1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Mark Evans, <[email protected]> 13 * 14 * Additional Authors: 15 * Florian la Roche <[email protected]> 16 * Alan Cox <[email protected]> 17 * David Hinds <[email protected]> 18 * Alexey Kuznetsov <[email protected]> 19 * Adam Sulmicki <[email protected]> 20 * Pekka Riikonen <[email protected]> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 131 #include "net-sysfs.h" 132 133 /* Instead of increasing this, you should create a hash table. */ 134 #define MAX_GRO_SKBS 8 135 136 /* This should be increased if a protocol with a bigger head is added. */ 137 #define GRO_MAX_HEAD (MAX_HEADER + 128) 138 139 /* 140 * The list of packet types we will receive (as opposed to discard) 141 * and the routines to invoke. 142 * 143 * Why 16. Because with 16 the only overlap we get on a hash of the 144 * low nibble of the protocol value is RARP/SNAP/X.25. 145 * 146 * NOTE: That is no longer true with the addition of VLAN tags. Not 147 * sure which should go first, but I bet it won't make much 148 * difference if we are running VLANs. The good news is that 149 * this protocol won't be in the list unless compiled in, so 150 * the average user (w/out VLANs) will not be adversely affected. 151 * --BLG 152 * 153 * 0800 IP 154 * 8100 802.1Q VLAN 155 * 0001 802.3 156 * 0002 AX.25 157 * 0004 802.2 158 * 8035 RARP 159 * 0005 SNAP 160 * 0805 X.25 161 * 0806 ARP 162 * 8137 IPX 163 * 0009 Localtalk 164 * 86DD IPv6 165 */ 166 167 #define PTYPE_HASH_SIZE (16) 168 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 169 170 static DEFINE_SPINLOCK(ptype_lock); 171 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 172 static struct list_head ptype_all __read_mostly; /* Taps */ 173 174 /* 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 176 * semaphore. 177 * 178 * Pure readers hold dev_base_lock for reading. 179 * 180 * Writers must hold the rtnl semaphore while they loop through the 181 * dev_base_head list, and hold dev_base_lock for writing when they do the 182 * actual updates. This allows pure readers to access the list even 183 * while a writer is preparing to update it. 184 * 185 * To put it another way, dev_base_lock is held for writing only to 186 * protect against pure readers; the rtnl semaphore provides the 187 * protection against other writers. 188 * 189 * See, for example usages, register_netdevice() and 190 * unregister_netdevice(), which must be called with the rtnl 191 * semaphore held. 192 */ 193 DEFINE_RWLOCK(dev_base_lock); 194 195 EXPORT_SYMBOL(dev_base_lock); 196 197 #define NETDEV_HASHBITS 8 198 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 199 200 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 201 { 202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 204 } 205 206 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 207 { 208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 209 } 210 211 /* Device list insertion */ 212 static int list_netdevice(struct net_device *dev) 213 { 214 struct net *net = dev_net(dev); 215 216 ASSERT_RTNL(); 217 218 write_lock_bh(&dev_base_lock); 219 list_add_tail(&dev->dev_list, &net->dev_base_head); 220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 222 write_unlock_bh(&dev_base_lock); 223 return 0; 224 } 225 226 /* Device list removal */ 227 static void unlist_netdevice(struct net_device *dev) 228 { 229 ASSERT_RTNL(); 230 231 /* Unlink dev from the device chain */ 232 write_lock_bh(&dev_base_lock); 233 list_del(&dev->dev_list); 234 hlist_del(&dev->name_hlist); 235 hlist_del(&dev->index_hlist); 236 write_unlock_bh(&dev_base_lock); 237 } 238 239 /* 240 * Our notifier list 241 */ 242 243 static RAW_NOTIFIER_HEAD(netdev_chain); 244 245 /* 246 * Device drivers call our routines to queue packets here. We empty the 247 * queue in the local softnet handler. 248 */ 249 250 DEFINE_PER_CPU(struct softnet_data, softnet_data); 251 252 #ifdef CONFIG_LOCKDEP 253 /* 254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 255 * according to dev->type 256 */ 257 static const unsigned short netdev_lock_type[] = 258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 272 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, ARPHRD_IEEE802154_PHY, 273 ARPHRD_VOID, ARPHRD_NONE}; 274 275 static const char *netdev_lock_name[] = 276 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 277 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 278 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 279 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 280 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 281 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 282 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 283 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 284 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 285 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 286 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 287 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 288 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 289 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 290 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", "_xmit_IEEE802154_PHY", 291 "_xmit_VOID", "_xmit_NONE"}; 292 293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 294 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 295 296 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 297 { 298 int i; 299 300 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 301 if (netdev_lock_type[i] == dev_type) 302 return i; 303 /* the last key is used by default */ 304 return ARRAY_SIZE(netdev_lock_type) - 1; 305 } 306 307 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 308 unsigned short dev_type) 309 { 310 int i; 311 312 i = netdev_lock_pos(dev_type); 313 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 314 netdev_lock_name[i]); 315 } 316 317 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 318 { 319 int i; 320 321 i = netdev_lock_pos(dev->type); 322 lockdep_set_class_and_name(&dev->addr_list_lock, 323 &netdev_addr_lock_key[i], 324 netdev_lock_name[i]); 325 } 326 #else 327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 328 unsigned short dev_type) 329 { 330 } 331 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 332 { 333 } 334 #endif 335 336 /******************************************************************************* 337 338 Protocol management and registration routines 339 340 *******************************************************************************/ 341 342 /* 343 * Add a protocol ID to the list. Now that the input handler is 344 * smarter we can dispense with all the messy stuff that used to be 345 * here. 346 * 347 * BEWARE!!! Protocol handlers, mangling input packets, 348 * MUST BE last in hash buckets and checking protocol handlers 349 * MUST start from promiscuous ptype_all chain in net_bh. 350 * It is true now, do not change it. 351 * Explanation follows: if protocol handler, mangling packet, will 352 * be the first on list, it is not able to sense, that packet 353 * is cloned and should be copied-on-write, so that it will 354 * change it and subsequent readers will get broken packet. 355 * --ANK (980803) 356 */ 357 358 /** 359 * dev_add_pack - add packet handler 360 * @pt: packet type declaration 361 * 362 * Add a protocol handler to the networking stack. The passed &packet_type 363 * is linked into kernel lists and may not be freed until it has been 364 * removed from the kernel lists. 365 * 366 * This call does not sleep therefore it can not 367 * guarantee all CPU's that are in middle of receiving packets 368 * will see the new packet type (until the next received packet). 369 */ 370 371 void dev_add_pack(struct packet_type *pt) 372 { 373 int hash; 374 375 spin_lock_bh(&ptype_lock); 376 if (pt->type == htons(ETH_P_ALL)) 377 list_add_rcu(&pt->list, &ptype_all); 378 else { 379 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 380 list_add_rcu(&pt->list, &ptype_base[hash]); 381 } 382 spin_unlock_bh(&ptype_lock); 383 } 384 385 /** 386 * __dev_remove_pack - remove packet handler 387 * @pt: packet type declaration 388 * 389 * Remove a protocol handler that was previously added to the kernel 390 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 391 * from the kernel lists and can be freed or reused once this function 392 * returns. 393 * 394 * The packet type might still be in use by receivers 395 * and must not be freed until after all the CPU's have gone 396 * through a quiescent state. 397 */ 398 void __dev_remove_pack(struct packet_type *pt) 399 { 400 struct list_head *head; 401 struct packet_type *pt1; 402 403 spin_lock_bh(&ptype_lock); 404 405 if (pt->type == htons(ETH_P_ALL)) 406 head = &ptype_all; 407 else 408 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 409 410 list_for_each_entry(pt1, head, list) { 411 if (pt == pt1) { 412 list_del_rcu(&pt->list); 413 goto out; 414 } 415 } 416 417 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 418 out: 419 spin_unlock_bh(&ptype_lock); 420 } 421 /** 422 * dev_remove_pack - remove packet handler 423 * @pt: packet type declaration 424 * 425 * Remove a protocol handler that was previously added to the kernel 426 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 427 * from the kernel lists and can be freed or reused once this function 428 * returns. 429 * 430 * This call sleeps to guarantee that no CPU is looking at the packet 431 * type after return. 432 */ 433 void dev_remove_pack(struct packet_type *pt) 434 { 435 __dev_remove_pack(pt); 436 437 synchronize_net(); 438 } 439 440 /****************************************************************************** 441 442 Device Boot-time Settings Routines 443 444 *******************************************************************************/ 445 446 /* Boot time configuration table */ 447 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 448 449 /** 450 * netdev_boot_setup_add - add new setup entry 451 * @name: name of the device 452 * @map: configured settings for the device 453 * 454 * Adds new setup entry to the dev_boot_setup list. The function 455 * returns 0 on error and 1 on success. This is a generic routine to 456 * all netdevices. 457 */ 458 static int netdev_boot_setup_add(char *name, struct ifmap *map) 459 { 460 struct netdev_boot_setup *s; 461 int i; 462 463 s = dev_boot_setup; 464 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 465 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 466 memset(s[i].name, 0, sizeof(s[i].name)); 467 strlcpy(s[i].name, name, IFNAMSIZ); 468 memcpy(&s[i].map, map, sizeof(s[i].map)); 469 break; 470 } 471 } 472 473 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 474 } 475 476 /** 477 * netdev_boot_setup_check - check boot time settings 478 * @dev: the netdevice 479 * 480 * Check boot time settings for the device. 481 * The found settings are set for the device to be used 482 * later in the device probing. 483 * Returns 0 if no settings found, 1 if they are. 484 */ 485 int netdev_boot_setup_check(struct net_device *dev) 486 { 487 struct netdev_boot_setup *s = dev_boot_setup; 488 int i; 489 490 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 491 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 492 !strcmp(dev->name, s[i].name)) { 493 dev->irq = s[i].map.irq; 494 dev->base_addr = s[i].map.base_addr; 495 dev->mem_start = s[i].map.mem_start; 496 dev->mem_end = s[i].map.mem_end; 497 return 1; 498 } 499 } 500 return 0; 501 } 502 503 504 /** 505 * netdev_boot_base - get address from boot time settings 506 * @prefix: prefix for network device 507 * @unit: id for network device 508 * 509 * Check boot time settings for the base address of device. 510 * The found settings are set for the device to be used 511 * later in the device probing. 512 * Returns 0 if no settings found. 513 */ 514 unsigned long netdev_boot_base(const char *prefix, int unit) 515 { 516 const struct netdev_boot_setup *s = dev_boot_setup; 517 char name[IFNAMSIZ]; 518 int i; 519 520 sprintf(name, "%s%d", prefix, unit); 521 522 /* 523 * If device already registered then return base of 1 524 * to indicate not to probe for this interface 525 */ 526 if (__dev_get_by_name(&init_net, name)) 527 return 1; 528 529 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 530 if (!strcmp(name, s[i].name)) 531 return s[i].map.base_addr; 532 return 0; 533 } 534 535 /* 536 * Saves at boot time configured settings for any netdevice. 537 */ 538 int __init netdev_boot_setup(char *str) 539 { 540 int ints[5]; 541 struct ifmap map; 542 543 str = get_options(str, ARRAY_SIZE(ints), ints); 544 if (!str || !*str) 545 return 0; 546 547 /* Save settings */ 548 memset(&map, 0, sizeof(map)); 549 if (ints[0] > 0) 550 map.irq = ints[1]; 551 if (ints[0] > 1) 552 map.base_addr = ints[2]; 553 if (ints[0] > 2) 554 map.mem_start = ints[3]; 555 if (ints[0] > 3) 556 map.mem_end = ints[4]; 557 558 /* Add new entry to the list */ 559 return netdev_boot_setup_add(str, &map); 560 } 561 562 __setup("netdev=", netdev_boot_setup); 563 564 /******************************************************************************* 565 566 Device Interface Subroutines 567 568 *******************************************************************************/ 569 570 /** 571 * __dev_get_by_name - find a device by its name 572 * @net: the applicable net namespace 573 * @name: name to find 574 * 575 * Find an interface by name. Must be called under RTNL semaphore 576 * or @dev_base_lock. If the name is found a pointer to the device 577 * is returned. If the name is not found then %NULL is returned. The 578 * reference counters are not incremented so the caller must be 579 * careful with locks. 580 */ 581 582 struct net_device *__dev_get_by_name(struct net *net, const char *name) 583 { 584 struct hlist_node *p; 585 586 hlist_for_each(p, dev_name_hash(net, name)) { 587 struct net_device *dev 588 = hlist_entry(p, struct net_device, name_hlist); 589 if (!strncmp(dev->name, name, IFNAMSIZ)) 590 return dev; 591 } 592 return NULL; 593 } 594 595 /** 596 * dev_get_by_name - find a device by its name 597 * @net: the applicable net namespace 598 * @name: name to find 599 * 600 * Find an interface by name. This can be called from any 601 * context and does its own locking. The returned handle has 602 * the usage count incremented and the caller must use dev_put() to 603 * release it when it is no longer needed. %NULL is returned if no 604 * matching device is found. 605 */ 606 607 struct net_device *dev_get_by_name(struct net *net, const char *name) 608 { 609 struct net_device *dev; 610 611 read_lock(&dev_base_lock); 612 dev = __dev_get_by_name(net, name); 613 if (dev) 614 dev_hold(dev); 615 read_unlock(&dev_base_lock); 616 return dev; 617 } 618 619 /** 620 * __dev_get_by_index - find a device by its ifindex 621 * @net: the applicable net namespace 622 * @ifindex: index of device 623 * 624 * Search for an interface by index. Returns %NULL if the device 625 * is not found or a pointer to the device. The device has not 626 * had its reference counter increased so the caller must be careful 627 * about locking. The caller must hold either the RTNL semaphore 628 * or @dev_base_lock. 629 */ 630 631 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 632 { 633 struct hlist_node *p; 634 635 hlist_for_each(p, dev_index_hash(net, ifindex)) { 636 struct net_device *dev 637 = hlist_entry(p, struct net_device, index_hlist); 638 if (dev->ifindex == ifindex) 639 return dev; 640 } 641 return NULL; 642 } 643 644 645 /** 646 * dev_get_by_index - find a device by its ifindex 647 * @net: the applicable net namespace 648 * @ifindex: index of device 649 * 650 * Search for an interface by index. Returns NULL if the device 651 * is not found or a pointer to the device. The device returned has 652 * had a reference added and the pointer is safe until the user calls 653 * dev_put to indicate they have finished with it. 654 */ 655 656 struct net_device *dev_get_by_index(struct net *net, int ifindex) 657 { 658 struct net_device *dev; 659 660 read_lock(&dev_base_lock); 661 dev = __dev_get_by_index(net, ifindex); 662 if (dev) 663 dev_hold(dev); 664 read_unlock(&dev_base_lock); 665 return dev; 666 } 667 668 /** 669 * dev_getbyhwaddr - find a device by its hardware address 670 * @net: the applicable net namespace 671 * @type: media type of device 672 * @ha: hardware address 673 * 674 * Search for an interface by MAC address. Returns NULL if the device 675 * is not found or a pointer to the device. The caller must hold the 676 * rtnl semaphore. The returned device has not had its ref count increased 677 * and the caller must therefore be careful about locking 678 * 679 * BUGS: 680 * If the API was consistent this would be __dev_get_by_hwaddr 681 */ 682 683 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 684 { 685 struct net_device *dev; 686 687 ASSERT_RTNL(); 688 689 for_each_netdev(net, dev) 690 if (dev->type == type && 691 !memcmp(dev->dev_addr, ha, dev->addr_len)) 692 return dev; 693 694 return NULL; 695 } 696 697 EXPORT_SYMBOL(dev_getbyhwaddr); 698 699 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 700 { 701 struct net_device *dev; 702 703 ASSERT_RTNL(); 704 for_each_netdev(net, dev) 705 if (dev->type == type) 706 return dev; 707 708 return NULL; 709 } 710 711 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 712 713 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 714 { 715 struct net_device *dev; 716 717 rtnl_lock(); 718 dev = __dev_getfirstbyhwtype(net, type); 719 if (dev) 720 dev_hold(dev); 721 rtnl_unlock(); 722 return dev; 723 } 724 725 EXPORT_SYMBOL(dev_getfirstbyhwtype); 726 727 /** 728 * dev_get_by_flags - find any device with given flags 729 * @net: the applicable net namespace 730 * @if_flags: IFF_* values 731 * @mask: bitmask of bits in if_flags to check 732 * 733 * Search for any interface with the given flags. Returns NULL if a device 734 * is not found or a pointer to the device. The device returned has 735 * had a reference added and the pointer is safe until the user calls 736 * dev_put to indicate they have finished with it. 737 */ 738 739 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 740 { 741 struct net_device *dev, *ret; 742 743 ret = NULL; 744 read_lock(&dev_base_lock); 745 for_each_netdev(net, dev) { 746 if (((dev->flags ^ if_flags) & mask) == 0) { 747 dev_hold(dev); 748 ret = dev; 749 break; 750 } 751 } 752 read_unlock(&dev_base_lock); 753 return ret; 754 } 755 756 /** 757 * dev_valid_name - check if name is okay for network device 758 * @name: name string 759 * 760 * Network device names need to be valid file names to 761 * to allow sysfs to work. We also disallow any kind of 762 * whitespace. 763 */ 764 int dev_valid_name(const char *name) 765 { 766 if (*name == '\0') 767 return 0; 768 if (strlen(name) >= IFNAMSIZ) 769 return 0; 770 if (!strcmp(name, ".") || !strcmp(name, "..")) 