xref: /linux-6.15/net/core/dev.c (revision 6482f554)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <linux/pci.h>
132 
133 #include "net-sysfs.h"
134 
135 /* Instead of increasing this, you should create a hash table. */
136 #define MAX_GRO_SKBS 8
137 
138 /* This should be increased if a protocol with a bigger head is added. */
139 #define GRO_MAX_HEAD (MAX_HEADER + 128)
140 
141 /*
142  *	The list of packet types we will receive (as opposed to discard)
143  *	and the routines to invoke.
144  *
145  *	Why 16. Because with 16 the only overlap we get on a hash of the
146  *	low nibble of the protocol value is RARP/SNAP/X.25.
147  *
148  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
149  *             sure which should go first, but I bet it won't make much
150  *             difference if we are running VLANs.  The good news is that
151  *             this protocol won't be in the list unless compiled in, so
152  *             the average user (w/out VLANs) will not be adversely affected.
153  *             --BLG
154  *
155  *		0800	IP
156  *		8100    802.1Q VLAN
157  *		0001	802.3
158  *		0002	AX.25
159  *		0004	802.2
160  *		8035	RARP
161  *		0005	SNAP
162  *		0805	X.25
163  *		0806	ARP
164  *		8137	IPX
165  *		0009	Localtalk
166  *		86DD	IPv6
167  */
168 
169 #define PTYPE_HASH_SIZE	(16)
170 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
171 
172 static DEFINE_SPINLOCK(ptype_lock);
173 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
174 static struct list_head ptype_all __read_mostly;	/* Taps */
175 
176 /*
177  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178  * semaphore.
179  *
180  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
181  *
182  * Writers must hold the rtnl semaphore while they loop through the
183  * dev_base_head list, and hold dev_base_lock for writing when they do the
184  * actual updates.  This allows pure readers to access the list even
185  * while a writer is preparing to update it.
186  *
187  * To put it another way, dev_base_lock is held for writing only to
188  * protect against pure readers; the rtnl semaphore provides the
189  * protection against other writers.
190  *
191  * See, for example usages, register_netdevice() and
192  * unregister_netdevice(), which must be called with the rtnl
193  * semaphore held.
194  */
195 DEFINE_RWLOCK(dev_base_lock);
196 EXPORT_SYMBOL(dev_base_lock);
197 
198 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
199 {
200 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
201 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203 
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208 
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 	spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215 
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 	spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222 
223 /* Device list insertion */
224 static int list_netdevice(struct net_device *dev)
225 {
226 	struct net *net = dev_net(dev);
227 
228 	ASSERT_RTNL();
229 
230 	write_lock_bh(&dev_base_lock);
231 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 	hlist_add_head_rcu(&dev->index_hlist,
234 			   dev_index_hash(net, dev->ifindex));
235 	write_unlock_bh(&dev_base_lock);
236 	return 0;
237 }
238 
239 /* Device list removal
240  * caller must respect a RCU grace period before freeing/reusing dev
241  */
242 static void unlist_netdevice(struct net_device *dev)
243 {
244 	ASSERT_RTNL();
245 
246 	/* Unlink dev from the device chain */
247 	write_lock_bh(&dev_base_lock);
248 	list_del_rcu(&dev->dev_list);
249 	hlist_del_rcu(&dev->name_hlist);
250 	hlist_del_rcu(&dev->index_hlist);
251 	write_unlock_bh(&dev_base_lock);
252 }
253 
254 /*
255  *	Our notifier list
256  */
257 
258 static RAW_NOTIFIER_HEAD(netdev_chain);
259 
260 /*
261  *	Device drivers call our routines to queue packets here. We empty the
262  *	queue in the local softnet handler.
263  */
264 
265 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
266 EXPORT_PER_CPU_SYMBOL(softnet_data);
267 
268 #ifdef CONFIG_LOCKDEP
269 /*
270  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
271  * according to dev->type
272  */
273 static const unsigned short netdev_lock_type[] =
274 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
275 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
276 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
277 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
278 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
279 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
280 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
281 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
282 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
283 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
284 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
285 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
286 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
287 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
288 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
289 	 ARPHRD_VOID, ARPHRD_NONE};
290 
291 static const char *const netdev_lock_name[] =
292 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
293 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
294 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
295 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
296 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
297 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
298 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
299 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
300 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
301 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
302 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
303 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
304 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
305 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
306 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
307 	 "_xmit_VOID", "_xmit_NONE"};
308 
309 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
310 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 
312 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
313 {
314 	int i;
315 
316 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
317 		if (netdev_lock_type[i] == dev_type)
318 			return i;
319 	/* the last key is used by default */
320 	return ARRAY_SIZE(netdev_lock_type) - 1;
321 }
322 
323 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
324 						 unsigned short dev_type)
325 {
326 	int i;
327 
328 	i = netdev_lock_pos(dev_type);
329 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
330 				   netdev_lock_name[i]);
331 }
332 
333 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
334 {
335 	int i;
336 
337 	i = netdev_lock_pos(dev->type);
338 	lockdep_set_class_and_name(&dev->addr_list_lock,
339 				   &netdev_addr_lock_key[i],
340 				   netdev_lock_name[i]);
341 }
342 #else
343 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
344 						 unsigned short dev_type)
345 {
346 }
347 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
348 {
349 }
350 #endif
351 
352 /*******************************************************************************
353 
354 		Protocol management and registration routines
355 
356 *******************************************************************************/
357 
358 /*
359  *	Add a protocol ID to the list. Now that the input handler is
360  *	smarter we can dispense with all the messy stuff that used to be
361  *	here.
362  *
363  *	BEWARE!!! Protocol handlers, mangling input packets,
364  *	MUST BE last in hash buckets and checking protocol handlers
365  *	MUST start from promiscuous ptype_all chain in net_bh.
366  *	It is true now, do not change it.
367  *	Explanation follows: if protocol handler, mangling packet, will
368  *	be the first on list, it is not able to sense, that packet
369  *	is cloned and should be copied-on-write, so that it will
370  *	change it and subsequent readers will get broken packet.
371  *							--ANK (980803)
372  */
373 
374 static inline struct list_head *ptype_head(const struct packet_type *pt)
375 {
376 	if (pt->type == htons(ETH_P_ALL))
377 		return &ptype_all;
378 	else
379 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
380 }
381 
382 /**
383  *	dev_add_pack - add packet handler
384  *	@pt: packet type declaration
385  *
386  *	Add a protocol handler to the networking stack. The passed &packet_type
387  *	is linked into kernel lists and may not be freed until it has been
388  *	removed from the kernel lists.
389  *
390  *	This call does not sleep therefore it can not
391  *	guarantee all CPU's that are in middle of receiving packets
392  *	will see the new packet type (until the next received packet).
393  */
394 
395 void dev_add_pack(struct packet_type *pt)
396 {
397 	struct list_head *head = ptype_head(pt);
398 
399 	spin_lock(&ptype_lock);
400 	list_add_rcu(&pt->list, head);
401 	spin_unlock(&ptype_lock);
402 }
403 EXPORT_SYMBOL(dev_add_pack);
404 
405 /**
406  *	__dev_remove_pack	 - remove packet handler
407  *	@pt: packet type declaration
408  *
409  *	Remove a protocol handler that was previously added to the kernel
410  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
411  *	from the kernel lists and can be freed or reused once this function
412  *	returns.
413  *
414  *      The packet type might still be in use by receivers
415  *	and must not be freed until after all the CPU's have gone
416  *	through a quiescent state.
417  */
418 void __dev_remove_pack(struct packet_type *pt)
419 {
420 	struct list_head *head = ptype_head(pt);
421 	struct packet_type *pt1;
422 
423 	spin_lock(&ptype_lock);
424 
425 	list_for_each_entry(pt1, head, list) {
426 		if (pt == pt1) {
427 			list_del_rcu(&pt->list);
428 			goto out;
429 		}
430 	}
431 
432 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
433 out:
434 	spin_unlock(&ptype_lock);
435 }
436 EXPORT_SYMBOL(__dev_remove_pack);
437 
438 /**
439  *	dev_remove_pack	 - remove packet handler
440  *	@pt: packet type declaration
441  *
442  *	Remove a protocol handler that was previously added to the kernel
443  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
444  *	from the kernel lists and can be freed or reused once this function
445  *	returns.
446  *
447  *	This call sleeps to guarantee that no CPU is looking at the packet
448  *	type after return.
449  */
450 void dev_remove_pack(struct packet_type *pt)
451 {
452 	__dev_remove_pack(pt);
453 
454 	synchronize_net();
455 }
456 EXPORT_SYMBOL(dev_remove_pack);
457 
458 /******************************************************************************
459 
460 		      Device Boot-time Settings Routines
461 
462 *******************************************************************************/
463 
464 /* Boot time configuration table */
465 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
466 
467 /**
468  *	netdev_boot_setup_add	- add new setup entry
469  *	@name: name of the device
470  *	@map: configured settings for the device
471  *
472  *	Adds new setup entry to the dev_boot_setup list.  The function
473  *	returns 0 on error and 1 on success.  This is a generic routine to
474  *	all netdevices.
475  */
476 static int netdev_boot_setup_add(char *name, struct ifmap *map)
477 {
478 	struct netdev_boot_setup *s;
479 	int i;
480 
481 	s = dev_boot_setup;
482 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
483 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
484 			memset(s[i].name, 0, sizeof(s[i].name));
485 			strlcpy(s[i].name, name, IFNAMSIZ);
486 			memcpy(&s[i].map, map, sizeof(s[i].map));
487 			break;
488 		}
489 	}
490 
491 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
492 }
493 
494 /**
495  *	netdev_boot_setup_check	- check boot time settings
496  *	@dev: the netdevice
497  *
498  * 	Check boot time settings for the device.
499  *	The found settings are set for the device to be used
500  *	later in the device probing.
501  *	Returns 0 if no settings found, 1 if they are.
502  */
503 int netdev_boot_setup_check(struct net_device *dev)
504 {
505 	struct netdev_boot_setup *s = dev_boot_setup;
506 	int i;
507 
508 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
509 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
510 		    !strcmp(dev->name, s[i].name)) {
511 			dev->irq 	= s[i].map.irq;
512 			dev->base_addr 	= s[i].map.base_addr;
513 			dev->mem_start 	= s[i].map.mem_start;
514 			dev->mem_end 	= s[i].map.mem_end;
515 			return 1;
516 		}
517 	}
518 	return 0;
519 }
520 EXPORT_SYMBOL(netdev_boot_setup_check);
521 
522 
523 /**
524  *	netdev_boot_base	- get address from boot time settings
525  *	@prefix: prefix for network device
526  *	@unit: id for network device
527  *
528  * 	Check boot time settings for the base address of device.
529  *	The found settings are set for the device to be used
530  *	later in the device probing.
531  *	Returns 0 if no settings found.
532  */
533 unsigned long netdev_boot_base(const char *prefix, int unit)
534 {
535 	const struct netdev_boot_setup *s = dev_boot_setup;
536 	char name[IFNAMSIZ];
537 	int i;
538 
539 	sprintf(name, "%s%d", prefix, unit);
540 
541 	/*
542 	 * If device already registered then return base of 1
543 	 * to indicate not to probe for this interface
544 	 */
545 	if (__dev_get_by_name(&init_net, name))
546 		return 1;
547 
548 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
549 		if (!strcmp(name, s[i].name))
550 			return s[i].map.base_addr;
551 	return 0;
552 }
553 
554 /*
555  * Saves at boot time configured settings for any netdevice.
556  */
557 int __init netdev_boot_setup(char *str)
558 {
559 	int ints[5];
560 	struct ifmap map;
561 
562 	str = get_options(str, ARRAY_SIZE(ints), ints);
563 	if (!str || !*str)
564 		return 0;
565 
566 	/* Save settings */
567 	memset(&map, 0, sizeof(map));
568 	if (ints[0] > 0)
569 		map.irq = ints[1];
570 	if (ints[0] > 1)
571 		map.base_addr = ints[2];
572 	if (ints[0] > 2)
573 		map.mem_start = ints[3];
574 	if (ints[0] > 3)
575 		map.mem_end = ints[4];
576 
577 	/* Add new entry to the list */
578 	return netdev_boot_setup_add(str, &map);
579 }
580 
581 __setup("netdev=", netdev_boot_setup);
582 
583 /*******************************************************************************
584 
585 			    Device Interface Subroutines
586 
587 *******************************************************************************/
588 
589 /**
590  *	__dev_get_by_name	- find a device by its name
591  *	@net: the applicable net namespace
592  *	@name: name to find
593  *
594  *	Find an interface by name. Must be called under RTNL semaphore
595  *	or @dev_base_lock. If the name is found a pointer to the device
596  *	is returned. If the name is not found then %NULL is returned. The
597  *	reference counters are not incremented so the caller must be
598  *	careful with locks.
599  */
600 
601 struct net_device *__dev_get_by_name(struct net *net, const char *name)
602 {
603 	struct hlist_node *p;
604 	struct net_device *dev;
605 	struct hlist_head *head = dev_name_hash(net, name);
606 
607 	hlist_for_each_entry(dev, p, head, name_hlist)
608 		if (!strncmp(dev->name, name, IFNAMSIZ))
609 			return dev;
610 
611 	return NULL;
612 }
613 EXPORT_SYMBOL(__dev_get_by_name);
614 
615 /**
616  *	dev_get_by_name_rcu	- find a device by its name
617  *	@net: the applicable net namespace
618  *	@name: name to find
619  *
620  *	Find an interface by name.
621  *	If the name is found a pointer to the device is returned.
622  * 	If the name is not found then %NULL is returned.
623  *	The reference counters are not incremented so the caller must be
624  *	careful with locks. The caller must hold RCU lock.
625  */
626 
627 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
628 {
629 	struct hlist_node *p;
630 	struct net_device *dev;
631 	struct hlist_head *head = dev_name_hash(net, name);
632 
633 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
634 		if (!strncmp(dev->name, name, IFNAMSIZ))
635 			return dev;
636 
637 	return NULL;
638 }
639 EXPORT_SYMBOL(dev_get_by_name_rcu);
640 
641 /**
642  *	dev_get_by_name		- find a device by its name
643  *	@net: the applicable net namespace
644  *	@name: name to find
645  *
646  *	Find an interface by name. This can be called from any
647  *	context and does its own locking. The returned handle has
648  *	the usage count incremented and the caller must use dev_put() to
649  *	release it when it is no longer needed. %NULL is returned if no
650  *	matching device is found.
651  */
652 
653 struct net_device *dev_get_by_name(struct net *net, const char *name)
654 {
655 	struct net_device *dev;
656 
657 	rcu_read_lock();
658 	dev = dev_get_by_name_rcu(net, name);
659 	if (dev)
660 		dev_hold(dev);
661 	rcu_read_unlock();
662 	return dev;
663 }
664 EXPORT_SYMBOL(dev_get_by_name);
665 
666 /**
667  *	__dev_get_by_index - find a device by its ifindex
668  *	@net: the applicable net namespace
669  *	@ifindex: index of device
670  *
671  *	Search for an interface by index. Returns %NULL if the device
672  *	is not found or a pointer to the device. The device has not
673  *	had its reference counter increased so the caller must be careful
674  *	about locking. The caller must hold either the RTNL semaphore
675  *	or @dev_base_lock.
676  */
677 
678 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
679 {
680 	struct hlist_node *p;
681 	struct net_device *dev;
682 	struct hlist_head *head = dev_index_hash(net, ifindex);
683 
684 	hlist_for_each_entry(dev, p, head, index_hlist)
685 		if (dev->ifindex == ifindex)
686 			return dev;
687 
688 	return NULL;
689 }
690 EXPORT_SYMBOL(__dev_get_by_index);
691 
692 /**
693  *	dev_get_by_index_rcu - find a device by its ifindex
694  *	@net: the applicable net namespace
695  *	@ifindex: index of device
696  *
697  *	Search for an interface by index. Returns %NULL if the device
698  *	is not found or a pointer to the device. The device has not
699  *	had its reference counter increased so the caller must be careful
700  *	about locking. The caller must hold RCU lock.
701  */
702 
703 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
704 {
705 	struct hlist_node *p;
706 	struct net_device *dev;
707 	struct hlist_head *head = dev_index_hash(net, ifindex);
708 
709 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
710 		if (dev->ifindex == ifindex)
711 			return dev;
712 
713 	return NULL;
714 }
715 EXPORT_SYMBOL(dev_get_by_index_rcu);
716 
717 
718 /**
719  *	dev_get_by_index - find a device by its ifindex
720  *	@net: the applicable net namespace
721  *	@ifindex: index of device
722  *
723  *	Search for an interface by index. Returns NULL if the device
724  *	is not found or a pointer to the device. The device returned has
725  *	had a reference added and the pointer is safe until the user calls
726  *	dev_put to indicate they have finished with it.
727  */
728 
729 struct net_device *dev_get_by_index(struct net *net, int ifindex)
730 {
731 	struct net_device *dev;
732 
733 	rcu_read_lock();
734 	dev = dev_get_by_index_rcu(net, ifindex);
735 	if (dev)
736 		dev_hold(dev);
737 	rcu_read_unlock();
738 	return dev;
739 }
740 EXPORT_SYMBOL(dev_get_by_index);
741 
742 /**
743  *	dev_getbyhwaddr - find a device by its hardware address
744  *	@net: the applicable net namespace
745  *	@type: media type of device
746  *	@ha: hardware address
747  *
748  *	Search for an interface by MAC address. Returns NULL if the device
749  *	is not found or a pointer to the device. The caller must hold the
750  *	rtnl semaphore. The returned device has not had its ref count increased
751  *	and the caller must therefore be careful about locking
752  *
753  *	BUGS:
754  *	If the API was consistent this would be __dev_get_by_hwaddr
755  */
756 
757 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
758 {
759 	struct net_device *dev;
760 
761 	ASSERT_RTNL();
762 
763 	for_each_netdev(net, dev)
764 		if (dev->type == type &&
765 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
766 			return dev;
767 
768 	return NULL;
769 }
770 EXPORT_SYMBOL(dev_getbyhwaddr);
771 
772 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
773 {
774 	struct net_device *dev;
775 
776 	ASSERT_RTNL();
777 	for_each_netdev(net, dev)
778 		if (dev->type == type)
779 			return dev;
780 
781 	return NULL;
782 }
783 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
784 
785 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
786 {
787 	struct net_device *dev, *ret = NULL;
788 
789 	rcu_read_lock();
790 	for_each_netdev_rcu(net, dev)
791 		if (dev->type == type) {
792 			dev_hold(dev);
793 			ret = dev;
794 			break;
795 		}
796 	rcu_read_unlock();
797 	return ret;
798 }
799 EXPORT_SYMBOL(dev_getfirstbyhwtype);
800 
801 /**
802  *	dev_get_by_flags_rcu - find any device with given flags
803  *	@net: the applicable net namespace
804  *	@if_flags: IFF_* values
805  *	@mask: bitmask of bits in if_flags to check
806  *
807  *	Search for any interface with the given flags. Returns NULL if a device
808  *	is not found or a pointer to the device. Must be called inside
809  *	rcu_read_lock(), and result refcount is unchanged.
810  */
811 
812 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
813 				    unsigned short mask)
814 {
815 	struct net_device *dev, *ret;
816 
817 	ret = NULL;
818 	for_each_netdev_rcu(net, dev) {
819 		if (((dev->flags ^ if_flags) & mask) == 0) {
820 			ret = dev;
821 			break;
822 		}
823 	}
824 	return ret;
825 }
826 EXPORT_SYMBOL(dev_get_by_flags_rcu);
827 
828 /**
829  *	dev_valid_name - check if name is okay for network device
830  *	@name: name string
831  *
832  *	Network device names need to be valid file names to
833  *	to allow sysfs to work.  We also disallow any kind of
834  *	whitespace.
835  */
836 int dev_valid_name(const char *name)
837 {
838 	if (*name == '\0')
839 		return 0;
840 	if (strlen(name) >= IFNAMSIZ)
841 		return 0;
842 	if (!strcmp(name, ".") || !strcmp(name, ".."))
843 		return 0;
844 
845 	while (*name) {
846 		if (*name == '/' || isspace(*name))
847 			return 0;
848 		name++;
849 	}
850 	return 1;
851 }
852 EXPORT_SYMBOL(dev_valid_name);
853 
854 /**
855  *	__dev_alloc_name - allocate a name for a device
856  *	@net: network namespace to allocate the device name in
857  *	@name: name format string
858  *	@buf:  scratch buffer and result name string
859  *
860  *	Passed a format string - eg "lt%d" it will try and find a suitable
861  *	id. It scans list of devices to build up a free map, then chooses
862  *	the first empty slot. The caller must hold the dev_base or rtnl lock
863  *	while allocating the name and adding the device in order to avoid
864  *	duplicates.
865  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
866  *	Returns the number of the unit assigned or a negative errno code.
867  */
868 
869 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
870 {
871 	int i = 0;
872 	const char *p;
873 	const int max_netdevices = 8*PAGE_SIZE;
874 	unsigned long *inuse;
875 	struct net_device *d;
876 
877 	p = strnchr(name, IFNAMSIZ-1, '%');
878 	if (p) {
879 		/*
880 		 * Verify the string as this thing may have come from
881 		 * the user.  There must be either one "%d" and no other "%"
882 		 * characters.
883 		 */
884 		if (p[1] != 'd' || strchr(p + 2, '%'))
885 			return -EINVAL;
886 
887 		/* Use one page as a bit array of possible slots */
888 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
889 		if (!inuse)
890 			return -ENOMEM;
891 
892 		for_each_netdev(net, d) {
893 			if (!sscanf(d->name, name, &i))
894 				continue;
895 			if (i < 0 || i >= max_netdevices)
896 				continue;
897 
898 			/*  avoid cases where sscanf is not exact inverse of printf */
899 			snprintf(buf, IFNAMSIZ, name, i);
900 			if (!strncmp(buf, d->name, IFNAMSIZ))
901 				set_bit(i, inuse);
902 		}
903 
904 		i = find_first_zero_bit(inuse, max_netdevices);
905 		free_page((unsigned long) inuse);
906 	}
907 
908 	if (buf != name)
909 		snprintf(buf, IFNAMSIZ, name, i);
910 	if (!__dev_get_by_name(net, buf))
911 		return i;
912 
913 	/* It is possible to run out of possible slots
914 	 * when the name is long and there isn't enough space left
915 	 * for the digits, or if all bits are used.
916 	 */
917 	return -ENFILE;
918 }
919 
920 /**
921  *	dev_alloc_name - allocate a name for a device
922  *	@dev: device
923  *	@name: name format string
924  *
925  *	Passed a format string - eg "lt%d" it will try and find a suitable
926  *	id. It scans list of devices to build up a free map, then chooses
927  *	the first empty slot. The caller must hold the dev_base or rtnl lock
928  *	while allocating the name and adding the device in order to avoid
929  *	duplicates.
930  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
931  *	Returns the number of the unit assigned or a negative errno code.
