xref: /linux-6.15/net/core/dev.c (revision 4c975fd7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *	Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:	Ross Biro
7  *				Fred N. van Kempen, <[email protected]>
8  *				Mark Evans, <[email protected]>
9  *
10  *	Additional Authors:
11  *		Florian la Roche <[email protected]>
12  *		Alan Cox <[email protected]>
13  *		David Hinds <[email protected]>
14  *		Alexey Kuznetsov <[email protected]>
15  *		Adam Sulmicki <[email protected]>
16  *              Pekka Riikonen <[email protected]>
17  *
18  *	Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *		Alan Cox	:	device private ioctl copies fields back.
24  *		Alan Cox	:	Transmit queue code does relevant
25  *					stunts to keep the queue safe.
26  *		Alan Cox	:	Fixed double lock.
27  *		Alan Cox	:	Fixed promisc NULL pointer trap
28  *		????????	:	Support the full private ioctl range
29  *		Alan Cox	:	Moved ioctl permission check into
30  *					drivers
31  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
32  *		Alan Cox	:	100 backlog just doesn't cut it when
33  *					you start doing multicast video 8)
34  *		Alan Cox	:	Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *		Alan Cox	:	Took out transmit every packet pass
37  *					Saved a few bytes in the ioctl handler
38  *		Alan Cox	:	Network driver sets packet type before
39  *					calling netif_rx. Saves a function
40  *					call a packet.
41  *		Alan Cox	:	Hashed net_bh()
42  *		Richard Kooijman:	Timestamp fixes.
43  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
44  *		Alan Cox	:	Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *					changes.
47  *		Rudi Cilibrasi	:	Pass the right thing to
48  *					set_mac_address()
49  *		Dave Miller	:	32bit quantity for the device lock to
50  *					make it work out on a Sparc.
51  *		Bjorn Ekwall	:	Added KERNELD hack.
52  *		Alan Cox	:	Cleaned up the backlog initialise.
53  *		Craig Metz	:	SIOCGIFCONF fix if space for under
54  *					1 device.
55  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
56  *					is no device open function.
57  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
58  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
59  *		Cyrus Durgin	:	Cleaned for KMOD
60  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
61  *					A network device unload needs to purge
62  *					the backlog queue.
63  *	Paul Rusty Russell	:	SIOCSIFNAME
64  *              Pekka Riikonen  :	Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *				        - netif_rx() feedback
69  */
70 
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/ethtool_netlink.h>
96 #include <linux/skbuff.h>
97 #include <linux/kthread.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dsa.h>
106 #include <net/dst.h>
107 #include <net/dst_metadata.h>
108 #include <net/gro.h>
109 #include <net/netdev_queues.h>
110 #include <net/pkt_sched.h>
111 #include <net/pkt_cls.h>
112 #include <net/checksum.h>
113 #include <net/xfrm.h>
114 #include <net/tcx.h>
115 #include <linux/highmem.h>
116 #include <linux/init.h>
117 #include <linux/module.h>
118 #include <linux/netpoll.h>
119 #include <linux/rcupdate.h>
120 #include <linux/delay.h>
121 #include <net/iw_handler.h>
122 #include <asm/current.h>
123 #include <linux/audit.h>
124 #include <linux/dmaengine.h>
125 #include <linux/err.h>
126 #include <linux/ctype.h>
127 #include <linux/if_arp.h>
128 #include <linux/if_vlan.h>
129 #include <linux/ip.h>
130 #include <net/ip.h>
131 #include <net/mpls.h>
132 #include <linux/ipv6.h>
133 #include <linux/in.h>
134 #include <linux/jhash.h>
135 #include <linux/random.h>
136 #include <trace/events/napi.h>
137 #include <trace/events/net.h>
138 #include <trace/events/skb.h>
139 #include <trace/events/qdisc.h>
140 #include <trace/events/xdp.h>
141 #include <linux/inetdevice.h>
142 #include <linux/cpu_rmap.h>
143 #include <linux/static_key.h>
144 #include <linux/hashtable.h>
145 #include <linux/vmalloc.h>
146 #include <linux/if_macvlan.h>
147 #include <linux/errqueue.h>
148 #include <linux/hrtimer.h>
149 #include <linux/netfilter_netdev.h>
150 #include <linux/crash_dump.h>
151 #include <linux/sctp.h>
152 #include <net/udp_tunnel.h>
153 #include <linux/net_namespace.h>
154 #include <linux/indirect_call_wrapper.h>
155 #include <net/devlink.h>
156 #include <linux/pm_runtime.h>
157 #include <linux/prandom.h>
158 #include <linux/once_lite.h>
159 #include <net/netdev_lock.h>
160 #include <net/netdev_rx_queue.h>
161 #include <net/page_pool/types.h>
162 #include <net/page_pool/helpers.h>
163 #include <net/page_pool/memory_provider.h>
164 #include <net/rps.h>
165 #include <linux/phy_link_topology.h>
166 
167 #include "dev.h"
168 #include "devmem.h"
169 #include "net-sysfs.h"
170 
171 static DEFINE_SPINLOCK(ptype_lock);
172 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
173 
174 static int netif_rx_internal(struct sk_buff *skb);
175 static int call_netdevice_notifiers_extack(unsigned long val,
176 					   struct net_device *dev,
177 					   struct netlink_ext_ack *extack);
178 
179 static DEFINE_MUTEX(ifalias_mutex);
180 
181 /* protects napi_hash addition/deletion and napi_gen_id */
182 static DEFINE_SPINLOCK(napi_hash_lock);
183 
184 static unsigned int napi_gen_id = NR_CPUS;
185 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
186 
187 static inline void dev_base_seq_inc(struct net *net)
188 {
189 	unsigned int val = net->dev_base_seq + 1;
190 
191 	WRITE_ONCE(net->dev_base_seq, val ?: 1);
192 }
193 
194 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
195 {
196 	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
197 
198 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
199 }
200 
201 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
202 {
203 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
204 }
205 
206 #ifndef CONFIG_PREEMPT_RT
207 
208 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key);
209 
210 static int __init setup_backlog_napi_threads(char *arg)
211 {
212 	static_branch_enable(&use_backlog_threads_key);
213 	return 0;
214 }
215 early_param("thread_backlog_napi", setup_backlog_napi_threads);
216 
217 static bool use_backlog_threads(void)
218 {
219 	return static_branch_unlikely(&use_backlog_threads_key);
220 }
221 
222 #else
223 
224 static bool use_backlog_threads(void)
225 {
226 	return true;
227 }
228 
229 #endif
230 
231 static inline void backlog_lock_irq_save(struct softnet_data *sd,
232 					 unsigned long *flags)
233 {
234 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
235 		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
236 	else
237 		local_irq_save(*flags);
238 }
239 
240 static inline void backlog_lock_irq_disable(struct softnet_data *sd)
241 {
242 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
243 		spin_lock_irq(&sd->input_pkt_queue.lock);
244 	else
245 		local_irq_disable();
246 }
247 
248 static inline void backlog_unlock_irq_restore(struct softnet_data *sd,
249 					      unsigned long *flags)
250 {
251 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
252 		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
253 	else
254 		local_irq_restore(*flags);
255 }
256 
257 static inline void backlog_unlock_irq_enable(struct softnet_data *sd)
258 {
259 	if (IS_ENABLED(CONFIG_RPS) || use_backlog_threads())
260 		spin_unlock_irq(&sd->input_pkt_queue.lock);
261 	else
262 		local_irq_enable();
263 }
264 
265 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
266 						       const char *name)
267 {
268 	struct netdev_name_node *name_node;
269 
270 	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
271 	if (!name_node)
272 		return NULL;
273 	INIT_HLIST_NODE(&name_node->hlist);
274 	name_node->dev = dev;
275 	name_node->name = name;
276 	return name_node;
277 }
278 
279 static struct netdev_name_node *
280 netdev_name_node_head_alloc(struct net_device *dev)
281 {
282 	struct netdev_name_node *name_node;
283 
284 	name_node = netdev_name_node_alloc(dev, dev->name);
285 	if (!name_node)
286 		return NULL;
287 	INIT_LIST_HEAD(&name_node->list);
288 	return name_node;
289 }
290 
291 static void netdev_name_node_free(struct netdev_name_node *name_node)
292 {
293 	kfree(name_node);
294 }
295 
296 static void netdev_name_node_add(struct net *net,
297 				 struct netdev_name_node *name_node)
298 {
299 	hlist_add_head_rcu(&name_node->hlist,
300 			   dev_name_hash(net, name_node->name));
301 }
302 
303 static void netdev_name_node_del(struct netdev_name_node *name_node)
304 {
305 	hlist_del_rcu(&name_node->hlist);
306 }
307 
308 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
309 							const char *name)
310 {
311 	struct hlist_head *head = dev_name_hash(net, name);
312 	struct netdev_name_node *name_node;
313 
314 	hlist_for_each_entry(name_node, head, hlist)
315 		if (!strcmp(name_node->name, name))
316 			return name_node;
317 	return NULL;
318 }
319 
320 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
321 							    const char *name)
322 {
323 	struct hlist_head *head = dev_name_hash(net, name);
324 	struct netdev_name_node *name_node;
325 
326 	hlist_for_each_entry_rcu(name_node, head, hlist)
327 		if (!strcmp(name_node->name, name))
328 			return name_node;
329 	return NULL;
330 }
331 
332 bool netdev_name_in_use(struct net *net, const char *name)
333 {
334 	return netdev_name_node_lookup(net, name);
335 }
336 EXPORT_SYMBOL(netdev_name_in_use);
337 
338 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
339 {
340 	struct netdev_name_node *name_node;
341 	struct net *net = dev_net(dev);
342 
343 	name_node = netdev_name_node_lookup(net, name);
344 	if (name_node)
345 		return -EEXIST;
346 	name_node = netdev_name_node_alloc(dev, name);
347 	if (!name_node)
348 		return -ENOMEM;
349 	netdev_name_node_add(net, name_node);
350 	/* The node that holds dev->name acts as a head of per-device list. */
351 	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
352 
353 	return 0;
354 }
355 
356 static void netdev_name_node_alt_free(struct rcu_head *head)
357 {
358 	struct netdev_name_node *name_node =
359 		container_of(head, struct netdev_name_node, rcu);
360 
361 	kfree(name_node->name);
362 	netdev_name_node_free(name_node);
363 }
364 
365 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
366 {
367 	netdev_name_node_del(name_node);
368 	list_del(&name_node->list);
369 	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
370 }
371 
372 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
373 {
374 	struct netdev_name_node *name_node;
375 	struct net *net = dev_net(dev);
376 
377 	name_node = netdev_name_node_lookup(net, name);
378 	if (!name_node)
379 		return -ENOENT;
380 	/* lookup might have found our primary name or a name belonging
381 	 * to another device.
382 	 */
383 	if (name_node == dev->name_node || name_node->dev != dev)
384 		return -EINVAL;
385 
386 	__netdev_name_node_alt_destroy(name_node);
387 	return 0;
388 }
389 
390 static void netdev_name_node_alt_flush(struct net_device *dev)
391 {
392 	struct netdev_name_node *name_node, *tmp;
393 
394 	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
395 		list_del(&name_node->list);
396 		netdev_name_node_alt_free(&name_node->rcu);
397 	}
398 }
399 
400 /* Device list insertion */
401 static void list_netdevice(struct net_device *dev)
402 {
403 	struct netdev_name_node *name_node;
404 	struct net *net = dev_net(dev);
405 
406 	ASSERT_RTNL();
407 
408 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
409 	netdev_name_node_add(net, dev->name_node);
410 	hlist_add_head_rcu(&dev->index_hlist,
411 			   dev_index_hash(net, dev->ifindex));
412 
413 	netdev_for_each_altname(dev, name_node)
414 		netdev_name_node_add(net, name_node);
415 
416 	/* We reserved the ifindex, this can't fail */
417 	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
418 
419 	dev_base_seq_inc(net);
420 }
421 
422 /* Device list removal
423  * caller must respect a RCU grace period before freeing/reusing dev
424  */
425 static void unlist_netdevice(struct net_device *dev)
426 {
427 	struct netdev_name_node *name_node;
428 	struct net *net = dev_net(dev);
429 
430 	ASSERT_RTNL();
431 
432 	xa_erase(&net->dev_by_index, dev->ifindex);
433 
434 	netdev_for_each_altname(dev, name_node)
435 		netdev_name_node_del(name_node);
436 
437 	/* Unlink dev from the device chain */
438 	list_del_rcu(&dev->dev_list);
439 	netdev_name_node_del(dev->name_node);
440 	hlist_del_rcu(&dev->index_hlist);
441 
442 	dev_base_seq_inc(dev_net(dev));
443 }
444 
445 /*
446  *	Our notifier list
447  */
448 
449 static RAW_NOTIFIER_HEAD(netdev_chain);
450 
451 /*
452  *	Device drivers call our routines to queue packets here. We empty the
453  *	queue in the local softnet handler.
454  */
455 
456 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data) = {
457 	.process_queue_bh_lock = INIT_LOCAL_LOCK(process_queue_bh_lock),
458 };
459 EXPORT_PER_CPU_SYMBOL(softnet_data);
460 
461 /* Page_pool has a lockless array/stack to alloc/recycle pages.
462  * PP consumers must pay attention to run APIs in the appropriate context
463  * (e.g. NAPI context).
464  */
465 DEFINE_PER_CPU(struct page_pool *, system_page_pool);
466 
467 #ifdef CONFIG_LOCKDEP
468 /*
469  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
470  * according to dev->type
471  */
472 static const unsigned short netdev_lock_type[] = {
473 	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
474 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
475 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
476 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
477 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
478 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
479 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
480 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
481 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
482 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
483 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
484 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
485 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
486 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
487 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
488 
489 static const char *const netdev_lock_name[] = {
490 	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
491 	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
492 	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
493 	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
494 	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
495 	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
496 	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
497 	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
498 	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
499 	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
500 	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
501 	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
502 	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
503 	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
504 	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
505 
506 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
507 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
508 
509 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
510 {
511 	int i;
512 
513 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
514 		if (netdev_lock_type[i] == dev_type)
515 			return i;
516 	/* the last key is used by default */
517 	return ARRAY_SIZE(netdev_lock_type) - 1;
518 }
519 
520 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
521 						 unsigned short dev_type)
522 {
523 	int i;
524 
525 	i = netdev_lock_pos(dev_type);
526 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
527 				   netdev_lock_name[i]);
528 }
529 
530 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
531 {
532 	int i;
533 
534 	i = netdev_lock_pos(dev->type);
535 	lockdep_set_class_and_name(&dev->addr_list_lock,
536 				   &netdev_addr_lock_key[i],
537 				   netdev_lock_name[i]);
538 }
539 #else
540 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
541 						 unsigned short dev_type)
542 {
543 }
544 
545 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
546 {
547 }
548 #endif
549 
550 /*******************************************************************************
551  *
552  *		Protocol management and registration routines
553  *
554  *******************************************************************************/
555 
556 
557 /*
558  *	Add a protocol ID to the list. Now that the input handler is
559  *	smarter we can dispense with all the messy stuff that used to be
560  *	here.
561  *
562  *	BEWARE!!! Protocol handlers, mangling input packets,
563  *	MUST BE last in hash buckets and checking protocol handlers
564  *	MUST start from promiscuous ptype_all chain in net_bh.
565  *	It is true now, do not change it.
566  *	Explanation follows: if protocol handler, mangling packet, will
567  *	be the first on list, it is not able to sense, that packet
568  *	is cloned and should be copied-on-write, so that it will
569  *	change it and subsequent readers will get broken packet.
570  *							--ANK (980803)
571  */
572 
573 static inline struct list_head *ptype_head(const struct packet_type *pt)
574 {
575 	if (pt->type == htons(ETH_P_ALL)) {
576 		if (!pt->af_packet_net && !pt->dev)
577 			return NULL;
578 
579 		return pt->dev ? &pt->dev->ptype_all :
580 				 &pt->af_packet_net->ptype_all;
581 	}
582 
583 	if (pt->dev)
584 		return &pt->dev->ptype_specific;
585 
586 	return pt->af_packet_net ? &pt->af_packet_net->ptype_specific :
587 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
588 }
589 
590 /**
591  *	dev_add_pack - add packet handler
592  *	@pt: packet type declaration
593  *
594  *	Add a protocol handler to the networking stack. The passed &packet_type
595  *	is linked into kernel lists and may not be freed until it has been
596  *	removed from the kernel lists.
597  *
598  *	This call does not sleep therefore it can not
599  *	guarantee all CPU's that are in middle of receiving packets
600  *	will see the new packet type (until the next received packet).
601  */
602 
603 void dev_add_pack(struct packet_type *pt)
604 {
605 	struct list_head *head = ptype_head(pt);
606 
607 	if (WARN_ON_ONCE(!head))
608 		return;
609 
610 	spin_lock(&ptype_lock);
611 	list_add_rcu(&pt->list, head);
612 	spin_unlock(&ptype_lock);
613 }
614 EXPORT_SYMBOL(dev_add_pack);
615 
616 /**
617  *	__dev_remove_pack	 - remove packet handler
618  *	@pt: packet type declaration
619  *
620  *	Remove a protocol handler that was previously added to the kernel
621  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
622  *	from the kernel lists and can be freed or reused once this function
623  *	returns.
624  *
625  *      The packet type might still be in use by receivers
626  *	and must not be freed until after all the CPU's have gone
627  *	through a quiescent state.
628  */
629 void __dev_remove_pack(struct packet_type *pt)
630 {
631 	struct list_head *head = ptype_head(pt);
632 	struct packet_type *pt1;
633 
634 	if (!head)
635 		return;
636 
637 	spin_lock(&ptype_lock);
638 
639 	list_for_each_entry(pt1, head, list) {
640 		if (pt == pt1) {
641 			list_del_rcu(&pt->list);
642 			goto out;
643 		}
644 	}
645 
646 	pr_warn("dev_remove_pack: %p not found\n", pt);
647 out:
648 	spin_unlock(&ptype_lock);
649 }
650 EXPORT_SYMBOL(__dev_remove_pack);
651 
652 /**
653  *	dev_remove_pack	 - remove packet handler
654  *	@pt: packet type declaration
655  *
656  *	Remove a protocol handler that was previously added to the kernel
657  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
658  *	from the kernel lists and can be freed or reused once this function
659  *	returns.
660  *
661  *	This call sleeps to guarantee that no CPU is looking at the packet
662  *	type after return.
663  */
664 void dev_remove_pack(struct packet_type *pt)
665 {
666 	__dev_remove_pack(pt);
667 
668 	synchronize_net();
669 }
670 EXPORT_SYMBOL(dev_remove_pack);
671 
672 
673 /*******************************************************************************
674  *
675  *			    Device Interface Subroutines
676  *
677  *******************************************************************************/
678 
679 /**
680  *	dev_get_iflink	- get 'iflink' value of a interface
681  *	@dev: targeted interface
682  *
683  *	Indicates the ifindex the interface is linked to.
684  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686 
687 int dev_get_iflink(const struct net_device *dev)
688 {
689 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690 		return dev->netdev_ops->ndo_get_iflink(dev);
691 
692 	return READ_ONCE(dev->ifindex);
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695 
696 /**
697  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *	@dev: targeted interface
699  *	@skb: The packet.
700  *
701  *	For better visibility of tunnel traffic OVS needs to retrieve
702  *	egress tunnel information for a packet. Following API allows
703  *	user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707 	struct ip_tunnel_info *info;
708 
709 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710 		return -EINVAL;
711 
712 	info = skb_tunnel_info_unclone(skb);
713 	if (!info)
714 		return -ENOMEM;
715 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716 		return -EINVAL;
717 
718 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721 
722 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
723 {
724 	int k = stack->num_paths++;
725 
726 	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
727 		return NULL;
728 
729 	return &stack->path[k];
730 }
731 
732 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
733 			  struct net_device_path_stack *stack)
734 {
735 	const struct net_device *last_dev;
736 	struct net_device_path_ctx ctx = {
737 		.dev	= dev,
738 	};
739 	struct net_device_path *path;
740 	int ret = 0;
741 
742 	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
743 	stack->num_paths = 0;
744 	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
745 		last_dev = ctx.dev;
746 		path = dev_fwd_path(stack);
747 		if (!path)
748 			return -1;
749 
750 		memset(path, 0, sizeof(struct net_device_path));
751 		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
752 		if (ret < 0)
753 			return -1;
754 
755 		if (WARN_ON_ONCE(last_dev == ctx.dev))
756 			return -1;
757 	}
758 
759 	if (!ctx.dev)
760 		return ret;
761 
762 	path = dev_fwd_path(stack);
763 	if (!path)
764 		return -1;
765 	path->type = DEV_PATH_ETHERNET;
766 	path->dev = ctx.dev;
767 
768 	return ret;
769 }
770 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
771 
772 /* must be called under rcu_read_lock(), as we dont take a reference */
773 static struct napi_struct *napi_by_id(unsigned int napi_id)
774 {
775 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
776 	struct napi_struct *napi;
777 
778 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
779 		if (napi->napi_id == napi_id)
780 			return napi;
781 
782 	return NULL;
783 }
784 
785 /* must be called under rcu_read_lock(), as we dont take a reference */
786 static struct napi_struct *
787 netdev_napi_by_id(struct net *net, unsigned int napi_id)
788 {
789 	struct napi_struct *napi;
790 
791 	napi = napi_by_id(napi_id);
792 	if (!napi)
793 		return NULL;
794 
795 	if (WARN_ON_ONCE(!napi->dev))
796 		return NULL;
797 	if (!net_eq(net, dev_net(napi->dev)))
798 		return NULL;
799 
800 	return napi;
801 }
802 
803 /**
804  *	netdev_napi_by_id_lock() - find a device by NAPI ID and lock it
805  *	@net: the applicable net namespace
806  *	@napi_id: ID of a NAPI of a target device
807  *
808  *	Find a NAPI instance with @napi_id. Lock its device.
809  *	The device must be in %NETREG_REGISTERED state for lookup to succeed.
810  *	netdev_unlock() must be called to release it.
811  *
812  *	Return: pointer to NAPI, its device with lock held, NULL if not found.
813  */
814 struct napi_struct *
815 netdev_napi_by_id_lock(struct net *net, unsigned int napi_id)
816 {
817 	struct napi_struct *napi;
818 	struct net_device *dev;
819 
820 	rcu_read_lock();
821 	napi = netdev_napi_by_id(net, napi_id);
822 	if (!napi || READ_ONCE(napi->dev->reg_state) != NETREG_REGISTERED) {
823 		rcu_read_unlock();
824 		return NULL;
825 	}
826 
827 	dev = napi->dev;
828 	dev_hold(dev);
829 	rcu_read_unlock();
830 
831 	dev = __netdev_put_lock(dev);
832 	if (!dev)
833 		return NULL;
834 
835 	rcu_read_lock();
836 	napi = netdev_napi_by_id(net, napi_id);
837 	if (napi && napi->dev != dev)
838 		napi = NULL;
839 	rcu_read_unlock();
840 
841 	if (!napi)
842 		netdev_unlock(dev);
843 	return napi;
844 }
845 
846 /**
847  *	__dev_get_by_name	- find a device by its name
848  *	@net: the applicable net namespace
849  *	@name: name to find
850  *
851  *	Find an interface by name. Must be called under RTNL semaphore.
852  *	If the name is found a pointer to the device is returned.
853  *	If the name is not found then %NULL is returned. The
854  *	reference counters are not incremented so the caller must be
855  *	careful with locks.
856  */
857 
858 struct net_device *__dev_get_by_name(struct net *net, const char *name)
859 {
860 	struct netdev_name_node *node_name;
861 
862 	node_name = netdev_name_node_lookup(net, name);
863 	return node_name ? node_name->dev : NULL;
864 }
865 EXPORT_SYMBOL(__dev_get_by_name);
866 
867 /**
868  * dev_get_by_name_rcu	- find a device by its name
869  * @net: the applicable net namespace
870  * @name: name to find
871  *
872  * Find an interface by name.
873  * If the name is found a pointer to the device is returned.
874  * If the name is not found then %NULL is returned.
875  * The reference counters are not incremented so the caller must be
876  * careful with locks. The caller must hold RCU lock.
877  */
878 
879 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
880 {
881 	struct netdev_name_node *node_name;
882 
883 	node_name = netdev_name_node_lookup_rcu(net, name);
884 	return node_name ? node_name->dev : NULL;
885 }
886 EXPORT_SYMBOL(dev_get_by_name_rcu);
887 
888 /* Deprecated for new users, call netdev_get_by_name() instead */
889 struct net_device *dev_get_by_name(struct net *net, const char *name)
890 {
891 	struct net_device *dev;
892 
893 	rcu_read_lock();
894 	dev = dev_get_by_name_rcu(net, name);
895 	dev_hold(dev);
896 	rcu_read_unlock();
897 	return dev;
898 }
899 EXPORT_SYMBOL(dev_get_by_name);
900 
901 /**
902  *	netdev_get_by_name() - find a device by its name
903  *	@net: the applicable net namespace
904  *	@name: name to find
905  *	@tracker: tracking object for the acquired reference
906  *	@gfp: allocation flags for the tracker
907  *
908  *	Find an interface by name. This can be called from any
909  *	context and does its own locking. The returned handle has
910  *	the usage count incremented and the caller must use netdev_put() to
911  *	release it when it is no longer needed. %NULL is returned if no
912  *	matching device is found.
913  */
914 struct net_device *netdev_get_by_name(struct net *net, const char *name,
915 				      netdevice_tracker *tracker, gfp_t gfp)
916 {
917 	struct net_device *dev;
918 
919 	dev = dev_get_by_name(net, name);
920 	if (dev)
921 		netdev_tracker_alloc(dev, tracker, gfp);
922 	return dev;
923 }
924 EXPORT_SYMBOL(netdev_get_by_name);
925 
926 /**
927  *	__dev_get_by_index - find a device by its ifindex
928  *	@net: the applicable net namespace
929  *	@ifindex: index of device
930  *
931  *	Search for an interface by index. Returns %NULL if the device
932  *	is not found or a pointer to the device. The device has not
933  *	had its reference counter increased so the caller must be careful
934  *	about locking. The caller must hold the RTNL semaphore.
935  */
936 
937 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
938 {
939 	struct net_device *dev;
940 	struct hlist_head *head = dev_index_hash(net, ifindex);
941 
942 	hlist_for_each_entry(dev, head, index_hlist)
943 		if (dev->ifindex == ifindex)
944 			return dev;
945 
946 	return NULL;
947 }
948 EXPORT_SYMBOL(__dev_get_by_index);
949 
950 /**
951  *	dev_get_by_index_rcu - find a device by its ifindex
952  *	@net: the applicable net namespace
953  *	@ifindex: index of device
954  *
955  *	Search for an interface by index. Returns %NULL if the device
956  *	is not found or a pointer to the device. The device has not
957  *	had its reference counter increased so the caller must be careful
958  *	about locking. The caller must hold RCU lock.
959  */
960 
961 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
962 {
963 	struct net_device *dev;
964 	struct hlist_head *head = dev_index_hash(net, ifindex);
965 
966 	hlist_for_each_entry_rcu(dev, head, index_hlist)
967 		if (dev->ifindex == ifindex)
968 			return dev;
969 
970 	return NULL;
971 }
972 EXPORT_SYMBOL(dev_get_by_index_rcu);
973 
974 /* Deprecated for new users, call netdev_get_by_index() instead */
975 struct net_device *dev_get_by_index(struct net *net, int ifindex)
976 {
977 	struct net_device *dev;
978 
979 	rcu_read_lock();
980 	dev = dev_get_by_index_rcu(net, ifindex);
981 	dev_hold(dev);
982 	rcu_read_unlock();
983 	return dev;
984 }
985 EXPORT_SYMBOL(dev_get_by_index);
986 
987 /**
988  *	netdev_get_by_index() - find a device by its ifindex
989  *	@net: the applicable net namespace
990  *	@ifindex: index of device
991  *	@tracker: tracking object for the acquired reference
992  *	@gfp: allocation flags for the tracker
993  *
994  *	Search for an interface by index. Returns NULL if the device
995  *	is not found or a pointer to the device. The device returned has
996  *	had a reference added and the pointer is safe until the user calls
997  *	netdev_put() to indicate they have finished with it.
998  */
999 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
1000 				       netdevice_tracker *tracker, gfp_t gfp)
1001 {
1002 	struct net_device *dev;
1003 
1004 	dev = dev_get_by_index(net, ifindex);
1005 	if (dev)
1006 		netdev_tracker_alloc(dev, tracker, gfp);
1007 	return dev;
1008 }
1009 EXPORT_SYMBOL(netdev_get_by_index);
1010 
1011 /**
1012  *	dev_get_by_napi_id - find a device by napi_id
1013  *	@napi_id: ID of the NAPI struct
1014  *
1015  *	Search for an interface by NAPI ID. Returns %NULL if the device
1016  *	is not found or a pointer to the device. The device has not had
1017  *	its reference counter increased so the caller must be careful
1018  *	about locking. The caller must hold RCU lock.
1019  */
1020 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1021 {
1022 	struct napi_struct *napi;
1023 
1024 	WARN_ON_ONCE(!rcu_read_lock_held());
1025 
1026 	if (!napi_id_valid(napi_id))
1027 		return NULL;
1028 
1029 	napi = napi_by_id(napi_id);
1030 
1031 	return napi ? napi->dev : NULL;
1032 }
1033 
1034 /* Release the held reference on the net_device, and if the net_device
1035  * is still registered try to lock the instance lock. If device is being
1036  * unregistered NULL will be returned (but the reference has been released,
1037  * either way!)
1038  *
1039  * This helper is intended for locking net_device after it has been looked up
1040  * using a lockless lookup helper. Lock prevents the instance from going away.
1041  */
1042 struct net_device *__netdev_put_lock(struct net_device *dev)
1043 {
1044 	netdev_lock(dev);
1045 	if (dev->reg_state > NETREG_REGISTERED) {
1046 		netdev_unlock(dev);
1047 		dev_put(dev);
1048 		return NULL;
1049 	}
1050 	dev_put(dev);
1051 	return dev;
1052 }
1053 
1054 /**
1055  *	netdev_get_by_index_lock() - find a device by its ifindex
1056  *	@net: the applicable net namespace
1057  *	@ifindex: index of device
1058  *
1059  *	Search for an interface by index. If a valid device
1060  *	with @ifindex is found it will be returned with netdev->lock held.
1061  *	netdev_unlock() must be called to release it.
1062  *
1063  *	Return: pointer to a device with lock held, NULL if not found.
1064  */
1065 struct net_device *netdev_get_by_index_lock(struct net *net, int ifindex)
1066 {
1067 	struct net_device *dev;
1068 
1069 	dev = dev_get_by_index(net, ifindex);
1070 	if (!dev)
1071 		return NULL;
1072 
1073 	return __netdev_put_lock(dev);
1074 }
1075 
1076 struct net_device *
1077 netdev_xa_find_lock(struct net *net, struct net_device *dev,
1078 		    unsigned long *index)
1079 {
1080 	if (dev)
1081 		netdev_unlock(dev);
1082 
1083 	do {
1084 		rcu_read_lock();
1085 		dev = xa_find(&net->dev_by_index, index, ULONG_MAX, XA_PRESENT);
1086 		if (!dev) {
1087 			rcu_read_unlock();
1088 			return NULL;
1089 		}
1090 		dev_hold(dev);
1091 		rcu_read_unlock();
1092 
1093 		dev = __netdev_put_lock(dev);
1094 		if (dev)
1095 			return dev;
1096 
1097 		(*index)++;
1098 	} while (true);
1099 }
1100 
1101 static DEFINE_SEQLOCK(netdev_rename_lock);
1102 
1103 void netdev_copy_name(struct net_device *dev, char *name)
1104 {
1105 	unsigned int seq;
1106 
1107 	do {
1108 		seq = read_seqbegin(&netdev_rename_lock);
1109 		strscpy(name, dev->name, IFNAMSIZ);
1110 	} while (read_seqretry(&netdev_rename_lock, seq));
1111 }
1112 
1113 /**
1114  *	netdev_get_name - get a netdevice name, knowing its ifindex.
1115  *	@net: network namespace
1116  *	@name: a pointer to the buffer where the name will be stored.
1117  *	@ifindex: the ifindex of the interface to get the name from.
1118  */
1119 int netdev_get_name(struct net *net, char *name, int ifindex)
1120 {
1121 	struct net_device *dev;
1122 	int ret;
1123 
1124 	rcu_read_lock();
1125 
1126 	dev = dev_get_by_index_rcu(net, ifindex);
1127 	if (!dev) {
1128 		ret = -ENODEV;
1129 		goto out;
1130 	}
1131 
1132 	netdev_copy_name(dev, name);
1133 
1134 	ret = 0;
1135 out:
1136 	rcu_read_unlock();
1137 	return ret;
1138 }
1139 
1140 static bool dev_addr_cmp(struct net_device *dev, unsigned short type,
1141 			 const char *ha)
1142 {
1143 	return dev->type == type && !memcmp(dev->dev_addr, ha, dev->addr_len);
1144 }
1145 
1146 /**
1147  *	dev_getbyhwaddr_rcu - find a device by its hardware address
1148  *	@net: the applicable net namespace
1149  *	@type: media type of device
1150  *	@ha: hardware address
1151  *
1152  *	Search for an interface by MAC address. Returns NULL if the device
1153  *	is not found or a pointer to the device.
1154  *	The caller must hold RCU.
1155  *	The returned device has not had its ref count increased
1156  *	and the caller must therefore be careful about locking
1157  *
1158  */
1159 
1160 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1161 				       const char *ha)
1162 {
1163 	struct net_device *dev;
1164 
1165 	for_each_netdev_rcu(net, dev)
1166 		if (dev_addr_cmp(dev, type, ha))
1167 			return dev;
1168 
1169 	return NULL;
1170 }
1171 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1172 
1173 /**
1174  * dev_getbyhwaddr() - find a device by its hardware address
1175  * @net: the applicable net namespace
1176  * @type: media type of device
1177  * @ha: hardware address
1178  *
1179  * Similar to dev_getbyhwaddr_rcu(), but the owner needs to hold
1180  * rtnl_lock.
1181  *
1182  * Context: rtnl_lock() must be held.
1183  * Return: pointer to the net_device, or NULL if not found
1184  */
1185 struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type,
1186 				   const char *ha)
1187 {
1188 	struct net_device *dev;
1189 
1190 	ASSERT_RTNL();
1191 	for_each_netdev(net, dev)
1192 		if (dev_addr_cmp(dev, type, ha))
1193 			return dev;
1194 
1195 	return NULL;
1196 }
1197 EXPORT_SYMBOL(dev_getbyhwaddr);
1198 
1199 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1200 {
1201 	struct net_device *dev, *ret = NULL;
1202 
1203 	rcu_read_lock();
1204 	for_each_netdev_rcu(net, dev)
1205 		if (dev->type == type) {
1206 			dev_hold(dev);
1207 			ret = dev;
1208 			break;
1209 		}
1210 	rcu_read_unlock();
1211 	return ret;
1212 }
1213 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1214 
1215 /**
1216  *	__dev_get_by_flags - find any device with given flags
1217  *	@net: the applicable net namespace
1218  *	@if_flags: IFF_* values
1219  *	@mask: bitmask of bits in if_flags to check
1220  *
1221  *	Search for any interface with the given flags. Returns NULL if a device
1222  *	is not found or a pointer to the device. Must be called inside
1223  *	rtnl_lock(), and result refcount is unchanged.
1224  */
1225 
1226 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1227 				      unsigned short mask)
1228 {
1229 	struct net_device *dev, *ret;
1230 
1231 	ASSERT_RTNL();
1232 
1233 	ret = NULL;
1234 	for_each_netdev(net, dev) {
1235 		if (((dev->flags ^ if_flags) & mask) == 0) {
1236 			ret = dev;
1237 			break;
1238 		}
1239 	}
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL(__dev_get_by_flags);
1243 
1244 /**
1245  *	dev_valid_name - check if name is okay for network device
1246  *	@name: name string
1247  *
1248  *	Network device names need to be valid file names to
1249  *	allow sysfs to work.  We also disallow any kind of
1250  *	whitespace.
1251  */
1252 bool dev_valid_name(const char *name)
1253 {
1254 	if (*name == '\0')
1255 		return false;
1256 	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1257 		return false;
1258 	if (!strcmp(name, ".") || !strcmp(name, ".."))
1259 		return false;
1260 
1261 	while (*name) {
1262 		if (*name == '/' || *name == ':' || isspace(*name))
1263 			return false;
1264 		name++;
1265 	}
1266 	return true;
1267 }
1268 EXPORT_SYMBOL(dev_valid_name);
1269 
1270 /**
1271  *	__dev_alloc_name - allocate a name for a device
1272  *	@net: network namespace to allocate the device name in
1273  *	@name: name format string
1274  *	@res: result name string
1275  *
1276  *	Passed a format string - eg "lt%d" it will try and find a suitable
1277  *	id. It scans list of devices to build up a free map, then chooses
1278  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1279  *	while allocating the name and adding the device in order to avoid
1280  *	duplicates.
1281  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1282  *	Returns the number of the unit assigned or a negative errno code.
1283  */
1284 
1285 static int __dev_alloc_name(struct net *net, const char *name, char *res)
1286 {
1287 	int i = 0;
1288 	const char *p;
1289 	const int max_netdevices = 8*PAGE_SIZE;
1290 	unsigned long *inuse;
1291 	struct net_device *d;
1292 	char buf[IFNAMSIZ];
1293 
1294 	/* Verify the string as this thing may have come from the user.
1295 	 * There must be one "%d" and no other "%" characters.
1296 	 */
1297 	p = strchr(name, '%');
1298 	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
1299 		return -EINVAL;
1300 
1301 	/* Use one page as a bit array of possible slots */
1302 	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1303 	if (!inuse)
1304 		return -ENOMEM;
1305 
1306 	for_each_netdev(net, d) {
1307 		struct netdev_name_node *name_node;
1308 
1309 		netdev_for_each_altname(d, name_node) {
1310 			if (!sscanf(name_node->name, name, &i))
1311 				continue;
1312 			if (i < 0 || i >= max_netdevices)
1313 				continue;
1314 
1315 			/* avoid cases where sscanf is not exact inverse of printf */
1316 			snprintf(buf, IFNAMSIZ, name, i);
1317 			if (!strncmp(buf, name_node->name, IFNAMSIZ))
1318 				__set_bit(i, inuse);
1319 		}
1320 		if (!sscanf(d->name, name, &i))
1321 			continue;
1322 		if (i < 0 || i >= max_netdevices)
1323 			continue;
1324 
1325 		/* avoid cases where sscanf is not exact inverse of printf */
1326 		snprintf(buf, IFNAMSIZ, name, i);
1327 		if (!strncmp(buf, d->name, IFNAMSIZ))
1328 			__set_bit(i, inuse);
1329 	}
1330 
1331 	i = find_first_zero_bit(inuse, max_netdevices);
1332 	bitmap_free(inuse);
1333 	if (i == max_netdevices)
1334 		return -ENFILE;
1335 
1336 	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1337 	strscpy(buf, name, IFNAMSIZ);
1338 	snprintf(res, IFNAMSIZ, buf, i);
1339 	return i;
1340 }
1341 
1342 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1343 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1344 			       const char *want_name, char *out_name,
1345 			       int dup_errno)
1346 {
1347 	if (!dev_valid_name(want_name))
1348 		return -EINVAL;
1349 
1350 	if (strchr(want_name, '%'))
1351 		return __dev_alloc_name(net, want_name, out_name);
1352 
1353 	if (netdev_name_in_use(net, want_name))
1354 		return -dup_errno;
1355 	if (out_name != want_name)
1356 		strscpy(out_name, want_name, IFNAMSIZ);
1357 	return 0;
1358 }
1359 
1360 /**
1361  *	dev_alloc_name - allocate a name for a device
1362  *	@dev: device
1363  *	@name: name format string
1364  *
1365  *	Passed a format string - eg "lt%d" it will try and find a suitable
1366  *	id. It scans list of devices to build up a free map, then chooses
1367  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1368  *	while allocating the name and adding the device in order to avoid
1369  *	duplicates.
1370  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1371  *	Returns the number of the unit assigned or a negative errno code.
1372  */
1373 
1374 int dev_alloc_name(struct net_device *dev, const char *name)
1375 {
1376 	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
1377 }
1378 EXPORT_SYMBOL(dev_alloc_name);
1379 
1380 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1381 			      const char *name)
1382 {
1383 	int ret;
1384 
1385 	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
1386 	return ret < 0 ? ret : 0;
1387 }
1388 
1389 int netif_change_name(struct net_device *dev, const char *newname)
1390 {
1391 	struct net *net = dev_net(dev);
1392 	unsigned char old_assign_type;
1393 	char oldname[IFNAMSIZ];
1394 	int err = 0;
1395 	int ret;
1396 
1397 	ASSERT_RTNL_NET(net);
1398 
1399 	if (!strncmp(newname, dev->name, IFNAMSIZ))
1400 		return 0;
1401 
1402 	memcpy(oldname, dev->name, IFNAMSIZ);
1403 
1404 	write_seqlock_bh(&netdev_rename_lock);
1405 	err = dev_get_valid_name(net, dev, newname);
1406 	write_sequnlock_bh(&netdev_rename_lock);
1407 
1408 	if (err < 0)
1409 		return err;
1410 
1411 	if (oldname[0] && !strchr(oldname, '%'))
1412 		netdev_info(dev, "renamed from %s%s\n", oldname,
1413 			    dev->flags & IFF_UP ? " (while UP)" : "");
1414 
1415 	old_assign_type = dev->name_assign_type;
1416 	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
1417 
1418 rollback:
1419 	ret = device_rename(&dev->dev, dev->name);
1420 	if (ret) {
1421 		write_seqlock_bh(&netdev_rename_lock);
1422 		memcpy(dev->name, oldname, IFNAMSIZ);
1423 		write_sequnlock_bh(&netdev_rename_lock);
1424 		WRITE_ONCE(dev->name_assign_type, old_assign_type);
1425 		return ret;
1426 	}
1427 
1428 	netdev_adjacent_rename_links(dev, oldname);
1429 
1430 	netdev_name_node_del(dev->name_node);
1431 
1432 	synchronize_net();
1433 
1434 	netdev_name_node_add(net, dev->name_node);
1435 
1436 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1437 	ret = notifier_to_errno(ret);
1438 
1439 	if (ret) {
1440 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1441 		if (err >= 0) {
1442 			err = ret;
1443 			write_seqlock_bh(&netdev_rename_lock);
1444 			memcpy(dev->name, oldname, IFNAMSIZ);
1445 			write_sequnlock_bh(&netdev_rename_lock);
1446 			memcpy(oldname, newname, IFNAMSIZ);
1447 			WRITE_ONCE(dev->name_assign_type, old_assign_type);
1448 			old_assign_type = NET_NAME_RENAMED;
1449 			goto rollback;
1450 		} else {
1451 			netdev_err(dev, "name change rollback failed: %d\n",
1452 				   ret);
1453 		}
1454 	}
1455 
1456 	return err;
1457 }
1458 
1459 int netif_set_alias(struct net_device *dev, const char *alias, size_t len)
1460 {
1461 	struct dev_ifalias *new_alias = NULL;
1462 
1463 	if (len >= IFALIASZ)
1464 		return -EINVAL;
1465 
1466 	if (len) {
1467 		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1468 		if (!new_alias)
1469 			return -ENOMEM;
1470 
1471 		memcpy(new_alias->ifalias, alias, len);
1472 		new_alias->ifalias[len] = 0;
1473 	}
1474 
1475 	mutex_lock(&ifalias_mutex);
1476 	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1477 					mutex_is_locked(&ifalias_mutex));
1478 	mutex_unlock(&ifalias_mutex);
1479 
1480 	if (new_alias)
1481 		kfree_rcu(new_alias, rcuhead);
1482 
1483 	return len;
1484 }
1485 
1486 /**
1487  *	dev_get_alias - get ifalias of a device
1488  *	@dev: device
1489  *	@name: buffer to store name of ifalias
1490  *	@len: size of buffer
1491  *
1492  *	get ifalias for a device.  Caller must make sure dev cannot go
1493  *	away,  e.g. rcu read lock or own a reference count to device.
1494  */
1495 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1496 {
1497 	const struct dev_ifalias *alias;
1498 	int ret = 0;
1499 
1500 	rcu_read_lock();
1501 	alias = rcu_dereference(dev->ifalias);
1502 	if (alias)
1503 		ret = snprintf(name, len, "%s", alias->ifalias);
1504 	rcu_read_unlock();
1505 
1506 	return ret;
1507 }
1508 
1509 /**
1510  *	netdev_features_change - device changes features
1511  *	@dev: device to cause notification
1512  *
1513  *	Called to indicate a device has changed features.
1514  */
1515 void netdev_features_change(struct net_device *dev)
1516 {
1517 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1518 }
1519 EXPORT_SYMBOL(netdev_features_change);
1520 
1521 /**
1522  *	netdev_state_change - device changes state
1523  *	@dev: device to cause notification
1524  *
1525  *	Called to indicate a device has changed state. This function calls
1526  *	the notifier chains for netdev_chain and sends a NEWLINK message
1527  *	to the routing socket.
1528  */
1529 void netdev_state_change(struct net_device *dev)
1530 {
1531 	if (dev->flags & IFF_UP) {
1532 		struct netdev_notifier_change_info change_info = {
1533 			.info.dev = dev,
1534 		};
1535 
1536 		call_netdevice_notifiers_info(NETDEV_CHANGE,
1537 					      &change_info.info);
1538 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1539 	}
1540 }
1541 EXPORT_SYMBOL(netdev_state_change);
1542 
1543 /**
1544  * __netdev_notify_peers - notify network peers about existence of @dev,
1545  * to be called when rtnl lock is already held.
1546  * @dev: network device
1547  *
1548  * Generate traffic such that interested network peers are aware of
1549  * @dev, such as by generating a gratuitous ARP. This may be used when
1550  * a device wants to inform the rest of the network about some sort of
1551  * reconfiguration such as a failover event or virtual machine
1552  * migration.
1553  */
1554 void __netdev_notify_peers(struct net_device *dev)
1555 {
1556 	ASSERT_RTNL();
1557 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1558 	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1559 }
1560 EXPORT_SYMBOL(__netdev_notify_peers);
1561 
1562 /**
1563  * netdev_notify_peers - notify network peers about existence of @dev
1564  * @dev: network device
1565  *
1566  * Generate traffic such that interested network peers are aware of
1567  * @dev, such as by generating a gratuitous ARP. This may be used when
1568  * a device wants to inform the rest of the network about some sort of
1569  * reconfiguration such as a failover event or virtual machine
1570  * migration.
1571  */
1572 void netdev_notify_peers(struct net_device *dev)
1573 {
1574 	rtnl_lock();
1575 	__netdev_notify_peers(dev);
1576 	rtnl_unlock();
1577 }
1578 EXPORT_SYMBOL(netdev_notify_peers);
1579 
1580 static int napi_threaded_poll(void *data);
1581 
1582 static int napi_kthread_create(struct napi_struct *n)
1583 {
1584 	int err = 0;
1585 
1586 	/* Create and wake up the kthread once to put it in
1587 	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1588 	 * warning and work with loadavg.
1589 	 */
1590 	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1591 				n->dev->name, n->napi_id);
1592 	if (IS_ERR(n->thread)) {
1593 		err = PTR_ERR(n->thread);
1594 		pr_err("kthread_run failed with err %d\n", err);
1595 		n->thread = NULL;
1596 	}
1597 
1598 	return err;
1599 }
1600 
1601 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1602 {
1603 	const struct net_device_ops *ops = dev->netdev_ops;
1604 	int ret;
1605 
1606 	ASSERT_RTNL();
1607 	dev_addr_check(dev);
1608 
1609 	if (!netif_device_present(dev)) {
1610 		/* may be detached because parent is runtime-suspended */
1611 		if (dev->dev.parent)
1612 			pm_runtime_resume(dev->dev.parent);
1613 		if (!netif_device_present(dev))
1614 			return -ENODEV;
1615 	}
1616 
1617 	/* Block netpoll from trying to do any rx path servicing.
1618 	 * If we don't do this there is a chance ndo_poll_controller
1619 	 * or ndo_poll may be running while we open the device
1620 	 */
1621 	netpoll_poll_disable(dev);
1622 
1623 	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1624 	ret = notifier_to_errno(ret);
1625 	if (ret)
1626 		return ret;
1627 
1628 	set_bit(__LINK_STATE_START, &dev->state);
1629 
1630 	netdev_ops_assert_locked(dev);
1631 
1632 	if (ops->ndo_validate_addr)
1633 		ret = ops->ndo_validate_addr(dev);
1634 
1635 	if (!ret && ops->ndo_open)
1636 		ret = ops->ndo_open(dev);
1637 
1638 	netpoll_poll_enable(dev);
1639 
1640 	if (ret)
1641 		clear_bit(__LINK_STATE_START, &dev->state);
1642 	else {
1643 		netif_set_up(dev, true);
1644 		dev_set_rx_mode(dev);
1645 		dev_activate(dev);
1646 		add_device_randomness(dev->dev_addr, dev->addr_len);
1647 	}
1648 
1649 	return ret;
1650 }
1651 
1652 int netif_open(struct net_device *dev, struct netlink_ext_ack *extack)
1653 {
1654 	int ret;
1655 
1656 	if (dev->flags & IFF_UP)
1657 		return 0;
1658 
1659 	ret = __dev_open(dev, extack);
1660 	if (ret < 0)
1661 		return ret;
1662 
1663 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1664 	call_netdevice_notifiers(NETDEV_UP, dev);
1665 
1666 	return ret;
1667 }
1668 
1669 static void __dev_close_many(struct list_head *head)
1670 {
1671 	struct net_device *dev;
1672 
1673 	ASSERT_RTNL();
1674 	might_sleep();
1675 
1676 	list_for_each_entry(dev, head, close_list) {
1677 		/* Temporarily disable netpoll until the interface is down */
1678 		netpoll_poll_disable(dev);
1679 
1680 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1681 
1682 		clear_bit(__LINK_STATE_START, &dev->state);
1683 
1684 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1685 		 * can be even on different cpu. So just clear netif_running().
1686 		 *
1687 		 * dev->stop() will invoke napi_disable() on all of it's
1688 		 * napi_struct instances on this device.
1689 		 */
1690 		smp_mb__after_atomic(); /* Commit netif_running(). */
1691 	}
1692 
1693 	dev_deactivate_many(head);
1694 
1695 	list_for_each_entry(dev, head, close_list) {
1696 		const struct net_device_ops *ops = dev->netdev_ops;
1697 
1698 		/*
1699 		 *	Call the device specific close. This cannot fail.
