xref: /linux-6.15/net/core/dev.c (revision 4a65896f)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/mutex.h>
85 #include <linux/string.h>
86 #include <linux/mm.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/notifier.h>
96 #include <linux/skbuff.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dst.h>
103 #include <net/dst_metadata.h>
104 #include <net/pkt_sched.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <linux/highmem.h>
108 #include <linux/init.h>
109 #include <linux/module.h>
110 #include <linux/netpoll.h>
111 #include <linux/rcupdate.h>
112 #include <linux/delay.h>
113 #include <net/iw_handler.h>
114 #include <asm/current.h>
115 #include <linux/audit.h>
116 #include <linux/dmaengine.h>
117 #include <linux/err.h>
118 #include <linux/ctype.h>
119 #include <linux/if_arp.h>
120 #include <linux/if_vlan.h>
121 #include <linux/ip.h>
122 #include <net/ip.h>
123 #include <net/mpls.h>
124 #include <linux/ipv6.h>
125 #include <linux/in.h>
126 #include <linux/jhash.h>
127 #include <linux/random.h>
128 #include <trace/events/napi.h>
129 #include <trace/events/net.h>
130 #include <trace/events/skb.h>
131 #include <linux/pci.h>
132 #include <linux/inetdevice.h>
133 #include <linux/cpu_rmap.h>
134 #include <linux/static_key.h>
135 #include <linux/hashtable.h>
136 #include <linux/vmalloc.h>
137 #include <linux/if_macvlan.h>
138 #include <linux/errqueue.h>
139 #include <linux/hrtimer.h>
140 #include <linux/netfilter_ingress.h>
141 #include <linux/sctp.h>
142 
143 #include "net-sysfs.h"
144 
145 /* Instead of increasing this, you should create a hash table. */
146 #define MAX_GRO_SKBS 8
147 
148 /* This should be increased if a protocol with a bigger head is added. */
149 #define GRO_MAX_HEAD (MAX_HEADER + 128)
150 
151 static DEFINE_SPINLOCK(ptype_lock);
152 static DEFINE_SPINLOCK(offload_lock);
153 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
154 struct list_head ptype_all __read_mostly;	/* Taps */
155 static struct list_head offload_base __read_mostly;
156 
157 static int netif_rx_internal(struct sk_buff *skb);
158 static int call_netdevice_notifiers_info(unsigned long val,
159 					 struct net_device *dev,
160 					 struct netdev_notifier_info *info);
161 
162 /*
163  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
164  * semaphore.
165  *
166  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
167  *
168  * Writers must hold the rtnl semaphore while they loop through the
169  * dev_base_head list, and hold dev_base_lock for writing when they do the
170  * actual updates.  This allows pure readers to access the list even
171  * while a writer is preparing to update it.
172  *
173  * To put it another way, dev_base_lock is held for writing only to
174  * protect against pure readers; the rtnl semaphore provides the
175  * protection against other writers.
176  *
177  * See, for example usages, register_netdevice() and
178  * unregister_netdevice(), which must be called with the rtnl
179  * semaphore held.
180  */
181 DEFINE_RWLOCK(dev_base_lock);
182 EXPORT_SYMBOL(dev_base_lock);
183 
184 /* protects napi_hash addition/deletion and napi_gen_id */
185 static DEFINE_SPINLOCK(napi_hash_lock);
186 
187 static unsigned int napi_gen_id = NR_CPUS;
188 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
189 
190 static seqcount_t devnet_rename_seq;
191 
192 static inline void dev_base_seq_inc(struct net *net)
193 {
194 	while (++net->dev_base_seq == 0);
195 }
196 
197 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
198 {
199 	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
200 
201 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
202 }
203 
204 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
205 {
206 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
207 }
208 
209 static inline void rps_lock(struct softnet_data *sd)
210 {
211 #ifdef CONFIG_RPS
212 	spin_lock(&sd->input_pkt_queue.lock);
213 #endif
214 }
215 
216 static inline void rps_unlock(struct softnet_data *sd)
217 {
218 #ifdef CONFIG_RPS
219 	spin_unlock(&sd->input_pkt_queue.lock);
220 #endif
221 }
222 
223 /* Device list insertion */
224 static void list_netdevice(struct net_device *dev)
225 {
226 	struct net *net = dev_net(dev);
227 
228 	ASSERT_RTNL();
229 
230 	write_lock_bh(&dev_base_lock);
231 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
232 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
233 	hlist_add_head_rcu(&dev->index_hlist,
234 			   dev_index_hash(net, dev->ifindex));
235 	write_unlock_bh(&dev_base_lock);
236 
237 	dev_base_seq_inc(net);
238 }
239 
240 /* Device list removal
241  * caller must respect a RCU grace period before freeing/reusing dev
242  */
243 static void unlist_netdevice(struct net_device *dev)
244 {
245 	ASSERT_RTNL();
246 
247 	/* Unlink dev from the device chain */
248 	write_lock_bh(&dev_base_lock);
249 	list_del_rcu(&dev->dev_list);
250 	hlist_del_rcu(&dev->name_hlist);
251 	hlist_del_rcu(&dev->index_hlist);
252 	write_unlock_bh(&dev_base_lock);
253 
254 	dev_base_seq_inc(dev_net(dev));
255 }
256 
257 /*
258  *	Our notifier list
259  */
260 
261 static RAW_NOTIFIER_HEAD(netdev_chain);
262 
263 /*
264  *	Device drivers call our routines to queue packets here. We empty the
265  *	queue in the local softnet handler.
266  */
267 
268 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
269 EXPORT_PER_CPU_SYMBOL(softnet_data);
270 
271 #ifdef CONFIG_LOCKDEP
272 /*
273  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
274  * according to dev->type
275  */
276 static const unsigned short netdev_lock_type[] =
277 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
278 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
279 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
280 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
281 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
282 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
283 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
284 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
285 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
286 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
287 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
288 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
289 	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
290 	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
291 	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
292 
293 static const char *const netdev_lock_name[] =
294 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
295 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
296 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
297 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
298 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
299 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
300 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
301 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
302 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
303 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
304 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
305 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
306 	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
307 	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
308 	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
309 
310 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
311 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
312 
313 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
314 {
315 	int i;
316 
317 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
318 		if (netdev_lock_type[i] == dev_type)
319 			return i;
320 	/* the last key is used by default */
321 	return ARRAY_SIZE(netdev_lock_type) - 1;
322 }
323 
324 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
325 						 unsigned short dev_type)
326 {
327 	int i;
328 
329 	i = netdev_lock_pos(dev_type);
330 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
331 				   netdev_lock_name[i]);
332 }
333 
334 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
335 {
336 	int i;
337 
338 	i = netdev_lock_pos(dev->type);
339 	lockdep_set_class_and_name(&dev->addr_list_lock,
340 				   &netdev_addr_lock_key[i],
341 				   netdev_lock_name[i]);
342 }
343 #else
344 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
345 						 unsigned short dev_type)
346 {
347 }
348 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
349 {
350 }
351 #endif
352 
353 /*******************************************************************************
354 
355 		Protocol management and registration routines
356 
357 *******************************************************************************/
358 
359 /*
360  *	Add a protocol ID to the list. Now that the input handler is
361  *	smarter we can dispense with all the messy stuff that used to be
362  *	here.
363  *
364  *	BEWARE!!! Protocol handlers, mangling input packets,
365  *	MUST BE last in hash buckets and checking protocol handlers
366  *	MUST start from promiscuous ptype_all chain in net_bh.
367  *	It is true now, do not change it.
368  *	Explanation follows: if protocol handler, mangling packet, will
369  *	be the first on list, it is not able to sense, that packet
370  *	is cloned and should be copied-on-write, so that it will
371  *	change it and subsequent readers will get broken packet.
372  *							--ANK (980803)
373  */
374 
375 static inline struct list_head *ptype_head(const struct packet_type *pt)
376 {
377 	if (pt->type == htons(ETH_P_ALL))
378 		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
379 	else
380 		return pt->dev ? &pt->dev->ptype_specific :
381 				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
382 }
383 
384 /**
385  *	dev_add_pack - add packet handler
386  *	@pt: packet type declaration
387  *
388  *	Add a protocol handler to the networking stack. The passed &packet_type
389  *	is linked into kernel lists and may not be freed until it has been
390  *	removed from the kernel lists.
391  *
392  *	This call does not sleep therefore it can not
393  *	guarantee all CPU's that are in middle of receiving packets
394  *	will see the new packet type (until the next received packet).
395  */
396 
397 void dev_add_pack(struct packet_type *pt)
398 {
399 	struct list_head *head = ptype_head(pt);
400 
401 	spin_lock(&ptype_lock);
402 	list_add_rcu(&pt->list, head);
403 	spin_unlock(&ptype_lock);
404 }
405 EXPORT_SYMBOL(dev_add_pack);
406 
407 /**
408  *	__dev_remove_pack	 - remove packet handler
409  *	@pt: packet type declaration
410  *
411  *	Remove a protocol handler that was previously added to the kernel
412  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
413  *	from the kernel lists and can be freed or reused once this function
414  *	returns.
415  *
416  *      The packet type might still be in use by receivers
417  *	and must not be freed until after all the CPU's have gone
418  *	through a quiescent state.
419  */
420 void __dev_remove_pack(struct packet_type *pt)
421 {
422 	struct list_head *head = ptype_head(pt);
423 	struct packet_type *pt1;
424 
425 	spin_lock(&ptype_lock);
426 
427 	list_for_each_entry(pt1, head, list) {
428 		if (pt == pt1) {
429 			list_del_rcu(&pt->list);
430 			goto out;
431 		}
432 	}
433 
434 	pr_warn("dev_remove_pack: %p not found\n", pt);
435 out:
436 	spin_unlock(&ptype_lock);
437 }
438 EXPORT_SYMBOL(__dev_remove_pack);
439 
440 /**
441  *	dev_remove_pack	 - remove packet handler
442  *	@pt: packet type declaration
443  *
444  *	Remove a protocol handler that was previously added to the kernel
445  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
446  *	from the kernel lists and can be freed or reused once this function
447  *	returns.
448  *
449  *	This call sleeps to guarantee that no CPU is looking at the packet
450  *	type after return.
451  */
452 void dev_remove_pack(struct packet_type *pt)
453 {
454 	__dev_remove_pack(pt);
455 
456 	synchronize_net();
457 }
458 EXPORT_SYMBOL(dev_remove_pack);
459 
460 
461 /**
462  *	dev_add_offload - register offload handlers
463  *	@po: protocol offload declaration
464  *
465  *	Add protocol offload handlers to the networking stack. The passed
466  *	&proto_offload is linked into kernel lists and may not be freed until
467  *	it has been removed from the kernel lists.
468  *
469  *	This call does not sleep therefore it can not
470  *	guarantee all CPU's that are in middle of receiving packets
471  *	will see the new offload handlers (until the next received packet).
472  */
473 void dev_add_offload(struct packet_offload *po)
474 {
475 	struct packet_offload *elem;
476 
477 	spin_lock(&offload_lock);
478 	list_for_each_entry(elem, &offload_base, list) {
479 		if (po->priority < elem->priority)
480 			break;
481 	}
482 	list_add_rcu(&po->list, elem->list.prev);
483 	spin_unlock(&offload_lock);
484 }
485 EXPORT_SYMBOL(dev_add_offload);
486 
487 /**
488  *	__dev_remove_offload	 - remove offload handler
489  *	@po: packet offload declaration
490  *
491  *	Remove a protocol offload handler that was previously added to the
492  *	kernel offload handlers by dev_add_offload(). The passed &offload_type
493  *	is removed from the kernel lists and can be freed or reused once this
494  *	function returns.
495  *
496  *      The packet type might still be in use by receivers
497  *	and must not be freed until after all the CPU's have gone
498  *	through a quiescent state.
499  */
500 static void __dev_remove_offload(struct packet_offload *po)
501 {
502 	struct list_head *head = &offload_base;
503 	struct packet_offload *po1;
504 
505 	spin_lock(&offload_lock);
506 
507 	list_for_each_entry(po1, head, list) {
508 		if (po == po1) {
509 			list_del_rcu(&po->list);
510 			goto out;
511 		}
512 	}
513 
514 	pr_warn("dev_remove_offload: %p not found\n", po);
515 out:
516 	spin_unlock(&offload_lock);
517 }
518 
519 /**
520  *	dev_remove_offload	 - remove packet offload handler
521  *	@po: packet offload declaration
522  *
523  *	Remove a packet offload handler that was previously added to the kernel
524  *	offload handlers by dev_add_offload(). The passed &offload_type is
525  *	removed from the kernel lists and can be freed or reused once this
526  *	function returns.
527  *
528  *	This call sleeps to guarantee that no CPU is looking at the packet
529  *	type after return.
530  */
531 void dev_remove_offload(struct packet_offload *po)
532 {
533 	__dev_remove_offload(po);
534 
535 	synchronize_net();
536 }
537 EXPORT_SYMBOL(dev_remove_offload);
538 
539 /******************************************************************************
540 
541 		      Device Boot-time Settings Routines
542 
543 *******************************************************************************/
544 
545 /* Boot time configuration table */
546 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
547 
548 /**
549  *	netdev_boot_setup_add	- add new setup entry
550  *	@name: name of the device
551  *	@map: configured settings for the device
552  *
553  *	Adds new setup entry to the dev_boot_setup list.  The function
554  *	returns 0 on error and 1 on success.  This is a generic routine to
555  *	all netdevices.
556  */
557 static int netdev_boot_setup_add(char *name, struct ifmap *map)
558 {
559 	struct netdev_boot_setup *s;
560 	int i;
561 
562 	s = dev_boot_setup;
563 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
564 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
565 			memset(s[i].name, 0, sizeof(s[i].name));
566 			strlcpy(s[i].name, name, IFNAMSIZ);
567 			memcpy(&s[i].map, map, sizeof(s[i].map));
568 			break;
569 		}
570 	}
571 
572 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
573 }
574 
575 /**
576  *	netdev_boot_setup_check	- check boot time settings
577  *	@dev: the netdevice
578  *
579  * 	Check boot time settings for the device.
580  *	The found settings are set for the device to be used
581  *	later in the device probing.
582  *	Returns 0 if no settings found, 1 if they are.
583  */
584 int netdev_boot_setup_check(struct net_device *dev)
585 {
586 	struct netdev_boot_setup *s = dev_boot_setup;
587 	int i;
588 
589 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
590 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
591 		    !strcmp(dev->name, s[i].name)) {
592 			dev->irq 	= s[i].map.irq;
593 			dev->base_addr 	= s[i].map.base_addr;
594 			dev->mem_start 	= s[i].map.mem_start;
595 			dev->mem_end 	= s[i].map.mem_end;
596 			return 1;
597 		}
598 	}
599 	return 0;
600 }
601 EXPORT_SYMBOL(netdev_boot_setup_check);
602 
603 
604 /**
605  *	netdev_boot_base	- get address from boot time settings
606  *	@prefix: prefix for network device
607  *	@unit: id for network device
608  *
609  * 	Check boot time settings for the base address of device.
610  *	The found settings are set for the device to be used
611  *	later in the device probing.
612  *	Returns 0 if no settings found.
613  */
614 unsigned long netdev_boot_base(const char *prefix, int unit)
615 {
616 	const struct netdev_boot_setup *s = dev_boot_setup;
617 	char name[IFNAMSIZ];
618 	int i;
619 
620 	sprintf(name, "%s%d", prefix, unit);
621 
622 	/*
623 	 * If device already registered then return base of 1
624 	 * to indicate not to probe for this interface
625 	 */
626 	if (__dev_get_by_name(&init_net, name))
627 		return 1;
628 
629 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
630 		if (!strcmp(name, s[i].name))
631 			return s[i].map.base_addr;
632 	return 0;
633 }
634 
635 /*
636  * Saves at boot time configured settings for any netdevice.
637  */
638 int __init netdev_boot_setup(char *str)
639 {
640 	int ints[5];
641 	struct ifmap map;
642 
643 	str = get_options(str, ARRAY_SIZE(ints), ints);
644 	if (!str || !*str)
645 		return 0;
646 
647 	/* Save settings */
648 	memset(&map, 0, sizeof(map));
649 	if (ints[0] > 0)
650 		map.irq = ints[1];
651 	if (ints[0] > 1)
652 		map.base_addr = ints[2];
653 	if (ints[0] > 2)
654 		map.mem_start = ints[3];
655 	if (ints[0] > 3)
656 		map.mem_end = ints[4];
657 
658 	/* Add new entry to the list */
659 	return netdev_boot_setup_add(str, &map);
660 }
661 
662 __setup("netdev=", netdev_boot_setup);
663 
664 /*******************************************************************************
665 
666 			    Device Interface Subroutines
667 
668 *******************************************************************************/
669 
670 /**
671  *	dev_get_iflink	- get 'iflink' value of a interface
672  *	@dev: targeted interface
673  *
674  *	Indicates the ifindex the interface is linked to.
675  *	Physical interfaces have the same 'ifindex' and 'iflink' values.
676  */
677 
678 int dev_get_iflink(const struct net_device *dev)
679 {
680 	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
681 		return dev->netdev_ops->ndo_get_iflink(dev);
682 
683 	return dev->ifindex;
684 }
685 EXPORT_SYMBOL(dev_get_iflink);
686 
687 /**
688  *	dev_fill_metadata_dst - Retrieve tunnel egress information.
689  *	@dev: targeted interface
690  *	@skb: The packet.
691  *
692  *	For better visibility of tunnel traffic OVS needs to retrieve
693  *	egress tunnel information for a packet. Following API allows
694  *	user to get this info.
695  */
696 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
697 {
698 	struct ip_tunnel_info *info;
699 
700 	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
701 		return -EINVAL;
702 
703 	info = skb_tunnel_info_unclone(skb);
704 	if (!info)
705 		return -ENOMEM;
706 	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
707 		return -EINVAL;
708 
709 	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
710 }
711 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
712 
713 /**
714  *	__dev_get_by_name	- find a device by its name
715  *	@net: the applicable net namespace
716  *	@name: name to find
717  *
718  *	Find an interface by name. Must be called under RTNL semaphore
719  *	or @dev_base_lock. If the name is found a pointer to the device
720  *	is returned. If the name is not found then %NULL is returned. The
721  *	reference counters are not incremented so the caller must be
722  *	careful with locks.
723  */
724 
725 struct net_device *__dev_get_by_name(struct net *net, const char *name)
726 {
727 	struct net_device *dev;
728 	struct hlist_head *head = dev_name_hash(net, name);
729 
730 	hlist_for_each_entry(dev, head, name_hlist)
731 		if (!strncmp(dev->name, name, IFNAMSIZ))
732 			return dev;
733 
734 	return NULL;
735 }
736 EXPORT_SYMBOL(__dev_get_by_name);
737 
738 /**
739  *	dev_get_by_name_rcu	- find a device by its name
740  *	@net: the applicable net namespace
741  *	@name: name to find
742  *
743  *	Find an interface by name.
744  *	If the name is found a pointer to the device is returned.
745  * 	If the name is not found then %NULL is returned.
746  *	The reference counters are not incremented so the caller must be
747  *	careful with locks. The caller must hold RCU lock.
748  */
749 
750 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
751 {
752 	struct net_device *dev;
753 	struct hlist_head *head = dev_name_hash(net, name);
754 
755 	hlist_for_each_entry_rcu(dev, head, name_hlist)
756 		if (!strncmp(dev->name, name, IFNAMSIZ))
757 			return dev;
758 
759 	return NULL;
760 }
761 EXPORT_SYMBOL(dev_get_by_name_rcu);
762 
763 /**
764  *	dev_get_by_name		- find a device by its name
765  *	@net: the applicable net namespace
766  *	@name: name to find
767  *
768  *	Find an interface by name. This can be called from any
769  *	context and does its own locking. The returned handle has
770  *	the usage count incremented and the caller must use dev_put() to
771  *	release it when it is no longer needed. %NULL is returned if no
772  *	matching device is found.
773  */
774 
775 struct net_device *dev_get_by_name(struct net *net, const char *name)
776 {
777 	struct net_device *dev;
778 
779 	rcu_read_lock();
780 	dev = dev_get_by_name_rcu(net, name);
781 	if (dev)
782 		dev_hold(dev);
783 	rcu_read_unlock();
784 	return dev;
785 }
786 EXPORT_SYMBOL(dev_get_by_name);
787 
788 /**
789  *	__dev_get_by_index - find a device by its ifindex
790  *	@net: the applicable net namespace
791  *	@ifindex: index of device
792  *
793  *	Search for an interface by index. Returns %NULL if the device
794  *	is not found or a pointer to the device. The device has not
795  *	had its reference counter increased so the caller must be careful
796  *	about locking. The caller must hold either the RTNL semaphore
797  *	or @dev_base_lock.
798  */
799 
800 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
801 {
802 	struct net_device *dev;
803 	struct hlist_head *head = dev_index_hash(net, ifindex);
804 
805 	hlist_for_each_entry(dev, head, index_hlist)
806 		if (dev->ifindex == ifindex)
807 			return dev;
808 
809 	return NULL;
810 }
811 EXPORT_SYMBOL(__dev_get_by_index);
812 
813 /**
814  *	dev_get_by_index_rcu - find a device by its ifindex
815  *	@net: the applicable net namespace
816  *	@ifindex: index of device
817  *
818  *	Search for an interface by index. Returns %NULL if the device
819  *	is not found or a pointer to the device. The device has not
820  *	had its reference counter increased so the caller must be careful
821  *	about locking. The caller must hold RCU lock.
822  */
823 
824 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
825 {
826 	struct net_device *dev;
827 	struct hlist_head *head = dev_index_hash(net, ifindex);
828 
829 	hlist_for_each_entry_rcu(dev, head, index_hlist)
830 		if (dev->ifindex == ifindex)
831 			return dev;
832 
833 	return NULL;
834 }
835 EXPORT_SYMBOL(dev_get_by_index_rcu);
836 
837 
838 /**
839  *	dev_get_by_index - find a device by its ifindex
840  *	@net: the applicable net namespace
841  *	@ifindex: index of device
842  *
843  *	Search for an interface by index. Returns NULL if the device
844  *	is not found or a pointer to the device. The device returned has
845  *	had a reference added and the pointer is safe until the user calls
846  *	dev_put to indicate they have finished with it.
847  */
848 
849 struct net_device *dev_get_by_index(struct net *net, int ifindex)
850 {
851 	struct net_device *dev;
852 
853 	rcu_read_lock();
854 	dev = dev_get_by_index_rcu(net, ifindex);
855 	if (dev)
856 		dev_hold(dev);
857 	rcu_read_unlock();
858 	return dev;
859 }
860 EXPORT_SYMBOL(dev_get_by_index);
861 
862 /**
863  *	netdev_get_name - get a netdevice name, knowing its ifindex.
864  *	@net: network namespace
865  *	@name: a pointer to the buffer where the name will be stored.
866  *	@ifindex: the ifindex of the interface to get the name from.
867  *
868  *	The use of raw_seqcount_begin() and cond_resched() before
869  *	retrying is required as we want to give the writers a chance
870  *	to complete when CONFIG_PREEMPT is not set.
871  */
872 int netdev_get_name(struct net *net, char *name, int ifindex)
873 {
874 	struct net_device *dev;
875 	unsigned int seq;
876 
877 retry:
878 	seq = raw_seqcount_begin(&devnet_rename_seq);
879 	rcu_read_lock();
880 	dev = dev_get_by_index_rcu(net, ifindex);
881 	if (!dev) {
882 		rcu_read_unlock();
883 		return -ENODEV;
884 	}
885 
886 	strcpy(name, dev->name);
887 	rcu_read_unlock();
888 	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
889 		cond_resched();
890 		goto retry;
891 	}
892 
893 	return 0;
894 }
895 
896 /**
897  *	dev_getbyhwaddr_rcu - find a device by its hardware address
898  *	@net: the applicable net namespace
899  *	@type: media type of device
900  *	@ha: hardware address
901  *
902  *	Search for an interface by MAC address. Returns NULL if the device
903  *	is not found or a pointer to the device.
904  *	The caller must hold RCU or RTNL.
905  *	The returned device has not had its ref count increased
906  *	and the caller must therefore be careful about locking
907  *
908  */
909 
910 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
911 				       const char *ha)
912 {
913 	struct net_device *dev;
914 
915 	for_each_netdev_rcu(net, dev)
916 		if (dev->type == type &&
917 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
918 			return dev;
919 
920 	return NULL;
921 }
922 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
923 
924 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
925 {
926 	struct net_device *dev;
927 
928 	ASSERT_RTNL();
929 	for_each_netdev(net, dev)
930 		if (dev->type == type)
931 			return dev;
932 
933 	return NULL;
934 }
935 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
936 
937 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
938 {
939 	struct net_device *dev, *ret = NULL;
940 
941 	rcu_read_lock();
942 	for_each_netdev_rcu(net, dev)
943 		if (dev->type == type) {
944 			dev_hold(dev);
945 			ret = dev;
946 			break;
947 		}
948 	rcu_read_unlock();
949 	return ret;
950 }
951 EXPORT_SYMBOL(dev_getfirstbyhwtype);
952 
953 /**
954  *	__dev_get_by_flags - find any device with given flags
955  *	@net: the applicable net namespace
956  *	@if_flags: IFF_* values
957  *	@mask: bitmask of bits in if_flags to check
958  *
959  *	Search for any interface with the given flags. Returns NULL if a device
960  *	is not found or a pointer to the device. Must be called inside
961  *	rtnl_lock(), and result refcount is unchanged.
962  */
963 
964 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
965 				      unsigned short mask)
966 {
967 	struct net_device *dev, *ret;
968 
969 	ASSERT_RTNL();
970 
971 	ret = NULL;
972 	for_each_netdev(net, dev) {
973 		if (((dev->flags ^ if_flags) & mask) == 0) {
974 			ret = dev;
975 			break;
976 		}
977 	}
978 	return ret;
979 }
980 EXPORT_SYMBOL(__dev_get_by_flags);
981 
982 /**
983  *	dev_valid_name - check if name is okay for network device
984  *	@name: name string
985  *
986  *	Network device names need to be valid file names to
987  *	to allow sysfs to work.  We also disallow any kind of
988  *	whitespace.
989  */
990 bool dev_valid_name(const char *name)
991 {
992 	if (*name == '\0')
993 		return false;
994 	if (strlen(name) >= IFNAMSIZ)
995 		return false;
996 	if (!strcmp(name, ".") || !strcmp(name, ".."))
997 		return false;
998 
999 	while (*name) {
1000 		if (*name == '/' || *name == ':' || isspace(*name))
1001 			return false;
1002 		name++;
1003 	}
1004 	return true;
1005 }
1006 EXPORT_SYMBOL(dev_valid_name);
1007 
1008 /**
1009  *	__dev_alloc_name - allocate a name for a device
1010  *	@net: network namespace to allocate the device name in
1011  *	@name: name format string
1012  *	@buf:  scratch buffer and result name string
1013  *
1014  *	Passed a format string - eg "lt%d" it will try and find a suitable
1015  *	id. It scans list of devices to build up a free map, then chooses
1016  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1017  *	while allocating the name and adding the device in order to avoid
1018  *	duplicates.
1019  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020  *	Returns the number of the unit assigned or a negative errno code.
1021  */
1022 
1023 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024 {
1025 	int i = 0;
1026 	const char *p;
1027 	const int max_netdevices = 8*PAGE_SIZE;
1028 	unsigned long *inuse;
1029 	struct net_device *d;
1030 
1031 	p = strnchr(name, IFNAMSIZ-1, '%');
1032 	if (p) {
1033 		/*
1034 		 * Verify the string as this thing may have come from
1035 		 * the user.  There must be either one "%d" and no other "%"
1036 		 * characters.
1037 		 */
1038 		if (p[1] != 'd' || strchr(p + 2, '%'))
1039 			return -EINVAL;
1040 
1041 		/* Use one page as a bit array of possible slots */
1042 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043 		if (!inuse)
1044 			return -ENOMEM;
1045 
1046 		for_each_netdev(net, d) {
1047 			if (!sscanf(d->name, name, &i))
1048 				continue;
1049 			if (i < 0 || i >= max_netdevices)
1050 				continue;
1051 
1052 			/*  avoid cases where sscanf is not exact inverse of printf */
1053 			snprintf(buf, IFNAMSIZ, name, i);
1054 			if (!strncmp(buf, d->name, IFNAMSIZ))
1055 				set_bit(i, inuse);
1056 		}
1057 
1058 		i = find_first_zero_bit(inuse, max_netdevices);
1059 		free_page((unsigned long) inuse);
1060 	}
1061 
1062 	if (buf != name)
1063 		snprintf(buf, IFNAMSIZ, name, i);
1064 	if (!__dev_get_by_name(net, buf))
1065 		return i;
1066 
1067 	/* It is possible to run out of possible slots
1068 	 * when the name is long and there isn't enough space left
1069 	 * for the digits, or if all bits are used.
1070 	 */
1071 	return -ENFILE;
1072 }
1073 
1074 /**
1075  *	dev_alloc_name - allocate a name for a device
1076  *	@dev: device
1077  *	@name: name format string
1078  *
1079  *	Passed a format string - eg "lt%d" it will try and find a suitable
1080  *	id. It scans list of devices to build up a free map, then chooses
1081  *	the first empty slot. The caller must hold the dev_base or rtnl lock
1082  *	while allocating the name and adding the device in order to avoid
1083  *	duplicates.
1084  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085  *	Returns the number of the unit assigned or a negative errno code.
1086  */
1087 
1088 int dev_alloc_name(struct net_device *dev, const char *name)
1089 {
1090 	char buf[IFNAMSIZ];
1091 	struct net *net;
1092 	int ret;
1093 
1094 	BUG_ON(!dev_net(dev));
1095 	net = dev_net(dev);
1096 	ret = __dev_alloc_name(net, name, buf);
1097 	if (ret >= 0)
1098 		strlcpy(dev->name, buf, IFNAMSIZ);
1099 	return ret;
1100 }
1101 EXPORT_SYMBOL(dev_alloc_name);
1102 
1103 static int dev_alloc_name_ns(struct net *net,
1104 			     struct net_device *dev,
1105 			     const char *name)
1106 {
1107 	char buf[IFNAMSIZ];
1108 	int ret;
1109 
1110 	ret = __dev_alloc_name(net, name, buf);
1111 	if (ret >= 0)
1112 		strlcpy(dev->name, buf, IFNAMSIZ);
1113 	return ret;
1114 }
1115 
1116 static int dev_get_valid_name(struct net *net,
1117 			      struct net_device *dev,
1118 			      const char *name)
1119 {
1120 	BUG_ON(!net);
1121 
1122 	if (!dev_valid_name(name))
1123 		return -EINVAL;
1124 
1125 	if (strchr(name, '%'))
1126 		return dev_alloc_name_ns(net, dev, name);
1127 	else if (__dev_get_by_name(net, name))
1128 		return -EEXIST;
1129 	else if (dev->name != name)
1130 		strlcpy(dev->name, name, IFNAMSIZ);
1131 
1132 	return 0;
1133 }
1134 
1135 /**
1136  *	dev_change_name - change name of a device
1137  *	@dev: device
1138  *	@newname: name (or format string) must be at least IFNAMSIZ
1139  *
1140  *	Change name of a device, can pass format strings "eth%d".
1141  *	for wildcarding.
