1 /* 2 * NET3 Protocol independent device support routines. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public License 6 * as published by the Free Software Foundation; either version 7 * 2 of the License, or (at your option) any later version. 8 * 9 * Derived from the non IP parts of dev.c 1.0.19 10 * Authors: Ross Biro 11 * Fred N. van Kempen, <[email protected]> 12 * Mark Evans, <[email protected]> 13 * 14 * Additional Authors: 15 * Florian la Roche <[email protected]> 16 * Alan Cox <[email protected]> 17 * David Hinds <[email protected]> 18 * Alexey Kuznetsov <[email protected]> 19 * Adam Sulmicki <[email protected]> 20 * Pekka Riikonen <[email protected]> 21 * 22 * Changes: 23 * D.J. Barrow : Fixed bug where dev->refcnt gets set 24 * to 2 if register_netdev gets called 25 * before net_dev_init & also removed a 26 * few lines of code in the process. 27 * Alan Cox : device private ioctl copies fields back. 28 * Alan Cox : Transmit queue code does relevant 29 * stunts to keep the queue safe. 30 * Alan Cox : Fixed double lock. 31 * Alan Cox : Fixed promisc NULL pointer trap 32 * ???????? : Support the full private ioctl range 33 * Alan Cox : Moved ioctl permission check into 34 * drivers 35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI 36 * Alan Cox : 100 backlog just doesn't cut it when 37 * you start doing multicast video 8) 38 * Alan Cox : Rewrote net_bh and list manager. 39 * Alan Cox : Fix ETH_P_ALL echoback lengths. 40 * Alan Cox : Took out transmit every packet pass 41 * Saved a few bytes in the ioctl handler 42 * Alan Cox : Network driver sets packet type before 43 * calling netif_rx. Saves a function 44 * call a packet. 45 * Alan Cox : Hashed net_bh() 46 * Richard Kooijman: Timestamp fixes. 47 * Alan Cox : Wrong field in SIOCGIFDSTADDR 48 * Alan Cox : Device lock protection. 49 * Alan Cox : Fixed nasty side effect of device close 50 * changes. 51 * Rudi Cilibrasi : Pass the right thing to 52 * set_mac_address() 53 * Dave Miller : 32bit quantity for the device lock to 54 * make it work out on a Sparc. 55 * Bjorn Ekwall : Added KERNELD hack. 56 * Alan Cox : Cleaned up the backlog initialise. 57 * Craig Metz : SIOCGIFCONF fix if space for under 58 * 1 device. 59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there 60 * is no device open function. 61 * Andi Kleen : Fix error reporting for SIOCGIFCONF 62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF 63 * Cyrus Durgin : Cleaned for KMOD 64 * Adam Sulmicki : Bug Fix : Network Device Unload 65 * A network device unload needs to purge 66 * the backlog queue. 67 * Paul Rusty Russell : SIOCSIFNAME 68 * Pekka Riikonen : Netdev boot-time settings code 69 * Andrew Morton : Make unregister_netdevice wait 70 * indefinitely on dev->refcnt 71 * J Hadi Salim : - Backlog queue sampling 72 * - netif_rx() feedback 73 */ 74 75 #include <asm/uaccess.h> 76 #include <asm/system.h> 77 #include <linux/bitops.h> 78 #include <linux/capability.h> 79 #include <linux/cpu.h> 80 #include <linux/types.h> 81 #include <linux/kernel.h> 82 #include <linux/hash.h> 83 #include <linux/slab.h> 84 #include <linux/sched.h> 85 #include <linux/mutex.h> 86 #include <linux/string.h> 87 #include <linux/mm.h> 88 #include <linux/socket.h> 89 #include <linux/sockios.h> 90 #include <linux/errno.h> 91 #include <linux/interrupt.h> 92 #include <linux/if_ether.h> 93 #include <linux/netdevice.h> 94 #include <linux/etherdevice.h> 95 #include <linux/ethtool.h> 96 #include <linux/notifier.h> 97 #include <linux/skbuff.h> 98 #include <net/net_namespace.h> 99 #include <net/sock.h> 100 #include <linux/rtnetlink.h> 101 #include <linux/proc_fs.h> 102 #include <linux/seq_file.h> 103 #include <linux/stat.h> 104 #include <net/dst.h> 105 #include <net/pkt_sched.h> 106 #include <net/checksum.h> 107 #include <net/xfrm.h> 108 #include <linux/highmem.h> 109 #include <linux/init.h> 110 #include <linux/kmod.h> 111 #include <linux/module.h> 112 #include <linux/netpoll.h> 113 #include <linux/rcupdate.h> 114 #include <linux/delay.h> 115 #include <net/wext.h> 116 #include <net/iw_handler.h> 117 #include <asm/current.h> 118 #include <linux/audit.h> 119 #include <linux/dmaengine.h> 120 #include <linux/err.h> 121 #include <linux/ctype.h> 122 #include <linux/if_arp.h> 123 #include <linux/if_vlan.h> 124 #include <linux/ip.h> 125 #include <net/ip.h> 126 #include <linux/ipv6.h> 127 #include <linux/in.h> 128 #include <linux/jhash.h> 129 #include <linux/random.h> 130 #include <trace/events/napi.h> 131 #include <trace/events/net.h> 132 #include <trace/events/skb.h> 133 #include <linux/pci.h> 134 #include <linux/inetdevice.h> 135 #include <linux/cpu_rmap.h> 136 137 #include "net-sysfs.h" 138 139 /* Instead of increasing this, you should create a hash table. */ 140 #define MAX_GRO_SKBS 8 141 142 /* This should be increased if a protocol with a bigger head is added. */ 143 #define GRO_MAX_HEAD (MAX_HEADER + 128) 144 145 /* 146 * The list of packet types we will receive (as opposed to discard) 147 * and the routines to invoke. 148 * 149 * Why 16. Because with 16 the only overlap we get on a hash of the 150 * low nibble of the protocol value is RARP/SNAP/X.25. 151 * 152 * NOTE: That is no longer true with the addition of VLAN tags. Not 153 * sure which should go first, but I bet it won't make much 154 * difference if we are running VLANs. The good news is that 155 * this protocol won't be in the list unless compiled in, so 156 * the average user (w/out VLANs) will not be adversely affected. 157 * --BLG 158 * 159 * 0800 IP 160 * 8100 802.1Q VLAN 161 * 0001 802.3 162 * 0002 AX.25 163 * 0004 802.2 164 * 8035 RARP 165 * 0005 SNAP 166 * 0805 X.25 167 * 0806 ARP 168 * 8137 IPX 169 * 0009 Localtalk 170 * 86DD IPv6 171 */ 172 173 #define PTYPE_HASH_SIZE (16) 174 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1) 175 176 static DEFINE_SPINLOCK(ptype_lock); 177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly; 178 static struct list_head ptype_all __read_mostly; /* Taps */ 179 180 /* 181 * The @dev_base_head list is protected by @dev_base_lock and the rtnl 182 * semaphore. 183 * 184 * Pure readers hold dev_base_lock for reading, or rcu_read_lock() 185 * 186 * Writers must hold the rtnl semaphore while they loop through the 187 * dev_base_head list, and hold dev_base_lock for writing when they do the 188 * actual updates. This allows pure readers to access the list even 189 * while a writer is preparing to update it. 190 * 191 * To put it another way, dev_base_lock is held for writing only to 192 * protect against pure readers; the rtnl semaphore provides the 193 * protection against other writers. 194 * 195 * See, for example usages, register_netdevice() and 196 * unregister_netdevice(), which must be called with the rtnl 197 * semaphore held. 198 */ 199 DEFINE_RWLOCK(dev_base_lock); 200 EXPORT_SYMBOL(dev_base_lock); 201 202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name) 203 { 204 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ)); 205 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)]; 206 } 207 208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex) 209 { 210 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)]; 211 } 212 213 static inline void rps_lock(struct softnet_data *sd) 214 { 215 #ifdef CONFIG_RPS 216 spin_lock(&sd->input_pkt_queue.lock); 217 #endif 218 } 219 220 static inline void rps_unlock(struct softnet_data *sd) 221 { 222 #ifdef CONFIG_RPS 223 spin_unlock(&sd->input_pkt_queue.lock); 224 #endif 225 } 226 227 /* Device list insertion */ 228 static int list_netdevice(struct net_device *dev) 229 { 230 struct net *net = dev_net(dev); 231 232 ASSERT_RTNL(); 233 234 write_lock_bh(&dev_base_lock); 235 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head); 236 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 237 hlist_add_head_rcu(&dev->index_hlist, 238 dev_index_hash(net, dev->ifindex)); 239 write_unlock_bh(&dev_base_lock); 240 return 0; 241 } 242 243 /* Device list removal 244 * caller must respect a RCU grace period before freeing/reusing dev 245 */ 246 static void unlist_netdevice(struct net_device *dev) 247 { 248 ASSERT_RTNL(); 249 250 /* Unlink dev from the device chain */ 251 write_lock_bh(&dev_base_lock); 252 list_del_rcu(&dev->dev_list); 253 hlist_del_rcu(&dev->name_hlist); 254 hlist_del_rcu(&dev->index_hlist); 255 write_unlock_bh(&dev_base_lock); 256 } 257 258 /* 259 * Our notifier list 260 */ 261 262 static RAW_NOTIFIER_HEAD(netdev_chain); 263 264 /* 265 * Device drivers call our routines to queue packets here. We empty the 266 * queue in the local softnet handler. 267 */ 268 269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data); 270 EXPORT_PER_CPU_SYMBOL(softnet_data); 271 272 #ifdef CONFIG_LOCKDEP 273 /* 274 * register_netdevice() inits txq->_xmit_lock and sets lockdep class 275 * according to dev->type 276 */ 277 static const unsigned short netdev_lock_type[] = 278 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25, 279 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET, 280 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM, 281 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP, 282 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD, 283 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25, 284 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP, 285 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD, 286 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI, 287 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE, 288 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET, 289 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL, 290 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211, 291 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, 292 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154, 293 ARPHRD_VOID, ARPHRD_NONE}; 294 295 static const char *const netdev_lock_name[] = 296 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25", 297 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET", 298 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM", 299 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP", 300 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD", 301 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25", 302 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP", 303 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD", 304 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI", 305 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE", 306 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET", 307 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL", 308 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211", 309 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", 310 "_xmit_PHONET_PIPE", "_xmit_IEEE802154", 311 "_xmit_VOID", "_xmit_NONE"}; 312 313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)]; 314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)]; 315 316 static inline unsigned short netdev_lock_pos(unsigned short dev_type) 317 { 318 int i; 319 320 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++) 321 if (netdev_lock_type[i] == dev_type) 322 return i; 323 /* the last key is used by default */ 324 return ARRAY_SIZE(netdev_lock_type) - 1; 325 } 326 327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 328 unsigned short dev_type) 329 { 330 int i; 331 332 i = netdev_lock_pos(dev_type); 333 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i], 334 netdev_lock_name[i]); 335 } 336 337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 338 { 339 int i; 340 341 i = netdev_lock_pos(dev->type); 342 lockdep_set_class_and_name(&dev->addr_list_lock, 343 &netdev_addr_lock_key[i], 344 netdev_lock_name[i]); 345 } 346 #else 347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock, 348 unsigned short dev_type) 349 { 350 } 351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev) 352 { 353 } 354 #endif 355 356 /******************************************************************************* 357 358 Protocol management and registration routines 359 360 *******************************************************************************/ 361 362 /* 363 * Add a protocol ID to the list. Now that the input handler is 364 * smarter we can dispense with all the messy stuff that used to be 365 * here. 366 * 367 * BEWARE!!! Protocol handlers, mangling input packets, 368 * MUST BE last in hash buckets and checking protocol handlers 369 * MUST start from promiscuous ptype_all chain in net_bh. 370 * It is true now, do not change it. 371 * Explanation follows: if protocol handler, mangling packet, will 372 * be the first on list, it is not able to sense, that packet 373 * is cloned and should be copied-on-write, so that it will 374 * change it and subsequent readers will get broken packet. 375 * --ANK (980803) 376 */ 377 378 static inline struct list_head *ptype_head(const struct packet_type *pt) 379 { 380 if (pt->type == htons(ETH_P_ALL)) 381 return &ptype_all; 382 else 383 return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK]; 384 } 385 386 /** 387 * dev_add_pack - add packet handler 388 * @pt: packet type declaration 389 * 390 * Add a protocol handler to the networking stack. The passed &packet_type 391 * is linked into kernel lists and may not be freed until it has been 392 * removed from the kernel lists. 393 * 394 * This call does not sleep therefore it can not 395 * guarantee all CPU's that are in middle of receiving packets 396 * will see the new packet type (until the next received packet). 397 */ 398 399 void dev_add_pack(struct packet_type *pt) 400 { 401 struct list_head *head = ptype_head(pt); 402 403 spin_lock(&ptype_lock); 404 list_add_rcu(&pt->list, head); 405 spin_unlock(&ptype_lock); 406 } 407 EXPORT_SYMBOL(dev_add_pack); 408 409 /** 410 * __dev_remove_pack - remove packet handler 411 * @pt: packet type declaration 412 * 413 * Remove a protocol handler that was previously added to the kernel 414 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 415 * from the kernel lists and can be freed or reused once this function 416 * returns. 417 * 418 * The packet type might still be in use by receivers 419 * and must not be freed until after all the CPU's have gone 420 * through a quiescent state. 421 */ 422 void __dev_remove_pack(struct packet_type *pt) 423 { 424 struct list_head *head = ptype_head(pt); 425 struct packet_type *pt1; 426 427 spin_lock(&ptype_lock); 428 429 list_for_each_entry(pt1, head, list) { 430 if (pt == pt1) { 431 list_del_rcu(&pt->list); 432 goto out; 433 } 434 } 435 436 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt); 437 out: 438 spin_unlock(&ptype_lock); 439 } 440 EXPORT_SYMBOL(__dev_remove_pack); 441 442 /** 443 * dev_remove_pack - remove packet handler 444 * @pt: packet type declaration 445 * 446 * Remove a protocol handler that was previously added to the kernel 447 * protocol handlers by dev_add_pack(). The passed &packet_type is removed 448 * from the kernel lists and can be freed or reused once this function 449 * returns. 450 * 451 * This call sleeps to guarantee that no CPU is looking at the packet 452 * type after return. 453 */ 454 void dev_remove_pack(struct packet_type *pt) 455 { 456 __dev_remove_pack(pt); 457 458 synchronize_net(); 459 } 460 EXPORT_SYMBOL(dev_remove_pack); 461 462 /****************************************************************************** 463 464 Device Boot-time Settings Routines 465 466 *******************************************************************************/ 467 468 /* Boot time configuration table */ 469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX]; 470 471 /** 472 * netdev_boot_setup_add - add new setup entry 473 * @name: name of the device 474 * @map: configured settings for the device 475 * 476 * Adds new setup entry to the dev_boot_setup list. The function 477 * returns 0 on error and 1 on success. This is a generic routine to 478 * all netdevices. 479 */ 480 static int netdev_boot_setup_add(char *name, struct ifmap *map) 481 { 482 struct netdev_boot_setup *s; 483 int i; 484 485 s = dev_boot_setup; 486 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 487 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') { 488 memset(s[i].name, 0, sizeof(s[i].name)); 489 strlcpy(s[i].name, name, IFNAMSIZ); 490 memcpy(&s[i].map, map, sizeof(s[i].map)); 491 break; 492 } 493 } 494 495 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1; 496 } 497 498 /** 499 * netdev_boot_setup_check - check boot time settings 500 * @dev: the netdevice 501 * 502 * Check boot time settings for the device. 503 * The found settings are set for the device to be used 504 * later in the device probing. 505 * Returns 0 if no settings found, 1 if they are. 506 */ 507 int netdev_boot_setup_check(struct net_device *dev) 508 { 509 struct netdev_boot_setup *s = dev_boot_setup; 510 int i; 511 512 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) { 513 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' && 514 !strcmp(dev->name, s[i].name)) { 515 dev->irq = s[i].map.irq; 516 dev->base_addr = s[i].map.base_addr; 517 dev->mem_start = s[i].map.mem_start; 518 dev->mem_end = s[i].map.mem_end; 519 return 1; 520 } 521 } 522 return 0; 523 } 524 EXPORT_SYMBOL(netdev_boot_setup_check); 525 526 527 /** 528 * netdev_boot_base - get address from boot time settings 529 * @prefix: prefix for network device 530 * @unit: id for network device 531 * 532 * Check boot time settings for the base address of device. 533 * The found settings are set for the device to be used 534 * later in the device probing. 535 * Returns 0 if no settings found. 536 */ 537 unsigned long netdev_boot_base(const char *prefix, int unit) 538 { 539 const struct netdev_boot_setup *s = dev_boot_setup; 540 char name[IFNAMSIZ]; 541 int i; 542 543 sprintf(name, "%s%d", prefix, unit); 544 545 /* 546 * If device already registered then return base of 1 547 * to indicate not to probe for this interface 548 */ 549 if (__dev_get_by_name(&init_net, name)) 550 return 1; 551 552 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) 553 if (!strcmp(name, s[i].name)) 554 return s[i].map.base_addr; 555 return 0; 556 } 557 558 /* 559 * Saves at boot time configured settings for any netdevice. 560 */ 561 int __init netdev_boot_setup(char *str) 562 { 563 int ints[5]; 564 struct ifmap map; 565 566 str = get_options(str, ARRAY_SIZE(ints), ints); 567 if (!str || !*str) 568 return 0; 569 570 /* Save settings */ 571 memset(&map, 0, sizeof(map)); 572 if (ints[0] > 0) 573 map.irq = ints[1]; 574 if (ints[0] > 1) 575 map.base_addr = ints[2]; 576 if (ints[0] > 2) 577 map.mem_start = ints[3]; 578 if (ints[0] > 3) 579 map.mem_end = ints[4]; 580 581 /* Add new entry to the list */ 582 return netdev_boot_setup_add(str, &map); 583 } 584 585 __setup("netdev=", netdev_boot_setup); 586 587 /******************************************************************************* 588 589 Device Interface Subroutines 590 591 *******************************************************************************/ 592 593 /** 594 * __dev_get_by_name - find a device by its name 595 * @net: the applicable net namespace 596 * @name: name to find 597 * 598 * Find an interface by name. Must be called under RTNL semaphore 599 * or @dev_base_lock. If the name is found a pointer to the device 600 * is returned. If the name is not found then %NULL is returned. The 601 * reference counters are not incremented so the caller must be 602 * careful with locks. 603 */ 604 605 struct net_device *__dev_get_by_name(struct net *net, const char *name) 606 { 607 struct hlist_node *p; 608 struct net_device *dev; 609 struct hlist_head *head = dev_name_hash(net, name); 610 611 hlist_for_each_entry(dev, p, head, name_hlist) 612 if (!strncmp(dev->name, name, IFNAMSIZ)) 613 return dev; 614 615 return NULL; 616 } 617 EXPORT_SYMBOL(__dev_get_by_name); 618 619 /** 620 * dev_get_by_name_rcu - find a device by its name 621 * @net: the applicable net namespace 622 * @name: name to find 623 * 624 * Find an interface by name. 625 * If the name is found a pointer to the device is returned. 626 * If the name is not found then %NULL is returned. 627 * The reference counters are not incremented so the caller must be 628 * careful with locks. The caller must hold RCU lock. 629 */ 630 631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name) 632 { 633 struct hlist_node *p; 634 struct net_device *dev; 635 struct hlist_head *head = dev_name_hash(net, name); 636 637 hlist_for_each_entry_rcu(dev, p, head, name_hlist) 638 if (!strncmp(dev->name, name, IFNAMSIZ)) 639 return dev; 640 641 return NULL; 642 } 643 EXPORT_SYMBOL(dev_get_by_name_rcu); 644 645 /** 646 * dev_get_by_name - find a device by its name 647 * @net: the applicable net namespace 648 * @name: name to find 649 * 650 * Find an interface by name. This can be called from any 651 * context and does its own locking. The returned handle has 652 * the usage count incremented and the caller must use dev_put() to 653 * release it when it is no longer needed. %NULL is returned if no 654 * matching device is found. 655 */ 656 657 struct net_device *dev_get_by_name(struct net *net, const char *name) 658 { 659 struct net_device *dev; 660 661 rcu_read_lock(); 662 dev = dev_get_by_name_rcu(net, name); 663 if (dev) 664 dev_hold(dev); 665 rcu_read_unlock(); 666 return dev; 667 } 668 EXPORT_SYMBOL(dev_get_by_name); 669 670 /** 671 * __dev_get_by_index - find a device by its ifindex 672 * @net: the applicable net namespace 673 * @ifindex: index of device 674 * 675 * Search for an interface by index. Returns %NULL if the device 676 * is not found or a pointer to the device. The device has not 677 * had its reference counter increased so the caller must be careful 678 * about locking. The caller must hold either the RTNL semaphore 679 * or @dev_base_lock. 680 */ 681 682 struct net_device *__dev_get_by_index(struct net *net, int ifindex) 683 { 684 struct hlist_node *p; 685 struct net_device *dev; 686 struct hlist_head *head = dev_index_hash(net, ifindex); 687 688 hlist_for_each_entry(dev, p, head, index_hlist) 689 if (dev->ifindex == ifindex) 690 return dev; 691 692 return NULL; 693 } 694 EXPORT_SYMBOL(__dev_get_by_index); 695 696 /** 697 * dev_get_by_index_rcu - find a device by its ifindex 698 * @net: the applicable net namespace 699 * @ifindex: index of device 700 * 701 * Search for an interface by index. Returns %NULL if the device 702 * is not found or a pointer to the device. The device has not 703 * had its reference counter increased so the caller must be careful 704 * about locking. The caller must hold RCU lock. 705 */ 706 707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex) 708 { 709 struct hlist_node *p; 710 struct net_device *dev; 711 struct hlist_head *head = dev_index_hash(net, ifindex); 712 713 hlist_for_each_entry_rcu(dev, p, head, index_hlist) 714 if (dev->ifindex == ifindex) 715 return dev; 716 717 return NULL; 718 } 719 EXPORT_SYMBOL(dev_get_by_index_rcu); 720 721 722 /** 723 * dev_get_by_index - find a device by its ifindex 724 * @net: the applicable net namespace 725 * @ifindex: index of device 726 * 727 * Search for an interface by index. Returns NULL if the device 728 * is not found or a pointer to the device. The device returned has 729 * had a reference added and the pointer is safe until the user calls 730 * dev_put to indicate they have finished with it. 731 */ 732 733 struct net_device *dev_get_by_index(struct net *net, int ifindex) 734 { 735 struct net_device *dev; 736 737 rcu_read_lock(); 738 dev = dev_get_by_index_rcu(net, ifindex); 739 if (dev) 740 dev_hold(dev); 741 rcu_read_unlock(); 742 return dev; 743 } 744 EXPORT_SYMBOL(dev_get_by_index); 745 746 /** 747 * dev_getbyhwaddr_rcu - find a device by its hardware address 748 * @net: the applicable net namespace 749 * @type: media type of device 750 * @ha: hardware address 751 * 752 * Search for an interface by MAC address. Returns NULL if the device 753 * is not found or a pointer to the device. 