1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * NET3 Protocol independent device support routines. 4 * 5 * Derived from the non IP parts of dev.c 1.0.19 6 * Authors: Ross Biro 7 * Fred N. van Kempen, <[email protected]> 8 * Mark Evans, <[email protected]> 9 * 10 * Additional Authors: 11 * Florian la Roche <[email protected]> 12 * Alan Cox <[email protected]> 13 * David Hinds <[email protected]> 14 * Alexey Kuznetsov <[email protected]> 15 * Adam Sulmicki <[email protected]> 16 * Pekka Riikonen <[email protected]> 17 * 18 * Changes: 19 * D.J. Barrow : Fixed bug where dev->refcnt gets set 20 * to 2 if register_netdev gets called 21 * before net_dev_init & also removed a 22 * few lines of code in the process. 23 * Alan Cox : device private ioctl copies fields back. 24 * Alan Cox : Transmit queue code does relevant 25 * stunts to keep the queue safe. 26 * Alan Cox : Fixed double lock. 27 * Alan Cox : Fixed promisc NULL pointer trap 28 * ???????? : Support the full private ioctl range 29 * Alan Cox : Moved ioctl permission check into 30 * drivers 31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 32 * Alan Cox : 100 backlog just doesn't cut it when 33 * you start doing multicast video 8) 34 * Alan Cox : Rewrote net_bh and list manager. 35 * Alan Cox : Fix ETH_P_ALL echoback lengths. 36 * Alan Cox : Took out transmit every packet pass 37 * Saved a few bytes in the ioctl handler 38 * Alan Cox : Network driver sets packet type before 39 * calling netif_rx. Saves a function 40 * call a packet. 41 * Alan Cox : Hashed net_bh() 42 * Richard Kooijman: Timestamp fixes. 43 * Alan Cox : Wrong field in SIOCGIFDSTADDR 44 * Alan Cox : Device lock protection. 45 * Alan Cox : Fixed nasty side effect of device close 46 * changes. 47 * Rudi Cilibrasi : Pass the right thing to 48 * set_mac_address() 49 * Dave Miller : 32bit quantity for the device lock to 50 * make it work out on a Sparc. 51 * Bjorn Ekwall : Added KERNELD hack. 52 * Alan Cox : Cleaned up the backlog initialise. 53 * Craig Metz : SIOCGIFCONF fix if space for under 54 * 1 device. 55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 56 * is no device open function. 57 * Andi Kleen : Fix error reporting for SIOCGIFCONF 58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 59 * Cyrus Durgin : Cleaned for KMOD 60 * Adam Sulmicki : Bug Fix : Network Device Unload 61 * A network device unload needs to purge 62 * the backlog queue. 63 * Paul Rusty Russell : SIOCSIFNAME 64 * Pekka Riikonen : Netdev boot-time settings code 65 * Andrew Morton : Make unregister_netdevice wait 66 * indefinitely on dev->refcnt 67 * J Hadi Salim : - Backlog queue sampling 68 * - netif_rx() feedback 69 */ 70 71 #include <linux/uaccess.h> 72 #include <linux/bitops.h> 73 #include <linux/capability.h> 74 #include <linux/cpu.h> 75 #include <linux/types.h> 76 #include <linux/kernel.h> 77 #include <linux/hash.h> 78 #include <linux/slab.h> 79 #include <linux/sched.h> 80 #include <linux/sched/mm.h> 81 #include <linux/mutex.h> 82 #include <linux/rwsem.h> 83 #include <linux/string.h> 84 #include <linux/mm.h> 85 #include <linux/socket.h> 86 #include <linux/sockios.h> 87 #include <linux/errno.h> 88 #include <linux/interrupt.h> 89 #include <linux/if_ether.h> 90 #include <linux/netdevice.h> 91 #include <linux/etherdevice.h> 92 #include <linux/ethtool.h> 93 #include <linux/skbuff.h> 94 #include <linux/bpf.h> 95 #include <linux/bpf_trace.h> 96 #include <net/net_namespace.h> 97 #include <net/sock.h> 98 #include <net/busy_poll.h> 99 #include <linux/rtnetlink.h> 100 #include <linux/stat.h> 101 #include <net/dsa.h> 102 #include <net/dst.h> 103 #include <net/dst_metadata.h> 104 #include <net/pkt_sched.h> 105 #include <net/pkt_cls.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/module.h> 111 #include <linux/netpoll.h> 112 #include <linux/rcupdate.h> 113 #include <linux/delay.h> 114 #include <net/iw_handler.h> 115 #include <asm/current.h> 116 #include <linux/audit.h> 117 #include <linux/dmaengine.h> 118 #include <linux/err.h> 119 #include <linux/ctype.h> 120 #include <linux/if_arp.h> 121 #include <linux/if_vlan.h> 122 #include <linux/ip.h> 123 #include <net/ip.h> 124 #include <net/mpls.h> 125 #include <linux/ipv6.h> 126 #include <linux/in.h> 127 #include <linux/jhash.h> 128 #include <linux/random.h> 129 #include <trace/events/napi.h> 130 #include <trace/events/net.h> 131 #include <trace/events/skb.h> 132 #include <linux/inetdevice.h> 133 #include <linux/cpu_rmap.h> 134 #include <linux/static_key.h> 135 #include <linux/hashtable.h> 136 #include <linux/vmalloc.h> 137 #include <linux/if_macvlan.h> 138 #include <linux/errqueue.h> 139 #include <linux/hrtimer.h> 140 #include <linux/netfilter_ingress.h> 141 #include <linux/crash_dump.h> 142 #include <linux/sctp.h> 143 #include <net/udp_tunnel.h> 144 #include <linux/net_namespace.h> 145 #include <linux/indirect_call_wrapper.h> 146 #include <net/devlink.h> 147 #include <linux/pm_runtime.h> 148 #include <linux/prandom.h> 149 150 #include "net-sysfs.h" 151 152 #define MAX_GRO_SKBS 8 153 154 /* This should be increased if a protocol with a bigger head is added. */ 155 #define GRO_MAX_HEAD (MAX_HEADER + 128) 156 157 static DEFINE_SPINLOCK(ptype_lock); 158 static DEFINE_SPINLOCK(offload_lock); 159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 160 struct list_head ptype_all __read_mostly; /* Taps */ 161 static struct list_head offload_base __read_mostly; 162 163 static int netif_rx_internal(struct sk_buff *skb); 164 static int call_netdevice_notifiers_info(unsigned long val, 165 struct netdev_notifier_info *info); 166 static int call_netdevice_notifiers_extack(unsigned long val, 167 struct net_device *dev, 168 struct netlink_ext_ack *extack); 169 static struct napi_struct *napi_by_id(unsigned int napi_id); 170 171 /* 172 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 173 * semaphore. 174 * 175 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 176 * 177 * Writers must hold the rtnl semaphore while they loop through the 178 * dev_base_head list, and hold dev_base_lock for writing when they do the 179 * actual updates. This allows pure readers to access the list even 180 * while a writer is preparing to update it. 181 * 182 * To put it another way, dev_base_lock is held for writing only to 183 * protect against pure readers; the rtnl semaphore provides the 184 * protection against other writers. 185 * 186 * See, for example usages, register_netdevice() and 187 * unregister_netdevice(), which must be called with the rtnl 188 * semaphore held. 189 */ 190 DEFINE_RWLOCK(dev_base_lock); 191 EXPORT_SYMBOL(dev_base_lock); 192 193 static DEFINE_MUTEX(ifalias_mutex); 194 195 /* protects napi_hash addition/deletion and napi_gen_id */ 196 static DEFINE_SPINLOCK(napi_hash_lock); 197 198 static unsigned int napi_gen_id = NR_CPUS; 199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8); 200 201 static DECLARE_RWSEM(devnet_rename_sem); 202 203 static inline void dev_base_seq_inc(struct net *net) 204 { 205 while (++net->dev_base_seq == 0) 206 ; 207 } 208 209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 210 { 211 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ)); 212 213 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 214 } 215 216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 217 { 218 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 219 } 220 221 static inline void rps_lock(struct softnet_data *sd) 222 { 223 #ifdef CONFIG_RPS 224 spin_lock(&sd->input_pkt_queue.lock); 225 #endif 226 } 227 228 static inline void rps_unlock(struct softnet_data *sd) 229 { 230 #ifdef CONFIG_RPS 231 spin_unlock(&sd->input_pkt_queue.lock); 232 #endif 233 } 234 235 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev, 236 const char *name) 237 { 238 struct netdev_name_node *name_node; 239 240 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL); 241 if (!name_node) 242 return NULL; 243 INIT_HLIST_NODE(&name_node->hlist); 244 name_node->dev = dev; 245 name_node->name = name; 246 return name_node; 247 } 248 249 static struct netdev_name_node * 250 netdev_name_node_head_alloc(struct net_device *dev) 251 { 252 struct netdev_name_node *name_node; 253 254 name_node = netdev_name_node_alloc(dev, dev->name); 255 if (!name_node) 256 return NULL; 257 INIT_LIST_HEAD(&name_node->list); 258 return name_node; 259 } 260 261 static void netdev_name_node_free(struct netdev_name_node *name_node) 262 { 263 kfree(name_node); 264 } 265 266 static void netdev_name_node_add(struct net *net, 267 struct netdev_name_node *name_node) 268 { 269 hlist_add_head_rcu(&name_node->hlist, 270 dev_name_hash(net, name_node->name)); 271 } 272 273 static void netdev_name_node_del(struct netdev_name_node *name_node) 274 { 275 hlist_del_rcu(&name_node->hlist); 276 } 277 278 static struct netdev_name_node *netdev_name_node_lookup(struct net *net, 279 const char *name) 280 { 281 struct hlist_head *head = dev_name_hash(net, name); 282 struct netdev_name_node *name_node; 283 284 hlist_for_each_entry(name_node, head, hlist) 285 if (!strcmp(name_node->name, name)) 286 return name_node; 287 return NULL; 288 } 289 290 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net, 291 const char *name) 292 { 293 struct hlist_head *head = dev_name_hash(net, name); 294 struct netdev_name_node *name_node; 295 296 hlist_for_each_entry_rcu(name_node, head, hlist) 297 if (!strcmp(name_node->name, name)) 298 return name_node; 299 return NULL; 300 } 301 302 int netdev_name_node_alt_create(struct net_device *dev, const char *name) 303 { 304 struct netdev_name_node *name_node; 305 struct net *net = dev_net(dev); 306 307 name_node = netdev_name_node_lookup(net, name); 308 if (name_node) 309 return -EEXIST; 310 name_node = netdev_name_node_alloc(dev, name); 311 if (!name_node) 312 return -ENOMEM; 313 netdev_name_node_add(net, name_node); 314 /* The node that holds dev->name acts as a head of per-device list. */ 315 list_add_tail(&name_node->list, &dev->name_node->list); 316 317 return 0; 318 } 319 EXPORT_SYMBOL(netdev_name_node_alt_create); 320 321 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node) 322 { 323 list_del(&name_node->list); 324 netdev_name_node_del(name_node); 325 kfree(name_node->name); 326 netdev_name_node_free(name_node); 327 } 328 329 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name) 330 { 331 struct netdev_name_node *name_node; 332 struct net *net = dev_net(dev); 333 334 name_node = netdev_name_node_lookup(net, name); 335 if (!name_node) 336 return -ENOENT; 337 /* lookup might have found our primary name or a name belonging 338 * to another device. 339 */ 340 if (name_node == dev->name_node || name_node->dev != dev) 341 return -EINVAL; 342 343 __netdev_name_node_alt_destroy(name_node); 344 345 return 0; 346 } 347 EXPORT_SYMBOL(netdev_name_node_alt_destroy); 348 349 static void netdev_name_node_alt_flush(struct net_device *dev) 350 { 351 struct netdev_name_node *name_node, *tmp; 352 353 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) 354 __netdev_name_node_alt_destroy(name_node); 355 } 356 357 /* Device list insertion */ 358 static void list_netdevice(struct net_device *dev) 359 { 360 struct net *net = dev_net(dev); 361 362 ASSERT_RTNL(); 363 364 write_lock_bh(&dev_base_lock); 365 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 366 netdev_name_node_add(net, dev->name_node); 367 hlist_add_head_rcu(&dev->index_hlist, 368 dev_index_hash(net, dev->ifindex)); 369 write_unlock_bh(&dev_base_lock); 370 371 dev_base_seq_inc(net); 372 } 373 374 /* Device list removal 375 * caller must respect a RCU grace period before freeing/reusing dev 376 */ 377 static void unlist_netdevice(struct net_device *dev) 378 { 379 ASSERT_RTNL(); 380 381 /* Unlink dev from the device chain */ 382 write_lock_bh(&dev_base_lock); 383 list_del_rcu(&dev->dev_list); 384 netdev_name_node_del(dev->name_node); 385 hlist_del_rcu(&dev->index_hlist); 386 write_unlock_bh(&dev_base_lock); 387 388 dev_base_seq_inc(dev_net(dev)); 389 } 390 391 /* 392 * Our notifier list 393 */ 394 395 static RAW_NOTIFIER_HEAD(netdev_chain); 396 397 /* 398 * Device drivers call our routines to queue packets here. We empty the 399 * queue in the local softnet handler. 400 */ 401 402 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 403 EXPORT_PER_CPU_SYMBOL(softnet_data); 404 405 #ifdef CONFIG_LOCKDEP 406 /* 407 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 408 * according to dev->type 409 */ 410 static const unsigned short netdev_lock_type[] = { 411 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 412 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 413 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 414 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 415 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 416 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 417 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 418 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 419 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 420 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 421 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 422 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 423 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM, 424 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE, 425 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE}; 426 427 static const char *const netdev_lock_name[] = { 428 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 429 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 430 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 431 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 432 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 433 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 434 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 435 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 436 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 437 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 438 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 439 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 440 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM", 441 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE", 442 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"}; 443 444 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 445 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 446 447 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 448 { 449 int i; 450 451 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 452 if (netdev_lock_type[i] == dev_type) 453 return i; 454 /* the last key is used by default */ 455 return ARRAY_SIZE(netdev_lock_type) - 1; 456 } 457 458 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 459 unsigned short dev_type) 460 { 461 int i; 462 463 i = netdev_lock_pos(dev_type); 464 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 465 netdev_lock_name[i]); 466 } 467 468 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 469 { 470 int i; 471 472 i = netdev_lock_pos(dev->type); 473 lockdep_set_class_and_name(&dev->addr_list_lock, 474 &netdev_addr_lock_key[i], 475 netdev_lock_name[i]); 476 } 477 #else 478 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 479 unsigned short dev_type) 480 { 481 } 482 483 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 484 { 485 } 486 #endif 487 488 /******************************************************************************* 489 * 490 * Protocol management and registration routines 491 * 492 *******************************************************************************/ 493 494 495 /* 496 * Add a protocol ID to the list. Now that the input handler is 497 * smarter we can dispense with all the messy stuff that used to be 498 * here. 499 * 500 * BEWARE!!! Protocol handlers, mangling input packets, 501 * MUST BE last in hash buckets and checking protocol handlers 502 * MUST start from promiscuous ptype_all chain in net_bh. 503 * It is true now, do not change it. 504 * Explanation follows: if protocol handler, mangling packet, will 505 * be the first on list, it is not able to sense, that packet 506 * is cloned and should be copied-on-write, so that it will 507 * change it and subsequent readers will get broken packet. 508 * --ANK (980803) 509 */ 510 511 static inline struct list_head *ptype_head(const struct packet_type *pt) 512 { 513 if (pt->type == htons(ETH_P_ALL)) 514 return pt->dev ? &pt->dev->ptype_all : &ptype_all; 515 else 516 return pt->dev ? &pt->dev->ptype_specific : 517 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 518 } 519 520 /** 521 * dev_add_pack - add packet handler 522 * @pt: packet type declaration 523 * 524 * Add a protocol handler to the networking stack. The passed &packet_type 525 * is linked into kernel lists and may not be freed until it has been 526 * removed from the kernel lists. 527 * 528 * This call does not sleep therefore it can not 529 * guarantee all CPU's that are in middle of receiving packets 530 * will see the new packet type (until the next received packet). 531 */ 532 533 void dev_add_pack(struct packet_type *pt) 534 { 535 struct list_head *head = ptype_head(pt); 536 537 spin_lock(&ptype_lock); 538 list_add_rcu(&pt->list, head); 539 spin_unlock(&ptype_lock); 540 } 541 EXPORT_SYMBOL(dev_add_pack); 542 543 /** 544 * __dev_remove_pack - remove packet handler 545 * @pt: packet type declaration 546 * 547 * Remove a protocol handler that was previously added to the kernel 548 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 549 * from the kernel lists and can be freed or reused once this function 550 * returns. 551 * 552 * The packet type might still be in use by receivers 553 * and must not be freed until after all the CPU's have gone 554 * through a quiescent state. 555 */ 556 void __dev_remove_pack(struct packet_type *pt) 557 { 558 struct list_head *head = ptype_head(pt); 559 struct packet_type *pt1; 560 561 spin_lock(&ptype_lock); 562 563 list_for_each_entry(pt1, head, list) { 564 if (pt == pt1) { 565 list_del_rcu(&pt->list); 566 goto out; 567 } 568 } 569 570 pr_warn("dev_remove_pack: %p not found\n", pt); 571 out: 572 spin_unlock(&ptype_lock); 573 } 574 EXPORT_SYMBOL(__dev_remove_pack); 575 576 /** 577 * dev_remove_pack - remove packet handler 578 * @pt: packet type declaration 579 * 580 * Remove a protocol handler that was previously added to the kernel 581 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 582 * from the kernel lists and can be freed or reused once this function 583 * returns. 584 * 585 * This call sleeps to guarantee that no CPU is looking at the packet 586 * type after return. 587 */ 588 void dev_remove_pack(struct packet_type *pt) 589 { 590 __dev_remove_pack(pt); 591 592 synchronize_net(); 593 } 594 EXPORT_SYMBOL(dev_remove_pack); 595 596 597 /** 598 * dev_add_offload - register offload handlers 599 * @po: protocol offload declaration 600 * 601 * Add protocol offload handlers to the networking stack. The passed 602 * &proto_offload is linked into kernel lists and may not be freed until 603 * it has been removed from the kernel lists. 604 * 605 * This call does not sleep therefore it can not 606 * guarantee all CPU's that are in middle of receiving packets 607 * will see the new offload handlers (until the next received packet). 608 */ 609 void dev_add_offload(struct packet_offload *po) 610 { 611 struct packet_offload *elem; 612 613 spin_lock(&offload_lock); 614 list_for_each_entry(elem, &offload_base, list) { 615 if (po->priority < elem->priority) 616 break; 617 } 618 list_add_rcu(&po->list, elem->list.prev); 619 spin_unlock(&offload_lock); 620 } 621 EXPORT_SYMBOL(dev_add_offload); 622 623 /** 624 * __dev_remove_offload - remove offload handler 625 * @po: packet offload declaration 626 * 627 * Remove a protocol offload handler that was previously added to the 628 * kernel offload handlers by dev_add_offload(). The passed &offload_type 629 * is removed from the kernel lists and can be freed or reused once this 630 * function returns. 631 * 632 * The packet type might still be in use by receivers 633 * and must not be freed until after all the CPU's have gone 634 * through a quiescent state. 635 */ 636 static void __dev_remove_offload(struct packet_offload *po) 637 { 638 struct list_head *head = &offload_base; 639 struct packet_offload *po1; 640 641 spin_lock(&offload_lock); 642 643 list_for_each_entry(po1, head, list) { 644 if (po == po1) { 645 list_del_rcu(&po->list); 646 goto out; 647 } 648 } 649 650 pr_warn("dev_remove_offload: %p not found\n", po); 651 out: 652 spin_unlock(&offload_lock); 653 } 654 655 /** 656 * dev_remove_offload - remove packet offload handler 657 * @po: packet offload declaration 658 * 659 * Remove a packet offload handler that was previously added to the kernel 660 * offload handlers by dev_add_offload(). The passed &offload_type is 661 * removed from the kernel lists and can be freed or reused once this 662 * function returns. 663 * 664 * This call sleeps to guarantee that no CPU is looking at the packet 665 * type after return. 666 */ 667 void dev_remove_offload(struct packet_offload *po) 668 { 669 __dev_remove_offload(po); 670 671 synchronize_net(); 672 } 673 EXPORT_SYMBOL(dev_remove_offload); 674 675 /****************************************************************************** 676 * 677 * Device Boot-time Settings Routines 678 * 679 ******************************************************************************/ 680 681 /* Boot time configuration table */ 682 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 683 684 /** 685 * netdev_boot_setup_add - add new setup entry 686 * @name: name of the device 687 * @map: configured settings for the device 688 * 689 * Adds new setup entry to the dev_boot_setup list. The function 690 * returns 0 on error and 1 on success. This is a generic routine to 691 * all netdevices. 692 */ 693 static int netdev_boot_setup_add(char *name, struct ifmap *map) 694 { 695 struct netdev_boot_setup *s; 696 int i; 697 698 s = dev_boot_setup; 699 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 700 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 701 memset(s[i].name, 0, sizeof(s[i].name)); 702 strlcpy(s[i].name, name, IFNAMSIZ); 703 memcpy(&s[i].map, map, sizeof(s[i].map)); 704 break; 705 } 706 } 707 708 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 709 } 710 711 /** 712 * netdev_boot_setup_check - check boot time settings 713 * @dev: the netdevice 714 * 715 * Check boot time settings for the device. 716 * The found settings are set for the device to be used 717 * later in the device probing. 718 * Returns 0 if no settings found, 1 if they are. 719 */ 720 int netdev_boot_setup_check(struct net_device *dev) 721 { 722 struct netdev_boot_setup *s = dev_boot_setup; 723 int i; 724 725 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 726 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 727 !strcmp(dev->name, s[i].name)) { 728 dev->irq = s[i].map.irq; 729 dev->base_addr = s[i].map.base_addr; 730 dev->mem_start = s[i].map.mem_start; 731 dev->mem_end = s[i].map.mem_end; 732 return 1; 733 } 734 } 735 return 0; 736 } 737 EXPORT_SYMBOL(netdev_boot_setup_check); 738 739 740 /** 741 * netdev_boot_base - get address from boot time settings 742 * @prefix: prefix for network device 743 * @unit: id for network device 744 * 745 * Check boot time settings for the base address of device. 746 * The found settings are set for the device to be used 747 * later in the device probing. 748 * Returns 0 if no settings found. 749 */ 750 unsigned long netdev_boot_base(const char *prefix, int unit) 751 { 752 const struct netdev_boot_setup *s = dev_boot_setup; 753 char name[IFNAMSIZ]; 754 int i; 755 756 sprintf(name, "%s%d", prefix, unit); 757 758 /* 759 * If device already registered then return base of 1 760 * to indicate not to probe for this interface 761 */ 762 if (__dev_get_by_name(&init_net, name)) 763 return 1; 764 765 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 766 if (!strcmp(name, s[i].name)) 767 return s[i].map.base_addr; 768 return 0; 769 } 770 771 /* 772 * Saves at boot time configured settings for any netdevice. 773 */ 774 int __init netdev_boot_setup(char *str) 775 { 776 int ints[5]; 777 struct ifmap map; 778 779 str = get_options(str, ARRAY_SIZE(ints), ints); 780 if (!str || !*str) 781 return 0; 782 783 /* Save settings */ 784 memset(&map, 0, sizeof(map)); 785 if (ints[0] > 0) 786 map.irq = ints[1]; 787 if (ints[0] > 1) 788 map.base_addr = ints[2]; 789 if (ints[0] > 2) 790 map.mem_start = ints[3]; 791 if (ints[0] > 3) 792 map.mem_end = ints[4]; 793 794 /* Add new entry to the list */ 795 return netdev_boot_setup_add(str, &map); 796 } 797 798 __setup("netdev=", netdev_boot_setup); 799 800 /******************************************************************************* 801 * 802 * Device Interface Subroutines 803 * 804 *******************************************************************************/ 805 806 /** 807 * dev_get_iflink - get 'iflink' value of a interface 808 * @dev: targeted interface 809 * 810 * Indicates the ifindex the interface is linked to. 811 * Physical interfaces have the same 'ifindex' and 'iflink' values. 812 */ 813 814 int dev_get_iflink(const struct net_device *dev) 815 { 816 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink) 817 return dev->netdev_ops->ndo_get_iflink(dev); 818 819 return dev->ifindex; 820 } 821 EXPORT_SYMBOL(dev_get_iflink); 822 823 /** 824 * dev_fill_metadata_dst - Retrieve tunnel egress information. 825 * @dev: targeted interface 826 * @skb: The packet. 827 * 828 * For better visibility of tunnel traffic OVS needs to retrieve 829 * egress tunnel information for a packet. Following API allows 830 * user to get this info. 831 */ 832 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb) 833 { 834 struct ip_tunnel_info *info; 835 836 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst) 837 return -EINVAL; 838 839 info = skb_tunnel_info_unclone(skb); 840 if (!info) 841 return -ENOMEM; 842 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX))) 843 return -EINVAL; 844 845 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb); 846 } 847 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst); 848 849 /** 850 * __dev_get_by_name - find a device by its name 851 * @net: the applicable net namespace 852 * @name: name to find 853 * 854 * Find an interface by name. Must be called under RTNL semaphore 855 * or @dev_base_lock. If the name is found a pointer to the device 856 * is returned. If the name is not found then %NULL is returned. The 857 * reference counters are not incremented so the caller must be 858 * careful with locks. 859 */ 860 861 struct net_device *__dev_get_by_name(struct net *net, const char *name) 862 { 863 struct netdev_name_node *node_name; 864 865 node_name = netdev_name_node_lookup(net, name); 866 return node_name ? node_name->dev : NULL; 867 } 868 EXPORT_SYMBOL(__dev_get_by_name); 869 870 /** 871 * dev_get_by_name_rcu - find a device by its name 872 * @net: the applicable net namespace 873 * @name: name to find 874 * 875 * Find an interface by name. 876 * If the name is found a pointer to the device is returned. 877 * If the name is not found then %NULL is returned. 878 * The reference counters are not incremented so the caller must be 879 * careful with locks. The caller must hold RCU lock. 880 */ 881 882 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 883 { 884 struct netdev_name_node *node_name; 885 886 node_name = netdev_name_node_lookup_rcu(net, name); 887 return node_name ? node_name->dev : NULL; 888 } 889 EXPORT_SYMBOL(dev_get_by_name_rcu); 890 891 /** 892 * dev_get_by_name - find a device by its name 893 * @net: the applicable net namespace 894 * @name: name to find 895 * 896 * Find an interface by name. This can be called from any 897 * context and does its own locking. The returned handle has 898 * the usage count incremented and the caller must use dev_put() to 899 * release it when it is no longer needed. %NULL is returned if no 900 * matching device is found. 901 */ 902 903 struct net_device *dev_get_by_name(struct net *net, const char *name) 904 { 905 struct net_device *dev; 906 907 rcu_read_lock(); 908 dev = dev_get_by_name_rcu(net, name); 909 if (dev) 910 dev_hold(dev); 911 rcu_read_unlock(); 912 return dev; 913 } 914 EXPORT_SYMBOL(dev_get_by_name); 915 916 /** 917 * __dev_get_by_index - find a device by its ifindex 918 * @net: the applicable net namespace 919 * @ifindex: index of device 920 * 921 * Search for an interface by index. Returns %NULL if the device 922 * is not found or a pointer to the device. The device has not 923 * had its reference counter increased so the caller must be careful 924 * about locking. The caller must hold either the RTNL semaphore 925 * or @dev_base_lock. 926 */ 927 928 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 929 { 930 struct net_device *dev; 931 struct hlist_head *head = dev_index_hash(net, ifindex); 932 933 hlist_for_each_entry(dev, head, index_hlist) 934 if (dev->ifindex == ifindex) 935 return dev; 936 937 return NULL; 938 } 939 EXPORT_SYMBOL(__dev_get_by_index); 940 941 /** 942 * dev_get_by_index_rcu - find a device by its ifindex 943 * @net: the applicable net namespace 944 * @ifindex: index of device 945 * 946 * Search for an interface by index. Returns %NULL if the device 947 * is not found or a pointer to the device. The device has not 948 * had its reference counter increased so the caller must be careful 949 * about locking. The caller must hold RCU lock. 950 */ 951 952 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 953 { 954 struct net_device *dev; 955 struct hlist_head *head = dev_index_hash(net, ifindex); 956 957 hlist_for_each_entry_rcu(dev, head, index_hlist) 958 if (dev->ifindex == ifindex) 959 return dev; 960 961 return NULL; 962 } 963 EXPORT_SYMBOL(dev_get_by_index_rcu); 964 965 966 /** 967 * dev_get_by_index - find a device by its ifindex 968 * @net: the applicable net namespace 969 * @ifindex: index of device 970 * 971 * Search for an interface by index. Returns NULL if the device 972 * is not found or a pointer to the device. The device returned has 973 * had a reference added and the pointer is safe until the user calls 974 * dev_put to indicate they have finished with it. 975 */ 976 977 struct net_device *dev_get_by_index(struct net *net, int ifindex) 978 { 979 struct net_device *dev; 980 981 rcu_read_lock(); 982 dev = dev_get_by_index_rcu(net, ifindex); 983 if (dev) 984 dev_hold(dev); 985 rcu_read_unlock(); 986 return dev; 987 } 988 EXPORT_SYMBOL(dev_get_by_index); 989 990 /** 991 * dev_get_by_napi_id - find a device by napi_id 992 * @napi_id: ID of the NAPI struct 993 * 994 * Search for an interface by NAPI ID. Returns %NULL if the device 995 * is not found or a pointer to the device. The device has not had 996 * its reference counter increased so the caller must be careful 997 * about locking. The caller must hold RCU lock. 998 */ 999 1000 struct net_device *dev_get_by_napi_id(unsigned int napi_id) 1001 { 1002 struct napi_struct *napi; 1003 1004 WARN_ON_ONCE(!rcu_read_lock_held()); 1005 1006 if (napi_id < MIN_NAPI_ID) 1007 return NULL; 1008 1009 napi = napi_by_id(napi_id); 1010 1011 return napi ? napi->dev : NULL; 1012 } 1013 EXPORT_SYMBOL(dev_get_by_napi_id); 1014 1015 /** 1016 * netdev_get_name - get a netdevice name, knowing its ifindex. 1017 * @net: network namespace 1018 * @name: a pointer to the buffer where the name will be stored. 1019 * @ifindex: the ifindex of the interface to get the name from. 1020 */ 1021 int netdev_get_name(struct net *net, char *name, int ifindex) 1022 { 1023 struct net_device *dev; 1024 int ret; 1025 1026 down_read(&devnet_rename_sem); 1027 rcu_read_lock(); 1028 1029 dev = dev_get_by_index_rcu(net, ifindex); 1030 if (!dev) { 1031 ret = -ENODEV; 1032 goto out; 1033 } 1034 1035 strcpy(name, dev->name); 1036 1037 ret = 0; 1038 out: 1039 rcu_read_unlock(); 1040 up_read(&devnet_rename_sem); 1041 return ret; 1042 } 1043 1044 /** 1045 * dev_getbyhwaddr_rcu - find a device by its hardware address 1046 * @net: the applicable net namespace 1047 * @type: media type of device 1048 * @ha: hardware address 1049 * 1050 * Search for an interface by MAC address. Returns NULL if the device 1051 * is not found or a pointer to the device. 1052 * The caller must hold RCU or RTNL. 1053 * The returned device has not had its ref count increased 1054 * and the caller must therefore be careful about locking 1055 * 1056 */ 1057 1058 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 1059 const char *ha) 1060 { 1061 struct net_device *dev; 1062 1063 for_each_netdev_rcu(net, dev) 1064 if (dev->type == type && 1065 !memcmp(dev->dev_addr, ha, dev->addr_len)) 1066 return dev; 1067 1068 return NULL; 1069 } 1070 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 1071 1072 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 1073 { 1074 struct net_device *dev; 1075 1076 ASSERT_RTNL(); 1077 for_each_netdev(net, dev) 1078 if (dev->type == type) 1079 return dev; 1080 1081 return NULL; 1082 } 1083 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 1084 1085 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 1086 { 1087 struct net_device *dev, *ret = NULL; 1088 1089 rcu_read_lock(); 1090 for_each_netdev_rcu(net, dev) 1091 if (dev->type == type) { 1092 dev_hold(dev); 1093 ret = dev; 1094 break; 1095 } 1096 rcu_read_unlock(); 1097 return ret; 1098 } 1099 EXPORT_SYMBOL(dev_getfirstbyhwtype); 1100 1101 /** 1102 * __dev_get_by_flags - find any device with given flags 1103 * @net: the applicable net namespace 1104 * @if_flags: IFF_* values 1105 * @mask: bitmask of bits in if_flags to check 1106 * 1107 * Search for any interface with the given flags. Returns NULL if a device 1108 * is not found or a pointer to the device. Must be called inside 1109 * rtnl_lock(), and result refcount is unchanged. 1110 */ 1111 1112 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags, 1113 unsigned short mask) 1114 { 1115 struct net_device *dev, *ret; 1116 1117 ASSERT_RTNL(); 1118 1119 ret = NULL; 1120 for_each_netdev(net, dev) { 1121 if (((dev->flags ^ if_flags) & mask) == 0) { 1122 ret = dev; 1123 break; 1124 } 1125 } 1126 return ret; 1127 } 1128 EXPORT_SYMBOL(__dev_get_by_flags); 1129 1130 /** 1131 * dev_valid_name - check if name is okay for network device 1132 * @name: name string 1133 * 1134 * Network device names need to be valid file names to 1135 * allow sysfs to work. We also disallow any kind of 1136 * whitespace. 1137 */ 1138 bool dev_valid_name(const char *name) 1139 { 1140 if (*name == '\0') 1141 return false; 1142 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ) 1143 return false; 1144 if (!strcmp(name, ".") || !strcmp(name, "..")) 1145 return false; 1146 1147 while (*name) { 1148 if (*name == '/' || *name == ':' || isspace(*name)) 1149 return false; 1150 name++; 1151 } 1152 return true; 1153 } 1154 EXPORT_SYMBOL(dev_valid_name); 1155 1156 /** 1157 * __dev_alloc_name - allocate a name for a device 1158 * @net: network namespace to allocate the device name in 1159 * @name: name format string 1160 * @buf: scratch buffer and result name string 1161 * 1162 * Passed a format string - eg "lt%d" it will try and find a suitable 1163 * id. It scans list of devices to build up a free map, then chooses 1164 * the first empty slot. The caller must hold the dev_base or rtnl lock 1165 * while allocating the name and adding the device in order to avoid 1166 * duplicates. 1167 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1168 * Returns the number of the unit assigned or a negative errno code. 1169 */ 1170 1171 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 1172 { 1173 int i = 0; 1174 const char *p; 1175 const int max_netdevices = 8*PAGE_SIZE; 1176 unsigned long *inuse; 1177 struct net_device *d; 1178 1179 if (!dev_valid_name(name)) 1180 return -EINVAL; 1181 1182 p = strchr(name, '%'); 1183 if (p) { 1184 /* 1185 * Verify the string as this thing may have come from 1186 * the user. There must be either one "%d" and no other "%" 1187 * characters. 1188 */ 1189 if (p[1] != 'd' || strchr(p + 2, '%')) 1190 return -EINVAL; 1191 1192 /* Use one page as a bit array of possible slots */ 1193 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 1194 if (!inuse) 1195 return -ENOMEM; 1196 1197 for_each_netdev(net, d) { 1198 if (!sscanf(d->name, name, &i)) 1199 continue; 1200 if (i < 0 || i >= max_netdevices) 1201 continue; 1202 1203 /* avoid cases where sscanf is not exact inverse of printf */ 1204 snprintf(buf, IFNAMSIZ, name, i); 1205 if (!strncmp(buf, d->name, IFNAMSIZ)) 1206 set_bit(i, inuse); 1207 } 1208 1209 i = find_first_zero_bit(inuse, max_netdevices); 1210 free_page((unsigned long) inuse); 1211 } 1212 1213 snprintf(buf, IFNAMSIZ, name, i); 1214 if (!__dev_get_by_name(net, buf)) 1215 return i; 1216 1217 /* It is possible to run out of possible slots 1218 * when the name is long and there isn't enough space left 1219 * for the digits, or if all bits are used. 1220 */ 1221 return -ENFILE; 1222 } 1223 1224 static int dev_alloc_name_ns(struct net *net, 1225 struct net_device *dev, 1226 const char *name) 1227 { 1228 char buf[IFNAMSIZ]; 1229 int ret; 1230 1231 BUG_ON(!net); 1232 ret = __dev_alloc_name(net, name, buf); 1233 if (ret >= 0) 1234 strlcpy(dev->name, buf, IFNAMSIZ); 1235 return ret; 1236 } 1237 1238 /** 1239 * dev_alloc_name - allocate a name for a device 1240 * @dev: device 1241 * @name: name format string 1242 * 1243 * Passed a format string - eg "lt%d" it will try and find a suitable 1244 * id. It scans list of devices to build up a free map, then chooses 1245 * the first empty slot. The caller must hold the dev_base or rtnl lock 1246 * while allocating the name and adding the device in order to avoid 1247 * duplicates. 1248 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 1249 * Returns the number of the unit assigned or a negative errno code. 1250 */ 1251 1252 int dev_alloc_name(struct net_device *dev, const char *name) 1253 { 1254 return dev_alloc_name_ns(dev_net(dev), dev, name); 1255 } 1256 EXPORT_SYMBOL(dev_alloc_name); 1257 1258 static int dev_get_valid_name(struct net *net, struct net_device *dev, 1259 const char *name) 1260 { 1261 BUG_ON(!net); 1262 1263 if (!dev_valid_name(name)) 1264 return -EINVAL; 1265 1266 if (strchr(name, '%')) 1267 return dev_alloc_name_ns(net, dev, name); 1268 else if (__dev_get_by_name(net, name)) 1269 return -EEXIST; 1270 else if (dev->name != name) 1271 strlcpy(dev->name, name, IFNAMSIZ); 1272 1273 return 0; 1274 } 1275 1276 /** 1277 * dev_change_name - change name of a device 1278 * @dev: device 1279 * @newname: name (or format string) must be at least IFNAMSIZ 1280 * 1281 * Change name of a device, can pass format strings "eth%d". 1282 * for wildcarding. 1283 */ 1284 int dev_change_name(struct net_device *dev, const char *newname) 1285 { 1286 unsigned char old_assign_type; 1287 char oldname[IFNAMSIZ]; 1288 int err = 0; 1289 int ret; 1290 struct net *net; 1291 1292 ASSERT_RTNL(); 1293 BUG_ON(!dev_net(dev)); 1294 1295 net = dev_net(dev); 1296 1297 /* Some auto-enslaved devices e.g. failover slaves are 1298 * special, as userspace might rename the device after 1299 * the interface had been brought up and running since 1300 * the point kernel initiated auto-enslavement. Allow 1301 * live name change even when these slave devices are 1302 * up and running. 1303 * 1304 * Typically, users of these auto-enslaving devices 1305 * don't actually care about slave name change, as 1306 * they are supposed to operate on master interface 1307 * directly. 