1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Mark Evans, <[email protected]> 13 * 14 * Additional Authors: 15 * Florian la Roche <[email protected]> 16 * Alan Cox <[email protected]> 17 * David Hinds <[email protected]> 18 * Alexey Kuznetsov <[email protected]> 19 * Adam Sulmicki <[email protected]> 20 * Pekka Riikonen <[email protected]> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <linux/pci.h> 132 #include <linux/inetdevice.h> 133 134 #include "net-sysfs.h" 135 136 /* Instead of increasing this, you should create a hash table. */ 137 #define MAX_GRO_SKBS 8 138 139 /* This should be increased if a protocol with a bigger head is added. */ 140 #define GRO_MAX_HEAD (MAX_HEADER + 128) 141 142 /* 143 * The list of packet types we will receive (as opposed to discard) 144 * and the routines to invoke. 145 * 146 * Why 16. Because with 16 the only overlap we get on a hash of the 147 * low nibble of the protocol value is RARP/SNAP/X.25. 148 * 149 * NOTE: That is no longer true with the addition of VLAN tags. Not 150 * sure which should go first, but I bet it won't make much 151 * difference if we are running VLANs. The good news is that 152 * this protocol won't be in the list unless compiled in, so 153 * the average user (w/out VLANs) will not be adversely affected. 154 * --BLG 155 * 156 * 0800 IP 157 * 8100 802.1Q VLAN 158 * 0001 802.3 159 * 0002 AX.25 160 * 0004 802.2 161 * 8035 RARP 162 * 0005 SNAP 163 * 0805 X.25 164 * 0806 ARP 165 * 8137 IPX 166 * 0009 Localtalk 167 * 86DD IPv6 168 */ 169 170 #define PTYPE_HASH_SIZE (16) 171 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 172 173 static DEFINE_SPINLOCK(ptype_lock); 174 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 175 static struct list_head ptype_all __read_mostly; /* Taps */ 176 177 /* 178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 179 * semaphore. 180 * 181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 182 * 183 * Writers must hold the rtnl semaphore while they loop through the 184 * dev_base_head list, and hold dev_base_lock for writing when they do the 185 * actual updates. This allows pure readers to access the list even 186 * while a writer is preparing to update it. 187 * 188 * To put it another way, dev_base_lock is held for writing only to 189 * protect against pure readers; the rtnl semaphore provides the 190 * protection against other writers. 191 * 192 * See, for example usages, register_netdevice() and 193 * unregister_netdevice(), which must be called with the rtnl 194 * semaphore held. 195 */ 196 DEFINE_RWLOCK(dev_base_lock); 197 EXPORT_SYMBOL(dev_base_lock); 198 199 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 200 { 201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 203 } 204 205 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 206 { 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 208 } 209 210 static inline void rps_lock(struct softnet_data *sd) 211 { 212 #ifdef CONFIG_RPS 213 spin_lock(&sd->input_pkt_queue.lock); 214 #endif 215 } 216 217 static inline void rps_unlock(struct softnet_data *sd) 218 { 219 #ifdef CONFIG_RPS 220 spin_unlock(&sd->input_pkt_queue.lock); 221 #endif 222 } 223 224 /* Device list insertion */ 225 static int list_netdevice(struct net_device *dev) 226 { 227 struct net *net = dev_net(dev); 228 229 ASSERT_RTNL(); 230 231 write_lock_bh(&dev_base_lock); 232 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 233 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 234 hlist_add_head_rcu(&dev->index_hlist, 235 dev_index_hash(net, dev->ifindex)); 236 write_unlock_bh(&dev_base_lock); 237 return 0; 238 } 239 240 /* Device list removal 241 * caller must respect a RCU grace period before freeing/reusing dev 242 */ 243 static void unlist_netdevice(struct net_device *dev) 244 { 245 ASSERT_RTNL(); 246 247 /* Unlink dev from the device chain */ 248 write_lock_bh(&dev_base_lock); 249 list_del_rcu(&dev->dev_list); 250 hlist_del_rcu(&dev->name_hlist); 251 hlist_del_rcu(&dev->index_hlist); 252 write_unlock_bh(&dev_base_lock); 253 } 254 255 /* 256 * Our notifier list 257 */ 258 259 static RAW_NOTIFIER_HEAD(netdev_chain); 260 261 /* 262 * Device drivers call our routines to queue packets here. We empty the 263 * queue in the local softnet handler. 264 */ 265 266 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 267 EXPORT_PER_CPU_SYMBOL(softnet_data); 268 269 #ifdef CONFIG_LOCKDEP 270 /* 271 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 272 * according to dev->type 273 */ 274 static const unsigned short netdev_lock_type[] = 275 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 276 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 277 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 278 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 279 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 280 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 281 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 282 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 283 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 284 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 285 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 286 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 287 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 288 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 289 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 290 ARPHRD_VOID, ARPHRD_NONE}; 291 292 static const char *const netdev_lock_name[] = 293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 305 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 306 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 307 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 308 "_xmit_VOID", "_xmit_NONE"}; 309 310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 312 313 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 314 { 315 int i; 316 317 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 318 if (netdev_lock_type[i] == dev_type) 319 return i; 320 /* the last key is used by default */ 321 return ARRAY_SIZE(netdev_lock_type) - 1; 322 } 323 324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 325 unsigned short dev_type) 326 { 327 int i; 328 329 i = netdev_lock_pos(dev_type); 330 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 331 netdev_lock_name[i]); 332 } 333 334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 335 { 336 int i; 337 338 i = netdev_lock_pos(dev->type); 339 lockdep_set_class_and_name(&dev->addr_list_lock, 340 &netdev_addr_lock_key[i], 341 netdev_lock_name[i]); 342 } 343 #else 344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 345 unsigned short dev_type) 346 { 347 } 348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 349 { 350 } 351 #endif 352 353 /******************************************************************************* 354 355 Protocol management and registration routines 356 357 *******************************************************************************/ 358 359 /* 360 * Add a protocol ID to the list. Now that the input handler is 361 * smarter we can dispense with all the messy stuff that used to be 362 * here. 363 * 364 * BEWARE!!! Protocol handlers, mangling input packets, 365 * MUST BE last in hash buckets and checking protocol handlers 366 * MUST start from promiscuous ptype_all chain in net_bh. 367 * It is true now, do not change it. 368 * Explanation follows: if protocol handler, mangling packet, will 369 * be the first on list, it is not able to sense, that packet 370 * is cloned and should be copied-on-write, so that it will 371 * change it and subsequent readers will get broken packet. 372 * --ANK (980803) 373 */ 374 375 static inline struct list_head *ptype_head(const struct packet_type *pt) 376 { 377 if (pt->type == htons(ETH_P_ALL)) 378 return &ptype_all; 379 else 380 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 381 } 382 383 /** 384 * dev_add_pack - add packet handler 385 * @pt: packet type declaration 386 * 387 * Add a protocol handler to the networking stack. The passed &packet_type 388 * is linked into kernel lists and may not be freed until it has been 389 * removed from the kernel lists. 390 * 391 * This call does not sleep therefore it can not 392 * guarantee all CPU's that are in middle of receiving packets 393 * will see the new packet type (until the next received packet). 394 */ 395 396 void dev_add_pack(struct packet_type *pt) 397 { 398 struct list_head *head = ptype_head(pt); 399 400 spin_lock(&ptype_lock); 401 list_add_rcu(&pt->list, head); 402 spin_unlock(&ptype_lock); 403 } 404 EXPORT_SYMBOL(dev_add_pack); 405 406 /** 407 * __dev_remove_pack - remove packet handler 408 * @pt: packet type declaration 409 * 410 * Remove a protocol handler that was previously added to the kernel 411 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 412 * from the kernel lists and can be freed or reused once this function 413 * returns. 414 * 415 * The packet type might still be in use by receivers 416 * and must not be freed until after all the CPU's have gone 417 * through a quiescent state. 418 */ 419 void __dev_remove_pack(struct packet_type *pt) 420 { 421 struct list_head *head = ptype_head(pt); 422 struct packet_type *pt1; 423 424 spin_lock(&ptype_lock); 425 426 list_for_each_entry(pt1, head, list) { 427 if (pt == pt1) { 428 list_del_rcu(&pt->list); 429 goto out; 430 } 431 } 432 433 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 434 out: 435 spin_unlock(&ptype_lock); 436 } 437 EXPORT_SYMBOL(__dev_remove_pack); 438 439 /** 440 * dev_remove_pack - remove packet handler 441 * @pt: packet type declaration 442 * 443 * Remove a protocol handler that was previously added to the kernel 444 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 445 * from the kernel lists and can be freed or reused once this function 446 * returns. 447 * 448 * This call sleeps to guarantee that no CPU is looking at the packet 449 * type after return. 450 */ 451 void dev_remove_pack(struct packet_type *pt) 452 { 453 __dev_remove_pack(pt); 454 455 synchronize_net(); 456 } 457 EXPORT_SYMBOL(dev_remove_pack); 458 459 /****************************************************************************** 460 461 Device Boot-time Settings Routines 462 463 *******************************************************************************/ 464 465 /* Boot time configuration table */ 466 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 467 468 /** 469 * netdev_boot_setup_add - add new setup entry 470 * @name: name of the device 471 * @map: configured settings for the device 472 * 473 * Adds new setup entry to the dev_boot_setup list. The function 474 * returns 0 on error and 1 on success. This is a generic routine to 475 * all netdevices. 476 */ 477 static int netdev_boot_setup_add(char *name, struct ifmap *map) 478 { 479 struct netdev_boot_setup *s; 480 int i; 481 482 s = dev_boot_setup; 483 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 484 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 485 memset(s[i].name, 0, sizeof(s[i].name)); 486 strlcpy(s[i].name, name, IFNAMSIZ); 487 memcpy(&s[i].map, map, sizeof(s[i].map)); 488 break; 489 } 490 } 491 492 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 493 } 494 495 /** 496 * netdev_boot_setup_check - check boot time settings 497 * @dev: the netdevice 498 * 499 * Check boot time settings for the device. 500 * The found settings are set for the device to be used 501 * later in the device probing. 502 * Returns 0 if no settings found, 1 if they are. 503 */ 504 int netdev_boot_setup_check(struct net_device *dev) 505 { 506 struct netdev_boot_setup *s = dev_boot_setup; 507 int i; 508 509 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 510 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 511 !strcmp(dev->name, s[i].name)) { 512 dev->irq = s[i].map.irq; 513 dev->base_addr = s[i].map.base_addr; 514 dev->mem_start = s[i].map.mem_start; 515 dev->mem_end = s[i].map.mem_end; 516 return 1; 517 } 518 } 519 return 0; 520 } 521 EXPORT_SYMBOL(netdev_boot_setup_check); 522 523 524 /** 525 * netdev_boot_base - get address from boot time settings 526 * @prefix: prefix for network device 527 * @unit: id for network device 528 * 529 * Check boot time settings for the base address of device. 530 * The found settings are set for the device to be used 531 * later in the device probing. 532 * Returns 0 if no settings found. 533 */ 534 unsigned long netdev_boot_base(const char *prefix, int unit) 535 { 536 const struct netdev_boot_setup *s = dev_boot_setup; 537 char name[IFNAMSIZ]; 538 int i; 539 540 sprintf(name, "%s%d", prefix, unit); 541 542 /* 543 * If device already registered then return base of 1 544 * to indicate not to probe for this interface 545 */ 546 if (__dev_get_by_name(&init_net, name)) 547 return 1; 548 549 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 550 if (!strcmp(name, s[i].name)) 551 return s[i].map.base_addr; 552 return 0; 553 } 554 555 /* 556 * Saves at boot time configured settings for any netdevice. 557 */ 558 int __init netdev_boot_setup(char *str) 559 { 560 int ints[5]; 561 struct ifmap map; 562 563 str = get_options(str, ARRAY_SIZE(ints), ints); 564 if (!str || !*str) 565 return 0; 566 567 /* Save settings */ 568 memset(&map, 0, sizeof(map)); 569 if (ints[0] > 0) 570 map.irq = ints[1]; 571 if (ints[0] > 1) 572 map.base_addr = ints[2]; 573 if (ints[0] > 2) 574 map.mem_start = ints[3]; 575 if (ints[0] > 3) 576 map.mem_end = ints[4]; 577 578 /* Add new entry to the list */ 579 return netdev_boot_setup_add(str, &map); 580 } 581 582 __setup("netdev=", netdev_boot_setup); 583 584 /******************************************************************************* 585 586 Device Interface Subroutines 587 588 *******************************************************************************/ 589 590 /** 591 * __dev_get_by_name - find a device by its name 592 * @net: the applicable net namespace 593 * @name: name to find 594 * 595 * Find an interface by name. Must be called under RTNL semaphore 596 * or @dev_base_lock. If the name is found a pointer to the device 597 * is returned. If the name is not found then %NULL is returned. The 598 * reference counters are not incremented so the caller must be 599 * careful with locks. 600 */ 601 602 struct net_device *__dev_get_by_name(struct net *net, const char *name) 603 { 604 struct hlist_node *p; 605 struct net_device *dev; 606 struct hlist_head *head = dev_name_hash(net, name); 607 608 hlist_for_each_entry(dev, p, head, name_hlist) 609 if (!strncmp(dev->name, name, IFNAMSIZ)) 610 return dev; 611 612 return NULL; 613 } 614 EXPORT_SYMBOL(__dev_get_by_name); 615 616 /** 617 * dev_get_by_name_rcu - find a device by its name 618 * @net: the applicable net namespace 619 * @name: name to find 620 * 621 * Find an interface by name. 622 * If the name is found a pointer to the device is returned. 623 * If the name is not found then %NULL is returned. 624 * The reference counters are not incremented so the caller must be 625 * careful with locks. The caller must hold RCU lock. 626 */ 627 628 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 629 { 630 struct hlist_node *p; 631 struct net_device *dev; 632 struct hlist_head *head = dev_name_hash(net, name); 633 634 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 635 if (!strncmp(dev->name, name, IFNAMSIZ)) 636 return dev; 637 638 return NULL; 639 } 640 EXPORT_SYMBOL(dev_get_by_name_rcu); 641 642 /** 643 * dev_get_by_name - find a device by its name 644 * @net: the applicable net namespace 645 * @name: name to find 646 * 647 * Find an interface by name. This can be called from any 648 * context and does its own locking. The returned handle has 649 * the usage count incremented and the caller must use dev_put() to 650 * release it when it is no longer needed. %NULL is returned if no 651 * matching device is found. 652 */ 653 654 struct net_device *dev_get_by_name(struct net *net, const char *name) 655 { 656 struct net_device *dev; 657 658 rcu_read_lock(); 659 dev = dev_get_by_name_rcu(net, name); 660 if (dev) 661 dev_hold(dev); 662 rcu_read_unlock(); 663 return dev; 664 } 665 EXPORT_SYMBOL(dev_get_by_name); 666 667 /** 668 * __dev_get_by_index - find a device by its ifindex 669 * @net: the applicable net namespace 670 * @ifindex: index of device 671 * 672 * Search for an interface by index. Returns %NULL if the device 673 * is not found or a pointer to the device. The device has not 674 * had its reference counter increased so the caller must be careful 675 * about locking. The caller must hold either the RTNL semaphore 676 * or @dev_base_lock. 677 */ 678 679 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 680 { 681 struct hlist_node *p; 682 struct net_device *dev; 683 struct hlist_head *head = dev_index_hash(net, ifindex); 684 685 hlist_for_each_entry(dev, p, head, index_hlist) 686 if (dev->ifindex == ifindex) 687 return dev; 688 689 return NULL; 690 } 691 EXPORT_SYMBOL(__dev_get_by_index); 692 693 /** 694 * dev_get_by_index_rcu - find a device by its ifindex 695 * @net: the applicable net namespace 696 * @ifindex: index of device 697 * 698 * Search for an interface by index. Returns %NULL if the device 699 * is not found or a pointer to the device. The device has not 700 * had its reference counter increased so the caller must be careful 701 * about locking. The caller must hold RCU lock. 702 */ 703 704 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 705 { 706 struct hlist_node *p; 707 struct net_device *dev; 708 struct hlist_head *head = dev_index_hash(net, ifindex); 709 710 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 711 if (dev->ifindex == ifindex) 712 return dev; 713 714 return NULL; 715 } 716 EXPORT_SYMBOL(dev_get_by_index_rcu); 717 718 719 /** 720 * dev_get_by_index - find a device by its ifindex 721 * @net: the applicable net namespace 722 * @ifindex: index of device 723 * 724 * Search for an interface by index. Returns NULL if the device 725 * is not found or a pointer to the device. The device returned has 726 * had a reference added and the pointer is safe until the user calls 727 * dev_put to indicate they have finished with it. 728 */ 729 730 struct net_device *dev_get_by_index(struct net *net, int ifindex) 731 { 732 struct net_device *dev; 733 734 rcu_read_lock(); 735 dev = dev_get_by_index_rcu(net, ifindex); 736 if (dev) 737 dev_hold(dev); 738 rcu_read_unlock(); 739 return dev; 740 } 741 EXPORT_SYMBOL(dev_get_by_index); 742 743 /** 744 * dev_getbyhwaddr - find a device by its hardware address 745 * @net: the applicable net namespace 746 * @type: media type of device 747 * @ha: hardware address 748 * 749 * Search for an interface by MAC address. Returns NULL if the device 750 * is not found or a pointer to the device. The caller must hold the 751 * rtnl semaphore. The returned device has not had its ref count increased 752 * and the caller must therefore be careful about locking 753 * 754 * BUGS: 755 * If the API was consistent this would be __dev_get_by_hwaddr 756 */ 757 758 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 759 { 760 struct net_device *dev; 761 762 ASSERT_RTNL(); 763 764 for_each_netdev(net, dev) 765 if (dev->type == type && 766 !memcmp(dev->dev_addr, ha, dev->addr_len)) 767 return dev; 768 769 return NULL; 770 } 771 EXPORT_SYMBOL(dev_getbyhwaddr); 772 773 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 774 { 775 struct net_device *dev; 776 777 ASSERT_RTNL(); 778 for_each_netdev(net, dev) 779 if (dev->type == type) 780 return dev; 781 782 return NULL; 783 } 784 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 785 786 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 787 { 788 struct net_device *dev, *ret = NULL; 789 790 rcu_read_lock(); 791 for_each_netdev_rcu(net, dev) 792 if (dev->type == type) { 793 dev_hold(dev); 794 ret = dev; 795 break; 796 } 797 rcu_read_unlock(); 798 return ret; 799 } 800 EXPORT_SYMBOL(dev_getfirstbyhwtype); 801 802 /** 803 * dev_get_by_flags_rcu - find any device with given flags 804 * @net: the applicable net namespace 805 * @if_flags: IFF_* values 806 * @mask: bitmask of bits in if_flags to check 807 * 808 * Search for any interface with the given flags. Returns NULL if a device 809 * is not found or a pointer to the device. Must be called inside 810 * rcu_read_lock(), and result refcount is unchanged. 