754 * The caller must hold RCU or RTNL. 755 * The returned device has not had its ref count increased 756 * and the caller must therefore be careful about locking 757 * 758 */ 759 760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type, 761 const char *ha) 762 { 763 struct net_device *dev; 764 765 for_each_netdev_rcu(net, dev) 766 if (dev->type == type && 767 !memcmp(dev->dev_addr, ha, dev->addr_len)) 768 return dev; 769 770 return NULL; 771 } 772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu); 773 774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type) 775 { 776 struct net_device *dev; 777 778 ASSERT_RTNL(); 779 for_each_netdev(net, dev) 780 if (dev->type == type) 781 return dev; 782 783 return NULL; 784 } 785 EXPORT_SYMBOL(__dev_getfirstbyhwtype); 786 787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type) 788 { 789 struct net_device *dev, *ret = NULL; 790 791 rcu_read_lock(); 792 for_each_netdev_rcu(net, dev) 793 if (dev->type == type) { 794 dev_hold(dev); 795 ret = dev; 796 break; 797 } 798 rcu_read_unlock(); 799 return ret; 800 } 801 EXPORT_SYMBOL(dev_getfirstbyhwtype); 802 803 /** 804 * dev_get_by_flags_rcu - find any device with given flags 805 * @net: the applicable net namespace 806 * @if_flags: IFF_* values 807 * @mask: bitmask of bits in if_flags to check 808 * 809 * Search for any interface with the given flags. Returns NULL if a device 810 * is not found or a pointer to the device. Must be called inside 811 * rcu_read_lock(), and result refcount is unchanged. 812 */ 813 814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags, 815 unsigned short mask) 816 { 817 struct net_device *dev, *ret; 818 819 ret = NULL; 820 for_each_netdev_rcu(net, dev) { 821 if (((dev->flags ^ if_flags) & mask) == 0) { 822 ret = dev; 823 break; 824 } 825 } 826 return ret; 827 } 828 EXPORT_SYMBOL(dev_get_by_flags_rcu); 829 830 /** 831 * dev_valid_name - check if name is okay for network device 832 * @name: name string 833 * 834 * Network device names need to be valid file names to 835 * to allow sysfs to work. We also disallow any kind of 836 * whitespace. 837 */ 838 int dev_valid_name(const char *name) 839 { 840 if (*name == '\0') 841 return 0; 842 if (strlen(name) >= IFNAMSIZ) 843 return 0; 844 if (!strcmp(name, ".") || !strcmp(name, "..")) 845 return 0; 846 847 while (*name) { 848 if (*name == '/' || isspace(*name)) 849 return 0; 850 name++; 851 } 852 return 1; 853 } 854 EXPORT_SYMBOL(dev_valid_name); 855 856 /** 857 * __dev_alloc_name - allocate a name for a device 858 * @net: network namespace to allocate the device name in 859 * @name: name format string 860 * @buf: scratch buffer and result name string 861 * 862 * Passed a format string - eg "lt%d" it will try and find a suitable 863 * id. It scans list of devices to build up a free map, then chooses 864 * the first empty slot. The caller must hold the dev_base or rtnl lock 865 * while allocating the name and adding the device in order to avoid 866 * duplicates. 867 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 868 * Returns the number of the unit assigned or a negative errno code. 869 */ 870 871 static int __dev_alloc_name(struct net *net, const char *name, char *buf) 872 { 873 int i = 0; 874 const char *p; 875 const int max_netdevices = 8*PAGE_SIZE; 876 unsigned long *inuse; 877 struct net_device *d; 878 879 p = strnchr(name, IFNAMSIZ-1, '%'); 880 if (p) { 881 /* 882 * Verify the string as this thing may have come from 883 * the user. There must be either one "%d" and no other "%" 884 * characters. 885 */ 886 if (p[1] != 'd' || strchr(p + 2, '%')) 887 return -EINVAL; 888 889 /* Use one page as a bit array of possible slots */ 890 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC); 891 if (!inuse) 892 return -ENOMEM; 893 894 for_each_netdev(net, d) { 895 if (!sscanf(d->name, name, &i)) 896 continue; 897 if (i < 0 || i >= max_netdevices) 898 continue; 899 900 /* avoid cases where sscanf is not exact inverse of printf */ 901 snprintf(buf, IFNAMSIZ, name, i); 902 if (!strncmp(buf, d->name, IFNAMSIZ)) 903 set_bit(i, inuse); 904 } 905 906 i = find_first_zero_bit(inuse, max_netdevices); 907 free_page((unsigned long) inuse); 908 } 909 910 if (buf != name) 911 snprintf(buf, IFNAMSIZ, name, i); 912 if (!__dev_get_by_name(net, buf)) 913 return i; 914 915 /* It is possible to run out of possible slots 916 * when the name is long and there isn't enough space left 917 * for the digits, or if all bits are used. 918 */ 919 return -ENFILE; 920 } 921 922 /** 923 * dev_alloc_name - allocate a name for a device 924 * @dev: device 925 * @name: name format string 926 * 927 * Passed a format string - eg "lt%d" it will try and find a suitable 928 * id. It scans list of devices to build up a free map, then chooses 929 * the first empty slot. The caller must hold the dev_base or rtnl lock 930 * while allocating the name and adding the device in order to avoid 931 * duplicates. 932 * Limited to bits_per_byte * page size devices (ie 32K on most platforms). 933 * Returns the number of the unit assigned or a negative errno code. 934 */ 935 936 int dev_alloc_name(struct net_device *dev, const char *name) 937 { 938 char buf[IFNAMSIZ]; 939 struct net *net; 940 int ret; 941 942 BUG_ON(!dev_net(dev)); 943 net = dev_net(dev); 944 ret = __dev_alloc_name(net, name, buf); 945 if (ret >= 0) 946 strlcpy(dev->name, buf, IFNAMSIZ); 947 return ret; 948 } 949 EXPORT_SYMBOL(dev_alloc_name); 950 951 static int dev_get_valid_name(struct net_device *dev, const char *name) 952 { 953 struct net *net; 954 955 BUG_ON(!dev_net(dev)); 956 net = dev_net(dev); 957 958 if (!dev_valid_name(name)) 959 return -EINVAL; 960 961 if (strchr(name, '%')) 962 return dev_alloc_name(dev, name); 963 else if (__dev_get_by_name(net, name)) 964 return -EEXIST; 965 else if (dev->name != name) 966 strlcpy(dev->name, name, IFNAMSIZ); 967 968 return 0; 969 } 970 971 /** 972 * dev_change_name - change name of a device 973 * @dev: device 974 * @newname: name (or format string) must be at least IFNAMSIZ 975 * 976 * Change name of a device, can pass format strings "eth%d". 977 * for wildcarding. 978 */ 979 int dev_change_name(struct net_device *dev, const char *newname) 980 { 981 char oldname[IFNAMSIZ]; 982 int err = 0; 983 int ret; 984 struct net *net; 985 986 ASSERT_RTNL(); 987 BUG_ON(!dev_net(dev)); 988 989 net = dev_net(dev); 990 if (dev->flags & IFF_UP) 991 return -EBUSY; 992 993 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) 994 return 0; 995 996 memcpy(oldname, dev->name, IFNAMSIZ); 997 998 err = dev_get_valid_name(dev, newname); 999 if (err < 0) 1000 return err; 1001 1002 rollback: 1003 ret = device_rename(&dev->dev, dev->name); 1004 if (ret) { 1005 memcpy(dev->name, oldname, IFNAMSIZ); 1006 return ret; 1007 } 1008 1009 write_lock_bh(&dev_base_lock); 1010 hlist_del_rcu(&dev->name_hlist); 1011 write_unlock_bh(&dev_base_lock); 1012 1013 synchronize_rcu(); 1014 1015 write_lock_bh(&dev_base_lock); 1016 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name)); 1017 write_unlock_bh(&dev_base_lock); 1018 1019 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev); 1020 ret = notifier_to_errno(ret); 1021 1022 if (ret) { 1023 /* err >= 0 after dev_alloc_name() or stores the first errno */ 1024 if (err >= 0) { 1025 err = ret; 1026 memcpy(dev->name, oldname, IFNAMSIZ); 1027 goto rollback; 1028 } else { 1029 printk(KERN_ERR 1030 "%s: name change rollback failed: %d.\n", 1031 dev->name, ret); 1032 } 1033 } 1034 1035 return err; 1036 } 1037 1038 /** 1039 * dev_set_alias - change ifalias of a device 1040 * @dev: device 1041 * @alias: name up to IFALIASZ 1042 * @len: limit of bytes to copy from info 1043 * 1044 * Set ifalias for a device, 1045 */ 1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len) 1047 { 1048 ASSERT_RTNL(); 1049 1050 if (len >= IFALIASZ) 1051 return -EINVAL; 1052 1053 if (!len) { 1054 if (dev->ifalias) { 1055 kfree(dev->ifalias); 1056 dev->ifalias = NULL; 1057 } 1058 return 0; 1059 } 1060 1061 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL); 1062 if (!dev->ifalias) 1063 return -ENOMEM; 1064 1065 strlcpy(dev->ifalias, alias, len+1); 1066 return len; 1067 } 1068 1069 1070 /** 1071 * netdev_features_change - device changes features 1072 * @dev: device to cause notification 1073 * 1074 * Called to indicate a device has changed features. 1075 */ 1076 void netdev_features_change(struct net_device *dev) 1077 { 1078 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev); 1079 } 1080 EXPORT_SYMBOL(netdev_features_change); 1081 1082 /** 1083 * netdev_state_change - device changes state 1084 * @dev: device to cause notification 1085 * 1086 * Called to indicate a device has changed state. This function calls 1087 * the notifier chains for netdev_chain and sends a NEWLINK message 1088 * to the routing socket. 1089 */ 1090 void netdev_state_change(struct net_device *dev) 1091 { 1092 if (dev->flags & IFF_UP) { 1093 call_netdevice_notifiers(NETDEV_CHANGE, dev); 1094 rtmsg_ifinfo(RTM_NEWLINK, dev, 0); 1095 } 1096 } 1097 EXPORT_SYMBOL(netdev_state_change); 1098 1099 int netdev_bonding_change(struct net_device *dev, unsigned long event) 1100 { 1101 return call_netdevice_notifiers(event, dev); 1102 } 1103 EXPORT_SYMBOL(netdev_bonding_change); 1104 1105 /** 1106 * dev_load - load a network module 1107 * @net: the applicable net namespace 1108 * @name: name of interface 1109 * 1110 * If a network interface is not present and the process has suitable 1111 * privileges this function loads the module. If module loading is not 1112 * available in this kernel then it becomes a nop. 1113 */ 1114 1115 void dev_load(struct net *net, const char *name) 1116 { 1117 struct net_device *dev; 1118 int no_module; 1119 1120 rcu_read_lock(); 1121 dev = dev_get_by_name_rcu(net, name); 1122 rcu_read_unlock(); 1123 1124 no_module = !dev; 1125 if (no_module && capable(CAP_NET_ADMIN)) 1126 no_module = request_module("netdev-%s", name); 1127 if (no_module && capable(CAP_SYS_MODULE)) { 1128 if (!request_module("%s", name)) 1129 pr_err("Loading kernel module for a network device " 1130 "with CAP_SYS_MODULE (deprecated). Use CAP_NET_ADMIN and alias netdev-%s " 1131 "instead\n", name); 1132 } 1133 } 1134 EXPORT_SYMBOL(dev_load); 1135 1136 static int __dev_open(struct net_device *dev) 1137 { 1138 const struct net_device_ops *ops = dev->netdev_ops; 1139 int ret; 1140 1141 ASSERT_RTNL(); 1142 1143 if (!netif_device_present(dev)) 1144 return -ENODEV; 1145 1146 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev); 1147 ret = notifier_to_errno(ret); 1148 if (ret) 1149 return ret; 1150 1151 set_bit(__LINK_STATE_START, &dev->state); 1152 1153 if (ops->ndo_validate_addr) 1154 ret = ops->ndo_validate_addr(dev); 1155 1156 if (!ret && ops->ndo_open) 1157 ret = ops->ndo_open(dev); 1158 1159 if (ret) 1160 clear_bit(__LINK_STATE_START, &dev->state); 1161 else { 1162 dev->flags |= IFF_UP; 1163 net_dmaengine_get(); 1164 dev_set_rx_mode(dev); 1165 dev_activate(dev); 1166 } 1167 1168 return ret; 1169 } 1170 1171 /** 1172 * dev_open - prepare an interface for use. 1173 * @dev: device to open 1174 * 1175 * Takes a device from down to up state. The device's private open 1176 * function is invoked and then the multicast lists are loaded. Finally 1177 * the device is moved into the up state and a %NETDEV_UP message is 1178 * sent to the netdev notifier chain. 1179 * 1180 * Calling this function on an active interface is a nop. On a failure 1181 * a negative errno code is returned. 1182 */ 1183 int dev_open(struct net_device *dev) 1184 { 1185 int ret; 1186 1187 if (dev->flags & IFF_UP) 1188 return 0; 1189 1190 ret = __dev_open(dev); 1191 if (ret < 0) 1192 return ret; 1193 1194 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1195 call_netdevice_notifiers(NETDEV_UP, dev); 1196 1197 return ret; 1198 } 1199 EXPORT_SYMBOL(dev_open); 1200 1201 static int __dev_close_many(struct list_head *head) 1202 { 1203 struct net_device *dev; 1204 1205 ASSERT_RTNL(); 1206 might_sleep(); 1207 1208 list_for_each_entry(dev, head, unreg_list) { 1209 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev); 1210 1211 clear_bit(__LINK_STATE_START, &dev->state); 1212 1213 /* Synchronize to scheduled poll. We cannot touch poll list, it 1214 * can be even on different cpu. So just clear netif_running(). 1215 * 1216 * dev->stop() will invoke napi_disable() on all of it's 1217 * napi_struct instances on this device. 1218 */ 1219 smp_mb__after_clear_bit(); /* Commit netif_running(). */ 1220 } 1221 1222 dev_deactivate_many(head); 1223 1224 list_for_each_entry(dev, head, unreg_list) { 1225 const struct net_device_ops *ops = dev->netdev_ops; 1226 1227 /* 1228 * Call the device specific close. This cannot fail. 1229 * Only if device is UP 1230 * 1231 * We allow it to be called even after a DETACH hot-plug 1232 * event. 1233 */ 1234 if (ops->ndo_stop) 1235 ops->ndo_stop(dev); 1236 1237 dev->flags &= ~IFF_UP; 1238 net_dmaengine_put(); 1239 } 1240 1241 return 0; 1242 } 1243 1244 static int __dev_close(struct net_device *dev) 1245 { 1246 int retval; 1247 LIST_HEAD(single); 1248 1249 list_add(&dev->unreg_list, &single); 1250 retval = __dev_close_many(&single); 1251 list_del(&single); 1252 return retval; 1253 } 1254 1255 static int dev_close_many(struct list_head *head) 1256 { 1257 struct net_device *dev, *tmp; 1258 LIST_HEAD(tmp_list); 1259 1260 list_for_each_entry_safe(dev, tmp, head, unreg_list) 1261 if (!(dev->flags & IFF_UP)) 1262 list_move(&dev->unreg_list, &tmp_list); 1263 1264 __dev_close_many(head); 1265 1266 list_for_each_entry(dev, head, unreg_list) { 1267 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING); 1268 call_netdevice_notifiers(NETDEV_DOWN, dev); 1269 } 1270 1271 /* rollback_registered_many needs the complete original list */ 1272 list_splice(&tmp_list, head); 1273 return 0; 1274 } 1275 1276 /** 1277 * dev_close - shutdown an interface. 1278 * @dev: device to shutdown 1279 * 1280 * This function moves an active device into down state. A 1281 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device 1282 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier 1283 * chain. 1284 */ 1285 int dev_close(struct net_device *dev) 1286 { 1287 if (dev->flags & IFF_UP) { 1288 LIST_HEAD(single); 1289 1290 list_add(&dev->unreg_list, &single); 1291 dev_close_many(&single); 1292 list_del(&single); 1293 } 1294 return 0; 1295 } 1296 EXPORT_SYMBOL(dev_close); 1297 1298 1299 /** 1300 * dev_disable_lro - disable Large Receive Offload on a device 1301 * @dev: device 1302 * 1303 * Disable Large Receive Offload (LRO) on a net device. Must be 1304 * called under RTNL. This is needed if received packets may be 1305 * forwarded to another interface. 1306 */ 1307 void dev_disable_lro(struct net_device *dev) 1308 { 1309 u32 flags; 1310 1311 if (dev->ethtool_ops && dev->ethtool_ops->get_flags) 1312 flags = dev->ethtool_ops->get_flags(dev); 1313 else 1314 flags = ethtool_op_get_flags(dev); 1315 1316 if (!(flags & ETH_FLAG_LRO)) 1317 return; 1318 1319 __ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO); 1320 if (unlikely(dev->features & NETIF_F_LRO)) 1321 netdev_WARN(dev, "failed to disable LRO!\n"); 1322 } 1323 EXPORT_SYMBOL(dev_disable_lro); 1324 1325 1326 static int dev_boot_phase = 1; 1327 1328 /** 1329 * register_netdevice_notifier - register a network notifier block 1330 * @nb: notifier 1331 * 1332 * Register a notifier to be called when network device events occur. 1333 * The notifier passed is linked into the kernel structures and must 1334 * not be reused until it has been unregistered. A negative errno code 1335 * is returned on a failure. 1336 * 1337 * When registered all registration and up events are replayed 1338 * to the new notifier to allow device to have a race free 1339 * view of the network device list. 1340 */ 1341 1342 int register_netdevice_notifier(struct notifier_block *nb) 1343 { 1344 struct net_device *dev; 1345 struct net_device *last; 1346 struct net *net; 1347 int err; 1348 1349 rtnl_lock(); 1350 err = raw_notifier_chain_register(&netdev_chain, nb); 1351 if (err) 1352 goto unlock; 1353 if (dev_boot_phase) 1354 goto unlock; 1355 for_each_net(net) { 1356 for_each_netdev(net, dev) { 1357 err = nb->notifier_call(nb, NETDEV_REGISTER, dev); 1358 err = notifier_to_errno(err); 1359 if (err) 1360 goto rollback; 1361 1362 if (!(dev->flags & IFF_UP)) 1363 continue; 1364 1365 nb->notifier_call(nb, NETDEV_UP, dev); 1366 } 1367 } 1368 1369 unlock: 1370 rtnl_unlock(); 1371 return err; 1372 1373 rollback: 1374 last = dev; 1375 for_each_net(net) { 1376 for_each_netdev(net, dev) { 1377 if (dev == last) 1378 break; 1379 1380 if (dev->flags & IFF_UP) { 1381 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev); 1382 nb->notifier_call(nb, NETDEV_DOWN, dev); 1383 } 1384 nb->notifier_call(nb, NETDEV_UNREGISTER, dev); 1385 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev); 1386 } 1387 } 1388 1389 raw_notifier_chain_unregister(&netdev_chain, nb); 1390 goto unlock; 1391 } 1392 EXPORT_SYMBOL(register_netdevice_notifier); 1393 1394 /** 1395 * unregister_netdevice_notifier - unregister a network notifier block 1396 * @nb: notifier 1397 * 1398 * Unregister a notifier previously registered by 1399 * register_netdevice_notifier(). The notifier is unlinked into the 1400 * kernel structures and may then be reused. A negative errno code 1401 * is returned on a failure. 1402 */ 1403 1404 int unregister_netdevice_notifier(struct notifier_block *nb) 1405 { 1406 int err; 1407 1408 rtnl_lock(); 1409 err = raw_notifier_chain_unregister(&netdev_chain, nb); 1410 rtnl_unlock(); 1411 return err; 1412 } 1413 EXPORT_SYMBOL(unregister_netdevice_notifier); 1414 1415 /** 1416 * call_netdevice_notifiers - call all network notifier blocks 1417 * @val: value passed unmodified to notifier function 1418 * @dev: net_device pointer passed unmodified to notifier function 1419 * 1420 * Call all network notifier blocks. Parameters and return value 1421 * are as for raw_notifier_call_chain(). 1422 */ 1423 1424 int call_netdevice_notifiers(unsigned long val, struct net_device *dev) 1425 { 1426 ASSERT_RTNL(); 1427 return raw_notifier_call_chain(&netdev_chain, val, dev); 1428 } 1429 EXPORT_SYMBOL(call_netdevice_notifiers); 1430 1431 /* When > 0 there are consumers of rx skb time stamps */ 1432 static atomic_t netstamp_needed = ATOMIC_INIT(0); 1433 1434 void net_enable_timestamp(void) 1435 { 1436 atomic_inc(&netstamp_needed); 1437 } 1438 EXPORT_SYMBOL(net_enable_timestamp); 1439 1440 void net_disable_timestamp(void) 1441 { 1442 atomic_dec(&netstamp_needed); 1443 } 1444 EXPORT_SYMBOL(net_disable_timestamp); 1445 1446 static inline void net_timestamp_set(struct sk_buff *skb) 1447 { 1448 if (atomic_read(&netstamp_needed)) 1449 __net_timestamp(skb); 1450 else 1451 skb->tstamp.tv64 = 0; 1452 } 1453 1454 static inline void net_timestamp_check(struct sk_buff *skb) 1455 { 1456 if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed)) 1457 __net_timestamp(skb); 1458 } 1459 1460 static inline bool is_skb_forwardable(struct net_device *dev, 1461 struct sk_buff *skb) 1462 { 1463 unsigned int len; 1464 1465 if (!(dev->flags & IFF_UP)) 1466 return false; 1467 1468 len = dev->mtu + dev->hard_header_len + VLAN_HLEN; 1469 if (skb->len <= len) 1470 return true; 1471 1472 /* if TSO is enabled, we don't care about the length as the packet 1473 * could be forwarded without being segmented before 1474 */ 1475 if (skb_is_gso(skb)) 1476 return true; 1477 1478 return false; 1479 } 1480 1481 /** 1482 * dev_forward_skb - loopback an skb to another netif 1483 * 1484 * @dev: destination network device 1485 * @skb: buffer to forward 1486 * 1487 * return values: 1488 * NET_RX_SUCCESS (no congestion) 1489 * NET_RX_DROP (packet was dropped, but freed) 1490 * 1491 * dev_forward_skb can be used for injecting an skb from the 1492 * start_xmit function of one device into the receive queue 1493 * of another device. 1494 * 1495 * The receiving device may be in another namespace, so 1496 * we have to clear all information in the skb that could 1497 * impact namespace isolation. 1498 */ 1499 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb) 1500 { 1501 skb_orphan(skb); 1502 nf_reset(skb); 1503 1504 if (unlikely(!is_skb_forwardable(dev, skb))) { 1505 atomic_long_inc(&dev->rx_dropped); 1506 kfree_skb(skb); 1507 return NET_RX_DROP; 1508 } 1509 skb_set_dev(skb, dev); 1510 skb->tstamp.tv64 = 0; 1511 skb->pkt_type = PACKET_HOST; 1512 skb->protocol = eth_type_trans(skb, dev); 1513 return netif_rx(skb); 1514 } 1515 EXPORT_SYMBOL_GPL(dev_forward_skb); 1516 1517 static inline int deliver_skb(struct sk_buff *skb, 1518 struct packet_type *pt_prev, 1519 struct net_device *orig_dev) 1520 { 1521 atomic_inc(&skb->users); 1522 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 1523 } 1524 1525 /* 1526 * Support routine. Sends outgoing frames to any network 1527 * taps currently in use. 1528 */ 1529 1530 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev) 1531 { 1532 struct packet_type *ptype; 1533 struct sk_buff *skb2 = NULL; 1534 struct packet_type *pt_prev = NULL; 1535 1536 rcu_read_lock(); 1537 list_for_each_entry_rcu(ptype, &ptype_all, list) { 1538 /* Never send packets back to the socket 1539 * they originated from - MvS ([email protected]) 1540 */ 1541 if ((ptype->dev == dev || !ptype->dev) && 1542 (ptype->af_packet_priv == NULL || 1543 (struct sock *)ptype->af_packet_priv != skb->sk)) { 1544 if (pt_prev) { 1545 deliver_skb(skb2, pt_prev, skb->dev); 1546 pt_prev = ptype; 1547 continue; 1548 } 1549 1550 skb2 = skb_clone(skb, GFP_ATOMIC); 1551 if (!skb2) 1552 break; 1553 1554 net_timestamp_set(skb2); 1555 1556 /* skb->nh should be correctly 1557 set by sender, so that the second statement is 1558 just protection against buggy protocols. 