1308 */ 1309 if (dev->flags & IFF_UP && 1310 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK))) 1311 return -EBUSY; 1312 1313 down_write(&devnet_rename_sem); 1314 1315 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) { 1316 up_write(&devnet_rename_sem); 1317 return 0; 1318 } 1319 1320 memcpy(oldname, dev->name, IFNAMSIZ); 1321 1322 err = dev_get_valid_name(net, dev, newname); 1323 if (err < 0) { 1324 up_write(&devnet_rename_sem); 1325 return err; 1326 } 1327 1328 if (oldname[0] && !strchr(oldname, '%')) 1329 netdev_info(dev, "renamed from %s\n", oldname); 1330 1331 old_assign_type = dev->name_assign_type; 1332 dev->name_assign_type = NET_NAME_RENAMED; 1333 1334 rollback: 1335 ret = device_rename(&dev->dev, dev->name); 1336 if (ret) { 1337 memcpy(dev->name, oldname, IFNAMSIZ); 1338 dev->name_assign_type = old_assign_type; 1339 up_write(&devnet_rename_sem); 1340 return ret; 1341 } 1342 1343 up_write(&devnet_rename_sem); 1344 1345 netdev_adjacent_rename_links(dev, oldname); 1346 1347 write_lock_bh(&dev_base_lock); 1348 netdev_name_node_del(dev->name_node); 1349 write_unlock_bh(&dev_base_lock); 1350 1351 synchronize_rcu(); 1352 1353 write_lock_bh(&dev_base_lock); 1354 netdev_name_node_add(net, dev->name_node); 1355 write_unlock_bh(&dev_base_lock); 1356 1357 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1358 ret = notifier_to_errno(ret); 1359 1360 if (ret) { 1361 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1362 if (err >= 0) { 1363 err = ret; 1364 down_write(&devnet_rename_sem); 1365 memcpy(dev->name, oldname, IFNAMSIZ); 1366 memcpy(oldname, newname, IFNAMSIZ); 1367 dev->name_assign_type = old_assign_type; 1368 old_assign_type = NET_NAME_RENAMED; 1369 goto rollback; 1370 } else { 1371 pr_err("%s: name change rollback failed: %d\n", 1372 dev->name, ret); 1373 } 1374 } 1375 1376 return err; 1377 } 1378 1379 /** 1380 * dev_set_alias - change ifalias of a device 1381 * @dev: device 1382 * @alias: name up to IFALIASZ 1383 * @len: limit of bytes to copy from info 1384 * 1385 * Set ifalias for a device, 1386 */ 1387 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1388 { 1389 struct dev_ifalias *new_alias = NULL; 1390 1391 if (len >= IFALIASZ) 1392 return -EINVAL; 1393 1394 if (len) { 1395 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL); 1396 if (!new_alias) 1397 return -ENOMEM; 1398 1399 memcpy(new_alias->ifalias, alias, len); 1400 new_alias->ifalias[len] = 0; 1401 } 1402 1403 mutex_lock(&ifalias_mutex); 1404 new_alias = rcu_replace_pointer(dev->ifalias, new_alias, 1405 mutex_is_locked(&ifalias_mutex)); 1406 mutex_unlock(&ifalias_mutex); 1407 1408 if (new_alias) 1409 kfree_rcu(new_alias, rcuhead); 1410 1411 return len; 1412 } 1413 EXPORT_SYMBOL(dev_set_alias); 1414 1415 /** 1416 * dev_get_alias - get ifalias of a device 1417 * @dev: device 1418 * @name: buffer to store name of ifalias 1419 * @len: size of buffer 1420 * 1421 * get ifalias for a device. Caller must make sure dev cannot go 1422 * away, e.g. rcu read lock or own a reference count to device. 1423 */ 1424 int dev_get_alias(const struct net_device *dev, char *name, size_t len) 1425 { 1426 const struct dev_ifalias *alias; 1427 int ret = 0; 1428 1429 rcu_read_lock(); 1430 alias = rcu_dereference(dev->ifalias); 1431 if (alias) 1432 ret = snprintf(name, len, "%s", alias->ifalias); 1433 rcu_read_unlock(); 1434 1435 return ret; 1436 } 1437 1438 /** 1439 * netdev_features_change - device changes features 1440 * @dev: device to cause notification 1441 * 1442 * Called to indicate a device has changed features. 1443 */ 1444 void netdev_features_change(struct net_device *dev) 1445 { 1446 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1447 } 1448 EXPORT_SYMBOL(netdev_features_change); 1449 1450 /** 1451 * netdev_state_change - device changes state 1452 * @dev: device to cause notification 1453 * 1454 * Called to indicate a device has changed state. This function calls 1455 * the notifier chains for netdev_chain and sends a NEWLINK message 1456 * to the routing socket. 1457 */ 1458 void netdev_state_change(struct net_device *dev) 1459 { 1460 if (dev->flags & IFF_UP) { 1461 struct netdev_notifier_change_info change_info = { 1462 .info.dev = dev, 1463 }; 1464 1465 call_netdevice_notifiers_info(NETDEV_CHANGE, 1466 &change_info.info); 1467 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL); 1468 } 1469 } 1470 EXPORT_SYMBOL(netdev_state_change); 1471 1472 /** 1473 * netdev_notify_peers - notify network peers about existence of @dev 1474 * @dev: network device 1475 * 1476 * Generate traffic such that interested network peers are aware of 1477 * @dev, such as by generating a gratuitous ARP. This may be used when 1478 * a device wants to inform the rest of the network about some sort of 1479 * reconfiguration such as a failover event or virtual machine 1480 * migration. 1481 */ 1482 void netdev_notify_peers(struct net_device *dev) 1483 { 1484 rtnl_lock(); 1485 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev); 1486 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev); 1487 rtnl_unlock(); 1488 } 1489 EXPORT_SYMBOL(netdev_notify_peers); 1490 1491 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1492 { 1493 const struct net_device_ops *ops = dev->netdev_ops; 1494 int ret; 1495 1496 ASSERT_RTNL(); 1497 1498 if (!netif_device_present(dev)) { 1499 /* may be detached because parent is runtime-suspended */ 1500 if (dev->dev.parent) 1501 pm_runtime_resume(dev->dev.parent); 1502 if (!netif_device_present(dev)) 1503 return -ENODEV; 1504 } 1505 1506 /* Block netpoll from trying to do any rx path servicing. 1507 * If we don't do this there is a chance ndo_poll_controller 1508 * or ndo_poll may be running while we open the device 1509 */ 1510 netpoll_poll_disable(dev); 1511 1512 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack); 1513 ret = notifier_to_errno(ret); 1514 if (ret) 1515 return ret; 1516 1517 set_bit(__LINK_STATE_START, &dev->state); 1518 1519 if (ops->ndo_validate_addr) 1520 ret = ops->ndo_validate_addr(dev); 1521 1522 if (!ret && ops->ndo_open) 1523 ret = ops->ndo_open(dev); 1524 1525 netpoll_poll_enable(dev); 1526 1527 if (ret) 1528 clear_bit(__LINK_STATE_START, &dev->state); 1529 else { 1530 dev->flags |= IFF_UP; 1531 dev_set_rx_mode(dev); 1532 dev_activate(dev); 1533 add_device_randomness(dev->dev_addr, dev->addr_len); 1534 } 1535 1536 return ret; 1537 } 1538 1539 /** 1540 * dev_open - prepare an interface for use. 1541 * @dev: device to open 1542 * @extack: netlink extended ack 1543 * 1544 * Takes a device from down to up state. The device's private open 1545 * function is invoked and then the multicast lists are loaded. Finally 1546 * the device is moved into the up state and a %NETDEV_UP message is 1547 * sent to the netdev notifier chain. 1548 * 1549 * Calling this function on an active interface is a nop. On a failure 1550 * a negative errno code is returned. 1551 */ 1552 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack) 1553 { 1554 int ret; 1555 1556 if (dev->flags & IFF_UP) 1557 return 0; 1558 1559 ret = __dev_open(dev, extack); 1560 if (ret < 0) 1561 return ret; 1562 1563 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1564 call_netdevice_notifiers(NETDEV_UP, dev); 1565 1566 return ret; 1567 } 1568 EXPORT_SYMBOL(dev_open); 1569 1570 static void __dev_close_many(struct list_head *head) 1571 { 1572 struct net_device *dev; 1573 1574 ASSERT_RTNL(); 1575 might_sleep(); 1576 1577 list_for_each_entry(dev, head, close_list) { 1578 /* Temporarily disable netpoll until the interface is down */ 1579 netpoll_poll_disable(dev); 1580 1581 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1582 1583 clear_bit(__LINK_STATE_START, &dev->state); 1584 1585 /* Synchronize to scheduled poll. We cannot touch poll list, it 1586 * can be even on different cpu. So just clear netif_running(). 1587 * 1588 * dev->stop() will invoke napi_disable() on all of it's 1589 * napi_struct instances on this device. 1590 */ 1591 smp_mb__after_atomic(); /* Commit netif_running(). */ 1592 } 1593 1594 dev_deactivate_many(head); 1595 1596 list_for_each_entry(dev, head, close_list) { 1597 const struct net_device_ops *ops = dev->netdev_ops; 1598 1599 /* 1600 * Call the device specific close. This cannot fail. 1601 * Only if device is UP 1602 * 1603 * We allow it to be called even after a DETACH hot-plug 1604 * event. 1605 */ 1606 if (ops->ndo_stop) 1607 ops->ndo_stop(dev); 1608 1609 dev->flags &= ~IFF_UP; 1610 netpoll_poll_enable(dev); 1611 } 1612 } 1613 1614 static void __dev_close(struct net_device *dev) 1615 { 1616 LIST_HEAD(single); 1617 1618 list_add(&dev->close_list, &single); 1619 __dev_close_many(&single); 1620 list_del(&single); 1621 } 1622 1623 void dev_close_many(struct list_head *head, bool unlink) 1624 { 1625 struct net_device *dev, *tmp; 1626 1627 /* Remove the devices that don't need to be closed */ 1628 list_for_each_entry_safe(dev, tmp, head, close_list) 1629 if (!(dev->flags & IFF_UP)) 1630 list_del_init(&dev->close_list); 1631 1632 __dev_close_many(head); 1633 1634 list_for_each_entry_safe(dev, tmp, head, close_list) { 1635 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL); 1636 call_netdevice_notifiers(NETDEV_DOWN, dev); 1637 if (unlink) 1638 list_del_init(&dev->close_list); 1639 } 1640 } 1641 EXPORT_SYMBOL(dev_close_many); 1642 1643 /** 1644 * dev_close - shutdown an interface. 1645 * @dev: device to shutdown 1646 * 1647 * This function moves an active device into down state. A 1648 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1649 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1650 * chain. 1651 */ 1652 void dev_close(struct net_device *dev) 1653 { 1654 if (dev->flags & IFF_UP) { 1655 LIST_HEAD(single); 1656 1657 list_add(&dev->close_list, &single); 1658 dev_close_many(&single, true); 1659 list_del(&single); 1660 } 1661 } 1662 EXPORT_SYMBOL(dev_close); 1663 1664 1665 /** 1666 * dev_disable_lro - disable Large Receive Offload on a device 1667 * @dev: device 1668 * 1669 * Disable Large Receive Offload (LRO) on a net device. Must be 1670 * called under RTNL. This is needed if received packets may be 1671 * forwarded to another interface. 1672 */ 1673 void dev_disable_lro(struct net_device *dev) 1674 { 1675 struct net_device *lower_dev; 1676 struct list_head *iter; 1677 1678 dev->wanted_features &= ~NETIF_F_LRO; 1679 netdev_update_features(dev); 1680 1681 if (unlikely(dev->features & NETIF_F_LRO)) 1682 netdev_WARN(dev, "failed to disable LRO!\n"); 1683 1684 netdev_for_each_lower_dev(dev, lower_dev, iter) 1685 dev_disable_lro(lower_dev); 1686 } 1687 EXPORT_SYMBOL(dev_disable_lro); 1688 1689 /** 1690 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device 1691 * @dev: device 1692 * 1693 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be 1694 * called under RTNL. This is needed if Generic XDP is installed on 1695 * the device. 1696 */ 1697 static void dev_disable_gro_hw(struct net_device *dev) 1698 { 1699 dev->wanted_features &= ~NETIF_F_GRO_HW; 1700 netdev_update_features(dev); 1701 1702 if (unlikely(dev->features & NETIF_F_GRO_HW)) 1703 netdev_WARN(dev, "failed to disable GRO_HW!\n"); 1704 } 1705 1706 const char *netdev_cmd_to_name(enum netdev_cmd cmd) 1707 { 1708 #define N(val) \ 1709 case NETDEV_##val: \ 1710 return "NETDEV_" __stringify(val); 1711 switch (cmd) { 1712 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER) 1713 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE) 1714 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE) 1715 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER) 1716 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO) 1717 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO) 1718 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN) 1719 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO) 1720 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO) 1721 N(PRE_CHANGEADDR) 1722 } 1723 #undef N 1724 return "UNKNOWN_NETDEV_EVENT"; 1725 } 1726 EXPORT_SYMBOL_GPL(netdev_cmd_to_name); 1727 1728 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val, 1729 struct net_device *dev) 1730 { 1731 struct netdev_notifier_info info = { 1732 .dev = dev, 1733 }; 1734 1735 return nb->notifier_call(nb, val, &info); 1736 } 1737 1738 static int call_netdevice_register_notifiers(struct notifier_block *nb, 1739 struct net_device *dev) 1740 { 1741 int err; 1742 1743 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev); 1744 err = notifier_to_errno(err); 1745 if (err) 1746 return err; 1747 1748 if (!(dev->flags & IFF_UP)) 1749 return 0; 1750 1751 call_netdevice_notifier(nb, NETDEV_UP, dev); 1752 return 0; 1753 } 1754 1755 static void call_netdevice_unregister_notifiers(struct notifier_block *nb, 1756 struct net_device *dev) 1757 { 1758 if (dev->flags & IFF_UP) { 1759 call_netdevice_notifier(nb, NETDEV_GOING_DOWN, 1760 dev); 1761 call_netdevice_notifier(nb, NETDEV_DOWN, dev); 1762 } 1763 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev); 1764 } 1765 1766 static int call_netdevice_register_net_notifiers(struct notifier_block *nb, 1767 struct net *net) 1768 { 1769 struct net_device *dev; 1770 int err; 1771 1772 for_each_netdev(net, dev) { 1773 err = call_netdevice_register_notifiers(nb, dev); 1774 if (err) 1775 goto rollback; 1776 } 1777 return 0; 1778 1779 rollback: 1780 for_each_netdev_continue_reverse(net, dev) 1781 call_netdevice_unregister_notifiers(nb, dev); 1782 return err; 1783 } 1784 1785 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb, 1786 struct net *net) 1787 { 1788 struct net_device *dev; 1789 1790 for_each_netdev(net, dev) 1791 call_netdevice_unregister_notifiers(nb, dev); 1792 } 1793 1794 static int dev_boot_phase = 1; 1795 1796 /** 1797 * register_netdevice_notifier - register a network notifier block 1798 * @nb: notifier 1799 * 1800 * Register a notifier to be called when network device events occur. 1801 * The notifier passed is linked into the kernel structures and must 1802 * not be reused until it has been unregistered. A negative errno code 1803 * is returned on a failure. 1804 * 1805 * When registered all registration and up events are replayed 1806 * to the new notifier to allow device to have a race free 1807 * view of the network device list. 1808 */ 1809 1810 int register_netdevice_notifier(struct notifier_block *nb) 1811 { 1812 struct net *net; 1813 int err; 1814 1815 /* Close race with setup_net() and cleanup_net() */ 1816 down_write(&pernet_ops_rwsem); 1817 rtnl_lock(); 1818 err = raw_notifier_chain_register(&netdev_chain, nb); 1819 if (err) 1820 goto unlock; 1821 if (dev_boot_phase) 1822 goto unlock; 1823 for_each_net(net) { 1824 err = call_netdevice_register_net_notifiers(nb, net); 1825 if (err) 1826 goto rollback; 1827 } 1828 1829 unlock: 1830 rtnl_unlock(); 1831 up_write(&pernet_ops_rwsem); 1832 return err; 1833 1834 rollback: 1835 for_each_net_continue_reverse(net) 1836 call_netdevice_unregister_net_notifiers(nb, net); 1837 1838 raw_notifier_chain_unregister(&netdev_chain, nb); 1839 goto unlock; 1840 } 1841 EXPORT_SYMBOL(register_netdevice_notifier); 1842 1843 /** 1844 * unregister_netdevice_notifier - unregister a network notifier block 1845 * @nb: notifier 1846 * 1847 * Unregister a notifier previously registered by 1848 * register_netdevice_notifier(). The notifier is unlinked into the 1849 * kernel structures and may then be reused. A negative errno code 1850 * is returned on a failure. 1851 * 1852 * After unregistering unregister and down device events are synthesized 1853 * for all devices on the device list to the removed notifier to remove 1854 * the need for special case cleanup code. 1855 */ 1856 1857 int unregister_netdevice_notifier(struct notifier_block *nb) 1858 { 1859 struct net *net; 1860 int err; 1861 1862 /* Close race with setup_net() and cleanup_net() */ 1863 down_write(&pernet_ops_rwsem); 1864 rtnl_lock(); 1865 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1866 if (err) 1867 goto unlock; 1868 1869 for_each_net(net) 1870 call_netdevice_unregister_net_notifiers(nb, net); 1871 1872 unlock: 1873 rtnl_unlock(); 1874 up_write(&pernet_ops_rwsem); 1875 return err; 1876 } 1877 EXPORT_SYMBOL(unregister_netdevice_notifier); 1878 1879 static int __register_netdevice_notifier_net(struct net *net, 1880 struct notifier_block *nb, 1881 bool ignore_call_fail) 1882 { 1883 int err; 1884 1885 err = raw_notifier_chain_register(&net->netdev_chain, nb); 1886 if (err) 1887 return err; 1888 if (dev_boot_phase) 1889 return 0; 1890 1891 err = call_netdevice_register_net_notifiers(nb, net); 1892 if (err && !ignore_call_fail) 1893 goto chain_unregister; 1894 1895 return 0; 1896 1897 chain_unregister: 1898 raw_notifier_chain_unregister(&net->netdev_chain, nb); 1899 return err; 1900 } 1901 1902 static int __unregister_netdevice_notifier_net(struct net *net, 1903 struct notifier_block *nb) 1904 { 1905 int err; 1906 1907 err = raw_notifier_chain_unregister(&net->netdev_chain, nb); 1908 if (err) 1909 return err; 1910 1911 call_netdevice_unregister_net_notifiers(nb, net); 1912 return 0; 1913 } 1914 1915 /** 1916 * register_netdevice_notifier_net - register a per-netns network notifier block 1917 * @net: network namespace 1918 * @nb: notifier 1919 * 1920 * Register a notifier to be called when network device events occur. 1921 * The notifier passed is linked into the kernel structures and must 1922 * not be reused until it has been unregistered. A negative errno code 1923 * is returned on a failure. 1924 * 1925 * When registered all registration and up events are replayed 1926 * to the new notifier to allow device to have a race free 1927 * view of the network device list. 1928 */ 1929 1930 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb) 1931 { 1932 int err; 1933 1934 rtnl_lock(); 1935 err = __register_netdevice_notifier_net(net, nb, false); 1936 rtnl_unlock(); 1937 return err; 1938 } 1939 EXPORT_SYMBOL(register_netdevice_notifier_net); 1940 1941 /** 1942 * unregister_netdevice_notifier_net - unregister a per-netns 1943 * network notifier block 1944 * @net: network namespace 1945 * @nb: notifier 1946 * 1947 * Unregister a notifier previously registered by 1948 * register_netdevice_notifier(). The notifier is unlinked into the 1949 * kernel structures and may then be reused. A negative errno code 1950 * is returned on a failure. 1951 * 1952 * After unregistering unregister and down device events are synthesized 1953 * for all devices on the device list to the removed notifier to remove 1954 * the need for special case cleanup code. 1955 */ 1956 1957 int unregister_netdevice_notifier_net(struct net *net, 1958 struct notifier_block *nb) 1959 { 1960 int err; 1961 1962 rtnl_lock(); 1963 err = __unregister_netdevice_notifier_net(net, nb); 1964 rtnl_unlock(); 1965 return err; 1966 } 1967 EXPORT_SYMBOL(unregister_netdevice_notifier_net); 1968 1969 int register_netdevice_notifier_dev_net(struct net_device *dev, 1970 struct notifier_block *nb, 1971 struct netdev_net_notifier *nn) 1972 { 1973 int err; 1974 1975 rtnl_lock(); 1976 err = __register_netdevice_notifier_net(dev_net(dev), nb, false); 1977 if (!err) { 1978 nn->nb = nb; 1979 list_add(&nn->list, &dev->net_notifier_list); 1980 } 1981 rtnl_unlock(); 1982 return err; 1983 } 1984 EXPORT_SYMBOL(register_netdevice_notifier_dev_net); 1985 1986 int unregister_netdevice_notifier_dev_net(struct net_device *dev, 1987 struct notifier_block *nb, 1988 struct netdev_net_notifier *nn) 1989 { 1990 int err; 1991 1992 rtnl_lock(); 1993 list_del(&nn->list); 1994 err = __unregister_netdevice_notifier_net(dev_net(dev), nb); 1995 rtnl_unlock(); 1996 return err; 1997 } 1998 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net); 1999 2000 static void move_netdevice_notifiers_dev_net(struct net_device *dev, 2001 struct net *net) 2002 { 2003 struct netdev_net_notifier *nn; 2004 2005 list_for_each_entry(nn, &dev->net_notifier_list, list) { 2006 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb); 2007 __register_netdevice_notifier_net(net, nn->nb, true); 2008 } 2009 } 2010 2011 /** 2012 * call_netdevice_notifiers_info - call all network notifier blocks 2013 * @val: value passed unmodified to notifier function 2014 * @info: notifier information data 2015 * 2016 * Call all network notifier blocks. Parameters and return value 2017 * are as for raw_notifier_call_chain(). 2018 */ 2019 2020 static int call_netdevice_notifiers_info(unsigned long val, 2021 struct netdev_notifier_info *info) 2022 { 2023 struct net *net = dev_net(info->dev); 2024 int ret; 2025 2026 ASSERT_RTNL(); 2027 2028 /* Run per-netns notifier block chain first, then run the global one. 2029 * Hopefully, one day, the global one is going to be removed after 2030 * all notifier block registrators get converted to be per-netns. 2031 */ 2032 ret = raw_notifier_call_chain(&net->netdev_chain, val, info); 2033 if (ret & NOTIFY_STOP_MASK) 2034 return ret; 2035 return raw_notifier_call_chain(&netdev_chain, val, info); 2036 } 2037 2038 static int call_netdevice_notifiers_extack(unsigned long val, 2039 struct net_device *dev, 2040 struct netlink_ext_ack *extack) 2041 { 2042 struct netdev_notifier_info info = { 2043 .dev = dev, 2044 .extack = extack, 2045 }; 2046 2047 return call_netdevice_notifiers_info(val, &info); 2048 } 2049 2050 /** 2051 * call_netdevice_notifiers - call all network notifier blocks 2052 * @val: value passed unmodified to notifier function 2053 * @dev: net_device pointer passed unmodified to notifier function 2054 * 2055 * Call all network notifier blocks. Parameters and return value 2056 * are as for raw_notifier_call_chain(). 2057 */ 2058 2059 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 2060 { 2061 return call_netdevice_notifiers_extack(val, dev, NULL); 2062 } 2063 EXPORT_SYMBOL(call_netdevice_notifiers); 2064 2065 /** 2066 * call_netdevice_notifiers_mtu - call all network notifier blocks 2067 * @val: value passed unmodified to notifier function 2068 * @dev: net_device pointer passed unmodified to notifier function 2069 * @arg: additional u32 argument passed to the notifier function 2070 * 2071 * Call all network notifier blocks. Parameters and return value 2072 * are as for raw_notifier_call_chain(). 2073 */ 2074 static int call_netdevice_notifiers_mtu(unsigned long val, 2075 struct net_device *dev, u32 arg) 2076 { 2077 struct netdev_notifier_info_ext info = { 2078 .info.dev = dev, 2079 .ext.mtu = arg, 2080 }; 2081 2082 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0); 2083 2084 return call_netdevice_notifiers_info(val, &info.info); 2085 } 2086 2087 #ifdef CONFIG_NET_INGRESS 2088 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key); 2089 2090 void net_inc_ingress_queue(void) 2091 { 2092 static_branch_inc(&ingress_needed_key); 2093 } 2094 EXPORT_SYMBOL_GPL(net_inc_ingress_queue); 2095 2096 void net_dec_ingress_queue(void) 2097 { 2098 static_branch_dec(&ingress_needed_key); 2099 } 2100 EXPORT_SYMBOL_GPL(net_dec_ingress_queue); 2101 #endif 2102 2103 #ifdef CONFIG_NET_EGRESS 2104 static DEFINE_STATIC_KEY_FALSE(egress_needed_key); 2105 2106 void net_inc_egress_queue(void) 2107 { 2108 static_branch_inc(&egress_needed_key); 2109 } 2110 EXPORT_SYMBOL_GPL(net_inc_egress_queue); 2111 2112 void net_dec_egress_queue(void) 2113 { 2114 static_branch_dec(&egress_needed_key); 2115 } 2116 EXPORT_SYMBOL_GPL(net_dec_egress_queue); 2117 #endif 2118 2119 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key); 2120 #ifdef CONFIG_JUMP_LABEL 2121 static atomic_t netstamp_needed_deferred; 2122 static atomic_t netstamp_wanted; 2123 static void netstamp_clear(struct work_struct *work) 2124 { 2125 int deferred = atomic_xchg(&netstamp_needed_deferred, 0); 2126 int wanted; 2127 2128 wanted = atomic_add_return(deferred, &netstamp_wanted); 2129 if (wanted > 0) 2130 static_branch_enable(&netstamp_needed_key); 2131 else 2132 static_branch_disable(&netstamp_needed_key); 2133 } 2134 static DECLARE_WORK(netstamp_work, netstamp_clear); 2135 #endif 2136 2137 void net_enable_timestamp(void) 2138 { 2139 #ifdef CONFIG_JUMP_LABEL 2140 int wanted; 2141 2142 while (1) { 2143 wanted = atomic_read(&netstamp_wanted); 2144 if (wanted <= 0) 2145 break; 2146 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted) 2147 return; 2148 } 2149 atomic_inc(&netstamp_needed_deferred); 2150 schedule_work(&netstamp_work); 2151 #else 2152 static_branch_inc(&netstamp_needed_key); 2153 #endif 2154 } 2155 EXPORT_SYMBOL(net_enable_timestamp); 2156 2157 void net_disable_timestamp(void) 2158 { 2159 #ifdef CONFIG_JUMP_LABEL 2160 int wanted; 2161 2162 while (1) { 2163 wanted = atomic_read(&netstamp_wanted); 2164 if (wanted <= 1) 2165 break; 2166 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted) 2167 return; 2168 } 2169 atomic_dec(&netstamp_needed_deferred); 2170 schedule_work(&netstamp_work); 2171 #else 2172 static_branch_dec(&netstamp_needed_key); 2173 #endif 2174 } 2175 EXPORT_SYMBOL(net_disable_timestamp); 2176 2177 static inline void net_timestamp_set(struct sk_buff *skb) 2178 { 2179 skb->tstamp = 0; 2180 if (static_branch_unlikely(&netstamp_needed_key)) 2181 __net_timestamp(skb); 2182 } 2183 2184 #define net_timestamp_check(COND, SKB) \ 2185 if (static_branch_unlikely(&netstamp_needed_key)) { \ 2186 if ((COND) && !(SKB)->tstamp) \ 2187 __net_timestamp(SKB); \ 2188 } \ 2189 2190 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb) 2191 { 2192 unsigned int len; 2193 2194 if (!(dev->flags & IFF_UP)) 2195 return false; 2196 2197 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 2198 if (skb->len <= len) 2199 return true; 2200 2201 /* if TSO is enabled, we don't care about the length as the packet 2202 * could be forwarded without being segmented before 2203 */ 2204 if (skb_is_gso(skb)) 2205 return true; 2206 2207 return false; 2208 } 2209 EXPORT_SYMBOL_GPL(is_skb_forwardable); 2210 2211 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2212 { 2213 int ret = ____dev_forward_skb(dev, skb); 2214 2215 if (likely(!ret)) { 2216 skb->protocol = eth_type_trans(skb, dev); 2217 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN); 2218 } 2219 2220 return ret; 2221 } 2222 EXPORT_SYMBOL_GPL(__dev_forward_skb); 2223 2224 /** 2225 * dev_forward_skb - loopback an skb to another netif 2226 * 2227 * @dev: destination network device 2228 * @skb: buffer to forward 2229 * 2230 * return values: 2231 * NET_RX_SUCCESS (no congestion) 2232 * NET_RX_DROP (packet was dropped, but freed) 2233 * 2234 * dev_forward_skb can be used for injecting an skb from the 2235 * start_xmit function of one device into the receive queue 2236 * of another device. 2237 * 2238 * The receiving device may be in another namespace, so 2239 * we have to clear all information in the skb that could 2240 * impact namespace isolation. 2241 */ 2242 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 2243 { 2244 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb); 2245 } 2246 EXPORT_SYMBOL_GPL(dev_forward_skb); 2247 2248 static inline int deliver_skb(struct sk_buff *skb, 2249 struct packet_type *pt_prev, 2250 struct net_device *orig_dev) 2251 { 2252 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 2253 return -ENOMEM; 2254 refcount_inc(&skb->users); 2255 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 2256 } 2257 2258 static inline void deliver_ptype_list_skb(struct sk_buff *skb, 2259 struct packet_type **pt, 2260 struct net_device *orig_dev, 2261 __be16 type, 2262 struct list_head *ptype_list) 2263 { 2264 struct packet_type *ptype, *pt_prev = *pt; 2265 2266 list_for_each_entry_rcu(ptype, ptype_list, list) { 2267 if (ptype->type != type) 2268 continue; 2269 if (pt_prev) 2270 deliver_skb(skb, pt_prev, orig_dev); 2271 pt_prev = ptype; 2272 } 2273 *pt = pt_prev; 2274 } 2275 2276 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb) 2277 { 2278 if (!ptype->af_packet_priv || !skb->sk) 2279 return false; 2280 2281 if (ptype->id_match) 2282 return ptype->id_match(ptype, skb->sk); 2283 else if ((struct sock *)ptype->af_packet_priv == skb->sk) 2284 return true; 2285 2286 return false; 2287 } 2288 2289 /** 2290 * dev_nit_active - return true if any network interface taps are in use 2291 * 2292 * @dev: network device to check for the presence of taps 2293 */ 2294 bool dev_nit_active(struct net_device *dev) 2295 { 2296 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all); 2297 } 2298 EXPORT_SYMBOL_GPL(dev_nit_active); 2299 2300 /* 2301 * Support routine. Sends outgoing frames to any network 2302 * taps currently in use. 2303 */ 2304 2305 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 2306 { 2307 struct packet_type *ptype; 2308 struct sk_buff *skb2 = NULL; 2309 struct packet_type *pt_prev = NULL; 2310 struct list_head *ptype_list = &ptype_all; 2311 2312 rcu_read_lock(); 2313 again: 2314 list_for_each_entry_rcu(ptype, ptype_list, list) { 2315 if (ptype->ignore_outgoing) 2316 continue; 2317 2318 /* Never send packets back to the socket 2319 * they originated from - MvS ([email protected]) 2320 */ 2321 if (skb_loop_sk(ptype, skb)) 2322 continue; 2323 2324 if (pt_prev) { 2325 deliver_skb(skb2, pt_prev, skb->dev); 2326 pt_prev = ptype; 2327 continue; 2328 } 2329 2330 /* need to clone skb, done only once */ 2331 skb2 = skb_clone(skb, GFP_ATOMIC); 2332 if (!skb2) 2333 goto out_unlock; 2334 2335 net_timestamp_set(skb2); 2336 2337 /* skb->nh should be correctly 2338 * set by sender, so that the second statement is 2339 * just protection against buggy protocols. 2340 */ 2341 skb_reset_mac_header(skb2); 2342 2343 if (skb_network_header(skb2) < skb2->data || 2344 skb_network_header(skb2) > skb_tail_pointer(skb2)) { 2345 net_crit_ratelimited("protocol %04x is buggy, dev %s\n", 2346 ntohs(skb2->protocol), 2347 dev->name); 2348 skb_reset_network_header(skb2); 2349 } 2350 2351 skb2->transport_header = skb2->network_header; 2352 skb2->pkt_type = PACKET_OUTGOING; 2353 pt_prev = ptype; 2354 } 2355 2356 if (ptype_list == &ptype_all) { 2357 ptype_list = &dev->ptype_all; 2358 goto again; 2359 } 2360 out_unlock: 2361 if (pt_prev) { 2362 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC)) 2363 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 2364 else 2365 kfree_skb(skb2); 2366 } 2367 rcu_read_unlock(); 2368 } 2369 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit); 2370 2371 /** 2372 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change 2373 * @dev: Network device 2374 * @txq: number of queues available 2375 * 2376 * If real_num_tx_queues is changed the tc mappings may no longer be 2377 * valid. To resolve this verify the tc mapping remains valid and if 2378 * not NULL the mapping. With no priorities mapping to this 2379 * offset/count pair it will no longer be used. In the worst case TC0 2380 * is invalid nothing can be done so disable priority mappings. If is 2381 * expected that drivers will fix this mapping if they can before 2382 * calling netif_set_real_num_tx_queues. 2383 */ 2384 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 2385 { 2386 int i; 2387 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2388 2389 /* If TC0 is invalidated disable TC mapping */ 2390 if (tc->offset + tc->count > txq) { 2391 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n"); 2392 dev->num_tc = 0; 2393 return; 2394 } 2395 2396 /* Invalidated prio to tc mappings set to TC0 */ 2397 for (i = 1; i < TC_BITMASK + 1; i++) { 2398 int q = netdev_get_prio_tc_map(dev, i); 2399 2400 tc = &dev->tc_to_txq[q]; 2401 if (tc->offset + tc->count > txq) { 2402 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n", 2403 i, q); 2404 netdev_set_prio_tc_map(dev, i, 0); 2405 } 2406 } 2407 } 2408 2409 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq) 2410 { 2411 if (dev->num_tc) { 2412 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 2413 int i; 2414 2415 /* walk through the TCs and see if it falls into any of them */ 2416 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) { 2417 if ((txq - tc->offset) < tc->count) 2418 return i; 2419 } 2420 2421 /* didn't find it, just return -1 to indicate no match */ 2422 return -1; 2423 } 2424 2425 return 0; 2426 } 2427 EXPORT_SYMBOL(netdev_txq_to_tc); 2428 2429 #ifdef CONFIG_XPS 2430 struct static_key xps_needed __read_mostly; 2431 EXPORT_SYMBOL(xps_needed); 2432 struct static_key xps_rxqs_needed __read_mostly; 2433 EXPORT_SYMBOL(xps_rxqs_needed); 2434 static DEFINE_MUTEX(xps_map_mutex); 2435 #define xmap_dereference(P) \ 2436 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex)) 2437 2438 static bool remove_xps_queue(struct xps_dev_maps *dev_maps, 2439 int tci, u16 index) 2440 { 2441 struct xps_map *map = NULL; 2442 int pos; 2443 2444 if (dev_maps) 2445 map = xmap_dereference(dev_maps->attr_map[tci]); 2446 if (!map) 2447 return false; 2448 2449 for (pos = map->len; pos--;) { 2450 if (map->queues[pos] != index) 2451 continue; 2452 2453 if (map->len > 1) { 2454 map->queues[pos] = map->queues[--map->len]; 2455 break; 2456 } 2457 2458 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL); 2459 kfree_rcu(map, rcu); 2460 return false; 2461 } 2462 2463 return true; 2464 } 2465 2466 static bool remove_xps_queue_cpu(struct net_device *dev, 2467 struct xps_dev_maps *dev_maps, 2468 int cpu, u16 offset, u16 count) 2469 { 2470 int num_tc = dev->num_tc ? : 1; 2471 bool active = false; 2472 int tci; 2473 2474 for (tci = cpu * num_tc; num_tc--; tci++) { 2475 int i, j; 2476 2477 for (i = count, j = offset; i--; j++) { 2478 if (!remove_xps_queue(dev_maps, tci, j)) 2479 break; 2480 } 2481 2482 active |= i < 0; 2483 } 2484 2485 return active; 2486 } 2487 2488 static void reset_xps_maps(struct net_device *dev, 2489 struct xps_dev_maps *dev_maps, 2490 bool is_rxqs_map) 2491 { 2492 if (is_rxqs_map) { 2493 static_key_slow_dec_cpuslocked(&xps_rxqs_needed); 2494 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL); 2495 } else { 2496 RCU_INIT_POINTER(dev->xps_cpus_map, NULL); 2497 } 2498 static_key_slow_dec_cpuslocked(&xps_needed); 2499 kfree_rcu(dev_maps, rcu); 2500 } 2501 2502 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask, 2503 struct xps_dev_maps *dev_maps, unsigned int nr_ids, 2504 u16 offset, u16 count, bool is_rxqs_map) 2505 { 2506 bool active = false; 2507 int i, j; 2508 2509 for (j = -1; j = netif_attrmask_next(j, mask, nr_ids), 2510 j < nr_ids;) 2511 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, 2512 count); 2513 if (!active) 2514 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2515 2516 if (!is_rxqs_map) { 2517 for (i = offset + (count - 1); count--; i--) { 2518 netdev_queue_numa_node_write( 2519 netdev_get_tx_queue(dev, i), 2520 NUMA_NO_NODE); 2521 } 2522 } 2523 } 2524 2525 static void netif_reset_xps_queues(struct net_device *dev, u16 offset, 2526 u16 count) 2527 { 2528 const unsigned long *possible_mask = NULL; 2529 struct xps_dev_maps *dev_maps; 2530 unsigned int nr_ids; 2531 2532 if (!static_key_false(&xps_needed)) 2533 return; 2534 2535 cpus_read_lock(); 2536 mutex_lock(&xps_map_mutex); 2537 2538 if (static_key_false(&xps_rxqs_needed)) { 2539 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2540 if (dev_maps) { 2541 nr_ids = dev->num_rx_queues; 2542 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, 2543 offset, count, true); 2544 } 2545 } 2546 2547 dev_maps = xmap_dereference(dev->xps_cpus_map); 2548 if (!dev_maps) 2549 goto out_no_maps; 2550 2551 if (num_possible_cpus() > 1) 2552 possible_mask = cpumask_bits(cpu_possible_mask); 2553 nr_ids = nr_cpu_ids; 2554 clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count, 2555 false); 2556 2557 out_no_maps: 2558 mutex_unlock(&xps_map_mutex); 2559 cpus_read_unlock(); 2560 } 2561 2562 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index) 2563 { 2564 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index); 2565 } 2566 2567 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index, 2568 u16 index, bool is_rxqs_map) 2569 { 2570 struct xps_map *new_map; 2571 int alloc_len = XPS_MIN_MAP_ALLOC; 2572 int i, pos; 2573 2574 for (pos = 0; map && pos < map->len; pos++) { 2575 if (map->queues[pos] != index) 2576 continue; 2577 return map; 2578 } 2579 2580 /* Need to add tx-queue to this CPU's/rx-queue's existing map */ 2581 if (map) { 2582 if (pos < map->alloc_len) 2583 return map; 2584 2585 alloc_len = map->alloc_len * 2; 2586 } 2587 2588 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's 2589 * map 2590 */ 2591 if (is_rxqs_map) 2592 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL); 2593 else 2594 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL, 2595 cpu_to_node(attr_index)); 2596 if (!new_map) 2597 return NULL; 2598 2599 for (i = 0; i < pos; i++) 2600 new_map->queues[i] = map->queues[i]; 2601 new_map->alloc_len = alloc_len; 2602 new_map->len = pos; 2603 2604 return new_map; 2605 } 2606 2607 /* Must be called under cpus_read_lock */ 2608 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask, 2609 u16 index, bool is_rxqs_map) 2610 { 2611 const unsigned long *online_mask = NULL, *possible_mask = NULL; 2612 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL; 2613 int i, j, tci, numa_node_id = -2; 2614 int maps_sz, num_tc = 1, tc = 0; 2615 struct xps_map *map, *new_map; 2616 bool active = false; 2617 unsigned int nr_ids; 2618 2619 if (dev->num_tc) { 2620 /* Do not allow XPS on subordinate device directly */ 2621 num_tc = dev->num_tc; 2622 if (num_tc < 0) 2623 return -EINVAL; 2624 2625 /* If queue belongs to subordinate dev use its map */ 2626 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev; 2627 2628 tc = netdev_txq_to_tc(dev, index); 2629 if (tc < 0) 2630 return -EINVAL; 2631 } 2632 2633 mutex_lock(&xps_map_mutex); 2634 if (is_rxqs_map) { 2635 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues); 2636 dev_maps = xmap_dereference(dev->xps_rxqs_map); 2637 nr_ids = dev->num_rx_queues; 2638 } else { 2639 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc); 2640 if (num_possible_cpus() > 1) { 2641 online_mask = cpumask_bits(cpu_online_mask); 2642 possible_mask = cpumask_bits(cpu_possible_mask); 2643 } 2644 dev_maps = xmap_dereference(dev->xps_cpus_map); 2645 nr_ids = nr_cpu_ids; 2646 } 2647 2648 if (maps_sz < L1_CACHE_BYTES) 2649 maps_sz = L1_CACHE_BYTES; 2650 2651 /* allocate memory for queue storage */ 2652 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids), 2653 j < nr_ids;) { 2654 if (!new_dev_maps) 2655 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL); 2656 if (!new_dev_maps) { 2657 mutex_unlock(&xps_map_mutex); 2658 return -ENOMEM; 2659 } 2660 2661 tci = j * num_tc + tc; 2662 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) : 2663 NULL; 2664 2665 map = expand_xps_map(map, j, index, is_rxqs_map); 2666 if (!map) 2667 goto error; 2668 2669 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2670 } 2671 2672 if (!new_dev_maps) 2673 goto out_no_new_maps; 2674 2675 if (!dev_maps) { 2676 /* Increment static keys at most once per type */ 2677 static_key_slow_inc_cpuslocked(&xps_needed); 2678 if (is_rxqs_map) 2679 static_key_slow_inc_cpuslocked(&xps_rxqs_needed); 2680 } 2681 2682 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2683 j < nr_ids;) { 2684 /* copy maps belonging to foreign traffic classes */ 2685 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) { 2686 /* fill in the new device map from the old device map */ 2687 map = xmap_dereference(dev_maps->attr_map[tci]); 2688 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2689 } 2690 2691 /* We need to explicitly update tci as prevous loop 2692 * could break out early if dev_maps is NULL. 2693 */ 2694 tci = j * num_tc + tc; 2695 2696 if (netif_attr_test_mask(j, mask, nr_ids) && 2697 netif_attr_test_online(j, online_mask, nr_ids)) { 2698 /* add tx-queue to CPU/rx-queue maps */ 2699 int pos = 0; 2700 2701 map = xmap_dereference(new_dev_maps->attr_map[tci]); 2702 while ((pos < map->len) && (map->queues[pos] != index)) 2703 pos++; 2704 2705 if (pos == map->len) 2706 map->queues[map->len++] = index; 2707 #ifdef CONFIG_NUMA 2708 if (!is_rxqs_map) { 2709 if (numa_node_id == -2) 2710 numa_node_id = cpu_to_node(j); 2711 else if (numa_node_id != cpu_to_node(j)) 2712 numa_node_id = -1; 2713 } 2714 #endif 2715 } else if (dev_maps) { 2716 /* fill in the new device map from the old device map */ 2717 map = xmap_dereference(dev_maps->attr_map[tci]); 2718 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2719 } 2720 2721 /* copy maps belonging to foreign traffic classes */ 2722 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) { 2723 /* fill in the new device map from the old device map */ 2724 map = xmap_dereference(dev_maps->attr_map[tci]); 2725 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map); 2726 } 2727 } 2728 2729 if (is_rxqs_map) 2730 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps); 2731 else 2732 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps); 2733 2734 /* Cleanup old maps */ 2735 if (!dev_maps) 2736 goto out_no_old_maps; 2737 2738 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2739 j < nr_ids;) { 2740 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2741 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2742 map = xmap_dereference(dev_maps->attr_map[tci]); 2743 if (map && map != new_map) 2744 kfree_rcu(map, rcu); 2745 } 2746 } 2747 2748 kfree_rcu(dev_maps, rcu); 2749 2750 out_no_old_maps: 2751 dev_maps = new_dev_maps; 2752 active = true; 2753 2754 out_no_new_maps: 2755 if (!is_rxqs_map) { 2756 /* update Tx queue numa node */ 2757 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index), 2758 (numa_node_id >= 0) ? 