1142  */
1143 int dev_change_name(struct net_device *dev, const char *newname)
1144 {
1145 	unsigned char old_assign_type;
1146 	char oldname[IFNAMSIZ];
1147 	int err = 0;
1148 	int ret;
1149 	struct net *net;
1150 
1151 	ASSERT_RTNL();
1152 	BUG_ON(!dev_net(dev));
1153 
1154 	net = dev_net(dev);
1155 	if (dev->flags & IFF_UP)
1156 		return -EBUSY;
1157 
1158 	write_seqcount_begin(&devnet_rename_seq);
1159 
1160 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161 		write_seqcount_end(&devnet_rename_seq);
1162 		return 0;
1163 	}
1164 
1165 	memcpy(oldname, dev->name, IFNAMSIZ);
1166 
1167 	err = dev_get_valid_name(net, dev, newname);
1168 	if (err < 0) {
1169 		write_seqcount_end(&devnet_rename_seq);
1170 		return err;
1171 	}
1172 
1173 	if (oldname[0] && !strchr(oldname, '%'))
1174 		netdev_info(dev, "renamed from %s\n", oldname);
1175 
1176 	old_assign_type = dev->name_assign_type;
1177 	dev->name_assign_type = NET_NAME_RENAMED;
1178 
1179 rollback:
1180 	ret = device_rename(&dev->dev, dev->name);
1181 	if (ret) {
1182 		memcpy(dev->name, oldname, IFNAMSIZ);
1183 		dev->name_assign_type = old_assign_type;
1184 		write_seqcount_end(&devnet_rename_seq);
1185 		return ret;
1186 	}
1187 
1188 	write_seqcount_end(&devnet_rename_seq);
1189 
1190 	netdev_adjacent_rename_links(dev, oldname);
1191 
1192 	write_lock_bh(&dev_base_lock);
1193 	hlist_del_rcu(&dev->name_hlist);
1194 	write_unlock_bh(&dev_base_lock);
1195 
1196 	synchronize_rcu();
1197 
1198 	write_lock_bh(&dev_base_lock);
1199 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200 	write_unlock_bh(&dev_base_lock);
1201 
1202 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203 	ret = notifier_to_errno(ret);
1204 
1205 	if (ret) {
1206 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1207 		if (err >= 0) {
1208 			err = ret;
1209 			write_seqcount_begin(&devnet_rename_seq);
1210 			memcpy(dev->name, oldname, IFNAMSIZ);
1211 			memcpy(oldname, newname, IFNAMSIZ);
1212 			dev->name_assign_type = old_assign_type;
1213 			old_assign_type = NET_NAME_RENAMED;
1214 			goto rollback;
1215 		} else {
1216 			pr_err("%s: name change rollback failed: %d\n",
1217 			       dev->name, ret);
1218 		}
1219 	}
1220 
1221 	return err;
1222 }
1223 
1224 /**
1225  *	dev_set_alias - change ifalias of a device
1226  *	@dev: device
1227  *	@alias: name up to IFALIASZ
1228  *	@len: limit of bytes to copy from info
1229  *
1230  *	Set ifalias for a device,
1231  */
1232 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233 {
1234 	char *new_ifalias;
1235 
1236 	ASSERT_RTNL();
1237 
1238 	if (len >= IFALIASZ)
1239 		return -EINVAL;
1240 
1241 	if (!len) {
1242 		kfree(dev->ifalias);
1243 		dev->ifalias = NULL;
1244 		return 0;
1245 	}
1246 
1247 	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248 	if (!new_ifalias)
1249 		return -ENOMEM;
1250 	dev->ifalias = new_ifalias;
1251 
1252 	strlcpy(dev->ifalias, alias, len+1);
1253 	return len;
1254 }
1255 
1256 
1257 /**
1258  *	netdev_features_change - device changes features
1259  *	@dev: device to cause notification
1260  *
1261  *	Called to indicate a device has changed features.
1262  */
1263 void netdev_features_change(struct net_device *dev)
1264 {
1265 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266 }
1267 EXPORT_SYMBOL(netdev_features_change);
1268 
1269 /**
1270  *	netdev_state_change - device changes state
1271  *	@dev: device to cause notification
1272  *
1273  *	Called to indicate a device has changed state. This function calls
1274  *	the notifier chains for netdev_chain and sends a NEWLINK message
1275  *	to the routing socket.
1276  */
1277 void netdev_state_change(struct net_device *dev)
1278 {
1279 	if (dev->flags & IFF_UP) {
1280 		struct netdev_notifier_change_info change_info;
1281 
1282 		change_info.flags_changed = 0;
1283 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284 					      &change_info.info);
1285 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286 	}
1287 }
1288 EXPORT_SYMBOL(netdev_state_change);
1289 
1290 /**
1291  * 	netdev_notify_peers - notify network peers about existence of @dev
1292  * 	@dev: network device
1293  *
1294  * Generate traffic such that interested network peers are aware of
1295  * @dev, such as by generating a gratuitous ARP. This may be used when
1296  * a device wants to inform the rest of the network about some sort of
1297  * reconfiguration such as a failover event or virtual machine
1298  * migration.
1299  */
1300 void netdev_notify_peers(struct net_device *dev)
1301 {
1302 	rtnl_lock();
1303 	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304 	rtnl_unlock();
1305 }
1306 EXPORT_SYMBOL(netdev_notify_peers);
1307 
1308 static int __dev_open(struct net_device *dev)
1309 {
1310 	const struct net_device_ops *ops = dev->netdev_ops;
1311 	int ret;
1312 
1313 	ASSERT_RTNL();
1314 
1315 	if (!netif_device_present(dev))
1316 		return -ENODEV;
1317 
1318 	/* Block netpoll from trying to do any rx path servicing.
1319 	 * If we don't do this there is a chance ndo_poll_controller
1320 	 * or ndo_poll may be running while we open the device
1321 	 */
1322 	netpoll_poll_disable(dev);
1323 
1324 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325 	ret = notifier_to_errno(ret);
1326 	if (ret)
1327 		return ret;
1328 
1329 	set_bit(__LINK_STATE_START, &dev->state);
1330 
1331 	if (ops->ndo_validate_addr)
1332 		ret = ops->ndo_validate_addr(dev);
1333 
1334 	if (!ret && ops->ndo_open)
1335 		ret = ops->ndo_open(dev);
1336 
1337 	netpoll_poll_enable(dev);
1338 
1339 	if (ret)
1340 		clear_bit(__LINK_STATE_START, &dev->state);
1341 	else {
1342 		dev->flags |= IFF_UP;
1343 		dev_set_rx_mode(dev);
1344 		dev_activate(dev);
1345 		add_device_randomness(dev->dev_addr, dev->addr_len);
1346 	}
1347 
1348 	return ret;
1349 }
1350 
1351 /**
1352  *	dev_open	- prepare an interface for use.
1353  *	@dev:	device to open
1354  *
1355  *	Takes a device from down to up state. The device's private open
1356  *	function is invoked and then the multicast lists are loaded. Finally
1357  *	the device is moved into the up state and a %NETDEV_UP message is
1358  *	sent to the netdev notifier chain.
1359  *
1360  *	Calling this function on an active interface is a nop. On a failure
1361  *	a negative errno code is returned.
1362  */
1363 int dev_open(struct net_device *dev)
1364 {
1365 	int ret;
1366 
1367 	if (dev->flags & IFF_UP)
1368 		return 0;
1369 
1370 	ret = __dev_open(dev);
1371 	if (ret < 0)
1372 		return ret;
1373 
1374 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375 	call_netdevice_notifiers(NETDEV_UP, dev);
1376 
1377 	return ret;
1378 }
1379 EXPORT_SYMBOL(dev_open);
1380 
1381 static int __dev_close_many(struct list_head *head)
1382 {
1383 	struct net_device *dev;
1384 
1385 	ASSERT_RTNL();
1386 	might_sleep();
1387 
1388 	list_for_each_entry(dev, head, close_list) {
1389 		/* Temporarily disable netpoll until the interface is down */
1390 		netpoll_poll_disable(dev);
1391 
1392 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393 
1394 		clear_bit(__LINK_STATE_START, &dev->state);
1395 
1396 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1397 		 * can be even on different cpu. So just clear netif_running().
1398 		 *
1399 		 * dev->stop() will invoke napi_disable() on all of it's
1400 		 * napi_struct instances on this device.
1401 		 */
1402 		smp_mb__after_atomic(); /* Commit netif_running(). */
1403 	}
1404 
1405 	dev_deactivate_many(head);
1406 
1407 	list_for_each_entry(dev, head, close_list) {
1408 		const struct net_device_ops *ops = dev->netdev_ops;
1409 
1410 		/*
1411 		 *	Call the device specific close. This cannot fail.
1412 		 *	Only if device is UP
1413 		 *
1414 		 *	We allow it to be called even after a DETACH hot-plug
1415 		 *	event.
1416 		 */
1417 		if (ops->ndo_stop)
1418 			ops->ndo_stop(dev);
1419 
1420 		dev->flags &= ~IFF_UP;
1421 		netpoll_poll_enable(dev);
1422 	}
1423 
1424 	return 0;
1425 }
1426 
1427 static int __dev_close(struct net_device *dev)
1428 {
1429 	int retval;
1430 	LIST_HEAD(single);
1431 
1432 	list_add(&dev->close_list, &single);
1433 	retval = __dev_close_many(&single);
1434 	list_del(&single);
1435 
1436 	return retval;
1437 }
1438 
1439 int dev_close_many(struct list_head *head, bool unlink)
1440 {
1441 	struct net_device *dev, *tmp;
1442 
1443 	/* Remove the devices that don't need to be closed */
1444 	list_for_each_entry_safe(dev, tmp, head, close_list)
1445 		if (!(dev->flags & IFF_UP))
1446 			list_del_init(&dev->close_list);
1447 
1448 	__dev_close_many(head);
1449 
1450 	list_for_each_entry_safe(dev, tmp, head, close_list) {
1451 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1453 		if (unlink)
1454 			list_del_init(&dev->close_list);
1455 	}
1456 
1457 	return 0;
1458 }
1459 EXPORT_SYMBOL(dev_close_many);
1460 
1461 /**
1462  *	dev_close - shutdown an interface.
1463  *	@dev: device to shutdown
1464  *
1465  *	This function moves an active device into down state. A
1466  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468  *	chain.
1469  */
1470 int dev_close(struct net_device *dev)
1471 {
1472 	if (dev->flags & IFF_UP) {
1473 		LIST_HEAD(single);
1474 
1475 		list_add(&dev->close_list, &single);
1476 		dev_close_many(&single, true);
1477 		list_del(&single);
1478 	}
1479 	return 0;
1480 }
1481 EXPORT_SYMBOL(dev_close);
1482 
1483 
1484 /**
1485  *	dev_disable_lro - disable Large Receive Offload on a device
1486  *	@dev: device
1487  *
1488  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1489  *	called under RTNL.  This is needed if received packets may be
1490  *	forwarded to another interface.
1491  */
1492 void dev_disable_lro(struct net_device *dev)
1493 {
1494 	struct net_device *lower_dev;
1495 	struct list_head *iter;
1496 
1497 	dev->wanted_features &= ~NETIF_F_LRO;
1498 	netdev_update_features(dev);
1499 
1500 	if (unlikely(dev->features & NETIF_F_LRO))
1501 		netdev_WARN(dev, "failed to disable LRO!\n");
1502 
1503 	netdev_for_each_lower_dev(dev, lower_dev, iter)
1504 		dev_disable_lro(lower_dev);
1505 }
1506 EXPORT_SYMBOL(dev_disable_lro);
1507 
1508 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509 				   struct net_device *dev)
1510 {
1511 	struct netdev_notifier_info info;
1512 
1513 	netdev_notifier_info_init(&info, dev);
1514 	return nb->notifier_call(nb, val, &info);
1515 }
1516 
1517 static int dev_boot_phase = 1;
1518 
1519 /**
1520  *	register_netdevice_notifier - register a network notifier block
1521  *	@nb: notifier
1522  *
1523  *	Register a notifier to be called when network device events occur.
1524  *	The notifier passed is linked into the kernel structures and must
1525  *	not be reused until it has been unregistered. A negative errno code
1526  *	is returned on a failure.
1527  *
1528  * 	When registered all registration and up events are replayed
1529  *	to the new notifier to allow device to have a race free
1530  *	view of the network device list.
1531  */
1532 
1533 int register_netdevice_notifier(struct notifier_block *nb)
1534 {
1535 	struct net_device *dev;
1536 	struct net_device *last;
1537 	struct net *net;
1538 	int err;
1539 
1540 	rtnl_lock();
1541 	err = raw_notifier_chain_register(&netdev_chain, nb);
1542 	if (err)
1543 		goto unlock;
1544 	if (dev_boot_phase)
1545 		goto unlock;
1546 	for_each_net(net) {
1547 		for_each_netdev(net, dev) {
1548 			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549 			err = notifier_to_errno(err);
1550 			if (err)
1551 				goto rollback;
1552 
1553 			if (!(dev->flags & IFF_UP))
1554 				continue;
1555 
1556 			call_netdevice_notifier(nb, NETDEV_UP, dev);
1557 		}
1558 	}
1559 
1560 unlock:
1561 	rtnl_unlock();
1562 	return err;
1563 
1564 rollback:
1565 	last = dev;
1566 	for_each_net(net) {
1567 		for_each_netdev(net, dev) {
1568 			if (dev == last)
1569 				goto outroll;
1570 
1571 			if (dev->flags & IFF_UP) {
1572 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573 							dev);
1574 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575 			}
1576 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577 		}
1578 	}
1579 
1580 outroll:
1581 	raw_notifier_chain_unregister(&netdev_chain, nb);
1582 	goto unlock;
1583 }
1584 EXPORT_SYMBOL(register_netdevice_notifier);
1585 
1586 /**
1587  *	unregister_netdevice_notifier - unregister a network notifier block
1588  *	@nb: notifier
1589  *
1590  *	Unregister a notifier previously registered by
1591  *	register_netdevice_notifier(). The notifier is unlinked into the
1592  *	kernel structures and may then be reused. A negative errno code
1593  *	is returned on a failure.
1594  *
1595  * 	After unregistering unregister and down device events are synthesized
1596  *	for all devices on the device list to the removed notifier to remove
1597  *	the need for special case cleanup code.
1598  */
1599 
1600 int unregister_netdevice_notifier(struct notifier_block *nb)
1601 {
1602 	struct net_device *dev;
1603 	struct net *net;
1604 	int err;
1605 
1606 	rtnl_lock();
1607 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608 	if (err)
1609 		goto unlock;
1610 
1611 	for_each_net(net) {
1612 		for_each_netdev(net, dev) {
1613 			if (dev->flags & IFF_UP) {
1614 				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615 							dev);
1616 				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617 			}
1618 			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619 		}
1620 	}
1621 unlock:
1622 	rtnl_unlock();
1623 	return err;
1624 }
1625 EXPORT_SYMBOL(unregister_netdevice_notifier);
1626 
1627 /**
1628  *	call_netdevice_notifiers_info - call all network notifier blocks
1629  *	@val: value passed unmodified to notifier function
1630  *	@dev: net_device pointer passed unmodified to notifier function
1631  *	@info: notifier information data
1632  *
1633  *	Call all network notifier blocks.  Parameters and return value
1634  *	are as for raw_notifier_call_chain().
1635  */
1636 
1637 static int call_netdevice_notifiers_info(unsigned long val,
1638 					 struct net_device *dev,
1639 					 struct netdev_notifier_info *info)
1640 {
1641 	ASSERT_RTNL();
1642 	netdev_notifier_info_init(info, dev);
1643 	return raw_notifier_call_chain(&netdev_chain, val, info);
1644 }
1645 
1646 /**
1647  *	call_netdevice_notifiers - call all network notifier blocks
1648  *      @val: value passed unmodified to notifier function
1649  *      @dev: net_device pointer passed unmodified to notifier function
1650  *
1651  *	Call all network notifier blocks.  Parameters and return value
1652  *	are as for raw_notifier_call_chain().
1653  */
1654 
1655 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656 {
1657 	struct netdev_notifier_info info;
1658 
1659 	return call_netdevice_notifiers_info(val, dev, &info);
1660 }
1661 EXPORT_SYMBOL(call_netdevice_notifiers);
1662 
1663 #ifdef CONFIG_NET_INGRESS
1664 static struct static_key ingress_needed __read_mostly;
1665 
1666 void net_inc_ingress_queue(void)
1667 {
1668 	static_key_slow_inc(&ingress_needed);
1669 }
1670 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671 
1672 void net_dec_ingress_queue(void)
1673 {
1674 	static_key_slow_dec(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677 #endif
1678 
1679 #ifdef CONFIG_NET_EGRESS
1680 static struct static_key egress_needed __read_mostly;
1681 
1682 void net_inc_egress_queue(void)
1683 {
1684 	static_key_slow_inc(&egress_needed);
1685 }
1686 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687 
1688 void net_dec_egress_queue(void)
1689 {
1690 	static_key_slow_dec(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693 #endif
1694 
1695 static struct static_key netstamp_needed __read_mostly;
1696 #ifdef HAVE_JUMP_LABEL
1697 /* We are not allowed to call static_key_slow_dec() from irq context
1698  * If net_disable_timestamp() is called from irq context, defer the
1699  * static_key_slow_dec() calls.
1700  */
1701 static atomic_t netstamp_needed_deferred;
1702 #endif
1703 
1704 void net_enable_timestamp(void)
1705 {
1706 #ifdef HAVE_JUMP_LABEL
1707 	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708 
1709 	if (deferred) {
1710 		while (--deferred)
1711 			static_key_slow_dec(&netstamp_needed);
1712 		return;
1713 	}
1714 #endif
1715 	static_key_slow_inc(&netstamp_needed);
1716 }
1717 EXPORT_SYMBOL(net_enable_timestamp);
1718 
1719 void net_disable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722 	if (in_interrupt()) {
1723 		atomic_inc(&netstamp_needed_deferred);
1724 		return;
1725 	}
1726 #endif
1727 	static_key_slow_dec(&netstamp_needed);
1728 }
1729 EXPORT_SYMBOL(net_disable_timestamp);
1730 
1731 static inline void net_timestamp_set(struct sk_buff *skb)
1732 {
1733 	skb->tstamp.tv64 = 0;
1734 	if (static_key_false(&netstamp_needed))
1735 		__net_timestamp(skb);
1736 }
1737 
1738 #define net_timestamp_check(COND, SKB)			\
1739 	if (static_key_false(&netstamp_needed)) {		\
1740 		if ((COND) && !(SKB)->tstamp.tv64)	\
1741 			__net_timestamp(SKB);		\
1742 	}						\
1743 
1744 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1745 {
1746 	unsigned int len;
1747 
1748 	if (!(dev->flags & IFF_UP))
1749 		return false;
1750 
1751 	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752 	if (skb->len <= len)
1753 		return true;
1754 
1755 	/* if TSO is enabled, we don't care about the length as the packet
1756 	 * could be forwarded without being segmented before
1757 	 */
1758 	if (skb_is_gso(skb))
1759 		return true;
1760 
1761 	return false;
1762 }
1763 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764 
1765 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766 {
1767 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768 	    unlikely(!is_skb_forwardable(dev, skb))) {
1769 		atomic_long_inc(&dev->rx_dropped);
1770 		kfree_skb(skb);
1771 		return NET_RX_DROP;
1772 	}
1773 
1774 	skb_scrub_packet(skb, true);
1775 	skb->priority = 0;
1776 	skb->protocol = eth_type_trans(skb, dev);
1777 	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778 
1779 	return 0;
1780 }
1781 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782 
1783 /**
1784  * dev_forward_skb - loopback an skb to another netif
1785  *
1786  * @dev: destination network device
1787  * @skb: buffer to forward
1788  *
1789  * return values:
1790  *	NET_RX_SUCCESS	(no congestion)
1791  *	NET_RX_DROP     (packet was dropped, but freed)
1792  *
1793  * dev_forward_skb can be used for injecting an skb from the
1794  * start_xmit function of one device into the receive queue
1795  * of another device.
1796  *
1797  * The receiving device may be in another namespace, so
1798  * we have to clear all information in the skb that could
1799  * impact namespace isolation.
1800  */
1801 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802 {
1803 	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804 }
1805 EXPORT_SYMBOL_GPL(dev_forward_skb);
1806 
1807 static inline int deliver_skb(struct sk_buff *skb,
1808 			      struct packet_type *pt_prev,
1809 			      struct net_device *orig_dev)
1810 {
1811 	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812 		return -ENOMEM;
1813 	atomic_inc(&skb->users);
1814 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815 }
1816 
1817 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818 					  struct packet_type **pt,
1819 					  struct net_device *orig_dev,
1820 					  __be16 type,
1821 					  struct list_head *ptype_list)
1822 {
1823 	struct packet_type *ptype, *pt_prev = *pt;
1824 
1825 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1826 		if (ptype->type != type)
1827 			continue;
1828 		if (pt_prev)
1829 			deliver_skb(skb, pt_prev, orig_dev);
1830 		pt_prev = ptype;
1831 	}
1832 	*pt = pt_prev;
1833 }
1834 
1835 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836 {
1837 	if (!ptype->af_packet_priv || !skb->sk)
1838 		return false;
1839 
1840 	if (ptype->id_match)
1841 		return ptype->id_match(ptype, skb->sk);
1842 	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843 		return true;
1844 
1845 	return false;
1846 }
1847 
1848 /*
1849  *	Support routine. Sends outgoing frames to any network
1850  *	taps currently in use.
1851  */
1852 
1853 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854 {
1855 	struct packet_type *ptype;
1856 	struct sk_buff *skb2 = NULL;
1857 	struct packet_type *pt_prev = NULL;
1858 	struct list_head *ptype_list = &ptype_all;
1859 
1860 	rcu_read_lock();
1861 again:
1862 	list_for_each_entry_rcu(ptype, ptype_list, list) {
1863 		/* Never send packets back to the socket
1864 		 * they originated from - MvS ([email protected])
1865 		 */
1866 		if (skb_loop_sk(ptype, skb))
1867 			continue;
1868 
1869 		if (pt_prev) {
1870 			deliver_skb(skb2, pt_prev, skb->dev);
1871 			pt_prev = ptype;
1872 			continue;
1873 		}
1874 
1875 		/* need to clone skb, done only once */
1876 		skb2 = skb_clone(skb, GFP_ATOMIC);
1877 		if (!skb2)
1878 			goto out_unlock;
1879 
1880 		net_timestamp_set(skb2);
1881 
1882 		/* skb->nh should be correctly
1883 		 * set by sender, so that the second statement is
1884 		 * just protection against buggy protocols.
1885 		 */
1886 		skb_reset_mac_header(skb2);
1887 
1888 		if (skb_network_header(skb2) < skb2->data ||
1889 		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890 			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891 					     ntohs(skb2->protocol),
1892 					     dev->name);
1893 			skb_reset_network_header(skb2);
1894 		}
1895 
1896 		skb2->transport_header = skb2->network_header;
1897 		skb2->pkt_type = PACKET_OUTGOING;
1898 		pt_prev = ptype;
1899 	}
1900 
1901 	if (ptype_list == &ptype_all) {
1902 		ptype_list = &dev->ptype_all;
1903 		goto again;
1904 	}
1905 out_unlock:
1906 	if (pt_prev)
1907 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1908 	rcu_read_unlock();
1909 }
1910 
1911 /**
1912  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913  * @dev: Network device
1914  * @txq: number of queues available
1915  *
1916  * If real_num_tx_queues is changed the tc mappings may no longer be
1917  * valid. To resolve this verify the tc mapping remains valid and if
1918  * not NULL the mapping. With no priorities mapping to this
1919  * offset/count pair it will no longer be used. In the worst case TC0
1920  * is invalid nothing can be done so disable priority mappings. If is
1921  * expected that drivers will fix this mapping if they can before
1922  * calling netif_set_real_num_tx_queues.
1923  */
1924 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925 {
1926 	int i;
1927 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928 
1929 	/* If TC0 is invalidated disable TC mapping */
1930 	if (tc->offset + tc->count > txq) {
1931 		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932 		dev->num_tc = 0;
1933 		return;
1934 	}
1935 
1936 	/* Invalidated prio to tc mappings set to TC0 */
1937 	for (i = 1; i < TC_BITMASK + 1; i++) {
1938 		int q = netdev_get_prio_tc_map(dev, i);
1939 
1940 		tc = &dev->tc_to_txq[q];
1941 		if (tc->offset + tc->count > txq) {
1942 			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943 				i, q);
1944 			netdev_set_prio_tc_map(dev, i, 0);
1945 		}
1946 	}
1947 }
1948 
1949 #ifdef CONFIG_XPS
1950 static DEFINE_MUTEX(xps_map_mutex);
1951 #define xmap_dereference(P)		\
1952 	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953 
1954 static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955 					int cpu, u16 index)
1956 {
1957 	struct xps_map *map = NULL;
1958 	int pos;
1959 
1960 	if (dev_maps)
1961 		map = xmap_dereference(dev_maps->cpu_map[cpu]);
1962 
1963 	for (pos = 0; map && pos < map->len; pos++) {
1964 		if (map->queues[pos] == index) {
1965 			if (map->len > 1) {
1966 				map->queues[pos] = map->queues[--map->len];
1967 			} else {
1968 				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969 				kfree_rcu(map, rcu);
1970 				map = NULL;
1971 			}
1972 			break;
1973 		}
1974 	}
1975 
1976 	return map;
1977 }
1978 
1979 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
1980 {
1981 	struct xps_dev_maps *dev_maps;
1982 	int cpu, i;
1983 	bool active = false;
1984 
1985 	mutex_lock(&xps_map_mutex);
1986 	dev_maps = xmap_dereference(dev->xps_maps);
1987 
1988 	if (!dev_maps)
1989 		goto out_no_maps;
1990 
1991 	for_each_possible_cpu(cpu) {
1992 		for (i = index; i < dev->num_tx_queues; i++) {
1993 			if (!remove_xps_queue(dev_maps, cpu, i))
1994 				break;
1995 		}
1996 		if (i == dev->num_tx_queues)
1997 			active = true;
1998 	}
1999 
2000 	if (!active) {
2001 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2002 		kfree_rcu(dev_maps, rcu);
2003 	}
2004 
2005 	for (i = index; i < dev->num_tx_queues; i++)
2006 		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007 					     NUMA_NO_NODE);
2008 
2009 out_no_maps:
2010 	mutex_unlock(&xps_map_mutex);
2011 }
2012 
2013 static struct xps_map *expand_xps_map(struct xps_map *map,
2014 				      int cpu, u16 index)
2015 {
2016 	struct xps_map *new_map;
2017 	int alloc_len = XPS_MIN_MAP_ALLOC;
2018 	int i, pos;
2019 
2020 	for (pos = 0; map && pos < map->len; pos++) {
2021 		if (map->queues[pos] != index)
2022 			continue;
2023 		return map;
2024 	}
2025 
2026 	/* Need to add queue to this CPU's existing map */
2027 	if (map) {
2028 		if (pos < map->alloc_len)
2029 			return map;
2030 
2031 		alloc_len = map->alloc_len * 2;
2032 	}
2033 
2034 	/* Need to allocate new map to store queue on this CPU's map */
2035 	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036 			       cpu_to_node(cpu));
2037 	if (!new_map)
2038 		return NULL;
2039 
2040 	for (i = 0; i < pos; i++)
2041 		new_map->queues[i] = map->queues[i];
2042 	new_map->alloc_len = alloc_len;
2043 	new_map->len = pos;
2044 
2045 	return new_map;
2046 }
2047 
2048 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049 			u16 index)
2050 {
2051 	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2052 	struct xps_map *map, *new_map;
2053 	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054 	int cpu, numa_node_id = -2;
2055 	bool active = false;
2056 
2057 	mutex_lock(&xps_map_mutex);
2058 
2059 	dev_maps = xmap_dereference(dev->xps_maps);
2060 
2061 	/* allocate memory for queue storage */
2062 	for_each_online_cpu(cpu) {
2063 		if (!cpumask_test_cpu(cpu, mask))
2064 			continue;
2065 
2066 		if (!new_dev_maps)
2067 			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068 		if (!new_dev_maps) {
2069 			mutex_unlock(&xps_map_mutex);
2070 			return -ENOMEM;
2071 		}
2072 
2073 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074 				 NULL;
2075 
2076 		map = expand_xps_map(map, cpu, index);
2077 		if (!map)
2078 			goto error;
2079 
2080 		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081 	}
2082 
2083 	if (!new_dev_maps)
2084 		goto out_no_new_maps;
2085 
2086 	for_each_possible_cpu(cpu) {
2087 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088 			/* add queue to CPU maps */
2089 			int pos = 0;
2090 
2091 			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2092 			while ((pos < map->len) && (map->queues[pos] != index))
2093 				pos++;
2094 
2095 			if (pos == map->len)
2096 				map->queues[map->len++] = index;
2097 #ifdef CONFIG_NUMA
2098 			if (numa_node_id == -2)
2099 				numa_node_id = cpu_to_node(cpu);
2100 			else if (numa_node_id != cpu_to_node(cpu))
2101 				numa_node_id = -1;
2102 #endif
2103 		} else if (dev_maps) {
2104 			/* fill in the new device map from the old device map */
2105 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106 			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107 		}
2108 
2109 	}
2110 
2111 	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112 
2113 	/* Cleanup old maps */
2114 	if (dev_maps) {
2115 		for_each_possible_cpu(cpu) {
2116 			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117 			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118 			if (map && map != new_map)
2119 				kfree_rcu(map, rcu);
2120 		}
2121 
2122 		kfree_rcu(dev_maps, rcu);
2123 	}
2124 
2125 	dev_maps = new_dev_maps;
2126 	active = true;
2127 
2128 out_no_new_maps:
2129 	/* update Tx queue numa node */
2130 	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131 				     (numa_node_id >= 0) ? numa_node_id :
2132 				     NUMA_NO_NODE);
2133 
2134 	if (!dev_maps)
2135 		goto out_no_maps;
2136 
2137 	/* removes queue from unused CPUs */
2138 	for_each_possible_cpu(cpu) {
2139 		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140 			continue;
2141 
2142 		if (remove_xps_queue(dev_maps, cpu, index))
2143 			active = true;
2144 	}
2145 
2146 	/* free map if not active */
2147 	if (!active) {
2148 		RCU_INIT_POINTER(dev->xps_maps, NULL);
2149 		kfree_rcu(dev_maps, rcu);
2150 	}
2151 
2152 out_no_maps:
2153 	mutex_unlock(&xps_map_mutex);
2154 
2155 	return 0;
2156 error:
2157 	/* remove any maps that we added */
2158 	for_each_possible_cpu(cpu) {
2159 		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160 		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161 				 NULL;
2162 		if (new_map && new_map != map)
2163 			kfree(new_map);
2164 	}
2165 
2166 	mutex_unlock(&xps_map_mutex);
2167 
2168 	kfree(new_dev_maps);
2169 	return -ENOMEM;
2170 }
2171 EXPORT_SYMBOL(netif_set_xps_queue);
2172 
2173 #endif
2174 /*
2175  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177  */
2178 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179 {
2180 	int rc;
2181 
2182 	if (txq < 1 || txq > dev->num_tx_queues)
2183 		return -EINVAL;
2184 
2185 	if (dev->reg_state == NETREG_REGISTERED ||
2186 	    dev->reg_state == NETREG_UNREGISTERING) {
2187 		ASSERT_RTNL();
2188 
2189 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190 						  txq);
2191 		if (rc)
2192 			return rc;
2193 
2194 		if (dev->num_tc)
2195 			netif_setup_tc(dev, txq);
2196 
2197 		if (txq < dev->real_num_tx_queues) {
2198 			qdisc_reset_all_tx_gt(dev, txq);
2199 #ifdef CONFIG_XPS
2200 			netif_reset_xps_queues_gt(dev, txq);
2201 #endif
2202 		}
2203 	}
2204 
2205 	dev->real_num_tx_queues = txq;
2206 	return 0;
2207 }
2208 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209 
2210 #ifdef CONFIG_SYSFS
2211 /**
2212  *	netif_set_real_num_rx_queues - set actual number of RX queues used
2213  *	@dev: Network device
2214  *	@rxq: Actual number of RX queues
2215  *
2216  *	This must be called either with the rtnl_lock held or before
2217  *	registration of the net device.  Returns 0 on success, or a
2218  *	negative error code.  If called before registration, it always
2219  *	succeeds.