932  */
933 
934 int dev_alloc_name(struct net_device *dev, const char *name)
935 {
936 	char buf[IFNAMSIZ];
937 	struct net *net;
938 	int ret;
939 
940 	BUG_ON(!dev_net(dev));
941 	net = dev_net(dev);
942 	ret = __dev_alloc_name(net, name, buf);
943 	if (ret >= 0)
944 		strlcpy(dev->name, buf, IFNAMSIZ);
945 	return ret;
946 }
947 EXPORT_SYMBOL(dev_alloc_name);
948 
949 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
950 {
951 	struct net *net;
952 
953 	BUG_ON(!dev_net(dev));
954 	net = dev_net(dev);
955 
956 	if (!dev_valid_name(name))
957 		return -EINVAL;
958 
959 	if (fmt && strchr(name, '%'))
960 		return dev_alloc_name(dev, name);
961 	else if (__dev_get_by_name(net, name))
962 		return -EEXIST;
963 	else if (dev->name != name)
964 		strlcpy(dev->name, name, IFNAMSIZ);
965 
966 	return 0;
967 }
968 
969 /**
970  *	dev_change_name - change name of a device
971  *	@dev: device
972  *	@newname: name (or format string) must be at least IFNAMSIZ
973  *
974  *	Change name of a device, can pass format strings "eth%d".
975  *	for wildcarding.
976  */
977 int dev_change_name(struct net_device *dev, const char *newname)
978 {
979 	char oldname[IFNAMSIZ];
980 	int err = 0;
981 	int ret;
982 	struct net *net;
983 
984 	ASSERT_RTNL();
985 	BUG_ON(!dev_net(dev));
986 
987 	net = dev_net(dev);
988 	if (dev->flags & IFF_UP)
989 		return -EBUSY;
990 
991 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
992 		return 0;
993 
994 	memcpy(oldname, dev->name, IFNAMSIZ);
995 
996 	err = dev_get_valid_name(dev, newname, 1);
997 	if (err < 0)
998 		return err;
999 
1000 rollback:
1001 	ret = device_rename(&dev->dev, dev->name);
1002 	if (ret) {
1003 		memcpy(dev->name, oldname, IFNAMSIZ);
1004 		return ret;
1005 	}
1006 
1007 	write_lock_bh(&dev_base_lock);
1008 	hlist_del(&dev->name_hlist);
1009 	write_unlock_bh(&dev_base_lock);
1010 
1011 	synchronize_rcu();
1012 
1013 	write_lock_bh(&dev_base_lock);
1014 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1015 	write_unlock_bh(&dev_base_lock);
1016 
1017 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1018 	ret = notifier_to_errno(ret);
1019 
1020 	if (ret) {
1021 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1022 		if (err >= 0) {
1023 			err = ret;
1024 			memcpy(dev->name, oldname, IFNAMSIZ);
1025 			goto rollback;
1026 		} else {
1027 			printk(KERN_ERR
1028 			       "%s: name change rollback failed: %d.\n",
1029 			       dev->name, ret);
1030 		}
1031 	}
1032 
1033 	return err;
1034 }
1035 
1036 /**
1037  *	dev_set_alias - change ifalias of a device
1038  *	@dev: device
1039  *	@alias: name up to IFALIASZ
1040  *	@len: limit of bytes to copy from info
1041  *
1042  *	Set ifalias for a device,
1043  */
1044 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1045 {
1046 	ASSERT_RTNL();
1047 
1048 	if (len >= IFALIASZ)
1049 		return -EINVAL;
1050 
1051 	if (!len) {
1052 		if (dev->ifalias) {
1053 			kfree(dev->ifalias);
1054 			dev->ifalias = NULL;
1055 		}
1056 		return 0;
1057 	}
1058 
1059 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1060 	if (!dev->ifalias)
1061 		return -ENOMEM;
1062 
1063 	strlcpy(dev->ifalias, alias, len+1);
1064 	return len;
1065 }
1066 
1067 
1068 /**
1069  *	netdev_features_change - device changes features
1070  *	@dev: device to cause notification
1071  *
1072  *	Called to indicate a device has changed features.
1073  */
1074 void netdev_features_change(struct net_device *dev)
1075 {
1076 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1077 }
1078 EXPORT_SYMBOL(netdev_features_change);
1079 
1080 /**
1081  *	netdev_state_change - device changes state
1082  *	@dev: device to cause notification
1083  *
1084  *	Called to indicate a device has changed state. This function calls
1085  *	the notifier chains for netdev_chain and sends a NEWLINK message
1086  *	to the routing socket.
1087  */
1088 void netdev_state_change(struct net_device *dev)
1089 {
1090 	if (dev->flags & IFF_UP) {
1091 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1092 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1093 	}
1094 }
1095 EXPORT_SYMBOL(netdev_state_change);
1096 
1097 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1098 {
1099 	return call_netdevice_notifiers(event, dev);
1100 }
1101 EXPORT_SYMBOL(netdev_bonding_change);
1102 
1103 /**
1104  *	dev_load 	- load a network module
1105  *	@net: the applicable net namespace
1106  *	@name: name of interface
1107  *
1108  *	If a network interface is not present and the process has suitable
1109  *	privileges this function loads the module. If module loading is not
1110  *	available in this kernel then it becomes a nop.
1111  */
1112 
1113 void dev_load(struct net *net, const char *name)
1114 {
1115 	struct net_device *dev;
1116 
1117 	rcu_read_lock();
1118 	dev = dev_get_by_name_rcu(net, name);
1119 	rcu_read_unlock();
1120 
1121 	if (!dev && capable(CAP_NET_ADMIN))
1122 		request_module("%s", name);
1123 }
1124 EXPORT_SYMBOL(dev_load);
1125 
1126 static int __dev_open(struct net_device *dev)
1127 {
1128 	const struct net_device_ops *ops = dev->netdev_ops;
1129 	int ret;
1130 
1131 	ASSERT_RTNL();
1132 
1133 	/*
1134 	 *	Is it even present?
1135 	 */
1136 	if (!netif_device_present(dev))
1137 		return -ENODEV;
1138 
1139 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1140 	ret = notifier_to_errno(ret);
1141 	if (ret)
1142 		return ret;
1143 
1144 	/*
1145 	 *	Call device private open method
1146 	 */
1147 	set_bit(__LINK_STATE_START, &dev->state);
1148 
1149 	if (ops->ndo_validate_addr)
1150 		ret = ops->ndo_validate_addr(dev);
1151 
1152 	if (!ret && ops->ndo_open)
1153 		ret = ops->ndo_open(dev);
1154 
1155 	/*
1156 	 *	If it went open OK then:
1157 	 */
1158 
1159 	if (ret)
1160 		clear_bit(__LINK_STATE_START, &dev->state);
1161 	else {
1162 		/*
1163 		 *	Set the flags.
1164 		 */
1165 		dev->flags |= IFF_UP;
1166 
1167 		/*
1168 		 *	Enable NET_DMA
1169 		 */
1170 		net_dmaengine_get();
1171 
1172 		/*
1173 		 *	Initialize multicasting status
1174 		 */
1175 		dev_set_rx_mode(dev);
1176 
1177 		/*
1178 		 *	Wakeup transmit queue engine
1179 		 */
1180 		dev_activate(dev);
1181 	}
1182 
1183 	return ret;
1184 }
1185 
1186 /**
1187  *	dev_open	- prepare an interface for use.
1188  *	@dev:	device to open
1189  *
1190  *	Takes a device from down to up state. The device's private open
1191  *	function is invoked and then the multicast lists are loaded. Finally
1192  *	the device is moved into the up state and a %NETDEV_UP message is
1193  *	sent to the netdev notifier chain.
1194  *
1195  *	Calling this function on an active interface is a nop. On a failure
1196  *	a negative errno code is returned.
1197  */
1198 int dev_open(struct net_device *dev)
1199 {
1200 	int ret;
1201 
1202 	/*
1203 	 *	Is it already up?
1204 	 */
1205 	if (dev->flags & IFF_UP)
1206 		return 0;
1207 
1208 	/*
1209 	 *	Open device
1210 	 */
1211 	ret = __dev_open(dev);
1212 	if (ret < 0)
1213 		return ret;
1214 
1215 	/*
1216 	 *	... and announce new interface.
1217 	 */
1218 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1219 	call_netdevice_notifiers(NETDEV_UP, dev);
1220 
1221 	return ret;
1222 }
1223 EXPORT_SYMBOL(dev_open);
1224 
1225 static int __dev_close(struct net_device *dev)
1226 {
1227 	const struct net_device_ops *ops = dev->netdev_ops;
1228 
1229 	ASSERT_RTNL();
1230 	might_sleep();
1231 
1232 	/*
1233 	 *	Tell people we are going down, so that they can
1234 	 *	prepare to death, when device is still operating.
1235 	 */
1236 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1237 
1238 	clear_bit(__LINK_STATE_START, &dev->state);
1239 
1240 	/* Synchronize to scheduled poll. We cannot touch poll list,
1241 	 * it can be even on different cpu. So just clear netif_running().
1242 	 *
1243 	 * dev->stop() will invoke napi_disable() on all of it's
1244 	 * napi_struct instances on this device.
1245 	 */
1246 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1247 
1248 	dev_deactivate(dev);
1249 
1250 	/*
1251 	 *	Call the device specific close. This cannot fail.
1252 	 *	Only if device is UP
1253 	 *
1254 	 *	We allow it to be called even after a DETACH hot-plug
1255 	 *	event.
1256 	 */
1257 	if (ops->ndo_stop)
1258 		ops->ndo_stop(dev);
1259 
1260 	/*
1261 	 *	Device is now down.
1262 	 */
1263 
1264 	dev->flags &= ~IFF_UP;
1265 
1266 	/*
1267 	 *	Shutdown NET_DMA
1268 	 */
1269 	net_dmaengine_put();
1270 
1271 	return 0;
1272 }
1273 
1274 /**
1275  *	dev_close - shutdown an interface.
1276  *	@dev: device to shutdown
1277  *
1278  *	This function moves an active device into down state. A
1279  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1280  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1281  *	chain.
1282  */
1283 int dev_close(struct net_device *dev)
1284 {
1285 	if (!(dev->flags & IFF_UP))
1286 		return 0;
1287 
1288 	__dev_close(dev);
1289 
1290 	/*
1291 	 * Tell people we are down
1292 	 */
1293 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1294 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1295 
1296 	return 0;
1297 }
1298 EXPORT_SYMBOL(dev_close);
1299 
1300 
1301 /**
1302  *	dev_disable_lro - disable Large Receive Offload on a device
1303  *	@dev: device
1304  *
1305  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1306  *	called under RTNL.  This is needed if received packets may be
1307  *	forwarded to another interface.
1308  */
1309 void dev_disable_lro(struct net_device *dev)
1310 {
1311 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1312 	    dev->ethtool_ops->set_flags) {
1313 		u32 flags = dev->ethtool_ops->get_flags(dev);
1314 		if (flags & ETH_FLAG_LRO) {
1315 			flags &= ~ETH_FLAG_LRO;
1316 			dev->ethtool_ops->set_flags(dev, flags);
1317 		}
1318 	}
1319 	WARN_ON(dev->features & NETIF_F_LRO);
1320 }
1321 EXPORT_SYMBOL(dev_disable_lro);
1322 
1323 
1324 static int dev_boot_phase = 1;
1325 
1326 /*
1327  *	Device change register/unregister. These are not inline or static
1328  *	as we export them to the world.
1329  */
1330 
1331 /**
1332  *	register_netdevice_notifier - register a network notifier block
1333  *	@nb: notifier
1334  *
1335  *	Register a notifier to be called when network device events occur.
1336  *	The notifier passed is linked into the kernel structures and must
1337  *	not be reused until it has been unregistered. A negative errno code
1338  *	is returned on a failure.
1339  *
1340  * 	When registered all registration and up events are replayed
1341  *	to the new notifier to allow device to have a race free
1342  *	view of the network device list.
1343  */
1344 
1345 int register_netdevice_notifier(struct notifier_block *nb)
1346 {
1347 	struct net_device *dev;
1348 	struct net_device *last;
1349 	struct net *net;
1350 	int err;
1351 
1352 	rtnl_lock();
1353 	err = raw_notifier_chain_register(&netdev_chain, nb);
1354 	if (err)
1355 		goto unlock;
1356 	if (dev_boot_phase)
1357 		goto unlock;
1358 	for_each_net(net) {
1359 		for_each_netdev(net, dev) {
1360 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1361 			err = notifier_to_errno(err);
1362 			if (err)
1363 				goto rollback;
1364 
1365 			if (!(dev->flags & IFF_UP))
1366 				continue;
1367 
1368 			nb->notifier_call(nb, NETDEV_UP, dev);
1369 		}
1370 	}
1371 
1372 unlock:
1373 	rtnl_unlock();
1374 	return err;
1375 
1376 rollback:
1377 	last = dev;
1378 	for_each_net(net) {
1379 		for_each_netdev(net, dev) {
1380 			if (dev == last)
1381 				break;
1382 
1383 			if (dev->flags & IFF_UP) {
1384 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1385 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1386 			}
1387 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1388 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1389 		}
1390 	}
1391 
1392 	raw_notifier_chain_unregister(&netdev_chain, nb);
1393 	goto unlock;
1394 }
1395 EXPORT_SYMBOL(register_netdevice_notifier);
1396 
1397 /**
1398  *	unregister_netdevice_notifier - unregister a network notifier block
1399  *	@nb: notifier
1400  *
1401  *	Unregister a notifier previously registered by
1402  *	register_netdevice_notifier(). The notifier is unlinked into the
1403  *	kernel structures and may then be reused. A negative errno code
1404  *	is returned on a failure.
1405  */
1406 
1407 int unregister_netdevice_notifier(struct notifier_block *nb)
1408 {
1409 	int err;
1410 
1411 	rtnl_lock();
1412 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1413 	rtnl_unlock();
1414 	return err;
1415 }
1416 EXPORT_SYMBOL(unregister_netdevice_notifier);
1417 
1418 /**
1419  *	call_netdevice_notifiers - call all network notifier blocks
1420  *      @val: value passed unmodified to notifier function
1421  *      @dev: net_device pointer passed unmodified to notifier function
1422  *
1423  *	Call all network notifier blocks.  Parameters and return value
1424  *	are as for raw_notifier_call_chain().
1425  */
1426 
1427 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1428 {
1429 	ASSERT_RTNL();
1430 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1431 }
1432 
1433 /* When > 0 there are consumers of rx skb time stamps */
1434 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1435 
1436 void net_enable_timestamp(void)
1437 {
1438 	atomic_inc(&netstamp_needed);
1439 }
1440 EXPORT_SYMBOL(net_enable_timestamp);
1441 
1442 void net_disable_timestamp(void)
1443 {
1444 	atomic_dec(&netstamp_needed);
1445 }
1446 EXPORT_SYMBOL(net_disable_timestamp);
1447 
1448 static inline void net_timestamp_set(struct sk_buff *skb)
1449 {
1450 	if (atomic_read(&netstamp_needed))
1451 		__net_timestamp(skb);
1452 	else
1453 		skb->tstamp.tv64 = 0;
1454 }
1455 
1456 static inline void net_timestamp_check(struct sk_buff *skb)
1457 {
1458 	if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1459 		__net_timestamp(skb);
1460 }
1461 
1462 /**
1463  * dev_forward_skb - loopback an skb to another netif
1464  *
1465  * @dev: destination network device
1466  * @skb: buffer to forward
1467  *
1468  * return values:
1469  *	NET_RX_SUCCESS	(no congestion)
1470  *	NET_RX_DROP     (packet was dropped, but freed)
1471  *
1472  * dev_forward_skb can be used for injecting an skb from the
1473  * start_xmit function of one device into the receive queue
1474  * of another device.
1475  *
1476  * The receiving device may be in another namespace, so
1477  * we have to clear all information in the skb that could
1478  * impact namespace isolation.
1479  */
1480 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1481 {
1482 	skb_orphan(skb);
1483 	nf_reset(skb);
1484 
1485 	if (!(dev->flags & IFF_UP) ||
1486 	    (skb->len > (dev->mtu + dev->hard_header_len))) {
1487 		kfree_skb(skb);
1488 		return NET_RX_DROP;
1489 	}
1490 	skb_set_dev(skb, dev);
1491 	skb->tstamp.tv64 = 0;
1492 	skb->pkt_type = PACKET_HOST;
1493 	skb->protocol = eth_type_trans(skb, dev);
1494 	return netif_rx(skb);
1495 }
1496 EXPORT_SYMBOL_GPL(dev_forward_skb);
1497 
1498 /*
1499  *	Support routine. Sends outgoing frames to any network
1500  *	taps currently in use.
1501  */
1502 
1503 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1504 {
1505 	struct packet_type *ptype;
1506 
1507 #ifdef CONFIG_NET_CLS_ACT
1508 	if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1509 		net_timestamp_set(skb);
1510 #else
1511 	net_timestamp_set(skb);
1512 #endif
1513 
1514 	rcu_read_lock();
1515 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1516 		/* Never send packets back to the socket
1517 		 * they originated from - MvS ([email protected])
1518 		 */
1519 		if ((ptype->dev == dev || !ptype->dev) &&
1520 		    (ptype->af_packet_priv == NULL ||
1521 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1522 			struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1523 			if (!skb2)
1524 				break;
1525 
1526 			/* skb->nh should be correctly
1527 			   set by sender, so that the second statement is
1528 			   just protection against buggy protocols.
1529 			 */
1530 			skb_reset_mac_header(skb2);
1531 
1532 			if (skb_network_header(skb2) < skb2->data ||
1533 			    skb2->network_header > skb2->tail) {
1534 				if (net_ratelimit())
1535 					printk(KERN_CRIT "protocol %04x is "
1536 					       "buggy, dev %s\n",
1537 					       ntohs(skb2->protocol),
1538 					       dev->name);
1539 				skb_reset_network_header(skb2);
1540 			}
1541 
1542 			skb2->transport_header = skb2->network_header;
1543 			skb2->pkt_type = PACKET_OUTGOING;
1544 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1545 		}
1546 	}
1547 	rcu_read_unlock();
1548 }
1549 
1550 /*
1551  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1552  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1553  */
1554 void netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1555 {
1556 	unsigned int real_num = dev->real_num_tx_queues;
1557 
1558 	if (unlikely(txq > dev->num_tx_queues))
1559 		;
1560 	else if (txq > real_num)
1561 		dev->real_num_tx_queues = txq;
1562 	else if (txq < real_num) {
1563 		dev->real_num_tx_queues = txq;
1564 		qdisc_reset_all_tx_gt(dev, txq);
1565 	}
1566 }
1567 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1568 
1569 static inline void __netif_reschedule(struct Qdisc *q)
1570 {
1571 	struct softnet_data *sd;
1572 	unsigned long flags;
1573 
1574 	local_irq_save(flags);
1575 	sd = &__get_cpu_var(softnet_data);
1576 	q->next_sched = NULL;
1577 	*sd->output_queue_tailp = q;
1578 	sd->output_queue_tailp = &q->next_sched;
1579 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1580 	local_irq_restore(flags);
1581 }
1582 
1583 void __netif_schedule(struct Qdisc *q)
1584 {
1585 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1586 		__netif_reschedule(q);
1587 }
1588 EXPORT_SYMBOL(__netif_schedule);
1589 
1590 void dev_kfree_skb_irq(struct sk_buff *skb)
1591 {
1592 	if (atomic_dec_and_test(&skb->users)) {
1593 		struct softnet_data *sd;
1594 		unsigned long flags;
1595 
1596 		local_irq_save(flags);
1597 		sd = &__get_cpu_var(softnet_data);
1598 		skb->next = sd->completion_queue;
1599 		sd->completion_queue = skb;
1600 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1601 		local_irq_restore(flags);
1602 	}
1603 }
1604 EXPORT_SYMBOL(dev_kfree_skb_irq);
1605 
1606 void dev_kfree_skb_any(struct sk_buff *skb)
1607 {
1608 	if (in_irq() || irqs_disabled())
1609 		dev_kfree_skb_irq(skb);
1610 	else
1611 		dev_kfree_skb(skb);
1612 }
1613 EXPORT_SYMBOL(dev_kfree_skb_any);
1614 
1615 
1616 /**
1617  * netif_device_detach - mark device as removed
1618  * @dev: network device
1619  *
1620  * Mark device as removed from system and therefore no longer available.
1621  */
1622 void netif_device_detach(struct net_device *dev)
1623 {
1624 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1625 	    netif_running(dev)) {
1626 		netif_tx_stop_all_queues(dev);
1627 	}
1628 }
1629 EXPORT_SYMBOL(netif_device_detach);
1630 
1631 /**
1632  * netif_device_attach - mark device as attached
1633  * @dev: network device
1634  *
1635  * Mark device as attached from system and restart if needed.
1636  */
1637 void netif_device_attach(struct net_device *dev)
1638 {
1639 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1640 	    netif_running(dev)) {
1641 		netif_tx_wake_all_queues(dev);
1642 		__netdev_watchdog_up(dev);
1643 	}
1644 }
1645 EXPORT_SYMBOL(netif_device_attach);
1646 
1647 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1648 {
1649 	return ((features & NETIF_F_GEN_CSUM) ||
1650 		((features & NETIF_F_IP_CSUM) &&
1651 		 protocol == htons(ETH_P_IP)) ||
1652 		((features & NETIF_F_IPV6_CSUM) &&
1653 		 protocol == htons(ETH_P_IPV6)) ||
1654 		((features & NETIF_F_FCOE_CRC) &&
1655 		 protocol == htons(ETH_P_FCOE)));
1656 }
1657 
1658 static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1659 {
1660 	if (can_checksum_protocol(dev->features, skb->protocol))
1661 		return true;
1662 
1663 	if (skb->protocol == htons(ETH_P_8021Q)) {
1664 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1665 		if (can_checksum_protocol(dev->features & dev->vlan_features,
1666 					  veh->h_vlan_encapsulated_proto))
1667 			return true;
1668 	}
1669 
1670 	return false;
1671 }
1672 
1673 /**
1674  * skb_dev_set -- assign a new device to a buffer
1675  * @skb: buffer for the new device
1676  * @dev: network device
1677  *
1678  * If an skb is owned by a device already, we have to reset
1679  * all data private to the namespace a device belongs to
1680  * before assigning it a new device.
1681  */
1682 #ifdef CONFIG_NET_NS
1683 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1684 {
1685 	skb_dst_drop(skb);
1686 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1687 		secpath_reset(skb);
1688 		nf_reset(skb);
1689 		skb_init_secmark(skb);
1690 		skb->mark = 0;
1691 		skb->priority = 0;
1692 		skb->nf_trace = 0;
1693 		skb->ipvs_property = 0;
1694 #ifdef CONFIG_NET_SCHED
1695 		skb->tc_index = 0;
1696 #endif
1697 	}
1698 	skb->dev = dev;
1699 }
1700 EXPORT_SYMBOL(skb_set_dev);
1701 #endif /* CONFIG_NET_NS */
1702 
1703 /*
1704  * Invalidate hardware checksum when packet is to be mangled, and
1705  * complete checksum manually on outgoing path.
