xref: /linux-6.15/net/core/dev.c (revision 4dbed85a)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/sched.h>
83 #include <linux/mutex.h>
84 #include <linux/string.h>
85 #include <linux/mm.h>
86 #include <linux/socket.h>
87 #include <linux/sockios.h>
88 #include <linux/errno.h>
89 #include <linux/interrupt.h>
90 #include <linux/if_ether.h>
91 #include <linux/netdevice.h>
92 #include <linux/etherdevice.h>
93 #include <linux/notifier.h>
94 #include <linux/skbuff.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <linux/rtnetlink.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <linux/stat.h>
101 #include <linux/if_bridge.h>
102 #include <linux/if_macvlan.h>
103 #include <net/dst.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/kmod.h>
109 #include <linux/module.h>
110 #include <linux/kallsyms.h>
111 #include <linux/netpoll.h>
112 #include <linux/rcupdate.h>
113 #include <linux/delay.h>
114 #include <net/wext.h>
115 #include <net/iw_handler.h>
116 #include <asm/current.h>
117 #include <linux/audit.h>
118 #include <linux/dmaengine.h>
119 #include <linux/err.h>
120 #include <linux/ctype.h>
121 #include <linux/if_arp.h>
122 
123 #include "net-sysfs.h"
124 
125 /*
126  *	The list of packet types we will receive (as opposed to discard)
127  *	and the routines to invoke.
128  *
129  *	Why 16. Because with 16 the only overlap we get on a hash of the
130  *	low nibble of the protocol value is RARP/SNAP/X.25.
131  *
132  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
133  *             sure which should go first, but I bet it won't make much
134  *             difference if we are running VLANs.  The good news is that
135  *             this protocol won't be in the list unless compiled in, so
136  *             the average user (w/out VLANs) will not be adversely affected.
137  *             --BLG
138  *
139  *		0800	IP
140  *		8100    802.1Q VLAN
141  *		0001	802.3
142  *		0002	AX.25
143  *		0004	802.2
144  *		8035	RARP
145  *		0005	SNAP
146  *		0805	X.25
147  *		0806	ARP
148  *		8137	IPX
149  *		0009	Localtalk
150  *		86DD	IPv6
151  */
152 
153 static DEFINE_SPINLOCK(ptype_lock);
154 static struct list_head ptype_base[16] __read_mostly;	/* 16 way hashed list */
155 static struct list_head ptype_all __read_mostly;	/* Taps */
156 
157 #ifdef CONFIG_NET_DMA
158 struct net_dma {
159 	struct dma_client client;
160 	spinlock_t lock;
161 	cpumask_t channel_mask;
162 	struct dma_chan *channels[NR_CPUS];
163 };
164 
165 static enum dma_state_client
166 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
167 	enum dma_state state);
168 
169 static struct net_dma net_dma = {
170 	.client = {
171 		.event_callback = netdev_dma_event,
172 	},
173 };
174 #endif
175 
176 /*
177  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
178  * semaphore.
179  *
180  * Pure readers hold dev_base_lock for reading.
181  *
182  * Writers must hold the rtnl semaphore while they loop through the
183  * dev_base_head list, and hold dev_base_lock for writing when they do the
184  * actual updates.  This allows pure readers to access the list even
185  * while a writer is preparing to update it.
186  *
187  * To put it another way, dev_base_lock is held for writing only to
188  * protect against pure readers; the rtnl semaphore provides the
189  * protection against other writers.
190  *
191  * See, for example usages, register_netdevice() and
192  * unregister_netdevice(), which must be called with the rtnl
193  * semaphore held.
194  */
195 DEFINE_RWLOCK(dev_base_lock);
196 
197 EXPORT_SYMBOL(dev_base_lock);
198 
199 #define NETDEV_HASHBITS	8
200 #define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
201 
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 	return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
206 }
207 
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 	return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
211 }
212 
213 /* Device list insertion */
214 static int list_netdevice(struct net_device *dev)
215 {
216 	struct net *net = dev->nd_net;
217 
218 	ASSERT_RTNL();
219 
220 	write_lock_bh(&dev_base_lock);
221 	list_add_tail(&dev->dev_list, &net->dev_base_head);
222 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
223 	hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
224 	write_unlock_bh(&dev_base_lock);
225 	return 0;
226 }
227 
228 /* Device list removal */
229 static void unlist_netdevice(struct net_device *dev)
230 {
231 	ASSERT_RTNL();
232 
233 	/* Unlink dev from the device chain */
234 	write_lock_bh(&dev_base_lock);
235 	list_del(&dev->dev_list);
236 	hlist_del(&dev->name_hlist);
237 	hlist_del(&dev->index_hlist);
238 	write_unlock_bh(&dev_base_lock);
239 }
240 
241 /*
242  *	Our notifier list
243  */
244 
245 static RAW_NOTIFIER_HEAD(netdev_chain);
246 
247 /*
248  *	Device drivers call our routines to queue packets here. We empty the
249  *	queue in the local softnet handler.
250  */
251 
252 DEFINE_PER_CPU(struct softnet_data, softnet_data);
253 
254 #ifdef CONFIG_DEBUG_LOCK_ALLOC
255 /*
256  * register_netdevice() inits dev->_xmit_lock and sets lockdep class
257  * according to dev->type
258  */
259 static const unsigned short netdev_lock_type[] =
260 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
273 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
274 	 ARPHRD_NONE};
275 
276 static const char *netdev_lock_name[] =
277 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
278 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
279 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
280 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
281 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
282 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
283 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
284 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
285 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
286 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
287 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
288 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
289 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
290 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
291 	 "_xmit_NONE"};
292 
293 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
294 
295 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
296 {
297 	int i;
298 
299 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
300 		if (netdev_lock_type[i] == dev_type)
301 			return i;
302 	/* the last key is used by default */
303 	return ARRAY_SIZE(netdev_lock_type) - 1;
304 }
305 
306 static inline void netdev_set_lockdep_class(spinlock_t *lock,
307 					    unsigned short dev_type)
308 {
309 	int i;
310 
311 	i = netdev_lock_pos(dev_type);
312 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
313 				   netdev_lock_name[i]);
314 }
315 #else
316 static inline void netdev_set_lockdep_class(spinlock_t *lock,
317 					    unsigned short dev_type)
318 {
319 }
320 #endif
321 
322 /*******************************************************************************
323 
324 		Protocol management and registration routines
325 
326 *******************************************************************************/
327 
328 /*
329  *	Add a protocol ID to the list. Now that the input handler is
330  *	smarter we can dispense with all the messy stuff that used to be
331  *	here.
332  *
333  *	BEWARE!!! Protocol handlers, mangling input packets,
334  *	MUST BE last in hash buckets and checking protocol handlers
335  *	MUST start from promiscuous ptype_all chain in net_bh.
336  *	It is true now, do not change it.
337  *	Explanation follows: if protocol handler, mangling packet, will
338  *	be the first on list, it is not able to sense, that packet
339  *	is cloned and should be copied-on-write, so that it will
340  *	change it and subsequent readers will get broken packet.
341  *							--ANK (980803)
342  */
343 
344 /**
345  *	dev_add_pack - add packet handler
346  *	@pt: packet type declaration
347  *
348  *	Add a protocol handler to the networking stack. The passed &packet_type
349  *	is linked into kernel lists and may not be freed until it has been
350  *	removed from the kernel lists.
351  *
352  *	This call does not sleep therefore it can not
353  *	guarantee all CPU's that are in middle of receiving packets
354  *	will see the new packet type (until the next received packet).
355  */
356 
357 void dev_add_pack(struct packet_type *pt)
358 {
359 	int hash;
360 
361 	spin_lock_bh(&ptype_lock);
362 	if (pt->type == htons(ETH_P_ALL))
363 		list_add_rcu(&pt->list, &ptype_all);
364 	else {
365 		hash = ntohs(pt->type) & 15;
366 		list_add_rcu(&pt->list, &ptype_base[hash]);
367 	}
368 	spin_unlock_bh(&ptype_lock);
369 }
370 
371 /**
372  *	__dev_remove_pack	 - remove packet handler
373  *	@pt: packet type declaration
374  *
375  *	Remove a protocol handler that was previously added to the kernel
376  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
377  *	from the kernel lists and can be freed or reused once this function
378  *	returns.
379  *
380  *      The packet type might still be in use by receivers
381  *	and must not be freed until after all the CPU's have gone
382  *	through a quiescent state.
383  */
384 void __dev_remove_pack(struct packet_type *pt)
385 {
386 	struct list_head *head;
387 	struct packet_type *pt1;
388 
389 	spin_lock_bh(&ptype_lock);
390 
391 	if (pt->type == htons(ETH_P_ALL))
392 		head = &ptype_all;
393 	else
394 		head = &ptype_base[ntohs(pt->type) & 15];
395 
396 	list_for_each_entry(pt1, head, list) {
397 		if (pt == pt1) {
398 			list_del_rcu(&pt->list);
399 			goto out;
400 		}
401 	}
402 
403 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
404 out:
405 	spin_unlock_bh(&ptype_lock);
406 }
407 /**
408  *	dev_remove_pack	 - remove packet handler
409  *	@pt: packet type declaration
410  *
411  *	Remove a protocol handler that was previously added to the kernel
412  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
413  *	from the kernel lists and can be freed or reused once this function
414  *	returns.
415  *
416  *	This call sleeps to guarantee that no CPU is looking at the packet
417  *	type after return.
418  */
419 void dev_remove_pack(struct packet_type *pt)
420 {
421 	__dev_remove_pack(pt);
422 
423 	synchronize_net();
424 }
425 
426 /******************************************************************************
427 
428 		      Device Boot-time Settings Routines
429 
430 *******************************************************************************/
431 
432 /* Boot time configuration table */
433 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
434 
435 /**
436  *	netdev_boot_setup_add	- add new setup entry
437  *	@name: name of the device
438  *	@map: configured settings for the device
439  *
440  *	Adds new setup entry to the dev_boot_setup list.  The function
441  *	returns 0 on error and 1 on success.  This is a generic routine to
442  *	all netdevices.
443  */
444 static int netdev_boot_setup_add(char *name, struct ifmap *map)
445 {
446 	struct netdev_boot_setup *s;
447 	int i;
448 
449 	s = dev_boot_setup;
450 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
451 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
452 			memset(s[i].name, 0, sizeof(s[i].name));
453 			strcpy(s[i].name, name);
454 			memcpy(&s[i].map, map, sizeof(s[i].map));
455 			break;
456 		}
457 	}
458 
459 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
460 }
461 
462 /**
463  *	netdev_boot_setup_check	- check boot time settings
464  *	@dev: the netdevice
465  *
466  * 	Check boot time settings for the device.
467  *	The found settings are set for the device to be used
468  *	later in the device probing.
469  *	Returns 0 if no settings found, 1 if they are.
470  */
471 int netdev_boot_setup_check(struct net_device *dev)
472 {
473 	struct netdev_boot_setup *s = dev_boot_setup;
474 	int i;
475 
476 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
477 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
478 		    !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
479 			dev->irq 	= s[i].map.irq;
480 			dev->base_addr 	= s[i].map.base_addr;
481 			dev->mem_start 	= s[i].map.mem_start;
482 			dev->mem_end 	= s[i].map.mem_end;
483 			return 1;
484 		}
485 	}
486 	return 0;
487 }
488 
489 
490 /**
491  *	netdev_boot_base	- get address from boot time settings
492  *	@prefix: prefix for network device
493  *	@unit: id for network device
494  *
495  * 	Check boot time settings for the base address of device.
496  *	The found settings are set for the device to be used
497  *	later in the device probing.
498  *	Returns 0 if no settings found.
499  */
500 unsigned long netdev_boot_base(const char *prefix, int unit)
501 {
502 	const struct netdev_boot_setup *s = dev_boot_setup;
503 	char name[IFNAMSIZ];
504 	int i;
505 
506 	sprintf(name, "%s%d", prefix, unit);
507 
508 	/*
509 	 * If device already registered then return base of 1
510 	 * to indicate not to probe for this interface
511 	 */
512 	if (__dev_get_by_name(&init_net, name))
513 		return 1;
514 
515 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
516 		if (!strcmp(name, s[i].name))
517 			return s[i].map.base_addr;
518 	return 0;
519 }
520 
521 /*
522  * Saves at boot time configured settings for any netdevice.
523  */
524 int __init netdev_boot_setup(char *str)
525 {
526 	int ints[5];
527 	struct ifmap map;
528 
529 	str = get_options(str, ARRAY_SIZE(ints), ints);
530 	if (!str || !*str)
531 		return 0;
532 
533 	/* Save settings */
534 	memset(&map, 0, sizeof(map));
535 	if (ints[0] > 0)
536 		map.irq = ints[1];
537 	if (ints[0] > 1)
538 		map.base_addr = ints[2];
539 	if (ints[0] > 2)
540 		map.mem_start = ints[3];
541 	if (ints[0] > 3)
542 		map.mem_end = ints[4];
543 
544 	/* Add new entry to the list */
545 	return netdev_boot_setup_add(str, &map);
546 }
547 
548 __setup("netdev=", netdev_boot_setup);
549 
550 /*******************************************************************************
551 
552 			    Device Interface Subroutines
553 
554 *******************************************************************************/
555 
556 /**
557  *	__dev_get_by_name	- find a device by its name
558  *	@net: the applicable net namespace
559  *	@name: name to find
560  *
561  *	Find an interface by name. Must be called under RTNL semaphore
562  *	or @dev_base_lock. If the name is found a pointer to the device
563  *	is returned. If the name is not found then %NULL is returned. The
564  *	reference counters are not incremented so the caller must be
565  *	careful with locks.
566  */
567 
568 struct net_device *__dev_get_by_name(struct net *net, const char *name)
569 {
570 	struct hlist_node *p;
571 
572 	hlist_for_each(p, dev_name_hash(net, name)) {
573 		struct net_device *dev
574 			= hlist_entry(p, struct net_device, name_hlist);
575 		if (!strncmp(dev->name, name, IFNAMSIZ))
576 			return dev;
577 	}
578 	return NULL;
579 }
580 
581 /**
582  *	dev_get_by_name		- find a device by its name
583  *	@net: the applicable net namespace
584  *	@name: name to find
585  *
586  *	Find an interface by name. This can be called from any
587  *	context and does its own locking. The returned handle has
588  *	the usage count incremented and the caller must use dev_put() to
589  *	release it when it is no longer needed. %NULL is returned if no
590  *	matching device is found.
591  */
592 
593 struct net_device *dev_get_by_name(struct net *net, const char *name)
594 {
595 	struct net_device *dev;
596 
597 	read_lock(&dev_base_lock);
598 	dev = __dev_get_by_name(net, name);
599 	if (dev)
600 		dev_hold(dev);
601 	read_unlock(&dev_base_lock);
602 	return dev;
603 }
604 
605 /**
606  *	__dev_get_by_index - find a device by its ifindex
607  *	@net: the applicable net namespace
608  *	@ifindex: index of device
609  *
610  *	Search for an interface by index. Returns %NULL if the device
611  *	is not found or a pointer to the device. The device has not
612  *	had its reference counter increased so the caller must be careful
613  *	about locking. The caller must hold either the RTNL semaphore
614  *	or @dev_base_lock.
615  */
616 
617 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
618 {
619 	struct hlist_node *p;
620 
621 	hlist_for_each(p, dev_index_hash(net, ifindex)) {
622 		struct net_device *dev
623 			= hlist_entry(p, struct net_device, index_hlist);
624 		if (dev->ifindex == ifindex)
625 			return dev;
626 	}
627 	return NULL;
628 }
629 
630 
631 /**
632  *	dev_get_by_index - find a device by its ifindex
633  *	@net: the applicable net namespace
634  *	@ifindex: index of device
635  *
636  *	Search for an interface by index. Returns NULL if the device
637  *	is not found or a pointer to the device. The device returned has
638  *	had a reference added and the pointer is safe until the user calls
639  *	dev_put to indicate they have finished with it.
640  */
641 
642 struct net_device *dev_get_by_index(struct net *net, int ifindex)
643 {
644 	struct net_device *dev;
645 
646 	read_lock(&dev_base_lock);
647 	dev = __dev_get_by_index(net, ifindex);
648 	if (dev)
649 		dev_hold(dev);
650 	read_unlock(&dev_base_lock);
651 	return dev;
652 }
653 
654 /**
655  *	dev_getbyhwaddr - find a device by its hardware address
656  *	@net: the applicable net namespace
657  *	@type: media type of device
658  *	@ha: hardware address
659  *
660  *	Search for an interface by MAC address. Returns NULL if the device
661  *	is not found or a pointer to the device. The caller must hold the
662  *	rtnl semaphore. The returned device has not had its ref count increased
663  *	and the caller must therefore be careful about locking
664  *
665  *	BUGS:
666  *	If the API was consistent this would be __dev_get_by_hwaddr
667  */
668 
669 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
670 {
671 	struct net_device *dev;
672 
673 	ASSERT_RTNL();
674 
675 	for_each_netdev(&init_net, dev)
676 		if (dev->type == type &&
677 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
678 			return dev;
679 
680 	return NULL;
681 }
682 
683 EXPORT_SYMBOL(dev_getbyhwaddr);
684 
685 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
686 {
687 	struct net_device *dev;
688 
689 	ASSERT_RTNL();
690 	for_each_netdev(net, dev)
691 		if (dev->type == type)
692 			return dev;
693 
694 	return NULL;
695 }
696 
697 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
698 
699 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
700 {
701 	struct net_device *dev;
702 
703 	rtnl_lock();
704 	dev = __dev_getfirstbyhwtype(net, type);
705 	if (dev)
706 		dev_hold(dev);
707 	rtnl_unlock();
708 	return dev;
709 }
710 
711 EXPORT_SYMBOL(dev_getfirstbyhwtype);
712 
713 /**
714  *	dev_get_by_flags - find any device with given flags
715  *	@net: the applicable net namespace
716  *	@if_flags: IFF_* values
717  *	@mask: bitmask of bits in if_flags to check
718  *
719  *	Search for any interface with the given flags. Returns NULL if a device
720  *	is not found or a pointer to the device. The device returned has
721  *	had a reference added and the pointer is safe until the user calls
722  *	dev_put to indicate they have finished with it.
