1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Mark Evans, <[email protected]> 13 * 14 * Additional Authors: 15 * Florian la Roche <[email protected]> 16 * Alan Cox <[email protected]> 17 * David Hinds <[email protected]> 18 * Alexey Kuznetsov <[email protected]> 19 * Adam Sulmicki <[email protected]> 20 * Pekka Riikonen <[email protected]> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/sched.h> 83 #include <linux/mutex.h> 84 #include <linux/string.h> 85 #include <linux/mm.h> 86 #include <linux/socket.h> 87 #include <linux/sockios.h> 88 #include <linux/errno.h> 89 #include <linux/interrupt.h> 90 #include <linux/if_ether.h> 91 #include <linux/netdevice.h> 92 #include <linux/etherdevice.h> 93 #include <linux/ethtool.h> 94 #include <linux/notifier.h> 95 #include <linux/skbuff.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <linux/rtnetlink.h> 99 #include <linux/proc_fs.h> 100 #include <linux/seq_file.h> 101 #include <linux/stat.h> 102 #include <linux/if_bridge.h> 103 #include <linux/if_macvlan.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <linux/highmem.h> 108 #include <linux/init.h> 109 #include <linux/kmod.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/wext.h> 115 #include <net/iw_handler.h> 116 #include <asm/current.h> 117 #include <linux/audit.h> 118 #include <linux/dmaengine.h> 119 #include <linux/err.h> 120 #include <linux/ctype.h> 121 #include <linux/if_arp.h> 122 #include <linux/if_vlan.h> 123 #include <linux/ip.h> 124 #include <net/ip.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 130 #include "net-sysfs.h" 131 132 /* Instead of increasing this, you should create a hash table. */ 133 #define MAX_GRO_SKBS 8 134 135 /* This should be increased if a protocol with a bigger head is added. */ 136 #define GRO_MAX_HEAD (MAX_HEADER + 128) 137 138 /* 139 * The list of packet types we will receive (as opposed to discard) 140 * and the routines to invoke. 141 * 142 * Why 16. Because with 16 the only overlap we get on a hash of the 143 * low nibble of the protocol value is RARP/SNAP/X.25. 144 * 145 * NOTE: That is no longer true with the addition of VLAN tags. Not 146 * sure which should go first, but I bet it won't make much 147 * difference if we are running VLANs. The good news is that 148 * this protocol won't be in the list unless compiled in, so 149 * the average user (w/out VLANs) will not be adversely affected. 150 * --BLG 151 * 152 * 0800 IP 153 * 8100 802.1Q VLAN 154 * 0001 802.3 155 * 0002 AX.25 156 * 0004 802.2 157 * 8035 RARP 158 * 0005 SNAP 159 * 0805 X.25 160 * 0806 ARP 161 * 8137 IPX 162 * 0009 Localtalk 163 * 86DD IPv6 164 */ 165 166 #define PTYPE_HASH_SIZE (16) 167 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 168 169 static DEFINE_SPINLOCK(ptype_lock); 170 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 171 static struct list_head ptype_all __read_mostly; /* Taps */ 172 173 #ifdef CONFIG_NET_DMA 174 struct net_dma { 175 struct dma_client client; 176 spinlock_t lock; 177 cpumask_t channel_mask; 178 struct dma_chan **channels; 179 }; 180 181 static enum dma_state_client 182 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 183 enum dma_state state); 184 185 static struct net_dma net_dma = { 186 .client = { 187 .event_callback = netdev_dma_event, 188 }, 189 }; 190 #endif 191 192 /* 193 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 194 * semaphore. 195 * 196 * Pure readers hold dev_base_lock for reading. 197 * 198 * Writers must hold the rtnl semaphore while they loop through the 199 * dev_base_head list, and hold dev_base_lock for writing when they do the 200 * actual updates. This allows pure readers to access the list even 201 * while a writer is preparing to update it. 202 * 203 * To put it another way, dev_base_lock is held for writing only to 204 * protect against pure readers; the rtnl semaphore provides the 205 * protection against other writers. 206 * 207 * See, for example usages, register_netdevice() and 208 * unregister_netdevice(), which must be called with the rtnl 209 * semaphore held. 210 */ 211 DEFINE_RWLOCK(dev_base_lock); 212 213 EXPORT_SYMBOL(dev_base_lock); 214 215 #define NETDEV_HASHBITS 8 216 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS) 217 218 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 219 { 220 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 221 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)]; 222 } 223 224 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 225 { 226 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)]; 227 } 228 229 /* Device list insertion */ 230 static int list_netdevice(struct net_device *dev) 231 { 232 struct net *net = dev_net(dev); 233 234 ASSERT_RTNL(); 235 236 write_lock_bh(&dev_base_lock); 237 list_add_tail(&dev->dev_list, &net->dev_base_head); 238 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 239 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex)); 240 write_unlock_bh(&dev_base_lock); 241 return 0; 242 } 243 244 /* Device list removal */ 245 static void unlist_netdevice(struct net_device *dev) 246 { 247 ASSERT_RTNL(); 248 249 /* Unlink dev from the device chain */ 250 write_lock_bh(&dev_base_lock); 251 list_del(&dev->dev_list); 252 hlist_del(&dev->name_hlist); 253 hlist_del(&dev->index_hlist); 254 write_unlock_bh(&dev_base_lock); 255 } 256 257 /* 258 * Our notifier list 259 */ 260 261 static RAW_NOTIFIER_HEAD(netdev_chain); 262 263 /* 264 * Device drivers call our routines to queue packets here. We empty the 265 * queue in the local softnet handler. 266 */ 267 268 DEFINE_PER_CPU(struct softnet_data, softnet_data); 269 270 #ifdef CONFIG_LOCKDEP 271 /* 272 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 273 * according to dev->type 274 */ 275 static const unsigned short netdev_lock_type[] = 276 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 277 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 278 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 279 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 280 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 281 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 282 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 283 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 284 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 285 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 286 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 287 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 288 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 289 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 290 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE}; 291 292 static const char *netdev_lock_name[] = 293 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 294 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 295 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 296 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 297 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 298 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 299 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 300 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 301 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 302 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 303 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 304 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 305 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 306 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 307 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"}; 308 309 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 310 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 311 312 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 313 { 314 int i; 315 316 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 317 if (netdev_lock_type[i] == dev_type) 318 return i; 319 /* the last key is used by default */ 320 return ARRAY_SIZE(netdev_lock_type) - 1; 321 } 322 323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 324 unsigned short dev_type) 325 { 326 int i; 327 328 i = netdev_lock_pos(dev_type); 329 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 330 netdev_lock_name[i]); 331 } 332 333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 334 { 335 int i; 336 337 i = netdev_lock_pos(dev->type); 338 lockdep_set_class_and_name(&dev->addr_list_lock, 339 &netdev_addr_lock_key[i], 340 netdev_lock_name[i]); 341 } 342 #else 343 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 344 unsigned short dev_type) 345 { 346 } 347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 348 { 349 } 350 #endif 351 352 /******************************************************************************* 353 354 Protocol management and registration routines 355 356 *******************************************************************************/ 357 358 /* 359 * Add a protocol ID to the list. Now that the input handler is 360 * smarter we can dispense with all the messy stuff that used to be 361 * here. 362 * 363 * BEWARE!!! Protocol handlers, mangling input packets, 364 * MUST BE last in hash buckets and checking protocol handlers 365 * MUST start from promiscuous ptype_all chain in net_bh. 366 * It is true now, do not change it. 367 * Explanation follows: if protocol handler, mangling packet, will 368 * be the first on list, it is not able to sense, that packet 369 * is cloned and should be copied-on-write, so that it will 370 * change it and subsequent readers will get broken packet. 371 * --ANK (980803) 372 */ 373 374 /** 375 * dev_add_pack - add packet handler 376 * @pt: packet type declaration 377 * 378 * Add a protocol handler to the networking stack. The passed &packet_type 379 * is linked into kernel lists and may not be freed until it has been 380 * removed from the kernel lists. 381 * 382 * This call does not sleep therefore it can not 383 * guarantee all CPU's that are in middle of receiving packets 384 * will see the new packet type (until the next received packet). 385 */ 386 387 void dev_add_pack(struct packet_type *pt) 388 { 389 int hash; 390 391 spin_lock_bh(&ptype_lock); 392 if (pt->type == htons(ETH_P_ALL)) 393 list_add_rcu(&pt->list, &ptype_all); 394 else { 395 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 396 list_add_rcu(&pt->list, &ptype_base[hash]); 397 } 398 spin_unlock_bh(&ptype_lock); 399 } 400 401 /** 402 * __dev_remove_pack - remove packet handler 403 * @pt: packet type declaration 404 * 405 * Remove a protocol handler that was previously added to the kernel 406 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 407 * from the kernel lists and can be freed or reused once this function 408 * returns. 409 * 410 * The packet type might still be in use by receivers 411 * and must not be freed until after all the CPU's have gone 412 * through a quiescent state. 413 */ 414 void __dev_remove_pack(struct packet_type *pt) 415 { 416 struct list_head *head; 417 struct packet_type *pt1; 418 419 spin_lock_bh(&ptype_lock); 420 421 if (pt->type == htons(ETH_P_ALL)) 422 head = &ptype_all; 423 else 424 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 425 426 list_for_each_entry(pt1, head, list) { 427 if (pt == pt1) { 428 list_del_rcu(&pt->list); 429 goto out; 430 } 431 } 432 433 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 434 out: 435 spin_unlock_bh(&ptype_lock); 436 } 437 /** 438 * dev_remove_pack - remove packet handler 439 * @pt: packet type declaration 440 * 441 * Remove a protocol handler that was previously added to the kernel 442 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 443 * from the kernel lists and can be freed or reused once this function 444 * returns. 445 * 446 * This call sleeps to guarantee that no CPU is looking at the packet 447 * type after return. 448 */ 449 void dev_remove_pack(struct packet_type *pt) 450 { 451 __dev_remove_pack(pt); 452 453 synchronize_net(); 454 } 455 456 /****************************************************************************** 457 458 Device Boot-time Settings Routines 459 460 *******************************************************************************/ 461 462 /* Boot time configuration table */ 463 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 464 465 /** 466 * netdev_boot_setup_add - add new setup entry 467 * @name: name of the device 468 * @map: configured settings for the device 469 * 470 * Adds new setup entry to the dev_boot_setup list. The function 471 * returns 0 on error and 1 on success. This is a generic routine to 472 * all netdevices. 473 */ 474 static int netdev_boot_setup_add(char *name, struct ifmap *map) 475 { 476 struct netdev_boot_setup *s; 477 int i; 478 479 s = dev_boot_setup; 480 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 481 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 482 memset(s[i].name, 0, sizeof(s[i].name)); 483 strlcpy(s[i].name, name, IFNAMSIZ); 484 memcpy(&s[i].map, map, sizeof(s[i].map)); 485 break; 486 } 487 } 488 489 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 490 } 491 492 /** 493 * netdev_boot_setup_check - check boot time settings 494 * @dev: the netdevice 495 * 496 * Check boot time settings for the device. 497 * The found settings are set for the device to be used 498 * later in the device probing. 499 * Returns 0 if no settings found, 1 if they are. 500 */ 501 int netdev_boot_setup_check(struct net_device *dev) 502 { 503 struct netdev_boot_setup *s = dev_boot_setup; 504 int i; 505 506 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 507 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 508 !strcmp(dev->name, s[i].name)) { 509 dev->irq = s[i].map.irq; 510 dev->base_addr = s[i].map.base_addr; 511 dev->mem_start = s[i].map.mem_start; 512 dev->mem_end = s[i].map.mem_end; 513 return 1; 514 } 515 } 516 return 0; 517 } 518 519 520 /** 521 * netdev_boot_base - get address from boot time settings 522 * @prefix: prefix for network device 523 * @unit: id for network device 524 * 525 * Check boot time settings for the base address of device. 526 * The found settings are set for the device to be used 527 * later in the device probing. 528 * Returns 0 if no settings found. 529 */ 530 unsigned long netdev_boot_base(const char *prefix, int unit) 531 { 532 const struct netdev_boot_setup *s = dev_boot_setup; 533 char name[IFNAMSIZ]; 534 int i; 535 536 sprintf(name, "%s%d", prefix, unit); 537 538 /* 539 * If device already registered then return base of 1 540 * to indicate not to probe for this interface 541 */ 542 if (__dev_get_by_name(&init_net, name)) 543 return 1; 544 545 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 546 if (!strcmp(name, s[i].name)) 547 return s[i].map.base_addr; 548 return 0; 549 } 550 551 /* 552 * Saves at boot time configured settings for any netdevice. 553 */ 554 int __init netdev_boot_setup(char *str) 555 { 556 int ints[5]; 557 struct ifmap map; 558 559 str = get_options(str, ARRAY_SIZE(ints), ints); 560 if (!str || !*str) 561 return 0; 562 563 /* Save settings */ 564 memset(&map, 0, sizeof(map)); 565 if (ints[0] > 0) 566 map.irq = ints[1]; 567 if (ints[0] > 1) 568 map.base_addr = ints[2]; 569 if (ints[0] > 2) 570 map.mem_start = ints[3]; 571 if (ints[0] > 3) 572 map.mem_end = ints[4]; 573 574 /* Add new entry to the list */ 575 return netdev_boot_setup_add(str, &map); 576 } 577 578 __setup("netdev=", netdev_boot_setup); 579 580 /******************************************************************************* 581 582 Device Interface Subroutines 583 584 *******************************************************************************/ 585 586 /** 587 * __dev_get_by_name - find a device by its name 588 * @net: the applicable net namespace 589 * @name: name to find 590 * 591 * Find an interface by name. Must be called under RTNL semaphore 592 * or @dev_base_lock. If the name is found a pointer to the device 593 * is returned. If the name is not found then %NULL is returned. The 594 * reference counters are not incremented so the caller must be 595 * careful with locks. 596 */ 597 598 struct net_device *__dev_get_by_name(struct net *net, const char *name) 599 { 600 struct hlist_node *p; 601 602 hlist_for_each(p, dev_name_hash(net, name)) { 603 struct net_device *dev 604 = hlist_entry(p, struct net_device, name_hlist); 605 if (!strncmp(dev->name, name, IFNAMSIZ)) 606 return dev; 607 } 608 return NULL; 609 } 610 611 /** 612 * dev_get_by_name - find a device by its name 613 * @net: the applicable net namespace 614 * @name: name to find 615 * 616 * Find an interface by name. This can be called from any 617 * context and does its own locking. The returned handle has 618 * the usage count incremented and the caller must use dev_put() to 619 * release it when it is no longer needed. %NULL is returned if no 620 * matching device is found. 