xref: /linux-6.15/net/core/dev.c (revision 25985edc)
1 /*
2  * 	NET3	Protocol independent device support routines.
3  *
4  *		This program is free software; you can redistribute it and/or
5  *		modify it under the terms of the GNU General Public License
6  *		as published by the Free Software Foundation; either version
7  *		2 of the License, or (at your option) any later version.
8  *
9  *	Derived from the non IP parts of dev.c 1.0.19
10  * 		Authors:	Ross Biro
11  *				Fred N. van Kempen, <[email protected]>
12  *				Mark Evans, <[email protected]>
13  *
14  *	Additional Authors:
15  *		Florian la Roche <[email protected]>
16  *		Alan Cox <[email protected]>
17  *		David Hinds <[email protected]>
18  *		Alexey Kuznetsov <[email protected]>
19  *		Adam Sulmicki <[email protected]>
20  *              Pekka Riikonen <[email protected]>
21  *
22  *	Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *              			to 2 if register_netdev gets called
25  *              			before net_dev_init & also removed a
26  *              			few lines of code in the process.
27  *		Alan Cox	:	device private ioctl copies fields back.
28  *		Alan Cox	:	Transmit queue code does relevant
29  *					stunts to keep the queue safe.
30  *		Alan Cox	:	Fixed double lock.
31  *		Alan Cox	:	Fixed promisc NULL pointer trap
32  *		????????	:	Support the full private ioctl range
33  *		Alan Cox	:	Moved ioctl permission check into
34  *					drivers
35  *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
36  *		Alan Cox	:	100 backlog just doesn't cut it when
37  *					you start doing multicast video 8)
38  *		Alan Cox	:	Rewrote net_bh and list manager.
39  *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
40  *		Alan Cox	:	Took out transmit every packet pass
41  *					Saved a few bytes in the ioctl handler
42  *		Alan Cox	:	Network driver sets packet type before
43  *					calling netif_rx. Saves a function
44  *					call a packet.
45  *		Alan Cox	:	Hashed net_bh()
46  *		Richard Kooijman:	Timestamp fixes.
47  *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
48  *		Alan Cox	:	Device lock protection.
49  *		Alan Cox	: 	Fixed nasty side effect of device close
50  *					changes.
51  *		Rudi Cilibrasi	:	Pass the right thing to
52  *					set_mac_address()
53  *		Dave Miller	:	32bit quantity for the device lock to
54  *					make it work out on a Sparc.
55  *		Bjorn Ekwall	:	Added KERNELD hack.
56  *		Alan Cox	:	Cleaned up the backlog initialise.
57  *		Craig Metz	:	SIOCGIFCONF fix if space for under
58  *					1 device.
59  *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
60  *					is no device open function.
61  *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
62  *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
63  *		Cyrus Durgin	:	Cleaned for KMOD
64  *		Adam Sulmicki   :	Bug Fix : Network Device Unload
65  *					A network device unload needs to purge
66  *					the backlog queue.
67  *	Paul Rusty Russell	:	SIOCSIFNAME
68  *              Pekka Riikonen  :	Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *              			indefinitely on dev->refcnt
71  * 		J Hadi Salim	:	- Backlog queue sampling
72  *				        - netif_rx() feedback
73  */
74 
75 #include <asm/uaccess.h>
76 #include <asm/system.h>
77 #include <linux/bitops.h>
78 #include <linux/capability.h>
79 #include <linux/cpu.h>
80 #include <linux/types.h>
81 #include <linux/kernel.h>
82 #include <linux/hash.h>
83 #include <linux/slab.h>
84 #include <linux/sched.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <net/net_namespace.h>
99 #include <net/sock.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/proc_fs.h>
102 #include <linux/seq_file.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/pkt_sched.h>
106 #include <net/checksum.h>
107 #include <net/xfrm.h>
108 #include <linux/highmem.h>
109 #include <linux/init.h>
110 #include <linux/kmod.h>
111 #include <linux/module.h>
112 #include <linux/netpoll.h>
113 #include <linux/rcupdate.h>
114 #include <linux/delay.h>
115 #include <net/wext.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <linux/ipv6.h>
127 #include <linux/in.h>
128 #include <linux/jhash.h>
129 #include <linux/random.h>
130 #include <trace/events/napi.h>
131 #include <trace/events/net.h>
132 #include <trace/events/skb.h>
133 #include <linux/pci.h>
134 #include <linux/inetdevice.h>
135 #include <linux/cpu_rmap.h>
136 
137 #include "net-sysfs.h"
138 
139 /* Instead of increasing this, you should create a hash table. */
140 #define MAX_GRO_SKBS 8
141 
142 /* This should be increased if a protocol with a bigger head is added. */
143 #define GRO_MAX_HEAD (MAX_HEADER + 128)
144 
145 /*
146  *	The list of packet types we will receive (as opposed to discard)
147  *	and the routines to invoke.
148  *
149  *	Why 16. Because with 16 the only overlap we get on a hash of the
150  *	low nibble of the protocol value is RARP/SNAP/X.25.
151  *
152  *      NOTE:  That is no longer true with the addition of VLAN tags.  Not
153  *             sure which should go first, but I bet it won't make much
154  *             difference if we are running VLANs.  The good news is that
155  *             this protocol won't be in the list unless compiled in, so
156  *             the average user (w/out VLANs) will not be adversely affected.
157  *             --BLG
158  *
159  *		0800	IP
160  *		8100    802.1Q VLAN
161  *		0001	802.3
162  *		0002	AX.25
163  *		0004	802.2
164  *		8035	RARP
165  *		0005	SNAP
166  *		0805	X.25
167  *		0806	ARP
168  *		8137	IPX
169  *		0009	Localtalk
170  *		86DD	IPv6
171  */
172 
173 #define PTYPE_HASH_SIZE	(16)
174 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
175 
176 static DEFINE_SPINLOCK(ptype_lock);
177 static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
178 static struct list_head ptype_all __read_mostly;	/* Taps */
179 
180 /*
181  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
182  * semaphore.
183  *
184  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
185  *
186  * Writers must hold the rtnl semaphore while they loop through the
187  * dev_base_head list, and hold dev_base_lock for writing when they do the
188  * actual updates.  This allows pure readers to access the list even
189  * while a writer is preparing to update it.
190  *
191  * To put it another way, dev_base_lock is held for writing only to
192  * protect against pure readers; the rtnl semaphore provides the
193  * protection against other writers.
194  *
195  * See, for example usages, register_netdevice() and
196  * unregister_netdevice(), which must be called with the rtnl
197  * semaphore held.
198  */
199 DEFINE_RWLOCK(dev_base_lock);
200 EXPORT_SYMBOL(dev_base_lock);
201 
202 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
203 {
204 	unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
205 	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207 
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210 	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212 
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216 	spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219 
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223 	spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226 
227 /* Device list insertion */
228 static int list_netdevice(struct net_device *dev)
229 {
230 	struct net *net = dev_net(dev);
231 
232 	ASSERT_RTNL();
233 
234 	write_lock_bh(&dev_base_lock);
235 	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237 	hlist_add_head_rcu(&dev->index_hlist,
238 			   dev_index_hash(net, dev->ifindex));
239 	write_unlock_bh(&dev_base_lock);
240 	return 0;
241 }
242 
243 /* Device list removal
244  * caller must respect a RCU grace period before freeing/reusing dev
245  */
246 static void unlist_netdevice(struct net_device *dev)
247 {
248 	ASSERT_RTNL();
249 
250 	/* Unlink dev from the device chain */
251 	write_lock_bh(&dev_base_lock);
252 	list_del_rcu(&dev->dev_list);
253 	hlist_del_rcu(&dev->name_hlist);
254 	hlist_del_rcu(&dev->index_hlist);
255 	write_unlock_bh(&dev_base_lock);
256 }
257 
258 /*
259  *	Our notifier list
260  */
261 
262 static RAW_NOTIFIER_HEAD(netdev_chain);
263 
264 /*
265  *	Device drivers call our routines to queue packets here. We empty the
266  *	queue in the local softnet handler.
267  */
268 
269 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
270 EXPORT_PER_CPU_SYMBOL(softnet_data);
271 
272 #ifdef CONFIG_LOCKDEP
273 /*
274  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
275  * according to dev->type
276  */
277 static const unsigned short netdev_lock_type[] =
278 	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
279 	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
280 	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
281 	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
282 	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
283 	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
284 	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
285 	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
286 	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
287 	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
288 	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
289 	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
290 	 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
291 	 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
292 	 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
293 	 ARPHRD_VOID, ARPHRD_NONE};
294 
295 static const char *const netdev_lock_name[] =
296 	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
297 	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
298 	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
299 	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
300 	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
301 	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
302 	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
303 	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
304 	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
305 	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
306 	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
307 	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
308 	 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
309 	 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
310 	 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
311 	 "_xmit_VOID", "_xmit_NONE"};
312 
313 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
314 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
315 
316 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
317 {
318 	int i;
319 
320 	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
321 		if (netdev_lock_type[i] == dev_type)
322 			return i;
323 	/* the last key is used by default */
324 	return ARRAY_SIZE(netdev_lock_type) - 1;
325 }
326 
327 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
328 						 unsigned short dev_type)
329 {
330 	int i;
331 
332 	i = netdev_lock_pos(dev_type);
333 	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
334 				   netdev_lock_name[i]);
335 }
336 
337 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
338 {
339 	int i;
340 
341 	i = netdev_lock_pos(dev->type);
342 	lockdep_set_class_and_name(&dev->addr_list_lock,
343 				   &netdev_addr_lock_key[i],
344 				   netdev_lock_name[i]);
345 }
346 #else
347 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
348 						 unsigned short dev_type)
349 {
350 }
351 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
352 {
353 }
354 #endif
355 
356 /*******************************************************************************
357 
358 		Protocol management and registration routines
359 
360 *******************************************************************************/
361 
362 /*
363  *	Add a protocol ID to the list. Now that the input handler is
364  *	smarter we can dispense with all the messy stuff that used to be
365  *	here.
366  *
367  *	BEWARE!!! Protocol handlers, mangling input packets,
368  *	MUST BE last in hash buckets and checking protocol handlers
369  *	MUST start from promiscuous ptype_all chain in net_bh.
370  *	It is true now, do not change it.
371  *	Explanation follows: if protocol handler, mangling packet, will
372  *	be the first on list, it is not able to sense, that packet
373  *	is cloned and should be copied-on-write, so that it will
374  *	change it and subsequent readers will get broken packet.
375  *							--ANK (980803)
376  */
377 
378 static inline struct list_head *ptype_head(const struct packet_type *pt)
379 {
380 	if (pt->type == htons(ETH_P_ALL))
381 		return &ptype_all;
382 	else
383 		return &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
384 }
385 
386 /**
387  *	dev_add_pack - add packet handler
388  *	@pt: packet type declaration
389  *
390  *	Add a protocol handler to the networking stack. The passed &packet_type
391  *	is linked into kernel lists and may not be freed until it has been
392  *	removed from the kernel lists.
393  *
394  *	This call does not sleep therefore it can not
395  *	guarantee all CPU's that are in middle of receiving packets
396  *	will see the new packet type (until the next received packet).
397  */
398 
399 void dev_add_pack(struct packet_type *pt)
400 {
401 	struct list_head *head = ptype_head(pt);
402 
403 	spin_lock(&ptype_lock);
404 	list_add_rcu(&pt->list, head);
405 	spin_unlock(&ptype_lock);
406 }
407 EXPORT_SYMBOL(dev_add_pack);
408 
409 /**
410  *	__dev_remove_pack	 - remove packet handler
411  *	@pt: packet type declaration
412  *
413  *	Remove a protocol handler that was previously added to the kernel
414  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
415  *	from the kernel lists and can be freed or reused once this function
416  *	returns.
417  *
418  *      The packet type might still be in use by receivers
419  *	and must not be freed until after all the CPU's have gone
420  *	through a quiescent state.
421  */
422 void __dev_remove_pack(struct packet_type *pt)
423 {
424 	struct list_head *head = ptype_head(pt);
425 	struct packet_type *pt1;
426 
427 	spin_lock(&ptype_lock);
428 
429 	list_for_each_entry(pt1, head, list) {
430 		if (pt == pt1) {
431 			list_del_rcu(&pt->list);
432 			goto out;
433 		}
434 	}
435 
436 	printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
437 out:
438 	spin_unlock(&ptype_lock);
439 }
440 EXPORT_SYMBOL(__dev_remove_pack);
441 
442 /**
443  *	dev_remove_pack	 - remove packet handler
444  *	@pt: packet type declaration
445  *
446  *	Remove a protocol handler that was previously added to the kernel
447  *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
448  *	from the kernel lists and can be freed or reused once this function
449  *	returns.
450  *
451  *	This call sleeps to guarantee that no CPU is looking at the packet
452  *	type after return.
453  */
454 void dev_remove_pack(struct packet_type *pt)
455 {
456 	__dev_remove_pack(pt);
457 
458 	synchronize_net();
459 }
460 EXPORT_SYMBOL(dev_remove_pack);
461 
462 /******************************************************************************
463 
464 		      Device Boot-time Settings Routines
465 
466 *******************************************************************************/
467 
468 /* Boot time configuration table */
469 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
470 
471 /**
472  *	netdev_boot_setup_add	- add new setup entry
473  *	@name: name of the device
474  *	@map: configured settings for the device
475  *
476  *	Adds new setup entry to the dev_boot_setup list.  The function
477  *	returns 0 on error and 1 on success.  This is a generic routine to
478  *	all netdevices.
479  */
480 static int netdev_boot_setup_add(char *name, struct ifmap *map)
481 {
482 	struct netdev_boot_setup *s;
483 	int i;
484 
485 	s = dev_boot_setup;
486 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
487 		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
488 			memset(s[i].name, 0, sizeof(s[i].name));
489 			strlcpy(s[i].name, name, IFNAMSIZ);
490 			memcpy(&s[i].map, map, sizeof(s[i].map));
491 			break;
492 		}
493 	}
494 
495 	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
496 }
497 
498 /**
499  *	netdev_boot_setup_check	- check boot time settings
500  *	@dev: the netdevice
501  *
502  * 	Check boot time settings for the device.
503  *	The found settings are set for the device to be used
504  *	later in the device probing.
505  *	Returns 0 if no settings found, 1 if they are.
506  */
507 int netdev_boot_setup_check(struct net_device *dev)
508 {
509 	struct netdev_boot_setup *s = dev_boot_setup;
510 	int i;
511 
512 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
513 		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
514 		    !strcmp(dev->name, s[i].name)) {
515 			dev->irq 	= s[i].map.irq;
516 			dev->base_addr 	= s[i].map.base_addr;
517 			dev->mem_start 	= s[i].map.mem_start;
518 			dev->mem_end 	= s[i].map.mem_end;
519 			return 1;
520 		}
521 	}
522 	return 0;
523 }
524 EXPORT_SYMBOL(netdev_boot_setup_check);
525 
526 
527 /**
528  *	netdev_boot_base	- get address from boot time settings
529  *	@prefix: prefix for network device
530  *	@unit: id for network device
531  *
532  * 	Check boot time settings for the base address of device.
533  *	The found settings are set for the device to be used
534  *	later in the device probing.
535  *	Returns 0 if no settings found.
536  */
537 unsigned long netdev_boot_base(const char *prefix, int unit)
538 {
539 	const struct netdev_boot_setup *s = dev_boot_setup;
540 	char name[IFNAMSIZ];
541 	int i;
542 
543 	sprintf(name, "%s%d", prefix, unit);
544 
545 	/*
546 	 * If device already registered then return base of 1
547 	 * to indicate not to probe for this interface
548 	 */
549 	if (__dev_get_by_name(&init_net, name))
550 		return 1;
551 
552 	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
553 		if (!strcmp(name, s[i].name))
554 			return s[i].map.base_addr;
555 	return 0;
556 }
557 
558 /*
559  * Saves at boot time configured settings for any netdevice.
560  */
561 int __init netdev_boot_setup(char *str)
562 {
563 	int ints[5];
564 	struct ifmap map;
565 
566 	str = get_options(str, ARRAY_SIZE(ints), ints);
567 	if (!str || !*str)
568 		return 0;
569 
570 	/* Save settings */
571 	memset(&map, 0, sizeof(map));
572 	if (ints[0] > 0)
573 		map.irq = ints[1];
574 	if (ints[0] > 1)
575 		map.base_addr = ints[2];
576 	if (ints[0] > 2)
577 		map.mem_start = ints[3];
578 	if (ints[0] > 3)
579 		map.mem_end = ints[4];
580 
581 	/* Add new entry to the list */
582 	return netdev_boot_setup_add(str, &map);
583 }
584 
585 __setup("netdev=", netdev_boot_setup);
586 
587 /*******************************************************************************
588 
589 			    Device Interface Subroutines
590 
591 *******************************************************************************/
592 
593 /**
594  *	__dev_get_by_name	- find a device by its name
595  *	@net: the applicable net namespace
596  *	@name: name to find
597  *
598  *	Find an interface by name. Must be called under RTNL semaphore
599  *	or @dev_base_lock. If the name is found a pointer to the device
600  *	is returned. If the name is not found then %NULL is returned. The
601  *	reference counters are not incremented so the caller must be
602  *	careful with locks.
603  */
604 
605 struct net_device *__dev_get_by_name(struct net *net, const char *name)
606 {
607 	struct hlist_node *p;
608 	struct net_device *dev;
609 	struct hlist_head *head = dev_name_hash(net, name);
610 
611 	hlist_for_each_entry(dev, p, head, name_hlist)
612 		if (!strncmp(dev->name, name, IFNAMSIZ))
613 			return dev;
614 
615 	return NULL;
616 }
617 EXPORT_SYMBOL(__dev_get_by_name);
618 
619 /**
620  *	dev_get_by_name_rcu	- find a device by its name
621  *	@net: the applicable net namespace
622  *	@name: name to find
623  *
624  *	Find an interface by name.
625  *	If the name is found a pointer to the device is returned.
626  * 	If the name is not found then %NULL is returned.
627  *	The reference counters are not incremented so the caller must be
628  *	careful with locks. The caller must hold RCU lock.
629  */
630 
631 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
632 {
633 	struct hlist_node *p;
634 	struct net_device *dev;
635 	struct hlist_head *head = dev_name_hash(net, name);
636 
637 	hlist_for_each_entry_rcu(dev, p, head, name_hlist)
638 		if (!strncmp(dev->name, name, IFNAMSIZ))
639 			return dev;
640 
641 	return NULL;
642 }
643 EXPORT_SYMBOL(dev_get_by_name_rcu);
644 
645 /**
646  *	dev_get_by_name		- find a device by its name
647  *	@net: the applicable net namespace
648  *	@name: name to find
649  *
650  *	Find an interface by name. This can be called from any
651  *	context and does its own locking. The returned handle has
652  *	the usage count incremented and the caller must use dev_put() to
653  *	release it when it is no longer needed. %NULL is returned if no
654  *	matching device is found.
655  */
656 
657 struct net_device *dev_get_by_name(struct net *net, const char *name)
658 {
659 	struct net_device *dev;
660 
661 	rcu_read_lock();
662 	dev = dev_get_by_name_rcu(net, name);
663 	if (dev)
664 		dev_hold(dev);
665 	rcu_read_unlock();
666 	return dev;
667 }
668 EXPORT_SYMBOL(dev_get_by_name);
669 
670 /**
671  *	__dev_get_by_index - find a device by its ifindex
672  *	@net: the applicable net namespace
673  *	@ifindex: index of device
674  *
675  *	Search for an interface by index. Returns %NULL if the device
676  *	is not found or a pointer to the device. The device has not
677  *	had its reference counter increased so the caller must be careful
678  *	about locking. The caller must hold either the RTNL semaphore
679  *	or @dev_base_lock.
680  */
681 
682 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
683 {
684 	struct hlist_node *p;
685 	struct net_device *dev;
686 	struct hlist_head *head = dev_index_hash(net, ifindex);
687 
688 	hlist_for_each_entry(dev, p, head, index_hlist)
689 		if (dev->ifindex == ifindex)
690 			return dev;
691 
692 	return NULL;
693 }
694 EXPORT_SYMBOL(__dev_get_by_index);
695 
696 /**
697  *	dev_get_by_index_rcu - find a device by its ifindex
698  *	@net: the applicable net namespace
699  *	@ifindex: index of device
700  *
701  *	Search for an interface by index. Returns %NULL if the device
702  *	is not found or a pointer to the device. The device has not
703  *	had its reference counter increased so the caller must be careful
704  *	about locking. The caller must hold RCU lock.
705  */
706 
707 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
708 {
709 	struct hlist_node *p;
710 	struct net_device *dev;
711 	struct hlist_head *head = dev_index_hash(net, ifindex);
712 
713 	hlist_for_each_entry_rcu(dev, p, head, index_hlist)
714 		if (dev->ifindex == ifindex)
715 			return dev;
716 
717 	return NULL;
718 }
719 EXPORT_SYMBOL(dev_get_by_index_rcu);
720 
721 
722 /**
723  *	dev_get_by_index - find a device by its ifindex
724  *	@net: the applicable net namespace
725  *	@ifindex: index of device
726  *
727  *	Search for an interface by index. Returns NULL if the device
728  *	is not found or a pointer to the device. The device returned has
729  *	had a reference added and the pointer is safe until the user calls
730  *	dev_put to indicate they have finished with it.
731  */
732 
733 struct net_device *dev_get_by_index(struct net *net, int ifindex)
734 {
735 	struct net_device *dev;
736 
737 	rcu_read_lock();
738 	dev = dev_get_by_index_rcu(net, ifindex);
739 	if (dev)
740 		dev_hold(dev);
741 	rcu_read_unlock();
742 	return dev;
743 }
744 EXPORT_SYMBOL(dev_get_by_index);
745 
746 /**
747  *	dev_getbyhwaddr_rcu - find a device by its hardware address
748  *	@net: the applicable net namespace
749  *	@type: media type of device
750  *	@ha: hardware address
751  *
752  *	Search for an interface by MAC address. Returns NULL if the device
753  *	is not found or a pointer to the device.
754  *	The caller must hold RCU or RTNL.
755  *	The returned device has not had its ref count increased
756  *	and the caller must therefore be careful about locking
757  *
758  */
759 
760 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
761 				       const char *ha)
762 {
763 	struct net_device *dev;
764 
765 	for_each_netdev_rcu(net, dev)
766 		if (dev->type == type &&
767 		    !memcmp(dev->dev_addr, ha, dev->addr_len))
768 			return dev;
769 
770 	return NULL;
771 }
772 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
773 
774 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
775 {
776 	struct net_device *dev;
777 
778 	ASSERT_RTNL();
779 	for_each_netdev(net, dev)
780 		if (dev->type == type)
781 			return dev;
782 
783 	return NULL;
784 }
785 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
786 
787 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
788 {
789 	struct net_device *dev, *ret = NULL;
790 
791 	rcu_read_lock();
792 	for_each_netdev_rcu(net, dev)
793 		if (dev->type == type) {
794 			dev_hold(dev);
795 			ret = dev;
796 			break;
797 		}
798 	rcu_read_unlock();
799 	return ret;
800 }
801 EXPORT_SYMBOL(dev_getfirstbyhwtype);
802 
803 /**
804  *	dev_get_by_flags_rcu - find any device with given flags
805  *	@net: the applicable net namespace
806  *	@if_flags: IFF_* values
807  *	@mask: bitmask of bits in if_flags to check
808  *
809  *	Search for any interface with the given flags. Returns NULL if a device
810  *	is not found or a pointer to the device. Must be called inside
811  *	rcu_read_lock(), and result refcount is unchanged.
812  */
813 
814 struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short if_flags,
815 				    unsigned short mask)
816 {
817 	struct net_device *dev, *ret;
818 
819 	ret = NULL;
820 	for_each_netdev_rcu(net, dev) {
821 		if (((dev->flags ^ if_flags) & mask) == 0) {
822 			ret = dev;
823 			break;
824 		}
825 	}
826 	return ret;
827 }
828 EXPORT_SYMBOL(dev_get_by_flags_rcu);
829 
830 /**
831  *	dev_valid_name - check if name is okay for network device
832  *	@name: name string
833  *
834  *	Network device names need to be valid file names to
835  *	to allow sysfs to work.  We also disallow any kind of
836  *	whitespace.
837  */
838 int dev_valid_name(const char *name)
839 {
840 	if (*name == '\0')
841 		return 0;
842 	if (strlen(name) >= IFNAMSIZ)
843 		return 0;
844 	if (!strcmp(name, ".") || !strcmp(name, ".."))
845 		return 0;
846 
847 	while (*name) {
848 		if (*name == '/' || isspace(*name))
849 			return 0;
850 		name++;
851 	}
852 	return 1;
853 }
854 EXPORT_SYMBOL(dev_valid_name);
855 
856 /**
857  *	__dev_alloc_name - allocate a name for a device
858  *	@net: network namespace to allocate the device name in
859  *	@name: name format string
860  *	@buf:  scratch buffer and result name string
861  *
862  *	Passed a format string - eg "lt%d" it will try and find a suitable
863  *	id. It scans list of devices to build up a free map, then chooses
864  *	the first empty slot. The caller must hold the dev_base or rtnl lock
865  *	while allocating the name and adding the device in order to avoid
866  *	duplicates.
867  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
868  *	Returns the number of the unit assigned or a negative errno code.
869  */
870 
871 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
872 {
873 	int i = 0;
874 	const char *p;
875 	const int max_netdevices = 8*PAGE_SIZE;
876 	unsigned long *inuse;
877 	struct net_device *d;
878 
879 	p = strnchr(name, IFNAMSIZ-1, '%');
880 	if (p) {
881 		/*
882 		 * Verify the string as this thing may have come from
883 		 * the user.  There must be either one "%d" and no other "%"
884 		 * characters.
885 		 */
886 		if (p[1] != 'd' || strchr(p + 2, '%'))
887 			return -EINVAL;
888 
889 		/* Use one page as a bit array of possible slots */
890 		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
891 		if (!inuse)
892 			return -ENOMEM;
893 
894 		for_each_netdev(net, d) {
895 			if (!sscanf(d->name, name, &i))
896 				continue;
897 			if (i < 0 || i >= max_netdevices)
898 				continue;
899 
900 			/*  avoid cases where sscanf is not exact inverse of printf */
901 			snprintf(buf, IFNAMSIZ, name, i);
902 			if (!strncmp(buf, d->name, IFNAMSIZ))
903 				set_bit(i, inuse);
904 		}
905 
906 		i = find_first_zero_bit(inuse, max_netdevices);
907 		free_page((unsigned long) inuse);
908 	}
909 
910 	if (buf != name)
911 		snprintf(buf, IFNAMSIZ, name, i);
912 	if (!__dev_get_by_name(net, buf))
913 		return i;
914 
915 	/* It is possible to run out of possible slots
916 	 * when the name is long and there isn't enough space left
917 	 * for the digits, or if all bits are used.