1706  */
1707 int skb_checksum_help(struct sk_buff *skb)
1708 {
1709 	__wsum csum;
1710 	int ret = 0, offset;
1711 
1712 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1713 		goto out_set_summed;
1714 
1715 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1716 		/* Let GSO fix up the checksum. */
1717 		goto out_set_summed;
1718 	}
1719 
1720 	offset = skb->csum_start - skb_headroom(skb);
1721 	BUG_ON(offset >= skb_headlen(skb));
1722 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1723 
1724 	offset += skb->csum_offset;
1725 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1726 
1727 	if (skb_cloned(skb) &&
1728 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1729 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1730 		if (ret)
1731 			goto out;
1732 	}
1733 
1734 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1735 out_set_summed:
1736 	skb->ip_summed = CHECKSUM_NONE;
1737 out:
1738 	return ret;
1739 }
1740 EXPORT_SYMBOL(skb_checksum_help);
1741 
1742 /**
1743  *	skb_gso_segment - Perform segmentation on skb.
1744  *	@skb: buffer to segment
1745  *	@features: features for the output path (see dev->features)
1746  *
1747  *	This function segments the given skb and returns a list of segments.
1748  *
1749  *	It may return NULL if the skb requires no segmentation.  This is
1750  *	only possible when GSO is used for verifying header integrity.
1751  */
1752 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1753 {
1754 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1755 	struct packet_type *ptype;
1756 	__be16 type = skb->protocol;
1757 	int err;
1758 
1759 	skb_reset_mac_header(skb);
1760 	skb->mac_len = skb->network_header - skb->mac_header;
1761 	__skb_pull(skb, skb->mac_len);
1762 
1763 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1764 		struct net_device *dev = skb->dev;
1765 		struct ethtool_drvinfo info = {};
1766 
1767 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1768 			dev->ethtool_ops->get_drvinfo(dev, &info);
1769 
1770 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1771 			"ip_summed=%d",
1772 		     info.driver, dev ? dev->features : 0L,
1773 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1774 		     skb->len, skb->data_len, skb->ip_summed);
1775 
1776 		if (skb_header_cloned(skb) &&
1777 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1778 			return ERR_PTR(err);
1779 	}
1780 
1781 	rcu_read_lock();
1782 	list_for_each_entry_rcu(ptype,
1783 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1784 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1785 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1786 				err = ptype->gso_send_check(skb);
1787 				segs = ERR_PTR(err);
1788 				if (err || skb_gso_ok(skb, features))
1789 					break;
1790 				__skb_push(skb, (skb->data -
1791 						 skb_network_header(skb)));
1792 			}
1793 			segs = ptype->gso_segment(skb, features);
1794 			break;
1795 		}
1796 	}
1797 	rcu_read_unlock();
1798 
1799 	__skb_push(skb, skb->data - skb_mac_header(skb));
1800 
1801 	return segs;
1802 }
1803 EXPORT_SYMBOL(skb_gso_segment);
1804 
1805 /* Take action when hardware reception checksum errors are detected. */
1806 #ifdef CONFIG_BUG
1807 void netdev_rx_csum_fault(struct net_device *dev)
1808 {
1809 	if (net_ratelimit()) {
1810 		printk(KERN_ERR "%s: hw csum failure.\n",
1811 			dev ? dev->name : "<unknown>");
1812 		dump_stack();
1813 	}
1814 }
1815 EXPORT_SYMBOL(netdev_rx_csum_fault);
1816 #endif
1817 
1818 /* Actually, we should eliminate this check as soon as we know, that:
1819  * 1. IOMMU is present and allows to map all the memory.
1820  * 2. No high memory really exists on this machine.
1821  */
1822 
1823 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1824 {
1825 #ifdef CONFIG_HIGHMEM
1826 	int i;
1827 	if (!(dev->features & NETIF_F_HIGHDMA)) {
1828 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1829 			if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1830 				return 1;
1831 	}
1832 
1833 	if (PCI_DMA_BUS_IS_PHYS) {
1834 		struct device *pdev = dev->dev.parent;
1835 
1836 		if (!pdev)
1837 			return 0;
1838 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1839 			dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1840 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1841 				return 1;
1842 		}
1843 	}
1844 #endif
1845 	return 0;
1846 }
1847 
1848 struct dev_gso_cb {
1849 	void (*destructor)(struct sk_buff *skb);
1850 };
1851 
1852 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1853 
1854 static void dev_gso_skb_destructor(struct sk_buff *skb)
1855 {
1856 	struct dev_gso_cb *cb;
1857 
1858 	do {
1859 		struct sk_buff *nskb = skb->next;
1860 
1861 		skb->next = nskb->next;
1862 		nskb->next = NULL;
1863 		kfree_skb(nskb);
1864 	} while (skb->next);
1865 
1866 	cb = DEV_GSO_CB(skb);
1867 	if (cb->destructor)
1868 		cb->destructor(skb);
1869 }
1870 
1871 /**
1872  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1873  *	@skb: buffer to segment
1874  *
1875  *	This function segments the given skb and stores the list of segments
1876  *	in skb->next.
1877  */
1878 static int dev_gso_segment(struct sk_buff *skb)
1879 {
1880 	struct net_device *dev = skb->dev;
1881 	struct sk_buff *segs;
1882 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1883 					 NETIF_F_SG : 0);
1884 
1885 	segs = skb_gso_segment(skb, features);
1886 
1887 	/* Verifying header integrity only. */
1888 	if (!segs)
1889 		return 0;
1890 
1891 	if (IS_ERR(segs))
1892 		return PTR_ERR(segs);
1893 
1894 	skb->next = segs;
1895 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1896 	skb->destructor = dev_gso_skb_destructor;
1897 
1898 	return 0;
1899 }
1900 
1901 /*
1902  * Try to orphan skb early, right before transmission by the device.
1903  * We cannot orphan skb if tx timestamp is requested or the sk-reference
1904  * is needed on driver level for other reasons, e.g. see net/can/raw.c
1905  */
1906 static inline void skb_orphan_try(struct sk_buff *skb)
1907 {
1908 	struct sock *sk = skb->sk;
1909 
1910 	if (sk && !skb_shinfo(skb)->tx_flags) {
1911 		/* skb_tx_hash() wont be able to get sk.
1912 		 * We copy sk_hash into skb->rxhash
1913 		 */
1914 		if (!skb->rxhash)
1915 			skb->rxhash = sk->sk_hash;
1916 		skb_orphan(skb);
1917 	}
1918 }
1919 
1920 /*
1921  * Returns true if either:
1922  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
1923  *	2. skb is fragmented and the device does not support SG, or if
1924  *	   at least one of fragments is in highmem and device does not
1925  *	   support DMA from it.
1926  */
1927 static inline int skb_needs_linearize(struct sk_buff *skb,
1928 				      struct net_device *dev)
1929 {
1930 	return skb_is_nonlinear(skb) &&
1931 	       ((skb_has_frag_list(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
1932 	        (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
1933 					      illegal_highdma(dev, skb))));
1934 }
1935 
1936 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1937 			struct netdev_queue *txq)
1938 {
1939 	const struct net_device_ops *ops = dev->netdev_ops;
1940 	int rc = NETDEV_TX_OK;
1941 
1942 	if (likely(!skb->next)) {
1943 		if (!list_empty(&ptype_all))
1944 			dev_queue_xmit_nit(skb, dev);
1945 
1946 		/*
1947 		 * If device doesnt need skb->dst, release it right now while
1948 		 * its hot in this cpu cache
1949 		 */
1950 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1951 			skb_dst_drop(skb);
1952 
1953 		skb_orphan_try(skb);
1954 
1955 		if (netif_needs_gso(dev, skb)) {
1956 			if (unlikely(dev_gso_segment(skb)))
1957 				goto out_kfree_skb;
1958 			if (skb->next)
1959 				goto gso;
1960 		} else {
1961 			if (skb_needs_linearize(skb, dev) &&
1962 			    __skb_linearize(skb))
1963 				goto out_kfree_skb;
1964 
1965 			/* If packet is not checksummed and device does not
1966 			 * support checksumming for this protocol, complete
1967 			 * checksumming here.
1968 			 */
1969 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1970 				skb_set_transport_header(skb, skb->csum_start -
1971 					      skb_headroom(skb));
1972 				if (!dev_can_checksum(dev, skb) &&
1973 				     skb_checksum_help(skb))
1974 					goto out_kfree_skb;
1975 			}
1976 		}
1977 
1978 		rc = ops->ndo_start_xmit(skb, dev);
1979 		if (rc == NETDEV_TX_OK)
1980 			txq_trans_update(txq);
1981 		return rc;
1982 	}
1983 
1984 gso:
1985 	do {
1986 		struct sk_buff *nskb = skb->next;
1987 
1988 		skb->next = nskb->next;
1989 		nskb->next = NULL;
1990 
1991 		/*
1992 		 * If device doesnt need nskb->dst, release it right now while
1993 		 * its hot in this cpu cache
1994 		 */
1995 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1996 			skb_dst_drop(nskb);
1997 
1998 		rc = ops->ndo_start_xmit(nskb, dev);
1999 		if (unlikely(rc != NETDEV_TX_OK)) {
2000 			if (rc & ~NETDEV_TX_MASK)
2001 				goto out_kfree_gso_skb;
2002 			nskb->next = skb->next;
2003 			skb->next = nskb;
2004 			return rc;
2005 		}
2006 		txq_trans_update(txq);
2007 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2008 			return NETDEV_TX_BUSY;
2009 	} while (skb->next);
2010 
2011 out_kfree_gso_skb:
2012 	if (likely(skb->next == NULL))
2013 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2014 out_kfree_skb:
2015 	kfree_skb(skb);
2016 	return rc;
2017 }
2018 
2019 static u32 hashrnd __read_mostly;
2020 
2021 u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
2022 {
2023 	u32 hash;
2024 
2025 	if (skb_rx_queue_recorded(skb)) {
2026 		hash = skb_get_rx_queue(skb);
2027 		while (unlikely(hash >= dev->real_num_tx_queues))
2028 			hash -= dev->real_num_tx_queues;
2029 		return hash;
2030 	}
2031 
2032 	if (skb->sk && skb->sk->sk_hash)
2033 		hash = skb->sk->sk_hash;
2034 	else
2035 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2036 	hash = jhash_1word(hash, hashrnd);
2037 
2038 	return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
2039 }
2040 EXPORT_SYMBOL(skb_tx_hash);
2041 
2042 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2043 {
2044 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2045 		if (net_ratelimit()) {
2046 			pr_warning("%s selects TX queue %d, but "
2047 				"real number of TX queues is %d\n",
2048 				dev->name, queue_index, dev->real_num_tx_queues);
2049 		}
2050 		return 0;
2051 	}
2052 	return queue_index;
2053 }
2054 
2055 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2056 					struct sk_buff *skb)
2057 {
2058 	int queue_index;
2059 	const struct net_device_ops *ops = dev->netdev_ops;
2060 
2061 	if (ops->ndo_select_queue) {
2062 		queue_index = ops->ndo_select_queue(dev, skb);
2063 		queue_index = dev_cap_txqueue(dev, queue_index);
2064 	} else {
2065 		struct sock *sk = skb->sk;
2066 		queue_index = sk_tx_queue_get(sk);
2067 		if (queue_index < 0) {
2068 
2069 			queue_index = 0;
2070 			if (dev->real_num_tx_queues > 1)
2071 				queue_index = skb_tx_hash(dev, skb);
2072 
2073 			if (sk) {
2074 				struct dst_entry *dst = rcu_dereference_check(sk->sk_dst_cache, 1);
2075 
2076 				if (dst && skb_dst(skb) == dst)
2077 					sk_tx_queue_set(sk, queue_index);
2078 			}
2079 		}
2080 	}
2081 
2082 	skb_set_queue_mapping(skb, queue_index);
2083 	return netdev_get_tx_queue(dev, queue_index);
2084 }
2085 
2086 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2087 				 struct net_device *dev,
2088 				 struct netdev_queue *txq)
2089 {
2090 	spinlock_t *root_lock = qdisc_lock(q);
2091 	bool contended = qdisc_is_running(q);
2092 	int rc;
2093 
2094 	/*
2095 	 * Heuristic to force contended enqueues to serialize on a
2096 	 * separate lock before trying to get qdisc main lock.
2097 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2098 	 * and dequeue packets faster.
2099 	 */
2100 	if (unlikely(contended))
2101 		spin_lock(&q->busylock);
2102 
2103 	spin_lock(root_lock);
2104 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2105 		kfree_skb(skb);
2106 		rc = NET_XMIT_DROP;
2107 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2108 		   qdisc_run_begin(q)) {
2109 		/*
2110 		 * This is a work-conserving queue; there are no old skbs
2111 		 * waiting to be sent out; and the qdisc is not running -
2112 		 * xmit the skb directly.
2113 		 */
2114 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2115 			skb_dst_force(skb);
2116 		__qdisc_update_bstats(q, skb->len);
2117 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2118 			if (unlikely(contended)) {
2119 				spin_unlock(&q->busylock);
2120 				contended = false;
2121 			}
2122 			__qdisc_run(q);
2123 		} else
2124 			qdisc_run_end(q);
2125 
2126 		rc = NET_XMIT_SUCCESS;
2127 	} else {
2128 		skb_dst_force(skb);
2129 		rc = qdisc_enqueue_root(skb, q);
2130 		if (qdisc_run_begin(q)) {
2131 			if (unlikely(contended)) {
2132 				spin_unlock(&q->busylock);
2133 				contended = false;
2134 			}
2135 			__qdisc_run(q);
2136 		}
2137 	}
2138 	spin_unlock(root_lock);
2139 	if (unlikely(contended))
2140 		spin_unlock(&q->busylock);
2141 	return rc;
2142 }
2143 
2144 /**
2145  *	dev_queue_xmit - transmit a buffer
2146  *	@skb: buffer to transmit
2147  *
2148  *	Queue a buffer for transmission to a network device. The caller must
2149  *	have set the device and priority and built the buffer before calling
2150  *	this function. The function can be called from an interrupt.
2151  *
2152  *	A negative errno code is returned on a failure. A success does not
2153  *	guarantee the frame will be transmitted as it may be dropped due
2154  *	to congestion or traffic shaping.
2155  *
2156  * -----------------------------------------------------------------------------------
2157  *      I notice this method can also return errors from the queue disciplines,
2158  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2159  *      be positive.
2160  *
2161  *      Regardless of the return value, the skb is consumed, so it is currently
2162  *      difficult to retry a send to this method.  (You can bump the ref count
2163  *      before sending to hold a reference for retry if you are careful.)
2164  *
2165  *      When calling this method, interrupts MUST be enabled.  This is because
2166  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2167  *          --BLG
2168  */
2169 int dev_queue_xmit(struct sk_buff *skb)
2170 {
2171 	struct net_device *dev = skb->dev;
2172 	struct netdev_queue *txq;
2173 	struct Qdisc *q;
2174 	int rc = -ENOMEM;
2175 
2176 	/* Disable soft irqs for various locks below. Also
2177 	 * stops preemption for RCU.
2178 	 */
2179 	rcu_read_lock_bh();
2180 
2181 	txq = dev_pick_tx(dev, skb);
2182 	q = rcu_dereference_bh(txq->qdisc);
2183 
2184 #ifdef CONFIG_NET_CLS_ACT
2185 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2186 #endif
2187 	if (q->enqueue) {
2188 		rc = __dev_xmit_skb(skb, q, dev, txq);
2189 		goto out;
2190 	}
2191 
2192 	/* The device has no queue. Common case for software devices:
2193 	   loopback, all the sorts of tunnels...
2194 
2195 	   Really, it is unlikely that netif_tx_lock protection is necessary
2196 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2197 	   counters.)
2198 	   However, it is possible, that they rely on protection
2199 	   made by us here.
2200 
2201 	   Check this and shot the lock. It is not prone from deadlocks.
2202 	   Either shot noqueue qdisc, it is even simpler 8)
2203 	 */
2204 	if (dev->flags & IFF_UP) {
2205 		int cpu = smp_processor_id(); /* ok because BHs are off */
2206 
2207 		if (txq->xmit_lock_owner != cpu) {
2208 
2209 			HARD_TX_LOCK(dev, txq, cpu);
2210 
2211 			if (!netif_tx_queue_stopped(txq)) {
2212 				rc = dev_hard_start_xmit(skb, dev, txq);
2213 				if (dev_xmit_complete(rc)) {
2214 					HARD_TX_UNLOCK(dev, txq);
2215 					goto out;
2216 				}
2217 			}
2218 			HARD_TX_UNLOCK(dev, txq);
2219 			if (net_ratelimit())
2220 				printk(KERN_CRIT "Virtual device %s asks to "
2221 				       "queue packet!\n", dev->name);
2222 		} else {
2223 			/* Recursion is detected! It is possible,
2224 			 * unfortunately */
2225 			if (net_ratelimit())
2226 				printk(KERN_CRIT "Dead loop on virtual device "
2227 				       "%s, fix it urgently!\n", dev->name);
2228 		}
2229 	}
2230 
2231 	rc = -ENETDOWN;
2232 	rcu_read_unlock_bh();
2233 
2234 	kfree_skb(skb);
2235 	return rc;
2236 out:
2237 	rcu_read_unlock_bh();
2238 	return rc;
2239 }
2240 EXPORT_SYMBOL(dev_queue_xmit);
2241 
2242 
2243 /*=======================================================================
2244 			Receiver routines
2245   =======================================================================*/
2246 
2247 int netdev_max_backlog __read_mostly = 1000;
2248 int netdev_tstamp_prequeue __read_mostly = 1;
2249 int netdev_budget __read_mostly = 300;
2250 int weight_p __read_mostly = 64;            /* old backlog weight */
2251 
2252 /* Called with irq disabled */
2253 static inline void ____napi_schedule(struct softnet_data *sd,
2254 				     struct napi_struct *napi)
2255 {
2256 	list_add_tail(&napi->poll_list, &sd->poll_list);
2257 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2258 }
2259 
2260 /*
2261  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2262  * and src/dst port numbers. Returns a non-zero hash number on success
2263  * and 0 on failure.
2264  */
2265 __u32 __skb_get_rxhash(struct sk_buff *skb)
2266 {
2267 	int nhoff, hash = 0, poff;
2268 	struct ipv6hdr *ip6;
2269 	struct iphdr *ip;
2270 	u8 ip_proto;
2271 	u32 addr1, addr2, ihl;
2272 	union {
2273 		u32 v32;
2274 		u16 v16[2];
2275 	} ports;
2276 
2277 	nhoff = skb_network_offset(skb);
2278 
2279 	switch (skb->protocol) {
2280 	case __constant_htons(ETH_P_IP):
2281 		if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2282 			goto done;
2283 
2284 		ip = (struct iphdr *) (skb->data + nhoff);
2285 		if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2286 			ip_proto = 0;
2287 		else
2288 			ip_proto = ip->protocol;
2289 		addr1 = (__force u32) ip->saddr;
2290 		addr2 = (__force u32) ip->daddr;
2291 		ihl = ip->ihl;
2292 		break;
2293 	case __constant_htons(ETH_P_IPV6):
2294 		if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2295 			goto done;
2296 
2297 		ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2298 		ip_proto = ip6->nexthdr;
2299 		addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2300 		addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2301 		ihl = (40 >> 2);
2302 		break;
2303 	default:
2304 		goto done;
2305 	}
2306 
2307 	ports.v32 = 0;
2308 	poff = proto_ports_offset(ip_proto);
2309 	if (poff >= 0) {
2310 		nhoff += ihl * 4 + poff;
2311 		if (pskb_may_pull(skb, nhoff + 4)) {
2312 			ports.v32 = * (__force u32 *) (skb->data + nhoff);
2313 			if (ports.v16[1] < ports.v16[0])
2314 				swap(ports.v16[0], ports.v16[1]);
2315 		}
2316 	}
2317 
2318 	/* get a consistent hash (same value on both flow directions) */
2319 	if (addr2 < addr1)
2320 		swap(addr1, addr2);
2321 
2322 	hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2323 	if (!hash)
2324 		hash = 1;
2325 
2326 done:
2327 	return hash;
2328 }
2329 EXPORT_SYMBOL(__skb_get_rxhash);
2330 
2331 #ifdef CONFIG_RPS
2332 
2333 /* One global table that all flow-based protocols share. */
2334 struct rps_sock_flow_table *rps_sock_flow_table __read_mostly;
2335 EXPORT_SYMBOL(rps_sock_flow_table);
2336 
2337 /*
2338  * get_rps_cpu is called from netif_receive_skb and returns the target
2339  * CPU from the RPS map of the receiving queue for a given skb.
2340  * rcu_read_lock must be held on entry.
2341  */
2342 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2343 		       struct rps_dev_flow **rflowp)
2344 {
2345 	struct netdev_rx_queue *rxqueue;
2346 	struct rps_map *map = NULL;
2347 	struct rps_dev_flow_table *flow_table;
2348 	struct rps_sock_flow_table *sock_flow_table;
2349 	int cpu = -1;
2350 	u16 tcpu;
2351 
2352 	if (skb_rx_queue_recorded(skb)) {
2353 		u16 index = skb_get_rx_queue(skb);
2354 		if (unlikely(index >= dev->num_rx_queues)) {
2355 			WARN_ONCE(dev->num_rx_queues > 1, "%s received packet "
2356 				"on queue %u, but number of RX queues is %u\n",
2357 				dev->name, index, dev->num_rx_queues);
2358 			goto done;
2359 		}
2360 		rxqueue = dev->_rx + index;
2361 	} else
2362 		rxqueue = dev->_rx;
2363 
2364 	if (rxqueue->rps_map) {
2365 		map = rcu_dereference(rxqueue->rps_map);
2366 		if (map && map->len == 1) {
2367 			tcpu = map->cpus[0];
2368 			if (cpu_online(tcpu))
2369 				cpu = tcpu;
2370 			goto done;
2371 		}
2372 	} else if (!rxqueue->rps_flow_table) {
2373 		goto done;
2374 	}
2375 
2376 	skb_reset_network_header(skb);
2377 	if (!skb_get_rxhash(skb))
2378 		goto done;
2379 
2380 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2381 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2382 	if (flow_table && sock_flow_table) {
2383 		u16 next_cpu;
2384 		struct rps_dev_flow *rflow;
2385 
2386 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2387 		tcpu = rflow->cpu;
2388 
2389 		next_cpu = sock_flow_table->ents[skb->rxhash &
2390 		    sock_flow_table->mask];
2391 
2392 		/*
2393 		 * If the desired CPU (where last recvmsg was done) is
2394 		 * different from current CPU (one in the rx-queue flow
2395 		 * table entry), switch if one of the following holds:
2396 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2397 		 *   - Current CPU is offline.
2398 		 *   - The current CPU's queue tail has advanced beyond the
2399 		 *     last packet that was enqueued using this table entry.
2400 		 *     This guarantees that all previous packets for the flow
2401 		 *     have been dequeued, thus preserving in order delivery.