1700 		 *	Only if device is UP
1701 		 *
1702 		 *	We allow it to be called even after a DETACH hot-plug
1703 		 *	event.
1704 		 */
1705 
1706 		netdev_ops_assert_locked(dev);
1707 
1708 		if (ops->ndo_stop)
1709 			ops->ndo_stop(dev);
1710 
1711 		netif_set_up(dev, false);
1712 		netpoll_poll_enable(dev);
1713 	}
1714 }
1715 
1716 static void __dev_close(struct net_device *dev)
1717 {
1718 	LIST_HEAD(single);
1719 
1720 	list_add(&dev->close_list, &single);
1721 	__dev_close_many(&single);
1722 	list_del(&single);
1723 }
1724 
1725 void dev_close_many(struct list_head *head, bool unlink)
1726 {
1727 	struct net_device *dev, *tmp;
1728 
1729 	/* Remove the devices that don't need to be closed */
1730 	list_for_each_entry_safe(dev, tmp, head, close_list)
1731 		if (!(dev->flags & IFF_UP))
1732 			list_del_init(&dev->close_list);
1733 
1734 	__dev_close_many(head);
1735 
1736 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1737 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1738 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1739 		if (unlink)
1740 			list_del_init(&dev->close_list);
1741 	}
1742 }
1743 EXPORT_SYMBOL(dev_close_many);
1744 
1745 void netif_close(struct net_device *dev)
1746 {
1747 	if (dev->flags & IFF_UP) {
1748 		LIST_HEAD(single);
1749 
1750 		list_add(&dev->close_list, &single);
1751 		dev_close_many(&single, true);
1752 		list_del(&single);
1753 	}
1754 }
1755 EXPORT_SYMBOL(netif_close);
1756 
1757 void netif_disable_lro(struct net_device *dev)
1758 {
1759 	struct net_device *lower_dev;
1760 	struct list_head *iter;
1761 
1762 	dev->wanted_features &= ~NETIF_F_LRO;
1763 	netdev_update_features(dev);
1764 
1765 	if (unlikely(dev->features & NETIF_F_LRO))
1766 		netdev_WARN(dev, "failed to disable LRO!\n");
1767 
1768 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
1769 		netdev_lock_ops(lower_dev);
1770 		netif_disable_lro(lower_dev);
1771 		netdev_unlock_ops(lower_dev);
1772 	}
1773 }
1774 
1775 /**
1776  *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777  *	@dev: device
1778  *
1779  *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1780  *	called under RTNL.  This is needed if Generic XDP is installed on
1781  *	the device.
1782  */
1783 static void dev_disable_gro_hw(struct net_device *dev)
1784 {
1785 	dev->wanted_features &= ~NETIF_F_GRO_HW;
1786 	netdev_update_features(dev);
1787 
1788 	if (unlikely(dev->features & NETIF_F_GRO_HW))
1789 		netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790 }
1791 
1792 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793 {
1794 #define N(val) 						\
1795 	case NETDEV_##val:				\
1796 		return "NETDEV_" __stringify(val);
1797 	switch (cmd) {
1798 	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799 	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800 	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801 	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1802 	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1803 	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1804 	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805 	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806 	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807 	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1808 	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1809 	N(XDP_FEAT_CHANGE)
1810 	}
1811 #undef N
1812 	return "UNKNOWN_NETDEV_EVENT";
1813 }
1814 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1815 
1816 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1817 				   struct net_device *dev)
1818 {
1819 	struct netdev_notifier_info info = {
1820 		.dev = dev,
1821 	};
1822 
1823 	return nb->notifier_call(nb, val, &info);
1824 }
1825 
1826 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1827 					     struct net_device *dev)
1828 {
1829 	int err;
1830 
1831 	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1832 	err = notifier_to_errno(err);
1833 	if (err)
1834 		return err;
1835 
1836 	if (!(dev->flags & IFF_UP))
1837 		return 0;
1838 
1839 	call_netdevice_notifier(nb, NETDEV_UP, dev);
1840 	return 0;
1841 }
1842 
1843 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1844 						struct net_device *dev)
1845 {
1846 	if (dev->flags & IFF_UP) {
1847 		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1848 					dev);
1849 		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1850 	}
1851 	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1852 }
1853 
1854 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1855 						 struct net *net)
1856 {
1857 	struct net_device *dev;
1858 	int err;
1859 
1860 	for_each_netdev(net, dev) {
1861 		netdev_lock_ops(dev);
1862 		err = call_netdevice_register_notifiers(nb, dev);
1863 		netdev_unlock_ops(dev);
1864 		if (err)
1865 			goto rollback;
1866 	}
1867 	return 0;
1868 
1869 rollback:
1870 	for_each_netdev_continue_reverse(net, dev)
1871 		call_netdevice_unregister_notifiers(nb, dev);
1872 	return err;
1873 }
1874 
1875 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1876 						    struct net *net)
1877 {
1878 	struct net_device *dev;
1879 
1880 	for_each_netdev(net, dev)
1881 		call_netdevice_unregister_notifiers(nb, dev);
1882 }
1883 
1884 static int dev_boot_phase = 1;
1885 
1886 /**
1887  * register_netdevice_notifier - register a network notifier block
1888  * @nb: notifier
1889  *
1890  * Register a notifier to be called when network device events occur.
1891  * The notifier passed is linked into the kernel structures and must
1892  * not be reused until it has been unregistered. A negative errno code
1893  * is returned on a failure.
1894  *
1895  * When registered all registration and up events are replayed
1896  * to the new notifier to allow device to have a race free
1897  * view of the network device list.
1898  */
1899 
1900 int register_netdevice_notifier(struct notifier_block *nb)
1901 {
1902 	struct net *net;
1903 	int err;
1904 
1905 	/* Close race with setup_net() and cleanup_net() */
1906 	down_write(&pernet_ops_rwsem);
1907 
1908 	/* When RTNL is removed, we need protection for netdev_chain. */
1909 	rtnl_lock();
1910 
1911 	err = raw_notifier_chain_register(&netdev_chain, nb);
1912 	if (err)
1913 		goto unlock;
1914 	if (dev_boot_phase)
1915 		goto unlock;
1916 	for_each_net(net) {
1917 		__rtnl_net_lock(net);
1918 		err = call_netdevice_register_net_notifiers(nb, net);
1919 		__rtnl_net_unlock(net);
1920 		if (err)
1921 			goto rollback;
1922 	}
1923 
1924 unlock:
1925 	rtnl_unlock();
1926 	up_write(&pernet_ops_rwsem);
1927 	return err;
1928 
1929 rollback:
1930 	for_each_net_continue_reverse(net) {
1931 		__rtnl_net_lock(net);
1932 		call_netdevice_unregister_net_notifiers(nb, net);
1933 		__rtnl_net_unlock(net);
1934 	}
1935 
1936 	raw_notifier_chain_unregister(&netdev_chain, nb);
1937 	goto unlock;
1938 }
1939 EXPORT_SYMBOL(register_netdevice_notifier);
1940 
1941 /**
1942  * unregister_netdevice_notifier - unregister a network notifier block
1943  * @nb: notifier
1944  *
1945  * Unregister a notifier previously registered by
1946  * register_netdevice_notifier(). The notifier is unlinked into the
1947  * kernel structures and may then be reused. A negative errno code
1948  * is returned on a failure.
1949  *
1950  * After unregistering unregister and down device events are synthesized
1951  * for all devices on the device list to the removed notifier to remove
1952  * the need for special case cleanup code.
1953  */
1954 
1955 int unregister_netdevice_notifier(struct notifier_block *nb)
1956 {
1957 	struct net *net;
1958 	int err;
1959 
1960 	/* Close race with setup_net() and cleanup_net() */
1961 	down_write(&pernet_ops_rwsem);
1962 	rtnl_lock();
1963 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1964 	if (err)
1965 		goto unlock;
1966 
1967 	for_each_net(net) {
1968 		__rtnl_net_lock(net);
1969 		call_netdevice_unregister_net_notifiers(nb, net);
1970 		__rtnl_net_unlock(net);
1971 	}
1972 
1973 unlock:
1974 	rtnl_unlock();
1975 	up_write(&pernet_ops_rwsem);
1976 	return err;
1977 }
1978 EXPORT_SYMBOL(unregister_netdevice_notifier);
1979 
1980 static int __register_netdevice_notifier_net(struct net *net,
1981 					     struct notifier_block *nb,
1982 					     bool ignore_call_fail)
1983 {
1984 	int err;
1985 
1986 	err = raw_notifier_chain_register(&net->netdev_chain, nb);
1987 	if (err)
1988 		return err;
1989 	if (dev_boot_phase)
1990 		return 0;
1991 
1992 	err = call_netdevice_register_net_notifiers(nb, net);
1993 	if (err && !ignore_call_fail)
1994 		goto chain_unregister;
1995 
1996 	return 0;
1997 
1998 chain_unregister:
1999 	raw_notifier_chain_unregister(&net->netdev_chain, nb);
2000 	return err;
2001 }
2002 
2003 static int __unregister_netdevice_notifier_net(struct net *net,
2004 					       struct notifier_block *nb)
2005 {
2006 	int err;
2007 
2008 	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
2009 	if (err)
2010 		return err;
2011 
2012 	call_netdevice_unregister_net_notifiers(nb, net);
2013 	return 0;
2014 }
2015 
2016 /**
2017  * register_netdevice_notifier_net - register a per-netns network notifier block
2018  * @net: network namespace
2019  * @nb: notifier
2020  *
2021  * Register a notifier to be called when network device events occur.
2022  * The notifier passed is linked into the kernel structures and must
2023  * not be reused until it has been unregistered. A negative errno code
2024  * is returned on a failure.
2025  *
2026  * When registered all registration and up events are replayed
2027  * to the new notifier to allow device to have a race free
2028  * view of the network device list.
2029  */
2030 
2031 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2032 {
2033 	int err;
2034 
2035 	rtnl_net_lock(net);
2036 	err = __register_netdevice_notifier_net(net, nb, false);
2037 	rtnl_net_unlock(net);
2038 
2039 	return err;
2040 }
2041 EXPORT_SYMBOL(register_netdevice_notifier_net);
2042 
2043 /**
2044  * unregister_netdevice_notifier_net - unregister a per-netns
2045  *                                     network notifier block
2046  * @net: network namespace
2047  * @nb: notifier
2048  *
2049  * Unregister a notifier previously registered by
2050  * register_netdevice_notifier_net(). The notifier is unlinked from the
2051  * kernel structures and may then be reused. A negative errno code
2052  * is returned on a failure.
2053  *
2054  * After unregistering unregister and down device events are synthesized
2055  * for all devices on the device list to the removed notifier to remove
2056  * the need for special case cleanup code.
2057  */
2058 
2059 int unregister_netdevice_notifier_net(struct net *net,
2060 				      struct notifier_block *nb)
2061 {
2062 	int err;
2063 
2064 	rtnl_net_lock(net);
2065 	err = __unregister_netdevice_notifier_net(net, nb);
2066 	rtnl_net_unlock(net);
2067 
2068 	return err;
2069 }
2070 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2071 
2072 static void __move_netdevice_notifier_net(struct net *src_net,
2073 					  struct net *dst_net,
2074 					  struct notifier_block *nb)
2075 {
2076 	__unregister_netdevice_notifier_net(src_net, nb);
2077 	__register_netdevice_notifier_net(dst_net, nb, true);
2078 }
2079 
2080 static void rtnl_net_dev_lock(struct net_device *dev)
2081 {
2082 	bool again;
2083 
2084 	do {
2085 		struct net *net;
2086 
2087 		again = false;
2088 
2089 		/* netns might be being dismantled. */
2090 		rcu_read_lock();
2091 		net = dev_net_rcu(dev);
2092 		net_passive_inc(net);
2093 		rcu_read_unlock();
2094 
2095 		rtnl_net_lock(net);
2096 
2097 #ifdef CONFIG_NET_NS
2098 		/* dev might have been moved to another netns. */
2099 		if (!net_eq(net, rcu_access_pointer(dev->nd_net.net))) {
2100 			rtnl_net_unlock(net);
2101 			net_passive_dec(net);
2102 			again = true;
2103 		}
2104 #endif
2105 	} while (again);
2106 }
2107 
2108 static void rtnl_net_dev_unlock(struct net_device *dev)
2109 {
2110 	struct net *net = dev_net(dev);
2111 
2112 	rtnl_net_unlock(net);
2113 	net_passive_dec(net);
2114 }
2115 
2116 int register_netdevice_notifier_dev_net(struct net_device *dev,
2117 					struct notifier_block *nb,
2118 					struct netdev_net_notifier *nn)
2119 {
2120 	int err;
2121 
2122 	rtnl_net_dev_lock(dev);
2123 	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2124 	if (!err) {
2125 		nn->nb = nb;
2126 		list_add(&nn->list, &dev->net_notifier_list);
2127 	}
2128 	rtnl_net_dev_unlock(dev);
2129 
2130 	return err;
2131 }
2132 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2133 
2134 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2135 					  struct notifier_block *nb,
2136 					  struct netdev_net_notifier *nn)
2137 {
2138 	int err;
2139 
2140 	rtnl_net_dev_lock(dev);
2141 	list_del(&nn->list);
2142 	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2143 	rtnl_net_dev_unlock(dev);
2144 
2145 	return err;
2146 }
2147 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2148 
2149 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2150 					     struct net *net)
2151 {
2152 	struct netdev_net_notifier *nn;
2153 
2154 	list_for_each_entry(nn, &dev->net_notifier_list, list)
2155 		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
2156 }
2157 
2158 /**
2159  *	call_netdevice_notifiers_info - call all network notifier blocks
2160  *	@val: value passed unmodified to notifier function
2161  *	@info: notifier information data
2162  *
2163  *	Call all network notifier blocks.  Parameters and return value
2164  *	are as for raw_notifier_call_chain().
2165  */
2166 
2167 int call_netdevice_notifiers_info(unsigned long val,
2168 				  struct netdev_notifier_info *info)
2169 {
2170 	struct net *net = dev_net(info->dev);
2171 	int ret;
2172 
2173 	ASSERT_RTNL();
2174 
2175 	/* Run per-netns notifier block chain first, then run the global one.
2176 	 * Hopefully, one day, the global one is going to be removed after
2177 	 * all notifier block registrators get converted to be per-netns.
2178 	 */
2179 	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2180 	if (ret & NOTIFY_STOP_MASK)
2181 		return ret;
2182 	return raw_notifier_call_chain(&netdev_chain, val, info);
2183 }
2184 
2185 /**
2186  *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2187  *	                                       for and rollback on error
2188  *	@val_up: value passed unmodified to notifier function
2189  *	@val_down: value passed unmodified to the notifier function when
2190  *	           recovering from an error on @val_up
2191  *	@info: notifier information data
2192  *
2193  *	Call all per-netns network notifier blocks, but not notifier blocks on
2194  *	the global notifier chain. Parameters and return value are as for
2195  *	raw_notifier_call_chain_robust().
2196  */
2197 
2198 static int
2199 call_netdevice_notifiers_info_robust(unsigned long val_up,
2200 				     unsigned long val_down,
2201 				     struct netdev_notifier_info *info)
2202 {
2203 	struct net *net = dev_net(info->dev);
2204 
2205 	ASSERT_RTNL();
2206 
2207 	return raw_notifier_call_chain_robust(&net->netdev_chain,
2208 					      val_up, val_down, info);
2209 }
2210 
2211 static int call_netdevice_notifiers_extack(unsigned long val,
2212 					   struct net_device *dev,
2213 					   struct netlink_ext_ack *extack)
2214 {
2215 	struct netdev_notifier_info info = {
2216 		.dev = dev,
2217 		.extack = extack,
2218 	};
2219 
2220 	return call_netdevice_notifiers_info(val, &info);
2221 }
2222 
2223 /**
2224  *	call_netdevice_notifiers - call all network notifier blocks
2225  *      @val: value passed unmodified to notifier function
2226  *      @dev: net_device pointer passed unmodified to notifier function
2227  *
2228  *	Call all network notifier blocks.  Parameters and return value
2229  *	are as for raw_notifier_call_chain().
2230  */
2231 
2232 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2233 {
2234 	return call_netdevice_notifiers_extack(val, dev, NULL);
2235 }
2236 EXPORT_SYMBOL(call_netdevice_notifiers);
2237 
2238 /**
2239  *	call_netdevice_notifiers_mtu - call all network notifier blocks
2240  *	@val: value passed unmodified to notifier function
2241  *	@dev: net_device pointer passed unmodified to notifier function
2242  *	@arg: additional u32 argument passed to the notifier function
2243  *
2244  *	Call all network notifier blocks.  Parameters and return value
2245  *	are as for raw_notifier_call_chain().
2246  */
2247 static int call_netdevice_notifiers_mtu(unsigned long val,
2248 					struct net_device *dev, u32 arg)
2249 {
2250 	struct netdev_notifier_info_ext info = {
2251 		.info.dev = dev,
2252 		.ext.mtu = arg,
2253 	};
2254 
2255 	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2256 
2257 	return call_netdevice_notifiers_info(val, &info.info);
2258 }
2259 
2260 #ifdef CONFIG_NET_INGRESS
2261 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2262 
2263 void net_inc_ingress_queue(void)
2264 {
2265 	static_branch_inc(&ingress_needed_key);
2266 }
2267 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2268 
2269 void net_dec_ingress_queue(void)
2270 {
2271 	static_branch_dec(&ingress_needed_key);
2272 }
2273 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2274 #endif
2275 
2276 #ifdef CONFIG_NET_EGRESS
2277 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2278 
2279 void net_inc_egress_queue(void)
2280 {
2281 	static_branch_inc(&egress_needed_key);
2282 }
2283 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2284 
2285 void net_dec_egress_queue(void)
2286 {
2287 	static_branch_dec(&egress_needed_key);
2288 }
2289 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2290 #endif
2291 
2292 #ifdef CONFIG_NET_CLS_ACT
2293 DEFINE_STATIC_KEY_FALSE(tcf_sw_enabled_key);
2294 EXPORT_SYMBOL(tcf_sw_enabled_key);
2295 #endif
2296 
2297 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2298 EXPORT_SYMBOL(netstamp_needed_key);
2299 #ifdef CONFIG_JUMP_LABEL
2300 static atomic_t netstamp_needed_deferred;
2301 static atomic_t netstamp_wanted;
2302 static void netstamp_clear(struct work_struct *work)
2303 {
2304 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2305 	int wanted;
2306 
2307 	wanted = atomic_add_return(deferred, &netstamp_wanted);
2308 	if (wanted > 0)
2309 		static_branch_enable(&netstamp_needed_key);
2310 	else
2311 		static_branch_disable(&netstamp_needed_key);
2312 }
2313 static DECLARE_WORK(netstamp_work, netstamp_clear);
2314 #endif
2315 
2316 void net_enable_timestamp(void)
2317 {
2318 #ifdef CONFIG_JUMP_LABEL
2319 	int wanted = atomic_read(&netstamp_wanted);
2320 
2321 	while (wanted > 0) {
2322 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2323 			return;
2324 	}
2325 	atomic_inc(&netstamp_needed_deferred);
2326 	schedule_work(&netstamp_work);
2327 #else
2328 	static_branch_inc(&netstamp_needed_key);
2329 #endif
2330 }
2331 EXPORT_SYMBOL(net_enable_timestamp);
2332 
2333 void net_disable_timestamp(void)
2334 {
2335 #ifdef CONFIG_JUMP_LABEL
2336 	int wanted = atomic_read(&netstamp_wanted);
2337 
2338 	while (wanted > 1) {
2339 		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2340 			return;
2341 	}
2342 	atomic_dec(&netstamp_needed_deferred);
2343 	schedule_work(&netstamp_work);
2344 #else
2345 	static_branch_dec(&netstamp_needed_key);
2346 #endif
2347 }
2348 EXPORT_SYMBOL(net_disable_timestamp);
2349 
2350 static inline void net_timestamp_set(struct sk_buff *skb)
2351 {
2352 	skb->tstamp = 0;
2353 	skb->tstamp_type = SKB_CLOCK_REALTIME;
2354 	if (static_branch_unlikely(&netstamp_needed_key))
2355 		skb->tstamp = ktime_get_real();
2356 }
2357 
2358 #define net_timestamp_check(COND, SKB)				\
2359 	if (static_branch_unlikely(&netstamp_needed_key)) {	\
2360 		if ((COND) && !(SKB)->tstamp)			\
2361 			(SKB)->tstamp = ktime_get_real();	\
2362 	}							\
2363 
2364 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2365 {
2366 	return __is_skb_forwardable(dev, skb, true);
2367 }
2368 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2369 
2370 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2371 			      bool check_mtu)
2372 {
2373 	int ret = ____dev_forward_skb(dev, skb, check_mtu);
2374 
2375 	if (likely(!ret)) {
2376 		skb->protocol = eth_type_trans(skb, dev);
2377 		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2378 	}
2379 
2380 	return ret;
2381 }
2382 
2383 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2384 {
2385 	return __dev_forward_skb2(dev, skb, true);
2386 }
2387 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2388 
2389 /**
2390  * dev_forward_skb - loopback an skb to another netif
2391  *
2392  * @dev: destination network device
2393  * @skb: buffer to forward
2394  *
2395  * return values:
2396  *	NET_RX_SUCCESS	(no congestion)
2397  *	NET_RX_DROP     (packet was dropped, but freed)
2398  *
2399  * dev_forward_skb can be used for injecting an skb from the
2400  * start_xmit function of one device into the receive queue
2401  * of another device.
2402  *
2403  * The receiving device may be in another namespace, so
2404  * we have to clear all information in the skb that could
2405  * impact namespace isolation.
2406  */
2407 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2408 {
2409 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2410 }
2411 EXPORT_SYMBOL_GPL(dev_forward_skb);
2412 
2413 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2414 {
2415 	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2416 }
2417 
2418 static inline int deliver_skb(struct sk_buff *skb,
2419 			      struct packet_type *pt_prev,
2420 			      struct net_device *orig_dev)
2421 {
2422 	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2423 		return -ENOMEM;
2424 	refcount_inc(&skb->users);
2425 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2426 }
2427 
2428 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2429 					  struct packet_type **pt,
2430 					  struct net_device *orig_dev,
2431 					  __be16 type,
2432 					  struct list_head *ptype_list)
2433 {
2434 	struct packet_type *ptype, *pt_prev = *pt;
2435 
2436 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2437 		if (ptype->type != type)
2438 			continue;
2439 		if (pt_prev)
2440 			deliver_skb(skb, pt_prev, orig_dev);
2441 		pt_prev = ptype;
2442 	}
2443 	*pt = pt_prev;
2444 }
2445 
2446 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2447 {
2448 	if (!ptype->af_packet_priv || !skb->sk)
2449 		return false;
2450 
2451 	if (ptype->id_match)
2452 		return ptype->id_match(ptype, skb->sk);
2453 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2454 		return true;
2455 
2456 	return false;
2457 }
2458 
2459 /**
2460  * dev_nit_active_rcu - return true if any network interface taps are in use
2461  *
2462  * The caller must hold the RCU lock
2463  *
2464  * @dev: network device to check for the presence of taps
2465  */
2466 bool dev_nit_active_rcu(const struct net_device *dev)
2467 {
2468 	/* Callers may hold either RCU or RCU BH lock */
2469 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
2470 
2471 	return !list_empty(&dev_net(dev)->ptype_all) ||
2472 	       !list_empty(&dev->ptype_all);
2473 }
2474 EXPORT_SYMBOL_GPL(dev_nit_active_rcu);
2475 
2476 /*
2477  *	Support routine. Sends outgoing frames to any network
2478  *	taps currently in use.
2479  */
2480 
2481 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2482 {
2483 	struct packet_type *ptype, *pt_prev = NULL;
2484 	struct list_head *ptype_list;
2485 	struct sk_buff *skb2 = NULL;
2486 
2487 	rcu_read_lock();
2488 	ptype_list = &dev_net_rcu(dev)->ptype_all;
2489 again:
2490 	list_for_each_entry_rcu(ptype, ptype_list, list) {
2491 		if (READ_ONCE(ptype->ignore_outgoing))
2492 			continue;
2493 
2494 		/* Never send packets back to the socket
2495 		 * they originated from - MvS ([email protected])
2496 		 */
2497 		if (skb_loop_sk(ptype, skb))
2498 			continue;
2499 
2500 		if (pt_prev) {
2501 			deliver_skb(skb2, pt_prev, skb->dev);
2502 			pt_prev = ptype;
2503 			continue;
2504 		}
2505 
2506 		/* need to clone skb, done only once */
2507 		skb2 = skb_clone(skb, GFP_ATOMIC);
2508 		if (!skb2)
2509 			goto out_unlock;
2510 
2511 		net_timestamp_set(skb2);
2512 
2513 		/* skb->nh should be correctly
2514 		 * set by sender, so that the second statement is
2515 		 * just protection against buggy protocols.
2516 		 */
2517 		skb_reset_mac_header(skb2);
2518 
2519 		if (skb_network_header(skb2) < skb2->data ||
2520 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2521 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2522 					     ntohs(skb2->protocol),
2523 					     dev->name);
2524 			skb_reset_network_header(skb2);
2525 		}
2526 
2527 		skb2->transport_header = skb2->network_header;
2528 		skb2->pkt_type = PACKET_OUTGOING;
2529 		pt_prev = ptype;
2530 	}
2531 
2532 	if (ptype_list != &dev->ptype_all) {
2533 		ptype_list = &dev->ptype_all;
2534 		goto again;
2535 	}
2536 out_unlock:
2537 	if (pt_prev) {
2538 		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2539 			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2540 		else
2541 			kfree_skb(skb2);
2542 	}
2543 	rcu_read_unlock();
2544 }
2545 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2546 
2547 /**
2548  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2549  * @dev: Network device
2550  * @txq: number of queues available
2551  *
2552  * If real_num_tx_queues is changed the tc mappings may no longer be
2553  * valid. To resolve this verify the tc mapping remains valid and if
2554  * not NULL the mapping. With no priorities mapping to this
2555  * offset/count pair it will no longer be used. In the worst case TC0
2556  * is invalid nothing can be done so disable priority mappings. If is
2557  * expected that drivers will fix this mapping if they can before
2558  * calling netif_set_real_num_tx_queues.
2559  */
2560 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2561 {
2562 	int i;
2563 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2564 
2565 	/* If TC0 is invalidated disable TC mapping */
2566 	if (tc->offset + tc->count > txq) {
2567 		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2568 		dev->num_tc = 0;
2569 		return;
2570 	}
2571 
2572 	/* Invalidated prio to tc mappings set to TC0 */
2573 	for (i = 1; i < TC_BITMASK + 1; i++) {
2574 		int q = netdev_get_prio_tc_map(dev, i);
2575 
2576 		tc = &dev->tc_to_txq[q];
2577 		if (tc->offset + tc->count > txq) {
2578 			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2579 				    i, q);
2580 			netdev_set_prio_tc_map(dev, i, 0);
2581 		}
2582 	}
2583 }
2584 
2585 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2586 {
2587 	if (dev->num_tc) {
2588 		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2589 		int i;
2590 
2591 		/* walk through the TCs and see if it falls into any of them */
2592 		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2593 			if ((txq - tc->offset) < tc->count)
2594 				return i;
2595 		}
2596 
2597 		/* didn't find it, just return -1 to indicate no match */
2598 		return -1;
2599 	}
2600 
2601 	return 0;
2602 }
2603 EXPORT_SYMBOL(netdev_txq_to_tc);
2604 
2605 #ifdef CONFIG_XPS
2606 static struct static_key xps_needed __read_mostly;
2607 static struct static_key xps_rxqs_needed __read_mostly;
2608 static DEFINE_MUTEX(xps_map_mutex);
2609 #define xmap_dereference(P)		\
2610 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2611 
2612 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2613 			     struct xps_dev_maps *old_maps, int tci, u16 index)
2614 {
2615 	struct xps_map *map = NULL;
2616 	int pos;
2617 
2618 	map = xmap_dereference(dev_maps->attr_map[tci]);
2619 	if (!map)
2620 		return false;
2621 
2622 	for (pos = map->len; pos--;) {
2623 		if (map->queues[pos] != index)
2624 			continue;
2625 
2626 		if (map->len > 1) {
2627 			map->queues[pos] = map->queues[--map->len];
2628 			break;
2629 		}
2630 
2631 		if (old_maps)
2632 			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2633 		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2634 		kfree_rcu(map, rcu);
2635 		return false;
2636 	}
2637 
2638 	return true;
2639 }
2640 
2641 static bool remove_xps_queue_cpu(struct net_device *dev,
2642 				 struct xps_dev_maps *dev_maps,
2643 				 int cpu, u16 offset, u16 count)
2644 {
2645 	int num_tc = dev_maps->num_tc;
2646 	bool active = false;
2647 	int tci;
2648 
2649 	for (tci = cpu * num_tc; num_tc--; tci++) {
2650 		int i, j;
2651 
2652 		for (i = count, j = offset; i--; j++) {
2653 			if (!remove_xps_queue(dev_maps, NULL, tci, j))
2654 				break;
2655 		}
2656 
2657 		active |= i < 0;
2658 	}
2659 
2660 	return active;
2661 }
2662 
2663 static void reset_xps_maps(struct net_device *dev,
2664 			   struct xps_dev_maps *dev_maps,
2665 			   enum xps_map_type type)
2666 {
2667 	static_key_slow_dec_cpuslocked(&xps_needed);
2668 	if (type == XPS_RXQS)
2669 		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2670 
2671 	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2672 
2673 	kfree_rcu(dev_maps, rcu);
2674 }
2675 
2676 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2677 			   u16 offset, u16 count)
2678 {
2679 	struct xps_dev_maps *dev_maps;
2680 	bool active = false;
2681 	int i, j;
2682 
2683 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2684 	if (!dev_maps)
2685 		return;
2686 
2687 	for (j = 0; j < dev_maps->nr_ids; j++)
2688 		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2689 	if (!active)
2690 		reset_xps_maps(dev, dev_maps, type);
2691 
2692 	if (type == XPS_CPUS) {
2693 		for (i = offset + (count - 1); count--; i--)
2694 			netdev_queue_numa_node_write(
2695 				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2696 	}
2697 }
2698 
2699 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2700 				   u16 count)
2701 {
2702 	if (!static_key_false(&xps_needed))
2703 		return;
2704 
2705 	cpus_read_lock();
2706 	mutex_lock(&xps_map_mutex);
2707 
2708 	if (static_key_false(&xps_rxqs_needed))
2709 		clean_xps_maps(dev, XPS_RXQS, offset, count);
2710 
2711 	clean_xps_maps(dev, XPS_CPUS, offset, count);
2712 
2713 	mutex_unlock(&xps_map_mutex);
2714 	cpus_read_unlock();
2715 }
2716 
2717 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2718 {
2719 	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2720 }
2721 
2722 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2723 				      u16 index, bool is_rxqs_map)
2724 {
2725 	struct xps_map *new_map;
2726 	int alloc_len = XPS_MIN_MAP_ALLOC;
2727 	int i, pos;
2728 
2729 	for (pos = 0; map && pos < map->len; pos++) {
2730 		if (map->queues[pos] != index)
2731 			continue;
2732 		return map;
2733 	}
2734 
2735 	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
2736 	if (map) {
2737 		if (pos < map->alloc_len)
2738 			return map;
2739 
2740 		alloc_len = map->alloc_len * 2;
2741 	}
2742 
2743 	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2744 	 *  map
2745 	 */
2746 	if (is_rxqs_map)
2747 		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2748 	else
2749 		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2750 				       cpu_to_node(attr_index));
2751 	if (!new_map)
2752 		return NULL;
2753 
2754 	for (i = 0; i < pos; i++)
2755 		new_map->queues[i] = map->queues[i];
2756 	new_map->alloc_len = alloc_len;
2757 	new_map->len = pos;
2758 
2759 	return new_map;
2760 }
2761 
2762 /* Copy xps maps at a given index */
2763 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2764 			      struct xps_dev_maps *new_dev_maps, int index,
2765 			      int tc, bool skip_tc)
2766 {
2767 	int i, tci = index * dev_maps->num_tc;
2768 	struct xps_map *map;
2769 
2770 	/* copy maps belonging to foreign traffic classes */
2771 	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2772 		if (i == tc && skip_tc)
2773 			continue;
2774 
2775 		/* fill in the new device map from the old device map */
2776 		map = xmap_dereference(dev_maps->attr_map[tci]);
2777 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2778 	}
2779 }
2780 
2781 /* Must be called under cpus_read_lock */
2782 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2783 			  u16 index, enum xps_map_type type)
2784 {
2785 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2786 	const unsigned long *online_mask = NULL;
2787 	bool active = false, copy = false;
2788 	int i, j, tci, numa_node_id = -2;
2789 	int maps_sz, num_tc = 1, tc = 0;
2790 	struct xps_map *map, *new_map;
2791 	unsigned int nr_ids;
2792 
2793 	WARN_ON_ONCE(index >= dev->num_tx_queues);
2794 
2795 	if (dev->num_tc) {
2796 		/* Do not allow XPS on subordinate device directly */
2797 		num_tc = dev->num_tc;
2798 		if (num_tc < 0)
2799 			return -EINVAL;
2800 
2801 		/* If queue belongs to subordinate dev use its map */
2802 		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2803 
2804 		tc = netdev_txq_to_tc(dev, index);
2805 		if (tc < 0)
2806 			return -EINVAL;
2807 	}
2808 
2809 	mutex_lock(&xps_map_mutex);
2810 
2811 	dev_maps = xmap_dereference(dev->xps_maps[type]);
2812 	if (type == XPS_RXQS) {
2813 		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2814 		nr_ids = dev->num_rx_queues;
2815 	} else {
2816 		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2817 		if (num_possible_cpus() > 1)
2818 			online_mask = cpumask_bits(cpu_online_mask);
2819 		nr_ids = nr_cpu_ids;
2820 	}
2821 
2822 	if (maps_sz < L1_CACHE_BYTES)
2823 		maps_sz = L1_CACHE_BYTES;
2824 
2825 	/* The old dev_maps could be larger or smaller than the one we're
2826 	 * setting up now, as dev->num_tc or nr_ids could have been updated in
2827 	 * between. We could try to be smart, but let's be safe instead and only
2828 	 * copy foreign traffic classes if the two map sizes match.
2829 	 */
2830 	if (dev_maps &&
2831 	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2832 		copy = true;
2833 
2834 	/* allocate memory for queue storage */
2835 	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2836 	     j < nr_ids;) {
2837 		if (!new_dev_maps) {
2838 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2839 			if (!new_dev_maps) {
2840 				mutex_unlock(&xps_map_mutex);
2841 				return -ENOMEM;
2842 			}
2843 
2844 			new_dev_maps->nr_ids = nr_ids;
2845 			new_dev_maps->num_tc = num_tc;
2846 		}
2847 
2848 		tci = j * num_tc + tc;
2849 		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2850 
2851 		map = expand_xps_map(map, j, index, type == XPS_RXQS);
2852 		if (!map)
2853 			goto error;
2854 
2855 		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2856 	}
2857 
2858 	if (!new_dev_maps)
2859 		goto out_no_new_maps;
2860 
2861 	if (!dev_maps) {
2862 		/* Increment static keys at most once per type */
2863 		static_key_slow_inc_cpuslocked(&xps_needed);
2864 		if (type == XPS_RXQS)
2865 			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2866 	}
2867 
2868 	for (j = 0; j < nr_ids; j++) {
2869 		bool skip_tc = false;
2870 
2871 		tci = j * num_tc + tc;
2872 		if (netif_attr_test_mask(j, mask, nr_ids) &&
2873 		    netif_attr_test_online(j, online_mask, nr_ids)) {
2874 			/* add tx-queue to CPU/rx-queue maps */
2875 			int pos = 0;
2876 
2877 			skip_tc = true;
2878 
2879 			map = xmap_dereference(new_dev_maps->attr_map[tci]);
2880 			while ((pos < map->len) && (map->queues[pos] != index))
2881 				pos++;
2882 
2883 			if (pos == map->len)
2884 				map->queues[map->len++] = index;
2885 #ifdef CONFIG_NUMA
2886 			if (type == XPS_CPUS) {
2887 				if (numa_node_id == -2)
2888 					numa_node_id = cpu_to_node(j);
2889 				else if (numa_node_id != cpu_to_node(j))
2890 					numa_node_id = -1;
2891 			}
2892 #endif
2893 		}
2894 
2895 		if (copy)
2896 			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2897 					  skip_tc);
2898 	}
2899 
2900 	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2901 
2902 	/* Cleanup old maps */
2903 	if (!dev_maps)
2904 		goto out_no_old_maps;
2905 
2906 	for (j = 0; j < dev_maps->nr_ids; j++) {
2907 		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2908 			map = xmap_dereference(dev_maps->attr_map[tci]);
2909 			if (!map)
2910 				continue;
2911 
2912 			if (copy) {
2913 				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2914 				if (map == new_map)
2915 					continue;
2916 			}
2917 
2918 			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2919 			kfree_rcu(map, rcu);
2920 		}
2921 	}
2922 
2923 	old_dev_maps = dev_maps;
2924 
2925 out_no_old_maps:
2926 	dev_maps = new_dev_maps;
2927 	active = true;
2928 
2929 out_no_new_maps:
2930 	if (type == XPS_CPUS)
2931 		/* update Tx queue numa node */
2932 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2933 					     (numa_node_id >= 0) ?
2934 					     numa_node_id : NUMA_NO_NODE);
2935 
2936 	if (!dev_maps)
2937 		goto out_no_maps;
2938 
2939 	/* removes tx-queue from unused CPUs/rx-queues */
2940 	for (j = 0; j < dev_maps->nr_ids; j++) {
2941 		tci = j * dev_maps->num_tc;
2942 
2943 		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2944 			if (i == tc &&
2945 			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2946 			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2947 				continue;
2948 
2949 			active |= remove_xps_queue(dev_maps,
2950 						   copy ? old_dev_maps : NULL,
2951 						   tci, index);
2952 		}
2953 	}
2954 
2955 	if (old_dev_maps)
2956 		kfree_rcu(old_dev_maps, rcu);
2957 
2958 	/* free map if not active */
2959 	if (!active)
2960 		reset_xps_maps(dev, dev_maps, type);
2961 
2962 out_no_maps:
2963 	mutex_unlock(&xps_map_mutex);
2964 
2965 	return 0;
2966 error:
2967 	/* remove any maps that we added */
2968 	for (j = 0; j < nr_ids; j++) {
2969 		for (i = num_tc, tci = j * num_tc; i--; tci++) {
2970 			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2971 			map = copy ?
2972 			      xmap_dereference(dev_maps->attr_map[tci]) :
2973 			      NULL;
2974 			if (new_map && new_map != map)
2975 				kfree(new_map);
2976 		}
2977 	}
2978 
2979 	mutex_unlock(&xps_map_mutex);
2980 
2981 	kfree(new_dev_maps);
2982 	return -ENOMEM;
2983 }
2984 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2985 
2986 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2987 			u16 index)
2988 {
2989 	int ret;
2990 
2991 	cpus_read_lock();
2992 	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2993 	cpus_read_unlock();
2994 
2995 	return ret;
2996 }
2997 EXPORT_SYMBOL(netif_set_xps_queue);
2998 
2999 #endif
3000 static void netdev_unbind_all_sb_channels(struct net_device *dev)
3001 {
3002 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3003 
3004 	/* Unbind any subordinate channels */
3005 	while (txq-- != &dev->_tx[0]) {
3006 		if (txq->sb_dev)
3007 			netdev_unbind_sb_channel(dev, txq->sb_dev);
3008 	}
3009 }
3010 
3011 void netdev_reset_tc(struct net_device *dev)
3012 {
3013 #ifdef CONFIG_XPS
3014 	netif_reset_xps_queues_gt(dev, 0);
3015 #endif
3016 	netdev_unbind_all_sb_channels(dev);
3017 
3018 	/* Reset TC configuration of device */
3019 	dev->num_tc = 0;
3020 	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
3021 	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
3022 }
3023 EXPORT_SYMBOL(netdev_reset_tc);
3024 
3025 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
3026 {
3027 	if (tc >= dev->num_tc)
3028 		return -EINVAL;
3029 
3030 #ifdef CONFIG_XPS
3031 	netif_reset_xps_queues(dev, offset, count);
3032 #endif
3033 	dev->tc_to_txq[tc].count = count;
3034 	dev->tc_to_txq[tc].offset = offset;
3035 	return 0;
3036 }
3037 EXPORT_SYMBOL(netdev_set_tc_queue);
3038 
3039 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
3040 {
3041 	if (num_tc > TC_MAX_QUEUE)
3042 		return -EINVAL;
3043 
3044 #ifdef CONFIG_XPS
3045 	netif_reset_xps_queues_gt(dev, 0);
3046 #endif
3047 	netdev_unbind_all_sb_channels(dev);
3048 
3049 	dev->num_tc = num_tc;
3050 	return 0;
3051 }
3052 EXPORT_SYMBOL(netdev_set_num_tc);
3053 
3054 void netdev_unbind_sb_channel(struct net_device *dev,
3055 			      struct net_device *sb_dev)
3056 {
3057 	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
3058 
3059 #ifdef CONFIG_XPS
3060 	netif_reset_xps_queues_gt(sb_dev, 0);
3061 #endif
3062 	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
3063 	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
3064 
3065 	while (txq-- != &dev->_tx[0]) {
3066 		if (txq->sb_dev == sb_dev)
3067 			txq->sb_dev = NULL;
3068 	}
3069 }
3070 EXPORT_SYMBOL(netdev_unbind_sb_channel);
3071 
3072 int netdev_bind_sb_channel_queue(struct net_device *dev,
3073 				 struct net_device *sb_dev,
3074 				 u8 tc, u16 count, u16 offset)
3075 {
3076 	/* Make certain the sb_dev and dev are already configured */
3077 	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
3078 		return -EINVAL;
3079 
3080 	/* We cannot hand out queues we don't have */
3081 	if ((offset + count) > dev->real_num_tx_queues)
3082 		return -EINVAL;
3083 
3084 	/* Record the mapping */
3085 	sb_dev->tc_to_txq[tc].count = count;
3086 	sb_dev->tc_to_txq[tc].offset = offset;
3087 
3088 	/* Provide a way for Tx queue to find the tc_to_txq map or
3089 	 * XPS map for itself.
3090 	 */
3091 	while (count--)
3092 		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
3093 
3094 	return 0;
3095 }
3096 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3097 
3098 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3099 {
3100 	/* Do not use a multiqueue device to represent a subordinate channel */
3101 	if (netif_is_multiqueue(dev))
3102 		return -ENODEV;
3103 
3104 	/* We allow channels 1 - 32767 to be used for subordinate channels.
3105 	 * Channel 0 is meant to be "native" mode and used only to represent
3106 	 * the main root device. We allow writing 0 to reset the device back
3107 	 * to normal mode after being used as a subordinate channel.
3108 	 */
3109 	if (channel > S16_MAX)
3110 		return -EINVAL;
3111 
3112 	dev->num_tc = -channel;
3113 
3114 	return 0;
3115 }
3116 EXPORT_SYMBOL(netdev_set_sb_channel);
3117 
3118 /*
3119  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3120  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3121  */
3122 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3123 {
3124 	bool disabling;
3125 	int rc;
3126 
3127 	disabling = txq < dev->real_num_tx_queues;
3128 
3129 	if (txq < 1 || txq > dev->num_tx_queues)
3130 		return -EINVAL;
3131 
3132 	if (dev->reg_state == NETREG_REGISTERED ||
3133 	    dev->reg_state == NETREG_UNREGISTERING) {
3134 		ASSERT_RTNL();
3135 		netdev_ops_assert_locked(dev);
3136 
3137 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3138 						  txq);
3139 		if (rc)
3140 			return rc;
3141 
3142 		if (dev->num_tc)
3143 			netif_setup_tc(dev, txq);
3144 
3145 		net_shaper_set_real_num_tx_queues(dev, txq);
3146 
3147 		dev_qdisc_change_real_num_tx(dev, txq);
3148 
3149 		dev->real_num_tx_queues = txq;
3150 
3151 		if (disabling) {
3152 			synchronize_net();
3153 			qdisc_reset_all_tx_gt(dev, txq);
3154 #ifdef CONFIG_XPS
3155 			netif_reset_xps_queues_gt(dev, txq);
3156 #endif
3157 		}
3158 	} else {
3159 		dev->real_num_tx_queues = txq;
3160 	}
3161 
3162 	return 0;
3163 }
3164 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3165 
3166 /**
3167  *	netif_set_real_num_rx_queues - set actual number of RX queues used
3168  *	@dev: Network device
3169  *	@rxq: Actual number of RX queues
3170  *
3171  *	This must be called either with the rtnl_lock held or before
3172  *	registration of the net device.  Returns 0 on success, or a
3173  *	negative error code.  If called before registration, it always
3174  *	succeeds.
3175  */
3176 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3177 {
3178 	int rc;
3179 
3180 	if (rxq < 1 || rxq > dev->num_rx_queues)
3181 		return -EINVAL;
3182 
3183 	if (dev->reg_state == NETREG_REGISTERED) {
3184 		ASSERT_RTNL();
3185 		netdev_ops_assert_locked(dev);
3186 
3187 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3188 						  rxq);
3189 		if (rc)
3190 			return rc;
3191 	}
3192 
3193 	dev->real_num_rx_queues = rxq;
3194 	return 0;
3195 }
3196 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3197 
3198 /**
3199  *	netif_set_real_num_queues - set actual number of RX and TX queues used
3200  *	@dev: Network device
3201  *	@txq: Actual number of TX queues
3202  *	@rxq: Actual number of RX queues
3203  *
3204  *	Set the real number of both TX and RX queues.
3205  *	Does nothing if the number of queues is already correct.
3206  */
3207 int netif_set_real_num_queues(struct net_device *dev,
3208 			      unsigned int txq, unsigned int rxq)
3209 {
3210 	unsigned int old_rxq = dev->real_num_rx_queues;
3211 	int err;
3212 
3213 	if (txq < 1 || txq > dev->num_tx_queues ||
3214 	    rxq < 1 || rxq > dev->num_rx_queues)
3215 		return -EINVAL;
3216 
3217 	/* Start from increases, so the error path only does decreases -
3218 	 * decreases can't fail.
3219 	 */
3220 	if (rxq > dev->real_num_rx_queues) {
3221 		err = netif_set_real_num_rx_queues(dev, rxq);
3222 		if (err)
3223 			return err;
3224 	}
3225 	if (txq > dev->real_num_tx_queues) {
3226 		err = netif_set_real_num_tx_queues(dev, txq);
3227 		if (err)
3228 			goto undo_rx;
3229 	}
3230 	if (rxq < dev->real_num_rx_queues)
3231 		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3232 	if (txq < dev->real_num_tx_queues)
3233 		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3234 
3235 	return 0;
3236 undo_rx:
3237 	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3238 	return err;
3239 }
3240 EXPORT_SYMBOL(netif_set_real_num_queues);
3241 
3242 /**
3243  * netif_set_tso_max_size() - set the max size of TSO frames supported
3244  * @dev:	netdev to update
3245  * @size:	max skb->len of a TSO frame
3246  *
3247  * Set the limit on the size of TSO super-frames the device can handle.
3248  * Unless explicitly set the stack will assume the value of
3249  * %GSO_LEGACY_MAX_SIZE.
3250  */
3251 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3252 {
3253 	dev->tso_max_size = min(GSO_MAX_SIZE, size);
3254 	if (size < READ_ONCE(dev->gso_max_size))
3255 		netif_set_gso_max_size(dev, size);
3256 	if (size < READ_ONCE(dev->gso_ipv4_max_size))
3257 		netif_set_gso_ipv4_max_size(dev, size);
3258 }
3259 EXPORT_SYMBOL(netif_set_tso_max_size);
3260 
3261 /**
3262  * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3263  * @dev:	netdev to update
3264  * @segs:	max number of TCP segments
3265  *
3266  * Set the limit on the number of TCP segments the device can generate from
3267  * a single TSO super-frame.
3268  * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3269  */
3270 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3271 {
3272 	dev->tso_max_segs = segs;
3273 	if (segs < READ_ONCE(dev->gso_max_segs))
3274 		netif_set_gso_max_segs(dev, segs);
3275 }
3276 EXPORT_SYMBOL(netif_set_tso_max_segs);
3277 
3278 /**
3279  * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3280  * @to:		netdev to update
3281  * @from:	netdev from which to copy the limits
3282  */
3283 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3284 {
3285 	netif_set_tso_max_size(to, from->tso_max_size);
3286 	netif_set_tso_max_segs(to, from->tso_max_segs);
3287 }
3288 EXPORT_SYMBOL(netif_inherit_tso_max);
3289 
3290 /**
3291  * netif_get_num_default_rss_queues - default number of RSS queues
3292  *
3293  * Default value is the number of physical cores if there are only 1 or 2, or
3294  * divided by 2 if there are more.
3295  */
3296 int netif_get_num_default_rss_queues(void)
3297 {
3298 	cpumask_var_t cpus;
3299 	int cpu, count = 0;
3300 
3301 	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3302 		return 1;
3303 
3304 	cpumask_copy(cpus, cpu_online_mask);
3305 	for_each_cpu(cpu, cpus) {
3306 		++count;
3307 		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3308 	}
3309 	free_cpumask_var(cpus);
3310 
3311 	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3312 }
3313 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3314 
3315 static void __netif_reschedule(struct Qdisc *q)
3316 {
3317 	struct softnet_data *sd;
3318 	unsigned long flags;
3319 
3320 	local_irq_save(flags);
3321 	sd = this_cpu_ptr(&softnet_data);
3322 	q->next_sched = NULL;
3323 	*sd->output_queue_tailp = q;
3324 	sd->output_queue_tailp = &q->next_sched;
3325 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3326 	local_irq_restore(flags);
3327 }
3328 
3329 void __netif_schedule(struct Qdisc *q)
3330 {
3331 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3332 		__netif_reschedule(q);
3333 }
3334 EXPORT_SYMBOL(__netif_schedule);
3335 
3336 struct dev_kfree_skb_cb {
3337 	enum skb_drop_reason reason;
3338 };
3339 
3340 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3341 {
3342 	return (struct dev_kfree_skb_cb *)skb->cb;
3343 }
3344 
3345 void netif_schedule_queue(struct netdev_queue *txq)
3346 {
3347 	rcu_read_lock();
3348 	if (!netif_xmit_stopped(txq)) {
3349 		struct Qdisc *q = rcu_dereference(txq->qdisc);
3350 
3351 		__netif_schedule(q);
3352 	}
3353 	rcu_read_unlock();
3354 }
3355 EXPORT_SYMBOL(netif_schedule_queue);
3356 
3357 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3358 {
3359 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3360 		struct Qdisc *q;
3361 
3362 		rcu_read_lock();
3363 		q = rcu_dereference(dev_queue->qdisc);
3364 		__netif_schedule(q);
3365 		rcu_read_unlock();
3366 	}
3367 }
3368 EXPORT_SYMBOL(netif_tx_wake_queue);
3369 
3370 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3371 {
3372 	unsigned long flags;
3373 
3374 	if (unlikely(!skb))
3375 		return;
3376 
3377 	if (likely(refcount_read(&skb->users) == 1)) {
3378 		smp_rmb();
3379 		refcount_set(&skb->users, 0);
3380 	} else if (likely(!refcount_dec_and_test(&skb->users))) {
3381 		return;
3382 	}
3383 	get_kfree_skb_cb(skb)->reason = reason;
3384 	local_irq_save(flags);
3385 	skb->next = __this_cpu_read(softnet_data.completion_queue);
3386 	__this_cpu_write(softnet_data.completion_queue, skb);
3387 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
3388 	local_irq_restore(flags);
3389 }
3390 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3391 
3392 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3393 {
3394 	if (in_hardirq() || irqs_disabled())
3395 		dev_kfree_skb_irq_reason(skb, reason);
3396 	else
3397 		kfree_skb_reason(skb, reason);
3398 }
3399 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3400 
3401 
3402 /**
3403  * netif_device_detach - mark device as removed
3404  * @dev: network device
3405  *
3406  * Mark device as removed from system and therefore no longer available.