918 	 */
919 	return -ENFILE;
920 }
921 
922 /**
923  *	dev_alloc_name - allocate a name for a device
924  *	@dev: device
925  *	@name: name format string
926  *
927  *	Passed a format string - eg "lt%d" it will try and find a suitable
928  *	id. It scans list of devices to build up a free map, then chooses
929  *	the first empty slot. The caller must hold the dev_base or rtnl lock
930  *	while allocating the name and adding the device in order to avoid
931  *	duplicates.
932  *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
933  *	Returns the number of the unit assigned or a negative errno code.
934  */
935 
936 int dev_alloc_name(struct net_device *dev, const char *name)
937 {
938 	char buf[IFNAMSIZ];
939 	struct net *net;
940 	int ret;
941 
942 	BUG_ON(!dev_net(dev));
943 	net = dev_net(dev);
944 	ret = __dev_alloc_name(net, name, buf);
945 	if (ret >= 0)
946 		strlcpy(dev->name, buf, IFNAMSIZ);
947 	return ret;
948 }
949 EXPORT_SYMBOL(dev_alloc_name);
950 
951 static int dev_get_valid_name(struct net_device *dev, const char *name, bool fmt)
952 {
953 	struct net *net;
954 
955 	BUG_ON(!dev_net(dev));
956 	net = dev_net(dev);
957 
958 	if (!dev_valid_name(name))
959 		return -EINVAL;
960 
961 	if (fmt && strchr(name, '%'))
962 		return dev_alloc_name(dev, name);
963 	else if (__dev_get_by_name(net, name))
964 		return -EEXIST;
965 	else if (dev->name != name)
966 		strlcpy(dev->name, name, IFNAMSIZ);
967 
968 	return 0;
969 }
970 
971 /**
972  *	dev_change_name - change name of a device
973  *	@dev: device
974  *	@newname: name (or format string) must be at least IFNAMSIZ
975  *
976  *	Change name of a device, can pass format strings "eth%d".
977  *	for wildcarding.
978  */
979 int dev_change_name(struct net_device *dev, const char *newname)
980 {
981 	char oldname[IFNAMSIZ];
982 	int err = 0;
983 	int ret;
984 	struct net *net;
985 
986 	ASSERT_RTNL();
987 	BUG_ON(!dev_net(dev));
988 
989 	net = dev_net(dev);
990 	if (dev->flags & IFF_UP)
991 		return -EBUSY;
992 
993 	if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
994 		return 0;
995 
996 	memcpy(oldname, dev->name, IFNAMSIZ);
997 
998 	err = dev_get_valid_name(dev, newname, 1);
999 	if (err < 0)
1000 		return err;
1001 
1002 rollback:
1003 	ret = device_rename(&dev->dev, dev->name);
1004 	if (ret) {
1005 		memcpy(dev->name, oldname, IFNAMSIZ);
1006 		return ret;
1007 	}
1008 
1009 	write_lock_bh(&dev_base_lock);
1010 	hlist_del(&dev->name_hlist);
1011 	write_unlock_bh(&dev_base_lock);
1012 
1013 	synchronize_rcu();
1014 
1015 	write_lock_bh(&dev_base_lock);
1016 	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1017 	write_unlock_bh(&dev_base_lock);
1018 
1019 	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1020 	ret = notifier_to_errno(ret);
1021 
1022 	if (ret) {
1023 		/* err >= 0 after dev_alloc_name() or stores the first errno */
1024 		if (err >= 0) {
1025 			err = ret;
1026 			memcpy(dev->name, oldname, IFNAMSIZ);
1027 			goto rollback;
1028 		} else {
1029 			printk(KERN_ERR
1030 			       "%s: name change rollback failed: %d.\n",
1031 			       dev->name, ret);
1032 		}
1033 	}
1034 
1035 	return err;
1036 }
1037 
1038 /**
1039  *	dev_set_alias - change ifalias of a device
1040  *	@dev: device
1041  *	@alias: name up to IFALIASZ
1042  *	@len: limit of bytes to copy from info
1043  *
1044  *	Set ifalias for a device,
1045  */
1046 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1047 {
1048 	ASSERT_RTNL();
1049 
1050 	if (len >= IFALIASZ)
1051 		return -EINVAL;
1052 
1053 	if (!len) {
1054 		if (dev->ifalias) {
1055 			kfree(dev->ifalias);
1056 			dev->ifalias = NULL;
1057 		}
1058 		return 0;
1059 	}
1060 
1061 	dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1062 	if (!dev->ifalias)
1063 		return -ENOMEM;
1064 
1065 	strlcpy(dev->ifalias, alias, len+1);
1066 	return len;
1067 }
1068 
1069 
1070 /**
1071  *	netdev_features_change - device changes features
1072  *	@dev: device to cause notification
1073  *
1074  *	Called to indicate a device has changed features.
1075  */
1076 void netdev_features_change(struct net_device *dev)
1077 {
1078 	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1079 }
1080 EXPORT_SYMBOL(netdev_features_change);
1081 
1082 /**
1083  *	netdev_state_change - device changes state
1084  *	@dev: device to cause notification
1085  *
1086  *	Called to indicate a device has changed state. This function calls
1087  *	the notifier chains for netdev_chain and sends a NEWLINK message
1088  *	to the routing socket.
1089  */
1090 void netdev_state_change(struct net_device *dev)
1091 {
1092 	if (dev->flags & IFF_UP) {
1093 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
1094 		rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1095 	}
1096 }
1097 EXPORT_SYMBOL(netdev_state_change);
1098 
1099 int netdev_bonding_change(struct net_device *dev, unsigned long event)
1100 {
1101 	return call_netdevice_notifiers(event, dev);
1102 }
1103 EXPORT_SYMBOL(netdev_bonding_change);
1104 
1105 /**
1106  *	dev_load 	- load a network module
1107  *	@net: the applicable net namespace
1108  *	@name: name of interface
1109  *
1110  *	If a network interface is not present and the process has suitable
1111  *	privileges this function loads the module. If module loading is not
1112  *	available in this kernel then it becomes a nop.
1113  */
1114 
1115 void dev_load(struct net *net, const char *name)
1116 {
1117 	struct net_device *dev;
1118 	int no_module;
1119 
1120 	rcu_read_lock();
1121 	dev = dev_get_by_name_rcu(net, name);
1122 	rcu_read_unlock();
1123 
1124 	no_module = !dev;
1125 	if (no_module && capable(CAP_NET_ADMIN))
1126 		no_module = request_module("netdev-%s", name);
1127 	if (no_module && capable(CAP_SYS_MODULE)) {
1128 		if (!request_module("%s", name))
1129 			pr_err("Loading kernel module for a network device "
1130 "with CAP_SYS_MODULE (deprecated).  Use CAP_NET_ADMIN and alias netdev-%s "
1131 "instead\n", name);
1132 	}
1133 }
1134 EXPORT_SYMBOL(dev_load);
1135 
1136 static int __dev_open(struct net_device *dev)
1137 {
1138 	const struct net_device_ops *ops = dev->netdev_ops;
1139 	int ret;
1140 
1141 	ASSERT_RTNL();
1142 
1143 	if (!netif_device_present(dev))
1144 		return -ENODEV;
1145 
1146 	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1147 	ret = notifier_to_errno(ret);
1148 	if (ret)
1149 		return ret;
1150 
1151 	set_bit(__LINK_STATE_START, &dev->state);
1152 
1153 	if (ops->ndo_validate_addr)
1154 		ret = ops->ndo_validate_addr(dev);
1155 
1156 	if (!ret && ops->ndo_open)
1157 		ret = ops->ndo_open(dev);
1158 
1159 	if (ret)
1160 		clear_bit(__LINK_STATE_START, &dev->state);
1161 	else {
1162 		dev->flags |= IFF_UP;
1163 		net_dmaengine_get();
1164 		dev_set_rx_mode(dev);
1165 		dev_activate(dev);
1166 	}
1167 
1168 	return ret;
1169 }
1170 
1171 /**
1172  *	dev_open	- prepare an interface for use.
1173  *	@dev:	device to open
1174  *
1175  *	Takes a device from down to up state. The device's private open
1176  *	function is invoked and then the multicast lists are loaded. Finally
1177  *	the device is moved into the up state and a %NETDEV_UP message is
1178  *	sent to the netdev notifier chain.
1179  *
1180  *	Calling this function on an active interface is a nop. On a failure
1181  *	a negative errno code is returned.
1182  */
1183 int dev_open(struct net_device *dev)
1184 {
1185 	int ret;
1186 
1187 	if (dev->flags & IFF_UP)
1188 		return 0;
1189 
1190 	ret = __dev_open(dev);
1191 	if (ret < 0)
1192 		return ret;
1193 
1194 	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1195 	call_netdevice_notifiers(NETDEV_UP, dev);
1196 
1197 	return ret;
1198 }
1199 EXPORT_SYMBOL(dev_open);
1200 
1201 static int __dev_close_many(struct list_head *head)
1202 {
1203 	struct net_device *dev;
1204 
1205 	ASSERT_RTNL();
1206 	might_sleep();
1207 
1208 	list_for_each_entry(dev, head, unreg_list) {
1209 		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1210 
1211 		clear_bit(__LINK_STATE_START, &dev->state);
1212 
1213 		/* Synchronize to scheduled poll. We cannot touch poll list, it
1214 		 * can be even on different cpu. So just clear netif_running().
1215 		 *
1216 		 * dev->stop() will invoke napi_disable() on all of it's
1217 		 * napi_struct instances on this device.
1218 		 */
1219 		smp_mb__after_clear_bit(); /* Commit netif_running(). */
1220 	}
1221 
1222 	dev_deactivate_many(head);
1223 
1224 	list_for_each_entry(dev, head, unreg_list) {
1225 		const struct net_device_ops *ops = dev->netdev_ops;
1226 
1227 		/*
1228 		 *	Call the device specific close. This cannot fail.
1229 		 *	Only if device is UP
1230 		 *
1231 		 *	We allow it to be called even after a DETACH hot-plug
1232 		 *	event.
1233 		 */
1234 		if (ops->ndo_stop)
1235 			ops->ndo_stop(dev);
1236 
1237 		dev->flags &= ~IFF_UP;
1238 		net_dmaengine_put();
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 static int __dev_close(struct net_device *dev)
1245 {
1246 	int retval;
1247 	LIST_HEAD(single);
1248 
1249 	list_add(&dev->unreg_list, &single);
1250 	retval = __dev_close_many(&single);
1251 	list_del(&single);
1252 	return retval;
1253 }
1254 
1255 static int dev_close_many(struct list_head *head)
1256 {
1257 	struct net_device *dev, *tmp;
1258 	LIST_HEAD(tmp_list);
1259 
1260 	list_for_each_entry_safe(dev, tmp, head, unreg_list)
1261 		if (!(dev->flags & IFF_UP))
1262 			list_move(&dev->unreg_list, &tmp_list);
1263 
1264 	__dev_close_many(head);
1265 
1266 	list_for_each_entry(dev, head, unreg_list) {
1267 		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1268 		call_netdevice_notifiers(NETDEV_DOWN, dev);
1269 	}
1270 
1271 	/* rollback_registered_many needs the complete original list */
1272 	list_splice(&tmp_list, head);
1273 	return 0;
1274 }
1275 
1276 /**
1277  *	dev_close - shutdown an interface.
1278  *	@dev: device to shutdown
1279  *
1280  *	This function moves an active device into down state. A
1281  *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1282  *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1283  *	chain.
1284  */
1285 int dev_close(struct net_device *dev)
1286 {
1287 	LIST_HEAD(single);
1288 
1289 	list_add(&dev->unreg_list, &single);
1290 	dev_close_many(&single);
1291 	list_del(&single);
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL(dev_close);
1295 
1296 
1297 /**
1298  *	dev_disable_lro - disable Large Receive Offload on a device
1299  *	@dev: device
1300  *
1301  *	Disable Large Receive Offload (LRO) on a net device.  Must be
1302  *	called under RTNL.  This is needed if received packets may be
1303  *	forwarded to another interface.
1304  */
1305 void dev_disable_lro(struct net_device *dev)
1306 {
1307 	u32 flags;
1308 
1309 	if (dev->ethtool_ops && dev->ethtool_ops->get_flags)
1310 		flags = dev->ethtool_ops->get_flags(dev);
1311 	else
1312 		flags = ethtool_op_get_flags(dev);
1313 
1314 	if (!(flags & ETH_FLAG_LRO))
1315 		return;
1316 
1317 	__ethtool_set_flags(dev, flags & ~ETH_FLAG_LRO);
1318 	WARN_ON(dev->features & NETIF_F_LRO);
1319 }
1320 EXPORT_SYMBOL(dev_disable_lro);
1321 
1322 
1323 static int dev_boot_phase = 1;
1324 
1325 /**
1326  *	register_netdevice_notifier - register a network notifier block
1327  *	@nb: notifier
1328  *
1329  *	Register a notifier to be called when network device events occur.
1330  *	The notifier passed is linked into the kernel structures and must
1331  *	not be reused until it has been unregistered. A negative errno code
1332  *	is returned on a failure.
1333  *
1334  * 	When registered all registration and up events are replayed
1335  *	to the new notifier to allow device to have a race free
1336  *	view of the network device list.
1337  */
1338 
1339 int register_netdevice_notifier(struct notifier_block *nb)
1340 {
1341 	struct net_device *dev;
1342 	struct net_device *last;
1343 	struct net *net;
1344 	int err;
1345 
1346 	rtnl_lock();
1347 	err = raw_notifier_chain_register(&netdev_chain, nb);
1348 	if (err)
1349 		goto unlock;
1350 	if (dev_boot_phase)
1351 		goto unlock;
1352 	for_each_net(net) {
1353 		for_each_netdev(net, dev) {
1354 			err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1355 			err = notifier_to_errno(err);
1356 			if (err)
1357 				goto rollback;
1358 
1359 			if (!(dev->flags & IFF_UP))
1360 				continue;
1361 
1362 			nb->notifier_call(nb, NETDEV_UP, dev);
1363 		}
1364 	}
1365 
1366 unlock:
1367 	rtnl_unlock();
1368 	return err;
1369 
1370 rollback:
1371 	last = dev;
1372 	for_each_net(net) {
1373 		for_each_netdev(net, dev) {
1374 			if (dev == last)
1375 				break;
1376 
1377 			if (dev->flags & IFF_UP) {
1378 				nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1379 				nb->notifier_call(nb, NETDEV_DOWN, dev);
1380 			}
1381 			nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1382 			nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
1383 		}
1384 	}
1385 
1386 	raw_notifier_chain_unregister(&netdev_chain, nb);
1387 	goto unlock;
1388 }
1389 EXPORT_SYMBOL(register_netdevice_notifier);
1390 
1391 /**
1392  *	unregister_netdevice_notifier - unregister a network notifier block
1393  *	@nb: notifier
1394  *
1395  *	Unregister a notifier previously registered by
1396  *	register_netdevice_notifier(). The notifier is unlinked into the
1397  *	kernel structures and may then be reused. A negative errno code
1398  *	is returned on a failure.
1399  */
1400 
1401 int unregister_netdevice_notifier(struct notifier_block *nb)
1402 {
1403 	int err;
1404 
1405 	rtnl_lock();
1406 	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1407 	rtnl_unlock();
1408 	return err;
1409 }
1410 EXPORT_SYMBOL(unregister_netdevice_notifier);
1411 
1412 /**
1413  *	call_netdevice_notifiers - call all network notifier blocks
1414  *      @val: value passed unmodified to notifier function
1415  *      @dev: net_device pointer passed unmodified to notifier function
1416  *
1417  *	Call all network notifier blocks.  Parameters and return value
1418  *	are as for raw_notifier_call_chain().
1419  */
1420 
1421 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1422 {
1423 	ASSERT_RTNL();
1424 	return raw_notifier_call_chain(&netdev_chain, val, dev);
1425 }
1426 EXPORT_SYMBOL(call_netdevice_notifiers);
1427 
1428 /* When > 0 there are consumers of rx skb time stamps */
1429 static atomic_t netstamp_needed = ATOMIC_INIT(0);
1430 
1431 void net_enable_timestamp(void)
1432 {
1433 	atomic_inc(&netstamp_needed);
1434 }
1435 EXPORT_SYMBOL(net_enable_timestamp);
1436 
1437 void net_disable_timestamp(void)
1438 {
1439 	atomic_dec(&netstamp_needed);
1440 }
1441 EXPORT_SYMBOL(net_disable_timestamp);
1442 
1443 static inline void net_timestamp_set(struct sk_buff *skb)
1444 {
1445 	if (atomic_read(&netstamp_needed))
1446 		__net_timestamp(skb);
1447 	else
1448 		skb->tstamp.tv64 = 0;
1449 }
1450 
1451 static inline void net_timestamp_check(struct sk_buff *skb)
1452 {
1453 	if (!skb->tstamp.tv64 && atomic_read(&netstamp_needed))
1454 		__net_timestamp(skb);
1455 }
1456 
1457 /**
1458  * dev_forward_skb - loopback an skb to another netif
1459  *
1460  * @dev: destination network device
1461  * @skb: buffer to forward
1462  *
1463  * return values:
1464  *	NET_RX_SUCCESS	(no congestion)
1465  *	NET_RX_DROP     (packet was dropped, but freed)
1466  *
1467  * dev_forward_skb can be used for injecting an skb from the
1468  * start_xmit function of one device into the receive queue
1469  * of another device.
1470  *
1471  * The receiving device may be in another namespace, so
1472  * we have to clear all information in the skb that could
1473  * impact namespace isolation.
1474  */
1475 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1476 {
1477 	skb_orphan(skb);
1478 	nf_reset(skb);
1479 
1480 	if (unlikely(!(dev->flags & IFF_UP) ||
1481 		     (skb->len > (dev->mtu + dev->hard_header_len + VLAN_HLEN)))) {
1482 		atomic_long_inc(&dev->rx_dropped);
1483 		kfree_skb(skb);
1484 		return NET_RX_DROP;
1485 	}
1486 	skb_set_dev(skb, dev);
1487 	skb->tstamp.tv64 = 0;
1488 	skb->pkt_type = PACKET_HOST;
1489 	skb->protocol = eth_type_trans(skb, dev);
1490 	return netif_rx(skb);
1491 }
1492 EXPORT_SYMBOL_GPL(dev_forward_skb);
1493 
1494 static inline int deliver_skb(struct sk_buff *skb,
1495 			      struct packet_type *pt_prev,
1496 			      struct net_device *orig_dev)
1497 {
1498 	atomic_inc(&skb->users);
1499 	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1500 }
1501 
1502 /*
1503  *	Support routine. Sends outgoing frames to any network
1504  *	taps currently in use.
1505  */
1506 
1507 static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1508 {
1509 	struct packet_type *ptype;
1510 	struct sk_buff *skb2 = NULL;
1511 	struct packet_type *pt_prev = NULL;
1512 
1513 	rcu_read_lock();
1514 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
1515 		/* Never send packets back to the socket
1516 		 * they originated from - MvS ([email protected])
1517 		 */
1518 		if ((ptype->dev == dev || !ptype->dev) &&
1519 		    (ptype->af_packet_priv == NULL ||
1520 		     (struct sock *)ptype->af_packet_priv != skb->sk)) {
1521 			if (pt_prev) {
1522 				deliver_skb(skb2, pt_prev, skb->dev);
1523 				pt_prev = ptype;
1524 				continue;
1525 			}
1526 
1527 			skb2 = skb_clone(skb, GFP_ATOMIC);
1528 			if (!skb2)
1529 				break;
1530 
1531 			net_timestamp_set(skb2);
1532 
1533 			/* skb->nh should be correctly
1534 			   set by sender, so that the second statement is
1535 			   just protection against buggy protocols.
1536 			 */
1537 			skb_reset_mac_header(skb2);
1538 
1539 			if (skb_network_header(skb2) < skb2->data ||
1540 			    skb2->network_header > skb2->tail) {
1541 				if (net_ratelimit())
1542 					printk(KERN_CRIT "protocol %04x is "
1543 					       "buggy, dev %s\n",
1544 					       ntohs(skb2->protocol),
1545 					       dev->name);
1546 				skb_reset_network_header(skb2);
1547 			}
1548 
1549 			skb2->transport_header = skb2->network_header;
1550 			skb2->pkt_type = PACKET_OUTGOING;
1551 			pt_prev = ptype;
1552 		}
1553 	}
1554 	if (pt_prev)
1555 		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1556 	rcu_read_unlock();
1557 }
1558 
1559 /* netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1560  * @dev: Network device
1561  * @txq: number of queues available
1562  *
1563  * If real_num_tx_queues is changed the tc mappings may no longer be
1564  * valid. To resolve this verify the tc mapping remains valid and if
1565  * not NULL the mapping. With no priorities mapping to this
1566  * offset/count pair it will no longer be used. In the worst case TC0
1567  * is invalid nothing can be done so disable priority mappings. If is
1568  * expected that drivers will fix this mapping if they can before
1569  * calling netif_set_real_num_tx_queues.
1570  */
1571 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1572 {
1573 	int i;
1574 	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1575 
1576 	/* If TC0 is invalidated disable TC mapping */
1577 	if (tc->offset + tc->count > txq) {
1578 		pr_warning("Number of in use tx queues changed "
1579 			   "invalidating tc mappings. Priority "
1580 			   "traffic classification disabled!\n");
1581 		dev->num_tc = 0;
1582 		return;
1583 	}
1584 
1585 	/* Invalidated prio to tc mappings set to TC0 */
1586 	for (i = 1; i < TC_BITMASK + 1; i++) {
1587 		int q = netdev_get_prio_tc_map(dev, i);
1588 
1589 		tc = &dev->tc_to_txq[q];
1590 		if (tc->offset + tc->count > txq) {
1591 			pr_warning("Number of in use tx queues "
1592 				   "changed. Priority %i to tc "
1593 				   "mapping %i is no longer valid "
1594 				   "setting map to 0\n",
1595 				   i, q);
1596 			netdev_set_prio_tc_map(dev, i, 0);
1597 		}
1598 	}
1599 }
1600 
1601 /*
1602  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
1603  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
1604  */
1605 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
1606 {
1607 	int rc;
1608 
1609 	if (txq < 1 || txq > dev->num_tx_queues)
1610 		return -EINVAL;
1611 
1612 	if (dev->reg_state == NETREG_REGISTERED ||
1613 	    dev->reg_state == NETREG_UNREGISTERING) {
1614 		ASSERT_RTNL();
1615 
1616 		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
1617 						  txq);
1618 		if (rc)
1619 			return rc;
1620 
1621 		if (dev->num_tc)
1622 			netif_setup_tc(dev, txq);
1623 
1624 		if (txq < dev->real_num_tx_queues)
1625 			qdisc_reset_all_tx_gt(dev, txq);
1626 	}
1627 
1628 	dev->real_num_tx_queues = txq;
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
1632 
1633 #ifdef CONFIG_RPS
1634 /**
1635  *	netif_set_real_num_rx_queues - set actual number of RX queues used
1636  *	@dev: Network device
1637  *	@rxq: Actual number of RX queues
1638  *
1639  *	This must be called either with the rtnl_lock held or before
1640  *	registration of the net device.  Returns 0 on success, or a
1641  *	negative error code.  If called before registration, it always
1642  *	succeeds.
1643  */
1644 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
1645 {
1646 	int rc;
1647 
1648 	if (rxq < 1 || rxq > dev->num_rx_queues)
1649 		return -EINVAL;
1650 
1651 	if (dev->reg_state == NETREG_REGISTERED) {
1652 		ASSERT_RTNL();
1653 
1654 		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
1655 						  rxq);
1656 		if (rc)
1657 			return rc;
1658 	}
1659 
1660 	dev->real_num_rx_queues = rxq;
1661 	return 0;
1662 }
1663 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
1664 #endif
1665 
1666 static inline void __netif_reschedule(struct Qdisc *q)
1667 {
1668 	struct softnet_data *sd;
1669 	unsigned long flags;
1670 
1671 	local_irq_save(flags);
1672 	sd = &__get_cpu_var(softnet_data);
1673 	q->next_sched = NULL;
1674 	*sd->output_queue_tailp = q;
1675 	sd->output_queue_tailp = &q->next_sched;
1676 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
1677 	local_irq_restore(flags);
1678 }
1679 
1680 void __netif_schedule(struct Qdisc *q)
1681 {
1682 	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1683 		__netif_reschedule(q);
1684 }
1685 EXPORT_SYMBOL(__netif_schedule);
1686 
1687 void dev_kfree_skb_irq(struct sk_buff *skb)
1688 {
1689 	if (atomic_dec_and_test(&skb->users)) {
1690 		struct softnet_data *sd;
1691 		unsigned long flags;
1692 
1693 		local_irq_save(flags);
1694 		sd = &__get_cpu_var(softnet_data);
1695 		skb->next = sd->completion_queue;
1696 		sd->completion_queue = skb;
1697 		raise_softirq_irqoff(NET_TX_SOFTIRQ);
1698 		local_irq_restore(flags);
1699 	}
1700 }
1701 EXPORT_SYMBOL(dev_kfree_skb_irq);
1702 
1703 void dev_kfree_skb_any(struct sk_buff *skb)
1704 {
1705 	if (in_irq() || irqs_disabled())
1706 		dev_kfree_skb_irq(skb);
1707 	else
1708 		dev_kfree_skb(skb);
1709 }
1710 EXPORT_SYMBOL(dev_kfree_skb_any);
1711 
1712 
1713 /**
1714  * netif_device_detach - mark device as removed
1715  * @dev: network device
1716  *
1717  * Mark device as removed from system and therefore no longer available.
1718  */
1719 void netif_device_detach(struct net_device *dev)
1720 {
1721 	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1722 	    netif_running(dev)) {
1723 		netif_tx_stop_all_queues(dev);
1724 	}
1725 }
1726 EXPORT_SYMBOL(netif_device_detach);
1727 
1728 /**
1729  * netif_device_attach - mark device as attached
1730  * @dev: network device
1731  *
1732  * Mark device as attached from system and restart if needed.
1733  */
1734 void netif_device_attach(struct net_device *dev)
1735 {
1736 	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1737 	    netif_running(dev)) {
1738 		netif_tx_wake_all_queues(dev);
1739 		__netdev_watchdog_up(dev);
1740 	}
1741 }
1742 EXPORT_SYMBOL(netif_device_attach);
1743 
1744 /**
1745  * skb_dev_set -- assign a new device to a buffer
1746  * @skb: buffer for the new device
1747  * @dev: network device
1748  *
1749  * If an skb is owned by a device already, we have to reset
1750  * all data private to the namespace a device belongs to
1751  * before assigning it a new device.