2759 numa_node_id : NUMA_NO_NODE); 2760 } 2761 2762 if (!dev_maps) 2763 goto out_no_maps; 2764 2765 /* removes tx-queue from unused CPUs/rx-queues */ 2766 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2767 j < nr_ids;) { 2768 for (i = tc, tci = j * num_tc; i--; tci++) 2769 active |= remove_xps_queue(dev_maps, tci, index); 2770 if (!netif_attr_test_mask(j, mask, nr_ids) || 2771 !netif_attr_test_online(j, online_mask, nr_ids)) 2772 active |= remove_xps_queue(dev_maps, tci, index); 2773 for (i = num_tc - tc, tci++; --i; tci++) 2774 active |= remove_xps_queue(dev_maps, tci, index); 2775 } 2776 2777 /* free map if not active */ 2778 if (!active) 2779 reset_xps_maps(dev, dev_maps, is_rxqs_map); 2780 2781 out_no_maps: 2782 mutex_unlock(&xps_map_mutex); 2783 2784 return 0; 2785 error: 2786 /* remove any maps that we added */ 2787 for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids), 2788 j < nr_ids;) { 2789 for (i = num_tc, tci = j * num_tc; i--; tci++) { 2790 new_map = xmap_dereference(new_dev_maps->attr_map[tci]); 2791 map = dev_maps ? 2792 xmap_dereference(dev_maps->attr_map[tci]) : 2793 NULL; 2794 if (new_map && new_map != map) 2795 kfree(new_map); 2796 } 2797 } 2798 2799 mutex_unlock(&xps_map_mutex); 2800 2801 kfree(new_dev_maps); 2802 return -ENOMEM; 2803 } 2804 EXPORT_SYMBOL_GPL(__netif_set_xps_queue); 2805 2806 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask, 2807 u16 index) 2808 { 2809 int ret; 2810 2811 cpus_read_lock(); 2812 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, false); 2813 cpus_read_unlock(); 2814 2815 return ret; 2816 } 2817 EXPORT_SYMBOL(netif_set_xps_queue); 2818 2819 #endif 2820 static void netdev_unbind_all_sb_channels(struct net_device *dev) 2821 { 2822 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2823 2824 /* Unbind any subordinate channels */ 2825 while (txq-- != &dev->_tx[0]) { 2826 if (txq->sb_dev) 2827 netdev_unbind_sb_channel(dev, txq->sb_dev); 2828 } 2829 } 2830 2831 void netdev_reset_tc(struct net_device *dev) 2832 { 2833 #ifdef CONFIG_XPS 2834 netif_reset_xps_queues_gt(dev, 0); 2835 #endif 2836 netdev_unbind_all_sb_channels(dev); 2837 2838 /* Reset TC configuration of device */ 2839 dev->num_tc = 0; 2840 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq)); 2841 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map)); 2842 } 2843 EXPORT_SYMBOL(netdev_reset_tc); 2844 2845 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset) 2846 { 2847 if (tc >= dev->num_tc) 2848 return -EINVAL; 2849 2850 #ifdef CONFIG_XPS 2851 netif_reset_xps_queues(dev, offset, count); 2852 #endif 2853 dev->tc_to_txq[tc].count = count; 2854 dev->tc_to_txq[tc].offset = offset; 2855 return 0; 2856 } 2857 EXPORT_SYMBOL(netdev_set_tc_queue); 2858 2859 int netdev_set_num_tc(struct net_device *dev, u8 num_tc) 2860 { 2861 if (num_tc > TC_MAX_QUEUE) 2862 return -EINVAL; 2863 2864 #ifdef CONFIG_XPS 2865 netif_reset_xps_queues_gt(dev, 0); 2866 #endif 2867 netdev_unbind_all_sb_channels(dev); 2868 2869 dev->num_tc = num_tc; 2870 return 0; 2871 } 2872 EXPORT_SYMBOL(netdev_set_num_tc); 2873 2874 void netdev_unbind_sb_channel(struct net_device *dev, 2875 struct net_device *sb_dev) 2876 { 2877 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues]; 2878 2879 #ifdef CONFIG_XPS 2880 netif_reset_xps_queues_gt(sb_dev, 0); 2881 #endif 2882 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq)); 2883 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map)); 2884 2885 while (txq-- != &dev->_tx[0]) { 2886 if (txq->sb_dev == sb_dev) 2887 txq->sb_dev = NULL; 2888 } 2889 } 2890 EXPORT_SYMBOL(netdev_unbind_sb_channel); 2891 2892 int netdev_bind_sb_channel_queue(struct net_device *dev, 2893 struct net_device *sb_dev, 2894 u8 tc, u16 count, u16 offset) 2895 { 2896 /* Make certain the sb_dev and dev are already configured */ 2897 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc) 2898 return -EINVAL; 2899 2900 /* We cannot hand out queues we don't have */ 2901 if ((offset + count) > dev->real_num_tx_queues) 2902 return -EINVAL; 2903 2904 /* Record the mapping */ 2905 sb_dev->tc_to_txq[tc].count = count; 2906 sb_dev->tc_to_txq[tc].offset = offset; 2907 2908 /* Provide a way for Tx queue to find the tc_to_txq map or 2909 * XPS map for itself. 2910 */ 2911 while (count--) 2912 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev; 2913 2914 return 0; 2915 } 2916 EXPORT_SYMBOL(netdev_bind_sb_channel_queue); 2917 2918 int netdev_set_sb_channel(struct net_device *dev, u16 channel) 2919 { 2920 /* Do not use a multiqueue device to represent a subordinate channel */ 2921 if (netif_is_multiqueue(dev)) 2922 return -ENODEV; 2923 2924 /* We allow channels 1 - 32767 to be used for subordinate channels. 2925 * Channel 0 is meant to be "native" mode and used only to represent 2926 * the main root device. We allow writing 0 to reset the device back 2927 * to normal mode after being used as a subordinate channel. 2928 */ 2929 if (channel > S16_MAX) 2930 return -EINVAL; 2931 2932 dev->num_tc = -channel; 2933 2934 return 0; 2935 } 2936 EXPORT_SYMBOL(netdev_set_sb_channel); 2937 2938 /* 2939 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 2940 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed. 2941 */ 2942 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 2943 { 2944 bool disabling; 2945 int rc; 2946 2947 disabling = txq < dev->real_num_tx_queues; 2948 2949 if (txq < 1 || txq > dev->num_tx_queues) 2950 return -EINVAL; 2951 2952 if (dev->reg_state == NETREG_REGISTERED || 2953 dev->reg_state == NETREG_UNREGISTERING) { 2954 ASSERT_RTNL(); 2955 2956 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 2957 txq); 2958 if (rc) 2959 return rc; 2960 2961 if (dev->num_tc) 2962 netif_setup_tc(dev, txq); 2963 2964 dev->real_num_tx_queues = txq; 2965 2966 if (disabling) { 2967 synchronize_net(); 2968 qdisc_reset_all_tx_gt(dev, txq); 2969 #ifdef CONFIG_XPS 2970 netif_reset_xps_queues_gt(dev, txq); 2971 #endif 2972 } 2973 } else { 2974 dev->real_num_tx_queues = txq; 2975 } 2976 2977 return 0; 2978 } 2979 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 2980 2981 #ifdef CONFIG_SYSFS 2982 /** 2983 * netif_set_real_num_rx_queues - set actual number of RX queues used 2984 * @dev: Network device 2985 * @rxq: Actual number of RX queues 2986 * 2987 * This must be called either with the rtnl_lock held or before 2988 * registration of the net device. Returns 0 on success, or a 2989 * negative error code. If called before registration, it always 2990 * succeeds. 2991 */ 2992 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 2993 { 2994 int rc; 2995 2996 if (rxq < 1 || rxq > dev->num_rx_queues) 2997 return -EINVAL; 2998 2999 if (dev->reg_state == NETREG_REGISTERED) { 3000 ASSERT_RTNL(); 3001 3002 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 3003 rxq); 3004 if (rc) 3005 return rc; 3006 } 3007 3008 dev->real_num_rx_queues = rxq; 3009 return 0; 3010 } 3011 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 3012 #endif 3013 3014 /** 3015 * netif_get_num_default_rss_queues - default number of RSS queues 3016 * 3017 * This routine should set an upper limit on the number of RSS queues 3018 * used by default by multiqueue devices. 3019 */ 3020 int netif_get_num_default_rss_queues(void) 3021 { 3022 return is_kdump_kernel() ? 3023 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus()); 3024 } 3025 EXPORT_SYMBOL(netif_get_num_default_rss_queues); 3026 3027 static void __netif_reschedule(struct Qdisc *q) 3028 { 3029 struct softnet_data *sd; 3030 unsigned long flags; 3031 3032 local_irq_save(flags); 3033 sd = this_cpu_ptr(&softnet_data); 3034 q->next_sched = NULL; 3035 *sd->output_queue_tailp = q; 3036 sd->output_queue_tailp = &q->next_sched; 3037 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3038 local_irq_restore(flags); 3039 } 3040 3041 void __netif_schedule(struct Qdisc *q) 3042 { 3043 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 3044 __netif_reschedule(q); 3045 } 3046 EXPORT_SYMBOL(__netif_schedule); 3047 3048 struct dev_kfree_skb_cb { 3049 enum skb_free_reason reason; 3050 }; 3051 3052 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb) 3053 { 3054 return (struct dev_kfree_skb_cb *)skb->cb; 3055 } 3056 3057 void netif_schedule_queue(struct netdev_queue *txq) 3058 { 3059 rcu_read_lock(); 3060 if (!netif_xmit_stopped(txq)) { 3061 struct Qdisc *q = rcu_dereference(txq->qdisc); 3062 3063 __netif_schedule(q); 3064 } 3065 rcu_read_unlock(); 3066 } 3067 EXPORT_SYMBOL(netif_schedule_queue); 3068 3069 void netif_tx_wake_queue(struct netdev_queue *dev_queue) 3070 { 3071 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) { 3072 struct Qdisc *q; 3073 3074 rcu_read_lock(); 3075 q = rcu_dereference(dev_queue->qdisc); 3076 __netif_schedule(q); 3077 rcu_read_unlock(); 3078 } 3079 } 3080 EXPORT_SYMBOL(netif_tx_wake_queue); 3081 3082 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason) 3083 { 3084 unsigned long flags; 3085 3086 if (unlikely(!skb)) 3087 return; 3088 3089 if (likely(refcount_read(&skb->users) == 1)) { 3090 smp_rmb(); 3091 refcount_set(&skb->users, 0); 3092 } else if (likely(!refcount_dec_and_test(&skb->users))) { 3093 return; 3094 } 3095 get_kfree_skb_cb(skb)->reason = reason; 3096 local_irq_save(flags); 3097 skb->next = __this_cpu_read(softnet_data.completion_queue); 3098 __this_cpu_write(softnet_data.completion_queue, skb); 3099 raise_softirq_irqoff(NET_TX_SOFTIRQ); 3100 local_irq_restore(flags); 3101 } 3102 EXPORT_SYMBOL(__dev_kfree_skb_irq); 3103 3104 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason) 3105 { 3106 if (in_irq() || irqs_disabled()) 3107 __dev_kfree_skb_irq(skb, reason); 3108 else 3109 dev_kfree_skb(skb); 3110 } 3111 EXPORT_SYMBOL(__dev_kfree_skb_any); 3112 3113 3114 /** 3115 * netif_device_detach - mark device as removed 3116 * @dev: network device 3117 * 3118 * Mark device as removed from system and therefore no longer available. 3119 */ 3120 void netif_device_detach(struct net_device *dev) 3121 { 3122 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 3123 netif_running(dev)) { 3124 netif_tx_stop_all_queues(dev); 3125 } 3126 } 3127 EXPORT_SYMBOL(netif_device_detach); 3128 3129 /** 3130 * netif_device_attach - mark device as attached 3131 * @dev: network device 3132 * 3133 * Mark device as attached from system and restart if needed. 3134 */ 3135 void netif_device_attach(struct net_device *dev) 3136 { 3137 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 3138 netif_running(dev)) { 3139 netif_tx_wake_all_queues(dev); 3140 __netdev_watchdog_up(dev); 3141 } 3142 } 3143 EXPORT_SYMBOL(netif_device_attach); 3144 3145 /* 3146 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 3147 * to be used as a distribution range. 3148 */ 3149 static u16 skb_tx_hash(const struct net_device *dev, 3150 const struct net_device *sb_dev, 3151 struct sk_buff *skb) 3152 { 3153 u32 hash; 3154 u16 qoffset = 0; 3155 u16 qcount = dev->real_num_tx_queues; 3156 3157 if (dev->num_tc) { 3158 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 3159 3160 qoffset = sb_dev->tc_to_txq[tc].offset; 3161 qcount = sb_dev->tc_to_txq[tc].count; 3162 } 3163 3164 if (skb_rx_queue_recorded(skb)) { 3165 hash = skb_get_rx_queue(skb); 3166 if (hash >= qoffset) 3167 hash -= qoffset; 3168 while (unlikely(hash >= qcount)) 3169 hash -= qcount; 3170 return hash + qoffset; 3171 } 3172 3173 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset; 3174 } 3175 3176 static void skb_warn_bad_offload(const struct sk_buff *skb) 3177 { 3178 static const netdev_features_t null_features; 3179 struct net_device *dev = skb->dev; 3180 const char *name = ""; 3181 3182 if (!net_ratelimit()) 3183 return; 3184 3185 if (dev) { 3186 if (dev->dev.parent) 3187 name = dev_driver_string(dev->dev.parent); 3188 else 3189 name = netdev_name(dev); 3190 } 3191 skb_dump(KERN_WARNING, skb, false); 3192 WARN(1, "%s: caps=(%pNF, %pNF)\n", 3193 name, dev ? &dev->features : &null_features, 3194 skb->sk ? &skb->sk->sk_route_caps : &null_features); 3195 } 3196 3197 /* 3198 * Invalidate hardware checksum when packet is to be mangled, and 3199 * complete checksum manually on outgoing path. 3200 */ 3201 int skb_checksum_help(struct sk_buff *skb) 3202 { 3203 __wsum csum; 3204 int ret = 0, offset; 3205 3206 if (skb->ip_summed == CHECKSUM_COMPLETE) 3207 goto out_set_summed; 3208 3209 if (unlikely(skb_is_gso(skb))) { 3210 skb_warn_bad_offload(skb); 3211 return -EINVAL; 3212 } 3213 3214 /* Before computing a checksum, we should make sure no frag could 3215 * be modified by an external entity : checksum could be wrong. 3216 */ 3217 if (skb_has_shared_frag(skb)) { 3218 ret = __skb_linearize(skb); 3219 if (ret) 3220 goto out; 3221 } 3222 3223 offset = skb_checksum_start_offset(skb); 3224 BUG_ON(offset >= skb_headlen(skb)); 3225 csum = skb_checksum(skb, offset, skb->len - offset, 0); 3226 3227 offset += skb->csum_offset; 3228 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 3229 3230 ret = skb_ensure_writable(skb, offset + sizeof(__sum16)); 3231 if (ret) 3232 goto out; 3233 3234 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0; 3235 out_set_summed: 3236 skb->ip_summed = CHECKSUM_NONE; 3237 out: 3238 return ret; 3239 } 3240 EXPORT_SYMBOL(skb_checksum_help); 3241 3242 int skb_crc32c_csum_help(struct sk_buff *skb) 3243 { 3244 __le32 crc32c_csum; 3245 int ret = 0, offset, start; 3246 3247 if (skb->ip_summed != CHECKSUM_PARTIAL) 3248 goto out; 3249 3250 if (unlikely(skb_is_gso(skb))) 3251 goto out; 3252 3253 /* Before computing a checksum, we should make sure no frag could 3254 * be modified by an external entity : checksum could be wrong. 3255 */ 3256 if (unlikely(skb_has_shared_frag(skb))) { 3257 ret = __skb_linearize(skb); 3258 if (ret) 3259 goto out; 3260 } 3261 start = skb_checksum_start_offset(skb); 3262 offset = start + offsetof(struct sctphdr, checksum); 3263 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) { 3264 ret = -EINVAL; 3265 goto out; 3266 } 3267 3268 ret = skb_ensure_writable(skb, offset + sizeof(__le32)); 3269 if (ret) 3270 goto out; 3271 3272 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start, 3273 skb->len - start, ~(__u32)0, 3274 crc32c_csum_stub)); 3275 *(__le32 *)(skb->data + offset) = crc32c_csum; 3276 skb->ip_summed = CHECKSUM_NONE; 3277 skb->csum_not_inet = 0; 3278 out: 3279 return ret; 3280 } 3281 3282 __be16 skb_network_protocol(struct sk_buff *skb, int *depth) 3283 { 3284 __be16 type = skb->protocol; 3285 3286 /* Tunnel gso handlers can set protocol to ethernet. */ 3287 if (type == htons(ETH_P_TEB)) { 3288 struct ethhdr *eth; 3289 3290 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr)))) 3291 return 0; 3292 3293 eth = (struct ethhdr *)skb->data; 3294 type = eth->h_proto; 3295 } 3296 3297 return __vlan_get_protocol(skb, type, depth); 3298 } 3299 3300 /** 3301 * skb_mac_gso_segment - mac layer segmentation handler. 3302 * @skb: buffer to segment 3303 * @features: features for the output path (see dev->features) 3304 */ 3305 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb, 3306 netdev_features_t features) 3307 { 3308 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 3309 struct packet_offload *ptype; 3310 int vlan_depth = skb->mac_len; 3311 __be16 type = skb_network_protocol(skb, &vlan_depth); 3312 3313 if (unlikely(!type)) 3314 return ERR_PTR(-EINVAL); 3315 3316 __skb_pull(skb, vlan_depth); 3317 3318 rcu_read_lock(); 3319 list_for_each_entry_rcu(ptype, &offload_base, list) { 3320 if (ptype->type == type && ptype->callbacks.gso_segment) { 3321 segs = ptype->callbacks.gso_segment(skb, features); 3322 break; 3323 } 3324 } 3325 rcu_read_unlock(); 3326 3327 __skb_push(skb, skb->data - skb_mac_header(skb)); 3328 3329 return segs; 3330 } 3331 EXPORT_SYMBOL(skb_mac_gso_segment); 3332 3333 3334 /* openvswitch calls this on rx path, so we need a different check. 3335 */ 3336 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path) 3337 { 3338 if (tx_path) 3339 return skb->ip_summed != CHECKSUM_PARTIAL && 3340 skb->ip_summed != CHECKSUM_UNNECESSARY; 3341 3342 return skb->ip_summed == CHECKSUM_NONE; 3343 } 3344 3345 /** 3346 * __skb_gso_segment - Perform segmentation on skb. 3347 * @skb: buffer to segment 3348 * @features: features for the output path (see dev->features) 3349 * @tx_path: whether it is called in TX path 3350 * 3351 * This function segments the given skb and returns a list of segments. 3352 * 3353 * It may return NULL if the skb requires no segmentation. This is 3354 * only possible when GSO is used for verifying header integrity. 3355 * 3356 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb. 3357 */ 3358 struct sk_buff *__skb_gso_segment(struct sk_buff *skb, 3359 netdev_features_t features, bool tx_path) 3360 { 3361 struct sk_buff *segs; 3362 3363 if (unlikely(skb_needs_check(skb, tx_path))) { 3364 int err; 3365 3366 /* We're going to init ->check field in TCP or UDP header */ 3367 err = skb_cow_head(skb, 0); 3368 if (err < 0) 3369 return ERR_PTR(err); 3370 } 3371 3372 /* Only report GSO partial support if it will enable us to 3373 * support segmentation on this frame without needing additional 3374 * work. 3375 */ 3376 if (features & NETIF_F_GSO_PARTIAL) { 3377 netdev_features_t partial_features = NETIF_F_GSO_ROBUST; 3378 struct net_device *dev = skb->dev; 3379 3380 partial_features |= dev->features & dev->gso_partial_features; 3381 if (!skb_gso_ok(skb, features | partial_features)) 3382 features &= ~NETIF_F_GSO_PARTIAL; 3383 } 3384 3385 BUILD_BUG_ON(SKB_GSO_CB_OFFSET + 3386 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb)); 3387 3388 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb); 3389 SKB_GSO_CB(skb)->encap_level = 0; 3390 3391 skb_reset_mac_header(skb); 3392 skb_reset_mac_len(skb); 3393 3394 segs = skb_mac_gso_segment(skb, features); 3395 3396 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs))) 3397 skb_warn_bad_offload(skb); 3398 3399 return segs; 3400 } 3401 EXPORT_SYMBOL(__skb_gso_segment); 3402 3403 /* Take action when hardware reception checksum errors are detected. */ 3404 #ifdef CONFIG_BUG 3405 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb) 3406 { 3407 if (net_ratelimit()) { 3408 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>"); 3409 skb_dump(KERN_ERR, skb, true); 3410 dump_stack(); 3411 } 3412 } 3413 EXPORT_SYMBOL(netdev_rx_csum_fault); 3414 #endif 3415 3416 /* XXX: check that highmem exists at all on the given machine. */ 3417 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 3418 { 3419 #ifdef CONFIG_HIGHMEM 3420 int i; 3421 3422 if (!(dev->features & NETIF_F_HIGHDMA)) { 3423 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 3424 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 3425 3426 if (PageHighMem(skb_frag_page(frag))) 3427 return 1; 3428 } 3429 } 3430 #endif 3431 return 0; 3432 } 3433 3434 /* If MPLS offload request, verify we are testing hardware MPLS features 3435 * instead of standard features for the netdev. 3436 */ 3437 #if IS_ENABLED(CONFIG_NET_MPLS_GSO) 3438 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3439 netdev_features_t features, 3440 __be16 type) 3441 { 3442 if (eth_p_mpls(type)) 3443 features &= skb->dev->mpls_features; 3444 3445 return features; 3446 } 3447 #else 3448 static netdev_features_t net_mpls_features(struct sk_buff *skb, 3449 netdev_features_t features, 3450 __be16 type) 3451 { 3452 return features; 3453 } 3454 #endif 3455 3456 static netdev_features_t harmonize_features(struct sk_buff *skb, 3457 netdev_features_t features) 3458 { 3459 __be16 type; 3460 3461 type = skb_network_protocol(skb, NULL); 3462 features = net_mpls_features(skb, features, type); 3463 3464 if (skb->ip_summed != CHECKSUM_NONE && 3465 !can_checksum_protocol(features, type)) { 3466 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK); 3467 } 3468 if (illegal_highdma(skb->dev, skb)) 3469 features &= ~NETIF_F_SG; 3470 3471 return features; 3472 } 3473 3474 netdev_features_t passthru_features_check(struct sk_buff *skb, 3475 struct net_device *dev, 3476 netdev_features_t features) 3477 { 3478 return features; 3479 } 3480 EXPORT_SYMBOL(passthru_features_check); 3481 3482 static netdev_features_t dflt_features_check(struct sk_buff *skb, 3483 struct net_device *dev, 3484 netdev_features_t features) 3485 { 3486 return vlan_features_check(skb, features); 3487 } 3488 3489 static netdev_features_t gso_features_check(const struct sk_buff *skb, 3490 struct net_device *dev, 3491 netdev_features_t features) 3492 { 3493 u16 gso_segs = skb_shinfo(skb)->gso_segs; 3494 3495 if (gso_segs > dev->gso_max_segs) 3496 return features & ~NETIF_F_GSO_MASK; 3497 3498 /* Support for GSO partial features requires software 3499 * intervention before we can actually process the packets 3500 * so we need to strip support for any partial features now 3501 * and we can pull them back in after we have partially 3502 * segmented the frame. 3503 */ 3504 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL)) 3505 features &= ~dev->gso_partial_features; 3506 3507 /* Make sure to clear the IPv4 ID mangling feature if the 3508 * IPv4 header has the potential to be fragmented. 3509 */ 3510 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) { 3511 struct iphdr *iph = skb->encapsulation ? 3512 inner_ip_hdr(skb) : ip_hdr(skb); 3513 3514 if (!(iph->frag_off & htons(IP_DF))) 3515 features &= ~NETIF_F_TSO_MANGLEID; 3516 } 3517 3518 return features; 3519 } 3520 3521 netdev_features_t netif_skb_features(struct sk_buff *skb) 3522 { 3523 struct net_device *dev = skb->dev; 3524 netdev_features_t features = dev->features; 3525 3526 if (skb_is_gso(skb)) 3527 features = gso_features_check(skb, dev, features); 3528 3529 /* If encapsulation offload request, verify we are testing 3530 * hardware encapsulation features instead of standard 3531 * features for the netdev 3532 */ 3533 if (skb->encapsulation) 3534 features &= dev->hw_enc_features; 3535 3536 if (skb_vlan_tagged(skb)) 3537 features = netdev_intersect_features(features, 3538 dev->vlan_features | 3539 NETIF_F_HW_VLAN_CTAG_TX | 3540 NETIF_F_HW_VLAN_STAG_TX); 3541 3542 if (dev->netdev_ops->ndo_features_check) 3543 features &= dev->netdev_ops->ndo_features_check(skb, dev, 3544 features); 3545 else 3546 features &= dflt_features_check(skb, dev, features); 3547 3548 return harmonize_features(skb, features); 3549 } 3550 EXPORT_SYMBOL(netif_skb_features); 3551 3552 static int xmit_one(struct sk_buff *skb, struct net_device *dev, 3553 struct netdev_queue *txq, bool more) 3554 { 3555 unsigned int len; 3556 int rc; 3557 3558 if (dev_nit_active(dev)) 3559 dev_queue_xmit_nit(skb, dev); 3560 3561 len = skb->len; 3562 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies); 3563 trace_net_dev_start_xmit(skb, dev); 3564 rc = netdev_start_xmit(skb, dev, txq, more); 3565 trace_net_dev_xmit(skb, rc, dev, len); 3566 3567 return rc; 3568 } 3569 3570 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev, 3571 struct netdev_queue *txq, int *ret) 3572 { 3573 struct sk_buff *skb = first; 3574 int rc = NETDEV_TX_OK; 3575 3576 while (skb) { 3577 struct sk_buff *next = skb->next; 3578 3579 skb_mark_not_on_list(skb); 3580 rc = xmit_one(skb, dev, txq, next != NULL); 3581 if (unlikely(!dev_xmit_complete(rc))) { 3582 skb->next = next; 3583 goto out; 3584 } 3585 3586 skb = next; 3587 if (netif_tx_queue_stopped(txq) && skb) { 3588 rc = NETDEV_TX_BUSY; 3589 break; 3590 } 3591 } 3592 3593 out: 3594 *ret = rc; 3595 return skb; 3596 } 3597 3598 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb, 3599 netdev_features_t features) 3600 { 3601 if (skb_vlan_tag_present(skb) && 3602 !vlan_hw_offload_capable(features, skb->vlan_proto)) 3603 skb = __vlan_hwaccel_push_inside(skb); 3604 return skb; 3605 } 3606 3607 int skb_csum_hwoffload_help(struct sk_buff *skb, 3608 const netdev_features_t features) 3609 { 3610 if (unlikely(skb->csum_not_inet)) 3611 return !!(features & NETIF_F_SCTP_CRC) ? 0 : 3612 skb_crc32c_csum_help(skb); 3613 3614 return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb); 3615 } 3616 EXPORT_SYMBOL(skb_csum_hwoffload_help); 3617 3618 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again) 3619 { 3620 netdev_features_t features; 3621 3622 features = netif_skb_features(skb); 3623 skb = validate_xmit_vlan(skb, features); 3624 if (unlikely(!skb)) 3625 goto out_null; 3626 3627 skb = sk_validate_xmit_skb(skb, dev); 3628 if (unlikely(!skb)) 3629 goto out_null; 3630 3631 if (netif_needs_gso(skb, features)) { 3632 struct sk_buff *segs; 3633 3634 segs = skb_gso_segment(skb, features); 3635 if (IS_ERR(segs)) { 3636 goto out_kfree_skb; 3637 } else if (segs) { 3638 consume_skb(skb); 3639 skb = segs; 3640 } 3641 } else { 3642 if (skb_needs_linearize(skb, features) && 3643 __skb_linearize(skb)) 3644 goto out_kfree_skb; 3645 3646 /* If packet is not checksummed and device does not 3647 * support checksumming for this protocol, complete 3648 * checksumming here. 3649 */ 3650 if (skb->ip_summed == CHECKSUM_PARTIAL) { 3651 if (skb->encapsulation) 3652 skb_set_inner_transport_header(skb, 3653 skb_checksum_start_offset(skb)); 3654 else 3655 skb_set_transport_header(skb, 3656 skb_checksum_start_offset(skb)); 3657 if (skb_csum_hwoffload_help(skb, features)) 3658 goto out_kfree_skb; 3659 } 3660 } 3661 3662 skb = validate_xmit_xfrm(skb, features, again); 3663 3664 return skb; 3665 3666 out_kfree_skb: 3667 kfree_skb(skb); 3668 out_null: 3669 atomic_long_inc(&dev->tx_dropped); 3670 return NULL; 3671 } 3672 3673 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again) 3674 { 3675 struct sk_buff *next, *head = NULL, *tail; 3676 3677 for (; skb != NULL; skb = next) { 3678 next = skb->next; 3679 skb_mark_not_on_list(skb); 3680 3681 /* in case skb wont be segmented, point to itself */ 3682 skb->prev = skb; 3683 3684 skb = validate_xmit_skb(skb, dev, again); 3685 if (!skb) 3686 continue; 3687 3688 if (!head) 3689 head = skb; 3690 else 3691 tail->next = skb; 3692 /* If skb was segmented, skb->prev points to 3693 * the last segment. If not, it still contains skb. 3694 */ 3695 tail = skb->prev; 3696 } 3697 return head; 3698 } 3699 EXPORT_SYMBOL_GPL(validate_xmit_skb_list); 3700 3701 static void qdisc_pkt_len_init(struct sk_buff *skb) 3702 { 3703 const struct skb_shared_info *shinfo = skb_shinfo(skb); 3704 3705 qdisc_skb_cb(skb)->pkt_len = skb->len; 3706 3707 /* To get more precise estimation of bytes sent on wire, 3708 * we add to pkt_len the headers size of all segments 3709 */ 3710 if (shinfo->gso_size && skb_transport_header_was_set(skb)) { 3711 unsigned int hdr_len; 3712 u16 gso_segs = shinfo->gso_segs; 3713 3714 /* mac layer + network layer */ 3715 hdr_len = skb_transport_header(skb) - skb_mac_header(skb); 3716 3717 /* + transport layer */ 3718 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) { 3719 const struct tcphdr *th; 3720 struct tcphdr _tcphdr; 3721 3722 th = skb_header_pointer(skb, skb_transport_offset(skb), 3723 sizeof(_tcphdr), &_tcphdr); 3724 if (likely(th)) 3725 hdr_len += __tcp_hdrlen(th); 3726 } else { 3727 struct udphdr _udphdr; 3728 3729 if (skb_header_pointer(skb, skb_transport_offset(skb), 3730 sizeof(_udphdr), &_udphdr)) 3731 hdr_len += sizeof(struct udphdr); 3732 } 3733 3734 if (shinfo->gso_type & SKB_GSO_DODGY) 3735 gso_segs = DIV_ROUND_UP(skb->len - hdr_len, 3736 shinfo->gso_size); 3737 3738 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len; 3739 } 3740 } 3741 3742 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 3743 struct net_device *dev, 3744 struct netdev_queue *txq) 3745 { 3746 spinlock_t *root_lock = qdisc_lock(q); 3747 struct sk_buff *to_free = NULL; 3748 bool contended; 3749 int rc; 3750 3751 qdisc_calculate_pkt_len(skb, q); 3752 3753 if (q->flags & TCQ_F_NOLOCK) { 3754 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3755 qdisc_run(q); 3756 3757 if (unlikely(to_free)) 3758 kfree_skb_list(to_free); 3759 return rc; 3760 } 3761 3762 /* 3763 * Heuristic to force contended enqueues to serialize on a 3764 * separate lock before trying to get qdisc main lock. 3765 * This permits qdisc->running owner to get the lock more 3766 * often and dequeue packets faster. 3767 */ 3768 contended = qdisc_is_running(q); 3769 if (unlikely(contended)) 3770 spin_lock(&q->busylock); 3771 3772 spin_lock(root_lock); 3773 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 3774 __qdisc_drop(skb, &to_free); 3775 rc = NET_XMIT_DROP; 3776 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 3777 qdisc_run_begin(q)) { 3778 /* 3779 * This is a work-conserving queue; there are no old skbs 3780 * waiting to be sent out; and the qdisc is not running - 3781 * xmit the skb directly. 3782 */ 3783 3784 qdisc_bstats_update(q, skb); 3785 3786 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) { 3787 if (unlikely(contended)) { 3788 spin_unlock(&q->busylock); 3789 contended = false; 3790 } 3791 __qdisc_run(q); 3792 } 3793 3794 qdisc_run_end(q); 3795 rc = NET_XMIT_SUCCESS; 3796 } else { 3797 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK; 3798 if (qdisc_run_begin(q)) { 3799 if (unlikely(contended)) { 3800 spin_unlock(&q->busylock); 3801 contended = false; 3802 } 3803 __qdisc_run(q); 3804 qdisc_run_end(q); 3805 } 3806 } 3807 spin_unlock(root_lock); 3808 if (unlikely(to_free)) 3809 kfree_skb_list(to_free); 3810 if (unlikely(contended)) 3811 spin_unlock(&q->busylock); 3812 return rc; 3813 } 3814 3815 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) 3816 static void skb_update_prio(struct sk_buff *skb) 3817 { 3818 const struct netprio_map *map; 3819 const struct sock *sk; 3820 unsigned int prioidx; 3821 3822 if (skb->priority) 3823 return; 3824 map = rcu_dereference_bh(skb->dev->priomap); 3825 if (!map) 3826 return; 3827 sk = skb_to_full_sk(skb); 3828 if (!sk) 3829 return; 3830 3831 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data); 3832 3833 if (prioidx < map->priomap_len) 3834 skb->priority = map->priomap[prioidx]; 3835 } 3836 #else 3837 #define skb_update_prio(skb) 3838 #endif 3839 3840 /** 3841 * dev_loopback_xmit - loop back @skb 3842 * @net: network namespace this loopback is happening in 3843 * @sk: sk needed to be a netfilter okfn 3844 * @skb: buffer to transmit 3845 */ 3846 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb) 3847 { 3848 skb_reset_mac_header(skb); 3849 __skb_pull(skb, skb_network_offset(skb)); 3850 skb->pkt_type = PACKET_LOOPBACK; 3851 skb->ip_summed = CHECKSUM_UNNECESSARY; 3852 WARN_ON(!skb_dst(skb)); 3853 skb_dst_force(skb); 3854 netif_rx_ni(skb); 3855 return 0; 3856 } 3857 EXPORT_SYMBOL(dev_loopback_xmit); 3858 3859 #ifdef CONFIG_NET_EGRESS 3860 static struct sk_buff * 3861 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev) 3862 { 3863 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress); 3864 struct tcf_result cl_res; 3865 3866 if (!miniq) 3867 return skb; 3868 3869 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */ 3870 mini_qdisc_bstats_cpu_update(miniq, skb); 3871 3872 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) { 3873 case TC_ACT_OK: 3874 case TC_ACT_RECLASSIFY: 3875 skb->tc_index = TC_H_MIN(cl_res.classid); 3876 break; 3877 case TC_ACT_SHOT: 3878 mini_qdisc_qstats_cpu_drop(miniq); 3879 *ret = NET_XMIT_DROP; 3880 kfree_skb(skb); 3881 return NULL; 3882 case TC_ACT_STOLEN: 3883 case TC_ACT_QUEUED: 3884 case TC_ACT_TRAP: 3885 *ret = NET_XMIT_SUCCESS; 3886 consume_skb(skb); 3887 return NULL; 3888 case TC_ACT_REDIRECT: 3889 /* No need to push/pop skb's mac_header here on egress! */ 3890 skb_do_redirect(skb); 3891 *ret = NET_XMIT_SUCCESS; 3892 return NULL; 3893 default: 3894 break; 3895 } 3896 3897 return skb; 3898 } 3899 #endif /* CONFIG_NET_EGRESS */ 3900 3901 #ifdef CONFIG_XPS 3902 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb, 3903 struct xps_dev_maps *dev_maps, unsigned int tci) 3904 { 3905 struct xps_map *map; 3906 int queue_index = -1; 3907 3908 if (dev->num_tc) { 3909 tci *= dev->num_tc; 3910 tci += netdev_get_prio_tc_map(dev, skb->priority); 3911 } 3912 3913 map = rcu_dereference(dev_maps->attr_map[tci]); 3914 if (map) { 3915 if (map->len == 1) 3916 queue_index = map->queues[0]; 3917 else 3918 queue_index = map->queues[reciprocal_scale( 3919 skb_get_hash(skb), map->len)]; 3920 if (unlikely(queue_index >= dev->real_num_tx_queues)) 3921 queue_index = -1; 3922 } 3923 return queue_index; 3924 } 3925 #endif 3926 3927 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev, 3928 struct sk_buff *skb) 3929 { 3930 #ifdef CONFIG_XPS 3931 struct xps_dev_maps *dev_maps; 3932 struct sock *sk = skb->sk; 3933 int queue_index = -1; 3934 3935 if (!static_key_false(&xps_needed)) 3936 return -1; 3937 3938 rcu_read_lock(); 3939 if (!static_key_false(&xps_rxqs_needed)) 3940 goto get_cpus_map; 3941 3942 dev_maps = rcu_dereference(sb_dev->xps_rxqs_map); 3943 if (dev_maps) { 3944 int tci = sk_rx_queue_get(sk); 3945 3946 if (tci >= 0 && tci < dev->num_rx_queues) 3947 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3948 tci); 3949 } 3950 3951 get_cpus_map: 3952 if (queue_index < 0) { 3953 dev_maps = rcu_dereference(sb_dev->xps_cpus_map); 3954 if (dev_maps) { 3955 unsigned int tci = skb->sender_cpu - 1; 3956 3957 queue_index = __get_xps_queue_idx(dev, skb, dev_maps, 3958 tci); 3959 } 3960 } 3961 rcu_read_unlock(); 3962 3963 return queue_index; 3964 #else 3965 return -1; 3966 #endif 3967 } 3968 3969 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb, 3970 struct net_device *sb_dev) 3971 { 3972 return 0; 3973 } 3974 EXPORT_SYMBOL(dev_pick_tx_zero); 3975 3976 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb, 3977 struct net_device *sb_dev) 3978 { 3979 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues; 3980 } 3981 EXPORT_SYMBOL(dev_pick_tx_cpu_id); 3982 3983 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb, 3984 struct net_device *sb_dev) 3985 { 3986 struct sock *sk = skb->sk; 3987 int queue_index = sk_tx_queue_get(sk); 3988 3989 sb_dev = sb_dev ? : dev; 3990 3991 if (queue_index < 0 || skb->ooo_okay || 3992 queue_index >= dev->real_num_tx_queues) { 3993 int new_index = get_xps_queue(dev, sb_dev, skb); 3994 3995 if (new_index < 0) 3996 new_index = skb_tx_hash(dev, sb_dev, skb); 3997 3998 if (queue_index != new_index && sk && 3999 sk_fullsock(sk) && 4000 rcu_access_pointer(sk->sk_dst_cache)) 4001 sk_tx_queue_set(sk, new_index); 4002 4003 queue_index = new_index; 4004 } 4005 4006 return queue_index; 4007 } 4008 EXPORT_SYMBOL(netdev_pick_tx); 4009 4010 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev, 4011 struct sk_buff *skb, 4012 struct net_device *sb_dev) 4013 { 4014 int queue_index = 0; 4015 4016 #ifdef CONFIG_XPS 4017 u32 sender_cpu = skb->sender_cpu - 1; 4018 4019 if (sender_cpu >= (u32)NR_CPUS) 4020 skb->sender_cpu = raw_smp_processor_id() + 1; 4021 #endif 4022 4023 if (dev->real_num_tx_queues != 1) { 4024 const struct net_device_ops *ops = dev->netdev_ops; 4025 4026 if (ops->ndo_select_queue) 4027 queue_index = ops->ndo_select_queue(dev, skb, sb_dev); 4028 else 4029 queue_index = netdev_pick_tx(dev, skb, sb_dev); 4030 4031 queue_index = netdev_cap_txqueue(dev, queue_index); 4032 } 4033 4034 skb_set_queue_mapping(skb, queue_index); 4035 return netdev_get_tx_queue(dev, queue_index); 4036 } 4037 4038 /** 4039 * __dev_queue_xmit - transmit a buffer 4040 * @skb: buffer to transmit 4041 * @sb_dev: suboordinate device used for L2 forwarding offload 4042 * 4043 * Queue a buffer for transmission to a network device. The caller must 4044 * have set the device and priority and built the buffer before calling 4045 * this function. The function can be called from an interrupt. 4046 * 4047 * A negative errno code is returned on a failure. A success does not 4048 * guarantee the frame will be transmitted as it may be dropped due 4049 * to congestion or traffic shaping. 4050 * 4051 * ----------------------------------------------------------------------------------- 4052 * I notice this method can also return errors from the queue disciplines, 4053 * including NET_XMIT_DROP, which is a positive value. So, errors can also 4054 * be positive. 4055 * 4056 * Regardless of the return value, the skb is consumed, so it is currently 4057 * difficult to retry a send to this method. (You can bump the ref count 4058 * before sending to hold a reference for retry if you are careful.) 4059 * 4060 * When calling this method, interrupts MUST be enabled. This is because 4061 * the BH enable code must have IRQs enabled so that it will not deadlock. 4062 * --BLG 4063 */ 4064 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev) 4065 { 4066 struct net_device *dev = skb->dev; 4067 struct netdev_queue *txq; 4068 struct Qdisc *q; 4069 int rc = -ENOMEM; 4070 bool again = false; 4071 4072 skb_reset_mac_header(skb); 4073 4074 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP)) 4075 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED); 4076 4077 /* Disable soft irqs for various locks below. Also 4078 * stops preemption for RCU. 4079 */ 4080 rcu_read_lock_bh(); 4081 4082 skb_update_prio(skb); 4083 4084 qdisc_pkt_len_init(skb); 4085 #ifdef CONFIG_NET_CLS_ACT 4086 skb->tc_at_ingress = 0; 4087 # ifdef CONFIG_NET_EGRESS 4088 if (static_branch_unlikely(&egress_needed_key)) { 4089 skb = sch_handle_egress(skb, &rc, dev); 4090 if (!skb) 4091 goto out; 4092 } 4093 # endif 4094 #endif 4095 /* If device/qdisc don't need skb->dst, release it right now while 4096 * its hot in this cpu cache. 4097 */ 4098 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 4099 skb_dst_drop(skb); 4100 else 4101 skb_dst_force(skb); 4102 4103 txq = netdev_core_pick_tx(dev, skb, sb_dev); 4104 q = rcu_dereference_bh(txq->qdisc); 4105 4106 trace_net_dev_queue(skb); 4107 if (q->enqueue) { 4108 rc = __dev_xmit_skb(skb, q, dev, txq); 4109 goto out; 4110 } 4111 4112 /* The device has no queue. Common case for software devices: 4113 * loopback, all the sorts of tunnels... 4114 4115 * Really, it is unlikely that netif_tx_lock protection is necessary 4116 * here. (f.e. loopback and IP tunnels are clean ignoring statistics 4117 * counters.) 4118 * However, it is possible, that they rely on protection 4119 * made by us here. 4120 4121 * Check this and shot the lock. It is not prone from deadlocks. 4122 *Either shot noqueue qdisc, it is even simpler 8) 4123 */ 4124 if (dev->flags & IFF_UP) { 4125 int cpu = smp_processor_id(); /* ok because BHs are off */ 4126 4127 if (txq->xmit_lock_owner != cpu) { 4128 if (dev_xmit_recursion()) 4129 goto recursion_alert; 4130 4131 skb = validate_xmit_skb(skb, dev, &again); 4132 if (!skb) 4133 goto out; 4134 4135 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4136 HARD_TX_LOCK(dev, txq, cpu); 4137 4138 if (!netif_xmit_stopped(txq)) { 4139 dev_xmit_recursion_inc(); 4140 skb = dev_hard_start_xmit(skb, dev, txq, &rc); 4141 dev_xmit_recursion_dec(); 4142 if (dev_xmit_complete(rc)) { 4143 HARD_TX_UNLOCK(dev, txq); 4144 goto out; 4145 } 4146 } 4147 HARD_TX_UNLOCK(dev, txq); 4148 net_crit_ratelimited("Virtual device %s asks to queue packet!