2402 		 */
2403 		if (unlikely(tcpu != next_cpu) &&
2404 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2405 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2406 		      rflow->last_qtail)) >= 0)) {
2407 			tcpu = rflow->cpu = next_cpu;
2408 			if (tcpu != RPS_NO_CPU)
2409 				rflow->last_qtail = per_cpu(softnet_data,
2410 				    tcpu).input_queue_head;
2411 		}
2412 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2413 			*rflowp = rflow;
2414 			cpu = tcpu;
2415 			goto done;
2416 		}
2417 	}
2418 
2419 	if (map) {
2420 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2421 
2422 		if (cpu_online(tcpu)) {
2423 			cpu = tcpu;
2424 			goto done;
2425 		}
2426 	}
2427 
2428 done:
2429 	return cpu;
2430 }
2431 
2432 /* Called from hardirq (IPI) context */
2433 static void rps_trigger_softirq(void *data)
2434 {
2435 	struct softnet_data *sd = data;
2436 
2437 	____napi_schedule(sd, &sd->backlog);
2438 	sd->received_rps++;
2439 }
2440 
2441 #endif /* CONFIG_RPS */
2442 
2443 /*
2444  * Check if this softnet_data structure is another cpu one
2445  * If yes, queue it to our IPI list and return 1
2446  * If no, return 0
2447  */
2448 static int rps_ipi_queued(struct softnet_data *sd)
2449 {
2450 #ifdef CONFIG_RPS
2451 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2452 
2453 	if (sd != mysd) {
2454 		sd->rps_ipi_next = mysd->rps_ipi_list;
2455 		mysd->rps_ipi_list = sd;
2456 
2457 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2458 		return 1;
2459 	}
2460 #endif /* CONFIG_RPS */
2461 	return 0;
2462 }
2463 
2464 /*
2465  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2466  * queue (may be a remote CPU queue).
2467  */
2468 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2469 			      unsigned int *qtail)
2470 {
2471 	struct softnet_data *sd;
2472 	unsigned long flags;
2473 
2474 	sd = &per_cpu(softnet_data, cpu);
2475 
2476 	local_irq_save(flags);
2477 
2478 	rps_lock(sd);
2479 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2480 		if (skb_queue_len(&sd->input_pkt_queue)) {
2481 enqueue:
2482 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2483 			input_queue_tail_incr_save(sd, qtail);
2484 			rps_unlock(sd);
2485 			local_irq_restore(flags);
2486 			return NET_RX_SUCCESS;
2487 		}
2488 
2489 		/* Schedule NAPI for backlog device
2490 		 * We can use non atomic operation since we own the queue lock
2491 		 */
2492 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2493 			if (!rps_ipi_queued(sd))
2494 				____napi_schedule(sd, &sd->backlog);
2495 		}
2496 		goto enqueue;
2497 	}
2498 
2499 	sd->dropped++;
2500 	rps_unlock(sd);
2501 
2502 	local_irq_restore(flags);
2503 
2504 	kfree_skb(skb);
2505 	return NET_RX_DROP;
2506 }
2507 
2508 /**
2509  *	netif_rx	-	post buffer to the network code
2510  *	@skb: buffer to post
2511  *
2512  *	This function receives a packet from a device driver and queues it for
2513  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2514  *	may be dropped during processing for congestion control or by the
2515  *	protocol layers.
2516  *
2517  *	return values:
2518  *	NET_RX_SUCCESS	(no congestion)
2519  *	NET_RX_DROP     (packet was dropped)
2520  *
2521  */
2522 
2523 int netif_rx(struct sk_buff *skb)
2524 {
2525 	int ret;
2526 
2527 	/* if netpoll wants it, pretend we never saw it */
2528 	if (netpoll_rx(skb))
2529 		return NET_RX_DROP;
2530 
2531 	if (netdev_tstamp_prequeue)
2532 		net_timestamp_check(skb);
2533 
2534 #ifdef CONFIG_RPS
2535 	{
2536 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2537 		int cpu;
2538 
2539 		preempt_disable();
2540 		rcu_read_lock();
2541 
2542 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2543 		if (cpu < 0)
2544 			cpu = smp_processor_id();
2545 
2546 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2547 
2548 		rcu_read_unlock();
2549 		preempt_enable();
2550 	}
2551 #else
2552 	{
2553 		unsigned int qtail;
2554 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2555 		put_cpu();
2556 	}
2557 #endif
2558 	return ret;
2559 }
2560 EXPORT_SYMBOL(netif_rx);
2561 
2562 int netif_rx_ni(struct sk_buff *skb)
2563 {
2564 	int err;
2565 
2566 	preempt_disable();
2567 	err = netif_rx(skb);
2568 	if (local_softirq_pending())
2569 		do_softirq();
2570 	preempt_enable();
2571 
2572 	return err;
2573 }
2574 EXPORT_SYMBOL(netif_rx_ni);
2575 
2576 static void net_tx_action(struct softirq_action *h)
2577 {
2578 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2579 
2580 	if (sd->completion_queue) {
2581 		struct sk_buff *clist;
2582 
2583 		local_irq_disable();
2584 		clist = sd->completion_queue;
2585 		sd->completion_queue = NULL;
2586 		local_irq_enable();
2587 
2588 		while (clist) {
2589 			struct sk_buff *skb = clist;
2590 			clist = clist->next;
2591 
2592 			WARN_ON(atomic_read(&skb->users));
2593 			__kfree_skb(skb);
2594 		}
2595 	}
2596 
2597 	if (sd->output_queue) {
2598 		struct Qdisc *head;
2599 
2600 		local_irq_disable();
2601 		head = sd->output_queue;
2602 		sd->output_queue = NULL;
2603 		sd->output_queue_tailp = &sd->output_queue;
2604 		local_irq_enable();
2605 
2606 		while (head) {
2607 			struct Qdisc *q = head;
2608 			spinlock_t *root_lock;
2609 
2610 			head = head->next_sched;
2611 
2612 			root_lock = qdisc_lock(q);
2613 			if (spin_trylock(root_lock)) {
2614 				smp_mb__before_clear_bit();
2615 				clear_bit(__QDISC_STATE_SCHED,
2616 					  &q->state);
2617 				qdisc_run(q);
2618 				spin_unlock(root_lock);
2619 			} else {
2620 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2621 					      &q->state)) {
2622 					__netif_reschedule(q);
2623 				} else {
2624 					smp_mb__before_clear_bit();
2625 					clear_bit(__QDISC_STATE_SCHED,
2626 						  &q->state);
2627 				}
2628 			}
2629 		}
2630 	}
2631 }
2632 
2633 static inline int deliver_skb(struct sk_buff *skb,
2634 			      struct packet_type *pt_prev,
2635 			      struct net_device *orig_dev)
2636 {
2637 	atomic_inc(&skb->users);
2638 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2639 }
2640 
2641 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2642     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2643 /* This hook is defined here for ATM LANE */
2644 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2645 			     unsigned char *addr) __read_mostly;
2646 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2647 #endif
2648 
2649 #ifdef CONFIG_NET_CLS_ACT
2650 /* TODO: Maybe we should just force sch_ingress to be compiled in
2651  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2652  * a compare and 2 stores extra right now if we dont have it on
2653  * but have CONFIG_NET_CLS_ACT
2654  * NOTE: This doesnt stop any functionality; if you dont have
2655  * the ingress scheduler, you just cant add policies on ingress.
2656  *
2657  */
2658 static int ing_filter(struct sk_buff *skb)
2659 {
2660 	struct net_device *dev = skb->dev;
2661 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2662 	struct netdev_queue *rxq;
2663 	int result = TC_ACT_OK;
2664 	struct Qdisc *q;
2665 
2666 	if (unlikely(MAX_RED_LOOP < ttl++)) {
2667 		if (net_ratelimit())
2668 			pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2669 			       skb->skb_iif, dev->ifindex);
2670 		return TC_ACT_SHOT;
2671 	}
2672 
2673 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2674 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2675 
2676 	rxq = &dev->rx_queue;
2677 
2678 	q = rxq->qdisc;
2679 	if (q != &noop_qdisc) {
2680 		spin_lock(qdisc_lock(q));
2681 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2682 			result = qdisc_enqueue_root(skb, q);
2683 		spin_unlock(qdisc_lock(q));
2684 	}
2685 
2686 	return result;
2687 }
2688 
2689 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2690 					 struct packet_type **pt_prev,
2691 					 int *ret, struct net_device *orig_dev)
2692 {
2693 	if (skb->dev->rx_queue.qdisc == &noop_qdisc)
2694 		goto out;
2695 
2696 	if (*pt_prev) {
2697 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2698 		*pt_prev = NULL;
2699 	}
2700 
2701 	switch (ing_filter(skb)) {
2702 	case TC_ACT_SHOT:
2703 	case TC_ACT_STOLEN:
2704 		kfree_skb(skb);
2705 		return NULL;
2706 	}
2707 
2708 out:
2709 	skb->tc_verd = 0;
2710 	return skb;
2711 }
2712 #endif
2713 
2714 /*
2715  * 	netif_nit_deliver - deliver received packets to network taps
2716  * 	@skb: buffer
2717  *
2718  * 	This function is used to deliver incoming packets to network
2719  * 	taps. It should be used when the normal netif_receive_skb path
2720  * 	is bypassed, for example because of VLAN acceleration.
2721  */
2722 void netif_nit_deliver(struct sk_buff *skb)
2723 {
2724 	struct packet_type *ptype;
2725 
2726 	if (list_empty(&ptype_all))
2727 		return;
2728 
2729 	skb_reset_network_header(skb);
2730 	skb_reset_transport_header(skb);
2731 	skb->mac_len = skb->network_header - skb->mac_header;
2732 
2733 	rcu_read_lock();
2734 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2735 		if (!ptype->dev || ptype->dev == skb->dev)
2736 			deliver_skb(skb, ptype, skb->dev);
2737 	}
2738 	rcu_read_unlock();
2739 }
2740 
2741 /**
2742  *	netdev_rx_handler_register - register receive handler
2743  *	@dev: device to register a handler for
2744  *	@rx_handler: receive handler to register
2745  *	@rx_handler_data: data pointer that is used by rx handler
2746  *
2747  *	Register a receive hander for a device. This handler will then be
2748  *	called from __netif_receive_skb. A negative errno code is returned
2749  *	on a failure.
2750  *
2751  *	The caller must hold the rtnl_mutex.
2752  */
2753 int netdev_rx_handler_register(struct net_device *dev,
2754 			       rx_handler_func_t *rx_handler,
2755 			       void *rx_handler_data)
2756 {
2757 	ASSERT_RTNL();
2758 
2759 	if (dev->rx_handler)
2760 		return -EBUSY;
2761 
2762 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
2763 	rcu_assign_pointer(dev->rx_handler, rx_handler);
2764 
2765 	return 0;
2766 }
2767 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
2768 
2769 /**
2770  *	netdev_rx_handler_unregister - unregister receive handler
2771  *	@dev: device to unregister a handler from
2772  *
2773  *	Unregister a receive hander from a device.
2774  *
2775  *	The caller must hold the rtnl_mutex.
2776  */
2777 void netdev_rx_handler_unregister(struct net_device *dev)
2778 {
2779 
2780 	ASSERT_RTNL();
2781 	rcu_assign_pointer(dev->rx_handler, NULL);
2782 	rcu_assign_pointer(dev->rx_handler_data, NULL);
2783 }
2784 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
2785 
2786 static inline void skb_bond_set_mac_by_master(struct sk_buff *skb,
2787 					      struct net_device *master)
2788 {
2789 	if (skb->pkt_type == PACKET_HOST) {
2790 		u16 *dest = (u16 *) eth_hdr(skb)->h_dest;
2791 
2792 		memcpy(dest, master->dev_addr, ETH_ALEN);
2793 	}
2794 }
2795 
2796 /* On bonding slaves other than the currently active slave, suppress
2797  * duplicates except for 802.3ad ETH_P_SLOW, alb non-mcast/bcast, and
2798  * ARP on active-backup slaves with arp_validate enabled.
2799  */
2800 int __skb_bond_should_drop(struct sk_buff *skb, struct net_device *master)
2801 {
2802 	struct net_device *dev = skb->dev;
2803 
2804 	if (master->priv_flags & IFF_MASTER_ARPMON)
2805 		dev->last_rx = jiffies;
2806 
2807 	if ((master->priv_flags & IFF_MASTER_ALB) &&
2808 	    (master->priv_flags & IFF_BRIDGE_PORT)) {
2809 		/* Do address unmangle. The local destination address
2810 		 * will be always the one master has. Provides the right
2811 		 * functionality in a bridge.
2812 		 */
2813 		skb_bond_set_mac_by_master(skb, master);
2814 	}
2815 
2816 	if (dev->priv_flags & IFF_SLAVE_INACTIVE) {
2817 		if ((dev->priv_flags & IFF_SLAVE_NEEDARP) &&
2818 		    skb->protocol == __cpu_to_be16(ETH_P_ARP))
2819 			return 0;
2820 
2821 		if (master->priv_flags & IFF_MASTER_ALB) {
2822 			if (skb->pkt_type != PACKET_BROADCAST &&
2823 			    skb->pkt_type != PACKET_MULTICAST)
2824 				return 0;
2825 		}
2826 		if (master->priv_flags & IFF_MASTER_8023AD &&
2827 		    skb->protocol == __cpu_to_be16(ETH_P_SLOW))
2828 			return 0;
2829 
2830 		return 1;
2831 	}
2832 	return 0;
2833 }
2834 EXPORT_SYMBOL(__skb_bond_should_drop);
2835 
2836 static int __netif_receive_skb(struct sk_buff *skb)
2837 {
2838 	struct packet_type *ptype, *pt_prev;
2839 	rx_handler_func_t *rx_handler;
2840 	struct net_device *orig_dev;
2841 	struct net_device *master;
2842 	struct net_device *null_or_orig;
2843 	struct net_device *orig_or_bond;
2844 	int ret = NET_RX_DROP;
2845 	__be16 type;
2846 
2847 	if (!netdev_tstamp_prequeue)
2848 		net_timestamp_check(skb);
2849 
2850 	if (vlan_tx_tag_present(skb))
2851 		vlan_hwaccel_do_receive(skb);
2852 
2853 	/* if we've gotten here through NAPI, check netpoll */
2854 	if (netpoll_receive_skb(skb))
2855 		return NET_RX_DROP;
2856 
2857 	if (!skb->skb_iif)
2858 		skb->skb_iif = skb->dev->ifindex;
2859 
2860 	/*
2861 	 * bonding note: skbs received on inactive slaves should only
2862 	 * be delivered to pkt handlers that are exact matches.  Also
2863 	 * the deliver_no_wcard flag will be set.  If packet handlers
2864 	 * are sensitive to duplicate packets these skbs will need to
2865 	 * be dropped at the handler.  The vlan accel path may have
2866 	 * already set the deliver_no_wcard flag.
2867 	 */
2868 	null_or_orig = NULL;
2869 	orig_dev = skb->dev;
2870 	master = ACCESS_ONCE(orig_dev->master);
2871 	if (skb->deliver_no_wcard)
2872 		null_or_orig = orig_dev;
2873 	else if (master) {
2874 		if (skb_bond_should_drop(skb, master)) {
2875 			skb->deliver_no_wcard = 1;
2876 			null_or_orig = orig_dev; /* deliver only exact match */
2877 		} else
2878 			skb->dev = master;
2879 	}
2880 
2881 	__this_cpu_inc(softnet_data.processed);
2882 	skb_reset_network_header(skb);
2883 	skb_reset_transport_header(skb);
2884 	skb->mac_len = skb->network_header - skb->mac_header;
2885 
2886 	pt_prev = NULL;
2887 
2888 	rcu_read_lock();
2889 
2890 #ifdef CONFIG_NET_CLS_ACT
2891 	if (skb->tc_verd & TC_NCLS) {
2892 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2893 		goto ncls;
2894 	}
2895 #endif
2896 
2897 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2898 		if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2899 		    ptype->dev == orig_dev) {
2900 			if (pt_prev)
2901 				ret = deliver_skb(skb, pt_prev, orig_dev);
2902 			pt_prev = ptype;
2903 		}
2904 	}
2905 
2906 #ifdef CONFIG_NET_CLS_ACT
2907 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2908 	if (!skb)
2909 		goto out;
2910 ncls:
2911 #endif
2912 
2913 	/* Handle special case of bridge or macvlan */
2914 	rx_handler = rcu_dereference(skb->dev->rx_handler);
2915 	if (rx_handler) {
2916 		if (pt_prev) {
2917 			ret = deliver_skb(skb, pt_prev, orig_dev);
2918 			pt_prev = NULL;
2919 		}
2920 		skb = rx_handler(skb);
2921 		if (!skb)
2922 			goto out;
2923 	}
2924 
2925 	/*
2926 	 * Make sure frames received on VLAN interfaces stacked on
2927 	 * bonding interfaces still make their way to any base bonding
2928 	 * device that may have registered for a specific ptype.  The
2929 	 * handler may have to adjust skb->dev and orig_dev.
2930 	 */
2931 	orig_or_bond = orig_dev;
2932 	if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2933 	    (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
2934 		orig_or_bond = vlan_dev_real_dev(skb->dev);
2935 	}
2936 
2937 	type = skb->protocol;
2938 	list_for_each_entry_rcu(ptype,
2939 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
2940 		if (ptype->type == type && (ptype->dev == null_or_orig ||
2941 		     ptype->dev == skb->dev || ptype->dev == orig_dev ||
2942 		     ptype->dev == orig_or_bond)) {
2943 			if (pt_prev)
2944 				ret = deliver_skb(skb, pt_prev, orig_dev);
2945 			pt_prev = ptype;
2946 		}
2947 	}
2948 
2949 	if (pt_prev) {
2950 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2951 	} else {
2952 		kfree_skb(skb);
2953 		/* Jamal, now you will not able to escape explaining
2954 		 * me how you were going to use this. :-)
2955 		 */
2956 		ret = NET_RX_DROP;
2957 	}
2958 
2959 out:
2960 	rcu_read_unlock();
2961 	return ret;
2962 }
2963 
2964 /**
2965  *	netif_receive_skb - process receive buffer from network
2966  *	@skb: buffer to process
2967  *
2968  *	netif_receive_skb() is the main receive data processing function.
2969  *	It always succeeds. The buffer may be dropped during processing
2970  *	for congestion control or by the protocol layers.
2971  *
2972  *	This function may only be called from softirq context and interrupts
2973  *	should be enabled.
2974  *
2975  *	Return values (usually ignored):
2976  *	NET_RX_SUCCESS: no congestion
2977  *	NET_RX_DROP: packet was dropped
2978  */
2979 int netif_receive_skb(struct sk_buff *skb)
2980 {
2981 	if (netdev_tstamp_prequeue)
2982 		net_timestamp_check(skb);
2983 
2984 	if (skb_defer_rx_timestamp(skb))
2985 		return NET_RX_SUCCESS;
2986 
2987 #ifdef CONFIG_RPS
2988 	{
2989 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2990 		int cpu, ret;
2991 
2992 		rcu_read_lock();
2993 
2994 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2995 
2996 		if (cpu >= 0) {
2997 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2998 			rcu_read_unlock();
2999 		} else {
3000 			rcu_read_unlock();
3001 			ret = __netif_receive_skb(skb);
3002 		}
3003 
3004 		return ret;
3005 	}
3006 #else
3007 	return __netif_receive_skb(skb);
3008 #endif
3009 }
3010 EXPORT_SYMBOL(netif_receive_skb);
3011 
3012 /* Network device is going away, flush any packets still pending
3013  * Called with irqs disabled.