1752  */
1753 #ifdef CONFIG_NET_NS
1754 void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1755 {
1756 	skb_dst_drop(skb);
1757 	if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1758 		secpath_reset(skb);
1759 		nf_reset(skb);
1760 		skb_init_secmark(skb);
1761 		skb->mark = 0;
1762 		skb->priority = 0;
1763 		skb->nf_trace = 0;
1764 		skb->ipvs_property = 0;
1765 #ifdef CONFIG_NET_SCHED
1766 		skb->tc_index = 0;
1767 #endif
1768 	}
1769 	skb->dev = dev;
1770 }
1771 EXPORT_SYMBOL(skb_set_dev);
1772 #endif /* CONFIG_NET_NS */
1773 
1774 /*
1775  * Invalidate hardware checksum when packet is to be mangled, and
1776  * complete checksum manually on outgoing path.
1777  */
1778 int skb_checksum_help(struct sk_buff *skb)
1779 {
1780 	__wsum csum;
1781 	int ret = 0, offset;
1782 
1783 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1784 		goto out_set_summed;
1785 
1786 	if (unlikely(skb_shinfo(skb)->gso_size)) {
1787 		/* Let GSO fix up the checksum. */
1788 		goto out_set_summed;
1789 	}
1790 
1791 	offset = skb_checksum_start_offset(skb);
1792 	BUG_ON(offset >= skb_headlen(skb));
1793 	csum = skb_checksum(skb, offset, skb->len - offset, 0);
1794 
1795 	offset += skb->csum_offset;
1796 	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1797 
1798 	if (skb_cloned(skb) &&
1799 	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1800 		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1801 		if (ret)
1802 			goto out;
1803 	}
1804 
1805 	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
1806 out_set_summed:
1807 	skb->ip_summed = CHECKSUM_NONE;
1808 out:
1809 	return ret;
1810 }
1811 EXPORT_SYMBOL(skb_checksum_help);
1812 
1813 /**
1814  *	skb_gso_segment - Perform segmentation on skb.
1815  *	@skb: buffer to segment
1816  *	@features: features for the output path (see dev->features)
1817  *
1818  *	This function segments the given skb and returns a list of segments.
1819  *
1820  *	It may return NULL if the skb requires no segmentation.  This is
1821  *	only possible when GSO is used for verifying header integrity.
1822  */
1823 struct sk_buff *skb_gso_segment(struct sk_buff *skb, u32 features)
1824 {
1825 	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1826 	struct packet_type *ptype;
1827 	__be16 type = skb->protocol;
1828 	int vlan_depth = ETH_HLEN;
1829 	int err;
1830 
1831 	while (type == htons(ETH_P_8021Q)) {
1832 		struct vlan_hdr *vh;
1833 
1834 		if (unlikely(!pskb_may_pull(skb, vlan_depth + VLAN_HLEN)))
1835 			return ERR_PTR(-EINVAL);
1836 
1837 		vh = (struct vlan_hdr *)(skb->data + vlan_depth);
1838 		type = vh->h_vlan_encapsulated_proto;
1839 		vlan_depth += VLAN_HLEN;
1840 	}
1841 
1842 	skb_reset_mac_header(skb);
1843 	skb->mac_len = skb->network_header - skb->mac_header;
1844 	__skb_pull(skb, skb->mac_len);
1845 
1846 	if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1847 		struct net_device *dev = skb->dev;
1848 		struct ethtool_drvinfo info = {};
1849 
1850 		if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1851 			dev->ethtool_ops->get_drvinfo(dev, &info);
1852 
1853 		WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d ip_summed=%d\n",
1854 		     info.driver, dev ? dev->features : 0L,
1855 		     skb->sk ? skb->sk->sk_route_caps : 0L,
1856 		     skb->len, skb->data_len, skb->ip_summed);
1857 
1858 		if (skb_header_cloned(skb) &&
1859 		    (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1860 			return ERR_PTR(err);
1861 	}
1862 
1863 	rcu_read_lock();
1864 	list_for_each_entry_rcu(ptype,
1865 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1866 		if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
1867 			if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1868 				err = ptype->gso_send_check(skb);
1869 				segs = ERR_PTR(err);
1870 				if (err || skb_gso_ok(skb, features))
1871 					break;
1872 				__skb_push(skb, (skb->data -
1873 						 skb_network_header(skb)));
1874 			}
1875 			segs = ptype->gso_segment(skb, features);
1876 			break;
1877 		}
1878 	}
1879 	rcu_read_unlock();
1880 
1881 	__skb_push(skb, skb->data - skb_mac_header(skb));
1882 
1883 	return segs;
1884 }
1885 EXPORT_SYMBOL(skb_gso_segment);
1886 
1887 /* Take action when hardware reception checksum errors are detected. */
1888 #ifdef CONFIG_BUG
1889 void netdev_rx_csum_fault(struct net_device *dev)
1890 {
1891 	if (net_ratelimit()) {
1892 		printk(KERN_ERR "%s: hw csum failure.\n",
1893 			dev ? dev->name : "<unknown>");
1894 		dump_stack();
1895 	}
1896 }
1897 EXPORT_SYMBOL(netdev_rx_csum_fault);
1898 #endif
1899 
1900 /* Actually, we should eliminate this check as soon as we know, that:
1901  * 1. IOMMU is present and allows to map all the memory.
1902  * 2. No high memory really exists on this machine.
1903  */
1904 
1905 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1906 {
1907 #ifdef CONFIG_HIGHMEM
1908 	int i;
1909 	if (!(dev->features & NETIF_F_HIGHDMA)) {
1910 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1911 			if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1912 				return 1;
1913 	}
1914 
1915 	if (PCI_DMA_BUS_IS_PHYS) {
1916 		struct device *pdev = dev->dev.parent;
1917 
1918 		if (!pdev)
1919 			return 0;
1920 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1921 			dma_addr_t addr = page_to_phys(skb_shinfo(skb)->frags[i].page);
1922 			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
1923 				return 1;
1924 		}
1925 	}
1926 #endif
1927 	return 0;
1928 }
1929 
1930 struct dev_gso_cb {
1931 	void (*destructor)(struct sk_buff *skb);
1932 };
1933 
1934 #define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1935 
1936 static void dev_gso_skb_destructor(struct sk_buff *skb)
1937 {
1938 	struct dev_gso_cb *cb;
1939 
1940 	do {
1941 		struct sk_buff *nskb = skb->next;
1942 
1943 		skb->next = nskb->next;
1944 		nskb->next = NULL;
1945 		kfree_skb(nskb);
1946 	} while (skb->next);
1947 
1948 	cb = DEV_GSO_CB(skb);
1949 	if (cb->destructor)
1950 		cb->destructor(skb);
1951 }
1952 
1953 /**
1954  *	dev_gso_segment - Perform emulated hardware segmentation on skb.
1955  *	@skb: buffer to segment
1956  *	@features: device features as applicable to this skb
1957  *
1958  *	This function segments the given skb and stores the list of segments
1959  *	in skb->next.
1960  */
1961 static int dev_gso_segment(struct sk_buff *skb, int features)
1962 {
1963 	struct sk_buff *segs;
1964 
1965 	segs = skb_gso_segment(skb, features);
1966 
1967 	/* Verifying header integrity only. */
1968 	if (!segs)
1969 		return 0;
1970 
1971 	if (IS_ERR(segs))
1972 		return PTR_ERR(segs);
1973 
1974 	skb->next = segs;
1975 	DEV_GSO_CB(skb)->destructor = skb->destructor;
1976 	skb->destructor = dev_gso_skb_destructor;
1977 
1978 	return 0;
1979 }
1980 
1981 /*
1982  * Try to orphan skb early, right before transmission by the device.
1983  * We cannot orphan skb if tx timestamp is requested or the sk-reference
1984  * is needed on driver level for other reasons, e.g. see net/can/raw.c
1985  */
1986 static inline void skb_orphan_try(struct sk_buff *skb)
1987 {
1988 	struct sock *sk = skb->sk;
1989 
1990 	if (sk && !skb_shinfo(skb)->tx_flags) {
1991 		/* skb_tx_hash() wont be able to get sk.
1992 		 * We copy sk_hash into skb->rxhash
1993 		 */
1994 		if (!skb->rxhash)
1995 			skb->rxhash = sk->sk_hash;
1996 		skb_orphan(skb);
1997 	}
1998 }
1999 
2000 static bool can_checksum_protocol(unsigned long features, __be16 protocol)
2001 {
2002 	return ((features & NETIF_F_GEN_CSUM) ||
2003 		((features & NETIF_F_V4_CSUM) &&
2004 		 protocol == htons(ETH_P_IP)) ||
2005 		((features & NETIF_F_V6_CSUM) &&
2006 		 protocol == htons(ETH_P_IPV6)) ||
2007 		((features & NETIF_F_FCOE_CRC) &&
2008 		 protocol == htons(ETH_P_FCOE)));
2009 }
2010 
2011 static u32 harmonize_features(struct sk_buff *skb, __be16 protocol, u32 features)
2012 {
2013 	if (!can_checksum_protocol(features, protocol)) {
2014 		features &= ~NETIF_F_ALL_CSUM;
2015 		features &= ~NETIF_F_SG;
2016 	} else if (illegal_highdma(skb->dev, skb)) {
2017 		features &= ~NETIF_F_SG;
2018 	}
2019 
2020 	return features;
2021 }
2022 
2023 u32 netif_skb_features(struct sk_buff *skb)
2024 {
2025 	__be16 protocol = skb->protocol;
2026 	u32 features = skb->dev->features;
2027 
2028 	if (protocol == htons(ETH_P_8021Q)) {
2029 		struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
2030 		protocol = veh->h_vlan_encapsulated_proto;
2031 	} else if (!vlan_tx_tag_present(skb)) {
2032 		return harmonize_features(skb, protocol, features);
2033 	}
2034 
2035 	features &= (skb->dev->vlan_features | NETIF_F_HW_VLAN_TX);
2036 
2037 	if (protocol != htons(ETH_P_8021Q)) {
2038 		return harmonize_features(skb, protocol, features);
2039 	} else {
2040 		features &= NETIF_F_SG | NETIF_F_HIGHDMA | NETIF_F_FRAGLIST |
2041 				NETIF_F_GEN_CSUM | NETIF_F_HW_VLAN_TX;
2042 		return harmonize_features(skb, protocol, features);
2043 	}
2044 }
2045 EXPORT_SYMBOL(netif_skb_features);
2046 
2047 /*
2048  * Returns true if either:
2049  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
2050  *	2. skb is fragmented and the device does not support SG, or if
2051  *	   at least one of fragments is in highmem and device does not
2052  *	   support DMA from it.
2053  */
2054 static inline int skb_needs_linearize(struct sk_buff *skb,
2055 				      int features)
2056 {
2057 	return skb_is_nonlinear(skb) &&
2058 			((skb_has_frag_list(skb) &&
2059 				!(features & NETIF_F_FRAGLIST)) ||
2060 			(skb_shinfo(skb)->nr_frags &&
2061 				!(features & NETIF_F_SG)));
2062 }
2063 
2064 int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
2065 			struct netdev_queue *txq)
2066 {
2067 	const struct net_device_ops *ops = dev->netdev_ops;
2068 	int rc = NETDEV_TX_OK;
2069 
2070 	if (likely(!skb->next)) {
2071 		u32 features;
2072 
2073 		/*
2074 		 * If device doesn't need skb->dst, release it right now while
2075 		 * its hot in this cpu cache
2076 		 */
2077 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2078 			skb_dst_drop(skb);
2079 
2080 		if (!list_empty(&ptype_all))
2081 			dev_queue_xmit_nit(skb, dev);
2082 
2083 		skb_orphan_try(skb);
2084 
2085 		features = netif_skb_features(skb);
2086 
2087 		if (vlan_tx_tag_present(skb) &&
2088 		    !(features & NETIF_F_HW_VLAN_TX)) {
2089 			skb = __vlan_put_tag(skb, vlan_tx_tag_get(skb));
2090 			if (unlikely(!skb))
2091 				goto out;
2092 
2093 			skb->vlan_tci = 0;
2094 		}
2095 
2096 		if (netif_needs_gso(skb, features)) {
2097 			if (unlikely(dev_gso_segment(skb, features)))
2098 				goto out_kfree_skb;
2099 			if (skb->next)
2100 				goto gso;
2101 		} else {
2102 			if (skb_needs_linearize(skb, features) &&
2103 			    __skb_linearize(skb))
2104 				goto out_kfree_skb;
2105 
2106 			/* If packet is not checksummed and device does not
2107 			 * support checksumming for this protocol, complete
2108 			 * checksumming here.
2109 			 */
2110 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
2111 				skb_set_transport_header(skb,
2112 					skb_checksum_start_offset(skb));
2113 				if (!(features & NETIF_F_ALL_CSUM) &&
2114 				     skb_checksum_help(skb))
2115 					goto out_kfree_skb;
2116 			}
2117 		}
2118 
2119 		rc = ops->ndo_start_xmit(skb, dev);
2120 		trace_net_dev_xmit(skb, rc);
2121 		if (rc == NETDEV_TX_OK)
2122 			txq_trans_update(txq);
2123 		return rc;
2124 	}
2125 
2126 gso:
2127 	do {
2128 		struct sk_buff *nskb = skb->next;
2129 
2130 		skb->next = nskb->next;
2131 		nskb->next = NULL;
2132 
2133 		/*
2134 		 * If device doesn't need nskb->dst, release it right now while
2135 		 * its hot in this cpu cache
2136 		 */
2137 		if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
2138 			skb_dst_drop(nskb);
2139 
2140 		rc = ops->ndo_start_xmit(nskb, dev);
2141 		trace_net_dev_xmit(nskb, rc);
2142 		if (unlikely(rc != NETDEV_TX_OK)) {
2143 			if (rc & ~NETDEV_TX_MASK)
2144 				goto out_kfree_gso_skb;
2145 			nskb->next = skb->next;
2146 			skb->next = nskb;
2147 			return rc;
2148 		}
2149 		txq_trans_update(txq);
2150 		if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
2151 			return NETDEV_TX_BUSY;
2152 	} while (skb->next);
2153 
2154 out_kfree_gso_skb:
2155 	if (likely(skb->next == NULL))
2156 		skb->destructor = DEV_GSO_CB(skb)->destructor;
2157 out_kfree_skb:
2158 	kfree_skb(skb);
2159 out:
2160 	return rc;
2161 }
2162 
2163 static u32 hashrnd __read_mostly;
2164 
2165 /*
2166  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2167  * to be used as a distribution range.
2168  */
2169 u16 __skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb,
2170 		  unsigned int num_tx_queues)
2171 {
2172 	u32 hash;
2173 	u16 qoffset = 0;
2174 	u16 qcount = num_tx_queues;
2175 
2176 	if (skb_rx_queue_recorded(skb)) {
2177 		hash = skb_get_rx_queue(skb);
2178 		while (unlikely(hash >= num_tx_queues))
2179 			hash -= num_tx_queues;
2180 		return hash;
2181 	}
2182 
2183 	if (dev->num_tc) {
2184 		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2185 		qoffset = dev->tc_to_txq[tc].offset;
2186 		qcount = dev->tc_to_txq[tc].count;
2187 	}
2188 
2189 	if (skb->sk && skb->sk->sk_hash)
2190 		hash = skb->sk->sk_hash;
2191 	else
2192 		hash = (__force u16) skb->protocol ^ skb->rxhash;
2193 	hash = jhash_1word(hash, hashrnd);
2194 
2195 	return (u16) (((u64) hash * qcount) >> 32) + qoffset;
2196 }
2197 EXPORT_SYMBOL(__skb_tx_hash);
2198 
2199 static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
2200 {
2201 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
2202 		if (net_ratelimit()) {
2203 			pr_warning("%s selects TX queue %d, but "
2204 				"real number of TX queues is %d\n",
2205 				dev->name, queue_index, dev->real_num_tx_queues);
2206 		}
2207 		return 0;
2208 	}
2209 	return queue_index;
2210 }
2211 
2212 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
2213 {
2214 #ifdef CONFIG_XPS
2215 	struct xps_dev_maps *dev_maps;
2216 	struct xps_map *map;
2217 	int queue_index = -1;
2218 
2219 	rcu_read_lock();
2220 	dev_maps = rcu_dereference(dev->xps_maps);
2221 	if (dev_maps) {
2222 		map = rcu_dereference(
2223 		    dev_maps->cpu_map[raw_smp_processor_id()]);
2224 		if (map) {
2225 			if (map->len == 1)
2226 				queue_index = map->queues[0];
2227 			else {
2228 				u32 hash;
2229 				if (skb->sk && skb->sk->sk_hash)
2230 					hash = skb->sk->sk_hash;
2231 				else
2232 					hash = (__force u16) skb->protocol ^
2233 					    skb->rxhash;
2234 				hash = jhash_1word(hash, hashrnd);
2235 				queue_index = map->queues[
2236 				    ((u64)hash * map->len) >> 32];
2237 			}
2238 			if (unlikely(queue_index >= dev->real_num_tx_queues))
2239 				queue_index = -1;
2240 		}
2241 	}
2242 	rcu_read_unlock();
2243 
2244 	return queue_index;
2245 #else
2246 	return -1;
2247 #endif
2248 }
2249 
2250 static struct netdev_queue *dev_pick_tx(struct net_device *dev,
2251 					struct sk_buff *skb)
2252 {
2253 	int queue_index;
2254 	const struct net_device_ops *ops = dev->netdev_ops;
2255 
2256 	if (dev->real_num_tx_queues == 1)
2257 		queue_index = 0;
2258 	else if (ops->ndo_select_queue) {
2259 		queue_index = ops->ndo_select_queue(dev, skb);
2260 		queue_index = dev_cap_txqueue(dev, queue_index);
2261 	} else {
2262 		struct sock *sk = skb->sk;
2263 		queue_index = sk_tx_queue_get(sk);
2264 
2265 		if (queue_index < 0 || skb->ooo_okay ||
2266 		    queue_index >= dev->real_num_tx_queues) {
2267 			int old_index = queue_index;
2268 
2269 			queue_index = get_xps_queue(dev, skb);
2270 			if (queue_index < 0)
2271 				queue_index = skb_tx_hash(dev, skb);
2272 
2273 			if (queue_index != old_index && sk) {
2274 				struct dst_entry *dst =
2275 				    rcu_dereference_check(sk->sk_dst_cache, 1);
2276 
2277 				if (dst && skb_dst(skb) == dst)
2278 					sk_tx_queue_set(sk, queue_index);
2279 			}
2280 		}
2281 	}
2282 
2283 	skb_set_queue_mapping(skb, queue_index);
2284 	return netdev_get_tx_queue(dev, queue_index);
2285 }
2286 
2287 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2288 				 struct net_device *dev,
2289 				 struct netdev_queue *txq)
2290 {
2291 	spinlock_t *root_lock = qdisc_lock(q);
2292 	bool contended;
2293 	int rc;
2294 
2295 	qdisc_skb_cb(skb)->pkt_len = skb->len;
2296 	qdisc_calculate_pkt_len(skb, q);
2297 	/*
2298 	 * Heuristic to force contended enqueues to serialize on a
2299 	 * separate lock before trying to get qdisc main lock.
2300 	 * This permits __QDISC_STATE_RUNNING owner to get the lock more often
2301 	 * and dequeue packets faster.
2302 	 */
2303 	contended = qdisc_is_running(q);
2304 	if (unlikely(contended))
2305 		spin_lock(&q->busylock);
2306 
2307 	spin_lock(root_lock);
2308 	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2309 		kfree_skb(skb);
2310 		rc = NET_XMIT_DROP;
2311 	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2312 		   qdisc_run_begin(q)) {
2313 		/*
2314 		 * This is a work-conserving queue; there are no old skbs
2315 		 * waiting to be sent out; and the qdisc is not running -
2316 		 * xmit the skb directly.
2317 		 */
2318 		if (!(dev->priv_flags & IFF_XMIT_DST_RELEASE))
2319 			skb_dst_force(skb);
2320 
2321 		qdisc_bstats_update(q, skb);
2322 
2323 		if (sch_direct_xmit(skb, q, dev, txq, root_lock)) {
2324 			if (unlikely(contended)) {
2325 				spin_unlock(&q->busylock);
2326 				contended = false;
2327 			}
2328 			__qdisc_run(q);
2329 		} else
2330 			qdisc_run_end(q);
2331 
2332 		rc = NET_XMIT_SUCCESS;
2333 	} else {
2334 		skb_dst_force(skb);
2335 		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
2336 		if (qdisc_run_begin(q)) {
2337 			if (unlikely(contended)) {
2338 				spin_unlock(&q->busylock);
2339 				contended = false;
2340 			}
2341 			__qdisc_run(q);
2342 		}
2343 	}
2344 	spin_unlock(root_lock);
2345 	if (unlikely(contended))
2346 		spin_unlock(&q->busylock);
2347 	return rc;
2348 }
2349 
2350 static DEFINE_PER_CPU(int, xmit_recursion);
2351 #define RECURSION_LIMIT 10
2352 
2353 /**
2354  *	dev_queue_xmit - transmit a buffer
2355  *	@skb: buffer to transmit
2356  *
2357  *	Queue a buffer for transmission to a network device. The caller must
2358  *	have set the device and priority and built the buffer before calling
2359  *	this function. The function can be called from an interrupt.
2360  *
2361  *	A negative errno code is returned on a failure. A success does not
2362  *	guarantee the frame will be transmitted as it may be dropped due
2363  *	to congestion or traffic shaping.
2364  *
2365  * -----------------------------------------------------------------------------------
2366  *      I notice this method can also return errors from the queue disciplines,
2367  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
2368  *      be positive.
2369  *
2370  *      Regardless of the return value, the skb is consumed, so it is currently
2371  *      difficult to retry a send to this method.  (You can bump the ref count
2372  *      before sending to hold a reference for retry if you are careful.)
2373  *
2374  *      When calling this method, interrupts MUST be enabled.  This is because
2375  *      the BH enable code must have IRQs enabled so that it will not deadlock.
2376  *          --BLG
2377  */
2378 int dev_queue_xmit(struct sk_buff *skb)
2379 {
2380 	struct net_device *dev = skb->dev;
2381 	struct netdev_queue *txq;
2382 	struct Qdisc *q;
2383 	int rc = -ENOMEM;
2384 
2385 	/* Disable soft irqs for various locks below. Also
2386 	 * stops preemption for RCU.
2387 	 */
2388 	rcu_read_lock_bh();
2389 
2390 	txq = dev_pick_tx(dev, skb);
2391 	q = rcu_dereference_bh(txq->qdisc);
2392 
2393 #ifdef CONFIG_NET_CLS_ACT
2394 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
2395 #endif
2396 	trace_net_dev_queue(skb);
2397 	if (q->enqueue) {
2398 		rc = __dev_xmit_skb(skb, q, dev, txq);
2399 		goto out;
2400 	}
2401 
2402 	/* The device has no queue. Common case for software devices:
2403 	   loopback, all the sorts of tunnels...
2404 
2405 	   Really, it is unlikely that netif_tx_lock protection is necessary
2406 	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
2407 	   counters.)
2408 	   However, it is possible, that they rely on protection
2409 	   made by us here.
2410 
2411 	   Check this and shot the lock. It is not prone from deadlocks.
2412 	   Either shot noqueue qdisc, it is even simpler 8)
2413 	 */
2414 	if (dev->flags & IFF_UP) {
2415 		int cpu = smp_processor_id(); /* ok because BHs are off */
2416 
2417 		if (txq->xmit_lock_owner != cpu) {
2418 
2419 			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
2420 				goto recursion_alert;
2421 
2422 			HARD_TX_LOCK(dev, txq, cpu);
2423 
2424 			if (!netif_tx_queue_stopped(txq)) {
2425 				__this_cpu_inc(xmit_recursion);
2426 				rc = dev_hard_start_xmit(skb, dev, txq);
2427 				__this_cpu_dec(xmit_recursion);
2428 				if (dev_xmit_complete(rc)) {
2429 					HARD_TX_UNLOCK(dev, txq);
2430 					goto out;
2431 				}
2432 			}
2433 			HARD_TX_UNLOCK(dev, txq);
2434 			if (net_ratelimit())
2435 				printk(KERN_CRIT "Virtual device %s asks to "
2436 				       "queue packet!\n", dev->name);
2437 		} else {
2438 			/* Recursion is detected! It is possible,
2439 			 * unfortunately
2440 			 */
2441 recursion_alert:
2442 			if (net_ratelimit())
2443 				printk(KERN_CRIT "Dead loop on virtual device "
2444 				       "%s, fix it urgently!\n", dev->name);
2445 		}
2446 	}
2447 
2448 	rc = -ENETDOWN;
2449 	rcu_read_unlock_bh();
2450 
2451 	kfree_skb(skb);
2452 	return rc;
2453 out:
2454 	rcu_read_unlock_bh();
2455 	return rc;
2456 }
2457 EXPORT_SYMBOL(dev_queue_xmit);
2458 
2459 
2460 /*=======================================================================
2461 			Receiver routines
2462   =======================================================================*/
2463 
2464 int netdev_max_backlog __read_mostly = 1000;
2465 int netdev_tstamp_prequeue __read_mostly = 1;
2466 int netdev_budget __read_mostly = 300;
2467 int weight_p __read_mostly = 64;            /* old backlog weight */
2468 
2469 /* Called with irq disabled */
2470 static inline void ____napi_schedule(struct softnet_data *sd,
2471 				     struct napi_struct *napi)
2472 {
2473 	list_add_tail(&napi->poll_list, &sd->poll_list);
2474 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2475 }
2476 
2477 /*
2478  * __skb_get_rxhash: calculate a flow hash based on src/dst addresses
2479  * and src/dst port numbers. Returns a non-zero hash number on success
2480  * and 0 on failure.