\n", 4149 dev->name); 4150 } else { 4151 /* Recursion is detected! It is possible, 4152 * unfortunately 4153 */ 4154 recursion_alert: 4155 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n", 4156 dev->name); 4157 } 4158 } 4159 4160 rc = -ENETDOWN; 4161 rcu_read_unlock_bh(); 4162 4163 atomic_long_inc(&dev->tx_dropped); 4164 kfree_skb_list(skb); 4165 return rc; 4166 out: 4167 rcu_read_unlock_bh(); 4168 return rc; 4169 } 4170 4171 int dev_queue_xmit(struct sk_buff *skb) 4172 { 4173 return __dev_queue_xmit(skb, NULL); 4174 } 4175 EXPORT_SYMBOL(dev_queue_xmit); 4176 4177 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev) 4178 { 4179 return __dev_queue_xmit(skb, sb_dev); 4180 } 4181 EXPORT_SYMBOL(dev_queue_xmit_accel); 4182 4183 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id) 4184 { 4185 struct net_device *dev = skb->dev; 4186 struct sk_buff *orig_skb = skb; 4187 struct netdev_queue *txq; 4188 int ret = NETDEV_TX_BUSY; 4189 bool again = false; 4190 4191 if (unlikely(!netif_running(dev) || 4192 !netif_carrier_ok(dev))) 4193 goto drop; 4194 4195 skb = validate_xmit_skb_list(skb, dev, &again); 4196 if (skb != orig_skb) 4197 goto drop; 4198 4199 skb_set_queue_mapping(skb, queue_id); 4200 txq = skb_get_tx_queue(dev, skb); 4201 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies); 4202 4203 local_bh_disable(); 4204 4205 dev_xmit_recursion_inc(); 4206 HARD_TX_LOCK(dev, txq, smp_processor_id()); 4207 if (!netif_xmit_frozen_or_drv_stopped(txq)) 4208 ret = netdev_start_xmit(skb, dev, txq, false); 4209 HARD_TX_UNLOCK(dev, txq); 4210 dev_xmit_recursion_dec(); 4211 4212 local_bh_enable(); 4213 4214 if (!dev_xmit_complete(ret)) 4215 kfree_skb(skb); 4216 4217 return ret; 4218 drop: 4219 atomic_long_inc(&dev->tx_dropped); 4220 kfree_skb_list(skb); 4221 return NET_XMIT_DROP; 4222 } 4223 EXPORT_SYMBOL(dev_direct_xmit); 4224 4225 /************************************************************************* 4226 * Receiver routines 4227 *************************************************************************/ 4228 4229 int netdev_max_backlog __read_mostly = 1000; 4230 EXPORT_SYMBOL(netdev_max_backlog); 4231 4232 int netdev_tstamp_prequeue __read_mostly = 1; 4233 int netdev_budget __read_mostly = 300; 4234 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */ 4235 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ; 4236 int weight_p __read_mostly = 64; /* old backlog weight */ 4237 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */ 4238 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */ 4239 int dev_rx_weight __read_mostly = 64; 4240 int dev_tx_weight __read_mostly = 64; 4241 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */ 4242 int gro_normal_batch __read_mostly = 8; 4243 4244 /* Called with irq disabled */ 4245 static inline void ____napi_schedule(struct softnet_data *sd, 4246 struct napi_struct *napi) 4247 { 4248 list_add_tail(&napi->poll_list, &sd->poll_list); 4249 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4250 } 4251 4252 #ifdef CONFIG_RPS 4253 4254 /* One global table that all flow-based protocols share. */ 4255 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 4256 EXPORT_SYMBOL(rps_sock_flow_table); 4257 u32 rps_cpu_mask __read_mostly; 4258 EXPORT_SYMBOL(rps_cpu_mask); 4259 4260 struct static_key_false rps_needed __read_mostly; 4261 EXPORT_SYMBOL(rps_needed); 4262 struct static_key_false rfs_needed __read_mostly; 4263 EXPORT_SYMBOL(rfs_needed); 4264 4265 static struct rps_dev_flow * 4266 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4267 struct rps_dev_flow *rflow, u16 next_cpu) 4268 { 4269 if (next_cpu < nr_cpu_ids) { 4270 #ifdef CONFIG_RFS_ACCEL 4271 struct netdev_rx_queue *rxqueue; 4272 struct rps_dev_flow_table *flow_table; 4273 struct rps_dev_flow *old_rflow; 4274 u32 flow_id; 4275 u16 rxq_index; 4276 int rc; 4277 4278 /* Should we steer this flow to a different hardware queue? */ 4279 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 4280 !(dev->features & NETIF_F_NTUPLE)) 4281 goto out; 4282 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 4283 if (rxq_index == skb_get_rx_queue(skb)) 4284 goto out; 4285 4286 rxqueue = dev->_rx + rxq_index; 4287 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4288 if (!flow_table) 4289 goto out; 4290 flow_id = skb_get_hash(skb) & flow_table->mask; 4291 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 4292 rxq_index, flow_id); 4293 if (rc < 0) 4294 goto out; 4295 old_rflow = rflow; 4296 rflow = &flow_table->flows[flow_id]; 4297 rflow->filter = rc; 4298 if (old_rflow->filter == rflow->filter) 4299 old_rflow->filter = RPS_NO_FILTER; 4300 out: 4301 #endif 4302 rflow->last_qtail = 4303 per_cpu(softnet_data, next_cpu).input_queue_head; 4304 } 4305 4306 rflow->cpu = next_cpu; 4307 return rflow; 4308 } 4309 4310 /* 4311 * get_rps_cpu is called from netif_receive_skb and returns the target 4312 * CPU from the RPS map of the receiving queue for a given skb. 4313 * rcu_read_lock must be held on entry. 4314 */ 4315 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 4316 struct rps_dev_flow **rflowp) 4317 { 4318 const struct rps_sock_flow_table *sock_flow_table; 4319 struct netdev_rx_queue *rxqueue = dev->_rx; 4320 struct rps_dev_flow_table *flow_table; 4321 struct rps_map *map; 4322 int cpu = -1; 4323 u32 tcpu; 4324 u32 hash; 4325 4326 if (skb_rx_queue_recorded(skb)) { 4327 u16 index = skb_get_rx_queue(skb); 4328 4329 if (unlikely(index >= dev->real_num_rx_queues)) { 4330 WARN_ONCE(dev->real_num_rx_queues > 1, 4331 "%s received packet on queue %u, but number " 4332 "of RX queues is %u\n", 4333 dev->name, index, dev->real_num_rx_queues); 4334 goto done; 4335 } 4336 rxqueue += index; 4337 } 4338 4339 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */ 4340 4341 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4342 map = rcu_dereference(rxqueue->rps_map); 4343 if (!flow_table && !map) 4344 goto done; 4345 4346 skb_reset_network_header(skb); 4347 hash = skb_get_hash(skb); 4348 if (!hash) 4349 goto done; 4350 4351 sock_flow_table = rcu_dereference(rps_sock_flow_table); 4352 if (flow_table && sock_flow_table) { 4353 struct rps_dev_flow *rflow; 4354 u32 next_cpu; 4355 u32 ident; 4356 4357 /* First check into global flow table if there is a match */ 4358 ident = sock_flow_table->ents[hash & sock_flow_table->mask]; 4359 if ((ident ^ hash) & ~rps_cpu_mask) 4360 goto try_rps; 4361 4362 next_cpu = ident & rps_cpu_mask; 4363 4364 /* OK, now we know there is a match, 4365 * we can look at the local (per receive queue) flow table 4366 */ 4367 rflow = &flow_table->flows[hash & flow_table->mask]; 4368 tcpu = rflow->cpu; 4369 4370 /* 4371 * If the desired CPU (where last recvmsg was done) is 4372 * different from current CPU (one in the rx-queue flow 4373 * table entry), switch if one of the following holds: 4374 * - Current CPU is unset (>= nr_cpu_ids). 4375 * - Current CPU is offline. 4376 * - The current CPU's queue tail has advanced beyond the 4377 * last packet that was enqueued using this table entry. 4378 * This guarantees that all previous packets for the flow 4379 * have been dequeued, thus preserving in order delivery. 4380 */ 4381 if (unlikely(tcpu != next_cpu) && 4382 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) || 4383 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 4384 rflow->last_qtail)) >= 0)) { 4385 tcpu = next_cpu; 4386 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 4387 } 4388 4389 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) { 4390 *rflowp = rflow; 4391 cpu = tcpu; 4392 goto done; 4393 } 4394 } 4395 4396 try_rps: 4397 4398 if (map) { 4399 tcpu = map->cpus[reciprocal_scale(hash, map->len)]; 4400 if (cpu_online(tcpu)) { 4401 cpu = tcpu; 4402 goto done; 4403 } 4404 } 4405 4406 done: 4407 return cpu; 4408 } 4409 4410 #ifdef CONFIG_RFS_ACCEL 4411 4412 /** 4413 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 4414 * @dev: Device on which the filter was set 4415 * @rxq_index: RX queue index 4416 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 4417 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 4418 * 4419 * Drivers that implement ndo_rx_flow_steer() should periodically call 4420 * this function for each installed filter and remove the filters for 4421 * which it returns %true. 4422 */ 4423 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 4424 u32 flow_id, u16 filter_id) 4425 { 4426 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 4427 struct rps_dev_flow_table *flow_table; 4428 struct rps_dev_flow *rflow; 4429 bool expire = true; 4430 unsigned int cpu; 4431 4432 rcu_read_lock(); 4433 flow_table = rcu_dereference(rxqueue->rps_flow_table); 4434 if (flow_table && flow_id <= flow_table->mask) { 4435 rflow = &flow_table->flows[flow_id]; 4436 cpu = READ_ONCE(rflow->cpu); 4437 if (rflow->filter == filter_id && cpu < nr_cpu_ids && 4438 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 4439 rflow->last_qtail) < 4440 (int)(10 * flow_table->mask))) 4441 expire = false; 4442 } 4443 rcu_read_unlock(); 4444 return expire; 4445 } 4446 EXPORT_SYMBOL(rps_may_expire_flow); 4447 4448 #endif /* CONFIG_RFS_ACCEL */ 4449 4450 /* Called from hardirq (IPI) context */ 4451 static void rps_trigger_softirq(void *data) 4452 { 4453 struct softnet_data *sd = data; 4454 4455 ____napi_schedule(sd, &sd->backlog); 4456 sd->received_rps++; 4457 } 4458 4459 #endif /* CONFIG_RPS */ 4460 4461 /* 4462 * Check if this softnet_data structure is another cpu one 4463 * If yes, queue it to our IPI list and return 1 4464 * If no, return 0 4465 */ 4466 static int rps_ipi_queued(struct softnet_data *sd) 4467 { 4468 #ifdef CONFIG_RPS 4469 struct softnet_data *mysd = this_cpu_ptr(&softnet_data); 4470 4471 if (sd != mysd) { 4472 sd->rps_ipi_next = mysd->rps_ipi_list; 4473 mysd->rps_ipi_list = sd; 4474 4475 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 4476 return 1; 4477 } 4478 #endif /* CONFIG_RPS */ 4479 return 0; 4480 } 4481 4482 #ifdef CONFIG_NET_FLOW_LIMIT 4483 int netdev_flow_limit_table_len __read_mostly = (1 << 12); 4484 #endif 4485 4486 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen) 4487 { 4488 #ifdef CONFIG_NET_FLOW_LIMIT 4489 struct sd_flow_limit *fl; 4490 struct softnet_data *sd; 4491 unsigned int old_flow, new_flow; 4492 4493 if (qlen < (netdev_max_backlog >> 1)) 4494 return false; 4495 4496 sd = this_cpu_ptr(&softnet_data); 4497 4498 rcu_read_lock(); 4499 fl = rcu_dereference(sd->flow_limit); 4500 if (fl) { 4501 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1); 4502 old_flow = fl->history[fl->history_head]; 4503 fl->history[fl->history_head] = new_flow; 4504 4505 fl->history_head++; 4506 fl->history_head &= FLOW_LIMIT_HISTORY - 1; 4507 4508 if (likely(fl->buckets[old_flow])) 4509 fl->buckets[old_flow]--; 4510 4511 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) { 4512 fl->count++; 4513 rcu_read_unlock(); 4514 return true; 4515 } 4516 } 4517 rcu_read_unlock(); 4518 #endif 4519 return false; 4520 } 4521 4522 /* 4523 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 4524 * queue (may be a remote CPU queue). 4525 */ 4526 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 4527 unsigned int *qtail) 4528 { 4529 struct softnet_data *sd; 4530 unsigned long flags; 4531 unsigned int qlen; 4532 4533 sd = &per_cpu(softnet_data, cpu); 4534 4535 local_irq_save(flags); 4536 4537 rps_lock(sd); 4538 if (!netif_running(skb->dev)) 4539 goto drop; 4540 qlen = skb_queue_len(&sd->input_pkt_queue); 4541 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) { 4542 if (qlen) { 4543 enqueue: 4544 __skb_queue_tail(&sd->input_pkt_queue, skb); 4545 input_queue_tail_incr_save(sd, qtail); 4546 rps_unlock(sd); 4547 local_irq_restore(flags); 4548 return NET_RX_SUCCESS; 4549 } 4550 4551 /* Schedule NAPI for backlog device 4552 * We can use non atomic operation since we own the queue lock 4553 */ 4554 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 4555 if (!rps_ipi_queued(sd)) 4556 ____napi_schedule(sd, &sd->backlog); 4557 } 4558 goto enqueue; 4559 } 4560 4561 drop: 4562 sd->dropped++; 4563 rps_unlock(sd); 4564 4565 local_irq_restore(flags); 4566 4567 atomic_long_inc(&skb->dev->rx_dropped); 4568 kfree_skb(skb); 4569 return NET_RX_DROP; 4570 } 4571 4572 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb) 4573 { 4574 struct net_device *dev = skb->dev; 4575 struct netdev_rx_queue *rxqueue; 4576 4577 rxqueue = dev->_rx; 4578 4579 if (skb_rx_queue_recorded(skb)) { 4580 u16 index = skb_get_rx_queue(skb); 4581 4582 if (unlikely(index >= dev->real_num_rx_queues)) { 4583 WARN_ONCE(dev->real_num_rx_queues > 1, 4584 "%s received packet on queue %u, but number " 4585 "of RX queues is %u\n", 4586 dev->name, index, dev->real_num_rx_queues); 4587 4588 return rxqueue; /* Return first rxqueue */ 4589 } 4590 rxqueue += index; 4591 } 4592 return rxqueue; 4593 } 4594 4595 static u32 netif_receive_generic_xdp(struct sk_buff *skb, 4596 struct xdp_buff *xdp, 4597 struct bpf_prog *xdp_prog) 4598 { 4599 struct netdev_rx_queue *rxqueue; 4600 void *orig_data, *orig_data_end; 4601 u32 metalen, act = XDP_DROP; 4602 __be16 orig_eth_type; 4603 struct ethhdr *eth; 4604 bool orig_bcast; 4605 int hlen, off; 4606 u32 mac_len; 4607 4608 /* Reinjected packets coming from act_mirred or similar should 4609 * not get XDP generic processing. 4610 */ 4611 if (skb_is_redirected(skb)) 4612 return XDP_PASS; 4613 4614 /* XDP packets must be linear and must have sufficient headroom 4615 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also 4616 * native XDP provides, thus we need to do it here as well. 4617 */ 4618 if (skb_cloned(skb) || skb_is_nonlinear(skb) || 4619 skb_headroom(skb) < XDP_PACKET_HEADROOM) { 4620 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb); 4621 int troom = skb->tail + skb->data_len - skb->end; 4622 4623 /* In case we have to go down the path and also linearize, 4624 * then lets do the pskb_expand_head() work just once here. 4625 */ 4626 if (pskb_expand_head(skb, 4627 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0, 4628 troom > 0 ? troom + 128 : 0, GFP_ATOMIC)) 4629 goto do_drop; 4630 if (skb_linearize(skb)) 4631 goto do_drop; 4632 } 4633 4634 /* The XDP program wants to see the packet starting at the MAC 4635 * header. 4636 */ 4637 mac_len = skb->data - skb_mac_header(skb); 4638 hlen = skb_headlen(skb) + mac_len; 4639 xdp->data = skb->data - mac_len; 4640 xdp->data_meta = xdp->data; 4641 xdp->data_end = xdp->data + hlen; 4642 xdp->data_hard_start = skb->data - skb_headroom(skb); 4643 4644 /* SKB "head" area always have tailroom for skb_shared_info */ 4645 xdp->frame_sz = (void *)skb_end_pointer(skb) - xdp->data_hard_start; 4646 xdp->frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 4647 4648 orig_data_end = xdp->data_end; 4649 orig_data = xdp->data; 4650 eth = (struct ethhdr *)xdp->data; 4651 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest); 4652 orig_eth_type = eth->h_proto; 4653 4654 rxqueue = netif_get_rxqueue(skb); 4655 xdp->rxq = &rxqueue->xdp_rxq; 4656 4657 act = bpf_prog_run_xdp(xdp_prog, xdp); 4658 4659 /* check if bpf_xdp_adjust_head was used */ 4660 off = xdp->data - orig_data; 4661 if (off) { 4662 if (off > 0) 4663 __skb_pull(skb, off); 4664 else if (off < 0) 4665 __skb_push(skb, -off); 4666 4667 skb->mac_header += off; 4668 skb_reset_network_header(skb); 4669 } 4670 4671 /* check if bpf_xdp_adjust_tail was used */ 4672 off = xdp->data_end - orig_data_end; 4673 if (off != 0) { 4674 skb_set_tail_pointer(skb, xdp->data_end - xdp->data); 4675 skb->len += off; /* positive on grow, negative on shrink */ 4676 } 4677 4678 /* check if XDP changed eth hdr such SKB needs update */ 4679 eth = (struct ethhdr *)xdp->data; 4680 if ((orig_eth_type != eth->h_proto) || 4681 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) { 4682 __skb_push(skb, ETH_HLEN); 4683 skb->protocol = eth_type_trans(skb, skb->dev); 4684 } 4685 4686 switch (act) { 4687 case XDP_REDIRECT: 4688 case XDP_TX: 4689 __skb_push(skb, mac_len); 4690 break; 4691 case XDP_PASS: 4692 metalen = xdp->data - xdp->data_meta; 4693 if (metalen) 4694 skb_metadata_set(skb, metalen); 4695 break; 4696 default: 4697 bpf_warn_invalid_xdp_action(act); 4698 fallthrough; 4699 case XDP_ABORTED: 4700 trace_xdp_exception(skb->dev, xdp_prog, act); 4701 fallthrough; 4702 case XDP_DROP: 4703 do_drop: 4704 kfree_skb(skb); 4705 break; 4706 } 4707 4708 return act; 4709 } 4710 4711 /* When doing generic XDP we have to bypass the qdisc layer and the 4712 * network taps in order to match in-driver-XDP behavior. 4713 */ 4714 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog) 4715 { 4716 struct net_device *dev = skb->dev; 4717 struct netdev_queue *txq; 4718 bool free_skb = true; 4719 int cpu, rc; 4720 4721 txq = netdev_core_pick_tx(dev, skb, NULL); 4722 cpu = smp_processor_id(); 4723 HARD_TX_LOCK(dev, txq, cpu); 4724 if (!netif_xmit_stopped(txq)) { 4725 rc = netdev_start_xmit(skb, dev, txq, 0); 4726 if (dev_xmit_complete(rc)) 4727 free_skb = false; 4728 } 4729 HARD_TX_UNLOCK(dev, txq); 4730 if (free_skb) { 4731 trace_xdp_exception(dev, xdp_prog, XDP_TX); 4732 kfree_skb(skb); 4733 } 4734 } 4735 4736 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key); 4737 4738 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb) 4739 { 4740 if (xdp_prog) { 4741 struct xdp_buff xdp; 4742 u32 act; 4743 int err; 4744 4745 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog); 4746 if (act != XDP_PASS) { 4747 switch (act) { 4748 case XDP_REDIRECT: 4749 err = xdp_do_generic_redirect(skb->dev, skb, 4750 &xdp, xdp_prog); 4751 if (err) 4752 goto out_redir; 4753 break; 4754 case XDP_TX: 4755 generic_xdp_tx(skb, xdp_prog); 4756 break; 4757 } 4758 return XDP_DROP; 4759 } 4760 } 4761 return XDP_PASS; 4762 out_redir: 4763 kfree_skb(skb); 4764 return XDP_DROP; 4765 } 4766 EXPORT_SYMBOL_GPL(do_xdp_generic); 4767 4768 static int netif_rx_internal(struct sk_buff *skb) 4769 { 4770 int ret; 4771 4772 net_timestamp_check(netdev_tstamp_prequeue, skb); 4773 4774 trace_netif_rx(skb); 4775 4776 #ifdef CONFIG_RPS 4777 if (static_branch_unlikely(&rps_needed)) { 4778 struct rps_dev_flow voidflow, *rflow = &voidflow; 4779 int cpu; 4780 4781 preempt_disable(); 4782 rcu_read_lock(); 4783 4784 cpu = get_rps_cpu(skb->dev, skb, &rflow); 4785 if (cpu < 0) 4786 cpu = smp_processor_id(); 4787 4788 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 4789 4790 rcu_read_unlock(); 4791 preempt_enable(); 4792 } else 4793 #endif 4794 { 4795 unsigned int qtail; 4796 4797 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 4798 put_cpu(); 4799 } 4800 return ret; 4801 } 4802 4803 /** 4804 * netif_rx - post buffer to the network code 4805 * @skb: buffer to post 4806 * 4807 * This function receives a packet from a device driver and queues it for 4808 * the upper (protocol) levels to process. It always succeeds. The buffer 4809 * may be dropped during processing for congestion control or by the 4810 * protocol layers. 4811 * 4812 * return values: 4813 * NET_RX_SUCCESS (no congestion) 4814 * NET_RX_DROP (packet was dropped) 4815 * 4816 */ 4817 4818 int netif_rx(struct sk_buff *skb) 4819 { 4820 int ret; 4821 4822 trace_netif_rx_entry(skb); 4823 4824 ret = netif_rx_internal(skb); 4825 trace_netif_rx_exit(ret); 4826 4827 return ret; 4828 } 4829 EXPORT_SYMBOL(netif_rx); 4830 4831 int netif_rx_ni(struct sk_buff *skb) 4832 { 4833 int err; 4834 4835 trace_netif_rx_ni_entry(skb); 4836 4837 preempt_disable(); 4838 err = netif_rx_internal(skb); 4839 if (local_softirq_pending()) 4840 do_softirq(); 4841 preempt_enable(); 4842 trace_netif_rx_ni_exit(err); 4843 4844 return err; 4845 } 4846 EXPORT_SYMBOL(netif_rx_ni); 4847 4848 int netif_rx_any_context(struct sk_buff *skb) 4849 { 4850 /* 4851 * If invoked from contexts which do not invoke bottom half 4852 * processing either at return from interrupt or when softrqs are 4853 * reenabled, use netif_rx_ni() which invokes bottomhalf processing 4854 * directly. 4855 */ 4856 if (in_interrupt()) 4857 return netif_rx(skb); 4858 else 4859 return netif_rx_ni(skb); 4860 } 4861 EXPORT_SYMBOL(netif_rx_any_context); 4862 4863 static __latent_entropy void net_tx_action(struct softirq_action *h) 4864 { 4865 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 4866 4867 if (sd->completion_queue) { 4868 struct sk_buff *clist; 4869 4870 local_irq_disable(); 4871 clist = sd->completion_queue; 4872 sd->completion_queue = NULL; 4873 local_irq_enable(); 4874 4875 while (clist) { 4876 struct sk_buff *skb = clist; 4877 4878 clist = clist->next; 4879 4880 WARN_ON(refcount_read(&skb->users)); 4881 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED)) 4882 trace_consume_skb(skb); 4883 else 4884 trace_kfree_skb(skb, net_tx_action); 4885 4886 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) 4887 __kfree_skb(skb); 4888 else 4889 __kfree_skb_defer(skb); 4890 } 4891 4892 __kfree_skb_flush(); 4893 } 4894 4895 if (sd->output_queue) { 4896 struct Qdisc *head; 4897 4898 local_irq_disable(); 4899 head = sd->output_queue; 4900 sd->output_queue = NULL; 4901 sd->output_queue_tailp = &sd->output_queue; 4902 local_irq_enable(); 4903 4904 while (head) { 4905 struct Qdisc *q = head; 4906 spinlock_t *root_lock = NULL; 4907 4908 head = head->next_sched; 4909 4910 if (!(q->flags & TCQ_F_NOLOCK)) { 4911 root_lock = qdisc_lock(q); 4912 spin_lock(root_lock); 4913 } 4914 /* We need to make sure head->next_sched is read 4915 * before clearing __QDISC_STATE_SCHED 4916 */ 4917 smp_mb__before_atomic(); 4918 clear_bit(__QDISC_STATE_SCHED, &q->state); 4919 qdisc_run(q); 4920 if (root_lock) 4921 spin_unlock(root_lock); 4922 } 4923 } 4924 4925 xfrm_dev_backlog(sd); 4926 } 4927 4928 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE) 4929 /* This hook is defined here for ATM LANE */ 4930 int (*br_fdb_test_addr_hook)(struct net_device *dev, 4931 unsigned char *addr) __read_mostly; 4932 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 4933 #endif 4934 4935 static inline struct sk_buff * 4936 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret, 4937 struct net_device *orig_dev, bool *another) 4938 { 4939 #ifdef CONFIG_NET_CLS_ACT 4940 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress); 4941 struct tcf_result cl_res; 4942 4943 /* If there's at least one ingress present somewhere (so 4944 * we get here via enabled static key), remaining devices 4945 * that are not configured with an ingress qdisc will bail 4946 * out here. 4947 */ 4948 if (!miniq) 4949 return skb; 4950 4951 if (*pt_prev) { 4952 *ret = deliver_skb(skb, *pt_prev, orig_dev); 4953 *pt_prev = NULL; 4954 } 4955 4956 qdisc_skb_cb(skb)->pkt_len = skb->len; 4957 skb->tc_at_ingress = 1; 4958 mini_qdisc_bstats_cpu_update(miniq, skb); 4959 4960 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list, 4961 &cl_res, false)) { 4962 case TC_ACT_OK: 4963 case TC_ACT_RECLASSIFY: 4964 skb->tc_index = TC_H_MIN(cl_res.classid); 4965 break; 4966 case TC_ACT_SHOT: 4967 mini_qdisc_qstats_cpu_drop(miniq); 4968 kfree_skb(skb); 4969 return NULL; 4970 case TC_ACT_STOLEN: 4971 case TC_ACT_QUEUED: 4972 case TC_ACT_TRAP: 4973 consume_skb(skb); 4974 return NULL; 4975 case TC_ACT_REDIRECT: 4976 /* skb_mac_header check was done by cls/act_bpf, so 4977 * we can safely push the L2 header back before 4978 * redirecting to another netdev 4979 */ 4980 __skb_push(skb, skb->mac_len); 4981 if (skb_do_redirect(skb) == -EAGAIN) { 4982 __skb_pull(skb, skb->mac_len); 4983 *another = true; 4984 break; 4985 } 4986 return NULL; 4987 case TC_ACT_CONSUMED: 4988 return NULL; 4989 default: 4990 break; 4991 } 4992 #endif /* CONFIG_NET_CLS_ACT */ 4993 return skb; 4994 } 4995 4996 /** 4997 * netdev_is_rx_handler_busy - check if receive handler is registered 4998 * @dev: device to check 4999 * 5000 * Check if a receive handler is already registered for a given device. 5001 * Return true if there one. 5002 * 5003 * The caller must hold the rtnl_mutex. 5004 */ 5005 bool netdev_is_rx_handler_busy(struct net_device *dev) 5006 { 5007 ASSERT_RTNL(); 5008 return dev && rtnl_dereference(dev->rx_handler); 5009 } 5010 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy); 5011 5012 /** 5013 * netdev_rx_handler_register - register receive handler 5014 * @dev: device to register a handler for 5015 * @rx_handler: receive handler to register 5016 * @rx_handler_data: data pointer that is used by rx handler 5017 * 5018 * Register a receive handler for a device. This handler will then be 5019 * called from __netif_receive_skb. A negative errno code is returned 5020 * on a failure. 5021 * 5022 * The caller must hold the rtnl_mutex. 5023 * 5024 * For a general description of rx_handler, see enum rx_handler_result. 5025 */ 5026 int netdev_rx_handler_register(struct net_device *dev, 5027 rx_handler_func_t *rx_handler, 5028 void *rx_handler_data) 5029 { 5030 if (netdev_is_rx_handler_busy(dev)) 5031 return -EBUSY; 5032 5033 if (dev->priv_flags & IFF_NO_RX_HANDLER) 5034 return -EINVAL; 5035 5036 /* Note: rx_handler_data must be set before rx_handler */ 5037 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 5038 rcu_assign_pointer(dev->rx_handler, rx_handler); 5039 5040 return 0; 5041 } 5042 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 5043 5044 /** 5045 * netdev_rx_handler_unregister - unregister receive handler 5046 * @dev: device to unregister a handler from 5047 * 5048 * Unregister a receive handler from a device. 5049 * 5050 * The caller must hold the rtnl_mutex. 5051 */ 5052 void netdev_rx_handler_unregister(struct net_device *dev) 5053 { 5054 5055 ASSERT_RTNL(); 5056 RCU_INIT_POINTER(dev->rx_handler, NULL); 5057 /* a reader seeing a non NULL rx_handler in a rcu_read_lock() 5058 * section has a guarantee to see a non NULL rx_handler_data 5059 * as well. 5060 */ 5061 synchronize_net(); 5062 RCU_INIT_POINTER(dev->rx_handler_data, NULL); 5063 } 5064 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 5065 5066 /* 5067 * Limit the use of PFMEMALLOC reserves to those protocols that implement 5068 * the special handling of PFMEMALLOC skbs. 5069 */ 5070 static bool skb_pfmemalloc_protocol(struct sk_buff *skb) 5071 { 5072 switch (skb->protocol) { 5073 case htons(ETH_P_ARP): 5074 case htons(ETH_P_IP): 5075 case htons(ETH_P_IPV6): 5076 case htons(ETH_P_8021Q): 5077 case htons(ETH_P_8021AD): 5078 return true; 5079 default: 5080 return false; 5081 } 5082 } 5083 5084 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev, 5085 int *ret, struct net_device *orig_dev) 5086 { 5087 if (nf_hook_ingress_active(skb)) { 5088 int ingress_retval; 5089 5090 if (*pt_prev) { 5091 *ret = deliver_skb(skb, *pt_prev, orig_dev); 5092 *pt_prev = NULL; 5093 } 5094 5095 rcu_read_lock(); 5096 ingress_retval = nf_hook_ingress(skb); 5097 rcu_read_unlock(); 5098 return ingress_retval; 5099 } 5100 return 0; 5101 } 5102 5103 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc, 5104 struct packet_type **ppt_prev) 5105 { 5106 struct packet_type *ptype, *pt_prev; 5107 rx_handler_func_t *rx_handler; 5108 struct sk_buff *skb = *pskb; 5109 struct net_device *orig_dev; 5110 bool deliver_exact = false; 5111 int ret = NET_RX_DROP; 5112 __be16 type; 5113 5114 net_timestamp_check(!netdev_tstamp_prequeue, skb); 5115 5116 trace_netif_receive_skb(skb); 5117 5118 orig_dev = skb->dev; 5119 5120 skb_reset_network_header(skb); 5121 if (!skb_transport_header_was_set(skb)) 5122 skb_reset_transport_header(skb); 5123 skb_reset_mac_len(skb); 5124 5125 pt_prev = NULL; 5126 5127 another_round: 5128 skb->skb_iif = skb->dev->ifindex; 5129 5130 __this_cpu_inc(softnet_data.processed); 5131 5132 if (static_branch_unlikely(&generic_xdp_needed_key)) { 5133 int ret2; 5134 5135 preempt_disable(); 5136 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb); 5137 preempt_enable(); 5138 5139 if (ret2 != XDP_PASS) { 5140 ret = NET_RX_DROP; 5141 goto out; 5142 } 5143 skb_reset_mac_len(skb); 5144 } 5145 5146 if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5147 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5148 skb = skb_vlan_untag(skb); 5149 if (unlikely(!skb)) 5150 goto out; 5151 } 5152 5153 if (skb_skip_tc_classify(skb)) 5154 goto skip_classify; 5155 5156 if (pfmemalloc) 5157 goto skip_taps; 5158 5159 list_for_each_entry_rcu(ptype, &ptype_all, list) { 5160 if (pt_prev) 5161 ret = deliver_skb(skb, pt_prev, orig_dev); 5162 pt_prev = ptype; 5163 } 5164 5165 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) { 5166 if (pt_prev) 5167 ret = deliver_skb(skb, pt_prev, orig_dev); 5168 pt_prev = ptype; 5169 } 5170 5171 skip_taps: 5172 #ifdef CONFIG_NET_INGRESS 5173 if (static_branch_unlikely(&ingress_needed_key)) { 5174 bool another = false; 5175 5176 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev, 5177 &another); 5178 if (another) 5179 goto another_round; 5180 if (!skb) 5181 goto out; 5182 5183 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0) 5184 goto out; 5185 } 5186 #endif 5187 skb_reset_redirect(skb); 5188 skip_classify: 5189 if (pfmemalloc && !skb_pfmemalloc_protocol(skb)) 5190 goto drop; 5191 5192 if (skb_vlan_tag_present(skb)) { 5193 if (pt_prev) { 5194 ret = deliver_skb(skb, pt_prev, orig_dev); 5195 pt_prev = NULL; 5196 } 5197 if (vlan_do_receive(&skb)) 5198 goto another_round; 5199 else if (unlikely(!skb)) 5200 goto out; 5201 } 5202 5203 rx_handler = rcu_dereference(skb->dev->rx_handler); 5204 if (rx_handler) { 5205 if (pt_prev) { 5206 ret = deliver_skb(skb, pt_prev, orig_dev); 5207 pt_prev = NULL; 5208 } 5209 switch (rx_handler(&skb)) { 5210 case RX_HANDLER_CONSUMED: 5211 ret = NET_RX_SUCCESS; 5212 goto out; 5213 case RX_HANDLER_ANOTHER: 5214 goto another_round; 5215 case RX_HANDLER_EXACT: 5216 deliver_exact = true; 5217 case RX_HANDLER_PASS: 5218 break; 5219 default: 5220 BUG(); 5221 } 5222 } 5223 5224 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) { 5225 check_vlan_id: 5226 if (skb_vlan_tag_get_id(skb)) { 5227 /* Vlan id is non 0 and vlan_do_receive() above couldn't 5228 * find vlan device. 5229 */ 5230 skb->pkt_type = PACKET_OTHERHOST; 5231 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) || 5232 skb->protocol == cpu_to_be16(ETH_P_8021AD)) { 5233 /* Outer header is 802.1P with vlan 0, inner header is 5234 * 802.1Q or 802.1AD and vlan_do_receive() above could 5235 * not find vlan dev for vlan id 0. 5236 */ 5237 __vlan_hwaccel_clear_tag(skb); 5238 skb = skb_vlan_untag(skb); 5239 if (unlikely(!skb)) 5240 goto out; 5241 if (vlan_do_receive(&skb)) 5242 /* After stripping off 802.1P header with vlan 0 5243 * vlan dev is found for inner header. 5244 */ 5245 goto another_round; 5246 else if (unlikely(!skb)) 5247 goto out; 5248 else 5249 /* We have stripped outer 802.1P vlan 0 header. 5250 * But could not find vlan dev. 5251 * check again for vlan id to set OTHERHOST. 5252 */ 5253 goto check_vlan_id; 5254 } 5255 /* Note: we might in the future use prio bits 5256 * and set skb->priority like in vlan_do_receive() 5257 * For the time being, just ignore Priority Code Point 5258 */ 5259 __vlan_hwaccel_clear_tag(skb); 5260 } 5261 5262 type = skb->protocol; 5263 5264 /* deliver only exact match when indicated */ 5265 if (likely(!deliver_exact)) { 5266 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5267 &ptype_base[ntohs(type) & 5268 PTYPE_HASH_MASK]); 5269 } 5270 5271 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5272 &orig_dev->ptype_specific); 5273 5274 if (unlikely(skb->dev != orig_dev)) { 5275 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type, 5276 &skb->dev->ptype_specific); 5277 } 5278 5279 if (pt_prev) { 5280 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC))) 5281 goto drop; 5282 *ppt_prev = pt_prev; 5283 } else { 5284 drop: 5285 if (!deliver_exact) 5286 atomic_long_inc(&skb->dev->rx_dropped); 5287 else 5288 atomic_long_inc(&skb->dev->rx_nohandler); 5289 kfree_skb(skb); 5290 /* Jamal, now you will not able to escape explaining 5291 * me how you were going to use this. :-) 5292 */ 5293 ret = NET_RX_DROP; 5294 } 5295 5296 out: 5297 /* The invariant here is that if *ppt_prev is not NULL 5298 * then skb should also be non-NULL. 5299 * 5300 * Apparently *ppt_prev assignment above holds this invariant due to 5301 * skb dereferencing near it. 5302 */ 5303 *pskb = skb; 5304 return ret; 5305 } 5306 5307 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc) 5308 { 5309 struct net_device *orig_dev = skb->dev; 5310 struct packet_type *pt_prev = NULL; 5311 int ret; 5312 5313 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5314 if (pt_prev) 5315 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb, 5316 skb->dev, pt_prev, orig_dev); 5317 return ret; 5318 } 5319 5320 /** 5321 * netif_receive_skb_core - special purpose version of netif_receive_skb 5322 * @skb: buffer to process 5323 * 5324 * More direct receive version of netif_receive_skb(). It should 5325 * only be used by callers that have a need to skip RPS and Generic XDP. 5326 * Caller must also take care of handling if ``(page_is_)pfmemalloc``. 5327 * 5328 * This function may only be called from softirq context and interrupts 5329 * should be enabled. 5330 * 5331 * Return values (usually ignored): 5332 * NET_RX_SUCCESS: no congestion 5333 * NET_RX_DROP: packet was dropped 5334 */ 5335 int netif_receive_skb_core(struct sk_buff *skb) 5336 { 5337 int ret; 5338 5339 rcu_read_lock(); 5340 ret = __netif_receive_skb_one_core(skb, false); 5341 rcu_read_unlock(); 5342 5343 return ret; 5344 } 5345 EXPORT_SYMBOL(netif_receive_skb_core); 5346 5347 static inline void __netif_receive_skb_list_ptype(struct list_head *head, 5348 struct packet_type *pt_prev, 5349 struct net_device *orig_dev) 5350 { 5351 struct sk_buff *skb, *next; 5352 5353 if (!pt_prev) 5354 return; 5355 if (list_empty(head)) 5356 return; 5357 if (pt_prev->list_func != NULL) 5358 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv, 5359 ip_list_rcv, head, pt_prev, orig_dev); 5360 else 5361 list_for_each_entry_safe(skb, next, head, list) { 5362 skb_list_del_init(skb); 5363 pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 5364 } 5365 } 5366 5367 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc) 5368 { 5369 /* Fast-path assumptions: 5370 * - There is no RX handler. 5371 * - Only one packet_type matches. 5372 * If either of these fails, we will end up doing some per-packet 5373 * processing in-line, then handling the 'last ptype' for the whole 5374 * sublist. This can't cause out-of-order delivery to any single ptype, 5375 * because the 'last ptype' must be constant across the sublist, and all 5376 * other ptypes are handled per-packet. 5377 */ 5378 /* Current (common) ptype of sublist */ 5379 struct packet_type *pt_curr = NULL; 5380 /* Current (common) orig_dev of sublist */ 5381 struct net_device *od_curr = NULL; 5382 struct list_head sublist; 5383 struct sk_buff *skb, *next; 5384 5385 INIT_LIST_HEAD(&sublist); 5386 list_for_each_entry_safe(skb, next, head, list) { 5387 struct net_device *orig_dev = skb->dev; 5388 struct packet_type *pt_prev = NULL; 5389 5390 skb_list_del_init(skb); 5391 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev); 5392 if (!pt_prev) 5393 continue; 5394 if (pt_curr != pt_prev || od_curr != orig_dev) { 5395 /* dispatch old sublist */ 5396 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5397 /* start new sublist */ 5398 INIT_LIST_HEAD(&sublist); 5399 pt_curr = pt_prev; 5400 od_curr = orig_dev; 5401 } 5402 list_add_tail(&skb->list, &sublist); 5403 } 5404 5405 /* dispatch final sublist */ 5406 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr); 5407 } 5408 5409 static int __netif_receive_skb(struct sk_buff *skb) 5410 { 5411 int ret; 5412 5413 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) { 5414 unsigned int noreclaim_flag; 5415 5416 /* 5417 * PFMEMALLOC skbs are special, they should 5418 * - be delivered to SOCK_MEMALLOC sockets only 5419 * - stay away from userspace 5420 * - have bounded memory usage 5421 * 5422 * Use PF_MEMALLOC as this saves us from propagating the allocation 5423 * context down to all allocation sites. 5424 */ 5425 noreclaim_flag = memalloc_noreclaim_save(); 5426 ret = __netif_receive_skb_one_core(skb, true); 5427 memalloc_noreclaim_restore(noreclaim_flag); 5428 } else 5429 ret = __netif_receive_skb_one_core(skb, false); 5430 5431 return ret; 5432 } 5433 5434 static void __netif_receive_skb_list(struct list_head *head) 5435 { 5436 unsigned long noreclaim_flag = 0; 5437 struct sk_buff *skb, *next; 5438 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */ 5439 5440 list_for_each_entry_safe(skb, next, head, list) { 5441 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) { 5442 struct list_head sublist; 5443 5444 /* Handle the previous sublist */ 5445 list_cut_before(&sublist, head, &skb->list); 5446 if (!list_empty(&sublist)) 5447 __netif_receive_skb_list_core(&sublist, pfmemalloc); 5448 pfmemalloc = !pfmemalloc; 5449 /* See comments in __netif_receive_skb */ 5450 if (pfmemalloc) 5451 noreclaim_flag = memalloc_noreclaim_save(); 5452 else 5453 memalloc_noreclaim_restore(noreclaim_flag); 5454 } 5455 } 5456 /* Handle the remaining sublist */ 5457 if (!list_empty(head)) 5458 __netif_receive_skb_list_core(head, pfmemalloc); 5459 /* Restore pflags */ 5460 if (pfmemalloc) 5461 memalloc_noreclaim_restore(noreclaim_flag); 5462 } 5463 5464 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp) 5465 { 5466 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog); 5467 struct bpf_prog *new = xdp->prog; 5468 int ret = 0; 5469 5470 if (new) { 5471 u32 i; 5472 5473 mutex_lock(&new->aux->used_maps_mutex); 5474 5475 /* generic XDP does not work with DEVMAPs that can 5476 * have a bpf_prog installed on an entry 5477 */ 5478 for (i = 0; i < new->aux->used_map_cnt; i++) { 5479 if (dev_map_can_have_prog(new->aux->used_maps[i]) || 5480 cpu_map_prog_allowed(new->aux->used_maps[i])) { 5481 mutex_unlock(&new->aux->used_maps_mutex); 5482 return -EINVAL; 5483 } 5484 } 5485 5486 mutex_unlock(&new->aux->used_maps_mutex); 5487 } 5488 5489 switch (xdp->command) { 5490 case XDP_SETUP_PROG: 5491 rcu_assign_pointer(dev->xdp_prog, new); 5492 if (old) 5493 bpf_prog_put(old); 5494 5495 if (old && !new) { 5496 static_branch_dec(&generic_xdp_needed_key); 5497 } else if (new && !old) { 5498 static_branch_inc(&generic_xdp_needed_key); 5499 dev_disable_lro(dev); 5500 dev_disable_gro_hw(dev); 5501 } 5502 break; 5503 5504 default: 5505 ret = -EINVAL; 5506 break; 5507 } 5508 5509 return ret; 5510 } 5511 5512 static int netif_receive_skb_internal(struct sk_buff *skb) 5513 { 5514 int ret; 5515 5516 net_timestamp_check(netdev_tstamp_prequeue, skb); 5517 5518 if (skb_defer_rx_timestamp(skb)) 5519 return NET_RX_SUCCESS; 5520 5521 rcu_read_lock(); 5522 #ifdef CONFIG_RPS 5523 if (static_branch_unlikely(&rps_needed)) { 5524 struct rps_dev_flow voidflow, *rflow = &voidflow; 5525 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5526 5527 if (cpu >= 0) { 5528 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5529 rcu_read_unlock(); 5530 return ret; 5531 } 5532 } 5533 #endif 5534 ret = __netif_receive_skb(skb); 5535 rcu_read_unlock(); 5536 return ret; 5537 } 5538 5539 static void netif_receive_skb_list_internal(struct list_head *head) 5540 { 5541 struct sk_buff *skb, *next; 5542 struct list_head sublist; 5543 5544 INIT_LIST_HEAD(&sublist); 5545 list_for_each_entry_safe(skb, next, head, list) { 5546 net_timestamp_check(netdev_tstamp_prequeue, skb); 5547 skb_list_del_init(skb); 5548 if (!skb_defer_rx_timestamp(skb)) 5549 list_add_tail(&skb->list, &sublist); 5550 } 5551 list_splice_init(&sublist, head); 5552 5553 rcu_read_lock(); 5554 #ifdef CONFIG_RPS 5555 if (static_branch_unlikely(&rps_needed)) { 5556 list_for_each_entry_safe(skb, next, head, list) { 5557 struct rps_dev_flow voidflow, *rflow = &voidflow; 5558 int cpu = get_rps_cpu(skb->dev, skb, &rflow); 5559 5560 if (cpu >= 0) { 5561 /* Will be handled, remove from list */ 5562 skb_list_del_init(skb); 5563 enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 5564 } 5565 } 5566 } 5567 #endif 5568 __netif_receive_skb_list(head); 5569 rcu_read_unlock(); 5570 } 5571 5572 /** 5573 * netif_receive_skb - process receive buffer from network 5574 * @skb: buffer to process 5575 * 5576 * netif_receive_skb() is the main receive data processing function. 5577 * It always succeeds. The buffer may be dropped during processing 5578 * for congestion control or by the protocol layers. 5579 * 5580 * This function may only be called from softirq context and interrupts 5581 * should be enabled. 5582 * 5583 * Return values (usually ignored): 5584 * NET_RX_SUCCESS: no congestion 5585 * NET_RX_DROP: packet was dropped 5586 */ 5587 int netif_receive_skb(struct sk_buff *skb) 5588 { 5589 int ret; 5590 5591 trace_netif_receive_skb_entry(skb); 5592 5593 ret = netif_receive_skb_internal(skb); 5594 trace_netif_receive_skb_exit(ret); 5595 5596 return ret; 5597 } 5598 EXPORT_SYMBOL(netif_receive_skb); 5599 5600 /** 5601 * netif_receive_skb_list - process many receive buffers from network 5602 * @head: list of skbs to process. 5603 * 5604 * Since return value of netif_receive_skb() is normally ignored, and 5605 * wouldn't be meaningful for a list, this function returns void. 5606 * 5607 * This function may only be called from softirq context and interrupts 5608 * should be enabled. 