1559 */ 1560 skb_reset_mac_header(skb2); 1561 1562 if (skb_network_header(skb2) < skb2->data || 1563 skb2->network_header > skb2->tail) { 1564 if (net_ratelimit()) 1565 printk(KERN_CRIT "protocol %04x is " 1566 "buggy, dev %s\n", 1567 ntohs(skb2->protocol), 1568 dev->name); 1569 skb_reset_network_header(skb2); 1570 } 1571 1572 skb2->transport_header = skb2->network_header; 1573 skb2->pkt_type = PACKET_OUTGOING; 1574 pt_prev = ptype; 1575 } 1576 } 1577 if (pt_prev) 1578 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev); 1579 rcu_read_unlock(); 1580 } 1581 1582 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change 1583 * @dev: Network device 1584 * @txq: number of queues available 1585 * 1586 * If real_num_tx_queues is changed the tc mappings may no longer be 1587 * valid. To resolve this verify the tc mapping remains valid and if 1588 * not NULL the mapping. With no priorities mapping to this 1589 * offset/count pair it will no longer be used. In the worst case TC0 1590 * is invalid nothing can be done so disable priority mappings. If is 1591 * expected that drivers will fix this mapping if they can before 1592 * calling netif_set_real_num_tx_queues. 1593 */ 1594 static void netif_setup_tc(struct net_device *dev, unsigned int txq) 1595 { 1596 int i; 1597 struct netdev_tc_txq *tc = &dev->tc_to_txq[0]; 1598 1599 /* If TC0 is invalidated disable TC mapping */ 1600 if (tc->offset + tc->count > txq) { 1601 pr_warning("Number of in use tx queues changed " 1602 "invalidating tc mappings. Priority " 1603 "traffic classification disabled!\n"); 1604 dev->num_tc = 0; 1605 return; 1606 } 1607 1608 /* Invalidated prio to tc mappings set to TC0 */ 1609 for (i = 1; i < TC_BITMASK + 1; i++) { 1610 int q = netdev_get_prio_tc_map(dev, i); 1611 1612 tc = &dev->tc_to_txq[q]; 1613 if (tc->offset + tc->count > txq) { 1614 pr_warning("Number of in use tx queues " 1615 "changed. Priority %i to tc " 1616 "mapping %i is no longer valid " 1617 "setting map to 0\n", 1618 i, q); 1619 netdev_set_prio_tc_map(dev, i, 0); 1620 } 1621 } 1622 } 1623 1624 /* 1625 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues 1626 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed. 1627 */ 1628 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq) 1629 { 1630 int rc; 1631 1632 if (txq < 1 || txq > dev->num_tx_queues) 1633 return -EINVAL; 1634 1635 if (dev->reg_state == NETREG_REGISTERED || 1636 dev->reg_state == NETREG_UNREGISTERING) { 1637 ASSERT_RTNL(); 1638 1639 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues, 1640 txq); 1641 if (rc) 1642 return rc; 1643 1644 if (dev->num_tc) 1645 netif_setup_tc(dev, txq); 1646 1647 if (txq < dev->real_num_tx_queues) 1648 qdisc_reset_all_tx_gt(dev, txq); 1649 } 1650 1651 dev->real_num_tx_queues = txq; 1652 return 0; 1653 } 1654 EXPORT_SYMBOL(netif_set_real_num_tx_queues); 1655 1656 #ifdef CONFIG_RPS 1657 /** 1658 * netif_set_real_num_rx_queues - set actual number of RX queues used 1659 * @dev: Network device 1660 * @rxq: Actual number of RX queues 1661 * 1662 * This must be called either with the rtnl_lock held or before 1663 * registration of the net device. Returns 0 on success, or a 1664 * negative error code. If called before registration, it always 1665 * succeeds. 1666 */ 1667 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq) 1668 { 1669 int rc; 1670 1671 if (rxq < 1 || rxq > dev->num_rx_queues) 1672 return -EINVAL; 1673 1674 if (dev->reg_state == NETREG_REGISTERED) { 1675 ASSERT_RTNL(); 1676 1677 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues, 1678 rxq); 1679 if (rc) 1680 return rc; 1681 } 1682 1683 dev->real_num_rx_queues = rxq; 1684 return 0; 1685 } 1686 EXPORT_SYMBOL(netif_set_real_num_rx_queues); 1687 #endif 1688 1689 static inline void __netif_reschedule(struct Qdisc *q) 1690 { 1691 struct softnet_data *sd; 1692 unsigned long flags; 1693 1694 local_irq_save(flags); 1695 sd = &__get_cpu_var(softnet_data); 1696 q->next_sched = NULL; 1697 *sd->output_queue_tailp = q; 1698 sd->output_queue_tailp = &q->next_sched; 1699 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1700 local_irq_restore(flags); 1701 } 1702 1703 void __netif_schedule(struct Qdisc *q) 1704 { 1705 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) 1706 __netif_reschedule(q); 1707 } 1708 EXPORT_SYMBOL(__netif_schedule); 1709 1710 void dev_kfree_skb_irq(struct sk_buff *skb) 1711 { 1712 if (atomic_dec_and_test(&skb->users)) { 1713 struct softnet_data *sd; 1714 unsigned long flags; 1715 1716 local_irq_save(flags); 1717 sd = &__get_cpu_var(softnet_data); 1718 skb->next = sd->completion_queue; 1719 sd->completion_queue = skb; 1720 raise_softirq_irqoff(NET_TX_SOFTIRQ); 1721 local_irq_restore(flags); 1722 } 1723 } 1724 EXPORT_SYMBOL(dev_kfree_skb_irq); 1725 1726 void dev_kfree_skb_any(struct sk_buff *skb) 1727 { 1728 if (in_irq() || irqs_disabled()) 1729 dev_kfree_skb_irq(skb); 1730 else 1731 dev_kfree_skb(skb); 1732 } 1733 EXPORT_SYMBOL(dev_kfree_skb_any); 1734 1735 1736 /** 1737 * netif_device_detach - mark device as removed 1738 * @dev: network device 1739 * 1740 * Mark device as removed from system and therefore no longer available. 1741 */ 1742 void netif_device_detach(struct net_device *dev) 1743 { 1744 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) && 1745 netif_running(dev)) { 1746 netif_tx_stop_all_queues(dev); 1747 } 1748 } 1749 EXPORT_SYMBOL(netif_device_detach); 1750 1751 /** 1752 * netif_device_attach - mark device as attached 1753 * @dev: network device 1754 * 1755 * Mark device as attached from system and restart if needed. 1756 */ 1757 void netif_device_attach(struct net_device *dev) 1758 { 1759 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) && 1760 netif_running(dev)) { 1761 netif_tx_wake_all_queues(dev); 1762 __netdev_watchdog_up(dev); 1763 } 1764 } 1765 EXPORT_SYMBOL(netif_device_attach); 1766 1767 /** 1768 * skb_dev_set -- assign a new device to a buffer 1769 * @skb: buffer for the new device 1770 * @dev: network device 1771 * 1772 * If an skb is owned by a device already, we have to reset 1773 * all data private to the namespace a device belongs to 1774 * before assigning it a new device. 1775 */ 1776 #ifdef CONFIG_NET_NS 1777 void skb_set_dev(struct sk_buff *skb, struct net_device *dev) 1778 { 1779 skb_dst_drop(skb); 1780 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) { 1781 secpath_reset(skb); 1782 nf_reset(skb); 1783 skb_init_secmark(skb); 1784 skb->mark = 0; 1785 skb->priority = 0; 1786 skb->nf_trace = 0; 1787 skb->ipvs_property = 0; 1788 #ifdef CONFIG_NET_SCHED 1789 skb->tc_index = 0; 1790 #endif 1791 } 1792 skb->dev = dev; 1793 } 1794 EXPORT_SYMBOL(skb_set_dev); 1795 #endif /* CONFIG_NET_NS */ 1796 1797 /* 1798 * Invalidate hardware checksum when packet is to be mangled, and 1799 * complete checksum manually on outgoing path. 1800 */ 1801 int skb_checksum_help(struct sk_buff *skb) 1802 { 1803 __wsum csum; 1804 int ret = 0, offset; 1805 1806 if (skb->ip_summed == CHECKSUM_COMPLETE) 1807 goto out_set_summed; 1808 1809 if (unlikely(skb_shinfo(skb)->gso_size)) { 1810 /* Let GSO fix up the checksum. */ 1811 goto out_set_summed; 1812 } 1813 1814 offset = skb_checksum_start_offset(skb); 1815 BUG_ON(offset >= skb_headlen(skb)); 1816 csum = skb_checksum(skb, offset, skb->len - offset, 0); 1817 1818 offset += skb->csum_offset; 1819 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb)); 1820 1821 if (skb_cloned(skb) && 1822 !skb_clone_writable(skb, offset + sizeof(__sum16))) { 1823 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 1824 if (ret) 1825 goto out; 1826 } 1827 1828 *(__sum16 *)(skb->data + offset) = csum_fold(csum); 1829 out_set_summed: 1830 skb->ip_summed = CHECKSUM_NONE; 1831 out: 1832 return ret; 1833 } 1834 EXPORT_SYMBOL(skb_checksum_help); 1835 1836 /** 1837 * skb_gso_segment - Perform segmentation on skb. 1838 * @skb: buffer to segment 1839 * @features: features for the output path (see dev->features) 1840 * 1841 * This function segments the given skb and returns a list of segments. 1842 * 1843 * It may return NULL if the skb requires no segmentation. This is 1844 * only possible when GSO is used for verifying header integrity. 1845 */ 1846 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features) 1847 { 1848 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT); 1849 struct packet_type *ptype; 1850 __be16 type = skb->protocol; 1851 int vlan_depth = ETH_HLEN; 1852 int err; 1853 1854 while (type == htons(ETH_P_8021Q)) { 1855 struct vlan_hdr *vh; 1856 1857 if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN))) 1858 return ERR_PTR(-EINVAL); 1859 1860 vh = (struct vlan_hdr *)(skb->data + vlan_depth); 1861 type = vh->h_vlan_encapsulated_proto; 1862 vlan_depth += VLAN_HLEN; 1863 } 1864 1865 skb_reset_mac_header(skb); 1866 skb->mac_len = skb->network_header - skb->mac_header; 1867 __skb_pull(skb, skb->mac_len); 1868 1869 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1870 struct net_device *dev = skb->dev; 1871 struct ethtool_drvinfo info = {}; 1872 1873 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo) 1874 dev->ethtool_ops->get_drvinfo(dev, &info); 1875 1876 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n", 1877 info.driver, dev ? dev->features : 0L, 1878 skb->sk ? skb->sk->sk_route_caps : 0L, 1879 skb->len, skb->data_len, skb->ip_summed); 1880 1881 if (skb_header_cloned(skb) && 1882 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) 1883 return ERR_PTR(err); 1884 } 1885 1886 rcu_read_lock(); 1887 list_for_each_entry_rcu(ptype, 1888 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 1889 if (ptype->type == type && !ptype->dev && ptype->gso_segment) { 1890 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) { 1891 err = ptype->gso_send_check(skb); 1892 segs = ERR_PTR(err); 1893 if (err || skb_gso_ok(skb, features)) 1894 break; 1895 __skb_push(skb, (skb->data - 1896 skb_network_header(skb))); 1897 } 1898 segs = ptype->gso_segment(skb, features); 1899 break; 1900 } 1901 } 1902 rcu_read_unlock(); 1903 1904 __skb_push(skb, skb->data - skb_mac_header(skb)); 1905 1906 return segs; 1907 } 1908 EXPORT_SYMBOL(skb_gso_segment); 1909 1910 /* Take action when hardware reception checksum errors are detected. */ 1911 #ifdef CONFIG_BUG 1912 void netdev_rx_csum_fault(struct net_device *dev) 1913 { 1914 if (net_ratelimit()) { 1915 printk(KERN_ERR "%s: hw csum failure.\n", 1916 dev ? dev->name : "<unknown>"); 1917 dump_stack(); 1918 } 1919 } 1920 EXPORT_SYMBOL(netdev_rx_csum_fault); 1921 #endif 1922 1923 /* Actually, we should eliminate this check as soon as we know, that: 1924 * 1. IOMMU is present and allows to map all the memory. 1925 * 2. No high memory really exists on this machine. 1926 */ 1927 1928 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb) 1929 { 1930 #ifdef CONFIG_HIGHMEM 1931 int i; 1932 if (!(dev->features & NETIF_F_HIGHDMA)) { 1933 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) 1934 if (PageHighMem(skb_shinfo(skb)->frags[i].page)) 1935 return 1; 1936 } 1937 1938 if (PCI_DMA_BUS_IS_PHYS) { 1939 struct device *pdev = dev->dev.parent; 1940 1941 if (!pdev) 1942 return 0; 1943 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1944 dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page); 1945 if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask) 1946 return 1; 1947 } 1948 } 1949 #endif 1950 return 0; 1951 } 1952 1953 struct dev_gso_cb { 1954 void (*destructor)(struct sk_buff *skb); 1955 }; 1956 1957 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb) 1958 1959 static void dev_gso_skb_destructor(struct sk_buff *skb) 1960 { 1961 struct dev_gso_cb *cb; 1962 1963 do { 1964 struct sk_buff *nskb = skb->next; 1965 1966 skb->next = nskb->next; 1967 nskb->next = NULL; 1968 kfree_skb(nskb); 1969 } while (skb->next); 1970 1971 cb = DEV_GSO_CB(skb); 1972 if (cb->destructor) 1973 cb->destructor(skb); 1974 } 1975 1976 /** 1977 * dev_gso_segment - Perform emulated hardware segmentation on skb. 1978 * @skb: buffer to segment 1979 * @features: device features as applicable to this skb 1980 * 1981 * This function segments the given skb and stores the list of segments 1982 * in skb->next. 1983 */ 1984 static int dev_gso_segment(struct sk_buff *skb, int features) 1985 { 1986 struct sk_buff *segs; 1987 1988 segs = skb_gso_segment(skb, features); 1989 1990 /* Verifying header integrity only. */ 1991 if (!segs) 1992 return 0; 1993 1994 if (IS_ERR(segs)) 1995 return PTR_ERR(segs); 1996 1997 skb->next = segs; 1998 DEV_GSO_CB(skb)->destructor = skb->destructor; 1999 skb->destructor = dev_gso_skb_destructor; 2000 2001 return 0; 2002 } 2003 2004 /* 2005 * Try to orphan skb early, right before transmission by the device. 2006 * We cannot orphan skb if tx timestamp is requested or the sk-reference 2007 * is needed on driver level for other reasons, e.g. see net/can/raw.c 2008 */ 2009 static inline void skb_orphan_try(struct sk_buff *skb) 2010 { 2011 struct sock *sk = skb->sk; 2012 2013 if (sk && !skb_shinfo(skb)->tx_flags) { 2014 /* skb_tx_hash() wont be able to get sk. 2015 * We copy sk_hash into skb->rxhash 2016 */ 2017 if (!skb->rxhash) 2018 skb->rxhash = sk->sk_hash; 2019 skb_orphan(skb); 2020 } 2021 } 2022 2023 static bool can_checksum_protocol(unsigned long features, __be16 protocol) 2024 { 2025 return ((features & NETIF_F_GEN_CSUM) || 2026 ((features & NETIF_F_V4_CSUM) && 2027 protocol == htons(ETH_P_IP)) || 2028 ((features & NETIF_F_V6_CSUM) && 2029 protocol == htons(ETH_P_IPV6)) || 2030 ((features & NETIF_F_FCOE_CRC) && 2031 protocol == htons(ETH_P_FCOE))); 2032 } 2033 2034 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features) 2035 { 2036 if (!can_checksum_protocol(features, protocol)) { 2037 features &= ~NETIF_F_ALL_CSUM; 2038 features &= ~NETIF_F_SG; 2039 } else if (illegal_highdma(skb->dev, skb)) { 2040 features &= ~NETIF_F_SG; 2041 } 2042 2043 return features; 2044 } 2045 2046 u32 netif_skb_features(struct sk_buff *skb) 2047 { 2048 __be16 protocol = skb->protocol; 2049 u32 features = skb->dev->features; 2050 2051 if (protocol == htons(ETH_P_8021Q)) { 2052 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data; 2053 protocol = veh->h_vlan_encapsulated_proto; 2054 } else if (!vlan_tx_tag_present(skb)) { 2055 return harmonize_features(skb, protocol, features); 2056 } 2057 2058 features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX); 2059 2060 if (protocol != htons(ETH_P_8021Q)) { 2061 return harmonize_features(skb, protocol, features); 2062 } else { 2063 features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST | 2064 NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX; 2065 return harmonize_features(skb, protocol, features); 2066 } 2067 } 2068 EXPORT_SYMBOL(netif_skb_features); 2069 2070 /* 2071 * Returns true if either: 2072 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 2073 * 2. skb is fragmented and the device does not support SG, or if 2074 * at least one of fragments is in highmem and device does not 2075 * support DMA from it. 2076 */ 2077 static inline int skb_needs_linearize(struct sk_buff *skb, 2078 int features) 2079 { 2080 return skb_is_nonlinear(skb) && 2081 ((skb_has_frag_list(skb) && 2082 !(features & NETIF_F_FRAGLIST)) || 2083 (skb_shinfo(skb)->nr_frags && 2084 !(features & NETIF_F_SG))); 2085 } 2086 2087 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev, 2088 struct netdev_queue *txq) 2089 { 2090 const struct net_device_ops *ops = dev->netdev_ops; 2091 int rc = NETDEV_TX_OK; 2092 2093 if (likely(!skb->next)) { 2094 u32 features; 2095 2096 /* 2097 * If device doesn't need skb->dst, release it right now while 2098 * its hot in this cpu cache 2099 */ 2100 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2101 skb_dst_drop(skb); 2102 2103 if (!list_empty(&ptype_all)) 2104 dev_queue_xmit_nit(skb, dev); 2105 2106 skb_orphan_try(skb); 2107 2108 features = netif_skb_features(skb); 2109 2110 if (vlan_tx_tag_present(skb) && 2111 !(features & NETIF_F_HW_VLAN_TX)) { 2112 skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb)); 2113 if (unlikely(!skb)) 2114 goto out; 2115 2116 skb->vlan_tci = 0; 2117 } 2118 2119 if (netif_needs_gso(skb, features)) { 2120 if (unlikely(dev_gso_segment(skb, features))) 2121 goto out_kfree_skb; 2122 if (skb->next) 2123 goto gso; 2124 } else { 2125 if (skb_needs_linearize(skb, features) && 2126 __skb_linearize(skb)) 2127 goto out_kfree_skb; 2128 2129 /* If packet is not checksummed and device does not 2130 * support checksumming for this protocol, complete 2131 * checksumming here. 2132 */ 2133 if (skb->ip_summed == CHECKSUM_PARTIAL) { 2134 skb_set_transport_header(skb, 2135 skb_checksum_start_offset(skb)); 2136 if (!(features & NETIF_F_ALL_CSUM) && 2137 skb_checksum_help(skb)) 2138 goto out_kfree_skb; 2139 } 2140 } 2141 2142 rc = ops->ndo_start_xmit(skb, dev); 2143 trace_net_dev_xmit(skb, rc); 2144 if (rc == NETDEV_TX_OK) 2145 txq_trans_update(txq); 2146 return rc; 2147 } 2148 2149 gso: 2150 do { 2151 struct sk_buff *nskb = skb->next; 2152 2153 skb->next = nskb->next; 2154 nskb->next = NULL; 2155 2156 /* 2157 * If device doesn't need nskb->dst, release it right now while 2158 * its hot in this cpu cache 2159 */ 2160 if (dev->priv_flags & IFF_XMIT_DST_RELEASE) 2161 skb_dst_drop(nskb); 2162 2163 rc = ops->ndo_start_xmit(nskb, dev); 2164 trace_net_dev_xmit(nskb, rc); 2165 if (unlikely(rc != NETDEV_TX_OK)) { 2166 if (rc & ~NETDEV_TX_MASK) 2167 goto out_kfree_gso_skb; 2168 nskb->next = skb->next; 2169 skb->next = nskb; 2170 return rc; 2171 } 2172 txq_trans_update(txq); 2173 if (unlikely(netif_tx_queue_stopped(txq) && skb->next)) 2174 return NETDEV_TX_BUSY; 2175 } while (skb->next); 2176 2177 out_kfree_gso_skb: 2178 if (likely(skb->next == NULL)) 2179 skb->destructor = DEV_GSO_CB(skb)->destructor; 2180 out_kfree_skb: 2181 kfree_skb(skb); 2182 out: 2183 return rc; 2184 } 2185 2186 static u32 hashrnd __read_mostly; 2187 2188 /* 2189 * Returns a Tx hash based on the given packet descriptor a Tx queues' number 2190 * to be used as a distribution range. 2191 */ 2192 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb, 2193 unsigned int num_tx_queues) 2194 { 2195 u32 hash; 2196 u16 qoffset = 0; 2197 u16 qcount = num_tx_queues; 2198 2199 if (skb_rx_queue_recorded(skb)) { 2200 hash = skb_get_rx_queue(skb); 2201 while (unlikely(hash >= num_tx_queues)) 2202 hash -= num_tx_queues; 2203 return hash; 2204 } 2205 2206 if (dev->num_tc) { 2207 u8 tc = netdev_get_prio_tc_map(dev, skb->priority); 2208 qoffset = dev->tc_to_txq[tc].offset; 2209 qcount = dev->tc_to_txq[tc].count; 2210 } 2211 2212 if (skb->sk && skb->sk->sk_hash) 2213 hash = skb->sk->sk_hash; 2214 else 2215 hash = (__force u16) skb->protocol ^ skb->rxhash; 2216 hash = jhash_1word(hash, hashrnd); 2217 2218 return (u16) (((u64) hash * qcount) >> 32) + qoffset; 2219 } 2220 EXPORT_SYMBOL(__skb_tx_hash); 2221 2222 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index) 2223 { 2224 if (unlikely(queue_index >= dev->real_num_tx_queues)) { 2225 if (net_ratelimit()) { 2226 pr_warning("%s selects TX queue %d, but " 2227 "real number of TX queues is %d\n", 2228 dev->name, queue_index, dev->real_num_tx_queues); 2229 } 2230 return 0; 2231 } 2232 return queue_index; 2233 } 2234 2235 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb) 2236 { 2237 #ifdef CONFIG_XPS 2238 struct xps_dev_maps *dev_maps; 2239 struct xps_map *map; 2240 int queue_index = -1; 2241 2242 rcu_read_lock(); 2243 dev_maps = rcu_dereference(dev->xps_maps); 2244 if (dev_maps) { 2245 map = rcu_dereference( 2246 dev_maps->cpu_map[raw_smp_processor_id()]); 2247 if (map) { 2248 if (map->len == 1) 2249 queue_index = map->queues[0]; 2250 else { 2251 u32 hash; 2252 if (skb->sk && skb->sk->sk_hash) 2253 hash = skb->sk->sk_hash; 2254 else 2255 hash = (__force u16) skb->protocol ^ 2256 skb->rxhash; 2257 hash = jhash_1word(hash, hashrnd); 2258 queue_index = map->queues[ 2259 ((u64)hash * map->len) >> 32]; 2260 } 2261 if (unlikely(queue_index >= dev->real_num_tx_queues)) 2262 queue_index = -1; 2263 } 2264 } 2265 rcu_read_unlock(); 2266 2267 return queue_index; 2268 #else 2269 return -1; 2270 #endif 2271 } 2272 2273 static struct netdev_queue *dev_pick_tx(struct net_device *dev, 2274 struct sk_buff *skb) 2275 { 2276 int queue_index; 2277 const struct net_device_ops *ops = dev->netdev_ops; 2278 2279 if (dev->real_num_tx_queues == 1) 2280 queue_index = 0; 2281 else if (ops->ndo_select_queue) { 2282 queue_index = ops->ndo_select_queue(dev, skb); 2283 queue_index = dev_cap_txqueue(dev, queue_index); 2284 } else { 2285 struct sock *sk = skb->sk; 2286 queue_index = sk_tx_queue_get(sk); 2287 2288 if (queue_index < 0 || skb->ooo_okay || 2289 queue_index >= dev->real_num_tx_queues) { 2290 int old_index = queue_index; 2291 2292 queue_index = get_xps_queue(dev, skb); 2293 if (queue_index < 0) 2294 queue_index = skb_tx_hash(dev, skb); 2295 2296 if (queue_index != old_index && sk) { 2297 struct dst_entry *dst = 2298 rcu_dereference_check(sk->sk_dst_cache, 1); 2299 2300 if (dst && skb_dst(skb) == dst) 2301 sk_tx_queue_set(sk, queue_index); 2302 } 2303 } 2304 } 2305 2306 skb_set_queue_mapping(skb, queue_index); 2307 return netdev_get_tx_queue(dev, queue_index); 2308 } 2309 2310 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q, 2311 struct net_device *dev, 2312 struct netdev_queue *txq) 2313 { 2314 spinlock_t *root_lock = qdisc_lock(q); 2315 bool contended; 2316 int rc; 2317 2318 qdisc_skb_cb(skb)->pkt_len = skb->len; 2319 qdisc_calculate_pkt_len(skb, q); 2320 /* 2321 * Heuristic to force contended enqueues to serialize on a 2322 * separate lock before trying to get qdisc main lock. 2323 * This permits __QDISC_STATE_RUNNING owner to get the lock more often 2324 * and dequeue packets faster. 2325 */ 2326 contended = qdisc_is_running(q); 2327 if (unlikely(contended)) 2328 spin_lock(&q->busylock); 2329 2330 spin_lock(root_lock); 2331 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) { 2332 kfree_skb(skb); 2333 rc = NET_XMIT_DROP; 2334 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) && 2335 qdisc_run_begin(q)) { 2336 /* 2337 * This is a work-conserving queue; there are no old skbs 2338 * waiting to be sent out; and the qdisc is not running - 2339 * xmit the skb directly. 