621 */ 622 623 struct net_device *dev_get_by_name(struct net *net, const char *name) 624 { 625 struct net_device *dev; 626 627 read_lock(&dev_base_lock); 628 dev = __dev_get_by_name(net, name); 629 if (dev) 630 dev_hold(dev); 631 read_unlock(&dev_base_lock); 632 return dev; 633 } 634 635 /** 636 * __dev_get_by_index - find a device by its ifindex 637 * @net: the applicable net namespace 638 * @ifindex: index of device 639 * 640 * Search for an interface by index. Returns %NULL if the device 641 * is not found or a pointer to the device. The device has not 642 * had its reference counter increased so the caller must be careful 643 * about locking. The caller must hold either the RTNL semaphore 644 * or @dev_base_lock. 645 */ 646 647 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 648 { 649 struct hlist_node *p; 650 651 hlist_for_each(p, dev_index_hash(net, ifindex)) { 652 struct net_device *dev 653 = hlist_entry(p, struct net_device, index_hlist); 654 if (dev->ifindex == ifindex) 655 return dev; 656 } 657 return NULL; 658 } 659 660 661 /** 662 * dev_get_by_index - find a device by its ifindex 663 * @net: the applicable net namespace 664 * @ifindex: index of device 665 * 666 * Search for an interface by index. Returns NULL if the device 667 * is not found or a pointer to the device. The device returned has 668 * had a reference added and the pointer is safe until the user calls 669 * dev_put to indicate they have finished with it. 670 */ 671 672 struct net_device *dev_get_by_index(struct net *net, int ifindex) 673 { 674 struct net_device *dev; 675 676 read_lock(&dev_base_lock); 677 dev = __dev_get_by_index(net, ifindex); 678 if (dev) 679 dev_hold(dev); 680 read_unlock(&dev_base_lock); 681 return dev; 682 } 683 684 /** 685 * dev_getbyhwaddr - find a device by its hardware address 686 * @net: the applicable net namespace 687 * @type: media type of device 688 * @ha: hardware address 689 * 690 * Search for an interface by MAC address. Returns NULL if the device 691 * is not found or a pointer to the device. The caller must hold the 692 * rtnl semaphore. The returned device has not had its ref count increased 693 * and the caller must therefore be careful about locking 694 * 695 * BUGS: 696 * If the API was consistent this would be __dev_get_by_hwaddr 697 */ 698 699 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha) 700 { 701 struct net_device *dev; 702 703 ASSERT_RTNL(); 704 705 for_each_netdev(net, dev) 706 if (dev->type == type && 707 !memcmp(dev->dev_addr, ha, dev->addr_len)) 708 return dev; 709 710 return NULL; 711 } 712 713 EXPORT_SYMBOL(dev_getbyhwaddr); 714 715 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 716 { 717 struct net_device *dev; 718 719 ASSERT_RTNL(); 720 for_each_netdev(net, dev) 721 if (dev->type == type) 722 return dev; 723 724 return NULL; 725 } 726 727 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 728 729 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 730 { 731 struct net_device *dev; 732 733 rtnl_lock(); 734 dev = __dev_getfirstbyhwtype(net, type); 735 if (dev) 736 dev_hold(dev); 737 rtnl_unlock(); 738 return dev; 739 } 740 741 EXPORT_SYMBOL(dev_getfirstbyhwtype); 742 743 /** 744 * dev_get_by_flags - find any device with given flags 745 * @net: the applicable net namespace 746 * @if_flags: IFF_* values 747 * @mask: bitmask of bits in if_flags to check 748 * 749 * Search for any interface with the given flags. Returns NULL if a device 750 * is not found or a pointer to the device. The device returned has 751 * had a reference added and the pointer is safe until the user calls 752 * dev_put to indicate they have finished with it. 753 */ 754 755 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask) 756 { 757 struct net_device *dev, *ret; 758 759 ret = NULL; 760 read_lock(&dev_base_lock); 761 for_each_netdev(net, dev) { 762 if (((dev->flags ^ if_flags) & mask) == 0) { 763 dev_hold(dev); 764 ret = dev; 765 break; 766 } 767 } 768 read_unlock(&dev_base_lock); 769 return ret; 770 } 771 772 /** 773 * dev_valid_name - check if name is okay for network device 774 * @name: name string 775 * 776 * Network device names need to be valid file names to 777 * to allow sysfs to work. We also disallow any kind of 778 * whitespace. 779 */ 780 int dev_valid_name(const char *name) 781 { 782 if (*name == '\0') 783 return 0; 784 if (strlen(name) >= IFNAMSIZ) 785 return 0; 786 if (!strcmp(name, ".") || !strcmp(name, "..")) 787 return 0; 788 789 while (*name) { 790 if (*name == '/' || isspace(*name)) 791 return 0; 792 name++; 793 } 794 return 1; 795 } 796 797 /** 798 * __dev_alloc_name - allocate a name for a device 799 * @net: network namespace to allocate the device name in 800 * @name: name format string 801 * @buf: scratch buffer and result name string 802 * 803 * Passed a format string - eg "lt%d" it will try and find a suitable 804 * id. It scans list of devices to build up a free map, then chooses 805 * the first empty slot. The caller must hold the dev_base or rtnl lock 806 * while allocating the name and adding the device in order to avoid 807 * duplicates. 808 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 809 * Returns the number of the unit assigned or a negative errno code. 810 */ 811 812 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 813 { 814 int i = 0; 815 const char *p; 816 const int max_netdevices = 8*PAGE_SIZE; 817 unsigned long *inuse; 818 struct net_device *d; 819 820 p = strnchr(name, IFNAMSIZ-1, '%'); 821 if (p) { 822 /* 823 * Verify the string as this thing may have come from 824 * the user. There must be either one "%d" and no other "%" 825 * characters. 826 */ 827 if (p[1] != 'd' || strchr(p + 2, '%')) 828 return -EINVAL; 829 830 /* Use one page as a bit array of possible slots */ 831 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 832 if (!inuse) 833 return -ENOMEM; 834 835 for_each_netdev(net, d) { 836 if (!sscanf(d->name, name, &i)) 837 continue; 838 if (i < 0 || i >= max_netdevices) 839 continue; 840 841 /* avoid cases where sscanf is not exact inverse of printf */ 842 snprintf(buf, IFNAMSIZ, name, i); 843 if (!strncmp(buf, d->name, IFNAMSIZ)) 844 set_bit(i, inuse); 845 } 846 847 i = find_first_zero_bit(inuse, max_netdevices); 848 free_page((unsigned long) inuse); 849 } 850 851 snprintf(buf, IFNAMSIZ, name, i); 852 if (!__dev_get_by_name(net, buf)) 853 return i; 854 855 /* It is possible to run out of possible slots 856 * when the name is long and there isn't enough space left 857 * for the digits, or if all bits are used. 858 */ 859 return -ENFILE; 860 } 861 862 /** 863 * dev_alloc_name - allocate a name for a device 864 * @dev: device 865 * @name: name format string 866 * 867 * Passed a format string - eg "lt%d" it will try and find a suitable 868 * id. It scans list of devices to build up a free map, then chooses 869 * the first empty slot. The caller must hold the dev_base or rtnl lock 870 * while allocating the name and adding the device in order to avoid 871 * duplicates. 872 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 873 * Returns the number of the unit assigned or a negative errno code. 874 */ 875 876 int dev_alloc_name(struct net_device *dev, const char *name) 877 { 878 char buf[IFNAMSIZ]; 879 struct net *net; 880 int ret; 881 882 BUG_ON(!dev_net(dev)); 883 net = dev_net(dev); 884 ret = __dev_alloc_name(net, name, buf); 885 if (ret >= 0) 886 strlcpy(dev->name, buf, IFNAMSIZ); 887 return ret; 888 } 889 890 891 /** 892 * dev_change_name - change name of a device 893 * @dev: device 894 * @newname: name (or format string) must be at least IFNAMSIZ 895 * 896 * Change name of a device, can pass format strings "eth%d". 897 * for wildcarding. 898 */ 899 int dev_change_name(struct net_device *dev, const char *newname) 900 { 901 char oldname[IFNAMSIZ]; 902 int err = 0; 903 int ret; 904 struct net *net; 905 906 ASSERT_RTNL(); 907 BUG_ON(!dev_net(dev)); 908 909 net = dev_net(dev); 910 if (dev->flags & IFF_UP) 911 return -EBUSY; 912 913 if (!dev_valid_name(newname)) 914 return -EINVAL; 915 916 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 917 return 0; 918 919 memcpy(oldname, dev->name, IFNAMSIZ); 920 921 if (strchr(newname, '%')) { 922 err = dev_alloc_name(dev, newname); 923 if (err < 0) 924 return err; 925 } 926 else if (__dev_get_by_name(net, newname)) 927 return -EEXIST; 928 else 929 strlcpy(dev->name, newname, IFNAMSIZ); 930 931 rollback: 932 /* For now only devices in the initial network namespace 933 * are in sysfs. 934 */ 935 if (net == &init_net) { 936 ret = device_rename(&dev->dev, dev->name); 937 if (ret) { 938 memcpy(dev->name, oldname, IFNAMSIZ); 939 return ret; 940 } 941 } 942 943 write_lock_bh(&dev_base_lock); 944 hlist_del(&dev->name_hlist); 945 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name)); 946 write_unlock_bh(&dev_base_lock); 947 948 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 949 ret = notifier_to_errno(ret); 950 951 if (ret) { 952 if (err) { 953 printk(KERN_ERR 954 "%s: name change rollback failed: %d.\n", 955 dev->name, ret); 956 } else { 957 err = ret; 958 memcpy(dev->name, oldname, IFNAMSIZ); 959 goto rollback; 960 } 961 } 962 963 return err; 964 } 965 966 /** 967 * dev_set_alias - change ifalias of a device 968 * @dev: device 969 * @alias: name up to IFALIASZ 970 * @len: limit of bytes to copy from info 971 * 972 * Set ifalias for a device, 973 */ 974 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 975 { 976 ASSERT_RTNL(); 977 978 if (len >= IFALIASZ) 979 return -EINVAL; 980 981 if (!len) { 982 if (dev->ifalias) { 983 kfree(dev->ifalias); 984 dev->ifalias = NULL; 985 } 986 return 0; 987 } 988 989 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL); 990 if (!dev->ifalias) 991 return -ENOMEM; 992 993 strlcpy(dev->ifalias, alias, len+1); 994 return len; 995 } 996 997 998 /** 999 * netdev_features_change - device changes features 1000 * @dev: device to cause notification 1001 * 1002 * Called to indicate a device has changed features. 1003 */ 1004 void netdev_features_change(struct net_device *dev) 1005 { 1006 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1007 } 1008 EXPORT_SYMBOL(netdev_features_change); 1009 1010 /** 1011 * netdev_state_change - device changes state 1012 * @dev: device to cause notification 1013 * 1014 * Called to indicate a device has changed state. This function calls 1015 * the notifier chains for netdev_chain and sends a NEWLINK message 1016 * to the routing socket. 1017 */ 1018 void netdev_state_change(struct net_device *dev) 1019 { 1020 if (dev->flags & IFF_UP) { 1021 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1022 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1023 } 1024 } 1025 1026 void netdev_bonding_change(struct net_device *dev) 1027 { 1028 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev); 1029 } 1030 EXPORT_SYMBOL(netdev_bonding_change); 1031 1032 /** 1033 * dev_load - load a network module 1034 * @net: the applicable net namespace 1035 * @name: name of interface 1036 * 1037 * If a network interface is not present and the process has suitable 1038 * privileges this function loads the module. If module loading is not 1039 * available in this kernel then it becomes a nop. 1040 */ 1041 1042 void dev_load(struct net *net, const char *name) 1043 { 1044 struct net_device *dev; 1045 1046 read_lock(&dev_base_lock); 1047 dev = __dev_get_by_name(net, name); 1048 read_unlock(&dev_base_lock); 1049 1050 if (!dev && capable(CAP_SYS_MODULE)) 1051 request_module("%s", name); 1052 } 1053 1054 /** 1055 * dev_open - prepare an interface for use. 1056 * @dev: device to open 1057 * 1058 * Takes a device from down to up state. The device's private open 1059 * function is invoked and then the multicast lists are loaded. Finally 1060 * the device is moved into the up state and a %NETDEV_UP message is 1061 * sent to the netdev notifier chain. 1062 * 1063 * Calling this function on an active interface is a nop. On a failure 1064 * a negative errno code is returned. 1065 */ 1066 int dev_open(struct net_device *dev) 1067 { 1068 const struct net_device_ops *ops = dev->netdev_ops; 1069 int ret = 0; 1070 1071 ASSERT_RTNL(); 1072 1073 /* 1074 * Is it already up? 1075 */ 1076 1077 if (dev->flags & IFF_UP) 1078 return 0; 1079 1080 /* 1081 * Is it even present? 1082 */ 1083 if (!netif_device_present(dev)) 1084 return -ENODEV; 1085 1086 /* 1087 * Call device private open method 1088 */ 1089 set_bit(__LINK_STATE_START, &dev->state); 1090 1091 if (ops->ndo_validate_addr) 1092 ret = ops->ndo_validate_addr(dev); 1093 1094 if (!ret && ops->ndo_open) 1095 ret = ops->ndo_open(dev); 1096 1097 /* 1098 * If it went open OK then: 1099 */ 1100 1101 if (ret) 1102 clear_bit(__LINK_STATE_START, &dev->state); 1103 else { 1104 /* 1105 * Set the flags. 1106 */ 1107 dev->flags |= IFF_UP; 1108 1109 /* 1110 * Initialize multicasting status 1111 */ 1112 dev_set_rx_mode(dev); 1113 1114 /* 1115 * Wakeup transmit queue engine 1116 */ 1117 dev_activate(dev); 1118 1119 /* 1120 * ... and announce new interface. 1121 */ 1122 call_netdevice_notifiers(NETDEV_UP, dev); 1123 } 1124 1125 return ret; 1126 } 1127 1128 /** 1129 * dev_close - shutdown an interface. 1130 * @dev: device to shutdown 1131 * 1132 * This function moves an active device into down state. A 1133 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1134 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1135 * chain. 1136 */ 1137 int dev_close(struct net_device *dev) 1138 { 1139 const struct net_device_ops *ops = dev->netdev_ops; 1140 ASSERT_RTNL(); 1141 1142 might_sleep(); 1143 1144 if (!(dev->flags & IFF_UP)) 1145 return 0; 1146 1147 /* 1148 * Tell people we are going down, so that they can 1149 * prepare to death, when device is still operating. 1150 */ 1151 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1152 1153 clear_bit(__LINK_STATE_START, &dev->state); 1154 1155 /* Synchronize to scheduled poll. We cannot touch poll list, 1156 * it can be even on different cpu. So just clear netif_running(). 1157 * 1158 * dev->stop() will invoke napi_disable() on all of it's 1159 * napi_struct instances on this device. 1160 */ 1161 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1162 1163 dev_deactivate(dev); 1164 1165 /* 1166 * Call the device specific close. This cannot fail. 1167 * Only if device is UP 1168 * 1169 * We allow it to be called even after a DETACH hot-plug 1170 * event. 1171 */ 1172 if (ops->ndo_stop) 1173 ops->ndo_stop(dev); 1174 1175 /* 1176 * Device is now down. 1177 */ 1178 1179 dev->flags &= ~IFF_UP; 1180 1181 /* 1182 * Tell people we are down 1183 */ 1184 call_netdevice_notifiers(NETDEV_DOWN, dev); 1185 1186 return 0; 1187 } 1188 1189 1190 /** 1191 * dev_disable_lro - disable Large Receive Offload on a device 1192 * @dev: device 1193 * 1194 * Disable Large Receive Offload (LRO) on a net device. Must be 1195 * called under RTNL. This is needed if received packets may be 1196 * forwarded to another interface. 1197 */ 1198 void dev_disable_lro(struct net_device *dev) 1199 { 1200 if (dev->ethtool_ops && dev->ethtool_ops->get_flags && 1201 dev->ethtool_ops->set_flags) { 1202 u32 flags = dev->ethtool_ops->get_flags(dev); 1203 if (flags & ETH_FLAG_LRO) { 1204 flags &= ~ETH_FLAG_LRO; 1205 dev->ethtool_ops->set_flags(dev, flags); 1206 } 1207 } 1208 WARN_ON(dev->features & NETIF_F_LRO); 1209 } 1210 EXPORT_SYMBOL(dev_disable_lro); 1211 1212 1213 static int dev_boot_phase = 1; 1214 1215 /* 1216 * Device change register/unregister. These are not inline or static 1217 * as we export them to the world. 1218 */ 1219 1220 /** 1221 * register_netdevice_notifier - register a network notifier block 1222 * @nb: notifier 1223 * 1224 * Register a notifier to be called when network device events occur. 1225 * The notifier passed is linked into the kernel structures and must 1226 * not be reused until it has been unregistered. A negative errno code 1227 * is returned on a failure. 1228 * 1229 * When registered all registration and up events are replayed 1230 * to the new notifier to allow device to have a race free 1231 * view of the network device list. 1232 */ 1233 1234 int register_netdevice_notifier(struct notifier_block *nb) 1235 { 1236 struct net_device *dev; 1237 struct net_device *last; 1238 struct net *net; 1239 int err; 1240 1241 rtnl_lock(); 1242 err = raw_notifier_chain_register(&netdev_chain, nb); 1243 if (err) 1244 goto unlock; 1245 if (dev_boot_phase) 1246 goto unlock; 1247 for_each_net(net) { 1248 for_each_netdev(net, dev) { 1249 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1250 err = notifier_to_errno(err); 1251 if (err) 1252 goto rollback; 1253 1254 if (!(dev->flags & IFF_UP)) 1255 continue; 1256 1257 nb->notifier_call(nb, NETDEV_UP, dev); 1258 } 1259 } 1260 1261 unlock: 1262 rtnl_unlock(); 1263 return err; 1264 1265 rollback: 1266 last = dev; 1267 for_each_net(net) { 1268 for_each_netdev(net, dev) { 1269 if (dev == last) 1270 break; 1271 1272 if (dev->flags & IFF_UP) { 1273 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1274 nb->notifier_call(nb, NETDEV_DOWN, dev); 1275 } 1276 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1277 } 1278 } 1279 1280 raw_notifier_chain_unregister(&netdev_chain, nb); 1281 goto unlock; 1282 } 1283 1284 /** 1285 * unregister_netdevice_notifier - unregister a network notifier block 1286 * @nb: notifier 1287 * 1288 * Unregister a notifier previously registered by 1289 * register_netdevice_notifier(). The notifier is unlinked into the 1290 * kernel structures and may then be reused. A negative errno code 1291 * is returned on a failure. 1292 */ 1293 1294 int unregister_netdevice_notifier(struct notifier_block *nb) 1295 { 1296 int err; 1297 1298 rtnl_lock(); 1299 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1300 rtnl_unlock(); 1301 return err; 1302 } 1303 1304 /** 1305 * call_netdevice_notifiers - call all network notifier blocks 1306 * @val: value passed unmodified to notifier function 1307 * @dev: net_device pointer passed unmodified to notifier function 1308 * 1309 * Call all network notifier blocks. Parameters and return value 1310 * are as for raw_notifier_call_chain(). 1311 */ 1312 1313 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1314 { 1315 return raw_notifier_call_chain(&netdev_chain, val, dev); 1316 } 1317 1318 /* When > 0 there are consumers of rx skb time stamps */ 1319 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1320 1321 void net_enable_timestamp(void) 1322 { 1323 atomic_inc(&netstamp_needed); 1324 } 1325 1326 void net_disable_timestamp(void) 1327 { 1328 atomic_dec(&netstamp_needed); 1329 } 1330 1331 static inline void net_timestamp(struct sk_buff *skb) 1332 { 1333 if (atomic_read(&netstamp_needed)) 1334 __net_timestamp(skb); 1335 else 1336 skb->tstamp.tv64 = 0; 1337 } 1338 1339 /* 1340 * Support routine. Sends outgoing frames to any network 1341 * taps currently in use. 1342 */ 1343 1344 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1345 { 1346 struct packet_type *ptype; 1347 1348 net_timestamp(skb); 1349 1350 rcu_read_lock(); 1351 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1352 /* Never send packets back to the socket 1353 * they originated from - MvS ([email protected]) 1354 */ 1355 if ((ptype->dev == dev || !ptype->dev) && 1356 (ptype->af_packet_priv == NULL || 1357 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1358 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC); 1359 if (!skb2) 1360 break; 1361 1362 /* skb->nh should be correctly 1363 set by sender, so that the second statement is 1364 just protection against buggy protocols. 