xref: /linux-6.15/net/core/dev.c (revision 7ec7fb39)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/ethtool.h>
94 #include <linux/notifier.h>
95 #include <linux/skbuff.h>
96 #include <net/net_namespace.h>
97 #include <net/sock.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/stat.h>
102 #include <linux/if_bridge.h>
103 #include <linux/if_macvlan.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/kmod.h>
110 #include <linux/module.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 #include <linux/if_vlan.h>
123 #include <linux/ip.h>
124 #include <net/ip.h>
125 #include <linux/ipv6.h>
126 #include <linux/in.h>
127 #include <linux/jhash.h>
128 #include <linux/random.h>
129 
130 #include "net-sysfs.h"
131 
132 /* Instead of increasing this, you should create a hash table. */
133 #define MAX_GRO_SKBS 8
134 
135 /* This should be increased if a protocol with a bigger head is added. */
136 #define GRO_MAX_HEAD (MAX_HEADER + 128)
137 
138 /*
139  *	The list of packet types we will receive (as opposed to discard)
140  *	and the routines to invoke.
141  *
142  *	Why 16. Because with 16 the only overlap we get on a hash of the
143  *	low nibble of the protocol value is RARP/SNAP/X.25.
144  *
145  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
146  *             sure which should go first, but I bet it won't make much
147  *             difference if we are running VLANs.  The good news is that
148  *             this protocol won't be in the list unless compiled in, so
149  *             the average user (w/out VLANs) will not be adversely affected.
150  *             --BLG
151  *
152  *		0800	IP
153  *		8100    802.1Q VLAN
154  *		0001	802.3
155  *		0002	AX.25
156  *		0004	802.2
157  *		8035	RARP
158  *		0005	SNAP
159  *		0805	X.25
160  *		0806	ARP
161  *		8137	IPX
162  *		0009	Localtalk
163  *		86DD	IPv6
164  */
165 
166 #define PTYPE_HASH_SIZE	(16)
167 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
168 
169 static DEFINE_SPINLOCK(ptype_lock);
170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
171 static struct list_head ptype_all __read_mostly;	/* Taps */
172 
173 #ifdef CONFIG_NET_DMA
174 struct net_dma {
175 	struct dma_client client;
176 	spinlock_t lock;
177 	cpumask_t channel_mask;
178 	struct dma_chan **channels;
179 };
180 
181 static enum dma_state_client
182 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
183 	enum dma_state state);
184 
185 static struct net_dma net_dma = {
186 	.client = {
187 		.event_callback = netdev_dma_event,
188 	},
189 };
190 #endif
191 
192 /*
193  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
194  * semaphore.
195  *
196  * Pure readers hold dev_base_lock for reading.
197  *
198  * Writers must hold the rtnl semaphore while they loop through the
199  * dev_base_head list, and hold dev_base_lock for writing when they do the
200  * actual updates.  This allows pure readers to access the list even
201  * while a writer is preparing to update it.
202  *
203  * To put it another way, dev_base_lock is held for writing only to
204  * protect against pure readers; the rtnl semaphore provides the
205  * protection against other writers.
206  *
207  * See, for example usages, register_netdevice() and
208  * unregister_netdevice(), which must be called with the rtnl
209  * semaphore held.
210  */
211 DEFINE_RWLOCK(dev_base_lock);
212 
213 EXPORT_SYMBOL(dev_base_lock);
214 
215 #define NETDEV_HASHBITS	8
216 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
217 
218 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
219 {
220 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
221 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
222 }
223 
224 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
225 {
226 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
227 }
228 
229 /* Device list insertion */
230 static int list_netdevice(struct net_device *dev)
231 {
232 	struct net *net = dev_net(dev);
233 
234 	ASSERT_RTNL();
235 
236 	write_lock_bh(&dev_base_lock);
237 	list_add_tail(&dev->dev_list, &net->dev_base_head);
238 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
239 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
240 	write_unlock_bh(&dev_base_lock);
241 	return 0;
242 }
243 
244 /* Device list removal */
245 static void unlist_netdevice(struct net_device *dev)
246 {
247 	ASSERT_RTNL();
248 
249 	/* Unlink dev from the device chain */
250 	write_lock_bh(&dev_base_lock);
251 	list_del(&dev->dev_list);
252 	hlist_del(&dev->name_hlist);
253 	hlist_del(&dev->index_hlist);
254 	write_unlock_bh(&dev_base_lock);
255 }
256 
257 /*
258  *	Our notifier list
259  */
260 
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262 
263 /*
264  *	Device drivers call our routines to queue packets here. We empty the
265  *	queue in the local softnet handler.
266  */
267 
268 DEFINE_PER_CPU(struct softnet_data, softnet_data);
269 
270 #ifdef CONFIG_LOCKDEP
271 /*
272  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
273  * according to dev->type
274  */
275 static const unsigned short netdev_lock_type[] =
276 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
277 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
278 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
279 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
280 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
281 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
282 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
283 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
284 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
285 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
286 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
287 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
288 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
289 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
290 	 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
291 
292 static const char *netdev_lock_name[] =
293 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
294 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
295 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
296 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
297 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
298 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
299 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
300 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
301 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
302 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
303 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
304 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
305 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
306 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
307 	 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
308 
309 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 
312 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 {
314 	int i;
315 
316 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 		if (netdev_lock_type[i] == dev_type)
318 			return i;
319 	/* the last key is used by default */
320 	return ARRAY_SIZE(netdev_lock_type) - 1;
321 }
322 
323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 						 unsigned short dev_type)
325 {
326 	int i;
327 
328 	i = netdev_lock_pos(dev_type);
329 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 				   netdev_lock_name[i]);
331 }
332 
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev->type);
338 	lockdep_set_class_and_name(&dev->addr_list_lock,
339 				   &netdev_addr_lock_key[i],
340 				   netdev_lock_name[i]);
341 }
342 #else
343 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 						 unsigned short dev_type)
345 {
346 }
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348 {
349 }
350 #endif
351 
352 /*******************************************************************************
353 
354 		Protocol management and registration routines
355 
356 *******************************************************************************/
357 
358 /*
359  *	Add a protocol ID to the list. Now that the input handler is
360  *	smarter we can dispense with all the messy stuff that used to be
361  *	here.
362  *
363  *	BEWARE!!! Protocol handlers, mangling input packets,
364  *	MUST BE last in hash buckets and checking protocol handlers
365  *	MUST start from promiscuous ptype_all chain in net_bh.
366  *	It is true now, do not change it.
367  *	Explanation follows: if protocol handler, mangling packet, will
368  *	be the first on list, it is not able to sense, that packet
369  *	is cloned and should be copied-on-write, so that it will
370  *	change it and subsequent readers will get broken packet.
371  *							--ANK (980803)
372  */
373 
374 /**
375  *	dev_add_pack - add packet handler
376  *	@pt: packet type declaration
377  *
378  *	Add a protocol handler to the networking stack. The passed &packet_type
379  *	is linked into kernel lists and may not be freed until it has been
380  *	removed from the kernel lists.
381  *
382  *	This call does not sleep therefore it can not
383  *	guarantee all CPU's that are in middle of receiving packets
384  *	will see the new packet type (until the next received packet).
385  */
386 
387 void dev_add_pack(struct packet_type *pt)
388 {
389 	int hash;
390 
391 	spin_lock_bh(&ptype_lock);
392 	if (pt->type == htons(ETH_P_ALL))
393 		list_add_rcu(&pt->list, &ptype_all);
394 	else {
395 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
396 		list_add_rcu(&pt->list, &ptype_base[hash]);
397 	}
398 	spin_unlock_bh(&ptype_lock);
399 }
400 
401 /**
402  *	__dev_remove_pack	 - remove packet handler
403  *	@pt: packet type declaration
404  *
405  *	Remove a protocol handler that was previously added to the kernel
406  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
407  *	from the kernel lists and can be freed or reused once this function
408  *	returns.
409  *
410  *      The packet type might still be in use by receivers
411  *	and must not be freed until after all the CPU's have gone
412  *	through a quiescent state.
413  */
414 void __dev_remove_pack(struct packet_type *pt)
415 {
416 	struct list_head *head;
417 	struct packet_type *pt1;
418 
419 	spin_lock_bh(&ptype_lock);
420 
421 	if (pt->type == htons(ETH_P_ALL))
422 		head = &ptype_all;
423 	else
424 		head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
425 
426 	list_for_each_entry(pt1, head, list) {
427 		if (pt == pt1) {
428 			list_del_rcu(&pt->list);
429 			goto out;
430 		}
431 	}
432 
433 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
434 out:
435 	spin_unlock_bh(&ptype_lock);
436 }
437 /**
438  *	dev_remove_pack	 - remove packet handler
439  *	@pt: packet type declaration
440  *
441  *	Remove a protocol handler that was previously added to the kernel
442  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
443  *	from the kernel lists and can be freed or reused once this function
444  *	returns.
445  *
446  *	This call sleeps to guarantee that no CPU is looking at the packet
447  *	type after return.
448  */
449 void dev_remove_pack(struct packet_type *pt)
450 {
451 	__dev_remove_pack(pt);
452 
453 	synchronize_net();
454 }
455 
456 /******************************************************************************
457 
458 		      Device Boot-time Settings Routines
459 
460 *******************************************************************************/
461 
462 /* Boot time configuration table */
463 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
464 
465 /**
466  *	netdev_boot_setup_add	- add new setup entry
467  *	@name: name of the device
468  *	@map: configured settings for the device
469  *
470  *	Adds new setup entry to the dev_boot_setup list.  The function
471  *	returns 0 on error and 1 on success.  This is a generic routine to
472  *	all netdevices.
473  */
474 static int netdev_boot_setup_add(char *name, struct ifmap *map)
475 {
476 	struct netdev_boot_setup *s;
477 	int i;
478 
479 	s = dev_boot_setup;
480 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
481 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
482 			memset(s[i].name, 0, sizeof(s[i].name));
483 			strlcpy(s[i].name, name, IFNAMSIZ);
484 			memcpy(&s[i].map, map, sizeof(s[i].map));
485 			break;
486 		}
487 	}
488 
489 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
490 }
491 
492 /**
493  *	netdev_boot_setup_check	- check boot time settings
494  *	@dev: the netdevice
495  *
496  * 	Check boot time settings for the device.
497  *	The found settings are set for the device to be used
498  *	later in the device probing.
499  *	Returns 0 if no settings found, 1 if they are.
500  */
501 int netdev_boot_setup_check(struct net_device *dev)
502 {
503 	struct netdev_boot_setup *s = dev_boot_setup;
504 	int i;
505 
506 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
507 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
508 		    !strcmp(dev->name, s[i].name)) {
509 			dev->irq 	= s[i].map.irq;
510 			dev->base_addr 	= s[i].map.base_addr;
511 			dev->mem_start 	= s[i].map.mem_start;
512 			dev->mem_end 	= s[i].map.mem_end;
513 			return 1;
514 		}
515 	}
516 	return 0;
517 }
518 
519 
520 /**
521  *	netdev_boot_base	- get address from boot time settings
522  *	@prefix: prefix for network device
523  *	@unit: id for network device
524  *
525  * 	Check boot time settings for the base address of device.
526  *	The found settings are set for the device to be used
527  *	later in the device probing.
528  *	Returns 0 if no settings found.
529  */
530 unsigned long netdev_boot_base(const char *prefix, int unit)
531 {
532 	const struct netdev_boot_setup *s = dev_boot_setup;
533 	char name[IFNAMSIZ];
534 	int i;
535 
536 	sprintf(name, "%s%d", prefix, unit);
537 
538 	/*
539 	 * If device already registered then return base of 1
540 	 * to indicate not to probe for this interface
541 	 */
542 	if (__dev_get_by_name(&init_net, name))
543 		return 1;
544 
545 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
546 		if (!strcmp(name, s[i].name))
547 			return s[i].map.base_addr;
548 	return 0;
549 }
550 
551 /*
552  * Saves at boot time configured settings for any netdevice.
553  */
554 int __init netdev_boot_setup(char *str)
555 {
556 	int ints[5];
557 	struct ifmap map;
558 
559 	str = get_options(str, ARRAY_SIZE(ints), ints);
560 	if (!str || !*str)
561 		return 0;
562 
563 	/* Save settings */
564 	memset(&map, 0, sizeof(map));
565 	if (ints[0] > 0)
566 		map.irq = ints[1];
567 	if (ints[0] > 1)
568 		map.base_addr = ints[2];
569 	if (ints[0] > 2)
570 		map.mem_start = ints[3];
571 	if (ints[0] > 3)
572 		map.mem_end = ints[4];
573 
574 	/* Add new entry to the list */
575 	return netdev_boot_setup_add(str, &map);
576 }
577 
578 __setup("netdev=", netdev_boot_setup);
579 
580 /*******************************************************************************
581 
582 			    Device Interface Subroutines
583 
584 *******************************************************************************/
585 
586 /**
587  *	__dev_get_by_name	- find a device by its name
588  *	@net: the applicable net namespace
589  *	@name: name to find
590  *
591  *	Find an interface by name. Must be called under RTNL semaphore
592  *	or @dev_base_lock. If the name is found a pointer to the device
593  *	is returned. If the name is not found then %NULL is returned. The
594  *	reference counters are not incremented so the caller must be
595  *	careful with locks.
596  */
597 
598 struct net_device *__dev_get_by_name(struct net *net, const char *name)
599 {
600 	struct hlist_node *p;
601 
602 	hlist_for_each(p, dev_name_hash(net, name)) {
603 		struct net_device *dev
604 			= hlist_entry(p, struct net_device, name_hlist);
605 		if (!strncmp(dev->name, name, IFNAMSIZ))
606 			return dev;
607 	}
608 	return NULL;
609 }
610 
611 /**
612  *	dev_get_by_name		- find a device by its name
613  *	@net: the applicable net namespace
614  *	@name: name to find
615  *
616  *	Find an interface by name. This can be called from any
617  *	context and does its own locking. The returned handle has
618  *	the usage count incremented and the caller must use dev_put() to
619  *	release it when it is no longer needed. %NULL is returned if no
620  *	matching device is found.
621  */
622 
623 struct net_device *dev_get_by_name(struct net *net, const char *name)
624 {
625 	struct net_device *dev;
626 
627 	read_lock(&dev_base_lock);
628 	dev = __dev_get_by_name(net, name);
629 	if (dev)
630 		dev_hold(dev);
631 	read_unlock(&dev_base_lock);
632 	return dev;
633 }
634 
635 /**
636  *	__dev_get_by_index - find a device by its ifindex
637  *	@net: the applicable net namespace
638  *	@ifindex: index of device
639  *
640  *	Search for an interface by index. Returns %NULL if the device
641  *	is not found or a pointer to the device. The device has not
642  *	had its reference counter increased so the caller must be careful
643  *	about locking. The caller must hold either the RTNL semaphore
644  *	or @dev_base_lock.
645  */
646 
647 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
648 {
649 	struct hlist_node *p;
650 
651 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
652 		struct net_device *dev
653 			= hlist_entry(p, struct net_device, index_hlist);
654 		if (dev->ifindex == ifindex)
655 			return dev;
656 	}
657 	return NULL;
658 }
659 
660 
661 /**
662  *	dev_get_by_index - find a device by its ifindex
663  *	@net: the applicable net namespace
664  *	@ifindex: index of device
665  *
666  *	Search for an interface by index. Returns NULL if the device
667  *	is not found or a pointer to the device. The device returned has
668  *	had a reference added and the pointer is safe until the user calls
669  *	dev_put to indicate they have finished with it.
670  */
671 
672 struct net_device *dev_get_by_index(struct net *net, int ifindex)
673 {
674 	struct net_device *dev;
675 
676 	read_lock(&dev_base_lock);
677 	dev = __dev_get_by_index(net, ifindex);
678 	if (dev)
679 		dev_hold(dev);
680 	read_unlock(&dev_base_lock);
681 	return dev;
682 }
683 
684 /**
685  *	dev_getbyhwaddr - find a device by its hardware address
686  *	@net: the applicable net namespace
687  *	@type: media type of device
688  *	@ha: hardware address
689  *
690  *	Search for an interface by MAC address. Returns NULL if the device
691  *	is not found or a pointer to the device. The caller must hold the
692  *	rtnl semaphore. The returned device has not had its ref count increased
693  *	and the caller must therefore be careful about locking
694  *
695  *	BUGS:
696  *	If the API was consistent this would be __dev_get_by_hwaddr
697  */
698 
699 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
700 {
701 	struct net_device *dev;
702 
703 	ASSERT_RTNL();
704 
705 	for_each_netdev(net, dev)
706 		if (dev->type == type &&
707 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
708 			return dev;
709 
710 	return NULL;
711 }
712 
713 EXPORT_SYMBOL(dev_getbyhwaddr);
714 
715 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
716 {
717 	struct net_device *dev;
718 
719 	ASSERT_RTNL();
720 	for_each_netdev(net, dev)
721 		if (dev->type == type)
722 			return dev;
723 
724 	return NULL;
725 }
726 
727 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
728 
729 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
730 {
731 	struct net_device *dev;
732 
733 	rtnl_lock();
734 	dev = __dev_getfirstbyhwtype(net, type);
735 	if (dev)
736 		dev_hold(dev);
737 	rtnl_unlock();
738 	return dev;
739 }
740 
741 EXPORT_SYMBOL(dev_getfirstbyhwtype);
742 
743 /**
744  *	dev_get_by_flags - find any device with given flags
745  *	@net: the applicable net namespace
746  *	@if_flags: IFF_* values
747  *	@mask: bitmask of bits in if_flags to check
748  *
749  *	Search for any interface with the given flags. Returns NULL if a device
750  *	is not found or a pointer to the device. The device returned has
751  *	had a reference added and the pointer is safe until the user calls
752  *	dev_put to indicate they have finished with it.
753  */
754 
755 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
756 {
757 	struct net_device *dev, *ret;
758 
759 	ret = NULL;
760 	read_lock(&dev_base_lock);
761 	for_each_netdev(net, dev) {
762 		if (((dev->flags ^ if_flags) & mask) == 0) {
763 			dev_hold(dev);
764 			ret = dev;
765 			break;
766 		}
767 	}
768 	read_unlock(&dev_base_lock);
769 	return ret;
770 }
771 
772 /**
773  *	dev_valid_name - check if name is okay for network device
774  *	@name: name string
775  *
776  *	Network device names need to be valid file names to
777  *	to allow sysfs to work.  We also disallow any kind of
778  *	whitespace.
779  */
780 int dev_valid_name(const char *name)
781 {
782 	if (*name == '\0')
783 		return 0;
784 	if (strlen(name) >= IFNAMSIZ)
785 		return 0;
786 	if (!strcmp(name, ".") || !strcmp(name, ".."))
787 		return 0;
788 
789 	while (*name) {
790 		if (*name == '/' || isspace(*name))
791 			return 0;
792 		name++;
793 	}
794 	return 1;
795 }
796 
797 /**
798  *	__dev_alloc_name - allocate a name for a device
799  *	@net: network namespace to allocate the device name in
800  *	@name: name format string
801  *	@buf:  scratch buffer and result name string
802  *
803  *	Passed a format string - eg "lt%d" it will try and find a suitable
804  *	id. It scans list of devices to build up a free map, then chooses
805  *	the first empty slot. The caller must hold the dev_base or rtnl lock
806  *	while allocating the name and adding the device in order to avoid
807  *	duplicates.
808  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
809  *	Returns the number of the unit assigned or a negative errno code.
810  */
811 
812 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
813 {
814 	int i = 0;
815 	const char *p;
816 	const int max_netdevices = 8*PAGE_SIZE;
817 	unsigned long *inuse;
818 	struct net_device *d;
819 
820 	p = strnchr(name, IFNAMSIZ-1, '%');
821 	if (p) {
822 		/*
823 		 * Verify the string as this thing may have come from
824 		 * the user.  There must be either one "%d" and no other "%"
825 		 * characters.