723  */
724 
725 struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
726 {
727 	struct net_device *dev, *ret;
728 
729 	ret = NULL;
730 	read_lock(&dev_base_lock);
731 	for_each_netdev(net, dev) {
732 		if (((dev->flags ^ if_flags) & mask) == 0) {
733 			dev_hold(dev);
734 			ret = dev;
735 			break;
736 		}
737 	}
738 	read_unlock(&dev_base_lock);
739 	return ret;
740 }
741 
742 /**
743  *	dev_valid_name - check if name is okay for network device
744  *	@name: name string
745  *
746  *	Network device names need to be valid file names to
747  *	to allow sysfs to work.  We also disallow any kind of
748  *	whitespace.
749  */
750 int dev_valid_name(const char *name)
751 {
752 	if (*name == '\0')
753 		return 0;
754 	if (strlen(name) >= IFNAMSIZ)
755 		return 0;
756 	if (!strcmp(name, ".") || !strcmp(name, ".."))
757 		return 0;
758 
759 	while (*name) {
760 		if (*name == '/' || isspace(*name))
761 			return 0;
762 		name++;
763 	}
764 	return 1;
765 }
766 
767 /**
768  *	__dev_alloc_name - allocate a name for a device
769  *	@net: network namespace to allocate the device name in
770  *	@name: name format string
771  *	@buf:  scratch buffer and result name string
772  *
773  *	Passed a format string - eg "lt%d" it will try and find a suitable
774  *	id. It scans list of devices to build up a free map, then chooses
775  *	the first empty slot. The caller must hold the dev_base or rtnl lock
776  *	while allocating the name and adding the device in order to avoid
777  *	duplicates.
778  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
779  *	Returns the number of the unit assigned or a negative errno code.
780  */
781 
782 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
783 {
784 	int i = 0;
785 	const char *p;
786 	const int max_netdevices = 8*PAGE_SIZE;
787 	unsigned long *inuse;
788 	struct net_device *d;
789 
790 	p = strnchr(name, IFNAMSIZ-1, '%');
791 	if (p) {
792 		/*
793 		 * Verify the string as this thing may have come from
794 		 * the user.  There must be either one "%d" and no other "%"
795 		 * characters.
796 		 */
797 		if (p[1] != 'd' || strchr(p + 2, '%'))
798 			return -EINVAL;
799 
800 		/* Use one page as a bit array of possible slots */
801 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
802 		if (!inuse)
803 			return -ENOMEM;
804 
805 		for_each_netdev(net, d) {
806 			if (!sscanf(d->name, name, &i))
807 				continue;
808 			if (i < 0 || i >= max_netdevices)
809 				continue;
810 
811 			/*  avoid cases where sscanf is not exact inverse of printf */
812 			snprintf(buf, IFNAMSIZ, name, i);
813 			if (!strncmp(buf, d->name, IFNAMSIZ))
814 				set_bit(i, inuse);
815 		}
816 
817 		i = find_first_zero_bit(inuse, max_netdevices);
818 		free_page((unsigned long) inuse);
819 	}
820 
821 	snprintf(buf, IFNAMSIZ, name, i);
822 	if (!__dev_get_by_name(net, buf))
823 		return i;
824 
825 	/* It is possible to run out of possible slots
826 	 * when the name is long and there isn't enough space left
827 	 * for the digits, or if all bits are used.
828 	 */
829 	return -ENFILE;
830 }
831 
832 /**
833  *	dev_alloc_name - allocate a name for a device
834  *	@dev: device
835  *	@name: name format string
836  *
837  *	Passed a format string - eg "lt%d" it will try and find a suitable
838  *	id. It scans list of devices to build up a free map, then chooses
839  *	the first empty slot. The caller must hold the dev_base or rtnl lock
840  *	while allocating the name and adding the device in order to avoid
841  *	duplicates.
842  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
843  *	Returns the number of the unit assigned or a negative errno code.
844  */
845 
846 int dev_alloc_name(struct net_device *dev, const char *name)
847 {
848 	char buf[IFNAMSIZ];
849 	struct net *net;
850 	int ret;
851 
852 	BUG_ON(!dev->nd_net);
853 	net = dev->nd_net;
854 	ret = __dev_alloc_name(net, name, buf);
855 	if (ret >= 0)
856 		strlcpy(dev->name, buf, IFNAMSIZ);
857 	return ret;
858 }
859 
860 
861 /**
862  *	dev_change_name - change name of a device
863  *	@dev: device
864  *	@newname: name (or format string) must be at least IFNAMSIZ
865  *
866  *	Change name of a device, can pass format strings "eth%d".
867  *	for wildcarding.
868  */
869 int dev_change_name(struct net_device *dev, char *newname)
870 {
871 	char oldname[IFNAMSIZ];
872 	int err = 0;
873 	int ret;
874 	struct net *net;
875 
876 	ASSERT_RTNL();
877 	BUG_ON(!dev->nd_net);
878 
879 	net = dev->nd_net;
880 	if (dev->flags & IFF_UP)
881 		return -EBUSY;
882 
883 	if (!dev_valid_name(newname))
884 		return -EINVAL;
885 
886 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
887 		return 0;
888 
889 	memcpy(oldname, dev->name, IFNAMSIZ);
890 
891 	if (strchr(newname, '%')) {
892 		err = dev_alloc_name(dev, newname);
893 		if (err < 0)
894 			return err;
895 		strcpy(newname, dev->name);
896 	}
897 	else if (__dev_get_by_name(net, newname))
898 		return -EEXIST;
899 	else
900 		strlcpy(dev->name, newname, IFNAMSIZ);
901 
902 rollback:
903 	device_rename(&dev->dev, dev->name);
904 
905 	write_lock_bh(&dev_base_lock);
906 	hlist_del(&dev->name_hlist);
907 	hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
908 	write_unlock_bh(&dev_base_lock);
909 
910 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
911 	ret = notifier_to_errno(ret);
912 
913 	if (ret) {
914 		if (err) {
915 			printk(KERN_ERR
916 			       "%s: name change rollback failed: %d.\n",
917 			       dev->name, ret);
918 		} else {
919 			err = ret;
920 			memcpy(dev->name, oldname, IFNAMSIZ);
921 			goto rollback;
922 		}
923 	}
924 
925 	return err;
926 }
927 
928 /**
929  *	netdev_features_change - device changes features
930  *	@dev: device to cause notification
931  *
932  *	Called to indicate a device has changed features.
933  */
934 void netdev_features_change(struct net_device *dev)
935 {
936 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
937 }
938 EXPORT_SYMBOL(netdev_features_change);
939 
940 /**
941  *	netdev_state_change - device changes state
942  *	@dev: device to cause notification
943  *
944  *	Called to indicate a device has changed state. This function calls
945  *	the notifier chains for netdev_chain and sends a NEWLINK message
946  *	to the routing socket.
947  */
948 void netdev_state_change(struct net_device *dev)
949 {
950 	if (dev->flags & IFF_UP) {
951 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
952 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
953 	}
954 }
955 
956 /**
957  *	dev_load 	- load a network module
958  *	@net: the applicable net namespace
959  *	@name: name of interface
960  *
961  *	If a network interface is not present and the process has suitable
962  *	privileges this function loads the module. If module loading is not
963  *	available in this kernel then it becomes a nop.
964  */
965 
966 void dev_load(struct net *net, const char *name)
967 {
968 	struct net_device *dev;
969 
970 	read_lock(&dev_base_lock);
971 	dev = __dev_get_by_name(net, name);
972 	read_unlock(&dev_base_lock);
973 
974 	if (!dev && capable(CAP_SYS_MODULE))
975 		request_module("%s", name);
976 }
977 
978 /**
979  *	dev_open	- prepare an interface for use.
980  *	@dev:	device to open
981  *
982  *	Takes a device from down to up state. The device's private open
983  *	function is invoked and then the multicast lists are loaded. Finally
984  *	the device is moved into the up state and a %NETDEV_UP message is
985  *	sent to the netdev notifier chain.
986  *
987  *	Calling this function on an active interface is a nop. On a failure
988  *	a negative errno code is returned.
989  */
990 int dev_open(struct net_device *dev)
991 {
992 	int ret = 0;
993 
994 	/*
995 	 *	Is it already up?
996 	 */
997 
998 	if (dev->flags & IFF_UP)
999 		return 0;
1000 
1001 	/*
1002 	 *	Is it even present?
1003 	 */
1004 	if (!netif_device_present(dev))
1005 		return -ENODEV;
1006 
1007 	/*
1008 	 *	Call device private open method
1009 	 */
1010 	set_bit(__LINK_STATE_START, &dev->state);
1011 
1012 	if (dev->validate_addr)
1013 		ret = dev->validate_addr(dev);
1014 
1015 	if (!ret && dev->open)
1016 		ret = dev->open(dev);
1017 
1018 	/*
1019 	 *	If it went open OK then:
1020 	 */
1021 
1022 	if (ret)
1023 		clear_bit(__LINK_STATE_START, &dev->state);
1024 	else {
1025 		/*
1026 		 *	Set the flags.
1027 		 */
1028 		dev->flags |= IFF_UP;
1029 
1030 		/*
1031 		 *	Initialize multicasting status
1032 		 */
1033 		dev_set_rx_mode(dev);
1034 
1035 		/*
1036 		 *	Wakeup transmit queue engine
1037 		 */
1038 		dev_activate(dev);
1039 
1040 		/*
1041 		 *	... and announce new interface.
1042 		 */
1043 		call_netdevice_notifiers(NETDEV_UP, dev);
1044 	}
1045 
1046 	return ret;
1047 }
1048 
1049 /**
1050  *	dev_close - shutdown an interface.
1051  *	@dev: device to shutdown
1052  *
1053  *	This function moves an active device into down state. A
1054  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1055  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1056  *	chain.
1057  */
1058 int dev_close(struct net_device *dev)
1059 {
1060 	might_sleep();
1061 
1062 	if (!(dev->flags & IFF_UP))
1063 		return 0;
1064 
1065 	/*
1066 	 *	Tell people we are going down, so that they can
1067 	 *	prepare to death, when device is still operating.
1068 	 */
1069 	call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1070 
1071 	dev_deactivate(dev);
1072 
1073 	clear_bit(__LINK_STATE_START, &dev->state);
1074 
1075 	/* Synchronize to scheduled poll. We cannot touch poll list,
1076 	 * it can be even on different cpu. So just clear netif_running().
1077 	 *
1078 	 * dev->stop() will invoke napi_disable() on all of it's
1079 	 * napi_struct instances on this device.
1080 	 */
1081 	smp_mb__after_clear_bit(); /* Commit netif_running(). */
1082 
1083 	/*
1084 	 *	Call the device specific close. This cannot fail.
1085 	 *	Only if device is UP
1086 	 *
1087 	 *	We allow it to be called even after a DETACH hot-plug
1088 	 *	event.
1089 	 */
1090 	if (dev->stop)
1091 		dev->stop(dev);
1092 
1093 	/*
1094 	 *	Device is now down.
1095 	 */
1096 
1097 	dev->flags &= ~IFF_UP;
1098 
1099 	/*
1100 	 * Tell people we are down
1101 	 */
1102 	call_netdevice_notifiers(NETDEV_DOWN, dev);
1103 
1104 	return 0;
1105 }
1106 
1107 
1108 static int dev_boot_phase = 1;
1109 
1110 /*
1111  *	Device change register/unregister. These are not inline or static
1112  *	as we export them to the world.
1113  */
1114 
1115 /**
1116  *	register_netdevice_notifier - register a network notifier block
1117  *	@nb: notifier
1118  *
1119  *	Register a notifier to be called when network device events occur.
1120  *	The notifier passed is linked into the kernel structures and must
1121  *	not be reused until it has been unregistered. A negative errno code
1122  *	is returned on a failure.
1123  *
1124  * 	When registered all registration and up events are replayed
1125  *	to the new notifier to allow device to have a race free
1126  *	view of the network device list.
1127  */
1128 
1129 int register_netdevice_notifier(struct notifier_block *nb)
1130 {
1131 	struct net_device *dev;
1132 	struct net_device *last;
1133 	struct net *net;
1134 	int err;
1135 
1136 	rtnl_lock();
1137 	err = raw_notifier_chain_register(&netdev_chain, nb);
1138 	if (err)
1139 		goto unlock;
1140 	if (dev_boot_phase)
1141 		goto unlock;
1142 	for_each_net(net) {
1143 		for_each_netdev(net, dev) {
1144 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1145 			err = notifier_to_errno(err);
1146 			if (err)
1147 				goto rollback;
1148 
1149 			if (!(dev->flags & IFF_UP))
1150 				continue;
1151 
1152 			nb->notifier_call(nb, NETDEV_UP, dev);
1153 		}
1154 	}
1155 
1156 unlock:
1157 	rtnl_unlock();
1158 	return err;
1159 
1160 rollback:
1161 	last = dev;
1162 	for_each_net(net) {
1163 		for_each_netdev(net, dev) {
1164 			if (dev == last)
1165 				break;
1166 
1167 			if (dev->flags & IFF_UP) {
1168 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1169 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1170 			}
1171 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1172 		}
1173 	}
1174 
1175 	raw_notifier_chain_unregister(&netdev_chain, nb);
1176 	goto unlock;
1177 }
1178 
1179 /**
1180  *	unregister_netdevice_notifier - unregister a network notifier block
1181  *	@nb: notifier
1182  *
1183  *	Unregister a notifier previously registered by
1184  *	register_netdevice_notifier(). The notifier is unlinked into the
1185  *	kernel structures and may then be reused. A negative errno code
1186  *	is returned on a failure.
1187  */
1188 
1189 int unregister_netdevice_notifier(struct notifier_block *nb)
1190 {
1191 	int err;
1192 
1193 	rtnl_lock();
1194 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1195 	rtnl_unlock();
1196 	return err;
1197 }
1198 
1199 /**
1200  *	call_netdevice_notifiers - call all network notifier blocks
1201  *      @val: value passed unmodified to notifier function
1202  *      @dev: net_device pointer passed unmodified to notifier function
1203  *
1204  *	Call all network notifier blocks.  Parameters and return value
1205  *	are as for raw_notifier_call_chain().
1206  */
1207 
1208 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1209 {
1210 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1211 }
1212 
1213 /* When > 0 there are consumers of rx skb time stamps */
1214 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1215 
1216 void net_enable_timestamp(void)
1217 {
1218 	atomic_inc(&netstamp_needed);
1219 }
1220 
1221 void net_disable_timestamp(void)
1222 {
1223 	atomic_dec(&netstamp_needed);
1224 }
1225 
1226 static inline void net_timestamp(struct sk_buff *skb)
1227 {
1228 	if (atomic_read(&netstamp_needed))
1229 		__net_timestamp(skb);
1230 	else
1231 		skb->tstamp.tv64 = 0;
1232 }
1233 
1234 /*
1235  *	Support routine. Sends outgoing frames to any network
1236  *	taps currently in use.
1237  */
1238 
1239 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1240 {
1241 	struct packet_type *ptype;
1242 
1243 	net_timestamp(skb);
1244 
1245 	rcu_read_lock();
1246 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1247 		/* Never send packets back to the socket
1248 		 * they originated from - MvS ([email protected])
1249 		 */
1250 		if ((ptype->dev == dev || !ptype->dev) &&
1251 		    (ptype->af_packet_priv == NULL ||
1252 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1253 			struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1254 			if (!skb2)
1255 				break;
1256 
1257 			/* skb->nh should be correctly
1258 			   set by sender, so that the second statement is
1259 			   just protection against buggy protocols.
1260 			 */
1261 			skb_reset_mac_header(skb2);
1262 
1263 			if (skb_network_header(skb2) < skb2->data ||
1264 			    skb2->network_header > skb2->tail) {
1265 				if (net_ratelimit())
1266 					printk(KERN_CRIT "protocol %04x is "
1267 					       "buggy, dev %s\n",
1268 					       skb2->protocol, dev->name);
1269 				skb_reset_network_header(skb2);
1270 			}
1271 
1272 			skb2->transport_header = skb2->network_header;
1273 			skb2->pkt_type = PACKET_OUTGOING;
1274 			ptype->func(skb2, skb->dev, ptype, skb->dev);
1275 		}
1276 	}
1277 	rcu_read_unlock();
1278 }
1279 
1280 
1281 void __netif_schedule(struct net_device *dev)
1282 {
1283 	if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1284 		unsigned long flags;
1285 		struct softnet_data *sd;
1286 
1287 		local_irq_save(flags);
1288 		sd = &__get_cpu_var(softnet_data);
1289 		dev->next_sched = sd->output_queue;
1290 		sd->output_queue = dev;
1291 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1292 		local_irq_restore(flags);
1293 	}
1294 }
1295 EXPORT_SYMBOL(__netif_schedule);
1296 
1297 void dev_kfree_skb_irq(struct sk_buff *skb)
1298 {
1299 	if (atomic_dec_and_test(&skb->users)) {
1300 		struct softnet_data *sd;
1301 		unsigned long flags;
1302 
1303 		local_irq_save(flags);
1304 		sd = &__get_cpu_var(softnet_data);
1305 		skb->next = sd->completion_queue;
1306 		sd->completion_queue = skb;
1307 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1308 		local_irq_restore(flags);
1309 	}
1310 }
1311 EXPORT_SYMBOL(dev_kfree_skb_irq);
1312 
1313 void dev_kfree_skb_any(struct sk_buff *skb)
1314 {
1315 	if (in_irq() || irqs_disabled())
1316 		dev_kfree_skb_irq(skb);
1317 	else
1318 		dev_kfree_skb(skb);
1319 }
1320 EXPORT_SYMBOL(dev_kfree_skb_any);
1321 
1322 
1323 /**
1324  * netif_device_detach - mark device as removed
1325  * @dev: network device
1326  *
1327  * Mark device as removed from system and therefore no longer available.