2340 */ 2341 if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE)) 2342 skb_dst_force(skb); 2343 2344 qdisc_bstats_update(q, skb); 2345 2346 if (sch_direct_xmit(skb, q, dev, txq, root_lock)) { 2347 if (unlikely(contended)) { 2348 spin_unlock(&q->busylock); 2349 contended = false; 2350 } 2351 __qdisc_run(q); 2352 } else 2353 qdisc_run_end(q); 2354 2355 rc = NET_XMIT_SUCCESS; 2356 } else { 2357 skb_dst_force(skb); 2358 rc = q->enqueue(skb, q) & NET_XMIT_MASK; 2359 if (qdisc_run_begin(q)) { 2360 if (unlikely(contended)) { 2361 spin_unlock(&q->busylock); 2362 contended = false; 2363 } 2364 __qdisc_run(q); 2365 } 2366 } 2367 spin_unlock(root_lock); 2368 if (unlikely(contended)) 2369 spin_unlock(&q->busylock); 2370 return rc; 2371 } 2372 2373 static DEFINE_PER_CPU(int, xmit_recursion); 2374 #define RECURSION_LIMIT 10 2375 2376 /** 2377 * dev_queue_xmit - transmit a buffer 2378 * @skb: buffer to transmit 2379 * 2380 * Queue a buffer for transmission to a network device. The caller must 2381 * have set the device and priority and built the buffer before calling 2382 * this function. The function can be called from an interrupt. 2383 * 2384 * A negative errno code is returned on a failure. A success does not 2385 * guarantee the frame will be transmitted as it may be dropped due 2386 * to congestion or traffic shaping. 2387 * 2388 * ----------------------------------------------------------------------------------- 2389 * I notice this method can also return errors from the queue disciplines, 2390 * including NET_XMIT_DROP, which is a positive value. So, errors can also 2391 * be positive. 2392 * 2393 * Regardless of the return value, the skb is consumed, so it is currently 2394 * difficult to retry a send to this method. (You can bump the ref count 2395 * before sending to hold a reference for retry if you are careful.) 2396 * 2397 * When calling this method, interrupts MUST be enabled. This is because 2398 * the BH enable code must have IRQs enabled so that it will not deadlock. 2399 * --BLG 2400 */ 2401 int dev_queue_xmit(struct sk_buff *skb) 2402 { 2403 struct net_device *dev = skb->dev; 2404 struct netdev_queue *txq; 2405 struct Qdisc *q; 2406 int rc = -ENOMEM; 2407 2408 /* Disable soft irqs for various locks below. Also 2409 * stops preemption for RCU. 2410 */ 2411 rcu_read_lock_bh(); 2412 2413 txq = dev_pick_tx(dev, skb); 2414 q = rcu_dereference_bh(txq->qdisc); 2415 2416 #ifdef CONFIG_NET_CLS_ACT 2417 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS); 2418 #endif 2419 trace_net_dev_queue(skb); 2420 if (q->enqueue) { 2421 rc = __dev_xmit_skb(skb, q, dev, txq); 2422 goto out; 2423 } 2424 2425 /* The device has no queue. Common case for software devices: 2426 loopback, all the sorts of tunnels... 2427 2428 Really, it is unlikely that netif_tx_lock protection is necessary 2429 here. (f.e. loopback and IP tunnels are clean ignoring statistics 2430 counters.) 2431 However, it is possible, that they rely on protection 2432 made by us here. 2433 2434 Check this and shot the lock. It is not prone from deadlocks. 2435 Either shot noqueue qdisc, it is even simpler 8) 2436 */ 2437 if (dev->flags & IFF_UP) { 2438 int cpu = smp_processor_id(); /* ok because BHs are off */ 2439 2440 if (txq->xmit_lock_owner != cpu) { 2441 2442 if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT) 2443 goto recursion_alert; 2444 2445 HARD_TX_LOCK(dev, txq, cpu); 2446 2447 if (!netif_tx_queue_stopped(txq)) { 2448 __this_cpu_inc(xmit_recursion); 2449 rc = dev_hard_start_xmit(skb, dev, txq); 2450 __this_cpu_dec(xmit_recursion); 2451 if (dev_xmit_complete(rc)) { 2452 HARD_TX_UNLOCK(dev, txq); 2453 goto out; 2454 } 2455 } 2456 HARD_TX_UNLOCK(dev, txq); 2457 if (net_ratelimit()) 2458 printk(KERN_CRIT "Virtual device %s asks to " 2459 "queue packet!\n", dev->name); 2460 } else { 2461 /* Recursion is detected! It is possible, 2462 * unfortunately 2463 */ 2464 recursion_alert: 2465 if (net_ratelimit()) 2466 printk(KERN_CRIT "Dead loop on virtual device " 2467 "%s, fix it urgently!\n", dev->name); 2468 } 2469 } 2470 2471 rc = -ENETDOWN; 2472 rcu_read_unlock_bh(); 2473 2474 kfree_skb(skb); 2475 return rc; 2476 out: 2477 rcu_read_unlock_bh(); 2478 return rc; 2479 } 2480 EXPORT_SYMBOL(dev_queue_xmit); 2481 2482 2483 /*======================================================================= 2484 Receiver routines 2485 =======================================================================*/ 2486 2487 int netdev_max_backlog __read_mostly = 1000; 2488 int netdev_tstamp_prequeue __read_mostly = 1; 2489 int netdev_budget __read_mostly = 300; 2490 int weight_p __read_mostly = 64; /* old backlog weight */ 2491 2492 /* Called with irq disabled */ 2493 static inline void ____napi_schedule(struct softnet_data *sd, 2494 struct napi_struct *napi) 2495 { 2496 list_add_tail(&napi->poll_list, &sd->poll_list); 2497 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2498 } 2499 2500 /* 2501 * __skb_get_rxhash: calculate a flow hash based on src/dst addresses 2502 * and src/dst port numbers. Returns a non-zero hash number on success 2503 * and 0 on failure. 2504 */ 2505 __u32 __skb_get_rxhash(struct sk_buff *skb) 2506 { 2507 int nhoff, hash = 0, poff; 2508 const struct ipv6hdr *ip6; 2509 const struct iphdr *ip; 2510 u8 ip_proto; 2511 u32 addr1, addr2, ihl; 2512 union { 2513 u32 v32; 2514 u16 v16[2]; 2515 } ports; 2516 2517 nhoff = skb_network_offset(skb); 2518 2519 switch (skb->protocol) { 2520 case __constant_htons(ETH_P_IP): 2521 if (!pskb_may_pull(skb, sizeof(*ip) + nhoff)) 2522 goto done; 2523 2524 ip = (const struct iphdr *) (skb->data + nhoff); 2525 if (ip->frag_off & htons(IP_MF | IP_OFFSET)) 2526 ip_proto = 0; 2527 else 2528 ip_proto = ip->protocol; 2529 addr1 = (__force u32) ip->saddr; 2530 addr2 = (__force u32) ip->daddr; 2531 ihl = ip->ihl; 2532 break; 2533 case __constant_htons(ETH_P_IPV6): 2534 if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff)) 2535 goto done; 2536 2537 ip6 = (const struct ipv6hdr *) (skb->data + nhoff); 2538 ip_proto = ip6->nexthdr; 2539 addr1 = (__force u32) ip6->saddr.s6_addr32[3]; 2540 addr2 = (__force u32) ip6->daddr.s6_addr32[3]; 2541 ihl = (40 >> 2); 2542 break; 2543 default: 2544 goto done; 2545 } 2546 2547 ports.v32 = 0; 2548 poff = proto_ports_offset(ip_proto); 2549 if (poff >= 0) { 2550 nhoff += ihl * 4 + poff; 2551 if (pskb_may_pull(skb, nhoff + 4)) { 2552 ports.v32 = * (__force u32 *) (skb->data + nhoff); 2553 if (ports.v16[1] < ports.v16[0]) 2554 swap(ports.v16[0], ports.v16[1]); 2555 } 2556 } 2557 2558 /* get a consistent hash (same value on both flow directions) */ 2559 if (addr2 < addr1) 2560 swap(addr1, addr2); 2561 2562 hash = jhash_3words(addr1, addr2, ports.v32, hashrnd); 2563 if (!hash) 2564 hash = 1; 2565 2566 done: 2567 return hash; 2568 } 2569 EXPORT_SYMBOL(__skb_get_rxhash); 2570 2571 #ifdef CONFIG_RPS 2572 2573 /* One global table that all flow-based protocols share. */ 2574 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly; 2575 EXPORT_SYMBOL(rps_sock_flow_table); 2576 2577 static struct rps_dev_flow * 2578 set_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2579 struct rps_dev_flow *rflow, u16 next_cpu) 2580 { 2581 u16 tcpu; 2582 2583 tcpu = rflow->cpu = next_cpu; 2584 if (tcpu != RPS_NO_CPU) { 2585 #ifdef CONFIG_RFS_ACCEL 2586 struct netdev_rx_queue *rxqueue; 2587 struct rps_dev_flow_table *flow_table; 2588 struct rps_dev_flow *old_rflow; 2589 u32 flow_id; 2590 u16 rxq_index; 2591 int rc; 2592 2593 /* Should we steer this flow to a different hardware queue? */ 2594 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap || 2595 !(dev->features & NETIF_F_NTUPLE)) 2596 goto out; 2597 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu); 2598 if (rxq_index == skb_get_rx_queue(skb)) 2599 goto out; 2600 2601 rxqueue = dev->_rx + rxq_index; 2602 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2603 if (!flow_table) 2604 goto out; 2605 flow_id = skb->rxhash & flow_table->mask; 2606 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb, 2607 rxq_index, flow_id); 2608 if (rc < 0) 2609 goto out; 2610 old_rflow = rflow; 2611 rflow = &flow_table->flows[flow_id]; 2612 rflow->cpu = next_cpu; 2613 rflow->filter = rc; 2614 if (old_rflow->filter == rflow->filter) 2615 old_rflow->filter = RPS_NO_FILTER; 2616 out: 2617 #endif 2618 rflow->last_qtail = 2619 per_cpu(softnet_data, tcpu).input_queue_head; 2620 } 2621 2622 return rflow; 2623 } 2624 2625 /* 2626 * get_rps_cpu is called from netif_receive_skb and returns the target 2627 * CPU from the RPS map of the receiving queue for a given skb. 2628 * rcu_read_lock must be held on entry. 2629 */ 2630 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb, 2631 struct rps_dev_flow **rflowp) 2632 { 2633 struct netdev_rx_queue *rxqueue; 2634 struct rps_map *map; 2635 struct rps_dev_flow_table *flow_table; 2636 struct rps_sock_flow_table *sock_flow_table; 2637 int cpu = -1; 2638 u16 tcpu; 2639 2640 if (skb_rx_queue_recorded(skb)) { 2641 u16 index = skb_get_rx_queue(skb); 2642 if (unlikely(index >= dev->real_num_rx_queues)) { 2643 WARN_ONCE(dev->real_num_rx_queues > 1, 2644 "%s received packet on queue %u, but number " 2645 "of RX queues is %u\n", 2646 dev->name, index, dev->real_num_rx_queues); 2647 goto done; 2648 } 2649 rxqueue = dev->_rx + index; 2650 } else 2651 rxqueue = dev->_rx; 2652 2653 map = rcu_dereference(rxqueue->rps_map); 2654 if (map) { 2655 if (map->len == 1 && 2656 !rcu_dereference_raw(rxqueue->rps_flow_table)) { 2657 tcpu = map->cpus[0]; 2658 if (cpu_online(tcpu)) 2659 cpu = tcpu; 2660 goto done; 2661 } 2662 } else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) { 2663 goto done; 2664 } 2665 2666 skb_reset_network_header(skb); 2667 if (!skb_get_rxhash(skb)) 2668 goto done; 2669 2670 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2671 sock_flow_table = rcu_dereference(rps_sock_flow_table); 2672 if (flow_table && sock_flow_table) { 2673 u16 next_cpu; 2674 struct rps_dev_flow *rflow; 2675 2676 rflow = &flow_table->flows[skb->rxhash & flow_table->mask]; 2677 tcpu = rflow->cpu; 2678 2679 next_cpu = sock_flow_table->ents[skb->rxhash & 2680 sock_flow_table->mask]; 2681 2682 /* 2683 * If the desired CPU (where last recvmsg was done) is 2684 * different from current CPU (one in the rx-queue flow 2685 * table entry), switch if one of the following holds: 2686 * - Current CPU is unset (equal to RPS_NO_CPU). 2687 * - Current CPU is offline. 2688 * - The current CPU's queue tail has advanced beyond the 2689 * last packet that was enqueued using this table entry. 2690 * This guarantees that all previous packets for the flow 2691 * have been dequeued, thus preserving in order delivery. 2692 */ 2693 if (unlikely(tcpu != next_cpu) && 2694 (tcpu == RPS_NO_CPU || !cpu_online(tcpu) || 2695 ((int)(per_cpu(softnet_data, tcpu).input_queue_head - 2696 rflow->last_qtail)) >= 0)) 2697 rflow = set_rps_cpu(dev, skb, rflow, next_cpu); 2698 2699 if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) { 2700 *rflowp = rflow; 2701 cpu = tcpu; 2702 goto done; 2703 } 2704 } 2705 2706 if (map) { 2707 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32]; 2708 2709 if (cpu_online(tcpu)) { 2710 cpu = tcpu; 2711 goto done; 2712 } 2713 } 2714 2715 done: 2716 return cpu; 2717 } 2718 2719 #ifdef CONFIG_RFS_ACCEL 2720 2721 /** 2722 * rps_may_expire_flow - check whether an RFS hardware filter may be removed 2723 * @dev: Device on which the filter was set 2724 * @rxq_index: RX queue index 2725 * @flow_id: Flow ID passed to ndo_rx_flow_steer() 2726 * @filter_id: Filter ID returned by ndo_rx_flow_steer() 2727 * 2728 * Drivers that implement ndo_rx_flow_steer() should periodically call 2729 * this function for each installed filter and remove the filters for 2730 * which it returns %true. 2731 */ 2732 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, 2733 u32 flow_id, u16 filter_id) 2734 { 2735 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index; 2736 struct rps_dev_flow_table *flow_table; 2737 struct rps_dev_flow *rflow; 2738 bool expire = true; 2739 int cpu; 2740 2741 rcu_read_lock(); 2742 flow_table = rcu_dereference(rxqueue->rps_flow_table); 2743 if (flow_table && flow_id <= flow_table->mask) { 2744 rflow = &flow_table->flows[flow_id]; 2745 cpu = ACCESS_ONCE(rflow->cpu); 2746 if (rflow->filter == filter_id && cpu != RPS_NO_CPU && 2747 ((int)(per_cpu(softnet_data, cpu).input_queue_head - 2748 rflow->last_qtail) < 2749 (int)(10 * flow_table->mask))) 2750 expire = false; 2751 } 2752 rcu_read_unlock(); 2753 return expire; 2754 } 2755 EXPORT_SYMBOL(rps_may_expire_flow); 2756 2757 #endif /* CONFIG_RFS_ACCEL */ 2758 2759 /* Called from hardirq (IPI) context */ 2760 static void rps_trigger_softirq(void *data) 2761 { 2762 struct softnet_data *sd = data; 2763 2764 ____napi_schedule(sd, &sd->backlog); 2765 sd->received_rps++; 2766 } 2767 2768 #endif /* CONFIG_RPS */ 2769 2770 /* 2771 * Check if this softnet_data structure is another cpu one 2772 * If yes, queue it to our IPI list and return 1 2773 * If no, return 0 2774 */ 2775 static int rps_ipi_queued(struct softnet_data *sd) 2776 { 2777 #ifdef CONFIG_RPS 2778 struct softnet_data *mysd = &__get_cpu_var(softnet_data); 2779 2780 if (sd != mysd) { 2781 sd->rps_ipi_next = mysd->rps_ipi_list; 2782 mysd->rps_ipi_list = sd; 2783 2784 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 2785 return 1; 2786 } 2787 #endif /* CONFIG_RPS */ 2788 return 0; 2789 } 2790 2791 /* 2792 * enqueue_to_backlog is called to queue an skb to a per CPU backlog 2793 * queue (may be a remote CPU queue). 2794 */ 2795 static int enqueue_to_backlog(struct sk_buff *skb, int cpu, 2796 unsigned int *qtail) 2797 { 2798 struct softnet_data *sd; 2799 unsigned long flags; 2800 2801 sd = &per_cpu(softnet_data, cpu); 2802 2803 local_irq_save(flags); 2804 2805 rps_lock(sd); 2806 if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) { 2807 if (skb_queue_len(&sd->input_pkt_queue)) { 2808 enqueue: 2809 __skb_queue_tail(&sd->input_pkt_queue, skb); 2810 input_queue_tail_incr_save(sd, qtail); 2811 rps_unlock(sd); 2812 local_irq_restore(flags); 2813 return NET_RX_SUCCESS; 2814 } 2815 2816 /* Schedule NAPI for backlog device 2817 * We can use non atomic operation since we own the queue lock 2818 */ 2819 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) { 2820 if (!rps_ipi_queued(sd)) 2821 ____napi_schedule(sd, &sd->backlog); 2822 } 2823 goto enqueue; 2824 } 2825 2826 sd->dropped++; 2827 rps_unlock(sd); 2828 2829 local_irq_restore(flags); 2830 2831 atomic_long_inc(&skb->dev->rx_dropped); 2832 kfree_skb(skb); 2833 return NET_RX_DROP; 2834 } 2835 2836 /** 2837 * netif_rx - post buffer to the network code 2838 * @skb: buffer to post 2839 * 2840 * This function receives a packet from a device driver and queues it for 2841 * the upper (protocol) levels to process. It always succeeds. The buffer 2842 * may be dropped during processing for congestion control or by the 2843 * protocol layers. 2844 * 2845 * return values: 2846 * NET_RX_SUCCESS (no congestion) 2847 * NET_RX_DROP (packet was dropped) 2848 * 2849 */ 2850 2851 int netif_rx(struct sk_buff *skb) 2852 { 2853 int ret; 2854 2855 /* if netpoll wants it, pretend we never saw it */ 2856 if (netpoll_rx(skb)) 2857 return NET_RX_DROP; 2858 2859 if (netdev_tstamp_prequeue) 2860 net_timestamp_check(skb); 2861 2862 trace_netif_rx(skb); 2863 #ifdef CONFIG_RPS 2864 { 2865 struct rps_dev_flow voidflow, *rflow = &voidflow; 2866 int cpu; 2867 2868 preempt_disable(); 2869 rcu_read_lock(); 2870 2871 cpu = get_rps_cpu(skb->dev, skb, &rflow); 2872 if (cpu < 0) 2873 cpu = smp_processor_id(); 2874 2875 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 2876 2877 rcu_read_unlock(); 2878 preempt_enable(); 2879 } 2880 #else 2881 { 2882 unsigned int qtail; 2883 ret = enqueue_to_backlog(skb, get_cpu(), &qtail); 2884 put_cpu(); 2885 } 2886 #endif 2887 return ret; 2888 } 2889 EXPORT_SYMBOL(netif_rx); 2890 2891 int netif_rx_ni(struct sk_buff *skb) 2892 { 2893 int err; 2894 2895 preempt_disable(); 2896 err = netif_rx(skb); 2897 if (local_softirq_pending()) 2898 do_softirq(); 2899 preempt_enable(); 2900 2901 return err; 2902 } 2903 EXPORT_SYMBOL(netif_rx_ni); 2904 2905 static void net_tx_action(struct softirq_action *h) 2906 { 2907 struct softnet_data *sd = &__get_cpu_var(softnet_data); 2908 2909 if (sd->completion_queue) { 2910 struct sk_buff *clist; 2911 2912 local_irq_disable(); 2913 clist = sd->completion_queue; 2914 sd->completion_queue = NULL; 2915 local_irq_enable(); 2916 2917 while (clist) { 2918 struct sk_buff *skb = clist; 2919 clist = clist->next; 2920 2921 WARN_ON(atomic_read(&skb->users)); 2922 trace_kfree_skb(skb, net_tx_action); 2923 __kfree_skb(skb); 2924 } 2925 } 2926 2927 if (sd->output_queue) { 2928 struct Qdisc *head; 2929 2930 local_irq_disable(); 2931 head = sd->output_queue; 2932 sd->output_queue = NULL; 2933 sd->output_queue_tailp = &sd->output_queue; 2934 local_irq_enable(); 2935 2936 while (head) { 2937 struct Qdisc *q = head; 2938 spinlock_t *root_lock; 2939 2940 head = head->next_sched; 2941 2942 root_lock = qdisc_lock(q); 2943 if (spin_trylock(root_lock)) { 2944 smp_mb__before_clear_bit(); 2945 clear_bit(__QDISC_STATE_SCHED, 2946 &q->state); 2947 qdisc_run(q); 2948 spin_unlock(root_lock); 2949 } else { 2950 if (!test_bit(__QDISC_STATE_DEACTIVATED, 2951 &q->state)) { 2952 __netif_reschedule(q); 2953 } else { 2954 smp_mb__before_clear_bit(); 2955 clear_bit(__QDISC_STATE_SCHED, 2956 &q->state); 2957 } 2958 } 2959 } 2960 } 2961 } 2962 2963 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \ 2964 (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)) 2965 /* This hook is defined here for ATM LANE */ 2966 int (*br_fdb_test_addr_hook)(struct net_device *dev, 2967 unsigned char *addr) __read_mostly; 2968 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook); 2969 #endif 2970 2971 #ifdef CONFIG_NET_CLS_ACT 2972 /* TODO: Maybe we should just force sch_ingress to be compiled in 2973 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions 2974 * a compare and 2 stores extra right now if we dont have it on 2975 * but have CONFIG_NET_CLS_ACT 2976 * NOTE: This doesn't stop any functionality; if you dont have 2977 * the ingress scheduler, you just can't add policies on ingress. 2978 * 2979 */ 2980 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq) 2981 { 2982 struct net_device *dev = skb->dev; 2983 u32 ttl = G_TC_RTTL(skb->tc_verd); 2984 int result = TC_ACT_OK; 2985 struct Qdisc *q; 2986 2987 if (unlikely(MAX_RED_LOOP < ttl++)) { 2988 if (net_ratelimit()) 2989 pr_warning( "Redir loop detected Dropping packet (%d->%d)\n", 2990 skb->skb_iif, dev->ifindex); 2991 return TC_ACT_SHOT; 2992 } 2993 2994 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl); 2995 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS); 2996 2997 q = rxq->qdisc; 2998 if (q != &noop_qdisc) { 2999 spin_lock(qdisc_lock(q)); 3000 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) 3001 result = qdisc_enqueue_root(skb, q); 3002 spin_unlock(qdisc_lock(q)); 3003 } 3004 3005 return result; 3006 } 3007 3008 static inline struct sk_buff *handle_ing(struct sk_buff *skb, 3009 struct packet_type **pt_prev, 3010 int *ret, struct net_device *orig_dev) 3011 { 3012 struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue); 3013 3014 if (!rxq || rxq->qdisc == &noop_qdisc) 3015 goto out; 3016 3017 if (*pt_prev) { 3018 *ret = deliver_skb(skb, *pt_prev, orig_dev); 3019 *pt_prev = NULL; 3020 } 3021 3022 switch (ing_filter(skb, rxq)) { 3023 case TC_ACT_SHOT: 3024 case TC_ACT_STOLEN: 3025 kfree_skb(skb); 3026 return NULL; 3027 } 3028 3029 out: 3030 skb->tc_verd = 0; 3031 return skb; 3032 } 3033 #endif 3034 3035 /** 3036 * netdev_rx_handler_register - register receive handler 3037 * @dev: device to register a handler for 3038 * @rx_handler: receive handler to register 3039 * @rx_handler_data: data pointer that is used by rx handler 3040 * 3041 * Register a receive hander for a device. This handler will then be 3042 * called from __netif_receive_skb. A negative errno code is returned 3043 * on a failure. 3044 * 3045 * The caller must hold the rtnl_mutex. 3046 * 3047 * For a general description of rx_handler, see enum rx_handler_result. 3048 */ 3049 int netdev_rx_handler_register(struct net_device *dev, 3050 rx_handler_func_t *rx_handler, 3051 void *rx_handler_data) 3052 { 3053 ASSERT_RTNL(); 3054 3055 if (dev->rx_handler) 3056 return -EBUSY; 3057 3058 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data); 3059 rcu_assign_pointer(dev->rx_handler, rx_handler); 3060 3061 return 0; 3062 } 3063 EXPORT_SYMBOL_GPL(netdev_rx_handler_register); 3064 3065 /** 3066 * netdev_rx_handler_unregister - unregister receive handler 3067 * @dev: device to unregister a handler from 3068 * 3069 * Unregister a receive hander from a device. 3070 * 3071 * The caller must hold the rtnl_mutex. 3072 */ 3073 void netdev_rx_handler_unregister(struct net_device *dev) 3074 { 3075 3076 ASSERT_RTNL(); 3077 rcu_assign_pointer(dev->rx_handler, NULL); 3078 rcu_assign_pointer(dev->rx_handler_data, NULL); 3079 } 3080 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister); 3081 3082 static int __netif_receive_skb(struct sk_buff *skb) 3083 { 3084 struct packet_type *ptype, *pt_prev; 3085 rx_handler_func_t *rx_handler; 3086 struct net_device *orig_dev; 3087 struct net_device *null_or_dev; 3088 bool deliver_exact = false; 3089 int ret = NET_RX_DROP; 3090 __be16 type; 3091 3092 if (!netdev_tstamp_prequeue) 3093 net_timestamp_check(skb); 3094 3095 trace_netif_receive_skb(skb); 3096 3097 /* if we've gotten here through NAPI, check netpoll */ 3098 if (netpoll_receive_skb(skb)) 3099 return NET_RX_DROP; 3100 3101 if (!skb->skb_iif) 3102 skb->skb_iif = skb->dev->ifindex; 3103 orig_dev = skb->dev; 3104 3105 skb_reset_network_header(skb); 3106 skb_reset_transport_header(skb); 3107 skb->mac_len = skb->network_header - skb->mac_header; 3108 3109 pt_prev = NULL; 3110 3111 rcu_read_lock(); 3112 3113 another_round: 3114 3115 __this_cpu_inc(softnet_data.processed); 3116 3117 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) { 3118 skb = vlan_untag(skb); 3119 if (unlikely(!skb)) 3120 goto out; 3121 } 3122 3123 #ifdef CONFIG_NET_CLS_ACT 3124 if (skb->tc_verd & TC_NCLS) { 3125 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd); 3126 goto ncls; 3127 } 3128 #endif 3129 3130 list_for_each_entry_rcu(ptype, &ptype_all, list) { 3131 if (!ptype->dev || ptype->dev == skb->dev) { 3132 if (pt_prev) 3133 ret = deliver_skb(skb, pt_prev, orig_dev); 3134 pt_prev = ptype; 3135 } 3136 } 3137 3138 #ifdef CONFIG_NET_CLS_ACT 3139 skb = handle_ing(skb, &pt_prev, &ret, orig_dev); 3140 if (!skb) 3141 goto out; 3142 ncls: 3143 #endif 3144 3145 rx_handler = rcu_dereference(skb->dev->rx_handler); 3146 if (rx_handler) { 3147 if (pt_prev) { 3148 ret = deliver_skb(skb, pt_prev, orig_dev); 3149 pt_prev = NULL; 3150 } 3151 switch (rx_handler(&skb)) { 3152 case RX_HANDLER_CONSUMED: 3153 goto out; 3154 case RX_HANDLER_ANOTHER: 3155 goto another_round; 3156 case RX_HANDLER_EXACT: 3157 deliver_exact = true; 3158 case RX_HANDLER_PASS: 3159 break; 3160 default: 3161 BUG(); 3162 } 3163 } 3164 3165 if (vlan_tx_tag_present(skb)) { 3166 if (pt_prev) { 3167 ret = deliver_skb(skb, pt_prev, orig_dev); 3168 pt_prev = NULL; 3169 } 3170 if (vlan_do_receive(&skb)) { 3171 ret = __netif_receive_skb(skb); 3172 goto out; 3173 } else if (unlikely(!skb)) 3174 goto out; 3175 } 3176 3177 /* deliver only exact match when indicated */ 3178 null_or_dev = deliver_exact ? skb->dev : NULL; 3179 3180 type = skb->protocol; 3181 list_for_each_entry_rcu(ptype, 3182 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) { 3183 if (ptype->type == type && 3184 (ptype->dev == null_or_dev || ptype->dev == skb->dev || 3185 ptype->dev == orig_dev)) { 3186 if (pt_prev) 3187 ret = deliver_skb(skb, pt_prev, orig_dev); 3188 pt_prev = ptype; 3189 } 3190 } 3191 3192 if (pt_prev) { 3193 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev); 3194 } else { 3195 atomic_long_inc(&skb->dev->rx_dropped); 3196 kfree_skb(skb); 3197 /* Jamal, now you will not able to escape explaining 3198 * me how you were going to use this. :-) 3199 */ 3200 ret = NET_RX_DROP; 3201 } 3202 3203 out: 3204 rcu_read_unlock(); 3205 return ret; 3206 } 3207 3208 /** 3209 * netif_receive_skb - process receive buffer from network 3210 * @skb: buffer to process 3211 * 3212 * netif_receive_skb() is the main receive data processing function. 