5609 */ 5610 void netif_receive_skb_list(struct list_head *head) 5611 { 5612 struct sk_buff *skb; 5613 5614 if (list_empty(head)) 5615 return; 5616 if (trace_netif_receive_skb_list_entry_enabled()) { 5617 list_for_each_entry(skb, head, list) 5618 trace_netif_receive_skb_list_entry(skb); 5619 } 5620 netif_receive_skb_list_internal(head); 5621 trace_netif_receive_skb_list_exit(0); 5622 } 5623 EXPORT_SYMBOL(netif_receive_skb_list); 5624 5625 static DEFINE_PER_CPU(struct work_struct, flush_works); 5626 5627 /* Network device is going away, flush any packets still pending */ 5628 static void flush_backlog(struct work_struct *work) 5629 { 5630 struct sk_buff *skb, *tmp; 5631 struct softnet_data *sd; 5632 5633 local_bh_disable(); 5634 sd = this_cpu_ptr(&softnet_data); 5635 5636 local_irq_disable(); 5637 rps_lock(sd); 5638 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 5639 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5640 __skb_unlink(skb, &sd->input_pkt_queue); 5641 dev_kfree_skb_irq(skb); 5642 input_queue_head_incr(sd); 5643 } 5644 } 5645 rps_unlock(sd); 5646 local_irq_enable(); 5647 5648 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 5649 if (skb->dev->reg_state == NETREG_UNREGISTERING) { 5650 __skb_unlink(skb, &sd->process_queue); 5651 kfree_skb(skb); 5652 input_queue_head_incr(sd); 5653 } 5654 } 5655 local_bh_enable(); 5656 } 5657 5658 static bool flush_required(int cpu) 5659 { 5660 #if IS_ENABLED(CONFIG_RPS) 5661 struct softnet_data *sd = &per_cpu(softnet_data, cpu); 5662 bool do_flush; 5663 5664 local_irq_disable(); 5665 rps_lock(sd); 5666 5667 /* as insertion into process_queue happens with the rps lock held, 5668 * process_queue access may race only with dequeue 5669 */ 5670 do_flush = !skb_queue_empty(&sd->input_pkt_queue) || 5671 !skb_queue_empty_lockless(&sd->process_queue); 5672 rps_unlock(sd); 5673 local_irq_enable(); 5674 5675 return do_flush; 5676 #endif 5677 /* without RPS we can't safely check input_pkt_queue: during a 5678 * concurrent remote skb_queue_splice() we can detect as empty both 5679 * input_pkt_queue and process_queue even if the latter could end-up 5680 * containing a lot of packets. 5681 */ 5682 return true; 5683 } 5684 5685 static void flush_all_backlogs(void) 5686 { 5687 static cpumask_t flush_cpus; 5688 unsigned int cpu; 5689 5690 /* since we are under rtnl lock protection we can use static data 5691 * for the cpumask and avoid allocating on stack the possibly 5692 * large mask 5693 */ 5694 ASSERT_RTNL(); 5695 5696 get_online_cpus(); 5697 5698 cpumask_clear(&flush_cpus); 5699 for_each_online_cpu(cpu) { 5700 if (flush_required(cpu)) { 5701 queue_work_on(cpu, system_highpri_wq, 5702 per_cpu_ptr(&flush_works, cpu)); 5703 cpumask_set_cpu(cpu, &flush_cpus); 5704 } 5705 } 5706 5707 /* we can have in flight packet[s] on the cpus we are not flushing, 5708 * synchronize_net() in rollback_registered_many() will take care of 5709 * them 5710 */ 5711 for_each_cpu(cpu, &flush_cpus) 5712 flush_work(per_cpu_ptr(&flush_works, cpu)); 5713 5714 put_online_cpus(); 5715 } 5716 5717 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */ 5718 static void gro_normal_list(struct napi_struct *napi) 5719 { 5720 if (!napi->rx_count) 5721 return; 5722 netif_receive_skb_list_internal(&napi->rx_list); 5723 INIT_LIST_HEAD(&napi->rx_list); 5724 napi->rx_count = 0; 5725 } 5726 5727 /* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded, 5728 * pass the whole batch up to the stack. 5729 */ 5730 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb) 5731 { 5732 list_add_tail(&skb->list, &napi->rx_list); 5733 if (++napi->rx_count >= gro_normal_batch) 5734 gro_normal_list(napi); 5735 } 5736 5737 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int)); 5738 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int)); 5739 static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb) 5740 { 5741 struct packet_offload *ptype; 5742 __be16 type = skb->protocol; 5743 struct list_head *head = &offload_base; 5744 int err = -ENOENT; 5745 5746 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb)); 5747 5748 if (NAPI_GRO_CB(skb)->count == 1) { 5749 skb_shinfo(skb)->gso_size = 0; 5750 goto out; 5751 } 5752 5753 rcu_read_lock(); 5754 list_for_each_entry_rcu(ptype, head, list) { 5755 if (ptype->type != type || !ptype->callbacks.gro_complete) 5756 continue; 5757 5758 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete, 5759 ipv6_gro_complete, inet_gro_complete, 5760 skb, 0); 5761 break; 5762 } 5763 rcu_read_unlock(); 5764 5765 if (err) { 5766 WARN_ON(&ptype->list == head); 5767 kfree_skb(skb); 5768 return NET_RX_SUCCESS; 5769 } 5770 5771 out: 5772 gro_normal_one(napi, skb); 5773 return NET_RX_SUCCESS; 5774 } 5775 5776 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index, 5777 bool flush_old) 5778 { 5779 struct list_head *head = &napi->gro_hash[index].list; 5780 struct sk_buff *skb, *p; 5781 5782 list_for_each_entry_safe_reverse(skb, p, head, list) { 5783 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies) 5784 return; 5785 skb_list_del_init(skb); 5786 napi_gro_complete(napi, skb); 5787 napi->gro_hash[index].count--; 5788 } 5789 5790 if (!napi->gro_hash[index].count) 5791 __clear_bit(index, &napi->gro_bitmask); 5792 } 5793 5794 /* napi->gro_hash[].list contains packets ordered by age. 5795 * youngest packets at the head of it. 5796 * Complete skbs in reverse order to reduce latencies. 5797 */ 5798 void napi_gro_flush(struct napi_struct *napi, bool flush_old) 5799 { 5800 unsigned long bitmask = napi->gro_bitmask; 5801 unsigned int i, base = ~0U; 5802 5803 while ((i = ffs(bitmask)) != 0) { 5804 bitmask >>= i; 5805 base += i; 5806 __napi_gro_flush_chain(napi, base, flush_old); 5807 } 5808 } 5809 EXPORT_SYMBOL(napi_gro_flush); 5810 5811 static struct list_head *gro_list_prepare(struct napi_struct *napi, 5812 struct sk_buff *skb) 5813 { 5814 unsigned int maclen = skb->dev->hard_header_len; 5815 u32 hash = skb_get_hash_raw(skb); 5816 struct list_head *head; 5817 struct sk_buff *p; 5818 5819 head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list; 5820 list_for_each_entry(p, head, list) { 5821 unsigned long diffs; 5822 5823 NAPI_GRO_CB(p)->flush = 0; 5824 5825 if (hash != skb_get_hash_raw(p)) { 5826 NAPI_GRO_CB(p)->same_flow = 0; 5827 continue; 5828 } 5829 5830 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 5831 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb); 5832 if (skb_vlan_tag_present(p)) 5833 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb); 5834 diffs |= skb_metadata_dst_cmp(p, skb); 5835 diffs |= skb_metadata_differs(p, skb); 5836 if (maclen == ETH_HLEN) 5837 diffs |= compare_ether_header(skb_mac_header(p), 5838 skb_mac_header(skb)); 5839 else if (!diffs) 5840 diffs = memcmp(skb_mac_header(p), 5841 skb_mac_header(skb), 5842 maclen); 5843 NAPI_GRO_CB(p)->same_flow = !diffs; 5844 } 5845 5846 return head; 5847 } 5848 5849 static void skb_gro_reset_offset(struct sk_buff *skb) 5850 { 5851 const struct skb_shared_info *pinfo = skb_shinfo(skb); 5852 const skb_frag_t *frag0 = &pinfo->frags[0]; 5853 5854 NAPI_GRO_CB(skb)->data_offset = 0; 5855 NAPI_GRO_CB(skb)->frag0 = NULL; 5856 NAPI_GRO_CB(skb)->frag0_len = 0; 5857 5858 if (!skb_headlen(skb) && pinfo->nr_frags && 5859 !PageHighMem(skb_frag_page(frag0))) { 5860 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0); 5861 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int, 5862 skb_frag_size(frag0), 5863 skb->end - skb->tail); 5864 } 5865 } 5866 5867 static void gro_pull_from_frag0(struct sk_buff *skb, int grow) 5868 { 5869 struct skb_shared_info *pinfo = skb_shinfo(skb); 5870 5871 BUG_ON(skb->end - skb->tail < grow); 5872 5873 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 5874 5875 skb->data_len -= grow; 5876 skb->tail += grow; 5877 5878 skb_frag_off_add(&pinfo->frags[0], grow); 5879 skb_frag_size_sub(&pinfo->frags[0], grow); 5880 5881 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) { 5882 skb_frag_unref(skb, 0); 5883 memmove(pinfo->frags, pinfo->frags + 1, 5884 --pinfo->nr_frags * sizeof(pinfo->frags[0])); 5885 } 5886 } 5887 5888 static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head) 5889 { 5890 struct sk_buff *oldest; 5891 5892 oldest = list_last_entry(head, struct sk_buff, list); 5893 5894 /* We are called with head length >= MAX_GRO_SKBS, so this is 5895 * impossible. 5896 */ 5897 if (WARN_ON_ONCE(!oldest)) 5898 return; 5899 5900 /* Do not adjust napi->gro_hash[].count, caller is adding a new 5901 * SKB to the chain. 5902 */ 5903 skb_list_del_init(oldest); 5904 napi_gro_complete(napi, oldest); 5905 } 5906 5907 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *, 5908 struct sk_buff *)); 5909 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *, 5910 struct sk_buff *)); 5911 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 5912 { 5913 u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1); 5914 struct list_head *head = &offload_base; 5915 struct packet_offload *ptype; 5916 __be16 type = skb->protocol; 5917 struct list_head *gro_head; 5918 struct sk_buff *pp = NULL; 5919 enum gro_result ret; 5920 int same_flow; 5921 int grow; 5922 5923 if (netif_elide_gro(skb->dev)) 5924 goto normal; 5925 5926 gro_head = gro_list_prepare(napi, skb); 5927 5928 rcu_read_lock(); 5929 list_for_each_entry_rcu(ptype, head, list) { 5930 if (ptype->type != type || !ptype->callbacks.gro_receive) 5931 continue; 5932 5933 skb_set_network_header(skb, skb_gro_offset(skb)); 5934 skb_reset_mac_len(skb); 5935 NAPI_GRO_CB(skb)->same_flow = 0; 5936 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb); 5937 NAPI_GRO_CB(skb)->free = 0; 5938 NAPI_GRO_CB(skb)->encap_mark = 0; 5939 NAPI_GRO_CB(skb)->recursion_counter = 0; 5940 NAPI_GRO_CB(skb)->is_fou = 0; 5941 NAPI_GRO_CB(skb)->is_atomic = 1; 5942 NAPI_GRO_CB(skb)->gro_remcsum_start = 0; 5943 5944 /* Setup for GRO checksum validation */ 5945 switch (skb->ip_summed) { 5946 case CHECKSUM_COMPLETE: 5947 NAPI_GRO_CB(skb)->csum = skb->csum; 5948 NAPI_GRO_CB(skb)->csum_valid = 1; 5949 NAPI_GRO_CB(skb)->csum_cnt = 0; 5950 break; 5951 case CHECKSUM_UNNECESSARY: 5952 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1; 5953 NAPI_GRO_CB(skb)->csum_valid = 0; 5954 break; 5955 default: 5956 NAPI_GRO_CB(skb)->csum_cnt = 0; 5957 NAPI_GRO_CB(skb)->csum_valid = 0; 5958 } 5959 5960 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive, 5961 ipv6_gro_receive, inet_gro_receive, 5962 gro_head, skb); 5963 break; 5964 } 5965 rcu_read_unlock(); 5966 5967 if (&ptype->list == head) 5968 goto normal; 5969 5970 if (PTR_ERR(pp) == -EINPROGRESS) { 5971 ret = GRO_CONSUMED; 5972 goto ok; 5973 } 5974 5975 same_flow = NAPI_GRO_CB(skb)->same_flow; 5976 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 5977 5978 if (pp) { 5979 skb_list_del_init(pp); 5980 napi_gro_complete(napi, pp); 5981 napi->gro_hash[hash].count--; 5982 } 5983 5984 if (same_flow) 5985 goto ok; 5986 5987 if (NAPI_GRO_CB(skb)->flush) 5988 goto normal; 5989 5990 if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) { 5991 gro_flush_oldest(napi, gro_head); 5992 } else { 5993 napi->gro_hash[hash].count++; 5994 } 5995 NAPI_GRO_CB(skb)->count = 1; 5996 NAPI_GRO_CB(skb)->age = jiffies; 5997 NAPI_GRO_CB(skb)->last = skb; 5998 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 5999 list_add(&skb->list, gro_head); 6000 ret = GRO_HELD; 6001 6002 pull: 6003 grow = skb_gro_offset(skb) - skb_headlen(skb); 6004 if (grow > 0) 6005 gro_pull_from_frag0(skb, grow); 6006 ok: 6007 if (napi->gro_hash[hash].count) { 6008 if (!test_bit(hash, &napi->gro_bitmask)) 6009 __set_bit(hash, &napi->gro_bitmask); 6010 } else if (test_bit(hash, &napi->gro_bitmask)) { 6011 __clear_bit(hash, &napi->gro_bitmask); 6012 } 6013 6014 return ret; 6015 6016 normal: 6017 ret = GRO_NORMAL; 6018 goto pull; 6019 } 6020 6021 struct packet_offload *gro_find_receive_by_type(__be16 type) 6022 { 6023 struct list_head *offload_head = &offload_base; 6024 struct packet_offload *ptype; 6025 6026 list_for_each_entry_rcu(ptype, offload_head, list) { 6027 if (ptype->type != type || !ptype->callbacks.gro_receive) 6028 continue; 6029 return ptype; 6030 } 6031 return NULL; 6032 } 6033 EXPORT_SYMBOL(gro_find_receive_by_type); 6034 6035 struct packet_offload *gro_find_complete_by_type(__be16 type) 6036 { 6037 struct list_head *offload_head = &offload_base; 6038 struct packet_offload *ptype; 6039 6040 list_for_each_entry_rcu(ptype, offload_head, list) { 6041 if (ptype->type != type || !ptype->callbacks.gro_complete) 6042 continue; 6043 return ptype; 6044 } 6045 return NULL; 6046 } 6047 EXPORT_SYMBOL(gro_find_complete_by_type); 6048 6049 static void napi_skb_free_stolen_head(struct sk_buff *skb) 6050 { 6051 skb_dst_drop(skb); 6052 skb_ext_put(skb); 6053 kmem_cache_free(skbuff_head_cache, skb); 6054 } 6055 6056 static gro_result_t napi_skb_finish(struct napi_struct *napi, 6057 struct sk_buff *skb, 6058 gro_result_t ret) 6059 { 6060 switch (ret) { 6061 case GRO_NORMAL: 6062 gro_normal_one(napi, skb); 6063 break; 6064 6065 case GRO_DROP: 6066 kfree_skb(skb); 6067 break; 6068 6069 case GRO_MERGED_FREE: 6070 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6071 napi_skb_free_stolen_head(skb); 6072 else 6073 __kfree_skb(skb); 6074 break; 6075 6076 case GRO_HELD: 6077 case GRO_MERGED: 6078 case GRO_CONSUMED: 6079 break; 6080 } 6081 6082 return ret; 6083 } 6084 6085 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 6086 { 6087 gro_result_t ret; 6088 6089 skb_mark_napi_id(skb, napi); 6090 trace_napi_gro_receive_entry(skb); 6091 6092 skb_gro_reset_offset(skb); 6093 6094 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb)); 6095 trace_napi_gro_receive_exit(ret); 6096 6097 return ret; 6098 } 6099 EXPORT_SYMBOL(napi_gro_receive); 6100 6101 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 6102 { 6103 if (unlikely(skb->pfmemalloc)) { 6104 consume_skb(skb); 6105 return; 6106 } 6107 __skb_pull(skb, skb_headlen(skb)); 6108 /* restore the reserve we had after netdev_alloc_skb_ip_align() */ 6109 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb)); 6110 __vlan_hwaccel_clear_tag(skb); 6111 skb->dev = napi->dev; 6112 skb->skb_iif = 0; 6113 6114 /* eth_type_trans() assumes pkt_type is PACKET_HOST */ 6115 skb->pkt_type = PACKET_HOST; 6116 6117 skb->encapsulation = 0; 6118 skb_shinfo(skb)->gso_type = 0; 6119 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb)); 6120 skb_ext_reset(skb); 6121 6122 napi->skb = skb; 6123 } 6124 6125 struct sk_buff *napi_get_frags(struct napi_struct *napi) 6126 { 6127 struct sk_buff *skb = napi->skb; 6128 6129 if (!skb) { 6130 skb = napi_alloc_skb(napi, GRO_MAX_HEAD); 6131 if (skb) { 6132 napi->skb = skb; 6133 skb_mark_napi_id(skb, napi); 6134 } 6135 } 6136 return skb; 6137 } 6138 EXPORT_SYMBOL(napi_get_frags); 6139 6140 static gro_result_t napi_frags_finish(struct napi_struct *napi, 6141 struct sk_buff *skb, 6142 gro_result_t ret) 6143 { 6144 switch (ret) { 6145 case GRO_NORMAL: 6146 case GRO_HELD: 6147 __skb_push(skb, ETH_HLEN); 6148 skb->protocol = eth_type_trans(skb, skb->dev); 6149 if (ret == GRO_NORMAL) 6150 gro_normal_one(napi, skb); 6151 break; 6152 6153 case GRO_DROP: 6154 napi_reuse_skb(napi, skb); 6155 break; 6156 6157 case GRO_MERGED_FREE: 6158 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) 6159 napi_skb_free_stolen_head(skb); 6160 else 6161 napi_reuse_skb(napi, skb); 6162 break; 6163 6164 case GRO_MERGED: 6165 case GRO_CONSUMED: 6166 break; 6167 } 6168 6169 return ret; 6170 } 6171 6172 /* Upper GRO stack assumes network header starts at gro_offset=0 6173 * Drivers could call both napi_gro_frags() and napi_gro_receive() 6174 * We copy ethernet header into skb->data to have a common layout. 6175 */ 6176 static struct sk_buff *napi_frags_skb(struct napi_struct *napi) 6177 { 6178 struct sk_buff *skb = napi->skb; 6179 const struct ethhdr *eth; 6180 unsigned int hlen = sizeof(*eth); 6181 6182 napi->skb = NULL; 6183 6184 skb_reset_mac_header(skb); 6185 skb_gro_reset_offset(skb); 6186 6187 if (unlikely(skb_gro_header_hard(skb, hlen))) { 6188 eth = skb_gro_header_slow(skb, hlen, 0); 6189 if (unlikely(!eth)) { 6190 net_warn_ratelimited("%s: dropping impossible skb from %s\n", 6191 __func__, napi->dev->name); 6192 napi_reuse_skb(napi, skb); 6193 return NULL; 6194 } 6195 } else { 6196 eth = (const struct ethhdr *)skb->data; 6197 gro_pull_from_frag0(skb, hlen); 6198 NAPI_GRO_CB(skb)->frag0 += hlen; 6199 NAPI_GRO_CB(skb)->frag0_len -= hlen; 6200 } 6201 __skb_pull(skb, hlen); 6202 6203 /* 6204 * This works because the only protocols we care about don't require 6205 * special handling. 6206 * We'll fix it up properly in napi_frags_finish() 6207 */ 6208 skb->protocol = eth->h_proto; 6209 6210 return skb; 6211 } 6212 6213 gro_result_t napi_gro_frags(struct napi_struct *napi) 6214 { 6215 gro_result_t ret; 6216 struct sk_buff *skb = napi_frags_skb(napi); 6217 6218 if (!skb) 6219 return GRO_DROP; 6220 6221 trace_napi_gro_frags_entry(skb); 6222 6223 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb)); 6224 trace_napi_gro_frags_exit(ret); 6225 6226 return ret; 6227 } 6228 EXPORT_SYMBOL(napi_gro_frags); 6229 6230 /* Compute the checksum from gro_offset and return the folded value 6231 * after adding in any pseudo checksum. 6232 */ 6233 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb) 6234 { 6235 __wsum wsum; 6236 __sum16 sum; 6237 6238 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0); 6239 6240 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */ 6241 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum)); 6242 /* See comments in __skb_checksum_complete(). */ 6243 if (likely(!sum)) { 6244 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) && 6245 !skb->csum_complete_sw) 6246 netdev_rx_csum_fault(skb->dev, skb); 6247 } 6248 6249 NAPI_GRO_CB(skb)->csum = wsum; 6250 NAPI_GRO_CB(skb)->csum_valid = 1; 6251 6252 return sum; 6253 } 6254 EXPORT_SYMBOL(__skb_gro_checksum_complete); 6255 6256 static void net_rps_send_ipi(struct softnet_data *remsd) 6257 { 6258 #ifdef CONFIG_RPS 6259 while (remsd) { 6260 struct softnet_data *next = remsd->rps_ipi_next; 6261 6262 if (cpu_online(remsd->cpu)) 6263 smp_call_function_single_async(remsd->cpu, &remsd->csd); 6264 remsd = next; 6265 } 6266 #endif 6267 } 6268 6269 /* 6270 * net_rps_action_and_irq_enable sends any pending IPI's for rps. 6271 * Note: called with local irq disabled, but exits with local irq enabled. 6272 */ 6273 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 6274 { 6275 #ifdef CONFIG_RPS 6276 struct softnet_data *remsd = sd->rps_ipi_list; 6277 6278 if (remsd) { 6279 sd->rps_ipi_list = NULL; 6280 6281 local_irq_enable(); 6282 6283 /* Send pending IPI's to kick RPS processing on remote cpus. */ 6284 net_rps_send_ipi(remsd); 6285 } else 6286 #endif 6287 local_irq_enable(); 6288 } 6289 6290 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd) 6291 { 6292 #ifdef CONFIG_RPS 6293 return sd->rps_ipi_list != NULL; 6294 #else 6295 return false; 6296 #endif 6297 } 6298 6299 static int process_backlog(struct napi_struct *napi, int quota) 6300 { 6301 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 6302 bool again = true; 6303 int work = 0; 6304 6305 /* Check if we have pending ipi, its better to send them now, 6306 * not waiting net_rx_action() end. 6307 */ 6308 if (sd_has_rps_ipi_waiting(sd)) { 6309 local_irq_disable(); 6310 net_rps_action_and_irq_enable(sd); 6311 } 6312 6313 napi->weight = dev_rx_weight; 6314 while (again) { 6315 struct sk_buff *skb; 6316 6317 while ((skb = __skb_dequeue(&sd->process_queue))) { 6318 rcu_read_lock(); 6319 __netif_receive_skb(skb); 6320 rcu_read_unlock(); 6321 input_queue_head_incr(sd); 6322 if (++work >= quota) 6323 return work; 6324 6325 } 6326 6327 local_irq_disable(); 6328 rps_lock(sd); 6329 if (skb_queue_empty(&sd->input_pkt_queue)) { 6330 /* 6331 * Inline a custom version of __napi_complete(). 6332 * only current cpu owns and manipulates this napi, 6333 * and NAPI_STATE_SCHED is the only possible flag set 6334 * on backlog. 6335 * We can use a plain write instead of clear_bit(), 6336 * and we dont need an smp_mb() memory barrier. 6337 */ 6338 napi->state = 0; 6339 again = false; 6340 } else { 6341 skb_queue_splice_tail_init(&sd->input_pkt_queue, 6342 &sd->process_queue); 6343 } 6344 rps_unlock(sd); 6345 local_irq_enable(); 6346 } 6347 6348 return work; 6349 } 6350 6351 /** 6352 * __napi_schedule - schedule for receive 6353 * @n: entry to schedule 6354 * 6355 * The entry's receive function will be scheduled to run. 6356 * Consider using __napi_schedule_irqoff() if hard irqs are masked. 6357 */ 6358 void __napi_schedule(struct napi_struct *n) 6359 { 6360 unsigned long flags; 6361 6362 local_irq_save(flags); 6363 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6364 local_irq_restore(flags); 6365 } 6366 EXPORT_SYMBOL(__napi_schedule); 6367 6368 /** 6369 * napi_schedule_prep - check if napi can be scheduled 6370 * @n: napi context 6371 * 6372 * Test if NAPI routine is already running, and if not mark 6373 * it as running. This is used as a condition variable to 6374 * insure only one NAPI poll instance runs. We also make 6375 * sure there is no pending NAPI disable. 6376 */ 6377 bool napi_schedule_prep(struct napi_struct *n) 6378 { 6379 unsigned long val, new; 6380 6381 do { 6382 val = READ_ONCE(n->state); 6383 if (unlikely(val & NAPIF_STATE_DISABLE)) 6384 return false; 6385 new = val | NAPIF_STATE_SCHED; 6386 6387 /* Sets STATE_MISSED bit if STATE_SCHED was already set 6388 * This was suggested by Alexander Duyck, as compiler 6389 * emits better code than : 6390 * if (val & NAPIF_STATE_SCHED) 6391 * new |= NAPIF_STATE_MISSED; 6392 */ 6393 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED * 6394 NAPIF_STATE_MISSED; 6395 } while (cmpxchg(&n->state, val, new) != val); 6396 6397 return !(val & NAPIF_STATE_SCHED); 6398 } 6399 EXPORT_SYMBOL(napi_schedule_prep); 6400 6401 /** 6402 * __napi_schedule_irqoff - schedule for receive 6403 * @n: entry to schedule 6404 * 6405 * Variant of __napi_schedule() assuming hard irqs are masked 6406 */ 6407 void __napi_schedule_irqoff(struct napi_struct *n) 6408 { 6409 ____napi_schedule(this_cpu_ptr(&softnet_data), n); 6410 } 6411 EXPORT_SYMBOL(__napi_schedule_irqoff); 6412 6413 bool napi_complete_done(struct napi_struct *n, int work_done) 6414 { 6415 unsigned long flags, val, new, timeout = 0; 6416 bool ret = true; 6417 6418 /* 6419 * 1) Don't let napi dequeue from the cpu poll list 6420 * just in case its running on a different cpu. 6421 * 2) If we are busy polling, do nothing here, we have 6422 * the guarantee we will be called later. 6423 */ 6424 if (unlikely(n->state & (NAPIF_STATE_NPSVC | 6425 NAPIF_STATE_IN_BUSY_POLL))) 6426 return false; 6427 6428 if (work_done) { 6429 if (n->gro_bitmask) 6430 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6431 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs); 6432 } 6433 if (n->defer_hard_irqs_count > 0) { 6434 n->defer_hard_irqs_count--; 6435 timeout = READ_ONCE(n->dev->gro_flush_timeout); 6436 if (timeout) 6437 ret = false; 6438 } 6439 if (n->gro_bitmask) { 6440 /* When the NAPI instance uses a timeout and keeps postponing 6441 * it, we need to bound somehow the time packets are kept in 6442 * the GRO layer 6443 */ 6444 napi_gro_flush(n, !!timeout); 6445 } 6446 6447 gro_normal_list(n); 6448 6449 if (unlikely(!list_empty(&n->poll_list))) { 6450 /* If n->poll_list is not empty, we need to mask irqs */ 6451 local_irq_save(flags); 6452 list_del_init(&n->poll_list); 6453 local_irq_restore(flags); 6454 } 6455 6456 do { 6457 val = READ_ONCE(n->state); 6458 6459 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED)); 6460 6461 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED | 6462 NAPIF_STATE_PREFER_BUSY_POLL); 6463 6464 /* If STATE_MISSED was set, leave STATE_SCHED set, 6465 * because we will call napi->poll() one more time. 6466 * This C code was suggested by Alexander Duyck to help gcc. 6467 */ 6468 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED * 6469 NAPIF_STATE_SCHED; 6470 } while (cmpxchg(&n->state, val, new) != val); 6471 6472 if (unlikely(val & NAPIF_STATE_MISSED)) { 6473 __napi_schedule(n); 6474 return false; 6475 } 6476 6477 if (timeout) 6478 hrtimer_start(&n->timer, ns_to_ktime(timeout), 6479 HRTIMER_MODE_REL_PINNED); 6480 return ret; 6481 } 6482 EXPORT_SYMBOL(napi_complete_done); 6483 6484 /* must be called under rcu_read_lock(), as we dont take a reference */ 6485 static struct napi_struct *napi_by_id(unsigned int napi_id) 6486 { 6487 unsigned int hash = napi_id % HASH_SIZE(napi_hash); 6488 struct napi_struct *napi; 6489 6490 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node) 6491 if (napi->napi_id == napi_id) 6492 return napi; 6493 6494 return NULL; 6495 } 6496 6497 #if defined(CONFIG_NET_RX_BUSY_POLL) 6498 6499 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule) 6500 { 6501 if (!skip_schedule) { 6502 gro_normal_list(napi); 6503 __napi_schedule(napi); 6504 return; 6505 } 6506 6507 if (napi->gro_bitmask) { 6508 /* flush too old packets 6509 * If HZ < 1000, flush all packets. 6510 */ 6511 napi_gro_flush(napi, HZ >= 1000); 6512 } 6513 6514 gro_normal_list(napi); 6515 clear_bit(NAPI_STATE_SCHED, &napi->state); 6516 } 6517 6518 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll, 6519 u16 budget) 6520 { 6521 bool skip_schedule = false; 6522 unsigned long timeout; 6523 int rc; 6524 6525 /* Busy polling means there is a high chance device driver hard irq 6526 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was 6527 * set in napi_schedule_prep(). 6528 * Since we are about to call napi->poll() once more, we can safely 6529 * clear NAPI_STATE_MISSED. 6530 * 6531 * Note: x86 could use a single "lock and ..." instruction 6532 * to perform these two clear_bit() 6533 */ 6534 clear_bit(NAPI_STATE_MISSED, &napi->state); 6535 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state); 6536 6537 local_bh_disable(); 6538 6539 if (prefer_busy_poll) { 6540 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs); 6541 timeout = READ_ONCE(napi->dev->gro_flush_timeout); 6542 if (napi->defer_hard_irqs_count && timeout) { 6543 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED); 6544 skip_schedule = true; 6545 } 6546 } 6547 6548 /* All we really want here is to re-enable device interrupts. 6549 * Ideally, a new ndo_busy_poll_stop() could avoid another round. 6550 */ 6551 rc = napi->poll(napi, budget); 6552 /* We can't gro_normal_list() here, because napi->poll() might have 6553 * rearmed the napi (napi_complete_done()) in which case it could 6554 * already be running on another CPU. 6555 */ 6556 trace_napi_poll(napi, rc, budget); 6557 netpoll_poll_unlock(have_poll_lock); 6558 if (rc == budget) 6559 __busy_poll_stop(napi, skip_schedule); 6560 local_bh_enable(); 6561 } 6562 6563 void napi_busy_loop(unsigned int napi_id, 6564 bool (*loop_end)(void *, unsigned long), 6565 void *loop_end_arg, bool prefer_busy_poll, u16 budget) 6566 { 6567 unsigned long start_time = loop_end ? busy_loop_current_time() : 0; 6568 int (*napi_poll)(struct napi_struct *napi, int budget); 6569 void *have_poll_lock = NULL; 6570 struct napi_struct *napi; 6571 6572 restart: 6573 napi_poll = NULL; 6574 6575 rcu_read_lock(); 6576 6577 napi = napi_by_id(napi_id); 6578 if (!napi) 6579 goto out; 6580 6581 preempt_disable(); 6582 for (;;) { 6583 int work = 0; 6584 6585 local_bh_disable(); 6586 if (!napi_poll) { 6587 unsigned long val = READ_ONCE(napi->state); 6588 6589 /* If multiple threads are competing for this napi, 6590 * we avoid dirtying napi->state as much as we can. 6591 */ 6592 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED | 6593 NAPIF_STATE_IN_BUSY_POLL)) { 6594 if (prefer_busy_poll) 6595 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6596 goto count; 6597 } 6598 if (cmpxchg(&napi->state, val, 6599 val | NAPIF_STATE_IN_BUSY_POLL | 6600 NAPIF_STATE_SCHED) != val) { 6601 if (prefer_busy_poll) 6602 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6603 goto count; 6604 } 6605 have_poll_lock = netpoll_poll_lock(napi); 6606 napi_poll = napi->poll; 6607 } 6608 work = napi_poll(napi, budget); 6609 trace_napi_poll(napi, work, budget); 6610 gro_normal_list(napi); 6611 count: 6612 if (work > 0) 6613 __NET_ADD_STATS(dev_net(napi->dev), 6614 LINUX_MIB_BUSYPOLLRXPACKETS, work); 6615 local_bh_enable(); 6616 6617 if (!loop_end || loop_end(loop_end_arg, start_time)) 6618 break; 6619 6620 if (unlikely(need_resched())) { 6621 if (napi_poll) 6622 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6623 preempt_enable(); 6624 rcu_read_unlock(); 6625 cond_resched(); 6626 if (loop_end(loop_end_arg, start_time)) 6627 return; 6628 goto restart; 6629 } 6630 cpu_relax(); 6631 } 6632 if (napi_poll) 6633 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget); 6634 preempt_enable(); 6635 out: 6636 rcu_read_unlock(); 6637 } 6638 EXPORT_SYMBOL(napi_busy_loop); 6639 6640 #endif /* CONFIG_NET_RX_BUSY_POLL */ 6641 6642 static void napi_hash_add(struct napi_struct *napi) 6643 { 6644 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state)) 6645 return; 6646 6647 spin_lock(&napi_hash_lock); 6648 6649 /* 0..NR_CPUS range is reserved for sender_cpu use */ 6650 do { 6651 if (unlikely(++napi_gen_id < MIN_NAPI_ID)) 6652 napi_gen_id = MIN_NAPI_ID; 6653 } while (napi_by_id(napi_gen_id)); 6654 napi->napi_id = napi_gen_id; 6655 6656 hlist_add_head_rcu(&napi->napi_hash_node, 6657 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]); 6658 6659 spin_unlock(&napi_hash_lock); 6660 } 6661 6662 /* Warning : caller is responsible to make sure rcu grace period 6663 * is respected before freeing memory containing @napi 6664 */ 6665 static void napi_hash_del(struct napi_struct *napi) 6666 { 6667 spin_lock(&napi_hash_lock); 6668 6669 hlist_del_init_rcu(&napi->napi_hash_node); 6670 6671 spin_unlock(&napi_hash_lock); 6672 } 6673 6674 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer) 6675 { 6676 struct napi_struct *napi; 6677 6678 napi = container_of(timer, struct napi_struct, timer); 6679 6680 /* Note : we use a relaxed variant of napi_schedule_prep() not setting 6681 * NAPI_STATE_MISSED, since we do not react to a device IRQ. 6682 */ 6683 if (!napi_disable_pending(napi) && 6684 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) { 6685 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state); 6686 __napi_schedule_irqoff(napi); 6687 } 6688 6689 return HRTIMER_NORESTART; 6690 } 6691 6692 static void init_gro_hash(struct napi_struct *napi) 6693 { 6694 int i; 6695 6696 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6697 INIT_LIST_HEAD(&napi->gro_hash[i].list); 6698 napi->gro_hash[i].count = 0; 6699 } 6700 napi->gro_bitmask = 0; 6701 } 6702 6703 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 6704 int (*poll)(struct napi_struct *, int), int weight) 6705 { 6706 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state))) 6707 return; 6708 6709 INIT_LIST_HEAD(&napi->poll_list); 6710 INIT_HLIST_NODE(&napi->napi_hash_node); 6711 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED); 6712 napi->timer.function = napi_watchdog; 6713 init_gro_hash(napi); 6714 napi->skb = NULL; 6715 INIT_LIST_HEAD(&napi->rx_list); 6716 napi->rx_count = 0; 6717 napi->poll = poll; 6718 if (weight > NAPI_POLL_WEIGHT) 6719 netdev_err_once(dev, "%s() called with weight %d\n", __func__, 6720 weight); 6721 napi->weight = weight; 6722 napi->dev = dev; 6723 #ifdef CONFIG_NETPOLL 6724 napi->poll_owner = -1; 6725 #endif 6726 set_bit(NAPI_STATE_SCHED, &napi->state); 6727 set_bit(NAPI_STATE_NPSVC, &napi->state); 6728 list_add_rcu(&napi->dev_list, &dev->napi_list); 6729 napi_hash_add(napi); 6730 } 6731 EXPORT_SYMBOL(netif_napi_add); 6732 6733 void napi_disable(struct napi_struct *n) 6734 { 6735 might_sleep(); 6736 set_bit(NAPI_STATE_DISABLE, &n->state); 6737 6738 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state)) 6739 msleep(1); 6740 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state)) 6741 msleep(1); 6742 6743 hrtimer_cancel(&n->timer); 6744 6745 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state); 6746 clear_bit(NAPI_STATE_DISABLE, &n->state); 6747 } 6748 EXPORT_SYMBOL(napi_disable); 6749 6750 static void flush_gro_hash(struct napi_struct *napi) 6751 { 6752 int i; 6753 6754 for (i = 0; i < GRO_HASH_BUCKETS; i++) { 6755 struct sk_buff *skb, *n; 6756 6757 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list) 6758 kfree_skb(skb); 6759 napi->gro_hash[i].count = 0; 6760 } 6761 } 6762 6763 /* Must be called in process context */ 6764 void __netif_napi_del(struct napi_struct *napi) 6765 { 6766 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state)) 6767 return; 6768 6769 napi_hash_del(napi); 6770 list_del_rcu(&napi->dev_list); 6771 napi_free_frags(napi); 6772 6773 flush_gro_hash(napi); 6774 napi->gro_bitmask = 0; 6775 } 6776 EXPORT_SYMBOL(__netif_napi_del); 6777 6778 static int napi_poll(struct napi_struct *n, struct list_head *repoll) 6779 { 6780 void *have; 6781 int work, weight; 6782 6783 list_del_init(&n->poll_list); 6784 6785 have = netpoll_poll_lock(n); 6786 6787 weight = n->weight; 6788 6789 /* This NAPI_STATE_SCHED test is for avoiding a race 6790 * with netpoll's poll_napi(). Only the entity which 6791 * obtains the lock and sees NAPI_STATE_SCHED set will 6792 * actually make the ->poll() call. Therefore we avoid 6793 * accidentally calling ->poll() when NAPI is not scheduled. 6794 */ 6795 work = 0; 6796 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 6797 work = n->poll(n, weight); 6798 trace_napi_poll(n, work, weight); 6799 } 6800 6801 if (unlikely(work > weight)) 6802 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n", 6803 n->poll, work, weight); 6804 6805 if (likely(work < weight)) 6806 goto out_unlock; 6807 6808 /* Drivers must not modify the NAPI state if they 6809 * consume the entire weight. In such cases this code 6810 * still "owns" the NAPI instance and therefore can 6811 * move the instance around on the list at-will. 6812 */ 6813 if (unlikely(napi_disable_pending(n))) { 6814 napi_complete(n); 6815 goto out_unlock; 6816 } 6817 6818 /* The NAPI context has more processing work, but busy-polling 6819 * is preferred. Exit early. 6820 */ 6821 if (napi_prefer_busy_poll(n)) { 6822 if (napi_complete_done(n, work)) { 6823 /* If timeout is not set, we need to make sure 6824 * that the NAPI is re-scheduled. 6825 */ 6826 napi_schedule(n); 6827 } 6828 goto out_unlock; 6829 } 6830 6831 if (n->gro_bitmask) { 6832 /* flush too old packets 6833 * If HZ < 1000, flush all packets. 6834 */ 6835 napi_gro_flush(n, HZ >= 1000); 6836 } 6837 6838 gro_normal_list(n); 6839 6840 /* Some drivers may have called napi_schedule 6841 * prior to exhausting their budget. 6842 */ 6843 if (unlikely(!list_empty(&n->poll_list))) { 6844 pr_warn_once("%s: Budget exhausted after napi rescheduled\n", 6845 n->dev ? n->dev->name : "backlog"); 6846 goto out_unlock; 6847 } 6848 6849 list_add_tail(&n->poll_list, repoll); 6850 6851 out_unlock: 6852 netpoll_poll_unlock(have); 6853 6854 return work; 6855 } 6856 6857 static __latent_entropy void net_rx_action(struct softirq_action *h) 6858 { 6859 struct softnet_data *sd = this_cpu_ptr(&softnet_data); 6860 unsigned long time_limit = jiffies + 6861 usecs_to_jiffies(netdev_budget_usecs); 6862 int budget = netdev_budget; 6863 LIST_HEAD(list); 6864 LIST_HEAD(repoll); 6865 6866 local_irq_disable(); 6867 list_splice_init(&sd->poll_list, &list); 6868 local_irq_enable(); 6869 6870 for (;;) { 6871 struct napi_struct *n; 6872 6873 if (list_empty(&list)) { 6874 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll)) 6875 goto out; 6876 break; 6877 } 6878 6879 n = list_first_entry(&list, struct napi_struct, poll_list); 6880 budget -= napi_poll(n, &repoll); 6881 6882 /* If softirq window is exhausted then punt. 6883 * Allow this to run for 2 jiffies since which will allow 6884 * an average latency of 1.5/HZ. 6885 */ 6886 if (unlikely(budget <= 0 || 6887 time_after_eq(jiffies, time_limit))) { 6888 sd->time_squeeze++; 6889 break; 6890 } 6891 } 6892 6893 local_irq_disable(); 6894 6895 list_splice_tail_init(&sd->poll_list, &list); 6896 list_splice_tail(&repoll, &list); 6897 list_splice(&list, &sd->poll_list); 6898 if (!list_empty(&sd->poll_list)) 6899 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 6900 6901 net_rps_action_and_irq_enable(sd); 6902 out: 6903 __kfree_skb_flush(); 6904 } 6905 6906 struct netdev_adjacent { 6907 struct net_device *dev; 6908 6909 /* upper master flag, there can only be one master device per list */ 6910 bool master; 6911 6912 /* lookup ignore flag */ 6913 bool ignore; 6914 6915 /* counter for the number of times this device was added to us */ 6916 u16 ref_nr; 6917 6918 /* private field for the users */ 6919 void *private; 6920 6921 struct list_head list; 6922 struct rcu_head rcu; 6923 }; 6924 6925 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev, 6926 struct list_head *adj_list) 6927 { 6928 struct netdev_adjacent *adj; 6929 6930 list_for_each_entry(adj, adj_list, list) { 6931 if (adj->dev == adj_dev) 6932 return adj; 6933 } 6934 return NULL; 6935 } 6936 6937 static int ____netdev_has_upper_dev(struct net_device *upper_dev, 6938 struct netdev_nested_priv *priv) 6939 { 6940 struct net_device *dev = (struct net_device *)priv->data; 6941 6942 return upper_dev == dev; 6943 } 6944 6945 /** 6946 * netdev_has_upper_dev - Check if device is linked to an upper device 6947 * @dev: device 6948 * @upper_dev: upper device to check 6949 * 6950 * Find out if a device is linked to specified upper device and return true 6951 * in case it is. Note that this checks only immediate upper device, 6952 * not through a complete stack of devices. The caller must hold the RTNL lock. 6953 */ 6954 bool netdev_has_upper_dev(struct net_device *dev, 6955 struct net_device *upper_dev) 6956 { 6957 struct netdev_nested_priv priv = { 6958 .data = (void *)upper_dev, 6959 }; 6960 6961 ASSERT_RTNL(); 6962 6963 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6964 &priv); 6965 } 6966 EXPORT_SYMBOL(netdev_has_upper_dev); 6967 6968 /** 6969 * netdev_has_upper_dev_all - Check if device is linked to an upper device 6970 * @dev: device 6971 * @upper_dev: upper device to check 6972 * 6973 * Find out if a device is linked to specified upper device and return true 6974 * in case it is. Note that this checks the entire upper device chain. 