1365 */ 1366 skb_reset_mac_header(skb2); 1367 1368 if (skb_network_header(skb2) < skb2->data || 1369 skb2->network_header > skb2->tail) { 1370 if (net_ratelimit()) 1371 printk(KERN_CRIT "protocol %04x is " 1372 "buggy, dev %s\n", 1373 skb2->protocol, dev->name); 1374 skb_reset_network_header(skb2); 1375 } 1376 1377 skb2->transport_header = skb2->network_header; 1378 skb2->pkt_type = PACKET_OUTGOING; 1379 ptype->func(skb2, skb->dev, ptype, skb->dev); 1380 } 1381 } 1382 rcu_read_unlock(); 1383 } 1384 1385 1386 static inline void __netif_reschedule(struct Qdisc *q) 1387 { 1388 struct softnet_data *sd; 1389 unsigned long flags; 1390 1391 local_irq_save(flags); 1392 sd = &__get_cpu_var(softnet_data); 1393 q->next_sched = sd->output_queue; 1394 sd->output_queue = q; 1395 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1396 local_irq_restore(flags); 1397 } 1398 1399 void __netif_schedule(struct Qdisc *q) 1400 { 1401 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1402 __netif_reschedule(q); 1403 } 1404 EXPORT_SYMBOL(__netif_schedule); 1405 1406 void dev_kfree_skb_irq(struct sk_buff *skb) 1407 { 1408 if (atomic_dec_and_test(&skb->users)) { 1409 struct softnet_data *sd; 1410 unsigned long flags; 1411 1412 local_irq_save(flags); 1413 sd = &__get_cpu_var(softnet_data); 1414 skb->next = sd->completion_queue; 1415 sd->completion_queue = skb; 1416 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1417 local_irq_restore(flags); 1418 } 1419 } 1420 EXPORT_SYMBOL(dev_kfree_skb_irq); 1421 1422 void dev_kfree_skb_any(struct sk_buff *skb) 1423 { 1424 if (in_irq() || irqs_disabled()) 1425 dev_kfree_skb_irq(skb); 1426 else 1427 dev_kfree_skb(skb); 1428 } 1429 EXPORT_SYMBOL(dev_kfree_skb_any); 1430 1431 1432 /** 1433 * netif_device_detach - mark device as removed 1434 * @dev: network device 1435 * 1436 * Mark device as removed from system and therefore no longer available. 1437 */ 1438 void netif_device_detach(struct net_device *dev) 1439 { 1440 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1441 netif_running(dev)) { 1442 netif_stop_queue(dev); 1443 } 1444 } 1445 EXPORT_SYMBOL(netif_device_detach); 1446 1447 /** 1448 * netif_device_attach - mark device as attached 1449 * @dev: network device 1450 * 1451 * Mark device as attached from system and restart if needed. 1452 */ 1453 void netif_device_attach(struct net_device *dev) 1454 { 1455 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1456 netif_running(dev)) { 1457 netif_wake_queue(dev); 1458 __netdev_watchdog_up(dev); 1459 } 1460 } 1461 EXPORT_SYMBOL(netif_device_attach); 1462 1463 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 1464 { 1465 return ((features & NETIF_F_GEN_CSUM) || 1466 ((features & NETIF_F_IP_CSUM) && 1467 protocol == htons(ETH_P_IP)) || 1468 ((features & NETIF_F_IPV6_CSUM) && 1469 protocol == htons(ETH_P_IPV6))); 1470 } 1471 1472 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb) 1473 { 1474 if (can_checksum_protocol(dev->features, skb->protocol)) 1475 return true; 1476 1477 if (skb->protocol == htons(ETH_P_8021Q)) { 1478 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 1479 if (can_checksum_protocol(dev->features & dev->vlan_features, 1480 veh->h_vlan_encapsulated_proto)) 1481 return true; 1482 } 1483 1484 return false; 1485 } 1486 1487 /* 1488 * Invalidate hardware checksum when packet is to be mangled, and 1489 * complete checksum manually on outgoing path. 1490 */ 1491 int skb_checksum_help(struct sk_buff *skb) 1492 { 1493 __wsum csum; 1494 int ret = 0, offset; 1495 1496 if (skb->ip_summed == CHECKSUM_COMPLETE) 1497 goto out_set_summed; 1498 1499 if (unlikely(skb_shinfo(skb)->gso_size)) { 1500 /* Let GSO fix up the checksum. */ 1501 goto out_set_summed; 1502 } 1503 1504 offset = skb->csum_start - skb_headroom(skb); 1505 BUG_ON(offset >= skb_headlen(skb)); 1506 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1507 1508 offset += skb->csum_offset; 1509 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1510 1511 if (skb_cloned(skb) && 1512 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1513 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1514 if (ret) 1515 goto out; 1516 } 1517 1518 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1519 out_set_summed: 1520 skb->ip_summed = CHECKSUM_NONE; 1521 out: 1522 return ret; 1523 } 1524 1525 /** 1526 * skb_gso_segment - Perform segmentation on skb. 1527 * @skb: buffer to segment 1528 * @features: features for the output path (see dev->features) 1529 * 1530 * This function segments the given skb and returns a list of segments. 1531 * 1532 * It may return NULL if the skb requires no segmentation. This is 1533 * only possible when GSO is used for verifying header integrity. 1534 */ 1535 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features) 1536 { 1537 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1538 struct packet_type *ptype; 1539 __be16 type = skb->protocol; 1540 int err; 1541 1542 skb_reset_mac_header(skb); 1543 skb->mac_len = skb->network_header - skb->mac_header; 1544 __skb_pull(skb, skb->mac_len); 1545 1546 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) { 1547 if (skb_header_cloned(skb) && 1548 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1549 return ERR_PTR(err); 1550 } 1551 1552 rcu_read_lock(); 1553 list_for_each_entry_rcu(ptype, 1554 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1555 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1556 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1557 err = ptype->gso_send_check(skb); 1558 segs = ERR_PTR(err); 1559 if (err || skb_gso_ok(skb, features)) 1560 break; 1561 __skb_push(skb, (skb->data - 1562 skb_network_header(skb))); 1563 } 1564 segs = ptype->gso_segment(skb, features); 1565 break; 1566 } 1567 } 1568 rcu_read_unlock(); 1569 1570 __skb_push(skb, skb->data - skb_mac_header(skb)); 1571 1572 return segs; 1573 } 1574 1575 EXPORT_SYMBOL(skb_gso_segment); 1576 1577 /* Take action when hardware reception checksum errors are detected. */ 1578 #ifdef CONFIG_BUG 1579 void netdev_rx_csum_fault(struct net_device *dev) 1580 { 1581 if (net_ratelimit()) { 1582 printk(KERN_ERR "%s: hw csum failure.\n", 1583 dev ? dev->name : "<unknown>"); 1584 dump_stack(); 1585 } 1586 } 1587 EXPORT_SYMBOL(netdev_rx_csum_fault); 1588 #endif 1589 1590 /* Actually, we should eliminate this check as soon as we know, that: 1591 * 1. IOMMU is present and allows to map all the memory. 1592 * 2. No high memory really exists on this machine. 1593 */ 1594 1595 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1596 { 1597 #ifdef CONFIG_HIGHMEM 1598 int i; 1599 1600 if (dev->features & NETIF_F_HIGHDMA) 1601 return 0; 1602 1603 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1604 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1605 return 1; 1606 1607 #endif 1608 return 0; 1609 } 1610 1611 struct dev_gso_cb { 1612 void (*destructor)(struct sk_buff *skb); 1613 }; 1614 1615 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1616 1617 static void dev_gso_skb_destructor(struct sk_buff *skb) 1618 { 1619 struct dev_gso_cb *cb; 1620 1621 do { 1622 struct sk_buff *nskb = skb->next; 1623 1624 skb->next = nskb->next; 1625 nskb->next = NULL; 1626 kfree_skb(nskb); 1627 } while (skb->next); 1628 1629 cb = DEV_GSO_CB(skb); 1630 if (cb->destructor) 1631 cb->destructor(skb); 1632 } 1633 1634 /** 1635 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1636 * @skb: buffer to segment 1637 * 1638 * This function segments the given skb and stores the list of segments 1639 * in skb->next. 1640 */ 1641 static int dev_gso_segment(struct sk_buff *skb) 1642 { 1643 struct net_device *dev = skb->dev; 1644 struct sk_buff *segs; 1645 int features = dev->features & ~(illegal_highdma(dev, skb) ? 1646 NETIF_F_SG : 0); 1647 1648 segs = skb_gso_segment(skb, features); 1649 1650 /* Verifying header integrity only. */ 1651 if (!segs) 1652 return 0; 1653 1654 if (IS_ERR(segs)) 1655 return PTR_ERR(segs); 1656 1657 skb->next = segs; 1658 DEV_GSO_CB(skb)->destructor = skb->destructor; 1659 skb->destructor = dev_gso_skb_destructor; 1660 1661 return 0; 1662 } 1663 1664 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 1665 struct netdev_queue *txq) 1666 { 1667 const struct net_device_ops *ops = dev->netdev_ops; 1668 1669 prefetch(&dev->netdev_ops->ndo_start_xmit); 1670 if (likely(!skb->next)) { 1671 if (!list_empty(&ptype_all)) 1672 dev_queue_xmit_nit(skb, dev); 1673 1674 if (netif_needs_gso(dev, skb)) { 1675 if (unlikely(dev_gso_segment(skb))) 1676 goto out_kfree_skb; 1677 if (skb->next) 1678 goto gso; 1679 } 1680 1681 return ops->ndo_start_xmit(skb, dev); 1682 } 1683 1684 gso: 1685 do { 1686 struct sk_buff *nskb = skb->next; 1687 int rc; 1688 1689 skb->next = nskb->next; 1690 nskb->next = NULL; 1691 rc = ops->ndo_start_xmit(nskb, dev); 1692 if (unlikely(rc)) { 1693 nskb->next = skb->next; 1694 skb->next = nskb; 1695 return rc; 1696 } 1697 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 1698 return NETDEV_TX_BUSY; 1699 } while (skb->next); 1700 1701 skb->destructor = DEV_GSO_CB(skb)->destructor; 1702 1703 out_kfree_skb: 1704 kfree_skb(skb); 1705 return 0; 1706 } 1707 1708 static u32 simple_tx_hashrnd; 1709 static int simple_tx_hashrnd_initialized = 0; 1710 1711 static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb) 1712 { 1713 u32 addr1, addr2, ports; 1714 u32 hash, ihl; 1715 u8 ip_proto = 0; 1716 1717 if (unlikely(!simple_tx_hashrnd_initialized)) { 1718 get_random_bytes(&simple_tx_hashrnd, 4); 1719 simple_tx_hashrnd_initialized = 1; 1720 } 1721 1722 switch (skb->protocol) { 1723 case htons(ETH_P_IP): 1724 if (!(ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET))) 1725 ip_proto = ip_hdr(skb)->protocol; 1726 addr1 = ip_hdr(skb)->saddr; 1727 addr2 = ip_hdr(skb)->daddr; 1728 ihl = ip_hdr(skb)->ihl; 1729 break; 1730 case htons(ETH_P_IPV6): 1731 ip_proto = ipv6_hdr(skb)->nexthdr; 1732 addr1 = ipv6_hdr(skb)->saddr.s6_addr32[3]; 1733 addr2 = ipv6_hdr(skb)->daddr.s6_addr32[3]; 1734 ihl = (40 >> 2); 1735 break; 1736 default: 1737 return 0; 1738 } 1739 1740 1741 switch (ip_proto) { 1742 case IPPROTO_TCP: 1743 case IPPROTO_UDP: 1744 case IPPROTO_DCCP: 1745 case IPPROTO_ESP: 1746 case IPPROTO_AH: 1747 case IPPROTO_SCTP: 1748 case IPPROTO_UDPLITE: 1749 ports = *((u32 *) (skb_network_header(skb) + (ihl * 4))); 1750 break; 1751 1752 default: 1753 ports = 0; 1754 break; 1755 } 1756 1757 hash = jhash_3words(addr1, addr2, ports, simple_tx_hashrnd); 1758 1759 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32); 1760 } 1761 1762 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 1763 struct sk_buff *skb) 1764 { 1765 const struct net_device_ops *ops = dev->netdev_ops; 1766 u16 queue_index = 0; 1767 1768 if (ops->ndo_select_queue) 1769 queue_index = ops->ndo_select_queue(dev, skb); 1770 else if (dev->real_num_tx_queues > 1) 1771 queue_index = simple_tx_hash(dev, skb); 1772 1773 skb_set_queue_mapping(skb, queue_index); 1774 return netdev_get_tx_queue(dev, queue_index); 1775 } 1776 1777 /** 1778 * dev_queue_xmit - transmit a buffer 1779 * @skb: buffer to transmit 1780 * 1781 * Queue a buffer for transmission to a network device. The caller must 1782 * have set the device and priority and built the buffer before calling 1783 * this function. The function can be called from an interrupt. 1784 * 1785 * A negative errno code is returned on a failure. A success does not 1786 * guarantee the frame will be transmitted as it may be dropped due 1787 * to congestion or traffic shaping. 1788 * 1789 * ----------------------------------------------------------------------------------- 1790 * I notice this method can also return errors from the queue disciplines, 1791 * including NET_XMIT_DROP, which is a positive value. So, errors can also 1792 * be positive. 1793 * 1794 * Regardless of the return value, the skb is consumed, so it is currently 1795 * difficult to retry a send to this method. (You can bump the ref count 1796 * before sending to hold a reference for retry if you are careful.) 1797 * 1798 * When calling this method, interrupts MUST be enabled. This is because 1799 * the BH enable code must have IRQs enabled so that it will not deadlock. 1800 * --BLG 1801 */ 1802 int dev_queue_xmit(struct sk_buff *skb) 1803 { 1804 struct net_device *dev = skb->dev; 1805 struct netdev_queue *txq; 1806 struct Qdisc *q; 1807 int rc = -ENOMEM; 1808 1809 /* GSO will handle the following emulations directly. */ 1810 if (netif_needs_gso(dev, skb)) 1811 goto gso; 1812 1813 if (skb_shinfo(skb)->frag_list && 1814 !(dev->features & NETIF_F_FRAGLIST) && 1815 __skb_linearize(skb)) 1816 goto out_kfree_skb; 1817 1818 /* Fragmented skb is linearized if device does not support SG, 1819 * or if at least one of fragments is in highmem and device 1820 * does not support DMA from it. 1821 */ 1822 if (skb_shinfo(skb)->nr_frags && 1823 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) && 1824 __skb_linearize(skb)) 1825 goto out_kfree_skb; 1826 1827 /* If packet is not checksummed and device does not support 1828 * checksumming for this protocol, complete checksumming here. 1829 */ 1830 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1831 skb_set_transport_header(skb, skb->csum_start - 1832 skb_headroom(skb)); 1833 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb)) 1834 goto out_kfree_skb; 1835 } 1836 1837 gso: 1838 /* Disable soft irqs for various locks below. Also 1839 * stops preemption for RCU. 1840 */ 1841 rcu_read_lock_bh(); 1842 1843 txq = dev_pick_tx(dev, skb); 1844 q = rcu_dereference(txq->qdisc); 1845 1846 #ifdef CONFIG_NET_CLS_ACT 1847 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS); 1848 #endif 1849 if (q->enqueue) { 1850 spinlock_t *root_lock = qdisc_lock(q); 1851 1852 spin_lock(root_lock); 1853 1854 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 1855 kfree_skb(skb); 1856 rc = NET_XMIT_DROP; 1857 } else { 1858 rc = qdisc_enqueue_root(skb, q); 1859 qdisc_run(q); 1860 } 1861 spin_unlock(root_lock); 1862 1863 goto out; 1864 } 1865 1866 /* The device has no queue. Common case for software devices: 1867 loopback, all the sorts of tunnels... 1868 1869 Really, it is unlikely that netif_tx_lock protection is necessary 1870 here. (f.e. loopback and IP tunnels are clean ignoring statistics 1871 counters.) 1872 However, it is possible, that they rely on protection 1873 made by us here. 1874 1875 Check this and shot the lock. It is not prone from deadlocks. 1876 Either shot noqueue qdisc, it is even simpler 8) 1877 */ 1878 if (dev->flags & IFF_UP) { 1879 int cpu = smp_processor_id(); /* ok because BHs are off */ 1880 1881 if (txq->xmit_lock_owner != cpu) { 1882 1883 HARD_TX_LOCK(dev, txq, cpu); 1884 1885 if (!netif_tx_queue_stopped(txq)) { 1886 rc = 0; 1887 if (!dev_hard_start_xmit(skb, dev, txq)) { 1888 HARD_TX_UNLOCK(dev, txq); 1889 goto out; 1890 } 1891 } 1892 HARD_TX_UNLOCK(dev, txq); 1893 if (net_ratelimit()) 1894 printk(KERN_CRIT "Virtual device %s asks to " 1895 "queue packet!\n", dev->name); 1896 } else { 1897 /* Recursion is detected! It is possible, 1898 * unfortunately */ 1899 if (net_ratelimit()) 1900 printk(KERN_CRIT "Dead loop on virtual device " 1901 "%s, fix it urgently!\n", dev->name); 1902 } 1903 } 1904 1905 rc = -ENETDOWN; 1906 rcu_read_unlock_bh(); 1907 1908 out_kfree_skb: 1909 kfree_skb(skb); 1910 return rc; 1911 out: 1912 rcu_read_unlock_bh(); 1913 return rc; 1914 } 1915 1916 1917 /*======================================================================= 1918 Receiver routines 1919 =======================================================================*/ 1920 1921 int netdev_max_backlog __read_mostly = 1000; 1922 int netdev_budget __read_mostly = 300; 1923 int weight_p __read_mostly = 64; /* old backlog weight */ 1924 1925 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, }; 1926 1927 1928 /** 1929 * netif_rx - post buffer to the network code 1930 * @skb: buffer to post 1931 * 1932 * This function receives a packet from a device driver and queues it for 1933 * the upper (protocol) levels to process. It always succeeds. The buffer 1934 * may be dropped during processing for congestion control or by the 1935 * protocol layers. 1936 * 1937 * return values: 1938 * NET_RX_SUCCESS (no congestion) 1939 * NET_RX_DROP (packet was dropped) 1940 * 1941 */ 1942 1943 int netif_rx(struct sk_buff *skb) 1944 { 1945 struct softnet_data *queue; 1946 unsigned long flags; 1947 1948 /* if netpoll wants it, pretend we never saw it */ 1949 if (netpoll_rx(skb)) 1950 return NET_RX_DROP; 1951 1952 if (!skb->tstamp.tv64) 1953 net_timestamp(skb); 1954 1955 /* 1956 * The code is rearranged so that the path is the most 1957 * short when CPU is congested, but is still operating. 