3213 * It always succeeds. The buffer may be dropped during processing 3214 * for congestion control or by the protocol layers. 3215 * 3216 * This function may only be called from softirq context and interrupts 3217 * should be enabled. 3218 * 3219 * Return values (usually ignored): 3220 * NET_RX_SUCCESS: no congestion 3221 * NET_RX_DROP: packet was dropped 3222 */ 3223 int netif_receive_skb(struct sk_buff *skb) 3224 { 3225 if (netdev_tstamp_prequeue) 3226 net_timestamp_check(skb); 3227 3228 if (skb_defer_rx_timestamp(skb)) 3229 return NET_RX_SUCCESS; 3230 3231 #ifdef CONFIG_RPS 3232 { 3233 struct rps_dev_flow voidflow, *rflow = &voidflow; 3234 int cpu, ret; 3235 3236 rcu_read_lock(); 3237 3238 cpu = get_rps_cpu(skb->dev, skb, &rflow); 3239 3240 if (cpu >= 0) { 3241 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail); 3242 rcu_read_unlock(); 3243 } else { 3244 rcu_read_unlock(); 3245 ret = __netif_receive_skb(skb); 3246 } 3247 3248 return ret; 3249 } 3250 #else 3251 return __netif_receive_skb(skb); 3252 #endif 3253 } 3254 EXPORT_SYMBOL(netif_receive_skb); 3255 3256 /* Network device is going away, flush any packets still pending 3257 * Called with irqs disabled. 3258 */ 3259 static void flush_backlog(void *arg) 3260 { 3261 struct net_device *dev = arg; 3262 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3263 struct sk_buff *skb, *tmp; 3264 3265 rps_lock(sd); 3266 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) { 3267 if (skb->dev == dev) { 3268 __skb_unlink(skb, &sd->input_pkt_queue); 3269 kfree_skb(skb); 3270 input_queue_head_incr(sd); 3271 } 3272 } 3273 rps_unlock(sd); 3274 3275 skb_queue_walk_safe(&sd->process_queue, skb, tmp) { 3276 if (skb->dev == dev) { 3277 __skb_unlink(skb, &sd->process_queue); 3278 kfree_skb(skb); 3279 input_queue_head_incr(sd); 3280 } 3281 } 3282 } 3283 3284 static int napi_gro_complete(struct sk_buff *skb) 3285 { 3286 struct packet_type *ptype; 3287 __be16 type = skb->protocol; 3288 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3289 int err = -ENOENT; 3290 3291 if (NAPI_GRO_CB(skb)->count == 1) { 3292 skb_shinfo(skb)->gso_size = 0; 3293 goto out; 3294 } 3295 3296 rcu_read_lock(); 3297 list_for_each_entry_rcu(ptype, head, list) { 3298 if (ptype->type != type || ptype->dev || !ptype->gro_complete) 3299 continue; 3300 3301 err = ptype->gro_complete(skb); 3302 break; 3303 } 3304 rcu_read_unlock(); 3305 3306 if (err) { 3307 WARN_ON(&ptype->list == head); 3308 kfree_skb(skb); 3309 return NET_RX_SUCCESS; 3310 } 3311 3312 out: 3313 return netif_receive_skb(skb); 3314 } 3315 3316 inline void napi_gro_flush(struct napi_struct *napi) 3317 { 3318 struct sk_buff *skb, *next; 3319 3320 for (skb = napi->gro_list; skb; skb = next) { 3321 next = skb->next; 3322 skb->next = NULL; 3323 napi_gro_complete(skb); 3324 } 3325 3326 napi->gro_count = 0; 3327 napi->gro_list = NULL; 3328 } 3329 EXPORT_SYMBOL(napi_gro_flush); 3330 3331 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3332 { 3333 struct sk_buff **pp = NULL; 3334 struct packet_type *ptype; 3335 __be16 type = skb->protocol; 3336 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK]; 3337 int same_flow; 3338 int mac_len; 3339 enum gro_result ret; 3340 3341 if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb)) 3342 goto normal; 3343 3344 if (skb_is_gso(skb) || skb_has_frag_list(skb)) 3345 goto normal; 3346 3347 rcu_read_lock(); 3348 list_for_each_entry_rcu(ptype, head, list) { 3349 if (ptype->type != type || ptype->dev || !ptype->gro_receive) 3350 continue; 3351 3352 skb_set_network_header(skb, skb_gro_offset(skb)); 3353 mac_len = skb->network_header - skb->mac_header; 3354 skb->mac_len = mac_len; 3355 NAPI_GRO_CB(skb)->same_flow = 0; 3356 NAPI_GRO_CB(skb)->flush = 0; 3357 NAPI_GRO_CB(skb)->free = 0; 3358 3359 pp = ptype->gro_receive(&napi->gro_list, skb); 3360 break; 3361 } 3362 rcu_read_unlock(); 3363 3364 if (&ptype->list == head) 3365 goto normal; 3366 3367 same_flow = NAPI_GRO_CB(skb)->same_flow; 3368 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED; 3369 3370 if (pp) { 3371 struct sk_buff *nskb = *pp; 3372 3373 *pp = nskb->next; 3374 nskb->next = NULL; 3375 napi_gro_complete(nskb); 3376 napi->gro_count--; 3377 } 3378 3379 if (same_flow) 3380 goto ok; 3381 3382 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS) 3383 goto normal; 3384 3385 napi->gro_count++; 3386 NAPI_GRO_CB(skb)->count = 1; 3387 skb_shinfo(skb)->gso_size = skb_gro_len(skb); 3388 skb->next = napi->gro_list; 3389 napi->gro_list = skb; 3390 ret = GRO_HELD; 3391 3392 pull: 3393 if (skb_headlen(skb) < skb_gro_offset(skb)) { 3394 int grow = skb_gro_offset(skb) - skb_headlen(skb); 3395 3396 BUG_ON(skb->end - skb->tail < grow); 3397 3398 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow); 3399 3400 skb->tail += grow; 3401 skb->data_len -= grow; 3402 3403 skb_shinfo(skb)->frags[0].page_offset += grow; 3404 skb_shinfo(skb)->frags[0].size -= grow; 3405 3406 if (unlikely(!skb_shinfo(skb)->frags[0].size)) { 3407 put_page(skb_shinfo(skb)->frags[0].page); 3408 memmove(skb_shinfo(skb)->frags, 3409 skb_shinfo(skb)->frags + 1, 3410 --skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t)); 3411 } 3412 } 3413 3414 ok: 3415 return ret; 3416 3417 normal: 3418 ret = GRO_NORMAL; 3419 goto pull; 3420 } 3421 EXPORT_SYMBOL(dev_gro_receive); 3422 3423 static inline gro_result_t 3424 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3425 { 3426 struct sk_buff *p; 3427 3428 for (p = napi->gro_list; p; p = p->next) { 3429 unsigned long diffs; 3430 3431 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev; 3432 diffs |= p->vlan_tci ^ skb->vlan_tci; 3433 diffs |= compare_ether_header(skb_mac_header(p), 3434 skb_gro_mac_header(skb)); 3435 NAPI_GRO_CB(p)->same_flow = !diffs; 3436 NAPI_GRO_CB(p)->flush = 0; 3437 } 3438 3439 return dev_gro_receive(napi, skb); 3440 } 3441 3442 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb) 3443 { 3444 switch (ret) { 3445 case GRO_NORMAL: 3446 if (netif_receive_skb(skb)) 3447 ret = GRO_DROP; 3448 break; 3449 3450 case GRO_DROP: 3451 case GRO_MERGED_FREE: 3452 kfree_skb(skb); 3453 break; 3454 3455 case GRO_HELD: 3456 case GRO_MERGED: 3457 break; 3458 } 3459 3460 return ret; 3461 } 3462 EXPORT_SYMBOL(napi_skb_finish); 3463 3464 void skb_gro_reset_offset(struct sk_buff *skb) 3465 { 3466 NAPI_GRO_CB(skb)->data_offset = 0; 3467 NAPI_GRO_CB(skb)->frag0 = NULL; 3468 NAPI_GRO_CB(skb)->frag0_len = 0; 3469 3470 if (skb->mac_header == skb->tail && 3471 !PageHighMem(skb_shinfo(skb)->frags[0].page)) { 3472 NAPI_GRO_CB(skb)->frag0 = 3473 page_address(skb_shinfo(skb)->frags[0].page) + 3474 skb_shinfo(skb)->frags[0].page_offset; 3475 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size; 3476 } 3477 } 3478 EXPORT_SYMBOL(skb_gro_reset_offset); 3479 3480 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb) 3481 { 3482 skb_gro_reset_offset(skb); 3483 3484 return napi_skb_finish(__napi_gro_receive(napi, skb), skb); 3485 } 3486 EXPORT_SYMBOL(napi_gro_receive); 3487 3488 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb) 3489 { 3490 __skb_pull(skb, skb_headlen(skb)); 3491 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb)); 3492 skb->vlan_tci = 0; 3493 skb->dev = napi->dev; 3494 skb->skb_iif = 0; 3495 3496 napi->skb = skb; 3497 } 3498 3499 struct sk_buff *napi_get_frags(struct napi_struct *napi) 3500 { 3501 struct sk_buff *skb = napi->skb; 3502 3503 if (!skb) { 3504 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD); 3505 if (skb) 3506 napi->skb = skb; 3507 } 3508 return skb; 3509 } 3510 EXPORT_SYMBOL(napi_get_frags); 3511 3512 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, 3513 gro_result_t ret) 3514 { 3515 switch (ret) { 3516 case GRO_NORMAL: 3517 case GRO_HELD: 3518 skb->protocol = eth_type_trans(skb, skb->dev); 3519 3520 if (ret == GRO_HELD) 3521 skb_gro_pull(skb, -ETH_HLEN); 3522 else if (netif_receive_skb(skb)) 3523 ret = GRO_DROP; 3524 break; 3525 3526 case GRO_DROP: 3527 case GRO_MERGED_FREE: 3528 napi_reuse_skb(napi, skb); 3529 break; 3530 3531 case GRO_MERGED: 3532 break; 3533 } 3534 3535 return ret; 3536 } 3537 EXPORT_SYMBOL(napi_frags_finish); 3538 3539 struct sk_buff *napi_frags_skb(struct napi_struct *napi) 3540 { 3541 struct sk_buff *skb = napi->skb; 3542 struct ethhdr *eth; 3543 unsigned int hlen; 3544 unsigned int off; 3545 3546 napi->skb = NULL; 3547 3548 skb_reset_mac_header(skb); 3549 skb_gro_reset_offset(skb); 3550 3551 off = skb_gro_offset(skb); 3552 hlen = off + sizeof(*eth); 3553 eth = skb_gro_header_fast(skb, off); 3554 if (skb_gro_header_hard(skb, hlen)) { 3555 eth = skb_gro_header_slow(skb, hlen, off); 3556 if (unlikely(!eth)) { 3557 napi_reuse_skb(napi, skb); 3558 skb = NULL; 3559 goto out; 3560 } 3561 } 3562 3563 skb_gro_pull(skb, sizeof(*eth)); 3564 3565 /* 3566 * This works because the only protocols we care about don't require 3567 * special handling. We'll fix it up properly at the end. 3568 */ 3569 skb->protocol = eth->h_proto; 3570 3571 out: 3572 return skb; 3573 } 3574 EXPORT_SYMBOL(napi_frags_skb); 3575 3576 gro_result_t napi_gro_frags(struct napi_struct *napi) 3577 { 3578 struct sk_buff *skb = napi_frags_skb(napi); 3579 3580 if (!skb) 3581 return GRO_DROP; 3582 3583 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb)); 3584 } 3585 EXPORT_SYMBOL(napi_gro_frags); 3586 3587 /* 3588 * net_rps_action sends any pending IPI's for rps. 3589 * Note: called with local irq disabled, but exits with local irq enabled. 3590 */ 3591 static void net_rps_action_and_irq_enable(struct softnet_data *sd) 3592 { 3593 #ifdef CONFIG_RPS 3594 struct softnet_data *remsd = sd->rps_ipi_list; 3595 3596 if (remsd) { 3597 sd->rps_ipi_list = NULL; 3598 3599 local_irq_enable(); 3600 3601 /* Send pending IPI's to kick RPS processing on remote cpus. */ 3602 while (remsd) { 3603 struct softnet_data *next = remsd->rps_ipi_next; 3604 3605 if (cpu_online(remsd->cpu)) 3606 __smp_call_function_single(remsd->cpu, 3607 &remsd->csd, 0); 3608 remsd = next; 3609 } 3610 } else 3611 #endif 3612 local_irq_enable(); 3613 } 3614 3615 static int process_backlog(struct napi_struct *napi, int quota) 3616 { 3617 int work = 0; 3618 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog); 3619 3620 #ifdef CONFIG_RPS 3621 /* Check if we have pending ipi, its better to send them now, 3622 * not waiting net_rx_action() end. 3623 */ 3624 if (sd->rps_ipi_list) { 3625 local_irq_disable(); 3626 net_rps_action_and_irq_enable(sd); 3627 } 3628 #endif 3629 napi->weight = weight_p; 3630 local_irq_disable(); 3631 while (work < quota) { 3632 struct sk_buff *skb; 3633 unsigned int qlen; 3634 3635 while ((skb = __skb_dequeue(&sd->process_queue))) { 3636 local_irq_enable(); 3637 __netif_receive_skb(skb); 3638 local_irq_disable(); 3639 input_queue_head_incr(sd); 3640 if (++work >= quota) { 3641 local_irq_enable(); 3642 return work; 3643 } 3644 } 3645 3646 rps_lock(sd); 3647 qlen = skb_queue_len(&sd->input_pkt_queue); 3648 if (qlen) 3649 skb_queue_splice_tail_init(&sd->input_pkt_queue, 3650 &sd->process_queue); 3651 3652 if (qlen < quota - work) { 3653 /* 3654 * Inline a custom version of __napi_complete(). 3655 * only current cpu owns and manipulates this napi, 3656 * and NAPI_STATE_SCHED is the only possible flag set on backlog. 3657 * we can use a plain write instead of clear_bit(), 3658 * and we dont need an smp_mb() memory barrier. 3659 */ 3660 list_del(&napi->poll_list); 3661 napi->state = 0; 3662 3663 quota = work + qlen; 3664 } 3665 rps_unlock(sd); 3666 } 3667 local_irq_enable(); 3668 3669 return work; 3670 } 3671 3672 /** 3673 * __napi_schedule - schedule for receive 3674 * @n: entry to schedule 3675 * 3676 * The entry's receive function will be scheduled to run 3677 */ 3678 void __napi_schedule(struct napi_struct *n) 3679 { 3680 unsigned long flags; 3681 3682 local_irq_save(flags); 3683 ____napi_schedule(&__get_cpu_var(softnet_data), n); 3684 local_irq_restore(flags); 3685 } 3686 EXPORT_SYMBOL(__napi_schedule); 3687 3688 void __napi_complete(struct napi_struct *n) 3689 { 3690 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state)); 3691 BUG_ON(n->gro_list); 3692 3693 list_del(&n->poll_list); 3694 smp_mb__before_clear_bit(); 3695 clear_bit(NAPI_STATE_SCHED, &n->state); 3696 } 3697 EXPORT_SYMBOL(__napi_complete); 3698 3699 void napi_complete(struct napi_struct *n) 3700 { 3701 unsigned long flags; 3702 3703 /* 3704 * don't let napi dequeue from the cpu poll list 3705 * just in case its running on a different cpu 3706 */ 3707 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state))) 3708 return; 3709 3710 napi_gro_flush(n); 3711 local_irq_save(flags); 3712 __napi_complete(n); 3713 local_irq_restore(flags); 3714 } 3715 EXPORT_SYMBOL(napi_complete); 3716 3717 void netif_napi_add(struct net_device *dev, struct napi_struct *napi, 3718 int (*poll)(struct napi_struct *, int), int weight) 3719 { 3720 INIT_LIST_HEAD(&napi->poll_list); 3721 napi->gro_count = 0; 3722 napi->gro_list = NULL; 3723 napi->skb = NULL; 3724 napi->poll = poll; 3725 napi->weight = weight; 3726 list_add(&napi->dev_list, &dev->napi_list); 3727 napi->dev = dev; 3728 #ifdef CONFIG_NETPOLL 3729 spin_lock_init(&napi->poll_lock); 3730 napi->poll_owner = -1; 3731 #endif 3732 set_bit(NAPI_STATE_SCHED, &napi->state); 3733 } 3734 EXPORT_SYMBOL(netif_napi_add); 3735 3736 void netif_napi_del(struct napi_struct *napi) 3737 { 3738 struct sk_buff *skb, *next; 3739 3740 list_del_init(&napi->dev_list); 3741 napi_free_frags(napi); 3742 3743 for (skb = napi->gro_list; skb; skb = next) { 3744 next = skb->next; 3745 skb->next = NULL; 3746 kfree_skb(skb); 3747 } 3748 3749 napi->gro_list = NULL; 3750 napi->gro_count = 0; 3751 } 3752 EXPORT_SYMBOL(netif_napi_del); 3753 3754 static void net_rx_action(struct softirq_action *h) 3755 { 3756 struct softnet_data *sd = &__get_cpu_var(softnet_data); 3757 unsigned long time_limit = jiffies + 2; 3758 int budget = netdev_budget; 3759 void *have; 3760 3761 local_irq_disable(); 3762 3763 while (!list_empty(&sd->poll_list)) { 3764 struct napi_struct *n; 3765 int work, weight; 3766 3767 /* If softirq window is exhuasted then punt. 3768 * Allow this to run for 2 jiffies since which will allow 3769 * an average latency of 1.5/HZ. 3770 */ 3771 if (unlikely(budget <= 0 || time_after(jiffies, time_limit))) 3772 goto softnet_break; 3773 3774 local_irq_enable(); 3775 3776 /* Even though interrupts have been re-enabled, this 3777 * access is safe because interrupts can only add new 3778 * entries to the tail of this list, and only ->poll() 3779 * calls can remove this head entry from the list. 3780 */ 3781 n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list); 3782 3783 have = netpoll_poll_lock(n); 3784 3785 weight = n->weight; 3786 3787 /* This NAPI_STATE_SCHED test is for avoiding a race 3788 * with netpoll's poll_napi(). Only the entity which 3789 * obtains the lock and sees NAPI_STATE_SCHED set will 3790 * actually make the ->poll() call. Therefore we avoid 3791 * accidentally calling ->poll() when NAPI is not scheduled. 3792 */ 3793 work = 0; 3794 if (test_bit(NAPI_STATE_SCHED, &n->state)) { 3795 work = n->poll(n, weight); 3796 trace_napi_poll(n); 3797 } 3798 3799 WARN_ON_ONCE(work > weight); 3800 3801 budget -= work; 3802 3803 local_irq_disable(); 3804 3805 /* Drivers must not modify the NAPI state if they 3806 * consume the entire weight. In such cases this code 3807 * still "owns" the NAPI instance and therefore can 3808 * move the instance around on the list at-will. 3809 */ 3810 if (unlikely(work == weight)) { 3811 if (unlikely(napi_disable_pending(n))) { 3812 local_irq_enable(); 3813 napi_complete(n); 3814 local_irq_disable(); 3815 } else 3816 list_move_tail(&n->poll_list, &sd->poll_list); 3817 } 3818 3819 netpoll_poll_unlock(have); 3820 } 3821 out: 3822 net_rps_action_and_irq_enable(sd); 3823 3824 #ifdef CONFIG_NET_DMA 3825 /* 3826 * There may not be any more sk_buffs coming right now, so push 3827 * any pending DMA copies to hardware 3828 */ 3829 dma_issue_pending_all(); 3830 #endif 3831 3832 return; 3833 3834 softnet_break: 3835 sd->time_squeeze++; 3836 __raise_softirq_irqoff(NET_RX_SOFTIRQ); 3837 goto out; 3838 } 3839 3840 static gifconf_func_t *gifconf_list[NPROTO]; 3841 3842 /** 3843 * register_gifconf - register a SIOCGIF handler 3844 * @family: Address family 3845 * @gifconf: Function handler 3846 * 3847 * Register protocol dependent address dumping routines. The handler 3848 * that is passed must not be freed or reused until it has been replaced 3849 * by another handler. 3850 */ 3851 int register_gifconf(unsigned int family, gifconf_func_t *gifconf) 3852 { 3853 if (family >= NPROTO) 3854 return -EINVAL; 3855 gifconf_list[family] = gifconf; 3856 return 0; 3857 } 3858 EXPORT_SYMBOL(register_gifconf); 3859 3860 3861 /* 3862 * Map an interface index to its name (SIOCGIFNAME) 3863 */ 3864 3865 /* 3866 * We need this ioctl for efficient implementation of the 3867 * if_indextoname() function required by the IPv6 API. Without 3868 * it, we would have to search all the interfaces to find a 3869 * match. --pb 3870 */ 3871 3872 static int dev_ifname(struct net *net, struct ifreq __user *arg) 3873 { 3874 struct net_device *dev; 3875 struct ifreq ifr; 3876 3877 /* 3878 * Fetch the caller's info block. 3879 */ 3880 3881 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 3882 return -EFAULT; 3883 3884 rcu_read_lock(); 3885 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex); 3886 if (!dev) { 3887 rcu_read_unlock(); 3888 return -ENODEV; 3889 } 3890 3891 strcpy(ifr.ifr_name, dev->name); 3892 rcu_read_unlock(); 3893 3894 if (copy_to_user(arg, &ifr, sizeof(struct ifreq))) 3895 return -EFAULT; 3896 return 0; 3897 } 3898 3899 /* 3900 * Perform a SIOCGIFCONF call. This structure will change 3901 * size eventually, and there is nothing I can do about it. 3902 * Thus we will need a 'compatibility mode'. 3903 */ 3904 3905 static int dev_ifconf(struct net *net, char __user *arg) 3906 { 3907 struct ifconf ifc; 3908 struct net_device *dev; 3909 char __user *pos; 3910 int len; 3911 int total; 3912 int i; 3913 3914 /* 3915 * Fetch the caller's info block. 3916 */ 3917 3918 if (copy_from_user(&ifc, arg, sizeof(struct ifconf))) 3919 return -EFAULT; 3920 3921 pos = ifc.ifc_buf; 3922 len = ifc.ifc_len; 3923 3924 /* 3925 * Loop over the interfaces, and write an info block for each. 3926 */ 3927 3928 total = 0; 3929 for_each_netdev(net, dev) { 3930 for (i = 0; i < NPROTO; i++) { 3931 if (gifconf_list[i]) { 3932 int done; 3933 if (!pos) 3934 done = gifconf_list[i](dev, NULL, 0); 3935 else 3936 done = gifconf_list[i](dev, pos + total, 3937 len - total); 3938 if (done < 0) 3939 return -EFAULT; 3940 total += done; 3941 } 3942 } 3943 } 3944 3945 /* 3946 * All done. Write the updated control block back to the caller. 3947 */ 3948 ifc.ifc_len = total; 3949 3950 /* 3951 * Both BSD and Solaris return 0 here, so we do too. 3952 */ 3953 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0; 3954 } 3955 3956 #ifdef CONFIG_PROC_FS 3957 /* 3958 * This is invoked by the /proc filesystem handler to display a device 3959 * in detail. 3960 */ 3961 void *dev_seq_start(struct seq_file *seq, loff_t *pos) 3962 __acquires(RCU) 3963 { 3964 struct net *net = seq_file_net(seq); 3965 loff_t off; 3966 struct net_device *dev; 3967 3968 rcu_read_lock(); 3969 if (!