771 return 0; 772 773 while (*name) { 774 if (*name == '/' || isspace(*name)) 775 return 0; 776 name++; 777 } 778 return 1; 779 } 780 781 /** 782 * __dev_alloc_name - allocate a name for a device 783 * @net: network namespace to allocate the device name in 784 * @name: name format string 785 * @buf: scratch buffer and result name string 786 * 787 * Passed a format string - eg "lt%d" it will try and find a suitable 788 * id. It scans list of devices to build up a free map, then chooses 789 * the first empty slot. The caller must hold the dev_base or rtnl lock 790 * while allocating the name and adding the device in order to avoid 791 * duplicates. 792 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 793 * Returns the number of the unit assigned or a negative errno code. 794 */ 795 796 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 797 { 798 int i = 0; 799 const char *p; 800 const int max_netdevices = 8*PAGE_SIZE; 801 unsigned long *inuse; 802 struct net_device *d; 803 804 p = strnchr(name, IFNAMSIZ-1, '%'); 805 if (p) { 806 /* 807 * Verify the string as this thing may have come from 808 * the user. There must be either one "%d" and no other "%" 809 * characters. 810 */ 811 if (p[1] != 'd' || strchr(p + 2, '%')) 812 return -EINVAL; 813 814 /* Use one page as a bit array of possible slots */ 815 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 816 if (!inuse) 817 return -ENOMEM; 818 819 for_each_netdev(net, d) { 820 if (!sscanf(d->name, name, &i)) 821 continue; 822 if (i < 0 || i >= max_netdevices) 823 continue; 824 825 /* avoid cases where sscanf is not exact inverse of printf */ 826 snprintf(buf, IFNAMSIZ, name, i); 827 if (!strncmp(buf, d->name, IFNAMSIZ)) 828 set_bit(i, inuse); 829 } 830 831 i = find_first_zero_bit(inuse, max_netdevices); 832 free_page((unsigned long) inuse); 833 } 834 835 snprintf(buf, IFNAMSIZ, name, i); 836 if (!__dev_get_by_name(net, buf)) 837 return i; 838 839 /* It is possible to run out of possible slots 840 * when the name is long and there isn't enough space left 841 * for the digits, or if all bits are used. 842 */ 843 return -ENFILE; 844 } 845 846 /** 847 * dev_alloc_name - allocate a name for a device 848 * @dev: device 849 * @name: name format string 850 * 851 * Passed a format string - eg "lt%d" it will try and find a suitable 852 * id. It scans list of devices to build up a free map, then chooses 853 * the first empty slot. The caller must hold the dev_base or rtnl lock 854 * while allocating the name and adding the device in order to avoid 855 * duplicates. 856 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 857 * Returns the number of the unit assigned or a negative errno code. 858 */ 859 860 int dev_alloc_name(struct net_device *dev, const char *name) 861 { 862 char buf[IFNAMSIZ]; 863 struct net *net; 864 int ret; 865 866 BUG_ON(!dev_net(dev)); 867 net = dev_net(dev); 868 ret = __dev_alloc_name(net, name, buf); 869 if (ret >= 0) 870 strlcpy(dev->name, buf, IFNAMSIZ); 871 return ret; 872 } 873 874 875 /** 876 * dev_change_name - change name of a device 877 * @dev: device 878 * @newname: name (or format string) must be at least IFNAMSIZ 879 * 880 * Change name of a device, can pass format strings "eth%d". 881 * for wildcarding. 882 */ 883 int dev_change_name(struct net_device *dev, const char *newname) 884 { 885 char oldname[IFNAMSIZ]; 886 int err = 0; 887 int ret; 888 struct net *net; 889 890 ASSERT_RTNL(); 891 BUG_ON(!dev_net(dev)); 892 893 net = dev_net(dev); 894 if (dev->flags & IFF_UP) 895 return -EBUSY; 896 897 if (!dev_valid_name(newname)) 898 return -EINVAL; 899 900 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 901 return 0; 902 903 memcpy(oldname, dev->name, IFNAMSIZ); 904 905 if (strchr(newname, '%')) { 906 err = dev_alloc_name(dev, newname); 907 if (err < 0) 908 return err; 909 } 910 else if (__dev_get_by_name(net, newname)) 911 return -EEXIST; 912 else 913 strlcpy(dev->name, newname, IFNAMSIZ); 914 915 rollback: 916 /* For now only devices in the initial network namespace 917 * are in sysfs. 918 */ 919 if (net == &init_net) { 920 ret = device_rename(&dev->dev, dev->name); 921 if (ret) { 922 memcpy(dev->name, oldname, IFNAMSIZ); 923 return ret; 924 } 925 } 926 927 write_lock_bh(&dev_base_lock); 928 hlist_del(&dev->name_hlist); 929 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 930 write_unlock_bh(&dev_base_lock); 931 932 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 933 ret = notifier_to_errno(ret); 934 935 if (ret) { 936 if (err) { 937 printk(KERN_ERR 938 "%s: name change rollback failed: %d.\n", 939 dev->name, ret); 940 } else { 941 err = ret; 942 memcpy(dev->name, oldname, IFNAMSIZ); 943 goto rollback; 944 } 945 } 946 947 return err; 948 } 949 950 /** 951 * dev_set_alias - change ifalias of a device 952 * @dev: device 953 * @alias: name up to IFALIASZ 954 * @len: limit of bytes to copy from info 955 * 956 * Set ifalias for a device, 957 */ 958 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 959 { 960 ASSERT_RTNL(); 961 962 if (len >= IFALIASZ) 963 return -EINVAL; 964 965 if (!len) { 966 if (dev->ifalias) { 967 kfree(dev->ifalias); 968 dev->ifalias = NULL; 969 } 970 return 0; 971 } 972 973 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 974 if (!dev->ifalias) 975 return -ENOMEM; 976 977 strlcpy(dev->ifalias, alias, len+1); 978 return len; 979 } 980 981 982 /** 983 * netdev_features_change - device changes features 984 * @dev: device to cause notification 985 * 986 * Called to indicate a device has changed features. 987 */ 988 void netdev_features_change(struct net_device *dev) 989 { 990 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 991 } 992 EXPORT_SYMBOL(netdev_features_change); 993 994 /** 995 * netdev_state_change - device changes state 996 * @dev: device to cause notification 997 * 998 * Called to indicate a device has changed state. This function calls 999 * the notifier chains for netdev_chain and sends a NEWLINK message 1000 * to the routing socket. 1001 */ 1002 void netdev_state_change(struct net_device *dev) 1003 { 1004 if (dev->flags & IFF_UP) { 1005 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1006 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1007 } 1008 } 1009 1010 void netdev_bonding_change(struct net_device *dev) 1011 { 1012 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1013 } 1014 EXPORT_SYMBOL(netdev_bonding_change); 1015 1016 /** 1017 * dev_load - load a network module 1018 * @net: the applicable net namespace 1019 * @name: name of interface 1020 * 1021 * If a network interface is not present and the process has suitable 1022 * privileges this function loads the module. If module loading is not 1023 * available in this kernel then it becomes a nop. 1024 */ 1025 1026 void dev_load(struct net *net, const char *name) 1027 { 1028 struct net_device *dev; 1029 1030 read_lock(&dev_base_lock); 1031 dev = __dev_get_by_name(net, name); 1032 read_unlock(&dev_base_lock); 1033 1034 if (!dev && capable(CAP_SYS_MODULE)) 1035 request_module("%s", name); 1036 } 1037 1038 /** 1039 * dev_open - prepare an interface for use. 1040 * @dev: device to open 1041 * 1042 * Takes a device from down to up state. The device's private open 1043 * function is invoked and then the multicast lists are loaded. Finally 1044 * the device is moved into the up state and a %NETDEV_UP message is 1045 * sent to the netdev notifier chain. 1046 * 1047 * Calling this function on an active interface is a nop. On a failure 1048 * a negative errno code is returned. 1049 */ 1050 int dev_open(struct net_device *dev) 1051 { 1052 const struct net_device_ops *ops = dev->netdev_ops; 1053 int ret; 1054 1055 ASSERT_RTNL(); 1056 1057 /* 1058 * Is it already up? 1059 */ 1060 1061 if (dev->flags & IFF_UP) 1062 return 0; 1063 1064 /* 1065 * Is it even present? 1066 */ 1067 if (!netif_device_present(dev)) 1068 return -ENODEV; 1069 1070 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1071 ret = notifier_to_errno(ret); 1072 if (ret) 1073 return ret; 1074 1075 /* 1076 * Call device private open method 1077 */ 1078 set_bit(__LINK_STATE_START, &dev->state); 1079 1080 if (ops->ndo_validate_addr) 1081 ret = ops->ndo_validate_addr(dev); 1082 1083 if (!ret && ops->ndo_open) 1084 ret = ops->ndo_open(dev); 1085 1086 /* 1087 * If it went open OK then: 1088 */ 1089 1090 if (ret) 1091 clear_bit(__LINK_STATE_START, &dev->state); 1092 else { 1093 /* 1094 * Set the flags. 1095 */ 1096 dev->flags |= IFF_UP; 1097 1098 /* 1099 * Enable NET_DMA 1100 */ 1101 net_dmaengine_get(); 1102 1103 /* 1104 * Initialize multicasting status 1105 */ 1106 dev_set_rx_mode(dev); 1107 1108 /* 1109 * Wakeup transmit queue engine 1110 */ 1111 dev_activate(dev); 1112 1113 /* 1114 * ... and announce new interface. 1115 */ 1116 call_netdevice_notifiers(NETDEV_UP, dev); 1117 } 1118 1119 return ret; 1120 } 1121 1122 /** 1123 * dev_close - shutdown an interface. 1124 * @dev: device to shutdown 1125 * 1126 * This function moves an active device into down state. A 1127 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1128 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1129 * chain. 1130 */ 1131 int dev_close(struct net_device *dev) 1132 { 1133 const struct net_device_ops *ops = dev->netdev_ops; 1134 ASSERT_RTNL(); 1135 1136 might_sleep(); 1137 1138 if (!(dev->flags & IFF_UP)) 1139 return 0; 1140 1141 /* 1142 * Tell people we are going down, so that they can 1143 * prepare to death, when device is still operating. 1144 */ 1145 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1146 1147 clear_bit(__LINK_STATE_START, &dev->state); 1148 1149 /* Synchronize to scheduled poll. We cannot touch poll list, 1150 * it can be even on different cpu. So just clear netif_running(). 1151 * 1152 * dev->stop() will invoke napi_disable() on all of it's 1153 * napi_struct instances on this device. 1154 */ 1155 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1156 1157 dev_deactivate(dev); 1158 1159 /* 1160 * Call the device specific close. This cannot fail. 1161 * Only if device is UP 1162 * 1163 * We allow it to be called even after a DETACH hot-plug 1164 * event. 1165 */ 1166 if (ops->ndo_stop) 1167 ops->ndo_stop(dev); 1168 1169 /* 1170 * Device is now down. 1171 */ 1172 1173 dev->flags &= ~IFF_UP; 1174 1175 /* 1176 * Tell people we are down 1177 */ 1178 call_netdevice_notifiers(NETDEV_DOWN, dev); 1179 1180 /* 1181 * Shutdown NET_DMA 1182 */ 1183 net_dmaengine_put(); 1184 1185 return 0; 1186 } 1187 1188 1189 /** 1190 * dev_disable_lro - disable Large Receive Offload on a device 1191 * @dev: device 1192 * 1193 * Disable Large Receive Offload (LRO) on a net device. Must be 1194 * called under RTNL. This is needed if received packets may be 1195 * forwarded to another interface. 1196 */ 1197 void dev_disable_lro(struct net_device *dev) 1198 { 1199 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1200 dev->ethtool_ops->set_flags) { 1201 u32 flags = dev->ethtool_ops->get_flags(dev); 1202 if (flags & ETH_FLAG_LRO) { 1203 flags &= ~ETH_FLAG_LRO; 1204 dev->ethtool_ops->set_flags(dev, flags); 1205 } 1206 } 1207 WARN_ON(dev->features & NETIF_F_LRO); 1208 } 1209 EXPORT_SYMBOL(dev_disable_lro); 1210 1211 1212 static int dev_boot_phase = 1; 1213 1214 /* 1215 * Device change register/unregister. These are not inline or static 1216 * as we export them to the world. 1217 */ 1218 1219 /** 1220 * register_netdevice_notifier - register a network notifier block 1221 * @nb: notifier 1222 * 1223 * Register a notifier to be called when network device events occur. 1224 * The notifier passed is linked into the kernel structures and must 1225 * not be reused until it has been unregistered. A negative errno code 1226 * is returned on a failure. 1227 * 1228 * When registered all registration and up events are replayed 1229 * to the new notifier to allow device to have a race free 1230 * view of the network device list. 1231 */ 1232 1233 int register_netdevice_notifier(struct notifier_block *nb) 1234 { 1235 struct net_device *dev; 1236 struct net_device *last; 1237 struct net *net; 1238 int err; 1239 1240 rtnl_lock(); 1241 err = raw_notifier_chain_register(&netdev_chain, nb); 1242 if (err) 1243 goto unlock; 1244 if (dev_boot_phase) 1245 goto unlock; 1246 for_each_net(net) { 1247 for_each_netdev(net, dev) { 1248 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1249 err = notifier_to_errno(err); 1250 if (err) 1251 goto rollback; 1252 1253 if (!(dev->flags & IFF_UP)) 1254 continue; 1255 1256 nb->notifier_call(nb, NETDEV_UP, dev); 1257 } 1258 } 1259 1260 unlock: 1261 rtnl_unlock(); 1262 return err; 1263 1264 rollback: 1265 last = dev; 1266 for_each_net(net) { 1267 for_each_netdev(net, dev) { 1268 if (dev == last) 1269 break; 1270 1271 if (dev->flags & IFF_UP) { 1272 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1273 nb->notifier_call(nb, NETDEV_DOWN, dev); 1274 } 1275 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1276 } 1277 } 1278 1279 raw_notifier_chain_unregister(&netdev_chain, nb); 1280 goto unlock; 1281 } 1282 1283 /** 1284 * unregister_netdevice_notifier - unregister a network notifier block 1285 * @nb: notifier 1286 * 1287 * Unregister a notifier previously registered by 1288 * register_netdevice_notifier(). The notifier is unlinked into the 1289 * kernel structures and may then be reused. A negative errno code 1290 * is returned on a failure. 1291 */ 1292 1293 int unregister_netdevice_notifier(struct notifier_block *nb) 1294 { 1295 int err; 1296 1297 rtnl_lock(); 1298 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1299 rtnl_unlock(); 1300 return err; 1301 } 1302 1303 /** 1304 * call_netdevice_notifiers - call all network notifier blocks 1305 * @val: value passed unmodified to notifier function 1306 * @dev: net_device pointer passed unmodified to notifier function 1307 * 1308 * Call all network notifier blocks. Parameters and return value 1309 * are as for raw_notifier_call_chain(). 1310 */ 1311 1312 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1313 { 1314 return raw_notifier_call_chain(&netdev_chain, val, dev); 1315 } 1316 1317 /* When > 0 there are consumers of rx skb time stamps */ 1318 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1319 1320 void net_enable_timestamp(void) 1321 { 1322 atomic_inc(&netstamp_needed); 1323 } 1324 1325 void net_disable_timestamp(void) 1326 { 1327 atomic_dec(&netstamp_needed); 1328 } 1329 1330 static inline void net_timestamp(struct sk_buff *skb) 1331 { 1332 if (atomic_read(&netstamp_needed)) 1333 __net_timestamp(skb); 1334 else 1335 skb->tstamp.tv64 = 0; 1336 } 1337 1338 /* 1339 * Support routine. Sends outgoing frames to any network 1340 * taps currently in use. 1341 */ 1342 1343 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1344 { 1345 struct packet_type *ptype; 1346 1347 #ifdef CONFIG_NET_CLS_ACT 1348 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS))) 1349 net_timestamp(skb); 1350 #else 1351 net_timestamp(skb); 1352 #endif 1353 1354 rcu_read_lock(); 1355 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1356 /* Never send packets back to the socket 1357 * they originated from - MvS ([email protected]) 1358 */ 1359 if ((ptype->dev == dev || !ptype->dev) && 1360 (ptype->af_packet_priv == NULL || 1361 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1362 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1363 if (!skb2) 1364 break; 1365 1366 /* skb->nh should be correctly 1367 set by sender, so that the second statement is 1368 just protection against buggy protocols. 1369 */ 1370 skb_reset_mac_header(skb2); 1371 1372 if (skb_network_header(skb2) < skb2->data || 1373 skb2->network_header > skb2->tail) { 1374 if (net_ratelimit()) 1375 printk(KERN_CRIT "protocol %04x is " 1376 "buggy, dev %s\n", 1377 skb2->protocol, dev->name); 1378 skb_reset_network_header(skb2); 1379 } 1380 1381 skb2->transport_header = skb2->network_header; 1382 skb2->pkt_type = PACKET_OUTGOING; 1383 ptype->func(skb2, skb->dev, ptype, skb->dev); 1384 } 1385 } 1386 rcu_read_unlock(); 1387 } 1388 1389 1390 static inline void __netif_reschedule(struct Qdisc *q) 1391 { 1392 struct softnet_data *sd; 1393 unsigned long flags; 1394 1395 local_irq_save(flags); 1396 sd = &__get_cpu_var(softnet_data); 1397 q->next_sched = sd->output_queue; 1398 sd->output_queue = q; 1399 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1400 local_irq_restore(flags); 1401 } 1402 1403 void __netif_schedule(struct Qdisc *q) 1404 { 1405 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1406 __netif_reschedule(q); 1407 } 1408 EXPORT_SYMBOL(__netif_schedule); 1409 1410 void dev_kfree_skb_irq(struct sk_buff *skb) 1411 { 1412 if (atomic_dec_and_test(&skb->users)) { 1413 struct softnet_data *sd; 1414 unsigned long flags; 1415 1416 local_irq_save(flags); 1417 sd = &__get_cpu_var(softnet_data); 1418 skb->next = sd->completion_queue; 1419 sd->completion_queue = skb; 1420 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1421 local_irq_restore(flags); 1422 } 1423 } 1424 EXPORT_SYMBOL(dev_kfree_skb_irq); 1425 1426 void dev_kfree_skb_any(struct sk_buff *skb) 1427 { 1428 if (in_irq() || irqs_disabled()) 1429 dev_kfree_skb_irq(skb); 1430 else 1431 dev_kfree_skb(skb); 1432 } 1433 EXPORT_SYMBOL(dev_kfree_skb_any); 1434 1435 1436 /** 1437 * netif_device_detach - mark device as removed 1438 * @dev: network device 1439 * 1440 * Mark device as removed from system and therefore no longer available. 1441 */ 1442 void netif_device_detach(struct net_device *dev) 1443 { 1444 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1445 netif_running(dev)) { 1446 netif_tx_stop_all_queues(dev); 1447 } 1448 } 1449 EXPORT_SYMBOL(netif_device_detach); 1450 1451 /** 1452 * netif_device_attach - mark device as attached 1453 * @dev: network device 1454 * 1455 * Mark device as attached from system and restart if needed. 