1958 */ 1959 local_irq_save(flags); 1960 queue = &__get_cpu_var(softnet_data); 1961 1962 __get_cpu_var(netdev_rx_stat).total++; 1963 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) { 1964 if (queue->input_pkt_queue.qlen) { 1965 enqueue: 1966 __skb_queue_tail(&queue->input_pkt_queue, skb); 1967 local_irq_restore(flags); 1968 return NET_RX_SUCCESS; 1969 } 1970 1971 napi_schedule(&queue->backlog); 1972 goto enqueue; 1973 } 1974 1975 __get_cpu_var(netdev_rx_stat).dropped++; 1976 local_irq_restore(flags); 1977 1978 kfree_skb(skb); 1979 return NET_RX_DROP; 1980 } 1981 1982 int netif_rx_ni(struct sk_buff *skb) 1983 { 1984 int err; 1985 1986 preempt_disable(); 1987 err = netif_rx(skb); 1988 if (local_softirq_pending()) 1989 do_softirq(); 1990 preempt_enable(); 1991 1992 return err; 1993 } 1994 1995 EXPORT_SYMBOL(netif_rx_ni); 1996 1997 static void net_tx_action(struct softirq_action *h) 1998 { 1999 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2000 2001 if (sd->completion_queue) { 2002 struct sk_buff *clist; 2003 2004 local_irq_disable(); 2005 clist = sd->completion_queue; 2006 sd->completion_queue = NULL; 2007 local_irq_enable(); 2008 2009 while (clist) { 2010 struct sk_buff *skb = clist; 2011 clist = clist->next; 2012 2013 WARN_ON(atomic_read(&skb->users)); 2014 __kfree_skb(skb); 2015 } 2016 } 2017 2018 if (sd->output_queue) { 2019 struct Qdisc *head; 2020 2021 local_irq_disable(); 2022 head = sd->output_queue; 2023 sd->output_queue = NULL; 2024 local_irq_enable(); 2025 2026 while (head) { 2027 struct Qdisc *q = head; 2028 spinlock_t *root_lock; 2029 2030 head = head->next_sched; 2031 2032 root_lock = qdisc_lock(q); 2033 if (spin_trylock(root_lock)) { 2034 smp_mb__before_clear_bit(); 2035 clear_bit(__QDISC_STATE_SCHED, 2036 &q->state); 2037 qdisc_run(q); 2038 spin_unlock(root_lock); 2039 } else { 2040 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2041 &q->state)) { 2042 __netif_reschedule(q); 2043 } else { 2044 smp_mb__before_clear_bit(); 2045 clear_bit(__QDISC_STATE_SCHED, 2046 &q->state); 2047 } 2048 } 2049 } 2050 } 2051 } 2052 2053 static inline int deliver_skb(struct sk_buff *skb, 2054 struct packet_type *pt_prev, 2055 struct net_device *orig_dev) 2056 { 2057 atomic_inc(&skb->users); 2058 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2059 } 2060 2061 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE) 2062 /* These hooks defined here for ATM */ 2063 struct net_bridge; 2064 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br, 2065 unsigned char *addr); 2066 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly; 2067 2068 /* 2069 * If bridge module is loaded call bridging hook. 2070 * returns NULL if packet was consumed. 2071 */ 2072 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p, 2073 struct sk_buff *skb) __read_mostly; 2074 static inline struct sk_buff *handle_bridge(struct sk_buff *skb, 2075 struct packet_type **pt_prev, int *ret, 2076 struct net_device *orig_dev) 2077 { 2078 struct net_bridge_port *port; 2079 2080 if (skb->pkt_type == PACKET_LOOPBACK || 2081 (port = rcu_dereference(skb->dev->br_port)) == NULL) 2082 return skb; 2083 2084 if (*pt_prev) { 2085 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2086 *pt_prev = NULL; 2087 } 2088 2089 return br_handle_frame_hook(port, skb); 2090 } 2091 #else 2092 #define handle_bridge(skb, pt_prev, ret, orig_dev) (skb) 2093 #endif 2094 2095 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE) 2096 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly; 2097 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook); 2098 2099 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb, 2100 struct packet_type **pt_prev, 2101 int *ret, 2102 struct net_device *orig_dev) 2103 { 2104 if (skb->dev->macvlan_port == NULL) 2105 return skb; 2106 2107 if (*pt_prev) { 2108 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2109 *pt_prev = NULL; 2110 } 2111 return macvlan_handle_frame_hook(skb); 2112 } 2113 #else 2114 #define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb) 2115 #endif 2116 2117 #ifdef CONFIG_NET_CLS_ACT 2118 /* TODO: Maybe we should just force sch_ingress to be compiled in 2119 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2120 * a compare and 2 stores extra right now if we dont have it on 2121 * but have CONFIG_NET_CLS_ACT 2122 * NOTE: This doesnt stop any functionality; if you dont have 2123 * the ingress scheduler, you just cant add policies on ingress. 2124 * 2125 */ 2126 static int ing_filter(struct sk_buff *skb) 2127 { 2128 struct net_device *dev = skb->dev; 2129 u32 ttl = G_TC_RTTL(skb->tc_verd); 2130 struct netdev_queue *rxq; 2131 int result = TC_ACT_OK; 2132 struct Qdisc *q; 2133 2134 if (MAX_RED_LOOP < ttl++) { 2135 printk(KERN_WARNING 2136 "Redir loop detected Dropping packet (%d->%d)\n", 2137 skb->iif, dev->ifindex); 2138 return TC_ACT_SHOT; 2139 } 2140 2141 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2142 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2143 2144 rxq = &dev->rx_queue; 2145 2146 q = rxq->qdisc; 2147 if (q != &noop_qdisc) { 2148 spin_lock(qdisc_lock(q)); 2149 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 2150 result = qdisc_enqueue_root(skb, q); 2151 spin_unlock(qdisc_lock(q)); 2152 } 2153 2154 return result; 2155 } 2156 2157 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 2158 struct packet_type **pt_prev, 2159 int *ret, struct net_device *orig_dev) 2160 { 2161 if (skb->dev->rx_queue.qdisc == &noop_qdisc) 2162 goto out; 2163 2164 if (*pt_prev) { 2165 *ret = deliver_skb(skb, *pt_prev, orig_dev); 2166 *pt_prev = NULL; 2167 } else { 2168 /* Huh? Why does turning on AF_PACKET affect this? */ 2169 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd); 2170 } 2171 2172 switch (ing_filter(skb)) { 2173 case TC_ACT_SHOT: 2174 case TC_ACT_STOLEN: 2175 kfree_skb(skb); 2176 return NULL; 2177 } 2178 2179 out: 2180 skb->tc_verd = 0; 2181 return skb; 2182 } 2183 #endif 2184 2185 /* 2186 * netif_nit_deliver - deliver received packets to network taps 2187 * @skb: buffer 2188 * 2189 * This function is used to deliver incoming packets to network 2190 * taps. It should be used when the normal netif_receive_skb path 2191 * is bypassed, for example because of VLAN acceleration. 2192 */ 2193 void netif_nit_deliver(struct sk_buff *skb) 2194 { 2195 struct packet_type *ptype; 2196 2197 if (list_empty(&ptype_all)) 2198 return; 2199 2200 skb_reset_network_header(skb); 2201 skb_reset_transport_header(skb); 2202 skb->mac_len = skb->network_header - skb->mac_header; 2203 2204 rcu_read_lock(); 2205 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2206 if (!ptype->dev || ptype->dev == skb->dev) 2207 deliver_skb(skb, ptype, skb->dev); 2208 } 2209 rcu_read_unlock(); 2210 } 2211 2212 /** 2213 * netif_receive_skb - process receive buffer from network 2214 * @skb: buffer to process 2215 * 2216 * netif_receive_skb() is the main receive data processing function. 2217 * It always succeeds. The buffer may be dropped during processing 2218 * for congestion control or by the protocol layers. 2219 * 2220 * This function may only be called from softirq context and interrupts 2221 * should be enabled. 2222 * 2223 * Return values (usually ignored): 2224 * NET_RX_SUCCESS: no congestion 2225 * NET_RX_DROP: packet was dropped 2226 */ 2227 int netif_receive_skb(struct sk_buff *skb) 2228 { 2229 struct packet_type *ptype, *pt_prev; 2230 struct net_device *orig_dev; 2231 struct net_device *null_or_orig; 2232 int ret = NET_RX_DROP; 2233 __be16 type; 2234 2235 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb)) 2236 return NET_RX_SUCCESS; 2237 2238 /* if we've gotten here through NAPI, check netpoll */ 2239 if (netpoll_receive_skb(skb)) 2240 return NET_RX_DROP; 2241 2242 if (!skb->tstamp.tv64) 2243 net_timestamp(skb); 2244 2245 if (!skb->iif) 2246 skb->iif = skb->dev->ifindex; 2247 2248 null_or_orig = NULL; 2249 orig_dev = skb->dev; 2250 if (orig_dev->master) { 2251 if (skb_bond_should_drop(skb)) 2252 null_or_orig = orig_dev; /* deliver only exact match */ 2253 else 2254 skb->dev = orig_dev->master; 2255 } 2256 2257 __get_cpu_var(netdev_rx_stat).total++; 2258 2259 skb_reset_network_header(skb); 2260 skb_reset_transport_header(skb); 2261 skb->mac_len = skb->network_header - skb->mac_header; 2262 2263 pt_prev = NULL; 2264 2265 rcu_read_lock(); 2266 2267 /* Don't receive packets in an exiting network namespace */ 2268 if (!net_alive(dev_net(skb->dev))) { 2269 kfree_skb(skb); 2270 goto out; 2271 } 2272 2273 #ifdef CONFIG_NET_CLS_ACT 2274 if (skb->tc_verd & TC_NCLS) { 2275 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 2276 goto ncls; 2277 } 2278 #endif 2279 2280 list_for_each_entry_rcu(ptype, &ptype_all, list) { 2281 if (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2282 ptype->dev == orig_dev) { 2283 if (pt_prev) 2284 ret = deliver_skb(skb, pt_prev, orig_dev); 2285 pt_prev = ptype; 2286 } 2287 } 2288 2289 #ifdef CONFIG_NET_CLS_ACT 2290 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 2291 if (!skb) 2292 goto out; 2293 ncls: 2294 #endif 2295 2296 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 2297 if (!skb) 2298 goto out; 2299 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev); 2300 if (!skb) 2301 goto out; 2302 2303 type = skb->protocol; 2304 list_for_each_entry_rcu(ptype, 2305 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 2306 if (ptype->type == type && 2307 (ptype->dev == null_or_orig || ptype->dev == skb->dev || 2308 ptype->dev == orig_dev)) { 2309 if (pt_prev) 2310 ret = deliver_skb(skb, pt_prev, orig_dev); 2311 pt_prev = ptype; 2312 } 2313 } 2314 2315 if (pt_prev) { 2316 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2317 } else { 2318 kfree_skb(skb); 2319 /* Jamal, now you will not able to escape explaining 2320 * me how you were going to use this. :-) 2321 */ 2322 ret = NET_RX_DROP; 2323 } 2324 2325 out: 2326 rcu_read_unlock(); 2327 return ret; 2328 } 2329 2330 /* Network device is going away, flush any packets still pending */ 2331 static void flush_backlog(void *arg) 2332 { 2333 struct net_device *dev = arg; 2334 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2335 struct sk_buff *skb, *tmp; 2336 2337 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp) 2338 if (skb->dev == dev) { 2339 __skb_unlink(skb, &queue->input_pkt_queue); 2340 kfree_skb(skb); 2341 } 2342 } 2343 2344 static int napi_gro_complete(struct sk_buff *skb) 2345 { 2346 struct packet_type *ptype; 2347 __be16 type = skb->protocol; 2348 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2349 int err = -ENOENT; 2350 2351 if (NAPI_GRO_CB(skb)->count == 1) 2352 goto out; 2353 2354 rcu_read_lock(); 2355 list_for_each_entry_rcu(ptype, head, list) { 2356 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 2357 continue; 2358 2359 err = ptype->gro_complete(skb); 2360 break; 2361 } 2362 rcu_read_unlock(); 2363 2364 if (err) { 2365 WARN_ON(&ptype->list == head); 2366 kfree_skb(skb); 2367 return NET_RX_SUCCESS; 2368 } 2369 2370 out: 2371 skb_shinfo(skb)->gso_size = 0; 2372 __skb_push(skb, -skb_network_offset(skb)); 2373 return netif_receive_skb(skb); 2374 } 2375 2376 void napi_gro_flush(struct napi_struct *napi) 2377 { 2378 struct sk_buff *skb, *next; 2379 2380 for (skb = napi->gro_list; skb; skb = next) { 2381 next = skb->next; 2382 skb->next = NULL; 2383 napi_gro_complete(skb); 2384 } 2385 2386 napi->gro_list = NULL; 2387 } 2388 EXPORT_SYMBOL(napi_gro_flush); 2389 2390 static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2391 { 2392 struct sk_buff **pp = NULL; 2393 struct packet_type *ptype; 2394 __be16 type = skb->protocol; 2395 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 2396 int count = 0; 2397 int same_flow; 2398 int mac_len; 2399 int free; 2400 2401 if (!(skb->dev->features & NETIF_F_GRO)) 2402 goto normal; 2403 2404 rcu_read_lock(); 2405 list_for_each_entry_rcu(ptype, head, list) { 2406 struct sk_buff *p; 2407 2408 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 2409 continue; 2410 2411 skb_reset_network_header(skb); 2412 mac_len = skb->network_header - skb->mac_header; 2413 skb->mac_len = mac_len; 2414 NAPI_GRO_CB(skb)->same_flow = 0; 2415 NAPI_GRO_CB(skb)->flush = 0; 2416 NAPI_GRO_CB(skb)->free = 0; 2417 2418 for (p = napi->gro_list; p; p = p->next) { 2419 count++; 2420 NAPI_GRO_CB(p)->same_flow = 2421 p->mac_len == mac_len && 2422 !memcmp(skb_mac_header(p), skb_mac_header(skb), 2423 mac_len); 2424 NAPI_GRO_CB(p)->flush = 0; 2425 } 2426 2427 pp = ptype->gro_receive(&napi->gro_list, skb); 2428 break; 2429 } 2430 rcu_read_unlock(); 2431 2432 if (&ptype->list == head) 2433 goto normal; 2434 2435 same_flow = NAPI_GRO_CB(skb)->same_flow; 2436 free = NAPI_GRO_CB(skb)->free; 2437 2438 if (pp) { 2439 struct sk_buff *nskb = *pp; 2440 2441 *pp = nskb->next; 2442 nskb->next = NULL; 2443 napi_gro_complete(nskb); 2444 count--; 2445 } 2446 2447 if (same_flow) 2448 goto ok; 2449 2450 if (NAPI_GRO_CB(skb)->flush || count >= MAX_GRO_SKBS) { 2451 __skb_push(skb, -skb_network_offset(skb)); 2452 goto normal; 2453 } 2454 2455 NAPI_GRO_CB(skb)->count = 1; 2456 skb_shinfo(skb)->gso_size = skb->len; 2457 skb->next = napi->gro_list; 2458 napi->gro_list = skb; 2459 2460 ok: 2461 return free; 2462 2463 normal: 2464 return -1; 2465 } 2466 2467 int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 2468 { 2469 switch (__napi_gro_receive(napi, skb)) { 2470 case -1: 2471 return netif_receive_skb(skb); 2472 2473 case 1: 2474 kfree_skb(skb); 2475 break; 2476 } 2477 2478 return NET_RX_SUCCESS; 2479 } 2480 EXPORT_SYMBOL(napi_gro_receive); 2481 2482 int napi_gro_frags(struct napi_struct *napi, struct napi_gro_fraginfo *info) 2483 { 2484 struct net_device *dev = napi->dev; 2485 struct sk_buff *skb = napi->skb; 2486 int err = NET_RX_DROP; 2487 2488 napi->skb = NULL; 2489 2490 if (!skb) { 2491 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN); 2492 if (!skb) 2493 goto out; 2494 2495 skb_reserve(skb, NET_IP_ALIGN); 2496 } 2497 2498 BUG_ON(info->nr_frags > MAX_SKB_FRAGS); 2499 skb_shinfo(skb)->nr_frags = info->nr_frags; 2500 memcpy(skb_shinfo(skb)->frags, info->frags, sizeof(info->frags)); 2501 2502 skb->data_len = info->len; 2503 skb->len += info->len; 2504 skb->truesize += info->len; 2505 2506 if (!pskb_may_pull(skb, ETH_HLEN)) 2507 goto reuse; 2508 2509 err = NET_RX_SUCCESS; 2510 2511 skb->protocol = eth_type_trans(skb, dev); 2512 2513 skb->ip_summed = info->ip_summed; 2514 skb->csum = info->csum; 2515 2516 switch (__napi_gro_receive(napi, skb)) { 2517 case -1: 2518 return netif_receive_skb(skb); 2519 2520 case 0: 2521 goto out; 2522 } 2523 2524 reuse: 2525 skb_shinfo(skb)->nr_frags = 0; 2526 2527 skb->len -= skb->data_len; 2528 skb->truesize -= skb->data_len; 2529 skb->data_len = 0; 2530 2531 __skb_pull(skb, skb_headlen(skb)); 2532 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 2533 2534 napi->skb = skb; 2535 2536 out: 2537 return err; 2538 } 2539 EXPORT_SYMBOL(napi_gro_frags); 2540 2541 static int process_backlog(struct napi_struct *napi, int quota) 2542 { 2543 int work = 0; 2544 struct softnet_data *queue = &__get_cpu_var(softnet_data); 2545 unsigned long start_time = jiffies; 2546 2547 napi->weight = weight_p; 2548 do { 2549 struct sk_buff *skb; 2550 2551 local_irq_disable(); 2552 skb = __skb_dequeue(&queue->input_pkt_queue); 2553 if (!skb) { 2554 __napi_complete(napi); 2555 local_irq_enable(); 2556 break; 2557 } 2558 local_irq_enable(); 2559 2560 napi_gro_receive(napi, skb); 2561 } while (++work < quota && jiffies == start_time); 2562 2563 napi_gro_flush(napi); 2564 2565 return work; 2566 } 2567 2568 /** 2569 * __napi_schedule - schedule for receive 2570 * @n: entry to schedule 2571 * 2572 * The entry's receive function will be scheduled to run 2573 */ 2574 void __napi_schedule(struct napi_struct *n) 2575 { 2576 unsigned long flags; 2577 2578 local_irq_save(flags); 2579 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list); 2580 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2581 local_irq_restore(flags); 2582 } 2583 EXPORT_SYMBOL(__napi_schedule); 2584 2585 void __napi_complete(struct napi_struct *n) 2586 { 2587 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 2588 BUG_ON(n->gro_list); 2589 2590 list_del(&n->poll_list); 2591 smp_mb__before_clear_bit(); 2592 clear_bit(NAPI_STATE_SCHED, &n->state); 2593 } 2594 EXPORT_SYMBOL(__napi_complete); 2595 2596 void napi_complete(struct napi_struct *n) 2597 { 2598 unsigned long flags; 2599 2600 /* 2601 * don't let napi dequeue from the cpu poll list 2602 * just in case its running on a different cpu 2603 */ 2604 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 2605 return; 2606 2607 napi_gro_flush(n); 2608 local_irq_save(flags); 2609 __napi_complete(n); 2610 local_irq_restore(flags); 2611 } 2612 EXPORT_SYMBOL(napi_complete); 2613 2614 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 2615 int (*poll)(struct napi_struct *, int), int weight) 2616 { 2617 INIT_LIST_HEAD(&napi->poll_list); 2618 napi->gro_list = NULL; 2619 napi->skb = NULL; 2620 napi->poll = poll; 2621 napi->weight = weight; 2622 list_add(&napi->dev_list, &dev->napi_list); 2623 napi->dev = dev; 2624 #ifdef CONFIG_NETPOLL 2625 spin_lock_init(&napi->poll_lock); 2626 napi->poll_owner = -1; 2627 #endif 2628 set_bit(NAPI_STATE_SCHED, &napi->state); 2629 } 2630 EXPORT_SYMBOL(netif_napi_add); 2631 2632 void netif_napi_del(struct napi_struct *napi) 2633 { 2634 struct sk_buff *skb, *next; 2635 2636 list_del_init(&napi->dev_list); 2637 kfree(napi->skb); 2638 2639 for (skb = napi->gro_list; skb; skb = next) { 2640 next = skb->next; 2641 skb->next = NULL; 2642 kfree_skb(skb); 2643 } 2644 2645 napi->gro_list = NULL; 2646 } 2647 EXPORT_SYMBOL(netif_napi_del); 2648 2649 2650 static void net_rx_action(struct softirq_action *h) 2651 { 2652 struct list_head *list = &__get_cpu_var(softnet_data).poll_list; 2653 unsigned long time_limit = jiffies + 2; 2654 int budget = netdev_budget; 2655 void *have; 2656 2657 local_irq_disable(); 2658 2659 while (!list_empty(list)) { 2660 struct napi_struct *n; 2661 int work, weight; 2662 2663 /* If softirq window is exhuasted then punt. 2664 * Allow this to run for 2 jiffies since which will allow 2665 * an average latency of 1.5/HZ. 2666 */ 2667 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 2668 goto softnet_break; 2669 2670 local_irq_enable(); 2671 2672 /* Even though interrupts have been re-enabled, this 2673 * access is safe because interrupts can only add new 2674 * entries to the tail of this list, and only ->poll() 2675 * calls can remove this head entry from the list. 2676 */ 2677 n = list_entry(list->next, struct napi_struct, poll_list); 2678 2679 have = netpoll_poll_lock(n); 2680 2681 weight = n->weight; 2682 2683 /* This NAPI_STATE_SCHED test is for avoiding a race 2684 * with netpoll's poll_napi(). Only the entity which 2685 * obtains the lock and sees NAPI_STATE_SCHED set will 2686 * actually make the ->poll() call. Therefore we avoid 2687 * accidently calling ->poll() when NAPI is not scheduled. 