1328  */
1329 void netif_device_detach(struct net_device *dev)
1330 {
1331 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1332 	    netif_running(dev)) {
1333 		netif_stop_queue(dev);
1334 	}
1335 }
1336 EXPORT_SYMBOL(netif_device_detach);
1337 
1338 /**
1339  * netif_device_attach - mark device as attached
1340  * @dev: network device
1341  *
1342  * Mark device as attached from system and restart if needed.
1343  */
1344 void netif_device_attach(struct net_device *dev)
1345 {
1346 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1347 	    netif_running(dev)) {
1348 		netif_wake_queue(dev);
1349 		__netdev_watchdog_up(dev);
1350 	}
1351 }
1352 EXPORT_SYMBOL(netif_device_attach);
1353 
1354 
1355 /*
1356  * Invalidate hardware checksum when packet is to be mangled, and
1357  * complete checksum manually on outgoing path.
1358  */
1359 int skb_checksum_help(struct sk_buff *skb)
1360 {
1361 	__wsum csum;
1362 	int ret = 0, offset;
1363 
1364 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1365 		goto out_set_summed;
1366 
1367 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1368 		/* Let GSO fix up the checksum. */
1369 		goto out_set_summed;
1370 	}
1371 
1372 	offset = skb->csum_start - skb_headroom(skb);
1373 	BUG_ON(offset >= skb_headlen(skb));
1374 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1375 
1376 	offset += skb->csum_offset;
1377 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1378 
1379 	if (skb_cloned(skb) &&
1380 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1381 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1382 		if (ret)
1383 			goto out;
1384 	}
1385 
1386 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1387 out_set_summed:
1388 	skb->ip_summed = CHECKSUM_NONE;
1389 out:
1390 	return ret;
1391 }
1392 
1393 /**
1394  *	skb_gso_segment - Perform segmentation on skb.
1395  *	@skb: buffer to segment
1396  *	@features: features for the output path (see dev->features)
1397  *
1398  *	This function segments the given skb and returns a list of segments.
1399  *
1400  *	It may return NULL if the skb requires no segmentation.  This is
1401  *	only possible when GSO is used for verifying header integrity.
1402  */
1403 struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
1404 {
1405 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1406 	struct packet_type *ptype;
1407 	__be16 type = skb->protocol;
1408 	int err;
1409 
1410 	BUG_ON(skb_shinfo(skb)->frag_list);
1411 
1412 	skb_reset_mac_header(skb);
1413 	skb->mac_len = skb->network_header - skb->mac_header;
1414 	__skb_pull(skb, skb->mac_len);
1415 
1416 	if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
1417 		if (skb_header_cloned(skb) &&
1418 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1419 			return ERR_PTR(err);
1420 	}
1421 
1422 	rcu_read_lock();
1423 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1424 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1425 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1426 				err = ptype->gso_send_check(skb);
1427 				segs = ERR_PTR(err);
1428 				if (err || skb_gso_ok(skb, features))
1429 					break;
1430 				__skb_push(skb, (skb->data -
1431 						 skb_network_header(skb)));
1432 			}
1433 			segs = ptype->gso_segment(skb, features);
1434 			break;
1435 		}
1436 	}
1437 	rcu_read_unlock();
1438 
1439 	__skb_push(skb, skb->data - skb_mac_header(skb));
1440 
1441 	return segs;
1442 }
1443 
1444 EXPORT_SYMBOL(skb_gso_segment);
1445 
1446 /* Take action when hardware reception checksum errors are detected. */
1447 #ifdef CONFIG_BUG
1448 void netdev_rx_csum_fault(struct net_device *dev)
1449 {
1450 	if (net_ratelimit()) {
1451 		printk(KERN_ERR "%s: hw csum failure.\n",
1452 			dev ? dev->name : "<unknown>");
1453 		dump_stack();
1454 	}
1455 }
1456 EXPORT_SYMBOL(netdev_rx_csum_fault);
1457 #endif
1458 
1459 /* Actually, we should eliminate this check as soon as we know, that:
1460  * 1. IOMMU is present and allows to map all the memory.
1461  * 2. No high memory really exists on this machine.
1462  */
1463 
1464 static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1465 {
1466 #ifdef CONFIG_HIGHMEM
1467 	int i;
1468 
1469 	if (dev->features & NETIF_F_HIGHDMA)
1470 		return 0;
1471 
1472 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1473 		if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1474 			return 1;
1475 
1476 #endif
1477 	return 0;
1478 }
1479 
1480 struct dev_gso_cb {
1481 	void (*destructor)(struct sk_buff *skb);
1482 };
1483 
1484 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1485 
1486 static void dev_gso_skb_destructor(struct sk_buff *skb)
1487 {
1488 	struct dev_gso_cb *cb;
1489 
1490 	do {
1491 		struct sk_buff *nskb = skb->next;
1492 
1493 		skb->next = nskb->next;
1494 		nskb->next = NULL;
1495 		kfree_skb(nskb);
1496 	} while (skb->next);
1497 
1498 	cb = DEV_GSO_CB(skb);
1499 	if (cb->destructor)
1500 		cb->destructor(skb);
1501 }
1502 
1503 /**
1504  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1505  *	@skb: buffer to segment
1506  *
1507  *	This function segments the given skb and stores the list of segments
1508  *	in skb->next.
1509  */
1510 static int dev_gso_segment(struct sk_buff *skb)
1511 {
1512 	struct net_device *dev = skb->dev;
1513 	struct sk_buff *segs;
1514 	int features = dev->features & ~(illegal_highdma(dev, skb) ?
1515 					 NETIF_F_SG : 0);
1516 
1517 	segs = skb_gso_segment(skb, features);
1518 
1519 	/* Verifying header integrity only. */
1520 	if (!segs)
1521 		return 0;
1522 
1523 	if (unlikely(IS_ERR(segs)))
1524 		return PTR_ERR(segs);
1525 
1526 	skb->next = segs;
1527 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1528 	skb->destructor = dev_gso_skb_destructor;
1529 
1530 	return 0;
1531 }
1532 
1533 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1534 {
1535 	if (likely(!skb->next)) {
1536 		if (!list_empty(&ptype_all))
1537 			dev_queue_xmit_nit(skb, dev);
1538 
1539 		if (netif_needs_gso(dev, skb)) {
1540 			if (unlikely(dev_gso_segment(skb)))
1541 				goto out_kfree_skb;
1542 			if (skb->next)
1543 				goto gso;
1544 		}
1545 
1546 		return dev->hard_start_xmit(skb, dev);
1547 	}
1548 
1549 gso:
1550 	do {
1551 		struct sk_buff *nskb = skb->next;
1552 		int rc;
1553 
1554 		skb->next = nskb->next;
1555 		nskb->next = NULL;
1556 		rc = dev->hard_start_xmit(nskb, dev);
1557 		if (unlikely(rc)) {
1558 			nskb->next = skb->next;
1559 			skb->next = nskb;
1560 			return rc;
1561 		}
1562 		if (unlikely((netif_queue_stopped(dev) ||
1563 			     netif_subqueue_stopped(dev, skb)) &&
1564 			     skb->next))
1565 			return NETDEV_TX_BUSY;
1566 	} while (skb->next);
1567 
1568 	skb->destructor = DEV_GSO_CB(skb)->destructor;
1569 
1570 out_kfree_skb:
1571 	kfree_skb(skb);
1572 	return 0;
1573 }
1574 
1575 /**
1576  *	dev_queue_xmit - transmit a buffer
1577  *	@skb: buffer to transmit
1578  *
1579  *	Queue a buffer for transmission to a network device. The caller must
1580  *	have set the device and priority and built the buffer before calling
1581  *	this function. The function can be called from an interrupt.
1582  *
1583  *	A negative errno code is returned on a failure. A success does not
1584  *	guarantee the frame will be transmitted as it may be dropped due
1585  *	to congestion or traffic shaping.
1586  *
1587  * -----------------------------------------------------------------------------------
1588  *      I notice this method can also return errors from the queue disciplines,
1589  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
1590  *      be positive.
1591  *
1592  *      Regardless of the return value, the skb is consumed, so it is currently
1593  *      difficult to retry a send to this method.  (You can bump the ref count
1594  *      before sending to hold a reference for retry if you are careful.)
1595  *
1596  *      When calling this method, interrupts MUST be enabled.  This is because
1597  *      the BH enable code must have IRQs enabled so that it will not deadlock.
1598  *          --BLG
1599  */
1600 
1601 int dev_queue_xmit(struct sk_buff *skb)
1602 {
1603 	struct net_device *dev = skb->dev;
1604 	struct Qdisc *q;
1605 	int rc = -ENOMEM;
1606 
1607 	/* GSO will handle the following emulations directly. */
1608 	if (netif_needs_gso(dev, skb))
1609 		goto gso;
1610 
1611 	if (skb_shinfo(skb)->frag_list &&
1612 	    !(dev->features & NETIF_F_FRAGLIST) &&
1613 	    __skb_linearize(skb))
1614 		goto out_kfree_skb;
1615 
1616 	/* Fragmented skb is linearized if device does not support SG,
1617 	 * or if at least one of fragments is in highmem and device
1618 	 * does not support DMA from it.
1619 	 */
1620 	if (skb_shinfo(skb)->nr_frags &&
1621 	    (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
1622 	    __skb_linearize(skb))
1623 		goto out_kfree_skb;
1624 
1625 	/* If packet is not checksummed and device does not support
1626 	 * checksumming for this protocol, complete checksumming here.
1627 	 */
1628 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1629 		skb_set_transport_header(skb, skb->csum_start -
1630 					      skb_headroom(skb));
1631 
1632 		if (!(dev->features & NETIF_F_GEN_CSUM) &&
1633 		    !((dev->features & NETIF_F_IP_CSUM) &&
1634 		      skb->protocol == htons(ETH_P_IP)) &&
1635 		    !((dev->features & NETIF_F_IPV6_CSUM) &&
1636 		      skb->protocol == htons(ETH_P_IPV6)))
1637 			if (skb_checksum_help(skb))
1638 				goto out_kfree_skb;
1639 	}
1640 
1641 gso:
1642 	spin_lock_prefetch(&dev->queue_lock);
1643 
1644 	/* Disable soft irqs for various locks below. Also
1645 	 * stops preemption for RCU.
1646 	 */
1647 	rcu_read_lock_bh();
1648 
1649 	/* Updates of qdisc are serialized by queue_lock.
1650 	 * The struct Qdisc which is pointed to by qdisc is now a
1651 	 * rcu structure - it may be accessed without acquiring
1652 	 * a lock (but the structure may be stale.) The freeing of the
1653 	 * qdisc will be deferred until it's known that there are no
1654 	 * more references to it.
1655 	 *
1656 	 * If the qdisc has an enqueue function, we still need to
1657 	 * hold the queue_lock before calling it, since queue_lock
1658 	 * also serializes access to the device queue.
1659 	 */
1660 
1661 	q = rcu_dereference(dev->qdisc);
1662 #ifdef CONFIG_NET_CLS_ACT
1663 	skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1664 #endif
1665 	if (q->enqueue) {
1666 		/* Grab device queue */
1667 		spin_lock(&dev->queue_lock);
1668 		q = dev->qdisc;
1669 		if (q->enqueue) {
1670 			/* reset queue_mapping to zero */
1671 			skb_set_queue_mapping(skb, 0);
1672 			rc = q->enqueue(skb, q);
1673 			qdisc_run(dev);
1674 			spin_unlock(&dev->queue_lock);
1675 
1676 			rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1677 			goto out;
1678 		}
1679 		spin_unlock(&dev->queue_lock);
1680 	}
1681 
1682 	/* The device has no queue. Common case for software devices:
1683 	   loopback, all the sorts of tunnels...
1684 
1685 	   Really, it is unlikely that netif_tx_lock protection is necessary
1686 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
1687 	   counters.)
1688 	   However, it is possible, that they rely on protection
1689 	   made by us here.
1690 
1691 	   Check this and shot the lock. It is not prone from deadlocks.
1692 	   Either shot noqueue qdisc, it is even simpler 8)
1693 	 */
1694 	if (dev->flags & IFF_UP) {
1695 		int cpu = smp_processor_id(); /* ok because BHs are off */
1696 
1697 		if (dev->xmit_lock_owner != cpu) {
1698 
1699 			HARD_TX_LOCK(dev, cpu);
1700 
1701 			if (!netif_queue_stopped(dev) &&
1702 			    !netif_subqueue_stopped(dev, skb)) {
1703 				rc = 0;
1704 				if (!dev_hard_start_xmit(skb, dev)) {
1705 					HARD_TX_UNLOCK(dev);
1706 					goto out;
1707 				}
1708 			}
1709 			HARD_TX_UNLOCK(dev);
1710 			if (net_ratelimit())
1711 				printk(KERN_CRIT "Virtual device %s asks to "
1712 				       "queue packet!\n", dev->name);
1713 		} else {
1714 			/* Recursion is detected! It is possible,
1715 			 * unfortunately */
1716 			if (net_ratelimit())
1717 				printk(KERN_CRIT "Dead loop on virtual device "
1718 				       "%s, fix it urgently!\n", dev->name);
1719 		}
1720 	}
1721 
1722 	rc = -ENETDOWN;
1723 	rcu_read_unlock_bh();
1724 
1725 out_kfree_skb:
1726 	kfree_skb(skb);
1727 	return rc;
1728 out:
1729 	rcu_read_unlock_bh();
1730 	return rc;
1731 }
1732 
1733 
1734 /*=======================================================================
1735 			Receiver routines
1736   =======================================================================*/
1737 
1738 int netdev_max_backlog __read_mostly = 1000;
1739 int netdev_budget __read_mostly = 300;
1740 int weight_p __read_mostly = 64;            /* old backlog weight */
1741 
1742 DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1743 
1744 
1745 /**
1746  *	netif_rx	-	post buffer to the network code
1747  *	@skb: buffer to post
1748  *
1749  *	This function receives a packet from a device driver and queues it for
1750  *	the upper (protocol) levels to process.  It always succeeds. The buffer
1751  *	may be dropped during processing for congestion control or by the
1752  *	protocol layers.
1753  *
1754  *	return values:
1755  *	NET_RX_SUCCESS	(no congestion)
1756  *	NET_RX_DROP     (packet was dropped)
1757  *
1758  */
1759 
1760 int netif_rx(struct sk_buff *skb)
1761 {
1762 	struct softnet_data *queue;
1763 	unsigned long flags;
1764 
1765 	/* if netpoll wants it, pretend we never saw it */
1766 	if (netpoll_rx(skb))
1767 		return NET_RX_DROP;
1768 
1769 	if (!skb->tstamp.tv64)
1770 		net_timestamp(skb);
1771 
1772 	/*
1773 	 * The code is rearranged so that the path is the most
1774 	 * short when CPU is congested, but is still operating.