1456 */ 1457 void netif_device_attach(struct net_device *dev) 1458 { 1459 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1460 netif_running(dev)) { 1461 netif_tx_wake_all_queues(dev); 1462 __netdev_watchdog_up(dev); 1463 } 1464 } 1465 EXPORT_SYMBOL(netif_device_attach); 1466 1467 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1468 { 1469 return ((features & NETIF_F_GEN_CSUM) || 1470 ((features & NETIF_F_IP_CSUM) && 1471 protocol == htons(ETH_P_IP)) || 1472 ((features & NETIF_F_IPV6_CSUM) && 1473 protocol == htons(ETH_P_IPV6)) || 1474 ((features & NETIF_F_FCOE_CRC) && 1475 protocol == htons(ETH_P_FCOE))); 1476 } 1477 1478 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1479 { 1480 if (can_checksum_protocol(dev->features, skb->protocol)) 1481 return true; 1482 1483 if (skb->protocol == htons(ETH_P_8021Q)) { 1484 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1485 if (can_checksum_protocol(dev->features & dev->vlan_features, 1486 veh->h_vlan_encapsulated_proto)) 1487 return true; 1488 } 1489 1490 return false; 1491 } 1492 1493 /* 1494 * Invalidate hardware checksum when packet is to be mangled, and 1495 * complete checksum manually on outgoing path. 1496 */ 1497 int skb_checksum_help(struct sk_buff *skb) 1498 { 1499 __wsum csum; 1500 int ret = 0, offset; 1501 1502 if (skb->ip_summed == CHECKSUM_COMPLETE) 1503 goto out_set_summed; 1504 1505 if (unlikely(skb_shinfo(skb)->gso_size)) { 1506 /* Let GSO fix up the checksum. */ 1507 goto out_set_summed; 1508 } 1509 1510 offset = skb->csum_start - skb_headroom(skb); 1511 BUG_ON(offset >= skb_headlen(skb)); 1512 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1513 1514 offset += skb->csum_offset; 1515 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1516 1517 if (skb_cloned(skb) && 1518 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1519 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1520 if (ret) 1521 goto out; 1522 } 1523 1524 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1525 out_set_summed: 1526 skb->ip_summed = CHECKSUM_NONE; 1527 out: 1528 return ret; 1529 } 1530 1531 /** 1532 * skb_gso_segment - Perform segmentation on skb. 1533 * @skb: buffer to segment 1534 * @features: features for the output path (see dev->features) 1535 * 1536 * This function segments the given skb and returns a list of segments. 1537 * 1538 * It may return NULL if the skb requires no segmentation. This is 1539 * only possible when GSO is used for verifying header integrity. 1540 */ 1541 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1542 { 1543 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1544 struct packet_type *ptype; 1545 __be16 type = skb->protocol; 1546 int err; 1547 1548 skb_reset_mac_header(skb); 1549 skb->mac_len = skb->network_header - skb->mac_header; 1550 __skb_pull(skb, skb->mac_len); 1551 1552 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1553 struct net_device *dev = skb->dev; 1554 struct ethtool_drvinfo info = {}; 1555 1556 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1557 dev->ethtool_ops->get_drvinfo(dev, &info); 1558 1559 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d " 1560 "ip_summed=%d", 1561 info.driver, dev ? dev->features : 0L, 1562 skb->sk ? skb->sk->sk_route_caps : 0L, 1563 skb->len, skb->data_len, skb->ip_summed); 1564 1565 if (skb_header_cloned(skb) && 1566 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1567 return ERR_PTR(err); 1568 } 1569 1570 rcu_read_lock(); 1571 list_for_each_entry_rcu(ptype, 1572 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1573 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1574 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1575 err = ptype->gso_send_check(skb); 1576 segs = ERR_PTR(err); 1577 if (err || skb_gso_ok(skb, features)) 1578 break; 1579 __skb_push(skb, (skb->data - 1580 skb_network_header(skb))); 1581 } 1582 segs = ptype->gso_segment(skb, features); 1583 break; 1584 } 1585 } 1586 rcu_read_unlock(); 1587 1588 __skb_push(skb, skb->data - skb_mac_header(skb)); 1589 1590 return segs; 1591 } 1592 1593 EXPORT_SYMBOL(skb_gso_segment); 1594 1595 /* Take action when hardware reception checksum errors are detected. */ 1596 #ifdef CONFIG_BUG 1597 void netdev_rx_csum_fault(struct net_device *dev) 1598 { 1599 if (net_ratelimit()) { 1600 printk(KERN_ERR "%s: hw csum failure.\n", 1601 dev ? dev->name : "<unknown>"); 1602 dump_stack(); 1603 } 1604 } 1605 EXPORT_SYMBOL(netdev_rx_csum_fault); 1606 #endif 1607 1608 /* Actually, we should eliminate this check as soon as we know, that: 1609 * 1. IOMMU is present and allows to map all the memory. 1610 * 2. No high memory really exists on this machine. 1611 */ 1612 1613 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1614 { 1615 #ifdef CONFIG_HIGHMEM 1616 int i; 1617 1618 if (dev->features & NETIF_F_HIGHDMA) 1619 return 0; 1620 1621 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1622 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1623 return 1; 1624 1625 #endif 1626 return 0; 1627 } 1628 1629 struct dev_gso_cb { 1630 void (*destructor)(struct sk_buff *skb); 1631 }; 1632 1633 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1634 1635 static void dev_gso_skb_destructor(struct sk_buff *skb) 1636 { 1637 struct dev_gso_cb *cb; 1638 1639 do { 1640 struct sk_buff *nskb = skb->next; 1641 1642 skb->next = nskb->next; 1643 nskb->next = NULL; 1644 kfree_skb(nskb); 1645 } while (skb->next); 1646 1647 cb = DEV_GSO_CB(skb); 1648 if (cb->destructor) 1649 cb->destructor(skb); 1650 } 1651 1652 /** 1653 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1654 * @skb: buffer to segment 1655 * 1656 * This function segments the given skb and stores the list of segments 1657 * in skb->next. 1658 */ 1659 static int dev_gso_segment(struct sk_buff *skb) 1660 { 1661 struct net_device *dev = skb->dev; 1662 struct sk_buff *segs; 1663 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1664 NETIF_F_SG : 0); 1665 1666 segs = skb_gso_segment(skb, features); 1667 1668 /* Verifying header integrity only. */ 1669 if (!segs) 1670 return 0; 1671 1672 if (IS_ERR(segs)) 1673 return PTR_ERR(segs); 1674 1675 skb->next = segs; 1676 DEV_GSO_CB(skb)->destructor = skb->destructor; 1677 skb->destructor = dev_gso_skb_destructor; 1678 1679 return 0; 1680 } 1681 1682 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1683 struct netdev_queue *txq) 1684 { 1685 const struct net_device_ops *ops = dev->netdev_ops; 1686 int rc; 1687 1688 if (likely(!skb->next)) { 1689 if (!list_empty(&ptype_all)) 1690 dev_queue_xmit_nit(skb, dev); 1691 1692 if (netif_needs_gso(dev, skb)) { 1693 if (unlikely(dev_gso_segment(skb))) 1694 goto out_kfree_skb; 1695 if (skb->next) 1696 goto gso; 1697 } 1698 1699 /* 1700 * If device doesnt need skb->dst, release it right now while 1701 * its hot in this cpu cache 1702 */ 1703 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 1704 skb_dst_drop(skb); 1705 1706 rc = ops->ndo_start_xmit(skb, dev); 1707 if (rc == 0) 1708 txq_trans_update(txq); 1709 /* 1710 * TODO: if skb_orphan() was called by 1711 * dev->hard_start_xmit() (for example, the unmodified 1712 * igb driver does that; bnx2 doesn't), then 1713 * skb_tx_software_timestamp() will be unable to send 1714 * back the time stamp. 1715 * 1716 * How can this be prevented? Always create another 1717 * reference to the socket before calling 1718 * dev->hard_start_xmit()? Prevent that skb_orphan() 1719 * does anything in dev->hard_start_xmit() by clearing 1720 * the skb destructor before the call and restoring it 1721 * afterwards, then doing the skb_orphan() ourselves? 1722 */ 1723 return rc; 1724 } 1725 1726 gso: 1727 do { 1728 struct sk_buff *nskb = skb->next; 1729 1730 skb->next = nskb->next; 1731 nskb->next = NULL; 1732 rc = ops->ndo_start_xmit(nskb, dev); 1733 if (unlikely(rc)) { 1734 nskb->next = skb->next; 1735 skb->next = nskb; 1736 return rc; 1737 } 1738 txq_trans_update(txq); 1739 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1740 return NETDEV_TX_BUSY; 1741 } while (skb->next); 1742 1743 skb->destructor = DEV_GSO_CB(skb)->destructor; 1744 1745 out_kfree_skb: 1746 kfree_skb(skb); 1747 return 0; 1748 } 1749 1750 static u32 skb_tx_hashrnd; 1751 1752 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb) 1753 { 1754 u32 hash; 1755 1756 if (skb_rx_queue_recorded(skb)) { 1757 hash = skb_get_rx_queue(skb); 1758 while (unlikely (hash >= dev->real_num_tx_queues)) 1759 hash -= dev->real_num_tx_queues; 1760 return hash; 1761 } 1762 1763 if (skb->sk && skb->sk->sk_hash) 1764 hash = skb->sk->sk_hash; 1765 else 1766 hash = skb->protocol; 1767 1768 hash = jhash_1word(hash, skb_tx_hashrnd); 1769 1770 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1771 } 1772 EXPORT_SYMBOL(skb_tx_hash); 1773 1774 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1775 struct sk_buff *skb) 1776 { 1777 const struct net_device_ops *ops = dev->netdev_ops; 1778 u16 queue_index = 0; 1779 1780 if (ops->ndo_select_queue) 1781 queue_index = ops->ndo_select_queue(dev, skb); 1782 else if (dev->real_num_tx_queues > 1) 1783 queue_index = skb_tx_hash(dev, skb); 1784 1785 skb_set_queue_mapping(skb, queue_index); 1786 return netdev_get_tx_queue(dev, queue_index); 1787 } 1788 1789 /** 1790 * dev_queue_xmit - transmit a buffer 1791 * @skb: buffer to transmit 1792 * 1793 * Queue a buffer for transmission to a network device. The caller must 1794 * have set the device and priority and built the buffer before calling 1795 * this function. The function can be called from an interrupt. 1796 * 1797 * A negative errno code is returned on a failure. A success does not 1798 * guarantee the frame will be transmitted as it may be dropped due 1799 * to congestion or traffic shaping. 1800 * 1801 * ----------------------------------------------------------------------------------- 1802 * I notice this method can also return errors from the queue disciplines, 1803 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1804 * be positive. 1805 * 1806 * Regardless of the return value, the skb is consumed, so it is currently 1807 * difficult to retry a send to this method. (You can bump the ref count 1808 * before sending to hold a reference for retry if you are careful.) 1809 * 1810 * When calling this method, interrupts MUST be enabled. This is because 1811 * the BH enable code must have IRQs enabled so that it will not deadlock. 1812 * --BLG 1813 */ 1814 int dev_queue_xmit(struct sk_buff *skb) 1815 { 1816 struct net_device *dev = skb->dev; 1817 struct netdev_queue *txq; 1818 struct Qdisc *q; 1819 int rc = -ENOMEM; 1820 1821 /* GSO will handle the following emulations directly. */ 1822 if (netif_needs_gso(dev, skb)) 1823 goto gso; 1824 1825 if (skb_has_frags(skb) && 1826 !(dev->features & NETIF_F_FRAGLIST) && 1827 __skb_linearize(skb)) 1828 goto out_kfree_skb; 1829 1830 /* Fragmented skb is linearized if device does not support SG, 1831 * or if at least one of fragments is in highmem and device 1832 * does not support DMA from it. 1833 */ 1834 if (skb_shinfo(skb)->nr_frags && 1835 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1836 __skb_linearize(skb)) 1837 goto out_kfree_skb; 1838 1839 /* If packet is not checksummed and device does not support 1840 * checksumming for this protocol, complete checksumming here. 1841 */ 1842 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1843 skb_set_transport_header(skb, skb->csum_start - 1844 skb_headroom(skb)); 1845 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1846 goto out_kfree_skb; 1847 } 1848 1849 gso: 1850 /* Disable soft irqs for various locks below. Also 1851 * stops preemption for RCU. 1852 */ 1853 rcu_read_lock_bh(); 1854 1855 txq = dev_pick_tx(dev, skb); 1856 q = rcu_dereference(txq->qdisc); 1857 1858 #ifdef CONFIG_NET_CLS_ACT 1859 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1860 #endif 1861 if (q->enqueue) { 1862 spinlock_t *root_lock = qdisc_lock(q); 1863 1864 spin_lock(root_lock); 1865 1866 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1867 kfree_skb(skb); 1868 rc = NET_XMIT_DROP; 1869 } else { 1870 rc = qdisc_enqueue_root(skb, q); 1871 qdisc_run(q); 1872 } 1873 spin_unlock(root_lock); 1874 1875 goto out; 1876 } 1877 1878 /* The device has no queue. Common case for software devices: 1879 loopback, all the sorts of tunnels... 1880 1881 Really, it is unlikely that netif_tx_lock protection is necessary 1882 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1883 counters.) 1884 However, it is possible, that they rely on protection 1885 made by us here. 1886 1887 Check this and shot the lock. It is not prone from deadlocks. 1888 Either shot noqueue qdisc, it is even simpler 8) 1889 */ 1890 if (dev->flags & IFF_UP) { 1891 int cpu = smp_processor_id(); /* ok because BHs are off */ 1892 1893 if (txq->xmit_lock_owner != cpu) { 1894 1895 HARD_TX_LOCK(dev, txq, cpu); 1896 1897 if (!netif_tx_queue_stopped(txq)) { 1898 rc = 0; 1899 if (!dev_hard_start_xmit(skb, dev, txq)) { 1900 HARD_TX_UNLOCK(dev, txq); 1901 goto out; 1902 } 1903 } 1904 HARD_TX_UNLOCK(dev, txq); 1905 if (net_ratelimit()) 1906 printk(KERN_CRIT "Virtual device %s asks to " 1907 "queue packet!\n", dev->name); 1908 } else { 1909 /* Recursion is detected! It is possible, 1910 * unfortunately */ 1911 if (net_ratelimit()) 1912 printk(KERN_CRIT "Dead loop on virtual device " 1913 "%s, fix it urgently!\n", dev->name); 1914 } 1915 } 1916 1917 rc = -ENETDOWN; 1918 rcu_read_unlock_bh(); 1919 1920 out_kfree_skb: 1921 kfree_skb(skb); 1922 return rc; 1923 out: 1924 rcu_read_unlock_bh(); 1925 return rc; 1926 } 1927 1928 1929 /*======================================================================= 1930 Receiver routines 1931 =======================================================================*/ 1932 1933 int netdev_max_backlog __read_mostly = 1000; 1934 int netdev_budget __read_mostly = 300; 1935 int weight_p __read_mostly = 64; /* old backlog weight */ 1936 1937 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1938 1939 1940 /** 1941 * netif_rx - post buffer to the network code 1942 * @skb: buffer to post 1943 * 1944 * This function receives a packet from a device driver and queues it for 1945 * the upper (protocol) levels to process. It always succeeds. The buffer 1946 * may be dropped during processing for congestion control or by the 1947 * protocol layers. 1948 * 1949 * return values: 1950 * NET_RX_SUCCESS (no congestion) 1951 * NET_RX_DROP (packet was dropped) 1952 * 1953 */ 1954 1955 int netif_rx(struct sk_buff *skb) 1956 { 1957 struct softnet_data *queue; 1958 unsigned long flags; 1959 1960 /* if netpoll wants it, pretend we never saw it */ 1961 if (netpoll_rx(skb)) 1962 return NET_RX_DROP; 1963 1964 if (!skb->tstamp.tv64) 1965 net_timestamp(skb); 1966 1967 /* 1968 * The code is rearranged so that the path is the most 1969 * short when CPU is congested, but is still operating. 1970 */ 1971 local_irq_save(flags); 1972 queue = &__get_cpu_var(softnet_data); 1973 1974 __get_cpu_var(netdev_rx_stat).total++; 1975 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1976 if (queue->input_pkt_queue.qlen) { 1977 enqueue: 1978 __skb_queue_tail(&queue->input_pkt_queue, skb); 1979 local_irq_restore(flags); 1980 return NET_RX_SUCCESS; 1981 } 1982 1983 napi_schedule(&queue->backlog); 1984 goto enqueue; 1985 } 1986 1987 __get_cpu_var(netdev_rx_stat).dropped++; 1988 local_irq_restore(flags); 1989 1990 kfree_skb(skb); 1991 return NET_RX_DROP; 1992 } 1993 1994 int netif_rx_ni(struct sk_buff *skb) 1995 { 1996 int err; 1997 1998 preempt_disable(); 1999 err = netif_rx(skb); 2000 if (local_softirq_pending()) 2001 do_softirq(); 2002 preempt_enable(); 2003 2004 return err; 2005 } 2006 2007 EXPORT_SYMBOL(netif_rx_ni); 2008 2009 static void net_tx_action(struct softirq_action *h) 2010 { 2011 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2012 2013 if (sd->completion_queue) { 2014 struct sk_buff *clist; 2015 2016 local_irq_disable(); 2017 clist = sd->completion_queue; 2018 sd->completion_queue = NULL; 2019 local_irq_enable(); 2020 2021 while (clist) { 2022 struct sk_buff *skb = clist; 2023 clist = clist->next; 2024 2025 WARN_ON(atomic_read(&skb->users)); 2026 __kfree_skb(skb); 2027 } 2028 } 2029 2030 if (sd->output_queue) { 2031 struct Qdisc *head; 2032 2033 local_irq_disable(); 2034 head = sd->output_queue; 2035 sd->output_queue = NULL; 2036 local_irq_enable(); 2037 2038 while (head) { 2039 struct Qdisc *q = head; 2040 spinlock_t *root_lock; 2041 2042 head = head->next_sched; 2043 2044 root_lock = qdisc_lock(q); 2045 if (spin_trylock(root_lock)) { 2046 smp_mb__before_clear_bit(); 2047 clear_bit(__QDISC_STATE_SCHED, 2048 &q->state); 2049 qdisc_run(q); 2050 spin_unlock(root_lock); 2051 } else { 2052 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2053 &q->state)) { 2054 __netif_reschedule(q); 2055 } else { 2056 smp_mb__before_clear_bit(); 2057 clear_bit(__QDISC_STATE_SCHED, 2058 &q->state); 2059 } 2060 } 2061 } 2062 } 2063 } 2064 2065 static inline int deliver_skb(struct sk_buff *skb, 2066 struct packet_type *pt_prev, 2067 struct net_device *orig_dev) 2068 { 2069 atomic_inc(&skb->users); 2070 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2071 } 2072 2073 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2074 2075 #if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE) 2076 /* This hook is defined here for ATM LANE */ 2077 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2078 unsigned char *addr) __read_mostly; 2079 EXPORT_SYMBOL(br_fdb_test_addr_hook); 2080 #endif 2081 2082 /* 2083 * If bridge module is loaded call bridging hook. 2084 * returns NULL if packet was consumed. 2085 */ 2086 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2087 struct sk_buff *skb) __read_mostly; 2088 EXPORT_SYMBOL(br_handle_frame_hook); 2089 2090 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2091 struct packet_type **pt_prev, int *ret, 2092 struct net_device *orig_dev) 2093 { 2094 struct net_bridge_port *port; 2095 2096 if (skb->pkt_type == PACKET_LOOPBACK || 2097 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2098 return skb; 2099 2100 if (*pt_prev) { 2101 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2102 *pt_prev = NULL; 2103 } 2104 2105 return br_handle_frame_hook(port, skb); 2106 } 2107 #else 2108 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2109 #endif 2110 2111 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2112 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2113 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2114 2115 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2116 struct packet_type **pt_prev, 2117 int *ret, 2118 struct net_device *orig_dev) 2119 { 2120 if (skb->dev->macvlan_port == NULL) 2121 return skb; 2122 2123 if (*pt_prev) { 2124 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2125 *pt_prev = NULL; 2126 } 2127 return macvlan_handle_frame_hook(skb); 2128 } 2129 #else 2130 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2131 #endif 2132 2133 #ifdef CONFIG_NET_CLS_ACT 2134 /* TODO: Maybe we should just force sch_ingress to be compiled in 2135 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2136 * a compare and 2 stores extra right now if we dont have it on 2137 * but have CONFIG_NET_CLS_ACT 2138 * NOTE: This doesnt stop any functionality; if you dont have 2139 * the ingress scheduler, you just cant add policies on ingress. 