2220  */
2221 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222 {
2223 	int rc;
2224 
2225 	if (rxq < 1 || rxq > dev->num_rx_queues)
2226 		return -EINVAL;
2227 
2228 	if (dev->reg_state == NETREG_REGISTERED) {
2229 		ASSERT_RTNL();
2230 
2231 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232 						  rxq);
2233 		if (rc)
2234 			return rc;
2235 	}
2236 
2237 	dev->real_num_rx_queues = rxq;
2238 	return 0;
2239 }
2240 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241 #endif
2242 
2243 /**
2244  * netif_get_num_default_rss_queues - default number of RSS queues
2245  *
2246  * This routine should set an upper limit on the number of RSS queues
2247  * used by default by multiqueue devices.
2248  */
2249 int netif_get_num_default_rss_queues(void)
2250 {
2251 	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2252 }
2253 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254 
2255 static inline void __netif_reschedule(struct Qdisc *q)
2256 {
2257 	struct softnet_data *sd;
2258 	unsigned long flags;
2259 
2260 	local_irq_save(flags);
2261 	sd = this_cpu_ptr(&softnet_data);
2262 	q->next_sched = NULL;
2263 	*sd->output_queue_tailp = q;
2264 	sd->output_queue_tailp = &q->next_sched;
2265 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266 	local_irq_restore(flags);
2267 }
2268 
2269 void __netif_schedule(struct Qdisc *q)
2270 {
2271 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272 		__netif_reschedule(q);
2273 }
2274 EXPORT_SYMBOL(__netif_schedule);
2275 
2276 struct dev_kfree_skb_cb {
2277 	enum skb_free_reason reason;
2278 };
2279 
2280 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281 {
2282 	return (struct dev_kfree_skb_cb *)skb->cb;
2283 }
2284 
2285 void netif_schedule_queue(struct netdev_queue *txq)
2286 {
2287 	rcu_read_lock();
2288 	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289 		struct Qdisc *q = rcu_dereference(txq->qdisc);
2290 
2291 		__netif_schedule(q);
2292 	}
2293 	rcu_read_unlock();
2294 }
2295 EXPORT_SYMBOL(netif_schedule_queue);
2296 
2297 /**
2298  *	netif_wake_subqueue - allow sending packets on subqueue
2299  *	@dev: network device
2300  *	@queue_index: sub queue index
2301  *
2302  * Resume individual transmit queue of a device with multiple transmit queues.
2303  */
2304 void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305 {
2306 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307 
2308 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309 		struct Qdisc *q;
2310 
2311 		rcu_read_lock();
2312 		q = rcu_dereference(txq->qdisc);
2313 		__netif_schedule(q);
2314 		rcu_read_unlock();
2315 	}
2316 }
2317 EXPORT_SYMBOL(netif_wake_subqueue);
2318 
2319 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320 {
2321 	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322 		struct Qdisc *q;
2323 
2324 		rcu_read_lock();
2325 		q = rcu_dereference(dev_queue->qdisc);
2326 		__netif_schedule(q);
2327 		rcu_read_unlock();
2328 	}
2329 }
2330 EXPORT_SYMBOL(netif_tx_wake_queue);
2331 
2332 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333 {
2334 	unsigned long flags;
2335 
2336 	if (likely(atomic_read(&skb->users) == 1)) {
2337 		smp_rmb();
2338 		atomic_set(&skb->users, 0);
2339 	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2340 		return;
2341 	}
2342 	get_kfree_skb_cb(skb)->reason = reason;
2343 	local_irq_save(flags);
2344 	skb->next = __this_cpu_read(softnet_data.completion_queue);
2345 	__this_cpu_write(softnet_data.completion_queue, skb);
2346 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347 	local_irq_restore(flags);
2348 }
2349 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350 
2351 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352 {
2353 	if (in_irq() || irqs_disabled())
2354 		__dev_kfree_skb_irq(skb, reason);
2355 	else
2356 		dev_kfree_skb(skb);
2357 }
2358 EXPORT_SYMBOL(__dev_kfree_skb_any);
2359 
2360 
2361 /**
2362  * netif_device_detach - mark device as removed
2363  * @dev: network device
2364  *
2365  * Mark device as removed from system and therefore no longer available.
2366  */
2367 void netif_device_detach(struct net_device *dev)
2368 {
2369 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370 	    netif_running(dev)) {
2371 		netif_tx_stop_all_queues(dev);
2372 	}
2373 }
2374 EXPORT_SYMBOL(netif_device_detach);
2375 
2376 /**
2377  * netif_device_attach - mark device as attached
2378  * @dev: network device
2379  *
2380  * Mark device as attached from system and restart if needed.
2381  */
2382 void netif_device_attach(struct net_device *dev)
2383 {
2384 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385 	    netif_running(dev)) {
2386 		netif_tx_wake_all_queues(dev);
2387 		__netdev_watchdog_up(dev);
2388 	}
2389 }
2390 EXPORT_SYMBOL(netif_device_attach);
2391 
2392 /*
2393  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394  * to be used as a distribution range.
2395  */
2396 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397 		  unsigned int num_tx_queues)
2398 {
2399 	u32 hash;
2400 	u16 qoffset = 0;
2401 	u16 qcount = num_tx_queues;
2402 
2403 	if (skb_rx_queue_recorded(skb)) {
2404 		hash = skb_get_rx_queue(skb);
2405 		while (unlikely(hash >= num_tx_queues))
2406 			hash -= num_tx_queues;
2407 		return hash;
2408 	}
2409 
2410 	if (dev->num_tc) {
2411 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412 		qoffset = dev->tc_to_txq[tc].offset;
2413 		qcount = dev->tc_to_txq[tc].count;
2414 	}
2415 
2416 	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417 }
2418 EXPORT_SYMBOL(__skb_tx_hash);
2419 
2420 static void skb_warn_bad_offload(const struct sk_buff *skb)
2421 {
2422 	static const netdev_features_t null_features = 0;
2423 	struct net_device *dev = skb->dev;
2424 	const char *name = "";
2425 
2426 	if (!net_ratelimit())
2427 		return;
2428 
2429 	if (dev) {
2430 		if (dev->dev.parent)
2431 			name = dev_driver_string(dev->dev.parent);
2432 		else
2433 			name = netdev_name(dev);
2434 	}
2435 	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436 	     "gso_type=%d ip_summed=%d\n",
2437 	     name, dev ? &dev->features : &null_features,
2438 	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439 	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440 	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2441 }
2442 
2443 /*
2444  * Invalidate hardware checksum when packet is to be mangled, and
2445  * complete checksum manually on outgoing path.
2446  */
2447 int skb_checksum_help(struct sk_buff *skb)
2448 {
2449 	__wsum csum;
2450 	int ret = 0, offset;
2451 
2452 	if (skb->ip_summed == CHECKSUM_COMPLETE)
2453 		goto out_set_summed;
2454 
2455 	if (unlikely(skb_shinfo(skb)->gso_size)) {
2456 		skb_warn_bad_offload(skb);
2457 		return -EINVAL;
2458 	}
2459 
2460 	/* Before computing a checksum, we should make sure no frag could
2461 	 * be modified by an external entity : checksum could be wrong.
2462 	 */
2463 	if (skb_has_shared_frag(skb)) {
2464 		ret = __skb_linearize(skb);
2465 		if (ret)
2466 			goto out;
2467 	}
2468 
2469 	offset = skb_checksum_start_offset(skb);
2470 	BUG_ON(offset >= skb_headlen(skb));
2471 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472 
2473 	offset += skb->csum_offset;
2474 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475 
2476 	if (skb_cloned(skb) &&
2477 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479 		if (ret)
2480 			goto out;
2481 	}
2482 
2483 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484 out_set_summed:
2485 	skb->ip_summed = CHECKSUM_NONE;
2486 out:
2487 	return ret;
2488 }
2489 EXPORT_SYMBOL(skb_checksum_help);
2490 
2491 /* skb_csum_offload_check - Driver helper function to determine if a device
2492  * with limited checksum offload capabilities is able to offload the checksum
2493  * for a given packet.
2494  *
2495  * Arguments:
2496  *   skb - sk_buff for the packet in question
2497  *   spec - contains the description of what device can offload
2498  *   csum_encapped - returns true if the checksum being offloaded is
2499  *	      encpasulated. That is it is checksum for the transport header
2500  *	      in the inner headers.
2501  *   checksum_help - when set indicates that helper function should
2502  *	      call skb_checksum_help if offload checks fail
2503  *
2504  * Returns:
2505  *   true: Packet has passed the checksum checks and should be offloadable to
2506  *	   the device (a driver may still need to check for additional
2507  *	   restrictions of its device)
2508  *   false: Checksum is not offloadable. If checksum_help was set then
2509  *	   skb_checksum_help was called to resolve checksum for non-GSO
2510  *	   packets and when IP protocol is not SCTP
2511  */
2512 bool __skb_csum_offload_chk(struct sk_buff *skb,
2513 			    const struct skb_csum_offl_spec *spec,
2514 			    bool *csum_encapped,
2515 			    bool csum_help)
2516 {
2517 	struct iphdr *iph;
2518 	struct ipv6hdr *ipv6;
2519 	void *nhdr;
2520 	int protocol;
2521 	u8 ip_proto;
2522 
2523 	if (skb->protocol == htons(ETH_P_8021Q) ||
2524 	    skb->protocol == htons(ETH_P_8021AD)) {
2525 		if (!spec->vlan_okay)
2526 			goto need_help;
2527 	}
2528 
2529 	/* We check whether the checksum refers to a transport layer checksum in
2530 	 * the outermost header or an encapsulated transport layer checksum that
2531 	 * corresponds to the inner headers of the skb. If the checksum is for
2532 	 * something else in the packet we need help.
2533 	 */
2534 	if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535 		/* Non-encapsulated checksum */
2536 		protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537 		nhdr = skb_network_header(skb);
2538 		*csum_encapped = false;
2539 		if (spec->no_not_encapped)
2540 			goto need_help;
2541 	} else if (skb->encapsulation && spec->encap_okay &&
2542 		   skb_checksum_start_offset(skb) ==
2543 		   skb_inner_transport_offset(skb)) {
2544 		/* Encapsulated checksum */
2545 		*csum_encapped = true;
2546 		switch (skb->inner_protocol_type) {
2547 		case ENCAP_TYPE_ETHER:
2548 			protocol = eproto_to_ipproto(skb->inner_protocol);
2549 			break;
2550 		case ENCAP_TYPE_IPPROTO:
2551 			protocol = skb->inner_protocol;
2552 			break;
2553 		}
2554 		nhdr = skb_inner_network_header(skb);
2555 	} else {
2556 		goto need_help;
2557 	}
2558 
2559 	switch (protocol) {
2560 	case IPPROTO_IP:
2561 		if (!spec->ipv4_okay)
2562 			goto need_help;
2563 		iph = nhdr;
2564 		ip_proto = iph->protocol;
2565 		if (iph->ihl != 5 && !spec->ip_options_okay)
2566 			goto need_help;
2567 		break;
2568 	case IPPROTO_IPV6:
2569 		if (!spec->ipv6_okay)
2570 			goto need_help;
2571 		if (spec->no_encapped_ipv6 && *csum_encapped)
2572 			goto need_help;
2573 		ipv6 = nhdr;
2574 		nhdr += sizeof(*ipv6);
2575 		ip_proto = ipv6->nexthdr;
2576 		break;
2577 	default:
2578 		goto need_help;
2579 	}
2580 
2581 ip_proto_again:
2582 	switch (ip_proto) {
2583 	case IPPROTO_TCP:
2584 		if (!spec->tcp_okay ||
2585 		    skb->csum_offset != offsetof(struct tcphdr, check))
2586 			goto need_help;
2587 		break;
2588 	case IPPROTO_UDP:
2589 		if (!spec->udp_okay ||
2590 		    skb->csum_offset != offsetof(struct udphdr, check))
2591 			goto need_help;
2592 		break;
2593 	case IPPROTO_SCTP:
2594 		if (!spec->sctp_okay ||
2595 		    skb->csum_offset != offsetof(struct sctphdr, checksum))
2596 			goto cant_help;
2597 		break;
2598 	case NEXTHDR_HOP:
2599 	case NEXTHDR_ROUTING:
2600 	case NEXTHDR_DEST: {
2601 		u8 *opthdr = nhdr;
2602 
2603 		if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604 			goto need_help;
2605 
2606 		ip_proto = opthdr[0];
2607 		nhdr += (opthdr[1] + 1) << 3;
2608 
2609 		goto ip_proto_again;
2610 	}
2611 	default:
2612 		goto need_help;
2613 	}
2614 
2615 	/* Passed the tests for offloading checksum */
2616 	return true;
2617 
2618 need_help:
2619 	if (csum_help && !skb_shinfo(skb)->gso_size)
2620 		skb_checksum_help(skb);
2621 cant_help:
2622 	return false;
2623 }
2624 EXPORT_SYMBOL(__skb_csum_offload_chk);
2625 
2626 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627 {
2628 	__be16 type = skb->protocol;
2629 
2630 	/* Tunnel gso handlers can set protocol to ethernet. */
2631 	if (type == htons(ETH_P_TEB)) {
2632 		struct ethhdr *eth;
2633 
2634 		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635 			return 0;
2636 
2637 		eth = (struct ethhdr *)skb_mac_header(skb);
2638 		type = eth->h_proto;
2639 	}
2640 
2641 	return __vlan_get_protocol(skb, type, depth);
2642 }
2643 
2644 /**
2645  *	skb_mac_gso_segment - mac layer segmentation handler.
2646  *	@skb: buffer to segment
2647  *	@features: features for the output path (see dev->features)
2648  */
2649 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650 				    netdev_features_t features)
2651 {
2652 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653 	struct packet_offload *ptype;
2654 	int vlan_depth = skb->mac_len;
2655 	__be16 type = skb_network_protocol(skb, &vlan_depth);
2656 
2657 	if (unlikely(!type))
2658 		return ERR_PTR(-EINVAL);
2659 
2660 	__skb_pull(skb, vlan_depth);
2661 
2662 	rcu_read_lock();
2663 	list_for_each_entry_rcu(ptype, &offload_base, list) {
2664 		if (ptype->type == type && ptype->callbacks.gso_segment) {
2665 			segs = ptype->callbacks.gso_segment(skb, features);
2666 			break;
2667 		}
2668 	}
2669 	rcu_read_unlock();
2670 
2671 	__skb_push(skb, skb->data - skb_mac_header(skb));
2672 
2673 	return segs;
2674 }
2675 EXPORT_SYMBOL(skb_mac_gso_segment);
2676 
2677 
2678 /* openvswitch calls this on rx path, so we need a different check.
2679  */
2680 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681 {
2682 	if (tx_path)
2683 		return skb->ip_summed != CHECKSUM_PARTIAL;
2684 	else
2685 		return skb->ip_summed == CHECKSUM_NONE;
2686 }
2687 
2688 /**
2689  *	__skb_gso_segment - Perform segmentation on skb.
2690  *	@skb: buffer to segment
2691  *	@features: features for the output path (see dev->features)
2692  *	@tx_path: whether it is called in TX path
2693  *
2694  *	This function segments the given skb and returns a list of segments.
2695  *
2696  *	It may return NULL if the skb requires no segmentation.  This is
2697  *	only possible when GSO is used for verifying header integrity.
2698  *
2699  *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700  */
2701 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702 				  netdev_features_t features, bool tx_path)
2703 {
2704 	if (unlikely(skb_needs_check(skb, tx_path))) {
2705 		int err;
2706 
2707 		skb_warn_bad_offload(skb);
2708 
2709 		err = skb_cow_head(skb, 0);
2710 		if (err < 0)
2711 			return ERR_PTR(err);
2712 	}
2713 
2714 	/* Only report GSO partial support if it will enable us to
2715 	 * support segmentation on this frame without needing additional
2716 	 * work.
2717 	 */
2718 	if (features & NETIF_F_GSO_PARTIAL) {
2719 		netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2720 		struct net_device *dev = skb->dev;
2721 
2722 		partial_features |= dev->features & dev->gso_partial_features;
2723 		if (!skb_gso_ok(skb, features | partial_features))
2724 			features &= ~NETIF_F_GSO_PARTIAL;
2725 	}
2726 
2727 	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2728 		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2729 
2730 	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2731 	SKB_GSO_CB(skb)->encap_level = 0;
2732 
2733 	skb_reset_mac_header(skb);
2734 	skb_reset_mac_len(skb);
2735 
2736 	return skb_mac_gso_segment(skb, features);
2737 }
2738 EXPORT_SYMBOL(__skb_gso_segment);
2739 
2740 /* Take action when hardware reception checksum errors are detected. */
2741 #ifdef CONFIG_BUG
2742 void netdev_rx_csum_fault(struct net_device *dev)
2743 {
2744 	if (net_ratelimit()) {
2745 		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2746 		dump_stack();
2747 	}
2748 }
2749 EXPORT_SYMBOL(netdev_rx_csum_fault);
2750 #endif
2751 
2752 /* Actually, we should eliminate this check as soon as we know, that:
2753  * 1. IOMMU is present and allows to map all the memory.
2754  * 2. No high memory really exists on this machine.
2755  */
2756 
2757 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2758 {
2759 #ifdef CONFIG_HIGHMEM
2760 	int i;
2761 	if (!(dev->features & NETIF_F_HIGHDMA)) {
2762 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2763 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2764 			if (PageHighMem(skb_frag_page(frag)))
2765 				return 1;
2766 		}
2767 	}
2768 
2769 	if (PCI_DMA_BUS_IS_PHYS) {
2770 		struct device *pdev = dev->dev.parent;
2771 
2772 		if (!pdev)
2773 			return 0;
2774 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2775 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2776 			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2777 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2778 				return 1;
2779 		}
2780 	}
2781 #endif
2782 	return 0;
2783 }
2784 
2785 /* If MPLS offload request, verify we are testing hardware MPLS features
2786  * instead of standard features for the netdev.
2787  */
2788 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2789 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2790 					   netdev_features_t features,
2791 					   __be16 type)
2792 {
2793 	if (eth_p_mpls(type))
2794 		features &= skb->dev->mpls_features;
2795 
2796 	return features;
2797 }
2798 #else
2799 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2800 					   netdev_features_t features,
2801 					   __be16 type)
2802 {
2803 	return features;
2804 }
2805 #endif
2806 
2807 static netdev_features_t harmonize_features(struct sk_buff *skb,
2808 	netdev_features_t features)
2809 {
2810 	int tmp;
2811 	__be16 type;
2812 
2813 	type = skb_network_protocol(skb, &tmp);
2814 	features = net_mpls_features(skb, features, type);
2815 
2816 	if (skb->ip_summed != CHECKSUM_NONE &&
2817 	    !can_checksum_protocol(features, type)) {
2818 		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2819 	} else if (illegal_highdma(skb->dev, skb)) {
2820 		features &= ~NETIF_F_SG;
2821 	}
2822 
2823 	return features;
2824 }
2825 
2826 netdev_features_t passthru_features_check(struct sk_buff *skb,
2827 					  struct net_device *dev,
2828 					  netdev_features_t features)
2829 {
2830 	return features;
2831 }
2832 EXPORT_SYMBOL(passthru_features_check);
2833 
2834 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2835 					     struct net_device *dev,
2836 					     netdev_features_t features)
2837 {
2838 	return vlan_features_check(skb, features);
2839 }
2840 
2841 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2842 					    struct net_device *dev,
2843 					    netdev_features_t features)
2844 {
2845 	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2846 
2847 	if (gso_segs > dev->gso_max_segs)
2848 		return features & ~NETIF_F_GSO_MASK;
2849 
2850 	/* Support for GSO partial features requires software
2851 	 * intervention before we can actually process the packets
2852 	 * so we need to strip support for any partial features now
2853 	 * and we can pull them back in after we have partially
2854 	 * segmented the frame.
2855 	 */
2856 	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2857 		features &= ~dev->gso_partial_features;
2858 
2859 	/* Make sure to clear the IPv4 ID mangling feature if the
2860 	 * IPv4 header has the potential to be fragmented.
2861 	 */
2862 	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2863 		struct iphdr *iph = skb->encapsulation ?
2864 				    inner_ip_hdr(skb) : ip_hdr(skb);
2865 
2866 		if (!(iph->frag_off & htons(IP_DF)))
2867 			features &= ~NETIF_F_TSO_MANGLEID;
2868 	}
2869 
2870 	return features;
2871 }
2872 
2873 netdev_features_t netif_skb_features(struct sk_buff *skb)
2874 {
2875 	struct net_device *dev = skb->dev;
2876 	netdev_features_t features = dev->features;
2877 
2878 	if (skb_is_gso(skb))
2879 		features = gso_features_check(skb, dev, features);
2880 
2881 	/* If encapsulation offload request, verify we are testing
2882 	 * hardware encapsulation features instead of standard
2883 	 * features for the netdev
2884 	 */
2885 	if (skb->encapsulation)
2886 		features &= dev->hw_enc_features;
2887 
2888 	if (skb_vlan_tagged(skb))
2889 		features = netdev_intersect_features(features,
2890 						     dev->vlan_features |
2891 						     NETIF_F_HW_VLAN_CTAG_TX |
2892 						     NETIF_F_HW_VLAN_STAG_TX);
2893 
2894 	if (dev->netdev_ops->ndo_features_check)
2895 		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2896 								features);
2897 	else
2898 		features &= dflt_features_check(skb, dev, features);
2899 
2900 	return harmonize_features(skb, features);
2901 }
2902 EXPORT_SYMBOL(netif_skb_features);
2903 
2904 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2905 		    struct netdev_queue *txq, bool more)
2906 {
2907 	unsigned int len;
2908 	int rc;
2909 
2910 	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2911 		dev_queue_xmit_nit(skb, dev);
2912 
2913 	len = skb->len;
2914 	trace_net_dev_start_xmit(skb, dev);
2915 	rc = netdev_start_xmit(skb, dev, txq, more);
2916 	trace_net_dev_xmit(skb, rc, dev, len);
2917 
2918 	return rc;
2919 }
2920 
2921 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2922 				    struct netdev_queue *txq, int *ret)
2923 {
2924 	struct sk_buff *skb = first;
2925 	int rc = NETDEV_TX_OK;
2926 
2927 	while (skb) {
2928 		struct sk_buff *next = skb->next;
2929 
2930 		skb->next = NULL;
2931 		rc = xmit_one(skb, dev, txq, next != NULL);
2932 		if (unlikely(!dev_xmit_complete(rc))) {
2933 			skb->next = next;
2934 			goto out;
2935 		}
2936 
2937 		skb = next;
2938 		if (netif_xmit_stopped(txq) && skb) {
2939 			rc = NETDEV_TX_BUSY;
2940 			break;
2941 		}
2942 	}
2943 
2944 out:
2945 	*ret = rc;
2946 	return skb;
2947 }
2948 
2949 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2950 					  netdev_features_t features)
2951 {
2952 	if (skb_vlan_tag_present(skb) &&
2953 	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2954 		skb = __vlan_hwaccel_push_inside(skb);
2955 	return skb;
2956 }
2957 
2958 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2959 {
2960 	netdev_features_t features;
2961 
2962 	features = netif_skb_features(skb);
2963 	skb = validate_xmit_vlan(skb, features);
2964 	if (unlikely(!skb))
2965 		goto out_null;
2966 
2967 	if (netif_needs_gso(skb, features)) {
2968 		struct sk_buff *segs;
2969 
2970 		segs = skb_gso_segment(skb, features);
2971 		if (IS_ERR(segs)) {
2972 			goto out_kfree_skb;
2973 		} else if (segs) {
2974 			consume_skb(skb);
2975 			skb = segs;
2976 		}
2977 	} else {
2978 		if (skb_needs_linearize(skb, features) &&
2979 		    __skb_linearize(skb))
2980 			goto out_kfree_skb;
2981 
2982 		/* If packet is not checksummed and device does not
2983 		 * support checksumming for this protocol, complete
2984 		 * checksumming here.
2985 		 */
2986 		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2987 			if (skb->encapsulation)
2988 				skb_set_inner_transport_header(skb,
2989 							       skb_checksum_start_offset(skb));
2990 			else
2991 				skb_set_transport_header(skb,
2992 							 skb_checksum_start_offset(skb));
2993 			if (!(features & NETIF_F_CSUM_MASK) &&
2994 			    skb_checksum_help(skb))
2995 				goto out_kfree_skb;
2996 		}
2997 	}
2998 
2999 	return skb;
3000 
3001 out_kfree_skb:
3002 	kfree_skb(skb);
3003 out_null:
3004 	atomic_long_inc(&dev->tx_dropped);
3005 	return NULL;
3006 }
3007 
3008 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3009 {
3010 	struct sk_buff *next, *head = NULL, *tail;
3011 
3012 	for (; skb != NULL; skb = next) {
3013 		next = skb->next;
3014 		skb->next = NULL;
3015 
3016 		/* in case skb wont be segmented, point to itself */
3017 		skb->prev = skb;
3018 
3019 		skb = validate_xmit_skb(skb, dev);
3020 		if (!skb)
3021 			continue;
3022 
3023 		if (!head)
3024 			head = skb;
3025 		else
3026 			tail->next = skb;
3027 		/* If skb was segmented, skb->prev points to
3028 		 * the last segment. If not, it still contains skb.
3029 		 */
3030 		tail = skb->prev;
3031 	}
3032 	return head;
3033 }
3034 
3035 static void qdisc_pkt_len_init(struct sk_buff *skb)
3036 {
3037 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
3038 
3039 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3040 
3041 	/* To get more precise estimation of bytes sent on wire,
3042 	 * we add to pkt_len the headers size of all segments
3043 	 */
3044 	if (shinfo->gso_size)  {
3045 		unsigned int hdr_len;
3046 		u16 gso_segs = shinfo->gso_segs;
3047 
3048 		/* mac layer + network layer */
3049 		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3050 
3051 		/* + transport layer */
3052 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3053 			hdr_len += tcp_hdrlen(skb);
3054 		else
3055 			hdr_len += sizeof(struct udphdr);
3056 
3057 		if (shinfo->gso_type & SKB_GSO_DODGY)
3058 			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3059 						shinfo->gso_size);
3060 
3061 		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3062 	}
3063 }
3064 
3065 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3066 				 struct net_device *dev,
3067 				 struct netdev_queue *txq)
3068 {
3069 	spinlock_t *root_lock = qdisc_lock(q);
3070 	bool contended;
3071 	int rc;
3072 
3073 	qdisc_calculate_pkt_len(skb, q);
3074 	/*
3075 	 * Heuristic to force contended enqueues to serialize on a
3076 	 * separate lock before trying to get qdisc main lock.
3077 	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3078 	 * often and dequeue packets faster.
3079 	 */
3080 	contended = qdisc_is_running(q);
3081 	if (unlikely(contended))
3082 		spin_lock(&q->busylock);
3083 
3084 	spin_lock(root_lock);
3085 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3086 		kfree_skb(skb);
3087 		rc = NET_XMIT_DROP;
3088 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3089 		   qdisc_run_begin(q)) {
3090 		/*
3091 		 * This is a work-conserving queue; there are no old skbs
3092 		 * waiting to be sent out; and the qdisc is not running -
3093 		 * xmit the skb directly.
3094 		 */
3095 
3096 		qdisc_bstats_update(q, skb);
3097 
3098 		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3099 			if (unlikely(contended)) {
3100 				spin_unlock(&q->busylock);
3101 				contended = false;
3102 			}
3103 			__qdisc_run(q);
3104 		} else
3105 			qdisc_run_end(q);
3106 
3107 		rc = NET_XMIT_SUCCESS;
3108 	} else {
3109 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
3110 		if (qdisc_run_begin(q)) {
3111 			if (unlikely(contended)) {
3112 				spin_unlock(&q->busylock);
3113 				contended = false;
3114 			}
3115 			__qdisc_run(q);
3116 		}
3117 	}
3118 	spin_unlock(root_lock);
3119 	if (unlikely(contended))
3120 		spin_unlock(&q->busylock);
3121 	return rc;
3122 }
3123 
3124 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3125 static void skb_update_prio(struct sk_buff *skb)
3126 {
3127 	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3128 
3129 	if (!skb->priority && skb->sk && map) {
3130 		unsigned int prioidx =
3131 			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3132 
3133 		if (prioidx < map->priomap_len)
3134 			skb->priority = map->priomap[prioidx];
3135 	}
3136 }
3137 #else
3138 #define skb_update_prio(skb)
3139 #endif
3140 
3141 DEFINE_PER_CPU(int, xmit_recursion);
3142 EXPORT_SYMBOL(xmit_recursion);
3143 
3144 #define RECURSION_LIMIT 10
3145 
3146 /**
3147  *	dev_loopback_xmit - loop back @skb
3148  *	@net: network namespace this loopback is happening in
3149  *	@sk:  sk needed to be a netfilter okfn
3150  *	@skb: buffer to transmit
3151  */
3152 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3153 {
3154 	skb_reset_mac_header(skb);
3155 	__skb_pull(skb, skb_network_offset(skb));
3156 	skb->pkt_type = PACKET_LOOPBACK;
3157 	skb->ip_summed = CHECKSUM_UNNECESSARY;
3158 	WARN_ON(!skb_dst(skb));
3159 	skb_dst_force(skb);
3160 	netif_rx_ni(skb);
3161 	return 0;
3162 }
3163 EXPORT_SYMBOL(dev_loopback_xmit);
3164 
3165 #ifdef CONFIG_NET_EGRESS
3166 static struct sk_buff *
3167 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3168 {
3169 	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3170 	struct tcf_result cl_res;
3171 
3172 	if (!cl)
3173 		return skb;
3174 
3175 	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3176 	 * earlier by the caller.