1775 	 */
1776 	local_irq_save(flags);
1777 	queue = &__get_cpu_var(softnet_data);
1778 
1779 	__get_cpu_var(netdev_rx_stat).total++;
1780 	if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1781 		if (queue->input_pkt_queue.qlen) {
1782 enqueue:
1783 			dev_hold(skb->dev);
1784 			__skb_queue_tail(&queue->input_pkt_queue, skb);
1785 			local_irq_restore(flags);
1786 			return NET_RX_SUCCESS;
1787 		}
1788 
1789 		napi_schedule(&queue->backlog);
1790 		goto enqueue;
1791 	}
1792 
1793 	__get_cpu_var(netdev_rx_stat).dropped++;
1794 	local_irq_restore(flags);
1795 
1796 	kfree_skb(skb);
1797 	return NET_RX_DROP;
1798 }
1799 
1800 int netif_rx_ni(struct sk_buff *skb)
1801 {
1802 	int err;
1803 
1804 	preempt_disable();
1805 	err = netif_rx(skb);
1806 	if (local_softirq_pending())
1807 		do_softirq();
1808 	preempt_enable();
1809 
1810 	return err;
1811 }
1812 
1813 EXPORT_SYMBOL(netif_rx_ni);
1814 
1815 static inline struct net_device *skb_bond(struct sk_buff *skb)
1816 {
1817 	struct net_device *dev = skb->dev;
1818 
1819 	if (dev->master) {
1820 		if (skb_bond_should_drop(skb)) {
1821 			kfree_skb(skb);
1822 			return NULL;
1823 		}
1824 		skb->dev = dev->master;
1825 	}
1826 
1827 	return dev;
1828 }
1829 
1830 
1831 static void net_tx_action(struct softirq_action *h)
1832 {
1833 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
1834 
1835 	if (sd->completion_queue) {
1836 		struct sk_buff *clist;
1837 
1838 		local_irq_disable();
1839 		clist = sd->completion_queue;
1840 		sd->completion_queue = NULL;
1841 		local_irq_enable();
1842 
1843 		while (clist) {
1844 			struct sk_buff *skb = clist;
1845 			clist = clist->next;
1846 
1847 			BUG_TRAP(!atomic_read(&skb->users));
1848 			__kfree_skb(skb);
1849 		}
1850 	}
1851 
1852 	if (sd->output_queue) {
1853 		struct net_device *head;
1854 
1855 		local_irq_disable();
1856 		head = sd->output_queue;
1857 		sd->output_queue = NULL;
1858 		local_irq_enable();
1859 
1860 		while (head) {
1861 			struct net_device *dev = head;
1862 			head = head->next_sched;
1863 
1864 			smp_mb__before_clear_bit();
1865 			clear_bit(__LINK_STATE_SCHED, &dev->state);
1866 
1867 			if (spin_trylock(&dev->queue_lock)) {
1868 				qdisc_run(dev);
1869 				spin_unlock(&dev->queue_lock);
1870 			} else {
1871 				netif_schedule(dev);
1872 			}
1873 		}
1874 	}
1875 }
1876 
1877 static inline int deliver_skb(struct sk_buff *skb,
1878 			      struct packet_type *pt_prev,
1879 			      struct net_device *orig_dev)
1880 {
1881 	atomic_inc(&skb->users);
1882 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1883 }
1884 
1885 #if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
1886 /* These hooks defined here for ATM */
1887 struct net_bridge;
1888 struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1889 						unsigned char *addr);
1890 void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1891 
1892 /*
1893  * If bridge module is loaded call bridging hook.
1894  *  returns NULL if packet was consumed.
1895  */
1896 struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1897 					struct sk_buff *skb) __read_mostly;
1898 static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1899 					    struct packet_type **pt_prev, int *ret,
1900 					    struct net_device *orig_dev)
1901 {
1902 	struct net_bridge_port *port;
1903 
1904 	if (skb->pkt_type == PACKET_LOOPBACK ||
1905 	    (port = rcu_dereference(skb->dev->br_port)) == NULL)
1906 		return skb;
1907 
1908 	if (*pt_prev) {
1909 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1910 		*pt_prev = NULL;
1911 	}
1912 
1913 	return br_handle_frame_hook(port, skb);
1914 }
1915 #else
1916 #define handle_bridge(skb, pt_prev, ret, orig_dev)	(skb)
1917 #endif
1918 
1919 #if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1920 struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1921 EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1922 
1923 static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1924 					     struct packet_type **pt_prev,
1925 					     int *ret,
1926 					     struct net_device *orig_dev)
1927 {
1928 	if (skb->dev->macvlan_port == NULL)
1929 		return skb;
1930 
1931 	if (*pt_prev) {
1932 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1933 		*pt_prev = NULL;
1934 	}
1935 	return macvlan_handle_frame_hook(skb);
1936 }
1937 #else
1938 #define handle_macvlan(skb, pt_prev, ret, orig_dev)	(skb)
1939 #endif
1940 
1941 #ifdef CONFIG_NET_CLS_ACT
1942 /* TODO: Maybe we should just force sch_ingress to be compiled in
1943  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1944  * a compare and 2 stores extra right now if we dont have it on
1945  * but have CONFIG_NET_CLS_ACT
1946  * NOTE: This doesnt stop any functionality; if you dont have
1947  * the ingress scheduler, you just cant add policies on ingress.
1948  *
1949  */
1950 static int ing_filter(struct sk_buff *skb)
1951 {
1952 	struct Qdisc *q;
1953 	struct net_device *dev = skb->dev;
1954 	int result = TC_ACT_OK;
1955 	u32 ttl = G_TC_RTTL(skb->tc_verd);
1956 
1957 	if (MAX_RED_LOOP < ttl++) {
1958 		printk(KERN_WARNING
1959 		       "Redir loop detected Dropping packet (%d->%d)\n",
1960 		       skb->iif, dev->ifindex);
1961 		return TC_ACT_SHOT;
1962 	}
1963 
1964 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
1965 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1966 
1967 	spin_lock(&dev->ingress_lock);
1968 	if ((q = dev->qdisc_ingress) != NULL)
1969 		result = q->enqueue(skb, q);
1970 	spin_unlock(&dev->ingress_lock);
1971 
1972 	return result;
1973 }
1974 
1975 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
1976 					 struct packet_type **pt_prev,
1977 					 int *ret, struct net_device *orig_dev)
1978 {
1979 	if (!skb->dev->qdisc_ingress)
1980 		goto out;
1981 
1982 	if (*pt_prev) {
1983 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
1984 		*pt_prev = NULL;
1985 	} else {
1986 		/* Huh? Why does turning on AF_PACKET affect this? */
1987 		skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1988 	}
1989 
1990 	switch (ing_filter(skb)) {
1991 	case TC_ACT_SHOT:
1992 	case TC_ACT_STOLEN:
1993 		kfree_skb(skb);
1994 		return NULL;
1995 	}
1996 
1997 out:
1998 	skb->tc_verd = 0;
1999 	return skb;
2000 }
2001 #endif
2002 
2003 /**
2004  *	netif_receive_skb - process receive buffer from network
2005  *	@skb: buffer to process
2006  *
2007  *	netif_receive_skb() is the main receive data processing function.
2008  *	It always succeeds. The buffer may be dropped during processing
2009  *	for congestion control or by the protocol layers.
2010  *
2011  *	This function may only be called from softirq context and interrupts
2012  *	should be enabled.
2013  *
2014  *	Return values (usually ignored):
2015  *	NET_RX_SUCCESS: no congestion
2016  *	NET_RX_DROP: packet was dropped
2017  */
2018 int netif_receive_skb(struct sk_buff *skb)
2019 {
2020 	struct packet_type *ptype, *pt_prev;
2021 	struct net_device *orig_dev;
2022 	int ret = NET_RX_DROP;
2023 	__be16 type;
2024 
2025 	/* if we've gotten here through NAPI, check netpoll */
2026 	if (netpoll_receive_skb(skb))
2027 		return NET_RX_DROP;
2028 
2029 	if (!skb->tstamp.tv64)
2030 		net_timestamp(skb);
2031 
2032 	if (!skb->iif)
2033 		skb->iif = skb->dev->ifindex;
2034 
2035 	orig_dev = skb_bond(skb);
2036 
2037 	if (!orig_dev)
2038 		return NET_RX_DROP;
2039 
2040 	__get_cpu_var(netdev_rx_stat).total++;
2041 
2042 	skb_reset_network_header(skb);
2043 	skb_reset_transport_header(skb);
2044 	skb->mac_len = skb->network_header - skb->mac_header;
2045 
2046 	pt_prev = NULL;
2047 
2048 	rcu_read_lock();
2049 
2050 #ifdef CONFIG_NET_CLS_ACT
2051 	if (skb->tc_verd & TC_NCLS) {
2052 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2053 		goto ncls;
2054 	}
2055 #endif
2056 
2057 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
2058 		if (!ptype->dev || ptype->dev == skb->dev) {
2059 			if (pt_prev)
2060 				ret = deliver_skb(skb, pt_prev, orig_dev);
2061 			pt_prev = ptype;
2062 		}
2063 	}
2064 
2065 #ifdef CONFIG_NET_CLS_ACT
2066 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2067 	if (!skb)
2068 		goto out;
2069 ncls:
2070 #endif
2071 
2072 	skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
2073 	if (!skb)
2074 		goto out;
2075 	skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
2076 	if (!skb)
2077 		goto out;
2078 
2079 	type = skb->protocol;
2080 	list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2081 		if (ptype->type == type &&
2082 		    (!ptype->dev || ptype->dev == skb->dev)) {
2083 			if (pt_prev)
2084 				ret = deliver_skb(skb, pt_prev, orig_dev);
2085 			pt_prev = ptype;
2086 		}
2087 	}
2088 
2089 	if (pt_prev) {
2090 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2091 	} else {
2092 		kfree_skb(skb);
2093 		/* Jamal, now you will not able to escape explaining
2094 		 * me how you were going to use this. :-)
2095 		 */
2096 		ret = NET_RX_DROP;
2097 	}
2098 
2099 out:
2100 	rcu_read_unlock();
2101 	return ret;
2102 }
2103 
2104 static int process_backlog(struct napi_struct *napi, int quota)
2105 {
2106 	int work = 0;
2107 	struct softnet_data *queue = &__get_cpu_var(softnet_data);
2108 	unsigned long start_time = jiffies;
2109 
2110 	napi->weight = weight_p;
2111 	do {
2112 		struct sk_buff *skb;
2113 		struct net_device *dev;
2114 
2115 		local_irq_disable();
2116 		skb = __skb_dequeue(&queue->input_pkt_queue);
2117 		if (!skb) {
2118 			__napi_complete(napi);
2119 			local_irq_enable();
2120 			break;
2121 		}
2122 
2123 		local_irq_enable();
2124 
2125 		dev = skb->dev;
2126 
2127 		netif_receive_skb(skb);
2128 
2129 		dev_put(dev);
2130 	} while (++work < quota && jiffies == start_time);
2131 
2132 	return work;
2133 }
2134 
2135 /**
2136  * __napi_schedule - schedule for receive
2137  * @n: entry to schedule
2138  *
2139  * The entry's receive function will be scheduled to run
2140  */
2141 void fastcall __napi_schedule(struct napi_struct *n)
2142 {
2143 	unsigned long flags;
2144 
2145 	local_irq_save(flags);
2146 	list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2147 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2148 	local_irq_restore(flags);
2149 }
2150 EXPORT_SYMBOL(__napi_schedule);
2151 
2152 
2153 static void net_rx_action(struct softirq_action *h)
2154 {
2155 	struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
2156 	unsigned long start_time = jiffies;
2157 	int budget = netdev_budget;
2158 	void *have;
2159 
2160 	local_irq_disable();
2161 
2162 	while (!list_empty(list)) {
2163 		struct napi_struct *n;
2164 		int work, weight;
2165 
2166 		/* If softirq window is exhuasted then punt.
2167 		 *
2168 		 * Note that this is a slight policy change from the
2169 		 * previous NAPI code, which would allow up to 2
2170 		 * jiffies to pass before breaking out.  The test
2171 		 * used to be "jiffies - start_time > 1".
2172 		 */
2173 		if (unlikely(budget <= 0 || jiffies != start_time))
2174 			goto softnet_break;
2175 
2176 		local_irq_enable();
2177 
2178 		/* Even though interrupts have been re-enabled, this
2179 		 * access is safe because interrupts can only add new
2180 		 * entries to the tail of this list, and only ->poll()
2181 		 * calls can remove this head entry from the list.
2182 		 */
2183 		n = list_entry(list->next, struct napi_struct, poll_list);
2184 
2185 		have = netpoll_poll_lock(n);
2186 
2187 		weight = n->weight;
2188 
2189 		/* This NAPI_STATE_SCHED test is for avoiding a race
2190 		 * with netpoll's poll_napi().  Only the entity which
2191 		 * obtains the lock and sees NAPI_STATE_SCHED set will
2192 		 * actually make the ->poll() call.  Therefore we avoid
2193 		 * accidently calling ->poll() when NAPI is not scheduled.
2194 		 */
2195 		work = 0;
2196 		if (test_bit(NAPI_STATE_SCHED, &n->state))
2197 			work = n->poll(n, weight);
2198 
2199 		WARN_ON_ONCE(work > weight);
2200 
2201 		budget -= work;
2202 
2203 		local_irq_disable();
2204 
2205 		/* Drivers must not modify the NAPI state if they
2206 		 * consume the entire weight.  In such cases this code
2207 		 * still "owns" the NAPI instance and therefore can
2208 		 * move the instance around on the list at-will.
2209 		 */
2210 		if (unlikely(work == weight))
2211 			list_move_tail(&n->poll_list, list);
2212 
2213 		netpoll_poll_unlock(have);
2214 	}
2215 out:
2216 	local_irq_enable();
2217 
2218 #ifdef CONFIG_NET_DMA
2219 	/*
2220 	 * There may not be any more sk_buffs coming right now, so push
2221 	 * any pending DMA copies to hardware
2222 	 */
2223 	if (!cpus_empty(net_dma.channel_mask)) {
2224 		int chan_idx;
2225 		for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2226 			struct dma_chan *chan = net_dma.channels[chan_idx];
2227 			if (chan)
2228 				dma_async_memcpy_issue_pending(chan);
2229 		}
2230 	}
2231 #endif
2232 
2233 	return;
2234 
2235 softnet_break:
2236 	__get_cpu_var(netdev_rx_stat).time_squeeze++;
2237 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2238 	goto out;
2239 }
2240 
2241 static gifconf_func_t * gifconf_list [NPROTO];
2242 
2243 /**
2244  *	register_gifconf	-	register a SIOCGIF handler
2245  *	@family: Address family
2246  *	@gifconf: Function handler
2247  *
2248  *	Register protocol dependent address dumping routines. The handler
2249  *	that is passed must not be freed or reused until it has been replaced
2250  *	by another handler.
2251  */
2252 int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2253 {
2254 	if (family >= NPROTO)
2255 		return -EINVAL;
2256 	gifconf_list[family] = gifconf;
2257 	return 0;
2258 }
2259 
2260 
2261 /*
2262  *	Map an interface index to its name (SIOCGIFNAME)
2263  */
2264 
2265 /*
2266  *	We need this ioctl for efficient implementation of the
2267  *	if_indextoname() function required by the IPv6 API.  Without
2268  *	it, we would have to search all the interfaces to find a
2269  *	match.  --pb
2270  */
2271 
2272 static int dev_ifname(struct net *net, struct ifreq __user *arg)
2273 {
2274 	struct net_device *dev;
2275 	struct ifreq ifr;
2276 
2277 	/*
2278 	 *	Fetch the caller's info block.
2279 	 */
2280 
2281 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2282 		return -EFAULT;
2283 
2284 	read_lock(&dev_base_lock);
2285 	dev = __dev_get_by_index(net, ifr.ifr_ifindex);
2286 	if (!dev) {
2287 		read_unlock(&dev_base_lock);
2288 		return -ENODEV;
2289 	}
2290 
2291 	strcpy(ifr.ifr_name, dev->name);
2292 	read_unlock(&dev_base_lock);
2293 
2294 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2295 		return -EFAULT;
2296 	return 0;
2297 }
2298 
2299 /*
2300  *	Perform a SIOCGIFCONF call. This structure will change
2301  *	size eventually, and there is nothing I can do about it.
2302  *	Thus we will need a 'compatibility mode'.
2303  */
2304 
2305 static int dev_ifconf(struct net *net, char __user *arg)
2306 {
2307 	struct ifconf ifc;
2308 	struct net_device *dev;
2309 	char __user *pos;
2310 	int len;
2311 	int total;
2312 	int i;
2313 
2314 	/*
2315 	 *	Fetch the caller's info block.
2316 	 */
2317 
2318 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2319 		return -EFAULT;
2320 
2321 	pos = ifc.ifc_buf;
2322 	len = ifc.ifc_len;
2323 
2324 	/*
2325 	 *	Loop over the interfaces, and write an info block for each.
2326 	 */
2327 
2328 	total = 0;
2329 	for_each_netdev(net, dev) {
2330 		for (i = 0; i < NPROTO; i++) {
2331 			if (gifconf_list[i]) {
2332 				int done;
2333 				if (!pos)
2334 					done = gifconf_list[i](dev, NULL, 0);
2335 				else
2336 					done = gifconf_list[i](dev, pos + total,
2337 							       len - total);
2338 				if (done < 0)
2339 					return -EFAULT;
2340 				total += done;
2341 			}
2342 		}
2343 	}
2344 
2345 	/*
2346 	 *	All done.  Write the updated control block back to the caller.
2347 	 */
2348 	ifc.ifc_len = total;
2349 
2350 	/*
2351 	 * 	Both BSD and Solaris return 0 here, so we do too.
2352 	 */
2353 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2354 }
2355 
2356 #ifdef CONFIG_PROC_FS
2357 /*
2358  *	This is invoked by the /proc filesystem handler to display a device
2359  *	in detail.
2360  */
2361 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
2362 {
2363 	struct net *net = seq->private;
2364 	loff_t off;
2365 	struct net_device *dev;
2366 
2367 	read_lock(&dev_base_lock);
2368 	if (!*pos)
2369 		return SEQ_START_TOKEN;
2370 
2371 	off = 1;
2372 	for_each_netdev(net, dev)
2373 		if (off++ == *pos)
2374 			return dev;
2375 
2376 	return NULL;
2377 }
2378 
2379 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2380 {
2381 	struct net *net = seq->private;
2382 	++*pos;
2383 	return v == SEQ_START_TOKEN ?