811 */ 812 813 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 814 unsigned short mask) 815 { 816 struct net_device *dev, *ret; 817 818 ret = NULL; 819 for_each_netdev_rcu(net, dev) { 820 if (((dev->flags ^ if_flags) & mask) == 0) { 821 ret = dev; 822 break; 823 } 824 } 825 return ret; 826 } 827 EXPORT_SYMBOL(dev_get_by_flags_rcu); 828 829 /** 830 * dev_valid_name - check if name is okay for network device 831 * @name: name string 832 * 833 * Network device names need to be valid file names to 834 * to allow sysfs to work. We also disallow any kind of 835 * whitespace. 836 */ 837 int dev_valid_name(const char *name) 838 { 839 if (*name == '\0') 840 return 0; 841 if (strlen(name) >= IFNAMSIZ) 842 return 0; 843 if (!strcmp(name, ".") || !strcmp(name, "..")) 844 return 0; 845 846 while (*name) { 847 if (*name == '/' || isspace(*name)) 848 return 0; 849 name++; 850 } 851 return 1; 852 } 853 EXPORT_SYMBOL(dev_valid_name); 854 855 /** 856 * __dev_alloc_name - allocate a name for a device 857 * @net: network namespace to allocate the device name in 858 * @name: name format string 859 * @buf: scratch buffer and result name string 860 * 861 * Passed a format string - eg "lt%d" it will try and find a suitable 862 * id. It scans list of devices to build up a free map, then chooses 863 * the first empty slot. The caller must hold the dev_base or rtnl lock 864 * while allocating the name and adding the device in order to avoid 865 * duplicates. 866 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 867 * Returns the number of the unit assigned or a negative errno code. 868 */ 869 870 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 871 { 872 int i = 0; 873 const char *p; 874 const int max_netdevices = 8*PAGE_SIZE; 875 unsigned long *inuse; 876 struct net_device *d; 877 878 p = strnchr(name, IFNAMSIZ-1, '%'); 879 if (p) { 880 /* 881 * Verify the string as this thing may have come from 882 * the user. There must be either one "%d" and no other "%" 883 * characters. 884 */ 885 if (p[1] != 'd' || strchr(p + 2, '%')) 886 return -EINVAL; 887 888 /* Use one page as a bit array of possible slots */ 889 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 890 if (!inuse) 891 return -ENOMEM; 892 893 for_each_netdev(net, d) { 894 if (!sscanf(d->name, name, &i)) 895 continue; 896 if (i < 0 || i >= max_netdevices) 897 continue; 898 899 /* avoid cases where sscanf is not exact inverse of printf */ 900 snprintf(buf, IFNAMSIZ, name, i); 901 if (!strncmp(buf, d->name, IFNAMSIZ)) 902 set_bit(i, inuse); 903 } 904 905 i = find_first_zero_bit(inuse, max_netdevices); 906 free_page((unsigned long) inuse); 907 } 908 909 if (buf != name) 910 snprintf(buf, IFNAMSIZ, name, i); 911 if (!__dev_get_by_name(net, buf)) 912 return i; 913 914 /* It is possible to run out of possible slots 915 * when the name is long and there isn't enough space left 916 * for the digits, or if all bits are used. 917 */ 918 return -ENFILE; 919 } 920 921 /** 922 * dev_alloc_name - allocate a name for a device 923 * @dev: device 924 * @name: name format string 925 * 926 * Passed a format string - eg "lt%d" it will try and find a suitable 927 * id. It scans list of devices to build up a free map, then chooses 928 * the first empty slot. The caller must hold the dev_base or rtnl lock 929 * while allocating the name and adding the device in order to avoid 930 * duplicates. 931 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 932 * Returns the number of the unit assigned or a negative errno code. 933 */ 934 935 int dev_alloc_name(struct net_device *dev, const char *name) 936 { 937 char buf[IFNAMSIZ]; 938 struct net *net; 939 int ret; 940 941 BUG_ON(!dev_net(dev)); 942 net = dev_net(dev); 943 ret = __dev_alloc_name(net, name, buf); 944 if (ret >= 0) 945 strlcpy(dev->name, buf, IFNAMSIZ); 946 return ret; 947 } 948 EXPORT_SYMBOL(dev_alloc_name); 949 950 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt) 951 { 952 struct net *net; 953 954 BUG_ON(!dev_net(dev)); 955 net = dev_net(dev); 956 957 if (!dev_valid_name(name)) 958 return -EINVAL; 959 960 if (fmt && strchr(name, '%')) 961 return dev_alloc_name(dev, name); 962 else if (__dev_get_by_name(net, name)) 963 return -EEXIST; 964 else if (dev->name != name) 965 strlcpy(dev->name, name, IFNAMSIZ); 966 967 return 0; 968 } 969 970 /** 971 * dev_change_name - change name of a device 972 * @dev: device 973 * @newname: name (or format string) must be at least IFNAMSIZ 974 * 975 * Change name of a device, can pass format strings "eth%d". 976 * for wildcarding. 977 */ 978 int dev_change_name(struct net_device *dev, const char *newname) 979 { 980 char oldname[IFNAMSIZ]; 981 int err = 0; 982 int ret; 983 struct net *net; 984 985 ASSERT_RTNL(); 986 BUG_ON(!dev_net(dev)); 987 988 net = dev_net(dev); 989 if (dev->flags & IFF_UP) 990 return -EBUSY; 991 992 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 993 return 0; 994 995 memcpy(oldname, dev->name, IFNAMSIZ); 996 997 err = dev_get_valid_name(dev, newname, 1); 998 if (err < 0) 999 return err; 1000 1001 rollback: 1002 ret = device_rename(&dev->dev, dev->name); 1003 if (ret) { 1004 memcpy(dev->name, oldname, IFNAMSIZ); 1005 return ret; 1006 } 1007 1008 write_lock_bh(&dev_base_lock); 1009 hlist_del(&dev->name_hlist); 1010 write_unlock_bh(&dev_base_lock); 1011 1012 synchronize_rcu(); 1013 1014 write_lock_bh(&dev_base_lock); 1015 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1016 write_unlock_bh(&dev_base_lock); 1017 1018 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1019 ret = notifier_to_errno(ret); 1020 1021 if (ret) { 1022 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1023 if (err >= 0) { 1024 err = ret; 1025 memcpy(dev->name, oldname, IFNAMSIZ); 1026 goto rollback; 1027 } else { 1028 printk(KERN_ERR 1029 "%s: name change rollback failed: %d.\n", 1030 dev->name, ret); 1031 } 1032 } 1033 1034 return err; 1035 } 1036 1037 /** 1038 * dev_set_alias - change ifalias of a device 1039 * @dev: device 1040 * @alias: name up to IFALIASZ 1041 * @len: limit of bytes to copy from info 1042 * 1043 * Set ifalias for a device, 1044 */ 1045 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1046 { 1047 ASSERT_RTNL(); 1048 1049 if (len >= IFALIASZ) 1050 return -EINVAL; 1051 1052 if (!len) { 1053 if (dev->ifalias) { 1054 kfree(dev->ifalias); 1055 dev->ifalias = NULL; 1056 } 1057 return 0; 1058 } 1059 1060 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1061 if (!dev->ifalias) 1062 return -ENOMEM; 1063 1064 strlcpy(dev->ifalias, alias, len+1); 1065 return len; 1066 } 1067 1068 1069 /** 1070 * netdev_features_change - device changes features 1071 * @dev: device to cause notification 1072 * 1073 * Called to indicate a device has changed features. 1074 */ 1075 void netdev_features_change(struct net_device *dev) 1076 { 1077 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1078 } 1079 EXPORT_SYMBOL(netdev_features_change); 1080 1081 /** 1082 * netdev_state_change - device changes state 1083 * @dev: device to cause notification 1084 * 1085 * Called to indicate a device has changed state. This function calls 1086 * the notifier chains for netdev_chain and sends a NEWLINK message 1087 * to the routing socket. 1088 */ 1089 void netdev_state_change(struct net_device *dev) 1090 { 1091 if (dev->flags & IFF_UP) { 1092 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1093 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1094 } 1095 } 1096 EXPORT_SYMBOL(netdev_state_change); 1097 1098 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1099 { 1100 return call_netdevice_notifiers(event, dev); 1101 } 1102 EXPORT_SYMBOL(netdev_bonding_change); 1103 1104 /** 1105 * dev_load - load a network module 1106 * @net: the applicable net namespace 1107 * @name: name of interface 1108 * 1109 * If a network interface is not present and the process has suitable 1110 * privileges this function loads the module. If module loading is not 1111 * available in this kernel then it becomes a nop. 1112 */ 1113 1114 void dev_load(struct net *net, const char *name) 1115 { 1116 struct net_device *dev; 1117 1118 rcu_read_lock(); 1119 dev = dev_get_by_name_rcu(net, name); 1120 rcu_read_unlock(); 1121 1122 if (!dev && capable(CAP_NET_ADMIN)) 1123 request_module("%s", name); 1124 } 1125 EXPORT_SYMBOL(dev_load); 1126 1127 static int __dev_open(struct net_device *dev) 1128 { 1129 const struct net_device_ops *ops = dev->netdev_ops; 1130 int ret; 1131 1132 ASSERT_RTNL(); 1133 1134 /* 1135 * Is it even present? 1136 */ 1137 if (!netif_device_present(dev)) 1138 return -ENODEV; 1139 1140 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1141 ret = notifier_to_errno(ret); 1142 if (ret) 1143 return ret; 1144 1145 /* 1146 * Call device private open method 1147 */ 1148 set_bit(__LINK_STATE_START, &dev->state); 1149 1150 if (ops->ndo_validate_addr) 1151 ret = ops->ndo_validate_addr(dev); 1152 1153 if (!ret && ops->ndo_open) 1154 ret = ops->ndo_open(dev); 1155 1156 /* 1157 * If it went open OK then: 1158 */ 1159 1160 if (ret) 1161 clear_bit(__LINK_STATE_START, &dev->state); 1162 else { 1163 /* 1164 * Set the flags. 1165 */ 1166 dev->flags |= IFF_UP; 1167 1168 /* 1169 * Enable NET_DMA 1170 */ 1171 net_dmaengine_get(); 1172 1173 /* 1174 * Initialize multicasting status 1175 */ 1176 dev_set_rx_mode(dev); 1177 1178 /* 1179 * Wakeup transmit queue engine 1180 */ 1181 dev_activate(dev); 1182 } 1183 1184 return ret; 1185 } 1186 1187 /** 1188 * dev_open - prepare an interface for use. 1189 * @dev: device to open 1190 * 1191 * Takes a device from down to up state. The device's private open 1192 * function is invoked and then the multicast lists are loaded. Finally 1193 * the device is moved into the up state and a %NETDEV_UP message is 1194 * sent to the netdev notifier chain. 1195 * 1196 * Calling this function on an active interface is a nop. On a failure 1197 * a negative errno code is returned. 1198 */ 1199 int dev_open(struct net_device *dev) 1200 { 1201 int ret; 1202 1203 /* 1204 * Is it already up? 1205 */ 1206 if (dev->flags & IFF_UP) 1207 return 0; 1208 1209 /* 1210 * Open device 1211 */ 1212 ret = __dev_open(dev); 1213 if (ret < 0) 1214 return ret; 1215 1216 /* 1217 * ... and announce new interface. 1218 */ 1219 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1220 call_netdevice_notifiers(NETDEV_UP, dev); 1221 1222 return ret; 1223 } 1224 EXPORT_SYMBOL(dev_open); 1225 1226 static int __dev_close(struct net_device *dev) 1227 { 1228 const struct net_device_ops *ops = dev->netdev_ops; 1229 1230 ASSERT_RTNL(); 1231 might_sleep(); 1232 1233 /* 1234 * Tell people we are going down, so that they can 1235 * prepare to death, when device is still operating. 1236 */ 1237 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1238 1239 clear_bit(__LINK_STATE_START, &dev->state); 1240 1241 /* Synchronize to scheduled poll. We cannot touch poll list, 1242 * it can be even on different cpu. So just clear netif_running(). 1243 * 1244 * dev->stop() will invoke napi_disable() on all of it's 1245 * napi_struct instances on this device. 1246 */ 1247 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1248 1249 dev_deactivate(dev); 1250 1251 /* 1252 * Call the device specific close. This cannot fail. 1253 * Only if device is UP 1254 * 1255 * We allow it to be called even after a DETACH hot-plug 1256 * event. 1257 */ 1258 if (ops->ndo_stop) 1259 ops->ndo_stop(dev); 1260 1261 /* 1262 * Device is now down. 1263 */ 1264 1265 dev->flags &= ~IFF_UP; 1266 1267 /* 1268 * Shutdown NET_DMA 1269 */ 1270 net_dmaengine_put(); 1271 1272 return 0; 1273 } 1274 1275 /** 1276 * dev_close - shutdown an interface. 1277 * @dev: device to shutdown 1278 * 1279 * This function moves an active device into down state. A 1280 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1281 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1282 * chain. 1283 */ 1284 int dev_close(struct net_device *dev) 1285 { 1286 if (!(dev->flags & IFF_UP)) 1287 return 0; 1288 1289 __dev_close(dev); 1290 1291 /* 1292 * Tell people we are down 1293 */ 1294 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1295 call_netdevice_notifiers(NETDEV_DOWN, dev); 1296 1297 return 0; 1298 } 1299 EXPORT_SYMBOL(dev_close); 1300 1301 1302 /** 1303 * dev_disable_lro - disable Large Receive Offload on a device 1304 * @dev: device 1305 * 1306 * Disable Large Receive Offload (LRO) on a net device. Must be 1307 * called under RTNL. This is needed if received packets may be 1308 * forwarded to another interface. 1309 */ 1310 void dev_disable_lro(struct net_device *dev) 1311 { 1312 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1313 dev->ethtool_ops->set_flags) { 1314 u32 flags = dev->ethtool_ops->get_flags(dev); 1315 if (flags & ETH_FLAG_LRO) { 1316 flags &= ~ETH_FLAG_LRO; 1317 dev->ethtool_ops->set_flags(dev, flags); 1318 } 1319 } 1320 WARN_ON(dev->features & NETIF_F_LRO); 1321 } 1322 EXPORT_SYMBOL(dev_disable_lro); 1323 1324 1325 static int dev_boot_phase = 1; 1326 1327 /* 1328 * Device change register/unregister. These are not inline or static 1329 * as we export them to the world. 1330 */ 1331 1332 /** 1333 * register_netdevice_notifier - register a network notifier block 1334 * @nb: notifier 1335 * 1336 * Register a notifier to be called when network device events occur. 1337 * The notifier passed is linked into the kernel structures and must 1338 * not be reused until it has been unregistered. A negative errno code 1339 * is returned on a failure. 1340 * 1341 * When registered all registration and up events are replayed 1342 * to the new notifier to allow device to have a race free 1343 * view of the network device list. 1344 */ 1345 1346 int register_netdevice_notifier(struct notifier_block *nb) 1347 { 1348 struct net_device *dev; 1349 struct net_device *last; 1350 struct net *net; 1351 int err; 1352 1353 rtnl_lock(); 1354 err = raw_notifier_chain_register(&netdev_chain, nb); 1355 if (err) 1356 goto unlock; 1357 if (dev_boot_phase) 1358 goto unlock; 1359 for_each_net(net) { 1360 for_each_netdev(net, dev) { 1361 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1362 err = notifier_to_errno(err); 1363 if (err) 1364 goto rollback; 1365 1366 if (!(dev->flags & IFF_UP)) 1367 continue; 1368 1369 nb->notifier_call(nb, NETDEV_UP, dev); 1370 } 1371 } 1372 1373 unlock: 1374 rtnl_unlock(); 1375 return err; 1376 1377 rollback: 1378 last = dev; 1379 for_each_net(net) { 1380 for_each_netdev(net, dev) { 1381 if (dev == last) 1382 break; 1383 1384 if (dev->flags & IFF_UP) { 1385 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1386 nb->notifier_call(nb, NETDEV_DOWN, dev); 1387 } 1388 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1389 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1390 } 1391 } 1392 1393 raw_notifier_chain_unregister(&netdev_chain, nb); 1394 goto unlock; 1395 } 1396 EXPORT_SYMBOL(register_netdevice_notifier); 1397 1398 /** 1399 * unregister_netdevice_notifier - unregister a network notifier block 1400 * @nb: notifier 1401 * 1402 * Unregister a notifier previously registered by 1403 * register_netdevice_notifier(). The notifier is unlinked into the 1404 * kernel structures and may then be reused. A negative errno code 1405 * is returned on a failure. 1406 */ 1407 1408 int unregister_netdevice_notifier(struct notifier_block *nb) 1409 { 1410 int err; 1411 1412 rtnl_lock(); 1413 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1414 rtnl_unlock(); 1415 return err; 1416 } 1417 EXPORT_SYMBOL(unregister_netdevice_notifier); 1418 1419 /** 1420 * call_netdevice_notifiers - call all network notifier blocks 1421 * @val: value passed unmodified to notifier function 1422 * @dev: net_device pointer passed unmodified to notifier function 1423 * 1424 * Call all network notifier blocks. Parameters and return value 1425 * are as for raw_notifier_call_chain(). 1426 */ 1427 1428 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1429 { 1430 ASSERT_RTNL(); 1431 return raw_notifier_call_chain(&netdev_chain, val, dev); 1432 } 1433 1434 /* When > 0 there are consumers of rx skb time stamps */ 1435 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1436 1437 void net_enable_timestamp(void) 1438 { 1439 atomic_inc(&netstamp_needed); 1440 } 1441 EXPORT_SYMBOL(net_enable_timestamp); 1442 1443 void net_disable_timestamp(void) 1444 { 1445 atomic_dec(&netstamp_needed); 1446 } 1447 EXPORT_SYMBOL(net_disable_timestamp); 1448 1449 static inline void net_timestamp_set(struct sk_buff *skb) 1450 { 1451 if (atomic_read(&netstamp_needed)) 1452 __net_timestamp(skb); 1453 else 1454 skb->tstamp.tv64 = 0; 1455 } 1456 1457 static inline void net_timestamp_check(struct sk_buff *skb) 1458 { 1459 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1460 __net_timestamp(skb); 1461 } 1462 1463 /** 1464 * dev_forward_skb - loopback an skb to another netif 1465 * 1466 * @dev: destination network device 1467 * @skb: buffer to forward 1468 * 1469 * return values: 1470 * NET_RX_SUCCESS (no congestion) 1471 * NET_RX_DROP (packet was dropped, but freed) 1472 * 1473 * dev_forward_skb can be used for injecting an skb from the 1474 * start_xmit function of one device into the receive queue 1475 * of another device. 1476 * 1477 * The receiving device may be in another namespace, so 1478 * we have to clear all information in the skb that could 1479 * impact namespace isolation. 1480 */ 1481 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1482 { 1483 skb_orphan(skb); 1484 nf_reset(skb); 1485 1486 if (!(dev->flags & IFF_UP) || 1487 (skb->len > (dev->mtu + dev->hard_header_len))) { 1488 kfree_skb(skb); 1489 return NET_RX_DROP; 1490 } 1491 skb_set_dev(skb, dev); 1492 skb->tstamp.tv64 = 0; 1493 skb->pkt_type = PACKET_HOST; 1494 skb->protocol = eth_type_trans(skb, dev); 1495 return netif_rx(skb); 1496 } 1497 EXPORT_SYMBOL_GPL(dev_forward_skb); 1498 1499 /* 1500 * Support routine. Sends outgoing frames to any network 1501 * taps currently in use. 1502 */ 1503 1504 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1505 { 1506 struct packet_type *ptype; 1507 1508 #ifdef CONFIG_NET_CLS_ACT 1509 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1510 net_timestamp_set(skb); 1511 #else 1512 net_timestamp_set(skb); 1513 #endif 1514 1515 rcu_read_lock(); 1516 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1517 /* Never send packets back to the socket 1518 * they originated from - MvS ([email protected]) 1519 */ 1520 if ((ptype->dev == dev || !ptype->dev) && 1521 (ptype->af_packet_priv == NULL || 1522 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1523 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC); 1524 if (!skb2) 1525 break; 1526 1527 /* skb->nh should be correctly 1528 set by sender, so that the second statement is 1529 just protection against buggy protocols. 1530 */ 1531 skb_reset_mac_header(skb2); 1532 1533 if (skb_network_header(skb2) < skb2->data || 1534 skb2->network_header > skb2->tail) { 1535 if (net_ratelimit()) 1536 printk(KERN_CRIT "protocol %04x is " 1537 "buggy, dev %s\n", 1538 ntohs(skb2->protocol), 1539 dev->name); 1540 skb_reset_network_header(skb2); 1541 } 1542 1543 skb2->transport_header = skb2->network_header; 1544 skb2->pkt_type = PACKET_OUTGOING; 1545 ptype->func(skb2, skb->dev, ptype, skb->dev); 1546 } 1547 } 1548 rcu_read_unlock(); 1549 } 1550 1551 /* 1552 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1553 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1554 */ 1555 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1556 { 1557 unsigned int real_num = dev->real_num_tx_queues; 1558 1559 if (unlikely(txq > dev->num_tx_queues)) 1560 ; 1561 else if (txq > real_num) 1562 dev->real_num_tx_queues = txq; 1563 else if (txq < real_num) { 1564 dev->real_num_tx_queues = txq; 1565 qdisc_reset_all_tx_gt(dev, txq); 1566 } 1567 } 1568 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1569 1570 static inline void __netif_reschedule(struct Qdisc *q) 1571 { 1572 struct softnet_data *sd; 1573 unsigned long flags; 1574 1575 local_irq_save(flags); 1576 sd = &__get_cpu_var(softnet_data); 1577 q->next_sched = NULL; 1578 *sd->output_queue_tailp = q; 1579 sd->output_queue_tailp = &q->next_sched; 1580 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1581 local_irq_restore(flags); 1582 } 1583 1584 void __netif_schedule(struct Qdisc *q) 1585 { 1586 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1587 __netif_reschedule(q); 1588 } 1589 EXPORT_SYMBOL(__netif_schedule); 1590 1591 void dev_kfree_skb_irq(struct sk_buff *skb) 1592 { 1593 if (atomic_dec_and_test(&skb->users)) { 1594 struct softnet_data *sd; 1595 unsigned long flags; 1596 1597 local_irq_save(flags); 1598 sd = &__get_cpu_var(softnet_data); 1599 skb->next = sd->completion_queue; 1600 sd->completion_queue = skb; 1601 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1602 local_irq_restore(flags); 1603 } 1604 } 1605 EXPORT_SYMBOL(dev_kfree_skb_irq); 1606 1607 void dev_kfree_skb_any(struct sk_buff *skb) 1608 { 1609 if (in_irq() || irqs_disabled()) 1610 dev_kfree_skb_irq(skb); 1611 else 1612 dev_kfree_skb(skb); 1613 } 1614 EXPORT_SYMBOL(dev_kfree_skb_any); 1615 1616 1617 /** 1618 * netif_device_detach - mark device as removed 1619 * @dev: network device 1620 * 1621 * Mark device as removed from system and therefore no longer available. 