2481  */
2482 __u32 __skb_get_rxhash(struct sk_buff *skb)
2483 {
2484 	int nhoff, hash = 0, poff;
2485 	struct ipv6hdr *ip6;
2486 	struct iphdr *ip;
2487 	u8 ip_proto;
2488 	u32 addr1, addr2, ihl;
2489 	union {
2490 		u32 v32;
2491 		u16 v16[2];
2492 	} ports;
2493 
2494 	nhoff = skb_network_offset(skb);
2495 
2496 	switch (skb->protocol) {
2497 	case __constant_htons(ETH_P_IP):
2498 		if (!pskb_may_pull(skb, sizeof(*ip) + nhoff))
2499 			goto done;
2500 
2501 		ip = (struct iphdr *) (skb->data + nhoff);
2502 		if (ip->frag_off & htons(IP_MF | IP_OFFSET))
2503 			ip_proto = 0;
2504 		else
2505 			ip_proto = ip->protocol;
2506 		addr1 = (__force u32) ip->saddr;
2507 		addr2 = (__force u32) ip->daddr;
2508 		ihl = ip->ihl;
2509 		break;
2510 	case __constant_htons(ETH_P_IPV6):
2511 		if (!pskb_may_pull(skb, sizeof(*ip6) + nhoff))
2512 			goto done;
2513 
2514 		ip6 = (struct ipv6hdr *) (skb->data + nhoff);
2515 		ip_proto = ip6->nexthdr;
2516 		addr1 = (__force u32) ip6->saddr.s6_addr32[3];
2517 		addr2 = (__force u32) ip6->daddr.s6_addr32[3];
2518 		ihl = (40 >> 2);
2519 		break;
2520 	default:
2521 		goto done;
2522 	}
2523 
2524 	ports.v32 = 0;
2525 	poff = proto_ports_offset(ip_proto);
2526 	if (poff >= 0) {
2527 		nhoff += ihl * 4 + poff;
2528 		if (pskb_may_pull(skb, nhoff + 4)) {
2529 			ports.v32 = * (__force u32 *) (skb->data + nhoff);
2530 			if (ports.v16[1] < ports.v16[0])
2531 				swap(ports.v16[0], ports.v16[1]);
2532 		}
2533 	}
2534 
2535 	/* get a consistent hash (same value on both flow directions) */
2536 	if (addr2 < addr1)
2537 		swap(addr1, addr2);
2538 
2539 	hash = jhash_3words(addr1, addr2, ports.v32, hashrnd);
2540 	if (!hash)
2541 		hash = 1;
2542 
2543 done:
2544 	return hash;
2545 }
2546 EXPORT_SYMBOL(__skb_get_rxhash);
2547 
2548 #ifdef CONFIG_RPS
2549 
2550 /* One global table that all flow-based protocols share. */
2551 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
2552 EXPORT_SYMBOL(rps_sock_flow_table);
2553 
2554 static struct rps_dev_flow *
2555 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2556 	    struct rps_dev_flow *rflow, u16 next_cpu)
2557 {
2558 	u16 tcpu;
2559 
2560 	tcpu = rflow->cpu = next_cpu;
2561 	if (tcpu != RPS_NO_CPU) {
2562 #ifdef CONFIG_RFS_ACCEL
2563 		struct netdev_rx_queue *rxqueue;
2564 		struct rps_dev_flow_table *flow_table;
2565 		struct rps_dev_flow *old_rflow;
2566 		u32 flow_id;
2567 		u16 rxq_index;
2568 		int rc;
2569 
2570 		/* Should we steer this flow to a different hardware queue? */
2571 		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
2572 		    !(dev->features & NETIF_F_NTUPLE))
2573 			goto out;
2574 		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
2575 		if (rxq_index == skb_get_rx_queue(skb))
2576 			goto out;
2577 
2578 		rxqueue = dev->_rx + rxq_index;
2579 		flow_table = rcu_dereference(rxqueue->rps_flow_table);
2580 		if (!flow_table)
2581 			goto out;
2582 		flow_id = skb->rxhash & flow_table->mask;
2583 		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
2584 							rxq_index, flow_id);
2585 		if (rc < 0)
2586 			goto out;
2587 		old_rflow = rflow;
2588 		rflow = &flow_table->flows[flow_id];
2589 		rflow->cpu = next_cpu;
2590 		rflow->filter = rc;
2591 		if (old_rflow->filter == rflow->filter)
2592 			old_rflow->filter = RPS_NO_FILTER;
2593 	out:
2594 #endif
2595 		rflow->last_qtail =
2596 			per_cpu(softnet_data, tcpu).input_queue_head;
2597 	}
2598 
2599 	return rflow;
2600 }
2601 
2602 /*
2603  * get_rps_cpu is called from netif_receive_skb and returns the target
2604  * CPU from the RPS map of the receiving queue for a given skb.
2605  * rcu_read_lock must be held on entry.
2606  */
2607 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
2608 		       struct rps_dev_flow **rflowp)
2609 {
2610 	struct netdev_rx_queue *rxqueue;
2611 	struct rps_map *map;
2612 	struct rps_dev_flow_table *flow_table;
2613 	struct rps_sock_flow_table *sock_flow_table;
2614 	int cpu = -1;
2615 	u16 tcpu;
2616 
2617 	if (skb_rx_queue_recorded(skb)) {
2618 		u16 index = skb_get_rx_queue(skb);
2619 		if (unlikely(index >= dev->real_num_rx_queues)) {
2620 			WARN_ONCE(dev->real_num_rx_queues > 1,
2621 				  "%s received packet on queue %u, but number "
2622 				  "of RX queues is %u\n",
2623 				  dev->name, index, dev->real_num_rx_queues);
2624 			goto done;
2625 		}
2626 		rxqueue = dev->_rx + index;
2627 	} else
2628 		rxqueue = dev->_rx;
2629 
2630 	map = rcu_dereference(rxqueue->rps_map);
2631 	if (map) {
2632 		if (map->len == 1 &&
2633 		    !rcu_dereference_raw(rxqueue->rps_flow_table)) {
2634 			tcpu = map->cpus[0];
2635 			if (cpu_online(tcpu))
2636 				cpu = tcpu;
2637 			goto done;
2638 		}
2639 	} else if (!rcu_dereference_raw(rxqueue->rps_flow_table)) {
2640 		goto done;
2641 	}
2642 
2643 	skb_reset_network_header(skb);
2644 	if (!skb_get_rxhash(skb))
2645 		goto done;
2646 
2647 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2648 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
2649 	if (flow_table && sock_flow_table) {
2650 		u16 next_cpu;
2651 		struct rps_dev_flow *rflow;
2652 
2653 		rflow = &flow_table->flows[skb->rxhash & flow_table->mask];
2654 		tcpu = rflow->cpu;
2655 
2656 		next_cpu = sock_flow_table->ents[skb->rxhash &
2657 		    sock_flow_table->mask];
2658 
2659 		/*
2660 		 * If the desired CPU (where last recvmsg was done) is
2661 		 * different from current CPU (one in the rx-queue flow
2662 		 * table entry), switch if one of the following holds:
2663 		 *   - Current CPU is unset (equal to RPS_NO_CPU).
2664 		 *   - Current CPU is offline.
2665 		 *   - The current CPU's queue tail has advanced beyond the
2666 		 *     last packet that was enqueued using this table entry.
2667 		 *     This guarantees that all previous packets for the flow
2668 		 *     have been dequeued, thus preserving in order delivery.
2669 		 */
2670 		if (unlikely(tcpu != next_cpu) &&
2671 		    (tcpu == RPS_NO_CPU || !cpu_online(tcpu) ||
2672 		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
2673 		      rflow->last_qtail)) >= 0))
2674 			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
2675 
2676 		if (tcpu != RPS_NO_CPU && cpu_online(tcpu)) {
2677 			*rflowp = rflow;
2678 			cpu = tcpu;
2679 			goto done;
2680 		}
2681 	}
2682 
2683 	if (map) {
2684 		tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2685 
2686 		if (cpu_online(tcpu)) {
2687 			cpu = tcpu;
2688 			goto done;
2689 		}
2690 	}
2691 
2692 done:
2693 	return cpu;
2694 }
2695 
2696 #ifdef CONFIG_RFS_ACCEL
2697 
2698 /**
2699  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
2700  * @dev: Device on which the filter was set
2701  * @rxq_index: RX queue index
2702  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
2703  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
2704  *
2705  * Drivers that implement ndo_rx_flow_steer() should periodically call
2706  * this function for each installed filter and remove the filters for
2707  * which it returns %true.
2708  */
2709 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
2710 			 u32 flow_id, u16 filter_id)
2711 {
2712 	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
2713 	struct rps_dev_flow_table *flow_table;
2714 	struct rps_dev_flow *rflow;
2715 	bool expire = true;
2716 	int cpu;
2717 
2718 	rcu_read_lock();
2719 	flow_table = rcu_dereference(rxqueue->rps_flow_table);
2720 	if (flow_table && flow_id <= flow_table->mask) {
2721 		rflow = &flow_table->flows[flow_id];
2722 		cpu = ACCESS_ONCE(rflow->cpu);
2723 		if (rflow->filter == filter_id && cpu != RPS_NO_CPU &&
2724 		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
2725 			   rflow->last_qtail) <
2726 		     (int)(10 * flow_table->mask)))
2727 			expire = false;
2728 	}
2729 	rcu_read_unlock();
2730 	return expire;
2731 }
2732 EXPORT_SYMBOL(rps_may_expire_flow);
2733 
2734 #endif /* CONFIG_RFS_ACCEL */
2735 
2736 /* Called from hardirq (IPI) context */
2737 static void rps_trigger_softirq(void *data)
2738 {
2739 	struct softnet_data *sd = data;
2740 
2741 	____napi_schedule(sd, &sd->backlog);
2742 	sd->received_rps++;
2743 }
2744 
2745 #endif /* CONFIG_RPS */
2746 
2747 /*
2748  * Check if this softnet_data structure is another cpu one
2749  * If yes, queue it to our IPI list and return 1
2750  * If no, return 0
2751  */
2752 static int rps_ipi_queued(struct softnet_data *sd)
2753 {
2754 #ifdef CONFIG_RPS
2755 	struct softnet_data *mysd = &__get_cpu_var(softnet_data);
2756 
2757 	if (sd != mysd) {
2758 		sd->rps_ipi_next = mysd->rps_ipi_list;
2759 		mysd->rps_ipi_list = sd;
2760 
2761 		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
2762 		return 1;
2763 	}
2764 #endif /* CONFIG_RPS */
2765 	return 0;
2766 }
2767 
2768 /*
2769  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2770  * queue (may be a remote CPU queue).
2771  */
2772 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
2773 			      unsigned int *qtail)
2774 {
2775 	struct softnet_data *sd;
2776 	unsigned long flags;
2777 
2778 	sd = &per_cpu(softnet_data, cpu);
2779 
2780 	local_irq_save(flags);
2781 
2782 	rps_lock(sd);
2783 	if (skb_queue_len(&sd->input_pkt_queue) <= netdev_max_backlog) {
2784 		if (skb_queue_len(&sd->input_pkt_queue)) {
2785 enqueue:
2786 			__skb_queue_tail(&sd->input_pkt_queue, skb);
2787 			input_queue_tail_incr_save(sd, qtail);
2788 			rps_unlock(sd);
2789 			local_irq_restore(flags);
2790 			return NET_RX_SUCCESS;
2791 		}
2792 
2793 		/* Schedule NAPI for backlog device
2794 		 * We can use non atomic operation since we own the queue lock
2795 		 */
2796 		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
2797 			if (!rps_ipi_queued(sd))
2798 				____napi_schedule(sd, &sd->backlog);
2799 		}
2800 		goto enqueue;
2801 	}
2802 
2803 	sd->dropped++;
2804 	rps_unlock(sd);
2805 
2806 	local_irq_restore(flags);
2807 
2808 	atomic_long_inc(&skb->dev->rx_dropped);
2809 	kfree_skb(skb);
2810 	return NET_RX_DROP;
2811 }
2812 
2813 /**
2814  *	netif_rx	-	post buffer to the network code
2815  *	@skb: buffer to post
2816  *
2817  *	This function receives a packet from a device driver and queues it for
2818  *	the upper (protocol) levels to process.  It always succeeds. The buffer
2819  *	may be dropped during processing for congestion control or by the
2820  *	protocol layers.
2821  *
2822  *	return values:
2823  *	NET_RX_SUCCESS	(no congestion)
2824  *	NET_RX_DROP     (packet was dropped)
2825  *
2826  */
2827 
2828 int netif_rx(struct sk_buff *skb)
2829 {
2830 	int ret;
2831 
2832 	/* if netpoll wants it, pretend we never saw it */
2833 	if (netpoll_rx(skb))
2834 		return NET_RX_DROP;
2835 
2836 	if (netdev_tstamp_prequeue)
2837 		net_timestamp_check(skb);
2838 
2839 	trace_netif_rx(skb);
2840 #ifdef CONFIG_RPS
2841 	{
2842 		struct rps_dev_flow voidflow, *rflow = &voidflow;
2843 		int cpu;
2844 
2845 		preempt_disable();
2846 		rcu_read_lock();
2847 
2848 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
2849 		if (cpu < 0)
2850 			cpu = smp_processor_id();
2851 
2852 		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
2853 
2854 		rcu_read_unlock();
2855 		preempt_enable();
2856 	}
2857 #else
2858 	{
2859 		unsigned int qtail;
2860 		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
2861 		put_cpu();
2862 	}
2863 #endif
2864 	return ret;
2865 }
2866 EXPORT_SYMBOL(netif_rx);
2867 
2868 int netif_rx_ni(struct sk_buff *skb)
2869 {
2870 	int err;
2871 
2872 	preempt_disable();
2873 	err = netif_rx(skb);
2874 	if (local_softirq_pending())
2875 		do_softirq();
2876 	preempt_enable();
2877 
2878 	return err;
2879 }
2880 EXPORT_SYMBOL(netif_rx_ni);
2881 
2882 static void net_tx_action(struct softirq_action *h)
2883 {
2884 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
2885 
2886 	if (sd->completion_queue) {
2887 		struct sk_buff *clist;
2888 
2889 		local_irq_disable();
2890 		clist = sd->completion_queue;
2891 		sd->completion_queue = NULL;
2892 		local_irq_enable();
2893 
2894 		while (clist) {
2895 			struct sk_buff *skb = clist;
2896 			clist = clist->next;
2897 
2898 			WARN_ON(atomic_read(&skb->users));
2899 			trace_kfree_skb(skb, net_tx_action);
2900 			__kfree_skb(skb);
2901 		}
2902 	}
2903 
2904 	if (sd->output_queue) {
2905 		struct Qdisc *head;
2906 
2907 		local_irq_disable();
2908 		head = sd->output_queue;
2909 		sd->output_queue = NULL;
2910 		sd->output_queue_tailp = &sd->output_queue;
2911 		local_irq_enable();
2912 
2913 		while (head) {
2914 			struct Qdisc *q = head;
2915 			spinlock_t *root_lock;
2916 
2917 			head = head->next_sched;
2918 
2919 			root_lock = qdisc_lock(q);
2920 			if (spin_trylock(root_lock)) {
2921 				smp_mb__before_clear_bit();
2922 				clear_bit(__QDISC_STATE_SCHED,
2923 					  &q->state);
2924 				qdisc_run(q);
2925 				spin_unlock(root_lock);
2926 			} else {
2927 				if (!test_bit(__QDISC_STATE_DEACTIVATED,
2928 					      &q->state)) {
2929 					__netif_reschedule(q);
2930 				} else {
2931 					smp_mb__before_clear_bit();
2932 					clear_bit(__QDISC_STATE_SCHED,
2933 						  &q->state);
2934 				}
2935 			}
2936 		}
2937 	}
2938 }
2939 
2940 #if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
2941     (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
2942 /* This hook is defined here for ATM LANE */
2943 int (*br_fdb_test_addr_hook)(struct net_device *dev,
2944 			     unsigned char *addr) __read_mostly;
2945 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
2946 #endif
2947 
2948 #ifdef CONFIG_NET_CLS_ACT
2949 /* TODO: Maybe we should just force sch_ingress to be compiled in
2950  * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2951  * a compare and 2 stores extra right now if we dont have it on
2952  * but have CONFIG_NET_CLS_ACT
2953  * NOTE: This doesn't stop any functionality; if you dont have
2954  * the ingress scheduler, you just can't add policies on ingress.
2955  *
2956  */
2957 static int ing_filter(struct sk_buff *skb, struct netdev_queue *rxq)
2958 {
2959 	struct net_device *dev = skb->dev;
2960 	u32 ttl = G_TC_RTTL(skb->tc_verd);
2961 	int result = TC_ACT_OK;
2962 	struct Qdisc *q;
2963 
2964 	if (unlikely(MAX_RED_LOOP < ttl++)) {
2965 		if (net_ratelimit())
2966 			pr_warning( "Redir loop detected Dropping packet (%d->%d)\n",
2967 			       skb->skb_iif, dev->ifindex);
2968 		return TC_ACT_SHOT;
2969 	}
2970 
2971 	skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2972 	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
2973 
2974 	q = rxq->qdisc;
2975 	if (q != &noop_qdisc) {
2976 		spin_lock(qdisc_lock(q));
2977 		if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2978 			result = qdisc_enqueue_root(skb, q);
2979 		spin_unlock(qdisc_lock(q));
2980 	}
2981 
2982 	return result;
2983 }
2984 
2985 static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2986 					 struct packet_type **pt_prev,
2987 					 int *ret, struct net_device *orig_dev)
2988 {
2989 	struct netdev_queue *rxq = rcu_dereference(skb->dev->ingress_queue);
2990 
2991 	if (!rxq || rxq->qdisc == &noop_qdisc)
2992 		goto out;
2993 
2994 	if (*pt_prev) {
2995 		*ret = deliver_skb(skb, *pt_prev, orig_dev);
2996 		*pt_prev = NULL;
2997 	}
2998 
2999 	switch (ing_filter(skb, rxq)) {
3000 	case TC_ACT_SHOT:
3001 	case TC_ACT_STOLEN:
3002 		kfree_skb(skb);
3003 		return NULL;
3004 	}
3005 
3006 out:
3007 	skb->tc_verd = 0;
3008 	return skb;
3009 }
3010 #endif
3011 
3012 /**
3013  *	netdev_rx_handler_register - register receive handler
3014  *	@dev: device to register a handler for
3015  *	@rx_handler: receive handler to register
3016  *	@rx_handler_data: data pointer that is used by rx handler
3017  *
3018  *	Register a receive hander for a device. This handler will then be
3019  *	called from __netif_receive_skb. A negative errno code is returned
3020  *	on a failure.
3021  *
3022  *	The caller must hold the rtnl_mutex.
3023  *
3024  *	For a general description of rx_handler, see enum rx_handler_result.
3025  */
3026 int netdev_rx_handler_register(struct net_device *dev,
3027 			       rx_handler_func_t *rx_handler,
3028 			       void *rx_handler_data)
3029 {
3030 	ASSERT_RTNL();
3031 
3032 	if (dev->rx_handler)
3033 		return -EBUSY;
3034 
3035 	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3036 	rcu_assign_pointer(dev->rx_handler, rx_handler);
3037 
3038 	return 0;
3039 }
3040 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3041 
3042 /**
3043  *	netdev_rx_handler_unregister - unregister receive handler
3044  *	@dev: device to unregister a handler from
3045  *
3046  *	Unregister a receive hander from a device.
3047  *
3048  *	The caller must hold the rtnl_mutex.
3049  */
3050 void netdev_rx_handler_unregister(struct net_device *dev)
3051 {
3052 
3053 	ASSERT_RTNL();
3054 	rcu_assign_pointer(dev->rx_handler, NULL);
3055 	rcu_assign_pointer(dev->rx_handler_data, NULL);
3056 }
3057 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3058 
3059 static void vlan_on_bond_hook(struct sk_buff *skb)
3060 {
3061 	/*
3062 	 * Make sure ARP frames received on VLAN interfaces stacked on
3063 	 * bonding interfaces still make their way to any base bonding
3064 	 * device that may have registered for a specific ptype.
3065 	 */
3066 	if (skb->dev->priv_flags & IFF_802_1Q_VLAN &&
3067 	    vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING &&
3068 	    skb->protocol == htons(ETH_P_ARP)) {
3069 		struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
3070 
3071 		if (!skb2)
3072 			return;
3073 		skb2->dev = vlan_dev_real_dev(skb->dev);
3074 		netif_rx(skb2);
3075 	}
3076 }
3077 
3078 static int __netif_receive_skb(struct sk_buff *skb)
3079 {
3080 	struct packet_type *ptype, *pt_prev;
3081 	rx_handler_func_t *rx_handler;
3082 	struct net_device *orig_dev;
3083 	struct net_device *null_or_dev;
3084 	bool deliver_exact = false;
3085 	int ret = NET_RX_DROP;
3086 	__be16 type;
3087 
3088 	if (!netdev_tstamp_prequeue)
3089 		net_timestamp_check(skb);
3090 
3091 	trace_netif_receive_skb(skb);
3092 
3093 	/* if we've gotten here through NAPI, check netpoll */
3094 	if (netpoll_receive_skb(skb))
3095 		return NET_RX_DROP;
3096 
3097 	if (!skb->skb_iif)
3098 		skb->skb_iif = skb->dev->ifindex;
3099 	orig_dev = skb->dev;
3100 
3101 	skb_reset_network_header(skb);
3102 	skb_reset_transport_header(skb);
3103 	skb->mac_len = skb->network_header - skb->mac_header;
3104 
3105 	pt_prev = NULL;
3106 
3107 	rcu_read_lock();
3108 
3109 another_round:
3110 
3111 	__this_cpu_inc(softnet_data.processed);
3112 
3113 #ifdef CONFIG_NET_CLS_ACT
3114 	if (skb->tc_verd & TC_NCLS) {
3115 		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
3116 		goto ncls;
3117 	}
3118 #endif
3119 
3120 	list_for_each_entry_rcu(ptype, &ptype_all, list) {
3121 		if (!ptype->dev || ptype->dev == skb->dev) {
3122 			if (pt_prev)
3123 				ret = deliver_skb(skb, pt_prev, orig_dev);
3124 			pt_prev = ptype;
3125 		}
3126 	}
3127 
3128 #ifdef CONFIG_NET_CLS_ACT
3129 	skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
3130 	if (!skb)
3131 		goto out;
3132 ncls:
3133 #endif
3134 
3135 	rx_handler = rcu_dereference(skb->dev->rx_handler);
3136 	if (rx_handler) {
3137 		if (pt_prev) {
3138 			ret = deliver_skb(skb, pt_prev, orig_dev);
3139 			pt_prev = NULL;
3140 		}
3141 		switch (rx_handler(&skb)) {
3142 		case RX_HANDLER_CONSUMED:
3143 			goto out;
3144 		case RX_HANDLER_ANOTHER:
3145 			goto another_round;
3146 		case RX_HANDLER_EXACT:
3147 			deliver_exact = true;
3148 		case RX_HANDLER_PASS:
3149 			break;
3150 		default:
3151 			BUG();
3152 		}
3153 	}
3154 
3155 	if (vlan_tx_tag_present(skb)) {
3156 		if (pt_prev) {
3157 			ret = deliver_skb(skb, pt_prev, orig_dev);
3158 			pt_prev = NULL;
3159 		}
3160 		if (vlan_hwaccel_do_receive(&skb)) {
3161 			ret = __netif_receive_skb(skb);
3162 			goto out;
3163 		} else if (unlikely(!skb))
3164 			goto out;
3165 	}
3166 
3167 	vlan_on_bond_hook(skb);
3168 
3169 	/* deliver only exact match when indicated */
3170 	null_or_dev = deliver_exact ? skb->dev : NULL;
3171 
3172 	type = skb->protocol;
3173 	list_for_each_entry_rcu(ptype,
3174 			&ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
3175 		if (ptype->type == type &&
3176 		    (ptype->dev == null_or_dev || ptype->dev == skb->dev ||
3177 		     ptype->dev == orig_dev)) {
3178 			if (pt_prev)
3179 				ret = deliver_skb(skb, pt_prev, orig_dev);
3180 			pt_prev = ptype;
3181 		}
3182 	}
3183 
3184 	if (pt_prev) {
3185 		ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
3186 	} else {
3187 		atomic_long_inc(&skb->dev->rx_dropped);
3188 		kfree_skb(skb);
3189 		/* Jamal, now you will not able to escape explaining
3190 		 * me how you were going to use this. :-)
3191 		 */
3192 		ret = NET_RX_DROP;
3193 	}
3194 
3195 out:
3196 	rcu_read_unlock();
3197 	return ret;
3198 }
3199 
3200 /**
3201  *	netif_receive_skb - process receive buffer from network
3202  *	@skb: buffer to process
3203  *
3204  *	netif_receive_skb() is the main receive data processing function.
3205  *	It always succeeds. The buffer may be dropped during processing
3206  *	for congestion control or by the protocol layers.
3207  *
3208  *	This function may only be called from softirq context and interrupts
3209  *	should be enabled.
3210  *
3211  *	Return values (usually ignored):
3212  *	NET_RX_SUCCESS: no congestion
3213  *	NET_RX_DROP: packet was dropped
3214  */
3215 int netif_receive_skb(struct sk_buff *skb)
3216 {
3217 	if (netdev_tstamp_prequeue)
3218 		net_timestamp_check(skb);
3219 
3220 	if (skb_defer_rx_timestamp(skb))
3221 		return NET_RX_SUCCESS;
3222 
3223 #ifdef CONFIG_RPS
3224 	{
3225 		struct rps_dev_flow voidflow, *rflow = &voidflow;
3226 		int cpu, ret;
3227 
3228 		rcu_read_lock();
3229 
3230 		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3231 
3232 		if (cpu >= 0) {
3233 			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3234 			rcu_read_unlock();
3235 		} else {
3236 			rcu_read_unlock();
3237 			ret = __netif_receive_skb(skb);
3238 		}
3239 
3240 		return ret;
3241 	}
3242 #else
3243 	return __netif_receive_skb(skb);
3244 #endif
3245 }
3246 EXPORT_SYMBOL(netif_receive_skb);
3247 
3248 /* Network device is going away, flush any packets still pending
3249  * Called with irqs disabled.