*pos) 3970 return SEQ_START_TOKEN; 3971 3972 off = 1; 3973 for_each_netdev_rcu(net, dev) 3974 if (off++ == *pos) 3975 return dev; 3976 3977 return NULL; 3978 } 3979 3980 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos) 3981 { 3982 struct net_device *dev = v; 3983 3984 if (v == SEQ_START_TOKEN) 3985 dev = first_net_device_rcu(seq_file_net(seq)); 3986 else 3987 dev = next_net_device_rcu(dev); 3988 3989 ++*pos; 3990 return dev; 3991 } 3992 3993 void dev_seq_stop(struct seq_file *seq, void *v) 3994 __releases(RCU) 3995 { 3996 rcu_read_unlock(); 3997 } 3998 3999 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev) 4000 { 4001 struct rtnl_link_stats64 temp; 4002 const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp); 4003 4004 seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu " 4005 "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n", 4006 dev->name, stats->rx_bytes, stats->rx_packets, 4007 stats->rx_errors, 4008 stats->rx_dropped + stats->rx_missed_errors, 4009 stats->rx_fifo_errors, 4010 stats->rx_length_errors + stats->rx_over_errors + 4011 stats->rx_crc_errors + stats->rx_frame_errors, 4012 stats->rx_compressed, stats->multicast, 4013 stats->tx_bytes, stats->tx_packets, 4014 stats->tx_errors, stats->tx_dropped, 4015 stats->tx_fifo_errors, stats->collisions, 4016 stats->tx_carrier_errors + 4017 stats->tx_aborted_errors + 4018 stats->tx_window_errors + 4019 stats->tx_heartbeat_errors, 4020 stats->tx_compressed); 4021 } 4022 4023 /* 4024 * Called from the PROCfs module. This now uses the new arbitrary sized 4025 * /proc/net interface to create /proc/net/dev 4026 */ 4027 static int dev_seq_show(struct seq_file *seq, void *v) 4028 { 4029 if (v == SEQ_START_TOKEN) 4030 seq_puts(seq, "Inter-| Receive " 4031 " | Transmit\n" 4032 " face |bytes packets errs drop fifo frame " 4033 "compressed multicast|bytes packets errs " 4034 "drop fifo colls carrier compressed\n"); 4035 else 4036 dev_seq_printf_stats(seq, v); 4037 return 0; 4038 } 4039 4040 static struct softnet_data *softnet_get_online(loff_t *pos) 4041 { 4042 struct softnet_data *sd = NULL; 4043 4044 while (*pos < nr_cpu_ids) 4045 if (cpu_online(*pos)) { 4046 sd = &per_cpu(softnet_data, *pos); 4047 break; 4048 } else 4049 ++*pos; 4050 return sd; 4051 } 4052 4053 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos) 4054 { 4055 return softnet_get_online(pos); 4056 } 4057 4058 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4059 { 4060 ++*pos; 4061 return softnet_get_online(pos); 4062 } 4063 4064 static void softnet_seq_stop(struct seq_file *seq, void *v) 4065 { 4066 } 4067 4068 static int softnet_seq_show(struct seq_file *seq, void *v) 4069 { 4070 struct softnet_data *sd = v; 4071 4072 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n", 4073 sd->processed, sd->dropped, sd->time_squeeze, 0, 4074 0, 0, 0, 0, /* was fastroute */ 4075 sd->cpu_collision, sd->received_rps); 4076 return 0; 4077 } 4078 4079 static const struct seq_operations dev_seq_ops = { 4080 .start = dev_seq_start, 4081 .next = dev_seq_next, 4082 .stop = dev_seq_stop, 4083 .show = dev_seq_show, 4084 }; 4085 4086 static int dev_seq_open(struct inode *inode, struct file *file) 4087 { 4088 return seq_open_net(inode, file, &dev_seq_ops, 4089 sizeof(struct seq_net_private)); 4090 } 4091 4092 static const struct file_operations dev_seq_fops = { 4093 .owner = THIS_MODULE, 4094 .open = dev_seq_open, 4095 .read = seq_read, 4096 .llseek = seq_lseek, 4097 .release = seq_release_net, 4098 }; 4099 4100 static const struct seq_operations softnet_seq_ops = { 4101 .start = softnet_seq_start, 4102 .next = softnet_seq_next, 4103 .stop = softnet_seq_stop, 4104 .show = softnet_seq_show, 4105 }; 4106 4107 static int softnet_seq_open(struct inode *inode, struct file *file) 4108 { 4109 return seq_open(file, &softnet_seq_ops); 4110 } 4111 4112 static const struct file_operations softnet_seq_fops = { 4113 .owner = THIS_MODULE, 4114 .open = softnet_seq_open, 4115 .read = seq_read, 4116 .llseek = seq_lseek, 4117 .release = seq_release, 4118 }; 4119 4120 static void *ptype_get_idx(loff_t pos) 4121 { 4122 struct packet_type *pt = NULL; 4123 loff_t i = 0; 4124 int t; 4125 4126 list_for_each_entry_rcu(pt, &ptype_all, list) { 4127 if (i == pos) 4128 return pt; 4129 ++i; 4130 } 4131 4132 for (t = 0; t < PTYPE_HASH_SIZE; t++) { 4133 list_for_each_entry_rcu(pt, &ptype_base[t], list) { 4134 if (i == pos) 4135 return pt; 4136 ++i; 4137 } 4138 } 4139 return NULL; 4140 } 4141 4142 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos) 4143 __acquires(RCU) 4144 { 4145 rcu_read_lock(); 4146 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN; 4147 } 4148 4149 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos) 4150 { 4151 struct packet_type *pt; 4152 struct list_head *nxt; 4153 int hash; 4154 4155 ++*pos; 4156 if (v == SEQ_START_TOKEN) 4157 return ptype_get_idx(0); 4158 4159 pt = v; 4160 nxt = pt->list.next; 4161 if (pt->type == htons(ETH_P_ALL)) { 4162 if (nxt != &ptype_all) 4163 goto found; 4164 hash = 0; 4165 nxt = ptype_base[0].next; 4166 } else 4167 hash = ntohs(pt->type) & PTYPE_HASH_MASK; 4168 4169 while (nxt == &ptype_base[hash]) { 4170 if (++hash >= PTYPE_HASH_SIZE) 4171 return NULL; 4172 nxt = ptype_base[hash].next; 4173 } 4174 found: 4175 return list_entry(nxt, struct packet_type, list); 4176 } 4177 4178 static void ptype_seq_stop(struct seq_file *seq, void *v) 4179 __releases(RCU) 4180 { 4181 rcu_read_unlock(); 4182 } 4183 4184 static int ptype_seq_show(struct seq_file *seq, void *v) 4185 { 4186 struct packet_type *pt = v; 4187 4188 if (v == SEQ_START_TOKEN) 4189 seq_puts(seq, "Type Device Function\n"); 4190 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) { 4191 if (pt->type == htons(ETH_P_ALL)) 4192 seq_puts(seq, "ALL "); 4193 else 4194 seq_printf(seq, "%04x", ntohs(pt->type)); 4195 4196 seq_printf(seq, " %-8s %pF\n", 4197 pt->dev ? pt->dev->name : "", pt->func); 4198 } 4199 4200 return 0; 4201 } 4202 4203 static const struct seq_operations ptype_seq_ops = { 4204 .start = ptype_seq_start, 4205 .next = ptype_seq_next, 4206 .stop = ptype_seq_stop, 4207 .show = ptype_seq_show, 4208 }; 4209 4210 static int ptype_seq_open(struct inode *inode, struct file *file) 4211 { 4212 return seq_open_net(inode, file, &ptype_seq_ops, 4213 sizeof(struct seq_net_private)); 4214 } 4215 4216 static const struct file_operations ptype_seq_fops = { 4217 .owner = THIS_MODULE, 4218 .open = ptype_seq_open, 4219 .read = seq_read, 4220 .llseek = seq_lseek, 4221 .release = seq_release_net, 4222 }; 4223 4224 4225 static int __net_init dev_proc_net_init(struct net *net) 4226 { 4227 int rc = -ENOMEM; 4228 4229 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops)) 4230 goto out; 4231 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops)) 4232 goto out_dev; 4233 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops)) 4234 goto out_softnet; 4235 4236 if (wext_proc_init(net)) 4237 goto out_ptype; 4238 rc = 0; 4239 out: 4240 return rc; 4241 out_ptype: 4242 proc_net_remove(net, "ptype"); 4243 out_softnet: 4244 proc_net_remove(net, "softnet_stat"); 4245 out_dev: 4246 proc_net_remove(net, "dev"); 4247 goto out; 4248 } 4249 4250 static void __net_exit dev_proc_net_exit(struct net *net) 4251 { 4252 wext_proc_exit(net); 4253 4254 proc_net_remove(net, "ptype"); 4255 proc_net_remove(net, "softnet_stat"); 4256 proc_net_remove(net, "dev"); 4257 } 4258 4259 static struct pernet_operations __net_initdata dev_proc_ops = { 4260 .init = dev_proc_net_init, 4261 .exit = dev_proc_net_exit, 4262 }; 4263 4264 static int __init dev_proc_init(void) 4265 { 4266 return register_pernet_subsys(&dev_proc_ops); 4267 } 4268 #else 4269 #define dev_proc_init() 0 4270 #endif /* CONFIG_PROC_FS */ 4271 4272 4273 /** 4274 * netdev_set_master - set up master pointer 4275 * @slave: slave device 4276 * @master: new master device 4277 * 4278 * Changes the master device of the slave. Pass %NULL to break the 4279 * bonding. The caller must hold the RTNL semaphore. On a failure 4280 * a negative errno code is returned. On success the reference counts 4281 * are adjusted and the function returns zero. 4282 */ 4283 int netdev_set_master(struct net_device *slave, struct net_device *master) 4284 { 4285 struct net_device *old = slave->master; 4286 4287 ASSERT_RTNL(); 4288 4289 if (master) { 4290 if (old) 4291 return -EBUSY; 4292 dev_hold(master); 4293 } 4294 4295 slave->master = master; 4296 4297 if (old) 4298 dev_put(old); 4299 return 0; 4300 } 4301 EXPORT_SYMBOL(netdev_set_master); 4302 4303 /** 4304 * netdev_set_bond_master - set up bonding master/slave pair 4305 * @slave: slave device 4306 * @master: new master device 4307 * 4308 * Changes the master device of the slave. Pass %NULL to break the 4309 * bonding. The caller must hold the RTNL semaphore. On a failure 4310 * a negative errno code is returned. On success %RTM_NEWLINK is sent 4311 * to the routing socket and the function returns zero. 4312 */ 4313 int netdev_set_bond_master(struct net_device *slave, struct net_device *master) 4314 { 4315 int err; 4316 4317 ASSERT_RTNL(); 4318 4319 err = netdev_set_master(slave, master); 4320 if (err) 4321 return err; 4322 if (master) 4323 slave->flags |= IFF_SLAVE; 4324 else 4325 slave->flags &= ~IFF_SLAVE; 4326 4327 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE); 4328 return 0; 4329 } 4330 EXPORT_SYMBOL(netdev_set_bond_master); 4331 4332 static void dev_change_rx_flags(struct net_device *dev, int flags) 4333 { 4334 const struct net_device_ops *ops = dev->netdev_ops; 4335 4336 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags) 4337 ops->ndo_change_rx_flags(dev, flags); 4338 } 4339 4340 static int __dev_set_promiscuity(struct net_device *dev, int inc) 4341 { 4342 unsigned short old_flags = dev->flags; 4343 uid_t uid; 4344 gid_t gid; 4345 4346 ASSERT_RTNL(); 4347 4348 dev->flags |= IFF_PROMISC; 4349 dev->promiscuity += inc; 4350 if (dev->promiscuity == 0) { 4351 /* 4352 * Avoid overflow. 4353 * If inc causes overflow, untouch promisc and return error. 4354 */ 4355 if (inc < 0) 4356 dev->flags &= ~IFF_PROMISC; 4357 else { 4358 dev->promiscuity -= inc; 4359 printk(KERN_WARNING "%s: promiscuity touches roof, " 4360 "set promiscuity failed, promiscuity feature " 4361 "of device might be broken.\n", dev->name); 4362 return -EOVERFLOW; 4363 } 4364 } 4365 if (dev->flags != old_flags) { 4366 printk(KERN_INFO "device %s %s promiscuous mode\n", 4367 dev->name, (dev->flags & IFF_PROMISC) ? "entered" : 4368 "left"); 4369 if (audit_enabled) { 4370 current_uid_gid(&uid, &gid); 4371 audit_log(current->audit_context, GFP_ATOMIC, 4372 AUDIT_ANOM_PROMISCUOUS, 4373 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u", 4374 dev->name, (dev->flags & IFF_PROMISC), 4375 (old_flags & IFF_PROMISC), 4376 audit_get_loginuid(current), 4377 uid, gid, 4378 audit_get_sessionid(current)); 4379 } 4380 4381 dev_change_rx_flags(dev, IFF_PROMISC); 4382 } 4383 return 0; 4384 } 4385 4386 /** 4387 * dev_set_promiscuity - update promiscuity count on a device 4388 * @dev: device 4389 * @inc: modifier 4390 * 4391 * Add or remove promiscuity from a device. While the count in the device 4392 * remains above zero the interface remains promiscuous. Once it hits zero 4393 * the device reverts back to normal filtering operation. A negative inc 4394 * value is used to drop promiscuity on the device. 4395 * Return 0 if successful or a negative errno code on error. 4396 */ 4397 int dev_set_promiscuity(struct net_device *dev, int inc) 4398 { 4399 unsigned short old_flags = dev->flags; 4400 int err; 4401 4402 err = __dev_set_promiscuity(dev, inc); 4403 if (err < 0) 4404 return err; 4405 if (dev->flags != old_flags) 4406 dev_set_rx_mode(dev); 4407 return err; 4408 } 4409 EXPORT_SYMBOL(dev_set_promiscuity); 4410 4411 /** 4412 * dev_set_allmulti - update allmulti count on a device 4413 * @dev: device 4414 * @inc: modifier 4415 * 4416 * Add or remove reception of all multicast frames to a device. While the 4417 * count in the device remains above zero the interface remains listening 4418 * to all interfaces. Once it hits zero the device reverts back to normal 4419 * filtering operation. A negative @inc value is used to drop the counter 4420 * when releasing a resource needing all multicasts. 4421 * Return 0 if successful or a negative errno code on error. 4422 */ 4423 4424 int dev_set_allmulti(struct net_device *dev, int inc) 4425 { 4426 unsigned short old_flags = dev->flags; 4427 4428 ASSERT_RTNL(); 4429 4430 dev->flags |= IFF_ALLMULTI; 4431 dev->allmulti += inc; 4432 if (dev->allmulti == 0) { 4433 /* 4434 * Avoid overflow. 4435 * If inc causes overflow, untouch allmulti and return error. 4436 */ 4437 if (inc < 0) 4438 dev->flags &= ~IFF_ALLMULTI; 4439 else { 4440 dev->allmulti -= inc; 4441 printk(KERN_WARNING "%s: allmulti touches roof, " 4442 "set allmulti failed, allmulti feature of " 4443 "device might be broken.\n", dev->name); 4444 return -EOVERFLOW; 4445 } 4446 } 4447 if (dev->flags ^ old_flags) { 4448 dev_change_rx_flags(dev, IFF_ALLMULTI); 4449 dev_set_rx_mode(dev); 4450 } 4451 return 0; 4452 } 4453 EXPORT_SYMBOL(dev_set_allmulti); 4454 4455 /* 4456 * Upload unicast and multicast address lists to device and 4457 * configure RX filtering. When the device doesn't support unicast 4458 * filtering it is put in promiscuous mode while unicast addresses 4459 * are present. 4460 */ 4461 void __dev_set_rx_mode(struct net_device *dev) 4462 { 4463 const struct net_device_ops *ops = dev->netdev_ops; 4464 4465 /* dev_open will call this function so the list will stay sane. */ 4466 if (!(dev->flags&IFF_UP)) 4467 return; 4468 4469 if (!netif_device_present(dev)) 4470 return; 4471 4472 if (ops->ndo_set_rx_mode) 4473 ops->ndo_set_rx_mode(dev); 4474 else { 4475 /* Unicast addresses changes may only happen under the rtnl, 4476 * therefore calling __dev_set_promiscuity here is safe. 4477 */ 4478 if (!netdev_uc_empty(dev) && !dev->uc_promisc) { 4479 __dev_set_promiscuity(dev, 1); 4480 dev->uc_promisc = 1; 4481 } else if (netdev_uc_empty(dev) && dev->uc_promisc) { 4482 __dev_set_promiscuity(dev, -1); 4483 dev->uc_promisc = 0; 4484 } 4485 4486 if (ops->ndo_set_multicast_list) 4487 ops->ndo_set_multicast_list(dev); 4488 } 4489 } 4490 4491 void dev_set_rx_mode(struct net_device *dev) 4492 { 4493 netif_addr_lock_bh(dev); 4494 __dev_set_rx_mode(dev); 4495 netif_addr_unlock_bh(dev); 4496 } 4497 4498 /** 4499 * dev_ethtool_get_settings - call device's ethtool_ops::get_settings() 4500 * @dev: device 4501 * @cmd: memory area for ethtool_ops::get_settings() result 4502 * 4503 * The cmd arg is initialized properly (cleared and 4504 * ethtool_cmd::cmd field set to ETHTOOL_GSET). 4505 * 4506 * Return device's ethtool_ops::get_settings() result value or 4507 * -EOPNOTSUPP when device doesn't expose 4508 * ethtool_ops::get_settings() operation. 4509 */ 4510 int dev_ethtool_get_settings(struct net_device *dev, 4511 struct ethtool_cmd *cmd) 4512 { 4513 if (!dev->ethtool_ops || !dev->ethtool_ops->get_settings) 4514 return -EOPNOTSUPP; 4515 4516 memset(cmd, 0, sizeof(struct ethtool_cmd)); 4517 cmd->cmd = ETHTOOL_GSET; 4518 return dev->ethtool_ops->get_settings(dev, cmd); 4519 } 4520 EXPORT_SYMBOL(dev_ethtool_get_settings); 4521 4522 /** 4523 * dev_get_flags - get flags reported to userspace 4524 * @dev: device 4525 * 4526 * Get the combination of flag bits exported through APIs to userspace. 4527 */ 4528 unsigned dev_get_flags(const struct net_device *dev) 4529 { 4530 unsigned flags; 4531 4532 flags = (dev->flags & ~(IFF_PROMISC | 4533 IFF_ALLMULTI | 4534 IFF_RUNNING | 4535 IFF_LOWER_UP | 4536 IFF_DORMANT)) | 4537 (dev->gflags & (IFF_PROMISC | 4538 IFF_ALLMULTI)); 4539 4540 if (netif_running(dev)) { 4541 if (netif_oper_up(dev)) 4542 flags |= IFF_RUNNING; 4543 if (netif_carrier_ok(dev)) 4544 flags |= IFF_LOWER_UP; 4545 if (netif_dormant(dev)) 4546 flags |= IFF_DORMANT; 4547 } 4548 4549 return flags; 4550 } 4551 EXPORT_SYMBOL(dev_get_flags); 4552 4553 int __dev_change_flags(struct net_device *dev, unsigned int flags) 4554 { 4555 int old_flags = dev->flags; 4556 int ret; 4557 4558 ASSERT_RTNL(); 4559 4560 /* 4561 * Set the flags on our device. 4562 */ 4563 4564 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP | 4565 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL | 4566 IFF_AUTOMEDIA)) | 4567 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC | 4568 IFF_ALLMULTI)); 4569 4570 /* 4571 * Load in the correct multicast list now the flags have changed. 4572 */ 4573 4574 if ((old_flags ^ flags) & IFF_MULTICAST) 4575 dev_change_rx_flags(dev, IFF_MULTICAST); 4576 4577 dev_set_rx_mode(dev); 4578 4579 /* 4580 * Have we downed the interface. We handle IFF_UP ourselves 4581 * according to user attempts to set it, rather than blindly 4582 * setting it. 4583 */ 4584 4585 ret = 0; 4586 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */ 4587 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev); 4588 4589 if (!ret) 4590 dev_set_rx_mode(dev); 4591 } 4592 4593 if ((flags ^ dev->gflags) & IFF_PROMISC) { 4594 int inc = (flags & IFF_PROMISC) ? 1 : -1; 4595 4596 dev->gflags ^= IFF_PROMISC; 4597 dev_set_promiscuity(dev, inc); 4598 } 4599 4600 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI 4601 is important. Some (broken) drivers set IFF_PROMISC, when 4602 IFF_ALLMULTI is requested not asking us and not reporting. 4603 */ 4604 if ((flags ^ dev->gflags) & IFF_ALLMULTI) { 4605 int inc = (flags & IFF_ALLMULTI) ? 1 : -1; 4606 4607 dev->gflags ^= IFF_ALLMULTI; 4608 dev_set_allmulti(dev, inc); 4609 } 4610 4611 return ret; 4612 } 4613 4614 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags) 4615 { 4616 unsigned int changes = dev->flags ^ old_flags; 4617 4618 if (changes & IFF_UP) { 4619 if (dev->flags & IFF_UP) 4620 call_netdevice_notifiers(NETDEV_UP, dev); 4621 else 4622 call_netdevice_notifiers(NETDEV_DOWN, dev); 4623 } 4624 4625 if (dev->flags & IFF_UP && 4626 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) 4627 call_netdevice_notifiers(NETDEV_CHANGE, dev); 4628 } 4629 4630 /** 4631 * dev_change_flags - change device settings 4632 * @dev: device 4633 * @flags: device state flags 4634 * 4635 * Change settings on device based state flags. The flags are 4636 * in the userspace exported format. 4637 */ 4638 int dev_change_flags(struct net_device *dev, unsigned flags) 4639 { 4640 int ret, changes; 4641 int old_flags = dev->flags; 4642 4643 ret = __dev_change_flags(dev, flags); 4644 if (ret < 0) 4645 return ret; 4646 4647 changes = old_flags ^ dev->flags; 4648 if (changes) 4649 rtmsg_ifinfo(RTM_NEWLINK, dev, changes); 4650 4651 __dev_notify_flags(dev, old_flags); 4652 return ret; 4653 } 4654 EXPORT_SYMBOL(dev_change_flags); 4655 4656 /** 4657 * dev_set_mtu - Change maximum transfer unit 4658 * @dev: device 4659 * @new_mtu: new transfer unit 4660 * 4661 * Change the maximum transfer size of the network device. 4662 */ 4663 int dev_set_mtu(struct net_device *dev, int new_mtu) 4664 { 4665 const struct net_device_ops *ops = dev->netdev_ops; 4666 int err; 4667 4668 if (new_mtu == dev->mtu) 4669 return 0; 4670 4671 /* MTU must be positive. */ 4672 if (new_mtu < 0) 4673 return -EINVAL; 4674 4675 if (!netif_device_present(dev)) 4676 return -ENODEV; 4677 4678 err = 0; 4679 if (ops->ndo_change_mtu) 4680 err = ops->ndo_change_mtu(dev, new_mtu); 4681 else 4682 dev->mtu = new_mtu; 4683 4684 if (!err && dev->flags & IFF_UP) 4685 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev); 4686 return err; 4687 } 4688 EXPORT_SYMBOL(dev_set_mtu); 4689 4690 /** 4691 * dev_set_group - Change group this device belongs to 4692 * @dev: device 4693 * @new_group: group this device should belong to 4694 */ 4695 void dev_set_group(struct net_device *dev, int new_group) 4696 { 4697 dev->group = new_group; 4698 } 4699 EXPORT_SYMBOL(dev_set_group); 4700 4701 /** 4702 * dev_set_mac_address - Change Media Access Control Address 4703 * @dev: device 4704 * @sa: new address 4705 * 4706 * Change the hardware (MAC) address of the device 4707 */ 4708 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa) 4709 { 4710 const struct net_device_ops *ops = dev->netdev_ops; 4711 int err; 4712 4713 if (!ops->ndo_set_mac_address) 4714 return -EOPNOTSUPP; 4715 if (sa->sa_family != dev->type) 4716 return -EINVAL; 4717 if (!netif_device_present(dev)) 4718 return -ENODEV; 4719 err = ops->ndo_set_mac_address(dev, sa); 4720 if (!err) 4721 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4722 return err; 4723 } 4724 EXPORT_SYMBOL(dev_set_mac_address); 4725 4726 /* 4727 * Perform the SIOCxIFxxx calls, inside rcu_read_lock() 4728 */ 4729 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd) 4730 { 4731 int err; 4732 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name); 4733 4734 if (!dev) 4735 return -ENODEV; 4736 4737 switch (cmd) { 4738 case SIOCGIFFLAGS: /* Get interface flags */ 4739 ifr->ifr_flags = (short) dev_get_flags(dev); 4740 return 0; 4741 4742 case SIOCGIFMETRIC: /* Get the metric on the interface 4743 (currently unused) */ 4744 ifr->ifr_metric = 0; 4745 return 0; 4746 4747 case SIOCGIFMTU: /* Get the MTU of a device */ 4748 ifr->ifr_mtu = dev->mtu; 4749 return 0; 4750 4751 case SIOCGIFHWADDR: 4752 if (!dev->addr_len) 4753 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data); 4754 else 4755 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr, 4756 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4757 ifr->ifr_hwaddr.sa_family = dev->type; 4758 return 0; 4759 4760 case SIOCGIFSLAVE: 4761 err = -EINVAL; 4762 break; 4763 4764 case SIOCGIFMAP: 4765 ifr->ifr_map.mem_start = dev->mem_start; 4766 ifr->ifr_map.mem_end = dev->mem_end; 4767 ifr->ifr_map.base_addr = dev->base_addr; 4768 ifr->ifr_map.irq = dev->irq; 4769 ifr->ifr_map.dma = dev->dma; 4770 ifr->ifr_map.port = dev->if_port; 4771 return 0; 4772 4773 case SIOCGIFINDEX: 4774 ifr->ifr_ifindex = dev->ifindex; 4775 return 0; 4776 4777 case SIOCGIFTXQLEN: 4778 ifr->ifr_qlen = dev->tx_queue_len; 4779 return 0; 4780 4781 default: 4782 /* dev_ioctl() should ensure this case 4783 * is never reached 4784 */ 4785 WARN_ON(1); 4786 err = -ENOTTY; 4787 break; 4788 4789 } 4790 return err; 4791 } 4792 4793 /* 4794 * Perform the SIOCxIFxxx calls, inside rtnl_lock() 4795 */ 4796 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd) 4797 { 4798 int err; 4799 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name); 4800 const struct net_device_ops *ops; 4801 4802 if (!dev) 4803 return -ENODEV; 4804 4805 ops = dev->netdev_ops; 4806 4807 switch (cmd) { 4808 case SIOCSIFFLAGS: /* Set interface flags */ 4809 return dev_change_flags(dev, ifr->ifr_flags); 4810 4811 case SIOCSIFMETRIC: /* Set the metric on the interface 4812 (currently unused) */ 4813 return -EOPNOTSUPP; 4814 4815 case SIOCSIFMTU: /* Set the MTU of a device */ 4816 return dev_set_mtu(dev, ifr->ifr_mtu); 4817 4818 case SIOCSIFHWADDR: 4819 return dev_set_mac_address(dev, &ifr->ifr_hwaddr); 4820 4821 case SIOCSIFHWBROADCAST: 4822 if (ifr->ifr_hwaddr.sa_family != dev->type) 4823 return -EINVAL; 4824 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data, 4825 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len)); 4826 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev); 4827 return 0; 4828 4829 case SIOCSIFMAP: 4830 if (ops->ndo_set_config) { 4831 if (!netif_device_present(dev)) 4832 return -ENODEV; 4833 return ops->ndo_set_config(dev, &ifr->ifr_map); 4834 } 4835 return -EOPNOTSUPP; 4836 4837 case SIOCADDMULTI: 4838 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4839 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4840 return -EINVAL; 4841 if (!netif_device_present(dev)) 4842 return -ENODEV; 4843 return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data); 4844 4845 case SIOCDELMULTI: 4846 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) || 4847 ifr->ifr_hwaddr.sa_family != AF_UNSPEC) 4848 return -EINVAL; 4849 if (!netif_device_present(dev)) 4850 return -ENODEV; 4851 return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data); 4852 4853 case SIOCSIFTXQLEN: 4854 if (ifr->ifr_qlen < 0) 4855 return -EINVAL; 4856 dev->tx_queue_len = ifr->ifr_qlen; 4857 return 0; 4858 4859 case SIOCSIFNAME: 4860 ifr->ifr_newname[IFNAMSIZ-1] = '\0'; 4861 return dev_change_name(dev, ifr->ifr_newname); 4862 4863 /* 4864 * Unknown or private ioctl 4865 */ 4866 default: 4867 if ((cmd >= SIOCDEVPRIVATE && 4868 cmd <= SIOCDEVPRIVATE + 15) || 4869 cmd == SIOCBONDENSLAVE || 4870 cmd == SIOCBONDRELEASE || 4871 cmd == SIOCBONDSETHWADDR || 4872 cmd == SIOCBONDSLAVEINFOQUERY || 4873 cmd == SIOCBONDINFOQUERY || 4874 cmd == SIOCBONDCHANGEACTIVE || 4875 cmd == SIOCGMIIPHY || 4876 cmd == SIOCGMIIREG || 4877 cmd == SIOCSMIIREG || 4878 cmd == SIOCBRADDIF || 4879 cmd == SIOCBRDELIF || 4880 cmd == SIOCSHWTSTAMP || 4881 cmd == SIOCWANDEV) { 4882 err = -EOPNOTSUPP; 4883 if (ops->ndo_do_ioctl) { 4884 if (netif_device_present(dev)) 4885 err = ops->ndo_do_ioctl(dev, ifr, cmd); 4886 else 4887 err = -ENODEV; 4888 } 4889 } else 4890 err = -EINVAL; 4891 4892 } 4893 return err; 4894 } 4895 4896 /* 4897 * This function handles all "interface"-type I/O control requests. The actual 4898 * 'doing' part of this is dev_ifsioc above. 