2384 		first_net_device(net) : next_net_device((struct net_device *)v);
2385 }
2386 
2387 void dev_seq_stop(struct seq_file *seq, void *v)
2388 {
2389 	read_unlock(&dev_base_lock);
2390 }
2391 
2392 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2393 {
2394 	struct net_device_stats *stats = dev->get_stats(dev);
2395 
2396 	seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2397 		   "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2398 		   dev->name, stats->rx_bytes, stats->rx_packets,
2399 		   stats->rx_errors,
2400 		   stats->rx_dropped + stats->rx_missed_errors,
2401 		   stats->rx_fifo_errors,
2402 		   stats->rx_length_errors + stats->rx_over_errors +
2403 		    stats->rx_crc_errors + stats->rx_frame_errors,
2404 		   stats->rx_compressed, stats->multicast,
2405 		   stats->tx_bytes, stats->tx_packets,
2406 		   stats->tx_errors, stats->tx_dropped,
2407 		   stats->tx_fifo_errors, stats->collisions,
2408 		   stats->tx_carrier_errors +
2409 		    stats->tx_aborted_errors +
2410 		    stats->tx_window_errors +
2411 		    stats->tx_heartbeat_errors,
2412 		   stats->tx_compressed);
2413 }
2414 
2415 /*
2416  *	Called from the PROCfs module. This now uses the new arbitrary sized
2417  *	/proc/net interface to create /proc/net/dev
2418  */
2419 static int dev_seq_show(struct seq_file *seq, void *v)
2420 {
2421 	if (v == SEQ_START_TOKEN)
2422 		seq_puts(seq, "Inter-|   Receive                            "
2423 			      "                    |  Transmit\n"
2424 			      " face |bytes    packets errs drop fifo frame "
2425 			      "compressed multicast|bytes    packets errs "
2426 			      "drop fifo colls carrier compressed\n");
2427 	else
2428 		dev_seq_printf_stats(seq, v);
2429 	return 0;
2430 }
2431 
2432 static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2433 {
2434 	struct netif_rx_stats *rc = NULL;
2435 
2436 	while (*pos < NR_CPUS)
2437 		if (cpu_online(*pos)) {
2438 			rc = &per_cpu(netdev_rx_stat, *pos);
2439 			break;
2440 		} else
2441 			++*pos;
2442 	return rc;
2443 }
2444 
2445 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2446 {
2447 	return softnet_get_online(pos);
2448 }
2449 
2450 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2451 {
2452 	++*pos;
2453 	return softnet_get_online(pos);
2454 }
2455 
2456 static void softnet_seq_stop(struct seq_file *seq, void *v)
2457 {
2458 }
2459 
2460 static int softnet_seq_show(struct seq_file *seq, void *v)
2461 {
2462 	struct netif_rx_stats *s = v;
2463 
2464 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
2465 		   s->total, s->dropped, s->time_squeeze, 0,
2466 		   0, 0, 0, 0, /* was fastroute */
2467 		   s->cpu_collision );
2468 	return 0;
2469 }
2470 
2471 static const struct seq_operations dev_seq_ops = {
2472 	.start = dev_seq_start,
2473 	.next  = dev_seq_next,
2474 	.stop  = dev_seq_stop,
2475 	.show  = dev_seq_show,
2476 };
2477 
2478 static int dev_seq_open(struct inode *inode, struct file *file)
2479 {
2480 	struct seq_file *seq;
2481 	int res;
2482 	res =  seq_open(file, &dev_seq_ops);
2483 	if (!res) {
2484 		seq = file->private_data;
2485 		seq->private = get_proc_net(inode);
2486 		if (!seq->private) {
2487 			seq_release(inode, file);
2488 			res = -ENXIO;
2489 		}
2490 	}
2491 	return res;
2492 }
2493 
2494 static int dev_seq_release(struct inode *inode, struct file *file)
2495 {
2496 	struct seq_file *seq = file->private_data;
2497 	struct net *net = seq->private;
2498 	put_net(net);
2499 	return seq_release(inode, file);
2500 }
2501 
2502 static const struct file_operations dev_seq_fops = {
2503 	.owner	 = THIS_MODULE,
2504 	.open    = dev_seq_open,
2505 	.read    = seq_read,
2506 	.llseek  = seq_lseek,
2507 	.release = dev_seq_release,
2508 };
2509 
2510 static const struct seq_operations softnet_seq_ops = {
2511 	.start = softnet_seq_start,
2512 	.next  = softnet_seq_next,
2513 	.stop  = softnet_seq_stop,
2514 	.show  = softnet_seq_show,
2515 };
2516 
2517 static int softnet_seq_open(struct inode *inode, struct file *file)
2518 {
2519 	return seq_open(file, &softnet_seq_ops);
2520 }
2521 
2522 static const struct file_operations softnet_seq_fops = {
2523 	.owner	 = THIS_MODULE,
2524 	.open    = softnet_seq_open,
2525 	.read    = seq_read,
2526 	.llseek  = seq_lseek,
2527 	.release = seq_release,
2528 };
2529 
2530 static void *ptype_get_idx(loff_t pos)
2531 {
2532 	struct packet_type *pt = NULL;
2533 	loff_t i = 0;
2534 	int t;
2535 
2536 	list_for_each_entry_rcu(pt, &ptype_all, list) {
2537 		if (i == pos)
2538 			return pt;
2539 		++i;
2540 	}
2541 
2542 	for (t = 0; t < 16; t++) {
2543 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2544 			if (i == pos)
2545 				return pt;
2546 			++i;
2547 		}
2548 	}
2549 	return NULL;
2550 }
2551 
2552 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2553 {
2554 	rcu_read_lock();
2555 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2556 }
2557 
2558 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2559 {
2560 	struct packet_type *pt;
2561 	struct list_head *nxt;
2562 	int hash;
2563 
2564 	++*pos;
2565 	if (v == SEQ_START_TOKEN)
2566 		return ptype_get_idx(0);
2567 
2568 	pt = v;
2569 	nxt = pt->list.next;
2570 	if (pt->type == htons(ETH_P_ALL)) {
2571 		if (nxt != &ptype_all)
2572 			goto found;
2573 		hash = 0;
2574 		nxt = ptype_base[0].next;
2575 	} else
2576 		hash = ntohs(pt->type) & 15;
2577 
2578 	while (nxt == &ptype_base[hash]) {
2579 		if (++hash >= 16)
2580 			return NULL;
2581 		nxt = ptype_base[hash].next;
2582 	}
2583 found:
2584 	return list_entry(nxt, struct packet_type, list);
2585 }
2586 
2587 static void ptype_seq_stop(struct seq_file *seq, void *v)
2588 {
2589 	rcu_read_unlock();
2590 }
2591 
2592 static void ptype_seq_decode(struct seq_file *seq, void *sym)
2593 {
2594 #ifdef CONFIG_KALLSYMS
2595 	unsigned long offset = 0, symsize;
2596 	const char *symname;
2597 	char *modname;
2598 	char namebuf[128];
2599 
2600 	symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2601 				  &modname, namebuf);
2602 
2603 	if (symname) {
2604 		char *delim = ":";
2605 
2606 		if (!modname)
2607 			modname = delim = "";
2608 		seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2609 			   symname, offset);
2610 		return;
2611 	}
2612 #endif
2613 
2614 	seq_printf(seq, "[%p]", sym);
2615 }
2616 
2617 static int ptype_seq_show(struct seq_file *seq, void *v)
2618 {
2619 	struct packet_type *pt = v;
2620 
2621 	if (v == SEQ_START_TOKEN)
2622 		seq_puts(seq, "Type Device      Function\n");
2623 	else {
2624 		if (pt->type == htons(ETH_P_ALL))
2625 			seq_puts(seq, "ALL ");
2626 		else
2627 			seq_printf(seq, "%04x", ntohs(pt->type));
2628 
2629 		seq_printf(seq, " %-8s ",
2630 			   pt->dev ? pt->dev->name : "");
2631 		ptype_seq_decode(seq,  pt->func);
2632 		seq_putc(seq, '\n');
2633 	}
2634 
2635 	return 0;
2636 }
2637 
2638 static const struct seq_operations ptype_seq_ops = {
2639 	.start = ptype_seq_start,
2640 	.next  = ptype_seq_next,
2641 	.stop  = ptype_seq_stop,
2642 	.show  = ptype_seq_show,
2643 };
2644 
2645 static int ptype_seq_open(struct inode *inode, struct file *file)
2646 {
2647 	return seq_open(file, &ptype_seq_ops);
2648 }
2649 
2650 static const struct file_operations ptype_seq_fops = {
2651 	.owner	 = THIS_MODULE,
2652 	.open    = ptype_seq_open,
2653 	.read    = seq_read,
2654 	.llseek  = seq_lseek,
2655 	.release = seq_release,
2656 };
2657 
2658 
2659 static int __net_init dev_proc_net_init(struct net *net)
2660 {
2661 	int rc = -ENOMEM;
2662 
2663 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
2664 		goto out;
2665 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
2666 		goto out_dev;
2667 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
2668 		goto out_softnet;
2669 
2670 	if (wext_proc_init(net))
2671 		goto out_ptype;
2672 	rc = 0;
2673 out:
2674 	return rc;
2675 out_ptype:
2676 	proc_net_remove(net, "ptype");
2677 out_softnet:
2678 	proc_net_remove(net, "softnet_stat");
2679 out_dev:
2680 	proc_net_remove(net, "dev");
2681 	goto out;
2682 }
2683 
2684 static void __net_exit dev_proc_net_exit(struct net *net)
2685 {
2686 	wext_proc_exit(net);
2687 
2688 	proc_net_remove(net, "ptype");
2689 	proc_net_remove(net, "softnet_stat");
2690 	proc_net_remove(net, "dev");
2691 }
2692 
2693 static struct pernet_operations __net_initdata dev_proc_ops = {
2694 	.init = dev_proc_net_init,
2695 	.exit = dev_proc_net_exit,
2696 };
2697 
2698 static int __init dev_proc_init(void)
2699 {
2700 	return register_pernet_subsys(&dev_proc_ops);
2701 }
2702 #else
2703 #define dev_proc_init() 0
2704 #endif	/* CONFIG_PROC_FS */
2705 
2706 
2707 /**
2708  *	netdev_set_master	-	set up master/slave pair
2709  *	@slave: slave device
2710  *	@master: new master device
2711  *
2712  *	Changes the master device of the slave. Pass %NULL to break the
2713  *	bonding. The caller must hold the RTNL semaphore. On a failure
2714  *	a negative errno code is returned. On success the reference counts
2715  *	are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2716  *	function returns zero.
2717  */
2718 int netdev_set_master(struct net_device *slave, struct net_device *master)
2719 {
2720 	struct net_device *old = slave->master;
2721 
2722 	ASSERT_RTNL();
2723 
2724 	if (master) {
2725 		if (old)
2726 			return -EBUSY;
2727 		dev_hold(master);
2728 	}
2729 
2730 	slave->master = master;
2731 
2732 	synchronize_net();
2733 
2734 	if (old)
2735 		dev_put(old);
2736 
2737 	if (master)
2738 		slave->flags |= IFF_SLAVE;
2739 	else
2740 		slave->flags &= ~IFF_SLAVE;
2741 
2742 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2743 	return 0;
2744 }
2745 
2746 static void __dev_set_promiscuity(struct net_device *dev, int inc)
2747 {
2748 	unsigned short old_flags = dev->flags;
2749 
2750 	ASSERT_RTNL();
2751 
2752 	if ((dev->promiscuity += inc) == 0)
2753 		dev->flags &= ~IFF_PROMISC;
2754 	else
2755 		dev->flags |= IFF_PROMISC;
2756 	if (dev->flags != old_flags) {
2757 		printk(KERN_INFO "device %s %s promiscuous mode\n",
2758 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
2759 							       "left");
2760 		audit_log(current->audit_context, GFP_ATOMIC,
2761 			AUDIT_ANOM_PROMISCUOUS,
2762 			"dev=%s prom=%d old_prom=%d auid=%u",
2763 			dev->name, (dev->flags & IFF_PROMISC),
2764 			(old_flags & IFF_PROMISC),
2765 			audit_get_loginuid(current->audit_context));
2766 
2767 		if (dev->change_rx_flags)
2768 			dev->change_rx_flags(dev, IFF_PROMISC);
2769 	}
2770 }
2771 
2772 /**
2773  *	dev_set_promiscuity	- update promiscuity count on a device
2774  *	@dev: device
2775  *	@inc: modifier
2776  *
2777  *	Add or remove promiscuity from a device. While the count in the device
2778  *	remains above zero the interface remains promiscuous. Once it hits zero
2779  *	the device reverts back to normal filtering operation. A negative inc
2780  *	value is used to drop promiscuity on the device.
2781  */
2782 void dev_set_promiscuity(struct net_device *dev, int inc)
2783 {
2784 	unsigned short old_flags = dev->flags;
2785 
2786 	__dev_set_promiscuity(dev, inc);
2787 	if (dev->flags != old_flags)
2788 		dev_set_rx_mode(dev);
2789 }
2790 
2791 /**
2792  *	dev_set_allmulti	- update allmulti count on a device
2793  *	@dev: device
2794  *	@inc: modifier
2795  *
2796  *	Add or remove reception of all multicast frames to a device. While the
2797  *	count in the device remains above zero the interface remains listening
2798  *	to all interfaces. Once it hits zero the device reverts back to normal
2799  *	filtering operation. A negative @inc value is used to drop the counter
2800  *	when releasing a resource needing all multicasts.
2801  */
2802 
2803 void dev_set_allmulti(struct net_device *dev, int inc)
2804 {
2805 	unsigned short old_flags = dev->flags;
2806 
2807 	ASSERT_RTNL();
2808 
2809 	dev->flags |= IFF_ALLMULTI;
2810 	if ((dev->allmulti += inc) == 0)
2811 		dev->flags &= ~IFF_ALLMULTI;
2812 	if (dev->flags ^ old_flags) {
2813 		if (dev->change_rx_flags)
2814 			dev->change_rx_flags(dev, IFF_ALLMULTI);
2815 		dev_set_rx_mode(dev);
2816 	}
2817 }
2818 
2819 /*
2820  *	Upload unicast and multicast address lists to device and
2821  *	configure RX filtering. When the device doesn't support unicast
2822  *	filtering it is put in promiscous mode while unicast addresses
2823  *	are present.
2824  */
2825 void __dev_set_rx_mode(struct net_device *dev)
2826 {
2827 	/* dev_open will call this function so the list will stay sane. */
2828 	if (!(dev->flags&IFF_UP))
2829 		return;
2830 
2831 	if (!netif_device_present(dev))
2832 		return;
2833 
2834 	if (dev->set_rx_mode)
2835 		dev->set_rx_mode(dev);
2836 	else {
2837 		/* Unicast addresses changes may only happen under the rtnl,
2838 		 * therefore calling __dev_set_promiscuity here is safe.
2839 		 */
2840 		if (dev->uc_count > 0 && !dev->uc_promisc) {
2841 			__dev_set_promiscuity(dev, 1);
2842 			dev->uc_promisc = 1;
2843 		} else if (dev->uc_count == 0 && dev->uc_promisc) {
2844 			__dev_set_promiscuity(dev, -1);
2845 			dev->uc_promisc = 0;
2846 		}
2847 
2848 		if (dev->set_multicast_list)
2849 			dev->set_multicast_list(dev);
2850 	}
2851 }
2852 
2853 void dev_set_rx_mode(struct net_device *dev)
2854 {
2855 	netif_tx_lock_bh(dev);
2856 	__dev_set_rx_mode(dev);
2857 	netif_tx_unlock_bh(dev);
2858 }
2859 
2860 int __dev_addr_delete(struct dev_addr_list **list, int *count,
2861 		      void *addr, int alen, int glbl)
2862 {
2863 	struct dev_addr_list *da;
2864 
2865 	for (; (da = *list) != NULL; list = &da->next) {
2866 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2867 		    alen == da->da_addrlen) {
2868 			if (glbl) {
2869 				int old_glbl = da->da_gusers;
2870 				da->da_gusers = 0;
2871 				if (old_glbl == 0)
2872 					break;
2873 			}
2874 			if (--da->da_users)
2875 				return 0;
2876 
2877 			*list = da->next;
2878 			kfree(da);
2879 			(*count)--;
2880 			return 0;
2881 		}
2882 	}
2883 	return -ENOENT;
2884 }
2885 
2886 int __dev_addr_add(struct dev_addr_list **list, int *count,
2887 		   void *addr, int alen, int glbl)
2888 {
2889 	struct dev_addr_list *da;
2890 
2891 	for (da = *list; da != NULL; da = da->next) {
2892 		if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2893 		    da->da_addrlen == alen) {
2894 			if (glbl) {
2895 				int old_glbl = da->da_gusers;
2896 				da->da_gusers = 1;
2897 				if (old_glbl)
2898 					return 0;
2899 			}
2900 			da->da_users++;
2901 			return 0;
2902 		}
2903 	}
2904 
2905 	da = kmalloc(sizeof(*da), GFP_ATOMIC);
2906 	if (da == NULL)
2907 		return -ENOMEM;
2908 	memcpy(da->da_addr, addr, alen);
2909 	da->da_addrlen = alen;
2910 	da->da_users = 1;
2911 	da->da_gusers = glbl ? 1 : 0;
2912 	da->next = *list;
2913 	*list = da;
2914 	(*count)++;
2915 	return 0;
2916 }
2917 
2918 /**
2919  *	dev_unicast_delete	- Release secondary unicast address.
2920  *	@dev: device
2921  *	@addr: address to delete
2922  *	@alen: length of @addr
2923  *
2924  *	Release reference to a secondary unicast address and remove it
2925  *	from the device if the reference count drops to zero.
2926  *
2927  * 	The caller must hold the rtnl_mutex.