2688 */ 2689 work = 0; 2690 if (test_bit(NAPI_STATE_SCHED, &n->state)) 2691 work = n->poll(n, weight); 2692 2693 WARN_ON_ONCE(work > weight); 2694 2695 budget -= work; 2696 2697 local_irq_disable(); 2698 2699 /* Drivers must not modify the NAPI state if they 2700 * consume the entire weight. In such cases this code 2701 * still "owns" the NAPI instance and therefore can 2702 * move the instance around on the list at-will. 2703 */ 2704 if (unlikely(work == weight)) { 2705 if (unlikely(napi_disable_pending(n))) 2706 __napi_complete(n); 2707 else 2708 list_move_tail(&n->poll_list, list); 2709 } 2710 2711 netpoll_poll_unlock(have); 2712 } 2713 out: 2714 local_irq_enable(); 2715 2716 #ifdef CONFIG_NET_DMA 2717 /* 2718 * There may not be any more sk_buffs coming right now, so push 2719 * any pending DMA copies to hardware 2720 */ 2721 if (!cpus_empty(net_dma.channel_mask)) { 2722 int chan_idx; 2723 for_each_cpu_mask_nr(chan_idx, net_dma.channel_mask) { 2724 struct dma_chan *chan = net_dma.channels[chan_idx]; 2725 if (chan) 2726 dma_async_memcpy_issue_pending(chan); 2727 } 2728 } 2729 #endif 2730 2731 return; 2732 2733 softnet_break: 2734 __get_cpu_var(netdev_rx_stat).time_squeeze++; 2735 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2736 goto out; 2737 } 2738 2739 static gifconf_func_t * gifconf_list [NPROTO]; 2740 2741 /** 2742 * register_gifconf - register a SIOCGIF handler 2743 * @family: Address family 2744 * @gifconf: Function handler 2745 * 2746 * Register protocol dependent address dumping routines. The handler 2747 * that is passed must not be freed or reused until it has been replaced 2748 * by another handler. 2749 */ 2750 int register_gifconf(unsigned int family, gifconf_func_t * gifconf) 2751 { 2752 if (family >= NPROTO) 2753 return -EINVAL; 2754 gifconf_list[family] = gifconf; 2755 return 0; 2756 } 2757 2758 2759 /* 2760 * Map an interface index to its name (SIOCGIFNAME) 2761 */ 2762 2763 /* 2764 * We need this ioctl for efficient implementation of the 2765 * if_indextoname() function required by the IPv6 API. Without 2766 * it, we would have to search all the interfaces to find a 2767 * match. --pb 2768 */ 2769 2770 static int dev_ifname(struct net *net, struct ifreq __user *arg) 2771 { 2772 struct net_device *dev; 2773 struct ifreq ifr; 2774 2775 /* 2776 * Fetch the caller's info block. 2777 */ 2778 2779 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 2780 return -EFAULT; 2781 2782 read_lock(&dev_base_lock); 2783 dev = __dev_get_by_index(net, ifr.ifr_ifindex); 2784 if (!dev) { 2785 read_unlock(&dev_base_lock); 2786 return -ENODEV; 2787 } 2788 2789 strcpy(ifr.ifr_name, dev->name); 2790 read_unlock(&dev_base_lock); 2791 2792 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 2793 return -EFAULT; 2794 return 0; 2795 } 2796 2797 /* 2798 * Perform a SIOCGIFCONF call. This structure will change 2799 * size eventually, and there is nothing I can do about it. 2800 * Thus we will need a 'compatibility mode'. 2801 */ 2802 2803 static int dev_ifconf(struct net *net, char __user *arg) 2804 { 2805 struct ifconf ifc; 2806 struct net_device *dev; 2807 char __user *pos; 2808 int len; 2809 int total; 2810 int i; 2811 2812 /* 2813 * Fetch the caller's info block. 2814 */ 2815 2816 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 2817 return -EFAULT; 2818 2819 pos = ifc.ifc_buf; 2820 len = ifc.ifc_len; 2821 2822 /* 2823 * Loop over the interfaces, and write an info block for each. 2824 */ 2825 2826 total = 0; 2827 for_each_netdev(net, dev) { 2828 for (i = 0; i < NPROTO; i++) { 2829 if (gifconf_list[i]) { 2830 int done; 2831 if (!pos) 2832 done = gifconf_list[i](dev, NULL, 0); 2833 else 2834 done = gifconf_list[i](dev, pos + total, 2835 len - total); 2836 if (done < 0) 2837 return -EFAULT; 2838 total += done; 2839 } 2840 } 2841 } 2842 2843 /* 2844 * All done. Write the updated control block back to the caller. 2845 */ 2846 ifc.ifc_len = total; 2847 2848 /* 2849 * Both BSD and Solaris return 0 here, so we do too. 2850 */ 2851 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 2852 } 2853 2854 #ifdef CONFIG_PROC_FS 2855 /* 2856 * This is invoked by the /proc filesystem handler to display a device 2857 * in detail. 2858 */ 2859 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 2860 __acquires(dev_base_lock) 2861 { 2862 struct net *net = seq_file_net(seq); 2863 loff_t off; 2864 struct net_device *dev; 2865 2866 read_lock(&dev_base_lock); 2867 if (!*pos) 2868 return SEQ_START_TOKEN; 2869 2870 off = 1; 2871 for_each_netdev(net, dev) 2872 if (off++ == *pos) 2873 return dev; 2874 2875 return NULL; 2876 } 2877 2878 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2879 { 2880 struct net *net = seq_file_net(seq); 2881 ++*pos; 2882 return v == SEQ_START_TOKEN ? 2883 first_net_device(net) : next_net_device((struct net_device *)v); 2884 } 2885 2886 void dev_seq_stop(struct seq_file *seq, void *v) 2887 __releases(dev_base_lock) 2888 { 2889 read_unlock(&dev_base_lock); 2890 } 2891 2892 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 2893 { 2894 const struct net_device_stats *stats = dev_get_stats(dev); 2895 2896 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu " 2897 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n", 2898 dev->name, stats->rx_bytes, stats->rx_packets, 2899 stats->rx_errors, 2900 stats->rx_dropped + stats->rx_missed_errors, 2901 stats->rx_fifo_errors, 2902 stats->rx_length_errors + stats->rx_over_errors + 2903 stats->rx_crc_errors + stats->rx_frame_errors, 2904 stats->rx_compressed, stats->multicast, 2905 stats->tx_bytes, stats->tx_packets, 2906 stats->tx_errors, stats->tx_dropped, 2907 stats->tx_fifo_errors, stats->collisions, 2908 stats->tx_carrier_errors + 2909 stats->tx_aborted_errors + 2910 stats->tx_window_errors + 2911 stats->tx_heartbeat_errors, 2912 stats->tx_compressed); 2913 } 2914 2915 /* 2916 * Called from the PROCfs module. This now uses the new arbitrary sized 2917 * /proc/net interface to create /proc/net/dev 2918 */ 2919 static int dev_seq_show(struct seq_file *seq, void *v) 2920 { 2921 if (v == SEQ_START_TOKEN) 2922 seq_puts(seq, "Inter-| Receive " 2923 " | Transmit\n" 2924 " face |bytes packets errs drop fifo frame " 2925 "compressed multicast|bytes packets errs " 2926 "drop fifo colls carrier compressed\n"); 2927 else 2928 dev_seq_printf_stats(seq, v); 2929 return 0; 2930 } 2931 2932 static struct netif_rx_stats *softnet_get_online(loff_t *pos) 2933 { 2934 struct netif_rx_stats *rc = NULL; 2935 2936 while (*pos < nr_cpu_ids) 2937 if (cpu_online(*pos)) { 2938 rc = &per_cpu(netdev_rx_stat, *pos); 2939 break; 2940 } else 2941 ++*pos; 2942 return rc; 2943 } 2944 2945 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 2946 { 2947 return softnet_get_online(pos); 2948 } 2949 2950 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 2951 { 2952 ++*pos; 2953 return softnet_get_online(pos); 2954 } 2955 2956 static void softnet_seq_stop(struct seq_file *seq, void *v) 2957 { 2958 } 2959 2960 static int softnet_seq_show(struct seq_file *seq, void *v) 2961 { 2962 struct netif_rx_stats *s = v; 2963 2964 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 2965 s->total, s->dropped, s->time_squeeze, 0, 2966 0, 0, 0, 0, /* was fastroute */ 2967 s->cpu_collision ); 2968 return 0; 2969 } 2970 2971 static const struct seq_operations dev_seq_ops = { 2972 .start = dev_seq_start, 2973 .next = dev_seq_next, 2974 .stop = dev_seq_stop, 2975 .show = dev_seq_show, 2976 }; 2977 2978 static int dev_seq_open(struct inode *inode, struct file *file) 2979 { 2980 return seq_open_net(inode, file, &dev_seq_ops, 2981 sizeof(struct seq_net_private)); 2982 } 2983 2984 static const struct file_operations dev_seq_fops = { 2985 .owner = THIS_MODULE, 2986 .open = dev_seq_open, 2987 .read = seq_read, 2988 .llseek = seq_lseek, 2989 .release = seq_release_net, 2990 }; 2991 2992 static const struct seq_operations softnet_seq_ops = { 2993 .start = softnet_seq_start, 2994 .next = softnet_seq_next, 2995 .stop = softnet_seq_stop, 2996 .show = softnet_seq_show, 2997 }; 2998 2999 static int softnet_seq_open(struct inode *inode, struct file *file) 3000 { 3001 return seq_open(file, &softnet_seq_ops); 3002 } 3003 3004 static const struct file_operations softnet_seq_fops = { 3005 .owner = THIS_MODULE, 3006 .open = softnet_seq_open, 3007 .read = seq_read, 3008 .llseek = seq_lseek, 3009 .release = seq_release, 3010 }; 3011 3012 static void *ptype_get_idx(loff_t pos) 3013 { 3014 struct packet_type *pt = NULL; 3015 loff_t i = 0; 3016 int t; 3017 3018 list_for_each_entry_rcu(pt, &ptype_all, list) { 3019 if (i == pos) 3020 return pt; 3021 ++i; 3022 } 3023 3024 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 3025 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 3026 if (i == pos) 3027 return pt; 3028 ++i; 3029 } 3030 } 3031 return NULL; 3032 } 3033 3034 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 3035 __acquires(RCU) 3036 { 3037 rcu_read_lock(); 3038 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 3039 } 3040 3041 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3042 { 3043 struct packet_type *pt; 3044 struct list_head *nxt; 3045 int hash; 3046 3047 ++*pos; 3048 if (v == SEQ_START_TOKEN) 3049 return ptype_get_idx(0); 3050 3051 pt = v; 3052 nxt = pt->list.next; 3053 if (pt->type == htons(ETH_P_ALL)) { 3054 if (nxt != &ptype_all) 3055 goto found; 3056 hash = 0; 3057 nxt = ptype_base[0].next; 3058 } else 3059 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 3060 3061 while (nxt == &ptype_base[hash]) { 3062 if (++hash >= PTYPE_HASH_SIZE) 3063 return NULL; 3064 nxt = ptype_base[hash].next; 3065 } 3066 found: 3067 return list_entry(nxt, struct packet_type, list); 3068 } 3069 3070 static void ptype_seq_stop(struct seq_file *seq, void *v) 3071 __releases(RCU) 3072 { 3073 rcu_read_unlock(); 3074 } 3075 3076 static int ptype_seq_show(struct seq_file *seq, void *v) 3077 { 3078 struct packet_type *pt = v; 3079 3080 if (v == SEQ_START_TOKEN) 3081 seq_puts(seq, "Type Device Function\n"); 3082 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 3083 if (pt->type == htons(ETH_P_ALL)) 3084 seq_puts(seq, "ALL "); 3085 else 3086 seq_printf(seq, "%04x", ntohs(pt->type)); 3087 3088 seq_printf(seq, " %-8s %pF\n", 3089 pt->dev ? pt->dev->name : "", pt->func); 3090 } 3091 3092 return 0; 3093 } 3094 3095 static const struct seq_operations ptype_seq_ops = { 3096 .start = ptype_seq_start, 3097 .next = ptype_seq_next, 3098 .stop = ptype_seq_stop, 3099 .show = ptype_seq_show, 3100 }; 3101 3102 static int ptype_seq_open(struct inode *inode, struct file *file) 3103 { 3104 return seq_open_net(inode, file, &ptype_seq_ops, 3105 sizeof(struct seq_net_private)); 3106 } 3107 3108 static const struct file_operations ptype_seq_fops = { 3109 .owner = THIS_MODULE, 3110 .open = ptype_seq_open, 3111 .read = seq_read, 3112 .llseek = seq_lseek, 3113 .release = seq_release_net, 3114 }; 3115 3116 3117 static int __net_init dev_proc_net_init(struct net *net) 3118 { 3119 int rc = -ENOMEM; 3120 3121 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 3122 goto out; 3123 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 3124 goto out_dev; 3125 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 3126 goto out_softnet; 3127 3128 if (wext_proc_init(net)) 3129 goto out_ptype; 3130 rc = 0; 3131 out: 3132 return rc; 3133 out_ptype: 3134 proc_net_remove(net, "ptype"); 3135 out_softnet: 3136 proc_net_remove(net, "softnet_stat"); 3137 out_dev: 3138 proc_net_remove(net, "dev"); 3139 goto out; 3140 } 3141 3142 static void __net_exit dev_proc_net_exit(struct net *net) 3143 { 3144 wext_proc_exit(net); 3145 3146 proc_net_remove(net, "ptype"); 3147 proc_net_remove(net, "softnet_stat"); 3148 proc_net_remove(net, "dev"); 3149 } 3150 3151 static struct pernet_operations __net_initdata dev_proc_ops = { 3152 .init = dev_proc_net_init, 3153 .exit = dev_proc_net_exit, 3154 }; 3155 3156 static int __init dev_proc_init(void) 3157 { 3158 return register_pernet_subsys(&dev_proc_ops); 3159 } 3160 #else 3161 #define dev_proc_init() 0 3162 #endif /* CONFIG_PROC_FS */ 3163 3164 3165 /** 3166 * netdev_set_master - set up master/slave pair 3167 * @slave: slave device 3168 * @master: new master device 3169 * 3170 * Changes the master device of the slave. Pass %NULL to break the 3171 * bonding. The caller must hold the RTNL semaphore. On a failure 3172 * a negative errno code is returned. On success the reference counts 3173 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the 3174 * function returns zero. 3175 */ 3176 int netdev_set_master(struct net_device *slave, struct net_device *master) 3177 { 3178 struct net_device *old = slave->master; 3179 3180 ASSERT_RTNL(); 3181 3182 if (master) { 3183 if (old) 3184 return -EBUSY; 3185 dev_hold(master); 3186 } 3187 3188 slave->master = master; 3189 3190 synchronize_net(); 3191 3192 if (old) 3193 dev_put(old); 3194 3195 if (master) 3196 slave->flags |= IFF_SLAVE; 3197 else 3198 slave->flags &= ~IFF_SLAVE; 3199 3200 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 3201 return 0; 3202 } 3203 3204 static void dev_change_rx_flags(struct net_device *dev, int flags) 3205 { 3206 const struct net_device_ops *ops = dev->netdev_ops; 3207 3208 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 3209 ops->ndo_change_rx_flags(dev, flags); 3210 } 3211 3212 static int __dev_set_promiscuity(struct net_device *dev, int inc) 3213 { 3214 unsigned short old_flags = dev->flags; 3215 uid_t uid; 3216 gid_t gid; 3217 3218 ASSERT_RTNL(); 3219 3220 dev->flags |= IFF_PROMISC; 3221 dev->promiscuity += inc; 3222 if (dev->promiscuity == 0) { 3223 /* 3224 * Avoid overflow. 3225 * If inc causes overflow, untouch promisc and return error. 3226 */ 3227 if (inc < 0) 3228 dev->flags &= ~IFF_PROMISC; 3229 else { 3230 dev->promiscuity -= inc; 3231 printk(KERN_WARNING "%s: promiscuity touches roof, " 3232 "set promiscuity failed, promiscuity feature " 3233 "of device might be broken.\n", dev->name); 3234 return -EOVERFLOW; 3235 } 3236 } 3237 if (dev->flags != old_flags) { 3238 printk(KERN_INFO "device %s %s promiscuous mode\n", 3239 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 3240 "left"); 3241 if (audit_enabled) { 3242 current_uid_gid(&uid, &gid); 3243 audit_log(current->audit_context, GFP_ATOMIC, 3244 AUDIT_ANOM_PROMISCUOUS, 3245 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 3246 dev->name, (dev->flags & IFF_PROMISC), 3247 (old_flags & IFF_PROMISC), 3248 audit_get_loginuid(current), 3249 uid, gid, 3250 audit_get_sessionid(current)); 3251 } 3252 3253 dev_change_rx_flags(dev, IFF_PROMISC); 3254 } 3255 return 0; 3256 } 3257 3258 /** 3259 * dev_set_promiscuity - update promiscuity count on a device 3260 * @dev: device 3261 * @inc: modifier 3262 * 3263 * Add or remove promiscuity from a device. While the count in the device 3264 * remains above zero the interface remains promiscuous. Once it hits zero 3265 * the device reverts back to normal filtering operation. A negative inc 3266 * value is used to drop promiscuity on the device. 3267 * Return 0 if successful or a negative errno code on error. 3268 */ 3269 int dev_set_promiscuity(struct net_device *dev, int inc) 3270 { 3271 unsigned short old_flags = dev->flags; 3272 int err; 3273 3274 err = __dev_set_promiscuity(dev, inc); 3275 if (err < 0) 3276 return err; 3277 if (dev->flags != old_flags) 3278 dev_set_rx_mode(dev); 3279 return err; 3280 } 3281 3282 /** 3283 * dev_set_allmulti - update allmulti count on a device 3284 * @dev: device 3285 * @inc: modifier 3286 * 3287 * Add or remove reception of all multicast frames to a device. While the 3288 * count in the device remains above zero the interface remains listening 3289 * to all interfaces. Once it hits zero the device reverts back to normal 3290 * filtering operation. A negative @inc value is used to drop the counter 3291 * when releasing a resource needing all multicasts. 3292 * Return 0 if successful or a negative errno code on error. 3293 */ 3294 3295 int dev_set_allmulti(struct net_device *dev, int inc) 3296 { 3297 unsigned short old_flags = dev->flags; 3298 3299 ASSERT_RTNL(); 3300 3301 dev->flags |= IFF_ALLMULTI; 3302 dev->allmulti += inc; 3303 if (dev->allmulti == 0) { 3304 /* 3305 * Avoid overflow. 3306 * If inc causes overflow, untouch allmulti and return error. 3307 */ 3308 if (inc < 0) 3309 dev->flags &= ~IFF_ALLMULTI; 3310 else { 3311 dev->allmulti -= inc; 3312 printk(KERN_WARNING "%s: allmulti touches roof, " 3313 "set allmulti failed, allmulti feature of " 3314 "device might be broken.\n", dev->name); 3315 return -EOVERFLOW; 3316 } 3317 } 3318 if (dev->flags ^ old_flags) { 3319 dev_change_rx_flags(dev, IFF_ALLMULTI); 3320 dev_set_rx_mode(dev); 3321 } 3322 return 0; 3323 } 3324 3325 /* 3326 * Upload unicast and multicast address lists to device and 3327 * configure RX filtering. When the device doesn't support unicast 3328 * filtering it is put in promiscuous mode while unicast addresses 3329 * are present. 3330 */ 3331 void __dev_set_rx_mode(struct net_device *dev) 3332 { 3333 const struct net_device_ops *ops = dev->netdev_ops; 3334 3335 /* dev_open will call this function so the list will stay sane. */ 3336 if (!