826 		 */
827 		if (p[1] != 'd' || strchr(p + 2, '%'))
828 			return -EINVAL;
829 
830 		/* Use one page as a bit array of possible slots */
831 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
832 		if (!inuse)
833 			return -ENOMEM;
834 
835 		for_each_netdev(net, d) {
836 			if (!sscanf(d->name, name, &i))
837 				continue;
838 			if (i < 0 || i >= max_netdevices)
839 				continue;
840 
841 			/*  avoid cases where sscanf is not exact inverse of printf */
842 			snprintf(buf, IFNAMSIZ, name, i);
843 			if (!strncmp(buf, d->name, IFNAMSIZ))
844 				set_bit(i, inuse);
845 		}
846 
847 		i = find_first_zero_bit(inuse, max_netdevices);
848 		free_page((unsigned long) inuse);
849 	}
850 
851 	snprintf(buf, IFNAMSIZ, name, i);
852 	if (!__dev_get_by_name(net, buf))
853 		return i;
854 
855 	/* It is possible to run out of possible slots
856 	 * when the name is long and there isn't enough space left
857 	 * for the digits, or if all bits are used.
858 	 */
859 	return -ENFILE;
860 }
861 
862 /**
863  *	dev_alloc_name - allocate a name for a device
864  *	@dev: device
865  *	@name: name format string
866  *
867  *	Passed a format string - eg "lt%d" it will try and find a suitable
868  *	id. It scans list of devices to build up a free map, then chooses
869  *	the first empty slot. The caller must hold the dev_base or rtnl lock
870  *	while allocating the name and adding the device in order to avoid
871  *	duplicates.
872  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
873  *	Returns the number of the unit assigned or a negative errno code.
874  */
875 
876 int dev_alloc_name(struct net_device *dev, const char *name)
877 {
878 	char buf[IFNAMSIZ];
879 	struct net *net;
880 	int ret;
881 
882 	BUG_ON(!dev_net(dev));
883 	net = dev_net(dev);
884 	ret = __dev_alloc_name(net, name, buf);
885 	if (ret >= 0)
886 		strlcpy(dev->name, buf, IFNAMSIZ);
887 	return ret;
888 }
889 
890 
891 /**
892  *	dev_change_name - change name of a device
893  *	@dev: device
894  *	@newname: name (or format string) must be at least IFNAMSIZ
895  *
896  *	Change name of a device, can pass format strings "eth%d".
897  *	for wildcarding.
898  */
899 int dev_change_name(struct net_device *dev, const char *newname)
900 {
901 	char oldname[IFNAMSIZ];
902 	int err = 0;
903 	int ret;
904 	struct net *net;
905 
906 	ASSERT_RTNL();
907 	BUG_ON(!dev_net(dev));
908 
909 	net = dev_net(dev);
910 	if (dev->flags & IFF_UP)
911 		return -EBUSY;
912 
913 	if (!dev_valid_name(newname))
914 		return -EINVAL;
915 
916 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
917 		return 0;
918 
919 	memcpy(oldname, dev->name, IFNAMSIZ);
920 
921 	if (strchr(newname, '%')) {
922 		err = dev_alloc_name(dev, newname);
923 		if (err < 0)
924 			return err;
925 	}
926 	else if (__dev_get_by_name(net, newname))
927 		return -EEXIST;
928 	else
929 		strlcpy(dev->name, newname, IFNAMSIZ);
930 
931 rollback:
932 	/* For now only devices in the initial network namespace
933 	 * are in sysfs.
934 	 */
935 	if (net == &init_net) {
936 		ret = device_rename(&dev->dev, dev->name);
937 		if (ret) {
938 			memcpy(dev->name, oldname, IFNAMSIZ);
939 			return ret;
940 		}
941 	}
942 
943 	write_lock_bh(&dev_base_lock);
944 	hlist_del(&dev->name_hlist);
945 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
946 	write_unlock_bh(&dev_base_lock);
947 
948 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
949 	ret = notifier_to_errno(ret);
950 
951 	if (ret) {
952 		if (err) {
953 			printk(KERN_ERR
954 			       "%s: name change rollback failed: %d.\n",
955 			       dev->name, ret);
956 		} else {
957 			err = ret;
958 			memcpy(dev->name, oldname, IFNAMSIZ);
959 			goto rollback;
960 		}
961 	}
962 
963 	return err;
964 }
965 
966 /**
967  *	dev_set_alias - change ifalias of a device
968  *	@dev: device
969  *	@alias: name up to IFALIASZ
970  *	@len: limit of bytes to copy from info
971  *
972  *	Set ifalias for a device,
973  */
974 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
975 {
976 	ASSERT_RTNL();
977 
978 	if (len >= IFALIASZ)
979 		return -EINVAL;
980 
981 	if (!len) {
982 		if (dev->ifalias) {
983 			kfree(dev->ifalias);
984 			dev->ifalias = NULL;
985 		}
986 		return 0;
987 	}
988 
989 	dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
990 	if (!dev->ifalias)
991 		return -ENOMEM;
992 
993 	strlcpy(dev->ifalias, alias, len+1);
994 	return len;
995 }
996 
997 
998 /**
999  *	netdev_features_change - device changes features
1000  *	@dev: device to cause notification
1001  *
1002  *	Called to indicate a device has changed features.
1003  */
1004 void netdev_features_change(struct net_device *dev)
1005 {
1006 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1007 }
1008 EXPORT_SYMBOL(netdev_features_change);
1009 
1010 /**
1011  *	netdev_state_change - device changes state
1012  *	@dev: device to cause notification
1013  *
1014  *	Called to indicate a device has changed state. This function calls
1015  *	the notifier chains for netdev_chain and sends a NEWLINK message
1016  *	to the routing socket.
1017  */
1018 void netdev_state_change(struct net_device *dev)
1019 {
1020 	if (dev->flags & IFF_UP) {
1021 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1022 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1023 	}
1024 }
1025 
1026 void netdev_bonding_change(struct net_device *dev)
1027 {
1028 	call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1029 }
1030 EXPORT_SYMBOL(netdev_bonding_change);
1031 
1032 /**
1033  *	dev_load 	- load a network module
1034  *	@net: the applicable net namespace
1035  *	@name: name of interface
1036  *
1037  *	If a network interface is not present and the process has suitable
1038  *	privileges this function loads the module. If module loading is not
1039  *	available in this kernel then it becomes a nop.
1040  */
1041 
1042 void dev_load(struct net *net, const char *name)
1043 {
1044 	struct net_device *dev;
1045 
1046 	read_lock(&dev_base_lock);
1047 	dev = __dev_get_by_name(net, name);
1048 	read_unlock(&dev_base_lock);
1049 
1050 	if (!dev && capable(CAP_SYS_MODULE))
1051 		request_module("%s", name);
1052 }
1053 
1054 /**
1055  *	dev_open	- prepare an interface for use.
1056  *	@dev:	device to open
1057  *
1058  *	Takes a device from down to up state. The device's private open
1059  *	function is invoked and then the multicast lists are loaded. Finally
1060  *	the device is moved into the up state and a %NETDEV_UP message is
1061  *	sent to the netdev notifier chain.
1062  *
1063  *	Calling this function on an active interface is a nop. On a failure
1064  *	a negative errno code is returned.
1065  */
1066 int dev_open(struct net_device *dev)
1067 {
1068 	const struct net_device_ops *ops = dev->netdev_ops;
1069 	int ret = 0;
1070 
1071 	ASSERT_RTNL();
1072 
1073 	/*
1074 	 *	Is it already up?
1075 	 */
1076 
1077 	if (dev->flags & IFF_UP)
1078 		return 0;
1079 
1080 	/*
1081 	 *	Is it even present?
1082 	 */
1083 	if (!netif_device_present(dev))
1084 		return -ENODEV;
1085 
1086 	/*
1087 	 *	Call device private open method
1088 	 */
1089 	set_bit(__LINK_STATE_START, &dev->state);
1090 
1091 	if (ops->ndo_validate_addr)
1092 		ret = ops->ndo_validate_addr(dev);
1093 
1094 	if (!ret && ops->ndo_open)
1095 		ret = ops->ndo_open(dev);
1096 
1097 	/*
1098 	 *	If it went open OK then:
1099 	 */
1100 
1101 	if (ret)
1102 		clear_bit(__LINK_STATE_START, &dev->state);
1103 	else {
1104 		/*
1105 		 *	Set the flags.
1106 		 */
1107 		dev->flags |= IFF_UP;
1108 
1109 		/*
1110 		 *	Initialize multicasting status
1111 		 */
1112 		dev_set_rx_mode(dev);
1113 
1114 		/*
1115 		 *	Wakeup transmit queue engine
1116 		 */
1117 		dev_activate(dev);
1118 
1119 		/*
1120 		 *	... and announce new interface.
1121 		 */
1122 		call_netdevice_notifiers(NETDEV_UP, dev);
1123 	}
1124 
1125 	return ret;
1126 }
1127 
1128 /**
1129  *	dev_close - shutdown an interface.
1130  *	@dev: device to shutdown
1131  *
1132  *	This function moves an active device into down state. A
1133  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1134  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1135  *	chain.
1136  */
1137 int dev_close(struct net_device *dev)
1138 {
1139 	const struct net_device_ops *ops = dev->netdev_ops;
1140 	ASSERT_RTNL();
1141 
1142 	might_sleep();
1143 
1144 	if (!(dev->flags & IFF_UP))
1145 		return 0;
1146 
1147 	/*
1148 	 *	Tell people we are going down, so that they can
1149 	 *	prepare to death, when device is still operating.
1150 	 */
1151 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1152 
1153 	clear_bit(__LINK_STATE_START, &dev->state);
1154 
1155 	/* Synchronize to scheduled poll. We cannot touch poll list,
1156 	 * it can be even on different cpu. So just clear netif_running().
1157 	 *
1158 	 * dev->stop() will invoke napi_disable() on all of it's
1159 	 * napi_struct instances on this device.
1160 	 */
1161 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1162 
1163 	dev_deactivate(dev);
1164 
1165 	/*
1166 	 *	Call the device specific close. This cannot fail.
1167 	 *	Only if device is UP
1168 	 *
1169 	 *	We allow it to be called even after a DETACH hot-plug
1170 	 *	event.
1171 	 */
1172 	if (ops->ndo_stop)
1173 		ops->ndo_stop(dev);
1174 
1175 	/*
1176 	 *	Device is now down.
1177 	 */
1178 
1179 	dev->flags &= ~IFF_UP;
1180 
1181 	/*
1182 	 * Tell people we are down
1183 	 */
1184 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1185 
1186 	return 0;
1187 }
1188 
1189 
1190 /**
1191  *	dev_disable_lro - disable Large Receive Offload on a device
1192  *	@dev: device
1193  *
1194  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1195  *	called under RTNL.  This is needed if received packets may be
1196  *	forwarded to another interface.
1197  */
1198 void dev_disable_lro(struct net_device *dev)
1199 {
1200 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1201 	    dev->ethtool_ops->set_flags) {
1202 		u32 flags = dev->ethtool_ops->get_flags(dev);
1203 		if (flags & ETH_FLAG_LRO) {
1204 			flags &= ~ETH_FLAG_LRO;
1205 			dev->ethtool_ops->set_flags(dev, flags);
1206 		}
1207 	}
1208 	WARN_ON(dev->features & NETIF_F_LRO);
1209 }
1210 EXPORT_SYMBOL(dev_disable_lro);
1211 
1212 
1213 static int dev_boot_phase = 1;
1214 
1215 /*
1216  *	Device change register/unregister. These are not inline or static
1217  *	as we export them to the world.
1218  */
1219 
1220 /**
1221  *	register_netdevice_notifier - register a network notifier block
1222  *	@nb: notifier
1223  *
1224  *	Register a notifier to be called when network device events occur.
1225  *	The notifier passed is linked into the kernel structures and must
1226  *	not be reused until it has been unregistered. A negative errno code
1227  *	is returned on a failure.
1228  *
1229  * 	When registered all registration and up events are replayed
1230  *	to the new notifier to allow device to have a race free
1231  *	view of the network device list.
1232  */
1233 
1234 int register_netdevice_notifier(struct notifier_block *nb)
1235 {
1236 	struct net_device *dev;
1237 	struct net_device *last;
1238 	struct net *net;
1239 	int err;
1240 
1241 	rtnl_lock();
1242 	err = raw_notifier_chain_register(&netdev_chain, nb);
1243 	if (err)
1244 		goto unlock;
1245 	if (dev_boot_phase)
1246 		goto unlock;
1247 	for_each_net(net) {
1248 		for_each_netdev(net, dev) {
1249 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1250 			err = notifier_to_errno(err);
1251 			if (err)
1252 				goto rollback;
1253 
1254 			if (!(dev->flags & IFF_UP))
1255 				continue;
1256 
1257 			nb->notifier_call(nb, NETDEV_UP, dev);
1258 		}
1259 	}
1260 
1261 unlock:
1262 	rtnl_unlock();
1263 	return err;
1264 
1265 rollback:
1266 	last = dev;
1267 	for_each_net(net) {
1268 		for_each_netdev(net, dev) {
1269 			if (dev == last)
1270 				break;
1271 
1272 			if (dev->flags & IFF_UP) {
1273 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1274 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1275 			}
1276 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1277 		}
1278 	}
1279 
1280 	raw_notifier_chain_unregister(&netdev_chain, nb);
1281 	goto unlock;
1282 }
1283 
1284 /**
1285  *	unregister_netdevice_notifier - unregister a network notifier block
1286  *	@nb: notifier
1287  *
1288  *	Unregister a notifier previously registered by
1289  *	register_netdevice_notifier(). The notifier is unlinked into the
1290  *	kernel structures and may then be reused. A negative errno code
1291  *	is returned on a failure.
1292  */
1293 
1294 int unregister_netdevice_notifier(struct notifier_block *nb)
1295 {
1296 	int err;
1297 
1298 	rtnl_lock();
1299 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1300 	rtnl_unlock();
1301 	return err;
1302 }
1303 
1304 /**
1305  *	call_netdevice_notifiers - call all network notifier blocks
1306  *      @val: value passed unmodified to notifier function
1307  *      @dev: net_device pointer passed unmodified to notifier function
1308  *
1309  *	Call all network notifier blocks.  Parameters and return value
1310  *	are as for raw_notifier_call_chain().
1311  */
1312 
1313 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1314 {
1315 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1316 }
1317 
1318 /* When > 0 there are consumers of rx skb time stamps */
1319 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1320 
1321 void net_enable_timestamp(void)
1322 {
1323 	atomic_inc(&netstamp_needed);
1324 }
1325 
1326 void net_disable_timestamp(void)
1327 {
1328 	atomic_dec(&netstamp_needed);
1329 }
1330 
1331 static inline void net_timestamp(struct sk_buff *skb)
1332 {
1333 	if (atomic_read(&netstamp_needed))
1334 		__net_timestamp(skb);
1335 	else
1336 		skb->tstamp.tv64 = 0;
1337 }
1338 
1339 /*
1340  *	Support routine. Sends outgoing frames to any network
1341  *	taps currently in use.
1342  */
1343 
1344 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1345 {
1346 	struct packet_type *ptype;
1347 
1348 	net_timestamp(skb);
1349 
1350 	rcu_read_lock();
1351 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1352 		/* Never send packets back to the socket
1353 		 * they originated from - MvS ([email protected])
1354 		 */
1355 		if ((ptype->dev == dev || !ptype->dev) &&
1356 		    (ptype->af_packet_priv == NULL ||
1357 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1358 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1359 			if (!skb2)
1360 				break;
1361 
1362 			/* skb->nh should be correctly
1363 			   set by sender, so that the second statement is
1364 			   just protection against buggy protocols.
1365 			 */
1366 			skb_reset_mac_header(skb2);
1367 
1368 			if (skb_network_header(skb2) < skb2->data ||
1369 			    skb2->network_header > skb2->tail) {
1370 				if (net_ratelimit())
1371 					printk(KERN_CRIT "protocol %04x is "
1372 					       "buggy, dev %s\n",
1373 					       skb2->protocol, dev->name);
1374 				skb_reset_network_header(skb2);
1375 			}
1376 
1377 			skb2->transport_header = skb2->network_header;
1378 			skb2->pkt_type = PACKET_OUTGOING;
1379 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1380 		}
1381 	}
1382 	rcu_read_unlock();
1383 }
1384 
1385 
1386 static inline void __netif_reschedule(struct Qdisc *q)
1387 {
1388 	struct softnet_data *sd;
1389 	unsigned long flags;
1390 
1391 	local_irq_save(flags);
1392 	sd = &__get_cpu_var(softnet_data);
1393 	q->next_sched = sd->output_queue;
1394 	sd->output_queue = q;
1395 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1396 	local_irq_restore(flags);
1397 }
1398 
1399 void __netif_schedule(struct Qdisc *q)
1400 {
1401 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1402 		__netif_reschedule(q);
1403 }
1404 EXPORT_SYMBOL(__netif_schedule);
1405 
1406 void dev_kfree_skb_irq(struct sk_buff *skb)
1407 {
1408 	if (atomic_dec_and_test(&skb->users)) {
1409 		struct softnet_data *sd;
1410 		unsigned long flags;
1411 
1412 		local_irq_save(flags);
1413 		sd = &__get_cpu_var(softnet_data);
1414 		skb->next = sd->completion_queue;
1415 		sd->completion_queue = skb;
1416 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1417 		local_irq_restore(flags);
1418 	}
1419 }
1420 EXPORT_SYMBOL(dev_kfree_skb_irq);
1421 
1422 void dev_kfree_skb_any(struct sk_buff *skb)
1423 {
1424 	if (in_irq() || irqs_disabled())
1425 		dev_kfree_skb_irq(skb);
1426 	else
1427 		dev_kfree_skb(skb);
1428 }
1429 EXPORT_SYMBOL(dev_kfree_skb_any);
1430 
1431 
1432 /**
1433  * netif_device_detach - mark device as removed
1434  * @dev: network device
1435  *
1436  * Mark device as removed from system and therefore no longer available.
1437  */
1438 void netif_device_detach(struct net_device *dev)
1439 {
1440 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1441 	    netif_running(dev)) {
1442 		netif_stop_queue(dev);
1443 	}
1444 }
1445 EXPORT_SYMBOL(netif_device_detach);
1446 
1447 /**
1448  * netif_device_attach - mark device as attached
1449  * @dev: network device
1450  *
1451  * Mark device as attached from system and restart if needed.
1452  */
1453 void netif_device_attach(struct net_device *dev)
1454 {
1455 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1456 	    netif_running(dev)) {
1457 		netif_wake_queue(dev);
1458 		__netdev_watchdog_up(dev);
1459 	}
1460 }
1461 EXPORT_SYMBOL(netif_device_attach);
1462 
1463 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1464 {
1465 	return ((features & NETIF_F_GEN_CSUM) ||
1466 		((features & NETIF_F_IP_CSUM) &&
1467 		 protocol == htons(ETH_P_IP)) ||
1468 		((features & NETIF_F_IPV6_CSUM) &&
1469 		 protocol == htons(ETH_P_IPV6)));
1470 }
1471 
1472 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1473 {
1474 	if (can_checksum_protocol(dev->features, skb->protocol))
1475 		return true;
1476 
1477 	if (skb->protocol == htons(ETH_P_8021Q)) {
1478 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1479 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1480 					  veh->h_vlan_encapsulated_proto))
1481 			return true;
1482 	}
1483 
1484 	return false;
1485 }
1486 
1487 /*
1488  * Invalidate hardware checksum when packet is to be mangled, and
1489  * complete checksum manually on outgoing path.
1490  */
1491 int skb_checksum_help(struct sk_buff *skb)
1492 {
1493 	__wsum csum;
1494 	int ret = 0, offset;
1495 
1496 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1497 		goto out_set_summed;
1498 
1499 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1500 		/* Let GSO fix up the checksum. */
1501 		goto out_set_summed;
1502 	}
1503 
1504 	offset = skb->csum_start - skb_headroom(skb);
1505 	BUG_ON(offset >= skb_headlen(skb));
1506 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1507 
1508 	offset += skb->csum_offset;
1509 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1510 
1511 	if (skb_cloned(skb) &&
1512 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1513 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1514 		if (ret)
1515 			goto out;
1516 	}
1517 
1518 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1519 out_set_summed:
1520 	skb->ip_summed = CHECKSUM_NONE;
1521 out:
1522 	return ret;
1523 }
1524 
1525 /**
1526  *	skb_gso_segment - Perform segmentation on skb.