3014  */
3015 static void flush_backlog(void *arg)
3016 {
3017 	struct net_device *dev = arg;
3018 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3019 	struct sk_buff *skb, *tmp;
3020 
3021 	rps_lock(sd);
3022 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3023 		if (skb->dev == dev) {
3024 			__skb_unlink(skb, &sd->input_pkt_queue);
3025 			kfree_skb(skb);
3026 			input_queue_head_incr(sd);
3027 		}
3028 	}
3029 	rps_unlock(sd);
3030 
3031 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3032 		if (skb->dev == dev) {
3033 			__skb_unlink(skb, &sd->process_queue);
3034 			kfree_skb(skb);
3035 			input_queue_head_incr(sd);
3036 		}
3037 	}
3038 }
3039 
3040 static int napi_gro_complete(struct sk_buff *skb)
3041 {
3042 	struct packet_type *ptype;
3043 	__be16 type = skb->protocol;
3044 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3045 	int err = -ENOENT;
3046 
3047 	if (NAPI_GRO_CB(skb)->count == 1) {
3048 		skb_shinfo(skb)->gso_size = 0;
3049 		goto out;
3050 	}
3051 
3052 	rcu_read_lock();
3053 	list_for_each_entry_rcu(ptype, head, list) {
3054 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3055 			continue;
3056 
3057 		err = ptype->gro_complete(skb);
3058 		break;
3059 	}
3060 	rcu_read_unlock();
3061 
3062 	if (err) {
3063 		WARN_ON(&ptype->list == head);
3064 		kfree_skb(skb);
3065 		return NET_RX_SUCCESS;
3066 	}
3067 
3068 out:
3069 	return netif_receive_skb(skb);
3070 }
3071 
3072 inline void napi_gro_flush(struct napi_struct *napi)
3073 {
3074 	struct sk_buff *skb, *next;
3075 
3076 	for (skb = napi->gro_list; skb; skb = next) {
3077 		next = skb->next;
3078 		skb->next = NULL;
3079 		napi_gro_complete(skb);
3080 	}
3081 
3082 	napi->gro_count = 0;
3083 	napi->gro_list = NULL;
3084 }
3085 EXPORT_SYMBOL(napi_gro_flush);
3086 
3087 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3088 {
3089 	struct sk_buff **pp = NULL;
3090 	struct packet_type *ptype;
3091 	__be16 type = skb->protocol;
3092 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3093 	int same_flow;
3094 	int mac_len;
3095 	enum gro_result ret;
3096 
3097 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3098 		goto normal;
3099 
3100 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3101 		goto normal;
3102 
3103 	rcu_read_lock();
3104 	list_for_each_entry_rcu(ptype, head, list) {
3105 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3106 			continue;
3107 
3108 		skb_set_network_header(skb, skb_gro_offset(skb));
3109 		mac_len = skb->network_header - skb->mac_header;
3110 		skb->mac_len = mac_len;
3111 		NAPI_GRO_CB(skb)->same_flow = 0;
3112 		NAPI_GRO_CB(skb)->flush = 0;
3113 		NAPI_GRO_CB(skb)->free = 0;
3114 
3115 		pp = ptype->gro_receive(&napi->gro_list, skb);
3116 		break;
3117 	}
3118 	rcu_read_unlock();
3119 
3120 	if (&ptype->list == head)
3121 		goto normal;
3122 
3123 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3124 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3125 
3126 	if (pp) {
3127 		struct sk_buff *nskb = *pp;
3128 
3129 		*pp = nskb->next;
3130 		nskb->next = NULL;
3131 		napi_gro_complete(nskb);
3132 		napi->gro_count--;
3133 	}
3134 
3135 	if (same_flow)
3136 		goto ok;
3137 
3138 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3139 		goto normal;
3140 
3141 	napi->gro_count++;
3142 	NAPI_GRO_CB(skb)->count = 1;
3143 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3144 	skb->next = napi->gro_list;
3145 	napi->gro_list = skb;
3146 	ret = GRO_HELD;
3147 
3148 pull:
3149 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3150 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3151 
3152 		BUG_ON(skb->end - skb->tail < grow);
3153 
3154 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3155 
3156 		skb->tail += grow;
3157 		skb->data_len -= grow;
3158 
3159 		skb_shinfo(skb)->frags[0].page_offset += grow;
3160 		skb_shinfo(skb)->frags[0].size -= grow;
3161 
3162 		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3163 			put_page(skb_shinfo(skb)->frags[0].page);
3164 			memmove(skb_shinfo(skb)->frags,
3165 				skb_shinfo(skb)->frags + 1,
3166 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3167 		}
3168 	}
3169 
3170 ok:
3171 	return ret;
3172 
3173 normal:
3174 	ret = GRO_NORMAL;
3175 	goto pull;
3176 }
3177 EXPORT_SYMBOL(dev_gro_receive);
3178 
3179 static inline gro_result_t
3180 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3181 {
3182 	struct sk_buff *p;
3183 
3184 	for (p = napi->gro_list; p; p = p->next) {
3185 		unsigned long diffs;
3186 
3187 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3188 		diffs |= compare_ether_header(skb_mac_header(p),
3189 					      skb_gro_mac_header(skb));
3190 		NAPI_GRO_CB(p)->same_flow = !diffs;
3191 		NAPI_GRO_CB(p)->flush = 0;
3192 	}
3193 
3194 	return dev_gro_receive(napi, skb);
3195 }
3196 
3197 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3198 {
3199 	switch (ret) {
3200 	case GRO_NORMAL:
3201 		if (netif_receive_skb(skb))
3202 			ret = GRO_DROP;
3203 		break;
3204 
3205 	case GRO_DROP:
3206 	case GRO_MERGED_FREE:
3207 		kfree_skb(skb);
3208 		break;
3209 
3210 	case GRO_HELD:
3211 	case GRO_MERGED:
3212 		break;
3213 	}
3214 
3215 	return ret;
3216 }
3217 EXPORT_SYMBOL(napi_skb_finish);
3218 
3219 void skb_gro_reset_offset(struct sk_buff *skb)
3220 {
3221 	NAPI_GRO_CB(skb)->data_offset = 0;
3222 	NAPI_GRO_CB(skb)->frag0 = NULL;
3223 	NAPI_GRO_CB(skb)->frag0_len = 0;
3224 
3225 	if (skb->mac_header == skb->tail &&
3226 	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3227 		NAPI_GRO_CB(skb)->frag0 =
3228 			page_address(skb_shinfo(skb)->frags[0].page) +
3229 			skb_shinfo(skb)->frags[0].page_offset;
3230 		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3231 	}
3232 }
3233 EXPORT_SYMBOL(skb_gro_reset_offset);
3234 
3235 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3236 {
3237 	skb_gro_reset_offset(skb);
3238 
3239 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3240 }
3241 EXPORT_SYMBOL(napi_gro_receive);
3242 
3243 void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3244 {
3245 	__skb_pull(skb, skb_headlen(skb));
3246 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3247 
3248 	napi->skb = skb;
3249 }
3250 EXPORT_SYMBOL(napi_reuse_skb);
3251 
3252 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3253 {
3254 	struct sk_buff *skb = napi->skb;
3255 
3256 	if (!skb) {
3257 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3258 		if (skb)
3259 			napi->skb = skb;
3260 	}
3261 	return skb;
3262 }
3263 EXPORT_SYMBOL(napi_get_frags);
3264 
3265 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3266 			       gro_result_t ret)
3267 {
3268 	switch (ret) {
3269 	case GRO_NORMAL:
3270 	case GRO_HELD:
3271 		skb->protocol = eth_type_trans(skb, skb->dev);
3272 
3273 		if (ret == GRO_HELD)
3274 			skb_gro_pull(skb, -ETH_HLEN);
3275 		else if (netif_receive_skb(skb))
3276 			ret = GRO_DROP;
3277 		break;
3278 
3279 	case GRO_DROP:
3280 	case GRO_MERGED_FREE:
3281 		napi_reuse_skb(napi, skb);
3282 		break;
3283 
3284 	case GRO_MERGED:
3285 		break;
3286 	}
3287 
3288 	return ret;
3289 }
3290 EXPORT_SYMBOL(napi_frags_finish);
3291 
3292 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3293 {
3294 	struct sk_buff *skb = napi->skb;
3295 	struct ethhdr *eth;
3296 	unsigned int hlen;
3297 	unsigned int off;
3298 
3299 	napi->skb = NULL;
3300 
3301 	skb_reset_mac_header(skb);
3302 	skb_gro_reset_offset(skb);
3303 
3304 	off = skb_gro_offset(skb);
3305 	hlen = off + sizeof(*eth);
3306 	eth = skb_gro_header_fast(skb, off);
3307 	if (skb_gro_header_hard(skb, hlen)) {
3308 		eth = skb_gro_header_slow(skb, hlen, off);
3309 		if (unlikely(!eth)) {
3310 			napi_reuse_skb(napi, skb);
3311 			skb = NULL;
3312 			goto out;
3313 		}
3314 	}
3315 
3316 	skb_gro_pull(skb, sizeof(*eth));
3317 
3318 	/*
3319 	 * This works because the only protocols we care about don't require
3320 	 * special handling.  We'll fix it up properly at the end.
3321 	 */
3322 	skb->protocol = eth->h_proto;
3323 
3324 out:
3325 	return skb;
3326 }
3327 EXPORT_SYMBOL(napi_frags_skb);
3328 
3329 gro_result_t napi_gro_frags(struct napi_struct *napi)
3330 {
3331 	struct sk_buff *skb = napi_frags_skb(napi);
3332 
3333 	if (!skb)
3334 		return GRO_DROP;
3335 
3336 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3337 }
3338 EXPORT_SYMBOL(napi_gro_frags);
3339 
3340 /*
3341  * net_rps_action sends any pending IPI's for rps.
3342  * Note: called with local irq disabled, but exits with local irq enabled.
3343  */
3344 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3345 {
3346 #ifdef CONFIG_RPS
3347 	struct softnet_data *remsd = sd->rps_ipi_list;
3348 
3349 	if (remsd) {
3350 		sd->rps_ipi_list = NULL;
3351 
3352 		local_irq_enable();
3353 
3354 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3355 		while (remsd) {
3356 			struct softnet_data *next = remsd->rps_ipi_next;
3357 
3358 			if (cpu_online(remsd->cpu))
3359 				__smp_call_function_single(remsd->cpu,
3360 							   &remsd->csd, 0);
3361 			remsd = next;
3362 		}
3363 	} else
3364 #endif
3365 		local_irq_enable();
3366 }
3367 
3368 static int process_backlog(struct napi_struct *napi, int quota)
3369 {
3370 	int work = 0;
3371 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3372 
3373 #ifdef CONFIG_RPS
3374 	/* Check if we have pending ipi, its better to send them now,
3375 	 * not waiting net_rx_action() end.
3376 	 */
3377 	if (sd->rps_ipi_list) {
3378 		local_irq_disable();
3379 		net_rps_action_and_irq_enable(sd);
3380 	}
3381 #endif
3382 	napi->weight = weight_p;
3383 	local_irq_disable();
3384 	while (work < quota) {
3385 		struct sk_buff *skb;
3386 		unsigned int qlen;
3387 
3388 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3389 			local_irq_enable();
3390 			__netif_receive_skb(skb);
3391 			local_irq_disable();
3392 			input_queue_head_incr(sd);
3393 			if (++work >= quota) {
3394 				local_irq_enable();
3395 				return work;
3396 			}
3397 		}
3398 
3399 		rps_lock(sd);
3400 		qlen = skb_queue_len(&sd->input_pkt_queue);
3401 		if (qlen)
3402 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3403 						   &sd->process_queue);
3404 
3405 		if (qlen < quota - work) {
3406 			/*
3407 			 * Inline a custom version of __napi_complete().
3408 			 * only current cpu owns and manipulates this napi,
3409 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3410 			 * we can use a plain write instead of clear_bit(),
3411 			 * and we dont need an smp_mb() memory barrier.
3412 			 */
3413 			list_del(&napi->poll_list);
3414 			napi->state = 0;
3415 
3416 			quota = work + qlen;
3417 		}
3418 		rps_unlock(sd);
3419 	}
3420 	local_irq_enable();
3421 
3422 	return work;
3423 }
3424 
3425 /**
3426  * __napi_schedule - schedule for receive
3427  * @n: entry to schedule
3428  *
3429  * The entry's receive function will be scheduled to run
3430  */
3431 void __napi_schedule(struct napi_struct *n)
3432 {
3433 	unsigned long flags;
3434 
3435 	local_irq_save(flags);
3436 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3437 	local_irq_restore(flags);
3438 }
3439 EXPORT_SYMBOL(__napi_schedule);
3440 
3441 void __napi_complete(struct napi_struct *n)
3442 {
3443 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3444 	BUG_ON(n->gro_list);
3445 
3446 	list_del(&n->poll_list);
3447 	smp_mb__before_clear_bit();
3448 	clear_bit(NAPI_STATE_SCHED, &n->state);
3449 }
3450 EXPORT_SYMBOL(__napi_complete);
3451 
3452 void napi_complete(struct napi_struct *n)
3453 {
3454 	unsigned long flags;
3455 
3456 	/*
3457 	 * don't let napi dequeue from the cpu poll list
3458 	 * just in case its running on a different cpu
3459 	 */
3460 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3461 		return;
3462 
3463 	napi_gro_flush(n);
3464 	local_irq_save(flags);
3465 	__napi_complete(n);
3466 	local_irq_restore(flags);
3467 }
3468 EXPORT_SYMBOL(napi_complete);
3469 
3470 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3471 		    int (*poll)(struct napi_struct *, int), int weight)
3472 {
3473 	INIT_LIST_HEAD(&napi->poll_list);
3474 	napi->gro_count = 0;
3475 	napi->gro_list = NULL;
3476 	napi->skb = NULL;
3477 	napi->poll = poll;
3478 	napi->weight = weight;
3479 	list_add(&napi->dev_list, &dev->napi_list);
3480 	napi->dev = dev;
3481 #ifdef CONFIG_NETPOLL
3482 	spin_lock_init(&napi->poll_lock);
3483 	napi->poll_owner = -1;
3484 #endif
3485 	set_bit(NAPI_STATE_SCHED, &napi->state);
3486 }
3487 EXPORT_SYMBOL(netif_napi_add);
3488 
3489 void netif_napi_del(struct napi_struct *napi)
3490 {
3491 	struct sk_buff *skb, *next;
3492 
3493 	list_del_init(&napi->dev_list);
3494 	napi_free_frags(napi);
3495 
3496 	for (skb = napi->gro_list; skb; skb = next) {
3497 		next = skb->next;
3498 		skb->next = NULL;
3499 		kfree_skb(skb);
3500 	}
3501 
3502 	napi->gro_list = NULL;
3503 	napi->gro_count = 0;
3504 }
3505 EXPORT_SYMBOL(netif_napi_del);
3506 
3507 static void net_rx_action(struct softirq_action *h)
3508 {
3509 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3510 	unsigned long time_limit = jiffies + 2;
3511 	int budget = netdev_budget;
3512 	void *have;
3513 
3514 	local_irq_disable();
3515 
3516 	while (!list_empty(&sd->poll_list)) {
3517 		struct napi_struct *n;
3518 		int work, weight;
3519 
3520 		/* If softirq window is exhuasted then punt.
3521 		 * Allow this to run for 2 jiffies since which will allow
3522 		 * an average latency of 1.5/HZ.
3523 		 */
3524 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3525 			goto softnet_break;
3526 
3527 		local_irq_enable();
3528 
3529 		/* Even though interrupts have been re-enabled, this
3530 		 * access is safe because interrupts can only add new
3531 		 * entries to the tail of this list, and only ->poll()
3532 		 * calls can remove this head entry from the list.
3533 		 */
3534 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3535 
3536 		have = netpoll_poll_lock(n);
3537 
3538 		weight = n->weight;
3539 
3540 		/* This NAPI_STATE_SCHED test is for avoiding a race
3541 		 * with netpoll's poll_napi().  Only the entity which
3542 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3543 		 * actually make the ->poll() call.  Therefore we avoid
3544 		 * accidently calling ->poll() when NAPI is not scheduled.
3545 		 */
3546 		work = 0;
3547 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3548 			work = n->poll(n, weight);
3549 			trace_napi_poll(n);
3550 		}
3551 
3552 		WARN_ON_ONCE(work > weight);
3553 
3554 		budget -= work;
3555 
3556 		local_irq_disable();
3557 
3558 		/* Drivers must not modify the NAPI state if they
3559 		 * consume the entire weight.  In such cases this code
3560 		 * still "owns" the NAPI instance and therefore can
3561 		 * move the instance around on the list at-will.
3562 		 */
3563 		if (unlikely(work == weight)) {
3564 			if (unlikely(napi_disable_pending(n))) {
3565 				local_irq_enable();
3566 				napi_complete(n);
3567 				local_irq_disable();
3568 			} else
3569 				list_move_tail(&n->poll_list, &sd->poll_list);
3570 		}
3571 
3572 		netpoll_poll_unlock(have);
3573 	}
3574 out:
3575 	net_rps_action_and_irq_enable(sd);
3576 
3577 #ifdef CONFIG_NET_DMA
3578 	/*
3579 	 * There may not be any more sk_buffs coming right now, so push
3580 	 * any pending DMA copies to hardware
3581 	 */
3582 	dma_issue_pending_all();
3583 #endif
3584 
3585 	return;
3586 
3587 softnet_break:
3588 	sd->time_squeeze++;
3589 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3590 	goto out;
3591 }
3592 
3593 static gifconf_func_t *gifconf_list[NPROTO];
3594 
3595 /**
3596  *	register_gifconf	-	register a SIOCGIF handler
3597  *	@family: Address family
3598  *	@gifconf: Function handler
3599  *
3600  *	Register protocol dependent address dumping routines. The handler
3601  *	that is passed must not be freed or reused until it has been replaced
3602  *	by another handler.
3603  */
3604 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3605 {
3606 	if (family >= NPROTO)
3607 		return -EINVAL;
3608 	gifconf_list[family] = gifconf;
3609 	return 0;
3610 }
3611 EXPORT_SYMBOL(register_gifconf);
3612 
3613 
3614 /*
3615  *	Map an interface index to its name (SIOCGIFNAME)
3616  */
3617 
3618 /*
3619  *	We need this ioctl for efficient implementation of the
3620  *	if_indextoname() function required by the IPv6 API.  Without
3621  *	it, we would have to search all the interfaces to find a
3622  *	match.  --pb
3623  */
3624 
3625 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3626 {
3627 	struct net_device *dev;
3628 	struct ifreq ifr;
3629 
3630 	/*
3631 	 *	Fetch the caller's info block.
3632 	 */
3633 
3634 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3635 		return -EFAULT;
3636 
3637 	rcu_read_lock();
3638 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3639 	if (!dev) {
3640 		rcu_read_unlock();
3641 		return -ENODEV;
3642 	}
3643 
3644 	strcpy(ifr.ifr_name, dev->name);
3645 	rcu_read_unlock();
3646 
3647 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3648 		return -EFAULT;
3649 	return 0;
3650 }
3651 
3652 /*
3653  *	Perform a SIOCGIFCONF call. This structure will change
3654  *	size eventually, and there is nothing I can do about it.
3655  *	Thus we will need a 'compatibility mode'.
3656  */
3657 
3658 static int dev_ifconf(struct net *net, char __user *arg)
3659 {
3660 	struct ifconf ifc;
3661 	struct net_device *dev;
3662 	char __user *pos;
3663 	int len;
3664 	int total;
3665 	int i;
3666 
3667 	/*
3668 	 *	Fetch the caller's info block.
3669 	 */
3670 
3671 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3672 		return -EFAULT;
3673 
3674 	pos = ifc.ifc_buf;
3675 	len = ifc.ifc_len;
3676 
3677 	/*
3678 	 *	Loop over the interfaces, and write an info block for each.
3679 	 */
3680 
3681 	total = 0;
3682 	for_each_netdev(net, dev) {
3683 		for (i = 0; i < NPROTO; i++) {
3684 			if (gifconf_list[i]) {
3685 				int done;
3686 				if (!pos)
3687 					done = gifconf_list[i](dev, NULL, 0);
3688 				else
3689 					done = gifconf_list[i](dev, pos + total,
3690 							       len - total);
3691 				if (done < 0)
3692 					return -EFAULT;
3693 				total += done;
3694 			}
3695 		}
3696 	}
3697 
3698 	/*
3699 	 *	All done.  Write the updated control block back to the caller.
3700 	 */
3701 	ifc.ifc_len = total;
3702 
3703 	/*
3704 	 * 	Both BSD and Solaris return 0 here, so we do too.
3705 	 */
3706 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3707 }
3708 
3709 #ifdef CONFIG_PROC_FS
3710 /*
3711  *	This is invoked by the /proc filesystem handler to display a device
3712  *	in detail.
3713  */
3714 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3715 	__acquires(RCU)
3716 {
3717 	struct net *net = seq_file_net(seq);
3718 	loff_t off;
3719 	struct net_device *dev;
3720 
3721 	rcu_read_lock();
3722 	if (!*pos)
3723 		return SEQ_START_TOKEN;
3724 
3725 	off = 1;
3726 	for_each_netdev_rcu(net, dev)
3727 		if (off++ == *pos)
3728 			return dev;
3729 
3730 	return NULL;
3731 }
3732 
3733 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3734 {
3735 	struct net_device *dev = (v == SEQ_START_TOKEN) ?
3736 				  first_net_device(seq_file_net(seq)) :
3737 				  next_net_device((struct net_device *)v);
3738 
3739 	++*pos;
3740 	return rcu_dereference(dev);
3741 }
3742 
3743 void dev_seq_stop(struct seq_file *seq, void *v)
3744 	__releases(RCU)
3745 {
3746 	rcu_read_unlock();
3747 }
3748 
3749 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3750 {
3751 	struct rtnl_link_stats64 temp;
3752 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3753 
3754 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3755 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3756 		   dev->name, stats->rx_bytes, stats->rx_packets,
3757 		   stats->rx_errors,
3758 		   stats->rx_dropped + stats->rx_missed_errors,
3759 		   stats->rx_fifo_errors,
3760 		   stats->rx_length_errors + stats->rx_over_errors +
3761 		    stats->rx_crc_errors + stats->rx_frame_errors,
3762 		   stats->rx_compressed, stats->multicast,
3763 		   stats->tx_bytes, stats->tx_packets,
3764 		   stats->tx_errors, stats->tx_dropped,
3765 		   stats->tx_fifo_errors, stats->collisions,
3766 		   stats->tx_carrier_errors +
3767 		    stats->tx_aborted_errors +
3768 		    stats->tx_window_errors +
3769 		    stats->tx_heartbeat_errors,
3770 		   stats->tx_compressed);
3771 }
3772 
3773 /*
3774  *	Called from the PROCfs module. This now uses the new arbitrary sized
3775  *	/proc/net interface to create /proc/net/dev
3776  */
3777 static int dev_seq_show(struct seq_file *seq, void *v)
3778 {
3779 	if (v == SEQ_START_TOKEN)
3780 		seq_puts(seq, "Inter-|   Receive                            "
3781 			      "                    |  Transmit\n"
3782 			      " face |bytes    packets errs drop fifo frame "
3783 			      "compressed multicast|bytes    packets errs "
3784 			      "drop fifo colls carrier compressed\n");
3785 	else
3786 		dev_seq_printf_stats(seq, v);
3787 	return 0;
3788 }
3789 
3790 static struct softnet_data *softnet_get_online(loff_t *pos)
3791 {
3792 	struct softnet_data *sd = NULL;
3793 
3794 	while (*pos < nr_cpu_ids)
3795 		if (cpu_online(*pos)) {
3796 			sd = &per_cpu(softnet_data, *pos);
3797 			break;
3798 		} else
3799 			++*pos;
3800 	return sd;
3801 }
3802 
3803 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3804 {
3805 	return softnet_get_online(pos);
3806 }
3807 
3808 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3809 {
3810 	++*pos;
3811 	return softnet_get_online(pos);
3812 }
3813 
3814 static void softnet_seq_stop(struct seq_file *seq, void *v)
3815 {
3816 }
3817 
3818 static int softnet_seq_show(struct seq_file *seq, void *v)
3819 {
3820 	struct softnet_data *sd = v;
3821 
3822 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
3823 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
3824 		   0, 0, 0, 0, /* was fastroute */
3825 		   sd->cpu_collision, sd->received_rps);
3826 	return 0;
3827 }
3828 
3829 static const struct seq_operations dev_seq_ops = {
3830 	.start = dev_seq_start,
3831 	.next  = dev_seq_next,
3832 	.stop  = dev_seq_stop,
3833 	.show  = dev_seq_show,
3834 };
3835 
3836 static int dev_seq_open(struct inode *inode, struct file *file)
3837 {
3838 	return seq_open_net(inode, file, &dev_seq_ops,
3839 			    sizeof(struct seq_net_private));
3840 }
3841 
3842 static const struct file_operations dev_seq_fops = {
3843 	.owner	 = THIS_MODULE,
3844 	.open    = dev_seq_open,
3845 	.read    = seq_read,
3846 	.llseek  = seq_lseek,
3847 	.release = seq_release_net,
3848 };
3849 
3850 static const struct seq_operations softnet_seq_ops = {
3851 	.start = softnet_seq_start,
3852 	.next  = softnet_seq_next,
3853 	.stop  = softnet_seq_stop,
3854 	.show  = softnet_seq_show,
3855 };
3856 
3857 static int softnet_seq_open(struct inode *inode, struct file *file)
3858 {
3859 	return seq_open(file, &softnet_seq_ops);
3860 }
3861 
3862 static const struct file_operations softnet_seq_fops = {
3863 	.owner	 = THIS_MODULE,
3864 	.open    = softnet_seq_open,
3865 	.read    = seq_read,
3866 	.llseek  = seq_lseek,
3867 	.release = seq_release,
3868 };
3869 
3870 static void *ptype_get_idx(loff_t pos)
3871 {
3872 	struct packet_type *pt = NULL;
3873 	loff_t i = 0;
3874 	int t;
3875 
3876 	list_for_each_entry_rcu(pt, &ptype_all, list) {
3877 		if (i == pos)
3878 			return pt;
3879 		++i;
3880 	}
3881 
3882 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
3883 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3884 			if (i == pos)
3885 				return pt;
3886 			++i;
3887 		}
3888 	}
3889 	return NULL;
3890 }
3891 
3892 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
3893 	__acquires(RCU)
3894 {
3895 	rcu_read_lock();
3896 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3897 }
3898 
3899 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3900 {
3901 	struct packet_type *pt;
3902 	struct list_head *nxt;
3903 	int hash;
3904 
3905 	++*pos;
3906 	if (v == SEQ_START_TOKEN)
3907 		return ptype_get_idx(0);
3908 
3909 	pt = v;
3910 	nxt = pt->list.next;
3911 	if (pt->type == htons(ETH_P_ALL)) {
3912 		if (nxt != &ptype_all)
3913 			goto found;
3914 		hash = 0;
3915 		nxt = ptype_base[0].next;
3916 	} else
3917 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
3918 
3919 	while (nxt == &ptype_base[hash]) {
3920 		if (++hash >= PTYPE_HASH_SIZE)
3921 			return NULL;
3922 		nxt = ptype_base[hash].next;
3923 	}
3924 found:
3925 	return list_entry(nxt, struct packet_type, list);
3926 }
3927 
3928 static void ptype_seq_stop(struct seq_file *seq, void *v)
3929 	__releases(RCU)
3930 {
3931 	rcu_read_unlock();
3932 }
3933 
3934 static int ptype_seq_show(struct seq_file *seq, void *v)
3935 {
3936 	struct packet_type *pt = v;
3937 
3938 	if (v == SEQ_START_TOKEN)
3939 		seq_puts(seq, "Type Device      Function\n");
3940 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
3941 		if (pt->type == htons(ETH_P_ALL))
3942 			seq_puts(seq, "ALL ");
3943 		else
3944 			seq_printf(seq, "%04x", ntohs(pt->type));
3945 
3946 		seq_printf(seq, " %-8s %pF\n",
3947 			   pt->dev ? pt->dev->name : "", pt->func);
3948 	}
3949 
3950 	return 0;
3951 }
3952 
3953 static const struct seq_operations ptype_seq_ops = {
3954 	.start = ptype_seq_start,
3955 	.next  = ptype_seq_next,
3956 	.stop  = ptype_seq_stop,
3957 	.show  = ptype_seq_show,
3958 };
3959 
3960 static int ptype_seq_open(struct inode *inode, struct file *file)
3961 {
3962 	return seq_open_net(inode, file, &ptype_seq_ops,
3963 			sizeof(struct seq_net_private));
3964 }
3965 
3966 static const struct file_operations ptype_seq_fops = {
3967 	.owner	 = THIS_MODULE,
3968 	.open    = ptype_seq_open,
3969 	.read    = seq_read,
3970 	.llseek  = seq_lseek,
3971 	.release = seq_release_net,
3972 };
3973 
3974 
3975 static int __net_init dev_proc_net_init(struct net *net)
3976 {
3977 	int rc = -ENOMEM;
3978 
3979 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
3980 		goto out;
3981 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
3982 		goto out_dev;
3983 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
3984 		goto out_softnet;
3985 
3986 	if (wext_proc_init(net))
3987 		goto out_ptype;
3988 	rc = 0;
3989 out:
3990 	return rc;
3991 out_ptype:
3992 	proc_net_remove(net, "ptype");
3993 out_softnet:
3994 	proc_net_remove(net, "softnet_stat");
3995 out_dev:
3996 	proc_net_remove(net, "dev");
3997 	goto out;
3998 }
3999 
4000 static void __net_exit dev_proc_net_exit(struct net *net)
4001 {
4002 	wext_proc_exit(net);
4003 
4004 	proc_net_remove(net, "ptype");
4005 	proc_net_remove(net, "softnet_stat");
4006 	proc_net_remove(net, "dev");
4007 }
4008 
4009 static struct pernet_operations __net_initdata dev_proc_ops = {
4010 	.init = dev_proc_net_init,
4011 	.exit = dev_proc_net_exit,
4012 };
4013 
4014 static int __init dev_proc_init(void)
4015 {
4016 	return register_pernet_subsys(&dev_proc_ops);
4017 }
4018 #else
4019 #define dev_proc_init() 0
4020 #endif	/* CONFIG_PROC_FS */
4021 
4022 
4023 /**
4024  *	netdev_set_master	-	set up master/slave pair
4025  *	@slave: slave device
4026  *	@master: new master device
4027  *
4028  *	Changes the master device of the slave. Pass %NULL to break the
4029  *	bonding. The caller must hold the RTNL semaphore. On a failure
4030  *	a negative errno code is returned. On success the reference counts
4031  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
4032  *	function returns zero.