(dev->flags&IFF_UP)) 3337 return; 3338 3339 if (!netif_device_present(dev)) 3340 return; 3341 3342 if (ops->ndo_set_rx_mode) 3343 ops->ndo_set_rx_mode(dev); 3344 else { 3345 /* Unicast addresses changes may only happen under the rtnl, 3346 * therefore calling __dev_set_promiscuity here is safe. 3347 */ 3348 if (dev->uc_count > 0 && !dev->uc_promisc) { 3349 __dev_set_promiscuity(dev, 1); 3350 dev->uc_promisc = 1; 3351 } else if (dev->uc_count == 0 && dev->uc_promisc) { 3352 __dev_set_promiscuity(dev, -1); 3353 dev->uc_promisc = 0; 3354 } 3355 3356 if (ops->ndo_set_multicast_list) 3357 ops->ndo_set_multicast_list(dev); 3358 } 3359 } 3360 3361 void dev_set_rx_mode(struct net_device *dev) 3362 { 3363 netif_addr_lock_bh(dev); 3364 __dev_set_rx_mode(dev); 3365 netif_addr_unlock_bh(dev); 3366 } 3367 3368 int __dev_addr_delete(struct dev_addr_list **list, int *count, 3369 void *addr, int alen, int glbl) 3370 { 3371 struct dev_addr_list *da; 3372 3373 for (; (da = *list) != NULL; list = &da->next) { 3374 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3375 alen == da->da_addrlen) { 3376 if (glbl) { 3377 int old_glbl = da->da_gusers; 3378 da->da_gusers = 0; 3379 if (old_glbl == 0) 3380 break; 3381 } 3382 if (--da->da_users) 3383 return 0; 3384 3385 *list = da->next; 3386 kfree(da); 3387 (*count)--; 3388 return 0; 3389 } 3390 } 3391 return -ENOENT; 3392 } 3393 3394 int __dev_addr_add(struct dev_addr_list **list, int *count, 3395 void *addr, int alen, int glbl) 3396 { 3397 struct dev_addr_list *da; 3398 3399 for (da = *list; da != NULL; da = da->next) { 3400 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 && 3401 da->da_addrlen == alen) { 3402 if (glbl) { 3403 int old_glbl = da->da_gusers; 3404 da->da_gusers = 1; 3405 if (old_glbl) 3406 return 0; 3407 } 3408 da->da_users++; 3409 return 0; 3410 } 3411 } 3412 3413 da = kzalloc(sizeof(*da), GFP_ATOMIC); 3414 if (da == NULL) 3415 return -ENOMEM; 3416 memcpy(da->da_addr, addr, alen); 3417 da->da_addrlen = alen; 3418 da->da_users = 1; 3419 da->da_gusers = glbl ? 1 : 0; 3420 da->next = *list; 3421 *list = da; 3422 (*count)++; 3423 return 0; 3424 } 3425 3426 /** 3427 * dev_unicast_delete - Release secondary unicast address. 3428 * @dev: device 3429 * @addr: address to delete 3430 * @alen: length of @addr 3431 * 3432 * Release reference to a secondary unicast address and remove it 3433 * from the device if the reference count drops to zero. 3434 * 3435 * The caller must hold the rtnl_mutex. 3436 */ 3437 int dev_unicast_delete(struct net_device *dev, void *addr, int alen) 3438 { 3439 int err; 3440 3441 ASSERT_RTNL(); 3442 3443 netif_addr_lock_bh(dev); 3444 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3445 if (!err) 3446 __dev_set_rx_mode(dev); 3447 netif_addr_unlock_bh(dev); 3448 return err; 3449 } 3450 EXPORT_SYMBOL(dev_unicast_delete); 3451 3452 /** 3453 * dev_unicast_add - add a secondary unicast address 3454 * @dev: device 3455 * @addr: address to add 3456 * @alen: length of @addr 3457 * 3458 * Add a secondary unicast address to the device or increase 3459 * the reference count if it already exists. 3460 * 3461 * The caller must hold the rtnl_mutex. 3462 */ 3463 int dev_unicast_add(struct net_device *dev, void *addr, int alen) 3464 { 3465 int err; 3466 3467 ASSERT_RTNL(); 3468 3469 netif_addr_lock_bh(dev); 3470 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0); 3471 if (!err) 3472 __dev_set_rx_mode(dev); 3473 netif_addr_unlock_bh(dev); 3474 return err; 3475 } 3476 EXPORT_SYMBOL(dev_unicast_add); 3477 3478 int __dev_addr_sync(struct dev_addr_list **to, int *to_count, 3479 struct dev_addr_list **from, int *from_count) 3480 { 3481 struct dev_addr_list *da, *next; 3482 int err = 0; 3483 3484 da = *from; 3485 while (da != NULL) { 3486 next = da->next; 3487 if (!da->da_synced) { 3488 err = __dev_addr_add(to, to_count, 3489 da->da_addr, da->da_addrlen, 0); 3490 if (err < 0) 3491 break; 3492 da->da_synced = 1; 3493 da->da_users++; 3494 } else if (da->da_users == 1) { 3495 __dev_addr_delete(to, to_count, 3496 da->da_addr, da->da_addrlen, 0); 3497 __dev_addr_delete(from, from_count, 3498 da->da_addr, da->da_addrlen, 0); 3499 } 3500 da = next; 3501 } 3502 return err; 3503 } 3504 3505 void __dev_addr_unsync(struct dev_addr_list **to, int *to_count, 3506 struct dev_addr_list **from, int *from_count) 3507 { 3508 struct dev_addr_list *da, *next; 3509 3510 da = *from; 3511 while (da != NULL) { 3512 next = da->next; 3513 if (da->da_synced) { 3514 __dev_addr_delete(to, to_count, 3515 da->da_addr, da->da_addrlen, 0); 3516 da->da_synced = 0; 3517 __dev_addr_delete(from, from_count, 3518 da->da_addr, da->da_addrlen, 0); 3519 } 3520 da = next; 3521 } 3522 } 3523 3524 /** 3525 * dev_unicast_sync - Synchronize device's unicast list to another device 3526 * @to: destination device 3527 * @from: source device 3528 * 3529 * Add newly added addresses to the destination device and release 3530 * addresses that have no users left. The source device must be 3531 * locked by netif_tx_lock_bh. 3532 * 3533 * This function is intended to be called from the dev->set_rx_mode 3534 * function of layered software devices. 3535 */ 3536 int dev_unicast_sync(struct net_device *to, struct net_device *from) 3537 { 3538 int err = 0; 3539 3540 netif_addr_lock_bh(to); 3541 err = __dev_addr_sync(&to->uc_list, &to->uc_count, 3542 &from->uc_list, &from->uc_count); 3543 if (!err) 3544 __dev_set_rx_mode(to); 3545 netif_addr_unlock_bh(to); 3546 return err; 3547 } 3548 EXPORT_SYMBOL(dev_unicast_sync); 3549 3550 /** 3551 * dev_unicast_unsync - Remove synchronized addresses from the destination device 3552 * @to: destination device 3553 * @from: source device 3554 * 3555 * Remove all addresses that were added to the destination device by 3556 * dev_unicast_sync(). This function is intended to be called from the 3557 * dev->stop function of layered software devices. 3558 */ 3559 void dev_unicast_unsync(struct net_device *to, struct net_device *from) 3560 { 3561 netif_addr_lock_bh(from); 3562 netif_addr_lock(to); 3563 3564 __dev_addr_unsync(&to->uc_list, &to->uc_count, 3565 &from->uc_list, &from->uc_count); 3566 __dev_set_rx_mode(to); 3567 3568 netif_addr_unlock(to); 3569 netif_addr_unlock_bh(from); 3570 } 3571 EXPORT_SYMBOL(dev_unicast_unsync); 3572 3573 static void __dev_addr_discard(struct dev_addr_list **list) 3574 { 3575 struct dev_addr_list *tmp; 3576 3577 while (*list != NULL) { 3578 tmp = *list; 3579 *list = tmp->next; 3580 if (tmp->da_users > tmp->da_gusers) 3581 printk("__dev_addr_discard: address leakage! " 3582 "da_users=%d\n", tmp->da_users); 3583 kfree(tmp); 3584 } 3585 } 3586 3587 static void dev_addr_discard(struct net_device *dev) 3588 { 3589 netif_addr_lock_bh(dev); 3590 3591 __dev_addr_discard(&dev->uc_list); 3592 dev->uc_count = 0; 3593 3594 __dev_addr_discard(&dev->mc_list); 3595 dev->mc_count = 0; 3596 3597 netif_addr_unlock_bh(dev); 3598 } 3599 3600 /** 3601 * dev_get_flags - get flags reported to userspace 3602 * @dev: device 3603 * 3604 * Get the combination of flag bits exported through APIs to userspace. 3605 */ 3606 unsigned dev_get_flags(const struct net_device *dev) 3607 { 3608 unsigned flags; 3609 3610 flags = (dev->flags & ~(IFF_PROMISC | 3611 IFF_ALLMULTI | 3612 IFF_RUNNING | 3613 IFF_LOWER_UP | 3614 IFF_DORMANT)) | 3615 (dev->gflags & (IFF_PROMISC | 3616 IFF_ALLMULTI)); 3617 3618 if (netif_running(dev)) { 3619 if (netif_oper_up(dev)) 3620 flags |= IFF_RUNNING; 3621 if (netif_carrier_ok(dev)) 3622 flags |= IFF_LOWER_UP; 3623 if (netif_dormant(dev)) 3624 flags |= IFF_DORMANT; 3625 } 3626 3627 return flags; 3628 } 3629 3630 /** 3631 * dev_change_flags - change device settings 3632 * @dev: device 3633 * @flags: device state flags 3634 * 3635 * Change settings on device based state flags. The flags are 3636 * in the userspace exported format. 3637 */ 3638 int dev_change_flags(struct net_device *dev, unsigned flags) 3639 { 3640 int ret, changes; 3641 int old_flags = dev->flags; 3642 3643 ASSERT_RTNL(); 3644 3645 /* 3646 * Set the flags on our device. 3647 */ 3648 3649 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 3650 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 3651 IFF_AUTOMEDIA)) | 3652 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 3653 IFF_ALLMULTI)); 3654 3655 /* 3656 * Load in the correct multicast list now the flags have changed. 3657 */ 3658 3659 if ((old_flags ^ flags) & IFF_MULTICAST) 3660 dev_change_rx_flags(dev, IFF_MULTICAST); 3661 3662 dev_set_rx_mode(dev); 3663 3664 /* 3665 * Have we downed the interface. We handle IFF_UP ourselves 3666 * according to user attempts to set it, rather than blindly 3667 * setting it. 3668 */ 3669 3670 ret = 0; 3671 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 3672 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev); 3673 3674 if (!ret) 3675 dev_set_rx_mode(dev); 3676 } 3677 3678 if (dev->flags & IFF_UP && 3679 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI | 3680 IFF_VOLATILE))) 3681 call_netdevice_notifiers(NETDEV_CHANGE, dev); 3682 3683 if ((flags ^ dev->gflags) & IFF_PROMISC) { 3684 int inc = (flags & IFF_PROMISC) ? +1 : -1; 3685 dev->gflags ^= IFF_PROMISC; 3686 dev_set_promiscuity(dev, inc); 3687 } 3688 3689 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 3690 is important. Some (broken) drivers set IFF_PROMISC, when 3691 IFF_ALLMULTI is requested not asking us and not reporting. 3692 */ 3693 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 3694 int inc = (flags & IFF_ALLMULTI) ? +1 : -1; 3695 dev->gflags ^= IFF_ALLMULTI; 3696 dev_set_allmulti(dev, inc); 3697 } 3698 3699 /* Exclude state transition flags, already notified */ 3700 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING); 3701 if (changes) 3702 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 3703 3704 return ret; 3705 } 3706 3707 /** 3708 * dev_set_mtu - Change maximum transfer unit 3709 * @dev: device 3710 * @new_mtu: new transfer unit 3711 * 3712 * Change the maximum transfer size of the network device. 3713 */ 3714 int dev_set_mtu(struct net_device *dev, int new_mtu) 3715 { 3716 const struct net_device_ops *ops = dev->netdev_ops; 3717 int err; 3718 3719 if (new_mtu == dev->mtu) 3720 return 0; 3721 3722 /* MTU must be positive. */ 3723 if (new_mtu < 0) 3724 return -EINVAL; 3725 3726 if (!netif_device_present(dev)) 3727 return -ENODEV; 3728 3729 err = 0; 3730 if (ops->ndo_change_mtu) 3731 err = ops->ndo_change_mtu(dev, new_mtu); 3732 else 3733 dev->mtu = new_mtu; 3734 3735 if (!err && dev->flags & IFF_UP) 3736 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 3737 return err; 3738 } 3739 3740 /** 3741 * dev_set_mac_address - Change Media Access Control Address 3742 * @dev: device 3743 * @sa: new address 3744 * 3745 * Change the hardware (MAC) address of the device 3746 */ 3747 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 3748 { 3749 const struct net_device_ops *ops = dev->netdev_ops; 3750 int err; 3751 3752 if (!ops->ndo_set_mac_address) 3753 return -EOPNOTSUPP; 3754 if (sa->sa_family != dev->type) 3755 return -EINVAL; 3756 if (!netif_device_present(dev)) 3757 return -ENODEV; 3758 err = ops->ndo_set_mac_address(dev, sa); 3759 if (!err) 3760 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3761 return err; 3762 } 3763 3764 /* 3765 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock) 3766 */ 3767 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 3768 { 3769 int err; 3770 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3771 3772 if (!dev) 3773 return -ENODEV; 3774 3775 switch (cmd) { 3776 case SIOCGIFFLAGS: /* Get interface flags */ 3777 ifr->ifr_flags = dev_get_flags(dev); 3778 return 0; 3779 3780 case SIOCGIFMETRIC: /* Get the metric on the interface 3781 (currently unused) */ 3782 ifr->ifr_metric = 0; 3783 return 0; 3784 3785 case SIOCGIFMTU: /* Get the MTU of a device */ 3786 ifr->ifr_mtu = dev->mtu; 3787 return 0; 3788 3789 case SIOCGIFHWADDR: 3790 if (!dev->addr_len) 3791 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 3792 else 3793 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 3794 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3795 ifr->ifr_hwaddr.sa_family = dev->type; 3796 return 0; 3797 3798 case SIOCGIFSLAVE: 3799 err = -EINVAL; 3800 break; 3801 3802 case SIOCGIFMAP: 3803 ifr->ifr_map.mem_start = dev->mem_start; 3804 ifr->ifr_map.mem_end = dev->mem_end; 3805 ifr->ifr_map.base_addr = dev->base_addr; 3806 ifr->ifr_map.irq = dev->irq; 3807 ifr->ifr_map.dma = dev->dma; 3808 ifr->ifr_map.port = dev->if_port; 3809 return 0; 3810 3811 case SIOCGIFINDEX: 3812 ifr->ifr_ifindex = dev->ifindex; 3813 return 0; 3814 3815 case SIOCGIFTXQLEN: 3816 ifr->ifr_qlen = dev->tx_queue_len; 3817 return 0; 3818 3819 default: 3820 /* dev_ioctl() should ensure this case 3821 * is never reached 3822 */ 3823 WARN_ON(1); 3824 err = -EINVAL; 3825 break; 3826 3827 } 3828 return err; 3829 } 3830 3831 /* 3832 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 3833 */ 3834 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 3835 { 3836 int err; 3837 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 3838 const struct net_device_ops *ops; 3839 3840 if (!dev) 3841 return -ENODEV; 3842 3843 ops = dev->netdev_ops; 3844 3845 switch (cmd) { 3846 case SIOCSIFFLAGS: /* Set interface flags */ 3847 return dev_change_flags(dev, ifr->ifr_flags); 3848 3849 case SIOCSIFMETRIC: /* Set the metric on the interface 3850 (currently unused) */ 3851 return -EOPNOTSUPP; 3852 3853 case SIOCSIFMTU: /* Set the MTU of a device */ 3854 return dev_set_mtu(dev, ifr->ifr_mtu); 3855 3856 case SIOCSIFHWADDR: 3857 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 3858 3859 case SIOCSIFHWBROADCAST: 3860 if (ifr->ifr_hwaddr.sa_family != dev->type) 3861 return -EINVAL; 3862 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 3863 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 3864 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 3865 return 0; 3866 3867 case SIOCSIFMAP: 3868 if (ops->ndo_set_config) { 3869 if (!netif_device_present(dev)) 3870 return -ENODEV; 3871 return ops->ndo_set_config(dev, &ifr->ifr_map); 3872 } 3873 return -EOPNOTSUPP; 3874 3875 case SIOCADDMULTI: 3876 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3877 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3878 return -EINVAL; 3879 if (!netif_device_present(dev)) 3880 return -ENODEV; 3881 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data, 3882 dev->addr_len, 1); 3883 3884 case SIOCDELMULTI: 3885 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 3886 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 3887 return -EINVAL; 3888 if (!netif_device_present(dev)) 3889 return -ENODEV; 3890 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data, 3891 dev->addr_len, 1); 3892 3893 case SIOCSIFTXQLEN: 3894 if (ifr->ifr_qlen < 0) 3895 return -EINVAL; 3896 dev->tx_queue_len = ifr->ifr_qlen; 3897 return 0; 3898 3899 case SIOCSIFNAME: 3900 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 3901 return dev_change_name(dev, ifr->ifr_newname); 3902 3903 /* 3904 * Unknown or private ioctl 3905 */ 3906 3907 default: 3908 if ((cmd >= SIOCDEVPRIVATE && 3909 cmd <= SIOCDEVPRIVATE + 15) || 3910 cmd == SIOCBONDENSLAVE || 3911 cmd == SIOCBONDRELEASE || 3912 cmd == SIOCBONDSETHWADDR || 3913 cmd == SIOCBONDSLAVEINFOQUERY || 3914 cmd == SIOCBONDINFOQUERY || 3915 cmd == SIOCBONDCHANGEACTIVE || 3916 cmd == SIOCGMIIPHY || 3917 cmd == SIOCGMIIREG || 3918 cmd == SIOCSMIIREG || 3919 cmd == SIOCBRADDIF || 3920 cmd == SIOCBRDELIF || 3921 cmd == SIOCWANDEV) { 3922 err = -EOPNOTSUPP; 3923 if (ops->ndo_do_ioctl) { 3924 if (netif_device_present(dev)) 3925 err = ops->ndo_do_ioctl(dev, ifr, cmd); 3926 else 3927 err = -ENODEV; 3928 } 3929 } else 3930 err = -EINVAL; 3931 3932 } 3933 return err; 3934 } 3935 3936 /* 3937 * This function handles all "interface"-type I/O control requests. The actual 3938 * 'doing' part of this is dev_ifsioc above. 3939 */ 3940 3941 /** 3942 * dev_ioctl - network device ioctl 3943 * @net: the applicable net namespace 3944 * @cmd: command to issue 3945 * @arg: pointer to a struct ifreq in user space 3946 * 3947 * Issue ioctl functions to devices. This is normally called by the 3948 * user space syscall interfaces but can sometimes be useful for 3949 * other purposes. The return value is the return from the syscall if 3950 * positive or a negative errno code on error. 3951 */ 3952 3953 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 3954 { 3955 struct ifreq ifr; 3956 int ret; 3957 char *colon; 3958 3959 /* One special case: SIOCGIFCONF takes ifconf argument 3960 and requires shared lock, because it sleeps writing 3961 to user space. 3962 */ 3963 3964 if (cmd == SIOCGIFCONF) { 3965 rtnl_lock(); 3966 ret = dev_ifconf(net, (char __user *) arg); 3967 rtnl_unlock(); 3968 return ret; 3969 } 3970 if (cmd == SIOCGIFNAME) 3971 return dev_ifname(net, (struct ifreq __user *)arg); 3972 3973 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3974 return -EFAULT; 3975 3976 ifr.ifr_name[IFNAMSIZ-1] = 0; 3977 3978 colon = strchr(ifr.ifr_name, ':'); 3979 if (colon) 3980 *colon = 0; 3981 3982 /* 3983 * See which interface the caller is talking about. 3984 */ 3985 3986 switch (cmd) { 3987 /* 3988 * These ioctl calls: 3989 * - can be done by all. 3990 * - atomic and do not require locking. 3991 * - return a value 3992 */ 3993 case SIOCGIFFLAGS: 3994 case SIOCGIFMETRIC: 3995 case SIOCGIFMTU: 3996 case SIOCGIFHWADDR: 3997 case SIOCGIFSLAVE: 3998 case SIOCGIFMAP: 3999 case SIOCGIFINDEX: 4000 case SIOCGIFTXQLEN: 4001 dev_load(net, ifr.ifr_name); 4002 read_lock(&dev_base_lock); 4003 ret = dev_ifsioc_locked(net, &ifr, cmd); 4004 read_unlock(&dev_base_lock); 4005 if (!ret) { 4006 if (colon) 4007 *colon = ':'; 4008 if (copy_to_user(arg, &ifr, 4009 sizeof(struct ifreq))) 4010 ret = -EFAULT; 4011 } 4012 return ret; 4013 4014 case SIOCETHTOOL: 4015 dev_load(net, ifr.ifr_name); 4016 rtnl_lock(); 4017 ret = dev_ethtool(net, &ifr); 4018 rtnl_unlock(); 4019 if (!ret) { 4020 if (colon) 4021 *colon = ':'; 4022 if (copy_to_user(arg, &ifr, 4023 sizeof(struct ifreq))) 4024 ret = -EFAULT; 4025 } 4026 return ret; 4027 4028 /* 4029 * These ioctl calls: 4030 * - require superuser power. 4031 * - require strict serialization. 4032 * - return a value 4033 */ 4034 case SIOCGMIIPHY: 4035 case SIOCGMIIREG: 4036 case SIOCSIFNAME: 4037 if (!capable(CAP_NET_ADMIN)) 4038 return -EPERM; 4039 dev_load(net, ifr.ifr_name); 4040 rtnl_lock(); 4041 ret = dev_ifsioc(net, &ifr, cmd); 4042 rtnl_unlock(); 4043 if (!ret) { 4044 if (colon) 4045 *colon = ':'; 4046 if (copy_to_user(arg, &ifr, 4047 sizeof(struct ifreq))) 4048 ret = -EFAULT; 4049 } 4050 return ret; 4051 4052 /* 4053 * These ioctl calls: 4054 * - require superuser power. 