3177 	 */
3178 	qdisc_bstats_cpu_update(cl->q, skb);
3179 
3180 	switch (tc_classify(skb, cl, &cl_res, false)) {
3181 	case TC_ACT_OK:
3182 	case TC_ACT_RECLASSIFY:
3183 		skb->tc_index = TC_H_MIN(cl_res.classid);
3184 		break;
3185 	case TC_ACT_SHOT:
3186 		qdisc_qstats_cpu_drop(cl->q);
3187 		*ret = NET_XMIT_DROP;
3188 		goto drop;
3189 	case TC_ACT_STOLEN:
3190 	case TC_ACT_QUEUED:
3191 		*ret = NET_XMIT_SUCCESS;
3192 drop:
3193 		kfree_skb(skb);
3194 		return NULL;
3195 	case TC_ACT_REDIRECT:
3196 		/* No need to push/pop skb's mac_header here on egress! */
3197 		skb_do_redirect(skb);
3198 		*ret = NET_XMIT_SUCCESS;
3199 		return NULL;
3200 	default:
3201 		break;
3202 	}
3203 
3204 	return skb;
3205 }
3206 #endif /* CONFIG_NET_EGRESS */
3207 
3208 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3209 {
3210 #ifdef CONFIG_XPS
3211 	struct xps_dev_maps *dev_maps;
3212 	struct xps_map *map;
3213 	int queue_index = -1;
3214 
3215 	rcu_read_lock();
3216 	dev_maps = rcu_dereference(dev->xps_maps);
3217 	if (dev_maps) {
3218 		map = rcu_dereference(
3219 		    dev_maps->cpu_map[skb->sender_cpu - 1]);
3220 		if (map) {
3221 			if (map->len == 1)
3222 				queue_index = map->queues[0];
3223 			else
3224 				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3225 									   map->len)];
3226 			if (unlikely(queue_index >= dev->real_num_tx_queues))
3227 				queue_index = -1;
3228 		}
3229 	}
3230 	rcu_read_unlock();
3231 
3232 	return queue_index;
3233 #else
3234 	return -1;
3235 #endif
3236 }
3237 
3238 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3239 {
3240 	struct sock *sk = skb->sk;
3241 	int queue_index = sk_tx_queue_get(sk);
3242 
3243 	if (queue_index < 0 || skb->ooo_okay ||
3244 	    queue_index >= dev->real_num_tx_queues) {
3245 		int new_index = get_xps_queue(dev, skb);
3246 		if (new_index < 0)
3247 			new_index = skb_tx_hash(dev, skb);
3248 
3249 		if (queue_index != new_index && sk &&
3250 		    sk_fullsock(sk) &&
3251 		    rcu_access_pointer(sk->sk_dst_cache))
3252 			sk_tx_queue_set(sk, new_index);
3253 
3254 		queue_index = new_index;
3255 	}
3256 
3257 	return queue_index;
3258 }
3259 
3260 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3261 				    struct sk_buff *skb,
3262 				    void *accel_priv)
3263 {
3264 	int queue_index = 0;
3265 
3266 #ifdef CONFIG_XPS
3267 	u32 sender_cpu = skb->sender_cpu - 1;
3268 
3269 	if (sender_cpu >= (u32)NR_CPUS)
3270 		skb->sender_cpu = raw_smp_processor_id() + 1;
3271 #endif
3272 
3273 	if (dev->real_num_tx_queues != 1) {
3274 		const struct net_device_ops *ops = dev->netdev_ops;
3275 		if (ops->ndo_select_queue)
3276 			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3277 							    __netdev_pick_tx);
3278 		else
3279 			queue_index = __netdev_pick_tx(dev, skb);
3280 
3281 		if (!accel_priv)
3282 			queue_index = netdev_cap_txqueue(dev, queue_index);
3283 	}
3284 
3285 	skb_set_queue_mapping(skb, queue_index);
3286 	return netdev_get_tx_queue(dev, queue_index);
3287 }
3288 
3289 /**
3290  *	__dev_queue_xmit - transmit a buffer
3291  *	@skb: buffer to transmit
3292  *	@accel_priv: private data used for L2 forwarding offload
3293  *
3294  *	Queue a buffer for transmission to a network device. The caller must
3295  *	have set the device and priority and built the buffer before calling
3296  *	this function. The function can be called from an interrupt.
3297  *
3298  *	A negative errno code is returned on a failure. A success does not
3299  *	guarantee the frame will be transmitted as it may be dropped due
3300  *	to congestion or traffic shaping.
3301  *
3302  * -----------------------------------------------------------------------------------
3303  *      I notice this method can also return errors from the queue disciplines,
3304  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3305  *      be positive.
3306  *
3307  *      Regardless of the return value, the skb is consumed, so it is currently
3308  *      difficult to retry a send to this method.  (You can bump the ref count
3309  *      before sending to hold a reference for retry if you are careful.)
3310  *
3311  *      When calling this method, interrupts MUST be enabled.  This is because
3312  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3313  *          --BLG
3314  */
3315 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3316 {
3317 	struct net_device *dev = skb->dev;
3318 	struct netdev_queue *txq;
3319 	struct Qdisc *q;
3320 	int rc = -ENOMEM;
3321 
3322 	skb_reset_mac_header(skb);
3323 
3324 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3325 		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3326 
3327 	/* Disable soft irqs for various locks below. Also
3328 	 * stops preemption for RCU.
3329 	 */
3330 	rcu_read_lock_bh();
3331 
3332 	skb_update_prio(skb);
3333 
3334 	qdisc_pkt_len_init(skb);
3335 #ifdef CONFIG_NET_CLS_ACT
3336 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3337 # ifdef CONFIG_NET_EGRESS
3338 	if (static_key_false(&egress_needed)) {
3339 		skb = sch_handle_egress(skb, &rc, dev);
3340 		if (!skb)
3341 			goto out;
3342 	}
3343 # endif
3344 #endif
3345 	/* If device/qdisc don't need skb->dst, release it right now while
3346 	 * its hot in this cpu cache.
3347 	 */
3348 	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3349 		skb_dst_drop(skb);
3350 	else
3351 		skb_dst_force(skb);
3352 
3353 #ifdef CONFIG_NET_SWITCHDEV
3354 	/* Don't forward if offload device already forwarded */
3355 	if (skb->offload_fwd_mark &&
3356 	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3357 		consume_skb(skb);
3358 		rc = NET_XMIT_SUCCESS;
3359 		goto out;
3360 	}
3361 #endif
3362 
3363 	txq = netdev_pick_tx(dev, skb, accel_priv);
3364 	q = rcu_dereference_bh(txq->qdisc);
3365 
3366 	trace_net_dev_queue(skb);
3367 	if (q->enqueue) {
3368 		rc = __dev_xmit_skb(skb, q, dev, txq);
3369 		goto out;
3370 	}
3371 
3372 	/* The device has no queue. Common case for software devices:
3373 	   loopback, all the sorts of tunnels...
3374 
3375 	   Really, it is unlikely that netif_tx_lock protection is necessary
3376 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3377 	   counters.)
3378 	   However, it is possible, that they rely on protection
3379 	   made by us here.
3380 
3381 	   Check this and shot the lock. It is not prone from deadlocks.
3382 	   Either shot noqueue qdisc, it is even simpler 8)
3383 	 */
3384 	if (dev->flags & IFF_UP) {
3385 		int cpu = smp_processor_id(); /* ok because BHs are off */
3386 
3387 		if (txq->xmit_lock_owner != cpu) {
3388 
3389 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
3390 				goto recursion_alert;
3391 
3392 			skb = validate_xmit_skb(skb, dev);
3393 			if (!skb)
3394 				goto out;
3395 
3396 			HARD_TX_LOCK(dev, txq, cpu);
3397 
3398 			if (!netif_xmit_stopped(txq)) {
3399 				__this_cpu_inc(xmit_recursion);
3400 				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3401 				__this_cpu_dec(xmit_recursion);
3402 				if (dev_xmit_complete(rc)) {
3403 					HARD_TX_UNLOCK(dev, txq);
3404 					goto out;
3405 				}
3406 			}
3407 			HARD_TX_UNLOCK(dev, txq);
3408 			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3409 					     dev->name);
3410 		} else {
3411 			/* Recursion is detected! It is possible,
3412 			 * unfortunately
3413 			 */
3414 recursion_alert:
3415 			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3416 					     dev->name);
3417 		}
3418 	}
3419 
3420 	rc = -ENETDOWN;
3421 	rcu_read_unlock_bh();
3422 
3423 	atomic_long_inc(&dev->tx_dropped);
3424 	kfree_skb_list(skb);
3425 	return rc;
3426 out:
3427 	rcu_read_unlock_bh();
3428 	return rc;
3429 }
3430 
3431 int dev_queue_xmit(struct sk_buff *skb)
3432 {
3433 	return __dev_queue_xmit(skb, NULL);
3434 }
3435 EXPORT_SYMBOL(dev_queue_xmit);
3436 
3437 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3438 {
3439 	return __dev_queue_xmit(skb, accel_priv);
3440 }
3441 EXPORT_SYMBOL(dev_queue_xmit_accel);
3442 
3443 
3444 /*=======================================================================
3445 			Receiver routines
3446   =======================================================================*/
3447 
3448 int netdev_max_backlog __read_mostly = 1000;
3449 EXPORT_SYMBOL(netdev_max_backlog);
3450 
3451 int netdev_tstamp_prequeue __read_mostly = 1;
3452 int netdev_budget __read_mostly = 300;
3453 int weight_p __read_mostly = 64;            /* old backlog weight */
3454 
3455 /* Called with irq disabled */
3456 static inline void ____napi_schedule(struct softnet_data *sd,
3457 				     struct napi_struct *napi)
3458 {
3459 	list_add_tail(&napi->poll_list, &sd->poll_list);
3460 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3461 }
3462 
3463 #ifdef CONFIG_RPS
3464 
3465 /* One global table that all flow-based protocols share. */
3466 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3467 EXPORT_SYMBOL(rps_sock_flow_table);
3468 u32 rps_cpu_mask __read_mostly;
3469 EXPORT_SYMBOL(rps_cpu_mask);
3470 
3471 struct static_key rps_needed __read_mostly;
3472 EXPORT_SYMBOL(rps_needed);
3473 
3474 static struct rps_dev_flow *
3475 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3476 	    struct rps_dev_flow *rflow, u16 next_cpu)
3477 {
3478 	if (next_cpu < nr_cpu_ids) {
3479 #ifdef CONFIG_RFS_ACCEL
3480 		struct netdev_rx_queue *rxqueue;
3481 		struct rps_dev_flow_table *flow_table;
3482 		struct rps_dev_flow *old_rflow;
3483 		u32 flow_id;
3484 		u16 rxq_index;
3485 		int rc;
3486 
3487 		/* Should we steer this flow to a different hardware queue? */
3488 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3489 		    !(dev->features & NETIF_F_NTUPLE))
3490 			goto out;
3491 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3492 		if (rxq_index == skb_get_rx_queue(skb))
3493 			goto out;
3494 
3495 		rxqueue = dev->_rx + rxq_index;
3496 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3497 		if (!flow_table)
3498 			goto out;
3499 		flow_id = skb_get_hash(skb) & flow_table->mask;
3500 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3501 							rxq_index, flow_id);
3502 		if (rc < 0)
3503 			goto out;
3504 		old_rflow = rflow;
3505 		rflow = &flow_table->flows[flow_id];
3506 		rflow->filter = rc;
3507 		if (old_rflow->filter == rflow->filter)
3508 			old_rflow->filter = RPS_NO_FILTER;
3509 	out:
3510 #endif
3511 		rflow->last_qtail =
3512 			per_cpu(softnet_data, next_cpu).input_queue_head;
3513 	}
3514 
3515 	rflow->cpu = next_cpu;
3516 	return rflow;
3517 }
3518 
3519 /*
3520  * get_rps_cpu is called from netif_receive_skb and returns the target
3521  * CPU from the RPS map of the receiving queue for a given skb.
3522  * rcu_read_lock must be held on entry.
3523  */
3524 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3525 		       struct rps_dev_flow **rflowp)
3526 {
3527 	const struct rps_sock_flow_table *sock_flow_table;
3528 	struct netdev_rx_queue *rxqueue = dev->_rx;
3529 	struct rps_dev_flow_table *flow_table;
3530 	struct rps_map *map;
3531 	int cpu = -1;
3532 	u32 tcpu;
3533 	u32 hash;
3534 
3535 	if (skb_rx_queue_recorded(skb)) {
3536 		u16 index = skb_get_rx_queue(skb);
3537 
3538 		if (unlikely(index >= dev->real_num_rx_queues)) {
3539 			WARN_ONCE(dev->real_num_rx_queues > 1,
3540 				  "%s received packet on queue %u, but number "
3541 				  "of RX queues is %u\n",
3542 				  dev->name, index, dev->real_num_rx_queues);
3543 			goto done;
3544 		}
3545 		rxqueue += index;
3546 	}
3547 
3548 	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3549 
3550 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3551 	map = rcu_dereference(rxqueue->rps_map);
3552 	if (!flow_table && !map)
3553 		goto done;
3554 
3555 	skb_reset_network_header(skb);
3556 	hash = skb_get_hash(skb);
3557 	if (!hash)
3558 		goto done;
3559 
3560 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3561 	if (flow_table && sock_flow_table) {
3562 		struct rps_dev_flow *rflow;
3563 		u32 next_cpu;
3564 		u32 ident;
3565 
3566 		/* First check into global flow table if there is a match */
3567 		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3568 		if ((ident ^ hash) & ~rps_cpu_mask)
3569 			goto try_rps;
3570 
3571 		next_cpu = ident & rps_cpu_mask;
3572 
3573 		/* OK, now we know there is a match,
3574 		 * we can look at the local (per receive queue) flow table
3575 		 */
3576 		rflow = &flow_table->flows[hash & flow_table->mask];
3577 		tcpu = rflow->cpu;
3578 
3579 		/*
3580 		 * If the desired CPU (where last recvmsg was done) is
3581 		 * different from current CPU (one in the rx-queue flow
3582 		 * table entry), switch if one of the following holds:
3583 		 *   - Current CPU is unset (>= nr_cpu_ids).
3584 		 *   - Current CPU is offline.
3585 		 *   - The current CPU's queue tail has advanced beyond the
3586 		 *     last packet that was enqueued using this table entry.
3587 		 *     This guarantees that all previous packets for the flow
3588 		 *     have been dequeued, thus preserving in order delivery.
3589 		 */
3590 		if (unlikely(tcpu != next_cpu) &&
3591 		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3592 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3593 		      rflow->last_qtail)) >= 0)) {
3594 			tcpu = next_cpu;
3595 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3596 		}
3597 
3598 		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3599 			*rflowp = rflow;
3600 			cpu = tcpu;
3601 			goto done;
3602 		}
3603 	}
3604 
3605 try_rps:
3606 
3607 	if (map) {
3608 		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3609 		if (cpu_online(tcpu)) {
3610 			cpu = tcpu;
3611 			goto done;
3612 		}
3613 	}
3614 
3615 done:
3616 	return cpu;
3617 }
3618 
3619 #ifdef CONFIG_RFS_ACCEL
3620 
3621 /**
3622  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3623  * @dev: Device on which the filter was set
3624  * @rxq_index: RX queue index
3625  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3626  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3627  *
3628  * Drivers that implement ndo_rx_flow_steer() should periodically call
3629  * this function for each installed filter and remove the filters for
3630  * which it returns %true.
3631  */
3632 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3633 			 u32 flow_id, u16 filter_id)
3634 {
3635 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3636 	struct rps_dev_flow_table *flow_table;
3637 	struct rps_dev_flow *rflow;
3638 	bool expire = true;
3639 	unsigned int cpu;
3640 
3641 	rcu_read_lock();
3642 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3643 	if (flow_table && flow_id <= flow_table->mask) {
3644 		rflow = &flow_table->flows[flow_id];
3645 		cpu = ACCESS_ONCE(rflow->cpu);
3646 		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3647 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3648 			   rflow->last_qtail) <
3649 		     (int)(10 * flow_table->mask)))
3650 			expire = false;
3651 	}
3652 	rcu_read_unlock();
3653 	return expire;
3654 }
3655 EXPORT_SYMBOL(rps_may_expire_flow);
3656 
3657 #endif /* CONFIG_RFS_ACCEL */
3658 
3659 /* Called from hardirq (IPI) context */
3660 static void rps_trigger_softirq(void *data)
3661 {
3662 	struct softnet_data *sd = data;
3663 
3664 	____napi_schedule(sd, &sd->backlog);
3665 	sd->received_rps++;
3666 }
3667 
3668 #endif /* CONFIG_RPS */
3669 
3670 /*
3671  * Check if this softnet_data structure is another cpu one
3672  * If yes, queue it to our IPI list and return 1
3673  * If no, return 0
3674  */
3675 static int rps_ipi_queued(struct softnet_data *sd)
3676 {
3677 #ifdef CONFIG_RPS
3678 	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3679 
3680 	if (sd != mysd) {
3681 		sd->rps_ipi_next = mysd->rps_ipi_list;
3682 		mysd->rps_ipi_list = sd;
3683 
3684 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3685 		return 1;
3686 	}
3687 #endif /* CONFIG_RPS */
3688 	return 0;
3689 }
3690 
3691 #ifdef CONFIG_NET_FLOW_LIMIT
3692 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3693 #endif
3694 
3695 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3696 {
3697 #ifdef CONFIG_NET_FLOW_LIMIT
3698 	struct sd_flow_limit *fl;
3699 	struct softnet_data *sd;
3700 	unsigned int old_flow, new_flow;
3701 
3702 	if (qlen < (netdev_max_backlog >> 1))
3703 		return false;
3704 
3705 	sd = this_cpu_ptr(&softnet_data);
3706 
3707 	rcu_read_lock();
3708 	fl = rcu_dereference(sd->flow_limit);
3709 	if (fl) {
3710 		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3711 		old_flow = fl->history[fl->history_head];
3712 		fl->history[fl->history_head] = new_flow;
3713 
3714 		fl->history_head++;
3715 		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3716 
3717 		if (likely(fl->buckets[old_flow]))
3718 			fl->buckets[old_flow]--;
3719 
3720 		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3721 			fl->count++;
3722 			rcu_read_unlock();
3723 			return true;
3724 		}
3725 	}
3726 	rcu_read_unlock();
3727 #endif
3728 	return false;
3729 }
3730 
3731 /*
3732  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3733  * queue (may be a remote CPU queue).
3734  */
3735 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3736 			      unsigned int *qtail)
3737 {
3738 	struct softnet_data *sd;
3739 	unsigned long flags;
3740 	unsigned int qlen;
3741 
3742 	sd = &per_cpu(softnet_data, cpu);
3743 
3744 	local_irq_save(flags);
3745 
3746 	rps_lock(sd);
3747 	if (!netif_running(skb->dev))
3748 		goto drop;
3749 	qlen = skb_queue_len(&sd->input_pkt_queue);
3750 	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3751 		if (qlen) {
3752 enqueue:
3753 			__skb_queue_tail(&sd->input_pkt_queue, skb);
3754 			input_queue_tail_incr_save(sd, qtail);
3755 			rps_unlock(sd);
3756 			local_irq_restore(flags);
3757 			return NET_RX_SUCCESS;
3758 		}
3759 
3760 		/* Schedule NAPI for backlog device
3761 		 * We can use non atomic operation since we own the queue lock
3762 		 */
3763 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3764 			if (!rps_ipi_queued(sd))
3765 				____napi_schedule(sd, &sd->backlog);
3766 		}
3767 		goto enqueue;
3768 	}
3769 
3770 drop:
3771 	sd->dropped++;
3772 	rps_unlock(sd);
3773 
3774 	local_irq_restore(flags);
3775 
3776 	atomic_long_inc(&skb->dev->rx_dropped);
3777 	kfree_skb(skb);
3778 	return NET_RX_DROP;
3779 }
3780 
3781 static int netif_rx_internal(struct sk_buff *skb)
3782 {
3783 	int ret;
3784 
3785 	net_timestamp_check(netdev_tstamp_prequeue, skb);
3786 
3787 	trace_netif_rx(skb);
3788 #ifdef CONFIG_RPS
3789 	if (static_key_false(&rps_needed)) {
3790 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3791 		int cpu;
3792 
3793 		preempt_disable();
3794 		rcu_read_lock();
3795 
3796 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3797 		if (cpu < 0)
3798 			cpu = smp_processor_id();
3799 
3800 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3801 
3802 		rcu_read_unlock();
3803 		preempt_enable();
3804 	} else
3805 #endif
3806 	{
3807 		unsigned int qtail;
3808 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3809 		put_cpu();
3810 	}
3811 	return ret;
3812 }
3813 
3814 /**
3815  *	netif_rx	-	post buffer to the network code
3816  *	@skb: buffer to post
3817  *
3818  *	This function receives a packet from a device driver and queues it for
3819  *	the upper (protocol) levels to process.  It always succeeds. The buffer
3820  *	may be dropped during processing for congestion control or by the
3821  *	protocol layers.
3822  *
3823  *	return values:
3824  *	NET_RX_SUCCESS	(no congestion)
3825  *	NET_RX_DROP     (packet was dropped)
3826  *
3827  */
3828 
3829 int netif_rx(struct sk_buff *skb)
3830 {
3831 	trace_netif_rx_entry(skb);
3832 
3833 	return netif_rx_internal(skb);
3834 }
3835 EXPORT_SYMBOL(netif_rx);
3836 
3837 int netif_rx_ni(struct sk_buff *skb)
3838 {
3839 	int err;
3840 
3841 	trace_netif_rx_ni_entry(skb);
3842 
3843 	preempt_disable();
3844 	err = netif_rx_internal(skb);
3845 	if (local_softirq_pending())
3846 		do_softirq();
3847 	preempt_enable();
3848 
3849 	return err;
3850 }
3851 EXPORT_SYMBOL(netif_rx_ni);
3852 
3853 static void net_tx_action(struct softirq_action *h)
3854 {
3855 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3856 
3857 	if (sd->completion_queue) {
3858 		struct sk_buff *clist;
3859 
3860 		local_irq_disable();
3861 		clist = sd->completion_queue;
3862 		sd->completion_queue = NULL;
3863 		local_irq_enable();
3864 
3865 		while (clist) {
3866 			struct sk_buff *skb = clist;
3867 			clist = clist->next;
3868 
3869 			WARN_ON(atomic_read(&skb->users));
3870 			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3871 				trace_consume_skb(skb);
3872 			else
3873 				trace_kfree_skb(skb, net_tx_action);
3874 
3875 			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3876 				__kfree_skb(skb);
3877 			else
3878 				__kfree_skb_defer(skb);
3879 		}
3880 
3881 		__kfree_skb_flush();
3882 	}
3883 
3884 	if (sd->output_queue) {
3885 		struct Qdisc *head;
3886 
3887 		local_irq_disable();
3888 		head = sd->output_queue;
3889 		sd->output_queue = NULL;
3890 		sd->output_queue_tailp = &sd->output_queue;
3891 		local_irq_enable();
3892 
3893 		while (head) {
3894 			struct Qdisc *q = head;
3895 			spinlock_t *root_lock;
3896 
3897 			head = head->next_sched;
3898 
3899 			root_lock = qdisc_lock(q);
3900 			if (spin_trylock(root_lock)) {
3901 				smp_mb__before_atomic();
3902 				clear_bit(__QDISC_STATE_SCHED,
3903 					  &q->state);
3904 				qdisc_run(q);
3905 				spin_unlock(root_lock);
3906 			} else {
3907 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3908 					      &q->state)) {
3909 					__netif_reschedule(q);
3910 				} else {
3911 					smp_mb__before_atomic();
3912 					clear_bit(__QDISC_STATE_SCHED,
3913 						  &q->state);
3914 				}
3915 			}
3916 		}
3917 	}
3918 }
3919 
3920 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3921     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3922 /* This hook is defined here for ATM LANE */
3923 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3924 			     unsigned char *addr) __read_mostly;
3925 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3926 #endif
3927 
3928 static inline struct sk_buff *
3929 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3930 		   struct net_device *orig_dev)
3931 {
3932 #ifdef CONFIG_NET_CLS_ACT
3933 	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3934 	struct tcf_result cl_res;
3935 
3936 	/* If there's at least one ingress present somewhere (so
3937 	 * we get here via enabled static key), remaining devices
3938 	 * that are not configured with an ingress qdisc will bail
3939 	 * out here.
3940 	 */
3941 	if (!cl)
3942 		return skb;
3943 	if (*pt_prev) {
3944 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3945 		*pt_prev = NULL;
3946 	}
3947 
3948 	qdisc_skb_cb(skb)->pkt_len = skb->len;
3949 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3950 	qdisc_bstats_cpu_update(cl->q, skb);
3951 
3952 	switch (tc_classify(skb, cl, &cl_res, false)) {
3953 	case TC_ACT_OK:
3954 	case TC_ACT_RECLASSIFY:
3955 		skb->tc_index = TC_H_MIN(cl_res.classid);
3956 		break;
3957 	case TC_ACT_SHOT:
3958 		qdisc_qstats_cpu_drop(cl->q);
3959 		kfree_skb(skb);
3960 		return NULL;
3961 	case TC_ACT_STOLEN:
3962 	case TC_ACT_QUEUED:
3963 		consume_skb(skb);
3964 		return NULL;
3965 	case TC_ACT_REDIRECT:
3966 		/* skb_mac_header check was done by cls/act_bpf, so
3967 		 * we can safely push the L2 header back before
3968 		 * redirecting to another netdev
3969 		 */
3970 		__skb_push(skb, skb->mac_len);
3971 		skb_do_redirect(skb);
3972 		return NULL;
3973 	default:
3974 		break;
3975 	}
3976 #endif /* CONFIG_NET_CLS_ACT */
3977 	return skb;
3978 }
3979 
3980 /**
3981  *	netdev_rx_handler_register - register receive handler
3982  *	@dev: device to register a handler for
3983  *	@rx_handler: receive handler to register
3984  *	@rx_handler_data: data pointer that is used by rx handler
3985  *
3986  *	Register a receive handler for a device. This handler will then be
3987  *	called from __netif_receive_skb. A negative errno code is returned
3988  *	on a failure.
3989  *
3990  *	The caller must hold the rtnl_mutex.
3991  *
3992  *	For a general description of rx_handler, see enum rx_handler_result.
3993  */
3994 int netdev_rx_handler_register(struct net_device *dev,
3995 			       rx_handler_func_t *rx_handler,
3996 			       void *rx_handler_data)
3997 {
3998 	ASSERT_RTNL();
3999 
4000 	if (dev->rx_handler)
4001 		return -EBUSY;
4002 
4003 	/* Note: rx_handler_data must be set before rx_handler */
4004 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4005 	rcu_assign_pointer(dev->rx_handler, rx_handler);
4006 
4007 	return 0;
4008 }
4009 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4010 
4011 /**
4012  *	netdev_rx_handler_unregister - unregister receive handler
4013  *	@dev: device to unregister a handler from
4014  *
4015  *	Unregister a receive handler from a device.
4016  *
4017  *	The caller must hold the rtnl_mutex.
4018  */
4019 void netdev_rx_handler_unregister(struct net_device *dev)
4020 {
4021 
4022 	ASSERT_RTNL();
4023 	RCU_INIT_POINTER(dev->rx_handler, NULL);
4024 	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4025 	 * section has a guarantee to see a non NULL rx_handler_data
4026 	 * as well.
4027 	 */
4028 	synchronize_net();
4029 	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4030 }
4031 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4032 
4033 /*
4034  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4035  * the special handling of PFMEMALLOC skbs.
4036  */
4037 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4038 {
4039 	switch (skb->protocol) {
4040 	case htons(ETH_P_ARP):
4041 	case htons(ETH_P_IP):
4042 	case htons(ETH_P_IPV6):
4043 	case htons(ETH_P_8021Q):
4044 	case htons(ETH_P_8021AD):
4045 		return true;
4046 	default:
4047 		return false;
4048 	}
4049 }
4050 
4051 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4052 			     int *ret, struct net_device *orig_dev)
4053 {
4054 #ifdef CONFIG_NETFILTER_INGRESS
4055 	if (nf_hook_ingress_active(skb)) {
4056 		if (*pt_prev) {
4057 			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4058 			*pt_prev = NULL;
4059 		}
4060 
4061 		return nf_hook_ingress(skb);
4062 	}
4063 #endif /* CONFIG_NETFILTER_INGRESS */
4064 	return 0;
4065 }
4066 
4067 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4068 {
4069 	struct packet_type *ptype, *pt_prev;
4070 	rx_handler_func_t *rx_handler;
4071 	struct net_device *orig_dev;
4072 	bool deliver_exact = false;
4073 	int ret = NET_RX_DROP;
4074 	__be16 type;
4075 
4076 	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4077 
4078 	trace_netif_receive_skb(skb);
4079 
4080 	orig_dev = skb->dev;
4081 
4082 	skb_reset_network_header(skb);
4083 	if (!skb_transport_header_was_set(skb))
4084 		skb_reset_transport_header(skb);
4085 	skb_reset_mac_len(skb);
4086 
4087 	pt_prev = NULL;
4088 
4089 another_round:
4090 	skb->skb_iif = skb->dev->ifindex;
4091 
4092 	__this_cpu_inc(softnet_data.processed);
4093 
4094 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4095 	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4096 		skb = skb_vlan_untag(skb);
4097 		if (unlikely(!skb))
4098 			goto out;
4099 	}
4100 
4101 #ifdef CONFIG_NET_CLS_ACT
4102 	if (skb->tc_verd & TC_NCLS) {
4103 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4104 		goto ncls;
4105 	}
4106 #endif
4107 
4108 	if (pfmemalloc)
4109 		goto skip_taps;
4110 
4111 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4112 		if (pt_prev)
4113 			ret = deliver_skb(skb, pt_prev, orig_dev);
4114 		pt_prev = ptype;
4115 	}
4116 
4117 	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4118 		if (pt_prev)
4119 			ret = deliver_skb(skb, pt_prev, orig_dev);
4120 		pt_prev = ptype;
4121 	}
4122 
4123 skip_taps:
4124 #ifdef CONFIG_NET_INGRESS
4125 	if (static_key_false(&ingress_needed)) {
4126 		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4127 		if (!skb)
4128 			goto out;
4129 
4130 		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4131 			goto out;
4132 	}
4133 #endif
4134 #ifdef CONFIG_NET_CLS_ACT
4135 	skb->tc_verd = 0;
4136 ncls:
4137 #endif
4138 	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4139 		goto drop;
4140 
4141 	if (skb_vlan_tag_present(skb)) {
4142 		if (pt_prev) {
4143 			ret = deliver_skb(skb, pt_prev, orig_dev);
4144 			pt_prev = NULL;
4145 		}
4146 		if (vlan_do_receive(&skb))
4147 			goto another_round;
4148 		else if (unlikely(!skb))
4149 			goto out;
4150 	}
4151 
4152 	rx_handler = rcu_dereference(skb->dev->rx_handler);
4153 	if (rx_handler) {
4154 		if (pt_prev) {
4155 			ret = deliver_skb(skb, pt_prev, orig_dev);
4156 			pt_prev = NULL;
4157 		}
4158 		switch (rx_handler(&skb)) {
4159 		case RX_HANDLER_CONSUMED:
4160 			ret = NET_RX_SUCCESS;
4161 			goto out;
4162 		case RX_HANDLER_ANOTHER:
4163 			goto another_round;
4164 		case RX_HANDLER_EXACT:
4165 			deliver_exact = true;
4166 		case RX_HANDLER_PASS:
4167 			break;
4168 		default:
4169 			BUG();
4170 		}
4171 	}
4172 
4173 	if (unlikely(skb_vlan_tag_present(skb))) {
4174 		if (skb_vlan_tag_get_id(skb))
4175 			skb->pkt_type = PACKET_OTHERHOST;
4176 		/* Note: we might in the future use prio bits
4177 		 * and set skb->priority like in vlan_do_receive()
4178 		 * For the time being, just ignore Priority Code Point
4179 		 */
4180 		skb->vlan_tci = 0;
4181 	}
4182 
4183 	type = skb->protocol;
4184 
4185 	/* deliver only exact match when indicated */
4186 	if (likely(!deliver_exact)) {
4187 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4188 				       &ptype_base[ntohs(type) &
4189 						   PTYPE_HASH_MASK]);
4190 	}
4191 
4192 	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4193 			       &orig_dev->ptype_specific);
4194 
4195 	if (unlikely(skb->dev != orig_dev)) {
4196 		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4197 				       &skb->dev->ptype_specific);
4198 	}
4199 
4200 	if (pt_prev) {
4201 		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4202 			goto drop;
4203 		else
4204 			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4205 	} else {
4206 drop:
4207 		if (!deliver_exact)
4208 			atomic_long_inc(&skb->dev->rx_dropped);
4209 		else
4210 			atomic_long_inc(&skb->dev->rx_nohandler);
4211 		kfree_skb(skb);
4212 		/* Jamal, now you will not able to escape explaining
4213 		 * me how you were going to use this. :-)
4214 		 */
4215 		ret = NET_RX_DROP;
4216 	}
4217 
4218 out:
4219 	return ret;
4220 }
4221 
4222 static int __netif_receive_skb(struct sk_buff *skb)
4223 {
4224 	int ret;
4225 
4226 	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4227 		unsigned long pflags = current->flags;
4228 
4229 		/*
4230 		 * PFMEMALLOC skbs are special, they should
4231 		 * - be delivered to SOCK_MEMALLOC sockets only
4232 		 * - stay away from userspace
4233 		 * - have bounded memory usage
4234 		 *
4235 		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4236 		 * context down to all allocation sites.