1527  *	@skb: buffer to segment
1528  *	@features: features for the output path (see dev->features)
1529  *
1530  *	This function segments the given skb and returns a list of segments.
1531  *
1532  *	It may return NULL if the skb requires no segmentation.  This is
1533  *	only possible when GSO is used for verifying header integrity.
1534  */
1535 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1536 {
1537 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1538 	struct packet_type *ptype;
1539 	__be16 type = skb->protocol;
1540 	int err;
1541 
1542 	skb_reset_mac_header(skb);
1543 	skb->mac_len = skb->network_header - skb->mac_header;
1544 	__skb_pull(skb, skb->mac_len);
1545 
1546 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1547 		if (skb_header_cloned(skb) &&
1548 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1549 			return ERR_PTR(err);
1550 	}
1551 
1552 	rcu_read_lock();
1553 	list_for_each_entry_rcu(ptype,
1554 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1555 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1556 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1557 				err = ptype->gso_send_check(skb);
1558 				segs = ERR_PTR(err);
1559 				if (err || skb_gso_ok(skb, features))
1560 					break;
1561 				__skb_push(skb, (skb->data -
1562 						 skb_network_header(skb)));
1563 			}
1564 			segs = ptype->gso_segment(skb, features);
1565 			break;
1566 		}
1567 	}
1568 	rcu_read_unlock();
1569 
1570 	__skb_push(skb, skb->data - skb_mac_header(skb));
1571 
1572 	return segs;
1573 }
1574 
1575 EXPORT_SYMBOL(skb_gso_segment);
1576 
1577 /* Take action when hardware reception checksum errors are detected. */
1578 #ifdef CONFIG_BUG
1579 void netdev_rx_csum_fault(struct net_device *dev)
1580 {
1581 	if (net_ratelimit()) {
1582 		printk(KERN_ERR "%s: hw csum failure.\n",
1583 			dev ? dev->name : "<unknown>");
1584 		dump_stack();
1585 	}
1586 }
1587 EXPORT_SYMBOL(netdev_rx_csum_fault);
1588 #endif
1589 
1590 /* Actually, we should eliminate this check as soon as we know, that:
1591  * 1. IOMMU is present and allows to map all the memory.
1592  * 2. No high memory really exists on this machine.
1593  */
1594 
1595 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1596 {
1597 #ifdef CONFIG_HIGHMEM
1598 	int i;
1599 
1600 	if (dev->features & NETIF_F_HIGHDMA)
1601 		return 0;
1602 
1603 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1604 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1605 			return 1;
1606 
1607 #endif
1608 	return 0;
1609 }
1610 
1611 struct dev_gso_cb {
1612 	void (*destructor)(struct sk_buff *skb);
1613 };
1614 
1615 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1616 
1617 static void dev_gso_skb_destructor(struct sk_buff *skb)
1618 {
1619 	struct dev_gso_cb *cb;
1620 
1621 	do {
1622 		struct sk_buff *nskb = skb->next;
1623 
1624 		skb->next = nskb->next;
1625 		nskb->next = NULL;
1626 		kfree_skb(nskb);
1627 	} while (skb->next);
1628 
1629 	cb = DEV_GSO_CB(skb);
1630 	if (cb->destructor)
1631 		cb->destructor(skb);
1632 }
1633 
1634 /**
1635  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1636  *	@skb: buffer to segment
1637  *
1638  *	This function segments the given skb and stores the list of segments
1639  *	in skb->next.
1640  */
1641 static int dev_gso_segment(struct sk_buff *skb)
1642 {
1643 	struct net_device *dev = skb->dev;
1644 	struct sk_buff *segs;
1645 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1646 					 NETIF_F_SG : 0);
1647 
1648 	segs = skb_gso_segment(skb, features);
1649 
1650 	/* Verifying header integrity only. */
1651 	if (!segs)
1652 		return 0;
1653 
1654 	if (IS_ERR(segs))
1655 		return PTR_ERR(segs);
1656 
1657 	skb->next = segs;
1658 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1659 	skb->destructor = dev_gso_skb_destructor;
1660 
1661 	return 0;
1662 }
1663 
1664 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1665 			struct netdev_queue *txq)
1666 {
1667 	const struct net_device_ops *ops = dev->netdev_ops;
1668 
1669 	prefetch(&dev->netdev_ops->ndo_start_xmit);
1670 	if (likely(!skb->next)) {
1671 		if (!list_empty(&ptype_all))
1672 			dev_queue_xmit_nit(skb, dev);
1673 
1674 		if (netif_needs_gso(dev, skb)) {
1675 			if (unlikely(dev_gso_segment(skb)))
1676 				goto out_kfree_skb;
1677 			if (skb->next)
1678 				goto gso;
1679 		}
1680 
1681 		return ops->ndo_start_xmit(skb, dev);
1682 	}
1683 
1684 gso:
1685 	do {
1686 		struct sk_buff *nskb = skb->next;
1687 		int rc;
1688 
1689 		skb->next = nskb->next;
1690 		nskb->next = NULL;
1691 		rc = ops->ndo_start_xmit(nskb, dev);
1692 		if (unlikely(rc)) {
1693 			nskb->next = skb->next;
1694 			skb->next = nskb;
1695 			return rc;
1696 		}
1697 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
1698 			return NETDEV_TX_BUSY;
1699 	} while (skb->next);
1700 
1701 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1702 
1703 out_kfree_skb:
1704 	kfree_skb(skb);
1705 	return 0;
1706 }
1707 
1708 static u32 simple_tx_hashrnd;
1709 static int simple_tx_hashrnd_initialized = 0;
1710 
1711 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1712 {
1713 	u32 addr1, addr2, ports;
1714 	u32 hash, ihl;
1715 	u8 ip_proto = 0;
1716 
1717 	if (unlikely(!simple_tx_hashrnd_initialized)) {
1718 		get_random_bytes(&simple_tx_hashrnd, 4);
1719 		simple_tx_hashrnd_initialized = 1;
1720 	}
1721 
1722 	switch (skb->protocol) {
1723 	case htons(ETH_P_IP):
1724 		if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)))
1725 			ip_proto = ip_hdr(skb)->protocol;
1726 		addr1 = ip_hdr(skb)->saddr;
1727 		addr2 = ip_hdr(skb)->daddr;
1728 		ihl = ip_hdr(skb)->ihl;
1729 		break;
1730 	case htons(ETH_P_IPV6):
1731 		ip_proto = ipv6_hdr(skb)->nexthdr;
1732 		addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3];
1733 		addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3];
1734 		ihl = (40 >> 2);
1735 		break;
1736 	default:
1737 		return 0;
1738 	}
1739 
1740 
1741 	switch (ip_proto) {
1742 	case IPPROTO_TCP:
1743 	case IPPROTO_UDP:
1744 	case IPPROTO_DCCP:
1745 	case IPPROTO_ESP:
1746 	case IPPROTO_AH:
1747 	case IPPROTO_SCTP:
1748 	case IPPROTO_UDPLITE:
1749 		ports = *((u32 *) (skb_network_header(skb) + (ihl * 4)));
1750 		break;
1751 
1752 	default:
1753 		ports = 0;
1754 		break;
1755 	}
1756 
1757 	hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd);
1758 
1759 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
1760 }
1761 
1762 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1763 					struct sk_buff *skb)
1764 {
1765 	const struct net_device_ops *ops = dev->netdev_ops;
1766 	u16 queue_index = 0;
1767 
1768 	if (ops->ndo_select_queue)
1769 		queue_index = ops->ndo_select_queue(dev, skb);
1770 	else if (dev->real_num_tx_queues > 1)
1771 		queue_index = simple_tx_hash(dev, skb);
1772 
1773 	skb_set_queue_mapping(skb, queue_index);
1774 	return netdev_get_tx_queue(dev, queue_index);
1775 }
1776 
1777 /**
1778  *	dev_queue_xmit - transmit a buffer
1779  *	@skb: buffer to transmit
1780  *
1781  *	Queue a buffer for transmission to a network device. The caller must
1782  *	have set the device and priority and built the buffer before calling
1783  *	this function. The function can be called from an interrupt.
1784  *
1785  *	A negative errno code is returned on a failure. A success does not
1786  *	guarantee the frame will be transmitted as it may be dropped due
1787  *	to congestion or traffic shaping.
1788  *
1789  * -----------------------------------------------------------------------------------
1790  *      I notice this method can also return errors from the queue disciplines,
1791  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1792  *      be positive.
1793  *
1794  *      Regardless of the return value, the skb is consumed, so it is currently
1795  *      difficult to retry a send to this method.  (You can bump the ref count
1796  *      before sending to hold a reference for retry if you are careful.)
1797  *
1798  *      When calling this method, interrupts MUST be enabled.  This is because
1799  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1800  *          --BLG
1801  */
1802 int dev_queue_xmit(struct sk_buff *skb)
1803 {
1804 	struct net_device *dev = skb->dev;
1805 	struct netdev_queue *txq;
1806 	struct Qdisc *q;
1807 	int rc = -ENOMEM;
1808 
1809 	/* GSO will handle the following emulations directly. */
1810 	if (netif_needs_gso(dev, skb))
1811 		goto gso;
1812 
1813 	if (skb_shinfo(skb)->frag_list &&
1814 	    !(dev->features & NETIF_F_FRAGLIST) &&
1815 	    __skb_linearize(skb))
1816 		goto out_kfree_skb;
1817 
1818 	/* Fragmented skb is linearized if device does not support SG,
1819 	 * or if at least one of fragments is in highmem and device
1820 	 * does not support DMA from it.
1821 	 */
1822 	if (skb_shinfo(skb)->nr_frags &&
1823 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1824 	    __skb_linearize(skb))
1825 		goto out_kfree_skb;
1826 
1827 	/* If packet is not checksummed and device does not support
1828 	 * checksumming for this protocol, complete checksumming here.
1829 	 */
1830 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1831 		skb_set_transport_header(skb, skb->csum_start -
1832 					      skb_headroom(skb));
1833 		if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1834 			goto out_kfree_skb;
1835 	}
1836 
1837 gso:
1838 	/* Disable soft irqs for various locks below. Also
1839 	 * stops preemption for RCU.
1840 	 */
1841 	rcu_read_lock_bh();
1842 
1843 	txq = dev_pick_tx(dev, skb);
1844 	q = rcu_dereference(txq->qdisc);
1845 
1846 #ifdef CONFIG_NET_CLS_ACT
1847 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1848 #endif
1849 	if (q->enqueue) {
1850 		spinlock_t *root_lock = qdisc_lock(q);
1851 
1852 		spin_lock(root_lock);
1853 
1854 		if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
1855 			kfree_skb(skb);
1856 			rc = NET_XMIT_DROP;
1857 		} else {
1858 			rc = qdisc_enqueue_root(skb, q);
1859 			qdisc_run(q);
1860 		}
1861 		spin_unlock(root_lock);
1862 
1863 		goto out;
1864 	}
1865 
1866 	/* The device has no queue. Common case for software devices:
1867 	   loopback, all the sorts of tunnels...
1868 
1869 	   Really, it is unlikely that netif_tx_lock protection is necessary
1870 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1871 	   counters.)
1872 	   However, it is possible, that they rely on protection
1873 	   made by us here.
1874 
1875 	   Check this and shot the lock. It is not prone from deadlocks.
1876 	   Either shot noqueue qdisc, it is even simpler 8)
1877 	 */
1878 	if (dev->flags & IFF_UP) {
1879 		int cpu = smp_processor_id(); /* ok because BHs are off */
1880 
1881 		if (txq->xmit_lock_owner != cpu) {
1882 
1883 			HARD_TX_LOCK(dev, txq, cpu);
1884 
1885 			if (!netif_tx_queue_stopped(txq)) {
1886 				rc = 0;
1887 				if (!dev_hard_start_xmit(skb, dev, txq)) {
1888 					HARD_TX_UNLOCK(dev, txq);
1889 					goto out;
1890 				}
1891 			}
1892 			HARD_TX_UNLOCK(dev, txq);
1893 			if (net_ratelimit())
1894 				printk(KERN_CRIT "Virtual device %s asks to "
1895 				       "queue packet!\n", dev->name);
1896 		} else {
1897 			/* Recursion is detected! It is possible,
1898 			 * unfortunately */
1899 			if (net_ratelimit())
1900 				printk(KERN_CRIT "Dead loop on virtual device "
1901 				       "%s, fix it urgently!\n", dev->name);
1902 		}
1903 	}
1904 
1905 	rc = -ENETDOWN;
1906 	rcu_read_unlock_bh();
1907 
1908 out_kfree_skb:
1909 	kfree_skb(skb);
1910 	return rc;
1911 out:
1912 	rcu_read_unlock_bh();
1913 	return rc;
1914 }
1915 
1916 
1917 /*=======================================================================
1918 			Receiver routines
1919   =======================================================================*/
1920 
1921 int netdev_max_backlog __read_mostly = 1000;
1922 int netdev_budget __read_mostly = 300;
1923 int weight_p __read_mostly = 64;            /* old backlog weight */
1924 
1925 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1926 
1927 
1928 /**
1929  *	netif_rx	-	post buffer to the network code
1930  *	@skb: buffer to post
1931  *
1932  *	This function receives a packet from a device driver and queues it for
1933  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1934  *	may be dropped during processing for congestion control or by the
1935  *	protocol layers.
1936  *
1937  *	return values:
1938  *	NET_RX_SUCCESS	(no congestion)
1939  *	NET_RX_DROP     (packet was dropped)
1940  *
1941  */
1942 
1943 int netif_rx(struct sk_buff *skb)
1944 {
1945 	struct softnet_data *queue;
1946 	unsigned long flags;
1947 
1948 	/* if netpoll wants it, pretend we never saw it */
1949 	if (netpoll_rx(skb))
1950 		return NET_RX_DROP;
1951 
1952 	if (!skb->tstamp.tv64)
1953 		net_timestamp(skb);
1954 
1955 	/*
1956 	 * The code is rearranged so that the path is the most
1957 	 * short when CPU is congested, but is still operating.
1958 	 */
1959 	local_irq_save(flags);
1960 	queue = &__get_cpu_var(softnet_data);
1961 
1962 	__get_cpu_var(netdev_rx_stat).total++;
1963 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1964 		if (queue->input_pkt_queue.qlen) {
1965 enqueue:
1966 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1967 			local_irq_restore(flags);
1968 			return NET_RX_SUCCESS;
1969 		}
1970 
1971 		napi_schedule(&queue->backlog);
1972 		goto enqueue;
1973 	}
1974 
1975 	__get_cpu_var(netdev_rx_stat).dropped++;
1976 	local_irq_restore(flags);
1977 
1978 	kfree_skb(skb);
1979 	return NET_RX_DROP;
1980 }
1981 
1982 int netif_rx_ni(struct sk_buff *skb)
1983 {
1984 	int err;
1985 
1986 	preempt_disable();
1987 	err = netif_rx(skb);
1988 	if (local_softirq_pending())
1989 		do_softirq();
1990 	preempt_enable();
1991 
1992 	return err;
1993 }
1994 
1995 EXPORT_SYMBOL(netif_rx_ni);
1996 
1997 static void net_tx_action(struct softirq_action *h)
1998 {
1999 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2000 
2001 	if (sd->completion_queue) {
2002 		struct sk_buff *clist;
2003 
2004 		local_irq_disable();
2005 		clist = sd->completion_queue;
2006 		sd->completion_queue = NULL;
2007 		local_irq_enable();
2008 
2009 		while (clist) {
2010 			struct sk_buff *skb = clist;
2011 			clist = clist->next;
2012 
2013 			WARN_ON(atomic_read(&skb->users));
2014 			__kfree_skb(skb);
2015 		}
2016 	}
2017 
2018 	if (sd->output_queue) {
2019 		struct Qdisc *head;
2020 
2021 		local_irq_disable();
2022 		head = sd->output_queue;
2023 		sd->output_queue = NULL;
2024 		local_irq_enable();
2025 
2026 		while (head) {
2027 			struct Qdisc *q = head;
2028 			spinlock_t *root_lock;
2029 
2030 			head = head->next_sched;
2031 
2032 			root_lock = qdisc_lock(q);
2033 			if (spin_trylock(root_lock)) {
2034 				smp_mb__before_clear_bit();
2035 				clear_bit(__QDISC_STATE_SCHED,
2036 					  &q->state);
2037 				qdisc_run(q);
2038 				spin_unlock(root_lock);
2039 			} else {
2040 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2041 					      &q->state)) {
2042 					__netif_reschedule(q);
2043 				} else {
2044 					smp_mb__before_clear_bit();
2045 					clear_bit(__QDISC_STATE_SCHED,
2046 						  &q->state);
2047 				}
2048 			}
2049 		}
2050 	}
2051 }
2052 
2053 static inline int deliver_skb(struct sk_buff *skb,
2054 			      struct packet_type *pt_prev,
2055 			      struct net_device *orig_dev)
2056 {
2057 	atomic_inc(&skb->users);
2058 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2059 }
2060 
2061 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
2062 /* These hooks defined here for ATM */
2063 struct net_bridge;
2064 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2065 						unsigned char *addr);
2066 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
2067 
2068 /*
2069  * If bridge module is loaded call bridging hook.
2070  *  returns NULL if packet was consumed.
2071  */
2072 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2073 					struct sk_buff *skb) __read_mostly;
2074 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2075 					    struct packet_type **pt_prev, int *ret,
2076 					    struct net_device *orig_dev)
2077 {
2078 	struct net_bridge_port *port;
2079 
2080 	if (skb->pkt_type == PACKET_LOOPBACK ||
2081 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
2082 		return skb;
2083 
2084 	if (*pt_prev) {
2085 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2086 		*pt_prev = NULL;
2087 	}
2088 
2089 	return br_handle_frame_hook(port, skb);
2090 }
2091 #else
2092 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
2093 #endif
2094 
2095 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2096 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2097 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2098 
2099 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2100 					     struct packet_type **pt_prev,
2101 					     int *ret,
2102 					     struct net_device *orig_dev)
2103 {
2104 	if (skb->dev->macvlan_port == NULL)
2105 		return skb;
2106 
2107 	if (*pt_prev) {
2108 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2109 		*pt_prev = NULL;
2110 	}
2111 	return macvlan_handle_frame_hook(skb);
2112 }
2113 #else
2114 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
2115 #endif
2116 
2117 #ifdef CONFIG_NET_CLS_ACT
2118 /* TODO: Maybe we should just force sch_ingress to be compiled in
2119  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2120  * a compare and 2 stores extra right now if we dont have it on
2121  * but have CONFIG_NET_CLS_ACT
2122  * NOTE: This doesnt stop any functionality; if you dont have
2123  * the ingress scheduler, you just cant add policies on ingress.
2124  *
2125  */
2126 static int ing_filter(struct sk_buff *skb)
2127 {
2128 	struct net_device *dev = skb->dev;
2129 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2130 	struct netdev_queue *rxq;
2131 	int result = TC_ACT_OK;
2132 	struct Qdisc *q;
2133 
2134 	if (MAX_RED_LOOP < ttl++) {
2135 		printk(KERN_WARNING
2136 		       "Redir loop detected Dropping packet (%d->%d)\n",
2137 		       skb->iif, dev->ifindex);
2138 		return TC_ACT_SHOT;
2139 	}
2140 
2141 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2142 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2143 
2144 	rxq = &dev->rx_queue;
2145 
2146 	q = rxq->qdisc;
2147 	if (q != &noop_qdisc) {
2148 		spin_lock(qdisc_lock(q));
2149 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2150 			result = qdisc_enqueue_root(skb, q);
2151 		spin_unlock(qdisc_lock(q));
2152 	}
2153 
2154 	return result;
2155 }
2156 
2157 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2158 					 struct packet_type **pt_prev,
2159 					 int *ret, struct net_device *orig_dev)
2160 {
2161 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2162 		goto out;
2163 
2164 	if (*pt_prev) {
2165 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2166 		*pt_prev = NULL;
2167 	} else {
2168 		/* Huh? Why does turning on AF_PACKET affect this? */
2169 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2170 	}
2171 
2172 	switch (ing_filter(skb)) {
2173 	case TC_ACT_SHOT:
2174 	case TC_ACT_STOLEN:
2175 		kfree_skb(skb);
2176 		return NULL;
2177 	}
2178 
2179 out:
2180 	skb->tc_verd = 0;
2181 	return skb;
2182 }
2183 #endif
2184 
2185 /*
2186  * 	netif_nit_deliver - deliver received packets to network taps
2187  * 	@skb: buffer
2188  *
2189  * 	This function is used to deliver incoming packets to network
2190  * 	taps. It should be used when the normal netif_receive_skb path
2191  * 	is bypassed, for example because of VLAN acceleration.