1622 */ 1623 void netif_device_detach(struct net_device *dev) 1624 { 1625 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1626 netif_running(dev)) { 1627 netif_tx_stop_all_queues(dev); 1628 } 1629 } 1630 EXPORT_SYMBOL(netif_device_detach); 1631 1632 /** 1633 * netif_device_attach - mark device as attached 1634 * @dev: network device 1635 * 1636 * Mark device as attached from system and restart if needed. 1637 */ 1638 void netif_device_attach(struct net_device *dev) 1639 { 1640 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1641 netif_running(dev)) { 1642 netif_tx_wake_all_queues(dev); 1643 __netdev_watchdog_up(dev); 1644 } 1645 } 1646 EXPORT_SYMBOL(netif_device_attach); 1647 1648 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1649 { 1650 return ((features & NETIF_F_GEN_CSUM) || 1651 ((features & NETIF_F_IP_CSUM) && 1652 protocol == htons(ETH_P_IP)) || 1653 ((features & NETIF_F_IPV6_CSUM) && 1654 protocol == htons(ETH_P_IPV6)) || 1655 ((features & NETIF_F_FCOE_CRC) && 1656 protocol == htons(ETH_P_FCOE))); 1657 } 1658 1659 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1660 { 1661 if (can_checksum_protocol(dev->features, skb->protocol)) 1662 return true; 1663 1664 if (skb->protocol == htons(ETH_P_8021Q)) { 1665 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1666 if (can_checksum_protocol(dev->features & dev->vlan_features, 1667 veh->h_vlan_encapsulated_proto)) 1668 return true; 1669 } 1670 1671 return false; 1672 } 1673 1674 /** 1675 * skb_dev_set -- assign a new device to a buffer 1676 * @skb: buffer for the new device 1677 * @dev: network device 1678 * 1679 * If an skb is owned by a device already, we have to reset 1680 * all data private to the namespace a device belongs to 1681 * before assigning it a new device. 1682 */ 1683 #ifdef CONFIG_NET_NS 1684 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1685 { 1686 skb_dst_drop(skb); 1687 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1688 secpath_reset(skb); 1689 nf_reset(skb); 1690 skb_init_secmark(skb); 1691 skb->mark = 0; 1692 skb->priority = 0; 1693 skb->nf_trace = 0; 1694 skb->ipvs_property = 0; 1695 #ifdef CONFIG_NET_SCHED 1696 skb->tc_index = 0; 1697 #endif 1698 } 1699 skb->dev = dev; 1700 } 1701 EXPORT_SYMBOL(skb_set_dev); 1702 #endif /* CONFIG_NET_NS */ 1703 1704 /* 1705 * Invalidate hardware checksum when packet is to be mangled, and 1706 * complete checksum manually on outgoing path. 1707 */ 1708 int skb_checksum_help(struct sk_buff *skb) 1709 { 1710 __wsum csum; 1711 int ret = 0, offset; 1712 1713 if (skb->ip_summed == CHECKSUM_COMPLETE) 1714 goto out_set_summed; 1715 1716 if (unlikely(skb_shinfo(skb)->gso_size)) { 1717 /* Let GSO fix up the checksum. */ 1718 goto out_set_summed; 1719 } 1720 1721 offset = skb->csum_start - skb_headroom(skb); 1722 BUG_ON(offset >= skb_headlen(skb)); 1723 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1724 1725 offset += skb->csum_offset; 1726 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1727 1728 if (skb_cloned(skb) && 1729 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1730 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1731 if (ret) 1732 goto out; 1733 } 1734 1735 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1736 out_set_summed: 1737 skb->ip_summed = CHECKSUM_NONE; 1738 out: 1739 return ret; 1740 } 1741 EXPORT_SYMBOL(skb_checksum_help); 1742 1743 /** 1744 * skb_gso_segment - Perform segmentation on skb. 1745 * @skb: buffer to segment 1746 * @features: features for the output path (see dev->features) 1747 * 1748 * This function segments the given skb and returns a list of segments. 1749 * 1750 * It may return NULL if the skb requires no segmentation. This is 1751 * only possible when GSO is used for verifying header integrity. 1752 */ 1753 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1754 { 1755 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1756 struct packet_type *ptype; 1757 __be16 type = skb->protocol; 1758 int err; 1759 1760 skb_reset_mac_header(skb); 1761 skb->mac_len = skb->network_header - skb->mac_header; 1762 __skb_pull(skb, skb->mac_len); 1763 1764 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1765 struct net_device *dev = skb->dev; 1766 struct ethtool_drvinfo info = {}; 1767 1768 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1769 dev->ethtool_ops->get_drvinfo(dev, &info); 1770 1771 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1772 "ip_summed=%d", 1773 info.driver, dev ? dev->features : 0L, 1774 skb->sk ? skb->sk->sk_route_caps : 0L, 1775 skb->len, skb->data_len, skb->ip_summed); 1776 1777 if (skb_header_cloned(skb) && 1778 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1779 return ERR_PTR(err); 1780 } 1781 1782 rcu_read_lock(); 1783 list_for_each_entry_rcu(ptype, 1784 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1785 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1786 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1787 err = ptype->gso_send_check(skb); 1788 segs = ERR_PTR(err); 1789 if (err || skb_gso_ok(skb, features)) 1790 break; 1791 __skb_push(skb, (skb->data - 1792 skb_network_header(skb))); 1793 } 1794 segs = ptype->gso_segment(skb, features); 1795 break; 1796 } 1797 } 1798 rcu_read_unlock(); 1799 1800 __skb_push(skb, skb->data - skb_mac_header(skb)); 1801 1802 return segs; 1803 } 1804 EXPORT_SYMBOL(skb_gso_segment); 1805 1806 /* Take action when hardware reception checksum errors are detected. */ 1807 #ifdef CONFIG_BUG 1808 void netdev_rx_csum_fault(struct net_device *dev) 1809 { 1810 if (net_ratelimit()) { 1811 printk(KERN_ERR "%s: hw csum failure.\n", 1812 dev ? dev->name : "<unknown>"); 1813 dump_stack(); 1814 } 1815 } 1816 EXPORT_SYMBOL(netdev_rx_csum_fault); 1817 #endif 1818 1819 /* Actually, we should eliminate this check as soon as we know, that: 1820 * 1. IOMMU is present and allows to map all the memory. 1821 * 2. No high memory really exists on this machine. 1822 */ 1823 1824 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1825 { 1826 #ifdef CONFIG_HIGHMEM 1827 int i; 1828 if (!(dev->features & NETIF_F_HIGHDMA)) { 1829 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1830 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1831 return 1; 1832 } 1833 1834 if (PCI_DMA_BUS_IS_PHYS) { 1835 struct device *pdev = dev->dev.parent; 1836 1837 if (!pdev) 1838 return 0; 1839 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1840 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1841 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1842 return 1; 1843 } 1844 } 1845 #endif 1846 return 0; 1847 } 1848 1849 struct dev_gso_cb { 1850 void (*destructor)(struct sk_buff *skb); 1851 }; 1852 1853 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1854 1855 static void dev_gso_skb_destructor(struct sk_buff *skb) 1856 { 1857 struct dev_gso_cb *cb; 1858 1859 do { 1860 struct sk_buff *nskb = skb->next; 1861 1862 skb->next = nskb->next; 1863 nskb->next = NULL; 1864 kfree_skb(nskb); 1865 } while (skb->next); 1866 1867 cb = DEV_GSO_CB(skb); 1868 if (cb->destructor) 1869 cb->destructor(skb); 1870 } 1871 1872 /** 1873 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1874 * @skb: buffer to segment 1875 * 1876 * This function segments the given skb and stores the list of segments 1877 * in skb->next. 1878 */ 1879 static int dev_gso_segment(struct sk_buff *skb) 1880 { 1881 struct net_device *dev = skb->dev; 1882 struct sk_buff *segs; 1883 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1884 NETIF_F_SG : 0); 1885 1886 segs = skb_gso_segment(skb, features); 1887 1888 /* Verifying header integrity only. */ 1889 if (!segs) 1890 return 0; 1891 1892 if (IS_ERR(segs)) 1893 return PTR_ERR(segs); 1894 1895 skb->next = segs; 1896 DEV_GSO_CB(skb)->destructor = skb->destructor; 1897 skb->destructor = dev_gso_skb_destructor; 1898 1899 return 0; 1900 } 1901 1902 /* 1903 * Try to orphan skb early, right before transmission by the device. 1904 * We cannot orphan skb if tx timestamp is requested or the sk-reference 1905 * is needed on driver level for other reasons, e.g. see net/can/raw.c 1906 */ 1907 static inline void skb_orphan_try(struct sk_buff *skb) 1908 { 1909 struct sock *sk = skb->sk; 1910 1911 if (sk && !skb_shinfo(skb)->tx_flags) { 1912 /* skb_tx_hash() wont be able to get sk. 1913 * We copy sk_hash into skb->rxhash 1914 */ 1915 if (!skb->rxhash) 1916 skb->rxhash = sk->sk_hash; 1917 skb_orphan(skb); 1918 } 1919 } 1920 1921 /* 1922 * Returns true if either: 1923 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 1924 * 2. skb is fragmented and the device does not support SG, or if 1925 * at least one of fragments is in highmem and device does not 1926 * support DMA from it. 1927 */ 1928 static inline int skb_needs_linearize(struct sk_buff *skb, 1929 struct net_device *dev) 1930 { 1931 return skb_is_nonlinear(skb) && 1932 ((skb_has_frag_list(skb) && !(dev->features & NETIF_F_FRAGLIST)) || 1933 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) || 1934 illegal_highdma(dev, skb)))); 1935 } 1936 1937 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1938 struct netdev_queue *txq) 1939 { 1940 const struct net_device_ops *ops = dev->netdev_ops; 1941 int rc = NETDEV_TX_OK; 1942 1943 if (likely(!skb->next)) { 1944 if (!list_empty(&ptype_all)) 1945 dev_queue_xmit_nit(skb, dev); 1946 1947 /* 1948 * If device doesnt need skb->dst, release it right now while 1949 * its hot in this cpu cache 1950 */ 1951 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1952 skb_dst_drop(skb); 1953 1954 skb_orphan_try(skb); 1955 1956 if (netif_needs_gso(dev, skb)) { 1957 if (unlikely(dev_gso_segment(skb))) 1958 goto out_kfree_skb; 1959 if (skb->next) 1960 goto gso; 1961 } else { 1962 if (skb_needs_linearize(skb, dev) && 1963 __skb_linearize(skb)) 1964 goto out_kfree_skb; 1965 1966 /* If packet is not checksummed and device does not 1967 * support checksumming for this protocol, complete 1968 * checksumming here. 1969 */ 1970 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1971 skb_set_transport_header(skb, skb->csum_start - 1972 skb_headroom(skb)); 1973 if (!dev_can_checksum(dev, skb) && 1974 skb_checksum_help(skb)) 1975 goto out_kfree_skb; 1976 } 1977 } 1978 1979 rc = ops->ndo_start_xmit(skb, dev); 1980 if (rc == NETDEV_TX_OK) 1981 txq_trans_update(txq); 1982 return rc; 1983 } 1984 1985 gso: 1986 do { 1987 struct sk_buff *nskb = skb->next; 1988 1989 skb->next = nskb->next; 1990 nskb->next = NULL; 1991 1992 /* 1993 * If device doesnt need nskb->dst, release it right now while 1994 * its hot in this cpu cache 1995 */ 1996 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1997 skb_dst_drop(nskb); 1998 1999 rc = ops->ndo_start_xmit(nskb, dev); 2000 if (unlikely(rc != NETDEV_TX_OK)) { 2001 if (rc & ~NETDEV_TX_MASK) 2002 goto out_kfree_gso_skb; 2003 nskb->next = skb->next; 2004 skb->next = nskb; 2005 return rc; 2006 } 2007 txq_trans_update(txq); 2008 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2009 return NETDEV_TX_BUSY; 2010 } while (skb->next); 2011 2012 out_kfree_gso_skb: 2013 if (likely(skb->next == NULL)) 2014 skb->destructor = DEV_GSO_CB(skb)->destructor; 2015 out_kfree_skb: 2016 kfree_skb(skb); 2017 return rc; 2018 } 2019 2020 static u32 hashrnd __read_mostly; 2021 2022 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 2023 { 2024 u32 hash; 2025 2026 if (skb_rx_queue_recorded(skb)) { 2027 hash = skb_get_rx_queue(skb); 2028 while (unlikely(hash >= dev->real_num_tx_queues)) 2029 hash -= dev->real_num_tx_queues; 2030 return hash; 2031 } 2032 2033 if (skb->sk && skb->sk->sk_hash) 2034 hash = skb->sk->sk_hash; 2035 else 2036 hash = (__force u16) skb->protocol ^ skb->rxhash; 2037 hash = jhash_1word(hash, hashrnd); 2038 2039 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 2040 } 2041 EXPORT_SYMBOL(skb_tx_hash); 2042 2043 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2044 { 2045 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2046 if (net_ratelimit()) { 2047 pr_warning("%s selects TX queue %d, but " 2048 "real number of TX queues is %d\n", 2049 dev->name, queue_index, dev->real_num_tx_queues); 2050 } 2051 return 0; 2052 } 2053 return queue_index; 2054 } 2055 2056 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2057 struct sk_buff *skb) 2058 { 2059 int queue_index; 2060 const struct net_device_ops *ops = dev->netdev_ops; 2061 2062 if (ops->ndo_select_queue) { 2063 queue_index = ops->ndo_select_queue(dev, skb); 2064 queue_index = dev_cap_txqueue(dev, queue_index); 2065 } else { 2066 struct sock *sk = skb->sk; 2067 queue_index = sk_tx_queue_get(sk); 2068 if (queue_index < 0) { 2069 2070 queue_index = 0; 2071 if (dev->real_num_tx_queues > 1) 2072 queue_index = skb_tx_hash(dev, skb); 2073 2074 if (sk) { 2075 struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1); 2076 2077 if (dst && skb_dst(skb) == dst) 2078 sk_tx_queue_set(sk, queue_index); 2079 } 2080 } 2081 } 2082 2083 skb_set_queue_mapping(skb, queue_index); 2084 return netdev_get_tx_queue(dev, queue_index); 2085 } 2086 2087 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2088 struct net_device *dev, 2089 struct netdev_queue *txq) 2090 { 2091 spinlock_t *root_lock = qdisc_lock(q); 2092 bool contended = qdisc_is_running(q); 2093 int rc; 2094 2095 /* 2096 * Heuristic to force contended enqueues to serialize on a 2097 * separate lock before trying to get qdisc main lock. 2098 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2099 * and dequeue packets faster. 2100 */ 2101 if (unlikely(contended)) 2102 spin_lock(&q->busylock); 2103 2104 spin_lock(root_lock); 2105 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2106 kfree_skb(skb); 2107 rc = NET_XMIT_DROP; 2108 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2109 qdisc_run_begin(q)) { 2110 /* 2111 * This is a work-conserving queue; there are no old skbs 2112 * waiting to be sent out; and the qdisc is not running - 2113 * xmit the skb directly. 2114 */ 2115 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2116 skb_dst_force(skb); 2117 __qdisc_update_bstats(q, skb->len); 2118 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2119 if (unlikely(contended)) { 2120 spin_unlock(&q->busylock); 2121 contended = false; 2122 } 2123 __qdisc_run(q); 2124 } else 2125 qdisc_run_end(q); 2126 2127 rc = NET_XMIT_SUCCESS; 2128 } else { 2129 skb_dst_force(skb); 2130 rc = qdisc_enqueue_root(skb, q); 2131 if (qdisc_run_begin(q)) { 2132 if (unlikely(contended)) { 2133 spin_unlock(&q->busylock); 2134 contended = false; 2135 } 2136 __qdisc_run(q); 2137 } 2138 } 2139 spin_unlock(root_lock); 2140 if (unlikely(contended)) 2141 spin_unlock(&q->busylock); 2142 return rc; 2143 } 2144 2145 /** 2146 * dev_queue_xmit - transmit a buffer 2147 * @skb: buffer to transmit 2148 * 2149 * Queue a buffer for transmission to a network device. The caller must 2150 * have set the device and priority and built the buffer before calling 2151 * this function. The function can be called from an interrupt. 2152 * 2153 * A negative errno code is returned on a failure. A success does not 2154 * guarantee the frame will be transmitted as it may be dropped due 2155 * to congestion or traffic shaping. 2156 * 2157 * ----------------------------------------------------------------------------------- 2158 * I notice this method can also return errors from the queue disciplines, 2159 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2160 * be positive. 2161 * 2162 * Regardless of the return value, the skb is consumed, so it is currently 2163 * difficult to retry a send to this method. (You can bump the ref count 2164 * before sending to hold a reference for retry if you are careful.) 2165 * 2166 * When calling this method, interrupts MUST be enabled. This is because 2167 * the BH enable code must have IRQs enabled so that it will not deadlock. 2168 * --BLG 2169 */ 2170 int dev_queue_xmit(struct sk_buff *skb) 2171 { 2172 struct net_device *dev = skb->dev; 2173 struct netdev_queue *txq; 2174 struct Qdisc *q; 2175 int rc = -ENOMEM; 2176 2177 /* Disable soft irqs for various locks below. Also 2178 * stops preemption for RCU. 2179 */ 2180 rcu_read_lock_bh(); 2181 2182 txq = dev_pick_tx(dev, skb); 2183 q = rcu_dereference_bh(txq->qdisc); 2184 2185 #ifdef CONFIG_NET_CLS_ACT 2186 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2187 #endif 2188 if (q->enqueue) { 2189 rc = __dev_xmit_skb(skb, q, dev, txq); 2190 goto out; 2191 } 2192 2193 /* The device has no queue. Common case for software devices: 2194 loopback, all the sorts of tunnels... 2195 2196 Really, it is unlikely that netif_tx_lock protection is necessary 2197 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2198 counters.) 2199 However, it is possible, that they rely on protection 2200 made by us here. 2201 2202 Check this and shot the lock. It is not prone from deadlocks. 2203 Either shot noqueue qdisc, it is even simpler 8) 2204 */ 2205 if (dev->flags & IFF_UP) { 2206 int cpu = smp_processor_id(); /* ok because BHs are off */ 2207 2208 if (txq->xmit_lock_owner != cpu) { 2209 2210 HARD_TX_LOCK(dev, txq, cpu); 2211 2212 if (!netif_tx_queue_stopped(txq)) { 2213 rc = dev_hard_start_xmit(skb, dev, txq); 2214 if (dev_xmit_complete(rc)) { 2215 HARD_TX_UNLOCK(dev, txq); 2216 goto out; 2217 } 2218 } 2219 HARD_TX_UNLOCK(dev, txq); 2220 if (net_ratelimit()) 2221 printk(KERN_CRIT "Virtual device %s asks to " 2222 "queue packet!\n", dev->name); 2223 } else { 2224 /* Recursion is detected! It is possible, 2225 * unfortunately */ 2226 if (net_ratelimit()) 2227 printk(KERN_CRIT "Dead loop on virtual device " 2228 "%s, fix it urgently!\n", dev->name); 2229 } 2230 } 2231 2232 rc = -ENETDOWN; 2233 rcu_read_unlock_bh(); 2234 2235 kfree_skb(skb); 2236 return rc; 2237 out: 2238 rcu_read_unlock_bh(); 2239 return rc; 2240 } 2241 EXPORT_SYMBOL(dev_queue_xmit); 2242 2243 2244 /*======================================================================= 2245 Receiver routines 2246 =======================================================================*/ 2247 2248 int netdev_max_backlog __read_mostly = 1000; 2249 int netdev_tstamp_prequeue __read_mostly = 1; 2250 int netdev_budget __read_mostly = 300; 2251 int weight_p __read_mostly = 64; /* old backlog weight */ 2252 2253 /* Called with irq disabled */ 2254 static inline void ____napi_schedule(struct softnet_data *sd, 2255 struct napi_struct *napi) 2256 { 2257 list_add_tail(&napi->poll_list, &sd->poll_list); 2258 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2259 } 2260 2261 /* 2262 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2263 * and src/dst port numbers. Returns a non-zero hash number on success 2264 * and 0 on failure. 2265 */ 2266 __u32 __skb_get_rxhash(struct sk_buff *skb) 2267 { 2268 int nhoff, hash = 0, poff; 2269 struct ipv6hdr *ip6; 2270 struct iphdr *ip; 2271 u8 ip_proto; 2272 u32 addr1, addr2, ihl; 2273 union { 2274 u32 v32; 2275 u16 v16[2]; 2276 } ports; 2277 2278 nhoff = skb_network_offset(skb); 2279 2280 switch (skb->protocol) { 2281 case __constant_htons(ETH_P_IP): 2282 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2283 goto done; 2284 2285 ip = (struct iphdr *) (skb->data + nhoff); 2286 if (ip->frag_off & htons(IP_MF | IP_OFFSET)) 2287 ip_proto = 0; 2288 else 2289 ip_proto = ip->protocol; 2290 addr1 = (__force u32) ip->saddr; 2291 addr2 = (__force u32) ip->daddr; 2292 ihl = ip->ihl; 2293 break; 2294 case __constant_htons(ETH_P_IPV6): 2295 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2296 goto done; 2297 2298 ip6 = (struct ipv6hdr *) (skb->data + nhoff); 2299 ip_proto = ip6->nexthdr; 2300 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2301 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2302 ihl = (40 >> 2); 2303 break; 2304 default: 2305 goto done; 2306 } 2307 2308 ports.v32 = 0; 2309 poff = proto_ports_offset(ip_proto); 2310 if (poff >= 0) { 2311 nhoff += ihl * 4 + poff; 2312 if (pskb_may_pull(skb, nhoff + 4)) { 2313 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2314 if (ports.v16[1] < ports.v16[0]) 2315 swap(ports.v16[0], ports.v16[1]); 2316 } 2317 } 2318 2319 /* get a consistent hash (same value on both flow directions) */ 2320 if (addr2 < addr1) 2321 swap(addr1, addr2); 2322 2323 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2324 if (!hash) 2325 hash = 1; 2326 2327 done: 2328 return hash; 2329 } 2330 EXPORT_SYMBOL(__skb_get_rxhash); 2331 2332 #ifdef CONFIG_RPS 2333 2334 /* One global table that all flow-based protocols share. */ 2335 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly; 2336 EXPORT_SYMBOL(rps_sock_flow_table); 2337 2338 /* 2339 * get_rps_cpu is called from netif_receive_skb and returns the target 2340 * CPU from the RPS map of the receiving queue for a given skb. 2341 * rcu_read_lock must be held on entry. 