4237 		 */
4238 		current->flags |= PF_MEMALLOC;
4239 		ret = __netif_receive_skb_core(skb, true);
4240 		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4241 	} else
4242 		ret = __netif_receive_skb_core(skb, false);
4243 
4244 	return ret;
4245 }
4246 
4247 static int netif_receive_skb_internal(struct sk_buff *skb)
4248 {
4249 	int ret;
4250 
4251 	net_timestamp_check(netdev_tstamp_prequeue, skb);
4252 
4253 	if (skb_defer_rx_timestamp(skb))
4254 		return NET_RX_SUCCESS;
4255 
4256 	rcu_read_lock();
4257 
4258 #ifdef CONFIG_RPS
4259 	if (static_key_false(&rps_needed)) {
4260 		struct rps_dev_flow voidflow, *rflow = &voidflow;
4261 		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4262 
4263 		if (cpu >= 0) {
4264 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4265 			rcu_read_unlock();
4266 			return ret;
4267 		}
4268 	}
4269 #endif
4270 	ret = __netif_receive_skb(skb);
4271 	rcu_read_unlock();
4272 	return ret;
4273 }
4274 
4275 /**
4276  *	netif_receive_skb - process receive buffer from network
4277  *	@skb: buffer to process
4278  *
4279  *	netif_receive_skb() is the main receive data processing function.
4280  *	It always succeeds. The buffer may be dropped during processing
4281  *	for congestion control or by the protocol layers.
4282  *
4283  *	This function may only be called from softirq context and interrupts
4284  *	should be enabled.
4285  *
4286  *	Return values (usually ignored):
4287  *	NET_RX_SUCCESS: no congestion
4288  *	NET_RX_DROP: packet was dropped
4289  */
4290 int netif_receive_skb(struct sk_buff *skb)
4291 {
4292 	trace_netif_receive_skb_entry(skb);
4293 
4294 	return netif_receive_skb_internal(skb);
4295 }
4296 EXPORT_SYMBOL(netif_receive_skb);
4297 
4298 /* Network device is going away, flush any packets still pending
4299  * Called with irqs disabled.
4300  */
4301 static void flush_backlog(void *arg)
4302 {
4303 	struct net_device *dev = arg;
4304 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4305 	struct sk_buff *skb, *tmp;
4306 
4307 	rps_lock(sd);
4308 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4309 		if (skb->dev == dev) {
4310 			__skb_unlink(skb, &sd->input_pkt_queue);
4311 			kfree_skb(skb);
4312 			input_queue_head_incr(sd);
4313 		}
4314 	}
4315 	rps_unlock(sd);
4316 
4317 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4318 		if (skb->dev == dev) {
4319 			__skb_unlink(skb, &sd->process_queue);
4320 			kfree_skb(skb);
4321 			input_queue_head_incr(sd);
4322 		}
4323 	}
4324 }
4325 
4326 static int napi_gro_complete(struct sk_buff *skb)
4327 {
4328 	struct packet_offload *ptype;
4329 	__be16 type = skb->protocol;
4330 	struct list_head *head = &offload_base;
4331 	int err = -ENOENT;
4332 
4333 	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4334 
4335 	if (NAPI_GRO_CB(skb)->count == 1) {
4336 		skb_shinfo(skb)->gso_size = 0;
4337 		goto out;
4338 	}
4339 
4340 	rcu_read_lock();
4341 	list_for_each_entry_rcu(ptype, head, list) {
4342 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4343 			continue;
4344 
4345 		err = ptype->callbacks.gro_complete(skb, 0);
4346 		break;
4347 	}
4348 	rcu_read_unlock();
4349 
4350 	if (err) {
4351 		WARN_ON(&ptype->list == head);
4352 		kfree_skb(skb);
4353 		return NET_RX_SUCCESS;
4354 	}
4355 
4356 out:
4357 	return netif_receive_skb_internal(skb);
4358 }
4359 
4360 /* napi->gro_list contains packets ordered by age.
4361  * youngest packets at the head of it.
4362  * Complete skbs in reverse order to reduce latencies.
4363  */
4364 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4365 {
4366 	struct sk_buff *skb, *prev = NULL;
4367 
4368 	/* scan list and build reverse chain */
4369 	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4370 		skb->prev = prev;
4371 		prev = skb;
4372 	}
4373 
4374 	for (skb = prev; skb; skb = prev) {
4375 		skb->next = NULL;
4376 
4377 		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4378 			return;
4379 
4380 		prev = skb->prev;
4381 		napi_gro_complete(skb);
4382 		napi->gro_count--;
4383 	}
4384 
4385 	napi->gro_list = NULL;
4386 }
4387 EXPORT_SYMBOL(napi_gro_flush);
4388 
4389 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4390 {
4391 	struct sk_buff *p;
4392 	unsigned int maclen = skb->dev->hard_header_len;
4393 	u32 hash = skb_get_hash_raw(skb);
4394 
4395 	for (p = napi->gro_list; p; p = p->next) {
4396 		unsigned long diffs;
4397 
4398 		NAPI_GRO_CB(p)->flush = 0;
4399 
4400 		if (hash != skb_get_hash_raw(p)) {
4401 			NAPI_GRO_CB(p)->same_flow = 0;
4402 			continue;
4403 		}
4404 
4405 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4406 		diffs |= p->vlan_tci ^ skb->vlan_tci;
4407 		diffs |= skb_metadata_dst_cmp(p, skb);
4408 		if (maclen == ETH_HLEN)
4409 			diffs |= compare_ether_header(skb_mac_header(p),
4410 						      skb_mac_header(skb));
4411 		else if (!diffs)
4412 			diffs = memcmp(skb_mac_header(p),
4413 				       skb_mac_header(skb),
4414 				       maclen);
4415 		NAPI_GRO_CB(p)->same_flow = !diffs;
4416 	}
4417 }
4418 
4419 static void skb_gro_reset_offset(struct sk_buff *skb)
4420 {
4421 	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4422 	const skb_frag_t *frag0 = &pinfo->frags[0];
4423 
4424 	NAPI_GRO_CB(skb)->data_offset = 0;
4425 	NAPI_GRO_CB(skb)->frag0 = NULL;
4426 	NAPI_GRO_CB(skb)->frag0_len = 0;
4427 
4428 	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4429 	    pinfo->nr_frags &&
4430 	    !PageHighMem(skb_frag_page(frag0))) {
4431 		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4432 		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4433 	}
4434 }
4435 
4436 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4437 {
4438 	struct skb_shared_info *pinfo = skb_shinfo(skb);
4439 
4440 	BUG_ON(skb->end - skb->tail < grow);
4441 
4442 	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4443 
4444 	skb->data_len -= grow;
4445 	skb->tail += grow;
4446 
4447 	pinfo->frags[0].page_offset += grow;
4448 	skb_frag_size_sub(&pinfo->frags[0], grow);
4449 
4450 	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4451 		skb_frag_unref(skb, 0);
4452 		memmove(pinfo->frags, pinfo->frags + 1,
4453 			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4454 	}
4455 }
4456 
4457 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4458 {
4459 	struct sk_buff **pp = NULL;
4460 	struct packet_offload *ptype;
4461 	__be16 type = skb->protocol;
4462 	struct list_head *head = &offload_base;
4463 	int same_flow;
4464 	enum gro_result ret;
4465 	int grow;
4466 
4467 	if (!(skb->dev->features & NETIF_F_GRO))
4468 		goto normal;
4469 
4470 	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4471 		goto normal;
4472 
4473 	gro_list_prepare(napi, skb);
4474 
4475 	rcu_read_lock();
4476 	list_for_each_entry_rcu(ptype, head, list) {
4477 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4478 			continue;
4479 
4480 		skb_set_network_header(skb, skb_gro_offset(skb));
4481 		skb_reset_mac_len(skb);
4482 		NAPI_GRO_CB(skb)->same_flow = 0;
4483 		NAPI_GRO_CB(skb)->flush = 0;
4484 		NAPI_GRO_CB(skb)->free = 0;
4485 		NAPI_GRO_CB(skb)->encap_mark = 0;
4486 		NAPI_GRO_CB(skb)->is_fou = 0;
4487 		NAPI_GRO_CB(skb)->is_atomic = 1;
4488 		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4489 
4490 		/* Setup for GRO checksum validation */
4491 		switch (skb->ip_summed) {
4492 		case CHECKSUM_COMPLETE:
4493 			NAPI_GRO_CB(skb)->csum = skb->csum;
4494 			NAPI_GRO_CB(skb)->csum_valid = 1;
4495 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4496 			break;
4497 		case CHECKSUM_UNNECESSARY:
4498 			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4499 			NAPI_GRO_CB(skb)->csum_valid = 0;
4500 			break;
4501 		default:
4502 			NAPI_GRO_CB(skb)->csum_cnt = 0;
4503 			NAPI_GRO_CB(skb)->csum_valid = 0;
4504 		}
4505 
4506 		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4507 		break;
4508 	}
4509 	rcu_read_unlock();
4510 
4511 	if (&ptype->list == head)
4512 		goto normal;
4513 
4514 	same_flow = NAPI_GRO_CB(skb)->same_flow;
4515 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4516 
4517 	if (pp) {
4518 		struct sk_buff *nskb = *pp;
4519 
4520 		*pp = nskb->next;
4521 		nskb->next = NULL;
4522 		napi_gro_complete(nskb);
4523 		napi->gro_count--;
4524 	}
4525 
4526 	if (same_flow)
4527 		goto ok;
4528 
4529 	if (NAPI_GRO_CB(skb)->flush)
4530 		goto normal;
4531 
4532 	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4533 		struct sk_buff *nskb = napi->gro_list;
4534 
4535 		/* locate the end of the list to select the 'oldest' flow */
4536 		while (nskb->next) {
4537 			pp = &nskb->next;
4538 			nskb = *pp;
4539 		}
4540 		*pp = NULL;
4541 		nskb->next = NULL;
4542 		napi_gro_complete(nskb);
4543 	} else {
4544 		napi->gro_count++;
4545 	}
4546 	NAPI_GRO_CB(skb)->count = 1;
4547 	NAPI_GRO_CB(skb)->age = jiffies;
4548 	NAPI_GRO_CB(skb)->last = skb;
4549 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4550 	skb->next = napi->gro_list;
4551 	napi->gro_list = skb;
4552 	ret = GRO_HELD;
4553 
4554 pull:
4555 	grow = skb_gro_offset(skb) - skb_headlen(skb);
4556 	if (grow > 0)
4557 		gro_pull_from_frag0(skb, grow);
4558 ok:
4559 	return ret;
4560 
4561 normal:
4562 	ret = GRO_NORMAL;
4563 	goto pull;
4564 }
4565 
4566 struct packet_offload *gro_find_receive_by_type(__be16 type)
4567 {
4568 	struct list_head *offload_head = &offload_base;
4569 	struct packet_offload *ptype;
4570 
4571 	list_for_each_entry_rcu(ptype, offload_head, list) {
4572 		if (ptype->type != type || !ptype->callbacks.gro_receive)
4573 			continue;
4574 		return ptype;
4575 	}
4576 	return NULL;
4577 }
4578 EXPORT_SYMBOL(gro_find_receive_by_type);
4579 
4580 struct packet_offload *gro_find_complete_by_type(__be16 type)
4581 {
4582 	struct list_head *offload_head = &offload_base;
4583 	struct packet_offload *ptype;
4584 
4585 	list_for_each_entry_rcu(ptype, offload_head, list) {
4586 		if (ptype->type != type || !ptype->callbacks.gro_complete)
4587 			continue;
4588 		return ptype;
4589 	}
4590 	return NULL;
4591 }
4592 EXPORT_SYMBOL(gro_find_complete_by_type);
4593 
4594 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4595 {
4596 	switch (ret) {
4597 	case GRO_NORMAL:
4598 		if (netif_receive_skb_internal(skb))
4599 			ret = GRO_DROP;
4600 		break;
4601 
4602 	case GRO_DROP:
4603 		kfree_skb(skb);
4604 		break;
4605 
4606 	case GRO_MERGED_FREE:
4607 		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4608 			skb_dst_drop(skb);
4609 			kmem_cache_free(skbuff_head_cache, skb);
4610 		} else {
4611 			__kfree_skb(skb);
4612 		}
4613 		break;
4614 
4615 	case GRO_HELD:
4616 	case GRO_MERGED:
4617 		break;
4618 	}
4619 
4620 	return ret;
4621 }
4622 
4623 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4624 {
4625 	skb_mark_napi_id(skb, napi);
4626 	trace_napi_gro_receive_entry(skb);
4627 
4628 	skb_gro_reset_offset(skb);
4629 
4630 	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4631 }
4632 EXPORT_SYMBOL(napi_gro_receive);
4633 
4634 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4635 {
4636 	if (unlikely(skb->pfmemalloc)) {
4637 		consume_skb(skb);
4638 		return;
4639 	}
4640 	__skb_pull(skb, skb_headlen(skb));
4641 	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4642 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4643 	skb->vlan_tci = 0;
4644 	skb->dev = napi->dev;
4645 	skb->skb_iif = 0;
4646 	skb->encapsulation = 0;
4647 	skb_shinfo(skb)->gso_type = 0;
4648 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4649 
4650 	napi->skb = skb;
4651 }
4652 
4653 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4654 {
4655 	struct sk_buff *skb = napi->skb;
4656 
4657 	if (!skb) {
4658 		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4659 		if (skb) {
4660 			napi->skb = skb;
4661 			skb_mark_napi_id(skb, napi);
4662 		}
4663 	}
4664 	return skb;
4665 }
4666 EXPORT_SYMBOL(napi_get_frags);
4667 
4668 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4669 				      struct sk_buff *skb,
4670 				      gro_result_t ret)
4671 {
4672 	switch (ret) {
4673 	case GRO_NORMAL:
4674 	case GRO_HELD:
4675 		__skb_push(skb, ETH_HLEN);
4676 		skb->protocol = eth_type_trans(skb, skb->dev);
4677 		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4678 			ret = GRO_DROP;
4679 		break;
4680 
4681 	case GRO_DROP:
4682 	case GRO_MERGED_FREE:
4683 		napi_reuse_skb(napi, skb);
4684 		break;
4685 
4686 	case GRO_MERGED:
4687 		break;
4688 	}
4689 
4690 	return ret;
4691 }
4692 
4693 /* Upper GRO stack assumes network header starts at gro_offset=0
4694  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4695  * We copy ethernet header into skb->data to have a common layout.
4696  */
4697 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4698 {
4699 	struct sk_buff *skb = napi->skb;
4700 	const struct ethhdr *eth;
4701 	unsigned int hlen = sizeof(*eth);
4702 
4703 	napi->skb = NULL;
4704 
4705 	skb_reset_mac_header(skb);
4706 	skb_gro_reset_offset(skb);
4707 
4708 	eth = skb_gro_header_fast(skb, 0);
4709 	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4710 		eth = skb_gro_header_slow(skb, hlen, 0);
4711 		if (unlikely(!eth)) {
4712 			net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4713 					     __func__, napi->dev->name);
4714 			napi_reuse_skb(napi, skb);
4715 			return NULL;
4716 		}
4717 	} else {
4718 		gro_pull_from_frag0(skb, hlen);
4719 		NAPI_GRO_CB(skb)->frag0 += hlen;
4720 		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4721 	}
4722 	__skb_pull(skb, hlen);
4723 
4724 	/*
4725 	 * This works because the only protocols we care about don't require
4726 	 * special handling.
4727 	 * We'll fix it up properly in napi_frags_finish()
4728 	 */
4729 	skb->protocol = eth->h_proto;
4730 
4731 	return skb;
4732 }
4733 
4734 gro_result_t napi_gro_frags(struct napi_struct *napi)
4735 {
4736 	struct sk_buff *skb = napi_frags_skb(napi);
4737 
4738 	if (!skb)
4739 		return GRO_DROP;
4740 
4741 	trace_napi_gro_frags_entry(skb);
4742 
4743 	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4744 }
4745 EXPORT_SYMBOL(napi_gro_frags);
4746 
4747 /* Compute the checksum from gro_offset and return the folded value
4748  * after adding in any pseudo checksum.
4749  */
4750 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4751 {
4752 	__wsum wsum;
4753 	__sum16 sum;
4754 
4755 	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4756 
4757 	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4758 	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4759 	if (likely(!sum)) {
4760 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4761 		    !skb->csum_complete_sw)
4762 			netdev_rx_csum_fault(skb->dev);
4763 	}
4764 
4765 	NAPI_GRO_CB(skb)->csum = wsum;
4766 	NAPI_GRO_CB(skb)->csum_valid = 1;
4767 
4768 	return sum;
4769 }
4770 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4771 
4772 /*
4773  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4774  * Note: called with local irq disabled, but exits with local irq enabled.
4775  */
4776 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4777 {
4778 #ifdef CONFIG_RPS
4779 	struct softnet_data *remsd = sd->rps_ipi_list;
4780 
4781 	if (remsd) {
4782 		sd->rps_ipi_list = NULL;
4783 
4784 		local_irq_enable();
4785 
4786 		/* Send pending IPI's to kick RPS processing on remote cpus. */
4787 		while (remsd) {
4788 			struct softnet_data *next = remsd->rps_ipi_next;
4789 
4790 			if (cpu_online(remsd->cpu))
4791 				smp_call_function_single_async(remsd->cpu,
4792 							   &remsd->csd);
4793 			remsd = next;
4794 		}
4795 	} else
4796 #endif
4797 		local_irq_enable();
4798 }
4799 
4800 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4801 {
4802 #ifdef CONFIG_RPS
4803 	return sd->rps_ipi_list != NULL;
4804 #else
4805 	return false;
4806 #endif
4807 }
4808 
4809 static int process_backlog(struct napi_struct *napi, int quota)
4810 {
4811 	int work = 0;
4812 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4813 
4814 	/* Check if we have pending ipi, its better to send them now,
4815 	 * not waiting net_rx_action() end.
4816 	 */
4817 	if (sd_has_rps_ipi_waiting(sd)) {
4818 		local_irq_disable();
4819 		net_rps_action_and_irq_enable(sd);
4820 	}
4821 
4822 	napi->weight = weight_p;
4823 	local_irq_disable();
4824 	while (1) {
4825 		struct sk_buff *skb;
4826 
4827 		while ((skb = __skb_dequeue(&sd->process_queue))) {
4828 			rcu_read_lock();
4829 			local_irq_enable();
4830 			__netif_receive_skb(skb);
4831 			rcu_read_unlock();
4832 			local_irq_disable();
4833 			input_queue_head_incr(sd);
4834 			if (++work >= quota) {
4835 				local_irq_enable();
4836 				return work;
4837 			}
4838 		}
4839 
4840 		rps_lock(sd);
4841 		if (skb_queue_empty(&sd->input_pkt_queue)) {
4842 			/*
4843 			 * Inline a custom version of __napi_complete().
4844 			 * only current cpu owns and manipulates this napi,
4845 			 * and NAPI_STATE_SCHED is the only possible flag set
4846 			 * on backlog.
4847 			 * We can use a plain write instead of clear_bit(),
4848 			 * and we dont need an smp_mb() memory barrier.
4849 			 */
4850 			napi->state = 0;
4851 			rps_unlock(sd);
4852 
4853 			break;
4854 		}
4855 
4856 		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4857 					   &sd->process_queue);
4858 		rps_unlock(sd);
4859 	}
4860 	local_irq_enable();
4861 
4862 	return work;
4863 }
4864 
4865 /**
4866  * __napi_schedule - schedule for receive
4867  * @n: entry to schedule
4868  *
4869  * The entry's receive function will be scheduled to run.
4870  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4871  */
4872 void __napi_schedule(struct napi_struct *n)
4873 {
4874 	unsigned long flags;
4875 
4876 	local_irq_save(flags);
4877 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4878 	local_irq_restore(flags);
4879 }
4880 EXPORT_SYMBOL(__napi_schedule);
4881 
4882 /**
4883  * __napi_schedule_irqoff - schedule for receive
4884  * @n: entry to schedule
4885  *
4886  * Variant of __napi_schedule() assuming hard irqs are masked
4887  */
4888 void __napi_schedule_irqoff(struct napi_struct *n)
4889 {
4890 	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4891 }
4892 EXPORT_SYMBOL(__napi_schedule_irqoff);
4893 
4894 void __napi_complete(struct napi_struct *n)
4895 {
4896 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4897 
4898 	list_del_init(&n->poll_list);
4899 	smp_mb__before_atomic();
4900 	clear_bit(NAPI_STATE_SCHED, &n->state);
4901 }
4902 EXPORT_SYMBOL(__napi_complete);
4903 
4904 void napi_complete_done(struct napi_struct *n, int work_done)
4905 {
4906 	unsigned long flags;
4907 
4908 	/*
4909 	 * don't let napi dequeue from the cpu poll list
4910 	 * just in case its running on a different cpu
4911 	 */
4912 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4913 		return;
4914 
4915 	if (n->gro_list) {
4916 		unsigned long timeout = 0;
4917 
4918 		if (work_done)
4919 			timeout = n->dev->gro_flush_timeout;
4920 
4921 		if (timeout)
4922 			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4923 				      HRTIMER_MODE_REL_PINNED);
4924 		else
4925 			napi_gro_flush(n, false);
4926 	}
4927 	if (likely(list_empty(&n->poll_list))) {
4928 		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4929 	} else {
4930 		/* If n->poll_list is not empty, we need to mask irqs */
4931 		local_irq_save(flags);
4932 		__napi_complete(n);
4933 		local_irq_restore(flags);
4934 	}
4935 }
4936 EXPORT_SYMBOL(napi_complete_done);
4937 
4938 /* must be called under rcu_read_lock(), as we dont take a reference */
4939 static struct napi_struct *napi_by_id(unsigned int napi_id)
4940 {
4941 	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4942 	struct napi_struct *napi;
4943 
4944 	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4945 		if (napi->napi_id == napi_id)
4946 			return napi;
4947 
4948 	return NULL;
4949 }
4950 
4951 #if defined(CONFIG_NET_RX_BUSY_POLL)
4952 #define BUSY_POLL_BUDGET 8
4953 bool sk_busy_loop(struct sock *sk, int nonblock)
4954 {
4955 	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4956 	int (*busy_poll)(struct napi_struct *dev);
4957 	struct napi_struct *napi;
4958 	int rc = false;
4959 
4960 	rcu_read_lock();
4961 
4962 	napi = napi_by_id(sk->sk_napi_id);
4963 	if (!napi)
4964 		goto out;
4965 
4966 	/* Note: ndo_busy_poll method is optional in linux-4.5 */
4967 	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
4968 
4969 	do {
4970 		rc = 0;
4971 		local_bh_disable();
4972 		if (busy_poll) {
4973 			rc = busy_poll(napi);
4974 		} else if (napi_schedule_prep(napi)) {
4975 			void *have = netpoll_poll_lock(napi);
4976 
4977 			if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4978 				rc = napi->poll(napi, BUSY_POLL_BUDGET);
4979 				trace_napi_poll(napi);
4980 				if (rc == BUSY_POLL_BUDGET) {
4981 					napi_complete_done(napi, rc);
4982 					napi_schedule(napi);
4983 				}
4984 			}
4985 			netpoll_poll_unlock(have);
4986 		}
4987 		if (rc > 0)
4988 			__NET_ADD_STATS(sock_net(sk),
4989 					LINUX_MIB_BUSYPOLLRXPACKETS, rc);
4990 		local_bh_enable();
4991 
4992 		if (rc == LL_FLUSH_FAILED)
4993 			break; /* permanent failure */
4994 
4995 		cpu_relax();
4996 	} while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4997 		 !need_resched() && !busy_loop_timeout(end_time));
4998 
4999 	rc = !skb_queue_empty(&sk->sk_receive_queue);
5000 out:
5001 	rcu_read_unlock();
5002 	return rc;
5003 }
5004 EXPORT_SYMBOL(sk_busy_loop);
5005 
5006 #endif /* CONFIG_NET_RX_BUSY_POLL */
5007 
5008 void napi_hash_add(struct napi_struct *napi)
5009 {
5010 	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5011 	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5012 		return;
5013 
5014 	spin_lock(&napi_hash_lock);
5015 
5016 	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
5017 	do {
5018 		if (unlikely(++napi_gen_id < NR_CPUS + 1))
5019 			napi_gen_id = NR_CPUS + 1;
5020 	} while (napi_by_id(napi_gen_id));
5021 	napi->napi_id = napi_gen_id;
5022 
5023 	hlist_add_head_rcu(&napi->napi_hash_node,
5024 			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5025 
5026 	spin_unlock(&napi_hash_lock);
5027 }
5028 EXPORT_SYMBOL_GPL(napi_hash_add);
5029 
5030 /* Warning : caller is responsible to make sure rcu grace period
5031  * is respected before freeing memory containing @napi
5032  */
5033 bool napi_hash_del(struct napi_struct *napi)
5034 {
5035 	bool rcu_sync_needed = false;
5036 
5037 	spin_lock(&napi_hash_lock);
5038 
5039 	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5040 		rcu_sync_needed = true;
5041 		hlist_del_rcu(&napi->napi_hash_node);
5042 	}
5043 	spin_unlock(&napi_hash_lock);
5044 	return rcu_sync_needed;
5045 }
5046 EXPORT_SYMBOL_GPL(napi_hash_del);
5047 
5048 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5049 {
5050 	struct napi_struct *napi;
5051 
5052 	napi = container_of(timer, struct napi_struct, timer);
5053 	if (napi->gro_list)
5054 		napi_schedule(napi);
5055 
5056 	return HRTIMER_NORESTART;
5057 }
5058 
5059 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5060 		    int (*poll)(struct napi_struct *, int), int weight)
5061 {
5062 	INIT_LIST_HEAD(&napi->poll_list);
5063 	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5064 	napi->timer.function = napi_watchdog;
5065 	napi->gro_count = 0;
5066 	napi->gro_list = NULL;
5067 	napi->skb = NULL;
5068 	napi->poll = poll;
5069 	if (weight > NAPI_POLL_WEIGHT)
5070 		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5071 			    weight, dev->name);
5072 	napi->weight = weight;
5073 	list_add(&napi->dev_list, &dev->napi_list);
5074 	napi->dev = dev;
5075 #ifdef CONFIG_NETPOLL
5076 	spin_lock_init(&napi->poll_lock);
5077 	napi->poll_owner = -1;
5078 #endif
5079 	set_bit(NAPI_STATE_SCHED, &napi->state);
5080 	napi_hash_add(napi);
5081 }
5082 EXPORT_SYMBOL(netif_napi_add);
5083 
5084 void napi_disable(struct napi_struct *n)
5085 {
5086 	might_sleep();
5087 	set_bit(NAPI_STATE_DISABLE, &n->state);
5088 
5089 	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5090 		msleep(1);
5091 	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5092 		msleep(1);
5093 
5094 	hrtimer_cancel(&n->timer);
5095 
5096 	clear_bit(NAPI_STATE_DISABLE, &n->state);
5097 }
5098 EXPORT_SYMBOL(napi_disable);
5099 
5100 /* Must be called in process context */
5101 void netif_napi_del(struct napi_struct *napi)
5102 {
5103 	might_sleep();
5104 	if (napi_hash_del(napi))
5105 		synchronize_net();
5106 	list_del_init(&napi->dev_list);
5107 	napi_free_frags(napi);
5108 
5109 	kfree_skb_list(napi->gro_list);
5110 	napi->gro_list = NULL;
5111 	napi->gro_count = 0;
5112 }
5113 EXPORT_SYMBOL(netif_napi_del);
5114 
5115 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5116 {
5117 	void *have;
5118 	int work, weight;
5119 
5120 	list_del_init(&n->poll_list);
5121 
5122 	have = netpoll_poll_lock(n);
5123 
5124 	weight = n->weight;
5125 
5126 	/* This NAPI_STATE_SCHED test is for avoiding a race
5127 	 * with netpoll's poll_napi().  Only the entity which
5128 	 * obtains the lock and sees NAPI_STATE_SCHED set will
5129 	 * actually make the ->poll() call.  Therefore we avoid
5130 	 * accidentally calling ->poll() when NAPI is not scheduled.
5131 	 */
5132 	work = 0;
5133 	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5134 		work = n->poll(n, weight);
5135 		trace_napi_poll(n);
5136 	}
5137 
5138 	WARN_ON_ONCE(work > weight);
5139 
5140 	if (likely(work < weight))
5141 		goto out_unlock;
5142 
5143 	/* Drivers must not modify the NAPI state if they
5144 	 * consume the entire weight.  In such cases this code
5145 	 * still "owns" the NAPI instance and therefore can
5146 	 * move the instance around on the list at-will.
5147 	 */
5148 	if (unlikely(napi_disable_pending(n))) {
5149 		napi_complete(n);
5150 		goto out_unlock;
5151 	}
5152 
5153 	if (n->gro_list) {
5154 		/* flush too old packets
5155 		 * If HZ < 1000, flush all packets.
5156 		 */
5157 		napi_gro_flush(n, HZ >= 1000);
5158 	}
5159 
5160 	/* Some drivers may have called napi_schedule
5161 	 * prior to exhausting their budget.
5162 	 */
5163 	if (unlikely(!list_empty(&n->poll_list))) {
5164 		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5165 			     n->dev ? n->dev->name : "backlog");
5166 		goto out_unlock;
5167 	}
5168 
5169 	list_add_tail(&n->poll_list, repoll);
5170 
5171 out_unlock:
5172 	netpoll_poll_unlock(have);
5173 
5174 	return work;
5175 }
5176 
5177 static void net_rx_action(struct softirq_action *h)
5178 {
5179 	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5180 	unsigned long time_limit = jiffies + 2;
5181 	int budget = netdev_budget;
5182 	LIST_HEAD(list);
5183 	LIST_HEAD(repoll);
5184 
5185 	local_irq_disable();
5186 	list_splice_init(&sd->poll_list, &list);
5187 	local_irq_enable();
5188 
5189 	for (;;) {
5190 		struct napi_struct *n;
5191 
5192 		if (list_empty(&list)) {
5193 			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5194 				return;
5195 			break;
5196 		}
5197 
5198 		n = list_first_entry(&list, struct napi_struct, poll_list);
5199 		budget -= napi_poll(n, &repoll);
5200 
5201 		/* If softirq window is exhausted then punt.
5202 		 * Allow this to run for 2 jiffies since which will allow
5203 		 * an average latency of 1.5/HZ.