3407  */
3408 void netif_device_detach(struct net_device *dev)
3409 {
3410 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3411 	    netif_running(dev)) {
3412 		netif_tx_stop_all_queues(dev);
3413 	}
3414 }
3415 EXPORT_SYMBOL(netif_device_detach);
3416 
3417 /**
3418  * netif_device_attach - mark device as attached
3419  * @dev: network device
3420  *
3421  * Mark device as attached from system and restart if needed.
3422  */
3423 void netif_device_attach(struct net_device *dev)
3424 {
3425 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3426 	    netif_running(dev)) {
3427 		netif_tx_wake_all_queues(dev);
3428 		netdev_watchdog_up(dev);
3429 	}
3430 }
3431 EXPORT_SYMBOL(netif_device_attach);
3432 
3433 /*
3434  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3435  * to be used as a distribution range.
3436  */
3437 static u16 skb_tx_hash(const struct net_device *dev,
3438 		       const struct net_device *sb_dev,
3439 		       struct sk_buff *skb)
3440 {
3441 	u32 hash;
3442 	u16 qoffset = 0;
3443 	u16 qcount = dev->real_num_tx_queues;
3444 
3445 	if (dev->num_tc) {
3446 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3447 
3448 		qoffset = sb_dev->tc_to_txq[tc].offset;
3449 		qcount = sb_dev->tc_to_txq[tc].count;
3450 		if (unlikely(!qcount)) {
3451 			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3452 					     sb_dev->name, qoffset, tc);
3453 			qoffset = 0;
3454 			qcount = dev->real_num_tx_queues;
3455 		}
3456 	}
3457 
3458 	if (skb_rx_queue_recorded(skb)) {
3459 		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3460 		hash = skb_get_rx_queue(skb);
3461 		if (hash >= qoffset)
3462 			hash -= qoffset;
3463 		while (unlikely(hash >= qcount))
3464 			hash -= qcount;
3465 		return hash + qoffset;
3466 	}
3467 
3468 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3469 }
3470 
3471 void skb_warn_bad_offload(const struct sk_buff *skb)
3472 {
3473 	static const netdev_features_t null_features;
3474 	struct net_device *dev = skb->dev;
3475 	const char *name = "";
3476 
3477 	if (!net_ratelimit())
3478 		return;
3479 
3480 	if (dev) {
3481 		if (dev->dev.parent)
3482 			name = dev_driver_string(dev->dev.parent);
3483 		else
3484 			name = netdev_name(dev);
3485 	}
3486 	skb_dump(KERN_WARNING, skb, false);
3487 	WARN(1, "%s: caps=(%pNF, %pNF)\n",
3488 	     name, dev ? &dev->features : &null_features,
3489 	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
3490 }
3491 
3492 /*
3493  * Invalidate hardware checksum when packet is to be mangled, and
3494  * complete checksum manually on outgoing path.
3495  */
3496 int skb_checksum_help(struct sk_buff *skb)
3497 {
3498 	__wsum csum;
3499 	int ret = 0, offset;
3500 
3501 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3502 		goto out_set_summed;
3503 
3504 	if (unlikely(skb_is_gso(skb))) {
3505 		skb_warn_bad_offload(skb);
3506 		return -EINVAL;
3507 	}
3508 
3509 	if (!skb_frags_readable(skb)) {
3510 		return -EFAULT;
3511 	}
3512 
3513 	/* Before computing a checksum, we should make sure no frag could
3514 	 * be modified by an external entity : checksum could be wrong.
3515 	 */
3516 	if (skb_has_shared_frag(skb)) {
3517 		ret = __skb_linearize(skb);
3518 		if (ret)
3519 			goto out;
3520 	}
3521 
3522 	offset = skb_checksum_start_offset(skb);
3523 	ret = -EINVAL;
3524 	if (unlikely(offset >= skb_headlen(skb))) {
3525 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3526 		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3527 			  offset, skb_headlen(skb));
3528 		goto out;
3529 	}
3530 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
3531 
3532 	offset += skb->csum_offset;
3533 	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3534 		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3535 		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3536 			  offset + sizeof(__sum16), skb_headlen(skb));
3537 		goto out;
3538 	}
3539 	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3540 	if (ret)
3541 		goto out;
3542 
3543 	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3544 out_set_summed:
3545 	skb->ip_summed = CHECKSUM_NONE;
3546 out:
3547 	return ret;
3548 }
3549 EXPORT_SYMBOL(skb_checksum_help);
3550 
3551 int skb_crc32c_csum_help(struct sk_buff *skb)
3552 {
3553 	__le32 crc32c_csum;
3554 	int ret = 0, offset, start;
3555 
3556 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3557 		goto out;
3558 
3559 	if (unlikely(skb_is_gso(skb)))
3560 		goto out;
3561 
3562 	/* Before computing a checksum, we should make sure no frag could
3563 	 * be modified by an external entity : checksum could be wrong.
3564 	 */
3565 	if (unlikely(skb_has_shared_frag(skb))) {
3566 		ret = __skb_linearize(skb);
3567 		if (ret)
3568 			goto out;
3569 	}
3570 	start = skb_checksum_start_offset(skb);
3571 	offset = start + offsetof(struct sctphdr, checksum);
3572 	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3573 		ret = -EINVAL;
3574 		goto out;
3575 	}
3576 
3577 	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3578 	if (ret)
3579 		goto out;
3580 
3581 	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3582 						  skb->len - start, ~(__u32)0,
3583 						  crc32c_csum_stub));
3584 	*(__le32 *)(skb->data + offset) = crc32c_csum;
3585 	skb_reset_csum_not_inet(skb);
3586 out:
3587 	return ret;
3588 }
3589 EXPORT_SYMBOL(skb_crc32c_csum_help);
3590 
3591 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3592 {
3593 	__be16 type = skb->protocol;
3594 
3595 	/* Tunnel gso handlers can set protocol to ethernet. */
3596 	if (type == htons(ETH_P_TEB)) {
3597 		struct ethhdr *eth;
3598 
3599 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3600 			return 0;
3601 
3602 		eth = (struct ethhdr *)skb->data;
3603 		type = eth->h_proto;
3604 	}
3605 
3606 	return vlan_get_protocol_and_depth(skb, type, depth);
3607 }
3608 
3609 
3610 /* Take action when hardware reception checksum errors are detected. */
3611 #ifdef CONFIG_BUG
3612 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3613 {
3614 	netdev_err(dev, "hw csum failure\n");
3615 	skb_dump(KERN_ERR, skb, true);
3616 	dump_stack();
3617 }
3618 
3619 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3620 {
3621 	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3622 }
3623 EXPORT_SYMBOL(netdev_rx_csum_fault);
3624 #endif
3625 
3626 /* XXX: check that highmem exists at all on the given machine. */
3627 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3628 {
3629 #ifdef CONFIG_HIGHMEM
3630 	int i;
3631 
3632 	if (!(dev->features & NETIF_F_HIGHDMA)) {
3633 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3634 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3635 			struct page *page = skb_frag_page(frag);
3636 
3637 			if (page && PageHighMem(page))
3638 				return 1;
3639 		}
3640 	}
3641 #endif
3642 	return 0;
3643 }
3644 
3645 /* If MPLS offload request, verify we are testing hardware MPLS features
3646  * instead of standard features for the netdev.
3647  */
3648 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3649 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3650 					   netdev_features_t features,
3651 					   __be16 type)
3652 {
3653 	if (eth_p_mpls(type))
3654 		features &= skb->dev->mpls_features;
3655 
3656 	return features;
3657 }
3658 #else
3659 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3660 					   netdev_features_t features,
3661 					   __be16 type)
3662 {
3663 	return features;
3664 }
3665 #endif
3666 
3667 static netdev_features_t harmonize_features(struct sk_buff *skb,
3668 	netdev_features_t features)
3669 {
3670 	__be16 type;
3671 
3672 	type = skb_network_protocol(skb, NULL);
3673 	features = net_mpls_features(skb, features, type);
3674 
3675 	if (skb->ip_summed != CHECKSUM_NONE &&
3676 	    !can_checksum_protocol(features, type)) {
3677 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3678 	}
3679 	if (illegal_highdma(skb->dev, skb))
3680 		features &= ~NETIF_F_SG;
3681 
3682 	return features;
3683 }
3684 
3685 netdev_features_t passthru_features_check(struct sk_buff *skb,
3686 					  struct net_device *dev,
3687 					  netdev_features_t features)
3688 {
3689 	return features;
3690 }
3691 EXPORT_SYMBOL(passthru_features_check);
3692 
3693 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3694 					     struct net_device *dev,
3695 					     netdev_features_t features)
3696 {
3697 	return vlan_features_check(skb, features);
3698 }
3699 
3700 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3701 					    struct net_device *dev,
3702 					    netdev_features_t features)
3703 {
3704 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
3705 
3706 	if (gso_segs > READ_ONCE(dev->gso_max_segs))
3707 		return features & ~NETIF_F_GSO_MASK;
3708 
3709 	if (unlikely(skb->len >= netif_get_gso_max_size(dev, skb)))
3710 		return features & ~NETIF_F_GSO_MASK;
3711 
3712 	if (!skb_shinfo(skb)->gso_type) {
3713 		skb_warn_bad_offload(skb);
3714 		return features & ~NETIF_F_GSO_MASK;
3715 	}
3716 
3717 	/* Support for GSO partial features requires software
3718 	 * intervention before we can actually process the packets
3719 	 * so we need to strip support for any partial features now
3720 	 * and we can pull them back in after we have partially
3721 	 * segmented the frame.
3722 	 */
3723 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3724 		features &= ~dev->gso_partial_features;
3725 
3726 	/* Make sure to clear the IPv4 ID mangling feature if the
3727 	 * IPv4 header has the potential to be fragmented.
3728 	 */
3729 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3730 		struct iphdr *iph = skb->encapsulation ?
3731 				    inner_ip_hdr(skb) : ip_hdr(skb);
3732 
3733 		if (!(iph->frag_off & htons(IP_DF)))
3734 			features &= ~NETIF_F_TSO_MANGLEID;
3735 	}
3736 
3737 	return features;
3738 }
3739 
3740 netdev_features_t netif_skb_features(struct sk_buff *skb)
3741 {
3742 	struct net_device *dev = skb->dev;
3743 	netdev_features_t features = dev->features;
3744 
3745 	if (skb_is_gso(skb))
3746 		features = gso_features_check(skb, dev, features);
3747 
3748 	/* If encapsulation offload request, verify we are testing
3749 	 * hardware encapsulation features instead of standard
3750 	 * features for the netdev
3751 	 */
3752 	if (skb->encapsulation)
3753 		features &= dev->hw_enc_features;
3754 
3755 	if (skb_vlan_tagged(skb))
3756 		features = netdev_intersect_features(features,
3757 						     dev->vlan_features |
3758 						     NETIF_F_HW_VLAN_CTAG_TX |
3759 						     NETIF_F_HW_VLAN_STAG_TX);
3760 
3761 	if (dev->netdev_ops->ndo_features_check)
3762 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
3763 								features);
3764 	else
3765 		features &= dflt_features_check(skb, dev, features);
3766 
3767 	return harmonize_features(skb, features);
3768 }
3769 EXPORT_SYMBOL(netif_skb_features);
3770 
3771 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3772 		    struct netdev_queue *txq, bool more)
3773 {
3774 	unsigned int len;
3775 	int rc;
3776 
3777 	if (dev_nit_active_rcu(dev))
3778 		dev_queue_xmit_nit(skb, dev);
3779 
3780 	len = skb->len;
3781 	trace_net_dev_start_xmit(skb, dev);
3782 	rc = netdev_start_xmit(skb, dev, txq, more);
3783 	trace_net_dev_xmit(skb, rc, dev, len);
3784 
3785 	return rc;
3786 }
3787 
3788 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3789 				    struct netdev_queue *txq, int *ret)
3790 {
3791 	struct sk_buff *skb = first;
3792 	int rc = NETDEV_TX_OK;
3793 
3794 	while (skb) {
3795 		struct sk_buff *next = skb->next;
3796 
3797 		skb_mark_not_on_list(skb);
3798 		rc = xmit_one(skb, dev, txq, next != NULL);
3799 		if (unlikely(!dev_xmit_complete(rc))) {
3800 			skb->next = next;
3801 			goto out;
3802 		}
3803 
3804 		skb = next;
3805 		if (netif_tx_queue_stopped(txq) && skb) {
3806 			rc = NETDEV_TX_BUSY;
3807 			break;
3808 		}
3809 	}
3810 
3811 out:
3812 	*ret = rc;
3813 	return skb;
3814 }
3815 
3816 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3817 					  netdev_features_t features)
3818 {
3819 	if (skb_vlan_tag_present(skb) &&
3820 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
3821 		skb = __vlan_hwaccel_push_inside(skb);
3822 	return skb;
3823 }
3824 
3825 int skb_csum_hwoffload_help(struct sk_buff *skb,
3826 			    const netdev_features_t features)
3827 {
3828 	if (unlikely(skb_csum_is_sctp(skb)))
3829 		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3830 			skb_crc32c_csum_help(skb);
3831 
3832 	if (features & NETIF_F_HW_CSUM)
3833 		return 0;
3834 
3835 	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3836 		if (vlan_get_protocol(skb) == htons(ETH_P_IPV6) &&
3837 		    skb_network_header_len(skb) != sizeof(struct ipv6hdr) &&
3838 		    !ipv6_has_hopopt_jumbo(skb))
3839 			goto sw_checksum;
3840 
3841 		switch (skb->csum_offset) {
3842 		case offsetof(struct tcphdr, check):
3843 		case offsetof(struct udphdr, check):
3844 			return 0;
3845 		}
3846 	}
3847 
3848 sw_checksum:
3849 	return skb_checksum_help(skb);
3850 }
3851 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3852 
3853 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3854 {
3855 	netdev_features_t features;
3856 
3857 	if (!skb_frags_readable(skb))
3858 		goto out_kfree_skb;
3859 
3860 	features = netif_skb_features(skb);
3861 	skb = validate_xmit_vlan(skb, features);
3862 	if (unlikely(!skb))
3863 		goto out_null;
3864 
3865 	skb = sk_validate_xmit_skb(skb, dev);
3866 	if (unlikely(!skb))
3867 		goto out_null;
3868 
3869 	if (netif_needs_gso(skb, features)) {
3870 		struct sk_buff *segs;
3871 
3872 		segs = skb_gso_segment(skb, features);
3873 		if (IS_ERR(segs)) {
3874 			goto out_kfree_skb;
3875 		} else if (segs) {
3876 			consume_skb(skb);
3877 			skb = segs;
3878 		}
3879 	} else {
3880 		if (skb_needs_linearize(skb, features) &&
3881 		    __skb_linearize(skb))
3882 			goto out_kfree_skb;
3883 
3884 		/* If packet is not checksummed and device does not
3885 		 * support checksumming for this protocol, complete
3886 		 * checksumming here.
3887 		 */
3888 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
3889 			if (skb->encapsulation)
3890 				skb_set_inner_transport_header(skb,
3891 							       skb_checksum_start_offset(skb));
3892 			else
3893 				skb_set_transport_header(skb,
3894 							 skb_checksum_start_offset(skb));
3895 			if (skb_csum_hwoffload_help(skb, features))
3896 				goto out_kfree_skb;
3897 		}
3898 	}
3899 
3900 	skb = validate_xmit_xfrm(skb, features, again);
3901 
3902 	return skb;
3903 
3904 out_kfree_skb:
3905 	kfree_skb(skb);
3906 out_null:
3907 	dev_core_stats_tx_dropped_inc(dev);
3908 	return NULL;
3909 }
3910 
3911 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3912 {
3913 	struct sk_buff *next, *head = NULL, *tail;
3914 
3915 	for (; skb != NULL; skb = next) {
3916 		next = skb->next;
3917 		skb_mark_not_on_list(skb);
3918 
3919 		/* in case skb won't be segmented, point to itself */
3920 		skb->prev = skb;
3921 
3922 		skb = validate_xmit_skb(skb, dev, again);
3923 		if (!skb)
3924 			continue;
3925 
3926 		if (!head)
3927 			head = skb;
3928 		else
3929 			tail->next = skb;
3930 		/* If skb was segmented, skb->prev points to
3931 		 * the last segment. If not, it still contains skb.
3932 		 */
3933 		tail = skb->prev;
3934 	}
3935 	return head;
3936 }
3937 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3938 
3939 static void qdisc_pkt_len_init(struct sk_buff *skb)
3940 {
3941 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3942 
3943 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3944 
3945 	/* To get more precise estimation of bytes sent on wire,
3946 	 * we add to pkt_len the headers size of all segments
3947 	 */
3948 	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3949 		u16 gso_segs = shinfo->gso_segs;
3950 		unsigned int hdr_len;
3951 
3952 		/* mac layer + network layer */
3953 		hdr_len = skb_transport_offset(skb);
3954 
3955 		/* + transport layer */
3956 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3957 			const struct tcphdr *th;
3958 			struct tcphdr _tcphdr;
3959 
3960 			th = skb_header_pointer(skb, hdr_len,
3961 						sizeof(_tcphdr), &_tcphdr);
3962 			if (likely(th))
3963 				hdr_len += __tcp_hdrlen(th);
3964 		} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
3965 			struct udphdr _udphdr;
3966 
3967 			if (skb_header_pointer(skb, hdr_len,
3968 					       sizeof(_udphdr), &_udphdr))
3969 				hdr_len += sizeof(struct udphdr);
3970 		}
3971 
3972 		if (unlikely(shinfo->gso_type & SKB_GSO_DODGY)) {
3973 			int payload = skb->len - hdr_len;
3974 
3975 			/* Malicious packet. */
3976 			if (payload <= 0)
3977 				return;
3978 			gso_segs = DIV_ROUND_UP(payload, shinfo->gso_size);
3979 		}
3980 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3981 	}
3982 }
3983 
3984 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3985 			     struct sk_buff **to_free,
3986 			     struct netdev_queue *txq)
3987 {
3988 	int rc;
3989 
3990 	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3991 	if (rc == NET_XMIT_SUCCESS)
3992 		trace_qdisc_enqueue(q, txq, skb);
3993 	return rc;
3994 }
3995 
3996 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3997 				 struct net_device *dev,
3998 				 struct netdev_queue *txq)
3999 {
4000 	spinlock_t *root_lock = qdisc_lock(q);
4001 	struct sk_buff *to_free = NULL;
4002 	bool contended;
4003 	int rc;
4004 
4005 	qdisc_calculate_pkt_len(skb, q);
4006 
4007 	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
4008 
4009 	if (q->flags & TCQ_F_NOLOCK) {
4010 		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
4011 		    qdisc_run_begin(q)) {
4012 			/* Retest nolock_qdisc_is_empty() within the protection
4013 			 * of q->seqlock to protect from racing with requeuing.
4014 			 */
4015 			if (unlikely(!nolock_qdisc_is_empty(q))) {
4016 				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4017 				__qdisc_run(q);
4018 				qdisc_run_end(q);
4019 
4020 				goto no_lock_out;
4021 			}
4022 
4023 			qdisc_bstats_cpu_update(q, skb);
4024 			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
4025 			    !nolock_qdisc_is_empty(q))
4026 				__qdisc_run(q);
4027 
4028 			qdisc_run_end(q);
4029 			return NET_XMIT_SUCCESS;
4030 		}
4031 
4032 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4033 		qdisc_run(q);
4034 
4035 no_lock_out:
4036 		if (unlikely(to_free))
4037 			kfree_skb_list_reason(to_free,
4038 					      tcf_get_drop_reason(to_free));
4039 		return rc;
4040 	}
4041 
4042 	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
4043 		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
4044 		return NET_XMIT_DROP;
4045 	}
4046 	/*
4047 	 * Heuristic to force contended enqueues to serialize on a
4048 	 * separate lock before trying to get qdisc main lock.
4049 	 * This permits qdisc->running owner to get the lock more
4050 	 * often and dequeue packets faster.
4051 	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
4052 	 * and then other tasks will only enqueue packets. The packets will be
4053 	 * sent after the qdisc owner is scheduled again. To prevent this
4054 	 * scenario the task always serialize on the lock.
4055 	 */
4056 	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
4057 	if (unlikely(contended))
4058 		spin_lock(&q->busylock);
4059 
4060 	spin_lock(root_lock);
4061 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
4062 		__qdisc_drop(skb, &to_free);
4063 		rc = NET_XMIT_DROP;
4064 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
4065 		   qdisc_run_begin(q)) {
4066 		/*
4067 		 * This is a work-conserving queue; there are no old skbs
4068 		 * waiting to be sent out; and the qdisc is not running -
4069 		 * xmit the skb directly.
4070 		 */
4071 
4072 		qdisc_bstats_update(q, skb);
4073 
4074 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
4075 			if (unlikely(contended)) {
4076 				spin_unlock(&q->busylock);
4077 				contended = false;
4078 			}
4079 			__qdisc_run(q);
4080 		}
4081 
4082 		qdisc_run_end(q);
4083 		rc = NET_XMIT_SUCCESS;
4084 	} else {
4085 		WRITE_ONCE(q->owner, smp_processor_id());
4086 		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
4087 		WRITE_ONCE(q->owner, -1);
4088 		if (qdisc_run_begin(q)) {
4089 			if (unlikely(contended)) {
4090 				spin_unlock(&q->busylock);
4091 				contended = false;
4092 			}
4093 			__qdisc_run(q);
4094 			qdisc_run_end(q);
4095 		}
4096 	}
4097 	spin_unlock(root_lock);
4098 	if (unlikely(to_free))
4099 		kfree_skb_list_reason(to_free,
4100 				      tcf_get_drop_reason(to_free));
4101 	if (unlikely(contended))
4102 		spin_unlock(&q->busylock);
4103 	return rc;
4104 }
4105 
4106 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
4107 static void skb_update_prio(struct sk_buff *skb)
4108 {
4109 	const struct netprio_map *map;
4110 	const struct sock *sk;
4111 	unsigned int prioidx;
4112 
4113 	if (skb->priority)
4114 		return;
4115 	map = rcu_dereference_bh(skb->dev->priomap);
4116 	if (!map)
4117 		return;
4118 	sk = skb_to_full_sk(skb);
4119 	if (!sk)
4120 		return;
4121 
4122 	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
4123 
4124 	if (prioidx < map->priomap_len)
4125 		skb->priority = map->priomap[prioidx];
4126 }
4127 #else
4128 #define skb_update_prio(skb)
4129 #endif
4130 
4131 /**
4132  *	dev_loopback_xmit - loop back @skb
4133  *	@net: network namespace this loopback is happening in
4134  *	@sk:  sk needed to be a netfilter okfn
4135  *	@skb: buffer to transmit
4136  */
4137 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
4138 {
4139 	skb_reset_mac_header(skb);
4140 	__skb_pull(skb, skb_network_offset(skb));
4141 	skb->pkt_type = PACKET_LOOPBACK;
4142 	if (skb->ip_summed == CHECKSUM_NONE)
4143 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4144 	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
4145 	skb_dst_force(skb);
4146 	netif_rx(skb);
4147 	return 0;
4148 }
4149 EXPORT_SYMBOL(dev_loopback_xmit);
4150 
4151 #ifdef CONFIG_NET_EGRESS
4152 static struct netdev_queue *
4153 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
4154 {
4155 	int qm = skb_get_queue_mapping(skb);
4156 
4157 	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
4158 }
4159 
4160 #ifndef CONFIG_PREEMPT_RT
4161 static bool netdev_xmit_txqueue_skipped(void)
4162 {
4163 	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
4164 }
4165 
4166 void netdev_xmit_skip_txqueue(bool skip)
4167 {
4168 	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
4169 }
4170 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4171 
4172 #else
4173 static bool netdev_xmit_txqueue_skipped(void)
4174 {
4175 	return current->net_xmit.skip_txqueue;
4176 }
4177 
4178 void netdev_xmit_skip_txqueue(bool skip)
4179 {
4180 	current->net_xmit.skip_txqueue = skip;
4181 }
4182 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
4183 #endif
4184 #endif /* CONFIG_NET_EGRESS */
4185 
4186 #ifdef CONFIG_NET_XGRESS
4187 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
4188 		  enum skb_drop_reason *drop_reason)
4189 {
4190 	int ret = TC_ACT_UNSPEC;
4191 #ifdef CONFIG_NET_CLS_ACT
4192 	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
4193 	struct tcf_result res;
4194 
4195 	if (!miniq)
4196 		return ret;
4197 
4198 	/* Global bypass */
4199 	if (!static_branch_likely(&tcf_sw_enabled_key))
4200 		return ret;
4201 
4202 	/* Block-wise bypass */
4203 	if (tcf_block_bypass_sw(miniq->block))
4204 		return ret;
4205 
4206 	tc_skb_cb(skb)->mru = 0;
4207 	tc_skb_cb(skb)->post_ct = false;
4208 	tcf_set_drop_reason(skb, *drop_reason);
4209 
4210 	mini_qdisc_bstats_cpu_update(miniq, skb);
4211 	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
4212 	/* Only tcf related quirks below. */
4213 	switch (ret) {
4214 	case TC_ACT_SHOT:
4215 		*drop_reason = tcf_get_drop_reason(skb);
4216 		mini_qdisc_qstats_cpu_drop(miniq);
4217 		break;
4218 	case TC_ACT_OK:
4219 	case TC_ACT_RECLASSIFY:
4220 		skb->tc_index = TC_H_MIN(res.classid);
4221 		break;
4222 	}
4223 #endif /* CONFIG_NET_CLS_ACT */
4224 	return ret;
4225 }
4226 
4227 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
4228 
4229 void tcx_inc(void)
4230 {
4231 	static_branch_inc(&tcx_needed_key);
4232 }
4233 
4234 void tcx_dec(void)
4235 {
4236 	static_branch_dec(&tcx_needed_key);
4237 }
4238 
4239 static __always_inline enum tcx_action_base
4240 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
4241 	const bool needs_mac)
4242 {
4243 	const struct bpf_mprog_fp *fp;
4244 	const struct bpf_prog *prog;
4245 	int ret = TCX_NEXT;
4246 
4247 	if (needs_mac)
4248 		__skb_push(skb, skb->mac_len);
4249 	bpf_mprog_foreach_prog(entry, fp, prog) {
4250 		bpf_compute_data_pointers(skb);
4251 		ret = bpf_prog_run(prog, skb);
4252 		if (ret != TCX_NEXT)
4253 			break;
4254 	}
4255 	if (needs_mac)
4256 		__skb_pull(skb, skb->mac_len);
4257 	return tcx_action_code(skb, ret);
4258 }
4259 
4260 static __always_inline struct sk_buff *
4261 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4262 		   struct net_device *orig_dev, bool *another)
4263 {
4264 	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4265 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
4266 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4267 	int sch_ret;
4268 
4269 	if (!entry)
4270 		return skb;
4271 
4272 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4273 	if (*pt_prev) {
4274 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
4275 		*pt_prev = NULL;
4276 	}
4277 
4278 	qdisc_skb_cb(skb)->pkt_len = skb->len;
4279 	tcx_set_ingress(skb, true);
4280 
4281 	if (static_branch_unlikely(&tcx_needed_key)) {
4282 		sch_ret = tcx_run(entry, skb, true);
4283 		if (sch_ret != TC_ACT_UNSPEC)
4284 			goto ingress_verdict;
4285 	}
4286 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4287 ingress_verdict:
4288 	switch (sch_ret) {
4289 	case TC_ACT_REDIRECT:
4290 		/* skb_mac_header check was done by BPF, so we can safely
4291 		 * push the L2 header back before redirecting to another
4292 		 * netdev.
4293 		 */
4294 		__skb_push(skb, skb->mac_len);
4295 		if (skb_do_redirect(skb) == -EAGAIN) {
4296 			__skb_pull(skb, skb->mac_len);
4297 			*another = true;
4298 			break;
4299 		}
4300 		*ret = NET_RX_SUCCESS;
4301 		bpf_net_ctx_clear(bpf_net_ctx);
4302 		return NULL;
4303 	case TC_ACT_SHOT:
4304 		kfree_skb_reason(skb, drop_reason);
4305 		*ret = NET_RX_DROP;
4306 		bpf_net_ctx_clear(bpf_net_ctx);
4307 		return NULL;
4308 	/* used by tc_run */
4309 	case TC_ACT_STOLEN:
4310 	case TC_ACT_QUEUED:
4311 	case TC_ACT_TRAP:
4312 		consume_skb(skb);
4313 		fallthrough;
4314 	case TC_ACT_CONSUMED:
4315 		*ret = NET_RX_SUCCESS;
4316 		bpf_net_ctx_clear(bpf_net_ctx);
4317 		return NULL;
4318 	}
4319 	bpf_net_ctx_clear(bpf_net_ctx);
4320 
4321 	return skb;
4322 }
4323 
4324 static __always_inline struct sk_buff *
4325 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4326 {
4327 	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4328 	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
4329 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
4330 	int sch_ret;
4331 
4332 	if (!entry)
4333 		return skb;
4334 
4335 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
4336 
4337 	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4338 	 * already set by the caller.
4339 	 */
4340 	if (static_branch_unlikely(&tcx_needed_key)) {
4341 		sch_ret = tcx_run(entry, skb, false);
4342 		if (sch_ret != TC_ACT_UNSPEC)
4343 			goto egress_verdict;
4344 	}
4345 	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
4346 egress_verdict:
4347 	switch (sch_ret) {
4348 	case TC_ACT_REDIRECT:
4349 		/* No need to push/pop skb's mac_header here on egress! */
4350 		skb_do_redirect(skb);
4351 		*ret = NET_XMIT_SUCCESS;
4352 		bpf_net_ctx_clear(bpf_net_ctx);
4353 		return NULL;
4354 	case TC_ACT_SHOT:
4355 		kfree_skb_reason(skb, drop_reason);
4356 		*ret = NET_XMIT_DROP;
4357 		bpf_net_ctx_clear(bpf_net_ctx);
4358 		return NULL;
4359 	/* used by tc_run */
4360 	case TC_ACT_STOLEN:
4361 	case TC_ACT_QUEUED:
4362 	case TC_ACT_TRAP:
4363 		consume_skb(skb);
4364 		fallthrough;
4365 	case TC_ACT_CONSUMED:
4366 		*ret = NET_XMIT_SUCCESS;
4367 		bpf_net_ctx_clear(bpf_net_ctx);
4368 		return NULL;
4369 	}
4370 	bpf_net_ctx_clear(bpf_net_ctx);
4371 
4372 	return skb;
4373 }
4374 #else
4375 static __always_inline struct sk_buff *
4376 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4377 		   struct net_device *orig_dev, bool *another)
4378 {
4379 	return skb;
4380 }
4381 
4382 static __always_inline struct sk_buff *
4383 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4384 {
4385 	return skb;
4386 }
4387 #endif /* CONFIG_NET_XGRESS */
4388 
4389 #ifdef CONFIG_XPS
4390 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4391 			       struct xps_dev_maps *dev_maps, unsigned int tci)
4392 {
4393 	int tc = netdev_get_prio_tc_map(dev, skb->priority);
4394 	struct xps_map *map;
4395 	int queue_index = -1;
4396 
4397 	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4398 		return queue_index;
4399 
4400 	tci *= dev_maps->num_tc;
4401 	tci += tc;
4402 
4403 	map = rcu_dereference(dev_maps->attr_map[tci]);
4404 	if (map) {
4405 		if (map->len == 1)
4406 			queue_index = map->queues[0];
4407 		else
4408 			queue_index = map->queues[reciprocal_scale(
4409 						skb_get_hash(skb), map->len)];
4410 		if (unlikely(queue_index >= dev->real_num_tx_queues))
4411 			queue_index = -1;
4412 	}
4413 	return queue_index;
4414 }
4415 #endif
4416 
4417 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4418 			 struct sk_buff *skb)
4419 {
4420 #ifdef CONFIG_XPS
4421 	struct xps_dev_maps *dev_maps;
4422 	struct sock *sk = skb->sk;
4423 	int queue_index = -1;
4424 
4425 	if (!static_key_false(&xps_needed))
4426 		return -1;
4427 
4428 	rcu_read_lock();
4429 	if (!static_key_false(&xps_rxqs_needed))
4430 		goto get_cpus_map;
4431 
4432 	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4433 	if (dev_maps) {
4434 		int tci = sk_rx_queue_get(sk);
4435 
4436 		if (tci >= 0)
4437 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4438 							  tci);
4439 	}
4440 
4441 get_cpus_map:
4442 	if (queue_index < 0) {
4443 		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4444 		if (dev_maps) {
4445 			unsigned int tci = skb->sender_cpu - 1;
4446 
4447 			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4448 							  tci);
4449 		}
4450 	}
4451 	rcu_read_unlock();
4452 
4453 	return queue_index;
4454 #else
4455 	return -1;
4456 #endif
4457 }
4458 
4459 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4460 		     struct net_device *sb_dev)
4461 {
4462 	return 0;
4463 }
4464 EXPORT_SYMBOL(dev_pick_tx_zero);
4465 
4466 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4467 		     struct net_device *sb_dev)
4468 {
4469 	struct sock *sk = skb->sk;
4470 	int queue_index = sk_tx_queue_get(sk);
4471 
4472 	sb_dev = sb_dev ? : dev;
4473 
4474 	if (queue_index < 0 || skb->ooo_okay ||
4475 	    queue_index >= dev->real_num_tx_queues) {
4476 		int new_index = get_xps_queue(dev, sb_dev, skb);
4477 
4478 		if (new_index < 0)
4479 			new_index = skb_tx_hash(dev, sb_dev, skb);
4480 
4481 		if (queue_index != new_index && sk &&
4482 		    sk_fullsock(sk) &&
4483 		    rcu_access_pointer(sk->sk_dst_cache))
4484 			sk_tx_queue_set(sk, new_index);
4485 
4486 		queue_index = new_index;
4487 	}
4488 
4489 	return queue_index;
4490 }
4491 EXPORT_SYMBOL(netdev_pick_tx);
4492 
4493 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4494 					 struct sk_buff *skb,
4495 					 struct net_device *sb_dev)
4496 {
4497 	int queue_index = 0;
4498 
4499 #ifdef CONFIG_XPS
4500 	u32 sender_cpu = skb->sender_cpu - 1;
4501 
4502 	if (sender_cpu >= (u32)NR_CPUS)
4503 		skb->sender_cpu = raw_smp_processor_id() + 1;
4504 #endif
4505 
4506 	if (dev->real_num_tx_queues != 1) {
4507 		const struct net_device_ops *ops = dev->netdev_ops;
4508 
4509 		if (ops->ndo_select_queue)
4510 			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4511 		else
4512 			queue_index = netdev_pick_tx(dev, skb, sb_dev);
4513 
4514 		queue_index = netdev_cap_txqueue(dev, queue_index);
4515 	}
4516 
4517 	skb_set_queue_mapping(skb, queue_index);
4518 	return netdev_get_tx_queue(dev, queue_index);
4519 }
4520 
4521 /**
4522  * __dev_queue_xmit() - transmit a buffer
4523  * @skb:	buffer to transmit
4524  * @sb_dev:	suboordinate device used for L2 forwarding offload
4525  *
4526  * Queue a buffer for transmission to a network device. The caller must
4527  * have set the device and priority and built the buffer before calling
4528  * this function. The function can be called from an interrupt.
4529  *
4530  * When calling this method, interrupts MUST be enabled. This is because
4531  * the BH enable code must have IRQs enabled so that it will not deadlock.
4532  *
4533  * Regardless of the return value, the skb is consumed, so it is currently
4534  * difficult to retry a send to this method. (You can bump the ref count
4535  * before sending to hold a reference for retry if you are careful.)
4536  *
4537  * Return:
4538  * * 0				- buffer successfully transmitted
4539  * * positive qdisc return code	- NET_XMIT_DROP etc.
4540  * * negative errno		- other errors
4541  */
4542 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4543 {
4544 	struct net_device *dev = skb->dev;
4545 	struct netdev_queue *txq = NULL;
4546 	struct Qdisc *q;
4547 	int rc = -ENOMEM;
4548 	bool again = false;
4549 
4550 	skb_reset_mac_header(skb);
4551 	skb_assert_len(skb);
4552 
4553 	if (unlikely(skb_shinfo(skb)->tx_flags &
4554 		     (SKBTX_SCHED_TSTAMP | SKBTX_BPF)))
4555 		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4556 
4557 	/* Disable soft irqs for various locks below. Also
4558 	 * stops preemption for RCU.
4559 	 */
4560 	rcu_read_lock_bh();
4561 
4562 	skb_update_prio(skb);
4563 
4564 	qdisc_pkt_len_init(skb);
4565 	tcx_set_ingress(skb, false);
4566 #ifdef CONFIG_NET_EGRESS
4567 	if (static_branch_unlikely(&egress_needed_key)) {
4568 		if (nf_hook_egress_active()) {
4569 			skb = nf_hook_egress(skb, &rc, dev);
4570 			if (!skb)
4571 				goto out;
4572 		}
4573 
4574 		netdev_xmit_skip_txqueue(false);
4575 
4576 		nf_skip_egress(skb, true);
4577 		skb = sch_handle_egress(skb, &rc, dev);
4578 		if (!skb)
4579 			goto out;
4580 		nf_skip_egress(skb, false);
4581 
4582 		if (netdev_xmit_txqueue_skipped())
4583 			txq = netdev_tx_queue_mapping(dev, skb);
4584 	}
4585 #endif
4586 	/* If device/qdisc don't need skb->dst, release it right now while
4587 	 * its hot in this cpu cache.
4588 	 */
4589 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4590 		skb_dst_drop(skb);
4591 	else
4592 		skb_dst_force(skb);
4593 
4594 	if (!txq)
4595 		txq = netdev_core_pick_tx(dev, skb, sb_dev);
4596 
4597 	q = rcu_dereference_bh(txq->qdisc);
4598 
4599 	trace_net_dev_queue(skb);
4600 	if (q->enqueue) {
4601 		rc = __dev_xmit_skb(skb, q, dev, txq);
4602 		goto out;
4603 	}
4604 
4605 	/* The device has no queue. Common case for software devices:
4606 	 * loopback, all the sorts of tunnels...
4607 
4608 	 * Really, it is unlikely that netif_tx_lock protection is necessary
4609 	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
4610 	 * counters.)
4611 	 * However, it is possible, that they rely on protection
4612 	 * made by us here.
4613 
4614 	 * Check this and shot the lock. It is not prone from deadlocks.
4615 	 *Either shot noqueue qdisc, it is even simpler 8)
4616 	 */
4617 	if (dev->flags & IFF_UP) {
4618 		int cpu = smp_processor_id(); /* ok because BHs are off */
4619 
4620 		/* Other cpus might concurrently change txq->xmit_lock_owner
4621 		 * to -1 or to their cpu id, but not to our id.
4622 		 */
4623 		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4624 			if (dev_xmit_recursion())
4625 				goto recursion_alert;
4626 
4627 			skb = validate_xmit_skb(skb, dev, &again);
4628 			if (!skb)
4629 				goto out;
4630 
4631 			HARD_TX_LOCK(dev, txq, cpu);
4632 
4633 			if (!netif_xmit_stopped(txq)) {
4634 				dev_xmit_recursion_inc();
4635 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4636 				dev_xmit_recursion_dec();
4637 				if (dev_xmit_complete(rc)) {
4638 					HARD_TX_UNLOCK(dev, txq);
4639 					goto out;
4640 				}
4641 			}
4642 			HARD_TX_UNLOCK(dev, txq);
4643 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4644 					     dev->name);
4645 		} else {
4646 			/* Recursion is detected! It is possible,
4647 			 * unfortunately
4648 			 */
4649 recursion_alert:
4650 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4651 					     dev->name);
4652 		}
4653 	}
4654 
4655 	rc = -ENETDOWN;
4656 	rcu_read_unlock_bh();
4657 
4658 	dev_core_stats_tx_dropped_inc(dev);
4659 	kfree_skb_list(skb);
4660 	return rc;
4661 out:
4662 	rcu_read_unlock_bh();
4663 	return rc;
4664 }
4665 EXPORT_SYMBOL(__dev_queue_xmit);
4666 
4667 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4668 {
4669 	struct net_device *dev = skb->dev;
4670 	struct sk_buff *orig_skb = skb;
4671 	struct netdev_queue *txq;
4672 	int ret = NETDEV_TX_BUSY;
4673 	bool again = false;
4674 
4675 	if (unlikely(!netif_running(dev) ||
4676 		     !netif_carrier_ok(dev)))
4677 		goto drop;
4678 
4679 	skb = validate_xmit_skb_list(skb, dev, &again);
4680 	if (skb != orig_skb)
4681 		goto drop;
4682 
4683 	skb_set_queue_mapping(skb, queue_id);
4684 	txq = skb_get_tx_queue(dev, skb);
4685 
4686 	local_bh_disable();
4687 
4688 	dev_xmit_recursion_inc();
4689 	HARD_TX_LOCK(dev, txq, smp_processor_id());
4690 	if (!netif_xmit_frozen_or_drv_stopped(txq))
4691 		ret = netdev_start_xmit(skb, dev, txq, false);
4692 	HARD_TX_UNLOCK(dev, txq);
4693 	dev_xmit_recursion_dec();
4694 
4695 	local_bh_enable();
4696 	return ret;
4697 drop:
4698 	dev_core_stats_tx_dropped_inc(dev);
4699 	kfree_skb_list(skb);
4700 	return NET_XMIT_DROP;
4701 }
4702 EXPORT_SYMBOL(__dev_direct_xmit);
4703 
4704 /*************************************************************************
4705  *			Receiver routines
4706  *************************************************************************/
4707 static DEFINE_PER_CPU(struct task_struct *, backlog_napi);
4708 
4709 int weight_p __read_mostly = 64;           /* old backlog weight */
4710 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
4711 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
4712 
4713 /* Called with irq disabled */
4714 static inline void ____napi_schedule(struct softnet_data *sd,
4715 				     struct napi_struct *napi)
4716 {
4717 	struct task_struct *thread;
4718 
4719 	lockdep_assert_irqs_disabled();
4720 
4721 	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4722 		/* Paired with smp_mb__before_atomic() in
4723 		 * napi_enable()/dev_set_threaded().
4724 		 * Use READ_ONCE() to guarantee a complete
4725 		 * read on napi->thread. Only call
4726 		 * wake_up_process() when it's not NULL.
4727 		 */
4728 		thread = READ_ONCE(napi->thread);
4729 		if (thread) {
4730 			if (use_backlog_threads() && thread == raw_cpu_read(backlog_napi))
4731 				goto use_local_napi;
4732 
4733 			set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4734 			wake_up_process(thread);
4735 			return;
4736 		}
4737 	}
4738 
4739 use_local_napi:
4740 	list_add_tail(&napi->poll_list, &sd->poll_list);
4741 	WRITE_ONCE(napi->list_owner, smp_processor_id());
4742 	/* If not called from net_rx_action()
4743 	 * we have to raise NET_RX_SOFTIRQ.
4744 	 */
4745 	if (!sd->in_net_rx_action)
4746 		raise_softirq_irqoff(NET_RX_SOFTIRQ);
4747 }
4748 
4749 #ifdef CONFIG_RPS
4750 
4751 struct static_key_false rps_needed __read_mostly;
4752 EXPORT_SYMBOL(rps_needed);
4753 struct static_key_false rfs_needed __read_mostly;
4754 EXPORT_SYMBOL(rfs_needed);
4755 
4756 static u32 rfs_slot(u32 hash, const struct rps_dev_flow_table *flow_table)
4757 {
4758 	return hash_32(hash, flow_table->log);
4759 }
4760 
4761 static struct rps_dev_flow *
4762 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4763 	    struct rps_dev_flow *rflow, u16 next_cpu)
4764 {
4765 	if (next_cpu < nr_cpu_ids) {
4766 		u32 head;
4767 #ifdef CONFIG_RFS_ACCEL
4768 		struct netdev_rx_queue *rxqueue;
4769 		struct rps_dev_flow_table *flow_table;
4770 		struct rps_dev_flow *old_rflow;
4771 		u16 rxq_index;
4772 		u32 flow_id;
4773 		int rc;
4774 
4775 		/* Should we steer this flow to a different hardware queue? */
4776 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4777 		    !(dev->features & NETIF_F_NTUPLE))
4778 			goto out;
4779 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4780 		if (rxq_index == skb_get_rx_queue(skb))
4781 			goto out;
4782 
4783 		rxqueue = dev->_rx + rxq_index;
4784 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
4785 		if (!flow_table)
4786 			goto out;
4787 		flow_id = rfs_slot(skb_get_hash(skb), flow_table);
4788 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4789 							rxq_index, flow_id);
4790 		if (rc < 0)
4791 			goto out;
4792 		old_rflow = rflow;
4793 		rflow = &flow_table->flows[flow_id];
4794 		WRITE_ONCE(rflow->filter, rc);
4795 		if (old_rflow->filter == rc)
4796 			WRITE_ONCE(old_rflow->filter, RPS_NO_FILTER);
4797 	out:
4798 #endif
4799 		head = READ_ONCE(per_cpu(softnet_data, next_cpu).input_queue_head);
4800 		rps_input_queue_tail_save(&rflow->last_qtail, head);
4801 	}
4802 
4803 	WRITE_ONCE(rflow->cpu, next_cpu);
4804 	return rflow;
4805 }
4806 
4807 /*
4808  * get_rps_cpu is called from netif_receive_skb and returns the target
4809  * CPU from the RPS map of the receiving queue for a given skb.
4810  * rcu_read_lock must be held on entry.
4811  */
4812 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4813 		       struct rps_dev_flow **rflowp)
4814 {
4815 	const struct rps_sock_flow_table *sock_flow_table;
4816 	struct netdev_rx_queue *rxqueue = dev->_rx;
4817 	struct rps_dev_flow_table *flow_table;
4818 	struct rps_map *map;
4819 	int cpu = -1;
4820 	u32 tcpu;
4821 	u32 hash;
4822 
4823 	if (skb_rx_queue_recorded(skb)) {
4824 		u16 index = skb_get_rx_queue(skb);
4825 
4826 		if (unlikely(index >= dev->real_num_rx_queues)) {
4827 			WARN_ONCE(dev->real_num_rx_queues > 1,
4828 				  "%s received packet on queue %u, but number "
4829 				  "of RX queues is %u\n",
4830 				  dev->name, index, dev->real_num_rx_queues);
4831 			goto done;
4832 		}
4833 		rxqueue += index;
4834 	}
4835 
4836 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4837 
4838 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4839 	map = rcu_dereference(rxqueue->rps_map);
4840 	if (!flow_table && !map)
4841 		goto done;
4842 
4843 	skb_reset_network_header(skb);
4844 	hash = skb_get_hash(skb);
4845 	if (!hash)
4846 		goto done;
4847 
4848 	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
4849 	if (flow_table && sock_flow_table) {
4850 		struct rps_dev_flow *rflow;
4851 		u32 next_cpu;
4852 		u32 ident;
4853 
4854 		/* First check into global flow table if there is a match.
4855 		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4856 		 */
4857 		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4858 		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
4859 			goto try_rps;
4860 
4861 		next_cpu = ident & net_hotdata.rps_cpu_mask;
4862 
4863 		/* OK, now we know there is a match,
4864 		 * we can look at the local (per receive queue) flow table
4865 		 */
4866 		rflow = &flow_table->flows[rfs_slot(hash, flow_table)];
4867 		tcpu = rflow->cpu;
4868 
4869 		/*
4870 		 * If the desired CPU (where last recvmsg was done) is
4871 		 * different from current CPU (one in the rx-queue flow
4872 		 * table entry), switch if one of the following holds:
4873 		 *   - Current CPU is unset (>= nr_cpu_ids).
4874 		 *   - Current CPU is offline.
4875 		 *   - The current CPU's queue tail has advanced beyond the
4876 		 *     last packet that was enqueued using this table entry.
4877 		 *     This guarantees that all previous packets for the flow
4878 		 *     have been dequeued, thus preserving in order delivery.
4879 		 */
4880 		if (unlikely(tcpu != next_cpu) &&
4881 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4882 		     ((int)(READ_ONCE(per_cpu(softnet_data, tcpu).input_queue_head) -
4883 		      rflow->last_qtail)) >= 0)) {
4884 			tcpu = next_cpu;
4885 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4886 		}
4887 
4888 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4889 			*rflowp = rflow;
4890 			cpu = tcpu;
4891 			goto done;
4892 		}
4893 	}
4894 
4895 try_rps:
4896 
4897 	if (map) {
4898 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4899 		if (cpu_online(tcpu)) {
4900 			cpu = tcpu;
4901 			goto done;
4902 		}
4903 	}
4904 
4905 done:
4906 	return cpu;
4907 }
4908 
4909 #ifdef CONFIG_RFS_ACCEL
4910 
4911 /**
4912  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4913  * @dev: Device on which the filter was set
4914  * @rxq_index: RX queue index
4915  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4916  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4917  *
4918  * Drivers that implement ndo_rx_flow_steer() should periodically call
4919  * this function for each installed filter and remove the filters for
4920  * which it returns %true.