2192  */
2193 void netif_nit_deliver(struct sk_buff *skb)
2194 {
2195 	struct packet_type *ptype;
2196 
2197 	if (list_empty(&ptype_all))
2198 		return;
2199 
2200 	skb_reset_network_header(skb);
2201 	skb_reset_transport_header(skb);
2202 	skb->mac_len = skb->network_header - skb->mac_header;
2203 
2204 	rcu_read_lock();
2205 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2206 		if (!ptype->dev || ptype->dev == skb->dev)
2207 			deliver_skb(skb, ptype, skb->dev);
2208 	}
2209 	rcu_read_unlock();
2210 }
2211 
2212 /**
2213  *	netif_receive_skb - process receive buffer from network
2214  *	@skb: buffer to process
2215  *
2216  *	netif_receive_skb() is the main receive data processing function.
2217  *	It always succeeds. The buffer may be dropped during processing
2218  *	for congestion control or by the protocol layers.
2219  *
2220  *	This function may only be called from softirq context and interrupts
2221  *	should be enabled.
2222  *
2223  *	Return values (usually ignored):
2224  *	NET_RX_SUCCESS: no congestion
2225  *	NET_RX_DROP: packet was dropped
2226  */
2227 int netif_receive_skb(struct sk_buff *skb)
2228 {
2229 	struct packet_type *ptype, *pt_prev;
2230 	struct net_device *orig_dev;
2231 	struct net_device *null_or_orig;
2232 	int ret = NET_RX_DROP;
2233 	__be16 type;
2234 
2235 	if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2236 		return NET_RX_SUCCESS;
2237 
2238 	/* if we've gotten here through NAPI, check netpoll */
2239 	if (netpoll_receive_skb(skb))
2240 		return NET_RX_DROP;
2241 
2242 	if (!skb->tstamp.tv64)
2243 		net_timestamp(skb);
2244 
2245 	if (!skb->iif)
2246 		skb->iif = skb->dev->ifindex;
2247 
2248 	null_or_orig = NULL;
2249 	orig_dev = skb->dev;
2250 	if (orig_dev->master) {
2251 		if (skb_bond_should_drop(skb))
2252 			null_or_orig = orig_dev; /* deliver only exact match */
2253 		else
2254 			skb->dev = orig_dev->master;
2255 	}
2256 
2257 	__get_cpu_var(netdev_rx_stat).total++;
2258 
2259 	skb_reset_network_header(skb);
2260 	skb_reset_transport_header(skb);
2261 	skb->mac_len = skb->network_header - skb->mac_header;
2262 
2263 	pt_prev = NULL;
2264 
2265 	rcu_read_lock();
2266 
2267 	/* Don't receive packets in an exiting network namespace */
2268 	if (!net_alive(dev_net(skb->dev))) {
2269 		kfree_skb(skb);
2270 		goto out;
2271 	}
2272 
2273 #ifdef CONFIG_NET_CLS_ACT
2274 	if (skb->tc_verd & TC_NCLS) {
2275 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2276 		goto ncls;
2277 	}
2278 #endif
2279 
2280 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2281 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2282 		    ptype->dev == orig_dev) {
2283 			if (pt_prev)
2284 				ret = deliver_skb(skb, pt_prev, orig_dev);
2285 			pt_prev = ptype;
2286 		}
2287 	}
2288 
2289 #ifdef CONFIG_NET_CLS_ACT
2290 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2291 	if (!skb)
2292 		goto out;
2293 ncls:
2294 #endif
2295 
2296 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2297 	if (!skb)
2298 		goto out;
2299 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2300 	if (!skb)
2301 		goto out;
2302 
2303 	type = skb->protocol;
2304 	list_for_each_entry_rcu(ptype,
2305 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2306 		if (ptype->type == type &&
2307 		    (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2308 		     ptype->dev == orig_dev)) {
2309 			if (pt_prev)
2310 				ret = deliver_skb(skb, pt_prev, orig_dev);
2311 			pt_prev = ptype;
2312 		}
2313 	}
2314 
2315 	if (pt_prev) {
2316 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2317 	} else {
2318 		kfree_skb(skb);
2319 		/* Jamal, now you will not able to escape explaining
2320 		 * me how you were going to use this. :-)
2321 		 */
2322 		ret = NET_RX_DROP;
2323 	}
2324 
2325 out:
2326 	rcu_read_unlock();
2327 	return ret;
2328 }
2329 
2330 /* Network device is going away, flush any packets still pending  */
2331 static void flush_backlog(void *arg)
2332 {
2333 	struct net_device *dev = arg;
2334 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2335 	struct sk_buff *skb, *tmp;
2336 
2337 	skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2338 		if (skb->dev == dev) {
2339 			__skb_unlink(skb, &queue->input_pkt_queue);
2340 			kfree_skb(skb);
2341 		}
2342 }
2343 
2344 static int napi_gro_complete(struct sk_buff *skb)
2345 {
2346 	struct packet_type *ptype;
2347 	__be16 type = skb->protocol;
2348 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2349 	int err = -ENOENT;
2350 
2351 	if (NAPI_GRO_CB(skb)->count == 1)
2352 		goto out;
2353 
2354 	rcu_read_lock();
2355 	list_for_each_entry_rcu(ptype, head, list) {
2356 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2357 			continue;
2358 
2359 		err = ptype->gro_complete(skb);
2360 		break;
2361 	}
2362 	rcu_read_unlock();
2363 
2364 	if (err) {
2365 		WARN_ON(&ptype->list == head);
2366 		kfree_skb(skb);
2367 		return NET_RX_SUCCESS;
2368 	}
2369 
2370 out:
2371 	skb_shinfo(skb)->gso_size = 0;
2372 	__skb_push(skb, -skb_network_offset(skb));
2373 	return netif_receive_skb(skb);
2374 }
2375 
2376 void napi_gro_flush(struct napi_struct *napi)
2377 {
2378 	struct sk_buff *skb, *next;
2379 
2380 	for (skb = napi->gro_list; skb; skb = next) {
2381 		next = skb->next;
2382 		skb->next = NULL;
2383 		napi_gro_complete(skb);
2384 	}
2385 
2386 	napi->gro_list = NULL;
2387 }
2388 EXPORT_SYMBOL(napi_gro_flush);
2389 
2390 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2391 {
2392 	struct sk_buff **pp = NULL;
2393 	struct packet_type *ptype;
2394 	__be16 type = skb->protocol;
2395 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2396 	int count = 0;
2397 	int same_flow;
2398 	int mac_len;
2399 	int free;
2400 
2401 	if (!(skb->dev->features & NETIF_F_GRO))
2402 		goto normal;
2403 
2404 	rcu_read_lock();
2405 	list_for_each_entry_rcu(ptype, head, list) {
2406 		struct sk_buff *p;
2407 
2408 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2409 			continue;
2410 
2411 		skb_reset_network_header(skb);
2412 		mac_len = skb->network_header - skb->mac_header;
2413 		skb->mac_len = mac_len;
2414 		NAPI_GRO_CB(skb)->same_flow = 0;
2415 		NAPI_GRO_CB(skb)->flush = 0;
2416 		NAPI_GRO_CB(skb)->free = 0;
2417 
2418 		for (p = napi->gro_list; p; p = p->next) {
2419 			count++;
2420 			NAPI_GRO_CB(p)->same_flow =
2421 				p->mac_len == mac_len &&
2422 				!memcmp(skb_mac_header(p), skb_mac_header(skb),
2423 					mac_len);
2424 			NAPI_GRO_CB(p)->flush = 0;
2425 		}
2426 
2427 		pp = ptype->gro_receive(&napi->gro_list, skb);
2428 		break;
2429 	}
2430 	rcu_read_unlock();
2431 
2432 	if (&ptype->list == head)
2433 		goto normal;
2434 
2435 	same_flow = NAPI_GRO_CB(skb)->same_flow;
2436 	free = NAPI_GRO_CB(skb)->free;
2437 
2438 	if (pp) {
2439 		struct sk_buff *nskb = *pp;
2440 
2441 		*pp = nskb->next;
2442 		nskb->next = NULL;
2443 		napi_gro_complete(nskb);
2444 		count--;
2445 	}
2446 
2447 	if (same_flow)
2448 		goto ok;
2449 
2450 	if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) {
2451 		__skb_push(skb, -skb_network_offset(skb));
2452 		goto normal;
2453 	}
2454 
2455 	NAPI_GRO_CB(skb)->count = 1;
2456 	skb_shinfo(skb)->gso_size = skb->len;
2457 	skb->next = napi->gro_list;
2458 	napi->gro_list = skb;
2459 
2460 ok:
2461 	return free;
2462 
2463 normal:
2464 	return -1;
2465 }
2466 
2467 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2468 {
2469 	switch (__napi_gro_receive(napi, skb)) {
2470 	case -1:
2471 		return netif_receive_skb(skb);
2472 
2473 	case 1:
2474 		kfree_skb(skb);
2475 		break;
2476 	}
2477 
2478 	return NET_RX_SUCCESS;
2479 }
2480 EXPORT_SYMBOL(napi_gro_receive);
2481 
2482 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info)
2483 {
2484 	struct net_device *dev = napi->dev;
2485 	struct sk_buff *skb = napi->skb;
2486 	int err = NET_RX_DROP;
2487 
2488 	napi->skb = NULL;
2489 
2490 	if (!skb) {
2491 		skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2492 		if (!skb)
2493 			goto out;
2494 
2495 		skb_reserve(skb, NET_IP_ALIGN);
2496 	}
2497 
2498 	BUG_ON(info->nr_frags > MAX_SKB_FRAGS);
2499 	skb_shinfo(skb)->nr_frags = info->nr_frags;
2500 	memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags));
2501 
2502 	skb->data_len = info->len;
2503 	skb->len += info->len;
2504 	skb->truesize += info->len;
2505 
2506 	if (!pskb_may_pull(skb, ETH_HLEN))
2507 		goto reuse;
2508 
2509 	err = NET_RX_SUCCESS;
2510 
2511 	skb->protocol = eth_type_trans(skb, dev);
2512 
2513 	skb->ip_summed = info->ip_summed;
2514 	skb->csum = info->csum;
2515 
2516 	switch (__napi_gro_receive(napi, skb)) {
2517 	case -1:
2518 		return netif_receive_skb(skb);
2519 
2520 	case 0:
2521 		goto out;
2522 	}
2523 
2524 reuse:
2525 	skb_shinfo(skb)->nr_frags = 0;
2526 
2527 	skb->len -= skb->data_len;
2528 	skb->truesize -= skb->data_len;
2529 	skb->data_len = 0;
2530 
2531 	__skb_pull(skb, skb_headlen(skb));
2532 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2533 
2534 	napi->skb = skb;
2535 
2536 out:
2537 	return err;
2538 }
2539 EXPORT_SYMBOL(napi_gro_frags);
2540 
2541 static int process_backlog(struct napi_struct *napi, int quota)
2542 {
2543 	int work = 0;
2544 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2545 	unsigned long start_time = jiffies;
2546 
2547 	napi->weight = weight_p;
2548 	do {
2549 		struct sk_buff *skb;
2550 
2551 		local_irq_disable();
2552 		skb = __skb_dequeue(&queue->input_pkt_queue);
2553 		if (!skb) {
2554 			__napi_complete(napi);
2555 			local_irq_enable();
2556 			break;
2557 		}
2558 		local_irq_enable();
2559 
2560 		napi_gro_receive(napi, skb);
2561 	} while (++work < quota && jiffies == start_time);
2562 
2563 	napi_gro_flush(napi);
2564 
2565 	return work;
2566 }
2567 
2568 /**
2569  * __napi_schedule - schedule for receive
2570  * @n: entry to schedule
2571  *
2572  * The entry's receive function will be scheduled to run
2573  */
2574 void __napi_schedule(struct napi_struct *n)
2575 {
2576 	unsigned long flags;
2577 
2578 	local_irq_save(flags);
2579 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2580 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2581 	local_irq_restore(flags);
2582 }
2583 EXPORT_SYMBOL(__napi_schedule);
2584 
2585 void __napi_complete(struct napi_struct *n)
2586 {
2587 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2588 	BUG_ON(n->gro_list);
2589 
2590 	list_del(&n->poll_list);
2591 	smp_mb__before_clear_bit();
2592 	clear_bit(NAPI_STATE_SCHED, &n->state);
2593 }
2594 EXPORT_SYMBOL(__napi_complete);
2595 
2596 void napi_complete(struct napi_struct *n)
2597 {
2598 	unsigned long flags;
2599 
2600 	/*
2601 	 * don't let napi dequeue from the cpu poll list
2602 	 * just in case its running on a different cpu
2603 	 */
2604 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2605 		return;
2606 
2607 	napi_gro_flush(n);
2608 	local_irq_save(flags);
2609 	__napi_complete(n);
2610 	local_irq_restore(flags);
2611 }
2612 EXPORT_SYMBOL(napi_complete);
2613 
2614 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2615 		    int (*poll)(struct napi_struct *, int), int weight)
2616 {
2617 	INIT_LIST_HEAD(&napi->poll_list);
2618 	napi->gro_list = NULL;
2619 	napi->skb = NULL;
2620 	napi->poll = poll;
2621 	napi->weight = weight;
2622 	list_add(&napi->dev_list, &dev->napi_list);
2623 	napi->dev = dev;
2624 #ifdef CONFIG_NETPOLL
2625 	spin_lock_init(&napi->poll_lock);
2626 	napi->poll_owner = -1;
2627 #endif
2628 	set_bit(NAPI_STATE_SCHED, &napi->state);
2629 }
2630 EXPORT_SYMBOL(netif_napi_add);
2631 
2632 void netif_napi_del(struct napi_struct *napi)
2633 {
2634 	struct sk_buff *skb, *next;
2635 
2636 	list_del_init(&napi->dev_list);
2637 	kfree(napi->skb);
2638 
2639 	for (skb = napi->gro_list; skb; skb = next) {
2640 		next = skb->next;
2641 		skb->next = NULL;
2642 		kfree_skb(skb);
2643 	}
2644 
2645 	napi->gro_list = NULL;
2646 }
2647 EXPORT_SYMBOL(netif_napi_del);
2648 
2649 
2650 static void net_rx_action(struct softirq_action *h)
2651 {
2652 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2653 	unsigned long time_limit = jiffies + 2;
2654 	int budget = netdev_budget;
2655 	void *have;
2656 
2657 	local_irq_disable();
2658 
2659 	while (!list_empty(list)) {
2660 		struct napi_struct *n;
2661 		int work, weight;
2662 
2663 		/* If softirq window is exhuasted then punt.
2664 		 * Allow this to run for 2 jiffies since which will allow
2665 		 * an average latency of 1.5/HZ.
2666 		 */
2667 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
2668 			goto softnet_break;
2669 
2670 		local_irq_enable();
2671 
2672 		/* Even though interrupts have been re-enabled, this
2673 		 * access is safe because interrupts can only add new
2674 		 * entries to the tail of this list, and only ->poll()
2675 		 * calls can remove this head entry from the list.
2676 		 */
2677 		n = list_entry(list->next, struct napi_struct, poll_list);
2678 
2679 		have = netpoll_poll_lock(n);
2680 
2681 		weight = n->weight;
2682 
2683 		/* This NAPI_STATE_SCHED test is for avoiding a race
2684 		 * with netpoll's poll_napi().  Only the entity which
2685 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2686 		 * actually make the ->poll() call.  Therefore we avoid
2687 		 * accidently calling ->poll() when NAPI is not scheduled.
2688 		 */
2689 		work = 0;
2690 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2691 			work = n->poll(n, weight);
2692 
2693 		WARN_ON_ONCE(work > weight);
2694 
2695 		budget -= work;
2696 
2697 		local_irq_disable();
2698 
2699 		/* Drivers must not modify the NAPI state if they
2700 		 * consume the entire weight.  In such cases this code
2701 		 * still "owns" the NAPI instance and therefore can
2702 		 * move the instance around on the list at-will.
2703 		 */
2704 		if (unlikely(work == weight)) {
2705 			if (unlikely(napi_disable_pending(n)))
2706 				__napi_complete(n);
2707 			else
2708 				list_move_tail(&n->poll_list, list);
2709 		}
2710 
2711 		netpoll_poll_unlock(have);
2712 	}
2713 out:
2714 	local_irq_enable();
2715 
2716 #ifdef CONFIG_NET_DMA
2717 	/*
2718 	 * There may not be any more sk_buffs coming right now, so push
2719 	 * any pending DMA copies to hardware
2720 	 */
2721 	if (!cpus_empty(net_dma.channel_mask)) {
2722 		int chan_idx;
2723 		for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) {
2724 			struct dma_chan *chan = net_dma.channels[chan_idx];
2725 			if (chan)
2726 				dma_async_memcpy_issue_pending(chan);
2727 		}
2728 	}
2729 #endif
2730 
2731 	return;
2732 
2733 softnet_break:
2734 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2735 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2736 	goto out;
2737 }
2738 
2739 static gifconf_func_t * gifconf_list [NPROTO];
2740 
2741 /**
2742  *	register_gifconf	-	register a SIOCGIF handler
2743  *	@family: Address family
2744  *	@gifconf: Function handler
2745  *
2746  *	Register protocol dependent address dumping routines. The handler
2747  *	that is passed must not be freed or reused until it has been replaced
2748  *	by another handler.
2749  */
2750 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2751 {
2752 	if (family >= NPROTO)
2753 		return -EINVAL;
2754 	gifconf_list[family] = gifconf;
2755 	return 0;
2756 }
2757 
2758 
2759 /*
2760  *	Map an interface index to its name (SIOCGIFNAME)
2761  */
2762 
2763 /*
2764  *	We need this ioctl for efficient implementation of the
2765  *	if_indextoname() function required by the IPv6 API.  Without
2766  *	it, we would have to search all the interfaces to find a
2767  *	match.  --pb
2768  */
2769 
2770 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2771 {
2772 	struct net_device *dev;
2773 	struct ifreq ifr;
2774 
2775 	/*
2776 	 *	Fetch the caller's info block.
2777 	 */
2778 
2779 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2780 		return -EFAULT;
2781 
2782 	read_lock(&dev_base_lock);
2783 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2784 	if (!dev) {
2785 		read_unlock(&dev_base_lock);
2786 		return -ENODEV;
2787 	}
2788 
2789 	strcpy(ifr.ifr_name, dev->name);
2790 	read_unlock(&dev_base_lock);
2791 
2792 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2793 		return -EFAULT;
2794 	return 0;
2795 }
2796 
2797 /*
2798  *	Perform a SIOCGIFCONF call. This structure will change
2799  *	size eventually, and there is nothing I can do about it.
2800  *	Thus we will need a 'compatibility mode'.
2801  */
2802 
2803 static int dev_ifconf(struct net *net, char __user *arg)
2804 {
2805 	struct ifconf ifc;
2806 	struct net_device *dev;
2807 	char __user *pos;
2808 	int len;
2809 	int total;
2810 	int i;
2811 
2812 	/*
2813 	 *	Fetch the caller's info block.
2814 	 */
2815 
2816 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2817 		return -EFAULT;
2818 
2819 	pos = ifc.ifc_buf;
2820 	len = ifc.ifc_len;
2821 
2822 	/*
2823 	 *	Loop over the interfaces, and write an info block for each.
2824 	 */
2825 
2826 	total = 0;
2827 	for_each_netdev(net, dev) {
2828 		for (i = 0; i < NPROTO; i++) {
2829 			if (gifconf_list[i]) {
2830 				int done;
2831 				if (!pos)
2832 					done = gifconf_list[i](dev, NULL, 0);
2833 				else
2834 					done = gifconf_list[i](dev, pos + total,
2835 							       len - total);
2836 				if (done < 0)
2837 					return -EFAULT;
2838 				total += done;
2839 			}
2840 		}
2841 	}
2842 
2843 	/*
2844 	 *	All done.  Write the updated control block back to the caller.