5204 		 */
5205 		if (unlikely(budget <= 0 ||
5206 			     time_after_eq(jiffies, time_limit))) {
5207 			sd->time_squeeze++;
5208 			break;
5209 		}
5210 	}
5211 
5212 	__kfree_skb_flush();
5213 	local_irq_disable();
5214 
5215 	list_splice_tail_init(&sd->poll_list, &list);
5216 	list_splice_tail(&repoll, &list);
5217 	list_splice(&list, &sd->poll_list);
5218 	if (!list_empty(&sd->poll_list))
5219 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
5220 
5221 	net_rps_action_and_irq_enable(sd);
5222 }
5223 
5224 struct netdev_adjacent {
5225 	struct net_device *dev;
5226 
5227 	/* upper master flag, there can only be one master device per list */
5228 	bool master;
5229 
5230 	/* counter for the number of times this device was added to us */
5231 	u16 ref_nr;
5232 
5233 	/* private field for the users */
5234 	void *private;
5235 
5236 	struct list_head list;
5237 	struct rcu_head rcu;
5238 };
5239 
5240 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5241 						 struct list_head *adj_list)
5242 {
5243 	struct netdev_adjacent *adj;
5244 
5245 	list_for_each_entry(adj, adj_list, list) {
5246 		if (adj->dev == adj_dev)
5247 			return adj;
5248 	}
5249 	return NULL;
5250 }
5251 
5252 /**
5253  * netdev_has_upper_dev - Check if device is linked to an upper device
5254  * @dev: device
5255  * @upper_dev: upper device to check
5256  *
5257  * Find out if a device is linked to specified upper device and return true
5258  * in case it is. Note that this checks only immediate upper device,
5259  * not through a complete stack of devices. The caller must hold the RTNL lock.
5260  */
5261 bool netdev_has_upper_dev(struct net_device *dev,
5262 			  struct net_device *upper_dev)
5263 {
5264 	ASSERT_RTNL();
5265 
5266 	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
5267 }
5268 EXPORT_SYMBOL(netdev_has_upper_dev);
5269 
5270 /**
5271  * netdev_has_any_upper_dev - Check if device is linked to some device
5272  * @dev: device
5273  *
5274  * Find out if a device is linked to an upper device and return true in case
5275  * it is. The caller must hold the RTNL lock.
5276  */
5277 static bool netdev_has_any_upper_dev(struct net_device *dev)
5278 {
5279 	ASSERT_RTNL();
5280 
5281 	return !list_empty(&dev->all_adj_list.upper);
5282 }
5283 
5284 /**
5285  * netdev_master_upper_dev_get - Get master upper device
5286  * @dev: device
5287  *
5288  * Find a master upper device and return pointer to it or NULL in case
5289  * it's not there. The caller must hold the RTNL lock.
5290  */
5291 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5292 {
5293 	struct netdev_adjacent *upper;
5294 
5295 	ASSERT_RTNL();
5296 
5297 	if (list_empty(&dev->adj_list.upper))
5298 		return NULL;
5299 
5300 	upper = list_first_entry(&dev->adj_list.upper,
5301 				 struct netdev_adjacent, list);
5302 	if (likely(upper->master))
5303 		return upper->dev;
5304 	return NULL;
5305 }
5306 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5307 
5308 void *netdev_adjacent_get_private(struct list_head *adj_list)
5309 {
5310 	struct netdev_adjacent *adj;
5311 
5312 	adj = list_entry(adj_list, struct netdev_adjacent, list);
5313 
5314 	return adj->private;
5315 }
5316 EXPORT_SYMBOL(netdev_adjacent_get_private);
5317 
5318 /**
5319  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5320  * @dev: device
5321  * @iter: list_head ** of the current position
5322  *
5323  * Gets the next device from the dev's upper list, starting from iter
5324  * position. The caller must hold RCU read lock.
5325  */
5326 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5327 						 struct list_head **iter)
5328 {
5329 	struct netdev_adjacent *upper;
5330 
5331 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5332 
5333 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5334 
5335 	if (&upper->list == &dev->adj_list.upper)
5336 		return NULL;
5337 
5338 	*iter = &upper->list;
5339 
5340 	return upper->dev;
5341 }
5342 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5343 
5344 /**
5345  * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5346  * @dev: device
5347  * @iter: list_head ** of the current position
5348  *
5349  * Gets the next device from the dev's upper list, starting from iter
5350  * position. The caller must hold RCU read lock.
5351  */
5352 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5353 						     struct list_head **iter)
5354 {
5355 	struct netdev_adjacent *upper;
5356 
5357 	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5358 
5359 	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5360 
5361 	if (&upper->list == &dev->all_adj_list.upper)
5362 		return NULL;
5363 
5364 	*iter = &upper->list;
5365 
5366 	return upper->dev;
5367 }
5368 EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
5369 
5370 /**
5371  * netdev_lower_get_next_private - Get the next ->private from the
5372  *				   lower neighbour list
5373  * @dev: device
5374  * @iter: list_head ** of the current position
5375  *
5376  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5377  * list, starting from iter position. The caller must hold either hold the
5378  * RTNL lock or its own locking that guarantees that the neighbour lower
5379  * list will remain unchanged.
5380  */
5381 void *netdev_lower_get_next_private(struct net_device *dev,
5382 				    struct list_head **iter)
5383 {
5384 	struct netdev_adjacent *lower;
5385 
5386 	lower = list_entry(*iter, struct netdev_adjacent, list);
5387 
5388 	if (&lower->list == &dev->adj_list.lower)
5389 		return NULL;
5390 
5391 	*iter = lower->list.next;
5392 
5393 	return lower->private;
5394 }
5395 EXPORT_SYMBOL(netdev_lower_get_next_private);
5396 
5397 /**
5398  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5399  *				       lower neighbour list, RCU
5400  *				       variant
5401  * @dev: device
5402  * @iter: list_head ** of the current position
5403  *
5404  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5405  * list, starting from iter position. The caller must hold RCU read lock.
5406  */
5407 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5408 					struct list_head **iter)
5409 {
5410 	struct netdev_adjacent *lower;
5411 
5412 	WARN_ON_ONCE(!rcu_read_lock_held());
5413 
5414 	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5415 
5416 	if (&lower->list == &dev->adj_list.lower)
5417 		return NULL;
5418 
5419 	*iter = &lower->list;
5420 
5421 	return lower->private;
5422 }
5423 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5424 
5425 /**
5426  * netdev_lower_get_next - Get the next device from the lower neighbour
5427  *                         list
5428  * @dev: device
5429  * @iter: list_head ** of the current position
5430  *
5431  * Gets the next netdev_adjacent from the dev's lower neighbour
5432  * list, starting from iter position. The caller must hold RTNL lock or
5433  * its own locking that guarantees that the neighbour lower
5434  * list will remain unchanged.
5435  */
5436 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5437 {
5438 	struct netdev_adjacent *lower;
5439 
5440 	lower = list_entry(*iter, struct netdev_adjacent, list);
5441 
5442 	if (&lower->list == &dev->adj_list.lower)
5443 		return NULL;
5444 
5445 	*iter = lower->list.next;
5446 
5447 	return lower->dev;
5448 }
5449 EXPORT_SYMBOL(netdev_lower_get_next);
5450 
5451 /**
5452  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5453  *				       lower neighbour list, RCU
5454  *				       variant
5455  * @dev: device
5456  *
5457  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5458  * list. The caller must hold RCU read lock.
5459  */
5460 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5461 {
5462 	struct netdev_adjacent *lower;
5463 
5464 	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5465 			struct netdev_adjacent, list);
5466 	if (lower)
5467 		return lower->private;
5468 	return NULL;
5469 }
5470 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5471 
5472 /**
5473  * netdev_master_upper_dev_get_rcu - Get master upper device
5474  * @dev: device
5475  *
5476  * Find a master upper device and return pointer to it or NULL in case
5477  * it's not there. The caller must hold the RCU read lock.
5478  */
5479 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5480 {
5481 	struct netdev_adjacent *upper;
5482 
5483 	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5484 				       struct netdev_adjacent, list);
5485 	if (upper && likely(upper->master))
5486 		return upper->dev;
5487 	return NULL;
5488 }
5489 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5490 
5491 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5492 			      struct net_device *adj_dev,
5493 			      struct list_head *dev_list)
5494 {
5495 	char linkname[IFNAMSIZ+7];
5496 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5497 		"upper_%s" : "lower_%s", adj_dev->name);
5498 	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5499 				 linkname);
5500 }
5501 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5502 			       char *name,
5503 			       struct list_head *dev_list)
5504 {
5505 	char linkname[IFNAMSIZ+7];
5506 	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5507 		"upper_%s" : "lower_%s", name);
5508 	sysfs_remove_link(&(dev->dev.kobj), linkname);
5509 }
5510 
5511 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5512 						 struct net_device *adj_dev,
5513 						 struct list_head *dev_list)
5514 {
5515 	return (dev_list == &dev->adj_list.upper ||
5516 		dev_list == &dev->adj_list.lower) &&
5517 		net_eq(dev_net(dev), dev_net(adj_dev));
5518 }
5519 
5520 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5521 					struct net_device *adj_dev,
5522 					struct list_head *dev_list,
5523 					void *private, bool master)
5524 {
5525 	struct netdev_adjacent *adj;
5526 	int ret;
5527 
5528 	adj = __netdev_find_adj(adj_dev, dev_list);
5529 
5530 	if (adj) {
5531 		adj->ref_nr++;
5532 		return 0;
5533 	}
5534 
5535 	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5536 	if (!adj)
5537 		return -ENOMEM;
5538 
5539 	adj->dev = adj_dev;
5540 	adj->master = master;
5541 	adj->ref_nr = 1;
5542 	adj->private = private;
5543 	dev_hold(adj_dev);
5544 
5545 	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5546 		 adj_dev->name, dev->name, adj_dev->name);
5547 
5548 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5549 		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5550 		if (ret)
5551 			goto free_adj;
5552 	}
5553 
5554 	/* Ensure that master link is always the first item in list. */
5555 	if (master) {
5556 		ret = sysfs_create_link(&(dev->dev.kobj),
5557 					&(adj_dev->dev.kobj), "master");
5558 		if (ret)
5559 			goto remove_symlinks;
5560 
5561 		list_add_rcu(&adj->list, dev_list);
5562 	} else {
5563 		list_add_tail_rcu(&adj->list, dev_list);
5564 	}
5565 
5566 	return 0;
5567 
5568 remove_symlinks:
5569 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5570 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5571 free_adj:
5572 	kfree(adj);
5573 	dev_put(adj_dev);
5574 
5575 	return ret;
5576 }
5577 
5578 static void __netdev_adjacent_dev_remove(struct net_device *dev,
5579 					 struct net_device *adj_dev,
5580 					 struct list_head *dev_list)
5581 {
5582 	struct netdev_adjacent *adj;
5583 
5584 	adj = __netdev_find_adj(adj_dev, dev_list);
5585 
5586 	if (!adj) {
5587 		pr_err("tried to remove device %s from %s\n",
5588 		       dev->name, adj_dev->name);
5589 		BUG();
5590 	}
5591 
5592 	if (adj->ref_nr > 1) {
5593 		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5594 			 adj->ref_nr-1);
5595 		adj->ref_nr--;
5596 		return;
5597 	}
5598 
5599 	if (adj->master)
5600 		sysfs_remove_link(&(dev->dev.kobj), "master");
5601 
5602 	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5603 		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5604 
5605 	list_del_rcu(&adj->list);
5606 	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5607 		 adj_dev->name, dev->name, adj_dev->name);
5608 	dev_put(adj_dev);
5609 	kfree_rcu(adj, rcu);
5610 }
5611 
5612 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5613 					    struct net_device *upper_dev,
5614 					    struct list_head *up_list,
5615 					    struct list_head *down_list,
5616 					    void *private, bool master)
5617 {
5618 	int ret;
5619 
5620 	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5621 					   master);
5622 	if (ret)
5623 		return ret;
5624 
5625 	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5626 					   false);
5627 	if (ret) {
5628 		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5629 		return ret;
5630 	}
5631 
5632 	return 0;
5633 }
5634 
5635 static int __netdev_adjacent_dev_link(struct net_device *dev,
5636 				      struct net_device *upper_dev)
5637 {
5638 	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5639 						&dev->all_adj_list.upper,
5640 						&upper_dev->all_adj_list.lower,
5641 						NULL, false);
5642 }
5643 
5644 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5645 					       struct net_device *upper_dev,
5646 					       struct list_head *up_list,
5647 					       struct list_head *down_list)
5648 {
5649 	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5650 	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5651 }
5652 
5653 static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5654 					 struct net_device *upper_dev)
5655 {
5656 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5657 					   &dev->all_adj_list.upper,
5658 					   &upper_dev->all_adj_list.lower);
5659 }
5660 
5661 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5662 						struct net_device *upper_dev,
5663 						void *private, bool master)
5664 {
5665 	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5666 
5667 	if (ret)
5668 		return ret;
5669 
5670 	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5671 					       &dev->adj_list.upper,
5672 					       &upper_dev->adj_list.lower,
5673 					       private, master);
5674 	if (ret) {
5675 		__netdev_adjacent_dev_unlink(dev, upper_dev);
5676 		return ret;
5677 	}
5678 
5679 	return 0;
5680 }
5681 
5682 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5683 						   struct net_device *upper_dev)
5684 {
5685 	__netdev_adjacent_dev_unlink(dev, upper_dev);
5686 	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5687 					   &dev->adj_list.upper,
5688 					   &upper_dev->adj_list.lower);
5689 }
5690 
5691 static int __netdev_upper_dev_link(struct net_device *dev,
5692 				   struct net_device *upper_dev, bool master,
5693 				   void *upper_priv, void *upper_info)
5694 {
5695 	struct netdev_notifier_changeupper_info changeupper_info;
5696 	struct netdev_adjacent *i, *j, *to_i, *to_j;
5697 	int ret = 0;
5698 
5699 	ASSERT_RTNL();
5700 
5701 	if (dev == upper_dev)
5702 		return -EBUSY;
5703 
5704 	/* To prevent loops, check if dev is not upper device to upper_dev. */
5705 	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5706 		return -EBUSY;
5707 
5708 	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5709 		return -EEXIST;
5710 
5711 	if (master && netdev_master_upper_dev_get(dev))
5712 		return -EBUSY;
5713 
5714 	changeupper_info.upper_dev = upper_dev;
5715 	changeupper_info.master = master;
5716 	changeupper_info.linking = true;
5717 	changeupper_info.upper_info = upper_info;
5718 
5719 	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5720 					    &changeupper_info.info);
5721 	ret = notifier_to_errno(ret);
5722 	if (ret)
5723 		return ret;
5724 
5725 	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5726 						   master);
5727 	if (ret)
5728 		return ret;
5729 
5730 	/* Now that we linked these devs, make all the upper_dev's
5731 	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5732 	 * versa, and don't forget the devices itself. All of these
5733 	 * links are non-neighbours.
5734 	 */
5735 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5736 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5737 			pr_debug("Interlinking %s with %s, non-neighbour\n",
5738 				 i->dev->name, j->dev->name);
5739 			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5740 			if (ret)
5741 				goto rollback_mesh;
5742 		}
5743 	}
5744 
5745 	/* add dev to every upper_dev's upper device */
5746 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5747 		pr_debug("linking %s's upper device %s with %s\n",
5748 			 upper_dev->name, i->dev->name, dev->name);
5749 		ret = __netdev_adjacent_dev_link(dev, i->dev);
5750 		if (ret)
5751 			goto rollback_upper_mesh;
5752 	}
5753 
5754 	/* add upper_dev to every dev's lower device */
5755 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5756 		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5757 			 i->dev->name, upper_dev->name);
5758 		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5759 		if (ret)
5760 			goto rollback_lower_mesh;
5761 	}
5762 
5763 	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5764 					    &changeupper_info.info);
5765 	ret = notifier_to_errno(ret);
5766 	if (ret)
5767 		goto rollback_lower_mesh;
5768 
5769 	return 0;
5770 
5771 rollback_lower_mesh:
5772 	to_i = i;
5773 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5774 		if (i == to_i)
5775 			break;
5776 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5777 	}
5778 
5779 	i = NULL;
5780 
5781 rollback_upper_mesh:
5782 	to_i = i;
5783 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5784 		if (i == to_i)
5785 			break;
5786 		__netdev_adjacent_dev_unlink(dev, i->dev);
5787 	}
5788 
5789 	i = j = NULL;
5790 
5791 rollback_mesh:
5792 	to_i = i;
5793 	to_j = j;
5794 	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5795 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5796 			if (i == to_i && j == to_j)
5797 				break;
5798 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5799 		}
5800 		if (i == to_i)
5801 			break;
5802 	}
5803 
5804 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5805 
5806 	return ret;
5807 }
5808 
5809 /**
5810  * netdev_upper_dev_link - Add a link to the upper device
5811  * @dev: device
5812  * @upper_dev: new upper device
5813  *
5814  * Adds a link to device which is upper to this one. The caller must hold
5815  * the RTNL lock. On a failure a negative errno code is returned.
5816  * On success the reference counts are adjusted and the function
5817  * returns zero.
5818  */
5819 int netdev_upper_dev_link(struct net_device *dev,
5820 			  struct net_device *upper_dev)
5821 {
5822 	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
5823 }
5824 EXPORT_SYMBOL(netdev_upper_dev_link);
5825 
5826 /**
5827  * netdev_master_upper_dev_link - Add a master link to the upper device
5828  * @dev: device
5829  * @upper_dev: new upper device
5830  * @upper_priv: upper device private
5831  * @upper_info: upper info to be passed down via notifier
5832  *
5833  * Adds a link to device which is upper to this one. In this case, only
5834  * one master upper device can be linked, although other non-master devices
5835  * might be linked as well. The caller must hold the RTNL lock.
5836  * On a failure a negative errno code is returned. On success the reference
5837  * counts are adjusted and the function returns zero.
5838  */
5839 int netdev_master_upper_dev_link(struct net_device *dev,
5840 				 struct net_device *upper_dev,
5841 				 void *upper_priv, void *upper_info)
5842 {
5843 	return __netdev_upper_dev_link(dev, upper_dev, true,
5844 				       upper_priv, upper_info);
5845 }
5846 EXPORT_SYMBOL(netdev_master_upper_dev_link);
5847 
5848 /**
5849  * netdev_upper_dev_unlink - Removes a link to upper device
5850  * @dev: device
5851  * @upper_dev: new upper device
5852  *
5853  * Removes a link to device which is upper to this one. The caller must hold
5854  * the RTNL lock.
5855  */
5856 void netdev_upper_dev_unlink(struct net_device *dev,
5857 			     struct net_device *upper_dev)
5858 {
5859 	struct netdev_notifier_changeupper_info changeupper_info;
5860 	struct netdev_adjacent *i, *j;
5861 	ASSERT_RTNL();
5862 
5863 	changeupper_info.upper_dev = upper_dev;
5864 	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5865 	changeupper_info.linking = false;
5866 
5867 	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5868 				      &changeupper_info.info);
5869 
5870 	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5871 
5872 	/* Here is the tricky part. We must remove all dev's lower
5873 	 * devices from all upper_dev's upper devices and vice
5874 	 * versa, to maintain the graph relationship.
5875 	 */
5876 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5877 		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5878 			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5879 
5880 	/* remove also the devices itself from lower/upper device
5881 	 * list
5882 	 */
5883 	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5884 		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5885 
5886 	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5887 		__netdev_adjacent_dev_unlink(dev, i->dev);
5888 
5889 	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5890 				      &changeupper_info.info);
5891 }
5892 EXPORT_SYMBOL(netdev_upper_dev_unlink);
5893 
5894 /**
5895  * netdev_bonding_info_change - Dispatch event about slave change
5896  * @dev: device
5897  * @bonding_info: info to dispatch
5898  *
5899  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5900  * The caller must hold the RTNL lock.
5901  */
5902 void netdev_bonding_info_change(struct net_device *dev,
5903 				struct netdev_bonding_info *bonding_info)
5904 {
5905 	struct netdev_notifier_bonding_info	info;
5906 
5907 	memcpy(&info.bonding_info, bonding_info,
5908 	       sizeof(struct netdev_bonding_info));
5909 	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5910 				      &info.info);
5911 }
5912 EXPORT_SYMBOL(netdev_bonding_info_change);
5913 
5914 static void netdev_adjacent_add_links(struct net_device *dev)
5915 {
5916 	struct netdev_adjacent *iter;
5917 
5918 	struct net *net = dev_net(dev);
5919 
5920 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5921 		if (!net_eq(net,dev_net(iter->dev)))
5922 			continue;
5923 		netdev_adjacent_sysfs_add(iter->dev, dev,
5924 					  &iter->dev->adj_list.lower);
5925 		netdev_adjacent_sysfs_add(dev, iter->dev,
5926 					  &dev->adj_list.upper);
5927 	}
5928 
5929 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5930 		if (!net_eq(net,dev_net(iter->dev)))
5931 			continue;
5932 		netdev_adjacent_sysfs_add(iter->dev, dev,
5933 					  &iter->dev->adj_list.upper);
5934 		netdev_adjacent_sysfs_add(dev, iter->dev,
5935 					  &dev->adj_list.lower);
5936 	}
5937 }
5938 
5939 static void netdev_adjacent_del_links(struct net_device *dev)
5940 {
5941 	struct netdev_adjacent *iter;
5942 
5943 	struct net *net = dev_net(dev);
5944 
5945 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5946 		if (!net_eq(net,dev_net(iter->dev)))
5947 			continue;
5948 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5949 					  &iter->dev->adj_list.lower);
5950 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5951 					  &dev->adj_list.upper);
5952 	}
5953 
5954 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5955 		if (!net_eq(net,dev_net(iter->dev)))
5956 			continue;
5957 		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5958 					  &iter->dev->adj_list.upper);
5959 		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5960 					  &dev->adj_list.lower);
5961 	}
5962 }
5963 
5964 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5965 {
5966 	struct netdev_adjacent *iter;
5967 
5968 	struct net *net = dev_net(dev);
5969 
5970 	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5971 		if (!net_eq(net,dev_net(iter->dev)))
5972 			continue;
5973 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5974 					  &iter->dev->adj_list.lower);
5975 		netdev_adjacent_sysfs_add(iter->dev, dev,
5976 					  &iter->dev->adj_list.lower);
5977 	}
5978 
5979 	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5980 		if (!net_eq(net,dev_net(iter->dev)))
5981 			continue;
5982 		netdev_adjacent_sysfs_del(iter->dev, oldname,
5983 					  &iter->dev->adj_list.upper);
5984 		netdev_adjacent_sysfs_add(iter->dev, dev,
5985 					  &iter->dev->adj_list.upper);
5986 	}
5987 }
5988 
5989 void *netdev_lower_dev_get_private(struct net_device *dev,
5990 				   struct net_device *lower_dev)
5991 {
5992 	struct netdev_adjacent *lower;
5993 
5994 	if (!lower_dev)
5995 		return NULL;
5996 	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5997 	if (!lower)
5998 		return NULL;
5999 
6000 	return lower->private;
6001 }
6002 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6003 
6004 
6005 int dev_get_nest_level(struct net_device *dev,
6006 		       bool (*type_check)(const struct net_device *dev))
6007 {
6008 	struct net_device *lower = NULL;
6009 	struct list_head *iter;
6010 	int max_nest = -1;
6011 	int nest;
6012 
6013 	ASSERT_RTNL();
6014 
6015 	netdev_for_each_lower_dev(dev, lower, iter) {
6016 		nest = dev_get_nest_level(lower, type_check);
6017 		if (max_nest < nest)
6018 			max_nest = nest;
6019 	}
6020 
6021 	if (type_check(dev))
6022 		max_nest++;
6023 
6024 	return max_nest;
6025 }
6026 EXPORT_SYMBOL(dev_get_nest_level);
6027 
6028 /**
6029  * netdev_lower_change - Dispatch event about lower device state change
6030  * @lower_dev: device
6031  * @lower_state_info: state to dispatch
6032  *
6033  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6034  * The caller must hold the RTNL lock.
6035  */
6036 void netdev_lower_state_changed(struct net_device *lower_dev,
6037 				void *lower_state_info)
6038 {
6039 	struct netdev_notifier_changelowerstate_info changelowerstate_info;
6040 
6041 	ASSERT_RTNL();
6042 	changelowerstate_info.lower_state_info = lower_state_info;
6043 	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6044 				      &changelowerstate_info.info);
6045 }
6046 EXPORT_SYMBOL(netdev_lower_state_changed);
6047 
6048 static void dev_change_rx_flags(struct net_device *dev, int flags)
6049 {
6050 	const struct net_device_ops *ops = dev->netdev_ops;
6051 
6052 	if (ops->ndo_change_rx_flags)
6053 		ops->ndo_change_rx_flags(dev, flags);
6054 }
6055 
6056 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6057 {
6058 	unsigned int old_flags = dev->flags;
6059 	kuid_t uid;
6060 	kgid_t gid;
6061 
6062 	ASSERT_RTNL();
6063 
6064 	dev->flags |= IFF_PROMISC;
6065 	dev->promiscuity += inc;
6066 	if (dev->promiscuity == 0) {
6067 		/*
6068 		 * Avoid overflow.
6069 		 * If inc causes overflow, untouch promisc and return error.
6070 		 */
6071 		if (inc < 0)
6072 			dev->flags &= ~IFF_PROMISC;
6073 		else {
6074 			dev->promiscuity -= inc;
6075 			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6076 				dev->name);
6077 			return -EOVERFLOW;
6078 		}
6079 	}
6080 	if (dev->flags != old_flags) {
6081 		pr_info("device %s %s promiscuous mode\n",
6082 			dev->name,
6083 			dev->flags & IFF_PROMISC ? "entered" : "left");
6084 		if (audit_enabled) {
6085 			current_uid_gid(&uid, &gid);
6086 			audit_log(current->audit_context, GFP_ATOMIC,
6087 				AUDIT_ANOM_PROMISCUOUS,
6088 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6089 				dev->name, (dev->flags & IFF_PROMISC),
6090 				(old_flags & IFF_PROMISC),
6091 				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6092 				from_kuid(&init_user_ns, uid),
6093 				from_kgid(&init_user_ns, gid),
6094 				audit_get_sessionid(current));
6095 		}
6096 
6097 		dev_change_rx_flags(dev, IFF_PROMISC);
6098 	}
6099 	if (notify)
6100 		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6101 	return 0;
6102 }
6103 
6104 /**
6105  *	dev_set_promiscuity	- update promiscuity count on a device
6106  *	@dev: device
6107  *	@inc: modifier
6108  *
6109  *	Add or remove promiscuity from a device. While the count in the device
6110  *	remains above zero the interface remains promiscuous. Once it hits zero
6111  *	the device reverts back to normal filtering operation. A negative inc
6112  *	value is used to drop promiscuity on the device.
6113  *	Return 0 if successful or a negative errno code on error.
6114  */
6115 int dev_set_promiscuity(struct net_device *dev, int inc)
6116 {
6117 	unsigned int old_flags = dev->flags;
6118 	int err;
6119 
6120 	err = __dev_set_promiscuity(dev, inc, true);
6121 	if (err < 0)
6122 		return err;
6123 	if (dev->flags != old_flags)
6124 		dev_set_rx_mode(dev);
6125 	return err;
6126 }
6127 EXPORT_SYMBOL(dev_set_promiscuity);
6128 
6129 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6130 {
6131 	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6132 
6133 	ASSERT_RTNL();
6134 
6135 	dev->flags |= IFF_ALLMULTI;
6136 	dev->allmulti += inc;
6137 	if (dev->allmulti == 0) {
6138 		/*
6139 		 * Avoid overflow.
6140 		 * If inc causes overflow, untouch allmulti and return error.
6141 		 */
6142 		if (inc < 0)
6143 			dev->flags &= ~IFF_ALLMULTI;
6144 		else {
6145 			dev->allmulti -= inc;
6146 			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6147 				dev->name);
6148 			return -EOVERFLOW;
6149 		}
6150 	}
6151 	if (dev->flags ^ old_flags) {
6152 		dev_change_rx_flags(dev, IFF_ALLMULTI);
6153 		dev_set_rx_mode(dev);
6154 		if (notify)
6155 			__dev_notify_flags(dev, old_flags,
6156 					   dev->gflags ^ old_gflags);
6157 	}
6158 	return 0;
6159 }
6160 
6161 /**
6162  *	dev_set_allmulti	- update allmulti count on a device
6163  *	@dev: device
6164  *	@inc: modifier
6165  *
6166  *	Add or remove reception of all multicast frames to a device. While the
6167  *	count in the device remains above zero the interface remains listening
6168  *	to all interfaces. Once it hits zero the device reverts back to normal
6169  *	filtering operation. A negative @inc value is used to drop the counter
6170  *	when releasing a resource needing all multicasts.
6171  *	Return 0 if successful or a negative errno code on error.
6172  */
6173 
6174 int dev_set_allmulti(struct net_device *dev, int inc)
6175 {
6176 	return __dev_set_allmulti(dev, inc, true);
6177 }
6178 EXPORT_SYMBOL(dev_set_allmulti);
6179 
6180 /*
6181  *	Upload unicast and multicast address lists to device and
6182  *	configure RX filtering. When the device doesn't support unicast
6183  *	filtering it is put in promiscuous mode while unicast addresses
6184  *	are present.
6185  */
6186 void __dev_set_rx_mode(struct net_device *dev)
6187 {
6188 	const struct net_device_ops *ops = dev->netdev_ops;
6189 
6190 	/* dev_open will call this function so the list will stay sane. */
6191 	if (!(dev->flags&IFF_UP))
6192 		return;
6193 
6194 	if (!netif_device_present(dev))
6195 		return;
6196 
6197 	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6198 		/* Unicast addresses changes may only happen under the rtnl,
6199 		 * therefore calling __dev_set_promiscuity here is safe.
6200 		 */
6201 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6202 			__dev_set_promiscuity(dev, 1, false);
6203 			dev->uc_promisc = true;
6204 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6205 			__dev_set_promiscuity(dev, -1, false);
6206 			dev->uc_promisc = false;
6207 		}
6208 	}
6209 
6210 	if (ops->ndo_set_rx_mode)
6211 		ops->ndo_set_rx_mode(dev);
6212 }
6213 
6214 void dev_set_rx_mode(struct net_device *dev)
6215 {
6216 	netif_addr_lock_bh(dev);
6217 	__dev_set_rx_mode(dev);
6218 	netif_addr_unlock_bh(dev);
6219 }
6220 
6221 /**
6222  *	dev_get_flags - get flags reported to userspace
6223  *	@dev: device
6224  *
6225  *	Get the combination of flag bits exported through APIs to userspace.
6226  */
6227 unsigned int dev_get_flags(const struct net_device *dev)
6228 {
6229 	unsigned int flags;
6230 
6231 	flags = (dev->flags & ~(IFF_PROMISC |
6232 				IFF_ALLMULTI |
6233 				IFF_RUNNING |
6234 				IFF_LOWER_UP |
6235 				IFF_DORMANT)) |
6236 		(dev->gflags & (IFF_PROMISC |
6237 				IFF_ALLMULTI));
6238 
6239 	if (netif_running(dev)) {
6240 		if (netif_oper_up(dev))
6241 			flags |= IFF_RUNNING;
6242 		if (netif_carrier_ok(dev))
6243 			flags |= IFF_LOWER_UP;
6244 		if (netif_dormant(dev))
6245 			flags |= IFF_DORMANT;
6246 	}
6247 
6248 	return flags;
6249 }
6250 EXPORT_SYMBOL(dev_get_flags);
6251 
6252 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6253 {
6254 	unsigned int old_flags = dev->flags;
6255 	int ret;
6256 
6257 	ASSERT_RTNL();
6258 
6259 	/*
6260 	 *	Set the flags on our device.