4921  */
4922 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4923 			 u32 flow_id, u16 filter_id)
4924 {
4925 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4926 	struct rps_dev_flow_table *flow_table;
4927 	struct rps_dev_flow *rflow;
4928 	bool expire = true;
4929 	unsigned int cpu;
4930 
4931 	rcu_read_lock();
4932 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
4933 	if (flow_table && flow_id < (1UL << flow_table->log)) {
4934 		rflow = &flow_table->flows[flow_id];
4935 		cpu = READ_ONCE(rflow->cpu);
4936 		if (READ_ONCE(rflow->filter) == filter_id && cpu < nr_cpu_ids &&
4937 		    ((int)(READ_ONCE(per_cpu(softnet_data, cpu).input_queue_head) -
4938 			   READ_ONCE(rflow->last_qtail)) <
4939 		     (int)(10 << flow_table->log)))
4940 			expire = false;
4941 	}
4942 	rcu_read_unlock();
4943 	return expire;
4944 }
4945 EXPORT_SYMBOL(rps_may_expire_flow);
4946 
4947 #endif /* CONFIG_RFS_ACCEL */
4948 
4949 /* Called from hardirq (IPI) context */
4950 static void rps_trigger_softirq(void *data)
4951 {
4952 	struct softnet_data *sd = data;
4953 
4954 	____napi_schedule(sd, &sd->backlog);
4955 	sd->received_rps++;
4956 }
4957 
4958 #endif /* CONFIG_RPS */
4959 
4960 /* Called from hardirq (IPI) context */
4961 static void trigger_rx_softirq(void *data)
4962 {
4963 	struct softnet_data *sd = data;
4964 
4965 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4966 	smp_store_release(&sd->defer_ipi_scheduled, 0);
4967 }
4968 
4969 /*
4970  * After we queued a packet into sd->input_pkt_queue,
4971  * we need to make sure this queue is serviced soon.
4972  *
4973  * - If this is another cpu queue, link it to our rps_ipi_list,
4974  *   and make sure we will process rps_ipi_list from net_rx_action().
4975  *
4976  * - If this is our own queue, NAPI schedule our backlog.
4977  *   Note that this also raises NET_RX_SOFTIRQ.
4978  */
4979 static void napi_schedule_rps(struct softnet_data *sd)
4980 {
4981 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4982 
4983 #ifdef CONFIG_RPS
4984 	if (sd != mysd) {
4985 		if (use_backlog_threads()) {
4986 			__napi_schedule_irqoff(&sd->backlog);
4987 			return;
4988 		}
4989 
4990 		sd->rps_ipi_next = mysd->rps_ipi_list;
4991 		mysd->rps_ipi_list = sd;
4992 
4993 		/* If not called from net_rx_action() or napi_threaded_poll()
4994 		 * we have to raise NET_RX_SOFTIRQ.
4995 		 */
4996 		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4997 			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
4998 		return;
4999 	}
5000 #endif /* CONFIG_RPS */
5001 	__napi_schedule_irqoff(&mysd->backlog);
5002 }
5003 
5004 void kick_defer_list_purge(struct softnet_data *sd, unsigned int cpu)
5005 {
5006 	unsigned long flags;
5007 
5008 	if (use_backlog_threads()) {
5009 		backlog_lock_irq_save(sd, &flags);
5010 
5011 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
5012 			__napi_schedule_irqoff(&sd->backlog);
5013 
5014 		backlog_unlock_irq_restore(sd, &flags);
5015 
5016 	} else if (!cmpxchg(&sd->defer_ipi_scheduled, 0, 1)) {
5017 		smp_call_function_single_async(cpu, &sd->defer_csd);
5018 	}
5019 }
5020 
5021 #ifdef CONFIG_NET_FLOW_LIMIT
5022 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
5023 #endif
5024 
5025 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
5026 {
5027 #ifdef CONFIG_NET_FLOW_LIMIT
5028 	struct sd_flow_limit *fl;
5029 	struct softnet_data *sd;
5030 	unsigned int old_flow, new_flow;
5031 
5032 	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
5033 		return false;
5034 
5035 	sd = this_cpu_ptr(&softnet_data);
5036 
5037 	rcu_read_lock();
5038 	fl = rcu_dereference(sd->flow_limit);
5039 	if (fl) {
5040 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
5041 		old_flow = fl->history[fl->history_head];
5042 		fl->history[fl->history_head] = new_flow;
5043 
5044 		fl->history_head++;
5045 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
5046 
5047 		if (likely(fl->buckets[old_flow]))
5048 			fl->buckets[old_flow]--;
5049 
5050 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
5051 			fl->count++;
5052 			rcu_read_unlock();
5053 			return true;
5054 		}
5055 	}
5056 	rcu_read_unlock();
5057 #endif
5058 	return false;
5059 }
5060 
5061 /*
5062  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
5063  * queue (may be a remote CPU queue).
5064  */
5065 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
5066 			      unsigned int *qtail)
5067 {
5068 	enum skb_drop_reason reason;
5069 	struct softnet_data *sd;
5070 	unsigned long flags;
5071 	unsigned int qlen;
5072 	int max_backlog;
5073 	u32 tail;
5074 
5075 	reason = SKB_DROP_REASON_DEV_READY;
5076 	if (!netif_running(skb->dev))
5077 		goto bad_dev;
5078 
5079 	reason = SKB_DROP_REASON_CPU_BACKLOG;
5080 	sd = &per_cpu(softnet_data, cpu);
5081 
5082 	qlen = skb_queue_len_lockless(&sd->input_pkt_queue);
5083 	max_backlog = READ_ONCE(net_hotdata.max_backlog);
5084 	if (unlikely(qlen > max_backlog))
5085 		goto cpu_backlog_drop;
5086 	backlog_lock_irq_save(sd, &flags);
5087 	qlen = skb_queue_len(&sd->input_pkt_queue);
5088 	if (qlen <= max_backlog && !skb_flow_limit(skb, qlen)) {
5089 		if (!qlen) {
5090 			/* Schedule NAPI for backlog device. We can use
5091 			 * non atomic operation as we own the queue lock.
5092 			 */
5093 			if (!__test_and_set_bit(NAPI_STATE_SCHED,
5094 						&sd->backlog.state))
5095 				napi_schedule_rps(sd);
5096 		}
5097 		__skb_queue_tail(&sd->input_pkt_queue, skb);
5098 		tail = rps_input_queue_tail_incr(sd);
5099 		backlog_unlock_irq_restore(sd, &flags);
5100 
5101 		/* save the tail outside of the critical section */
5102 		rps_input_queue_tail_save(qtail, tail);
5103 		return NET_RX_SUCCESS;
5104 	}
5105 
5106 	backlog_unlock_irq_restore(sd, &flags);
5107 
5108 cpu_backlog_drop:
5109 	atomic_inc(&sd->dropped);
5110 bad_dev:
5111 	dev_core_stats_rx_dropped_inc(skb->dev);
5112 	kfree_skb_reason(skb, reason);
5113 	return NET_RX_DROP;
5114 }
5115 
5116 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
5117 {
5118 	struct net_device *dev = skb->dev;
5119 	struct netdev_rx_queue *rxqueue;
5120 
5121 	rxqueue = dev->_rx;
5122 
5123 	if (skb_rx_queue_recorded(skb)) {
5124 		u16 index = skb_get_rx_queue(skb);
5125 
5126 		if (unlikely(index >= dev->real_num_rx_queues)) {
5127 			WARN_ONCE(dev->real_num_rx_queues > 1,
5128 				  "%s received packet on queue %u, but number "
5129 				  "of RX queues is %u\n",
5130 				  dev->name, index, dev->real_num_rx_queues);
5131 
5132 			return rxqueue; /* Return first rxqueue */
5133 		}
5134 		rxqueue += index;
5135 	}
5136 	return rxqueue;
5137 }
5138 
5139 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
5140 			     const struct bpf_prog *xdp_prog)
5141 {
5142 	void *orig_data, *orig_data_end, *hard_start;
5143 	struct netdev_rx_queue *rxqueue;
5144 	bool orig_bcast, orig_host;
5145 	u32 mac_len, frame_sz;
5146 	__be16 orig_eth_type;
5147 	struct ethhdr *eth;
5148 	u32 metalen, act;
5149 	int off;
5150 
5151 	/* The XDP program wants to see the packet starting at the MAC
5152 	 * header.
5153 	 */
5154 	mac_len = skb->data - skb_mac_header(skb);
5155 	hard_start = skb->data - skb_headroom(skb);
5156 
5157 	/* SKB "head" area always have tailroom for skb_shared_info */
5158 	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
5159 	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
5160 
5161 	rxqueue = netif_get_rxqueue(skb);
5162 	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
5163 	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
5164 			 skb_headlen(skb) + mac_len, true);
5165 	if (skb_is_nonlinear(skb)) {
5166 		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
5167 		xdp_buff_set_frags_flag(xdp);
5168 	} else {
5169 		xdp_buff_clear_frags_flag(xdp);
5170 	}
5171 
5172 	orig_data_end = xdp->data_end;
5173 	orig_data = xdp->data;
5174 	eth = (struct ethhdr *)xdp->data;
5175 	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
5176 	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
5177 	orig_eth_type = eth->h_proto;
5178 
5179 	act = bpf_prog_run_xdp(xdp_prog, xdp);
5180 
5181 	/* check if bpf_xdp_adjust_head was used */
5182 	off = xdp->data - orig_data;
5183 	if (off) {
5184 		if (off > 0)
5185 			__skb_pull(skb, off);
5186 		else if (off < 0)
5187 			__skb_push(skb, -off);
5188 
5189 		skb->mac_header += off;
5190 		skb_reset_network_header(skb);
5191 	}
5192 
5193 	/* check if bpf_xdp_adjust_tail was used */
5194 	off = xdp->data_end - orig_data_end;
5195 	if (off != 0) {
5196 		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
5197 		skb->len += off; /* positive on grow, negative on shrink */
5198 	}
5199 
5200 	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
5201 	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
5202 	 */
5203 	if (xdp_buff_has_frags(xdp))
5204 		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
5205 	else
5206 		skb->data_len = 0;
5207 
5208 	/* check if XDP changed eth hdr such SKB needs update */
5209 	eth = (struct ethhdr *)xdp->data;
5210 	if ((orig_eth_type != eth->h_proto) ||
5211 	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
5212 						  skb->dev->dev_addr)) ||
5213 	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
5214 		__skb_push(skb, ETH_HLEN);
5215 		skb->pkt_type = PACKET_HOST;
5216 		skb->protocol = eth_type_trans(skb, skb->dev);
5217 	}
5218 
5219 	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5220 	 * before calling us again on redirect path. We do not call do_redirect
5221 	 * as we leave that up to the caller.
5222 	 *
5223 	 * Caller is responsible for managing lifetime of skb (i.e. calling
5224 	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5225 	 */
5226 	switch (act) {
5227 	case XDP_REDIRECT:
5228 	case XDP_TX:
5229 		__skb_push(skb, mac_len);
5230 		break;
5231 	case XDP_PASS:
5232 		metalen = xdp->data - xdp->data_meta;
5233 		if (metalen)
5234 			skb_metadata_set(skb, metalen);
5235 		break;
5236 	}
5237 
5238 	return act;
5239 }
5240 
5241 static int
5242 netif_skb_check_for_xdp(struct sk_buff **pskb, const struct bpf_prog *prog)
5243 {
5244 	struct sk_buff *skb = *pskb;
5245 	int err, hroom, troom;
5246 
5247 	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
5248 		return 0;
5249 
5250 	/* In case we have to go down the path and also linearize,
5251 	 * then lets do the pskb_expand_head() work just once here.
5252 	 */
5253 	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
5254 	troom = skb->tail + skb->data_len - skb->end;
5255 	err = pskb_expand_head(skb,
5256 			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
5257 			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
5258 	if (err)
5259 		return err;
5260 
5261 	return skb_linearize(skb);
5262 }
5263 
5264 static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
5265 				     struct xdp_buff *xdp,
5266 				     const struct bpf_prog *xdp_prog)
5267 {
5268 	struct sk_buff *skb = *pskb;
5269 	u32 mac_len, act = XDP_DROP;
5270 
5271 	/* Reinjected packets coming from act_mirred or similar should
5272 	 * not get XDP generic processing.
5273 	 */
5274 	if (skb_is_redirected(skb))
5275 		return XDP_PASS;
5276 
5277 	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5278 	 * bytes. This is the guarantee that also native XDP provides,
5279 	 * thus we need to do it here as well.
5280 	 */
5281 	mac_len = skb->data - skb_mac_header(skb);
5282 	__skb_push(skb, mac_len);
5283 
5284 	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
5285 	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
5286 		if (netif_skb_check_for_xdp(pskb, xdp_prog))
5287 			goto do_drop;
5288 	}
5289 
5290 	__skb_pull(*pskb, mac_len);
5291 
5292 	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
5293 	switch (act) {
5294 	case XDP_REDIRECT:
5295 	case XDP_TX:
5296 	case XDP_PASS:
5297 		break;
5298 	default:
5299 		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
5300 		fallthrough;
5301 	case XDP_ABORTED:
5302 		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
5303 		fallthrough;
5304 	case XDP_DROP:
5305 	do_drop:
5306 		kfree_skb(*pskb);
5307 		break;
5308 	}
5309 
5310 	return act;
5311 }
5312 
5313 /* When doing generic XDP we have to bypass the qdisc layer and the
5314  * network taps in order to match in-driver-XDP behavior. This also means
5315  * that XDP packets are able to starve other packets going through a qdisc,
5316  * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5317  * queues, so they do not have this starvation issue.
5318  */
5319 void generic_xdp_tx(struct sk_buff *skb, const struct bpf_prog *xdp_prog)
5320 {
5321 	struct net_device *dev = skb->dev;
5322 	struct netdev_queue *txq;
5323 	bool free_skb = true;
5324 	int cpu, rc;
5325 
5326 	txq = netdev_core_pick_tx(dev, skb, NULL);
5327 	cpu = smp_processor_id();
5328 	HARD_TX_LOCK(dev, txq, cpu);
5329 	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5330 		rc = netdev_start_xmit(skb, dev, txq, 0);
5331 		if (dev_xmit_complete(rc))
5332 			free_skb = false;
5333 	}
5334 	HARD_TX_UNLOCK(dev, txq);
5335 	if (free_skb) {
5336 		trace_xdp_exception(dev, xdp_prog, XDP_TX);
5337 		dev_core_stats_tx_dropped_inc(dev);
5338 		kfree_skb(skb);
5339 	}
5340 }
5341 
5342 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5343 
5344 int do_xdp_generic(const struct bpf_prog *xdp_prog, struct sk_buff **pskb)
5345 {
5346 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
5347 
5348 	if (xdp_prog) {
5349 		struct xdp_buff xdp;
5350 		u32 act;
5351 		int err;
5352 
5353 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
5354 		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
5355 		if (act != XDP_PASS) {
5356 			switch (act) {
5357 			case XDP_REDIRECT:
5358 				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
5359 							      &xdp, xdp_prog);
5360 				if (err)
5361 					goto out_redir;
5362 				break;
5363 			case XDP_TX:
5364 				generic_xdp_tx(*pskb, xdp_prog);
5365 				break;
5366 			}
5367 			bpf_net_ctx_clear(bpf_net_ctx);
5368 			return XDP_DROP;
5369 		}
5370 		bpf_net_ctx_clear(bpf_net_ctx);
5371 	}
5372 	return XDP_PASS;
5373 out_redir:
5374 	bpf_net_ctx_clear(bpf_net_ctx);
5375 	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
5376 	return XDP_DROP;
5377 }
5378 EXPORT_SYMBOL_GPL(do_xdp_generic);
5379 
5380 static int netif_rx_internal(struct sk_buff *skb)
5381 {
5382 	int ret;
5383 
5384 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5385 
5386 	trace_netif_rx(skb);
5387 
5388 #ifdef CONFIG_RPS
5389 	if (static_branch_unlikely(&rps_needed)) {
5390 		struct rps_dev_flow voidflow, *rflow = &voidflow;
5391 		int cpu;
5392 
5393 		rcu_read_lock();
5394 
5395 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
5396 		if (cpu < 0)
5397 			cpu = smp_processor_id();
5398 
5399 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5400 
5401 		rcu_read_unlock();
5402 	} else
5403 #endif
5404 	{
5405 		unsigned int qtail;
5406 
5407 		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5408 	}
5409 	return ret;
5410 }
5411 
5412 /**
5413  *	__netif_rx	-	Slightly optimized version of netif_rx
5414  *	@skb: buffer to post
5415  *
5416  *	This behaves as netif_rx except that it does not disable bottom halves.
5417  *	As a result this function may only be invoked from the interrupt context
5418  *	(either hard or soft interrupt).
5419  */
5420 int __netif_rx(struct sk_buff *skb)
5421 {
5422 	int ret;
5423 
5424 	lockdep_assert_once(hardirq_count() | softirq_count());
5425 
5426 	trace_netif_rx_entry(skb);
5427 	ret = netif_rx_internal(skb);
5428 	trace_netif_rx_exit(ret);
5429 	return ret;
5430 }
5431 EXPORT_SYMBOL(__netif_rx);
5432 
5433 /**
5434  *	netif_rx	-	post buffer to the network code
5435  *	@skb: buffer to post
5436  *
5437  *	This function receives a packet from a device driver and queues it for
5438  *	the upper (protocol) levels to process via the backlog NAPI device. It
5439  *	always succeeds. The buffer may be dropped during processing for
5440  *	congestion control or by the protocol layers.
5441  *	The network buffer is passed via the backlog NAPI device. Modern NIC
5442  *	driver should use NAPI and GRO.
5443  *	This function can used from interrupt and from process context. The
5444  *	caller from process context must not disable interrupts before invoking
5445  *	this function.
5446  *
5447  *	return values:
5448  *	NET_RX_SUCCESS	(no congestion)
5449  *	NET_RX_DROP     (packet was dropped)
5450  *
5451  */
5452 int netif_rx(struct sk_buff *skb)
5453 {
5454 	bool need_bh_off = !(hardirq_count() | softirq_count());
5455 	int ret;
5456 
5457 	if (need_bh_off)
5458 		local_bh_disable();
5459 	trace_netif_rx_entry(skb);
5460 	ret = netif_rx_internal(skb);
5461 	trace_netif_rx_exit(ret);
5462 	if (need_bh_off)
5463 		local_bh_enable();
5464 	return ret;
5465 }
5466 EXPORT_SYMBOL(netif_rx);
5467 
5468 static __latent_entropy void net_tx_action(void)
5469 {
5470 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5471 
5472 	if (sd->completion_queue) {
5473 		struct sk_buff *clist;
5474 
5475 		local_irq_disable();
5476 		clist = sd->completion_queue;
5477 		sd->completion_queue = NULL;
5478 		local_irq_enable();
5479 
5480 		while (clist) {
5481 			struct sk_buff *skb = clist;
5482 
5483 			clist = clist->next;
5484 
5485 			WARN_ON(refcount_read(&skb->users));
5486 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5487 				trace_consume_skb(skb, net_tx_action);
5488 			else
5489 				trace_kfree_skb(skb, net_tx_action,
5490 						get_kfree_skb_cb(skb)->reason, NULL);
5491 
5492 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5493 				__kfree_skb(skb);
5494 			else
5495 				__napi_kfree_skb(skb,
5496 						 get_kfree_skb_cb(skb)->reason);
5497 		}
5498 	}
5499 
5500 	if (sd->output_queue) {
5501 		struct Qdisc *head;
5502 
5503 		local_irq_disable();
5504 		head = sd->output_queue;
5505 		sd->output_queue = NULL;
5506 		sd->output_queue_tailp = &sd->output_queue;
5507 		local_irq_enable();
5508 
5509 		rcu_read_lock();
5510 
5511 		while (head) {
5512 			struct Qdisc *q = head;
5513 			spinlock_t *root_lock = NULL;
5514 
5515 			head = head->next_sched;
5516 
5517 			/* We need to make sure head->next_sched is read
5518 			 * before clearing __QDISC_STATE_SCHED
5519 			 */
5520 			smp_mb__before_atomic();
5521 
5522 			if (!(q->flags & TCQ_F_NOLOCK)) {
5523 				root_lock = qdisc_lock(q);
5524 				spin_lock(root_lock);
5525 			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5526 						     &q->state))) {
5527 				/* There is a synchronize_net() between
5528 				 * STATE_DEACTIVATED flag being set and
5529 				 * qdisc_reset()/some_qdisc_is_busy() in
5530 				 * dev_deactivate(), so we can safely bail out
5531 				 * early here to avoid data race between
5532 				 * qdisc_deactivate() and some_qdisc_is_busy()
5533 				 * for lockless qdisc.
5534 				 */
5535 				clear_bit(__QDISC_STATE_SCHED, &q->state);
5536 				continue;
5537 			}
5538 
5539 			clear_bit(__QDISC_STATE_SCHED, &q->state);
5540 			qdisc_run(q);
5541 			if (root_lock)
5542 				spin_unlock(root_lock);
5543 		}
5544 
5545 		rcu_read_unlock();
5546 	}
5547 
5548 	xfrm_dev_backlog(sd);
5549 }
5550 
5551 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5552 /* This hook is defined here for ATM LANE */
5553 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5554 			     unsigned char *addr) __read_mostly;
5555 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5556 #endif
5557 
5558 /**
5559  *	netdev_is_rx_handler_busy - check if receive handler is registered
5560  *	@dev: device to check
5561  *
5562  *	Check if a receive handler is already registered for a given device.
5563  *	Return true if there one.
5564  *
5565  *	The caller must hold the rtnl_mutex.
5566  */
5567 bool netdev_is_rx_handler_busy(struct net_device *dev)
5568 {
5569 	ASSERT_RTNL();
5570 	return dev && rtnl_dereference(dev->rx_handler);
5571 }
5572 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5573 
5574 /**
5575  *	netdev_rx_handler_register - register receive handler
5576  *	@dev: device to register a handler for
5577  *	@rx_handler: receive handler to register
5578  *	@rx_handler_data: data pointer that is used by rx handler
5579  *
5580  *	Register a receive handler for a device. This handler will then be
5581  *	called from __netif_receive_skb. A negative errno code is returned
5582  *	on a failure.
5583  *
5584  *	The caller must hold the rtnl_mutex.
5585  *
5586  *	For a general description of rx_handler, see enum rx_handler_result.
5587  */
5588 int netdev_rx_handler_register(struct net_device *dev,
5589 			       rx_handler_func_t *rx_handler,
5590 			       void *rx_handler_data)
5591 {
5592 	if (netdev_is_rx_handler_busy(dev))
5593 		return -EBUSY;
5594 
5595 	if (dev->priv_flags & IFF_NO_RX_HANDLER)
5596 		return -EINVAL;
5597 
5598 	/* Note: rx_handler_data must be set before rx_handler */
5599 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5600 	rcu_assign_pointer(dev->rx_handler, rx_handler);
5601 
5602 	return 0;
5603 }
5604 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5605 
5606 /**
5607  *	netdev_rx_handler_unregister - unregister receive handler
5608  *	@dev: device to unregister a handler from
5609  *
5610  *	Unregister a receive handler from a device.
5611  *
5612  *	The caller must hold the rtnl_mutex.
5613  */
5614 void netdev_rx_handler_unregister(struct net_device *dev)
5615 {
5616 
5617 	ASSERT_RTNL();
5618 	RCU_INIT_POINTER(dev->rx_handler, NULL);
5619 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5620 	 * section has a guarantee to see a non NULL rx_handler_data
5621 	 * as well.
5622 	 */
5623 	synchronize_net();
5624 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5625 }
5626 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5627 
5628 /*
5629  * Limit the use of PFMEMALLOC reserves to those protocols that implement
5630  * the special handling of PFMEMALLOC skbs.
5631  */
5632 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5633 {
5634 	switch (skb->protocol) {
5635 	case htons(ETH_P_ARP):
5636 	case htons(ETH_P_IP):
5637 	case htons(ETH_P_IPV6):
5638 	case htons(ETH_P_8021Q):
5639 	case htons(ETH_P_8021AD):
5640 		return true;
5641 	default:
5642 		return false;
5643 	}
5644 }
5645 
5646 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5647 			     int *ret, struct net_device *orig_dev)
5648 {
5649 	if (nf_hook_ingress_active(skb)) {
5650 		int ingress_retval;
5651 
5652 		if (*pt_prev) {
5653 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
5654 			*pt_prev = NULL;
5655 		}
5656 
5657 		rcu_read_lock();
5658 		ingress_retval = nf_hook_ingress(skb);
5659 		rcu_read_unlock();
5660 		return ingress_retval;
5661 	}
5662 	return 0;
5663 }
5664 
5665 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5666 				    struct packet_type **ppt_prev)
5667 {
5668 	struct packet_type *ptype, *pt_prev;
5669 	rx_handler_func_t *rx_handler;
5670 	struct sk_buff *skb = *pskb;
5671 	struct net_device *orig_dev;
5672 	bool deliver_exact = false;
5673 	int ret = NET_RX_DROP;
5674 	__be16 type;
5675 
5676 	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
5677 
5678 	trace_netif_receive_skb(skb);
5679 
5680 	orig_dev = skb->dev;
5681 
5682 	skb_reset_network_header(skb);
5683 #if !defined(CONFIG_DEBUG_NET)
5684 	/* We plan to no longer reset the transport header here.
5685 	 * Give some time to fuzzers and dev build to catch bugs
5686 	 * in network stacks.
5687 	 */
5688 	if (!skb_transport_header_was_set(skb))
5689 		skb_reset_transport_header(skb);
5690 #endif
5691 	skb_reset_mac_len(skb);
5692 
5693 	pt_prev = NULL;
5694 
5695 another_round:
5696 	skb->skb_iif = skb->dev->ifindex;
5697 
5698 	__this_cpu_inc(softnet_data.processed);
5699 
5700 	if (static_branch_unlikely(&generic_xdp_needed_key)) {
5701 		int ret2;
5702 
5703 		migrate_disable();
5704 		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
5705 				      &skb);
5706 		migrate_enable();
5707 
5708 		if (ret2 != XDP_PASS) {
5709 			ret = NET_RX_DROP;
5710 			goto out;
5711 		}
5712 	}
5713 
5714 	if (eth_type_vlan(skb->protocol)) {
5715 		skb = skb_vlan_untag(skb);
5716 		if (unlikely(!skb))
5717 			goto out;
5718 	}
5719 
5720 	if (skb_skip_tc_classify(skb))
5721 		goto skip_classify;
5722 
5723 	if (pfmemalloc)
5724 		goto skip_taps;
5725 
5726 	list_for_each_entry_rcu(ptype, &dev_net_rcu(skb->dev)->ptype_all,
5727 				list) {
5728 		if (pt_prev)
5729 			ret = deliver_skb(skb, pt_prev, orig_dev);
5730 		pt_prev = ptype;
5731 	}
5732 
5733 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5734 		if (pt_prev)
5735 			ret = deliver_skb(skb, pt_prev, orig_dev);
5736 		pt_prev = ptype;
5737 	}
5738 
5739 skip_taps:
5740 #ifdef CONFIG_NET_INGRESS
5741 	if (static_branch_unlikely(&ingress_needed_key)) {
5742 		bool another = false;
5743 
5744 		nf_skip_egress(skb, true);
5745 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5746 					 &another);
5747 		if (another)
5748 			goto another_round;
5749 		if (!skb)
5750 			goto out;
5751 
5752 		nf_skip_egress(skb, false);
5753 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5754 			goto out;
5755 	}
5756 #endif
5757 	skb_reset_redirect(skb);
5758 skip_classify:
5759 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5760 		goto drop;
5761 
5762 	if (skb_vlan_tag_present(skb)) {
5763 		if (pt_prev) {
5764 			ret = deliver_skb(skb, pt_prev, orig_dev);
5765 			pt_prev = NULL;
5766 		}
5767 		if (vlan_do_receive(&skb))
5768 			goto another_round;
5769 		else if (unlikely(!skb))
5770 			goto out;
5771 	}
5772 
5773 	rx_handler = rcu_dereference(skb->dev->rx_handler);
5774 	if (rx_handler) {
5775 		if (pt_prev) {
5776 			ret = deliver_skb(skb, pt_prev, orig_dev);
5777 			pt_prev = NULL;
5778 		}
5779 		switch (rx_handler(&skb)) {
5780 		case RX_HANDLER_CONSUMED:
5781 			ret = NET_RX_SUCCESS;
5782 			goto out;
5783 		case RX_HANDLER_ANOTHER:
5784 			goto another_round;
5785 		case RX_HANDLER_EXACT:
5786 			deliver_exact = true;
5787 			break;
5788 		case RX_HANDLER_PASS:
5789 			break;
5790 		default:
5791 			BUG();
5792 		}
5793 	}
5794 
5795 	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5796 check_vlan_id:
5797 		if (skb_vlan_tag_get_id(skb)) {
5798 			/* Vlan id is non 0 and vlan_do_receive() above couldn't
5799 			 * find vlan device.
5800 			 */
5801 			skb->pkt_type = PACKET_OTHERHOST;
5802 		} else if (eth_type_vlan(skb->protocol)) {
5803 			/* Outer header is 802.1P with vlan 0, inner header is
5804 			 * 802.1Q or 802.1AD and vlan_do_receive() above could
5805 			 * not find vlan dev for vlan id 0.
5806 			 */
5807 			__vlan_hwaccel_clear_tag(skb);
5808 			skb = skb_vlan_untag(skb);
5809 			if (unlikely(!skb))
5810 				goto out;
5811 			if (vlan_do_receive(&skb))
5812 				/* After stripping off 802.1P header with vlan 0
5813 				 * vlan dev is found for inner header.
5814 				 */
5815 				goto another_round;
5816 			else if (unlikely(!skb))
5817 				goto out;
5818 			else
5819 				/* We have stripped outer 802.1P vlan 0 header.
5820 				 * But could not find vlan dev.
5821 				 * check again for vlan id to set OTHERHOST.
5822 				 */
5823 				goto check_vlan_id;
5824 		}
5825 		/* Note: we might in the future use prio bits
5826 		 * and set skb->priority like in vlan_do_receive()
5827 		 * For the time being, just ignore Priority Code Point
5828 		 */
5829 		__vlan_hwaccel_clear_tag(skb);
5830 	}
5831 
5832 	type = skb->protocol;
5833 
5834 	/* deliver only exact match when indicated */
5835 	if (likely(!deliver_exact)) {
5836 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5837 				       &ptype_base[ntohs(type) &
5838 						   PTYPE_HASH_MASK]);
5839 
5840 		/* orig_dev and skb->dev could belong to different netns;
5841 		 * Even in such case we need to traverse only the list
5842 		 * coming from skb->dev, as the ptype owner (packet socket)
5843 		 * will use dev_net(skb->dev) to do namespace filtering.
5844 		 */
5845 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5846 				       &dev_net_rcu(skb->dev)->ptype_specific);
5847 	}
5848 
5849 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5850 			       &orig_dev->ptype_specific);
5851 
5852 	if (unlikely(skb->dev != orig_dev)) {
5853 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5854 				       &skb->dev->ptype_specific);
5855 	}
5856 
5857 	if (pt_prev) {
5858 		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5859 			goto drop;
5860 		*ppt_prev = pt_prev;
5861 	} else {
5862 drop:
5863 		if (!deliver_exact)
5864 			dev_core_stats_rx_dropped_inc(skb->dev);
5865 		else
5866 			dev_core_stats_rx_nohandler_inc(skb->dev);
5867 		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5868 		/* Jamal, now you will not able to escape explaining
5869 		 * me how you were going to use this. :-)
5870 		 */
5871 		ret = NET_RX_DROP;
5872 	}
5873 
5874 out:
5875 	/* The invariant here is that if *ppt_prev is not NULL
5876 	 * then skb should also be non-NULL.
5877 	 *
5878 	 * Apparently *ppt_prev assignment above holds this invariant due to
5879 	 * skb dereferencing near it.
5880 	 */
5881 	*pskb = skb;
5882 	return ret;
5883 }
5884 
5885 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5886 {
5887 	struct net_device *orig_dev = skb->dev;
5888 	struct packet_type *pt_prev = NULL;
5889 	int ret;
5890 
5891 	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5892 	if (pt_prev)
5893 		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5894 					 skb->dev, pt_prev, orig_dev);
5895 	return ret;
5896 }
5897 
5898 /**
5899  *	netif_receive_skb_core - special purpose version of netif_receive_skb
5900  *	@skb: buffer to process
5901  *
5902  *	More direct receive version of netif_receive_skb().  It should
5903  *	only be used by callers that have a need to skip RPS and Generic XDP.
5904  *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5905  *
5906  *	This function may only be called from softirq context and interrupts
5907  *	should be enabled.
5908  *
5909  *	Return values (usually ignored):
5910  *	NET_RX_SUCCESS: no congestion
5911  *	NET_RX_DROP: packet was dropped
5912  */
5913 int netif_receive_skb_core(struct sk_buff *skb)
5914 {
5915 	int ret;
5916 
5917 	rcu_read_lock();
5918 	ret = __netif_receive_skb_one_core(skb, false);
5919 	rcu_read_unlock();
5920 
5921 	return ret;
5922 }
5923 EXPORT_SYMBOL(netif_receive_skb_core);
5924 
5925 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5926 						  struct packet_type *pt_prev,
5927 						  struct net_device *orig_dev)
5928 {
5929 	struct sk_buff *skb, *next;
5930 
5931 	if (!pt_prev)
5932 		return;
5933 	if (list_empty(head))
5934 		return;
5935 	if (pt_prev->list_func != NULL)
5936 		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5937 				   ip_list_rcv, head, pt_prev, orig_dev);
5938 	else
5939 		list_for_each_entry_safe(skb, next, head, list) {
5940 			skb_list_del_init(skb);
5941 			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5942 		}
5943 }
5944 
5945 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5946 {
5947 	/* Fast-path assumptions:
5948 	 * - There is no RX handler.
5949 	 * - Only one packet_type matches.
5950 	 * If either of these fails, we will end up doing some per-packet
5951 	 * processing in-line, then handling the 'last ptype' for the whole
5952 	 * sublist.  This can't cause out-of-order delivery to any single ptype,
5953 	 * because the 'last ptype' must be constant across the sublist, and all
5954 	 * other ptypes are handled per-packet.
5955 	 */
5956 	/* Current (common) ptype of sublist */
5957 	struct packet_type *pt_curr = NULL;
5958 	/* Current (common) orig_dev of sublist */
5959 	struct net_device *od_curr = NULL;
5960 	struct sk_buff *skb, *next;
5961 	LIST_HEAD(sublist);
5962 
5963 	list_for_each_entry_safe(skb, next, head, list) {
5964 		struct net_device *orig_dev = skb->dev;
5965 		struct packet_type *pt_prev = NULL;
5966 
5967 		skb_list_del_init(skb);
5968 		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5969 		if (!pt_prev)
5970 			continue;
5971 		if (pt_curr != pt_prev || od_curr != orig_dev) {
5972 			/* dispatch old sublist */
5973 			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5974 			/* start new sublist */
5975 			INIT_LIST_HEAD(&sublist);
5976 			pt_curr = pt_prev;
5977 			od_curr = orig_dev;
5978 		}
5979 		list_add_tail(&skb->list, &sublist);
5980 	}
5981 
5982 	/* dispatch final sublist */
5983 	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5984 }
5985 
5986 static int __netif_receive_skb(struct sk_buff *skb)
5987 {
5988 	int ret;
5989 
5990 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5991 		unsigned int noreclaim_flag;
5992 
5993 		/*
5994 		 * PFMEMALLOC skbs are special, they should
5995 		 * - be delivered to SOCK_MEMALLOC sockets only
5996 		 * - stay away from userspace
5997 		 * - have bounded memory usage
5998 		 *
5999 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
6000 		 * context down to all allocation sites.
6001 		 */
6002 		noreclaim_flag = memalloc_noreclaim_save();
6003 		ret = __netif_receive_skb_one_core(skb, true);
6004 		memalloc_noreclaim_restore(noreclaim_flag);
6005 	} else
6006 		ret = __netif_receive_skb_one_core(skb, false);
6007 
6008 	return ret;
6009 }
6010 
6011 static void __netif_receive_skb_list(struct list_head *head)
6012 {
6013 	unsigned long noreclaim_flag = 0;
6014 	struct sk_buff *skb, *next;
6015 	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
6016 
6017 	list_for_each_entry_safe(skb, next, head, list) {
6018 		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
6019 			struct list_head sublist;
6020 
6021 			/* Handle the previous sublist */
6022 			list_cut_before(&sublist, head, &skb->list);
6023 			if (!list_empty(&sublist))
6024 				__netif_receive_skb_list_core(&sublist, pfmemalloc);
6025 			pfmemalloc = !pfmemalloc;
6026 			/* See comments in __netif_receive_skb */
6027 			if (pfmemalloc)
6028 				noreclaim_flag = memalloc_noreclaim_save();
6029 			else
6030 				memalloc_noreclaim_restore(noreclaim_flag);
6031 		}
6032 	}
6033 	/* Handle the remaining sublist */
6034 	if (!list_empty(head))
6035 		__netif_receive_skb_list_core(head, pfmemalloc);
6036 	/* Restore pflags */
6037 	if (pfmemalloc)
6038 		memalloc_noreclaim_restore(noreclaim_flag);
6039 }
6040 
6041 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
6042 {
6043 	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
6044 	struct bpf_prog *new = xdp->prog;
6045 	int ret = 0;
6046 
6047 	switch (xdp->command) {
6048 	case XDP_SETUP_PROG:
6049 		rcu_assign_pointer(dev->xdp_prog, new);
6050 		if (old)
6051 			bpf_prog_put(old);
6052 
6053 		if (old && !new) {
6054 			static_branch_dec(&generic_xdp_needed_key);
6055 		} else if (new && !old) {
6056 			static_branch_inc(&generic_xdp_needed_key);
6057 			netif_disable_lro(dev);
6058 			dev_disable_gro_hw(dev);
6059 		}
6060 		break;
6061 
6062 	default:
6063 		ret = -EINVAL;
6064 		break;
6065 	}
6066 
6067 	return ret;
6068 }
6069 
6070 static int netif_receive_skb_internal(struct sk_buff *skb)
6071 {
6072 	int ret;
6073 
6074 	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
6075 
6076 	if (skb_defer_rx_timestamp(skb))
6077 		return NET_RX_SUCCESS;
6078 
6079 	rcu_read_lock();
6080 #ifdef CONFIG_RPS
6081 	if (static_branch_unlikely(&rps_needed)) {
6082 		struct rps_dev_flow voidflow, *rflow = &voidflow;
6083 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6084 
6085 		if (cpu >= 0) {
6086 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6087 			rcu_read_unlock();
6088 			return ret;
6089 		}
6090 	}
6091 #endif
6092 	ret = __netif_receive_skb(skb);
6093 	rcu_read_unlock();
6094 	return ret;
6095 }
6096 
6097 void netif_receive_skb_list_internal(struct list_head *head)
6098 {
6099 	struct sk_buff *skb, *next;
6100 	LIST_HEAD(sublist);
6101 
6102 	list_for_each_entry_safe(skb, next, head, list) {
6103 		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
6104 				    skb);
6105 		skb_list_del_init(skb);
6106 		if (!skb_defer_rx_timestamp(skb))
6107 			list_add_tail(&skb->list, &sublist);
6108 	}
6109 	list_splice_init(&sublist, head);
6110 
6111 	rcu_read_lock();
6112 #ifdef CONFIG_RPS
6113 	if (static_branch_unlikely(&rps_needed)) {
6114 		list_for_each_entry_safe(skb, next, head, list) {
6115 			struct rps_dev_flow voidflow, *rflow = &voidflow;
6116 			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
6117 
6118 			if (cpu >= 0) {
6119 				/* Will be handled, remove from list */
6120 				skb_list_del_init(skb);
6121 				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
6122 			}
6123 		}
6124 	}
6125 #endif
6126 	__netif_receive_skb_list(head);
6127 	rcu_read_unlock();
6128 }
6129 
6130 /**
6131  *	netif_receive_skb - process receive buffer from network
6132  *	@skb: buffer to process
6133  *
6134  *	netif_receive_skb() is the main receive data processing function.
6135  *	It always succeeds. The buffer may be dropped during processing
6136  *	for congestion control or by the protocol layers.
6137  *
6138  *	This function may only be called from softirq context and interrupts
6139  *	should be enabled.
6140  *
6141  *	Return values (usually ignored):
6142  *	NET_RX_SUCCESS: no congestion
6143  *	NET_RX_DROP: packet was dropped
6144  */
6145 int netif_receive_skb(struct sk_buff *skb)
6146 {
6147 	int ret;
6148 
6149 	trace_netif_receive_skb_entry(skb);
6150 
6151 	ret = netif_receive_skb_internal(skb);
6152 	trace_netif_receive_skb_exit(ret);
6153 
6154 	return ret;
6155 }
6156 EXPORT_SYMBOL(netif_receive_skb);
6157 
6158 /**
6159  *	netif_receive_skb_list - process many receive buffers from network
6160  *	@head: list of skbs to process.
6161  *
6162  *	Since return value of netif_receive_skb() is normally ignored, and
6163  *	wouldn't be meaningful for a list, this function returns void.
6164  *
6165  *	This function may only be called from softirq context and interrupts
6166  *	should be enabled.
6167  */
6168 void netif_receive_skb_list(struct list_head *head)
6169 {
6170 	struct sk_buff *skb;
6171 
6172 	if (list_empty(head))
6173 		return;
6174 	if (trace_netif_receive_skb_list_entry_enabled()) {
6175 		list_for_each_entry(skb, head, list)
6176 			trace_netif_receive_skb_list_entry(skb);
6177 	}
6178 	netif_receive_skb_list_internal(head);
6179 	trace_netif_receive_skb_list_exit(0);
6180 }
6181 EXPORT_SYMBOL(netif_receive_skb_list);
6182 
6183 /* Network device is going away, flush any packets still pending */
6184 static void flush_backlog(struct work_struct *work)
6185 {
6186 	struct sk_buff *skb, *tmp;
6187 	struct sk_buff_head list;
6188 	struct softnet_data *sd;
6189 
6190 	__skb_queue_head_init(&list);
6191 	local_bh_disable();
6192 	sd = this_cpu_ptr(&softnet_data);
6193 
6194 	backlog_lock_irq_disable(sd);
6195 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
6196 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6197 			__skb_unlink(skb, &sd->input_pkt_queue);
6198 			__skb_queue_tail(&list, skb);
6199 			rps_input_queue_head_incr(sd);
6200 		}
6201 	}
6202 	backlog_unlock_irq_enable(sd);
6203 
6204 	local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6205 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
6206 		if (READ_ONCE(skb->dev->reg_state) == NETREG_UNREGISTERING) {
6207 			__skb_unlink(skb, &sd->process_queue);
6208 			__skb_queue_tail(&list, skb);
6209 			rps_input_queue_head_incr(sd);
6210 		}
6211 	}
6212 	local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6213 	local_bh_enable();
6214 
6215 	__skb_queue_purge_reason(&list, SKB_DROP_REASON_DEV_READY);
6216 }
6217 
6218 static bool flush_required(int cpu)
6219 {
6220 #if IS_ENABLED(CONFIG_RPS)
6221 	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
6222 	bool do_flush;
6223 
6224 	backlog_lock_irq_disable(sd);
6225 
6226 	/* as insertion into process_queue happens with the rps lock held,
6227 	 * process_queue access may race only with dequeue
6228 	 */
6229 	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
6230 		   !skb_queue_empty_lockless(&sd->process_queue);
6231 	backlog_unlock_irq_enable(sd);
6232 
6233 	return do_flush;
6234 #endif
6235 	/* without RPS we can't safely check input_pkt_queue: during a
6236 	 * concurrent remote skb_queue_splice() we can detect as empty both
6237 	 * input_pkt_queue and process_queue even if the latter could end-up
6238 	 * containing a lot of packets.
6239 	 */
6240 	return true;
6241 }
6242 
6243 struct flush_backlogs {
6244 	cpumask_t		flush_cpus;
6245 	struct work_struct	w[];
6246 };
6247 
6248 static struct flush_backlogs *flush_backlogs_alloc(void)
6249 {
6250 	return kmalloc(struct_size_t(struct flush_backlogs, w, nr_cpu_ids),
6251 		       GFP_KERNEL);
6252 }
6253 
6254 static struct flush_backlogs *flush_backlogs_fallback;
6255 static DEFINE_MUTEX(flush_backlogs_mutex);
6256 
6257 static void flush_all_backlogs(void)
6258 {
6259 	struct flush_backlogs *ptr = flush_backlogs_alloc();
6260 	unsigned int cpu;
6261 
6262 	if (!ptr) {
6263 		mutex_lock(&flush_backlogs_mutex);
6264 		ptr = flush_backlogs_fallback;
6265 	}
6266 	cpumask_clear(&ptr->flush_cpus);
6267 
6268 	cpus_read_lock();
6269 
6270 	for_each_online_cpu(cpu) {
6271 		if (flush_required(cpu)) {
6272 			INIT_WORK(&ptr->w[cpu], flush_backlog);
6273 			queue_work_on(cpu, system_highpri_wq, &ptr->w[cpu]);
6274 			__cpumask_set_cpu(cpu, &ptr->flush_cpus);
6275 		}
6276 	}
6277 
6278 	/* we can have in flight packet[s] on the cpus we are not flushing,
6279 	 * synchronize_net() in unregister_netdevice_many() will take care of
6280 	 * them.
6281 	 */
6282 	for_each_cpu(cpu, &ptr->flush_cpus)
6283 		flush_work(&ptr->w[cpu]);
6284 
6285 	cpus_read_unlock();
6286 
6287 	if (ptr != flush_backlogs_fallback)
6288 		kfree(ptr);
6289 	else
6290 		mutex_unlock(&flush_backlogs_mutex);
6291 }
6292 
6293 static void net_rps_send_ipi(struct softnet_data *remsd)
6294 {
6295 #ifdef CONFIG_RPS
6296 	while (remsd) {
6297 		struct softnet_data *next = remsd->rps_ipi_next;
6298 
6299 		if (cpu_online(remsd->cpu))
6300 			smp_call_function_single_async(remsd->cpu, &remsd->csd);
6301 		remsd = next;
6302 	}
6303 #endif
6304 }
6305 
6306 /*
6307  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6308  * Note: called with local irq disabled, but exits with local irq enabled.
6309  */
6310 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6311 {
6312 #ifdef CONFIG_RPS
6313 	struct softnet_data *remsd = sd->rps_ipi_list;
6314 
6315 	if (!use_backlog_threads() && remsd) {
6316 		sd->rps_ipi_list = NULL;
6317 
6318 		local_irq_enable();
6319 
6320 		/* Send pending IPI's to kick RPS processing on remote cpus. */
6321 		net_rps_send_ipi(remsd);
6322 	} else
6323 #endif
6324 		local_irq_enable();
6325 }
6326 
6327 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6328 {
6329 #ifdef CONFIG_RPS
6330 	return !use_backlog_threads() && sd->rps_ipi_list;
6331 #else
6332 	return false;
6333 #endif
6334 }
6335 
6336 static int process_backlog(struct napi_struct *napi, int quota)
6337 {
6338 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6339 	bool again = true;
6340 	int work = 0;
6341 
6342 	/* Check if we have pending ipi, its better to send them now,
6343 	 * not waiting net_rx_action() end.
6344 	 */
6345 	if (sd_has_rps_ipi_waiting(sd)) {
6346 		local_irq_disable();
6347 		net_rps_action_and_irq_enable(sd);
6348 	}
6349 
6350 	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
6351 	while (again) {
6352 		struct sk_buff *skb;
6353 
6354 		local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6355 		while ((skb = __skb_dequeue(&sd->process_queue))) {
6356 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6357 			rcu_read_lock();
6358 			__netif_receive_skb(skb);
6359 			rcu_read_unlock();
6360 			if (++work >= quota) {
6361 				rps_input_queue_head_add(sd, work);
6362 				return work;
6363 			}
6364 
6365 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6366 		}
6367 		local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6368 
6369 		backlog_lock_irq_disable(sd);
6370 		if (skb_queue_empty(&sd->input_pkt_queue)) {
6371 			/*
6372 			 * Inline a custom version of __napi_complete().
6373 			 * only current cpu owns and manipulates this napi,
6374 			 * and NAPI_STATE_SCHED is the only possible flag set
6375 			 * on backlog.
6376 			 * We can use a plain write instead of clear_bit(),
6377 			 * and we dont need an smp_mb() memory barrier.
6378 			 */
6379 			napi->state &= NAPIF_STATE_THREADED;
6380 			again = false;
6381 		} else {
6382 			local_lock_nested_bh(&softnet_data.process_queue_bh_lock);
6383 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
6384 						   &sd->process_queue);
6385 			local_unlock_nested_bh(&softnet_data.process_queue_bh_lock);
6386 		}
6387 		backlog_unlock_irq_enable(sd);
6388 	}
6389 
6390 	if (work)
6391 		rps_input_queue_head_add(sd, work);
6392 	return work;
6393 }
6394 
6395 /**
6396  * __napi_schedule - schedule for receive
6397  * @n: entry to schedule
6398  *
6399  * The entry's receive function will be scheduled to run.
6400  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6401  */
6402 void __napi_schedule(struct napi_struct *n)
6403 {
6404 	unsigned long flags;
6405 
6406 	local_irq_save(flags);
6407 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
6408 	local_irq_restore(flags);
6409 }
6410 EXPORT_SYMBOL(__napi_schedule);
6411 
6412 /**
6413  *	napi_schedule_prep - check if napi can be scheduled
6414  *	@n: napi context
6415  *
6416  * Test if NAPI routine is already running, and if not mark
6417  * it as running.  This is used as a condition variable to
6418  * insure only one NAPI poll instance runs.  We also make
6419  * sure there is no pending NAPI disable.
6420  */
6421 bool napi_schedule_prep(struct napi_struct *n)
6422 {
6423 	unsigned long new, val = READ_ONCE(n->state);
6424 
6425 	do {
6426 		if (unlikely(val & NAPIF_STATE_DISABLE))
6427 			return false;
6428 		new = val | NAPIF_STATE_SCHED;
6429 
6430 		/* Sets STATE_MISSED bit if STATE_SCHED was already set
6431 		 * This was suggested by Alexander Duyck, as compiler
6432 		 * emits better code than :
6433 		 * if (val & NAPIF_STATE_SCHED)
6434 		 *     new |= NAPIF_STATE_MISSED;
6435 		 */
6436 		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6437 						   NAPIF_STATE_MISSED;
6438 	} while (!try_cmpxchg(&n->state, &val, new));
6439 
6440 	return !(val & NAPIF_STATE_SCHED);
6441 }
6442 EXPORT_SYMBOL(napi_schedule_prep);
6443 
6444 /**
6445  * __napi_schedule_irqoff - schedule for receive
6446  * @n: entry to schedule
6447  *
6448  * Variant of __napi_schedule() assuming hard irqs are masked.
6449  *
6450  * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6451  * because the interrupt disabled assumption might not be true
6452  * due to force-threaded interrupts and spinlock substitution.