2140 * 2141 */ 2142 static int ing_filter(struct sk_buff *skb) 2143 { 2144 struct net_device *dev = skb->dev; 2145 u32 ttl = G_TC_RTTL(skb->tc_verd); 2146 struct netdev_queue *rxq; 2147 int result = TC_ACT_OK; 2148 struct Qdisc *q; 2149 2150 if (MAX_RED_LOOP < ttl++) { 2151 printk(KERN_WARNING 2152 "Redir loop detected Dropping packet (%d->%d)\n", 2153 skb->iif, dev->ifindex); 2154 return TC_ACT_SHOT; 2155 } 2156 2157 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2158 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2159 2160 rxq = &dev->rx_queue; 2161 2162 q = rxq->qdisc; 2163 if (q != &noop_qdisc) { 2164 spin_lock(qdisc_lock(q)); 2165 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2166 result = qdisc_enqueue_root(skb, q); 2167 spin_unlock(qdisc_lock(q)); 2168 } 2169 2170 return result; 2171 } 2172 2173 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2174 struct packet_type **pt_prev, 2175 int *ret, struct net_device *orig_dev) 2176 { 2177 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2178 goto out; 2179 2180 if (*pt_prev) { 2181 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2182 *pt_prev = NULL; 2183 } else { 2184 /* Huh? Why does turning on AF_PACKET affect this? */ 2185 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2186 } 2187 2188 switch (ing_filter(skb)) { 2189 case TC_ACT_SHOT: 2190 case TC_ACT_STOLEN: 2191 kfree_skb(skb); 2192 return NULL; 2193 } 2194 2195 out: 2196 skb->tc_verd = 0; 2197 return skb; 2198 } 2199 #endif 2200 2201 /* 2202 * netif_nit_deliver - deliver received packets to network taps 2203 * @skb: buffer 2204 * 2205 * This function is used to deliver incoming packets to network 2206 * taps. It should be used when the normal netif_receive_skb path 2207 * is bypassed, for example because of VLAN acceleration. 2208 */ 2209 void netif_nit_deliver(struct sk_buff *skb) 2210 { 2211 struct packet_type *ptype; 2212 2213 if (list_empty(&ptype_all)) 2214 return; 2215 2216 skb_reset_network_header(skb); 2217 skb_reset_transport_header(skb); 2218 skb->mac_len = skb->network_header - skb->mac_header; 2219 2220 rcu_read_lock(); 2221 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2222 if (!ptype->dev || ptype->dev == skb->dev) 2223 deliver_skb(skb, ptype, skb->dev); 2224 } 2225 rcu_read_unlock(); 2226 } 2227 2228 /** 2229 * netif_receive_skb - process receive buffer from network 2230 * @skb: buffer to process 2231 * 2232 * netif_receive_skb() is the main receive data processing function. 2233 * It always succeeds. The buffer may be dropped during processing 2234 * for congestion control or by the protocol layers. 2235 * 2236 * This function may only be called from softirq context and interrupts 2237 * should be enabled. 2238 * 2239 * Return values (usually ignored): 2240 * NET_RX_SUCCESS: no congestion 2241 * NET_RX_DROP: packet was dropped 2242 */ 2243 int netif_receive_skb(struct sk_buff *skb) 2244 { 2245 struct packet_type *ptype, *pt_prev; 2246 struct net_device *orig_dev; 2247 struct net_device *null_or_orig; 2248 int ret = NET_RX_DROP; 2249 __be16 type; 2250 2251 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2252 return NET_RX_SUCCESS; 2253 2254 /* if we've gotten here through NAPI, check netpoll */ 2255 if (netpoll_receive_skb(skb)) 2256 return NET_RX_DROP; 2257 2258 if (!skb->tstamp.tv64) 2259 net_timestamp(skb); 2260 2261 if (!skb->iif) 2262 skb->iif = skb->dev->ifindex; 2263 2264 null_or_orig = NULL; 2265 orig_dev = skb->dev; 2266 if (orig_dev->master) { 2267 if (skb_bond_should_drop(skb)) 2268 null_or_orig = orig_dev; /* deliver only exact match */ 2269 else 2270 skb->dev = orig_dev->master; 2271 } 2272 2273 __get_cpu_var(netdev_rx_stat).total++; 2274 2275 skb_reset_network_header(skb); 2276 skb_reset_transport_header(skb); 2277 skb->mac_len = skb->network_header - skb->mac_header; 2278 2279 pt_prev = NULL; 2280 2281 rcu_read_lock(); 2282 2283 #ifdef CONFIG_NET_CLS_ACT 2284 if (skb->tc_verd & TC_NCLS) { 2285 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2286 goto ncls; 2287 } 2288 #endif 2289 2290 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2291 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2292 ptype->dev == orig_dev) { 2293 if (pt_prev) 2294 ret = deliver_skb(skb, pt_prev, orig_dev); 2295 pt_prev = ptype; 2296 } 2297 } 2298 2299 #ifdef CONFIG_NET_CLS_ACT 2300 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2301 if (!skb) 2302 goto out; 2303 ncls: 2304 #endif 2305 2306 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2307 if (!skb) 2308 goto out; 2309 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2310 if (!skb) 2311 goto out; 2312 2313 skb_orphan(skb); 2314 2315 type = skb->protocol; 2316 list_for_each_entry_rcu(ptype, 2317 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2318 if (ptype->type == type && 2319 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2320 ptype->dev == orig_dev)) { 2321 if (pt_prev) 2322 ret = deliver_skb(skb, pt_prev, orig_dev); 2323 pt_prev = ptype; 2324 } 2325 } 2326 2327 if (pt_prev) { 2328 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2329 } else { 2330 kfree_skb(skb); 2331 /* Jamal, now you will not able to escape explaining 2332 * me how you were going to use this. :-) 2333 */ 2334 ret = NET_RX_DROP; 2335 } 2336 2337 out: 2338 rcu_read_unlock(); 2339 return ret; 2340 } 2341 2342 /* Network device is going away, flush any packets still pending */ 2343 static void flush_backlog(void *arg) 2344 { 2345 struct net_device *dev = arg; 2346 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2347 struct sk_buff *skb, *tmp; 2348 2349 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2350 if (skb->dev == dev) { 2351 __skb_unlink(skb, &queue->input_pkt_queue); 2352 kfree_skb(skb); 2353 } 2354 } 2355 2356 static int napi_gro_complete(struct sk_buff *skb) 2357 { 2358 struct packet_type *ptype; 2359 __be16 type = skb->protocol; 2360 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2361 int err = -ENOENT; 2362 2363 if (NAPI_GRO_CB(skb)->count == 1) { 2364 skb_shinfo(skb)->gso_size = 0; 2365 goto out; 2366 } 2367 2368 rcu_read_lock(); 2369 list_for_each_entry_rcu(ptype, head, list) { 2370 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2371 continue; 2372 2373 err = ptype->gro_complete(skb); 2374 break; 2375 } 2376 rcu_read_unlock(); 2377 2378 if (err) { 2379 WARN_ON(&ptype->list == head); 2380 kfree_skb(skb); 2381 return NET_RX_SUCCESS; 2382 } 2383 2384 out: 2385 return netif_receive_skb(skb); 2386 } 2387 2388 void napi_gro_flush(struct napi_struct *napi) 2389 { 2390 struct sk_buff *skb, *next; 2391 2392 for (skb = napi->gro_list; skb; skb = next) { 2393 next = skb->next; 2394 skb->next = NULL; 2395 napi_gro_complete(skb); 2396 } 2397 2398 napi->gro_count = 0; 2399 napi->gro_list = NULL; 2400 } 2401 EXPORT_SYMBOL(napi_gro_flush); 2402 2403 int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2404 { 2405 struct sk_buff **pp = NULL; 2406 struct packet_type *ptype; 2407 __be16 type = skb->protocol; 2408 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2409 int same_flow; 2410 int mac_len; 2411 int ret; 2412 2413 if (!(skb->dev->features & NETIF_F_GRO)) 2414 goto normal; 2415 2416 if (skb_is_gso(skb) || skb_has_frags(skb)) 2417 goto normal; 2418 2419 rcu_read_lock(); 2420 list_for_each_entry_rcu(ptype, head, list) { 2421 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2422 continue; 2423 2424 skb_set_network_header(skb, skb_gro_offset(skb)); 2425 mac_len = skb->network_header - skb->mac_header; 2426 skb->mac_len = mac_len; 2427 NAPI_GRO_CB(skb)->same_flow = 0; 2428 NAPI_GRO_CB(skb)->flush = 0; 2429 NAPI_GRO_CB(skb)->free = 0; 2430 2431 pp = ptype->gro_receive(&napi->gro_list, skb); 2432 break; 2433 } 2434 rcu_read_unlock(); 2435 2436 if (&ptype->list == head) 2437 goto normal; 2438 2439 same_flow = NAPI_GRO_CB(skb)->same_flow; 2440 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 2441 2442 if (pp) { 2443 struct sk_buff *nskb = *pp; 2444 2445 *pp = nskb->next; 2446 nskb->next = NULL; 2447 napi_gro_complete(nskb); 2448 napi->gro_count--; 2449 } 2450 2451 if (same_flow) 2452 goto ok; 2453 2454 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 2455 goto normal; 2456 2457 napi->gro_count++; 2458 NAPI_GRO_CB(skb)->count = 1; 2459 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 2460 skb->next = napi->gro_list; 2461 napi->gro_list = skb; 2462 ret = GRO_HELD; 2463 2464 pull: 2465 if (skb_headlen(skb) < skb_gro_offset(skb)) { 2466 int grow = skb_gro_offset(skb) - skb_headlen(skb); 2467 2468 BUG_ON(skb->end - skb->tail < grow); 2469 2470 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 2471 2472 skb->tail += grow; 2473 skb->data_len -= grow; 2474 2475 skb_shinfo(skb)->frags[0].page_offset += grow; 2476 skb_shinfo(skb)->frags[0].size -= grow; 2477 2478 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 2479 put_page(skb_shinfo(skb)->frags[0].page); 2480 memmove(skb_shinfo(skb)->frags, 2481 skb_shinfo(skb)->frags + 1, 2482 --skb_shinfo(skb)->nr_frags); 2483 } 2484 } 2485 2486 ok: 2487 return ret; 2488 2489 normal: 2490 ret = GRO_NORMAL; 2491 goto pull; 2492 } 2493 EXPORT_SYMBOL(dev_gro_receive); 2494 2495 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2496 { 2497 struct sk_buff *p; 2498 2499 if (netpoll_rx_on(skb)) 2500 return GRO_NORMAL; 2501 2502 for (p = napi->gro_list; p; p = p->next) { 2503 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev) 2504 && !compare_ether_header(skb_mac_header(p), 2505 skb_gro_mac_header(skb)); 2506 NAPI_GRO_CB(p)->flush = 0; 2507 } 2508 2509 return dev_gro_receive(napi, skb); 2510 } 2511 2512 int napi_skb_finish(int ret, struct sk_buff *skb) 2513 { 2514 int err = NET_RX_SUCCESS; 2515 2516 switch (ret) { 2517 case GRO_NORMAL: 2518 return netif_receive_skb(skb); 2519 2520 case GRO_DROP: 2521 err = NET_RX_DROP; 2522 /* fall through */ 2523 2524 case GRO_MERGED_FREE: 2525 kfree_skb(skb); 2526 break; 2527 } 2528 2529 return err; 2530 } 2531 EXPORT_SYMBOL(napi_skb_finish); 2532 2533 void skb_gro_reset_offset(struct sk_buff *skb) 2534 { 2535 NAPI_GRO_CB(skb)->data_offset = 0; 2536 NAPI_GRO_CB(skb)->frag0 = NULL; 2537 NAPI_GRO_CB(skb)->frag0_len = 0; 2538 2539 if (skb->mac_header == skb->tail && 2540 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 2541 NAPI_GRO_CB(skb)->frag0 = 2542 page_address(skb_shinfo(skb)->frags[0].page) + 2543 skb_shinfo(skb)->frags[0].page_offset; 2544 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 2545 } 2546 } 2547 EXPORT_SYMBOL(skb_gro_reset_offset); 2548 2549 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2550 { 2551 skb_gro_reset_offset(skb); 2552 2553 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 2554 } 2555 EXPORT_SYMBOL(napi_gro_receive); 2556 2557 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 2558 { 2559 __skb_pull(skb, skb_headlen(skb)); 2560 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2561 2562 napi->skb = skb; 2563 } 2564 EXPORT_SYMBOL(napi_reuse_skb); 2565 2566 struct sk_buff *napi_get_frags(struct napi_struct *napi) 2567 { 2568 struct net_device *dev = napi->dev; 2569 struct sk_buff *skb = napi->skb; 2570 2571 if (!skb) { 2572 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2573 if (!skb) 2574 goto out; 2575 2576 skb_reserve(skb, NET_IP_ALIGN); 2577 2578 napi->skb = skb; 2579 } 2580 2581 out: 2582 return skb; 2583 } 2584 EXPORT_SYMBOL(napi_get_frags); 2585 2586 int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret) 2587 { 2588 int err = NET_RX_SUCCESS; 2589 2590 switch (ret) { 2591 case GRO_NORMAL: 2592 case GRO_HELD: 2593 skb->protocol = eth_type_trans(skb, napi->dev); 2594 2595 if (ret == GRO_NORMAL) 2596 return netif_receive_skb(skb); 2597 2598 skb_gro_pull(skb, -ETH_HLEN); 2599 break; 2600 2601 case GRO_DROP: 2602 err = NET_RX_DROP; 2603 /* fall through */ 2604 2605 case GRO_MERGED_FREE: 2606 napi_reuse_skb(napi, skb); 2607 break; 2608 } 2609 2610 return err; 2611 } 2612 EXPORT_SYMBOL(napi_frags_finish); 2613 2614 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 2615 { 2616 struct sk_buff *skb = napi->skb; 2617 struct ethhdr *eth; 2618 unsigned int hlen; 2619 unsigned int off; 2620 2621 napi->skb = NULL; 2622 2623 skb_reset_mac_header(skb); 2624 skb_gro_reset_offset(skb); 2625 2626 off = skb_gro_offset(skb); 2627 hlen = off + sizeof(*eth); 2628 eth = skb_gro_header_fast(skb, off); 2629 if (skb_gro_header_hard(skb, hlen)) { 2630 eth = skb_gro_header_slow(skb, hlen, off); 2631 if (unlikely(!eth)) { 2632 napi_reuse_skb(napi, skb); 2633 skb = NULL; 2634 goto out; 2635 } 2636 } 2637 2638 skb_gro_pull(skb, sizeof(*eth)); 2639 2640 /* 2641 * This works because the only protocols we care about don't require 2642 * special handling. We'll fix it up properly at the end. 2643 */ 2644 skb->protocol = eth->h_proto; 2645 2646 out: 2647 return skb; 2648 } 2649 EXPORT_SYMBOL(napi_frags_skb); 2650 2651 int napi_gro_frags(struct napi_struct *napi) 2652 { 2653 struct sk_buff *skb = napi_frags_skb(napi); 2654 2655 if (!skb) 2656 return NET_RX_DROP; 2657 2658 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 2659 } 2660 EXPORT_SYMBOL(napi_gro_frags); 2661 2662 static int process_backlog(struct napi_struct *napi, int quota) 2663 { 2664 int work = 0; 2665 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2666 unsigned long start_time = jiffies; 2667 2668 napi->weight = weight_p; 2669 do { 2670 struct sk_buff *skb; 2671 2672 local_irq_disable(); 2673 skb = __skb_dequeue(&queue->input_pkt_queue); 2674 if (!skb) { 2675 __napi_complete(napi); 2676 local_irq_enable(); 2677 break; 2678 } 2679 local_irq_enable(); 2680 2681 netif_receive_skb(skb); 2682 } while (++work < quota && jiffies == start_time); 2683 2684 return work; 2685 } 2686 2687 /** 2688 * __napi_schedule - schedule for receive 2689 * @n: entry to schedule 2690 * 2691 * The entry's receive function will be scheduled to run 2692 */ 2693 void __napi_schedule(struct napi_struct *n) 2694 { 2695 unsigned long flags; 2696 2697 local_irq_save(flags); 2698 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2699 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2700 local_irq_restore(flags); 2701 } 2702 EXPORT_SYMBOL(__napi_schedule); 2703 2704 void __napi_complete(struct napi_struct *n) 2705 { 2706 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2707 BUG_ON(n->gro_list); 2708 2709 list_del(&n->poll_list); 2710 smp_mb__before_clear_bit(); 2711 clear_bit(NAPI_STATE_SCHED, &n->state); 2712 } 2713 EXPORT_SYMBOL(__napi_complete); 2714 2715 void napi_complete(struct napi_struct *n) 2716 { 2717 unsigned long flags; 2718 2719 /* 2720 * don't let napi dequeue from the cpu poll list 2721 * just in case its running on a different cpu 2722 */ 2723 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2724 return; 2725 2726 napi_gro_flush(n); 2727 local_irq_save(flags); 2728 __napi_complete(n); 2729 local_irq_restore(flags); 2730 } 2731 EXPORT_SYMBOL(napi_complete); 2732 2733 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2734 int (*poll)(struct napi_struct *, int), int weight) 2735 { 2736 INIT_LIST_HEAD(&napi->poll_list); 2737 napi->gro_count = 0; 2738 napi->gro_list = NULL; 2739 napi->skb = NULL; 2740 napi->poll = poll; 2741 napi->weight = weight; 2742 list_add(&napi->dev_list, &dev->napi_list); 2743 napi->dev = dev; 2744 #ifdef CONFIG_NETPOLL 2745 spin_lock_init(&napi->poll_lock); 2746 napi->poll_owner = -1; 2747 #endif 2748 set_bit(NAPI_STATE_SCHED, &napi->state); 2749 } 2750 EXPORT_SYMBOL(netif_napi_add); 2751 2752 void netif_napi_del(struct napi_struct *napi) 2753 { 2754 struct sk_buff *skb, *next; 2755 2756 list_del_init(&napi->dev_list); 2757 napi_free_frags(napi); 2758 2759 for (skb = napi->gro_list; skb; skb = next) { 2760 next = skb->next; 2761 skb->next = NULL; 2762 kfree_skb(skb); 2763 } 2764 2765 napi->gro_list = NULL; 2766 napi->gro_count = 0; 2767 } 2768 EXPORT_SYMBOL(netif_napi_del); 2769 2770 2771 static void net_rx_action(struct softirq_action *h) 2772 { 2773 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2774 unsigned long time_limit = jiffies + 2; 2775 int budget = netdev_budget; 2776 void *have; 2777 2778 local_irq_disable(); 2779 2780 while (!list_empty(list)) { 2781 struct napi_struct *n; 2782 int work, weight; 2783 2784 /* If softirq window is exhuasted then punt. 2785 * Allow this to run for 2 jiffies since which will allow 2786 * an average latency of 1.5/HZ. 2787 */ 2788 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2789 goto softnet_break; 2790 2791 local_irq_enable(); 2792 2793 /* Even though interrupts have been re-enabled, this 2794 * access is safe because interrupts can only add new 2795 * entries to the tail of this list, and only ->poll() 2796 * calls can remove this head entry from the list. 2797 */ 2798 n = list_entry(list->next, struct napi_struct, poll_list); 2799 2800 have = netpoll_poll_lock(n); 2801 2802 weight = n->weight; 2803 2804 /* This NAPI_STATE_SCHED test is for avoiding a race 2805 * with netpoll's poll_napi(). Only the entity which 2806 * obtains the lock and sees NAPI_STATE_SCHED set will 2807 * actually make the ->poll() call. Therefore we avoid 2808 * accidently calling ->poll() when NAPI is not scheduled. 2809 */ 2810 work = 0; 2811 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 2812 work = n->poll(n, weight); 2813 trace_napi_poll(n); 2814 } 2815 2816 WARN_ON_ONCE(work > weight); 2817 2818 budget -= work; 2819 2820 local_irq_disable(); 2821 2822 /* Drivers must not modify the NAPI state if they 2823 * consume the entire weight. In such cases this code 2824 * still "owns" the NAPI instance and therefore can 2825 * move the instance around on the list at-will. 2826 */ 2827 if (unlikely(work == weight)) { 2828 if (unlikely(napi_disable_pending(n))) 2829 __napi_complete(n); 2830 else 2831 list_move_tail(&n->poll_list, list); 2832 } 2833 2834 netpoll_poll_unlock(have); 2835 } 2836 out: 2837 local_irq_enable(); 2838 2839 #ifdef CONFIG_NET_DMA 2840 /* 2841 * There may not be any more sk_buffs coming right now, so push 2842 * any pending DMA copies to hardware 2843 */ 2844 dma_issue_pending_all(); 2845 #endif 2846 2847 return; 2848 2849 softnet_break: 2850 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2851 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2852 goto out; 2853 } 2854 2855 static gifconf_func_t * gifconf_list [NPROTO]; 2856 2857 /** 2858 * register_gifconf - register a SIOCGIF handler 2859 * @family: Address family 2860 * @gifconf: Function handler 2861 * 2862 * Register protocol dependent address dumping routines. The handler 2863 * that is passed must not be freed or reused until it has been replaced 2864 * by another handler. 2865 */ 2866 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2867 { 2868 if (family >= NPROTO) 2869 return -EINVAL; 2870 gifconf_list[family] = gifconf; 2871 return 0; 2872 } 2873 2874 2875 /* 2876 * Map an interface index to its name (SIOCGIFNAME) 2877 */ 2878 2879 /* 2880 * We need this ioctl for efficient implementation of the 2881 * if_indextoname() function required by the IPv6 API. Without 2882 * it, we would have to search all the interfaces to find a 2883 * match. --pb 2884 */ 2885 2886 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2887 { 2888 struct net_device *dev; 2889 struct ifreq ifr; 2890 2891 /* 2892 * Fetch the caller's info block. 