6261 	 */
6262 
6263 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6264 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6265 			       IFF_AUTOMEDIA)) |
6266 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6267 				    IFF_ALLMULTI));
6268 
6269 	/*
6270 	 *	Load in the correct multicast list now the flags have changed.
6271 	 */
6272 
6273 	if ((old_flags ^ flags) & IFF_MULTICAST)
6274 		dev_change_rx_flags(dev, IFF_MULTICAST);
6275 
6276 	dev_set_rx_mode(dev);
6277 
6278 	/*
6279 	 *	Have we downed the interface. We handle IFF_UP ourselves
6280 	 *	according to user attempts to set it, rather than blindly
6281 	 *	setting it.
6282 	 */
6283 
6284 	ret = 0;
6285 	if ((old_flags ^ flags) & IFF_UP)
6286 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6287 
6288 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6289 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6290 		unsigned int old_flags = dev->flags;
6291 
6292 		dev->gflags ^= IFF_PROMISC;
6293 
6294 		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6295 			if (dev->flags != old_flags)
6296 				dev_set_rx_mode(dev);
6297 	}
6298 
6299 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6300 	   is important. Some (broken) drivers set IFF_PROMISC, when
6301 	   IFF_ALLMULTI is requested not asking us and not reporting.
6302 	 */
6303 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6304 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6305 
6306 		dev->gflags ^= IFF_ALLMULTI;
6307 		__dev_set_allmulti(dev, inc, false);
6308 	}
6309 
6310 	return ret;
6311 }
6312 
6313 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6314 			unsigned int gchanges)
6315 {
6316 	unsigned int changes = dev->flags ^ old_flags;
6317 
6318 	if (gchanges)
6319 		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6320 
6321 	if (changes & IFF_UP) {
6322 		if (dev->flags & IFF_UP)
6323 			call_netdevice_notifiers(NETDEV_UP, dev);
6324 		else
6325 			call_netdevice_notifiers(NETDEV_DOWN, dev);
6326 	}
6327 
6328 	if (dev->flags & IFF_UP &&
6329 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6330 		struct netdev_notifier_change_info change_info;
6331 
6332 		change_info.flags_changed = changes;
6333 		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6334 					      &change_info.info);
6335 	}
6336 }
6337 
6338 /**
6339  *	dev_change_flags - change device settings
6340  *	@dev: device
6341  *	@flags: device state flags
6342  *
6343  *	Change settings on device based state flags. The flags are
6344  *	in the userspace exported format.
6345  */
6346 int dev_change_flags(struct net_device *dev, unsigned int flags)
6347 {
6348 	int ret;
6349 	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6350 
6351 	ret = __dev_change_flags(dev, flags);
6352 	if (ret < 0)
6353 		return ret;
6354 
6355 	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6356 	__dev_notify_flags(dev, old_flags, changes);
6357 	return ret;
6358 }
6359 EXPORT_SYMBOL(dev_change_flags);
6360 
6361 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6362 {
6363 	const struct net_device_ops *ops = dev->netdev_ops;
6364 
6365 	if (ops->ndo_change_mtu)
6366 		return ops->ndo_change_mtu(dev, new_mtu);
6367 
6368 	dev->mtu = new_mtu;
6369 	return 0;
6370 }
6371 
6372 /**
6373  *	dev_set_mtu - Change maximum transfer unit
6374  *	@dev: device
6375  *	@new_mtu: new transfer unit
6376  *
6377  *	Change the maximum transfer size of the network device.
6378  */
6379 int dev_set_mtu(struct net_device *dev, int new_mtu)
6380 {
6381 	int err, orig_mtu;
6382 
6383 	if (new_mtu == dev->mtu)
6384 		return 0;
6385 
6386 	/*	MTU must be positive.	 */
6387 	if (new_mtu < 0)
6388 		return -EINVAL;
6389 
6390 	if (!netif_device_present(dev))
6391 		return -ENODEV;
6392 
6393 	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6394 	err = notifier_to_errno(err);
6395 	if (err)
6396 		return err;
6397 
6398 	orig_mtu = dev->mtu;
6399 	err = __dev_set_mtu(dev, new_mtu);
6400 
6401 	if (!err) {
6402 		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6403 		err = notifier_to_errno(err);
6404 		if (err) {
6405 			/* setting mtu back and notifying everyone again,
6406 			 * so that they have a chance to revert changes.
6407 			 */
6408 			__dev_set_mtu(dev, orig_mtu);
6409 			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6410 		}
6411 	}
6412 	return err;
6413 }
6414 EXPORT_SYMBOL(dev_set_mtu);
6415 
6416 /**
6417  *	dev_set_group - Change group this device belongs to
6418  *	@dev: device
6419  *	@new_group: group this device should belong to
6420  */
6421 void dev_set_group(struct net_device *dev, int new_group)
6422 {
6423 	dev->group = new_group;
6424 }
6425 EXPORT_SYMBOL(dev_set_group);
6426 
6427 /**
6428  *	dev_set_mac_address - Change Media Access Control Address
6429  *	@dev: device
6430  *	@sa: new address
6431  *
6432  *	Change the hardware (MAC) address of the device
6433  */
6434 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6435 {
6436 	const struct net_device_ops *ops = dev->netdev_ops;
6437 	int err;
6438 
6439 	if (!ops->ndo_set_mac_address)
6440 		return -EOPNOTSUPP;
6441 	if (sa->sa_family != dev->type)
6442 		return -EINVAL;
6443 	if (!netif_device_present(dev))
6444 		return -ENODEV;
6445 	err = ops->ndo_set_mac_address(dev, sa);
6446 	if (err)
6447 		return err;
6448 	dev->addr_assign_type = NET_ADDR_SET;
6449 	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6450 	add_device_randomness(dev->dev_addr, dev->addr_len);
6451 	return 0;
6452 }
6453 EXPORT_SYMBOL(dev_set_mac_address);
6454 
6455 /**
6456  *	dev_change_carrier - Change device carrier
6457  *	@dev: device
6458  *	@new_carrier: new value
6459  *
6460  *	Change device carrier
6461  */
6462 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6463 {
6464 	const struct net_device_ops *ops = dev->netdev_ops;
6465 
6466 	if (!ops->ndo_change_carrier)
6467 		return -EOPNOTSUPP;
6468 	if (!netif_device_present(dev))
6469 		return -ENODEV;
6470 	return ops->ndo_change_carrier(dev, new_carrier);
6471 }
6472 EXPORT_SYMBOL(dev_change_carrier);
6473 
6474 /**
6475  *	dev_get_phys_port_id - Get device physical port ID
6476  *	@dev: device
6477  *	@ppid: port ID
6478  *
6479  *	Get device physical port ID
6480  */
6481 int dev_get_phys_port_id(struct net_device *dev,
6482 			 struct netdev_phys_item_id *ppid)
6483 {
6484 	const struct net_device_ops *ops = dev->netdev_ops;
6485 
6486 	if (!ops->ndo_get_phys_port_id)
6487 		return -EOPNOTSUPP;
6488 	return ops->ndo_get_phys_port_id(dev, ppid);
6489 }
6490 EXPORT_SYMBOL(dev_get_phys_port_id);
6491 
6492 /**
6493  *	dev_get_phys_port_name - Get device physical port name
6494  *	@dev: device
6495  *	@name: port name
6496  *	@len: limit of bytes to copy to name
6497  *
6498  *	Get device physical port name
6499  */
6500 int dev_get_phys_port_name(struct net_device *dev,
6501 			   char *name, size_t len)
6502 {
6503 	const struct net_device_ops *ops = dev->netdev_ops;
6504 
6505 	if (!ops->ndo_get_phys_port_name)
6506 		return -EOPNOTSUPP;
6507 	return ops->ndo_get_phys_port_name(dev, name, len);
6508 }
6509 EXPORT_SYMBOL(dev_get_phys_port_name);
6510 
6511 /**
6512  *	dev_change_proto_down - update protocol port state information
6513  *	@dev: device
6514  *	@proto_down: new value
6515  *
6516  *	This info can be used by switch drivers to set the phys state of the
6517  *	port.
6518  */
6519 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6520 {
6521 	const struct net_device_ops *ops = dev->netdev_ops;
6522 
6523 	if (!ops->ndo_change_proto_down)
6524 		return -EOPNOTSUPP;
6525 	if (!netif_device_present(dev))
6526 		return -ENODEV;
6527 	return ops->ndo_change_proto_down(dev, proto_down);
6528 }
6529 EXPORT_SYMBOL(dev_change_proto_down);
6530 
6531 /**
6532  *	dev_new_index	-	allocate an ifindex
6533  *	@net: the applicable net namespace
6534  *
6535  *	Returns a suitable unique value for a new device interface
6536  *	number.  The caller must hold the rtnl semaphore or the
6537  *	dev_base_lock to be sure it remains unique.
6538  */
6539 static int dev_new_index(struct net *net)
6540 {
6541 	int ifindex = net->ifindex;
6542 	for (;;) {
6543 		if (++ifindex <= 0)
6544 			ifindex = 1;
6545 		if (!__dev_get_by_index(net, ifindex))
6546 			return net->ifindex = ifindex;
6547 	}
6548 }
6549 
6550 /* Delayed registration/unregisteration */
6551 static LIST_HEAD(net_todo_list);
6552 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6553 
6554 static void net_set_todo(struct net_device *dev)
6555 {
6556 	list_add_tail(&dev->todo_list, &net_todo_list);
6557 	dev_net(dev)->dev_unreg_count++;
6558 }
6559 
6560 static void rollback_registered_many(struct list_head *head)
6561 {
6562 	struct net_device *dev, *tmp;
6563 	LIST_HEAD(close_head);
6564 
6565 	BUG_ON(dev_boot_phase);
6566 	ASSERT_RTNL();
6567 
6568 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6569 		/* Some devices call without registering
6570 		 * for initialization unwind. Remove those
6571 		 * devices and proceed with the remaining.
6572 		 */
6573 		if (dev->reg_state == NETREG_UNINITIALIZED) {
6574 			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6575 				 dev->name, dev);
6576 
6577 			WARN_ON(1);
6578 			list_del(&dev->unreg_list);
6579 			continue;
6580 		}
6581 		dev->dismantle = true;
6582 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6583 	}
6584 
6585 	/* If device is running, close it first. */
6586 	list_for_each_entry(dev, head, unreg_list)
6587 		list_add_tail(&dev->close_list, &close_head);
6588 	dev_close_many(&close_head, true);
6589 
6590 	list_for_each_entry(dev, head, unreg_list) {
6591 		/* And unlink it from device chain. */
6592 		unlist_netdevice(dev);
6593 
6594 		dev->reg_state = NETREG_UNREGISTERING;
6595 		on_each_cpu(flush_backlog, dev, 1);
6596 	}
6597 
6598 	synchronize_net();
6599 
6600 	list_for_each_entry(dev, head, unreg_list) {
6601 		struct sk_buff *skb = NULL;
6602 
6603 		/* Shutdown queueing discipline. */
6604 		dev_shutdown(dev);
6605 
6606 
6607 		/* Notify protocols, that we are about to destroy
6608 		   this device. They should clean all the things.
6609 		*/
6610 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6611 
6612 		if (!dev->rtnl_link_ops ||
6613 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6614 			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6615 						     GFP_KERNEL);
6616 
6617 		/*
6618 		 *	Flush the unicast and multicast chains
6619 		 */
6620 		dev_uc_flush(dev);
6621 		dev_mc_flush(dev);
6622 
6623 		if (dev->netdev_ops->ndo_uninit)
6624 			dev->netdev_ops->ndo_uninit(dev);
6625 
6626 		if (skb)
6627 			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
6628 
6629 		/* Notifier chain MUST detach us all upper devices. */
6630 		WARN_ON(netdev_has_any_upper_dev(dev));
6631 
6632 		/* Remove entries from kobject tree */
6633 		netdev_unregister_kobject(dev);
6634 #ifdef CONFIG_XPS
6635 		/* Remove XPS queueing entries */
6636 		netif_reset_xps_queues_gt(dev, 0);
6637 #endif
6638 	}
6639 
6640 	synchronize_net();
6641 
6642 	list_for_each_entry(dev, head, unreg_list)
6643 		dev_put(dev);
6644 }
6645 
6646 static void rollback_registered(struct net_device *dev)
6647 {
6648 	LIST_HEAD(single);
6649 
6650 	list_add(&dev->unreg_list, &single);
6651 	rollback_registered_many(&single);
6652 	list_del(&single);
6653 }
6654 
6655 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6656 	struct net_device *upper, netdev_features_t features)
6657 {
6658 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6659 	netdev_features_t feature;
6660 	int feature_bit;
6661 
6662 	for_each_netdev_feature(&upper_disables, feature_bit) {
6663 		feature = __NETIF_F_BIT(feature_bit);
6664 		if (!(upper->wanted_features & feature)
6665 		    && (features & feature)) {
6666 			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6667 				   &feature, upper->name);
6668 			features &= ~feature;
6669 		}
6670 	}
6671 
6672 	return features;
6673 }
6674 
6675 static void netdev_sync_lower_features(struct net_device *upper,
6676 	struct net_device *lower, netdev_features_t features)
6677 {
6678 	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6679 	netdev_features_t feature;
6680 	int feature_bit;
6681 
6682 	for_each_netdev_feature(&upper_disables, feature_bit) {
6683 		feature = __NETIF_F_BIT(feature_bit);
6684 		if (!(features & feature) && (lower->features & feature)) {
6685 			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6686 				   &feature, lower->name);
6687 			lower->wanted_features &= ~feature;
6688 			netdev_update_features(lower);
6689 
6690 			if (unlikely(lower->features & feature))
6691 				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6692 					    &feature, lower->name);
6693 		}
6694 	}
6695 }
6696 
6697 static netdev_features_t netdev_fix_features(struct net_device *dev,
6698 	netdev_features_t features)
6699 {
6700 	/* Fix illegal checksum combinations */
6701 	if ((features & NETIF_F_HW_CSUM) &&
6702 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6703 		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6704 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6705 	}
6706 
6707 	/* TSO requires that SG is present as well. */
6708 	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6709 		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6710 		features &= ~NETIF_F_ALL_TSO;
6711 	}
6712 
6713 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6714 					!(features & NETIF_F_IP_CSUM)) {
6715 		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6716 		features &= ~NETIF_F_TSO;
6717 		features &= ~NETIF_F_TSO_ECN;
6718 	}
6719 
6720 	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6721 					 !(features & NETIF_F_IPV6_CSUM)) {
6722 		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6723 		features &= ~NETIF_F_TSO6;
6724 	}
6725 
6726 	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
6727 	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
6728 		features &= ~NETIF_F_TSO_MANGLEID;
6729 
6730 	/* TSO ECN requires that TSO is present as well. */
6731 	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6732 		features &= ~NETIF_F_TSO_ECN;
6733 
6734 	/* Software GSO depends on SG. */
6735 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6736 		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6737 		features &= ~NETIF_F_GSO;
6738 	}
6739 
6740 	/* UFO needs SG and checksumming */
6741 	if (features & NETIF_F_UFO) {
6742 		/* maybe split UFO into V4 and V6? */
6743 		if (!(features & NETIF_F_HW_CSUM) &&
6744 		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6745 		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6746 			netdev_dbg(dev,
6747 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6748 			features &= ~NETIF_F_UFO;
6749 		}
6750 
6751 		if (!(features & NETIF_F_SG)) {
6752 			netdev_dbg(dev,
6753 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6754 			features &= ~NETIF_F_UFO;
6755 		}
6756 	}
6757 
6758 	/* GSO partial features require GSO partial be set */
6759 	if ((features & dev->gso_partial_features) &&
6760 	    !(features & NETIF_F_GSO_PARTIAL)) {
6761 		netdev_dbg(dev,
6762 			   "Dropping partially supported GSO features since no GSO partial.\n");
6763 		features &= ~dev->gso_partial_features;
6764 	}
6765 
6766 #ifdef CONFIG_NET_RX_BUSY_POLL
6767 	if (dev->netdev_ops->ndo_busy_poll)
6768 		features |= NETIF_F_BUSY_POLL;
6769 	else
6770 #endif
6771 		features &= ~NETIF_F_BUSY_POLL;
6772 
6773 	return features;
6774 }
6775 
6776 int __netdev_update_features(struct net_device *dev)
6777 {
6778 	struct net_device *upper, *lower;
6779 	netdev_features_t features;
6780 	struct list_head *iter;
6781 	int err = -1;
6782 
6783 	ASSERT_RTNL();
6784 
6785 	features = netdev_get_wanted_features(dev);
6786 
6787 	if (dev->netdev_ops->ndo_fix_features)
6788 		features = dev->netdev_ops->ndo_fix_features(dev, features);
6789 
6790 	/* driver might be less strict about feature dependencies */
6791 	features = netdev_fix_features(dev, features);
6792 
6793 	/* some features can't be enabled if they're off an an upper device */
6794 	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6795 		features = netdev_sync_upper_features(dev, upper, features);
6796 
6797 	if (dev->features == features)
6798 		goto sync_lower;
6799 
6800 	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6801 		&dev->features, &features);
6802 
6803 	if (dev->netdev_ops->ndo_set_features)
6804 		err = dev->netdev_ops->ndo_set_features(dev, features);
6805 	else
6806 		err = 0;
6807 
6808 	if (unlikely(err < 0)) {
6809 		netdev_err(dev,
6810 			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6811 			err, &features, &dev->features);
6812 		/* return non-0 since some features might have changed and
6813 		 * it's better to fire a spurious notification than miss it
6814 		 */
6815 		return -1;
6816 	}
6817 
6818 sync_lower:
6819 	/* some features must be disabled on lower devices when disabled
6820 	 * on an upper device (think: bonding master or bridge)
6821 	 */
6822 	netdev_for_each_lower_dev(dev, lower, iter)
6823 		netdev_sync_lower_features(dev, lower, features);
6824 
6825 	if (!err)
6826 		dev->features = features;
6827 
6828 	return err < 0 ? 0 : 1;
6829 }
6830 
6831 /**
6832  *	netdev_update_features - recalculate device features
6833  *	@dev: the device to check
6834  *
6835  *	Recalculate dev->features set and send notifications if it
6836  *	has changed. Should be called after driver or hardware dependent
6837  *	conditions might have changed that influence the features.
6838  */
6839 void netdev_update_features(struct net_device *dev)
6840 {
6841 	if (__netdev_update_features(dev))
6842 		netdev_features_change(dev);
6843 }
6844 EXPORT_SYMBOL(netdev_update_features);
6845 
6846 /**
6847  *	netdev_change_features - recalculate device features
6848  *	@dev: the device to check
6849  *
6850  *	Recalculate dev->features set and send notifications even
6851  *	if they have not changed. Should be called instead of
6852  *	netdev_update_features() if also dev->vlan_features might
6853  *	have changed to allow the changes to be propagated to stacked
6854  *	VLAN devices.
6855  */
6856 void netdev_change_features(struct net_device *dev)
6857 {
6858 	__netdev_update_features(dev);
6859 	netdev_features_change(dev);
6860 }
6861 EXPORT_SYMBOL(netdev_change_features);
6862 
6863 /**
6864  *	netif_stacked_transfer_operstate -	transfer operstate
6865  *	@rootdev: the root or lower level device to transfer state from
6866  *	@dev: the device to transfer operstate to
6867  *
6868  *	Transfer operational state from root to device. This is normally
6869  *	called when a stacking relationship exists between the root
6870  *	device and the device(a leaf device).
6871  */
6872 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6873 					struct net_device *dev)
6874 {
6875 	if (rootdev->operstate == IF_OPER_DORMANT)
6876 		netif_dormant_on(dev);
6877 	else
6878 		netif_dormant_off(dev);
6879 
6880 	if (netif_carrier_ok(rootdev)) {
6881 		if (!netif_carrier_ok(dev))
6882 			netif_carrier_on(dev);
6883 	} else {
6884 		if (netif_carrier_ok(dev))
6885 			netif_carrier_off(dev);
6886 	}
6887 }
6888 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6889 
6890 #ifdef CONFIG_SYSFS
6891 static int netif_alloc_rx_queues(struct net_device *dev)
6892 {
6893 	unsigned int i, count = dev->num_rx_queues;
6894 	struct netdev_rx_queue *rx;
6895 	size_t sz = count * sizeof(*rx);
6896 
6897 	BUG_ON(count < 1);
6898 
6899 	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6900 	if (!rx) {
6901 		rx = vzalloc(sz);
6902 		if (!rx)
6903 			return -ENOMEM;
6904 	}
6905 	dev->_rx = rx;
6906 
6907 	for (i = 0; i < count; i++)
6908 		rx[i].dev = dev;
6909 	return 0;
6910 }
6911 #endif
6912 
6913 static void netdev_init_one_queue(struct net_device *dev,
6914 				  struct netdev_queue *queue, void *_unused)
6915 {
6916 	/* Initialize queue lock */
6917 	spin_lock_init(&queue->_xmit_lock);
6918 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6919 	queue->xmit_lock_owner = -1;
6920 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6921 	queue->dev = dev;
6922 #ifdef CONFIG_BQL
6923 	dql_init(&queue->dql, HZ);
6924 #endif
6925 }
6926 
6927 static void netif_free_tx_queues(struct net_device *dev)
6928 {
6929 	kvfree(dev->_tx);
6930 }
6931 
6932 static int netif_alloc_netdev_queues(struct net_device *dev)
6933 {
6934 	unsigned int count = dev->num_tx_queues;
6935 	struct netdev_queue *tx;
6936 	size_t sz = count * sizeof(*tx);
6937 
6938 	if (count < 1 || count > 0xffff)
6939 		return -EINVAL;
6940 
6941 	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6942 	if (!tx) {
6943 		tx = vzalloc(sz);
6944 		if (!tx)
6945 			return -ENOMEM;
6946 	}
6947 	dev->_tx = tx;
6948 
6949 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6950 	spin_lock_init(&dev->tx_global_lock);
6951 
6952 	return 0;
6953 }
6954 
6955 void netif_tx_stop_all_queues(struct net_device *dev)
6956 {
6957 	unsigned int i;
6958 
6959 	for (i = 0; i < dev->num_tx_queues; i++) {
6960 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
6961 		netif_tx_stop_queue(txq);
6962 	}
6963 }
6964 EXPORT_SYMBOL(netif_tx_stop_all_queues);
6965 
6966 /**
6967  *	register_netdevice	- register a network device
6968  *	@dev: device to register
6969  *
6970  *	Take a completed network device structure and add it to the kernel
6971  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6972  *	chain. 0 is returned on success. A negative errno code is returned
6973  *	on a failure to set up the device, or if the name is a duplicate.
6974  *
6975  *	Callers must hold the rtnl semaphore. You may want
6976  *	register_netdev() instead of this.
6977  *
6978  *	BUGS:
6979  *	The locking appears insufficient to guarantee two parallel registers
6980  *	will not get the same name.
6981  */
6982 
6983 int register_netdevice(struct net_device *dev)
6984 {
6985 	int ret;
6986 	struct net *net = dev_net(dev);
6987 
6988 	BUG_ON(dev_boot_phase);
6989 	ASSERT_RTNL();
6990 
6991 	might_sleep();
6992 
6993 	/* When net_device's are persistent, this will be fatal. */
6994 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6995 	BUG_ON(!net);
6996 
6997 	spin_lock_init(&dev->addr_list_lock);
6998 	netdev_set_addr_lockdep_class(dev);
6999 
7000 	ret = dev_get_valid_name(net, dev, dev->name);
7001 	if (ret < 0)
7002 		goto out;
7003 
7004 	/* Init, if this function is available */
7005 	if (dev->netdev_ops->ndo_init) {
7006 		ret = dev->netdev_ops->ndo_init(dev);
7007 		if (ret) {
7008 			if (ret > 0)
7009 				ret = -EIO;
7010 			goto out;
7011 		}
7012 	}
7013 
7014 	if (((dev->hw_features | dev->features) &
7015 	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
7016 	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7017 	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7018 		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7019 		ret = -EINVAL;
7020 		goto err_uninit;
7021 	}
7022 
7023 	ret = -EBUSY;
7024 	if (!dev->ifindex)
7025 		dev->ifindex = dev_new_index(net);
7026 	else if (__dev_get_by_index(net, dev->ifindex))
7027 		goto err_uninit;
7028 
7029 	/* Transfer changeable features to wanted_features and enable
7030 	 * software offloads (GSO and GRO).
7031 	 */
7032 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
7033 	dev->features |= NETIF_F_SOFT_FEATURES;
7034 	dev->wanted_features = dev->features & dev->hw_features;
7035 
7036 	if (!(dev->flags & IFF_LOOPBACK))
7037 		dev->hw_features |= NETIF_F_NOCACHE_COPY;
7038 
7039 	/* If IPv4 TCP segmentation offload is supported we should also
7040 	 * allow the device to enable segmenting the frame with the option
7041 	 * of ignoring a static IP ID value.  This doesn't enable the
7042 	 * feature itself but allows the user to enable it later.
7043 	 */
7044 	if (dev->hw_features & NETIF_F_TSO)
7045 		dev->hw_features |= NETIF_F_TSO_MANGLEID;
7046 	if (dev->vlan_features & NETIF_F_TSO)
7047 		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7048 	if (dev->mpls_features & NETIF_F_TSO)
7049 		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7050 	if (dev->hw_enc_features & NETIF_F_TSO)
7051 		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7052 
7053 	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7054 	 */
7055 	dev->vlan_features |= NETIF_F_HIGHDMA;
7056 
7057 	/* Make NETIF_F_SG inheritable to tunnel devices.
7058 	 */
7059 	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7060 
7061 	/* Make NETIF_F_SG inheritable to MPLS.
7062 	 */
7063 	dev->mpls_features |= NETIF_F_SG;
7064 
7065 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7066 	ret = notifier_to_errno(ret);
7067 	if (ret)
7068 		goto err_uninit;
7069 
7070 	ret = netdev_register_kobject(dev);
7071 	if (ret)
7072 		goto err_uninit;
7073 	dev->reg_state = NETREG_REGISTERED;
7074 
7075 	__netdev_update_features(dev);
7076 
7077 	/*
7078 	 *	Default initial state at registry is that the
7079 	 *	device is present.
7080 	 */
7081 
7082 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7083 
7084 	linkwatch_init_dev(dev);
7085 
7086 	dev_init_scheduler(dev);
7087 	dev_hold(dev);
7088 	list_netdevice(dev);
7089 	add_device_randomness(dev->dev_addr, dev->addr_len);
7090 
7091 	/* If the device has permanent device address, driver should
7092 	 * set dev_addr and also addr_assign_type should be set to
7093 	 * NET_ADDR_PERM (default value).
7094 	 */
7095 	if (dev->addr_assign_type == NET_ADDR_PERM)
7096 		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7097 
7098 	/* Notify protocols, that a new device appeared. */
7099 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7100 	ret = notifier_to_errno(ret);
7101 	if (ret) {
7102 		rollback_registered(dev);
7103 		dev->reg_state = NETREG_UNREGISTERED;
7104 	}
7105 	/*
7106 	 *	Prevent userspace races by waiting until the network
7107 	 *	device is fully setup before sending notifications.
7108 	 */
7109 	if (!dev->rtnl_link_ops ||
7110 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7111 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7112 
7113 out:
7114 	return ret;
7115 
7116 err_uninit:
7117 	if (dev->netdev_ops->ndo_uninit)
7118 		dev->netdev_ops->ndo_uninit(dev);
7119 	goto out;
7120 }
7121 EXPORT_SYMBOL(register_netdevice);
7122 
7123 /**
7124  *	init_dummy_netdev	- init a dummy network device for NAPI
7125  *	@dev: device to init
7126  *
7127  *	This takes a network device structure and initialize the minimum
7128  *	amount of fields so it can be used to schedule NAPI polls without
7129  *	registering a full blown interface. This is to be used by drivers
7130  *	that need to tie several hardware interfaces to a single NAPI
7131  *	poll scheduler due to HW limitations.
7132  */
7133 int init_dummy_netdev(struct net_device *dev)
7134 {
7135 	/* Clear everything. Note we don't initialize spinlocks
7136 	 * are they aren't supposed to be taken by any of the
7137 	 * NAPI code and this dummy netdev is supposed to be
7138 	 * only ever used for NAPI polls
7139 	 */
7140 	memset(dev, 0, sizeof(struct net_device));
7141 
7142 	/* make sure we BUG if trying to hit standard
7143 	 * register/unregister code path
7144 	 */
7145 	dev->reg_state = NETREG_DUMMY;
7146 
7147 	/* NAPI wants this */
7148 	INIT_LIST_HEAD(&dev->napi_list);
7149 
7150 	/* a dummy interface is started by default */
7151 	set_bit(__LINK_STATE_PRESENT, &dev->state);
7152 	set_bit(__LINK_STATE_START, &dev->state);
7153 
7154 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7155 	 * because users of this 'device' dont need to change
7156 	 * its refcount.
7157 	 */
7158 
7159 	return 0;
7160 }
7161 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7162 
7163 
7164 /**
7165  *	register_netdev	- register a network device
7166  *	@dev: device to register
7167  *
7168  *	Take a completed network device structure and add it to the kernel
7169  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7170  *	chain. 0 is returned on success. A negative errno code is returned
7171  *	on a failure to set up the device, or if the name is a duplicate.
7172  *
7173  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7174  *	and expands the device name if you passed a format string to
7175  *	alloc_netdev.
7176  */
7177 int register_netdev(struct net_device *dev)
7178 {
7179 	int err;
7180 
7181 	rtnl_lock();
7182 	err = register_netdevice(dev);
7183 	rtnl_unlock();
7184 	return err;
7185 }
7186 EXPORT_SYMBOL(register_netdev);
7187 
7188 int netdev_refcnt_read(const struct net_device *dev)
7189 {
7190 	int i, refcnt = 0;
7191 
7192 	for_each_possible_cpu(i)
7193 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7194 	return refcnt;
7195 }
7196 EXPORT_SYMBOL(netdev_refcnt_read);
7197 
7198 /**
7199  * netdev_wait_allrefs - wait until all references are gone.
7200  * @dev: target net_device
7201  *
7202  * This is called when unregistering network devices.
7203  *
7204  * Any protocol or device that holds a reference should register
7205  * for netdevice notification, and cleanup and put back the
7206  * reference if they receive an UNREGISTER event.
7207  * We can get stuck here if buggy protocols don't correctly
7208  * call dev_put.
7209  */
7210 static void netdev_wait_allrefs(struct net_device *dev)
7211 {
7212 	unsigned long rebroadcast_time, warning_time;
7213 	int refcnt;
7214 
7215 	linkwatch_forget_dev(dev);
7216 
7217 	rebroadcast_time = warning_time = jiffies;
7218 	refcnt = netdev_refcnt_read(dev);
7219 
7220 	while (refcnt != 0) {
7221 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7222 			rtnl_lock();
7223 
7224 			/* Rebroadcast unregister notification */
7225 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7226 
7227 			__rtnl_unlock();
7228 			rcu_barrier();
7229 			rtnl_lock();
7230 
7231 			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7232 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7233 				     &dev->state)) {
7234 				/* We must not have linkwatch events
7235 				 * pending on unregister. If this
7236 				 * happens, we simply run the queue
7237 				 * unscheduled, resulting in a noop
7238 				 * for this device.