2845 	 */
2846 	ifc.ifc_len = total;
2847 
2848 	/*
2849 	 * 	Both BSD and Solaris return 0 here, so we do too.
2850 	 */
2851 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2852 }
2853 
2854 #ifdef CONFIG_PROC_FS
2855 /*
2856  *	This is invoked by the /proc filesystem handler to display a device
2857  *	in detail.
2858  */
2859 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2860 	__acquires(dev_base_lock)
2861 {
2862 	struct net *net = seq_file_net(seq);
2863 	loff_t off;
2864 	struct net_device *dev;
2865 
2866 	read_lock(&dev_base_lock);
2867 	if (!*pos)
2868 		return SEQ_START_TOKEN;
2869 
2870 	off = 1;
2871 	for_each_netdev(net, dev)
2872 		if (off++ == *pos)
2873 			return dev;
2874 
2875 	return NULL;
2876 }
2877 
2878 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2879 {
2880 	struct net *net = seq_file_net(seq);
2881 	++*pos;
2882 	return v == SEQ_START_TOKEN ?
2883 		first_net_device(net) : next_net_device((struct net_device *)v);
2884 }
2885 
2886 void dev_seq_stop(struct seq_file *seq, void *v)
2887 	__releases(dev_base_lock)
2888 {
2889 	read_unlock(&dev_base_lock);
2890 }
2891 
2892 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2893 {
2894 	const struct net_device_stats *stats = dev_get_stats(dev);
2895 
2896 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2897 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2898 		   dev->name, stats->rx_bytes, stats->rx_packets,
2899 		   stats->rx_errors,
2900 		   stats->rx_dropped + stats->rx_missed_errors,
2901 		   stats->rx_fifo_errors,
2902 		   stats->rx_length_errors + stats->rx_over_errors +
2903 		    stats->rx_crc_errors + stats->rx_frame_errors,
2904 		   stats->rx_compressed, stats->multicast,
2905 		   stats->tx_bytes, stats->tx_packets,
2906 		   stats->tx_errors, stats->tx_dropped,
2907 		   stats->tx_fifo_errors, stats->collisions,
2908 		   stats->tx_carrier_errors +
2909 		    stats->tx_aborted_errors +
2910 		    stats->tx_window_errors +
2911 		    stats->tx_heartbeat_errors,
2912 		   stats->tx_compressed);
2913 }
2914 
2915 /*
2916  *	Called from the PROCfs module. This now uses the new arbitrary sized
2917  *	/proc/net interface to create /proc/net/dev
2918  */
2919 static int dev_seq_show(struct seq_file *seq, void *v)
2920 {
2921 	if (v == SEQ_START_TOKEN)
2922 		seq_puts(seq, "Inter-|   Receive                            "
2923 			      "                    |  Transmit\n"
2924 			      " face |bytes    packets errs drop fifo frame "
2925 			      "compressed multicast|bytes    packets errs "
2926 			      "drop fifo colls carrier compressed\n");
2927 	else
2928 		dev_seq_printf_stats(seq, v);
2929 	return 0;
2930 }
2931 
2932 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2933 {
2934 	struct netif_rx_stats *rc = NULL;
2935 
2936 	while (*pos < nr_cpu_ids)
2937 		if (cpu_online(*pos)) {
2938 			rc = &per_cpu(netdev_rx_stat, *pos);
2939 			break;
2940 		} else
2941 			++*pos;
2942 	return rc;
2943 }
2944 
2945 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2946 {
2947 	return softnet_get_online(pos);
2948 }
2949 
2950 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2951 {
2952 	++*pos;
2953 	return softnet_get_online(pos);
2954 }
2955 
2956 static void softnet_seq_stop(struct seq_file *seq, void *v)
2957 {
2958 }
2959 
2960 static int softnet_seq_show(struct seq_file *seq, void *v)
2961 {
2962 	struct netif_rx_stats *s = v;
2963 
2964 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2965 		   s->total, s->dropped, s->time_squeeze, 0,
2966 		   0, 0, 0, 0, /* was fastroute */
2967 		   s->cpu_collision );
2968 	return 0;
2969 }
2970 
2971 static const struct seq_operations dev_seq_ops = {
2972 	.start = dev_seq_start,
2973 	.next  = dev_seq_next,
2974 	.stop  = dev_seq_stop,
2975 	.show  = dev_seq_show,
2976 };
2977 
2978 static int dev_seq_open(struct inode *inode, struct file *file)
2979 {
2980 	return seq_open_net(inode, file, &dev_seq_ops,
2981 			    sizeof(struct seq_net_private));
2982 }
2983 
2984 static const struct file_operations dev_seq_fops = {
2985 	.owner	 = THIS_MODULE,
2986 	.open    = dev_seq_open,
2987 	.read    = seq_read,
2988 	.llseek  = seq_lseek,
2989 	.release = seq_release_net,
2990 };
2991 
2992 static const struct seq_operations softnet_seq_ops = {
2993 	.start = softnet_seq_start,
2994 	.next  = softnet_seq_next,
2995 	.stop  = softnet_seq_stop,
2996 	.show  = softnet_seq_show,
2997 };
2998 
2999 static int softnet_seq_open(struct inode *inode, struct file *file)
3000 {
3001 	return seq_open(file, &softnet_seq_ops);
3002 }
3003 
3004 static const struct file_operations softnet_seq_fops = {
3005 	.owner	 = THIS_MODULE,
3006 	.open    = softnet_seq_open,
3007 	.read    = seq_read,
3008 	.llseek  = seq_lseek,
3009 	.release = seq_release,
3010 };
3011 
3012 static void *ptype_get_idx(loff_t pos)
3013 {
3014 	struct packet_type *pt = NULL;
3015 	loff_t i = 0;
3016 	int t;
3017 
3018 	list_for_each_entry_rcu(pt, &ptype_all, list) {
3019 		if (i == pos)
3020 			return pt;
3021 		++i;
3022 	}
3023 
3024 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3025 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3026 			if (i == pos)
3027 				return pt;
3028 			++i;
3029 		}
3030 	}
3031 	return NULL;
3032 }
3033 
3034 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3035 	__acquires(RCU)
3036 {
3037 	rcu_read_lock();
3038 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3039 }
3040 
3041 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3042 {
3043 	struct packet_type *pt;
3044 	struct list_head *nxt;
3045 	int hash;
3046 
3047 	++*pos;
3048 	if (v == SEQ_START_TOKEN)
3049 		return ptype_get_idx(0);
3050 
3051 	pt = v;
3052 	nxt = pt->list.next;
3053 	if (pt->type == htons(ETH_P_ALL)) {
3054 		if (nxt != &ptype_all)
3055 			goto found;
3056 		hash = 0;
3057 		nxt = ptype_base[0].next;
3058 	} else
3059 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3060 
3061 	while (nxt == &ptype_base[hash]) {
3062 		if (++hash >= PTYPE_HASH_SIZE)
3063 			return NULL;
3064 		nxt = ptype_base[hash].next;
3065 	}
3066 found:
3067 	return list_entry(nxt, struct packet_type, list);
3068 }
3069 
3070 static void ptype_seq_stop(struct seq_file *seq, void *v)
3071 	__releases(RCU)
3072 {
3073 	rcu_read_unlock();
3074 }
3075 
3076 static int ptype_seq_show(struct seq_file *seq, void *v)
3077 {
3078 	struct packet_type *pt = v;
3079 
3080 	if (v == SEQ_START_TOKEN)
3081 		seq_puts(seq, "Type Device      Function\n");
3082 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3083 		if (pt->type == htons(ETH_P_ALL))
3084 			seq_puts(seq, "ALL ");
3085 		else
3086 			seq_printf(seq, "%04x", ntohs(pt->type));
3087 
3088 		seq_printf(seq, " %-8s %pF\n",
3089 			   pt->dev ? pt->dev->name : "", pt->func);
3090 	}
3091 
3092 	return 0;
3093 }
3094 
3095 static const struct seq_operations ptype_seq_ops = {
3096 	.start = ptype_seq_start,
3097 	.next  = ptype_seq_next,
3098 	.stop  = ptype_seq_stop,
3099 	.show  = ptype_seq_show,
3100 };
3101 
3102 static int ptype_seq_open(struct inode *inode, struct file *file)
3103 {
3104 	return seq_open_net(inode, file, &ptype_seq_ops,
3105 			sizeof(struct seq_net_private));
3106 }
3107 
3108 static const struct file_operations ptype_seq_fops = {
3109 	.owner	 = THIS_MODULE,
3110 	.open    = ptype_seq_open,
3111 	.read    = seq_read,
3112 	.llseek  = seq_lseek,
3113 	.release = seq_release_net,
3114 };
3115 
3116 
3117 static int __net_init dev_proc_net_init(struct net *net)
3118 {
3119 	int rc = -ENOMEM;
3120 
3121 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3122 		goto out;
3123 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3124 		goto out_dev;
3125 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3126 		goto out_softnet;
3127 
3128 	if (wext_proc_init(net))
3129 		goto out_ptype;
3130 	rc = 0;
3131 out:
3132 	return rc;
3133 out_ptype:
3134 	proc_net_remove(net, "ptype");
3135 out_softnet:
3136 	proc_net_remove(net, "softnet_stat");
3137 out_dev:
3138 	proc_net_remove(net, "dev");
3139 	goto out;
3140 }
3141 
3142 static void __net_exit dev_proc_net_exit(struct net *net)
3143 {
3144 	wext_proc_exit(net);
3145 
3146 	proc_net_remove(net, "ptype");
3147 	proc_net_remove(net, "softnet_stat");
3148 	proc_net_remove(net, "dev");
3149 }
3150 
3151 static struct pernet_operations __net_initdata dev_proc_ops = {
3152 	.init = dev_proc_net_init,
3153 	.exit = dev_proc_net_exit,
3154 };
3155 
3156 static int __init dev_proc_init(void)
3157 {
3158 	return register_pernet_subsys(&dev_proc_ops);
3159 }
3160 #else
3161 #define dev_proc_init() 0
3162 #endif	/* CONFIG_PROC_FS */
3163 
3164 
3165 /**
3166  *	netdev_set_master	-	set up master/slave pair
3167  *	@slave: slave device
3168  *	@master: new master device
3169  *
3170  *	Changes the master device of the slave. Pass %NULL to break the
3171  *	bonding. The caller must hold the RTNL semaphore. On a failure
3172  *	a negative errno code is returned. On success the reference counts
3173  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3174  *	function returns zero.
3175  */
3176 int netdev_set_master(struct net_device *slave, struct net_device *master)
3177 {
3178 	struct net_device *old = slave->master;
3179 
3180 	ASSERT_RTNL();
3181 
3182 	if (master) {
3183 		if (old)
3184 			return -EBUSY;
3185 		dev_hold(master);
3186 	}
3187 
3188 	slave->master = master;
3189 
3190 	synchronize_net();
3191 
3192 	if (old)
3193 		dev_put(old);
3194 
3195 	if (master)
3196 		slave->flags |= IFF_SLAVE;
3197 	else
3198 		slave->flags &= ~IFF_SLAVE;
3199 
3200 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3201 	return 0;
3202 }
3203 
3204 static void dev_change_rx_flags(struct net_device *dev, int flags)
3205 {
3206 	const struct net_device_ops *ops = dev->netdev_ops;
3207 
3208 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3209 		ops->ndo_change_rx_flags(dev, flags);
3210 }
3211 
3212 static int __dev_set_promiscuity(struct net_device *dev, int inc)
3213 {
3214 	unsigned short old_flags = dev->flags;
3215 	uid_t uid;
3216 	gid_t gid;
3217 
3218 	ASSERT_RTNL();
3219 
3220 	dev->flags |= IFF_PROMISC;
3221 	dev->promiscuity += inc;
3222 	if (dev->promiscuity == 0) {
3223 		/*
3224 		 * Avoid overflow.
3225 		 * If inc causes overflow, untouch promisc and return error.
3226 		 */
3227 		if (inc < 0)
3228 			dev->flags &= ~IFF_PROMISC;
3229 		else {
3230 			dev->promiscuity -= inc;
3231 			printk(KERN_WARNING "%s: promiscuity touches roof, "
3232 				"set promiscuity failed, promiscuity feature "
3233 				"of device might be broken.\n", dev->name);
3234 			return -EOVERFLOW;
3235 		}
3236 	}
3237 	if (dev->flags != old_flags) {
3238 		printk(KERN_INFO "device %s %s promiscuous mode\n",
3239 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
3240 							       "left");
3241 		if (audit_enabled) {
3242 			current_uid_gid(&uid, &gid);
3243 			audit_log(current->audit_context, GFP_ATOMIC,
3244 				AUDIT_ANOM_PROMISCUOUS,
3245 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3246 				dev->name, (dev->flags & IFF_PROMISC),
3247 				(old_flags & IFF_PROMISC),
3248 				audit_get_loginuid(current),
3249 				uid, gid,
3250 				audit_get_sessionid(current));
3251 		}
3252 
3253 		dev_change_rx_flags(dev, IFF_PROMISC);
3254 	}
3255 	return 0;
3256 }
3257 
3258 /**
3259  *	dev_set_promiscuity	- update promiscuity count on a device
3260  *	@dev: device
3261  *	@inc: modifier
3262  *
3263  *	Add or remove promiscuity from a device. While the count in the device
3264  *	remains above zero the interface remains promiscuous. Once it hits zero
3265  *	the device reverts back to normal filtering operation. A negative inc
3266  *	value is used to drop promiscuity on the device.
3267  *	Return 0 if successful or a negative errno code on error.
3268  */
3269 int dev_set_promiscuity(struct net_device *dev, int inc)
3270 {
3271 	unsigned short old_flags = dev->flags;
3272 	int err;
3273 
3274 	err = __dev_set_promiscuity(dev, inc);
3275 	if (err < 0)
3276 		return err;
3277 	if (dev->flags != old_flags)
3278 		dev_set_rx_mode(dev);
3279 	return err;
3280 }
3281 
3282 /**
3283  *	dev_set_allmulti	- update allmulti count on a device
3284  *	@dev: device
3285  *	@inc: modifier
3286  *
3287  *	Add or remove reception of all multicast frames to a device. While the
3288  *	count in the device remains above zero the interface remains listening
3289  *	to all interfaces. Once it hits zero the device reverts back to normal
3290  *	filtering operation. A negative @inc value is used to drop the counter
3291  *	when releasing a resource needing all multicasts.
3292  *	Return 0 if successful or a negative errno code on error.
3293  */
3294 
3295 int dev_set_allmulti(struct net_device *dev, int inc)
3296 {
3297 	unsigned short old_flags = dev->flags;
3298 
3299 	ASSERT_RTNL();
3300 
3301 	dev->flags |= IFF_ALLMULTI;
3302 	dev->allmulti += inc;
3303 	if (dev->allmulti == 0) {
3304 		/*
3305 		 * Avoid overflow.
3306 		 * If inc causes overflow, untouch allmulti and return error.
3307 		 */
3308 		if (inc < 0)
3309 			dev->flags &= ~IFF_ALLMULTI;
3310 		else {
3311 			dev->allmulti -= inc;
3312 			printk(KERN_WARNING "%s: allmulti touches roof, "
3313 				"set allmulti failed, allmulti feature of "
3314 				"device might be broken.\n", dev->name);
3315 			return -EOVERFLOW;
3316 		}
3317 	}
3318 	if (dev->flags ^ old_flags) {
3319 		dev_change_rx_flags(dev, IFF_ALLMULTI);
3320 		dev_set_rx_mode(dev);
3321 	}
3322 	return 0;
3323 }
3324 
3325 /*
3326  *	Upload unicast and multicast address lists to device and
3327  *	configure RX filtering. When the device doesn't support unicast
3328  *	filtering it is put in promiscuous mode while unicast addresses
3329  *	are present.
3330  */
3331 void __dev_set_rx_mode(struct net_device *dev)
3332 {
3333 	const struct net_device_ops *ops = dev->netdev_ops;
3334 
3335 	/* dev_open will call this function so the list will stay sane. */
3336 	if (!(dev->flags&IFF_UP))
3337 		return;
3338 
3339 	if (!netif_device_present(dev))
3340 		return;
3341 
3342 	if (ops->ndo_set_rx_mode)
3343 		ops->ndo_set_rx_mode(dev);
3344 	else {
3345 		/* Unicast addresses changes may only happen under the rtnl,
3346 		 * therefore calling __dev_set_promiscuity here is safe.
3347 		 */
3348 		if (dev->uc_count > 0 && !dev->uc_promisc) {
3349 			__dev_set_promiscuity(dev, 1);
3350 			dev->uc_promisc = 1;
3351 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
3352 			__dev_set_promiscuity(dev, -1);
3353 			dev->uc_promisc = 0;
3354 		}
3355 
3356 		if (ops->ndo_set_multicast_list)
3357 			ops->ndo_set_multicast_list(dev);
3358 	}
3359 }
3360 
3361 void dev_set_rx_mode(struct net_device *dev)
3362 {
3363 	netif_addr_lock_bh(dev);
3364 	__dev_set_rx_mode(dev);
3365 	netif_addr_unlock_bh(dev);
3366 }
3367 
3368 int __dev_addr_delete(struct dev_addr_list **list, int *count,
3369 		      void *addr, int alen, int glbl)
3370 {
3371 	struct dev_addr_list *da;
3372 
3373 	for (; (da = *list) != NULL; list = &da->next) {
3374 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3375 		    alen == da->da_addrlen) {
3376 			if (glbl) {
3377 				int old_glbl = da->da_gusers;
3378 				da->da_gusers = 0;
3379 				if (old_glbl == 0)
3380 					break;
3381 			}
3382 			if (--da->da_users)
3383 				return 0;
3384 
3385 			*list = da->next;
3386 			kfree(da);
3387 			(*count)--;
3388 			return 0;
3389 		}
3390 	}
3391 	return -ENOENT;
3392 }
3393 
3394 int __dev_addr_add(struct dev_addr_list **list, int *count,
3395 		   void *addr, int alen, int glbl)
3396 {
3397 	struct dev_addr_list *da;
3398 
3399 	for (da = *list; da != NULL; da = da->next) {
3400 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3401 		    da->da_addrlen == alen) {
3402 			if (glbl) {
3403 				int old_glbl = da->da_gusers;
3404 				da->da_gusers = 1;
3405 				if (old_glbl)
3406 					return 0;
3407 			}
3408 			da->da_users++;
3409 			return 0;
3410 		}
3411 	}
3412 
3413 	da = kzalloc(sizeof(*da), GFP_ATOMIC);
3414 	if (da == NULL)
3415 		return -ENOMEM;
3416 	memcpy(da->da_addr, addr, alen);
3417 	da->da_addrlen = alen;
3418 	da->da_users = 1;
3419 	da->da_gusers = glbl ? 1 : 0;
3420 	da->next = *list;
3421 	*list = da;
3422 	(*count)++;
3423 	return 0;
3424 }
3425 
3426 /**
3427  *	dev_unicast_delete	- Release secondary unicast address.
3428  *	@dev: device
3429  *	@addr: address to delete
3430  *	@alen: length of @addr
3431  *
3432  *	Release reference to a secondary unicast address and remove it
3433  *	from the device if the reference count drops to zero.
3434  *
3435  * 	The caller must hold the rtnl_mutex.
3436  */
3437 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3438 {
3439 	int err;
3440 
3441 	ASSERT_RTNL();
3442 
3443 	netif_addr_lock_bh(dev);
3444 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3445 	if (!err)
3446 		__dev_set_rx_mode(dev);
3447 	netif_addr_unlock_bh(dev);
3448 	return err;
3449 }
3450 EXPORT_SYMBOL(dev_unicast_delete);
3451 
3452 /**
3453  *	dev_unicast_add		- add a secondary unicast address
3454  *	@dev: device
3455  *	@addr: address to add
3456  *	@alen: length of @addr
3457  *
3458  *	Add a secondary unicast address to the device or increase
3459  *	the reference count if it already exists.
3460  *
3461  *	The caller must hold the rtnl_mutex.