4033  */
4034 int netdev_set_master(struct net_device *slave, struct net_device *master)
4035 {
4036 	struct net_device *old = slave->master;
4037 
4038 	ASSERT_RTNL();
4039 
4040 	if (master) {
4041 		if (old)
4042 			return -EBUSY;
4043 		dev_hold(master);
4044 	}
4045 
4046 	slave->master = master;
4047 
4048 	if (old) {
4049 		synchronize_net();
4050 		dev_put(old);
4051 	}
4052 	if (master)
4053 		slave->flags |= IFF_SLAVE;
4054 	else
4055 		slave->flags &= ~IFF_SLAVE;
4056 
4057 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4058 	return 0;
4059 }
4060 EXPORT_SYMBOL(netdev_set_master);
4061 
4062 static void dev_change_rx_flags(struct net_device *dev, int flags)
4063 {
4064 	const struct net_device_ops *ops = dev->netdev_ops;
4065 
4066 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4067 		ops->ndo_change_rx_flags(dev, flags);
4068 }
4069 
4070 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4071 {
4072 	unsigned short old_flags = dev->flags;
4073 	uid_t uid;
4074 	gid_t gid;
4075 
4076 	ASSERT_RTNL();
4077 
4078 	dev->flags |= IFF_PROMISC;
4079 	dev->promiscuity += inc;
4080 	if (dev->promiscuity == 0) {
4081 		/*
4082 		 * Avoid overflow.
4083 		 * If inc causes overflow, untouch promisc and return error.
4084 		 */
4085 		if (inc < 0)
4086 			dev->flags &= ~IFF_PROMISC;
4087 		else {
4088 			dev->promiscuity -= inc;
4089 			printk(KERN_WARNING "%s: promiscuity touches roof, "
4090 				"set promiscuity failed, promiscuity feature "
4091 				"of device might be broken.\n", dev->name);
4092 			return -EOVERFLOW;
4093 		}
4094 	}
4095 	if (dev->flags != old_flags) {
4096 		printk(KERN_INFO "device %s %s promiscuous mode\n",
4097 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4098 							       "left");
4099 		if (audit_enabled) {
4100 			current_uid_gid(&uid, &gid);
4101 			audit_log(current->audit_context, GFP_ATOMIC,
4102 				AUDIT_ANOM_PROMISCUOUS,
4103 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4104 				dev->name, (dev->flags & IFF_PROMISC),
4105 				(old_flags & IFF_PROMISC),
4106 				audit_get_loginuid(current),
4107 				uid, gid,
4108 				audit_get_sessionid(current));
4109 		}
4110 
4111 		dev_change_rx_flags(dev, IFF_PROMISC);
4112 	}
4113 	return 0;
4114 }
4115 
4116 /**
4117  *	dev_set_promiscuity	- update promiscuity count on a device
4118  *	@dev: device
4119  *	@inc: modifier
4120  *
4121  *	Add or remove promiscuity from a device. While the count in the device
4122  *	remains above zero the interface remains promiscuous. Once it hits zero
4123  *	the device reverts back to normal filtering operation. A negative inc
4124  *	value is used to drop promiscuity on the device.
4125  *	Return 0 if successful or a negative errno code on error.
4126  */
4127 int dev_set_promiscuity(struct net_device *dev, int inc)
4128 {
4129 	unsigned short old_flags = dev->flags;
4130 	int err;
4131 
4132 	err = __dev_set_promiscuity(dev, inc);
4133 	if (err < 0)
4134 		return err;
4135 	if (dev->flags != old_flags)
4136 		dev_set_rx_mode(dev);
4137 	return err;
4138 }
4139 EXPORT_SYMBOL(dev_set_promiscuity);
4140 
4141 /**
4142  *	dev_set_allmulti	- update allmulti count on a device
4143  *	@dev: device
4144  *	@inc: modifier
4145  *
4146  *	Add or remove reception of all multicast frames to a device. While the
4147  *	count in the device remains above zero the interface remains listening
4148  *	to all interfaces. Once it hits zero the device reverts back to normal
4149  *	filtering operation. A negative @inc value is used to drop the counter
4150  *	when releasing a resource needing all multicasts.
4151  *	Return 0 if successful or a negative errno code on error.
4152  */
4153 
4154 int dev_set_allmulti(struct net_device *dev, int inc)
4155 {
4156 	unsigned short old_flags = dev->flags;
4157 
4158 	ASSERT_RTNL();
4159 
4160 	dev->flags |= IFF_ALLMULTI;
4161 	dev->allmulti += inc;
4162 	if (dev->allmulti == 0) {
4163 		/*
4164 		 * Avoid overflow.
4165 		 * If inc causes overflow, untouch allmulti and return error.
4166 		 */
4167 		if (inc < 0)
4168 			dev->flags &= ~IFF_ALLMULTI;
4169 		else {
4170 			dev->allmulti -= inc;
4171 			printk(KERN_WARNING "%s: allmulti touches roof, "
4172 				"set allmulti failed, allmulti feature of "
4173 				"device might be broken.\n", dev->name);
4174 			return -EOVERFLOW;
4175 		}
4176 	}
4177 	if (dev->flags ^ old_flags) {
4178 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4179 		dev_set_rx_mode(dev);
4180 	}
4181 	return 0;
4182 }
4183 EXPORT_SYMBOL(dev_set_allmulti);
4184 
4185 /*
4186  *	Upload unicast and multicast address lists to device and
4187  *	configure RX filtering. When the device doesn't support unicast
4188  *	filtering it is put in promiscuous mode while unicast addresses
4189  *	are present.
4190  */
4191 void __dev_set_rx_mode(struct net_device *dev)
4192 {
4193 	const struct net_device_ops *ops = dev->netdev_ops;
4194 
4195 	/* dev_open will call this function so the list will stay sane. */
4196 	if (!(dev->flags&IFF_UP))
4197 		return;
4198 
4199 	if (!netif_device_present(dev))
4200 		return;
4201 
4202 	if (ops->ndo_set_rx_mode)
4203 		ops->ndo_set_rx_mode(dev);
4204 	else {
4205 		/* Unicast addresses changes may only happen under the rtnl,
4206 		 * therefore calling __dev_set_promiscuity here is safe.
4207 		 */
4208 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4209 			__dev_set_promiscuity(dev, 1);
4210 			dev->uc_promisc = 1;
4211 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4212 			__dev_set_promiscuity(dev, -1);
4213 			dev->uc_promisc = 0;
4214 		}
4215 
4216 		if (ops->ndo_set_multicast_list)
4217 			ops->ndo_set_multicast_list(dev);
4218 	}
4219 }
4220 
4221 void dev_set_rx_mode(struct net_device *dev)
4222 {
4223 	netif_addr_lock_bh(dev);
4224 	__dev_set_rx_mode(dev);
4225 	netif_addr_unlock_bh(dev);
4226 }
4227 
4228 /**
4229  *	dev_get_flags - get flags reported to userspace
4230  *	@dev: device
4231  *
4232  *	Get the combination of flag bits exported through APIs to userspace.
4233  */
4234 unsigned dev_get_flags(const struct net_device *dev)
4235 {
4236 	unsigned flags;
4237 
4238 	flags = (dev->flags & ~(IFF_PROMISC |
4239 				IFF_ALLMULTI |
4240 				IFF_RUNNING |
4241 				IFF_LOWER_UP |
4242 				IFF_DORMANT)) |
4243 		(dev->gflags & (IFF_PROMISC |
4244 				IFF_ALLMULTI));
4245 
4246 	if (netif_running(dev)) {
4247 		if (netif_oper_up(dev))
4248 			flags |= IFF_RUNNING;
4249 		if (netif_carrier_ok(dev))
4250 			flags |= IFF_LOWER_UP;
4251 		if (netif_dormant(dev))
4252 			flags |= IFF_DORMANT;
4253 	}
4254 
4255 	return flags;
4256 }
4257 EXPORT_SYMBOL(dev_get_flags);
4258 
4259 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4260 {
4261 	int old_flags = dev->flags;
4262 	int ret;
4263 
4264 	ASSERT_RTNL();
4265 
4266 	/*
4267 	 *	Set the flags on our device.
4268 	 */
4269 
4270 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4271 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4272 			       IFF_AUTOMEDIA)) |
4273 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4274 				    IFF_ALLMULTI));
4275 
4276 	/*
4277 	 *	Load in the correct multicast list now the flags have changed.
4278 	 */
4279 
4280 	if ((old_flags ^ flags) & IFF_MULTICAST)
4281 		dev_change_rx_flags(dev, IFF_MULTICAST);
4282 
4283 	dev_set_rx_mode(dev);
4284 
4285 	/*
4286 	 *	Have we downed the interface. We handle IFF_UP ourselves
4287 	 *	according to user attempts to set it, rather than blindly
4288 	 *	setting it.
4289 	 */
4290 
4291 	ret = 0;
4292 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4293 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4294 
4295 		if (!ret)
4296 			dev_set_rx_mode(dev);
4297 	}
4298 
4299 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4300 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4301 
4302 		dev->gflags ^= IFF_PROMISC;
4303 		dev_set_promiscuity(dev, inc);
4304 	}
4305 
4306 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4307 	   is important. Some (broken) drivers set IFF_PROMISC, when
4308 	   IFF_ALLMULTI is requested not asking us and not reporting.
4309 	 */
4310 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4311 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4312 
4313 		dev->gflags ^= IFF_ALLMULTI;
4314 		dev_set_allmulti(dev, inc);
4315 	}
4316 
4317 	return ret;
4318 }
4319 
4320 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4321 {
4322 	unsigned int changes = dev->flags ^ old_flags;
4323 
4324 	if (changes & IFF_UP) {
4325 		if (dev->flags & IFF_UP)
4326 			call_netdevice_notifiers(NETDEV_UP, dev);
4327 		else
4328 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4329 	}
4330 
4331 	if (dev->flags & IFF_UP &&
4332 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4333 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4334 }
4335 
4336 /**
4337  *	dev_change_flags - change device settings
4338  *	@dev: device
4339  *	@flags: device state flags
4340  *
4341  *	Change settings on device based state flags. The flags are
4342  *	in the userspace exported format.
4343  */
4344 int dev_change_flags(struct net_device *dev, unsigned flags)
4345 {
4346 	int ret, changes;
4347 	int old_flags = dev->flags;
4348 
4349 	ret = __dev_change_flags(dev, flags);
4350 	if (ret < 0)
4351 		return ret;
4352 
4353 	changes = old_flags ^ dev->flags;
4354 	if (changes)
4355 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4356 
4357 	__dev_notify_flags(dev, old_flags);
4358 	return ret;
4359 }
4360 EXPORT_SYMBOL(dev_change_flags);
4361 
4362 /**
4363  *	dev_set_mtu - Change maximum transfer unit
4364  *	@dev: device
4365  *	@new_mtu: new transfer unit
4366  *
4367  *	Change the maximum transfer size of the network device.
4368  */
4369 int dev_set_mtu(struct net_device *dev, int new_mtu)
4370 {
4371 	const struct net_device_ops *ops = dev->netdev_ops;
4372 	int err;
4373 
4374 	if (new_mtu == dev->mtu)
4375 		return 0;
4376 
4377 	/*	MTU must be positive.	 */
4378 	if (new_mtu < 0)
4379 		return -EINVAL;
4380 
4381 	if (!netif_device_present(dev))
4382 		return -ENODEV;
4383 
4384 	err = 0;
4385 	if (ops->ndo_change_mtu)
4386 		err = ops->ndo_change_mtu(dev, new_mtu);
4387 	else
4388 		dev->mtu = new_mtu;
4389 
4390 	if (!err && dev->flags & IFF_UP)
4391 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4392 	return err;
4393 }
4394 EXPORT_SYMBOL(dev_set_mtu);
4395 
4396 /**
4397  *	dev_set_mac_address - Change Media Access Control Address
4398  *	@dev: device
4399  *	@sa: new address
4400  *
4401  *	Change the hardware (MAC) address of the device
4402  */
4403 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4404 {
4405 	const struct net_device_ops *ops = dev->netdev_ops;
4406 	int err;
4407 
4408 	if (!ops->ndo_set_mac_address)
4409 		return -EOPNOTSUPP;
4410 	if (sa->sa_family != dev->type)
4411 		return -EINVAL;
4412 	if (!netif_device_present(dev))
4413 		return -ENODEV;
4414 	err = ops->ndo_set_mac_address(dev, sa);
4415 	if (!err)
4416 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4417 	return err;
4418 }
4419 EXPORT_SYMBOL(dev_set_mac_address);
4420 
4421 /*
4422  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4423  */
4424 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4425 {
4426 	int err;
4427 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4428 
4429 	if (!dev)
4430 		return -ENODEV;
4431 
4432 	switch (cmd) {
4433 	case SIOCGIFFLAGS:	/* Get interface flags */
4434 		ifr->ifr_flags = (short) dev_get_flags(dev);
4435 		return 0;
4436 
4437 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4438 				   (currently unused) */
4439 		ifr->ifr_metric = 0;
4440 		return 0;
4441 
4442 	case SIOCGIFMTU:	/* Get the MTU of a device */
4443 		ifr->ifr_mtu = dev->mtu;
4444 		return 0;
4445 
4446 	case SIOCGIFHWADDR:
4447 		if (!dev->addr_len)
4448 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4449 		else
4450 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4451 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4452 		ifr->ifr_hwaddr.sa_family = dev->type;
4453 		return 0;
4454 
4455 	case SIOCGIFSLAVE:
4456 		err = -EINVAL;
4457 		break;
4458 
4459 	case SIOCGIFMAP:
4460 		ifr->ifr_map.mem_start = dev->mem_start;
4461 		ifr->ifr_map.mem_end   = dev->mem_end;
4462 		ifr->ifr_map.base_addr = dev->base_addr;
4463 		ifr->ifr_map.irq       = dev->irq;
4464 		ifr->ifr_map.dma       = dev->dma;
4465 		ifr->ifr_map.port      = dev->if_port;
4466 		return 0;
4467 
4468 	case SIOCGIFINDEX:
4469 		ifr->ifr_ifindex = dev->ifindex;
4470 		return 0;
4471 
4472 	case SIOCGIFTXQLEN:
4473 		ifr->ifr_qlen = dev->tx_queue_len;
4474 		return 0;
4475 
4476 	default:
4477 		/* dev_ioctl() should ensure this case
4478 		 * is never reached
4479 		 */
4480 		WARN_ON(1);
4481 		err = -EINVAL;
4482 		break;
4483 
4484 	}
4485 	return err;
4486 }
4487 
4488 /*
4489  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4490  */
4491 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4492 {
4493 	int err;
4494 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4495 	const struct net_device_ops *ops;
4496 
4497 	if (!dev)
4498 		return -ENODEV;
4499 
4500 	ops = dev->netdev_ops;
4501 
4502 	switch (cmd) {
4503 	case SIOCSIFFLAGS:	/* Set interface flags */
4504 		return dev_change_flags(dev, ifr->ifr_flags);
4505 
4506 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4507 				   (currently unused) */
4508 		return -EOPNOTSUPP;
4509 
4510 	case SIOCSIFMTU:	/* Set the MTU of a device */
4511 		return dev_set_mtu(dev, ifr->ifr_mtu);
4512 
4513 	case SIOCSIFHWADDR:
4514 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4515 
4516 	case SIOCSIFHWBROADCAST:
4517 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4518 			return -EINVAL;
4519 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4520 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4521 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4522 		return 0;
4523 
4524 	case SIOCSIFMAP:
4525 		if (ops->ndo_set_config) {
4526 			if (!netif_device_present(dev))
4527 				return -ENODEV;
4528 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4529 		}
4530 		return -EOPNOTSUPP;
4531 
4532 	case SIOCADDMULTI:
4533 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4534 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4535 			return -EINVAL;
4536 		if (!netif_device_present(dev))
4537 			return -ENODEV;
4538 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4539 
4540 	case SIOCDELMULTI:
4541 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4542 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4543 			return -EINVAL;
4544 		if (!netif_device_present(dev))
4545 			return -ENODEV;
4546 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4547 
4548 	case SIOCSIFTXQLEN:
4549 		if (ifr->ifr_qlen < 0)
4550 			return -EINVAL;
4551 		dev->tx_queue_len = ifr->ifr_qlen;
4552 		return 0;
4553 
4554 	case SIOCSIFNAME:
4555 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4556 		return dev_change_name(dev, ifr->ifr_newname);
4557 
4558 	/*
4559 	 *	Unknown or private ioctl
4560 	 */
4561 	default:
4562 		if ((cmd >= SIOCDEVPRIVATE &&
4563 		    cmd <= SIOCDEVPRIVATE + 15) ||
4564 		    cmd == SIOCBONDENSLAVE ||
4565 		    cmd == SIOCBONDRELEASE ||
4566 		    cmd == SIOCBONDSETHWADDR ||
4567 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4568 		    cmd == SIOCBONDINFOQUERY ||
4569 		    cmd == SIOCBONDCHANGEACTIVE ||
4570 		    cmd == SIOCGMIIPHY ||
4571 		    cmd == SIOCGMIIREG ||
4572 		    cmd == SIOCSMIIREG ||
4573 		    cmd == SIOCBRADDIF ||
4574 		    cmd == SIOCBRDELIF ||
4575 		    cmd == SIOCSHWTSTAMP ||
4576 		    cmd == SIOCWANDEV) {
4577 			err = -EOPNOTSUPP;
4578 			if (ops->ndo_do_ioctl) {
4579 				if (netif_device_present(dev))
4580 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4581 				else
4582 					err = -ENODEV;
4583 			}
4584 		} else
4585 			err = -EINVAL;
4586 
4587 	}
4588 	return err;
4589 }
4590 
4591 /*
4592  *	This function handles all "interface"-type I/O control requests. The actual
4593  *	'doing' part of this is dev_ifsioc above.
4594  */
4595 
4596 /**
4597  *	dev_ioctl	-	network device ioctl
4598  *	@net: the applicable net namespace
4599  *	@cmd: command to issue
4600  *	@arg: pointer to a struct ifreq in user space
4601  *
4602  *	Issue ioctl functions to devices. This is normally called by the
4603  *	user space syscall interfaces but can sometimes be useful for
4604  *	other purposes. The return value is the return from the syscall if
4605  *	positive or a negative errno code on error.
4606  */
4607 
4608 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4609 {
4610 	struct ifreq ifr;
4611 	int ret;
4612 	char *colon;
4613 
4614 	/* One special case: SIOCGIFCONF takes ifconf argument
4615 	   and requires shared lock, because it sleeps writing
4616 	   to user space.
4617 	 */
4618 
4619 	if (cmd == SIOCGIFCONF) {
4620 		rtnl_lock();
4621 		ret = dev_ifconf(net, (char __user *) arg);
4622 		rtnl_unlock();
4623 		return ret;
4624 	}
4625 	if (cmd == SIOCGIFNAME)
4626 		return dev_ifname(net, (struct ifreq __user *)arg);
4627 
4628 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4629 		return -EFAULT;
4630 
4631 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4632 
4633 	colon = strchr(ifr.ifr_name, ':');
4634 	if (colon)
4635 		*colon = 0;
4636 
4637 	/*
4638 	 *	See which interface the caller is talking about.
4639 	 */
4640 
4641 	switch (cmd) {
4642 	/*
4643 	 *	These ioctl calls:
4644 	 *	- can be done by all.
4645 	 *	- atomic and do not require locking.
4646 	 *	- return a value
4647 	 */
4648 	case SIOCGIFFLAGS:
4649 	case SIOCGIFMETRIC:
4650 	case SIOCGIFMTU:
4651 	case SIOCGIFHWADDR:
4652 	case SIOCGIFSLAVE:
4653 	case SIOCGIFMAP:
4654 	case SIOCGIFINDEX:
4655 	case SIOCGIFTXQLEN:
4656 		dev_load(net, ifr.ifr_name);
4657 		rcu_read_lock();
4658 		ret = dev_ifsioc_locked(net, &ifr, cmd);
4659 		rcu_read_unlock();
4660 		if (!ret) {
4661 			if (colon)
4662 				*colon = ':';
4663 			if (copy_to_user(arg, &ifr,
4664 					 sizeof(struct ifreq)))
4665 				ret = -EFAULT;
4666 		}
4667 		return ret;
4668 
4669 	case SIOCETHTOOL:
4670 		dev_load(net, ifr.ifr_name);
4671 		rtnl_lock();
4672 		ret = dev_ethtool(net, &ifr);
4673 		rtnl_unlock();
4674 		if (!ret) {
4675 			if (colon)
4676 				*colon = ':';
4677 			if (copy_to_user(arg, &ifr,
4678 					 sizeof(struct ifreq)))
4679 				ret = -EFAULT;
4680 		}
4681 		return ret;
4682 
4683 	/*
4684 	 *	These ioctl calls:
4685 	 *	- require superuser power.