6975 * The caller must hold rcu lock. 6976 */ 6977 6978 bool netdev_has_upper_dev_all_rcu(struct net_device *dev, 6979 struct net_device *upper_dev) 6980 { 6981 struct netdev_nested_priv priv = { 6982 .data = (void *)upper_dev, 6983 }; 6984 6985 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev, 6986 &priv); 6987 } 6988 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu); 6989 6990 /** 6991 * netdev_has_any_upper_dev - Check if device is linked to some device 6992 * @dev: device 6993 * 6994 * Find out if a device is linked to an upper device and return true in case 6995 * it is. The caller must hold the RTNL lock. 6996 */ 6997 bool netdev_has_any_upper_dev(struct net_device *dev) 6998 { 6999 ASSERT_RTNL(); 7000 7001 return !list_empty(&dev->adj_list.upper); 7002 } 7003 EXPORT_SYMBOL(netdev_has_any_upper_dev); 7004 7005 /** 7006 * netdev_master_upper_dev_get - Get master upper device 7007 * @dev: device 7008 * 7009 * Find a master upper device and return pointer to it or NULL in case 7010 * it's not there. The caller must hold the RTNL lock. 7011 */ 7012 struct net_device *netdev_master_upper_dev_get(struct net_device *dev) 7013 { 7014 struct netdev_adjacent *upper; 7015 7016 ASSERT_RTNL(); 7017 7018 if (list_empty(&dev->adj_list.upper)) 7019 return NULL; 7020 7021 upper = list_first_entry(&dev->adj_list.upper, 7022 struct netdev_adjacent, list); 7023 if (likely(upper->master)) 7024 return upper->dev; 7025 return NULL; 7026 } 7027 EXPORT_SYMBOL(netdev_master_upper_dev_get); 7028 7029 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev) 7030 { 7031 struct netdev_adjacent *upper; 7032 7033 ASSERT_RTNL(); 7034 7035 if (list_empty(&dev->adj_list.upper)) 7036 return NULL; 7037 7038 upper = list_first_entry(&dev->adj_list.upper, 7039 struct netdev_adjacent, list); 7040 if (likely(upper->master) && !upper->ignore) 7041 return upper->dev; 7042 return NULL; 7043 } 7044 7045 /** 7046 * netdev_has_any_lower_dev - Check if device is linked to some device 7047 * @dev: device 7048 * 7049 * Find out if a device is linked to a lower device and return true in case 7050 * it is. The caller must hold the RTNL lock. 7051 */ 7052 static bool netdev_has_any_lower_dev(struct net_device *dev) 7053 { 7054 ASSERT_RTNL(); 7055 7056 return !list_empty(&dev->adj_list.lower); 7057 } 7058 7059 void *netdev_adjacent_get_private(struct list_head *adj_list) 7060 { 7061 struct netdev_adjacent *adj; 7062 7063 adj = list_entry(adj_list, struct netdev_adjacent, list); 7064 7065 return adj->private; 7066 } 7067 EXPORT_SYMBOL(netdev_adjacent_get_private); 7068 7069 /** 7070 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list 7071 * @dev: device 7072 * @iter: list_head ** of the current position 7073 * 7074 * Gets the next device from the dev's upper list, starting from iter 7075 * position. The caller must hold RCU read lock. 7076 */ 7077 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev, 7078 struct list_head **iter) 7079 { 7080 struct netdev_adjacent *upper; 7081 7082 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7083 7084 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7085 7086 if (&upper->list == &dev->adj_list.upper) 7087 return NULL; 7088 7089 *iter = &upper->list; 7090 7091 return upper->dev; 7092 } 7093 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu); 7094 7095 static struct net_device *__netdev_next_upper_dev(struct net_device *dev, 7096 struct list_head **iter, 7097 bool *ignore) 7098 { 7099 struct netdev_adjacent *upper; 7100 7101 upper = list_entry((*iter)->next, struct netdev_adjacent, list); 7102 7103 if (&upper->list == &dev->adj_list.upper) 7104 return NULL; 7105 7106 *iter = &upper->list; 7107 *ignore = upper->ignore; 7108 7109 return upper->dev; 7110 } 7111 7112 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev, 7113 struct list_head **iter) 7114 { 7115 struct netdev_adjacent *upper; 7116 7117 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held()); 7118 7119 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7120 7121 if (&upper->list == &dev->adj_list.upper) 7122 return NULL; 7123 7124 *iter = &upper->list; 7125 7126 return upper->dev; 7127 } 7128 7129 static int __netdev_walk_all_upper_dev(struct net_device *dev, 7130 int (*fn)(struct net_device *dev, 7131 struct netdev_nested_priv *priv), 7132 struct netdev_nested_priv *priv) 7133 { 7134 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7135 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7136 int ret, cur = 0; 7137 bool ignore; 7138 7139 now = dev; 7140 iter = &dev->adj_list.upper; 7141 7142 while (1) { 7143 if (now != dev) { 7144 ret = fn(now, priv); 7145 if (ret) 7146 return ret; 7147 } 7148 7149 next = NULL; 7150 while (1) { 7151 udev = __netdev_next_upper_dev(now, &iter, &ignore); 7152 if (!udev) 7153 break; 7154 if (ignore) 7155 continue; 7156 7157 next = udev; 7158 niter = &udev->adj_list.upper; 7159 dev_stack[cur] = now; 7160 iter_stack[cur++] = iter; 7161 break; 7162 } 7163 7164 if (!next) { 7165 if (!cur) 7166 return 0; 7167 next = dev_stack[--cur]; 7168 niter = iter_stack[cur]; 7169 } 7170 7171 now = next; 7172 iter = niter; 7173 } 7174 7175 return 0; 7176 } 7177 7178 int netdev_walk_all_upper_dev_rcu(struct net_device *dev, 7179 int (*fn)(struct net_device *dev, 7180 struct netdev_nested_priv *priv), 7181 struct netdev_nested_priv *priv) 7182 { 7183 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7184 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7185 int ret, cur = 0; 7186 7187 now = dev; 7188 iter = &dev->adj_list.upper; 7189 7190 while (1) { 7191 if (now != dev) { 7192 ret = fn(now, priv); 7193 if (ret) 7194 return ret; 7195 } 7196 7197 next = NULL; 7198 while (1) { 7199 udev = netdev_next_upper_dev_rcu(now, &iter); 7200 if (!udev) 7201 break; 7202 7203 next = udev; 7204 niter = &udev->adj_list.upper; 7205 dev_stack[cur] = now; 7206 iter_stack[cur++] = iter; 7207 break; 7208 } 7209 7210 if (!next) { 7211 if (!cur) 7212 return 0; 7213 next = dev_stack[--cur]; 7214 niter = iter_stack[cur]; 7215 } 7216 7217 now = next; 7218 iter = niter; 7219 } 7220 7221 return 0; 7222 } 7223 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu); 7224 7225 static bool __netdev_has_upper_dev(struct net_device *dev, 7226 struct net_device *upper_dev) 7227 { 7228 struct netdev_nested_priv priv = { 7229 .flags = 0, 7230 .data = (void *)upper_dev, 7231 }; 7232 7233 ASSERT_RTNL(); 7234 7235 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev, 7236 &priv); 7237 } 7238 7239 /** 7240 * netdev_lower_get_next_private - Get the next ->private from the 7241 * lower neighbour list 7242 * @dev: device 7243 * @iter: list_head ** of the current position 7244 * 7245 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7246 * list, starting from iter position. The caller must hold either hold the 7247 * RTNL lock or its own locking that guarantees that the neighbour lower 7248 * list will remain unchanged. 7249 */ 7250 void *netdev_lower_get_next_private(struct net_device *dev, 7251 struct list_head **iter) 7252 { 7253 struct netdev_adjacent *lower; 7254 7255 lower = list_entry(*iter, struct netdev_adjacent, list); 7256 7257 if (&lower->list == &dev->adj_list.lower) 7258 return NULL; 7259 7260 *iter = lower->list.next; 7261 7262 return lower->private; 7263 } 7264 EXPORT_SYMBOL(netdev_lower_get_next_private); 7265 7266 /** 7267 * netdev_lower_get_next_private_rcu - Get the next ->private from the 7268 * lower neighbour list, RCU 7269 * variant 7270 * @dev: device 7271 * @iter: list_head ** of the current position 7272 * 7273 * Gets the next netdev_adjacent->private from the dev's lower neighbour 7274 * list, starting from iter position. The caller must hold RCU read lock. 7275 */ 7276 void *netdev_lower_get_next_private_rcu(struct net_device *dev, 7277 struct list_head **iter) 7278 { 7279 struct netdev_adjacent *lower; 7280 7281 WARN_ON_ONCE(!rcu_read_lock_held()); 7282 7283 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7284 7285 if (&lower->list == &dev->adj_list.lower) 7286 return NULL; 7287 7288 *iter = &lower->list; 7289 7290 return lower->private; 7291 } 7292 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu); 7293 7294 /** 7295 * netdev_lower_get_next - Get the next device from the lower neighbour 7296 * list 7297 * @dev: device 7298 * @iter: list_head ** of the current position 7299 * 7300 * Gets the next netdev_adjacent from the dev's lower neighbour 7301 * list, starting from iter position. The caller must hold RTNL lock or 7302 * its own locking that guarantees that the neighbour lower 7303 * list will remain unchanged. 7304 */ 7305 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter) 7306 { 7307 struct netdev_adjacent *lower; 7308 7309 lower = list_entry(*iter, struct netdev_adjacent, list); 7310 7311 if (&lower->list == &dev->adj_list.lower) 7312 return NULL; 7313 7314 *iter = lower->list.next; 7315 7316 return lower->dev; 7317 } 7318 EXPORT_SYMBOL(netdev_lower_get_next); 7319 7320 static struct net_device *netdev_next_lower_dev(struct net_device *dev, 7321 struct list_head **iter) 7322 { 7323 struct netdev_adjacent *lower; 7324 7325 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7326 7327 if (&lower->list == &dev->adj_list.lower) 7328 return NULL; 7329 7330 *iter = &lower->list; 7331 7332 return lower->dev; 7333 } 7334 7335 static struct net_device *__netdev_next_lower_dev(struct net_device *dev, 7336 struct list_head **iter, 7337 bool *ignore) 7338 { 7339 struct netdev_adjacent *lower; 7340 7341 lower = list_entry((*iter)->next, struct netdev_adjacent, list); 7342 7343 if (&lower->list == &dev->adj_list.lower) 7344 return NULL; 7345 7346 *iter = &lower->list; 7347 *ignore = lower->ignore; 7348 7349 return lower->dev; 7350 } 7351 7352 int netdev_walk_all_lower_dev(struct net_device *dev, 7353 int (*fn)(struct net_device *dev, 7354 struct netdev_nested_priv *priv), 7355 struct netdev_nested_priv *priv) 7356 { 7357 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7358 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7359 int ret, cur = 0; 7360 7361 now = dev; 7362 iter = &dev->adj_list.lower; 7363 7364 while (1) { 7365 if (now != dev) { 7366 ret = fn(now, priv); 7367 if (ret) 7368 return ret; 7369 } 7370 7371 next = NULL; 7372 while (1) { 7373 ldev = netdev_next_lower_dev(now, &iter); 7374 if (!ldev) 7375 break; 7376 7377 next = ldev; 7378 niter = &ldev->adj_list.lower; 7379 dev_stack[cur] = now; 7380 iter_stack[cur++] = iter; 7381 break; 7382 } 7383 7384 if (!next) { 7385 if (!cur) 7386 return 0; 7387 next = dev_stack[--cur]; 7388 niter = iter_stack[cur]; 7389 } 7390 7391 now = next; 7392 iter = niter; 7393 } 7394 7395 return 0; 7396 } 7397 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev); 7398 7399 static int __netdev_walk_all_lower_dev(struct net_device *dev, 7400 int (*fn)(struct net_device *dev, 7401 struct netdev_nested_priv *priv), 7402 struct netdev_nested_priv *priv) 7403 { 7404 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7405 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7406 int ret, cur = 0; 7407 bool ignore; 7408 7409 now = dev; 7410 iter = &dev->adj_list.lower; 7411 7412 while (1) { 7413 if (now != dev) { 7414 ret = fn(now, priv); 7415 if (ret) 7416 return ret; 7417 } 7418 7419 next = NULL; 7420 while (1) { 7421 ldev = __netdev_next_lower_dev(now, &iter, &ignore); 7422 if (!ldev) 7423 break; 7424 if (ignore) 7425 continue; 7426 7427 next = ldev; 7428 niter = &ldev->adj_list.lower; 7429 dev_stack[cur] = now; 7430 iter_stack[cur++] = iter; 7431 break; 7432 } 7433 7434 if (!next) { 7435 if (!cur) 7436 return 0; 7437 next = dev_stack[--cur]; 7438 niter = iter_stack[cur]; 7439 } 7440 7441 now = next; 7442 iter = niter; 7443 } 7444 7445 return 0; 7446 } 7447 7448 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev, 7449 struct list_head **iter) 7450 { 7451 struct netdev_adjacent *lower; 7452 7453 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list); 7454 if (&lower->list == &dev->adj_list.lower) 7455 return NULL; 7456 7457 *iter = &lower->list; 7458 7459 return lower->dev; 7460 } 7461 EXPORT_SYMBOL(netdev_next_lower_dev_rcu); 7462 7463 static u8 __netdev_upper_depth(struct net_device *dev) 7464 { 7465 struct net_device *udev; 7466 struct list_head *iter; 7467 u8 max_depth = 0; 7468 bool ignore; 7469 7470 for (iter = &dev->adj_list.upper, 7471 udev = __netdev_next_upper_dev(dev, &iter, &ignore); 7472 udev; 7473 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) { 7474 if (ignore) 7475 continue; 7476 if (max_depth < udev->upper_level) 7477 max_depth = udev->upper_level; 7478 } 7479 7480 return max_depth; 7481 } 7482 7483 static u8 __netdev_lower_depth(struct net_device *dev) 7484 { 7485 struct net_device *ldev; 7486 struct list_head *iter; 7487 u8 max_depth = 0; 7488 bool ignore; 7489 7490 for (iter = &dev->adj_list.lower, 7491 ldev = __netdev_next_lower_dev(dev, &iter, &ignore); 7492 ldev; 7493 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) { 7494 if (ignore) 7495 continue; 7496 if (max_depth < ldev->lower_level) 7497 max_depth = ldev->lower_level; 7498 } 7499 7500 return max_depth; 7501 } 7502 7503 static int __netdev_update_upper_level(struct net_device *dev, 7504 struct netdev_nested_priv *__unused) 7505 { 7506 dev->upper_level = __netdev_upper_depth(dev) + 1; 7507 return 0; 7508 } 7509 7510 static int __netdev_update_lower_level(struct net_device *dev, 7511 struct netdev_nested_priv *priv) 7512 { 7513 dev->lower_level = __netdev_lower_depth(dev) + 1; 7514 7515 #ifdef CONFIG_LOCKDEP 7516 if (!priv) 7517 return 0; 7518 7519 if (priv->flags & NESTED_SYNC_IMM) 7520 dev->nested_level = dev->lower_level - 1; 7521 if (priv->flags & NESTED_SYNC_TODO) 7522 net_unlink_todo(dev); 7523 #endif 7524 return 0; 7525 } 7526 7527 int netdev_walk_all_lower_dev_rcu(struct net_device *dev, 7528 int (*fn)(struct net_device *dev, 7529 struct netdev_nested_priv *priv), 7530 struct netdev_nested_priv *priv) 7531 { 7532 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1]; 7533 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1]; 7534 int ret, cur = 0; 7535 7536 now = dev; 7537 iter = &dev->adj_list.lower; 7538 7539 while (1) { 7540 if (now != dev) { 7541 ret = fn(now, priv); 7542 if (ret) 7543 return ret; 7544 } 7545 7546 next = NULL; 7547 while (1) { 7548 ldev = netdev_next_lower_dev_rcu(now, &iter); 7549 if (!ldev) 7550 break; 7551 7552 next = ldev; 7553 niter = &ldev->adj_list.lower; 7554 dev_stack[cur] = now; 7555 iter_stack[cur++] = iter; 7556 break; 7557 } 7558 7559 if (!next) { 7560 if (!cur) 7561 return 0; 7562 next = dev_stack[--cur]; 7563 niter = iter_stack[cur]; 7564 } 7565 7566 now = next; 7567 iter = niter; 7568 } 7569 7570 return 0; 7571 } 7572 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu); 7573 7574 /** 7575 * netdev_lower_get_first_private_rcu - Get the first ->private from the 7576 * lower neighbour list, RCU 7577 * variant 7578 * @dev: device 7579 * 7580 * Gets the first netdev_adjacent->private from the dev's lower neighbour 7581 * list. The caller must hold RCU read lock. 7582 */ 7583 void *netdev_lower_get_first_private_rcu(struct net_device *dev) 7584 { 7585 struct netdev_adjacent *lower; 7586 7587 lower = list_first_or_null_rcu(&dev->adj_list.lower, 7588 struct netdev_adjacent, list); 7589 if (lower) 7590 return lower->private; 7591 return NULL; 7592 } 7593 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu); 7594 7595 /** 7596 * netdev_master_upper_dev_get_rcu - Get master upper device 7597 * @dev: device 7598 * 7599 * Find a master upper device and return pointer to it or NULL in case 7600 * it's not there. The caller must hold the RCU read lock. 7601 */ 7602 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev) 7603 { 7604 struct netdev_adjacent *upper; 7605 7606 upper = list_first_or_null_rcu(&dev->adj_list.upper, 7607 struct netdev_adjacent, list); 7608 if (upper && likely(upper->master)) 7609 return upper->dev; 7610 return NULL; 7611 } 7612 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu); 7613 7614 static int netdev_adjacent_sysfs_add(struct net_device *dev, 7615 struct net_device *adj_dev, 7616 struct list_head *dev_list) 7617 { 7618 char linkname[IFNAMSIZ+7]; 7619 7620 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7621 "upper_%s" : "lower_%s", adj_dev->name); 7622 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj), 7623 linkname); 7624 } 7625 static void netdev_adjacent_sysfs_del(struct net_device *dev, 7626 char *name, 7627 struct list_head *dev_list) 7628 { 7629 char linkname[IFNAMSIZ+7]; 7630 7631 sprintf(linkname, dev_list == &dev->adj_list.upper ? 7632 "upper_%s" : "lower_%s", name); 7633 sysfs_remove_link(&(dev->dev.kobj), linkname); 7634 } 7635 7636 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev, 7637 struct net_device *adj_dev, 7638 struct list_head *dev_list) 7639 { 7640 return (dev_list == &dev->adj_list.upper || 7641 dev_list == &dev->adj_list.lower) && 7642 net_eq(dev_net(dev), dev_net(adj_dev)); 7643 } 7644 7645 static int __netdev_adjacent_dev_insert(struct net_device *dev, 7646 struct net_device *adj_dev, 7647 struct list_head *dev_list, 7648 void *private, bool master) 7649 { 7650 struct netdev_adjacent *adj; 7651 int ret; 7652 7653 adj = __netdev_find_adj(adj_dev, dev_list); 7654 7655 if (adj) { 7656 adj->ref_nr += 1; 7657 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n", 7658 dev->name, adj_dev->name, adj->ref_nr); 7659 7660 return 0; 7661 } 7662 7663 adj = kmalloc(sizeof(*adj), GFP_KERNEL); 7664 if (!adj) 7665 return -ENOMEM; 7666 7667 adj->dev = adj_dev; 7668 adj->master = master; 7669 adj->ref_nr = 1; 7670 adj->private = private; 7671 adj->ignore = false; 7672 dev_hold(adj_dev); 7673 7674 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n", 7675 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name); 7676 7677 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) { 7678 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list); 7679 if (ret) 7680 goto free_adj; 7681 } 7682 7683 /* Ensure that master link is always the first item in list. */ 7684 if (master) { 7685 ret = sysfs_create_link(&(dev->dev.kobj), 7686 &(adj_dev->dev.kobj), "master"); 7687 if (ret) 7688 goto remove_symlinks; 7689 7690 list_add_rcu(&adj->list, dev_list); 7691 } else { 7692 list_add_tail_rcu(&adj->list, dev_list); 7693 } 7694 7695 return 0; 7696 7697 remove_symlinks: 7698 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7699 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7700 free_adj: 7701 kfree(adj); 7702 dev_put(adj_dev); 7703 7704 return ret; 7705 } 7706 7707 static void __netdev_adjacent_dev_remove(struct net_device *dev, 7708 struct net_device *adj_dev, 7709 u16 ref_nr, 7710 struct list_head *dev_list) 7711 { 7712 struct netdev_adjacent *adj; 7713 7714 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n", 7715 dev->name, adj_dev->name, ref_nr); 7716 7717 adj = __netdev_find_adj(adj_dev, dev_list); 7718 7719 if (!adj) { 7720 pr_err("Adjacency does not exist for device %s from %s\n", 7721 dev->name, adj_dev->name); 7722 WARN_ON(1); 7723 return; 7724 } 7725 7726 if (adj->ref_nr > ref_nr) { 7727 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n", 7728 dev->name, adj_dev->name, ref_nr, 7729 adj->ref_nr - ref_nr); 7730 adj->ref_nr -= ref_nr; 7731 return; 7732 } 7733 7734 if (adj->master) 7735 sysfs_remove_link(&(dev->dev.kobj), "master"); 7736 7737 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) 7738 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list); 7739 7740 list_del_rcu(&adj->list); 7741 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n", 7742 adj_dev->name, dev->name, adj_dev->name); 7743 dev_put(adj_dev); 7744 kfree_rcu(adj, rcu); 7745 } 7746 7747 static int __netdev_adjacent_dev_link_lists(struct net_device *dev, 7748 struct net_device *upper_dev, 7749 struct list_head *up_list, 7750 struct list_head *down_list, 7751 void *private, bool master) 7752 { 7753 int ret; 7754 7755 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, 7756 private, master); 7757 if (ret) 7758 return ret; 7759 7760 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, 7761 private, false); 7762 if (ret) { 7763 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list); 7764 return ret; 7765 } 7766 7767 return 0; 7768 } 7769 7770 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev, 7771 struct net_device *upper_dev, 7772 u16 ref_nr, 7773 struct list_head *up_list, 7774 struct list_head *down_list) 7775 { 7776 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list); 7777 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list); 7778 } 7779 7780 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev, 7781 struct net_device *upper_dev, 7782 void *private, bool master) 7783 { 7784 return __netdev_adjacent_dev_link_lists(dev, upper_dev, 7785 &dev->adj_list.upper, 7786 &upper_dev->adj_list.lower, 7787 private, master); 7788 } 7789 7790 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev, 7791 struct net_device *upper_dev) 7792 { 7793 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1, 7794 &dev->adj_list.upper, 7795 &upper_dev->adj_list.lower); 7796 } 7797 7798 static int __netdev_upper_dev_link(struct net_device *dev, 7799 struct net_device *upper_dev, bool master, 7800 void *upper_priv, void *upper_info, 7801 struct netdev_nested_priv *priv, 7802 struct netlink_ext_ack *extack) 7803 { 7804 struct netdev_notifier_changeupper_info changeupper_info = { 7805 .info = { 7806 .dev = dev, 7807 .extack = extack, 7808 }, 7809 .upper_dev = upper_dev, 7810 .master = master, 7811 .linking = true, 7812 .upper_info = upper_info, 7813 }; 7814 struct net_device *master_dev; 7815 int ret = 0; 7816 7817 ASSERT_RTNL(); 7818 7819 if (dev == upper_dev) 7820 return -EBUSY; 7821 7822 /* To prevent loops, check if dev is not upper device to upper_dev. */ 7823 if (__netdev_has_upper_dev(upper_dev, dev)) 7824 return -EBUSY; 7825 7826 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV) 7827 return -EMLINK; 7828 7829 if (!master) { 7830 if (__netdev_has_upper_dev(dev, upper_dev)) 7831 return -EEXIST; 7832 } else { 7833 master_dev = __netdev_master_upper_dev_get(dev); 7834 if (master_dev) 7835 return master_dev == upper_dev ? -EEXIST : -EBUSY; 7836 } 7837 7838 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7839 &changeupper_info.info); 7840 ret = notifier_to_errno(ret); 7841 if (ret) 7842 return ret; 7843 7844 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv, 7845 master); 7846 if (ret) 7847 return ret; 7848 7849 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7850 &changeupper_info.info); 7851 ret = notifier_to_errno(ret); 7852 if (ret) 7853 goto rollback; 7854 7855 __netdev_update_upper_level(dev, NULL); 7856 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7857 7858 __netdev_update_lower_level(upper_dev, priv); 7859 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7860 priv); 7861 7862 return 0; 7863 7864 rollback: 7865 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7866 7867 return ret; 7868 } 7869 7870 /** 7871 * netdev_upper_dev_link - Add a link to the upper device 7872 * @dev: device 7873 * @upper_dev: new upper device 7874 * @extack: netlink extended ack 7875 * 7876 * Adds a link to device which is upper to this one. The caller must hold 7877 * the RTNL lock. On a failure a negative errno code is returned. 7878 * On success the reference counts are adjusted and the function 7879 * returns zero. 7880 */ 7881 int netdev_upper_dev_link(struct net_device *dev, 7882 struct net_device *upper_dev, 7883 struct netlink_ext_ack *extack) 7884 { 7885 struct netdev_nested_priv priv = { 7886 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7887 .data = NULL, 7888 }; 7889 7890 return __netdev_upper_dev_link(dev, upper_dev, false, 7891 NULL, NULL, &priv, extack); 7892 } 7893 EXPORT_SYMBOL(netdev_upper_dev_link); 7894 7895 /** 7896 * netdev_master_upper_dev_link - Add a master link to the upper device 7897 * @dev: device 7898 * @upper_dev: new upper device 7899 * @upper_priv: upper device private 7900 * @upper_info: upper info to be passed down via notifier 7901 * @extack: netlink extended ack 7902 * 7903 * Adds a link to device which is upper to this one. In this case, only 7904 * one master upper device can be linked, although other non-master devices 7905 * might be linked as well. The caller must hold the RTNL lock. 7906 * On a failure a negative errno code is returned. On success the reference 7907 * counts are adjusted and the function returns zero. 7908 */ 7909 int netdev_master_upper_dev_link(struct net_device *dev, 7910 struct net_device *upper_dev, 7911 void *upper_priv, void *upper_info, 7912 struct netlink_ext_ack *extack) 7913 { 7914 struct netdev_nested_priv priv = { 7915 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 7916 .data = NULL, 7917 }; 7918 7919 return __netdev_upper_dev_link(dev, upper_dev, true, 7920 upper_priv, upper_info, &priv, extack); 7921 } 7922 EXPORT_SYMBOL(netdev_master_upper_dev_link); 7923 7924 static void __netdev_upper_dev_unlink(struct net_device *dev, 7925 struct net_device *upper_dev, 7926 struct netdev_nested_priv *priv) 7927 { 7928 struct netdev_notifier_changeupper_info changeupper_info = { 7929 .info = { 7930 .dev = dev, 7931 }, 7932 .upper_dev = upper_dev, 7933 .linking = false, 7934 }; 7935 7936 ASSERT_RTNL(); 7937 7938 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev; 7939 7940 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, 7941 &changeupper_info.info); 7942 7943 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev); 7944 7945 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, 7946 &changeupper_info.info); 7947 7948 __netdev_update_upper_level(dev, NULL); 7949 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL); 7950 7951 __netdev_update_lower_level(upper_dev, priv); 7952 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level, 7953 priv); 7954 } 7955 7956 /** 7957 * netdev_upper_dev_unlink - Removes a link to upper device 7958 * @dev: device 7959 * @upper_dev: new upper device 7960 * 7961 * Removes a link to device which is upper to this one. The caller must hold 7962 * the RTNL lock. 7963 */ 7964 void netdev_upper_dev_unlink(struct net_device *dev, 7965 struct net_device *upper_dev) 7966 { 7967 struct netdev_nested_priv priv = { 7968 .flags = NESTED_SYNC_TODO, 7969 .data = NULL, 7970 }; 7971 7972 __netdev_upper_dev_unlink(dev, upper_dev, &priv); 7973 } 7974 EXPORT_SYMBOL(netdev_upper_dev_unlink); 7975 7976 static void __netdev_adjacent_dev_set(struct net_device *upper_dev, 7977 struct net_device *lower_dev, 7978 bool val) 7979 { 7980 struct netdev_adjacent *adj; 7981 7982 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower); 7983 if (adj) 7984 adj->ignore = val; 7985 7986 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper); 7987 if (adj) 7988 adj->ignore = val; 7989 } 7990 7991 static void netdev_adjacent_dev_disable(struct net_device *upper_dev, 7992 struct net_device *lower_dev) 7993 { 7994 __netdev_adjacent_dev_set(upper_dev, lower_dev, true); 7995 } 7996 7997 static void netdev_adjacent_dev_enable(struct net_device *upper_dev, 7998 struct net_device *lower_dev) 7999 { 8000 __netdev_adjacent_dev_set(upper_dev, lower_dev, false); 8001 } 8002 8003 int netdev_adjacent_change_prepare(struct net_device *old_dev, 8004 struct net_device *new_dev, 8005 struct net_device *dev, 8006 struct netlink_ext_ack *extack) 8007 { 8008 struct netdev_nested_priv priv = { 8009 .flags = 0, 8010 .data = NULL, 8011 }; 8012 int err; 8013 8014 if (!new_dev) 8015 return 0; 8016 8017 if (old_dev && new_dev != old_dev) 8018 netdev_adjacent_dev_disable(dev, old_dev); 8019 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv, 8020 extack); 8021 if (err) { 8022 if (old_dev && new_dev != old_dev) 8023 netdev_adjacent_dev_enable(dev, old_dev); 8024 return err; 8025 } 8026 8027 return 0; 8028 } 8029 EXPORT_SYMBOL(netdev_adjacent_change_prepare); 8030 8031 void netdev_adjacent_change_commit(struct net_device *old_dev, 8032 struct net_device *new_dev, 8033 struct net_device *dev) 8034 { 8035 struct netdev_nested_priv priv = { 8036 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO, 8037 .data = NULL, 8038 }; 8039 8040 if (!new_dev || !old_dev) 8041 return; 8042 8043 if (new_dev == old_dev) 8044 return; 8045 8046 netdev_adjacent_dev_enable(dev, old_dev); 8047 __netdev_upper_dev_unlink(old_dev, dev, &priv); 8048 } 8049 EXPORT_SYMBOL(netdev_adjacent_change_commit); 8050 8051 void netdev_adjacent_change_abort(struct net_device *old_dev, 8052 struct net_device *new_dev, 8053 struct net_device *dev) 8054 { 8055 struct netdev_nested_priv priv = { 8056 .flags = 0, 8057 .data = NULL, 8058 }; 8059 8060 if (!new_dev) 8061 return; 8062 8063 if (old_dev && new_dev != old_dev) 8064 netdev_adjacent_dev_enable(dev, old_dev); 8065 8066 __netdev_upper_dev_unlink(new_dev, dev, &priv); 8067 } 8068 EXPORT_SYMBOL(netdev_adjacent_change_abort); 8069 8070 /** 8071 * netdev_bonding_info_change - Dispatch event about slave change 8072 * @dev: device 8073 * @bonding_info: info to dispatch 8074 * 8075 * Send NETDEV_BONDING_INFO to netdev notifiers with info. 8076 * The caller must hold the RTNL lock. 8077 */ 8078 void netdev_bonding_info_change(struct net_device *dev, 8079 struct netdev_bonding_info *bonding_info) 8080 { 8081 struct netdev_notifier_bonding_info info = { 8082 .info.dev = dev, 8083 }; 8084 8085 memcpy(&info.bonding_info, bonding_info, 8086 sizeof(struct netdev_bonding_info)); 8087 call_netdevice_notifiers_info(NETDEV_BONDING_INFO, 8088 &info.info); 8089 } 8090 EXPORT_SYMBOL(netdev_bonding_info_change); 8091 8092 /** 8093 * netdev_get_xmit_slave - Get the xmit slave of master device 8094 * @dev: device 8095 * @skb: The packet 8096 * @all_slaves: assume all the slaves are active 8097 * 8098 * The reference counters are not incremented so the caller must be 8099 * careful with locks. The caller must hold RCU lock. 8100 * %NULL is returned if no slave is found. 8101 */ 8102 8103 struct net_device *netdev_get_xmit_slave(struct net_device *dev, 8104 struct sk_buff *skb, 8105 bool all_slaves) 8106 { 8107 const struct net_device_ops *ops = dev->netdev_ops; 8108 8109 if (!ops->ndo_get_xmit_slave) 8110 return NULL; 8111 return ops->ndo_get_xmit_slave(dev, skb, all_slaves); 8112 } 8113 EXPORT_SYMBOL(netdev_get_xmit_slave); 8114 8115 static void netdev_adjacent_add_links(struct net_device *dev) 8116 { 8117 struct netdev_adjacent *iter; 8118 8119 struct net *net = dev_net(dev); 8120 8121 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8122 if (!net_eq(net, dev_net(iter->dev))) 8123 continue; 8124 netdev_adjacent_sysfs_add(iter->dev, dev, 8125 &iter->dev->adj_list.lower); 8126 netdev_adjacent_sysfs_add(dev, iter->dev, 8127 &dev->adj_list.upper); 8128 } 8129 8130 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8131 if (!net_eq(net, dev_net(iter->dev))) 8132 continue; 8133 netdev_adjacent_sysfs_add(iter->dev, dev, 8134 &iter->dev->adj_list.upper); 8135 netdev_adjacent_sysfs_add(dev, iter->dev, 8136 &dev->adj_list.lower); 8137 } 8138 } 8139 8140 static void netdev_adjacent_del_links(struct net_device *dev) 8141 { 8142 struct netdev_adjacent *iter; 8143 8144 struct net *net = dev_net(dev); 8145 8146 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8147 if (!net_eq(net, dev_net(iter->dev))) 8148 continue; 8149 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8150 &iter->dev->adj_list.lower); 8151 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8152 &dev->adj_list.upper); 8153 } 8154 8155 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8156 if (!net_eq(net, dev_net(iter->dev))) 8157 continue; 8158 netdev_adjacent_sysfs_del(iter->dev, dev->name, 8159 &iter->dev->adj_list.upper); 8160 netdev_adjacent_sysfs_del(dev, iter->dev->name, 8161 &dev->adj_list.lower); 8162 } 8163 } 8164 8165 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname) 8166 { 8167 struct netdev_adjacent *iter; 8168 8169 struct net *net = dev_net(dev); 8170 8171 list_for_each_entry(iter, &dev->adj_list.upper, list) { 8172 if (!net_eq(net, dev_net(iter->dev))) 8173 continue; 8174 netdev_adjacent_sysfs_del(iter->dev, oldname, 8175 &iter->dev->adj_list.lower); 8176 netdev_adjacent_sysfs_add(iter->dev, dev, 8177 &iter->dev->adj_list.lower); 8178 } 8179 8180 list_for_each_entry(iter, &dev->adj_list.lower, list) { 8181 if (!net_eq(net, dev_net(iter->dev))) 8182 continue; 8183 netdev_adjacent_sysfs_del(iter->dev, oldname, 8184 &iter->dev->adj_list.upper); 8185 netdev_adjacent_sysfs_add(iter->dev, dev, 8186 &iter->dev->adj_list.upper); 8187 } 8188 } 8189 8190 void *netdev_lower_dev_get_private(struct net_device *dev, 8191 struct net_device *lower_dev) 8192 { 8193 struct netdev_adjacent *lower; 8194 8195 if (!lower_dev) 8196 return NULL; 8197 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower); 8198 if (!lower) 8199 return NULL; 8200 8201 return lower->private; 8202 } 8203 EXPORT_SYMBOL(netdev_lower_dev_get_private); 8204 8205 8206 /** 8207 * netdev_lower_change - Dispatch event about lower device state change 8208 * @lower_dev: device 8209 * @lower_state_info: state to dispatch 8210 * 8211 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info. 8212 * The caller must hold the RTNL lock. 8213 */ 8214 void netdev_lower_state_changed(struct net_device *lower_dev, 8215 void *lower_state_info) 8216 { 8217 struct netdev_notifier_changelowerstate_info changelowerstate_info = { 8218 .info.dev = lower_dev, 8219 }; 8220 8221 ASSERT_RTNL(); 8222 changelowerstate_info.lower_state_info = lower_state_info; 8223 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, 8224 &changelowerstate_info.info); 8225 } 8226 EXPORT_SYMBOL(netdev_lower_state_changed); 8227 8228 static void dev_change_rx_flags(struct net_device *dev, int flags) 8229 { 8230 const struct net_device_ops *ops = dev->netdev_ops; 8231 8232 if (ops->ndo_change_rx_flags) 8233 ops->ndo_change_rx_flags(dev, flags); 8234 } 8235 8236 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify) 8237 { 8238 unsigned int old_flags = dev->flags; 8239 kuid_t uid; 8240 kgid_t gid; 8241 8242 ASSERT_RTNL(); 8243 8244 dev->flags |= IFF_PROMISC; 8245 dev->promiscuity += inc; 8246 if (dev->promiscuity == 0) { 8247 /* 8248 * Avoid overflow. 8249 * If inc causes overflow, untouch promisc and return error. 8250 */ 8251 if (inc < 0) 8252 dev->flags &= ~IFF_PROMISC; 8253 else { 8254 dev->promiscuity -= inc; 8255 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n", 8256 dev->name); 8257 return -EOVERFLOW; 8258 } 8259 } 8260 if (dev->flags != old_flags) { 8261 pr_info("device %s %s promiscuous mode\n", 8262 dev->name, 8263 dev->flags & IFF_PROMISC ? "entered" : "left"); 8264 if (audit_enabled) { 8265 current_uid_gid(&uid, &gid); 8266 audit_log(audit_context(), GFP_ATOMIC, 8267 AUDIT_ANOM_PROMISCUOUS, 8268 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 8269 dev->name, (dev->flags & IFF_PROMISC), 8270 (old_flags & IFF_PROMISC), 8271 from_kuid(&init_user_ns, audit_get_loginuid(current)), 8272 from_kuid(&init_user_ns, uid), 8273 from_kgid(&init_user_ns, gid), 8274 audit_get_sessionid(current)); 8275 } 8276 8277 dev_change_rx_flags(dev, IFF_PROMISC); 8278 } 8279 if (notify) 8280 __dev_notify_flags(dev, old_flags, IFF_PROMISC); 8281 return 0; 8282 } 8283 8284 /** 8285 * dev_set_promiscuity - update promiscuity count on a device 8286 * @dev: device 8287 * @inc: modifier 8288 * 8289 * Add or remove promiscuity from a device. While the count in the device 8290 * remains above zero the interface remains promiscuous. Once it hits zero 8291 * the device reverts back to normal filtering operation. A negative inc 8292 * value is used to drop promiscuity on the device. 8293 * Return 0 if successful or a negative errno code on error. 8294 */ 8295 int dev_set_promiscuity(struct net_device *dev, int inc) 8296 { 8297 unsigned int old_flags = dev->flags; 8298 int err; 8299 8300 err = __dev_set_promiscuity(dev, inc, true); 8301 if (err < 0) 8302 return err; 8303 if (dev->flags != old_flags) 8304 dev_set_rx_mode(dev); 8305 return err; 8306 } 8307 EXPORT_SYMBOL(dev_set_promiscuity); 8308 8309 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify) 8310 { 8311 unsigned int old_flags = dev->flags, old_gflags = dev->gflags; 8312 8313 ASSERT_RTNL(); 8314 8315 dev->flags |= IFF_ALLMULTI; 8316 dev->allmulti += inc; 8317 if (dev->allmulti == 0) { 8318 /* 8319 * Avoid overflow. 8320 * If inc causes overflow, untouch allmulti and return error. 8321 */ 8322 if (inc < 0) 8323 dev->flags &= ~IFF_ALLMULTI; 8324 else { 8325 dev->allmulti -= inc; 8326 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n", 8327 dev->name); 8328 return -EOVERFLOW; 8329 } 8330 } 8331 if (dev->flags ^ old_flags) { 8332 dev_change_rx_flags(dev, IFF_ALLMULTI); 8333 dev_set_rx_mode(dev); 8334 if (notify) 8335 __dev_notify_flags(dev, old_flags, 8336 dev->gflags ^ old_gflags); 8337 } 8338 return 0; 8339 } 8340 8341 /** 8342 * dev_set_allmulti - update allmulti count on a device 8343 * @dev: device 8344 * @inc: modifier 8345 * 8346 * Add or remove reception of all multicast frames to a device. While the 8347 * count in the device remains above zero the interface remains listening 8348 * to all interfaces. Once it hits zero the device reverts back to normal 8349 * filtering operation. A negative @inc value is used to drop the counter 8350 * when releasing a resource needing all multicasts. 8351 * Return 0 if successful or a negative errno code on error. 8352 */ 8353 8354 int dev_set_allmulti(struct net_device *dev, int inc) 8355 { 8356 return __dev_set_allmulti(dev, inc, true); 8357 } 8358 EXPORT_SYMBOL(dev_set_allmulti); 8359 8360 /* 8361 * Upload unicast and multicast address lists to device and 8362 * configure RX filtering. When the device doesn't support unicast 8363 * filtering it is put in promiscuous mode while unicast addresses 8364 * are present. 8365 */ 8366 void __dev_set_rx_mode(struct net_device *dev) 8367 { 8368 const struct net_device_ops *ops = dev->netdev_ops; 8369 8370 /* dev_open will call this function so the list will stay sane. */ 8371 if (!(dev->flags&IFF_UP)) 8372 return; 8373 8374 if (!netif_device_present(dev)) 8375 return; 8376 8377 if (!(dev->priv_flags & IFF_UNICAST_FLT)) { 8378 /* Unicast addresses changes may only happen under the rtnl, 8379 * therefore calling __dev_set_promiscuity here is safe. 8380 */ 8381 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 8382 __dev_set_promiscuity(dev, 1, false); 8383 dev->uc_promisc = true; 8384 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 8385 __dev_set_promiscuity(dev, -1, false); 8386 dev->uc_promisc = false; 8387 } 8388 } 8389 8390 if (ops->ndo_set_rx_mode) 8391 ops->ndo_set_rx_mode(dev); 8392 } 8393 8394 void dev_set_rx_mode(struct net_device *dev) 8395 { 8396 netif_addr_lock_bh(dev); 8397 __dev_set_rx_mode(dev); 8398 netif_addr_unlock_bh(dev); 8399 } 8400 8401 /** 8402 * dev_get_flags - get flags reported to userspace 8403 * @dev: device 8404 * 8405 * Get the combination of flag bits exported through APIs to userspace. 8406 */ 8407 unsigned int dev_get_flags(const struct net_device *dev) 8408 { 8409 unsigned int flags; 8410 8411 flags = (dev->flags & ~(IFF_PROMISC | 8412 IFF_ALLMULTI | 8413 IFF_RUNNING | 8414 IFF_LOWER_UP | 8415 IFF_DORMANT)) | 8416 (dev->gflags & (IFF_PROMISC | 8417 IFF_ALLMULTI)); 8418 8419 if (netif_running(dev)) { 8420 if (netif_oper_up(dev)) 8421 flags |= IFF_RUNNING; 8422 if (netif_carrier_ok(dev)) 8423 flags |= IFF_LOWER_UP; 8424 if (netif_dormant(dev)) 8425 flags |= IFF_DORMANT; 8426 } 8427 8428 return flags; 8429 } 8430 EXPORT_SYMBOL(dev_get_flags); 8431 8432 int __dev_change_flags(struct net_device *dev, unsigned int flags, 8433 struct netlink_ext_ack *extack) 8434 { 8435 unsigned int old_flags = dev->flags; 8436 int ret; 8437 8438 ASSERT_RTNL(); 8439 8440 /* 8441 * Set the flags on our device. 8442 */ 8443 8444 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 8445 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 8446 IFF_AUTOMEDIA)) | 8447 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 8448 IFF_ALLMULTI)); 8449 8450 /* 8451 * Load in the correct multicast list now the flags have changed. 8452 */ 8453 8454 if ((old_flags ^ flags) & IFF_MULTICAST) 8455 dev_change_rx_flags(dev, IFF_MULTICAST); 8456 8457 dev_set_rx_mode(dev); 8458 8459 /* 8460 * Have we downed the interface. We handle IFF_UP ourselves 8461 * according to user attempts to set it, rather than blindly 8462 * setting it. 8463 */ 8464 8465 ret = 0; 8466 if ((old_flags ^ flags) & IFF_UP) { 8467 if (old_flags & IFF_UP) 8468 __dev_close(dev); 8469 else 8470 ret = __dev_open(dev, extack); 8471 } 8472 8473 if ((flags ^ dev->gflags) & IFF_PROMISC) { 8474 int inc = (flags & IFF_PROMISC) ? 1 : -1; 8475 unsigned int old_flags = dev->flags; 8476 8477 dev->gflags ^= IFF_PROMISC; 8478 8479 if (__dev_set_promiscuity(dev, inc, false) >= 0) 8480 if (dev->flags != old_flags) 8481 dev_set_rx_mode(dev); 8482 } 8483 8484 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 8485 * is important. Some (broken) drivers set IFF_PROMISC, when 8486 * IFF_ALLMULTI is requested not asking us and not reporting. 8487 */ 8488 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 8489 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 8490 8491 dev->gflags ^= IFF_ALLMULTI; 8492 __dev_set_allmulti(dev, inc, false); 8493 } 8494 8495 return ret; 8496 } 8497 8498 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags, 8499 unsigned int gchanges) 8500 { 8501 unsigned int changes = dev->flags ^ old_flags; 8502 8503 if (gchanges) 8504 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC); 8505 8506 if (changes & IFF_UP) { 8507 if (dev->flags & IFF_UP) 8508 call_netdevice_notifiers(NETDEV_UP, dev); 8509 else 8510 call_netdevice_notifiers(NETDEV_DOWN, dev); 8511 } 8512 8513 if (dev->flags & IFF_UP && 8514 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) { 8515 struct netdev_notifier_change_info change_info = { 8516 .info = { 8517 .dev = dev, 8518 }, 8519 .flags_changed = changes, 8520 }; 8521 8522 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info); 8523 } 8524 } 8525 8526 /** 8527 * dev_change_flags - change device settings 8528 * @dev: device 8529 * @flags: device state flags 8530 * @extack: netlink extended ack 8531 * 8532 * Change settings on device based state flags. The flags are 8533 * in the userspace exported format. 