3462  */
3463 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3464 {
3465 	int err;
3466 
3467 	ASSERT_RTNL();
3468 
3469 	netif_addr_lock_bh(dev);
3470 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3471 	if (!err)
3472 		__dev_set_rx_mode(dev);
3473 	netif_addr_unlock_bh(dev);
3474 	return err;
3475 }
3476 EXPORT_SYMBOL(dev_unicast_add);
3477 
3478 int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3479 		    struct dev_addr_list **from, int *from_count)
3480 {
3481 	struct dev_addr_list *da, *next;
3482 	int err = 0;
3483 
3484 	da = *from;
3485 	while (da != NULL) {
3486 		next = da->next;
3487 		if (!da->da_synced) {
3488 			err = __dev_addr_add(to, to_count,
3489 					     da->da_addr, da->da_addrlen, 0);
3490 			if (err < 0)
3491 				break;
3492 			da->da_synced = 1;
3493 			da->da_users++;
3494 		} else if (da->da_users == 1) {
3495 			__dev_addr_delete(to, to_count,
3496 					  da->da_addr, da->da_addrlen, 0);
3497 			__dev_addr_delete(from, from_count,
3498 					  da->da_addr, da->da_addrlen, 0);
3499 		}
3500 		da = next;
3501 	}
3502 	return err;
3503 }
3504 
3505 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3506 		       struct dev_addr_list **from, int *from_count)
3507 {
3508 	struct dev_addr_list *da, *next;
3509 
3510 	da = *from;
3511 	while (da != NULL) {
3512 		next = da->next;
3513 		if (da->da_synced) {
3514 			__dev_addr_delete(to, to_count,
3515 					  da->da_addr, da->da_addrlen, 0);
3516 			da->da_synced = 0;
3517 			__dev_addr_delete(from, from_count,
3518 					  da->da_addr, da->da_addrlen, 0);
3519 		}
3520 		da = next;
3521 	}
3522 }
3523 
3524 /**
3525  *	dev_unicast_sync - Synchronize device's unicast list to another device
3526  *	@to: destination device
3527  *	@from: source device
3528  *
3529  *	Add newly added addresses to the destination device and release
3530  *	addresses that have no users left. The source device must be
3531  *	locked by netif_tx_lock_bh.
3532  *
3533  *	This function is intended to be called from the dev->set_rx_mode
3534  *	function of layered software devices.
3535  */
3536 int dev_unicast_sync(struct net_device *to, struct net_device *from)
3537 {
3538 	int err = 0;
3539 
3540 	netif_addr_lock_bh(to);
3541 	err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3542 			      &from->uc_list, &from->uc_count);
3543 	if (!err)
3544 		__dev_set_rx_mode(to);
3545 	netif_addr_unlock_bh(to);
3546 	return err;
3547 }
3548 EXPORT_SYMBOL(dev_unicast_sync);
3549 
3550 /**
3551  *	dev_unicast_unsync - Remove synchronized addresses from the destination device
3552  *	@to: destination device
3553  *	@from: source device
3554  *
3555  *	Remove all addresses that were added to the destination device by
3556  *	dev_unicast_sync(). This function is intended to be called from the
3557  *	dev->stop function of layered software devices.
3558  */
3559 void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3560 {
3561 	netif_addr_lock_bh(from);
3562 	netif_addr_lock(to);
3563 
3564 	__dev_addr_unsync(&to->uc_list, &to->uc_count,
3565 			  &from->uc_list, &from->uc_count);
3566 	__dev_set_rx_mode(to);
3567 
3568 	netif_addr_unlock(to);
3569 	netif_addr_unlock_bh(from);
3570 }
3571 EXPORT_SYMBOL(dev_unicast_unsync);
3572 
3573 static void __dev_addr_discard(struct dev_addr_list **list)
3574 {
3575 	struct dev_addr_list *tmp;
3576 
3577 	while (*list != NULL) {
3578 		tmp = *list;
3579 		*list = tmp->next;
3580 		if (tmp->da_users > tmp->da_gusers)
3581 			printk("__dev_addr_discard: address leakage! "
3582 			       "da_users=%d\n", tmp->da_users);
3583 		kfree(tmp);
3584 	}
3585 }
3586 
3587 static void dev_addr_discard(struct net_device *dev)
3588 {
3589 	netif_addr_lock_bh(dev);
3590 
3591 	__dev_addr_discard(&dev->uc_list);
3592 	dev->uc_count = 0;
3593 
3594 	__dev_addr_discard(&dev->mc_list);
3595 	dev->mc_count = 0;
3596 
3597 	netif_addr_unlock_bh(dev);
3598 }
3599 
3600 /**
3601  *	dev_get_flags - get flags reported to userspace
3602  *	@dev: device
3603  *
3604  *	Get the combination of flag bits exported through APIs to userspace.
3605  */
3606 unsigned dev_get_flags(const struct net_device *dev)
3607 {
3608 	unsigned flags;
3609 
3610 	flags = (dev->flags & ~(IFF_PROMISC |
3611 				IFF_ALLMULTI |
3612 				IFF_RUNNING |
3613 				IFF_LOWER_UP |
3614 				IFF_DORMANT)) |
3615 		(dev->gflags & (IFF_PROMISC |
3616 				IFF_ALLMULTI));
3617 
3618 	if (netif_running(dev)) {
3619 		if (netif_oper_up(dev))
3620 			flags |= IFF_RUNNING;
3621 		if (netif_carrier_ok(dev))
3622 			flags |= IFF_LOWER_UP;
3623 		if (netif_dormant(dev))
3624 			flags |= IFF_DORMANT;
3625 	}
3626 
3627 	return flags;
3628 }
3629 
3630 /**
3631  *	dev_change_flags - change device settings
3632  *	@dev: device
3633  *	@flags: device state flags
3634  *
3635  *	Change settings on device based state flags. The flags are
3636  *	in the userspace exported format.
3637  */
3638 int dev_change_flags(struct net_device *dev, unsigned flags)
3639 {
3640 	int ret, changes;
3641 	int old_flags = dev->flags;
3642 
3643 	ASSERT_RTNL();
3644 
3645 	/*
3646 	 *	Set the flags on our device.
3647 	 */
3648 
3649 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3650 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3651 			       IFF_AUTOMEDIA)) |
3652 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3653 				    IFF_ALLMULTI));
3654 
3655 	/*
3656 	 *	Load in the correct multicast list now the flags have changed.
3657 	 */
3658 
3659 	if ((old_flags ^ flags) & IFF_MULTICAST)
3660 		dev_change_rx_flags(dev, IFF_MULTICAST);
3661 
3662 	dev_set_rx_mode(dev);
3663 
3664 	/*
3665 	 *	Have we downed the interface. We handle IFF_UP ourselves
3666 	 *	according to user attempts to set it, rather than blindly
3667 	 *	setting it.
3668 	 */
3669 
3670 	ret = 0;
3671 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3672 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3673 
3674 		if (!ret)
3675 			dev_set_rx_mode(dev);
3676 	}
3677 
3678 	if (dev->flags & IFF_UP &&
3679 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3680 					  IFF_VOLATILE)))
3681 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3682 
3683 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3684 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3685 		dev->gflags ^= IFF_PROMISC;
3686 		dev_set_promiscuity(dev, inc);
3687 	}
3688 
3689 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3690 	   is important. Some (broken) drivers set IFF_PROMISC, when
3691 	   IFF_ALLMULTI is requested not asking us and not reporting.
3692 	 */
3693 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3694 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3695 		dev->gflags ^= IFF_ALLMULTI;
3696 		dev_set_allmulti(dev, inc);
3697 	}
3698 
3699 	/* Exclude state transition flags, already notified */
3700 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3701 	if (changes)
3702 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3703 
3704 	return ret;
3705 }
3706 
3707 /**
3708  *	dev_set_mtu - Change maximum transfer unit
3709  *	@dev: device
3710  *	@new_mtu: new transfer unit
3711  *
3712  *	Change the maximum transfer size of the network device.
3713  */
3714 int dev_set_mtu(struct net_device *dev, int new_mtu)
3715 {
3716 	const struct net_device_ops *ops = dev->netdev_ops;
3717 	int err;
3718 
3719 	if (new_mtu == dev->mtu)
3720 		return 0;
3721 
3722 	/*	MTU must be positive.	 */
3723 	if (new_mtu < 0)
3724 		return -EINVAL;
3725 
3726 	if (!netif_device_present(dev))
3727 		return -ENODEV;
3728 
3729 	err = 0;
3730 	if (ops->ndo_change_mtu)
3731 		err = ops->ndo_change_mtu(dev, new_mtu);
3732 	else
3733 		dev->mtu = new_mtu;
3734 
3735 	if (!err && dev->flags & IFF_UP)
3736 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3737 	return err;
3738 }
3739 
3740 /**
3741  *	dev_set_mac_address - Change Media Access Control Address
3742  *	@dev: device
3743  *	@sa: new address
3744  *
3745  *	Change the hardware (MAC) address of the device
3746  */
3747 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3748 {
3749 	const struct net_device_ops *ops = dev->netdev_ops;
3750 	int err;
3751 
3752 	if (!ops->ndo_set_mac_address)
3753 		return -EOPNOTSUPP;
3754 	if (sa->sa_family != dev->type)
3755 		return -EINVAL;
3756 	if (!netif_device_present(dev))
3757 		return -ENODEV;
3758 	err = ops->ndo_set_mac_address(dev, sa);
3759 	if (!err)
3760 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3761 	return err;
3762 }
3763 
3764 /*
3765  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3766  */
3767 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3768 {
3769 	int err;
3770 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3771 
3772 	if (!dev)
3773 		return -ENODEV;
3774 
3775 	switch (cmd) {
3776 		case SIOCGIFFLAGS:	/* Get interface flags */
3777 			ifr->ifr_flags = dev_get_flags(dev);
3778 			return 0;
3779 
3780 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3781 					   (currently unused) */
3782 			ifr->ifr_metric = 0;
3783 			return 0;
3784 
3785 		case SIOCGIFMTU:	/* Get the MTU of a device */
3786 			ifr->ifr_mtu = dev->mtu;
3787 			return 0;
3788 
3789 		case SIOCGIFHWADDR:
3790 			if (!dev->addr_len)
3791 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3792 			else
3793 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3794 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3795 			ifr->ifr_hwaddr.sa_family = dev->type;
3796 			return 0;
3797 
3798 		case SIOCGIFSLAVE:
3799 			err = -EINVAL;
3800 			break;
3801 
3802 		case SIOCGIFMAP:
3803 			ifr->ifr_map.mem_start = dev->mem_start;
3804 			ifr->ifr_map.mem_end   = dev->mem_end;
3805 			ifr->ifr_map.base_addr = dev->base_addr;
3806 			ifr->ifr_map.irq       = dev->irq;
3807 			ifr->ifr_map.dma       = dev->dma;
3808 			ifr->ifr_map.port      = dev->if_port;
3809 			return 0;
3810 
3811 		case SIOCGIFINDEX:
3812 			ifr->ifr_ifindex = dev->ifindex;
3813 			return 0;
3814 
3815 		case SIOCGIFTXQLEN:
3816 			ifr->ifr_qlen = dev->tx_queue_len;
3817 			return 0;
3818 
3819 		default:
3820 			/* dev_ioctl() should ensure this case
3821 			 * is never reached
3822 			 */
3823 			WARN_ON(1);
3824 			err = -EINVAL;
3825 			break;
3826 
3827 	}
3828 	return err;
3829 }
3830 
3831 /*
3832  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3833  */
3834 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3835 {
3836 	int err;
3837 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3838 	const struct net_device_ops *ops;
3839 
3840 	if (!dev)
3841 		return -ENODEV;
3842 
3843 	ops = dev->netdev_ops;
3844 
3845 	switch (cmd) {
3846 		case SIOCSIFFLAGS:	/* Set interface flags */
3847 			return dev_change_flags(dev, ifr->ifr_flags);
3848 
3849 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3850 					   (currently unused) */
3851 			return -EOPNOTSUPP;
3852 
3853 		case SIOCSIFMTU:	/* Set the MTU of a device */
3854 			return dev_set_mtu(dev, ifr->ifr_mtu);
3855 
3856 		case SIOCSIFHWADDR:
3857 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3858 
3859 		case SIOCSIFHWBROADCAST:
3860 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3861 				return -EINVAL;
3862 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3863 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3864 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3865 			return 0;
3866 
3867 		case SIOCSIFMAP:
3868 			if (ops->ndo_set_config) {
3869 				if (!netif_device_present(dev))
3870 					return -ENODEV;
3871 				return ops->ndo_set_config(dev, &ifr->ifr_map);
3872 			}
3873 			return -EOPNOTSUPP;
3874 
3875 		case SIOCADDMULTI:
3876 			if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3877 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3878 				return -EINVAL;
3879 			if (!netif_device_present(dev))
3880 				return -ENODEV;
3881 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3882 					  dev->addr_len, 1);
3883 
3884 		case SIOCDELMULTI:
3885 			if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
3886 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3887 				return -EINVAL;
3888 			if (!netif_device_present(dev))
3889 				return -ENODEV;
3890 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3891 					     dev->addr_len, 1);
3892 
3893 		case SIOCSIFTXQLEN:
3894 			if (ifr->ifr_qlen < 0)
3895 				return -EINVAL;
3896 			dev->tx_queue_len = ifr->ifr_qlen;
3897 			return 0;
3898 
3899 		case SIOCSIFNAME:
3900 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3901 			return dev_change_name(dev, ifr->ifr_newname);
3902 
3903 		/*
3904 		 *	Unknown or private ioctl
3905 		 */
3906 
3907 		default:
3908 			if ((cmd >= SIOCDEVPRIVATE &&
3909 			    cmd <= SIOCDEVPRIVATE + 15) ||
3910 			    cmd == SIOCBONDENSLAVE ||
3911 			    cmd == SIOCBONDRELEASE ||
3912 			    cmd == SIOCBONDSETHWADDR ||
3913 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3914 			    cmd == SIOCBONDINFOQUERY ||
3915 			    cmd == SIOCBONDCHANGEACTIVE ||
3916 			    cmd == SIOCGMIIPHY ||
3917 			    cmd == SIOCGMIIREG ||
3918 			    cmd == SIOCSMIIREG ||
3919 			    cmd == SIOCBRADDIF ||
3920 			    cmd == SIOCBRDELIF ||
3921 			    cmd == SIOCWANDEV) {
3922 				err = -EOPNOTSUPP;
3923 				if (ops->ndo_do_ioctl) {
3924 					if (netif_device_present(dev))
3925 						err = ops->ndo_do_ioctl(dev, ifr, cmd);
3926 					else
3927 						err = -ENODEV;
3928 				}
3929 			} else
3930 				err = -EINVAL;
3931 
3932 	}
3933 	return err;
3934 }
3935 
3936 /*
3937  *	This function handles all "interface"-type I/O control requests. The actual
3938  *	'doing' part of this is dev_ifsioc above.
3939  */
3940 
3941 /**
3942  *	dev_ioctl	-	network device ioctl
3943  *	@net: the applicable net namespace
3944  *	@cmd: command to issue
3945  *	@arg: pointer to a struct ifreq in user space
3946  *
3947  *	Issue ioctl functions to devices. This is normally called by the
3948  *	user space syscall interfaces but can sometimes be useful for
3949  *	other purposes. The return value is the return from the syscall if
3950  *	positive or a negative errno code on error.
3951  */
3952 
3953 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3954 {
3955 	struct ifreq ifr;
3956 	int ret;
3957 	char *colon;
3958 
3959 	/* One special case: SIOCGIFCONF takes ifconf argument
3960 	   and requires shared lock, because it sleeps writing
3961 	   to user space.
3962 	 */
3963 
3964 	if (cmd == SIOCGIFCONF) {
3965 		rtnl_lock();
3966 		ret = dev_ifconf(net, (char __user *) arg);
3967 		rtnl_unlock();
3968 		return ret;
3969 	}
3970 	if (cmd == SIOCGIFNAME)
3971 		return dev_ifname(net, (struct ifreq __user *)arg);
3972 
3973 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3974 		return -EFAULT;
3975 
3976 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3977 
3978 	colon = strchr(ifr.ifr_name, ':');
3979 	if (colon)
3980 		*colon = 0;
3981 
3982 	/*
3983 	 *	See which interface the caller is talking about.
3984 	 */
3985 
3986 	switch (cmd) {
3987 		/*
3988 		 *	These ioctl calls:
3989 		 *	- can be done by all.
3990 		 *	- atomic and do not require locking.
3991 		 *	- return a value
3992 		 */
3993 		case SIOCGIFFLAGS:
3994 		case SIOCGIFMETRIC:
3995 		case SIOCGIFMTU:
3996 		case SIOCGIFHWADDR:
3997 		case SIOCGIFSLAVE:
3998 		case SIOCGIFMAP:
3999 		case SIOCGIFINDEX:
4000 		case SIOCGIFTXQLEN:
4001 			dev_load(net, ifr.ifr_name);
4002 			read_lock(&dev_base_lock);
4003 			ret = dev_ifsioc_locked(net, &ifr, cmd);
4004 			read_unlock(&dev_base_lock);
4005 			if (!ret) {
4006 				if (colon)
4007 					*colon = ':';
4008 				if (copy_to_user(arg, &ifr,
4009 						 sizeof(struct ifreq)))
4010 					ret = -EFAULT;
4011 			}
4012 			return ret;
4013 
4014 		case SIOCETHTOOL:
4015 			dev_load(net, ifr.ifr_name);
4016 			rtnl_lock();
4017 			ret = dev_ethtool(net, &ifr);
4018 			rtnl_unlock();
4019 			if (!ret) {
4020 				if (colon)
4021 					*colon = ':';
4022 				if (copy_to_user(arg, &ifr,
4023 						 sizeof(struct ifreq)))
4024 					ret = -EFAULT;
4025 			}
4026 			return ret;
4027 
4028 		/*
4029 		 *	These ioctl calls:
4030 		 *	- require superuser power.
4031 		 *	- require strict serialization.
4032 		 *	- return a value
4033 		 */
4034 		case SIOCGMIIPHY:
4035 		case SIOCGMIIREG:
4036 		case SIOCSIFNAME:
4037 			if (!capable(CAP_NET_ADMIN))
4038 				return -EPERM;
4039 			dev_load(net, ifr.ifr_name);
4040 			rtnl_lock();
4041 			ret = dev_ifsioc(net, &ifr, cmd);
4042 			rtnl_unlock();
4043 			if (!ret) {
4044 				if (colon)
4045 					*colon = ':';
4046 				if (copy_to_user(arg, &ifr,
4047 						 sizeof(struct ifreq)))
4048 					ret = -EFAULT;
4049 			}
4050 			return ret;
4051 
4052 		/*
4053 		 *	These ioctl calls:
4054 		 *	- require superuser power.
4055 		 *	- require strict serialization.
4056 		 *	- do not return a value
4057 		 */
4058 		case SIOCSIFFLAGS:
4059 		case SIOCSIFMETRIC:
4060 		case SIOCSIFMTU:
4061 		case SIOCSIFMAP:
4062 		case SIOCSIFHWADDR:
4063 		case SIOCSIFSLAVE:
4064 		case SIOCADDMULTI:
4065 		case SIOCDELMULTI:
4066 		case SIOCSIFHWBROADCAST:
4067 		case SIOCSIFTXQLEN:
4068 		case SIOCSMIIREG:
4069 		case SIOCBONDENSLAVE:
4070 		case SIOCBONDRELEASE:
4071 		case SIOCBONDSETHWADDR:
4072 		case SIOCBONDCHANGEACTIVE:
4073 		case SIOCBRADDIF:
4074 		case SIOCBRDELIF:
4075 			if (!capable(CAP_NET_ADMIN))
4076 				return -EPERM;
4077 			/* fall through */
4078 		case SIOCBONDSLAVEINFOQUERY:
4079 		case SIOCBONDINFOQUERY:
4080 			dev_load(net, ifr.ifr_name);
4081 			rtnl_lock();
4082 			ret = dev_ifsioc(net, &ifr, cmd);
4083 			rtnl_unlock();
4084 			return ret;
4085 
4086 		case SIOCGIFMEM:
4087 			/* Get the per device memory space. We can add this but
4088 			 * currently do not support it */
4089 		case SIOCSIFMEM:
4090 			/* Set the per device memory buffer space.