2893 */ 2894 2895 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2896 return -EFAULT; 2897 2898 read_lock(&dev_base_lock); 2899 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2900 if (!dev) { 2901 read_unlock(&dev_base_lock); 2902 return -ENODEV; 2903 } 2904 2905 strcpy(ifr.ifr_name, dev->name); 2906 read_unlock(&dev_base_lock); 2907 2908 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2909 return -EFAULT; 2910 return 0; 2911 } 2912 2913 /* 2914 * Perform a SIOCGIFCONF call. This structure will change 2915 * size eventually, and there is nothing I can do about it. 2916 * Thus we will need a 'compatibility mode'. 2917 */ 2918 2919 static int dev_ifconf(struct net *net, char __user *arg) 2920 { 2921 struct ifconf ifc; 2922 struct net_device *dev; 2923 char __user *pos; 2924 int len; 2925 int total; 2926 int i; 2927 2928 /* 2929 * Fetch the caller's info block. 2930 */ 2931 2932 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2933 return -EFAULT; 2934 2935 pos = ifc.ifc_buf; 2936 len = ifc.ifc_len; 2937 2938 /* 2939 * Loop over the interfaces, and write an info block for each. 2940 */ 2941 2942 total = 0; 2943 for_each_netdev(net, dev) { 2944 for (i = 0; i < NPROTO; i++) { 2945 if (gifconf_list[i]) { 2946 int done; 2947 if (!pos) 2948 done = gifconf_list[i](dev, NULL, 0); 2949 else 2950 done = gifconf_list[i](dev, pos + total, 2951 len - total); 2952 if (done < 0) 2953 return -EFAULT; 2954 total += done; 2955 } 2956 } 2957 } 2958 2959 /* 2960 * All done. Write the updated control block back to the caller. 2961 */ 2962 ifc.ifc_len = total; 2963 2964 /* 2965 * Both BSD and Solaris return 0 here, so we do too. 2966 */ 2967 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2968 } 2969 2970 #ifdef CONFIG_PROC_FS 2971 /* 2972 * This is invoked by the /proc filesystem handler to display a device 2973 * in detail. 2974 */ 2975 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2976 __acquires(dev_base_lock) 2977 { 2978 struct net *net = seq_file_net(seq); 2979 loff_t off; 2980 struct net_device *dev; 2981 2982 read_lock(&dev_base_lock); 2983 if (!*pos) 2984 return SEQ_START_TOKEN; 2985 2986 off = 1; 2987 for_each_netdev(net, dev) 2988 if (off++ == *pos) 2989 return dev; 2990 2991 return NULL; 2992 } 2993 2994 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2995 { 2996 struct net *net = seq_file_net(seq); 2997 ++*pos; 2998 return v == SEQ_START_TOKEN ? 2999 first_net_device(net) : next_net_device((struct net_device *)v); 3000 } 3001 3002 void dev_seq_stop(struct seq_file *seq, void *v) 3003 __releases(dev_base_lock) 3004 { 3005 read_unlock(&dev_base_lock); 3006 } 3007 3008 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 3009 { 3010 const struct net_device_stats *stats = dev_get_stats(dev); 3011 3012 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 3013 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 3014 dev->name, stats->rx_bytes, stats->rx_packets, 3015 stats->rx_errors, 3016 stats->rx_dropped + stats->rx_missed_errors, 3017 stats->rx_fifo_errors, 3018 stats->rx_length_errors + stats->rx_over_errors + 3019 stats->rx_crc_errors + stats->rx_frame_errors, 3020 stats->rx_compressed, stats->multicast, 3021 stats->tx_bytes, stats->tx_packets, 3022 stats->tx_errors, stats->tx_dropped, 3023 stats->tx_fifo_errors, stats->collisions, 3024 stats->tx_carrier_errors + 3025 stats->tx_aborted_errors + 3026 stats->tx_window_errors + 3027 stats->tx_heartbeat_errors, 3028 stats->tx_compressed); 3029 } 3030 3031 /* 3032 * Called from the PROCfs module. This now uses the new arbitrary sized 3033 * /proc/net interface to create /proc/net/dev 3034 */ 3035 static int dev_seq_show(struct seq_file *seq, void *v) 3036 { 3037 if (v == SEQ_START_TOKEN) 3038 seq_puts(seq, "Inter-| Receive " 3039 " | Transmit\n" 3040 " face |bytes packets errs drop fifo frame " 3041 "compressed multicast|bytes packets errs " 3042 "drop fifo colls carrier compressed\n"); 3043 else 3044 dev_seq_printf_stats(seq, v); 3045 return 0; 3046 } 3047 3048 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 3049 { 3050 struct netif_rx_stats *rc = NULL; 3051 3052 while (*pos < nr_cpu_ids) 3053 if (cpu_online(*pos)) { 3054 rc = &per_cpu(netdev_rx_stat, *pos); 3055 break; 3056 } else 3057 ++*pos; 3058 return rc; 3059 } 3060 3061 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 3062 { 3063 return softnet_get_online(pos); 3064 } 3065 3066 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3067 { 3068 ++*pos; 3069 return softnet_get_online(pos); 3070 } 3071 3072 static void softnet_seq_stop(struct seq_file *seq, void *v) 3073 { 3074 } 3075 3076 static int softnet_seq_show(struct seq_file *seq, void *v) 3077 { 3078 struct netif_rx_stats *s = v; 3079 3080 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 3081 s->total, s->dropped, s->time_squeeze, 0, 3082 0, 0, 0, 0, /* was fastroute */ 3083 s->cpu_collision ); 3084 return 0; 3085 } 3086 3087 static const struct seq_operations dev_seq_ops = { 3088 .start = dev_seq_start, 3089 .next = dev_seq_next, 3090 .stop = dev_seq_stop, 3091 .show = dev_seq_show, 3092 }; 3093 3094 static int dev_seq_open(struct inode *inode, struct file *file) 3095 { 3096 return seq_open_net(inode, file, &dev_seq_ops, 3097 sizeof(struct seq_net_private)); 3098 } 3099 3100 static const struct file_operations dev_seq_fops = { 3101 .owner = THIS_MODULE, 3102 .open = dev_seq_open, 3103 .read = seq_read, 3104 .llseek = seq_lseek, 3105 .release = seq_release_net, 3106 }; 3107 3108 static const struct seq_operations softnet_seq_ops = { 3109 .start = softnet_seq_start, 3110 .next = softnet_seq_next, 3111 .stop = softnet_seq_stop, 3112 .show = softnet_seq_show, 3113 }; 3114 3115 static int softnet_seq_open(struct inode *inode, struct file *file) 3116 { 3117 return seq_open(file, &softnet_seq_ops); 3118 } 3119 3120 static const struct file_operations softnet_seq_fops = { 3121 .owner = THIS_MODULE, 3122 .open = softnet_seq_open, 3123 .read = seq_read, 3124 .llseek = seq_lseek, 3125 .release = seq_release, 3126 }; 3127 3128 static void *ptype_get_idx(loff_t pos) 3129 { 3130 struct packet_type *pt = NULL; 3131 loff_t i = 0; 3132 int t; 3133 3134 list_for_each_entry_rcu(pt, &ptype_all, list) { 3135 if (i == pos) 3136 return pt; 3137 ++i; 3138 } 3139 3140 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3141 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3142 if (i == pos) 3143 return pt; 3144 ++i; 3145 } 3146 } 3147 return NULL; 3148 } 3149 3150 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3151 __acquires(RCU) 3152 { 3153 rcu_read_lock(); 3154 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3155 } 3156 3157 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3158 { 3159 struct packet_type *pt; 3160 struct list_head *nxt; 3161 int hash; 3162 3163 ++*pos; 3164 if (v == SEQ_START_TOKEN) 3165 return ptype_get_idx(0); 3166 3167 pt = v; 3168 nxt = pt->list.next; 3169 if (pt->type == htons(ETH_P_ALL)) { 3170 if (nxt != &ptype_all) 3171 goto found; 3172 hash = 0; 3173 nxt = ptype_base[0].next; 3174 } else 3175 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3176 3177 while (nxt == &ptype_base[hash]) { 3178 if (++hash >= PTYPE_HASH_SIZE) 3179 return NULL; 3180 nxt = ptype_base[hash].next; 3181 } 3182 found: 3183 return list_entry(nxt, struct packet_type, list); 3184 } 3185 3186 static void ptype_seq_stop(struct seq_file *seq, void *v) 3187 __releases(RCU) 3188 { 3189 rcu_read_unlock(); 3190 } 3191 3192 static int ptype_seq_show(struct seq_file *seq, void *v) 3193 { 3194 struct packet_type *pt = v; 3195 3196 if (v == SEQ_START_TOKEN) 3197 seq_puts(seq, "Type Device Function\n"); 3198 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3199 if (pt->type == htons(ETH_P_ALL)) 3200 seq_puts(seq, "ALL "); 3201 else 3202 seq_printf(seq, "%04x", ntohs(pt->type)); 3203 3204 seq_printf(seq, " %-8s %pF\n", 3205 pt->dev ? pt->dev->name : "", pt->func); 3206 } 3207 3208 return 0; 3209 } 3210 3211 static const struct seq_operations ptype_seq_ops = { 3212 .start = ptype_seq_start, 3213 .next = ptype_seq_next, 3214 .stop = ptype_seq_stop, 3215 .show = ptype_seq_show, 3216 }; 3217 3218 static int ptype_seq_open(struct inode *inode, struct file *file) 3219 { 3220 return seq_open_net(inode, file, &ptype_seq_ops, 3221 sizeof(struct seq_net_private)); 3222 } 3223 3224 static const struct file_operations ptype_seq_fops = { 3225 .owner = THIS_MODULE, 3226 .open = ptype_seq_open, 3227 .read = seq_read, 3228 .llseek = seq_lseek, 3229 .release = seq_release_net, 3230 }; 3231 3232 3233 static int __net_init dev_proc_net_init(struct net *net) 3234 { 3235 int rc = -ENOMEM; 3236 3237 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3238 goto out; 3239 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3240 goto out_dev; 3241 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3242 goto out_softnet; 3243 3244 if (wext_proc_init(net)) 3245 goto out_ptype; 3246 rc = 0; 3247 out: 3248 return rc; 3249 out_ptype: 3250 proc_net_remove(net, "ptype"); 3251 out_softnet: 3252 proc_net_remove(net, "softnet_stat"); 3253 out_dev: 3254 proc_net_remove(net, "dev"); 3255 goto out; 3256 } 3257 3258 static void __net_exit dev_proc_net_exit(struct net *net) 3259 { 3260 wext_proc_exit(net); 3261 3262 proc_net_remove(net, "ptype"); 3263 proc_net_remove(net, "softnet_stat"); 3264 proc_net_remove(net, "dev"); 3265 } 3266 3267 static struct pernet_operations __net_initdata dev_proc_ops = { 3268 .init = dev_proc_net_init, 3269 .exit = dev_proc_net_exit, 3270 }; 3271 3272 static int __init dev_proc_init(void) 3273 { 3274 return register_pernet_subsys(&dev_proc_ops); 3275 } 3276 #else 3277 #define dev_proc_init() 0 3278 #endif /* CONFIG_PROC_FS */ 3279 3280 3281 /** 3282 * netdev_set_master - set up master/slave pair 3283 * @slave: slave device 3284 * @master: new master device 3285 * 3286 * Changes the master device of the slave. Pass %NULL to break the 3287 * bonding. The caller must hold the RTNL semaphore. On a failure 3288 * a negative errno code is returned. On success the reference counts 3289 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3290 * function returns zero. 3291 */ 3292 int netdev_set_master(struct net_device *slave, struct net_device *master) 3293 { 3294 struct net_device *old = slave->master; 3295 3296 ASSERT_RTNL(); 3297 3298 if (master) { 3299 if (old) 3300 return -EBUSY; 3301 dev_hold(master); 3302 } 3303 3304 slave->master = master; 3305 3306 synchronize_net(); 3307 3308 if (old) 3309 dev_put(old); 3310 3311 if (master) 3312 slave->flags |= IFF_SLAVE; 3313 else 3314 slave->flags &= ~IFF_SLAVE; 3315 3316 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3317 return 0; 3318 } 3319 3320 static void dev_change_rx_flags(struct net_device *dev, int flags) 3321 { 3322 const struct net_device_ops *ops = dev->netdev_ops; 3323 3324 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3325 ops->ndo_change_rx_flags(dev, flags); 3326 } 3327 3328 static int __dev_set_promiscuity(struct net_device *dev, int inc) 3329 { 3330 unsigned short old_flags = dev->flags; 3331 uid_t uid; 3332 gid_t gid; 3333 3334 ASSERT_RTNL(); 3335 3336 dev->flags |= IFF_PROMISC; 3337 dev->promiscuity += inc; 3338 if (dev->promiscuity == 0) { 3339 /* 3340 * Avoid overflow. 3341 * If inc causes overflow, untouch promisc and return error. 3342 */ 3343 if (inc < 0) 3344 dev->flags &= ~IFF_PROMISC; 3345 else { 3346 dev->promiscuity -= inc; 3347 printk(KERN_WARNING "%s: promiscuity touches roof, " 3348 "set promiscuity failed, promiscuity feature " 3349 "of device might be broken.\n", dev->name); 3350 return -EOVERFLOW; 3351 } 3352 } 3353 if (dev->flags != old_flags) { 3354 printk(KERN_INFO "device %s %s promiscuous mode\n", 3355 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3356 "left"); 3357 if (audit_enabled) { 3358 current_uid_gid(&uid, &gid); 3359 audit_log(current->audit_context, GFP_ATOMIC, 3360 AUDIT_ANOM_PROMISCUOUS, 3361 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3362 dev->name, (dev->flags & IFF_PROMISC), 3363 (old_flags & IFF_PROMISC), 3364 audit_get_loginuid(current), 3365 uid, gid, 3366 audit_get_sessionid(current)); 3367 } 3368 3369 dev_change_rx_flags(dev, IFF_PROMISC); 3370 } 3371 return 0; 3372 } 3373 3374 /** 3375 * dev_set_promiscuity - update promiscuity count on a device 3376 * @dev: device 3377 * @inc: modifier 3378 * 3379 * Add or remove promiscuity from a device. While the count in the device 3380 * remains above zero the interface remains promiscuous. Once it hits zero 3381 * the device reverts back to normal filtering operation. A negative inc 3382 * value is used to drop promiscuity on the device. 3383 * Return 0 if successful or a negative errno code on error. 3384 */ 3385 int dev_set_promiscuity(struct net_device *dev, int inc) 3386 { 3387 unsigned short old_flags = dev->flags; 3388 int err; 3389 3390 err = __dev_set_promiscuity(dev, inc); 3391 if (err < 0) 3392 return err; 3393 if (dev->flags != old_flags) 3394 dev_set_rx_mode(dev); 3395 return err; 3396 } 3397 3398 /** 3399 * dev_set_allmulti - update allmulti count on a device 3400 * @dev: device 3401 * @inc: modifier 3402 * 3403 * Add or remove reception of all multicast frames to a device. While the 3404 * count in the device remains above zero the interface remains listening 3405 * to all interfaces. Once it hits zero the device reverts back to normal 3406 * filtering operation. A negative @inc value is used to drop the counter 3407 * when releasing a resource needing all multicasts. 3408 * Return 0 if successful or a negative errno code on error. 3409 */ 3410 3411 int dev_set_allmulti(struct net_device *dev, int inc) 3412 { 3413 unsigned short old_flags = dev->flags; 3414 3415 ASSERT_RTNL(); 3416 3417 dev->flags |= IFF_ALLMULTI; 3418 dev->allmulti += inc; 3419 if (dev->allmulti == 0) { 3420 /* 3421 * Avoid overflow. 3422 * If inc causes overflow, untouch allmulti and return error. 3423 */ 3424 if (inc < 0) 3425 dev->flags &= ~IFF_ALLMULTI; 3426 else { 3427 dev->allmulti -= inc; 3428 printk(KERN_WARNING "%s: allmulti touches roof, " 3429 "set allmulti failed, allmulti feature of " 3430 "device might be broken.\n", dev->name); 3431 return -EOVERFLOW; 3432 } 3433 } 3434 if (dev->flags ^ old_flags) { 3435 dev_change_rx_flags(dev, IFF_ALLMULTI); 3436 dev_set_rx_mode(dev); 3437 } 3438 return 0; 3439 } 3440 3441 /* 3442 * Upload unicast and multicast address lists to device and 3443 * configure RX filtering. When the device doesn't support unicast 3444 * filtering it is put in promiscuous mode while unicast addresses 3445 * are present. 3446 */ 3447 void __dev_set_rx_mode(struct net_device *dev) 3448 { 3449 const struct net_device_ops *ops = dev->netdev_ops; 3450 3451 /* dev_open will call this function so the list will stay sane. */ 3452 if (!(dev->flags&IFF_UP)) 3453 return; 3454 3455 if (!netif_device_present(dev)) 3456 return; 3457 3458 if (ops->ndo_set_rx_mode) 3459 ops->ndo_set_rx_mode(dev); 3460 else { 3461 /* Unicast addresses changes may only happen under the rtnl, 3462 * therefore calling __dev_set_promiscuity here is safe. 3463 */ 3464 if (dev->uc_count > 0 && !dev->uc_promisc) { 3465 __dev_set_promiscuity(dev, 1); 3466 dev->uc_promisc = 1; 3467 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3468 __dev_set_promiscuity(dev, -1); 3469 dev->uc_promisc = 0; 3470 } 3471 3472 if (ops->ndo_set_multicast_list) 3473 ops->ndo_set_multicast_list(dev); 3474 } 3475 } 3476 3477 void dev_set_rx_mode(struct net_device *dev) 3478 { 3479 netif_addr_lock_bh(dev); 3480 __dev_set_rx_mode(dev); 3481 netif_addr_unlock_bh(dev); 3482 } 3483 3484 /* hw addresses list handling functions */ 3485 3486 static int __hw_addr_add(struct list_head *list, int *delta, 3487 unsigned char *addr, int addr_len, 3488 unsigned char addr_type) 3489 { 3490 struct netdev_hw_addr *ha; 3491 int alloc_size; 3492 3493 if (addr_len > MAX_ADDR_LEN) 3494 return -EINVAL; 3495 3496 list_for_each_entry(ha, list, list) { 3497 if (!memcmp(ha->addr, addr, addr_len) && 3498 ha->type == addr_type) { 3499 ha->refcount++; 3500 return 0; 3501 } 3502 } 3503 3504 3505 alloc_size = sizeof(*ha); 3506 if (alloc_size < L1_CACHE_BYTES) 3507 alloc_size = L1_CACHE_BYTES; 3508 ha = kmalloc(alloc_size, GFP_ATOMIC); 3509 if (!ha) 3510 return -ENOMEM; 3511 memcpy(ha->addr, addr, addr_len); 3512 ha->type = addr_type; 3513 ha->refcount = 1; 3514 ha->synced = false; 3515 list_add_tail_rcu(&ha->list, list); 3516 if (delta) 3517 (*delta)++; 3518 return 0; 3519 } 3520 3521 static void ha_rcu_free(struct rcu_head *head) 3522 { 3523 struct netdev_hw_addr *ha; 3524 3525 ha = container_of(head, struct netdev_hw_addr, rcu_head); 3526 kfree(ha); 3527 } 3528 3529 static int __hw_addr_del(struct list_head *list, int *delta, 3530 unsigned char *addr, int addr_len, 3531 unsigned char addr_type) 3532 { 3533 struct netdev_hw_addr *ha; 3534 3535 list_for_each_entry(ha, list, list) { 3536 if (!memcmp(ha->addr, addr, addr_len) && 3537 (ha->type == addr_type || !addr_type)) { 3538 if (--ha->refcount) 3539 return 0; 3540 list_del_rcu(&ha->list); 3541 call_rcu(&ha->rcu_head, ha_rcu_free); 3542 if (delta) 3543 (*delta)--; 3544 return 0; 3545 } 3546 } 3547 return -ENOENT; 3548 } 3549 3550 static int __hw_addr_add_multiple(struct list_head *to_list, int *to_delta, 3551 struct list_head *from_list, int addr_len, 3552 unsigned char addr_type) 3553 { 3554 int err; 3555 struct netdev_hw_addr *ha, *ha2; 3556 unsigned char type; 3557 3558 list_for_each_entry(ha, from_list, list) { 3559 type = addr_type ? addr_type : ha->type; 3560 err = __hw_addr_add(to_list, to_delta, ha->addr, 3561 addr_len, type); 3562 if (err) 3563 goto unroll; 3564 } 3565 return 0; 3566 3567 unroll: 3568 list_for_each_entry(ha2, from_list, list) { 3569 if (ha2 == ha) 3570 break; 3571 type = addr_type ? addr_type : ha2->type; 3572 __hw_addr_del(to_list, to_delta, ha2->addr, 3573 addr_len, type); 3574 } 3575 return err; 3576 } 3577 3578 static void __hw_addr_del_multiple(struct list_head *to_list, int *to_delta, 3579 struct list_head *from_list, int addr_len, 3580 unsigned char addr_type) 3581 { 3582 struct netdev_hw_addr *ha; 3583 unsigned char type; 3584 3585 list_for_each_entry(ha, from_list, list) { 3586 type = addr_type ? addr_type : ha->type; 3587 __hw_addr_del(to_list, to_delta, ha->addr, 3588 addr_len, addr_type); 3589 } 3590 } 3591 3592 static int __hw_addr_sync(struct list_head *to_list, int *to_delta, 3593 struct list_head *from_list, int *from_delta, 3594 int addr_len) 3595 { 3596 int err = 0; 3597 struct netdev_hw_addr *ha, *tmp; 3598 3599 list_for_each_entry_safe(ha, tmp, from_list, list) { 3600 if (!ha->synced) { 3601 err = __hw_addr_add(to_list, to_delta, ha->addr, 3602 addr_len, ha->type); 3603 if (err) 3604 break; 3605 ha->synced = true; 3606 ha->refcount++; 3607 } else if (ha->refcount == 1) { 3608 __hw_addr_del(to_list, to_delta, ha->addr, 3609 addr_len, ha->type); 3610 __hw_addr_del(from_list, from_delta, ha->addr, 3611 addr_len, ha->type); 3612 } 3613 } 3614 return err; 3615 } 3616 3617 static void __hw_addr_unsync(struct list_head *to_list, int *to_delta, 3618 struct list_head *from_list, int *from_delta, 3619 int addr_len) 3620 { 3621 struct netdev_hw_addr *ha, *tmp; 3622 3623 list_for_each_entry_safe(ha, tmp, from_list, list) { 3624 if (ha->synced) { 3625 __hw_addr_del(to_list, to_delta, ha->addr, 3626 addr_len, ha->type); 3627 ha->synced = false; 3628 __hw_addr_del(from_list, from_delta, ha->addr, 3629 addr_len, ha->type); 3630 } 3631 } 3632 } 3633 3634 3635 static void __hw_addr_flush(struct list_head *list) 3636 { 3637 struct netdev_hw_addr *ha, *tmp; 3638 3639 list_for_each_entry_safe(ha, tmp, list, list) { 3640 list_del_rcu(&ha->list); 3641 call_rcu(&ha->rcu_head, ha_rcu_free); 3642 } 3643 } 3644 3645 /* Device addresses handling functions */ 3646 3647 static void dev_addr_flush(struct net_device *dev) 3648 { 3649 /* rtnl_mutex must be held here */ 3650 3651 __hw_addr_flush(&dev->dev_addr_list); 3652 dev->dev_addr = NULL; 3653 } 3654 3655 static int dev_addr_init(struct net_device *dev) 3656 { 3657 unsigned char addr[MAX_ADDR_LEN]; 3658 struct netdev_hw_addr *ha; 3659 int err; 3660 3661 /* rtnl_mutex must be held here */ 3662 3663 INIT_LIST_HEAD(&dev->dev_addr_list); 3664 memset(addr, 0, sizeof(addr)); 3665 err = __hw_addr_add(&dev->dev_addr_list, NULL, addr, sizeof(addr), 3666 NETDEV_HW_ADDR_T_LAN); 3667 if (!err) { 3668 /* 3669 * Get the first (previously created) address from the list 3670 * and set dev_addr pointer to this location. 