4899 */ 4900 4901 /** 4902 * dev_ioctl - network device ioctl 4903 * @net: the applicable net namespace 4904 * @cmd: command to issue 4905 * @arg: pointer to a struct ifreq in user space 4906 * 4907 * Issue ioctl functions to devices. This is normally called by the 4908 * user space syscall interfaces but can sometimes be useful for 4909 * other purposes. The return value is the return from the syscall if 4910 * positive or a negative errno code on error. 4911 */ 4912 4913 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg) 4914 { 4915 struct ifreq ifr; 4916 int ret; 4917 char *colon; 4918 4919 /* One special case: SIOCGIFCONF takes ifconf argument 4920 and requires shared lock, because it sleeps writing 4921 to user space. 4922 */ 4923 4924 if (cmd == SIOCGIFCONF) { 4925 rtnl_lock(); 4926 ret = dev_ifconf(net, (char __user *) arg); 4927 rtnl_unlock(); 4928 return ret; 4929 } 4930 if (cmd == SIOCGIFNAME) 4931 return dev_ifname(net, (struct ifreq __user *)arg); 4932 4933 if (copy_from_user(&ifr, arg, sizeof(struct ifreq))) 4934 return -EFAULT; 4935 4936 ifr.ifr_name[IFNAMSIZ-1] = 0; 4937 4938 colon = strchr(ifr.ifr_name, ':'); 4939 if (colon) 4940 *colon = 0; 4941 4942 /* 4943 * See which interface the caller is talking about. 4944 */ 4945 4946 switch (cmd) { 4947 /* 4948 * These ioctl calls: 4949 * - can be done by all. 4950 * - atomic and do not require locking. 4951 * - return a value 4952 */ 4953 case SIOCGIFFLAGS: 4954 case SIOCGIFMETRIC: 4955 case SIOCGIFMTU: 4956 case SIOCGIFHWADDR: 4957 case SIOCGIFSLAVE: 4958 case SIOCGIFMAP: 4959 case SIOCGIFINDEX: 4960 case SIOCGIFTXQLEN: 4961 dev_load(net, ifr.ifr_name); 4962 rcu_read_lock(); 4963 ret = dev_ifsioc_locked(net, &ifr, cmd); 4964 rcu_read_unlock(); 4965 if (!ret) { 4966 if (colon) 4967 *colon = ':'; 4968 if (copy_to_user(arg, &ifr, 4969 sizeof(struct ifreq))) 4970 ret = -EFAULT; 4971 } 4972 return ret; 4973 4974 case SIOCETHTOOL: 4975 dev_load(net, ifr.ifr_name); 4976 rtnl_lock(); 4977 ret = dev_ethtool(net, &ifr); 4978 rtnl_unlock(); 4979 if (!ret) { 4980 if (colon) 4981 *colon = ':'; 4982 if (copy_to_user(arg, &ifr, 4983 sizeof(struct ifreq))) 4984 ret = -EFAULT; 4985 } 4986 return ret; 4987 4988 /* 4989 * These ioctl calls: 4990 * - require superuser power. 4991 * - require strict serialization. 4992 * - return a value 4993 */ 4994 case SIOCGMIIPHY: 4995 case SIOCGMIIREG: 4996 case SIOCSIFNAME: 4997 if (!capable(CAP_NET_ADMIN)) 4998 return -EPERM; 4999 dev_load(net, ifr.ifr_name); 5000 rtnl_lock(); 5001 ret = dev_ifsioc(net, &ifr, cmd); 5002 rtnl_unlock(); 5003 if (!ret) { 5004 if (colon) 5005 *colon = ':'; 5006 if (copy_to_user(arg, &ifr, 5007 sizeof(struct ifreq))) 5008 ret = -EFAULT; 5009 } 5010 return ret; 5011 5012 /* 5013 * These ioctl calls: 5014 * - require superuser power. 5015 * - require strict serialization. 5016 * - do not return a value 5017 */ 5018 case SIOCSIFFLAGS: 5019 case SIOCSIFMETRIC: 5020 case SIOCSIFMTU: 5021 case SIOCSIFMAP: 5022 case SIOCSIFHWADDR: 5023 case SIOCSIFSLAVE: 5024 case SIOCADDMULTI: 5025 case SIOCDELMULTI: 5026 case SIOCSIFHWBROADCAST: 5027 case SIOCSIFTXQLEN: 5028 case SIOCSMIIREG: 5029 case SIOCBONDENSLAVE: 5030 case SIOCBONDRELEASE: 5031 case SIOCBONDSETHWADDR: 5032 case SIOCBONDCHANGEACTIVE: 5033 case SIOCBRADDIF: 5034 case SIOCBRDELIF: 5035 case SIOCSHWTSTAMP: 5036 if (!capable(CAP_NET_ADMIN)) 5037 return -EPERM; 5038 /* fall through */ 5039 case SIOCBONDSLAVEINFOQUERY: 5040 case SIOCBONDINFOQUERY: 5041 dev_load(net, ifr.ifr_name); 5042 rtnl_lock(); 5043 ret = dev_ifsioc(net, &ifr, cmd); 5044 rtnl_unlock(); 5045 return ret; 5046 5047 case SIOCGIFMEM: 5048 /* Get the per device memory space. We can add this but 5049 * currently do not support it */ 5050 case SIOCSIFMEM: 5051 /* Set the per device memory buffer space. 5052 * Not applicable in our case */ 5053 case SIOCSIFLINK: 5054 return -ENOTTY; 5055 5056 /* 5057 * Unknown or private ioctl. 5058 */ 5059 default: 5060 if (cmd == SIOCWANDEV || 5061 (cmd >= SIOCDEVPRIVATE && 5062 cmd <= SIOCDEVPRIVATE + 15)) { 5063 dev_load(net, ifr.ifr_name); 5064 rtnl_lock(); 5065 ret = dev_ifsioc(net, &ifr, cmd); 5066 rtnl_unlock(); 5067 if (!ret && copy_to_user(arg, &ifr, 5068 sizeof(struct ifreq))) 5069 ret = -EFAULT; 5070 return ret; 5071 } 5072 /* Take care of Wireless Extensions */ 5073 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) 5074 return wext_handle_ioctl(net, &ifr, cmd, arg); 5075 return -ENOTTY; 5076 } 5077 } 5078 5079 5080 /** 5081 * dev_new_index - allocate an ifindex 5082 * @net: the applicable net namespace 5083 * 5084 * Returns a suitable unique value for a new device interface 5085 * number. The caller must hold the rtnl semaphore or the 5086 * dev_base_lock to be sure it remains unique. 5087 */ 5088 static int dev_new_index(struct net *net) 5089 { 5090 static int ifindex; 5091 for (;;) { 5092 if (++ifindex <= 0) 5093 ifindex = 1; 5094 if (!__dev_get_by_index(net, ifindex)) 5095 return ifindex; 5096 } 5097 } 5098 5099 /* Delayed registration/unregisteration */ 5100 static LIST_HEAD(net_todo_list); 5101 5102 static void net_set_todo(struct net_device *dev) 5103 { 5104 list_add_tail(&dev->todo_list, &net_todo_list); 5105 } 5106 5107 static void rollback_registered_many(struct list_head *head) 5108 { 5109 struct net_device *dev, *tmp; 5110 5111 BUG_ON(dev_boot_phase); 5112 ASSERT_RTNL(); 5113 5114 list_for_each_entry_safe(dev, tmp, head, unreg_list) { 5115 /* Some devices call without registering 5116 * for initialization unwind. Remove those 5117 * devices and proceed with the remaining. 5118 */ 5119 if (dev->reg_state == NETREG_UNINITIALIZED) { 5120 pr_debug("unregister_netdevice: device %s/%p never " 5121 "was registered\n", dev->name, dev); 5122 5123 WARN_ON(1); 5124 list_del(&dev->unreg_list); 5125 continue; 5126 } 5127 dev->dismantle = true; 5128 BUG_ON(dev->reg_state != NETREG_REGISTERED); 5129 } 5130 5131 /* If device is running, close it first. */ 5132 dev_close_many(head); 5133 5134 list_for_each_entry(dev, head, unreg_list) { 5135 /* And unlink it from device chain. */ 5136 unlist_netdevice(dev); 5137 5138 dev->reg_state = NETREG_UNREGISTERING; 5139 } 5140 5141 synchronize_net(); 5142 5143 list_for_each_entry(dev, head, unreg_list) { 5144 /* Shutdown queueing discipline. */ 5145 dev_shutdown(dev); 5146 5147 5148 /* Notify protocols, that we are about to destroy 5149 this device. They should clean all the things. 5150 */ 5151 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5152 5153 if (!dev->rtnl_link_ops || 5154 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5155 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U); 5156 5157 /* 5158 * Flush the unicast and multicast chains 5159 */ 5160 dev_uc_flush(dev); 5161 dev_mc_flush(dev); 5162 5163 if (dev->netdev_ops->ndo_uninit) 5164 dev->netdev_ops->ndo_uninit(dev); 5165 5166 /* Notifier chain MUST detach us from master device. */ 5167 WARN_ON(dev->master); 5168 5169 /* Remove entries from kobject tree */ 5170 netdev_unregister_kobject(dev); 5171 } 5172 5173 /* Process any work delayed until the end of the batch */ 5174 dev = list_first_entry(head, struct net_device, unreg_list); 5175 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 5176 5177 rcu_barrier(); 5178 5179 list_for_each_entry(dev, head, unreg_list) 5180 dev_put(dev); 5181 } 5182 5183 static void rollback_registered(struct net_device *dev) 5184 { 5185 LIST_HEAD(single); 5186 5187 list_add(&dev->unreg_list, &single); 5188 rollback_registered_many(&single); 5189 list_del(&single); 5190 } 5191 5192 u32 netdev_fix_features(struct net_device *dev, u32 features) 5193 { 5194 /* Fix illegal checksum combinations */ 5195 if ((features & NETIF_F_HW_CSUM) && 5196 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5197 netdev_warn(dev, "mixed HW and IP checksum settings.\n"); 5198 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM); 5199 } 5200 5201 if ((features & NETIF_F_NO_CSUM) && 5202 (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5203 netdev_warn(dev, "mixed no checksumming and other settings.\n"); 5204 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM); 5205 } 5206 5207 /* Fix illegal SG+CSUM combinations. */ 5208 if ((features & NETIF_F_SG) && 5209 !(features & NETIF_F_ALL_CSUM)) { 5210 netdev_dbg(dev, 5211 "Dropping NETIF_F_SG since no checksum feature.\n"); 5212 features &= ~NETIF_F_SG; 5213 } 5214 5215 /* TSO requires that SG is present as well. */ 5216 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) { 5217 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n"); 5218 features &= ~NETIF_F_ALL_TSO; 5219 } 5220 5221 /* TSO ECN requires that TSO is present as well. */ 5222 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN) 5223 features &= ~NETIF_F_TSO_ECN; 5224 5225 /* Software GSO depends on SG. */ 5226 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) { 5227 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n"); 5228 features &= ~NETIF_F_GSO; 5229 } 5230 5231 /* UFO needs SG and checksumming */ 5232 if (features & NETIF_F_UFO) { 5233 /* maybe split UFO into V4 and V6? */ 5234 if (!((features & NETIF_F_GEN_CSUM) || 5235 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM)) 5236 == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) { 5237 netdev_dbg(dev, 5238 "Dropping NETIF_F_UFO since no checksum offload features.\n"); 5239 features &= ~NETIF_F_UFO; 5240 } 5241 5242 if (!(features & NETIF_F_SG)) { 5243 netdev_dbg(dev, 5244 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n"); 5245 features &= ~NETIF_F_UFO; 5246 } 5247 } 5248 5249 return features; 5250 } 5251 EXPORT_SYMBOL(netdev_fix_features); 5252 5253 int __netdev_update_features(struct net_device *dev) 5254 { 5255 u32 features; 5256 int err = 0; 5257 5258 ASSERT_RTNL(); 5259 5260 features = netdev_get_wanted_features(dev); 5261 5262 if (dev->netdev_ops->ndo_fix_features) 5263 features = dev->netdev_ops->ndo_fix_features(dev, features); 5264 5265 /* driver might be less strict about feature dependencies */ 5266 features = netdev_fix_features(dev, features); 5267 5268 if (dev->features == features) 5269 return 0; 5270 5271 netdev_dbg(dev, "Features changed: 0x%08x -> 0x%08x\n", 5272 dev->features, features); 5273 5274 if (dev->netdev_ops->ndo_set_features) 5275 err = dev->netdev_ops->ndo_set_features(dev, features); 5276 5277 if (unlikely(err < 0)) { 5278 netdev_err(dev, 5279 "set_features() failed (%d); wanted 0x%08x, left 0x%08x\n", 5280 err, features, dev->features); 5281 return -1; 5282 } 5283 5284 if (!err) 5285 dev->features = features; 5286 5287 return 1; 5288 } 5289 5290 /** 5291 * netdev_update_features - recalculate device features 5292 * @dev: the device to check 5293 * 5294 * Recalculate dev->features set and send notifications if it 5295 * has changed. Should be called after driver or hardware dependent 5296 * conditions might have changed that influence the features. 5297 */ 5298 void netdev_update_features(struct net_device *dev) 5299 { 5300 if (__netdev_update_features(dev)) 5301 netdev_features_change(dev); 5302 } 5303 EXPORT_SYMBOL(netdev_update_features); 5304 5305 /** 5306 * netdev_change_features - recalculate device features 5307 * @dev: the device to check 5308 * 5309 * Recalculate dev->features set and send notifications even 5310 * if they have not changed. Should be called instead of 5311 * netdev_update_features() if also dev->vlan_features might 5312 * have changed to allow the changes to be propagated to stacked 5313 * VLAN devices. 5314 */ 5315 void netdev_change_features(struct net_device *dev) 5316 { 5317 __netdev_update_features(dev); 5318 netdev_features_change(dev); 5319 } 5320 EXPORT_SYMBOL(netdev_change_features); 5321 5322 /** 5323 * netif_stacked_transfer_operstate - transfer operstate 5324 * @rootdev: the root or lower level device to transfer state from 5325 * @dev: the device to transfer operstate to 5326 * 5327 * Transfer operational state from root to device. This is normally 5328 * called when a stacking relationship exists between the root 5329 * device and the device(a leaf device). 5330 */ 5331 void netif_stacked_transfer_operstate(const struct net_device *rootdev, 5332 struct net_device *dev) 5333 { 5334 if (rootdev->operstate == IF_OPER_DORMANT) 5335 netif_dormant_on(dev); 5336 else 5337 netif_dormant_off(dev); 5338 5339 if (netif_carrier_ok(rootdev)) { 5340 if (!netif_carrier_ok(dev)) 5341 netif_carrier_on(dev); 5342 } else { 5343 if (netif_carrier_ok(dev)) 5344 netif_carrier_off(dev); 5345 } 5346 } 5347 EXPORT_SYMBOL(netif_stacked_transfer_operstate); 5348 5349 #ifdef CONFIG_RPS 5350 static int netif_alloc_rx_queues(struct net_device *dev) 5351 { 5352 unsigned int i, count = dev->num_rx_queues; 5353 struct netdev_rx_queue *rx; 5354 5355 BUG_ON(count < 1); 5356 5357 rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL); 5358 if (!rx) { 5359 pr_err("netdev: Unable to allocate %u rx queues.\n", count); 5360 return -ENOMEM; 5361 } 5362 dev->_rx = rx; 5363 5364 for (i = 0; i < count; i++) 5365 rx[i].dev = dev; 5366 return 0; 5367 } 5368 #endif 5369 5370 static void netdev_init_one_queue(struct net_device *dev, 5371 struct netdev_queue *queue, void *_unused) 5372 { 5373 /* Initialize queue lock */ 5374 spin_lock_init(&queue->_xmit_lock); 5375 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type); 5376 queue->xmit_lock_owner = -1; 5377 netdev_queue_numa_node_write(queue, NUMA_NO_NODE); 5378 queue->dev = dev; 5379 } 5380 5381 static int netif_alloc_netdev_queues(struct net_device *dev) 5382 { 5383 unsigned int count = dev->num_tx_queues; 5384 struct netdev_queue *tx; 5385 5386 BUG_ON(count < 1); 5387 5388 tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL); 5389 if (!tx) { 5390 pr_err("netdev: Unable to allocate %u tx queues.\n", 5391 count); 5392 return -ENOMEM; 5393 } 5394 dev->_tx = tx; 5395 5396 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL); 5397 spin_lock_init(&dev->tx_global_lock); 5398 5399 return 0; 5400 } 5401 5402 /** 5403 * register_netdevice - register a network device 5404 * @dev: device to register 5405 * 5406 * Take a completed network device structure and add it to the kernel 5407 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5408 * chain. 0 is returned on success. A negative errno code is returned 5409 * on a failure to set up the device, or if the name is a duplicate. 5410 * 5411 * Callers must hold the rtnl semaphore. You may want 5412 * register_netdev() instead of this. 5413 * 5414 * BUGS: 5415 * The locking appears insufficient to guarantee two parallel registers 5416 * will not get the same name. 5417 */ 5418 5419 int register_netdevice(struct net_device *dev) 5420 { 5421 int ret; 5422 struct net *net = dev_net(dev); 5423 5424 BUG_ON(dev_boot_phase); 5425 ASSERT_RTNL(); 5426 5427 might_sleep(); 5428 5429 /* When net_device's are persistent, this will be fatal. */ 5430 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED); 5431 BUG_ON(!net); 5432 5433 spin_lock_init(&dev->addr_list_lock); 5434 netdev_set_addr_lockdep_class(dev); 5435 5436 dev->iflink = -1; 5437 5438 ret = dev_get_valid_name(dev, dev->name); 5439 if (ret < 0) 5440 goto out; 5441 5442 /* Init, if this function is available */ 5443 if (dev->netdev_ops->ndo_init) { 5444 ret = dev->netdev_ops->ndo_init(dev); 5445 if (ret) { 5446 if (ret > 0) 5447 ret = -EIO; 5448 goto out; 5449 } 5450 } 5451 5452 dev->ifindex = dev_new_index(net); 5453 if (dev->iflink == -1) 5454 dev->iflink = dev->ifindex; 5455 5456 /* Transfer changeable features to wanted_features and enable 5457 * software offloads (GSO and GRO). 5458 */ 5459 dev->hw_features |= NETIF_F_SOFT_FEATURES; 5460 dev->features |= NETIF_F_SOFT_FEATURES; 5461 dev->wanted_features = dev->features & dev->hw_features; 5462 5463 /* Turn on no cache copy if HW is doing checksum */ 5464 dev->hw_features |= NETIF_F_NOCACHE_COPY; 5465 if ((dev->features & NETIF_F_ALL_CSUM) && 5466 !(dev->features & NETIF_F_NO_CSUM)) { 5467 dev->wanted_features |= NETIF_F_NOCACHE_COPY; 5468 dev->features |= NETIF_F_NOCACHE_COPY; 5469 } 5470 5471 /* Enable GRO and NETIF_F_HIGHDMA for vlans by default, 5472 * vlan_dev_init() will do the dev->features check, so these features 5473 * are enabled only if supported by underlying device. 5474 */ 5475 dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA); 5476 5477 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev); 5478 ret = notifier_to_errno(ret); 5479 if (ret) 5480 goto err_uninit; 5481 5482 ret = netdev_register_kobject(dev); 5483 if (ret) 5484 goto err_uninit; 5485 dev->reg_state = NETREG_REGISTERED; 5486 5487 __netdev_update_features(dev); 5488 5489 /* 5490 * Default initial state at registry is that the 5491 * device is present. 5492 */ 5493 5494 set_bit(__LINK_STATE_PRESENT, &dev->state); 5495 5496 dev_init_scheduler(dev); 5497 dev_hold(dev); 5498 list_netdevice(dev); 5499 5500 /* Notify protocols, that a new device appeared. */ 5501 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev); 5502 ret = notifier_to_errno(ret); 5503 if (ret) { 5504 rollback_registered(dev); 5505 dev->reg_state = NETREG_UNREGISTERED; 5506 } 5507 /* 5508 * Prevent userspace races by waiting until the network 5509 * device is fully setup before sending notifications. 5510 */ 5511 if (!dev->rtnl_link_ops || 5512 dev->rtnl_link_state == RTNL_LINK_INITIALIZED) 5513 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 5514 5515 out: 5516 return ret; 5517 5518 err_uninit: 5519 if (dev->netdev_ops->ndo_uninit) 5520 dev->netdev_ops->ndo_uninit(dev); 5521 goto out; 5522 } 5523 EXPORT_SYMBOL(register_netdevice); 5524 5525 /** 5526 * init_dummy_netdev - init a dummy network device for NAPI 5527 * @dev: device to init 5528 * 5529 * This takes a network device structure and initialize the minimum 5530 * amount of fields so it can be used to schedule NAPI polls without 5531 * registering a full blown interface. This is to be used by drivers 5532 * that need to tie several hardware interfaces to a single NAPI 5533 * poll scheduler due to HW limitations. 5534 */ 5535 int init_dummy_netdev(struct net_device *dev) 5536 { 5537 /* Clear everything. Note we don't initialize spinlocks 5538 * are they aren't supposed to be taken by any of the 5539 * NAPI code and this dummy netdev is supposed to be 5540 * only ever used for NAPI polls 5541 */ 5542 memset(dev, 0, sizeof(struct net_device)); 5543 5544 /* make sure we BUG if trying to hit standard 5545 * register/unregister code path 5546 */ 5547 dev->reg_state = NETREG_DUMMY; 5548 5549 /* NAPI wants this */ 5550 INIT_LIST_HEAD(&dev->napi_list); 5551 5552 /* a dummy interface is started by default */ 5553 set_bit(__LINK_STATE_PRESENT, &dev->state); 5554 set_bit(__LINK_STATE_START, &dev->state); 5555 5556 /* Note : We dont allocate pcpu_refcnt for dummy devices, 5557 * because users of this 'device' dont need to change 5558 * its refcount. 5559 */ 5560 5561 return 0; 5562 } 5563 EXPORT_SYMBOL_GPL(init_dummy_netdev); 5564 5565 5566 /** 5567 * register_netdev - register a network device 5568 * @dev: device to register 5569 * 5570 * Take a completed network device structure and add it to the kernel 5571 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier 5572 * chain. 0 is returned on success. A negative errno code is returned 5573 * on a failure to set up the device, or if the name is a duplicate. 5574 * 5575 * This is a wrapper around register_netdevice that takes the rtnl semaphore 5576 * and expands the device name if you passed a format string to 5577 * alloc_netdev. 5578 */ 5579 int register_netdev(struct net_device *dev) 5580 { 5581 int err; 5582 5583 rtnl_lock(); 5584 err = register_netdevice(dev); 5585 rtnl_unlock(); 5586 return err; 5587 } 5588 EXPORT_SYMBOL(register_netdev); 5589 5590 int netdev_refcnt_read(const struct net_device *dev) 5591 { 5592 int i, refcnt = 0; 5593 5594 for_each_possible_cpu(i) 5595 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i); 5596 return refcnt; 5597 } 5598 EXPORT_SYMBOL(netdev_refcnt_read); 5599 5600 /* 5601 * netdev_wait_allrefs - wait until all references are gone. 5602 * 5603 * This is called when unregistering network devices. 5604 * 5605 * Any protocol or device that holds a reference should register 5606 * for netdevice notification, and cleanup and put back the 5607 * reference if they receive an UNREGISTER event. 5608 * We can get stuck here if buggy protocols don't correctly 5609 * call dev_put. 5610 */ 5611 static void netdev_wait_allrefs(struct net_device *dev) 5612 { 5613 unsigned long rebroadcast_time, warning_time; 5614 int refcnt; 5615 5616 linkwatch_forget_dev(dev); 5617 5618 rebroadcast_time = warning_time = jiffies; 5619 refcnt = netdev_refcnt_read(dev); 5620 5621 while (refcnt != 0) { 5622 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) { 5623 rtnl_lock(); 5624 5625 /* Rebroadcast unregister notification */ 5626 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 5627 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users 5628 * should have already handle it the first time */ 5629 5630 if (test_bit(__LINK_STATE_LINKWATCH_PENDING, 5631 &dev->state)) { 5632 /* We must not have linkwatch events 5633 * pending on unregister. If this 5634 * happens, we simply run the queue 5635 * unscheduled, resulting in a noop 5636 * for this device. 5637 */ 5638 linkwatch_run_queue(); 5639 } 5640 5641 __rtnl_unlock(); 5642 5643 rebroadcast_time = jiffies; 5644 } 5645 5646 msleep(250); 5647 5648 refcnt = netdev_refcnt_read(dev); 5649 5650 if (time_after(jiffies, warning_time + 10 * HZ)) { 5651 printk(KERN_EMERG "unregister_netdevice: " 5652 "waiting for %s to become free. Usage " 5653 "count = %d\n", 5654 dev->name, refcnt); 5655 warning_time = jiffies; 5656 } 5657 } 5658 } 5659 5660 /* The sequence is: 5661 * 5662 * rtnl_lock(); 5663 * ... 5664 * register_netdevice(x1); 5665 * register_netdevice(x2); 5666 * ... 5667 * unregister_netdevice(y1); 5668 * unregister_netdevice(y2); 5669 * ... 5670 * rtnl_unlock(); 5671 * free_netdev(y1); 5672 * free_netdev(y2); 5673 * 5674 * We are invoked by rtnl_unlock(). 5675 * This allows us to deal with problems: 5676 * 1) We can delete sysfs objects which invoke hotplug 5677 * without deadlocking with linkwatch via keventd. 5678 * 2) Since we run with the RTNL semaphore not held, we can sleep 5679 * safely in order to wait for the netdev refcnt to drop to zero. 5680 * 5681 * We must not return until all unregister events added during 5682 * the interval the lock was held have been completed. 