3250  */
3251 static void flush_backlog(void *arg)
3252 {
3253 	struct net_device *dev = arg;
3254 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3255 	struct sk_buff *skb, *tmp;
3256 
3257 	rps_lock(sd);
3258 	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
3259 		if (skb->dev == dev) {
3260 			__skb_unlink(skb, &sd->input_pkt_queue);
3261 			kfree_skb(skb);
3262 			input_queue_head_incr(sd);
3263 		}
3264 	}
3265 	rps_unlock(sd);
3266 
3267 	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
3268 		if (skb->dev == dev) {
3269 			__skb_unlink(skb, &sd->process_queue);
3270 			kfree_skb(skb);
3271 			input_queue_head_incr(sd);
3272 		}
3273 	}
3274 }
3275 
3276 static int napi_gro_complete(struct sk_buff *skb)
3277 {
3278 	struct packet_type *ptype;
3279 	__be16 type = skb->protocol;
3280 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3281 	int err = -ENOENT;
3282 
3283 	if (NAPI_GRO_CB(skb)->count == 1) {
3284 		skb_shinfo(skb)->gso_size = 0;
3285 		goto out;
3286 	}
3287 
3288 	rcu_read_lock();
3289 	list_for_each_entry_rcu(ptype, head, list) {
3290 		if (ptype->type != type || ptype->dev || !ptype->gro_complete)
3291 			continue;
3292 
3293 		err = ptype->gro_complete(skb);
3294 		break;
3295 	}
3296 	rcu_read_unlock();
3297 
3298 	if (err) {
3299 		WARN_ON(&ptype->list == head);
3300 		kfree_skb(skb);
3301 		return NET_RX_SUCCESS;
3302 	}
3303 
3304 out:
3305 	return netif_receive_skb(skb);
3306 }
3307 
3308 inline void napi_gro_flush(struct napi_struct *napi)
3309 {
3310 	struct sk_buff *skb, *next;
3311 
3312 	for (skb = napi->gro_list; skb; skb = next) {
3313 		next = skb->next;
3314 		skb->next = NULL;
3315 		napi_gro_complete(skb);
3316 	}
3317 
3318 	napi->gro_count = 0;
3319 	napi->gro_list = NULL;
3320 }
3321 EXPORT_SYMBOL(napi_gro_flush);
3322 
3323 enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3324 {
3325 	struct sk_buff **pp = NULL;
3326 	struct packet_type *ptype;
3327 	__be16 type = skb->protocol;
3328 	struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
3329 	int same_flow;
3330 	int mac_len;
3331 	enum gro_result ret;
3332 
3333 	if (!(skb->dev->features & NETIF_F_GRO) || netpoll_rx_on(skb))
3334 		goto normal;
3335 
3336 	if (skb_is_gso(skb) || skb_has_frag_list(skb))
3337 		goto normal;
3338 
3339 	rcu_read_lock();
3340 	list_for_each_entry_rcu(ptype, head, list) {
3341 		if (ptype->type != type || ptype->dev || !ptype->gro_receive)
3342 			continue;
3343 
3344 		skb_set_network_header(skb, skb_gro_offset(skb));
3345 		mac_len = skb->network_header - skb->mac_header;
3346 		skb->mac_len = mac_len;
3347 		NAPI_GRO_CB(skb)->same_flow = 0;
3348 		NAPI_GRO_CB(skb)->flush = 0;
3349 		NAPI_GRO_CB(skb)->free = 0;
3350 
3351 		pp = ptype->gro_receive(&napi->gro_list, skb);
3352 		break;
3353 	}
3354 	rcu_read_unlock();
3355 
3356 	if (&ptype->list == head)
3357 		goto normal;
3358 
3359 	same_flow = NAPI_GRO_CB(skb)->same_flow;
3360 	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
3361 
3362 	if (pp) {
3363 		struct sk_buff *nskb = *pp;
3364 
3365 		*pp = nskb->next;
3366 		nskb->next = NULL;
3367 		napi_gro_complete(nskb);
3368 		napi->gro_count--;
3369 	}
3370 
3371 	if (same_flow)
3372 		goto ok;
3373 
3374 	if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
3375 		goto normal;
3376 
3377 	napi->gro_count++;
3378 	NAPI_GRO_CB(skb)->count = 1;
3379 	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
3380 	skb->next = napi->gro_list;
3381 	napi->gro_list = skb;
3382 	ret = GRO_HELD;
3383 
3384 pull:
3385 	if (skb_headlen(skb) < skb_gro_offset(skb)) {
3386 		int grow = skb_gro_offset(skb) - skb_headlen(skb);
3387 
3388 		BUG_ON(skb->end - skb->tail < grow);
3389 
3390 		memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
3391 
3392 		skb->tail += grow;
3393 		skb->data_len -= grow;
3394 
3395 		skb_shinfo(skb)->frags[0].page_offset += grow;
3396 		skb_shinfo(skb)->frags[0].size -= grow;
3397 
3398 		if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
3399 			put_page(skb_shinfo(skb)->frags[0].page);
3400 			memmove(skb_shinfo(skb)->frags,
3401 				skb_shinfo(skb)->frags + 1,
3402 				--skb_shinfo(skb)->nr_frags * sizeof(skb_frag_t));
3403 		}
3404 	}
3405 
3406 ok:
3407 	return ret;
3408 
3409 normal:
3410 	ret = GRO_NORMAL;
3411 	goto pull;
3412 }
3413 EXPORT_SYMBOL(dev_gro_receive);
3414 
3415 static inline gro_result_t
3416 __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3417 {
3418 	struct sk_buff *p;
3419 
3420 	for (p = napi->gro_list; p; p = p->next) {
3421 		unsigned long diffs;
3422 
3423 		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
3424 		diffs |= p->vlan_tci ^ skb->vlan_tci;
3425 		diffs |= compare_ether_header(skb_mac_header(p),
3426 					      skb_gro_mac_header(skb));
3427 		NAPI_GRO_CB(p)->same_flow = !diffs;
3428 		NAPI_GRO_CB(p)->flush = 0;
3429 	}
3430 
3431 	return dev_gro_receive(napi, skb);
3432 }
3433 
3434 gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
3435 {
3436 	switch (ret) {
3437 	case GRO_NORMAL:
3438 		if (netif_receive_skb(skb))
3439 			ret = GRO_DROP;
3440 		break;
3441 
3442 	case GRO_DROP:
3443 	case GRO_MERGED_FREE:
3444 		kfree_skb(skb);
3445 		break;
3446 
3447 	case GRO_HELD:
3448 	case GRO_MERGED:
3449 		break;
3450 	}
3451 
3452 	return ret;
3453 }
3454 EXPORT_SYMBOL(napi_skb_finish);
3455 
3456 void skb_gro_reset_offset(struct sk_buff *skb)
3457 {
3458 	NAPI_GRO_CB(skb)->data_offset = 0;
3459 	NAPI_GRO_CB(skb)->frag0 = NULL;
3460 	NAPI_GRO_CB(skb)->frag0_len = 0;
3461 
3462 	if (skb->mac_header == skb->tail &&
3463 	    !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
3464 		NAPI_GRO_CB(skb)->frag0 =
3465 			page_address(skb_shinfo(skb)->frags[0].page) +
3466 			skb_shinfo(skb)->frags[0].page_offset;
3467 		NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
3468 	}
3469 }
3470 EXPORT_SYMBOL(skb_gro_reset_offset);
3471 
3472 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
3473 {
3474 	skb_gro_reset_offset(skb);
3475 
3476 	return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
3477 }
3478 EXPORT_SYMBOL(napi_gro_receive);
3479 
3480 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
3481 {
3482 	__skb_pull(skb, skb_headlen(skb));
3483 	skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
3484 	skb->vlan_tci = 0;
3485 	skb->dev = napi->dev;
3486 	skb->skb_iif = 0;
3487 
3488 	napi->skb = skb;
3489 }
3490 
3491 struct sk_buff *napi_get_frags(struct napi_struct *napi)
3492 {
3493 	struct sk_buff *skb = napi->skb;
3494 
3495 	if (!skb) {
3496 		skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3497 		if (skb)
3498 			napi->skb = skb;
3499 	}
3500 	return skb;
3501 }
3502 EXPORT_SYMBOL(napi_get_frags);
3503 
3504 gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3505 			       gro_result_t ret)
3506 {
3507 	switch (ret) {
3508 	case GRO_NORMAL:
3509 	case GRO_HELD:
3510 		skb->protocol = eth_type_trans(skb, skb->dev);
3511 
3512 		if (ret == GRO_HELD)
3513 			skb_gro_pull(skb, -ETH_HLEN);
3514 		else if (netif_receive_skb(skb))
3515 			ret = GRO_DROP;
3516 		break;
3517 
3518 	case GRO_DROP:
3519 	case GRO_MERGED_FREE:
3520 		napi_reuse_skb(napi, skb);
3521 		break;
3522 
3523 	case GRO_MERGED:
3524 		break;
3525 	}
3526 
3527 	return ret;
3528 }
3529 EXPORT_SYMBOL(napi_frags_finish);
3530 
3531 struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3532 {
3533 	struct sk_buff *skb = napi->skb;
3534 	struct ethhdr *eth;
3535 	unsigned int hlen;
3536 	unsigned int off;
3537 
3538 	napi->skb = NULL;
3539 
3540 	skb_reset_mac_header(skb);
3541 	skb_gro_reset_offset(skb);
3542 
3543 	off = skb_gro_offset(skb);
3544 	hlen = off + sizeof(*eth);
3545 	eth = skb_gro_header_fast(skb, off);
3546 	if (skb_gro_header_hard(skb, hlen)) {
3547 		eth = skb_gro_header_slow(skb, hlen, off);
3548 		if (unlikely(!eth)) {
3549 			napi_reuse_skb(napi, skb);
3550 			skb = NULL;
3551 			goto out;
3552 		}
3553 	}
3554 
3555 	skb_gro_pull(skb, sizeof(*eth));
3556 
3557 	/*
3558 	 * This works because the only protocols we care about don't require
3559 	 * special handling.  We'll fix it up properly at the end.
3560 	 */
3561 	skb->protocol = eth->h_proto;
3562 
3563 out:
3564 	return skb;
3565 }
3566 EXPORT_SYMBOL(napi_frags_skb);
3567 
3568 gro_result_t napi_gro_frags(struct napi_struct *napi)
3569 {
3570 	struct sk_buff *skb = napi_frags_skb(napi);
3571 
3572 	if (!skb)
3573 		return GRO_DROP;
3574 
3575 	return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3576 }
3577 EXPORT_SYMBOL(napi_gro_frags);
3578 
3579 /*
3580  * net_rps_action sends any pending IPI's for rps.
3581  * Note: called with local irq disabled, but exits with local irq enabled.
3582  */
3583 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
3584 {
3585 #ifdef CONFIG_RPS
3586 	struct softnet_data *remsd = sd->rps_ipi_list;
3587 
3588 	if (remsd) {
3589 		sd->rps_ipi_list = NULL;
3590 
3591 		local_irq_enable();
3592 
3593 		/* Send pending IPI's to kick RPS processing on remote cpus. */
3594 		while (remsd) {
3595 			struct softnet_data *next = remsd->rps_ipi_next;
3596 
3597 			if (cpu_online(remsd->cpu))
3598 				__smp_call_function_single(remsd->cpu,
3599 							   &remsd->csd, 0);
3600 			remsd = next;
3601 		}
3602 	} else
3603 #endif
3604 		local_irq_enable();
3605 }
3606 
3607 static int process_backlog(struct napi_struct *napi, int quota)
3608 {
3609 	int work = 0;
3610 	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
3611 
3612 #ifdef CONFIG_RPS
3613 	/* Check if we have pending ipi, its better to send them now,
3614 	 * not waiting net_rx_action() end.
3615 	 */
3616 	if (sd->rps_ipi_list) {
3617 		local_irq_disable();
3618 		net_rps_action_and_irq_enable(sd);
3619 	}
3620 #endif
3621 	napi->weight = weight_p;
3622 	local_irq_disable();
3623 	while (work < quota) {
3624 		struct sk_buff *skb;
3625 		unsigned int qlen;
3626 
3627 		while ((skb = __skb_dequeue(&sd->process_queue))) {
3628 			local_irq_enable();
3629 			__netif_receive_skb(skb);
3630 			local_irq_disable();
3631 			input_queue_head_incr(sd);
3632 			if (++work >= quota) {
3633 				local_irq_enable();
3634 				return work;
3635 			}
3636 		}
3637 
3638 		rps_lock(sd);
3639 		qlen = skb_queue_len(&sd->input_pkt_queue);
3640 		if (qlen)
3641 			skb_queue_splice_tail_init(&sd->input_pkt_queue,
3642 						   &sd->process_queue);
3643 
3644 		if (qlen < quota - work) {
3645 			/*
3646 			 * Inline a custom version of __napi_complete().
3647 			 * only current cpu owns and manipulates this napi,
3648 			 * and NAPI_STATE_SCHED is the only possible flag set on backlog.
3649 			 * we can use a plain write instead of clear_bit(),
3650 			 * and we dont need an smp_mb() memory barrier.
3651 			 */
3652 			list_del(&napi->poll_list);
3653 			napi->state = 0;
3654 
3655 			quota = work + qlen;
3656 		}
3657 		rps_unlock(sd);
3658 	}
3659 	local_irq_enable();
3660 
3661 	return work;
3662 }
3663 
3664 /**
3665  * __napi_schedule - schedule for receive
3666  * @n: entry to schedule
3667  *
3668  * The entry's receive function will be scheduled to run
3669  */
3670 void __napi_schedule(struct napi_struct *n)
3671 {
3672 	unsigned long flags;
3673 
3674 	local_irq_save(flags);
3675 	____napi_schedule(&__get_cpu_var(softnet_data), n);
3676 	local_irq_restore(flags);
3677 }
3678 EXPORT_SYMBOL(__napi_schedule);
3679 
3680 void __napi_complete(struct napi_struct *n)
3681 {
3682 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3683 	BUG_ON(n->gro_list);
3684 
3685 	list_del(&n->poll_list);
3686 	smp_mb__before_clear_bit();
3687 	clear_bit(NAPI_STATE_SCHED, &n->state);
3688 }
3689 EXPORT_SYMBOL(__napi_complete);
3690 
3691 void napi_complete(struct napi_struct *n)
3692 {
3693 	unsigned long flags;
3694 
3695 	/*
3696 	 * don't let napi dequeue from the cpu poll list
3697 	 * just in case its running on a different cpu
3698 	 */
3699 	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3700 		return;
3701 
3702 	napi_gro_flush(n);
3703 	local_irq_save(flags);
3704 	__napi_complete(n);
3705 	local_irq_restore(flags);
3706 }
3707 EXPORT_SYMBOL(napi_complete);
3708 
3709 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3710 		    int (*poll)(struct napi_struct *, int), int weight)
3711 {
3712 	INIT_LIST_HEAD(&napi->poll_list);
3713 	napi->gro_count = 0;
3714 	napi->gro_list = NULL;
3715 	napi->skb = NULL;
3716 	napi->poll = poll;
3717 	napi->weight = weight;
3718 	list_add(&napi->dev_list, &dev->napi_list);
3719 	napi->dev = dev;
3720 #ifdef CONFIG_NETPOLL
3721 	spin_lock_init(&napi->poll_lock);
3722 	napi->poll_owner = -1;
3723 #endif
3724 	set_bit(NAPI_STATE_SCHED, &napi->state);
3725 }
3726 EXPORT_SYMBOL(netif_napi_add);
3727 
3728 void netif_napi_del(struct napi_struct *napi)
3729 {
3730 	struct sk_buff *skb, *next;
3731 
3732 	list_del_init(&napi->dev_list);
3733 	napi_free_frags(napi);
3734 
3735 	for (skb = napi->gro_list; skb; skb = next) {
3736 		next = skb->next;
3737 		skb->next = NULL;
3738 		kfree_skb(skb);
3739 	}
3740 
3741 	napi->gro_list = NULL;
3742 	napi->gro_count = 0;
3743 }
3744 EXPORT_SYMBOL(netif_napi_del);
3745 
3746 static void net_rx_action(struct softirq_action *h)
3747 {
3748 	struct softnet_data *sd = &__get_cpu_var(softnet_data);
3749 	unsigned long time_limit = jiffies + 2;
3750 	int budget = netdev_budget;
3751 	void *have;
3752 
3753 	local_irq_disable();
3754 
3755 	while (!list_empty(&sd->poll_list)) {
3756 		struct napi_struct *n;
3757 		int work, weight;
3758 
3759 		/* If softirq window is exhuasted then punt.
3760 		 * Allow this to run for 2 jiffies since which will allow
3761 		 * an average latency of 1.5/HZ.
3762 		 */
3763 		if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
3764 			goto softnet_break;
3765 
3766 		local_irq_enable();
3767 
3768 		/* Even though interrupts have been re-enabled, this
3769 		 * access is safe because interrupts can only add new
3770 		 * entries to the tail of this list, and only ->poll()
3771 		 * calls can remove this head entry from the list.
3772 		 */
3773 		n = list_first_entry(&sd->poll_list, struct napi_struct, poll_list);
3774 
3775 		have = netpoll_poll_lock(n);
3776 
3777 		weight = n->weight;
3778 
3779 		/* This NAPI_STATE_SCHED test is for avoiding a race
3780 		 * with netpoll's poll_napi().  Only the entity which
3781 		 * obtains the lock and sees NAPI_STATE_SCHED set will
3782 		 * actually make the ->poll() call.  Therefore we avoid
3783 		 * accidentally calling ->poll() when NAPI is not scheduled.
3784 		 */
3785 		work = 0;
3786 		if (test_bit(NAPI_STATE_SCHED, &n->state)) {
3787 			work = n->poll(n, weight);
3788 			trace_napi_poll(n);
3789 		}
3790 
3791 		WARN_ON_ONCE(work > weight);
3792 
3793 		budget -= work;
3794 
3795 		local_irq_disable();
3796 
3797 		/* Drivers must not modify the NAPI state if they
3798 		 * consume the entire weight.  In such cases this code
3799 		 * still "owns" the NAPI instance and therefore can
3800 		 * move the instance around on the list at-will.
3801 		 */
3802 		if (unlikely(work == weight)) {
3803 			if (unlikely(napi_disable_pending(n))) {
3804 				local_irq_enable();
3805 				napi_complete(n);
3806 				local_irq_disable();
3807 			} else
3808 				list_move_tail(&n->poll_list, &sd->poll_list);
3809 		}
3810 
3811 		netpoll_poll_unlock(have);
3812 	}
3813 out:
3814 	net_rps_action_and_irq_enable(sd);
3815 
3816 #ifdef CONFIG_NET_DMA
3817 	/*
3818 	 * There may not be any more sk_buffs coming right now, so push
3819 	 * any pending DMA copies to hardware
3820 	 */
3821 	dma_issue_pending_all();
3822 #endif
3823 
3824 	return;
3825 
3826 softnet_break:
3827 	sd->time_squeeze++;
3828 	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3829 	goto out;
3830 }
3831 
3832 static gifconf_func_t *gifconf_list[NPROTO];
3833 
3834 /**
3835  *	register_gifconf	-	register a SIOCGIF handler
3836  *	@family: Address family
3837  *	@gifconf: Function handler
3838  *
3839  *	Register protocol dependent address dumping routines. The handler
3840  *	that is passed must not be freed or reused until it has been replaced
3841  *	by another handler.
3842  */
3843 int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
3844 {
3845 	if (family >= NPROTO)
3846 		return -EINVAL;
3847 	gifconf_list[family] = gifconf;
3848 	return 0;
3849 }
3850 EXPORT_SYMBOL(register_gifconf);
3851 
3852 
3853 /*
3854  *	Map an interface index to its name (SIOCGIFNAME)
3855  */
3856 
3857 /*
3858  *	We need this ioctl for efficient implementation of the
3859  *	if_indextoname() function required by the IPv6 API.  Without
3860  *	it, we would have to search all the interfaces to find a
3861  *	match.  --pb
3862  */
3863 
3864 static int dev_ifname(struct net *net, struct ifreq __user *arg)
3865 {
3866 	struct net_device *dev;
3867 	struct ifreq ifr;
3868 
3869 	/*
3870 	 *	Fetch the caller's info block.
3871 	 */
3872 
3873 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3874 		return -EFAULT;
3875 
3876 	rcu_read_lock();
3877 	dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
3878 	if (!dev) {
3879 		rcu_read_unlock();
3880 		return -ENODEV;
3881 	}
3882 
3883 	strcpy(ifr.ifr_name, dev->name);
3884 	rcu_read_unlock();
3885 
3886 	if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3887 		return -EFAULT;
3888 	return 0;
3889 }
3890 
3891 /*
3892  *	Perform a SIOCGIFCONF call. This structure will change
3893  *	size eventually, and there is nothing I can do about it.
3894  *	Thus we will need a 'compatibility mode'.
3895  */
3896 
3897 static int dev_ifconf(struct net *net, char __user *arg)
3898 {
3899 	struct ifconf ifc;
3900 	struct net_device *dev;
3901 	char __user *pos;
3902 	int len;
3903 	int total;
3904 	int i;
3905 
3906 	/*
3907 	 *	Fetch the caller's info block.
3908 	 */
3909 
3910 	if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3911 		return -EFAULT;
3912 
3913 	pos = ifc.ifc_buf;
3914 	len = ifc.ifc_len;
3915 
3916 	/*
3917 	 *	Loop over the interfaces, and write an info block for each.
3918 	 */
3919 
3920 	total = 0;
3921 	for_each_netdev(net, dev) {
3922 		for (i = 0; i < NPROTO; i++) {
3923 			if (gifconf_list[i]) {
3924 				int done;
3925 				if (!pos)
3926 					done = gifconf_list[i](dev, NULL, 0);
3927 				else
3928 					done = gifconf_list[i](dev, pos + total,
3929 							       len - total);
3930 				if (done < 0)
3931 					return -EFAULT;
3932 				total += done;
3933 			}
3934 		}
3935 	}
3936 
3937 	/*
3938 	 *	All done.  Write the updated control block back to the caller.
3939 	 */
3940 	ifc.ifc_len = total;
3941 
3942 	/*
3943 	 * 	Both BSD and Solaris return 0 here, so we do too.
3944 	 */
3945 	return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3946 }
3947 
3948 #ifdef CONFIG_PROC_FS
3949 /*
3950  *	This is invoked by the /proc filesystem handler to display a device
3951  *	in detail.