2342 */ 2343 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2344 struct rps_dev_flow **rflowp) 2345 { 2346 struct netdev_rx_queue *rxqueue; 2347 struct rps_map *map = NULL; 2348 struct rps_dev_flow_table *flow_table; 2349 struct rps_sock_flow_table *sock_flow_table; 2350 int cpu = -1; 2351 u16 tcpu; 2352 2353 if (skb_rx_queue_recorded(skb)) { 2354 u16 index = skb_get_rx_queue(skb); 2355 if (unlikely(index >= dev->num_rx_queues)) { 2356 WARN_ONCE(dev->num_rx_queues > 1, "%s received packet " 2357 "on queue %u, but number of RX queues is %u\n", 2358 dev->name, index, dev->num_rx_queues); 2359 goto done; 2360 } 2361 rxqueue = dev->_rx + index; 2362 } else 2363 rxqueue = dev->_rx; 2364 2365 if (rxqueue->rps_map) { 2366 map = rcu_dereference(rxqueue->rps_map); 2367 if (map && map->len == 1) { 2368 tcpu = map->cpus[0]; 2369 if (cpu_online(tcpu)) 2370 cpu = tcpu; 2371 goto done; 2372 } 2373 } else if (!rxqueue->rps_flow_table) { 2374 goto done; 2375 } 2376 2377 skb_reset_network_header(skb); 2378 if (!skb_get_rxhash(skb)) 2379 goto done; 2380 2381 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2382 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2383 if (flow_table && sock_flow_table) { 2384 u16 next_cpu; 2385 struct rps_dev_flow *rflow; 2386 2387 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2388 tcpu = rflow->cpu; 2389 2390 next_cpu = sock_flow_table->ents[skb->rxhash & 2391 sock_flow_table->mask]; 2392 2393 /* 2394 * If the desired CPU (where last recvmsg was done) is 2395 * different from current CPU (one in the rx-queue flow 2396 * table entry), switch if one of the following holds: 2397 * - Current CPU is unset (equal to RPS_NO_CPU). 2398 * - Current CPU is offline. 2399 * - The current CPU's queue tail has advanced beyond the 2400 * last packet that was enqueued using this table entry. 2401 * This guarantees that all previous packets for the flow 2402 * have been dequeued, thus preserving in order delivery. 2403 */ 2404 if (unlikely(tcpu != next_cpu) && 2405 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2406 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2407 rflow->last_qtail)) >= 0)) { 2408 tcpu = rflow->cpu = next_cpu; 2409 if (tcpu != RPS_NO_CPU) 2410 rflow->last_qtail = per_cpu(softnet_data, 2411 tcpu).input_queue_head; 2412 } 2413 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2414 *rflowp = rflow; 2415 cpu = tcpu; 2416 goto done; 2417 } 2418 } 2419 2420 if (map) { 2421 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2422 2423 if (cpu_online(tcpu)) { 2424 cpu = tcpu; 2425 goto done; 2426 } 2427 } 2428 2429 done: 2430 return cpu; 2431 } 2432 2433 /* Called from hardirq (IPI) context */ 2434 static void rps_trigger_softirq(void *data) 2435 { 2436 struct softnet_data *sd = data; 2437 2438 ____napi_schedule(sd, &sd->backlog); 2439 sd->received_rps++; 2440 } 2441 2442 #endif /* CONFIG_RPS */ 2443 2444 /* 2445 * Check if this softnet_data structure is another cpu one 2446 * If yes, queue it to our IPI list and return 1 2447 * If no, return 0 2448 */ 2449 static int rps_ipi_queued(struct softnet_data *sd) 2450 { 2451 #ifdef CONFIG_RPS 2452 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2453 2454 if (sd != mysd) { 2455 sd->rps_ipi_next = mysd->rps_ipi_list; 2456 mysd->rps_ipi_list = sd; 2457 2458 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2459 return 1; 2460 } 2461 #endif /* CONFIG_RPS */ 2462 return 0; 2463 } 2464 2465 /* 2466 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2467 * queue (may be a remote CPU queue). 2468 */ 2469 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2470 unsigned int *qtail) 2471 { 2472 struct softnet_data *sd; 2473 unsigned long flags; 2474 2475 sd = &per_cpu(softnet_data, cpu); 2476 2477 local_irq_save(flags); 2478 2479 rps_lock(sd); 2480 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2481 if (skb_queue_len(&sd->input_pkt_queue)) { 2482 enqueue: 2483 __skb_queue_tail(&sd->input_pkt_queue, skb); 2484 input_queue_tail_incr_save(sd, qtail); 2485 rps_unlock(sd); 2486 local_irq_restore(flags); 2487 return NET_RX_SUCCESS; 2488 } 2489 2490 /* Schedule NAPI for backlog device 2491 * We can use non atomic operation since we own the queue lock 2492 */ 2493 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2494 if (!rps_ipi_queued(sd)) 2495 ____napi_schedule(sd, &sd->backlog); 2496 } 2497 goto enqueue; 2498 } 2499 2500 sd->dropped++; 2501 rps_unlock(sd); 2502 2503 local_irq_restore(flags); 2504 2505 kfree_skb(skb); 2506 return NET_RX_DROP; 2507 } 2508 2509 /** 2510 * netif_rx - post buffer to the network code 2511 * @skb: buffer to post 2512 * 2513 * This function receives a packet from a device driver and queues it for 2514 * the upper (protocol) levels to process. It always succeeds. The buffer 2515 * may be dropped during processing for congestion control or by the 2516 * protocol layers. 2517 * 2518 * return values: 2519 * NET_RX_SUCCESS (no congestion) 2520 * NET_RX_DROP (packet was dropped) 2521 * 2522 */ 2523 2524 int netif_rx(struct sk_buff *skb) 2525 { 2526 int ret; 2527 2528 /* if netpoll wants it, pretend we never saw it */ 2529 if (netpoll_rx(skb)) 2530 return NET_RX_DROP; 2531 2532 if (netdev_tstamp_prequeue) 2533 net_timestamp_check(skb); 2534 2535 #ifdef CONFIG_RPS 2536 { 2537 struct rps_dev_flow voidflow, *rflow = &voidflow; 2538 int cpu; 2539 2540 preempt_disable(); 2541 rcu_read_lock(); 2542 2543 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2544 if (cpu < 0) 2545 cpu = smp_processor_id(); 2546 2547 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2548 2549 rcu_read_unlock(); 2550 preempt_enable(); 2551 } 2552 #else 2553 { 2554 unsigned int qtail; 2555 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2556 put_cpu(); 2557 } 2558 #endif 2559 return ret; 2560 } 2561 EXPORT_SYMBOL(netif_rx); 2562 2563 int netif_rx_ni(struct sk_buff *skb) 2564 { 2565 int err; 2566 2567 preempt_disable(); 2568 err = netif_rx(skb); 2569 if (local_softirq_pending()) 2570 do_softirq(); 2571 preempt_enable(); 2572 2573 return err; 2574 } 2575 EXPORT_SYMBOL(netif_rx_ni); 2576 2577 static void net_tx_action(struct softirq_action *h) 2578 { 2579 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2580 2581 if (sd->completion_queue) { 2582 struct sk_buff *clist; 2583 2584 local_irq_disable(); 2585 clist = sd->completion_queue; 2586 sd->completion_queue = NULL; 2587 local_irq_enable(); 2588 2589 while (clist) { 2590 struct sk_buff *skb = clist; 2591 clist = clist->next; 2592 2593 WARN_ON(atomic_read(&skb->users)); 2594 __kfree_skb(skb); 2595 } 2596 } 2597 2598 if (sd->output_queue) { 2599 struct Qdisc *head; 2600 2601 local_irq_disable(); 2602 head = sd->output_queue; 2603 sd->output_queue = NULL; 2604 sd->output_queue_tailp = &sd->output_queue; 2605 local_irq_enable(); 2606 2607 while (head) { 2608 struct Qdisc *q = head; 2609 spinlock_t *root_lock; 2610 2611 head = head->next_sched; 2612 2613 root_lock = qdisc_lock(q); 2614 if (spin_trylock(root_lock)) { 2615 smp_mb__before_clear_bit(); 2616 clear_bit(__QDISC_STATE_SCHED, 2617 &q->state); 2618 qdisc_run(q); 2619 spin_unlock(root_lock); 2620 } else { 2621 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2622 &q->state)) { 2623 __netif_reschedule(q); 2624 } else { 2625 smp_mb__before_clear_bit(); 2626 clear_bit(__QDISC_STATE_SCHED, 2627 &q->state); 2628 } 2629 } 2630 } 2631 } 2632 } 2633 2634 static inline int deliver_skb(struct sk_buff *skb, 2635 struct packet_type *pt_prev, 2636 struct net_device *orig_dev) 2637 { 2638 atomic_inc(&skb->users); 2639 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2640 } 2641 2642 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2643 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2644 /* This hook is defined here for ATM LANE */ 2645 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2646 unsigned char *addr) __read_mostly; 2647 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2648 #endif 2649 2650 #ifdef CONFIG_NET_CLS_ACT 2651 /* TODO: Maybe we should just force sch_ingress to be compiled in 2652 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2653 * a compare and 2 stores extra right now if we dont have it on 2654 * but have CONFIG_NET_CLS_ACT 2655 * NOTE: This doesnt stop any functionality; if you dont have 2656 * the ingress scheduler, you just cant add policies on ingress. 2657 * 2658 */ 2659 static int ing_filter(struct sk_buff *skb) 2660 { 2661 struct net_device *dev = skb->dev; 2662 u32 ttl = G_TC_RTTL(skb->tc_verd); 2663 struct netdev_queue *rxq; 2664 int result = TC_ACT_OK; 2665 struct Qdisc *q; 2666 2667 if (unlikely(MAX_RED_LOOP < ttl++)) { 2668 if (net_ratelimit()) 2669 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 2670 skb->skb_iif, dev->ifindex); 2671 return TC_ACT_SHOT; 2672 } 2673 2674 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2675 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2676 2677 rxq = &dev->rx_queue; 2678 2679 q = rxq->qdisc; 2680 if (q != &noop_qdisc) { 2681 spin_lock(qdisc_lock(q)); 2682 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2683 result = qdisc_enqueue_root(skb, q); 2684 spin_unlock(qdisc_lock(q)); 2685 } 2686 2687 return result; 2688 } 2689 2690 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2691 struct packet_type **pt_prev, 2692 int *ret, struct net_device *orig_dev) 2693 { 2694 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2695 goto out; 2696 2697 if (*pt_prev) { 2698 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2699 *pt_prev = NULL; 2700 } 2701 2702 switch (ing_filter(skb)) { 2703 case TC_ACT_SHOT: 2704 case TC_ACT_STOLEN: 2705 kfree_skb(skb); 2706 return NULL; 2707 } 2708 2709 out: 2710 skb->tc_verd = 0; 2711 return skb; 2712 } 2713 #endif 2714 2715 /* 2716 * netif_nit_deliver - deliver received packets to network taps 2717 * @skb: buffer 2718 * 2719 * This function is used to deliver incoming packets to network 2720 * taps. It should be used when the normal netif_receive_skb path 2721 * is bypassed, for example because of VLAN acceleration. 2722 */ 2723 void netif_nit_deliver(struct sk_buff *skb) 2724 { 2725 struct packet_type *ptype; 2726 2727 if (list_empty(&ptype_all)) 2728 return; 2729 2730 skb_reset_network_header(skb); 2731 skb_reset_transport_header(skb); 2732 skb->mac_len = skb->network_header - skb->mac_header; 2733 2734 rcu_read_lock(); 2735 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2736 if (!ptype->dev || ptype->dev == skb->dev) 2737 deliver_skb(skb, ptype, skb->dev); 2738 } 2739 rcu_read_unlock(); 2740 } 2741 2742 /** 2743 * netdev_rx_handler_register - register receive handler 2744 * @dev: device to register a handler for 2745 * @rx_handler: receive handler to register 2746 * @rx_handler_data: data pointer that is used by rx handler 2747 * 2748 * Register a receive hander for a device. This handler will then be 2749 * called from __netif_receive_skb. A negative errno code is returned 2750 * on a failure. 2751 * 2752 * The caller must hold the rtnl_mutex. 2753 */ 2754 int netdev_rx_handler_register(struct net_device *dev, 2755 rx_handler_func_t *rx_handler, 2756 void *rx_handler_data) 2757 { 2758 ASSERT_RTNL(); 2759 2760 if (dev->rx_handler) 2761 return -EBUSY; 2762 2763 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 2764 rcu_assign_pointer(dev->rx_handler, rx_handler); 2765 2766 return 0; 2767 } 2768 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 2769 2770 /** 2771 * netdev_rx_handler_unregister - unregister receive handler 2772 * @dev: device to unregister a handler from 2773 * 2774 * Unregister a receive hander from a device. 2775 * 2776 * The caller must hold the rtnl_mutex. 2777 */ 2778 void netdev_rx_handler_unregister(struct net_device *dev) 2779 { 2780 2781 ASSERT_RTNL(); 2782 rcu_assign_pointer(dev->rx_handler, NULL); 2783 rcu_assign_pointer(dev->rx_handler_data, NULL); 2784 } 2785 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 2786 2787 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb, 2788 struct net_device *master) 2789 { 2790 if (skb->pkt_type == PACKET_HOST) { 2791 u16 *dest = (u16 *) eth_hdr(skb)->h_dest; 2792 2793 memcpy(dest, master->dev_addr, ETH_ALEN); 2794 } 2795 } 2796 2797 /* On bonding slaves other than the currently active slave, suppress 2798 * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and 2799 * ARP on active-backup slaves with arp_validate enabled. 2800 */ 2801 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master) 2802 { 2803 struct net_device *dev = skb->dev; 2804 2805 if (master->priv_flags & IFF_MASTER_ARPMON) 2806 dev->last_rx = jiffies; 2807 2808 if ((master->priv_flags & IFF_MASTER_ALB) && 2809 (master->priv_flags & IFF_BRIDGE_PORT)) { 2810 /* Do address unmangle. The local destination address 2811 * will be always the one master has. Provides the right 2812 * functionality in a bridge. 2813 */ 2814 skb_bond_set_mac_by_master(skb, master); 2815 } 2816 2817 if (dev->priv_flags & IFF_SLAVE_INACTIVE) { 2818 if ((dev->priv_flags & IFF_SLAVE_NEEDARP) && 2819 skb->protocol == __cpu_to_be16(ETH_P_ARP)) 2820 return 0; 2821 2822 if (master->priv_flags & IFF_MASTER_ALB) { 2823 if (skb->pkt_type != PACKET_BROADCAST && 2824 skb->pkt_type != PACKET_MULTICAST) 2825 return 0; 2826 } 2827 if (master->priv_flags & IFF_MASTER_8023AD && 2828 skb->protocol == __cpu_to_be16(ETH_P_SLOW)) 2829 return 0; 2830 2831 return 1; 2832 } 2833 return 0; 2834 } 2835 EXPORT_SYMBOL(__skb_bond_should_drop); 2836 2837 static int __netif_receive_skb(struct sk_buff *skb) 2838 { 2839 struct packet_type *ptype, *pt_prev; 2840 rx_handler_func_t *rx_handler; 2841 struct net_device *orig_dev; 2842 struct net_device *master; 2843 struct net_device *null_or_orig; 2844 struct net_device *orig_or_bond; 2845 int ret = NET_RX_DROP; 2846 __be16 type; 2847 2848 if (!netdev_tstamp_prequeue) 2849 net_timestamp_check(skb); 2850 2851 if (vlan_tx_tag_present(skb)) 2852 vlan_hwaccel_do_receive(skb); 2853 2854 /* if we've gotten here through NAPI, check netpoll */ 2855 if (netpoll_receive_skb(skb)) 2856 return NET_RX_DROP; 2857 2858 if (!skb->skb_iif) 2859 skb->skb_iif = skb->dev->ifindex; 2860 2861 /* 2862 * bonding note: skbs received on inactive slaves should only 2863 * be delivered to pkt handlers that are exact matches. Also 2864 * the deliver_no_wcard flag will be set. If packet handlers 2865 * are sensitive to duplicate packets these skbs will need to 2866 * be dropped at the handler. The vlan accel path may have 2867 * already set the deliver_no_wcard flag. 2868 */ 2869 null_or_orig = NULL; 2870 orig_dev = skb->dev; 2871 master = ACCESS_ONCE(orig_dev->master); 2872 if (skb->deliver_no_wcard) 2873 null_or_orig = orig_dev; 2874 else if (master) { 2875 if (skb_bond_should_drop(skb, master)) { 2876 skb->deliver_no_wcard = 1; 2877 null_or_orig = orig_dev; /* deliver only exact match */ 2878 } else 2879 skb->dev = master; 2880 } 2881 2882 __this_cpu_inc(softnet_data.processed); 2883 skb_reset_network_header(skb); 2884 skb_reset_transport_header(skb); 2885 skb->mac_len = skb->network_header - skb->mac_header; 2886 2887 pt_prev = NULL; 2888 2889 rcu_read_lock(); 2890 2891 #ifdef CONFIG_NET_CLS_ACT 2892 if (skb->tc_verd & TC_NCLS) { 2893 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2894 goto ncls; 2895 } 2896 #endif 2897 2898 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2899 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2900 ptype->dev == orig_dev) { 2901 if (pt_prev) 2902 ret = deliver_skb(skb, pt_prev, orig_dev); 2903 pt_prev = ptype; 2904 } 2905 } 2906 2907 #ifdef CONFIG_NET_CLS_ACT 2908 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2909 if (!skb) 2910 goto out; 2911 ncls: 2912 #endif 2913 2914 /* Handle special case of bridge or macvlan */ 2915 rx_handler = rcu_dereference(skb->dev->rx_handler); 2916 if (rx_handler) { 2917 if (pt_prev) { 2918 ret = deliver_skb(skb, pt_prev, orig_dev); 2919 pt_prev = NULL; 2920 } 2921 skb = rx_handler(skb); 2922 if (!skb) 2923 goto out; 2924 } 2925 2926 /* 2927 * Make sure frames received on VLAN interfaces stacked on 2928 * bonding interfaces still make their way to any base bonding 2929 * device that may have registered for a specific ptype. The 2930 * handler may have to adjust skb->dev and orig_dev. 2931 */ 2932 orig_or_bond = orig_dev; 2933 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) && 2934 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) { 2935 orig_or_bond = vlan_dev_real_dev(skb->dev); 2936 } 2937 2938 type = skb->protocol; 2939 list_for_each_entry_rcu(ptype, 2940 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2941 if (ptype->type == type && (ptype->dev == null_or_orig || 2942 ptype->dev == skb->dev || ptype->dev == orig_dev || 2943 ptype->dev == orig_or_bond)) { 2944 if (pt_prev) 2945 ret = deliver_skb(skb, pt_prev, orig_dev); 2946 pt_prev = ptype; 2947 } 2948 } 2949 2950 if (pt_prev) { 2951 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2952 } else { 2953 kfree_skb(skb); 2954 /* Jamal, now you will not able to escape explaining 2955 * me how you were going to use this. :-) 2956 */ 2957 ret = NET_RX_DROP; 2958 } 2959 2960 out: 2961 rcu_read_unlock(); 2962 return ret; 2963 } 2964 2965 /** 2966 * netif_receive_skb - process receive buffer from network 2967 * @skb: buffer to process 2968 * 2969 * netif_receive_skb() is the main receive data processing function. 2970 * It always succeeds. The buffer may be dropped during processing 2971 * for congestion control or by the protocol layers. 2972 * 2973 * This function may only be called from softirq context and interrupts 2974 * should be enabled. 2975 * 2976 * Return values (usually ignored): 2977 * NET_RX_SUCCESS: no congestion 2978 * NET_RX_DROP: packet was dropped 2979 */ 2980 int netif_receive_skb(struct sk_buff *skb) 2981 { 2982 if (netdev_tstamp_prequeue) 2983 net_timestamp_check(skb); 2984 2985 if (skb_defer_rx_timestamp(skb)) 2986 return NET_RX_SUCCESS; 2987 2988 #ifdef CONFIG_RPS 2989 { 2990 struct rps_dev_flow voidflow, *rflow = &voidflow; 2991 int cpu, ret; 2992 2993 rcu_read_lock(); 2994 2995 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2996 2997 if (cpu >= 0) { 2998 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2999 rcu_read_unlock(); 3000 } else { 3001 rcu_read_unlock(); 3002 ret = __netif_receive_skb(skb); 3003 } 3004 3005 return ret; 3006 } 3007 #else 3008 return __netif_receive_skb(skb); 3009 #endif 3010 } 3011 EXPORT_SYMBOL(netif_receive_skb); 3012 3013 /* Network device is going away, flush any packets still pending 3014 * Called with irqs disabled. 