4686 	 *	- require strict serialization.
4687 	 *	- return a value
4688 	 */
4689 	case SIOCGMIIPHY:
4690 	case SIOCGMIIREG:
4691 	case SIOCSIFNAME:
4692 		if (!capable(CAP_NET_ADMIN))
4693 			return -EPERM;
4694 		dev_load(net, ifr.ifr_name);
4695 		rtnl_lock();
4696 		ret = dev_ifsioc(net, &ifr, cmd);
4697 		rtnl_unlock();
4698 		if (!ret) {
4699 			if (colon)
4700 				*colon = ':';
4701 			if (copy_to_user(arg, &ifr,
4702 					 sizeof(struct ifreq)))
4703 				ret = -EFAULT;
4704 		}
4705 		return ret;
4706 
4707 	/*
4708 	 *	These ioctl calls:
4709 	 *	- require superuser power.
4710 	 *	- require strict serialization.
4711 	 *	- do not return a value
4712 	 */
4713 	case SIOCSIFFLAGS:
4714 	case SIOCSIFMETRIC:
4715 	case SIOCSIFMTU:
4716 	case SIOCSIFMAP:
4717 	case SIOCSIFHWADDR:
4718 	case SIOCSIFSLAVE:
4719 	case SIOCADDMULTI:
4720 	case SIOCDELMULTI:
4721 	case SIOCSIFHWBROADCAST:
4722 	case SIOCSIFTXQLEN:
4723 	case SIOCSMIIREG:
4724 	case SIOCBONDENSLAVE:
4725 	case SIOCBONDRELEASE:
4726 	case SIOCBONDSETHWADDR:
4727 	case SIOCBONDCHANGEACTIVE:
4728 	case SIOCBRADDIF:
4729 	case SIOCBRDELIF:
4730 	case SIOCSHWTSTAMP:
4731 		if (!capable(CAP_NET_ADMIN))
4732 			return -EPERM;
4733 		/* fall through */
4734 	case SIOCBONDSLAVEINFOQUERY:
4735 	case SIOCBONDINFOQUERY:
4736 		dev_load(net, ifr.ifr_name);
4737 		rtnl_lock();
4738 		ret = dev_ifsioc(net, &ifr, cmd);
4739 		rtnl_unlock();
4740 		return ret;
4741 
4742 	case SIOCGIFMEM:
4743 		/* Get the per device memory space. We can add this but
4744 		 * currently do not support it */
4745 	case SIOCSIFMEM:
4746 		/* Set the per device memory buffer space.
4747 		 * Not applicable in our case */
4748 	case SIOCSIFLINK:
4749 		return -EINVAL;
4750 
4751 	/*
4752 	 *	Unknown or private ioctl.
4753 	 */
4754 	default:
4755 		if (cmd == SIOCWANDEV ||
4756 		    (cmd >= SIOCDEVPRIVATE &&
4757 		     cmd <= SIOCDEVPRIVATE + 15)) {
4758 			dev_load(net, ifr.ifr_name);
4759 			rtnl_lock();
4760 			ret = dev_ifsioc(net, &ifr, cmd);
4761 			rtnl_unlock();
4762 			if (!ret && copy_to_user(arg, &ifr,
4763 						 sizeof(struct ifreq)))
4764 				ret = -EFAULT;
4765 			return ret;
4766 		}
4767 		/* Take care of Wireless Extensions */
4768 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4769 			return wext_handle_ioctl(net, &ifr, cmd, arg);
4770 		return -EINVAL;
4771 	}
4772 }
4773 
4774 
4775 /**
4776  *	dev_new_index	-	allocate an ifindex
4777  *	@net: the applicable net namespace
4778  *
4779  *	Returns a suitable unique value for a new device interface
4780  *	number.  The caller must hold the rtnl semaphore or the
4781  *	dev_base_lock to be sure it remains unique.
4782  */
4783 static int dev_new_index(struct net *net)
4784 {
4785 	static int ifindex;
4786 	for (;;) {
4787 		if (++ifindex <= 0)
4788 			ifindex = 1;
4789 		if (!__dev_get_by_index(net, ifindex))
4790 			return ifindex;
4791 	}
4792 }
4793 
4794 /* Delayed registration/unregisteration */
4795 static LIST_HEAD(net_todo_list);
4796 
4797 static void net_set_todo(struct net_device *dev)
4798 {
4799 	list_add_tail(&dev->todo_list, &net_todo_list);
4800 }
4801 
4802 static void rollback_registered_many(struct list_head *head)
4803 {
4804 	struct net_device *dev, *tmp;
4805 
4806 	BUG_ON(dev_boot_phase);
4807 	ASSERT_RTNL();
4808 
4809 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
4810 		/* Some devices call without registering
4811 		 * for initialization unwind. Remove those
4812 		 * devices and proceed with the remaining.
4813 		 */
4814 		if (dev->reg_state == NETREG_UNINITIALIZED) {
4815 			pr_debug("unregister_netdevice: device %s/%p never "
4816 				 "was registered\n", dev->name, dev);
4817 
4818 			WARN_ON(1);
4819 			list_del(&dev->unreg_list);
4820 			continue;
4821 		}
4822 
4823 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
4824 
4825 		/* If device is running, close it first. */
4826 		dev_close(dev);
4827 
4828 		/* And unlink it from device chain. */
4829 		unlist_netdevice(dev);
4830 
4831 		dev->reg_state = NETREG_UNREGISTERING;
4832 	}
4833 
4834 	synchronize_net();
4835 
4836 	list_for_each_entry(dev, head, unreg_list) {
4837 		/* Shutdown queueing discipline. */
4838 		dev_shutdown(dev);
4839 
4840 
4841 		/* Notify protocols, that we are about to destroy
4842 		   this device. They should clean all the things.
4843 		*/
4844 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4845 
4846 		if (!dev->rtnl_link_ops ||
4847 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4848 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4849 
4850 		/*
4851 		 *	Flush the unicast and multicast chains
4852 		 */
4853 		dev_uc_flush(dev);
4854 		dev_mc_flush(dev);
4855 
4856 		if (dev->netdev_ops->ndo_uninit)
4857 			dev->netdev_ops->ndo_uninit(dev);
4858 
4859 		/* Notifier chain MUST detach us from master device. */
4860 		WARN_ON(dev->master);
4861 
4862 		/* Remove entries from kobject tree */
4863 		netdev_unregister_kobject(dev);
4864 	}
4865 
4866 	/* Process any work delayed until the end of the batch */
4867 	dev = list_first_entry(head, struct net_device, unreg_list);
4868 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
4869 
4870 	synchronize_net();
4871 
4872 	list_for_each_entry(dev, head, unreg_list)
4873 		dev_put(dev);
4874 }
4875 
4876 static void rollback_registered(struct net_device *dev)
4877 {
4878 	LIST_HEAD(single);
4879 
4880 	list_add(&dev->unreg_list, &single);
4881 	rollback_registered_many(&single);
4882 }
4883 
4884 static void __netdev_init_queue_locks_one(struct net_device *dev,
4885 					  struct netdev_queue *dev_queue,
4886 					  void *_unused)
4887 {
4888 	spin_lock_init(&dev_queue->_xmit_lock);
4889 	netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
4890 	dev_queue->xmit_lock_owner = -1;
4891 }
4892 
4893 static void netdev_init_queue_locks(struct net_device *dev)
4894 {
4895 	netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4896 	__netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
4897 }
4898 
4899 unsigned long netdev_fix_features(unsigned long features, const char *name)
4900 {
4901 	/* Fix illegal SG+CSUM combinations. */
4902 	if ((features & NETIF_F_SG) &&
4903 	    !(features & NETIF_F_ALL_CSUM)) {
4904 		if (name)
4905 			printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4906 			       "checksum feature.\n", name);
4907 		features &= ~NETIF_F_SG;
4908 	}
4909 
4910 	/* TSO requires that SG is present as well. */
4911 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4912 		if (name)
4913 			printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4914 			       "SG feature.\n", name);
4915 		features &= ~NETIF_F_TSO;
4916 	}
4917 
4918 	if (features & NETIF_F_UFO) {
4919 		if (!(features & NETIF_F_GEN_CSUM)) {
4920 			if (name)
4921 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4922 				       "since no NETIF_F_HW_CSUM feature.\n",
4923 				       name);
4924 			features &= ~NETIF_F_UFO;
4925 		}
4926 
4927 		if (!(features & NETIF_F_SG)) {
4928 			if (name)
4929 				printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4930 				       "since no NETIF_F_SG feature.\n", name);
4931 			features &= ~NETIF_F_UFO;
4932 		}
4933 	}
4934 
4935 	return features;
4936 }
4937 EXPORT_SYMBOL(netdev_fix_features);
4938 
4939 /**
4940  *	netif_stacked_transfer_operstate -	transfer operstate
4941  *	@rootdev: the root or lower level device to transfer state from
4942  *	@dev: the device to transfer operstate to
4943  *
4944  *	Transfer operational state from root to device. This is normally
4945  *	called when a stacking relationship exists between the root
4946  *	device and the device(a leaf device).
4947  */
4948 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4949 					struct net_device *dev)
4950 {
4951 	if (rootdev->operstate == IF_OPER_DORMANT)
4952 		netif_dormant_on(dev);
4953 	else
4954 		netif_dormant_off(dev);
4955 
4956 	if (netif_carrier_ok(rootdev)) {
4957 		if (!netif_carrier_ok(dev))
4958 			netif_carrier_on(dev);
4959 	} else {
4960 		if (netif_carrier_ok(dev))
4961 			netif_carrier_off(dev);
4962 	}
4963 }
4964 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
4965 
4966 /**
4967  *	register_netdevice	- register a network device
4968  *	@dev: device to register
4969  *
4970  *	Take a completed network device structure and add it to the kernel
4971  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4972  *	chain. 0 is returned on success. A negative errno code is returned
4973  *	on a failure to set up the device, or if the name is a duplicate.
4974  *
4975  *	Callers must hold the rtnl semaphore. You may want
4976  *	register_netdev() instead of this.
4977  *
4978  *	BUGS:
4979  *	The locking appears insufficient to guarantee two parallel registers
4980  *	will not get the same name.
4981  */
4982 
4983 int register_netdevice(struct net_device *dev)
4984 {
4985 	int ret;
4986 	struct net *net = dev_net(dev);
4987 
4988 	BUG_ON(dev_boot_phase);
4989 	ASSERT_RTNL();
4990 
4991 	might_sleep();
4992 
4993 	/* When net_device's are persistent, this will be fatal. */
4994 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
4995 	BUG_ON(!net);
4996 
4997 	spin_lock_init(&dev->addr_list_lock);
4998 	netdev_set_addr_lockdep_class(dev);
4999 	netdev_init_queue_locks(dev);
5000 
5001 	dev->iflink = -1;
5002 
5003 #ifdef CONFIG_RPS
5004 	if (!dev->num_rx_queues) {
5005 		/*
5006 		 * Allocate a single RX queue if driver never called
5007 		 * alloc_netdev_mq
5008 		 */
5009 
5010 		dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5011 		if (!dev->_rx) {
5012 			ret = -ENOMEM;
5013 			goto out;
5014 		}
5015 
5016 		dev->_rx->first = dev->_rx;
5017 		atomic_set(&dev->_rx->count, 1);
5018 		dev->num_rx_queues = 1;
5019 	}
5020 #endif
5021 	/* Init, if this function is available */
5022 	if (dev->netdev_ops->ndo_init) {
5023 		ret = dev->netdev_ops->ndo_init(dev);
5024 		if (ret) {
5025 			if (ret > 0)
5026 				ret = -EIO;
5027 			goto out;
5028 		}
5029 	}
5030 
5031 	ret = dev_get_valid_name(dev, dev->name, 0);
5032 	if (ret)
5033 		goto err_uninit;
5034 
5035 	dev->ifindex = dev_new_index(net);
5036 	if (dev->iflink == -1)
5037 		dev->iflink = dev->ifindex;
5038 
5039 	/* Fix illegal checksum combinations */
5040 	if ((dev->features & NETIF_F_HW_CSUM) &&
5041 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5042 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5043 		       dev->name);
5044 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5045 	}
5046 
5047 	if ((dev->features & NETIF_F_NO_CSUM) &&
5048 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5049 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5050 		       dev->name);
5051 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5052 	}
5053 
5054 	dev->features = netdev_fix_features(dev->features, dev->name);
5055 
5056 	/* Enable software GSO if SG is supported. */
5057 	if (dev->features & NETIF_F_SG)
5058 		dev->features |= NETIF_F_GSO;
5059 
5060 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5061 	ret = notifier_to_errno(ret);
5062 	if (ret)
5063 		goto err_uninit;
5064 
5065 	ret = netdev_register_kobject(dev);
5066 	if (ret)
5067 		goto err_uninit;
5068 	dev->reg_state = NETREG_REGISTERED;
5069 
5070 	/*
5071 	 *	Default initial state at registry is that the
5072 	 *	device is present.
5073 	 */
5074 
5075 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5076 
5077 	dev_init_scheduler(dev);
5078 	dev_hold(dev);
5079 	list_netdevice(dev);
5080 
5081 	/* Notify protocols, that a new device appeared. */
5082 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5083 	ret = notifier_to_errno(ret);
5084 	if (ret) {
5085 		rollback_registered(dev);
5086 		dev->reg_state = NETREG_UNREGISTERED;
5087 	}
5088 	/*
5089 	 *	Prevent userspace races by waiting until the network
5090 	 *	device is fully setup before sending notifications.
5091 	 */
5092 	if (!dev->rtnl_link_ops ||
5093 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5094 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5095 
5096 out:
5097 	return ret;
5098 
5099 err_uninit:
5100 	if (dev->netdev_ops->ndo_uninit)
5101 		dev->netdev_ops->ndo_uninit(dev);
5102 	goto out;
5103 }
5104 EXPORT_SYMBOL(register_netdevice);
5105 
5106 /**
5107  *	init_dummy_netdev	- init a dummy network device for NAPI
5108  *	@dev: device to init
5109  *
5110  *	This takes a network device structure and initialize the minimum
5111  *	amount of fields so it can be used to schedule NAPI polls without
5112  *	registering a full blown interface. This is to be used by drivers
5113  *	that need to tie several hardware interfaces to a single NAPI
5114  *	poll scheduler due to HW limitations.
5115  */
5116 int init_dummy_netdev(struct net_device *dev)
5117 {
5118 	/* Clear everything. Note we don't initialize spinlocks
5119 	 * are they aren't supposed to be taken by any of the
5120 	 * NAPI code and this dummy netdev is supposed to be
5121 	 * only ever used for NAPI polls
5122 	 */
5123 	memset(dev, 0, sizeof(struct net_device));
5124 
5125 	/* make sure we BUG if trying to hit standard
5126 	 * register/unregister code path
5127 	 */
5128 	dev->reg_state = NETREG_DUMMY;
5129 
5130 	/* initialize the ref count */
5131 	atomic_set(&dev->refcnt, 1);
5132 
5133 	/* NAPI wants this */
5134 	INIT_LIST_HEAD(&dev->napi_list);
5135 
5136 	/* a dummy interface is started by default */
5137 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5138 	set_bit(__LINK_STATE_START, &dev->state);
5139 
5140 	return 0;
5141 }
5142 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5143 
5144 
5145 /**
5146  *	register_netdev	- register a network device
5147  *	@dev: device to register
5148  *
5149  *	Take a completed network device structure and add it to the kernel
5150  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5151  *	chain. 0 is returned on success. A negative errno code is returned
5152  *	on a failure to set up the device, or if the name is a duplicate.
5153  *
5154  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5155  *	and expands the device name if you passed a format string to
5156  *	alloc_netdev.
5157  */
5158 int register_netdev(struct net_device *dev)
5159 {
5160 	int err;
5161 
5162 	rtnl_lock();
5163 
5164 	/*
5165 	 * If the name is a format string the caller wants us to do a
5166 	 * name allocation.
5167 	 */
5168 	if (strchr(dev->name, '%')) {
5169 		err = dev_alloc_name(dev, dev->name);
5170 		if (err < 0)
5171 			goto out;
5172 	}
5173 
5174 	err = register_netdevice(dev);
5175 out:
5176 	rtnl_unlock();
5177 	return err;
5178 }
5179 EXPORT_SYMBOL(register_netdev);
5180 
5181 /*
5182  * netdev_wait_allrefs - wait until all references are gone.
5183  *
5184  * This is called when unregistering network devices.
5185  *
5186  * Any protocol or device that holds a reference should register
5187  * for netdevice notification, and cleanup and put back the
5188  * reference if they receive an UNREGISTER event.
5189  * We can get stuck here if buggy protocols don't correctly
5190  * call dev_put.
5191  */
5192 static void netdev_wait_allrefs(struct net_device *dev)
5193 {
5194 	unsigned long rebroadcast_time, warning_time;
5195 
5196 	linkwatch_forget_dev(dev);
5197 
5198 	rebroadcast_time = warning_time = jiffies;
5199 	while (atomic_read(&dev->refcnt) != 0) {
5200 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5201 			rtnl_lock();
5202 
5203 			/* Rebroadcast unregister notification */
5204 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5205 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5206 			 * should have already handle it the first time */
5207 
5208 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5209 				     &dev->state)) {
5210 				/* We must not have linkwatch events
5211 				 * pending on unregister. If this
5212 				 * happens, we simply run the queue
5213 				 * unscheduled, resulting in a noop
5214 				 * for this device.
5215 				 */
5216 				linkwatch_run_queue();
5217 			}
5218 
5219 			__rtnl_unlock();
5220 
5221 			rebroadcast_time = jiffies;
5222 		}
5223 
5224 		msleep(250);
5225 
5226 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5227 			printk(KERN_EMERG "unregister_netdevice: "
5228 			       "waiting for %s to become free. Usage "
5229 			       "count = %d\n",
5230 			       dev->name, atomic_read(&dev->refcnt));
5231 			warning_time = jiffies;
5232 		}
5233 	}
5234 }
5235 
5236 /* The sequence is:
5237  *
5238  *	rtnl_lock();
5239  *	...
5240  *	register_netdevice(x1);
5241  *	register_netdevice(x2);
5242  *	...
5243  *	unregister_netdevice(y1);
5244  *	unregister_netdevice(y2);
5245  *      ...
5246  *	rtnl_unlock();
5247  *	free_netdev(y1);
5248  *	free_netdev(y2);
5249  *
5250  * We are invoked by rtnl_unlock().
5251  * This allows us to deal with problems:
5252  * 1) We can delete sysfs objects which invoke hotplug
5253  *    without deadlocking with linkwatch via keventd.
5254  * 2) Since we run with the RTNL semaphore not held, we can sleep
5255  *    safely in order to wait for the netdev refcnt to drop to zero.
5256  *
5257  * We must not return until all unregister events added during
5258  * the interval the lock was held have been completed.
5259  */
5260 void netdev_run_todo(void)
5261 {
5262 	struct list_head list;
5263 
5264 	/* Snapshot list, allow later requests */
5265 	list_replace_init(&net_todo_list, &list);
5266 
5267 	__rtnl_unlock();
5268 
5269 	while (!list_empty(&list)) {
5270 		struct net_device *dev
5271 			= list_first_entry(&list, struct net_device, todo_list);
5272 		list_del(&dev->todo_list);
5273 
5274 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5275 			printk(KERN_ERR "network todo '%s' but state %d\n",
5276 			       dev->name, dev->reg_state);
5277 			dump_stack();
5278 			continue;
5279 		}
5280 
5281 		dev->reg_state = NETREG_UNREGISTERED;
5282 
5283 		on_each_cpu(flush_backlog, dev, 1);
5284 
5285 		netdev_wait_allrefs(dev);
5286 
5287 		/* paranoia */
5288 		BUG_ON(atomic_read(&dev->refcnt));
5289 		WARN_ON(dev->ip_ptr);
5290 		WARN_ON(dev->ip6_ptr);
5291 		WARN_ON(dev->dn_ptr);
5292 
5293 		if (dev->destructor)
5294 			dev->destructor(dev);
5295 
5296 		/* Free network device */
5297 		kobject_put(&dev->dev.kobj);
5298 	}
5299 }
5300 
5301 /**
5302  *	dev_txq_stats_fold - fold tx_queues stats
5303  *	@dev: device to get statistics from
5304  *	@stats: struct rtnl_link_stats64 to hold results
5305  */
5306 void dev_txq_stats_fold(const struct net_device *dev,
5307 			struct rtnl_link_stats64 *stats)
5308 {
5309 	u64 tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5310 	unsigned int i;
5311 	struct netdev_queue *txq;
5312 
5313 	for (i = 0; i < dev->num_tx_queues; i++) {
5314 		txq = netdev_get_tx_queue(dev, i);
5315 		spin_lock_bh(&txq->_xmit_lock);
5316 		tx_bytes   += txq->tx_bytes;
5317 		tx_packets += txq->tx_packets;
5318 		tx_dropped += txq->tx_dropped;
5319 		spin_unlock_bh(&txq->_xmit_lock);
5320 	}
5321 	if (tx_bytes || tx_packets || tx_dropped) {
5322 		stats->tx_bytes   = tx_bytes;
5323 		stats->tx_packets = tx_packets;
5324 		stats->tx_dropped = tx_dropped;
5325 	}
5326 }
5327 EXPORT_SYMBOL(dev_txq_stats_fold);
5328 
5329 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5330  * fields in the same order, with only the type differing.
5331  */
5332 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5333 				    const struct net_device_stats *netdev_stats)
5334 {
5335 #if BITS_PER_LONG == 64
5336         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5337         memcpy(stats64, netdev_stats, sizeof(*stats64));
5338 #else
5339 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5340 	const unsigned long *src = (const unsigned long *)netdev_stats;
5341 	u64 *dst = (u64 *)stats64;
5342 
5343 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5344 		     sizeof(*stats64) / sizeof(u64));
5345 	for (i = 0; i < n; i++)
5346 		dst[i] = src[i];
5347 #endif
5348 }
5349 
5350 /**
5351  *	dev_get_stats	- get network device statistics
5352  *	@dev: device to get statistics from
5353  *	@storage: place to store stats
5354  *
5355  *	Get network statistics from device. Return @storage.
5356  *	The device driver may provide its own method by setting
5357  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5358  *	otherwise the internal statistics structure is used.