4091 			 * Not applicable in our case */
4092 		case SIOCSIFLINK:
4093 			return -EINVAL;
4094 
4095 		/*
4096 		 *	Unknown or private ioctl.
4097 		 */
4098 		default:
4099 			if (cmd == SIOCWANDEV ||
4100 			    (cmd >= SIOCDEVPRIVATE &&
4101 			     cmd <= SIOCDEVPRIVATE + 15)) {
4102 				dev_load(net, ifr.ifr_name);
4103 				rtnl_lock();
4104 				ret = dev_ifsioc(net, &ifr, cmd);
4105 				rtnl_unlock();
4106 				if (!ret && copy_to_user(arg, &ifr,
4107 							 sizeof(struct ifreq)))
4108 					ret = -EFAULT;
4109 				return ret;
4110 			}
4111 			/* Take care of Wireless Extensions */
4112 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4113 				return wext_handle_ioctl(net, &ifr, cmd, arg);
4114 			return -EINVAL;
4115 	}
4116 }
4117 
4118 
4119 /**
4120  *	dev_new_index	-	allocate an ifindex
4121  *	@net: the applicable net namespace
4122  *
4123  *	Returns a suitable unique value for a new device interface
4124  *	number.  The caller must hold the rtnl semaphore or the
4125  *	dev_base_lock to be sure it remains unique.
4126  */
4127 static int dev_new_index(struct net *net)
4128 {
4129 	static int ifindex;
4130 	for (;;) {
4131 		if (++ifindex <= 0)
4132 			ifindex = 1;
4133 		if (!__dev_get_by_index(net, ifindex))
4134 			return ifindex;
4135 	}
4136 }
4137 
4138 /* Delayed registration/unregisteration */
4139 static LIST_HEAD(net_todo_list);
4140 
4141 static void net_set_todo(struct net_device *dev)
4142 {
4143 	list_add_tail(&dev->todo_list, &net_todo_list);
4144 }
4145 
4146 static void rollback_registered(struct net_device *dev)
4147 {
4148 	BUG_ON(dev_boot_phase);
4149 	ASSERT_RTNL();
4150 
4151 	/* Some devices call without registering for initialization unwind. */
4152 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4153 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4154 				  "was registered\n", dev->name, dev);
4155 
4156 		WARN_ON(1);
4157 		return;
4158 	}
4159 
4160 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
4161 
4162 	/* If device is running, close it first. */
4163 	dev_close(dev);
4164 
4165 	/* And unlink it from device chain. */
4166 	unlist_netdevice(dev);
4167 
4168 	dev->reg_state = NETREG_UNREGISTERING;
4169 
4170 	synchronize_net();
4171 
4172 	/* Shutdown queueing discipline. */
4173 	dev_shutdown(dev);
4174 
4175 
4176 	/* Notify protocols, that we are about to destroy
4177 	   this device. They should clean all the things.
4178 	*/
4179 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4180 
4181 	/*
4182 	 *	Flush the unicast and multicast chains
4183 	 */
4184 	dev_addr_discard(dev);
4185 
4186 	if (dev->netdev_ops->ndo_uninit)
4187 		dev->netdev_ops->ndo_uninit(dev);
4188 
4189 	/* Notifier chain MUST detach us from master device. */
4190 	WARN_ON(dev->master);
4191 
4192 	/* Remove entries from kobject tree */
4193 	netdev_unregister_kobject(dev);
4194 
4195 	synchronize_net();
4196 
4197 	dev_put(dev);
4198 }
4199 
4200 static void __netdev_init_queue_locks_one(struct net_device *dev,
4201 					  struct netdev_queue *dev_queue,
4202 					  void *_unused)
4203 {
4204 	spin_lock_init(&dev_queue->_xmit_lock);
4205 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4206 	dev_queue->xmit_lock_owner = -1;
4207 }
4208 
4209 static void netdev_init_queue_locks(struct net_device *dev)
4210 {
4211 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4212 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4213 }
4214 
4215 unsigned long netdev_fix_features(unsigned long features, const char *name)
4216 {
4217 	/* Fix illegal SG+CSUM combinations. */
4218 	if ((features & NETIF_F_SG) &&
4219 	    !(features & NETIF_F_ALL_CSUM)) {
4220 		if (name)
4221 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4222 			       "checksum feature.\n", name);
4223 		features &= ~NETIF_F_SG;
4224 	}
4225 
4226 	/* TSO requires that SG is present as well. */
4227 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4228 		if (name)
4229 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4230 			       "SG feature.\n", name);
4231 		features &= ~NETIF_F_TSO;
4232 	}
4233 
4234 	if (features & NETIF_F_UFO) {
4235 		if (!(features & NETIF_F_GEN_CSUM)) {
4236 			if (name)
4237 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4238 				       "since no NETIF_F_HW_CSUM feature.\n",
4239 				       name);
4240 			features &= ~NETIF_F_UFO;
4241 		}
4242 
4243 		if (!(features & NETIF_F_SG)) {
4244 			if (name)
4245 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4246 				       "since no NETIF_F_SG feature.\n", name);
4247 			features &= ~NETIF_F_UFO;
4248 		}
4249 	}
4250 
4251 	return features;
4252 }
4253 EXPORT_SYMBOL(netdev_fix_features);
4254 
4255 /**
4256  *	register_netdevice	- register a network device
4257  *	@dev: device to register
4258  *
4259  *	Take a completed network device structure and add it to the kernel
4260  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4261  *	chain. 0 is returned on success. A negative errno code is returned
4262  *	on a failure to set up the device, or if the name is a duplicate.
4263  *
4264  *	Callers must hold the rtnl semaphore. You may want
4265  *	register_netdev() instead of this.
4266  *
4267  *	BUGS:
4268  *	The locking appears insufficient to guarantee two parallel registers
4269  *	will not get the same name.
4270  */
4271 
4272 int register_netdevice(struct net_device *dev)
4273 {
4274 	struct hlist_head *head;
4275 	struct hlist_node *p;
4276 	int ret;
4277 	struct net *net = dev_net(dev);
4278 
4279 	BUG_ON(dev_boot_phase);
4280 	ASSERT_RTNL();
4281 
4282 	might_sleep();
4283 
4284 	/* When net_device's are persistent, this will be fatal. */
4285 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4286 	BUG_ON(!net);
4287 
4288 	spin_lock_init(&dev->addr_list_lock);
4289 	netdev_set_addr_lockdep_class(dev);
4290 	netdev_init_queue_locks(dev);
4291 
4292 	dev->iflink = -1;
4293 
4294 #ifdef CONFIG_COMPAT_NET_DEV_OPS
4295 	/* Netdevice_ops API compatiability support.
4296 	 * This is temporary until all network devices are converted.
4297 	 */
4298 	if (dev->netdev_ops) {
4299 		const struct net_device_ops *ops = dev->netdev_ops;
4300 
4301 		dev->init = ops->ndo_init;
4302 		dev->uninit = ops->ndo_uninit;
4303 		dev->open = ops->ndo_open;
4304 		dev->change_rx_flags = ops->ndo_change_rx_flags;
4305 		dev->set_rx_mode = ops->ndo_set_rx_mode;
4306 		dev->set_multicast_list = ops->ndo_set_multicast_list;
4307 		dev->set_mac_address = ops->ndo_set_mac_address;
4308 		dev->validate_addr = ops->ndo_validate_addr;
4309 		dev->do_ioctl = ops->ndo_do_ioctl;
4310 		dev->set_config = ops->ndo_set_config;
4311 		dev->change_mtu = ops->ndo_change_mtu;
4312 		dev->tx_timeout = ops->ndo_tx_timeout;
4313 		dev->get_stats = ops->ndo_get_stats;
4314 		dev->vlan_rx_register = ops->ndo_vlan_rx_register;
4315 		dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid;
4316 		dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid;
4317 #ifdef CONFIG_NET_POLL_CONTROLLER
4318 		dev->poll_controller = ops->ndo_poll_controller;
4319 #endif
4320 	} else {
4321 		char drivername[64];
4322 		pr_info("%s (%s): not using net_device_ops yet\n",
4323 			dev->name, netdev_drivername(dev, drivername, 64));
4324 
4325 		/* This works only because net_device_ops and the
4326 		   compatiablity structure are the same. */
4327 		dev->netdev_ops = (void *) &(dev->init);
4328 	}
4329 #endif
4330 
4331 	/* Init, if this function is available */
4332 	if (dev->netdev_ops->ndo_init) {
4333 		ret = dev->netdev_ops->ndo_init(dev);
4334 		if (ret) {
4335 			if (ret > 0)
4336 				ret = -EIO;
4337 			goto out;
4338 		}
4339 	}
4340 
4341 	if (!dev_valid_name(dev->name)) {
4342 		ret = -EINVAL;
4343 		goto err_uninit;
4344 	}
4345 
4346 	dev->ifindex = dev_new_index(net);
4347 	if (dev->iflink == -1)
4348 		dev->iflink = dev->ifindex;
4349 
4350 	/* Check for existence of name */
4351 	head = dev_name_hash(net, dev->name);
4352 	hlist_for_each(p, head) {
4353 		struct net_device *d
4354 			= hlist_entry(p, struct net_device, name_hlist);
4355 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4356 			ret = -EEXIST;
4357 			goto err_uninit;
4358 		}
4359 	}
4360 
4361 	/* Fix illegal checksum combinations */
4362 	if ((dev->features & NETIF_F_HW_CSUM) &&
4363 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4364 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4365 		       dev->name);
4366 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4367 	}
4368 
4369 	if ((dev->features & NETIF_F_NO_CSUM) &&
4370 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4371 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4372 		       dev->name);
4373 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4374 	}
4375 
4376 	dev->features = netdev_fix_features(dev->features, dev->name);
4377 
4378 	/* Enable software GSO if SG is supported. */
4379 	if (dev->features & NETIF_F_SG)
4380 		dev->features |= NETIF_F_GSO;
4381 
4382 	netdev_initialize_kobject(dev);
4383 	ret = netdev_register_kobject(dev);
4384 	if (ret)
4385 		goto err_uninit;
4386 	dev->reg_state = NETREG_REGISTERED;
4387 
4388 	/*
4389 	 *	Default initial state at registry is that the
4390 	 *	device is present.
4391 	 */
4392 
4393 	set_bit(__LINK_STATE_PRESENT, &dev->state);
4394 
4395 	dev_init_scheduler(dev);
4396 	dev_hold(dev);
4397 	list_netdevice(dev);
4398 
4399 	/* Notify protocols, that a new device appeared. */
4400 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
4401 	ret = notifier_to_errno(ret);
4402 	if (ret) {
4403 		rollback_registered(dev);
4404 		dev->reg_state = NETREG_UNREGISTERED;
4405 	}
4406 
4407 out:
4408 	return ret;
4409 
4410 err_uninit:
4411 	if (dev->netdev_ops->ndo_uninit)
4412 		dev->netdev_ops->ndo_uninit(dev);
4413 	goto out;
4414 }
4415 
4416 /**
4417  *	register_netdev	- register a network device
4418  *	@dev: device to register
4419  *
4420  *	Take a completed network device structure and add it to the kernel
4421  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4422  *	chain. 0 is returned on success. A negative errno code is returned
4423  *	on a failure to set up the device, or if the name is a duplicate.
4424  *
4425  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
4426  *	and expands the device name if you passed a format string to
4427  *	alloc_netdev.
4428  */
4429 int register_netdev(struct net_device *dev)
4430 {
4431 	int err;
4432 
4433 	rtnl_lock();
4434 
4435 	/*
4436 	 * If the name is a format string the caller wants us to do a
4437 	 * name allocation.
4438 	 */
4439 	if (strchr(dev->name, '%')) {
4440 		err = dev_alloc_name(dev, dev->name);
4441 		if (err < 0)
4442 			goto out;
4443 	}
4444 
4445 	err = register_netdevice(dev);
4446 out:
4447 	rtnl_unlock();
4448 	return err;
4449 }
4450 EXPORT_SYMBOL(register_netdev);
4451 
4452 /*
4453  * netdev_wait_allrefs - wait until all references are gone.
4454  *
4455  * This is called when unregistering network devices.
4456  *
4457  * Any protocol or device that holds a reference should register
4458  * for netdevice notification, and cleanup and put back the
4459  * reference if they receive an UNREGISTER event.
4460  * We can get stuck here if buggy protocols don't correctly
4461  * call dev_put.
4462  */
4463 static void netdev_wait_allrefs(struct net_device *dev)
4464 {
4465 	unsigned long rebroadcast_time, warning_time;
4466 
4467 	rebroadcast_time = warning_time = jiffies;
4468 	while (atomic_read(&dev->refcnt) != 0) {
4469 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
4470 			rtnl_lock();
4471 
4472 			/* Rebroadcast unregister notification */
4473 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4474 
4475 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4476 				     &dev->state)) {
4477 				/* We must not have linkwatch events
4478 				 * pending on unregister. If this
4479 				 * happens, we simply run the queue
4480 				 * unscheduled, resulting in a noop
4481 				 * for this device.
4482 				 */
4483 				linkwatch_run_queue();
4484 			}
4485 
4486 			__rtnl_unlock();
4487 
4488 			rebroadcast_time = jiffies;
4489 		}
4490 
4491 		msleep(250);
4492 
4493 		if (time_after(jiffies, warning_time + 10 * HZ)) {
4494 			printk(KERN_EMERG "unregister_netdevice: "
4495 			       "waiting for %s to become free. Usage "
4496 			       "count = %d\n",
4497 			       dev->name, atomic_read(&dev->refcnt));
4498 			warning_time = jiffies;
4499 		}
4500 	}
4501 }
4502 
4503 /* The sequence is:
4504  *
4505  *	rtnl_lock();
4506  *	...
4507  *	register_netdevice(x1);
4508  *	register_netdevice(x2);
4509  *	...
4510  *	unregister_netdevice(y1);
4511  *	unregister_netdevice(y2);
4512  *      ...
4513  *	rtnl_unlock();
4514  *	free_netdev(y1);
4515  *	free_netdev(y2);
4516  *
4517  * We are invoked by rtnl_unlock().
4518  * This allows us to deal with problems:
4519  * 1) We can delete sysfs objects which invoke hotplug
4520  *    without deadlocking with linkwatch via keventd.
4521  * 2) Since we run with the RTNL semaphore not held, we can sleep
4522  *    safely in order to wait for the netdev refcnt to drop to zero.
4523  *
4524  * We must not return until all unregister events added during
4525  * the interval the lock was held have been completed.
4526  */
4527 void netdev_run_todo(void)
4528 {
4529 	struct list_head list;
4530 
4531 	/* Snapshot list, allow later requests */
4532 	list_replace_init(&net_todo_list, &list);
4533 
4534 	__rtnl_unlock();
4535 
4536 	while (!list_empty(&list)) {
4537 		struct net_device *dev
4538 			= list_entry(list.next, struct net_device, todo_list);
4539 		list_del(&dev->todo_list);
4540 
4541 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4542 			printk(KERN_ERR "network todo '%s' but state %d\n",
4543 			       dev->name, dev->reg_state);
4544 			dump_stack();
4545 			continue;
4546 		}
4547 
4548 		dev->reg_state = NETREG_UNREGISTERED;
4549 
4550 		on_each_cpu(flush_backlog, dev, 1);
4551 
4552 		netdev_wait_allrefs(dev);
4553 
4554 		/* paranoia */
4555 		BUG_ON(atomic_read(&dev->refcnt));
4556 		WARN_ON(dev->ip_ptr);
4557 		WARN_ON(dev->ip6_ptr);
4558 		WARN_ON(dev->dn_ptr);
4559 
4560 		if (dev->destructor)
4561 			dev->destructor(dev);
4562 
4563 		/* Free network device */
4564 		kobject_put(&dev->dev.kobj);
4565 	}
4566 }
4567 
4568 /**
4569  *	dev_get_stats	- get network device statistics
4570  *	@dev: device to get statistics from
4571  *
4572  *	Get network statistics from device. The device driver may provide
4573  *	its own method by setting dev->netdev_ops->get_stats; otherwise
4574  *	the internal statistics structure is used.
4575  */
4576 const struct net_device_stats *dev_get_stats(struct net_device *dev)
4577  {
4578 	const struct net_device_ops *ops = dev->netdev_ops;
4579 
4580 	if (ops->ndo_get_stats)
4581 		return ops->ndo_get_stats(dev);
4582 	else
4583 		return &dev->stats;
4584 }
4585 EXPORT_SYMBOL(dev_get_stats);
4586 
4587 static void netdev_init_one_queue(struct net_device *dev,
4588 				  struct netdev_queue *queue,
4589 				  void *_unused)
4590 {
4591 	queue->dev = dev;
4592 }
4593 
4594 static void netdev_init_queues(struct net_device *dev)
4595 {
4596 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4597 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
4598 	spin_lock_init(&dev->tx_global_lock);
4599 }
4600 
4601 /**
4602  *	alloc_netdev_mq - allocate network device
4603  *	@sizeof_priv:	size of private data to allocate space for
4604  *	@name:		device name format string
4605  *	@setup:		callback to initialize device
4606  *	@queue_count:	the number of subqueues to allocate
4607  *
4608  *	Allocates a struct net_device with private data area for driver use
4609  *	and performs basic initialization.  Also allocates subquue structs
4610  *	for each queue on the device at the end of the netdevice.
4611  */
4612 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4613 		void (*setup)(struct net_device *), unsigned int queue_count)
4614 {
4615 	struct netdev_queue *tx;
4616 	struct net_device *dev;
4617 	size_t alloc_size;
4618 	void *p;
4619 
4620 	BUG_ON(strlen(name) >= sizeof(dev->name));
4621 
4622 	alloc_size = sizeof(struct net_device);
4623 	if (sizeof_priv) {
4624 		/* ensure 32-byte alignment of private area */
4625 		alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4626 		alloc_size += sizeof_priv;
4627 	}
4628 	/* ensure 32-byte alignment of whole construct */
4629 	alloc_size += NETDEV_ALIGN_CONST;
4630 
4631 	p = kzalloc(alloc_size, GFP_KERNEL);
4632 	if (!p) {
4633 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
4634 		return NULL;
4635 	}
4636 
4637 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
4638 	if (!tx) {
4639 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
4640 		       "tx qdiscs.\n");
4641 		kfree(p);
4642 		return NULL;
4643 	}
4644 
4645 	dev = (struct net_device *)
4646 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4647 	dev->padded = (char *)dev - (char *)p;
4648 	dev_net_set(dev, &init_net);
4649 
4650 	dev->_tx = tx;
4651 	dev->num_tx_queues = queue_count;
4652 	dev->real_num_tx_queues = queue_count;
4653 
4654 	dev->gso_max_size = GSO_MAX_SIZE;
4655 
4656 	netdev_init_queues(dev);
4657 
4658 	INIT_LIST_HEAD(&dev->napi_list);
4659 	setup(dev);
4660 	strcpy(dev->name, name);
4661 	return dev;
4662 }
4663 EXPORT_SYMBOL(alloc_netdev_mq);
4664 
4665 /**
4666  *	free_netdev - free network device
4667  *	@dev: device
4668  *
4669  *	This function does the last stage of destroying an allocated device
4670  * 	interface. The reference to the device object is released.
4671  *	If this is the last reference then it will be freed.
4672  */
4673 void free_netdev(struct net_device *dev)
4674 {
4675 	struct napi_struct *p, *n;
4676 
4677 	release_net(dev_net(dev));
4678 
4679 	kfree(dev->_tx);
4680 
4681 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
4682 		netif_napi_del(p);
4683 
4684 	/*  Compatibility with error handling in drivers */
4685 	if (dev->reg_state == NETREG_UNINITIALIZED) {
4686 		kfree((char *)dev - dev->padded);
4687 		return;
4688 	}
4689 
4690 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4691 	dev->reg_state = NETREG_RELEASED;
4692 
4693 	/* will free via device release */
4694 	put_device(&dev->dev);
4695 }
4696 
4697 /**
4698  *	synchronize_net -  Synchronize with packet receive processing
4699  *
4700  *	Wait for packets currently being received to be done.
4701  *	Does not block later packets from starting.