3952  */
3953 void *dev_seq_start(struct seq_file *seq, loff_t *pos)
3954 	__acquires(RCU)
3955 {
3956 	struct net *net = seq_file_net(seq);
3957 	loff_t off;
3958 	struct net_device *dev;
3959 
3960 	rcu_read_lock();
3961 	if (!*pos)
3962 		return SEQ_START_TOKEN;
3963 
3964 	off = 1;
3965 	for_each_netdev_rcu(net, dev)
3966 		if (off++ == *pos)
3967 			return dev;
3968 
3969 	return NULL;
3970 }
3971 
3972 void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3973 {
3974 	struct net_device *dev = v;
3975 
3976 	if (v == SEQ_START_TOKEN)
3977 		dev = first_net_device_rcu(seq_file_net(seq));
3978 	else
3979 		dev = next_net_device_rcu(dev);
3980 
3981 	++*pos;
3982 	return dev;
3983 }
3984 
3985 void dev_seq_stop(struct seq_file *seq, void *v)
3986 	__releases(RCU)
3987 {
3988 	rcu_read_unlock();
3989 }
3990 
3991 static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3992 {
3993 	struct rtnl_link_stats64 temp;
3994 	const struct rtnl_link_stats64 *stats = dev_get_stats(dev, &temp);
3995 
3996 	seq_printf(seq, "%6s: %7llu %7llu %4llu %4llu %4llu %5llu %10llu %9llu "
3997 		   "%8llu %7llu %4llu %4llu %4llu %5llu %7llu %10llu\n",
3998 		   dev->name, stats->rx_bytes, stats->rx_packets,
3999 		   stats->rx_errors,
4000 		   stats->rx_dropped + stats->rx_missed_errors,
4001 		   stats->rx_fifo_errors,
4002 		   stats->rx_length_errors + stats->rx_over_errors +
4003 		    stats->rx_crc_errors + stats->rx_frame_errors,
4004 		   stats->rx_compressed, stats->multicast,
4005 		   stats->tx_bytes, stats->tx_packets,
4006 		   stats->tx_errors, stats->tx_dropped,
4007 		   stats->tx_fifo_errors, stats->collisions,
4008 		   stats->tx_carrier_errors +
4009 		    stats->tx_aborted_errors +
4010 		    stats->tx_window_errors +
4011 		    stats->tx_heartbeat_errors,
4012 		   stats->tx_compressed);
4013 }
4014 
4015 /*
4016  *	Called from the PROCfs module. This now uses the new arbitrary sized
4017  *	/proc/net interface to create /proc/net/dev
4018  */
4019 static int dev_seq_show(struct seq_file *seq, void *v)
4020 {
4021 	if (v == SEQ_START_TOKEN)
4022 		seq_puts(seq, "Inter-|   Receive                            "
4023 			      "                    |  Transmit\n"
4024 			      " face |bytes    packets errs drop fifo frame "
4025 			      "compressed multicast|bytes    packets errs "
4026 			      "drop fifo colls carrier compressed\n");
4027 	else
4028 		dev_seq_printf_stats(seq, v);
4029 	return 0;
4030 }
4031 
4032 static struct softnet_data *softnet_get_online(loff_t *pos)
4033 {
4034 	struct softnet_data *sd = NULL;
4035 
4036 	while (*pos < nr_cpu_ids)
4037 		if (cpu_online(*pos)) {
4038 			sd = &per_cpu(softnet_data, *pos);
4039 			break;
4040 		} else
4041 			++*pos;
4042 	return sd;
4043 }
4044 
4045 static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
4046 {
4047 	return softnet_get_online(pos);
4048 }
4049 
4050 static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4051 {
4052 	++*pos;
4053 	return softnet_get_online(pos);
4054 }
4055 
4056 static void softnet_seq_stop(struct seq_file *seq, void *v)
4057 {
4058 }
4059 
4060 static int softnet_seq_show(struct seq_file *seq, void *v)
4061 {
4062 	struct softnet_data *sd = v;
4063 
4064 	seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
4065 		   sd->processed, sd->dropped, sd->time_squeeze, 0,
4066 		   0, 0, 0, 0, /* was fastroute */
4067 		   sd->cpu_collision, sd->received_rps);
4068 	return 0;
4069 }
4070 
4071 static const struct seq_operations dev_seq_ops = {
4072 	.start = dev_seq_start,
4073 	.next  = dev_seq_next,
4074 	.stop  = dev_seq_stop,
4075 	.show  = dev_seq_show,
4076 };
4077 
4078 static int dev_seq_open(struct inode *inode, struct file *file)
4079 {
4080 	return seq_open_net(inode, file, &dev_seq_ops,
4081 			    sizeof(struct seq_net_private));
4082 }
4083 
4084 static const struct file_operations dev_seq_fops = {
4085 	.owner	 = THIS_MODULE,
4086 	.open    = dev_seq_open,
4087 	.read    = seq_read,
4088 	.llseek  = seq_lseek,
4089 	.release = seq_release_net,
4090 };
4091 
4092 static const struct seq_operations softnet_seq_ops = {
4093 	.start = softnet_seq_start,
4094 	.next  = softnet_seq_next,
4095 	.stop  = softnet_seq_stop,
4096 	.show  = softnet_seq_show,
4097 };
4098 
4099 static int softnet_seq_open(struct inode *inode, struct file *file)
4100 {
4101 	return seq_open(file, &softnet_seq_ops);
4102 }
4103 
4104 static const struct file_operations softnet_seq_fops = {
4105 	.owner	 = THIS_MODULE,
4106 	.open    = softnet_seq_open,
4107 	.read    = seq_read,
4108 	.llseek  = seq_lseek,
4109 	.release = seq_release,
4110 };
4111 
4112 static void *ptype_get_idx(loff_t pos)
4113 {
4114 	struct packet_type *pt = NULL;
4115 	loff_t i = 0;
4116 	int t;
4117 
4118 	list_for_each_entry_rcu(pt, &ptype_all, list) {
4119 		if (i == pos)
4120 			return pt;
4121 		++i;
4122 	}
4123 
4124 	for (t = 0; t < PTYPE_HASH_SIZE; t++) {
4125 		list_for_each_entry_rcu(pt, &ptype_base[t], list) {
4126 			if (i == pos)
4127 				return pt;
4128 			++i;
4129 		}
4130 	}
4131 	return NULL;
4132 }
4133 
4134 static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
4135 	__acquires(RCU)
4136 {
4137 	rcu_read_lock();
4138 	return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
4139 }
4140 
4141 static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4142 {
4143 	struct packet_type *pt;
4144 	struct list_head *nxt;
4145 	int hash;
4146 
4147 	++*pos;
4148 	if (v == SEQ_START_TOKEN)
4149 		return ptype_get_idx(0);
4150 
4151 	pt = v;
4152 	nxt = pt->list.next;
4153 	if (pt->type == htons(ETH_P_ALL)) {
4154 		if (nxt != &ptype_all)
4155 			goto found;
4156 		hash = 0;
4157 		nxt = ptype_base[0].next;
4158 	} else
4159 		hash = ntohs(pt->type) & PTYPE_HASH_MASK;
4160 
4161 	while (nxt == &ptype_base[hash]) {
4162 		if (++hash >= PTYPE_HASH_SIZE)
4163 			return NULL;
4164 		nxt = ptype_base[hash].next;
4165 	}
4166 found:
4167 	return list_entry(nxt, struct packet_type, list);
4168 }
4169 
4170 static void ptype_seq_stop(struct seq_file *seq, void *v)
4171 	__releases(RCU)
4172 {
4173 	rcu_read_unlock();
4174 }
4175 
4176 static int ptype_seq_show(struct seq_file *seq, void *v)
4177 {
4178 	struct packet_type *pt = v;
4179 
4180 	if (v == SEQ_START_TOKEN)
4181 		seq_puts(seq, "Type Device      Function\n");
4182 	else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
4183 		if (pt->type == htons(ETH_P_ALL))
4184 			seq_puts(seq, "ALL ");
4185 		else
4186 			seq_printf(seq, "%04x", ntohs(pt->type));
4187 
4188 		seq_printf(seq, " %-8s %pF\n",
4189 			   pt->dev ? pt->dev->name : "", pt->func);
4190 	}
4191 
4192 	return 0;
4193 }
4194 
4195 static const struct seq_operations ptype_seq_ops = {
4196 	.start = ptype_seq_start,
4197 	.next  = ptype_seq_next,
4198 	.stop  = ptype_seq_stop,
4199 	.show  = ptype_seq_show,
4200 };
4201 
4202 static int ptype_seq_open(struct inode *inode, struct file *file)
4203 {
4204 	return seq_open_net(inode, file, &ptype_seq_ops,
4205 			sizeof(struct seq_net_private));
4206 }
4207 
4208 static const struct file_operations ptype_seq_fops = {
4209 	.owner	 = THIS_MODULE,
4210 	.open    = ptype_seq_open,
4211 	.read    = seq_read,
4212 	.llseek  = seq_lseek,
4213 	.release = seq_release_net,
4214 };
4215 
4216 
4217 static int __net_init dev_proc_net_init(struct net *net)
4218 {
4219 	int rc = -ENOMEM;
4220 
4221 	if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
4222 		goto out;
4223 	if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
4224 		goto out_dev;
4225 	if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
4226 		goto out_softnet;
4227 
4228 	if (wext_proc_init(net))
4229 		goto out_ptype;
4230 	rc = 0;
4231 out:
4232 	return rc;
4233 out_ptype:
4234 	proc_net_remove(net, "ptype");
4235 out_softnet:
4236 	proc_net_remove(net, "softnet_stat");
4237 out_dev:
4238 	proc_net_remove(net, "dev");
4239 	goto out;
4240 }
4241 
4242 static void __net_exit dev_proc_net_exit(struct net *net)
4243 {
4244 	wext_proc_exit(net);
4245 
4246 	proc_net_remove(net, "ptype");
4247 	proc_net_remove(net, "softnet_stat");
4248 	proc_net_remove(net, "dev");
4249 }
4250 
4251 static struct pernet_operations __net_initdata dev_proc_ops = {
4252 	.init = dev_proc_net_init,
4253 	.exit = dev_proc_net_exit,
4254 };
4255 
4256 static int __init dev_proc_init(void)
4257 {
4258 	return register_pernet_subsys(&dev_proc_ops);
4259 }
4260 #else
4261 #define dev_proc_init() 0
4262 #endif	/* CONFIG_PROC_FS */
4263 
4264 
4265 /**
4266  *	netdev_set_master	-	set up master pointer
4267  *	@slave: slave device
4268  *	@master: new master device
4269  *
4270  *	Changes the master device of the slave. Pass %NULL to break the
4271  *	bonding. The caller must hold the RTNL semaphore. On a failure
4272  *	a negative errno code is returned. On success the reference counts
4273  *	are adjusted and the function returns zero.
4274  */
4275 int netdev_set_master(struct net_device *slave, struct net_device *master)
4276 {
4277 	struct net_device *old = slave->master;
4278 
4279 	ASSERT_RTNL();
4280 
4281 	if (master) {
4282 		if (old)
4283 			return -EBUSY;
4284 		dev_hold(master);
4285 	}
4286 
4287 	slave->master = master;
4288 
4289 	if (old) {
4290 		synchronize_net();
4291 		dev_put(old);
4292 	}
4293 	return 0;
4294 }
4295 EXPORT_SYMBOL(netdev_set_master);
4296 
4297 /**
4298  *	netdev_set_bond_master	-	set up bonding master/slave pair
4299  *	@slave: slave device
4300  *	@master: new master device
4301  *
4302  *	Changes the master device of the slave. Pass %NULL to break the
4303  *	bonding. The caller must hold the RTNL semaphore. On a failure
4304  *	a negative errno code is returned. On success %RTM_NEWLINK is sent
4305  *	to the routing socket and the function returns zero.
4306  */
4307 int netdev_set_bond_master(struct net_device *slave, struct net_device *master)
4308 {
4309 	int err;
4310 
4311 	ASSERT_RTNL();
4312 
4313 	err = netdev_set_master(slave, master);
4314 	if (err)
4315 		return err;
4316 	if (master)
4317 		slave->flags |= IFF_SLAVE;
4318 	else
4319 		slave->flags &= ~IFF_SLAVE;
4320 
4321 	rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
4322 	return 0;
4323 }
4324 EXPORT_SYMBOL(netdev_set_bond_master);
4325 
4326 static void dev_change_rx_flags(struct net_device *dev, int flags)
4327 {
4328 	const struct net_device_ops *ops = dev->netdev_ops;
4329 
4330 	if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
4331 		ops->ndo_change_rx_flags(dev, flags);
4332 }
4333 
4334 static int __dev_set_promiscuity(struct net_device *dev, int inc)
4335 {
4336 	unsigned short old_flags = dev->flags;
4337 	uid_t uid;
4338 	gid_t gid;
4339 
4340 	ASSERT_RTNL();
4341 
4342 	dev->flags |= IFF_PROMISC;
4343 	dev->promiscuity += inc;
4344 	if (dev->promiscuity == 0) {
4345 		/*
4346 		 * Avoid overflow.
4347 		 * If inc causes overflow, untouch promisc and return error.
4348 		 */
4349 		if (inc < 0)
4350 			dev->flags &= ~IFF_PROMISC;
4351 		else {
4352 			dev->promiscuity -= inc;
4353 			printk(KERN_WARNING "%s: promiscuity touches roof, "
4354 				"set promiscuity failed, promiscuity feature "
4355 				"of device might be broken.\n", dev->name);
4356 			return -EOVERFLOW;
4357 		}
4358 	}
4359 	if (dev->flags != old_flags) {
4360 		printk(KERN_INFO "device %s %s promiscuous mode\n",
4361 		       dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4362 							       "left");
4363 		if (audit_enabled) {
4364 			current_uid_gid(&uid, &gid);
4365 			audit_log(current->audit_context, GFP_ATOMIC,
4366 				AUDIT_ANOM_PROMISCUOUS,
4367 				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
4368 				dev->name, (dev->flags & IFF_PROMISC),
4369 				(old_flags & IFF_PROMISC),
4370 				audit_get_loginuid(current),
4371 				uid, gid,
4372 				audit_get_sessionid(current));
4373 		}
4374 
4375 		dev_change_rx_flags(dev, IFF_PROMISC);
4376 	}
4377 	return 0;
4378 }
4379 
4380 /**
4381  *	dev_set_promiscuity	- update promiscuity count on a device
4382  *	@dev: device
4383  *	@inc: modifier
4384  *
4385  *	Add or remove promiscuity from a device. While the count in the device
4386  *	remains above zero the interface remains promiscuous. Once it hits zero
4387  *	the device reverts back to normal filtering operation. A negative inc
4388  *	value is used to drop promiscuity on the device.
4389  *	Return 0 if successful or a negative errno code on error.
4390  */
4391 int dev_set_promiscuity(struct net_device *dev, int inc)
4392 {
4393 	unsigned short old_flags = dev->flags;
4394 	int err;
4395 
4396 	err = __dev_set_promiscuity(dev, inc);
4397 	if (err < 0)
4398 		return err;
4399 	if (dev->flags != old_flags)
4400 		dev_set_rx_mode(dev);
4401 	return err;
4402 }
4403 EXPORT_SYMBOL(dev_set_promiscuity);
4404 
4405 /**
4406  *	dev_set_allmulti	- update allmulti count on a device
4407  *	@dev: device
4408  *	@inc: modifier
4409  *
4410  *	Add or remove reception of all multicast frames to a device. While the
4411  *	count in the device remains above zero the interface remains listening
4412  *	to all interfaces. Once it hits zero the device reverts back to normal
4413  *	filtering operation. A negative @inc value is used to drop the counter
4414  *	when releasing a resource needing all multicasts.
4415  *	Return 0 if successful or a negative errno code on error.
4416  */
4417 
4418 int dev_set_allmulti(struct net_device *dev, int inc)
4419 {
4420 	unsigned short old_flags = dev->flags;
4421 
4422 	ASSERT_RTNL();
4423 
4424 	dev->flags |= IFF_ALLMULTI;
4425 	dev->allmulti += inc;
4426 	if (dev->allmulti == 0) {
4427 		/*
4428 		 * Avoid overflow.
4429 		 * If inc causes overflow, untouch allmulti and return error.
4430 		 */
4431 		if (inc < 0)
4432 			dev->flags &= ~IFF_ALLMULTI;
4433 		else {
4434 			dev->allmulti -= inc;
4435 			printk(KERN_WARNING "%s: allmulti touches roof, "
4436 				"set allmulti failed, allmulti feature of "
4437 				"device might be broken.\n", dev->name);
4438 			return -EOVERFLOW;
4439 		}
4440 	}
4441 	if (dev->flags ^ old_flags) {
4442 		dev_change_rx_flags(dev, IFF_ALLMULTI);
4443 		dev_set_rx_mode(dev);
4444 	}
4445 	return 0;
4446 }
4447 EXPORT_SYMBOL(dev_set_allmulti);
4448 
4449 /*
4450  *	Upload unicast and multicast address lists to device and
4451  *	configure RX filtering. When the device doesn't support unicast
4452  *	filtering it is put in promiscuous mode while unicast addresses
4453  *	are present.
4454  */
4455 void __dev_set_rx_mode(struct net_device *dev)
4456 {
4457 	const struct net_device_ops *ops = dev->netdev_ops;
4458 
4459 	/* dev_open will call this function so the list will stay sane. */
4460 	if (!(dev->flags&IFF_UP))
4461 		return;
4462 
4463 	if (!netif_device_present(dev))
4464 		return;
4465 
4466 	if (ops->ndo_set_rx_mode)
4467 		ops->ndo_set_rx_mode(dev);
4468 	else {
4469 		/* Unicast addresses changes may only happen under the rtnl,
4470 		 * therefore calling __dev_set_promiscuity here is safe.
4471 		 */
4472 		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4473 			__dev_set_promiscuity(dev, 1);
4474 			dev->uc_promisc = 1;
4475 		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4476 			__dev_set_promiscuity(dev, -1);
4477 			dev->uc_promisc = 0;
4478 		}
4479 
4480 		if (ops->ndo_set_multicast_list)
4481 			ops->ndo_set_multicast_list(dev);
4482 	}
4483 }
4484 
4485 void dev_set_rx_mode(struct net_device *dev)
4486 {
4487 	netif_addr_lock_bh(dev);
4488 	__dev_set_rx_mode(dev);
4489 	netif_addr_unlock_bh(dev);
4490 }
4491 
4492 /**
4493  *	dev_get_flags - get flags reported to userspace
4494  *	@dev: device
4495  *
4496  *	Get the combination of flag bits exported through APIs to userspace.
4497  */
4498 unsigned dev_get_flags(const struct net_device *dev)
4499 {
4500 	unsigned flags;
4501 
4502 	flags = (dev->flags & ~(IFF_PROMISC |
4503 				IFF_ALLMULTI |
4504 				IFF_RUNNING |
4505 				IFF_LOWER_UP |
4506 				IFF_DORMANT)) |
4507 		(dev->gflags & (IFF_PROMISC |
4508 				IFF_ALLMULTI));
4509 
4510 	if (netif_running(dev)) {
4511 		if (netif_oper_up(dev))
4512 			flags |= IFF_RUNNING;
4513 		if (netif_carrier_ok(dev))
4514 			flags |= IFF_LOWER_UP;
4515 		if (netif_dormant(dev))
4516 			flags |= IFF_DORMANT;
4517 	}
4518 
4519 	return flags;
4520 }
4521 EXPORT_SYMBOL(dev_get_flags);
4522 
4523 int __dev_change_flags(struct net_device *dev, unsigned int flags)
4524 {
4525 	int old_flags = dev->flags;
4526 	int ret;
4527 
4528 	ASSERT_RTNL();
4529 
4530 	/*
4531 	 *	Set the flags on our device.
4532 	 */
4533 
4534 	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4535 			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4536 			       IFF_AUTOMEDIA)) |
4537 		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4538 				    IFF_ALLMULTI));
4539 
4540 	/*
4541 	 *	Load in the correct multicast list now the flags have changed.
4542 	 */
4543 
4544 	if ((old_flags ^ flags) & IFF_MULTICAST)
4545 		dev_change_rx_flags(dev, IFF_MULTICAST);
4546 
4547 	dev_set_rx_mode(dev);
4548 
4549 	/*
4550 	 *	Have we downed the interface. We handle IFF_UP ourselves
4551 	 *	according to user attempts to set it, rather than blindly
4552 	 *	setting it.
4553 	 */
4554 
4555 	ret = 0;
4556 	if ((old_flags ^ flags) & IFF_UP) {	/* Bit is different  ? */
4557 		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
4558 
4559 		if (!ret)
4560 			dev_set_rx_mode(dev);
4561 	}
4562 
4563 	if ((flags ^ dev->gflags) & IFF_PROMISC) {
4564 		int inc = (flags & IFF_PROMISC) ? 1 : -1;
4565 
4566 		dev->gflags ^= IFF_PROMISC;
4567 		dev_set_promiscuity(dev, inc);
4568 	}
4569 
4570 	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4571 	   is important. Some (broken) drivers set IFF_PROMISC, when
4572 	   IFF_ALLMULTI is requested not asking us and not reporting.
4573 	 */
4574 	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4575 		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4576 
4577 		dev->gflags ^= IFF_ALLMULTI;
4578 		dev_set_allmulti(dev, inc);
4579 	}
4580 
4581 	return ret;
4582 }
4583 
4584 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4585 {
4586 	unsigned int changes = dev->flags ^ old_flags;
4587 
4588 	if (changes & IFF_UP) {
4589 		if (dev->flags & IFF_UP)
4590 			call_netdevice_notifiers(NETDEV_UP, dev);
4591 		else
4592 			call_netdevice_notifiers(NETDEV_DOWN, dev);
4593 	}
4594 
4595 	if (dev->flags & IFF_UP &&
4596 	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4597 		call_netdevice_notifiers(NETDEV_CHANGE, dev);
4598 }
4599 
4600 /**
4601  *	dev_change_flags - change device settings
4602  *	@dev: device
4603  *	@flags: device state flags
4604  *
4605  *	Change settings on device based state flags. The flags are
4606  *	in the userspace exported format.
4607  */
4608 int dev_change_flags(struct net_device *dev, unsigned flags)
4609 {
4610 	int ret, changes;
4611 	int old_flags = dev->flags;
4612 
4613 	ret = __dev_change_flags(dev, flags);
4614 	if (ret < 0)
4615 		return ret;
4616 
4617 	changes = old_flags ^ dev->flags;
4618 	if (changes)
4619 		rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
4620 
4621 	__dev_notify_flags(dev, old_flags);
4622 	return ret;
4623 }
4624 EXPORT_SYMBOL(dev_change_flags);
4625 
4626 /**
4627  *	dev_set_mtu - Change maximum transfer unit
4628  *	@dev: device
4629  *	@new_mtu: new transfer unit
4630  *
4631  *	Change the maximum transfer size of the network device.
4632  */
4633 int dev_set_mtu(struct net_device *dev, int new_mtu)
4634 {
4635 	const struct net_device_ops *ops = dev->netdev_ops;
4636 	int err;
4637 
4638 	if (new_mtu == dev->mtu)
4639 		return 0;
4640 
4641 	/*	MTU must be positive.	 */
4642 	if (new_mtu < 0)
4643 		return -EINVAL;
4644 
4645 	if (!netif_device_present(dev))
4646 		return -ENODEV;
4647 
4648 	err = 0;
4649 	if (ops->ndo_change_mtu)
4650 		err = ops->ndo_change_mtu(dev, new_mtu);
4651 	else
4652 		dev->mtu = new_mtu;
4653 
4654 	if (!err && dev->flags & IFF_UP)
4655 		call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
4656 	return err;
4657 }
4658 EXPORT_SYMBOL(dev_set_mtu);
4659 
4660 /**
4661  *	dev_set_group - Change group this device belongs to
4662  *	@dev: device
4663  *	@new_group: group this device should belong to
4664  */
4665 void dev_set_group(struct net_device *dev, int new_group)
4666 {
4667 	dev->group = new_group;
4668 }
4669 EXPORT_SYMBOL(dev_set_group);
4670 
4671 /**
4672  *	dev_set_mac_address - Change Media Access Control Address
4673  *	@dev: device
4674  *	@sa: new address
4675  *
4676  *	Change the hardware (MAC) address of the device
4677  */
4678 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4679 {
4680 	const struct net_device_ops *ops = dev->netdev_ops;
4681 	int err;
4682 
4683 	if (!ops->ndo_set_mac_address)
4684 		return -EOPNOTSUPP;
4685 	if (sa->sa_family != dev->type)
4686 		return -EINVAL;
4687 	if (!netif_device_present(dev))
4688 		return -ENODEV;
4689 	err = ops->ndo_set_mac_address(dev, sa);
4690 	if (!err)
4691 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4692 	return err;
4693 }
4694 EXPORT_SYMBOL(dev_set_mac_address);
4695 
4696 /*
4697  *	Perform the SIOCxIFxxx calls, inside rcu_read_lock()
4698  */
4699 static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
4700 {
4701 	int err;
4702 	struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
4703 
4704 	if (!dev)
4705 		return -ENODEV;
4706 
4707 	switch (cmd) {
4708 	case SIOCGIFFLAGS:	/* Get interface flags */
4709 		ifr->ifr_flags = (short) dev_get_flags(dev);
4710 		return 0;
4711 
4712 	case SIOCGIFMETRIC:	/* Get the metric on the interface
4713 				   (currently unused) */
4714 		ifr->ifr_metric = 0;
4715 		return 0;
4716 
4717 	case SIOCGIFMTU:	/* Get the MTU of a device */
4718 		ifr->ifr_mtu = dev->mtu;
4719 		return 0;
4720 
4721 	case SIOCGIFHWADDR:
4722 		if (!dev->addr_len)
4723 			memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4724 		else
4725 			memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4726 			       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4727 		ifr->ifr_hwaddr.sa_family = dev->type;
4728 		return 0;
4729 
4730 	case SIOCGIFSLAVE:
4731 		err = -EINVAL;
4732 		break;
4733 
4734 	case SIOCGIFMAP:
4735 		ifr->ifr_map.mem_start = dev->mem_start;
4736 		ifr->ifr_map.mem_end   = dev->mem_end;
4737 		ifr->ifr_map.base_addr = dev->base_addr;
4738 		ifr->ifr_map.irq       = dev->irq;
4739 		ifr->ifr_map.dma       = dev->dma;
4740 		ifr->ifr_map.port      = dev->if_port;
4741 		return 0;
4742 
4743 	case SIOCGIFINDEX:
4744 		ifr->ifr_ifindex = dev->ifindex;
4745 		return 0;
4746 
4747 	case SIOCGIFTXQLEN:
4748 		ifr->ifr_qlen = dev->tx_queue_len;
4749 		return 0;
4750 
4751 	default:
4752 		/* dev_ioctl() should ensure this case
4753 		 * is never reached
4754 		 */
4755 		WARN_ON(1);
4756 		err = -EINVAL;
4757 		break;
4758 
4759 	}
4760 	return err;
4761 }
4762 
4763 /*
4764  *	Perform the SIOCxIFxxx calls, inside rtnl_lock()
4765  */
4766 static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4767 {
4768 	int err;
4769 	struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
4770 	const struct net_device_ops *ops;
4771 
4772 	if (!dev)
4773 		return -ENODEV;
4774 
4775 	ops = dev->netdev_ops;
4776 
4777 	switch (cmd) {
4778 	case SIOCSIFFLAGS:	/* Set interface flags */
4779 		return dev_change_flags(dev, ifr->ifr_flags);
4780 
4781 	case SIOCSIFMETRIC:	/* Set the metric on the interface
4782 				   (currently unused) */
4783 		return -EOPNOTSUPP;
4784 
4785 	case SIOCSIFMTU:	/* Set the MTU of a device */
4786 		return dev_set_mtu(dev, ifr->ifr_mtu);
4787 
4788 	case SIOCSIFHWADDR:
4789 		return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4790 
4791 	case SIOCSIFHWBROADCAST:
4792 		if (ifr->ifr_hwaddr.sa_family != dev->type)
4793 			return -EINVAL;
4794 		memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4795 		       min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4796 		call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4797 		return 0;
4798 
4799 	case SIOCSIFMAP:
4800 		if (ops->ndo_set_config) {
4801 			if (!netif_device_present(dev))
4802 				return -ENODEV;
4803 			return ops->ndo_set_config(dev, &ifr->ifr_map);
4804 		}
4805 		return -EOPNOTSUPP;
4806 
4807 	case SIOCADDMULTI:
4808 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4809 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4810 			return -EINVAL;
4811 		if (!netif_device_present(dev))
4812 			return -ENODEV;
4813 		return dev_mc_add_global(dev, ifr->ifr_hwaddr.sa_data);
4814 
4815 	case SIOCDELMULTI:
4816 		if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4817 		    ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4818 			return -EINVAL;
4819 		if (!netif_device_present(dev))
4820 			return -ENODEV;
4821 		return dev_mc_del_global(dev, ifr->ifr_hwaddr.sa_data);
4822 
4823 	case SIOCSIFTXQLEN:
4824 		if (ifr->ifr_qlen < 0)
4825 			return -EINVAL;
4826 		dev->tx_queue_len = ifr->ifr_qlen;
4827 		return 0;
4828 
4829 	case SIOCSIFNAME:
4830 		ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4831 		return dev_change_name(dev, ifr->ifr_newname);
4832 
4833 	/*
4834 	 *	Unknown or private ioctl
4835 	 */
4836 	default:
4837 		if ((cmd >= SIOCDEVPRIVATE &&
4838 		    cmd <= SIOCDEVPRIVATE + 15) ||
4839 		    cmd == SIOCBONDENSLAVE ||
4840 		    cmd == SIOCBONDRELEASE ||
4841 		    cmd == SIOCBONDSETHWADDR ||
4842 		    cmd == SIOCBONDSLAVEINFOQUERY ||
4843 		    cmd == SIOCBONDINFOQUERY ||
4844 		    cmd == SIOCBONDCHANGEACTIVE ||
4845 		    cmd == SIOCGMIIPHY ||
4846 		    cmd == SIOCGMIIREG ||
4847 		    cmd == SIOCSMIIREG ||
4848 		    cmd == SIOCBRADDIF ||
4849 		    cmd == SIOCBRDELIF ||
4850 		    cmd == SIOCSHWTSTAMP ||
4851 		    cmd == SIOCWANDEV) {
4852 			err = -EOPNOTSUPP;
4853 			if (ops->ndo_do_ioctl) {
4854 				if (netif_device_present(dev))
4855 					err = ops->ndo_do_ioctl(dev, ifr, cmd);
4856 				else
4857 					err = -ENODEV;
4858 			}
4859 		} else
4860 			err = -EINVAL;
4861 
4862 	}
4863 	return err;
4864 }
4865 
4866 /*
4867  *	This function handles all "interface"-type I/O control requests. The actual
4868  *	'doing' part of this is dev_ifsioc above.
4869  */
4870 
4871 /**
4872  *	dev_ioctl	-	network device ioctl
4873  *	@net: the applicable net namespace
4874  *	@cmd: command to issue
4875  *	@arg: pointer to a struct ifreq in user space
4876  *
4877  *	Issue ioctl functions to devices. This is normally called by the
4878  *	user space syscall interfaces but can sometimes be useful for
4879  *	other purposes. The return value is the return from the syscall if
4880  *	positive or a negative errno code on error.
4881  */
4882 
4883 int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
4884 {
4885 	struct ifreq ifr;
4886 	int ret;
4887 	char *colon;
4888 
4889 	/* One special case: SIOCGIFCONF takes ifconf argument
4890 	   and requires shared lock, because it sleeps writing
4891 	   to user space.