3015 */ 3016 static void flush_backlog(void *arg) 3017 { 3018 struct net_device *dev = arg; 3019 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3020 struct sk_buff *skb, *tmp; 3021 3022 rps_lock(sd); 3023 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3024 if (skb->dev == dev) { 3025 __skb_unlink(skb, &sd->input_pkt_queue); 3026 kfree_skb(skb); 3027 input_queue_head_incr(sd); 3028 } 3029 } 3030 rps_unlock(sd); 3031 3032 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3033 if (skb->dev == dev) { 3034 __skb_unlink(skb, &sd->process_queue); 3035 kfree_skb(skb); 3036 input_queue_head_incr(sd); 3037 } 3038 } 3039 } 3040 3041 static int napi_gro_complete(struct sk_buff *skb) 3042 { 3043 struct packet_type *ptype; 3044 __be16 type = skb->protocol; 3045 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3046 int err = -ENOENT; 3047 3048 if (NAPI_GRO_CB(skb)->count == 1) { 3049 skb_shinfo(skb)->gso_size = 0; 3050 goto out; 3051 } 3052 3053 rcu_read_lock(); 3054 list_for_each_entry_rcu(ptype, head, list) { 3055 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3056 continue; 3057 3058 err = ptype->gro_complete(skb); 3059 break; 3060 } 3061 rcu_read_unlock(); 3062 3063 if (err) { 3064 WARN_ON(&ptype->list == head); 3065 kfree_skb(skb); 3066 return NET_RX_SUCCESS; 3067 } 3068 3069 out: 3070 return netif_receive_skb(skb); 3071 } 3072 3073 inline void napi_gro_flush(struct napi_struct *napi) 3074 { 3075 struct sk_buff *skb, *next; 3076 3077 for (skb = napi->gro_list; skb; skb = next) { 3078 next = skb->next; 3079 skb->next = NULL; 3080 napi_gro_complete(skb); 3081 } 3082 3083 napi->gro_count = 0; 3084 napi->gro_list = NULL; 3085 } 3086 EXPORT_SYMBOL(napi_gro_flush); 3087 3088 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3089 { 3090 struct sk_buff **pp = NULL; 3091 struct packet_type *ptype; 3092 __be16 type = skb->protocol; 3093 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3094 int same_flow; 3095 int mac_len; 3096 enum gro_result ret; 3097 3098 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3099 goto normal; 3100 3101 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3102 goto normal; 3103 3104 rcu_read_lock(); 3105 list_for_each_entry_rcu(ptype, head, list) { 3106 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3107 continue; 3108 3109 skb_set_network_header(skb, skb_gro_offset(skb)); 3110 mac_len = skb->network_header - skb->mac_header; 3111 skb->mac_len = mac_len; 3112 NAPI_GRO_CB(skb)->same_flow = 0; 3113 NAPI_GRO_CB(skb)->flush = 0; 3114 NAPI_GRO_CB(skb)->free = 0; 3115 3116 pp = ptype->gro_receive(&napi->gro_list, skb); 3117 break; 3118 } 3119 rcu_read_unlock(); 3120 3121 if (&ptype->list == head) 3122 goto normal; 3123 3124 same_flow = NAPI_GRO_CB(skb)->same_flow; 3125 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3126 3127 if (pp) { 3128 struct sk_buff *nskb = *pp; 3129 3130 *pp = nskb->next; 3131 nskb->next = NULL; 3132 napi_gro_complete(nskb); 3133 napi->gro_count--; 3134 } 3135 3136 if (same_flow) 3137 goto ok; 3138 3139 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3140 goto normal; 3141 3142 napi->gro_count++; 3143 NAPI_GRO_CB(skb)->count = 1; 3144 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3145 skb->next = napi->gro_list; 3146 napi->gro_list = skb; 3147 ret = GRO_HELD; 3148 3149 pull: 3150 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3151 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3152 3153 BUG_ON(skb->end - skb->tail < grow); 3154 3155 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3156 3157 skb->tail += grow; 3158 skb->data_len -= grow; 3159 3160 skb_shinfo(skb)->frags[0].page_offset += grow; 3161 skb_shinfo(skb)->frags[0].size -= grow; 3162 3163 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3164 put_page(skb_shinfo(skb)->frags[0].page); 3165 memmove(skb_shinfo(skb)->frags, 3166 skb_shinfo(skb)->frags + 1, 3167 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3168 } 3169 } 3170 3171 ok: 3172 return ret; 3173 3174 normal: 3175 ret = GRO_NORMAL; 3176 goto pull; 3177 } 3178 EXPORT_SYMBOL(dev_gro_receive); 3179 3180 static inline gro_result_t 3181 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3182 { 3183 struct sk_buff *p; 3184 3185 for (p = napi->gro_list; p; p = p->next) { 3186 unsigned long diffs; 3187 3188 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3189 diffs |= compare_ether_header(skb_mac_header(p), 3190 skb_gro_mac_header(skb)); 3191 NAPI_GRO_CB(p)->same_flow = !diffs; 3192 NAPI_GRO_CB(p)->flush = 0; 3193 } 3194 3195 return dev_gro_receive(napi, skb); 3196 } 3197 3198 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3199 { 3200 switch (ret) { 3201 case GRO_NORMAL: 3202 if (netif_receive_skb(skb)) 3203 ret = GRO_DROP; 3204 break; 3205 3206 case GRO_DROP: 3207 case GRO_MERGED_FREE: 3208 kfree_skb(skb); 3209 break; 3210 3211 case GRO_HELD: 3212 case GRO_MERGED: 3213 break; 3214 } 3215 3216 return ret; 3217 } 3218 EXPORT_SYMBOL(napi_skb_finish); 3219 3220 void skb_gro_reset_offset(struct sk_buff *skb) 3221 { 3222 NAPI_GRO_CB(skb)->data_offset = 0; 3223 NAPI_GRO_CB(skb)->frag0 = NULL; 3224 NAPI_GRO_CB(skb)->frag0_len = 0; 3225 3226 if (skb->mac_header == skb->tail && 3227 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3228 NAPI_GRO_CB(skb)->frag0 = 3229 page_address(skb_shinfo(skb)->frags[0].page) + 3230 skb_shinfo(skb)->frags[0].page_offset; 3231 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3232 } 3233 } 3234 EXPORT_SYMBOL(skb_gro_reset_offset); 3235 3236 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3237 { 3238 skb_gro_reset_offset(skb); 3239 3240 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3241 } 3242 EXPORT_SYMBOL(napi_gro_receive); 3243 3244 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3245 { 3246 __skb_pull(skb, skb_headlen(skb)); 3247 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3248 3249 napi->skb = skb; 3250 } 3251 EXPORT_SYMBOL(napi_reuse_skb); 3252 3253 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3254 { 3255 struct sk_buff *skb = napi->skb; 3256 3257 if (!skb) { 3258 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3259 if (skb) 3260 napi->skb = skb; 3261 } 3262 return skb; 3263 } 3264 EXPORT_SYMBOL(napi_get_frags); 3265 3266 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3267 gro_result_t ret) 3268 { 3269 switch (ret) { 3270 case GRO_NORMAL: 3271 case GRO_HELD: 3272 skb->protocol = eth_type_trans(skb, skb->dev); 3273 3274 if (ret == GRO_HELD) 3275 skb_gro_pull(skb, -ETH_HLEN); 3276 else if (netif_receive_skb(skb)) 3277 ret = GRO_DROP; 3278 break; 3279 3280 case GRO_DROP: 3281 case GRO_MERGED_FREE: 3282 napi_reuse_skb(napi, skb); 3283 break; 3284 3285 case GRO_MERGED: 3286 break; 3287 } 3288 3289 return ret; 3290 } 3291 EXPORT_SYMBOL(napi_frags_finish); 3292 3293 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3294 { 3295 struct sk_buff *skb = napi->skb; 3296 struct ethhdr *eth; 3297 unsigned int hlen; 3298 unsigned int off; 3299 3300 napi->skb = NULL; 3301 3302 skb_reset_mac_header(skb); 3303 skb_gro_reset_offset(skb); 3304 3305 off = skb_gro_offset(skb); 3306 hlen = off + sizeof(*eth); 3307 eth = skb_gro_header_fast(skb, off); 3308 if (skb_gro_header_hard(skb, hlen)) { 3309 eth = skb_gro_header_slow(skb, hlen, off); 3310 if (unlikely(!eth)) { 3311 napi_reuse_skb(napi, skb); 3312 skb = NULL; 3313 goto out; 3314 } 3315 } 3316 3317 skb_gro_pull(skb, sizeof(*eth)); 3318 3319 /* 3320 * This works because the only protocols we care about don't require 3321 * special handling. We'll fix it up properly at the end. 3322 */ 3323 skb->protocol = eth->h_proto; 3324 3325 out: 3326 return skb; 3327 } 3328 EXPORT_SYMBOL(napi_frags_skb); 3329 3330 gro_result_t napi_gro_frags(struct napi_struct *napi) 3331 { 3332 struct sk_buff *skb = napi_frags_skb(napi); 3333 3334 if (!skb) 3335 return GRO_DROP; 3336 3337 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3338 } 3339 EXPORT_SYMBOL(napi_gro_frags); 3340 3341 /* 3342 * net_rps_action sends any pending IPI's for rps. 3343 * Note: called with local irq disabled, but exits with local irq enabled. 3344 */ 3345 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3346 { 3347 #ifdef CONFIG_RPS 3348 struct softnet_data *remsd = sd->rps_ipi_list; 3349 3350 if (remsd) { 3351 sd->rps_ipi_list = NULL; 3352 3353 local_irq_enable(); 3354 3355 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3356 while (remsd) { 3357 struct softnet_data *next = remsd->rps_ipi_next; 3358 3359 if (cpu_online(remsd->cpu)) 3360 __smp_call_function_single(remsd->cpu, 3361 &remsd->csd, 0); 3362 remsd = next; 3363 } 3364 } else 3365 #endif 3366 local_irq_enable(); 3367 } 3368 3369 static int process_backlog(struct napi_struct *napi, int quota) 3370 { 3371 int work = 0; 3372 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3373 3374 #ifdef CONFIG_RPS 3375 /* Check if we have pending ipi, its better to send them now, 3376 * not waiting net_rx_action() end. 3377 */ 3378 if (sd->rps_ipi_list) { 3379 local_irq_disable(); 3380 net_rps_action_and_irq_enable(sd); 3381 } 3382 #endif 3383 napi->weight = weight_p; 3384 local_irq_disable(); 3385 while (work < quota) { 3386 struct sk_buff *skb; 3387 unsigned int qlen; 3388 3389 while ((skb = __skb_dequeue(&sd->process_queue))) { 3390 local_irq_enable(); 3391 __netif_receive_skb(skb); 3392 local_irq_disable(); 3393 input_queue_head_incr(sd); 3394 if (++work >= quota) { 3395 local_irq_enable(); 3396 return work; 3397 } 3398 } 3399 3400 rps_lock(sd); 3401 qlen = skb_queue_len(&sd->input_pkt_queue); 3402 if (qlen) 3403 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3404 &sd->process_queue); 3405 3406 if (qlen < quota - work) { 3407 /* 3408 * Inline a custom version of __napi_complete(). 3409 * only current cpu owns and manipulates this napi, 3410 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3411 * we can use a plain write instead of clear_bit(), 3412 * and we dont need an smp_mb() memory barrier. 3413 */ 3414 list_del(&napi->poll_list); 3415 napi->state = 0; 3416 3417 quota = work + qlen; 3418 } 3419 rps_unlock(sd); 3420 } 3421 local_irq_enable(); 3422 3423 return work; 3424 } 3425 3426 /** 3427 * __napi_schedule - schedule for receive 3428 * @n: entry to schedule 3429 * 3430 * The entry's receive function will be scheduled to run 3431 */ 3432 void __napi_schedule(struct napi_struct *n) 3433 { 3434 unsigned long flags; 3435 3436 local_irq_save(flags); 3437 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3438 local_irq_restore(flags); 3439 } 3440 EXPORT_SYMBOL(__napi_schedule); 3441 3442 void __napi_complete(struct napi_struct *n) 3443 { 3444 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3445 BUG_ON(n->gro_list); 3446 3447 list_del(&n->poll_list); 3448 smp_mb__before_clear_bit(); 3449 clear_bit(NAPI_STATE_SCHED, &n->state); 3450 } 3451 EXPORT_SYMBOL(__napi_complete); 3452 3453 void napi_complete(struct napi_struct *n) 3454 { 3455 unsigned long flags; 3456 3457 /* 3458 * don't let napi dequeue from the cpu poll list 3459 * just in case its running on a different cpu 3460 */ 3461 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3462 return; 3463 3464 napi_gro_flush(n); 3465 local_irq_save(flags); 3466 __napi_complete(n); 3467 local_irq_restore(flags); 3468 } 3469 EXPORT_SYMBOL(napi_complete); 3470 3471 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3472 int (*poll)(struct napi_struct *, int), int weight) 3473 { 3474 INIT_LIST_HEAD(&napi->poll_list); 3475 napi->gro_count = 0; 3476 napi->gro_list = NULL; 3477 napi->skb = NULL; 3478 napi->poll = poll; 3479 napi->weight = weight; 3480 list_add(&napi->dev_list, &dev->napi_list); 3481 napi->dev = dev; 3482 #ifdef CONFIG_NETPOLL 3483 spin_lock_init(&napi->poll_lock); 3484 napi->poll_owner = -1; 3485 #endif 3486 set_bit(NAPI_STATE_SCHED, &napi->state); 3487 } 3488 EXPORT_SYMBOL(netif_napi_add); 3489 3490 void netif_napi_del(struct napi_struct *napi) 3491 { 3492 struct sk_buff *skb, *next; 3493 3494 list_del_init(&napi->dev_list); 3495 napi_free_frags(napi); 3496 3497 for (skb = napi->gro_list; skb; skb = next) { 3498 next = skb->next; 3499 skb->next = NULL; 3500 kfree_skb(skb); 3501 } 3502 3503 napi->gro_list = NULL; 3504 napi->gro_count = 0; 3505 } 3506 EXPORT_SYMBOL(netif_napi_del); 3507 3508 static void net_rx_action(struct softirq_action *h) 3509 { 3510 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3511 unsigned long time_limit = jiffies + 2; 3512 int budget = netdev_budget; 3513 void *have; 3514 3515 local_irq_disable(); 3516 3517 while (!list_empty(&sd->poll_list)) { 3518 struct napi_struct *n; 3519 int work, weight; 3520 3521 /* If softirq window is exhuasted then punt. 3522 * Allow this to run for 2 jiffies since which will allow 3523 * an average latency of 1.5/HZ. 3524 */ 3525 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3526 goto softnet_break; 3527 3528 local_irq_enable(); 3529 3530 /* Even though interrupts have been re-enabled, this 3531 * access is safe because interrupts can only add new 3532 * entries to the tail of this list, and only ->poll() 3533 * calls can remove this head entry from the list. 3534 */ 3535 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3536 3537 have = netpoll_poll_lock(n); 3538 3539 weight = n->weight; 3540 3541 /* This NAPI_STATE_SCHED test is for avoiding a race 3542 * with netpoll's poll_napi(). Only the entity which 3543 * obtains the lock and sees NAPI_STATE_SCHED set will 3544 * actually make the ->poll() call. Therefore we avoid 3545 * accidently calling ->poll() when NAPI is not scheduled. 3546 */ 3547 work = 0; 3548 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3549 work = n->poll(n, weight); 3550 trace_napi_poll(n); 3551 } 3552 3553 WARN_ON_ONCE(work > weight); 3554 3555 budget -= work; 3556 3557 local_irq_disable(); 3558 3559 /* Drivers must not modify the NAPI state if they 3560 * consume the entire weight. In such cases this code 3561 * still "owns" the NAPI instance and therefore can 3562 * move the instance around on the list at-will. 3563 */ 3564 if (unlikely(work == weight)) { 3565 if (unlikely(napi_disable_pending(n))) { 3566 local_irq_enable(); 3567 napi_complete(n); 3568 local_irq_disable(); 3569 } else 3570 list_move_tail(&n->poll_list, &sd->poll_list); 3571 } 3572 3573 netpoll_poll_unlock(have); 3574 } 3575 out: 3576 net_rps_action_and_irq_enable(sd); 3577 3578 #ifdef CONFIG_NET_DMA 3579 /* 3580 * There may not be any more sk_buffs coming right now, so push 3581 * any pending DMA copies to hardware 3582 */ 3583 dma_issue_pending_all(); 3584 #endif 3585 3586 return; 3587 3588 softnet_break: 3589 sd->time_squeeze++; 3590 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3591 goto out; 3592 } 3593 3594 static gifconf_func_t *gifconf_list[NPROTO]; 3595 3596 /** 3597 * register_gifconf - register a SIOCGIF handler 3598 * @family: Address family 3599 * @gifconf: Function handler 3600 * 3601 * Register protocol dependent address dumping routines. The handler 3602 * that is passed must not be freed or reused until it has been replaced 3603 * by another handler. 3604 */ 3605 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3606 { 3607 if (family >= NPROTO) 3608 return -EINVAL; 3609 gifconf_list[family] = gifconf; 3610 return 0; 3611 } 3612 EXPORT_SYMBOL(register_gifconf); 3613 3614 3615 /* 3616 * Map an interface index to its name (SIOCGIFNAME) 3617 */ 3618 3619 /* 3620 * We need this ioctl for efficient implementation of the 3621 * if_indextoname() function required by the IPv6 API. Without 3622 * it, we would have to search all the interfaces to find a 3623 * match. --pb 3624 */ 3625 3626 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3627 { 3628 struct net_device *dev; 3629 struct ifreq ifr; 3630 3631 /* 3632 * Fetch the caller's info block. 3633 */ 3634 3635 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3636 return -EFAULT; 3637 3638 rcu_read_lock(); 3639 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3640 if (!dev) { 3641 rcu_read_unlock(); 3642 return -ENODEV; 3643 } 3644 3645 strcpy(ifr.ifr_name, dev->name); 3646 rcu_read_unlock(); 3647 3648 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3649 return -EFAULT; 3650 return 0; 3651 } 3652 3653 /* 3654 * Perform a SIOCGIFCONF call. This structure will change 3655 * size eventually, and there is nothing I can do about it. 3656 * Thus we will need a 'compatibility mode'. 3657 */ 3658 3659 static int dev_ifconf(struct net *net, char __user *arg) 3660 { 3661 struct ifconf ifc; 3662 struct net_device *dev; 3663 char __user *pos; 3664 int len; 3665 int total; 3666 int i; 3667 3668 /* 3669 * Fetch the caller's info block. 3670 */ 3671 3672 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3673 return -EFAULT; 3674 3675 pos = ifc.ifc_buf; 3676 len = ifc.ifc_len; 3677 3678 /* 3679 * Loop over the interfaces, and write an info block for each. 3680 */ 3681 3682 total = 0; 3683 for_each_netdev(net, dev) { 3684 for (i = 0; i < NPROTO; i++) { 3685 if (gifconf_list[i]) { 3686 int done; 3687 if (!pos) 3688 done = gifconf_list[i](dev, NULL, 0); 3689 else 3690 done = gifconf_list[i](dev, pos + total, 3691 len - total); 3692 if (done < 0) 3693 return -EFAULT; 3694 total += done; 3695 } 3696 } 3697 } 3698 3699 /* 3700 * All done. Write the updated control block back to the caller. 3701 */ 3702 ifc.ifc_len = total; 3703 3704 /* 3705 * Both BSD and Solaris return 0 here, so we do too. 3706 */ 3707 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3708 } 3709 3710 #ifdef CONFIG_PROC_FS 3711 /* 3712 * This is invoked by the /proc filesystem handler to display a device 3713 * in detail. 3714 */ 3715 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3716 __acquires(RCU) 3717 { 3718 struct net *net = seq_file_net(seq); 3719 loff_t off; 3720 struct net_device *dev; 3721 3722 rcu_read_lock(); 3723 if (!*pos) 3724 return SEQ_START_TOKEN; 3725 3726 off = 1; 3727 for_each_netdev_rcu(net, dev) 3728 if (off++ == *pos) 3729 return dev; 3730 3731 return NULL; 3732 } 3733 3734 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3735 { 3736 struct net_device *dev = (v == SEQ_START_TOKEN) ? 3737 first_net_device(seq_file_net(seq)) : 3738 next_net_device((struct net_device *)v); 3739 3740 ++*pos; 3741 return rcu_dereference(dev); 3742 } 3743 3744 void dev_seq_stop(struct seq_file *seq, void *v) 3745 __releases(RCU) 3746 { 3747 rcu_read_unlock(); 3748 } 3749 3750 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3751 { 3752 struct rtnl_link_stats64 temp; 3753 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 3754 3755 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 3756 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 3757 dev->name, stats->rx_bytes, stats->rx_packets, 3758 stats->rx_errors, 3759 stats->rx_dropped + stats->rx_missed_errors, 3760 stats->rx_fifo_errors, 3761 stats->rx_length_errors + stats->rx_over_errors + 3762 stats->rx_crc_errors + stats->rx_frame_errors, 3763 stats->rx_compressed, stats->multicast, 3764 stats->tx_bytes, stats->tx_packets, 3765 stats->tx_errors, stats->tx_dropped, 3766 stats->tx_fifo_errors, stats->collisions, 3767 stats->tx_carrier_errors + 3768 stats->tx_aborted_errors + 3769 stats->tx_window_errors + 3770 stats->tx_heartbeat_errors, 3771 stats->tx_compressed); 3772 } 3773 3774 /* 3775 * Called from the PROCfs module. This now uses the new arbitrary sized 3776 * /proc/net interface to create /proc/net/dev 3777 */ 3778 static int dev_seq_show(struct seq_file *seq, void *v) 3779 { 3780 if (v == SEQ_START_TOKEN) 3781 seq_puts(seq, "Inter-| Receive " 3782 " | Transmit\n" 3783 " face |bytes packets errs drop fifo frame " 3784 "compressed multicast|bytes packets errs " 3785 "drop fifo colls carrier compressed\n"); 3786 else 3787 dev_seq_printf_stats(seq, v); 3788 return 0; 3789 } 3790 3791 static struct softnet_data *softnet_get_online(loff_t *pos) 3792 { 3793 struct softnet_data *sd = NULL; 3794 3795 while (*pos < nr_cpu_ids) 3796 if (cpu_online(*pos)) { 3797 sd = &per_cpu(softnet_data, *pos); 3798 break; 3799 } else 3800 ++*pos; 3801 return sd; 3802 } 3803 3804 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3805 { 3806 return softnet_get_online(pos); 3807 } 3808 3809 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3810 { 3811 ++*pos; 3812 return softnet_get_online(pos); 3813 } 3814 3815 static void softnet_seq_stop(struct seq_file *seq, void *v) 3816 { 3817 } 3818 3819 static int softnet_seq_show(struct seq_file *seq, void *v) 3820 { 3821 struct softnet_data *sd = v; 3822 3823 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3824 sd->processed, sd->dropped, sd->time_squeeze, 0, 3825 0, 0, 0, 0, /* was fastroute */ 3826 sd->cpu_collision, sd->received_rps); 3827 return 0; 3828 } 3829 3830 static const struct seq_operations dev_seq_ops = { 3831 .start = dev_seq_start, 3832 .next = dev_seq_next, 3833 .stop = dev_seq_stop, 3834 .show = dev_seq_show, 3835 }; 3836 3837 static int dev_seq_open(struct inode *inode, struct file *file) 3838 { 3839 return seq_open_net(inode, file, &dev_seq_ops, 3840 sizeof(struct seq_net_private)); 3841 } 3842 3843 static const struct file_operations dev_seq_fops = { 3844 .owner = THIS_MODULE, 3845 .open = dev_seq_open, 3846 .read = seq_read, 3847 .llseek = seq_lseek, 3848 .release = seq_release_net, 3849 }; 3850 3851 static const struct seq_operations softnet_seq_ops = { 3852 .start = softnet_seq_start, 3853 .next = softnet_seq_next, 3854 .stop = softnet_seq_stop, 3855 .show = softnet_seq_show, 3856 }; 3857 3858 static int softnet_seq_open(struct inode *inode, struct file *file) 3859 { 3860 return seq_open(file, &softnet_seq_ops); 3861 } 3862 3863 static const struct file_operations softnet_seq_fops = { 3864 .owner = THIS_MODULE, 3865 .open = softnet_seq_open, 3866 .read = seq_read, 3867 .llseek = seq_lseek, 3868 .release = seq_release, 3869 }; 3870 3871 static void *ptype_get_idx(loff_t pos) 3872 { 3873 struct packet_type *pt = NULL; 3874 loff_t i = 0; 3875 int t; 3876 3877 list_for_each_entry_rcu(pt, &ptype_all, list) { 3878 if (i == pos) 3879 return pt; 3880 ++i; 3881 } 3882 3883 