2928  */
2929 int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2930 {
2931 	int err;
2932 
2933 	ASSERT_RTNL();
2934 
2935 	netif_tx_lock_bh(dev);
2936 	err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2937 	if (!err)
2938 		__dev_set_rx_mode(dev);
2939 	netif_tx_unlock_bh(dev);
2940 	return err;
2941 }
2942 EXPORT_SYMBOL(dev_unicast_delete);
2943 
2944 /**
2945  *	dev_unicast_add		- add a secondary unicast address
2946  *	@dev: device
2947  *	@addr: address to delete
2948  *	@alen: length of @addr
2949  *
2950  *	Add a secondary unicast address to the device or increase
2951  *	the reference count if it already exists.
2952  *
2953  *	The caller must hold the rtnl_mutex.
2954  */
2955 int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2956 {
2957 	int err;
2958 
2959 	ASSERT_RTNL();
2960 
2961 	netif_tx_lock_bh(dev);
2962 	err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2963 	if (!err)
2964 		__dev_set_rx_mode(dev);
2965 	netif_tx_unlock_bh(dev);
2966 	return err;
2967 }
2968 EXPORT_SYMBOL(dev_unicast_add);
2969 
2970 static void __dev_addr_discard(struct dev_addr_list **list)
2971 {
2972 	struct dev_addr_list *tmp;
2973 
2974 	while (*list != NULL) {
2975 		tmp = *list;
2976 		*list = tmp->next;
2977 		if (tmp->da_users > tmp->da_gusers)
2978 			printk("__dev_addr_discard: address leakage! "
2979 			       "da_users=%d\n", tmp->da_users);
2980 		kfree(tmp);
2981 	}
2982 }
2983 
2984 static void dev_addr_discard(struct net_device *dev)
2985 {
2986 	netif_tx_lock_bh(dev);
2987 
2988 	__dev_addr_discard(&dev->uc_list);
2989 	dev->uc_count = 0;
2990 
2991 	__dev_addr_discard(&dev->mc_list);
2992 	dev->mc_count = 0;
2993 
2994 	netif_tx_unlock_bh(dev);
2995 }
2996 
2997 unsigned dev_get_flags(const struct net_device *dev)
2998 {
2999 	unsigned flags;
3000 
3001 	flags = (dev->flags & ~(IFF_PROMISC |
3002 				IFF_ALLMULTI |
3003 				IFF_RUNNING |
3004 				IFF_LOWER_UP |
3005 				IFF_DORMANT)) |
3006 		(dev->gflags & (IFF_PROMISC |
3007 				IFF_ALLMULTI));
3008 
3009 	if (netif_running(dev)) {
3010 		if (netif_oper_up(dev))
3011 			flags |= IFF_RUNNING;
3012 		if (netif_carrier_ok(dev))
3013 			flags |= IFF_LOWER_UP;
3014 		if (netif_dormant(dev))
3015 			flags |= IFF_DORMANT;
3016 	}
3017 
3018 	return flags;
3019 }
3020 
3021 int dev_change_flags(struct net_device *dev, unsigned flags)
3022 {
3023 	int ret, changes;
3024 	int old_flags = dev->flags;
3025 
3026 	ASSERT_RTNL();
3027 
3028 	/*
3029 	 *	Set the flags on our device.
3030 	 */
3031 
3032 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3033 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3034 			       IFF_AUTOMEDIA)) |
3035 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3036 				    IFF_ALLMULTI));
3037 
3038 	/*
3039 	 *	Load in the correct multicast list now the flags have changed.
3040 	 */
3041 
3042 	if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3043 		dev->change_rx_flags(dev, IFF_MULTICAST);
3044 
3045 	dev_set_rx_mode(dev);
3046 
3047 	/*
3048 	 *	Have we downed the interface. We handle IFF_UP ourselves
3049 	 *	according to user attempts to set it, rather than blindly
3050 	 *	setting it.
3051 	 */
3052 
3053 	ret = 0;
3054 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
3055 		ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3056 
3057 		if (!ret)
3058 			dev_set_rx_mode(dev);
3059 	}
3060 
3061 	if (dev->flags & IFF_UP &&
3062 	    ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3063 					  IFF_VOLATILE)))
3064 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
3065 
3066 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
3067 		int inc = (flags & IFF_PROMISC) ? +1 : -1;
3068 		dev->gflags ^= IFF_PROMISC;
3069 		dev_set_promiscuity(dev, inc);
3070 	}
3071 
3072 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3073 	   is important. Some (broken) drivers set IFF_PROMISC, when
3074 	   IFF_ALLMULTI is requested not asking us and not reporting.
3075 	 */
3076 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3077 		int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3078 		dev->gflags ^= IFF_ALLMULTI;
3079 		dev_set_allmulti(dev, inc);
3080 	}
3081 
3082 	/* Exclude state transition flags, already notified */
3083 	changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3084 	if (changes)
3085 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
3086 
3087 	return ret;
3088 }
3089 
3090 int dev_set_mtu(struct net_device *dev, int new_mtu)
3091 {
3092 	int err;
3093 
3094 	if (new_mtu == dev->mtu)
3095 		return 0;
3096 
3097 	/*	MTU must be positive.	 */
3098 	if (new_mtu < 0)
3099 		return -EINVAL;
3100 
3101 	if (!netif_device_present(dev))
3102 		return -ENODEV;
3103 
3104 	err = 0;
3105 	if (dev->change_mtu)
3106 		err = dev->change_mtu(dev, new_mtu);
3107 	else
3108 		dev->mtu = new_mtu;
3109 	if (!err && dev->flags & IFF_UP)
3110 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
3111 	return err;
3112 }
3113 
3114 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3115 {
3116 	int err;
3117 
3118 	if (!dev->set_mac_address)
3119 		return -EOPNOTSUPP;
3120 	if (sa->sa_family != dev->type)
3121 		return -EINVAL;
3122 	if (!netif_device_present(dev))
3123 		return -ENODEV;
3124 	err = dev->set_mac_address(dev, sa);
3125 	if (!err)
3126 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3127 	return err;
3128 }
3129 
3130 /*
3131  *	Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
3132  */
3133 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
3134 {
3135 	int err;
3136 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3137 
3138 	if (!dev)
3139 		return -ENODEV;
3140 
3141 	switch (cmd) {
3142 		case SIOCGIFFLAGS:	/* Get interface flags */
3143 			ifr->ifr_flags = dev_get_flags(dev);
3144 			return 0;
3145 
3146 		case SIOCGIFMETRIC:	/* Get the metric on the interface
3147 					   (currently unused) */
3148 			ifr->ifr_metric = 0;
3149 			return 0;
3150 
3151 		case SIOCGIFMTU:	/* Get the MTU of a device */
3152 			ifr->ifr_mtu = dev->mtu;
3153 			return 0;
3154 
3155 		case SIOCGIFHWADDR:
3156 			if (!dev->addr_len)
3157 				memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3158 			else
3159 				memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3160 				       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3161 			ifr->ifr_hwaddr.sa_family = dev->type;
3162 			return 0;
3163 
3164 		case SIOCGIFSLAVE:
3165 			err = -EINVAL;
3166 			break;
3167 
3168 		case SIOCGIFMAP:
3169 			ifr->ifr_map.mem_start = dev->mem_start;
3170 			ifr->ifr_map.mem_end   = dev->mem_end;
3171 			ifr->ifr_map.base_addr = dev->base_addr;
3172 			ifr->ifr_map.irq       = dev->irq;
3173 			ifr->ifr_map.dma       = dev->dma;
3174 			ifr->ifr_map.port      = dev->if_port;
3175 			return 0;
3176 
3177 		case SIOCGIFINDEX:
3178 			ifr->ifr_ifindex = dev->ifindex;
3179 			return 0;
3180 
3181 		case SIOCGIFTXQLEN:
3182 			ifr->ifr_qlen = dev->tx_queue_len;
3183 			return 0;
3184 
3185 		default:
3186 			/* dev_ioctl() should ensure this case
3187 			 * is never reached
3188 			 */
3189 			WARN_ON(1);
3190 			err = -EINVAL;
3191 			break;
3192 
3193 	}
3194 	return err;
3195 }
3196 
3197 /*
3198  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
3199  */
3200 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3201 {
3202 	int err;
3203 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3204 
3205 	if (!dev)
3206 		return -ENODEV;
3207 
3208 	switch (cmd) {
3209 		case SIOCSIFFLAGS:	/* Set interface flags */
3210 			return dev_change_flags(dev, ifr->ifr_flags);
3211 
3212 		case SIOCSIFMETRIC:	/* Set the metric on the interface
3213 					   (currently unused) */
3214 			return -EOPNOTSUPP;
3215 
3216 		case SIOCSIFMTU:	/* Set the MTU of a device */
3217 			return dev_set_mtu(dev, ifr->ifr_mtu);
3218 
3219 		case SIOCSIFHWADDR:
3220 			return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3221 
3222 		case SIOCSIFHWBROADCAST:
3223 			if (ifr->ifr_hwaddr.sa_family != dev->type)
3224 				return -EINVAL;
3225 			memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3226 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3227 			call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3228 			return 0;
3229 
3230 		case SIOCSIFMAP:
3231 			if (dev->set_config) {
3232 				if (!netif_device_present(dev))
3233 					return -ENODEV;
3234 				return dev->set_config(dev, &ifr->ifr_map);
3235 			}
3236 			return -EOPNOTSUPP;
3237 
3238 		case SIOCADDMULTI:
3239 			if (!dev->set_multicast_list ||
3240 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3241 				return -EINVAL;
3242 			if (!netif_device_present(dev))
3243 				return -ENODEV;
3244 			return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3245 					  dev->addr_len, 1);
3246 
3247 		case SIOCDELMULTI:
3248 			if (!dev->set_multicast_list ||
3249 			    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3250 				return -EINVAL;
3251 			if (!netif_device_present(dev))
3252 				return -ENODEV;
3253 			return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3254 					     dev->addr_len, 1);
3255 
3256 		case SIOCSIFTXQLEN:
3257 			if (ifr->ifr_qlen < 0)
3258 				return -EINVAL;
3259 			dev->tx_queue_len = ifr->ifr_qlen;
3260 			return 0;
3261 
3262 		case SIOCSIFNAME:
3263 			ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3264 			return dev_change_name(dev, ifr->ifr_newname);
3265 
3266 		/*
3267 		 *	Unknown or private ioctl
3268 		 */
3269 
3270 		default:
3271 			if ((cmd >= SIOCDEVPRIVATE &&
3272 			    cmd <= SIOCDEVPRIVATE + 15) ||
3273 			    cmd == SIOCBONDENSLAVE ||
3274 			    cmd == SIOCBONDRELEASE ||
3275 			    cmd == SIOCBONDSETHWADDR ||
3276 			    cmd == SIOCBONDSLAVEINFOQUERY ||
3277 			    cmd == SIOCBONDINFOQUERY ||
3278 			    cmd == SIOCBONDCHANGEACTIVE ||
3279 			    cmd == SIOCGMIIPHY ||
3280 			    cmd == SIOCGMIIREG ||
3281 			    cmd == SIOCSMIIREG ||
3282 			    cmd == SIOCBRADDIF ||
3283 			    cmd == SIOCBRDELIF ||
3284 			    cmd == SIOCWANDEV) {
3285 				err = -EOPNOTSUPP;
3286 				if (dev->do_ioctl) {
3287 					if (netif_device_present(dev))
3288 						err = dev->do_ioctl(dev, ifr,
3289 								    cmd);
3290 					else
3291 						err = -ENODEV;
3292 				}
3293 			} else
3294 				err = -EINVAL;
3295 
3296 	}
3297 	return err;
3298 }
3299 
3300 /*
3301  *	This function handles all "interface"-type I/O control requests. The actual
3302  *	'doing' part of this is dev_ifsioc above.
3303  */
3304 
3305 /**
3306  *	dev_ioctl	-	network device ioctl
3307  *	@net: the applicable net namespace
3308  *	@cmd: command to issue
3309  *	@arg: pointer to a struct ifreq in user space
3310  *
3311  *	Issue ioctl functions to devices. This is normally called by the
3312  *	user space syscall interfaces but can sometimes be useful for
3313  *	other purposes. The return value is the return from the syscall if
3314  *	positive or a negative errno code on error.
3315  */
3316 
3317 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
3318 {
3319 	struct ifreq ifr;
3320 	int ret;
3321 	char *colon;
3322 
3323 	/* One special case: SIOCGIFCONF takes ifconf argument
3324 	   and requires shared lock, because it sleeps writing
3325 	   to user space.
3326 	 */
3327 
3328 	if (cmd == SIOCGIFCONF) {
3329 		rtnl_lock();
3330 		ret = dev_ifconf(net, (char __user *) arg);
3331 		rtnl_unlock();
3332 		return ret;
3333 	}
3334 	if (cmd == SIOCGIFNAME)
3335 		return dev_ifname(net, (struct ifreq __user *)arg);
3336 
3337 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3338 		return -EFAULT;
3339 
3340 	ifr.ifr_name[IFNAMSIZ-1] = 0;
3341 
3342 	colon = strchr(ifr.ifr_name, ':');
3343 	if (colon)
3344 		*colon = 0;
3345 
3346 	/*
3347 	 *	See which interface the caller is talking about.
3348 	 */
3349 
3350 	switch (cmd) {
3351 		/*
3352 		 *	These ioctl calls:
3353 		 *	- can be done by all.
3354 		 *	- atomic and do not require locking.
3355 		 *	- return a value
3356 		 */
3357 		case SIOCGIFFLAGS:
3358 		case SIOCGIFMETRIC:
3359 		case SIOCGIFMTU:
3360 		case SIOCGIFHWADDR:
3361 		case SIOCGIFSLAVE:
3362 		case SIOCGIFMAP:
3363 		case SIOCGIFINDEX:
3364 		case SIOCGIFTXQLEN:
3365 			dev_load(net, ifr.ifr_name);
3366 			read_lock(&dev_base_lock);
3367 			ret = dev_ifsioc_locked(net, &ifr, cmd);
3368 			read_unlock(&dev_base_lock);
3369 			if (!ret) {
3370 				if (colon)
3371 					*colon = ':';
3372 				if (copy_to_user(arg, &ifr,
3373 						 sizeof(struct ifreq)))
3374 					ret = -EFAULT;
3375 			}
3376 			return ret;
3377 
3378 		case SIOCETHTOOL:
3379 			dev_load(net, ifr.ifr_name);
3380 			rtnl_lock();
3381 			ret = dev_ethtool(net, &ifr);
3382 			rtnl_unlock();
3383 			if (!ret) {
3384 				if (colon)
3385 					*colon = ':';
3386 				if (copy_to_user(arg, &ifr,
3387 						 sizeof(struct ifreq)))
3388 					ret = -EFAULT;
3389 			}
3390 			return ret;
3391 
3392 		/*
3393 		 *	These ioctl calls:
3394 		 *	- require superuser power.
3395 		 *	- require strict serialization.
3396 		 *	- return a value
3397 		 */
3398 		case SIOCGMIIPHY:
3399 		case SIOCGMIIREG:
3400 		case SIOCSIFNAME:
3401 			if (!capable(CAP_NET_ADMIN))
3402 				return -EPERM;
3403 			dev_load(net, ifr.ifr_name);
3404 			rtnl_lock();
3405 			ret = dev_ifsioc(net, &ifr, cmd);
3406 			rtnl_unlock();
3407 			if (!ret) {
3408 				if (colon)
3409 					*colon = ':';
3410 				if (copy_to_user(arg, &ifr,
3411 						 sizeof(struct ifreq)))
3412 					ret = -EFAULT;
3413 			}
3414 			return ret;
3415 
3416 		/*
3417 		 *	These ioctl calls:
3418 		 *	- require superuser power.
3419 		 *	- require strict serialization.
3420 		 *	- do not return a value
3421 		 */
3422 		case SIOCSIFFLAGS:
3423 		case SIOCSIFMETRIC:
3424 		case SIOCSIFMTU:
3425 		case SIOCSIFMAP:
3426 		case SIOCSIFHWADDR:
3427 		case SIOCSIFSLAVE:
3428 		case SIOCADDMULTI:
3429 		case SIOCDELMULTI:
3430 		case SIOCSIFHWBROADCAST:
3431 		case SIOCSIFTXQLEN:
3432 		case SIOCSMIIREG:
3433 		case SIOCBONDENSLAVE:
3434 		case SIOCBONDRELEASE:
3435 		case SIOCBONDSETHWADDR:
3436 		case SIOCBONDCHANGEACTIVE:
3437 		case SIOCBRADDIF:
3438 		case SIOCBRDELIF:
3439 			if (!capable(CAP_NET_ADMIN))
3440 				return -EPERM;
3441 			/* fall through */
3442 		case SIOCBONDSLAVEINFOQUERY:
3443 		case SIOCBONDINFOQUERY:
3444 			dev_load(net, ifr.ifr_name);
3445 			rtnl_lock();
3446 			ret = dev_ifsioc(net, &ifr, cmd);
3447 			rtnl_unlock();
3448 			return ret;
3449 
3450 		case SIOCGIFMEM:
3451 			/* Get the per device memory space. We can add this but
3452 			 * currently do not support it */
3453 		case SIOCSIFMEM:
3454 			/* Set the per device memory buffer space.
3455 			 * Not applicable in our case */
3456 		case SIOCSIFLINK:
3457 			return -EINVAL;
3458 
3459 		/*
3460 		 *	Unknown or private ioctl.