5359  */
5360 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5361 					struct rtnl_link_stats64 *storage)
5362 {
5363 	const struct net_device_ops *ops = dev->netdev_ops;
5364 
5365 	if (ops->ndo_get_stats64) {
5366 		memset(storage, 0, sizeof(*storage));
5367 		return ops->ndo_get_stats64(dev, storage);
5368 	}
5369 	if (ops->ndo_get_stats) {
5370 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5371 		return storage;
5372 	}
5373 	netdev_stats_to_stats64(storage, &dev->stats);
5374 	dev_txq_stats_fold(dev, storage);
5375 	return storage;
5376 }
5377 EXPORT_SYMBOL(dev_get_stats);
5378 
5379 static void netdev_init_one_queue(struct net_device *dev,
5380 				  struct netdev_queue *queue,
5381 				  void *_unused)
5382 {
5383 	queue->dev = dev;
5384 }
5385 
5386 static void netdev_init_queues(struct net_device *dev)
5387 {
5388 	netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5389 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5390 	spin_lock_init(&dev->tx_global_lock);
5391 }
5392 
5393 /**
5394  *	alloc_netdev_mq - allocate network device
5395  *	@sizeof_priv:	size of private data to allocate space for
5396  *	@name:		device name format string
5397  *	@setup:		callback to initialize device
5398  *	@queue_count:	the number of subqueues to allocate
5399  *
5400  *	Allocates a struct net_device with private data area for driver use
5401  *	and performs basic initialization.  Also allocates subquue structs
5402  *	for each queue on the device at the end of the netdevice.
5403  */
5404 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5405 		void (*setup)(struct net_device *), unsigned int queue_count)
5406 {
5407 	struct netdev_queue *tx;
5408 	struct net_device *dev;
5409 	size_t alloc_size;
5410 	struct net_device *p;
5411 #ifdef CONFIG_RPS
5412 	struct netdev_rx_queue *rx;
5413 	int i;
5414 #endif
5415 
5416 	BUG_ON(strlen(name) >= sizeof(dev->name));
5417 
5418 	alloc_size = sizeof(struct net_device);
5419 	if (sizeof_priv) {
5420 		/* ensure 32-byte alignment of private area */
5421 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5422 		alloc_size += sizeof_priv;
5423 	}
5424 	/* ensure 32-byte alignment of whole construct */
5425 	alloc_size += NETDEV_ALIGN - 1;
5426 
5427 	p = kzalloc(alloc_size, GFP_KERNEL);
5428 	if (!p) {
5429 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5430 		return NULL;
5431 	}
5432 
5433 	tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
5434 	if (!tx) {
5435 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
5436 		       "tx qdiscs.\n");
5437 		goto free_p;
5438 	}
5439 
5440 #ifdef CONFIG_RPS
5441 	rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5442 	if (!rx) {
5443 		printk(KERN_ERR "alloc_netdev: Unable to allocate "
5444 		       "rx queues.\n");
5445 		goto free_tx;
5446 	}
5447 
5448 	atomic_set(&rx->count, queue_count);
5449 
5450 	/*
5451 	 * Set a pointer to first element in the array which holds the
5452 	 * reference count.
5453 	 */
5454 	for (i = 0; i < queue_count; i++)
5455 		rx[i].first = rx;
5456 #endif
5457 
5458 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5459 	dev->padded = (char *)dev - (char *)p;
5460 
5461 	if (dev_addr_init(dev))
5462 		goto free_rx;
5463 
5464 	dev_mc_init(dev);
5465 	dev_uc_init(dev);
5466 
5467 	dev_net_set(dev, &init_net);
5468 
5469 	dev->_tx = tx;
5470 	dev->num_tx_queues = queue_count;
5471 	dev->real_num_tx_queues = queue_count;
5472 
5473 #ifdef CONFIG_RPS
5474 	dev->_rx = rx;
5475 	dev->num_rx_queues = queue_count;
5476 #endif
5477 
5478 	dev->gso_max_size = GSO_MAX_SIZE;
5479 
5480 	netdev_init_queues(dev);
5481 
5482 	INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5483 	dev->ethtool_ntuple_list.count = 0;
5484 	INIT_LIST_HEAD(&dev->napi_list);
5485 	INIT_LIST_HEAD(&dev->unreg_list);
5486 	INIT_LIST_HEAD(&dev->link_watch_list);
5487 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5488 	setup(dev);
5489 	strcpy(dev->name, name);
5490 	return dev;
5491 
5492 free_rx:
5493 #ifdef CONFIG_RPS
5494 	kfree(rx);
5495 free_tx:
5496 #endif
5497 	kfree(tx);
5498 free_p:
5499 	kfree(p);
5500 	return NULL;
5501 }
5502 EXPORT_SYMBOL(alloc_netdev_mq);
5503 
5504 /**
5505  *	free_netdev - free network device
5506  *	@dev: device
5507  *
5508  *	This function does the last stage of destroying an allocated device
5509  * 	interface. The reference to the device object is released.
5510  *	If this is the last reference then it will be freed.
5511  */
5512 void free_netdev(struct net_device *dev)
5513 {
5514 	struct napi_struct *p, *n;
5515 
5516 	release_net(dev_net(dev));
5517 
5518 	kfree(dev->_tx);
5519 
5520 	/* Flush device addresses */
5521 	dev_addr_flush(dev);
5522 
5523 	/* Clear ethtool n-tuple list */
5524 	ethtool_ntuple_flush(dev);
5525 
5526 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5527 		netif_napi_del(p);
5528 
5529 	/*  Compatibility with error handling in drivers */
5530 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5531 		kfree((char *)dev - dev->padded);
5532 		return;
5533 	}
5534 
5535 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5536 	dev->reg_state = NETREG_RELEASED;
5537 
5538 	/* will free via device release */
5539 	put_device(&dev->dev);
5540 }
5541 EXPORT_SYMBOL(free_netdev);
5542 
5543 /**
5544  *	synchronize_net -  Synchronize with packet receive processing
5545  *
5546  *	Wait for packets currently being received to be done.
5547  *	Does not block later packets from starting.
5548  */
5549 void synchronize_net(void)
5550 {
5551 	might_sleep();
5552 	synchronize_rcu();
5553 }
5554 EXPORT_SYMBOL(synchronize_net);
5555 
5556 /**
5557  *	unregister_netdevice_queue - remove device from the kernel
5558  *	@dev: device
5559  *	@head: list
5560  *
5561  *	This function shuts down a device interface and removes it
5562  *	from the kernel tables.
5563  *	If head not NULL, device is queued to be unregistered later.
5564  *
5565  *	Callers must hold the rtnl semaphore.  You may want
5566  *	unregister_netdev() instead of this.
5567  */
5568 
5569 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5570 {
5571 	ASSERT_RTNL();
5572 
5573 	if (head) {
5574 		list_move_tail(&dev->unreg_list, head);
5575 	} else {
5576 		rollback_registered(dev);
5577 		/* Finish processing unregister after unlock */
5578 		net_set_todo(dev);
5579 	}
5580 }
5581 EXPORT_SYMBOL(unregister_netdevice_queue);
5582 
5583 /**
5584  *	unregister_netdevice_many - unregister many devices
5585  *	@head: list of devices
5586  */
5587 void unregister_netdevice_many(struct list_head *head)
5588 {
5589 	struct net_device *dev;
5590 
5591 	if (!list_empty(head)) {
5592 		rollback_registered_many(head);
5593 		list_for_each_entry(dev, head, unreg_list)
5594 			net_set_todo(dev);
5595 	}
5596 }
5597 EXPORT_SYMBOL(unregister_netdevice_many);
5598 
5599 /**
5600  *	unregister_netdev - remove device from the kernel
5601  *	@dev: device
5602  *
5603  *	This function shuts down a device interface and removes it
5604  *	from the kernel tables.
5605  *
5606  *	This is just a wrapper for unregister_netdevice that takes
5607  *	the rtnl semaphore.  In general you want to use this and not
5608  *	unregister_netdevice.
5609  */
5610 void unregister_netdev(struct net_device *dev)
5611 {
5612 	rtnl_lock();
5613 	unregister_netdevice(dev);
5614 	rtnl_unlock();
5615 }
5616 EXPORT_SYMBOL(unregister_netdev);
5617 
5618 /**
5619  *	dev_change_net_namespace - move device to different nethost namespace
5620  *	@dev: device
5621  *	@net: network namespace
5622  *	@pat: If not NULL name pattern to try if the current device name
5623  *	      is already taken in the destination network namespace.
5624  *
5625  *	This function shuts down a device interface and moves it
5626  *	to a new network namespace. On success 0 is returned, on
5627  *	a failure a netagive errno code is returned.
5628  *
5629  *	Callers must hold the rtnl semaphore.
5630  */
5631 
5632 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5633 {
5634 	int err;
5635 
5636 	ASSERT_RTNL();
5637 
5638 	/* Don't allow namespace local devices to be moved. */
5639 	err = -EINVAL;
5640 	if (dev->features & NETIF_F_NETNS_LOCAL)
5641 		goto out;
5642 
5643 	/* Ensure the device has been registrered */
5644 	err = -EINVAL;
5645 	if (dev->reg_state != NETREG_REGISTERED)
5646 		goto out;
5647 
5648 	/* Get out if there is nothing todo */
5649 	err = 0;
5650 	if (net_eq(dev_net(dev), net))
5651 		goto out;
5652 
5653 	/* Pick the destination device name, and ensure
5654 	 * we can use it in the destination network namespace.
5655 	 */
5656 	err = -EEXIST;
5657 	if (__dev_get_by_name(net, dev->name)) {
5658 		/* We get here if we can't use the current device name */
5659 		if (!pat)
5660 			goto out;
5661 		if (dev_get_valid_name(dev, pat, 1))
5662 			goto out;
5663 	}
5664 
5665 	/*
5666 	 * And now a mini version of register_netdevice unregister_netdevice.
5667 	 */
5668 
5669 	/* If device is running close it first. */
5670 	dev_close(dev);
5671 
5672 	/* And unlink it from device chain */
5673 	err = -ENODEV;
5674 	unlist_netdevice(dev);
5675 
5676 	synchronize_net();
5677 
5678 	/* Shutdown queueing discipline. */
5679 	dev_shutdown(dev);
5680 
5681 	/* Notify protocols, that we are about to destroy
5682 	   this device. They should clean all the things.
5683 	*/
5684 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5685 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5686 
5687 	/*
5688 	 *	Flush the unicast and multicast chains
5689 	 */
5690 	dev_uc_flush(dev);
5691 	dev_mc_flush(dev);
5692 
5693 	/* Actually switch the network namespace */
5694 	dev_net_set(dev, net);
5695 
5696 	/* If there is an ifindex conflict assign a new one */
5697 	if (__dev_get_by_index(net, dev->ifindex)) {
5698 		int iflink = (dev->iflink == dev->ifindex);
5699 		dev->ifindex = dev_new_index(net);
5700 		if (iflink)
5701 			dev->iflink = dev->ifindex;
5702 	}
5703 
5704 	/* Fixup kobjects */
5705 	err = device_rename(&dev->dev, dev->name);
5706 	WARN_ON(err);
5707 
5708 	/* Add the device back in the hashes */
5709 	list_netdevice(dev);
5710 
5711 	/* Notify protocols, that a new device appeared. */
5712 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
5713 
5714 	/*
5715 	 *	Prevent userspace races by waiting until the network
5716 	 *	device is fully setup before sending notifications.
5717 	 */
5718 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5719 
5720 	synchronize_net();
5721 	err = 0;
5722 out:
5723 	return err;
5724 }
5725 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
5726 
5727 static int dev_cpu_callback(struct notifier_block *nfb,
5728 			    unsigned long action,
5729 			    void *ocpu)
5730 {
5731 	struct sk_buff **list_skb;
5732 	struct sk_buff *skb;
5733 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
5734 	struct softnet_data *sd, *oldsd;
5735 
5736 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
5737 		return NOTIFY_OK;
5738 
5739 	local_irq_disable();
5740 	cpu = smp_processor_id();
5741 	sd = &per_cpu(softnet_data, cpu);
5742 	oldsd = &per_cpu(softnet_data, oldcpu);
5743 
5744 	/* Find end of our completion_queue. */
5745 	list_skb = &sd->completion_queue;
5746 	while (*list_skb)
5747 		list_skb = &(*list_skb)->next;
5748 	/* Append completion queue from offline CPU. */
5749 	*list_skb = oldsd->completion_queue;
5750 	oldsd->completion_queue = NULL;
5751 
5752 	/* Append output queue from offline CPU. */
5753 	if (oldsd->output_queue) {
5754 		*sd->output_queue_tailp = oldsd->output_queue;
5755 		sd->output_queue_tailp = oldsd->output_queue_tailp;
5756 		oldsd->output_queue = NULL;
5757 		oldsd->output_queue_tailp = &oldsd->output_queue;
5758 	}
5759 
5760 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
5761 	local_irq_enable();
5762 
5763 	/* Process offline CPU's input_pkt_queue */
5764 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
5765 		netif_rx(skb);
5766 		input_queue_head_incr(oldsd);
5767 	}
5768 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
5769 		netif_rx(skb);
5770 		input_queue_head_incr(oldsd);
5771 	}
5772 
5773 	return NOTIFY_OK;
5774 }
5775 
5776 
5777 /**
5778  *	netdev_increment_features - increment feature set by one
5779  *	@all: current feature set
5780  *	@one: new feature set
5781  *	@mask: mask feature set
5782  *
5783  *	Computes a new feature set after adding a device with feature set
5784  *	@one to the master device with current feature set @all.  Will not
5785  *	enable anything that is off in @mask. Returns the new feature set.
5786  */
5787 unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5788 					unsigned long mask)
5789 {
5790 	/* If device needs checksumming, downgrade to it. */
5791 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5792 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5793 	else if (mask & NETIF_F_ALL_CSUM) {
5794 		/* If one device supports v4/v6 checksumming, set for all. */
5795 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5796 		    !(all & NETIF_F_GEN_CSUM)) {
5797 			all &= ~NETIF_F_ALL_CSUM;
5798 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5799 		}
5800 
5801 		/* If one device supports hw checksumming, set for all. */
5802 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5803 			all &= ~NETIF_F_ALL_CSUM;
5804 			all |= NETIF_F_HW_CSUM;
5805 		}
5806 	}
5807 
5808 	one |= NETIF_F_ALL_CSUM;
5809 
5810 	one |= all & NETIF_F_ONE_FOR_ALL;
5811 	all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
5812 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
5813 
5814 	return all;
5815 }
5816 EXPORT_SYMBOL(netdev_increment_features);
5817 
5818 static struct hlist_head *netdev_create_hash(void)
5819 {
5820 	int i;
5821 	struct hlist_head *hash;
5822 
5823 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5824 	if (hash != NULL)
5825 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
5826 			INIT_HLIST_HEAD(&hash[i]);
5827 
5828 	return hash;
5829 }
5830 
5831 /* Initialize per network namespace state */
5832 static int __net_init netdev_init(struct net *net)
5833 {
5834 	INIT_LIST_HEAD(&net->dev_base_head);
5835 
5836 	net->dev_name_head = netdev_create_hash();
5837 	if (net->dev_name_head == NULL)
5838 		goto err_name;
5839 
5840 	net->dev_index_head = netdev_create_hash();
5841 	if (net->dev_index_head == NULL)
5842 		goto err_idx;
5843 
5844 	return 0;
5845 
5846 err_idx:
5847 	kfree(net->dev_name_head);
5848 err_name:
5849 	return -ENOMEM;
5850 }
5851 
5852 /**
5853  *	netdev_drivername - network driver for the device
5854  *	@dev: network device
5855  *	@buffer: buffer for resulting name
5856  *	@len: size of buffer
5857  *
5858  *	Determine network driver for device.
5859  */
5860 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
5861 {
5862 	const struct device_driver *driver;
5863 	const struct device *parent;
5864 
5865 	if (len <= 0 || !buffer)
5866 		return buffer;
5867 	buffer[0] = 0;
5868 
5869 	parent = dev->dev.parent;
5870 
5871 	if (!parent)
5872 		return buffer;
5873 
5874 	driver = parent->driver;
5875 	if (driver && driver->name)
5876 		strlcpy(buffer, driver->name, len);
5877 	return buffer;
5878 }
5879 
5880 static int __netdev_printk(const char *level, const struct net_device *dev,
5881 			   struct va_format *vaf)
5882 {
5883 	int r;
5884 
5885 	if (dev && dev->dev.parent)
5886 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
5887 			       netdev_name(dev), vaf);
5888 	else if (dev)
5889 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
5890 	else
5891 		r = printk("%s(NULL net_device): %pV", level, vaf);
5892 
5893 	return r;
5894 }
5895 
5896 int netdev_printk(const char *level, const struct net_device *dev,
5897 		  const char *format, ...)
5898 {
5899 	struct va_format vaf;
5900 	va_list args;
5901 	int r;
5902 
5903 	va_start(args, format);
5904 
5905 	vaf.fmt = format;
5906 	vaf.va = &args;
5907 
5908 	r = __netdev_printk(level, dev, &vaf);
5909 	va_end(args);
5910 
5911 	return r;
5912 }
5913 EXPORT_SYMBOL(netdev_printk);
5914 
5915 #define define_netdev_printk_level(func, level)			\
5916 int func(const struct net_device *dev, const char *fmt, ...)	\
5917 {								\
5918 	int r;							\
5919 	struct va_format vaf;					\
5920 	va_list args;						\
5921 								\
5922 	va_start(args, fmt);					\
5923 								\
5924 	vaf.fmt = fmt;						\
5925 	vaf.va = &args;						\
5926 								\
5927 	r = __netdev_printk(level, dev, &vaf);			\
5928 	va_end(args);						\
5929 								\
5930 	return r;						\
5931 }								\
5932 EXPORT_SYMBOL(func);
5933 
5934 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
5935 define_netdev_printk_level(netdev_alert, KERN_ALERT);
5936 define_netdev_printk_level(netdev_crit, KERN_CRIT);
5937 define_netdev_printk_level(netdev_err, KERN_ERR);
5938 define_netdev_printk_level(netdev_warn, KERN_WARNING);
5939 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
5940 define_netdev_printk_level(netdev_info, KERN_INFO);
5941 
5942 static void __net_exit netdev_exit(struct net *net)
5943 {
5944 	kfree(net->dev_name_head);
5945 	kfree(net->dev_index_head);
5946 }
5947 
5948 static struct pernet_operations __net_initdata netdev_net_ops = {
5949 	.init = netdev_init,
5950 	.exit = netdev_exit,
5951 };
5952 
5953 static void __net_exit default_device_exit(struct net *net)
5954 {
5955 	struct net_device *dev, *aux;
5956 	/*
5957 	 * Push all migratable network devices back to the
5958 	 * initial network namespace
5959 	 */
5960 	rtnl_lock();
5961 	for_each_netdev_safe(net, dev, aux) {
5962 		int err;
5963 		char fb_name[IFNAMSIZ];
5964 
5965 		/* Ignore unmoveable devices (i.e. loopback) */
5966 		if (dev->features & NETIF_F_NETNS_LOCAL)
5967 			continue;
5968 
5969 		/* Leave virtual devices for the generic cleanup */
5970 		if (dev->rtnl_link_ops)
5971 			continue;
5972 
5973 		/* Push remaing network devices to init_net */
5974 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5975 		err = dev_change_net_namespace(dev, &init_net, fb_name);
5976 		if (err) {
5977 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
5978 				__func__, dev->name, err);
5979 			BUG();
5980 		}
5981 	}
5982 	rtnl_unlock();
5983 }
5984 
5985 static void __net_exit default_device_exit_batch(struct list_head *net_list)
5986 {
5987 	/* At exit all network devices most be removed from a network
5988 	 * namespace.  Do this in the reverse order of registeration.
5989 	 * Do this across as many network namespaces as possible to
5990 	 * improve batching efficiency.
5991 	 */
5992 	struct net_device *dev;
5993 	struct net *net;
5994 	LIST_HEAD(dev_kill_list);
5995 
5996 	rtnl_lock();
5997 	list_for_each_entry(net, net_list, exit_list) {
5998 		for_each_netdev_reverse(net, dev) {
5999 			if (dev->rtnl_link_ops)
6000 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6001 			else
6002 				unregister_netdevice_queue(dev, &dev_kill_list);
6003 		}
6004 	}
6005 	unregister_netdevice_many(&dev_kill_list);
6006 	rtnl_unlock();
6007 }
6008 
6009 static struct pernet_operations __net_initdata default_device_ops = {
6010 	.exit = default_device_exit,
6011 	.exit_batch = default_device_exit_batch,
6012 };
6013 
6014 /*
6015  *	Initialize the DEV module. At boot time this walks the device list and
6016  *	unhooks any devices that fail to initialise (normally hardware not
6017  *	present) and leaves us with a valid list of present and active devices.
6018  *
6019  */
6020 
6021 /*
6022  *       This is called single threaded during boot, so no need
6023  *       to take the rtnl semaphore.
6024  */
6025 static int __init net_dev_init(void)
6026 {
6027 	int i, rc = -ENOMEM;
6028 
6029 	BUG_ON(!dev_boot_phase);
6030 
6031 	if (dev_proc_init())
6032 		goto out;
6033 
6034 	if (netdev_kobject_init())
6035 		goto out;
6036 
6037 	INIT_LIST_HEAD(&ptype_all);
6038 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6039 		INIT_LIST_HEAD(&ptype_base[i]);
6040 
6041 	if (register_pernet_subsys(&netdev_net_ops))
6042 		goto out;
6043 
6044 	/*
6045 	 *	Initialise the packet receive queues.
6046 	 */
6047 
6048 	for_each_possible_cpu(i) {
6049 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6050 
6051 		memset(sd, 0, sizeof(*sd));
6052 		skb_queue_head_init(&sd->input_pkt_queue);
6053 		skb_queue_head_init(&sd->process_queue);
6054 		sd->completion_queue = NULL;
6055 		INIT_LIST_HEAD(&sd->poll_list);
6056 		sd->output_queue = NULL;
6057 		sd->output_queue_tailp = &sd->output_queue;
6058 #ifdef CONFIG_RPS
6059 		sd->csd.func = rps_trigger_softirq;
6060 		sd->csd.info = sd;
6061 		sd->csd.flags = 0;
6062 		sd->cpu = i;
6063 #endif
6064 
6065 		sd->backlog.poll = process_backlog;
6066 		sd->backlog.weight = weight_p;
6067 		sd->backlog.gro_list = NULL;
6068 		sd->backlog.gro_count = 0;
6069 	}
6070 
6071 	dev_boot_phase = 0;
6072 
6073 	/* The loopback device is special if any other network devices
6074 	 * is present in a network namespace the loopback device must
6075 	 * be present. Since we now dynamically allocate and free the
6076 	 * loopback device ensure this invariant is maintained by
6077 	 * keeping the loopback device as the first device on the
6078 	 * list of network devices.  Ensuring the loopback devices
6079 	 * is the first device that appears and the last network device
6080 	 * that disappears.
6081 	 */
6082 	if (register_pernet_device(&loopback_net_ops))
6083 		goto out;
6084 
6085 	if (register_pernet_device(&default_device_ops))
6086 		goto out;
6087 
6088 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6089 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6090 
6091 	hotcpu_notifier(dev_cpu_callback, 0);
6092 	dst_init();
6093 	dev_mcast_init();
6094 	rc = 0;
6095 out:
6096 	return rc;
6097 }
6098 
6099 subsys_initcall(net_dev_init);
6100 
6101 static int __init initialize_hashrnd(void)
6102 {
6103 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6104 	return 0;
6105 }
6106 
6107 late_initcall_sync(initialize_hashrnd);
6108 
6109