8534 */ 8535 int dev_change_flags(struct net_device *dev, unsigned int flags, 8536 struct netlink_ext_ack *extack) 8537 { 8538 int ret; 8539 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags; 8540 8541 ret = __dev_change_flags(dev, flags, extack); 8542 if (ret < 0) 8543 return ret; 8544 8545 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags); 8546 __dev_notify_flags(dev, old_flags, changes); 8547 return ret; 8548 } 8549 EXPORT_SYMBOL(dev_change_flags); 8550 8551 int __dev_set_mtu(struct net_device *dev, int new_mtu) 8552 { 8553 const struct net_device_ops *ops = dev->netdev_ops; 8554 8555 if (ops->ndo_change_mtu) 8556 return ops->ndo_change_mtu(dev, new_mtu); 8557 8558 /* Pairs with all the lockless reads of dev->mtu in the stack */ 8559 WRITE_ONCE(dev->mtu, new_mtu); 8560 return 0; 8561 } 8562 EXPORT_SYMBOL(__dev_set_mtu); 8563 8564 int dev_validate_mtu(struct net_device *dev, int new_mtu, 8565 struct netlink_ext_ack *extack) 8566 { 8567 /* MTU must be positive, and in range */ 8568 if (new_mtu < 0 || new_mtu < dev->min_mtu) { 8569 NL_SET_ERR_MSG(extack, "mtu less than device minimum"); 8570 return -EINVAL; 8571 } 8572 8573 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) { 8574 NL_SET_ERR_MSG(extack, "mtu greater than device maximum"); 8575 return -EINVAL; 8576 } 8577 return 0; 8578 } 8579 8580 /** 8581 * dev_set_mtu_ext - Change maximum transfer unit 8582 * @dev: device 8583 * @new_mtu: new transfer unit 8584 * @extack: netlink extended ack 8585 * 8586 * Change the maximum transfer size of the network device. 8587 */ 8588 int dev_set_mtu_ext(struct net_device *dev, int new_mtu, 8589 struct netlink_ext_ack *extack) 8590 { 8591 int err, orig_mtu; 8592 8593 if (new_mtu == dev->mtu) 8594 return 0; 8595 8596 err = dev_validate_mtu(dev, new_mtu, extack); 8597 if (err) 8598 return err; 8599 8600 if (!netif_device_present(dev)) 8601 return -ENODEV; 8602 8603 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev); 8604 err = notifier_to_errno(err); 8605 if (err) 8606 return err; 8607 8608 orig_mtu = dev->mtu; 8609 err = __dev_set_mtu(dev, new_mtu); 8610 8611 if (!err) { 8612 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8613 orig_mtu); 8614 err = notifier_to_errno(err); 8615 if (err) { 8616 /* setting mtu back and notifying everyone again, 8617 * so that they have a chance to revert changes. 8618 */ 8619 __dev_set_mtu(dev, orig_mtu); 8620 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev, 8621 new_mtu); 8622 } 8623 } 8624 return err; 8625 } 8626 8627 int dev_set_mtu(struct net_device *dev, int new_mtu) 8628 { 8629 struct netlink_ext_ack extack; 8630 int err; 8631 8632 memset(&extack, 0, sizeof(extack)); 8633 err = dev_set_mtu_ext(dev, new_mtu, &extack); 8634 if (err && extack._msg) 8635 net_err_ratelimited("%s: %s\n", dev->name, extack._msg); 8636 return err; 8637 } 8638 EXPORT_SYMBOL(dev_set_mtu); 8639 8640 /** 8641 * dev_change_tx_queue_len - Change TX queue length of a netdevice 8642 * @dev: device 8643 * @new_len: new tx queue length 8644 */ 8645 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len) 8646 { 8647 unsigned int orig_len = dev->tx_queue_len; 8648 int res; 8649 8650 if (new_len != (unsigned int)new_len) 8651 return -ERANGE; 8652 8653 if (new_len != orig_len) { 8654 dev->tx_queue_len = new_len; 8655 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev); 8656 res = notifier_to_errno(res); 8657 if (res) 8658 goto err_rollback; 8659 res = dev_qdisc_change_tx_queue_len(dev); 8660 if (res) 8661 goto err_rollback; 8662 } 8663 8664 return 0; 8665 8666 err_rollback: 8667 netdev_err(dev, "refused to change device tx_queue_len\n"); 8668 dev->tx_queue_len = orig_len; 8669 return res; 8670 } 8671 8672 /** 8673 * dev_set_group - Change group this device belongs to 8674 * @dev: device 8675 * @new_group: group this device should belong to 8676 */ 8677 void dev_set_group(struct net_device *dev, int new_group) 8678 { 8679 dev->group = new_group; 8680 } 8681 EXPORT_SYMBOL(dev_set_group); 8682 8683 /** 8684 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR. 8685 * @dev: device 8686 * @addr: new address 8687 * @extack: netlink extended ack 8688 */ 8689 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr, 8690 struct netlink_ext_ack *extack) 8691 { 8692 struct netdev_notifier_pre_changeaddr_info info = { 8693 .info.dev = dev, 8694 .info.extack = extack, 8695 .dev_addr = addr, 8696 }; 8697 int rc; 8698 8699 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info); 8700 return notifier_to_errno(rc); 8701 } 8702 EXPORT_SYMBOL(dev_pre_changeaddr_notify); 8703 8704 /** 8705 * dev_set_mac_address - Change Media Access Control Address 8706 * @dev: device 8707 * @sa: new address 8708 * @extack: netlink extended ack 8709 * 8710 * Change the hardware (MAC) address of the device 8711 */ 8712 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa, 8713 struct netlink_ext_ack *extack) 8714 { 8715 const struct net_device_ops *ops = dev->netdev_ops; 8716 int err; 8717 8718 if (!ops->ndo_set_mac_address) 8719 return -EOPNOTSUPP; 8720 if (sa->sa_family != dev->type) 8721 return -EINVAL; 8722 if (!netif_device_present(dev)) 8723 return -ENODEV; 8724 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack); 8725 if (err) 8726 return err; 8727 err = ops->ndo_set_mac_address(dev, sa); 8728 if (err) 8729 return err; 8730 dev->addr_assign_type = NET_ADDR_SET; 8731 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 8732 add_device_randomness(dev->dev_addr, dev->addr_len); 8733 return 0; 8734 } 8735 EXPORT_SYMBOL(dev_set_mac_address); 8736 8737 /** 8738 * dev_change_carrier - Change device carrier 8739 * @dev: device 8740 * @new_carrier: new value 8741 * 8742 * Change device carrier 8743 */ 8744 int dev_change_carrier(struct net_device *dev, bool new_carrier) 8745 { 8746 const struct net_device_ops *ops = dev->netdev_ops; 8747 8748 if (!ops->ndo_change_carrier) 8749 return -EOPNOTSUPP; 8750 if (!netif_device_present(dev)) 8751 return -ENODEV; 8752 return ops->ndo_change_carrier(dev, new_carrier); 8753 } 8754 EXPORT_SYMBOL(dev_change_carrier); 8755 8756 /** 8757 * dev_get_phys_port_id - Get device physical port ID 8758 * @dev: device 8759 * @ppid: port ID 8760 * 8761 * Get device physical port ID 8762 */ 8763 int dev_get_phys_port_id(struct net_device *dev, 8764 struct netdev_phys_item_id *ppid) 8765 { 8766 const struct net_device_ops *ops = dev->netdev_ops; 8767 8768 if (!ops->ndo_get_phys_port_id) 8769 return -EOPNOTSUPP; 8770 return ops->ndo_get_phys_port_id(dev, ppid); 8771 } 8772 EXPORT_SYMBOL(dev_get_phys_port_id); 8773 8774 /** 8775 * dev_get_phys_port_name - Get device physical port name 8776 * @dev: device 8777 * @name: port name 8778 * @len: limit of bytes to copy to name 8779 * 8780 * Get device physical port name 8781 */ 8782 int dev_get_phys_port_name(struct net_device *dev, 8783 char *name, size_t len) 8784 { 8785 const struct net_device_ops *ops = dev->netdev_ops; 8786 int err; 8787 8788 if (ops->ndo_get_phys_port_name) { 8789 err = ops->ndo_get_phys_port_name(dev, name, len); 8790 if (err != -EOPNOTSUPP) 8791 return err; 8792 } 8793 return devlink_compat_phys_port_name_get(dev, name, len); 8794 } 8795 EXPORT_SYMBOL(dev_get_phys_port_name); 8796 8797 /** 8798 * dev_get_port_parent_id - Get the device's port parent identifier 8799 * @dev: network device 8800 * @ppid: pointer to a storage for the port's parent identifier 8801 * @recurse: allow/disallow recursion to lower devices 8802 * 8803 * Get the devices's port parent identifier 8804 */ 8805 int dev_get_port_parent_id(struct net_device *dev, 8806 struct netdev_phys_item_id *ppid, 8807 bool recurse) 8808 { 8809 const struct net_device_ops *ops = dev->netdev_ops; 8810 struct netdev_phys_item_id first = { }; 8811 struct net_device *lower_dev; 8812 struct list_head *iter; 8813 int err; 8814 8815 if (ops->ndo_get_port_parent_id) { 8816 err = ops->ndo_get_port_parent_id(dev, ppid); 8817 if (err != -EOPNOTSUPP) 8818 return err; 8819 } 8820 8821 err = devlink_compat_switch_id_get(dev, ppid); 8822 if (!err || err != -EOPNOTSUPP) 8823 return err; 8824 8825 if (!recurse) 8826 return -EOPNOTSUPP; 8827 8828 netdev_for_each_lower_dev(dev, lower_dev, iter) { 8829 err = dev_get_port_parent_id(lower_dev, ppid, recurse); 8830 if (err) 8831 break; 8832 if (!first.id_len) 8833 first = *ppid; 8834 else if (memcmp(&first, ppid, sizeof(*ppid))) 8835 return -EOPNOTSUPP; 8836 } 8837 8838 return err; 8839 } 8840 EXPORT_SYMBOL(dev_get_port_parent_id); 8841 8842 /** 8843 * netdev_port_same_parent_id - Indicate if two network devices have 8844 * the same port parent identifier 8845 * @a: first network device 8846 * @b: second network device 8847 */ 8848 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b) 8849 { 8850 struct netdev_phys_item_id a_id = { }; 8851 struct netdev_phys_item_id b_id = { }; 8852 8853 if (dev_get_port_parent_id(a, &a_id, true) || 8854 dev_get_port_parent_id(b, &b_id, true)) 8855 return false; 8856 8857 return netdev_phys_item_id_same(&a_id, &b_id); 8858 } 8859 EXPORT_SYMBOL(netdev_port_same_parent_id); 8860 8861 /** 8862 * dev_change_proto_down - update protocol port state information 8863 * @dev: device 8864 * @proto_down: new value 8865 * 8866 * This info can be used by switch drivers to set the phys state of the 8867 * port. 8868 */ 8869 int dev_change_proto_down(struct net_device *dev, bool proto_down) 8870 { 8871 const struct net_device_ops *ops = dev->netdev_ops; 8872 8873 if (!ops->ndo_change_proto_down) 8874 return -EOPNOTSUPP; 8875 if (!netif_device_present(dev)) 8876 return -ENODEV; 8877 return ops->ndo_change_proto_down(dev, proto_down); 8878 } 8879 EXPORT_SYMBOL(dev_change_proto_down); 8880 8881 /** 8882 * dev_change_proto_down_generic - generic implementation for 8883 * ndo_change_proto_down that sets carrier according to 8884 * proto_down. 8885 * 8886 * @dev: device 8887 * @proto_down: new value 8888 */ 8889 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down) 8890 { 8891 if (proto_down) 8892 netif_carrier_off(dev); 8893 else 8894 netif_carrier_on(dev); 8895 dev->proto_down = proto_down; 8896 return 0; 8897 } 8898 EXPORT_SYMBOL(dev_change_proto_down_generic); 8899 8900 /** 8901 * dev_change_proto_down_reason - proto down reason 8902 * 8903 * @dev: device 8904 * @mask: proto down mask 8905 * @value: proto down value 8906 */ 8907 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask, 8908 u32 value) 8909 { 8910 int b; 8911 8912 if (!mask) { 8913 dev->proto_down_reason = value; 8914 } else { 8915 for_each_set_bit(b, &mask, 32) { 8916 if (value & (1 << b)) 8917 dev->proto_down_reason |= BIT(b); 8918 else 8919 dev->proto_down_reason &= ~BIT(b); 8920 } 8921 } 8922 } 8923 EXPORT_SYMBOL(dev_change_proto_down_reason); 8924 8925 struct bpf_xdp_link { 8926 struct bpf_link link; 8927 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */ 8928 int flags; 8929 }; 8930 8931 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags) 8932 { 8933 if (flags & XDP_FLAGS_HW_MODE) 8934 return XDP_MODE_HW; 8935 if (flags & XDP_FLAGS_DRV_MODE) 8936 return XDP_MODE_DRV; 8937 if (flags & XDP_FLAGS_SKB_MODE) 8938 return XDP_MODE_SKB; 8939 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB; 8940 } 8941 8942 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode) 8943 { 8944 switch (mode) { 8945 case XDP_MODE_SKB: 8946 return generic_xdp_install; 8947 case XDP_MODE_DRV: 8948 case XDP_MODE_HW: 8949 return dev->netdev_ops->ndo_bpf; 8950 default: 8951 return NULL; 8952 } 8953 } 8954 8955 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev, 8956 enum bpf_xdp_mode mode) 8957 { 8958 return dev->xdp_state[mode].link; 8959 } 8960 8961 static struct bpf_prog *dev_xdp_prog(struct net_device *dev, 8962 enum bpf_xdp_mode mode) 8963 { 8964 struct bpf_xdp_link *link = dev_xdp_link(dev, mode); 8965 8966 if (link) 8967 return link->link.prog; 8968 return dev->xdp_state[mode].prog; 8969 } 8970 8971 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode) 8972 { 8973 struct bpf_prog *prog = dev_xdp_prog(dev, mode); 8974 8975 return prog ? prog->aux->id : 0; 8976 } 8977 8978 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode, 8979 struct bpf_xdp_link *link) 8980 { 8981 dev->xdp_state[mode].link = link; 8982 dev->xdp_state[mode].prog = NULL; 8983 } 8984 8985 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode, 8986 struct bpf_prog *prog) 8987 { 8988 dev->xdp_state[mode].link = NULL; 8989 dev->xdp_state[mode].prog = prog; 8990 } 8991 8992 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode, 8993 bpf_op_t bpf_op, struct netlink_ext_ack *extack, 8994 u32 flags, struct bpf_prog *prog) 8995 { 8996 struct netdev_bpf xdp; 8997 int err; 8998 8999 memset(&xdp, 0, sizeof(xdp)); 9000 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG; 9001 xdp.extack = extack; 9002 xdp.flags = flags; 9003 xdp.prog = prog; 9004 9005 /* Drivers assume refcnt is already incremented (i.e, prog pointer is 9006 * "moved" into driver), so they don't increment it on their own, but 9007 * they do decrement refcnt when program is detached or replaced. 9008 * Given net_device also owns link/prog, we need to bump refcnt here 9009 * to prevent drivers from underflowing it. 9010 */ 9011 if (prog) 9012 bpf_prog_inc(prog); 9013 err = bpf_op(dev, &xdp); 9014 if (err) { 9015 if (prog) 9016 bpf_prog_put(prog); 9017 return err; 9018 } 9019 9020 if (mode != XDP_MODE_HW) 9021 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog); 9022 9023 return 0; 9024 } 9025 9026 static void dev_xdp_uninstall(struct net_device *dev) 9027 { 9028 struct bpf_xdp_link *link; 9029 struct bpf_prog *prog; 9030 enum bpf_xdp_mode mode; 9031 bpf_op_t bpf_op; 9032 9033 ASSERT_RTNL(); 9034 9035 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) { 9036 prog = dev_xdp_prog(dev, mode); 9037 if (!prog) 9038 continue; 9039 9040 bpf_op = dev_xdp_bpf_op(dev, mode); 9041 if (!bpf_op) 9042 continue; 9043 9044 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9045 9046 /* auto-detach link from net device */ 9047 link = dev_xdp_link(dev, mode); 9048 if (link) 9049 link->dev = NULL; 9050 else 9051 bpf_prog_put(prog); 9052 9053 dev_xdp_set_link(dev, mode, NULL); 9054 } 9055 } 9056 9057 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack, 9058 struct bpf_xdp_link *link, struct bpf_prog *new_prog, 9059 struct bpf_prog *old_prog, u32 flags) 9060 { 9061 struct bpf_prog *cur_prog; 9062 enum bpf_xdp_mode mode; 9063 bpf_op_t bpf_op; 9064 int err; 9065 9066 ASSERT_RTNL(); 9067 9068 /* either link or prog attachment, never both */ 9069 if (link && (new_prog || old_prog)) 9070 return -EINVAL; 9071 /* link supports only XDP mode flags */ 9072 if (link && (flags & ~XDP_FLAGS_MODES)) { 9073 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment"); 9074 return -EINVAL; 9075 } 9076 /* just one XDP mode bit should be set, zero defaults to SKB mode */ 9077 if (hweight32(flags & XDP_FLAGS_MODES) > 1) { 9078 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set"); 9079 return -EINVAL; 9080 } 9081 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */ 9082 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) { 9083 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified"); 9084 return -EINVAL; 9085 } 9086 9087 mode = dev_xdp_mode(dev, flags); 9088 /* can't replace attached link */ 9089 if (dev_xdp_link(dev, mode)) { 9090 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link"); 9091 return -EBUSY; 9092 } 9093 9094 cur_prog = dev_xdp_prog(dev, mode); 9095 /* can't replace attached prog with link */ 9096 if (link && cur_prog) { 9097 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link"); 9098 return -EBUSY; 9099 } 9100 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) { 9101 NL_SET_ERR_MSG(extack, "Active program does not match expected"); 9102 return -EEXIST; 9103 } 9104 9105 /* put effective new program into new_prog */ 9106 if (link) 9107 new_prog = link->link.prog; 9108 9109 if (new_prog) { 9110 bool offload = mode == XDP_MODE_HW; 9111 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB 9112 ? XDP_MODE_DRV : XDP_MODE_SKB; 9113 9114 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) { 9115 NL_SET_ERR_MSG(extack, "XDP program already attached"); 9116 return -EBUSY; 9117 } 9118 if (!offload && dev_xdp_prog(dev, other_mode)) { 9119 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time"); 9120 return -EEXIST; 9121 } 9122 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) { 9123 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported"); 9124 return -EINVAL; 9125 } 9126 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) { 9127 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device"); 9128 return -EINVAL; 9129 } 9130 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) { 9131 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device"); 9132 return -EINVAL; 9133 } 9134 } 9135 9136 /* don't call drivers if the effective program didn't change */ 9137 if (new_prog != cur_prog) { 9138 bpf_op = dev_xdp_bpf_op(dev, mode); 9139 if (!bpf_op) { 9140 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode"); 9141 return -EOPNOTSUPP; 9142 } 9143 9144 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog); 9145 if (err) 9146 return err; 9147 } 9148 9149 if (link) 9150 dev_xdp_set_link(dev, mode, link); 9151 else 9152 dev_xdp_set_prog(dev, mode, new_prog); 9153 if (cur_prog) 9154 bpf_prog_put(cur_prog); 9155 9156 return 0; 9157 } 9158 9159 static int dev_xdp_attach_link(struct net_device *dev, 9160 struct netlink_ext_ack *extack, 9161 struct bpf_xdp_link *link) 9162 { 9163 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags); 9164 } 9165 9166 static int dev_xdp_detach_link(struct net_device *dev, 9167 struct netlink_ext_ack *extack, 9168 struct bpf_xdp_link *link) 9169 { 9170 enum bpf_xdp_mode mode; 9171 bpf_op_t bpf_op; 9172 9173 ASSERT_RTNL(); 9174 9175 mode = dev_xdp_mode(dev, link->flags); 9176 if (dev_xdp_link(dev, mode) != link) 9177 return -EINVAL; 9178 9179 bpf_op = dev_xdp_bpf_op(dev, mode); 9180 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL)); 9181 dev_xdp_set_link(dev, mode, NULL); 9182 return 0; 9183 } 9184 9185 static void bpf_xdp_link_release(struct bpf_link *link) 9186 { 9187 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9188 9189 rtnl_lock(); 9190 9191 /* if racing with net_device's tear down, xdp_link->dev might be 9192 * already NULL, in which case link was already auto-detached 9193 */ 9194 if (xdp_link->dev) { 9195 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link)); 9196 xdp_link->dev = NULL; 9197 } 9198 9199 rtnl_unlock(); 9200 } 9201 9202 static int bpf_xdp_link_detach(struct bpf_link *link) 9203 { 9204 bpf_xdp_link_release(link); 9205 return 0; 9206 } 9207 9208 static void bpf_xdp_link_dealloc(struct bpf_link *link) 9209 { 9210 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9211 9212 kfree(xdp_link); 9213 } 9214 9215 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link, 9216 struct seq_file *seq) 9217 { 9218 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9219 u32 ifindex = 0; 9220 9221 rtnl_lock(); 9222 if (xdp_link->dev) 9223 ifindex = xdp_link->dev->ifindex; 9224 rtnl_unlock(); 9225 9226 seq_printf(seq, "ifindex:\t%u\n", ifindex); 9227 } 9228 9229 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link, 9230 struct bpf_link_info *info) 9231 { 9232 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9233 u32 ifindex = 0; 9234 9235 rtnl_lock(); 9236 if (xdp_link->dev) 9237 ifindex = xdp_link->dev->ifindex; 9238 rtnl_unlock(); 9239 9240 info->xdp.ifindex = ifindex; 9241 return 0; 9242 } 9243 9244 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog, 9245 struct bpf_prog *old_prog) 9246 { 9247 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link); 9248 enum bpf_xdp_mode mode; 9249 bpf_op_t bpf_op; 9250 int err = 0; 9251 9252 rtnl_lock(); 9253 9254 /* link might have been auto-released already, so fail */ 9255 if (!xdp_link->dev) { 9256 err = -ENOLINK; 9257 goto out_unlock; 9258 } 9259 9260 if (old_prog && link->prog != old_prog) { 9261 err = -EPERM; 9262 goto out_unlock; 9263 } 9264 old_prog = link->prog; 9265 if (old_prog == new_prog) { 9266 /* no-op, don't disturb drivers */ 9267 bpf_prog_put(new_prog); 9268 goto out_unlock; 9269 } 9270 9271 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags); 9272 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode); 9273 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL, 9274 xdp_link->flags, new_prog); 9275 if (err) 9276 goto out_unlock; 9277 9278 old_prog = xchg(&link->prog, new_prog); 9279 bpf_prog_put(old_prog); 9280 9281 out_unlock: 9282 rtnl_unlock(); 9283 return err; 9284 } 9285 9286 static const struct bpf_link_ops bpf_xdp_link_lops = { 9287 .release = bpf_xdp_link_release, 9288 .dealloc = bpf_xdp_link_dealloc, 9289 .detach = bpf_xdp_link_detach, 9290 .show_fdinfo = bpf_xdp_link_show_fdinfo, 9291 .fill_link_info = bpf_xdp_link_fill_link_info, 9292 .update_prog = bpf_xdp_link_update, 9293 }; 9294 9295 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog) 9296 { 9297 struct net *net = current->nsproxy->net_ns; 9298 struct bpf_link_primer link_primer; 9299 struct bpf_xdp_link *link; 9300 struct net_device *dev; 9301 int err, fd; 9302 9303 dev = dev_get_by_index(net, attr->link_create.target_ifindex); 9304 if (!dev) 9305 return -EINVAL; 9306 9307 link = kzalloc(sizeof(*link), GFP_USER); 9308 if (!link) { 9309 err = -ENOMEM; 9310 goto out_put_dev; 9311 } 9312 9313 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog); 9314 link->dev = dev; 9315 link->flags = attr->link_create.flags; 9316 9317 err = bpf_link_prime(&link->link, &link_primer); 9318 if (err) { 9319 kfree(link); 9320 goto out_put_dev; 9321 } 9322 9323 rtnl_lock(); 9324 err = dev_xdp_attach_link(dev, NULL, link); 9325 rtnl_unlock(); 9326 9327 if (err) { 9328 bpf_link_cleanup(&link_primer); 9329 goto out_put_dev; 9330 } 9331 9332 fd = bpf_link_settle(&link_primer); 9333 /* link itself doesn't hold dev's refcnt to not complicate shutdown */ 9334 dev_put(dev); 9335 return fd; 9336 9337 out_put_dev: 9338 dev_put(dev); 9339 return err; 9340 } 9341 9342 /** 9343 * dev_change_xdp_fd - set or clear a bpf program for a device rx path 9344 * @dev: device 9345 * @extack: netlink extended ack 9346 * @fd: new program fd or negative value to clear 9347 * @expected_fd: old program fd that userspace expects to replace or clear 9348 * @flags: xdp-related flags 9349 * 9350 * Set or clear a bpf program for a device 9351 */ 9352 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack, 9353 int fd, int expected_fd, u32 flags) 9354 { 9355 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags); 9356 struct bpf_prog *new_prog = NULL, *old_prog = NULL; 9357 int err; 9358 9359 ASSERT_RTNL(); 9360 9361 if (fd >= 0) { 9362 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP, 9363 mode != XDP_MODE_SKB); 9364 if (IS_ERR(new_prog)) 9365 return PTR_ERR(new_prog); 9366 } 9367 9368 if (expected_fd >= 0) { 9369 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP, 9370 mode != XDP_MODE_SKB); 9371 if (IS_ERR(old_prog)) { 9372 err = PTR_ERR(old_prog); 9373 old_prog = NULL; 9374 goto err_out; 9375 } 9376 } 9377 9378 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags); 9379 9380 err_out: 9381 if (err && new_prog) 9382 bpf_prog_put(new_prog); 9383 if (old_prog) 9384 bpf_prog_put(old_prog); 9385 return err; 9386 } 9387 9388 /** 9389 * dev_new_index - allocate an ifindex 9390 * @net: the applicable net namespace 9391 * 9392 * Returns a suitable unique value for a new device interface 9393 * number. The caller must hold the rtnl semaphore or the 9394 * dev_base_lock to be sure it remains unique. 9395 */ 9396 static int dev_new_index(struct net *net) 9397 { 9398 int ifindex = net->ifindex; 9399 9400 for (;;) { 9401 if (++ifindex <= 0) 9402 ifindex = 1; 9403 if (!__dev_get_by_index(net, ifindex)) 9404 return net->ifindex = ifindex; 9405 } 9406 } 9407 9408 /* Delayed registration/unregisteration */ 9409 static LIST_HEAD(net_todo_list); 9410 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq); 9411 9412 static void net_set_todo(struct net_device *dev) 9413 { 9414 list_add_tail(&dev->todo_list, &net_todo_list); 9415 dev_net(dev)->dev_unreg_count++; 9416 } 9417 9418 static void rollback_registered_many(struct list_head *head) 9419 { 9420 struct net_device *dev, *tmp; 9421 LIST_HEAD(close_head); 9422 9423 BUG_ON(dev_boot_phase); 9424 ASSERT_RTNL(); 9425 9426 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 9427 /* Some devices call without registering 9428 * for initialization unwind. Remove those 9429 * devices and proceed with the remaining. 9430 */ 9431 if (dev->reg_state == NETREG_UNINITIALIZED) { 9432 pr_debug("unregister_netdevice: device %s/%p never was registered\n", 9433 dev->name, dev); 9434 9435 WARN_ON(1); 9436 list_del(&dev->unreg_list); 9437 continue; 9438 } 9439 dev->dismantle = true; 9440 BUG_ON(dev->reg_state != NETREG_REGISTERED); 9441 } 9442 9443 /* If device is running, close it first. */ 9444 list_for_each_entry(dev, head, unreg_list) 9445 list_add_tail(&dev->close_list, &close_head); 9446 dev_close_many(&close_head, true); 9447 9448 list_for_each_entry(dev, head, unreg_list) { 9449 /* And unlink it from device chain. */ 9450 unlist_netdevice(dev); 9451 9452 dev->reg_state = NETREG_UNREGISTERING; 9453 } 9454 flush_all_backlogs(); 9455 9456 synchronize_net(); 9457 9458 list_for_each_entry(dev, head, unreg_list) { 9459 struct sk_buff *skb = NULL; 9460 9461 /* Shutdown queueing discipline. */ 9462 dev_shutdown(dev); 9463 9464 dev_xdp_uninstall(dev); 9465 9466 /* Notify protocols, that we are about to destroy 9467 * this device. They should clean all the things. 9468 */ 9469 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 9470 9471 if (!dev->rtnl_link_ops || 9472 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 9473 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0, 9474 GFP_KERNEL, NULL, 0); 9475 9476 /* 9477 * Flush the unicast and multicast chains 9478 */ 9479 dev_uc_flush(dev); 9480 dev_mc_flush(dev); 9481 9482 netdev_name_node_alt_flush(dev); 9483 netdev_name_node_free(dev->name_node); 9484 9485 if (dev->netdev_ops->ndo_uninit) 9486 dev->netdev_ops->ndo_uninit(dev); 9487 9488 if (skb) 9489 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL); 9490 9491 /* Notifier chain MUST detach us all upper devices. */ 9492 WARN_ON(netdev_has_any_upper_dev(dev)); 9493 WARN_ON(netdev_has_any_lower_dev(dev)); 9494 9495 /* Remove entries from kobject tree */ 9496 netdev_unregister_kobject(dev); 9497 #ifdef CONFIG_XPS 9498 /* Remove XPS queueing entries */ 9499 netif_reset_xps_queues_gt(dev, 0); 9500 #endif 9501 } 9502 9503 synchronize_net(); 9504 9505 list_for_each_entry(dev, head, unreg_list) 9506 dev_put(dev); 9507 } 9508 9509 static void rollback_registered(struct net_device *dev) 9510 { 9511 LIST_HEAD(single); 9512 9513 list_add(&dev->unreg_list, &single); 9514 rollback_registered_many(&single); 9515 list_del(&single); 9516 } 9517 9518 static netdev_features_t netdev_sync_upper_features(struct net_device *lower, 9519 struct net_device *upper, netdev_features_t features) 9520 { 9521 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9522 netdev_features_t feature; 9523 int feature_bit; 9524 9525 for_each_netdev_feature(upper_disables, feature_bit) { 9526 feature = __NETIF_F_BIT(feature_bit); 9527 if (!(upper->wanted_features & feature) 9528 && (features & feature)) { 9529 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n", 9530 &feature, upper->name); 9531 features &= ~feature; 9532 } 9533 } 9534 9535 return features; 9536 } 9537 9538 static void netdev_sync_lower_features(struct net_device *upper, 9539 struct net_device *lower, netdev_features_t features) 9540 { 9541 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES; 9542 netdev_features_t feature; 9543 int feature_bit; 9544 9545 for_each_netdev_feature(upper_disables, feature_bit) { 9546 feature = __NETIF_F_BIT(feature_bit); 9547 if (!(features & feature) && (lower->features & feature)) { 9548 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n", 9549 &feature, lower->name); 9550 lower->wanted_features &= ~feature; 9551 __netdev_update_features(lower); 9552 9553 if (unlikely(lower->features & feature)) 9554 netdev_WARN(upper, "failed to disable %pNF on %s!\n", 9555 &feature, lower->name); 9556 else 9557 netdev_features_change(lower); 9558 } 9559 } 9560 } 9561 9562 static netdev_features_t netdev_fix_features(struct net_device *dev, 9563 netdev_features_t features) 9564 { 9565 /* Fix illegal checksum combinations */ 9566 if ((features & NETIF_F_HW_CSUM) && 9567 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 9568 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 9569 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 9570 } 9571 9572 /* TSO requires that SG is present as well. */ 9573 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 9574 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 9575 features &= ~NETIF_F_ALL_TSO; 9576 } 9577 9578 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) && 9579 !(features & NETIF_F_IP_CSUM)) { 9580 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n"); 9581 features &= ~NETIF_F_TSO; 9582 features &= ~NETIF_F_TSO_ECN; 9583 } 9584 9585 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) && 9586 !(features & NETIF_F_IPV6_CSUM)) { 9587 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n"); 9588 features &= ~NETIF_F_TSO6; 9589 } 9590 9591 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */ 9592 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO)) 9593 features &= ~NETIF_F_TSO_MANGLEID; 9594 9595 /* TSO ECN requires that TSO is present as well. */ 9596 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 9597 features &= ~NETIF_F_TSO_ECN; 9598 9599 /* Software GSO depends on SG. */ 9600 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 9601 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 9602 features &= ~NETIF_F_GSO; 9603 } 9604 9605 /* GSO partial features require GSO partial be set */ 9606 if ((features & dev->gso_partial_features) && 9607 !(features & NETIF_F_GSO_PARTIAL)) { 9608 netdev_dbg(dev, 9609 "Dropping partially supported GSO features since no GSO partial.\n"); 9610 features &= ~dev->gso_partial_features; 9611 } 9612 9613 if (!(features & NETIF_F_RXCSUM)) { 9614 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet 9615 * successfully merged by hardware must also have the 9616 * checksum verified by hardware. If the user does not 9617 * want to enable RXCSUM, logically, we should disable GRO_HW. 9618 */ 9619 if (features & NETIF_F_GRO_HW) { 9620 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n"); 9621 features &= ~NETIF_F_GRO_HW; 9622 } 9623 } 9624 9625 /* LRO/HW-GRO features cannot be combined with RX-FCS */ 9626 if (features & NETIF_F_RXFCS) { 9627 if (features & NETIF_F_LRO) { 9628 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n"); 9629 features &= ~NETIF_F_LRO; 9630 } 9631 9632 if (features & NETIF_F_GRO_HW) { 9633 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n"); 9634 features &= ~NETIF_F_GRO_HW; 9635 } 9636 } 9637 9638 return features; 9639 } 9640 9641 int __netdev_update_features(struct net_device *dev) 9642 { 9643 struct net_device *upper, *lower; 9644 netdev_features_t features; 9645 struct list_head *iter; 9646 int err = -1; 9647 9648 ASSERT_RTNL(); 9649 9650 features = netdev_get_wanted_features(dev); 9651 9652 if (dev->netdev_ops->ndo_fix_features) 9653 features = dev->netdev_ops->ndo_fix_features(dev, features); 9654 9655 /* driver might be less strict about feature dependencies */ 9656 features = netdev_fix_features(dev, features); 9657 9658 /* some features can't be enabled if they're off on an upper device */ 9659 netdev_for_each_upper_dev_rcu(dev, upper, iter) 9660 features = netdev_sync_upper_features(dev, upper, features); 9661 9662 if (dev->features == features) 9663 goto sync_lower; 9664 9665 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n", 9666 &dev->features, &features); 9667 9668 if (dev->netdev_ops->ndo_set_features) 9669 err = dev->netdev_ops->ndo_set_features(dev, features); 9670 else 9671 err = 0; 9672 9673 if (unlikely(err < 0)) { 9674 netdev_err(dev, 9675 "set_features() failed (%d); wanted %pNF, left %pNF\n", 9676 err, &features, &dev->features); 9677 /* return non-0 since some features might have changed and 9678 * it's better to fire a spurious notification than miss it 9679 */ 9680 return -1; 9681 } 9682 9683 sync_lower: 9684 /* some features must be disabled on lower devices when disabled 9685 * on an upper device (think: bonding master or bridge) 9686 */ 9687 netdev_for_each_lower_dev(dev, lower, iter) 9688 netdev_sync_lower_features(dev, lower, features); 9689 9690 if (!err) { 9691 netdev_features_t diff = features ^ dev->features; 9692 9693 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) { 9694 /* udp_tunnel_{get,drop}_rx_info both need 9695 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the 9696 * device, or they won't do anything. 9697 * Thus we need to update dev->features 9698 * *before* calling udp_tunnel_get_rx_info, 9699 * but *after* calling udp_tunnel_drop_rx_info. 9700 */ 9701 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) { 9702 dev->features = features; 9703 udp_tunnel_get_rx_info(dev); 9704 } else { 9705 udp_tunnel_drop_rx_info(dev); 9706 } 9707 } 9708 9709 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) { 9710 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) { 9711 dev->features = features; 9712 err |= vlan_get_rx_ctag_filter_info(dev); 9713 } else { 9714 vlan_drop_rx_ctag_filter_info(dev); 9715 } 9716 } 9717 9718 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) { 9719 if (features & NETIF_F_HW_VLAN_STAG_FILTER) { 9720 dev->features = features; 9721 err |= vlan_get_rx_stag_filter_info(dev); 9722 } else { 9723 vlan_drop_rx_stag_filter_info(dev); 9724 } 9725 } 9726 9727 dev->features = features; 9728 } 9729 9730 return err < 0 ? 0 : 1; 9731 } 9732 9733 /** 9734 * netdev_update_features - recalculate device features 9735 * @dev: the device to check 9736 * 9737 * Recalculate dev->features set and send notifications if it 9738 * has changed. Should be called after driver or hardware dependent 9739 * conditions might have changed that influence the features. 9740 */ 9741 void netdev_update_features(struct net_device *dev) 9742 { 9743 if (__netdev_update_features(dev)) 9744 netdev_features_change(dev); 9745 } 9746 EXPORT_SYMBOL(netdev_update_features); 9747 9748 /** 9749 * netdev_change_features - recalculate device features 9750 * @dev: the device to check 9751 * 9752 * Recalculate dev->features set and send notifications even 9753 * if they have not changed. Should be called instead of 9754 * netdev_update_features() if also dev->vlan_features might 9755 * have changed to allow the changes to be propagated to stacked 9756 * VLAN devices. 9757 */ 9758 void netdev_change_features(struct net_device *dev) 9759 { 9760 __netdev_update_features(dev); 9761 netdev_features_change(dev); 9762 } 9763 EXPORT_SYMBOL(netdev_change_features); 9764 9765 /** 9766 * netif_stacked_transfer_operstate - transfer operstate 9767 * @rootdev: the root or lower level device to transfer state from 9768 * @dev: the device to transfer operstate to 9769 * 9770 * Transfer operational state from root to device. This is normally 9771 * called when a stacking relationship exists between the root 9772 * device and the device(a leaf device). 9773 */ 9774 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 9775 struct net_device *dev) 9776 { 9777 if (rootdev->operstate == IF_OPER_DORMANT) 9778 netif_dormant_on(dev); 9779 else 9780 netif_dormant_off(dev); 9781 9782 if (rootdev->operstate == IF_OPER_TESTING) 9783 netif_testing_on(dev); 9784 else 9785 netif_testing_off(dev); 9786 9787 if (netif_carrier_ok(rootdev)) 9788 netif_carrier_on(dev); 9789 else 9790 netif_carrier_off(dev); 9791 } 9792 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 9793 9794 static int netif_alloc_rx_queues(struct net_device *dev) 9795 { 9796 unsigned int i, count = dev->num_rx_queues; 9797 struct netdev_rx_queue *rx; 9798 size_t sz = count * sizeof(*rx); 9799 int err = 0; 9800 9801 BUG_ON(count < 1); 9802 9803 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9804 if (!rx) 9805 return -ENOMEM; 9806 9807 dev->_rx = rx; 9808 9809 for (i = 0; i < count; i++) { 9810 rx[i].dev = dev; 9811 9812 /* XDP RX-queue setup */ 9813 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i); 9814 if (err < 0) 9815 goto err_rxq_info; 9816 } 9817 return 0; 9818 9819 err_rxq_info: 9820 /* Rollback successful reg's and free other resources */ 9821 while (i--) 9822 xdp_rxq_info_unreg(&rx[i].xdp_rxq); 9823 kvfree(dev->_rx); 9824 dev->_rx = NULL; 9825 return err; 9826 } 9827 9828 static void netif_free_rx_queues(struct net_device *dev) 9829 { 9830 unsigned int i, count = dev->num_rx_queues; 9831 9832 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */ 9833 if (!dev->_rx) 9834 return; 9835 9836 for (i = 0; i < count; i++) 9837 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq); 9838 9839 kvfree(dev->_rx); 9840 } 9841 9842 static void netdev_init_one_queue(struct net_device *dev, 9843 struct netdev_queue *queue, void *_unused) 9844 { 9845 /* Initialize queue lock */ 9846 spin_lock_init(&queue->_xmit_lock); 9847 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 9848 queue->xmit_lock_owner = -1; 9849 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 9850 queue->dev = dev; 9851 #ifdef CONFIG_BQL 9852 dql_init(&queue->dql, HZ); 9853 #endif 9854 } 9855 9856 static void netif_free_tx_queues(struct net_device *dev) 9857 { 9858 kvfree(dev->_tx); 9859 } 9860 9861 static int netif_alloc_netdev_queues(struct net_device *dev) 9862 { 9863 unsigned int count = dev->num_tx_queues; 9864 struct netdev_queue *tx; 9865 size_t sz = count * sizeof(*tx); 9866 9867 if (count < 1 || count > 0xffff) 9868 return -EINVAL; 9869 9870 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 9871 if (!tx) 9872 return -ENOMEM; 9873 9874 dev->_tx = tx; 9875 9876 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 9877 spin_lock_init(&dev->tx_global_lock); 9878 9879 return 0; 9880 } 9881 9882 void netif_tx_stop_all_queues(struct net_device *dev) 9883 { 9884 unsigned int i; 9885 9886 for (i = 0; i < dev->num_tx_queues; i++) { 9887 struct netdev_queue *txq = netdev_get_tx_queue(dev, i); 9888 9889 netif_tx_stop_queue(txq); 9890 } 9891 } 9892 EXPORT_SYMBOL(netif_tx_stop_all_queues); 9893 9894 /** 9895 * register_netdevice - register a network device 9896 * @dev: device to register 9897 * 9898 * Take a completed network device structure and add it to the kernel 9899 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 9900 * chain. 0 is returned on success. A negative errno code is returned 9901 * on a failure to set up the device, or if the name is a duplicate. 9902 * 9903 * Callers must hold the rtnl semaphore. You may want 9904 * register_netdev() instead of this. 9905 * 9906 * BUGS: 9907 * The locking appears insufficient to guarantee two parallel registers 9908 * will not get the same name. 9909 */ 9910 9911 int register_netdevice(struct net_device *dev) 9912 { 9913 int ret; 9914 struct net *net = dev_net(dev); 9915 9916 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE < 9917 NETDEV_FEATURE_COUNT); 9918 BUG_ON(dev_boot_phase); 9919 ASSERT_RTNL(); 9920 9921 might_sleep(); 9922 9923 /* When net_device's are persistent, this will be fatal. */ 9924 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 9925 BUG_ON(!net); 9926 9927 ret = ethtool_check_ops(dev->ethtool_ops); 9928 if (ret) 9929 return ret; 9930 9931 spin_lock_init(&dev->addr_list_lock); 9932 netdev_set_addr_lockdep_class(dev); 9933 9934 ret = dev_get_valid_name(net, dev, dev->name); 9935 if (ret < 0) 9936 goto out; 9937 9938 ret = -ENOMEM; 9939 dev->name_node = netdev_name_node_head_alloc(dev); 9940 if (!dev->name_node) 9941 goto out; 9942 9943 /* Init, if this function is available */ 9944 if (dev->netdev_ops->ndo_init) { 9945 ret = dev->netdev_ops->ndo_init(dev); 9946 if (ret) { 9947 if (ret > 0) 9948 ret = -EIO; 9949 goto err_free_name; 9950 } 9951 } 9952 9953 if (((dev->hw_features | dev->features) & 9954 NETIF_F_HW_VLAN_CTAG_FILTER) && 9955 (!dev->netdev_ops->ndo_vlan_rx_add_vid || 9956 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) { 9957 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n"); 9958 ret = -EINVAL; 9959 goto err_uninit; 9960 } 9961 9962 ret = -EBUSY; 9963 if (!dev->ifindex) 9964 dev->ifindex = dev_new_index(net); 9965 else if (__dev_get_by_index(net, dev->ifindex)) 9966 goto err_uninit; 9967 9968 /* Transfer changeable features to wanted_features and enable 9969 * software offloads (GSO and GRO). 