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3884 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3885 if (i == pos) 3886 return pt; 3887 ++i; 3888 } 3889 } 3890 return NULL; 3891 } 3892 3893 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3894 __acquires(RCU) 3895 { 3896 rcu_read_lock(); 3897 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3898 } 3899 3900 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3901 { 3902 struct packet_type *pt; 3903 struct list_head *nxt; 3904 int hash; 3905 3906 ++*pos; 3907 if (v == SEQ_START_TOKEN) 3908 return ptype_get_idx(0); 3909 3910 pt = v; 3911 nxt = pt->list.next; 3912 if (pt->type == htons(ETH_P_ALL)) { 3913 if (nxt != &ptype_all) 3914 goto found; 3915 hash = 0; 3916 nxt = ptype_base[0].next; 3917 } else 3918 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3919 3920 while (nxt == &ptype_base[hash]) { 3921 if (++hash >= PTYPE_HASH_SIZE) 3922 return NULL; 3923 nxt = ptype_base[hash].next; 3924 } 3925 found: 3926 return list_entry(nxt, struct packet_type, list); 3927 } 3928 3929 static void ptype_seq_stop(struct seq_file *seq, void *v) 3930 __releases(RCU) 3931 { 3932 rcu_read_unlock(); 3933 } 3934 3935 static int ptype_seq_show(struct seq_file *seq, void *v) 3936 { 3937 struct packet_type *pt = v; 3938 3939 if (v == SEQ_START_TOKEN) 3940 seq_puts(seq, "Type Device Function\n"); 3941 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3942 if (pt->type == htons(ETH_P_ALL)) 3943 seq_puts(seq, "ALL "); 3944 else 3945 seq_printf(seq, "%04x", ntohs(pt->type)); 3946 3947 seq_printf(seq, " %-8s %pF\n", 3948 pt->dev ? pt->dev->name : "", pt->func); 3949 } 3950 3951 return 0; 3952 } 3953 3954 static const struct seq_operations ptype_seq_ops = { 3955 .start = ptype_seq_start, 3956 .next = ptype_seq_next, 3957 .stop = ptype_seq_stop, 3958 .show = ptype_seq_show, 3959 }; 3960 3961 static int ptype_seq_open(struct inode *inode, struct file *file) 3962 { 3963 return seq_open_net(inode, file, &ptype_seq_ops, 3964 sizeof(struct seq_net_private)); 3965 } 3966 3967 static const struct file_operations ptype_seq_fops = { 3968 .owner = THIS_MODULE, 3969 .open = ptype_seq_open, 3970 .read = seq_read, 3971 .llseek = seq_lseek, 3972 .release = seq_release_net, 3973 }; 3974 3975 3976 static int __net_init dev_proc_net_init(struct net *net) 3977 { 3978 int rc = -ENOMEM; 3979 3980 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3981 goto out; 3982 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3983 goto out_dev; 3984 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3985 goto out_softnet; 3986 3987 if (wext_proc_init(net)) 3988 goto out_ptype; 3989 rc = 0; 3990 out: 3991 return rc; 3992 out_ptype: 3993 proc_net_remove(net, "ptype"); 3994 out_softnet: 3995 proc_net_remove(net, "softnet_stat"); 3996 out_dev: 3997 proc_net_remove(net, "dev"); 3998 goto out; 3999 } 4000 4001 static void __net_exit dev_proc_net_exit(struct net *net) 4002 { 4003 wext_proc_exit(net); 4004 4005 proc_net_remove(net, "ptype"); 4006 proc_net_remove(net, "softnet_stat"); 4007 proc_net_remove(net, "dev"); 4008 } 4009 4010 static struct pernet_operations __net_initdata dev_proc_ops = { 4011 .init = dev_proc_net_init, 4012 .exit = dev_proc_net_exit, 4013 }; 4014 4015 static int __init dev_proc_init(void) 4016 { 4017 return register_pernet_subsys(&dev_proc_ops); 4018 } 4019 #else 4020 #define dev_proc_init() 0 4021 #endif /* CONFIG_PROC_FS */ 4022 4023 4024 /** 4025 * netdev_set_master - set up master/slave pair 4026 * @slave: slave device 4027 * @master: new master device 4028 * 4029 * Changes the master device of the slave. Pass %NULL to break the 4030 * bonding. The caller must hold the RTNL semaphore. On a failure 4031 * a negative errno code is returned. On success the reference counts 4032 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 4033 * function returns zero. 4034 */ 4035 int netdev_set_master(struct net_device *slave, struct net_device *master) 4036 { 4037 struct net_device *old = slave->master; 4038 4039 ASSERT_RTNL(); 4040 4041 if (master) { 4042 if (old) 4043 return -EBUSY; 4044 dev_hold(master); 4045 } 4046 4047 slave->master = master; 4048 4049 if (old) { 4050 synchronize_net(); 4051 dev_put(old); 4052 } 4053 if (master) 4054 slave->flags |= IFF_SLAVE; 4055 else 4056 slave->flags &= ~IFF_SLAVE; 4057 4058 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4059 return 0; 4060 } 4061 EXPORT_SYMBOL(netdev_set_master); 4062 4063 static void dev_change_rx_flags(struct net_device *dev, int flags) 4064 { 4065 const struct net_device_ops *ops = dev->netdev_ops; 4066 4067 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4068 ops->ndo_change_rx_flags(dev, flags); 4069 } 4070 4071 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4072 { 4073 unsigned short old_flags = dev->flags; 4074 uid_t uid; 4075 gid_t gid; 4076 4077 ASSERT_RTNL(); 4078 4079 dev->flags |= IFF_PROMISC; 4080 dev->promiscuity += inc; 4081 if (dev->promiscuity == 0) { 4082 /* 4083 * Avoid overflow. 4084 * If inc causes overflow, untouch promisc and return error. 4085 */ 4086 if (inc < 0) 4087 dev->flags &= ~IFF_PROMISC; 4088 else { 4089 dev->promiscuity -= inc; 4090 printk(KERN_WARNING "%s: promiscuity touches roof, " 4091 "set promiscuity failed, promiscuity feature " 4092 "of device might be broken.\n", dev->name); 4093 return -EOVERFLOW; 4094 } 4095 } 4096 if (dev->flags != old_flags) { 4097 printk(KERN_INFO "device %s %s promiscuous mode\n", 4098 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4099 "left"); 4100 if (audit_enabled) { 4101 current_uid_gid(&uid, &gid); 4102 audit_log(current->audit_context, GFP_ATOMIC, 4103 AUDIT_ANOM_PROMISCUOUS, 4104 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4105 dev->name, (dev->flags & IFF_PROMISC), 4106 (old_flags & IFF_PROMISC), 4107 audit_get_loginuid(current), 4108 uid, gid, 4109 audit_get_sessionid(current)); 4110 } 4111 4112 dev_change_rx_flags(dev, IFF_PROMISC); 4113 } 4114 return 0; 4115 } 4116 4117 /** 4118 * dev_set_promiscuity - update promiscuity count on a device 4119 * @dev: device 4120 * @inc: modifier 4121 * 4122 * Add or remove promiscuity from a device. While the count in the device 4123 * remains above zero the interface remains promiscuous. Once it hits zero 4124 * the device reverts back to normal filtering operation. A negative inc 4125 * value is used to drop promiscuity on the device. 4126 * Return 0 if successful or a negative errno code on error. 4127 */ 4128 int dev_set_promiscuity(struct net_device *dev, int inc) 4129 { 4130 unsigned short old_flags = dev->flags; 4131 int err; 4132 4133 err = __dev_set_promiscuity(dev, inc); 4134 if (err < 0) 4135 return err; 4136 if (dev->flags != old_flags) 4137 dev_set_rx_mode(dev); 4138 return err; 4139 } 4140 EXPORT_SYMBOL(dev_set_promiscuity); 4141 4142 /** 4143 * dev_set_allmulti - update allmulti count on a device 4144 * @dev: device 4145 * @inc: modifier 4146 * 4147 * Add or remove reception of all multicast frames to a device. While the 4148 * count in the device remains above zero the interface remains listening 4149 * to all interfaces. Once it hits zero the device reverts back to normal 4150 * filtering operation. A negative @inc value is used to drop the counter 4151 * when releasing a resource needing all multicasts. 4152 * Return 0 if successful or a negative errno code on error. 4153 */ 4154 4155 int dev_set_allmulti(struct net_device *dev, int inc) 4156 { 4157 unsigned short old_flags = dev->flags; 4158 4159 ASSERT_RTNL(); 4160 4161 dev->flags |= IFF_ALLMULTI; 4162 dev->allmulti += inc; 4163 if (dev->allmulti == 0) { 4164 /* 4165 * Avoid overflow. 4166 * If inc causes overflow, untouch allmulti and return error. 4167 */ 4168 if (inc < 0) 4169 dev->flags &= ~IFF_ALLMULTI; 4170 else { 4171 dev->allmulti -= inc; 4172 printk(KERN_WARNING "%s: allmulti touches roof, " 4173 "set allmulti failed, allmulti feature of " 4174 "device might be broken.\n", dev->name); 4175 return -EOVERFLOW; 4176 } 4177 } 4178 if (dev->flags ^ old_flags) { 4179 dev_change_rx_flags(dev, IFF_ALLMULTI); 4180 dev_set_rx_mode(dev); 4181 } 4182 return 0; 4183 } 4184 EXPORT_SYMBOL(dev_set_allmulti); 4185 4186 /* 4187 * Upload unicast and multicast address lists to device and 4188 * configure RX filtering. When the device doesn't support unicast 4189 * filtering it is put in promiscuous mode while unicast addresses 4190 * are present. 4191 */ 4192 void __dev_set_rx_mode(struct net_device *dev) 4193 { 4194 const struct net_device_ops *ops = dev->netdev_ops; 4195 4196 /* dev_open will call this function so the list will stay sane. */ 4197 if (!(dev->flags&IFF_UP)) 4198 return; 4199 4200 if (!netif_device_present(dev)) 4201 return; 4202 4203 if (ops->ndo_set_rx_mode) 4204 ops->ndo_set_rx_mode(dev); 4205 else { 4206 /* Unicast addresses changes may only happen under the rtnl, 4207 * therefore calling __dev_set_promiscuity here is safe. 4208 */ 4209 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4210 __dev_set_promiscuity(dev, 1); 4211 dev->uc_promisc = 1; 4212 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4213 __dev_set_promiscuity(dev, -1); 4214 dev->uc_promisc = 0; 4215 } 4216 4217 if (ops->ndo_set_multicast_list) 4218 ops->ndo_set_multicast_list(dev); 4219 } 4220 } 4221 4222 void dev_set_rx_mode(struct net_device *dev) 4223 { 4224 netif_addr_lock_bh(dev); 4225 __dev_set_rx_mode(dev); 4226 netif_addr_unlock_bh(dev); 4227 } 4228 4229 /** 4230 * dev_get_flags - get flags reported to userspace 4231 * @dev: device 4232 * 4233 * Get the combination of flag bits exported through APIs to userspace. 4234 */ 4235 unsigned dev_get_flags(const struct net_device *dev) 4236 { 4237 unsigned flags; 4238 4239 flags = (dev->flags & ~(IFF_PROMISC | 4240 IFF_ALLMULTI | 4241 IFF_RUNNING | 4242 IFF_LOWER_UP | 4243 IFF_DORMANT)) | 4244 (dev->gflags & (IFF_PROMISC | 4245 IFF_ALLMULTI)); 4246 4247 if (netif_running(dev)) { 4248 if (netif_oper_up(dev)) 4249 flags |= IFF_RUNNING; 4250 if (netif_carrier_ok(dev)) 4251 flags |= IFF_LOWER_UP; 4252 if (netif_dormant(dev)) 4253 flags |= IFF_DORMANT; 4254 } 4255 4256 return flags; 4257 } 4258 EXPORT_SYMBOL(dev_get_flags); 4259 4260 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4261 { 4262 int old_flags = dev->flags; 4263 int ret; 4264 4265 ASSERT_RTNL(); 4266 4267 /* 4268 * Set the flags on our device. 4269 */ 4270 4271 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4272 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4273 IFF_AUTOMEDIA)) | 4274 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4275 IFF_ALLMULTI)); 4276 4277 /* 4278 * Load in the correct multicast list now the flags have changed. 4279 */ 4280 4281 if ((old_flags ^ flags) & IFF_MULTICAST) 4282 dev_change_rx_flags(dev, IFF_MULTICAST); 4283 4284 dev_set_rx_mode(dev); 4285 4286 /* 4287 * Have we downed the interface. We handle IFF_UP ourselves 4288 * according to user attempts to set it, rather than blindly 4289 * setting it. 4290 */ 4291 4292 ret = 0; 4293 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4294 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4295 4296 if (!ret) 4297 dev_set_rx_mode(dev); 4298 } 4299 4300 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4301 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4302 4303 dev->gflags ^= IFF_PROMISC; 4304 dev_set_promiscuity(dev, inc); 4305 } 4306 4307 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4308 is important. Some (broken) drivers set IFF_PROMISC, when 4309 IFF_ALLMULTI is requested not asking us and not reporting. 4310 */ 4311 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4312 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4313 4314 dev->gflags ^= IFF_ALLMULTI; 4315 dev_set_allmulti(dev, inc); 4316 } 4317 4318 return ret; 4319 } 4320 4321 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4322 { 4323 unsigned int changes = dev->flags ^ old_flags; 4324 4325 if (changes & IFF_UP) { 4326 if (dev->flags & IFF_UP) 4327 call_netdevice_notifiers(NETDEV_UP, dev); 4328 else 4329 call_netdevice_notifiers(NETDEV_DOWN, dev); 4330 } 4331 4332 if (dev->flags & IFF_UP && 4333 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4334 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4335 } 4336 4337 /** 4338 * dev_change_flags - change device settings 4339 * @dev: device 4340 * @flags: device state flags 4341 * 4342 * Change settings on device based state flags. The flags are 4343 * in the userspace exported format. 4344 */ 4345 int dev_change_flags(struct net_device *dev, unsigned flags) 4346 { 4347 int ret, changes; 4348 int old_flags = dev->flags; 4349 4350 ret = __dev_change_flags(dev, flags); 4351 if (ret < 0) 4352 return ret; 4353 4354 changes = old_flags ^ dev->flags; 4355 if (changes) 4356 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4357 4358 __dev_notify_flags(dev, old_flags); 4359 return ret; 4360 } 4361 EXPORT_SYMBOL(dev_change_flags); 4362 4363 /** 4364 * dev_set_mtu - Change maximum transfer unit 4365 * @dev: device 4366 * @new_mtu: new transfer unit 4367 * 4368 * Change the maximum transfer size of the network device. 4369 */ 4370 int dev_set_mtu(struct net_device *dev, int new_mtu) 4371 { 4372 const struct net_device_ops *ops = dev->netdev_ops; 4373 int err; 4374 4375 if (new_mtu == dev->mtu) 4376 return 0; 4377 4378 /* MTU must be positive. */ 4379 if (new_mtu < 0) 4380 return -EINVAL; 4381 4382 if (!netif_device_present(dev)) 4383 return -ENODEV; 4384 4385 err = 0; 4386 if (ops->ndo_change_mtu) 4387 err = ops->ndo_change_mtu(dev, new_mtu); 4388 else 4389 dev->mtu = new_mtu; 4390 4391 if (!err && dev->flags & IFF_UP) 4392 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4393 return err; 4394 } 4395 EXPORT_SYMBOL(dev_set_mtu); 4396 4397 /** 4398 * dev_set_mac_address - Change Media Access Control Address 4399 * @dev: device 4400 * @sa: new address 4401 * 4402 * Change the hardware (MAC) address of the device 4403 */ 4404 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4405 { 4406 const struct net_device_ops *ops = dev->netdev_ops; 4407 int err; 4408 4409 if (!ops->ndo_set_mac_address) 4410 return -EOPNOTSUPP; 4411 if (sa->sa_family != dev->type) 4412 return -EINVAL; 4413 if (!netif_device_present(dev)) 4414 return -ENODEV; 4415 err = ops->ndo_set_mac_address(dev, sa); 4416 if (!err) 4417 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4418 return err; 4419 } 4420 EXPORT_SYMBOL(dev_set_mac_address); 4421 4422 /* 4423 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4424 */ 4425 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4426 { 4427 int err; 4428 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4429 4430 if (!dev) 4431 return -ENODEV; 4432 4433 switch (cmd) { 4434 case SIOCGIFFLAGS: /* Get interface flags */ 4435 ifr->ifr_flags = (short) dev_get_flags(dev); 4436 return 0; 4437 4438 case SIOCGIFMETRIC: /* Get the metric on the interface 4439 (currently unused) */ 4440 ifr->ifr_metric = 0; 4441 return 0; 4442 4443 case SIOCGIFMTU: /* Get the MTU of a device */ 4444 ifr->ifr_mtu = dev->mtu; 4445 return 0; 4446 4447 case SIOCGIFHWADDR: 4448 if (!dev->addr_len) 4449 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4450 else 4451 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4452 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4453 ifr->ifr_hwaddr.sa_family = dev->type; 4454 return 0; 4455 4456 case SIOCGIFSLAVE: 4457 err = -EINVAL; 4458 break; 4459 4460 case SIOCGIFMAP: 4461 ifr->ifr_map.mem_start = dev->mem_start; 4462 ifr->ifr_map.mem_end = dev->mem_end; 4463 ifr->ifr_map.base_addr = dev->base_addr; 4464 ifr->ifr_map.irq = dev->irq; 4465 ifr->ifr_map.dma = dev->dma; 4466 ifr->ifr_map.port = dev->if_port; 4467 return 0; 4468 4469 case SIOCGIFINDEX: 4470 ifr->ifr_ifindex = dev->ifindex; 4471 return 0; 4472 4473 case SIOCGIFTXQLEN: 4474 ifr->ifr_qlen = dev->tx_queue_len; 4475 return 0; 4476 4477 default: 4478 /* dev_ioctl() should ensure this case 4479 * is never reached 4480 */ 4481 WARN_ON(1); 4482 err = -EINVAL; 4483 break; 4484 4485 } 4486 return err; 4487 } 4488 4489 /* 4490 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4491 */ 4492 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4493 { 4494 int err; 4495 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4496 const struct net_device_ops *ops; 4497 4498 if (!dev) 4499 return -ENODEV; 4500 4501 ops = dev->netdev_ops; 4502 4503 switch (cmd) { 4504 case SIOCSIFFLAGS: /* Set interface flags */ 4505 return dev_change_flags(dev, ifr->ifr_flags); 4506 4507 case SIOCSIFMETRIC: /* Set the metric on the interface 4508 (currently unused) */ 4509 return -EOPNOTSUPP; 4510 4511 case SIOCSIFMTU: /* Set the MTU of a device */ 4512 return dev_set_mtu(dev, ifr->ifr_mtu); 4513 4514 case SIOCSIFHWADDR: 4515 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4516 4517 case SIOCSIFHWBROADCAST: 4518 if (ifr->ifr_hwaddr.sa_family != dev->type) 4519 return -EINVAL; 4520 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4521 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4522 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4523 return 0; 4524 4525 case SIOCSIFMAP: 4526 if (ops->ndo_set_config) { 4527 if (!netif_device_present(dev)) 4528 return -ENODEV; 4529 return ops->ndo_set_config(dev, &ifr->ifr_map); 4530 } 4531 return -EOPNOTSUPP; 4532 4533 case SIOCADDMULTI: 4534 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4535 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4536 return -EINVAL; 4537 if (!netif_device_present(dev)) 4538 return -ENODEV; 4539 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4540 4541 case SIOCDELMULTI: 4542 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4543 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4544 return -EINVAL; 4545 if (!netif_device_present(dev)) 4546 return -ENODEV; 4547 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4548 4549 case SIOCSIFTXQLEN: 4550 if (ifr->ifr_qlen < 0) 4551 return -EINVAL; 4552 dev->tx_queue_len = ifr->ifr_qlen; 4553 return 0; 4554 4555 case SIOCSIFNAME: 4556 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4557 return dev_change_name(dev, ifr->ifr_newname); 4558 4559 /* 4560 * Unknown or private ioctl 4561 */ 4562 default: 4563 if ((cmd >= SIOCDEVPRIVATE && 4564 cmd <= SIOCDEVPRIVATE + 15) || 4565 cmd == SIOCBONDENSLAVE || 4566 cmd == SIOCBONDRELEASE || 4567 cmd == SIOCBONDSETHWADDR || 4568 cmd == SIOCBONDSLAVEINFOQUERY || 4569 cmd == SIOCBONDINFOQUERY || 4570 cmd == SIOCBONDCHANGEACTIVE || 4571 cmd == SIOCGMIIPHY || 4572 cmd == SIOCGMIIREG || 4573 cmd == SIOCSMIIREG || 4574 cmd == SIOCBRADDIF || 4575 cmd == SIOCBRDELIF || 4576 cmd == SIOCSHWTSTAMP || 4577 cmd == SIOCWANDEV) { 4578 err = -EOPNOTSUPP; 4579 if (ops->ndo_do_ioctl) { 4580 if (netif_device_present(dev)) 4581 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4582 else 4583 err = -ENODEV; 4584 } 4585 } else 4586 err = -EINVAL; 4587 4588 } 4589 return err; 4590 } 4591 4592 /* 4593 * This function handles all "interface"-type I/O control requests. The actual 4594 * 'doing' part of this is dev_ifsioc above. 4595 */ 4596 4597 /** 4598 * dev_ioctl - network device ioctl 4599 * @net: the applicable net namespace 4600 * @cmd: command to issue 4601 * @arg: pointer to a struct ifreq in user space 4602 * 4603 * Issue ioctl functions to devices. This is normally called by the 4604 * user space syscall interfaces but can sometimes be useful for 4605 * other purposes. The return value is the return from the syscall if 4606 * positive or a negative errno code on error. 4607 */ 4608 4609 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4610 { 4611 struct ifreq ifr; 4612 int ret; 4613 char *colon; 4614 4615 /* One special case: SIOCGIFCONF takes ifconf argument 4616 and requires shared lock, because it sleeps writing 4617 to user space. 4618 */ 4619 4620 if (cmd == SIOCGIFCONF) { 4621 rtnl_lock(); 4622 ret = dev_ifconf(net, (char __user *) arg); 4623 rtnl_unlock(); 4624 return ret; 4625 } 4626 if (cmd == SIOCGIFNAME) 4627 return dev_ifname(net, (struct ifreq __user *)arg); 4628 4629 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4630 return -EFAULT; 4631 4632 ifr.ifr_name[IFNAMSIZ-1] = 0; 4633 4634 colon = strchr(ifr.ifr_name, ':'); 4635 if (colon) 4636 *colon = 0; 4637 4638 /* 4639 * See which interface the caller is talking about. 4640 */ 4641 4642 switch (cmd) { 4643 /* 4644 * These ioctl calls: 4645 * - can be done by all. 4646 * - atomic and do not require locking. 