3671 */ 3672 ha = list_first_entry(&dev->dev_addr_list, 3673 struct netdev_hw_addr, list); 3674 dev->dev_addr = ha->addr; 3675 } 3676 return err; 3677 } 3678 3679 /** 3680 * dev_addr_add - Add a device address 3681 * @dev: device 3682 * @addr: address to add 3683 * @addr_type: address type 3684 * 3685 * Add a device address to the device or increase the reference count if 3686 * it already exists. 3687 * 3688 * The caller must hold the rtnl_mutex. 3689 */ 3690 int dev_addr_add(struct net_device *dev, unsigned char *addr, 3691 unsigned char addr_type) 3692 { 3693 int err; 3694 3695 ASSERT_RTNL(); 3696 3697 err = __hw_addr_add(&dev->dev_addr_list, NULL, addr, dev->addr_len, 3698 addr_type); 3699 if (!err) 3700 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3701 return err; 3702 } 3703 EXPORT_SYMBOL(dev_addr_add); 3704 3705 /** 3706 * dev_addr_del - Release a device address. 3707 * @dev: device 3708 * @addr: address to delete 3709 * @addr_type: address type 3710 * 3711 * Release reference to a device address and remove it from the device 3712 * if the reference count drops to zero. 3713 * 3714 * The caller must hold the rtnl_mutex. 3715 */ 3716 int dev_addr_del(struct net_device *dev, unsigned char *addr, 3717 unsigned char addr_type) 3718 { 3719 int err; 3720 struct netdev_hw_addr *ha; 3721 3722 ASSERT_RTNL(); 3723 3724 /* 3725 * We can not remove the first address from the list because 3726 * dev->dev_addr points to that. 3727 */ 3728 ha = list_first_entry(&dev->dev_addr_list, struct netdev_hw_addr, list); 3729 if (ha->addr == dev->dev_addr && ha->refcount == 1) 3730 return -ENOENT; 3731 3732 err = __hw_addr_del(&dev->dev_addr_list, NULL, addr, dev->addr_len, 3733 addr_type); 3734 if (!err) 3735 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3736 return err; 3737 } 3738 EXPORT_SYMBOL(dev_addr_del); 3739 3740 /** 3741 * dev_addr_add_multiple - Add device addresses from another device 3742 * @to_dev: device to which addresses will be added 3743 * @from_dev: device from which addresses will be added 3744 * @addr_type: address type - 0 means type will be used from from_dev 3745 * 3746 * Add device addresses of the one device to another. 3747 ** 3748 * The caller must hold the rtnl_mutex. 3749 */ 3750 int dev_addr_add_multiple(struct net_device *to_dev, 3751 struct net_device *from_dev, 3752 unsigned char addr_type) 3753 { 3754 int err; 3755 3756 ASSERT_RTNL(); 3757 3758 if (from_dev->addr_len != to_dev->addr_len) 3759 return -EINVAL; 3760 err = __hw_addr_add_multiple(&to_dev->dev_addr_list, NULL, 3761 &from_dev->dev_addr_list, 3762 to_dev->addr_len, addr_type); 3763 if (!err) 3764 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 3765 return err; 3766 } 3767 EXPORT_SYMBOL(dev_addr_add_multiple); 3768 3769 /** 3770 * dev_addr_del_multiple - Delete device addresses by another device 3771 * @to_dev: device where the addresses will be deleted 3772 * @from_dev: device by which addresses the addresses will be deleted 3773 * @addr_type: address type - 0 means type will used from from_dev 3774 * 3775 * Deletes addresses in to device by the list of addresses in from device. 3776 * 3777 * The caller must hold the rtnl_mutex. 3778 */ 3779 int dev_addr_del_multiple(struct net_device *to_dev, 3780 struct net_device *from_dev, 3781 unsigned char addr_type) 3782 { 3783 ASSERT_RTNL(); 3784 3785 if (from_dev->addr_len != to_dev->addr_len) 3786 return -EINVAL; 3787 __hw_addr_del_multiple(&to_dev->dev_addr_list, NULL, 3788 &from_dev->dev_addr_list, 3789 to_dev->addr_len, addr_type); 3790 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev); 3791 return 0; 3792 } 3793 EXPORT_SYMBOL(dev_addr_del_multiple); 3794 3795 /* unicast and multicast addresses handling functions */ 3796 3797 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3798 void *addr, int alen, int glbl) 3799 { 3800 struct dev_addr_list *da; 3801 3802 for (; (da = *list) != NULL; list = &da->next) { 3803 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3804 alen == da->da_addrlen) { 3805 if (glbl) { 3806 int old_glbl = da->da_gusers; 3807 da->da_gusers = 0; 3808 if (old_glbl == 0) 3809 break; 3810 } 3811 if (--da->da_users) 3812 return 0; 3813 3814 *list = da->next; 3815 kfree(da); 3816 (*count)--; 3817 return 0; 3818 } 3819 } 3820 return -ENOENT; 3821 } 3822 3823 int __dev_addr_add(struct dev_addr_list **list, int *count, 3824 void *addr, int alen, int glbl) 3825 { 3826 struct dev_addr_list *da; 3827 3828 for (da = *list; da != NULL; da = da->next) { 3829 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3830 da->da_addrlen == alen) { 3831 if (glbl) { 3832 int old_glbl = da->da_gusers; 3833 da->da_gusers = 1; 3834 if (old_glbl) 3835 return 0; 3836 } 3837 da->da_users++; 3838 return 0; 3839 } 3840 } 3841 3842 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3843 if (da == NULL) 3844 return -ENOMEM; 3845 memcpy(da->da_addr, addr, alen); 3846 da->da_addrlen = alen; 3847 da->da_users = 1; 3848 da->da_gusers = glbl ? 1 : 0; 3849 da->next = *list; 3850 *list = da; 3851 (*count)++; 3852 return 0; 3853 } 3854 3855 /** 3856 * dev_unicast_delete - Release secondary unicast address. 3857 * @dev: device 3858 * @addr: address to delete 3859 * 3860 * Release reference to a secondary unicast address and remove it 3861 * from the device if the reference count drops to zero. 3862 * 3863 * The caller must hold the rtnl_mutex. 3864 */ 3865 int dev_unicast_delete(struct net_device *dev, void *addr) 3866 { 3867 int err; 3868 3869 ASSERT_RTNL(); 3870 3871 err = __hw_addr_del(&dev->uc_list, &dev->uc_count, addr, 3872 dev->addr_len, NETDEV_HW_ADDR_T_UNICAST); 3873 if (!err) 3874 __dev_set_rx_mode(dev); 3875 return err; 3876 } 3877 EXPORT_SYMBOL(dev_unicast_delete); 3878 3879 /** 3880 * dev_unicast_add - add a secondary unicast address 3881 * @dev: device 3882 * @addr: address to add 3883 * 3884 * Add a secondary unicast address to the device or increase 3885 * the reference count if it already exists. 3886 * 3887 * The caller must hold the rtnl_mutex. 3888 */ 3889 int dev_unicast_add(struct net_device *dev, void *addr) 3890 { 3891 int err; 3892 3893 ASSERT_RTNL(); 3894 3895 err = __hw_addr_add(&dev->uc_list, &dev->uc_count, addr, 3896 dev->addr_len, NETDEV_HW_ADDR_T_UNICAST); 3897 if (!err) 3898 __dev_set_rx_mode(dev); 3899 return err; 3900 } 3901 EXPORT_SYMBOL(dev_unicast_add); 3902 3903 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3904 struct dev_addr_list **from, int *from_count) 3905 { 3906 struct dev_addr_list *da, *next; 3907 int err = 0; 3908 3909 da = *from; 3910 while (da != NULL) { 3911 next = da->next; 3912 if (!da->da_synced) { 3913 err = __dev_addr_add(to, to_count, 3914 da->da_addr, da->da_addrlen, 0); 3915 if (err < 0) 3916 break; 3917 da->da_synced = 1; 3918 da->da_users++; 3919 } else if (da->da_users == 1) { 3920 __dev_addr_delete(to, to_count, 3921 da->da_addr, da->da_addrlen, 0); 3922 __dev_addr_delete(from, from_count, 3923 da->da_addr, da->da_addrlen, 0); 3924 } 3925 da = next; 3926 } 3927 return err; 3928 } 3929 3930 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3931 struct dev_addr_list **from, int *from_count) 3932 { 3933 struct dev_addr_list *da, *next; 3934 3935 da = *from; 3936 while (da != NULL) { 3937 next = da->next; 3938 if (da->da_synced) { 3939 __dev_addr_delete(to, to_count, 3940 da->da_addr, da->da_addrlen, 0); 3941 da->da_synced = 0; 3942 __dev_addr_delete(from, from_count, 3943 da->da_addr, da->da_addrlen, 0); 3944 } 3945 da = next; 3946 } 3947 } 3948 3949 /** 3950 * dev_unicast_sync - Synchronize device's unicast list to another device 3951 * @to: destination device 3952 * @from: source device 3953 * 3954 * Add newly added addresses to the destination device and release 3955 * addresses that have no users left. 3956 * 3957 * This function is intended to be called from the dev->set_rx_mode 3958 * function of layered software devices. 3959 */ 3960 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3961 { 3962 int err = 0; 3963 3964 ASSERT_RTNL(); 3965 3966 if (to->addr_len != from->addr_len) 3967 return -EINVAL; 3968 3969 err = __hw_addr_sync(&to->uc_list, &to->uc_count, 3970 &from->uc_list, &from->uc_count, to->addr_len); 3971 if (!err) 3972 __dev_set_rx_mode(to); 3973 return err; 3974 } 3975 EXPORT_SYMBOL(dev_unicast_sync); 3976 3977 /** 3978 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3979 * @to: destination device 3980 * @from: source device 3981 * 3982 * Remove all addresses that were added to the destination device by 3983 * dev_unicast_sync(). This function is intended to be called from the 3984 * dev->stop function of layered software devices. 3985 */ 3986 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3987 { 3988 ASSERT_RTNL(); 3989 3990 if (to->addr_len != from->addr_len) 3991 return; 3992 3993 __hw_addr_unsync(&to->uc_list, &to->uc_count, 3994 &from->uc_list, &from->uc_count, to->addr_len); 3995 __dev_set_rx_mode(to); 3996 } 3997 EXPORT_SYMBOL(dev_unicast_unsync); 3998 3999 static void dev_unicast_flush(struct net_device *dev) 4000 { 4001 /* rtnl_mutex must be held here */ 4002 4003 __hw_addr_flush(&dev->uc_list); 4004 dev->uc_count = 0; 4005 } 4006 4007 static void dev_unicast_init(struct net_device *dev) 4008 { 4009 /* rtnl_mutex must be held here */ 4010 4011 INIT_LIST_HEAD(&dev->uc_list); 4012 } 4013 4014 4015 static void __dev_addr_discard(struct dev_addr_list **list) 4016 { 4017 struct dev_addr_list *tmp; 4018 4019 while (*list != NULL) { 4020 tmp = *list; 4021 *list = tmp->next; 4022 if (tmp->da_users > tmp->da_gusers) 4023 printk("__dev_addr_discard: address leakage! " 4024 "da_users=%d\n", tmp->da_users); 4025 kfree(tmp); 4026 } 4027 } 4028 4029 static void dev_addr_discard(struct net_device *dev) 4030 { 4031 netif_addr_lock_bh(dev); 4032 4033 __dev_addr_discard(&dev->mc_list); 4034 dev->mc_count = 0; 4035 4036 netif_addr_unlock_bh(dev); 4037 } 4038 4039 /** 4040 * dev_get_flags - get flags reported to userspace 4041 * @dev: device 4042 * 4043 * Get the combination of flag bits exported through APIs to userspace. 4044 */ 4045 unsigned dev_get_flags(const struct net_device *dev) 4046 { 4047 unsigned flags; 4048 4049 flags = (dev->flags & ~(IFF_PROMISC | 4050 IFF_ALLMULTI | 4051 IFF_RUNNING | 4052 IFF_LOWER_UP | 4053 IFF_DORMANT)) | 4054 (dev->gflags & (IFF_PROMISC | 4055 IFF_ALLMULTI)); 4056 4057 if (netif_running(dev)) { 4058 if (netif_oper_up(dev)) 4059 flags |= IFF_RUNNING; 4060 if (netif_carrier_ok(dev)) 4061 flags |= IFF_LOWER_UP; 4062 if (netif_dormant(dev)) 4063 flags |= IFF_DORMANT; 4064 } 4065 4066 return flags; 4067 } 4068 4069 /** 4070 * dev_change_flags - change device settings 4071 * @dev: device 4072 * @flags: device state flags 4073 * 4074 * Change settings on device based state flags. The flags are 4075 * in the userspace exported format. 4076 */ 4077 int dev_change_flags(struct net_device *dev, unsigned flags) 4078 { 4079 int ret, changes; 4080 int old_flags = dev->flags; 4081 4082 ASSERT_RTNL(); 4083 4084 /* 4085 * Set the flags on our device. 4086 */ 4087 4088 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4089 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4090 IFF_AUTOMEDIA)) | 4091 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4092 IFF_ALLMULTI)); 4093 4094 /* 4095 * Load in the correct multicast list now the flags have changed. 4096 */ 4097 4098 if ((old_flags ^ flags) & IFF_MULTICAST) 4099 dev_change_rx_flags(dev, IFF_MULTICAST); 4100 4101 dev_set_rx_mode(dev); 4102 4103 /* 4104 * Have we downed the interface. We handle IFF_UP ourselves 4105 * according to user attempts to set it, rather than blindly 4106 * setting it. 4107 */ 4108 4109 ret = 0; 4110 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4111 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 4112 4113 if (!ret) 4114 dev_set_rx_mode(dev); 4115 } 4116 4117 if (dev->flags & IFF_UP && 4118 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 4119 IFF_VOLATILE))) 4120 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4121 4122 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4123 int inc = (flags & IFF_PROMISC) ? +1 : -1; 4124 dev->gflags ^= IFF_PROMISC; 4125 dev_set_promiscuity(dev, inc); 4126 } 4127 4128 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4129 is important. Some (broken) drivers set IFF_PROMISC, when 4130 IFF_ALLMULTI is requested not asking us and not reporting. 4131 */ 4132 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4133 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 4134 dev->gflags ^= IFF_ALLMULTI; 4135 dev_set_allmulti(dev, inc); 4136 } 4137 4138 /* Exclude state transition flags, already notified */ 4139 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 4140 if (changes) 4141 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4142 4143 return ret; 4144 } 4145 4146 /** 4147 * dev_set_mtu - Change maximum transfer unit 4148 * @dev: device 4149 * @new_mtu: new transfer unit 4150 * 4151 * Change the maximum transfer size of the network device. 4152 */ 4153 int dev_set_mtu(struct net_device *dev, int new_mtu) 4154 { 4155 const struct net_device_ops *ops = dev->netdev_ops; 4156 int err; 4157 4158 if (new_mtu == dev->mtu) 4159 return 0; 4160 4161 /* MTU must be positive. */ 4162 if (new_mtu < 0) 4163 return -EINVAL; 4164 4165 if (!netif_device_present(dev)) 4166 return -ENODEV; 4167 4168 err = 0; 4169 if (ops->ndo_change_mtu) 4170 err = ops->ndo_change_mtu(dev, new_mtu); 4171 else 4172 dev->mtu = new_mtu; 4173 4174 if (!err && dev->flags & IFF_UP) 4175 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4176 return err; 4177 } 4178 4179 /** 4180 * dev_set_mac_address - Change Media Access Control Address 4181 * @dev: device 4182 * @sa: new address 4183 * 4184 * Change the hardware (MAC) address of the device 4185 */ 4186 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4187 { 4188 const struct net_device_ops *ops = dev->netdev_ops; 4189 int err; 4190 4191 if (!ops->ndo_set_mac_address) 4192 return -EOPNOTSUPP; 4193 if (sa->sa_family != dev->type) 4194 return -EINVAL; 4195 if (!netif_device_present(dev)) 4196 return -ENODEV; 4197 err = ops->ndo_set_mac_address(dev, sa); 4198 if (!err) 4199 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4200 return err; 4201 } 4202 4203 /* 4204 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 4205 */ 4206 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4207 { 4208 int err; 4209 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4210 4211 if (!dev) 4212 return -ENODEV; 4213 4214 switch (cmd) { 4215 case SIOCGIFFLAGS: /* Get interface flags */ 4216 ifr->ifr_flags = (short) dev_get_flags(dev); 4217 return 0; 4218 4219 case SIOCGIFMETRIC: /* Get the metric on the interface 4220 (currently unused) */ 4221 ifr->ifr_metric = 0; 4222 return 0; 4223 4224 case SIOCGIFMTU: /* Get the MTU of a device */ 4225 ifr->ifr_mtu = dev->mtu; 4226 return 0; 4227 4228 case SIOCGIFHWADDR: 4229 if (!dev->addr_len) 4230 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4231 else 4232 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4233 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4234 ifr->ifr_hwaddr.sa_family = dev->type; 4235 return 0; 4236 4237 case SIOCGIFSLAVE: 4238 err = -EINVAL; 4239 break; 4240 4241 case SIOCGIFMAP: 4242 ifr->ifr_map.mem_start = dev->mem_start; 4243 ifr->ifr_map.mem_end = dev->mem_end; 4244 ifr->ifr_map.base_addr = dev->base_addr; 4245 ifr->ifr_map.irq = dev->irq; 4246 ifr->ifr_map.dma = dev->dma; 4247 ifr->ifr_map.port = dev->if_port; 4248 return 0; 4249 4250 case SIOCGIFINDEX: 4251 ifr->ifr_ifindex = dev->ifindex; 4252 return 0; 4253 4254 case SIOCGIFTXQLEN: 4255 ifr->ifr_qlen = dev->tx_queue_len; 4256 return 0; 4257 4258 default: 4259 /* dev_ioctl() should ensure this case 4260 * is never reached 4261 */ 4262 WARN_ON(1); 4263 err = -EINVAL; 4264 break; 4265 4266 } 4267 return err; 4268 } 4269 4270 /* 4271 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4272 */ 4273 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4274 { 4275 int err; 4276 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4277 const struct net_device_ops *ops; 4278 4279 if (!dev) 4280 return -ENODEV; 4281 4282 ops = dev->netdev_ops; 4283 4284 switch (cmd) { 4285 case SIOCSIFFLAGS: /* Set interface flags */ 4286 return dev_change_flags(dev, ifr->ifr_flags); 4287 4288 case SIOCSIFMETRIC: /* Set the metric on the interface 4289 (currently unused) */ 4290 return -EOPNOTSUPP; 4291 4292 case SIOCSIFMTU: /* Set the MTU of a device */ 4293 return dev_set_mtu(dev, ifr->ifr_mtu); 4294 4295 case SIOCSIFHWADDR: 4296 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4297 4298 case SIOCSIFHWBROADCAST: 4299 if (ifr->ifr_hwaddr.sa_family != dev->type) 4300 return -EINVAL; 4301 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4302 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4303 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4304 return 0; 4305 4306 case SIOCSIFMAP: 4307 if (ops->ndo_set_config) { 4308 if (!netif_device_present(dev)) 4309 return -ENODEV; 4310 return ops->ndo_set_config(dev, &ifr->ifr_map); 4311 } 4312 return -EOPNOTSUPP; 4313 4314 case SIOCADDMULTI: 4315 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4316 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4317 return -EINVAL; 4318 if (!netif_device_present(dev)) 4319 return -ENODEV; 4320 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 4321 dev->addr_len, 1); 4322 4323 case SIOCDELMULTI: 4324 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4325 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4326 return -EINVAL; 4327 if (!netif_device_present(dev)) 4328 return -ENODEV; 4329 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 4330 dev->addr_len, 1); 4331 4332 case SIOCSIFTXQLEN: 4333 if (ifr->ifr_qlen < 0) 4334 return -EINVAL; 4335 dev->tx_queue_len = ifr->ifr_qlen; 4336 return 0; 4337 4338 case SIOCSIFNAME: 4339 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4340 return dev_change_name(dev, ifr->ifr_newname); 4341 4342 /* 4343 * Unknown or private ioctl 4344 */ 4345 4346 default: 4347 if ((cmd >= SIOCDEVPRIVATE && 4348 cmd <= SIOCDEVPRIVATE + 15) || 4349 cmd == SIOCBONDENSLAVE || 4350 cmd == SIOCBONDRELEASE || 4351 cmd == SIOCBONDSETHWADDR || 4352 cmd == SIOCBONDSLAVEINFOQUERY || 4353 cmd == SIOCBONDINFOQUERY || 4354 cmd == SIOCBONDCHANGEACTIVE || 4355 cmd == SIOCGMIIPHY || 4356 cmd == SIOCGMIIREG || 4357 cmd == SIOCSMIIREG || 4358 cmd == SIOCBRADDIF || 4359 cmd == SIOCBRDELIF || 4360 cmd == SIOCSHWTSTAMP || 4361 cmd == SIOCWANDEV) { 4362 err = -EOPNOTSUPP; 4363 if (ops->ndo_do_ioctl) { 4364 if (netif_device_present(dev)) 4365 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4366 else 4367 err = -ENODEV; 4368 } 4369 } else 4370 err = -EINVAL; 4371 4372 } 4373 return err; 4374 } 4375 4376 /* 4377 * This function handles all "interface"-type I/O control requests. The actual 4378 * 'doing' part of this is dev_ifsioc above. 