6453  */
6454 void __napi_schedule_irqoff(struct napi_struct *n)
6455 {
6456 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6457 		____napi_schedule(this_cpu_ptr(&softnet_data), n);
6458 	else
6459 		__napi_schedule(n);
6460 }
6461 EXPORT_SYMBOL(__napi_schedule_irqoff);
6462 
6463 bool napi_complete_done(struct napi_struct *n, int work_done)
6464 {
6465 	unsigned long flags, val, new, timeout = 0;
6466 	bool ret = true;
6467 
6468 	/*
6469 	 * 1) Don't let napi dequeue from the cpu poll list
6470 	 *    just in case its running on a different cpu.
6471 	 * 2) If we are busy polling, do nothing here, we have
6472 	 *    the guarantee we will be called later.
6473 	 */
6474 	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6475 				 NAPIF_STATE_IN_BUSY_POLL)))
6476 		return false;
6477 
6478 	if (work_done) {
6479 		if (n->gro.bitmask)
6480 			timeout = napi_get_gro_flush_timeout(n);
6481 		n->defer_hard_irqs_count = napi_get_defer_hard_irqs(n);
6482 	}
6483 	if (n->defer_hard_irqs_count > 0) {
6484 		n->defer_hard_irqs_count--;
6485 		timeout = napi_get_gro_flush_timeout(n);
6486 		if (timeout)
6487 			ret = false;
6488 	}
6489 
6490 	/*
6491 	 * When the NAPI instance uses a timeout and keeps postponing
6492 	 * it, we need to bound somehow the time packets are kept in
6493 	 * the GRO layer.
6494 	 */
6495 	gro_flush(&n->gro, !!timeout);
6496 	gro_normal_list(&n->gro);
6497 
6498 	if (unlikely(!list_empty(&n->poll_list))) {
6499 		/* If n->poll_list is not empty, we need to mask irqs */
6500 		local_irq_save(flags);
6501 		list_del_init(&n->poll_list);
6502 		local_irq_restore(flags);
6503 	}
6504 	WRITE_ONCE(n->list_owner, -1);
6505 
6506 	val = READ_ONCE(n->state);
6507 	do {
6508 		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6509 
6510 		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6511 			      NAPIF_STATE_SCHED_THREADED |
6512 			      NAPIF_STATE_PREFER_BUSY_POLL);
6513 
6514 		/* If STATE_MISSED was set, leave STATE_SCHED set,
6515 		 * because we will call napi->poll() one more time.
6516 		 * This C code was suggested by Alexander Duyck to help gcc.
6517 		 */
6518 		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6519 						    NAPIF_STATE_SCHED;
6520 	} while (!try_cmpxchg(&n->state, &val, new));
6521 
6522 	if (unlikely(val & NAPIF_STATE_MISSED)) {
6523 		__napi_schedule(n);
6524 		return false;
6525 	}
6526 
6527 	if (timeout)
6528 		hrtimer_start(&n->timer, ns_to_ktime(timeout),
6529 			      HRTIMER_MODE_REL_PINNED);
6530 	return ret;
6531 }
6532 EXPORT_SYMBOL(napi_complete_done);
6533 
6534 static void skb_defer_free_flush(struct softnet_data *sd)
6535 {
6536 	struct sk_buff *skb, *next;
6537 
6538 	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6539 	if (!READ_ONCE(sd->defer_list))
6540 		return;
6541 
6542 	spin_lock(&sd->defer_lock);
6543 	skb = sd->defer_list;
6544 	sd->defer_list = NULL;
6545 	sd->defer_count = 0;
6546 	spin_unlock(&sd->defer_lock);
6547 
6548 	while (skb != NULL) {
6549 		next = skb->next;
6550 		napi_consume_skb(skb, 1);
6551 		skb = next;
6552 	}
6553 }
6554 
6555 #if defined(CONFIG_NET_RX_BUSY_POLL)
6556 
6557 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6558 {
6559 	if (!skip_schedule) {
6560 		gro_normal_list(&napi->gro);
6561 		__napi_schedule(napi);
6562 		return;
6563 	}
6564 
6565 	/* Flush too old packets. If HZ < 1000, flush all packets */
6566 	gro_flush(&napi->gro, HZ >= 1000);
6567 	gro_normal_list(&napi->gro);
6568 
6569 	clear_bit(NAPI_STATE_SCHED, &napi->state);
6570 }
6571 
6572 enum {
6573 	NAPI_F_PREFER_BUSY_POLL	= 1,
6574 	NAPI_F_END_ON_RESCHED	= 2,
6575 };
6576 
6577 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
6578 			   unsigned flags, u16 budget)
6579 {
6580 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6581 	bool skip_schedule = false;
6582 	unsigned long timeout;
6583 	int rc;
6584 
6585 	/* Busy polling means there is a high chance device driver hard irq
6586 	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6587 	 * set in napi_schedule_prep().
6588 	 * Since we are about to call napi->poll() once more, we can safely
6589 	 * clear NAPI_STATE_MISSED.
6590 	 *
6591 	 * Note: x86 could use a single "lock and ..." instruction
6592 	 * to perform these two clear_bit()
6593 	 */
6594 	clear_bit(NAPI_STATE_MISSED, &napi->state);
6595 	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6596 
6597 	local_bh_disable();
6598 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6599 
6600 	if (flags & NAPI_F_PREFER_BUSY_POLL) {
6601 		napi->defer_hard_irqs_count = napi_get_defer_hard_irqs(napi);
6602 		timeout = napi_get_gro_flush_timeout(napi);
6603 		if (napi->defer_hard_irqs_count && timeout) {
6604 			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6605 			skip_schedule = true;
6606 		}
6607 	}
6608 
6609 	/* All we really want here is to re-enable device interrupts.
6610 	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6611 	 */
6612 	rc = napi->poll(napi, budget);
6613 	/* We can't gro_normal_list() here, because napi->poll() might have
6614 	 * rearmed the napi (napi_complete_done()) in which case it could
6615 	 * already be running on another CPU.
6616 	 */
6617 	trace_napi_poll(napi, rc, budget);
6618 	netpoll_poll_unlock(have_poll_lock);
6619 	if (rc == budget)
6620 		__busy_poll_stop(napi, skip_schedule);
6621 	bpf_net_ctx_clear(bpf_net_ctx);
6622 	local_bh_enable();
6623 }
6624 
6625 static void __napi_busy_loop(unsigned int napi_id,
6626 		      bool (*loop_end)(void *, unsigned long),
6627 		      void *loop_end_arg, unsigned flags, u16 budget)
6628 {
6629 	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6630 	int (*napi_poll)(struct napi_struct *napi, int budget);
6631 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
6632 	void *have_poll_lock = NULL;
6633 	struct napi_struct *napi;
6634 
6635 	WARN_ON_ONCE(!rcu_read_lock_held());
6636 
6637 restart:
6638 	napi_poll = NULL;
6639 
6640 	napi = napi_by_id(napi_id);
6641 	if (!napi)
6642 		return;
6643 
6644 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6645 		preempt_disable();
6646 	for (;;) {
6647 		int work = 0;
6648 
6649 		local_bh_disable();
6650 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
6651 		if (!napi_poll) {
6652 			unsigned long val = READ_ONCE(napi->state);
6653 
6654 			/* If multiple threads are competing for this napi,
6655 			 * we avoid dirtying napi->state as much as we can.
6656 			 */
6657 			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6658 				   NAPIF_STATE_IN_BUSY_POLL)) {
6659 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6660 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6661 				goto count;
6662 			}
6663 			if (cmpxchg(&napi->state, val,
6664 				    val | NAPIF_STATE_IN_BUSY_POLL |
6665 					  NAPIF_STATE_SCHED) != val) {
6666 				if (flags & NAPI_F_PREFER_BUSY_POLL)
6667 					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6668 				goto count;
6669 			}
6670 			have_poll_lock = netpoll_poll_lock(napi);
6671 			napi_poll = napi->poll;
6672 		}
6673 		work = napi_poll(napi, budget);
6674 		trace_napi_poll(napi, work, budget);
6675 		gro_normal_list(&napi->gro);
6676 count:
6677 		if (work > 0)
6678 			__NET_ADD_STATS(dev_net(napi->dev),
6679 					LINUX_MIB_BUSYPOLLRXPACKETS, work);
6680 		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
6681 		bpf_net_ctx_clear(bpf_net_ctx);
6682 		local_bh_enable();
6683 
6684 		if (!loop_end || loop_end(loop_end_arg, start_time))
6685 			break;
6686 
6687 		if (unlikely(need_resched())) {
6688 			if (flags & NAPI_F_END_ON_RESCHED)
6689 				break;
6690 			if (napi_poll)
6691 				busy_poll_stop(napi, have_poll_lock, flags, budget);
6692 			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6693 				preempt_enable();
6694 			rcu_read_unlock();
6695 			cond_resched();
6696 			rcu_read_lock();
6697 			if (loop_end(loop_end_arg, start_time))
6698 				return;
6699 			goto restart;
6700 		}
6701 		cpu_relax();
6702 	}
6703 	if (napi_poll)
6704 		busy_poll_stop(napi, have_poll_lock, flags, budget);
6705 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6706 		preempt_enable();
6707 }
6708 
6709 void napi_busy_loop_rcu(unsigned int napi_id,
6710 			bool (*loop_end)(void *, unsigned long),
6711 			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6712 {
6713 	unsigned flags = NAPI_F_END_ON_RESCHED;
6714 
6715 	if (prefer_busy_poll)
6716 		flags |= NAPI_F_PREFER_BUSY_POLL;
6717 
6718 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6719 }
6720 
6721 void napi_busy_loop(unsigned int napi_id,
6722 		    bool (*loop_end)(void *, unsigned long),
6723 		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6724 {
6725 	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
6726 
6727 	rcu_read_lock();
6728 	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
6729 	rcu_read_unlock();
6730 }
6731 EXPORT_SYMBOL(napi_busy_loop);
6732 
6733 void napi_suspend_irqs(unsigned int napi_id)
6734 {
6735 	struct napi_struct *napi;
6736 
6737 	rcu_read_lock();
6738 	napi = napi_by_id(napi_id);
6739 	if (napi) {
6740 		unsigned long timeout = napi_get_irq_suspend_timeout(napi);
6741 
6742 		if (timeout)
6743 			hrtimer_start(&napi->timer, ns_to_ktime(timeout),
6744 				      HRTIMER_MODE_REL_PINNED);
6745 	}
6746 	rcu_read_unlock();
6747 }
6748 
6749 void napi_resume_irqs(unsigned int napi_id)
6750 {
6751 	struct napi_struct *napi;
6752 
6753 	rcu_read_lock();
6754 	napi = napi_by_id(napi_id);
6755 	if (napi) {
6756 		/* If irq_suspend_timeout is set to 0 between the call to
6757 		 * napi_suspend_irqs and now, the original value still
6758 		 * determines the safety timeout as intended and napi_watchdog
6759 		 * will resume irq processing.
6760 		 */
6761 		if (napi_get_irq_suspend_timeout(napi)) {
6762 			local_bh_disable();
6763 			napi_schedule(napi);
6764 			local_bh_enable();
6765 		}
6766 	}
6767 	rcu_read_unlock();
6768 }
6769 
6770 #endif /* CONFIG_NET_RX_BUSY_POLL */
6771 
6772 static void __napi_hash_add_with_id(struct napi_struct *napi,
6773 				    unsigned int napi_id)
6774 {
6775 	napi->gro.cached_napi_id = napi_id;
6776 
6777 	WRITE_ONCE(napi->napi_id, napi_id);
6778 	hlist_add_head_rcu(&napi->napi_hash_node,
6779 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6780 }
6781 
6782 static void napi_hash_add_with_id(struct napi_struct *napi,
6783 				  unsigned int napi_id)
6784 {
6785 	unsigned long flags;
6786 
6787 	spin_lock_irqsave(&napi_hash_lock, flags);
6788 	WARN_ON_ONCE(napi_by_id(napi_id));
6789 	__napi_hash_add_with_id(napi, napi_id);
6790 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6791 }
6792 
6793 static void napi_hash_add(struct napi_struct *napi)
6794 {
6795 	unsigned long flags;
6796 
6797 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6798 		return;
6799 
6800 	spin_lock_irqsave(&napi_hash_lock, flags);
6801 
6802 	/* 0..NR_CPUS range is reserved for sender_cpu use */
6803 	do {
6804 		if (unlikely(!napi_id_valid(++napi_gen_id)))
6805 			napi_gen_id = MIN_NAPI_ID;
6806 	} while (napi_by_id(napi_gen_id));
6807 
6808 	__napi_hash_add_with_id(napi, napi_gen_id);
6809 
6810 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6811 }
6812 
6813 /* Warning : caller is responsible to make sure rcu grace period
6814  * is respected before freeing memory containing @napi
6815  */
6816 static void napi_hash_del(struct napi_struct *napi)
6817 {
6818 	unsigned long flags;
6819 
6820 	spin_lock_irqsave(&napi_hash_lock, flags);
6821 
6822 	hlist_del_init_rcu(&napi->napi_hash_node);
6823 
6824 	spin_unlock_irqrestore(&napi_hash_lock, flags);
6825 }
6826 
6827 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6828 {
6829 	struct napi_struct *napi;
6830 
6831 	napi = container_of(timer, struct napi_struct, timer);
6832 
6833 	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
6834 	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6835 	 */
6836 	if (!napi_disable_pending(napi) &&
6837 	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6838 		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6839 		__napi_schedule_irqoff(napi);
6840 	}
6841 
6842 	return HRTIMER_NORESTART;
6843 }
6844 
6845 int dev_set_threaded(struct net_device *dev, bool threaded)
6846 {
6847 	struct napi_struct *napi;
6848 	int err = 0;
6849 
6850 	netdev_assert_locked_or_invisible(dev);
6851 
6852 	if (dev->threaded == threaded)
6853 		return 0;
6854 
6855 	if (threaded) {
6856 		list_for_each_entry(napi, &dev->napi_list, dev_list) {
6857 			if (!napi->thread) {
6858 				err = napi_kthread_create(napi);
6859 				if (err) {
6860 					threaded = false;
6861 					break;
6862 				}
6863 			}
6864 		}
6865 	}
6866 
6867 	WRITE_ONCE(dev->threaded, threaded);
6868 
6869 	/* Make sure kthread is created before THREADED bit
6870 	 * is set.
6871 	 */
6872 	smp_mb__before_atomic();
6873 
6874 	/* Setting/unsetting threaded mode on a napi might not immediately
6875 	 * take effect, if the current napi instance is actively being
6876 	 * polled. In this case, the switch between threaded mode and
6877 	 * softirq mode will happen in the next round of napi_schedule().
6878 	 * This should not cause hiccups/stalls to the live traffic.
6879 	 */
6880 	list_for_each_entry(napi, &dev->napi_list, dev_list)
6881 		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6882 
6883 	return err;
6884 }
6885 EXPORT_SYMBOL(dev_set_threaded);
6886 
6887 /**
6888  * netif_queue_set_napi - Associate queue with the napi
6889  * @dev: device to which NAPI and queue belong
6890  * @queue_index: Index of queue
6891  * @type: queue type as RX or TX
6892  * @napi: NAPI context, pass NULL to clear previously set NAPI
6893  *
6894  * Set queue with its corresponding napi context. This should be done after
6895  * registering the NAPI handler for the queue-vector and the queues have been
6896  * mapped to the corresponding interrupt vector.
6897  */
6898 void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
6899 			  enum netdev_queue_type type, struct napi_struct *napi)
6900 {
6901 	struct netdev_rx_queue *rxq;
6902 	struct netdev_queue *txq;
6903 
6904 	if (WARN_ON_ONCE(napi && !napi->dev))
6905 		return;
6906 	netdev_ops_assert_locked_or_invisible(dev);
6907 
6908 	switch (type) {
6909 	case NETDEV_QUEUE_TYPE_RX:
6910 		rxq = __netif_get_rx_queue(dev, queue_index);
6911 		rxq->napi = napi;
6912 		return;
6913 	case NETDEV_QUEUE_TYPE_TX:
6914 		txq = netdev_get_tx_queue(dev, queue_index);
6915 		txq->napi = napi;
6916 		return;
6917 	default:
6918 		return;
6919 	}
6920 }
6921 EXPORT_SYMBOL(netif_queue_set_napi);
6922 
6923 static void
6924 netif_napi_irq_notify(struct irq_affinity_notify *notify,
6925 		      const cpumask_t *mask)
6926 {
6927 	struct napi_struct *napi =
6928 		container_of(notify, struct napi_struct, notify);
6929 #ifdef CONFIG_RFS_ACCEL
6930 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6931 	int err;
6932 #endif
6933 
6934 	if (napi->config && napi->dev->irq_affinity_auto)
6935 		cpumask_copy(&napi->config->affinity_mask, mask);
6936 
6937 #ifdef CONFIG_RFS_ACCEL
6938 	if (napi->dev->rx_cpu_rmap_auto) {
6939 		err = cpu_rmap_update(rmap, napi->napi_rmap_idx, mask);
6940 		if (err)
6941 			netdev_warn(napi->dev, "RMAP update failed (%d)\n",
6942 				    err);
6943 	}
6944 #endif
6945 }
6946 
6947 #ifdef CONFIG_RFS_ACCEL
6948 static void netif_napi_affinity_release(struct kref *ref)
6949 {
6950 	struct napi_struct *napi =
6951 		container_of(ref, struct napi_struct, notify.kref);
6952 	struct cpu_rmap *rmap = napi->dev->rx_cpu_rmap;
6953 
6954 	netdev_assert_locked(napi->dev);
6955 	WARN_ON(test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER,
6956 				   &napi->state));
6957 
6958 	if (!napi->dev->rx_cpu_rmap_auto)
6959 		return;
6960 	rmap->obj[napi->napi_rmap_idx] = NULL;
6961 	napi->napi_rmap_idx = -1;
6962 	cpu_rmap_put(rmap);
6963 }
6964 
6965 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6966 {
6967 	if (dev->rx_cpu_rmap_auto)
6968 		return 0;
6969 
6970 	dev->rx_cpu_rmap = alloc_irq_cpu_rmap(num_irqs);
6971 	if (!dev->rx_cpu_rmap)
6972 		return -ENOMEM;
6973 
6974 	dev->rx_cpu_rmap_auto = true;
6975 	return 0;
6976 }
6977 EXPORT_SYMBOL(netif_enable_cpu_rmap);
6978 
6979 static void netif_del_cpu_rmap(struct net_device *dev)
6980 {
6981 	struct cpu_rmap *rmap = dev->rx_cpu_rmap;
6982 
6983 	if (!dev->rx_cpu_rmap_auto)
6984 		return;
6985 
6986 	/* Free the rmap */
6987 	cpu_rmap_put(rmap);
6988 	dev->rx_cpu_rmap = NULL;
6989 	dev->rx_cpu_rmap_auto = false;
6990 }
6991 
6992 #else
6993 static void netif_napi_affinity_release(struct kref *ref)
6994 {
6995 }
6996 
6997 int netif_enable_cpu_rmap(struct net_device *dev, unsigned int num_irqs)
6998 {
6999 	return 0;
7000 }
7001 EXPORT_SYMBOL(netif_enable_cpu_rmap);
7002 
7003 static void netif_del_cpu_rmap(struct net_device *dev)
7004 {
7005 }
7006 #endif
7007 
7008 void netif_set_affinity_auto(struct net_device *dev)
7009 {
7010 	unsigned int i, maxqs, numa;
7011 
7012 	maxqs = max(dev->num_tx_queues, dev->num_rx_queues);
7013 	numa = dev_to_node(&dev->dev);
7014 
7015 	for (i = 0; i < maxqs; i++)
7016 		cpumask_set_cpu(cpumask_local_spread(i, numa),
7017 				&dev->napi_config[i].affinity_mask);
7018 
7019 	dev->irq_affinity_auto = true;
7020 }
7021 EXPORT_SYMBOL(netif_set_affinity_auto);
7022 
7023 void netif_napi_set_irq_locked(struct napi_struct *napi, int irq)
7024 {
7025 	int rc;
7026 
7027 	netdev_assert_locked_or_invisible(napi->dev);
7028 
7029 	if (napi->irq == irq)
7030 		return;
7031 
7032 	/* Remove existing resources */
7033 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7034 		irq_set_affinity_notifier(napi->irq, NULL);
7035 
7036 	napi->irq = irq;
7037 	if (irq < 0 ||
7038 	    (!napi->dev->rx_cpu_rmap_auto && !napi->dev->irq_affinity_auto))
7039 		return;
7040 
7041 	/* Abort for buggy drivers */
7042 	if (napi->dev->irq_affinity_auto && WARN_ON_ONCE(!napi->config))
7043 		return;
7044 
7045 #ifdef CONFIG_RFS_ACCEL
7046 	if (napi->dev->rx_cpu_rmap_auto) {
7047 		rc = cpu_rmap_add(napi->dev->rx_cpu_rmap, napi);
7048 		if (rc < 0)
7049 			return;
7050 
7051 		cpu_rmap_get(napi->dev->rx_cpu_rmap);
7052 		napi->napi_rmap_idx = rc;
7053 	}
7054 #endif
7055 
7056 	/* Use core IRQ notifier */
7057 	napi->notify.notify = netif_napi_irq_notify;
7058 	napi->notify.release = netif_napi_affinity_release;
7059 	rc = irq_set_affinity_notifier(irq, &napi->notify);
7060 	if (rc) {
7061 		netdev_warn(napi->dev, "Unable to set IRQ notifier (%d)\n",
7062 			    rc);
7063 		goto put_rmap;
7064 	}
7065 
7066 	set_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state);
7067 	return;
7068 
7069 put_rmap:
7070 #ifdef CONFIG_RFS_ACCEL
7071 	if (napi->dev->rx_cpu_rmap_auto) {
7072 		napi->dev->rx_cpu_rmap->obj[napi->napi_rmap_idx] = NULL;
7073 		cpu_rmap_put(napi->dev->rx_cpu_rmap);
7074 		napi->napi_rmap_idx = -1;
7075 	}
7076 #endif
7077 	napi->notify.notify = NULL;
7078 	napi->notify.release = NULL;
7079 }
7080 EXPORT_SYMBOL(netif_napi_set_irq_locked);
7081 
7082 static void napi_restore_config(struct napi_struct *n)
7083 {
7084 	n->defer_hard_irqs = n->config->defer_hard_irqs;
7085 	n->gro_flush_timeout = n->config->gro_flush_timeout;
7086 	n->irq_suspend_timeout = n->config->irq_suspend_timeout;
7087 
7088 	if (n->dev->irq_affinity_auto &&
7089 	    test_bit(NAPI_STATE_HAS_NOTIFIER, &n->state))
7090 		irq_set_affinity(n->irq, &n->config->affinity_mask);
7091 
7092 	/* a NAPI ID might be stored in the config, if so use it. if not, use
7093 	 * napi_hash_add to generate one for us.
7094 	 */
7095 	if (n->config->napi_id) {
7096 		napi_hash_add_with_id(n, n->config->napi_id);
7097 	} else {
7098 		napi_hash_add(n);
7099 		n->config->napi_id = n->napi_id;
7100 	}
7101 }
7102 
7103 static void napi_save_config(struct napi_struct *n)
7104 {
7105 	n->config->defer_hard_irqs = n->defer_hard_irqs;
7106 	n->config->gro_flush_timeout = n->gro_flush_timeout;
7107 	n->config->irq_suspend_timeout = n->irq_suspend_timeout;
7108 	napi_hash_del(n);
7109 }
7110 
7111 /* Netlink wants the NAPI list to be sorted by ID, if adding a NAPI which will
7112  * inherit an existing ID try to insert it at the right position.
7113  */
7114 static void
7115 netif_napi_dev_list_add(struct net_device *dev, struct napi_struct *napi)
7116 {
7117 	unsigned int new_id, pos_id;
7118 	struct list_head *higher;
7119 	struct napi_struct *pos;
7120 
7121 	new_id = UINT_MAX;
7122 	if (napi->config && napi->config->napi_id)
7123 		new_id = napi->config->napi_id;
7124 
7125 	higher = &dev->napi_list;
7126 	list_for_each_entry(pos, &dev->napi_list, dev_list) {
7127 		if (napi_id_valid(pos->napi_id))
7128 			pos_id = pos->napi_id;
7129 		else if (pos->config)
7130 			pos_id = pos->config->napi_id;
7131 		else
7132 			pos_id = UINT_MAX;
7133 
7134 		if (pos_id <= new_id)
7135 			break;
7136 		higher = &pos->dev_list;
7137 	}
7138 	list_add_rcu(&napi->dev_list, higher); /* adds after higher */
7139 }
7140 
7141 /* Double check that napi_get_frags() allocates skbs with
7142  * skb->head being backed by slab, not a page fragment.
7143  * This is to make sure bug fixed in 3226b158e67c
7144  * ("net: avoid 32 x truesize under-estimation for tiny skbs")
7145  * does not accidentally come back.
7146  */
7147 static void napi_get_frags_check(struct napi_struct *napi)
7148 {
7149 	struct sk_buff *skb;
7150 
7151 	local_bh_disable();
7152 	skb = napi_get_frags(napi);
7153 	WARN_ON_ONCE(skb && skb->head_frag);
7154 	napi_free_frags(napi);
7155 	local_bh_enable();
7156 }
7157 
7158 void netif_napi_add_weight_locked(struct net_device *dev,
7159 				  struct napi_struct *napi,
7160 				  int (*poll)(struct napi_struct *, int),
7161 				  int weight)
7162 {
7163 	netdev_assert_locked(dev);
7164 	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
7165 		return;
7166 
7167 	INIT_LIST_HEAD(&napi->poll_list);
7168 	INIT_HLIST_NODE(&napi->napi_hash_node);
7169 	hrtimer_setup(&napi->timer, napi_watchdog, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
7170 	gro_init(&napi->gro);
7171 	napi->skb = NULL;
7172 	napi->poll = poll;
7173 	if (weight > NAPI_POLL_WEIGHT)
7174 		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
7175 				weight);
7176 	napi->weight = weight;
7177 	napi->dev = dev;
7178 #ifdef CONFIG_NETPOLL
7179 	napi->poll_owner = -1;
7180 #endif
7181 	napi->list_owner = -1;
7182 	set_bit(NAPI_STATE_SCHED, &napi->state);
7183 	set_bit(NAPI_STATE_NPSVC, &napi->state);
7184 	netif_napi_dev_list_add(dev, napi);
7185 
7186 	/* default settings from sysfs are applied to all NAPIs. any per-NAPI
7187 	 * configuration will be loaded in napi_enable
7188 	 */
7189 	napi_set_defer_hard_irqs(napi, READ_ONCE(dev->napi_defer_hard_irqs));
7190 	napi_set_gro_flush_timeout(napi, READ_ONCE(dev->gro_flush_timeout));
7191 
7192 	napi_get_frags_check(napi);
7193 	/* Create kthread for this napi if dev->threaded is set.
7194 	 * Clear dev->threaded if kthread creation failed so that
7195 	 * threaded mode will not be enabled in napi_enable().
7196 	 */
7197 	if (dev->threaded && napi_kthread_create(napi))
7198 		dev->threaded = false;
7199 	netif_napi_set_irq_locked(napi, -1);
7200 }
7201 EXPORT_SYMBOL(netif_napi_add_weight_locked);
7202 
7203 void napi_disable_locked(struct napi_struct *n)
7204 {
7205 	unsigned long val, new;
7206 
7207 	might_sleep();
7208 	netdev_assert_locked(n->dev);
7209 
7210 	set_bit(NAPI_STATE_DISABLE, &n->state);
7211 
7212 	val = READ_ONCE(n->state);
7213 	do {
7214 		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
7215 			usleep_range(20, 200);
7216 			val = READ_ONCE(n->state);
7217 		}
7218 
7219 		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
7220 		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
7221 	} while (!try_cmpxchg(&n->state, &val, new));
7222 
7223 	hrtimer_cancel(&n->timer);
7224 
7225 	if (n->config)
7226 		napi_save_config(n);
7227 	else
7228 		napi_hash_del(n);
7229 
7230 	clear_bit(NAPI_STATE_DISABLE, &n->state);
7231 }
7232 EXPORT_SYMBOL(napi_disable_locked);
7233 
7234 /**
7235  * napi_disable() - prevent NAPI from scheduling
7236  * @n: NAPI context
7237  *
7238  * Stop NAPI from being scheduled on this context.
7239  * Waits till any outstanding processing completes.
7240  * Takes netdev_lock() for associated net_device.
7241  */
7242 void napi_disable(struct napi_struct *n)
7243 {
7244 	netdev_lock(n->dev);
7245 	napi_disable_locked(n);
7246 	netdev_unlock(n->dev);
7247 }
7248 EXPORT_SYMBOL(napi_disable);
7249 
7250 void napi_enable_locked(struct napi_struct *n)
7251 {
7252 	unsigned long new, val = READ_ONCE(n->state);
7253 
7254 	if (n->config)
7255 		napi_restore_config(n);
7256 	else
7257 		napi_hash_add(n);
7258 
7259 	do {
7260 		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
7261 
7262 		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
7263 		if (n->dev->threaded && n->thread)
7264 			new |= NAPIF_STATE_THREADED;
7265 	} while (!try_cmpxchg(&n->state, &val, new));
7266 }
7267 EXPORT_SYMBOL(napi_enable_locked);
7268 
7269 /**
7270  * napi_enable() - enable NAPI scheduling
7271  * @n: NAPI context
7272  *
7273  * Enable scheduling of a NAPI instance.
7274  * Must be paired with napi_disable().
7275  * Takes netdev_lock() for associated net_device.
7276  */
7277 void napi_enable(struct napi_struct *n)
7278 {
7279 	netdev_lock(n->dev);
7280 	napi_enable_locked(n);
7281 	netdev_unlock(n->dev);
7282 }
7283 EXPORT_SYMBOL(napi_enable);
7284 
7285 /* Must be called in process context */
7286 void __netif_napi_del_locked(struct napi_struct *napi)
7287 {
7288 	netdev_assert_locked(napi->dev);
7289 
7290 	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
7291 		return;
7292 
7293 	/* Make sure NAPI is disabled (or was never enabled). */
7294 	WARN_ON(!test_bit(NAPI_STATE_SCHED, &napi->state));
7295 
7296 	if (test_and_clear_bit(NAPI_STATE_HAS_NOTIFIER, &napi->state))
7297 		irq_set_affinity_notifier(napi->irq, NULL);
7298 
7299 	if (napi->config) {
7300 		napi->index = -1;
7301 		napi->config = NULL;
7302 	}
7303 
7304 	list_del_rcu(&napi->dev_list);
7305 	napi_free_frags(napi);
7306 
7307 	gro_cleanup(&napi->gro);
7308 
7309 	if (napi->thread) {
7310 		kthread_stop(napi->thread);
7311 		napi->thread = NULL;
7312 	}
7313 }
7314 EXPORT_SYMBOL(__netif_napi_del_locked);
7315 
7316 static int __napi_poll(struct napi_struct *n, bool *repoll)
7317 {
7318 	int work, weight;
7319 
7320 	weight = n->weight;
7321 
7322 	/* This NAPI_STATE_SCHED test is for avoiding a race
7323 	 * with netpoll's poll_napi().  Only the entity which
7324 	 * obtains the lock and sees NAPI_STATE_SCHED set will
7325 	 * actually make the ->poll() call.  Therefore we avoid
7326 	 * accidentally calling ->poll() when NAPI is not scheduled.
7327 	 */
7328 	work = 0;
7329 	if (napi_is_scheduled(n)) {
7330 		work = n->poll(n, weight);
7331 		trace_napi_poll(n, work, weight);
7332 
7333 		xdp_do_check_flushed(n);
7334 	}
7335 
7336 	if (unlikely(work > weight))
7337 		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
7338 				n->poll, work, weight);
7339 
7340 	if (likely(work < weight))
7341 		return work;
7342 
7343 	/* Drivers must not modify the NAPI state if they
7344 	 * consume the entire weight.  In such cases this code
7345 	 * still "owns" the NAPI instance and therefore can
7346 	 * move the instance around on the list at-will.
7347 	 */
7348 	if (unlikely(napi_disable_pending(n))) {
7349 		napi_complete(n);
7350 		return work;
7351 	}
7352 
7353 	/* The NAPI context has more processing work, but busy-polling
7354 	 * is preferred. Exit early.
7355 	 */
7356 	if (napi_prefer_busy_poll(n)) {
7357 		if (napi_complete_done(n, work)) {
7358 			/* If timeout is not set, we need to make sure
7359 			 * that the NAPI is re-scheduled.
7360 			 */
7361 			napi_schedule(n);
7362 		}
7363 		return work;
7364 	}
7365 
7366 	/* Flush too old packets. If HZ < 1000, flush all packets */
7367 	gro_flush(&n->gro, HZ >= 1000);
7368 	gro_normal_list(&n->gro);
7369 
7370 	/* Some drivers may have called napi_schedule
7371 	 * prior to exhausting their budget.
7372 	 */
7373 	if (unlikely(!list_empty(&n->poll_list))) {
7374 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7375 			     n->dev ? n->dev->name : "backlog");
7376 		return work;
7377 	}
7378 
7379 	*repoll = true;
7380 
7381 	return work;
7382 }
7383 
7384 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7385 {
7386 	bool do_repoll = false;
7387 	void *have;
7388 	int work;
7389 
7390 	list_del_init(&n->poll_list);
7391 
7392 	have = netpoll_poll_lock(n);
7393 
7394 	work = __napi_poll(n, &do_repoll);
7395 
7396 	if (do_repoll)
7397 		list_add_tail(&n->poll_list, repoll);
7398 
7399 	netpoll_poll_unlock(have);
7400 
7401 	return work;
7402 }
7403 
7404 static int napi_thread_wait(struct napi_struct *napi)
7405 {
7406 	set_current_state(TASK_INTERRUPTIBLE);
7407 
7408 	while (!kthread_should_stop()) {
7409 		/* Testing SCHED_THREADED bit here to make sure the current
7410 		 * kthread owns this napi and could poll on this napi.
7411 		 * Testing SCHED bit is not enough because SCHED bit might be
7412 		 * set by some other busy poll thread or by napi_disable().
7413 		 */
7414 		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state)) {
7415 			WARN_ON(!list_empty(&napi->poll_list));
7416 			__set_current_state(TASK_RUNNING);
7417 			return 0;
7418 		}
7419 
7420 		schedule();
7421 		set_current_state(TASK_INTERRUPTIBLE);
7422 	}
7423 	__set_current_state(TASK_RUNNING);
7424 
7425 	return -1;
7426 }
7427 
7428 static void napi_threaded_poll_loop(struct napi_struct *napi)
7429 {
7430 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7431 	struct softnet_data *sd;
7432 	unsigned long last_qs = jiffies;
7433 
7434 	for (;;) {
7435 		bool repoll = false;
7436 		void *have;
7437 
7438 		local_bh_disable();
7439 		bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7440 
7441 		sd = this_cpu_ptr(&softnet_data);
7442 		sd->in_napi_threaded_poll = true;
7443 
7444 		have = netpoll_poll_lock(napi);
7445 		__napi_poll(napi, &repoll);
7446 		netpoll_poll_unlock(have);
7447 
7448 		sd->in_napi_threaded_poll = false;
7449 		barrier();
7450 
7451 		if (sd_has_rps_ipi_waiting(sd)) {
7452 			local_irq_disable();
7453 			net_rps_action_and_irq_enable(sd);
7454 		}
7455 		skb_defer_free_flush(sd);
7456 		bpf_net_ctx_clear(bpf_net_ctx);
7457 		local_bh_enable();
7458 
7459 		if (!repoll)
7460 			break;
7461 
7462 		rcu_softirq_qs_periodic(last_qs);
7463 		cond_resched();
7464 	}
7465 }
7466 
7467 static int napi_threaded_poll(void *data)
7468 {
7469 	struct napi_struct *napi = data;
7470 
7471 	while (!napi_thread_wait(napi))
7472 		napi_threaded_poll_loop(napi);
7473 
7474 	return 0;
7475 }
7476 
7477 static __latent_entropy void net_rx_action(void)
7478 {
7479 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7480 	unsigned long time_limit = jiffies +
7481 		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
7482 	struct bpf_net_context __bpf_net_ctx, *bpf_net_ctx;
7483 	int budget = READ_ONCE(net_hotdata.netdev_budget);
7484 	LIST_HEAD(list);
7485 	LIST_HEAD(repoll);
7486 
7487 	bpf_net_ctx = bpf_net_ctx_set(&__bpf_net_ctx);
7488 start:
7489 	sd->in_net_rx_action = true;
7490 	local_irq_disable();
7491 	list_splice_init(&sd->poll_list, &list);
7492 	local_irq_enable();
7493 
7494 	for (;;) {
7495 		struct napi_struct *n;
7496 
7497 		skb_defer_free_flush(sd);
7498 
7499 		if (list_empty(&list)) {
7500 			if (list_empty(&repoll)) {
7501 				sd->in_net_rx_action = false;
7502 				barrier();
7503 				/* We need to check if ____napi_schedule()
7504 				 * had refilled poll_list while
7505 				 * sd->in_net_rx_action was true.
7506 				 */
7507 				if (!list_empty(&sd->poll_list))
7508 					goto start;
7509 				if (!sd_has_rps_ipi_waiting(sd))
7510 					goto end;
7511 			}
7512 			break;
7513 		}
7514 
7515 		n = list_first_entry(&list, struct napi_struct, poll_list);
7516 		budget -= napi_poll(n, &repoll);
7517 
7518 		/* If softirq window is exhausted then punt.
7519 		 * Allow this to run for 2 jiffies since which will allow
7520 		 * an average latency of 1.5/HZ.
7521 		 */
7522 		if (unlikely(budget <= 0 ||
7523 			     time_after_eq(jiffies, time_limit))) {
7524 			sd->time_squeeze++;
7525 			break;
7526 		}
7527 	}
7528 
7529 	local_irq_disable();
7530 
7531 	list_splice_tail_init(&sd->poll_list, &list);
7532 	list_splice_tail(&repoll, &list);
7533 	list_splice(&list, &sd->poll_list);
7534 	if (!list_empty(&sd->poll_list))
7535 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
7536 	else
7537 		sd->in_net_rx_action = false;
7538 
7539 	net_rps_action_and_irq_enable(sd);
7540 end:
7541 	bpf_net_ctx_clear(bpf_net_ctx);
7542 }
7543 
7544 struct netdev_adjacent {
7545 	struct net_device *dev;
7546 	netdevice_tracker dev_tracker;
7547 
7548 	/* upper master flag, there can only be one master device per list */
7549 	bool master;
7550 
7551 	/* lookup ignore flag */
7552 	bool ignore;
7553 
7554 	/* counter for the number of times this device was added to us */
7555 	u16 ref_nr;
7556 
7557 	/* private field for the users */
7558 	void *private;
7559 
7560 	struct list_head list;
7561 	struct rcu_head rcu;
7562 };
7563 
7564 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7565 						 struct list_head *adj_list)
7566 {
7567 	struct netdev_adjacent *adj;
7568 
7569 	list_for_each_entry(adj, adj_list, list) {
7570 		if (adj->dev == adj_dev)
7571 			return adj;
7572 	}
7573 	return NULL;
7574 }
7575 
7576 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7577 				    struct netdev_nested_priv *priv)
7578 {
7579 	struct net_device *dev = (struct net_device *)priv->data;
7580 
7581 	return upper_dev == dev;
7582 }
7583 
7584 /**
7585  * netdev_has_upper_dev - Check if device is linked to an upper device
7586  * @dev: device
7587  * @upper_dev: upper device to check
7588  *
7589  * Find out if a device is linked to specified upper device and return true
7590  * in case it is. Note that this checks only immediate upper device,
7591  * not through a complete stack of devices. The caller must hold the RTNL lock.
7592  */
7593 bool netdev_has_upper_dev(struct net_device *dev,
7594 			  struct net_device *upper_dev)
7595 {
7596 	struct netdev_nested_priv priv = {
7597 		.data = (void *)upper_dev,
7598 	};
7599 
7600 	ASSERT_RTNL();
7601 
7602 	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7603 					     &priv);
7604 }
7605 EXPORT_SYMBOL(netdev_has_upper_dev);
7606 
7607 /**
7608  * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7609  * @dev: device
7610  * @upper_dev: upper device to check
7611  *
7612  * Find out if a device is linked to specified upper device and return true
7613  * in case it is. Note that this checks the entire upper device chain.
7614  * The caller must hold rcu lock.
7615  */
7616 
7617 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7618 				  struct net_device *upper_dev)
7619 {
7620 	struct netdev_nested_priv priv = {
7621 		.data = (void *)upper_dev,
7622 	};
7623 
7624 	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7625 					       &priv);
7626 }
7627 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7628 
7629 /**
7630  * netdev_has_any_upper_dev - Check if device is linked to some device
7631  * @dev: device
7632  *
7633  * Find out if a device is linked to an upper device and return true in case
7634  * it is. The caller must hold the RTNL lock.
7635  */
7636 bool netdev_has_any_upper_dev(struct net_device *dev)
7637 {
7638 	ASSERT_RTNL();
7639 
7640 	return !list_empty(&dev->adj_list.upper);
7641 }
7642 EXPORT_SYMBOL(netdev_has_any_upper_dev);
7643 
7644 /**
7645  * netdev_master_upper_dev_get - Get master upper device
7646  * @dev: device
7647  *
7648  * Find a master upper device and return pointer to it or NULL in case
7649  * it's not there. The caller must hold the RTNL lock.
7650  */
7651 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7652 {
7653 	struct netdev_adjacent *upper;
7654 
7655 	ASSERT_RTNL();
7656 
7657 	if (list_empty(&dev->adj_list.upper))
7658 		return NULL;
7659 
7660 	upper = list_first_entry(&dev->adj_list.upper,
7661 				 struct netdev_adjacent, list);
7662 	if (likely(upper->master))
7663 		return upper->dev;
7664 	return NULL;
7665 }
7666 EXPORT_SYMBOL(netdev_master_upper_dev_get);
7667 
7668 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7669 {
7670 	struct netdev_adjacent *upper;
7671 
7672 	ASSERT_RTNL();
7673 
7674 	if (list_empty(&dev->adj_list.upper))
7675 		return NULL;
7676 
7677 	upper = list_first_entry(&dev->adj_list.upper,
7678 				 struct netdev_adjacent, list);
7679 	if (likely(upper->master) && !upper->ignore)
7680 		return upper->dev;
7681 	return NULL;
7682 }
7683 
7684 /**
7685  * netdev_has_any_lower_dev - Check if device is linked to some device
7686  * @dev: device
7687  *
7688  * Find out if a device is linked to a lower device and return true in case
7689  * it is. The caller must hold the RTNL lock.
7690  */
7691 static bool netdev_has_any_lower_dev(struct net_device *dev)
7692 {
7693 	ASSERT_RTNL();
7694 
7695 	return !list_empty(&dev->adj_list.lower);
7696 }
7697 
7698 void *netdev_adjacent_get_private(struct list_head *adj_list)
7699 {
7700 	struct netdev_adjacent *adj;
7701 
7702 	adj = list_entry(adj_list, struct netdev_adjacent, list);
7703 
7704 	return adj->private;
7705 }
7706 EXPORT_SYMBOL(netdev_adjacent_get_private);
7707 
7708 /**
7709  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7710  * @dev: device
7711  * @iter: list_head ** of the current position
7712  *
7713  * Gets the next device from the dev's upper list, starting from iter
7714  * position. The caller must hold RCU read lock.
7715  */
7716 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7717 						 struct list_head **iter)
7718 {
7719 	struct netdev_adjacent *upper;
7720 
7721 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7722 
7723 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7724 
7725 	if (&upper->list == &dev->adj_list.upper)
7726 		return NULL;
7727 
7728 	*iter = &upper->list;
7729 
7730 	return upper->dev;
7731 }
7732 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7733 
7734 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7735 						  struct list_head **iter,
7736 						  bool *ignore)
7737 {
7738 	struct netdev_adjacent *upper;
7739 
7740 	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7741 
7742 	if (&upper->list == &dev->adj_list.upper)
7743 		return NULL;
7744 
7745 	*iter = &upper->list;
7746 	*ignore = upper->ignore;
7747 
7748 	return upper->dev;
7749 }
7750 
7751 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7752 						    struct list_head **iter)
7753 {
7754 	struct netdev_adjacent *upper;
7755 
7756 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7757 
7758 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7759 
7760 	if (&upper->list == &dev->adj_list.upper)
7761 		return NULL;
7762 
7763 	*iter = &upper->list;
7764 
7765 	return upper->dev;
7766 }
7767 
7768 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7769 				       int (*fn)(struct net_device *dev,
7770 					 struct netdev_nested_priv *priv),
7771 				       struct netdev_nested_priv *priv)
7772 {
7773 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7774 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7775 	int ret, cur = 0;
7776 	bool ignore;
7777 
7778 	now = dev;
7779 	iter = &dev->adj_list.upper;
7780 
7781 	while (1) {
7782 		if (now != dev) {
7783 			ret = fn(now, priv);
7784 			if (ret)
7785 				return ret;
7786 		}
7787 
7788 		next = NULL;
7789 		while (1) {
7790 			udev = __netdev_next_upper_dev(now, &iter, &ignore);
7791 			if (!udev)
7792 				break;
7793 			if (ignore)
7794 				continue;
7795 
7796 			next = udev;
7797 			niter = &udev->adj_list.upper;
7798 			dev_stack[cur] = now;
7799 			iter_stack[cur++] = iter;
7800 			break;
7801 		}
7802 
7803 		if (!next) {
7804 			if (!cur)
7805 				return 0;
7806 			next = dev_stack[--cur];
7807 			niter = iter_stack[cur];
7808 		}
7809 
7810 		now = next;
7811 		iter = niter;
7812 	}
7813 
7814 	return 0;
7815 }
7816 
7817 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7818 				  int (*fn)(struct net_device *dev,
7819 					    struct netdev_nested_priv *priv),
7820 				  struct netdev_nested_priv *priv)
7821 {
7822 	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7823 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7824 	int ret, cur = 0;
7825 
7826 	now = dev;
7827 	iter = &dev->adj_list.upper;
7828 
7829 	while (1) {
7830 		if (now != dev) {
7831 			ret = fn(now, priv);
7832 			if (ret)
7833 				return ret;
7834 		}
7835 
7836 		next = NULL;
7837 		while (1) {
7838 			udev = netdev_next_upper_dev_rcu(now, &iter);
7839 			if (!udev)
7840 				break;
7841 
7842 			next = udev;
7843 			niter = &udev->adj_list.upper;
7844 			dev_stack[cur] = now;
7845 			iter_stack[cur++] = iter;
7846 			break;
7847 		}
7848 
7849 		if (!next) {
7850 			if (!cur)
7851 				return 0;
7852 			next = dev_stack[--cur];
7853 			niter = iter_stack[cur];
7854 		}
7855 
7856 		now = next;
7857 		iter = niter;
7858 	}
7859 
7860 	return 0;
7861 }
7862 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7863 
7864 static bool __netdev_has_upper_dev(struct net_device *dev,
7865 				   struct net_device *upper_dev)
7866 {
7867 	struct netdev_nested_priv priv = {
7868 		.flags = 0,
7869 		.data = (void *)upper_dev,
7870 	};
7871 
7872 	ASSERT_RTNL();
7873 
7874 	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7875 					   &priv);
7876 }
7877 
7878 /**
7879  * netdev_lower_get_next_private - Get the next ->private from the
7880  *				   lower neighbour list
7881  * @dev: device
7882  * @iter: list_head ** of the current position
7883  *
7884  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7885  * list, starting from iter position. The caller must hold either hold the
7886  * RTNL lock or its own locking that guarantees that the neighbour lower
7887  * list will remain unchanged.
7888  */
7889 void *netdev_lower_get_next_private(struct net_device *dev,
7890 				    struct list_head **iter)
7891 {
7892 	struct netdev_adjacent *lower;
7893 
7894 	lower = list_entry(*iter, struct netdev_adjacent, list);
7895 
7896 	if (&lower->list == &dev->adj_list.lower)
7897 		return NULL;
7898 
7899 	*iter = lower->list.next;
7900 
7901 	return lower->private;
7902 }
7903 EXPORT_SYMBOL(netdev_lower_get_next_private);
7904 
7905 /**
7906  * netdev_lower_get_next_private_rcu - Get the next ->private from the
7907  *				       lower neighbour list, RCU
7908  *				       variant
7909  * @dev: device
7910  * @iter: list_head ** of the current position
7911  *
7912  * Gets the next netdev_adjacent->private from the dev's lower neighbour
7913  * list, starting from iter position. The caller must hold RCU read lock.
7914  */
7915 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7916 					struct list_head **iter)
7917 {
7918 	struct netdev_adjacent *lower;
7919 
7920 	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7921 
7922 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7923 
7924 	if (&lower->list == &dev->adj_list.lower)
7925 		return NULL;
7926 
7927 	*iter = &lower->list;
7928 
7929 	return lower->private;
7930 }
7931 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7932 
7933 /**
7934  * netdev_lower_get_next - Get the next device from the lower neighbour
7935  *                         list
7936  * @dev: device
7937  * @iter: list_head ** of the current position
7938  *
7939  * Gets the next netdev_adjacent from the dev's lower neighbour
7940  * list, starting from iter position. The caller must hold RTNL lock or
7941  * its own locking that guarantees that the neighbour lower
7942  * list will remain unchanged.