9970 */ 9971 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF); 9972 dev->features |= NETIF_F_SOFT_FEATURES; 9973 9974 if (dev->netdev_ops->ndo_udp_tunnel_add) { 9975 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9976 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT; 9977 } 9978 9979 dev->wanted_features = dev->features & dev->hw_features; 9980 9981 if (!(dev->flags & IFF_LOOPBACK)) 9982 dev->hw_features |= NETIF_F_NOCACHE_COPY; 9983 9984 /* If IPv4 TCP segmentation offload is supported we should also 9985 * allow the device to enable segmenting the frame with the option 9986 * of ignoring a static IP ID value. This doesn't enable the 9987 * feature itself but allows the user to enable it later. 9988 */ 9989 if (dev->hw_features & NETIF_F_TSO) 9990 dev->hw_features |= NETIF_F_TSO_MANGLEID; 9991 if (dev->vlan_features & NETIF_F_TSO) 9992 dev->vlan_features |= NETIF_F_TSO_MANGLEID; 9993 if (dev->mpls_features & NETIF_F_TSO) 9994 dev->mpls_features |= NETIF_F_TSO_MANGLEID; 9995 if (dev->hw_enc_features & NETIF_F_TSO) 9996 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID; 9997 9998 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices. 9999 */ 10000 dev->vlan_features |= NETIF_F_HIGHDMA; 10001 10002 /* Make NETIF_F_SG inheritable to tunnel devices. 10003 */ 10004 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL; 10005 10006 /* Make NETIF_F_SG inheritable to MPLS. 10007 */ 10008 dev->mpls_features |= NETIF_F_SG; 10009 10010 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 10011 ret = notifier_to_errno(ret); 10012 if (ret) 10013 goto err_uninit; 10014 10015 ret = netdev_register_kobject(dev); 10016 if (ret) { 10017 dev->reg_state = NETREG_UNREGISTERED; 10018 goto err_uninit; 10019 } 10020 dev->reg_state = NETREG_REGISTERED; 10021 10022 __netdev_update_features(dev); 10023 10024 /* 10025 * Default initial state at registry is that the 10026 * device is present. 10027 */ 10028 10029 set_bit(__LINK_STATE_PRESENT, &dev->state); 10030 10031 linkwatch_init_dev(dev); 10032 10033 dev_init_scheduler(dev); 10034 dev_hold(dev); 10035 list_netdevice(dev); 10036 add_device_randomness(dev->dev_addr, dev->addr_len); 10037 10038 /* If the device has permanent device address, driver should 10039 * set dev_addr and also addr_assign_type should be set to 10040 * NET_ADDR_PERM (default value). 10041 */ 10042 if (dev->addr_assign_type == NET_ADDR_PERM) 10043 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 10044 10045 /* Notify protocols, that a new device appeared. */ 10046 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 10047 ret = notifier_to_errno(ret); 10048 if (ret) { 10049 rollback_registered(dev); 10050 rcu_barrier(); 10051 10052 dev->reg_state = NETREG_UNREGISTERED; 10053 /* We should put the kobject that hold in 10054 * netdev_unregister_kobject(), otherwise 10055 * the net device cannot be freed when 10056 * driver calls free_netdev(), because the 10057 * kobject is being hold. 10058 */ 10059 kobject_put(&dev->dev.kobj); 10060 } 10061 /* 10062 * Prevent userspace races by waiting until the network 10063 * device is fully setup before sending notifications. 10064 */ 10065 if (!dev->rtnl_link_ops || 10066 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 10067 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10068 10069 out: 10070 return ret; 10071 10072 err_uninit: 10073 if (dev->netdev_ops->ndo_uninit) 10074 dev->netdev_ops->ndo_uninit(dev); 10075 if (dev->priv_destructor) 10076 dev->priv_destructor(dev); 10077 err_free_name: 10078 netdev_name_node_free(dev->name_node); 10079 goto out; 10080 } 10081 EXPORT_SYMBOL(register_netdevice); 10082 10083 /** 10084 * init_dummy_netdev - init a dummy network device for NAPI 10085 * @dev: device to init 10086 * 10087 * This takes a network device structure and initialize the minimum 10088 * amount of fields so it can be used to schedule NAPI polls without 10089 * registering a full blown interface. This is to be used by drivers 10090 * that need to tie several hardware interfaces to a single NAPI 10091 * poll scheduler due to HW limitations. 10092 */ 10093 int init_dummy_netdev(struct net_device *dev) 10094 { 10095 /* Clear everything. Note we don't initialize spinlocks 10096 * are they aren't supposed to be taken by any of the 10097 * NAPI code and this dummy netdev is supposed to be 10098 * only ever used for NAPI polls 10099 */ 10100 memset(dev, 0, sizeof(struct net_device)); 10101 10102 /* make sure we BUG if trying to hit standard 10103 * register/unregister code path 10104 */ 10105 dev->reg_state = NETREG_DUMMY; 10106 10107 /* NAPI wants this */ 10108 INIT_LIST_HEAD(&dev->napi_list); 10109 10110 /* a dummy interface is started by default */ 10111 set_bit(__LINK_STATE_PRESENT, &dev->state); 10112 set_bit(__LINK_STATE_START, &dev->state); 10113 10114 /* napi_busy_loop stats accounting wants this */ 10115 dev_net_set(dev, &init_net); 10116 10117 /* Note : We dont allocate pcpu_refcnt for dummy devices, 10118 * because users of this 'device' dont need to change 10119 * its refcount. 10120 */ 10121 10122 return 0; 10123 } 10124 EXPORT_SYMBOL_GPL(init_dummy_netdev); 10125 10126 10127 /** 10128 * register_netdev - register a network device 10129 * @dev: device to register 10130 * 10131 * Take a completed network device structure and add it to the kernel 10132 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 10133 * chain. 0 is returned on success. A negative errno code is returned 10134 * on a failure to set up the device, or if the name is a duplicate. 10135 * 10136 * This is a wrapper around register_netdevice that takes the rtnl semaphore 10137 * and expands the device name if you passed a format string to 10138 * alloc_netdev. 10139 */ 10140 int register_netdev(struct net_device *dev) 10141 { 10142 int err; 10143 10144 if (rtnl_lock_killable()) 10145 return -EINTR; 10146 err = register_netdevice(dev); 10147 rtnl_unlock(); 10148 return err; 10149 } 10150 EXPORT_SYMBOL(register_netdev); 10151 10152 int netdev_refcnt_read(const struct net_device *dev) 10153 { 10154 int i, refcnt = 0; 10155 10156 for_each_possible_cpu(i) 10157 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 10158 return refcnt; 10159 } 10160 EXPORT_SYMBOL(netdev_refcnt_read); 10161 10162 #define WAIT_REFS_MIN_MSECS 1 10163 #define WAIT_REFS_MAX_MSECS 250 10164 /** 10165 * netdev_wait_allrefs - wait until all references are gone. 10166 * @dev: target net_device 10167 * 10168 * This is called when unregistering network devices. 10169 * 10170 * Any protocol or device that holds a reference should register 10171 * for netdevice notification, and cleanup and put back the 10172 * reference if they receive an UNREGISTER event. 10173 * We can get stuck here if buggy protocols don't correctly 10174 * call dev_put. 10175 */ 10176 static void netdev_wait_allrefs(struct net_device *dev) 10177 { 10178 unsigned long rebroadcast_time, warning_time; 10179 int wait = 0, refcnt; 10180 10181 linkwatch_forget_dev(dev); 10182 10183 rebroadcast_time = warning_time = jiffies; 10184 refcnt = netdev_refcnt_read(dev); 10185 10186 while (refcnt != 0) { 10187 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 10188 rtnl_lock(); 10189 10190 /* Rebroadcast unregister notification */ 10191 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10192 10193 __rtnl_unlock(); 10194 rcu_barrier(); 10195 rtnl_lock(); 10196 10197 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 10198 &dev->state)) { 10199 /* We must not have linkwatch events 10200 * pending on unregister. If this 10201 * happens, we simply run the queue 10202 * unscheduled, resulting in a noop 10203 * for this device. 10204 */ 10205 linkwatch_run_queue(); 10206 } 10207 10208 __rtnl_unlock(); 10209 10210 rebroadcast_time = jiffies; 10211 } 10212 10213 if (!wait) { 10214 rcu_barrier(); 10215 wait = WAIT_REFS_MIN_MSECS; 10216 } else { 10217 msleep(wait); 10218 wait = min(wait << 1, WAIT_REFS_MAX_MSECS); 10219 } 10220 10221 refcnt = netdev_refcnt_read(dev); 10222 10223 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) { 10224 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n", 10225 dev->name, refcnt); 10226 warning_time = jiffies; 10227 } 10228 } 10229 } 10230 10231 /* The sequence is: 10232 * 10233 * rtnl_lock(); 10234 * ... 10235 * register_netdevice(x1); 10236 * register_netdevice(x2); 10237 * ... 10238 * unregister_netdevice(y1); 10239 * unregister_netdevice(y2); 10240 * ... 10241 * rtnl_unlock(); 10242 * free_netdev(y1); 10243 * free_netdev(y2); 10244 * 10245 * We are invoked by rtnl_unlock(). 10246 * This allows us to deal with problems: 10247 * 1) We can delete sysfs objects which invoke hotplug 10248 * without deadlocking with linkwatch via keventd. 10249 * 2) Since we run with the RTNL semaphore not held, we can sleep 10250 * safely in order to wait for the netdev refcnt to drop to zero. 10251 * 10252 * We must not return until all unregister events added during 10253 * the interval the lock was held have been completed. 10254 */ 10255 void netdev_run_todo(void) 10256 { 10257 struct list_head list; 10258 #ifdef CONFIG_LOCKDEP 10259 struct list_head unlink_list; 10260 10261 list_replace_init(&net_unlink_list, &unlink_list); 10262 10263 while (!list_empty(&unlink_list)) { 10264 struct net_device *dev = list_first_entry(&unlink_list, 10265 struct net_device, 10266 unlink_list); 10267 list_del_init(&dev->unlink_list); 10268 dev->nested_level = dev->lower_level - 1; 10269 } 10270 #endif 10271 10272 /* Snapshot list, allow later requests */ 10273 list_replace_init(&net_todo_list, &list); 10274 10275 __rtnl_unlock(); 10276 10277 10278 /* Wait for rcu callbacks to finish before next phase */ 10279 if (!list_empty(&list)) 10280 rcu_barrier(); 10281 10282 while (!list_empty(&list)) { 10283 struct net_device *dev 10284 = list_first_entry(&list, struct net_device, todo_list); 10285 list_del(&dev->todo_list); 10286 10287 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 10288 pr_err("network todo '%s' but state %d\n", 10289 dev->name, dev->reg_state); 10290 dump_stack(); 10291 continue; 10292 } 10293 10294 dev->reg_state = NETREG_UNREGISTERED; 10295 10296 netdev_wait_allrefs(dev); 10297 10298 /* paranoia */ 10299 BUG_ON(netdev_refcnt_read(dev)); 10300 BUG_ON(!list_empty(&dev->ptype_all)); 10301 BUG_ON(!list_empty(&dev->ptype_specific)); 10302 WARN_ON(rcu_access_pointer(dev->ip_ptr)); 10303 WARN_ON(rcu_access_pointer(dev->ip6_ptr)); 10304 #if IS_ENABLED(CONFIG_DECNET) 10305 WARN_ON(dev->dn_ptr); 10306 #endif 10307 if (dev->priv_destructor) 10308 dev->priv_destructor(dev); 10309 if (dev->needs_free_netdev) 10310 free_netdev(dev); 10311 10312 /* Report a network device has been unregistered */ 10313 rtnl_lock(); 10314 dev_net(dev)->dev_unreg_count--; 10315 __rtnl_unlock(); 10316 wake_up(&netdev_unregistering_wq); 10317 10318 /* Free network device */ 10319 kobject_put(&dev->dev.kobj); 10320 } 10321 } 10322 10323 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has 10324 * all the same fields in the same order as net_device_stats, with only 10325 * the type differing, but rtnl_link_stats64 may have additional fields 10326 * at the end for newer counters. 10327 */ 10328 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 10329 const struct net_device_stats *netdev_stats) 10330 { 10331 #if BITS_PER_LONG == 64 10332 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats)); 10333 memcpy(stats64, netdev_stats, sizeof(*netdev_stats)); 10334 /* zero out counters that only exist in rtnl_link_stats64 */ 10335 memset((char *)stats64 + sizeof(*netdev_stats), 0, 10336 sizeof(*stats64) - sizeof(*netdev_stats)); 10337 #else 10338 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long); 10339 const unsigned long *src = (const unsigned long *)netdev_stats; 10340 u64 *dst = (u64 *)stats64; 10341 10342 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64)); 10343 for (i = 0; i < n; i++) 10344 dst[i] = src[i]; 10345 /* zero out counters that only exist in rtnl_link_stats64 */ 10346 memset((char *)stats64 + n * sizeof(u64), 0, 10347 sizeof(*stats64) - n * sizeof(u64)); 10348 #endif 10349 } 10350 EXPORT_SYMBOL(netdev_stats_to_stats64); 10351 10352 /** 10353 * dev_get_stats - get network device statistics 10354 * @dev: device to get statistics from 10355 * @storage: place to store stats 10356 * 10357 * Get network statistics from device. Return @storage. 10358 * The device driver may provide its own method by setting 10359 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 10360 * otherwise the internal statistics structure is used. 10361 */ 10362 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 10363 struct rtnl_link_stats64 *storage) 10364 { 10365 const struct net_device_ops *ops = dev->netdev_ops; 10366 10367 if (ops->ndo_get_stats64) { 10368 memset(storage, 0, sizeof(*storage)); 10369 ops->ndo_get_stats64(dev, storage); 10370 } else if (ops->ndo_get_stats) { 10371 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 10372 } else { 10373 netdev_stats_to_stats64(storage, &dev->stats); 10374 } 10375 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped); 10376 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped); 10377 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler); 10378 return storage; 10379 } 10380 EXPORT_SYMBOL(dev_get_stats); 10381 10382 /** 10383 * dev_fetch_sw_netstats - get per-cpu network device statistics 10384 * @s: place to store stats 10385 * @netstats: per-cpu network stats to read from 10386 * 10387 * Read per-cpu network statistics and populate the related fields in @s. 10388 */ 10389 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s, 10390 const struct pcpu_sw_netstats __percpu *netstats) 10391 { 10392 int cpu; 10393 10394 for_each_possible_cpu(cpu) { 10395 const struct pcpu_sw_netstats *stats; 10396 struct pcpu_sw_netstats tmp; 10397 unsigned int start; 10398 10399 stats = per_cpu_ptr(netstats, cpu); 10400 do { 10401 start = u64_stats_fetch_begin_irq(&stats->syncp); 10402 tmp.rx_packets = stats->rx_packets; 10403 tmp.rx_bytes = stats->rx_bytes; 10404 tmp.tx_packets = stats->tx_packets; 10405 tmp.tx_bytes = stats->tx_bytes; 10406 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 10407 10408 s->rx_packets += tmp.rx_packets; 10409 s->rx_bytes += tmp.rx_bytes; 10410 s->tx_packets += tmp.tx_packets; 10411 s->tx_bytes += tmp.tx_bytes; 10412 } 10413 } 10414 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats); 10415 10416 /** 10417 * dev_get_tstats64 - ndo_get_stats64 implementation 10418 * @dev: device to get statistics from 10419 * @s: place to store stats 10420 * 10421 * Populate @s from dev->stats and dev->tstats. Can be used as 10422 * ndo_get_stats64() callback. 10423 */ 10424 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s) 10425 { 10426 netdev_stats_to_stats64(s, &dev->stats); 10427 dev_fetch_sw_netstats(s, dev->tstats); 10428 } 10429 EXPORT_SYMBOL_GPL(dev_get_tstats64); 10430 10431 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 10432 { 10433 struct netdev_queue *queue = dev_ingress_queue(dev); 10434 10435 #ifdef CONFIG_NET_CLS_ACT 10436 if (queue) 10437 return queue; 10438 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 10439 if (!queue) 10440 return NULL; 10441 netdev_init_one_queue(dev, queue, NULL); 10442 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc); 10443 queue->qdisc_sleeping = &noop_qdisc; 10444 rcu_assign_pointer(dev->ingress_queue, queue); 10445 #endif 10446 return queue; 10447 } 10448 10449 static const struct ethtool_ops default_ethtool_ops; 10450 10451 void netdev_set_default_ethtool_ops(struct net_device *dev, 10452 const struct ethtool_ops *ops) 10453 { 10454 if (dev->ethtool_ops == &default_ethtool_ops) 10455 dev->ethtool_ops = ops; 10456 } 10457 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops); 10458 10459 void netdev_freemem(struct net_device *dev) 10460 { 10461 char *addr = (char *)dev - dev->padded; 10462 10463 kvfree(addr); 10464 } 10465 10466 /** 10467 * alloc_netdev_mqs - allocate network device 10468 * @sizeof_priv: size of private data to allocate space for 10469 * @name: device name format string 10470 * @name_assign_type: origin of device name 10471 * @setup: callback to initialize device 10472 * @txqs: the number of TX subqueues to allocate 10473 * @rxqs: the number of RX subqueues to allocate 10474 * 10475 * Allocates a struct net_device with private data area for driver use 10476 * and performs basic initialization. Also allocates subqueue structs 10477 * for each queue on the device. 10478 */ 10479 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 10480 unsigned char name_assign_type, 10481 void (*setup)(struct net_device *), 10482 unsigned int txqs, unsigned int rxqs) 10483 { 10484 struct net_device *dev; 10485 unsigned int alloc_size; 10486 struct net_device *p; 10487 10488 BUG_ON(strlen(name) >= sizeof(dev->name)); 10489 10490 if (txqs < 1) { 10491 pr_err("alloc_netdev: Unable to allocate device with zero queues\n"); 10492 return NULL; 10493 } 10494 10495 if (rxqs < 1) { 10496 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n"); 10497 return NULL; 10498 } 10499 10500 alloc_size = sizeof(struct net_device); 10501 if (sizeof_priv) { 10502 /* ensure 32-byte alignment of private area */ 10503 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 10504 alloc_size += sizeof_priv; 10505 } 10506 /* ensure 32-byte alignment of whole construct */ 10507 alloc_size += NETDEV_ALIGN - 1; 10508 10509 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL); 10510 if (!p) 10511 return NULL; 10512 10513 dev = PTR_ALIGN(p, NETDEV_ALIGN); 10514 dev->padded = (char *)dev - (char *)p; 10515 10516 dev->pcpu_refcnt = alloc_percpu(int); 10517 if (!dev->pcpu_refcnt) 10518 goto free_dev; 10519 10520 if (dev_addr_init(dev)) 10521 goto free_pcpu; 10522 10523 dev_mc_init(dev); 10524 dev_uc_init(dev); 10525 10526 dev_net_set(dev, &init_net); 10527 10528 dev->gso_max_size = GSO_MAX_SIZE; 10529 dev->gso_max_segs = GSO_MAX_SEGS; 10530 dev->upper_level = 1; 10531 dev->lower_level = 1; 10532 #ifdef CONFIG_LOCKDEP 10533 dev->nested_level = 0; 10534 INIT_LIST_HEAD(&dev->unlink_list); 10535 #endif 10536 10537 INIT_LIST_HEAD(&dev->napi_list); 10538 INIT_LIST_HEAD(&dev->unreg_list); 10539 INIT_LIST_HEAD(&dev->close_list); 10540 INIT_LIST_HEAD(&dev->link_watch_list); 10541 INIT_LIST_HEAD(&dev->adj_list.upper); 10542 INIT_LIST_HEAD(&dev->adj_list.lower); 10543 INIT_LIST_HEAD(&dev->ptype_all); 10544 INIT_LIST_HEAD(&dev->ptype_specific); 10545 INIT_LIST_HEAD(&dev->net_notifier_list); 10546 #ifdef CONFIG_NET_SCHED 10547 hash_init(dev->qdisc_hash); 10548 #endif 10549 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM; 10550 setup(dev); 10551 10552 if (!dev->tx_queue_len) { 10553 dev->priv_flags |= IFF_NO_QUEUE; 10554 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN; 10555 } 10556 10557 dev->num_tx_queues = txqs; 10558 dev->real_num_tx_queues = txqs; 10559 if (netif_alloc_netdev_queues(dev)) 10560 goto free_all; 10561 10562 dev->num_rx_queues = rxqs; 10563 dev->real_num_rx_queues = rxqs; 10564 if (netif_alloc_rx_queues(dev)) 10565 goto free_all; 10566 10567 strcpy(dev->name, name); 10568 dev->name_assign_type = name_assign_type; 10569 dev->group = INIT_NETDEV_GROUP; 10570 if (!dev->ethtool_ops) 10571 dev->ethtool_ops = &default_ethtool_ops; 10572 10573 nf_hook_ingress_init(dev); 10574 10575 return dev; 10576 10577 free_all: 10578 free_netdev(dev); 10579 return NULL; 10580 10581 free_pcpu: 10582 free_percpu(dev->pcpu_refcnt); 10583 free_dev: 10584 netdev_freemem(dev); 10585 return NULL; 10586 } 10587 EXPORT_SYMBOL(alloc_netdev_mqs); 10588 10589 /** 10590 * free_netdev - free network device 10591 * @dev: device 10592 * 10593 * This function does the last stage of destroying an allocated device 10594 * interface. The reference to the device object is released. If this 10595 * is the last reference then it will be freed.Must be called in process 10596 * context. 10597 */ 10598 void free_netdev(struct net_device *dev) 10599 { 10600 struct napi_struct *p, *n; 10601 10602 might_sleep(); 10603 netif_free_tx_queues(dev); 10604 netif_free_rx_queues(dev); 10605 10606 kfree(rcu_dereference_protected(dev->ingress_queue, 1)); 10607 10608 /* Flush device addresses */ 10609 dev_addr_flush(dev); 10610 10611 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 10612 netif_napi_del(p); 10613 10614 free_percpu(dev->pcpu_refcnt); 10615 dev->pcpu_refcnt = NULL; 10616 free_percpu(dev->xdp_bulkq); 10617 dev->xdp_bulkq = NULL; 10618 10619 /* Compatibility with error handling in drivers */ 10620 if (dev->reg_state == NETREG_UNINITIALIZED) { 10621 netdev_freemem(dev); 10622 return; 10623 } 10624 10625 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 10626 dev->reg_state = NETREG_RELEASED; 10627 10628 /* will free via device release */ 10629 put_device(&dev->dev); 10630 } 10631 EXPORT_SYMBOL(free_netdev); 10632 10633 /** 10634 * synchronize_net - Synchronize with packet receive processing 10635 * 10636 * Wait for packets currently being received to be done. 10637 * Does not block later packets from starting. 10638 */ 10639 void synchronize_net(void) 10640 { 10641 might_sleep(); 10642 if (rtnl_is_locked()) 10643 synchronize_rcu_expedited(); 10644 else 10645 synchronize_rcu(); 10646 } 10647 EXPORT_SYMBOL(synchronize_net); 10648 10649 /** 10650 * unregister_netdevice_queue - remove device from the kernel 10651 * @dev: device 10652 * @head: list 10653 * 10654 * This function shuts down a device interface and removes it 10655 * from the kernel tables. 10656 * If head not NULL, device is queued to be unregistered later. 10657 * 10658 * Callers must hold the rtnl semaphore. You may want 10659 * unregister_netdev() instead of this. 10660 */ 10661 10662 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 10663 { 10664 ASSERT_RTNL(); 10665 10666 if (head) { 10667 list_move_tail(&dev->unreg_list, head); 10668 } else { 10669 rollback_registered(dev); 10670 /* Finish processing unregister after unlock */ 10671 net_set_todo(dev); 10672 } 10673 } 10674 EXPORT_SYMBOL(unregister_netdevice_queue); 10675 10676 /** 10677 * unregister_netdevice_many - unregister many devices 10678 * @head: list of devices 10679 * 10680 * Note: As most callers use a stack allocated list_head, 10681 * we force a list_del() to make sure stack wont be corrupted later. 10682 */ 10683 void unregister_netdevice_many(struct list_head *head) 10684 { 10685 struct net_device *dev; 10686 10687 if (!list_empty(head)) { 10688 rollback_registered_many(head); 10689 list_for_each_entry(dev, head, unreg_list) 10690 net_set_todo(dev); 10691 list_del(head); 10692 } 10693 } 10694 EXPORT_SYMBOL(unregister_netdevice_many); 10695 10696 /** 10697 * unregister_netdev - remove device from the kernel 10698 * @dev: device 10699 * 10700 * This function shuts down a device interface and removes it 10701 * from the kernel tables. 10702 * 10703 * This is just a wrapper for unregister_netdevice that takes 10704 * the rtnl semaphore. In general you want to use this and not 10705 * unregister_netdevice. 10706 */ 10707 void unregister_netdev(struct net_device *dev) 10708 { 10709 rtnl_lock(); 10710 unregister_netdevice(dev); 10711 rtnl_unlock(); 10712 } 10713 EXPORT_SYMBOL(unregister_netdev); 10714 10715 /** 10716 * dev_change_net_namespace - move device to different nethost namespace 10717 * @dev: device 10718 * @net: network namespace 10719 * @pat: If not NULL name pattern to try if the current device name 10720 * is already taken in the destination network namespace. 10721 * 10722 * This function shuts down a device interface and moves it 10723 * to a new network namespace. On success 0 is returned, on 10724 * a failure a netagive errno code is returned. 10725 * 10726 * Callers must hold the rtnl semaphore. 10727 */ 10728 10729 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 10730 { 10731 struct net *net_old = dev_net(dev); 10732 int err, new_nsid, new_ifindex; 10733 10734 ASSERT_RTNL(); 10735 10736 /* Don't allow namespace local devices to be moved. */ 10737 err = -EINVAL; 10738 if (dev->features & NETIF_F_NETNS_LOCAL) 10739 goto out; 10740 10741 /* Ensure the device has been registrered */ 10742 if (dev->reg_state != NETREG_REGISTERED) 10743 goto out; 10744 10745 /* Get out if there is nothing todo */ 10746 err = 0; 10747 if (net_eq(net_old, net)) 10748 goto out; 10749 10750 /* Pick the destination device name, and ensure 10751 * we can use it in the destination network namespace. 10752 */ 10753 err = -EEXIST; 10754 if (__dev_get_by_name(net, dev->name)) { 10755 /* We get here if we can't use the current device name */ 10756 if (!pat) 10757 goto out; 10758 err = dev_get_valid_name(net, dev, pat); 10759 if (err < 0) 10760 goto out; 10761 } 10762 10763 /* 10764 * And now a mini version of register_netdevice unregister_netdevice. 10765 */ 10766 10767 /* If device is running close it first. */ 10768 dev_close(dev); 10769 10770 /* And unlink it from device chain */ 10771 unlist_netdevice(dev); 10772 10773 synchronize_net(); 10774 10775 /* Shutdown queueing discipline. */ 10776 dev_shutdown(dev); 10777 10778 /* Notify protocols, that we are about to destroy 10779 * this device. They should clean all the things. 10780 * 10781 * Note that dev->reg_state stays at NETREG_REGISTERED. 10782 * This is wanted because this way 8021q and macvlan know 10783 * the device is just moving and can keep their slaves up. 10784 */ 10785 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 10786 rcu_barrier(); 10787 10788 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL); 10789 /* If there is an ifindex conflict assign a new one */ 10790 if (__dev_get_by_index(net, dev->ifindex)) 10791 new_ifindex = dev_new_index(net); 10792 else 10793 new_ifindex = dev->ifindex; 10794 10795 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid, 10796 new_ifindex); 10797 10798 /* 10799 * Flush the unicast and multicast chains 10800 */ 10801 dev_uc_flush(dev); 10802 dev_mc_flush(dev); 10803 10804 /* Send a netdev-removed uevent to the old namespace */ 10805 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE); 10806 netdev_adjacent_del_links(dev); 10807 10808 /* Move per-net netdevice notifiers that are following the netdevice */ 10809 move_netdevice_notifiers_dev_net(dev, net); 10810 10811 /* Actually switch the network namespace */ 10812 dev_net_set(dev, net); 10813 dev->ifindex = new_ifindex; 10814 10815 /* Send a netdev-add uevent to the new namespace */ 10816 kobject_uevent(&dev->dev.kobj, KOBJ_ADD); 10817 netdev_adjacent_add_links(dev); 10818 10819 /* Fixup kobjects */ 10820 err = device_rename(&dev->dev, dev->name); 10821 WARN_ON(err); 10822 10823 /* Adapt owner in case owning user namespace of target network 10824 * namespace is different from the original one. 10825 */ 10826 err = netdev_change_owner(dev, net_old, net); 10827 WARN_ON(err); 10828 10829 /* Add the device back in the hashes */ 10830 list_netdevice(dev); 10831 10832 /* Notify protocols, that a new device appeared. */ 10833 call_netdevice_notifiers(NETDEV_REGISTER, dev); 10834 10835 /* 10836 * Prevent userspace races by waiting until the network 10837 * device is fully setup before sending notifications. 10838 */ 10839 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL); 10840 10841 synchronize_net(); 10842 err = 0; 10843 out: 10844 return err; 10845 } 10846 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 10847 10848 static int dev_cpu_dead(unsigned int oldcpu) 10849 { 10850 struct sk_buff **list_skb; 10851 struct sk_buff *skb; 10852 unsigned int cpu; 10853 struct softnet_data *sd, *oldsd, *remsd = NULL; 10854 10855 local_irq_disable(); 10856 cpu = smp_processor_id(); 10857 sd = &per_cpu(softnet_data, cpu); 10858 oldsd = &per_cpu(softnet_data, oldcpu); 10859 10860 /* Find end of our completion_queue. */ 10861 list_skb = &sd->completion_queue; 10862 while (*list_skb) 10863 list_skb = &(*list_skb)->next; 10864 /* Append completion queue from offline CPU. */ 10865 *list_skb = oldsd->completion_queue; 10866 oldsd->completion_queue = NULL; 10867 10868 /* Append output queue from offline CPU. */ 10869 if (oldsd->output_queue) { 10870 *sd->output_queue_tailp = oldsd->output_queue; 10871 sd->output_queue_tailp = oldsd->output_queue_tailp; 10872 oldsd->output_queue = NULL; 10873 oldsd->output_queue_tailp = &oldsd->output_queue; 10874 } 10875 /* Append NAPI poll list from offline CPU, with one exception : 10876 * process_backlog() must be called by cpu owning percpu backlog. 10877 * We properly handle process_queue & input_pkt_queue later. 10878 */ 10879 while (!list_empty(&oldsd->poll_list)) { 10880 struct napi_struct *napi = list_first_entry(&oldsd->poll_list, 10881 struct napi_struct, 10882 poll_list); 10883 10884 list_del_init(&napi->poll_list); 10885 if (napi->poll == process_backlog) 10886 napi->state = 0; 10887 else 10888 ____napi_schedule(sd, napi); 10889 } 10890 10891 raise_softirq_irqoff(NET_TX_SOFTIRQ); 10892 local_irq_enable(); 10893 10894 #ifdef CONFIG_RPS 10895 remsd = oldsd->rps_ipi_list; 10896 oldsd->rps_ipi_list = NULL; 10897 #endif 10898 /* send out pending IPI's on offline CPU */ 10899 net_rps_send_ipi(remsd); 10900 10901 /* Process offline CPU's input_pkt_queue */ 10902 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 10903 netif_rx_ni(skb); 10904 input_queue_head_incr(oldsd); 10905 } 10906 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) { 10907 netif_rx_ni(skb); 10908 input_queue_head_incr(oldsd); 10909 } 10910 10911 return 0; 10912 } 10913 10914 /** 10915 * netdev_increment_features - increment feature set by one 10916 * @all: current feature set 10917 * @one: new feature set 10918 * @mask: mask feature set 10919 * 10920 * Computes a new feature set after adding a device with feature set 10921 * @one to the master device with current feature set @all. Will not 10922 * enable anything that is off in @mask. Returns the new feature set. 10923 */ 10924 netdev_features_t netdev_increment_features(netdev_features_t all, 10925 netdev_features_t one, netdev_features_t mask) 10926 { 10927 if (mask & NETIF_F_HW_CSUM) 10928 mask |= NETIF_F_CSUM_MASK; 10929 mask |= NETIF_F_VLAN_CHALLENGED; 10930 10931 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask; 10932 all &= one | ~NETIF_F_ALL_FOR_ALL; 10933 10934 /* If one device supports hw checksumming, set for all. */ 10935 if (all & NETIF_F_HW_CSUM) 10936 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM); 10937 10938 return all; 10939 } 10940 EXPORT_SYMBOL(netdev_increment_features); 10941 10942 static struct hlist_head * __net_init netdev_create_hash(void) 10943 { 10944 int i; 10945 struct hlist_head *hash; 10946 10947 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL); 10948 if (hash != NULL) 10949 for (i = 0; i < NETDEV_HASHENTRIES; i++) 10950 INIT_HLIST_HEAD(&hash[i]); 10951 10952 return hash; 10953 } 10954 10955 /* Initialize per network namespace state */ 10956 static int __net_init netdev_init(struct net *net) 10957 { 10958 BUILD_BUG_ON(GRO_HASH_BUCKETS > 10959 8 * sizeof_field(struct napi_struct, gro_bitmask)); 10960 10961 if (net != &init_net) 10962 INIT_LIST_HEAD(&net->dev_base_head); 10963 10964 net->dev_name_head = netdev_create_hash(); 10965 if (net->dev_name_head == NULL) 10966 goto err_name; 10967 10968 net->dev_index_head = netdev_create_hash(); 10969 if (net->dev_index_head == NULL) 10970 goto err_idx; 10971 10972 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain); 10973 10974 return 0; 10975 10976 err_idx: 10977 kfree(net->dev_name_head); 10978 err_name: 10979 return -ENOMEM; 10980 } 10981 10982 /** 10983 * netdev_drivername - network driver for the device 10984 * @dev: network device 10985 * 10986 * Determine network driver for device. 10987 */ 10988 const char *netdev_drivername(const struct net_device *dev) 10989 { 10990 const struct device_driver *driver; 10991 const struct device *parent; 10992 const char *empty = ""; 10993 10994 parent = dev->dev.parent; 10995 if (!parent) 10996 return empty; 10997 10998 driver = parent->driver; 10999 if (driver && driver->name) 11000 return driver->name; 11001 return empty; 11002 } 11003 11004 static void __netdev_printk(const char *level, const struct net_device *dev, 11005 struct va_format *vaf) 11006 { 11007 if (dev && dev->dev.parent) { 11008 dev_printk_emit(level[1] - '0', 11009 dev->dev.parent, 11010 "%s %s %s%s: %pV", 11011 dev_driver_string(dev->dev.parent), 11012 dev_name(dev->dev.parent), 11013 netdev_name(dev), netdev_reg_state(dev), 11014 vaf); 11015 } else if (dev) { 11016 printk("%s%s%s: %pV", 11017 level, netdev_name(dev), netdev_reg_state(dev), vaf); 11018 } else { 11019 printk("%s(NULL net_device): %pV", level, vaf); 11020 } 11021 } 11022 11023 void netdev_printk(const char *level, const struct net_device *dev, 11024 const char *format, ...) 11025 { 11026 struct va_format vaf; 11027 va_list args; 11028 11029 va_start(args, format); 11030 11031 vaf.fmt = format; 11032 vaf.va = &args; 11033 11034 __netdev_printk(level, dev, &vaf); 11035 11036 va_end(args); 11037 } 11038 EXPORT_SYMBOL(netdev_printk); 11039 11040 #define define_netdev_printk_level(func, level) \ 11041 void func(const struct net_device *dev, const char *fmt, ...) \ 11042 { \ 11043 struct va_format vaf; \ 11044 va_list args; \ 11045 \ 11046 va_start(args, fmt); \ 11047 \ 11048 vaf.fmt = fmt; \ 11049 vaf.va = &args; \ 11050 \ 11051 __netdev_printk(level, dev, &vaf); \ 11052 \ 11053 va_end(args); \ 11054 } \ 11055 EXPORT_SYMBOL(func); 11056 11057 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 11058 define_netdev_printk_level(netdev_alert, KERN_ALERT); 11059 define_netdev_printk_level(netdev_crit, KERN_CRIT); 11060 define_netdev_printk_level(netdev_err, KERN_ERR); 11061 define_netdev_printk_level(netdev_warn, KERN_WARNING); 11062 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 11063 define_netdev_printk_level(netdev_info, KERN_INFO); 11064 11065 static void __net_exit netdev_exit(struct net *net) 11066 { 11067 kfree(net->dev_name_head); 11068 kfree(net->dev_index_head); 11069 if (net != &init_net) 11070 WARN_ON_ONCE(!list_empty(&net->dev_base_head)); 11071 } 11072 11073 static struct pernet_operations __net_initdata netdev_net_ops = { 11074 .init = netdev_init, 11075 .exit = netdev_exit, 11076 }; 11077 11078 static void __net_exit default_device_exit(struct net *net) 11079 { 11080 struct net_device *dev, *aux; 11081 /* 11082 * Push all migratable network devices back to the 11083 * initial network namespace 11084 */ 11085 rtnl_lock(); 11086 for_each_netdev_safe(net, dev, aux) { 11087 int err; 11088 char fb_name[IFNAMSIZ]; 11089 11090 /* Ignore unmoveable devices (i.e. loopback) */ 11091 if (dev->features & NETIF_F_NETNS_LOCAL) 11092 continue; 11093 11094 /* Leave virtual devices for the generic cleanup */ 11095 if (dev->rtnl_link_ops) 11096 continue; 11097 11098 /* Push remaining network devices to init_net */ 11099 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 11100 if (__dev_get_by_name(&init_net, fb_name)) 11101 snprintf(fb_name, IFNAMSIZ, "dev%%d"); 11102 err = dev_change_net_namespace(dev, &init_net, fb_name); 11103 if (err) { 11104 pr_emerg("%s: failed to move %s to init_net: %d\n", 11105 __func__, dev->name, err); 11106 BUG(); 11107 } 11108 } 11109 rtnl_unlock(); 11110 } 11111 11112 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list) 11113 { 11114 /* Return with the rtnl_lock held when there are no network 11115 * devices unregistering in any network namespace in net_list. 11116 */ 11117 struct net *net; 11118 bool unregistering; 11119 DEFINE_WAIT_FUNC(wait, woken_wake_function); 11120 11121 add_wait_queue(&netdev_unregistering_wq, &wait); 11122 for (;;) { 11123 unregistering = false; 11124 rtnl_lock(); 11125 list_for_each_entry(net, net_list, exit_list) { 11126 if (net->dev_unreg_count > 0) { 11127 unregistering = true; 11128 break; 11129 } 11130 } 11131 if (!unregistering) 11132 break; 11133 __rtnl_unlock(); 11134 11135 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); 11136 } 11137 remove_wait_queue(&netdev_unregistering_wq, &wait); 11138 } 11139 11140 static void __net_exit default_device_exit_batch(struct list_head *net_list) 11141 { 11142 /* At exit all network devices most be removed from a network 11143 * namespace. Do this in the reverse order of registration. 11144 * Do this across as many network namespaces as possible to 11145 * improve batching efficiency. 11146 */ 11147 struct net_device *dev; 11148 struct net *net; 11149 LIST_HEAD(dev_kill_list); 11150 11151 /* To prevent network device cleanup code from dereferencing 11152 * loopback devices or network devices that have been freed 11153 * wait here for all pending unregistrations to complete, 11154 * before unregistring the loopback device and allowing the 11155 * network namespace be freed. 11156 * 11157 * The netdev todo list containing all network devices 11158 * unregistrations that happen in default_device_exit_batch 11159 * will run in the rtnl_unlock() at the end of 11160 * default_device_exit_batch. 11161 */ 11162 rtnl_lock_unregistering(net_list); 11163 list_for_each_entry(net, net_list, exit_list) { 11164 for_each_netdev_reverse(net, dev) { 11165 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) 11166 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 11167 else 11168 unregister_netdevice_queue(dev, &dev_kill_list); 11169 } 11170 } 11171 unregister_netdevice_many(&dev_kill_list); 11172 rtnl_unlock(); 11173 } 11174 11175 static struct pernet_operations __net_initdata default_device_ops = { 11176 .exit = default_device_exit, 11177 .exit_batch = default_device_exit_batch, 11178 }; 11179 11180 /* 11181 * Initialize the DEV module. At boot time this walks the device list and 11182 * unhooks any devices that fail to initialise (normally hardware not 11183 * present) and leaves us with a valid list of present and active devices. 11184 * 11185 */ 11186 11187 /* 11188 * This is called single threaded during boot, so no need 11189 * to take the rtnl semaphore. 11190 */ 11191 static int __init net_dev_init(void) 11192 { 11193 int i, rc = -ENOMEM; 11194 11195 BUG_ON(!dev_boot_phase); 11196 11197 if (dev_proc_init()) 11198 goto out; 11199 11200 if (netdev_kobject_init()) 11201 goto out; 11202 11203 INIT_LIST_HEAD(&ptype_all); 11204 for (i = 0; i < PTYPE_HASH_SIZE; i++) 11205 INIT_LIST_HEAD(&ptype_base[i]); 11206 11207 INIT_LIST_HEAD(&offload_base); 11208 11209 if (register_pernet_subsys(&netdev_net_ops)) 11210 goto out; 11211 11212 /* 11213 * Initialise the packet receive queues. 11214 */ 11215 11216 for_each_possible_cpu(i) { 11217 struct work_struct *flush = per_cpu_ptr(&flush_works, i); 11218 struct softnet_data *sd = &per_cpu(softnet_data, i); 11219 11220 INIT_WORK(flush, flush_backlog); 11221 11222 skb_queue_head_init(&sd->input_pkt_queue); 11223 skb_queue_head_init(&sd->process_queue); 11224 #ifdef CONFIG_XFRM_OFFLOAD 11225 skb_queue_head_init(&sd->xfrm_backlog); 11226 #endif 11227 INIT_LIST_HEAD(&sd->poll_list); 11228 sd->output_queue_tailp = &sd->output_queue; 11229 #ifdef CONFIG_RPS 11230 sd->csd.func = rps_trigger_softirq; 11231 sd->csd.info = sd; 11232 sd->cpu = i; 11233 #endif 11234 11235 init_gro_hash(&sd->backlog); 11236 sd->backlog.poll = process_backlog; 11237 sd->backlog.weight = weight_p; 11238 } 11239 11240 dev_boot_phase = 0; 11241 11242 /* The loopback device is special if any other network devices 11243 * is present in a network namespace the loopback device must 11244 * be present. Since we now dynamically allocate and free the 11245 * loopback device ensure this invariant is maintained by 11246 * keeping the loopback device as the first device on the 11247 * list of network devices. Ensuring the loopback devices 11248 * is the first device that appears and the last network device 11249 * that disappears. 11250 */ 11251 if (register_pernet_device(&loopback_net_ops)) 11252 goto out; 11253 11254 if (register_pernet_device(&default_device_ops)) 11255 goto out; 11256 11257 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 11258 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 11259 11260 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead", 11261 NULL, dev_cpu_dead); 11262 WARN_ON(rc < 0); 11263 rc = 0; 11264 out: 11265 return rc; 11266 } 11267 11268 subsys_initcall(net_dev_init); 11269