4379 */ 4380 4381 /** 4382 * dev_ioctl - network device ioctl 4383 * @net: the applicable net namespace 4384 * @cmd: command to issue 4385 * @arg: pointer to a struct ifreq in user space 4386 * 4387 * Issue ioctl functions to devices. This is normally called by the 4388 * user space syscall interfaces but can sometimes be useful for 4389 * other purposes. The return value is the return from the syscall if 4390 * positive or a negative errno code on error. 4391 */ 4392 4393 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4394 { 4395 struct ifreq ifr; 4396 int ret; 4397 char *colon; 4398 4399 /* One special case: SIOCGIFCONF takes ifconf argument 4400 and requires shared lock, because it sleeps writing 4401 to user space. 4402 */ 4403 4404 if (cmd == SIOCGIFCONF) { 4405 rtnl_lock(); 4406 ret = dev_ifconf(net, (char __user *) arg); 4407 rtnl_unlock(); 4408 return ret; 4409 } 4410 if (cmd == SIOCGIFNAME) 4411 return dev_ifname(net, (struct ifreq __user *)arg); 4412 4413 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4414 return -EFAULT; 4415 4416 ifr.ifr_name[IFNAMSIZ-1] = 0; 4417 4418 colon = strchr(ifr.ifr_name, ':'); 4419 if (colon) 4420 *colon = 0; 4421 4422 /* 4423 * See which interface the caller is talking about. 4424 */ 4425 4426 switch (cmd) { 4427 /* 4428 * These ioctl calls: 4429 * - can be done by all. 4430 * - atomic and do not require locking. 4431 * - return a value 4432 */ 4433 case SIOCGIFFLAGS: 4434 case SIOCGIFMETRIC: 4435 case SIOCGIFMTU: 4436 case SIOCGIFHWADDR: 4437 case SIOCGIFSLAVE: 4438 case SIOCGIFMAP: 4439 case SIOCGIFINDEX: 4440 case SIOCGIFTXQLEN: 4441 dev_load(net, ifr.ifr_name); 4442 read_lock(&dev_base_lock); 4443 ret = dev_ifsioc_locked(net, &ifr, cmd); 4444 read_unlock(&dev_base_lock); 4445 if (!ret) { 4446 if (colon) 4447 *colon = ':'; 4448 if (copy_to_user(arg, &ifr, 4449 sizeof(struct ifreq))) 4450 ret = -EFAULT; 4451 } 4452 return ret; 4453 4454 case SIOCETHTOOL: 4455 dev_load(net, ifr.ifr_name); 4456 rtnl_lock(); 4457 ret = dev_ethtool(net, &ifr); 4458 rtnl_unlock(); 4459 if (!ret) { 4460 if (colon) 4461 *colon = ':'; 4462 if (copy_to_user(arg, &ifr, 4463 sizeof(struct ifreq))) 4464 ret = -EFAULT; 4465 } 4466 return ret; 4467 4468 /* 4469 * These ioctl calls: 4470 * - require superuser power. 4471 * - require strict serialization. 4472 * - return a value 4473 */ 4474 case SIOCGMIIPHY: 4475 case SIOCGMIIREG: 4476 case SIOCSIFNAME: 4477 if (!capable(CAP_NET_ADMIN)) 4478 return -EPERM; 4479 dev_load(net, ifr.ifr_name); 4480 rtnl_lock(); 4481 ret = dev_ifsioc(net, &ifr, cmd); 4482 rtnl_unlock(); 4483 if (!ret) { 4484 if (colon) 4485 *colon = ':'; 4486 if (copy_to_user(arg, &ifr, 4487 sizeof(struct ifreq))) 4488 ret = -EFAULT; 4489 } 4490 return ret; 4491 4492 /* 4493 * These ioctl calls: 4494 * - require superuser power. 4495 * - require strict serialization. 4496 * - do not return a value 4497 */ 4498 case SIOCSIFFLAGS: 4499 case SIOCSIFMETRIC: 4500 case SIOCSIFMTU: 4501 case SIOCSIFMAP: 4502 case SIOCSIFHWADDR: 4503 case SIOCSIFSLAVE: 4504 case SIOCADDMULTI: 4505 case SIOCDELMULTI: 4506 case SIOCSIFHWBROADCAST: 4507 case SIOCSIFTXQLEN: 4508 case SIOCSMIIREG: 4509 case SIOCBONDENSLAVE: 4510 case SIOCBONDRELEASE: 4511 case SIOCBONDSETHWADDR: 4512 case SIOCBONDCHANGEACTIVE: 4513 case SIOCBRADDIF: 4514 case SIOCBRDELIF: 4515 case SIOCSHWTSTAMP: 4516 if (!capable(CAP_NET_ADMIN)) 4517 return -EPERM; 4518 /* fall through */ 4519 case SIOCBONDSLAVEINFOQUERY: 4520 case SIOCBONDINFOQUERY: 4521 dev_load(net, ifr.ifr_name); 4522 rtnl_lock(); 4523 ret = dev_ifsioc(net, &ifr, cmd); 4524 rtnl_unlock(); 4525 return ret; 4526 4527 case SIOCGIFMEM: 4528 /* Get the per device memory space. We can add this but 4529 * currently do not support it */ 4530 case SIOCSIFMEM: 4531 /* Set the per device memory buffer space. 4532 * Not applicable in our case */ 4533 case SIOCSIFLINK: 4534 return -EINVAL; 4535 4536 /* 4537 * Unknown or private ioctl. 4538 */ 4539 default: 4540 if (cmd == SIOCWANDEV || 4541 (cmd >= SIOCDEVPRIVATE && 4542 cmd <= SIOCDEVPRIVATE + 15)) { 4543 dev_load(net, ifr.ifr_name); 4544 rtnl_lock(); 4545 ret = dev_ifsioc(net, &ifr, cmd); 4546 rtnl_unlock(); 4547 if (!ret && copy_to_user(arg, &ifr, 4548 sizeof(struct ifreq))) 4549 ret = -EFAULT; 4550 return ret; 4551 } 4552 /* Take care of Wireless Extensions */ 4553 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4554 return wext_handle_ioctl(net, &ifr, cmd, arg); 4555 return -EINVAL; 4556 } 4557 } 4558 4559 4560 /** 4561 * dev_new_index - allocate an ifindex 4562 * @net: the applicable net namespace 4563 * 4564 * Returns a suitable unique value for a new device interface 4565 * number. The caller must hold the rtnl semaphore or the 4566 * dev_base_lock to be sure it remains unique. 4567 */ 4568 static int dev_new_index(struct net *net) 4569 { 4570 static int ifindex; 4571 for (;;) { 4572 if (++ifindex <= 0) 4573 ifindex = 1; 4574 if (!__dev_get_by_index(net, ifindex)) 4575 return ifindex; 4576 } 4577 } 4578 4579 /* Delayed registration/unregisteration */ 4580 static LIST_HEAD(net_todo_list); 4581 4582 static void net_set_todo(struct net_device *dev) 4583 { 4584 list_add_tail(&dev->todo_list, &net_todo_list); 4585 } 4586 4587 static void rollback_registered(struct net_device *dev) 4588 { 4589 BUG_ON(dev_boot_phase); 4590 ASSERT_RTNL(); 4591 4592 /* Some devices call without registering for initialization unwind. */ 4593 if (dev->reg_state == NETREG_UNINITIALIZED) { 4594 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4595 "was registered\n", dev->name, dev); 4596 4597 WARN_ON(1); 4598 return; 4599 } 4600 4601 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4602 4603 /* If device is running, close it first. */ 4604 dev_close(dev); 4605 4606 /* And unlink it from device chain. */ 4607 unlist_netdevice(dev); 4608 4609 dev->reg_state = NETREG_UNREGISTERING; 4610 4611 synchronize_net(); 4612 4613 /* Shutdown queueing discipline. */ 4614 dev_shutdown(dev); 4615 4616 4617 /* Notify protocols, that we are about to destroy 4618 this device. They should clean all the things. 4619 */ 4620 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4621 4622 /* 4623 * Flush the unicast and multicast chains 4624 */ 4625 dev_unicast_flush(dev); 4626 dev_addr_discard(dev); 4627 4628 if (dev->netdev_ops->ndo_uninit) 4629 dev->netdev_ops->ndo_uninit(dev); 4630 4631 /* Notifier chain MUST detach us from master device. */ 4632 WARN_ON(dev->master); 4633 4634 /* Remove entries from kobject tree */ 4635 netdev_unregister_kobject(dev); 4636 4637 synchronize_net(); 4638 4639 dev_put(dev); 4640 } 4641 4642 static void __netdev_init_queue_locks_one(struct net_device *dev, 4643 struct netdev_queue *dev_queue, 4644 void *_unused) 4645 { 4646 spin_lock_init(&dev_queue->_xmit_lock); 4647 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4648 dev_queue->xmit_lock_owner = -1; 4649 } 4650 4651 static void netdev_init_queue_locks(struct net_device *dev) 4652 { 4653 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4654 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4655 } 4656 4657 unsigned long netdev_fix_features(unsigned long features, const char *name) 4658 { 4659 /* Fix illegal SG+CSUM combinations. */ 4660 if ((features & NETIF_F_SG) && 4661 !(features & NETIF_F_ALL_CSUM)) { 4662 if (name) 4663 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4664 "checksum feature.\n", name); 4665 features &= ~NETIF_F_SG; 4666 } 4667 4668 /* TSO requires that SG is present as well. */ 4669 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4670 if (name) 4671 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4672 "SG feature.\n", name); 4673 features &= ~NETIF_F_TSO; 4674 } 4675 4676 if (features & NETIF_F_UFO) { 4677 if (!(features & NETIF_F_GEN_CSUM)) { 4678 if (name) 4679 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4680 "since no NETIF_F_HW_CSUM feature.\n", 4681 name); 4682 features &= ~NETIF_F_UFO; 4683 } 4684 4685 if (!(features & NETIF_F_SG)) { 4686 if (name) 4687 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4688 "since no NETIF_F_SG feature.\n", name); 4689 features &= ~NETIF_F_UFO; 4690 } 4691 } 4692 4693 return features; 4694 } 4695 EXPORT_SYMBOL(netdev_fix_features); 4696 4697 /** 4698 * register_netdevice - register a network device 4699 * @dev: device to register 4700 * 4701 * Take a completed network device structure and add it to the kernel 4702 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4703 * chain. 0 is returned on success. A negative errno code is returned 4704 * on a failure to set up the device, or if the name is a duplicate. 4705 * 4706 * Callers must hold the rtnl semaphore. You may want 4707 * register_netdev() instead of this. 4708 * 4709 * BUGS: 4710 * The locking appears insufficient to guarantee two parallel registers 4711 * will not get the same name. 4712 */ 4713 4714 int register_netdevice(struct net_device *dev) 4715 { 4716 struct hlist_head *head; 4717 struct hlist_node *p; 4718 int ret; 4719 struct net *net = dev_net(dev); 4720 4721 BUG_ON(dev_boot_phase); 4722 ASSERT_RTNL(); 4723 4724 might_sleep(); 4725 4726 /* When net_device's are persistent, this will be fatal. */ 4727 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4728 BUG_ON(!net); 4729 4730 spin_lock_init(&dev->addr_list_lock); 4731 netdev_set_addr_lockdep_class(dev); 4732 netdev_init_queue_locks(dev); 4733 4734 dev->iflink = -1; 4735 4736 /* Init, if this function is available */ 4737 if (dev->netdev_ops->ndo_init) { 4738 ret = dev->netdev_ops->ndo_init(dev); 4739 if (ret) { 4740 if (ret > 0) 4741 ret = -EIO; 4742 goto out; 4743 } 4744 } 4745 4746 if (!dev_valid_name(dev->name)) { 4747 ret = -EINVAL; 4748 goto err_uninit; 4749 } 4750 4751 dev->ifindex = dev_new_index(net); 4752 if (dev->iflink == -1) 4753 dev->iflink = dev->ifindex; 4754 4755 /* Check for existence of name */ 4756 head = dev_name_hash(net, dev->name); 4757 hlist_for_each(p, head) { 4758 struct net_device *d 4759 = hlist_entry(p, struct net_device, name_hlist); 4760 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4761 ret = -EEXIST; 4762 goto err_uninit; 4763 } 4764 } 4765 4766 /* Fix illegal checksum combinations */ 4767 if ((dev->features & NETIF_F_HW_CSUM) && 4768 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4769 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4770 dev->name); 4771 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4772 } 4773 4774 if ((dev->features & NETIF_F_NO_CSUM) && 4775 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4776 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4777 dev->name); 4778 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4779 } 4780 4781 dev->features = netdev_fix_features(dev->features, dev->name); 4782 4783 /* Enable software GSO if SG is supported. */ 4784 if (dev->features & NETIF_F_SG) 4785 dev->features |= NETIF_F_GSO; 4786 4787 netdev_initialize_kobject(dev); 4788 ret = netdev_register_kobject(dev); 4789 if (ret) 4790 goto err_uninit; 4791 dev->reg_state = NETREG_REGISTERED; 4792 4793 /* 4794 * Default initial state at registry is that the 4795 * device is present. 4796 */ 4797 4798 set_bit(__LINK_STATE_PRESENT, &dev->state); 4799 4800 dev_init_scheduler(dev); 4801 dev_hold(dev); 4802 list_netdevice(dev); 4803 4804 /* Notify protocols, that a new device appeared. */ 4805 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4806 ret = notifier_to_errno(ret); 4807 if (ret) { 4808 rollback_registered(dev); 4809 dev->reg_state = NETREG_UNREGISTERED; 4810 } 4811 4812 out: 4813 return ret; 4814 4815 err_uninit: 4816 if (dev->netdev_ops->ndo_uninit) 4817 dev->netdev_ops->ndo_uninit(dev); 4818 goto out; 4819 } 4820 4821 /** 4822 * init_dummy_netdev - init a dummy network device for NAPI 4823 * @dev: device to init 4824 * 4825 * This takes a network device structure and initialize the minimum 4826 * amount of fields so it can be used to schedule NAPI polls without 4827 * registering a full blown interface. This is to be used by drivers 4828 * that need to tie several hardware interfaces to a single NAPI 4829 * poll scheduler due to HW limitations. 4830 */ 4831 int init_dummy_netdev(struct net_device *dev) 4832 { 4833 /* Clear everything. Note we don't initialize spinlocks 4834 * are they aren't supposed to be taken by any of the 4835 * NAPI code and this dummy netdev is supposed to be 4836 * only ever used for NAPI polls 4837 */ 4838 memset(dev, 0, sizeof(struct net_device)); 4839 4840 /* make sure we BUG if trying to hit standard 4841 * register/unregister code path 4842 */ 4843 dev->reg_state = NETREG_DUMMY; 4844 4845 /* initialize the ref count */ 4846 atomic_set(&dev->refcnt, 1); 4847 4848 /* NAPI wants this */ 4849 INIT_LIST_HEAD(&dev->napi_list); 4850 4851 /* a dummy interface is started by default */ 4852 set_bit(__LINK_STATE_PRESENT, &dev->state); 4853 set_bit(__LINK_STATE_START, &dev->state); 4854 4855 return 0; 4856 } 4857 EXPORT_SYMBOL_GPL(init_dummy_netdev); 4858 4859 4860 /** 4861 * register_netdev - register a network device 4862 * @dev: device to register 4863 * 4864 * Take a completed network device structure and add it to the kernel 4865 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4866 * chain. 0 is returned on success. A negative errno code is returned 4867 * on a failure to set up the device, or if the name is a duplicate. 4868 * 4869 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4870 * and expands the device name if you passed a format string to 4871 * alloc_netdev. 4872 */ 4873 int register_netdev(struct net_device *dev) 4874 { 4875 int err; 4876 4877 rtnl_lock(); 4878 4879 /* 4880 * If the name is a format string the caller wants us to do a 4881 * name allocation. 4882 */ 4883 if (strchr(dev->name, '%')) { 4884 err = dev_alloc_name(dev, dev->name); 4885 if (err < 0) 4886 goto out; 4887 } 4888 4889 err = register_netdevice(dev); 4890 out: 4891 rtnl_unlock(); 4892 return err; 4893 } 4894 EXPORT_SYMBOL(register_netdev); 4895 4896 /* 4897 * netdev_wait_allrefs - wait until all references are gone. 4898 * 4899 * This is called when unregistering network devices. 4900 * 4901 * Any protocol or device that holds a reference should register 4902 * for netdevice notification, and cleanup and put back the 4903 * reference if they receive an UNREGISTER event. 4904 * We can get stuck here if buggy protocols don't correctly 4905 * call dev_put. 4906 */ 4907 static void netdev_wait_allrefs(struct net_device *dev) 4908 { 4909 unsigned long rebroadcast_time, warning_time; 4910 4911 rebroadcast_time = warning_time = jiffies; 4912 while (atomic_read(&dev->refcnt) != 0) { 4913 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4914 rtnl_lock(); 4915 4916 /* Rebroadcast unregister notification */ 4917 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4918 4919 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4920 &dev->state)) { 4921 /* We must not have linkwatch events 4922 * pending on unregister. If this 4923 * happens, we simply run the queue 4924 * unscheduled, resulting in a noop 4925 * for this device. 4926 */ 4927 linkwatch_run_queue(); 4928 } 4929 4930 __rtnl_unlock(); 4931 4932 rebroadcast_time = jiffies; 4933 } 4934 4935 msleep(250); 4936 4937 if (time_after(jiffies, warning_time + 10 * HZ)) { 4938 printk(KERN_EMERG "unregister_netdevice: " 4939 "waiting for %s to become free. Usage " 4940 "count = %d\n", 4941 dev->name, atomic_read(&dev->refcnt)); 4942 warning_time = jiffies; 4943 } 4944 } 4945 } 4946 4947 /* The sequence is: 4948 * 4949 * rtnl_lock(); 4950 * ... 4951 * register_netdevice(x1); 4952 * register_netdevice(x2); 4953 * ... 4954 * unregister_netdevice(y1); 4955 * unregister_netdevice(y2); 4956 * ... 4957 * rtnl_unlock(); 4958 * free_netdev(y1); 4959 * free_netdev(y2); 4960 * 4961 * We are invoked by rtnl_unlock(). 4962 * This allows us to deal with problems: 4963 * 1) We can delete sysfs objects which invoke hotplug 4964 * without deadlocking with linkwatch via keventd. 4965 * 2) Since we run with the RTNL semaphore not held, we can sleep 4966 * safely in order to wait for the netdev refcnt to drop to zero. 4967 * 4968 * We must not return until all unregister events added during 4969 * the interval the lock was held have been completed. 