4892 	 */
4893 
4894 	if (cmd == SIOCGIFCONF) {
4895 		rtnl_lock();
4896 		ret = dev_ifconf(net, (char __user *) arg);
4897 		rtnl_unlock();
4898 		return ret;
4899 	}
4900 	if (cmd == SIOCGIFNAME)
4901 		return dev_ifname(net, (struct ifreq __user *)arg);
4902 
4903 	if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4904 		return -EFAULT;
4905 
4906 	ifr.ifr_name[IFNAMSIZ-1] = 0;
4907 
4908 	colon = strchr(ifr.ifr_name, ':');
4909 	if (colon)
4910 		*colon = 0;
4911 
4912 	/*
4913 	 *	See which interface the caller is talking about.
4914 	 */
4915 
4916 	switch (cmd) {
4917 	/*
4918 	 *	These ioctl calls:
4919 	 *	- can be done by all.
4920 	 *	- atomic and do not require locking.
4921 	 *	- return a value
4922 	 */
4923 	case SIOCGIFFLAGS:
4924 	case SIOCGIFMETRIC:
4925 	case SIOCGIFMTU:
4926 	case SIOCGIFHWADDR:
4927 	case SIOCGIFSLAVE:
4928 	case SIOCGIFMAP:
4929 	case SIOCGIFINDEX:
4930 	case SIOCGIFTXQLEN:
4931 		dev_load(net, ifr.ifr_name);
4932 		rcu_read_lock();
4933 		ret = dev_ifsioc_locked(net, &ifr, cmd);
4934 		rcu_read_unlock();
4935 		if (!ret) {
4936 			if (colon)
4937 				*colon = ':';
4938 			if (copy_to_user(arg, &ifr,
4939 					 sizeof(struct ifreq)))
4940 				ret = -EFAULT;
4941 		}
4942 		return ret;
4943 
4944 	case SIOCETHTOOL:
4945 		dev_load(net, ifr.ifr_name);
4946 		rtnl_lock();
4947 		ret = dev_ethtool(net, &ifr);
4948 		rtnl_unlock();
4949 		if (!ret) {
4950 			if (colon)
4951 				*colon = ':';
4952 			if (copy_to_user(arg, &ifr,
4953 					 sizeof(struct ifreq)))
4954 				ret = -EFAULT;
4955 		}
4956 		return ret;
4957 
4958 	/*
4959 	 *	These ioctl calls:
4960 	 *	- require superuser power.
4961 	 *	- require strict serialization.
4962 	 *	- return a value
4963 	 */
4964 	case SIOCGMIIPHY:
4965 	case SIOCGMIIREG:
4966 	case SIOCSIFNAME:
4967 		if (!capable(CAP_NET_ADMIN))
4968 			return -EPERM;
4969 		dev_load(net, ifr.ifr_name);
4970 		rtnl_lock();
4971 		ret = dev_ifsioc(net, &ifr, cmd);
4972 		rtnl_unlock();
4973 		if (!ret) {
4974 			if (colon)
4975 				*colon = ':';
4976 			if (copy_to_user(arg, &ifr,
4977 					 sizeof(struct ifreq)))
4978 				ret = -EFAULT;
4979 		}
4980 		return ret;
4981 
4982 	/*
4983 	 *	These ioctl calls:
4984 	 *	- require superuser power.
4985 	 *	- require strict serialization.
4986 	 *	- do not return a value
4987 	 */
4988 	case SIOCSIFFLAGS:
4989 	case SIOCSIFMETRIC:
4990 	case SIOCSIFMTU:
4991 	case SIOCSIFMAP:
4992 	case SIOCSIFHWADDR:
4993 	case SIOCSIFSLAVE:
4994 	case SIOCADDMULTI:
4995 	case SIOCDELMULTI:
4996 	case SIOCSIFHWBROADCAST:
4997 	case SIOCSIFTXQLEN:
4998 	case SIOCSMIIREG:
4999 	case SIOCBONDENSLAVE:
5000 	case SIOCBONDRELEASE:
5001 	case SIOCBONDSETHWADDR:
5002 	case SIOCBONDCHANGEACTIVE:
5003 	case SIOCBRADDIF:
5004 	case SIOCBRDELIF:
5005 	case SIOCSHWTSTAMP:
5006 		if (!capable(CAP_NET_ADMIN))
5007 			return -EPERM;
5008 		/* fall through */
5009 	case SIOCBONDSLAVEINFOQUERY:
5010 	case SIOCBONDINFOQUERY:
5011 		dev_load(net, ifr.ifr_name);
5012 		rtnl_lock();
5013 		ret = dev_ifsioc(net, &ifr, cmd);
5014 		rtnl_unlock();
5015 		return ret;
5016 
5017 	case SIOCGIFMEM:
5018 		/* Get the per device memory space. We can add this but
5019 		 * currently do not support it */
5020 	case SIOCSIFMEM:
5021 		/* Set the per device memory buffer space.
5022 		 * Not applicable in our case */
5023 	case SIOCSIFLINK:
5024 		return -EINVAL;
5025 
5026 	/*
5027 	 *	Unknown or private ioctl.
5028 	 */
5029 	default:
5030 		if (cmd == SIOCWANDEV ||
5031 		    (cmd >= SIOCDEVPRIVATE &&
5032 		     cmd <= SIOCDEVPRIVATE + 15)) {
5033 			dev_load(net, ifr.ifr_name);
5034 			rtnl_lock();
5035 			ret = dev_ifsioc(net, &ifr, cmd);
5036 			rtnl_unlock();
5037 			if (!ret && copy_to_user(arg, &ifr,
5038 						 sizeof(struct ifreq)))
5039 				ret = -EFAULT;
5040 			return ret;
5041 		}
5042 		/* Take care of Wireless Extensions */
5043 		if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5044 			return wext_handle_ioctl(net, &ifr, cmd, arg);
5045 		return -EINVAL;
5046 	}
5047 }
5048 
5049 
5050 /**
5051  *	dev_new_index	-	allocate an ifindex
5052  *	@net: the applicable net namespace
5053  *
5054  *	Returns a suitable unique value for a new device interface
5055  *	number.  The caller must hold the rtnl semaphore or the
5056  *	dev_base_lock to be sure it remains unique.
5057  */
5058 static int dev_new_index(struct net *net)
5059 {
5060 	static int ifindex;
5061 	for (;;) {
5062 		if (++ifindex <= 0)
5063 			ifindex = 1;
5064 		if (!__dev_get_by_index(net, ifindex))
5065 			return ifindex;
5066 	}
5067 }
5068 
5069 /* Delayed registration/unregisteration */
5070 static LIST_HEAD(net_todo_list);
5071 
5072 static void net_set_todo(struct net_device *dev)
5073 {
5074 	list_add_tail(&dev->todo_list, &net_todo_list);
5075 }
5076 
5077 static void rollback_registered_many(struct list_head *head)
5078 {
5079 	struct net_device *dev, *tmp;
5080 
5081 	BUG_ON(dev_boot_phase);
5082 	ASSERT_RTNL();
5083 
5084 	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
5085 		/* Some devices call without registering
5086 		 * for initialization unwind. Remove those
5087 		 * devices and proceed with the remaining.
5088 		 */
5089 		if (dev->reg_state == NETREG_UNINITIALIZED) {
5090 			pr_debug("unregister_netdevice: device %s/%p never "
5091 				 "was registered\n", dev->name, dev);
5092 
5093 			WARN_ON(1);
5094 			list_del(&dev->unreg_list);
5095 			continue;
5096 		}
5097 
5098 		BUG_ON(dev->reg_state != NETREG_REGISTERED);
5099 	}
5100 
5101 	/* If device is running, close it first. */
5102 	dev_close_many(head);
5103 
5104 	list_for_each_entry(dev, head, unreg_list) {
5105 		/* And unlink it from device chain. */
5106 		unlist_netdevice(dev);
5107 
5108 		dev->reg_state = NETREG_UNREGISTERING;
5109 	}
5110 
5111 	synchronize_net();
5112 
5113 	list_for_each_entry(dev, head, unreg_list) {
5114 		/* Shutdown queueing discipline. */
5115 		dev_shutdown(dev);
5116 
5117 
5118 		/* Notify protocols, that we are about to destroy
5119 		   this device. They should clean all the things.
5120 		*/
5121 		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5122 
5123 		if (!dev->rtnl_link_ops ||
5124 		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5125 			rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5126 
5127 		/*
5128 		 *	Flush the unicast and multicast chains
5129 		 */
5130 		dev_uc_flush(dev);
5131 		dev_mc_flush(dev);
5132 
5133 		if (dev->netdev_ops->ndo_uninit)
5134 			dev->netdev_ops->ndo_uninit(dev);
5135 
5136 		/* Notifier chain MUST detach us from master device. */
5137 		WARN_ON(dev->master);
5138 
5139 		/* Remove entries from kobject tree */
5140 		netdev_unregister_kobject(dev);
5141 	}
5142 
5143 	/* Process any work delayed until the end of the batch */
5144 	dev = list_first_entry(head, struct net_device, unreg_list);
5145 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
5146 
5147 	rcu_barrier();
5148 
5149 	list_for_each_entry(dev, head, unreg_list)
5150 		dev_put(dev);
5151 }
5152 
5153 static void rollback_registered(struct net_device *dev)
5154 {
5155 	LIST_HEAD(single);
5156 
5157 	list_add(&dev->unreg_list, &single);
5158 	rollback_registered_many(&single);
5159 	list_del(&single);
5160 }
5161 
5162 u32 netdev_fix_features(struct net_device *dev, u32 features)
5163 {
5164 	/* Fix illegal checksum combinations */
5165 	if ((features & NETIF_F_HW_CSUM) &&
5166 	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5167 		netdev_info(dev, "mixed HW and IP checksum settings.\n");
5168 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5169 	}
5170 
5171 	if ((features & NETIF_F_NO_CSUM) &&
5172 	    (features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5173 		netdev_info(dev, "mixed no checksumming and other settings.\n");
5174 		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5175 	}
5176 
5177 	/* Fix illegal SG+CSUM combinations. */
5178 	if ((features & NETIF_F_SG) &&
5179 	    !(features & NETIF_F_ALL_CSUM)) {
5180 		netdev_info(dev,
5181 			    "Dropping NETIF_F_SG since no checksum feature.\n");
5182 		features &= ~NETIF_F_SG;
5183 	}
5184 
5185 	/* TSO requires that SG is present as well. */
5186 	if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5187 		netdev_info(dev, "Dropping NETIF_F_TSO since no SG feature.\n");
5188 		features &= ~NETIF_F_TSO;
5189 	}
5190 
5191 	/* Software GSO depends on SG. */
5192 	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
5193 		netdev_info(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
5194 		features &= ~NETIF_F_GSO;
5195 	}
5196 
5197 	/* UFO needs SG and checksumming */
5198 	if (features & NETIF_F_UFO) {
5199 		/* maybe split UFO into V4 and V6? */
5200 		if (!((features & NETIF_F_GEN_CSUM) ||
5201 		    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))
5202 			    == (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5203 			netdev_info(dev,
5204 				"Dropping NETIF_F_UFO since no checksum offload features.\n");
5205 			features &= ~NETIF_F_UFO;
5206 		}
5207 
5208 		if (!(features & NETIF_F_SG)) {
5209 			netdev_info(dev,
5210 				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
5211 			features &= ~NETIF_F_UFO;
5212 		}
5213 	}
5214 
5215 	return features;
5216 }
5217 EXPORT_SYMBOL(netdev_fix_features);
5218 
5219 void netdev_update_features(struct net_device *dev)
5220 {
5221 	u32 features;
5222 	int err = 0;
5223 
5224 	features = netdev_get_wanted_features(dev);
5225 
5226 	if (dev->netdev_ops->ndo_fix_features)
5227 		features = dev->netdev_ops->ndo_fix_features(dev, features);
5228 
5229 	/* driver might be less strict about feature dependencies */
5230 	features = netdev_fix_features(dev, features);
5231 
5232 	if (dev->features == features)
5233 		return;
5234 
5235 	netdev_info(dev, "Features changed: 0x%08x -> 0x%08x\n",
5236 		dev->features, features);
5237 
5238 	if (dev->netdev_ops->ndo_set_features)
5239 		err = dev->netdev_ops->ndo_set_features(dev, features);
5240 
5241 	if (!err)
5242 		dev->features = features;
5243 	else if (err < 0)
5244 		netdev_err(dev,
5245 			"set_features() failed (%d); wanted 0x%08x, left 0x%08x\n",
5246 			err, features, dev->features);
5247 }
5248 EXPORT_SYMBOL(netdev_update_features);
5249 
5250 /**
5251  *	netif_stacked_transfer_operstate -	transfer operstate
5252  *	@rootdev: the root or lower level device to transfer state from
5253  *	@dev: the device to transfer operstate to
5254  *
5255  *	Transfer operational state from root to device. This is normally
5256  *	called when a stacking relationship exists between the root
5257  *	device and the device(a leaf device).
5258  */
5259 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5260 					struct net_device *dev)
5261 {
5262 	if (rootdev->operstate == IF_OPER_DORMANT)
5263 		netif_dormant_on(dev);
5264 	else
5265 		netif_dormant_off(dev);
5266 
5267 	if (netif_carrier_ok(rootdev)) {
5268 		if (!netif_carrier_ok(dev))
5269 			netif_carrier_on(dev);
5270 	} else {
5271 		if (netif_carrier_ok(dev))
5272 			netif_carrier_off(dev);
5273 	}
5274 }
5275 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5276 
5277 #ifdef CONFIG_RPS
5278 static int netif_alloc_rx_queues(struct net_device *dev)
5279 {
5280 	unsigned int i, count = dev->num_rx_queues;
5281 	struct netdev_rx_queue *rx;
5282 
5283 	BUG_ON(count < 1);
5284 
5285 	rx = kcalloc(count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5286 	if (!rx) {
5287 		pr_err("netdev: Unable to allocate %u rx queues.\n", count);
5288 		return -ENOMEM;
5289 	}
5290 	dev->_rx = rx;
5291 
5292 	for (i = 0; i < count; i++)
5293 		rx[i].dev = dev;
5294 	return 0;
5295 }
5296 #endif
5297 
5298 static void netdev_init_one_queue(struct net_device *dev,
5299 				  struct netdev_queue *queue, void *_unused)
5300 {
5301 	/* Initialize queue lock */
5302 	spin_lock_init(&queue->_xmit_lock);
5303 	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
5304 	queue->xmit_lock_owner = -1;
5305 	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
5306 	queue->dev = dev;
5307 }
5308 
5309 static int netif_alloc_netdev_queues(struct net_device *dev)
5310 {
5311 	unsigned int count = dev->num_tx_queues;
5312 	struct netdev_queue *tx;
5313 
5314 	BUG_ON(count < 1);
5315 
5316 	tx = kcalloc(count, sizeof(struct netdev_queue), GFP_KERNEL);
5317 	if (!tx) {
5318 		pr_err("netdev: Unable to allocate %u tx queues.\n",
5319 		       count);
5320 		return -ENOMEM;
5321 	}
5322 	dev->_tx = tx;
5323 
5324 	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
5325 	spin_lock_init(&dev->tx_global_lock);
5326 
5327 	return 0;
5328 }
5329 
5330 /**
5331  *	register_netdevice	- register a network device
5332  *	@dev: device to register
5333  *
5334  *	Take a completed network device structure and add it to the kernel
5335  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5336  *	chain. 0 is returned on success. A negative errno code is returned
5337  *	on a failure to set up the device, or if the name is a duplicate.
5338  *
5339  *	Callers must hold the rtnl semaphore. You may want
5340  *	register_netdev() instead of this.
5341  *
5342  *	BUGS:
5343  *	The locking appears insufficient to guarantee two parallel registers
5344  *	will not get the same name.
5345  */
5346 
5347 int register_netdevice(struct net_device *dev)
5348 {
5349 	int ret;
5350 	struct net *net = dev_net(dev);
5351 
5352 	BUG_ON(dev_boot_phase);
5353 	ASSERT_RTNL();
5354 
5355 	might_sleep();
5356 
5357 	/* When net_device's are persistent, this will be fatal. */
5358 	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
5359 	BUG_ON(!net);
5360 
5361 	spin_lock_init(&dev->addr_list_lock);
5362 	netdev_set_addr_lockdep_class(dev);
5363 
5364 	dev->iflink = -1;
5365 
5366 	/* Init, if this function is available */
5367 	if (dev->netdev_ops->ndo_init) {
5368 		ret = dev->netdev_ops->ndo_init(dev);
5369 		if (ret) {
5370 			if (ret > 0)
5371 				ret = -EIO;
5372 			goto out;
5373 		}
5374 	}
5375 
5376 	ret = dev_get_valid_name(dev, dev->name, 0);
5377 	if (ret)
5378 		goto err_uninit;
5379 
5380 	dev->ifindex = dev_new_index(net);
5381 	if (dev->iflink == -1)
5382 		dev->iflink = dev->ifindex;
5383 
5384 	/* Transfer changeable features to wanted_features and enable
5385 	 * software offloads (GSO and GRO).
5386 	 */
5387 	dev->hw_features |= NETIF_F_SOFT_FEATURES;
5388 	dev->features |= NETIF_F_SOFT_FEATURES;
5389 	dev->wanted_features = dev->features & dev->hw_features;
5390 
5391 	/* Avoid warning from netdev_fix_features() for GSO without SG */
5392 	if (!(dev->wanted_features & NETIF_F_SG)) {
5393 		dev->wanted_features &= ~NETIF_F_GSO;
5394 		dev->features &= ~NETIF_F_GSO;
5395 	}
5396 
5397 	/* Enable GRO and NETIF_F_HIGHDMA for vlans by default,
5398 	 * vlan_dev_init() will do the dev->features check, so these features
5399 	 * are enabled only if supported by underlying device.
5400 	 */
5401 	dev->vlan_features |= (NETIF_F_GRO | NETIF_F_HIGHDMA);
5402 
5403 	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5404 	ret = notifier_to_errno(ret);
5405 	if (ret)
5406 		goto err_uninit;
5407 
5408 	ret = netdev_register_kobject(dev);
5409 	if (ret)
5410 		goto err_uninit;
5411 	dev->reg_state = NETREG_REGISTERED;
5412 
5413 	netdev_update_features(dev);
5414 
5415 	/*
5416 	 *	Default initial state at registry is that the
5417 	 *	device is present.
5418 	 */
5419 
5420 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5421 
5422 	dev_init_scheduler(dev);
5423 	dev_hold(dev);
5424 	list_netdevice(dev);
5425 
5426 	/* Notify protocols, that a new device appeared. */
5427 	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
5428 	ret = notifier_to_errno(ret);
5429 	if (ret) {
5430 		rollback_registered(dev);
5431 		dev->reg_state = NETREG_UNREGISTERED;
5432 	}
5433 	/*
5434 	 *	Prevent userspace races by waiting until the network
5435 	 *	device is fully setup before sending notifications.
5436 	 */
5437 	if (!dev->rtnl_link_ops ||
5438 	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5439 		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5440 
5441 out:
5442 	return ret;
5443 
5444 err_uninit:
5445 	if (dev->netdev_ops->ndo_uninit)
5446 		dev->netdev_ops->ndo_uninit(dev);
5447 	goto out;
5448 }
5449 EXPORT_SYMBOL(register_netdevice);
5450 
5451 /**
5452  *	init_dummy_netdev	- init a dummy network device for NAPI
5453  *	@dev: device to init
5454  *
5455  *	This takes a network device structure and initialize the minimum
5456  *	amount of fields so it can be used to schedule NAPI polls without
5457  *	registering a full blown interface. This is to be used by drivers
5458  *	that need to tie several hardware interfaces to a single NAPI
5459  *	poll scheduler due to HW limitations.
5460  */
5461 int init_dummy_netdev(struct net_device *dev)
5462 {
5463 	/* Clear everything. Note we don't initialize spinlocks
5464 	 * are they aren't supposed to be taken by any of the
5465 	 * NAPI code and this dummy netdev is supposed to be
5466 	 * only ever used for NAPI polls
5467 	 */
5468 	memset(dev, 0, sizeof(struct net_device));
5469 
5470 	/* make sure we BUG if trying to hit standard
5471 	 * register/unregister code path
5472 	 */
5473 	dev->reg_state = NETREG_DUMMY;
5474 
5475 	/* NAPI wants this */
5476 	INIT_LIST_HEAD(&dev->napi_list);
5477 
5478 	/* a dummy interface is started by default */
5479 	set_bit(__LINK_STATE_PRESENT, &dev->state);
5480 	set_bit(__LINK_STATE_START, &dev->state);
5481 
5482 	/* Note : We dont allocate pcpu_refcnt for dummy devices,
5483 	 * because users of this 'device' dont need to change
5484 	 * its refcount.
5485 	 */
5486 
5487 	return 0;
5488 }
5489 EXPORT_SYMBOL_GPL(init_dummy_netdev);
5490 
5491 
5492 /**
5493  *	register_netdev	- register a network device
5494  *	@dev: device to register
5495  *
5496  *	Take a completed network device structure and add it to the kernel
5497  *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5498  *	chain. 0 is returned on success. A negative errno code is returned
5499  *	on a failure to set up the device, or if the name is a duplicate.
5500  *
5501  *	This is a wrapper around register_netdevice that takes the rtnl semaphore
5502  *	and expands the device name if you passed a format string to
5503  *	alloc_netdev.
5504  */
5505 int register_netdev(struct net_device *dev)
5506 {
5507 	int err;
5508 
5509 	rtnl_lock();
5510 
5511 	/*
5512 	 * If the name is a format string the caller wants us to do a
5513 	 * name allocation.
5514 	 */
5515 	if (strchr(dev->name, '%')) {
5516 		err = dev_alloc_name(dev, dev->name);
5517 		if (err < 0)
5518 			goto out;
5519 	}
5520 
5521 	err = register_netdevice(dev);
5522 out:
5523 	rtnl_unlock();
5524 	return err;
5525 }
5526 EXPORT_SYMBOL(register_netdev);
5527 
5528 int netdev_refcnt_read(const struct net_device *dev)
5529 {
5530 	int i, refcnt = 0;
5531 
5532 	for_each_possible_cpu(i)
5533 		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
5534 	return refcnt;
5535 }
5536 EXPORT_SYMBOL(netdev_refcnt_read);
5537 
5538 /*
5539  * netdev_wait_allrefs - wait until all references are gone.
5540  *
5541  * This is called when unregistering network devices.
5542  *
5543  * Any protocol or device that holds a reference should register
5544  * for netdevice notification, and cleanup and put back the
5545  * reference if they receive an UNREGISTER event.
5546  * We can get stuck here if buggy protocols don't correctly
5547  * call dev_put.
5548  */
5549 static void netdev_wait_allrefs(struct net_device *dev)
5550 {
5551 	unsigned long rebroadcast_time, warning_time;
5552 	int refcnt;
5553 
5554 	linkwatch_forget_dev(dev);
5555 
5556 	rebroadcast_time = warning_time = jiffies;
5557 	refcnt = netdev_refcnt_read(dev);
5558 
5559 	while (refcnt != 0) {
5560 		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
5561 			rtnl_lock();
5562 
5563 			/* Rebroadcast unregister notification */
5564 			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5565 			/* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
5566 			 * should have already handle it the first time */
5567 
5568 			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5569 				     &dev->state)) {
5570 				/* We must not have linkwatch events
5571 				 * pending on unregister. If this
5572 				 * happens, we simply run the queue
5573 				 * unscheduled, resulting in a noop
5574 				 * for this device.
5575 				 */
5576 				linkwatch_run_queue();
5577 			}
5578 
5579 			__rtnl_unlock();
5580 
5581 			rebroadcast_time = jiffies;
5582 		}
5583 
5584 		msleep(250);
5585 
5586 		refcnt = netdev_refcnt_read(dev);
5587 
5588 		if (time_after(jiffies, warning_time + 10 * HZ)) {
5589 			printk(KERN_EMERG "unregister_netdevice: "
5590 			       "waiting for %s to become free. Usage "
5591 			       "count = %d\n",
5592 			       dev->name, refcnt);
5593 			warning_time = jiffies;
5594 		}
5595 	}
5596 }
5597 
5598 /* The sequence is:
5599  *
5600  *	rtnl_lock();
5601  *	...
5602  *	register_netdevice(x1);
5603  *	register_netdevice(x2);
5604  *	...
5605  *	unregister_netdevice(y1);
5606  *	unregister_netdevice(y2);
5607  *      ...
5608  *	rtnl_unlock();
5609  *	free_netdev(y1);
5610  *	free_netdev(y2);
5611  *
5612  * We are invoked by rtnl_unlock().
5613  * This allows us to deal with problems:
5614  * 1) We can delete sysfs objects which invoke hotplug
5615  *    without deadlocking with linkwatch via keventd.
5616  * 2) Since we run with the RTNL semaphore not held, we can sleep
5617  *    safely in order to wait for the netdev refcnt to drop to zero.
5618  *
5619  * We must not return until all unregister events added during
5620  * the interval the lock was held have been completed.
5621  */
5622 void netdev_run_todo(void)
5623 {
5624 	struct list_head list;
5625 
5626 	/* Snapshot list, allow later requests */
5627 	list_replace_init(&net_todo_list, &list);
5628 
5629 	__rtnl_unlock();
5630 
5631 	while (!list_empty(&list)) {
5632 		struct net_device *dev
5633 			= list_first_entry(&list, struct net_device, todo_list);
5634 		list_del(&dev->todo_list);
5635 
5636 		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5637 			printk(KERN_ERR "network todo '%s' but state %d\n",
5638 			       dev->name, dev->reg_state);
5639 			dump_stack();
5640 			continue;
5641 		}
5642 
5643 		dev->reg_state = NETREG_UNREGISTERED;
5644 
5645 		on_each_cpu(flush_backlog, dev, 1);
5646 
5647 		netdev_wait_allrefs(dev);
5648 
5649 		/* paranoia */
5650 		BUG_ON(netdev_refcnt_read(dev));
5651 		WARN_ON(rcu_dereference_raw(dev->ip_ptr));
5652 		WARN_ON(rcu_dereference_raw(dev->ip6_ptr));
5653 		WARN_ON(dev->dn_ptr);
5654 
5655 		if (dev->destructor)
5656 			dev->destructor(dev);
5657 
5658 		/* Free network device */
5659 		kobject_put(&dev->dev.kobj);
5660 	}
5661 }
5662 
5663 /* Convert net_device_stats to rtnl_link_stats64.  They have the same
5664  * fields in the same order, with only the type differing.