4647 * - return a value 4648 */ 4649 case SIOCGIFFLAGS: 4650 case SIOCGIFMETRIC: 4651 case SIOCGIFMTU: 4652 case SIOCGIFHWADDR: 4653 case SIOCGIFSLAVE: 4654 case SIOCGIFMAP: 4655 case SIOCGIFINDEX: 4656 case SIOCGIFTXQLEN: 4657 dev_load(net, ifr.ifr_name); 4658 rcu_read_lock(); 4659 ret = dev_ifsioc_locked(net, &ifr, cmd); 4660 rcu_read_unlock(); 4661 if (!ret) { 4662 if (colon) 4663 *colon = ':'; 4664 if (copy_to_user(arg, &ifr, 4665 sizeof(struct ifreq))) 4666 ret = -EFAULT; 4667 } 4668 return ret; 4669 4670 case SIOCETHTOOL: 4671 dev_load(net, ifr.ifr_name); 4672 rtnl_lock(); 4673 ret = dev_ethtool(net, &ifr); 4674 rtnl_unlock(); 4675 if (!ret) { 4676 if (colon) 4677 *colon = ':'; 4678 if (copy_to_user(arg, &ifr, 4679 sizeof(struct ifreq))) 4680 ret = -EFAULT; 4681 } 4682 return ret; 4683 4684 /* 4685 * These ioctl calls: 4686 * - require superuser power. 4687 * - require strict serialization. 4688 * - return a value 4689 */ 4690 case SIOCGMIIPHY: 4691 case SIOCGMIIREG: 4692 case SIOCSIFNAME: 4693 if (!capable(CAP_NET_ADMIN)) 4694 return -EPERM; 4695 dev_load(net, ifr.ifr_name); 4696 rtnl_lock(); 4697 ret = dev_ifsioc(net, &ifr, cmd); 4698 rtnl_unlock(); 4699 if (!ret) { 4700 if (colon) 4701 *colon = ':'; 4702 if (copy_to_user(arg, &ifr, 4703 sizeof(struct ifreq))) 4704 ret = -EFAULT; 4705 } 4706 return ret; 4707 4708 /* 4709 * These ioctl calls: 4710 * - require superuser power. 4711 * - require strict serialization. 4712 * - do not return a value 4713 */ 4714 case SIOCSIFFLAGS: 4715 case SIOCSIFMETRIC: 4716 case SIOCSIFMTU: 4717 case SIOCSIFMAP: 4718 case SIOCSIFHWADDR: 4719 case SIOCSIFSLAVE: 4720 case SIOCADDMULTI: 4721 case SIOCDELMULTI: 4722 case SIOCSIFHWBROADCAST: 4723 case SIOCSIFTXQLEN: 4724 case SIOCSMIIREG: 4725 case SIOCBONDENSLAVE: 4726 case SIOCBONDRELEASE: 4727 case SIOCBONDSETHWADDR: 4728 case SIOCBONDCHANGEACTIVE: 4729 case SIOCBRADDIF: 4730 case SIOCBRDELIF: 4731 case SIOCSHWTSTAMP: 4732 if (!capable(CAP_NET_ADMIN)) 4733 return -EPERM; 4734 /* fall through */ 4735 case SIOCBONDSLAVEINFOQUERY: 4736 case SIOCBONDINFOQUERY: 4737 dev_load(net, ifr.ifr_name); 4738 rtnl_lock(); 4739 ret = dev_ifsioc(net, &ifr, cmd); 4740 rtnl_unlock(); 4741 return ret; 4742 4743 case SIOCGIFMEM: 4744 /* Get the per device memory space. We can add this but 4745 * currently do not support it */ 4746 case SIOCSIFMEM: 4747 /* Set the per device memory buffer space. 4748 * Not applicable in our case */ 4749 case SIOCSIFLINK: 4750 return -EINVAL; 4751 4752 /* 4753 * Unknown or private ioctl. 4754 */ 4755 default: 4756 if (cmd == SIOCWANDEV || 4757 (cmd >= SIOCDEVPRIVATE && 4758 cmd <= SIOCDEVPRIVATE + 15)) { 4759 dev_load(net, ifr.ifr_name); 4760 rtnl_lock(); 4761 ret = dev_ifsioc(net, &ifr, cmd); 4762 rtnl_unlock(); 4763 if (!ret && copy_to_user(arg, &ifr, 4764 sizeof(struct ifreq))) 4765 ret = -EFAULT; 4766 return ret; 4767 } 4768 /* Take care of Wireless Extensions */ 4769 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4770 return wext_handle_ioctl(net, &ifr, cmd, arg); 4771 return -EINVAL; 4772 } 4773 } 4774 4775 4776 /** 4777 * dev_new_index - allocate an ifindex 4778 * @net: the applicable net namespace 4779 * 4780 * Returns a suitable unique value for a new device interface 4781 * number. The caller must hold the rtnl semaphore or the 4782 * dev_base_lock to be sure it remains unique. 4783 */ 4784 static int dev_new_index(struct net *net) 4785 { 4786 static int ifindex; 4787 for (;;) { 4788 if (++ifindex <= 0) 4789 ifindex = 1; 4790 if (!__dev_get_by_index(net, ifindex)) 4791 return ifindex; 4792 } 4793 } 4794 4795 /* Delayed registration/unregisteration */ 4796 static LIST_HEAD(net_todo_list); 4797 4798 static void net_set_todo(struct net_device *dev) 4799 { 4800 list_add_tail(&dev->todo_list, &net_todo_list); 4801 } 4802 4803 static void rollback_registered_many(struct list_head *head) 4804 { 4805 struct net_device *dev, *tmp; 4806 4807 BUG_ON(dev_boot_phase); 4808 ASSERT_RTNL(); 4809 4810 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 4811 /* Some devices call without registering 4812 * for initialization unwind. Remove those 4813 * devices and proceed with the remaining. 4814 */ 4815 if (dev->reg_state == NETREG_UNINITIALIZED) { 4816 pr_debug("unregister_netdevice: device %s/%p never " 4817 "was registered\n", dev->name, dev); 4818 4819 WARN_ON(1); 4820 list_del(&dev->unreg_list); 4821 continue; 4822 } 4823 4824 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4825 4826 /* If device is running, close it first. */ 4827 dev_close(dev); 4828 4829 /* And unlink it from device chain. */ 4830 unlist_netdevice(dev); 4831 4832 dev->reg_state = NETREG_UNREGISTERING; 4833 } 4834 4835 synchronize_net(); 4836 4837 list_for_each_entry(dev, head, unreg_list) { 4838 /* Shutdown queueing discipline. */ 4839 dev_shutdown(dev); 4840 4841 4842 /* Notify protocols, that we are about to destroy 4843 this device. They should clean all the things. 4844 */ 4845 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4846 4847 if (!dev->rtnl_link_ops || 4848 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 4849 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 4850 4851 /* 4852 * Flush the unicast and multicast chains 4853 */ 4854 dev_uc_flush(dev); 4855 dev_mc_flush(dev); 4856 4857 if (dev->netdev_ops->ndo_uninit) 4858 dev->netdev_ops->ndo_uninit(dev); 4859 4860 /* Notifier chain MUST detach us from master device. */ 4861 WARN_ON(dev->master); 4862 4863 /* Remove entries from kobject tree */ 4864 netdev_unregister_kobject(dev); 4865 } 4866 4867 /* Process any work delayed until the end of the batch */ 4868 dev = list_first_entry(head, struct net_device, unreg_list); 4869 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 4870 4871 rcu_barrier(); 4872 4873 list_for_each_entry(dev, head, unreg_list) 4874 dev_put(dev); 4875 } 4876 4877 static void rollback_registered(struct net_device *dev) 4878 { 4879 LIST_HEAD(single); 4880 4881 list_add(&dev->unreg_list, &single); 4882 rollback_registered_many(&single); 4883 } 4884 4885 static void __netdev_init_queue_locks_one(struct net_device *dev, 4886 struct netdev_queue *dev_queue, 4887 void *_unused) 4888 { 4889 spin_lock_init(&dev_queue->_xmit_lock); 4890 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4891 dev_queue->xmit_lock_owner = -1; 4892 } 4893 4894 static void netdev_init_queue_locks(struct net_device *dev) 4895 { 4896 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4897 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4898 } 4899 4900 unsigned long netdev_fix_features(unsigned long features, const char *name) 4901 { 4902 /* Fix illegal SG+CSUM combinations. */ 4903 if ((features & NETIF_F_SG) && 4904 !(features & NETIF_F_ALL_CSUM)) { 4905 if (name) 4906 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4907 "checksum feature.\n", name); 4908 features &= ~NETIF_F_SG; 4909 } 4910 4911 /* TSO requires that SG is present as well. */ 4912 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4913 if (name) 4914 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4915 "SG feature.\n", name); 4916 features &= ~NETIF_F_TSO; 4917 } 4918 4919 if (features & NETIF_F_UFO) { 4920 if (!(features & NETIF_F_GEN_CSUM)) { 4921 if (name) 4922 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4923 "since no NETIF_F_HW_CSUM feature.\n", 4924 name); 4925 features &= ~NETIF_F_UFO; 4926 } 4927 4928 if (!(features & NETIF_F_SG)) { 4929 if (name) 4930 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4931 "since no NETIF_F_SG feature.\n", name); 4932 features &= ~NETIF_F_UFO; 4933 } 4934 } 4935 4936 return features; 4937 } 4938 EXPORT_SYMBOL(netdev_fix_features); 4939 4940 /** 4941 * netif_stacked_transfer_operstate - transfer operstate 4942 * @rootdev: the root or lower level device to transfer state from 4943 * @dev: the device to transfer operstate to 4944 * 4945 * Transfer operational state from root to device. This is normally 4946 * called when a stacking relationship exists between the root 4947 * device and the device(a leaf device). 4948 */ 4949 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 4950 struct net_device *dev) 4951 { 4952 if (rootdev->operstate == IF_OPER_DORMANT) 4953 netif_dormant_on(dev); 4954 else 4955 netif_dormant_off(dev); 4956 4957 if (netif_carrier_ok(rootdev)) { 4958 if (!netif_carrier_ok(dev)) 4959 netif_carrier_on(dev); 4960 } else { 4961 if (netif_carrier_ok(dev)) 4962 netif_carrier_off(dev); 4963 } 4964 } 4965 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 4966 4967 static int netif_alloc_rx_queues(struct net_device *dev) 4968 { 4969 #ifdef CONFIG_RPS 4970 unsigned int i, count = dev->num_rx_queues; 4971 4972 if (count) { 4973 struct netdev_rx_queue *rx; 4974 4975 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 4976 if (!rx) { 4977 pr_err("netdev: Unable to allocate %u rx queues.\n", 4978 count); 4979 return -ENOMEM; 4980 } 4981 dev->_rx = rx; 4982 atomic_set(&rx->count, count); 4983 4984 /* 4985 * Set a pointer to first element in the array which holds the 4986 * reference count. 4987 */ 4988 for (i = 0; i < count; i++) 4989 rx[i].first = rx; 4990 } 4991 #endif 4992 return 0; 4993 } 4994 4995 /** 4996 * register_netdevice - register a network device 4997 * @dev: device to register 4998 * 4999 * Take a completed network device structure and add it to the kernel 5000 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5001 * chain. 0 is returned on success. A negative errno code is returned 5002 * on a failure to set up the device, or if the name is a duplicate. 5003 * 5004 * Callers must hold the rtnl semaphore. You may want 5005 * register_netdev() instead of this. 5006 * 5007 * BUGS: 5008 * The locking appears insufficient to guarantee two parallel registers 5009 * will not get the same name. 5010 */ 5011 5012 int register_netdevice(struct net_device *dev) 5013 { 5014 int ret; 5015 struct net *net = dev_net(dev); 5016 5017 BUG_ON(dev_boot_phase); 5018 ASSERT_RTNL(); 5019 5020 might_sleep(); 5021 5022 /* When net_device's are persistent, this will be fatal. */ 5023 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5024 BUG_ON(!net); 5025 5026 spin_lock_init(&dev->addr_list_lock); 5027 netdev_set_addr_lockdep_class(dev); 5028 netdev_init_queue_locks(dev); 5029 5030 dev->iflink = -1; 5031 5032 ret = netif_alloc_rx_queues(dev); 5033 if (ret) 5034 goto out; 5035 5036 /* Init, if this function is available */ 5037 if (dev->netdev_ops->ndo_init) { 5038 ret = dev->netdev_ops->ndo_init(dev); 5039 if (ret) { 5040 if (ret > 0) 5041 ret = -EIO; 5042 goto out; 5043 } 5044 } 5045 5046 ret = dev_get_valid_name(dev, dev->name, 0); 5047 if (ret) 5048 goto err_uninit; 5049 5050 dev->ifindex = dev_new_index(net); 5051 if (dev->iflink == -1) 5052 dev->iflink = dev->ifindex; 5053 5054 /* Fix illegal checksum combinations */ 5055 if ((dev->features & NETIF_F_HW_CSUM) && 5056 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5057 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 5058 dev->name); 5059 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5060 } 5061 5062 if ((dev->features & NETIF_F_NO_CSUM) && 5063 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5064 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 5065 dev->name); 5066 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5067 } 5068 5069 dev->features = netdev_fix_features(dev->features, dev->name); 5070 5071 /* Enable software GSO if SG is supported. */ 5072 if (dev->features & NETIF_F_SG) 5073 dev->features |= NETIF_F_GSO; 5074 5075 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default, 5076 * vlan_dev_init() will do the dev->features check, so these features 5077 * are enabled only if supported by underlying device. 5078 */ 5079 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA); 5080 5081 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5082 ret = notifier_to_errno(ret); 5083 if (ret) 5084 goto err_uninit; 5085 5086 ret = netdev_register_kobject(dev); 5087 if (ret) 5088 goto err_uninit; 5089 dev->reg_state = NETREG_REGISTERED; 5090 5091 /* 5092 * Default initial state at registry is that the 5093 * device is present. 5094 */ 5095 5096 set_bit(__LINK_STATE_PRESENT, &dev->state); 5097 5098 dev_init_scheduler(dev); 5099 dev_hold(dev); 5100 list_netdevice(dev); 5101 5102 /* Notify protocols, that a new device appeared. */ 5103 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5104 ret = notifier_to_errno(ret); 5105 if (ret) { 5106 rollback_registered(dev); 5107 dev->reg_state = NETREG_UNREGISTERED; 5108 } 5109 /* 5110 * Prevent userspace races by waiting until the network 5111 * device is fully setup before sending notifications. 5112 */ 5113 if (!dev->rtnl_link_ops || 5114 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5115 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5116 5117 out: 5118 return ret; 5119 5120 err_uninit: 5121 if (dev->netdev_ops->ndo_uninit) 5122 dev->netdev_ops->ndo_uninit(dev); 5123 goto out; 5124 } 5125 EXPORT_SYMBOL(register_netdevice); 5126 5127 /** 5128 * init_dummy_netdev - init a dummy network device for NAPI 5129 * @dev: device to init 5130 * 5131 * This takes a network device structure and initialize the minimum 5132 * amount of fields so it can be used to schedule NAPI polls without 5133 * registering a full blown interface. This is to be used by drivers 5134 * that need to tie several hardware interfaces to a single NAPI 5135 * poll scheduler due to HW limitations. 5136 */ 5137 int init_dummy_netdev(struct net_device *dev) 5138 { 5139 /* Clear everything. Note we don't initialize spinlocks 5140 * are they aren't supposed to be taken by any of the 5141 * NAPI code and this dummy netdev is supposed to be 5142 * only ever used for NAPI polls 5143 */ 5144 memset(dev, 0, sizeof(struct net_device)); 5145 5146 /* make sure we BUG if trying to hit standard 5147 * register/unregister code path 5148 */ 5149 dev->reg_state = NETREG_DUMMY; 5150 5151 /* initialize the ref count */ 5152 atomic_set(&dev->refcnt, 1); 5153 5154 /* NAPI wants this */ 5155 INIT_LIST_HEAD(&dev->napi_list); 5156 5157 /* a dummy interface is started by default */ 5158 set_bit(__LINK_STATE_PRESENT, &dev->state); 5159 set_bit(__LINK_STATE_START, &dev->state); 5160 5161 return 0; 5162 } 5163 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5164 5165 5166 /** 5167 * register_netdev - register a network device 5168 * @dev: device to register 5169 * 5170 * Take a completed network device structure and add it to the kernel 5171 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5172 * chain. 0 is returned on success. A negative errno code is returned 5173 * on a failure to set up the device, or if the name is a duplicate. 5174 * 5175 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5176 * and expands the device name if you passed a format string to 5177 * alloc_netdev. 5178 */ 5179 int register_netdev(struct net_device *dev) 5180 { 5181 int err; 5182 5183 rtnl_lock(); 5184 5185 /* 5186 * If the name is a format string the caller wants us to do a 5187 * name allocation. 5188 */ 5189 if (strchr(dev->name, '%')) { 5190 err = dev_alloc_name(dev, dev->name); 5191 if (err < 0) 5192 goto out; 5193 } 5194 5195 err = register_netdevice(dev); 5196 out: 5197 rtnl_unlock(); 5198 return err; 5199 } 5200 EXPORT_SYMBOL(register_netdev); 5201 5202 /* 5203 * netdev_wait_allrefs - wait until all references are gone. 5204 * 5205 * This is called when unregistering network devices. 5206 * 5207 * Any protocol or device that holds a reference should register 5208 * for netdevice notification, and cleanup and put back the 5209 * reference if they receive an UNREGISTER event. 5210 * We can get stuck here if buggy protocols don't correctly 5211 * call dev_put. 5212 */ 5213 static void netdev_wait_allrefs(struct net_device *dev) 5214 { 5215 unsigned long rebroadcast_time, warning_time; 5216 5217 linkwatch_forget_dev(dev); 5218 5219 rebroadcast_time = warning_time = jiffies; 5220 while (atomic_read(&dev->refcnt) != 0) { 5221 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5222 rtnl_lock(); 5223 5224 /* Rebroadcast unregister notification */ 5225 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5226 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5227 * should have already handle it the first time */ 5228 5229 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5230 &dev->state)) { 5231 /* We must not have linkwatch events 5232 * pending on unregister. If this 5233 * happens, we simply run the queue 5234 * unscheduled, resulting in a noop 5235 * for this device. 5236 */ 5237 linkwatch_run_queue(); 5238 } 5239 5240 __rtnl_unlock(); 5241 5242 rebroadcast_time = jiffies; 5243 } 5244 5245 msleep(250); 5246 5247 if (time_after(jiffies, warning_time + 10 * HZ)) { 5248 printk(KERN_EMERG "unregister_netdevice: " 5249 "waiting for %s to become free. Usage " 5250 "count = %d\n", 5251 dev->name, atomic_read(&dev->refcnt)); 5252 warning_time = jiffies; 5253 } 5254 } 5255 } 5256 5257 /* The sequence is: 5258 * 5259 * rtnl_lock(); 5260 * ... 5261 * register_netdevice(x1); 5262 * register_netdevice(x2); 5263 * ... 5264 * unregister_netdevice(y1); 5265 * unregister_netdevice(y2); 5266 * ... 5267 * rtnl_unlock(); 5268 * free_netdev(y1); 5269 * free_netdev(y2); 5270 * 5271 * We are invoked by rtnl_unlock(). 5272 * This allows us to deal with problems: 5273 * 1) We can delete sysfs objects which invoke hotplug 5274 * without deadlocking with linkwatch via keventd. 5275 * 2) Since we run with the RTNL semaphore not held, we can sleep 5276 * safely in order to wait for the netdev refcnt to drop to zero. 5277 * 5278 * We must not return until all unregister events added during 5279 * the interval the lock was held have been completed. 5280 */ 5281 void netdev_run_todo(void) 5282 { 5283 struct list_head list; 5284 5285 /* Snapshot list, allow later requests */ 5286 list_replace_init(&net_todo_list, &list); 5287 5288 __rtnl_unlock(); 5289 5290 while (!list_empty(&list)) { 5291 struct net_device *dev 5292 = list_first_entry(&list, struct net_device, todo_list); 5293 list_del(&dev->todo_list); 5294 5295 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5296 printk(KERN_ERR "network todo '%s' but state %d\n", 5297 dev->name, dev->reg_state); 5298 dump_stack(); 5299 continue; 5300 } 5301 5302 dev->reg_state = NETREG_UNREGISTERED; 5303 5304 on_each_cpu(flush_backlog, dev, 1); 5305 5306 netdev_wait_allrefs(dev); 5307 5308 /* paranoia */ 5309 BUG_ON(atomic_read(&dev->refcnt)); 5310 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5311 WARN_ON(dev->ip6_ptr); 5312 WARN_ON(dev->dn_ptr); 5313 5314 if (dev->destructor) 5315 dev->destructor(dev); 5316 5317 /* Free network device */ 5318 kobject_put(&dev->dev.kobj); 5319 } 5320 } 5321 5322 /** 5323 * dev_txq_stats_fold - fold tx_queues stats 5324 * @dev: device to get statistics from 5325 * @stats: struct rtnl_link_stats64 to hold results 5326 */ 5327 void dev_txq_stats_fold(const struct net_device *dev, 5328 struct rtnl_link_stats64 *stats) 5329 { 5330 u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5331 unsigned int i; 5332 struct netdev_queue *txq; 5333 5334 for (i = 0; i < dev->num_tx_queues; i++) { 5335 txq = netdev_get_tx_queue(dev, i); 5336 spin_lock_bh(&txq->_xmit_lock); 5337 tx_bytes += txq->tx_bytes; 5338 tx_packets += txq->tx_packets; 5339 tx_dropped += txq->tx_dropped; 5340 spin_unlock_bh(&txq->_xmit_lock); 5341 } 5342 if (tx_bytes || tx_packets || tx_dropped) { 5343 stats->tx_bytes = tx_bytes; 5344 stats->tx_packets = tx_packets; 5345 stats->tx_dropped = tx_dropped; 5346 } 5347 } 5348 EXPORT_SYMBOL(dev_txq_stats_fold); 5349 5350 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5351 * fields in the same order, with only the type differing. 5352 */ 5353 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5354 const struct net_device_stats *netdev_stats) 5355 { 5356 #if BITS_PER_LONG == 64 5357 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5358 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5359 #else 5360 size_t i, n = sizeof(*stats64) / sizeof(u64); 5361 const unsigned long *src = (const unsigned long *)netdev_stats; 5362 u64 *dst = (u64 *)stats64; 5363 5364 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5365 sizeof(*stats64) / sizeof(u64)); 5366 for (i = 0; i < n; i++) 5367 dst[i] = src[i]; 5368 #endif 5369 } 5370 5371 /** 5372 * dev_get_stats - get network device statistics 5373 * @dev: device to get statistics from 5374 * @storage: place to store stats 5375 * 5376 * Get network statistics from device. Return @storage. 