4970 */ 4971 void netdev_run_todo(void) 4972 { 4973 struct list_head list; 4974 4975 /* Snapshot list, allow later requests */ 4976 list_replace_init(&net_todo_list, &list); 4977 4978 __rtnl_unlock(); 4979 4980 while (!list_empty(&list)) { 4981 struct net_device *dev 4982 = list_entry(list.next, struct net_device, todo_list); 4983 list_del(&dev->todo_list); 4984 4985 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4986 printk(KERN_ERR "network todo '%s' but state %d\n", 4987 dev->name, dev->reg_state); 4988 dump_stack(); 4989 continue; 4990 } 4991 4992 dev->reg_state = NETREG_UNREGISTERED; 4993 4994 on_each_cpu(flush_backlog, dev, 1); 4995 4996 netdev_wait_allrefs(dev); 4997 4998 /* paranoia */ 4999 BUG_ON(atomic_read(&dev->refcnt)); 5000 WARN_ON(dev->ip_ptr); 5001 WARN_ON(dev->ip6_ptr); 5002 WARN_ON(dev->dn_ptr); 5003 5004 if (dev->destructor) 5005 dev->destructor(dev); 5006 5007 /* Free network device */ 5008 kobject_put(&dev->dev.kobj); 5009 } 5010 } 5011 5012 /** 5013 * dev_get_stats - get network device statistics 5014 * @dev: device to get statistics from 5015 * 5016 * Get network statistics from device. The device driver may provide 5017 * its own method by setting dev->netdev_ops->get_stats; otherwise 5018 * the internal statistics structure is used. 5019 */ 5020 const struct net_device_stats *dev_get_stats(struct net_device *dev) 5021 { 5022 const struct net_device_ops *ops = dev->netdev_ops; 5023 5024 if (ops->ndo_get_stats) 5025 return ops->ndo_get_stats(dev); 5026 else { 5027 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0; 5028 struct net_device_stats *stats = &dev->stats; 5029 unsigned int i; 5030 struct netdev_queue *txq; 5031 5032 for (i = 0; i < dev->num_tx_queues; i++) { 5033 txq = netdev_get_tx_queue(dev, i); 5034 tx_bytes += txq->tx_bytes; 5035 tx_packets += txq->tx_packets; 5036 tx_dropped += txq->tx_dropped; 5037 } 5038 if (tx_bytes || tx_packets || tx_dropped) { 5039 stats->tx_bytes = tx_bytes; 5040 stats->tx_packets = tx_packets; 5041 stats->tx_dropped = tx_dropped; 5042 } 5043 return stats; 5044 } 5045 } 5046 EXPORT_SYMBOL(dev_get_stats); 5047 5048 static void netdev_init_one_queue(struct net_device *dev, 5049 struct netdev_queue *queue, 5050 void *_unused) 5051 { 5052 queue->dev = dev; 5053 } 5054 5055 static void netdev_init_queues(struct net_device *dev) 5056 { 5057 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 5058 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5059 spin_lock_init(&dev->tx_global_lock); 5060 } 5061 5062 /** 5063 * alloc_netdev_mq - allocate network device 5064 * @sizeof_priv: size of private data to allocate space for 5065 * @name: device name format string 5066 * @setup: callback to initialize device 5067 * @queue_count: the number of subqueues to allocate 5068 * 5069 * Allocates a struct net_device with private data area for driver use 5070 * and performs basic initialization. Also allocates subquue structs 5071 * for each queue on the device at the end of the netdevice. 5072 */ 5073 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 5074 void (*setup)(struct net_device *), unsigned int queue_count) 5075 { 5076 struct netdev_queue *tx; 5077 struct net_device *dev; 5078 size_t alloc_size; 5079 struct net_device *p; 5080 5081 BUG_ON(strlen(name) >= sizeof(dev->name)); 5082 5083 alloc_size = sizeof(struct net_device); 5084 if (sizeof_priv) { 5085 /* ensure 32-byte alignment of private area */ 5086 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5087 alloc_size += sizeof_priv; 5088 } 5089 /* ensure 32-byte alignment of whole construct */ 5090 alloc_size += NETDEV_ALIGN - 1; 5091 5092 p = kzalloc(alloc_size, GFP_KERNEL); 5093 if (!p) { 5094 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5095 return NULL; 5096 } 5097 5098 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 5099 if (!tx) { 5100 printk(KERN_ERR "alloc_netdev: Unable to allocate " 5101 "tx qdiscs.\n"); 5102 goto free_p; 5103 } 5104 5105 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5106 dev->padded = (char *)dev - (char *)p; 5107 5108 if (dev_addr_init(dev)) 5109 goto free_tx; 5110 5111 dev_unicast_init(dev); 5112 5113 dev_net_set(dev, &init_net); 5114 5115 dev->_tx = tx; 5116 dev->num_tx_queues = queue_count; 5117 dev->real_num_tx_queues = queue_count; 5118 5119 dev->gso_max_size = GSO_MAX_SIZE; 5120 5121 netdev_init_queues(dev); 5122 5123 INIT_LIST_HEAD(&dev->napi_list); 5124 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5125 setup(dev); 5126 strcpy(dev->name, name); 5127 return dev; 5128 5129 free_tx: 5130 kfree(tx); 5131 5132 free_p: 5133 kfree(p); 5134 return NULL; 5135 } 5136 EXPORT_SYMBOL(alloc_netdev_mq); 5137 5138 /** 5139 * free_netdev - free network device 5140 * @dev: device 5141 * 5142 * This function does the last stage of destroying an allocated device 5143 * interface. The reference to the device object is released. 5144 * If this is the last reference then it will be freed. 5145 */ 5146 void free_netdev(struct net_device *dev) 5147 { 5148 struct napi_struct *p, *n; 5149 5150 release_net(dev_net(dev)); 5151 5152 kfree(dev->_tx); 5153 5154 /* Flush device addresses */ 5155 dev_addr_flush(dev); 5156 5157 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5158 netif_napi_del(p); 5159 5160 /* Compatibility with error handling in drivers */ 5161 if (dev->reg_state == NETREG_UNINITIALIZED) { 5162 kfree((char *)dev - dev->padded); 5163 return; 5164 } 5165 5166 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5167 dev->reg_state = NETREG_RELEASED; 5168 5169 /* will free via device release */ 5170 put_device(&dev->dev); 5171 } 5172 5173 /** 5174 * synchronize_net - Synchronize with packet receive processing 5175 * 5176 * Wait for packets currently being received to be done. 5177 * Does not block later packets from starting. 5178 */ 5179 void synchronize_net(void) 5180 { 5181 might_sleep(); 5182 synchronize_rcu(); 5183 } 5184 5185 /** 5186 * unregister_netdevice - remove device from the kernel 5187 * @dev: device 5188 * 5189 * This function shuts down a device interface and removes it 5190 * from the kernel tables. 5191 * 5192 * Callers must hold the rtnl semaphore. You may want 5193 * unregister_netdev() instead of this. 5194 */ 5195 5196 void unregister_netdevice(struct net_device *dev) 5197 { 5198 ASSERT_RTNL(); 5199 5200 rollback_registered(dev); 5201 /* Finish processing unregister after unlock */ 5202 net_set_todo(dev); 5203 } 5204 5205 /** 5206 * unregister_netdev - remove device from the kernel 5207 * @dev: device 5208 * 5209 * This function shuts down a device interface and removes it 5210 * from the kernel tables. 5211 * 5212 * This is just a wrapper for unregister_netdevice that takes 5213 * the rtnl semaphore. In general you want to use this and not 5214 * unregister_netdevice. 5215 */ 5216 void unregister_netdev(struct net_device *dev) 5217 { 5218 rtnl_lock(); 5219 unregister_netdevice(dev); 5220 rtnl_unlock(); 5221 } 5222 5223 EXPORT_SYMBOL(unregister_netdev); 5224 5225 /** 5226 * dev_change_net_namespace - move device to different nethost namespace 5227 * @dev: device 5228 * @net: network namespace 5229 * @pat: If not NULL name pattern to try if the current device name 5230 * is already taken in the destination network namespace. 5231 * 5232 * This function shuts down a device interface and moves it 5233 * to a new network namespace. On success 0 is returned, on 5234 * a failure a netagive errno code is returned. 5235 * 5236 * Callers must hold the rtnl semaphore. 5237 */ 5238 5239 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 5240 { 5241 char buf[IFNAMSIZ]; 5242 const char *destname; 5243 int err; 5244 5245 ASSERT_RTNL(); 5246 5247 /* Don't allow namespace local devices to be moved. */ 5248 err = -EINVAL; 5249 if (dev->features & NETIF_F_NETNS_LOCAL) 5250 goto out; 5251 5252 #ifdef CONFIG_SYSFS 5253 /* Don't allow real devices to be moved when sysfs 5254 * is enabled. 5255 */ 5256 err = -EINVAL; 5257 if (dev->dev.parent) 5258 goto out; 5259 #endif 5260 5261 /* Ensure the device has been registrered */ 5262 err = -EINVAL; 5263 if (dev->reg_state != NETREG_REGISTERED) 5264 goto out; 5265 5266 /* Get out if there is nothing todo */ 5267 err = 0; 5268 if (net_eq(dev_net(dev), net)) 5269 goto out; 5270 5271 /* Pick the destination device name, and ensure 5272 * we can use it in the destination network namespace. 5273 */ 5274 err = -EEXIST; 5275 destname = dev->name; 5276 if (__dev_get_by_name(net, destname)) { 5277 /* We get here if we can't use the current device name */ 5278 if (!pat) 5279 goto out; 5280 if (!dev_valid_name(pat)) 5281 goto out; 5282 if (strchr(pat, '%')) { 5283 if (__dev_alloc_name(net, pat, buf) < 0) 5284 goto out; 5285 destname = buf; 5286 } else 5287 destname = pat; 5288 if (__dev_get_by_name(net, destname)) 5289 goto out; 5290 } 5291 5292 /* 5293 * And now a mini version of register_netdevice unregister_netdevice. 5294 */ 5295 5296 /* If device is running close it first. */ 5297 dev_close(dev); 5298 5299 /* And unlink it from device chain */ 5300 err = -ENODEV; 5301 unlist_netdevice(dev); 5302 5303 synchronize_net(); 5304 5305 /* Shutdown queueing discipline. */ 5306 dev_shutdown(dev); 5307 5308 /* Notify protocols, that we are about to destroy 5309 this device. They should clean all the things. 5310 */ 5311 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5312 5313 /* 5314 * Flush the unicast and multicast chains 5315 */ 5316 dev_unicast_flush(dev); 5317 dev_addr_discard(dev); 5318 5319 netdev_unregister_kobject(dev); 5320 5321 /* Actually switch the network namespace */ 5322 dev_net_set(dev, net); 5323 5324 /* Assign the new device name */ 5325 if (destname != dev->name) 5326 strcpy(dev->name, destname); 5327 5328 /* If there is an ifindex conflict assign a new one */ 5329 if (__dev_get_by_index(net, dev->ifindex)) { 5330 int iflink = (dev->iflink == dev->ifindex); 5331 dev->ifindex = dev_new_index(net); 5332 if (iflink) 5333 dev->iflink = dev->ifindex; 5334 } 5335 5336 /* Fixup kobjects */ 5337 err = netdev_register_kobject(dev); 5338 WARN_ON(err); 5339 5340 /* Add the device back in the hashes */ 5341 list_netdevice(dev); 5342 5343 /* Notify protocols, that a new device appeared. */ 5344 call_netdevice_notifiers(NETDEV_REGISTER, dev); 5345 5346 synchronize_net(); 5347 err = 0; 5348 out: 5349 return err; 5350 } 5351 5352 static int dev_cpu_callback(struct notifier_block *nfb, 5353 unsigned long action, 5354 void *ocpu) 5355 { 5356 struct sk_buff **list_skb; 5357 struct Qdisc **list_net; 5358 struct sk_buff *skb; 5359 unsigned int cpu, oldcpu = (unsigned long)ocpu; 5360 struct softnet_data *sd, *oldsd; 5361 5362 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 5363 return NOTIFY_OK; 5364 5365 local_irq_disable(); 5366 cpu = smp_processor_id(); 5367 sd = &per_cpu(softnet_data, cpu); 5368 oldsd = &per_cpu(softnet_data, oldcpu); 5369 5370 /* Find end of our completion_queue. */ 5371 list_skb = &sd->completion_queue; 5372 while (*list_skb) 5373 list_skb = &(*list_skb)->next; 5374 /* Append completion queue from offline CPU. */ 5375 *list_skb = oldsd->completion_queue; 5376 oldsd->completion_queue = NULL; 5377 5378 /* Find end of our output_queue. */ 5379 list_net = &sd->output_queue; 5380 while (*list_net) 5381 list_net = &(*list_net)->next_sched; 5382 /* Append output queue from offline CPU. */ 5383 *list_net = oldsd->output_queue; 5384 oldsd->output_queue = NULL; 5385 5386 raise_softirq_irqoff(NET_TX_SOFTIRQ); 5387 local_irq_enable(); 5388 5389 /* Process offline CPU's input_pkt_queue */ 5390 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 5391 netif_rx(skb); 5392 5393 return NOTIFY_OK; 5394 } 5395 5396 5397 /** 5398 * netdev_increment_features - increment feature set by one 5399 * @all: current feature set 5400 * @one: new feature set 5401 * @mask: mask feature set 5402 * 5403 * Computes a new feature set after adding a device with feature set 5404 * @one to the master device with current feature set @all. Will not 5405 * enable anything that is off in @mask. Returns the new feature set. 5406 */ 5407 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5408 unsigned long mask) 5409 { 5410 /* If device needs checksumming, downgrade to it. */ 5411 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5412 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5413 else if (mask & NETIF_F_ALL_CSUM) { 5414 /* If one device supports v4/v6 checksumming, set for all. */ 5415 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5416 !(all & NETIF_F_GEN_CSUM)) { 5417 all &= ~NETIF_F_ALL_CSUM; 5418 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5419 } 5420 5421 /* If one device supports hw checksumming, set for all. */ 5422 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5423 all &= ~NETIF_F_ALL_CSUM; 5424 all |= NETIF_F_HW_CSUM; 5425 } 5426 } 5427 5428 one |= NETIF_F_ALL_CSUM; 5429 5430 one |= all & NETIF_F_ONE_FOR_ALL; 5431 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5432 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5433 5434 return all; 5435 } 5436 EXPORT_SYMBOL(netdev_increment_features); 5437 5438 static struct hlist_head *netdev_create_hash(void) 5439 { 5440 int i; 5441 struct hlist_head *hash; 5442 5443 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5444 if (hash != NULL) 5445 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5446 INIT_HLIST_HEAD(&hash[i]); 5447 5448 return hash; 5449 } 5450 5451 /* Initialize per network namespace state */ 5452 static int __net_init netdev_init(struct net *net) 5453 { 5454 INIT_LIST_HEAD(&net->dev_base_head); 5455 5456 net->dev_name_head = netdev_create_hash(); 5457 if (net->dev_name_head == NULL) 5458 goto err_name; 5459 5460 net->dev_index_head = netdev_create_hash(); 5461 if (net->dev_index_head == NULL) 5462 goto err_idx; 5463 5464 return 0; 5465 5466 err_idx: 5467 kfree(net->dev_name_head); 5468 err_name: 5469 return -ENOMEM; 5470 } 5471 5472 /** 5473 * netdev_drivername - network driver for the device 5474 * @dev: network device 5475 * @buffer: buffer for resulting name 5476 * @len: size of buffer 5477 * 5478 * Determine network driver for device. 5479 */ 5480 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5481 { 5482 const struct device_driver *driver; 5483 const struct device *parent; 5484 5485 if (len <= 0 || !buffer) 5486 return buffer; 5487 buffer[0] = 0; 5488 5489 parent = dev->dev.parent; 5490 5491 if (!parent) 5492 return buffer; 5493 5494 driver = parent->driver; 5495 if (driver && driver->name) 5496 strlcpy(buffer, driver->name, len); 5497 return buffer; 5498 } 5499 5500 static void __net_exit netdev_exit(struct net *net) 5501 { 5502 kfree(net->dev_name_head); 5503 kfree(net->dev_index_head); 5504 } 5505 5506 static struct pernet_operations __net_initdata netdev_net_ops = { 5507 .init = netdev_init, 5508 .exit = netdev_exit, 5509 }; 5510 5511 static void __net_exit default_device_exit(struct net *net) 5512 { 5513 struct net_device *dev; 5514 /* 5515 * Push all migratable of the network devices back to the 5516 * initial network namespace 5517 */ 5518 rtnl_lock(); 5519 restart: 5520 for_each_netdev(net, dev) { 5521 int err; 5522 char fb_name[IFNAMSIZ]; 5523 5524 /* Ignore unmoveable devices (i.e. loopback) */ 5525 if (dev->features & NETIF_F_NETNS_LOCAL) 5526 continue; 5527 5528 /* Delete virtual devices */ 5529 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5530 dev->rtnl_link_ops->dellink(dev); 5531 goto restart; 5532 } 5533 5534 /* Push remaing network devices to init_net */ 5535 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5536 err = dev_change_net_namespace(dev, &init_net, fb_name); 5537 if (err) { 5538 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5539 __func__, dev->name, err); 5540 BUG(); 5541 } 5542 goto restart; 5543 } 5544 rtnl_unlock(); 5545 } 5546 5547 static struct pernet_operations __net_initdata default_device_ops = { 5548 .exit = default_device_exit, 5549 }; 5550 5551 /* 5552 * Initialize the DEV module. At boot time this walks the device list and 5553 * unhooks any devices that fail to initialise (normally hardware not 5554 * present) and leaves us with a valid list of present and active devices. 5555 * 5556 */ 5557 5558 /* 5559 * This is called single threaded during boot, so no need 5560 * to take the rtnl semaphore. 5561 */ 5562 static int __init net_dev_init(void) 5563 { 5564 int i, rc = -ENOMEM; 5565 5566 BUG_ON(!dev_boot_phase); 5567 5568 if (dev_proc_init()) 5569 goto out; 5570 5571 if (netdev_kobject_init()) 5572 goto out; 5573 5574 INIT_LIST_HEAD(&ptype_all); 5575 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5576 INIT_LIST_HEAD(&ptype_base[i]); 5577 5578 if (register_pernet_subsys(&netdev_net_ops)) 5579 goto out; 5580 5581 /* 5582 * Initialise the packet receive queues. 5583 */ 5584 5585 for_each_possible_cpu(i) { 5586 struct softnet_data *queue; 5587 5588 queue = &per_cpu(softnet_data, i); 5589 skb_queue_head_init(&queue->input_pkt_queue); 5590 queue->completion_queue = NULL; 5591 INIT_LIST_HEAD(&queue->poll_list); 5592 5593 queue->backlog.poll = process_backlog; 5594 queue->backlog.weight = weight_p; 5595 queue->backlog.gro_list = NULL; 5596 queue->backlog.gro_count = 0; 5597 } 5598 5599 dev_boot_phase = 0; 5600 5601 /* The loopback device is special if any other network devices 5602 * is present in a network namespace the loopback device must 5603 * be present. Since we now dynamically allocate and free the 5604 * loopback device ensure this invariant is maintained by 5605 * keeping the loopback device as the first device on the 5606 * list of network devices. Ensuring the loopback devices 5607 * is the first device that appears and the last network device 5608 * that disappears. 5609 */ 5610 if (register_pernet_device(&loopback_net_ops)) 5611 goto out; 5612 5613 if (register_pernet_device(&default_device_ops)) 5614 goto out; 5615 5616 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5617 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5618 5619 hotcpu_notifier(dev_cpu_callback, 0); 5620 dst_init(); 5621 dev_mcast_init(); 5622 rc = 0; 5623 out: 5624 return rc; 5625 } 5626 5627 subsys_initcall(net_dev_init); 5628 5629 static int __init initialize_hashrnd(void) 5630 { 5631 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd)); 5632 return 0; 5633 } 5634 5635 late_initcall_sync(initialize_hashrnd); 5636 5637 EXPORT_SYMBOL(__dev_get_by_index); 5638 EXPORT_SYMBOL(__dev_get_by_name); 5639 EXPORT_SYMBOL(__dev_remove_pack); 5640 EXPORT_SYMBOL(dev_valid_name); 5641 EXPORT_SYMBOL(dev_add_pack); 5642 EXPORT_SYMBOL(dev_alloc_name); 5643 EXPORT_SYMBOL(dev_close); 5644 EXPORT_SYMBOL(dev_get_by_flags); 5645 EXPORT_SYMBOL(dev_get_by_index); 5646 EXPORT_SYMBOL(dev_get_by_name); 5647 EXPORT_SYMBOL(dev_open); 5648 EXPORT_SYMBOL(dev_queue_xmit); 5649 EXPORT_SYMBOL(dev_remove_pack); 5650 EXPORT_SYMBOL(dev_set_allmulti); 5651 EXPORT_SYMBOL(dev_set_promiscuity); 5652 EXPORT_SYMBOL(dev_change_flags); 5653 EXPORT_SYMBOL(dev_set_mtu); 5654 EXPORT_SYMBOL(dev_set_mac_address); 5655 EXPORT_SYMBOL(free_netdev); 5656 EXPORT_SYMBOL(netdev_boot_setup_check); 5657 EXPORT_SYMBOL(netdev_set_master); 5658 EXPORT_SYMBOL(netdev_state_change); 5659 EXPORT_SYMBOL(netif_receive_skb); 5660 EXPORT_SYMBOL(netif_rx); 5661 EXPORT_SYMBOL(register_gifconf); 5662 EXPORT_SYMBOL(register_netdevice); 5663 EXPORT_SYMBOL(register_netdevice_notifier); 5664 EXPORT_SYMBOL(skb_checksum_help); 5665 EXPORT_SYMBOL(synchronize_net); 5666 EXPORT_SYMBOL(unregister_netdevice); 5667 EXPORT_SYMBOL(unregister_netdevice_notifier); 5668 EXPORT_SYMBOL(net_enable_timestamp); 5669 EXPORT_SYMBOL(net_disable_timestamp); 5670 EXPORT_SYMBOL(dev_get_flags); 5671 5672 EXPORT_SYMBOL(dev_load); 5673 5674 EXPORT_PER_CPU_SYMBOL(softnet_data); 5675