5665  */
5666 static void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
5667 				    const struct net_device_stats *netdev_stats)
5668 {
5669 #if BITS_PER_LONG == 64
5670         BUILD_BUG_ON(sizeof(*stats64) != sizeof(*netdev_stats));
5671         memcpy(stats64, netdev_stats, sizeof(*stats64));
5672 #else
5673 	size_t i, n = sizeof(*stats64) / sizeof(u64);
5674 	const unsigned long *src = (const unsigned long *)netdev_stats;
5675 	u64 *dst = (u64 *)stats64;
5676 
5677 	BUILD_BUG_ON(sizeof(*netdev_stats) / sizeof(unsigned long) !=
5678 		     sizeof(*stats64) / sizeof(u64));
5679 	for (i = 0; i < n; i++)
5680 		dst[i] = src[i];
5681 #endif
5682 }
5683 
5684 /**
5685  *	dev_get_stats	- get network device statistics
5686  *	@dev: device to get statistics from
5687  *	@storage: place to store stats
5688  *
5689  *	Get network statistics from device. Return @storage.
5690  *	The device driver may provide its own method by setting
5691  *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
5692  *	otherwise the internal statistics structure is used.
5693  */
5694 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
5695 					struct rtnl_link_stats64 *storage)
5696 {
5697 	const struct net_device_ops *ops = dev->netdev_ops;
5698 
5699 	if (ops->ndo_get_stats64) {
5700 		memset(storage, 0, sizeof(*storage));
5701 		ops->ndo_get_stats64(dev, storage);
5702 	} else if (ops->ndo_get_stats) {
5703 		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
5704 	} else {
5705 		netdev_stats_to_stats64(storage, &dev->stats);
5706 	}
5707 	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
5708 	return storage;
5709 }
5710 EXPORT_SYMBOL(dev_get_stats);
5711 
5712 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
5713 {
5714 	struct netdev_queue *queue = dev_ingress_queue(dev);
5715 
5716 #ifdef CONFIG_NET_CLS_ACT
5717 	if (queue)
5718 		return queue;
5719 	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
5720 	if (!queue)
5721 		return NULL;
5722 	netdev_init_one_queue(dev, queue, NULL);
5723 	queue->qdisc = &noop_qdisc;
5724 	queue->qdisc_sleeping = &noop_qdisc;
5725 	rcu_assign_pointer(dev->ingress_queue, queue);
5726 #endif
5727 	return queue;
5728 }
5729 
5730 /**
5731  *	alloc_netdev_mqs - allocate network device
5732  *	@sizeof_priv:	size of private data to allocate space for
5733  *	@name:		device name format string
5734  *	@setup:		callback to initialize device
5735  *	@txqs:		the number of TX subqueues to allocate
5736  *	@rxqs:		the number of RX subqueues to allocate
5737  *
5738  *	Allocates a struct net_device with private data area for driver use
5739  *	and performs basic initialization.  Also allocates subquue structs
5740  *	for each queue on the device.
5741  */
5742 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
5743 		void (*setup)(struct net_device *),
5744 		unsigned int txqs, unsigned int rxqs)
5745 {
5746 	struct net_device *dev;
5747 	size_t alloc_size;
5748 	struct net_device *p;
5749 
5750 	BUG_ON(strlen(name) >= sizeof(dev->name));
5751 
5752 	if (txqs < 1) {
5753 		pr_err("alloc_netdev: Unable to allocate device "
5754 		       "with zero queues.\n");
5755 		return NULL;
5756 	}
5757 
5758 #ifdef CONFIG_RPS
5759 	if (rxqs < 1) {
5760 		pr_err("alloc_netdev: Unable to allocate device "
5761 		       "with zero RX queues.\n");
5762 		return NULL;
5763 	}
5764 #endif
5765 
5766 	alloc_size = sizeof(struct net_device);
5767 	if (sizeof_priv) {
5768 		/* ensure 32-byte alignment of private area */
5769 		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
5770 		alloc_size += sizeof_priv;
5771 	}
5772 	/* ensure 32-byte alignment of whole construct */
5773 	alloc_size += NETDEV_ALIGN - 1;
5774 
5775 	p = kzalloc(alloc_size, GFP_KERNEL);
5776 	if (!p) {
5777 		printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
5778 		return NULL;
5779 	}
5780 
5781 	dev = PTR_ALIGN(p, NETDEV_ALIGN);
5782 	dev->padded = (char *)dev - (char *)p;
5783 
5784 	dev->pcpu_refcnt = alloc_percpu(int);
5785 	if (!dev->pcpu_refcnt)
5786 		goto free_p;
5787 
5788 	if (dev_addr_init(dev))
5789 		goto free_pcpu;
5790 
5791 	dev_mc_init(dev);
5792 	dev_uc_init(dev);
5793 
5794 	dev_net_set(dev, &init_net);
5795 
5796 	dev->gso_max_size = GSO_MAX_SIZE;
5797 
5798 	INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5799 	dev->ethtool_ntuple_list.count = 0;
5800 	INIT_LIST_HEAD(&dev->napi_list);
5801 	INIT_LIST_HEAD(&dev->unreg_list);
5802 	INIT_LIST_HEAD(&dev->link_watch_list);
5803 	dev->priv_flags = IFF_XMIT_DST_RELEASE;
5804 	setup(dev);
5805 
5806 	dev->num_tx_queues = txqs;
5807 	dev->real_num_tx_queues = txqs;
5808 	if (netif_alloc_netdev_queues(dev))
5809 		goto free_all;
5810 
5811 #ifdef CONFIG_RPS
5812 	dev->num_rx_queues = rxqs;
5813 	dev->real_num_rx_queues = rxqs;
5814 	if (netif_alloc_rx_queues(dev))
5815 		goto free_all;
5816 #endif
5817 
5818 	strcpy(dev->name, name);
5819 	dev->group = INIT_NETDEV_GROUP;
5820 	return dev;
5821 
5822 free_all:
5823 	free_netdev(dev);
5824 	return NULL;
5825 
5826 free_pcpu:
5827 	free_percpu(dev->pcpu_refcnt);
5828 	kfree(dev->_tx);
5829 #ifdef CONFIG_RPS
5830 	kfree(dev->_rx);
5831 #endif
5832 
5833 free_p:
5834 	kfree(p);
5835 	return NULL;
5836 }
5837 EXPORT_SYMBOL(alloc_netdev_mqs);
5838 
5839 /**
5840  *	free_netdev - free network device
5841  *	@dev: device
5842  *
5843  *	This function does the last stage of destroying an allocated device
5844  * 	interface. The reference to the device object is released.
5845  *	If this is the last reference then it will be freed.
5846  */
5847 void free_netdev(struct net_device *dev)
5848 {
5849 	struct napi_struct *p, *n;
5850 
5851 	release_net(dev_net(dev));
5852 
5853 	kfree(dev->_tx);
5854 #ifdef CONFIG_RPS
5855 	kfree(dev->_rx);
5856 #endif
5857 
5858 	kfree(rcu_dereference_raw(dev->ingress_queue));
5859 
5860 	/* Flush device addresses */
5861 	dev_addr_flush(dev);
5862 
5863 	/* Clear ethtool n-tuple list */
5864 	ethtool_ntuple_flush(dev);
5865 
5866 	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5867 		netif_napi_del(p);
5868 
5869 	free_percpu(dev->pcpu_refcnt);
5870 	dev->pcpu_refcnt = NULL;
5871 
5872 	/*  Compatibility with error handling in drivers */
5873 	if (dev->reg_state == NETREG_UNINITIALIZED) {
5874 		kfree((char *)dev - dev->padded);
5875 		return;
5876 	}
5877 
5878 	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5879 	dev->reg_state = NETREG_RELEASED;
5880 
5881 	/* will free via device release */
5882 	put_device(&dev->dev);
5883 }
5884 EXPORT_SYMBOL(free_netdev);
5885 
5886 /**
5887  *	synchronize_net -  Synchronize with packet receive processing
5888  *
5889  *	Wait for packets currently being received to be done.
5890  *	Does not block later packets from starting.
5891  */
5892 void synchronize_net(void)
5893 {
5894 	might_sleep();
5895 	synchronize_rcu();
5896 }
5897 EXPORT_SYMBOL(synchronize_net);
5898 
5899 /**
5900  *	unregister_netdevice_queue - remove device from the kernel
5901  *	@dev: device
5902  *	@head: list
5903  *
5904  *	This function shuts down a device interface and removes it
5905  *	from the kernel tables.
5906  *	If head not NULL, device is queued to be unregistered later.
5907  *
5908  *	Callers must hold the rtnl semaphore.  You may want
5909  *	unregister_netdev() instead of this.
5910  */
5911 
5912 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
5913 {
5914 	ASSERT_RTNL();
5915 
5916 	if (head) {
5917 		list_move_tail(&dev->unreg_list, head);
5918 	} else {
5919 		rollback_registered(dev);
5920 		/* Finish processing unregister after unlock */
5921 		net_set_todo(dev);
5922 	}
5923 }
5924 EXPORT_SYMBOL(unregister_netdevice_queue);
5925 
5926 /**
5927  *	unregister_netdevice_many - unregister many devices
5928  *	@head: list of devices
5929  */
5930 void unregister_netdevice_many(struct list_head *head)
5931 {
5932 	struct net_device *dev;
5933 
5934 	if (!list_empty(head)) {
5935 		rollback_registered_many(head);
5936 		list_for_each_entry(dev, head, unreg_list)
5937 			net_set_todo(dev);
5938 	}
5939 }
5940 EXPORT_SYMBOL(unregister_netdevice_many);
5941 
5942 /**
5943  *	unregister_netdev - remove device from the kernel
5944  *	@dev: device
5945  *
5946  *	This function shuts down a device interface and removes it
5947  *	from the kernel tables.
5948  *
5949  *	This is just a wrapper for unregister_netdevice that takes
5950  *	the rtnl semaphore.  In general you want to use this and not
5951  *	unregister_netdevice.
5952  */
5953 void unregister_netdev(struct net_device *dev)
5954 {
5955 	rtnl_lock();
5956 	unregister_netdevice(dev);
5957 	rtnl_unlock();
5958 }
5959 EXPORT_SYMBOL(unregister_netdev);
5960 
5961 /**
5962  *	dev_change_net_namespace - move device to different nethost namespace
5963  *	@dev: device
5964  *	@net: network namespace
5965  *	@pat: If not NULL name pattern to try if the current device name
5966  *	      is already taken in the destination network namespace.
5967  *
5968  *	This function shuts down a device interface and moves it
5969  *	to a new network namespace. On success 0 is returned, on
5970  *	a failure a netagive errno code is returned.
5971  *
5972  *	Callers must hold the rtnl semaphore.
5973  */
5974 
5975 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5976 {
5977 	int err;
5978 
5979 	ASSERT_RTNL();
5980 
5981 	/* Don't allow namespace local devices to be moved. */
5982 	err = -EINVAL;
5983 	if (dev->features & NETIF_F_NETNS_LOCAL)
5984 		goto out;
5985 
5986 	/* Ensure the device has been registrered */
5987 	err = -EINVAL;
5988 	if (dev->reg_state != NETREG_REGISTERED)
5989 		goto out;
5990 
5991 	/* Get out if there is nothing todo */
5992 	err = 0;
5993 	if (net_eq(dev_net(dev), net))
5994 		goto out;
5995 
5996 	/* Pick the destination device name, and ensure
5997 	 * we can use it in the destination network namespace.
5998 	 */
5999 	err = -EEXIST;
6000 	if (__dev_get_by_name(net, dev->name)) {
6001 		/* We get here if we can't use the current device name */
6002 		if (!pat)
6003 			goto out;
6004 		if (dev_get_valid_name(dev, pat, 1))
6005 			goto out;
6006 	}
6007 
6008 	/*
6009 	 * And now a mini version of register_netdevice unregister_netdevice.
6010 	 */
6011 
6012 	/* If device is running close it first. */
6013 	dev_close(dev);
6014 
6015 	/* And unlink it from device chain */
6016 	err = -ENODEV;
6017 	unlist_netdevice(dev);
6018 
6019 	synchronize_net();
6020 
6021 	/* Shutdown queueing discipline. */
6022 	dev_shutdown(dev);
6023 
6024 	/* Notify protocols, that we are about to destroy
6025 	   this device. They should clean all the things.
6026 
6027 	   Note that dev->reg_state stays at NETREG_REGISTERED.
6028 	   This is wanted because this way 8021q and macvlan know
6029 	   the device is just moving and can keep their slaves up.
6030 	*/
6031 	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6032 	call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
6033 
6034 	/*
6035 	 *	Flush the unicast and multicast chains
6036 	 */
6037 	dev_uc_flush(dev);
6038 	dev_mc_flush(dev);
6039 
6040 	/* Actually switch the network namespace */
6041 	dev_net_set(dev, net);
6042 
6043 	/* If there is an ifindex conflict assign a new one */
6044 	if (__dev_get_by_index(net, dev->ifindex)) {
6045 		int iflink = (dev->iflink == dev->ifindex);
6046 		dev->ifindex = dev_new_index(net);
6047 		if (iflink)
6048 			dev->iflink = dev->ifindex;
6049 	}
6050 
6051 	/* Fixup kobjects */
6052 	err = device_rename(&dev->dev, dev->name);
6053 	WARN_ON(err);
6054 
6055 	/* Add the device back in the hashes */
6056 	list_netdevice(dev);
6057 
6058 	/* Notify protocols, that a new device appeared. */
6059 	call_netdevice_notifiers(NETDEV_REGISTER, dev);
6060 
6061 	/*
6062 	 *	Prevent userspace races by waiting until the network
6063 	 *	device is fully setup before sending notifications.
6064 	 */
6065 	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
6066 
6067 	synchronize_net();
6068 	err = 0;
6069 out:
6070 	return err;
6071 }
6072 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
6073 
6074 static int dev_cpu_callback(struct notifier_block *nfb,
6075 			    unsigned long action,
6076 			    void *ocpu)
6077 {
6078 	struct sk_buff **list_skb;
6079 	struct sk_buff *skb;
6080 	unsigned int cpu, oldcpu = (unsigned long)ocpu;
6081 	struct softnet_data *sd, *oldsd;
6082 
6083 	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
6084 		return NOTIFY_OK;
6085 
6086 	local_irq_disable();
6087 	cpu = smp_processor_id();
6088 	sd = &per_cpu(softnet_data, cpu);
6089 	oldsd = &per_cpu(softnet_data, oldcpu);
6090 
6091 	/* Find end of our completion_queue. */
6092 	list_skb = &sd->completion_queue;
6093 	while (*list_skb)
6094 		list_skb = &(*list_skb)->next;
6095 	/* Append completion queue from offline CPU. */
6096 	*list_skb = oldsd->completion_queue;
6097 	oldsd->completion_queue = NULL;
6098 
6099 	/* Append output queue from offline CPU. */
6100 	if (oldsd->output_queue) {
6101 		*sd->output_queue_tailp = oldsd->output_queue;
6102 		sd->output_queue_tailp = oldsd->output_queue_tailp;
6103 		oldsd->output_queue = NULL;
6104 		oldsd->output_queue_tailp = &oldsd->output_queue;
6105 	}
6106 
6107 	raise_softirq_irqoff(NET_TX_SOFTIRQ);
6108 	local_irq_enable();
6109 
6110 	/* Process offline CPU's input_pkt_queue */
6111 	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
6112 		netif_rx(skb);
6113 		input_queue_head_incr(oldsd);
6114 	}
6115 	while ((skb = __skb_dequeue(&oldsd->input_pkt_queue))) {
6116 		netif_rx(skb);
6117 		input_queue_head_incr(oldsd);
6118 	}
6119 
6120 	return NOTIFY_OK;
6121 }
6122 
6123 
6124 /**
6125  *	netdev_increment_features - increment feature set by one
6126  *	@all: current feature set
6127  *	@one: new feature set
6128  *	@mask: mask feature set
6129  *
6130  *	Computes a new feature set after adding a device with feature set
6131  *	@one to the master device with current feature set @all.  Will not
6132  *	enable anything that is off in @mask. Returns the new feature set.
6133  */
6134 u32 netdev_increment_features(u32 all, u32 one, u32 mask)
6135 {
6136 	/* If device needs checksumming, downgrade to it. */
6137 	if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
6138 		all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6139 	else if (mask & NETIF_F_ALL_CSUM) {
6140 		/* If one device supports v4/v6 checksumming, set for all. */
6141 		if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6142 		    !(all & NETIF_F_GEN_CSUM)) {
6143 			all &= ~NETIF_F_ALL_CSUM;
6144 			all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6145 		}
6146 
6147 		/* If one device supports hw checksumming, set for all. */
6148 		if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6149 			all &= ~NETIF_F_ALL_CSUM;
6150 			all |= NETIF_F_HW_CSUM;
6151 		}
6152 	}
6153 
6154 	one |= NETIF_F_ALL_CSUM;
6155 
6156 	one |= all & NETIF_F_ONE_FOR_ALL;
6157 	all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
6158 	all |= one & mask & NETIF_F_ONE_FOR_ALL;
6159 
6160 	return all;
6161 }
6162 EXPORT_SYMBOL(netdev_increment_features);
6163 
6164 static struct hlist_head *netdev_create_hash(void)
6165 {
6166 	int i;
6167 	struct hlist_head *hash;
6168 
6169 	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6170 	if (hash != NULL)
6171 		for (i = 0; i < NETDEV_HASHENTRIES; i++)
6172 			INIT_HLIST_HEAD(&hash[i]);
6173 
6174 	return hash;
6175 }
6176 
6177 /* Initialize per network namespace state */
6178 static int __net_init netdev_init(struct net *net)
6179 {
6180 	INIT_LIST_HEAD(&net->dev_base_head);
6181 
6182 	net->dev_name_head = netdev_create_hash();
6183 	if (net->dev_name_head == NULL)
6184 		goto err_name;
6185 
6186 	net->dev_index_head = netdev_create_hash();
6187 	if (net->dev_index_head == NULL)
6188 		goto err_idx;
6189 
6190 	return 0;
6191 
6192 err_idx:
6193 	kfree(net->dev_name_head);
6194 err_name:
6195 	return -ENOMEM;
6196 }
6197 
6198 /**
6199  *	netdev_drivername - network driver for the device
6200  *	@dev: network device
6201  *	@buffer: buffer for resulting name
6202  *	@len: size of buffer
6203  *
6204  *	Determine network driver for device.
6205  */
6206 char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6207 {
6208 	const struct device_driver *driver;
6209 	const struct device *parent;
6210 
6211 	if (len <= 0 || !buffer)
6212 		return buffer;
6213 	buffer[0] = 0;
6214 
6215 	parent = dev->dev.parent;
6216 
6217 	if (!parent)
6218 		return buffer;
6219 
6220 	driver = parent->driver;
6221 	if (driver && driver->name)
6222 		strlcpy(buffer, driver->name, len);
6223 	return buffer;
6224 }
6225 
6226 static int __netdev_printk(const char *level, const struct net_device *dev,
6227 			   struct va_format *vaf)
6228 {
6229 	int r;
6230 
6231 	if (dev && dev->dev.parent)
6232 		r = dev_printk(level, dev->dev.parent, "%s: %pV",
6233 			       netdev_name(dev), vaf);
6234 	else if (dev)
6235 		r = printk("%s%s: %pV", level, netdev_name(dev), vaf);
6236 	else
6237 		r = printk("%s(NULL net_device): %pV", level, vaf);
6238 
6239 	return r;
6240 }
6241 
6242 int netdev_printk(const char *level, const struct net_device *dev,
6243 		  const char *format, ...)
6244 {
6245 	struct va_format vaf;
6246 	va_list args;
6247 	int r;
6248 
6249 	va_start(args, format);
6250 
6251 	vaf.fmt = format;
6252 	vaf.va = &args;
6253 
6254 	r = __netdev_printk(level, dev, &vaf);
6255 	va_end(args);
6256 
6257 	return r;
6258 }
6259 EXPORT_SYMBOL(netdev_printk);
6260 
6261 #define define_netdev_printk_level(func, level)			\
6262 int func(const struct net_device *dev, const char *fmt, ...)	\
6263 {								\
6264 	int r;							\
6265 	struct va_format vaf;					\
6266 	va_list args;						\
6267 								\
6268 	va_start(args, fmt);					\
6269 								\
6270 	vaf.fmt = fmt;						\
6271 	vaf.va = &args;						\
6272 								\
6273 	r = __netdev_printk(level, dev, &vaf);			\
6274 	va_end(args);						\
6275 								\
6276 	return r;						\
6277 }								\
6278 EXPORT_SYMBOL(func);
6279 
6280 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
6281 define_netdev_printk_level(netdev_alert, KERN_ALERT);
6282 define_netdev_printk_level(netdev_crit, KERN_CRIT);
6283 define_netdev_printk_level(netdev_err, KERN_ERR);
6284 define_netdev_printk_level(netdev_warn, KERN_WARNING);
6285 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
6286 define_netdev_printk_level(netdev_info, KERN_INFO);
6287 
6288 static void __net_exit netdev_exit(struct net *net)
6289 {
6290 	kfree(net->dev_name_head);
6291 	kfree(net->dev_index_head);
6292 }
6293 
6294 static struct pernet_operations __net_initdata netdev_net_ops = {
6295 	.init = netdev_init,
6296 	.exit = netdev_exit,
6297 };
6298 
6299 static void __net_exit default_device_exit(struct net *net)
6300 {
6301 	struct net_device *dev, *aux;
6302 	/*
6303 	 * Push all migratable network devices back to the
6304 	 * initial network namespace
6305 	 */
6306 	rtnl_lock();
6307 	for_each_netdev_safe(net, dev, aux) {
6308 		int err;
6309 		char fb_name[IFNAMSIZ];
6310 
6311 		/* Ignore unmoveable devices (i.e. loopback) */
6312 		if (dev->features & NETIF_F_NETNS_LOCAL)
6313 			continue;
6314 
6315 		/* Leave virtual devices for the generic cleanup */
6316 		if (dev->rtnl_link_ops)
6317 			continue;
6318 
6319 		/* Push remaining network devices to init_net */
6320 		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6321 		err = dev_change_net_namespace(dev, &init_net, fb_name);
6322 		if (err) {
6323 			printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
6324 				__func__, dev->name, err);
6325 			BUG();
6326 		}
6327 	}
6328 	rtnl_unlock();
6329 }
6330 
6331 static void __net_exit default_device_exit_batch(struct list_head *net_list)
6332 {
6333 	/* At exit all network devices most be removed from a network
6334 	 * namespace.  Do this in the reverse order of registration.
6335 	 * Do this across as many network namespaces as possible to
6336 	 * improve batching efficiency.
6337 	 */
6338 	struct net_device *dev;
6339 	struct net *net;
6340 	LIST_HEAD(dev_kill_list);
6341 
6342 	rtnl_lock();
6343 	list_for_each_entry(net, net_list, exit_list) {
6344 		for_each_netdev_reverse(net, dev) {
6345 			if (dev->rtnl_link_ops)
6346 				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6347 			else
6348 				unregister_netdevice_queue(dev, &dev_kill_list);
6349 		}
6350 	}
6351 	unregister_netdevice_many(&dev_kill_list);
6352 	list_del(&dev_kill_list);
6353 	rtnl_unlock();
6354 }
6355 
6356 static struct pernet_operations __net_initdata default_device_ops = {
6357 	.exit = default_device_exit,
6358 	.exit_batch = default_device_exit_batch,
6359 };
6360 
6361 /*
6362  *	Initialize the DEV module. At boot time this walks the device list and
6363  *	unhooks any devices that fail to initialise (normally hardware not
6364  *	present) and leaves us with a valid list of present and active devices.
6365  *
6366  */
6367 
6368 /*
6369  *       This is called single threaded during boot, so no need
6370  *       to take the rtnl semaphore.
6371  */
6372 static int __init net_dev_init(void)
6373 {
6374 	int i, rc = -ENOMEM;
6375 
6376 	BUG_ON(!dev_boot_phase);
6377 
6378 	if (dev_proc_init())
6379 		goto out;
6380 
6381 	if (netdev_kobject_init())
6382 		goto out;
6383 
6384 	INIT_LIST_HEAD(&ptype_all);
6385 	for (i = 0; i < PTYPE_HASH_SIZE; i++)
6386 		INIT_LIST_HEAD(&ptype_base[i]);
6387 
6388 	if (register_pernet_subsys(&netdev_net_ops))
6389 		goto out;
6390 
6391 	/*
6392 	 *	Initialise the packet receive queues.
6393 	 */
6394 
6395 	for_each_possible_cpu(i) {
6396 		struct softnet_data *sd = &per_cpu(softnet_data, i);
6397 
6398 		memset(sd, 0, sizeof(*sd));
6399 		skb_queue_head_init(&sd->input_pkt_queue);
6400 		skb_queue_head_init(&sd->process_queue);
6401 		sd->completion_queue = NULL;
6402 		INIT_LIST_HEAD(&sd->poll_list);
6403 		sd->output_queue = NULL;
6404 		sd->output_queue_tailp = &sd->output_queue;
6405 #ifdef CONFIG_RPS
6406 		sd->csd.func = rps_trigger_softirq;
6407 		sd->csd.info = sd;
6408 		sd->csd.flags = 0;
6409 		sd->cpu = i;
6410 #endif
6411 
6412 		sd->backlog.poll = process_backlog;
6413 		sd->backlog.weight = weight_p;
6414 		sd->backlog.gro_list = NULL;
6415 		sd->backlog.gro_count = 0;
6416 	}
6417 
6418 	dev_boot_phase = 0;
6419 
6420 	/* The loopback device is special if any other network devices
6421 	 * is present in a network namespace the loopback device must
6422 	 * be present. Since we now dynamically allocate and free the
6423 	 * loopback device ensure this invariant is maintained by
6424 	 * keeping the loopback device as the first device on the
6425 	 * list of network devices.  Ensuring the loopback devices
6426 	 * is the first device that appears and the last network device
6427 	 * that disappears.
6428 	 */
6429 	if (register_pernet_device(&loopback_net_ops))
6430 		goto out;
6431 
6432 	if (register_pernet_device(&default_device_ops))
6433 		goto out;
6434 
6435 	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6436 	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
6437 
6438 	hotcpu_notifier(dev_cpu_callback, 0);
6439 	dst_init();
6440 	dev_mcast_init();
6441 	rc = 0;
6442 out:
6443 	return rc;
6444 }
6445 
6446 subsys_initcall(net_dev_init);
6447 
6448 static int __init initialize_hashrnd(void)
6449 {
6450 	get_random_bytes(&hashrnd, sizeof(hashrnd));
6451 	return 0;
6452 }
6453 
6454 late_initcall_sync(initialize_hashrnd);
6455 
6456