3461 		 */
3462 		default:
3463 			if (cmd == SIOCWANDEV ||
3464 			    (cmd >= SIOCDEVPRIVATE &&
3465 			     cmd <= SIOCDEVPRIVATE + 15)) {
3466 				dev_load(net, ifr.ifr_name);
3467 				rtnl_lock();
3468 				ret = dev_ifsioc(net, &ifr, cmd);
3469 				rtnl_unlock();
3470 				if (!ret && copy_to_user(arg, &ifr,
3471 							 sizeof(struct ifreq)))
3472 					ret = -EFAULT;
3473 				return ret;
3474 			}
3475 			/* Take care of Wireless Extensions */
3476 			if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3477 				return wext_handle_ioctl(net, &ifr, cmd, arg);
3478 			return -EINVAL;
3479 	}
3480 }
3481 
3482 
3483 /**
3484  *	dev_new_index	-	allocate an ifindex
3485  *	@net: the applicable net namespace
3486  *
3487  *	Returns a suitable unique value for a new device interface
3488  *	number.  The caller must hold the rtnl semaphore or the
3489  *	dev_base_lock to be sure it remains unique.
3490  */
3491 static int dev_new_index(struct net *net)
3492 {
3493 	static int ifindex;
3494 	for (;;) {
3495 		if (++ifindex <= 0)
3496 			ifindex = 1;
3497 		if (!__dev_get_by_index(net, ifindex))
3498 			return ifindex;
3499 	}
3500 }
3501 
3502 /* Delayed registration/unregisteration */
3503 static DEFINE_SPINLOCK(net_todo_list_lock);
3504 static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3505 
3506 static void net_set_todo(struct net_device *dev)
3507 {
3508 	spin_lock(&net_todo_list_lock);
3509 	list_add_tail(&dev->todo_list, &net_todo_list);
3510 	spin_unlock(&net_todo_list_lock);
3511 }
3512 
3513 static void rollback_registered(struct net_device *dev)
3514 {
3515 	BUG_ON(dev_boot_phase);
3516 	ASSERT_RTNL();
3517 
3518 	/* Some devices call without registering for initialization unwind. */
3519 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3520 		printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3521 				  "was registered\n", dev->name, dev);
3522 
3523 		WARN_ON(1);
3524 		return;
3525 	}
3526 
3527 	BUG_ON(dev->reg_state != NETREG_REGISTERED);
3528 
3529 	/* If device is running, close it first. */
3530 	dev_close(dev);
3531 
3532 	/* And unlink it from device chain. */
3533 	unlist_netdevice(dev);
3534 
3535 	dev->reg_state = NETREG_UNREGISTERING;
3536 
3537 	synchronize_net();
3538 
3539 	/* Shutdown queueing discipline. */
3540 	dev_shutdown(dev);
3541 
3542 
3543 	/* Notify protocols, that we are about to destroy
3544 	   this device. They should clean all the things.
3545 	*/
3546 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3547 
3548 	/*
3549 	 *	Flush the unicast and multicast chains
3550 	 */
3551 	dev_addr_discard(dev);
3552 
3553 	if (dev->uninit)
3554 		dev->uninit(dev);
3555 
3556 	/* Notifier chain MUST detach us from master device. */
3557 	BUG_TRAP(!dev->master);
3558 
3559 	/* Remove entries from kobject tree */
3560 	netdev_unregister_kobject(dev);
3561 
3562 	synchronize_net();
3563 
3564 	dev_put(dev);
3565 }
3566 
3567 /**
3568  *	register_netdevice	- register a network device
3569  *	@dev: device to register
3570  *
3571  *	Take a completed network device structure and add it to the kernel
3572  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3573  *	chain. 0 is returned on success. A negative errno code is returned
3574  *	on a failure to set up the device, or if the name is a duplicate.
3575  *
3576  *	Callers must hold the rtnl semaphore. You may want
3577  *	register_netdev() instead of this.
3578  *
3579  *	BUGS:
3580  *	The locking appears insufficient to guarantee two parallel registers
3581  *	will not get the same name.
3582  */
3583 
3584 int register_netdevice(struct net_device *dev)
3585 {
3586 	struct hlist_head *head;
3587 	struct hlist_node *p;
3588 	int ret;
3589 	struct net *net;
3590 
3591 	BUG_ON(dev_boot_phase);
3592 	ASSERT_RTNL();
3593 
3594 	might_sleep();
3595 
3596 	/* When net_device's are persistent, this will be fatal. */
3597 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3598 	BUG_ON(!dev->nd_net);
3599 	net = dev->nd_net;
3600 
3601 	spin_lock_init(&dev->queue_lock);
3602 	spin_lock_init(&dev->_xmit_lock);
3603 	netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
3604 	dev->xmit_lock_owner = -1;
3605 	spin_lock_init(&dev->ingress_lock);
3606 
3607 	dev->iflink = -1;
3608 
3609 	/* Init, if this function is available */
3610 	if (dev->init) {
3611 		ret = dev->init(dev);
3612 		if (ret) {
3613 			if (ret > 0)
3614 				ret = -EIO;
3615 			goto out;
3616 		}
3617 	}
3618 
3619 	if (!dev_valid_name(dev->name)) {
3620 		ret = -EINVAL;
3621 		goto err_uninit;
3622 	}
3623 
3624 	dev->ifindex = dev_new_index(net);
3625 	if (dev->iflink == -1)
3626 		dev->iflink = dev->ifindex;
3627 
3628 	/* Check for existence of name */
3629 	head = dev_name_hash(net, dev->name);
3630 	hlist_for_each(p, head) {
3631 		struct net_device *d
3632 			= hlist_entry(p, struct net_device, name_hlist);
3633 		if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3634 			ret = -EEXIST;
3635 			goto err_uninit;
3636 		}
3637 	}
3638 
3639 	/* Fix illegal checksum combinations */
3640 	if ((dev->features & NETIF_F_HW_CSUM) &&
3641 	    (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3642 		printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3643 		       dev->name);
3644 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3645 	}
3646 
3647 	if ((dev->features & NETIF_F_NO_CSUM) &&
3648 	    (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3649 		printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3650 		       dev->name);
3651 		dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3652 	}
3653 
3654 
3655 	/* Fix illegal SG+CSUM combinations. */
3656 	if ((dev->features & NETIF_F_SG) &&
3657 	    !(dev->features & NETIF_F_ALL_CSUM)) {
3658 		printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
3659 		       dev->name);
3660 		dev->features &= ~NETIF_F_SG;
3661 	}
3662 
3663 	/* TSO requires that SG is present as well. */
3664 	if ((dev->features & NETIF_F_TSO) &&
3665 	    !(dev->features & NETIF_F_SG)) {
3666 		printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
3667 		       dev->name);
3668 		dev->features &= ~NETIF_F_TSO;
3669 	}
3670 	if (dev->features & NETIF_F_UFO) {
3671 		if (!(dev->features & NETIF_F_HW_CSUM)) {
3672 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3673 					"NETIF_F_HW_CSUM feature.\n",
3674 							dev->name);
3675 			dev->features &= ~NETIF_F_UFO;
3676 		}
3677 		if (!(dev->features & NETIF_F_SG)) {
3678 			printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3679 					"NETIF_F_SG feature.\n",
3680 					dev->name);
3681 			dev->features &= ~NETIF_F_UFO;
3682 		}
3683 	}
3684 
3685 	ret = netdev_register_kobject(dev);
3686 	if (ret)
3687 		goto err_uninit;
3688 	dev->reg_state = NETREG_REGISTERED;
3689 
3690 	/*
3691 	 *	Default initial state at registry is that the
3692 	 *	device is present.
3693 	 */
3694 
3695 	set_bit(__LINK_STATE_PRESENT, &dev->state);
3696 
3697 	dev_init_scheduler(dev);
3698 	dev_hold(dev);
3699 	list_netdevice(dev);
3700 
3701 	/* Notify protocols, that a new device appeared. */
3702 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
3703 	ret = notifier_to_errno(ret);
3704 	if (ret) {
3705 		rollback_registered(dev);
3706 		dev->reg_state = NETREG_UNREGISTERED;
3707 	}
3708 
3709 out:
3710 	return ret;
3711 
3712 err_uninit:
3713 	if (dev->uninit)
3714 		dev->uninit(dev);
3715 	goto out;
3716 }
3717 
3718 /**
3719  *	register_netdev	- register a network device
3720  *	@dev: device to register
3721  *
3722  *	Take a completed network device structure and add it to the kernel
3723  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3724  *	chain. 0 is returned on success. A negative errno code is returned
3725  *	on a failure to set up the device, or if the name is a duplicate.
3726  *
3727  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
3728  *	and expands the device name if you passed a format string to
3729  *	alloc_netdev.
3730  */
3731 int register_netdev(struct net_device *dev)
3732 {
3733 	int err;
3734 
3735 	rtnl_lock();
3736 
3737 	/*
3738 	 * If the name is a format string the caller wants us to do a
3739 	 * name allocation.
3740 	 */
3741 	if (strchr(dev->name, '%')) {
3742 		err = dev_alloc_name(dev, dev->name);
3743 		if (err < 0)
3744 			goto out;
3745 	}
3746 
3747 	err = register_netdevice(dev);
3748 out:
3749 	rtnl_unlock();
3750 	return err;
3751 }
3752 EXPORT_SYMBOL(register_netdev);
3753 
3754 /*
3755  * netdev_wait_allrefs - wait until all references are gone.
3756  *
3757  * This is called when unregistering network devices.
3758  *
3759  * Any protocol or device that holds a reference should register
3760  * for netdevice notification, and cleanup and put back the
3761  * reference if they receive an UNREGISTER event.
3762  * We can get stuck here if buggy protocols don't correctly
3763  * call dev_put.
3764  */
3765 static void netdev_wait_allrefs(struct net_device *dev)
3766 {
3767 	unsigned long rebroadcast_time, warning_time;
3768 
3769 	rebroadcast_time = warning_time = jiffies;
3770 	while (atomic_read(&dev->refcnt) != 0) {
3771 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
3772 			rtnl_lock();
3773 
3774 			/* Rebroadcast unregister notification */
3775 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3776 
3777 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3778 				     &dev->state)) {
3779 				/* We must not have linkwatch events
3780 				 * pending on unregister. If this
3781 				 * happens, we simply run the queue
3782 				 * unscheduled, resulting in a noop
3783 				 * for this device.
3784 				 */
3785 				linkwatch_run_queue();
3786 			}
3787 
3788 			__rtnl_unlock();
3789 
3790 			rebroadcast_time = jiffies;
3791 		}
3792 
3793 		msleep(250);
3794 
3795 		if (time_after(jiffies, warning_time + 10 * HZ)) {
3796 			printk(KERN_EMERG "unregister_netdevice: "
3797 			       "waiting for %s to become free. Usage "
3798 			       "count = %d\n",
3799 			       dev->name, atomic_read(&dev->refcnt));
3800 			warning_time = jiffies;
3801 		}
3802 	}
3803 }
3804 
3805 /* The sequence is:
3806  *
3807  *	rtnl_lock();
3808  *	...
3809  *	register_netdevice(x1);
3810  *	register_netdevice(x2);
3811  *	...
3812  *	unregister_netdevice(y1);
3813  *	unregister_netdevice(y2);
3814  *      ...
3815  *	rtnl_unlock();
3816  *	free_netdev(y1);
3817  *	free_netdev(y2);
3818  *
3819  * We are invoked by rtnl_unlock() after it drops the semaphore.
3820  * This allows us to deal with problems:
3821  * 1) We can delete sysfs objects which invoke hotplug
3822  *    without deadlocking with linkwatch via keventd.
3823  * 2) Since we run with the RTNL semaphore not held, we can sleep
3824  *    safely in order to wait for the netdev refcnt to drop to zero.
3825  */
3826 static DEFINE_MUTEX(net_todo_run_mutex);
3827 void netdev_run_todo(void)
3828 {
3829 	struct list_head list;
3830 
3831 	/* Need to guard against multiple cpu's getting out of order. */
3832 	mutex_lock(&net_todo_run_mutex);
3833 
3834 	/* Not safe to do outside the semaphore.  We must not return
3835 	 * until all unregister events invoked by the local processor
3836 	 * have been completed (either by this todo run, or one on
3837 	 * another cpu).
3838 	 */
3839 	if (list_empty(&net_todo_list))
3840 		goto out;
3841 
3842 	/* Snapshot list, allow later requests */
3843 	spin_lock(&net_todo_list_lock);
3844 	list_replace_init(&net_todo_list, &list);
3845 	spin_unlock(&net_todo_list_lock);
3846 
3847 	while (!list_empty(&list)) {
3848 		struct net_device *dev
3849 			= list_entry(list.next, struct net_device, todo_list);
3850 		list_del(&dev->todo_list);
3851 
3852 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3853 			printk(KERN_ERR "network todo '%s' but state %d\n",
3854 			       dev->name, dev->reg_state);
3855 			dump_stack();
3856 			continue;
3857 		}
3858 
3859 		dev->reg_state = NETREG_UNREGISTERED;
3860 
3861 		netdev_wait_allrefs(dev);
3862 
3863 		/* paranoia */
3864 		BUG_ON(atomic_read(&dev->refcnt));
3865 		BUG_TRAP(!dev->ip_ptr);
3866 		BUG_TRAP(!dev->ip6_ptr);
3867 		BUG_TRAP(!dev->dn_ptr);
3868 
3869 		if (dev->destructor)
3870 			dev->destructor(dev);
3871 
3872 		/* Free network device */
3873 		kobject_put(&dev->dev.kobj);
3874 	}
3875 
3876 out:
3877 	mutex_unlock(&net_todo_run_mutex);
3878 }
3879 
3880 static struct net_device_stats *internal_stats(struct net_device *dev)
3881 {
3882 	return &dev->stats;
3883 }
3884 
3885 /**
3886  *	alloc_netdev_mq - allocate network device
3887  *	@sizeof_priv:	size of private data to allocate space for
3888  *	@name:		device name format string
3889  *	@setup:		callback to initialize device
3890  *	@queue_count:	the number of subqueues to allocate
3891  *
3892  *	Allocates a struct net_device with private data area for driver use
3893  *	and performs basic initialization.  Also allocates subquue structs
3894  *	for each queue on the device at the end of the netdevice.
3895  */
3896 struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3897 		void (*setup)(struct net_device *), unsigned int queue_count)
3898 {
3899 	void *p;
3900 	struct net_device *dev;
3901 	int alloc_size;
3902 
3903 	BUG_ON(strlen(name) >= sizeof(dev->name));
3904 
3905 	/* ensure 32-byte alignment of both the device and private area */
3906 	alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
3907 		     (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
3908 		     ~NETDEV_ALIGN_CONST;
3909 	alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3910 
3911 	p = kzalloc(alloc_size, GFP_KERNEL);
3912 	if (!p) {
3913 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
3914 		return NULL;
3915 	}
3916 
3917 	dev = (struct net_device *)
3918 		(((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3919 	dev->padded = (char *)dev - (char *)p;
3920 	dev->nd_net = &init_net;
3921 
3922 	if (sizeof_priv) {
3923 		dev->priv = ((char *)dev +
3924 			     ((sizeof(struct net_device) +
3925 			       (sizeof(struct net_device_subqueue) *
3926 				(queue_count - 1)) + NETDEV_ALIGN_CONST)
3927 			      & ~NETDEV_ALIGN_CONST));
3928 	}
3929 
3930 	dev->egress_subqueue_count = queue_count;
3931 
3932 	dev->get_stats = internal_stats;
3933 	netpoll_netdev_init(dev);
3934 	setup(dev);
3935 	strcpy(dev->name, name);
3936 	return dev;
3937 }
3938 EXPORT_SYMBOL(alloc_netdev_mq);
3939 
3940 /**
3941  *	free_netdev - free network device
3942  *	@dev: device
3943  *
3944  *	This function does the last stage of destroying an allocated device
3945  * 	interface. The reference to the device object is released.
3946  *	If this is the last reference then it will be freed.
3947  */
3948 void free_netdev(struct net_device *dev)
3949 {
3950 	/*  Compatibility with error handling in drivers */
3951 	if (dev->reg_state == NETREG_UNINITIALIZED) {
3952 		kfree((char *)dev - dev->padded);
3953 		return;
3954 	}
3955 
3956 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3957 	dev->reg_state = NETREG_RELEASED;
3958 
3959 	/* will free via device release */
3960 	put_device(&dev->dev);
3961 }
3962 
3963 /* Synchronize with packet receive processing. */
3964 void synchronize_net(void)
3965 {
3966 	might_sleep();
3967 	synchronize_rcu();
3968 }
3969 
3970 /**
3971  *	unregister_netdevice - remove device from the kernel
3972  *	@dev: device
3973  *
3974  *	This function shuts down a device interface and removes it
3975  *	from the kernel tables.
3976  *
3977  *	Callers must hold the rtnl semaphore.  You may want
3978  *	unregister_netdev() instead of this.
3979  */
3980 
3981 void unregister_netdevice(struct net_device *dev)
3982 {
3983 	rollback_registered(dev);
3984 	/* Finish processing unregister after unlock */
3985 	net_set_todo(dev);
3986 }
3987 
3988 /**
3989  *	unregister_netdev - remove device from the kernel
3990  *	@dev: device
3991  *
3992  *	This function shuts down a device interface and removes it
3993  *	from the kernel tables.
3994  *
3995  *	This is just a wrapper for unregister_netdevice that takes
3996  *	the rtnl semaphore.  In general you want to use this and not
3997  *	unregister_netdevice.