7239 				 */
7240 				linkwatch_run_queue();
7241 			}
7242 
7243 			__rtnl_unlock();
7244 
7245 			rebroadcast_time = jiffies;
7246 		}
7247 
7248 		msleep(250);
7249 
7250 		refcnt = netdev_refcnt_read(dev);
7251 
7252 		if (time_after(jiffies, warning_time + 10 * HZ)) {
7253 			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7254 				 dev->name, refcnt);
7255 			warning_time = jiffies;
7256 		}
7257 	}
7258 }
7259 
7260 /* The sequence is:
7261  *
7262  *	rtnl_lock();
7263  *	...
7264  *	register_netdevice(x1);
7265  *	register_netdevice(x2);
7266  *	...
7267  *	unregister_netdevice(y1);
7268  *	unregister_netdevice(y2);
7269  *      ...
7270  *	rtnl_unlock();
7271  *	free_netdev(y1);
7272  *	free_netdev(y2);
7273  *
7274  * We are invoked by rtnl_unlock().
7275  * This allows us to deal with problems:
7276  * 1) We can delete sysfs objects which invoke hotplug
7277  *    without deadlocking with linkwatch via keventd.
7278  * 2) Since we run with the RTNL semaphore not held, we can sleep
7279  *    safely in order to wait for the netdev refcnt to drop to zero.
7280  *
7281  * We must not return until all unregister events added during
7282  * the interval the lock was held have been completed.
7283  */
7284 void netdev_run_todo(void)
7285 {
7286 	struct list_head list;
7287 
7288 	/* Snapshot list, allow later requests */
7289 	list_replace_init(&net_todo_list, &list);
7290 
7291 	__rtnl_unlock();
7292 
7293 
7294 	/* Wait for rcu callbacks to finish before next phase */
7295 	if (!list_empty(&list))
7296 		rcu_barrier();
7297 
7298 	while (!list_empty(&list)) {
7299 		struct net_device *dev
7300 			= list_first_entry(&list, struct net_device, todo_list);
7301 		list_del(&dev->todo_list);
7302 
7303 		rtnl_lock();
7304 		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7305 		__rtnl_unlock();
7306 
7307 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7308 			pr_err("network todo '%s' but state %d\n",
7309 			       dev->name, dev->reg_state);
7310 			dump_stack();
7311 			continue;
7312 		}
7313 
7314 		dev->reg_state = NETREG_UNREGISTERED;
7315 
7316 		netdev_wait_allrefs(dev);
7317 
7318 		/* paranoia */
7319 		BUG_ON(netdev_refcnt_read(dev));
7320 		BUG_ON(!list_empty(&dev->ptype_all));
7321 		BUG_ON(!list_empty(&dev->ptype_specific));
7322 		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7323 		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7324 		WARN_ON(dev->dn_ptr);
7325 
7326 		if (dev->destructor)
7327 			dev->destructor(dev);
7328 
7329 		/* Report a network device has been unregistered */
7330 		rtnl_lock();
7331 		dev_net(dev)->dev_unreg_count--;
7332 		__rtnl_unlock();
7333 		wake_up(&netdev_unregistering_wq);
7334 
7335 		/* Free network device */
7336 		kobject_put(&dev->dev.kobj);
7337 	}
7338 }
7339 
7340 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7341  * all the same fields in the same order as net_device_stats, with only
7342  * the type differing, but rtnl_link_stats64 may have additional fields
7343  * at the end for newer counters.
7344  */
7345 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7346 			     const struct net_device_stats *netdev_stats)
7347 {
7348 #if BITS_PER_LONG == 64
7349 	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7350 	memcpy(stats64, netdev_stats, sizeof(*stats64));
7351 	/* zero out counters that only exist in rtnl_link_stats64 */
7352 	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7353 	       sizeof(*stats64) - sizeof(*netdev_stats));
7354 #else
7355 	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7356 	const unsigned long *src = (const unsigned long *)netdev_stats;
7357 	u64 *dst = (u64 *)stats64;
7358 
7359 	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7360 	for (i = 0; i < n; i++)
7361 		dst[i] = src[i];
7362 	/* zero out counters that only exist in rtnl_link_stats64 */
7363 	memset((char *)stats64 + n * sizeof(u64), 0,
7364 	       sizeof(*stats64) - n * sizeof(u64));
7365 #endif
7366 }
7367 EXPORT_SYMBOL(netdev_stats_to_stats64);
7368 
7369 /**
7370  *	dev_get_stats	- get network device statistics
7371  *	@dev: device to get statistics from
7372  *	@storage: place to store stats
7373  *
7374  *	Get network statistics from device. Return @storage.
7375  *	The device driver may provide its own method by setting
7376  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7377  *	otherwise the internal statistics structure is used.
7378  */
7379 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7380 					struct rtnl_link_stats64 *storage)
7381 {
7382 	const struct net_device_ops *ops = dev->netdev_ops;
7383 
7384 	if (ops->ndo_get_stats64) {
7385 		memset(storage, 0, sizeof(*storage));
7386 		ops->ndo_get_stats64(dev, storage);
7387 	} else if (ops->ndo_get_stats) {
7388 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7389 	} else {
7390 		netdev_stats_to_stats64(storage, &dev->stats);
7391 	}
7392 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7393 	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7394 	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7395 	return storage;
7396 }
7397 EXPORT_SYMBOL(dev_get_stats);
7398 
7399 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7400 {
7401 	struct netdev_queue *queue = dev_ingress_queue(dev);
7402 
7403 #ifdef CONFIG_NET_CLS_ACT
7404 	if (queue)
7405 		return queue;
7406 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7407 	if (!queue)
7408 		return NULL;
7409 	netdev_init_one_queue(dev, queue, NULL);
7410 	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7411 	queue->qdisc_sleeping = &noop_qdisc;
7412 	rcu_assign_pointer(dev->ingress_queue, queue);
7413 #endif
7414 	return queue;
7415 }
7416 
7417 static const struct ethtool_ops default_ethtool_ops;
7418 
7419 void netdev_set_default_ethtool_ops(struct net_device *dev,
7420 				    const struct ethtool_ops *ops)
7421 {
7422 	if (dev->ethtool_ops == &default_ethtool_ops)
7423 		dev->ethtool_ops = ops;
7424 }
7425 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7426 
7427 void netdev_freemem(struct net_device *dev)
7428 {
7429 	char *addr = (char *)dev - dev->padded;
7430 
7431 	kvfree(addr);
7432 }
7433 
7434 /**
7435  *	alloc_netdev_mqs - allocate network device
7436  *	@sizeof_priv:		size of private data to allocate space for
7437  *	@name:			device name format string
7438  *	@name_assign_type: 	origin of device name
7439  *	@setup:			callback to initialize device
7440  *	@txqs:			the number of TX subqueues to allocate
7441  *	@rxqs:			the number of RX subqueues to allocate
7442  *
7443  *	Allocates a struct net_device with private data area for driver use
7444  *	and performs basic initialization.  Also allocates subqueue structs
7445  *	for each queue on the device.
7446  */
7447 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7448 		unsigned char name_assign_type,
7449 		void (*setup)(struct net_device *),
7450 		unsigned int txqs, unsigned int rxqs)
7451 {
7452 	struct net_device *dev;
7453 	size_t alloc_size;
7454 	struct net_device *p;
7455 
7456 	BUG_ON(strlen(name) >= sizeof(dev->name));
7457 
7458 	if (txqs < 1) {
7459 		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7460 		return NULL;
7461 	}
7462 
7463 #ifdef CONFIG_SYSFS
7464 	if (rxqs < 1) {
7465 		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7466 		return NULL;
7467 	}
7468 #endif
7469 
7470 	alloc_size = sizeof(struct net_device);
7471 	if (sizeof_priv) {
7472 		/* ensure 32-byte alignment of private area */
7473 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7474 		alloc_size += sizeof_priv;
7475 	}
7476 	/* ensure 32-byte alignment of whole construct */
7477 	alloc_size += NETDEV_ALIGN - 1;
7478 
7479 	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7480 	if (!p)
7481 		p = vzalloc(alloc_size);
7482 	if (!p)
7483 		return NULL;
7484 
7485 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7486 	dev->padded = (char *)dev - (char *)p;
7487 
7488 	dev->pcpu_refcnt = alloc_percpu(int);
7489 	if (!dev->pcpu_refcnt)
7490 		goto free_dev;
7491 
7492 	if (dev_addr_init(dev))
7493 		goto free_pcpu;
7494 
7495 	dev_mc_init(dev);
7496 	dev_uc_init(dev);
7497 
7498 	dev_net_set(dev, &init_net);
7499 
7500 	dev->gso_max_size = GSO_MAX_SIZE;
7501 	dev->gso_max_segs = GSO_MAX_SEGS;
7502 
7503 	INIT_LIST_HEAD(&dev->napi_list);
7504 	INIT_LIST_HEAD(&dev->unreg_list);
7505 	INIT_LIST_HEAD(&dev->close_list);
7506 	INIT_LIST_HEAD(&dev->link_watch_list);
7507 	INIT_LIST_HEAD(&dev->adj_list.upper);
7508 	INIT_LIST_HEAD(&dev->adj_list.lower);
7509 	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7510 	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7511 	INIT_LIST_HEAD(&dev->ptype_all);
7512 	INIT_LIST_HEAD(&dev->ptype_specific);
7513 	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7514 	setup(dev);
7515 
7516 	if (!dev->tx_queue_len) {
7517 		dev->priv_flags |= IFF_NO_QUEUE;
7518 		dev->tx_queue_len = 1;
7519 	}
7520 
7521 	dev->num_tx_queues = txqs;
7522 	dev->real_num_tx_queues = txqs;
7523 	if (netif_alloc_netdev_queues(dev))
7524 		goto free_all;
7525 
7526 #ifdef CONFIG_SYSFS
7527 	dev->num_rx_queues = rxqs;
7528 	dev->real_num_rx_queues = rxqs;
7529 	if (netif_alloc_rx_queues(dev))
7530 		goto free_all;
7531 #endif
7532 
7533 	strcpy(dev->name, name);
7534 	dev->name_assign_type = name_assign_type;
7535 	dev->group = INIT_NETDEV_GROUP;
7536 	if (!dev->ethtool_ops)
7537 		dev->ethtool_ops = &default_ethtool_ops;
7538 
7539 	nf_hook_ingress_init(dev);
7540 
7541 	return dev;
7542 
7543 free_all:
7544 	free_netdev(dev);
7545 	return NULL;
7546 
7547 free_pcpu:
7548 	free_percpu(dev->pcpu_refcnt);
7549 free_dev:
7550 	netdev_freemem(dev);
7551 	return NULL;
7552 }
7553 EXPORT_SYMBOL(alloc_netdev_mqs);
7554 
7555 /**
7556  *	free_netdev - free network device
7557  *	@dev: device
7558  *
7559  *	This function does the last stage of destroying an allocated device
7560  * 	interface. The reference to the device object is released.
7561  *	If this is the last reference then it will be freed.
7562  *	Must be called in process context.
7563  */
7564 void free_netdev(struct net_device *dev)
7565 {
7566 	struct napi_struct *p, *n;
7567 
7568 	might_sleep();
7569 	netif_free_tx_queues(dev);
7570 #ifdef CONFIG_SYSFS
7571 	kvfree(dev->_rx);
7572 #endif
7573 
7574 	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7575 
7576 	/* Flush device addresses */
7577 	dev_addr_flush(dev);
7578 
7579 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7580 		netif_napi_del(p);
7581 
7582 	free_percpu(dev->pcpu_refcnt);
7583 	dev->pcpu_refcnt = NULL;
7584 
7585 	/*  Compatibility with error handling in drivers */
7586 	if (dev->reg_state == NETREG_UNINITIALIZED) {
7587 		netdev_freemem(dev);
7588 		return;
7589 	}
7590 
7591 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7592 	dev->reg_state = NETREG_RELEASED;
7593 
7594 	/* will free via device release */
7595 	put_device(&dev->dev);
7596 }
7597 EXPORT_SYMBOL(free_netdev);
7598 
7599 /**
7600  *	synchronize_net -  Synchronize with packet receive processing
7601  *
7602  *	Wait for packets currently being received to be done.
7603  *	Does not block later packets from starting.
7604  */
7605 void synchronize_net(void)
7606 {
7607 	might_sleep();
7608 	if (rtnl_is_locked())
7609 		synchronize_rcu_expedited();
7610 	else
7611 		synchronize_rcu();
7612 }
7613 EXPORT_SYMBOL(synchronize_net);
7614 
7615 /**
7616  *	unregister_netdevice_queue - remove device from the kernel
7617  *	@dev: device
7618  *	@head: list
7619  *
7620  *	This function shuts down a device interface and removes it
7621  *	from the kernel tables.
7622  *	If head not NULL, device is queued to be unregistered later.
7623  *
7624  *	Callers must hold the rtnl semaphore.  You may want
7625  *	unregister_netdev() instead of this.
7626  */
7627 
7628 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7629 {
7630 	ASSERT_RTNL();
7631 
7632 	if (head) {
7633 		list_move_tail(&dev->unreg_list, head);
7634 	} else {
7635 		rollback_registered(dev);
7636 		/* Finish processing unregister after unlock */
7637 		net_set_todo(dev);
7638 	}
7639 }
7640 EXPORT_SYMBOL(unregister_netdevice_queue);
7641 
7642 /**
7643  *	unregister_netdevice_many - unregister many devices
7644  *	@head: list of devices
7645  *
7646  *  Note: As most callers use a stack allocated list_head,
7647  *  we force a list_del() to make sure stack wont be corrupted later.
7648  */
7649 void unregister_netdevice_many(struct list_head *head)
7650 {
7651 	struct net_device *dev;
7652 
7653 	if (!list_empty(head)) {
7654 		rollback_registered_many(head);
7655 		list_for_each_entry(dev, head, unreg_list)
7656 			net_set_todo(dev);
7657 		list_del(head);
7658 	}
7659 }
7660 EXPORT_SYMBOL(unregister_netdevice_many);
7661 
7662 /**
7663  *	unregister_netdev - remove device from the kernel
7664  *	@dev: device
7665  *
7666  *	This function shuts down a device interface and removes it
7667  *	from the kernel tables.
7668  *
7669  *	This is just a wrapper for unregister_netdevice that takes
7670  *	the rtnl semaphore.  In general you want to use this and not
7671  *	unregister_netdevice.
7672  */
7673 void unregister_netdev(struct net_device *dev)
7674 {
7675 	rtnl_lock();
7676 	unregister_netdevice(dev);
7677 	rtnl_unlock();
7678 }
7679 EXPORT_SYMBOL(unregister_netdev);
7680 
7681 /**
7682  *	dev_change_net_namespace - move device to different nethost namespace
7683  *	@dev: device
7684  *	@net: network namespace
7685  *	@pat: If not NULL name pattern to try if the current device name
7686  *	      is already taken in the destination network namespace.
7687  *
7688  *	This function shuts down a device interface and moves it
7689  *	to a new network namespace. On success 0 is returned, on
7690  *	a failure a netagive errno code is returned.
7691  *
7692  *	Callers must hold the rtnl semaphore.
7693  */
7694 
7695 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
7696 {
7697 	int err;
7698 
7699 	ASSERT_RTNL();
7700 
7701 	/* Don't allow namespace local devices to be moved. */
7702 	err = -EINVAL;
7703 	if (dev->features & NETIF_F_NETNS_LOCAL)
7704 		goto out;
7705 
7706 	/* Ensure the device has been registrered */
7707 	if (dev->reg_state != NETREG_REGISTERED)
7708 		goto out;
7709 
7710 	/* Get out if there is nothing todo */
7711 	err = 0;
7712 	if (net_eq(dev_net(dev), net))
7713 		goto out;
7714 
7715 	/* Pick the destination device name, and ensure
7716 	 * we can use it in the destination network namespace.
7717 	 */
7718 	err = -EEXIST;
7719 	if (__dev_get_by_name(net, dev->name)) {
7720 		/* We get here if we can't use the current device name */
7721 		if (!pat)
7722 			goto out;
7723 		if (dev_get_valid_name(net, dev, pat) < 0)
7724 			goto out;
7725 	}
7726 
7727 	/*
7728 	 * And now a mini version of register_netdevice unregister_netdevice.
7729 	 */
7730 
7731 	/* If device is running close it first. */
7732 	dev_close(dev);
7733 
7734 	/* And unlink it from device chain */
7735 	err = -ENODEV;
7736 	unlist_netdevice(dev);
7737 
7738 	synchronize_net();
7739 
7740 	/* Shutdown queueing discipline. */
7741 	dev_shutdown(dev);
7742 
7743 	/* Notify protocols, that we are about to destroy
7744 	   this device. They should clean all the things.
7745 
7746 	   Note that dev->reg_state stays at NETREG_REGISTERED.
7747 	   This is wanted because this way 8021q and macvlan know
7748 	   the device is just moving and can keep their slaves up.
7749 	*/
7750 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7751 	rcu_barrier();
7752 	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7753 	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
7754 
7755 	/*
7756 	 *	Flush the unicast and multicast chains
7757 	 */
7758 	dev_uc_flush(dev);
7759 	dev_mc_flush(dev);
7760 
7761 	/* Send a netdev-removed uevent to the old namespace */
7762 	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7763 	netdev_adjacent_del_links(dev);
7764 
7765 	/* Actually switch the network namespace */
7766 	dev_net_set(dev, net);
7767 
7768 	/* If there is an ifindex conflict assign a new one */
7769 	if (__dev_get_by_index(net, dev->ifindex))
7770 		dev->ifindex = dev_new_index(net);
7771 
7772 	/* Send a netdev-add uevent to the new namespace */
7773 	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7774 	netdev_adjacent_add_links(dev);
7775 
7776 	/* Fixup kobjects */
7777 	err = device_rename(&dev->dev, dev->name);
7778 	WARN_ON(err);
7779 
7780 	/* Add the device back in the hashes */
7781 	list_netdevice(dev);
7782 
7783 	/* Notify protocols, that a new device appeared. */
7784 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7785 
7786 	/*
7787 	 *	Prevent userspace races by waiting until the network
7788 	 *	device is fully setup before sending notifications.
7789 	 */
7790 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7791 
7792 	synchronize_net();
7793 	err = 0;
7794 out:
7795 	return err;
7796 }
7797 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7798 
7799 static int dev_cpu_callback(struct notifier_block *nfb,
7800 			    unsigned long action,
7801 			    void *ocpu)
7802 {
7803 	struct sk_buff **list_skb;
7804 	struct sk_buff *skb;
7805 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7806 	struct softnet_data *sd, *oldsd;
7807 
7808 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7809 		return NOTIFY_OK;
7810 
7811 	local_irq_disable();
7812 	cpu = smp_processor_id();
7813 	sd = &per_cpu(softnet_data, cpu);
7814 	oldsd = &per_cpu(softnet_data, oldcpu);
7815 
7816 	/* Find end of our completion_queue. */
7817 	list_skb = &sd->completion_queue;
7818 	while (*list_skb)
7819 		list_skb = &(*list_skb)->next;
7820 	/* Append completion queue from offline CPU. */
7821 	*list_skb = oldsd->completion_queue;
7822 	oldsd->completion_queue = NULL;
7823 
7824 	/* Append output queue from offline CPU. */
7825 	if (oldsd->output_queue) {
7826 		*sd->output_queue_tailp = oldsd->output_queue;
7827 		sd->output_queue_tailp = oldsd->output_queue_tailp;
7828 		oldsd->output_queue = NULL;
7829 		oldsd->output_queue_tailp = &oldsd->output_queue;
7830 	}
7831 	/* Append NAPI poll list from offline CPU, with one exception :
7832 	 * process_backlog() must be called by cpu owning percpu backlog.
7833 	 * We properly handle process_queue & input_pkt_queue later.
7834 	 */
7835 	while (!list_empty(&oldsd->poll_list)) {
7836 		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7837 							    struct napi_struct,
7838 							    poll_list);
7839 
7840 		list_del_init(&napi->poll_list);
7841 		if (napi->poll == process_backlog)
7842 			napi->state = 0;
7843 		else
7844 			____napi_schedule(sd, napi);
7845 	}
7846 
7847 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7848 	local_irq_enable();
7849 
7850 	/* Process offline CPU's input_pkt_queue */
7851 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7852 		netif_rx_ni(skb);
7853 		input_queue_head_incr(oldsd);
7854 	}
7855 	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7856 		netif_rx_ni(skb);
7857 		input_queue_head_incr(oldsd);
7858 	}
7859 
7860 	return NOTIFY_OK;
7861 }
7862 
7863 
7864 /**
7865  *	netdev_increment_features - increment feature set by one
7866  *	@all: current feature set
7867  *	@one: new feature set
7868  *	@mask: mask feature set
7869  *
7870  *	Computes a new feature set after adding a device with feature set
7871  *	@one to the master device with current feature set @all.  Will not
7872  *	enable anything that is off in @mask. Returns the new feature set.
7873  */
7874 netdev_features_t netdev_increment_features(netdev_features_t all,
7875 	netdev_features_t one, netdev_features_t mask)
7876 {
7877 	if (mask & NETIF_F_HW_CSUM)
7878 		mask |= NETIF_F_CSUM_MASK;
7879 	mask |= NETIF_F_VLAN_CHALLENGED;
7880 
7881 	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7882 	all &= one | ~NETIF_F_ALL_FOR_ALL;
7883 
7884 	/* If one device supports hw checksumming, set for all. */
7885 	if (all & NETIF_F_HW_CSUM)
7886 		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7887 
7888 	return all;
7889 }
7890 EXPORT_SYMBOL(netdev_increment_features);
7891 
7892 static struct hlist_head * __net_init netdev_create_hash(void)
7893 {
7894 	int i;
7895 	struct hlist_head *hash;
7896 
7897 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7898 	if (hash != NULL)
7899 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7900 			INIT_HLIST_HEAD(&hash[i]);
7901 
7902 	return hash;
7903 }
7904 
7905 /* Initialize per network namespace state */
7906 static int __net_init netdev_init(struct net *net)
7907 {
7908 	if (net != &init_net)
7909 		INIT_LIST_HEAD(&net->dev_base_head);
7910 
7911 	net->dev_name_head = netdev_create_hash();
7912 	if (net->dev_name_head == NULL)
7913 		goto err_name;
7914 
7915 	net->dev_index_head = netdev_create_hash();
7916 	if (net->dev_index_head == NULL)
7917 		goto err_idx;
7918 
7919 	return 0;
7920 
7921 err_idx:
7922 	kfree(net->dev_name_head);
7923 err_name:
7924 	return -ENOMEM;
7925 }
7926 
7927 /**
7928  *	netdev_drivername - network driver for the device
7929  *	@dev: network device
7930  *
7931  *	Determine network driver for device.
7932  */
7933 const char *netdev_drivername(const struct net_device *dev)
7934 {
7935 	const struct device_driver *driver;
7936 	const struct device *parent;
7937 	const char *empty = "";
7938 
7939 	parent = dev->dev.parent;
7940 	if (!parent)
7941 		return empty;
7942 
7943 	driver = parent->driver;
7944 	if (driver && driver->name)
7945 		return driver->name;
7946 	return empty;
7947 }
7948 
7949 static void __netdev_printk(const char *level, const struct net_device *dev,
7950 			    struct va_format *vaf)
7951 {
7952 	if (dev && dev->dev.parent) {
7953 		dev_printk_emit(level[1] - '0',
7954 				dev->dev.parent,
7955 				"%s %s %s%s: %pV",
7956 				dev_driver_string(dev->dev.parent),
7957 				dev_name(dev->dev.parent),
7958 				netdev_name(dev), netdev_reg_state(dev),
7959 				vaf);
7960 	} else if (dev) {
7961 		printk("%s%s%s: %pV",
7962 		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7963 	} else {
7964 		printk("%s(NULL net_device): %pV", level, vaf);
7965 	}
7966 }
7967 
7968 void netdev_printk(const char *level, const struct net_device *dev,
7969 		   const char *format, ...)
7970 {
7971 	struct va_format vaf;
7972 	va_list args;
7973 
7974 	va_start(args, format);
7975 
7976 	vaf.fmt = format;
7977 	vaf.va = &args;
7978 
7979 	__netdev_printk(level, dev, &vaf);
7980 
7981 	va_end(args);
7982 }
7983 EXPORT_SYMBOL(netdev_printk);
7984 
7985 #define define_netdev_printk_level(func, level)			\
7986 void func(const struct net_device *dev, const char *fmt, ...)	\
7987 {								\
7988 	struct va_format vaf;					\
7989 	va_list args;						\
7990 								\
7991 	va_start(args, fmt);					\
7992 								\
7993 	vaf.fmt = fmt;						\
7994 	vaf.va = &args;						\
7995 								\
7996 	__netdev_printk(level, dev, &vaf);			\
7997 								\
7998 	va_end(args);						\
7999 }								\
8000 EXPORT_SYMBOL(func);
8001 
8002 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8003 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8004 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8005 define_netdev_printk_level(netdev_err, KERN_ERR);
8006 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8007 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8008 define_netdev_printk_level(netdev_info, KERN_INFO);
8009 
8010 static void __net_exit netdev_exit(struct net *net)
8011 {
8012 	kfree(net->dev_name_head);
8013 	kfree(net->dev_index_head);
8014 }
8015 
8016 static struct pernet_operations __net_initdata netdev_net_ops = {
8017 	.init = netdev_init,
8018 	.exit = netdev_exit,
8019 };
8020 
8021 static void __net_exit default_device_exit(struct net *net)
8022 {
8023 	struct net_device *dev, *aux;
8024 	/*
8025 	 * Push all migratable network devices back to the
8026 	 * initial network namespace
8027 	 */
8028 	rtnl_lock();
8029 	for_each_netdev_safe(net, dev, aux) {
8030 		int err;
8031 		char fb_name[IFNAMSIZ];
8032 
8033 		/* Ignore unmoveable devices (i.e. loopback) */
8034 		if (dev->features & NETIF_F_NETNS_LOCAL)
8035 			continue;
8036 
8037 		/* Leave virtual devices for the generic cleanup */
8038 		if (dev->rtnl_link_ops)
8039 			continue;
8040 
8041 		/* Push remaining network devices to init_net */
8042 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8043 		err = dev_change_net_namespace(dev, &init_net, fb_name);
8044 		if (err) {
8045 			pr_emerg("%s: failed to move %s to init_net: %d\n",
8046 				 __func__, dev->name, err);
8047 			BUG();
8048 		}
8049 	}
8050 	rtnl_unlock();
8051 }
8052 
8053 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8054 {
8055 	/* Return with the rtnl_lock held when there are no network
8056 	 * devices unregistering in any network namespace in net_list.
8057 	 */
8058 	struct net *net;
8059 	bool unregistering;
8060 	DEFINE_WAIT_FUNC(wait, woken_wake_function);
8061 
8062 	add_wait_queue(&netdev_unregistering_wq, &wait);
8063 	for (;;) {
8064 		unregistering = false;
8065 		rtnl_lock();
8066 		list_for_each_entry(net, net_list, exit_list) {
8067 			if (net->dev_unreg_count > 0) {
8068 				unregistering = true;
8069 				break;
8070 			}
8071 		}
8072 		if (!unregistering)
8073 			break;
8074 		__rtnl_unlock();
8075 
8076 		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8077 	}
8078 	remove_wait_queue(&netdev_unregistering_wq, &wait);
8079 }
8080 
8081 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8082 {
8083 	/* At exit all network devices most be removed from a network
8084 	 * namespace.  Do this in the reverse order of registration.
8085 	 * Do this across as many network namespaces as possible to
8086 	 * improve batching efficiency.
8087 	 */
8088 	struct net_device *dev;
8089 	struct net *net;
8090 	LIST_HEAD(dev_kill_list);
8091 
8092 	/* To prevent network device cleanup code from dereferencing
8093 	 * loopback devices or network devices that have been freed
8094 	 * wait here for all pending unregistrations to complete,
8095 	 * before unregistring the loopback device and allowing the
8096 	 * network namespace be freed.
8097 	 *
8098 	 * The netdev todo list containing all network devices
8099 	 * unregistrations that happen in default_device_exit_batch
8100 	 * will run in the rtnl_unlock() at the end of
8101 	 * default_device_exit_batch.
8102 	 */
8103 	rtnl_lock_unregistering(net_list);
8104 	list_for_each_entry(net, net_list, exit_list) {
8105 		for_each_netdev_reverse(net, dev) {
8106 			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8107 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8108 			else
8109 				unregister_netdevice_queue(dev, &dev_kill_list);
8110 		}
8111 	}
8112 	unregister_netdevice_many(&dev_kill_list);
8113 	rtnl_unlock();
8114 }
8115 
8116 static struct pernet_operations __net_initdata default_device_ops = {
8117 	.exit = default_device_exit,
8118 	.exit_batch = default_device_exit_batch,
8119 };
8120 
8121 /*
8122  *	Initialize the DEV module. At boot time this walks the device list and
8123  *	unhooks any devices that fail to initialise (normally hardware not
8124  *	present) and leaves us with a valid list of present and active devices.
8125  *
8126  */
8127 
8128 /*
8129  *       This is called single threaded during boot, so no need
8130  *       to take the rtnl semaphore.
8131  */
8132 static int __init net_dev_init(void)
8133 {
8134 	int i, rc = -ENOMEM;
8135 
8136 	BUG_ON(!dev_boot_phase);
8137 
8138 	if (dev_proc_init())
8139 		goto out;
8140 
8141 	if (netdev_kobject_init())
8142 		goto out;
8143 
8144 	INIT_LIST_HEAD(&ptype_all);
8145 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8146 		INIT_LIST_HEAD(&ptype_base[i]);
8147 
8148 	INIT_LIST_HEAD(&offload_base);
8149 
8150 	if (register_pernet_subsys(&netdev_net_ops))
8151 		goto out;
8152 
8153 	/*
8154 	 *	Initialise the packet receive queues.
8155 	 */
8156 
8157 	for_each_possible_cpu(i) {
8158 		struct softnet_data *sd = &per_cpu(softnet_data, i);
8159 
8160 		skb_queue_head_init(&sd->input_pkt_queue);
8161 		skb_queue_head_init(&sd->process_queue);
8162 		INIT_LIST_HEAD(&sd->poll_list);
8163 		sd->output_queue_tailp = &sd->output_queue;
8164 #ifdef CONFIG_RPS
8165 		sd->csd.func = rps_trigger_softirq;
8166 		sd->csd.info = sd;
8167 		sd->cpu = i;
8168 #endif
8169 
8170 		sd->backlog.poll = process_backlog;
8171 		sd->backlog.weight = weight_p;
8172 	}
8173 
8174 	dev_boot_phase = 0;
8175 
8176 	/* The loopback device is special if any other network devices
8177 	 * is present in a network namespace the loopback device must
8178 	 * be present. Since we now dynamically allocate and free the
8179 	 * loopback device ensure this invariant is maintained by
8180 	 * keeping the loopback device as the first device on the
8181 	 * list of network devices.  Ensuring the loopback devices
8182 	 * is the first device that appears and the last network device
8183 	 * that disappears.
8184 	 */
8185 	if (register_pernet_device(&loopback_net_ops))
8186 		goto out;
8187 
8188 	if (register_pernet_device(&default_device_ops))
8189 		goto out;
8190 
8191 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8192 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8193 
8194 	hotcpu_notifier(dev_cpu_callback, 0);
8195 	dst_subsys_init();
8196 	rc = 0;
8197 out:
8198 	return rc;
8199 }
8200 
8201 subsys_initcall(net_dev_init);
8202