5683 */ 5684 void netdev_run_todo(void) 5685 { 5686 struct list_head list; 5687 5688 /* Snapshot list, allow later requests */ 5689 list_replace_init(&net_todo_list, &list); 5690 5691 __rtnl_unlock(); 5692 5693 while (!list_empty(&list)) { 5694 struct net_device *dev 5695 = list_first_entry(&list, struct net_device, todo_list); 5696 list_del(&dev->todo_list); 5697 5698 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) { 5699 printk(KERN_ERR "network todo '%s' but state %d\n", 5700 dev->name, dev->reg_state); 5701 dump_stack(); 5702 continue; 5703 } 5704 5705 dev->reg_state = NETREG_UNREGISTERED; 5706 5707 on_each_cpu(flush_backlog, dev, 1); 5708 5709 netdev_wait_allrefs(dev); 5710 5711 /* paranoia */ 5712 BUG_ON(netdev_refcnt_read(dev)); 5713 WARN_ON(rcu_dereference_raw(dev->ip_ptr)); 5714 WARN_ON(rcu_dereference_raw(dev->ip6_ptr)); 5715 WARN_ON(dev->dn_ptr); 5716 5717 if (dev->destructor) 5718 dev->destructor(dev); 5719 5720 /* Free network device */ 5721 kobject_put(&dev->dev.kobj); 5722 } 5723 } 5724 5725 /* Convert net_device_stats to rtnl_link_stats64. They have the same 5726 * fields in the same order, with only the type differing. 5727 */ 5728 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64, 5729 const struct net_device_stats *netdev_stats) 5730 { 5731 #if BITS_PER_LONG == 64 5732 BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats)); 5733 memcpy(stats64, netdev_stats, sizeof(*stats64)); 5734 #else 5735 size_t i, n = sizeof(*stats64) / sizeof(u64); 5736 const unsigned long *src = (const unsigned long *)netdev_stats; 5737 u64 *dst = (u64 *)stats64; 5738 5739 BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) != 5740 sizeof(*stats64) / sizeof(u64)); 5741 for (i = 0; i < n; i++) 5742 dst[i] = src[i]; 5743 #endif 5744 } 5745 5746 /** 5747 * dev_get_stats - get network device statistics 5748 * @dev: device to get statistics from 5749 * @storage: place to store stats 5750 * 5751 * Get network statistics from device. Return @storage. 5752 * The device driver may provide its own method by setting 5753 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats; 5754 * otherwise the internal statistics structure is used. 5755 */ 5756 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev, 5757 struct rtnl_link_stats64 *storage) 5758 { 5759 const struct net_device_ops *ops = dev->netdev_ops; 5760 5761 if (ops->ndo_get_stats64) { 5762 memset(storage, 0, sizeof(*storage)); 5763 ops->ndo_get_stats64(dev, storage); 5764 } else if (ops->ndo_get_stats) { 5765 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev)); 5766 } else { 5767 netdev_stats_to_stats64(storage, &dev->stats); 5768 } 5769 storage->rx_dropped += atomic_long_read(&dev->rx_dropped); 5770 return storage; 5771 } 5772 EXPORT_SYMBOL(dev_get_stats); 5773 5774 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev) 5775 { 5776 struct netdev_queue *queue = dev_ingress_queue(dev); 5777 5778 #ifdef CONFIG_NET_CLS_ACT 5779 if (queue) 5780 return queue; 5781 queue = kzalloc(sizeof(*queue), GFP_KERNEL); 5782 if (!queue) 5783 return NULL; 5784 netdev_init_one_queue(dev, queue, NULL); 5785 queue->qdisc = &noop_qdisc; 5786 queue->qdisc_sleeping = &noop_qdisc; 5787 rcu_assign_pointer(dev->ingress_queue, queue); 5788 #endif 5789 return queue; 5790 } 5791 5792 /** 5793 * alloc_netdev_mqs - allocate network device 5794 * @sizeof_priv: size of private data to allocate space for 5795 * @name: device name format string 5796 * @setup: callback to initialize device 5797 * @txqs: the number of TX subqueues to allocate 5798 * @rxqs: the number of RX subqueues to allocate 5799 * 5800 * Allocates a struct net_device with private data area for driver use 5801 * and performs basic initialization. Also allocates subquue structs 5802 * for each queue on the device. 5803 */ 5804 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name, 5805 void (*setup)(struct net_device *), 5806 unsigned int txqs, unsigned int rxqs) 5807 { 5808 struct net_device *dev; 5809 size_t alloc_size; 5810 struct net_device *p; 5811 5812 BUG_ON(strlen(name) >= sizeof(dev->name)); 5813 5814 if (txqs < 1) { 5815 pr_err("alloc_netdev: Unable to allocate device " 5816 "with zero queues.\n"); 5817 return NULL; 5818 } 5819 5820 #ifdef CONFIG_RPS 5821 if (rxqs < 1) { 5822 pr_err("alloc_netdev: Unable to allocate device " 5823 "with zero RX queues.\n"); 5824 return NULL; 5825 } 5826 #endif 5827 5828 alloc_size = sizeof(struct net_device); 5829 if (sizeof_priv) { 5830 /* ensure 32-byte alignment of private area */ 5831 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN); 5832 alloc_size += sizeof_priv; 5833 } 5834 /* ensure 32-byte alignment of whole construct */ 5835 alloc_size += NETDEV_ALIGN - 1; 5836 5837 p = kzalloc(alloc_size, GFP_KERNEL); 5838 if (!p) { 5839 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n"); 5840 return NULL; 5841 } 5842 5843 dev = PTR_ALIGN(p, NETDEV_ALIGN); 5844 dev->padded = (char *)dev - (char *)p; 5845 5846 dev->pcpu_refcnt = alloc_percpu(int); 5847 if (!dev->pcpu_refcnt) 5848 goto free_p; 5849 5850 if (dev_addr_init(dev)) 5851 goto free_pcpu; 5852 5853 dev_mc_init(dev); 5854 dev_uc_init(dev); 5855 5856 dev_net_set(dev, &init_net); 5857 5858 dev->gso_max_size = GSO_MAX_SIZE; 5859 5860 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list); 5861 dev->ethtool_ntuple_list.count = 0; 5862 INIT_LIST_HEAD(&dev->napi_list); 5863 INIT_LIST_HEAD(&dev->unreg_list); 5864 INIT_LIST_HEAD(&dev->link_watch_list); 5865 dev->priv_flags = IFF_XMIT_DST_RELEASE; 5866 setup(dev); 5867 5868 dev->num_tx_queues = txqs; 5869 dev->real_num_tx_queues = txqs; 5870 if (netif_alloc_netdev_queues(dev)) 5871 goto free_all; 5872 5873 #ifdef CONFIG_RPS 5874 dev->num_rx_queues = rxqs; 5875 dev->real_num_rx_queues = rxqs; 5876 if (netif_alloc_rx_queues(dev)) 5877 goto free_all; 5878 #endif 5879 5880 strcpy(dev->name, name); 5881 dev->group = INIT_NETDEV_GROUP; 5882 return dev; 5883 5884 free_all: 5885 free_netdev(dev); 5886 return NULL; 5887 5888 free_pcpu: 5889 free_percpu(dev->pcpu_refcnt); 5890 kfree(dev->_tx); 5891 #ifdef CONFIG_RPS 5892 kfree(dev->_rx); 5893 #endif 5894 5895 free_p: 5896 kfree(p); 5897 return NULL; 5898 } 5899 EXPORT_SYMBOL(alloc_netdev_mqs); 5900 5901 /** 5902 * free_netdev - free network device 5903 * @dev: device 5904 * 5905 * This function does the last stage of destroying an allocated device 5906 * interface. The reference to the device object is released. 5907 * If this is the last reference then it will be freed. 5908 */ 5909 void free_netdev(struct net_device *dev) 5910 { 5911 struct napi_struct *p, *n; 5912 5913 release_net(dev_net(dev)); 5914 5915 kfree(dev->_tx); 5916 #ifdef CONFIG_RPS 5917 kfree(dev->_rx); 5918 #endif 5919 5920 kfree(rcu_dereference_raw(dev->ingress_queue)); 5921 5922 /* Flush device addresses */ 5923 dev_addr_flush(dev); 5924 5925 /* Clear ethtool n-tuple list */ 5926 ethtool_ntuple_flush(dev); 5927 5928 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list) 5929 netif_napi_del(p); 5930 5931 free_percpu(dev->pcpu_refcnt); 5932 dev->pcpu_refcnt = NULL; 5933 5934 /* Compatibility with error handling in drivers */ 5935 if (dev->reg_state == NETREG_UNINITIALIZED) { 5936 kfree((char *)dev - dev->padded); 5937 return; 5938 } 5939 5940 BUG_ON(dev->reg_state != NETREG_UNREGISTERED); 5941 dev->reg_state = NETREG_RELEASED; 5942 5943 /* will free via device release */ 5944 put_device(&dev->dev); 5945 } 5946 EXPORT_SYMBOL(free_netdev); 5947 5948 /** 5949 * synchronize_net - Synchronize with packet receive processing 5950 * 5951 * Wait for packets currently being received to be done. 5952 * Does not block later packets from starting. 5953 */ 5954 void synchronize_net(void) 5955 { 5956 might_sleep(); 5957 synchronize_rcu(); 5958 } 5959 EXPORT_SYMBOL(synchronize_net); 5960 5961 /** 5962 * unregister_netdevice_queue - remove device from the kernel 5963 * @dev: device 5964 * @head: list 5965 * 5966 * This function shuts down a device interface and removes it 5967 * from the kernel tables. 5968 * If head not NULL, device is queued to be unregistered later. 5969 * 5970 * Callers must hold the rtnl semaphore. You may want 5971 * unregister_netdev() instead of this. 5972 */ 5973 5974 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head) 5975 { 5976 ASSERT_RTNL(); 5977 5978 if (head) { 5979 list_move_tail(&dev->unreg_list, head); 5980 } else { 5981 rollback_registered(dev); 5982 /* Finish processing unregister after unlock */ 5983 net_set_todo(dev); 5984 } 5985 } 5986 EXPORT_SYMBOL(unregister_netdevice_queue); 5987 5988 /** 5989 * unregister_netdevice_many - unregister many devices 5990 * @head: list of devices 5991 */ 5992 void unregister_netdevice_many(struct list_head *head) 5993 { 5994 struct net_device *dev; 5995 5996 if (!list_empty(head)) { 5997 rollback_registered_many(head); 5998 list_for_each_entry(dev, head, unreg_list) 5999 net_set_todo(dev); 6000 } 6001 } 6002 EXPORT_SYMBOL(unregister_netdevice_many); 6003 6004 /** 6005 * unregister_netdev - remove device from the kernel 6006 * @dev: device 6007 * 6008 * This function shuts down a device interface and removes it 6009 * from the kernel tables. 6010 * 6011 * This is just a wrapper for unregister_netdevice that takes 6012 * the rtnl semaphore. In general you want to use this and not 6013 * unregister_netdevice. 6014 */ 6015 void unregister_netdev(struct net_device *dev) 6016 { 6017 rtnl_lock(); 6018 unregister_netdevice(dev); 6019 rtnl_unlock(); 6020 } 6021 EXPORT_SYMBOL(unregister_netdev); 6022 6023 /** 6024 * dev_change_net_namespace - move device to different nethost namespace 6025 * @dev: device 6026 * @net: network namespace 6027 * @pat: If not NULL name pattern to try if the current device name 6028 * is already taken in the destination network namespace. 6029 * 6030 * This function shuts down a device interface and moves it 6031 * to a new network namespace. On success 0 is returned, on 6032 * a failure a netagive errno code is returned. 6033 * 6034 * Callers must hold the rtnl semaphore. 6035 */ 6036 6037 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat) 6038 { 6039 int err; 6040 6041 ASSERT_RTNL(); 6042 6043 /* Don't allow namespace local devices to be moved. */ 6044 err = -EINVAL; 6045 if (dev->features & NETIF_F_NETNS_LOCAL) 6046 goto out; 6047 6048 /* Ensure the device has been registrered */ 6049 err = -EINVAL; 6050 if (dev->reg_state != NETREG_REGISTERED) 6051 goto out; 6052 6053 /* Get out if there is nothing todo */ 6054 err = 0; 6055 if (net_eq(dev_net(dev), net)) 6056 goto out; 6057 6058 /* Pick the destination device name, and ensure 6059 * we can use it in the destination network namespace. 6060 */ 6061 err = -EEXIST; 6062 if (__dev_get_by_name(net, dev->name)) { 6063 /* We get here if we can't use the current device name */ 6064 if (!pat) 6065 goto out; 6066 if (dev_get_valid_name(dev, pat) < 0) 6067 goto out; 6068 } 6069 6070 /* 6071 * And now a mini version of register_netdevice unregister_netdevice. 6072 */ 6073 6074 /* If device is running close it first. */ 6075 dev_close(dev); 6076 6077 /* And unlink it from device chain */ 6078 err = -ENODEV; 6079 unlist_netdevice(dev); 6080 6081 synchronize_net(); 6082 6083 /* Shutdown queueing discipline. */ 6084 dev_shutdown(dev); 6085 6086 /* Notify protocols, that we are about to destroy 6087 this device. They should clean all the things. 6088 6089 Note that dev->reg_state stays at NETREG_REGISTERED. 6090 This is wanted because this way 8021q and macvlan know 6091 the device is just moving and can keep their slaves up. 6092 */ 6093 call_netdevice_notifiers(NETDEV_UNREGISTER, dev); 6094 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev); 6095 6096 /* 6097 * Flush the unicast and multicast chains 6098 */ 6099 dev_uc_flush(dev); 6100 dev_mc_flush(dev); 6101 6102 /* Actually switch the network namespace */ 6103 dev_net_set(dev, net); 6104 6105 /* If there is an ifindex conflict assign a new one */ 6106 if (__dev_get_by_index(net, dev->ifindex)) { 6107 int iflink = (dev->iflink == dev->ifindex); 6108 dev->ifindex = dev_new_index(net); 6109 if (iflink) 6110 dev->iflink = dev->ifindex; 6111 } 6112 6113 /* Fixup kobjects */ 6114 err = device_rename(&dev->dev, dev->name); 6115 WARN_ON(err); 6116 6117 /* Add the device back in the hashes */ 6118 list_netdevice(dev); 6119 6120 /* Notify protocols, that a new device appeared. */ 6121 call_netdevice_notifiers(NETDEV_REGISTER, dev); 6122 6123 /* 6124 * Prevent userspace races by waiting until the network 6125 * device is fully setup before sending notifications. 6126 */ 6127 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U); 6128 6129 synchronize_net(); 6130 err = 0; 6131 out: 6132 return err; 6133 } 6134 EXPORT_SYMBOL_GPL(dev_change_net_namespace); 6135 6136 static int dev_cpu_callback(struct notifier_block *nfb, 6137 unsigned long action, 6138 void *ocpu) 6139 { 6140 struct sk_buff **list_skb; 6141 struct sk_buff *skb; 6142 unsigned int cpu, oldcpu = (unsigned long)ocpu; 6143 struct softnet_data *sd, *oldsd; 6144 6145 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) 6146 return NOTIFY_OK; 6147 6148 local_irq_disable(); 6149 cpu = smp_processor_id(); 6150 sd = &per_cpu(softnet_data, cpu); 6151 oldsd = &per_cpu(softnet_data, oldcpu); 6152 6153 /* Find end of our completion_queue. */ 6154 list_skb = &sd->completion_queue; 6155 while (*list_skb) 6156 list_skb = &(*list_skb)->next; 6157 /* Append completion queue from offline CPU. */ 6158 *list_skb = oldsd->completion_queue; 6159 oldsd->completion_queue = NULL; 6160 6161 /* Append output queue from offline CPU. */ 6162 if (oldsd->output_queue) { 6163 *sd->output_queue_tailp = oldsd->output_queue; 6164 sd->output_queue_tailp = oldsd->output_queue_tailp; 6165 oldsd->output_queue = NULL; 6166 oldsd->output_queue_tailp = &oldsd->output_queue; 6167 } 6168 6169 raise_softirq_irqoff(NET_TX_SOFTIRQ); 6170 local_irq_enable(); 6171 6172 /* Process offline CPU's input_pkt_queue */ 6173 while ((skb = __skb_dequeue(&oldsd->process_queue))) { 6174 netif_rx(skb); 6175 input_queue_head_incr(oldsd); 6176 } 6177 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) { 6178 netif_rx(skb); 6179 input_queue_head_incr(oldsd); 6180 } 6181 6182 return NOTIFY_OK; 6183 } 6184 6185 6186 /** 6187 * netdev_increment_features - increment feature set by one 6188 * @all: current feature set 6189 * @one: new feature set 6190 * @mask: mask feature set 6191 * 6192 * Computes a new feature set after adding a device with feature set 6193 * @one to the master device with current feature set @all. Will not 6194 * enable anything that is off in @mask. Returns the new feature set. 6195 */ 6196 u32 netdev_increment_features(u32 all, u32 one, u32 mask) 6197 { 6198 if (mask & NETIF_F_GEN_CSUM) 6199 mask |= NETIF_F_ALL_CSUM; 6200 mask |= NETIF_F_VLAN_CHALLENGED; 6201 6202 all |= one & (NETIF_F_ONE_FOR_ALL|NETIF_F_ALL_CSUM) & mask; 6203 all &= one | ~NETIF_F_ALL_FOR_ALL; 6204 6205 /* If device needs checksumming, downgrade to it. */ 6206 if (all & (NETIF_F_ALL_CSUM & ~NETIF_F_NO_CSUM)) 6207 all &= ~NETIF_F_NO_CSUM; 6208 6209 /* If one device supports hw checksumming, set for all. */ 6210 if (all & NETIF_F_GEN_CSUM) 6211 all &= ~(NETIF_F_ALL_CSUM & ~NETIF_F_GEN_CSUM); 6212 6213 return all; 6214 } 6215 EXPORT_SYMBOL(netdev_increment_features); 6216 6217 static struct hlist_head *netdev_create_hash(void) 6218 { 6219 int i; 6220 struct hlist_head *hash; 6221 6222 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL); 6223 if (hash != NULL) 6224 for (i = 0; i < NETDEV_HASHENTRIES; i++) 6225 INIT_HLIST_HEAD(&hash[i]); 6226 6227 return hash; 6228 } 6229 6230 /* Initialize per network namespace state */ 6231 static int __net_init netdev_init(struct net *net) 6232 { 6233 INIT_LIST_HEAD(&net->dev_base_head); 6234 6235 net->dev_name_head = netdev_create_hash(); 6236 if (net->dev_name_head == NULL) 6237 goto err_name; 6238 6239 net->dev_index_head = netdev_create_hash(); 6240 if (net->dev_index_head == NULL) 6241 goto err_idx; 6242 6243 return 0; 6244 6245 err_idx: 6246 kfree(net->dev_name_head); 6247 err_name: 6248 return -ENOMEM; 6249 } 6250 6251 /** 6252 * netdev_drivername - network driver for the device 6253 * @dev: network device 6254 * @buffer: buffer for resulting name 6255 * @len: size of buffer 6256 * 6257 * Determine network driver for device. 6258 */ 6259 char *netdev_drivername(const struct net_device *dev, char *buffer, int len) 6260 { 6261 const struct device_driver *driver; 6262 const struct device *parent; 6263 6264 if (len <= 0 || !buffer) 6265 return buffer; 6266 buffer[0] = 0; 6267 6268 parent = dev->dev.parent; 6269 6270 if (!parent) 6271 return buffer; 6272 6273 driver = parent->driver; 6274 if (driver && driver->name) 6275 strlcpy(buffer, driver->name, len); 6276 return buffer; 6277 } 6278 6279 static int __netdev_printk(const char *level, const struct net_device *dev, 6280 struct va_format *vaf) 6281 { 6282 int r; 6283 6284 if (dev && dev->dev.parent) 6285 r = dev_printk(level, dev->dev.parent, "%s: %pV", 6286 netdev_name(dev), vaf); 6287 else if (dev) 6288 r = printk("%s%s: %pV", level, netdev_name(dev), vaf); 6289 else 6290 r = printk("%s(NULL net_device): %pV", level, vaf); 6291 6292 return r; 6293 } 6294 6295 int netdev_printk(const char *level, const struct net_device *dev, 6296 const char *format, ...) 6297 { 6298 struct va_format vaf; 6299 va_list args; 6300 int r; 6301 6302 va_start(args, format); 6303 6304 vaf.fmt = format; 6305 vaf.va = &args; 6306 6307 r = __netdev_printk(level, dev, &vaf); 6308 va_end(args); 6309 6310 return r; 6311 } 6312 EXPORT_SYMBOL(netdev_printk); 6313 6314 #define define_netdev_printk_level(func, level) \ 6315 int func(const struct net_device *dev, const char *fmt, ...) \ 6316 { \ 6317 int r; \ 6318 struct va_format vaf; \ 6319 va_list args; \ 6320 \ 6321 va_start(args, fmt); \ 6322 \ 6323 vaf.fmt = fmt; \ 6324 vaf.va = &args; \ 6325 \ 6326 r = __netdev_printk(level, dev, &vaf); \ 6327 va_end(args); \ 6328 \ 6329 return r; \ 6330 } \ 6331 EXPORT_SYMBOL(func); 6332 6333 define_netdev_printk_level(netdev_emerg, KERN_EMERG); 6334 define_netdev_printk_level(netdev_alert, KERN_ALERT); 6335 define_netdev_printk_level(netdev_crit, KERN_CRIT); 6336 define_netdev_printk_level(netdev_err, KERN_ERR); 6337 define_netdev_printk_level(netdev_warn, KERN_WARNING); 6338 define_netdev_printk_level(netdev_notice, KERN_NOTICE); 6339 define_netdev_printk_level(netdev_info, KERN_INFO); 6340 6341 static void __net_exit netdev_exit(struct net *net) 6342 { 6343 kfree(net->dev_name_head); 6344 kfree(net->dev_index_head); 6345 } 6346 6347 static struct pernet_operations __net_initdata netdev_net_ops = { 6348 .init = netdev_init, 6349 .exit = netdev_exit, 6350 }; 6351 6352 static void __net_exit default_device_exit(struct net *net) 6353 { 6354 struct net_device *dev, *aux; 6355 /* 6356 * Push all migratable network devices back to the 6357 * initial network namespace 6358 */ 6359 rtnl_lock(); 6360 for_each_netdev_safe(net, dev, aux) { 6361 int err; 6362 char fb_name[IFNAMSIZ]; 6363 6364 /* Ignore unmoveable devices (i.e. loopback) */ 6365 if (dev->features & NETIF_F_NETNS_LOCAL) 6366 continue; 6367 6368 /* Leave virtual devices for the generic cleanup */ 6369 if (dev->rtnl_link_ops) 6370 continue; 6371 6372 /* Push remaining network devices to init_net */ 6373 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex); 6374 err = dev_change_net_namespace(dev, &init_net, fb_name); 6375 if (err) { 6376 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n", 6377 __func__, dev->name, err); 6378 BUG(); 6379 } 6380 } 6381 rtnl_unlock(); 6382 } 6383 6384 static void __net_exit default_device_exit_batch(struct list_head *net_list) 6385 { 6386 /* At exit all network devices most be removed from a network 6387 * namespace. Do this in the reverse order of registration. 6388 * Do this across as many network namespaces as possible to 6389 * improve batching efficiency. 6390 */ 6391 struct net_device *dev; 6392 struct net *net; 6393 LIST_HEAD(dev_kill_list); 6394 6395 rtnl_lock(); 6396 list_for_each_entry(net, net_list, exit_list) { 6397 for_each_netdev_reverse(net, dev) { 6398 if (dev->rtnl_link_ops) 6399 dev->rtnl_link_ops->dellink(dev, &dev_kill_list); 6400 else 6401 unregister_netdevice_queue(dev, &dev_kill_list); 6402 } 6403 } 6404 unregister_netdevice_many(&dev_kill_list); 6405 list_del(&dev_kill_list); 6406 rtnl_unlock(); 6407 } 6408 6409 static struct pernet_operations __net_initdata default_device_ops = { 6410 .exit = default_device_exit, 6411 .exit_batch = default_device_exit_batch, 6412 }; 6413 6414 /* 6415 * Initialize the DEV module. At boot time this walks the device list and 6416 * unhooks any devices that fail to initialise (normally hardware not 6417 * present) and leaves us with a valid list of present and active devices. 6418 * 6419 */ 6420 6421 /* 6422 * This is called single threaded during boot, so no need 6423 * to take the rtnl semaphore. 6424 */ 6425 static int __init net_dev_init(void) 6426 { 6427 int i, rc = -ENOMEM; 6428 6429 BUG_ON(!dev_boot_phase); 6430 6431 if (dev_proc_init()) 6432 goto out; 6433 6434 if (netdev_kobject_init()) 6435 goto out; 6436 6437 INIT_LIST_HEAD(&ptype_all); 6438 for (i = 0; i < PTYPE_HASH_SIZE; i++) 6439 INIT_LIST_HEAD(&ptype_base[i]); 6440 6441 if (register_pernet_subsys(&netdev_net_ops)) 6442 goto out; 6443 6444 /* 6445 * Initialise the packet receive queues. 6446 */ 6447 6448 for_each_possible_cpu(i) { 6449 struct softnet_data *sd = &per_cpu(softnet_data, i); 6450 6451 memset(sd, 0, sizeof(*sd)); 6452 skb_queue_head_init(&sd->input_pkt_queue); 6453 skb_queue_head_init(&sd->process_queue); 6454 sd->completion_queue = NULL; 6455 INIT_LIST_HEAD(&sd->poll_list); 6456 sd->output_queue = NULL; 6457 sd->output_queue_tailp = &sd->output_queue; 6458 #ifdef CONFIG_RPS 6459 sd->csd.func = rps_trigger_softirq; 6460 sd->csd.info = sd; 6461 sd->csd.flags = 0; 6462 sd->cpu = i; 6463 #endif 6464 6465 sd->backlog.poll = process_backlog; 6466 sd->backlog.weight = weight_p; 6467 sd->backlog.gro_list = NULL; 6468 sd->backlog.gro_count = 0; 6469 } 6470 6471 dev_boot_phase = 0; 6472 6473 /* The loopback device is special if any other network devices 6474 * is present in a network namespace the loopback device must 6475 * be present. Since we now dynamically allocate and free the 6476 * loopback device ensure this invariant is maintained by 6477 * keeping the loopback device as the first device on the 6478 * list of network devices. Ensuring the loopback devices 6479 * is the first device that appears and the last network device 6480 * that disappears. 6481 */ 6482 if (register_pernet_device(&loopback_net_ops)) 6483 goto out; 6484 6485 if (register_pernet_device(&default_device_ops)) 6486 goto out; 6487 6488 open_softirq(NET_TX_SOFTIRQ, net_tx_action); 6489 open_softirq(NET_RX_SOFTIRQ, net_rx_action); 6490 6491 hotcpu_notifier(dev_cpu_callback, 0); 6492 dst_init(); 6493 dev_mcast_init(); 6494 rc = 0; 6495 out: 6496 return rc; 6497 } 6498 6499 subsys_initcall(net_dev_init); 6500 6501 static int __init initialize_hashrnd(void) 6502 { 6503 get_random_bytes(&hashrnd, sizeof(hashrnd)); 6504 return 0; 6505 } 6506 6507 late_initcall_sync(initialize_hashrnd); 6508 6509