3998  */
3999 void unregister_netdev(struct net_device *dev)
4000 {
4001 	rtnl_lock();
4002 	unregister_netdevice(dev);
4003 	rtnl_unlock();
4004 }
4005 
4006 EXPORT_SYMBOL(unregister_netdev);
4007 
4008 /**
4009  *	dev_change_net_namespace - move device to different nethost namespace
4010  *	@dev: device
4011  *	@net: network namespace
4012  *	@pat: If not NULL name pattern to try if the current device name
4013  *	      is already taken in the destination network namespace.
4014  *
4015  *	This function shuts down a device interface and moves it
4016  *	to a new network namespace. On success 0 is returned, on
4017  *	a failure a netagive errno code is returned.
4018  *
4019  *	Callers must hold the rtnl semaphore.
4020  */
4021 
4022 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4023 {
4024 	char buf[IFNAMSIZ];
4025 	const char *destname;
4026 	int err;
4027 
4028 	ASSERT_RTNL();
4029 
4030 	/* Don't allow namespace local devices to be moved. */
4031 	err = -EINVAL;
4032 	if (dev->features & NETIF_F_NETNS_LOCAL)
4033 		goto out;
4034 
4035 	/* Ensure the device has been registrered */
4036 	err = -EINVAL;
4037 	if (dev->reg_state != NETREG_REGISTERED)
4038 		goto out;
4039 
4040 	/* Get out if there is nothing todo */
4041 	err = 0;
4042 	if (dev->nd_net == net)
4043 		goto out;
4044 
4045 	/* Pick the destination device name, and ensure
4046 	 * we can use it in the destination network namespace.
4047 	 */
4048 	err = -EEXIST;
4049 	destname = dev->name;
4050 	if (__dev_get_by_name(net, destname)) {
4051 		/* We get here if we can't use the current device name */
4052 		if (!pat)
4053 			goto out;
4054 		if (!dev_valid_name(pat))
4055 			goto out;
4056 		if (strchr(pat, '%')) {
4057 			if (__dev_alloc_name(net, pat, buf) < 0)
4058 				goto out;
4059 			destname = buf;
4060 		} else
4061 			destname = pat;
4062 		if (__dev_get_by_name(net, destname))
4063 			goto out;
4064 	}
4065 
4066 	/*
4067 	 * And now a mini version of register_netdevice unregister_netdevice.
4068 	 */
4069 
4070 	/* If device is running close it first. */
4071 	dev_close(dev);
4072 
4073 	/* And unlink it from device chain */
4074 	err = -ENODEV;
4075 	unlist_netdevice(dev);
4076 
4077 	synchronize_net();
4078 
4079 	/* Shutdown queueing discipline. */
4080 	dev_shutdown(dev);
4081 
4082 	/* Notify protocols, that we are about to destroy
4083 	   this device. They should clean all the things.
4084 	*/
4085 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4086 
4087 	/*
4088 	 *	Flush the unicast and multicast chains
4089 	 */
4090 	dev_addr_discard(dev);
4091 
4092 	/* Actually switch the network namespace */
4093 	dev->nd_net = net;
4094 
4095 	/* Assign the new device name */
4096 	if (destname != dev->name)
4097 		strcpy(dev->name, destname);
4098 
4099 	/* If there is an ifindex conflict assign a new one */
4100 	if (__dev_get_by_index(net, dev->ifindex)) {
4101 		int iflink = (dev->iflink == dev->ifindex);
4102 		dev->ifindex = dev_new_index(net);
4103 		if (iflink)
4104 			dev->iflink = dev->ifindex;
4105 	}
4106 
4107 	/* Fixup kobjects */
4108 	err = device_rename(&dev->dev, dev->name);
4109 	WARN_ON(err);
4110 
4111 	/* Add the device back in the hashes */
4112 	list_netdevice(dev);
4113 
4114 	/* Notify protocols, that a new device appeared. */
4115 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
4116 
4117 	synchronize_net();
4118 	err = 0;
4119 out:
4120 	return err;
4121 }
4122 
4123 static int dev_cpu_callback(struct notifier_block *nfb,
4124 			    unsigned long action,
4125 			    void *ocpu)
4126 {
4127 	struct sk_buff **list_skb;
4128 	struct net_device **list_net;
4129 	struct sk_buff *skb;
4130 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
4131 	struct softnet_data *sd, *oldsd;
4132 
4133 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
4134 		return NOTIFY_OK;
4135 
4136 	local_irq_disable();
4137 	cpu = smp_processor_id();
4138 	sd = &per_cpu(softnet_data, cpu);
4139 	oldsd = &per_cpu(softnet_data, oldcpu);
4140 
4141 	/* Find end of our completion_queue. */
4142 	list_skb = &sd->completion_queue;
4143 	while (*list_skb)
4144 		list_skb = &(*list_skb)->next;
4145 	/* Append completion queue from offline CPU. */
4146 	*list_skb = oldsd->completion_queue;
4147 	oldsd->completion_queue = NULL;
4148 
4149 	/* Find end of our output_queue. */
4150 	list_net = &sd->output_queue;
4151 	while (*list_net)
4152 		list_net = &(*list_net)->next_sched;
4153 	/* Append output queue from offline CPU. */
4154 	*list_net = oldsd->output_queue;
4155 	oldsd->output_queue = NULL;
4156 
4157 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
4158 	local_irq_enable();
4159 
4160 	/* Process offline CPU's input_pkt_queue */
4161 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4162 		netif_rx(skb);
4163 
4164 	return NOTIFY_OK;
4165 }
4166 
4167 #ifdef CONFIG_NET_DMA
4168 /**
4169  * net_dma_rebalance - try to maintain one DMA channel per CPU
4170  * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4171  *
4172  * This is called when the number of channels allocated to the net_dma client
4173  * changes.  The net_dma client tries to have one DMA channel per CPU.
4174  */
4175 
4176 static void net_dma_rebalance(struct net_dma *net_dma)
4177 {
4178 	unsigned int cpu, i, n, chan_idx;
4179 	struct dma_chan *chan;
4180 
4181 	if (cpus_empty(net_dma->channel_mask)) {
4182 		for_each_online_cpu(cpu)
4183 			rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
4184 		return;
4185 	}
4186 
4187 	i = 0;
4188 	cpu = first_cpu(cpu_online_map);
4189 
4190 	for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4191 		chan = net_dma->channels[chan_idx];
4192 
4193 		n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4194 		   + (i < (num_online_cpus() %
4195 			cpus_weight(net_dma->channel_mask)) ? 1 : 0));
4196 
4197 		while(n) {
4198 			per_cpu(softnet_data, cpu).net_dma = chan;
4199 			cpu = next_cpu(cpu, cpu_online_map);
4200 			n--;
4201 		}
4202 		i++;
4203 	}
4204 }
4205 
4206 /**
4207  * netdev_dma_event - event callback for the net_dma_client
4208  * @client: should always be net_dma_client
4209  * @chan: DMA channel for the event
4210  * @state: DMA state to be handled
4211  */
4212 static enum dma_state_client
4213 netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4214 	enum dma_state state)
4215 {
4216 	int i, found = 0, pos = -1;
4217 	struct net_dma *net_dma =
4218 		container_of(client, struct net_dma, client);
4219 	enum dma_state_client ack = DMA_DUP; /* default: take no action */
4220 
4221 	spin_lock(&net_dma->lock);
4222 	switch (state) {
4223 	case DMA_RESOURCE_AVAILABLE:
4224 		for (i = 0; i < NR_CPUS; i++)
4225 			if (net_dma->channels[i] == chan) {
4226 				found = 1;
4227 				break;
4228 			} else if (net_dma->channels[i] == NULL && pos < 0)
4229 				pos = i;
4230 
4231 		if (!found && pos >= 0) {
4232 			ack = DMA_ACK;
4233 			net_dma->channels[pos] = chan;
4234 			cpu_set(pos, net_dma->channel_mask);
4235 			net_dma_rebalance(net_dma);
4236 		}
4237 		break;
4238 	case DMA_RESOURCE_REMOVED:
4239 		for (i = 0; i < NR_CPUS; i++)
4240 			if (net_dma->channels[i] == chan) {
4241 				found = 1;
4242 				pos = i;
4243 				break;
4244 			}
4245 
4246 		if (found) {
4247 			ack = DMA_ACK;
4248 			cpu_clear(pos, net_dma->channel_mask);
4249 			net_dma->channels[i] = NULL;
4250 			net_dma_rebalance(net_dma);
4251 		}
4252 		break;
4253 	default:
4254 		break;
4255 	}
4256 	spin_unlock(&net_dma->lock);
4257 
4258 	return ack;
4259 }
4260 
4261 /**
4262  * netdev_dma_regiser - register the networking subsystem as a DMA client
4263  */
4264 static int __init netdev_dma_register(void)
4265 {
4266 	spin_lock_init(&net_dma.lock);
4267 	dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4268 	dma_async_client_register(&net_dma.client);
4269 	dma_async_client_chan_request(&net_dma.client);
4270 	return 0;
4271 }
4272 
4273 #else
4274 static int __init netdev_dma_register(void) { return -ENODEV; }
4275 #endif /* CONFIG_NET_DMA */
4276 
4277 /**
4278  *	netdev_compute_feature - compute conjunction of two feature sets
4279  *	@all: first feature set
4280  *	@one: second feature set
4281  *
4282  *	Computes a new feature set after adding a device with feature set
4283  *	@one to the master device with current feature set @all.  Returns
4284  *	the new feature set.
4285  */
4286 int netdev_compute_features(unsigned long all, unsigned long one)
4287 {
4288 	/* if device needs checksumming, downgrade to hw checksumming */
4289 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4290 		all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4291 
4292 	/* if device can't do all checksum, downgrade to ipv4/ipv6 */
4293 	if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4294 		all ^= NETIF_F_HW_CSUM
4295 			| NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4296 
4297 	if (one & NETIF_F_GSO)
4298 		one |= NETIF_F_GSO_SOFTWARE;
4299 	one |= NETIF_F_GSO;
4300 
4301 	/* If even one device supports robust GSO, enable it for all. */
4302 	if (one & NETIF_F_GSO_ROBUST)
4303 		all |= NETIF_F_GSO_ROBUST;
4304 
4305 	all &= one | NETIF_F_LLTX;
4306 
4307 	if (!(all & NETIF_F_ALL_CSUM))
4308 		all &= ~NETIF_F_SG;
4309 	if (!(all & NETIF_F_SG))
4310 		all &= ~NETIF_F_GSO_MASK;
4311 
4312 	return all;
4313 }
4314 EXPORT_SYMBOL(netdev_compute_features);
4315 
4316 static struct hlist_head *netdev_create_hash(void)
4317 {
4318 	int i;
4319 	struct hlist_head *hash;
4320 
4321 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4322 	if (hash != NULL)
4323 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
4324 			INIT_HLIST_HEAD(&hash[i]);
4325 
4326 	return hash;
4327 }
4328 
4329 /* Initialize per network namespace state */
4330 static int __net_init netdev_init(struct net *net)
4331 {
4332 	INIT_LIST_HEAD(&net->dev_base_head);
4333 
4334 	net->dev_name_head = netdev_create_hash();
4335 	if (net->dev_name_head == NULL)
4336 		goto err_name;
4337 
4338 	net->dev_index_head = netdev_create_hash();
4339 	if (net->dev_index_head == NULL)
4340 		goto err_idx;
4341 
4342 	return 0;
4343 
4344 err_idx:
4345 	kfree(net->dev_name_head);
4346 err_name:
4347 	return -ENOMEM;
4348 }
4349 
4350 static void __net_exit netdev_exit(struct net *net)
4351 {
4352 	kfree(net->dev_name_head);
4353 	kfree(net->dev_index_head);
4354 }
4355 
4356 static struct pernet_operations __net_initdata netdev_net_ops = {
4357 	.init = netdev_init,
4358 	.exit = netdev_exit,
4359 };
4360 
4361 static void __net_exit default_device_exit(struct net *net)
4362 {
4363 	struct net_device *dev, *next;
4364 	/*
4365 	 * Push all migratable of the network devices back to the
4366 	 * initial network namespace
4367 	 */
4368 	rtnl_lock();
4369 	for_each_netdev_safe(net, dev, next) {
4370 		int err;
4371 
4372 		/* Ignore unmoveable devices (i.e. loopback) */
4373 		if (dev->features & NETIF_F_NETNS_LOCAL)
4374 			continue;
4375 
4376 		/* Push remaing network devices to init_net */
4377 		err = dev_change_net_namespace(dev, &init_net, "dev%d");
4378 		if (err) {
4379 			printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4380 				__func__, dev->name, err);
4381 			unregister_netdevice(dev);
4382 		}
4383 	}
4384 	rtnl_unlock();
4385 }
4386 
4387 static struct pernet_operations __net_initdata default_device_ops = {
4388 	.exit = default_device_exit,
4389 };
4390 
4391 /*
4392  *	Initialize the DEV module. At boot time this walks the device list and
4393  *	unhooks any devices that fail to initialise (normally hardware not
4394  *	present) and leaves us with a valid list of present and active devices.
4395  *
4396  */
4397 
4398 /*
4399  *       This is called single threaded during boot, so no need
4400  *       to take the rtnl semaphore.
4401  */
4402 static int __init net_dev_init(void)
4403 {
4404 	int i, rc = -ENOMEM;
4405 
4406 	BUG_ON(!dev_boot_phase);
4407 
4408 	if (dev_proc_init())
4409 		goto out;
4410 
4411 	if (netdev_kobject_init())
4412 		goto out;
4413 
4414 	INIT_LIST_HEAD(&ptype_all);
4415 	for (i = 0; i < 16; i++)
4416 		INIT_LIST_HEAD(&ptype_base[i]);
4417 
4418 	if (register_pernet_subsys(&netdev_net_ops))
4419 		goto out;
4420 
4421 	if (register_pernet_device(&default_device_ops))
4422 		goto out;
4423 
4424 	/*
4425 	 *	Initialise the packet receive queues.
4426 	 */
4427 
4428 	for_each_possible_cpu(i) {
4429 		struct softnet_data *queue;
4430 
4431 		queue = &per_cpu(softnet_data, i);
4432 		skb_queue_head_init(&queue->input_pkt_queue);
4433 		queue->completion_queue = NULL;
4434 		INIT_LIST_HEAD(&queue->poll_list);
4435 
4436 		queue->backlog.poll = process_backlog;
4437 		queue->backlog.weight = weight_p;
4438 	}
4439 
4440 	netdev_dma_register();
4441 
4442 	dev_boot_phase = 0;
4443 
4444 	open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4445 	open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4446 
4447 	hotcpu_notifier(dev_cpu_callback, 0);
4448 	dst_init();
4449 	dev_mcast_init();
4450 	rc = 0;
4451 out:
4452 	return rc;
4453 }
4454 
4455 subsys_initcall(net_dev_init);
4456 
4457 EXPORT_SYMBOL(__dev_get_by_index);
4458 EXPORT_SYMBOL(__dev_get_by_name);
4459 EXPORT_SYMBOL(__dev_remove_pack);
4460 EXPORT_SYMBOL(dev_valid_name);
4461 EXPORT_SYMBOL(dev_add_pack);
4462 EXPORT_SYMBOL(dev_alloc_name);
4463 EXPORT_SYMBOL(dev_close);
4464 EXPORT_SYMBOL(dev_get_by_flags);
4465 EXPORT_SYMBOL(dev_get_by_index);
4466 EXPORT_SYMBOL(dev_get_by_name);
4467 EXPORT_SYMBOL(dev_open);
4468 EXPORT_SYMBOL(dev_queue_xmit);
4469 EXPORT_SYMBOL(dev_remove_pack);
4470 EXPORT_SYMBOL(dev_set_allmulti);
4471 EXPORT_SYMBOL(dev_set_promiscuity);
4472 EXPORT_SYMBOL(dev_change_flags);
4473 EXPORT_SYMBOL(dev_set_mtu);
4474 EXPORT_SYMBOL(dev_set_mac_address);
4475 EXPORT_SYMBOL(free_netdev);
4476 EXPORT_SYMBOL(netdev_boot_setup_check);
4477 EXPORT_SYMBOL(netdev_set_master);
4478 EXPORT_SYMBOL(netdev_state_change);
4479 EXPORT_SYMBOL(netif_receive_skb);
4480 EXPORT_SYMBOL(netif_rx);
4481 EXPORT_SYMBOL(register_gifconf);
4482 EXPORT_SYMBOL(register_netdevice);
4483 EXPORT_SYMBOL(register_netdevice_notifier);
4484 EXPORT_SYMBOL(skb_checksum_help);
4485 EXPORT_SYMBOL(synchronize_net);
4486 EXPORT_SYMBOL(unregister_netdevice);
4487 EXPORT_SYMBOL(unregister_netdevice_notifier);
4488 EXPORT_SYMBOL(net_enable_timestamp);
4489 EXPORT_SYMBOL(net_disable_timestamp);
4490 EXPORT_SYMBOL(dev_get_flags);
4491 
4492 #if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4493 EXPORT_SYMBOL(br_handle_frame_hook);
4494 EXPORT_SYMBOL(br_fdb_get_hook);
4495 EXPORT_SYMBOL(br_fdb_put_hook);
4496 #endif
4497 
4498 #ifdef CONFIG_KMOD
4499 EXPORT_SYMBOL(dev_load);
4500 #endif
4501 
4502 EXPORT_PER_CPU_SYMBOL(softnet_data);
4503