4702  */
4703 void synchronize_net(void)
4704 {
4705 	might_sleep();
4706 	synchronize_rcu();
4707 }
4708 
4709 /**
4710  *	unregister_netdevice - remove device from the kernel
4711  *	@dev: device
4712  *
4713  *	This function shuts down a device interface and removes it
4714  *	from the kernel tables.
4715  *
4716  *	Callers must hold the rtnl semaphore.  You may want
4717  *	unregister_netdev() instead of this.
4718  */
4719 
4720 void unregister_netdevice(struct net_device *dev)
4721 {
4722 	ASSERT_RTNL();
4723 
4724 	rollback_registered(dev);
4725 	/* Finish processing unregister after unlock */
4726 	net_set_todo(dev);
4727 }
4728 
4729 /**
4730  *	unregister_netdev - remove device from the kernel
4731  *	@dev: device
4732  *
4733  *	This function shuts down a device interface and removes it
4734  *	from the kernel tables.
4735  *
4736  *	This is just a wrapper for unregister_netdevice that takes
4737  *	the rtnl semaphore.  In general you want to use this and not
4738  *	unregister_netdevice.
4739  */
4740 void unregister_netdev(struct net_device *dev)
4741 {
4742 	rtnl_lock();
4743 	unregister_netdevice(dev);
4744 	rtnl_unlock();
4745 }
4746 
4747 EXPORT_SYMBOL(unregister_netdev);
4748 
4749 /**
4750  *	dev_change_net_namespace - move device to different nethost namespace
4751  *	@dev: device
4752  *	@net: network namespace
4753  *	@pat: If not NULL name pattern to try if the current device name
4754  *	      is already taken in the destination network namespace.
4755  *
4756  *	This function shuts down a device interface and moves it
4757  *	to a new network namespace. On success 0 is returned, on
4758  *	a failure a netagive errno code is returned.
4759  *
4760  *	Callers must hold the rtnl semaphore.
4761  */
4762 
4763 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4764 {
4765 	char buf[IFNAMSIZ];
4766 	const char *destname;
4767 	int err;
4768 
4769 	ASSERT_RTNL();
4770 
4771 	/* Don't allow namespace local devices to be moved. */
4772 	err = -EINVAL;
4773 	if (dev->features & NETIF_F_NETNS_LOCAL)
4774 		goto out;
4775 
4776 #ifdef CONFIG_SYSFS
4777 	/* Don't allow real devices to be moved when sysfs
4778 	 * is enabled.
4779 	 */
4780 	err = -EINVAL;
4781 	if (dev->dev.parent)
4782 		goto out;
4783 #endif
4784 
4785 	/* Ensure the device has been registrered */
4786 	err = -EINVAL;
4787 	if (dev->reg_state != NETREG_REGISTERED)
4788 		goto out;
4789 
4790 	/* Get out if there is nothing todo */
4791 	err = 0;
4792 	if (net_eq(dev_net(dev), net))
4793 		goto out;
4794 
4795 	/* Pick the destination device name, and ensure
4796 	 * we can use it in the destination network namespace.
4797 	 */
4798 	err = -EEXIST;
4799 	destname = dev->name;
4800 	if (__dev_get_by_name(net, destname)) {
4801 		/* We get here if we can't use the current device name */
4802 		if (!pat)
4803 			goto out;
4804 		if (!dev_valid_name(pat))
4805 			goto out;
4806 		if (strchr(pat, '%')) {
4807 			if (__dev_alloc_name(net, pat, buf) < 0)
4808 				goto out;
4809 			destname = buf;
4810 		} else
4811 			destname = pat;
4812 		if (__dev_get_by_name(net, destname))
4813 			goto out;
4814 	}
4815 
4816 	/*
4817 	 * And now a mini version of register_netdevice unregister_netdevice.
4818 	 */
4819 
4820 	/* If device is running close it first. */
4821 	dev_close(dev);
4822 
4823 	/* And unlink it from device chain */
4824 	err = -ENODEV;
4825 	unlist_netdevice(dev);
4826 
4827 	synchronize_net();
4828 
4829 	/* Shutdown queueing discipline. */
4830 	dev_shutdown(dev);
4831 
4832 	/* Notify protocols, that we are about to destroy
4833 	   this device. They should clean all the things.
4834 	*/
4835 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4836 
4837 	/*
4838 	 *	Flush the unicast and multicast chains
4839 	 */
4840 	dev_addr_discard(dev);
4841 
4842 	netdev_unregister_kobject(dev);
4843 
4844 	/* Actually switch the network namespace */
4845 	dev_net_set(dev, net);
4846 
4847 	/* Assign the new device name */
4848 	if (destname != dev->name)
4849 		strcpy(dev->name, destname);
4850 
4851 	/* If there is an ifindex conflict assign a new one */
4852 	if (__dev_get_by_index(net, dev->ifindex)) {
4853 		int iflink = (dev->iflink == dev->ifindex);
4854 		dev->ifindex = dev_new_index(net);
4855 		if (iflink)
4856 			dev->iflink = dev->ifindex;
4857 	}
4858 
4859 	/* Fixup kobjects */
4860 	err = netdev_register_kobject(dev);
4861 	WARN_ON(err);
4862 
4863 	/* Add the device back in the hashes */
4864 	list_netdevice(dev);
4865 
4866 	/* Notify protocols, that a new device appeared. */
4867 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4868 
4869 	synchronize_net();
4870 	err = 0;
4871 out:
4872 	return err;
4873 }
4874 
4875 static int dev_cpu_callback(struct notifier_block *nfb,
4876 			    unsigned long action,
4877 			    void *ocpu)
4878 {
4879 	struct sk_buff **list_skb;
4880 	struct Qdisc **list_net;
4881 	struct sk_buff *skb;
4882 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4883 	struct softnet_data *sd, *oldsd;
4884 
4885 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4886 		return NOTIFY_OK;
4887 
4888 	local_irq_disable();
4889 	cpu = smp_processor_id();
4890 	sd = &per_cpu(softnet_data, cpu);
4891 	oldsd = &per_cpu(softnet_data, oldcpu);
4892 
4893 	/* Find end of our completion_queue. */
4894 	list_skb = &sd->completion_queue;
4895 	while (*list_skb)
4896 		list_skb = &(*list_skb)->next;
4897 	/* Append completion queue from offline CPU. */
4898 	*list_skb = oldsd->completion_queue;
4899 	oldsd->completion_queue = NULL;
4900 
4901 	/* Find end of our output_queue. */
4902 	list_net = &sd->output_queue;
4903 	while (*list_net)
4904 		list_net = &(*list_net)->next_sched;
4905 	/* Append output queue from offline CPU. */
4906 	*list_net = oldsd->output_queue;
4907 	oldsd->output_queue = NULL;
4908 
4909 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4910 	local_irq_enable();
4911 
4912 	/* Process offline CPU's input_pkt_queue */
4913 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4914 		netif_rx(skb);
4915 
4916 	return NOTIFY_OK;
4917 }
4918 
4919 #ifdef CONFIG_NET_DMA
4920 /**
4921  * net_dma_rebalance - try to maintain one DMA channel per CPU
4922  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4923  *
4924  * This is called when the number of channels allocated to the net_dma client
4925  * changes.  The net_dma client tries to have one DMA channel per CPU.
4926  */
4927 
4928 static void net_dma_rebalance(struct net_dma *net_dma)
4929 {
4930 	unsigned int cpu, i, n, chan_idx;
4931 	struct dma_chan *chan;
4932 
4933 	if (cpus_empty(net_dma->channel_mask)) {
4934 		for_each_online_cpu(cpu)
4935 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4936 		return;
4937 	}
4938 
4939 	i = 0;
4940 	cpu = first_cpu(cpu_online_map);
4941 
4942 	for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) {
4943 		chan = net_dma->channels[chan_idx];
4944 
4945 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4946 		   + (i < (num_online_cpus() %
4947 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4948 
4949 		while(n) {
4950 			per_cpu(softnet_data, cpu).net_dma = chan;
4951 			cpu = next_cpu(cpu, cpu_online_map);
4952 			n--;
4953 		}
4954 		i++;
4955 	}
4956 }
4957 
4958 /**
4959  * netdev_dma_event - event callback for the net_dma_client
4960  * @client: should always be net_dma_client
4961  * @chan: DMA channel for the event
4962  * @state: DMA state to be handled
4963  */
4964 static enum dma_state_client
4965 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4966 	enum dma_state state)
4967 {
4968 	int i, found = 0, pos = -1;
4969 	struct net_dma *net_dma =
4970 		container_of(client, struct net_dma, client);
4971 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4972 
4973 	spin_lock(&net_dma->lock);
4974 	switch (state) {
4975 	case DMA_RESOURCE_AVAILABLE:
4976 		for (i = 0; i < nr_cpu_ids; i++)
4977 			if (net_dma->channels[i] == chan) {
4978 				found = 1;
4979 				break;
4980 			} else if (net_dma->channels[i] == NULL && pos < 0)
4981 				pos = i;
4982 
4983 		if (!found && pos >= 0) {
4984 			ack = DMA_ACK;
4985 			net_dma->channels[pos] = chan;
4986 			cpu_set(pos, net_dma->channel_mask);
4987 			net_dma_rebalance(net_dma);
4988 		}
4989 		break;
4990 	case DMA_RESOURCE_REMOVED:
4991 		for (i = 0; i < nr_cpu_ids; i++)
4992 			if (net_dma->channels[i] == chan) {
4993 				found = 1;
4994 				pos = i;
4995 				break;
4996 			}
4997 
4998 		if (found) {
4999 			ack = DMA_ACK;
5000 			cpu_clear(pos, net_dma->channel_mask);
5001 			net_dma->channels[i] = NULL;
5002 			net_dma_rebalance(net_dma);
5003 		}
5004 		break;
5005 	default:
5006 		break;
5007 	}
5008 	spin_unlock(&net_dma->lock);
5009 
5010 	return ack;
5011 }
5012 
5013 /**
5014  * netdev_dma_register - register the networking subsystem as a DMA client
5015  */
5016 static int __init netdev_dma_register(void)
5017 {
5018 	net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
5019 								GFP_KERNEL);
5020 	if (unlikely(!net_dma.channels)) {
5021 		printk(KERN_NOTICE
5022 				"netdev_dma: no memory for net_dma.channels\n");
5023 		return -ENOMEM;
5024 	}
5025 	spin_lock_init(&net_dma.lock);
5026 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
5027 	dma_async_client_register(&net_dma.client);
5028 	dma_async_client_chan_request(&net_dma.client);
5029 	return 0;
5030 }
5031 
5032 #else
5033 static int __init netdev_dma_register(void) { return -ENODEV; }
5034 #endif /* CONFIG_NET_DMA */
5035 
5036 /**
5037  *	netdev_increment_features - increment feature set by one
5038  *	@all: current feature set
5039  *	@one: new feature set
5040  *	@mask: mask feature set
5041  *
5042  *	Computes a new feature set after adding a device with feature set
5043  *	@one to the master device with current feature set @all.  Will not
5044  *	enable anything that is off in @mask. Returns the new feature set.
5045  */
5046 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5047 					unsigned long mask)
5048 {
5049 	/* If device needs checksumming, downgrade to it. */
5050         if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5051 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5052 	else if (mask & NETIF_F_ALL_CSUM) {
5053 		/* If one device supports v4/v6 checksumming, set for all. */
5054 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5055 		    !(all & NETIF_F_GEN_CSUM)) {
5056 			all &= ~NETIF_F_ALL_CSUM;
5057 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5058 		}
5059 
5060 		/* If one device supports hw checksumming, set for all. */
5061 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5062 			all &= ~NETIF_F_ALL_CSUM;
5063 			all |= NETIF_F_HW_CSUM;
5064 		}
5065 	}
5066 
5067 	one |= NETIF_F_ALL_CSUM;
5068 
5069 	one |= all & NETIF_F_ONE_FOR_ALL;
5070 	all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5071 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
5072 
5073 	return all;
5074 }
5075 EXPORT_SYMBOL(netdev_increment_features);
5076 
5077 static struct hlist_head *netdev_create_hash(void)
5078 {
5079 	int i;
5080 	struct hlist_head *hash;
5081 
5082 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5083 	if (hash != NULL)
5084 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5085 			INIT_HLIST_HEAD(&hash[i]);
5086 
5087 	return hash;
5088 }
5089 
5090 /* Initialize per network namespace state */
5091 static int __net_init netdev_init(struct net *net)
5092 {
5093 	INIT_LIST_HEAD(&net->dev_base_head);
5094 
5095 	net->dev_name_head = netdev_create_hash();
5096 	if (net->dev_name_head == NULL)
5097 		goto err_name;
5098 
5099 	net->dev_index_head = netdev_create_hash();
5100 	if (net->dev_index_head == NULL)
5101 		goto err_idx;
5102 
5103 	return 0;
5104 
5105 err_idx:
5106 	kfree(net->dev_name_head);
5107 err_name:
5108 	return -ENOMEM;
5109 }
5110 
5111 /**
5112  *	netdev_drivername - network driver for the device
5113  *	@dev: network device
5114  *	@buffer: buffer for resulting name
5115  *	@len: size of buffer
5116  *
5117  *	Determine network driver for device.
5118  */
5119 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5120 {
5121 	const struct device_driver *driver;
5122 	const struct device *parent;
5123 
5124 	if (len <= 0 || !buffer)
5125 		return buffer;
5126 	buffer[0] = 0;
5127 
5128 	parent = dev->dev.parent;
5129 
5130 	if (!parent)
5131 		return buffer;
5132 
5133 	driver = parent->driver;
5134 	if (driver && driver->name)
5135 		strlcpy(buffer, driver->name, len);
5136 	return buffer;
5137 }
5138 
5139 static void __net_exit netdev_exit(struct net *net)
5140 {
5141 	kfree(net->dev_name_head);
5142 	kfree(net->dev_index_head);
5143 }
5144 
5145 static struct pernet_operations __net_initdata netdev_net_ops = {
5146 	.init = netdev_init,
5147 	.exit = netdev_exit,
5148 };
5149 
5150 static void __net_exit default_device_exit(struct net *net)
5151 {
5152 	struct net_device *dev;
5153 	/*
5154 	 * Push all migratable of the network devices back to the
5155 	 * initial network namespace
5156 	 */
5157 	rtnl_lock();
5158 restart:
5159 	for_each_netdev(net, dev) {
5160 		int err;
5161 		char fb_name[IFNAMSIZ];
5162 
5163 		/* Ignore unmoveable devices (i.e. loopback) */
5164 		if (dev->features & NETIF_F_NETNS_LOCAL)
5165 			continue;
5166 
5167 		/* Delete virtual devices */
5168 		if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5169 			dev->rtnl_link_ops->dellink(dev);
5170 			goto restart;
5171 		}
5172 
5173 		/* Push remaing network devices to init_net */
5174 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5175 		err = dev_change_net_namespace(dev, &init_net, fb_name);
5176 		if (err) {
5177 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5178 				__func__, dev->name, err);
5179 			BUG();
5180 		}
5181 		goto restart;
5182 	}
5183 	rtnl_unlock();
5184 }
5185 
5186 static struct pernet_operations __net_initdata default_device_ops = {
5187 	.exit = default_device_exit,
5188 };
5189 
5190 /*
5191  *	Initialize the DEV module. At boot time this walks the device list and
5192  *	unhooks any devices that fail to initialise (normally hardware not
5193  *	present) and leaves us with a valid list of present and active devices.
5194  *
5195  */
5196 
5197 /*
5198  *       This is called single threaded during boot, so no need
5199  *       to take the rtnl semaphore.
5200  */
5201 static int __init net_dev_init(void)
5202 {
5203 	int i, rc = -ENOMEM;
5204 
5205 	BUG_ON(!dev_boot_phase);
5206 
5207 	if (dev_proc_init())
5208 		goto out;
5209 
5210 	if (netdev_kobject_init())
5211 		goto out;
5212 
5213 	INIT_LIST_HEAD(&ptype_all);
5214 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
5215 		INIT_LIST_HEAD(&ptype_base[i]);
5216 
5217 	if (register_pernet_subsys(&netdev_net_ops))
5218 		goto out;
5219 
5220 	/*
5221 	 *	Initialise the packet receive queues.
5222 	 */
5223 
5224 	for_each_possible_cpu(i) {
5225 		struct softnet_data *queue;
5226 
5227 		queue = &per_cpu(softnet_data, i);
5228 		skb_queue_head_init(&queue->input_pkt_queue);
5229 		queue->completion_queue = NULL;
5230 		INIT_LIST_HEAD(&queue->poll_list);
5231 
5232 		queue->backlog.poll = process_backlog;
5233 		queue->backlog.weight = weight_p;
5234 		queue->backlog.gro_list = NULL;
5235 	}
5236 
5237 	dev_boot_phase = 0;
5238 
5239 	/* The loopback device is special if any other network devices
5240 	 * is present in a network namespace the loopback device must
5241 	 * be present. Since we now dynamically allocate and free the
5242 	 * loopback device ensure this invariant is maintained by
5243 	 * keeping the loopback device as the first device on the
5244 	 * list of network devices.  Ensuring the loopback devices
5245 	 * is the first device that appears and the last network device
5246 	 * that disappears.
5247 	 */
5248 	if (register_pernet_device(&loopback_net_ops))
5249 		goto out;
5250 
5251 	if (register_pernet_device(&default_device_ops))
5252 		goto out;
5253 
5254 	netdev_dma_register();
5255 
5256 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5257 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
5258 
5259 	hotcpu_notifier(dev_cpu_callback, 0);
5260 	dst_init();
5261 	dev_mcast_init();
5262 	rc = 0;
5263 out:
5264 	return rc;
5265 }
5266 
5267 subsys_initcall(net_dev_init);
5268 
5269 EXPORT_SYMBOL(__dev_get_by_index);
5270 EXPORT_SYMBOL(__dev_get_by_name);
5271 EXPORT_SYMBOL(__dev_remove_pack);
5272 EXPORT_SYMBOL(dev_valid_name);
5273 EXPORT_SYMBOL(dev_add_pack);
5274 EXPORT_SYMBOL(dev_alloc_name);
5275 EXPORT_SYMBOL(dev_close);
5276 EXPORT_SYMBOL(dev_get_by_flags);
5277 EXPORT_SYMBOL(dev_get_by_index);
5278 EXPORT_SYMBOL(dev_get_by_name);
5279 EXPORT_SYMBOL(dev_open);
5280 EXPORT_SYMBOL(dev_queue_xmit);
5281 EXPORT_SYMBOL(dev_remove_pack);
5282 EXPORT_SYMBOL(dev_set_allmulti);
5283 EXPORT_SYMBOL(dev_set_promiscuity);
5284 EXPORT_SYMBOL(dev_change_flags);
5285 EXPORT_SYMBOL(dev_set_mtu);
5286 EXPORT_SYMBOL(dev_set_mac_address);
5287 EXPORT_SYMBOL(free_netdev);
5288 EXPORT_SYMBOL(netdev_boot_setup_check);
5289 EXPORT_SYMBOL(netdev_set_master);
5290 EXPORT_SYMBOL(netdev_state_change);
5291 EXPORT_SYMBOL(netif_receive_skb);
5292 EXPORT_SYMBOL(netif_rx);
5293 EXPORT_SYMBOL(register_gifconf);
5294 EXPORT_SYMBOL(register_netdevice);
5295 EXPORT_SYMBOL(register_netdevice_notifier);
5296 EXPORT_SYMBOL(skb_checksum_help);
5297 EXPORT_SYMBOL(synchronize_net);
5298 EXPORT_SYMBOL(unregister_netdevice);
5299 EXPORT_SYMBOL(unregister_netdevice_notifier);
5300 EXPORT_SYMBOL(net_enable_timestamp);
5301 EXPORT_SYMBOL(net_disable_timestamp);
5302 EXPORT_SYMBOL(dev_get_flags);
5303 
5304 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5305 EXPORT_SYMBOL(br_handle_frame_hook);
5306 EXPORT_SYMBOL(br_fdb_get_hook);
5307 EXPORT_SYMBOL(br_fdb_put_hook);
5308 #endif
5309 
5310 EXPORT_SYMBOL(dev_load);
5311 
5312 EXPORT_PER_CPU_SYMBOL(softnet_data);
5313