight = weight_p;
12706 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12707 
12708 		if (net_page_pool_create(i))
12709 			goto out;
12710 	}
12711 	if (use_backlog_threads())
12712 		smpboot_register_percpu_thread(&backlog_threads);
12713 
12714 	dev_boot_phase = 0;
12715 
12716 	/* The loopback device is special if any other network devices
12717 	 * is present in a network namespace the loopback device must
12718 	 * be present. Since we now dynamically allocate and free the
12719 	 * loopback device ensure this invariant is maintained by
12720 	 * keeping the loopback device as the first device on the
12721 	 * list of network devices.  Ensuring the loopback devices
12722 	 * is the first device that appears and the last network device
12723 	 * that disappears.
12724 	 */
12725 	if (register_pernet_device(&loopback_net_ops))
12726 		goto out;
12727 
12728 	if (register_pernet_device(&default_device_ops))
12729 		goto out;
12730 
12731 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12732 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12733 
12734 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12735 				       NULL, dev_cpu_dead);
12736 	WARN_ON(rc < 0);
12737 	rc = 0;
12738 
12739 	/* avoid static key IPIs to isolated CPUs */
12740 	if (housekeeping_enabled(HK_TYPE_MISC))
12741 		net_enable_timestamp();
12742 out:
12743 	if (rc < 0) {
12744 		for_each_possible_cpu(i) {
12745 			struct page_pool *pp_ptr;
12746 
12747 			pp_ptr = per_cpu(system_page_pool, i);
12748 			if (!pp_ptr)
12749 				continue;
12750 
12751 			xdp_unreg_page_pool(pp_ptr);
12752 			page_pool_destroy(pp_ptr);
12753 			per_cpu(system_page_pool, i) = NULL;
12754 		}
12755 	}
12756 
12757 	return rc;
12758 }
12759 
12760 subsys_initcall(net_dev_init);
12761