5377 * The device driver may provide its own method by setting 5378 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5379 * otherwise the internal statistics structure is used. 5380 */ 5381 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5382 struct rtnl_link_stats64 *storage) 5383 { 5384 const struct net_device_ops *ops = dev->netdev_ops; 5385 5386 if (ops->ndo_get_stats64) { 5387 memset(storage, 0, sizeof(*storage)); 5388 return ops->ndo_get_stats64(dev, storage); 5389 } 5390 if (ops->ndo_get_stats) { 5391 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5392 return storage; 5393 } 5394 netdev_stats_to_stats64(storage, &dev->stats); 5395 dev_txq_stats_fold(dev, storage); 5396 return storage; 5397 } 5398 EXPORT_SYMBOL(dev_get_stats); 5399 5400 static void netdev_init_one_queue(struct net_device *dev, 5401 struct netdev_queue *queue, 5402 void *_unused) 5403 { 5404 queue->dev = dev; 5405 } 5406 5407 static void netdev_init_queues(struct net_device *dev) 5408 { 5409 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5410 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5411 spin_lock_init(&dev->tx_global_lock); 5412 } 5413 5414 /** 5415 * alloc_netdev_mq - allocate network device 5416 * @sizeof_priv: size of private data to allocate space for 5417 * @name: device name format string 5418 * @setup: callback to initialize device 5419 * @queue_count: the number of subqueues to allocate 5420 * 5421 * Allocates a struct net_device with private data area for driver use 5422 * and performs basic initialization. Also allocates subquue structs 5423 * for each queue on the device at the end of the netdevice. 5424 */ 5425 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5426 void (*setup)(struct net_device *), unsigned int queue_count) 5427 { 5428 struct netdev_queue *tx; 5429 struct net_device *dev; 5430 size_t alloc_size; 5431 struct net_device *p; 5432 5433 BUG_ON(strlen(name) >= sizeof(dev->name)); 5434 5435 alloc_size = sizeof(struct net_device); 5436 if (sizeof_priv) { 5437 /* ensure 32-byte alignment of private area */ 5438 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5439 alloc_size += sizeof_priv; 5440 } 5441 /* ensure 32-byte alignment of whole construct */ 5442 alloc_size += NETDEV_ALIGN - 1; 5443 5444 p = kzalloc(alloc_size, GFP_KERNEL); 5445 if (!p) { 5446 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5447 return NULL; 5448 } 5449 5450 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5451 if (!tx) { 5452 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5453 "tx qdiscs.\n"); 5454 goto free_p; 5455 } 5456 5457 5458 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5459 dev->padded = (char *)dev - (char *)p; 5460 5461 if (dev_addr_init(dev)) 5462 goto free_tx; 5463 5464 dev_mc_init(dev); 5465 dev_uc_init(dev); 5466 5467 dev_net_set(dev, &init_net); 5468 5469 dev->_tx = tx; 5470 dev->num_tx_queues = queue_count; 5471 dev->real_num_tx_queues = queue_count; 5472 5473 #ifdef CONFIG_RPS 5474 dev->num_rx_queues = queue_count; 5475 #endif 5476 5477 dev->gso_max_size = GSO_MAX_SIZE; 5478 5479 netdev_init_queues(dev); 5480 5481 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5482 dev->ethtool_ntuple_list.count = 0; 5483 INIT_LIST_HEAD(&dev->napi_list); 5484 INIT_LIST_HEAD(&dev->unreg_list); 5485 INIT_LIST_HEAD(&dev->link_watch_list); 5486 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5487 setup(dev); 5488 strcpy(dev->name, name); 5489 return dev; 5490 5491 free_tx: 5492 kfree(tx); 5493 free_p: 5494 kfree(p); 5495 return NULL; 5496 } 5497 EXPORT_SYMBOL(alloc_netdev_mq); 5498 5499 /** 5500 * free_netdev - free network device 5501 * @dev: device 5502 * 5503 * This function does the last stage of destroying an allocated device 5504 * interface. The reference to the device object is released. 5505 * If this is the last reference then it will be freed. 5506 */ 5507 void free_netdev(struct net_device *dev) 5508 { 5509 struct napi_struct *p, *n; 5510 5511 release_net(dev_net(dev)); 5512 5513 kfree(dev->_tx); 5514 5515 /* Flush device addresses */ 5516 dev_addr_flush(dev); 5517 5518 /* Clear ethtool n-tuple list */ 5519 ethtool_ntuple_flush(dev); 5520 5521 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5522 netif_napi_del(p); 5523 5524 /* Compatibility with error handling in drivers */ 5525 if (dev->reg_state == NETREG_UNINITIALIZED) { 5526 kfree((char *)dev - dev->padded); 5527 return; 5528 } 5529 5530 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5531 dev->reg_state = NETREG_RELEASED; 5532 5533 /* will free via device release */ 5534 put_device(&dev->dev); 5535 } 5536 EXPORT_SYMBOL(free_netdev); 5537 5538 /** 5539 * synchronize_net - Synchronize with packet receive processing 5540 * 5541 * Wait for packets currently being received to be done. 5542 * Does not block later packets from starting. 5543 */ 5544 void synchronize_net(void) 5545 { 5546 might_sleep(); 5547 synchronize_rcu(); 5548 } 5549 EXPORT_SYMBOL(synchronize_net); 5550 5551 /** 5552 * unregister_netdevice_queue - remove device from the kernel 5553 * @dev: device 5554 * @head: list 5555 * 5556 * This function shuts down a device interface and removes it 5557 * from the kernel tables. 5558 * If head not NULL, device is queued to be unregistered later. 5559 * 5560 * Callers must hold the rtnl semaphore. You may want 5561 * unregister_netdev() instead of this. 5562 */ 5563 5564 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5565 { 5566 ASSERT_RTNL(); 5567 5568 if (head) { 5569 list_move_tail(&dev->unreg_list, head); 5570 } else { 5571 rollback_registered(dev); 5572 /* Finish processing unregister after unlock */ 5573 net_set_todo(dev); 5574 } 5575 } 5576 EXPORT_SYMBOL(unregister_netdevice_queue); 5577 5578 /** 5579 * unregister_netdevice_many - unregister many devices 5580 * @head: list of devices 5581 */ 5582 void unregister_netdevice_many(struct list_head *head) 5583 { 5584 struct net_device *dev; 5585 5586 if (!list_empty(head)) { 5587 rollback_registered_many(head); 5588 list_for_each_entry(dev, head, unreg_list) 5589 net_set_todo(dev); 5590 } 5591 } 5592 EXPORT_SYMBOL(unregister_netdevice_many); 5593 5594 /** 5595 * unregister_netdev - remove device from the kernel 5596 * @dev: device 5597 * 5598 * This function shuts down a device interface and removes it 5599 * from the kernel tables. 5600 * 5601 * This is just a wrapper for unregister_netdevice that takes 5602 * the rtnl semaphore. In general you want to use this and not 5603 * unregister_netdevice. 5604 */ 5605 void unregister_netdev(struct net_device *dev) 5606 { 5607 rtnl_lock(); 5608 unregister_netdevice(dev); 5609 rtnl_unlock(); 5610 } 5611 EXPORT_SYMBOL(unregister_netdev); 5612 5613 /** 5614 * dev_change_net_namespace - move device to different nethost namespace 5615 * @dev: device 5616 * @net: network namespace 5617 * @pat: If not NULL name pattern to try if the current device name 5618 * is already taken in the destination network namespace. 5619 * 5620 * This function shuts down a device interface and moves it 5621 * to a new network namespace. On success 0 is returned, on 5622 * a failure a netagive errno code is returned. 5623 * 5624 * Callers must hold the rtnl semaphore. 5625 */ 5626 5627 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5628 { 5629 int err; 5630 5631 ASSERT_RTNL(); 5632 5633 /* Don't allow namespace local devices to be moved. */ 5634 err = -EINVAL; 5635 if (dev->features & NETIF_F_NETNS_LOCAL) 5636 goto out; 5637 5638 /* Ensure the device has been registrered */ 5639 err = -EINVAL; 5640 if (dev->reg_state != NETREG_REGISTERED) 5641 goto out; 5642 5643 /* Get out if there is nothing todo */ 5644 err = 0; 5645 if (net_eq(dev_net(dev), net)) 5646 goto out; 5647 5648 /* Pick the destination device name, and ensure 5649 * we can use it in the destination network namespace. 5650 */ 5651 err = -EEXIST; 5652 if (__dev_get_by_name(net, dev->name)) { 5653 /* We get here if we can't use the current device name */ 5654 if (!pat) 5655 goto out; 5656 if (dev_get_valid_name(dev, pat, 1)) 5657 goto out; 5658 } 5659 5660 /* 5661 * And now a mini version of register_netdevice unregister_netdevice. 5662 */ 5663 5664 /* If device is running close it first. */ 5665 dev_close(dev); 5666 5667 /* And unlink it from device chain */ 5668 err = -ENODEV; 5669 unlist_netdevice(dev); 5670 5671 synchronize_net(); 5672 5673 /* Shutdown queueing discipline. */ 5674 dev_shutdown(dev); 5675 5676 /* Notify protocols, that we are about to destroy 5677 this device. They should clean all the things. 5678 5679 Note that dev->reg_state stays at NETREG_REGISTERED. 5680 This is wanted because this way 8021q and macvlan know 5681 the device is just moving and can keep their slaves up. 5682 */ 5683 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5684 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5685 5686 /* 5687 * Flush the unicast and multicast chains 5688 */ 5689 dev_uc_flush(dev); 5690 dev_mc_flush(dev); 5691 5692 /* Actually switch the network namespace */ 5693 dev_net_set(dev, net); 5694 5695 /* If there is an ifindex conflict assign a new one */ 5696 if (__dev_get_by_index(net, dev->ifindex)) { 5697 int iflink = (dev->iflink == dev->ifindex); 5698 dev->ifindex = dev_new_index(net); 5699 if (iflink) 5700 dev->iflink = dev->ifindex; 5701 } 5702 5703 /* Fixup kobjects */ 5704 err = device_rename(&dev->dev, dev->name); 5705 WARN_ON(err); 5706 5707 /* Add the device back in the hashes */ 5708 list_netdevice(dev); 5709 5710 /* Notify protocols, that a new device appeared. */ 5711 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5712 5713 /* 5714 * Prevent userspace races by waiting until the network 5715 * device is fully setup before sending notifications. 5716 */ 5717 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5718 5719 synchronize_net(); 5720 err = 0; 5721 out: 5722 return err; 5723 } 5724 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 5725 5726 static int dev_cpu_callback(struct notifier_block *nfb, 5727 unsigned long action, 5728 void *ocpu) 5729 { 5730 struct sk_buff **list_skb; 5731 struct sk_buff *skb; 5732 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5733 struct softnet_data *sd, *oldsd; 5734 5735 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5736 return NOTIFY_OK; 5737 5738 local_irq_disable(); 5739 cpu = smp_processor_id(); 5740 sd = &per_cpu(softnet_data, cpu); 5741 oldsd = &per_cpu(softnet_data, oldcpu); 5742 5743 /* Find end of our completion_queue. */ 5744 list_skb = &sd->completion_queue; 5745 while (*list_skb) 5746 list_skb = &(*list_skb)->next; 5747 /* Append completion queue from offline CPU. */ 5748 *list_skb = oldsd->completion_queue; 5749 oldsd->completion_queue = NULL; 5750 5751 /* Append output queue from offline CPU. */ 5752 if (oldsd->output_queue) { 5753 *sd->output_queue_tailp = oldsd->output_queue; 5754 sd->output_queue_tailp = oldsd->output_queue_tailp; 5755 oldsd->output_queue = NULL; 5756 oldsd->output_queue_tailp = &oldsd->output_queue; 5757 } 5758 5759 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5760 local_irq_enable(); 5761 5762 /* Process offline CPU's input_pkt_queue */ 5763 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 5764 netif_rx(skb); 5765 input_queue_head_incr(oldsd); 5766 } 5767 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 5768 netif_rx(skb); 5769 input_queue_head_incr(oldsd); 5770 } 5771 5772 return NOTIFY_OK; 5773 } 5774 5775 5776 /** 5777 * netdev_increment_features - increment feature set by one 5778 * @all: current feature set 5779 * @one: new feature set 5780 * @mask: mask feature set 5781 * 5782 * Computes a new feature set after adding a device with feature set 5783 * @one to the master device with current feature set @all. Will not 5784 * enable anything that is off in @mask. Returns the new feature set. 5785 */ 5786 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5787 unsigned long mask) 5788 { 5789 /* If device needs checksumming, downgrade to it. */ 5790 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5791 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5792 else if (mask & NETIF_F_ALL_CSUM) { 5793 /* If one device supports v4/v6 checksumming, set for all. */ 5794 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5795 !(all & NETIF_F_GEN_CSUM)) { 5796 all &= ~NETIF_F_ALL_CSUM; 5797 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5798 } 5799 5800 /* If one device supports hw checksumming, set for all. */ 5801 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5802 all &= ~NETIF_F_ALL_CSUM; 5803 all |= NETIF_F_HW_CSUM; 5804 } 5805 } 5806 5807 one |= NETIF_F_ALL_CSUM; 5808 5809 one |= all & NETIF_F_ONE_FOR_ALL; 5810 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO; 5811 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5812 5813 return all; 5814 } 5815 EXPORT_SYMBOL(netdev_increment_features); 5816 5817 static struct hlist_head *netdev_create_hash(void) 5818 { 5819 int i; 5820 struct hlist_head *hash; 5821 5822 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5823 if (hash != NULL) 5824 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5825 INIT_HLIST_HEAD(&hash[i]); 5826 5827 return hash; 5828 } 5829 5830 /* Initialize per network namespace state */ 5831 static int __net_init netdev_init(struct net *net) 5832 { 5833 INIT_LIST_HEAD(&net->dev_base_head); 5834 5835 net->dev_name_head = netdev_create_hash(); 5836 if (net->dev_name_head == NULL) 5837 goto err_name; 5838 5839 net->dev_index_head = netdev_create_hash(); 5840 if (net->dev_index_head == NULL) 5841 goto err_idx; 5842 5843 return 0; 5844 5845 err_idx: 5846 kfree(net->dev_name_head); 5847 err_name: 5848 return -ENOMEM; 5849 } 5850 5851 /** 5852 * netdev_drivername - network driver for the device 5853 * @dev: network device 5854 * @buffer: buffer for resulting name 5855 * @len: size of buffer 5856 * 5857 * Determine network driver for device. 5858 */ 5859 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5860 { 5861 const struct device_driver *driver; 5862 const struct device *parent; 5863 5864 if (len <= 0 || !buffer) 5865 return buffer; 5866 buffer[0] = 0; 5867 5868 parent = dev->dev.parent; 5869 5870 if (!parent) 5871 return buffer; 5872 5873 driver = parent->driver; 5874 if (driver && driver->name) 5875 strlcpy(buffer, driver->name, len); 5876 return buffer; 5877 } 5878 5879 static int __netdev_printk(const char *level, const struct net_device *dev, 5880 struct va_format *vaf) 5881 { 5882 int r; 5883 5884 if (dev && dev->dev.parent) 5885 r = dev_printk(level, dev->dev.parent, "%s: %pV", 5886 netdev_name(dev), vaf); 5887 else if (dev) 5888 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 5889 else 5890 r = printk("%s(NULL net_device): %pV", level, vaf); 5891 5892 return r; 5893 } 5894 5895 int netdev_printk(const char *level, const struct net_device *dev, 5896 const char *format, ...) 5897 { 5898 struct va_format vaf; 5899 va_list args; 5900 int r; 5901 5902 va_start(args, format); 5903 5904 vaf.fmt = format; 5905 vaf.va = &args; 5906 5907 r = __netdev_printk(level, dev, &vaf); 5908 va_end(args); 5909 5910 return r; 5911 } 5912 EXPORT_SYMBOL(netdev_printk); 5913 5914 #define define_netdev_printk_level(func, level) \ 5915 int func(const struct net_device *dev, const char *fmt, ...) \ 5916 { \ 5917 int r; \ 5918 struct va_format vaf; \ 5919 va_list args; \ 5920 \ 5921 va_start(args, fmt); \ 5922 \ 5923 vaf.fmt = fmt; \ 5924 vaf.va = &args; \ 5925 \ 5926 r = __netdev_printk(level, dev, &vaf); \ 5927 va_end(args); \ 5928 \ 5929 return r; \ 5930 } \ 5931 EXPORT_SYMBOL(func); 5932 5933 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 5934 define_netdev_printk_level(netdev_alert, KERN_ALERT); 5935 define_netdev_printk_level(netdev_crit, KERN_CRIT); 5936 define_netdev_printk_level(netdev_err, KERN_ERR); 5937 define_netdev_printk_level(netdev_warn, KERN_WARNING); 5938 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 5939 define_netdev_printk_level(netdev_info, KERN_INFO); 5940 5941 static void __net_exit netdev_exit(struct net *net) 5942 { 5943 kfree(net->dev_name_head); 5944 kfree(net->dev_index_head); 5945 } 5946 5947 static struct pernet_operations __net_initdata netdev_net_ops = { 5948 .init = netdev_init, 5949 .exit = netdev_exit, 5950 }; 5951 5952 static void __net_exit default_device_exit(struct net *net) 5953 { 5954 struct net_device *dev, *aux; 5955 /* 5956 * Push all migratable network devices back to the 5957 * initial network namespace 5958 */ 5959 rtnl_lock(); 5960 for_each_netdev_safe(net, dev, aux) { 5961 int err; 5962 char fb_name[IFNAMSIZ]; 5963 5964 /* Ignore unmoveable devices (i.e. loopback) */ 5965 if (dev->features & NETIF_F_NETNS_LOCAL) 5966 continue; 5967 5968 /* Leave virtual devices for the generic cleanup */ 5969 if (dev->rtnl_link_ops) 5970 continue; 5971 5972 /* Push remaing network devices to init_net */ 5973 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5974 err = dev_change_net_namespace(dev, &init_net, fb_name); 5975 if (err) { 5976 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5977 __func__, dev->name, err); 5978 BUG(); 5979 } 5980 } 5981 rtnl_unlock(); 5982 } 5983 5984 static void __net_exit default_device_exit_batch(struct list_head *net_list) 5985 { 5986 /* At exit all network devices most be removed from a network 5987 * namespace. Do this in the reverse order of registeration. 5988 * Do this across as many network namespaces as possible to 5989 * improve batching efficiency. 5990 */ 5991 struct net_device *dev; 5992 struct net *net; 5993 LIST_HEAD(dev_kill_list); 5994 5995 rtnl_lock(); 5996 list_for_each_entry(net, net_list, exit_list) { 5997 for_each_netdev_reverse(net, dev) { 5998 if (dev->rtnl_link_ops) 5999 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6000 else 6001 unregister_netdevice_queue(dev, &dev_kill_list); 6002 } 6003 } 6004 unregister_netdevice_many(&dev_kill_list); 6005 rtnl_unlock(); 6006 } 6007 6008 static struct pernet_operations __net_initdata default_device_ops = { 6009 .exit = default_device_exit, 6010 .exit_batch = default_device_exit_batch, 6011 }; 6012 6013 /* 6014 * Initialize the DEV module. At boot time this walks the device list and 6015 * unhooks any devices that fail to initialise (normally hardware not 6016 * present) and leaves us with a valid list of present and active devices. 6017 * 6018 */ 6019 6020 /* 6021 * This is called single threaded during boot, so no need 6022 * to take the rtnl semaphore. 6023 */ 6024 static int __init net_dev_init(void) 6025 { 6026 int i, rc = -ENOMEM; 6027 6028 BUG_ON(!dev_boot_phase); 6029 6030 if (dev_proc_init()) 6031 goto out; 6032 6033 if (netdev_kobject_init()) 6034 goto out; 6035 6036 INIT_LIST_HEAD(&ptype_all); 6037 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6038 INIT_LIST_HEAD(&ptype_base[i]); 6039 6040 if (register_pernet_subsys(&netdev_net_ops)) 6041 goto out; 6042 6043 /* 6044 * Initialise the packet receive queues. 6045 */ 6046 6047 for_each_possible_cpu(i) { 6048 struct softnet_data *sd = &per_cpu(softnet_data, i); 6049 6050 memset(sd, 0, sizeof(*sd)); 6051 skb_queue_head_init(&sd->input_pkt_queue); 6052 skb_queue_head_init(&sd->process_queue); 6053 sd->completion_queue = NULL; 6054 INIT_LIST_HEAD(&sd->poll_list); 6055 sd->output_queue = NULL; 6056 sd->output_queue_tailp = &sd->output_queue; 6057 #ifdef CONFIG_RPS 6058 sd->csd.func = rps_trigger_softirq; 6059 sd->csd.info = sd; 6060 sd->csd.flags = 0; 6061 sd->cpu = i; 6062 #endif 6063 6064 sd->backlog.poll = process_backlog; 6065 sd->backlog.weight = weight_p; 6066 sd->backlog.gro_list = NULL; 6067 sd->backlog.gro_count = 0; 6068 } 6069 6070 dev_boot_phase = 0; 6071 6072 /* The loopback device is special if any other network devices 6073 * is present in a network namespace the loopback device must 6074 * be present. Since we now dynamically allocate and free the 6075 * loopback device ensure this invariant is maintained by 6076 * keeping the loopback device as the first device on the 6077 * list of network devices. Ensuring the loopback devices 6078 * is the first device that appears and the last network device 6079 * that disappears. 6080 */ 6081 if (register_pernet_device(&loopback_net_ops)) 6082 goto out; 6083 6084 if (register_pernet_device(&default_device_ops)) 6085 goto out; 6086 6087 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6088 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6089 6090 hotcpu_notifier(dev_cpu_callback, 0); 6091 dst_init(); 6092 dev_mcast_init(); 6093 rc = 0; 6094 out: 6095 return rc; 6096 } 6097 6098 subsys_initcall(net_dev_init); 6099 6100 static int __init initialize_hashrnd(void) 6101 { 6102 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6103 return 0; 6104 } 6105 6106 late_initcall_sync(initialize_hashrnd); 6107 6108