7943  */
7944 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7945 {
7946 	struct netdev_adjacent *lower;
7947 
7948 	lower = list_entry(*iter, struct netdev_adjacent, list);
7949 
7950 	if (&lower->list == &dev->adj_list.lower)
7951 		return NULL;
7952 
7953 	*iter = lower->list.next;
7954 
7955 	return lower->dev;
7956 }
7957 EXPORT_SYMBOL(netdev_lower_get_next);
7958 
7959 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7960 						struct list_head **iter)
7961 {
7962 	struct netdev_adjacent *lower;
7963 
7964 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7965 
7966 	if (&lower->list == &dev->adj_list.lower)
7967 		return NULL;
7968 
7969 	*iter = &lower->list;
7970 
7971 	return lower->dev;
7972 }
7973 
7974 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7975 						  struct list_head **iter,
7976 						  bool *ignore)
7977 {
7978 	struct netdev_adjacent *lower;
7979 
7980 	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7981 
7982 	if (&lower->list == &dev->adj_list.lower)
7983 		return NULL;
7984 
7985 	*iter = &lower->list;
7986 	*ignore = lower->ignore;
7987 
7988 	return lower->dev;
7989 }
7990 
7991 int netdev_walk_all_lower_dev(struct net_device *dev,
7992 			      int (*fn)(struct net_device *dev,
7993 					struct netdev_nested_priv *priv),
7994 			      struct netdev_nested_priv *priv)
7995 {
7996 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7997 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7998 	int ret, cur = 0;
7999 
8000 	now = dev;
8001 	iter = &dev->adj_list.lower;
8002 
8003 	while (1) {
8004 		if (now != dev) {
8005 			ret = fn(now, priv);
8006 			if (ret)
8007 				return ret;
8008 		}
8009 
8010 		next = NULL;
8011 		while (1) {
8012 			ldev = netdev_next_lower_dev(now, &iter);
8013 			if (!ldev)
8014 				break;
8015 
8016 			next = ldev;
8017 			niter = &ldev->adj_list.lower;
8018 			dev_stack[cur] = now;
8019 			iter_stack[cur++] = iter;
8020 			break;
8021 		}
8022 
8023 		if (!next) {
8024 			if (!cur)
8025 				return 0;
8026 			next = dev_stack[--cur];
8027 			niter = iter_stack[cur];
8028 		}
8029 
8030 		now = next;
8031 		iter = niter;
8032 	}
8033 
8034 	return 0;
8035 }
8036 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
8037 
8038 static int __netdev_walk_all_lower_dev(struct net_device *dev,
8039 				       int (*fn)(struct net_device *dev,
8040 					 struct netdev_nested_priv *priv),
8041 				       struct netdev_nested_priv *priv)
8042 {
8043 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8044 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8045 	int ret, cur = 0;
8046 	bool ignore;
8047 
8048 	now = dev;
8049 	iter = &dev->adj_list.lower;
8050 
8051 	while (1) {
8052 		if (now != dev) {
8053 			ret = fn(now, priv);
8054 			if (ret)
8055 				return ret;
8056 		}
8057 
8058 		next = NULL;
8059 		while (1) {
8060 			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
8061 			if (!ldev)
8062 				break;
8063 			if (ignore)
8064 				continue;
8065 
8066 			next = ldev;
8067 			niter = &ldev->adj_list.lower;
8068 			dev_stack[cur] = now;
8069 			iter_stack[cur++] = iter;
8070 			break;
8071 		}
8072 
8073 		if (!next) {
8074 			if (!cur)
8075 				return 0;
8076 			next = dev_stack[--cur];
8077 			niter = iter_stack[cur];
8078 		}
8079 
8080 		now = next;
8081 		iter = niter;
8082 	}
8083 
8084 	return 0;
8085 }
8086 
8087 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
8088 					     struct list_head **iter)
8089 {
8090 	struct netdev_adjacent *lower;
8091 
8092 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
8093 	if (&lower->list == &dev->adj_list.lower)
8094 		return NULL;
8095 
8096 	*iter = &lower->list;
8097 
8098 	return lower->dev;
8099 }
8100 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
8101 
8102 static u8 __netdev_upper_depth(struct net_device *dev)
8103 {
8104 	struct net_device *udev;
8105 	struct list_head *iter;
8106 	u8 max_depth = 0;
8107 	bool ignore;
8108 
8109 	for (iter = &dev->adj_list.upper,
8110 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
8111 	     udev;
8112 	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
8113 		if (ignore)
8114 			continue;
8115 		if (max_depth < udev->upper_level)
8116 			max_depth = udev->upper_level;
8117 	}
8118 
8119 	return max_depth;
8120 }
8121 
8122 static u8 __netdev_lower_depth(struct net_device *dev)
8123 {
8124 	struct net_device *ldev;
8125 	struct list_head *iter;
8126 	u8 max_depth = 0;
8127 	bool ignore;
8128 
8129 	for (iter = &dev->adj_list.lower,
8130 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
8131 	     ldev;
8132 	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
8133 		if (ignore)
8134 			continue;
8135 		if (max_depth < ldev->lower_level)
8136 			max_depth = ldev->lower_level;
8137 	}
8138 
8139 	return max_depth;
8140 }
8141 
8142 static int __netdev_update_upper_level(struct net_device *dev,
8143 				       struct netdev_nested_priv *__unused)
8144 {
8145 	dev->upper_level = __netdev_upper_depth(dev) + 1;
8146 	return 0;
8147 }
8148 
8149 #ifdef CONFIG_LOCKDEP
8150 static LIST_HEAD(net_unlink_list);
8151 
8152 static void net_unlink_todo(struct net_device *dev)
8153 {
8154 	if (list_empty(&dev->unlink_list))
8155 		list_add_tail(&dev->unlink_list, &net_unlink_list);
8156 }
8157 #endif
8158 
8159 static int __netdev_update_lower_level(struct net_device *dev,
8160 				       struct netdev_nested_priv *priv)
8161 {
8162 	dev->lower_level = __netdev_lower_depth(dev) + 1;
8163 
8164 #ifdef CONFIG_LOCKDEP
8165 	if (!priv)
8166 		return 0;
8167 
8168 	if (priv->flags & NESTED_SYNC_IMM)
8169 		dev->nested_level = dev->lower_level - 1;
8170 	if (priv->flags & NESTED_SYNC_TODO)
8171 		net_unlink_todo(dev);
8172 #endif
8173 	return 0;
8174 }
8175 
8176 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
8177 				  int (*fn)(struct net_device *dev,
8178 					    struct netdev_nested_priv *priv),
8179 				  struct netdev_nested_priv *priv)
8180 {
8181 	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
8182 	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
8183 	int ret, cur = 0;
8184 
8185 	now = dev;
8186 	iter = &dev->adj_list.lower;
8187 
8188 	while (1) {
8189 		if (now != dev) {
8190 			ret = fn(now, priv);
8191 			if (ret)
8192 				return ret;
8193 		}
8194 
8195 		next = NULL;
8196 		while (1) {
8197 			ldev = netdev_next_lower_dev_rcu(now, &iter);
8198 			if (!ldev)
8199 				break;
8200 
8201 			next = ldev;
8202 			niter = &ldev->adj_list.lower;
8203 			dev_stack[cur] = now;
8204 			iter_stack[cur++] = iter;
8205 			break;
8206 		}
8207 
8208 		if (!next) {
8209 			if (!cur)
8210 				return 0;
8211 			next = dev_stack[--cur];
8212 			niter = iter_stack[cur];
8213 		}
8214 
8215 		now = next;
8216 		iter = niter;
8217 	}
8218 
8219 	return 0;
8220 }
8221 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
8222 
8223 /**
8224  * netdev_lower_get_first_private_rcu - Get the first ->private from the
8225  *				       lower neighbour list, RCU
8226  *				       variant
8227  * @dev: device
8228  *
8229  * Gets the first netdev_adjacent->private from the dev's lower neighbour
8230  * list. The caller must hold RCU read lock.
8231  */
8232 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
8233 {
8234 	struct netdev_adjacent *lower;
8235 
8236 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
8237 			struct netdev_adjacent, list);
8238 	if (lower)
8239 		return lower->private;
8240 	return NULL;
8241 }
8242 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
8243 
8244 /**
8245  * netdev_master_upper_dev_get_rcu - Get master upper device
8246  * @dev: device
8247  *
8248  * Find a master upper device and return pointer to it or NULL in case
8249  * it's not there. The caller must hold the RCU read lock.
8250  */
8251 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
8252 {
8253 	struct netdev_adjacent *upper;
8254 
8255 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
8256 				       struct netdev_adjacent, list);
8257 	if (upper && likely(upper->master))
8258 		return upper->dev;
8259 	return NULL;
8260 }
8261 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
8262 
8263 static int netdev_adjacent_sysfs_add(struct net_device *dev,
8264 			      struct net_device *adj_dev,
8265 			      struct list_head *dev_list)
8266 {
8267 	char linkname[IFNAMSIZ+7];
8268 
8269 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8270 		"upper_%s" : "lower_%s", adj_dev->name);
8271 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
8272 				 linkname);
8273 }
8274 static void netdev_adjacent_sysfs_del(struct net_device *dev,
8275 			       char *name,
8276 			       struct list_head *dev_list)
8277 {
8278 	char linkname[IFNAMSIZ+7];
8279 
8280 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
8281 		"upper_%s" : "lower_%s", name);
8282 	sysfs_remove_link(&(dev->dev.kobj), linkname);
8283 }
8284 
8285 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
8286 						 struct net_device *adj_dev,
8287 						 struct list_head *dev_list)
8288 {
8289 	return (dev_list == &dev->adj_list.upper ||
8290 		dev_list == &dev->adj_list.lower) &&
8291 		net_eq(dev_net(dev), dev_net(adj_dev));
8292 }
8293 
8294 static int __netdev_adjacent_dev_insert(struct net_device *dev,
8295 					struct net_device *adj_dev,
8296 					struct list_head *dev_list,
8297 					void *private, bool master)
8298 {
8299 	struct netdev_adjacent *adj;
8300 	int ret;
8301 
8302 	adj = __netdev_find_adj(adj_dev, dev_list);
8303 
8304 	if (adj) {
8305 		adj->ref_nr += 1;
8306 		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
8307 			 dev->name, adj_dev->name, adj->ref_nr);
8308 
8309 		return 0;
8310 	}
8311 
8312 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
8313 	if (!adj)
8314 		return -ENOMEM;
8315 
8316 	adj->dev = adj_dev;
8317 	adj->master = master;
8318 	adj->ref_nr = 1;
8319 	adj->private = private;
8320 	adj->ignore = false;
8321 	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
8322 
8323 	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
8324 		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
8325 
8326 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
8327 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
8328 		if (ret)
8329 			goto free_adj;
8330 	}
8331 
8332 	/* Ensure that master link is always the first item in list. */
8333 	if (master) {
8334 		ret = sysfs_create_link(&(dev->dev.kobj),
8335 					&(adj_dev->dev.kobj), "master");
8336 		if (ret)
8337 			goto remove_symlinks;
8338 
8339 		list_add_rcu(&adj->list, dev_list);
8340 	} else {
8341 		list_add_tail_rcu(&adj->list, dev_list);
8342 	}
8343 
8344 	return 0;
8345 
8346 remove_symlinks:
8347 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8348 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8349 free_adj:
8350 	netdev_put(adj_dev, &adj->dev_tracker);
8351 	kfree(adj);
8352 
8353 	return ret;
8354 }
8355 
8356 static void __netdev_adjacent_dev_remove(struct net_device *dev,
8357 					 struct net_device *adj_dev,
8358 					 u16 ref_nr,
8359 					 struct list_head *dev_list)
8360 {
8361 	struct netdev_adjacent *adj;
8362 
8363 	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
8364 		 dev->name, adj_dev->name, ref_nr);
8365 
8366 	adj = __netdev_find_adj(adj_dev, dev_list);
8367 
8368 	if (!adj) {
8369 		pr_err("Adjacency does not exist for device %s from %s\n",
8370 		       dev->name, adj_dev->name);
8371 		WARN_ON(1);
8372 		return;
8373 	}
8374 
8375 	if (adj->ref_nr > ref_nr) {
8376 		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
8377 			 dev->name, adj_dev->name, ref_nr,
8378 			 adj->ref_nr - ref_nr);
8379 		adj->ref_nr -= ref_nr;
8380 		return;
8381 	}
8382 
8383 	if (adj->master)
8384 		sysfs_remove_link(&(dev->dev.kobj), "master");
8385 
8386 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
8387 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
8388 
8389 	list_del_rcu(&adj->list);
8390 	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8391 		 adj_dev->name, dev->name, adj_dev->name);
8392 	netdev_put(adj_dev, &adj->dev_tracker);
8393 	kfree_rcu(adj, rcu);
8394 }
8395 
8396 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8397 					    struct net_device *upper_dev,
8398 					    struct list_head *up_list,
8399 					    struct list_head *down_list,
8400 					    void *private, bool master)
8401 {
8402 	int ret;
8403 
8404 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8405 					   private, master);
8406 	if (ret)
8407 		return ret;
8408 
8409 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8410 					   private, false);
8411 	if (ret) {
8412 		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8413 		return ret;
8414 	}
8415 
8416 	return 0;
8417 }
8418 
8419 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8420 					       struct net_device *upper_dev,
8421 					       u16 ref_nr,
8422 					       struct list_head *up_list,
8423 					       struct list_head *down_list)
8424 {
8425 	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8426 	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8427 }
8428 
8429 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8430 						struct net_device *upper_dev,
8431 						void *private, bool master)
8432 {
8433 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8434 						&dev->adj_list.upper,
8435 						&upper_dev->adj_list.lower,
8436 						private, master);
8437 }
8438 
8439 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8440 						   struct net_device *upper_dev)
8441 {
8442 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8443 					   &dev->adj_list.upper,
8444 					   &upper_dev->adj_list.lower);
8445 }
8446 
8447 static int __netdev_upper_dev_link(struct net_device *dev,
8448 				   struct net_device *upper_dev, bool master,
8449 				   void *upper_priv, void *upper_info,
8450 				   struct netdev_nested_priv *priv,
8451 				   struct netlink_ext_ack *extack)
8452 {
8453 	struct netdev_notifier_changeupper_info changeupper_info = {
8454 		.info = {
8455 			.dev = dev,
8456 			.extack = extack,
8457 		},
8458 		.upper_dev = upper_dev,
8459 		.master = master,
8460 		.linking = true,
8461 		.upper_info = upper_info,
8462 	};
8463 	struct net_device *master_dev;
8464 	int ret = 0;
8465 
8466 	ASSERT_RTNL();
8467 
8468 	if (dev == upper_dev)
8469 		return -EBUSY;
8470 
8471 	/* To prevent loops, check if dev is not upper device to upper_dev. */
8472 	if (__netdev_has_upper_dev(upper_dev, dev))
8473 		return -EBUSY;
8474 
8475 	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8476 		return -EMLINK;
8477 
8478 	if (!master) {
8479 		if (__netdev_has_upper_dev(dev, upper_dev))
8480 			return -EEXIST;
8481 	} else {
8482 		master_dev = __netdev_master_upper_dev_get(dev);
8483 		if (master_dev)
8484 			return master_dev == upper_dev ? -EEXIST : -EBUSY;
8485 	}
8486 
8487 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8488 					    &changeupper_info.info);
8489 	ret = notifier_to_errno(ret);
8490 	if (ret)
8491 		return ret;
8492 
8493 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8494 						   master);
8495 	if (ret)
8496 		return ret;
8497 
8498 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8499 					    &changeupper_info.info);
8500 	ret = notifier_to_errno(ret);
8501 	if (ret)
8502 		goto rollback;
8503 
8504 	__netdev_update_upper_level(dev, NULL);
8505 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8506 
8507 	__netdev_update_lower_level(upper_dev, priv);
8508 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8509 				    priv);
8510 
8511 	return 0;
8512 
8513 rollback:
8514 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8515 
8516 	return ret;
8517 }
8518 
8519 /**
8520  * netdev_upper_dev_link - Add a link to the upper device
8521  * @dev: device
8522  * @upper_dev: new upper device
8523  * @extack: netlink extended ack
8524  *
8525  * Adds a link to device which is upper to this one. The caller must hold
8526  * the RTNL lock. On a failure a negative errno code is returned.
8527  * On success the reference counts are adjusted and the function
8528  * returns zero.
8529  */
8530 int netdev_upper_dev_link(struct net_device *dev,
8531 			  struct net_device *upper_dev,
8532 			  struct netlink_ext_ack *extack)
8533 {
8534 	struct netdev_nested_priv priv = {
8535 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8536 		.data = NULL,
8537 	};
8538 
8539 	return __netdev_upper_dev_link(dev, upper_dev, false,
8540 				       NULL, NULL, &priv, extack);
8541 }
8542 EXPORT_SYMBOL(netdev_upper_dev_link);
8543 
8544 /**
8545  * netdev_master_upper_dev_link - Add a master link to the upper device
8546  * @dev: device
8547  * @upper_dev: new upper device
8548  * @upper_priv: upper device private
8549  * @upper_info: upper info to be passed down via notifier
8550  * @extack: netlink extended ack
8551  *
8552  * Adds a link to device which is upper to this one. In this case, only
8553  * one master upper device can be linked, although other non-master devices
8554  * might be linked as well. The caller must hold the RTNL lock.
8555  * On a failure a negative errno code is returned. On success the reference
8556  * counts are adjusted and the function returns zero.
8557  */
8558 int netdev_master_upper_dev_link(struct net_device *dev,
8559 				 struct net_device *upper_dev,
8560 				 void *upper_priv, void *upper_info,
8561 				 struct netlink_ext_ack *extack)
8562 {
8563 	struct netdev_nested_priv priv = {
8564 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8565 		.data = NULL,
8566 	};
8567 
8568 	return __netdev_upper_dev_link(dev, upper_dev, true,
8569 				       upper_priv, upper_info, &priv, extack);
8570 }
8571 EXPORT_SYMBOL(netdev_master_upper_dev_link);
8572 
8573 static void __netdev_upper_dev_unlink(struct net_device *dev,
8574 				      struct net_device *upper_dev,
8575 				      struct netdev_nested_priv *priv)
8576 {
8577 	struct netdev_notifier_changeupper_info changeupper_info = {
8578 		.info = {
8579 			.dev = dev,
8580 		},
8581 		.upper_dev = upper_dev,
8582 		.linking = false,
8583 	};
8584 
8585 	ASSERT_RTNL();
8586 
8587 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8588 
8589 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8590 				      &changeupper_info.info);
8591 
8592 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8593 
8594 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8595 				      &changeupper_info.info);
8596 
8597 	__netdev_update_upper_level(dev, NULL);
8598 	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8599 
8600 	__netdev_update_lower_level(upper_dev, priv);
8601 	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8602 				    priv);
8603 }
8604 
8605 /**
8606  * netdev_upper_dev_unlink - Removes a link to upper device
8607  * @dev: device
8608  * @upper_dev: new upper device
8609  *
8610  * Removes a link to device which is upper to this one. The caller must hold
8611  * the RTNL lock.
8612  */
8613 void netdev_upper_dev_unlink(struct net_device *dev,
8614 			     struct net_device *upper_dev)
8615 {
8616 	struct netdev_nested_priv priv = {
8617 		.flags = NESTED_SYNC_TODO,
8618 		.data = NULL,
8619 	};
8620 
8621 	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
8622 }
8623 EXPORT_SYMBOL(netdev_upper_dev_unlink);
8624 
8625 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8626 				      struct net_device *lower_dev,
8627 				      bool val)
8628 {
8629 	struct netdev_adjacent *adj;
8630 
8631 	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8632 	if (adj)
8633 		adj->ignore = val;
8634 
8635 	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8636 	if (adj)
8637 		adj->ignore = val;
8638 }
8639 
8640 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8641 					struct net_device *lower_dev)
8642 {
8643 	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8644 }
8645 
8646 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8647 				       struct net_device *lower_dev)
8648 {
8649 	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8650 }
8651 
8652 int netdev_adjacent_change_prepare(struct net_device *old_dev,
8653 				   struct net_device *new_dev,
8654 				   struct net_device *dev,
8655 				   struct netlink_ext_ack *extack)
8656 {
8657 	struct netdev_nested_priv priv = {
8658 		.flags = 0,
8659 		.data = NULL,
8660 	};
8661 	int err;
8662 
8663 	if (!new_dev)
8664 		return 0;
8665 
8666 	if (old_dev && new_dev != old_dev)
8667 		netdev_adjacent_dev_disable(dev, old_dev);
8668 	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8669 				      extack);
8670 	if (err) {
8671 		if (old_dev && new_dev != old_dev)
8672 			netdev_adjacent_dev_enable(dev, old_dev);
8673 		return err;
8674 	}
8675 
8676 	return 0;
8677 }
8678 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8679 
8680 void netdev_adjacent_change_commit(struct net_device *old_dev,
8681 				   struct net_device *new_dev,
8682 				   struct net_device *dev)
8683 {
8684 	struct netdev_nested_priv priv = {
8685 		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8686 		.data = NULL,
8687 	};
8688 
8689 	if (!new_dev || !old_dev)
8690 		return;
8691 
8692 	if (new_dev == old_dev)
8693 		return;
8694 
8695 	netdev_adjacent_dev_enable(dev, old_dev);
8696 	__netdev_upper_dev_unlink(old_dev, dev, &priv);
8697 }
8698 EXPORT_SYMBOL(netdev_adjacent_change_commit);
8699 
8700 void netdev_adjacent_change_abort(struct net_device *old_dev,
8701 				  struct net_device *new_dev,
8702 				  struct net_device *dev)
8703 {
8704 	struct netdev_nested_priv priv = {
8705 		.flags = 0,
8706 		.data = NULL,
8707 	};
8708 
8709 	if (!new_dev)
8710 		return;
8711 
8712 	if (old_dev && new_dev != old_dev)
8713 		netdev_adjacent_dev_enable(dev, old_dev);
8714 
8715 	__netdev_upper_dev_unlink(new_dev, dev, &priv);
8716 }
8717 EXPORT_SYMBOL(netdev_adjacent_change_abort);
8718 
8719 /**
8720  * netdev_bonding_info_change - Dispatch event about slave change
8721  * @dev: device
8722  * @bonding_info: info to dispatch
8723  *
8724  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8725  * The caller must hold the RTNL lock.
8726  */
8727 void netdev_bonding_info_change(struct net_device *dev,
8728 				struct netdev_bonding_info *bonding_info)
8729 {
8730 	struct netdev_notifier_bonding_info info = {
8731 		.info.dev = dev,
8732 	};
8733 
8734 	memcpy(&info.bonding_info, bonding_info,
8735 	       sizeof(struct netdev_bonding_info));
8736 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8737 				      &info.info);
8738 }
8739 EXPORT_SYMBOL(netdev_bonding_info_change);
8740 
8741 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
8742 					   struct netlink_ext_ack *extack)
8743 {
8744 	struct netdev_notifier_offload_xstats_info info = {
8745 		.info.dev = dev,
8746 		.info.extack = extack,
8747 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8748 	};
8749 	int err;
8750 	int rc;
8751 
8752 	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
8753 					 GFP_KERNEL);
8754 	if (!dev->offload_xstats_l3)
8755 		return -ENOMEM;
8756 
8757 	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8758 						  NETDEV_OFFLOAD_XSTATS_DISABLE,
8759 						  &info.info);
8760 	err = notifier_to_errno(rc);
8761 	if (err)
8762 		goto free_stats;
8763 
8764 	return 0;
8765 
8766 free_stats:
8767 	kfree(dev->offload_xstats_l3);
8768 	dev->offload_xstats_l3 = NULL;
8769 	return err;
8770 }
8771 
8772 int netdev_offload_xstats_enable(struct net_device *dev,
8773 				 enum netdev_offload_xstats_type type,
8774 				 struct netlink_ext_ack *extack)
8775 {
8776 	ASSERT_RTNL();
8777 
8778 	if (netdev_offload_xstats_enabled(dev, type))
8779 		return -EALREADY;
8780 
8781 	switch (type) {
8782 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8783 		return netdev_offload_xstats_enable_l3(dev, extack);
8784 	}
8785 
8786 	WARN_ON(1);
8787 	return -EINVAL;
8788 }
8789 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8790 
8791 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8792 {
8793 	struct netdev_notifier_offload_xstats_info info = {
8794 		.info.dev = dev,
8795 		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8796 	};
8797 
8798 	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8799 				      &info.info);
8800 	kfree(dev->offload_xstats_l3);
8801 	dev->offload_xstats_l3 = NULL;
8802 }
8803 
8804 int netdev_offload_xstats_disable(struct net_device *dev,
8805 				  enum netdev_offload_xstats_type type)
8806 {
8807 	ASSERT_RTNL();
8808 
8809 	if (!netdev_offload_xstats_enabled(dev, type))
8810 		return -EALREADY;
8811 
8812 	switch (type) {
8813 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8814 		netdev_offload_xstats_disable_l3(dev);
8815 		return 0;
8816 	}
8817 
8818 	WARN_ON(1);
8819 	return -EINVAL;
8820 }
8821 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8822 
8823 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8824 {
8825 	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8826 }
8827 
8828 static struct rtnl_hw_stats64 *
8829 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8830 			      enum netdev_offload_xstats_type type)
8831 {
8832 	switch (type) {
8833 	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8834 		return dev->offload_xstats_l3;
8835 	}
8836 
8837 	WARN_ON(1);
8838 	return NULL;
8839 }
8840 
8841 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8842 				   enum netdev_offload_xstats_type type)
8843 {
8844 	ASSERT_RTNL();
8845 
8846 	return netdev_offload_xstats_get_ptr(dev, type);
8847 }
8848 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8849 
8850 struct netdev_notifier_offload_xstats_ru {
8851 	bool used;
8852 };
8853 
8854 struct netdev_notifier_offload_xstats_rd {
8855 	struct rtnl_hw_stats64 stats;
8856 	bool used;
8857 };
8858 
8859 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8860 				  const struct rtnl_hw_stats64 *src)
8861 {
8862 	dest->rx_packets	  += src->rx_packets;
8863 	dest->tx_packets	  += src->tx_packets;
8864 	dest->rx_bytes		  += src->rx_bytes;
8865 	dest->tx_bytes		  += src->tx_bytes;
8866 	dest->rx_errors		  += src->rx_errors;
8867 	dest->tx_errors		  += src->tx_errors;
8868 	dest->rx_dropped	  += src->rx_dropped;
8869 	dest->tx_dropped	  += src->tx_dropped;
8870 	dest->multicast		  += src->multicast;
8871 }
8872 
8873 static int netdev_offload_xstats_get_used(struct net_device *dev,
8874 					  enum netdev_offload_xstats_type type,
8875 					  bool *p_used,
8876 					  struct netlink_ext_ack *extack)
8877 {
8878 	struct netdev_notifier_offload_xstats_ru report_used = {};
8879 	struct netdev_notifier_offload_xstats_info info = {
8880 		.info.dev = dev,
8881 		.info.extack = extack,
8882 		.type = type,
8883 		.report_used = &report_used,
8884 	};
8885 	int rc;
8886 
8887 	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8888 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8889 					   &info.info);
8890 	*p_used = report_used.used;
8891 	return notifier_to_errno(rc);
8892 }
8893 
8894 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8895 					   enum netdev_offload_xstats_type type,
8896 					   struct rtnl_hw_stats64 *p_stats,
8897 					   bool *p_used,
8898 					   struct netlink_ext_ack *extack)
8899 {
8900 	struct netdev_notifier_offload_xstats_rd report_delta = {};
8901 	struct netdev_notifier_offload_xstats_info info = {
8902 		.info.dev = dev,
8903 		.info.extack = extack,
8904 		.type = type,
8905 		.report_delta = &report_delta,
8906 	};
8907 	struct rtnl_hw_stats64 *stats;
8908 	int rc;
8909 
8910 	stats = netdev_offload_xstats_get_ptr(dev, type);
8911 	if (WARN_ON(!stats))
8912 		return -EINVAL;
8913 
8914 	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8915 					   &info.info);
8916 
8917 	/* Cache whatever we got, even if there was an error, otherwise the
8918 	 * successful stats retrievals would get lost.
8919 	 */
8920 	netdev_hw_stats64_add(stats, &report_delta.stats);
8921 
8922 	if (p_stats)
8923 		*p_stats = *stats;
8924 	*p_used = report_delta.used;
8925 
8926 	return notifier_to_errno(rc);
8927 }
8928 
8929 int netdev_offload_xstats_get(struct net_device *dev,
8930 			      enum netdev_offload_xstats_type type,
8931 			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
8932 			      struct netlink_ext_ack *extack)
8933 {
8934 	ASSERT_RTNL();
8935 
8936 	if (p_stats)
8937 		return netdev_offload_xstats_get_stats(dev, type, p_stats,
8938 						       p_used, extack);
8939 	else
8940 		return netdev_offload_xstats_get_used(dev, type, p_used,
8941 						      extack);
8942 }
8943 EXPORT_SYMBOL(netdev_offload_xstats_get);
8944 
8945 void
8946 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8947 				   const struct rtnl_hw_stats64 *stats)
8948 {
8949 	report_delta->used = true;
8950 	netdev_hw_stats64_add(&report_delta->stats, stats);
8951 }
8952 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8953 
8954 void
8955 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8956 {
8957 	report_used->used = true;
8958 }
8959 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8960 
8961 void netdev_offload_xstats_push_delta(struct net_device *dev,
8962 				      enum netdev_offload_xstats_type type,
8963 				      const struct rtnl_hw_stats64 *p_stats)
8964 {
8965 	struct rtnl_hw_stats64 *stats;
8966 
8967 	ASSERT_RTNL();
8968 
8969 	stats = netdev_offload_xstats_get_ptr(dev, type);
8970 	if (WARN_ON(!stats))
8971 		return;
8972 
8973 	netdev_hw_stats64_add(stats, p_stats);
8974 }
8975 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8976 
8977 /**
8978  * netdev_get_xmit_slave - Get the xmit slave of master device
8979  * @dev: device
8980  * @skb: The packet
8981  * @all_slaves: assume all the slaves are active
8982  *
8983  * The reference counters are not incremented so the caller must be
8984  * careful with locks. The caller must hold RCU lock.
8985  * %NULL is returned if no slave is found.
8986  */
8987 
8988 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8989 					 struct sk_buff *skb,
8990 					 bool all_slaves)
8991 {
8992 	const struct net_device_ops *ops = dev->netdev_ops;
8993 
8994 	if (!ops->ndo_get_xmit_slave)
8995 		return NULL;
8996 	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8997 }
8998 EXPORT_SYMBOL(netdev_get_xmit_slave);
8999 
9000 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
9001 						  struct sock *sk)
9002 {
9003 	const struct net_device_ops *ops = dev->netdev_ops;
9004 
9005 	if (!ops->ndo_sk_get_lower_dev)
9006 		return NULL;
9007 	return ops->ndo_sk_get_lower_dev(dev, sk);
9008 }
9009 
9010 /**
9011  * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
9012  * @dev: device
9013  * @sk: the socket
9014  *
9015  * %NULL is returned if no lower device is found.
9016  */
9017 
9018 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
9019 					    struct sock *sk)
9020 {
9021 	struct net_device *lower;
9022 
9023 	lower = netdev_sk_get_lower_dev(dev, sk);
9024 	while (lower) {
9025 		dev = lower;
9026 		lower = netdev_sk_get_lower_dev(dev, sk);
9027 	}
9028 
9029 	return dev;
9030 }
9031 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
9032 
9033 static void netdev_adjacent_add_links(struct net_device *dev)
9034 {
9035 	struct netdev_adjacent *iter;
9036 
9037 	struct net *net = dev_net(dev);
9038 
9039 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9040 		if (!net_eq(net, dev_net(iter->dev)))
9041 			continue;
9042 		netdev_adjacent_sysfs_add(iter->dev, dev,
9043 					  &iter->dev->adj_list.lower);
9044 		netdev_adjacent_sysfs_add(dev, iter->dev,
9045 					  &dev->adj_list.upper);
9046 	}
9047 
9048 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9049 		if (!net_eq(net, dev_net(iter->dev)))
9050 			continue;
9051 		netdev_adjacent_sysfs_add(iter->dev, dev,
9052 					  &iter->dev->adj_list.upper);
9053 		netdev_adjacent_sysfs_add(dev, iter->dev,
9054 					  &dev->adj_list.lower);
9055 	}
9056 }
9057 
9058 static void netdev_adjacent_del_links(struct net_device *dev)
9059 {
9060 	struct netdev_adjacent *iter;
9061 
9062 	struct net *net = dev_net(dev);
9063 
9064 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9065 		if (!net_eq(net, dev_net(iter->dev)))
9066 			continue;
9067 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9068 					  &iter->dev->adj_list.lower);
9069 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9070 					  &dev->adj_list.upper);
9071 	}
9072 
9073 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9074 		if (!net_eq(net, dev_net(iter->dev)))
9075 			continue;
9076 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
9077 					  &iter->dev->adj_list.upper);
9078 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
9079 					  &dev->adj_list.lower);
9080 	}
9081 }
9082 
9083 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
9084 {
9085 	struct netdev_adjacent *iter;
9086 
9087 	struct net *net = dev_net(dev);
9088 
9089 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
9090 		if (!net_eq(net, dev_net(iter->dev)))
9091 			continue;
9092 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9093 					  &iter->dev->adj_list.lower);
9094 		netdev_adjacent_sysfs_add(iter->dev, dev,
9095 					  &iter->dev->adj_list.lower);
9096 	}
9097 
9098 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
9099 		if (!net_eq(net, dev_net(iter->dev)))
9100 			continue;
9101 		netdev_adjacent_sysfs_del(iter->dev, oldname,
9102 					  &iter->dev->adj_list.upper);
9103 		netdev_adjacent_sysfs_add(iter->dev, dev,
9104 					  &iter->dev->adj_list.upper);
9105 	}
9106 }
9107 
9108 void *netdev_lower_dev_get_private(struct net_device *dev,
9109 				   struct net_device *lower_dev)
9110 {
9111 	struct netdev_adjacent *lower;
9112 
9113 	if (!lower_dev)
9114 		return NULL;
9115 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
9116 	if (!lower)
9117 		return NULL;
9118 
9119 	return lower->private;
9120 }
9121 EXPORT_SYMBOL(netdev_lower_dev_get_private);
9122 
9123 
9124 /**
9125  * netdev_lower_state_changed - Dispatch event about lower device state change
9126  * @lower_dev: device
9127  * @lower_state_info: state to dispatch
9128  *
9129  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
9130  * The caller must hold the RTNL lock.
9131  */
9132 void netdev_lower_state_changed(struct net_device *lower_dev,
9133 				void *lower_state_info)
9134 {
9135 	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
9136 		.info.dev = lower_dev,
9137 	};
9138 
9139 	ASSERT_RTNL();
9140 	changelowerstate_info.lower_state_info = lower_state_info;
9141 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
9142 				      &changelowerstate_info.info);
9143 }
9144 EXPORT_SYMBOL(netdev_lower_state_changed);
9145 
9146 static void dev_change_rx_flags(struct net_device *dev, int flags)
9147 {
9148 	const struct net_device_ops *ops = dev->netdev_ops;
9149 
9150 	if (ops->ndo_change_rx_flags)
9151 		ops->ndo_change_rx_flags(dev, flags);
9152 }
9153 
9154 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
9155 {
9156 	unsigned int old_flags = dev->flags;
9157 	unsigned int promiscuity, flags;
9158 	kuid_t uid;
9159 	kgid_t gid;
9160 
9161 	ASSERT_RTNL();
9162 
9163 	promiscuity = dev->promiscuity + inc;
9164 	if (promiscuity == 0) {
9165 		/*
9166 		 * Avoid overflow.
9167 		 * If inc causes overflow, untouch promisc and return error.
9168 		 */
9169 		if (unlikely(inc > 0)) {
9170 			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
9171 			return -EOVERFLOW;
9172 		}
9173 		flags = old_flags & ~IFF_PROMISC;
9174 	} else {
9175 		flags = old_flags | IFF_PROMISC;
9176 	}
9177 	WRITE_ONCE(dev->promiscuity, promiscuity);
9178 	if (flags != old_flags) {
9179 		WRITE_ONCE(dev->flags, flags);
9180 		netdev_info(dev, "%s promiscuous mode\n",
9181 			    dev->flags & IFF_PROMISC ? "entered" : "left");
9182 		if (audit_enabled) {
9183 			current_uid_gid(&uid, &gid);
9184 			audit_log(audit_context(), GFP_ATOMIC,
9185 				  AUDIT_ANOM_PROMISCUOUS,
9186 				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
9187 				  dev->name, (dev->flags & IFF_PROMISC),
9188 				  (old_flags & IFF_PROMISC),
9189 				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
9190 				  from_kuid(&init_user_ns, uid),
9191 				  from_kgid(&init_user_ns, gid),
9192 				  audit_get_sessionid(current));
9193 		}
9194 
9195 		dev_change_rx_flags(dev, IFF_PROMISC);
9196 	}
9197 	if (notify)
9198 		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
9199 	return 0;
9200 }
9201 
9202 /**
9203  *	dev_set_promiscuity	- update promiscuity count on a device
9204  *	@dev: device
9205  *	@inc: modifier
9206  *
9207  *	Add or remove promiscuity from a device. While the count in the device
9208  *	remains above zero the interface remains promiscuous. Once it hits zero
9209  *	the device reverts back to normal filtering operation. A negative inc
9210  *	value is used to drop promiscuity on the device.
9211  *	Return 0 if successful or a negative errno code on error.
9212  */
9213 int dev_set_promiscuity(struct net_device *dev, int inc)
9214 {
9215 	unsigned int old_flags = dev->flags;
9216 	int err;
9217 
9218 	err = __dev_set_promiscuity(dev, inc, true);
9219 	if (err < 0)
9220 		return err;
9221 	if (dev->flags != old_flags)
9222 		dev_set_rx_mode(dev);
9223 	return err;
9224 }
9225 EXPORT_SYMBOL(dev_set_promiscuity);
9226 
9227 int netif_set_allmulti(struct net_device *dev, int inc, bool notify)
9228 {
9229 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
9230 	unsigned int allmulti, flags;
9231 
9232 	ASSERT_RTNL();
9233 
9234 	allmulti = dev->allmulti + inc;
9235 	if (allmulti == 0) {
9236 		/*
9237 		 * Avoid overflow.
9238 		 * If inc causes overflow, untouch allmulti and return error.
9239 		 */
9240 		if (unlikely(inc > 0)) {
9241 			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
9242 			return -EOVERFLOW;
9243 		}
9244 		flags = old_flags & ~IFF_ALLMULTI;
9245 	} else {
9246 		flags = old_flags | IFF_ALLMULTI;
9247 	}
9248 	WRITE_ONCE(dev->allmulti, allmulti);
9249 	if (flags != old_flags) {
9250 		WRITE_ONCE(dev->flags, flags);
9251 		netdev_info(dev, "%s allmulticast mode\n",
9252 			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
9253 		dev_change_rx_flags(dev, IFF_ALLMULTI);
9254 		dev_set_rx_mode(dev);
9255 		if (notify)
9256 			__dev_notify_flags(dev, old_flags,
9257 					   dev->gflags ^ old_gflags, 0, NULL);
9258 	}
9259 	return 0;
9260 }
9261 
9262 /*
9263  *	Upload unicast and multicast address lists to device and
9264  *	configure RX filtering. When the device doesn't support unicast
9265  *	filtering it is put in promiscuous mode while unicast addresses
9266  *	are present.
9267  */
9268 void __dev_set_rx_mode(struct net_device *dev)
9269 {
9270 	const struct net_device_ops *ops = dev->netdev_ops;
9271 
9272 	/* dev_open will call this function so the list will stay sane. */
9273 	if (!(dev->flags&IFF_UP))
9274 		return;
9275 
9276 	if (!netif_device_present(dev))
9277 		return;
9278 
9279 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
9280 		/* Unicast addresses changes may only happen under the rtnl,
9281 		 * therefore calling __dev_set_promiscuity here is safe.
9282 		 */
9283 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
9284 			__dev_set_promiscuity(dev, 1, false);
9285 			dev->uc_promisc = true;
9286 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
9287 			__dev_set_promiscuity(dev, -1, false);
9288 			dev->uc_promisc = false;
9289 		}
9290 	}
9291 
9292 	if (ops->ndo_set_rx_mode)
9293 		ops->ndo_set_rx_mode(dev);
9294 }
9295 
9296 void dev_set_rx_mode(struct net_device *dev)
9297 {
9298 	netif_addr_lock_bh(dev);
9299 	__dev_set_rx_mode(dev);
9300 	netif_addr_unlock_bh(dev);
9301 }
9302 
9303 /**
9304  *	dev_get_flags - get flags reported to userspace
9305  *	@dev: device
9306  *
9307  *	Get the combination of flag bits exported through APIs to userspace.
9308  */
9309 unsigned int dev_get_flags(const struct net_device *dev)
9310 {
9311 	unsigned int flags;
9312 
9313 	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
9314 				IFF_ALLMULTI |
9315 				IFF_RUNNING |
9316 				IFF_LOWER_UP |
9317 				IFF_DORMANT)) |
9318 		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
9319 				IFF_ALLMULTI));
9320 
9321 	if (netif_running(dev)) {
9322 		if (netif_oper_up(dev))
9323 			flags |= IFF_RUNNING;
9324 		if (netif_carrier_ok(dev))
9325 			flags |= IFF_LOWER_UP;
9326 		if (netif_dormant(dev))
9327 			flags |= IFF_DORMANT;
9328 	}
9329 
9330 	return flags;
9331 }
9332 EXPORT_SYMBOL(dev_get_flags);
9333 
9334 int __dev_change_flags(struct net_device *dev, unsigned int flags,
9335 		       struct netlink_ext_ack *extack)
9336 {
9337 	unsigned int old_flags = dev->flags;
9338 	int ret;
9339 
9340 	ASSERT_RTNL();
9341 
9342 	/*
9343 	 *	Set the flags on our device.
9344 	 */
9345 
9346 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
9347 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
9348 			       IFF_AUTOMEDIA)) |
9349 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
9350 				    IFF_ALLMULTI));
9351 
9352 	/*
9353 	 *	Load in the correct multicast list now the flags have changed.
9354 	 */
9355 
9356 	if ((old_flags ^ flags) & IFF_MULTICAST)
9357 		dev_change_rx_flags(dev, IFF_MULTICAST);
9358 
9359 	dev_set_rx_mode(dev);
9360 
9361 	/*
9362 	 *	Have we downed the interface. We handle IFF_UP ourselves
9363 	 *	according to user attempts to set it, rather than blindly
9364 	 *	setting it.
9365 	 */
9366 
9367 	ret = 0;
9368 	if ((old_flags ^ flags) & IFF_UP) {
9369 		if (old_flags & IFF_UP)
9370 			__dev_close(dev);
9371 		else
9372 			ret = __dev_open(dev, extack);
9373 	}
9374 
9375 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
9376 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
9377 		old_flags = dev->flags;
9378 
9379 		dev->gflags ^= IFF_PROMISC;
9380 
9381 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
9382 			if (dev->flags != old_flags)
9383 				dev_set_rx_mode(dev);
9384 	}
9385 
9386 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
9387 	 * is important. Some (broken) drivers set IFF_PROMISC, when
9388 	 * IFF_ALLMULTI is requested not asking us and not reporting.
9389 	 */
9390 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
9391 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
9392 
9393 		dev->gflags ^= IFF_ALLMULTI;
9394 		netif_set_allmulti(dev, inc, false);
9395 	}
9396 
9397 	return ret;
9398 }
9399 
9400 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
9401 			unsigned int gchanges, u32 portid,
9402 			const struct nlmsghdr *nlh)
9403 {
9404 	unsigned int changes = dev->flags ^ old_flags;
9405 
9406 	if (gchanges)
9407 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
9408 
9409 	if (changes & IFF_UP) {
9410 		if (dev->flags & IFF_UP)
9411 			call_netdevice_notifiers(NETDEV_UP, dev);
9412 		else
9413 			call_netdevice_notifiers(NETDEV_DOWN, dev);
9414 	}
9415 
9416 	if (dev->flags & IFF_UP &&
9417 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
9418 		struct netdev_notifier_change_info change_info = {
9419 			.info = {
9420 				.dev = dev,
9421 			},
9422 			.flags_changed = changes,
9423 		};
9424 
9425 		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
9426 	}
9427 }
9428 
9429 int netif_change_flags(struct net_device *dev, unsigned int flags,
9430 		       struct netlink_ext_ack *extack)
9431 {
9432 	int ret;
9433 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
9434 
9435 	ret = __dev_change_flags(dev, flags, extack);
9436 	if (ret < 0)
9437 		return ret;
9438 
9439 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
9440 	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
9441 	return ret;
9442 }
9443 
9444 int __dev_set_mtu(struct net_device *dev, int new_mtu)
9445 {
9446 	const struct net_device_ops *ops = dev->netdev_ops;
9447 
9448 	if (ops->ndo_change_mtu)
9449 		return ops->ndo_change_mtu(dev, new_mtu);
9450 
9451 	/* Pairs with all the lockless reads of dev->mtu in the stack */
9452 	WRITE_ONCE(dev->mtu, new_mtu);
9453 	return 0;
9454 }
9455 EXPORT_SYMBOL(__dev_set_mtu);
9456 
9457 int dev_validate_mtu(struct net_device *dev, int new_mtu,
9458 		     struct netlink_ext_ack *extack)
9459 {
9460 	/* MTU must be positive, and in range */
9461 	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
9462 		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
9463 		return -EINVAL;
9464 	}
9465 
9466 	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
9467 		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
9468 		return -EINVAL;
9469 	}
9470 	return 0;
9471 }
9472 
9473 /**
9474  *	netif_set_mtu_ext - Change maximum transfer unit
9475  *	@dev: device
9476  *	@new_mtu: new transfer unit
9477  *	@extack: netlink extended ack
9478  *
9479  *	Change the maximum transfer size of the network device.
9480  */
9481 int netif_set_mtu_ext(struct net_device *dev, int new_mtu,
9482 		      struct netlink_ext_ack *extack)
9483 {
9484 	int err, orig_mtu;
9485 
9486 	if (new_mtu == dev->mtu)
9487 		return 0;
9488 
9489 	err = dev_validate_mtu(dev, new_mtu, extack);
9490 	if (err)
9491 		return err;
9492 
9493 	if (!netif_device_present(dev))
9494 		return -ENODEV;
9495 
9496 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
9497 	err = notifier_to_errno(err);
9498 	if (err)
9499 		return err;
9500 
9501 	orig_mtu = dev->mtu;
9502 	err = __dev_set_mtu(dev, new_mtu);
9503 
9504 	if (!err) {
9505 		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9506 						   orig_mtu);
9507 		err = notifier_to_errno(err);
9508 		if (err) {
9509 			/* setting mtu back and notifying everyone again,
9510 			 * so that they have a chance to revert changes.