4055 * - require strict serialization. 4056 * - do not return a value 4057 */ 4058 case SIOCSIFFLAGS: 4059 case SIOCSIFMETRIC: 4060 case SIOCSIFMTU: 4061 case SIOCSIFMAP: 4062 case SIOCSIFHWADDR: 4063 case SIOCSIFSLAVE: 4064 case SIOCADDMULTI: 4065 case SIOCDELMULTI: 4066 case SIOCSIFHWBROADCAST: 4067 case SIOCSIFTXQLEN: 4068 case SIOCSMIIREG: 4069 case SIOCBONDENSLAVE: 4070 case SIOCBONDRELEASE: 4071 case SIOCBONDSETHWADDR: 4072 case SIOCBONDCHANGEACTIVE: 4073 case SIOCBRADDIF: 4074 case SIOCBRDELIF: 4075 if (!capable(CAP_NET_ADMIN)) 4076 return -EPERM; 4077 /* fall through */ 4078 case SIOCBONDSLAVEINFOQUERY: 4079 case SIOCBONDINFOQUERY: 4080 dev_load(net, ifr.ifr_name); 4081 rtnl_lock(); 4082 ret = dev_ifsioc(net, &ifr, cmd); 4083 rtnl_unlock(); 4084 return ret; 4085 4086 case SIOCGIFMEM: 4087 /* Get the per device memory space. We can add this but 4088 * currently do not support it */ 4089 case SIOCSIFMEM: 4090 /* Set the per device memory buffer space. 4091 * Not applicable in our case */ 4092 case SIOCSIFLINK: 4093 return -EINVAL; 4094 4095 /* 4096 * Unknown or private ioctl. 4097 */ 4098 default: 4099 if (cmd == SIOCWANDEV || 4100 (cmd >= SIOCDEVPRIVATE && 4101 cmd <= SIOCDEVPRIVATE + 15)) { 4102 dev_load(net, ifr.ifr_name); 4103 rtnl_lock(); 4104 ret = dev_ifsioc(net, &ifr, cmd); 4105 rtnl_unlock(); 4106 if (!ret && copy_to_user(arg, &ifr, 4107 sizeof(struct ifreq))) 4108 ret = -EFAULT; 4109 return ret; 4110 } 4111 /* Take care of Wireless Extensions */ 4112 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 4113 return wext_handle_ioctl(net, &ifr, cmd, arg); 4114 return -EINVAL; 4115 } 4116 } 4117 4118 4119 /** 4120 * dev_new_index - allocate an ifindex 4121 * @net: the applicable net namespace 4122 * 4123 * Returns a suitable unique value for a new device interface 4124 * number. The caller must hold the rtnl semaphore or the 4125 * dev_base_lock to be sure it remains unique. 4126 */ 4127 static int dev_new_index(struct net *net) 4128 { 4129 static int ifindex; 4130 for (;;) { 4131 if (++ifindex <= 0) 4132 ifindex = 1; 4133 if (!__dev_get_by_index(net, ifindex)) 4134 return ifindex; 4135 } 4136 } 4137 4138 /* Delayed registration/unregisteration */ 4139 static LIST_HEAD(net_todo_list); 4140 4141 static void net_set_todo(struct net_device *dev) 4142 { 4143 list_add_tail(&dev->todo_list, &net_todo_list); 4144 } 4145 4146 static void rollback_registered(struct net_device *dev) 4147 { 4148 BUG_ON(dev_boot_phase); 4149 ASSERT_RTNL(); 4150 4151 /* Some devices call without registering for initialization unwind. */ 4152 if (dev->reg_state == NETREG_UNINITIALIZED) { 4153 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never " 4154 "was registered\n", dev->name, dev); 4155 4156 WARN_ON(1); 4157 return; 4158 } 4159 4160 BUG_ON(dev->reg_state != NETREG_REGISTERED); 4161 4162 /* If device is running, close it first. */ 4163 dev_close(dev); 4164 4165 /* And unlink it from device chain. */ 4166 unlist_netdevice(dev); 4167 4168 dev->reg_state = NETREG_UNREGISTERING; 4169 4170 synchronize_net(); 4171 4172 /* Shutdown queueing discipline. */ 4173 dev_shutdown(dev); 4174 4175 4176 /* Notify protocols, that we are about to destroy 4177 this device. They should clean all the things. 4178 */ 4179 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4180 4181 /* 4182 * Flush the unicast and multicast chains 4183 */ 4184 dev_addr_discard(dev); 4185 4186 if (dev->netdev_ops->ndo_uninit) 4187 dev->netdev_ops->ndo_uninit(dev); 4188 4189 /* Notifier chain MUST detach us from master device. */ 4190 WARN_ON(dev->master); 4191 4192 /* Remove entries from kobject tree */ 4193 netdev_unregister_kobject(dev); 4194 4195 synchronize_net(); 4196 4197 dev_put(dev); 4198 } 4199 4200 static void __netdev_init_queue_locks_one(struct net_device *dev, 4201 struct netdev_queue *dev_queue, 4202 void *_unused) 4203 { 4204 spin_lock_init(&dev_queue->_xmit_lock); 4205 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type); 4206 dev_queue->xmit_lock_owner = -1; 4207 } 4208 4209 static void netdev_init_queue_locks(struct net_device *dev) 4210 { 4211 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL); 4212 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL); 4213 } 4214 4215 unsigned long netdev_fix_features(unsigned long features, const char *name) 4216 { 4217 /* Fix illegal SG+CSUM combinations. */ 4218 if ((features & NETIF_F_SG) && 4219 !(features & NETIF_F_ALL_CSUM)) { 4220 if (name) 4221 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no " 4222 "checksum feature.\n", name); 4223 features &= ~NETIF_F_SG; 4224 } 4225 4226 /* TSO requires that SG is present as well. */ 4227 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) { 4228 if (name) 4229 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no " 4230 "SG feature.\n", name); 4231 features &= ~NETIF_F_TSO; 4232 } 4233 4234 if (features & NETIF_F_UFO) { 4235 if (!(features & NETIF_F_GEN_CSUM)) { 4236 if (name) 4237 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4238 "since no NETIF_F_HW_CSUM feature.\n", 4239 name); 4240 features &= ~NETIF_F_UFO; 4241 } 4242 4243 if (!(features & NETIF_F_SG)) { 4244 if (name) 4245 printk(KERN_ERR "%s: Dropping NETIF_F_UFO " 4246 "since no NETIF_F_SG feature.\n", name); 4247 features &= ~NETIF_F_UFO; 4248 } 4249 } 4250 4251 return features; 4252 } 4253 EXPORT_SYMBOL(netdev_fix_features); 4254 4255 /** 4256 * register_netdevice - register a network device 4257 * @dev: device to register 4258 * 4259 * Take a completed network device structure and add it to the kernel 4260 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4261 * chain. 0 is returned on success. A negative errno code is returned 4262 * on a failure to set up the device, or if the name is a duplicate. 4263 * 4264 * Callers must hold the rtnl semaphore. You may want 4265 * register_netdev() instead of this. 4266 * 4267 * BUGS: 4268 * The locking appears insufficient to guarantee two parallel registers 4269 * will not get the same name. 4270 */ 4271 4272 int register_netdevice(struct net_device *dev) 4273 { 4274 struct hlist_head *head; 4275 struct hlist_node *p; 4276 int ret; 4277 struct net *net = dev_net(dev); 4278 4279 BUG_ON(dev_boot_phase); 4280 ASSERT_RTNL(); 4281 4282 might_sleep(); 4283 4284 /* When net_device's are persistent, this will be fatal. */ 4285 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 4286 BUG_ON(!net); 4287 4288 spin_lock_init(&dev->addr_list_lock); 4289 netdev_set_addr_lockdep_class(dev); 4290 netdev_init_queue_locks(dev); 4291 4292 dev->iflink = -1; 4293 4294 #ifdef CONFIG_COMPAT_NET_DEV_OPS 4295 /* Netdevice_ops API compatiability support. 4296 * This is temporary until all network devices are converted. 4297 */ 4298 if (dev->netdev_ops) { 4299 const struct net_device_ops *ops = dev->netdev_ops; 4300 4301 dev->init = ops->ndo_init; 4302 dev->uninit = ops->ndo_uninit; 4303 dev->open = ops->ndo_open; 4304 dev->change_rx_flags = ops->ndo_change_rx_flags; 4305 dev->set_rx_mode = ops->ndo_set_rx_mode; 4306 dev->set_multicast_list = ops->ndo_set_multicast_list; 4307 dev->set_mac_address = ops->ndo_set_mac_address; 4308 dev->validate_addr = ops->ndo_validate_addr; 4309 dev->do_ioctl = ops->ndo_do_ioctl; 4310 dev->set_config = ops->ndo_set_config; 4311 dev->change_mtu = ops->ndo_change_mtu; 4312 dev->tx_timeout = ops->ndo_tx_timeout; 4313 dev->get_stats = ops->ndo_get_stats; 4314 dev->vlan_rx_register = ops->ndo_vlan_rx_register; 4315 dev->vlan_rx_add_vid = ops->ndo_vlan_rx_add_vid; 4316 dev->vlan_rx_kill_vid = ops->ndo_vlan_rx_kill_vid; 4317 #ifdef CONFIG_NET_POLL_CONTROLLER 4318 dev->poll_controller = ops->ndo_poll_controller; 4319 #endif 4320 } else { 4321 char drivername[64]; 4322 pr_info("%s (%s): not using net_device_ops yet\n", 4323 dev->name, netdev_drivername(dev, drivername, 64)); 4324 4325 /* This works only because net_device_ops and the 4326 compatiablity structure are the same. */ 4327 dev->netdev_ops = (void *) &(dev->init); 4328 } 4329 #endif 4330 4331 /* Init, if this function is available */ 4332 if (dev->netdev_ops->ndo_init) { 4333 ret = dev->netdev_ops->ndo_init(dev); 4334 if (ret) { 4335 if (ret > 0) 4336 ret = -EIO; 4337 goto out; 4338 } 4339 } 4340 4341 if (!dev_valid_name(dev->name)) { 4342 ret = -EINVAL; 4343 goto err_uninit; 4344 } 4345 4346 dev->ifindex = dev_new_index(net); 4347 if (dev->iflink == -1) 4348 dev->iflink = dev->ifindex; 4349 4350 /* Check for existence of name */ 4351 head = dev_name_hash(net, dev->name); 4352 hlist_for_each(p, head) { 4353 struct net_device *d 4354 = hlist_entry(p, struct net_device, name_hlist); 4355 if (!strncmp(d->name, dev->name, IFNAMSIZ)) { 4356 ret = -EEXIST; 4357 goto err_uninit; 4358 } 4359 } 4360 4361 /* Fix illegal checksum combinations */ 4362 if ((dev->features & NETIF_F_HW_CSUM) && 4363 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4364 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n", 4365 dev->name); 4366 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 4367 } 4368 4369 if ((dev->features & NETIF_F_NO_CSUM) && 4370 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 4371 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n", 4372 dev->name); 4373 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 4374 } 4375 4376 dev->features = netdev_fix_features(dev->features, dev->name); 4377 4378 /* Enable software GSO if SG is supported. */ 4379 if (dev->features & NETIF_F_SG) 4380 dev->features |= NETIF_F_GSO; 4381 4382 netdev_initialize_kobject(dev); 4383 ret = netdev_register_kobject(dev); 4384 if (ret) 4385 goto err_uninit; 4386 dev->reg_state = NETREG_REGISTERED; 4387 4388 /* 4389 * Default initial state at registry is that the 4390 * device is present. 4391 */ 4392 4393 set_bit(__LINK_STATE_PRESENT, &dev->state); 4394 4395 dev_init_scheduler(dev); 4396 dev_hold(dev); 4397 list_netdevice(dev); 4398 4399 /* Notify protocols, that a new device appeared. */ 4400 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 4401 ret = notifier_to_errno(ret); 4402 if (ret) { 4403 rollback_registered(dev); 4404 dev->reg_state = NETREG_UNREGISTERED; 4405 } 4406 4407 out: 4408 return ret; 4409 4410 err_uninit: 4411 if (dev->netdev_ops->ndo_uninit) 4412 dev->netdev_ops->ndo_uninit(dev); 4413 goto out; 4414 } 4415 4416 /** 4417 * register_netdev - register a network device 4418 * @dev: device to register 4419 * 4420 * Take a completed network device structure and add it to the kernel 4421 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 4422 * chain. 0 is returned on success. A negative errno code is returned 4423 * on a failure to set up the device, or if the name is a duplicate. 4424 * 4425 * This is a wrapper around register_netdevice that takes the rtnl semaphore 4426 * and expands the device name if you passed a format string to 4427 * alloc_netdev. 4428 */ 4429 int register_netdev(struct net_device *dev) 4430 { 4431 int err; 4432 4433 rtnl_lock(); 4434 4435 /* 4436 * If the name is a format string the caller wants us to do a 4437 * name allocation. 4438 */ 4439 if (strchr(dev->name, '%')) { 4440 err = dev_alloc_name(dev, dev->name); 4441 if (err < 0) 4442 goto out; 4443 } 4444 4445 err = register_netdevice(dev); 4446 out: 4447 rtnl_unlock(); 4448 return err; 4449 } 4450 EXPORT_SYMBOL(register_netdev); 4451 4452 /* 4453 * netdev_wait_allrefs - wait until all references are gone. 4454 * 4455 * This is called when unregistering network devices. 4456 * 4457 * Any protocol or device that holds a reference should register 4458 * for netdevice notification, and cleanup and put back the 4459 * reference if they receive an UNREGISTER event. 4460 * We can get stuck here if buggy protocols don't correctly 4461 * call dev_put. 4462 */ 4463 static void netdev_wait_allrefs(struct net_device *dev) 4464 { 4465 unsigned long rebroadcast_time, warning_time; 4466 4467 rebroadcast_time = warning_time = jiffies; 4468 while (atomic_read(&dev->refcnt) != 0) { 4469 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 4470 rtnl_lock(); 4471 4472 /* Rebroadcast unregister notification */ 4473 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4474 4475 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 4476 &dev->state)) { 4477 /* We must not have linkwatch events 4478 * pending on unregister. If this 4479 * happens, we simply run the queue 4480 * unscheduled, resulting in a noop 4481 * for this device. 4482 */ 4483 linkwatch_run_queue(); 4484 } 4485 4486 __rtnl_unlock(); 4487 4488 rebroadcast_time = jiffies; 4489 } 4490 4491 msleep(250); 4492 4493 if (time_after(jiffies, warning_time + 10 * HZ)) { 4494 printk(KERN_EMERG "unregister_netdevice: " 4495 "waiting for %s to become free. Usage " 4496 "count = %d\n", 4497 dev->name, atomic_read(&dev->refcnt)); 4498 warning_time = jiffies; 4499 } 4500 } 4501 } 4502 4503 /* The sequence is: 4504 * 4505 * rtnl_lock(); 4506 * ... 4507 * register_netdevice(x1); 4508 * register_netdevice(x2); 4509 * ... 4510 * unregister_netdevice(y1); 4511 * unregister_netdevice(y2); 4512 * ... 4513 * rtnl_unlock(); 4514 * free_netdev(y1); 4515 * free_netdev(y2); 4516 * 4517 * We are invoked by rtnl_unlock(). 4518 * This allows us to deal with problems: 4519 * 1) We can delete sysfs objects which invoke hotplug 4520 * without deadlocking with linkwatch via keventd. 4521 * 2) Since we run with the RTNL semaphore not held, we can sleep 4522 * safely in order to wait for the netdev refcnt to drop to zero. 4523 * 4524 * We must not return until all unregister events added during 4525 * the interval the lock was held have been completed. 4526 */ 4527 void netdev_run_todo(void) 4528 { 4529 struct list_head list; 4530 4531 /* Snapshot list, allow later requests */ 4532 list_replace_init(&net_todo_list, &list); 4533 4534 __rtnl_unlock(); 4535 4536 while (!list_empty(&list)) { 4537 struct net_device *dev 4538 = list_entry(list.next, struct net_device, todo_list); 4539 list_del(&dev->todo_list); 4540 4541 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 4542 printk(KERN_ERR "network todo '%s' but state %d\n", 4543 dev->name, dev->reg_state); 4544 dump_stack(); 4545 continue; 4546 } 4547 4548 dev->reg_state = NETREG_UNREGISTERED; 4549 4550 on_each_cpu(flush_backlog, dev, 1); 4551 4552 netdev_wait_allrefs(dev); 4553 4554 /* paranoia */ 4555 BUG_ON(atomic_read(&dev->refcnt)); 4556 WARN_ON(dev->ip_ptr); 4557 WARN_ON(dev->ip6_ptr); 4558 WARN_ON(dev->dn_ptr); 4559 4560 if (dev->destructor) 4561 dev->destructor(dev); 4562 4563 /* Free network device */ 4564 kobject_put(&dev->dev.kobj); 4565 } 4566 } 4567 4568 /** 4569 * dev_get_stats - get network device statistics 4570 * @dev: device to get statistics from 4571 * 4572 * Get network statistics from device. The device driver may provide 4573 * its own method by setting dev->netdev_ops->get_stats; otherwise 4574 * the internal statistics structure is used. 4575 */ 4576 const struct net_device_stats *dev_get_stats(struct net_device *dev) 4577 { 4578 const struct net_device_ops *ops = dev->netdev_ops; 4579 4580 if (ops->ndo_get_stats) 4581 return ops->ndo_get_stats(dev); 4582 else 4583 return &dev->stats; 4584 } 4585 EXPORT_SYMBOL(dev_get_stats); 4586 4587 static void netdev_init_one_queue(struct net_device *dev, 4588 struct netdev_queue *queue, 4589 void *_unused) 4590 { 4591 queue->dev = dev; 4592 } 4593 4594 static void netdev_init_queues(struct net_device *dev) 4595 { 4596 netdev_init_one_queue(dev, &dev->rx_queue, NULL); 4597 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 4598 spin_lock_init(&dev->tx_global_lock); 4599 } 4600 4601 /** 4602 * alloc_netdev_mq - allocate network device 4603 * @sizeof_priv: size of private data to allocate space for 4604 * @name: device name format string 4605 * @setup: callback to initialize device 4606 * @queue_count: the number of subqueues to allocate 4607 * 4608 * Allocates a struct net_device with private data area for driver use 4609 * and performs basic initialization. Also allocates subquue structs 4610 * for each queue on the device at the end of the netdevice. 4611 */ 4612 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name, 4613 void (*setup)(struct net_device *), unsigned int queue_count) 4614 { 4615 struct netdev_queue *tx; 4616 struct net_device *dev; 4617 size_t alloc_size; 4618 void *p; 4619 4620 BUG_ON(strlen(name) >= sizeof(dev->name)); 4621 4622 alloc_size = sizeof(struct net_device); 4623 if (sizeof_priv) { 4624 /* ensure 32-byte alignment of private area */ 4625 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST; 4626 alloc_size += sizeof_priv; 4627 } 4628 /* ensure 32-byte alignment of whole construct */ 4629 alloc_size += NETDEV_ALIGN_CONST; 4630 4631 p = kzalloc(alloc_size, GFP_KERNEL); 4632 if (!p) { 4633 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 4634 return NULL; 4635 } 4636 4637 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL); 4638 if (!tx) { 4639 printk(KERN_ERR "alloc_netdev: Unable to allocate " 4640 "tx qdiscs.\n"); 4641 kfree(p); 4642 return NULL; 4643 } 4644 4645 dev = (struct net_device *) 4646 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST); 4647 dev->padded = (char *)dev - (char *)p; 4648 dev_net_set(dev, &init_net); 4649 4650 dev->_tx = tx; 4651 dev->num_tx_queues = queue_count; 4652 dev->real_num_tx_queues = queue_count; 4653 4654 dev->gso_max_size = GSO_MAX_SIZE; 4655 4656 netdev_init_queues(dev); 4657 4658 INIT_LIST_HEAD(&dev->napi_list); 4659 setup(dev); 4660 strcpy(dev->name, name); 4661 return dev; 4662 } 4663 EXPORT_SYMBOL(alloc_netdev_mq); 4664 4665 /** 4666 * free_netdev - free network device 4667 * @dev: device 4668 * 4669 * This function does the last stage of destroying an allocated device 4670 * interface. The reference to the device object is released. 4671 * If this is the last reference then it will be freed. 4672 */ 4673 void free_netdev(struct net_device *dev) 4674 { 4675 struct napi_struct *p, *n; 4676 4677 release_net(dev_net(dev)); 4678 4679 kfree(dev->_tx); 4680 4681 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 4682 netif_napi_del(p); 4683 4684 /* Compatibility with error handling in drivers */ 4685 if (dev->reg_state == NETREG_UNINITIALIZED) { 4686 kfree((char *)dev - dev->padded); 4687 return; 4688 } 4689 4690 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 4691 dev->reg_state = NETREG_RELEASED; 4692 4693 /* will free via device release */ 4694 put_device(&dev->dev); 4695 } 4696 4697 /** 4698 * synchronize_net - Synchronize with packet receive processing 4699 * 4700 * Wait for packets currently being received to be done. 4701 * Does not block later packets from starting. 4702 */ 4703 void synchronize_net(void) 4704 { 4705 might_sleep(); 4706 synchronize_rcu(); 4707 } 4708 4709 /** 4710 * unregister_netdevice - remove device from the kernel 4711 * @dev: device 4712 * 4713 * This function shuts down a device interface and removes it 4714 * from the kernel tables. 4715 * 4716 * Callers must hold the rtnl semaphore. You may want 4717 * unregister_netdev() instead of this. 4718 */ 4719 4720 void unregister_netdevice(struct net_device *dev) 4721 { 4722 ASSERT_RTNL(); 4723 4724 rollback_registered(dev); 4725 /* Finish processing unregister after unlock */ 4726 net_set_todo(dev); 4727 } 4728 4729 /** 4730 * unregister_netdev - remove device from the kernel 4731 * @dev: device 4732 * 4733 * This function shuts down a device interface and removes it 4734 * from the kernel tables. 4735 * 4736 * This is just a wrapper for unregister_netdevice that takes 4737 * the rtnl semaphore. In general you want to use this and not 4738 * unregister_netdevice. 4739 */ 4740 void unregister_netdev(struct net_device *dev) 4741 { 4742 rtnl_lock(); 4743 unregister_netdevice(dev); 4744 rtnl_unlock(); 4745 } 4746 4747 EXPORT_SYMBOL(unregister_netdev); 4748 4749 /** 4750 * dev_change_net_namespace - move device to different nethost namespace 4751 * @dev: device 4752 * @net: network namespace 4753 * @pat: If not NULL name pattern to try if the current device name 4754 * is already taken in the destination network namespace. 4755 * 4756 * This function shuts down a device interface and moves it 4757 * to a new network namespace. On success 0 is returned, on 4758 * a failure a netagive errno code is returned. 4759 * 4760 * Callers must hold the rtnl semaphore. 4761 */ 4762 4763 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 4764 { 4765 char buf[IFNAMSIZ]; 4766 const char *destname; 4767 int err; 4768 4769 ASSERT_RTNL(); 4770 4771 /* Don't allow namespace local devices to be moved. */ 4772 err = -EINVAL; 4773 if (dev->features & NETIF_F_NETNS_LOCAL) 4774 goto out; 4775 4776 #ifdef CONFIG_SYSFS 4777 /* Don't allow real devices to be moved when sysfs 4778 * is enabled. 4779 */ 4780 err = -EINVAL; 4781 if (dev->dev.parent) 4782 goto out; 4783 #endif 4784 4785 /* Ensure the device has been registrered */ 4786 err = -EINVAL; 4787 if (dev->reg_state != NETREG_REGISTERED) 4788 goto out; 4789 4790 /* Get out if there is nothing todo */ 4791 err = 0; 4792 if (net_eq(dev_net(dev), net)) 4793 goto out; 4794 4795 /* Pick the destination device name, and ensure 4796 * we can use it in the destination network namespace. 4797 */ 4798 err = -EEXIST; 4799 destname = dev->name; 4800 if (__dev_get_by_name(net, destname)) { 4801 /* We get here if we can't use the current device name */ 4802 if (!pat) 4803 goto out; 4804 if (!dev_valid_name(pat)) 4805 goto out; 4806 if (strchr(pat, '%')) { 4807 if (__dev_alloc_name(net, pat, buf) < 0) 4808 goto out; 4809 destname = buf; 4810 } else 4811 destname = pat; 4812 if (__dev_get_by_name(net, destname)) 4813 goto out; 4814 } 4815 4816 /* 4817 * And now a mini version of register_netdevice unregister_netdevice. 4818 */ 4819 4820 /* If device is running close it first. */ 4821 dev_close(dev); 4822 4823 /* And unlink it from device chain */ 4824 err = -ENODEV; 4825 unlist_netdevice(dev); 4826 4827 synchronize_net(); 4828 4829 /* Shutdown queueing discipline. */ 4830 dev_shutdown(dev); 4831 4832 /* Notify protocols, that we are about to destroy 4833 this device. They should clean all the things. 4834 */ 4835 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 4836 4837 /* 4838 * Flush the unicast and multicast chains 4839 */ 4840 dev_addr_discard(dev); 4841 4842 netdev_unregister_kobject(dev); 4843 4844 /* Actually switch the network namespace */ 4845 dev_net_set(dev, net); 4846 4847 /* Assign the new device name */ 4848 if (destname != dev->name) 4849 strcpy(dev->name, destname); 4850 4851 /* If there is an ifindex conflict assign a new one */ 4852 if (__dev_get_by_index(net, dev->ifindex)) { 4853 int iflink = (dev->iflink == dev->ifindex); 4854 dev->ifindex = dev_new_index(net); 4855 if (iflink) 4856 dev->iflink = dev->ifindex; 4857 } 4858 4859 /* Fixup kobjects */ 4860 err = netdev_register_kobject(dev); 4861 WARN_ON(err); 4862 4863 /* Add the device back in the hashes */ 4864 list_netdevice(dev); 4865 4866 /* Notify protocols, that a new device appeared. */ 4867 call_netdevice_notifiers(NETDEV_REGISTER, dev); 4868 4869 synchronize_net(); 4870 err = 0; 4871 out: 4872 return err; 4873 } 4874 4875 static int dev_cpu_callback(struct notifier_block *nfb, 4876 unsigned long action, 4877 void *ocpu) 4878 { 4879 struct sk_buff **list_skb; 4880 struct Qdisc **list_net; 4881 struct sk_buff *skb; 4882 unsigned int cpu, oldcpu = (unsigned long)ocpu; 4883 struct softnet_data *sd, *oldsd; 4884 4885 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 4886 return NOTIFY_OK; 4887 4888 local_irq_disable(); 4889 cpu = smp_processor_id(); 4890 sd = &per_cpu(softnet_data, cpu); 4891 oldsd = &per_cpu(softnet_data, oldcpu); 4892 4893 /* Find end of our completion_queue. */ 4894 list_skb = &sd->completion_queue; 4895 while (*list_skb) 4896 list_skb = &(*list_skb)->next; 4897 /* Append completion queue from offline CPU. */ 4898 *list_skb = oldsd->completion_queue; 4899 oldsd->completion_queue = NULL; 4900 4901 /* Find end of our output_queue. */ 4902 list_net = &sd->output_queue; 4903 while (*list_net) 4904 list_net = &(*list_net)->next_sched; 4905 /* Append output queue from offline CPU. */ 4906 *list_net = oldsd->output_queue; 4907 oldsd->output_queue = NULL; 4908 4909 raise_softirq_irqoff(NET_TX_SOFTIRQ); 4910 local_irq_enable(); 4911 4912 /* Process offline CPU's input_pkt_queue */ 4913 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) 4914 netif_rx(skb); 4915 4916 return NOTIFY_OK; 4917 } 4918 4919 #ifdef CONFIG_NET_DMA 4920 /** 4921 * net_dma_rebalance - try to maintain one DMA channel per CPU 4922 * @net_dma: DMA client and associated data (lock, channels, channel_mask) 4923 * 4924 * This is called when the number of channels allocated to the net_dma client 4925 * changes. The net_dma client tries to have one DMA channel per CPU. 4926 */ 4927 4928 static void net_dma_rebalance(struct net_dma *net_dma) 4929 { 4930 unsigned int cpu, i, n, chan_idx; 4931 struct dma_chan *chan; 4932 4933 if (cpus_empty(net_dma->channel_mask)) { 4934 for_each_online_cpu(cpu) 4935 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL); 4936 return; 4937 } 4938 4939 i = 0; 4940 cpu = first_cpu(cpu_online_map); 4941 4942 for_each_cpu_mask_nr(chan_idx, net_dma->channel_mask) { 4943 chan = net_dma->channels[chan_idx]; 4944 4945 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask)) 4946 + (i < (num_online_cpus() % 4947 cpus_weight(net_dma->channel_mask)) ? 1 : 0)); 4948 4949 while(n) { 4950 per_cpu(softnet_data, cpu).net_dma = chan; 4951 cpu = next_cpu(cpu, cpu_online_map); 4952 n--; 4953 } 4954 i++; 4955 } 4956 } 4957 4958 /** 4959 * netdev_dma_event - event callback for the net_dma_client 4960 * @client: should always be net_dma_client 4961 * @chan: DMA channel for the event 4962 * @state: DMA state to be handled 4963 */ 4964 static enum dma_state_client 4965 netdev_dma_event(struct dma_client *client, struct dma_chan *chan, 4966 enum dma_state state) 4967 { 4968 int i, found = 0, pos = -1; 4969 struct net_dma *net_dma = 4970 container_of(client, struct net_dma, client); 4971 enum dma_state_client ack = DMA_DUP; /* default: take no action */ 4972 4973 spin_lock(&net_dma->lock); 4974 switch (state) { 4975 case DMA_RESOURCE_AVAILABLE: 4976 for (i = 0; i < nr_cpu_ids; i++) 4977 if (net_dma->channels[i] == chan) { 4978 found = 1; 4979 break; 4980 } else if (net_dma->channels[i] == NULL && pos < 0) 4981 pos = i; 4982 4983 if (!found && pos >= 0) { 4984 ack = DMA_ACK; 4985 net_dma->channels[pos] = chan; 4986 cpu_set(pos, net_dma->channel_mask); 4987 net_dma_rebalance(net_dma); 4988 } 4989 break; 4990 case DMA_RESOURCE_REMOVED: 4991 for (i = 0; i < nr_cpu_ids; i++) 4992 if (net_dma->channels[i] == chan) { 4993 found = 1; 4994 pos = i; 4995 break; 4996 } 4997 4998 if (found) { 4999 ack = DMA_ACK; 5000 cpu_clear(pos, net_dma->channel_mask); 5001 net_dma->channels[i] = NULL; 5002 net_dma_rebalance(net_dma); 5003 } 5004 break; 5005 default: 5006 break; 5007 } 5008 spin_unlock(&net_dma->lock); 5009 5010 return ack; 5011 } 5012 5013 /** 5014 * netdev_dma_register - register the networking subsystem as a DMA client 5015 */ 5016 static int __init netdev_dma_register(void) 5017 { 5018 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma), 5019 GFP_KERNEL); 5020 if (unlikely(!net_dma.channels)) { 5021 printk(KERN_NOTICE 5022 "netdev_dma: no memory for net_dma.channels\n"); 5023 return -ENOMEM; 5024 } 5025 spin_lock_init(&net_dma.lock); 5026 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask); 5027 dma_async_client_register(&net_dma.client); 5028 dma_async_client_chan_request(&net_dma.client); 5029 return 0; 5030 } 5031 5032 #else 5033 static int __init netdev_dma_register(void) { return -ENODEV; } 5034 #endif /* CONFIG_NET_DMA */ 5035 5036 /** 5037 * netdev_increment_features - increment feature set by one 5038 * @all: current feature set 5039 * @one: new feature set 5040 * @mask: mask feature set 5041 * 5042 * Computes a new feature set after adding a device with feature set 5043 * @one to the master device with current feature set @all. Will not 5044 * enable anything that is off in @mask. Returns the new feature set. 5045 */ 5046 unsigned long netdev_increment_features(unsigned long all, unsigned long one, 5047 unsigned long mask) 5048 { 5049 /* If device needs checksumming, downgrade to it. */ 5050 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM)) 5051 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM); 5052 else if (mask & NETIF_F_ALL_CSUM) { 5053 /* If one device supports v4/v6 checksumming, set for all. */ 5054 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) && 5055 !(all & NETIF_F_GEN_CSUM)) { 5056 all &= ~NETIF_F_ALL_CSUM; 5057 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM); 5058 } 5059 5060 /* If one device supports hw checksumming, set for all. */ 5061 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) { 5062 all &= ~NETIF_F_ALL_CSUM; 5063 all |= NETIF_F_HW_CSUM; 5064 } 5065 } 5066 5067 one |= NETIF_F_ALL_CSUM; 5068 5069 one |= all & NETIF_F_ONE_FOR_ALL; 5070 all &= one | NETIF_F_LLTX | NETIF_F_GSO; 5071 all |= one & mask & NETIF_F_ONE_FOR_ALL; 5072 5073 return all; 5074 } 5075 EXPORT_SYMBOL(netdev_increment_features); 5076 5077 static struct hlist_head *netdev_create_hash(void) 5078 { 5079 int i; 5080 struct hlist_head *hash; 5081 5082 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 5083 if (hash != NULL) 5084 for (i = 0; i < NETDEV_HASHENTRIES; i++) 5085 INIT_HLIST_HEAD(&hash[i]); 5086 5087 return hash; 5088 } 5089 5090 /* Initialize per network namespace state */ 5091 static int __net_init netdev_init(struct net *net) 5092 { 5093 INIT_LIST_HEAD(&net->dev_base_head); 5094 5095 net->dev_name_head = netdev_create_hash(); 5096 if (net->dev_name_head == NULL) 5097 goto err_name; 5098 5099 net->dev_index_head = netdev_create_hash(); 5100 if (net->dev_index_head == NULL) 5101 goto err_idx; 5102 5103 return 0; 5104 5105 err_idx: 5106 kfree(net->dev_name_head); 5107 err_name: 5108 return -ENOMEM; 5109 } 5110 5111 /** 5112 * netdev_drivername - network driver for the device 5113 * @dev: network device 5114 * @buffer: buffer for resulting name 5115 * @len: size of buffer 5116 * 5117 * Determine network driver for device. 5118 */ 5119 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 5120 { 5121 const struct device_driver *driver; 5122 const struct device *parent; 5123 5124 if (len <= 0 || !buffer) 5125 return buffer; 5126 buffer[0] = 0; 5127 5128 parent = dev->dev.parent; 5129 5130 if (!parent) 5131 return buffer; 5132 5133 driver = parent->driver; 5134 if (driver && driver->name) 5135 strlcpy(buffer, driver->name, len); 5136 return buffer; 5137 } 5138 5139 static void __net_exit netdev_exit(struct net *net) 5140 { 5141 kfree(net->dev_name_head); 5142 kfree(net->dev_index_head); 5143 } 5144 5145 static struct pernet_operations __net_initdata netdev_net_ops = { 5146 .init = netdev_init, 5147 .exit = netdev_exit, 5148 }; 5149 5150 static void __net_exit default_device_exit(struct net *net) 5151 { 5152 struct net_device *dev; 5153 /* 5154 * Push all migratable of the network devices back to the 5155 * initial network namespace 5156 */ 5157 rtnl_lock(); 5158 restart: 5159 for_each_netdev(net, dev) { 5160 int err; 5161 char fb_name[IFNAMSIZ]; 5162 5163 /* Ignore unmoveable devices (i.e. loopback) */ 5164 if (dev->features & NETIF_F_NETNS_LOCAL) 5165 continue; 5166 5167 /* Delete virtual devices */ 5168 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) { 5169 dev->rtnl_link_ops->dellink(dev); 5170 goto restart; 5171 } 5172 5173 /* Push remaing network devices to init_net */ 5174 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 5175 err = dev_change_net_namespace(dev, &init_net, fb_name); 5176 if (err) { 5177 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 5178 __func__, dev->name, err); 5179 BUG(); 5180 } 5181 goto restart; 5182 } 5183 rtnl_unlock(); 5184 } 5185 5186 static struct pernet_operations __net_initdata default_device_ops = { 5187 .exit = default_device_exit, 5188 }; 5189 5190 /* 5191 * Initialize the DEV module. At boot time this walks the device list and 5192 * unhooks any devices that fail to initialise (normally hardware not 5193 * present) and leaves us with a valid list of present and active devices. 5194 * 5195 */ 5196 5197 /* 5198 * This is called single threaded during boot, so no need 5199 * to take the rtnl semaphore. 5200 */ 5201 static int __init net_dev_init(void) 5202 { 5203 int i, rc = -ENOMEM; 5204 5205 BUG_ON(!dev_boot_phase); 5206 5207 if (dev_proc_init()) 5208 goto out; 5209 5210 if (netdev_kobject_init()) 5211 goto out; 5212 5213 INIT_LIST_HEAD(&ptype_all); 5214 for (i = 0; i < PTYPE_HASH_SIZE; i++) 5215 INIT_LIST_HEAD(&ptype_base[i]); 5216 5217 if (register_pernet_subsys(&netdev_net_ops)) 5218 goto out; 5219 5220 /* 5221 * Initialise the packet receive queues. 5222 */ 5223 5224 for_each_possible_cpu(i) { 5225 struct softnet_data *queue; 5226 5227 queue = &per_cpu(softnet_data, i); 5228 skb_queue_head_init(&queue->input_pkt_queue); 5229 queue->completion_queue = NULL; 5230 INIT_LIST_HEAD(&queue->poll_list); 5231 5232 queue->backlog.poll = process_backlog; 5233 queue->backlog.weight = weight_p; 5234 queue->backlog.gro_list = NULL; 5235 } 5236 5237 dev_boot_phase = 0; 5238 5239 /* The loopback device is special if any other network devices 5240 * is present in a network namespace the loopback device must 5241 * be present. Since we now dynamically allocate and free the 5242 * loopback device ensure this invariant is maintained by 5243 * keeping the loopback device as the first device on the 5244 * list of network devices. Ensuring the loopback devices 5245 * is the first device that appears and the last network device 5246 * that disappears. 5247 */ 5248 if (register_pernet_device(&loopback_net_ops)) 5249 goto out; 5250 5251 if (register_pernet_device(&default_device_ops)) 5252 goto out; 5253 5254 netdev_dma_register(); 5255 5256 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 5257 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 5258 5259 hotcpu_notifier(dev_cpu_callback, 0); 5260 dst_init(); 5261 dev_mcast_init(); 5262 rc = 0; 5263 out: 5264 return rc; 5265 } 5266 5267 subsys_initcall(net_dev_init); 5268 5269 EXPORT_SYMBOL(__dev_get_by_index); 5270 EXPORT_SYMBOL(__dev_get_by_name); 5271 EXPORT_SYMBOL(__dev_remove_pack); 5272 EXPORT_SYMBOL(dev_valid_name); 5273 EXPORT_SYMBOL(dev_add_pack); 5274 EXPORT_SYMBOL(dev_alloc_name); 5275 EXPORT_SYMBOL(dev_close); 5276 EXPORT_SYMBOL(dev_get_by_flags); 5277 EXPORT_SYMBOL(dev_get_by_index); 5278 EXPORT_SYMBOL(dev_get_by_name); 5279 EXPORT_SYMBOL(dev_open); 5280 EXPORT_SYMBOL(dev_queue_xmit); 5281 EXPORT_SYMBOL(dev_remove_pack); 5282 EXPORT_SYMBOL(dev_set_allmulti); 5283 EXPORT_SYMBOL(dev_set_promiscuity); 5284 EXPORT_SYMBOL(dev_change_flags); 5285 EXPORT_SYMBOL(dev_set_mtu); 5286 EXPORT_SYMBOL(dev_set_mac_address); 5287 EXPORT_SYMBOL(free_netdev); 5288 EXPORT_SYMBOL(netdev_boot_setup_check); 5289 EXPORT_SYMBOL(netdev_set_master); 5290 EXPORT_SYMBOL(netdev_state_change); 5291 EXPORT_SYMBOL(netif_receive_skb); 5292 EXPORT_SYMBOL(netif_rx); 5293 EXPORT_SYMBOL(register_gifconf); 5294 EXPORT_SYMBOL(register_netdevice); 5295 EXPORT_SYMBOL(register_netdevice_notifier); 5296 EXPORT_SYMBOL(skb_checksum_help); 5297 EXPORT_SYMBOL(synchronize_net); 5298 EXPORT_SYMBOL(unregister_netdevice); 5299 EXPORT_SYMBOL(unregister_netdevice_notifier); 5300 EXPORT_SYMBOL(net_enable_timestamp); 5301 EXPORT_SYMBOL(net_disable_timestamp); 5302 EXPORT_SYMBOL(dev_get_flags); 5303 5304 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE) 5305 EXPORT_SYMBOL(br_handle_frame_hook); 5306 EXPORT_SYMBOL(br_fdb_get_hook); 5307 EXPORT_SYMBOL(br_fdb_put_hook); 5308 #endif 5309 5310 EXPORT_SYMBOL(dev_load); 5311 5312 EXPORT_PER_CPU_SYMBOL(softnet_data); 5313