9511 			 */
9512 			__dev_set_mtu(dev, orig_mtu);
9513 			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
9514 						     new_mtu);
9515 		}
9516 	}
9517 	return err;
9518 }
9519 
9520 int netif_set_mtu(struct net_device *dev, int new_mtu)
9521 {
9522 	struct netlink_ext_ack extack;
9523 	int err;
9524 
9525 	memset(&extack, 0, sizeof(extack));
9526 	err = netif_set_mtu_ext(dev, new_mtu, &extack);
9527 	if (err && extack._msg)
9528 		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
9529 	return err;
9530 }
9531 EXPORT_SYMBOL(netif_set_mtu);
9532 
9533 int netif_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
9534 {
9535 	unsigned int orig_len = dev->tx_queue_len;
9536 	int res;
9537 
9538 	if (new_len != (unsigned int)new_len)
9539 		return -ERANGE;
9540 
9541 	if (new_len != orig_len) {
9542 		WRITE_ONCE(dev->tx_queue_len, new_len);
9543 		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
9544 		res = notifier_to_errno(res);
9545 		if (res)
9546 			goto err_rollback;
9547 		res = dev_qdisc_change_tx_queue_len(dev);
9548 		if (res)
9549 			goto err_rollback;
9550 	}
9551 
9552 	return 0;
9553 
9554 err_rollback:
9555 	netdev_err(dev, "refused to change device tx_queue_len\n");
9556 	WRITE_ONCE(dev->tx_queue_len, orig_len);
9557 	return res;
9558 }
9559 
9560 void netif_set_group(struct net_device *dev, int new_group)
9561 {
9562 	dev->group = new_group;
9563 }
9564 
9565 /**
9566  *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9567  *	@dev: device
9568  *	@addr: new address
9569  *	@extack: netlink extended ack
9570  */
9571 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
9572 			      struct netlink_ext_ack *extack)
9573 {
9574 	struct netdev_notifier_pre_changeaddr_info info = {
9575 		.info.dev = dev,
9576 		.info.extack = extack,
9577 		.dev_addr = addr,
9578 	};
9579 	int rc;
9580 
9581 	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
9582 	return notifier_to_errno(rc);
9583 }
9584 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
9585 
9586 int netif_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9587 			  struct netlink_ext_ack *extack)
9588 {
9589 	const struct net_device_ops *ops = dev->netdev_ops;
9590 	int err;
9591 
9592 	if (!ops->ndo_set_mac_address)
9593 		return -EOPNOTSUPP;
9594 	if (sa->sa_family != dev->type)
9595 		return -EINVAL;
9596 	if (!netif_device_present(dev))
9597 		return -ENODEV;
9598 	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9599 	if (err)
9600 		return err;
9601 	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
9602 		err = ops->ndo_set_mac_address(dev, sa);
9603 		if (err)
9604 			return err;
9605 	}
9606 	dev->addr_assign_type = NET_ADDR_SET;
9607 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9608 	add_device_randomness(dev->dev_addr, dev->addr_len);
9609 	return 0;
9610 }
9611 
9612 DECLARE_RWSEM(dev_addr_sem);
9613 
9614 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9615 {
9616 	size_t size = sizeof(sa->sa_data_min);
9617 	struct net_device *dev;
9618 	int ret = 0;
9619 
9620 	down_read(&dev_addr_sem);
9621 	rcu_read_lock();
9622 
9623 	dev = dev_get_by_name_rcu(net, dev_name);
9624 	if (!dev) {
9625 		ret = -ENODEV;
9626 		goto unlock;
9627 	}
9628 	if (!dev->addr_len)
9629 		memset(sa->sa_data, 0, size);
9630 	else
9631 		memcpy(sa->sa_data, dev->dev_addr,
9632 		       min_t(size_t, size, dev->addr_len));
9633 	sa->sa_family = dev->type;
9634 
9635 unlock:
9636 	rcu_read_unlock();
9637 	up_read(&dev_addr_sem);
9638 	return ret;
9639 }
9640 EXPORT_SYMBOL(dev_get_mac_address);
9641 
9642 int netif_change_carrier(struct net_device *dev, bool new_carrier)
9643 {
9644 	const struct net_device_ops *ops = dev->netdev_ops;
9645 
9646 	if (!ops->ndo_change_carrier)
9647 		return -EOPNOTSUPP;
9648 	if (!netif_device_present(dev))
9649 		return -ENODEV;
9650 	return ops->ndo_change_carrier(dev, new_carrier);
9651 }
9652 
9653 /**
9654  *	dev_get_phys_port_id - Get device physical port ID
9655  *	@dev: device
9656  *	@ppid: port ID
9657  *
9658  *	Get device physical port ID
9659  */
9660 int dev_get_phys_port_id(struct net_device *dev,
9661 			 struct netdev_phys_item_id *ppid)
9662 {
9663 	const struct net_device_ops *ops = dev->netdev_ops;
9664 
9665 	if (!ops->ndo_get_phys_port_id)
9666 		return -EOPNOTSUPP;
9667 	return ops->ndo_get_phys_port_id(dev, ppid);
9668 }
9669 
9670 /**
9671  *	dev_get_phys_port_name - Get device physical port name
9672  *	@dev: device
9673  *	@name: port name
9674  *	@len: limit of bytes to copy to name
9675  *
9676  *	Get device physical port name
9677  */
9678 int dev_get_phys_port_name(struct net_device *dev,
9679 			   char *name, size_t len)
9680 {
9681 	const struct net_device_ops *ops = dev->netdev_ops;
9682 	int err;
9683 
9684 	if (ops->ndo_get_phys_port_name) {
9685 		err = ops->ndo_get_phys_port_name(dev, name, len);
9686 		if (err != -EOPNOTSUPP)
9687 			return err;
9688 	}
9689 	return devlink_compat_phys_port_name_get(dev, name, len);
9690 }
9691 
9692 /**
9693  *	dev_get_port_parent_id - Get the device's port parent identifier
9694  *	@dev: network device
9695  *	@ppid: pointer to a storage for the port's parent identifier
9696  *	@recurse: allow/disallow recursion to lower devices
9697  *
9698  *	Get the devices's port parent identifier
9699  */
9700 int dev_get_port_parent_id(struct net_device *dev,
9701 			   struct netdev_phys_item_id *ppid,
9702 			   bool recurse)
9703 {
9704 	const struct net_device_ops *ops = dev->netdev_ops;
9705 	struct netdev_phys_item_id first = { };
9706 	struct net_device *lower_dev;
9707 	struct list_head *iter;
9708 	int err;
9709 
9710 	if (ops->ndo_get_port_parent_id) {
9711 		err = ops->ndo_get_port_parent_id(dev, ppid);
9712 		if (err != -EOPNOTSUPP)
9713 			return err;
9714 	}
9715 
9716 	err = devlink_compat_switch_id_get(dev, ppid);
9717 	if (!recurse || err != -EOPNOTSUPP)
9718 		return err;
9719 
9720 	netdev_for_each_lower_dev(dev, lower_dev, iter) {
9721 		err = dev_get_port_parent_id(lower_dev, ppid, true);
9722 		if (err)
9723 			break;
9724 		if (!first.id_len)
9725 			first = *ppid;
9726 		else if (memcmp(&first, ppid, sizeof(*ppid)))
9727 			return -EOPNOTSUPP;
9728 	}
9729 
9730 	return err;
9731 }
9732 EXPORT_SYMBOL(dev_get_port_parent_id);
9733 
9734 /**
9735  *	netdev_port_same_parent_id - Indicate if two network devices have
9736  *	the same port parent identifier
9737  *	@a: first network device
9738  *	@b: second network device
9739  */
9740 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9741 {
9742 	struct netdev_phys_item_id a_id = { };
9743 	struct netdev_phys_item_id b_id = { };
9744 
9745 	if (dev_get_port_parent_id(a, &a_id, true) ||
9746 	    dev_get_port_parent_id(b, &b_id, true))
9747 		return false;
9748 
9749 	return netdev_phys_item_id_same(&a_id, &b_id);
9750 }
9751 EXPORT_SYMBOL(netdev_port_same_parent_id);
9752 
9753 int netif_change_proto_down(struct net_device *dev, bool proto_down)
9754 {
9755 	if (!dev->change_proto_down)
9756 		return -EOPNOTSUPP;
9757 	if (!netif_device_present(dev))
9758 		return -ENODEV;
9759 	if (proto_down)
9760 		netif_carrier_off(dev);
9761 	else
9762 		netif_carrier_on(dev);
9763 	WRITE_ONCE(dev->proto_down, proto_down);
9764 	return 0;
9765 }
9766 
9767 /**
9768  *	netdev_change_proto_down_reason_locked - proto down reason
9769  *
9770  *	@dev: device
9771  *	@mask: proto down mask
9772  *	@value: proto down value
9773  */
9774 void netdev_change_proto_down_reason_locked(struct net_device *dev,
9775 					    unsigned long mask, u32 value)
9776 {
9777 	u32 proto_down_reason;
9778 	int b;
9779 
9780 	if (!mask) {
9781 		proto_down_reason = value;
9782 	} else {
9783 		proto_down_reason = dev->proto_down_reason;
9784 		for_each_set_bit(b, &mask, 32) {
9785 			if (value & (1 << b))
9786 				proto_down_reason |= BIT(b);
9787 			else
9788 				proto_down_reason &= ~BIT(b);
9789 		}
9790 	}
9791 	WRITE_ONCE(dev->proto_down_reason, proto_down_reason);
9792 }
9793 
9794 struct bpf_xdp_link {
9795 	struct bpf_link link;
9796 	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9797 	int flags;
9798 };
9799 
9800 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9801 {
9802 	if (flags & XDP_FLAGS_HW_MODE)
9803 		return XDP_MODE_HW;
9804 	if (flags & XDP_FLAGS_DRV_MODE)
9805 		return XDP_MODE_DRV;
9806 	if (flags & XDP_FLAGS_SKB_MODE)
9807 		return XDP_MODE_SKB;
9808 	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9809 }
9810 
9811 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9812 {
9813 	switch (mode) {
9814 	case XDP_MODE_SKB:
9815 		return generic_xdp_install;
9816 	case XDP_MODE_DRV:
9817 	case XDP_MODE_HW:
9818 		return dev->netdev_ops->ndo_bpf;
9819 	default:
9820 		return NULL;
9821 	}
9822 }
9823 
9824 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9825 					 enum bpf_xdp_mode mode)
9826 {
9827 	return dev->xdp_state[mode].link;
9828 }
9829 
9830 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9831 				     enum bpf_xdp_mode mode)
9832 {
9833 	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9834 
9835 	if (link)
9836 		return link->link.prog;
9837 	return dev->xdp_state[mode].prog;
9838 }
9839 
9840 u8 dev_xdp_prog_count(struct net_device *dev)
9841 {
9842 	u8 count = 0;
9843 	int i;
9844 
9845 	for (i = 0; i < __MAX_XDP_MODE; i++)
9846 		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9847 			count++;
9848 	return count;
9849 }
9850 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9851 
9852 u8 dev_xdp_sb_prog_count(struct net_device *dev)
9853 {
9854 	u8 count = 0;
9855 	int i;
9856 
9857 	for (i = 0; i < __MAX_XDP_MODE; i++)
9858 		if (dev->xdp_state[i].prog &&
9859 		    !dev->xdp_state[i].prog->aux->xdp_has_frags)
9860 			count++;
9861 	return count;
9862 }
9863 
9864 int netif_xdp_propagate(struct net_device *dev, struct netdev_bpf *bpf)
9865 {
9866 	if (!dev->netdev_ops->ndo_bpf)
9867 		return -EOPNOTSUPP;
9868 
9869 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9870 	    bpf->command == XDP_SETUP_PROG &&
9871 	    bpf->prog && !bpf->prog->aux->xdp_has_frags) {
9872 		NL_SET_ERR_MSG(bpf->extack,
9873 			       "unable to propagate XDP to device using tcp-data-split");
9874 		return -EBUSY;
9875 	}
9876 
9877 	if (dev_get_min_mp_channel_count(dev)) {
9878 		NL_SET_ERR_MSG(bpf->extack, "unable to propagate XDP to device using memory provider");
9879 		return -EBUSY;
9880 	}
9881 
9882 	return dev->netdev_ops->ndo_bpf(dev, bpf);
9883 }
9884 
9885 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9886 {
9887 	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9888 
9889 	return prog ? prog->aux->id : 0;
9890 }
9891 
9892 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9893 			     struct bpf_xdp_link *link)
9894 {
9895 	dev->xdp_state[mode].link = link;
9896 	dev->xdp_state[mode].prog = NULL;
9897 }
9898 
9899 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9900 			     struct bpf_prog *prog)
9901 {
9902 	dev->xdp_state[mode].link = NULL;
9903 	dev->xdp_state[mode].prog = prog;
9904 }
9905 
9906 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9907 			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9908 			   u32 flags, struct bpf_prog *prog)
9909 {
9910 	struct netdev_bpf xdp;
9911 	int err;
9912 
9913 	netdev_ops_assert_locked(dev);
9914 
9915 	if (dev->cfg->hds_config == ETHTOOL_TCP_DATA_SPLIT_ENABLED &&
9916 	    prog && !prog->aux->xdp_has_frags) {
9917 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using tcp-data-split");
9918 		return -EBUSY;
9919 	}
9920 
9921 	if (dev_get_min_mp_channel_count(dev)) {
9922 		NL_SET_ERR_MSG(extack, "unable to install XDP to device using memory provider");
9923 		return -EBUSY;
9924 	}
9925 
9926 	memset(&xdp, 0, sizeof(xdp));
9927 	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9928 	xdp.extack = extack;
9929 	xdp.flags = flags;
9930 	xdp.prog = prog;
9931 
9932 	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
9933 	 * "moved" into driver), so they don't increment it on their own, but
9934 	 * they do decrement refcnt when program is detached or replaced.
9935 	 * Given net_device also owns link/prog, we need to bump refcnt here
9936 	 * to prevent drivers from underflowing it.
9937 	 */
9938 	if (prog)
9939 		bpf_prog_inc(prog);
9940 	err = bpf_op(dev, &xdp);
9941 	if (err) {
9942 		if (prog)
9943 			bpf_prog_put(prog);
9944 		return err;
9945 	}
9946 
9947 	if (mode != XDP_MODE_HW)
9948 		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9949 
9950 	return 0;
9951 }
9952 
9953 static void dev_xdp_uninstall(struct net_device *dev)
9954 {
9955 	struct bpf_xdp_link *link;
9956 	struct bpf_prog *prog;
9957 	enum bpf_xdp_mode mode;
9958 	bpf_op_t bpf_op;
9959 
9960 	ASSERT_RTNL();
9961 
9962 	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9963 		prog = dev_xdp_prog(dev, mode);
9964 		if (!prog)
9965 			continue;
9966 
9967 		bpf_op = dev_xdp_bpf_op(dev, mode);
9968 		if (!bpf_op)
9969 			continue;
9970 
9971 		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9972 
9973 		/* auto-detach link from net device */
9974 		link = dev_xdp_link(dev, mode);
9975 		if (link)
9976 			link->dev = NULL;
9977 		else
9978 			bpf_prog_put(prog);
9979 
9980 		dev_xdp_set_link(dev, mode, NULL);
9981 	}
9982 }
9983 
9984 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9985 			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9986 			  struct bpf_prog *old_prog, u32 flags)
9987 {
9988 	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9989 	struct bpf_prog *cur_prog;
9990 	struct net_device *upper;
9991 	struct list_head *iter;
9992 	enum bpf_xdp_mode mode;
9993 	bpf_op_t bpf_op;
9994 	int err;
9995 
9996 	ASSERT_RTNL();
9997 
9998 	/* either link or prog attachment, never both */
9999 	if (link && (new_prog || old_prog))
10000 		return -EINVAL;
10001 	/* link supports only XDP mode flags */
10002 	if (link && (flags & ~XDP_FLAGS_MODES)) {
10003 		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
10004 		return -EINVAL;
10005 	}
10006 	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
10007 	if (num_modes > 1) {
10008 		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
10009 		return -EINVAL;
10010 	}
10011 	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
10012 	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
10013 		NL_SET_ERR_MSG(extack,
10014 			       "More than one program loaded, unset mode is ambiguous");
10015 		return -EINVAL;
10016 	}
10017 	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
10018 	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
10019 		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
10020 		return -EINVAL;
10021 	}
10022 
10023 	mode = dev_xdp_mode(dev, flags);
10024 	/* can't replace attached link */
10025 	if (dev_xdp_link(dev, mode)) {
10026 		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
10027 		return -EBUSY;
10028 	}
10029 
10030 	/* don't allow if an upper device already has a program */
10031 	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
10032 		if (dev_xdp_prog_count(upper) > 0) {
10033 			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
10034 			return -EEXIST;
10035 		}
10036 	}
10037 
10038 	cur_prog = dev_xdp_prog(dev, mode);
10039 	/* can't replace attached prog with link */
10040 	if (link && cur_prog) {
10041 		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
10042 		return -EBUSY;
10043 	}
10044 	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
10045 		NL_SET_ERR_MSG(extack, "Active program does not match expected");
10046 		return -EEXIST;
10047 	}
10048 
10049 	/* put effective new program into new_prog */
10050 	if (link)
10051 		new_prog = link->link.prog;
10052 
10053 	if (new_prog) {
10054 		bool offload = mode == XDP_MODE_HW;
10055 		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
10056 					       ? XDP_MODE_DRV : XDP_MODE_SKB;
10057 
10058 		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
10059 			NL_SET_ERR_MSG(extack, "XDP program already attached");
10060 			return -EBUSY;
10061 		}
10062 		if (!offload && dev_xdp_prog(dev, other_mode)) {
10063 			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
10064 			return -EEXIST;
10065 		}
10066 		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
10067 			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
10068 			return -EINVAL;
10069 		}
10070 		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
10071 			NL_SET_ERR_MSG(extack, "Program bound to different device");
10072 			return -EINVAL;
10073 		}
10074 		if (bpf_prog_is_dev_bound(new_prog->aux) && mode == XDP_MODE_SKB) {
10075 			NL_SET_ERR_MSG(extack, "Can't attach device-bound programs in generic mode");
10076 			return -EINVAL;
10077 		}
10078 		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
10079 			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
10080 			return -EINVAL;
10081 		}
10082 		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
10083 			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
10084 			return -EINVAL;
10085 		}
10086 	}
10087 
10088 	/* don't call drivers if the effective program didn't change */
10089 	if (new_prog != cur_prog) {
10090 		bpf_op = dev_xdp_bpf_op(dev, mode);
10091 		if (!bpf_op) {
10092 			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
10093 			return -EOPNOTSUPP;
10094 		}
10095 
10096 		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
10097 		if (err)
10098 			return err;
10099 	}
10100 
10101 	if (link)
10102 		dev_xdp_set_link(dev, mode, link);
10103 	else
10104 		dev_xdp_set_prog(dev, mode, new_prog);
10105 	if (cur_prog)
10106 		bpf_prog_put(cur_prog);
10107 
10108 	return 0;
10109 }
10110 
10111 static int dev_xdp_attach_link(struct net_device *dev,
10112 			       struct netlink_ext_ack *extack,
10113 			       struct bpf_xdp_link *link)
10114 {
10115 	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
10116 }
10117 
10118 static int dev_xdp_detach_link(struct net_device *dev,
10119 			       struct netlink_ext_ack *extack,
10120 			       struct bpf_xdp_link *link)
10121 {
10122 	enum bpf_xdp_mode mode;
10123 	bpf_op_t bpf_op;
10124 
10125 	ASSERT_RTNL();
10126 
10127 	mode = dev_xdp_mode(dev, link->flags);
10128 	if (dev_xdp_link(dev, mode) != link)
10129 		return -EINVAL;
10130 
10131 	bpf_op = dev_xdp_bpf_op(dev, mode);
10132 	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
10133 	dev_xdp_set_link(dev, mode, NULL);
10134 	return 0;
10135 }
10136 
10137 static void bpf_xdp_link_release(struct bpf_link *link)
10138 {
10139 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10140 
10141 	rtnl_lock();
10142 
10143 	/* if racing with net_device's tear down, xdp_link->dev might be
10144 	 * already NULL, in which case link was already auto-detached
10145 	 */
10146 	if (xdp_link->dev) {
10147 		netdev_lock_ops(xdp_link->dev);
10148 		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
10149 		netdev_unlock_ops(xdp_link->dev);
10150 		xdp_link->dev = NULL;
10151 	}
10152 
10153 	rtnl_unlock();
10154 }
10155 
10156 static int bpf_xdp_link_detach(struct bpf_link *link)
10157 {
10158 	bpf_xdp_link_release(link);
10159 	return 0;
10160 }
10161 
10162 static void bpf_xdp_link_dealloc(struct bpf_link *link)
10163 {
10164 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10165 
10166 	kfree(xdp_link);
10167 }
10168 
10169 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
10170 				     struct seq_file *seq)
10171 {
10172 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10173 	u32 ifindex = 0;
10174 
10175 	rtnl_lock();
10176 	if (xdp_link->dev)
10177 		ifindex = xdp_link->dev->ifindex;
10178 	rtnl_unlock();
10179 
10180 	seq_printf(seq, "ifindex:\t%u\n", ifindex);
10181 }
10182 
10183 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
10184 				       struct bpf_link_info *info)
10185 {
10186 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10187 	u32 ifindex = 0;
10188 
10189 	rtnl_lock();
10190 	if (xdp_link->dev)
10191 		ifindex = xdp_link->dev->ifindex;
10192 	rtnl_unlock();
10193 
10194 	info->xdp.ifindex = ifindex;
10195 	return 0;
10196 }
10197 
10198 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
10199 			       struct bpf_prog *old_prog)
10200 {
10201 	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
10202 	enum bpf_xdp_mode mode;
10203 	bpf_op_t bpf_op;
10204 	int err = 0;
10205 
10206 	rtnl_lock();
10207 
10208 	/* link might have been auto-released already, so fail */
10209 	if (!xdp_link->dev) {
10210 		err = -ENOLINK;
10211 		goto out_unlock;
10212 	}
10213 
10214 	if (old_prog && link->prog != old_prog) {
10215 		err = -EPERM;
10216 		goto out_unlock;
10217 	}
10218 	old_prog = link->prog;
10219 	if (old_prog->type != new_prog->type ||
10220 	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
10221 		err = -EINVAL;
10222 		goto out_unlock;
10223 	}
10224 
10225 	if (old_prog == new_prog) {
10226 		/* no-op, don't disturb drivers */
10227 		bpf_prog_put(new_prog);
10228 		goto out_unlock;
10229 	}
10230 
10231 	netdev_lock_ops(xdp_link->dev);
10232 	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
10233 	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
10234 	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
10235 			      xdp_link->flags, new_prog);
10236 	netdev_unlock_ops(xdp_link->dev);
10237 	if (err)
10238 		goto out_unlock;
10239 
10240 	old_prog = xchg(&link->prog, new_prog);
10241 	bpf_prog_put(old_prog);
10242 
10243 out_unlock:
10244 	rtnl_unlock();
10245 	return err;
10246 }
10247 
10248 static const struct bpf_link_ops bpf_xdp_link_lops = {
10249 	.release = bpf_xdp_link_release,
10250 	.dealloc = bpf_xdp_link_dealloc,
10251 	.detach = bpf_xdp_link_detach,
10252 	.show_fdinfo = bpf_xdp_link_show_fdinfo,
10253 	.fill_link_info = bpf_xdp_link_fill_link_info,
10254 	.update_prog = bpf_xdp_link_update,
10255 };
10256 
10257 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
10258 {
10259 	struct net *net = current->nsproxy->net_ns;
10260 	struct bpf_link_primer link_primer;
10261 	struct netlink_ext_ack extack = {};
10262 	struct bpf_xdp_link *link;
10263 	struct net_device *dev;
10264 	int err, fd;
10265 
10266 	rtnl_lock();
10267 	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
10268 	if (!dev) {
10269 		rtnl_unlock();
10270 		return -EINVAL;
10271 	}
10272 
10273 	link = kzalloc(sizeof(*link), GFP_USER);
10274 	if (!link) {
10275 		err = -ENOMEM;
10276 		goto unlock;
10277 	}
10278 
10279 	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
10280 	link->dev = dev;
10281 	link->flags = attr->link_create.flags;
10282 
10283 	err = bpf_link_prime(&link->link, &link_primer);
10284 	if (err) {
10285 		kfree(link);
10286 		goto unlock;
10287 	}
10288 
10289 	netdev_lock_ops(dev);
10290 	err = dev_xdp_attach_link(dev, &extack, link);
10291 	netdev_unlock_ops(dev);
10292 	rtnl_unlock();
10293 
10294 	if (err) {
10295 		link->dev = NULL;
10296 		bpf_link_cleanup(&link_primer);
10297 		trace_bpf_xdp_link_attach_failed(extack._msg);
10298 		goto out_put_dev;
10299 	}
10300 
10301 	fd = bpf_link_settle(&link_primer);
10302 	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
10303 	dev_put(dev);
10304 	return fd;
10305 
10306 unlock:
10307 	rtnl_unlock();
10308 
10309 out_put_dev:
10310 	dev_put(dev);
10311 	return err;
10312 }
10313 
10314 /**
10315  *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
10316  *	@dev: device
10317  *	@extack: netlink extended ack
10318  *	@fd: new program fd or negative value to clear
10319  *	@expected_fd: old program fd that userspace expects to replace or clear
10320  *	@flags: xdp-related flags
10321  *
10322  *	Set or clear a bpf program for a device
10323  */
10324 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
10325 		      int fd, int expected_fd, u32 flags)
10326 {
10327 	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
10328 	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
10329 	int err;
10330 
10331 	ASSERT_RTNL();
10332 
10333 	if (fd >= 0) {
10334 		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
10335 						 mode != XDP_MODE_SKB);
10336 		if (IS_ERR(new_prog))
10337 			return PTR_ERR(new_prog);
10338 	}
10339 
10340 	if (expected_fd >= 0) {
10341 		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
10342 						 mode != XDP_MODE_SKB);
10343 		if (IS_ERR(old_prog)) {
10344 			err = PTR_ERR(old_prog);
10345 			old_prog = NULL;
10346 			goto err_out;
10347 		}
10348 	}
10349 
10350 	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
10351 
10352 err_out:
10353 	if (err && new_prog)
10354 		bpf_prog_put(new_prog);
10355 	if (old_prog)
10356 		bpf_prog_put(old_prog);
10357 	return err;
10358 }
10359 
10360 u32 dev_get_min_mp_channel_count(const struct net_device *dev)
10361 {
10362 	int i;
10363 
10364 	netdev_ops_assert_locked(dev);
10365 
10366 	for (i = dev->real_num_rx_queues - 1; i >= 0; i--)
10367 		if (dev->_rx[i].mp_params.mp_priv)
10368 			/* The channel count is the idx plus 1. */
10369 			return i + 1;
10370 
10371 	return 0;
10372 }
10373 
10374 /**
10375  * dev_index_reserve() - allocate an ifindex in a namespace
10376  * @net: the applicable net namespace
10377  * @ifindex: requested ifindex, pass %0 to get one allocated
10378  *
10379  * Allocate a ifindex for a new device. Caller must either use the ifindex
10380  * to store the device (via list_netdevice()) or call dev_index_release()
10381  * to give the index up.
10382  *
10383  * Return: a suitable unique value for a new device interface number or -errno.
10384  */
10385 static int dev_index_reserve(struct net *net, u32 ifindex)
10386 {
10387 	int err;
10388 
10389 	if (ifindex > INT_MAX) {
10390 		DEBUG_NET_WARN_ON_ONCE(1);
10391 		return -EINVAL;
10392 	}
10393 
10394 	if (!ifindex)
10395 		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
10396 				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
10397 	else
10398 		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
10399 	if (err < 0)
10400 		return err;
10401 
10402 	return ifindex;
10403 }
10404 
10405 static void dev_index_release(struct net *net, int ifindex)
10406 {
10407 	/* Expect only unused indexes, unlist_netdevice() removes the used */
10408 	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
10409 }
10410 
10411 static bool from_cleanup_net(void)
10412 {
10413 #ifdef CONFIG_NET_NS
10414 	return current == cleanup_net_task;
10415 #else
10416 	return false;
10417 #endif
10418 }
10419 
10420 /* Delayed registration/unregisteration */
10421 LIST_HEAD(net_todo_list);
10422 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
10423 atomic_t dev_unreg_count = ATOMIC_INIT(0);
10424 
10425 static void net_set_todo(struct net_device *dev)
10426 {
10427 	list_add_tail(&dev->todo_list, &net_todo_list);
10428 }
10429 
10430 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
10431 	struct net_device *upper, netdev_features_t features)
10432 {
10433 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10434 	netdev_features_t feature;
10435 	int feature_bit;
10436 
10437 	for_each_netdev_feature(upper_disables, feature_bit) {
10438 		feature = __NETIF_F_BIT(feature_bit);
10439 		if (!(upper->wanted_features & feature)
10440 		    && (features & feature)) {
10441 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
10442 				   &feature, upper->name);
10443 			features &= ~feature;
10444 		}
10445 	}
10446 
10447 	return features;
10448 }
10449 
10450 static void netdev_sync_lower_features(struct net_device *upper,
10451 	struct net_device *lower, netdev_features_t features)
10452 {
10453 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
10454 	netdev_features_t feature;
10455 	int feature_bit;
10456 
10457 	for_each_netdev_feature(upper_disables, feature_bit) {
10458 		feature = __NETIF_F_BIT(feature_bit);
10459 		if (!(features & feature) && (lower->features & feature)) {
10460 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
10461 				   &feature, lower->name);
10462 			lower->wanted_features &= ~feature;
10463 			__netdev_update_features(lower);
10464 
10465 			if (unlikely(lower->features & feature))
10466 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
10467 					    &feature, lower->name);
10468 			else
10469 				netdev_features_change(lower);
10470 		}
10471 	}
10472 }
10473 
10474 static bool netdev_has_ip_or_hw_csum(netdev_features_t features)
10475 {
10476 	netdev_features_t ip_csum_mask = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
10477 	bool ip_csum = (features & ip_csum_mask) == ip_csum_mask;
10478 	bool hw_csum = features & NETIF_F_HW_CSUM;
10479 
10480 	return ip_csum || hw_csum;
10481 }
10482 
10483 static netdev_features_t netdev_fix_features(struct net_device *dev,
10484 	netdev_features_t features)
10485 {
10486 	/* Fix illegal checksum combinations */
10487 	if ((features & NETIF_F_HW_CSUM) &&
10488 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
10489 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
10490 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
10491 	}
10492 
10493 	/* TSO requires that SG is present as well. */
10494 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
10495 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
10496 		features &= ~NETIF_F_ALL_TSO;
10497 	}
10498 
10499 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
10500 					!(features & NETIF_F_IP_CSUM)) {
10501 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
10502 		features &= ~NETIF_F_TSO;
10503 		features &= ~NETIF_F_TSO_ECN;
10504 	}
10505 
10506 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
10507 					 !(features & NETIF_F_IPV6_CSUM)) {
10508 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
10509 		features &= ~NETIF_F_TSO6;
10510 	}
10511 
10512 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10513 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
10514 		features &= ~NETIF_F_TSO_MANGLEID;
10515 
10516 	/* TSO ECN requires that TSO is present as well. */
10517 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
10518 		features &= ~NETIF_F_TSO_ECN;
10519 
10520 	/* Software GSO depends on SG. */
10521 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
10522 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
10523 		features &= ~NETIF_F_GSO;
10524 	}
10525 
10526 	/* GSO partial features require GSO partial be set */
10527 	if ((features & dev->gso_partial_features) &&
10528 	    !(features & NETIF_F_GSO_PARTIAL)) {
10529 		netdev_dbg(dev,
10530 			   "Dropping partially supported GSO features since no GSO partial.\n");
10531 		features &= ~dev->gso_partial_features;
10532 	}
10533 
10534 	if (!(features & NETIF_F_RXCSUM)) {
10535 		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10536 		 * successfully merged by hardware must also have the
10537 		 * checksum verified by hardware.  If the user does not
10538 		 * want to enable RXCSUM, logically, we should disable GRO_HW.
10539 		 */
10540 		if (features & NETIF_F_GRO_HW) {
10541 			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10542 			features &= ~NETIF_F_GRO_HW;
10543 		}
10544 	}
10545 
10546 	/* LRO/HW-GRO features cannot be combined with RX-FCS */
10547 	if (features & NETIF_F_RXFCS) {
10548 		if (features & NETIF_F_LRO) {
10549 			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
10550 			features &= ~NETIF_F_LRO;
10551 		}
10552 
10553 		if (features & NETIF_F_GRO_HW) {
10554 			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10555 			features &= ~NETIF_F_GRO_HW;
10556 		}
10557 	}
10558 
10559 	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
10560 		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
10561 		features &= ~NETIF_F_LRO;
10562 	}
10563 
10564 	if ((features & NETIF_F_HW_TLS_TX) && !netdev_has_ip_or_hw_csum(features)) {
10565 		netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10566 		features &= ~NETIF_F_HW_TLS_TX;
10567 	}
10568 
10569 	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
10570 		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10571 		features &= ~NETIF_F_HW_TLS_RX;
10572 	}
10573 
10574 	if ((features & NETIF_F_GSO_UDP_L4) && !netdev_has_ip_or_hw_csum(features)) {
10575 		netdev_dbg(dev, "Dropping USO feature since no CSUM feature.\n");
10576 		features &= ~NETIF_F_GSO_UDP_L4;
10577 	}
10578 
10579 	return features;
10580 }
10581 
10582 int __netdev_update_features(struct net_device *dev)
10583 {
10584 	struct net_device *upper, *lower;
10585 	netdev_features_t features;
10586 	struct list_head *iter;
10587 	int err = -1;
10588 
10589 	ASSERT_RTNL();
10590 	netdev_ops_assert_locked(dev);
10591 
10592 	features = netdev_get_wanted_features(dev);
10593 
10594 	if (dev->netdev_ops->ndo_fix_features)
10595 		features = dev->netdev_ops->ndo_fix_features(dev, features);
10596 
10597 	/* driver might be less strict about feature dependencies */
10598 	features = netdev_fix_features(dev, features);
10599 
10600 	/* some features can't be enabled if they're off on an upper device */
10601 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
10602 		features = netdev_sync_upper_features(dev, upper, features);
10603 
10604 	if (dev->features == features)
10605 		goto sync_lower;
10606 
10607 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
10608 		&dev->features, &features);
10609 
10610 	if (dev->netdev_ops->ndo_set_features)
10611 		err = dev->netdev_ops->ndo_set_features(dev, features);
10612 	else
10613 		err = 0;
10614 
10615 	if (unlikely(err < 0)) {
10616 		netdev_err(dev,
10617 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
10618 			err, &features, &dev->features);
10619 		/* return non-0 since some features might have changed and
10620 		 * it's better to fire a spurious notification than miss it
10621 		 */
10622 		return -1;
10623 	}
10624 
10625 sync_lower:
10626 	/* some features must be disabled on lower devices when disabled
10627 	 * on an upper device (think: bonding master or bridge)
10628 	 */
10629 	netdev_for_each_lower_dev(dev, lower, iter)
10630 		netdev_sync_lower_features(dev, lower, features);
10631 
10632 	if (!err) {
10633 		netdev_features_t diff = features ^ dev->features;
10634 
10635 		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
10636 			/* udp_tunnel_{get,drop}_rx_info both need
10637 			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10638 			 * device, or they won't do anything.
10639 			 * Thus we need to update dev->features
10640 			 * *before* calling udp_tunnel_get_rx_info,
10641 			 * but *after* calling udp_tunnel_drop_rx_info.
10642 			 */
10643 			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
10644 				dev->features = features;
10645 				udp_tunnel_get_rx_info(dev);
10646 			} else {
10647 				udp_tunnel_drop_rx_info(dev);
10648 			}
10649 		}
10650 
10651 		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
10652 			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
10653 				dev->features = features;
10654 				err |= vlan_get_rx_ctag_filter_info(dev);
10655 			} else {
10656 				vlan_drop_rx_ctag_filter_info(dev);
10657 			}
10658 		}
10659 
10660 		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10661 			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10662 				dev->features = features;
10663 				err |= vlan_get_rx_stag_filter_info(dev);
10664 			} else {
10665 				vlan_drop_rx_stag_filter_info(dev);
10666 			}
10667 		}
10668 
10669 		dev->features = features;
10670 	}
10671 
10672 	return err < 0 ? 0 : 1;
10673 }
10674 
10675 /**
10676  *	netdev_update_features - recalculate device features
10677  *	@dev: the device to check
10678  *
10679  *	Recalculate dev->features set and send notifications if it
10680  *	has changed. Should be called after driver or hardware dependent
10681  *	conditions might have changed that influence the features.
10682  */
10683 void netdev_update_features(struct net_device *dev)
10684 {
10685 	if (__netdev_update_features(dev))
10686 		netdev_features_change(dev);
10687 }
10688 EXPORT_SYMBOL(netdev_update_features);
10689 
10690 /**
10691  *	netdev_change_features - recalculate device features
10692  *	@dev: the device to check
10693  *
10694  *	Recalculate dev->features set and send notifications even
10695  *	if they have not changed. Should be called instead of
10696  *	netdev_update_features() if also dev->vlan_features might
10697  *	have changed to allow the changes to be propagated to stacked
10698  *	VLAN devices.
10699  */
10700 void netdev_change_features(struct net_device *dev)
10701 {
10702 	__netdev_update_features(dev);
10703 	netdev_features_change(dev);
10704 }
10705 EXPORT_SYMBOL(netdev_change_features);
10706 
10707 /**
10708  *	netif_stacked_transfer_operstate -	transfer operstate
10709  *	@rootdev: the root or lower level device to transfer state from
10710  *	@dev: the device to transfer operstate to
10711  *
10712  *	Transfer operational state from root to device. This is normally
10713  *	called when a stacking relationship exists between the root
10714  *	device and the device(a leaf device).
10715  */
10716 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10717 					struct net_device *dev)
10718 {
10719 	if (rootdev->operstate == IF_OPER_DORMANT)
10720 		netif_dormant_on(dev);
10721 	else
10722 		netif_dormant_off(dev);
10723 
10724 	if (rootdev->operstate == IF_OPER_TESTING)
10725 		netif_testing_on(dev);
10726 	else
10727 		netif_testing_off(dev);
10728 
10729 	if (netif_carrier_ok(rootdev))
10730 		netif_carrier_on(dev);
10731 	else
10732 		netif_carrier_off(dev);
10733 }
10734 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10735 
10736 static int netif_alloc_rx_queues(struct net_device *dev)
10737 {
10738 	unsigned int i, count = dev->num_rx_queues;
10739 	struct netdev_rx_queue *rx;
10740 	size_t sz = count * sizeof(*rx);
10741 	int err = 0;
10742 
10743 	BUG_ON(count < 1);
10744 
10745 	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10746 	if (!rx)
10747 		return -ENOMEM;
10748 
10749 	dev->_rx = rx;
10750 
10751 	for (i = 0; i < count; i++) {
10752 		rx[i].dev = dev;
10753 
10754 		/* XDP RX-queue setup */
10755 		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10756 		if (err < 0)
10757 			goto err_rxq_info;
10758 	}
10759 	return 0;
10760 
10761 err_rxq_info:
10762 	/* Rollback successful reg's and free other resources */
10763 	while (i--)
10764 		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10765 	kvfree(dev->_rx);
10766 	dev->_rx = NULL;
10767 	return err;
10768 }
10769 
10770 static void netif_free_rx_queues(struct net_device *dev)
10771 {
10772 	unsigned int i, count = dev->num_rx_queues;
10773 
10774 	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10775 	if (!dev->_rx)
10776 		return;
10777 
10778 	for (i = 0; i < count; i++)
10779 		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10780 
10781 	kvfree(dev->_rx);
10782 }
10783 
10784 static void netdev_init_one_queue(struct net_device *dev,
10785 				  struct netdev_queue *queue, void *_unused)
10786 {
10787 	/* Initialize queue lock */
10788 	spin_lock_init(&queue->_xmit_lock);
10789 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10790 	queue->xmit_lock_owner = -1;
10791 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10792 	queue->dev = dev;
10793 #ifdef CONFIG_BQL
10794 	dql_init(&queue->dql, HZ);
10795 #endif
10796 }
10797 
10798 static void netif_free_tx_queues(struct net_device *dev)
10799 {
10800 	kvfree(dev->_tx);
10801 }
10802 
10803 static int netif_alloc_netdev_queues(struct net_device *dev)
10804 {
10805 	unsigned int count = dev->num_tx_queues;
10806 	struct netdev_queue *tx;
10807 	size_t sz = count * sizeof(*tx);
10808 
10809 	if (count < 1 || count > 0xffff)
10810 		return -EINVAL;
10811 
10812 	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10813 	if (!tx)
10814 		return -ENOMEM;
10815 
10816 	dev->_tx = tx;
10817 
10818 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10819 	spin_lock_init(&dev->tx_global_lock);
10820 
10821 	return 0;
10822 }
10823 
10824 void netif_tx_stop_all_queues(struct net_device *dev)
10825 {
10826 	unsigned int i;
10827 
10828 	for (i = 0; i < dev->num_tx_queues; i++) {
10829 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10830 
10831 		netif_tx_stop_queue(txq);
10832 	}
10833 }
10834 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10835 
10836 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10837 {
10838 	void __percpu *v;
10839 
10840 	/* Drivers implementing ndo_get_peer_dev must support tstat
10841 	 * accounting, so that skb_do_redirect() can bump the dev's
10842 	 * RX stats upon network namespace switch.
10843 	 */
10844 	if (dev->netdev_ops->ndo_get_peer_dev &&
10845 	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10846 		return -EOPNOTSUPP;
10847 
10848 	switch (dev->pcpu_stat_type) {
10849 	case NETDEV_PCPU_STAT_NONE:
10850 		return 0;
10851 	case NETDEV_PCPU_STAT_LSTATS:
10852 		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10853 		break;
10854 	case NETDEV_PCPU_STAT_TSTATS:
10855 		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10856 		break;
10857 	case NETDEV_PCPU_STAT_DSTATS:
10858 		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10859 		break;
10860 	default:
10861 		return -EINVAL;
10862 	}
10863 
10864 	return v ? 0 : -ENOMEM;
10865 }
10866 
10867 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10868 {
10869 	switch (dev->pcpu_stat_type) {
10870 	case NETDEV_PCPU_STAT_NONE:
10871 		return;
10872 	case NETDEV_PCPU_STAT_LSTATS:
10873 		free_percpu(dev->lstats);
10874 		break;
10875 	case NETDEV_PCPU_STAT_TSTATS:
10876 		free_percpu(dev->tstats);
10877 		break;
10878 	case NETDEV_PCPU_STAT_DSTATS:
10879 		free_percpu(dev->dstats);
10880 		break;
10881 	}
10882 }
10883 
10884 static void netdev_free_phy_link_topology(struct net_device *dev)
10885 {
10886 	struct phy_link_topology *topo = dev->link_topo;
10887 
10888 	if (IS_ENABLED(CONFIG_PHYLIB) && topo) {
10889 		xa_destroy(&topo->phys);
10890 		kfree(topo);
10891 		dev->link_topo = NULL;
10892 	}
10893 }
10894 
10895 /**
10896  * register_netdevice() - register a network device
10897  * @dev: device to register
10898  *
10899  * Take a prepared network device structure and make it externally accessible.
10900  * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10901  * Callers must hold the rtnl lock - you may want register_netdev()
10902  * instead of this.
10903  */
10904 int register_netdevice(struct net_device *dev)
10905 {
10906 	int ret;
10907 	struct net *net = dev_net(dev);
10908 
10909 	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10910 		     NETDEV_FEATURE_COUNT);
10911 	BUG_ON(dev_boot_phase);
10912 	ASSERT_RTNL();
10913 
10914 	might_sleep();
10915 
10916 	/* When net_device's are persistent, this will be fatal. */
10917 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10918 	BUG_ON(!net);
10919 
10920 	ret = ethtool_check_ops(dev->ethtool_ops);
10921 	if (ret)
10922 		return ret;
10923 
10924 	/* rss ctx ID 0 is reserved for the default context, start from 1 */
10925 	xa_init_flags(&dev->ethtool->rss_ctx, XA_FLAGS_ALLOC1);
10926 	mutex_init(&dev->ethtool->rss_lock);
10927 
10928 	spin_lock_init(&dev->addr_list_lock);
10929 	netdev_set_addr_lockdep_class(dev);
10930 
10931 	ret = dev_get_valid_name(net, dev, dev->name);
10932 	if (ret < 0)
10933 		goto out;
10934 
10935 	ret = -ENOMEM;
10936 	dev->name_node = netdev_name_node_head_alloc(dev);
10937 	if (!dev->name_node)
10938 		goto out;
10939 
10940 	/* Init, if this function is available */
10941 	if (dev->netdev_ops->ndo_init) {
10942 		ret = dev->netdev_ops->ndo_init(dev);
10943 		if (ret) {
10944 			if (ret > 0)
10945 				ret = -EIO;
10946 			goto err_free_name;
10947 		}
10948 	}
10949 
10950 	if (((dev->hw_features | dev->features) &
10951 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10952 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10953 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10954 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10955 		ret = -EINVAL;
10956 		goto err_uninit;
10957 	}
10958 
10959 	ret = netdev_do_alloc_pcpu_stats(dev);
10960 	if (ret)
10961 		goto err_uninit;
10962 
10963 	ret = dev_index_reserve(net, dev->ifindex);
10964 	if (ret < 0)
10965 		goto err_free_pcpu;
10966 	dev->ifindex = ret;
10967 
10968 	/* Transfer changeable features to wanted_features and enable
10969 	 * software offloads (GSO and GRO).
10970 	 */
10971 	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10972 	dev->features |= NETIF_F_SOFT_FEATURES;
10973 
10974 	if (dev->udp_tunnel_nic_info) {
10975 		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10976 		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10977 	}
10978 
10979 	dev->wanted_features = dev->features & dev->hw_features;
10980 
10981 	if (!(dev->flags & IFF_LOOPBACK))
10982 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10983 
10984 	/* If IPv4 TCP segmentation offload is supported we should also
10985 	 * allow the device to enable segmenting the frame with the option
10986 	 * of ignoring a static IP ID value.  This doesn't enable the
10987 	 * feature itself but allows the user to enable it later.
10988 	 */
10989 	if (dev->hw_features & NETIF_F_TSO)
10990 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10991 	if (dev->vlan_features & NETIF_F_TSO)
10992 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10993 	if (dev->mpls_features & NETIF_F_TSO)
10994 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10995 	if (dev->hw_enc_features & NETIF_F_TSO)
10996 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10997 
10998 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10999 	 */
11000 	dev->vlan_features |= NETIF_F_HIGHDMA;
11001 
11002 	/* Make NETIF_F_SG inheritable to tunnel devices.
11003 	 */
11004 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
11005 
11006 	/* Make NETIF_F_SG inheritable to MPLS.
11007 	 */
11008 	dev->mpls_features |= NETIF_F_SG;
11009 
11010 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
11011 	ret = notifier_to_errno(ret);
11012 	if (ret)
11013 		goto err_ifindex_release;
11014 
11015 	ret = netdev_register_kobject(dev);
11016 
11017 	netdev_lock(dev);
11018 	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
11019 	netdev_unlock(dev);
11020 
11021 	if (ret)
11022 		goto err_uninit_notify;
11023 
11024 	netdev_lock_ops(dev);
11025 	__netdev_update_features(dev);
11026 	netdev_unlock_ops(dev);
11027 
11028 	/*
11029 	 *	Default initial state at registry is that the
11030 	 *	device is present.
11031 	 */
11032 
11033 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11034 
11035 	linkwatch_init_dev(dev);
11036 
11037 	dev_init_scheduler(dev);
11038 
11039 	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
11040 	list_netdevice(dev);
11041 
11042 	add_device_randomness(dev->dev_addr, dev->addr_len);
11043 
11044 	/* If the device has permanent device address, driver should
11045 	 * set dev_addr and also addr_assign_type should be set to
11046 	 * NET_ADDR_PERM (default value).
11047 	 */
11048 	if (dev->addr_assign_type == NET_ADDR_PERM)
11049 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
11050 
11051 	/* Notify protocols, that a new device appeared. */
11052 	netdev_lock_ops(dev);
11053 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
11054 	netdev_unlock_ops(dev);
11055 	ret = notifier_to_errno(ret);
11056 	if (ret) {
11057 		/* Expect explicit free_netdev() on failure */
11058 		dev->needs_free_netdev = false;
11059 		unregister_netdevice_queue(dev, NULL);
11060 		goto out;
11061 	}
11062 	/*
11063 	 *	Prevent userspace races by waiting until the network
11064 	 *	device is fully setup before sending notifications.
11065 	 */
11066 	if (!dev->rtnl_link_ops ||
11067 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11068 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11069 
11070 out:
11071 	return ret;
11072 
11073 err_uninit_notify:
11074 	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11075 err_ifindex_release:
11076 	dev_index_release(net, dev->ifindex);
11077 err_free_pcpu:
11078 	netdev_do_free_pcpu_stats(dev);
11079 err_uninit:
11080 	if (dev->netdev_ops->ndo_uninit)
11081 		dev->netdev_ops->ndo_uninit(dev);
11082 	if (dev->priv_destructor)
11083 		dev->priv_destructor(dev);
11084 err_free_name:
11085 	netdev_name_node_free(dev->name_node);
11086 	goto out;
11087 }
11088 EXPORT_SYMBOL(register_netdevice);
11089 
11090 /* Initialize the core of a dummy net device.
11091  * The setup steps dummy netdevs need which normal netdevs get by going
11092  * through register_netdevice().
11093  */
11094 static void init_dummy_netdev(struct net_device *dev)
11095 {
11096 	/* make sure we BUG if trying to hit standard
11097 	 * register/unregister code path
11098 	 */
11099 	dev->reg_state = NETREG_DUMMY;
11100 
11101 	/* a dummy interface is started by default */
11102 	set_bit(__LINK_STATE_PRESENT, &dev->state);
11103 	set_bit(__LINK_STATE_START, &dev->state);
11104 
11105 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
11106 	 * because users of this 'device' dont need to change
11107 	 * its refcount.
11108 	 */
11109 }
11110 
11111 /**
11112  *	register_netdev	- register a network device
11113  *	@dev: device to register
11114  *
11115  *	Take a completed network device structure and add it to the kernel
11116  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
11117  *	chain. 0 is returned on success. A negative errno code is returned
11118  *	on a failure to set up the device, or if the name is a duplicate.
11119  *
11120  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
11121  *	and expands the device name if you passed a format string to
11122  *	alloc_netdev.
11123  */
11124 int register_netdev(struct net_device *dev)
11125 {
11126 	struct net *net = dev_net(dev);
11127 	int err;
11128 
11129 	if (rtnl_net_lock_killable(net))
11130 		return -EINTR;
11131 
11132 	err = register_netdevice(dev);
11133 
11134 	rtnl_net_unlock(net);
11135 
11136 	return err;
11137 }
11138 EXPORT_SYMBOL(register_netdev);
11139 
11140 int netdev_refcnt_read(const struct net_device *dev)
11141 {
11142 #ifdef CONFIG_PCPU_DEV_REFCNT
11143 	int i, refcnt = 0;
11144 
11145 	for_each_possible_cpu(i)
11146 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
11147 	return refcnt;
11148 #else
11149 	return refcount_read(&dev->dev_refcnt);
11150 #endif
11151 }
11152 EXPORT_SYMBOL(netdev_refcnt_read);
11153 
11154 int netdev_unregister_timeout_secs __read_mostly = 10;
11155 
11156 #define WAIT_REFS_MIN_MSECS 1
11157 #define WAIT_REFS_MAX_MSECS 250
11158 /**
11159  * netdev_wait_allrefs_any - wait until all references are gone.
11160  * @list: list of net_devices to wait on
11161  *
11162  * This is called when unregistering network devices.
11163  *
11164  * Any protocol or device that holds a reference should register
11165  * for netdevice notification, and cleanup and put back the
11166  * reference if they receive an UNREGISTER event.
11167  * We can get stuck here if buggy protocols don't correctly
11168  * call dev_put.
11169  */
11170 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
11171 {
11172 	unsigned long rebroadcast_time, warning_time;
11173 	struct net_device *dev;
11174 	int wait = 0;
11175 
11176 	rebroadcast_time = warning_time = jiffies;
11177 
11178 	list_for_each_entry(dev, list, todo_list)
11179 		if (netdev_refcnt_read(dev) == 1)
11180 			return dev;
11181 
11182 	while (true) {
11183 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
11184 			rtnl_lock();
11185 
11186 			/* Rebroadcast unregister notification */
11187 			list_for_each_entry(dev, list, todo_list)
11188 				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11189 
11190 			__rtnl_unlock();
11191 			rcu_barrier();
11192 			rtnl_lock();
11193 
11194 			list_for_each_entry(dev, list, todo_list)
11195 				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
11196 					     &dev->state)) {
11197 					/* We must not have linkwatch events
11198 					 * pending on unregister. If this
11199 					 * happens, we simply run the queue
11200 					 * unscheduled, resulting in a noop
11201 					 * for this device.
11202 					 */
11203 					linkwatch_run_queue();
11204 					break;
11205 				}
11206 
11207 			__rtnl_unlock();
11208 
11209 			rebroadcast_time = jiffies;
11210 		}
11211 
11212 		rcu_barrier();
11213 
11214 		if (!wait) {
11215 			wait = WAIT_REFS_MIN_MSECS;
11216 		} else {
11217 			msleep(wait);
11218 			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
11219 		}
11220 
11221 		list_for_each_entry(dev, list, todo_list)
11222 			if (netdev_refcnt_read(dev) == 1)
11223 				return dev;
11224 
11225 		if (time_after(jiffies, warning_time +
11226 			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
11227 			list_for_each_entry(dev, list, todo_list) {
11228 				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
11229 					 dev->name, netdev_refcnt_read(dev));
11230 				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
11231 			}
11232 
11233 			warning_time = jiffies;
11234 		}
11235 	}
11236 }
11237 
11238 /* The sequence is:
11239  *
11240  *	rtnl_lock();
11241  *	...
11242  *	register_netdevice(x1);
11243  *	register_netdevice(x2);
11244  *	...
11245  *	unregister_netdevice(y1);
11246  *	unregister_netdevice(y2);
11247  *      ...
11248  *	rtnl_unlock();
11249  *	free_netdev(y1);
11250  *	free_netdev(y2);
11251  *
11252  * We are invoked by rtnl_unlock().
11253  * This allows us to deal with problems:
11254  * 1) We can delete sysfs objects which invoke hotplug
11255  *    without deadlocking with linkwatch via keventd.
11256  * 2) Since we run with the RTNL semaphore not held, we can sleep
11257  *    safely in order to wait for the netdev refcnt to drop to zero.
11258  *
11259  * We must not return until all unregister events added during
11260  * the interval the lock was held have been completed.
11261  */
11262 void netdev_run_todo(void)
11263 {
11264 	struct net_device *dev, *tmp;
11265 	struct list_head list;
11266 	int cnt;
11267 #ifdef CONFIG_LOCKDEP
11268 	struct list_head unlink_list;
11269 
11270 	list_replace_init(&net_unlink_list, &unlink_list);
11271 
11272 	while (!list_empty(&unlink_list)) {
11273 		dev = list_first_entry(&unlink_list, struct net_device,
11274 				       unlink_list);
11275 		list_del_init(&dev->unlink_list);
11276 		dev->nested_level = dev->lower_level - 1;
11277 	}
11278 #endif
11279 
11280 	/* Snapshot list, allow later requests */
11281 	list_replace_init(&net_todo_list, &list);
11282 
11283 	__rtnl_unlock();
11284 
11285 	/* Wait for rcu callbacks to finish before next phase */
11286 	if (!list_empty(&list))
11287 		rcu_barrier();
11288 
11289 	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
11290 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
11291 			netdev_WARN(dev, "run_todo but not unregistering\n");
11292 			list_del(&dev->todo_list);
11293 			continue;
11294 		}
11295 
11296 		netdev_lock(dev);
11297 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
11298 		netdev_unlock(dev);
11299 		linkwatch_sync_dev(dev);
11300 	}
11301 
11302 	cnt = 0;
11303 	while (!list_empty(&list)) {
11304 		dev = netdev_wait_allrefs_any(&list);
11305 		list_del(&dev->todo_list);
11306 
11307 		/* paranoia */
11308 		BUG_ON(netdev_refcnt_read(dev) != 1);
11309 		BUG_ON(!list_empty(&dev->ptype_all));
11310 		BUG_ON(!list_empty(&dev->ptype_specific));
11311 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
11312 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
11313 
11314 		netdev_do_free_pcpu_stats(dev);
11315 		if (dev->priv_destructor)
11316 			dev->priv_destructor(dev);
11317 		if (dev->needs_free_netdev)
11318 			free_netdev(dev);
11319 
11320 		cnt++;
11321 
11322 		/* Free network device */
11323 		kobject_put(&dev->dev.kobj);
11324 	}
11325 	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
11326 		wake_up(&netdev_unregistering_wq);
11327 }
11328 
11329 /* Collate per-cpu network dstats statistics
11330  *
11331  * Read per-cpu network statistics from dev->dstats and populate the related
11332  * fields in @s.
11333  */
11334 static void dev_fetch_dstats(struct rtnl_link_stats64 *s,
11335 			     const struct pcpu_dstats __percpu *dstats)
11336 {
11337 	int cpu;
11338 
11339 	for_each_possible_cpu(cpu) {
11340 		u64 rx_packets, rx_bytes, rx_drops;
11341 		u64 tx_packets, tx_bytes, tx_drops;
11342 		const struct pcpu_dstats *stats;
11343 		unsigned int start;
11344 
11345 		stats = per_cpu_ptr(dstats, cpu);
11346 		do {
11347 			start = u64_stats_fetch_begin(&stats->syncp);
11348 			rx_packets = u64_stats_read(&stats->rx_packets);
11349 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11350 			rx_drops   = u64_stats_read(&stats->rx_drops);
11351 			tx_packets = u64_stats_read(&stats->tx_packets);
11352 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11353 			tx_drops   = u64_stats_read(&stats->tx_drops);
11354 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11355 
11356 		s->rx_packets += rx_packets;
11357 		s->rx_bytes   += rx_bytes;
11358 		s->rx_dropped += rx_drops;
11359 		s->tx_packets += tx_packets;
11360 		s->tx_bytes   += tx_bytes;
11361 		s->tx_dropped += tx_drops;
11362 	}
11363 }
11364 
11365 /* ndo_get_stats64 implementation for dtstats-based accounting.
11366  *
11367  * Populate @s from dev->stats and dev->dstats. This is used internally by the
11368  * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
11369  */
11370 static void dev_get_dstats64(const struct net_device *dev,
11371 			     struct rtnl_link_stats64 *s)
11372 {
11373 	netdev_stats_to_stats64(s, &dev->stats);
11374 	dev_fetch_dstats(s, dev->dstats);
11375 }
11376 
11377 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
11378  * all the same fields in the same order as net_device_stats, with only
11379  * the type differing, but rtnl_link_stats64 may have additional fields
11380  * at the end for newer counters.
11381  */
11382 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
11383 			     const struct net_device_stats *netdev_stats)
11384 {
11385 	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
11386 	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
11387 	u64 *dst = (u64 *)stats64;
11388 
11389 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
11390 	for (i = 0; i < n; i++)
11391 		dst[i] = (unsigned long)atomic_long_read(&src[i]);
11392 	/* zero out counters that only exist in rtnl_link_stats64 */
11393 	memset((char *)stats64 + n * sizeof(u64), 0,
11394 	       sizeof(*stats64) - n * sizeof(u64));
11395 }
11396 EXPORT_SYMBOL(netdev_stats_to_stats64);
11397 
11398 static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
11399 		struct net_device *dev)
11400 {
11401 	struct net_device_core_stats __percpu *p;
11402 
11403 	p = alloc_percpu_gfp(struct net_device_core_stats,
11404 			     GFP_ATOMIC | __GFP_NOWARN);
11405 
11406 	if (p && cmpxchg(&dev->core_stats, NULL, p))
11407 		free_percpu(p);
11408 
11409 	/* This READ_ONCE() pairs with the cmpxchg() above */
11410 	return READ_ONCE(dev->core_stats);
11411 }
11412 
11413 noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
11414 {
11415 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11416 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
11417 	unsigned long __percpu *field;
11418 
11419 	if (unlikely(!p)) {
11420 		p = netdev_core_stats_alloc(dev);
11421 		if (!p)
11422 			return;
11423 	}
11424 
11425 	field = (unsigned long __percpu *)((void __percpu *)p + offset);
11426 	this_cpu_inc(*field);
11427 }
11428 EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
11429 
11430 /**
11431  *	dev_get_stats	- get network device statistics
11432  *	@dev: device to get statistics from
11433  *	@storage: place to store stats
11434  *
11435  *	Get network statistics from device. Return @storage.
11436  *	The device driver may provide its own method by setting
11437  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11438  *	otherwise the internal statistics structure is used.
11439  */
11440 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
11441 					struct rtnl_link_stats64 *storage)
11442 {
11443 	const struct net_device_ops *ops = dev->netdev_ops;
11444 	const struct net_device_core_stats __percpu *p;
11445 
11446 	/*
11447 	 * IPv{4,6} and udp tunnels share common stat helpers and use
11448 	 * different stat type (NETDEV_PCPU_STAT_TSTATS vs
11449 	 * NETDEV_PCPU_STAT_DSTATS). Ensure the accounting is consistent.
11450 	 */
11451 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_bytes) !=
11452 		     offsetof(struct pcpu_dstats, rx_bytes));
11453 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, rx_packets) !=
11454 		     offsetof(struct pcpu_dstats, rx_packets));
11455 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_bytes) !=
11456 		     offsetof(struct pcpu_dstats, tx_bytes));
11457 	BUILD_BUG_ON(offsetof(struct pcpu_sw_netstats, tx_packets) !=
11458 		     offsetof(struct pcpu_dstats, tx_packets));
11459 
11460 	if (ops->ndo_get_stats64) {
11461 		memset(storage, 0, sizeof(*storage));
11462 		ops->ndo_get_stats64(dev, storage);
11463 	} else if (ops->ndo_get_stats) {
11464 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
11465 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
11466 		dev_get_tstats64(dev, storage);
11467 	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_DSTATS) {
11468 		dev_get_dstats64(dev, storage);
11469 	} else {
11470 		netdev_stats_to_stats64(storage, &dev->stats);
11471 	}
11472 
11473 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11474 	p = READ_ONCE(dev->core_stats);
11475 	if (p) {
11476 		const struct net_device_core_stats *core_stats;
11477 		int i;
11478 
11479 		for_each_possible_cpu(i) {
11480 			core_stats = per_cpu_ptr(p, i);
11481 			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
11482 			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
11483 			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
11484 			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
11485 		}
11486 	}
11487 	return storage;
11488 }
11489 EXPORT_SYMBOL(dev_get_stats);
11490 
11491 /**
11492  *	dev_fetch_sw_netstats - get per-cpu network device statistics
11493  *	@s: place to store stats
11494  *	@netstats: per-cpu network stats to read from
11495  *
11496  *	Read per-cpu network statistics and populate the related fields in @s.
11497  */
11498 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
11499 			   const struct pcpu_sw_netstats __percpu *netstats)
11500 {
11501 	int cpu;
11502 
11503 	for_each_possible_cpu(cpu) {
11504 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
11505 		const struct pcpu_sw_netstats *stats;
11506 		unsigned int start;
11507 
11508 		stats = per_cpu_ptr(netstats, cpu);
11509 		do {
11510 			start = u64_stats_fetch_begin(&stats->syncp);
11511 			rx_packets = u64_stats_read(&stats->rx_packets);
11512 			rx_bytes   = u64_stats_read(&stats->rx_bytes);
11513 			tx_packets = u64_stats_read(&stats->tx_packets);
11514 			tx_bytes   = u64_stats_read(&stats->tx_bytes);
11515 		} while (u64_stats_fetch_retry(&stats->syncp, start));
11516 
11517 		s->rx_packets += rx_packets;
11518 		s->rx_bytes   += rx_bytes;
11519 		s->tx_packets += tx_packets;
11520 		s->tx_bytes   += tx_bytes;
11521 	}
11522 }
11523 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
11524 
11525 /**
11526  *	dev_get_tstats64 - ndo_get_stats64 implementation
11527  *	@dev: device to get statistics from
11528  *	@s: place to store stats
11529  *
11530  *	Populate @s from dev->stats and dev->tstats. Can be used as
11531  *	ndo_get_stats64() callback.
11532  */
11533 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
11534 {
11535 	netdev_stats_to_stats64(s, &dev->stats);
11536 	dev_fetch_sw_netstats(s, dev->tstats);
11537 }
11538 EXPORT_SYMBOL_GPL(dev_get_tstats64);
11539 
11540 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
11541 {
11542 	struct netdev_queue *queue = dev_ingress_queue(dev);
11543 
11544 #ifdef CONFIG_NET_CLS_ACT
11545 	if (queue)
11546 		return queue;
11547 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
11548 	if (!queue)
11549 		return NULL;
11550 	netdev_init_one_queue(dev, queue, NULL);
11551 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
11552 	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
11553 	rcu_assign_pointer(dev->ingress_queue, queue);
11554 #endif
11555 	return queue;
11556 }
11557 
11558 static const struct ethtool_ops default_ethtool_ops;
11559 
11560 void netdev_set_default_ethtool_ops(struct net_device *dev,
11561 				    const struct ethtool_ops *ops)
11562 {
11563 	if (dev->ethtool_ops == &default_ethtool_ops)
11564 		dev->ethtool_ops = ops;
11565 }
11566 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
11567 
11568 /**
11569  * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11570  * @dev: netdev to enable the IRQ coalescing on
11571  *
11572  * Sets a conservative default for SW IRQ coalescing. Users can use
11573  * sysfs attributes to override the default values.
11574  */
11575 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
11576 {
11577 	WARN_ON(dev->reg_state == NETREG_REGISTERED);
11578 
11579 	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
11580 		netdev_set_gro_flush_timeout(dev, 20000);
11581 		netdev_set_defer_hard_irqs(dev, 1);
11582 	}
11583 }
11584 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
11585 
11586 /**
11587  * alloc_netdev_mqs - allocate network device
11588  * @sizeof_priv: size of private data to allocate space for
11589  * @name: device name format string
11590  * @name_assign_type: origin of device name
11591  * @setup: callback to initialize device
11592  * @txqs: the number of TX subqueues to allocate
11593  * @rxqs: the number of RX subqueues to allocate
11594  *
11595  * Allocates a struct net_device with private data area for driver use
11596  * and performs basic initialization.  Also allocates subqueue structs
11597  * for each queue on the device.
11598  */
11599 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
11600 		unsigned char name_assign_type,
11601 		void (*setup)(struct net_device *),
11602 		unsigned int txqs, unsigned int rxqs)
11603 {
11604 	struct net_device *dev;
11605 	size_t napi_config_sz;
11606 	unsigned int maxqs;
11607 
11608 	BUG_ON(strlen(name) >= sizeof(dev->name));
11609 
11610 	if (txqs < 1) {
11611 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11612 		return NULL;
11613 	}
11614 
11615 	if (rxqs < 1) {
11616 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11617 		return NULL;
11618 	}
11619 
11620 	maxqs = max(txqs, rxqs);
11621 
11622 	dev = kvzalloc(struct_size(dev, priv, sizeof_priv),
11623 		       GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
11624 	if (!dev)
11625 		return NULL;
11626 
11627 	dev->priv_len = sizeof_priv;
11628 
11629 	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
11630 #ifdef CONFIG_PCPU_DEV_REFCNT
11631 	dev->pcpu_refcnt = alloc_percpu(int);
11632 	if (!dev->pcpu_refcnt)
11633 		goto free_dev;
11634 	__dev_hold(dev);
11635 #else
11636 	refcount_set(&dev->dev_refcnt, 1);
11637 #endif
11638 
11639 	if (dev_addr_init(dev))
11640 		goto free_pcpu;
11641 
11642 	dev_mc_init(dev);
11643 	dev_uc_init(dev);
11644 
11645 	dev_net_set(dev, &init_net);
11646 
11647 	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
11648 	dev->xdp_zc_max_segs = 1;
11649 	dev->gso_max_segs = GSO_MAX_SEGS;
11650 	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
11651 	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
11652 	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
11653 	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
11654 	dev->tso_max_segs = TSO_MAX_SEGS;
11655 	dev->upper_level = 1;
11656 	dev->lower_level = 1;
11657 #ifdef CONFIG_LOCKDEP
11658 	dev->nested_level = 0;
11659 	INIT_LIST_HEAD(&dev->unlink_list);
11660 #endif
11661 
11662 	INIT_LIST_HEAD(&dev->napi_list);
11663 	INIT_LIST_HEAD(&dev->unreg_list);
11664 	INIT_LIST_HEAD(&dev->close_list);
11665 	INIT_LIST_HEAD(&dev->link_watch_list);
11666 	INIT_LIST_HEAD(&dev->adj_list.upper);
11667 	INIT_LIST_HEAD(&dev->adj_list.lower);
11668 	INIT_LIST_HEAD(&dev->ptype_all);
11669 	INIT_LIST_HEAD(&dev->ptype_specific);
11670 	INIT_LIST_HEAD(&dev->net_notifier_list);
11671 #ifdef CONFIG_NET_SCHED
11672 	hash_init(dev->qdisc_hash);
11673 #endif
11674 
11675 	mutex_init(&dev->lock);
11676 
11677 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
11678 	setup(dev);
11679 
11680 	if (!dev->tx_queue_len) {
11681 		dev->priv_flags |= IFF_NO_QUEUE;
11682 		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
11683 	}
11684 
11685 	dev->num_tx_queues = txqs;
11686 	dev->real_num_tx_queues = txqs;
11687 	if (netif_alloc_netdev_queues(dev))
11688 		goto free_all;
11689 
11690 	dev->num_rx_queues = rxqs;
11691 	dev->real_num_rx_queues = rxqs;
11692 	if (netif_alloc_rx_queues(dev))
11693 		goto free_all;
11694 	dev->ethtool = kzalloc(sizeof(*dev->ethtool), GFP_KERNEL_ACCOUNT);
11695 	if (!dev->ethtool)
11696 		goto free_all;
11697 
11698 	dev->cfg = kzalloc(sizeof(*dev->cfg), GFP_KERNEL_ACCOUNT);
11699 	if (!dev->cfg)
11700 		goto free_all;
11701 	dev->cfg_pending = dev->cfg;
11702 
11703 	napi_config_sz = array_size(maxqs, sizeof(*dev->napi_config));
11704 	dev->napi_config = kvzalloc(napi_config_sz, GFP_KERNEL_ACCOUNT);
11705 	if (!dev->napi_config)
11706 		goto free_all;
11707 
11708 	strscpy(dev->name, name);
11709 	dev->name_assign_type = name_assign_type;
11710 	dev->group = INIT_NETDEV_GROUP;
11711 	if (!dev->ethtool_ops)
11712 		dev->ethtool_ops = &default_ethtool_ops;
11713 
11714 	nf_hook_netdev_init(dev);
11715 
11716 	return dev;
11717 
11718 free_all:
11719 	free_netdev(dev);
11720 	return NULL;
11721 
11722 free_pcpu:
11723 #ifdef CONFIG_PCPU_DEV_REFCNT
11724 	free_percpu(dev->pcpu_refcnt);
11725 free_dev:
11726 #endif
11727 	kvfree(dev);
11728 	return NULL;
11729 }
11730 EXPORT_SYMBOL(alloc_netdev_mqs);
11731 
11732 static void netdev_napi_exit(struct net_device *dev)
11733 {
11734 	if (!list_empty(&dev->napi_list)) {
11735 		struct napi_struct *p, *n;
11736 
11737 		netdev_lock(dev);
11738 		list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
11739 			__netif_napi_del_locked(p);
11740 		netdev_unlock(dev);
11741 
11742 		synchronize_net();
11743 	}
11744 
11745 	kvfree(dev->napi_config);
11746 }
11747 
11748 /**
11749  * free_netdev - free network device
11750  * @dev: device
11751  *
11752  * This function does the last stage of destroying an allocated device
11753  * interface. The reference to the device object is released. If this
11754  * is the last reference then it will be freed.Must be called in process
11755  * context.
11756  */
11757 void free_netdev(struct net_device *dev)
11758 {
11759 	might_sleep();
11760 
11761 	/* When called immediately after register_netdevice() failed the unwind
11762 	 * handling may still be dismantling the device. Handle that case by
11763 	 * deferring the free.
11764 	 */
11765 	if (dev->reg_state == NETREG_UNREGISTERING) {
11766 		ASSERT_RTNL();
11767 		dev->needs_free_netdev = true;
11768 		return;
11769 	}
11770 
11771 	WARN_ON(dev->cfg != dev->cfg_pending);
11772 	kfree(dev->cfg);
11773 	kfree(dev->ethtool);
11774 	netif_free_tx_queues(dev);
11775 	netif_free_rx_queues(dev);
11776 
11777 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
11778 
11779 	/* Flush device addresses */
11780 	dev_addr_flush(dev);
11781 
11782 	netdev_napi_exit(dev);
11783 
11784 	netif_del_cpu_rmap(dev);
11785 
11786 	ref_tracker_dir_exit(&dev->refcnt_tracker);
11787 #ifdef CONFIG_PCPU_DEV_REFCNT
11788 	free_percpu(dev->pcpu_refcnt);
11789 	dev->pcpu_refcnt = NULL;
11790 #endif
11791 	free_percpu(dev->core_stats);
11792 	dev->core_stats = NULL;
11793 	free_percpu(dev->xdp_bulkq);
11794 	dev->xdp_bulkq = NULL;
11795 
11796 	netdev_free_phy_link_topology(dev);
11797 
11798 	mutex_destroy(&dev->lock);
11799 
11800 	/*  Compatibility with error handling in drivers */
11801 	if (dev->reg_state == NETREG_UNINITIALIZED ||
11802 	    dev->reg_state == NETREG_DUMMY) {
11803 		kvfree(dev);
11804 		return;
11805 	}
11806 
11807 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
11808 	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
11809 
11810 	/* will free via device release */
11811 	put_device(&dev->dev);
11812 }
11813 EXPORT_SYMBOL(free_netdev);
11814 
11815 /**
11816  * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11817  * @sizeof_priv: size of private data to allocate space for
11818  *
11819  * Return: the allocated net_device on success, NULL otherwise
11820  */
11821 struct net_device *alloc_netdev_dummy(int sizeof_priv)
11822 {
11823 	return alloc_netdev(sizeof_priv, "dummy#", NET_NAME_UNKNOWN,
11824 			    init_dummy_netdev);
11825 }
11826 EXPORT_SYMBOL_GPL(alloc_netdev_dummy);
11827 
11828 /**
11829  *	synchronize_net -  Synchronize with packet receive processing
11830  *
11831  *	Wait for packets currently being received to be done.
11832  *	Does not block later packets from starting.
11833  */
11834 void synchronize_net(void)
11835 {
11836 	might_sleep();
11837 	if (from_cleanup_net() || rtnl_is_locked())
11838 		synchronize_rcu_expedited();
11839 	else
11840 		synchronize_rcu();
11841 }
11842 EXPORT_SYMBOL(synchronize_net);
11843 
11844 static void netdev_rss_contexts_free(struct net_device *dev)
11845 {
11846 	struct ethtool_rxfh_context *ctx;
11847 	unsigned long context;
11848 
11849 	mutex_lock(&dev->ethtool->rss_lock);
11850 	xa_for_each(&dev->ethtool->rss_ctx, context, ctx) {
11851 		struct ethtool_rxfh_param rxfh;
11852 
11853 		rxfh.indir = ethtool_rxfh_context_indir(ctx);
11854 		rxfh.key = ethtool_rxfh_context_key(ctx);
11855 		rxfh.hfunc = ctx->hfunc;
11856 		rxfh.input_xfrm = ctx->input_xfrm;
11857 		rxfh.rss_context = context;
11858 		rxfh.rss_delete = true;
11859 
11860 		xa_erase(&dev->ethtool->rss_ctx, context);
11861 		if (dev->ethtool_ops->create_rxfh_context)
11862 			dev->ethtool_ops->remove_rxfh_context(dev, ctx,
11863 							      context, NULL);
11864 		else
11865 			dev->ethtool_ops->set_rxfh(dev, &rxfh, NULL);
11866 		kfree(ctx);
11867 	}
11868 	xa_destroy(&dev->ethtool->rss_ctx);
11869 	mutex_unlock(&dev->ethtool->rss_lock);
11870 }
11871 
11872 /**
11873  *	unregister_netdevice_queue - remove device from the kernel
11874  *	@dev: device
11875  *	@head: list
11876  *
11877  *	This function shuts down a device interface and removes it
11878  *	from the kernel tables.
11879  *	If head not NULL, device is queued to be unregistered later.
11880  *
11881  *	Callers must hold the rtnl semaphore.  You may want
11882  *	unregister_netdev() instead of this.
11883  */
11884 
11885 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11886 {
11887 	ASSERT_RTNL();
11888 
11889 	if (head) {
11890 		list_move_tail(&dev->unreg_list, head);
11891 	} else {
11892 		LIST_HEAD(single);
11893 
11894 		list_add(&dev->unreg_list, &single);
11895 		unregister_netdevice_many(&single);
11896 	}
11897 }
11898 EXPORT_SYMBOL(unregister_netdevice_queue);
11899 
11900 static void dev_memory_provider_uninstall(struct net_device *dev)
11901 {
11902 	unsigned int i;
11903 
11904 	for (i = 0; i < dev->real_num_rx_queues; i++) {
11905 		struct netdev_rx_queue *rxq = &dev->_rx[i];
11906 		struct pp_memory_provider_params *p = &rxq->mp_params;
11907 
11908 		if (p->mp_ops && p->mp_ops->uninstall)
11909 			p->mp_ops->uninstall(rxq->mp_params.mp_priv, rxq);
11910 	}
11911 }
11912 
11913 void unregister_netdevice_many_notify(struct list_head *head,
11914 				      u32 portid, const struct nlmsghdr *nlh)
11915 {
11916 	struct net_device *dev, *tmp;
11917 	LIST_HEAD(close_head);
11918 	int cnt = 0;
11919 
11920 	BUG_ON(dev_boot_phase);
11921 	ASSERT_RTNL();
11922 
11923 	if (list_empty(head))
11924 		return;
11925 
11926 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11927 		/* Some devices call without registering
11928 		 * for initialization unwind. Remove those
11929 		 * devices and proceed with the remaining.
11930 		 */
11931 		if (dev->reg_state == NETREG_UNINITIALIZED) {
11932 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11933 				 dev->name, dev);
11934 
11935 			WARN_ON(1);
11936 			list_del(&dev->unreg_list);
11937 			continue;
11938 		}
11939 		dev->dismantle = true;
11940 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11941 	}
11942 
11943 	/* If device is running, close it first. */
11944 	list_for_each_entry(dev, head, unreg_list) {
11945 		list_add_tail(&dev->close_list, &close_head);
11946 		netdev_lock_ops(dev);
11947 	}
11948 	dev_close_many(&close_head, true);
11949 
11950 	list_for_each_entry(dev, head, unreg_list) {
11951 		netdev_unlock_ops(dev);
11952 		/* And unlink it from device chain. */
11953 		unlist_netdevice(dev);
11954 		netdev_lock(dev);
11955 		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11956 		netdev_unlock(dev);
11957 	}
11958 	flush_all_backlogs();
11959 
11960 	synchronize_net();
11961 
11962 	list_for_each_entry(dev, head, unreg_list) {
11963 		struct sk_buff *skb = NULL;
11964 
11965 		/* Shutdown queueing discipline. */
11966 		dev_shutdown(dev);
11967 		dev_tcx_uninstall(dev);
11968 		netdev_lock_ops(dev);
11969 		dev_xdp_uninstall(dev);
11970 		dev_memory_provider_uninstall(dev);
11971 		netdev_unlock_ops(dev);
11972 		bpf_dev_bound_netdev_unregister(dev);
11973 
11974 		netdev_offload_xstats_disable_all(dev);
11975 
11976 		/* Notify protocols, that we are about to destroy
11977 		 * this device. They should clean all the things.
11978 		 */
11979 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11980 
11981 		if (!dev->rtnl_link_ops ||
11982 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11983 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11984 						     GFP_KERNEL, NULL, 0,
11985 						     portid, nlh);
11986 
11987 		/*
11988 		 *	Flush the unicast and multicast chains
11989 		 */
11990 		dev_uc_flush(dev);
11991 		dev_mc_flush(dev);
11992 
11993 		netdev_name_node_alt_flush(dev);
11994 		netdev_name_node_free(dev->name_node);
11995 
11996 		netdev_rss_contexts_free(dev);
11997 
11998 		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11999 
12000 		if (dev->netdev_ops->ndo_uninit)
12001 			dev->netdev_ops->ndo_uninit(dev);
12002 
12003 		mutex_destroy(&dev->ethtool->rss_lock);
12004 
12005 		net_shaper_flush_netdev(dev);
12006 
12007 		if (skb)
12008 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
12009 
12010 		/* Notifier chain MUST detach us all upper devices. */
12011 		WARN_ON(netdev_has_any_upper_dev(dev));
12012 		WARN_ON(netdev_has_any_lower_dev(dev));
12013 
12014 		/* Remove entries from kobject tree */
12015 		netdev_unregister_kobject(dev);
12016 #ifdef CONFIG_XPS
12017 		/* Remove XPS queueing entries */
12018 		netif_reset_xps_queues_gt(dev, 0);
12019 #endif
12020 	}
12021 
12022 	synchronize_net();
12023 
12024 	list_for_each_entry(dev, head, unreg_list) {
12025 		netdev_put(dev, &dev->dev_registered_tracker);
12026 		net_set_todo(dev);
12027 		cnt++;
12028 	}
12029 	atomic_add(cnt, &dev_unreg_count);
12030 
12031 	list_del(head);
12032 }
12033 
12034 /**
12035  *	unregister_netdevice_many - unregister many devices
12036  *	@head: list of devices
12037  *
12038  *  Note: As most callers use a stack allocated list_head,
12039  *  we force a list_del() to make sure stack won't be corrupted later.
12040  */
12041 void unregister_netdevice_many(struct list_head *head)
12042 {
12043 	unregister_netdevice_many_notify(head, 0, NULL);
12044 }
12045 EXPORT_SYMBOL(unregister_netdevice_many);
12046 
12047 /**
12048  *	unregister_netdev - remove device from the kernel
12049  *	@dev: device
12050  *
12051  *	This function shuts down a device interface and removes it
12052  *	from the kernel tables.
12053  *
12054  *	This is just a wrapper for unregister_netdevice that takes
12055  *	the rtnl semaphore.  In general you want to use this and not
12056  *	unregister_netdevice.
12057  */
12058 void unregister_netdev(struct net_device *dev)
12059 {
12060 	rtnl_net_dev_lock(dev);
12061 	unregister_netdevice(dev);
12062 	rtnl_net_dev_unlock(dev);
12063 }
12064 EXPORT_SYMBOL(unregister_netdev);
12065 
12066 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
12067 			       const char *pat, int new_ifindex,
12068 			       struct netlink_ext_ack *extack)
12069 {
12070 	struct netdev_name_node *name_node;
12071 	struct net *net_old = dev_net(dev);
12072 	char new_name[IFNAMSIZ] = {};
12073 	int err, new_nsid;
12074 
12075 	ASSERT_RTNL();
12076 
12077 	/* Don't allow namespace local devices to be moved. */
12078 	err = -EINVAL;
12079 	if (dev->netns_immutable) {
12080 		NL_SET_ERR_MSG(extack, "The interface netns is immutable");
12081 		goto out;
12082 	}
12083 
12084 	/* Ensure the device has been registered */
12085 	if (dev->reg_state != NETREG_REGISTERED) {
12086 		NL_SET_ERR_MSG(extack, "The interface isn't registered");
12087 		goto out;
12088 	}
12089 
12090 	/* Get out if there is nothing todo */
12091 	err = 0;
12092 	if (net_eq(net_old, net))
12093 		goto out;
12094 
12095 	/* Pick the destination device name, and ensure
12096 	 * we can use it in the destination network namespace.
12097 	 */
12098 	err = -EEXIST;
12099 	if (netdev_name_in_use(net, dev->name)) {
12100 		/* We get here if we can't use the current device name */
12101 		if (!pat) {
12102 			NL_SET_ERR_MSG(extack,
12103 				       "An interface with the same name exists in the target netns");
12104 			goto out;
12105 		}
12106 		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
12107 		if (err < 0) {
12108 			NL_SET_ERR_MSG_FMT(extack,
12109 					   "Unable to use '%s' for the new interface name in the target netns",
12110 					   pat);
12111 			goto out;
12112 		}
12113 	}
12114 	/* Check that none of the altnames conflicts. */
12115 	err = -EEXIST;
12116 	netdev_for_each_altname(dev, name_node) {
12117 		if (netdev_name_in_use(net, name_node->name)) {
12118 			NL_SET_ERR_MSG_FMT(extack,
12119 					   "An interface with the altname %s exists in the target netns",
12120 					   name_node->name);
12121 			goto out;
12122 		}
12123 	}
12124 
12125 	/* Check that new_ifindex isn't used yet. */
12126 	if (new_ifindex) {
12127 		err = dev_index_reserve(net, new_ifindex);
12128 		if (err < 0) {
12129 			NL_SET_ERR_MSG_FMT(extack,
12130 					   "The ifindex %d is not available in the target netns",
12131 					   new_ifindex);
12132 			goto out;
12133 		}
12134 	} else {
12135 		/* If there is an ifindex conflict assign a new one */
12136 		err = dev_index_reserve(net, dev->ifindex);
12137 		if (err == -EBUSY)
12138 			err = dev_index_reserve(net, 0);
12139 		if (err < 0) {
12140 			NL_SET_ERR_MSG(extack,
12141 				       "Unable to allocate a new ifindex in the target netns");
12142 			goto out;
12143 		}
12144 		new_ifindex = err;
12145 	}
12146 
12147 	/*
12148 	 * And now a mini version of register_netdevice unregister_netdevice.
12149 	 */
12150 
12151 	netdev_lock_ops(dev);
12152 	/* If device is running close it first. */
12153 	netif_close(dev);
12154 	/* And unlink it from device chain */
12155 	unlist_netdevice(dev);
12156 	netdev_unlock_ops(dev);
12157 
12158 	synchronize_net();
12159 
12160 	/* Shutdown queueing discipline. */
12161 	dev_shutdown(dev);
12162 
12163 	/* Notify protocols, that we are about to destroy
12164 	 * this device. They should clean all the things.
12165 	 *
12166 	 * Note that dev->reg_state stays at NETREG_REGISTERED.
12167 	 * This is wanted because this way 8021q and macvlan know
12168 	 * the device is just moving and can keep their slaves up.
12169 	 */
12170 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
12171 	rcu_barrier();
12172 
12173 	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
12174 
12175 	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
12176 			    new_ifindex);
12177 
12178 	/*
12179 	 *	Flush the unicast and multicast chains
12180 	 */
12181 	dev_uc_flush(dev);
12182 	dev_mc_flush(dev);
12183 
12184 	/* Send a netdev-removed uevent to the old namespace */
12185 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
12186 	netdev_adjacent_del_links(dev);
12187 
12188 	/* Move per-net netdevice notifiers that are following the netdevice */
12189 	move_netdevice_notifiers_dev_net(dev, net);
12190 
12191 	/* Actually switch the network namespace */
12192 	dev_net_set(dev, net);
12193 	dev->ifindex = new_ifindex;
12194 
12195 	if (new_name[0]) {
12196 		/* Rename the netdev to prepared name */
12197 		write_seqlock_bh(&netdev_rename_lock);
12198 		strscpy(dev->name, new_name, IFNAMSIZ);
12199 		write_sequnlock_bh(&netdev_rename_lock);
12200 	}
12201 
12202 	/* Fixup kobjects */
12203 	dev_set_uevent_suppress(&dev->dev, 1);
12204 	err = device_rename(&dev->dev, dev->name);
12205 	dev_set_uevent_suppress(&dev->dev, 0);
12206 	WARN_ON(err);
12207 
12208 	/* Send a netdev-add uevent to the new namespace */
12209 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
12210 	netdev_adjacent_add_links(dev);
12211 
12212 	/* Adapt owner in case owning user namespace of target network
12213 	 * namespace is different from the original one.
12214 	 */
12215 	err = netdev_change_owner(dev, net_old, net);
12216 	WARN_ON(err);
12217 
12218 	netdev_lock_ops(dev);
12219 	/* Add the device back in the hashes */
12220 	list_netdevice(dev);
12221 	/* Notify protocols, that a new device appeared. */
12222 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
12223 	netdev_unlock_ops(dev);
12224 
12225 	/*
12226 	 *	Prevent userspace races by waiting until the network
12227 	 *	device is fully setup before sending notifications.
12228 	 */
12229 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
12230 
12231 	synchronize_net();
12232 	err = 0;
12233 out:
12234 	return err;
12235 }
12236 
12237 static int dev_cpu_dead(unsigned int oldcpu)
12238 {
12239 	struct sk_buff **list_skb;
12240 	struct sk_buff *skb;
12241 	unsigned int cpu;
12242 	struct softnet_data *sd, *oldsd, *remsd = NULL;
12243 
12244 	local_irq_disable();
12245 	cpu = smp_processor_id();
12246 	sd = &per_cpu(softnet_data, cpu);
12247 	oldsd = &per_cpu(softnet_data, oldcpu);
12248 
12249 	/* Find end of our completion_queue. */
12250 	list_skb = &sd->completion_queue;
12251 	while (*list_skb)
12252 		list_skb = &(*list_skb)->next;
12253 	/* Append completion queue from offline CPU. */
12254 	*list_skb = oldsd->completion_queue;
12255 	oldsd->completion_queue = NULL;
12256 
12257 	/* Append output queue from offline CPU. */
12258 	if (oldsd->output_queue) {
12259 		*sd->output_queue_tailp = oldsd->output_queue;
12260 		sd->output_queue_tailp = oldsd->output_queue_tailp;
12261 		oldsd->output_queue = NULL;
12262 		oldsd->output_queue_tailp = &oldsd->output_queue;
12263 	}
12264 	/* Append NAPI poll list from offline CPU, with one exception :
12265 	 * process_backlog() must be called by cpu owning percpu backlog.
12266 	 * We properly handle process_queue & input_pkt_queue later.
12267 	 */
12268 	while (!list_empty(&oldsd->poll_list)) {
12269 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
12270 							    struct napi_struct,
12271 							    poll_list);
12272 
12273 		list_del_init(&napi->poll_list);
12274 		if (napi->poll == process_backlog)
12275 			napi->state &= NAPIF_STATE_THREADED;
12276 		else
12277 			____napi_schedule(sd, napi);
12278 	}
12279 
12280 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
12281 	local_irq_enable();
12282 
12283 	if (!use_backlog_threads()) {
12284 #ifdef CONFIG_RPS
12285 		remsd = oldsd->rps_ipi_list;
12286 		oldsd->rps_ipi_list = NULL;
12287 #endif
12288 		/* send out pending IPI's on offline CPU */
12289 		net_rps_send_ipi(remsd);
12290 	}
12291 
12292 	/* Process offline CPU's input_pkt_queue */
12293 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
12294 		netif_rx(skb);
12295 		rps_input_queue_head_incr(oldsd);
12296 	}
12297 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
12298 		netif_rx(skb);
12299 		rps_input_queue_head_incr(oldsd);
12300 	}
12301 
12302 	return 0;
12303 }
12304 
12305 /**
12306  *	netdev_increment_features - increment feature set by one
12307  *	@all: current feature set
12308  *	@one: new feature set
12309  *	@mask: mask feature set
12310  *
12311  *	Computes a new feature set after adding a device with feature set
12312  *	@one to the master device with current feature set @all.  Will not
12313  *	enable anything that is off in @mask. Returns the new feature set.
12314  */
12315 netdev_features_t netdev_increment_features(netdev_features_t all,
12316 	netdev_features_t one, netdev_features_t mask)
12317 {
12318 	if (mask & NETIF_F_HW_CSUM)
12319 		mask |= NETIF_F_CSUM_MASK;
12320 	mask |= NETIF_F_VLAN_CHALLENGED;
12321 
12322 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
12323 	all &= one | ~NETIF_F_ALL_FOR_ALL;
12324 
12325 	/* If one device supports hw checksumming, set for all. */
12326 	if (all & NETIF_F_HW_CSUM)
12327 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
12328 
12329 	return all;
12330 }
12331 EXPORT_SYMBOL(netdev_increment_features);
12332 
12333 static struct hlist_head * __net_init netdev_create_hash(void)
12334 {
12335 	int i;
12336 	struct hlist_head *hash;
12337 
12338 	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
12339 	if (hash != NULL)
12340 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
12341 			INIT_HLIST_HEAD(&hash[i]);
12342 
12343 	return hash;
12344 }
12345 
12346 /* Initialize per network namespace state */
12347 static int __net_init netdev_init(struct net *net)
12348 {
12349 	BUILD_BUG_ON(GRO_HASH_BUCKETS >
12350 		     BITS_PER_BYTE * sizeof_field(struct gro_node, bitmask));
12351 
12352 	INIT_LIST_HEAD(&net->dev_base_head);
12353 
12354 	net->dev_name_head = netdev_create_hash();
12355 	if (net->dev_name_head == NULL)
12356 		goto err_name;
12357 
12358 	net->dev_index_head = netdev_create_hash();
12359 	if (net->dev_index_head == NULL)
12360 		goto err_idx;
12361 
12362 	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
12363 
12364 	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
12365 
12366 	return 0;
12367 
12368 err_idx:
12369 	kfree(net->dev_name_head);
12370 err_name:
12371 	return -ENOMEM;
12372 }
12373 
12374 /**
12375  *	netdev_drivername - network driver for the device
12376  *	@dev: network device
12377  *
12378  *	Determine network driver for device.
12379  */
12380 const char *netdev_drivername(const struct net_device *dev)
12381 {
12382 	const struct device_driver *driver;
12383 	const struct device *parent;
12384 	const char *empty = "";
12385 
12386 	parent = dev->dev.parent;
12387 	if (!parent)
12388 		return empty;
12389 
12390 	driver = parent->driver;
12391 	if (driver && driver->name)
12392 		return driver->name;
12393 	return empty;
12394 }
12395 
12396 static void __netdev_printk(const char *level, const struct net_device *dev,
12397 			    struct va_format *vaf)
12398 {
12399 	if (dev && dev->dev.parent) {
12400 		dev_printk_emit(level[1] - '0',
12401 				dev->dev.parent,
12402 				"%s %s %s%s: %pV",
12403 				dev_driver_string(dev->dev.parent),
12404 				dev_name(dev->dev.parent),
12405 				netdev_name(dev), netdev_reg_state(dev),
12406 				vaf);
12407 	} else if (dev) {
12408 		printk("%s%s%s: %pV",
12409 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
12410 	} else {
12411 		printk("%s(NULL net_device): %pV", level, vaf);
12412 	}
12413 }
12414 
12415 void netdev_printk(const char *level, const struct net_device *dev,
12416 		   const char *format, ...)
12417 {
12418 	struct va_format vaf;
12419 	va_list args;
12420 
12421 	va_start(args, format);
12422 
12423 	vaf.fmt = format;
12424 	vaf.va = &args;
12425 
12426 	__netdev_printk(level, dev, &vaf);
12427 
12428 	va_end(args);
12429 }
12430 EXPORT_SYMBOL(netdev_printk);
12431 
12432 #define define_netdev_printk_level(func, level)			\
12433 void func(const struct net_device *dev, const char *fmt, ...)	\
12434 {								\
12435 	struct va_format vaf;					\
12436 	va_list args;						\
12437 								\
12438 	va_start(args, fmt);					\
12439 								\
12440 	vaf.fmt = fmt;						\
12441 	vaf.va = &args;						\
12442 								\
12443 	__netdev_printk(level, dev, &vaf);			\
12444 								\
12445 	va_end(args);						\
12446 }								\
12447 EXPORT_SYMBOL(func);
12448 
12449 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
12450 define_netdev_printk_level(netdev_alert, KERN_ALERT);
12451 define_netdev_printk_level(netdev_crit, KERN_CRIT);
12452 define_netdev_printk_level(netdev_err, KERN_ERR);
12453 define_netdev_printk_level(netdev_warn, KERN_WARNING);
12454 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
12455 define_netdev_printk_level(netdev_info, KERN_INFO);
12456 
12457 static void __net_exit netdev_exit(struct net *net)
12458 {
12459 	kfree(net->dev_name_head);
12460 	kfree(net->dev_index_head);
12461 	xa_destroy(&net->dev_by_index);
12462 	if (net != &init_net)
12463 		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
12464 }
12465 
12466 static struct pernet_operations __net_initdata netdev_net_ops = {
12467 	.init = netdev_init,
12468 	.exit = netdev_exit,
12469 };
12470 
12471 static void __net_exit default_device_exit_net(struct net *net)
12472 {
12473 	struct netdev_name_node *name_node, *tmp;
12474 	struct net_device *dev, *aux;
12475 	/*
12476 	 * Push all migratable network devices back to the
12477 	 * initial network namespace
12478 	 */
12479 	ASSERT_RTNL();
12480 	for_each_netdev_safe(net, dev, aux) {
12481 		int err;
12482 		char fb_name[IFNAMSIZ];
12483 
12484 		/* Ignore unmoveable devices (i.e. loopback) */
12485 		if (dev->netns_immutable)
12486 			continue;
12487 
12488 		/* Leave virtual devices for the generic cleanup */
12489 		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
12490 			continue;
12491 
12492 		/* Push remaining network devices to init_net */
12493 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
12494 		if (netdev_name_in_use(&init_net, fb_name))
12495 			snprintf(fb_name, IFNAMSIZ, "dev%%d");
12496 
12497 		netdev_for_each_altname_safe(dev, name_node, tmp)
12498 			if (netdev_name_in_use(&init_net, name_node->name))
12499 				__netdev_name_node_alt_destroy(name_node);
12500 
12501 		err = dev_change_net_namespace(dev, &init_net, fb_name);
12502 		if (err) {
12503 			pr_emerg("%s: failed to move %s to init_net: %d\n",
12504 				 __func__, dev->name, err);
12505 			BUG();
12506 		}
12507 	}
12508 }
12509 
12510 static void __net_exit default_device_exit_batch(struct list_head *net_list)
12511 {
12512 	/* At exit all network devices most be removed from a network
12513 	 * namespace.  Do this in the reverse order of registration.
12514 	 * Do this across as many network namespaces as possible to
12515 	 * improve batching efficiency.
12516 	 */
12517 	struct net_device *dev;
12518 	struct net *net;
12519 	LIST_HEAD(dev_kill_list);
12520 
12521 	rtnl_lock();
12522 	list_for_each_entry(net, net_list, exit_list) {
12523 		default_device_exit_net(net);
12524 		cond_resched();
12525 	}
12526 
12527 	list_for_each_entry(net, net_list, exit_list) {
12528 		for_each_netdev_reverse(net, dev) {
12529 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
12530 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
12531 			else
12532 				unregister_netdevice_queue(dev, &dev_kill_list);
12533 		}
12534 	}
12535 	unregister_netdevice_many(&dev_kill_list);
12536 	rtnl_unlock();
12537 }
12538 
12539 static struct pernet_operations __net_initdata default_device_ops = {
12540 	.exit_batch = default_device_exit_batch,
12541 };
12542 
12543 static void __init net_dev_struct_check(void)
12544 {
12545 	/* TX read-mostly hotpath */
12546 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags_fast);
12547 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
12548 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
12549 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
12550 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
12551 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
12552 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
12553 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
12554 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
12555 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
12556 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
12557 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
12558 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
12559 #ifdef CONFIG_XPS
12560 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
12561 #endif
12562 #ifdef CONFIG_NETFILTER_EGRESS
12563 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
12564 #endif
12565 #ifdef CONFIG_NET_XGRESS
12566 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
12567 #endif
12568 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
12569 
12570 	/* TXRX read-mostly hotpath */
12571 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
12572 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
12573 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
12574 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
12575 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
12576 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
12577 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
12578 
12579 	/* RX read-mostly hotpath */
12580 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
12581 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
12582 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
12583 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
12584 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
12585 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
12586 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
12587 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
12588 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
12589 #ifdef CONFIG_NETPOLL
12590 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
12591 #endif
12592 #ifdef CONFIG_NET_XGRESS
12593 	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
12594 #endif
12595 	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 92);
12596 }
12597 
12598 /*
12599  *	Initialize the DEV module. At boot time this walks the device list and
12600  *	unhooks any devices that fail to initialise (normally hardware not
12601  *	present) and leaves us with a valid list of present and active devices.
12602  *
12603  */
12604 
12605 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12606 #define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
12607 
12608 static int net_page_pool_create(int cpuid)
12609 {
12610 #if IS_ENABLED(CONFIG_PAGE_POOL)
12611 	struct page_pool_params page_pool_params = {
12612 		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
12613 		.flags = PP_FLAG_SYSTEM_POOL,
12614 		.nid = cpu_to_mem(cpuid),
12615 	};
12616 	struct page_pool *pp_ptr;
12617 	int err;
12618 
12619 	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
12620 	if (IS_ERR(pp_ptr))
12621 		return -ENOMEM;
12622 
12623 	err = xdp_reg_page_pool(pp_ptr);
12624 	if (err) {
12625 		page_pool_destroy(pp_ptr);
12626 		return err;
12627 	}
12628 
12629 	per_cpu(system_page_pool, cpuid) = pp_ptr;
12630 #endif
12631 	return 0;
12632 }
12633 
12634 static int backlog_napi_should_run(unsigned int cpu)
12635 {
12636 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12637 	struct napi_struct *napi = &sd->backlog;
12638 
12639 	return test_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
12640 }
12641 
12642 static void run_backlog_napi(unsigned int cpu)
12643 {
12644 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12645 
12646 	napi_threaded_poll_loop(&sd->backlog);
12647 }
12648 
12649 static void backlog_napi_setup(unsigned int cpu)
12650 {
12651 	struct softnet_data *sd = per_cpu_ptr(&softnet_data, cpu);
12652 	struct napi_struct *napi = &sd->backlog;
12653 
12654 	napi->thread = this_cpu_read(backlog_napi);
12655 	set_bit(NAPI_STATE_THREADED, &napi->state);
12656 }
12657 
12658 static struct smp_hotplug_thread backlog_threads = {
12659 	.store			= &backlog_napi,
12660 	.thread_should_run	= backlog_napi_should_run,
12661 	.thread_fn		= run_backlog_napi,
12662 	.thread_comm		= "backlog_napi/%u",
12663 	.setup			= backlog_napi_setup,
12664 };
12665 
12666 /*
12667  *       This is called single threaded during boot, so no need
12668  *       to take the rtnl semaphore.
12669  */
12670 static int __init net_dev_init(void)
12671 {
12672 	int i, rc = -ENOMEM;
12673 
12674 	BUG_ON(!dev_boot_phase);
12675 
12676 	net_dev_struct_check();
12677 
12678 	if (dev_proc_init())
12679 		goto out;
12680 
12681 	if (netdev_kobject_init())
12682 		goto out;
12683 
12684 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
12685 		INIT_LIST_HEAD(&ptype_base[i]);
12686 
12687 	if (register_pernet_subsys(&netdev_net_ops))
12688 		goto out;
12689 
12690 	/*
12691 	 *	Initialise the packet receive queues.
12692 	 */
12693 
12694 	flush_backlogs_fallback = flush_backlogs_alloc();
12695 	if (!flush_backlogs_fallback)
12696 		goto out;
12697 
12698 	for_each_possible_cpu(i) {
12699 		struct softnet_data *sd = &per_cpu(softnet_data, i);
12700 
12701 		skb_queue_head_init(&sd->input_pkt_queue);
12702 		skb_queue_head_init(&sd->process_queue);
12703 #ifdef CONFIG_XFRM_OFFLOAD
12704 		skb_queue_head_init(&sd->xfrm_backlog);
12705 #endif
12706 		INIT_LIST_HEAD(&sd->poll_list);
12707 		sd->output_queue_tailp = &sd->output_queue;
12708 #ifdef CONFIG_RPS
12709 		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
12710 		sd->cpu = i;
12711 #endif
12712 		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
12713 		spin_lock_init(&sd->defer_lock);
12714 
12715 		gro_init(&sd->backlog.gro);
12716 		sd->backlog.poll = process_backlog;
12717 		sd->backlog.weight = weight_p;
12718 		INIT_LIST_HEAD(&sd->backlog.poll_list);
12719 
12720 		if (net_page_pool_create(i))
12721 			goto out;
12722 	}
12723 	if (use_backlog_threads())
12724 		smpboot_register_percpu_thread(&backlog_threads);
12725 
12726 	dev_boot_phase = 0;
12727 
12728 	/* The loopback device is special if any other network devices
12729 	 * is present in a network namespace the loopback device must
12730 	 * be present. Since we now dynamically allocate and free the
12731 	 * loopback device ensure this invariant is maintained by
12732 	 * keeping the loopback device as the first device on the
12733 	 * list of network devices.  Ensuring the loopback devices
12734 	 * is the first device that appears and the last network device
12735 	 * that disappears.
12736 	 */
12737 	if (register_pernet_device(&loopback_net_ops))
12738 		goto out;
12739 
12740 	if (register_pernet_device(&default_device_ops))
12741 		goto out;
12742 
12743 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
12744 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
12745 
12746 	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
12747 				       NULL, dev_cpu_dead);
12748 	WARN_ON(rc < 0);
12749 	rc = 0;
12750 
12751 	/* avoid static key IPIs to isolated CPUs */
12752 	if (housekeeping_enabled(HK_TYPE_MISC))
12753 		net_enable_timestamp();
12754 out:
12755 	if (rc < 0) {
12756 		for_each_possible_cpu(i) {
12757 			struct page_pool *pp_ptr;
12758 
12759 			pp_ptr = per_cpu(system_page_pool, i);
12760 			if (!pp_ptr)
12761 				continue;
12762 
12763 			xdp_unreg_page_pool(pp_ptr);
12764 			page_pool_destroy(pp_ptr);
12765 			per_cpu(system_page_pool, i) = NULL;
12766 		}
12767 	}
12768 
12769 	return rc;
12770 }
12771 
12772 subsys_initcall(net_dev_init);
12773